
Series 9800 Desktop Computers

Assembly Development
ROM Manual

For the HP 9845

rhO- HEWLETT
a.:~ PACKARD

FliiW HEWLETT
.:~ PACKARD

Warranty Statement

Hewlett-Packard products are warranted against defects in
materials and workmanship. For Hewlett-Packard Desktop
Computer Division products sold in the U.S.A. and Canada, this
warranty applies for ninety (90) days from date of delivery.*
Hewlett-Packard will, at its option, repair or replace equipment
which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any.
Equipment returned to Hewlett-Packard for repair must be
shipped freight prepaid. Repairs necessitated by misuse of the
equipment, or by hardware, software, or interfacing not provided
by Hewlett-Packard are not covered by this warranty.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR
CONSEQUENTIAL DAMAGES.

* For other countries, contact your local Sales and Service Office
to determine warranty terms.

r 1

Assembly Development ROM

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Co!!ins, Colorado 80525

CopYright by Hewlett-Packard Company 1980

ii

Printing History
Periodically, this manual is updated. Each new edition of this manual incorporates all material

updated since the previous edition. Each new or revised page is indicated by a revision date.

The date on the back cover changes only when each new edition is published.

First Printing ... March 1, 1980

iii

Tabie of Contents

Chapter 1: General Information
Equipment Supplied .. 1-2
Structure of the Manual ... 1-2
Purpose of the ROMs ... 1-3
ROM Installation ... 1-3
Buzzwords ... 1-5
Fundamental Syntax .. 1-7

Chapter 2: Getting Started
Developing Routines for Later Use ... 2-1
Overview .. 2-3

Program Creation ... 2-3
Program Entry .. 2-8
Other Extensions .. 2-10

Modules and Routines ... 2-11
Names .. 2-11
Survey of Modules and Routines .. 2-12
Setting Aside Memory .. 2-13

Retrieving and Storing Modules .. 2-16

Chapter 3: The Processor and the Operating System
Machine Architecture ... 3-1

Registers ... 3-2
General Memory Organization ... 3-4
Protected Memory .. 3-6
Base and Current Page .. 3-6
Nesting of Subroutine Calls .. 3-6

Data Structures .. 3-8
Integers .. 3-8
Strings ... 3-8
Full-Precision Numbers .. 3-9
Short-Precision Numbers .. 3-9

Machine Instructions .. 3-10
Operands ... 3-10
Indirect Addressing .. 3-12
Load/Store Group .. 3-12
Integer Math Group .. 3-13
Branch Group ... 3-14
Test/Branch Group .. " ... 3-15
Test/ Alter /Branch Group ... 3-16
Shift/Rotate Group ... 3-18
Logical Group .. " 3-19
Stack Group .. 3-20
BCD Math Group .. 3-23
I/O Group .. 3-26
Miscellaneous ... 3-27

iv

Chapter 4: Assembly Language Fundamentals
Program Entry ... 4-1

Assembly Language Source .. 4-3
Actions ... 4-3
Labels .. 4-3
Comments .. 4-5

Syntaxing the Source ... 4-5
Creating Modules .. 4-7
Storage .. 4-8

Modules ... 4-8
Variables ... 4-8
Data Generators .. 4-9

Repeating Instructions ... 4-12
Assembling ... 4-13

Effect of BASIC Environments .. 4-14
Source Listing Control ... 4-14

Page Format ... 4-16
Page Length ... 4-16
End-of-Page Control ... 4-17
Page Headings ... 4-18
Blank Line Generation ... 4-18
Non-Listable Pseudo-Instructions .. 4-19

Conditional Assembly .. 4-19
Control of Indirection .. 4-22
Relocation .. 4-22

Module Reassembly .. 4-23
Symbolic Operations .. 4-24

Predefined Symbols ... 4-24
Defining Your Own .. 4-26
Literals ... 4-27

Evaluation of Literals ... 4-27
Nesting Literals .. 4-28
Nonsensical Uses of Literals ... 4-29
Literal Pools ... 4-30

Expressions ... 4-31
External Symbols and Elements ... 4-33
Other Absolute Elements ... 4-34

Utilities ... 4-36

Chapter 5: Arithemetic
Integer Arithmetic .. 5-2

Representation of Integers ... 5-2
Integer Arithmetic ... 5-2
Multi-Word Integer Arithmetic ... 5-5

Binary Coded Decimal .. 5-7
Arithmetic Machine Instructions .. 5-7
BCD Registers ... 5-8
BCD Arithmetic .. 5-8

Addition ... 5-9
Ten's Complement for BCD ... 5-9
Floating Point Summations ... 5-11

v

Normalization ... 5-12
Rounding ... 5-12
Floating Point Multiplication .. 5-13
Floating Point Division ... 5-15

The FDV Instruction .. 5-1 7
Thirteen-Digit Dividends .. 5-18
Floating-Point Division Example , " ... 5-19

Arithmetic Utilities ... 5-21
Utility: ReI_math ... 5-21
Utility: ReI to int .. 5-24
Utility: ReI-to -sho .. 5-25
Utility: Int to reI ... 5-26
Utility: Sho to reI .. 5-27

Chapter 6: Communication Beiween BASiC and Assembly Language
The ICALL Statement .. 6-1

Corresponding Assembly Language Statements 6-2
Arguments ... 6-3
"Blind" Parameters ... 6-6
Getting Information on Arguments ... 6-7

Utility: Get_info .. 6-8
Retrieving the Value of an Argument .. 6-12

Utility: Get value ... 6-12
Utility: Get element ... 6-14
Utility: Get bytes .. 6-15
Utility: Get elem bytes ... 6-16

Changing the Value of an Argument ... 6-18
Utility: Put value ... 6-18
Utility: Put-element ... 6-19
Utility: Put-bytes .. 6-20
Utility: Put-elem bytes .. 6-22

Using Common .. ~ ~ ... 6-23
Busy Bits ... 6-26

Utility: Busy ... 6-27
Utility: To_system ... 6-28

Chapter 7: 110 Handling
Peripheral-Processor Communication .. 7-1

Interfaces .. 7-2
Registers ... 7-2
Select Codes ... 7-3
Status and Control Registers ... 7-4
Status and Flag Lines ... 7-4

Programmed I I 0 .. 7-6
Interrupt 1/0 .. 7-7

Priorities ... 7-8
Interrupt Service Routines and Linkage 7-9
Breaking Interrupt Service Routine Linkage 7-9
Access .. 7-10

Utility: Isr_access ... 7-13
Disabling Interrupts .. 7-15
State Preservation and Restoration , , 7-17

vi

Indirect Addressing in ISRs ... 7-18
Enabling the Interface Card ... 7-19
Interrupt Transfer Example ... 7-20

Direct Memory Access (DMA) .. 7-22
DMA Registers .. 7-22
DMA Transfers .. 7-23

BASIC Branching on Interrupts ... 7-27
ON INT Statement ... 7-27
Signalling ... 7-28
Prioritizing ON INT Branches ... 7-30
Environmental Considerations .. 7-32
Disabling ON INT Branching .. 7-32

Mass Storage Activities .. 7-33
Reading from Mass Storage ... 7-33

Utility: Mm read start .. 7-35
Utility: Mm -read - xfer ... 7 -35

Writing to Mass Storage .. 7-37
Utility: Mm write start .. 7-37
Utility: Mm - write -test ... 7-38

System File Information .. 7-39
Utility: Get file info .. 7-40
Utility: Put-file -info ... 7-41

Communicati0l1 withBASIC Data Files 7-42
Interrelation of Record Types ... 7-43
Crossing Record Boundaries .. 7-44
File Marks ... 7-47
Determining Data Types .. 7-48

Printing .. 7-49
Utility: Printer select .. 7-49
Utility: Print String .. 7-50
Utility: Print-no If .. 7-52

The Beep Signal~ .. ~ ... 7-53
Expediting I/O ... 7 -53

Chapter 8: Debugging
Symbolic Debugging .. 8-2
Stepping Through Programs ... 8-3

Individual Instruction Execution .. 8-3
Setting Break Points .. 8-7

Simple Pausing ... 8-7
Transfers ... 8-8
Environments ... 8-9
Data Locations .. 8-11
IBREAK Everywhere ... 8-12
Number of Break Points .. 8-13
Clearing Break Points .. 8-13
Interrogating Processor Bits ... 8-14

Dumps ... 8-14
Value Checking ... 8-17

Functions ... 8-17
DECIMAL ... 8-17
OCTAL ... 8-18

vii

IADR ... 8-19
IMEM ... 8-19
Interrupting Registers and Flags ... 8-20
Patching .. 8-21
Stepping vs. Running ... 8-22

Chapter 9: Errors and Error Processing
Types of Errors ... 9-1

Syntax-Time and Assembly-Time Errors 9-2
Run-Time Errors .. 9-2

Utility: Error exit ... 9-3
Run-Time Messages ~ ... 9-5
Assembly-Time Messages ' .. 9-8

Chapier iO: Graphics
Introduction .. 10-1
The Graphics Raster ... 10-2

Displaying the Graphics Raster .. 10-2
The Graphics Memory ... 10-3
Graphics Operations ... 10-5

Checking for Graphics Hardware .. 10-5
Overview ... 10-5
Operation: Writing Individual Pixels " 10-7
Operation: Writing Full Words .. 10-11
Operation: Clearing Full \Nords ... 10-15
Operation: Reading Full Words ... 10-18
Operation: Cursor Operations ... 10-22

Comprehensive Example ... 10-25
Line Drawing .. 10-27

Appendix A: ASCII Character Set
ASCII Character Codes ... A-I

Appendix B: Machine Instructions
Detailed List ... B-1

Condensed Numerical List ... B-12
Alphabetical List .. B-12

Bit Patterns and Timings ... B-13

Appendix C: Pseudo-Instructions ... C-1

Appendix D: Assembly Language BASIC Language Extensions Formal Syntax D-1

Appendix E: Predefined Assembler Symbols E-1

Appendix F: Utilities ... F-1

Appendix G: Writing Utilities G-1

viii

Appendix H: I/O Sample Programs

Handshake String Output ... H-l
Handshake String Input .. H-3
Interrupt String Output ... H-5
Interrupt String Input ... H-7
DMA String Output ... H-I0
DMA String Input ... H-12
HP-IB Output/Input Drivers ... H-15
Real Time Clock Example ... H-19

Appendix I: Demonstration Cartridge
Using the Tape ... 1-1
Typing Aids .. 1-1

Appendix J: Error Messages
Mainframe Errors ... J-l
I/O Device Errors ... J-ll

CSTATUS Element 0 Errors .. J-12
Assembly-Time Errors ... J-12
IMAGE Status Errors ... J-13

Appendix K: Maintenance
Maintenance Agreements ... K-l

Appendix L: 9835/9845 Compatibility .. L-l

Subject Index

Chapter 1
General Information

Welcome to the world of assembly language programming on the System 45 1
•

It is the design of the Assembly Execution and Development Read Only Memory (ROM) and

the Assembly Execution ROM to help extend the capabilities of your 9845 by giving you greater

control and speed through the use of machine instructions, pseudo-instructions, and exten

sions to the BASIC language.

The assembly language system is provided to you as one of two ROMs which plug into the right

ROM drawer of your System 45. The two ROMs are:

• The Assembly Execution and Development ROM - used to write and debug assembly

language programs on the System 45, and has the complete capability of the Assembly

Execution ROM .

• The Assembly Execution ROM - provides the capability to load, run, and store assem

bled routines and modules. Information about this ROM can be found in the Assembly

Execution ROM manual.

When installed, the Assembly Execution and Development ROM reserves some read/write

memory which cannot be accessed for storage of programs or data. {The Assembly Execution

ROM also reserves memory.} The following table describes the actual read/write memory used

{in 8-bit bytes} under various configurations:

Execution ROM Only Execution and Development ROM

1-1

1/0 ROM Present 1/0 ROM Not Present 1/0 ROM Present 1/0 ROM Not Present

Power on
After
first

pre-run

270

708

334

772

590 654

1028 1092

It is assumed throughout this manual that you are familiar with the basic operation and lan

guage of the 9845. It is also assumed that you are reasonably well-acquainted with at least one

other assembly language.

1 The assembly language programming capability is not available for the System 45A computer.

1-2 General Information

Equipment Supplied
The following items are supplied with the Assembly Execution and Development ROM -

Item

Assembly Development ROM Manual
Assembly Execution ROM Manual
Assembly Language Quick Reference
BASIC Language Interfacing Concepts
Demonstration Cartridge
Error Label

Part Number

09845-91083
09845-91082
09845-91080
09835-90600
11141-10155

7120-8771

Structure of the Manual
It is the intent of this manual that you should be able to find between its covers everything you

need to know to use the assembly language effectively. However, since assembly language

programming is a complex topic, the manual relies a great deal on your past experience. Most

of the information is in succinct presentations of a particular topic; it is not the intent to "teach"

assembly language programming to someone not familiar with the topic.

The major topics covered are: assembly language program creation, the processor and relevant

operating system constructs, assembly language fundamentals, BCD and integer arithmetic,

communications with BASIC, I/O handling, debugging tools, errors and error processing, and

graphics. Each topic (chapter), has a summary at the beginning detailing the information to be

presented therein.

The manual is organized so that each topic can be covered completely within a given chapter.

This approach was chosen over the strict syntactical or seman tical treatment of the individual

statements and instructions. As a consequence, you may find this difficult to use as a "quick

reference" for syntax and meaning of the indivldual commands.

To meet your needs for "quick reference" material, an Assembly Language Quick Reference

Manual (HP part number 09845-91080) is provided. In addition, you will find much of the

information in this manual condensed and tabulated in the various appendices of this manual.

A recommended method for using the manuals is to start with this one as your basic learning

tool. Then you should be able to use the Quick Reference Manual effectively for all future

reference.

General Information 1-3

Purpose of the ROMs
The Assembly Execution and Development ROM is used to write and debug assembly language

programs on the System 45, and also has the complete capability of the Assembjy Execution

ROM. The Assembly Execution ROM provides the capability to load, run, and store assembled

routines and modules.

The Assembly Execution ROM is used independently of the Assembly Execution and De

velopment ROM. Because of the overhead required by the debugging features of the Assembly

Execution and Development ROM, programs run slightly more rapidly if the Assembly Execu

tion ROM is used rather than the Assembly Execution and Development ROM.

ROM Installation
Before assembly language programming can proceed, the ROMs must be in place. The installa

tion is a simple process.

There are two ROM drawers for the computer: one on the right side of the machine one on the

left. The ROM is installed in the right ROM drawer, using these steps:

• Pull the right ROM drawer out.

• Squeeze the sides of the plastic cover and lift to gain access to the drawer connectors.

• Position the ROM over one of the connectors denoted by a 0 or [] marking.

• Press the ROM onto the ROM drawer connector so that it seats all the way down. The

small circular keys on the sides of the ROM drawer should fit into the recesses in the

bottom of the plastic ROM case. If they don't, make sure that you have properly oriented

the ROM.

1-4 General Information

Assembly Language System ROM

After inserting the ROM, close the drawer until it is flush with the outside cover of the machine.

With this done, you are now ready to begin writing assembly language programs.

Figure 1. Installing the Assembly Execution and Development ROM

General Information 1-5

Buzzwords
During the course of the discussions in this manual, words and phrases are used which are in

common circulation among those who are familiar with assembly languages. While the mean

ings of most are either well-known, or are deducible from the context, there are a few which

may be unfamiliar, or unique to the 9845 assembly language, or are variable from one assem

bly language to the next and thus need to be defined for this one. They are -

assembled location - a reference to a location in memory which may be specified in one

of the following forms -

{symbol} [~ {numeric expression}]

{expression} ['l {numeric expression}]

where:

{symbol} is an assembly location. It may be a label for a particular machine instruction (in

which case the address of the associated instruction is used), or an assembler-defined

symbol (in which case the associated absolute address is used), or a symbol defined by an

EQU instruction (described in the "Symboiic Operations" section of Chapter 4).

{expression} may be a numeric expression or a string expression. If numeric, a decimaj

calculation is performed and the result is interpreted as an octal value; if the result is not

an octal representation of an integer, an error results. If a string expression is used, the

string must be interpretable as either an octal integer constant or a known assembly

symbol (see {symbol} above).

{numeric expression} serves as a decimal offset from the given label or constant.

busy bits - each variable located in the BASIC value or common areas has associated

with it two bits: a "read" busy bit, and a "write" busy bit. When a "read" busy bit is set,

attempts should not be made to perform a function on that variable. A read operation may

be performed on a "write-busy" variable. When the busy bit is cleared, the function may

be performed on the variable.

byte - a group of 8 binary digits (bits).

conditional assembly - an assignation that certain portions of a module are not to be

assembled unless a condition has been set. The portions begin with any of the IFA through

IFH, and IFP, pseudO-instructions, and end with the next XiF pseudo-instruction. IFA

uses the A-condition as a test, and so on. The conditions are set by the statement assem

bling the module (lASSEMBLE).

1-6 General Information

interrupt service routine (lSR) - an assembly language routine intended to perform a

certain action, or set of actions, when the computer receives a request from an external

device. An "active" ISR is one which is currently enabled for a given device.

mass storage unit specifier (msus) - a single word corresponding to the BASIC lan

guage mass storage unit specifier as described in either the 9845 Operating and Pro

gramming Manual or the Mass Storage Techniques Manual. An msus has one of the

following structures -

Unit HPIB Device Select
Number2 Address Type 1 Code

I I I I I I I I I I I I

I I I I I I I I I I I I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 OBit

or

Unit Device Select
Number Type1 Code

I I I I I I I I I I I I

I I I I I I I I I I I I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 OBit

for the 9885MS Flexible Disk Drive

An msus can designate the current default as its mass storage device (meaning it will use

the device indicated by the last MASS STORAGE IS statement executed). This is desig

nated by having the msus be all ones (Le., equal to - 1).

object module - a section of assembled code stored in the particular region of memory

set aside for it. Though the source module for the object code may no longer be resident in

memory, when created, the module was delimited by certain pseudo-instructions (NAM

and END) and is referenced by the name given to it by the NAM pseudo-instruction.

octal expression - a numeric expression which, when displayed or printed, appears as

an octal (base-8) number. Within arithmetic operations, it has a decimal value (base-l0).

Thus, the value 178 will appear as 17 (representing the value 1510), but if arithmetic was

performed on it, it would act as if it were 1710. All octal expressions are necessarily

integers in the range of 0 to 1777778.

1 The device type is the ASCII code for the type minus 1008.

2 For tape operations, bits 9-15 are zeros.

General Information 1-7

pixel - picture element - the smallest unit of resolution on the CRT.

source module - a section of assembly language source code beginning with a NAM

pseudo-instruction and ending with the END pseudo-instruction.

word - two bytes; a group of 16 binary digits (bits).

B - octal radix specifier. For example 1777778 is 177777 octal. If the trailing "8" is not

present, the assembler assumes decimal.

*- shorthand for current location. For example,

is equivalent to -

Fundamental Syntax
The syntax conventions used in this manual are those used in the Operating and Programming

Manual for the 9845.

ck::t ffa tr-· i >:: All syntax items displayed in dot matrix form should be pro

grammed as shown.

[] Items contained in brackets are optional items.

Ellipses mean that the previous item may be repeated

indefinitely.

In addition, the following convention is employed throughout the Assembly Language series of

manuals-

{ } Items contained in braces are syntax items considered as a

unit. The names inside are. usually descriptive of the function

intended for that item. Whenever an item enclosed in braces

appears in the text, the notation refers to the same notation

within an earlier syntax.

1-8 General Information

2-1

Chapter 2
Getting Started

Summary: This chapter contains a general discussion of the assembly language sys

tem. A format for the creation of an assembly language program is presented. Topics

such as modules, routines, and memory allocation are discussed, along with methods of

using them effectively. Also discussed is the storage and retrieval of modules on mass
...... _ ,...
;:>LVLa~",.

The thing to remember about the ass~mbly language system is that it has been thoroughly

integrated into the operating system of the System 45. Once the ROMs have been installed, you

are able immediately to begin programming in assembly language. In addition, you have the

capability to load and store your programs on mass storage, to assemble them separately or

leave them in source form, to execute them from BASIC and pass BASIC variables to them,

and to debug them, including a full pausing and stepping capability.

Developing Routines for Later Use
Most assembly language programs are written with the intent that they will be used many times,

not just at the time they are written. It is for just such program development that the full

capabilities of the assembly language system come into play. The development comes in

several stages. Each stage has its unique requirements and the tools to meet those require

ments.

The first stage is creation of the source program. This is achieved by the use of the editing

capabilities of the System 45. Additionally, the mass storage capabilities of the computer can be

used.

The second stage is the creation of the object (or machine) code. This requires not only an

assembly of the source, but the ability to allocate special locations in memory to hold the newly

created object code.

The third stage is the validation of the routines as written, commonly known as "debugging".

This is enabled by calls from a BASIC driver, followed by application of various debugging

tools provided by the assembly system. The capabilities to pause and step a program have been

extended to assembly language instructions to assist this process.

2-2 Getting Started

The fourth stage is to store away the debugged object code so that it may be used at a later

time. A special mass storage statement is provided by the assembly language system. This

statement stores object code into a special assembly file.

Finally, the end-user of the routines must be able to retrieve the object code from mass storage

as it is needed. He also must be able to access the routines from BASIC programs. Both these

needs are met with the Execution ROM, so the capabilities are not only provided, but they are

provided independently of the program development capabilities located in the Assembly

Execution and Development ROM.

Each of the topics involved in these stages is discussed at length in this manual.

Figure 2 presents a graphical presentation of this overview.

Mass Storage Editing
Capabilities Source Capabilities
of System 45 .. Statements of System 45

(Source) Program Creation

Assembly

Memory
Allocation

(Object) Module Creation

Calls from
BASIC

@ill Assembly Language System' s

8 Routine Validation
Debugging Tools

(Debugging)

Storage
Special Files

Mass Storage

Retrieval

User's BASIC Programs
(includes calls to routines)

Figure 2. Overview of Assembly Language Routine Development Process

Getting Started 2-3

Overview
At this point, there are three fundamental structures to be explained: programs, modules, and

routines.

A program is the set of source statements from which the object (or machine) code is gener

ated. The assembly source statements are extensions to the BASIC language which is used in

the System 45. The statements themselves are stored in the machine as part of the BASIC

program in which they reside. At some point, you must take the assembly source statements

and assemble them into object code, in order for them to be run. The object code is stored in a

specified location in the machine.

A module is a subset of the object code. It is a means of separating and identifying parts of the

code so that those parts may be used individually (as in mass storage operations). There may

be any number of modules present at anyone time, limited only by the amount of memory

allocated for object code.

A routine is a "callable" section of a module. It is analogous to the subprogram in BASIC. It

has a named entry point, possibiy a parameter iist, and a return. A moduie may contain any

number of routines, again limited only by the amount of memory allocated to hold the object

code.

In short, the usefulness of each structure is as follows -

• Programs contain assembly language source code.

• Modules contain object code to be loaded from or stored on mass storage.

• Routines are executable sections of object code.

Program Creation
The first matter which is likely to concern you about the assembly language system is how to

create an assembly language program.

In general, the process of creating an assembly language subprogram consists of the following

steps -

1. Enter and store the source code (program).

2. Create an area in memory which will ultimately contain the object code.

3. Assemble the source code into object code, storing the latter into the area of memory set

aside for it.

4. Execute the object code (routines) from BASIC "drivers".

2-4 Getting Started

Each of these steps will be discussed at length in the pages of this manual, along with a number

of not-so-incidental side-topics (such as "debugging" techniques). The purpose of this short

section is to give you an impression of the general procedure through which an assembly

language subprogram is created.

As an example to use to demonstrate the process, suppose the following task has been assigned

to you-

Requirement: Write an assembly language subprogram which takes two integer

values and multiplies them together as integers. If the result overflows the range of

an integer (- 32 768 to + 32 767), then the subprogram should return the same

error as the system would (Le., error number 20).

With this task in hand, suppose that you have completed a programming analysis that suggests

that the following assembly language source code would fulfill the subprogram's functions _1

5~] I ~:;iJL~F::C:E I (!~)jJt 1 :
60 ISOURCE In~ut2:
7~a I ::;Ci~J F:C:E C!i) t. F)t~t :

120 I :::OURCE
130 I ':;QURCE

240 ISOURCE
:::,::;.-:-, I ::;OURC::
:~~'h.-:-1 I ':;')JF.:CE
~:::?0 ISUURCE

HAM Multiplication! Beginning of module

T=.l-:
1 ,vi!

LIlA =In'l:.e';iEr:=;.+l
LI~t: = I t-lr)~-~ t 2
.J~=; 1-; C; et :.).::t. 1 I,)E-

LIlA =20
.Y::;r'l Er"'f"'(/' e::<'i t
::::TA Ir·itei;!E:,,,:;:.
LIlA = I n1:. eger"':=;'
LDB =Outp;..41:.

! I~jicates entry point follows
I r-j:] i (.3. t E-:=:- ii i r-lt E"l;lE'f' ~):it-·.::trfJE"t ~·r-·=· ·:i.r-·e

~):1=.:=.E·ij i r-~ t~·~E· c!f-·:jE't-· ~;Ii !)E-i-! t::: .. 1 rJ-EE';.E'

:::. t.3, t E rflE-(!~.:'::. .:ir-pj .::t.t-·E- 1;1 i !· • .!!::t-I t-~::t.r~·~E·:::·

~ Actt~::t.l !=-ntt-·~) ~)C:if-It <r-~:iff~E': t'l!_~lti~)l~);

r"'Out i ne be';! in:=;. b::..I fet. chi n.; ·:':tc t. i..B 1
' .. '.:':t]; .. H:· o·r the input p:':tt .. ·.:iflletef"·::;·
from BASIC and st.oring them where
the routine can use them

arithmetic accumulator and

! A check for overflow is performed

in the B register ~0en it sh~uld be 0
and if it isn~t~ Error 20 is selected
and the routine is aborted

If everything is (~, then result st.ored
T~-~:::' ~)t~·::::jt~::::t. 1:::. t.hEr-i r-·Etl.Ar-·i-tE·.j t() tt-~E'

C:iJt t=ltJt !·).3.r-· i -3.L! 1 ~.:. i ~-~ BA~:; I C: 1 i:=- t E'ij

We're finished, so return to BASIC
END Multiplication! End of module

1 The fact that it is rarely possible to create a running program at this stage should not get in the way of accepting the example.
Usually there is debugging involved in later stages.

Getting Started 2-5

Now that the routine has been developed, it is necessary to get it into the memory of the

machine as a program. This is done by preceding each and every assembly language statement

with the keyword ISOURCE and entering it as a program line. The process of entering (with the

keyword included) is the same as with any other BASIC statement - so you can use EDIT or

AUTO and the 8 key in the same way you normally enter any BASIC statement. (This

process is fully described in the "Program Entry" section of this chapter.)

The final result of entering the routine would look something like -

NAM Multipl ication

I r-1t)t4 t 1 :
I t-~f=;i) r~ 2 :
Cit~t f)~.At : 1r"41"

80 ISOURCE MultlP!Y: LDA =Integers
LI):B = I (~r)t~i:.l
.J::; rr1 :.).3. 1 ~_~E'
LI111 =- I t-lt ==':J~:='r-':::'+ 1

~:; TA I f-~t E- j~E' r-':=
LIlA =:If-lte~;]E'r-'="

:1::
r=:.c. ~

END Multiplication

Beginning of module
=.}.3.1 ~_~==', F'trt. :.}.:i. 1 t~E- ~ iJt. i 1 .; + .; .-.. -

::;t.c;f-·.3.!;iE· .3.r-E"·::t f"c:t-· i (1t.E"i;1E"r--:=. Cr-·E·.~tE·:j

Indicates entry point follows
Ir-j:ji C.:itE-:::. :: i f-;t~':;jZ::'r-' f:8.r--.3.f{;E-t:::"r-·:::. -3..t-·E"

r):i.:::·:;·E-"j 1t-l tt-~E' c:r-'C~E'r-' :;i ;·}E·f-~ c::: .. : t.t-p::-:::.e
:::-t-3.1:-effient:::- -3.nd -3.r--",,- gi '---'en n3.mE-:::

Actt-i.3..1 E·t-ltt-·~~) r;c:it-~~. (r-i-3.UlE": tI1t~ltiF)1:);

~rom BASIC and storing them where
the routine can use them

arithmetic accumulator and

H C }Hi~·C k ·fC=f-· ::::~:.)E·(·f-l C:~.:) i:=. f)E·t--F·c,t-·rnE·tj

by checking the result for anything
in the B register wh""n it should be 0
and if it isn/t. Errc~ 20 is selected

If everything is OK, thEn result stored
The r~Gj~:t is thEn returned to the

c;t~t~::t~t :.).3.(·i.3.Cl1e i~-; E~A~=;IC: 1 istE";j

among the argwBents

This source code demonstrates the three critical items in assembly subprograms. First, a routine

has to be part of a module; modules are delimited with the NAM and END pseudo-instructions

(see lines 10 and 270 in the source). Second, a routine has to have an entry point; this consists

of a SUB pseudo-instruction (see line 40), any parameters (see lines 50 through 70), and a

name (the label used on the first machine instruction following the SUB, see line 80). Finally, a

routine must be able to return to the BASIC program which called it; this is accomplished with

the RET 1 instruction (see line 260).

The NAM, END, and SUB pseudo-instructions are discussed in Chapter 4. The RET 1 instruc

tion is discussed in Chapter 3.

2-6 Getting Started

The next three steps in program creation are each satisfied with BASIC-executable statements.

Creation of a storage area for the object code for the program (which can be estimated at less

than 40 words; there is essentially one word of object code per line of source) is accomplished

by programming the statement -

(The ICOM statement is fully discussed in the "Setting Aside Memory" section of this chapter.)

This can be followed in the same program by an instruction to assemble the source code into

object code -

290 IASSEMBLE Multiplication

(The IASSEMBLE statement is fully discussed in Chapter 4.)

If the assembly is successful (and it will be in this example), then the routine can be called and

used as desired. A typical call looks like -

600 ICALL !'iul tip 1 ',..' (I ndE-::·::, Ii i iflE-n:::· i en, ::::ub:::·c r i pt ::.
6 1 ~3 Rt-·t-·.:i.~:--' (::; t~ti :::·c t-· i r)1:. ::. = \l:~ 1 '-~ E:-

(The ICALL statement is fully discussed in Chapter 6.)

Thus, the final result could easily be -

':::CiUF.:U:::
:::UUr-:\A:.

'X:1 ::::OU~:CE

1 D0 ::::OUPCE
i E1 ::::OUF-:CE

1 :3~~1 ~:;CifJF?C:E

140 SOUF.:CE

19>:) '::OUPCE
200 ::::CUF.:CE
210 ::::OUPCE

NAM Multipl ication ! Beginning ot· module
EXT Error E~it,Get value,Put value I Utilities

Integers: BSS_

npvt 1: EH

i)tput ItH
ultip y: LDA =Integers

LIlA =IntegET:::.+l
LDB =Input2

LIH4 I r-(t:. e=;ier-':::

LDB Int'::·';!'::T:::.+l
f'1P\'
::::BP ++2

t...DA =2D

Indicates Efitry point follews

~):i:::.:::.E·:j i r-~ t t-ie (:(':jE"r-' :;1i !·}E-r-j c=:) t t-~t:':=-e
s~atements and are givEfi names

A::::t[_~3.j E:·~-lt(·~/ ~)c:it-~t ((?-3.rf~E-: ~'1i_.J1 t i ~::1 ~);
routine begins by fetching actual
l.).::t.l t~e c:f t~-iE' i f-~~)t~t t):ir·.:if{i~:·tE·r-·:::,

from BASIC and storing them 41ere
the reutine can use them

arithmetic accumulator and
finally multipl ies them

A ch~ck for nuerflow is performed
by checking the result for anything
in the B register 01~n it shG~ld be n

and if it isn~t~ Errc~ 20 is ~~lected
and the routine is aborted

Getting Started 2-7

among the argumEfits

.- - .:.. - ---
; :_.::!, :,- , ,_:j":

It isn't necessary that a program be assembled in every BASIC program which uses it. Object

code can be stored on mass storage with a statement like -

-.::=;:.::-':

So if the example were instead made to read -

T ~'~T

Ir-H
LDA =lnte,]er--::;-

L-1JH T '-it e';1e'--:::
LIlE I nt e':;it'T:::+l

=Cl~)t ~)~_~t

F: ~_~ t. =.}.3. 1 ;_~ E-

Eeginning o~ module

I ~-~ci i ~=.:i. t e.:: -= :--. :.- :'-. I f)'': - - - ... _. -.-

1. (;::1 1 C·:i t. :::':::. ;: i r-;t e;~:::'(' ~:;:J.t-·.3.r(l~.:·t ~:'r-'::: . . 3.[-,=:;"

passed in the order ']iven by these
:::- t-:i t ==-f{;:::'(~ t:::· .:ir-i;J .3. [-'E:' =;i i =.)t:"r-i f-l·3.f~·{:::':=.

! R::tti.3.1 E-(ltr--:) (':'--l- ... -~.::.- -: :~t~ltiF)l;);

r0~tine begins bv fetching actual
=.).:i. 1 ;_~ E' :_: ; t. r-~ ~~:' .~ (§ ~:;l) t f)3. [-',3. f{l:::'t t:' r-':::·

EASIC ~~: :::~:~-~; -~-

the routine can use them

: ;,.- _.- -.:..
:;::::: :: :.- ; '_:'::i:.J:::.

arithmetic accumulator and

__ check fc~ overflc~
bv checking the resu~t for anvthin
in the E register when it Sh0~ld b

and the routine is abc~ted

,-.
""i

It- everythlng is OK, then result stored
The product is then retlrnsj to the

~ "! .= T :.:::. :-i

among the arguments

Ef'~:D Multipl ication i ~n~ -- module

2-8 Getting Started

the object code is consequently stored into the file "MUL T".

Later programs can retrieve the object code for use, such as in the following program -

10 INTEGER Dimension,Ind~~,Subscrjpt

600 IeAll Multiply(I0jex,DimEfision,Subscript)
6 i0 Ar--r-.3.::_.;(':;ub:::.cr-· i pt)=\.'-3.1 ue

(Both ISTORE and ILOAD are discussed in the "Retrieving and Storing Modules" section of

this chapter.)

Program Entry

The assembly language source statement is an extension to the BASIC language used in the

System 45. This means that each assembly language statement is entered using a

"keyword" - in this case ISOURCE - as a message to the operating system that the line is an

assembly language statement.

By looking at an example, you can see what is meant -

10 LET A=i0

30 PPIt-H A, B
40 I ::;CURCE t-4 H 1'1 E::<.3.mp 1 e
50 ISOURCE NCP
60 ISOUPCE am E::·::.::t.ilIP 1 e
7(1 am

Lines 10, 20, 30, and 70, are all recognizable as BASIC statements. The keywords they

use - LET, PRINT, and END - direct that certain actions take place. Lines 40, 50, and 60,

are all assembly language statements; this was indicated by the ISOURCE keyword used in

these lines.

Entering assembly language statements, by using the ISOURCE keyword, is thereby the same

process as entering other types of BASIC statements. You may use all of the system editing

features that you are used to using in the creation of BASIC programs - EDIT, AUTO, etc. You

store each line with the B key, as you would any other BASIC line. See Appendix I for Demo

Tape Special Function Keys which are useful for program entry.

Getting Started 2-9

Also, assembly lines do not have to be in any special place in the BASIC program. The previous

example could be re-arranged as follows -

40 ISOURCE NOP

Thus, you are free to enter your assembly statements anywhere in your BASIC program. But,

you may ask, what is the effect of spreading them out like this? The answer is, simply, none.

When the time comes to use them, assembly statements and BASIC statements are separated

by the operating system and treated differently.

When the BASIC program is run, only the BASIC statements are executed. The ISOURCE

statements are ignored, and, as you will be shown in Chapter 4, when the assembly language

lines are assembled, the BASIC statements are ignored. A way to consider it is that there are

two programs in one - BASIC's and the assembler's. So you can envision the example above

as being this way-

BASIC ASSEMBLER

L .. t.:. ~

~ source ~
~'------JrV

:".-'-.. --.: ;:-.. --.,""
i :"':! \ . .if"'::i t::.

You should note, then, that ISOURCE statements are not "executable" in the usual BASIC

sense. Their location in the program does not indicate the place where they will be executed.

Assembly instructions are not executed until a routine is "called"; this is discussed in detail in

Chapter 4.

Now that it has been said that the two types of statements can be thoroughly intermixed, it

should also be said that the practice is not recommended. As a good programming practice

i.e., for readability and to preserve the self-documenting features of BASIC - it is recom

mended that assembly statements be collected together and placed in one spot in the program.

The first example is a recommended practice over the second, even though the second is

permissible.

2-10 Getting Started

Other Extensions
In addition to the ISOURCE statement, there are a number of other BASIC language exten

sions provided by the assembly languge system. Unlike the ISOURCE statement, they are

"executable", and their appearances are part of the BASIC lines (as distinguished from the

assembler's). Where they appear is where the action associated with them is taken. This is

identical to the way the other BASIC statements perform. The statements involved are -

IASSEMBLE

IBREAK

ICALL

ICHANGE

ICOM

IDELETE

IDUMP

ILOAD

INORMAL

IPAUSE OFF

IPAUSE ON

ISTORE

OFF INT

ONINT

Also provided are four numeric functions -

DECIMAL

IADR

1M EM

OCTAL

The functions can be used wherever numeric functions in general may be used.

All of these statements (except ICOM and ISOURCE) and the functions are available to you as

live keyboard operations as well as programmable statements. A full discussion of each of the

statements and functions can be found within this manual.

Getting Started 2-11

Modules and Routines
There are three basic activities associated with using assembled modules and routines. First,

there is the need to retrieve them from wherever they may be stored (including providing a

place for them to be kept while they are resident in the memory of the machine). Second, there

is the actual execution of the routines. And third, there is the occasional requirement to store,

or re-store a module on mass storage (including, perhaps, the need to free the space in memory

it previously occupied).

Names
Routines, modules, and files all have names. The names given them mayor may not bear some

significance to one another; that depends upon you and the way that you name things.

Conventions for the naming of files and methods of general file manipulation can be found in

the Operating and Programming Manual and in the Mass Storage Techniques Manual. The

conventions are not any different than for files in general.

Names for modules are assigned with the creation of the source. In the assembly language

source code, you have a NAM pseudo-instruction. This serves two purposes - to designate the

beginning of the module and to assign the module a name. All of the assembly source state

ments which follow the NAM are in that module until an END pseudo-instruction is encoun

tered. Thus, recalling the previous example-

20 ISOU~~E NAM ~.ampl_

All of the ISOURCE statements between lines 20 and 60 (in this case, just the one) form the

module called "Example". The formal syntaxes of these pseudo-instructions are -

:.....::..:..:

{module name}

{module name}

{module name} is a symbol which becomes the name of the module. It follows the same rules as

names in BASIC: up to fifteen characters; starts with a capital letter; followed by only non

capital letters, numbers, or the underscore character.

2-12 Getting Started

The {module name} in the END statement must correspond to the {module name} of the NAM

statement or an assembly error ("EN") results.

You may have any number of modules in your source code. Each module begins with a NAM

and ends with an END pseudo-instruction as above.

mayor
may not
be on
same
device

Mass Storage

file 1

file 2

file 3

ILOAD file 1

ILOAD file 2

~

ISTORE module 4

module 5 TO file 3

Memory

module 1
- - - --

module 2

-., ,
"-

" "-

module3 "- "-

::::- ----
"- "-

"-"-
"-

"-
"-

module'4
"-

"-

-- ---

module 5

ICOM
region

"

..

routine 1

routine 2

routine 3

routine 4

routine 5

routine 6

Figure 3. Overview of Routines and Modules

Survey of Modules and Routines

User

I IDELETE module 1

ICOM size

,
ICALL routine 1

ICALL routine 2

ICALL routine 3

ICALL routine 4

ICALL routine 5

ICALL routine 6

To sketch the functional relationships of modules and routines, please refer to Figure 3 above.

Modules are stored in files and may be retrieved and placed in memory using the "ILOAD"

command. When the ILOAD command is executed, all of the modules in the file are loaded into

the memory. Note that many files can be loaded, with many modules each, with all of the

modules able to remain resident in the memory.

Getting Started 2-13

Alternatively, modules which are already in memory may be stored into a single file using the

"ISTORE" command. When the ISTORE command is executed, the designated modules are

stored into an "option ROM" (OPRM) type of file (on tape cartridges) or an "Assembly"

(ASMB) type of file (on non-tape mass storage media). After storage, the modules are still in

memory. They may be removed (i. e., the space they occupy in memory is "freed") by using

the "I DELETE" command.

The area of memory where the modules are stored is called the "ICOM region". It is a particu

lar contiguous area which must be large enough to hold all of the object code you wish to have

resident in the memory at anyone time.

Each module contains one or more routines. Your access to the routines is through the ICALL

statement, which is very similar to the CALL statement used for BASIC subprograms. The

ICALL statement may have arguments which you need to "pass" (send down) to the routine

itself. What these arguments, if any, may be, and what meaning they hold depends upon what

you have in mind for that routine. There are corresponding items in the assembly source code;

these are discussed in Chapter 6.

Setting Aside Memory

As indicated by Figure 3, you cannot load a module until there is an ICOM region into which to

load it. Neither can you assemble your source code into object code unless there is an ICOM

region into which the object code can go.

The statement to use to create an ICOM region is -

leur" {size}

where {size} is a non-negative integer constant indicating the number of words to be used to

form the ICOM region. The maximum size is 32 718 words.

The ICOM statement is a "declaration"; that is, it is not executable, but rather is used when

assignment of memory takes place just before a program is run. This is similar to a DIM or COM

statement. As with a DIM or COM statement, the statement cannot be executed from the

keyboard.

Once created, the ICOM region remains in existence untii it is explicitly destroyed. But it is

possible to change the size by using another ICOM statement.

2-14 Getting Started

The order in which modules appear in the ICOM region is determined by the order in which

they are loaded using the ILOAD statement discussed in the next section or are created by the

IASSEMBLE statement discussed in Chapter 4.

In most cases, the space which is freed by reducing the size of the ICOM region is returned to

your available memory space. Sometimes, however, it is not returned, this being caused by the

status of the common area allocated in memory, or by other option ROMs. The space is

returned whenever -

• There is no common area assigned (with the COM statement); and,

• The requirements of another option ROM do not interfere.

There may be any number of ICOM statements in a program. The current size of the ICOM

region is determined by the last one which appears in the program when the 8 key is pressed

(or the command RUN is executed).

For example, suppose you have a program with the following statements in it -

20 Iem-! 9::::4
::::0 DH'1 At[100]

Upon pressing 8, the ICOM region would be 2 000 words long. This is because line 610 is

the final ICOM appearance.

The region continues to exist even if you load in another program which contains no ICOM

statements. All ICOM statements must appear in the main program, not in any subprogram.

ICOM statements in a program must appear before any COM statement. This is to insure that

the ICOM region will be allocated before the common is allocated.

Getting Started 2-15

There are three ways to eliminate the ICOM region -

• Execute SCRATCH A

• Execute ICOM 0 in a program.

• Turn off the machine.

After any of these actions, the region is no longer in existence. If there are any modules in the

region, they disappear as well. If any of those modules contain an active interrupt service

routine, you get an error (number 193) if you try to eliminate the region using ICOM O. If any of

your routines provided to other users contain active ISRs, your documentation for the routine

should warn the users of that fact so they can avoid this error.

Two methods are recommended for deleting all previous modules. The methods differ only in

the times at which the deletion operation is performed.

The first method involves the following sequence of statements:

which assures that an ICOM region of 2000 words is in existence at program execution, and

that the ICOM region is completely clear of any previously loaded modules. The deletion

operation takes place every time the 8 key is pressed, before program execution begins.

The second method involves the use of the IDELETE statement in the following sequence:

i~jli leur-! 2 [HX1

iili IDEL.ETE AL.L.

The IDELETE statement clears the ICOM region when executed, and is executed only when it

is encountered in a program. Therefore, the deletion of the ICOM region can be avoided by

starting or continuing execution at a point beyond the IDELETE statement.

When you are altering the size of the ICOM region, the new size speCified becomes the size of

the region from the moment of running the program. If the size being requested is larger than

that which already exists, the additional space needed is requested from the operating system.

If the space is available, everything proceeds uneventfully. If the space is not available, an errOl

(number 2) results. To make the space available, one of the following procedures must be

roBowed -

• Execute SCRATCH A .

• Execute SCRATCH C.

2-16 Getting Started

Each procedure has its separate effects, and the course selected should be determined by your

circumstances at the time. Consult the Operating and Programming Manual for details on the

other effects of each of these commands.

If the size being requested is smaller, modules are deleted if they no longer fit into the smaller

region. For example, suppose the following situation existed -

I ~---------- "old" ICOM size ---------....,.~I

I
module module module module module

A B C 0 E
I

1-001 .t----- "new" ICOM size -------l.~1

Upon compilation of the new ICOM statement, the modules E, 0, and C are deleted. None of

those modules may contain an active interrupt service routine or an error results (number 193).

Retrieving and Storing Modules
Modules are stored in files on mass storage media as Option ROM (OPRM) or Assembly

(ASMB) types of files. On tape media, they are stored in the OPRM type and on non-tape

media they are stored in the ASMB type. In this case, the two file types are equivalent. 1

To retrieve a module, or modules, from mass storage, identify the file name of the file contain

ing the module. Combine the name with the mass storage unit specifier2 of the device to form a

file specifier. Then execute the statement -

I LUAD {file specifier}

This retrieves all the modules in the file and stores them in the ICOM region.

If there are modules already loaded in the ICOM region, these additional modules are added to

them, (not written over them). If an existing module in the ICOM area has the same name as

one of the modules being loaded, the existing module is deleted and the loaded version takes

its place.

1 OPRM-type files may be created by other option ROMs for their particular purposes. In those cases, the contents are entirely
different.

2 Not to be confused with the single-word msus described in Chapter 1. This form is used by BASIC's Mass Storage statements
(see the Operating and Programming Manual or Mass Storage Techniques Manual).

Getting Started 2-17

If you do not want all the modules in a given file, you can purge the unwanted ones from the

ICOM region using the IDELETE statement -

I DEL.ETE {module name} [,{module name} [' ... J J

For example, if you had loaded a file which had the routines Larry, Pat, Ed, and Piper, and you

want to keep only Larry, then you execute the statements -

or, more simply -

Deletions do not have to be done immediately after loading. They can be done at any time.

After the IDELETE has been executed, the portion of the ICOM region which the module

previously occupied is made available for use in loading other modules. The space is NOT

returned to the generally available memory; that action is done with an ICOM statement with a

s maIler size.

Whenever a module is deleted, other modules are moved, as necessary, to take up any slack

space in the ICOM region. This is done so that all of the free space in the region is at the end. If

a module is being deleted, or being moved as above, and it contains an active interrupt service

routine, an error results (number 193).

No error results when an IDELETE statement is used to delete a non-existent module.

If you desire at any time to delete all of the modules in your ICOM region, you can do so by

executing either of the following statements -

IDELETE ALL is the most efficient method of deleting all modules.

Sometimes you may desire to move modules in the opposite direction - from memory to mass

storage. This is done with the ISTORE statement. The statement has the form -

T:::;TueE {module name} [~{module name} [~ ... J J ~ {file specifier}

2-18 Getting Started

A {module name} must be the name of a module currently stored in the ICOM region. Upon

execution of the statement, a file with the name and mass storage unit specifier given in the {file

specifier} is created and the modules are stored in the file, in the order listed.

The file created by an ISTORE statement is an OPRM or ASMB type, as appropriate to the

medium involved. It can then be used in ILOAD statements at a later time.

In the case that you might want to store all of the routines currently in the ICOM region into a

particular file, you can use either of the following statements -

I ::;"rUF:E !=iL.L.; {file specifier}

I ::rrCil?E; {file specifier}

NOTE

Executing a 88 command during a module load, store

or delete operation may clear the entire ICOM region.

Chapter 3
The Processor and

the Operating System

Summary: This chapter contains the necessary information on the structure of the

processor and the operating system. Topics covered are: machine architecture, memory

organization, data structures, and the machine instructions.

Before proceeding to the actual assembly language, it is useful to discuss the processor and

operating system with which you are dealing. This chapter discusses various concepts related to

the processor, the machine instruction set, the operating system organization, and data struc

tures.

Machine Architecture
The System 45 has two "hybrid" processors. For the purposes of assembly language, the two

processors function together as a single unit. The hybrid consists of a Binary Processor Chip

(BPC), an Input-Output Controller (laC), and an Extended Math Chip (EMC). Each has its

own set of instructions, but all three work in conjunction. It is not necessary in using the

assembly system that you know on which chip a particular instruction resides. In the presenta

tion of the instruction set - and for all practical purposes while working with the computer -

no distinction need be made between the processors, and the entire instruction set may be

considered as being resident on a single processor.

In addition to the processors, the hybrid also contains an I lObus which is controlled by certain

instructions. The 110 bus has an "address" part and a "data" part. Some of the instructions (it

is indicated which ones) cause an "input cycle" to occur on the bus, which means that an

address is given to the address part of the bus, and the data which appears on the data part is

considered to be input. Other instructions cause an "output cycle" , which means that the data

is to be output to the given "address".

Figure 4 is a graphical representation of this architecture.

3-1

3-2 The Processor and the Operating System

TO
MEMORY

Registers

PROCESSOR

address

data

l-----~ peripheral
address TO

data

PERIPHERAL
DEVICES

Figure 4. Generalized Machine Architecture

The memory locations in the machine are addressed from 0 to 177777B. There are 32 memory

locations which are addressed as if they were part of the computer read/write memory, but

actually are part of the processor. These locations are called "internal registers". Each internal

register has a specific location and has been given a name. As you will learn in "Symbolic

Operations" (Chapter 4), these names have been reserved and cannot be redefined while

using the assembly system.

The internal registers are -

Name

A

Ar2

B

C

Cb

D

Db

Dmac

Dmama

Dmapa

P

Pa

R

R4

R5

R6

R7

Se

Address
(Octal)

0

20-23

1

16

13

17

13

15

14

13

2

11

3

4

5

6

7

Description

Arithmetic accumulator

BCD arithmetic accumulator

Arithmetic accumulator

Stack pointer

Block bit for byte pointer in C (use most significant bit only, read only)

Stack pointer

Block bit for byte pointer in D (use second most significant bit only, read
only)

DMA count register

DMA memory address register

DMA peripheral address register (use lower 4 bits only)

Program counter

Peripheral address register (use lower 4 bits only)

Return stack pointer

} 1/ 0 (Input/ Output) registers

24 , Shift-extend register (use lower 4 bits only)

The Processor and the Operating System 3-3

Figure 5 is a map of where these registers lie. In addition to these registers; the addresses 258

through 378 are also registers, but are not (except for a few isolated cases) used in assembly

programming.

A

B
P

R

R4

R5

R6
R7

(i8S8iV8d)

~ (reserved)

I I
1/ Dmama

Dmac

C
D

Ar2

(reserved)

I Pal

I Dmapa1

address

o
1

2
3

4

5
6
7
10

11

12

13

14

15
16

17
20
21
22

23
Se1 24

I ,

25

37

Figure 5. Map of Lowest Memory

All of these registers can be referenced either by their names or by their actual addresses. The

two methods are equivalent, though reference by name is recommended as a programming

practice.

1 See Chapter 8 for debugging considerations.

3-4· The Processor and the Operating System

In addition to the above internal registers, there are some "external" registers which reside in

the computer read/write memory. They are-

Name Address Description
(octal)

Ar1 177770-177773 BCD arithmetic accumulator

Base _page 177645-177655 Base page temporary area (9 words) -
Oper 1 177656 Arithmetic utility operand address registers -

Oper_2 177657

Result 177660 Arithmetic utility result address register

Utltemps 177661-177665 Utility temporary storage area

Ut1count 177666 Used to create user utilities

General Memory Organization
In order to find your way around the machine effectively, you should be aware of where things

are stored in memory. Occasionally these areas can become considerations in your program

ming.

First in the memory come the internal registers. They were discussed above.

Next in the memory comes the ICOM area. The starting location is dependent upon system

needs, but never lower than 41B. The size of the ICOM region depends upon the size desig

nated by the ICOM statement. Its maximum ending address is 77756B. This is the reason for

the limitation on the size in the ICOM statement.

Next in the memory comes the area reserved for the system to store programs and the like. This

area extends from the end of the ICOM region to 177644B.

This area is followed by the registers in the read/write memory (see the list in the previous

section) with a number of interspersed system-reserved areas.

Figure 6 is a graphical presentation of this organization.

address*

o

37

40

min=41

max=
77756

77777

100000

177557
177560

177627
177630

177644
177645

177655

177656

177657

177660

177661
177665

177666

177767
177770

177773
177774

177777

I
CPU

registers

(reserved)
(at least 1 word)

user data
(ICOM area)

(reserved)
(at least 17, a words)

(reserved) I

Return stack

(reserved)

Base_page

Oper_1

Oper_2

Result

Utltemps

Utlcount

(reserved)

Ar1

(reserved)

*in octal representation

The Processor and the Operating System 3-5

starting address
dependent upon
system needs

ending address
dependent upon
starting address,
length of ICOM, \
and system
needs

lower block

upper block

Figure 6. Memory Map

The immediately addressable memory consists of 65 536 words, which is all that can be ad

dressed by a 16-bit word (the basic unit of memory in the system). Note that the memory is

divided into two blocks - an "upper" block and a "lower" one. This distinction between

blocks becomes significant when addressing individual bytes in memory.

3-6 The Processor and the Operating System

Protected Memory
All of the reserved areas men tioned above are known as "protected memory". To give some

measure of security to the operating system, it is advised that no attempt should be made to

write or branch into these areas.

Access to certain portions of protected memory (e.g., BASIC variables) is provided by utilities

within the assembly system. The user should access those areas only through the utilities.

Some measure of protection against access into these areas is provided during debugging. See

the chapter entitled "Debugging" for a discussion of how this is done and the extent of the

protection provided.

Base and Current Page
A concept that occasionally arises during discussion of the instructions and the assembler is that

of the "page" , the "base" and "current" pages in particular.

A page is 1 024 words of memory.

The "base" page is a wrap-around page. It consists of the upper half of the last page in the

machine (addresses 177000B to 177777B) and the lower half of the zero page (addresses 0 to

777B). This is the same as a page which runs from - 512 to + 511, effectively "wrapping

around" address O.

During execution, the program counter (P) points to the address of the current instruction. The

"current" page is those 1 024 words of memory centered upon the current instruction. There

fore, the current page is a continually changing page, extending from (P)- 512 to (P)+ 511.

Nesting of Subroutine Calls
Assembly language subroutines are called using the JSM instruction and exited using the RET

instruction, both of which are described later in this chapter. Subroutine calls may be nested,

just as they are in BASIC.

The JSM and RET instructions automatically adjust the R register (return stack pointer) so that

the machine doesn't "lose its place" in the midst of subroutine calls and returns. The R register

contains an address within an area of memory called the R stack, which is 40 words in size.

The Processor and the Operating System 3-7

You are not free to use ali 40 words in the R stack, however. The operating system and ICALL

require 5 words. Interrupt service routines (refer to Chapter 7 for more information on ISRs)

require 10 words. Break points (refer to Chapter 8 for more information on the IBREAK

statement) require 5 words.

Thus, 20 words are left for the nesting of user JSMs. Calling system utilities also requires some

of these 20 words. Appendix F, Utilities, contains the information necessary to determine the

number of words needed by the various utilities.

For example, the following program segment illustrates the use of the R stack space -

J.-_':-''':'':

L: _ .. _.:.. .; II

i"i=='":=·:.-1. =

_ . :ec ~_~t ~

-.-'._" .:.~ :;;'~ .. :: -._ . .;.' --;>:""; +(:='=;+-:L ::

The system does not check for R stack overflow. Violation of the R stack limits could result in a

machine lock up.

3-8 The Processor and the Operating System

Data Structures
It is common to access BASIC variables from an assembly language routine then retrieve the

contents, manipulate them, or alter them. To be effective at it, you should be aware of how

BASIC stores a value in each of its data types.

There are four data types in BASIC: full-precision numeric values, short-precision numeric

values, integers, and strings. Each is stored in its own unique structure.

Integers
The simplest of the types is the integer. (Variables are declared as integers using BASIC's

INTEGER statement.) An integer consists of a single word. Values between - 32 768 and

+ 32 767 can be stored in the word. Negative values are stored in two's complement form. An

integer looks like -

15 14 OBit

I i
"Sign Bit

Strings

Strings are the next simplest structure. A string is a succession of bytes, one character to a byte.

A string may be of variable length. To be able to designate the length, the string is preceded by

a word which contains the number of bytes in the string.

If a string has an odd number of bytes in it, then the left-over byte in the word containing the

last character of the string is wasted. A typical string of length n looks like -

~~

n(length)

byte 1 byte 2

byte3 byte 4

byte 5 byte 6

byte n-2 I byte n-1

byte n I

L-

The Processor and the Operating System 3-9

Full-Precision t~umbers
Full-precision numeric values are stored as 12-digit, BCD (Binary Coded Decimal), floating

point numbers. They occupy four words each. The first word contains the sign of the exponent,

a two's-complement IO-bit exponent, and the sign of the mantissa. The other three words

contain the twelve mantissa digits, 4 to each word. The words look like this -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 OBit

Exp: I I I I I I I I
I I I I I I~an

Sign! Exponent o 0 0 0 0 Sign

01
(most significant digit) 02 03 04

05 06 07 Os

012
09 010 011

(least significant)

The exponent is always adjusted during arithmetic routines so that there is an implied decimal

point following 01. Thus, every mantissa value looks like -

Short-Precision Numbers
Short-precision numeric values are stored as 6-digit, BCD floating point numbers. Unlike

full-precision, they occupy two words each instead of four. The first word contains a 7 -bit

exponent, the sign of the mantissa and the two most significant mantissa digits. The second

word contains the remaining four mantissa digits. The words look like this -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 OBit

EXP11
I I I I I

IMan
I I I I I I

Sign Exponent Sign 01 02

03
I

04 05 06

As with full-precision, the exponent is stored in two's complement form and the implied deci

mal point follows 01.

If you are unfamiliar with BCD arithmetic or need a refresher in floating point operations, it is

suggested that you refer to Chapter 5.

3-10 The Processor and the Operating System

Machine Instructions
The machine instruction set underlying the assembly language system consists of 92 instruc

tions, divided into eleven groups. The groups are -

Load/Store

Integer Math

Branch

Test/Branch

Test/ Alter /Branch

Shift/ Rotate

Logical

Stack

BCD Math

I/O

Miscellaneous

Operands

Operations placing values into registers or memory.

Operations involving integer arithmetic.

Operations altering the execution sequence unconditionally.

Operations altering the execution sequence, dependent upon

some condition.

Operations altering the execution sequence and a value, de

pendent upon some condition.

Operations performing re-arrangments of the bits in the A or

B register.

Operations performing logical functions on the A or B regis

ters.

Operations managing stacks.

Operations involving Binary Coded Decimal arithmetic.

Opera tions specifically involving I/O operations.

Some unclassifiable operations.

Most instructions require operands. These operands have general forms which they may assume.

Many instructions contain an operand which is the address on which the function is to be

performed. This {location} may be a constant (octal or decimal) or it may be a symbol. It also

may be an expression containing any allowable combination of constants and symbols. For a

full discussion of allowable expressions and symbols, and the "types" they are allowed to

assume, consult "Symbolic Operations" in Chapter 4.

The Processor and the Operating System 3-11

For exampie, note the operands in the following -

A {location} may be either "relocatable" or "absolute" (see "Relocation" and "Symbolic

Operations" in Chapter 4 for a full treatment of these types). If a relocatable {location} is used,

the assembler generates machine code which uses "current page" addressing, and thus the

{location} must be within - 512 words and + 511 words of the instruction. If an absolute

{location} is used, the assembler generates machine code which uses "base page" addressing

(meaning it takes the address as an offset from location 0).

An {address} is a {location} the same as above, except the intended location must be

relocatable and within - 32 and + 31 words of the current instructions.

A {register} may be specified either through its absolute address or by its pre-defined symbol.

The permissible registers are those with addresses between 0 and 7, inclusive. These are

registers A, B, P, R, R4, R5, R6, and R7.

A number of instructions are followed by a {value}, which is a numeric expression usually in the

range of 1 through 16. This {value} frequently indicates the number of bits involved in the

operation. For example -

right-shifts the A register by 8 bits.

NOTE

Specifying the R4, R5, R6, or R7 registers (absolute

locations 4 through 7) in an instruction causes an "I lObus

cycle" to occur. Consult Chapter 7, "1/0 Handling", for the

proper use of these registers.

3-12 The Processor and the Operating System

Indirect Addressing
Some instructions may also employ "indirect addressing". This is indicated by including the

optional indicator ~ T, such as -

There is only one level of indirect addressing provided with the processor. Of course, if further

levels are desired, it is possible to implement them on your own. Some flagging scheme could

be adopted, for example. One approach could be to adopt the policy that the sign bit (bit 15) of

a word would indicate further indirection, with the remaining bits being the value. In such an

approach, a load accumulator instruction would become two instructions -

10 ISOURCE LDA A~I
20 I~~~RCE SAM *-1

Load/ Store Group

Use current contents as pointer
I If bit 15 set, indirection

This group of instructions allows transfers of data to take place. With the instructions below you

can move information to and from the arithmetic accumulators (the A and B registers). You can

also transfer the contents of one contiguous set of words in memory to another contiguous set.

Instruction

, T'R {I t' } ["J L . .!..!;. oca IOn ~.I.

LIIE {location} [~ IJ

::;T8 {location} [:; I]

::;TE {location} [~ 1]

..... , "-. { I } U._f':. va ue

>::FF~ {value}

Description

Loads register A with the contents of the specified location.

Loads register B with the contents of the specified location.

Stores the contents of the A register into the specified

location.

Stores the contents of the B register into the specified

location .

Clears (zeroes out) the specified number of words, beginning

at the location specified by the A register. {value} must be an

integer between 1 and 16.

Transfers the specified number of words, from one location to

another. The starting address of the location being

transferred from must be stored in the A register. The starting

address of the location being transferred to must be stored in

the B register. {value} must be an integer between 1 and 16.

The Processor and the Operating System 3-13

integer Math Group
This group of instructions allows you to perform fundamental arithmetic operations on the

contents of the arithmetic accumuiators (the A and B registers). 1

Instruction

ADA {location} [~ I]

ADE: {location} [~ I]

Description

Adds the contents of the specified location to the contents of

the A register, leaving the result in A. If a carry occurs, the

Extend flag is set in the processor. If an overflow occurs (a

carry from bits 14 or 15, but not both), the Overflow flag is set

in the processor.

Adds the contents of the specified location to the contents of

the B register, leaving the result in B. If a carry occurs, the

Extend flag is set in the processor. If an overflow occurs (a

carry from bits 14 or 15, but not both), the Overflow flag is set

in the processor.

Performs a two's complement of the A register (Le., one's

compiement, incremented by 1). If a carry occurs, the Extend

flag in the processor is set. If an overflow occurs (a carry from

bits 14 or 15, but not both), the Overflow flag in the

processor is set.

Performs a two's complement of the B register (Le., one's

complement, incremented by 1). If a carry occurs, the Extend

flag in the processor is set. If an overflow occurs (a carry from

bits 14 or 15, but not both), the Overflow flag in the

processor is set.

Binary mUltiply. Uses Booth's Algorithm. The values of the A

and B registers are multiplied together with the product

placed into A and B. The A register contains the least

significant bits and the B register contains the most significant

bits and the sign. (An anomaly in the processor results in an

improper result whenever B equals - 32 768.)

1 A discussion of integer arithmetic techniques is found in the "Arithmetic" chapter of this manual.

3-14 The Processor and the Operating System

Branch Group
This group of instructions allows you to alter the execution sequence unconditionally. It

includes the "jumps" and "returns" from subroutines.

Instruction

. .:r~·'IF' {location} [:; I]

.J:::/'i {location} [:; I]

Description

Unconditionally branches to the specified location .

Jumps to a subroutine. The value of the R register is

incremented and the current value of the P register (i.e., the

location of the JSM instruction itself) is stored into the

address pointed to by the R register. Execution then proceeds

to the specified location.

Returns from a subroutine. {value} is added to the contents of

the address pointed to by the R register. The results are

stored in the P register (i. e., specifying the next location for

execution) and the R register is decremented. This is, in

effect, a return from a JSM instruction to the instruction

which is {value} instructions from the JSM itself. The "usual"

return is RET l. {value} must be an integer between -32 and

3l.

The Processor and the Operating System 3-15

T est/ Branch Group
Similar to the Branch group, this group of instructions allows you to alter the execution

sequence, but conditionaliy upon the result of some test. Most instructions involve tests on all

or part of one of the arithmetic accumulators (the A and B registers), but a couple allow a test

on a location in memory which you can specify, and a couple test the current activity of the

CRT.

Instruction

CPA {location} ['! I]

CP:E: {location} [~ 1]

::;2A {address}

::;ZI: {address}

?ZA {address}

?ZE {address}

::; I A {address}

::; I E {address}

?IA {address}

? I B {address}

::;HC {address}

'-'w'-' {dd } ::'1 ;::. a ress

Description

Compares the contents of the A register with the contents of

the specified location. Execution skips over the next word if

the contents are not equal.

Compares the contents of the B register with the contents of

the speCified location. Execution skips over the next word if

the contents are unequal.

Skips to {address} if register A is O.

Skips to {address} if register B is O.

Skips to {address} if register A is not O.

Skips to {address} if register B is not O.

Skips to {address} if register A is 0, then increments A

regardless. The Extend and Overflow flags in the processor

are not affected by the incrementing action.

Skips to {address} if register B is 0, then increments B

regardless. The Extend and Overflow flags in the processor

are not affected by the incrementing action.

Skips to {address} if register A is not 0, then increments A

regardless. The Extend and Overflow flags in the processor

are not affected by the incrementing action.

Skips to {address} if register B is not 0, then increments B

regardless. The Extend and Overflow flags in the processor

are not affected by the incrementing action.

<::.1,]·,....5 f {arlrlrecs} if rRT ic: c:r:::tnnin(l itc:: Trlc::tPT -.....In}J LV \o.,A.\,.A.......;I .1..1. '-'.& a..& &-.J ___ ... & iIL~ _ a. __ ... __ •

Skips to {address} if CRT is doing vertical retrace.

3-16 The Processor and the Operating System

Test/ Alter /Branch Group

Similar to the Test/ Branch group, this group of instructions allows you to conditionally alter

the execution sequence. In addition to tests, you can also alter the contents of the item being

tested (such as set or clear a bit, or increment or decrement a register). Certain bits in the

processor (Extend and Overflow) can be tested with some of these instructions, as well as

registers and memory locations.

Some instructions may be followed by either of the following -

, '_.

indicating that the bit being tested by the instruction will either be set (S) or cleared (C) after the

test has been made.

Instruction

T ,-. ..., {I t' } [T] 1·:,'::" oca lOn ,1

Tj'-·..., {I t' } [T] .i.. .:,~:.. oca Ion , 1.

::;AF' {address} [q S]

::;AF' {address} [, C]

3BF' {address} [q 3]

::;BF' {address} [, C]

::;AI'1 {address} [, ::;]

::;At'1 {address} [, C]

::;LA {address} [, ::;]

::;LA {address} [q C:]

::;LB {address} [, ::;]
'-.j T·, {dd } [,] . ::'!.. .. .i) a ress , i

Description

Increment the contents of the specified location and skip

execution of the next word if the result is O.

Decrement the contents of the specified location and skip

execution of the next word if the result is O.

Skips to {address} if the A register is positive or zero (bit 15 is

0).

Skips to {address} if the B register is positive or zero (bit 15 is

0).

Skips to {address} if the A register is negative (bit 15 is 1).

Skips to {address} if the B register is negative (bit 15 is 1).

Skips to {address} if the least significant bit of the A register is

O.

Skips to {address} if the least significant bit of the B register is

O .

instruction

FLP {address} [~ ::;]

FLP {address} [~ C]

F~LE {address} [~ ::;]

1~LE {address} ['I C]

::;0::; { address} [~ C]

::;CC {address} [~ :::]

::;CC { address} [~ C]

::;ES {address} [,3]

::;E:::; {address} [~ C]

The Processor and the Operating System 3-17

Description

Skips to {address} if the least significant bit of the A register is

not O.

Skips to {address} if the least significant bit of the B register is

not O.

Skips to {address} if the Overflow flag in the processor is set.

Skips to {address} if the Overflow flag in the processor is

cleared.

Skips to {address} if the Extend flag in the processor is set.

Skips to {address} if the Extend flag in the processor is

cleared.

NOTE

The Extend and Overflow flags can be cleared only by using

the SEC, SES, SOC, and SOS instructions with the , '_"

option.

3-18 The Processor and the Operating System

Shift/ Rotate Group

This group of instructions performs re-arrangements of bits in the arithmetic accumulators (the

A and B registers). Circular and non-circular shifts are available.

Instruction

::;fL. {value}

::;J:L. {value}

AAF {value}

REF {value}

~:tiP {value}

~:BF: {value}

~:AL {val ue }

Description

Shifts the A register right the indicated number of bits with all

vacated bit positions becoming O.

Shifts the B register right the indicated number of bits with all

vacated bit positions becoming O.

Shifts the A register left the indicated number of bits with all

vacated bit positions becoming O.

Shifts the B register left the indicated number of bits with all

vacated bit positions becoming O.

Shifts the A register right the indicated number of bits with

the sign bit filling all vacated bit positions. (Arithmetic right)

Shifts the B register right the indicated number of bits with

the sign bit filling all vacated bit positions. (Arithmetic right)

Rotates the A register right the indicated number of bits. Bit 0

rotates into bit 15 each time. (Right circular)

Rotates the B register right the indicated number of bits. Bit 0

rotates into bit 15 each time. (Right circular)

Rotates the A register left the indicated number of bits. Bit 15

rotates into bit 0 each time. (Left circular)

Rotates the B register left the indicated number of bits. Bit 15

rotates into bit 0 each time. (Left circular)

The Processor and the Operating System 3-19

Logical Group

This group of instructions performs' logical (Boolean) operations upon the contents of an

arithmetic accumulator (on A or B register). Logical "and" and "or" operations are available,

along with complementing and clearing operations.

Instruction

Hr·m {address} [:; I]

Ice {address} [~ I]

Description

Logical "and" operation. The contents of the A register are

compared bit by bit, with the contents of the specified

location. For each bit-comparison a 1 results if both bits are

1 's, a 0 results otherwise. The 16-bit result is left in A.

Logical "inclusive or" operation. The contents of th'e A

register are compared, bit by bit, with the contents of the

specified location. For each bit-comparison, a 0 results if both

bits are O's, a 1 otherwise. The 16-bit result is left in A.

Performs a one's complement of the A register (Le., bit-by-bit

inversion of all 16 bits).

Performs a one's complement of the B register (Le., bit-by-bit

inversion of all 16 bits).

Clears register A. This instruction is identical to SAR 16.

Clears register B. This instruction is identical to SBR 16.

3-20 The Processor and the Operating System

Stack Group

The Stack group of instructions provides you with operations for managing stacks. The

instructions withdraw items from (also called "pop" or "pull") or push items onto a stack

pointed to by either the C or D register. The items are pushed from or withdrawn into a

specified register (other than C or D) and the C or D register is incremented or decremented

appropriately.

Pushing instructions increment or decrement the C or D register prior to doing the pushing.

Withdrawing instructions increment or decrement the C or D register after doing the

withdrawal. Consequently, the pointer is always left pointing to the "top" of the stack after the

operation.

Decrementing the C or D register is indicated by including , II after the operand. For

"withdrawing" instructions, D is the default. For example, the following are eqUivalent -

Incrementing is specified by including , I after the operand. This is also the default for

"pushing" instructions if neither I nor D is included. For example, the following are

equivalent -

The instructions for pushing and withdrawing bytes require the ability to address bytes rather

than words. This essentially multiplies the memory map by two, requiring an additional address

bit. When using the byte oriented stack instructions, the Cb and Db registers provide an

additional high order bit to the C and D registers, respectively. A typical set up for pushing

items onto a stack is as follows:

LDA=Buffer I Get buffer address.

ADA =-1

CBL.

Q T
"If .• ,

C:i=;fnt)e;-~:::~3. t f' f c:t-· f)t .. , E"- i r"rC r-'E'ff!Et-~t :;

Put it into C register.
Cls~r Cb ster.

::~. 1:..3.(k :'

The Processor and the Operating System 3-21

A typical set up for popping items off the stack is as fo!1O\,lJs:

~~t buffer address.

::-TQ .-.
- Put it into the C register.

Note the use of the CBL instruction in both cases.

One use of the push and withdraw byte instructions is for input and output operations involving

strings. Manipulating byte stacks allows byte packing of character data. The first word of the

string storage space can be cleared initially and incremented as each character comes in. At the

end of the transfer, the first word of the string contains the string length, making the string

BASIC compatible. Keep in mind that the push byte instruction increments first, then pushes.

The lower bit of the C register determines whether the upper byte or the lower byte is address

ed in the manner illustrated here -

C register least significant bit

o
1

Byte address

Upper
Lower

The character string "HELLO" appears in a byte-oriented stack upon input as illustrated

here -

. . I . . .
(string length)

H E

L L
0

NOTE

When using the byte instructions (PBC, PBD, WBC, WBD),

the address pointed to by the C or 0 register must not have

an absolute address less than 40B.

3-22 The Processor and the Operating System

Instruction

F~,~C {register} ~ Ii

F-\~C: {register} [~ I]

FkD {register} ~ D

F\.T! {register} [, I]

F'BC: {register{ :; Ii

~:::'BC: {register} L I]

F'SD {register} ~:D

FED {register} [~ I]

~,~~,c {register} [~ D]

L'~~'~C {register} ~ I

1,,~~'~D {register} [, D]

~,~~,m {register} ~ I

kE:C {register} [, D]

~'~BC: {register} ;! I

~'~BD {register} [~ D]

~{BD {register} ~ I

CBL.

Ii:E:L..

:[IE:1...1

Description

Pushes contents of {register} onto the stack pointed to by the

C register.

Pushes contents of {register} onto the stack pointed to by the

D register.

Pushes the lower byte (right half) of {register} onto the stack

pointed to by the Cb and C registers. If the least significant bit

of C is aI, the byte is placed in the lower byte of the word in

the stack; if it is a 0, it is pushed into the upper byte.

