

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard Desktop Computer Division products sold in the U.S.A. and Canada, this warranty applies for ninety (90) days from date of delivery.* Hewlett-Packard will, at its option, repair or replace equipment which proves to be defective during the warranty period. This warranty includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be shipped freight prepaid. Repairs necessitated by misuse of the equipment, or by hardware, software, or interfacing not provided by Hewlett-Packard are not covered by this warranty.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

*For other countries, contact your local Sales and Service Office to determine warranty terms.

Printing History

Periodically, this manual is updated. Each new edition of this manual incorporates all material updated since the previous edition. Each new or revised page is indicated by a revision date.

The date on the back cover changes only when each new edition is published.

First Printing...March 1, 1980

Table of Contents

Chapter 1: General Information

•	
Equipment Supplied 1-	-2
Structure of the Manual	-2
Purpose of the ROMs1-	-3
ROM Installation	-3
Buzzwords	-5
Fundamental Syntax	-7
•	

Chapter 2: Getting Started

Developing Routines for Later Use
Overview
Program Creation
Program Entry
Other Extensions
Modules and Routines
Names
Survey of Modules and Routines
Setting Aside Memory
Retrieving and Storing Modules

Chapter 3: The Processor and the Operating System

Machine Architecture	3-1
Registers	3-2
General Memory Organization	3-4
Protected Memory	3-6
Base and Current Page	3-6
Nesting of Subroutine Calls	3-6
Data Structures	3-8
Integers	3-8
Strings	3-8
Full-Precision Numbers	3-9
Short-Precision Numbers	3-9
Machine Instructions	
Operands	
Indirect Addressing	
Load/Store Group	
Integer Math Group	
Branch Group	
Test/Branch Group	
Test/Alter/Branch Group	
Shift/Rotate Group	
Logical Group	3-19
Stack Group	
BCD Math Group	3-23
I/O Group	
Miscellaneous	

Chapter 4: Assembly Language Fundamentals	
Program Entry	4-1
Assembly Language Source	4-3
Actions	4-3
Labels	4-3
Comments	4-5
Syntaxing the Source	4-5
Creating Modules	4-7
Storage	4-8
Modules	4-8
Variables	4-8
Data Generators	4-9
Repeating Instructions	. 4-12
Assembling	. 4-13
Effect of BASIC Environments	. 4-14
Source Listing Control	. 4-14
Page Format	. 4-16
Page Length	. 4-16
End-of-Page Control	. 4-17
Page Headings	. 4-18
Blank Line Generation	. 4-18
Non-Listable Pseudo-Instructions	. 4-19
Conditional Assembly	. 4-19
Control of Indirection	. 4-22
Relocation	. 4-22
Module Reassembly	. 4-23
Symbolic Operations	. 4-24
Predefined Symbols	. 4-24
Defining Your Own	. 4-26
Literals	. 4-27
Evaluation of Literals	. 4-27
Nesting Literals	. 4-28
Nonsensical Uses of Literals	. 4-29
Literal Pools	. 4-30
Expressions	. 4-31
External Symbols and Elements	. 4-33
Other Absolute Elements	. 4-34
Utilities	. 4-36
	F 0
Integer Arithmetic	5-2
Representation of Integers	5-2
	5-2
Multi-Word Integer Arithmetic	5-5
binary Coded Decimal	5-/
Aninmetic Machine Instructions	5-/
du registers	5-8

BCD Arithmetic5-8Addition5-9Ten's Complement for BCD5-9Floating Point Summations5-11

Chapter 4: Assembly Language Fundamentals

Normalization	5-12
Rounding	
Floating Point Multiplication	5-13
Floating Point Division	5-15
The FDV Instruction	5-17
Thirteen-Digit Dividends	5-18
Floating-Point Division Example	5-19
Arithmetic Utilities	5-21
Utility: Rel_math	5-21
Utility: Rel to int	5-24
Utility: Rel_to_sho	5-25
Utility: Int to rel	5-26
Utility: Sho_to_rel	5-27

Chapter 6: Communication Between BASIC and Assembly Language

The ICALL Statement	6-1
Corresponding Assembly Language Statements	6-2
Arguments	6-3
"Blind" Parameters	6-6
Getting Information on Arguments	6-7
Utility: Get info	6-8
Retrieving the $Value$ of an Argument	6-12
Utility: Get value	6-12
Utility: Get element	6-14
Utility: Get bytes	6-15
Utility: Get elem bytes	6-16
Changing the Value of an Argument	6-18
Utility: Put value	6-18
Utility: Put_element	6-19
Utility: Put_bytes	6-20
Utility: Put elem bytes	6-22
Using Common	6-23
Busy Bits	6-26
Utility: Busy	6-27
Utility: To_system	6-28

Chapter 7: I/O Handling

Peripheral-Processor Communication	. 7-1
Interfaces	. 7-2
Registers	. 7-2
Select Codes	. 7-3
Status and Control Registers	. 7-4
Status and Flag Lines	. 7-4
Programmed I/O	. 7-6
Interrupt I/O	. 7-7
Priorities	. 7-8
Interrupt Service Routines and Linkage	. 7-9
Breaking Interrupt Service Routine Linkage	. 7-9
Access	7-10
Utility: Isr_access	7-13
Disabling Interrupts	7-15
State Preservation and Restoration	7-17

Indirect Addressing in ISRs	7-18
Enabling the Interface Card	7-19
Interrupt Transfer Example	7-20
Direct Memory Access (DMA)	7-22
DMA Registers	7-22
DMA Transfers	7-23
BASIC Branching on Interrupts	7-27
ON INT Statement	7-27
Signalling	7-28
Prioritizing ON INT Branches	7-30
Environmental Considerations	7-32
Disabling ON INT Branching	7-32
Mass Storage Activities	7-33
Reading from Mass Storage	7-33
Utility: Mm read start	7-35
Utility: Mm read xfer	7-35
Writing to Mass Storage	7-37
Utility: Mm write start	7-37
Utility: Mm write test	7-38
System File Information	7-39
Utility: Get file info	7-40
Utility: Put file info	7-41
Communication with BASIC Data Files	7-42
Interrelation of Record Types	7-43
Crossing Record Boundaries	7-44
File Marks	7-47
Determining Data Types	7-48
Printing	7-49
Utility: Printer_select	7-49
Utility: Print_string	7-50
Utility: Print_no_lf	7-52
The Beep Signal	7-53
Expediting I/O	7-53

Chapter 8: Debugging

Symbolic Debugging	. 8-2
Stepping Through Programs	. 8-3
Individual Instruction Execution	. 8-3
Setting Break Points	. 8-7
Simple Pausing	. 8-7
Transfers	. 8-8
Environments	. 8-9
Data Locations	8-11
IBREAK Everywhere	8-12
Number of Break Points	8-13
Clearing Break Points	8-13
Interrogating Processor Bits	8-14
Dumps	8-14
Value Checking	8-17
Functions	8-17
DECIMAL	8-17
OCTAL	8-18

IADR	8-19 8-19
Interrupting Registers and Flags	8-20
Patching	8-21

Chapter 9: Errors and Error Processing

Types of Errors	9-1
Syntax-Time and Assembly-Time Errors	
Run-Time Errors	
Utility: Error exit	9-3
Run-Time Messages	9-5
Assembly-Time Messages	9-8

Chapter 10: Graphics

Introduction	10-1
The Graphics Raster	
Displaying the Graphics Raster	
The Graphics Memory	
Graphics Operations	10-5
Checking for Graphics Hardware	
Overview	10-5
Operation: Writing Individual Pixels	
Operation: Writing Full Words	10-11
Operation: Clearing Full Words	
Operation: Reading Full Words	10-18
Operation: Cursor Operations	10-22
Comprehensive Example	10-25
Line Drawing	10-27

Appendix A: ASCII Character Set

ASCII Character Codes	A-1
Appendix B: Machine Instructions	
Detailed List	R_1

Detailed	List	D-19
Alpha	abetical List	B-12 B-12
Bit Patter	rns and Timings	B-13
Appendix C:	Pseudo-Instructions	. C-1
Appendix D:	Assembly Language BASIC Language Extensions Formal Syntax	. D-1
Appendix E:	Predefined Assembler Symbols	. E-1
Appendix F:	Utilities	. F-1
Appendix G:	Writing Utilities	. G-1

Appendix H: I/O Sample Programs
Handshake String Output
Handshake String Input
Interrupt String Output
Interrupt String Input
DMA String Output
DMA String Input
HP-IB Output / Input Drivers
Real Time Clock Example
Appendix I: Demonstration Cartridge
Using the TapeI-1
Typing Aids I-1
Appendix J: Error Messages
Mainframe Errors
I/O Device Errors
CSTATUS Element 0 Errors
Assembly-lime ErrorsJ-12
IMAGE Status ErrorsJ-13
Appendix K: Maintenance
Maintenance Agreements
Appendix L: 9835/9845 CompatibilityL-1

Subject Index

Chapter **1** General Information

Welcome to the world of assembly language programming on the System 45¹.

It is the design of the Assembly Execution and Development Read Only Memory (ROM) and the Assembly Execution ROM to help extend the capabilities of your 9845 by giving you greater control and speed through the use of machine instructions, pseudo-instructions, and extensions to the BASIC language.

The assembly language system is provided to you as one of two ROMs which plug into the right ROM drawer of your System 45. The two ROMs are:

- The Assembly Execution and Development ROM used to write and debug assembly language programs on the System 45, and has the complete capability of the Assembly Execution ROM.
- The Assembly Execution ROM provides the capability to load, run, and store assembled routines and modules. Information about this ROM can be found in the Assembly Execution ROM manual.

When installed, the Assembly Execution and Development ROM reserves some read/write memory which cannot be accessed for storage of programs or data. (The Assembly Execution ROM also reserves memory.) The following table describes the actual read/write memory used (in 8-bit bytes) under various configurations:

	Executi	on ROM Only	Execution and Development ROM		
	I/O ROM Present	I/O ROM Not Present	I/O ROM Present	I/O ROM Not Present	
Power on After	270	334	590	654	
first pre-run	708	772	1028	1092	

It is assumed throughout this manual that you are familiar with the basic operation and language of the 9845. It is also assumed that you are reasonably well-acquainted with at least one other assembly language.

1 The assembly language programming capability is not available for the System 45A computer.

Equipment Supplied

The following items are supplied with the Assembly Execution and Development ROM -

Item	Part Number
Assembly Development ROM Manual	09845-91083
Assembly Execution ROM Manual	09845-91082
Assembly Language Quick Reference	09845-91080
BASIC Language Interfacing Concepts	09835-90600
Demonstration Cartridge	11141-10155
Error Label	7120-8771

Structure of the Manual

It is the intent of this manual that you should be able to find between its covers everything you need to know to use the assembly language effectively. However, since assembly language programming is a complex topic, the manual relies a great deal on your past experience. Most of the information is in succinct presentations of a particular topic; it is not the intent to "teach" assembly language programming to someone not familiar with the topic.

The major topics covered are: assembly language program creation, the processor and relevant operating system constructs, assembly language fundamentals, BCD and integer arithmetic, communications with BASIC, I/O handling, debugging tools, errors and error processing, and graphics. Each topic (chapter), has a summary at the beginning detailing the information to be presented therein.

The manual is organized so that each topic can be covered completely within a given chapter. This approach was chosen over the strict syntactical or semantical treatment of the individual statements and instructions. As a consequence, you may find this difficult to use as a "quick reference" for syntax and meaning of the individual commands.

To meet your needs for "quick reference" material, an Assembly Language Quick Reference Manual (HP part number 09845-91080) is provided. In addition, you will find much of the information in this manual condensed and tabulated in the various appendices of this manual.

A recommended method for using the manuals is to start with this one as your basic learning tool. Then you should be able to use the Quick Reference Manual effectively for all future reference.

Purpose of the ROMs

The Assembly Execution and Development ROM is used to write and debug assembly language programs on the System 45, and also has the complete capability of the Assembly Execution ROM. The Assembly Execution ROM provides the capability to load, run, and store assembled routines and modules.

The Assembly Execution ROM is used independently of the Assembly Execution and Development ROM. Because of the overhead required by the debugging features of the Assembly Execution and Development ROM, programs run slightly more rapidly if the Assembly Execution ROM is used rather than the Assembly Execution and Development ROM.

ROM Installation

Before assembly language programming can proceed, the ROMs must be in place. The installation is a simple process.

There are two ROM drawers for the computer: one on the right side of the machine one on the left. The ROM is installed in the right ROM drawer, using these steps:

- Pull the right ROM drawer out.
- Squeeze the sides of the plastic cover and lift to gain access to the drawer connectors.
- Position the ROM over one of the connectors denoted by a **O** or **D** marking.
- Press the ROM onto the ROM drawer connector so that it seats all the way down. The small circular keys on the sides of the ROM drawer should fit into the recesses in the bottom of the plastic ROM case. If they don't, make sure that you have properly oriented the ROM.

Assembly Language System ROM

After inserting the ROM, close the drawer until it is flush with the outside cover of the machine. With this done, you are now ready to begin writing assembly language programs.

Figure 1. Installing the Assembly Execution and Development ROM

Buzzwords

During the course of the discussions in this manual, words and phrases are used which are in common circulation among those who are familiar with assembly languages. While the meanings of most are either well-known, or are deducible from the context, there are a few which may be unfamiliar, or unique to the 9845 assembly language, or are variable from one assembly language to the next and thus need to be defined for this one. They are —

assembled location — a reference to a location in memory which may be specified in one of the following forms —

{symbol} [, {numeric expression}]
{expression} [, {numeric expression}]

where:

{symbol} is an assembly location. It may be a label for a particular machine instruction (in which case the address of the associated instruction is used), or an assembler-defined symbol (in which case the associated absolute address is used), or a symbol defined by an EQU instruction (described in the "Symbolic Operations" section of Chapter 4).

{expression} may be a numeric expression or a string expression. If numeric, a decimal calculation is performed and the result is interpreted as an octal value; if the result is not an octal representation of an integer, an error results. If a string expression is used, the string must be interpretable as either an octal integer constant or a known assembly symbol (see {symbol} above).

{numeric expression} serves as a decimal offset from the given label or constant.

busy bits — each variable located in the BASIC value or common areas has associated with it two bits: a "read" busy bit, and a "write" busy bit. When a "read" busy bit is set, attempts should not be made to perform a function on that variable. A read operation may be performed on a "write-busy" variable. When the busy bit is cleared, the function may be performed on the variable.

byte — a group of 8 binary digits (bits).

conditional assembly — an assignation that certain portions of a module are not to be assembled unless a condition has been set. The portions begin with any of the IFA through IFH, and IFP, pseudo-instructions, and end with the next XIF pseudo-instruction. IFA uses the A-condition as a test, and so on. The conditions are set by the statement assembling the module (IASSEMBLE).

interrupt service routine (ISR) — an assembly language routine intended to perform a certain action, or set of actions, when the computer receives a request from an external device. An "active" ISR is one which is currently enabled for a given device.

mass storage unit specifier (msus) — a single word corresponding to the BASIC language mass storage unit specifier as described in either the 9845 Operating and Programming Manual or the Mass Storage Techniques Manual. An msus has one of the following structures —

for the 9885MS Flexible Disk Drive

An msus can designate the current default as its mass storage device (meaning it will use the device indicated by the last MASS STORAGE IS statement executed). This is designated by having the msus be all ones (i.e., equal to -1).

object module — a section of assembled code stored in the particular region of memory set aside for it. Though the source module for the object code may no longer be resident in memory, when created, the module was delimited by certain pseudo-instructions (NAM and END) and is referenced by the name given to it by the NAM pseudo-instruction.

octal expression — a numeric expression which, when displayed or printed, appears as an octal (base-8) number. Within arithmetic operations, it has a decimal value (base-10). Thus, the value 17_8 will appear as 17 (representing the value 15_{10}), but if arithmetic was performed on it, it would act as if it were 17_{10} . All octal expressions are necessarily integers in the range of 0 to 177777_8 .

 $[{]f 1}$ The device type is the ASCII code for the type minus 100B.

² For tape operations, bits 9-15 are zeros.

pixel — picture element — the smallest unit of resolution on the CRT.

source module — a section of assembly language source code beginning with a NAM pseudo-instruction and ending with the END pseudo-instruction.

word — two bytes; a group of 16 binary digits (bits).

B — octal radix specifier. For example 177777B is 177777 octal. If the trailing "B" is not present, the assembler assumes decimal.

*****— shorthand for current location. For example,

SFC * ! Skip if flag clear to current location.

is equivalent to —

Here: SFC Here ! Skip if flag clear to Here.

Fundamental Syntax

The syntax conventions used in this manual are those used in the Operating and Programming Manual for the 9845.

dot matrix	All syntax items displayed in dot matrix form should be pro- grammed as shown.
[]	Items contained in brackets are optional items.
	Ellipses mean that the previous item may be repeated indefinitely.

In addition, the following convention is employed throughout the Assembly Language series of manuals —

{ } Items contained in braces are syntax items considered as a unit. The names inside are usually descriptive of the function intended for that item. Whenever an item enclosed in braces appears in the text, the notation refers to the same notation within an earlier syntax.

1-8 General Information

Chapter **2** Getting Started

Summary: This chapter contains a general discussion of the assembly language system. A format for the creation of an assembly language program is presented. Topics such as modules, routines, and memory allocation are discussed, along with methods of using them effectively. Also discussed is the storage and retrieval of modules on mass storage.

The thing to remember about the assembly language system is that it has been thoroughly integrated into the operating system of the System 45. Once the ROMs have been installed, you are able immediately to begin programming in assembly language. In addition, you have the capability to load and store your programs on mass storage, to assemble them separately or leave them in source form, to execute them from BASIC and pass BASIC variables to them, and to debug them, including a full pausing and stepping capability.

Developing Routines for Later Use

Most assembly language programs are written with the intent that they will be used many times, not just at the time they are written. It is for just such program development that the full capabilities of the assembly language system come into play. The development comes in several stages. Each stage has its unique requirements and the tools to meet those requirements.

The first stage is creation of the source program. This is achieved by the use of the editing capabilities of the System 45. Additionally, the mass storage capabilities of the computer can be used.

The second stage is the creation of the object (or machine) code. This requires not only an assembly of the source, but the ability to allocate special locations in memory to hold the newly created object code.

The third stage is the validation of the routines as written, commonly known as "debugging". This is enabled by calls from a BASIC driver, followed by application of various debugging tools provided by the assembly system. The capabilities to pause and step a program have been extended to assembly language instructions to assist this process.

The fourth stage is to store away the debugged object code so that it may be used at a later time. A special mass storage statement is provided by the assembly language system. This statement stores object code into a special assembly file.

Finally, the end-user of the routines must be able to retrieve the object code from mass storage as it is needed. He also must be able to access the routines from BASIC programs. Both these needs are met with the Execution ROM, so the capabilities are not only provided, but they are provided independently of the program development capabilities located in the Assembly Execution and Development ROM.

Each of the topics involved in these stages is discussed at length in this manual.

Figure 2 presents a graphical presentation of this overview.

Figure 2. Overview of Assembly Language Routine Development Process

Overview

At this point, there are three fundamental structures to be explained: programs, modules, and routines.

A **program** is the set of source statements from which the object (or machine) code is generated. The assembly source statements are extensions to the BASIC language which is used in the System 45. The statements themselves are stored in the machine as part of the BASIC program in which they reside. At some point, you must take the assembly source statements and assemble them into object code, in order for them to be run. The object code is stored in a specified location in the machine.

A **module** is a subset of the object code. It is a means of separating and identifying parts of the code so that those parts may be used individually (as in mass storage operations). There may be any number of modules present at any one time, limited only by the amount of memory allocated for object code.

A **routine** is a "callable" section of a module. It is analogous to the subprogram in BASIC. It has a named entry point, possibly a parameter list, and a return. A module may contain any number of routines, again limited only by the amount of memory allocated to hold the object code.

In short, the usefulness of each structure is as follows —

- Programs contain assembly language source code.
- Modules contain object code to be loaded from or stored on mass storage.
- Routines are executable sections of object code.

Program Creation

The first matter which is likely to concern you about the assembly language system is how to create an assembly language program.

In general, the process of creating an assembly language subprogram consists of the following steps —

- 1. Enter and store the source code (program).
- 2. Create an area in memory which will ultimately contain the object code.
- 3. Assemble the source code into object code, storing the latter into the area of memory set aside for it.
- 4. Execute the object code (routines) from BASIC "drivers".

Each of these steps will be discussed at length in the pages of this manual, along with a number of not-so-incidental side-topics (such as "debugging" techniques). The purpose of **this** short section is to give you an impression of the general procedure through which an assembly language subprogram is created.

As an example to use to demonstrate the process, suppose the following task has been assigned to you —

Requirement: Write an assembly language subprogram which takes two integer values and multiplies them together as integers. If the result overflows the range of an integer (-32768 to +32767), then the subprogram should return the same error as the system would (i.e., error number 20).

With this task in hand, suppose that you have completed a programming analysis that suggests that the following assembly language source code would fulfill the subprogram's functions -¹

$\begin{array}{c} 10\\ 20\\ 30\\ 50\\ 70\\ 90\\ 100\\ 120\\ 130\\ 140\\ 150\\ 160\\ 200\\ 210\\ 220\\ 230\\ 220\\ 250\\ 250\\ \end{array}$	ISOURCE ISOURCE	Integers: Input1: Input2: Output: Multiply:	NAM EXT BSS SUB INT IDA LDB JSM LDB JSM LDB SBP SZBA JSTA LDB JSM	Multiplication Error_exit,Get 2 ! ! =Integers ! =Input1 ! Get_value ! =Integers+1 ! =Input2 ! Get_value Integers ! Integers ! ! *+2 ! *+3 ! =20 ! Error_exit ! Integers ! =Integers ! =Integers ! =Integers !	<pre>! Beginning of module value,Put_value ! Utilities Storage area for integers created Indicates entry point follows Indicates "integer parameters are passed in the order given by these statements and are given names Actual entry point (name: Multiply); routine begins by fetching actual value of the input parameters from BASIC and storing them where the routine can use them Then it loads the values into the arithmetic accumulator and finally multiplies them A check for overflow is performed by checking the result for anything in the B register when it should be 0 and if it isn't, Error 20 is selected and the routine is aborted If everything is OK, then result stored The product is then returned to the output variable in BASIC listed among the arguments</pre>
250 250	ISOURCE		JSM	Put_value !	among the arguments
260	1SOURCE		RET	1	We're finished, so return to BASIC
270	ISUURCE		END	Multiplication	! End of module

¹ The fact that it is rarely possible to create a running program at this stage should not get in the way of accepting the example. Usually there is debugging involved in later stages.

Now that the routine has been developed, it is necessary to get it into the memory of the machine as a program. This is done by preceding each and every assembly language statement with the keyword ISOURCE and entering it as a program line. The process of entering (with the keyword included) is the same as with any other BASIC statement — so you can use EDIT or AUTO and the (store) key in the same way you normally enter any BASIC statement. (This process is fully described in the "Program Entry" section of this chapter.)

The final result of entering the routine would look something like -

10ISOURCENAM Multiplication !20ISOURCEEXT Error_exit,Get_u30ISOURCEIntegers:BSS 2! S40ISOURCEInput1:INT! I50ISOURCEInput1:INT! I60ISOURCEInput2:INT! I70ISOURCEOutput:INT! I80ISOURCEOutput:INT! I80ISOURCEMultiply:LDA =Integers! A90ISOURCEJSM Get_value!110ISOURCEJSM Get_value!120ISOURCELDB =Input2!130ISOURCEJSM Get_value!140ISOURCEJSM Get_value!150ISOURCELDA Integers ! T!160ISOURCESBP #+2! A170ISOURCESBP #+3!180ISOURCECMB!190ISOURCESIB #+3!200ISOURCEJSM Error_exit!210ISOURCELDA =Integers! I230ISOURCELDA =Integers! I240ISOURCELDA =Integers! T240ISOURCEJSM Put_value!250ISOURCEJSM Put_value!260ISOURCERET 1! W270ISOURCEEND Multiplication !	Beginning of module value,Put_value ! Utilities Storage area for integers created Indicates entry point follows Indicates "integer parameters are passed in the order given by these statements and are given names Actual entry point (name: Multiply); routine begins by fetching actual value of the input parameters from BASIC and storing them where the routine can use them Then it loads the values into the arithmetic accumulator and finally multiplies them A check for overflow is performed by checking the result for anything in the B register when it should be 0 and if it isn't, Error 20 is selected and the routine is aborted If everything is OK, then result stored The product is then returned to the output variable in BASIC listed among the arguments Ve're finished, so return to BASIC I End of module
---	---

This source code demonstrates the three critical items in assembly subprograms. First, a routine has to be part of a module; modules are delimited with the NAM and END pseudo-instructions (see lines 10 and 270 in the source). Second, a routine has to have an entry point; this consists of a SUB pseudo-instruction (see line 40), any parameters (see lines 50 through 70), and a name (the label used on the first machine instruction following the SUB, see line 80). Finally, a routine must be able to return to the BASIC program which called it; this is accomplished with the RET 1 instruction (see line 260).

The NAM, END, and SUB pseudo-instructions are discussed in Chapter 4. The RET 1 instruction is discussed in Chapter 3. The next three steps in program creation are each satisfied with BASIC-executable statements. Creation of a storage area for the object code for the program (which can be estimated at less than 40 words; there is essentially one word of object code per line of source) is accomplished by programming the statement —

280 ICOM 40

(The ICOM statement is fully discussed in the "Setting Aside Memory" section of this chapter.)

This can be followed in the same program by an instruction to assemble the source code into object code —

```
290 IASSEMBLE Multiplication
```

(The IASSEMBLE statement is fully discussed in Chapter 4.)

If the assembly is successful (and it will be in this example), then the routine can be called and used as desired. A typical call looks like —

```
i de la el claim de Leval de Clevard, el Reconstructione en construction de solar des clara de construction d'
Chief
```

```
600 ICALL Multiply(Index, Dimension, Subscript)
```

```
610 Array(Subscript)=Value
```

(The ICALL statement is fully discussed in Chapter 6.)

Thus, the final result could easily be ----

10	ISOURCE		NAM	Multiplication	1 ! Beginning of module
20	ISOURCE		EΧT	Error_exit,Get	_value,Put_value ! Utilities
30	ISOURCE	Integers:	BSS	2 !	Storage area for integers created
40	ISOURCE		SUB	!	Indicates entry point follows
50	ISOURCE	Inputi:	INT	I.	Indicates "integer parameters are
69	ISOURCE	Input2:	INT	Į.	passed in the order given by these
70	ISOURCE	Output:	INT	ļ	statements and are given names
80	ISOURCE	Multiply:	LDA	=Integers !	Actual entry point (name: Multiply);
90	ISOURCE		$\Box DB$	=Inputi !	routine begins by fetching actual
100	ISOURCE		JSM	Get value !	value of the input parameters
110	ISOURCE		LDA	=Integers+1 !	from BASIC and storing them where
120	ISOURCE		LDB	=Input2 !	the routine can use them
130	ISOURCE		JSM	Get_value	
140	ISOURCE		LDA	Integers !	Then it loads the values into the
150	ISOURCE		LDB	Integers+1 !	arithmetic accumulator and
160	ISOURCE		MPY	-	finally multiplies them
170	ISOURCE		SBP	*+2 !	A check for overflow is performed
180	ISOURCE		CMB	ļ	by checking the result for anything
190	ISOURCE		SZB	*+3 !	I in the B register when it should be 0
200	ISOURCE		LDA	=20 !	I and if it isn't, Error 20 is selected
210	ISOURCE		JSM	Error exit !	and the routine is aborted
220	ISOURCE		STĤ	Integers !	! If everything is OK, then result stored

```
230 ISOURCE LDR =Integers ! The product is then returned to the

240 ISOURCE LDB =Output ! output variable in BASIC listed

250 ISOURCE JSM Put_value ! among the arguments

260 ISOURCE RET 1 ! We're finished, so return to BASIC

270 ISOURCE END Multiplication ! End of module

280 ICOM 40

290 IASSEMBLE Multiplication

.

.

600 ICALL Multiply(Index, Dimension, Subscript)

610 Array(Subscript)=Value

.

.
```

It isn't necessary that a program be assembled in every BASIC program which uses it. Object code can be stored on mass storage with a statement like —

300 ISTORE Multiplication; "MULT"

So if the example were instead made to read —

10	ISOURCE		NAM	Multiplication	! Beginning of module
20 00	TOOURCE		DOC	error_exit, Get	Value, Fut value : Utilities
ಾಲ ನಡ	TOURCE	THREAELS.		<u>د</u> :	Storage area for integers created
40 E0	TOURCE	T	OUD TUT	:	Indicates entry point for tows
	10UURUE 10ouroa	INDUCI.		:	indicates "integer parameters are
58	ISUURLE	inputz:	101	:	passed in the order given by these
70 00	ISUUKLE	Uutput:	INI	Ŧ.	statements and are given names
80	ISUUKUE	nuitipiy:	LUH	=integers !	HETUAI ENTRY point (name: Huitipiy);
90	ISOURCE		LDR	=input1 !	routine begins by fetching actual
199	ISUURCE		JSM	Get_value !	value of the input parameters
110	ISOURCE		LDA	=Integers+1 !	from BASIC and storing them where
120	ISUURCE		LDB	=Input2 !	the routine can use them
136	ISUURCE		JSM	Let_value	
140	ISOURCE		LDA	Integers !	Then it loads the values into the
150	ISOURCE		LDB	Integers+i !	arithmetic accumulator and
160	ISOURCE		MPY	!	finally multiplies them
170	ISOURCE		SBP	*+2 !	A check for overflow is performed
180	ISOURCE		CMB	!	by checking the result for anything
190	ISOURCE		SZB	*+3 į	in the B register when it should be 0
200	ISOURCE		LDA	=20 !	and if it isn't, Error 20 is selected
210	ISOURCE		JSM	Error_exit !	and the routine is aborted
220	ISOURCE		STA	Integers !	If everything is OK, then result stored
230	ISOURCE		LDA	=Integers !	The product is then returned to the
240	ISOURCE		LDB	=Output !	output variable in BASIC listed
250	ISOURCE		JSM	Put value !	among the arguments
260	ISOURCE		RET	1 !	We're finished, so return to BASIC
270	ISOURCE		END	Multiplication	! End of module
280	ICOM 40				
290	IASSEMBLE	E Multiplica	atior	ì	
300	ISTORE MO	altiplicatio	on;"Þ	ULT"	
310	END				

the object code is consequently stored into the file "MULT".

Later programs can retrieve the object code for use, such as in the following program —

(Both ISTORE and ILOAD are discussed in the "Retrieving and Storing Modules" section of this chapter.)

Program Entry

The assembly language source statement is an **extension** to the BASIC language used in the System 45. This means that each assembly language statement is entered using a "keyword" — in this case ISOURCE — as a message to the operating system that the line is an assembly language statement.

By looking at an example, you can see what is meant —

```
LET A=10
10
   LET B=20
20
30
    PRINT A,B
             NAM Example
    ISOURCE
40
              NOP
    ISQURCE
50
60
   ISOURCE
              END Example
70
    END
```

Lines 10, 20, 30, and 70, are all recognizable as BASIC statements. The keywords they use — LET, PRINT, and END — direct that certain actions take place. Lines 40, 50, and 60, are all assembly language statements; this was indicated by the ISOURCE keyword used in these lines.

Entering assembly language statements, by using the ISOURCE keyword, is thereby the same process as entering other types of BASIC statements. You may use all of the system editing features that you are used to using in the creation of BASIC programs — EDIT, AUTO, etc. You store each line with the (store) key, as you would any other BASIC line. See Appendix I for Demo Tape Special Function Keys which are useful for program entry.

Also, assembly lines do not have to be in any special place in the BASIC program. The previous example could be re-arranged as follows —

```
10
     LET A=10
20
     ISOURCE
                NAM Example
39
     LET B=20
40
     ISOURCE
                NOP
     PRINT A,B
50
60
     ISOURCE
                END Example
70
     END
```

Thus, you are free to enter your assembly statements anywhere in your BASIC program. But, you may ask, what is the effect of spreading them out like this? The answer is, simply, none. When the time comes to use them, assembly statements and BASIC statements are separated by the operating system and treated differently.

When the BASIC program is run, **only** the BASIC statements are executed. The ISOURCE statements are **ignored**, and, as you will be shown in Chapter 4, when the assembly language lines are assembled, the BASIC statements are ignored. A way to consider it is that there are two programs in one — BASIC's and the assembler's. So you can envision the example above as being this way —

You should note, then, that ISOURCE statements are not "executable" in the usual BASIC sense. Their location in the program does not indicate the place where they will be executed. Assembly instructions are not executed until a routine is "called"; this is discussed in detail in Chapter 4.

Now that it has been said that the two types of statements can be thoroughly intermixed, it should also be said that the practice is **not recommended**. As a good programming practice — i.e., for readability and to preserve the self-documenting features of BASIC — it is recommended that assembly statements be collected together and placed in one spot in the program.

The first example is a recommended practice over the second, even though the second is permissible.

Other Extensions

In addition to the ISOURCE statement, there are a number of other BASIC language extensions provided by the assembly language system. Unlike the ISOURCE statement, they are "executable", and their appearances are part of the BASIC lines (as distinguished from the assembler's). Where they appear is where the action associated with them is taken. This is identical to the way the other BASIC statements perform. The statements involved are —

IASSEMBLE IBREAK ICALL ICHANGE ICOM IDELETE IDUMP ILOAD INORMAL IPAUSE OFF IPAUSE ON ISTORE OFF INT ON INT

Also provided are four numeric functions —

DECIMAL IADR IMEM OCTAL

The functions can be used wherever numeric functions in general may be used.

All of these statements (except ICOM and ISOURCE) and the functions are available to you as live keyboard operations as well as programmable statements. A full discussion of each of the statements and functions can be found within this manual.

Modules and Routines

There are three basic activities associated with using assembled modules and routines. First, there is the need to retrieve them from wherever they may be stored (including providing a place for them to be kept while they are resident in the memory of the machine). Second, there is the actual execution of the routines. And third, there is the occasional requirement to store, or re-store a module on mass storage (including, perhaps, the need to free the space in memory it previously occupied).

Names

Routines, modules, and files all have names. The names given them may or may not bear some significance to one another; that depends upon you and the way that you name things.

Conventions for the naming of files and methods of general file manipulation can be found in the Operating and Programming Manual and in the Mass Storage Techniques Manual. The conventions are not any different than for files in general.

Names for modules are assigned with the creation of the source. In the assembly language source code, you have a NAM pseudo-instruction. This serves two purposes — to designate the beginning of the module and to assign the module a name. All of the assembly source statements which follow the NAM are in that module until an END pseudo-instruction is encountered. Thus, recalling the previous example —

20	ISOURCE	NAM	Example
40	ISOURCE	NOP	
50	ISOURCE	END	Example

All of the ISOURCE statements between lines 20 and 60 (in this case, just the one) form the module called "Example". The formal syntaxes of these pseudo-instructions are —

NAM {module name} END {module name}

{module name} is a symbol which becomes the name of the module. It follows the same rules as names in BASIC: up to fifteen characters; starts with a capital letter; followed by only non-capital letters, numbers, or the underscore character.

The {module name} in the END statement must correspond to the {module name} of the NAM statement or an assembly error ("EN") results.

You may have any number of modules in your source code. Each module begins with a NAM and ends with an END pseudo-instruction as above.

Figure 3. Overview of Routines and Modules

Survey of Modules and Routines

To sketch the functional relationships of modules and routines, please refer to Figure 3 above.

Modules are stored in files and may be retrieved and placed in memory using the "ILOAD" command. When the ILOAD command is executed, all of the modules in the file are loaded into the memory. Note that many files can be loaded, with many modules each, with all of the modules able to remain resident in the memory.

Alternatively, modules which are already in memory may be stored into a single file using the "ISTORE" command. When the ISTORE command is executed, the designated modules are stored into an "option ROM" (OPRM) type of file (on tape cartridges) or an "Assembly" (ASMB) type of file (on non-tape mass storage media). After storage, the modules are still in memory. They may be removed (i.e., the space they occupy in memory is "freed") by using the "IDELETE" command.

The area of memory where the modules are stored is called the "ICOM region". It is a particular contiguous area which must be large enough to hold all of the object code you wish to have resident in the memory at any one time.

Each module contains one or more routines. Your access to the routines is through the ICALL statement, which is very similar to the CALL statement used for BASIC subprograms. The ICALL statement may have arguments which you need to "pass" (send down) to the routine itself. What these arguments, if any, may be, and what meaning they hold depends upon what you have in mind for that routine. There are corresponding items in the assembly source code; these are discussed in Chapter 6.

Setting Aside Memory

As indicated by Figure 3, you cannot load a module until there is an ICOM region into which to load it. Neither can you assemble your source code into object code unless there is an ICOM region into which the object code can go.

The statement to use to create an ICOM region is —

ICOM {size}

where {size} is a non-negative integer constant indicating the number of words to be used to form the ICOM region. The maximum size is 32 718 words.

The ICOM statement is a "declaration"; that is, it is not executable, but rather is used when assignment of memory takes place just before a program is run. This is similar to a DIM or COM statement. As with a DIM or COM statement, the statement cannot be executed from the keyboard.

Once created, the ICOM region remains in existence until it is explicitly destroyed. But it is possible to change the size by using another ICOM statement.

The order in which modules appear in the ICOM region is determined by the order in which they are loaded using the ILOAD statement discussed in the next section or are created by the IASSEMBLE statement discussed in Chapter 4.

In most cases, the space which is freed by reducing the size of the ICOM region is returned to your available memory space. Sometimes, however, it is not returned, this being caused by the status of the common area allocated in memory, or by other option ROMs. The space is returned whenever —

- There is no common area assigned (with the COM statement); and,
- The requirements of another option ROM do not interfere.

There may be any number of ICOM statements in a program. The current size of the ICOM region is determined by the last one which appears in the program when the (w) key is pressed (or the command RUN is executed).

For example, suppose you have a program with the following statements in it -

```
20 ICOM 984
30 DIM A$[100]
300 ICOM 492
...
610 ICOM 2000
...
900 END
```

Upon pressing $(\mathbb{R}^{\mathbb{N}})$, the ICOM region would be 2 000 words long. This is because line 610 is the final ICOM appearance.

The region continues to exist even if you load in another program which contains no ICOM statements. All ICOM statements must appear in the **main** program, not in any subprogram.

ICOM statements in a program must appear before any COM statement. This is to insure that the ICOM region will be allocated before the common is allocated.

There are three ways to eliminate the ICOM region —

- Execute SCRATCH A
- Execute ICOM 0 in a program.
- Turn off the machine.

After any of these actions, the region is no longer in existence. If there are any modules in the region, they disappear as well. If any of those modules contain an active interrupt service routine, you get an error (number 193) if you try to eliminate the region using ICOM 0. If any of your routines provided to other users contain active ISRs, your documentation for the routine should warn the users of that fact so they can avoid this error.

Two methods are recommended for deleting all previous modules. The methods differ only in the times at which the deletion operation is performed.

The first method involves the following sequence of statements:

100 ICOM 0 110 ICOM 2000

which assures that an ICOM region of 2000 words is in existence at program execution, and that the ICOM region is completely clear of any previously loaded modules. The deletion operation takes place every time the (w) key is pressed, before program execution begins.

The second method involves the use of the IDELETE statement in the following sequence:

```
100 ICOM 2000
110 IDELETE ALL
```

The IDELETE statement clears the ICOM region when executed, and is executed only when it is encountered in a program. Therefore, the deletion of the ICOM region can be avoided by starting or continuing execution at a point beyond the IDELETE statement.

When you are altering the size of the ICOM region, the new size specified becomes the size of the region from the moment of running the program. If the size being requested is larger than that which already exists, the additional space needed is requested from the operating system. If the space is available, everything proceeds uneventfully. If the space is not available, an error (number 2) results. To make the space available, one of the following procedures must be followed —

- Execute SCRATCH A.
- Execute SCRATCH C.

Each procedure has its separate effects, and the course selected should be determined by your circumstances at the time. Consult the Operating and Programming Manual for details on the other effects of each of these commands.

If the size being requested is smaller, modules are deleted if they no longer fit into the smaller region. For example, suppose the following situation existed —

Upon compilation of the new ICOM statement, the modules E, D, and C are deleted. None of those modules may contain an active interrupt service routine or an error results (number 193).

Retrieving and Storing Modules

Modules are stored in files on mass storage media as Option ROM (OPRM) or Assembly (ASMB) types of files. On tape media, they are stored in the OPRM type and on non-tape media they are stored in the ASMB type. In this case, the two file types are equivalent.¹

To retrieve a module, or modules, from mass storage, identify the file name of the file containing the module. Combine the name with the mass storage unit specifier² of the device to form a file specifier. Then execute the statement —

ILOAD {file specifier}

This retrieves **all** the modules in the file and stores them in the ICOM region.

If there are modules already loaded in the ICOM region, these additional modules are added to them, (**not** written over them). If an existing module in the ICOM area has the same name as one of the modules being loaded, the existing module is deleted and the loaded version takes its place.

¹ OPRM-type files may be created by other option ROMs for their particular purposes. In those cases, the contents are entirely different.

² Not to be confused with the single-word msus described in Chapter 1. This form is used by BASIC's Mass Storage statements (see the Operating and Programming Manual or Mass Storage Techniques Manual).

If you do not want all the modules in a given file, you can purge the unwanted ones from the ICOM region using the IDELETE statement —

IDELETE {module name} [,{module name} [,...]]

For example, if you had loaded a file which had the routines Larry, Pat, Ed, and Piper, and you want to keep only Larry, then you execute the statements —

```
IDELETE Pat
IDELETE Ed
IDELETE Piper
```

or, more simply -

IDELETE Pat, Ed, Piper

Deletions do not have to be done immediately after loading. They can be done at any time. After the IDELETE has been executed, the portion of the ICOM region which the module previously occupied is made available for use in loading other modules. The space is NOT returned to the generally available memory; that action is done with an ICOM statement with a smaller size.

Whenever a module is deleted, other modules are moved, as necessary, to take up any slack space in the ICOM region. This is done so that all of the free space in the region is at the end. If a module is being deleted, or being moved as above, and it contains an active interrupt service routine, an error results (number 193).

No error results when an IDELETE statement is used to delete a non-existent module.

If you desire at any time to delete all of the modules in your ICOM region, you can do so by executing either of the following statements —

IDELETE ALL IDELETE

IDELETE ALL is the most efficient method of deleting all modules.

Sometimes you may desire to move modules in the opposite direction — from memory to mass storage. This is done with the ISTORE statement. The statement has the form —

ISTURE {module name} [, {module name} [, ...]]; {file specifier}

A {module name} must be the name of a module currently stored in the ICOM region. Upon execution of the statement, a file with the name and mass storage unit specifier given in the {file specifier} is created and the modules are stored in the file, in the order listed.

The file created by an ISTORE statement is an OPRM or ASMB type, as appropriate to the medium involved. It can then be used in ILOAD statements at a later time.

In the case that you might want to store all of the routines currently in the ICOM region into a particular file, you can use either of the following statements —

ISTORE ALL; {file specifier} ISTORE; {file specifier}

NOTE

Executing a courred (STOP) command during a module load, store or delete operation may clear the entire ICOM region.
Chapter **3** The Processor and the Operating System

Summary: This chapter contains the necessary information on the structure of the processor and the operating system. Topics covered are: machine architecture, memory organization, data structures, and the machine instructions.

Before proceeding to the actual assembly language, it is useful to discuss the processor and operating system with which you are dealing. This chapter discusses various concepts related to the processor, the machine instruction set, the operating system organization, and data structures.

Machine Architecture

The System 45 has two "hybrid" processors. For the purposes of assembly language, the two processors function together as a single unit. The hybrid consists of a Binary Processor Chip (BPC), an Input-Output Controller (IOC), and an Extended Math Chip (EMC). Each has its own set of instructions, but all three work in conjunction. It is not necessary in using the assembly system that you know on which chip a particular instruction resides. In the presentation of the instruction set — and for all practical purposes while working with the computer — no distinction need be made between the processors, and the entire instruction set may be considered as being resident on a single processor.

In addition to the processors, the hybrid also contains an I/O bus which is controlled by certain instructions. The I/O bus has an "address" part and a "data" part. Some of the instructions (it is indicated which ones) cause an "input cycle" to occur on the bus, which means that an address is given to the address part of the bus, and the data which appears on the data part is considered to be input. Other instructions cause an "output cycle", which means that the data is to be output to the given "address".

Figure 4 is a graphical representation of this architecture.

Figure 4. Generalized Machine Architecture

Registers

The memory locations in the machine are addressed from 0 to 177777B. There are 32 memory locations which are addressed as if they were part of the computer read/write memory, but actually are part of the processor. These locations are called "internal registers". Each internal register has a specific location and has been given a name. As you will learn in "Symbolic Operations" (Chapter 4), these names have been reserved and cannot be redefined while using the assembly system.

The internal registers are —

Name	Address (Octal)	Description
A	0	Arithmetic accumulator
Ar2	20-23	BCD arithmetic accumulator
В	1	Arithmetic accumulator
С	16	Stack pointer
Сь	13	Block bit for byte pointer in C (use most significant bit only, read only)
D	17	Stack pointer
Db	13	Block bit for byte pointer in D (use second most significant bit only, read only)
Dmac	15	DMA count register
Dmama	14	DMA memory address register
Dmapa	13	DMA peripheral address register (use lower 4 bits only)
Р	2	Program counter
Pa	11	Peripheral address register (use lower 4 bits only)
R	3	Return stack pointer
R4	4	
R5	5	L(O (Input (Output) registers
R6	6	(input/ Output) registers
R7	7	J
Se	24	Shift-extend register (use lower 4 bits only)

Figure 5 is a map of where these registers lie. In addition to these registers, the addresses 25B through 37B are also registers, but are not (except for a few isolated cases) used in assembly programming.

Figure 5. Map of Lowest Memory

All of these registers can be referenced either by their names or by their actual addresses. The two methods are equivalent, though reference by name is recommended as a programming practice.

In addition to the above internal registers, there are some "external" registers which reside in the computer read / write memory. They are —

Name	Address (octal)	Description
Ar1	177770-177773	BCD arithmetic accumulator
Base_page	177645-177655	Base_page temporary area (9 words)
Oper_1	177656	Arithmetic utility operand address registers
Oper_2	177657	
Result	177660	Arithmetic utility result address register
Utltemps	177661-177665	Utility temporary storage area
Utlcount	177666	Used to create user utilities

General Memory Organization

In order to find your way around the machine effectively, you should be aware of where things are stored in memory. Occasionally these areas can become considerations in your programming.

First in the memory come the internal registers. They were discussed above.

Next in the memory comes the ICOM area. The starting location is dependent upon system needs, but never lower than 41B. The size of the ICOM region depends upon the size designated by the ICOM statement. Its maximum ending address is 77756B. This is the reason for the limitation on the size in the ICOM statement.

Next in the memory comes the area reserved for the system to store programs and the like. This area extends from the end of the ICOM region to 177644B.

This area is followed by the registers in the read / write memory (see the list in the previous section) with a number of interspersed system-reserved areas.

Figure 6 is a graphical presentation of this organization.

*in octal representation

Figure 6. Memory Map

The immediately addressable memory consists of 65 536 words, which is all that can be addressed by a 16-bit word (the basic unit of memory in the system). Note that the memory is divided into two blocks — an "upper" block and a "lower" one. This distinction between blocks becomes significant when addressing individual bytes in memory.

Protected Memory

All of the reserved areas mentioned above are known as "protected memory". To give some measure of security to the operating system, it is advised that no attempt should be made to write or branch into these areas.

Access to certain portions of protected memory (e.g., BASIC variables) is provided by utilities within the assembly system. The user should access those areas only through the utilities.

Some measure of protection against access into these areas is provided during debugging. See the chapter entitled "Debugging" for a discussion of how this is done and the extent of the protection provided.

Base and Current Page

A concept that occasionally arises during discussion of the instructions and the assembler is that of the "page", the "base" and "current" pages in particular.

A page is 1 024 words of memory.

The "base" page is a wrap-around page. It consists of the upper half of the last page in the machine (addresses 177000B to 17777B) and the lower half of the zero page (addresses 0 to 777B). This is the same as a page which runs from -512 to +511, effectively "wrapping around" address 0.

During execution, the program counter (P) points to the address of the current instruction. The "current" page is those 1 024 words of memory centered upon the current instruction. Therefore, the current page is a continually changing page, extending from (P)-512 to (P)+511.

Nesting of Subroutine Calls

Assembly language subroutines are called using the JSM instruction and exited using the RET instruction, both of which are described later in this chapter. Subroutine calls may be nested, just as they are in BASIC.

The JSM and RET instructions automatically adjust the R register (return stack pointer) so that the machine doesn't "lose its place" in the midst of subroutine calls and returns. The R register contains an address within an area of memory called the R stack, which is 40 words in size.

You are not free to use all 40 words in the R stack, however. The operating system and ICALL require 5 words. Interrupt service routines (refer to Chapter 7 for more information on ISRs) require 10 words. Break points (refer to Chapter 8 for more information on the IBREAK statement) require 5 words.

Thus, 20 words are left for the nesting of user JSMs. Calling system utilities also requires some of these 20 words. Appendix F, Utilities, contains the information necessary to determine the number of words needed by the various utilities.

For example, the following program segment illustrates the use of the R stack space -

10		L	lser R	stack	entries	(after	execution)
20							
30	ICALL Nest						
40	=						
50	a						
60	ISOURCE	SUB					
70	ISOURCE Nest:	NOP			Ø		
80	ISOURCE	JSM Nest	. 1		1		
99	ISOURCE	RET 1			0		
100	=						
110							
120	ISOURCE Nest1:	NOP			1		
130	ISOURCE	JSM To s	ystem		2 to a r	nax. of	7[1+(5+1)]
140	ISOURCE	NOP			1		
150	ISOURCE	RET 1			3		

The system does not check for R stack overflow. Violation of the R stack limits could result in a machine lock up.

Data Structures

It is common to access BASIC variables from an assembly language routine then retrieve the contents, manipulate them, or alter them. To be effective at it, you should be aware of how BASIC stores a value in each of its data types.

There are four data types in BASIC: full-precision numeric values, short-precision numeric values, integers, and strings. Each is stored in its own unique structure.