Pushes the lower byte (right half) of {register} onto the stack

painted to by the Db and D registers. If the least significant bit

of D is a 1, the byte is placed in the lower byte of the word in

the stack; if it is a 0, it is pushed into the upper byte.

Withdraws a word from the stack pointed to by the C register

and stores it into {register}.

Withdraws a word from the stack pointed to by the D register

and stores it into {register}.

Withdraws a byte from the stack pointed to by the Cb and C

registers and places it into the lower byte (right half) of {regis

ter}. If the least significant bit of C is aI, the byte is withdrawn

from the lower byte of the word in the stack; if it is a 0, it will

be withdrawn from the upper byte.

Withdraws a byte from a stack pointed to by the Db and D

registers and places it into the lower byte (right half) of {regis

ter}. If the least significant bit of D is a 1, the byte is withdrawn

from the lower byte of the word in the stack; if it is a 0, it is

withdrawn from the upper byte.

Clears the Cb register (indicates lower block of memory).

Sets the Cb register (indicates upper block of memory).

Clears the Db register (indicates lower block of memory).

Sets the Db register (indicates upper block of memory).

The Processor and the Operating System 3-23

BCD Math GiOUp

This group of instructions provides you with BCD arithmetic operations using the Ar1 and Ar2

registers.

In general, the instructions associate the Ar1 register with "X" and the Ar2 register with "Y" in

the mnemonic for the instruction. Both registers contain values which are considered BCD

full-precision values when operated upon by instructions in this group.

The mantissas referred to below consist of 12 BCD digits. All the shifting operations manipulate

the digits as units (Le., 1 digit - or 4 bits - at a time). In addition, shifting operations involve

an additional digit in the A register (located in the lower 4 bits, numbered 0 through 3).

All arithmetic is performed in BCD. The values being operated upon are assumed to be nor

malized BCD floating-point (full-precision) values. Signs and exponents are left strictly alone.

There is a flag in the processor, called Decimal Carry, which is set when an overflow occurs

during a BCD operation.

A full discussion of BCD arithmetic techniques can be found in Chapter 5.

Instruction Description

Mantissa right shift on Arl. The number of digits to be shifted

is specified in the lower 4 bits (0-3) of the B register. The shift

is accomplished in three stages -

1. The digit in bits (0-3) of the A register is right-shifted into

the first digit of the mantissa, with the twelfth digit being

lost. This is the first shift.

2. The mantissa digits are then right-shifted for the remaining

number of digits specified. The twelfth digit, except for the

last shift, is lost on each shift and the vacated digits are

zero-filled.

3. Finally, the last right-shift takes place with the twelfth digit

shifting into the A register. The Decimal Carry flag in the

processor is cleared along with the upper 12 bits of the A

register (4-15).

3-24 The Processor and the Operating System

Instruction Description

Mantissa right-shift on Ar2. The number of digits to be shifted

is specified in the lower four bits (0-3) of the B register. The

shift is accomplished in three stages -

1. The digit in bits (0-3) of the A register is right-shifted into

the first digit of the mantissa, with the twelfth digit being

lost. This is the first shift.

2. The mantissa digits are then right-shifted for the remaining

number of digits specified. The twelfth digit, except for the

last shift, is lost on each shift, and the vacated digits are

zero-filled.

3. Finally, the last right-shift takes place, with the twelfth digit

shifting into the A register. The Decimal Carry flag in the

processor is cleared along with the upper 12 bits of the A

register (4-15).

Mantissa left-shift on Ar2 for one digit. This is a circular shift,

with the digit in bits (0-3) of the A register forming a thir

teenth digit. The non-digit part of the A register is cleared

(Le., bits 4-15), and the Decimal Carry flag in the processor is

cleared.

Mantissa right-shift on Ar1 for one digit. The twelfth digit is

shifted into the A register (bits 0-3). The non-digit part of the

A register is cleared (Le., bits 4-15), and the Decimal Carry

flag in the processor is cleared. The first digit in the mantissa

is set to O.

Normalizes the Ar2 mantissa. The mantissa digits are left

shifted until the first digit of the mantissa is non-zero, or until

twelve shifts have taken place, whichever comes first. If the

original first digit is already non-zero, no shifts occur. The

number of shifts required is stored as the first four bits (0-3) of

the B register. If twelve shifts were required, the Decimal

Carry flag in the processor is set, otherwise it is cleared.

Ten's complement of Ar1. The mantissa of Ar1 is replaced

with its ten's complement and Decimal Carry is cleared.

Instruction

(""'T::"'"
:-. .:....,::

::;D::; { address}

::;DC {address}

The Processor and the Operating System 3-25

Description

Ten's complement of Ar2. The mantissa of Ar2 is replaced

with its ten's complement and Decimal Carry is cleared.

Fixed-point addition. The mantissas of Ar1 and Ar2 are

added together, and the result is placed into Ar2. Decimal

Carry is added to the twelfth digit. After the addition, Decimal

Carry is set if an overflow occurred, otherwise Decimal Carry

is cleared.

r-yiantissa word addition. The contents of the B register are

added to the ninth through twelfth digits of the mantissa of

Ar2. Decimal Carry is added to the twelfth digit; if an over

flow occurs, Decimal Carry is set, otherwise it is cleared.

Fast Multiply. Performs the multiplication by repeated addi

tions. The mantissa of Ar1 is added to the mantissa of Ar2 a

specified number of times. The number of times is specified in

the lower 4 bits (0-3) of the B register. The result accumulates

in Ar2. If intermediate overflows occur, the number of times

they occur appears in the lower 4 bits of the A register after

the operation is complete. The upper 12 bits of the A register

are cleared along with Decimal Carry.

Fast divide. The mantissas of Ar1 and Ar2 are added together

until the first decimal overflow occurs. The result accumulates

into Ar2. The number of additions without overflow is placed

into the lower 4 digits of the B register (0-3). The remainder

of the B register is cleared, as is the Decimal Carry flag in the

processor.

Clears the Decimal Carry flag in the processor.

Skips to {address} if Decimal Carry is set. Decimal Carry is a

flag in the processor which may be set as the result of certain

BCD arithmetic operations (see Chapter 5 for details).

Skip to {address} if Decimal Carry is cleared. Decimal Carry is

a flag in the processor which may be set as the result of

certain BCD arithmetic operations (see Chapter 5 for details).

3-26 The Processor and the Operating System

I/O Group
The I/O group of instructions provides you with some of the operations necessary to accessing

peripheral devices through the I/O bus. In addition to the instructions contained here, there

are instructions in other groups which can have I/O effects (e.g., LOA, STA ...).

The techniques useful to the implementation of I/O operations using the instructions in this

group and the other groups are discussed in Chapter 7.

Instruction

::;FC {address}

::;::s {address}

:::sc: {address}

=:"Yi T
._:J_~ .i.

Description

Skips to {address} if the Flag line is set (ready). The Flag line

is associated with a peripheral on the current select code (see

Chapter 7 for details).

Skips to {address} if the Flag line is clear (busy). The Flag line

is associated with a peripheral on the current select code (see

Chapter 7 for details).

Skips to {address} if the Status line is set (ready). The Status

line is associated with a peripheral on the current select code

(see Chapter 7 for details).

Skips to {address} if the Status line is clear (busy). The Status

flag is associated with a peripheral on the current select code

(see Chapter 7 for details).

Enables the interrupt system. Cancels the DIR instruction.

Disables the interrupt system. Cancels the EIR instruction.

Sets DMA outwards. Directs that DMA operations read from

memory, write to the peripheral.

Sets DMA inwards. Directs that DMA operations read from

the peripheral, write to memory.

Enables the DMA mode. Cancels the DDR instruction.

Disables Data Request. Cancels the DMA instruction.

The Processor and the Operating System 3-27

Miscellaneous
The following instructions cannot be classified into any of the other groups.

Instruction

E>:E {value} [, I]

Description

Null operation. This is exactly equivalent to LOA A.

The contents of any register can be treated as the current

instruction and executed. {value} is a numeric expression in

the range 0 through 31, indicating the register to be used.

The register is left unchanged, unless the instruction code

causes it to be altered. The next instruction to be executed is

the one in the word following the EXE, unless the code in the

executed register causes a branch.

3-28 The Processor and the Operating System

Chapter 4
Assembly Language

Fundamentals

Summary: This chapter discusses some of the basic statements and syntaxes used

throughout the assembly language system. Program entry, assembling, symbolic opera

tions, module creation, program and variable storage, and utilities are the topics co

vered.

When writing assembly language programs there are a number of things with which you will be

involved constantly. In the beginning, questions arise on how to use the language: How do you

enter the source code? What kind of symbolic addressing is there? How do you create and

distinguish modules? How do you create the object code and where is it stored? What utilities

are available and how do you use them?

The answers to those questions form the underlying capabilities through which you write your

applications. These are things which nearly every assembly language program uses. As essen

tial as they are, however, none are difficult to master.

Program Entry

You were introduced early in Chapter 2 to the integrated nature of the assembly language with

its host language, BASIC. You know from that chapter how assembly language statements can

be intermingled with BASIC statements - that you can employ the usual editing features on

the assembly statements. However, there is more to the ISOURCE statement than just its

integrated nature with BASIC.

As stated in Chapter 2, all assembly language statements are designated with the keyword

"ISOURCE". The keyword is followed by {assembly language source}. So the syntax of the

entry line is -

{line number} [{BASIC label} :] I ::;CUFCE {assembly language source}

4-1

4-2 Assembly Language Fundamentals

Here's a simple example of this from Chapter 2 -

4(1 I'::;CUPCE r-4At'i E::-::.:lmp] E

50 I SOURCE NOP
60 I :::;QUPCE am E::-:amp 1 e

The {line number} and {BASIC label} are the same as you are used to in BASIC. However, it

should be noted that the statement is not an executable one, so the BASIC label is only useful

for documentation and EDIT purposes.

To BASIC, the ISOURCE statement appears as a comment. If you were to change the above so

that it read -

and then executed a statement "GOTO Example", the result would be to simply execute the

END statement in line 70. That is because, to BASIC, the lines appear the same as -

40 E::·amp 1 e: F:El'1
50 F:El'1
6;'~i F.:Et-1
70 am

or-

40 E::-arllp 1 e:
50

-:0.-..
,. i;:.!

The BASIC label on an ISOURCE line finds its most useful characteristic in being able to be

referenced, as any other BASIC label on any other type of line may be, with an EDIT com

mand. Thus, if you were to execute -

on the above, you would be working in the editor, starting with line 40. This feature will

become useful during program development as will be pointed out shortly.

Assembly Language Fundamentals 4-3

Assembly Language Source

You may have recognized the assembly language instruction and pseudo-instructions to the

right of ISOURCE in the examples above. This is where your instructions and pseudo

instructions appear. However, the source is a little more versatile than that. In general, {assem

bly language source} has the syntax -

[{label} :] {action} [~ {comment}]

Or, the action may be omitted and only a comment appears-

[{label} ~] ~ {comment}

A label is always optional in the source, but either an {action} or a {comment} must be present

in every source line.

Actions

An {action} in assembly language source is -

• A machine instruction, with any operand it may require. These were discussed at some

iength in Chapter 3 .

• A pseudo-instruction, with any operand it may require. These are discussed under the

topics to which they relate.

The actions contained in the above example were -

!"1 = .. ':f""

Labels

The {label} in assembly language source is part of the symbolic addressing capability of the

assembler. This {label} is used by the assembler only. Neither the operating system nor BASIC

is aware of its existence.

4-4 Assembly Language Fundamentals

The label follows the same form and rules as do labels in BASIC -

• Up to 15 characters long.

• First character must be a capital letter (A-Z).

• Only the non-capital letters (a- z), the numerals (0 to 9), or the underscore CJ may be

used following the first character.

No two labels are allowed to be the same in a given module. If your source consists of two or

more modules, then the same label may be defined more than once, provided each definition is

in a different module. (Distinguishing between modules is discussed in "Creating Modules",

later in this chapter.) So you may not code -

Rumpelstiltskin: LDA B

in one place in the module and later in the same module code -

Rumpelstiltskin: LDB A

There are other restrictions as well on the choosing of labels. For instance, there are symbols

already defined by the assembler and you are not allowed to choose one of them as a label.

This is discussed at length in "Symbolic Operations" in this chapter.

Both a BASIC label and an assembly language source label can appear in the same line, and

they are distinct from one another. BASIC does not know about the source label and the

assembly language system does not know about the BASIC label.

Since neither BASIC nor the operating system is aware of the existence of source labels, actions

ouside the assembler cannot reference these labels. Thus, if you had the source line -

You can say neither GOTO Rumpelstiltskin nor EDIT Rumpelstiltskin. Neither of these can find

"Rumpelstiltskin", since only the assembler can know it is there.

Assembly Language Fundamentals 4-5

This can be a nuisance in some instances during program development. Many programmers

use labels almost exclusively and rarely consider the line number when using the editor to

change a line. For instance, in the above, they would not be used to saying, "EDIT 100" to get

at the line in order to change it. They are more used to saying, "EDIT Rumpelstiltskin". A way

for them to do it would be to change the line to -

Note that, as the example demonstrates, the name can be the same in the BASIC label as in the

source. This takes advantage of the fact that BASIC and the assembler are unaware of each

other's labels. The names do not have to be the same.

Comments

As with any BASIC line, a comment may be included by simply adding an exclamation point (~)

and typing your comment after it. Since you have a total of 160 characters for a line, your

comment may fill up the remainder of the 160 characters left after the rest of the statement has

been provided (line number, iSOURCE keyword, label, action).

Syntaxing the Source

When you are creating your source program, you are either entering it from the keyboard or

retrieving it from mass storage (LINK or GET). In either case, as the statement is entered (the

8 key on the keyboard is pressed or a record is read from mass storage), the operating

system takes note of any use of the keyword ISOURCE. When a line has this keyword, the

operating system turns over the remainder of the line following the keyword to the assembly

system. The assembly system, then and there, checks the syntax of the source.

By checking the syntax at the time of entry of the statement, a considerable amount of proces

sing time is saved when the time comes to assemble the source into object code. In addition, it

gives you, as the programmer, immediate feedback when a syntactical error occurs. You do not

have to wait until assembly time just to find out that you misspelled NOP.

4-6 Assembly Language Fundamentals

At syntax time, the assembler takes care of capitalization, lower case, and spacing for the

source. It's quite similar to the SPACE DEPENDENT mode of entry for BASIC statements (that

mode is not required to get the effect with the assembly system). It follows the following rules in

syntaxing the source-

• Everything between the ISOURCE and the colon (if present) is the label. Its initial charac

ter is capitalized and the remaining letters are converted to lower-case. This is regardless

of whether they were entered in that form.

• The label, if present, is left-justified to the second column following the keyword

ISOURCE.

• The first three letters following the colon (or just the first three letters, if there is no label)

are considered the machine instruction or pseudo-instruction and are capitalized. The

instruction will remain in the same column as it was entered, and, if possible, a space is

added after it.

• Everything after the instruction or pseudo-instruction is considered the operand for the

instruction, up until the exclamation point before the comment (if any). Any label (sym

bol) in the operand will have its initial character capitalized and the remaining letters

converted to lower case automatically.

• Comments are unchanged and remain in the same columns as entered, whenever possi

ble.

In short, simply enter the statement in your most comfortable fashion and the assembly system

automatically assures that what you enter is in the proper form (though it still can't guarantee

that you have entered the right instruction for what you mean to do).

As a demonstration of this facility, consider the following line ready for syntaxing -

rlJMPELSTILTSKIN:jMp~ail

It becomes-

100 ISOURCE R~npel~~iltskin:

Assembly Language Fundamentals 4-7

Creating Modules
When you were introduced in Chapter 2 to the concept of a module, it was said that a module is

given a name through the NAM pseudo-instruction.

So, when you enter a source line which has the following form -

r"Fir'! {module name}

you are assigning a name to a module, and you are also delimiting the beginning of the module.

By the inclusion of this statement, all source lines which follow are part of the module with the

name designated in this source line, that is, all lines until the END pseudo-instruction is encoun

tered in the source. It has the form -

t:~f"Ei {module name}

Its {module name} must be the same as in the NAM pseudo-instruction.

A {module name} follows the same rules for naming as do labels.

It is by the use of these two instructions that modules are created. The source lines which

appear between them comprise a single module, and the name assigned to the module is the

one with which the module is referenced (with the ILOAD and ISTORE statement for example).

When it comes time to assemble the source into object code, the assembler treats the source

lines in a module as a unit.

In actuality, therefore, there are two modules - a source module and an object module. When

you are assembling a module, the name you use refers to the source module and creates the

object module. Later, other statements, such as ISTORE and ILOAD, refer solely to the object

module.

4-8 Assembly Language Fundamentals

Storage
Modules
When assembly converts a source module into an object module, there must be a place to keep

the object module. That is the function of the ICOM region.

You were introduced to the ICOM region in Chapter 2 in connection with the loading and

storing of modules. It is also used to hold modules which are created through assembly. Once a

module has been assembled, the object code appears in the ICOM region just as if you had

loaded it from mass storage.

Variables

Within a module, you may want to set aside one or more words of memory for your use. For

example, you might need a location to store a variable, or keep a counter, or save a register.

This is done with the BSS pseudo-instruction -

B::;::; {number}

where {number} is the number of words to be set aside. {number} can be any absolute expres

sion, provided the expression evaluates to a positive integer (see "Symbolic Operations" , later

in this chapter).

This kind of storage is part of the object code and is set aside "in-line". This means that

wherever it appears in the source, the storage appears in the same relative location in the object

module.