Integers

The simplest of the types is the integer. (Variables are declared as integers using BASIC's INTEGER statement.) An integer consists of a single word. Values between -32768 and +32767 can be stored in the word. Negative values are stored in two's complement form. An integer looks like —

Strings

Strings are the next simplest structure. A string is a succession of bytes, one character to a byte. A string may be of variable length. To be able to designate the length, the string is preceded by a word which contains the number of bytes in the string.

If a string has an odd number of bytes in it, then the left-over byte in the word containing the last character of the string is wasted. A typical string of length n looks like —

[n(length)					
	byte 1	byte 2				
[byte 3	byte 4				
	byte 5	byte 6				
	-]			
Ĩ	-		T			
ſ	byte n-2	byte n-1	1			
[byte n	-				

Full-Precision Numbers

Full-precision numeric values are stored as 12-digit, BCD (Binary Coded Decimal), floating point numbers. They occupy four words each. The first word contains the sign of the exponent, a two's-complement 10-bit exponent, and the sign of the mantissa. The other three words contain the twelve mantissa digits, 4 to each word. The words look like this —

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Bit
Exp Sign	Exponent							1	0	0	0	0	0	Man Sign		
(mo] ost sigr	D1 bst significant digit) D2						C) 3			C	04			
	[D5 D6			D7 D8)8								
D9				D	10			D	11			C (least si) ₁₂ gnifica	nt)		

The exponent is always adjusted during arithmetic routines so that there is an implied decimal point following D_1 . Thus, every mantissa value looks like —

 $D_1 \;.\; D_2 \; D_3 \; D_4 \; D_5 \; D_6 \; D_7 \; D_8 \; D_9 \; D_{10} \; D_{11} \; D_{12}$

Short-Precision Numbers

Short-precision numeric values are stored as 6-digit, BCD floating point numbers. Unlike full-precision, they occupy two words each instead of four. The first word contains a 7-bit exponent, the sign of the mantissa and the two most significant mantissa digits. The second word contains the remaining four mantissa digits. The words look like this —

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Bit
Exp Sign		Γ	Expo	nent			Man Sign		[T D1	I		۱····	I D2	I	
	D)3			D	4			I	D5			[D6		

As with full-precision, the exponent is stored in two's complement form and the implied decimal point follows D_1 .

If you are unfamiliar with BCD arithmetic or need a refresher in floating point operations, it is suggested that you refer to Chapter 5.

Machine Instructions

The machine instruction set underlying the assembly language system consists of 92 instructions, divided into eleven groups. The groups are —

Load/Store	Operations placing values into registers or memory.
Integer Math	Operations involving integer arithmetic.
Branch	Operations altering the execution sequence unconditionally.
Test/Branch	Operations altering the execution sequence, dependent upon some condition.
Test/Alter/Branch	Operations altering the execution sequence and a value, de- pendent upon some condition.
Shift/Rotate	Operations performing re-arrangments of the bits in the A or B register.
Logical	Operations performing logical functions on the A or B regis- ters.
Stack	Operations managing stacks.
BCD Math	Operations involving Binary Coded Decimal arithmetic.
I/O	Operations specifically involving $I \neq O$ operations.
Miscellaneous	Some unclassifiable operations.

Operands

Most instructions require operands. These operands have general forms which they may assume.

Many instructions contain an operand which is the address on which the function is to be performed. This {location} may be a constant (octal or decimal) or it may be a symbol. It also may be an expression containing any allowable combination of constants and symbols. For a full discussion of allowable expressions and symbols, and the "types" they are allowed to assume, consult "Symbolic Operations" in Chapter 4.

For example, note the operands in the following -

LDA 10B STA Save JMP Store + 3 AND = 177000B

A {location} may be either "relocatable" or "absolute" (see "Relocation" and "Symbolic Operations" in Chapter 4 for a full treatment of these types). If a relocatable {location} is used, the assembler generates machine code which uses "current page" addressing, and thus the {location} must be within -512 words and +511 words of the instruction. If an absolute {location} is used, the assembler generates machine code which uses "base page" addressing (meaning it takes the address as an offset from location 0).

An {address} is a {location} the same as above, except the intended location must be relocatable and within -32 and +31 words of the current instructions.

A {register} may be specified either through its absolute address or by its pre-defined symbol. The permissible registers are those with addresses between 0 and 7, inclusive. These are registers A, B, P, R, R4, R5, R6, and R7.

A number of instructions are followed by a {value}, which is a numeric expression usually in the range of 1 through 16. This {value} frequently indicates the number of bits involved in the operation. For example —

SAR 8

right-shifts the A register by 8 bits.

NOTE

Specifying the R4, R5, R6, or R7 registers (absolute locations 4 through 7) in an instruction causes an "I/O bus cycle" to occur. Consult Chapter 7, "I/O Handling", for the proper use of these registers.

Indirect Addressing

Some instructions may also employ "indirect addressing". This is indicated by including the optional indicator $_{\pi}$ I, such as —

```
LDA 10B,I
STA Save,I
JMP Store+3,I
```

There is only one level of indirect addressing provided with the processor. Of course, if further levels are desired, it is possible to implement them on your own. Some flagging scheme could be adopted, for example. One approach could be to adopt the policy that the sign bit (bit 15) of a word would indicate further indirection, with the remaining bits being the value. In such an approach, a load accumulator instruction would become two instructions —

```
10 ISOURCE LDA A,I ! Use current contents as pointer
20 ISOURCE SAM *-1 ! If bit 15 set, indirection
```

Load/Store Group

This group of instructions allows transfers of data to take place. With the instructions below you can move information to and from the arithmetic accumulators (the A and B registers). You can also transfer the contents of one contiguous set of words in memory to another contiguous set.

Instruction	Description
LIA {location} [, I]	Loads register A with the contents of the specified location.
LIE {location} [, I]	Loads register B with the contents of the specified location.
STA {location} [, I]	Stores the contents of the A register into the specified location.
STE {location} [, I]	Stores the contents of the B register into the specified location.
CLR {value}	Clears (zeroes out) the specified number of words, beginning at the location specified by the A register. {value} must be an integer between 1 and 16.
XFR {value}	Transfers the specified number of words, from one location to another. The starting address of the location being transferred from must be stored in the A register. The starting address of the location being transferred to must be stored in the B register. {value} must be an integer between 1 and 16.

Integer Math Group

This group of instructions allows you to perform fundamental arithmetic operations on the contents of the arithmetic accumulators (the A and B registers).¹

Instruction	Description
ADA {location} [, I]	Adds the contents of the specified location to the contents of the A register, leaving the result in A. If a carry occurs, the Extend flag is set in the processor. If an overflow occurs (a carry from bits 14 or 15, but not both), the Overflow flag is set in the processor.
ADE {location} [, I]	Adds the contents of the specified location to the contents of the B register, leaving the result in B. If a carry occurs, the Extend flag is set in the processor. If an overflow occurs (a carry from bits 14 or 15, but not both), the Overflow flag is set in the processor.
TCA	Performs a two's complement of the A register (i.e., one's complement, incremented by 1). If a carry occurs, the Extend flag in the processor is set. If an overflow occurs (a carry from bits 14 or 15, but not both), the Overflow flag in the processor is set.
TCB	Performs a two's complement of the B register (i.e., one's complement, incremented by 1). If a carry occurs, the Extend flag in the processor is set. If an overflow occurs (a carry from bits 14 or 15, but not both), the Overflow flag in the processor is set.
ΜΡΥ	Binary multiply. Uses Booth's Algorithm. The values of the A and B registers are multiplied together with the product placed into A and B. The A register contains the least significant bits and the B register contains the most significant bits and the sign. (An anomaly in the processor results in an improper result whenever B equals -32768 .)

 ${f 1}$ A discussion of integer arithmetic techniques is found in the "Arithmetic" chapter of this manual.

Branch Group

This group of instructions allows you to alter the execution sequence unconditionally. It includes the "jumps" and "returns" from subroutines.

Instruction	Description
JMP {location} [, I]	Unconditionally branches to the specified location.
JSM {location} [, I]	Jumps to a subroutine. The value of the R register is incremented and the current value of the P register (i.e., the location of the JSM instruction itself) is stored into the address pointed to by the R register. Execution then proceeds to the specified location.
RET {value}	Returns from a subroutine. {value} is added to the contents of the address pointed to by the R register. The results are stored in the P register (i.e., specifying the next location for execution) and the R register is decremented. This is, in effect, a return from a JSM instruction to the instruction which is {value} instructions from the JSM itself. The "usual" return is RET 1. {value} must be an integer between -32 and 31.

Test/Branch Group

Similar to the Branch group, this group of instructions allows you to alter the execution sequence, but conditionally upon the result of some test. Most instructions involve tests on all or part of one of the arithmetic accumulators (the A and B registers), but a couple allow a test on a location in memory which you can specify, and a couple test the current activity of the CRT.

Instruction	Description				
CPA {location} [, I]	Compares the contents of the A register with the contents of the specified location. Execution skips over the next word if the contents are not equal.				
CPB {location} [, I]	Compares the contents of the B register with the contents of the specified location. Execution skips over the next word if the contents are unequal.				
SZA {address}	Skips to {address} if register A is 0.				
SZB {address}	Skips to {address} if register B is 0.				
RZA {address}	Skips to {address} if register A is not 0.				
RZB {address}	Skips to {address} if register B is not 0.				
SIA {address}	Skips to {address} if register A is 0, then increments A regardless. The Extend and Overflow flags in the processor are not affected by the incrementing action.				
SIB {address}	Skips to {address} if register B is 0, then increments B regardless. The Extend and Overflow flags in the processor are not affected by the incrementing action.				
RIA {address}	Skips to {address} if register A is not 0, then increments A regardless. The Extend and Overflow flags in the processor are not affected by the incrementing action.				
RIB {address}	Skips to {address} if register B is not 0, then increments B regardless. The Extend and Overflow flags in the processor are not affected by the incrementing action.				
SHC {address}	Skips to {address} if CRT is scanning its raster.				
SHS {address}	Skips to {address} if CRT is doing vertical retrace.				

Test/Alter/Branch Group

Similar to the Test/Branch group, this group of instructions allows you to conditionally alter the execution sequence. In addition to tests, you can also alter the contents of the item being tested (such as set or clear a bit, or increment or decrement a register). Certain bits in the processor (Extend and Overflow) can be tested with some of these instructions, as well as registers and memory locations.

Some instructions may be followed by either of the following -

ŧ.

,s ,c

indicating that the bit being tested by the instruction will either be set (S) or cleared (C) after the test has been made.

Instruction	Description
ISZ {location} [, I]	Increment the contents of the specified location and skip execution of the next word if the result is 0.
DSZ {location} [, I]	Decrement the contents of the specified location and skip execution of the next word if the result is 0.
SAP {address} [, S] SAP {address} [, C]	Skips to {address} if the A register is positive or zero (bit 15 is 0).
SBP {address} [, 8] SBP {address} [, 0]	Skips to {address} if the B register is positive or zero (bit 15 is 0).
SAM {address} [, S] SAM {address} [, C]	Skips to {address} if the A register is negative (bit 15 is 1).
SBM {address} [, S] SBM {address} [, C]	Skips to {address} if the B register is negative (bit 15 is 1).
SLA {address} [,S] SLA {address} [,C]	Skips to {address} if the least significant bit of the A register is 0.
SLB {address} [, S] SLB {address} [, C]	Skips to {address} if the least significant bit of the B register is 0.

Instruction	Description	
RLA {address} [, S] RLA {address} [, C]	Skips to {address} if the least significant bit of the A register is not 0.	
RLB {address} [, S] RLB {address} [, C]	Skips to {address} if the least significant bit of the B register is not 0.	
SOS {address} [, S] SOS {address} [, C]	Skips to {address} if the Overflow flag in the processor is set.	
SOC {address} [, S] SOC {address} [, C]	Skips to {address} if the Overflow flag in the processor is cleared.	
SES {address} [, S] SES {address} [, C]	Skips to {address} if the Extend flag in the processor is set.	
SEC {address} [, S] SEC {address} [, C]	Skips to {address} if the Extend flag in the processor is cleared.	

NOTE

The Extend and Overflow flags can be cleared only by using the SEC, SES, SOC, and SOS instructions with the $_{\rm F}{\rm C}$ option.

Shift/Rotate Group

This group of instructions performs re-arrangements of bits in the arithmetic accumulators (the A and B registers). Circular and non-circular shifts are available.

Instruction	Description
SAR {value}	Shifts the A register right the indicated number of bits with all vacated bit positions becoming 0.
SBR {value}	Shifts the B register right the indicated number of bits with all vacated bit positions becoming 0.
SAL {value}	Shifts the A register left the indicated number of bits with all vacated bit positions becoming 0.
SBL {value}	Shifts the B register left the indicated number of bits with all vacated bit positions becoming 0.
AAR {value}	Shifts the A register right the indicated number of bits with the sign bit filling all vacated bit positions. (Arithmetic right)
ABR {value}	Shifts the B register right the indicated number of bits with the sign bit filling all vacated bit positions. (Arithmetic right)
RAR {value}	Rotates the A register right the indicated number of bits. Bit 0 rotates into bit 15 each time. (Right circular)
RBR {value}	Rotates the B register right the indicated number of bits. Bit 0 rotates into bit 15 each time. (Right circular)
RAL {value}	Rotates the A register left the indicated number of bits. Bit 15 rotates into bit 0 each time. (Left circular)
RBL {value}	Rotates the B register left the indicated number of bits. Bit 15 rotates into bit 0 each time. (Left circular)

Logical Group

This group of instructions performs logical (Boolean) operations upon the contents of an arithmetic accumulator (on A or B register). Logical "and" and "or" operations are available, along with complementing and clearing operations.

Instruction	Description
AND {address} [, I]	Logical "and" operation. The contents of the A register are compared bit by bit, with the contents of the specified location. For each bit-comparison a 1 results if both bits are 1's, a 0 results otherwise. The 16-bit result is left in A.
IOR {address} [, I]	Logical ''inclusive or'' operation. The contents of the A register are compared, bit by bit, with the contents of the specified location. For each bit-comparison, a 0 results if both bits are 0's, a 1 otherwise. The 16-bit result is left in A.
CMA	Performs a one's complement of the A register (i.e., bit-by-bit inversion of all 16 bits).
CMB	Performs a one's complement of the B register (i.e., bit-by-bit inversion of all 16 bits).
CLA	Clears register A. This instruction is identical to SAR 16.
CLB	Clears register B. This instruction is identical to SBR 16.

Stack Group

The Stack group of instructions provides you with operations for managing stacks. The instructions withdraw items from (also called "pop" or "pull") or push items onto a stack pointed to by either the C or D register. The items are pushed from or withdrawn into a specified register (other than C or D) and the C or D register is incremented or decremented appropriately.

Pushing instructions increment or decrement the C or D register prior to doing the pushing. Withdrawing instructions increment or decrement the C or D register after doing the withdrawal. Consequently, the pointer is always left pointing to the "top" of the stack after the operation.

Decrementing the C or D register is indicated by including , \mathbb{I} after the operand. For "withdrawing" instructions, D is the default. For example, the following are equivalent —

W4C А,D ₩4C А

Incrementing is specified by including , I after the operand. This is also the default for "pushing" instructions if neither I nor D is included. For example, the following are equivalent —

PWC A,I PWC A

The instructions for pushing and withdrawing bytes require the ability to address bytes rather than words. This essentially multiplies the memory map by two, requiring an additional address bit. When using the byte oriented stack instructions, the Cb and Db registers provide an additional high order bit to the C and D registers, respectively. A typical set up for pushing items onto a stack is as follows:

ISOURCE	LDA=Buffer	ļ	Get buffer address.
ISOURCE	SAL 1	ł	Shift it left.
ISOURCE	ADA =−1	ļ	Compensate for pre-increment.
ISOURCE	STA C	ļ	Put it into C register.
ISOURCE	CBL	ļ	Clear Cb register.
ISOURCE	*		
ISOURCE	п		
ISOURCE	PBC A,I	ļ	Push byte unto the stack.

ISOURCE LDA =Buffer 1 Get buffer address. ISOURCE SAL 1 | Shift it left. ISOURCE STA C ! Put it into the C register. ISOURCE ! Clear Cb register. CBL WBC R4,I ! Withdraw byte and output it. ISOURCE STA R7 ! Trigger output handshake. ISOURCE ISOURCE ISOURCE =

A typical set up for popping items off the stack is as follows:

Note the use of the CBL instruction in both cases.

One use of the push and withdraw byte instructions is for input and output operations involving strings. Manipulating byte stacks allows byte packing of character data. The first word of the string storage space can be cleared initially and incremented as each character comes in. At the end of the transfer, the first word of the string contains the string length, making the string BASIC compatible. Keep in mind that the push byte instruction increments first, then pushes. The lower bit of the C register determines whether the upper byte or the lower byte is addressed in the manner illustrated here -

C register least significant bit	Byte address
0	Upper
1	Lower

The character string "HELLO" appears in a byte-oriented stack upon input as illustrated here –

• • •	• • •
(strin	g length)
Н	E
L	L
0	• • •
	• • •

NOTE

When using the byte instructions (PBC, PBD, WBC, WBD), the address pointed to by the C or D register must not have an absolute address less than 40B.

Instruction	Description	
PWC {register} , D PWC {register} [, I]	Pushes contents of {register} onto the stack pointed to by the C register.	
PWD {register} , D PWD {register} [, I]	Pushes contents of {register} onto the stack pointed to by the D register.	
PBC {register{ , D PBC {register} [, I]	Pushes the lower byte (right half) of {register} onto the stack pointed to by the Cb and C registers. If the least significant bit of C is a 1, the byte is placed in the lower byte of the word in the stack; if it is a 0, it is pushed into the upper byte.	
PBD {register} , D PBD {register} [, I]	Pushes the lower byte (right half) of {register} onto the stack pointed to by the Db and D registers. If the least significant bit of D is a 1, the byte is placed in the lower byte of the word in the stack; if it is a 0, it is pushed into the upper byte.	
ЫЫС {register} [,]] ЫЫС {register}, I	Withdraws a word from the stack pointed to by the C register and stores it into {register}.	
베비미 {register} [, 미] 베비미 {register} , I	Withdraws a word from the stack pointed to by the D register and stores it into {register}.	
WBC {register} [, 1] WBC {register} , 1	Withdraws a byte from the stack pointed to by the Cb and C registers and places it into the lower byte (right half) of {register}. If the least significant bit of C is a 1, the byte is withdrawn from the lower byte of the word in the stack; if it is a 0, it will be withdrawn from the upper byte.	
WBD {register} [, D] WBD {register} , I	Withdraws a byte from a stack pointed to by the Db and D registers and places it into the lower byte (right half) of {register}. If the least significant bit of D is a 1, the byte is withdrawn from the lower byte of the word in the stack; if it is a 0, it is withdrawn from the upper byte.	
CBL	Clears the Cb register (indicates lower block of memory).	
CBU	Sets the Cb register (indicates upper block of memory).	
DBL	Clears the Db register (indicates lower block of memory).	
DBU	Sets the Db register (indicates upper block of memory).	

BCD Math Group

This group of instructions provides you with BCD arithmetic operations using the Ar1 and Ar2 registers.

In general, the instructions associate the Ar1 register with "X" and the Ar2 register with "Y" in the mnemonic for the instruction. Both registers contain values which are considered BCD full-precision values when operated upon by instructions in this group.

The mantissas referred to below consist of 12 BCD digits. All the shifting operations manipulate the digits as units (i.e., 1 digit — or 4 bits — at a time). In addition, shifting operations involve an additional digit in the A register (located in the lower 4 bits, numbered 0 through 3).

All arithmetic is performed in BCD. The values being operated upon are assumed to be normalized BCD floating-point (full-precision) values. Signs and exponents are left strictly alone. There is a flag in the processor, called Decimal Carry, which is set when an overflow occurs during a BCD operation.

Instruction	Description
MRX	Mantissa right shift on Ar1. The number of digits to be shifted is specified in the lower 4 bits $(0-3)$ of the B register. The shift is accomplished in three stages —
	1. The digit in bits (0-3) of the A register is right-shifted into the first digit of the mantissa, with the twelfth digit being lost. This is the first shift.
	2. The mantissa digits are then right-shifted for the remaining number of digits specified. The twelfth digit, except for the last shift, is lost on each shift and the vacated digits are zero-filled.
	3. Finally, the last right-shift takes place with the twelfth digit shifting into the A register. The Decimal Carry flag in the processor is cleared along with the upper 12 bits of the A register (4-15).

A full discussion of BCD arithmetic techniques can be found in Chapter 5.

Instruction	Description
MRY	Mantissa right-shift on Ar2. The number of digits to be shifted is specified in the lower four bits (0-3) of the B register. The shift is accomplished in three stages —
	1. The digit in bits (0-3) of the A register is right-shifted into the first digit of the mantissa, with the twelfth digit being lost. This is the first shift.
	 The mantissa digits are then right-shifted for the remaining number of digits specified. The twelfth digit, except for the last shift, is lost on each shift, and the vacated digits are zero-filled.
	3. Finally, the last right-shift takes place, with the twelfth digit shifting into the A register. The Decimal Carry flag in the processor is cleared along with the upper 12 bits of the A register (4-15).
MLY	Mantissa left-shift on Ar2 for one digit. This is a circular shift, with the digit in bits (0-3) of the A register forming a thir- teenth digit. The non-digit part of the A register is cleared (i.e., bits 4-15), and the Decimal Carry flag in the processor is cleared.
DRS	Mantissa right-shift on Ar1 for one digit. The twelfth digit is shifted into the A register (bits 0-3). The non-digit part of the A register is cleared (i.e., bits 4-15), and the Decimal Carry flag in the processor is cleared. The first digit in the mantissa is set to 0.
NRM	Normalizes the Ar2 mantissa. The mantissa digits are left- shifted until the first digit of the mantissa is non-zero, or until twelve shifts have taken place, whichever comes first. If the original first digit is already non-zero, no shifts occur. The number of shifts required is stored as the first four bits (0-3) of the B register. If twelve shifts were required, the Decimal Carry flag in the processor is set, otherwise it is cleared.
СМХ	Ten's complement of Ar1. The mantissa of Ar1 is replaced with its ten's complement and Decimal Carry is cleared.

Instruction	Description
СМҮ	Ten's complement of Ar2. The mantissa of Ar2 is replaced with its ten's complement and Decimal Carry is cleared.
FXA	Fixed-point addition. The mantissas of Ar1 and Ar2 are added together, and the result is placed into Ar2. Decimal Carry is added to the twelfth digit. After the addition, Decimal Carry is set if an overflow occurred, otherwise Decimal Carry is cleared.
ММА	Mantissa word addition. The contents of the B register are added to the ninth through twelfth digits of the mantissa of Ar2. Decimal Carry is added to the twelfth digit; if an over- flow occurs, Decimal Carry is set, otherwise it is cleared.
FMΡ	Fast Multiply. Performs the multiplication by repeated addi- tions. The mantissa of Ar1 is added to the mantissa of Ar2 a specified number of times. The number of times is specified in the lower 4 bits (0-3) of the B register. The result accumulates in Ar2. If intermediate overflows occur, the number of times they occur appears in the lower 4 bits of the A register after the operation is complete. The upper 12 bits of the A register are cleared along with Decimal Carry.
FDV	Fast divide. The mantissas of Ar1 and Ar2 are added together until the first decimal overflow occurs. The result accumulates into Ar2. The number of additions without overflow is placed into the lower 4 digits of the B register (0-3). The remainder of the B register is cleared, as is the Decimal Carry flag in the processor.
CDC	Clears the Decimal Carry flag in the processor.
SDS {address}	Skips to {address} if Decimal Carry is set. Decimal Carry is a flag in the processor which may be set as the result of certain BCD arithmetic operations (see Chapter 5 for details).
SDC {address}	Skip to {address} if Decimal Carry is cleared. Decimal Carry is a flag in the processor which may be set as the result of certain BCD arithmetic operations (see Chapter 5 for details).

I/O Group

The I/O group of instructions provides you with some of the operations necessary to accessing peripheral devices through the I/O bus. In addition to the instructions contained here, there are instructions in other groups which can have I/O effects (e.g., LDA, STA...).

The techniques useful to the implementation of I/O operations using the instructions in this group and the other groups are discussed in Chapter 7.

Instruction	Description
SFS {address}	Skips to {address} if the Flag line is set (ready). The Flag line is associated with a peripheral on the current select code (see Chapter 7 for details).
SFC {address}	Skips to {address} if the Flag line is clear (busy). The Flag line is associated with a peripheral on the current select code (see Chapter 7 for details).
SSS {address}	Skips to {address} if the Status line is set (ready). The Status line is associated with a peripheral on the current select code (see Chapter 7 for details).
SSC {address}	Skips to {address} if the Status line is clear (busy). The Status flag is associated with a peripheral on the current select code (see Chapter 7 for details).
EIR	Enables the interrupt system. Cancels the DIR instruction.
DIR	Disables the interrupt system. Cancels the EIR instruction.
SDO	Sets DMA outwards. Directs that DMA operations read from memory, write to the peripheral.
SDI	Sets DMA inwards. Directs that DMA operations read from the peripheral, write to memory.
DMA	Enables the DMA mode. Cancels the DDR instruction.
DDR	Disables Data Request. Cancels the DMA instruction.