For example, suppose a module contained the following source lines -

230 SOURCE Save 4: BSS 2*2
:;::4~3 ~:;CjLi~~C:E ~~E·r~~r-·.::t.::;.: t:~:;::; L.3.(·~--:)

~~~5Ci ~=;Ci!Jf?C:E H!;}::L"j (i: LliH ~~E(·it~·.::t.:=. 



Assembly Language Fundamentals 4-9 

Then, at some appropriate spot in the object module (relative to the other instructions in the 

module) there would be the following contiguous locations -

Save a 1 word 

Save 4 4 words 

Renras some number of words equal to "the absolute symbol, Larry" 1 

Again 1 word 

The locations at labels Save_a, Save _ 4, and Renras are merely reserved by the BSS pseudo

instructions, and their contents are not initialized to any particular value. 

It is possible to accidentally execute these locations when the routine is run if you're not 

careful. Ordinarily, you should place these locations somewhere safely out of the potential 

execution sequence, since they are used just for storage. Some applications, though, use 

self-generating code, and a BSS is a way to set aside locations for it. 

Data Generators 
A "data generator" is very much like a BSS operation. The function, as with the BSS, is to set 

aside words of memory at a particular location in the object code. But in addition, the words are 

to be initialized to some value. The initialization occurs at the same time the words are set aside 

(Le., at assemble-time). 

This is done using the DAT pseudo-instruction which has the form -

Ii AT { expression} [ !! {expression} [~ ... ]] 

An {expression} may be any absolute or relocatable expression. The various forms that an 

expression may take are discussed in "Symbolic Operations" later in this chapter. 

As an example, suppose you want the value 100 (a decimal integer) to be located at location 

"X" in the object module. You can achieve this by identifying the location in the source code 

(ultimately the object code) where you want the value to be, then placing this instruction at that 

point -

1 Such symbols are discussed at length in the "Symbolic Operations" section later in this chapter. 



4-10 Assembly Language Fundamentals 

Upon encountering this pseudo-instruction, the assembler generates the words necessary to 

store the value (in this case, only 1 word is necessary). It then stores the value (100) into the 

word(s) and proceeds with the remaining assembly. Thus, the location of the words is depen

dent upon the instruction's relative position in the source module, the same as with any 

machine instruction. 

The number of data words generated for each {expression} is dependent upon the result of the 

{expression} -

Result 

Full-precision 

Short-precision 

Decimal integer 

Octal integer 

Address l 

Literal 

String 

Words 

4 

2 

1 

1 

1 

1 

actual length (2 characters per word) 

If more than one {expression} is present, the necessary data words are generated in the order in 

which they appear in the list. As an example, if you were to include the instructions -

I ':;OUF'CE 
I :=:;OUPCE 
ISOUPCE 
ISOUF'CE 
ISOUPCE 
ISOUF'CE 

InteqET:::.: 
f:e·:i 1 : 
'=':;hcrt. : 
:=':;tt-·i n';l= 
E:_~.t.t-·li-II;i: 

C: t-~:=.t.r-·.:=::t c t E" 1-' : 

DAT 24,24B 
DAT 2.4E1,-2.4E5 
DAT 2.4E68,4.5673 
DAT "HELLO" 
DRT 5, "HELLe" 
DAT ;_. 
DAT t:'--lffer-· 
E:=:;'=:; 10 
DAr *-·1 

ISOURCE Addr of int: DAT =3 
I~)JF'CE Addr 3 int:DAT =3,4,5 

1 including "external" 



Assembly Language Fundamentals 4-11 

Forty words would be set aside and initialized to the appropriate values -

e~~nj{j4 i: [10003~j .... decimal integer 24 
~=i~a~=·Ha42: [n=·H~i~~i24 ~ octai integei 24 

00[1[156: 
~jC10f~157: 

eO~j~~160: 

[i00~)64: ti46114 
~~i~::·HJ ~]E:::; : [14 7 4~~1(i 

full-precision 2.4 E1 

full-precision -2.4 E5 

short-precision 2.4 E6 

short-precision 4.567 

"HELLO" string 

} BASIC" HELLO" st~ n9 1; first value (5) is character count 

.... "e" character 

.... Address of first word in ten word buffer 

1 
~ Ten word buffer (values are meaningless) 

J 
..... Address of last word in ten word buffer 
..... Address of word containing integer value 3 
..... Address of first word of an area containing three integers 
..... Integer value 3 
..... Integer value 3, first word in a group of three words 
..... Integer value 4 
..... Integer value 5 

1 BASiC strings must be generated for communication between BASIC and assembiy ianguage as brought about through the 
use of the Put_value (Chapter 6) and the Print_string (Chapter 7) utilities. 



4-12 Assembly Language Fundamentals 

Repeating Instructions 
To help relieve the tedium of writing the same instruction many times (which many applications 

occasionally require), a "repeat" pseudo-instruction is provided -

FEF' {expression} 

The pseudo-instruction causes the immediately following machine instruction to be duplicated 

in the object code {expression} number of times. 

For example, suppose you are writing a real-time application where timing was critical, and to 

make things work correctly you need 10 NOPs at a certain location. Ordinarily you would 

type-

I :::;CUPCE [·.jOP 
I :::;CiUPCE r'1CF' 
I :::;OUF.:CE r"W? 
I ::;UJPCE t·Kn::' 
I :::;CUPCE riCiP 

I :::;OU~~CE f·.jOF' 
I::;OUPCE t"Up 

But all of this could be replaced with -

10 I::;OUPCE REP 10 
20 ISOURCE NOP 

and the same effect would be achieved. 

Some pseudo-instructions may not be replicated. They are -



Assembly Language Fundamentals 4-13 

Assembling 
Object code is created by "assembling" the source code. Again, modules are a key factor. The 

assembly directive is aimed at modules, using the module name as a delimiter in the source 

code so the assembler can tell which ISOURCE statements to assemble as part of the module. 

Of course this same name is also used to store the object code using mass storage. 

The IASSEMBLE statement is the vehicle for assembling modules. It has the forms -

I A::;::; E:l"'H> ... t: {module} [ , {module} [ , ... ]] [ ; {option} [ , {option} [ , ... ]]] 

Each {module} indicated is assembled, in the order given by the statement. Only those modules 

are assembled; any others which may be present in the source at the time are ignored. If the 

ALL version of the statement is used (with or without the optional word ALL), every module 

present in the source is assembled. 

An {option} falls into one of two categories: listing directives and conditions (for conditional 

assembly). These are discussed separately below. The options, and their categories, are-

Listing directives 

Conditions 

I C~F 

I C\ Control of indirection 

References to multiple-line functions cannot appear in the IASSEMBLE statement. If an IAS

SEMBLE ALL statement is executed and no source code is present, no error message is given. 



4-14 Assembly Language Fundamentals 

Effect of BASIC Environments 
To assemble a module, all of its source lines (between the NAM and END pseudo-instructions) 

must lie within the same BASIC "environment". That is, the NAM and END for a module must 

lie within the main program or within the same subprogram or multi-line function. For modules 

where this is not true, an error ("EN" assemble-time error) occurs. 

Source Listing Control 
Listings of the source code in a module can be obtained during an assembly. These listings 

contain the line numbers, instructions, and comments from the source lines along with the 

associated machine addresses and contents of that address. 

Here is part of a typical listing -

430 01034 002645 LDA =Array type 
440 01035 006645 LDB =Array 
450 01036 142645 

470 01040 012644 CPA =16 
480 01041 066003 JMP ++3 
490 01042 A??~4~ ADA =-12 

01043 172003 SAP *+:~~ 

\ , , , 
line absolute contents actions 

numbers addresses 

lIs it a file ~~mber? 
IMust be a file ~~mber 

The addresses and contents are displayed in octal representation. 

Listings are not automatic. They are obtained in one of two ways -

• By using the LIST option in the IASSEMBLE statement. This directs that a listing is 

desired for all the modules in the statement. The statement would look like the following 

examples -

IASSEMBLE Store;LIST 
IASSEMBLE Retrieve,Wcrk;LIST 

• By using the LST pseudo-instruction in the source code itself. 



Assembly Language Fundamentals 4-15 

Modules can be just partially listed, if desired. This kind of control is achieved by using the LST 

and UNL pseudo-instructions within the source code, placing the LST before any instructions 

which you want listed, and placing the UNL before any instructions you do not want listed. For 

example, if the following source lines are assembled -

4:3(1 I~=;C!tjF.:C:E Lln~ =Ar-t-··3.:)_1:.:)f)E" 

44~~1 I ~:;citji-?C:E LIt:B =Ar·(·,3.~) 

450 ISOURCE 3SM Get in~J 

46[1 I~=;Ci~JF::C:E LIni Ar-r-o:i\': t:)f::~' 

470 _-1,'-
-lei 

480 ISOURCE 3MP ++3 
ADA 
SAP 

510 ISOURCE l~L 

llnfc ex! -::.ne .3XT-3.') 

ILcok d~ +~~ type 

lMust be a file number 
! I:.::. i t ·=u·-~ .3. r"t-··::t ::) :j.3. t·3-

t \-ir:iE" (i E" ~ :> 12 ) "? 

only lines 430 through 500 would be listed. 

The primary purpose of this capability is to allow as much modularity in the listings as you can 

get in source code. To implement this purpose, a "listing counter" is used. 

Whenever an LST instruction is encountered during an assembly, the listing counter is in

cremented. Whenever an UNL instruction is encountered during an assembly, the listing 

counter is decremented. Source lines are listed whenever the counter is greater than O. 

Whenever it is equal to 0 or negative, then no lines are listed. 

The counter is set to 0 upon execution of the IASSEMBLE statement. This is why there is no 

automatic listing. However, if the LIST option is included in the IASSEMBLE statement, then 

the counter is initialized to 1. This is why that option creates a listing. Thus, you could defeat a 

LIST option by placing an UNL instruction at the beginning of a module. This initialization 

process occurs for each module assembled, so if you have more than one module indicated in 

your IASSEMBLE statement, the counter is set at the beginning of the assembly for each. 

This capability sees its greatest usefulness during debugging stages and while working with 

independently written sections of source code. For example, a number of people could be 

writing different sections of code, each containing their own LST and UNL instructions. These 

instructions could then be overridden when they were combined into a single module by 

preceding the sections with an LST instruction (to get a listing) or an UNL (to suppress the 

listings). 



4-16 Assembly Language Fundamentals 

Page Format 

Each and every assembly listing page has the following format -

• The word "PAGE" and the current page number of the listing occurs on the first line 

starting at column 49. 

• A heading occurs on the second line, left-justified. The heading always includes -

where {name} is the name of the module currently being assembled. Additional heading 

information can be specified for this line (see "Page Headings" below). 

• A blank line follows the heading. 

• The text follows the blank line. The number of lines printed depends upon the LINES 

option in the IASSEMBLE statement, the number of source lines encountered, and the 

SKP pseudo-instructions which may be encountered while assembling the source. LINES 

and SKP are described in the following sections. 

• If the EJECT option is not included in the IASSEMBLE statement, then a minimum of 

three blank lines (carriage return/ line feed pairs) will be printed at the end of a page. The 

number may exceed three if the number of source lines printed on a page is less than the 

standard length for a Ii.sting page. 

Page Length 

The length of the text in each page of your assembly listings can be specified through the 

IASSEMBLE statement using the LINES option, which has the form -

L_ I f'~E:::; {numeric expression} 

This option directs that any listing of the modules being assembled have pages of the length 

indicated by the absolute value of {numeric expression}. If {numeric expression} evaluates to a 

positive number, the listing for each module is printed on a separate page with the indicated 

number of lines. If {numeric expression} evaluates to a negative number, the pagination at the 

end of each module listing is suppressed. An error is generated if {numeric expression} 

evaluates to zero. 



Assembly Language Fundamentals 4-17 

this is frequently the value selected. If the option is omitted, a value of 60 is used, producing an 

overall page size of 66 lines. 

Printer control characters, such as line-feed and form-feed, in a comment can affect the actual 

printing length of the pages independent of the length you specify. Thus, a page length of 60 

could result in actually 61 lines if one of the comments in your ISOURCE statements contains a 

line-feed character. 

End-of-Page Control 

At any time during the assembly of a module, you can force the listing to continue printing at 

the top of the next page by including -

.... :: ... : 

at the desired spot in the module. If a listing is being generated when this pseudo-instruction is 

encountered in the source code, the printer is sent to top-of-form. This is physically done in one 

of two ways-

• If the EJECT option was included in the IASSEMBLE statement which is assembling the 

module, then a form-feed character (ASCII character 14B), is sent to the printer. This 

feature is intended for perforated paper . 

• If the EJECT option was not included, sufficient CR/LF pairs (ASCII characters 15B and 

12B) are sent to the printer to fill out the standard length of a listing page (plus three at the 

end of the page). Thus, if you already have printed 10 lines on a page, and an SKP 

instruction was encountered, the assembler sends (length -10 + 3) CR/ LF pairs. This 

feature is intended for non-perforated paper. 

The SKP instruction is not required to cause pagination to occur when the standard length of a 

listing page is exceeded. Thus, if you are working with a default length of 60 for your standard 

length, then each 60 lines from the last page break forces a new page break. 



4-18 Assembly Language Fundamentals 

Page Headings 

The heading for each listing page is -

l'IUDULE: {name} 

where {name} is the name of the module currently being assembled. This heading can have 

additional information added to it through the HED pseudo-instruction. This instruction has the 

form-

HED {comment} 

When this instruction is encountered, and a listing is being generated, pagination immediately 

occurs, the same as with the SKP instruction (see above). On the new page, and on all pages 

after it, the indicated {comment} appears after {name} in the heading, replacing any previous 

information specified by an earlier HED instruction. 

You can change the heading any number of times in a listing. This is frequently done in order to 

generate documentation by sections, even though all sections may reside in a single module. 

The heading appears on the page exactly the same as in {comment}, including the positioning 

of blanks, control characters, etc. 

Blank Line Generation 

If occasional blank lines are desired in a listing (usually to set off sections of code, or com

ments), they may be generated by including -

::;PC {number} 

at the desired spot in the source statements. {number} designates the number of blank lines 

desired. {number} can be any absolute expression, provided the expression evaluates to a 

positive integer (see "Symbolic Operations" later in this chapter). 



Assembly Language Fundamentals 4-19 

Non-Listable Pseudo-Instructions 

The following pseudo-instructions do not appear in a listing -

HED 

Conditional Assembly 
For reasons of complexity or length, it is occasionally desirable to selectively assemble only 

parts of a module. This is particularly true during the debugging stage of longer, complex 

assembly programs. "Conditional assembly" is the ability to designate certain portions of a 

module for assembly, depending upon conditions established by the IASSEMBLE statement. 

You may recall from the description of the IASSEMBLE statement earlier, there are options 

called "conditions" available with the statement. These conditions -

A 

r. 
j..l 

t:: 
i i n 

are used to designate which conditions are "set" during the assembly. By including one or 

more of these conditions, all conditional assembly statements predicated upon that condition 

are assembled. For example, if the following statement is executed -

IASSEMBLE R2tri2V2; H 

then any occurrence of conditional assemblies based on "A" are assembled. Also, any condi

tional assemblies based on B through H are not assembled, since those conditions were not 

included in the options for the IASSEMBLE statement. 



4-20 Assembly Language Fundamentals 

The conditional assembly sections are delimited by pseudo-instructions. A conditional section 

begins with one of the following -

IFF-! 

IFC: 

IFIi 

IFE 

T C·W 
.i.: :: 

and it concludes with -

In addition to the lettered conditions, a numeric condition can be tested by using an IFP 

pseudo-instruction. It has the form -

I FF' {absolute expression} 

The condition is considered true if {absolute expression} evaluates as a positive value. It should 

be noted that this is an assembly-time construct, meaning that the variables contained in the 

expression are evaluated at the time of assembly. 

The IFP instruction performs in the same manner as the IF A through IFH instructions. It also 

terminates with the XIF instruction. 

The conditional assembly is based upon a flag. At the beginning of the assembly for a module 

the flag is set so that object code is generated for all instructions. An IF conditional encountered 

during the assembly which does not have its condition set turns off the flag so that no further 

code is generated. Encountering an XIF statement resets the flag so that code generation can 

resume. For instance, if the source -



320 IASSEMBLE Retrieve;A 

:~:7fi I ~:::;CUF'CE 
3;:::;0 I ::::;OURCE 
3'30 I ~:::;CURCE 

510 I::::;CURCE 
520 I':::;CUF.:CE 

670 

IF~B 

.~WF' *+:~: 

ADA =-10:::. 

SAF' *+J 

LIlA - -;-e:=.t 

690 IASSEMBLE Retr!EJe 

Assembly Language Fundamentals 4-21 

Debugging se~tion 

ust be a file number 

is executed, lines 430 through 460, 480, and 490 are assembled, but 520 through 550 are not. 

Line 570 is assembled. 

The XIF pseudo-instruction actually affected both conditions. This effect is more dramatically 

illustrated if line 320 is changed to -

IASSEMBLE Retrieve 

where neither A nor B is set. In this case 480,490,520 through 550 are not assembled. But 570 

is assembled! 

The effect of the XIF, then, is as a flag for all the conditions. As a consequence, it is not possible 

to "nest" conditional assemblies. This effect is the same with the IFP conditional. 



4-22 Assembly Language Fundamentals 

Control of Indirection 
The assembler can generate an indirect instruction, even when you have not specified a ,I after 

the instruction. The pseudo-instructions IOF (indirect off) and ION (indirect on) control these 

automatic indirects. While automatic indirection is turned off (by IOF), a range error (RN) is 

generated for any instruction which the assembler would have generated an automatic indirect 

for. ION turns automatic indirection back on, restoring the assembler to its normal state. These 

pseudo-instructions are used in pairs, with IOF first and ION last, to specify an interval for 

which you wish to control automatic indirection. 

Relocation 

The code talked about in this section is relocatable. You do not have to worry about the 

absolute location of your module. The assembler automatically generates the appropriate 

machine codes for each of your instructions to assure that the correct location is reached when 

referenced. 

Some instructions generate relocatable object code in which the operand address is an offset 

from the current address and the relocating loader has to make no changes to the object code 

for them as long as they are within - 512 and + 511 of the current address. 

For indirect addressing, and for instructions which are more than 512 words away from the 

current address, it is required of the loader to adjust the address in the intermediate word to 

reflect the actual address being referenced. For indirect addressing generated by the assembler, 

this activity is automatic. 

Some instructions permit you to specify an absolute machine address for its operand. In those 

cases, the assembler generates the code necessary to perform the reference to the absolute 

location. 

For example, if the instruction was assembled -

L..Dfi B 

(which essentially says "load register A with the contents of register B) the result would be a 

machine instruction which references the B register (absolute address 1). This reference would 

be independent of the actual location of the instruction itself. 

There are a couple of ways to produce an absolute address in an operand. Using pre-defined 

symbols is one way. There is a type of expression known as "absolute" which is another way. 

Both of these are dicussed in the next section, "Symbolic Operations". 



Assembly Language Fundamentals 4-23 

You should never try to use absolute addressing within the ICOM region, since not only is the 

location of the region itself not fixed, but modules can also be moved around within the region. 

Module Reassembly 

Modules that have been assembled can be reassembled at any time. Debugging a routine often 

times leads to changes and reassembly. A discussion of this process is in order. 

The steps involved in the reassembly of two modules with the statement -

are the following: 

• Step 1 - both modules appear in their original positions in the ICOM region. 

• Step 2 - Module _1 is deleted and Module _ 2 is moved and linked. 

• Step 3 - Module _1 is assembled . 

• Step 4 - Module_2 is deleted and Module_1 is moved and linked. 

• Step 5 - Module _2 is assembled. 

Module 1 

Module 2 

Step 1 

(
Module_1 ) 

deleted 

Module 2 

(Relinked) 

Step 2 

Module 2 

Module 1 

(assembled) 

Step 3 

(
Module_2) 

deleted 

Module 1 

(Relinked) 

Step 4 

Module 1 

Module 2 

(assembled) 

Step 5 

The impact of this is that during debugging with the stepping feature (Chapter 9), the lines of 

the reassembled modules are listed erroneously. The simple solution to this problem is to 

execute an IDELETE ALL statement before reassembling more than one module. 



4-24 Assembly Language Fundamentals 

Symbolic Operations 
You have been introduced, in small doses, to symbols throughout the chapters preceding this 

one. The idea of symbols in an assembly language is the same as it is in a higher language such 

as BASIC - to make operations simpler and the code more understandable. 

Several symbolic tools are provided for you in this assembly language system. You have 

already seen one described in detail in this chapter -labels. There are some pre-defined 

symbols the assembly system provides for certain locations in the machine (mostly registers). 

There are ways to define your own symbols (and give them a "type"). And, there are ways to 

access symbols in other modules. 

Symbols can be used as operands in machine instructions and in some pseudo-instructions. 

They can be part of expressions in an operand. 

Predefined Symbols 
The assembler has predefined a number of symbols and has reserved them as references to 

special locations in memory. Each of the locations has a special meaning and function. The 

symbols themselves are "reserved", meaning they cannot be re-defined (by using them as 

labels on something else). The symbols are-

Symbol 

A 
Arl 
Ar2 
B 
Base_page 
C 
Cb 
D 
Db 
Dmac 
Dmama 
Dmapa 
End _isr _high 
End isr low 
Isr_psw 
Oper 1 
Oper=2 
P 
Pa 
R 

Description 

Arithmetic accumulator 

} BCD arithmetic accumulators 

Arithmetic accumulator 
Global temporary area (9 words) 
Stack pointer 
Address-extension bit for byte pointer in C 
Stack pointer 
Address-extension bit for byte pointer in D 
DMA count register 
DMA memory address register 
DMA peripheral address register 

} Reserved symbols for interrupt service routines 

I Arithmetic utility operand address registers 

Program counter 
Peripheral address register 
Return stack pointer 



Assembly Language Fundamentals 4-25 

Symbol Description 

R4 1 R5 I / 0 registers 
R6 J R7 
Result Arithmetic utility result address register 
Se Shift-extend register 
Utlcount 

} Utlend Reserved symbols for writing utilities 
Utltemps 

The meaning of each of these locations is discussed in other chapters. The absolute locations of 

the registers can be found in Chapter 2. A descripiion of the function of the accumuiators and 

pointers can be found in Chapter 3 as part of the discussion on machine instructions. A 

discussion of the I/O registers and symbols can be found in Chapter 7. The arithmetic registers 

are discussed in Chapter 5. 

Using a pre-defined symbol in a machine instruction is the same as using its address. For 

example -

means simply that register A will be loaded with the contents of register B. The same effect 

could have been achieved with -

except that the symbolic form makes it more obvious what is intended by the operation. This is 

true with most symbols. 



4-26 Assembly Language Fundamentals 

Defining Your Own 

You are defining your own symbol each time you specify a label on an instruction or pseudo

instruction. Normally the "value" of the label is the address associated with the instruction. 

However, in two cases it is possible to create the label and specify what its value is to be. One 

case is when the label is on the EQU pseudo-instruction; the other case is when the label is on 

the SET pseudo-instruction. 

The EQU is an assembly-time construct. It exists only at the time of assembly to give you 

value-assigning capability to symbols. It generates no code itself, and it has no implementation 

or "location" in the object module. 

To define a symbol using an EQU, the form is -

{label}: Ei)tJ {expression} 

the resulting symbol ( {label} ) has the same "type" as the expression (see "Expressions" later 

in this chapter) and it has the same value as the result of the expression. 

As an example, assembling the statement -

I:30UF.:CE Thr-·ee: EOU :3 

means that in all references in the module to the symbol "Three", it is the same as referring to 

the value 3. Thus -

means load A with the contents of location 3. 

A common use for this instruction is to assign a symbol an address which is an offset from 

another address. For example, if this sequence were in a module -

I SOURCE ::~3.'''''E" t-·e-C! i :::. t. EOT-:::- : f;::;::; 4'.:m 
I SOURCE ::;.3. I .... E-:-b: - EOU ::;.3. ' .... E:...TE"';Ii :=.tET":::.+i 

then Save _ b would refer to the second word in the BSS area "Save_registers", and it would 

probably be used to store away the contents of the B register sometime-



Assembly Language Fundamentals 4-27 

and later retrieve the value -

The SET pseudo-instruction defines a symbol in identical fashion to an EQU. Consequently, it 

has the same general form-

{label}: ::;ET {expression} 

The difference between the two is that the SET instruction can have its {label} be a symbol 

which has been previousiy defined. The effect in that case is to anow a redeiinition of the 

symbol. For example, after assembling the following instructions -

I :::;OUPCE T ht--ee : 
E;OUPCE Tht--E-e: 

EOU 3 
SET 3~jB 

the symbol "Three" has the value 30B. 

Literais 

Literals are a special means of defining your own symbols without actually having to go to the 

trouble to do so. The result is a form of symbolic addressing without the symbol! The assembler 

automatically allocates space at the end of each module for the storage of literal values. This 

area is called a literal pool. 

The form of a literal is -

::: {expression} [~ {expression} [~ ... ] ] 

where {expression} may be any absolute or relocatable expression (see "Expressions" below). 

Evaluation of Literals 

When a literal is encountered in an operand, three things occur-

1. The literal is converted to its binary value. If there is more than one expression in the 

literal, then they are all converted. 

2. The binary value is stored in a literal pool. If there is more than one expression in the 

literal, then they are stored contiguously in the order specified. 

3. The address where the value is stored is then substituted for the literal in the operand. 



4-28 Assembly Language Fundamentals 

If the same literal is used in more than one instruction, only one value is generated in the literal 

pool. All instructions using this literal refer to the same location. 

Literals can be part of expressions as well as having expressions as part of them. Since they 

ultimately are replaced by an address (pointing to a specific location within a literal pool), their 

"type" is "relocatable". See the section on "Expressions" later in this chapter. 

Basically, a literal means "the address of {expression}". An example should help in the under

standing of literals. Suppose that you want to store the value 1 into the A register. There are 

two ways you could accomplish that purpose. You could code -

OnE': DAT 

LDA OnE' 

or, you could use a literal and code -

LIlA =1 

Using the literal method is easier and is more self-documenting. While the literal form strictly 

says "load A with the contents of the address of the constant 1", it can also be read as "load A 

with the constant 1", and this short-hand version can be an excellent way of self-documenting 

your programs, not to mention the elimination of a lot of unnecessary symbols. 

The value of symbols defined with the EQU pseudo-instruction are referenced using the literal 

specifier. For example -

Select code: EGU b 

Nesting Literals 

Since literals use expressions, and literals may be used in expressions, it is possible to have a 

literal within a literal (nesting). In fact, it may be done to any depth, though the most useful 

form of nesting is a single level. 



Assembly Language Fundamentals 4-29 

Suppose you want to initialize a variable to the value of pi each time you enter a routine. A 

nested literal would be a way of accomplishing this in a clean, straight-forward fashion -

LDA ==3.14159265349 
LDI: =F'i 
::<FF.: 4 

and the locations starting at "Pi" now contains the full-precision value indicated (which is a fair 

approximation to pi). This would replace coding which could have looked like this (without 

using literals) -

A i nit: DAT Init 
Init: DAT 3.14159265349 
A_pi: DAT Pi 
F'i : B~::;~::; 4 

LIlA A init 
LIlt: A-Pi 
;:<FP 4 

Literals are also used to provide an instruction or a utility (e.g., the XFR instruction and the 

Print_string utility) with the address of the first word of a string, or full-precision or short

precision number. In these cases the" = =" specifier is used. For example -

puts the address of the first word of the short-precision number in the A register for the XFR 

instruction. Likewise -

puts the address of the first word of the BASIC string "EXAMPLE" in the A register for the 

Print_string utility. (See Chapter 7, I/O Handling, for an explanation of the Print_string 

utility). 

Nonsensical Uses of Literals 

A literal, basically, is an address. Since it can be used in an operand wherever an address may 

be used, it is possible to use it in instructions where the result is a little nonsensical. 



4-30 Assembly Language Fundamentals 

For example, consider the result of doing some of the following -

Caution dictates that you well consider the appropriateness of the action when using the literal. 

Literals can be a highly useful tool, but only when properly employed. 

Literal Pools 

Literals are assemble-time constructs, but they eventually resolve to an actual address in the 

object code. That address points into the literal "pool". 

The literal pool is part of your module where the actual values of literals are stored. There is 

automatically a literal pool assigned at the end of each module where literals are used. As many 

literal values as possible are stored there by the assembler. However, in some cases, a literal 

pool is needed earlier in the program (a need indicated by the assembler with the "L T" 

assembly-time error). In that case a pool should be created using the LIT pseudo-instruction. 

This instruction has the form -

LIT {size} 

where {size} is the number of words to be set aside (it may be a positive numeric expression). 

The instruction acts very much like a BSS. And, like a BSS, it should be placed at a location in 

your code where it is not likely to be inadvertently executed. 

Most modules do not need assignment of an extra literal pool. However, one is needed where 

there is a literal used beyond 512 words from the first available space in the literal pool at the 

end of the module. To alleviate the problem, a literal pool must be created with the LIT 

statement within 512 words of the instruction. 

A common cause of this kind of problem is a large BSS assignment between the instruction and 

the end of the module. Sometimes moving the BSS to some other location is a solution to the 

problem. 



Assembly Language Fundamentals 4-31 

Expressions 
Literals, some pseudo-instructions (particularly EQU), and a number of machine instructions, 

all permit "expressions" to be used as an operand. These expressions take one of two 

forms - "absolute" or "relocatable". The type of an expression depends upon the type of the 

individual elements in it. 

An element is of the type "absolute" if it is any of the following -

• A decimal integer (like 0, 1,2, 1 024). 

• An octal integer (like lOB, 40B, 100000B). 

• A string (enclosed by quote marks) (like "ERROR") 

• An ASCII character, preceded by an apostrophe (like' A). 

• A label associated with an EQU or SET pseudo-instruction whose expression is also 

evaluative as type absolute (like EQU 40B). 

An element is of the type "relocatable" if it is any of the following -

• A label not associated with an EQU or SET pseudo-instruction (Le., it is an "address"). 

• A literal (like = 0). 

• An asterisk, symbolizing "current address". 

• A label associated with an EQU or SET pseudo-instruction whose expression is also 

evaluative as type relocatable (like EQU *). 

An expression is a list of elements each pair of which is separated by one of the following 

operators -

meaning addition, subtraction, division, and multiplication, respectively, as in BASIC. 

The result of an expression is either absolute or relocatable depending upon the following 

rules: 



4-32 Assembly Language Fundamentals 

An absolute expression is any expression which contains -

• Only absolute elements. 

• An even number of relocatable elements, paired in sequence and by sign (Le., for each 

relocatable element there is another relocatable element adjacent to it, of opposite sign). 

These pairs may be in combination with absolute elements. 

A relocatable expression is any expression which contains -

• An odd number of relocatable elements, paired in sequence and by sign, except the last, 

which must be positive. 

• An odd number of relocatable elements, as above, in combination with any number of 

absolute elements. 

Any combination of absolute or relocatable elements which does not result in either an abso

lute or relocatable value, by the rules above, results in an error. 

These rules and the rules for using * and ..... can be summarized as -

The expression is -

absolute ± absolute 

absolute + relocatable 

relocatable ± absolute 

relocatable - relocatable 

relocatable + relocatable 

absolute - relocatable 

absolute * absolute 

absolute/ absolute 

absolute * relocatable 

relocatable * absolute 

absolute/ relocatable 

relocatable / absolute 

The type is-

absolute 

relocatable 

relocatable 

absolute 

error 

error 

absolute 

absolute 

error 

error 

error 

error 

Example 

1000B + 10 

1 + Temp 

Ternp - 1 

Temp + TE·mp :l 

100r1t: - T erf:f) 

Temp * 3 

3 "*. T E·rf:f) 

Temp.····3 

::::: ..... Te~"fip 



Assembly Language Fundamentals 4-33 

Unlike BASIC, there is no precedence among the operators. All are of equal precedence. 

Where precedence is desired, parentheses must be used. So where BASIC requires -

to result in 56, the same expression in the assembly language results in 280 (assembly language 

operators are evaluated from left to right). However, 56 would be the result if it were expressed 

as-

An expression may be of any length and contain as many operators and parentheses as desired, 

as long as the result can be evaluated and the parentheses are properly paired. All operators 

are evaluated from left to right. Multiplication and division can only be used with elements that 

are of type absolute. 

Both operands are considered to be unsigned integers for assembler division (/). Overflows in 

all assembler arithmetic operations are ignored. 

External Symbols and Elements 
There is an additional relocatable element, called "external". It behaves in almost all respects 

as does any other relocatable element, except that only one external item may appear in an 

expression. Also, the expressions containing -

relocatable - relocatable 

are not allowed when one of the relocatable elements is external. Externals are defined as 

symbols appearing in an EXT pseudo-instruction -

E::<T {symbol} [ , {symbol} [, ... J J 

These are entry points in another module or utility. "Entry points" are merely symbols in a 

module which are listed in an ENT pseudo-instruction in that module -

E}~T {symbol} [, {symbol} [, ... J J 



4-34 Assembly Language Fundamentals 

If one module contains -

then that symbol would be available to another module which contains -

The EXT instruction should appear before any other instruction using the symbols which are 

listed in that EXT instruction. At execution time for a module with an EXT instruction, all of the 

symbols listed in it must be either a utility name or be contained in an ENT or SUB (described in 

Chapter 6) of another module. It is not necessary that the module be in source form; it may 

already be an object module assembled from a source module which contained the symbol as 

an ENT or SUB. 

NOTE 

When ICALLing an assembly routine, satisfaction of the ex

ternal symbols specified by an EXT pseudo-instruction is 

checked only for the first module after the ICALL. The ex

ternal symbols of modules entered after the first module are 

not checked. Undesirable results can be obtained if exter

nally referenced modules cannot be found. Be sure that all 

interrelated modules reside in the ICOM region before an 

ICALL is executed. 

Other Absolute Elements 
There are additional absolute elements which may be used in expressions. These are 

"machine addresses", short-precision numbers, and full-precision numbers. 

A machine address is one of the following -

• An assembler pre-defined symbol. 

• A symbol associated with an EQU or SET pseudo-instruction whose expression is 

evaluated as a machine address (Le., it contains a pre-defined symbol or another EQU

associated symbol whose expression contains a pre-defined symbol). 



Assembly Language Fundamentals 4-35 

defined from assembly to assembly. By defining a machine address in one module (with an 

EQU or SET), it then becomes available to you with the same value in other modules which you 

assemble. 

For example, if you were to assemble a module containing -

I~JURCE R100: EQU A+100 

then RIOO is a machine address following the above rules, just as if the assembler had pre-

defined it. If you don't do any SCRATCH or GET statements in the meantime, then the next 

assembly you do would also have this symbol available without ever having to define it. 

When full-precision numbers (like - 2.5, 3E3, 3.141592) and short-precision numbers (like 

1.5, - 2.55, 3.141595, 3.E3S) are used in expressions, they become the entire expression. 

This is because these numbers are only intended as simple data-generating devices in literals 

and in OAT pseudo-instructions. Explicitly, the rules for using full- and short-precision numbers 

are-

• They may only appear alone in an expression, i. e., they may not be in combination with 

other elements . 

• They may only appear in literals and in OAT pseudo-instructions. 



4-36 Assembly Language Fundamentals 

Utilities 
A number of utilities have been provided to help make your programming tasks easier and to 

give you direct access to some of the operating system's capabilities and routines. 

Descriptions of the utilities are made in conjunction with those topics where the utilities playa 

part. The form of the description of a utility is somewhat standardized. Each description will tell 

you-

• The name of the utility. 

• The general procedure for using the utility. 

• Any special requirements which must be satisfied for the utility to work properly. 

• A step-by-step calling procedure for the utility. 

• The exit conditions. 

Utilities are a form of subroutine, so to execute them it is necessary to execute a jump-to

subroutine instruction (JSM) if you want the utility to return to the routine which calls it. Most 

utilities execute a RET 1 instruction to return, so in some cases where you follow a utility call 

with a RET 1 of your own, you can save the RET instruction by using the JMP (unconditional 

branch) instruction instead. For example, a typical utility call looks like -

LDA =TE"rllp 
LDB =F'o i ntET 
.J~3H GE"t. E" 1 efllE"nt 

but if it happened to be followed by a RET 1 -

LIlA =T erilp 
LDB =F'oi nt.E"r" 
J::;t'1 Get E" 1 efilent. 
PET 



the calling procedure could be changed to -

LDA =Temp 
LDE: =F'o i r-:t Er 

.-"fI'W Get. e 1 f"ment 

Assembly Language Fundamentals 4-37 

and you save a word of code: the effect is otherwise the same. Check the exit conditions for a 

utility before using this approach. 

Utilities which you use in a module must have their names in an EXT pseudo-instruction for that 

module. Otherwise, the assembler is unable to tell that you meant a utility and not one of your 

own labels, causing an "undefined reference" assembly error. 

The contents of any or all of the processor registers may be altered after a return from a utility. 

Be sure to save the contents of registers that you are using before you call a utility. 

If you are using interrupts, the interrupt system mayor may not be enabled upon return from a 

utility. Use the EIR and DIR instructions to ensure the proper state of the interrupt system upon 

return from a utility. A system utility cannot be called from an interrupt service routine (lSR). 

Appendix F contains a short description of the utilities. 



4-38 Assembly Language Fundamentals 

The utilities currently available are -

Utility 

Busy 
Error exit 
Get bytes 
Get= elem _bytes 
Get element 
Get file info 
Get-info 

Get value 
Int to reI 
Isr access 
Mm read start 
Mm read xfer 
Mm - write- start 
Mm write test - -
Printer select 
Print no If 
Print string 
Put bytes 
Put= elem _bytes 
Put element 
Put file info 
Put-value 
Rel-math 
ReI to int 
ReI to sho 
Sho to reI 
To_system 

Description 

Tests the busy bits of a BASIC variable 
Aborts an ICALL statement with a particular error number 
Accesses substrings (or parts of parameters) 
Same as "Get bytes", but used for array elements 
Same as "Get= value", but used for array elements 
Accesses the file-pointer of an assigned file 
Returns the characteristics of a variable passed as a 

parameter or existing in common 
Returns the value of a BASIC variable 
Data type conversion from integer to full-precision 
Establishes hardware linkages for interrupts 
Prepares to read a physical record from mass storage 
Reads a physical record from mass storage 
Writes a physical record to mass storage 
Verifies a physical record was written to mass storage 
Changes or interrogates select-code for standard printer 
Outputs a string with no CR-LF sequence 
Outputs a string to the standard printer 
Replaces substrings (or parts of parameters) 
Same as "Put_bytes", used for elements in an array 
Same as "Put_value", used for elements in an array 
Manipulates the file-pointer of a file 
Changes the value of a BASIC variable 
Provides access to all the arithmetic routines 
Data type conversion from full-precision to integer 
Data type conversion from full-precision to short 
Data type conversion from short-precision to full 
Allows immediate printing with printing utilities 



Chapter 5 
Arithmetic 

Summary: Arithmetic operations are reviewed and the arithmetic utilities are discus

sed. Floating point and BCD arithmetic are explained, as well as integer arithmetic. 

Numerical calculations are a large part of any computer's operations. Implemented within the 

System 45's processor are both integer and primitive Binary Coded Decimal (BCD) floating

point arithmetic operations. These operations are needed because three of the four BASIC 

variable data types (explained in Chapter 3) are represented either as BCD floating point 

numbers or as integer (binary) values. To be specific, full-precision numbers are presented as 

12-digit, BCD floating point numbers, short-precision numbers are represented as 6-digit, 

floating point numbers, and integers are represented as binary numbers. This chapter deals 

with integer and floating point operations and is intended for those readers who may have no 

acquaintance with this topic, or perhaps only a passing one. The particular machine instruc

tions involved with such arithmetic are reviewed. 

Because the processor provides only rudimentary floating-point operations and because com

plete floating-point operations (e.g., subtract, divide) are not easy to write, BCD arithmetic 

utilities have been provided to perform these calculations and are discussed later in this chap

ter. Integer arithmetic operations are less complex; thus utilities can be written by you, as 

described in the following section. If you are not interested in doing your own BCD or integer 

arithmetic, it is recommended that you skip immediately to "Arithmetic Utilities". 

Due to its speed increases over BCD floating point arithmetic, integer arithmetic is recom

mended when you are performing the addition, subtraction, or multiplication of integers. 

5-1 



5-2 Arithmetic 

Integer Arithmetic 

Representation of Integers 
Recall from Chapter 3 that integers are represented as -

15 14 

I ! 

"Sign Bit (1 = negative) 

The range of integers represented by 16 bits in the 9845 is -

-32 767 to +32 767 

This is further illustrated in the following table -

Bit 15 Bit 0 
Decimal Binary Integer Representation 

-32768 
-32 767 

-1 
o 
1 

32767 

1 000 
1 000 

1 III 
o 000 
o 000 

o 111 

000 
000 

III 
000 
000 

III 

000 
000 

III 
000 
000 

III 

000 
000 

III 
000 
000 

III 

00 
001 

III 
000 
001 

III 

OBit 

Notice that negative integers have their sign bit (bit 15) equal to one. There is another impor

tant fact concerning negative numbers - they are represented in two's complement form. This 

is done so that subtraction can be implemented by complementing and adding. There are two 

instructions (TCA and TCB) which enable you to form the two's complement of an integer. An 

example of the use of two's complement is shown -

ISOURCE AbsDlute: 
of ·:in i nt e ';I E:r • 

TeA If not positive, two'S 

Integer Arithmetic! 

The addition of integers is accomplished very easily. Two instructions (ADA and ADB) are 

provided to do integer addition. A special situation to be aware of is the overflow condition. It is 

possible to add two valid 16-bit integers and produce an answer which cannot be represented 

in 16 bits. 

1 For the purposes of this manual, the terms binary arithmetic and integer arithmetic are synonomous. 



Arithmetic 5-3 

For example, 15 000 + 25 000 = 40 000; and 40 000 is greater than 32 767 (the upper limit). 

The following example illustrates how to detect this condition -

Glve integer precison 

Of course, if you know that the result will be in the range -32 768 to +32 767, there is no need 

to check for the overflow condition. 

The subtraction of integers is handled almost exactly like addition. The following example 

computes (X-Y) -

TCA 
ADA ' 1 Lompute x+(-y)=~ 

! Test t"or overflow. 

Give integer precison 

Continue processing. 

The processor contains an integer multiply instruction. There are two special considerations 

concerning integer multiplication -

• When you multiply two 16-bit integers, the resulting product can always be represented as 

a 32-bit integer. Hence, the processor's MPY instruction produces a 32-bit answer, and 

no overflow condition is possible. However, if you would like to restrict products to a valid 

16-bit integer, you must provide your own 16-bit integer overflow check. 

• An anomaly exists in the MPY instruction. If the B register contains -32 768, the MPY 

instruction yields the wrong answer. 



5-4 Arithmetic 

The following example multiplies two 16-bit integers (X and Y) and tests the result to see if it is 

a valid 16-bit integer -

LIlt: :.: Multipl ication routine. 
CPB :::-::::276f: 

LDA 
ISOURCE Mpy 1: M;Y 
I::;Ot..i~:CE 

I:::;OURCE 

ISOU~:CE 

I:::;OU~:CE 

IS~JRCE Overflow: 
I ~:;CI~JF~C:E 
I30URCE Anc:I!".3.l '): 
130Uf:CE 

ISOUFCE 

::;TA Ans"!.ler-· 
RET 

3::;['1 Er-.,-·,:::r c· ., t 

LItA B 
LDB 'y' 

Detect overflow Gmen all 
bits of B differ from l»)per 
bi t c·f A. 

Give integer cverflcv err~r 

Is B ~~w ~32768? 
i+ :/t:"::;., i;!il.)~- c!i.)E'r-·fl::::i.,J ff:E·=.:::~3..;~E·= 

! If" r-:c;1:., ffit~ 1 r. i f:,1 ::..i = 

The processor does not contain an integer divide instruction. However, integer division can be 

implemented quite easily. The following program implements integer division (X/Y) analog

ous to the BASIC DIV operator with integer operands -

':;OUPCE 
':;OUPCE ' . .!:::' 

LDA ..... 
~:;TA Ij i i.} i :jE"t-~d 

Skip ,. not divldlng oy ~. 

Glve division by 0 eFrc~, 

Initialize quctient. 
Necess3.ry for -32768. 

"'1'18 j TC"~};i 1 e s· i ';In S-:i'·..'ET. 

TCB ! Fcrce pcsitive diviscr. 

SBP Pos ji~idend 
Cl'1A ~ Tcggle sign S:iver. 
TCB I Fc~ce pcsitive dividend. 

SOU~:E Pcs di~ dend:STA Sign Save sign of quotient. 
*+:::: 

LDA 1':~ 

. .Ft=' Er-"~-:'(' 

L.I)~1 = 1 

t:: 1 !.)t;" i rflpr--::;~)E'r' i,}.3,. 'l ~~~E' ~:'r-t-'Cr-'

Cr-~e ('~)E·f-·.3.(id i".i.:i:::. -':~::~~:~7S;=; = 

Initialize qu)tient update. 



::;CI~jF-~C:E I~ i :-.
::;C!IJ~~C:E 

~:;OUPCE 

::;OU~:CE 

ADB D i '.) i dE·nd 
::;Er'i Ii i '·)2 Skip if divisor\jividend. 

to quotiEfit; the divisor 

DETERMINE IF THEY APE PART OF THE QUOTIENT. 

~:;OU~:CE 

~:;OU~:CE 

SCU~~CE 

::;C\Uf:<E 
~:;OUF::CE 

~:;OURCE 

::;AR 
=:;2A Dc~::;. j .;in 

ADE: Di'.)idend 

STB D i '.} i dend 

ADE A 

LDA Cuotient 
LDB =:;j':;Jn 
::;BP ++2 
iTA 
=:;TA OtDt i en 1:

L_I~A =G~i)::::t i E-r-!1:. 

LIIB =i)uct. i en~. 

Multi-Word Integer Arithmetic 

See if next bit is to be 
1 r-!C 1 ij:jE-cL" 

~ Skip It Dlt should be off 
Bit should be on; adjust 

dividEfid and quotient 
tc: ·3.CC ;::i)r-l1:. f-C:f-' it:; 

I Check all bit 0Jsit10ns. 

ComplemEfit Slon ~~ quotient. 

-=:-::i )t;-

Arithmetic 5-5 

The processor does not directly support multi-word arithmetic. However, it does provide a 

register (the E register) which facilitates multi-word addition. The E register indicates whether 

there is a "carry" from bit 15 when an add instruction (ADA or ADB) is executed. 



5-6 Arithmetic 

The following program segment illustrates how 2-word integers can be added -

I::;OUF.:CE 
ISOUF.:CE 

I::;OUF:CE 
I~:;OUPCE 

~:;EC: ++ 1 ~ C: 
LIlA ::<_t-· i ';lht 
ADA \' t-'1 ';lht 

~:;OC *+1" C 
LDB ;:-:; 1 eft 
~:;EC r·k,r-·m.~ 1 
ADE: =1 

ADt: 'y' 1 eft 

LDA =2a 
... P::t1l Er-'r'c:r-' E'>:: it 
ADt: 'y' ! e·f't. 

Fc~m least sjgnific~nt 
i .• Jc:[-·ci (}f' .~J-;==.~.,.~E·r·; :'=·E't E 
register if carry out 

:=. i ';In if i (.~nt part.. 

the answer is cc~rect. 

Subtraction can also be handled, by forming the two's complement. The general algorithm is -

1. Form the two's complement of the least significant, non-zero word. 

2. Form the one's complement (using CMA or CMB) of all more significant words. 

The following program segment illustrates how to compute the two's complement of a two 

word integer -

SOUFCE 
:':;OUPCE 
::;DUf?CE 

kL-.· .. ·+ 
~ "!:=: ..... : . 

LIlA Pi 9ht :.,.:CT,] 

:':;2:A ~'~e>::t !..,iC,[-·;j 

TCA 
Lli:B !_E,·ft ~.~J()f-·C] 

cr·W 
~:t:. ? 

LIlt: 
TC:~B 

STA nswer right 



B!-a--" r-.,1ed D __ : __ 1 
lilly '""UU ~\"llllal 

Arithmetic 5-7 

Binary Coded Decimal (BCD) uses four-bit binary codes to represent decimal digits. Thus, the 

12-digit mantissa of a full-precision number is represented by 48 bits. The BCD digits are as 

follows -

DECIMAL BCD 

a 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

A BCD number within this manual has its digits represented as Dl, D2, D3, etc., with each digit 

corresponding to some BCD digit. Dl is the most significant digit in a number. Since full

precison numbers within the 9845 contain 12-digit BCD mantissas, 12-digit BCD numbers are 

used as the most frequent examples in this discussion. In that case, D12 is the least significant 

digit in a number. 

Arithmetic Machine Instructions 
There are some machine instructions which specifically operate upon the BCD registers. The 

discussions in this chapter will make use of the capabilities of these instructions to develop the 

techniques to write BCD arithmetic routines. If you have not done so already, you should 

familiarize yourself with the instructions before moving on in this chapter. A description of the 

instructions can be found in "Arithmetic Group" in Chapter 3. 



5-8 Arithmetic 

BCD Registers 
There are two registers in the machine used for BCD arithmetic - Arl and Ar2. These symbols 

are pre-defined by the assembly language to the registers' locations in memory (see Chapter 

3). The mnemonics for some instructions occasionally refer to these registers as X and Y 

respectively (see Chapter 3). 

BCD Arithmetic 

To understand BCD arithmetic in the context of the 9845, recall from Chapter 3 that a full

precision value is represented in four words which contain its information as follows -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 OBit 

Exp: I I I I I I T T 1 T T I I I~an 
Sign! Exponent 000 o 0 Sign 

01 
(most significant digit) 02 03 04 

05 06 07 08 

012 
09 010 011 

(least significant) 

The exponent is stored in two's complement form. The exponent and the mantissa are always 

adjusted by arithmetic routines so that there is always an implied decimal point following 01. 

Thus, the mantissa of every value stored looks like -

Except possibly for intermediate results within the individual arithmetic algorithms, the most 

significant digit of a full-precision value (01) will never be 0 unless the entire number is O. 

Sometimes, after an individual arithmetic operation, the answer needs to be normalized, that 

is, the digits of the answer shifted to the left until 01 is no longer O. The exponent then needs to 

be adjusted to reflect the change. 

An important thing to keep in mind when examining BCD arithmetic, as implemented by the 

processor, is that mantissas are represented in a "sign-magnitude" format. This means that the 

absolute value is stored as the actual mantissa, and the sign of the mantissa is maintained 

separately. 



Arithmetic 5-9 

Addition 
There is a one-bit Decimal Carry (DC) flag within the processor which serves a BCD function 

similar to the Extend flag for binary addition. 

DC is set to a one or zero, depending upon the occurrence or absence of a carry from the 

addition of the two Dl's of the two BCD numbers being added. Since mantissas are represented 

in a sign-magnitude form (with the sign in the exponent word rather than part of what gets 

added), DC represents an overflow for 12-digit mantissa additions. 

DC itself is part of the addition in the D12 position. This gives it potential use with multiple

precision floating point arithmetic. The addition process looks like this -

+ 

Ar1 

Ar2 

Ar2 

There are three instructions which concern themselves exclusively with DC. They are - SDS 

(Skip if DC set), SDC (Skip if DC clear), and CDC (Clear DC). 

Ten's Complement for BCD 

The addition of the ten's complement of a number is used in lieu of a subtraction mechanism. If 

the signs of the two numbers to be summed are different, one of the numbers is complemented 

(it doesn't really matter which one), before the addition. 

The ten's complement of a number with n digits to the left of the decimal point is -

x = IOn - X 

The ten's complement of a floating-point number has the same exponent as the original 

number. Since the mantissa (M) of a full-precision number can be assumed to have the decimal 

point implied after Dl, then the number must be less than 10 (but greater than 0) and the ten's 

complement of a mantissa becomes -

M = 10 - M 

Accordingly, all that is necessary to complement a floating-point number is to complement the 

mantissa. It is immaterial whether the mantissa is treated as a 12-digit integer or as a number 

between 0 and 10; the same sequence of digits results. 



5-10 Arithmetic 

There are two instructions for doing ten's complements - CMX and CMY. The only difference 

between them is that CMX operates on the Arl register and CMY operates on the Ar2. 

CMX and CMY leave the exponent word of a full-precision number completely alone. This 

means that the sign of the mantissa and the entire exponent are left unchanged in a ten's 

complement by CMX and CMY. 

Ten's complement helps to accomplish addition, too. Rather than go into all of the nuances and 

subtleties of the arithmetic process, there is a simple rule for accomplishing decimal summa

tions using ten's complements. Assuming the exponents are the same for the numbers to be 

added -

• If the signs of the numbers are the same, simply add them and leave the signs alone. If DC 

occurs, the result (Ar2) must be shifted to the right one place, and the exponent adjusted . 

• If the signs of the numbers are different, complement, then add. A further complementing 

action may be necessary: if DC occurs, then the result necessarily has the same sign as 

the number which was not complemeted; if DC does not occur, then the result must be 

complemented and then given the sign of the number which was complemented. 

The FXA instruction is used to add mantissas. Here is a routine to implement the rule -

I::;OUPCE 
I::;OUPCE 
I::a)JPCE 
ISOUPCE 
I::;OUPC:E 
I::;OUPCE 
ISOUF:CE 
I::;OUPCE 
I::::;()UPCE 
I::;OUPCE 
I':;OUPCE 

LDA 
ADA 
::::;LA 
0'1:=< 
F>::A 
LDB 
SI6 
CN\' 
LDB 
::;TE: 
.Jt,1F' 

Ar--l 
Ar-2 
-_h-lSt -add 

Ar--2 
*+:3 

Ar--l 
Ar--2 
DClrlO:::-

I ::;OUPCE Ju:.::-t -add: 
I ::::;OUPCE n{H 
I SOURCE SDC Dc~e 
I::;OUF.:CE LItA =1 
I::;C~JPCE LDB = 1 
ISOUF.:CE t'IF:\' 
I ::;OUPCE LIlA Ar--2 
I SOURCE 
I::;OUPCE 

ADA =100B 
3TA Ar--2 

I Sk i p if thO:::-I) ar-e tho:::- :.::-ame 
ComplO:::-rlio:::-nt Ar-1 
Add tho:::- m-ant i :.::.:.::-a::::. 

~.j.a:::- ther--e an o'_)et--floJ,}? 
No. ::::'0 complement result 
and switch exponent::::. and ::::.igns 

Store the larger sign 

! Do the addition 

H-a::::. thEre an OI.)Erflo;,/::
Ye::::., ::::'0 ::::.hift in a 1 

significant digit 
I Adjust exponent 



Arithmetic 5-11 

Floating Point SUllllllations 
In the example just completed, you may have noted that to copy the sign the entire exponent 

word was copied. What if the exponents were different? The answer is - the exponents must 

have been the same. In fact, the only reason the example worked at all was that the exponents 

were the same. 

If exponents are different, addition of mantissas cannot proceed properly. To add the numbers 

it is necessary to make the exponents the same by shifting one of the mantissas an amount 

equal to the exponent difference. 

This difference is easily found by subtracting the smaller exponent from the larger. If the 

difference is eleven or less (the precision of the 12-digit mantissa), it is possible to offset the 

mantissa of the number with the smaller exponent. 

For example suppose there are two numbers to be added -

X. XXXXXXXXXXX E6 

Y. YYYYYYYYYYY E4 

By shifting the smaller one to the right by 2 digits (the difference between 6 and 4), it is possible 

to align the exponents -

X. XXXXXXXXXXX E6 

0.0 YYYYYYYYYYYY E6 

z . Z Z Z Z Z Z Z Z Z Z Z E6 

As can be readily seen from the example, a shift of more than 11 digits would cause the smaller 

value to be all zeroes in the significant 12 digits. 

The digits to the right of the 12 most significant digits are lost in the action of shifting. That is, all 

except the left-most one. When using the MRX or MRY instructions, this digit is retained in the 

A register (bits 0-3) so that it can be used later for rounding purposes. 

To use the MRX or MRY instructions, the number of digits to be shifted must be present in the B 

register. 



5-12 Arithmetic 

The process for this "justification" of exponents can be summed up as follows: 

• Subtract one exponent from the other storing the absolute value of the difference in the B 

register. 

• Execute the MRX shift if the Ar1 register is smaller; execute the MRY shift if the Ar2 

register is smaller. 

Normalization 
The raw result of an arithmetic operation (such as FXA) might not be a floating-point number 

that fits the standard form. It migh t have a leading DC needing to be incorporated into the 

number, as was seen in the "Addition" section earlier. Another possible deviation is a resulting 

D1 of zero and no overflow. There could also be several zero-valued digits as left-most digits of 

the mantissa. 

Such situations call for "normalization". One type of normalization is accomplished with the 

NRM instruction. This instruction shifts register Ar2 left, leaving the number of shifts required in 

the B register as a binary number. The maximum number of shifts NRM performs is 12. If NRM 

must do all twelve shifts, Ar2 must have been O. This is indicated by a value of 12 left in Band 

DC being set. For any other shift-count, NRM will leave DC at O. 

The rules for the normalization process are -

• Execute the NRM instruction. 

• Follow this instruction by adding the complement of the contents of B (shifted left 6 bits) 

to the Ar2 exponent unless DC is set. If DC is set, store 0 into Ar2. 

• Test the exponent result for an underflow. 

Rounding 

The addition operation (FXA) does not automatically round a result, and there is no instruction 

which does rounding in one step. Instead, it is necessary that a series of instructions be estab

lished to accomplish the result. 

Recalling from "Floating Point Summations" (above) that the rightmost digit for rounding 

purposes (if any) is typically deposited in the A register by an MRX or MRY instruction, this digit 

can be checked to determine if rounding is required. 



Arithmetic 5-13 

Tho nrf"lroc:c: f"If Tf"IlInrl;nn thon tllf"1l1lr1 h~t1o tho tr\I1r\,"inn ctonc _ ...... - .t'A----- _ ... ... -~ .. .I.""' ....... ::s, .................. , vv....., .......... """ .......... Vv L.l.l'llfi;",o ... ......, ..... ......,vv ...... .l::s ..:JL'III;;.o,tJ'..:J-

• Determine from register A if rounding is required (Le., if it's greater than or equal to 5). 

• If rounding is not required, take no further action. If rounding is required, then load 

register B with 1 and execute an MWA instruction. This has the effect of incrementing the 

mantissa in Ar2 by 1. This action is an easier method than setting Arl to 1 and executing 

an FXA and it's faster, too. Don't forget to check DC for an overflow. 

• One way the sequence of rounding could appear is -

i (1 I::;OUPCE ADA 
20 I ~:;Cllj~:C:E ~:;Ai'1 

:3~~1 I ~:;CILJF~C:E LDB 
4~:1 ISOURCE r'1~.Jfi 

- ;::-
--.f 

*+:~~ 

= ~ 1 

I If 1 e:::·:;:· th.3.n :::', nc) r-·ound i (1';1 

~ C;E"t. r·E·,::t.c~!) t.c: .3.1j::i i tel Ar'2 
Add i to 1 e·3.:;:·"\:. :;:. i 9(;1 fi C3.nt. di 91 t cd·· A(·2 

Floating Point Multiplication 
Twelve-digit BCD floating-point multiplication is partially accomplished using the FMP instruc

tion. This instruction effectively multiplies the value in the Arl register by a digit contained in B 

and adds the result to a partial product in Ar2. 

Since, in the full multiplication process, exponents are merely added together, that part of the 

process is trivial. The ultimate sign of the product is also a trivial matter, determined by 

inspection of the signs of the original operands. Then the only matter of difficulty in the process 

is the actual multiplication of the mantissas. By way of explanation, assume that there are two 

mantissas to be multiplied -

multiplicand = ABC D 

multiplier = W X Y Z 

Just four digits are used to reduce the amount of symbolism required of the example. The same 

procedures and conclusions are applicable to a full twelve BCD digits. 



5-14 Arithmetic 

One symbolic way to indicate how this multiplication is done is -

A B C D 

x W X Y 2 

0 0 0 0 partial product 0 

20v 21 22 23 24 2 (ABCD) x 10° 

P4 Ps P6 P7 Pa partial product 1 

Yov Yl Y2 Y3 Y4 0 Y (ABCD) X 101 

P3 P4 Ps P6 P7 Pa partial product 2 

Xov Xl X2 X3 X4 0 0 X (ABCD) X 102 

P2 P3 P4 Ps P6 P7 Pa partial product 3 

Wov WI W2 W3 W4 0 0 0 W (ABCD) X 103 

PI P2 P3 P4 Ps P6 P7 Pa partial product 4 (result) 

Notice that at each stage the multiple of ABCD, such as X(ABCD), must be multiplied by an 

increasing power of ten in order that the digits of the multiple line up appropriately with the 

digits of the last partial product. An equivalent procedure is to have the partial product shifted 

right one digit at each stage. 

Now, consider for a moment what is necessary within the assembly language to generate partial 

product 1 = 0 + 2 (ABCD). Ar2 must be cleared and Ar1 is loaded with ABCD. 2 is stored into 

B in bits 0 to 3. Then the FMP instruction is executed. Ar1 is added to Ar2 2 times, producing 2 

(ABeD) in Ar2. The overflow digit, 2ov, ends up in the A register (bits 0 to 3). The overflow digit 

could be any value from 0 to 9 (each add could cause a carry, and there can be up to nine 

additions) . 

To create the next partial product, a mantissa right-shift on Ar2 must occur. Notice that man

tissa right-shifting instructions (MRX and MRY) also shift bits 0 to 3 of the A register into D1-

Thus, the right-shifting of the partial product (which must occur to prepare Ar2 for the next 

partial product) also automatically takes care of retaining the overflow digit. 

Next, ABCD is added to 20v 21 22 23 a total of Y times (again by use of the FMP instruction). 

Partial product 2 is created. The process is repeated for the X and W digits, producing the result 

in Ar2. 



Arithmetic 5-15 

After the final partial product has been calculated by the final execution of the FMP instruction~ 

it is possible that a non-zero digit may be present in bits 0-3 of the A register. Such a digit is 

necessarily the most significant digit of the final product. In this case, another MRY execution is 

required. Further, the exponent of the product (which was initially estimated as the sum of the 

operand's exponents) must be incremented by one to reflect this power-of-ten shift. 

Upon each step of partial product summation, a significant digit is lost due to the shift. This 

can't be helped. In general, the product of two 12-digit numbers has 24 digits of precision, but 

the bottom 12 digits must be discarded since only 12 BCD digits are stored in a mantissa. An 

error analysis of the algorithm discloses that dropping these digits causes the answer, on 

average, to be slightly smaller than it should be. However, rounding introduces a similar error, 

but in the other direction. Note that the process did not round each partial product. 

The discarded digits can be inspected before they are permanently lost. The MRY instruction 

causes the digit to be placed in the A register (in bits 0 to 3). This provides an easy way for a 

rounding mechanism to check on those digits as they are discarded. The rounding routine 

needs to save the last digit discarded for use in rounding in the event the last use of FMP 

produces no overflow digit. 

Finally, it should be noted that you can put WXYZ into B at the very start of the process and 

simply shift Bright 4 bits (with an SBR 4 instruction) between each execution of FMP. After all, 

FMP uses only bits 0 to 3 of the register as the number of times to add Ar1 and Ar2. 

Floating Point Division 

There are many possible algorithms to accomplish floating-point division. The one presented 

here was chosen because of its effective use of the machine instructions and data structures 

employed by the processor and operating system. 

Remembering that full-precision numbers consist of both a signed mantissa and a signed 

exponent, use can be made of the mathematical properties of both to reduce the division 

problem to manageable proportions. Suppose that you have two full-preCision values to di

vide-

- 4.8E3 -7- 1.5E - 2 

The mathematical properties of exponents can be utilized and the second exponent can be 

subtracted from the first giving the exponent of the answer (subject to possible later adjust

ment). This is the first (and easiest) step in the division algorithm. 

Secondly, the mathematical properties of signs within a division process can be used to deter
mine the sign of the quotient from the signs of the divisor and dividend (negative quotient if the 
signs are different, positive quotient otherwise). 



5-16 Arithmetic 

Thus, the problem can be reduced to the division of the mantissas -

(- 4.8 -7- 1.5) E5 

As long as the full-precision numbers have been normalized, this adjustment of the exponents 

works for any pair of exponents. The normalization of the numbers also assures that the 

division of the mantissas under the following algorithm is sufficient to produce the mantissa of 

the result. 

Since the decimal point of each mantissa is in the same place, they can be dropped altogether. 

For example -

- 4.8 -7- 1.5 = - 48 -:- 15 

The algorithm can then consider both the divisor and the dividend as 12-digit integers. 

The algorithm begins by placing the normalized values into the BCD arithmetic registers. The 

divisor (1.5E-2 in the example) is transferred to register Ar1. The dividend (- 4.8E3 in the 

example) is transferred to register Ar2. Basically, the algorithm subtracts the absolute value of 

the mantissa of Arl from the absolute value of the mantissa of Ar2 until Ar2 is smaller than Ar1. 

The number of subtractions required for that to occur becomes the first digit in the quotient (it'll 

be some value between 0 and 9 because the mantissas are normalized). If there is a (non-zero) 

remainder, then it is shifted left (multiplied by 10) and the subtraction process is repeated to 

calculate another digit in the quotient. The process is repeated until either a zero remainder 

occurs, or sufficient digits have been calculated, whichever occurs first. The resulting digits are 

merged, in order, to form the complete mantissa of the quotient. 

There are some points to keep in mind in following the algorithm -

• Suppose you have a divisor whose normalized mantissa is larger than the normalized 

mantissa of the dividend, for example -

15 -7- 48 

then the first digit of the quotient's mantissa could easily be zero. If calculation of only 

twelve digits were made, the first digit being zero would mean a loss of a significant digit. 

To guarantee that there are always at least 12 significant digits calculated for the quotient, 

it is necessary (and sufficient) to calculate 13 digits. The 13th digit can always be thrown 

away, or used for rounding, if the first digit is not zero. Thirteen digits are always sufficient 

because you can never have a quotient with two leading zeroes, if the divisor and the 

dividend are both normalized. 



Arithmetic 5-17 

• The number of subtractions during the calculation of any digit in the quotient is always 

nine or less. Again, this is true because the divisor is normalized and its first digit is always 

non-zero . 

• At times during the algorithm, it is necessary to left-shift the mantissa of Ar2 (the mantissa 

at this point is the remainder). When shifting the remainder to the left (multiplying it by 

10), you are shifting the first digit out of Ar2. If this digit is zero, this is not a problem. But, 

if the digit is non-zero, you can't ignore it during subtractions of the divisor. This in effect 

means that you are dealing with a 13-digit dividend! Since the machine instructions deal 

in 12-digit arithmetic, it is necessary that the algorithm handle the thirteenth. 

The FDV Instruction 

The FDV instruction provided by the processor is the primary tool used to implement the 

algorithm in assembly language. The instruction works by accomplishing the equivalent of 

automatically repeated subtractions of Arl (the divisor) from Ar2 (the dividend) until Ar2 is 

smaller than Arl. The instruction actually adds the divisor to the ten's complement of the 

dividend until an overflow occurs. However, this is equivalent to subtracting until an "under

flow" occurs. It is easier to understand the procedure if the discussion is in terms of "subtrac-

tions", but it should be kept in mind that what is iE~ally occurring with the instruction is repeated 

"complement-additions" until overflow. This process is what is meant by the term "subtrac-

tions until overflow". 

The FDV instruction returns the number of subtractions without overflowing as a binary 

number in the B register (bits 0-3). The remaining bits in the B register (4-15) are cleared. l In 

effect, then B contains the next digit in the quotient. 

This process is repeated for the number of digits to be calculated. After each FDV execution, 

the result of the overflow subtraction is left in Ar2. Since Ar2 does not contain the remainder, it 

is necessary to patch Ar2 so that it will contain the proper value for the next calculation. To get 

the proper value it is necessary to add Arl back into Ar2 to undo the results of the last 

subtraction (which caused the overflow). 2 

There is one case, however, where Ar2 does not need to be patched up, and this is when the 

remainder (Ar2) is zero. This situation implies not only that no patching up is needed, but also 

that the quotient is complete - no further digits need be calculated. It should be noted that the 

number of subtractions (which has been stored in the B register) is one count too small, thus B 

has to be incremented in this case so that it can be used as the last digit in the quotient. 

1 Since bits 4-15 of the register are cleared during execution of the FDV instruction, you can't accumulate quotient digits there. 
After each digit is calculated, it is necessary that you store the digit as part of a quotient which you keep stored in another 
location. 

2 This is equivalent to complementing Ar2, adding in Ar1, then complementing Ar2 again. 



5-18 Arithmetic 

Thirteen-Digit Dividends 

The largest difficulty in the algorithm is attempting to deal with those instances where the 

dividend has thirteen digits. This situation arises when you shift the remainder left a place. The 

most significant digit must be retained when it is non-zero so that the subtractions are sub

tracted from the proper amount. 

This shifting can be accomplished with the ML Y instruction. With the way that the ML Y instruc

tion operates, the left-most digit (D1) ends up being shifted out of Ar2 into register A (in the 

lower 4 bits, 0-3). Thus, the thirteen-digit algorithm must accomodate the most significant digit 

residing in the A register and the twelve least significant digits in the Ar2 register. The use of 

FDV must now take this modified situation into account. 

When the FDV instruction is executed, Arl is subtracted from Ar2 until an overflow occurs. 

When this overflow occurs, it is necessary to decrement A and keep subtracting (without 

patching up Ar2). Each time an overflow occurs, A must be decremented until finally an 

overflow occurs when A is O. This can be handled very neatly within a small loop. 

Another aspect of dealing with thirteen-digit dividends is the count placed in B with each 

execution of FDV. Since each overflow is a "successful" subtraction in the sense that is part of 

a proper count of subtractions (at least until A is 0), then that subtraction must be counted, too. 

The difficulty with this is that FDV does not count this last (overflowing) subtraction. The 

solution obViously is to add 1 to the value in the B register each time FDV causes an overflow. 

However, with the last overflow, being the "real" overflow, the 1 shouldn't be added in, so 

after adding it in (during the loop), you have to subtract it back out again (after leaving the 

loop). To further complicate matters, if you have a zero remainder, you have to add it right 

back in again. 

For example, if there happened to be three uses of FDV for a certain quotient digit, you form 

the quotient digit as -

Q" ~ (8 + 1)\ 

value after 1st 

use of FDV 

+ (8+ 1)\ 

value after 2nd 

use of FDV 

value after final 

use of FDV 

If the same general situation produced a zero remainder, then the quotient digit is formed as -

Q"~ (8+ 1)\ 
value after 1st 

use of FDV 

+ (8+ 1~ 

value after 2nd 

use of FDV 

+ (8 + 1)\ 

value after final 

use of FDV 



Arithmetic 5-19 

Floating-Point Division Example 

An example of a 13-digit division routine follows. The rules which it implements are -

1. Always increment the value returned in B after an FDV operation. 

2. After incrementing B, check the contents of A. If non-zero, loop immediately, performing 

no other tests or activities. 

3. When a quotient digit has been found (Le., A is zero), check to see if the remainder is O. 

If so, exit the division loop. Save the last digit found as part of the answer. 

4. If the remainder is not 0, decrement the value of the last quotient digit found and save it 

as part of the answer. Then add back the divisor to the remainder. 

The example does not include routines for testing and handling -

• signs 

• division by zero 

• exponents 

• overflow 

• rounding 

These have to be handled in a real program before or after the division algorithm itself (as 

appropriate). 

Some useful symbols 

EOU fw-2+2 

SOURCE Quotient ptr: 
:=;Ci~jF:C:E Ii i;~ i t_c Cst4r-ft E"f--: 

SOURCE Within word ctr: 

Working sto~~ge for quotien 
Ec~rj G~t~c:t E·t-i1:. +1 
E~)~j G~i)C:t. E"r-t1:- +2 

ECU Cuot ent+3 
EC~U Ciuot e-nt+4 

for quotient ~Jrd 
i for quotient word 

for quotiefit ~Jrd 
for quotient word 

for quotient ~Jrd 1 
total digits (1-13) 
digit C0Jnter (1-4) 



5-20 Arithmetic 

I '=;OUF.~CE 
I ::;OUF.'CE LDA 

STA Quotient_ptr 
C:LF~ 4 

LIlA =13 
STA Digit counter 
LDA =D 

ISOURCE Next word: 
LDt: =4 

STB Within ~Jrd ctr 
I30URCE ! 

ISGJRCE Next digit: 
SBL 4 
:::;TB i)iJot i ent_pt t-., I 

Hr'~, .:::] i :.) i :::;.::,:,"-.. 3, l r·E:-':i:j~) 
OF DIVISION LOOP 

I r-i == 0:1:::- e c; f" =='.~ t-· l~) t E- r-' f(~ ~ r-~·:i tic: 1'-1 , Z:::' r-' (:: 
Cc~plement the dividend 

j Initializes digit count to 13 
Initialize FDV repetition counter ~~ 

WORK3 ON NEXT SET OF 4 BCD DIGITS 

I Initialize intermediate counter 

~JRKS ON NEXT QUOTIENT DIGIT 
C.l E::ir-' 1 :)t,IJE" r· [) i 1:.:::- ()f' ~B 

! C:1 E'·::J.r-· fP::',:·:.=., :.:;:.t.Ci(".::t:;!==' i}.ic:r":j 

I::;OUF.~CE 

I :::;OU~?CE 
I:::;OURCE 
I:=;OUF.:CE 
I:::OURCE 
I::::OUF.:CE 
I::::OURCE 

I QUOTIENT CALCULATION 

I::;OURCE I 

I:::C(iRCE 
I:30URCE 
I SOURCE 
I:::;OURCE 

ADE: =1 

STB Quotient ptr,: 

LIlA Ar·21 
lOR At-·22 
I OF.: Hy·23 

! Ar2=Ar2+Arl lHltil overflow 
~ Merge n~~ digit with rest of answer 

Increment the new digit 
~:;.3.f·}E· tt-~i=. :=.t.:it~· :)f" t.t-iE' ·:in:=·l.,.lE'r· 

Decrement and loop if non-zero 

shift it left, and then find new FDV repetition (0)nt. 
ISOURCE I 

ISOURCE 
I:30UF.:CE 
I::::OUPC:E 

I::::OUPCE 
I:::OUPCE 
I:::OUPCE 

I~=:Cllj~:C:E ! 

U'1Y 
F>::A 
ADE: =-1 
STB QuotiEfit ptr,I 
C:rJi\1 
LIlA =0 

ADA =-'3 

! I~E'C C'H!t) 1 E-rliE't-it t-·~·fl~:i. i r-lc1E'r-' (Ar-'2) 
Add b=::tck in di· .... i:;::.':::r (Ar-·i::-

! Undo the increment 
::;.:i 1·)e t ~-tE i: C:f-'~-'E'C t :::':j t)::ir-·t i .3.1 .::t(~:::.j.l.ie t-· 

I Complement the dividend 
I Cie.:::r A 

Shift dividend left 
I Determine next repetition count 

I~::Ci}jF:C:E ~ I~r:)tt!:effi c!t' l(i!)F) rfJ.3.ir-it~·r-I.::t.f-ICE· f!)11(tl.~J=. 

I ::;C1L~ ~:C: E 

I:::;OUPCE i 

n::z Digit_counter 
Ji'P ~,~ it. h in , .. .Iot-·d 
J!'1F' Done 

ISOURCE Within ~~rd: 

I=::;OURCE 
I ::::OUF.:C:E 
I:::;OURCE 
I::;OUr;::CE i 

DSZ Within word ctr 
Jl'1F' t·~e·::<t d i q it 
1::;2 G~~.AC:t. i f'nt t)t r-' 
.Jt21F' t·~E:·>::t. I)JOY"-;j 

I:::OURCE Zet-·,::. t-·efi"l·=::t i nder--·: 
SOURCE 
::::OURCE 
SOURCE 

DSZ Digit_counter 
JNF' ::::h i ft 
.. n'w Done 

I Decrement number of digits 

I DECREMENT POSITION WITHIN WORD 

ZERO REMAINDER BEFORE 13th DIGIT? 



::;CU!?CE 
SOU?CE 
SOU~~CE 

·:~DL. .. 

De saved as new digit .~ 

:::t( .-i ~ ,''''':; +- ,":::I' ' .. .;:. 

STORE AWAY THE RESULT 
Store last ~iai~~ 0~ quotient 

Lower 4 bits only ,.~ ---- Q~Jtjent ~ 

,~ ussj elswehere for other thi 
is used elsMehETe fc~ other things 
Add in ne,; di,;it (old di]it 12 ; ... '35 (1) 

::;.3.' . ..'e the c ,:::rr--ect.ed quot i ent 
I::;C~~j~~C:E ! F'r-'C:t:E'E-:j t.() .::t:jj;_~:::.t ~.' ~r:::=~r-1E';-~t. .:i::cc=r-,:ji r-j:;11 =) 

ISOURCE Continue: i Compute sign, etc. 

Arithmetic Utilities 

Arithmetic 5-21 

Now that you have been introduced to the complexities of BCD arithmetic and floating-point 

operations, this is the time to present an easier way of accomplishing these operations - the 

arithmetic utilities. 

In order to make BASIC a useful programming tool, the operating system already contains a 

number of floating-point routines. Recognizing that BCD and floating-point arithmetic can be a 

difficult and laborious task to implement, the assembly language provides a utility by which the 

operating system mathematical routines can be accessed. There are also utilities for the conver

sion of numerical data types. 

UTILITY: ReI math 

The Rei_math utility provides access to all of the system floating point routines and functions. 

General Procedure: The utility is told the execution address of the desired routine or function 

and is also told the number of parameters. The parameters are floating-point values stored in 

full-precision form (4 words each). The result is a full-precision value. 



5-22 Arithmetic 

Special Requirements: 

• If one operand is passed to the utility, the address of the operand is stored in register 

Oper_1. 

• If two operands are passed to the utility, the address of the first operand is stored in 

register Oper _1 (as above), and the address of the second operand is stored in register 

Oper_2. 

• The address where the result should be stored must be stored in the register Result. 

• All operands and the result are full-precision values and require 4 words each. 

• Values passed must make sense for the routine or function being called (e.g., Oper_2 

should not point to a value of 0 when calling the division routine), or else an error results. 

• The storage areas for the operands and the result must reside either in the ICOM region or 

in the Base_page register. Specifically, they cannot be specified as Ar1 or Ar2. 

Calling Procedure: 

1. Assure that Oper _1, Oper _2, and Result contain the proper addresses as above. 

2. Load register A with the number of parameters required for the routine or function (see 

the table on next page). Note that some routines require this number to be com

plemented. 

3. Load register B with the execution address of the routine or function (see the table on 

the next page). 

4. Call the utility. 

Exit Conditions: 

• The result is placed into the 4 words starting at the address pointed to by the Result 

register. 

• Register A contains 0 if no error is encountered during execution of the utility. 

• Register A contains the error number should an error be encountered during execution of 

the utility. 



_ _ • _ .. T • • _ •• 

Hel math UtIlIty 
Routines, Addresses, 

and Parameters2 

Operands 
(LDA = ) 

Addition (Oper 1 + Oper 2) 
Subtraction (Oper 1 - Oper 2) 
Multiplication (Oper 1 * Oper 2) 
Division (Oper 1 /Oper 2) -
Exponentiation-(Oper 1 A"Oper 2) 
Oper 1 DIV Oper 2 - -
Oper-1 MOD Oper 2 
SQR- -
INT 
FRACT 
EXP 
LOG 
LGT 
PROUND (Oper 1, Oper 2) 
DROUND (Oper-1, Oper-2) 
ABS --
SGN 
PI 
RND 
RES 
Typl 
SIN 
COS 
TAN 
ASN 
ACS 
ATN 
ERRLl 
ERRNl 
DECIMALl3 
IADR (Oper 1,Oper 2)3 
IMEM (Oper 1, Oper 2)3 
OCTAL3 - -
Oper 1 AND Oper 2 
Oper-1 OR Oper 2" 
Oper-1 EXOR Oper 2 
NOT- -
Oper 1 < Oper 2 
Oper-1 < = Oper 2 
Oper-1 < > Oper-2 
Oper-1 = Oper 2-
Oper-1> = Oper 2 
Oper-1 > Oper 2-
MAXTOper 1, (Jper 2) 
MIN (Oper~, Oper~) 

Octal 
Execution 

Routine 

146721B 
146717B 
147037B 
147155B 
34276B 
33026B 
33157B 
31450B 
33071B 
33262B 
34173B 
34203B 
34263B 
32225B 
32247B 
33054B 
33651B 
36267B 
33607B 
36307B 

6753B 
34213B 
34224B 
34151B 
34235B 
34250B 
34161B 
61765B 
61753B 

162067B 
162230B 
162211B 
162146B 
32042B 
32057B 
32025B 
32071B 
32077B 
32105B 
32137B 
32127B 
32121B 
32113B 
33744B 
33704B 

Address 
(LDB = ) 

2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 

-2 
-2 

1 
1 
o 
o 
o 
1 
1 
1 
1 
1 
1 
1 
o 
o 
1 

-2 
-2 

1 
2 
2 
2 
1 
2 
2 
2 
2 
2 
2 

-2 
-2 

Table 1. Routines, Addiesses, and Paiameteis fOi ReI_Math Utilit-y 

1 These functions return an integer value which is stored in the second word of the four words reserved by Result. 

Arithmetic 5-23 

2 See the System 45 Operating and Programming manual for a detailed explanation of the function of each of these routines. 

3 See the appropriate section of this manual for a detailed explanation of the function of each of these routines. 



5-24 Arithmetic 

By way of example, suppose you have established two full-precision values which need to be 

multiplied. The call to the Rei_math utility to accomplish the multiplication would look similar 

to this-

I ::;OUPCE Oper-·and_l: B::S 4 
I ::;CUPCE Ojo:>er-.3.nd 2: B::S 4 
I SOUPCE F't-·OdtK t: B::S 4 

I::;OURCE 
ISOUPCE 
I::;OUPCE 
I::;OUPCE 
I::;OUPCE 
I::;OUPCE 
I::;OUPCE 
I::;OtIPCE 
I ::;Ctl~:CE 
ISOUPCE 

LIlA =OpETand_ 2 
::;TA OPET" 2 
LIlA =F't-·cduc t 
STA ~:est41 t 
LIlA ---, 

LDB =147037B 
']St'l Pe 1 rl~3. t h 
::;ZA *+2 
.1::;1'1 En--m-- e::{ it 

! Call the multiply routine 

I Test for any errors 
~ Er- r--C!t-· E'rlC C!'-~l-It. E·t-·E·gj , :::.(1 1 e·:i i·)E· 

Note in the last line of the example the call to the Error_exit utility is made when register A is 

not zero. When this occurs, A contains the error number of the error encountered - ready

made for calling the Error_exit utility. 

UTILITY: ReI to int 

The Rei_to _int utility provides for the conversion of a full-precision value into an integer. 

General Procedure: The utility is given the address of the location of the full-precision value 

and the address of the location where the integer is to be stored. 

Special Requirements: The full-precision value must be within the range of integers 

(- 32 768 to + 32 767). 

Calling Procedure: 

1. Store the address of the full-precision value into register Oper_1. 

2. Store the address where the integer is to be stored into register Result. 

3. Call the utility. 



Arithmetic 5-25 

Exit Conditions: The overflow bit in the processor is set if the result is outside the range of 

integers. 

An example-

ISOURCE Ope~and: b~~ ~ 

::: ~ N C~PE·~-· 

L.Uh =l:/.3.1 ;¥~:::. 

UTILITY: ReI to sho 

et error number to 20 
and take error exit 

The ReI to sho utility provides for the conversion of a full-precision value into a short

precision one. 

General Procedure: The utility is given the address of the location of the full-precision value 

and the address of the location where the short-precision value is to be stored. 

Special Requirements: A short-precision value requires 2 words to be stored. 

Calling Procedure: 

1. Store the address of the full-precision value into register Oper_1. 

2. Store the address of the storage area for the short-precision value into register Result. 

3. Call the utility. 

Exit Conditions: The overflow bit in the processor is set if the result is outside the range of 

integers. 



5-26 Arithmetic 

An example-

I SOUPCE ! ~·JOt--k i n9 :=::l:.m-·.:::s.(je 
I SOUPCE Opet"·.:::s.nc!: B:::;::; 4 C:C~tT1:..3.. i r-~==· 'ft~ 11 -F)r-'E'C i:=;. i c:r~ I·}a 1 t.JE' 

Cont.3. ins she,r"·t -pt--ec is ion 1 • .-'.3. 1 UE' 

I:::;OUPCE 
ISOUPCE 
ISCdJPCE 
I:30UF.:CE 
ISOUPCE 

UTILITY: Int to rei 

LIlA =OpE-t"--:::s.nd 
STA Opet"- 1 
LIlA ='',''a 1 ue 
STA PE'sult-
JSt'1 Pel to sho Convert- full to short-

The I nt_to _reI utility provides for the conversion of an integer into a full-precision value. 

General Procedure: The utility is given the address of the location of the integer and the 

address where the full-precision value is to be stored. 

Calling Procedure: 

1. Store the address of the integer into register Oper_1. 

2. Store the address of the storage area for the full-precision value into register Result. 

3. Call the utility. 

Exit Conditions: The overflow bit in the processor is set if the result is outside the range of 

integers. 

An example-

ISOUF-:CE ! ~·jor-k; f"i':;1 

ISOUPCE Op.::r.:::s.nd: 
ISOUPCE \'a 1 t,je: 

I=::;OUPCE 
I::;OUPCE 
I::;OUPCE 
I::;OUF.:CE 
ISCiUF:CE 

:=:- t- 0 t"·.3. ';iE' 
BSS 
B:3:::; 4 

! Con~:::s.ins an integer 
! Cont.:::s. in:=:- fu 1 1 -pt"-ec i :::- i on '-.'a 1 UE-

LIlA =Opet"·.:::s.nd 
:::;TA Oper-- 1 
LIlA ="/a llJe 
::;TA PE:::-U 1 t 
-T:;r'l Int- to r-E'l ! Con'-.-'et"·t intE';lE(- to t--ea 1 



Arithmetic 5-27 

UTILITY: Sho to reI 

The Sho to reI utility provides for the conversion of a short-precision value into a full

precision one. 

General Procedure: The utility is given the address of the location of the short-precision 

value and the address of where the full-precision value is to be stored. 

Calling Procedure: 

1. Store the address of the short-precision value into register Oper_1. 

2. Store the address of the storage area for the full-precision value into register Result. 

3. Call the utility. 

Exit Conditions: No special exit conditions. 

An example-

I~=;OUPCE !~'Jod:: i n';l st-or--3.QE" 
I :=;C1iJ.~:C:E Cir:H=·r .. ·.::u·-p;j·: E:::;::; 2: C:c;~~~t.~:i i rr=:- :::-}-iC;r·--t :-t::f~'E'C i :=. i c;r~ i.).3.. ~ CiE-

ISOUi?CE 
ISOUPCE 
ISOUF:CE 
ISOUPCE 

LIlA =Oper-·.3.nd 
STR o PE" r- 1 
LIlR ="/3..i'UE
STA PE·St~ 1 t. 



5- 28 Arith metic 



Chapter 6 
Communication 

Between BASIC and 
Assembly Language 

Summary: This chapter discusses the techniques used to pass information to and from 

assembly language programs. Calling assembly language routines and passing paramet

ers are presented, along with issues involved in using common. Applicable utilities are 

also discussed. 

Once assembly language programs have been written, they are executed using the ICALL 

statement. This statement is very similar to BASIC's CALL statement for subroutines. In fact, 

the function it performs is nearly identical in effect - the only difference is that the target 

subroutine has been written in assembly language instead of in BASIC. The ICALL statement 

also provides a means to pass data between BASIC and assembly programs through its argu

ment list. Data can also be passed through common. 

The ICALL Statement 
There are two ways to execute an assembly language routine. One way is as an interrupt service 

routine when an interrupt occurs on the select code to which the service routine has been 

linked. This technique is discussed in Chapter 7. The other way is through executing an ICALL 

statement, either in a BASIC program or from the keyboard. 

The syntax of the statement is -

I CALL {routine name} [ ( {argument} [, {argument} [, ... J J ) J 

{routine name} is the name of the assembly language routine to be executed. {argument} is a 

data item that has the same characteristics as an argument in BASIC's CALL statement - there 

may be constants, variables, or expressions. (How these items correspond to instructions in the 

assembly language will be discussed shortly.) 

6-1 



6-2 Communication Between BASIC and Assembly Language 

By way of example, suppose that you have an ICALL that is being used to call a sort routine 

and the routine was written in such a way as to require two arguments be passed to it - an 

array to be sorted and the number of elements to be sorted (in that order). Then the following 

would be valid calls to that routine -

ICALL Sort(Test(*>,100> 
lLHLL Sort(Test$(*),Number) 
IC:ALL ~=;c:r-·t(E:/.3.1iJE·(*>,E:.)E·r-~t:::. I!Ii~/ 2) 

Upon executing the ICALL statement, execution in a program transfers to the routine named. 

Upon executing a RET 1 instruction from the main assembly language program, execution 

returns to the BASIC statement which follows the ICALL. This is identical in effect to the CALL 

statement in BASIC. 

In executing the statement from the keyboard, the routine named is executed just as if it were 

used in a program. Upon return from the routine, control is passed back to the keyboard. This is 

unlike BASIC's CALL statement, which cannot be executed from the keyboard. 

To execute a routine, whether it be from a program or from the keyboard, its object code must 

currently reside in the ICOM region. 

Corresponding Assembly Language Statements 
When the ICALL is executed, it references a routine in the object code. When the module 

containing the routine was assembled, it declared that routine name as a "subroutine" entry 

point. ("Subroutine" and "routine" are synonymous in this context.) This is done with a SUB 

pseudo-instruction and a label. 

When a SUB pseudo-instruction appears in the source code, it is a signal to the assembler that a 

subroutine entry point follows. Then the first machine instruction must have a label and that 

label becomes the routine name. If the label is missing, an error results (assembly-time "SQ" 

error). 

For example, in the above examples of ICALL, the Sort routine could have been defined by the 

sequence -

ISOURCE Sc~t: LDA info 

except that there are arguments involved. (That exception is discussed in a moment.) The joint 

use of these two statements results in the label "Sort" being identified as a routine name, 

referenceable with an ICALL statement. 



Communication Between BASIC and Assembly Language 6-3 

In general, no machine instructions or code-generating pseudo-instructions can be inserted 

between a SUB pseudo-instruction and the instruction containing the routine name. An excep

tion to this exists when arguments are involved in a call. 

Arguments 
When a value is placed into an ICALL statement to be sent down to an assembly language 

routine, that value is called an "argument" {like the argument of a mathematical function}. The 

corresponding structure on the assembly language side is called a "parameter". A parameter 

"declaration" is an assembly pseudo-instruction by which a parameter is created. 

When a routine is to be called with arguments, a parameter declaration pseudo-instruction is 

required for each one of the arguments. These declarations appear between the SUB pseudo

instruction and the instruction containing the routine name. 

Thus, when there is a call like -

ICALL Sort(Test$(+),100) 

the corresponding assembly language entry looks like -

To accommodate the two arguments, two parameter declarations had to appear between the 

SUB instruction and the entry point. (In this example, they were the STR and REL declara

tions.) These declarations may even have labels of their own -

The appearance of these labels does not affect the fact that "Sort" is the name of the routine. 



6-4 Communication Between BASIC and Assembly Language 

Parameter declarations have "types" just like variables. These types have to correspond to the 

"types" of the arguments used in the ICALL. The declarations and their types are -

I t'~T meaning integer 

PEL meaning full-precision 

~:;HU meaning short-precision 

STP meaning string 

F I L meaning a file number 

In the above example, STR had to be used as the first parameter declaration because the first 

argument was a string. Similarly, REL had to be the second declaration because the second 

argument was a numeric expression (which is always full-precision). 

When an array is to be passed, the declaration is followed by an "array identifier" - (*). Thus, 

when arrays are involved, the declarations appear as -

I t'~T (*) 

PEL(*> 
meaning an integer array 

meaning a full-precision array 

meaning a short-precision array 

meaning a string array 

File numbers are not passed in arrays, so that the declaration FIL cannot be followed by an 

array identifier. When passing file numbers to assembly language routines, the file number 

must be preceded by a "#" character. 

ICALL Sort (#File_number,Entries,Type) 

Failure to include the" #" before the file number or file number variable results in an error. 

Since the example call above uses a string array as the first argument, the corresponding 

assembly language parameter declaration uses an array identifier after STR. 

The parameter declarations are associated with the arguments in the ICALL in the same order. 

If the types do not match when the ICALL is executed, an error occurs (number 8). 

So, if the subroutine entry looks like -

SOURCE PEL 



Communication Between BASIC and Assembly Language 6-5 

then this !CALL executes properly -

but these ICALLs result in run-time errors -

ICAll Sort (Test$, 100) 
ICAll Scrt(Test(*),100) 

Each declaration reserves three words in the object code upon assembly. As a result of the 

ICALL execution, these words contain a descriptor of the corresponding argument. These 

descriptors are used by the utiiities for fetching and storing vaiues. Thus, in the Sort caning 

example above, when the ICALL is executed, a descriptor for Test$( *) is stored in the three 

words starting at Parameter _1. Similarly, a descriptor for the constant 100 is stored in the three 

words starting at Parameter _ 2. 

The types discussed here do not apply just to simple variables, arrays, and constants. They also 

apply to single elements of arrays and expressions. If you have a STR parameter declaration, 

for example, any of the following would be valid as arguments in the ICALL statement -

It is similar for numerical expressions. 

The number of arguments passed by an ICALL statement must be no more than the number of 

parameter declarations in the subroutine entry. There may be fewer, however. The actual 

number passed is stored in the word reserved by the SUB pseudo-instruction. 

Unlike the CALL statement in BASIC, the ICALL statement can be executed from the 

keyboard. In doing so, any variables used as arguments pass their current values to the routine. 



6-6 Communication Between BASIC and Assembly Language 

"Blind" Parameters 

With explicit parameter declarations, an error occurs if a different type of variable or expression 

is passed. In many cases, the error is desirable - you do not want different types of arguments 

corresponding to a single parameter declaration. But in other cases, the error might not be as 

desirable. Take the example of a sort. You might want the sort to have the capability of sorting 

any type of array. You have two choices in that case - you can make different routines, each 

with the appropriate declarations, or you can use a single entry point and the ANY parameter 

declaration. 

The ANY declaration -

is "blind" to the type of the corresponding argument in the ICALL statement. When used, it 

accepts any type of argument as valid - string, full-precision, short-precision, integer, file 

number, array. The descriptor for the argument is stored in the three words set aside, just as in 

the other declarations. 

Now, if your entry looks like -

I ::;OUFCE ::;UB 
ISOU~:E ANY 
ISOUPCE PEL 

then any of the following calls would be valid -

ICAll Sort(Test$(*>,100> 
IeAll Sc~t(Test(*)~100> 
ICAll Sort(Test$,100) 
IeAll Sort (Test, 100) 
TeAll Sort(#1,100) 

When using the ANY declaration, it becomes the responsibility of your assembly language 

routine to determine what is a valid parameter and what is not. You lose the automatic type

checking available with explicit declarations. Techniques for doing this are discussed in the 

next section. 



Communication Between BASIC and Assembly Language 6-7 

r,Dttinn Tnfnr1"Y1l::.tinn nn AW"nIlTYllnn+~ __ .. &&&:;s A&. _ •••• _La_aa _aa ~ "&~Uaa.~ Li;1J 

When an ICALL is executed with an argument, and the corresponding parameter is blind, then 

it may be necessary for the purposes of your routine to know what type of argument is actually 

passed. This need can be present even when one of the explicit type declarations is used, since 

an expression or constant can be passed as easily as a variable. 

A utility has been provided for obtaining this information, along with other "vital statistics" 

which may be useful to know during the execution of your routine. Before describing the utility 

itself, let's look at the information which it can provide you about an argument. 

The information returned by the utility is stored in an area which you set aside for it. The size of 

the area can vary from 3 words to 39. The information, when returned, is in the following 

form-

Word # Description 

o Argument type (see description later) 
1 Number of dimensions (0 for non-arrays) 
2 Size, in number of bytes (dimensioned length, for strings) 

I 
(for arrays only:) 

3 Total number of elements in array 
4 Two's complement of the lower bound of first dimension 
5 Absolute size of first dimension (upper bound - lower + 1) 
6 Two's complement of the lower bound of second dimension (if any) 
7 Absolute size of second dimension 
8 Two's complement of the lower bound of third dimension (if any) 
9 Absolute size of third dimension 
10 Two's complement of the lower bound of fourth dimension (if any) 
11 Absolute size of fourth dimension 
12 Two's complement of the lower bound of fifth dimension (if any) 
13 Absolute size of fifth dimension 
14 Two's complement of the lower bound of sixth dimension (if any) 
15 Absolute size of sixth dimension 
16 Element offset (from the first element) 
17 Size, in words, of each element (dimensioned length, for strings) 

(dependent upon memory size of your machine:) 

18-20 
21-23 
24-26 
27-29 
30-32 
33-35 
36-38 

Pointer parameters 
Pointer parameters (only for machines over 64K bytes) 
Pointer parameters (only for machines over 128K bytes) 
Pointer parameters (only for machines over 192K bytes) 
Pointer parameters (only for machines over 256K bytes) 

I ~~:~::~ ~:~:::::~: ~~~:~ :~~ ~:~~;~:: ~~:: ;~~~ ~~:::l 



6-8 Communication Between BASIC and Assembly Language 

The argument type returned in word 0 is as follows -

Value 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Type 

String expression 
Full-precision expression 
Short-precision expression 
Integer expression 
String simple variable 
Full-precision simple variable 
Short-precision simple variable 
Integer simple variable 
String array element 
Full-precision array element 
Short-precision array element 
Integer array element 
String array 
Full-precision array 
Short-precision array 
Integer array 
File number 

The size, in bytes, will be one of the following values -

For an integer 

Short-precision 

Full-precision 

String variables 

String expressions 

2 

4 

8 

dimensioned length 

actual length 

The utility which retrieves all this information is called "Get_info". 

UTILITY: Get info 

General Procedure: The utility is given the address where the information is to be returned 

and the address of the parameter declaration. It returns with the information on the argument 

in the ICALL corresponding to the parameter declaration. 



Communication Between BASIC and Assembly Language 6-9 

Speciai Requirements: 

• The location where it is to store the information must be adequate to hold all that may be 

returned. For non-arrays, 3 words will suffice. For arrays, up to 39 words may be required 

(as above). If you are writing a general routine, it may be wise to play it safe by setting 

aside a full 39 words . 

• An argument must have been passed by the ICALL (in the case of parameters) or a 

corresponding BASIC COM declaration must exist (in the case of common declarations). 1 

Calling Procedure: 

1. Load register A with the address of the storage area for the information to be returned. 

2. Load register B with the address of the parameter declaration corresponding to the 

desired argument. 

3. Call the utility. 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the JSM. Since there are no error exits, and there is no requirement that there be as 

many arguments as there are parameter declarations, an argument must actually have been 

passed by the ICALL in order for the utility to work correctly. 

Following up on the example in the previous section, suppose the first thing that the Sort 

routine does is check to see if the first parameter passed is an array. Then, by using the 

Get_info utility, it is possible to have the instructions look as follows -

Jt'l? Er-'r-'or-' ~::; 

ADA =-12 
:::;AP *+2 

Get the a0~ument/s type 
Is it a file number? 

Yes, indicate error 8 

An .3ff',:::C') (t.::--,pe:::. 12-15)':;
r'!u" indi c-:::ct",· er-'r-'cr 8 

1 This and the following utilities are also used to access variables in the common area, An explanation of BASIC COM 
declaration is found in the section of this chapter entitled "Using Common". 



6-10 Communication Between BASIC and Assembly Language 

The array information returned by the Get_info utility is used for accessing elements in arrays 

passed as arguments. It is used by the element-retrieval utilities described in a later section of 

this chapter. Once retrieved, the information is usable any number of times for accessing the 

array associated with it. It is not necessary to retrieve the information every time you access an 

array, as long as you have not altered the information (except the pointer) between accesses. 

The seventeenth word of the array information (word 16 on the chart) is reserved to hold the 

offset from the start of the array of the element to be accessed. Therefore, it is permissible 

(indeed, it is necessary) to alter the contents of that location to indicate which element in the 

array you wish to retrieve. None of the other words returned by the utility should be changed. 

An example of how to calculate array offsets is given here. It is convenient to give labels to 

some of the words of information returned by the Get_info utility. 

ISOU~:CE 

I::;CUFCE 

I ':;CiU~:CE 
I::;CiUPCE 

,-•• _. ____ a 

.:. ;".l_il '.:ii.=it:' III 

LC'i.~.iE·r' 1 : 
::; i ZE'l : 

ISCUPCE Size4: ESS 

In addition, space is reserved for up to six array subscript indices. 

:::CitJ~:C:E r-i:JE'::'::::f: 
~:;Citl~~C:E (!~jE'::<5: 



Communication Between BASIC and Assembly Language 6-11 

For a six-dimensional array, the computation of the element offset (word 16 returned by 

"Get_info") is -

I':;OUFCE 
I::;CUPCE ADA LOi .• .iET3 

LDJ:; ::; i ze4 

ADA I nde::·::5 
ADA LOl.'.iET"::; 

LDB '3ize6 

ADA I nde::·::6 

and higher dimensions. 

For 3- and higher dimensions. 

For A_ and higher dimEfisions. 

Fer r dimensions. 

For an array with a smaller number of dimensions, the operations involving the higher sub

scripts can be omitted. 

Note that the indices in this example were not checked against the array bounds. Following is 

an example of a program segment which checks the index against the upper and lower bounds 

of a one-dimensional array: 

L.UH 
T._ -= _ ... -: 
l r ~:.Ji:: .. :-:.1 

There is no need to check for overflow, since the element offset is never greater than 32 767. 

When making multiple accesses with the same information, caution should be taken if an array 

is involved. The information returned by Get_info is a copy of the system information and as 

such remains valid for as long as the !CALL lasts. However, as soon as an !CALL completes, 

the system has an opportunity to change its own information (via REDIM or subprogram 

recursion). This renders the original data returned by Get_info invalid. 



6-12 Communication Between BASIC and Assembly Language 

Thus, while it is sufficient to call Get_info only once during an ICALL (independent of the 

number of times the information is used), it is advisable to use Get_info during each ICALL 

rather than attempting to retain the information from one ICALL to the next. 

Retrieving the Value of an Argument 
At some point during execution of your assembly language routine, you may want to retrieve 

the value of an argument so that you can use it in your processing. By doing so, you accomplish 

one of the methods of communicating with assembly language - namely, passing a value to 

the assembly language routine from BASIC. 

There are a number of utilities for this purpose. The one to use is dependent upon the type of 

argument passed. The utilities available are -

Name 

Get value 

Get element 

Get_bytes 

Get_ elem _bytes 

Used For 

Simple variables, expressions, individual elements 
of arrays passed as arguments, and file numbers 

Elements (from arrays passed as arguments) 

Substrings of strings passed as arguments either as 
simple string variables, expressions, or individual 
elements of arrays passed as arguments 

Substrings of individual elements (from string 
arrays passed as arguments) 

Example Parameters 

Alpha,2*SIN(2),A$, "ABC", 
B$(10),Array(2,3),#5 

Array( * ),2$( *) 

"DEF" ,String$,B$&C$, 
2$(2,3 ),2$[5,6] 

How each of these utilities is used is described in the immediately following pages. 

UTILITY: Get value 

General Procedure: The utility is given the address of the parameter declaration and the 

address where the value of the argument is to be stored. It returns with that value stored in the 

indicated area. It works on simple variables, expressions, strings, and individual elements of 

arrays (passed as arguments) of any type. 



Communication Between BASIC and Assembly Language 6-13 

Special Requirements: 

• The storage area set aside for the value must be large enough to hold the value. The size 

of the storage area must be-

for a file number 

for an integer value 

for a short-precision value 

for a full-precision value 

for a string 

1 word 

1 word 

2 words 

4 words 

maximum length in bytes -:- 2 + 1 word 

(+ 1 additional word if the maximum 

string length is odd) 

• An argument must have been passed by the ICALL (in the case of parameters) or a 

corresponding BASIC COM declaration must exist (in the case of common declarations) . 

• The storage area must lie within the ICOM region. 

Caiiing Procedure: 

1. Load register A with the address of the storage area for the value. 

2. Load register B with the address of the parameter declaration. 

3. Call the utility. 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the call. 

In the case that it is used to pass a string value, the Get_value utility returns the entire 

dimensioned string (which includes all characters between the current length and the dimen

sioned length of the string). 

Here is an example call to the utility, retrieving information from a full-precision argument-

'-'"-'"-' .:]. 

::_ . ___ . _.:.. _._ c 

r-·::i.f "·:::i.np::":." t:"f' I: 



6-14 Communication Between BASIC and Assembly Language 

UTILITY: Get element 

General Procedure: This is similar to the "Get_value" utility. This utility retrieves a value 

from an element of an array passed as an argument. It works on arrays of any type. 

Special Requirements: 

• The storage area set aside for the value must be large enough to hold the value. The size 

of the storage area must be -

for an integer 

for a short-precision value 

for a full-precision value 

for a string 

1 word 

2 words 

4 words 

maximum length in bytes-:-2 + 1 word 

(+ 1 additional word if the maximum 

string length is odd) 

• The array information must be retrieved with the "Get_info" utility before calling this 

utility. 

• The offset of the element in the array must be correct in the array information (word 16 

returned by "Get_info"). It should be remembered that the offset of the element is 

dependent upon the number of dimensions in the array and the length of each. A calcula

tion may be necessary to arrive at the offset when accessing multiple-dimension arrays. 

The offset is in terms of number of elements. 1 

• The storage area must lie within the ICOM region. 

Calling Procedure: 

1. Store the element offset within the array information (word 16 returned by "Get-info"). 

2. Load register A with the address of the storage area for the value. 

3. Load register B with the address of word 0 of the information returned by the "Get_ 

info" utility (see description of that utility). 

4. Call the utility. 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the call. 

1 See the description of calculating array offsets under the "Get_info" utility. 



Communication Between BASIC and Assembly Language 6-15 

Here is an example call, retrieving the third element (relative element 2) of an integer array and 

placing it into Value -

UTILITY: Get_bytes 

i0Fn+1~ Element Offset 

LIlA ::::Hr-·r-·,3.:) i ~-~f'::::: 
~ T!L: =F~.3.(··.::tf{~E·t. E"r-' 

~et element offset 

General Procedure: This is similar to the "Get_value" utility. This utility retrieves a substring 

of a string passed as an argument, having been given the starting byte and the number of bytes 

to be retrieved. 

Special Requirements: 

• The storage area set aside for the substring must be large enough to hold all of the 

substring. This includes not only the string itself, but also two extra words. Remember, a 

word holds two characters. 

• A string must have been passed by the ICALL for the utility to work properly. 

• The storage area must lie within the ICOM region. 

Calling Procedure: 

1. Store the number of the starting byte of the substring desired into the first word of the 

storage area set aside for the substring. (Note that bytes a and 1 are the length word of 

the string.) 

2. Store the number of bytes in the substring into the second word of the storage area. 

3. Load register A with the address of the storage area. 

4. Load register B with the address of the parameter declaration. 

5. Call the utility. 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the call. The substring is returned starting with the third word of the storage area. 

(Note: Since the second word contains the length of the substring, you have a string data 

structure starting with the second word!) 



6-16 Communication Between BASIC and Assembly Language 

For example-

In this example, Value is the storage area. Since 2 has already been generated and stored in the 

first word, and 10 in the second, the first 10 bytes of the string would be transferred. Of course, 

the original string must contain at least 10 characters - or the bytes which are returned may be 

nonsense. Why was the value 2 stored as the byte number? Because bytes in a string are 

numbered starting with 0, and bytes 0 and 1 contain the length of the string (see "Data 

Structures" in Chapter 3). 

UTILITY: Get_elem_bytes 

General Procedure: This is a combination of the "Get_element" and "Get_bytes" utilities. 

This utility retrieves a substring of an element of a string array passed as an argument. The 

utility is given the starting byte and the number of bytes to be retrieved. 

Special Requirements: 

• The storage area set aside for the substring must be large enough to hold all of it. This 

includes not only the string itself, but also two extra words. Remember, a word holds two 

characters. 

• The array information must be retrieved with the "Get_info" utility before calling this 

utility. 

• The offset of the element in the array must be correct in the array information (word 16 

returned by "Get_info"). It should be remembered that the offset of the element is 

dependent upon the number of dimensions in the array and the length of each. A calcula

tion may be necessary to arrive at the offset when accessing multiple-dimension arrays. 

The offset is in terms of number of elements. 1 

• The storage area must lie within the ICOM region. 

1 See the description of calculating array offsets under the "Get_info" utility. 



Communication Between BASIC and Assembly Language 6-17 

Calling Procedure: 

1. Store the number of the starting byte of the substring desired into the first word of the 

storage area set aside for the substring. (Note that bytes 0 and 1 are the length word of 

the string. ) 

2. Store the number of bytes in the substring into the second word of the storage area. 

3. Store the offset within the array information. 

4. Load register A with the address of the storage area for the value. 

5. Load register B with the address of word 0 of the information returned by the "Get_ 

info" utility (see description of that utility). 

6. Call the utility. 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the call. The substring is returned starting with the third word of the storage area. 

(Note: since the second word contains the length of the substring, you have a string data 

structure starting with the second word!) 

For example-

ISOURCE IS3 5 

c~u Array info+16 ! Element WT-_~ 

I Set element offset to 2 

23M ~7 e em bytes 

In this example, Value is the storage area. Since 2 has already been generated and stored in the 

first word, and 10 in the second, the first 10 bytes of the string element are transferred. Of 

course, the string element must contain at least 10 characters - or the bytes which are re

turned may be nonsense. 



6-18 Communication Between BASIC and Assembly Language 

Changing the Value of an Argument 
At some point during the execution of your assembly language routine, you might want to 

accomplish the other half of this method of communication with BASIC - namely, changing 

the value of a BASIC variable which is used as an argument, in effect changing the value of a 

BASIC variable from the assembly language routine. 

As with retrieving a value, there are a number of utilities available for changing a value. The 

one to use is dependent upon the type of argument passed. The utilities available are -

Name Used For 

Put value Simple variables, strings and individual elements 
of arrays passed as arguments 

Put element Elements (from arrays passed as arguments) 

Put_bytes Substrings of strings passed as arguments 
either as simple variables or as individual 
elements of arrays passed as arguments. 

Put_ elem _bytes Substrings of elements (from string arrays 
passed as arguments) 

Example Parameters 

Alpha,A$,B$(lO),Array(2,3) 

Array( *),Z$(*) 

String $,Z$(2,3) 

Note that these utilities modify variables existing in the BASIC environment. They do not 

modify the length of the variables as dimensioned in BASIC. 

How each of these utilities is used is described in the immediately following pages. 

UTILITY: Put value 

General Procedure: The utility is given the address of the parameter declaration and the 

address of the value. It changes the value of the BASIC variable associated with the parameter. 

It works only on simple variables, expression strings, and individual elements of arrays (passed 

as arguments) of any type. 

Special Requirements: 

• The value must have the appropriate data structure for the data type of the argument (see 

"Data Structures" in Chapter 3) . 

• An actual argument must have been passed by the ICALL for the utility to work properly. 

Calling Procedure: 

1. Load register A with the address of the storage area of the value. 

2. Load register B with the address of the parameter declaration. 

3. Call the utility. 



Communication Between BASIC and Assembly Language 6-19 

Exit Conditions: There are no error exits from the utility_ It al\vays returns to the instruction 

following the call. 

Here is an example call to the utility, passing information to an integer argument-

~ .-. --: ::--.. -.;--
I ::~ l_~_i r=:: L t. 

ISaJRCE Parameter: INT 

Here is an additional example demonstrating string passing -

UTILITY: Put element 

General Procedure: This is similar to the "Put_value" utility. This utility changes the value 

of a single element in an array passed as an argument. It works on arrays of any type. 

Special Requirements: 

• The value must have the appropriate data structure for the data type of the argument (see 

"Data Structures" in Chapter 3). 

• The array information must be retrieved with the "Get_info" utility before calling this 

utility. 

• The offset of the element in the array must be correct in the array information for the array 

(word 16 returned by "Get_info"). It should be remembered that the relative element 

number of the element is dependent upon the number of dimensions in the array and the 

length of each. A calculation may be necessary to arrive at the offset when accessing 

multiple-dimension arrays. 

• The storage area must lie within the ICOM region. 



6-20 Communication Between BASIC and Assembly Language 

Calling Procedure: 

1. Store the element offset into the array information (word 16). 

2. Load register A with the address of the storage area for the value. 

3. Load register B with the address of word 0 of the information returned by the 

"Get_info" utility (see description of that utility). 

4. Call the utility. 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the call. 

Here is an example call, storing information from Value into element 0 of an integer array -

ISOURCE Value: BSS 
ISOURCE Array info:BSS ~; 

ISOURCE SUB 
I~:;Ci~JF:C:E F·.:it---:t.r(~E·tE·t"·: Ir~T (*) 

I~;:;ctIPCE 

I ~:;OUF~CE 

I:;:;OURCE 
I:;:;OURCE 

UTILITY : Put_bytes 

L.uH =An-·.a:=--,_ i nfc 
L:D:B =F.3.t-·.::t.rf~~"t E'f-' 

LIlA =0:1 

LI;:B =Ar-·r-.3..=) i rl'fc= 
-.r=;t·1 F't~t. E" 1 E'rfi~:-t"tt 

I Set offset tc 0 

General Procedure: This is similar to the "Put_value" utility. This utility changes the value 

of a substring which is part of a string variable or an individual element of a string array, having 

been given the starting byte and the number of bY.tes to be changed as well as the new 

characters. 



Communication Between BASIC and Assembly Language 6-21 

Special Requirments: 

• The bytes to be transferred are preceded by two words in the storage area. The two words 

contain the starting byte for the substring and the number of bytes to be transferred . 

• A string variable or an element of a string array must have been passed as an argument for 

the utility to work properly. 

Calling Procedure: 

1. Store the number of the starting byte of the substring to be changed into the first word of 

the storage area. (Note that bytes 0 and 1 are the length word of the string) 

2. Store the number of bytes in the substring into the second word of the storage area. 

3. Load register A with the address of the storage area. 

4. Load register B with the address of the parameter declaration. 

5. Call the utility. 

Exit Conditions: There are no error exits from the utility, so it always returns to the 

instruction following the call. 

For example -

_r-,_ . ___ . _..:.. __ _ 
-r- ·::if '.:::i.~!;i=:~: .. =::"r' 

In this example, Value is the storage area containing the string to be transferred. Since 2 has 

already been generated and stored in the first word, and 10 in the second, the first 10 bytes of 

the string are changed. Why was the value 2 stored as the byte number? Because bytes in a 

string are numbered starting with 0, and bytes 0 and 1 contain the length of the string (see 

"Data Structures" in Chapter 3). 



6-22 Communication Between BASIC and Assembly Language 

UTILITY: Put_ elem _bytes 

General Procedure: This is a combination of the "Put_element" and "Put_bytes" utilities. 

This utility changes a substring of an element in a string array which has been passed as an 

argument. The utility is given the starting byte and the number of bytes to be transferred. 

Special Requirements: 

• The bytes to be transferred are preceded by two words in the storage area. The two words 

contain the starting byte for the substring and the number of bytes to be transferred. 

• The array information for the array must be retrieved with the "Get_info" utility before 

calling this utility. 

• The offset of the element in the array must be correct in the array information for the array 

(word 16 returned by "Get_info"). It should be remembered that the offset of the 

element is dependent upon the number of dimensions in the array and the length of each. 

A calculation may be necessary to arrive at the offset when accessing multiple-dimension 

arrays. The offset is in terms of number of elements. 1 

Calling Procedure: 

1. Store the number of the starting byte of the substring to be changed into the first word of 

the storage area. (Note that bytes 0 and 1 are the length word of the string.) 

2. Store the number of bytes in the substring into the second word of the storage area. 

3. Store the element offset into the array information (word 16). 

4. Load register A with the address of the storage area for the string to be transferred. 

5. Load register B with the address of word 0 of the information returned by the 

"Get_info" utility (see description of that utility). 

6. Call the utility. 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the call. 

1 See the description of calculating array offsets under the "Get_info" utility. 



For example -

I::<tiPCE 
I::;OUPCE 

Communication Between BASIC and Assembly Language 6-23 

LIlA =2 

LIlA =\,'-3. 1 UE' 

LIIB =Ary·a.::..' info 
.E;l'j P,-rl:. eleri"! b:: .... t.e:::. 

I Set offset to 2 

In this example, Value is the storage area for the string to be transferred. Since 2 has already 

been generated and stored in the first word, and 10 in the second, the first 10 bytes of the string 

element are changed. It is the responsibility of the software (not shown) to assure that 10 

characters of valid data are stored in the remainder of the storage area. 

Using Common 
A faster way to pass information between BASIC and assembly language routines is through 

BASIC's common area. 

You may recall from subprograms in BASIC that if you have a COM statement in the main 

program, the locations named therein can be accessed by other BASIC subprograms and 

functions through their own COM statements. Though the subprograms may change the 

names, the locations are the same. The order of appearance in a COM statement is all

important. If a main program has the statement-

and a subprogram has the statement -

then X and A are the same storage location, Band Yare the same, and C and Z are the same. 



6-24 Communication Between BASIC and Assembly Language 

The same kind of operation is available in your assembly language routines with the COM 

pseudo-instruction -

As with the SUB pseudo-instruction, the COM only serves as a preface. It is followed by one or 

more parameter declarations of the same types as in the SUB -

A t·4 \' 

I t·~T 

PEL 
::;HCi 

::;TF.~ 

The FIL is not permitted, since there is no corresponding item within BASIC's COM syntax. 

Each pseudo-instruction used after an assembly language COM corresponds to an item in the 

COM declaration in the main BASIC program. Just as in a BASIC subprogram, the types must 

agree. 1 However, the ANY pseudo-instruction fulfills the same function here as it does with the 

SUB pseudo-instruction - to allow any type of item to be passed. 

As with SUB, arrays are designated by following the type with an array identifier - ("* >. If the 

type is ANY, the array identifier is not allowed. 

Each pseudo-instruction reserves three words of memory when assembled. And, like SUB, the 

words are used to contain a descriptor. The descriptors are used by the variable retrieval 

utilities for fetching and storing values in the common area. The same utilities used in fetching 

and storing argument values are used for the same purposes for values in the common area. 

These utilities are -

Get info 

Get value 

Get element 

Get_bytes 

Get elem _ bytes 

Put value 

Put element 

Put_bytes 

Put elem _bytes 

1 If the types do not correspond, an error results (number 198). This matching is checked only for the module containing the 
routine which was ICALLed. 



Communication Between BASIC and Assembly Language 6-25 

The utilities are called in the same fashion and are subject to the same restrictions. See the 

description of the utilities in the preceding sections of this chapter to determine how they are 

usedo 

The item pseudo-instructions used with the COM pseudo-instruction can have their own labels, 

just as the parameter declarations used with a SUB may have. And just as in a BASIC subprog

ram, they need not have the same names as were given the corresponding items in BASIC. For 

example, suppose the following BASIC common statement exists at the time of a call to an 

assembly language routine -

COM 0(20),Z$[10] 

then you could access Q( * ) and Z$ by using these pseudo-instructions -

Note the differences in names. 

If the number of item pseudo-instructions in the assembly language routine exceeds the 

number of items in common at the time the routine is called, an error resuits (number 199). 

Similar to BASIC, a common declaration can contain more than one COM sequence. All the 

COM sequences are treated together as a single common area. For example -

BASIC: COM REAL Al,Bl,INTEGER,Cl,Dl 
ASSEMBLY: CO!'l 

A 1: ~~EL 

NOTE 

If a BASIC COM statement is changed, modules containing 

the COM pseudo-instruction should be re-IASSEMBLEd or 

re-ILOADed before executing an ICALL statement. 



6-26 Communication Between BASIC and Assembly Language 

Busy Bits 
Overlapped processing in the 9845 is partially implemented through the facility of "busy bits". 

Each variable located in the BASIC value or common areas has associated with it two bits which 

are independent of the value - a "read" busy bit, and a "write" busy bit. Each time an I/O 

operation is executed that cannot be buffered, one of the busy bits is set. If a variable is having 

its value changed by the I/O operation, then the read busy bit is set. If the variable is output

ting its value in the I/O operation, then its write busy bit is set. If a variable is not involved in a 

pending I/O operation both bits are cleared. When the I/O operation is completed, the busy 

bits for the variables involved are cleared. 

When an I/O operation is encountered during execution of BASIC statements, the appropriate 

busy bits are set and a request is made by the operating system for the resources to satisfy the 

operation. Until that operation is complete, BASIC (in OVERLAP mode), continues to execute 

succeeding lines in the program until it encounters a statement which contains variables with 

busy bits that are set. 

If the statement is attempting to use the value of a variable and its read busy bit is set, then the 

further execution of the statement waits until the busy bit is cleared. The same is true for a 

statement attempting to change the value of a variable when either its read or write busy bit is 

set. When the I/O operation completes, the busy bits are cleared and the waiting statement is 

executed. 

In short, overlapped processing uses busy bits as a signal as to whether a statement can be 

executed or not. 

If an ICALL statement is executed with overlapped processing, it is possible that a BASIC 

variable may be "busy" when the routine wants to access it. Although it is still possible to 

access the variable without regard to the status of the busy bits, frequently that is not a 

desirable programming approach. You may on occasion want to check the value of the busy 

bits when you suspect the user of the routine may be using overlapped processing. 

Busy bits are checked from an assembly program using the "Busy" utility to be described 

shortly. If you are checking the bits for a busy condition, and the busy. condition is set, it 

remains set throughout the time you are in the assembly routine. For it to become un-busy, you 

must give the operating system a chance to perform the I/O operation and clear the busy bits. 

One way to do this is to exit the ICALL and return to BASIC. 



Communication Between BASIC and Assembly Language 6-27 

330 ICALL Sort(Busy) 
340 IF Busy THEN ~~0 

If the Sort routine exits, setting Busy to a if a busy condition is not encountered, and to 

non-zero otherwise, this keeps trying to execute Sort until the common variables which are 

busy become un-busy and it can proceed on its way. By exiting the routine after each unsuc

cessful attempt, the operating system is given an opportunity to perform the I I 0 operation 

which has the variable(s) tied up. 

UTiLiTY: Busy 

The Busy utility checks the status of the busy bits of a variable. 

General Procedure: The utility is given the location of the declaration for the variable. It 

returns the value of the busy bits for that variable into the A register. 

Special Requirements: This utility should be used for all variables involved in overlapped 

1/0 operations. 

Calling Procedure: 

1. Load register B with the address of the pseudo-instruction of the declaration to be 

checked. 

2. Call the utility. 

Exit Conditions: The utility returns the busy bits in the A register. The "read" busy bit is in bit 

a and the "write" busy bit is in bit 1. The other bits are cleared. 



6-28 Communication Between BASIC and Assembly Language 

In the following example, if any of the busy bits among three common variables is set, a flag is 

set and the routine is exited -

ISOU~~E Busy bits: INT 

ISOUPCE 
I:::;OUF-:CE 
ISCDJPCE 
I:::;OUPCE 
ISOUF.:CE 
I:::;OURCE 
I::;OUPCE 

LItH = \,i.::u·-· i .3. b 1 E" 1 
T::;j'1 Btt::.~/ 

r;::ZA Is bu ::;.::.-' 
LIfE: =ivl.~r· i .:it: 1 E'2 
.J:;!'! Bu::;.':.-' 
F.:ZA 1.:= . . bt~==.i.} 
Llit; =\:~f-·i.3.tll E':3 

LDA ==i 
LIlB = Bu::;.:=--,_ bit ::;. 
J::;N Fut l·)a 1 tiE" 
~:ET 1 

ISC)URCE Go .3.hE".3.d: ! Contint~E" pr-·c,cE"ssin':;l. 
I SOUF.:CE L'!or--k: ! Cont i nUE" pt~oc E":::·S i ng 

The overhead of exiting and re-entering the ICALL statement while waiting for a variable to 

become unbusy can be avoided. It is sufficient to allow the operating system to perform an I I 0 

operation without having to go back to BASIC. A special utility, To_system, is provided for this 

purpose. 

UTILITY : To_system 

The To_system utility gives the operating system a chance to move toward completion of any 

I I 0 operation which has not already completed. 

General Procedure: Each call to the utility gives the operating system one chance to perform 

an 1/0 operation. 

Calling Procedure: Call the utility. 

Exit Conditions: The utility always returns the instruction following the JSM To_system in

struction. There are no error exits from the utility. 



Communication Between BASIC and Assembly Language 6-29 

In the following example, the Sort routine waits until all busy hits in the three common vari-

abIes are cleared before proceeding with execution: 

~:; C)~j F.~ C: E 
~=;CiJJ~~C:E 1:/·3.;--1: 

:=;i]~JF:~C~E 

~:;Cltl~:C:E 

:::;OUPCE 
SOURCE 

SOURCE 

C:Cit~1 

It·~T 

SHO 
FEL 

PZA 1:::- btE::--' 
LICB =\'~~i-'2 

.J::::trl E;t~=.~: .. i 
SZA Go ahe-3.d 
¥J~=;r1; T c-:-:=-:):::. t E"f(§ Allow :::ystem to do some 

C: ~-~E' c k t;tJ ::-:) CI i t:=- o::i.g=:t. i t-j :I 

Continue processing. 

-: .. ~-, 
1··' 8_lu 



6-30 Communication Between BASIC and Assembly Language 



Chapter 7 
I/O Handling 

Summary: This manual should be used in conjunction with "BASIC Language Inter

facing Concepts" which covers the specifics of different interface cards. This chapter 
describes the various techniques of handling the receiving and sending of information to 

peripherai devices. Topics are: a review of I/O machine instructions, registers, applica

ble utilities, interrupts and interrupt service routines, handshake I/O, direct memory 

access, and mass storage devices. 

A major usage for assembly language programs is to improve or customize the performance of 

the 9845 with respect to data transfers with peripheral devices. The types of devices dealt with 

are those which communicate via the various interface cards (e.g., HP 98032, HPIB, etc.). The 

types of 1/0 which the assembly language supports are programmed (handshake-type), inter

rupt, and direct memory access (or DMA). 

A number of detailed examples have been provided demonstrating the various types of 1/0 

using different interfaces. These examples can be found in Appendix H. 

Peripheral-Processor Communication 
All 1/0, except for that to the internal devices (tape cartridges, keyboard, printer, CRT, or 

Graphics), necessarily takes place through the "backplane". The backplane is that physical 

area of the machine where the interface cards are inserted (also known as the 110 "slots"). 

Figure 8. Location of 110 Slots (Backplane) 

7-1 



7-2 I/O Handling 

Interfaces 

The processor does all its talking, through the backplane, to peripheral interfaces, never di

rectly to a peripheral itself. An interface is a complex electronic circuit which provides mechani

cal, electrical, data format, and timing compatibility between the 9845 and the peripheral 

device to which it is connected. From a programmer's point of view, the primary task of an 

interface is to provide a means of exchanging data between the 9845 and the peripheral. An 

interface isolates the programmer from the details of electronics and timing, appearing as a 

simple "black box" through which information is exchanged. 

The processor can talk to as many as 12 peripheral interfaces through the backplane. Each can 

be talked to individually, and there may be a mix of peripherals using programmed, interrupt, 

or DMA types of transfers. 

Individual I/O operations (Le., exchanges of single words) occur between the processor and 

one interface at a time, although interrupt and DMA modes of operation can be programmed to 

allow automatic interleaving of individual operations. 

A peripheral is addressed through a select code and a transfer occurs through four special 

registers reserved for the purpose. These will each be discussed shortly. 

Discussion of the techniques and methods presented in this chapter uses the common HP 

interfaces as examples. A full discussion of the operation of these interfaces can be found in the 

BASIC Language Interfacing Concepts manual (HP part number 09835-90600) and also from 

your Sales and Service office. 

Example programs utilizing various I/O techniques with a number of the standard interfaces 

can be found in Appendix H. 

Registers 

All I/O operations go through a set of four registers maintained by the 9845. The four registers 

named R4, R5, R6, and R7 are the sole means of communicating data between the processor 

and peripheral interfaces. While the registers are actually on the interface cards, they may be 

thought of as being in the computer memory. This makes the cards themselves accessible by 

simple memory referencing instructions. 

The 9845 sees the registers as Single-words and always sends or receives a full word of data 

when it references one of them. If a particular interface utilizes less than the full sixteen bits 

(when exchanging 8-bit extended ASCII data bytes, for example), then the most significant bits 

(8 through 15) are received as zeroes. On output, if fewer than 16 bits are utilized by the 

interface, it ignores the most significant bits. The value of these bits, in this case, is a "don't 

care" (Le., may be any pattern of ones or zeroes). 



All of the HP 9803X series of interface cards use the registers as follows -

Register On Input 

R4 
R5 
R6 
R7 

Primary Data In 
Primary Status In 
Secondary Data In 
Secondary Status In 

On Output 

Primary Data Out 
Primary Control Out 
Secondary Data Out 
Secondary Control Out 

I/O Handling 7-3 

The R4 register, then, is almost always used for data transfers. R5 is always used for status and 

control information. The "secondary" registers - R6 and R7 - perform the indicated func

tions only nominally. The exact interpretation as to how the register is used depends upon the 

interface card being used (see the BASIC Language Interfacing Concepts manual for details). 

In order to give some specific examples for using the registers, the 98032 16-Bit Parallel 

Interface (sometimes called General Purpose Input/Output - GPIO) is used. This card de

fines the secondary registers as -

Register On Input 

R41 Low-Byte Data In 
R5 Status In 
R6 1 IHi9h-Byte Data In 
R7 (unused) 

Select Codes 

On Output 

High Bype Data Out 
Control Out 
High-Byte Data Out 
Trigger 

As mentioned earlier, more than one interface card may be connected to the 9845. It becomes 

necessary, then, that there be a mechanism whereby a particular interface can be chosen to 

respond when an I/O register is referenced for either input or output. This mechanism is the 

Peripheral Address Register (Pa). 

Pa holds a binary number in the range 0 to 15 (utilizing only the lower four bits of the word, 0 to 

3). Each interface has an externally-settable select code switch which can also be set to a value 

between 0 and 15. However, since select codes 0, 13, 14 and 15 are reserved for the internal 

printer, Graphics and tape cartridge units, respectively, the permissible select code settings are 

1 through 12. 

Whenever an operation to one of the I/O registers is performed, the System 45 makes the 

contents of the Pa register available to all the interfaces connected to the backplane. Each card 

compares the value with its own select code. If they match, the interface responds to the 

operation. 

1 These registers contain the same data if the 98032 card is not jumpered for byte mode. See BASIC Language Interfacing 
Concepts. 



7-4 1/0 Handling 

So, for example, if the following statements are executed in turn -

I ::;CIlJPCE LDA =8 
I SOURCE STA p.=". 
I SOURCE LDA F.:4 

then a status byte is read from the interface card set to select code 8. 

The label "Pa" is reserved by the assembler for the Peripheral Address register. 

Status and Control Registers 

The primary purpose of any interface is to allow data to be exchanged between the computer 

and the peripheral device to which it is connected. But HP's 9803X series of interface cards are 

even more versatile, possessing a programmable capability of their own. This in turn provides 

optional capabilities with the card that can be set and changed by control instructions from the 

System 45. (For details on what capabilities are provided, consult the BASIC Language Inter

facing Concepts manual.) 

The programming of the interface is done by the 9845 using the R5 register. Some of the 

interfaces use other registers for extended control bits (these are also described in the BASIC 

Language Interfacing Concepts manual). 

Interface cards can also return information to the 9845 about which optional programming 

features are currently selected. This information, called the status byte, is obtained through an 

input operation using register R5. The status byte (8 bits) is determined solely by the charac

teristics of the interface card being addressed in the Pa register. (Again, information on particu

lar cards can be found in BASIC Language Interfacing Concepts). 

Remembering that these registers are not really memory locations, but instead are registers on 

the card being addressed by the Pa register, storing information to these locations is not the 

same as storing to other memory locations or registers. For example, storing a value in R5 to set 

the control register sends the information to the addressed interface. Later, if you were to read 

a value from R5, the information you sent would not be what is returned. Instead, the contents 

of the status register in the interface would be returned. 

Status and Flag Lines 
Whenever an 1/0 register is accessed, the interface with the same select code as is in the Pa 

register responds. The primary response depends upon the nature of the interface and which 

register is accessed (see discussion above). However, in all cases there is a secondary effect. 

Part of every interface's response is to set or clear the Status and Flag lines. 



I/O Handling 7-5 

The Status line (not to be confused with the status register discussed above), is a single bit 

indicating whether the interface is operational or not. By inclusion, this can also mean the 

status of the actual peripheral to which the interface is connected. For example, if a peripheral 

device has a line coming from it that indicates its power is on, it could be connected to the 

Status line in the interface. Then the program could quickly determine whether the device is 

turned on or off. As another example, a printer might have the Status line connected to the 

out-of-paper indicator (should it have one) to indicate to the program when it is inoperable 

because of lack of paper. 

The Flag line is a momentary "busy /ready" indicator used to keep the computer from getting 

ahead of the peripheral. The line shows that the interface is busy processing the last task given 

it by the 9845 or that it is ready for another operation. If the line is set, it indicates "ready"; if 

the line is cleared, it indicates "busy". For example, if the computer has a sequence of ASCII 

characters to send to a slow printer, it sends one character (making the Flag line "busy") and 

then waits for the Flag line to go "ready" again before sending the next character. 

There are four instructions, part of the I/O group, which can check these lines-

:::;F::; Skip if Flag iine is set (Le., "readyn) 

::FC Skip if Flag line is cleared (i. e., "busy") 

::;::SSkip if Status is set (i.e., "operationar') 

::SC Skip if Status is cleared (i. e., "non-operational") 

These instructions have the capability of skipping up to 31 locations in a forward branch, up to 

32 locations in a backward branch, or to the same instruction. 



7-6 I/O Handling 

Programmed I/O 
Programmed I/O is the process whereby software controls the transfer of information between 

memory and an interface. In the process the program must decide when and where to make the 

transfer, how to make it, and how much information to transfer. The decision even to originate 

the transfer comes under program control. 

The Status line can be used to determine the availability of an interface. The interface is 

selected, under program control, by the contents of the Pa register. Then the Status line is 

checked to see if the interface (and by inclusion its associated peripheral) is operational. 

After an operational interface has been chosen, the Flag line can be used to determine when 

the interface (i. e., peripheral) is ready for a transfer and when it has not finished with the 

previous transfer. 

With sufficient checks of Flag and Status before and between I/O operations, it is possible to 

eliminate initiating an I/O operation to an interface which isn't ready for it. The following 

example checks the status (status bit set) of an interface card: 

C~~-!C!C:=.E:· tt"iE" r)E-r-'i t)t-l=="t-"::i.l = 

C:~-l==-:::k -fc!r-' :::t)~·t-·.3.t i :::)r-i-:1.1 ijE-= .... l CEo:. 