Miscellaneous

The following instructions cannot be classified into any of the other groups.

Instruction	Description
NOP	Null operation. This is exactly equivalent to LDA A.
EXE {value} [, I]	The contents of any register can be treated as the current instruction and executed. {value} is a numeric expression in the range 0 through 31, indicating the register to be used. The register is left unchanged, unless the instruction code causes it to be altered. The next instruction to be executed is the one in the word following the EXE, unless the code in the executed register causes a branch.

$\textbf{3-28} \quad \text{The Processor and the Operating System}$

Chapter **4** Assembly Language Fundamentals

Summary: This chapter discusses some of the basic statements and syntaxes used throughout the assembly language system. Program entry, assembling, symbolic operations, module creation, program and variable storage, and utilities are the topics covered.

When writing assembly language programs there are a number of things with which you will be involved constantly. In the beginning, questions arise on how to use the language: How do you enter the source code? What kind of symbolic addressing is there? How do you create and distinguish modules? How do you create the object code and where is it stored? What utilities are available and how do you use them?

The answers to those questions form the underlying capabilities through which you write your applications. These are things which nearly every assembly language program uses. As essential as they are, however, none are difficult to master.

Program Entry

You were introduced early in Chapter 2 to the integrated nature of the assembly language with its host language, BASIC. You know from that chapter how assembly language statements can be intermingled with BASIC statements — that you can employ the usual editing features on the assembly statements. However, there is more to the ISOURCE statement than just its integrated nature with BASIC.

As stated in Chapter 2, all assembly language statements are designated with the keyword "ISOURCE". The keyword is followed by {assembly language source}. So the syntax of the entry line is -

{line number} [{BASIC label} :] ISOURCE {assembly language source}

Here's a simple example of this from Chapter 2 -

40 ISOURCE NAM Example 50 ISOURCE NOP 60 ISOURCE END Example

The {line number} and {BASIC label} are the same as you are used to in BASIC. However, it should be noted that the statement is not an executable one, so the BASIC label is only useful for documentation and EDIT purposes.

To BASIC, the ISOURCE statement appears as a comment. If you were to change the above so that it read —

40	Example:	ISOURCE	NAM	Example
50		ISOURCE	NOP	
60		ISOURCE	END	Example
79		END		

and then executed a statement "GOTO Example", the result would be to simply execute the END statement in line 70. That is because, to BASIC, the lines appear the same as —

40	Example:	REM
50		REM
60		REM
70		END

or —

40	Example:	i
50		ļ
60		ļ
70		END

The BASIC label on an ISOURCE line finds its most useful characteristic in being able to be referenced, as any other BASIC label on any other type of line may be, with an EDIT command. Thus, if you were to execute —

EDIT Example

on the above, you would be working in the editor, starting with line 40. This feature will become useful during program development as will be pointed out shortly.

Assembly Language Source

You may have recognized the assembly language instruction and pseudo-instructions to the right of ISOURCE in the examples above. This is where your instructions and pseudo-instructions appear. However, the source is a little more versatile than that. In general, {assembly language source} has the syntax —

```
[ {label} : ] {action} [ ! {comment} ]
```

Or, the action may be omitted and only a comment appears —

[{label} :] ! {comment}

A label is always optional in the source, but either an {action} or a {comment} must be present in every source line.

Actions

An {action} in assembly language source is —

- A machine instruction, with any operand it may require. These were discussed at some length in Chapter 3.
- A pseudo-instruction, with any operand it may require. These are discussed under the topics to which they relate.

The actions contained in the above example were —

```
NAM Example
NOP
END Example
```

Labels

The {label} in assembly language source is part of the symbolic addressing capability of the assembler. This {label} is used by the **assembler** only. Neither the operating system nor BASIC is aware of its existence.

The label follows the same form and rules as do labels in BASIC -

- Up to 15 characters long.
- First character must be a capital letter (θ -2).
- Only the non-capital letters (a-z), the numerals (2 to 3), or the underscore (_) may be used following the first character.

No two labels are allowed to be the same in a given **module**. If your source consists of two or more modules, then the same label may be defined more than once, provided each definition is in a different module. (Distinguishing between modules is discussed in "Creating Modules", later in this chapter.) So you may not code —

Rumpelstiltskin: LDA B

in one place in the module and later in the same module code —

Rumpelstiltskin: LDB A

There are other restrictions as well on the choosing of labels. For instance, there are symbols already defined by the assembler and you are not allowed to choose one of them as a label. This is discussed at length in "Symbolic Operations" in this chapter.

Both a BASIC label **and** an assembly language source label can appear in the same line, and they are distinct from one another. BASIC does not know about the source label and the assembly language system does not know about the BASIC label.

Since neither BASIC nor the operating system is aware of the existence of source labels, actions ouside the assembler cannot reference these labels. Thus, if you had the source line —

```
100 ISOURCE Rumpelstiltskin: JMP Bail
```

You can say neither GOTO Rumpelstiltskin nor EDIT Rumpelstiltskin. Neither of these can find "Rumpelstiltskin", since only the assembler can know it is there. This can be a nuisance in some instances during program development. Many programmers use labels almost exclusively and rarely consider the line number when using the editor to change a line. For instance, in the above, they would not be used to saying, "EDIT 100" to get at the line in order to change it. They are more used to saying, "EDIT Rumpelstiltskin". A way for them to do it would be to change the line to —

100 Rumpelstiltskin: ISOURCE Rumpelstiltskin: JMP Bail

Note that, as the example demonstrates, the name can be the same in the BASIC label as in the source. This takes advantage of the fact that BASIC and the assembler are unaware of each other's labels. The names do not have to be the same.

Comments

As with any BASIC line, a comment may be included by simply adding an exclamation point (!) and typing your comment after it. Since you have a total of 160 characters for a line, your comment may fill up the remainder of the 160 characters left after the rest of the statement has been provided (line number, ISOURCE keyword, label, action).

Syntaxing the Source

When you are creating your source program, you are either entering it from the keyboard or retrieving it from mass storage (LINK or GET). In either case, as the statement is entered (the stored is pressed or a record is read from mass storage), the operating system takes note of any use of the keyword ISOURCE. When a line has this keyword, the operating system turns over the remainder of the line following the keyword to the assembly system. The assembly system, then and there, checks the syntax of the source.

By checking the syntax at the time of entry of the statement, a considerable amount of processing time is saved when the time comes to assemble the source into object code. In addition, it gives you, as the programmer, immediate feedback when a syntactical error occurs. You do not have to wait until assembly time just to find out that you misspelled NOP. At syntax time, the assembler takes care of capitalization, lower case, and spacing for the source. It's quite similar to the SPACE DEPENDENT mode of entry for BASIC statements (that mode is not required to get the effect with the assembly system). It follows the following rules in syntaxing the source —

- Everything between the ISOURCE and the colon (if present) is the label. Its initial character is capitalized and the remaining letters are converted to lower-case. This is regardless of whether they were entered in that form.
- The label, if present, is left-justified to the second column following the keyword ISOURCE.
- The first three letters following the colon (or just the first three letters, if there is no label) are considered the machine instruction or pseudo-instruction and are capitalized. The instruction will remain in the same column as it was entered, and, if possible, a space is added after it.
- Everything after the instruction or pseudo-instruction is considered the operand for the instruction, up until the exclamation point before the comment (if any). Any label (symbol) in the operand will have its initial character capitalized and the remaining letters converted to lower case automatically.
- Comments are unchanged and remain in the same columns as entered, whenever possible.

In short, simply enter the statement in your most comfortable fashion and the assembly system automatically assures that what you enter is in the proper form (though it still can't guarantee that you have entered the right instruction for what you mean to do).

100 ISOURCE rUMPELSTILTSKIN:jMpbail

It becomes ----

100 ISOURCE Rumpelstiltskin: JMP Bail

Creating Modules

When you were introduced in Chapter 2 to the concept of a module, it was said that a module is given a name through the NAM pseudo-instruction.

So, when you enter a source line which has the following form —

NAM {module name}

you are assigning a name to a module, and you are also delimiting the beginning of the module. By the inclusion of this statement, all source lines which follow are part of the module with the name designated in this source line, that is, all lines until the END pseudo-instruction is encountered in the source. It has the form —

END {module name}

Its {module name} must be the same as in the NAM pseudo-instruction.

A {module name} follows the same rules for naming as do labels.

It is by the use of these two instructions that modules are created. The source lines which appear between them comprise a single module, and the name assigned to the module is the one with which the module is referenced (with the ILOAD and ISTORE statement for example).

When it comes time to assemble the source into object code, the assembler treats the source lines in a module as a unit.

In actuality, therefore, there are **two** modules — a source module and an object module. When you are assembling a module, the name you use refers to the source module and creates the object module. Later, other statements, such as ISTORE and ILOAD, refer solely to the object module.

Storage

Modules

When assembly converts a source module into an object module, there must be a place to keep the object module. That is the function of the ICOM region.

You were introduced to the ICOM region in Chapter 2 in connection with the loading and storing of modules. It is also used to hold modules which are created through assembly. Once a module has been assembled, the object code appears in the ICOM region just as if you had loaded it from mass storage.

Variables

Within a module, you may want to set aside one or more words of memory for your use. For example, you might need a location to store a variable, or keep a counter, or save a register. This is done with the BSS pseudo-instruction —

BSS {number}

where {number} is the number of words to be set aside. {number} can be any absolute expression, provided the expression evaluates to a positive integer (see "Symbolic Operations", later in this chapter).

This kind of storage is part of the object code and is set aside "in-line". This means that wherever it appears in the source, the storage appears in the same relative location in the object module.

For example, suppose a module contained the following source lines —

	=			
	=			
	=			
220	ISOURCE	Save a:	BSS	1
230	ISOURCE	Save 4:	BSS	2*2
240	ISOURCE	Rennas:	BSS	Larry
250	ISOURCE	Again:	LIA	Rennas
Then, at some appropriate spot in the object module (relative to the other instructions in the module) there would be the following **contiguous** locations —

Save_a 1 word Save_4 4 words Renras some number of words equal to ''the absolute symbol, Larry''¹ Again 1 word

The locations at labels Save_a, Save_4, and Renras are merely reserved by the BSS pseudoinstructions, and their contents are not initialized to any particular value.

It is possible to accidentally execute these locations when the routine is run if you're not careful. Ordinarily, you should place these locations somewhere safely out of the potential execution sequence, since they are used just for storage. Some applications, though, use self-generating code, and a BSS is a way to set aside locations for it.

Data Generators

A "data generator" is very much like a BSS operation. The function, as with the BSS, is to set aside words of memory at a particular location in the object code. But in addition, the words are to be initialized to some value. The initialization occurs at the same time the words are set aside (i.e., at assemble-time).

This is done using the DAT pseudo-instruction which has the form —

DRT {expression} [, {expression} [, ...]]

An {expression} may be any absolute or relocatable expression. The various forms that an expression may take are discussed in "Symbolic Operations" later in this chapter.

As an example, suppose you want the value 100 (a decimal integer) to be located at location "X" in the object module. You can achieve this by identifying the location in the source code (ultimately the object code) where you want the value to be, then placing this instruction at that point —

X: DAT 100

Upon encountering this pseudo-instruction, the assembler generates the words necessary to store the value (in this case, only 1 word is necessary). It then stores the value (100) into the word(s) and proceeds with the remaining assembly. Thus, the location of the words is dependent upon the instruction's relative position in the source module, the same as with any machine instruction.

The number of data words generated for each {expression} is dependent upon the result of the {expression} —

Result	Words
Full-precision	4
Short-precision	2
Decimal integer	1
Octal integer	1
Address ¹	1
Literal	1
String	actual length (2 characters per word)

If more than one {expression} is present, the necessary data words are generated in the order in which they appear in the list. As an example, if you were to include the instructions —

ISOURCE	Integers:	DAT	24,24B
ISOURCE	Real:	DAL	2.4E1,-2.4E5
ISOURCE	Short:	DAT	2.4E68,4.5678
ISOURCE	String:	DAT	"HELLO"
ISOURCE	B_string:	DΑΤ	5,"HELLO"
ISOURCE	Character:	ΙĤΤ	íC.
ISOURCE	First_word:	DAT	Buffer
ISOURCE	Buffer:	BSS	10
ISOURCE	Last_word:	DAL	÷−i
ISOURCE	Addr_of int:	DΑΤ	=3
ISOURCE	Addr_of_3_int:	DAL	=3,4,5

Forty words would be set aside and initialized to the appropriate values -

000041:	000030	→ decimal integer 24
800042:	000024	→ octal integer 24
000043:	000100	
000044:	022000	full-precision 2.4 E1
000045:	000000	
000046:	000000)
000047:	000501	
000050:	022000	full-precision -24 E5
000051:	000000	
000052:	000000)
000053:	006044	short-precision 2.4 F6
000054:	000000	
000055:	000105	short-precision 4 567
000056:	063400	
000057:	044105	
000060:	046114	'HELLO" string
000061:	047400)
000062:	000005	
000063:	044105	BASIC "HELLO" string1: first value (5) is observe or count
000064:	046114	BASIC HELEO stillig", hist value (5) is character count
000065:	047400)
999966:	000103	→ "C" character
000067:	000070	 Address of first word in ten word buffer
000070:	004000	
000071:	167356	
000072:	100040	
000073:	002000	
000074:	167312	Ten word buffer (values are meaningless)
000075:	100040	(in the second of the second s
000076:	002000	
900077:	167246	
000100:	100020	
000101:	004000	/
000102:	000101	 Address of last word in ten word buffer
000103:	000105	 Address of word containing integer value 3
000104:	000106	→ Address of first word of an area containing three integers
000105:	000003	→ Integer value 3
000106:	000003	 Integer value 3, first word in a group of three words
000107:	000004	→ Integer value 4
UU0110:	000095	→ Integer value 5

¹ BASIC strings must be generated for communication between BASIC and assembly language as brought about through the use of the Put_value (Chapter 6) and the Print_string (Chapter 7) utilities.

Repeating Instructions

To help relieve the tedium of writing the same instruction many times (which many applications occasionally require), a "repeat" pseudo-instruction is provided —

REP {expression}

The pseudo-instruction causes the immediately following machine instruction to be duplicated in the object code {expression} number of times.

For example, suppose you are writing a real-time application where timing was critical, and to make things work correctly you need 10 NOPs at a certain location. Ordinarily you would type —

ISOURCE	NOP
ISOURCE	NOP

But all of this could be replaced with ----

10	ISOURCE	REP 10
20	ISOURCE	NOP

and the same effect would be achieved.

Some pseudo-instructions may not be replicated. They are -

COM
END
EQU
EXT
NAM
REP

Assembling

Object code is created by "assembling" the source code. Again, modules are a key factor. The assembly directive is aimed at modules, using the module name as a delimiter in the source code so the assembler can tell which ISOURCE statements to assemble as part of the module. Of course this same name is also used to store the object code using mass storage.

The IASSEMBLE statement is the vehicle for assembling modules. It has the forms -

```
IASSEMBLE {module} [ , {module} [ , ...]][ ; {option} [ , {option} [ , ...]]]
IASSEMBLE [ ALL ] [ ; {option} [ , {option} [ , ...]]]
```

Each {module} indicated is assembled, in the order given by the statement. Only those modules are assembled; any others which may be present in the source at the time are ignored. If the ALL version of the statement is used (with or without the optional word ALL), every module present in the source is assembled.

An {option} falls into one of two categories: listing directives and conditions (for conditional assembly). These are discussed separately below. The options, and their categories, are —

EJECT	
LINES	Listing directives
LIST	
XREF	
A	
В	
C	
D	Conditions
E	
F	
G	
Н	
IOF	
ION	Control of indirection

References to multiple-line functions cannot appear in the IASSEMBLE statement. If an IAS-SEMBLE ALL statement is executed and no source code is present, no error message is given.

Effect of BASIC Environments

To assemble a module, all of its source lines (between the NAM and END pseudo-instructions) must lie within the same BASIC "environment". That is, the NAM and END for a module must lie within the main program or within the same subprogram or multi-line function. For modules where this is not true, an error ("EN" assemble-time error) occurs.

Source Listing Control

Listings of the source code in a module can be obtained during an assembly. These listings contain the line numbers, instructions, and comments from the source lines along with the associated machine addresses and contents of that address.

Here is part of a typical listing -

430	01034	002645	LDA	=Array typ	e
440	01035	006645	LDB	=Array	
450	01036	142645	JSM	Get info	!Info on the array
460	01037	003005	LDA	Array_type	!Look at the type
470	01040	012644	CPA	=16	<pre>!Is it a file number?</pre>
480	01041	066003	JMP	*+3	!Must be a file number
490	01042	022643	ADA	=-12	!Is it an array data
500	01043	172003	SAP	*+3	! type (ie, >12)?
ł	. ►	A		A .	1
line	abs	olute cont	ents	actions	comments
numbe	rs addr	esses			

The addresses and contents are displayed in octal representation.

Listings are not automatic. They are obtained in one of two ways -

• By using the LIST option in the IASSEMBLE statement. This directs that a listing is desired for all the modules in the statement. The statement would look like the following examples —

```
IASSEMBLE Store;LIST
IASSEMBLE Retrieve,Work;LIST
```

• By using the LST pseudo-instruction in the source code itself.

Modules can be just partially listed, if desired. This kind of control is achieved by using the LST and UNL pseudo-instructions within the source code, placing the LST before any instructions which you want listed, and placing the UNL before any instructions you do not want listed. For example, if the following source lines are assembled —

420	ISOURCE	LST		
430	ISOURCE	LDA	=Array type	
440	ISOURCE	$\Box DB$	=Array	
450	ISOURCE	JSM	Get info	!Info on the array
460	ISOURCE	LDA	Array type	!Look at the type
470	ISOURCE	CPA	=16	!Is it a file number?
480	ISOURCE	JMP	*+3	!Must be a file number
490	ISOURCE	ADA	=-12	!Is it an array data
500	ISOURCE	SAP	**3	! type (ie, >12)?
510	ISOURCE	UML		

only lines 430 through 500 would be listed.

The primary purpose of this capability is to allow as much modularity in the listings as you can get in source code. To implement this purpose, a "listing counter" is used.

Whenever an LST instruction is encountered during an assembly, the listing counter is incremented. Whenever an UNL instruction is encountered during an assembly, the listing counter is decremented. Source lines are listed whenever the counter is greater than 0. Whenever it is equal to 0 or negative, then no lines are listed.

The counter is set to 0 upon execution of the IASSEMBLE statement. This is why there is no automatic listing. However, if the LIST option is included in the IASSEMBLE statement, then the counter is initialized to 1. This is why that option creates a listing. Thus, you could defeat a LIST option by placing an UNL instruction at the beginning of a module. This initialization process occurs for each module assembled, so if you have more than one module indicated in your IASSEMBLE statement, the counter is set at the beginning of the assembly for each.

This capability sees its greatest usefulness during debugging stages and while working with independently written sections of source code. For example, a number of people could be writing different sections of code, each containing their own LST and UNL instructions. These instructions could then be overridden when they were combined into a single module by preceding the sections with an LST instruction (to get a listing) or an UNL (to suppress the listings).

Page Format

Each and every assembly listing page has the following format —

- The word "PAGE" and the current page number of the listing occurs on the first line starting at column 49.
- A heading occurs on the second line, left-justified. The heading always includes -

MODULE: {name}

where {name} is the name of the module currently being assembled. Additional heading information can be specified for this line (see "Page Headings" below).

- A blank line follows the heading.
- The text follows the blank line. The number of lines printed depends upon the LINES option in the IASSEMBLE statement, the number of source lines encountered, and the SKP pseudo-instructions which may be encountered while assembling the source. LINES and SKP are described in the following sections.
- If the EJECT option is **not** included in the IASSEMBLE statement, then a minimum of three blank lines (carriage return/line feed pairs) will be printed at the end of a page. The number may exceed three if the number of source lines printed on a page is less than the standard length for a listing page.

Page Length

The length of the text in each page of your assembly listings can be specified through the IASSEMBLE statement using the LINES option, which has the form —

```
LINES {numeric expression}
```

This option directs that any listing of the modules being assembled have pages of the length indicated by the absolute value of {numeric expression}. If {numeric expression} evaluates to a positive number, the listing for each module is printed on a separate page with the indicated number of lines. If {numeric expression} evaluates to a negative number, the pagination at the end of each module listing is suppressed. An error is generated if {numeric expression} evaluates to zero.

It is not necessary that this value be the page length of the printing device being used; however, this is frequently the value selected. If the option is omitted, a value of 60 is used, producing an overall page size of 66 lines.

Printer control characters, such as line-feed and form-feed, in a comment can affect the actual printing length of the pages independent of the length you specify. Thus, a page length of 60 could result in actually 61 lines if one of the comments in your ISOURCE statements contains a line-feed character.

End-of-Page Control

At any time during the assembly of a module, you can force the listing to continue printing at the top of the next page by including —

SKP

at the desired spot in the module. If a listing is being generated when this pseudo-instruction is encountered in the source code, the printer is sent to top-of-form. This is physically done in one of two ways —

- If the EJECT option was included in the IASSEMBLE statement which is assembling the module, then a form-feed character (ASCII character 14B), is sent to the printer. This feature is intended for perforated paper.
- If the EJECT option was not included, sufficient CR/LF pairs (ASCII characters 15B and 12B) are sent to the printer to fill out the standard length of a listing page (plus three at the end of the page). Thus, if you already have printed 10 lines on a page, and an SKP instruction was encountered, the assembler sends (length-10 + 3) CR/LF pairs. This feature is intended for non-perforated paper.

The SKP instruction is not required to cause pagination to occur when the standard length of a listing page is exceeded. Thus, if you are working with a default length of 60 for your standard length, then each 60 lines from the last page break forces a new page break.

Page Headings

The heading for each listing page is -

MODULE: {name}

where {name} is the name of the module currently being assembled. This heading can have additional information added to it through the HED pseudo-instruction. This instruction has the form —

HED {comment}

When this instruction is encountered, and a listing is being generated, pagination immediately occurs, the same as with the SKP instruction (see above). On the new page, and on all pages after it, the indicated {comment} appears after {name} in the heading, replacing any previous information specified by an earlier HED instruction.

You can change the heading any number of times in a listing. This is frequently done in order to generate documentation by sections, even though all sections may reside in a single module.

The heading appears on the page exactly the same as in {comment}, including the positioning of blanks, control characters, etc.

Blank Line Generation

If occasional blank lines are desired in a listing (usually to set off sections of code, or comments), they may be generated by including —

SPC {number}

at the desired spot in the source statements. {number} designates the number of blank lines desired. {number} can be any absolute expression, provided the expression evaluates to a positive integer (see "Symbolic Operations" later in this chapter).

Non-Listable Pseudo-Instructions

The following pseudo-instructions do not appear in a listing -

LST UNL SKP HED SPC

Conditional Assembly

For reasons of complexity or length, it is occasionally desirable to selectively assemble only parts of a module. This is particularly true during the debugging stage of longer, complex assembly programs. "Conditional assembly" is the ability to designate certain portions of a module for assembly, depending upon conditions established by the IASSEMBLE statement.

You may recall from the description of the IASSEMBLE statement earlier, there are options called "conditions" available with the statement. These conditions —

are used to designate which conditions are "set" during the assembly. By including one or more of these conditions, all conditional assembly statements predicated upon that condition are assembled. For example, if the following statement is executed —

IASSEMBLE Retrieve: A

then any occurrence of conditional assemblies based on "A" are assembled. Also, any conditional assemblies based on B through H are not assembled, since those conditions were not included in the options for the IASSEMBLE statement.

4-20 Assembly Language Fundamentals

The conditional assembly sections are delimited by pseudo-instructions. A conditional section begins with one of the following —

IFA IFB IFC IFD IFE IFE IFG

and it concludes with —

XIF

In addition to the lettered conditions, a numeric condition can be tested by using an IFP pseudo-instruction. It has the form —

IFP {absolute expression}

The condition is considered true if {absolute expression} evaluates as a positive value. It should be noted that this is an assembly-time construct, meaning that the variables contained in the expression are evaluated at the time of assembly.

The IFP instruction performs in the same manner as the IFA through IFH instructions. It also terminates with the XIF instruction.

The conditional assembly is based upon a flag. At the beginning of the assembly for a module the flag is set so that object code is generated for all instructions. An IF conditional encountered during the assembly which does not have its condition set turns off the flag so that no further code is generated. Encountering an XIF statement resets the flag so that code generation can resume. For instance, if the source —

```
399
      i
      1
310
320 IASSEMBLE Retrieve:A
330
    ţ
      1
340
350 ICALL Begin
360
      ŧ
370 ISOURCE
                     NAM Retrieve
380 ISOURCE
                      ł
                     SUB
390 ISOURCE
                      I
400 ISOURCE
                       Į
410 ISOURCE
430 ISOURCE Begin: LDA =Array type
               JSM Get_info ! Info on array parameter
LDA Array_type ! Look at the type
IFA !
STA Test ! Debunging softice
440 ISOURCE LDB =Array
450 ISOURCE
460 ISOURCE
470 ISOURCE
480 ISOURCE
                     RET 1
490 ISOURCE
500 ISOURCE
                     XIF
510 ISOURCE
                     IFB
                   CPA =16 ! A file number (not an array)?

JMP *+3 ! Must be a file number

ADA =-12 ! Is it an array

COD =+0
520 ISOURCE
530 ISOURCE
540 ISOURCE
550 ISOURCE
                      SAP *+3
                                        data type(i.e., >12)?
560 ISOURCE
                      XIF
570 ISOURCE
                     LDA =Test
                      !
640 ISOURCE
650 ISOURCE
660 ISOURCE
                     END Retrieve
670 !
688
690 IASSEMBLE Retrieve
```

is executed, lines 430 through 460, 480, and 490 are assembled, but 520 through 550 are not. Line 570 is assembled.

The XIF pseudo-instruction actually affected both conditions. This effect is more dramatically illustrated if line 320 is changed to —

IASSEMBLE Retrieve

where neither A nor B is set. In this case 480, 490, 520 through 550 are not assembled. But 570 is assembled!

The effect of the XIF, then, is as a flag for all the conditions. As a consequence, it is not possible to "nest" conditional assemblies. This effect is the same with the IFP conditional.

Control of Indirection

The assembler can generate an indirect instruction, even when you have not specified a ,I after the instruction. The pseudo-instructions IOF (indirect off) and ION (indirect on) control these automatic indirects. While automatic indirection is turned off (by IOF), a range error (RN) is generated for any instruction which the assembler would have generated an automatic indirect for. ION turns automatic indirection back on, restoring the assembler to its normal state. These pseudo-instructions are used in pairs, with IOF first and ION last, to specify an interval for which you wish to control automatic indirection.

Relocation

The code talked about in this section is relocatable. You do not have to worry about the absolute location of your module. The assembler automatically generates the appropriate machine codes for each of your instructions to assure that the correct location is reached when referenced.

Some instructions generate relocatable object code in which the operand address is an offset from the current address and the relocating loader has to make no changes to the object code for them as long as they are within -512 and +511 of the current address.

For indirect addressing, and for instructions which are more than 512 words away from the current address, it is required of the loader to adjust the address in the intermediate word to reflect the actual address being referenced. For indirect addressing generated by the assembler, this activity is automatic.

Some instructions permit you to specify an absolute machine address for its operand. In those cases, the assembler generates the code necessary to perform the reference to the absolute location.

For example, if the instruction was assembled —

LDA B

(which essentially says 'load register A with the contents of register B) the result would be a machine instruction which references the B register (absolute address 1). This reference would be independent of the actual location of the instruction itself.

There are a couple of ways to produce an absolute address in an operand. Using pre-defined symbols is one way. There is a type of expression known as "absolute" which is another way. Both of these are dicussed in the next section, "Symbolic Operations".

You should never try to use absolute addressing within the ICOM region, since not only is the location of the region itself not fixed, but modules can also be moved around within the region.

Module Reassembly

Modules that have been assembled can be reassembled at any time. Debugging a routine often times leads to changes and reassembly. A discussion of this process is in order.

The steps involved in the reassembly of two modules with the statement ----

```
IASSEMBLE Module 1, Module 2
```

are the following:

- Step 1 both modules appear in their original positions in the ICOM region.
- Step 2 Module_1 is deleted and Module_2 is moved and linked.
- Step 3 Module 1 is assembled.
- Step 4 Module 2 is deleted and Module 1 is moved and linked.
- Step 5 Module 2 is assembled.

The impact of this is that during debugging with the stepping feature (Chapter 9), the lines of the reassembled modules are listed erroneously. The simple solution to this problem is to execute an IDELETE ALL statement before reassembling more than one module.

Symbolic Operations

You have been introduced, in small doses, to symbols throughout the chapters preceding this one. The idea of symbols in an assembly language is the same as it is in a higher language such as BASIC — to make operations simpler and the code more understandable.

Several symbolic tools are provided for you in this assembly language system. You have already seen one described in detail in this chapter — labels. There are some pre-defined symbols the assembly system provides for certain locations in the machine (mostly registers). There are ways to define your own symbols (and give them a "type"). And, there are ways to access symbols in other modules.

Symbols can be used as operands in machine instructions and in some pseudo-instructions. They can be part of expressions in an operand.

Predefined Symbols

The assembler has predefined a number of symbols and has reserved them as references to special locations in memory. Each of the locations has a special meaning and function. The symbols themselves are "reserved", meaning they cannot be re-defined (by using them as labels on something else). The symbols are —

Symbol	Description
A	Arithmetic accumulator
Ar1 Ar2 B	BCD arithmetic accumulators Arithmetic accumulator
Base_page	Global temporary area (9 words)
С	Stack pointer
Cb	Address-extension bit for byte pointer in C
D	Stack pointer
Db	Address-extension bit for byte pointer in D
Dmac	DMA count register
Dmama	DMA memory address register
Dmapa	DMA peripheral address register
End_isr_high End_isr_low Isr_psw	Reserved symbols for interrupt service routines
Oper_1 Oper_2	Arithmetic utility operand address registers
P	Program counter
Pa	Peripheral address register
R	Return stack pointer
	-

Symbol	Description
R4 R5 R6 R7 Besult	Arithmetic utility result address register
Se	Shift-extend register
Utlcount Utlend Utltemps	Reserved symbols for writing utilities

The meaning of each of these locations is discussed in other chapters. The absolute locations of the registers can be found in Chapter 2. A description of the function of the accumulators and pointers can be found in Chapter 3 as part of the discussion on machine instructions. A discussion of the I/O registers and symbols can be found in Chapter 7. The arithmetic registers are discussed in Chapter 5.

Using a pre-defined symbol in a machine instruction is the same as using its address. For example —

ISOURCE LDA B

means simply that register A will be loaded with the contents of register B. The same effect could have been achieved with —

ISOURCE LDA 1

except that the symbolic form makes it more obvious what is intended by the operation. This is true with most symbols.

Defining Your Own

You are defining your own symbol each time you specify a label on an instruction or pseudoinstruction. Normally the "value" of the label is the address associated with the instruction. However, in two cases it is possible to create the label and specify what its value is to be. One case is when the label is on the EQU pseudo-instruction; the other case is when the label is on the SET pseudo-instruction.

The EQU is an assembly-time construct. It exists only at the time of assembly to give you value-assigning capability to symbols. It generates no code itself, and it has no implementation or "location" in the object module.

To define a symbol using an EQU, the form is -

{label}: EQU {expression}

the resulting symbol ({label}) has the same "type" as the expression (see "Expressions" later in this chapter) and it has the same value as the result of the expression.

As an example, assembling the statement —

ISOURCE Three: EQU 3

means that in all references in the module to the symbol "Three", it is the same as referring to the **value** 3. Thus —

LDA Three

means load A with the contents of location 3.

A common use for this instruction is to assign a symbol an address which is an offset from another address. For example, if this sequence were in a module —

```
ISOURCE Save_registers: BSS 40B
ISOURCE Save_b: EQU Save_registers+1
```

then Save_b would refer to the second word in the BSS area "Save_registers", and it would probably be used to store away the contents of the B register sometime —

ISOURCE STB Save_b

and later retrieve the value —

The SET pseudo-instruction defines a symbol in identical fashion to an EQU. Consequently, it has the same general form —

{label}: SET {expression}

The difference between the two is that the SET instruction can have its {label} be a symbol which has been previously defined. The effect in that case is to allow a **redefinition** of the symbol. For example, after assembling the following instructions —

ISOURCE Three: EQU 3 ISOURCE Three: SET 30B

the symbol "Three" has the value 30B.

Literals

Literals are a special means of defining your own symbols without actually having to go to the trouble to do so. The result is a form of symbolic addressing without the symbol! The assembler automatically allocates space at the end of each module for the storage of literal values. This area is called a literal pool.

The form of a literal is —

= {expression} [, {expression} [, ...]]

where {expression} may be any absolute or relocatable expression (see "Expressions" below).

Evaluation of Literals

When a literal is encountered in an operand, three things occur —

- 1. The literal is converted to its binary value. If there is more than one expression in the literal, then they are all converted.
- 2. The binary value is stored in a literal pool. If there is more than one expression in the literal, then they are stored contiguously in the order specified.
- 3. The address where the value is stored is then substituted for the literal in the operand.

If the same literal is used in more than one instruction, only one value is generated in the literal pool. All instructions using this literal refer to the same location.

Literals can be part of expressions as well as having expressions as part of them. Since they ultimately are replaced by an address (pointing to a specific location within a literal pool), their "type" is "relocatable". See the section on "Expressions" later in this chapter.

Basically, a literal means "the address of {expression}". An example should help in the understanding of literals. Suppose that you want to store the value 1 into the A register. There are two ways you could accomplish that purpose. You **could** code —

```
One: DAT i
.
.
LDA One
```

or, you could use a literal and code —

LDA =1

Using the literal method is easier and is more self-documenting. While the literal form strictly says "load A with the contents of the **address of** the constant 1", it can also be read as "load A with the constant 1", and this short-hand version can be an excellent way of self-documenting your programs, not to mention the elimination of a lot of unnecessary symbols.

The value of symbols defined with the EQU pseudo-instruction are referenced using the literal specifier. For example —

```
Select_code: EQU 6
.
.
.
.
LDA = Select code
```

Nesting Literals

Since literals use expressions, and literals may be used in expressions, it is possible to have a literal within a literal (nesting). In fact, it may be done to any depth, though the most useful form of nesting is a single level.

Suppose you want to initialize a variable to the value of pi each time you enter a routine. A nested literal would be a way of accomplishing this in a clean, straight-forward fashion —

```
Pi: BSS 4
.
.
LDA ==3.14159265349
LDB =Pi
XFR 4
```

and the locations starting at "Pi" now contains the full-precision value indicated (which is a fair approximation to pi). This would replace coding which could have looked like this (without using literals) —

```
A_init: DAT Init
Init: DAT 3.14159265349
A_pi: DAT Pi
Pi: BSS 4
.
.
LDA A_init
LDB A_Pi
XFR 4
```

Literals are also used to provide an instruction or a utility (e.g., the XFR instruction and the Print_string utility) with the address of the first word of a string, or full-precision or short-precision number. In these cases the "= =" specifier is used. For example —

LDA == 3.14159

puts the address of the first word of the short-precision number in the A register for the XFR instruction. Likewise —

LDA == 7, "EXAMPLE"

puts the address of the first word of the BASIC string "EXAMPLE" in the A register for the Print_string utility. (See Chapter 7, I/O Handling, for an explanation of the Print_string utility).

Nonsensical Uses of Literals

A literal, basically, is an address. Since it can be used in an operand wherever an address may be used, it is possible to use it in instructions where the result is a little nonsensical.

For example, consider the result of doing some of the following ---

```
STA =2
JSM ="GARBAGE"
DSZ =- 1
JMP =Neverneverland
SZA =Out to lunch
```

Caution dictates that you well consider the appropriateness of the action when using the literal. Literals can be a highly useful tool, but only when properly employed.

Literal Pools

Literals are assemble-time constructs, but they eventually resolve to an actual address in the object code. That address points into the literal "pool".

The literal pool is part of your module where the actual values of literals are stored. There is automatically a literal pool assigned at the end of each module where literals are used. As many literal values as possible are stored there by the assembler. However, in some cases, a literal pool is needed earlier in the program (a need indicated by the assembler with the "LT" assembly-time error). In that case a pool should be created using the LIT pseudo-instruction. This instruction has the form —

```
LIT {size}
```

where {size} is the number of words to be set aside (it may be a positive numeric expression). The instruction acts very much like a BSS. And, like a BSS, it should be placed at a location in your code where it is not likely to be inadvertently executed.

Most modules do not need assignment of an extra literal pool. However, one is needed where there is a literal used beyond 512 words from the first available space in the literal pool at the end of the module. To alleviate the problem, a literal pool must be created with the LIT statement within 512 words of the instruction.

A common cause of this kind of problem is a large BSS assignment between the instruction and the end of the module. Sometimes moving the BSS to some other location is a solution to the problem.

Expressions

Literals, some pseudo-instructions (particularly EQU), and a number of machine instructions, all permit "expressions" to be used as an operand. These expressions take one of two forms — "absolute" or "relocatable". The type of an expression depends upon the type of the individual **elements** in it.

An element is of the type "absolute" if it is any of the following —

- A decimal integer (like 0, 1, 2, 1 024).
- An octal integer (like 10B, 40B, 100000B).
- A string (enclosed by quote marks) (like "ERROR")
- An ASCII character, preceded by an apostrophe (like 'A).
- A label associated with an EQU or SET pseudo-instruction whose expression is also evaluative as type absolute (like EQU 40B).

An element is of the type "relocatable" if it is any of the following —

- A label not associated with an EQU or SET pseudo-instruction (i.e., it is an "address").
- A literal (like = 0).
- An asterisk, symbolizing "current address".
- A label associated with an EQU or SET pseudo-instruction whose expression is also evaluative as type relocatable (like EQU *).

An expression is a list of elements each pair of which is separated by one of the following operators —

+ - / *

meaning addition, subtraction, division, and multiplication, respectively, as in BASIC.

The result of an expression is either absolute or relocatable depending upon the following rules:

An absolute expression is any expression which contains ----

- Only absolute elements.
- An even number of relocatable elements, paired in sequence and by sign (i.e., for each relocatable element there is another relocatable element adjacent to it, of opposite sign). These pairs may be in combination with absolute elements.

A relocatable expression is any expression which contains -

- An odd number of relocatable elements, paired in sequence and by sign, except the last, which must be positive.
- An odd number of relocatable elements, as above, in combination with any number of absolute elements.

Any combination of absolute or relocatable elements which does not result in either an absolute or relocatable value, by the rules above, results in an error.

The expression is —	The type is —	Example
absolute ± absolute	absolute	1000B + 10
absolute + relocatable	relocatable	1 + Temp
relocatable \pm absolute	relocatable	Temp – 1
relocatable – relocatable	absolute	Temp1 - (Temp - 1)
relocatable + relocatable	error	Temp + Temp 1
absolute – relocatable	error	1000B - Temp
absolute * absolute	absolute	100 ¥ 3
absolute/absolute	absolute	100/3
absolute * relocatable	error	Temp * 3
relocatable * absolute	error	3 * Temp
absolute/relocatable	error	Temp/3
relocatable / absolute	error	3/Temp
	1	

Unlike BASIC, there is no precedence among the operators. All are of equal precedence. Where precedence is desired, parentheses must be used. So where BASIC requires —

2*16+3*8

to result in 56, the same expression in the assembly language results in 280 (assembly language operators are evaluated from left to right). However, 56 would be the result if it were expressed as —

 $(2 \star 16) + (3 \star 8)$

An expression may be of any length and contain as many operators and parentheses as desired, as long as the result can be evaluated and the parentheses are properly paired. All operators are evaluated from left to right. Multiplication and division can only be used with elements that are of type absolute.

Both operands are considered to be unsigned integers for assembler division (/). Overflows in all assembler arithmetic operations are ignored.

External Symbols and Elements

There is an additional relocatable element, called "external". It behaves in almost all respects as does any other relocatable element, except that only one external item may appear in an expression. Also, the expressions containing —

```
relocatable - relocatable
```

are not allowed when one of the relocatable elements is external. Externals are defined as symbols appearing in an EXT pseudo-instruction —

EXT {symbol} [, {symbol} [, ...]]

These are entry points in another module or utility. "Entry points" are merely symbols in a module which are listed in an ENT pseudo-instruction in that module —

ENT {symbol} [, {symbol} [, ...]]

If one module contains -

ENT Stage left

then that symbol would be available to another module which contains ----

EXT Stage_left

The EXT instruction should appear before any other instruction using the symbols which are listed in that EXT instruction. At execution time for a module with an EXT instruction, all of the symbols listed in it must be either a utility name or be contained in an ENT or SUB (described in Chapter 6) of another module. It is not necessary that the module be in source form; it may already be an object module assembled from a source module which contained the symbol as an ENT or SUB.

NOTE

When ICALLing an assembly routine, satisfaction of the external symbols specified by an EXT pseudo-instruction is checked only for the first module after the ICALL. The external symbols of modules entered after the first module are not checked. Undesirable results can be obtained if externally referenced modules cannot be found. Be sure that all interrelated modules reside in the ICOM region before an ICALL is executed.

Other Absolute Elements

There are additional **absolute** elements which may be used in expressions. These are "machine addresses", short-precision numbers, and full-precision numbers.

A machine address is one of the following —

- An assembler pre-defined symbol.
- A symbol associated with an EQU or SET pseudo-instruction whose expression is evaluated as a machine address (i.e., it contains a pre-defined symbol or another EQU-associated symbol whose expression contains a pre-defined symbol).

For the most part, machine addresses can be used just like absolutes. However, they remain defined from assembly to assembly. By defining a machine address in one module (with an EQU or SET), it then becomes available to you with the same value in other modules which you assemble.

For example, if you were to assemble a module containing —

ISOURCE R100: EQU A+100

then R100 is a machine address following the above rules, just as if the assembler had predefined it. If you don't do any SCRATCH or GET statements in the meantime, then the next assembly you do would also have this symbol available without ever having to define it.

When full-precision numbers (like -2.5, 3E3, 3.141592) and short-precision numbers (like 1.S, -2.5S, 3.14159S, 3.E3S) are used in expressions, they become the **entire** expression. This is because these numbers are only intended as simple data-generating devices in literals and in DAT pseudo-instructions. Explicitly, the rules for using full- and short-precision numbers are —

- They may only appear alone in an expression, i.e., they may not be in combination with other elements.
- They may only appear in literals and in DAT pseudo-instructions.

Utilities

A number of utilities have been provided to help make your programming tasks easier and to give you direct access to some of the operating system's capabilities and routines.

Descriptions of the utilities are made in conjunction with those topics where the utilities play a part. The form of the description of a utility is somewhat standardized. Each description will tell you —

- The name of the utility.
- The general procedure for using the utility.
- Any special requirements which must be satisfied for the utility to work properly.
- A step-by-step calling procedure for the utility.
- The exit conditions.

Utilities are a form of subroutine, so to execute them it is necessary to execute a jump-tosubroutine instruction (JSM) if you want the utility to return to the routine which calls it. Most utilities execute a RET 1 instruction to return, so in some cases where you follow a utility call with a RET 1 of your own, you can save the RET instruction by using the JMP (unconditional branch) instruction instead. For example, a typical utility call looks like —

```
LDA =Temp
LDB =Pointer
JSM Get_element
```

but if it happened to be followed by a RET 1 —

```
LDA =Temp
LDB =Pointer
JSM Get_element
RET 1
```

the calling procedure could be changed to --

```
LDA =Temp
LDB =Pointer
JMP Get_element
```

and you save a word of code: the effect is otherwise the same. Check the exit conditions for a utility before using this approach.

Utilities which you use in a module must have their names in an EXT pseudo-instruction for that module. Otherwise, the assembler is unable to tell that you meant a utility and not one of your own labels, causing an "undefined reference" assembly error.

The contents of any or all of the processor registers may be altered after a return from a utility. Be sure to save the contents of registers that you are using before you call a utility.

If you are using interrupts, the interrupt system may or may not be enabled upon return from a utility. Use the EIR and DIR instructions to ensure the proper state of the interrupt system upon return from a utility. A system utility cannot be called from an interrupt service routine (ISR).

Appendix F contains a short description of the utilities.

The utilities currently available are —

Utility	Description
Busy	Tests the busy bits of a BASIC variable
Error_exit	Aborts an ICALL statement with a particular error number
Get_bytes	Accesses substrings (or parts of parameters)
Get_elem_bytes	Same as ''Get_bytes'', but used for array elements
Get_element	Same as "Get_value", but used for array elements
Get_file_info	Accesses the file-pointer of an assigned file
Get_info	Returns the characteristics of a variable passed as a
	parameter or existing in common
Get_value	Returns the value of a BASIC variable
Int_to_rel	Data type conversion from integer to full-precision
Isr_access	Establishes hardware linkages for interrupts
Mm_read_start	Prepares to read a physical record from mass storage
Mm_read_xfer	Reads a physical record from mass storage
Mm_write_start	Writes a physical record to mass storage
Mm_write_test	Verifies a physical record was written to mass storage
Printer_select	Changes or interrogates select-code for standard printer
Print_no_lf	Outputs a string with no CR-LF sequence
Print_string	Outputs a string to the standard printer
Put_bytes	Replaces substrings (or parts of parameters)
Put_elem_bytes	Same as "Put_bytes", used for elements in an array
Put_element	Same as "Put_value", used for elements in an array
Put_file_info	Manipulates the file-pointer of a file
Put_value	Changes the value of a BASIC variable
Rel_math	Provides access to all the arithmetic routines
Rel_to_int	Data type conversion from full-precision to integer
Rel_to_sho	Data type conversion from full-precision to short
Sho_to_rel	Data type conversion from short-precision to full
To_system	Allows immediate printing with printing utilities
	1

Chapter **5** Arithmetic

Summary: Arithmetic operations are reviewed and the arithmetic utilities are discussed. Floating point and BCD arithmetic are explained, as well as integer arithmetic.

Numerical calculations are a large part of any computer's operations. Implemented within the System 45's processor are both integer and primitive Binary Coded Decimal (BCD) floating-point arithmetic operations. These operations are needed because three of the four BASIC variable data types (explained in Chapter 3) are represented either as BCD floating point numbers or as integer (binary) values. To be specific, full-precision numbers are presented as 12-digit, BCD floating point numbers, short-precision numbers are represented as 6-digit, floating point numbers, and integers are represented as binary numbers. This chapter deals with integer and floating point operations and is intended for those readers who may have no acquaintance with this topic, or perhaps only a passing one. The particular machine instructions involved with such arithmetic are reviewed.

Because the processor provides only rudimentary floating-point operations and because complete floating-point operations (e.g., subtract, divide) are not easy to write, BCD arithmetic utilities have been provided to perform these calculations and are discussed later in this chapter. Integer arithmetic operations are less complex; thus utilities can be written by you, as described in the following section. If you are not interested in doing your own BCD or integer arithmetic, it is recommended that you skip immediately to "Arithmetic Utilities".

Due to its speed increases over BCD floating point arithmetic, integer arithmetic is recommended when you are performing the addition, subtraction, or multiplication of integers.

Integer Arithmetic

Representation of Integers

Recall from Chapter 3 that integers are represented as -

The range of integers represented by 16 bits in the 9845 is -

```
-32 767 to +32 767
```

This is further illustrated in the following table -

1	Bit	15				Bit 0
Decimal		Bina	ary Integ	er Repre	esentatio	on [
-32 768	1	000	000	000	000	000
-32 767	1	000	000	000	000	001
•						
•						
_1	1	111	111	111	111	111
$^{-1}_{0}$	$\begin{bmatrix} 1\\0 \end{bmatrix}$	000	000	000	000	000
1	0	000	000	000	000	001
•						
•						
32 767	0	111	111	111	111	111

Notice that negative integers have their sign bit (bit 15) equal to one. There is another important fact concerning negative numbers – they are represented in two's complement form. This is done so that subtraction can be implemented by complementing and adding. There are two instructions (TCA and TCB) which enable you to form the two's complement of an integer. An example of the use of two's complement is shown –

10	ISOURCE Absolute:	LDA Integer	!	Find the absolute value
20	ISOURCE	SAP *+2	ļ	of an integer.
30	ISOURCE	TCA	Į	If not positive, two's
40			ļ	complement it.
50	ISOURCE	STA Abs_value	ļ	Save absolute value.

Integer Arithmetic¹

The addition of integers is accomplished very easily. Two instructions (ADA and ADB) are provided to do integer addition. A special situation to be aware of is the overflow condition. It is possible to add two valid 16-bit integers and produce an answer which cannot be represented in 16 bits.

1 For the purposes of this manual, the terms binary arithmetic and integer arithmetic are synonomous.

For example, $15\ 000 + 25\ 000 = 40\ 000$, and $40\ 000$ is greater than 32 767 (the upper limit).

ISOURCE SOC *+1,C ! Clear overflow indicator. ISOURCE LDA Number_1 ISOURCE ADA Number_2 ISOURCE SOC Ok ! Test for overflow. ISOURCE Overflow: LDA =20 ISOURCE JMP Error_exit ! Give integer precison ! overflow error. ISOURCE Ok: STA Answer ! Continue processing.

Of course, if you know that the result will be in the range -32768 to +32767, there is no need to check for the overflow condition.

The subtraction of integers is handled almost exactly like addition. The following example computes (X-Y) –

ISOURCE	SOC *+1,C	! Clear overflow indicator
ISCURCE	LDA Y	
ISOURCE	TCA	! Form -Y.
ISOURCE	ADA X	! Compute X+(-Y)=X-Y.
ISOURCE	SOC Ok	! Test for overflow.
ISOURCE Overflow:	LDA =20	
ISOURCE	JMP Error_exit	! Give integer precison
		! overflow error.
ISOURCE OK:	STA Answer	! Continue processing.

The processor contains an integer multiply instruction. There are two special considerations concerning integer multiplication -

- When you multiply two 16-bit integers, the resulting product can always be represented as a 32-bit integer. Hence, the processor's MPY instruction produces a 32-bit answer, and no overflow condition is possible. However, if you would like to restrict products to a valid 16-bit integer, you must provide your own 16-bit integer overflow check.
- An anomaly exists in the MPY instruction. If the B register contains -32768, the MPY instruction yields the wrong answer.