LilA =164 r'~cit :::~::~·r·.:J.i:. ic:r-J.:il ~ E-r"!"-'Csr-' i64~ 
- . 
t.:.f-·f-·(~)(· E->::"j t 

I I/O ope~ation done here. 

The instruction sequence for a software controlled output transfer differs slightly from that of an 

input transfer. An output transfer involves waiting for the interface flag, outputting the data and 

then starting the output handshake. The following is an illustration of this sequence. The 

essential instructions are preceded by an asterisk in the comments column. 

:;:::OUPC:: 
:;::;OUFCE 
:;::;OU~:CE 

:;::;TA F'.a 
:;::;::::s ++:::: 

G~ab select code. 

Check device s~atus. 

.J~:;Pl E::r-'~-'c;r~' E->::it if" ::1e 1.)icE" :j!)l.,Jn:l 

LIlA Hutter .. ,~r,I G~ab word from t~ffer. 
IncremE~t p~lnter. 

* Output the word. 



I/O Handling 7-7 

An input transfer involves signalling an input operation, triggering the input handshake, waiting 

for the interface flag and then inputting the data. This sequence is illustrated here with the 

essential instructions preceded by asterisks in the comments column. 

I::;DUPCE 
I:::CU!?CE 

LIn=i =164 

':;F<: ... 
LIlA ~A 
. .H'IF' Aq3. in 

Check device status. 

Interrupt I/O 
Interrupt I/O is a means of allowing control to pass temporarily to an assembly language 

routine other than the routine (BASIC or assembly language) currently executing. The "inter

rupt", which causes the control to be passed, is detected through the backplane and is as

sociated with a particular interface. After the "interrupt service" routine completes its tasks, 

control is passed back to the original routine. 

The process looks something like this -

"original" 
routine 

c:: 
o 
~-----, 
CD 
X 
CD 

interrupt --f---'~ 
detected 

'r • 

L------f-------l 



7 -8 I/O Handling 

The sequence of events in interrupt I/O can be detailed as follows -

1. The interface sends a request for service to the backplane which passes it along to the 

processor. Conditions which generate this request for service are different for each I/O 

card. See BASIC Language Interfacing Concepts. 

2. The processor alters the flow of execution so that the routine associated with that inter

rupting source can be executed. The processor saves its place in the interrupted routine 

so that it can later return to it. The current contents of the Pa register are saved internally 

in the processor and the Pa is then set to the select code of the device causing the 

interrupt. 

3. The interrupt service routine is executed, performing whatever functions are desired. 

Frequently these functions involve some form of programmed I/O or direct memory 

access. The service routine may signal an end-of-line BASIC branch, indicating to 

BASIC that some condition occurred (discussed below). 

4. The service routine returns the processor to the interrupted routine so that the "original" 

process can resume. 

The uses for interrupt I/O are so diverse that it is difficult to generalize about them. However, 

one particular use is fairly well-defined and of general applicability - data transfers. 

Interrupt I/O is normally used in data transfers whenever a particular data device has a transfer 

rate which is Significantly slower than that of the computer. Peripheral devices with transfer 

rates less than 7000 characters per second are candidates for interrupt 1/ O. 

The usual approach is to transfer a word to or from the peripheral device, then go away to do 

some other processing while waiting for the device to interrupt by becoming "ready" for 

another transfer. An example illustrating the general procedure for an interrupt I/O transfer is 

presented following some more background information concerning priorities, ISR linkage, 

access, preservation and indirect addressing. 

Priorities 
Select codes are assigned hardware "priority" levels to control what should be processed when 

an interrupt service routine is executing and another interrupt is received, or when two or more 

simultaneous interrupts are received. 



I/O Handling 7-9 

There are t\,IJO priority levels -

High for select codes 8 to 15 

Low for select codes 0 to 7 

An interrupt received from a high-priority select code may interrupt a service routine which is 

executing for an interrupt from a low-priority select code. But an interrupt from a low-priority 

select code m~y not interrupt any other service routine. 

Interrupt Service Routines and Linkage 
An interrupt service routine is associated, or "linked", with a select code by the Isr _access 

utility described later. This linkage establishes where the interrupt service routine resides, and 

to which select code it applies. An interrupt service routine typically does one or more of the 

following -

• Talks to the interface (Le., satisfies or acknowledges the interface's interrupt). 

• Passes data to (or retrieves data from) the rest of the program, when appropriate. 

• Breaks the linkage, if desired. 

The method of talking to the interface depends upon the type of interface. Some devices or 

applications do not require the passage of data; the acknowledgement of the interrupt is usually 

the desired effect in such cases. 

Interrupt service routines are always exited with a RET 1 instruction. 

Breaking Interrupt Service Routine Linkage 

The interrupt service routine-select code linkage can be broken from within the interrupt 

service routine by executing one of two statements. If the linked select code is high priority, the 

statement is -

If the linked select code is low priority, the statement is -

After execution of one of these linkage-breaking statements, the interrupt service routine is 

exited with a RET 1 instruction. 



7-10 liD Handling 

Several important facts to keep in mind concerning the JSM End _isr_Iow,I and JSM End_ 

isr _ high,I statements are the following: 

• The names, End _isr _low and End _isr _high, do not represent utilities or routines. There

fore, they should not be declared as externals. 

• Neither statement may appear outside of the appropriate interrupt service routine. 

• These linkage-breaking statements should only be executed inside the appropriate inter

rupt service routine when you no longer need select code linkage to the ISR. In most 

cases, this is when the ISR is no longer needed because the data transfer is complete. 

• The contents of the Pa register are used by End _isr _high and End _isr _low to determine 

what resources to free and what interrupt linkages to break. Upon entry to the ISR the Pa 

register contains the select code of the interrupting interface, but you can change Pa 

during execution of the ISR. If this is done, you must ensure that Pa is set to the desired 

value before calling End _isr _high or End _isr _low. 

Here is an example of a short interrupt service routine which simply reads and processes words 

from the interface and terminates when it encounters a linefeed. 

I ~:; CiiJ F~C: E T~' r~'ff~ i f-!·~ t E- : .J::; til Eric! i:::. t-· 1 C: ;.15 '! I ~:B i-·E"·:l. k I :=;~~ ~ 1 r-! k ·3.=~E· = 

ISGUPCE FE! i PEt:x·n ~.G BA::;IC. 

Access 

NOTE 

Utilities cannot be called from an interrupt service routine. 

Attempts to do so lock up the machine. 

The operating system (OS) contains a mechanism to regulate requests for hardware capabilities 

in order to eliminate conflicting uses of these capabilities. For instance, since there is only one 

DMAI channel, it is necessary that there be a mechanism to prohibit two simultaneous DMA 

transfers. 

1 DMA (Direct Memory Access) is explained further in later sections of this chapter. 



I/O Handling 7-11 

The as mechanism which regulates the use of DMA (and also interrupt) transfers either grants 

or does not grant what is called "access". Before starting either an interrupt or DMA operation, 

access should be requested from the operating system. 

Another example - suppose a device operating on a high priority select code has a relatively 

slow data rate. This is an ideal situation in which to use interrupt driven I/O. Suppose further 

that the device operates in such a fashion that the data must be transferred within a fixed time 

period following its issuance of an interrupt or the data is lost (the internal tape drive is such a 

device.) If there are other interrupt type transfers operating concurrently on other high priority 

select codes, it may not be possible to service our slow device within the necessary time frame. 

When the operating system grants access, this ttJpe of conflict is impossible, 

Users of the assembly language system are required to request access from the operating 

system. The OS grants access if granting this access does not compromise any previously 

granted access. 

Devices such as that discussed above which require interrupt service within a specified time 

frame are called "synchronous", and should use "synchronous" access. Devices with no such 

time constraints are called "asynchronous", and should use "asynchronous'; access. 

Abortive access is intended to be used by routines that will be executed only extremely in

frequently. For instance, if the System 45 is monitoring a potentially dangerous manufacturing 

process, it may be necessary to have ari interrupt service routine to shut down the process when 

something goes awry. This could be accomplished with an abortive routine. The advantages of 

access code 0 (abortive access) is that no other modes of access are prohibited by its use. Thus, 

the infrequently used routine will not prevent another routine from getting the type of access it 

needs. 

Access code 0 should be used with caution. An interrupt routine with abortive access can exist 

on the same priority level as an interrupt routine with synchronous access. If the abortive 

routine is in progress when an interrupt occurs requiring the synchronous routine, the abortive 

routine will finish before the synchronous routine can be serviced. The timing requirements of 

the sychronous routine might thus be violated. 

Access code 0 is also used to release access in a particular type of DMA transfer to be explained 

later in this chapter. 



7-12 I/O Handling 

The regulation of access incorporates the following points -

• When the operating system grants synchronous access to an operation, it is guaranteeing 

that the requesting process will have its interrupts serviced with maximum priority. 

• DMA conflicts with synchronous access since DMA's cycle stealing causes the processor to 

run slower and could thus compromise a synchronous process. 

• Synchronous access on a low priority select code conflicts with asynchronous access on a 

high priority select code since the asynchronous device could interrupt the synchronous 

ISR, thus compromising the timing requirements of the synchronous device. Synchronous 

access conflicts with asynchronous access on the same priority level. Remember an inter

rupt request on the same priority level as a currently executing ISR will not be processed 

until the executing ISR completes. 

The following table summarizes the granting of access -

Access Already Granted 

Abortive ASYN DMA SYN 

------ ------ ------
L H L H H L 

I Low y y y y y y d 
"0 Abortive 

Q> High y y y y y d d ...... 
fIJ 

Low Q> 

I y y y y y y n = ASYN c:::r 
Q> High y y y y y n n 

0:: 
fIJ DMA y y y 
fIJ 

y n n n 
Q> 

I High d () y y n n n n 
() SYN « Low d d n n n n n 

n = Not granted 

d = Dangerous, but granted 

y = Granted 



I/O Handling 7 -13 

BASIC statements also obtain and release access as I/O is performed. The following table lists 

some of the ways access is used by the system -

Use 

Cartridge Operations 
Flexible Disk Operations 
PRINT, PRINT USING 
Plotter Drivers 
CARD ENABLE 
ENTER / OUTPUT INT 
ENTER/ OUTPUT DMA 
ENTER/OUTPUT FHSI 

Access 

SYNC (HIGH select code) 
DMA 
ASYNC 
ASYNC 
ASYNC 
ASYNC 
DMA 
DMA 

In general, single BASIC statements could cause access to be granted and released several 

times. For example, the cartridge operations obtain and release synchronous access once for 

each physical record transferred. 

It is imperative that access be released after an interrupt service routine has been executed for 

the last time or a DMA transfer is complete. Such occurrences as tape drive lockout, can occur if 

access is not released. Use the JSM End _isr _ high,1 or JSM End _isr _low,1 instructions to free 

access, depending on the select code used. 

UTILITY: Isr access 

This utility is used to request access and, if the access is granted, to create the linkage between 

an interrupt service routine (lSR) and a select code. Valid select codes are 1 through 13. 

Pressing RESET (88) during execution of the utility may cause a SCRATCH A to be 

issued. 

General Procedure: The utility is told where the ISR resides and what kind of access is 

required. If access is granted, it returns successfully. If access is not granted immediately, it 

keeps trying periodically until it is successful or until a specified number of attempts have been 

made (in which case it returns unsuccessfully). 

1 In addition to obtaining DMA access (which in this case is used just to ensure there is no synchronous access granted), the FHS 
(Fast Handshake) drivers disable all interrupts during the actual transfer loop. 



7-14 I/O Handling 

Special Requirements: The B register must contain information as follows -

115 114 113 12 11 10 
v 

Bits Description 

Select code to be linked to the ISR 
Access code 

6 1 5 1 4 1 3 1 2 1 1 0 1 

0-3 
4-5 
8-14 Number of attempts to be made before aborting 

The access codes are -

o Abortive access 

1 Asynchronous access 

2 DMA with asynchronous access 

3 Synchronous access 

Calling Procedure: 

1. Load register A with the address of the ISR. 

2. Load register B with the information described above. 

3. Call the utility. 

Exit Conditions: 

RET 2 If the attempt at linkage is successful, the utility returns to the second word following 

its call. Register Pa is set to the select code; if access code 2 was specified then 

Dmapa has also been set to the select code. 

RET 1 If the attempt at linkage is unsuccessful, the utility returns to the first word following 

the call. Register A contains an indication of the type of difficulty encountered -

- 1 Access couldn't be obtained after specified number of attempts. 

- 2 Select code is still linked to an assembly language ISR. 



I/O Handling 7-15 

As an example of the use of the Isr _access utility, suppose an ISR is to be linked to select code 

2 for asynchronous access. The following would be a sequence to establish such a linkage -

::;CUFCE 
':;OUF:CE 
::;OUF.:CE 

LUb =(64*256)+(1*16)+2 

SQJF.:CE Errc~: ISZ A 
JMP Nested isr I Handler t·or SC bUSy 

JMP No resources Handler fc~ time-out 

NOTE 

Access must be released after the execution of an interrupt or 

DMA transfer is complete with a JSM End _isr _ high,1 or a 

JSM End _isr _low,1 instruction, depending on the select 

code used. 

Disabling Interrupts. 
At times it is necessary to disable all interrupts in order to execute a particular sequence of 

instructions. This is typically necessary for one of two reasons: 

• The instructions are modifying some data used by an ISR, and the ISR would become 

confused if it happened to occur when this data was in a transitory state . 

• All ISRs are prohibited in order to minimize the execution time for some task (Le. fast 

handshake transfers). 

In general, it is allowable to disable interrupts (using the DIR instruction) for up to 100 /-tS 

without "notifying" the operating system. (Interrupts are re-enabled using the EIR instruction.) 

Attempts to disable for more than 100/-ts without this notice could compromise any synchron

ous transfers that may be in progress. Specifically, it could cause loss of data if a tape operation 

were in progress. 

If is necessary to disable interrupts for more than 100/-ts, the Isr _access utility should be used to 

acquire an access which ensures that no synchronous transfers are jeopardized. Typical access 

code requests to do this are DMA, ASYNC HIGH, or SYNC (high or low). The one to choose 

depends on the application. 



7-16 I/O Handling 

For example, suppose you would like to minimize the execution time for a segment of code. 

The segment takes longer than 100JLs, but you need to disable interrupts for the duration. The 

ideal access to request may be DMA. Once DMA has been granted there can be no DMA 

transfers (which might slow the processor) and there can be no synchronous transfers in 

progress. Therefore, interrupts can be disabled for as long as necessary. 

When Isr _access is used for this purpose (Le. to get access rather than to set-up ISR linkages), 

the entry and exit conditions are as previously described except that the A register must contain 

a zero. 

When access is obtained in this manner, it is freed by calling Isr _access a second time with the 

A register containing a zero. However, the access code requested in bits 4 and 5 of the B 

register must be zero. This technique of freeing access can be used only if the original access 

was granted without interrupt linkage (Le. the A register was 0). Attempts to do otherwise cause 

Isr _access to give the fail return (RET 1). 

The following example illustrates the technique for a fast handshake transfer to a 98032 

interface on select code 6. 

:::U!...lF:CE 
3Cii.FCE 

:::·'····: .. :~:(···l=-

: .... ,:::l ~ LIlA ::::D 

Ii I;;:: 

~~ji,jC: F:.:+!! I 
1:; l H ~~? 

: ..• ::.-.:. (":!-". 

".pt DMR access \ithout 

:··:i···I···· :'"1 



I/O Handling 7-17 

State Preservation and Restoration 
When an interrupt is detected and an interrupt service routine is called, the operating system 

automatically saves the state of some of the registers so that their values can be restored upon 

return from the ISR. Other registers are left alone and if your service routine uses them, it is up 

to your ISR to save them and restore them before returning from the ISR. 

The registers which are automatically preserved are -

A 

B 

C 

Cb 

P 

Pa 

Also, the state of the Overflow and Extend processor flags are preserved and restored before 

the return from the interrupt. 

The D and Db registers are not automatically saved. Saving and restoring location Db is not 

trivial due to the fact that this location is a read-only location. The following program segment 

saves and restores D and Db: 

LDA Ii 
:::TA 

DBL 

LIlA D :::-:i'·)e 1 0' .. ) 

'::TA Ii 

T::"" 
l..!L.i: 

If minus, set ~D. 

:: _ -.:.. _ -- _ :: 
r:.t:":'=. ;.- ,_!f .t:0 LI ~ 



7-18 I/O Handling 

If your ISR contains any of the following types of instructions -

Indirect addressing 

Stack group 

CLR 

XFR 

and the operand of the instruction(s) is an address in the ICOM region, then it is necessary that 

the following instruction sequence be executed in the ISR before any such instruction is 

executed -

LIlA 
::;TA 
LIlA 34B 
::;TA :35B 

Then, before the ISR exits, and after the affected instructions have been executed, the 

following sequence must be executed -

Indirect Addressing in ISRs 
Indirect addressing in ISRs can produce anomalies unless the following rules are followed -

1. If indirect addressing is employed with the operand being an address in the ICOM 

region, one of the processor registers must be preserved. For the method of doing this, 

consult the "State Preservation and Restoration" section immediately above. 

2. If indirect addressing is used in a JMP or JSM (including any jumps to external symbols 

or symbols more than 512 words away from the current instruction, both of which have 

implied indirect addressing), then the most significant bit must be set in the address. For 

example, instead of -



I/O Handling 7-19 

in an ISR the procedure must be -

JSM (=Sub+100000B),I 

The assembler can generate an indirect instruction when you have not specified a ,I after the 

instruction. These indirect instructions lock the machine if executed within an ISR, and 

therefore must be re-written. 10F (indirect off) and ION (indirect on) are used to find those 

instructions for which the indirection is done automatically by the assembly. At the beginning of 

ISR use the 10F instruction. At the end of ISR use the ION instruction to restore the assembler 

to its normal state. Between an 10F / ION pair, any instruction for which the assembler would 

have generated an automatic indirect, a range error (RN) is generated. 

Enabling the Interface Card 

The particular interface card that you are using must be enabled for interrupts. The 98032 

Interface card is used for illustration purposes. Setting bit 7 of the R5 OUT register enables this 

particular card for interrupts. The R5 OUT register is represented here -

98032 - R5 Register 

Bit 7 Bit 6 Bit 5 Bit 4 

ENABLE ENABLE RESET ENABLE 
INT DMA AUTO 

HAND-
SHAKE 

Bit 7: Logical 1 enables card to interrupt 

Bit 6: Logical 1 enables DMA 

Bit 5: Logical 1 resets interface card 

Bit 4: Logical 1 enables auto handshake 

Bit 3: (Don't card) 

Bit 2: (Don't card) 

Bit 1: Optional peripheral control bit 1 

Bit 0: Optional peripheral control bit 0 

Bit 3 

X 

Bit 2 Bit 1 Bit 0 

X CTLI CTLO 

Control bits 0 and 1 are used to drive interface lines CTLO and CTLl, respectively.CTLO and 

CTLI are optional peripheral control lines. 

(Representations of the I/O registers for each interface are provided in the Assembly 

Language QUick Reference manual. ) 



7-20 I/O Handling 

The 98032 card is enabled for interrupts with the instructions -

ISOURCE LDA - 200B 

and disabled with -

ISOURCE LDA - 0 

The interface card is typically enabled for the first data transfer, disabled at the beginning of the 

ISR and re-enabled before the ISR is exited. 

Interrupt Transfer Example 

An example of setting up an interrupt service routine for inputting character data is given in the 

example below. This example should bring together the information presented in the previous 

five sections of this manual. Note the procedures for requesting and giving up access, enabling 

and disabling the interface card for interrupts and processor register preservation and 

restoration because of indirect addressing in the ISR. 

IDELETE ALL 
1COI'1 200 
IA:::;:::;EJo1BL.E ALL 
ICALL. ~::;.::·t_iJP 

Reserve 200 words in ICOM region. 

:~~-:-i BA~=;IC: ti.::t.!=k!;I~··C'-4f-ld (·c;u!:. i r-~E'~ 
100 
110 t:rm 
120 
130 
140 
150 

200 
2111 
220 
2:~:~:::1 

SOURCE NAM Interrupt 
SOURCE EXT Is~ acc.::ss 
~JURCE Select ccde:EQU ~ 
~:;CiiJF~C:E L f" : 
SOURCE t:1)ff.::r: 

EC!U 1 ~:::1 
E::::S :::: 1 

SOURCE Buf point: DAT Buffer 

~:;Cjlj!?C:E ~:;et __ ... i)r:j: 

B:::S 
:::;UB 
LDA =Select cGje 

LDA =1s.["" 

I Select code is 2. 
I ASCII for line feed. 
! Ch;jr.:ict'::T" buff.::.,... 
I End of bu·ffe-·. 

Rc~tine entry point. 
Put select code in ~:i. 

! Get asynchronous acc.::ss, 
250 

SOU F.: Cl:: 
:::;OURCE 
::;QUF:CE LDt: =(64*256)+(1*16)+Select ode 

260 
:::;QUF.:CE 
~:;Cii.JRCE 

::;CUF.:Ct:. 
::;FC .;t:. 

L_Dfi F.:4 

T r-· ;)3. (~}:i n. 
L·J::l -j t f" :::z to-· f ~.::t!;I = 



440 

:-.:,-:: i:l:'-': .:1 U i_i r:. i_, c. 

~:;CUPCE 

::;CUF.:CE 
::;CUF~CE 

,-.,,-, ,,-:z 
.:= i n 

=Lf 
""!"" - .-- . .:.- - .!, -

l ==' f . ~ i! ~ f j.::i. !., t:. 

LDA Buf FY:' i nt 
ADA -, 
CPA =BiAf 1.3.:::-t 

LilA =2~X1B 

::;TA "':::' 

I/O Handling 7-21 

Interrupt service routine. 

I (if::~-~t t ~-:e C ~-~::t.t-,.:l.C t E·t-· = 

Is it a line feed? 
\: t:.:::. ; ';;ie, t () T E- ('ffl i (~:J. t E:' = 

f'~C:; :::_:ii·}E· f)r-·C:CE·:::.:::.c;r· ('E";il :::.t:::'i-· 

because on indirection. 

Restore processor register. 
Get buffer pointer. 

End of the tuffer? 

Trigger next input. 
C~:l.f-'C~ E'r-i-::t.[) 1 E' ff~:i:::,k 

8~3.bles interrupts. 

Access freeing routine. 
Dis3.ble interrupts. 
After last transfer, 
up access and retv~n. 



7-22 I/O Handling 

Direct Memory Access 
(DMA) 

Direct memory access (DMA) is a means to exchange entire blocks of data between memory 

and peripherals. A block is a series of consecutive memory locations. Once started, the process 

is automatic; it is done under processor control, regulated by the interface. Since only the 

98032 Interface supports DMA, the following discussion is in terms of that interface. 

To the peripheral, the DMA operation appears as programmed I/O. The transfer, however, is 

actually performed by special DMA hardware. Information regarding the transfer is stored in 

the DMA registers for the DMA hardware to use. This information is the select code, the initial 

memory location, and the number of words to be transferred. The memory location register 

and the count register are successively adjusted after each word transferred until the transfer is 

complete. Upon completion of the transfer, the interface and the DMA hardware stop 

automatically. 

The direction of the transfer is specified before the transfer takes place. It can be specified as 

either "inward" (Le., from the peripheral to memory), or "outward" (Le., from the memory to 

the peripheral). To set the direction outwards, the instruction-

is used. To set the direction inwards, the instruction -

is used. 

DMA Registers 
There are three registers which contain information used by the DMA hardware - Dmapa, 

Dmama, and Dmac. Before any DMA transfer takes place, the appropriate values must be 

loaded into these registers. 

Dmapa contains the peripheral address of the device requesting DMA. Only the least 

significant bits of the register specify the select code which is to be the peripheral side of the 

DMA activity. During DMA transfers, the address bus takes its address from the Dmapa register 

rather than Pa as in other I/O transfers. The value is supplied to Dmapa by the Isr _access 

utility when it grants DMA access. 



I/O Handling 7 -23 

Dmama contains the address of the first word in memory (Le., lowest address) where the data 

transferred is (or will be) stored. After each word transferred, this register is automatically 

incremented. Note that the entire block to be transferred must reside within the ICOM region. 

Dmac is the count register for a DMA transfer. Before the transfer begins, it should be set to 

n-l, where n is the number of words to be transferred. After each word transfer, the count is 

decremented. If, during a word transfer, the value of Dmac is 0 (meaning that this is the last 

word to be transferred), the processor automatically informs the interface that the DMA 

operation will be complete after the present word is transferred. 

DMA Transfers 
There are two techinques for using DMA. Both initiate the DMA transfer in a similar manner but 

differ in how the end of the transfer is detected. The more commonly used method uses an 

interrupt generated by the interface. The second method uses a programmed test. 

DMA transfers using interrupt are initiated with a sequence of six distinct actions. 

Step 1: The !sr _access utility is used to obtain access to the DMA channel and to set up the 

ISR linkage used when the transfer terminates. 

Step 2: The direction is set for input using an SDI instruction or for output using an SDO 

instruction. 

Step 3: The appropriate values are stored into the Dmama and Dmac registers. (Dmapa is set 

by the Isr _ access. ) 

Step 4: For input, the first handshake is initiated with these instructions: 

For output, this step is deleted. 

Step 5: The interface is enabled for DMA and interrupt by setting bits 4, 6, and 7 of R5 OUT to 

one. (Le. 320B~R5) 

Step 6: The DMA requests are enabled using the instruction DMA. 



7 -24 I/O Handling 

At this point you can do other processing if desired since data is being transferred automatically 

by the hardware. When all words have been transferred the interface interrupts the processor, 

causing the previously linked ISH to be executed. This ISH should: 

• Disable the interface (bits 4, 6, and 7 of H5 OUT set to 0). 

The following is a program segment to input 1024 words of data into an internal buffer area 

using interrupt to terminate the transfer. 

110 

150 
16 .. 3 
170 

ISCURCE 

I ':;CiUr;::CE 
I ~:;!]!JPCE 
I::;OUF.:CE 

I::;OUk:CE 
I~:;OURCE 

I::;OURCE 
ISCURCE 
I::;CURCE 

2;.3"3 1 I ::;OURCE 
2E} I EOURCE 

230 ISOURCE I:::r: 

25~) 

:32(1 I:3CURCE 

EC~!J .-, 

LilA =I:::.r-· 

LIlA =1~323 

~:;TA .Lifff.=:t.ff~::t 

~:;FC :,:-
LilA FA 
STH R"?' 
LDA =:~:20B 

Dr'1!=1 
FET 

DDR 
LilA r-'.::;. 

ADA =-::: 

I Step 1: Link ISR. 

Should never get here. 
i :=~t E'~) 2: ~:;E·t Iif'iA i !-n.I.L:1~-·::] = 

! :::t.E·~) :3: LC;.:1!j lit-1A r'E";;!1 =.ter-·="~ 

Specify DMA count. 

! Specify buffer address. 
I Step 4: Wait for flag. 

~:;f·t t~t:j fi r-·:=·t. t(·.:trl==·fE·~-·= 

and i ntetT·,_lpt. 
::;tE't) 6: t'~c!t if':) LillIS ~"!-~r·lj~.,.L3.(·t:·= 

! ~~ et ~Jr'1-! t: 

I Interrupt service routine. 
Disable interrupts. 

Depending on select code, 
termlnate 1~~ !lnkage. 

In the previous example, the end of the DMA transfer is Signaled by an interrupt which causes 

execution of an ISH. The ISH, in turn, gives up the DMA access and terminates the ISH linkage 

with End_isr_Iow,1 or End_isr_high,1. 



I/O Handling 7 -25 

D~.1A transfers without interrupt are initiated with a sequence of six steps . 

• Isr _access is used to obtain the DMA channel, but not to set-up an ISR (A register has a 0 

value). 

• The direction is set for input using an SDI instruction or for output using an SDO 

instruction. 

• The appropriate values are stored in Dmac and Dmama. 

• For input, the first handshake is initiated with these instructions: 

• The interface is enabled for DMA by setting bits 4 and 6 of R5 OUT (Le. 120B~R5). 

• The DMA requests are enabled using the instruction DMA. 

At this point you can do other processing if desired since data is being transferred automatically 

by the hardware. To determine if the transfer is complete, the Dmac register is tested. If it is 

negative, the transfer is complete and you should: 

• Disable the interface (bits 4, 6 and 7 of R5 OUT set to o). 

• Free the DMA access by using Isr _access with the A register containing a 0 and an access 

code of O. 

The following is a program segment to output 1024 words of data from an interrupt buffer area 

without using interrupt to terminate the DMA. 

Eeu _ 

61 
62 tep 1: No Efid-of-t~~nsf2r 

64 
.--:.-.+ 
';:1'= ' .. 



7-26 I/O Handling 

1-':-:: :rl:-':-
.:ci_ii_i'f":.=_,c. 

212 

. -, .. -,-:" 
::::.C~=::'l 

271 

351 SOURCE 
35:2 SOURCE 
353 SJURCE 

LDr1 ; (:i::::' .. , 

'::TA 1>·,3.c 
LDA :::BU·r+\::T 

:::TA Df(.3.ffd 

::;A? *+;2 
.JS1'1 Ter-·min-3.t.e 

peci y I~A count. 

I Specify ~)ffer address. 

Step 6: Notify DMA . : .. ~:.:.i.::if- e:: 
::;E"E" .. :Dt11A i :::. :~Jur 1=:;':: 

Ot.her ~~ocessing. 

I Go b~ck and check ~MA. 

LUb =(64*:256)+Sc i Ask for 0 access . 

Should nE·!er get here. 
F:~ET C':::.+ : ::'-.::'-. 



I/O Handling 7 -27 

BASIC Branching on Inteiiupts 
The handling of interrupts can be integrated into BASIC programs by using the ON INT 

statement. The object is to allow the flexibility of combining the high-level features of BASIC 

with the capabilities of assembly language in asynchronous I/O applications. And since ISRs 

cannot use the system utilities, in particular those that access a BASIC variable, a means of 

taking action on an interrupt after completion of the ISR is a necessity. 

ON INT Statement 
The ON INT statement is an executable BASIC statement which acts in a similar fashion to the 

ON KEY statement (see the System 45 Operating and Programming Manual). The statement 

allows the BASIC programmer to specify where, in his BASIC program, to branch whenever an 

End-of-line branch is Signalled for the select code he specifies. 

As with the ON KEY statement, there are three ways these branches can be taken -

CH"~ I 1"<T # {select code} [~{priority} ] CALL {subprogram name} 

U'F # {select code} [~ {priority} J Cc::;t.J:t: {line identifier} 

1 !'i i # {select code} [~ {priority} ] c;cru {line identifier} 

Whenever an interrupt is signalled from an ISR for a particular select code, if ON INT has been 

executed for that select code, then at the end of execution of the BASIC line which was 

executing when the signal came, the indicated branch in the ON INT is taken. 

In the GOTO version, the branch is "absolute", which is to say that the program goes to the 

line indicated and picks up its execution there, forgetting where it was before. This has the 

effect of an "abortive" type of branch, and should only be used by the BASIC programmer 

when he wants the program to resume execution at some pre-determined point after handling 

an interrupt, without regard to where the program was before the interrupt occurred. 

In the CALL and GOSUB versions, the branch is only temporary. After the subprogram or 

subroutine has been executed and the SUB EXIT, SUBEND, or RETURN (as appropriate) has 

been executed, then the program returns to the line following the one where it was interrupted. 

This is the same as if the CALL or GOSUB was in between the interrupted line and the one 

following it. 

The {line identifier} and {subprogram name} in the CALL, GOSUB, and GOTO statements are 

the same as elsewheie in BASIC, except that a CALL may not have any parameters. 



7-28 I/O Handling 

The {select code} specified in an ON INT statement restricts the branching action to occurring 

only when the assembly language triggers the ON INT condition for that select code. The 

interrupt may have occurred in actuality on another select code. This can be a way of allowing 

more than one branch for interrupts from a single interrupting device. 

As an example -

100 ON INT#3 GOSUB Print result 
li0 Ot·~ IHT#5 GO::;UB End d-3.ta 

Should an interrupt occur anywhere in the program, causing an assembly language interrupt 

service routine to be executed, that assembly language ISR has the capability to cause either 

the branch of line 100 or the branch of line 110 to be taken. Thus, an assembly language ISR 

signals BASIC either to print an intermediate result or to note that all data has been processed. 

Signalling 

The {select code} specified in an ON INT statement restricts the branching action to occurring 

only when a branch is "signalled" for that select code. In actuality, an interrupt may not have 

occurred on that select code at all. Conversely, an interrupt may occur on the select code, but 

BASIC and its ON INT condition may never hear about it. It is necessary for the ISH which does 

the actual handling of an interrupt to inform, or "signal", the operating system that the inter

rupt occurred and trigger the ON INT conditions which may be set up at the time. 

The responsibility of the ISR to signal the ON INT is also an opportunity. This signalling allows 

you in an ISR to decide whether or not you want BASIC to know about the interrupt. If you do 

not want BASIC to know, simply do not signal the condition. The signalling also allows you to 

signal different interrupt conditions. An example of doing this might be a case where, after an 

interrupt, a peripheral indicates whether it wants to input or output data. Your routine could 

signal one select code to execute an input routine and signal another select code to execute an 

output routine. 

To signal an ON INT, your ISR must execute the following instructions-

::;QUPCE 
::;CiUPCE 
::;OUPCE 
::;OUPCE 
::;ctIPCE 
::;OUF::CE 

LIlt: I :::r_p:::.i .. ': 
LIlA = i >=f~:t: 
::;TA B, I 
AIIB=J 
LIlA r'l3.:::.k 
::;TA t:, I 



I/O Handling 7-29 

Mask necessarily contains the select code to be signalled, Rather than containing the number of 

the select code, however, it has the bit set for the appropriate select code. For example, if you 

are signalling select code 2, you set bit 2 to 1 in Mask and leave the others O. Similarly, if you 

are signalling select code 5, you set bit 5. Thus, the statement containing Mask in the above 

could just as easily be a literal. For example -

would signal select code 5. 

If the select code is not known at assembly time or if the ISR is shared by more than one select 

code, the following segment of code can be used to build the appropriate mask. (Pa cannot be 

zero, because zero is not a valid select code for the Isr _access utility.) 

T :-..... 
.L " •• : =_::_; ~: ~_: t. 

:"'~:Q:::~3 

ADA =-1 

c:·'·.·::···· -; i 

~=;t:::!E-·.3.:;It:· ~.I)::::rM.;j f':::r' tt-~E' r(.3.::.k = 

Shift n iet·t instr~:tion. 

When you want to signal a select code after others have already been signalled, a slightly 

different instruction sequence is required -

I::;OUPCE 
E;C1UPCE 
I::;CUPCE 
I ::;OUPCE 

LDB l:::T p:::.i ... i 
LIlA =1~Y':::E: 

::;TA B,I 
ADB=:3 
LIlA rt:I.:::.k 
::Tlt 
Lllr:. 

EIF.: 

Mask is the same as above. 

Drs in the select code 



7-30 1/0 Handling 

As a further example, suppose you want both to signal BASIC when a device sends a line-feed 

character to the computer, and to terminate the ISR's linkage. Then the ISR might appear as-

I::;OUF.:CE 
I ::;OU F-::CE 
I::;OU~~CE 

LIlA ~~4 

CPA =Lt 

.. Tl'1F' T ,::rm i nat,:: 
:::;TA F.:7 

LItE: I:::T p:::.i .. J 

LIlA =iO:::::t: 

ADB _.-, 

LilA =1 
D T 
.l..1, ..i.. 

Prioritizing ON INT Branches 

I R,::t~~n to BASIC. 

Since more than one interrupt may occur while a single BASIC statement is executing, it is 

possible that by the time the line finishes there may be a number of ON INT branches waiting to 

be executed. In such situations you may want to assure that some ON INT branches are taken 

before others, or that you finish one routine (caused by an ON INT GOSUB or ON INT CALL) 

before you start another. This can be achieved by using the {priority} option of the ON INT 

statement, thereby "prioritizing" the branching caused by interrupts. 1 

There is a "system priority" for ordering this interrupt branching. For an ON INT to be honored 

at the end of a BASIC line, its priority must be greater than the current system priority. 

Initially, the system priority is set to O. When a BASIC line finishes, and there is at least one ON 

INT branch pending which is greater than the system priority, then the system takes the branch 

associated with the ON INT with the greatest {priority}. The values assigned to {priority} may be 

any integer numeric expression from 1 to 15. If {priority} is omitted, 1 is assumed. 

If the ON INT branch to be executed is a GOTO, then the system priority level is unchanged. 

But if the branch to be executed is a GOSUB or a CALL, then the system priority level is 

changed to the priority level of the ON INT. Whenever the subroutine or subprogram is finished 

executing, then the previous system priority level is restored. 

1 This "prioritizing" also holds between the various types of end-of-Iine branch statements that have the priority parameter. 
Thus an ON KEY with high priority is executed before an ON INT with low priority. 



1/ 0 Handling 7 -31 

• The subroutine or subprogram is not allowed to execute until its priority is the highest one 

pending. 

• Whenever the subroutine or subprogram is executing, it locks out any other interrupting 

branches unless they have a higher priority. 

With the GOTO version there are also two effects, slightly differing -

• The branch is not taken until it has the highest priority of all pending branches. 

• The execution of the branch does not lock out any other branches, so that at the end of 

the line to which it branches, if there are other pending branches, the highest one of those 

is executed. 

For example, suppose there are these four statements in effect -

un T r'~T # . .; 
.l. 

... 
ir·~ I r·~T W5 ;-

~ J GOSUB Routine 5 
-

r'~ T f·~T #===-- .l. , 
... 

r'~ r'~ #7 -; - ; , 

and also suppose that at the end of some BASIC line in the program, an interrupt had been 

received from all four of the interfaces involved. Then the process of dealing with them pro

ceeds like this -

EVENT 

Reaches end of current 
BASIC line 

Finishes Routine 7 

NEXT ACTION 

GOSUB Routine 7 

GOSUB Routine 5 

SYSTEM PRIORITY 

Changes from a to 15 

Changes from 15 to 9 

Suppose at this point another interrupt is received from select code 7. 

EVENT NEXT ACTION SYSTEM PRIORITY 

Reaches end of current GOSUB Routine 7 Changes from 9 t<;> 15 
BASIC line in Routine 5 

Finishes Routine 7 Returns to interrupted Changes from 15 to 9 
point in Routine _ 5 

Finishes Routine 5 GOTO 1000 Changes from 9 to a 

Finishes with line 1000 GOTO Routine 4 Stays at a 



7 -32 I/O Handling 

Environmental Considerations 
Changes in program environment (Le., calling a subprogram or returning from one) can affect 

whether an ON INT is in effect or not. 

Once executed, the CALL version of an ON INT is always in effect, if it is in the main program, 

until it is redefined by another ON INT or is specifically disabled (see below). 

In the GOSUB or GOTO versions, the statement is in effect only in the same program environ

ment. This is to say that if you have executed an ON INT statement in your main program, then 

it is effective only while your program is executing part of the main program. The instant the 

program goes into a subprogram (through a CALL statement), the statement is no longer 

effective until the execution returns to the main program. Similarly, if you define an ON INT in 

a subprogram, it is effective only while the program is executing that subprogram. 

A side-effect occurs here when you use the CALL version of an ON INT. By calling the 

subprogram with an ON INT, you have the effect of locking out the other interrupts, except 

those which are executed in the subprogram itself and other CALL versions. This is regardless 

of priority. In the priority example in the previous section, if the ON INT#5 had been a CALL 

instead of a GOSUB, then the second interrupt from select code 7 would not have been 

acknowledged until the subprogram had finished. 

Since recursive calls of subprograms are possible, it is also possible that many calls to the same 

subprogram may be stacked up because an interrupt from a different select code with a CALL 

version of an ON INT in effect may be received while processing the CALL caused by a 

previous interrupt. 

Disabling ON INT Branching 
The branching enabled by an ON INT statement can be disabled using an OFF INT statement 

for the same select code. It is effective for the ON INT statement within the same program 

environment (main program or subprogram) or for the CALL versions of the ON INT within any 

environment. 

The statement has the form -

UFF I ~··rr # {select code} 

where {select code} is a numeric expression for any valid interface select code between 1 and 

13, inclusive. 



I/O Handling 7-33 

The effect of the OFF INT statement is to disable the ON INT for that select code within the 

current environment. If there is no ON INT statement currently in effect for the select code, 

then the OFF INT has no effect. 

The DISABLE and ENABLE statements work the same way for the ON INT statements as they 

do for the ON KEY statements. They should not be confused with the DIR and EIR machine 

instructions, which disable and enable the interrupt system. 

Mass Storage Activities 
For devices meeting the operating system's criteria for mass storage peripherals, utilities are 

provided for the reading and writing of records. The relationship between physical, logical, and 

defined records is discussed later in this chapter. 

If a device has been specified in a MASS STORAGE IS statement in BASIC, as in -

or is capable of being so specified, then it is possible to use utilities to access it. Note that the 

Mass Storage ROM is necessary to access any device other than the internal tape drive(s). 

NOTE 

BUFFER# must not be used with files which are accessed 

using these utilities. 

There are two utilities involved in reading from a mass storage device - Mm _read _start and 

Mm _read _ xfer - and there are two utilities involved in writing to a mass storage device -

Mm _write_start and Mm _write_test. The reading utilities are always used together. So, too, 

are the writing utilities. 

Reading from Mass Storage 
The flow of data to and from a mass storage device is buffered. For each device there is a 

"device buffer" in memory which holds data corresponding to a physical record (256 bytes). 

Device buffers are dynamically allocated by the operating system and their actual locations at 

any given time are of no concern. 



7-34 I/O Handling 

To get information from a mass storage device into its device buffer, use the Mm _read_start 

utility. Then to get the information out of the buffer and into your user space, use the 

Mm _read _ xfer utility. The transfer of data, therefore, looks something like this -

Mm - read - start Mm - read - xfer User 
Space 

The utilities accomplish their purposes with the help of two locations containing vital 

information for their use. The first is the Mass Storage Descriptor (MSD) and the second is the 

Mass Storage Transfer Identifier (MSTID). 

The MSD is three words in the ICOM region which contains the following information -

WORDr-----------~ 

o MSUS 

lower 16 bits of 
record number 

2 don't I upper 7 bits of 
care record number 

15 ... 7 6 0 

This information must be provided by your program. You must determine this information in 

advance of attempting the reading operation. The msus is given in one of two forms-

Unit HPIB Device Select 
Number2 Address Type1 Code 

I I I I I I I I I I I I 

I I I I I I I I I I I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 OBit 

or 
Unit Device Select 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 OBit 

for the 9885MS Flexible Disk Drive. 

If the MSUS word contains a -1, the mass storage device indicated by the MASS STORAGE IS 

statement is used. The instructions -

LDri ::::: ... -j. 

Store in the first wora ot the MSD. 

1 The device type is the ASCII code for the type minus 100B. 

2 For tape operations, bits 9-15 are zeroes. 



1/0 Handling 7-35 

snecifu the default mass storaQe device. -r - ---J --- - - - - _ 

The MSTID is a single word. The information in it is returned by the Mm _read start utility and 

used by the Mm _read _ xfer utility. 

The usual procedure in reading a record from mass storage (which is all that can be read at one 

time) is to call the Mm_read _start utility and then, if all goes well with that, to call the 

Mm _read _ xfer utility. Because the latter utility may have to wait on the operating system or 

the device, it is possible the utility may return without having completed the transfer. In that 

case, it is your option either to loop back and keep trying, or to do something else and try again 

later. 

UTILITY: Mm read start 

General Procedure: The record number is determined, then the transfer of the record's 

contents is made from the device to the device buffer. If the buffer allocation causes a memory 

overflow, there is an error. 

Special Requirements: The record number and msus must be loaded into the MSD in 

advance of the call. There must be a stable location (not changed by other activities) for the 

MSTID to be held. 

Calling Procedure: 

1. Store the msus and record number into the MSD area. 

2. Load register A with the address of the MSD area. 

3. Call the utility. 

Exit Conditions: 

RET 1 Occurs if there is a memory overflow during execution of the utility. 

RET 2 Occurs if all went normally. Register A contains the MSTID. This should be 

immediately stored in the location reserved for it. 

UTILITY: Mm read xfer 

General Procedure: The MSTID is used to retrieve the record from the device buffer. The 

record is stored into a location set aside for this purpose. 

Special Requirements: The MSTID must be available from a previous call to 

Mm read start. A location of 128 consecutive words must be set aside to hold the contents of - -
the record when they are returned by the utility. 



7-36 1/0 Handling 

Calling Procedure: 

1. Load register A with the contents of the MSTID. 

2. Load register B with the address of the storage location for the data. 

3. Call the utility. The transfer may not be completed on the first or subsequent calls (see 

exit conditions). In that case, to successfully complete the transfer, all three steps must 

be repeated. 

Exit Conditions: 

RET 1 Occurs when the transfer is not completed. It is up to your routine at this point to 

decide whether another attempt should be made immediately, or whether 

something else should be executed (and to come back later). 

RET 2 Occurs when the transfer is complete. The location specified contains the data. If 

register A contains a non-zero value, an error occurred and A contains the error 

number. In addition to mass storage errors (80 through 99), error 19 is returned if 

the MSTID parameter is invalid. 

CAUTION 

PRESSING RESET (88) DURING EXECUTION OF 

EITHER OF THE ABOVE UTILITIES MAY CAUSE A 

SCRATCH A TO OCCUR. 

The following is an example of a typical call to these utilities to read a record from mass 

storage -

ISOURCE Number: ESS 2 
ISOURCE Msd: ESS ~ 
ISOURCE Mstid: BSS 
IS~JRCE Record: BSS 128 

I::;OU!?CE 
ISOURCE 
E;OUF~CE 

I::;OUF.:CE 
I::;OUF.:CE 
I:::OURCE 
I:;OURCE 
I::;OURCE 
I ::;OURCE 

LIlA =(C"T-i(KfB)+l +14) I I'E;!J::; f,y-· ":T14" 
:;:;TA r'1sd Ct-·eat.e the !'l::;D 
LIlA r'k~ii!bE'r' 

'::TA t'1:::.d+i 
LIlA t'k~fllbef--+l 

:::TA t'1:::.d+2 
LIlA =t'l:::.d 

Store low-order bits of record number 

Store hiqh-order bits of record number 

3::;t'1 t'1m t-·;::-.::..d s~ .. :it-·t I Ft-'Off! de'...'i ce t;:::; buffer' 
J't,1F' t'lt::r;:;,:::,t-· ,:.'..._ol.)t:rf 101 .. ) 



LIlA ~'i:::t i;j 

LDB =F'ecor-·,j 

Writing to Mass Storage 

I/O Handling 7 -37 

j Not comp1eted (PET 1 
! Check for errors (RE ~) 

Writing to mass storage is very much like reading from it. The flow of data is buffered. To get 

the data from the user space into the device buffer, and then to transfer the data from the buffer 

to the mass storage device, the Mm_ write_start utility is used. Then a test can be made to 

determine when the transfer is complete by using the Mm _write_test utility. Thus, the transfer 

looks like-

,-- --- Mm write test 
I 
I 
I 

Mm write start Mm write start User 
Space 

As with the reading utilities, these utilities accomplish their purposes with the help of the same 

two locations - MSD and MSTID. They contain the same information as they do in the reading 

utilities and are used in a similar fashion. 

UTILITY: Mm write start 

General Procedure: The record number is determined, then the transfer of the data is made 

from the ICOM region to the device buffer. If the buffer allocation causes a memory overflow, 

there is an error. 

Special Requirements: The record number and msus must be loaded into the MSD in ad

vance of the call. There must be a stable location (not changed by other activities) for the 

MSTID to be held. The data to be transferred must be ready (256 bytes - 128 consecutive 

words). 

Calling Procedure: 

l. Store the data to be transferred in its location. Store the msus and record number into 

the MSD area. 

2. Load register A with the address of the MSD area. 

3. Load register B with the address of the data location. 

4. Call the utility. 



7 -38 I/O Handling 

Exit Conditions: 

RET 1 Occurs if there is a memory overflow during execution of the utility. 

RET 2 Occurs if all went normally. Register A contains the MSTID. This should be im

mediately stored in the location reserved for it. 

UTILITY: Mm write test 

General Procedure: The MSTID is used to check to see if the data from the buffer has been 

transferred to the mass storage device. 

Special Requirements: The MSTID must be available from a previous call to Mm _write 

start. 

Calling Procedure: 

1. Load register A with the contents of the MSTID. 

2. Call the utility. The transfer may not be completed on the first or subsequent calls (see 

exit conditions). In that case, to successfully test for a completed transfer, both steps in 

the calling procedure must be repeated. 

Exit Conditions: 

RET 1 Occurs when the transfer from the device buffer to the device is not completed. It is 

up to your routine at this point to decide whether another test should be made 

immediately, or whether something else should be executed (and to come back 

later). 

RET 2 Occurs when the transfer is complete. If register A contains a non-zero value, an 

error occurred and A contains the error number. In addition to mass storage errors 

(80 through 99), error 19 is returned if the MSTID parameter is invalid. 

CAUTION 

PRESSING RESET (88) DURING EXECUTION OF 

EITHER OF THE ABOVE UTILITIES MAY CAUSE A 

SCRATCH A TO OCCUR. 



I/O Handling 7-39 

The following is an example of a typical call to these utilities to write a record to mass storage -

I::;CilJ~:C:E 

I::;OUPCE 

130UPCE 
I::;OUPCE 
I ::;OUf<~CE 
I ::;~JtlF.:C:E T E":=· t : 
I ~:;C!IJF:C:E 
I ~:;CjCI~:C:E 
I ~:;iJtJF.~C:E 
I ~:;Ci!J~:C:E 

LIlA =«"T-iO~~(B)*l6+i4 I !'1'::;!j::; fer ":T14" 
::;TA "i:::.d 
LIlA t'k~fflbET 

::;TA "i:::.d+i 
LDA t'ke:ber-+i 
::;TA r'isd+2 
LIlA =f'1:::.d 

Store lCM order bits of record nUffioer 

Store high-order bits of record number 

JSM Mm write start ! Put record in buffer - -
.Jf'iP f'iefl"icr~: .. I_c')Erf 1 0; .. 3 
3TA Mstid Keep the M3TID 
LDA i'1st i d 

JMP Test I Not completed 
SZA *+? Check fer errors 
.E;r'1 Et-'r-'or-' e::< i 1:. 

System File Information 
As an ASSIGN statement is executed in BASIC, a file-descriptor is created for that assignment 

in the operating system's files tabie. The ASSIGN statement essentially has two parameters

the file number and the file name (including the BASIC language mass storage unit specifier). 

The file number is, for all practical purposes, an offset into the files table. The file name and the 

BASIC language mass storage unit specifier are translated and the critical information as

sociated with them comprise an entry in the files table (Le., the "file descriptor"). 



7-40 1/0 Handling 

The file descriptor consists of 10 words containing the following information-

Word 

o 
1 
2 

3 

4 
5 
6 
7 
8 
9 

Description 

Lower 16 bits of the address of the first physical record in the file 
Number of defined records in the file 
BASIC's Current defined record number 

(Le., an offset from the file's beginning). 
BASIC's offset to current word within current 

defined record 
Size of the defined record (in words) 
Mass storage unit specifier (msus) 
BUFFER# flag (O=no BUFFER# active)l 
Check read status (0 = off, 1 = on) 
Highest 7 bits of the first physical record in the file 
(Reserved by the operating system) 

Note that words 5, 0 and 8 contain the information necessary to create an MSD. You may 

access a file descriptor through two utilities - Get_file _info to obtain the information, and 

Put_file_info to change the information. 

NOTE 

A files table is created for each BASIC "environment" (i. e. , 

main program and subprograms). When access is made 

through utilities to the files table, the table accessed is the 

one associated with the BASIC environment which called the 

assembly language program. 

UTILITY: Get file info 

General Procedure: The utility is given the file number and the location of a place to store the 

file descriptor. It retrieves the designated descriptor and stores it, provided the file has been 

assigned. 

llf this flag is non-zero, it indicates that a BUFFERN: is active for this file. Therefore, Mass Storage utilities should no be used. 
Executing another ASSIGN statement for this file clears the BUFFERN: flag. 



I/O Handling 7 -41 

Special Requirements: There must be a ten-\1Jord area available for the utilittl to store the 

information from the descriptor. 

Call Proced ure: 

1. Load register A with the address of the ten-word area where you desire the information 

to be stored. 

2. Load register B with the file number (an integer from 1 to 10). 

3. Call the utility. 

Exit Conditions: 

RET 1 Occurs if the file is not currently assigned by a BASIC ASSIGN statement. 

RET 2 Occurs if all went normally. 

Here is an example of a routine which has a file number passed to it, and then gets the file 

descriptor -

ISOURCE File descriptor: BSS 10 

I~:;OURCE Rout i ne: 
I ':;OUF.~CE 

I~:;OURCE 

I ~:;OUF:CE 

UTILITY: Put file info 

::;UB 
FIL 
LIlA =File 
LDB =r-'·::u·-·.:imetet-· 
.J~:;rI1 (;;::-1:. i.).3.1 t~E' 

! Get fj Ie number 

.Jr'1FI =F 11 E~ijE'=='C r-' i r::t C:f-'! C;E;:"t f" i 1 E" :jE":::.C t-· i t)t C!r-' 

JSM Get file info 
JMP No file error File not assiqned 

General Procedure: The utility is given the file number and the location of the area contain-

ing the new file descriptor information. It stores that information into the files table as indicated 

by the file number, provided that the file has been assigned. 



7 -42 I/O Handling 

Special Requirements: The new pointer information must be stored in the designated area 

before calling the utility. This information must be in the correct form and location or file 

difficulties may ensue. Most of the information is normally returned by the "Get_file _info" 

utility and only a couple of words are changed to change the pointer in the file (e.g., the current 

record and word numbers). Only words 2,3, and 7 should be changed in the descriptor. 

Calling Procedure: 

1. Load register A with the address of the ten-word area where the information is stored. 

2. Load register B with the file number (an integer from 1 to 10). 

3. Call the utility. 

Exit Conditions: 

RET 1 Occurs if the file has not been assigned by a BASIC ASSIGN statement. 

RET 2 Occurs if all went normally. 

Here is an example where the next defined record in a file is specified -

File: BSS I File number 
File dE:::-U--ipt.::x-: B=:;::; 10 !=-ilE infon(~3.tion 

::;TA F i i E~de:::-c t-- i p"t 01"--+:::: 
LIlA =F i 1 E~desc r- i pt !y-

lDB File 
]SM Put file info 
JMP No file error File not assigned 

Communication with BASIC Data Files 
It is perfectly acceptable and practical for assembly language programs to write data patterns to 

data files and read them back. This has the advantages of simplicity and efficiency. However, 

such files cannot be properly read by the BASIC READ# statement or written for assembly 

routine use by the BASIC PRINT# statement. Therefore, if it is necessary for an assembly 

language program to read or write data which is corripatible with READ# and PRINT#, the 

assembly language program must recognize and conform to the conventions used by these two 

BASIC statements. This section discusses these conventions. 



I/O Handling 7 -43 

Interrelation of Record Types 

Recall from the System 45 Operating and Programming manual that there are three types of 

records used with the System 45 as follows: 

• Physical record - 256-byte, fixed units which are established when a mass storage 

medium is initialized. Every file starts at the beginning of a physical record. 

• Defined record - established using the CREATE statement. Defined records can be 

specified to contain any number of bytes in the range 4 to 32 767 (rounded up to an even 

number). The first defined record of a file starts at the beginning of a physical record. 

• Logical record - a collection of data items that are grouped together conceptually. Dif

ferent logical records may have different lengths within the same file. If a logical record is 

not immediately followed by another logical record and does not end on a defined record 

boundary, it is followed by either an EOR (end of record) or EOF (end of file) mark. 

In order to locate logical records within a file, it is necessary to know the relationship between 

logical and defined records. This relationship depends on the method of file access used to 

write the information into the file. When a file is written using strictly serial file access, the first 

logical record starts at the beginning of the first physical record, the second logical record starts 

immediately after the first logical record and so on. Logical records may cross defined record 

boundaries. When a file is written using strictly random file access, each logical record starts at 

the beginning of a defined record and is contained entirely within the defined record. A hybrid 

method is also possible. With this method, logical records are written starting at the beginning 

of defined records other than the first one, and the logical records may cross defined record 

boundaries. Logical records may start immediately after other logical records, as well as at the 

beginning of defined records. Illustrations representing files produced by each of the three 

methods described above are presented here -

Defined Record Defined Record Defined Record 

Logical Record ---1 ..... -+-- Logical Record -----ir---+--t+-- Logical Record 

Logical Record ---+~ .... 

File produced by serial access. 

I 
I 

Logical Record --+-1 

File produced by random access. , 
I 

Fi Ie prod uced by hybrid access. 

Defined Record 



7-44 I/O Handling 

The READ# and PRINT# statements read and write logical records which may be optionally 

positioned on defined record boundaries. Physical records are essentially invisible to the 

BASIC user. On the other hand, the assembly language mass memory utilities deal with physi

cal records. To keep the relationship between defined and physical records simple, it is recom

mended that data files be created with 256 bytes per defined record (this is the default byte per 

record number used by the CREATE statement when the record length argument is not 

supplied). When 256 byte records are used, physical and defined records are identical. If you 

choose not to use 256 bytes per defined record, the relationship between physical and defined 

records is also fairly simple if the number of bytes per defined record is a power of 2 (e.g., 64) 

or is an integer multiple of 256 (e.g., 768). 

Crossing Record Boundaries 

The subject of what happens when a logical record crosses a physical and defined record 

boundary is now considered. The sequence of data words is not affected as the physical record 

boundary is crossed. For example, suppose there are three words remaining in a physical 

record and the next data item to be written is a real number (which requires four words). The 

first three words are written at the end of the current physical record and the last word is written 

at the beginning of the next physical record. 

However, the same is not true when a sequence of data words crosses a defined record 

boundary. Numeric data items are not allowed to cross defined record boundaries. When 

writing a data item, the follow three cases exist: 

• If there are enough words left in the current defined record to contain the item, the item is 

written in that record. 

• If there are no words left in the current defined record, the item is written at the beginning 

of the next record. 

• If there are one or more words left in the current record but not enough to hold the data 

item, an end of record mark is written immediately after the previous data item in the 

current record and the new data item is written at the beginning of the next record. 

Of course, these cases apply when physical record boundaries coincide with defined record 

boundaries. A fourth case exits and involves an attempt to write a full-preciSion number into a 

file with 4 or 6 byte defined records or to write a string into a file with 4 byte defined records. If 

either operation is attempted, ERROR 61 results. 

Strings may cross defined record boundaries but special rules apply in this case. These rules are 

described later when string data types are discussed. 



I/O Handling 7 -45 

A full-precision number exits in a data file as four words in a form tha looks like this -

Exponent 
Sign 

Most 
Significant 

Oigit 

...... 

......... 

15 14 13 12 11 10 9 8 

I I I I I I I 
Exponent 

~ 
01 02 

Os 06 

09 010 

7 
I I 

6 5 4 3 2 

I 
I ( I 

0 1 1 0 

03 

07 

011 

I 

I 1 

04 

Os 

012 

OBit 

..... 

......-~ 

Mantissa 
Sign 

Least 
Significant 
Oigit 

This is the same format as that shown in Chapter 3, except for the type bits which are used to 

identify the number as full precision. A full-precision number must have the type bits set to the 

pattern 01101 when written to a mass storage device, otherwise READ# will not interpret the 

data correctly. A full-precision number must have its type bits cleared before it is used with the 

math utilities or sent back to BASIC. Erroneous results occur if the type bits are not cleared. A 

full-precision number must not cross a defined record boundary. 

A short-precision number exists in a data file as two words in the following form: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 Bit 

Exponentt Exptnent j 

't I 
i 

01 02 
Sign 

03 04 Os 06 
I 

Mantissa Sign 

This is exactly the same as the usual short-precision format. READ# identifies short-precision 

numbers by the fact that 01 and 02 are valid BCD digits. A short-precision number must not 

cross a defined record boundary. 

An integer precision number exits in a data file as two words in the following form -

15 14 13 12 11 10 9 8 7 654 3 2 o Bit 

o 0 o o o o o o o 000 o o Type Word 

Integer 

The first word is a type word which allows READ# to identify the data as an integer. The 

second word is the integer value in the usual two's complement form. An integer preciSion 

number must not cross a defined record boundary. 



7-46 I/O Handling 

Strings are stored in data files in various forms, depending on how many defined record 

boundaries are crossed. The simplest case occurs when the string fits entirely within the current 

defined record. The fundamental format is illustrated here -

0 o 0 0 0 0 

Byte 1 
.1,. 

t Byte n 

o 0 0 0 1 1 1 

n(Length) 

I Byte 2 

1 0 0 

,., 

r 

Type Word 

Length Word 

When the string does not fit entirely within on record, it is stored as a "first part" , zero or more 

"middle parts" and a "last part". The following illustration represents a 300-byte string which 

has been written into 256-byte records starting at the third-to-Iast word of the record. 

Defined 
Record 
Bounda 

Defined 
Record 
Bounda 

~ 

ry 

-
ry 

~~ 

o 0 

o 0 

o 0 

(Previous data item) 

0 o 0 o 0 0 0 0 o 1 1 100 

30010 

Byte 1 Byte 2 

0 o 0 00000001 1 o 0 

29810 

Byte 3 Byte 4 

Byte 5 Byte 6 

Byte 253 Byte 254 

000 0 o 0 o 0 1 o 1 1 o 0 

4610 

Byte 255 Byte 256 

~~ 

Byte 299 Byte 300 

(Next data item, EOR or EOF) 

Type Word (First Part) 

Length Word 

Type Word (Middle Part) 

Length Word 

Type Word (Last Part) 

Length Word 

Note the different type words for the various parts. Also note that the length words contain the 

total number of bytes remaining in the string. 



I/O Handling 7 -47 

Strings are written according to the following rules: 

1. If defined records are only 4 bytes long, then ERROR 61 results. 

2. If the string fits entirely within the current record, the entire string is written into that 

record. (Null strings fall under this rule if there are at least 2 words available). 

3. If there are 1 or 2 words left in the current record, an end-of-record mark is written after 

the previous data item. If there are 0, 1 or 2 words left in the current defined record 

(before anEOR was written), then the data file pointer is moved to the beginning of the 

next defined record and the string is then written starting in the new current record as in 

Step 2 above. 

4. Otherwise, as much of the string as will fit in the current record is written as a first part 

string. Zero or more middle parts are written, one per defined record, and then the last 

part string is written. 

File Marks 

End-of-record (EOR) and end-of-file (EOF) marks exists as single word markers as shown 

below. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 Bit 

0 0 0 0 0 
I 

0 0 0 0 0 0 0 

End-at-record Mark 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 Bit 

0 
I 

0 
I 

0 
I 

0 0 0 0 0 0 0 0 

End-at-tile Mark 

An EOR indicates that there is no more valid data in the current defined record. If a serial 

READ# tries to read more data when the file pointer is positioned at an end-of-record mark or 

positioned past the end of the defined record, the READ# skips to the beginning of the next 

defined record and tries to read data there. 

An EOF indicates an end of data. If a READ# tries to read more data when the file pointer is 

positioned at an end-of-file mark or past the end of the last defined record, then an ERROR 59 

results unless there is an ON END# condition active for that file pointer. 



7 -48 I/O Handling 

For best results when writing data files, write EOR and EOF marks according to the following 

rules: 

1. Write EOR marks as indicated in the discussion of string data files, given in the previous 

section and according to the rules outlined in the section "Crossing Record Bound

aries". If these rules are not followed, the BASIC READ# statement will attempt to 

interpret the unused words at the end of defined records and will probably give ERROR 

65, incorrect data type. 

2. In a serial access file, write an EOF immediately after the last logical record. If there is no 

room in that record for the EOF mark, write the EOF at the beginning of the next defined 

record. If this is not done, you may not know where your data ends when you try to read 

it later. If another logical record is to be appended to the end of the previous data, the 

first word of the new data must overwrite the previous EOF. If there is no space in that 

record for an actual data item, the EOF must at least be replaced with an EOR. 

3. If random access is used to find the end of data in a serial file, be sure that there is an 

EOF at the beginning of all unused defined records. 

4. A defined record in a random access file can be made empty by writing an EOF at the 

beginning of that record. 

5. The nature of programs that use random access is such that they usually do not try to 

read more data than was written. But for safety sake, it is a good idea to write an EOF or 

EOR after each logical record in a random access file, if there is room in each defined 

record. 

Determining Data Types 

The type of data item in a data file can be determined by ANDing the first word of the data item 

with 76B. The result (the type bits) can be used in conjunction with the following table to 

determine the data type: 

Type Bitsl Data Type 

12B Integer number 
32B Full-precision number 
14B Middle part of a string 
34B First part of a string 
54B Last part of a string 
74B Total string 
36B EOR 
76B EOF 

Other If the right byte consists of two valid BCD digits 
the data type is a short-precision number. 

1 The remaining codes have not yet been assigned but are reserved. 



1/0 Handling 7-49 

Piinting 

Three utilities are provided to enable you to gain access to the standard system printer: 

Printer_select, Print_string and Print_no_lf. An additional utility, To_system, allows you to 

expedite the printing process. 

UTILITY: Printer select 

Background Information: Printer_select allows you to set the standard system printer to a 

select code of your choosing. 

General Procedure: The utility is given the select code to be assigned as the standard system 

printer and the desired printing width. The utility makes the assignment and returns with the 

previous values of both the select code and printer width. 

Special Requirements: The select code value must be in the range of 0 through 18 for the 

utility to work properly. The select code and associated device for committed printer select 

codes are as follows: 

o internal printer 

16 CRT alpha raster 

17 display line of the CRT (as used for the DISP instruction) 

18 system message line of the CRT (as used for system error messages) 

HP-IB devices are not allowed for use with the Printer_select utility. 

Calling Procedure: 

1. Load register A with the desired select code. 

2. Load register B with the desired printer width. 

3. Call the utility. 

Exit Conditions: There are no error exits from the utility, so it always returns to the instruc

tion following the call. Register A contains the value of the previous select, and register B 

contains the value of the previous printer width. 



7-50 I/O Handling 

The utility can feasibly be used just to interrogate the current value of the printer's select code. 

However, a second call to the utility is needed in such cases to assure that the select is not 

changed by the first call. So, for example -

ISOJRCE JSM ~rlnter select 
ISOURCE STA Select code 
ISOURCE STB Printer width 
ISOURCE J5M Printer selE~t 

This results in an unchanged printer specification and the values for the select code and width 

being stored in the ICOM area for future use. 

Because of the possibility that a RESET (88), or similar interruption, may occur between 

the first and second calls to the utility, it is recommended that the first call have a definite valid 

value for the select code in A (as above). In that way, should there indeed be an interruption, a 

valid select code for the printer can be assured. 

UTILITY : Print_string 

Background Information: Print_string allows you to print a string to the standard system 

printer. A carriage-return line-feed sequence is sent following the string. 

General Procedure: The utility is given the address of a string, and it prints that string to the 

standard system printer. 

Special Requirements: The string to be printed must be in standard string format (see "Data 

Structures" in Chapter 3). The string must be no longer than 506 characters. 

Calling Procedure: 

1. Load register A with the address of the string to be printed. 

2. Call the utility. 

Exit Conditions: 

RET 1 If a memory overflow occurs during execution of the utility. 

RET 2 If the 8 key is pressed during execution of the utility. 

RET 3 If all goes normally. 



liD Handling 7-51 

For example -

._. j ;;:~: --.. :_.; ,L-L-

or 

T .-•....•• ::-•• - .• ,.... 

1. ::1 ;_; [_~ ft:: ;_. t:.. .- -:.- -=..,..:. -: -
:_ :_:1,:._= , :.' ; :_:, :;: 

Stop key pr~;sed 

The DAT statement and the location counter (*) can be used to calculate string length so that 

strings can be modified without having to constantly specify length. The following example 

illustrates this useful feature: 

:' c·:-;: :: .. '~.: .. -
.:. ·_::_::._:r:.=._·C 

ISOURCE Entrvpoint: 

NAM Stringlength 
CAl Print e~~ing 
DAT (LEfigthl-+-1:+~ 

DAT ;;'::;TF'F(:; #1;; 
L .. E·nl;~t:.~ .. ~ 'j l-~f::::f-'fi'!-::it i C('l= 

Modifiable String1 . 
Location counter. 

OverflcM routlne. 
Stop key pressed. 

The strings in this example can be modified to any length less than 507 characters. The number 

of characters need not be placed in the DAT statement as this is taken care of in lines 30 

through 50 and 60 through 80. 



7-52 I/O Handling 

CAUTION 

PRESSING RESET 88) DURING EXECUTION OF 

THE PRINT STRING UTILITY OR THE PRINT NO LF 

MAY CAUSE A SCRATCH A TO OCCUR. 

UTILITY: Print no If 

Background Information: Print_ no _If operates in an identical fashion to the Print_string 

utility except that no carriage-return line-feed sequence is appended to the end of the string. 

This is analogous to using PRINT «print list>;) in BASIC. 

General Procedure: The utility is given the address of a string, and it prints that string to the 

standard system printer. 

Special Requirements: The string to be printed must be in standard string format (see "Data 

Structures" in Chapter 3). The string must be no longer than 506 characters. 

Calling Procedure: 

1. Load register A with the address of the string to be printed. 

2. Call the utility. 

Exit Conditions: 

RET 1 If a memory overflow occurs during execution of the utility. 

RET 2 If the 8 key is pressed during execution of the utility. 

RET 3 If all goes normally. 

For example -

I::;OUPCE 
I::;DUPCE 
I ::;ClUF.:CE 
I::;UUF.:CE 

.]::;,'1 F'r·i nt no 1 f 
T'W Ci'·}E:rf 1 Oi .• ) 

Ji'W ::;topk e',..' 
I Clverf10~ routine. 
I Stop key ~~essed. 



I~:;OU~~CE 

I::;OUPCE 

Y:;t'1 F't-·i nt_ stt-·; n9 
JMP Overflow I Overf ow routine. 
JMP Stopkey I Stop ey pressed. 
t·jOP 

The result that is sent to the standard printer is -

MESSAGE# 1 IS CONCATENATED TO MESSAGE #2. 

The Beep Signal 

I/O Handling 7 -53 

An audible tone (beep) can be produced from assembly language programs by storing 

100000B into R7 while Pa=O. This procedure can be used in interrupt service routines as well 

as in background programs. Here is an example -

I~:;OUPCE 

I~:a)UPCE 
I~:;OUPCE 

LIrE: Pa 
LIrA =[1 

::;TA Pa 

(I i d F'.::=t. 

BE·ep! 
F::E':=- tCitR'E" F":1a 

Expediting I/O 
The design of the System 45 operating system is such that an assembly language routine can be 

executing while there is one or more I/O operations pending or "queued up" by the system. 

This condition may arise when BASIC statements such as PRINT, OUTPUT, ENTER, PLOT, 

IASSEMBLE and others are executed in OVERLAP mode before an ICALL statement or when 

utilities such as Print_string or Print_no _If initiate I/O from within the assembly language 

module itself. The operating system doesn't get a chance to move these I/O operations toward 

completion as long as the assembly routine is executing. 

This fact is typically of little concern since the operating system resumes its attempt to complete 

the I/O operation as soon as the ICALL completes. However, there are three specific cases in 

which expedition of an I/O operation is useful or even necessary. These three cases follow: 

1. when the assembly routine is waiting for a busy variable to become not busy. 

2. when the assembly routine takes a long time to execute and the programmer wishes to 

continue working on queued up I/O. 



7-54 I/O Handling 

3. when the assembly routine needs to guarantee that I/O to a particular select code has 

completed. 

Case 1 has been discussed in Chapter 6. Case 2 can be taken care of by including an occas

sional JSM To_system in a long assembly routine. The third case might arise in situations 

where the routine must make sure that a message is printed on the CRT before starting a long 

computation process. This situation might also arise when the assembly routine must com

municate with an I/O interface card which may be involved in an OVERLAPPED I/O opera

tion. Consider the following example: 

F'PHnE~: I::; 6 
PPH-n Ln4(:~:), "HI THEPE'; 
I CALL i'1 i nE" 

ISOUPCE :;:;UB 
ISOUPCE t'li fH::". LDA 
130UPCE ::;TA 
ISOUF::CE LDA 
I::;OUPCE ::;TA 

=6 
p.3. 
=1 
P5 

If this segment of code is executed in SERIAL, the ICALL would not begin until the PRINT is 

completed and there is no problem. If, however, the segment is executed in OVERLAP, the 

ICALL is allowed to begin, even though the operating system has not yet completed the 

PRINT. The results of this kind of situation are unpredictable. 

A technique called "flushing" is used to ensure that all I/O operations on a particular select 

code have completed. The process of flushing involves interrogating a special table within the 

operating system to determine if an I/O operation is pending on a particular select code. The 

following routine flushes all I/O from the select code passed in the A register. 

I ::;OUPCE F 1 u::J-~po i lJnt. Er : 
I :::;OUPCE FlIJ:::.h j 0: 
I ~::;OUPC:E 
I:::;OUPCE 
I SOURCE F 1 u:::.t-~ loop: 
I:::;OURCE 
I:::;OURCE 
I:::;OUPCE 
ISOUPCE Flu:::h donE": 

ISS 
3AL I ComputE" offset into tablE". 
ADA =177000B I ComputE" pointE"r into table. 
STA Flush pointE"r 
LIlA FltE~-~pointE·r·, I I I:::. :::.E"lec1:. codE" bi.E~:.<' 
SZA Flush donE" I YE"s. 
.J~:;t~1 Tc~ ~.~:}:::.t. efff 
.Jl'1F' Fl u:::.t-~.l oop 
PET 1 

The flushing technique should not be used in the following two cases: 

1. Mass memory devices: Use the mass memory utilities to communicate with mass mem

ory devices. 

2. The Isr _access utility: It automatically flushes the select code of all activity. 



Chapter 8 
Debugging 

Summary: This chapter describes techniques for isolating and correcting logic prob

lems in assembly programs. Included in the discussion are techniques for stepping 

through programs, getting dumps, patching, and using the keyboard. 

The assembly system has provided you with a number of BASIC language tools to help you 

debug your assembly language programs during their development stages. 

These tools are for run-time debugging, so your source code must have been assembled into 

object code and stored in the ICOM region before attempting to use any of the debugging 

features detailed in this chapter. 

There are three classes into which these tools fall: stepping through programs, dumps, and 

value checking. There is also an additional capability provided for the correction of some 

errors - patching. 

The BASIC statements available for debugging are -

and the following BASIC functions are available -

eCTAL 

8-1 



8-2 Debugging 

Symbolic Debugging 

Many statements allow symbolic addressing. The general rules are -

An {address} or {assembled location} can have two forms -

{symbol} [~{numeric expression} ] 

{expression} [~ {numeric expression} ] 

where, 

{symbol} is an assembly location. It may be either a label for a particular machine instruc

tion, an assembler-defined symbol or a symbol defined by an EQU instruction. 

{expression} may be a numeric or string expression. Variables in expressions are assumed 

to be BASIC variables. If numeric, a decimal calculation is done and the result is inter

preted as an octal value; an error results if the result is not an octal representation of an 

integer. If a string expression is used, the string must be interpretable as either an octal 

integer constant or a known assembly symbol. 

{numeric expression} serves as a decimal offset from the given label or constant. Vari

ables in these expressions are assumed to be BASIC variables. An undefined BASIC 

variable is always given the value O. 



Debugging 8-3 

Stepping Through Programs 
"Logic" difficulties are s'ome of the hardest problems to solve in debugging programs. In batch 

environments, the usual solution is to print the contents of variables at critical points in the 

program or to print dumps. The capabilities for both of these methods are provided. However, 

advantage has been taken of the interactive, "hands-on" nature of the 9845 and a feature has 

been added which allows you to execute the assembly statements individually. This permits 

you to examine the flow of the program as it executes rather than having to decipher a dump or 

trying to print the contents of specific variables at what you guess is the critical point. 

If you wish to look only at particular points in the program, or at particular variables, there is 

also the ability to establish "break points" for these items, so that your debugging routines can 

be invoked only when certain conditions arise. You can also establish different routines for 

different break points, adding to the flexibility. 

Individual Instruction Execution 

Normally, all BASIC lines, including the ICALL statement, act as a unit. That is to say, 

whenever you press the m key, the line which is currently executing is allowed to finish 
\....L.I m before the program is actually interrupted. Thus, if you press i during execution of the 

line -

100 LET A=1+1 

the line finishes and the variable A contains the value 2. Then the m takes effect. The same is 

true of a line containing an ICALL statement. 

For example, if you press m during the execution of-

120 IeAlL Sort(A(+» 

then the assembly routine completes before the m is honored. This is not always desirable, 

especially during debugging of the assembly routine. This technique does not allow you to look 

at the execution of the routine to help you determine what may be going wrong. 

The same problem occurs with the l-mfl key. Pressing mIT! causes an entire BASIC line to be 

executed. Thus, if you stepped through line 120 as above, the entire routine Sort would be 

executed, and you would not be able to observe its execution on an instruction-by-instruction 

basis. 



8-4 Debugging 

To permit you to analyze the execution of assembly language routines, an executable BASIC 

statement has been provided -

Now, should you have the sequence in your program -

11~:;:1 IPAlY:;E OH 
120 ICALL Sort(A(*» 

then pressing CD during the execution of line 120 would cause program execution to be 

interrupted after completion of whatever machine instruction is being executed at the time. 

Further, the assembly language source line associated with the following instruction is dis

played according to certain rules. 

If the source lines are still in memory when you press m (e.g., you just assembled the object 

code which you are running), then the source line is displayed. If the source is no longer in 

memory (e.g., the object code was obtained through an ILOAD), then the instruction displayed 

is the result of a "reverse assembly". If there is an operand with an instruction which is reverse 

assembled, then the octal value of that operand is displayed (this is because the reverse 

assembly process has no way of knowing what symbols you might have used to assemble the 

instruction originally). 

After pressing CD, all you have to do to resume normal execution is press CD· 
After pressing m, you may want to observe the flow of execution of your assembly routine. 

This can be done by succeSSively pressing the @ill key. Each time the key is pressed, another 

machine instruction is executed and the assembly source line associated with the next machine 

instruction is displayed. You may continue this way for as long as you like - until you press 

CD to allow processing to proceed uninterrupted until the end of the routine. 

Of course, the @ill key can be used to step through the BASIC program as you are used to 

doing. That feature is unchanged. It is possible, therefore, to "step into" the assembly lan

guage routine from the BASIC (i.e., you need only @ill into line 120 above) and not have to 

use the m key at all. 

In summary, IPAUSE ON allows two unique features -

• The m key can be used to halt execution within an assembled routine . 

• The @ill key can be used to execute individual assembly language instructions. 



Debugging 8-5 

Some key things to remember in using the IPAUSE ON raciiity -

• This is an execution-time debugging tool. You must be executing your previously

assembled object code with an ICALL statement. 

• If the source code is available for display, it will be displayed, otherwise the line is 

"reverse assembled". 

• Utilities are not stepped instruction-by-instruction, but rather as a unit. 

• The mID key performs in BASIC just as before. 

• Keeping the ~ key and the 8 key depressed causes repeated execution of the step

ping function, the same as in BASIC. 

By way of example, suppose you had the following source code -

:-.--,::"-, .. -.. --.:"-, 
:..:;i:_; ~ i_l :.....:-::-'r-' 

!~0 ISOURCE SUB 

~ .-.. -.: :~ .. -.:--
1. :=~~_~ i_:r::~_.t:.. 

260 ISOURCE Loop: 

LIfB =F'.=iJ·-·.3.f(~E-t E-r-' 

.J~=;r;1 C;E-t. =.).3,. 1 E)E:" 

A:DE 

Initialize counter 
! Initialize stack pointer 

r'~'-: :: C:f(!ffiE"E-:: (l::= :::-::·::t r-··3.C t t:-E" 

Fc:t~(j::f ::c:r(~r(~3.., r:: ..... r-::ict 

t::) c t-~:i r-j =;i i (~:;} E- n :;1:. h 



8-6 Debugging 

Then the following would be the display lines you would see as you executed this program 

using the I illfl key -

50 Loop: LINPUT AS 

170 00054 006026 
180 00055 142026 

200 00057 002022 
LI~:B ::;t r-' t-i:;! 

LIH4 =~:;t r- i r-§:;J 

210 00060 170600 SAL 

230 00062 022022 ADA =1 
240 00063 030016 
250 00064 070510 
260 
.-,-::t.-... 
c..(=-":'i 

9Q~ 00070 054001 
300 00071 067774 
260 00065 074760 Loop:WBC A 
270 00066 012017 CPA 
290 00070 054001 It::;Z B 
300 00071 067774 
2b0 00065 074760 Loop:WBC A 
270 00066 012017 CPA _/ 
290 00070 054001 
300 00071 067774 JMP Loop 
260 00065 074760 Loop:WBC A 
270 00066 012017 
290 00070 054001 
300 00071 067774 
260 00065 074760 Loop:WBC A 
270 00066 012017 
280 00067 066004 
320 00073 026013 

350 00076 006004 
360 00077 142010 

LIEN =~:;t(· i rif;i 
LIrE! :=F:.::l.r-·.:1.f!"~E·t ::;,!"". 

370 00100 170201 RET 

;3~~i C;C~TC; Lc:c)t=: 
50 Loop: LINPUT A$ 

Initialize CGJnter 
Initialize stack pointer 

Decrement. Done/ 

Retrieve next character 

i DecrE~Ent= Done? 

! Decrement. Done? 

F==;t~('i(j c Clf{~r(~3..:s e·::<t r-:3.C t 

t::) c ~-].3.r-!:; i t-~i;; 1 ==-!"-~E~~t ~-f 
t t-lE'r-~ ~·>::t l·-··~C t ~ ~'-~:;i 

Note that the address of the instruction, as well as the octal value of the instruction, is displayed 

along with the source line. 

This stepping facility can also be used, quite effectively, with the IBREAK statement (discussed 

below). 



Debugging 8-7 

Shouid the IPAUSE ON facility be no ionger desired, it can be turned off with -

The two statements can appear repeatedly in a program, allowing the stepping facility to be 

used in testing some programs but skipping over already proven programs. For example, 

suppose you had two programs - Sorta and Sortn - but the first was already tested and the 

second was not. Then this sequence might appear in your program -

140 IeAll SortnCAC+» 

Stepping through this sequence results in lines 110, 120, and 130 executing without interrup

tion, but line 140's call to Sortn would be executed instruction-by-instruction. 

Executing IPAUSE ON when the facility is already in effect causes no change. Similarly, execut

ing IPAUSE OFF when the facility is already off causes no change. 

Both IPAUSE ON and IPAUSE OFF can be executed from the keyboard. 

Setting Break Points 
It is possible to define points in an assembly language routine where the execution should 

pause should it ever reach that point. These are called "break points". They can be used to 

pause execution - allowing you to utilize the stepping activity described above in IPAUSE ON 

or to investigate the contents of variables, etc. They can also be used to allow branching to 

some BASIC routine, giving you the power of BASIC in doing some of your debugging. 

Simple Pausing 

To simply pause at a break point, you need to execute the following statement in advance of 

reaching that point (either in the program or from the keyboard) -

I BFEA< {address} 

where {address} is the assembled location l for the break point desired. 2 Following execution of 

this statement, anytime the program execution reaches this address, it pauses. You may do any 

keyboard operations necessary at this point, or you may start stepping the program, (if 
~ 

IPAUSE ON has been executed), or you may resume execution using the W key. The 

address must have been assembled before the IBREAK is executed. 

1 See "Symbolic Debugging" in this chapter for the definition of "assembled location". 

2 The use of IBREAK significantly slows execution of assembly programs. 



8-8 Debugging 

If you were to execute -

IEPEAt::: Hcck,4 

then every time the fourth word past assembly label "Hook" is reached during execution, the 

program execution pauses. If you were to execute -

IBPEAt< Hcok+4 

then Hook is assumed to be a BASIC variable, and the result of the expression is assumed to be 

an absolute address using whatever the value of Hook is when the statement is executed. 

You can also specify the number of occurrences of reaching a break point before pausing 

should come into effect. This is done by executing -

I BPEAt::: {address} ; {counter} 

where {counter} is a numeric expression; any variables within {counter} are BASIC variables. A 

pause occurs when {address} has been reached {counter} number of times. {counter} is reset 

after each pause. 

When a break point is reached and a pause is to be taken, the pause takes place before 

execution of the contents of that address. 

After execution of the IBREAK statement, the contents of the assembled location for the break 

point are changed by the operating system; however, this does not affect the execution of the 

instruction contained therein. 

If an ICALL statement is executed from the keyboard and an IBREAK is active for a location 

within the ICALLed routine, program execution is returned to BASIC when the breakpoint is 

reached. Stepping of the assembly language routine is halted and the CRT is cleared. 

Transfers 

Instead of just pausing at a break point, it is possible to branch to a BASIC routine. The intent of 

this facility is to give you access to BASIC's capabilities, particularly the printing and 

variable-testing facilities, during your debugging efforts. 



Debugging 8-9 

The branch can be any of the three standard forms of BASIC branching -

I EPEA< {address} [; {counter} ] CALL {subprogram} 

I E~~EA< {address} [; {counter} ] C;U::;UE {line identifier} 
T """1;'''-0' .. {dd } [{ t} ] .-.-.. --.-.-. {I' 'd tif' } ... .t., .. t::., If:·. a ress ; coun er t.. ... u i U me 1 en ler 

When either CALL or GOSUB has been designated, execution of the assembly language 

routine is suspended when {address} is reached. Then the designated subprogram or 

subroutine is executed. When that subprogram or subroutine is completed, then execution of 

the assembly language routine resumes with {address}. 

When GOTO is specified, an unconditional branch is taken when {address} is encountered and 

execution of the assembly language routine is terminated. 

{counter} performs the same as in the simple pausing form. 

In the GOSUB and GOTO forms, there is an "environmental" restriction. The {line identifier} 

must be in the same BASIC environment (Le., main program or subprogram) as that in which 

the IBREAK statement is executed. More on this in "Environments" beiow. 

You should avoid recursive use of the ICALL statement when using the IBREAK statement to 

branch to a BASIC subroutine or subprogram. The problem arises when an ICALL statement in 

the BASIC debug subroutine or subprogram calls the broken assembly routine. The IBREAK 

transfer occurs at the same assembly routine address each time it is encountered. This process 

results in non-productive looping. 

Environments 

The GOSUB and GOTO types of break points are related to the BASIC "environment" (Le., 

main program or subprogram) in which they are executed. Whenever an IBREAK statement of 

either type is encountered, the resulting break point is effective only for the environment in 

which the statement is located. The CALL version of break points is in effect in all 

environments. 

For example -

20f1 ::;lJB TEo:=' t 
210 U:f':EAK Hook C;OTO Check hGok 

the break point established for "Hook" is good only in the subprogram "Test". Leaving 

"Test" causes the break point to be cleared. 



8-10 Debugging 

Executing an IBREAK statement from the keyboard is effective only for the environment 

executing at the time the statement is made. For example, if the following program lines had 

been executed -

200 ::;UB T es t 
210 PAUSE 

and while the pause caused by line 210 is still in effect-

IBREAK Hook GOTO Check hook 

is executed, then the break point established for "Hook" is good only in the subprogram 

"T est". As with the above, leaving Test causes the break point to be cleared. 

If no program is executing when an IBREAK is executed from the keyboard, then the main 

program is considered to be the environment for the break point. If the program is replaced, as 

with a GET or a LOAD, then the break point is cleared. 

If a LINK command is used to replace all or part of a program, existing break points are still 

active. If the LINK eliminated the line label or subprogram referenced in the IBREAK, then 

ERROR 186 results when the break point is reached. If a GET command is used to replace all or 

part of a program, all GOTO / GOSUB breaks are cleared. IBREAK CALLs are still active. 

Again, if the line label or subprogram referenced by the IBREAK is eliminated, then ERROR 

186 results. If the program is replaced with a LOAD, all break points are cleared. You must 

re-execute the IBREAK statements in the new program. Only ENT and SUB symbols are 

defined in this new program until an IASSEMBLE is executed. 

Care should be taken when calling BASIC subroutines or subprograms after an IBREAK has 

been set and before an ICALL has been executed. A CALL to a subprogram clears break points 

of the IBREAK ... GOTO and IBREAK ... GOSUB varieties; however, IBREAK ... CALL is not 

cleared. This is because CALL executes an INORMAL which clears all break points except 

IBREAK. .. CALL. (An INORMAL is also executed when the B key or 88 keys are 

pressed). Here is an example of break points being cleared by a CALL -

IDELETE ALL 
ICON 100 
IA::SEt'1BLE ALL 
IBREAK Middle GOSUB Bre8kfY~nj 
CALL Ca 1 l.ab 1 e 
IeAlL Ent t-·~:..Ipt 
am 

I Clear rCOM area. 
I Set aside 100 ~~rds. 

Assemble all modules. 
! J:k·eak ·at 1 oe-at ion t'j i dd h:= 
I CALL subprog~am. 
I Do assembly rc~tine. 

! Br·e.ak :::.ubt-·C!lJt i ne. 
I Subroutine end. 



13ti 

120 ISOURCE 
13ti ISOURCE 
14(i 

16ti ISOURCE 
170 ISOURCE 

190 ISOURCE 
2~30 

210 
220 
230 
240 

LilA =.-.. -

F.ET 
Et·m E::<'3.rIIp 1 e 

The break point is cleared after execution of line 50. 

! Routine entry point. 

F.~E·t t-it-'r-! tc! :BA~:; I C: D 

! r'k"jt~ 1 e end. 
! CALLed ~~bprogram. 

! Subprogram end. 

Debugging 8-11 

Keeping in mind that different BASIC environments exist for the main program, each 

subprogram and each multi-line function, IBREAK ... GOTO and IBREAK. .. GOSUB remain in 

effect only within the BASIC environment in which they are declared. IBREAK ... CALL remains 

in effect in all environments. A maximum of eight IBREAK ... CALLs are allowed. 

Data Locations 

Break points can also be established for data locations. This is done with -

I BFEA< DATA {address} 

In this case, {address} is presumed to be a data location referenced by other instructions. 

Whenever it is referenced by execution of some instruction, the pause occurs. 

If you were to say -

then whenever "Renras" is referenced, such as in -

a pause would occur for that instruction. 



8-12 Debugging 

A counter can also be specified with this form of break point -

- .... !; .-. _.. ,.. - T - {dd } { t} l,t:, .~!:::.Ht::. jjH 1 H a ress ; coun er 

{counter} is of the same form, and operates in an identical fashion, to the counter of the 

non-DATA form of break point. 

Because the XFR machine instruction may access a particular location twice when it is 

executed, the break point on a data location may not operate correctly if the instruction 

referencing it is an XFR. The way to avoid this incorrect operation of the break point is to set 

{counter} to 2. (The only time this problem occurs is when the destination area for the XFR 

overlaps the origination area.) 

Symmetry suggests that you should also be able to branch to BASIC routines with the DATA 

form of break point just as you can with the non-DATA form. And so you can -

I BF:EA~::: DATA {address} [ ; {counter} ] CALL {subprogram} 

I BPEAt::: DATA {address} [ ; {counter} ] C;C::;UB {line identifier} 

I B~EA~::: DATA {address} [ ; {counter} ] i::;CTC {line identifier} 

They operate in an identical fashion to transfers of the non-DATA type and are under the same 

"environmental" restrictions. 

In order to determine whether an address is being referenced, each instruction is "interpreted" 

(that is, analyzed for its components). Resultantly, a program runs much slower while an 

IBREAK DATA statement is in effect. 

In addition to the pausing capability, using IBREAK DATA also allows trapping on "protected 

memory" violations (see "Stepping vs. Running" section of this chapter). 

IBREAK Everywhere 

You may have a total of eight (8) break points (regardless of type) in effect at a given time, 

except for one extreme case. It may be desirable to establish a break point at every location in 

the ICOM region. This can be accomplished with -

This statement overrides all other IBREAK statements and causes a pause before execution of 

every instruction in the ICOM region. There are also branching forms -



IBPEA< ALL CALL {subprogram} 

IBPEA< ALL GO@JB{line~entifle~ 

IBREA< ALL GOTO{lineidentifle~ 

Note, however, that there is no {counter} in any of these forms. 

Number of Break Points 

Debugging 8-13 

As was mentioned above, there can be no more than eight (8) IBREAK statements in effect at 

one time, that is to say within the same environment. And only one IBREAK ALL can be in 

effect at a given time. 

In addition, there can only be one IBREAK or IBREAK DATA each in effect for a given 

{address}. Executing an IBREAK or IBREAK DATA with the same {address} as specified in an 

already effective IBREAK or IBREAK DATA statement causes the newly-executed statement to 

override the previous one. While there may be an IBREAK and IBREAK DATA both for the 

same {address}, the capability is not a useful one. 

Clearing Break Points 

There are a number of ways that break points can be cleared. One way as has already been 

mentioned, is leaving the BASIC environment, which clears any GOSUB or GOTO type of 

break points. Another way is to reassemble the module containing the break points. A third way 

is to execute an INORMAL statement. This statement has the form -

After execution of the statement, whatever form of break point is established for the address 

(except IBREAK ALL) is cleared. 

If {address} is omitted in this statement-

then all break points are cleared. This is the only way to clear an IBREAK ALL which may be in 

effect. 



8-14 Debugging 

Interrogating Processor Bits 

During execution of a break point, the values of three processor flags are stored in specified 

registers so that you can interrogate them. They are -

Decimal Carry 

Extend 

Overflow 

stored as least significant bit in location 36B 

stored as most significant bit in location 37B 

stored as least significant bit in location 37B 

Dumps 
A common tool of debugging is the memory "dump". This is a print-out (or display) of the 

contents of selected locations in the memory. A typical use is to dump areas of the ICOM 

containing data so that the actual contents at some point during execution can be compared 

with the expected contents. All of this is in the hope that the comparison yields differences 

which give a clue as to the source of the difficulties being encountered. 

This tool is provided through the IDUMP statement which has the form -

I DUr'1F' {location} [ ; {location} [ ; ... ] ] 

This statement can be placed in a program to be executed (perhaps as the result of a branching 

IBREAK statement) or it can be executed from the keyboard (perhaps during a pause caused by 

stepping or IBREAK). 

Any number of {location}s can be specified. They can take a number of forms. The simplest 

is -

{address} 

Thus, IDUMP {address} prints the contents of {address} to the current system printer. The 

contents are printed in their octal representation. For an explanation of {address}, see the 

"Symbolic Debugging" section of this chapter. 

{location} can specify a whole range of addresses by using the form -

{address} TU {address} 



Debugging 8-15 

With this form, the IDUMP statement prints the contents of all addresses starting with the first 

and ending the last specified {address}. If the second address is numerically smaller than the 

first, then a "wrap-around" through the end of memory into the top of memory is taken. For 

example, if you execute -

IDUMP 177776 ~u ~ 

then the contents of four addresses would be printed - those for 177776, 177777,0, and 1, in 

that order. Again, the contents are printed in their octal (base-B) representation. 

Addresses are always specified in their octal representation, or symbolically (such as "Hook" 

or "Loop"). This is the same as for an assembled location, which is what {address} happens to 

be. 

Care must be used with symbolic addressing. In the statement -

IDUMP Hook TO Hook + 4 

the first "Hook" is interpreted as an assembled location. Since the second "Hook" appears in 

an expression, it is interpreted as a BASIC variable. If it is undefined, this expression is 

evaluated as 4. To dump the fourth word past the assembled location "Hook", use the state

ment-

The output of the IDUMP statement is always printed to the current system printer. It is in octal 

form, unless otherwise specified. This specification is accomplished by preceding {address} 

with {mode selection}, which is one of the following -

Fr:;c for ASCII character representation 

B I r"i for binary representation (base-2) 

DEC for decimal representation (base-10) 

t-n:::>:~ for hexadecimal representation (base-I6) 

OCT for octal representation (base-B) 

Thus, the general form of {location} is -

[ {mode selection} ] {address} [TO {address} ] 



8-16 Debugging 

As an example of all this, take the example program at the beginning of the chapter. If a couple 

of statements are added so that the main BASIC program reads-

10 DF-i A$[1~)] 

2(1 ICot'1 1 ~=H) 
::::~3 IA~::;~:::Er'1:t:LE E::·::t:.r-·act:. 
40 IBREAK Loop GOSUB Dump 
50 IDUMP 41 TO 104 ! Dump of ICOM region 
60 PRIHT 
70 Loop: LIHPUT A$ 
:=::0 ICALL E::<tr-·.:ict <A$) 
9(t PRHH no:::"; A$; ")" 

120 I Dump A,B registers in octal for~, 

1 :~~~3 :=;. t. t-· i rIg 1 E'rl'~t t-} i t-~ ;jE"C i il't-::t.1 ·f c!r"fi!, ":::.r-lci 
140 and the string in c.uracter form 
150 
160 Dwnp: IDUMP A TO B;DEC String;ASC String,1 TO String~5 
170 F'RIHT 
i ;::;1.) RETURt·1 

then running it results in the following print-out -

000041: 000005 030462 031464 032454 033067 034071 022265 100003 022607 00001 
000053: 02&335 000001 100207 000000 000205 002025 006025 142025 007756 00202 
000065: 170600 023753 022021 03001b 070530 141714 012016 066004 054001 06777 
000077: 170201 026012 037740 002003 006003 166007 

000000: 000115 000012 
,j0(1~341: +00~j10 

000042: 12345~6789$5% 

000000: 000071 0000i1 
;.30004 i: +0001 t1 
000042: 12345,6789$5% 

000000: 000070 000010 

000042: 12345,6789$5% 

000000: 000067 000007 

000042: 12345,6789$5% 

000000: 000066 000006 
~X:1;'=1C14 i: +000 i Ci 
000042: 12345,67:=::9$5% 

-:: J. 234".5:> 



Debugging 8-17 

Value Checking 
Value checking is a method of tracing the value of variables in your assembly language program 

using the interactive capabilities of the 9845. You already have been introduced to break 

points and dumps in earlier sections. The capability of value checking serves as a useful adjunct 

to these procedures. 

The value checking of assembly "variables" is similar to the monitoring of variables in BASIC 

during a debugging phase. Just as you would use a live-keyboard operation or judiciously 

placed PRINT statements to trace the execution of a program or the change in value of a 

variable in a BASIC program, so too can you use the monitoring tools for assembly programs. 

Functions 

Four additional functions are provided as extensions to BASIC which can be useful in the 

monitoring of values in an assembly language program. The four are-

IADF 

eCTAL 

They can be used as other than monitoring tools, but their descriptions here are primarily in 

that context. As functions, these items can be easily adapted for use in the special function 

keys. 

DECIMAL 

This function has the form -

Dt::C Ir'1AL.'< {octal value} > 

The function converts an octal integer value between -177 777 and + 177 777, inclusive, into 

its decimal representation. If the argument given is not octal, then an error (number 184) 

results. 

This can be used as a qUick, simple way of converting octal numbers into the more familiar 

decimal value. Being a function, it can be used anywhere any other BASIC numeric function 

can be used. Often you will find it useful in PRINT statements which are a part of subroutines 

called by break points. 



8-18 Debugging 

OCTAL 

NOTE 

The values resulting from the OCTAL function must be 

treated with care. Though the result of the function is an 

octal representation, the value is still base-10. This differ

ence is unimportant unless you are going to do arithmetic 

with the value resulting from the function. 

This function is the converse of the DECIMAL function. Its role is to convert decimal values 

between -65 535 and +65 535, inclusive, into their octal (base-8) representation. The func

tion has the form -

C)CTAL. ( {decimal value} ) 

This can be used as a quick, convenient method of converting decimal numbers into their 

frequently used octal representations (a form which is useful because of its ready conversion 

into binary representation, and vice-versa). 

As an example of this, suppose the decimal value 15 is to be converted into octal. The method 

is-

and the resultant value is 17, the octal representation of 15. Now, if the result has 1 added to it, 

as with the expression -

eCTAL.;:: 1 ::::; ) + 1 

the ultimate result is 18. This can be a surprise since the usual octal arithmetic suggests that the 

result of 17B + 1 be 20B. To get the proper octal result, the procedure is -

The correct result can also be obtained with -

OCTAL(DECIMAL(17)+1) 

or 

OCTAL(DECIMAL(17) + DECIMAL(l) ) 



Debugging 8-19 

The preceding are examples of octal addition, Suppose you wanted the result of 178 + 14B. 

The expression used to obtain the correct result in octal representation is -

OCTAL(DECIMAL(17) 

The correct result is 338. 

IADR 

This function yields the numeric value in octal representation of the address of an assembled 

location. The form is -

IAD~~ ( {assembled location} )1 

As an example, take the case of the example program at the beginning of this chapter. The 

result of -

is 76. 

This function can be viewed as a convenient method of determining the address of a symbol, or 

of an offset from a symbol. 

IMEM 

This function is a quick, convenient way to look at the contents of a specific location in 

memory. The result is a numeric value, in octal representation, for the contents of a specified 

address. The form is -

E'lE:!"'l ( {assembled 10c?Lon} )1 

1 For an explanation of {assembled location}, see the "Symbolic Debugging" section of this chapter. 



8-20 Debugging 

The function is similar in many respects to the IDUMP statement. It is easiest, perhaps, to list 

the differences -

• IMEM is a function, where IDUMP is a statement. 

• IMEM deals only with a single address, where IDUMP can deal with many. 

• IMEM represents the value only in octal, where IDUMP can use many different representa

tions. 

• IMEM can be displayed and stored, where IDUMP can only be printed. 

An obvious use for this function is in a routine called by an IBREAK statement. By using the 

function in such a manner, perhaps in a PRINT statement, you can ease the burden of checking 

variables from the keyboard. You can even use the value returned as a comparison against 

some set of limits so that you print only when the value exceeds those limits. There are many 

other possibilities for its use. 

Interrogating Registers and Flags 
Interrogating the processor register A, B, P, R, Pa, Cb, Db, Dmapa, Dmama, Dmac, C, D, Ar2, 

Se, and Ar1 yields meaningful results only when execution of an assembly language subpro

gram has been suspended due to detection of a break point, or due to the use of the @l or m keys (see Stepping Through Programs). 

Further, the values of cetain processor flags are stored in specific memory locations when a 

subprogram is suspended as described above. The flags are then available for interrogation as 

follows: 

Decimal Carry 

Overflow 

Extend 

least significant bit of location 30B 

least significant bit of location 31B 

most significant bit of location 31B 

It is important to note that interrogating an I/O register (R4, R5, R6, or R7) causes an input 

I/O bus cycle, using the current Pa register contents as the interface address. See Chapter 7 for 

details on the effects of such an action. 



Debugging 8-21 

Patching 
Patching is the practice of changing the contents of memory locations without re-assembling. 

Patching as a standard procedure does not come highly recommended in the programming 

world. Nonetheless, there are circumstances which arise that occasionally suggest patching as 

the most profitable course of action. 

To change a particular location in memory in the 9845 is not difficult. The statement to use is -

I C-iAr-r:;t:: {assembled location} TU {octal expression} 

After execution of the statement, the specified {assembled location} contains the specified octal 

value. 

Changing the contents of a register is a common use of this facility. However, it should be 

remembered that attempting to change the contents of the I/O registers (R4, R5, R6, or R7) 

causes an output I/O bus cycle to occur, using the Pa register for the interface address. See 

Chapter 7 for details on the effects of such an action. 

Some precautions should be taken in attempting to change the DMA registers. The contents of 

Dmapa are set by the Isr _access utility and should not be changed while stepping. The contents 

of Cb and Db (contained in register 13 along with Dmapa) can be changed at any time. The 

contents of Dmac and Dmama can be changed but be sure that your DMA routine has DMA 

access at the time of the change. Changing the contents of these registers at a time when 

another routine has DMA access can have disastrous results. 



8-22 Debugging 

Stepping vs. Running 
You should be made aware at this point of some conditions that exist during stepping that do 

not exist during a free run of a program. During stepping with the STEP key or when an 

IBREAK DATA statement is in effect, an assembly language program is not allowed to access 

(jump to or write into) certain portions of memory. These portions of memory are known as 

"protected memory" and error 187 results if an attempt is made to access them. 

All memory is protected except -

• The ICOM region. 

• BASIC's "value" area (the region where BASIC variables are stored). 

• BASIC's common area (the region where BASIC common variables are stored). 

• The processor registers. 

• The temporary values stored in the base page (pre-defined symbol "Base_page"). 

• The utilities. 

Protected memory exists only when you are stepping a program, when an IBREAK DATA 

statement is in effect, or when you are using the ICHANGE statement. This feature reduces the 

danger of inadvertent destruction of data or nonsensical execution of data by the processor. 

Keep in mind that this feature does not exist when the program is free running. 

Since the contents of the processor registers are stored in read/write memory, a full 16 bits is 

used to represent the contents of each register, regardless of whether the register is a four-bit 

register (Pa,Dmapa,Se) or not. Only the least Significant four bits are of interest when an 

IDUMP statement is used to interrogate the four-bit registers. 

The second major difference between stepping and free running is that the processor registers 

displayed by an IDUMP statement are, in actuality, read/write memory locations. These mem

ory locations are updated only when the program is stopped. Therefore, running a program 

that changes the contents of the processor registers does not appear to have changed them 

when the IDUMP statement is used. 

In addition, a breakpoint cannot be set for a location within an interrupt service routine. An 

interrupt service routine cannot be stepped. Attempts to perform either function will lock up the 

computer. 



Chapter 9 
Errors and 

Error Processing 

Summary: This chapter contains a discussion of Assembly Language ROM and other 

related errors, and what causes them. Included are methods for trapping errors and 

possible methods for correcting them. 

Whether you are writing or accessing an assembly language routine, it is possible to encounter 

an error resulting from your actions. The intent of this chapter is to give some guidance as to 

how certain errors can be handled. It is not intended as a definitive checklist of what can go 

wrong, nor is it an exhaustive treatment of the means to correct the difficulties which are listed. 

Rather, it is meant as a reference for some of the things which can go wrong, what might cause 

them, and how to deal with them. Each programmer has a unique method of approaching the 

problem of error processing and there is no way to anticipate all of them. Even so, the following 

should offer some assistance in identifying the source of an error. 

Not every machine error is covered here - only those directly related to writing or accessing 

assembly language routines. A complete listing of error messages (though not in the same detail 

as in this chapter) can be found in Appendix J. 

Error numbers 900 through 999 are reserved for your own use (with the Error_exit utility). 

Types of Errors 

There are three types of errors associated with assembly language routines: those which 

occur during the writing (or entering) of the source code (called "syntax-time" errors); those 

which occur while assembling the source code (called "assembly-time" errors); and those 

which occur during the execution of an assembly language routine (called "run-time" errors). 

Some of these errors can be anticipated and trapped, others cannot. 

9-1 



9-2 Errors and Error Processing 

Syntax-Time and Assembly-Time Errors 
Syntax errors are caught when entering source code, usually with the message -

IMPROPER ISOURCE STATEMENT 

The error can then be immediately corrected and the statement reentered. A side-effect of this 

entry-time check of the syntax is that the time required for assembly is greatly shortened over 

what it would be if syntax-checking were deferred until assembly. 

Errors-encountered during the assembly process are indicated by the assembler in three ways: 

• The message -

ERROR 192 IN LINE nn 

is displayed. nn is the line number of the IASSEMBLE statement. This is a fatal BASIC 

error, unless otherwise trapped. 

• Each line in the source code containing an assembly error is printed on the current system 

printer. Included is the message -

followed by the error type. 

• The message -

ERRORS IN ASSEMBLY 

follows the listing of the individual errors. The total number of errors is also printed. 

An explanation of the individual assembly-time errors can be found at the end of this chapter. 

Run-Time Errors 
Run-time errors can sometimes be anticipated. They come at two distinct times, and your error 

processing is different depending upon which of those times are of c"oncern. The times are 

"program development" and "production run". 

During program development, errors normally are handled using the debugging techniques 

detailed in Chapter 8. Care should be taken in recognizing errors during development. Not all 

of them are obvious or indicated by an error message - many simply lock up the machine. 



Errors and Error Processing 9-3 

During the running of production (debugged) routines, errors can be caused by the users of the 

routines. For instance, the user may inadvertently assign an argument a value of zero when that 

argument is to be used as a divisor within the assembly language routine. You should try to 

anticipate these usage errors and program procedures to trap them. 

There are many alternatives for actions to take when your routine encounters and traps a usage 

error. For example, you may wish to assign a value to a particular return variable, or you may 

want to print a warning message, or, perhaps, to correct the value and proceed with the 

routine. Another method is to notify the user by issuing a BASIC error message. Such messages 

can be issued through the Error_exit utility discussed below. 

Of course, you need to tell the users (in the documentation of the routine) what kind of errors 

can occur, when they can occur, and what to do about them. 

UTILITY: Error exit 

The Error_exit utility provides you with the capability of aborting an assembly language 

routine by "creating" a BASIC error. Two types of BASIC errors can be created

"recoverable", which can be trapped by a BASIC ON ERROR statement; and "non

recoverable" (or "fatal"), which cannot be trapped. 

General Procedure: The utility is given the number of the error to be created. Then the utility 

is called with the JSM instruction, but no return is made to the original assembly language 

routine from the utility. Instead, the utility uses the information placed on the return stack to 

help create the error. The return stack is appropriately "cleaned up" and control is returned 

either to the BASIC driver (if the error is non-fatal) or to the operating system (if the error is 

fatal). 

Special Requirements: Error numbers are passed to the utility in the A register. The value of 

the error number is placed in bits 0-14. Bit 15 is set if the error is to be non-recoverable. If bit 

15 is not set, the error will be recoverable. Error numbers 32 762 through 32 767, with bit 15 

set, are reserved by the operating system and should not be used. 

If you are setting bit 15 to specify a non-recoverable error, the use of negative numbers should 

be avoided. For example, loading the A register with -8 does not result in non-recoverable 

error 8. This is because the error number in bits 0-14 is not 8. A suggested method of setting bit 

15 is-



9-4 Errors and Error Processing 

In addition, it is suggested that you limit your error numbers to three digits. The block of error 

numbers 900 to 999 are reserved for your use in assembly language routines and will not be 

used in future Hewlett-Packard products. 

Calling Procedure: 

1. Load the error number into the A register. 

2. Call the utility using the JSM instruction. 

Exit Conditions: The utility returns control to the BASIC driver which called the routine, 

appropriately setting conditions so that ERRL, ERRM$, and ERRN work as expected. Also 

triggers ON ERROR, if applicable. 

The utility can be used anywhere in your assembly language, wherever you would like to abort 

the execution of the current assembly language routine and where you would like to indicate to 

BASIC what reason (error) caused the abortion. 

For example, suppose somewhere in one of your assembly routines you wanted to abort the 

routine if a certain variable (Flag) is non-zero at a certain point. Suppose also that the variable, 

when non-zero, contained the error number, then your program could look like -

ISOURCE LDA Flag 
I ::;OURCE ::;ZA *+2 
ISOJRCE JSM Error exit 

Similarly, there are some utilities which, when an error is encountered, return an error number 

in register A. In these cases, a quick two-instruction sequence can give you an error-related 

abort. For example, the Rei_math utility is such a utility -

I ~:;Ci!jF.:C:E .J:::!'1 F.~E·l fl"i-:i.t t-i 
I ~:;Cijj~~C:E ::;ZH *+2 
ISOURCE JSM Error exit 

As an example of a fatal error, suppose the error desired is 8. The error sequence could be-

ISOJP:E LDA =1000103 
ISGJ~:E JSM Error 



Errors and Error Processing 9-5 

Run-Time Messages 
The following is a list of the system error messages you, or the users of your routines, may 

receive should something go wrong retrieving, using, or storing assembly language routines. A 

possible corrective action, or actions, is included in the discussion of the error. 

ROM missing, or configuration error. To operate the 9845, all system ROMs 

must be in place. In addition, to write assembly programs, the Assembly 

Execution and the Development ROM must also be installed. Perform the 

system test if the problem persists. 

Memory overflow. You may have specified an ICOM which is too large for 

your current available space. Some things to try: select a smaller ICOM size; 

execute SCRATCH C (if no important data remain in common), delete mod

ules and reduce the ICOM size; segment your BASIC programs; segment your 

assembly programs. The error may also be caused by trying to load modules 

which are too large for the current ICOM region (either collectively or indi-

vidually) or by placing a COM statement before an ICOM statement. 

The number of arguments passed by an ICALL statement exceeds the number 

of parameter declarations in the subroutine entry section. This error is not 

given if the number of arguments is equal to or fewer than the parameter 

declarations. The actual number passed is stored in the word reserved by the 

SUB pseudo-instruction. 

E~~~~CP 1 ;:;4 Improper argument in DECIMAL or OCTAL function. The OCTAL function 

has a range from - 65535 to + 65535. The DECIMAL function has a range 

for its arguments of - 177777B to + 177777B. Reference made to an abso

lute address greater than 177777B or 65 53510. 

ERPUP 1. ;:;~=; Break Table overflow. A maximum of eight breaks can" be established with the 

IBREAK statements and be in effect at one time. If eight breaks are in effect, 

then to allow other breaks to be established it is necessary to clear previous 

breaks using the INORMAL statement. 

EP~~U~~ :1. ;:;;6 Undefined BASIC label or subprogram name used in IBREAK statement. 

When the IBREAK statement is executed, an undefined label or name is al

lowed, but when the break actually occurs, the label or name must exist. 



9-6 Errors and Error Processing 

.; 1-1-" 

.L (:=:' Attempt to write into protected memory; or, an attempt to execute an instruc

tion not in the ICOM region. This is the result of an attempt to branch outside 

of permissible areas or to change the contents of memory outside of the per

missible areas. There is probably a difficulty in the logic of the program which 

needs to be corrected. This error occurs when the 1i'ill:1 key is being used, an 

IBREAK DATA statement is in effect, when using the ICHANGE function or 

when the IBREAK statement is used to break at a location in a non-existent 

module or at a location beyond the current ICOM region. 

~:::PPCP 1 ;::::::: Label used in an assembled location not found. Symbolic addressing requires 

that all assembly symbols be resolved by execution time. This error probably 

results from a misspelling of a label or forgetting to assemble the module 

containing the label. 

.~ ::::: .':; 

.! ......... : 

Doubly-defined entry point or routine. A module being assembled (with an 

IASSEMBLE statement) or loaded from mass storage (with an ILOAD state

ment) contains a SUB or ENT entry point with the same label as a SUB or ENT 

entry point within a module already resident within the ICOM region. Check 

the other routines for the duplicate occurrences. 

Missing ICOM statement. You must include an ICOM statement to create your 

ICOM region before assembling or loading modules. Program an ICOM state

ment of adequate size and re-run the program 

Module not found. The module indicated in an ISTORE or IASSEMBLE 

statement is not currently resident in the ICOM region. Check the module 

names used in your ISTORE statement to find the one which is missing from 

memory. 

Errors in assembly. At least one error was encountered while assembling one 

of the modules in your IASSEMBLE statement. 

Attempt to move or delete module containing an active interrupt service 

routine. This is the result of trying to reduce the size of the ICOM region (or to 

eliminate it), or trying to delete a module, when one of the affected modules 

contains an active interrupt service routine (ISR). The only ways to allow the 

action to take place are to SCRATCH A (which affects a number of other 

things) or to inactivate the ISR. To inactivate the ISR, consult the routine's 

documentation, or press Reset (88). 
EF~F~UF? :t 94 IDUMP specification too large. The resulting dump would be more than 

32 768 elements. 



Errors and Error Processing 9-7 

Routine specified in ICALL not found. You are specifying the wrong routine 

name or you are failing to load the correct module. Double check the 

documentation indicating the location and name of the routine. 

Unsatisfied externals. Symbolic addressing requires that all references to sym

bols outside the current module be resolved at the time any routine within the 

current module is executed. This may possibly be a missing ENT instruction 

within another module. 

Missing COM statement. The routine you are calling is expecting to find or 

place some of its data in common, but you are not providing the COM state

ment required. Add the appropriate COM statement in the BASIC program 

and re-run it. 

BASIC'S common area does not correspond to assembly module require

ments. The routine you have called is expecting to find or place some of its 

data in common, but your COM statement does not match up with the assem

bly COM declarations in either type or size. Check both the COM statement in 

the BASIC program and the COM declarations in the assembly routine. 

Insufficient number of BASIC COM items. The routine you are calling is ex

pecting to find or place some of its data in common, but your BASIC COM 

statement does not provide enough variables to satisfy the routine's needs. 

Check both the COM statement in the BASIC program and the COM declara

tions in the assembly routine. 



9-8 Errors and Error Processing 

Assembly-Time Messages 
The following is a list of the assembler error messages you may receive while assembling a 

module. All of these errors cause a "fatal" error, which means that the assembly produced no 

object code. After the error has been corrected, it is necessary to re-assemble the module 

containing the error. A possible corrective action, or actions, is included in the discussion of the 

error. 

DD 

IT 
1.- ! 

Doubly-defined label. A label can only be defined once in a module. In addi

tion, any label used in an EXT instruction is restricted from being used again as 

a label in the module. Check all spellings; change a label name to something 

else, if necessary. Mixing SET and EQU on the same variable may also cause 

this error to occur. 

END statement missing; or module name does not match. The END statement 

(in an ISOURCE statement) must be included to Signify the end of a module. 

The name in the END statement must match the name used in the immediately 

preceding NAM statement. Particular ones to look out for: assembling more 

than one module at a time, but leaving out the END instruction between 

modules; or, the END statement is not in the same BASIC environment as the 

NAM statement. 

Expression evaluation error. This is a result of a mismatch of element types in 

the operand of an instruction. The particular prohibited forms are: relocat

able + relocatable; external ± external; using the relocatable or external 

forms with the * or / operators. Check the spelling and type of your symbols in 

the expression. 

Literal pools full or out of range. You may have exhausted the storage given in 

your literal pool (LIT) declarations. In this case you should add more LIT 

declarations or increase the size of the ones you have. Another cause of the 

error can be using a literal in an instruction and there is no literal pool within 

512 words of the instruction. Additionally, for some instructions, the assem

bler attempts to create an indirect reference automatically and requires a lit

eral pool within 512 words of the instruction. In either case, add another literal 

pool (using a LIT instruction) within range. 



Errors and Error Processing 9-9 

iCOM region memory overflow. The current module being assembled has 

caused object code generation which exceeds the current memory allowance 

for the ICOM region. Either you must re-run the current main BASIC pro

gram with a new ICOM statement increasing the ICOM size, or you must 

rearrange your assembly so that the module fits. This latter course can include 

deleting other modules or rewriting the abortive module so that it requires less 

memory. 

Operand out of range. Some instructions using indirection require a relocat

able expression to evaluate to an address within 512 words of the current 

address. Skips must be no more than 32 words in either direction. The EXE 

instruction requires a register (0 to 31) and the instructions in the Stack Group 

require registers in the range of 0 to 7. Check to see that the operand used is 

within the range appropriate for the instruction. Also, check the spelling on all 

symbols to see that the right symbol was used. 

Parameter declaration pseudo-instruction out of sequence. The ANY, FIL, 

INT, REL, SHO, and STR pseudo-instructions must follow a SUB or COM 

pseudo-instruction, or be a part of a group of such pseudo-instructions which 

follow a SUB or COM pseudo-instruction. Any other appearance of these can 

cause this error. It can also be caused if a SUB sequence does not terminate 

with a machine instruction with a label. Check to see that you have not inad

vertently omitted the SUB or COM, or have placed another instruction in 

between the pseudo-instruction and its SUB or COM. 

Incorrect type of operand used. Each instruction requires that its operand be 

of a certain type - relocatable or absolute. Check the type of all symbols used 

in the expression in the operand and see that they correspond to the type 

required by the instruction. If you are using a constant, check to see that a 

constant is allowed by the instruction. 

Undefined symbol. By the end of the assembly, all symbols must have been 

defined, either by use as a label on an instruction or as a symbol associated 

with a value through an EQU, EXT, or SET pseudo-instruction. A symbol not 

so defined (except those pre-defined by the assembler) and used in the as

sembly, causes this error. Check the spelling of all undefined symbols to make 

sure that you did not intend something else. The symbol otherwise has to be 

defined, either by label or EQU, EXT, or SET. 



9-10 Errors and Error Processing 



Chapter 10 
Graphics 

Summary 

The graphics topics described in this chapter include displaying the graphics 
raster by setting individual pixels, reading and writing full words, the cursor oper
ations, and line drawing. 

Introduction 
Computer graphics is the computer-aided creation and manipulation of images. These images 

typically appear on the screen of a CRT or are drawn by a plotter. This chapter explains the 

fundamental commands and techniques used to create images on the CRT of the System 45 

using assembly language. Of course, your System 45 must have the graphics option installed in 

order for graphics to be implemented. 

The advantage of using assembly language rather than BASIC to create and manipulate images 

on the CRT is one of speed. Graphical data can be manipulated, and input information can be 

plotted in real time using assembly language in many cases where BASIC could not be used. 

The CRT graphics is thought of as being a peripheral on select code 13. Displaying graphics 

images from assembly language is essentially an I/O operation to that select code. 

10-1 



10-2 Graphics 

The Graphics Raster 
The CRT of the System 45 computer is capable of displaying two independent rasters (display 

areas). These are the alphanumeric raster and the graphics raster (when the graphics hardware 

is installed). When the computer is turned on, the alphanumeric raster is displayed. This is the 

raster used to display alphanumeric characters when entering programs, displaying program 

results, etc. With a single command (GRAPHICS) from BASIC or a short sequence of instruc

tions from assembly, the graphics raster is displayed. Both rasters cannot be displayed simul

taneously. The alphanumeric and graphics rasters are illustrated below -

E 
() 

............••.....•..•.•........•......••........................•..•....... LO 

:j:j:j:::"::::::"::::j:::j:":j:::j:j:::j::"j:j:j:::::::::j:j:j":":"j:::::::j::::"j"::j:j:::::j:j":"j:::::::j:j:j:::::::j"j:j:j::":::"j:j::::"::::::::::j:j ~ 

1)111111111111111Ijllllllll!IIIIIIIII!I{:llllllli,I~HI~rj~I~I~;.ljll!llllllljl!lllljlllll!IIIIIII:lllllljl!111111111 

Displaying the Graphics Raster 

E 
() 

0) 
C\I 

C\I 

The graphics raster is displayed from your programs by one of two methods. The first involves 

executing the GRAPHICS command from BASIC. The graphics mode is exited and the al

phanumeric raster is displayed with the EXIT GRAPHICS command. 



Graphics 10-3 

The second method invoives executing a short sequence of assembiy ianguage instructions. 

The sequences used to enter and exit graphics from assembly are -

60 
70 

100 
110 
120 
130 

150 
160 
170 

I:::;OUPCE 
I'::;OUFCE 
I30UFLE 
I:::;CUF<:CE 

L.IlA 
::::TA J5B 

L.DB 35B 
L.DA =1 
::::TA ::::5:t: 

This routlne tlwns GFAPHICS 

.- .-.t., C 1 e.3T 

! This routine tlwns GRAPHICS off. 

L.IIA (=70000B),I 
::;AF' *+ i , ~:; ! I·f :1 -: T 1 :-.) 1:::· C l Eo.:ir-·, :=-E"t it = 

:::;TA (=70000:B::', I 

:1:-1 
r'=.C! 

Note that clearing bit 15 of word 70000B causes the graphics raster to be displayed and setting 

this bit displays the alphanumeric raster. When the computer is turned on, bit 15 is automati

cally set. It is imperative that the instructions referencing register 35 appear in the raster control 

program segment. Failure to include these instructions will lock up the computer. 

The Graphics Memory 
The graphics raster is subdivided into 254 800 individually addressable dots or pixels. The 

raster is 560 pixels wide and 455 pixels high. Pixels are specified by their X (horizontal, 0-559 

and Y (vertical, 0-454) coordinates. Each pixel can be turned on or off, producing the graphics 

image. This on / off information for each pixel is stored (one bit per pixel) in a separate memory 

known as the graphics memory. 

The graphics memory consists of 16384 16-bit words of read/write memory. Each bit of the 

graphics memory determines the on/ off status of an individual pixel. This memory contains 

information even when the graphics raster is not displayed. 



10-4 Graphics 

The graphics memory is mapped to the graphics raster in the manner represented by the 

following illustration: 

y 

/ Wo (word 0) 

10 I- )I x ---------.~I~I 
.................. 

W2 ::::::::~::::}!:}}!:::}: .................. 
~:::::::~::::::::~::::::::.:::::::: .................. 

Addresses 
3ey + __ 35 

are __ not 
displayed 

454 W16344 W16345 W16346 V::::~::::::):::::::~:::}: W16378 W16379·· -I W16383 1 
~ ______ ~ ______ ~~ ______ ~~~~~~M-______ ~ ________ ~~ ______ ~ 

Horizontal display limit/I 'This area is ~ot diSPlayed" 

Graphics Memory Map 

Each pixel has a word address and a bit address associated with it for communication purposes. 

For example, word 0, bit ° holds the onl off information for the pixel in the upper left corner of 

the raster and word 16 378, bit 15, is mapped to the pixel in the lower right corner. As the 

illustration indicates, word addresses represented by 36Y + 35, and 16 379 through 16383 

are not displayed. 

The X and Y coordinates of an individual pixel are translated into word and bit addresses with 

the following formulas: 

word address = (36*Y)+INT(X/16) 

bit address = X MOD 16 

The origin, point (0,0), can be moved to the lower left corner of the raster by simply subtracting 

the Y (vertical) coordinate from 454. This is done in some of the examples for consistency with 

BASIC commands involving X, Y coordinates. 



Graphics Operations 

Checking for Graphics Hardware 
To test that the graphics hardware is present, execute the following statements -

LIlA =13 
[:::-. 
i .:::L 

The graphics hardware is not present if R5 = O. 

Overview 

Graphics 10-5 

There are several different operations which the graphics hardware can perform. However, 

each operation is accomplished by issuing a command and then transferring data to or from 

select code 13. This section discusses the general procedures used to carry out these opera

tions. Details necessary for each operation (such as command and data encoding) are discuss

ed in later sections. 

The following graphics operations are available: 

• Writing individual pixels 

• Writing full words 

• Clearing full words 

• Reading full words 

• Cursor operations 

Each graphics operation has a unique control code associated with it that is stored in register 5 

with a STA R5 instruction. The control register is represented here -

15 14 13 12 II 10 9 8 7 6 5 4 :3 2 I 0 

---- unused ----IINTIDMAI RST 1 AH 1- opcode -I 

where: 

INT = interrupt enable bit 

DMA = DMA enable bit 

RST = reset bit (always sent with a new control code) 

AH = auto-handshake bit( for DMA operations) 



10-6 Graphics 

Since each graphics operation can be carried out by handshake, interrupt or DMA, there are 

many combinations of control codes. 

The general algorithm for each operation includes the following steps -

1. Verify that the graphics hardware is present and operational. 

2. If interrupts or DMA are to be used, call Isr _access to obtain the necessary access. 

3. Wait for the graphics hardware to become ready. 

4. Store the control code identifying the operation to be performed and any interrupt or 

DMA enable information into R5 of select code 13. 

5. The data necessary for the operation is sent to or received from select code 13. 

6. If another operation is to be performed, continue with Step 3. 

7. If interrupts or DMA are used, access must be released. 

In general, the data transfer (Step 5) can be made using programmed I/O or DMA methods. 

However, interrupt is not recommended where speed is a consideration, and for some opera

tions, only programmed I/O is recommended. When choosing between programmed I/O and 

DMA, keep the following in mind -

• Programmed I lOis easier to implement but mayor may not generate the faster 

throughput. 

• There is only one DMA channel. The rules of access to the DMA channel prevent attempts 

by two I/O tasks which need the DMA channel (your graphics task and a disc or I/O 

ROM operation, for example) from occurring simultaneously. In addition, DMA activity 

cannot occur at the same time as a synchronous I/O task (such as writing to or reading 

from a tape cartridge). 

• The maximum data transfer rate to or from the graphics hardware using DMA is twice that 

of programmed I/O. 

• When using DMA, the Isr _ access utility must be called before using the DMA channel. In 

addition, all data to be transferred to the graphics memory must be in contiguous memory 

locations within the ICOM region (Le. a buffer area). Thus the overhead encountered in 

starting a DMA transfer is higher than that involved in starting a programmed I/O trans

fer. 

• Several transfers may be initiated as a result of a single ICALL. In this case, the Isr _access 

utility would be called only once and the resulting overhead distributed over all the 

transfers. 



Graphics 10-7 

Generally speaking, then, if ease of implementation is a major concern or if the data transfers 

are short and not numerous, then programmed I/O is the preferred technique. If there are 

many transfers or they are long, the additional overhead of using DMA wi!! be overcome by the 

faster transfer rate, resulting in higher throughput. 

Operation: Writing Individual Pixels 

Individual bits within the graphics memory can be set or cleared using the "write pixels" 

command. This capability might be used, for example, within a line drawing subroutine to turn 

on a sequence of pixels. 

General Procedure: 

• A "write pixels" command is stored in R5. 

• A data transfer is started to send word address, bit address, and new value for each bit to 

be changed. 

Special Considerations: 

• The control code for the "write pixel" command is as follows -

15 14 13 12 II 10 9 87654 3 

----IINTIDMAI I I 0 I I 
where: 

INT = interrupt enabled bit 

DMA = DMA enabled bit 

= don't care 

2 I o 
o 0 

• The data must be in a special format consisting of two words per bit to be changed. This is 

represented in the following illustration. 

15 14 13 12 II 10 9 8 7 6 5 4 2 o 
CWA ---------------------First I 

Word: 

Se~~~~: :=D==:===:=========================================--~=~~=~_-_B=A==--~=~_-=~~ 
where: 

CWA = complemented word address 

BA = bit address 

D = data value (1 =ON, O=OFF) 

= don't care 



10-8 Graphics 

Thus for each pixel to be set or cleared, two words must be transferred to select code 13 . 

• Either DMA or programm.ed I/O can be used. 

Writing Pixels Using Programmed I/O 

10 I GRAPHICS, WRITING INDIVIDUAL PIXELS USING PROGRAMMED I/O. 
20 I COt'1 2(K1 
30 IDELETE ALL 
4r1 GCLEAR 
50 GF.:APHI C::; 
60 INTEGER X,Y,On,Off 
70 IASSEMBLE Pixel on off 
:::0 
9(:1 

100 
110 
120 
130 

On=l 
Off=0 
! 
FOP »100 TO 200 

140 
15(:1 
16(:1 

ICALL ~'~r'i t E~pi >::e l_pi 00::><, \', On) 
r'~E><T >:: 

170 
1:30 
190 
2(:1(:1 

201 

FOR X=100 TO 200 

ICALL Write pixel_pio(X,Y,Off) 

2 H) GOTO 12(:1 
220 ! 
23~j 

240 
250 
260 
270 
2::::~~1 

290 
:X10 
310 
320 
330 
34~~1 

350 
360 
370 
3::::0 
::::9~~1 

4rnl 
410 
420 
43C1 
44(:1 
45(:1 
460 
470 
4::::0 
4'j0 
500 

ISOUPCE 
I:::;OURCE 
I ::;OURCE ::< .: oor',j: 
I:::;OUF.:CE 'y' c oot-·j: 
I :::;OLIPCE Bit: 
I:::;OUPCE 
I3GURCE >:~p3rrfl: 

ISOUPCE 'y'_p3Trfl: 
I :::;OUPCE B 1 t p3.r·rll : 

NAM Pixel on off 
E;:-::r Get '.).3.1 ue 
BS:::; 
B:::S 
B:::;:::; 
:::;UB 
un 
nn 
ItH 

r::;CIUPCE L'it-' i t e_p i ::<e 1 pi 0: LDA =>:: c oor-·;j 
I::;CIIJPCE LDB =>:~p3.nfi 

I:::;OUPCE .Et'1 Get '.),3.1 ue 
I:::;OUPCE 
ISOURCE 
ISOUf<:CE 
I:::;OURCE 
ISOUPCE 
I:::;OUF.:CE 
I:::;OUF.:CE 
I:::;OUPCE 
ISOUF.:CE 
I::;OUPCE 
I:::;OUPCE 
I::{IUPCE 
I:::;OUF.:CE 
I30UF.:CE 
I:::;UUPCE 
I::;UUF.:CE 

LDA =\' c oor',j 
LDB =\' p3.nfl 
.JSt'1 GET. ~)'3. llJe 
LDA =:£:it 
LDt: =B it p3.r--ffl 
.JSr'i Get. '·)a 1 t~e 
LDA =13 
:::;TA F'.3. 
LDA R5 
:::;ZA t'k:o ';1'- 3.ph 1 :-= 
LIlA =51B 
~:;FC: * 
STR R~; 

LDB 'y' .: our-··d 
LIlA =:~::6 

I'W'!, 

t'1odu 1 e n.3.ffle 
Dec 1.3.t-·e e::·::te ~-f3.1::;. 

! ::;tor·3.Qe fot-· 
::;tor·.3.';le for' 

! Sto~3.qe for IT ::;'~3.tu::;. 

! Put :::.e1 ect code in Pa 

I 3end WRITE PIXEL control code 

I C3.1.::ul.3.te 1 •• .Iut-·d .3.ddt-·e::;.::;. 
I .:: 36 "* 'y'::' + I t·i T ( ::<... 16 ::. 



570 

SCUF~CE 

:::CUPCE 

L:D:g ,'-', _ :·:(~::r·-:~l 
':::t:::;:: 04-

ADA ~. 

LIlA ':.:: ,= oe·-·d 
Hr{D = i 7B 
LIfE E~ it. 

ComPiemEfit address 

Send word address 
Tr-· i ':::)':::)Ef" output 

Graphics 10-9 

Cc®bine bit status 0 address 

Send bit s~~tus and address 
Tr-· i ':::)';lE-r-· output 
F~E·t !_~r~'f-i t::! E!A~:; I C: 



10-10 Graphics 

Writing Individual Pixels Using DMA 

10 ! GRAPHICS, WRITING INDIVIDUAL PIXELS USING I~A. 

2~=1 ICCir'1 200 
!DELETE ALL 

40 GCLEAR 
50 Gf:;:APHIC:: 
60 IA::SEt'lBLE ~'4t-'i te_pl }::e 1 __ dm.::.. 
7~~1 ! 
:::0 ICALL ~'k'i te_pi ::·::el_dflH 
90 I 

100 =::TUP 
110 

1 :::~=1 
190 
200 
210 
2211 
230 
240 
250 
26(1 
27~j 

2:::0 
290 
3lH) 
310 
32~) 

330 
340 
350 
:360 

42~j 

4::::0 
440 
450 
460 
470 

493 

56[1 

I=::;OURCE 
I:::;OURCE BuffEr: 
ISOUPCE 
ISOUPCE 
I=:::OURCE 
I::::GURCE 
I=:;OUF:CE 
I:::;CURCE 
ISOUPCE 
I::::OURCE 
I:::;OUPCE 
I:::;OUPCE 
I::::OURCE 
ISOUPCE 
ISOURCE Count: 
I:::OUF:CE 

I::::OURCE 
I::::OURCE 
I:::OUPCE 
E:OURCE Tt-·~:..'--.:::"9::" in: 

'::;CUF.:CE 
':::CURCE 
:::;OUF.:CE 

:::;OURCE 
SOURCE 
::::OUPCE 

=:::OURCE 
::;OURCE 

=::;CUF.:CE 
:::UUPCE: 

IiAT 177[1(1:3~B, 1[1~~it=10i f; ~ Ii:=.t.t.:i i.o.ic:r-:j f):i i t-·:=. 

DAT 177003B,100002B 
DAT i 77003:8 ~ HX1003B 
DAT 177003B,100004:8 
DAT 177003B,100005B 
DAT 177003B,100006B 
DAT 177003B,100007B 
DAT 177047B.100004B 
DAT 177113B,100004B 
DAT 177157B,100004B 
DAT 176737B,100004B 
DAT 176673B,100004B 
DAT 176627B,100004B 
DAT *-BuffE:-t-'-i 
::::UB 

r._ 
rd 

LDA R5 

:::2:A t_~I~~_. __ .t'?t-. .::..p~-: i c::;· 
LDA ~ I Get DMA Reso~~e 

LDB =(64*256)+:2*16)+13 

T'IP Ir":) ·::"9::" in 
LDA '_·oun;:· 
::::TA Dna.:: 

3TA Dr(.::..rf,::" 
'::DO 

STA R5 