The following example illustrates how to detect this condition -

The following example multiplies two 16-bit integers (X and Y) and tests the result to see if it is a valid 16-bit integer -

ISOURCE Test: ISOURCE ISOURCE ISOURCE ISOURCE Mpy 1:	LDB X CPB =-32768 JMP Anomaly LDA Y MPY	! Multiplication routine.
ISOURCE	SAP *+2	! Detect overflow when all
ISOURCE	CMB	! bits of B differ from upper
	-	! bit of A.
ISOURCE	RZB Overflow	
ISOURCE	STA Answer	! Save result.
ISOURCE	RET 1	! Exit.
ISOURCE Overflow:	LDA =20	! Give integer overflow error.
ISOURCE	JSM Error exi	t.
ISOURCE Anomaly:	LDA B	
ISOURCE	LDB Y	! Exchange A and B.
ISOURCE	CPB =-32768	! Is B now -32768?
ISOURCE	JMP Overflow	! If yes, give overflow message.
ISOURCE	JMP Mpy_1	! If not, multiply.

The processor does not contain an integer divide instruction. However, integer division can be implemented quite easily. The following program implements integer division (X/Y) analogous to the BASIC DIV operator with integer operands –

ISQURCE	LDA X	
ISOURCE	STA Dividend	
ISOURCE	LDB Y	
ISOURCE	STB Divisor	
ISOURCE	RZB Not zero	! Skip if not dividing by 0.
ISOURCE	LDA =31	
ISAURCE	JMP Error exit	! Give division by 0 error.
ISAURCE Not zero:	LDA =0	
ISOURCE	STA Quotient	! Initialize quotient.
ISOURCE	SOC *+1.C	! Necessary for -32768.
ISOURCE	SBP Pos divisor	
ISOURCE	CMA —	! Toggle sign saver.
ISOURCE	тсв	! Force positive divisor.
ISOURCE	STB Divisor	
ISOURCE Pos divisor	:LDB Dividend	
ISOURCE	SBP Pos dividend	
ISOURCE	CMA	! Toggle sign saver.
ISNURCE	TCB	! Force positive dividend.
ISOURCE	STB Dividend	·
ISOURCE Pos dividen	d:STA Sign	! Save sign of quotient.
ISOURCE	SOC *+3	
ISOURCE	LDA =19	! Give improper value error-
ISOURCE	JMP Error exit	l one operand was -32768.
ISOURCE	LDA =1	! Initialize quotient update.
ISOURCE ! FIND MOS	T SIGNFICANT DIGIT	IN QUOTIENT.

ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	Dio1:	LDB TCB ADB SBM SAL LDB SBL STB JMP	Divisor Dividend Div2 1 Divisor 1 Divisor Divisor	1994 years board toward them	Skip if divisor>dividend. Increase what to add to quotient; the divisor must be updated in the same manner.
ISOURCE	! EXAMINE A	ALL F	REMAINING LEAST	SI	INIFICANT BIT POSITIONS TO
ISOURCE	! DETERMIN	HE IF	THEY ARE PART	OF	THE QUOTIENT.
ISOURCE	Div2:	SAR	1	!	See if next bit is to be
ISUURCE		SZH	<u>Do</u> sign	!	included.
ISUURCE		LDR	Divisor	!	Maybe; first, it is
ISUURUE		SBR	1	:	necessary to adjust the
1SUURCE		SIB	Divisor	1	divisor for bit position.
1000RUE		OPD	Trainia (1. 1. 1. 1.		
TCOURCE		CDM	Dividend		ONLY TO BUE THE ADDRESS OF
ISOURCE		ODN	Dividend	:	DRIP IT DIL SMUUIU DE UTT. Dit chauld ha ant schuct
ISOURCE		i DR	Quotient	-	dividend and quotient
ISOURCE		ADB	9 9		to account for it
ISOURCE		STR	Ountient		
ISOURCE		JMP	Div2	ł	Cherk all bit positions.
ISOURCE	Do sian:	LDA	Quotient		
ISOURCE		LDB	Sian		•
ISOURCE		SBP	*+Ž		
ISOURCE		TCA		i	Complement sign of quotient.
ISOURCE		STA	Quotient		
ISOURCE		LIĤ	=Quotient		
ISOURCE		LDB	=Quotient		
ISOURCE		JMP	Put_value	!	Save results, return to BASIC.
ISOURCE		END	Division		

Multi-Word Integer Arithmetic

The processor does not directly support multi-word arithmetic. However, it does provide a register (the E register) which facilitates multi-word addition. The E register indicates whether there is a "carry" from bit 15 when an add instruction (ADA or ADB) is executed.

ISOURCE	SEC *+1,C LD9 X pipht	! Clear E register.
ISOURCE	ADA Y_right	! Form least significant ! word of answer; set E ! register if carry out
Teoliper	eee xii e	: UT DIG 1J. Clean ouepfley modistor
ISUURUE	300 × 1,0	: clear over iow register.
ISUURCE	FDR X_left	,
ISOURCE	SEC Normal	
ISOURCE	ADB =1	! Add in carry from least
		! significant part.
ISOURCE	SOC Normal.C	! Skip if no overflow.
ISOURCE	ADB Y left	
TSOURCE	SAS AK	If there was another overflow.
		! the answer is correct.
ISOURCE Err20:	LDA =20	! Give integer overflow error.
ISOURCE	JSM Error exit	-
ISOURCE Normal.	ADE Y loft	
TONIDEE NOT MAT.	000 Exerna	
IOURNEE	CI (20	

The following program segment illustrates how 2-word integers can be added -

Subtraction can also be handled, by forming the two's complement. The general algorithm is -

- 1. Form the two's complement of the least significant, non-zero word.
- 2. Form the one's complement (using CMA or CMB) of all more significant words.

The following program segment illustrates how to compute the two's complement of a two word integer -

ISOURCE		LDA	Right word
ISOURCE		SZR	Next word
ISOURCE		TCA	-
ISOURCE		$\Box DB$	Left word
ISOURCE		CMB	
ISOURCE		RET	
ISQURCE	Next word:	LDB	Left word
ISOURCE		TCE	
ISOURCE		STA	Answer right
ISOURCE		STB	Answer left
ISOURCE		RET	1
Binary Coded Decimal

Binary Coded Decimal (BCD) uses four-bit binary codes to represent decimal digits. Thus, the 12-digit mantissa of a full-precision number is represented by 48 bits. The BCD digits are as follows —

DECIMAL	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

A BCD number within this manual has its digits represented as D_1 , D_2 , D_3 , etc., with each digit corresponding to some BCD digit. D_1 is the most significant digit in a number. Since full-precision numbers within the 9845 contain 12-digit BCD mantissas, 12-digit BCD numbers are used as the most frequent examples in this discussion. In that case, D_{12} is the least significant digit in a number.

Arithmetic Machine Instructions

There are some machine instructions which specifically operate upon the BCD registers. The discussions in this chapter will make use of the capabilities of these instructions to develop the techniques to write BCD arithmetic routines. If you have not done so already, you should familiarize yourself with the instructions before moving on in this chapter. A description of the instructions can be found in "Arithmetic Group" in Chapter 3.

BCD Registers

There are two registers in the machine used for BCD arithmetic — Ar1 and Ar2. These symbols are pre-defined by the assembly language to the registers' locations in memory (see Chapter 3). The mnemonics for some instructions occasionally refer to these registers as X and Y respectively (see Chapter 3).

BCD Arithmetic

To understand BCD arithmetic in the context of the 9845, recall from Chapter 3 that a fullprecision value is represented in four words which contain its information as follows —

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Bit
Exp Sign		Γ	1	E	 xpone) ent		l		0	0	0	0	0	Man Sign	
D1 (most significant digit) D2							C) 3	_							
	D5 D6					E) 7		Dଃ							
D ₉				D	10			D	11							

The exponent is stored in two's complement form. The exponent and the mantissa are always adjusted by arithmetic routines so that there is always an implied decimal point following D_1 . Thus, the mantissa of every value stored looks like —

 $D_1 \;.\; D_2 \; D_3 \; D_4 \; D_5 \; D_6 \; D_7 \; D_8 \; D_9 \; D_{10} \; D_{11} \; D_{12}$

Except possibly for intermediate results within the individual arithmetic algorithms, the most significant digit of a full-precision value (D_1) will never be 0 unless the entire number is 0. Sometimes, after an individual arithmetic operation, the answer needs to be **normalized**, that is, the digits of the answer shifted to the left until D_1 is no longer 0. The exponent then needs to be adjusted to reflect the change.

An important thing to keep in mind when examining BCD arithmetic, as implemented by the processor, is that mantissas are represented in a "sign-magnitude" format. This means that the absolute value is stored as the actual mantissa, and the sign of the mantissa is maintained separately.

Addition

There is a one-bit Decimal Carry (DC) flag within the processor which serves a BCD function similar to the Extend flag for binary addition.

DC is set to a one or zero, depending upon the occurrence or absence of a carry from the addition of the two D_1 's of the two BCD numbers being added. Since mantissas are represented in a sign-magnitude form (with the sign in the exponent word rather than part of what gets added), DC represents an overflow for 12-digit mantissa additions.

DC itself is part of the addition in the D_{12} position. This gives it potential use with multipleprecision floating point arithmetic. The addition process looks like this —

	carry	\frown											DC	
		D1	D2	D3	D4	D₅	D6	D7	D8	D۹	D10	D11	D12	Ar1
+	↓ ↓	D1	D ₂	D3	D4	D5	D6	D7	D8	D۹	D10	D11	D12	Ar2
=	DC	D1	D2	D ₃	D4	D₅	D6	D7	D8	Da	D10	D11	D12	Ar2

There are three instructions which concern themselves exclusively with DC. They are — SDS (Skip if DC set), SDC (Skip if DC clear), and CDC (Clear DC).

Ten's Complement for BCD

The addition of the ten's complement of a number is used in lieu of a subtraction mechanism. If the signs of the two numbers to be summed are different, one of the numbers is complemented (it doesn't really matter which one), before the addition.

The ten's complement of a number with n digits to the left of the decimal point is —

 $X = 10^n - X$

The ten's complement of a floating-point number has the same exponent as the original number. Since the mantissa (M) of a full-precision number can be assumed to have the decimal point implied after D_1 , then the number must be less than 10 (but greater than 0) and the ten's complement of a mantissa becomes —

M = 10 - M

Accordingly, all that is necessary to complement a floating-point number is to complement the mantissa. It is immaterial whether the mantissa is treated as a 12-digit integer or as a number between 0 and 10; the same sequence of digits results.

There are two instructions for doing ten's complements — CMX and CMY. The only difference between them is that CMX operates on the Ar1 register and CMY operates on the Ar2.

CMX and CMY leave the exponent word of a full-precision number completely alone. This means that the sign of the mantissa and the entire exponent are left unchanged in a ten's complement by CMX and CMY.

Ten's complement helps to accomplish addition, too. Rather than go into all of the nuances and subtleties of the arithmetic process, there is a simple rule for accomplishing decimal summations using ten's complements. Assuming the exponents are the same for the numbers to be added —

- If the signs of the numbers are the same, simply add them and leave the signs alone. If DC occurs, the result (Ar2) must be shifted to the right one place, and the exponent adjusted.
- If the signs of the numbers are different, complement, then add. A further complementing action may be necessary: if DC occurs, then the result necessarily has the same sign as the number which was not complemented; if DC does not occur, then the result must be complemented and then given the sign of the number which was complemented.

The FXA instruction is used to add mantissas. Here is a routine to implement the rule —

ISOURCE	LDA	Ar 1	į	Check the sign
ISOURCE	ADA	Ar2		
ISOURCE	SLA	Just_add	į	Skip if they are the same
ISOURCE	CMX		ţ	Complement Ar1
ISOURCE	FXA		ļ	Add the mantissas
ISOURCE	LDB	Ar2		
ISOURCE	SDS	* + 3	ļ	Was there an overflow?
ISOURCE	CMY		i	No, so complement result
ISOURCE	LDB	Ar1	ļ	and switch exponents and signs
ISOURCE	STB	Ar2	ļ	Store the larger sign
ISOURCE	JMP	Done		
ISOURCE	Just a	add:	ļ	Do the addition
ISOURCE	FXA			
ISOURCE	SDC	Done	ļ	Was there an overflow?
ISOURCE	LDA	=1	i	Yes, so shift in a 1
ISOURCE	LDB	=1	İ	into the most
ISOURCE	MRY		į	significant digit
ISOURCE	LDA	Ar2	ļ	Adjust exponent
ISOURCE	ADA	=100B		
ISOURCE	STA	Ar2		
ISOURCE	Done:	! CONTINUE	ОN	

Floating Point Summations

In the example just completed, you may have noted that to copy the sign the entire exponent word was copied. What if the exponents were different? The answer is — the exponents must have been the same. In fact, the only reason the example worked at all was that the exponents were the same.

If exponents are different, addition of mantissas cannot proceed properly. To add the numbers it is necessary to make the exponents the same by shifting one of the mantissas an amount equal to the exponent difference.

This difference is easily found by subtracting the smaller exponent from the larger. If the difference is eleven or less (the precision of the 12-digit mantissa), it is possible to offset the mantissa of the number with the **smaller** exponent.

For example suppose there are two numbers to be added —

X.XXXXXXXXXX E6 Y.YYYYYYYYY E4

By shifting the smaller one to the right by 2 digits (the difference between 6 and 4), it is possible to align the exponents -

X.XXXXXXXXXXX E6 0.0YYYYYYYYYY E6

Z.ZZZZZZZZZ E6

As can be readily seen from the example, a shift of more than 11 digits would cause the smaller value to be all zeroes in the significant 12 digits.

The digits to the right of the 12 most significant digits are lost in the action of shifting. That is, all except the left-most one. When using the MRX or MRY instructions, this digit is retained in the A register (bits 0-3) so that it can be used later for rounding purposes.

To use the MRX or MRY instructions, the number of digits to be shifted must be present in the B register.

The process for this "justification" of exponents can be summed up as follows:

- Subtract one exponent from the other storing the absolute value of the difference in the B register.
- Execute the MRX shift if the Ar1 register is smaller; execute the MRY shift if the Ar2 register is smaller.

Normalization

The raw result of an arithmetic operation (such as FXA) might not be a floating-point number that fits the standard form. It might have a leading DC needing to be incorporated into the number, as was seen in the "Addition" section earlier. Another possible deviation is a resulting D_1 of zero and no overflow. There could also be several zero-valued digits as left-most digits of the mantissa.

Such situations call for "normalization". One type of normalization is accomplished with the NRM instruction. This instruction shifts register Ar2 left, leaving the number of shifts required in the B register as a binary number. The maximum number of shifts NRM performs is 12. If NRM must do all twelve shifts, Ar2 must have been 0. This is indicated by a value of 12 left in B and DC being set. For any other shift-count, NRM will leave DC at 0.

The rules for the normalization process are —

- Execute the NRM instruction.
- Follow this instruction by adding the complement of the contents of B (shifted left 6 bits) to the Ar2 exponent unless DC is set. If DC is set, store 0 into Ar2.
- Test the exponent result for an underflow.

Rounding

The addition operation (FXA) does not automatically round a result, and there is no instruction which does rounding in one step. Instead, it is necessary that a series of instructions be established to accomplish the result.

Recalling from "Floating Point Summations" (above) that the rightmost digit for rounding purposes (if any) is typically deposited in the A register by an MRX or MRY instruction, this digit can be checked to determine if rounding is required.

The process of rounding, then, would have the following steps —

- Determine from register A if rounding is required (i.e., if it's greater than or equal to 5).
- If rounding is not required, take no further action. If rounding is required, then load register B with 1 and execute an MWA instruction. This has the effect of incrementing the mantissa in Ar2 by 1. This action is an easier method than setting Ar1 to 1 and executing an FXA and it's faster, too. Don't forget to check DC for an overflow.
- One way the sequence of rounding could appear is —

```
10 ISOURCE ADA =-5 ! Scale A down
20 ISOURCE SAM *+3 ! If less than 5, no rounding
30 ISOURCE LDB =1 ! Get ready to add 1 to Ar2
40 ISOURCE MWA ! Add 1 to least significant digit of Ar2
```

Floating Point Multiplication

Twelve-digit BCD floating-point multiplication is partially accomplished using the FMP instruction. This instruction effectively multiplies the value in the Ar1 register by a digit contained in B and adds the result to a partial product in Ar2.

Since, in the full multiplication process, exponents are merely added together, that part of the process is trivial. The ultimate sign of the product is also a trivial matter, determined by inspection of the signs of the original operands. Then the only matter of difficulty in the process is the actual multiplication of the mantissas. By way of explanation, assume that there are two mantissas to be multiplied —

multiplicand = A B C Dmultiplier = W X Y Z

Just four digits are used to reduce the amount of symbolism required of the example. The same procedures and conclusions are applicable to a full twelve BCD digits.

One symbolic way to indicate how this multiplication is done is --

				Α	В	С	D	
		-	x	W	Х	Y	Ζ	
				0	0	0	0	= partial product 0
		_	Zov	Z 1	Z ₂	Z3	Z4	= Z (ABCD) x 10°
			P ₄	P 5	P_6	P 7	P ₈	= partial product 1
	_	Yov	Y_1	Y_2	Y ₃	Y ₄	0	= Y (ABCD) x 10 ¹
		Рз	P ₄	P 5	P 6	P ₇	P ₈	= partial product 2
	Xov	X1	X2	Х3	X4	0	0	$= X (ABCD) \times 10^2$
	P_2	Рз	P_4	P_5	P_6	P 7	P ₈	= partial product 3
Wov	W_1	W_2	W3	W_4	0	0	0	= W (ABCD) x 10 ³
P ₁	P ₂	Рз	P ₄	P 5	P ₆	P ₇	P ₈	= partial product 4 (result)

Notice that at each stage the multiple of ABCD, such as X(ABCD), must be multiplied by an increasing power of ten in order that the digits of the multiple line up appropriately with the digits of the last partial product. An equivalent procedure is to have the partial product shifted right one digit at each stage.

Now, consider for a moment what is necessary within the assembly language to generate partial product 1 = 0 + Z (ABCD). Ar2 must be cleared and Ar1 is loaded with ABCD. Z is stored into B in bits 0 to 3. Then the FMP instruction is executed. Ar1 is added to Ar2 Z times, producing Z (ABCD) in Ar2. The overflow digit, Z_{ov} , ends up in the A register (bits 0 to 3). The overflow digit could be any value from 0 to 9 (each add could cause a carry, and there can be up to nine additions).

To create the next partial product, a mantissa right-shift on Ar2 must occur. Notice that mantissa right-shifting instructions (MRX and MRY) also shift bits 0 to 3 of the A register into D_1 . Thus, the right-shifting of the partial product (which must occur to prepare Ar2 for the next partial product) also automatically takes care of retaining the overflow digit.

Next, ABCD is added to $Z_{ov} Z_1 Z_2 Z_3$ a total of Y times (again by use of the FMP instruction). Partial product 2 is created. The process is repeated for the X and W digits, producing the result in Ar2. After the final partial product has been calculated by the final execution of the FMP instruction, it is possible that a non-zero digit may be present in bits 0-3 of the A register. Such a digit is necessarily the most significant digit of the final product. In this case, another MRY execution is required. Further, the exponent of the product (which was initially estimated as the sum of the operand's exponents) must be incremented by one to reflect this power-of-ten shift.

Upon each step of partial product summation, a significant digit is lost due to the shift. This can't be helped. In general, the product of two 12-digit numbers has 24 digits of precision, but the bottom 12 digits must be discarded since only 12 BCD digits are stored in a mantissa. An error analysis of the algorithm discloses that dropping these digits causes the answer, on average, to be slightly smaller than it should be. However, rounding introduces a similar error, but in the other direction. Note that the process did not round each partial product.

The discarded digits can be inspected before they are permanently lost. The MRY instruction causes the digit to be placed in the A register (in bits 0 to 3). This provides an easy way for a rounding mechanism to check on those digits as they are discarded. The rounding routine needs to save the last digit discarded for use in rounding in the event the last use of FMP produces no overflow digit.

Finally, it should be noted that you can put WXYZ into B at the very start of the process and simply shift B right 4 bits (with an SBR 4 instruction) between each execution of FMP. After all, FMP uses only bits 0 to 3 of the register as the number of times to add Ar1 and Ar2.

Floating Point Division

There are many possible algorithms to accomplish floating-point division. The one presented here was chosen because of its effective use of the machine instructions and data structures employed by the processor and operating system.

Remembering that full-precision numbers consist of both a signed mantissa and a signed exponent, use can be made of the mathematical properties of both to reduce the division problem to manageable proportions. Suppose that you have two full-precision values to divide —

 $-4.8E3 \div 1.5E - 2$

The mathematical properties of exponents can be utilized and the second exponent can be subtracted from the first giving the exponent of the answer (subject to possible later adjustment). This is the first (and easiest) step in the division algorithm.

Secondly, the mathematical properties of signs within a division process can be used to determine the sign of the quotient from the signs of the divisor and dividend (negative quotient if the signs are different, positive quotient otherwise). Thus, the problem can be reduced to the division of the mantissas -

(-4.8 ÷ 1.5) E5

As long as the full-precision numbers have been normalized, this adjustment of the exponents works for any pair of exponents. The normalization of the numbers also assures that the division of the mantissas under the following algorithm is sufficient to produce the mantissa of the result.

Since the decimal point of each mantissa is in the same place, they can be dropped altogether. For example —

 $-4.8 \div 1.5 = -48 \div 15$

The algorithm can then consider both the divisor and the dividend as 12-digit integers.

The algorithm begins by placing the normalized values into the BCD arithmetic registers. The divisor (1.5E-2) in the example) is transferred to register Ar1. The dividend (-4.8E3 in the example) is transferred to register Ar2. Basically, the algorithm subtracts the absolute value of the mantissa of Ar1 from the absolute value of the mantissa of Ar2 until Ar2 is smaller than Ar1. The number of subtractions required for that to occur becomes the first digit in the quotient (it'll be some value between 0 and 9 because the mantissas are normalized). If there is a (non-zero) remainder, then it is shifted left (multiplied by 10) and the subtraction process is repeated to calculate another digit in the quotient. The process is repeated until either a zero remainder occurs, or sufficient digits have been calculated, whichever occurs first. The resulting digits are merged, in order, to form the complete mantissa of the quotient.

There are some points to keep in mind in following the algorithm ---

• Suppose you have a divisor whose normalized mantissa is larger than the normalized mantissa of the dividend, for example —

15 ÷ 48

then the first digit of the quotient's mantissa could easily be zero. If calculation of only twelve digits were made, the first digit being zero would mean a loss of a significant digit. To guarantee that there are always at least 12 significant digits calculated for the quotient, it is necessary (and sufficient) to calculate 13 digits. The 13th digit can always be thrown away, or used for rounding, if the first digit is not zero. Thirteen digits are always sufficient because you can never have a quotient with **two** leading zeroes, if the divisor and the dividend are both normalized.

- The number of subtractions during the calculation of any digit in the quotient is always nine or less. Again, this is true because the divisor is normalized and its first digit is always non-zero.
- At times during the algorithm, it is necessary to left-shift the mantissa of Ar2 (the mantissa at this point is the remainder). When shifting the remainder to the left (multiplying it by 10), you are shifting the first digit out of Ar2. If this digit is zero, this is not a problem. But, if the digit is non-zero, you can't ignore it during subtractions of the divisor. This in effect means that you are dealing with a 13-digit dividend! Since the machine instructions deal in 12-digit arithmetic, it is necessary that the algorithm handle the thirteenth.

The FDV Instruction

The FDV instruction provided by the processor is the primary tool used to implement the algorithm in assembly language. The instruction works by accomplishing the equivalent of automatically repeated subtractions of Ar1 (the divisor) from Ar2 (the dividend) until Ar2 is smaller than Ar1. The instruction actually adds the divisor to the ten's complement of the dividend until an overflow occurs. However, this is equivalent to subtracting until an "underflow" occurs. It is easier to understand the procedure if the discussion is in terms of "subtractions", but it should be kept in mind that what is really occurring with the instruction is repeated "complement-additions" until overflow. This process is what is meant by the term "subtractions until overflow".

The FDV instruction returns the number of subtractions without overflowing as a binary number in the B register (bits 0-3). The remaining bits in the B register (4-15) are cleared.¹ In effect, then B contains the next digit in the quotient.

This process is repeated for the number of digits to be calculated. After each FDV execution, the result of the overflow subtraction is left in Ar2. Since Ar2 does not contain the remainder, it is necessary to patch Ar2 so that it will contain the proper value for the next calculation. To get the proper value it is necessary to add Ar1 back into Ar2 to undo the results of the last subtraction (which caused the overflow).²

There is one case, however, where Ar2 does not need to be patched up, and this is when the remainder (Ar2) is zero. This situation implies not only that no patching up is needed, but also that the quotient is complete — no further digits need be calculated. It should be noted that the number of subtractions (which has been stored in the B register) is one count too small, thus B has to be incremented in this case so that it can be used as the last digit in the quotient.

¹ Since bits 4-15 of the register are cleared during execution of the FDV instruction, you can't accumulate quotient digits there. After each digit is calculated, it is necessary that you store the digit as part of a quotient which you keep stored in another location.

² This is equivalent to complementing Ar2, adding in Ar1, then complementing Ar2 again.

Thirteen-Digit Dividends

The largest difficulty in the algorithm is attempting to deal with those instances where the dividend has thirteen digits. This situation arises when you shift the remainder left a place. The most significant digit must be retained when it is non-zero so that the subtractions are sub-tracted from the proper amount.

This shifting can be accomplished with the MLY instruction. With the way that the MLY instruction operates, the left-most digit (D_1) ends up being shifted out of Ar2 into register A (in the lower 4 bits, 0-3). Thus, the thirteen-digit algorithm must accomodate the most significant digit residing in the A register and the twelve least significant digits in the Ar2 register. The use of FDV must now take this modified situation into account.

When the FDV instruction is executed, Ar1 is subtracted from Ar2 until an overflow occurs. When this overflow occurs, it is necessary to decrement A and keep subtracting (without patching up Ar2). Each time an overflow occurs, A must be decremented until finally an overflow occurs when A is 0. This can be handled very neatly within a small loop.

Another aspect of dealing with thirteen-digit dividends is the count placed in B with each execution of FDV. Since each overflow is a "successful" subtraction in the sense that is part of a proper count of subtractions (at least until A is 0), then that subtraction must be counted, too. The difficulty with this is that FDV does not count this last (overflowing) subtraction. The solution obviously is to add 1 to the value in the B register each time FDV causes an overflow. However, with the last overflow, being the "real" overflow, the 1 shouldn't be added in, so after adding it in (during the loop), you have to subtract it back out again (after leaving the loop). To further complicate matters, if you have a zero remainder, you have to add it right back in again.

For example, if there happened to be three uses of FDV for a certain quotient digit, you form the quotient digit as -

If the same general situation produced a zero remainder, then the quotient digit is formed as —

Floating-Point Division Example

An example of a 13-digit division routine follows. The rules which it implements are -

- 1. Always increment the value returned in B after an FDV operation.
- 2. After incrementing B, check the contents of A. If non-zero, loop immediately, performing no other tests or activities.
- 3. When a quotient digit has been found (i.e., A is zero), check to see if the remainder is 0. If so, exit the division loop. Save the last digit found as part of the answer.
- 4. If the remainder is not 0, decrement the value of the last quotient digit found and save it as part of the answer. Then add back the divisor to the remainder.

The example does not include routines for testing and handling -

- signs
- division by zero
- exponents
- overflow
- rounding

These have to be handled in a real program before or after the division algorithm itself (as appropriate).

ISOURCE	! Some useful symbol:	<u>=</u> .
	=	
	*	
ISOURCE	Ar21: EQU Ar2+1	! First mantissa word
ISOURCE	Ar22: EQU Ar2+2	! Second mantissa word
ISOURCE	Ar23: EQU Ar2+3	! Third mantissa word
	<u>n</u>	
	=	
ISOURCE	! Working area	
ISOURCE	Quotient:	BSS 5 ! Working storage for quotient
ISOURCE	Quotient_1:	EQU Quotient+1 ! for quotient word 1
ISOURCE	Quotient 2:	EQU Quotient+2 ! for quotient word 2
ISOURCE	Quotient_3:	EQU Quotient+3 ! for quotient word 3
ISOURCE	Quotient 4:	EQU Quotient+4 ! for quotient word 4
ISOURCE	Quotient ptr:	BSS 1 ! for quotient word 1
ISOURCE	Digit_counter:	BSS 1 ! total digits (1-13)
ISOURCE	Within_word_ctr:	BSS 1 ! digit counter (1-4)

URCE ! Dividend already in Ar2, divisor already in Ar1 ISOURCE Divide: ! START OF DIVISION LOOP ISOURCE LDA =Quotient 1 ISOURCE STA Quotient_ptr ISOURCE CLR 4 ! In case of early termination, zero ISOURCE CMY ! Complement the dividend LDA =13 ISOURCE ISOURCE STA Digit_counter ! Initializes digit count to 13 LDA =0 ! Initialize FDV repetition counter to 1 ISOURCE ISOURCE ! ISOURCE Next word: ! WORKS ON NEXT SET OF 4 BCD DIGITS LDE = 4ISOURCE **ISOURCE** STB Within word ctr ! Initialize intermediate counter ISOURCE ! ISOURCE Next_digit: ! WORKS ON NEXT QUOTIENT DIGIT ! Clear lower bits of B ISOURCE SBL 4 ISOURCE STB Quotient ptr, I ! Clear next storage word ISOURCE ! ISOURCE ! QUOTIENT CALCULATION FDV ISOURCE ! Ar2=Ar2+Ar1 until overflow ISOURCE ADB Quotient_ptr,I ! Merge new digit with rest of answer ISOURCE ADB =1 ! Increment the new digit STB Quotient_ptr,I ISOURCE ! Save this state of the answer ISOURCE RIA Edv loop ! Decrement and loop if non-zero ISOURCE ! ISOURCE ! Check for a zero remainder ISOURCE ! ISOURCE LDA Ar21 ISOURCE IOR Ar22 ISOURCE IOR Ar-23 ISOURCE SZA Zero remainder ISOURCE ! ISOURCE ! No zero remainder, so divide acaij* Bqp birst reqtore dividend, shift it left, and then find new FDV repetition count. ISOURCE ! ISOURCE CMY ! Decomplement remainder (Ar2) ISOURCE FXA ! Add back in divisor (Ari) ISOURCE ADB = -1! Undo the increment ISOURCE STB Quotient_ptr,I ! Save the corrected partial answer ISOURCE ! Complement the dividend СМҮ ISOURCE ! Clear A LDA =0 ISOURCE MLY ! Shift dividend left ISOURCE ADA =-9 ! Determine next repetition count ISOURCE ! ISOURCE ! Bottom of loop maintenance follows ISOURCE ! ISOURCE DSZ Digit counter ! Decrement number of digits ISOURCE JMP Within word JMP Done ISOURCE ISOURCE ! ISOURCE Within word: ! DECREMENT POSITION WITHIN WORD DSZ Within word ctr ISOURCE JMP Next_digit ISOURCE ISZ Quotient_ptr **ISOURCE** JMP Next_word ISOURCE ISOURCE ! ISOURCE Zero remainder: ! ZERO REMAINDER BEFORE 13th DIGIT? DSZ Digit_counter ISOURCE JMP Shift I SOURCE ISOURCE JMP Done

```
ISOURCE !
ISOURCE Shift_left: SBL 4
ISOURCE Shift: DSZ Within word_ctr ! Shift digits as necessary
ISOURCE JMP Shift_left
ISOURCE
ISOURCE !
ISOURCE Done:
                              ! STORE AWAY THE RESULT
ISOURCE STB Quotient ptr, I ! Store last digits of quotient
ISOURCE
         LDA =Quotient
ISOURCE
         LDB =Ar2
ISOURCE XFR 4
                             ! Transfer quotient from working storage
                      to Ar2
                               to Ar2
ISOURCE
          HRM
ISOURCE
          SZB Continue
                             ! Go on, if all is OK
ISOURCE !
ISOURCE ! If leading digit of quotient was a zero, then old digit 13 must
        be saved as new digit 12
ISQURCE !
ISOURCE
         ISOURCE
                       is used elswehere for other thi
                               is used elswehere for other things
ISOURCE ADA Ar23
ISOURCE STA AR23
                              ! Add in new digit (old digit 12 was 0)
                              ! Save the corrected quotient
ISOURCE ! Proceed to adjust exponent accordingly
ISOURCE Continue: ! Compute sign, etc.
```

Arithmetic Utilities

Now that you have been introduced to the complexities of BCD arithmetic and floating-point operations, this is the time to present an easier way of accomplishing these operations — the arithmetic utilities.

In order to make BASIC a useful programming tool, the operating system already contains a number of floating-point routines. Recognizing that BCD and floating-point arithmetic can be a difficult and laborious task to implement, the assembly language provides a utility by which the operating system mathematical routines can be accessed. There are also utilities for the conversion of numerical data types.

UTILITY: Rel_math

The Rel_math utility provides access to all of the system floating point routines and functions.

General Procedure: The utility is told the execution address of the desired routine or function and is also told the number of parameters. The parameters are floating-point values stored in full-precision form (4 words each). The result is a full-precision value.

Special Requirements:

- If one operand is passed to the utility, the **address** of the operand is stored in register Oper 1.
- If two operands are passed to the utility, the **address** of the **first** operand is stored in register Oper_1 (as above), and the **address** of the **second** operand is stored in register Oper_2.
- The address where the result should be stored must be stored in the register Result.
- All operands and the result are full-precision values and require 4 words each.
- Values passed must make sense for the routine or function being called (e.g., Oper_2 should not point to a value of 0 when calling the division routine), or else an error results.
- The storage areas for the operands and the result must reside either in the ICOM region or in the Base page register. Specifically, they cannot be specified as Ar1 or Ar2.

Calling Procedure:

- 1. Assure that Oper 1, Oper 2, and Result contain the proper addresses as above.
- 2. Load register A with the number of parameters required for the routine or function (see the table on next page). Note that some routines require this number to be complemented.
- 3. Load register B with the execution address of the routine or function (see the table on the next page).
- 4. Call the utility.

Exit Conditions:

- The result is placed into the 4 words starting at the address pointed to by the Result register.
- Register A contains 0 if no error is encountered during execution of the utility.
- Register A contains the error number should an error be encountered during execution of the utility.

Rel_math Utility Routines, Addresses, and Parameters²

Operands (LDA =)	Octal Execution Routine	Address (LDB =)
(LDA =) Addition (Oper_1 + Oper_2) Subtraction (Oper_1 - Oper_2) Multiplication (Oper_1 * Oper_2) Exponentiation (Oper_1 ^ Oper_2) Oper_1 DIV Oper_2 Oper_1 MOD Oper_2 SQR INT FRACT EXP LOG LGT PROUND (Oper_1, Oper_2) DROUND (Oper_1, Oper_2) ABS SGN PI RND RES TYP ¹ SIN COS TAN ASN ACS ATN ERRL ¹ ERRN ¹ DECIMAL ^{1 3} IADR (Oper_1, Oper_2) ³ IMEM (Oper_1, Oper_2) ³ IMEM (Oper_1, Oper_2) ³ Oper_1 AND Oper_2 Oper_1 COper_2 Oper_1 < Oper_2 Oper_1 < Oper_2 Oper_1 < Oper_2 Oper_1 < Oper_2 Oper_1 < Oper_2 Oper_1 > Oper_2 O	Routine 146721B 146717B 147037B 147155B 34276B 33026B 33157B 31450B 33071B 33262B 34173B 34203B 34263B 32225B 32247B 33054B 36267B 3607B 3627B 36207B 36207B 36207B 36207B 36207B 36207B 36207B 32025B 32042B 34161B 61765B 61753B 162067B 162230B 162211B 162146B 32057B 32025B 32071B 32077B 32105B 3217B 32127B 32127B 32113B	(LDB =) $(LDB =)$ 2 2 2 2 2 2 2 2 2 2
$MIN (Oper_1, Oper_2)$	33704B	-2^{2}

 Table 1.
 Routines, Addresses, and Parameters for Rel_Math Utility

1 These functions return an integer value which is stored in the second word of the four words reserved by Result.

2 See the System 45 Operating and Programming manual for a detailed explanation of the function of each of these routines.

3 See the appropriate section of this manual for a detailed explanation of the function of each of these routines.

By way of example, suppose you have established two full-precision values which need to be multiplied. The call to the Rel_math utility to accomplish the multiplication would look similar to this —

```
ISOURCE ! Working storage

.

ISOURCE Operand_1: BSS 4

ISOURCE Operand_2: BSS 4

ISOURCE Product: BSS 4

.

ISOURCE Multiply: ! MULTIPLY THE OPERANDS

ISOURCE LDA =Operand_1

ISOURCE LDA =Operand_2

ISOURCE LDA =Operand_2

ISOURCE LDA =Product

ISOURCE LDA =Product

ISOURCE LDA =2 ! Call the multiply routine

ISOURCE LDB =147037B

ISOURCE LDB =147037B

ISOURCE JSM Rel_math

ISOURCE SIA Result ! Error encountered, so leave

.

.
```

Note in the last line of the example the call to the Error_exit utility is made when register A is not zero. When this occurs, A contains the error number of the error encountered — ready-made for calling the Error_exit utility.

UTILITY: Rel_to_int

The Rel_to_int utility provides for the conversion of a full-precision value into an integer.

General Procedure: The utility is given the address of the location of the full-precision value and the address of the location where the integer is to be stored.

Special Requirements: The full-precision value must be within the range of integers (-32768 to + 32767).

Calling Procedure:

- 1. Store the address of the full-precision value into register Oper 1.
- 2. Store the address where the integer is to be stored into register Result.
- 3. Call the utility.

Exit Conditions: The overflow bit in the processor is set if the result is outside the range of integers.

An example —

ISOURCE ISOURCE ISOURCE	! Working Operand: Value:	stor BSS BSS	rage 4 ! 1 !	Conta Conta	ins ins	s a full-precision value s an integer value
		-				
		=				
ISOURCE		LDA	=0per:	and		
ISOURCE		STA	Oper	4		
ISOURCE		LDA	=Valu	e		
ISOURCE		STA	Resul	t.		
ISOURCE		JSM	Rel to	o int	l	Convert real to integer
ISOURCE		SOC	*+3		!	Check for overflow
ISOURCE		LDA	=20		I	Set error number to 20
ISOURCE		JSM	Error	exit	ł	and take error exit
			-			
		=				
		=				

UTILITY: Rel_to_sho

The Rel_to_sho utility provides for the conversion of a full-precision value into a shortprecision one.

General Procedure: The utility is given the address of the location of the full-precision value and the address of the location where the short-precision value is to be stored.

Special Requirements: A short-precision value requires 2 words to be stored.

Calling Procedure:

- 1. Store the address of the full-precision value into register Oper 1.
- 2. Store the address of the storage area for the short-precision value into register Result.
- 3. Call the utility.

Exit Conditions: The overflow bit in the processor is set if the result is outside the range of integers.

An example —

```
ISOURCE ! Working storage
ISOURCE Operand: BSS 4
                        ! Contains full-precision value :
                BSS 2 ! Contains short-precision value
ISOURCE Value:
                  .
           . . . .
ISOURCE
               LDA =Operand
ISOURCE
               STA Oper_1
                LDA =Value
ISOURCE
ISOURCE
                STA Result
                JSM Rel_to_sho ! Convert full to short
ISOURCE
                 2
                  *
                  .
```

UTILITY: Int_to_rel

The Int to relutility provides for the conversion of an integer into a full-precision value.

General Procedure: The utility is given the address of the location of the integer and the address where the full-precision value is to be stored.

Calling Procedure:

- 1. Store the address of the integer into register Oper 1.
- 2. Store the address of the storage area for the full-precision value into register Result.
- 3. Call the utility.

Exit Conditions: The overflow bit in the processor is set if the result is outside the range of integers.

An example —

ISOURCE	! Working	stor	age											
ISOURCE	Operand:	BSS	1	ļ	Cont	ain	s a	an i	nt	eger				
ISOURCE	Value:	BSS	4	İ	Cont	ain	s i	full	-p	reci	sior	n ∨a	lue	
		ъ												
		w												
ISOURCE		LDA	=Oper	ar	nd									
ISOURCE		STA	0per	1										
ISOURCE		LDA	=Valu	l€										
ISOURCE		STR	Resul	Ť.										
ISOURCE		JSM	Int_t	0_	rel	ţ	Co	nver	~t	inte	ger	tο	real	
		۲												

UTILITY: Sho_to_rel

The Sho_to_rel utility provides for the conversion of a short-precision value into a fullprecision one.

General Procedure: The utility is given the address of the location of the short-precision value and the address of where the full-precision value is to be stored.

Calling Procedure:

- 1. Store the address of the short-precision value into register Oper 1.
- 2. Store the address of the storage area for the full-precision value into register Result.
- 3. Call the utility.

Exit Conditions: No special exit conditions.

An example —

ISOURCE ! Working ISOURCE Operand: ISOURCE Value:	storage BSS 2° ! Contains short-precision value BSS 4 ! Contains full-precision value
	. z
	s .
	.
ISOURCE	LDA =Operand
ISOURCE	STA Oper 1
ISOURCE	LDA =Value
ISOURCE	STA Result
ISOURCE	JSM Sho_to_rel ! Convert short to real
	•
	• · · · · · · · · · · · · · · · · · · ·

5-28 Arithmetic

Chapter **6**

Communication Between BASIC and Assembly Language

Summary: This chapter discusses the techniques used to pass information to and from assembly language programs. Calling assembly language routines and passing parameters are presented, along with issues involved in using common. Applicable utilities are also discussed.

Once assembly language programs have been written, they are executed using the ICALL statement. This statement is very similar to BASIC's CALL statement for subroutines. In fact, the function it performs is nearly identical in effect — the only difference is that the target subroutine has been written in assembly language instead of in BASIC. The ICALL statement also provides a means to pass data between BASIC and assembly programs through its argument list. Data can also be passed through common.

The ICALL Statement

There are two ways to execute an assembly language routine. One way is as an interrupt service routine when an interrupt occurs on the select code to which the service routine has been linked. This technique is discussed in Chapter 7. The other way is through executing an ICALL statement, either in a BASIC program or from the keyboard.

The syntax of the statement is —

```
ICALL {routine name} [ \langle \{argument\} [, \{argument\} [, ...] ] \rangle]
```

{routine name} is the name of the assembly language routine to be executed. {argument} is a data item that has the same characteristics as an argument in BASIC's CALL statement — there may be constants, variables, or expressions. (How these items correspond to instructions in the assembly language will be discussed shortly.)

By way of example, suppose that you have an ICALL that is being used to call a sort routine and the routine was written in such a way as to require two arguments be passed to it — an array to be sorted and the number of elements to be sorted (in that order). Then the following would be valid calls to that routine —

ICALL Sort(Test(*),100) ICALL Sort(Test\$(*),Number) ICALL Sort(Value(*),Events DIV 2)

Upon executing the ICALL statement, execution in a program transfers to the routine named. Upon executing a RET 1 instruction from the main assembly language program, execution returns to the BASIC statement which follows the ICALL. This is identical in effect to the CALL statement in BASIC.

In executing the statement from the keyboard, the routine named is executed just as if it were used in a program. Upon return from the routine, control is passed back to the keyboard. This is unlike BASIC's CALL statement, which cannot be executed from the keyboard.

To execute a routine, whether it be from a program or from the keyboard, its object code must currently reside in the ICOM region.

Corresponding Assembly Language Statements

When the ICALL is executed, it references a routine in the object code. When the module containing the routine was assembled, it declared that routine name as a "subroutine" entry point. ("Subroutine" and "routine" are synonymous in this context.) This is done with a SUB pseudo-instruction and a label.

When a SUB pseudo-instruction appears in the source code, it is a signal to the assembler that a subroutine entry point follows. Then the first machine instruction must have a label and that label becomes the routine name. If the label is missing, an error results (assembly-time "SQ" error).

For example, in the above examples of ICALL, the Sort routine could have been defined by the sequence —

ISOURCE SUB ISOURCE Sort: LDA =Array_info

except that there are arguments involved. (That exception is discussed in a moment.) The joint use of these two statements results in the label "Sort" being identified as a routine name, referenceable with an ICALL statement.

In general, no machine instructions or code-generating pseudo-instructions can be inserted between a SUB pseudo-instruction and the instruction containing the routine name. An exception to this exists when arguments are involved in a call.

Arguments

When a value is placed into an ICALL statement to be sent down to an assembly language routine, that value is called an "argument" (like the argument of a mathematical function). The corresponding structure on the assembly language side is called a "parameter". A parameter "declaration" is an assembly pseudo-instruction by which a parameter is created.

When a routine is to be called with arguments, a parameter declaration pseudo-instruction is required for each one of the arguments. These declarations appear between the SUB pseudo-instruction and the instruction containing the routine name.

Thus, when there is a call like —

```
ICALL Sort(Test$(*),100)
```

the corresponding assembly language entry looks like ---

ISOURCE SUB ISOURCE STR (*) ISOURCE REL ISOURCE Sort: LDA =Array info

To accommodate the two arguments, two parameter declarations had to appear between the SUB instruction and the entry point. (In this example, they were the STR and REL declarations.) These declarations may even have labels of their own —

```
ISOURCE SUB
ISOURCE Parameter_1: STR (*)
ISOURCE Parameter_2: REL
ISOURCE Sort: LDA =Rrray_info
```

The appearance of these labels does not affect the fact that "Sort" is the name of the routine.

Parameter declarations have "types" just like variables. These types have to correspond to the "types" of the arguments used in the ICALL. The declarations and their types are —

- INT meaning integer
- REL meaning full-precision
- SHO meaning short-precision
- STR meaning string
- FIL meaning a file number

In the above example, STR had to be used as the first parameter declaration because the first argument was a string. Similarly, REL had to be the second declaration because the second argument was a numeric expression (which is always full-precision).

When an array is to be passed, the declaration is followed by an "array identifier" — (\star). Thus, when arrays are involved, the declarations appear as —

INT(*)	meaning an integer array
REL(*)	meaning a full-precision array
SHO(*)	meaning a short-precision array
STR(*)	meaning a string array

File numbers are not passed in arrays, so that the declaration FIL cannot be followed by an array identifier. When passing file numbers to assembly language routines, the file number must be preceded by a "#" character.

ICALL Sort (#File_number,Entries,Type)

Failure to include the "#" before the file number or file number variable results in an error.

Since the example call above uses a string array as the first argument, the corresponding assembly language parameter declaration uses an array identifier after STR.

The parameter declarations are associated with the arguments in the ICALL in the same order. If the types do not match when the ICALL is executed, an error occurs (number 8).

So, if the subroutine entry looks like —

ISOURCE SUB ISOURCE STR (*) ISOURCE REL ISOURCE Sort: LIA =Array_info ICALL Sort(Test\$(*),100)

but these ICALLs result in run-time errors —

```
ICALL Sort(Test$,100)
ICALL Sort(Test(*),100)
ICALL Sort(Test$(*),"ASCENDING")
```

Each declaration reserves three words in the object code upon assembly. As a result of the ICALL execution, these words contain a descriptor of the corresponding argument. These descriptors are used by the utilities for fetching and storing values. Thus, in the Sort calling example above, when the ICALL is executed, a descriptor for Test\$(*) is stored in the three words starting at Parameter_1. Similarly, a descriptor for the constant 100 is stored in the three words starting at Parameter 2.

The types discussed here do not apply just to simple variables, arrays, and constants. They also apply to single elements of arrays and expressions. If you have a STR parameter declaration, for example, any of the following would be valid as arguments in the ICALL statement —

```
Test$(1)
CHR$(127)&Test$
RPT$("A",20)
Test$[1,Stop]
```

It is similar for numerical expressions.

The number of arguments passed by an ICALL statement must be no more than the number of parameter declarations in the subroutine entry. There may be fewer, however. The actual number passed is stored in the word reserved by the SUB pseudo-instruction.

Unlike the CALL statement in BASIC, the ICALL statement can be executed from the keyboard. In doing so, any variables used as arguments pass their current values to the routine.

"Blind" Parameters

With explicit parameter declarations, an error occurs if a different type of variable or expression is passed. In many cases, the error is desirable — you do not want different types of arguments corresponding to a single parameter declaration. But in other cases, the error might not be as desirable. Take the example of a sort. You might want the sort to have the capability of sorting any type of array. You have two choices in that case — you can make different routines, each with the appropriate declarations, or you can use a single entry point and the ANY parameter declaration.

The ANY declaration —

ANY

is "blind" to the type of the corresponding argument in the ICALL statement. When used, it accepts any type of argument as valid — string, full-precision, short-precision, integer, file number, array. The descriptor for the argument is stored in the three words set aside, just as in the other declarations.

Now, if your entry looks like —

ISOURCE		SUB	
ISOURCE		ANY	
ISOURCE		REL	
ISOURCE	Sort:	LDA	=Array_info

ICALL Sort(Test\$(*),100) ICALL Sort(Test(*),100) ICALL Sort(Test\$,100) ICALL Sort(Test\$,100) ICALL Sort(Test,100)

When using the ANY declaration, it becomes the responsibility of your assembly language routine to determine what is a valid parameter and what is not. You lose the automatic type-checking available with explicit declarations. Techniques for doing this are discussed in the next section.

Getting Information on Arguments

When an ICALL is executed with an argument, and the corresponding parameter is blind, then it may be necessary for the purposes of your routine to know what type of argument is actually passed. This need can be present even when one of the explicit type declarations is used, since an expression or constant can be passed as easily as a variable.

A utility has been provided for obtaining this information, along with other "vital statistics" which may be useful to know during the execution of your routine. Before describing the utility itself, let's look at the information which it can provide you about an argument.