~~~ Dm::..c ~u Count 

! NOTE: Bit 5 is ONE
! ~:~'::L i t f" Cif-' f"1 .::.t,:;i

RET Return to BASIC
!

LIlA ::::~:~

:::TA R':;
JMP End isr high,!

! Enct ("';T t r-·.::ifMiSf·~:,·r~· i f-~t er"("i~4t=lt
f_: 1 t:--::ir-' c (::~-it t-·c::: 1 f""::-:'i~ i :::. t (:;.~.-.

! f;~:e'j ~·.:l.~::.i::· D!"lA ·:iCCt::':::.:::.

Graphics 10-11

Operation: Writing Full Words

The "write words" command is recommended when all bits within a graphics memory word are

to be changed, and especially when several contiguous words in the memory are to be

changed.

General Procedure:

• A "write words" command is stored in R5.

• A data transfer is started to send data to the graphics hardware. The first word sent

indicates the starting address within the graphics memory and subsequent words are

stored into the graphics memory at sequentially increasing addresses.

Special Considerations:

• The control code for the "write words" command is as follows-

15 14 13 12 II 10 9 8 7 6 5 4 3 2

----IINTIOMAII o o 0

where:

INT = interrupt enabled bit

DMA = DMA enabled bit

= don't care

• The data sent to the graphics hardware must be in the format illustrated here -

CWA

data

data

data

•
•
•

where:

CWA = complemented word address

data = the data to be written into the graphics memory

(Note that the most significant bit of .each data word

represents the leftmost bit (bit 0) within the graphics memory.)

o
o

10-12 Graphics

• Recall that while there are only 35 words of graphics memory data displayed in each row

of the CRT raster, there are actually 36 words in the memory for each row. (One word is

never displayed.) When using the "write words" command to write data into the last

words of one row and the first words of the next row, you must remember to supply data

for the "extra" word .

• Either DMA or programmed I/O can be used.

Writing Full Words Using Programmed I/O

10 GRAPHICS, WRITING FULL WORDS USI~~ PROGRRMM:u I~J.

~~ IDELETE ALL

60 INTEGER X,Y,n~ta

110 ~u~ \=100 ._ 200

14[1 ~ .. ~ E~:':; T :,

160
170

.-: -i 1-':

c.i 1::'1 ~:;cit!~:C:E C ()C>r--:]:

~:;Ct!JF.~C:E Il":it.:i:
230 SOURCE ~~rm number:SUB
240

'-:'-1:-':
. .:~::::.. r':'i

·-t'-.:"":::
.,::.:':i-':'I

440
45(1

::::CIUPCE
:::;DUf":CE

':::::.::lA,:::t::
::<i1.if~'C::::

"'_._. :"_.:-.", II
i-I,,::J.j :!!III

I f'~T

LIlt: =="(~=:.:ir-·ff!

.J~:;r'1 !~E-t i.}.:i 1 UE-

Lli!~ =1::::
:::;TA P.~

LDA R5

L..DI:
I ... DR ;;;;:>;
i'lF',";'
L. .. UE

cdu 1 e :·->~f;"l;;:·

eclare exte n~ls

t,:::r.~';ie

ti::,r·aqe ,J.-·.-.L-.

I Get v c0Jrdin~te

I Get first DATA WDRD

SEfid WRITE WORD CW, trol code

A~DA :-.:
C:j'1A

LDA jJ.::t~ .. 3.

560

LIi:E! ==IJ.3.t.:i2 ~)::L('f!'!

.J~:;r:l =,).::t ~ i.~r::'

~~fi word address
: t"-. 1 i;,;!E'r-' ()i_jt ~)i_jt.

(~et DATA L'JCd~:Ii

Check t"or second WORD

second DATA WJRD

"'fr-o i =;I:;lE'(' c:!_~t f)i)t

f;:~E·t iA('~-! t c= l::~H~:; 11_:

Graphics 10-13

10-14 Graphics

Writing Full Words Using DMA

10 i GRAPHICS, WRITING ~ULL 00RDS USING DMA.
20 ICOM 20000
30 IDELETE ALL
40 GCLEAR

60 SCALE 0,559,0,454
7~3 Ff?A!'E
80 MOVE 100,454-100
90 DRAW 450,454-450
100 INTEGER \,Y,Count

140 FOR \=100 TO 400 STEP ~0

170 E:.;:<! :-:
1:::0

25(1

261

2:::0
2'j0
300

320

'-I.·-~-..J:

.':I;::lr,:,'

37~:1

:~::::0

410

460
470
4::;0
490

51(1
c:'-i: -:
-_, J. 1

512
::::;13

':;OUF=:CE
::;OU~:CE '/ P::tf"f;"i:
::;OUF:CE

::;OU~:CE

::;OURCE
::;OU~:CE

::;Ci!J~~C:E

~:;citJF.:C:E

f'~Rr'1 ~I~r-' i t E' i.,J:::r-·c~ :jfl";':i ! rI1c:(jt~ l E' (~:1.ffIE· - -

It-H

LIrA =>:: c :::c=r'=]
LDB =::-Cp::;x-m

LIlA =But"t"er--
i ::::
L...J..JJ:) =52525E;

ADA =1
CPA =Buft"er+16384

LDA _-I '-1

- i·:)

LDA F=:5

RET

'=':;BR 4
ADA B

! ~:; t C: ('.:=i.l;jE' t' C~r-' ..
! ~:; t C=f-·.3.e;lE' f' CS[-· j

! ~:;tc~r-·.3.E;lE· fc:t-· ~,~C~~~Ii C:C~t..!f·~T

Complemented WORD ADDRESS
! FC~LLCi~'~EIi I::;\' ::; t c:r-·.:l.j~E· f' =:;i-' ::].3. t..:i

j NO GRAPHICS EXIT

Graphics 10-15

..
'_:'-'''"-'

." '-.:~.-:

::.,-.: =c:;-'c L.UH . -'-.; :~-.':'

H:-f:-E:--"-"- .-

:.j~~k:i

Operation: Clearing Full Words

Clearing words within the graphics memory can be accomplished using the "write pixels" or

the "write words" commands discussed previously. However, if many sequential words are to

be cleared, the most efficient way is to use the "clear words" command with DMA. This

operation is identical to the "write words" command including the data transfer, except that

the data is ignored by the graphics hardware and zeroes are written into the graphics memory.

10-16 Graphics

General Procedure:

• A "clear words" command is stored in R5.

• A data transfer is started to send data to the graphics hardware. The first word sent

indicates the starting address within the graphics memory. Each subsequent word trans

ferred causes one word of graphics memory to be cleared.

Special Considerations:

• The control code for the "clear words" command is as follows -

15 14 13 12 II 10 9 8 7 6 5 4 3 2 o
----IINTIOMAII o I o o

INT = interrupt enabled bit

DMA = DMA enabled bit

= don't care

where:

• The data sent to the graphics hardware must be in the format illustrated here -

CWA

data

data

data

•
•
•

where:

CWA = complemented word address

data = data is ignored

• Recall that while there are only 35 words of graphics memory data displayed in each row

of the CRT raster, there are actually 36 words in the memory -for each row. (One word is

never displayed.) When using the "clear words" command to clear the last words of one

row and the first words of the next row, you must remember to allow for the "extra" word.

Clearing Full Words Using DMA

10 GRAPHICS, CLEARING FULL WORDS USING DMA.

30 IDELETE ALL

80 MOVE 100,454-100
90 DRAW 450,454-450
100 INTEGER X,Y,Count
11 ~:::i I A~:;::;Er:1:BLE C: 1 ~··~r-· ~.~J::::r-·;j =.Jiik:i

130 Co!)nt=500
140 FOR X=100 TO 400 STEP 50

1::::0
19~3

200
2h:1
220
23>3
240

·-I.i I-oS . .::,.=-.:.!

410

440

NE>-::T ,:.:,
!
~:;TOP

!
I~:;OURCE

ISOURCE

T ;-'I-:i il-I:-·'
1.. .:~ :_ii_i f'=. L· C.

460 ISOURCE

480 ISJURCE

570

t·4Al'1 1 e·::..r· i.'JOr·,j ,jfi·~::"

E::-::T et '.).::" i ue

LDA

.}S!'1 !::;et ; . ..'-::..1 ue
LDA =\' c ocrd

r::t:.!

Declare extern::..ls

! ~:; t Cl(-.3. :;I~' +. C,t-· ::.::

'::t.o;-·.:i';!e ·r01"-·

! Storage for WORD ~UUN!

.. __ "::::r-':J i (l·~ t E:-

NO GRAPHICS EXIT

ComplemEfit address

Graphics 10-17

.-.~ - :'-.'. starting word address
:'-. - - . t Cr-' ,,;.::i.,-.. ~:~Ci~~I~ :_ =_::.-:; :.:.

Set count ~u m:iX a! lowed

10-18 Graphics

640

7Cii:]
7:U::1
-::.-.,-...
:" ':::"~":'E

740

((i--.:.1

790 SOURCE

'=:;OURCE
:30UF~CE

830 SOURCE

ADA

STA R5

Operation: Reading Full Words

Get DMA Resource

~et Dmac to LuUNT-'

Set I~A direction to 0JT
hot i f\) Dl'1A h:ir-·j • .'.';:tr-·e

NOTE: Bit 5 is one

The data in the graphics memory can be retrieved using the "read words" command. This is

the only way data can be retrieved since there is no "read pixels" command. This capability

might be used to store graphic images on mass memory or to update the graphic image using a

read-modify-write algorithm.

General Procedure:

• A "read words" command is stored in R5.

• A single word is sent to the graphics hardware to indicate the starting address within the

graphics memory.

• An input data transfer retrieves consecutive words from the graphics memory starting at

th e specified address.

Special Considerations:

• The control code for the "read words" command is as follows -

15

where:

INT

DMA

14 13 12 " 10 9 8 7 6 5 4 3 2

----IINTIOMAII 1 0 II II

= interrupt enabled bit

= DMA enabled bit

= don't care

o
o o

Graphics 10-19

• The data sent to the graphics hardware must be in the format illustrated here -

15 14 13 12 II 10 . 9 8 7 6 5 4 3 2 o
-------------------------- CWA--------------------------

where:

CWA = complemented word address

• Recall that while there are only 35 words of graphics memory data displayed in each row

of the CRT raster, there are actually 36 words in the memory for each row. (One word is

never displayed.) When using the "read words" command to read data from the last

words of one row and the first words of the next row, you must remember to allow for the

"extra" word.

• Either DMA or programmed 1/0 can be used.

Reading Full Words Using Programmed 1/0

READING ~ULL ~UKD~ 0SING PROGRAMMED I/O.

~G IDELETE ALL

60 SCALE 0,559,O,454
(~ MCNE 100,455-100
80 DRAW 200,455-200
90 INTEGER X,Y,Data
1~3~:::1 IA~=~~=;E~·11~BLE ~~e.3.C~_i.l.iC~r-·;j_pi ()

130 EXIT GRAPHICS
140
150 FOR X=100 TO 200

,-"= .. 1-:-

~'"ic.:'\ ~

r·iA:'l F:e.3.cl ',,-,.-.. -; ~)1 0

E>::T i::;;;-:1:. '.).3. 1 !_~e

SOURCE y p3.Fm: INT

: -
:..3'=:."

U~~ Y coordin3.1:.e

: ;,":::::
/-!.'_'rw:.l..=

10-20 Graphics

460
470

560

630 SOURCE

650 SOURCE

Reading Full Words Using DMA

~~ IC(~ 20000
~~ IDELETE AL.L

SCALE 0~559,454,0

80 MOVE 100,100
90 DRAW 110,110
100 INTEGER X~Y,Count
:[10 I A~:;::;El{t:;L.E

140 EXIT GRAPHIC;

160 FOR X=100 TO il~

Send READ WORD ~nntr0'

L.DFi

CC0plement addr· cc

L:DA :::Ii.;J.1:..::t

i Return t~ BASl~

,.,; -1, .. , "-.. ·-1 _.

i . ..lr-·:,...·:.,..;····

::.'j- ',-'

410

:.-·:...·L·~

:.. .. :...:.:.-:
"~: _.':"_1

,-.-,.-:-..1

'-:::::.-..1

'-:i'

=r _. _' ... _.,_

.-.,-,: ;C:,-'C'

.:1'_':_:,'",_.:....,..

::::-.: ::-.. -.""

,-.,-.: ::-.. -.-::,:--:;': ;-

:-,:-':, ,o.:',-·C·
.:1:_::_.: .. :_.:....,..

T _ ... :I

.i..=': =

Graphics 10-21

+ :.-.. -. ,"""t.'-.
'.' :._" '::J..'::!'= :_':

! .-

:_. ':....i ".-1 Send word address
Tr"· i ';r;er-· c,utp!/.
C:~-lE'C k -:- ,-:;.-. ff~·;'::-:: ~,~C~F:~I~ c C;i)(~t.

...... -:,:.-.-:-

~o =(64+256)+(2+16)+13

~~~ DMA direction to IN 

~JTE: Bit 5 is ZERO 

::: 1 h rr: .. _' 

L18~r control register 
i :=.~-. ~-~ i :;ih, l ! ~~=='1 e·:i.:=·:::' I)t'1P .3.::: C ~.:=,:::. 



10-22 Graphics 

Operation: Cursor Operations 
Three graphics cursors are provided for your use with the graphics hardware. These are a 

non-blinking, full-screen, cross-line cursor, a small (9 pixels by 9 pixels), blinking, cross-line 

cursor, and a horizontal underline, blinking cursor. The three cursors are illustrated here -

"\ ( 

+ 

horizontal cursor small blinking cursor full-screen cursor 

General Procedure: 

• An "X cursor position" command is stored in R5. 

• A value indicating the X (or horizontal) position of the cursor is sent to the hardware. 

• A "Y cursor position" command is stored in R5 (the command also identifies which cursor 

appears). 

• A value indicating the Y (or vertical) position of the cursor is sent to the hardware. 



Graphics 10-23 

Specia.l Considera.tions: 

• For most applications, only programmed 110 is used for cursor control. Thus the values 

stored in R5 should be selected from the following table -

Cursor Type 

X cursor position 

Octal Control Code (to R5) 

44 
Y position (small blinking) 
Y position (full-screen) 
Y position (small horizontal) 

40 
41 
42 

• The data for the X coordinate must be in a special format as follows -

15 14 13 12 II 10 9 8 7 6 

------- CMX I --------

where: 

CMXl = one's complement of (X coordinate + 63) 

= don't care 

5 4 3 

• The data for the Y coordinate must be in a special format as follows -

15 14 13 12 II 10 9 8 7 6 

------- CMYI---------

where: 

CMYI = one's complement of (Y coordinate + 44) 

= don't care 

5 4 3 

2 

2 

o 

o 



10-24 Graphics 

Setting the Cursor Using Programmed I/O 

The following program demonstrates the algorithm for controlling the cursor. 

10 GRAPHICS, SETTING CURSOR USING PROGRAMMED I/O. 

~~ IDELETE ALL 

70 INTEGER X~Y,Type 

120 FOR \=0 Tu 454 

160 

250 
26Ci 

=:- t.} 
i"it.:'·,: 

~o~ SOURCE 

::::;"''-':. 

Ir·rr 

L:D:t~ =>:~_t:i.::tr-·fi·i 

}~:;r~1 l~E·t =')'::L 1 !)E 

LIH~ --.;. '_ 

C:FA ..... ; .. j 

Sto~age for TYPE ~Jrd 

..::. ': 7 



::·HL c, 

::FC -;-

SOURCE Horizontal: LDA =421 

shift Y coordinate 
~:~.3. i i:. f" C:f-' r"l.:3.=;; 
~:;E'f-~:j :/ .3..::};jr-" E":;· =-

Get LARGE CURSOR 

Comprehensive Example 

SCALE 0,559,O,454 
-,,-.. 
:":--i 

MClE 100,454-100 
DRAW 450,454-450 
INTEGER !,Y,Count 

180 FOR Y=100 TO 400 
190 ICALL Wri y) 

210 FOR Y=400 TO 100 STEP -
220 l~MLL Write symbol (!,Y) 

C c:c:(":j: 
-

320 

:DAT 1. ~ ,Ci 
Ii!iT 2" ~ :"_: 
DAT 3, 00001B,100000B 
DAT 4, 00002B,400001 

FIRST LINE OF SYMBOL 

Graphics 10-25 



en 
U .:c 
0.. 
10 
)..0 

<.:J 

\0 
N 

I o 
1"""4 

~:I.~ 
.::L~ ~:I::I ~I~I ($) 

~i:J p~ !-"J:, !~:;:! I~:~i (::;) C~) 
i:) I~~I ~I::I j..~t~i ~:C.t I:::;) C;) 13:1 IS) (~:;:I 
lSI 1~:;:1 I~:~I I::::) lSI I~:j i~:i (~:~i I~:~i I~:~i 
(~:;) I::~I C:~I (S:' 12::1 ,:;;::, (S) I:S:I '::.:) (s:= 
(;.:, I~:~I I~:;) (s) (s) "=:t, '1·,001 (\1 .t:j" 

Cd "'=T C\I Cd II'· Ir. Ir. .', 

ft', 11'. fr. Ir'. ~J:I ~I~! ~.L:I fJ=t ,::c, 
W ~~i::1 ~! ~J~I ~-:I I~:;) C:::i ":j- Cd 
~t· !~:~I f~~1 I~~) I~:~I ('d 'I .. ..f I~:~I I~:~I I~:;) 
(S) 'I"-! (.'.1 ~:I" 'r:t 13:1 I~;) (::;) (;;;) C~) 

(I.' 
",.:' 
(Ij 

"(::1 

() 
iM.1 

~:( 

01":' 

0.' 
=" 

·CI 
!; .. 

,j,! 

'j,l 
+.:. 

::!! 

"1"1 
~;::. 
(', 

(J 
1 • ..1 

.. :~ 

-I'':' 
'j) 

1'1 

~~; T:t 
() i:::: , ..... , ~... ;;::: 

(I) 
~; 

I1j 
0 ... 

~;::: 

(I.! 
'T"I 

':::1 
I,) 

-i";' 

" (1.1 

(I.! 
1/1 

., .. :' 
"'r; 

CJ ... 

(L' 

~i 
.. i;~: 
~~ 
.~-

((I 
(,,) 
, .... -1 

::C 
0 ... 
([ 
CI:~ 
1 ... 9 

o 
I~, .. 

M::I:: 
1 • ..1 

,2:: 
C) 

(I.' 
~;.
(I) 

"::1 
'/1' 
' .. .I 

1-... 

?ii 
!'(! 

r.:' 
"" .. 1 

:::r:: 
g:: 
L~I::: 
I_~:I 

C) 
:z: 

'/1 
If! 
IJ.I ,. 

.. t., 
"fj ' . .1) 

1'1:\ ., .. ~ 

TJ }::: 
~ ... 
:~~: I;: 
(I) 
, .. :' +-
m 
::~; >-
u :+: 

.;~i :~!~: 
I".J 

·1:::1 
!; ... 
('1 

() 
.. c! 

;:::.: 

i:i:I" 

!; ... 
() 

':'1'" 

CO 
U..I 
~Z: 

. _.J 

(I) 

.... :. 
1 .. ,1 
,n 
~.~ 
of"':' 

1,(1 

.. 0 
:::. 

(/) 

'/1 
'/1 
(i.i 

·f:i 
"i1 
,:~ 

+.:' 
~::: 
(I) 
;::: 
(1.1 

I·K
, 

;:: 
(-, 

C:~I 

C'" 
·1::) 
(l) 

~ .. 
() 
+.:. 
I.i'i 

~ ~ 
~ W 
W ~ 
L ~ 
D W 

~~ L . 
o '/1 

TI 

i/! 
I.n 'YI 
'/1 (I) 
(1.1 ~;". 

11 :~;i 
D ,:il 

,'11 . 
• ·1 .. :' 

+.!. ::< 
::< (I) 
(1.1 !;::: 
~;:. 

(I) 

() .:~ 

.;::~: ~:: 

I:;~; ;i~ ~:~.. ,~i~~ (~S 

I~:I (S) ,:::;:, lS:I (S) !:::~! (S) f~~) I~;) I~:;:t (S) (~:;) 
(S) (::~I ,:::;:, '::;:1 I:::~I I~:;) I~:;:I (~;.") (~::I I~:~! 
(S) I::::i I~:~! 1:S) i::~1 'r"'1 'r'oof lS:I '~:~I 
'1'-1 ., .... , 'r-I '1""1 'r-t 11'. It'. II'. U', II'. 'It". d', 

... n'. 11'. U·. 11'. (:;:J "",,1 (',J (I') '/:!' If) I.J) 
o :~I ~I.~I:~I :~I~ 

1_" 

I'"' 

;11' 
c~ ~!2 I.:::j 

(I 

" 

:::::.1 :~~: 
'If 

~J 

;~~i 
1:::1 

1 • .0 

':~:' 
(0 
I 

. I 
'J) 'J.' .... :. 

~:~ >"':. E /~: C,) :':~: :~:' 
L() 1 • .0 r··... CO (1'-. .\".-1 ·1 .... 1 ·I .. M! '1'-1 .j .... , T"-i Cd II I...~ II II I .. ,:) II 1:'::1 I::" II f"J:1 II ~:Q II II II .... ..I 

0:: 
~~~~~~~~~~~~~§~~~~~~~§ 
~ ~::I ~::I I::~I ~:I ~:::I ~::I ~:::-i ~::I 1:::1 ~::::I I:~ ~:::I ((, , , < , ... <I ,,~, II

C') "i"
I .. MI .,.".1

(I) 1 '1,1
c !;:::

... ..1 -1i J1 !i ... JiIII :::::::

CI
.. 0

~ :~ ..
~I.I~. 1,11

L t .,..;.1,))1
111 ,n :;:: .. , .. :.

.. :~:"I ::~~:"i /~: ::~::

~ ~
::,,:: 'I 'I:: II 0::: ~ .. - ._J (r: .. · ~:I ct:: ([~,:! 'I: (I:: iXl 'I ~::I ::::::
OO~~~N w ~~~m~q~E~~~~
,,,,~,I ((,J C.l:~ ._.. CI::: _.. !J.II :::::: _J (,(, (J::1 'I (,:. I (i) (,)

(i.i ,-

ill
1 • ..1

.. !;::: ,-,
;~ .
~ ..

1'1

;~~.
()

..l

~:':I 'I CI...
1:::::1 1::::1 ~:::
'I:: (C ''''-;'

(1.1

'-' ~; ...

f:;
'/1
IJ,I

0:::

(r~

E
C:~

·1 .. :'

(l'

j
I ·
::;::.:
:::)
("-1

(j

()
+.:.

;~
~::I

1,_:,1 (I)

+.:'
(l"i

CO

+
i.,C!
.: !

:+:
C'rJ

-I- '/1
1/1 ~::

;:if~: :~: .~
(\1 '",' 0"

~i:i ~i : 1 : .. 1 :~:~;
.... ' t.It ~ .. '1M"

II , , f- ::::;.

"U
ij'!

'i":'

:~'
,]"

:3."
:: ...)

()
+.:.

:;!1,

~~ :::::
~! (ll ,.

~):; :t:::
(,1') 'I

I,)

~;~J
f'::j !I

:~ ~~ :~~ F:~ ~3 i:; ~

,rI
th
,T! ••

:; ... i ~;~
:; ... i)

! .. ,~. =: ..)

;:~~

:;~
~:~

I

; :::~:I

-to.: (1.:
~; ...

;:::; ~f~
'T":

+-:. ~; ...
'.J (~
!ll .. :, ...

~; ...
0::

'r"; ::::".
i::4 ,,-

'i~
;::::1

'1:':' -!_:.

I}:: ~~

T=

:! ...
I~

;:::;
",

Cr.:: LJ

~~~~~~ :Z' 

[J,j 
!-.... 

~:;,~ If) 
Il! 

~~i ~J~ }~, 
"iJ L!.J 

.. ::' 1"'-' 
(J.i C) ITI 

((; "7' :::~~ 

L~': 

!~:;:! 
I~:;) 
C,~! 

+ 

=i( 

0::: D iJ:: !.L 'I 
1 ... -, ~::::i ~~::: t:::) ~:::I 
(/) (f:! ~::::t 

:t: Ct: 

;: .. ." 'T 
Li... ! .... 
(f) 

~"::: 

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwWWWWiUWWWw 

~~~~!!~~~~~~~~~~~~~~~~~~~I~~~~~~~~~~~~~~~~~~~~I~~I!~~!~~~~~~~;~ 
~---- --- ---- ~ ---- ----
QQQQQQQQQQQQ
ro~Q-NM~m~~ro~
MM"i"~"i"~~~"i"~~"i" ~~~~~~~~~~~:~rn!~~~§~~~~~~~~~~~§~~~!§~~~~~~~~~~~~~~~

020 SOURCE
LDA Dr;";::;.!,-,3.
ADA =,~i

C:F'A =L i ne 16+3
JMP End isr high, I

~:; T R Ii f(~3. f(~3.

Line Drawing

At End of symbol yet
REls3.se DMA aCCESS

Graphics 10-27

Lines drawn on the CRT must be drawn pixel-for-pixel between two points because the System

45 graphics is a raster scan graphics. Line drawing routines are typically implemented in

software and called when needed. One such routine is provided for your use on the Demonstra

tion Cartridge.

The Demo Cartridge line drawing routine is contained within a file called "BRAL". To use this

routine, simple follow the prompts which are displayed.

A listing of the line drawing routine appears here -

1 ~~1 F:F.~ I r-4T :! *** it

BRESENHAM ALGORITHM FOR lINE TO DOT CONVERSION *!i
:3~~i F!F:~ I r·~T :: *** i!
5[i ot·{ <E'r' #6 GOTD L.3.:::.t
6'~1 PRHn "F't-·e:::.:::. ~:::E\'6 to e::-::it"
7~~1 I t·nEGE~: ::< 1 , 'y'1 , >2, \'2, l i f:L3. t
80 IDElETE ALL
90 IASSEMBLE Mod1
100 GCLEAR
110 B8~in: PRINT
120 PRIHT "entET" the ><,'r' coot-·din.3.te:::. of the 2 point:::., ffla::-::irfIUff! >:: ! 3.1ue is"
130 PRHn "559 .3.nd rf~3.::<imum \' '.).3.1ue 1:::. 454"
140 INPUT X1,Yi,X2,Y2 ! Get coordinates of 2 points line wi 11 join
150 F'F~I t·n "entEr the 1 i ne FE t tErn t::..'pe: E-r-··3.:::·Er= 0, :::.01 i d= 1 iI
i 60 HWUT L i f:<3. t. ! !::;et 1 i ne t ':..'pe: :::.01 i d or-· er-··3.::;·e

180 GRAPHICS
190 reALl Tw·.3.!.') (:<1, 'r'1 ,>2, ' 2, L i fHt ::0

200 between 2 ~~ints

220 EXIT GRAPHICS
230 GOTD Be,~i n
240 l.3.st: Et·W

10-28 Graphics

250
260
27~~1

2'30
::::00
310

34(1
350
36(1

::::::::(1
3'30
400

420
4::::0
440

460
470
4:30
4'30
500
510
520
5::::0
540

560
57~~1

5'30
60.3
610
620
6:;:0

690
700
710
72~::i

7:~:~~i

74(1

76Ci
77[1

I:::;OUPCE
I ~::;OUPCE ::< i :
I ~:::OUPCE 'y'i:
I::::OUF:CE
E:OUPCE \'2:
I t;OUF:CE L i t:<:-:t t :
I t;OU~:CE n:-:t:
I::::OU~:CE Dbb:
I :::;OUPCE Ii>:::,.}:
I :::;OUPCE Ii:

E:CIiJPCE t'h::c nt :
I ::::OUPCE De 1 :
I ~:;Clti~?C:E C; 1 CL:iEjC :

I::::CUF:CE
I::::otIPCE
E:OUF.~CE Oct. i.:-:t:
ISOUPCE
I':::OUPCE
I:::;OUPCE
I':::OUPCE
I:::;OUPCE
I:::;OUPCE
I::::OUPCE
I:::;OUPCE
I '::;OUF:CE Ii 2.:-:t:
I:::;OUPCE
I:::;OUPCE
I~::;OUPCE

I:::;OUPCE
E:OUPCE
I ':::OUF:CE T i :
I :::OUPCE 12:
I :::OU~:CE T3:
I :::;OUPCE T 4 :
I :::;CIiJPCE 1'=::;:
I ::;OUF.:CE Iir-.:-:ti.,.I:
I::;OUPCE
ISOUPCE
I::;OUPCE
ISOUPCE

I::::OUPCE
ISOUPCE
I ~=;Cil.J~:C:E
I::;OUPC:E

ISOUPCE
I::;OUPCE
ISOUPCE
ISOUPCE

I ~:;C'!JF.~C:E
I ::;CiIJf?CE
I':;OtIF.:CE
I:::;OUPCE:
I ~:;CII-'F~C:E

B~::;:::

B::;::; 4
B::;:::; 4
B:::;::; 4
B::;::;

11:--!-·
1)·:'·:'

DAT 5iB

I ::::econd >:: coor'dit-~:-:tte

I ::;E'C ond 'y' c c'Ot-·j i n:-:t t e
! Line t::.-'I'='e: 1=:::·01 id. ~~1=Er.:-:t:::.E·

IL:-:t= ::<2-::< i - >De 1 ta ::<
! Dbb= Y2-Yi ->Delta Y

Dxy= AB::;(Del~:-:t X)- ABS(Del~:-:t Y)
I Address of X or Y increment or

decrement routine
Address of X or Y incremEfit or
decrement routine
He::·::t count

I Del= (-IL:-:t)
I Gr·.:-:tphi '::::. cOfllm.:-:tnd

DAT iOOiB
DAT 402B
DAT 2001B I

DAT 404B
DAT 1003B !
DAT 14;.J2B
DAT 2~~10::::B !
DAT 1404B I

::1
6
4
.-, .-,

++1
DAT Incx I Address of x increment rout nE

DAT Inc~:..'

DAT Dec::<
DAT Dec',..'
'::;IJB

I Address ot· y increment rout ne
! Address of X decrement rout ne
I Address of Y decrement r0~t ne

Hn
ItF
IHT
INT
HH
LDA =;:'::1 I Get fit-·:::.t ::-:: ,:oor·,ji~-~:-:tte into ICm'!
LDB =T1
.J::;t'1 Get ' :-:t 1 iAe
LDA =Yi Get first Y coordinate into ICOM
LDB =T2
.]::;t'1 Get ' :-:t 1 ue
LDA _1 .• 1·-1

-:"c:..

LDB =T3
J9'1 t,et ' :-:t 1 i)e
LDA =\'2
LDB =T4
.J:::;t'1 Get i :-:t 11)e
LDA =L i p:-:tt
LDB =T5
.]::;['1 Get ' :-:t llJe
LDA \'i
TCA
ADA =4':;4
::;TA 'y'i

LIlA \'2
TCA
ADA =454
::;:;TA ... '2

Get second Y coordin:-:tte into ICOM

Get line type into ICOM

Offset oriqin to lower left
corner by su~~:-:tctjng r from

I 454

'35 £.3

i ~](iC1
1 ~~i 1 ~~i
1020
1;'J·.:;;'.:1

1050

i 100
111 ~J
112Ci
I1JO

115(1

I ~:;Ci!j~:C:E
I ~:;C!ij~~C:E
I::;OUF.~CE

I ::;CiUF.~CE
I':;OtIPCE

I ::;Ci!jF:C:E
I ~:;CiLl~:C:E

1160 ISCiURCE
1 i 7:A
.!. J.. I :1"_:

11';0

1 .-).:=::-!
.i. :::..._!;:..'

1240

12'30
1JOO
E:1C1
IJ20

IJ'30
140(1
1410
1420
14::::~~1

145~3

1460

I ::;CiU F.~CE
I::;OUF.~CE

I::;OUPCE
ECUFCE

I::;DUF.~CE

I::;OUPCE
ISOUF.~CE
I':;OUF:CE

E:OUF.~CE

I::;CiiJRCE
E:OUF:CE
I ::;Cl~JF~C:E
I ~:;C!jF:C:E
ISCURCE
I ::;CURCE Br·h[;":2:

I ::::)JF:CE
I::;OUF.:CE
I::; C!iJ f;~ C E :t: rOO. ~-!f~'! :~: :

LDA =, -.
':;TA Fa
':;FC *"

LIlA ;:·:,1

TCA
ADA ,:-:'.:::.

'.' I '-I
-:=:-T.-' :::AF'

TCA
LDt: 'y'i

:;-.;:'
I i_·,D

ADA .i..'

LDA It3.

LDB Dbb
.J 1'1 F' B t-· hid
LDA D.3.

:::TA Dbb
:::TE: 1k:i.

LDB H,l

LDA 1=:

At·m =,.
ADA =112.3.
LDA A,I

ADA =11.;;-:.3.

LIlA Dbb
::;AF' Br·hf;"!2
TC:R
:::TA Dbb
LDA It3.

TCA

ADA

::IE'r-f(] =:!t4t. :;!t-"::iF1f ~ ! c:::' c :-=:~·!Hfl.3.(pj

t~ CRT at select code lJ

Graphics 10-29

H= ABS(Delta X)- AE:S(Delta Y)

If I1xy< 0 then point is in OC~3.nt

Otherwise point lS ln octant

(+) = '.i '~(i c~ (- > =

Calculate 11 an 12:
,:1;]:jr-·E-:::.:::, cf' f-'()j_~t (!E':::· f ct-· .. ·::tt-;=]

10-30 Graphics

14:::0
14'30
1 ~;~)O

1510

154~~1

15~;0

1~i60

157[1

1600
1610
1620
163Ei
1640
1650
1660

16::~O

1hq~:-1

1700
1-'10
1720

1740

1760
1770
17:::0

1::;00
1 ':' 10
1 :::20

1 ~::40
1::::50
1:::60
1:::7Ei

1:::'::n~i

1900
1910
1920
1'330

1135~1

i ~36[1
1970
19:::0
1'390
2000

I::;OUPCE
I::;OUFCE
I::;OUFCE
I::;OUPCE
I::;OUFCE
I::;OUF.:CE
I':;OUF.:CE

I::;UUF.:CE
I::;OUF::CE

I::;OUPCE Loop3.:
I=:;OUI?CE
I::;OUf':CE Loopb:
I::;OUF.:CE
I::;OUF.:CE

I::;OUPCE
I::;OUPCE
ISOUFCE
I::;OUFCE
I::;OUF.:CE

I::;OUPCE
I::;OUF.:CE
I :30UF.:CE 01 dpt
ISOUFCE
I::;OUPCE
I::;OUPCE
I:30UPCE
1::;OUPCE
1::;OUF.:CE
I::;OURCE
ISOUF:CE
I:30UF:CE
ISOURCE
I ::;OUF.:CE Inc .:.: .•
I::;OUf?CE
I:30UPCE Inc":
ISOURCE
I ::;OUPCE Dec :.:
I::;OUPCE
I:30UPCE
I ::;OURCE Dec"

I::;OURCE
I::;OUFCE Gd-3.t.3.

::;TA t·j::.::c nt
LDA n3.
TCA
::;TA Del
ADA Dbb
::;AL
::;TA D.3.
LItA Dbb
::;AL
:_;TA Dbb
LDA De'
ADA Dbb
~:;TA IIE" 1
LDB \1
LDA
l'1P\'
LDt: .. i

ADA .t;

Ci'lA

LDA ··,i

At·m =17:t:
LDt: Lip3.t
~=;:BL 15

j::;t'l Gd-3.ta
Ii:3: t·b::c nt
.P'i p .;.:-+:::'

F::ET
TiT
..i..i., ..i.

LDA Del
::;AF' *+2
.JI'W LO<::fl3.
.. EI'! 12. I
ADA D.3.
::;TA De'
Y·W Loopb
IS: :.: i
FET
I::;: "(1
PET

kET
It:;: · ... 1
PET
F:ET
::;FC *
::;TA 4
_;TA
F.:ET

-,

"

! De1= -It3.

! Dbb=2*Dbb

i Del= -It3. + Dbb
Get word address:

! :~:6 * ={ i + ;:< 1 ./ 16
C C=ff!r) 1 E'f(IE'r~ltE'Cj

I Send out ~~rd address
I Get bit address:

Lower 4 bits are address and
! most significant bit is whether

pixel is turned on or not

Send out bit address
I Decrement N~:nt

I Exit if N~~nt is 0
Upi3.te X and Y addresses

"(address increment routine

I X address decremefit rc~tine

"(address decrement routine

the CRT using registers

ASCII
EQUIVALENT FORMS

Char. Binary Oct Hex Dec

NULL 00000000 I 000 00 I 0

I

1

SOH 00000001 I 001
01 1

I I
I

I STX 00000010 I 002 02 2

ETX 00000011 003 03 3

EOT 00000100 004 04 4

ENQ 00000101 005 05 5

ACK 00000110 006 06 6

BELL 00000111 007 07 7

BS 00001000 010 08 8

HT OOOOlOOi on 09 9

LF 00001010 012 OA 10

VI 00001011 013 OB u

FF 00001100 014 OC 12

CR 00001101 015 00 13

SO 00001110 016 OE 14

SI 00001111 017 OF IS

OLE 00010000 020 10 16

OCI 00010001 021 11 17

OC2 00010010 022

I

12 18

OC3 00010011 023 13 19

OC4 00010100 024 14 20

NAK 00010101 025 IS 21

SYNC 00010110 026 16 22

ETB 00010111 027 17 23

CAN 00011000 030 18 24

i
EM 00011001 031 19 25

SUB 00011010 032 IA 26

ESC 00011011 033 IB 27

FS 00011100 034 Ie 28

GS 00011101 035 1D 29

RS 00011110 0.16 IE 30
:

US 00011111 037 IF 31

Appendix A
ASCII Character Set

ASCII Character Codes

ASCII r-_E_Q_U_I,V_A_LE_N_T,F_O_R_M,S_--I

Char. Binary Oct Hex Dec

space 00100000 I

00100001 I

00100010 I

040

041

042

20 I 32

21 1 33

22 34

00100011 043 23 35

S 00100100 044 24 36

% 00100101 045 25 37

& 00100110 046 26 38

+

00100111 047 27

00101000 050 28

00101001 051 29

00101010 052 2A

00101011 053 2B

00101100 054 2C

00101101 055 20

00101110 056 2E

1

00101111

00110000

057

060

2F

30

00110001 061 31

00110010 062 32

39

40

I
41 I

42

43

44

45

46

47

48

49

50

00110011 063 33 51

00110100 064 34 52

00110101 065 35 53

00110110 066 36 54

00110111 067 37 55

00111000 070 38 I 56

00111001 071 39 57

00111010 072 3A 58

I 00111011

< ! 00111100
1

073

074

3B 59

3C I 60

= 00111101 075 3D 61

> 00111110 076 3E 62

? ,00111111 077 3F 63 J
~ ___ ~_-L ____ ~

ASCII
Char.

@

A

B

C

0

E

F

G

H

I

J

K

L

M

)i

0

p

Q

R

S

I

U

V

W

X

I

Y

!
z

[

\

EQUIVALENT FORMS

,

Binary

01000000 I

01000001 1

01000010

01000011

01000100

01000101

01000110

01000111

01001000

0100lO01

01001010

01001011

01001100

01001101

01001110

01001111

01010000

01010001

01010010

01010011

01010100

01010101

01010110

01010111

01011000

01011001 I

ownow I

01011011

01011100 I

oW1n" 1

I
01011110 :

I

: 01011111
I

Oct

100

101

102

103

104

105

106

107

110

111

112

113

114

115

116

117

120

121

122

123

124

125

126

127

130

131

132

133

134

135

136

137

Hex

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

I
50

51

52

I

53

I 54

55

56

57

58

59

I
SA

I

5B

5C

I

50

5E

SF

\

Dec

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

ASCII 1:-_E_Q_U_I,V_A_LE_N_T,--FO_R_M-,-S_---1

Dec! Char. Binary

DEL

01100000

011000011141

01100010 142

61

62

96

97

98

01100011 143 63 99

01100100 144 64 100

01100101 145 65 101

01100110 146 66 102

01100111 147 67 103

01101000 150 68 104

01101001 lSI 69 105

01101010 152 6A 106

01101011 153 6B 107

01101100 154 6C 108

01101101 ISS 60 109

01101110 156 6E 110

01101111 157 1 6F

01110000 160 70

01110001 161 71

01110010 162 72

01110011! 163
1

I

01110100! 164

01110101 I, 165

01110110 I 166

01110111'1 167

73

74

75

76

77

III

112

113

114

115

116

117

118

119 i

01111000 , 170 78 120

01111001 '; 171 79 121

01111010 172 7A 122

01111011', 173 78 123

01111100 174 7e 124

01111101 175 70 125

01111110 176 7E 126

01111111 177 7F 127

A-I

A-2 ASCII Character Set

The following table gives the octal value for an ASCII character in the most significant byte

("First Character" column) and the least significant byte ("Second Character" column) of a

word. The diagram illustrates the positions of the first and second character positions of a word.

First Character Second Character

115 114 13 12 11 10 9 o

ASCII First Character Second Character ASCII First Character Second Character
Character Octal Equivalent Octal Equivalent Character Octal Equivalent Octal Equivalent

NUL 000000 000000 % 022400 000045
SOH 000400 000001 & 023000 000046
STX 001000 000002 023400 000047
ETX 001400 000003 (024000 000050

EaT 002000 000004) 024400 000051

ENQ 002400 000005 025000 000052

ACK 003000 000006 + 025400 000053

BEL 003400 000007 026000 000054
BS 004000 000010 026400 000055
HT 004400 000011 027000 000056
LF 005000 000012 / 027400 000057
VT 005400 000013 0 030000 000060
FF 006000 000014 1 030400 000061
CR 006400 000015 2 031000 000062

SO 007000 000016 3 031400 000063
SI 007400 000017 4 032000 000064
OLE 010000 000020 5 032400 000065
DC1 010400 000021 6 033000 000066
DC2 011000 000022 7 033400 000067

DC3 011400 000023 8 034000 000070
DC4 012000 000024 9 034400 000071
NAK 012400 000025 035000 000072
SYN 013000 000026 035400 000073
ETB 013400 000027 < 036000 000074
CAN 014000 000030 = 036400 000075
EM 014400 000031 > 037000 000076
SUB 015000 000032 ? 037400 000077
ESC 015400 000033 @ 040000 000100
FS 016000 000034 A 040400 000101

GS 016400 000035 B 041000 000102
RS 017000 000036 C 041400 000103
US 017400 000037 0 042000 000104
SP 020000 000040 E 042400 000105
I 020400 000041 F 043000 000106
" 021000 000042 G 043400 000107

021400 000043 H 044000 000110
$ 022000 000044 I 044400 000111

ASCII Character Set A-3

ASCII First Character I Second Character ASCII First Character -' I Second Character I
Character Octal Equivalent Octal Equivalent Character Octal Equivalent Octal Equivalent

J 045000 000112 e 062400 000145
K 045400 000113 f 063000 000146
L 046000 000114 9 063400 000147
M 046400 000115 h 064000 000150
N 047000 000116 i 064400 000151
0 047400 000117 j 065000 000152
P 050000 000120 k 065400 000153
Q 050400 000121 1 066000 000154
R 051000 000122 m 066400 000155
S 051400 000123 n 067000 000156
T 052000 000124 0 067400 000157
U 052400 000125 p 070000 000160
V 053000 000126 q 070400 000161
W 053400 000127 r 071000 000162
X 054000 000130 s 071400 000163
Y 054400 000131 t 072000 000164
Z 055000 000132 u 072400 000165
[055400 000133 v 073000 000166
\ 056000 000134 w 073400 000167
] 056400 000135 x 074000 000170
1\ 057000 000136 y 074400 000171
8 057400 000137 z 075000 000172

060000 000140 { 075400 000173
a 060400 000141 f- 076000 000174
b 061000 000142 } 076400 000175
c 061400 000143 rv 077000 000176
d 062000 000144 DEL 077400 000177

A-4 ASCII Character Set

Instruction I Form

AAR PPF' {n}

ABR PE:F{n}

ADA PDP {loc} [; I]

ADB PDB{loc} [, 1]

AND Pr{D {loc} [; I]

Appendix B
Machine Instructions

Detailed List

Group

Shift/Rotate

Shift/Rotate

Integer Math

Integer Math

Logical

Description

Shifts the A register right the indicated number of
bits with the sign bit filling all vacated bit positions.
(Arithmetic right)

Shifts the B register right the indicated number of
bits with the sign bit filling all vacated bit positions.
(Arithmetic right)

Adds the contents of the specified location to the
contents of register A. The result is in A. If a carry
occurs, Extend is set, otherwise Extend is un
changed. If an overflow occurs, Overflow is set,
otherwise Overflow is unchanged. A carry is from
bit 15; an overflow is a carry from bit 15 or 14, but
not both. Extend and Overflow are bits in the pro
cessor. Specifying register R4, R5, R6, or R7 as
the location causes an input II 0 bus cycle to the
interface addressed by the Pa register. Indirect
addressing may be specified. {loc} must be on
base or current page.

Adds the contents of the specified location to the
contents of register B. The result is in B. If a carry
occurs, Extend is set, otherwise Extend is un
changed. If an overflow occurs, Overflow is set,
otherwise Overflow is unchanged. A carry is from
bit 15; an overflow is a carry from bit 15 or 14, but
not both. Extend and Overflow are bits in the pro
cessor. Specifying register R4, R5, R6, or R7 as
the location causes an input II 0 bus cycle to the
interface addressed by the Pa register. Indirect
addressing may be specified. {loc} must be on
base or current page.

Logical "and" operation. The contents of the A
register are compared, bit by bit, with the contents
of the specified location. For each bit comparison
a 1 results if both bits are 1 's, a 0 results otherwise.
The 16-bit result is left in A. Specifying register
R4, R5, R6, or R7 causes an input bus cycle to the
interface addressed by the Pa register. Indirect
addressing may be specified. {loc} must be on
base or current page.

B-1

B-2 Machine Instructions

Instruction

CBL

CBU

CDC

CLA

CLB

CLR

CMA

CMB

CMX

CMY

CPA

CPB

DBL

DBU

DDR

DIR

DMA

-=_'L..:

...
1 ••.. L .. t:;

C F {n}

Form Group

Stack

Stack

BCD Math

Shift

Shift

Load/Store

Memory

Memory

BCD Math

BCD Math

Test/Branch

Test/Branch

Stack

Stack

I/O

I/O

I/O

Description

Clears the Cb register. Specifies the lower block of
memory for byte-referencing stack instructions.

Sets the Cb register. Specifies the upper block of
memory for byte-referencing stack instructons.

Clears Decimal Carry explicitly.

Clears register A. This is exactly equivalent to SAR
16.

Clears register B. This is exactly equivalent to SBR
16.

Clears the specified number of words, beginning
at the location pointed at by the A register. A
maximum of 16 words may be cleared.

Perform a one's complement of the A register (bit
by bit inversion of all 16 bits).

Perform a one's complement of the B register (bit
by bit inversion of all 16 bits).

Ten's complement of Arl. The mantissa of Arl is
replaced with its ten's complement and Decimal
Carry is cleared.

Ten's complement of Ar2. The mantissa of Ar2 is
replaced with its ten's complement and Decimal
Carry is cleared.

Compares the contents of register A with the con
tents of the specified location and skips if they are
unequal. Indirect addressing may be specified.
Specifying register R4, R5, R6, or R7 causes an
input bus cycle to the interface addressed by the
Pa register. {loc} must be on base or current page.

Compares the contents of register B with the con
tents of the specified location and skips if they are
unequal. Indirect addressing may be specified.
Specifying register R4, R5, R6, or R7 causes an
input bus cycle to the interface addressed by the
Pa register. {loc} must be on base or current page.
{loc} must be on base or current page.

Clears the Db register. Specifies the lower block of
memory for byte-referencing stack instructions.

Sets the Db register. Specifies the upper block of
memory for byte-referencing stack instructions.

Disables Data Request. Cancels the DMA
instruction.

Disables the interrupt system. Cancels the EIR
instruction.

Enables the DMA mode. Cancels the DDR
instruction.

Instruction Form

DRS

DSZ I1::;2 {loc} [~ I]

EIR

EXE E>:;E {reg} [, I]

FDV FII'",'

FMP

FXA

Group

BCD Math

Test/ Alter/Branch

I/O

Miscellaneous

BCD Math

BCD Math

BCD Math

Machine Instructions B-3

Description

Mantissa right shift of Arl for one digit. The
twelfth digit is shifted into bits 0-3 of the A regis
ter. The non-digit part of the A register is cleared
(bits 4-15), and the Decimal Carry bit in the pro
cessor is cleared. The first digit in the mantissa is
set to O.

Decrements the contents of the specified location
and skips if the new contents are O. Specifying
register R4, R5, R6, or R7 causes an input (or an
input and an output) bus cycle to the interface
addressed by the Pa register. Indirect addressing
may be specified. {loc} must be on base or current
page.

Enables the interrupt system. Cancels the DIR in
struction.

Executes the contents of a register. {reg} is an in
teger in the range of 0 through 31, indicating the
register to be used (see Memory Map for the cor
respondence between location and register). The
register is left unchanged unless the instruction
code causes it to be altered. The next instruction
to be executed is the one following the EXE, un
less the code in the executed register causes a
branch. Indirect addressing may be specified.

Fast divide. The mantissas of Arl and Ar2 are
added together, along with Decimal Carry, until
the first decimal overflow occurs. The result ac
cumulates into Ar2. The number of additions
without overflow is placed into the lower 4 bits of
the B register (0-3). The remainder of the B regis
ter is cleared, as is the Decimal Carry bit in the
processor.

Fast Multiply. Performs the multiplication by re
peated additions. The mantissa of Arl is added to
Ar2 along with Decimal carry, a specified number
of times. The number of times is specified in the
lower 4 bits (0-3) of the B register. The result ac
cumulates in Ar2. If intermediate overflows occur,
the number of times they occur appears in the
lower 4 bits of the A register after the operation is
complete. The upper 12 bits of the A register are
cleared along with Decimal Carry.

Fixed-point addition. The mantissas of Arl and
Ar2 are added together and the result placed in
Ar2. Decimal Carry is used as the twelfth digit.
After the addition, Decimal Carry is set if an over
flow occurred, otherwise Decimal Carry is cleared.

B-4 Machine Instructions

!nstruction Form

lOR IU~'{loc}[;I]

IS2 I '::;Z {loc} [, I]

JMP

JSM

LOA LDA {loc} [, I]

LOB L.DE: {loc} [, I]

MLY

MPY

Group

Logical

Test/ Alter/Branch

Branch

Branch

Load/Store

Load/Store

BCD Math

Integer Math

Description

Logical "inclusive or" operation. The contents of
the A register are compared, bit by bit, with the
contents of the specified location. For each bit
comparison, a 0 results if both bits are 0' s, a 1
otherwise. The 16-bit result is left in A. Specifying
register R4, RS, R6, or R7 causes an input bus
cycle to the interface addressed by the Pa register.
Indirect addressing may be specified. {loc} must
be on base or current page.

Increments the contents of the specified location
and skips if the new contents are O. Specifying
register R4, RS, R6, or R7 causes an input (or an
input followed by an output) bus cycle to the inter
face addressed by the Pa register. Indirect ad
dressing may be specified. {loc} must be on base
or current page.

Unconditionally branches to the specified loca
tion. Indirect addreSSing may be specified. {loc}
must be on base or current page.

Jumps to subroutine. The valuz of the R register
is incremented by 1 and the value of the P regis
ter (i. e., the location of the JSM instruction itself)
is stored in the address pointed to by the R regis
ter. Execution then proceeds to the specified lo
cation. Return from the subroutine is effected by
the RET instruction. Indirect addreSSing may be
specified. {loc} must be on base or current page.

Loads register A with the contents of the
speCified location. Specifying register R4, RS,
R6, or R7 causes an input II 0 bus cycle to the
interface addressed by the Pa register. Indirect
addressing may be specified. {loc} must be on
base or current page.

Loads register B with the contents of the
specified location. Specifying register R4, RS,
R6, or R7 causes an input II 0 bus cycle to the
interface addressed by the Pa register. Indirect
addressing may be specified. {loc} must be on
base or current page.

Mantissa left shift on Ar2 for one digit. This is a
circular shift, with the bits 0-3 of the A register
forming a thirteenth digit. The non-digit part of
the A register is cleared (bits 4-1S), and the Dec
imal Carry bit in the processor is cleared.

Binary multiply. Uses Booth's Algorithm. The
values of the A and B registers are multiplied to
gether with the product placed into A and B. The
A register contains the least significant bits and
the B register contains the most significant bits
and the sign. B may contain any integer within
the range -32767 to +32767.

Machine Instructions 8-5

II t _DS_fUC_lOD _ orm r. ..."roup n ...,€SCnpLiOn

MRX j'1P::-:; BCD Math Mantissa right shift on Ar1. The number of digits
to be shifted is specified in the lower 4 bits (0-3)
of the B register. The shift is accomplished in
three stages:

1) Bits 0-3 of the A register are right-shifted into
01 of the mantissa, with the twelfth digit being
lost. This is the first shift. This shift always takes
place, even if B = o.
2) The digits are then right-shifted for the re-
maining number of digits specified. The twelfth
digit is lost on each shift (except for the last shift)
and the vacated digits are zero-filled.

3) Finally, the last right-shifting takes place, with
the twelfth digit shifting into the lower 4 bits (0-3)
of the A register. The Decimal Carry bit in the pro-
cessor is cleared and the non-digit part of the A
register is cleared (bits 4-15).

MRY r'1P'y' BCD Math Mantissa right shift on Ar2. The number of digits
to be shifted is specified in the lower 4 bits (0-3)
of the B register. The shift is accomplished in
three stages:

1) Bits 0-3 of the A register are right-shifted into
01 of the mantissa, with the twelfth digit being
lost. This is the first shift. This shift always takes
place, even if B = o.
2) The digits are right-shifted for the remaining
number of digits specified. The twelfth digit is lost
on each shift (except for the last shift) and the
vacated digits are zero-filled.

3) Finally, the last right-shifting takes place, with
the twelfth digit shifting into the lower 4 bits (0-3)
of the A register. The non-digit part of the A regis-
ter is cleared (bits 4-15), and the Decimal Carry bit
in the processor is cleared.

MWA t'1~,jA BCD Math Mantissa word addition. The contents of the B
register are added to the ninth through twelfth
digits of the Ar2 register. Decimal Carry is added
to the twelfth digit; if an overflow occurs, Deci-
mal Carry is set, otherwise Decimal Carry is
cleared.

NOP r·mp Miscellaneous Null operation. This is exactly equivalent to LOA
A.

NRM r·~f<:r'1 BCD Math Normalizes the Ar2 mantissa. Up to twelve left-
shifts of the mantissa are performed until the first
digit of the mantissa is non-zero. If the original

I

first digit is already non-zero, no shifts occur. The

I

I

number of shifts required is stored in the first 4
bits (0-3) of th e B register. If 12 sh ifts are re-
quired, the Decimal Carry bit in the processor is
set; otherwise, the Decimal Carry bit is cleared.
The exponent is not altered.

8-6 Machine Instructions

Instruction Form Group Description

PBC PBC {reg} [, I] Stack Pushes the lower byte (right half) of the specified
register onto the stack pointed at by the Cb and C
registers. Specifying register R4, R5, R6, or R7
causes an input II 0 bus cycle to the interface ad-
dressed by the Pa register. Incrementing or dec-
rementing of the C register can be specified. In-
crementing is the default. {reg} must be in the
range of 0 through 7. The incrementing or decre-
menting action takes place before pushing.

PBD PBD {reg} ,II Stack Pushes the lower byte (right half) of the specified

PBII {reg} [, I] register onto the stack pointed at by the Db and D
registers. Specifying register R4, R5, R6, or R7
causes an input II 0 bus cycle to the interface ad-
dressed by the Pa register. Incrementing or dec-
rementing the D register can be specified. Incre-
menting is the default. {reg} must be in the range
of 0 through 7. The incrementing or decrementing
action takes place before pushing.

PWC P~'4C {reg} , II Stack Pushes entire register (full word) onto the stack

P~K: {reg} [, I] pointed at by the C register. Specifying register
R4, R5, R6, or R7 causes an input II 0 bus cycle to
the interface addressed by the Pa register. Incre-
menting or decrementing the C register may be
specified. Incrementing is the default. {reg} must
be in the range of 0 through 7. The incrementing
or decrementing action takes place before
pushing.

PWD F'L,m {reg} ,II Stack Pushes the entire register (full word) onto the

P~'~II {reg} [, I] stack pointed at by the D register. Specifying
register R4, R5, R6, or R7 causes an input II 0 bus
cycle to the interface addressed by the Pa register.
Incrementing or decrementing the D register may
be specified. Incrementing is the default. {reg}
must be in the range of 0 through 7. The
incrementing or decrementing action taken place
before pushing.

RAL PAL {n} Shift/Rotate Rotates the A register left the indicated number of
bits. Bit 15 rotates into bit 0 (left circular).
Maximum rotation of 16 bits.

RAR PAF: {n} Shift/Rotate Rotates the A register right the indicated number
of bits. Bit 0 rotates into bit 15 (right circular).
Maximum rotation of 16 bits.

RBL PBL {n} Shift/Rotate Rotates the B register left the indicated number of
bits. Bit 15 rotates into bit 0 (left circular) .
Maximum rotation of 16 bits rotated.

I Instruction Form

RBR PB~: {n}

RET

RIA

RIB

RLA

RLB

RZA

RZB

SAL

SAM

SAP

~:ET {n}

PIA {adrs}

PIB {adrs}

~LA {adrs} [, ::;]

PLA {adrs} [, C]

PLB {adrs} [, ::;]

PLB {adrs} [, C]

PZA {adrs}

PZB {adrs}

::;AL {n}

3Ar'1 {adrs} [, ::;]

::;At'1 {adrs} [, C]

::;AF' {adrs} [, ::;]

I SAP {adrsj[. C]

Group

Shift/Rotate

Branch

T est/ Branch

Test/Branch

Test/ Alter/Branch

Test/ Alter/Branch

Test/Branch

T est/ Branch

Shift/Rotate

Test/ Alter/Branch

Test/ Alter/Branch

Machine Instructions B-7

Description

Rotates the B register right the indicated number
of bits. Bit 0 rotates into bit 15 (right circular).
Maximum rotation of 16 bits.

Returns from subroutine. {n} is added to the
contents of the address pointed to by the R
register. The R register is decremented by 1. This
is, in effect, a return from a JSM instruction (see
above), to {n} instructions following the JSM itself.
The "usual" return is RET 1. {n} must be in the
range of - 32 through 31.

Skips to {adrs} if register A is not 0, then
increments register A by 1. Extend and Overflow
are not effected by the incrementing action, even
if a carry or overflow occurs. {adrs} must be within
- 32 and + 31 of the current location.

Skips to {adrs} if register B is not 0, then
increments register B by 1. Extend and Overflow
are not affected by the incrementing action, even
if a carry or overflow occurs. {adrs} must be within
- 32 and + 31 of the current location.

Skips to {adrs} if the least significant bit of the A
register is not 0. Setting or clearing the bit after the
test can be specified. {adrs} must be within - 32
and + 31 of the current location.

Skips to {adrs} if the least significant bit of the B
register is not 0. Setting or clearing the bit after the
test can be specified. {adrs} must be within - 32
and + 31 the current location.

Skips to {adrs} if register A is not 0. {adrs} must be
within - 32 and + 31 of the current location.

Skips to {adrs} if register B is not 0. {adrs} must be
within - 32 and + 31 of the current location.

Shifts the A register left the indicated number of
bits with all vacated bit positions becoming 0.
Maximum shift is 16 bits.

Skips to {adrs} if the A register is negative (bit 15 is
1). Setting or clearing the bit after the test can be
specified. {adrs} must be within - 32 and + 31 of
the current location.

Skips to {adrs} if the A register is positive or zero
(bit 15 is 0). Setting or clearing the bit after the test
can be specified. {adrs} must be within - 32 and
+ 31 of the current location.

8-8 Machine Instructions

Instruction Form Group Description

SAR ~:;AF: in} Shift/Rotate Shifts the A register right the indicated number of
bits with all vacated bit positions becoming O.
Maximum shift is 16 bits.

SBL ::;BL in} Shift/Rotate Shifts the B register left the indicated number of
bits with all vacated bit positions becoming O.
Maximum shift is 16 bits.

SBM ::;})'1 {adrs} [, :::;] T est/ Alter/Branch Skips to {adrs} if the B register is negative (bit 15 is

::::Bl'1 {adrs} [, C] Test/ Alter/Branch
1). Setting or clearing the bit after the test can be
specified. {adrs} must be within - 32 and + 31 of
the current location.

SBP ~::;I::F' {ad rs} [, :::;] Test/ Alter/Branch Skips to {adrs} if the B register is positive (bit 15 is

::::BP {adrs} [, C]
0). Setting or clearing the bit after the test can be
specified. {adrs} must be within - 32 and + 31 of
the current location.

SBR SBP in} Shift/Rotate Shifts the B register right the indicated number of
bits with all vacated bit positions becoming O.
Maximum shift is 16 bits.

SOC ~::;DC {adrs} BCD Math Skips to {adrs} if Decimal Carry is clear. Decimal
carry is a single bit in the processor which may
have been set by certain arithmetic operations.
{adrs} must be within - 32 and + 31 of the cur-
rent location.

SOl ::;D I I/O Sets DMA inwards. Reads from peripheral, writes
to memory.

SDO :::;DO I/O Sets DMA outwards. Reads from memory, writes
to peripheral.

SDS :::;D::; {adrs} BCD Math Skips to {adrs} if Decimal Carry is set. Decimal
carry is a single bit in the processor which may
have been set by certain arithmetic operations.
{adrs} must be with - 32 and + 31 of the current
location.

SEC ::;EC {adrs} [, ~:;] Test/ Alter/Branch Skips to {adrs} if Extend is clear. Extend is a single

:::;EC {adrs} [, C]
bit in the processor which may have been set by
certain arithmetic operations. Setting or clearing
the bit after the test can be specified. {adrs} must
be within - 32 and + 31 of the current location.

SES :::E:::; {adrs} [, ::;] Test/ Alter/Branch Skips to {adrs} if Extend is set. Extend is a single

::;E::; {adrs} [, C]
bit in the processor which may have been set by
certain arithmetic operations. Setting or clearing
the bit after the test can be specified. {adrs} must
be within - 32 and + 31 of the current location.

Machine Instructions 8-9

I Instruction --- - - --- - -- - ~ -Form GrOUD Descriotion

SFC ::;FC {adrs} I/O Skips to {adrs} if the Flag line is false (clear). The
Flag.line is the one associated with a peripheral on
the current select code (pointed to by the Pa regis-
ter). {adrs} must be within - 32 and + 31 of the
current location.

SFS ~:;F~:; {adrs} I/O Skips to {adrs} if the Flag line is true (set). The flag
line is that associated with the peripheral on the
current select code (pointed to by the Pa register).
{adrs} must be within - 32 and + 31 of the current
location.

SHC ~:;HC{{adrs} T est/ Branch Skips to {address} if CRT is scanning its raster.
{adress} must be within -32 and +31 of the cur-
rent location.

SHS ~:H:;{adrs} T est/ Branch Skips to {address} if CRT is doing vertical retrace.
{address} must be within -32 and +31 of the cur-
rent location.

SIA ~:;I A {adrs} Test/Branch Skips to {adrs} if register A is 0, then increments
register A by 1. Extend and Overflow are not af-
fected by the incrementing action, even if a carry
or overflow occurs. {adrs} must be within - 32
and + 31 of the current location.

SIB 3I B {adrs} Test/Branch Skips to {adrs} if register B is 0, then increment
register B by 1. Extend and Overflow are not af-
fected by the incrementing action, even if a carry
or overflow occurs. {adrs} must be within - 32
and + 31 of the current location.

SLA ~:LA {adrs} [, ~:;] Test/ Alter/Branch Skips to {adrs} if the least significant bit of the A

~:;L A {adrs} [, C]
register is O. Setting or clearing the bit after the
test can be specified. {adrs} must be within - 32
and + 31 of the current location.

SLB ~:LB {adrs} [, C] Test/ Alter/Branch Skips to {adrs} if the least significant bit of the B

~:LB {adrs} [, ~:;]
register is O. Setting or clearing the bit after the
test can be specified. {adrs} must be within - 32
and + 31 of the current location.

SOC ~:;OC {adrs} [, ~:;] Test/ Alter/Branch Skips to {adrs} if Overflow is clear. Overflow is a

~:;OC {adrs} [, C]
single bit in the processor which may have been
set by certain arithmetic operations. Setting or
clearing the bit after the test can be specified.
{adrs} must be within - 32 and + 31 of the cur-
rent location.

B-10 Machine Instructions

Instruction Form Group Description

SOS ~:;O~:; {adrs} [, ~:;] Test/ Alter/Branch Skips to {adrs} if the Overflow is set. Overflow is a

~:;u:; {adrs} [, C]
single bit in the processor which may have been
set by certain arithmetic operations. Setting or
clearing the bit after the test can be specified.
{adrs} must be within - 32 and + 31 of the cur-
rent location.

sse ~:;~:;C {adrs} I/O Skips to {adrs} if Status line is false (clear). The
status line is the one associated with the peripheral
on the current select code (pointed to by the Pa
register). {adrs} must be within - 32 and + 31 of
the current location.

SSS ~:;~:;::; {adrs} I/O Skips to {adrs} if the Status line is true (set). The
status line is the one associated with the peripheral
on the current select code (pointed to by the Pa
register). {adrs} must be within - 32 and + 31 of
the current location.

STA ~:;TA {loc} [, I] Load/Store Stores the contents of the A register into the
specified location. Specifying register R4, RS, R6,
or R7 causes an output bus cycle to the interface
addressed by the Pa register. Indirect addressing
may be specified. {loc} must be on base or current
page.

STB ~:;TB {loc} [, I] Load/Store Stores the contents of the B register into the
specified location. Specifying register R4, RS, R6,
or R7 causes an output bus cycle to the interface
addressed by the Pa register. Indirect addressing
may be specified. {loc} must be on base or current
page.

SZA ~:;ZA {adrs} Test/Branch Skips to {adrs} if register A is O. {adrs} must be
within - 32 and + 31 of the current location.

SZB ~:;ZB {adrs} Test/Branch Skips to {adrs} if register B is O. {adrs} must be
within - 32 and + 31 of the current location.

TeA TCA Integer Math Performs a two's complement of the A register
(one's complement, incremented by 1). If a carry
occurs, Extend is set, otherwise Extend is un-
changed. If an overflow occurs, Overflow is set,
otherwise Overflow is unchanged. A carry is from
bit 15; an overflow occurs when complementing
- 32768. Extend and Overflow are bits in the
processor.

TeB TeB Integer Math Performs a two's complement of the B register
(one's complement, incremented by 1). If a carry
occurs, Extend is set, otherwise Extend is un-
changed. If an overflow occurs, Overflow is set,
otherwise Overflow is unchanged. A carry is from
bit 15; an overflow occurs when complementing
- 32 768. Extend and Overflow are bits in the
processor.

Machine Instructions B-11

I Instruction Form Group Description

WBC ~'~Be {reg} [, Ii] Stack Withdraws a byte from the stack painted at by the

L,me {reg} , I
Cb and C registers and places it into the lower byte
(right half) of the specified register. Specifying reg-
ister R4, R5, R6, or R7 causes an output 1/ 0 bus
cycle to the interface addressed by the Pa register.
Incrementing or decrementing the C register can
be specified. Decrementing is the default. {reg}
must be in the range of 0 through 31. The incre-
menting or decrementing routine takes place after
the withdrawal.

WBD ~{BIi {reg} [, Ii] Stack Withdraws a byte from the stack pointed at by the

~{BIi {reg} , I
Db and D registers and places it into the lower byte
(right half) of the specified register. Specifying reg-
ister R4, R5, R6, or R7 causes an output 1/ 0 bus
cycle to the interface addressed by the Pa register.
Incrementing or decrementing the D register can
be specified. Decrementing is the default. {reg}
must be in the range of 0 thro~gh 31. The incre-
menting or decrementing routine takes place after
the withdrawal.

WWC L'~L'K: {reg} [, Ii] Stack Withdraws a full word from the stack pointed at by

L'~L,~e {reg} , I
the C register and places it into the specified regis-
ter. Specifying register R4, R5, R6, or R7 causes
an output 1/ 0 bus cycle to the interface addressed
by the Pa register. Incrementing or decrementing
of the C register can be specified. Decrementing is
the default. {reg} must be in the range of 0 through
31. The incrementing or decrementing action
takes place after the withdrawal.

WWD ~'4L,j Ii {reg} [, Ii] Stack Withdraws a full word from the stack pointed at by

~'~L,m {reg} , I
the D register and places it into the specified regis-
ter. Specifying register R4, R5, R6, or R7 causes
an output 1/ 0 bus cycle to the interface addressed
by the Pa register. Incrementing or decrementing
of the D register can be specified. Decrementing is
the default. {reg} must be in the range of 0 through
31. The incrementing or decrementing action
takes place after the withdrawal.

XFR >::FP {n} Load/Store Transfers the specified number of words, from the
location starting at the address pointed at by the A
register to the location starting at the address
pointed at by the B register. A maximum of 16
words can be transferred.

8-12 Machine Instructions

Instruction

15 14 13 12

NOP 0 0 0 0
LDAfs °11 0 0 0
CPAfs °11 0 0 1
ADA/s °11 0 1 0
STA/s °11 0 1 1
JSM 0/r 1 0 0
AND °11 1 0 1
liDSZ °Il 1 0 1/'2
lOR °Il 1 1 0
JMP °Il 1 1 0
EXE °11 1 1 1
SDo/1 0 1 1 1
E/oIR 0 1 1 1
DMA 0 1 1 1
DDH 0 1 1 1
°/cBulL 0 1 1 1
P/wW/sc/o 0 1 1 1
MWA 0 1 1 1
CM"/x 0 1 1 1
FXA 0 1 1 1
XFR 0 1 1 1
CLR 0 1 1 1
NRM 0 1 1 1
CDC 0 1 1 1
FMP 0 1 1 1
FDV 0 1 1 1
MRX 0 1 1 1
DRS 0 1 1 1
MRY 0 1 1 1
MLY 0 1 1 1
MPY 0 1 1 1
SFfoS/c 0 1 1 1
Rlsl/lA/s 0 1 1 1
S/RL A/s 0 1 1 1
Sss/c 0 1 1 1
SHS/c 0 1 1 1
SA/sP/M 1 1 1 1
SOhCfs 1 1 1 1
RET 1 1 1 1
TCA/s 1 1 1 1
CMA/s 1 1 1 1
CLA/s 1 1 1 1
AA/sR 1 1 1 1
RfsA/s R 1 1 1 1
SA/sL 1 1 1 1
RAfsL 1 1 1 1

Approximate Numerical List
Bit Patterns

Bit Pattern

11 10 9 8 7 6

0 0 0 0 0 0
A/s
A/s
A/s
A/s

5 4 3 2 1 0

0 0 0 0 0 0

0 Address Field

0
1
0
1
0 0 0 0 0 0 0 0 Reaister Address

0 0 0 1 0 0 0 0 air 0 0 0
0 0 0 1 0 0 0 1 EJo 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 1 1 0 0 0
0 0 0 1 0 1 0 u/L °/c 0 0 0

w/s 0 0 1 I/'D 1 1 P/w c/o Re!lister Address

0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 Y/x 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 N=# of words

0 0 1 1 1 0 0 0 binarv=(n-ll

0 0 1 1 0 1 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0 1
1 0 1 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0 1
1 0 1 1 0 1 0 0 0 0 0 0
1 0 1 1 0 1 1 0 0 0 0 1
1 0 1 1 1 0 0 0 1 1 1 1
0 1 0 sic 1 Flo Skip Field

A/s 1 0 Rfs 0 III if bit 5 is 0, then skip to(P+ n),
A/s 1 1 sIR H/H CIs n=bits 0-4

1 1 0 sic 1 0 if bit 5= 1, then skip to(p-n),

1 1 0 s,
IC 1 1

A/s 1 0 P/M H/H cis n=!wo's complement of bits 0-4
olE 1 1 Lis H/H Cis
0 0 0 0 1 0 complemented skip field
A/s 0 0 0 0 0 1 0 0 0 0 0
A/s 0 0 0 0 1 1 0 0 0 0 0
"'/s 0 0 1 0 1 0 0 1 1 1 1
"'/s 0 0 1 0 0 0 0 Shift Field
"', IS 0 0 1 Rfs 1 0 0 in source,n=1-16
",

I B 0 0 1 1 0 0 0 binarv=(n-1)
",

B 0 0 1 1 1 0 0 complemented shift

Alphabetic List
Bit Patterns and Timings

Instruction Bit Pattern Timing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Direct Indirect

AARn 1 1 1 1 0 0 0 1 0 0 0 o I ~ n-1 ~ n+9
ABRn 1 1 1 1 1 0 0 1 0 D 0 o ~ n-1 ~ n+9
ADA o I 0 1 0 0 B/C ~ address ~ 13 19
ADB 011 0 1 0 1 B/C ~ address ~ 13 19
AND 01 I 1 0 1 0 B/C ~ address ~ 13 19
CBl 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 12
CBU 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 12
CDC 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 11
ClA 1 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 25
CLB 1 1 1 1 1 () () 1 0 1 0 0 1 1 1 1 25 .1 .1 .1 .1 .1 V v

ClR n 0 1 1 1 0 0 1 1 1 0 0 0 I~ n-1 ~ 6n+16
CMA 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 9
CMB 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 9
CMX 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 59
CMY 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 23
CPA 0'1 0 0 1 0 B/C ~ address ~ 16 22
CPB 01 I 0 0 1 1 BiC ~ address ~ 16 22
DBl 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 12
DBU 0 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 12
DDR 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 12
DIR 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 12
DMp. 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 12
DRS 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 1 56
DSZ Oil 1 0 1 1 B/C ~ address ~ 19 25
EIR 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 12
EXE Oil 1 1 1 0 0 0 0 0 0 o I ~ register ~ 8 14
FDV 0 1 1 1 1 0 1 0 0 0 1 0 0 0 0 1 37+13B
FMP 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 42+ 13B
FXA 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 40
lOR o I 1 1 0 0 B/C ~ address ~ 13 19
ISZ D'I 1 0 0 1 B/C ~ address ~ 19 25
JMP o I 1 1 0 1 B'C ~ address ~ 8 14
JSM D I 1 0 0 0 B C ~ address ~ 17 23
lOA D I 0 0 0 0 B/C ~ address ~ 13 19
lOB o I 0 0 0 1 B/C ~ address ~ 13 19
MlY 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 1 32
MPY 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 65+2T
MRX 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 62+4B
MRY 0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 33+4B
MWA 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 28
NOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11
NRM 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 23+Z
PBC r 0 1 1 1 1 0 0 1 I 0 1 1 0 0 ~ r ~ 23
PBD r 0 1 1 1 1 0 0 1 I D 1 1 0 1 ~ r ~ 23
PWCr 0 1 1 1 0 0 0 1 I D 1 1 0 0 ~ r ~ 23
PWDr 0 1 1 1 0 0 0 1 I D 1 1 0 1 ~ r ~ 23

Instruction Bit Pattern Timing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Direct Indirect

RAL n 1 1 1 1 0 0 0 1 1 1 0 0 ~ 15-n ~ 25-n
RARn 1 1 1 1 0 0 0 1 1 1 0 0 ~ n-l ~ n+9
RBL n 1 1 1 1 1 0 0 1 1 1 0 0 ~ 15-n ~ 25-n
RBR n 1 1 1 1 1 0 0 1 1 1 0 0 ~ n-l ~ n+9
RET 1 1 1 1 0 0 0 0 1 0 ~ skip ~ 16
RIA 0 1 1 1 0 1 0 0 0 1 ~ skip ~ 14
RIB 0 1 1 1 1 1 0 0 0 1 ~ skip ~ 14
RLA 0 1 1 1 0 1 1 1 HH CIS ~ skip ~ 14
RLB 0 1 1 1 1 1 1 1 H,H CiS ~ skip ~ 14
RZA 0 1 1 1 0 1 0 0 0 0 ~ skip ~ 14
RZB 0 1 1 1 1 1 0 0 0 0 ~ skip ~ 14
SAL n 1 1 1 1 0 0 0 1 1 0 0 0 ~ n-l ~ n+9
SAM 1 1 1 1 0 1 0 1 HH CiS ~ skip ~ 14
SAP 1 1 1 1 0 1 0 0 HH C"S ~ skip ~ 14
SARn 1 1 1 1 0 0 0 1 0 1 0 0 ~ n-l ~ n+9
SBL n 1 1 1 1 1 0 0 1 1 0 0 0 ~ n-l ~ n+9
SBM 1 1 1 1 1 1 0 1 H H C S ~ skip ~ 14
SBP 1 1 1 1 1 1 0 0 HH C S ~ skip ~ 14
SBRn 1 1 1 1 1 0 0 1 0 1 0 0 ~ n-l ~ n+9
SOC 0 1 1 1 0 1 0 1 1 1 ~ skip ~ 14
SOl 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 12
SOO 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 12
SOS 0 1 1 1 0 1 0 0 1 1 ~ skip - 14
SEC 1 1 1 1 1 1 1 0 H H C S ~ skip ~ 14
SES 1 1 1 1 1 1 1 1 H H C S ~ skip - 14
SFC 0 1 1 1 0 1 0 1 1 0 ~ skip - 14
SFS 0 1 1 1 0 1 0 0 1 0 ~ skip ~ 14
SHC 0 1 1 1 1 1 0 1 1 1 ~ skip - 14
SHS 0 1 1 1 1 1 0 0 1 1 ~ skip - 14
SIA 0 1 1 1 0 1 0 1 0 1 ~ skip - 14
SIB 0 1 1 1 1 1 0 1 0 1 ~ skip - 14
SLA 0 1 1 1 0 1 1 0 H H c s ~ skip ~ 14
SLB 0 1 1 1 1 1 1 0 H H c s ~ skip - 14
SOC 1 1 1 1 0 1 1 0 H H C S ~ skip - 14
SOS 1 1 1 1 0 1 1 1 H H C S ~ skip - 14
SSC 0 1 1 1 1 1 0 1 1 0 ~ skip - 14
SSS 0 1 1 1 1 1 0 0 1 0 ~ skip - 14
STA 0,1 0 1 1 0

B ~I ~ address - 13 19
STB 0,1 0 1 1 1 B C ~ address - 13 19
SZA 0 1 1 1 0 1 0 1 0 0 ~ skip - 14
SZB 0 1 1 1 1 1 0 1 0 0 ~ skip - 14
TCA 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 9
TCB 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 9
WBCr 0 1 1 1 1 0 0 1 1 () 1 1 , 0 ~ r - 23 .l

WBOr 0 1 1 1 1 0 0 1 1 [) 1 1 1 1 ~ r - 23
WWCr 0 1 1 1 0 0 0 1 1 [) 1 1 1 0 ~ r - 23
WWOr 0 1 1 1 0 0 0 1 1 [) 1 1 1 1 ~ r - 23
XFR n 0 1 1 1 0 0 1 1 0 0 0 o I ~ n-l - 12n+21

Machine Instructions 8-13

Bit Patterns and Timings
Notes on timings:

All timings are in clock cycles. One clock cycle = 175 nanoseconds. (The clock rate is 5.7

megahertz.)

The symbols used to represent timing information are as follows:

n - number of bit positions to be shifted or rotated.

N - the current value in bits 0-3 of the instruction word.

B - the current value in bits 0-3 of the instruction word.

T - the total number of O~ 1 and 1 ~O transitions in the A register using an imaginary 0 to the

right of bit O.

Z - the number of leading zeroes in the mantissa of Ar2. If Z = 12, then the total timing is 69

clock cycles.

Other factors that affect timing are as follows:

• Up to 4.3% of the total processor execution time is dedicated to dynamic memory refresh.

• The total execution time dedicated to CRT refresh is -

Minimum

6 clock cycles
every 1/60 sec.
(GRAPHICS mode)

Typical

5%

Maximum

30%
(Full screen of alternating
blinking, underlined or
inverse-video characters)

• Interrupt response depends upon certain hardware and software considerations. The

processor must be enabled with an EIR instruction. The operating system is allowed to

disable interrupts for up to 100 f.LS during various operations. A fast handshake transfer

locks out interrupts until the transfer is complete. The processor must complete the cur

rently executing instruction before acknowledging an interrupt.

• Add two clock cycles to the instruction execution time if an interrupt is pending. Software

overhead involved in getting to a user interrupt service routine consitutes a delay of

approximately 50 f.LS to get to the service routine and 50 f.LS to return from the service

routine. These delays can be lengthened by the effects of DMA, CRT refresh and memory

refresh.

8-14 Machine Instructions

• The processor locks out the initiation of a DMA transfer for a minimum of two clock cycles

and a maximum of 64 clock cycles. The times involved for DMA transfers are -

DMA read = 3 + (IOn + d) + lockout time

DMA write = 3 + (9n + d) + lockout time

where n is the number of words transferred and d is the dual-port conflict time (O = no

conflict...S = continuous conflict). Since DMA transfers take priority over instruction

execution, these transfers can take up to 100% of the processor time, depending on the

data transfer rate of the peripheral device. The worst case involves data transfers to and

from a high-speed, hard disc .

• Due to bus conflicts resulting from two processors requesting one bus, processor interfer

ence can affect timing. If a background program is executed entirely from the ICOM

region, processor interference does not come into play. This is the typical case. The worst

case involves executing a BASIC program simultaneously with an ISR. In this case, pro

gram execution time can be as much as doubled.

Appendix c
Pseudo-Instructions

The following table lists the available assembler pseudo-instructions with a short description of

each.
i i ,

Instruction Form Description

ANY At·fl' Specifies a common or subroutine
declaration to be any type

BSS B:::;:::; {expression} Reserves a block of memory

COM CCi'1 Preface for assembly language common
declarations

DAT DAT {expression} [,{expression} [, ...]] Defines data generators

END Et·m {name} Designates the end of a module

ENT Er-H {symbol} [, {symbol} [, ... J J Identifies entry points in the module

EQU EOU {expression} Defines a symbol

EXT E:=-=:T {symbol} [, {symbol} [, ... J] Identifies external entry points

FIL j:" T' , iL Specifies a subroutine declaration to be a
file number

HED HED {comment} Source listing control for top-of-page with
change of heading

IFA IFA
IFB IFf:
IFC IFC
IFD IFD
IFE IFE ~ Beginning of conditional assembly
IFF IFF
IFG IFG
IFH IFH
IFP IFF' {numeric expression} J

INT Ir·n [("*::.] Specifies a common or subroutine
declaration to be an integer

IOF IOF Turns off au tomatic indirection by
the assembler

ION IOt'4 Turns on automatic indirection by
the assembler

LIT LIT {expression} Reserve memory for literals and links

LST L:::;T Source listing control for enabling the
listing

C-l

C-2 Pseudo-Instructions

Instruction Form Description

NAM f'iAi'1 {name} Designates the beginning of a module

REL ~EL [.::"*::.] Specifies a common or subroutine
declaration to be full-precision

REP PEP {expression} Repeabinstructions

SET :::ET {expression} Defines a symbol

SHO ::;HO [u::.] Specifies a common or subroutine
declaration to be short-precision

SKP :::(P Source listing control for top-of-page

SPC ::;F'C: {integer expression} Source listing control for printing blank
lines

STR 3TP [.::"*)] Specifies a common or subroutine
declaration to be a string

SUB :::IJB Preface for a subroutine entry point
Contains actual number of parameters
passed by ICALL statement
after assembly.

UNL Ut'~L Source listing control for disabling the
listing

XIF ::<IF End of a conditional-assembly block

Appendix D
Assembly Language

BASIC Language Extensions
Formal Syntax

The following is an alphabetical list of the BASIC Language extensions provided by the Assem

bly Language ROMs.

Assembled Location

{symbol} [~ {BASIC numeric expression}]

{expression} [, {BASIC numeric expression}]

where:

{BASIC numeric expression} serves as a decimal offset from the given label or constant.

{symbol} is an assembly location. It may be either a label for a particular machine instruc

tion (in which case the address of the associated instruction is used), or an assembler

defined symbol (in which case the associated absolute address is used), or a symbol

defined by an EQU instruction (in which case the associated value is used).

{expression} may be a numeric expression or a string expression. If numeric, a decimal

calculation is performed and the result is interpreted as an octal value; if the result is not

an octal representation or an integer, an error results. If a string expression is used, the

string must be interpretable as either an octal integer constant or a known assembly

symbol (see {symbol} above).

DECIMAL Function

DEC I r'lAL ({BASIC numeric expression})

IADR Function

T .-. ..-.r-. .' { bl d I t' }"
..i. Hii!",:: ;" assem e oca IOn ..'

D-1

D-2 Assembly Language BASIC Language Extensions Formal Syntax

IASSEMBLE

IA::;::;Er'1BLE {module} [, {module} [~ ...]] [; {option} [, {option} [~ ...]]]
TH-'-·'-·'··'f';- '-H-;! ., [{ t' } [{ t' } []]] 1; .·:I·:q::.!'IDLc. L! LL. .. ! ; op lOn , op lOn , ...

where {module} is the name of an existing module in the source program.

{option} may be any of the following:

IBREAK

A

" J:J

r-' Orr" :-" . .,..
C·) c. i _" !

F

H

L I r·~E::; {numeric expression}

LI::;T

I BPEA< [DATA] {address} [; {counter}] [CALL {subprogram}]

I BPEA< [DATA] {address} [; {counter}] [GCl::;UB {line identifier}]

IBF.~EA< [DATA] {address} [; {counter}] [i::;CTC {line identifier}]

IBF~EA< ALL [CALL {subprogram}]

I BF~EA< ALL [GCSUB {line identifier}]

IBFEAt::: ALL [GCTC {line identifier}]

where:

{address} is an assembled location.

{subprogram} is the name of a BASIC subprogram.

{counter} is a numeric expression.

{line identifier} is a line in the BASIC program.

ICALL

ICALL {routine} [({argument} [, {argument} [, ...]])]

where {routine} is the label associated with a SUB pseudo-instruction sequence and {data

item} takes on the same forms and attributes as parameters in BASIC's CALL statement.

Assembly Language BASIC Language Extensions Formal Syntax D-3

ICHANGE

I CHAr-r:;E {assembled location} TC {octal expression}

ICOM

I CCI'1 {integer constant}

IDELETE

IDELETE {module} [, {module} [~ ...]]

I DELETE [ALL]

where {module} is the name of an existing module in the ICOM region.

IDUMP

I DUf'1F {location} [; {location} [; ...]]

where {location} has the following syntax:

ILOAD

[{mode selection}] {address} [TC {address}]

with {address} an assembled location and {mode selection} taking on any of the

following forms -

::r···:····
.uc=_"

Ht:.::·::

for ASCII character representation

for binary representation

for decimal representation

for hexadecimal representation

for octal representation

I LCAD {file specifier}

where {file specifier} is of the same form as elsewhere in BASIC {see Mass Storage

Techniques manual, or Operating and Programming manual}.

IMEM Function

I f'Er'i ({assembled location})

D-4 Assembly Language BASIC Language Extensions Formal Syntax

INORMAL

I !"~CP!'1AL [{address}]

where {address} is an assembled location.

IPAUSE OFF

("iCC
:-:: :

IPAUSE ON

ISOURCE

I ::;CUFCE {source line}

where {source line} may take either of the following forms -

ISTORE

[{label} :] {action} [! {comment}]

[{label} :] ! {comment}

and:

{label} is of the same form as elsewhere in BASIC;

{action} is a machine instruction, pseudo-instruction, or data generator;

{comment} is any combination of characters

I ::;TCFE {module} [, {module} [, ...]] ; {file specifier}

I ::;TUFE [ALL]; {file specifier}

where:

{module} is the name of a module currently existing in the ICOM region.

{file specifier} is of the same form as elsewhere in BASIC (see the Mass Storage

Techniques manual or the Operating and Programming manual).

LITERALS

::: {expression} [, {expression} [, ...]]

{expression} may be absolute or relocatable

OCTAL Function

CC:TfiL. < {numeric expression} ::=

Appendix E
Predefined Assembler Symbols

The assembler has predefined a number of symbols and has reserved them as references to

special locations in memory. Each of these locations has a special meaning and function. You

may not redefine these symbois. They are -

Name

A

Ar1

Ar2

B
Base page -
C
Cb

D

Db

Dmac
Dmama

Dmapa

Arithmetic accumulator

J BCD arithmetic accumulators

Arithmetic accumulator

Description

Base page temporary area (9 words)

Stack pointer

Block bit for byte pointer in C(most significant bit of address 13B)

Stack pointer

Biock bit for byte pointer in D(second most significant bit of address 13B)

DMA count register
DMA memory address register

DMA peripheral register (lower 4 bits of address 13B)

End isr high }
End isr low

Isr_psw

Reserved symbols for use with interrupt service routines

Oper_1 J
Oper_2

Arithmetic utility operand address registers

P

Pa

R

R4

R5

R6
R7

Result

Se

Utlcount

Utlend
Utltemps

Program counter

Peripheral address register (lower 4 bits of address lIB)

Return stack pointer

)1/ 0 registers

Arith metic utility result address register

Shift-extend register

} Reserved symbols for writing utilities

Each predefined symbol references a particular location in memory, except for the Utlend

symbol, which refers to an execution address of a system routine. A graphical representation of

these locations, plus others of interest, is presented on the next page.

E-I

E-2 Predefined Assembler Symbols

address*

o

37

40

min=41

max=
77756

77777

100000

177557
177560

177627
177630

177644
177645

177655
177656

177657

177660

177661
177665

177666

177767
177770

177773
177774

177777

CPU
registers

(reserved)
(at least 1 word)

user data
(ICOM area)

(reserved)
(at least 1710 words)

(reserved)

Return stack

(reserved)

Base_page

Oper_1

Oper_2

Result

Utltemps

Utlcount

(reserved)

Ar1

(reserved)

-

\
\
starting add ress
dependent u
system need

pan
s

address
dependentu
starting add
and length
of ICOM

pan
ress

\ Db
\

C b_
-

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

*in octal representation

WI

address*

A

B

P

R

R4

R5

R6

R7

(reserved)

I · Pa

(reserved)

I Dmapa

Dmama

Dmac

C

D

Ar2

I' I S~

(reserved)

o

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

23

24

25

37

Utility Name

Busy

Error exit

Get bytes

Get elem bytes

Get file info

Get info

Get element

Get value

Int to reI

Isr access

Mm read start

Mm read xfer

LDA with:

address of
bit pattern

error
number

address of
storage area

address of
storage area

address of
storage area

address of
storage area

address of
storage area

address of
storage area

N/A

address of
ISR

address of

LDB with:

address of
parameter

N/A

address of
parameter

address of
array info

fil e
number

address of
array info

address of
parameter

address of
parameter

N/A

select code
in bits 0-3:
access
code in
bits 4-5:
trial
counter
bits 8-14

mass storage N / A
descriptor

mass storage address of
transfer ID storage area

Exits

RET 1

None - returns to
BASIC

RET 1

RET 1

RET 2 - normal
RET 1 - file unassigned

RET 1

RET 1

RET 1

RET 1

RET 1 -linkage not
established for
reason found in
register A:

- 1 = resources
unobtainable

- 2 = select code
linked to
another ISR

RET 2 - normal

RET 1 - memory overflow
RET 2 - normal

(A contains mass
storage transfer 10)

Other

Storage area consists of:
1st word - starting byte
2nd word - number of bytes to be

transferred
3rd word on - sufficient space

for string

Array info obtained by Get_info
utility Relative element number
must be stored in array pointer
(word 16) of array info.
Storage area same as in Get bytes.

Storage area contents after return:
word 0 - lower 16 bits of file address
word 1 - number of defined records
word 2 - current record number
word 3 - current word in current record
word 4 - size of defined record
word 5 - mass storage unit specifier
word 6 - buffer address
word 7 - check read (O=off, 1 =on)
word 8 - high 7 bits of file address
word 9 - (reserved by system)

Storage area must be at least:
3 words - simple variables

18 words - arrays
for arrays, add 3 words for each 64K
bytes in your machine's memory

Array info obtained by Get info
utility. Relative element number
must be stored in array pointer
(word 16) of array info
Storage area must be sufficient
size to hold value.

Storage area must be sufficient
size to hold value

Load address of integer into
Oper 1 and address of storage
area into Result. Storage a.rea
must be at least 4 words.

select code is 0-7 for low-level or 8 15 for
high-level: resource code is:
o - no resources
1 - asynchronous access
2 - asynchronous access with DMA
3 - synchronous access

trial counter is number of attempts before
aborting (RET 1, with A set to - 1)

Mass storage descriptor is 3 words containing:
word 1 - mass storage unit specifier
word 2 -least significant 16 bits of record number
word 3 - most significant 7 bits of record number

Storage area must be at least 128 words
Mass storage transfer ID would be returned

from Mm read start utility
Storage ar;a rec~ves transferred information

I

Description

Retrieves busy bits for a BASIC variable

Aborts execution of ICALL statement.
setting an error number

Accesses substrings (or \=arts of arguments)

Same as "Get_bytes" used for accessing elements
of string arrays

Accesses a file-pointer

Returns the characteristics of a variable
passed as a parameter or existing in common

Same as "Get value", used for elements in
an array

Returns the value of a BASIC variable

Data type conversion from
integer to full-preciSion

Establishes linkages for interrupts

Prepares to read a physical
record from mass storage

"Minimum R-stack Entries"

2

5

2

2

2

3

2

2

2

5+u*

5+u*

57U*

Utility Name LDA with: LDB with: Exits

Mm write start address of address of RET 1 - memory overflow Mas:
- -

mass storage storage area RET 2 - normal Stor
descriptor (A contains mass inf,

storage transfer ID)

Mm write test mass storage N/A RET 1 - transfer incomplete Mas: - -
transfer ID RET 2 - transfer complete Mn

(A contains 0, or error
number encountered
during transfer)

Printer select select'code printer RET 1 -
width (A contains previous

printer select code; B
contains previous printer
width)

Print no If address of N/A RET 1 - memory overflow Strir - -
RET 2 - 11!2r1 pressed string
RET 3 - normal

Print string address of N/A RET 1 - memory overflow Strir
- string

RET 2 - 11!2r1 pressed

RET 3 - normal

Put bytes address of address of RET 1 Star
-

storage area parameter

Put elem bytes address of address of RET 1 Sam
- -

storage area array info

Put element address of address of RET 1 Sam -
storage area array info

Put file info address of file RET 1 - file unassigned Sarr
- -

storage area number RET 2 - normal

Put value address of address of RET 1
-

storage area parameter

ReI math number of execution RET 1 Add
-

operands address (A contains 0, or an error Ope
number) into

area
is fo

ReI to int N/A N/A RET 1 Add - -
Overflow bit may be set conI

inO
area

Rei to sho N/A N/A RET 1 Add
- -

Overflow bit may be set com

(A contains error number) Ope
area
shot

Sho to reI N/A N/A RET 1 Sarr
- -

To - system N/A N/A RET 1 Use
to P

(Be sure to save the contents of valuable processor registers before calling a utility,

Utility Name LDA with: LDB with: Exits Other Description "Minimum R-stack Entries"
F-l,2

Mm write start address of address of RET 1 - memory overflow Mass storage descriptor same as in Mm read start. Writes a physical record to mass storage - -
RET 2 - normal Storage area must be at least 128 words and ~ontain mass storage storage area

5+u*
descriptor (A contains mass information to be transferred

storage transfer ID)

Mm write test mass storage N/A RET 1 - transfer incomplete Mass storage transfer ID is returned from Verifies a physical record was
- -

transfer ID RET 2 - transfer complete Mm write start utility. written to mass storage
(A contains 0, or error - - 5+u* Appendix F

I
number encountered

I I
during transfer) Utilities

Printer select select'code printer RET 1 Changes or interrogates select-code
-

width (A contains previous for standard printer
printer select code; B 1
contains previous printer
width)

Print no If address of N/A RET 1 - memory overflow String must be in same for as standard string. Gives the operating system a chance to complete
- -

RET 2 - I STOP I pressed I/O operations 5+u* string
RET 3 - normal

Print string address of N/A RET 1 - memory overflow String must be in same form as standard string Outputs a string to the standard printer - string
RET 2 - C~ I pressed 5+u*

RET 3 - normal

Put bytes address of address of - RET 1 Storage area same as Get _bytes Replaces substrings (or parts of arguments) 2
storage area parameter

Put elem bytes address of address of RET 1 Same as Get elem bytes Same as "Put_bytes", used for accessing elements of
2 - - - -

storage area array info string arrays

Put element address of address of RET 1 Same as Get element Same as "Put value", used for elements in an array
2 - - -

storage area array info

Put file info address of file RET 1 - file unassigned Same as Get file info Manipulates a file-pointer
2 - - - -

storage area number RET 2 - normal

Put value address of address of RET 1 Changes the value of a BASIC variable 2 -
storage area parameter

Rei math number of execution RET 1 Address of first operand into Provides access to all the arithmetic routines
-

address (A contains 0, or an error Oper 1 and address of second operand operands
number) into Oper 2. Address of result 5+u*

area into Result. Execution address
is for the desired routine.

Rei to int N/A N/A RET 1 Address of the value to be Data type conversion from full-precision to integer - -
Overflow bit may be set converted should be stored 2

in Oper _1, address of storage
area of integer into Result

Rei to sho N/A N/A RET 1 Address of the value to be Data type conversion from full-precision to short
- -

converted should be stored in Overflow bit may be set
(A contains error number) Oper _1; address of storage 3

area for converted number
should be stored in Result

Sho to rei N/A N/A RET 1 Same as Rei to sho Data type conversion from short-precision to full 2 - - - -

To system N/A N/A RET 1 Used within a loop, executed as many times as lines Outputs string to standard printer without carriage-- 5+u* t r;n F'Iln ~it ~ nri,.,ti rocess. r IIrn lin fa ~ II: 1"111 nl'" o p ... t. _ .• .,e_ .. ev ng p

(Be sure to save the contents of valuable processor registers before calling a utility. *u = the number of levels of JSMs called by the user immediately after the utility is invoked.

Appendix G
Writing Utilities

A utility is a "special" assembly language subroutine. What makes it special is a set of instruc

tions which keeps it from being displayed when a program is being stepped through using the

mm key. By creating a utility, you can make your STEP actions in debugging simpler. If you

already know what a section of code does, and don't want to have to step through each

instruction in that section each time it is encountered, you can make it into a utility. Then,

whenever it is encountered, the section is stepped through as if it were a single statement. The

stepping of programs is explained in Chapter 8, Debugging.

The following must be done to make a section of code into a utility -

1. The entry point for the utility must consist of the instruction -

2. Each exit point from the utility must consist of the following instructions -

FET n (n may be any number, - 32 through + 31, depending upon the desired

returning point)

For example, here is a simple utility -

50

1::,:)0
lEi!

.; 1 i~ ...

G-l

G-2 Writing Utilities

The locations Utltemps, Utltemps+ 1, Utltemps+2, Utltemps+3 and Utltemps+4 are available

to you for temporary storage. The absolute addresses of these locations are 177661 through

177665. The locations can be used at any point in your assembly language routine but are most

convenient for use within utilities.

System utilities also use the Utltemps locations. If you are calling system utilities from your own

utilities, the Utltemps locations should be saved before the system utility call or avoided al

together.

The Utltemps locations as well as the locations Oper _1 and Oper _2 cannot be stepped

through for debugging purposes.

It is not required that a utility actually be a subroutine. It may also be in-line code by replacing

the RET with JMP * + 2.

Utilities, and calls to utilities, are not allowed in interrupt service routines (lSRs).

Appendix H
I/O Sample Programs

Handshake String Output
10 THIS PROGRAM OUT~JTS A STRING USING HANDSHAKE 1U A GPIO-LIKE INTERFACE.

~~ INTERFACE CARDS APPLICABLE ARE:

98035 REAL TIME CLOCK
SERIAL INTERFACE

90 D~LETE ALL

1 1. ;..:.' I r~1 I r-lf::t~t:$ [16~~1 J
NTEGER Select code

AL~0w FOR 160 CHARACTER STRING
BASIC VARIABLE Tu HuLD IM~ ~~L~Ll

:-.:-;:::
=_.i_=.L=C.

220

260 SOURCE

290 SOURCE

310 SOURCE

340 SOUF~E

f'~Ar:1 Cll)t t=!3)t_:;lf:: i
t.::-:; ~ C;==-t =.).:i 1 ~_~E', =="::{ 1 +

RESERVED TO HOLD SELECT CODE
RESERVED c-= <en :~q2 STRING

EC~iJ .i. "_: EQUATES FOR CR/LF
ECU 10

ROUTINE TO OUTPUT A STRING FOLLOWED BY CR/LF TO u GPIO-LIKE
INTERFACE USING HANDSHAKE.

ENTRY POINT: OUTPUT gpio hs

PARAMETERS: l' INTEGER CONTAINING SELECT CODE TO 14
2) STRING TO BE OUT~JT

POSSIBLE ERRORS: 19 SELECT CODE OUT OF ~MNG~
164 CARD u~ PERIPHERAl DU~N

SOURCE Output gpio hs: LDA =Select code GET THE SELECT CODE PARM

A~DA =-1 LH~LK FOR VALID ~HNG~ (1-14)
470 =::;m'l Sc er--r--()r--

riDA ... -_,-'-.i.

-
LIn=i -' GIVE ERROR 19 IF SELECT CODE

H-l

H-2 1/0 Sample Programs

520 SOURCE

54[1

610

640
650

710 S0JRCE

L.IIH =L·r
.J ::: ~t~ ~:~ (" i t E" [) ~:ft. Eo
;c:,..
0.C !

GET THE ~i~lNG PARAMETER

SET UP C TO GET BYTES ~~UM

IF THE STRING LENGTH IS ZERO
THEN THERE IS NOTHING TO DO.
GET THE NEXT CHAR FOR GJTPUT
OUTPUT THE CHARACTER !u CARD

SUBROUTINE TO OUTPUT ONE CHARACTER TO GPIO-LIKE CARD.
CHARACTER IS PASSED IN A

740 ~UUKCL

760

800 SGJRCE
~JURCE Car~ do~~·

--

930 SC0RCE
END Out~~t gpio hs

SKIP IF CARD IS DOWN
L~ciL WAIT FOR CARD
GJTPUT DATA TO CARD
TRIGGER HANDSHAKE

-: ::: . ..:
~ :.-:-:-

I/O Sample Programs H-3

Handshake String input
10 THIS PROGRAM INPUTS A STRING USING HANDSHAKE FROM A GPIO-LIKE DEVICE.

98032 16 BIT PARALLEL

98035 REAL TIME CLOCK
98036 SERIAL INTERFACE

90 iDeLETE ALL

110 DIM Inp~t$[160J ! ALLOW FOR 160 CHARACTER STRING
INTEGER SelE~t code VARIABLE TO HOLD z-·~-::::

:_.:_i,iJC

RESERVED TO HOLD SELECT CODE
RESERVED FOR 160 CHAR STRING
EQUATES ~u~ CR/LF

260 ~DURCE

270 SOURCE ROUTINE TO IN~JT A STRING FOLLOWED BY LF FROM A GPIO-LIKE

290 SOURCE A MAX OF 160 CHARACTERS WILL BE READ. CR/S ARE IGNORED.
300 SOURCE

320 SOURCE
SOURCE PARAMETERS: 1) INTEGER CONTAINING SELECT CODE

350 SOURCE

380 SOURCE

~~~ SOURCE 

STRING TO HOLD RESULT 

L~ SELECT CODE OUT OF 
164 CARD OR PERIPHERAl DOWN 

.J::)'! Get '.).::;' 1 ue 
LIlA ::;e 1 ec r· code 

ADA =-15+1 

CHECK FOR VALID RANGE (1-14) 

GIVE ERROR 13 ~r SELECT CODE 

INITIALIZE THE STRING LENGTH 

"C':·/TCl:· 
~I; ! "-"_I 



H-4 I/O Sample Programs 

620 

640 

700 
710 

740 
750 

820 SOURCE 
:::::::0 ~:;CI!j~~CE 

:=;Cj:J~:C:E 

850 SOURCE i 

ADA =1 

C::BL 

LDA i?4 

LIlA R4 
CFA =Lf 

CPA =C:r--
.]l'W F\:·.=:t.d 1 cop 

JI·IF: F~t:",::;.:j_.l C!C!t:: 

LIn=: =:::;-t t~· i r-p;i 

LDA =164 
1:. 

SKIP IF CARD/PERIPH ARE DOWN 
ELSE WAIT FOR CARD 
SIGNAL THIS IS AN INFUT 
TRIGGER THE INPUT HANDSHAKE 
WAIT FOR CARD TO COMFLETE 
THEN GET THE BYTE 

THEN WE ARE DONE 
IF CARRIAGE RETURN 

EL~:; E FllJT CHAf:AC:TE:~: J. !"i ::;T~~ I r'~C; 
AND BUMP STRING LENGTH 

i HAVE WE INPJT 160 CHARS~ 
YESi SO QUIT ~JW 

i IF NOT THEN REPEAT 
SEND iH~ STRING Tu 2~SIC 

I RETURN TO BASIC 

RETURN ERROR 'o~ TO BASIC 



1/0 Sample Programs H-5 

Interrupt String Output 
OUTPUTS A STRING USING INTERRUPT TO A GPIO-LIKE 

.-,,:-~ 

~G INTERFACE CARn; APPLICABLE ARE: 

SERIAL !\TERFACE (INTERRUPT ENABLE ~T~ SHGJLD 

100 nTM Input$[160J ALL(~ FOR 160 CHARACTER STRING 
11 ~J I f'~TE~:;E~~ :::;:::'1 BASIC VARIABLE TO HOLD THE ~~L~~T CODE 

140 ON INT #Select cod~ GOTO Isr 

1(0 lCHLL y~tput 

i DO OTHER WORK WHILE INTERRUPT 

I COMPLETE ... SO REPEAT 

278 E:"::< it, 1. =-;-' ,3.C C E·:=,:::· 

RESERVED TO HOLD SELECT :····:-~T::·· 

:_,:_:.uc. 

BYTE POINTER FOR l~K 

EQUATES FOR CR,LF 

98032 INTERRUPT ENABLE MASK 
~b~ ISOURCE 

INTERFACE USING INTERRUPT. 
~~~ !SCURCE 

ENTRY POINT: Output gpio int
410 ISJURCE

I'30URCE : '-' .:..::.;.

~/ STRING TO BE CJTPUT
440

:-.. ~',,-,.-, ":'" -:-",: -
f'" ~):=:::: 1. .t;Lt:.. SELECT CODE OUT OF

460 CARD UK PERIPHERAL DOWN
470 ISOURCE

ADA =< ~M~~(~UK VALID RANGE (1-14)

AIn=i =-15+1

H-6 I/O Sample Programs

:::::::0
:::4~:::1

:::50
::;UUF.'CE
:::OUF.:CE
::;CUF.:CE
::;CUF.'CE

900 SOURCE

930 SCURCE

'370

1020
iCr:::O

1 i [1(1

Lilli

,; -: ... ~ :"~
1. l!"':I!-':'i

L.IIA - i . .,.

':.:'::-: 1 t.

L.IIB
ADB

: .-:"., -. ,--.- -
-:::t.,_:_:r.:: ";:'.::'

:-'1=:;

F':BC: H, I
LIJP =Lf'
P:BC: A~ I

AIni =2
~:;TA ::;tr- i (lE;

L In=t = E>-~=d=, 1

PET

L.:DA =164

:::TA 35B
LDA

C:E:L

- ~:.:--
.':

STA Byte pOinter

Tf,.:e, c···,;·
,.:j,! :"-- .. ! r.,

i TiA P::t
ADA :~-;;:;

.J ::.Pl C':..-.. -·! 1 :::.;.-.

ADFi
: :~:

GIVE ERRnR 19 IF
.-.:-- =-.. -., :.-:--
: if- r::Hf'-it:.:t.

IF COULDN/T G~i 1i, RETRY
~~~ iM~ STRING PARAMETER 

iU G~r CHARS FROM STRING 

ADD CR/LF TO END 0F STRING 

i p~ SURE AND ADD 2 TO LENGTH 
ou ISR WILL OUTPUT CR/i ~ 

ENABL.E THE CARD TO INTERRUPT 

GO BACK TO BASIC. 

SI~:E I AM GOING T0 DO STACK 

! AND INITIALIZE IT 

.-.:r"': 

.:,t:. ~ UP THE ~iTE ~JINTER 
SO I CAN GET A DATA ~iTE 

SEND THE DATA BYTE TO CH~D 

RESAVE BYTE POINTER 

IF NOT, THEN EXIT THE ISR 
DISABLE THE CARD 

DEPENDING ON WHETHER IM~ 

CALL IH~ CORRECT 

ANn NOW TRIGGER .. ~Nn OF 
:::.i. .... :, 



2:;~3 

':':-'.: ,:--.. -.:'._::_= i_= r=:. ; .... c. 

340 SOURCE 

LIlA =103B 

:: Te: 

liD Sample Programs H-7 

CALCULATED BY A C(~FUTED 
SHIFT INSTRU:TION 

AND USE MAGIC CODE T0 
TRIGGER THE EOL BRANCH 

RETURN FROM INTERRUPT 
BIT MQ~~ FOR INSTRUCTION 

Interrupt String Input 

IrFERFACE= 

T~TERFACE CRRDS RPP~!CABLE ARE: 

98036 SERIAL INTERFACE (INTERRUPT ENABLE BYTE SHOULD b~ CHANGED) 

90 IDELETE ALL 

110 DIM Input$[~60] 

,~~ INTEGER SelE~ BASIC VARIABLE TO MUL~ THE S~L~C: CODE 

150 ON INT #SelEc~ ~ua~ ~J~C Isr END OF LINE BRANCH 
1o~ ICALL Enter gpio int(Select code) START THE READ OPERATION 

WHILE WAITING FOR IT TO COMPLETE, 
- ":".-.:-.: .-.: 
.U 1. ::·1""··Lh Y THE PARTIAL ~~~ULi~ 

NAM Enter gpi lnt 
270 :....: .. :: l~E·t :.":.::i 1 t~E' ~ =.).:i, 11_~E':: Er-'f-'C:f-' E'::< i t ~ I ;::.f-· __ :3.c:: E·:=· 

RESERVED TO HOLD SELEC CODE 

BYTE POINTER FOR 

EQUATES FOR CR,LF 

98032 INTERPJPT ENABLE MASK 
~~0 SOURCE 



en 
E 
~ 
10-< 
Ol o 
10-< 

0.
Q) 

0. 
E 
~ 

Cf) 

o 
" 
00 

i 

U.I 
:::~:: 
! .. -~ 

... ...1 
1 

() 

0 .. 
i .. J 

0:: 

() 
0::" 
I.l ... 

lL 
-..I 

~J~ 

1:::1 
L.t..! 
. :?~ 
:":) 

"N . .1 

.:::} 

LL 

II'! II 

±~ 
-~ 
~~ 
~~ 
OO~ 

~~ 
~~ 
~ 
~~ 
LZ 
! .... oj 1-,'; 

(f) 
:::::t :~:::I 
j ..... 

L:.1 

~~; If: 
~:; Uj 
:::) 1--' 
() :z: 
lY t-··; 

_I .. :' 

!~:: 

0
1 

, ...• 

0; 
. I 
~:i.·, 

of";· 

~~:: 
l..i..I 

I····· 
:2:: 
I-.. ! 

C) 
,flo.. 

(1:: 
t:;: 
i::~:1 

WWWWW 
UUUUU 
~~~~~ 
~~~~~ 
00000 
0000000000 -----

"'1"' 

i! 

I:::' 

Li..l 
i:::1 
C) 
(,,) 

I······ 

L~J 
.... ..I 
i . .I..1 
(.(1 

1"1 
:Z 

, ..... , 
tT 
j... •• " z: 
,""'j 

(j 

0::: 
I..LJ 
1'1 

~ 
Z 

0::: 
i . .I..1 
I ...... 
Ll.I 

:i0 
a~ 
CI. .. 

I.JJ 1.1J 
(.) (,,) 
Cr.~ (:r.:: :) -", 
(''', ("", 

I~tl I~(I 

1..i.J 
1 ... :1 :Z: 
?f.~ Z~i 
Cr.:: i:::1 

1.1. ..... ..I ('." t'-' .. ,,' I~i;:: 

I ...... !.1.i 
::~:I :::C 
.;::, (L 

""-1 
I..i..l (:1::: 
i:::1 i.Jj 
,;::) CL. 
(.J 

~... f:::~: 

: .. ~~ ~;~ 
((I (,) 

';:1"', "':1" 

((I 
(;1::: 
C) 
Cr.~ 
cr.:: 
U.J 

i..Li 
.. .. J 
~Cj 
i--oJ 

ff"1 
(I~I 
(~) 

CI... 

I,D 
'j"---I 

+.:. 

;:~: 
,~, 

.. ~;I 
,11 
':J:' 

I:: .. :: 

I;i.: 

C) 
11 .. 

0::: 
t:~: 
l~j 

0::: 
I .. ·•· 
(C 
I:~ 

I· .... · 
::~) 

g~ 

!:f~ 
~ ..... 

::;:~: 

(1-

i=:: 
::;::: 
C) 
(.) 

C) 
! ...... 

I_J 
::2:: 

CI::: 
1-' 
((I 

[1::: 
Ll.I 
f· .. · 
1..i.J 

~f: 
(.1::: 
'T 
CL. 

WWWWWW 
UUUUUU 
~~~~~~ 
~~~~~~ 

~SSS~S ----

:::::: 
0::: 
'T 
CI... 

1..i.J 
1::::1 

(,) 

I ...... 

;::~; 
.... ..I 
I..i..l 
(,(1 

1..i.J 

;~~~: 
1-. 
l..i..I 
I.~J 

(1.1 
Tl 
() 

, 
+.;. 

":1" 

W 
~ 
OW 
U~ 

1-. ~ 
U~ 
W 
~~ 

~~ 
~ 

~~ 
0::: 

... 1: .. 
1::--1 ( .. ) 

:~; !:l~ 
.... ..I ( .. ) 

(1.1 
.1;:) 

(v (1,1 () 
'",I ~3 1,-' 

(ll If I r-" 

(i'i' ;:::I:~ ~::; 
0:: ~ ;..:.1 ,~:~' 

~;~ 

I..i ... 
W 
I~ 

0~ 
~ 

~~ 
~O 
~ 
W~ 

W~ 
> 
-00 
~-

+.;. 

() Ij.l 

~:: + .. ::,:: ~ ... I 
111 if) CI () 

(I: 
I:t. .. 

(,.,) 

~ ~ 
00 

W ~ 
i=:4 II 
o 
(..) II 

~~ ~ 
OU ~ 

W ~ 
OO~ 0 

W ~OO 

qOO~OO~ 

~~g~oo 
U~ W 

~~ ~~ 
OO~ ~ 

W~-~ 
W-~W0 
OO~OOOO 

I·D 

:+: 

(LI 
"D 
(I 
I.) 

.:+:. ~~ 'il 

-I":' 

" ii, 

i~; ;:r: 
:~I L :f: 

!;.H 1.1'1 

() 1/1 

WI 

.. :HH 

~~ 
~o 
W 
~~ 

Z 

o:~ 
((I 

(:t: . 
c:) 

i ... ~:I 

i.J... Ct:. 
I .. · .. 

~ ~OO 
~O~W 
UW~O 
~Z~ 

~~:~z 
~W 00 

I .. · .. · ~w~ 
W~~OC 

ZN~~I 
~~~~U 
~~
~~~~~ 
o-z~~ 
U~~ ~ 

~~~~o 
--OOOO~

0"1
I~!I ~;:
~ t ...

L.

:; ..
iJ.!

", .. :.
~I ...

(',

~~~'! 

~:~ 
[1::: 

::;:~:: 
C) , .. .... 
1-.. .. 
tT 
Cr.:: 
U..I 
11 .. 
C) 

~-
:~:) 
(t.. 
::~:.: 

'I: I .. · .. · 
(,,) ((I 

t}:: 
0::: , .... 0( 

C) l.i ... 
i.l .. 

1",-, 
1-- CI::: 
~ ... 0: 
?;~ t;~; 

I ...... 
1::[.. 
::::.:r 
Cr:: 
Cr.:: 
LiJ 
j ...... 

:~~: 

;::: 
I~ 

g0 
:: .. ) 

I.J..I 
~:: 

!..i..l 
.. _.I 
1::':1 

% 
i:~j 

til 
,.11 

:~> 
.. 0 

:P, 

(.) 

:j? 
~I::I 

C) 
!-. 

:::1::' 
:" " 

':[ 
~f1 

(-, 

C7) 

~::I CJ~. (1.1 'i) 
_..I II I ... :) ((I 

I.) t 'ri~ 1_' I ~~~~ ;i:~ 
«t II ((I II 1..i.J 

'i) ,T! 'TI 
((I 0.: (.j 

~ ~ 

W 0 
'~I i I 
- L' W 
~~oo 
00-

L of··:· 
I~:f +.:' ((I 
II «I II 

~;;:. 
... . '~I" r·· ... 1..i.J In 

~~':I :+: cr.~ I::,: II c.1:~ 

~~ ~E~~EOCE~E 
~z~~ooq~oc~~~OO 
00 C~~~~OO~OO~~ 

~ 
~~U~~~EE ~~oc~~~uoc~~~~ 

~~~ffi~~~~~~~~ 
. .. i
' .. .I

i~~~
"'1
;r,;'

-I.';'

~;:::
l.i..I

WWWW
UUUU
~~~~ 
~~~~ 
0000
00000000 ----

~~~~~@~~ 

WWWWWWWWWWW 
UUUUUUUUUU 
~~~~~~~~~~~ 
~~~~~~~~~~~ 
00000000000 
0000000000000000000000 ----

WWWWWWWWW 
UUUUUUUUU 
~~~~~~~~~ 

§§§§§§§§§ --
WWWW
UUUU
~~~~ 
~~~~ 
0000
00000000 ----

WWW
UUU
~~~ 
~~~ 
000
000000 -

WWWW
UUUU
~~~~ 
~~~~ 
0000
00000000

-,.':,

'1:'.1" ~!~::i
1,,0 ~ ...

"i'i" I.:~J

i~ ~;
_.J ",,~,

U.J 1..i.J
(.,) (..)
Ct.:: Ct:: :::) :)
() C)
(,(1 (.t')
, -I "'-01

cr,
:::
~; ...
-I":'

(i'i'

~;... (p
.;..:. -'';

IXI I:t.~ (I: 1:'1 ::::::: 1-..

;~~: t,:; ~J ~J :~~:: g~
+.:.

~
L ~
~ ~

~ -
~I~~
~~

C)
'::C if)
i __ ,-

((!
! .. Li

i1 ~_ :: ..
i::::, 'T

CI)
=:::)
r'''' t:: I ..
I ... :)

W
o N
~

~~
EOO~

~~~ -W~~ 
~ffi~ 
OO~~ 

i[) 

\i~ 
~:L:i ::::- r.L:i 

;~:~: I~~ ;?:~ 
tJ:: (C IT 
P 1 .. · .. ·1=: 
... ..J «(, i 

,il 

I..i..l Li..l l..i..I I..i..l I..U 1..i . .1 l..i..I 1.1.1 LiJ Li..I :'.1..1 
(J (,) i~,.) (J () ::..) ..... (,J i ... I (.) ;'') 

~ CI::: 0:: cr.; C<~ CI::: CC:: Ct:: ~ cr.~ 0:: 
::) ~~:l ::) ::~) =, .~::) :== :) :::) :::: :::::) 
C) C) () () (:::' C) (;:' :::~) C) C) C) 
(1') (n ((1 (I) ((i (I) (,(1 (I) (/) ((I ((1 

1-.. -1 I-.. j ... ',,' 1' .... 1 I .. ··-! ,.-.; , .... , 

?~~ :i:: 0Q00000Q0Q00Q0QQQ00Q0Q0000Q000Q000Q000000000000Q0Q000Q00000 

~W;~~~~~~~~~~~~~~~~~~~~~~3~*~~$R~~~~r~~~~goo~~X~~~~~*~~~~~~~ c=) (t') 



";";: t.>"" ~ :. 

! TY1=: -.; 

"-" ::-: ;--: ~;k:i:::" r:. 

450 SOURCE 

I/O Sample Programs H-9 

GET THE NEXT CHARACTER FROM 
THEN CARD ... IGNORE CR/S 

1~ LINE FEED, THE TERMINATE 
THE ISR TRANSFER 
C! cc PUT CHARACTER IN STRING 
SAVE NEW BYTE POINTER 

HAVE WE RECEIVED ~~~ ~hh~~ 

T~ YES, THEN SHUT DOWN 
START ANOTHER HANDSHAKE 
THEN EXIT THE ISR 

DEPENDING ON WHETHER THE 

CAL.L. THE 

AND NOW TRIGGER AN END OF 

CORRECT MASK WORD MUST ~ 

SHIFT INSTRUCTION 

i TRIGGER ~~ EOL BRA~:H 

RETURN FROM INTERRUPT 



H-IO I/O Sample Programs 

DMA String Output 
': :-.1 

1 =-.:.= THIS PROGRAM OUT~JTS A STRING USING DMA iU A GPIO INTERFACE. 

~0 INTERFACE CARfr3 APPLICABLE ARE: 

50 

70 IDELETE ALL 
;:: 0 I Cy·j 1Cnao 

ALLOW FOR 160 CHARACTER STRING 
100 INTEGER Select code BASIC VARIABLE TO HOLD THE SELECT CODE 

120 HF'UT H::ELECT CODE -rc ~·F:ITE TC?ii.:::e"l.::-ct ccde 
1 ":~i.-:-i ~Jf'~ I [·rr #:::;E:'1 e;·c t c C:!jE' ~=;C~TC~ I1fft-::t ;jC:f"~E' ~ :=;~T ¥JF~ Et{D C~F L. I f'~E :Bt?At'iC~H 

170 

240 

DC CTHER WORK WHILE INTERRUPT 

(~TPUT COMPLETE ... NEXT "; ! GET HERE WHEN ISR OUTPJT l~ 

l COMPLETE ... SO REPEAT 

270 SUJRCE Select code:BSS RESERVED TO HCLD SELECT CODE 
SOURCE String: BSS 81 RESERVED FOR 160 CHAR STRING 

RESERVED TO EXPAND STRING 

I EQUATES FCR CR/LF 

I 98032 DMA/INT/AH ENABLE MASK 
350 SOU~:E I 

360 ROUTINE TO OUTPUT A STRING FCLLOWED BY CR,LF TC A GPIO-LIKE 
370 SCURCE I INTERFACE USI~~ DMA. 
~30 SOURCE 

400 SOURCE 

460 SCURCE 

PARAMETERS: .) INTEGER CONTAINING SELECT CODE ( ': .i _ l~ 

2) STRING TC BE OUTPUT 

POS3IBLE ERRORS: lQ SELECT CODE OUT OF RANGE 

~~I THE S~LtGI CODE PA~~ 

LOAD A WITH SELECT CODE 
Aln=i =·--1 C~£CK ~OR VALID RANGE (1-14) 

ADA =--15+:[ 



660 
670 

720 

-:-,-.. -,: ::-.. -.-
1. :==~_g_~ r::~_. t:. 

1070 ISOURCE ! 

1160 

11 '3~5 
12~30 

I::;CiURCE 

I/O Sample Programs H-ll 

SEE IF CARD IS OK 
FIRST COpy SELECT CODE TO PA 

LIJR =164 

L.UH =1 ::;·r· 
LDB =(10+256)+(2+16)! 10 TRIES, RESOURCE=2=DMA 
FrD:t~ ~:;E'l E'C t c :::C~E' 

LDA =:::;1:-1"-·1 nl; 
LIfB =F:.:i.r-·ffE :=. t r-' 

IF COULDN/T GET IT, RETRY 
GET THE STRING PARAMETER 

FC~~~ I~r~1A~ THE r'4Ci~~r:1AL ::;TS~It·~~~ FCh~:t:1RT ~;~1]r'4"'T IH=~= THE :DRT9 t:1~_~~=~T 

BE STORED ONE BYTE PER WORD, SO THE FOLLOWING LOOP WILL 
EXPAND THE STRING AND ADD A CR/LF 

LIlA =::;t r-' i r~:;i+ 1 
~=;AL .:. 
ADA S1:- r-· in,; 
ADA 
':;TA '_. 

ADA ::;1:-r-·in,; 
::;TA .u 

L.:DA -: ':'-. 
F:~:JIl A!!:D 
LDB S1:-1"-·1 ri'; 

~:~:BC: A, I= 
FIL:~I~ A, Ii 
~~Ik~ *-2 

FIRST SET UP BYTE POINTER TO 
! dITHDRA~'~ THE LA::;T CHARACTE~: 

j FIF.ST 

SET UP DMA CONTROL REGISTERS 
COUNT = #CHARS-l 

DMAA = DATA ADDRESS 

SDO SET IMA OUTWARDS 

L.UH :34B 

LDA p.:;;. 
ADA 

JSM End isr high,! 

ENABLE THE CARD TO INTERRUPT 

GO BACK TO BASIC. 

WILL GET THE INTERRUPT 
THE DMA TRA~;FER IS COMPLETE 

DEPENDING ON WHETHER THE 
SELECT CODE IS HIGH, OR LOW 
CALL THE CORRECT TERMINATION 



H-12 I/O Sample Programs 

i2.:30 

-:" ~-1c:':"":1 
l.:=:",_!;-'':'' 

l270 

1340 

1 :~~g~j 
i :~:'jO 

1410 

I:=;l]tJF~C: E 
I ~=; CiiJ F::C: E 

I:::OUF.~CE 

I:::OUPCE 

ADA 

lDB =1 

E>::E A 

lDA 
3TA 
AIlB 

Eol 

LDA Eo 1 ma:;:-k 

lOR B~ I 
::;TA B, I 
E IF.~ 
LIlA ~:~3.I·)E·:35 

~:;TA :3S:B 

AND NOW TPIGGER AN END OF 
lINE BRANCH. TO DO THIS~ THE 
CORRECT MASK WORD MlGT BE 
CALCULATED BY A COMPUTED 
SHIFT INSTPUCTION 
3A"/E TH I:::: l'lH::< 
AND USE MAGIC CODE TO 
TRIGGER THE EOl BRANCH 

F::E::;TIJRE :35 

DMA String Input 

3~:1 IHTERFACE CARDS AF'PL ICABLE ARE: 
4~::} 

50 
60 
70 IDELETE ALL 

16 BI T F'Ai?ALLEL 

90 DIM Input$[160J 

1.1~J Ir'~TE(:;E~: C:t-~::J..r·.:ictE·r· CCrtH'-lt 

12,.:i Ir·~TE!:;EF.~ A,C: 
I A~:;~3Ei:iBLE 

ALLOW FOR 160 CHARACTER 3TRING 
BASIC i·/A~:IABLE TO HOLD THE ::;ELECT CODE 
\o'AR I ABLE TO HOLD I t-4FVT CHAF.:ACTER COUfF 
'./A~: I ABLES FOR ;; BACKGF.:OUt-m PF::OCE:3::;;' 

If'~F'L!T :t::;ELEC:T C:tJliE TCi ~~EAIJ F~~C~frr?Hf!:::E'1E'ct ::::~:jE' 

Cif'~ I f'~T #~;~'1 E-;: t. C Ci(jE- C;CiTCi I :::·r- cJi)rIE"' ~ ~:;ET-~JFr Et'~It elF L I t'~E :B~:Af-~C:H - -
160 
170 
1;::0 

r [-{PUT ;, r-~Uift:E~: OF CHARACTEF.:S TO PEAD--;:-", Ch:lT-:iC t. er--_C ount 
~ START THE READ 

1'3/.) rCAlL TE-:;:-tdma(C.A) L,HIlE ~~AITrNG, DISPLF(( DNA COUNT AHD 
2110 IJI ~:;FJ ::Tj.t4R CC!iJr·~T=~i; c:, HAIiI~~~E;:;~=;::: II; H, I ~ AIrDF.:E~:;~:; 
210 I=·I +1 

240 ISt~ ,j,':)ne: reAll Re-:id·r--Eo::;olAlt.(Inptrt.$) 
25~~1 I!I::;F':: If-~F'LIT CCit~lF:LETE===~:;T~:It·i(:;=i;;I(lf:it~t$ 
260 E.f-~]) 

SOUF::CE 
SCiU~:CE Se l E"::: 
SOURCE :3t.r-o in':;l. 
::;cnJF:~C:E B::;::; gO 

B::;::; 

RESERVED TO HOLD SELECT :-·:-:T"tr-
i __ i_i.Uc.. 

RESERVED FOR 160 CHAP STRING 
RE::;Ekd,/ED FOf': E>::F'Ar-mED ::;TR Hie,; 
TENF' FOR I ::;R 
TENF' FOR E;R 



41(1 
420 

50(1 
5Hj 

5:30 

60[1 
6·1(1 
620 

640 
650 
66.0 

710 

770 

790 

;::4~~1 

~:~:'.:,I::.i 

;::6~3 

900 
9Ei 

ISOURC:E 
I=:;OUPCE 

I ~:;f]ljF.~C:E 
I ~=;C!fJ ~~ C:E 

liD Sample Programs H-13 

TC~ 14 

I f·{·TE~:;E~~· ret HC1LD c:t~~~~~Ef·~T ·~Dr:1A c:c;]Jt-rr 
I t;C~~J~~C:E 
I ~:;c~tU~~C:E 

I f·~.TEE:;EI:::: rei HC~LIE C:tH~:f~Er'~T I)f11A A~DI!t::~f;;~E::;S 

I SOURCE 

I SOURCE 

I ~:;Ci§J~~C:.E 
r-t;C!ijF.~C:E F:a~"'ffi .::.I_:z Ir·rr 

F'.3.:r~·f{~ c C:tJr-i1:-: Ir-{T 
Ent.er QP1 GdTfO;:i..: LDA ::::Se i E-C t. 

T.-.,-.f :J-.. -.:O-

1. :::CiCir::L-t:... - - . - LDB ::::p.3.r-m SC 

I. ==~iJ.t~~~C:E 
I:=;Citl~:C:E =:;c :~k·: 

I::;GURCE 
I~:;OURCE 

ISDtJRCE 
I::;CURCE 
ISOtJRCE 

.J~3r:1 J:;E-t. =.).:1 1 tJE

LI~8 ~=;E'1 E-C t. c C~C}E' 
ADA ::::·~l 

ADA ::::-15+1 

LDA =St.r·inq 
L:D~B =Fl.:it-·fi~ ·c C!t~f-~t. 
.J~:~t;i C;E1:. ro}o:a.l t~e 
L.ItR :=: t r"'o i -rt!~l 
~:;At'1 Sc E'r-rGr--
:3ZA ::'C E"r--r-ot-
ADR =-;31 

ISOURCE SAP :3c error 
I~:;C1IjF.:C:E C:t-~E'ck c.3.r-oij: LIH4 ::;ET E·er.. CC::jE' 

I:=:Cl~J~~C:E C~3.r·::~ c:k: 

::;TA P-3. 
=:S:::; C3.r--d Dk 
LI~A =164 

LD A = L=-r-· 

.-...... ..; + 
~ .. ".: :,' 

THE 

LOAD A WITH SELECT CODE 

GIVE ERROR 19 IF SELECT CODE 

SEE IF CARD IS OK 
FIRST COpy :3ELECT CODE TO PA 
SKIP IF CARD IS OK 

I ~:;C~iJ F.~C: E 
ISOURCE 
E;OU~~CE 

ISOURCE 

LIrE: =(1~i*256)+(2*16) ~ 1~~1 T~~IE~:;:: ~:E~:;C~L~~~C:E=2==Iir'iA 

AIrB :=;==·1 E'C t c C::jE" 

I=:;OURCE 
I ~=:C~tH~~C:E 

LIlA :::;t r- i n';i 
ADA =-1 

LDA =:3tr-in';l+1 
:::;TA DH~:;;.m-3. 

3DI 

IF GJULDN/T GET IT, RETRY 
If'~ITIALIZE Ifr!1A ~~EJ:;I:=;TE~:~=; 



H-14 liD Sample Programs 

1020 
1.0:::\Zi 

1160 

121t3 
1220 

1263 
1270 

::;OUF~CE 

::;OU~:CE 

::;CiLI~~C:E T =='ff~~:i : 
~:;CliJ~~C:E ! 

::;OU~:CE 

':;OUPCE 
SOURCE 
SOUF:CE 

1380 SOUPCE ! 

1420 
14~3[i 

:L450 
~A60 

1410 

1540 

::;OUPCE 
SCURCE 
SCUPCE 
SOU~~CE 

::;OURCE 
:;:;OURCE 

::;FC: "* 
LIlA ~~4 

LI~A :::Er·~3.t! 1 E" rn.3.:::·}:: 
STA P5 
DnA 
FET 

::;TA Temp 
LIHi =TE"[lit) 

LIlt; =C_p=IT-r;,; 
.J::; rl1 F:t~t :.).::..1 t~E' 
LDA Dfi,::t.fi.::t. 

STA Tef;";!,=, 
LilA =TE"f{;p 
LI~:t: =~f).:t ~-'fi'i 

-J:; :'1 F\_~ t. !-).::t. i u e 

ADA 
~:;TA i_. 

C::BL 
LIlA ~=;~. t-· i r-p;! 

TC:A 
::;IR *+4 
~:~~I~ ~D :B, I 
F:t~C: :B, I 
RIA *-2 

LDA :34:t: 

TCA 
r1IIR ::;t ('"j (!~;i 

:3 T A :3 t. f" i f~P; 
LIlA =0 

ADA =-:::; 

J START FIRST INPUT OPERATION 

ENABLE THE CARD TO INTER8JPT 

Ef·~FrBLE Fl~~Cn=:E::;~=;E~: FCIf:;;~ :Dlf1A 
GO BACK TO BASIC. 

! I ~JST PACK THE STRING FROM 
TO 2 '-~: .. ::!1-· 

1:: i ! C·:I 

GET CHAPACTER COUNT 

! RETURN PESULT TO BASIC 

I WILL GET AN INTERRUPT WHEN 
THE I~A IS COMPLETE 

I Cm'iPUTE ACTUAL r-1UttBER UF 
CHARACTERS TRANSFERED 

! SAVE IN STRING LENGTH WURD 
DISABLE THE CARD 

DEPENDING ON WHETHER THE 
SELECT DJDE IS HIGH~ UR LUW 
LHLL THE DJRRECT TERMINATION 



17(1(1 
I7E1 
1720 

1740 

i """,:, .. -~-:z 
1. f Clfo':'i 

177~~i 

'T'.-.. -.I :r-•. -.~ 
l. :=,i_ii_it'::i_'L 

I::;OURCE 

I ::;CilJF.~C:E 
I ~=;CiIJF:C:E 
E;OURCE 
ISOU~:CE 

ADE: 

I OF-: 
::;TA 
EIR 
LDA 

Or:) T 
.l..=, ..:.. 

::;TA :35B 
RET 

I/O Sample Programs H-15 

AND NOW TRIGGER AN END OF 
LINE BRA~:H= TO DO THIS, THE 
rnQ~ECT MASK WORD MUST BE 
CALCULATED BY A COMPUTED 
QWT~T INSTRUCTION 

TRIGGER T~E EOL BRANCH 

BIT MASK FOR INSTRUCTION 

HP-IB Output/Input Drivers 
10 ! 980:34A HPIB CARD DRIVER 
20 
:30 ON KEY #0 GOSUB Out~~t 
4li C~f·~ t<E\' #1 C;Cc::!JE: Er~i:.E"r-· 

70 PRItH 
;:;~) PRItH 

120 
1:3~3 F1F~Ir'4T ;;~=;\:t'~TA~:<: 

i4~3 

< Ci'jIl! > 
<DATA!> 

::;TRH4G TO OUTPUT 
STRING TO OUTPUT 

<DATA!> ] )!! 

FRIt·H 
PRIr·H 
FR Ir·.fT 
PRHH STRING VARIABLE TO HOLD DATA READ 

22~::; FIF:~If'4T Llf'~(5);IIF'('E'==':=' kE':: .. = #6 tc: E"::.::it.i; 
2::::(1 IfI::;F: ::F'('e':::-:::. c:i]r·{Tlf·~ljE tc: E·>::E·ct~t.E· f)r-·C:l;lr--.:iffi:: 

240 PAUSE 
.~ '-"-::-'1 
.a. :_':_'; ; 

250 POSSIBLE ERRORS: 

29(1 
::::O~3 

164 

501 

CARD WAS NOT AN HPIB CARD 
·:::U·iD!> ~'~A::; t·40t·4-t·1ULL BUT THE CAPD ~'~A::; [·DT ACTI'/E cm·nFOLLEP 
<IH=tTA$> L;jA~:; t'4CH'~-r'~;JLL ~BIJT THE C:AF~I! i1lff:; t'~ClT RC:TI\,iE~~ TALt:::EF:~ 

<VAR!> WAS SPECIFIED BUT THE CARD WAS NOT ACTIVE LISTENER 

INTEGER Select code 



H-16 I/O Sample Programs 

350 
36(1 
:::7~71 

ItWUT "HF'1B :::ELECT CODE?",:::elE·ct. code 
PfUNT "t:::E\' 0 - 'OUTPUT . kE\' 1 -= HHER 
DE;P "IDLE" 

3:::(1 G(HO 370 
396 Otft.put: C;OSUB L i nptH:._cmd 
400 L1HPUT "DATA TO SEt-m?", D.3.t .. 3.$ 
4HJ ICALL Hpi b output C::e 1 ect COdE', Cilld$. Dat.3.$) 
420 PPIHT II - DATA SEn =="; IL3.t .. ~$ . 
4:30 PETUPH 
440 Ent.E·t-·: GC(;:UB L inpt~t. cmd 
450 1CALl Hpib E·nt.€r(SETect code.Cmd$"V.3.r·$) 
460 PPIHT" - DATAPEAD -;11; "/a;-'$ . 
470 F.:ETUF.~H 

4:3£1 
4'3(1 L i nput_Cflld: LHWUT "COt'1t'1ANII B\'TES'-::'", Crnd$ 
501.) PETUPH 
51[1 
52~3 

5:30 
540 
551.) 
56(1 
570 
5:::6 
59~} 

60(1 
611.) 
620 
630 
640 
650 
660 

6:::0 
69(1 
700 
7H3 
72£1 
7:30 
740 

76(1 
77(1 

790 
:::60 
::::10 
826 

::::40 
85(1 
::;:6(1 
;:;:{(1 

:3:30 
:::9~3 

'3(j(1 

91(1 
920 
930 
'3*3 
'35[1 

.3.:::' t.: SUB£::-:; I T 
1SOUPCE 
ISOUPCE 

t·mN Hpib 
E:<T Get_'.)a l lJe. Put 

I :30URCE Cmel: BSS 81 
ISOUF.:CE Data: EOU Cmel 
I SOURCE Se 1 E'C t code: BS::;: 
I S()UPCE P.3rrl~pt. t-· : BSS 
ISOURCE Lf: EQU 16 
ISOURCE Cr: EQU 13 
I SClIJRCE ::;: ta t us i : 
I::;;OUPCE St.:itu:::.2: 
I :30URCE St.3. t '-4:::.3: 
I :30UPCE ::;:t.3. 1:. u:::.4: 
I:::OURCE ! 
I SOURCE Out_FHt-·rn: 
ISOURCE 
I SOURCE 
I::;:OURCE P d3.ta: 

BSS 
BSS 
B::;S 
B:3::: 

:::UB 
nn 
STF.: 
::;TR 

ISOURCE Hpi b_output : LDB ==Out p3.t-·fII 
I SOURCE J::;; t'1 Hp i b:= :::·€·t up 
I:30URCE 
130URCE 
I ::;OUF.~CE Nc~out put: 
ISOURCE 
I SOURCE 
I SOURCE 
I::;;OURCE 
I SOURCE 
ISOUPCE 
I::;OURCE 
ISOURCE 
r30URCE 
I:::IJUPCE 
ISOUPCE 
I SOURCE 
ISOUPCE 
I SOURCE 
I SOURCE 
E;OUF.:CE Data_loop: 
I:::OUF.:CE 
ISOUPCE 
I SOURCE 
I::;;OURCE 
I::;OUPCE 
I::;OUF.:CE Ent_p3.nlf: 

LDA Out_p3.nn 
CPA =2 
F.:ET 
LDA == It3. t .. 3. 
LD:£: ==P d3.ta 
J::;:t'l GE·t '· ... a 1 t~E' 
LItA It3. t.3. 
SZA Ho output 
JSr'1 Ht:;rt~::::t:.-3.t tE 

LDA St.:3. t- u:::.4 
At·m =4ffB 
RZA .;.:-+:;: 
lDA ==5(il 
JSt'1 En-·ot-· E'>:: it 
LItA ==IL3.t.a +1 
SAL 1 
STA C 
CBL 
SFC .;.:
HBC P4,I 
DSZ It3.ta 
Jt1P IL3.t.3. 1,xlF' 
RET i 

<E\' 6 - £::-::I Til 

1.).3.1IJE·, Et-·t-·or-· E->::i t-
. -

! ::;TF.~IHG TO HOLD CND B'lTE::; 
STR I HG TO HCILD DATA B,,!'TE::;; 
I HTEF.~FACE SELECT CODE 
POHnER TO PAF=:N PSEUDO OPS 
EOUATES 

4 ~,~ORDS TO COt-HA I t·~ ::;TATU::; 
BYTES FPOM 98034 

IS THEPE A DATA PAPAMETER? 

NO, RETURH TO BASIC 
'lES, FETCH IT 

CHEel-::: FlTE COUHT 
I F ZEF.~O , DO t·KlTH I t·iG 
MAKE SURE HE ARE AIlDF.:ESSED 
TO TALK 

ELSE G1' .... E EPPOR 56i 

ELSE COf'1PUTE B'y'TE POINTER 
SO L·JE CAt'4 i·n THDRA~·J B'r'TE::;; 
FROt'1 THE ::;;TRI t·iG 

L,JA I T FOR CAFW 
! OUTPUT A :£:\'TE 

SEE IF ItOHE HITH STPING 
I NO 
I DONE, SO GO BACK TO BASIC 



'3'30 
1 ~Xi~) 
10H3 
102~) 

1(13~) 

1040 
le50 

1070 

1100 
IUD 
112(1 
1130 

1150 
1160 

li80 

1210 
1220 

124·0 
1250 
1260 
i27~3 

12:::0 
12:3~3 

13~30 

1310 
132(1 
1:3:30 
1:3*:1 
1350 
1:360 
1370 

1:3'30 
1400 
1410 

1440 

i500 
5i0 
520 

540 
55~~1 

56~3 

570 

I::;OURCE 
ISOUF:CE 
I::;OURCE Ent '.).::1.1.-.: 

E;OUPCE 
ISOUPCE 
ISOUPCE 
ISOUPCE 
I~;OUF.:CE 

I SOURCE 
ISOURCE 

ISOURCE 
I::;OUF.EE 
ISOURCE 
I::30URCE 
I::;OURCE 

1r-4T 

SiR 

. .T:;N Hpi b :;:.e1:. up 
LDA =Ent.=parm 
CPA 
RET 
J::;N 
LIlA 
At·m 
PZA 
LIlA 

-.-~ -:::,. 

Hpi t~:::.t.atu:::, 
St..a. t. u:::.4 
=20:B 
*+:3 
=502 

.JSN Er'r-'m-' cd t. 
LIlA =0 
::;TA Iia.t.a 
LIlA =Ila.t..a. 
SAL 
ADA =1 
STA C 

I SOUF:CE CBL 
ISOURCE Ent.Er lOop: SFC * 
I SOiJPCE 
ISOURCE 
ISOijPCE 
ISGUPCE 

I SOURCE 

I:30I.JPCE 
ISOI.JRCE 
I SOURCE 
ISOURCE Ent. dene: 
I SOURCE 

I SOURCE 
ISOiJRCE 

LIlA F.:4 
:3FC * 
LIlA R6 
CPA =C:r' 
JNP Ent er' 100p 
CPA =Lf 

ISZ Ita.ta 
.Jt;lP Ent E'r' 1 ClOp 
LIlA =It::i:t..a. 
LDE: =Er-It '.).a.r· 
.JSH Ptrt. !.).a. h~E" 
RET 

Hi=' I B ~3ETUP POUT I HE 

I/O Sample Programs H-17 

CALL SETUP ROUTINE 

IS THERE A DATA PARAMETER? 

HO~ THEN I ''II Dm·iE 
NAKE SURE I "','1 A L ISTEt-~ER 

CLEAR DATA STF:1HG CDUt·nEF: 

SET UP B\'TE POI r-HER FOP DATA 

! ~4AIT FOR CARD 
START ACCEPTOR HAt·mSHAKE 
~'JAIT FOP DATA 
READ DATA FF:ON CARD 
I ::; I T A RETUFt.J? 
IF SO, IGNOF::E IT 
IS IT TEPNINATOF.:? 

ELSE PUT I:\'TE HHO :=;TfHHG 
BUNP STPIHG LEt~GTH 

! REPEAT FOR HE;'::T B\'TE 
RETURH DATA TO PAPAt'1ETER 

ISOUF:CE 
ISGURCE 

.t; ponns TO 3UB Pt:;EUIIO OP (Cot-HAINS PRPt'1 COUNT) 
1::' \'EF:~ I F'y' PAF~ANETEF~ COUHT >=2 

ISOURCE ! 
ISOURCE 

2::' FETCH SELECT CODE AND . '.,,'ER I F'r' CRF.:D I S A 98~3:34A 
:3) FETCH COHf'1At·m ::;TEING PAPANETEF.: At·m OUTPUT IT 

I SOURCE Hp i t~ :;:-E"1:. 'AjO: LDR B, I CHECK PAF.:t'1 COUt-H 

I~30UECE 

ISOUF~CE 

I::;OUPCE 
I::;OUF:~CE 

ISOU~~CE 

I:::OURCE 
ISOURCE 

I::;OURCE 
ISOURCE 
ISOUPCE 
ISOURCE 

ADA =-2 

LIlA =~:: 

J::;N Et-·t-·cr e::< it. 
ABE: -< 

::TB P.a.t-·fi·~Pt. r-' 

LDA 3elect. cedE" 
ADR =-1 
~;Af'1 ::;c E"n'-'Or-' 

ADA =-15+1 
SAN *+:3 

LIlA Select. code 

SKIP IF >=2 
IF <2~ G1\,'E EPROR :3 

PO I HT TO ::;ELECT CODE PAPH 

FE TC:i--! TT 
':'1 

CHECK PAf·.jGE FOR TO 14 

T ~ CiljT C)F F.:Rr··l!:;E ~ c; I ~~/E E~~F.:Ci~~ 

1131 
! SET UP PA AHD DO STRTUS 3EQ 

ON CARD TO VERIFY IT IS A 
9:::0:34A I tHERFACE 



H-18 110 Sample Programs 

16(1~::) 

161["1 
1620 
163(1 
164;3 
16$] 
1660 
1670 
16:=::(1 
16'30 
17!-~10 

17H~i 

172C1 
1730 
1740 

176f1 
1 77~3 
17:=::0 

1:=::60 
187>3 
18;=::(1 
1:=::'30 
1'300 
1910 
1'320 
1'330 
1940 
1950 
1'360 
1970 
1 '3:::!(1 
1 ::f~~3 

2010 
2020 

2~~16~] 

2~~17~3 

20:=:;>~1 

209(1 
21~)O 

211 ~3 

2130 
2i40 

I:=:;OURCE 
I:=:;GUF.:CE 

I:=:;OURCE 
I:=:;OtWCE 
ISOUf<:CE 
ISOURCE 
I:=:;OUF.:CE 
I:::OURCE 

ISOUf<:CE 
I:=::CJURCE 

LDI: F'a,--m_pt r-
ADE: =3 
LDA =Cmd 
.J::;t'1 Get 1.)-3. 1 ue 
LDA Cmd 
::;ZA t-40 C fi;d 
LDA ::;t-3. t u:.=-4 
AND =10~)B 

LDA =5.30 
JSr'l En--or- e::-::i t 
LilA =Cmd+1 
SAL 
STA i __ 

CBL 

NOW FETCH COMMAND STRING 

! SEE IF THERE I::: ANYTHING 
OUTPUT, IF NOT, SKIP 
MAKE :::URE I AM ACTIVE 
Cm-4TROLLER 

EL:::E GIVE ERROR 500 

ISOURCE Cmd_loop: SFC *" 
L.fBC R6, I 
I6Z Cmd 

I ::;C)UF::CE 
ISOURCE 
ISOURCE 

! SEND OUT CMD BYTE 
:=:;EE IF DU-E 

I t-KIT 'lET 
I ::;OURCE r-b end: 

.Jr'1P Cmd lOop 
RET I DCt-~E I 

E;OURCE ! 

I:30UPCE 
I~;OURCE 

I:=:;OURCE 
I:=:;CURCE 
I:=:;OUF.:CE 
ISOURCE I 

:::TATU::; :=::EOUEt-{CE FOR 9:=::034 CARD. r-KiTE THAT THE; SEOUEHCE 
COULD FORCE THE CARD TO VIOLATE THE IFC TIME SPEC::: IF 
THE FOLLOWING COHDITIGNS EXIST: 

1) CARD IS NOT SYSTEM COHTROLLER 
2) A HARDWARE INTERRUPT 0:CURS AFTER THE LDA R5 BUT 

BEFOF.:E THE D If<~ 
3) THE CONTPOLLER PULLS IFC AFTER THE LDA R5 BUT BEFORE 

THE DIP 
ISOURCE I THE OHLY ALTEPNATIVE TO THI::: IS TO DIR BEFORE THE LDA R5. 
ISOURCE ! THIS HOWEVER COULD COMPROMISE ANY SYNCH~JNUS INTERRUPT 
ISOURCE TRANSFER IH PROGRE:::S 
ISOURCE ! 
ISOURCE Hpib status:SFC *" 
ISOURCE LDA R5 
ISOURCE AND =60B 
ISOURCE CPA =60B 

Y'1P *"+:~: 

LDA =164 

( FOR EXAMPLE THE TAPE CARTRIDGE ). 

! GET THE CARD INTO 
IT/5 STATUS SEQUENCE. 
MAKE SURE IT IS A 98034 

'y'E:=:; 
IF NOT. GIVE ERROR 164 

I:=:;OUF.:CE 
ISOUf<:CE 
I:=:;OUf<:CE 
ISOURCE 
I:=:;OUPCE 
I:30URCE 
ISOUF.:CE 
I ~3CiJJF:~C:E 
I ;:;CiLJF~C:E 

.J::t'1 En--o~-- e:: it. 

ISOURCE 
I:=:;OURCE 
I ~=;CiLIF.:C:E 
I ~:;iJ!J~~C:E 
I:=:;OUPCE 
ISOURCE 

ISOUf<:CE 
ISOUF:CE 

~':;FC: *" 
DIP 
::;FC :.:. 

LIlA R6 
::::;TA :=:; t-3. t tE i 
5FC *" 
LIlA P6 
::;TA 5t-3. t !);::-2 

LIlA F.:6 
:::TA ::;t-.:i t- i):'=_:~: 

::;FC *" 
LIlA R6 
Elf? 
::;TA ::;t.3. t-l):.=-4 
RET 
Er·m Hpib 

(THIS IS THE CRITICAL TIME) 
I MADE IT, SO DI:::ABLE MY 

INTERRUPTS FOR THE REST OF 
I THE STATUS SEQUENCE. 



I/O Sample Programs H-19 

Reai Time Ciock Exampie 

10 PROGRAM TO DEMONSTRATE USING THE CLOCK FOR INTERRUPTS 

-:ij-:- -:T;'.-:: 
i ne. ! i ~·iC. 

70 ASSEMBLY INTERRUPT SERVICE R~JTINE TRIGGERS AN END OF lINE BRANCH. THE 
80 1 EOl BRANCH ROUTINE CALLS AN ASSEMBLY ROUTINE TO ~JT THE TIME OF DAY 

1 i~J r:DELETE ALL 

150 ON INT #9 CALL Time 

410 

45~::i 

46f1 

560 

::::OURCE 
SOURCE 

EXT Error exit,Printer select,Print string 

PRINTER IS AND PRINTER WIDTH 

lIlA =164 IF NOT, GIVE ERROR 164 

LIlA =lSr-· SET UP ISR LINKAGE 
LDB =(10*256)+(1*16)+Select code 

IF ERROR, THEN JUMP 
EL~=;E 1:;1] :::TAf;:T ~JF: THE C:A~~:D 

IF DIDN~T GET RESOURCES 

SET UP C TO POINT TO STRING 
WHICH I WILL OUTPUT TO THE 
CLOCK TO PF-:~OGF:~Ar'l IT = 

B IS -(CHAR COUNT-i) 



H-20 I/O Sample Programs 

5'?-~::i 

600 

630 
64Ci 
650 

670 

700 

720 
7:;:0 

760 
770 

;:::30 
;::4C1 

.-."""",,-.. 
~=: i" =::.; 

::::;::0 
::::'30 

9:;:(1 
940 
950 
960 
970 
'3::::~) 

~)Otl 

010 
t12>3 
030 
O*~1 
t1::;~~1 

(160 
07e 
~~g:::o 

::;Ci~Jf?C:E 

~:~Ci fJ~:C: E 

:::;GUPC:E 
SGUPCE 

SCUPCE 

::;OU~:CE 

~:;OUPCE 

::;()U~:CE 

:::;OUI?CE 

1-"-:' :.::-.; 
.=Ii_li_ir:.l. __ c.. 

:::;OUPCE 
::;OUPCE 

~'~BC P4 ~ I 
:::;TA ~'? 

~~ I ~B Cit-it 1 c:c!r) 
L.DA =;200B 
::;TA P5 
fET 

LIlA = ... p 

STA P4 

LDA 
::;AL 
ADA =1 

::;TA ::;t. (. i (i';i 
:::;FC '* 

SCUPCE L.DA R4 
~=:CjfJ~:C:E F.:.::-.::a.,j_l ()c::f): ~:;TA R7 
':;OUF.:CE 
:30UPCE 
::;OUF.:CE 

.Jl'lP Re.3.d 1 ·:,c·p 

! SHOVE NEXT ByrE UU: IU LHkD 
TRIGGER HANDSHAKE 

I LCGP UNTIL. DONE 
ENABLE THE CARD TO INTERPUPT 

FETCH TIME FPOM CLOCK 

! UuY~ .•• CARD WENT DOWN 

IT TO GIVE ME THE TIME 

SET UP C TO PUT TIME OF DAY 
DATA INTO STRING 

I CL.EAR THE STRING COUNT 

I HAlT FOR CARD 
START INPUT OPERATION 
TRIGGER HANDSHAKE 
~'~A I T FOR CARD 
GET THE NEXT BYTE 

CPA =Lf I TERMINATE ON LINEFEED 

SOURCE 
:::;OUPCE 
::;CURCE 

~:;CiljF::C:E 

:::OUPCE 

SOURCE 

::;OUPCE 
SOURCE 

.Jr"1F' C;c;t t i ffiE" 

PBC A~ I 
I=::;Z ::;t.r-·j niJ 

3SM Printer ~p:ect. 
::::TA 01 d_p i 
~:;TE: ~) 1 ij_t=ii.,J 

3SM Printer select. 

i EL.SE ~jT CHARACTER INTO 
STPING AND BUMP COUNT 
PEPEA! 

DC THE Pf:HH 

JUMP IF MEMORY OVERFLCW 

RET I RETUPN TO BASIC 

LDA 
JSr'1 

-.-~ 
-.~' 

LIlA =0 

I AND GIVE EPRCP 2 

I SIGNAL. CARD THAT WE GOT THE 
I INTERPUPT BY DISABL.ING AND 
! THEN RE-ENABLING THE CARD 



I/O Sample Programs H-21 

170 
! TRIGGER EOL BRANCH 

30URCE LDA =i03E: 

220 
DIR 



H-22 I/O Sample Programs 



Appendix I 
Demonstration Cartridge 

Along with the Assembly Language Development and Execution ROMs, a tape cartridge has 

been provided to demonstrate the capabilities of the assembly language system. This Dem

onstration Cartridge (HP part number 11141-10155) is specifically intended to -

• Graphically display the kind of speed increases which can be obtained by using assembly 

language subprograms for certain types of applications. 

• Provide a number of programs which can serve as examples of how to write assembly 
language subprograms. 1 

• Provide a set of definitions for some of the special function keys so that those keys can be 

used as typing aids. 

Using the Tape 
To run any of the demonstration programs, execute the statement -

A set of instructions is displayed which can then be followed interactively. 

Typing Aids 
The starting and final cursor positions of the typing aids were chosen with assembly listings in 

mind. The intent in selecting these positions was to make it easy to enter source as it would 

appear when listed within an assembly listing. 

The following table gives, for each key, the typing aid, the position where the typing aid begins, 

and the position where the cursor will finally reside. Because some typing aids end with a blank, 

the triangle (~) has been chosen to indicate the end 'of the typing aid. All blanks a.~2r tr e start of 

the typing aid, and before the triangle, will appear when the key is pressed. 

1 The commented source for the chess program is contained in file CHESS. 

1-1 



1-2 Demonstration Cartridge 

Key Typing Aid 

o 
1 

2 
3 

4 

5 

6 

7 

8 

9 

10 

1 1 

12 

13 

14 

15 

16 

17 

19 

20 

21 
22 

23 

24 

25 

I ::;CtJPCE ~ 

I::;CUPCE ~ 

I::;CUPCF ~ 

~:; ~=i;_ i:::····r··· ~ - ir: _. -
CLEAR :;ET n ;;~ LINE 

CLEAR L 
... 
iHli .. ;;~ LINE -

§ ::;A\, n- .. ;;~ LINE C. 

§ ~:;TCi~~E .. ;;~ LINE 

CLEAR :····:1 ... 
~ LINE Ci.i .i. i 

CLEAR 
LINE 

CLEAR 
LINE 

CLEAR 
LINE 

CLEAR 
LINE 

CAT .. ;;~ 

(used by other keys) 

(used by other keys) 

!~ 

(use only after using keys 9 or 11) 

Typing Aid 
Starting Position 

11 

11 
11 

home 

home 

home 

home 

1,1 

home 

home 

home 

home 

home 

home 

home 

home 

home 

home 

home 

home 

home 

51 

home 

current - 1 

Final Cursor 
Position 

31 
19 

21 

7 (over second quote mark 
in insert character mode) 

6 

11 (over second quote mark 
in insert character mode 

53 

6 (over second quote mark 
in insert character mode) 

7 (over second quote mark 
in insert character mode) 

7 (over second quote mark 
in insert character mode) 

8 (over second quote mark 
in insert character mode) 

6 

6 (over second quote mark 
in insert character mode) 

6 

9 

12 

13 

8 

8 

11 

53 

18 (over second quote mark 
in insert character mode) 

current + 4 (over second 
quote mark in insert 
character mode) 



Demonstration Cartridge 1-3 

.. ypmg rdu T A 0"" r:- o 1 r-
r inal ""UfSOf 

Key Typing Aid Starting Position Position 

26 ~:t~-· CD home 

(use before keys 10 or 11) 

27 t<E\'! current - 1 current + 4 (over second 
(use only after using Keys 9 or 11) quote mark in insert 

character mode) 

28 :Ta current current + 2 

29 ~Fa current current + 2 

30 
CLEAR f-) ~_i F:~ (~ E:: ;;;;a home 8 (over second quote mark LINE 

in insert character mode) 

31 
CLEAR (=: ~~ t~: F,-r t::: .... a home 9 (over second quote mark LINE 

in insert character mode) 



1-4 Demonstration Cartridge 



"-= 

6 

0: .-: 
l . . .:= 

14 

Appendix J 
Error Messages 

Mainframe Errors 
Missing ROM or configuration error. Also, check to see if all option ROMs are 

installed properly. 

Memory overflow; subprogram larger than block of memory. Also check to see 

if your arrays are too large to fit in memory. 

Line not found or not in current program segment. Check the spelling of line 

labels and line identifiers. 

Improper return. Branched into the middle of a subroutine. 

Abnormal program termination; no END or STOP statement. 

Improper FOR/NEXT matching. 

Undefined function or subroutine. Check spellings. 

Improper parameter matching. Check the parameter lists in SUB and CALL, 

and DEF FN and FN statements to see if they match in number and type. 

Improper number of parameters. Check the number of arguments used in an 

FN or CALL reference. 

String value required. 

Numeric value required. 

Attempt to redeclare variable. Once a variable name has been declared in a 

DIM, COM, REAL, SHORT or INTEGER statement, it can't be redeclared in 

that program segment. 

Array dimensions not specified. You must dimension the array, either 

explicitly or implicitly. 

Multiple OPTION BASE statements or OPTION BASE statement preceded by 

variable declarative statements. 

Invalid bounds on array dimension or string length in DIM, COM, REAL, 

SHORT or INTEGER statement Strings can't be longer than 32 767 charac

ters. The range of array subscripts is -32 767 through 32 767. 

J-l 



J-2 Error Messages 

20 

'-:'-"1 :::. . .:: 

24 

26 

····1.···· .. :::~:: 

Dimensions are improper or inconsistent; more than 32 767 elements in an 

array. Check for wrong number of subscripts in an array reference. Check any 

matrix multiplication for proper sizes. 

Subscript out of range. 

Substring out of range or string too long. Check substring specifiers against 

length of string. 

Improper value. Check numbers being entered, especially their exponents. 

Integer precision overflow. The range is -32 768 through 32 767. 

Short precision overflow. Short-precision numbers have six significant digits 

and an exponent in the range -63 through 63. 

Real precision overflow. Full-precision numbers have twelve significant digits 

and an exponent in the range -99 through 99. 

Intermediate result overflow. 

TAN (n * 7T/2), when n is odd 

Magnitude of argument of ASN or ACS is greater than 1. 

Zero to negative power. 

Negative base to non-integer power. 

LOG or LGT of negative number. 

LOG or LGT of zero. 

SQR of negative number. 

Division by zero; or X MOD Y with Y = O. 

String does not represent valid number or string response when numeric data 

required. Check any use of VAL function and its argument. Check for correct 

spelling of variable name. 

Improper argument for NUM, CHR$, or RPT$ function. 

Referenced line is not IMAGE statement. Check the line identifier in the 

PRINT USING statement. 

Improper format string. 

Out of DATA. Make sure READ and DATA statements correspond. Use RE

STORE if appropriate. 



41 

46 

47 

Error Messages J-3 

EDIT string longer than 160 characters. Try using a substring. 

I/O function not allowed. TYP and other I/O functions aren't allowed in any 

i/O statement like DISP or PRINT. Place the value into a variable. 

Function subprogram not allowed. An FN reference isn't allowed in any I/O 

statement, or in redim subscripts. Place the value into a variable. 

Improper replace, delete or REN command. SUB and DEF FN can only be 

replaced by another SUB or DEF FN. They can only be deleted if the rest of 

the corresponding subprogram is deleted. A renumbering may cause out-of

range line numbers if completed, so an error occurs; check increment value. 

First line number greater than second. 

Attempt to replace or delete a busy line or subprogram. Typically, this is 

caused by trying to delete an input statement that is still requesting values. 

Matrix not square. The dimensions of an identity matrix or of one used to find 

an inverse or determinant must be the same size. 

Illegal operand in matrix transpose or matrix multiply. The result matrix can't 

be one of the operands. 

Nested keyboard entry statements. 

No binary in memory for STORE BIN or no program in memory for SAVE. 

Check line numbers in SAVE against program in memory. 

Subprogram COM declaration is not consistent with main program. Check 

number, type and dimensions of variables. 

Recursion in single-line DEF FN function. Only subprograms can be called 

recursively. 

Line specified in ON declaration not found. 

File number less than 1 or greater than 10. 

File not currently assigned. Execute an ASSIGN statement for the file, or check 

the accuracy of the file number used. 

Improper mass storage unit specifier. Check the values of the select code, unit 

code and controller address. 

Improper file name. A file name can have 1-6 characters and can't contain a 



J-4 Error Messages 

c= 1 

62 

,.-.-: 
=:= . .::: 

Improper file name. A file name can have 1-6 characters and can't contain a 

colon, quote mark, NULL or CHR$(255). 

Duplicate file name. Choose another name or PURGE the old one. 

Directory overflow. There is a maximum number of files that a mass storage 

medium can hold. A file will have to be removed to add another. 

File name is undefined. Check the spelling. 

Mass Storage ROM is missing. Check to see that the ROM is installed properly. 

Improper file type. Use LOAD for PROG files, ASSIGN and GET on DATA 

files and LOADKEY for KEYS files. 

Physical or logical end-of-file found. Attempting to READ# or PRINT# past 

the end of the file. Compare the data list to the file size. 

Physical or logical end-of-record found in random mode. Compare the data 

list to the record size. 

Defined record size is too small for data item. You can either PURGE and 

RE-CREA TE the file with longer records or regroup the data being recorded. 

File is protected or wrong protect code specified. Check to see that the protect 

code is included and spelled properly. 

The number of physical records is greater than 32 767. That's the limit; use 

something smaller. 

Medium overflow (out of user storage space). A file can't be set up because 

there isn't enough space. Use another medium or purge unwanted files. 

Incorrect data type. You can't use GET on a DATA file that doesn't contain a 

program. Use TYP to find out what kind of data the computer is trying to be 

read. 

Excessive rejected tracks during a mass storage initialization. The medium 

can't be initialized. If the medium is a flexible disk, use a different one. If the 

medium is a hard disc, call your HP Sales and Service Office for assistance, to 

determine whether there has been a hardware failure. 

Mass storage parameter less than or equal to O. Check values of variables. 

Record numbers, record lengths and number of defined records must be posi

tive numbers. 



70 

71 

75 

(~:~- 7::'~ 

Error Messages J-5 

Invalid line number in GET or LINK operation. Check line numbers. May be 

trying to LINK to file that doesn't contain a program. 

Format switch on the disc off. Turn it on. 

Not a disc interface. Check mass storage unit specifier. 

Disc interface power off. Turn it on. 

Incorrect controller address, controller power off, or disc time out. Check mass 

storage unit specifier; make sure controller is on. 

Incorrect device type in mass storage unit specifer. 

Drive missing or power off. 

Disc system error, type F. 

Incorrect unit code in mass storage unit specifier. 

Disc system error, type IP. 

Reserved for future use. 

Cartridge out or door open. Also check to see if interface is connected prop

erly. 

Mass storage device failure. Possible power failure. 

Mass storage device not present. Check mass storage unit specifier. 

Write protected. Check the write-protection device on the medium or drive. 

Record not found. There is a bad spot on the medium. 

Mass storage medium is not initialized. 

Not a compatible tape cartridge. 

Record address error; information can't be read. Hardware failure. Check for a 

dirty read head. 

Read data error. Hardware failure. Check for a dirty read head. 

Check read error. 

Mass storage system error. 

Reserved for future use. 

Item in print using list is string but image specifier is numeric. 

1 See the Mass Storage Techniques Manual. 



J-6 Error Messages 

";: -: .-~ 

.l 1·':: 

:i 14 

115 

1. J.6 

.:. "._= .:. 

Item in print using list is numeric but image specifier is string. 

Numeric field specifier wider than printer width. 

Item in print using list has no corresponding image specifier. 

ON KBD or TOPEN not allowed in subprogram. 

Reserved for future use. 

Plotter type specification not recognized. Check spelling of "GRAPHICS", 

"9872A" or "INCREMENTAL". 

Plotter has not been specified. Check select codes. 

No graphics hardware installed in the System 45B. 

LIMIT specifications out of range. 

98036 card improperly configured. 

TDISP not allowed unless peripheral keyboard active. 

TOPEN is active on another select code. 

Reserved for future use. 

Improper select code. 

A negative select code was speCified that does not match present bus address

ing. 

Parity error. 

Either insufficient input data to satisfy enter list, attempt to ENTER from 

source into source or enter count exhausted without linefeed. 

Integer overflow, or ENTER count greater than 32 767 bytes or 16 383 words. 

Invalid interface register number. (Can only specify 4-7.) 

Improper expression type in READIO, WRITEIO, or STATUS list. 

No linefeed was found to satify % ENTER image specifier, or no linefeed 

record delimiter was found in 512 characters of input. 

Improper image specifier or nesting image specifiers more than 4 levels deep. 

Numeric data was not received for numeric enter list item. 

Repetition of input character more than 32 768 times. 



164 

1. =:=t:: 

Error Messages J-7 

Attempted to create CONVERT table or EOL sequence for source or destina-

tion variable which is locally defined in a subprogram. 

Attempted to delete a nonexistent CONVERT table or EOL sequence. 

I/O error, such as interface card not present, device timeout, interface or 

peripheral failure (Interface FLAG line=O.), stop key pressed or improper 

interface card type. 

Transfer type specified is incorrect type for interface card. 

A FHS or DMA transfer with no format specifies a count that exceeds th size of 

the variable, or an image specifier indicates more characters than will fit in the 

specified variable. 

A NOFORMAT FHS or DMA type transfer does not start on an odd numbered 

character position, such as A$[3]. 

Interface status error, TRL Character or an EOI was received on an HP-IB 

Interface before ENTER list or image specification was satisfied. 

Reserved for future use. 

Improper argument for OCTAL or DECIMAL function or assembled location. 

Break Table overflow. 

Undefined BASIC label or subprogram name used in IBREAK statement. 

Attempt to write into protected memory; or, attempt to execute instruction not 

in ICOM region. 

Label used in an assembled location not found. 

Doubly-defined entry point or routine. 

Missing ICOM statement. 

Module not found. 

Errors in assembly. 

Attempt to move or delete module containing an active interrupt service 

routine. 

IOUMP specification too large. Resulting dump wouid be more than 32 768 

elements. 

Routine not found. 



J-B Error Messages 

207 

211 

·"-1 -: .-: 

::::'1. . .:= 

Unsatisfied externals. 

Missing COM statement. 

BASIC's common area does not correspond to assembly module require

ments. 

Insufficient number of BASIC COM items. 

Reserved for future use. 

Binaries not allowed in LOAD SUB file. Do LOAD, SAVE, SCRATCH A, GET 

and STORE on the file to get rid of binaries. However, the loaded program 

may not run after the binaries are removed. 

Volume not mounted. Mount it and execute a VOLUME DEVICES ARE state

ment. 

Operation not allowed on tape. Only the BKUP file used in DBBACKUP and 

DBRECOVER is allowed on tape. 

Bad status array. It must be defined as integer precision with ~ 10 elements. 

Check spelling and current size. 

Improper data base specified or data base not open. Improper name, or per

forming data base operation with invalid name. 

Data set not found. Check set name or number and make sure it is on the 

volume specified in the schema. 

Reserved for future use. 

Data base requires creation. Perform a DBCREA TE. 

Reserved for future use. 

Volume name not part of data base. Check spelling. 

Out of available memory for a DBOPEN, DBBACKUP or DBRECOVER. Out 

of read/write mem<;>ry if executed from main program. Out of special area if 

executed from subprogram, so perform the DB OPEN in the main program. 

Improper or illegal use of maintenance word. Check spelling and leading or 

trailing blanks. 

Data set not created. 

Reserved for future use. 



22::.1· 

Error Messages J-9 

Improper backup file. In DBRECOVER, backup file has incorrect information 

in header or no primary DBBACKUP / RECOVER currently in progress (for 

secondary operation). 

Incomplete backup file. More than one volume in backup; probably mounted 

in the wrong order. Start the recovery over. 

Improper utility version number in root file. Rerun Schema Processor to gen

erate new root file. 

Corrupt data base - must purge and redefine. Purge root file and run Schema 

Processor. 

Corrupt data base - all sets require erasure. 

Data sets cannot be re-created without root file. 

Operation not allowed while DBOPEN current. Perform a DBCLOSE mode 1. 

Improper set list in DBBACKUP, DBCREATE, DBERASE, DBPURGE or dup

licate sets in the set list. 

Reserved for future use. 

Required data set root file not mounted. Mount it and perform a VOLUME 

DEVICES ARE. 

Referenced line not a PACKFMT statement. Make sure line identifier is correct 

and that it references a PACKFMT statement. 

Reserved for future use. 

Insufficient length in a PACK statement, or insufficient current length in an 

UNPACK. Insufficient length in a DBBACKUP or DBRECOVER statement. 

List length> 32 767 in PACK or UNPACK. Array in PACKFMT too large. 

Make sure it is the correct variable; redimension if necessary. 

Numeric conversion error. Improper real number found. Check PACKFMT to 

make sure a REAL or SHORT variable, not INTEGER is being unpacked. 

UNPACK requires a source string of greater length. 

Reserved for future use. 

CCOM area not allocated 

Not allowed when channel is active 



J -10 Error Messages 

.... ::: .. :: ... : 

. ::0":==:::: 
"_.:._:._: 

CMODEL statement required 

Not allowed when trace is active 

Too many characters in CWRITE 

New CCOM size not allowed when channel is active 

98046 card failure 

Insufficient CCOM allocation 

Illegal character in CWRITE of non-TRANSPARENT data 

Not allowed for this CMODEL 

CCONNECT statement required 

Not allowed while Data Comm is suspended 

Improper CSTATUS array 

Reserved for future use. 

Lexical table size exceeds array size. 

Improper pointer array*. 

Non-existent dimension specified in MAT REORDER. 

Pointer array contains out-of-range subscript value. 

Pointer array length does not equal number of records. 

Pointer array is not one-dimensioned . 

Number of records (plus twice the number of secondary keys plus twice the 

number of substrings) exceeds 16383. 

Subscript extends beyond dimensioned maximum length. 

Subscript out-of-range in key speCifier. 

Starting location is an out-of-range subscript value. 

Lexical table is too small to include all characters. 

Main lexical table length plus mode section length does not equal specified 

table length. 

* This error occurs when data is lost in the process of reordering the array. If this error does not occur, it does not necessarily 
imply that the pointer array contains a permutation. 



Error Messages J-ll 

Array is not one-dimensioned or is not integer. 

Lexical mode section pointer out-of-range. 

Lexical table length exceeds 16383. 

Reserved for user. 

This error indicates a malfunction in the machine's firmware system. Contact your Sales 

and Service Office. 

I/O Device Errors 
Two error messages can occur when attempting to direct an operation to an I/O device that is 

not ready for use. A printer which is out of paper or no device at a specifed select code are 

examples. The first message that appears is -

I/O ERROR ON SELECT CODEs~ectcode 

If the condition is not corrected, the machine beeps intermittently and the following message 

replaces the first -

I/O TIMEOUT UN SELECT CODEs~ectcode 

The I/O device can be made usable by correcting the error (loading paper, or changing the 

select code, for example), then executing the READY# command -

F::EPD\'# select code 

This command readies the I/O device and the operation which was attempted is attempted 

again. The select code must be specified by an integer. 

If you get an I/O error on select code a and the printer is not out of paper, call your Sales and 

Service Office. 

In some cases, such as an interface which is not cOl'l:nected, READY # for that select code may 

not solve the I/O error. In this case, STOP should be pressed to regain control of the compu

ter. Be sure to turn the power off before inserting an interface. After the problem is remedied, 

the operation or program can be tried again. 



J-12 Error Messages 

If you get an I/O error and you have an ON KBD statement in effect, you must press STOP to 

gain control of the computer. Otherwise, the READY# command will be trapped by ON KBD. 

CSTATUS Element 0 Errors 
Timeout before connection 

J. 1 Clear to Send line false or missing clock 

Channel MEMLIMIT overflow 

Illegal protocol from remote 

102 Input buffer overflow 

Internal buffer overflow 

Autodisconnect forced 

RETRIES count exceeded 

NOACTIVITY timeout 

98046 buffer overflow 

Assembly-Time Errors 
Doubly-defined label 

END instruction missing; or module name does not match. 

ExpreSSion evaluation error. 

Literal pools full or out of range. 

ICOM region overflow. 

Operand out of range. 

Argument declaration pseudo-instruction out of sequence. 

Incorrect type of operand used. 

Undefined symbol. 



Error Messages J-13 

IMAGE Status Errors 
The following are possible values and meanings of the condition word (first element of the 

status array). After an error, the status array is as follows -

Element Description 

1 Condition word is non-zero 
2-4 No change 
5 DBOPEN mode 
6 Statement identification number 
7 Program line number 
8 0 
9 I Value of the mode parameter 
10 Integer-for system use only 

Each statement has an identification number. 

Condition 

Word Value 

--II 

-21 

Number Statement 

401 DBOPEN 
402 DBINFO 
403 DBCLOSE 
404 DBFIND 
405 DBGET 
406 DBUPDATE 
407 DBPUT 
408 DBDELETE 

Error Description 

Successful execution - no error 

Improper data base name; already have read/write access to the data base 

You may not open additional data bases; five are already opened 

Bad data base name or preceding blanks missing. Don't change the first two 

characters. Data base may not be open. 

DBPUT, DBDELETE and DBUPDATE not allowed in DBOPEN mode 8 

Bad password - grants access to nothing or not to that set. Check spelling. 

Data item, data set, or volume nonexistent or inaccessible. Check spelling and 

DBOPEN password. Volume references must be numeric for DBINFO. 



J-14 Error Messages 

.. _. ::::~ 1. 

.: ••••• = 

.:. : 

Detail data set required 

You lack write access to this data set 

DBPUT or DBUPDATE not allowed on Automatic Master. Check correctness 

of set reference. 

Improper mode in data base statement. DBGET mode 5 bad - specified data 

set lacks chains 

Item specified is not an accessible key item in the specified set. Bad @ 

parameter - must be ;; :~l ~ ;; or ;; ::~l ;; or ;;::~;;. 

Root file name in disc directory and name in root file are different. Make sure 

root file not moved or renamed. 

Root file version not compatible with current IMAGE/ 45 statements. Incorrect 

version of Schema Processor used. 

Data base requires creation 

Data or structure information lost. Data base must be erased or redefined. 

Cannot DBOPEN while a DBBACKUP or DBRECOVER is going on. 

End of file on serial DBGET; no entries following the current record. 

Negative record number on directed DBGET. Check record number and spel

ling. 

Record number greater than capacity on directed DBGET. Check record 

number and spelling. 

End of chain encountered 

The data set is full 

No current record or the current record is empty; make sure that a current 

record is defined for this set. There is no chain for the key item value. There is 

no entry with the specified key value 

Broken chain. Must UNLOAD the data base. 

DBUPDATE will not alter a key item. Make sure correct key item values are in 

the correct places in the buffer string. 

Duplicate key item value in master not allowed. 



lxx 

3xx 

Error Messages J-15 

Can't delete a Master entry with non-empry detail chains 

Buffer string is too small for requested data. Redimension if necessary. 

Argument parameter type incompatible with key field type (DBGET, mode 7 

or DBFIND) or current length of string argument is less than the string length of 

the key item value. 

Data set's volume is not on line; or set not created. 

Corrupt data base successfully opened in mode 8 

There is no chain head for path xx 

The automatic master for path xx is full 

The master data set for path xx is not on-line (Applies to DBPUT and DBDE

LETE for detail data sets) 

Root file volume isn't mounted. 

Needed volume on-line; created data set xx isn't there 



J-16 Error Messages 



Appendix K 
Maintenance 

Maintenance Agreements 
Service is an important factor when you buy Hewlett-Packard equipment. If you are to get 

maximum use from your equipment, it must be in good working order. An HP Maintenance 

Agreement is the best way to keep your equipment in optimum running condition. 

Consider these important advantages -

• Fixed Cost - The cost is the same regardless of the number of calls, so it is a figure that 

you can budget. 

• Priority Service - Your Maintenance Agreement assures that you receive priority treat

ment, within an agreed-upon response time. 

• On-Site Service - There is no need to package your equipment and return it to HP. Fast 

and efficient modular replacement at your location saves you both time and money. 

• A Complete Package - A single charge covers labor, parts, and transportation. 

• Regular Maintenance - Periodic visits are included, per factory recommendations, to 

keep your equipment in optimum operating condition. 

• Individualized Agreements - Each Maintenance Agreement is tailored to support your 

equipment configuration and your requirements. 

After considering these advantages, we are sure you will see that a Maintenance Agreement is 

an important and cost-effective investment. 

For more information, please ~ontact your local HP Sales and Service Office. 

K-l 



K-2 Maintenance 



Appendix L 
9835/9845 Compatibility 

System 35 and System 45 assembly language programs are for the most part source code 

compatible. The exceptions to this are noted below. For example, a GET command can be 

used by a System 45 to retrieve source code which has been SAVE'd on a System 35, and vice 

versa. However, object code files (lLOAD, ISTORE) are not compatible. 

The following items specify the differences between the two assembly language systems. 

1. The following 9835/9845 differences affect source code compatibility -

• The 9845 has 9 Base_page temporaries; the 9835 has 50. 

• The absolute addresses of the routines within the ReI_math utility are different, and 

must be changed between the 9845 and the 9835. 

• The 9845 has two fewer return stack entries than the 9835. 

• The Get_info utility returns additional information when used with the 9845. The 

number of words returned depends upon the memory size of the machine used -

- 33 words for machines over 256K 

- 36 words for machines over 320K 

- 39 words for machines over 384K 

Additional space for this information may need to be reserved in assembly language 

programs which are moved to larger machines. 

• The Isr _flag link is not needed in the code that notifies BASIC of an interrupt, on 

the 9845. This link is used only in the 9835 code, and should be removed from any 

code run on the 9845. 

• The keyboards of the 9845 and 9835 differ. Keyboard and printer register opera

tions differ also. (See the Assembly Language QUick Reference manual.) 

2. The 9845 has two additional Utilities, To_system and Print_no _If. 

3. The LINES option to the IASSEMBLE statement has been expanded on the 9845 to 

include a negative line number. If a negative number is used, no additional carriage

return, linefeed characters are sent after each module has been printed. Of course, if the 

EJECT option has been specified, a formfeed character is sent after each page. 

L-l 



L-2 9835 I 9845 Compatibility 

4. The 9845 allows symbolic debugging (e.g., IDUMP Test) of all ENT and SUB symbols, 

regardless of whether they appear in assembled code or in ILOAD' ed code. The 9835 

allows symbolic debugging only if the symbols appear in assembled code which is in its 

original, unmoved position in the ICOM region. 

5. 10F and ION have been added as pseudo-instructions in the 9845 Assembly Language. 

They are used to control the automatic setting of indirect bits in generated code. 

6. Rel_ to _ sho returns 0 or an error number in the A register, for the 9845. 

Note that two processors are used in the 9845 and one is used in the 9835. (For non-ISR 

assembly language code, the two 9845 processors function together as a single unit to maintain 

compatibility with the 9835.) The advantages of two processors are -

• Overlapped 1/0 (in the OVERLAP mode) can in some cases bring about speed en

hancements. 

• An ISR (interrupt service routine) can be executed simultaneously with a BASIC pro

gram. 



Subject Index 1 

Subject index 

a 
AAR .................... 3:18;B:l,12-14 ASC declaration ................. 8:15;0:3 
Abortive access ..................... 7: 11 ASCII character set ................ A: 1-3 
ABR .................... 3:18;B:l,12-14 ASMB file-type .. , ............. 2:13,16,18 
ABS function ....................... 5:23 ASN function ....................... 5:23 
Absolute expression .............. 4:31,32 Assembled location ............... 1:5;0: 1 
Absolute location ............ 3:11;4:22,23 Assembling process .................. 4: 13 
Access: Assembly: 

abortive ......................... 7: 11 conditional, defined ............... 1:5 
asynchronous ................ 7:11,27 Execution and Development ROM .. 1: 1 
granting .................... 7:10-13 Execution ROM ................... 1: 1 
synchronous .................... 7: 11 ASSIGN ........... " ........... 7:39-42 

Accumulators: Asynchronous access ............. 7:11,27 
General ........ 3:2,12,13, 18;4:24;E: 1 ATN function ....................... 5:23 
map ............................. 3:3 

ACS function ........................ 5:23 
ADA ................. 3:13;5:2;B:l,12-14 
ADB ................. 3:13;5:2;B:l,12-14 b 
Addition: 

General. ........................ 3: 13 
BCD .......................... 5:9,10 
integer ....................... 5:1,2,3 

Address, machine ................... 4:34 
Addressing: 

General ......................... 3: 11 

B, defined ........................... 1:7 
Backplane ..... , ................... 7:1.2 
Base page ........................ 3:6, i 1 
BASIC: 

General .............. 2:2-7;6:18;8:7 
assembly language 

indirect ................ 3:12;7:18-21 
Alphanumeric raster ................. 10:2 
AND: 

instruction ........... 3:19;B:l,12-14 
operation ....................... 5:23 

ANY ......................... 6:6,24;C: 1 
Arguments: 

changing values of ............... 6: 18 
passing from BASIC ............ 6:3,12 
system information about ........ 6:7,8 

Arithmetic: 

extensions .............. 2:8;D:1-4 
assembly source entry ............. 2:9 
branching on interrupts .......... 7:27 
calling assembly language ......... 2: 1 
common ........................ 6:23 
comparison of expressions ........ 4:32 
comparison of operators .......... 4:33 
drivers ........................... 2:3 
end-of-line branches .............. 7:8 
labels ....................... 4:1,2,4,5 
passing variables .................. 1:6 

General .......................... 5: 1 relation to assembly language ...... 4: 1 

BCD .................. 3:23-25;5:1,8 
integer ...................... 5:1,2-6 
utilities .................... 5:1,21-27 

Arrays: 
changing values in ............ 6:20,21 
identifiers .................... 6:26,27 
obtaining information on ......... 6:8,9 
retrieving elements from ....... 6: 14, 15 
retrieving substrings from ...... 6: 16,17 
system information about .......... 6: 7 

routines ........................ 8:8,9 
subprograms ....... 7:32,40;8:9,12,13 
variables: 

General ................. 6:18;8:8 
structure ...................... 3: 8 

BCD: 
General ...................... 3:9;5:7 
addition ....................... 5:9.10 
arithmetic ............. 3:23-25;5:1,8 
division ................ 3:25;5:15-21 



2 Subject Index 

Math group .............. 3:10,23-25 
multiplication .......... 3:25;5:13-15 
normalization ............. 3:23;5:8,12 
registers ........................ 5:7,8 
rounding ........................ 5: 12 
subtraction ................... 5:9-10 

Beep signal ......................... 7:53 
BIN declaration ................. 8:15;D:3 
Binary Processor Chip (BPC) ........ 3:1,2 
Bit patterns and timings, machine 

instructions ....................... B: 12 
Blank lines, in listings ............. 4: 16,18 
Blind parameters ..................... 6:6 
Boolean operations .................. 3: 19 
Booth's algorithm ............... 3:13;B:4 
Braces (in syntax), explained .......... 1: 7 
Brackets (in syntax), explained ........ 1:7 
Branch group .................... 3:10,14 
Branching: 

General ......................... 3:14 
end-of-line ....................... 7:8 
interrupt, prioritizing .......... 7:30,31 
on interrupts ................ 7:27 -33 

Break points ......................... 8: 7 
BSS ....................... 4:8,26,30;C:l 
Buffers, device ............... 7:33-35,38 
Bus, I/O ........................... 3:26 
Bus cycles, I/O .............. 3:1,11;8:21 
Busy bits ................... 1:5;6:26-28 
Busy utility ............. 4:38;6,26-28;F:l 
Buzzwords . . . . . . . . . . . . . . . . . . . . . . . . 1: 5 - 7 
Bytes: 

General ..................... 3:20-22 
definition ......................... 1:5 
pointers ......................... 4:24 
retrieving from BASIC ....... 6:15-17 

c 
CALL ......................... 2:13;6:1,2 
CBL ................ 3:20-22;B:2,12-14 
CBU .................... 3:22;B:2, 12 -14 
CDC ................ 3:25;5:9;B:2,12-14 
CLA .................... 3:19;B:2, 12 -14 
CLB .................... 3:19;B:2,12-14 
Clearing full words .... " ....... 10:15-18 
Clock times ......................... B: 13 
CLR .................... 3:12;B:2,12-14 
CMA .................... 3:19;B:2,12-14 
CMB .................... 3:19;B:2,12-14 
CMX ............... 3:24;5:10;B:2,12-14 

CMY ............... 3:25;5: 10;B:2, 12 -14 
Code: 

object .......... 2:1-3,6-8,13;4:7,13 
source ............... 2:1-6;4:3 -6, 13 

COM: 
pseudo-instruction ...... 4: 12;6:24;C: 1 
statement ............ 2: 14;6:9,23-25 

Commands: 
EDIT ............................. 4:2 
SCRATCH A .................... 2:15 
SCRATCH C .................... 2: 15 

Comments, in assembly source ........ 4:5 
Common ........................... 6:23 
Compatibility, 9835/9845 .......... L:l,2 
Complement: 

one's ........................... 3:19 
ten's .......................... 5:9,10 
two's .................... 3:8,9,13;5:2 

Conditional assembly: 
General ...................... 4:13,19 
definition ......................... 1:5 
flags ........................ " .. 4:20 

Control codes, graphics ........ 10:5-7,11 
Control of indirection ............. 4:13,22 
Control registers .................... 7:2,3 
COS function ....................... 5:23 
CPA .................... 3:15;B:2,12-14 
CPB .................... 3:15;B:2,12-14 
Current page ...................... 3:6,11 
Cursor operations ............ 10:5,22-25 
Cursor types .................... 10:22,23 

d 
DAT .......................... 4:9,10;C:l 
Data: 

generators ................... 4:9 -11 
locations ..................... 8: 11,12 
structures ...................... 3:8,9 
types ........................ 3:8;7:48 

DBL .................... 3:22;B:2,12-14 
DBU .................... 3:22;B:2, 12 -14 
DDR .................... 3:26;B:2,12-14 
Debugging ...... 2:1,2;4:15,19,23;8:1-22 
DEC declaration ................ 8:15;D:3 
DECIMAL ...... 2:10;5:23;8:1,17-19;D:l 
Decimal Carry flag ........... 3:23,25;8:20 
Declarations: 

ANY ...................... 6:6,24;C: 1 
ASC ........................ 8:15;D:3 
BIN ........................ 8:15;D:3 



Subject Index 3 

DEC ........................ 8:15;D:3 ERRM$ .............................. 9:4 
FIL ....................... 6:4,24;C: 1 ERRN .......................... 5:23; 9:4 
HEX ........................ 8:15;D:3 
INT ....................... 6:4,24;C: 1 

Error exit utility ........... 4:38;9:3,4;F: 1 
Errorlabels .......................... 1:2 

OCT ........................ 8:15;D:3 Errors: 
REL ...................... 6:4,24;C:2 assembly-time .................. 9:1,2 
SHO ...................... 6:4,24;C:2 complete listing ............... J: 1-15 
STR .................... 6:4,5,24;C:2 mainframe ................... J: 1-11 

Defined record ...................... 7:43 messages: 
Demonstration cartridge ........ 1 :2;2:8;1:1 General ...................... 9:1 
Device buffers ............... 7:33 -35,38 assembly-time .......... 9:8,9;J:12 
DIR ................ 3:26;4:37;B:2,12-14 run-time ................... 9:5-7 
Direct memory access (DMA): IMAGE status ................ J: 13 -15 

General ....... 3:26;7:1,10-13,22-26 I/O device ...................... J: 11 
lockout time .................... B: 14 processing ..................... 9: 1-4 
registers .................... 4:24;7:22 run-time ...................... 9:1,2,3 
timings ...................... B:13,14 syntax-time ..................... 9: 1,2 
transfers .................... 7:23-26 EXE ..................... 3:27;B:3,12-14 

DISABLE ........................... 7:33 EXIT GRAPHiCS .................... 10:2 
DIV function ........................ 5:23 EXOR .............................. 5:23 
Division: EXP function ........................ 5:23 

BCD ................... 3:25;5:15-21 Expressions: 
integer ......................... 5:4,5 General ................ 4:31-33;8:31 

DMA instruction ..... 3:26;7:23;B:2,12-14 absolute ..................... 4:31,32 
DWtA string input example octal, defined ..................... 1:6 

program ..................... H: 12 -15 relocatable ...................... 4:31 
DMA string output example type of result .................... 4:32 

program ..................... H:I0-12 EXT ................... 4:12,33,34,37;C:l 
Dot matrix, explained ................. 1: 7 Extendflag ........ 3:13,15-17;7:17;8:20 
DROUND ........................... 5:23 Extended Math Chip (EMC) ......... 3: 1,2 
DRS .................... 3:24;B:3, 12 -14 External ............................ 4:33 
DSZ ..................... 3:16;B:3,12-14 
Dumps ............................. 8:14 

f 
e FDV ........... 3:25;5:17-19;B:3,12-14 

FIL ........................... 6:4,24;C:l 
EDIT ................................ 4:2 File marks ....................... 7:47,48 
EIR ................ 3:26;4:37;B:3,12-14 Files: 
EJECT option, IASSEMBLE ASMB-type ............... 2:13,16,18 

statement .............. 4:13,16,17;D:2 
Ellipses (in syntax), explained ......... 1:7 

descriptor .................... 7:39,40 
. names .......................... 2: 11 

ENABLE ........................... 7:33 OPRM-type ............... 2:13,16,18 
END pseudo- Flag line ..................... 3:26;7:4,5,6 

instruction ........ 2:5,11,12;4:7,12;C:l Flags: 
End_isr_high ..................... 7:9,10 Condition?ll assembly ............ 4:20 
End_isr_Iow ...................... 7:9,10 Decimal Carry ........... 3:23,25;8:20 
ENT ........................ 4:33,34;C: 1 Extend ......... 3:13,15-17;7:17;8:20 
Entry points ......................... 4:33 Overflow ....... 3:13,15-17;7:17;8:20 
EQU ..................... 4:12,26,28;C:l FMP ........... 3:25;5: 13 -15;B:3, 12 -14 
Equipment supplied .................. 1:2 FRACT ............................. 5:23 
ERRL ........................... 5:23;9:4 Full-precision numbers ...... 3:9;4:25;7:45 



4 Subject Index 

Functions: 
ABS ............................ 5:23 
ACS ............................ 5:23 
ASN ............................ 5:23 
ATN ............................ 5:23 
COS ............................ 5:23 
OECIMAL ... 2:10;5:23;8:1,17-19;0:1 
0IV ............................. 5:23 
OROUNO ....................... 5:23 
ERRL ....................... 5:23;9:4 
ERRM$ .......................... 9:4 
ERRN ....................... 5:23;9:4 
EXP ............................ 5:23 
FRACT ......................... 5:23 
IAOR ........ 2:10;5:23;8:1,17,19;0:1 
IMEM ..... 2:10;5:23;8:1,17,19,20;0:3 
INT ............................. 5:23 
LGT ............................ 5:23 
LOG ............................ 5:23 
OCTAL ... 2:10;5:23;8:1,17,18,19;0:4 
PI .............................. 5:23 
PROUNO ....................... 5:23 
RES ............................ 5:23 
RNO ............................ 5:23 
SGN ............................ 5:23 
SIN ............................. 5:23 
SQR ............................ 5:23 
TAN ............................ 5:23 
TYP ............................ 5:23 

FXA ................ 3:25;5: 12;B:3, 12 -14 

9 
Get bytes utility .. 4:38;6:12,15, 16,24;F: 1 
Get-elem bytes 

utility .. ~ ........ 4:38;6:12,16,17,24;F:l 
Get_element utility 4:38;6: 12,14, 15,24;F: 1 
Get_file_info utility ...... 4:38;7:40,41;F: 1 
Get_info utility ....... 4:38;6:8-12,24;F: 1 
Get_value utility ..... 4:38;6:12, 13,24;F: 1 
Glossary .......................... 1:5-7 
GRAPHICS ......................... 10:2 
Graphics: 

comprehensive example ........ 10:25 
cursors ..................... 10:22,23 
displaying ..................... 10:2,3 
exiting ........................ 10:2,3 
memory ....................... 10:3,4 
operations .................. 10:5-27 
operations, general algorithm ..... 10:6 
option .......................... 10: 1 

raster ......................... 10:2,3 
select code ...................... 10: 1 

Graphics hardware, checking for ...... 10:5 
Groups: 

BCO Math ............... 3:10,23-25 
Branch ...................... 3:10,14 
I/O ......................... 3:10,26 
Integer Math ................. 3:10,13 
Load/Store .................. 3:10,12 
Logical ...................... 3:10,19 
Miscellaneous ................ 3:10,27 
Shift/Rotate ................. 3:10,18 
Stack ........................ 3:10,20 
Test/Alter/Branch ........ 3:10,16,17 
Test/Branch ................. 3:10,15 

h 
Handshake string input example 

program ......................... H:3,4 
Handshake string output example 

program ......................... H:l,2 
HEO ........................ 4:18, 19;C: 1 
HEX declaration ................ 8:15;0:3 
HP-IB output/input drivers example 

program ..................... H:15-18 

• 
I 

IAOR ............ 2:10;5:23;8:1,17,19;0:1 
IASSEMBLE ....... 2:6,10;4:13,19,23;0:2 
IASSEMBLE ALL ............... 4:13;0:2 
IBREAK ........... 2:10;3:7;8:1,7-11;0:2 
IBREAK ALL ............... 8:1,12,13;0:2 
IBREAK OATA ............. 8:1,11,12;0:2 
ICALL ..... 2:6,10,13;3:7;4:34;6:1-6;0:2 
ICHANGE ............... 2:10;8:1,21;0:3 
ICOM ................. 2:6,10,13-16;0:3 
ICOM region .. 2:13-18;3:4;4:8,23,34;6:2 
10ELETE .............. 2:10,13,15,17;0:3 
10ELETE ALL .......... 2:15,17;4:23;0:3 
10UMP ............... 2:10;8:1,14,15;0:3 
IF conditional ....................... 4:20 
IFA ............................ 4:20;C:l 
IFB ............................ 4:20; C: 1 
IFC ............................ 4:20;C:l 
IFO ............................ 4:20; C: 1 
IFE ............................. 4:20; C: 1 
IFF ............................. 4:20;C: 1 



Subject Index 5 

IFG ............................ 4:20; C: 1 roT ~ ... n r it 4")"" n 4") "1 n "1 it 
C1n ......... ~:~o;'t:.) I ;0:.), lL; -l't 

IFH ............................ 4:20;C:1 EQU .............. 4:12,26,28;C:1 
IFP ......................... 4:20,21;C:1 EXE ............. 3:27;B:3,12-14 
ILOAD .............. 2:8,10,i2,18;4:7;D:3 FDV .... 3:25;5:17-19;8:3,12-14 
IMEM ......... 2:10;5:23;8:1,17,19,20;0:3 FMP .... 3:25;5:13-15;B:3,12-14 
Indirect addressing: FXA ........ 3:25;5:12;B:3,12-14 

General ................. 3:12;4:22,23 groups ...................... 3:10 
in ISRs ..................... 7:18-21 lOR .............. 3:19;B:4, 12 -14 

Indirection, control of ............. 4:13,22 ISZ .............. 3:16;B:4,12-14 
INORMAL ............ 2:10;8:1,10,13;0:4 JMP ............. 3:14;B:4, 12 -14 
Input cycle, explained ................. 3: 1 JSM ........ 3:6,14;6:9;B:4,12-14 
1/0: LOA .......... 3:12,27;B:4, 12 -14 

bus ............................. 3:26 LOB ........... 3:12-4;8:4,12-14 
bus cycles ................ 3:1,11;8:21 MLY ........ 3:24;5:18;B:4,12-14 
expediting ................... 7:53,54 MPY ............. 3:13;B:4,12-14 
group ........................ 3:10,26 MRX ..... 3:23;5:11,12;B:5,12-14 
interrupt ................... 7:1,7-21 MRY ..... 3:24;5:11,12;B:5,12-14 
operations, relation to busy MWA ....... 3:25;5:13;B:5,12-14 

bits ....................... 6:26 - 29 NOP ............. 3:27;B:5,12-14 
programmed ................ '" .. 7:1 NRM ........ 3:24;5:12;B:5,12-14 
registers ............... 3:2;4:24;7:2,3 operands .................... 3:10 
sample programs ............. H: 1-21 PBC .......... 3:21,22;B:6,12-14 

Input-Output Controller (lOC) ....... 3: 1,2 PBO .......... 3:21,22;B:6,12-14 
Instructions: PWC .......... 3:20,22;B:6,12-14 

individual execution of ............ 8:3 PWO .......... 3:20,22;B:6, 12 -14 
machine: RAL ............. 3:18;B:6,12-14 

General ......... 3:10-27;8:1-14 HAH ............. 3:18;B:6, 12 -14 
AAR ............. 3:18;B:1,12-14 RBL ............. 3:18;B:6, 12 -14 
ABR ............. 3:18;B:1,12-14 RBR ............. 3:18;B:7,12-14 
AOA ......... 3:13;5:2;B:1,12-14 RET .... 2:5;3:6,14;6:2;B:7,12-14 
AOB ......... 3:13;5:2;B:1,12-14 RIA .............. 3:15;B:7,12-14 
ANO ............. 3:19;B:1,12-14 RIB .............. 3:15;B:7,12-14 
arithmetic .................... 5: 7 RLA ............. 3:17;B:7,12-14 
CBL ......... 3:20-22;B:2,12-14 RLB ............. 3:17;B:7,12-14 
CBU ............. 3:22;B:2, 12 -14 RZA ............. 3:15;B:7,12-14 
COC ......... 3:25;5:9;B:2, 12 -14 RZB ............. 3:15;B:7,12-14 
CLA ............. 3:19;B:2,12-14 SAL ............. 3:18;B:7,12-14 
CLB ............. 3:19;B:2,12-14 SAM ............. 3:16;B:7,12-14 
CLR ............. 3:12;B:2, 12 -14 SAP ............. 3:16;B:7,12-14 
CMA ............. 3:19;B:2,12-14 SAR .......... 3:11,18;B:8,12-14 
CMB ............. 3:19;B:2,12-14 SBL ............. 3:18;B:8,12-14 
CMX ... '" .. 3:24;5:10;B:2,12-14 SBM ............. 3:16;B:8,12-14 
CMY ........ 3:25;5:10;B:2,12-14 SBP ............. 3:16;B:8,12-14 
CPA ............. 3:15;B:2, 12 -14 SBR ........ 3:18;5:15;B:8,12-14 
CPB ............. 3:15;B:2,12-14 SOC ............. 3:25;B:8, 12 -14 
OBL ............. 3:22;B:2, 12 -14 SOL ........ 3:26; 7 :22;B:8, 12 -14 
OBU ............. 3:22;B:2, 12 -14 SOO ........ 3:26;7:22;B:8,12-14 
OOR ............. 3:26;B:2, 12 -14 SOS .......... 3:25;5:9;B:8, 12 -14 
OIR ......... 3:26;4:37;B:2,12-14 SEC ............. 3:17;B:8, 12 -14 
OMA ............. 3:26;B:2, 12 -14 SES ............. 3:17;B:8,12-14 
ORS ............. 3:24;B:3,12-14 SFC .......... 3:26;7:5;B:9,12-14 
OSZ ............. 3:16;B:3,12-14 SFS .......... 3:26;7:5;B:9,12-14 



6 Subject Index 

SHC ............. 3:15;B:9,12-14 UNL ................. 4:15,19;C:2 
SHS ............. 3:15;B:9,12-14 XIF .................. 4:20,21;C:2 
SIA .............. 3:15;B:9, 12 -14 repeating ....................... 4: 12 
SIB .............. 3:15;B:9,12-14 INT: 
SLA ............. 3:16;B:9,12-14 declaration ................ 6:4,24;C: 1 
SLB ............. 3:16;B:9,12-14 function ......................... 5:23 
SOC ............. 3:17;B:9,12-14 I nt_to _reI utility ............ 4:38;5:26;F: 1 
SOS ............ 3:17;B:I0,12-14 INTEGER ............................ 3:8 
SSC ........ 3:26;7:5;B:I0,12-14 
SSS ......... 3:26;7:5;B:I0,12-14 

Integer: 
addition ...................... 5:1,2,3 

STA ............ 3:12;B:I0,12-14 
STB ............ 3:12;B:I0,12-14 

arithmetic ................... 5:1,2-6 
multi-word .................. 5:5,6 

SZA ............ 3:15;B:I0,12-14 division ........................ 5:4,5 
SZB ............ 3:15;B:I0,12-14 
TCA ........ 3:13;5:2;B:I0,12-14 
TCB ........ 3:13;5:2;B:I0,12-14 
WBC ........ 3:21,22;B:ll,12-14 
WBO ........ 3:21,22;B:ll,12-14 

multiplication ................. 5: 1 ,3,4 
subtraction ..................... 5:1,3 

Integer Math group ............... 3:10,13 
Integers: 

General ............ 3:8;5:2,24,25;6:8 
WWC ........ 3:20,22;B:ll,12-14 octal ............................ 4: 10 
WWO ........ 3:20,22;B:ll,12-14 structure ..................... 3:8;5:2 
XFR ....... 3:12;4:29;B:ll,12-14 Interfaces: 

patching ........................ 8:21 General ..................... 7:2,4,22 
processor ........................ 3: 1 98032 (GPIO) ...... 7:3,16,22;G:I-14 
pseudo-: 98033 (BCO) .............. H:3,4,7-9 

General ................ 4:3;C:l,2 
ANy .................. 6:6,24;C:l 

98034 (HP-IB) ............. H:15-18 
98035 (Clock) .......... H:1-4,19,20 

BSS ................ 4:8,26,30;C: 1 98036 (Serial) ................. H:I-9 
COM ............... 4:12;6:24;C:l 
OAT .................. 4:9,10;C:l 
ENO ........ 2:5,11,12;4:7,12;C:l 

Interrupt I/O .................... 7:1-21 
Interrupt service routines: ............... . 

General ............. 2:15;3:7;7:7-10 
ENT ................. 4:33,34;C:l called from BASIC ........... 7:27 -33 
EQU .............. 4: 12,26,28;C: 1 definition ......................... 1:6 
EXT ........... 4:12,33,34,37;C: 1 linkage ..................... 7:9,10,30 
HEO ................. 4:18, 19;C: 1 
IFA ..................... 4:20;C:l 

reserved symbols ............. 4:24,25 
state in ......................... 7:17 

IFB ..................... 4:20; C: 1 
IFC ..................... 4:20; C: 1 
IFO ..................... 4:20; C: 1 
IFE ..................... 4:20;C: 1 
IFF ..................... 4:20; C: 1 
IFG ..................... 4:20;C: 1 
IFH ..................... 4:20;C: 1 

Interrupt string input example 
program ........................ H:7-9 

Interrupt string output example 
program ........................ H:5-7 

Interrupts: 
disabling ..................... 7:15,16 
enabling ..................... 7: 19,20 

IFP .................. 4:20,21;C: 1 execution time .................. B: 13 
LIT ..................... 4:30;C:l lockout time .................... B: 13 
LST .................. 4:14, 19;C: 1 related machine instructions ...... 3:26 
NAM ........... 2:5,11;4:7,12;C:2 
non-listable .................. 4: 19 

signalling .................... 7 :28,29 
IOF ......................... 4:13,22;C:l 

REP .................... 4:12;C:2 ION ......................... 4:13,22;C:l 
SET ..................... 4:27;C:2 
SKP .............. 4:16,17,19;C:2 

lOR ... ' .................. 3:19;B:4, 12 -14 
IPAUSE OFF .............. 2:10;8:1,7;0:4 

SPC ................. 4:18,19;C:2 IPAUSE ON ............ 2:10;8:1,4-7;0:4 
SUB ........... 2:5;4: 12;6:2,3;C:2 ISOURCE ............ 2:5,8,9;4:2,5,6;0:4 



ISR, defined ......................... 1: 6 
Isr access utility ...... 4:38;7:13,14,15;F:1 
ISTORE ......... 2:7,10,13,17,18;4:7;D:4 
ISTORE ALL ................... 2:18;D:4 
IS2 ..................... 3:16;B:4, 12 -14 

• 
J 

JMP ..................... 3:14;B:4,12-14 
JSM ............... 3:6, 14;6:9;B:4, 12-14 

I 
Labels: 

assembly language ............. 4:3-6 
BASIC ..................... 4:1,2,4,5 

LDA ................. 3:12,27;B:4,12-14 
LDB .................... 3:12;B:4, 12 -14 
LGT function ....................... 5:23 
Line drawing ...................... 10:27 
Line drawing routine, Demonstration 

cartridge .................... 10:27 -30 
Lines: 

blank, in listings .............. 4: 16,18 
Flag ..................... 3:26;7:4,5,6 
Status ................... 3:26;7:4,5,6 

LINES option, IASSEMBLE 
statement. ............ , .... 4:13,16;D:2 

LIST option, IASSEMBLE 
statement. .. " ........... " 4:13,14;D:2 

Listing: 
General ...................... 4: 14, 15 
directives ....................... 4: 13 

LIT ............................ 4:30; C: 1 
Literals: 

General ...................... 4:27,28 
as data generators ............... 4: 10 
evaluation of ................. 4:27,28 
form of ............... , ... ,. 4:27;D:4 
nesting ...................... 4:28,29 
nonsensical use of ..... , ...... 4:29,30 
pools ........................ 4:27,30 

Load/Store group ............... 3:10,12 
Lockout times ...................... B: 14 
LOG function ....................... 5:23 
Logical: 

record .......................... 7:43 
group ............ , , , , ........ 3:10,19 
operations ............ , ......... 3: 19 

LST ......................... 4:14, 19;C: 1 

Subject Index 7 

m 
Machine address .................... 4:34 
Machine architecture ............... 3: 1-7 
Machine instructions .... 3:10 - 27 ;B: 1-14 
Maintenance agreements ..... , ........ K: 1 
Mantissa shifting ................. 3:23,24 
Manual: 

Assembly Development ROM ...... 1:2 
Assembly Execution ROM ......... 1:2 
Assembly Language Quick 

Reference .......... " ..... 1:2;7:19 
BASIC Language Interfacing 

Concepts ........... " .... 1:2;7:1,2 
structure ......................... 1:2 

Mass storage: 
General .............. " .. 2:2,12;7:33 
Descriptor (MSD) ................ 7:34 
reading from .................... 7:33 
Transfer Identifier (MSTID) .... 7:34,35 
unit specifier (msus) .......... 1:6;7:34 
writing to ................... 7:37 -39 

MASS STORAGE IS .......... 1:6;7:33,34 
MAX ..................... , ......... 5:23 
Memory: 

General .................... , ..... 4:8 
dumps .......................... 8:14 
general organization ............... 3:4 
graphics ....................... 10:3,4 
map ........................ 3:3,5;E:2 
protected ................. 3:6;8:12,22 
read/write ............. , ......... 1: 1 
reserved .................... 1:1;3:4,6 

MIN ................................ 5:23 
Miscellaneous group, machine 

instructions .................... 3:10,27 
MLY ............... 3:24;5:18;B:4,12-14 
Mm read start utility ... 4:38;7:33-35;F:l 
Mm-read-xfer utility 4:38;7:33-35,36;F:1 
Mm-write- start utility 4:38;7:33,37,38;F:l 
Mm-write-test utility. 4:38;7:33,38,39;F:l 
MOD operation ..................... 5:23 
Modules: 

General ......................... 2:16 
creation ................ , .... 2: 11;4:7 
definition .' ........................ 2:3 
names .................. 2:11,12;4:16 
obiect ...................... 1:6;4:718 
re~ssembly ...................... 4:23 
source ................... 1:7;4: 7,8,13 
storage ...................... 2: 12;4:8 

MPY ............. , ...... 3:13;B:4,12-14 



8 Subject Index 

MRX ............ 3:23;5: 11, 12;B:5, 12 -14 
MRY ............ 3:24;5:11,12;B:5,12-14 
Multiplication: 

BCO ....................... 5:13-15 
integer ....................... 5:1,3,4 

MWA ............... 3:25;5:13;B:5,12-14 

n 
NAM .................. 2:5,11;4:7,12;C:2 
Names, module ............. 2:11,12;4:16 
Nesting subroutine calls ............. 3:6,7 
NOP .................... 3:27;B:5, 12 -14 
Normalization ........ : ............ 5:8,12 
NOT operation ...................... 5:23 
NRM ............... 3:24;5:12;B:5,12-14 
Numbers: 

full-precision ............ 3:9;4:35;7:45 
integer precision ............. 3:8; 7 :45 
octal ............................. 1:6 
short-precision .......... 3:9;4:35;7:45 

o 
Object: 

code ........... 2:1-3,6-8,13;4:7,13 
modules .................... 1:6;4:7,8 

OCT declaration ................ 8:15;0:3 
OCTAL ....... 2:10;5:23;8:1,17,18,19;0:4 
Octal expression, defined ............. 1:6 
OFF INT .................... 2:10;7:32,33 
ON ERROR ......................... 9:3,4 
ON INT ............. 2:10;7:27,28,30-32 
One's complement .... , ..... , ....... 3:19 
Operands ........................... 3: 10 
Operating system .................... 7: 10 
Operations: 

ANO ............................ 5:23 
EXOR .......................... 5:23 
Logical ......................... 3: 19 
MOO ........................... 5:23 
NOT ............................ 5:23 
OR ............................. 5:23 
Order of ........................ 4:33 

OPRM file-type ............... 2:13,16,18 
OR ................................. 5:23 
Output cycle, explained ............... 3: 1 
Overflow condition, integer arithmetic 5:2,3 
Overflowflag ...... 3:13,15-17;7:17;8:20 
Overlap mode ....................... 6:27 

p 
Page: 

base ........................ 3:6;B: 13 
current ...................... 3:6;B: 13 
definition ......................... 3:6 
end control ...................... 4:17 
format, listings ................... 4: 16 
headings, listings ............. 4:16,18 
length, listings ................ 4: 16, 17 

Parameters: 
blind ............................. 6:6 
in SUB pseudo-instruction ......... 6:4 

Pausing .......................... 8:3,4,7 
PBC ................. 3:21,22;B:6,12-14 
PBO ................. 3:21,22;B:6,12-14 
Physical record ...................... 7:43 
PI ............................... , .. 5:23 
Pixel .................. l:7;10:1,3,4,7-10 
Pixels, writing individual ......... 10:7 -10 
POinters, stack ................ 3:2,20;4:24 
Pools, literal ..................... 4:27,30 
Predefined symbols ........ , .. 4:24,25;E:l 
Print no If utility .... 4:38;7:48,52,53;F:l 
Print-string 

utillty .......... 4:29,38;7:48,50-52;F: 1 
Printer select utility ..... 4:38;7:49,50;F:1 
Priorities, for select codes ............. 7:8 
Processors: 

General ........................ 3:1,2 
Binary Processor Chip (BPC) .... 3:1,2 
bus .............................. 3:1 
Extended Math Chip (EMC) ...... 3:1,2 
Input-Output Controller (I0C) ... 3:1,2 
instructions ....................... 3: 1 

Programmed 1/0 .................... 7:1 
Programs: 

assembly language, developing ... 2:1,2 
counter ..................... 3:2;4:24 
counter, map ..................... 3:3 
creation .................. 2:1-3,4-8 
definition ......................... 2:3 
entry ....................... 2:8,9;4: 1 
stepping ........................ 8:22 

Protected memory ............ 3:6;8:12,22 
PROUNO ........................... 5:23 
Pseudo-instructions ............. 4:3;C:1,2 
Put bytes utility ... 4:38;6:18,20,21,24;F:1 
Put-elem bytes 

utility .. ~ .......... 4:38;6: 18,22 - 24;F: 1 
Put element utility 4:38;6:18,19,20,24;F:l 
Put-file info utility ...... 4:38;7:41,42;F:l 
Put=value utility ...... 4:38;6:18, 19,24;F: 1 



PWC ................. 3:20,22;B:6,12-14 
PWD ................. 3:20,22;B:6,12-14 

r 
RAL .................... 3:18;B:6,12-14 
RAR .................... 3:18;B:6, 12 -14 
Raster: 

alphanumeric ................... 10:2 
graphics ..................... 10:2-4 

RBL .................... 3:18;B:6,12-14 
RBR .................... 3:18;B:6, 12 -14 
Read busy bit. " " " ~ ~ , ~ , , , , , , , , , , ..... 6:26 
Real time clock example program H:19-21 
Record boundaries .................. 7 :44 
Record types ........................ 7 :43 
Reading full words .......... " . 10:18-21 
REDIM ............................. 6:12 
Registers: 

General .......................... 3:2 
arithmetic .......... 4:24;5:15-17;E:l 
BCD ........................... 5:7,8 
control ......................... 7 :2,3 
DMA ....................... 4:24;7:22 
DMA, map ....................... 3:3 
external .......................... 3:4 
1/0 ............................ 7:2,3 
internal .......................... 3:2 
internal, map ..................... 3:3 
map ............................. 3:3 
Peripheral Address (Pa) ...... 7:3,4,10 
preservation by ISRs ............. 7: 1 7 
stack ........................... 3:20 
status ............................ 7:3 
timing ..... " ................ B:13,14 

REL .......................... 6:4,24;C:2 
ReI math utility ........ 4:38;5:21-24;F:l 
ReI-to int utility ........ 4:38;5:24,25;F:l 
ReI-to -sho utility ....... 4:38;5:25,26;F:l 
Rel{;"catable expression ........... 4:31,32 
Relocatable location ............ 3:11;4:22 
Relocation ....................... 4:22,23 
REP ............................ 4:12;C:2 
RES function ........................ 5:23 
RET ........... 2:5;3:6,14;6:2;B:7,12-14 
RETURN ........................... 7:27 
RIA ..................... 3:15;B:7,12-14 
RiB ..................... 3:15;3:7,12-14 
RLA .................... 3:17;B:7,12-14 
RLB .................... 3:17;B:7,12-14 
RND function ....................... 5:23 

Subject Index 9 

ROMs: 
Assembly Execution ............. 1:1,3 
Assembly Execution and 

Development ............... 1:1,3,4 
Graphics ........................ 10: 1 
installation ..................... 1 :3,4 
requirements of others ........... 2: 14 

Rotation ...................... 3:18;B:6,7 
Routines: 

BASIC ......................... 8:8,9 
definition ......................... 2:3 
names ....................... 2:11,12 

RZA ..................... 3:15;B:7,12-14 
RZB ..................... 3:15;B:7,12-14 

s 
SAL ..................... 3:18;B:7,12-14 
SAM .................... 3:16;B:7,12-14 
SAP ........ '" .......... 3:16;B:7,12-14 
SAR ................. 3:11,18;B:8,12-14 
SBL ..................... 3:18;B:8,12-14 
SBM .................... 3:16;B:8,12-14 
SBP ..................... 3:16;B:8, 12 -14 
SBR ................ 3:18;5: 15;B:8, 12 -14 
SCRATCHA ........................ 2:15 
SCRATCH C ....................... 2:15 
SOC .................... 3:25;B:8, 12 -14 
SOl ................ 3:26;7:22;B:8,12-14 
SDO ............... 3:26;7:22;B:8,12-14 
SDS ................. 3:25;5:9;B:8,12-14 
SEC .................... 3:17;B:8,12-14 
Select code, graphics ................ 10: 1 
Select codes, priorities ................ 7:8 
SES ... " ................ 3:17;B:8,12-14 
SET ............................ 4:27;C:2 
SFC ................. 3:26;7:5;B:9,12-14 
SFS ................. 3:26;7:5;B:9,12-14 
SGN function ....................... 5:23 
SHC .................... 3:15;B:9,12-14 
Shift/Rotate group ............... 3:10,18 
Shifting, mantissa ............... 3:23-25 
SHO ......................... 6:4,24;C:2 
Sho to reI utility .......... 4:38;5:27;F:l 
Short-precision numbers .... 3:9;4:35;7:45 
SHS .................... 3:15;B:9,12-14 
SIA ..................... 3:15;B:9,12-14 
SIB ..................... 3:15;3:9,12 -14 
Sign-magnitude format ................ 5:9 
Signalling interrupts .............. 7:28,29 
SIN function ........................ 5:23 



10 Subject Index 

SKP .................. , ... 4:16,17,19;C:2 REOIM ......................... 6:12 
SLA ..................... 3:16;B:9,12-14 RETURN ........................ 7:27 
SLB ..................... 3:16;B:9,12-14 SUBENO ....................... 7:27 
SOC .................... 3:17;B:9,12-14 SUBEXIT .................. .' .... 7:27 
SOS ................... 3:17;B:10,12-14 Status line ................... 3:26;7:4,5,6 
Source: Status registers ....................... 7:3 

code ................ 2: 1-6;4:3 -6, 13 STB ................... 3:12;B:10,12-14 
listing control ............... 4: 14-19 Stepping programs ............... 8:3 -14 
modules ................. 1:7;4:7,8,13 STR ........................ 6:4,5,24;C:2 

Space dependent mode ............... 4:6 Strings: 
SPC ........................ 4:18,19;C:2 General ..................... 3:8; 7:46 
SQR function ....................... 5:23 as data generators ............ 6: 12, 13 
SSC ................ 3:26;7:5;B:10,12-14 SUB pseudo-instruction 2:5;4: 12;6:2,3;C:2 
SSS ................ 3:26;7:5;B:10,12-14 SUBENO ........................... 7:27 
STA ................... 3:12;B: 10, 12-14 SUBEXIT ........................... 7:27 
Stack group ...................... 3:10,20 Subprograms, BASIC ... 7:32,40;8:9,12,13 
Stack group, in ISRs .............. 7:18,19 Subroutines ....................... 3:6,14 
Stacks: Substrings: 

General ......................... 3:20 changing value of ............ 6:22 - 24 
pointers:. retrieving ................... 6: 15 -17 

General ................... 3:2,20 retrieving from arrays ......... 6:16,17 
map .......................... 3:3 Subtraction, integer ................. 5: 1,3 

registers ........................ 3:20 Symbolic operations ............. 4:25 -33 
Statements, BASIC: Symbols: 

ASSIGN .................... 7:39 -42 General ......................... 4:24 
CALL ..................... 2:13;6:1,2 address of ....................... 8: 19 
COM ................ 2:14;6:9,23-25 defining ...................... 4:26,27 
DISABLE ....................... 7:33 external ...................... 4:33,34 
EOIT ............................. 4:2 predefined ................... 4:24,25 
ENABLE ........................ 7 :33 Synchronous access ................. 7: 11 
IASSEMBLE ... 2:6,10;4:13,19,23;0:2 Syntax, fundamental .................. 1:7 
IASSEMBLE ALL ............ 4:13;0:2 System 35/System 45 compatibility. L:l,2 
IBREAK ....... 2:10;3:7;8:1,7-11;0:2 SZA ................... 3:15;B: 10,12 -14 
IBREAK ALL ........... 8:1,12,13;0:2 SZB ................... 3:15;B: 10,12 -14 
IBREAK OATA ......... 8:1,11,12;0:2 
ICALL .. 2:6,10,13;3:7;4:34;6:1-6;0:2 
ICHANGE ............ 2:10;8:1,21;0:3 
ICOM ............. 2:6,10,13-16;0:3 t 
IOELETE .......... 2:10,13,15,17;0:3 
IOELETE ALL ....... 2:15,17;4:23;0:3 
IOUMP ............ 2:10;8:1,14,15;0:3 
ILOAO .......... 2:8,10,12,18;4:7;0:3 
INORMAL ......... 2:10;8:1,10,13;0:4 
IPAUSE OFF .......... 2:10;8:1,7;0:4 
IPAUSE ON ........ 2:10;8:1,4-7;0:4 
ISOURCE ......... 2:5,8,9;4:2,5,6;0:4 
ISTORE ...... 2:7,10,13,17,18;4:7;0:4 
ISTORE ALL ................ 2:18;0:4 
MASS STORAGE IS ...... 1:6; 7:33,34 
OFF INT ................ 2: 10;7:32,33 
ON ERROR ..................... 9:3,4 
ON INT .......... 2:10;7:27,28,30-32 

TAN function ....................... 5:23 
Tape cartridge, Demonstration .. 1:2;2:8;1:1 
TCA ............... 3:13;5:2;B:10,12-14 
TCB ............... 3:13;5:2;B:I0,12-14 
Ten's complement ................. 5:9,10 
Test/ Alter/Branch group ..... 3:10,16,17 
Test/Branch group .............. 3:10,15 
Timings: 

clock ........................... B:13 
execution .................... B: 13, 14 
lockout ......................... B: 14 

To system utility ........ 4:38;6:28,29;F: 1 
Transfers, OMA ................. 7:23-26 



Two's complement ........... 3:8,9,13;5:2 
TYP function .................... ' .. ' .. 5:23 
Typing aids, demonstration cartridge. I: 1-3 

u 
UNL ........................ 4:15,19;C:2 
Utilities: 

General ...................... 4:36,37 
Arithmetic ................. 5:1,21-27 
Arithmetic, operand registers ....... 3:4 
Busy ....... '" ... 4:38;6:26,27,28;F:l 
Error_exit ............. 4:38;9:3,4;F:l 
Execution of ...................... 8:5 
Get_bytes ..... 4:38;6:12,15,16,24;F:l 
Get_elem _bytes 4:38;6:12,16,17,24;F:l 
Get_element .. 4:38;6:12,14, 15,24;F: 1 
Get_file _info ........ 4:38;7:40,41;F: 1 
Get_info ......... 4:38;6:8-12,24;F:l 
Get_value ........ 4:38;6:12,13,24;F:l 
Int_to_rel .............. 4:38;5:26;F:l 
Isr_access ........ 4:38;7:13,14,15;F:l 
Mm read start. .... 4:38:7:33-35:F:l 
Mm =read = xfer .. 4:38; 7 :33 -35,36~F: 1 
Mm _ write _start . ~:38; 7 :33,37 ,38;F: 1 
Mm_write_test ... 4:38;7:33,38,39;F:1 
Print_no_lf ...... 4:38;7:48,52,53;F:l 
Print string " 4:29,38;7:48,50-52;F: 1 
Printer select ....... 4:38;7:49,50;F: 1 
Put bytes ..... 4:38;6:18,20,21,24;F:l 
Put-elem bytes. 4:38;6:18,22-24;F:l 
Put-element .. 4:38;6:18,19,20,24;F:l 
Put-file info ........ 4:38;7:41,42;F:l 
Put-value ........ 4:38;6:18,19,24;F:l 
Rei-math .......... 4:38;5:21-24;F:l 
Rei-to int .......... 4:38;5:24,25;F:l 
Rel-to-sho ......... 4:38;5:25,26;F:l 
Reserved symbols ............... 4:25 
Sho to rei ............. 4:38;5:27;F:l 
To system .......... 4:38;6:28,29;F:l 
Writing ........................ G:l,2 

v 
Value checking .................. 8: 17 -20 
Variables: 

General .......................... 4:8 
BASIC .................. 3:8;6:18;8:8 
retrieving values from ......... 6: 12, 13 
value checking .............. 5:17 -20 

Subject Index 11 

w 
WBC .................. 3:21,22;B:II-14 
WBO ................. , 3:21,22;B:11-14 
Word: 

General ......................... 3:22 
defined .... , " ........ " ......... 1:7 
transfers ................... 3:12;B: 11 

Words: 
clearing ................... 10: 15 -18 
reading .................... 10:18-21 
writing .................... l0:11-14 

Write busy bit ....................... 6:26 
Writing full words .............. 10: 11-14 
Writing individual pixels ......... 10:7 -10 
WWC .................. 3:20,22;B:11-14 
WWD .................. 3:20,22;B:II-14 

x 
XFR .................. 3:12;4:29;B:II-14 
XIF ......................... 4:20,21;C:2 
XREF option, IASSEMBLE 

statement ..................... 4:13;D:2 



Your Comments, Please ... 

Your comments assist us in improving the usefulness of our publications; they are an important 
part of the inputs used in preparing updates to the publications. 

In order to write this manual, we made certain assumptions about your computer background. 
By completing and returning the comments card on the following page you can assist us in 
adjusting our assumptions and improving our manuals. 

Feel free to mark more than one reply to a question and to make any additional comments. 

Please do not use this form for questions about technical applications of your system or re
quests for additional publications. Instead, direct those inquiries or requests to your nearest HP 
Sales and Service Office. 

If the comments card is missing, please address your comments to: 

HEWLETT-PACKARD COMPANY 
Desktop Computer Division 
3404 East Harmony Road 
Fort Collins, Colorado 80525 U.S.A. 

Attn. Customer Documentation 
Dept. 4231 

All comments and suggestions become the property of Hewlett-Packard. 



I 
I 
I 
I 
I 
I 
I 

Comments Card for the Assembly Development ROM Manual 

Yourself 

1. VJhat is YOUi major application of your Series 9800 Desktop Computer? 

2. Which Series 9800 Desktop Computer do you have? 

o 9835A o 9835B o 9845B o 9845C 

3. What was your level of programming knowledge before you started using this manual? 

o none o beginner o intermediate o expert 

~---------------------------------------------------

• 'The Manual 

1. Did you have any difficulty in: 

understanding material in manual? 

applying that information? 

2. How would you rate the: 

areas covered 
depth of coverage 
examples 
indexing 
organization 
overall manual 

none 

o 
o 

excellent 

0 
0 
0 
0 
0 
0 

minimal 

o 

o 

good 

0 
0 
0 
0 
0 
0 

some 

o 

o 

fair 

0 
0 
0 
0 
0 
0 

What do you suggest we do to improve the areas that you consider weak? 

considerable 

o 

o 

poor 

0 
0 
0 
0 
0 
0 

~-------------~------------------------------------, 
I 

'The Method 

1. By which method would you have preferred to learn the use of your computer? 

o Present set of manuals 
o Manuals using programmed-learning approach 
o Training workbooks with corresponding tape cartridge 
o Manuals resident in computer's memory, accessible through the keyboard and displayed on the CRT 
o Training in classroom situation at Hewlett-Packard 

General comments: 

Name: __________________________________________________________________________________ _ 

Addr~s: ____________________________________________________________________________ ___ 



BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 37 LOVELAND. COLORADO 

POSTAGE WILL BE PAID BY ADDRESSEE 

Hewlett-Packard Company 
Desktop Computer Division 
Attn: Cust. Documentation/Dept. 4231 
3404 East Harmony Road 
Fort Collins, Colorado 80525 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 



L .. T 

Assembly Language ROM Errors 
Improper argument for OCTAL or DECIMAL function or assembled location. 

Break Table overflow. 

Undefined BASIC label or subprogram name used in IBREAK statement. 

Attempt to write into protected memory; or, attempt to execute instruction not 

in ICOM region. 

Label used in an assembled location not found. 

Doubly-defined entry point or routine. 

Missing ICOM statement. 

Module not found. 

Errors in assembly. 

Attempt to move or delete module containing an active interrupt service 

routine. 

IDUMP speCification too large. Resulting dump would be more than 32 768 

elements. 

Routine not found. 

Unsatisfied external symbols. 

Missing COM statement. 

BASIC's common area does not correspond to assembly module require

ments. 

Insufficient number of items in BASIC COM declarations. 

Assembly-Time Errors 
Doubly-defined label 

END instruction missing; or module name does not match. 

Expression evaluation error. 

Literal pools full or out of range. 

ICOM region overflow. 

Operand out of range. 

Argument declaration pseudO-instruction out of sequence. 

Incorrect type of operand used. 

Undefined symbol. 



Part No. 09845-91083 
Microfiche No. 09845-98083 

Fh"- HEWLETT 
~~ PACKARD 

Printed in U.S.A. 
March 1, 1980 

» 
Ul 
Ul 
ro 
3 
r::r 
~ 
o 
ro 
<: 
r?. 
o 
'0 
3 
ro 
::s ....... 


	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-49
	07-50
	07-51
	07-52
	07-53
	07-54
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12a
	B-12b
	B-12c
	B-13
	B-14
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	F-01a
	F-01b
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	I-01
	I-02
	I-03
	I-04
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	J-09
	J-10
	J-11
	J-12
	J-13
	J-14
	J-15
	J-16
	K-01
	K-02
	L-01
	L-02
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	replyA
	replyB
	xBackA
	xBackB