The information returned by the utility is stored in an area which you set aside for it. The size of the area can vary from 3 words to 39. The information, when returned, is in the following form —

Word #	Description
0	Argument type (see description later)
1	Number of dimensions (0 for non-arrays)
2	Size, in number of bytes (dimensioned length, for strings)

(for arrays only:)

3	Total number of elements in array
4	Two's complement of the lower bound of first dimension
5	Absolute size of first dimension (upper bound $-$ lower $+$ 1)
6	Two's complement of the lower bound of second dimension (if any)
7	Absolute size of second dimension
8	Two's complement of the lower bound of third dimension (if any)
9	Absolute size of third dimension
10	Two's complement of the lower bound of fourth dimension (if any)
11	Absolute size of fourth dimension
12	Two's complement of the lower bound of fifth dimension (if any)
13	Absolute size of fifth dimension
14	Two's complement of the lower bound of sixth dimension (if any)
15	Absolute size of sixth dimension
16	Element offset (from the first element)
17	Size, in words, of each element (dimensioned length, for strings)

(dependent upon memory size of your machine:)

÷.

18-20	Pointer parameters
21-23	Pointer parameters (only for machines over 64K bytes)
24-26	Pointer parameters (only for machines over 128K bytes)
27-29	Pointer parameters (only for machines over 192K bytes)
30-32	Pointer parameters (only for machines over 256K bytes)
33-35	Pointer parameters (only for machines over 320K bytes)
33-35	Pointer parameters (only for machines over 320K bytes)
36-38	Pointer parameters (only for machines over 384K bytes)

Value	Туре
0	String expression
1	Full-precision expression
2	Short-precision expression
3	Integer expression
4	String simple variable
5	Full-precision simple variable
6	Short-precision simple variable
7	Integer simple variable
8	String array element
9	Full-precision array element
10	Short-precision array element
11	Integer array element
12	String array
13	Full-precision array
14	Short-precision array
15	Integer array
16	File number

The argument type returned in word 0 is as follows —

The size, in bytes, will be one of the following values —

For an integer	2
Short-precision	4
Full-precision	8
String variables	dimensioned length
String expressions	actual length

The utility which retrieves all this information is called "Get_info".

UTILITY: Get_info

General Procedure: The utility is given the address where the information is to be returned and the address of the parameter declaration. It returns with the information on the argument in the ICALL corresponding to the parameter declaration.

Special Requirements:

- The location where it is to store the information must be adequate to hold all that may be returned. For non-arrays, 3 words will suffice. For arrays, up to 39 words may be required (as above). If you are writing a general routine, it may be wise to play it safe by setting aside a full 39 words.
- An argument must have been passed by the ICALL (in the case of parameters) or a corresponding BASIC COM declaration must exist (in the case of common declarations).¹

Calling Procedure:

- 1. Load register A with the address of the storage area for the information to be returned.
- 2. Load register B with the address of the parameter declaration corresponding to the desired argument.
- 3. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction following the JSM. Since there are no error exits, and there is no requirement that there be as many arguments as there are parameter declarations, an argument must actually have been passed by the ICALL in order for the utility to work correctly.

Following up on the example in the previous section, suppose the first thing that the Sort routine does is check to see if the first parameter passed is an array. Then, by using the Get_info utility, it is possible to have the instructions look as follows —

ISOURCE	Array in	nfo:	BSS 39		
ISOURCE		SUB			
ISOURCE	Array:	AMY			
ISOURCE	Number:	REL			
ISOURCE	Sort:	LDA	=Array info	ł	Get info on argument
ISOURCE		LDB	=Array		-
ISOURCE		JSM	Get_info		
ISOURCE		LDA	Array info	ļ	Get the argument's type
ISOURCE		CPA	=16	ļ	Is it a file number?
ISOURCE		JMP	Error 8	Ī	Yes, indicate error 8
ISOURCE		Ð₽	=-12		
ISOURCE		SAP	*+2	Ĩ	An array (types 12-15)?
ISOURCE		JMP	Error_8	ļ	No, indicate error 8

1 This and the following utilities are also used to access variables in the common area. An explanation of BASIC COM declaration is found in the section of this chapter entitled "Using Common".

The array information returned by the Get_info utility is used for accessing elements in arrays passed as arguments. It is used by the element-retrieval utilities described in a later section of this chapter. Once retrieved, the information is usable any number of times for accessing the array associated with it. It is not necessary to retrieve the information every time you access an array, as long as you have not altered the information (except the pointer) between accesses.

The seventeenth word of the array information (word 16 on the chart) is reserved to hold the offset from the start of the array of the element to be accessed. Therefore, it is permissible (indeed, it is **necessary**) to alter the contents of that location to indicate which element in the array you wish to retrieve. None of the other words returned by the utility should be changed.

An example of how to calculate array offsets is given here. It is convenient to give labels to some of the words of information returned by the Get info utility.

ISOURCE	Storage:	BSS	4
ISOURCE	Lower1:	BSS	1
ISOURCE	Size1:	BSS	1
ISOURCE	Lower2:	BSS	1
ISOURCE	Size2:	BSS	1
ISOURCE	Lower3:	BSS	1
ISOURCE	Size3:	BSS	1
ISOURCE	Lower4:	BSS	1
ISOURCE	Size4:	BSS	1
ISOURCE	Lower5:	BSS	1
ISOURCE	Size5:	BSS	1
ISOURCE	Lower6:	BSS	1
ISOURCE	Size6:	BSS	1
ISOURCE	Element:	BSS	1
ISOURCE	Remainder:	BSS	22

In addition, space is reserved for up to six array subscript indices.

ISOURCE	Index1:	BSS	1
ISOURCE	Index2:	BSS	1
ISOURCE	Index3:	BSS	İ
ISOURCE	Index4:	BSS	1
ISOURCE	Inde×5:	BSS	1.
ISOURCE	Index6:	BSS	1

ISOURCE	LDA Index1	! For all dimensions.
ISOURCE	ADA Loweri	
ISOURCE	LDB Size2	! For 2- and higher dimensions.
ISOURCE	MPY	-
ISOURCE	ADA Index2	!
ISOURCE	ADA Lower2	1
ISOURCE	LDB Size3	! For 3- and higher dimensions.
ISOURCE	MPY	-
ISOURCE	ADA Index3	
ISOURCE	ADA Lower3	
ISOURCE	LDB Size4	! For 4- and higher dimensions.
ISOURCE	MFY	-
ISOURCE	ADA Index4	
ISOURCE	ADA Lower4	1
ISOURCE	LDB Size5	! For 5- and higher dimensions.
ISOURCE	MPY	!
ISOURCE	ADA Index5	
ISOURCE	ADA Lower5	1
ISOURCE	LDB Size6	! For 6 dimensions.
ISOURCE	MPY	i
ISOURCE	ADA Index6	I.
ISOURCE	ADA Lower6	
ISOURCE	STA Element	! For all dimensions.

For a six-dimensional array, the computation of the element offset (word 16 returned by "Get info") is -

For an array with a smaller number of dimensions, the operations involving the higher subscripts can be omitted.

Note that the indices in this example were not checked against the array bounds. Following is an example of a program segment which checks the index against the upper and lower bounds of a one-dimensional array:

ISOURCE	LDA	Indexi
ISOURCE	ADA	Loweri
ISOURCE	SAM	Lower bound err
ISOURCE	LDB	Size1
ISOURCE	TCB	
ISOURCE	ADB	A
ISOURCE	SBP	Upper_bound_err
ISOURCE	STA	Element

There is no need to check for overflow, since the element offset is never greater than 32 767.

When making multiple accesses with the same information, caution should be taken if an array is involved. The information returned by Get_info is a copy of the system information and as such remains valid for as long as the ICALL lasts. However, as soon as an ICALL completes, the system has an opportunity to change its own information (via REDIM or subprogram recursion). This renders the original data returned by Get_info invalid.

Thus, while it is sufficient to call Get_info only once during an ICALL (independent of the number of times the information is used), it is advisable to use Get_info during each ICALL rather than attempting to retain the information from one ICALL to the next.

Retrieving the Value of an Argument

At some point during execution of your assembly language routine, you may want to retrieve the value of an argument so that you can use it in your processing. By doing so, you accomplish one of the methods of communicating with assembly language — namely, passing a value **to** the assembly language routine from BASIC.

There are a number of utilities for this purpose. The one to use is dependent upon the type of argument passed. The utilities available are —

1

Name	Used For	Example Parameters
Get_value	Simple variables, expressions, individual elements of arrays passed as arguments, and file numbers	Alpha,Z*SIN(Z),A\$,''ABC'', B\$(10),Array(2,3),#5
Get_element	Elements (from arrays passed as arguments)	Array(*),Z\$(*)
Get_bytes	Substrings of strings passed as arguments either as simple string variables, expressions, or individual elements of arrays passed as arguments	''DEF'',String\$,B\$&C\$, Z\$(2,3),Z\$[5,6]
Get_elem_bytes	Substrings of individual elements (from string arrays passed as arguments)	Z\$(*)

How each of these utilities is used is described in the immediately following pages.

UTILITY: Get_value

1

General Procedure: The utility is given the address of the parameter declaration and the address where the value of the argument is to be stored. It returns with that value stored in the indicated area. It works on simple variables, expressions, strings, and individual elements of arrays (passed as arguments) of any type.

Special Requirements:

• The storage area set aside for the value must be large enough to hold the value. The size of the storage area must be —

for a file number	1 word
for an integer value	1 word
for a short-precision value	2 words
for a full-precision value	4 words
for a string	maximum length in bytes \div 2 + 1 word
	(+ 1 additional word if the maximum
	string length is odd)

- An argument must have been passed by the ICALL (in the case of parameters) or a corresponding BASIC COM declaration must exist (in the case of common declarations).
- The storage area must lie within the ICOM region.

Calling Procedure:

- 1. Load register A with the address of the storage area for the value.
- 2. Load register B with the address of the parameter declaration.
- 3. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction following the call.

In the case that it is used to pass a string value, the Get_value utility returns the entire dimensioned string (which includes all characters between the current length and the dimensioned length of the string).

Here is an example call to the utility, retrieving information from a full-precision argument —

ISOURCE	Value:	BSS	4
ISOURCE		SUB	
ISOURCE	Parameter:	REL	
ISOURCE	Entry:	LDA	=Value
ISOURCE		LDB	=Parameter
ISOURCE		JSM	Get_ualue

UTILITY: Get_element

General Procedure: This is similar to the "Get_value" utility. This utility retrieves a value from an element of an array passed as an argument. It works on arrays of any type.

Special Requirements:

• The storage area set aside for the value must be large enough to hold the value. The size of the storage area must be —

for an integer	1 word		
for a short-precision value	2 words		
for a full-precision value	4 words		
for a string	maximum length in bytes $\div 2 + 1$ word		
	(+ 1 additional word if the maximum		
	string length is odd)		

- The array information must be retrieved with the "Get_info" utility before calling this utility.
- The offset of the element in the array must be correct in the array information (word 16 returned by "Get_info"). It should be remembered that the offset of the element is dependent upon the number of dimensions in the array and the length of each. A calculation may be necessary to arrive at the offset when accessing multiple-dimension arrays. The offset is in terms of number of elements.¹
- The storage area must lie within the ICOM region.

Calling Procedure:

- 1. Store the element offset within the array information (word 16 returned by "Get-info").
- 2. Load register A with the address of the storage area for the value.
- Load register B with the address of word 0 of the information returned by the "Get_ info" utility (see description of that utility).
- 4. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction following the call.
Here is an example call, retrieving the third element (relative element 2) of an integer array and placing it into Value —

ISOURCE	Value:	BSS	1		
ISOURCE	Array info:	BSS	39		
ISOURCE	Element:	EQU	Array info+16	!	Element offset
ISOURCE		SUB	·		
ISOURCE	Parameter:	INT	(*)		
ISOURCE	Entry:	LDA	=Array info		Get the array info
ISOURCE		LDB	=Parameter		
ISOURCE		JSM	Get info		
ISOURCE		LDA	=2	Į	Set element offset to 2
ISOURCE		STA	Element		
ISOURCE		LDA	=Value	ļ	Get the value
ISOURCE		LDB	=Array info		
ISOURCE		JSM	Get element		

UTILITY: Get_bytes

General Procedure: This is similar to the "Get_value" utility. This utility retrieves a substring of a string passed as an argument, having been given the starting byte and the number of bytes to be retrieved.

Special Requirements:

- The storage area set aside for the substring must be large enough to hold all of the substring. This includes not only the string itself, but also two extra words. Remember, a word holds two characters.
- A string must have been passed by the ICALL for the utility to work properly.
- The storage area must lie within the ICOM region.

Calling Procedure:

- 1. Store the number of the starting **byte** of the substring desired into the first word of the storage area set aside for the substring. (Note that bytes 0 and 1 are the length word of the string.)
- 2. Store the number of bytes in the substring into the second word of the storage area.
- 3. Load register A with the address of the storage area.
- 4. Load register B with the address of the parameter declaration.
- 5. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction following the call. The substring is returned starting with the third word of the storage area. (Note: Since the second word contains the length of the substring, you have a string data structure starting with the second word!)

```
For example —

ISOURCE Value: DAT 2 ! 1st character (ignore length)

ISOURCE DAT 10 ! Transfer 10 characters

ISOURCE BSS 5 ! Substring storage area

ISOURCE SUB

ISOURCE Parameter: STR

ISOURCE Entry: LDA =Value ! Info already stored

ISOURCE LDB =Parameter

ISOURCE JSM Get_bytes
```

In this example, Value is the storage area. Since 2 has already been generated and stored in the first word, and 10 in the second, the first 10 bytes of the string would be transferred. Of course, the original string must contain at least 10 characters — or the bytes which are returned may be nonsense. Why was the value 2 stored as the byte number? Because bytes in a string are numbered starting with 0, and bytes 0 and 1 contain the length of the string (see "Data Structures" in Chapter 3).

UTILITY: Get_elem_bytes

General Procedure: This is a combination of the "Get_element" and "Get_bytes" utilities. This utility retrieves a substring of an element of a string array passed as an argument. The utility is given the starting byte and the number of bytes to be retrieved.

Special Requirements:

- The storage area set aside for the substring must be large enough to hold all of it. This includes not only the string itself, but also two extra words. Remember, a word holds two characters.
- The array information must be retrieved with the "Get_info" utility before calling this utility.
- The offset of the element in the array must be correct in the array information (word 16 returned by "Get_info"). It should be remembered that the offset of the element is dependent upon the number of dimensions in the array and the length of each. A calculation may be necessary to arrive at the offset when accessing multiple-dimension arrays. The offset is in terms of number of elements.¹
- The storage area must lie within the ICOM region.

Calling Procedure:

- 1. Store the number of the starting byte of the substring desired into the first word of the storage area set aside for the substring. (Note that bytes 0 and 1 are the length word of the string.)
- 2. Store the number of bytes in the substring into the second word of the storage area.
- 3. Store the offset within the array information.
- 4. Load register A with the address of the storage area for the value.
- 5. Load register B with the address of word 0 of the information returned by the "Get_ info" utility (see description of that utility).
- 6. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction following the call. The substring is returned starting with the third word of the storage area. (Note: since the second word contains the length of the substring, you have a string data structure starting with the second word!)

For example —

ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	Value: Array_info Element: Parameter:	DAT DAT BSS BSS EQU SUB STP	2 ! 1st 10 ! Tran 5 ! Subs 39 ! Arra Array_info+ (*)	chara sfer tring y inf 16 !	acter (ig 10 chars g storage formation El <i>e</i> ment	gnore length) acters e area) offset	
	I GAT GAINE VET .	OTIC	207				
		=					
		=					
		=					
ISOURCE	Entry:	LDA	=Array_info	ļ	Get the	array pointe	r -
ISOURCE		LDB	=Parameter				
ISOURCE		JSM	Get info				
ISOURCE		LDA	=2 -	ł	Set elem	ent offset t	o 2
ISOURCE		STA	Element				
		=					
ISOURCE		I DA	=Value	I	Info alr	osdu stanad	
TSOURCE		INR	=Appaulinfo			eady broned	
TRANDE		TCM	Cot alon bu	+ .~.~			
		CON	de «Te i eill DÀ	ve2			

In this example, Value is the storage area. Since 2 has already been generated and stored in the first word, and 10 in the second, the first 10 bytes of the string element are transferred. Of course, the string element must contain at least 10 characters — or the bytes which are returned may be nonsense.

Changing the Value of an Argument

At some point during the execution of your assembly language routine, you might want to accomplish the other half of this method of communication with BASIC — namely, changing the value of a BASIC variable which is used as an argument, in effect changing the value of a BASIC variable from the assembly language routine.

As with retrieving a value, there are a number of utilities available for changing a value. The one to use is dependent upon the type of argument passed. The utilities available are —

Name	Used For	Example Parameters
Put_value	Simple variables, strings and individual elements of arrays passed as arguments	Alpha,A\$,B\$(10),Array(2,3)
Put_element	Elements (from arrays passed as arguments)	Array(*),Z\$(*)
Put_bytes	Substrings of strings passed as arguments either as simple variables or as individual elements of arrays passed as arguments.	String \$,Z\$(2,3)
Put_elem_bytes	Substrings of elements (from string arrays passed as arguments)	Z\$(*)

Note that these utilities modify variables existing in the BASIC environment. They do not modify the length of the variables as dimensioned in BASIC.

How each of these utilities is used is described in the immediately following pages.

UTILITY: Put_value

General Procedure: The utility is given the address of the parameter declaration and the address of the value. It changes the value of the BASIC variable associated with the parameter. It works only on simple variables, expression strings, and individual elements of arrays (passed as arguments) of any type.

Special Requirements:

- The value must have the appropriate data structure for the data type of the argument (see "Data Structures" in Chapter 3).
- An actual argument must have been passed by the ICALL for the utility to work properly.

Calling Procedure:

- 1. Load register A with the address of the storage area of the value.
- 2. Load register B with the address of the parameter declaration.
- 3. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction following the call.

Here is an example call to the utility, passing information to an integer argument —

```
ISOURCE Value: BSS 1
ISOURCE SUB
ISOURCE Parameter: INT
.
.
.
ISOURCE LDA =Value
ISOURCE LDB =Parameter
ISOURCE JSM Put_value
```

Here is an additional example demonstrating string passing -

```
COM S$

.

.

ISOURCE EXT Put_value

ISOURCE Value: DAT 6, "STRING"

COM

ISOURCE Com1: STR

.

.

ISOURCE LDA =Value

ISOURCE LDB =Com1

ISOURCE JSM Put_value

.
```

UTILITY: Put_element

General Procedure: This is similar to the "Put_value" utility. This utility changes the value of a single element in an array passed as an argument. It works on arrays of any type.

Special Requirements:

- The value must have the appropriate data structure for the data type of the argument (see "Data Structures" in Chapter 3).
- The array information must be retrieved with the "Get_info" utility before calling this utility.
- The offset of the element in the array must be correct in the array information for the array (word 16 returned by "Get_info"). It should be remembered that the relative element number of the element is dependent upon the number of dimensions in the array and the length of each. A calculation may be necessary to arrive at the offset when accessing multiple-dimension arrays.
- The storage area must lie within the ICOM region.

Calling Procedure:

- 1. Store the element offset into the array information (word 16).
- 2. Load register A with the address of the storage area for the value.
- 3. Load register B with the address of word 0 of the information returned by the "Get info" utility (see description of that utility).
- 4. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction following the call.

Here is an example call, storing information from Value into element 0 of an integer array -

ISOURCE	Value:	BSS	1		
ISOURCE	Array info:	BSS	39		
ISOURCE	Element:	EQU	Array_info+16	ļ	Element offset
ISOURCE		SUB			
ISOURCE	Parameter:	INT	(#)		
		-			
		-			
		=			
ISOURCE		LDA	=Array_info	ļ	Get array info
ISOURCE		LDB	=Parameter		
ISOURCE		JSM	Get_info		
ISOURCE		LDA	=0	ļ	Set offset to 0
ISOURCE		STA	Element		
		-			
		-			
ISOURCE		STR	Value	ļ	Change the value
ISOURCE		LDA	=Value		
ISOURCE		$\Box DB$	=Array_info		
ISOURCE		JSM	Put element		

UTILITY: Put_bytes

General Procedure: This is similar to the "Put_value" utility. This utility changes the value of a substring which is part of a string variable or an individual element of a string array, having been given the starting byte and the number of bytes to be changed as well as the new characters.

Special Requirments:

- The bytes to be transferred are preceded by two words in the storage area. The two words contain the starting byte for the substring and the number of bytes to be transferred.
- A string variable or an element of a string array must have been passed as an argument for the utility to work properly.

Calling Procedure:

- 1. Store the number of the starting **byte** of the substring to be changed into the first word of the storage area. (Note that bytes 0 and 1 are the length word of the string)
- 2. Store the number of bytes in the substring into the second word of the storage area.
- 3. Load register A with the address of the storage area.
- 4. Load register B with the address of the parameter declaration.
- 5. Call the utility.

Exit Conditions: There are no error exits from the utility, so it always returns to the instruction following the call.

For example —

ISOURCE Value: ISOURCE ISOURCE ISOURCE	DAT 2 DAT 10 BSS 5 SUB	! 1st character (ignore length) ! Transfer 10 characters ! Substring storage area
ISOURCE Parameter:	STR	
ISOURCE ISOURCE ISOURCE	LDA =Value LDB =Paran JSM Put_by	e ! Other info already saved meter ytes

In this example, Value is the storage area containing the string to be transferred. Since 2 has already been generated and stored in the first word, and 10 in the second, the first 10 bytes of the string are changed. Why was the value 2 stored as the byte number? Because bytes in a string are numbered starting with 0, and bytes 0 and 1 contain the length of the string (see "Data Structures" in Chapter 3).

UTILITY: Put_elem_bytes

General Procedure: This is a combination of the "Put_element" and "Put_bytes" utilities. This utility changes a substring of an element in a string array which has been passed as an argument. The utility is given the starting byte and the number of bytes to be transferred.

Special Requirements:

- The bytes to be transferred are preceded by two words in the storage area. The two words contain the starting byte for the substring and the number of bytes to be transferred.
- The array information for the array must be retrieved with the "Get_info" utility before calling this utility.
- The offset of the element in the array must be correct in the array information for the array (word 16 returned by "Get_info"). It should be remembered that the offset of the element is dependent upon the number of dimensions in the array and the length of each. A calculation may be necessary to arrive at the offset when accessing multiple-dimension arrays. The offset is in terms of number of elements.¹

Calling Procedure:

- 1. Store the number of the starting **byte** of the substring to be changed into the first word of the storage area. (Note that bytes 0 and 1 are the length word of the string.)
- 2. Store the number of bytes in the substring into the second word of the storage area.
- 3. Store the element offset into the array information (word 16).
- 4. Load register A with the address of the storage area for the string to be transferred.
- 5. Load register B with the address of word 0 of the information returned by the "Get info" utility (see description of that utility).
- 6. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction following the call.

```
For example -
```

```
ISOURCE Value: DAT 2
                          ! 1st character (ignore length)
                DAT 10 ! Transfer 10 characters
BSS 5 ! Substring storage area
ISOURCE
ISOURCE
ISOURCE Array info: BSS 39
ISOURCE Element: EQU Array_info+16 ! Element offset
ISOURCE
                 SUB
ISOURCE Parameter: STR (*)
                   =
             LDA =Array_info
ISOURCE
                                  ! Get array info
ISOURCE
                LDB =Parameter
ISOURCE
                JSM Get info
ISOURCE
                 LDA =2
                                  I Set offset to 2
                 STA Element
ISOURCE
ISOURCE LDA =Value
                                  ! Info already saved
ISOURCE
                 LDB =Array info
ISOURCE
                 JSM Put elem bytes
```

In this example, Value is the storage area for the string to be transferred. Since 2 has already been generated and stored in the first word, and 10 in the second, the first 10 bytes of the string element are changed. It is the responsibility of the software (not shown) to assure that 10 characters of valid data are stored in the remainder of the storage area.

Using Common

A faster way to pass information between BASIC and assembly language routines is through BASIC's common area.

You may recall from subprograms in BASIC that if you have a COM statement in the main program, the locations named therein can be accessed by other BASIC subprograms and functions through their own COM statements. Though the subprograms may change the names, the locations are the same. The order of appearance in a COM statement is all-important. If a main program has the statement —

COM A,B,C

and a subprogram has the statement ----

COM X,Y,Z

then X and A are the same storage location, B and Y are the same, and C and Z are the same.

The same kind of operation is available in your assembly language routines with the COM pseudo-instruction —

COM

As with the SUB pseudo-instruction, the COM only serves as a preface. It is followed by one or more parameter declarations of the same types as in the SUB —

ANY INT

REL

SHO

STR

The FIL is not permitted, since there is no corresponding item within BASIC's COM syntax.

Each pseudo-instruction used after an assembly language COM corresponds to an item in the COM declaration in the main BASIC program. Just as in a BASIC subprogram, the types must agree.¹ However, the ANY pseudo-instruction fulfills the same function here as it does with the SUB pseudo-instruction — to allow any type of item to be passed.

As with SUB, arrays are designated by following the type with an array identifier — (\div) . If the type is ANY, the array identifier is not allowed.

Each pseudo-instruction reserves three words of memory when assembled. And, like SUB, the words are used to contain a descriptor. The descriptors are used by the variable retrieval utilities for fetching and storing values in the common area. The same utilities used in fetching and storing argument values are used for the same purposes for values in the common area. These utilities are —

Get_info Get_value Get_element Get_bytes Get_elem_bytes Put_value Put_element Put_bytes Put_elem_bytes

1 If the types do not correspond, an error results (number 198). This matching is checked only for the module containing the routine which was ICALLed.

The utilities are called in the same fashion and are subject to the same restrictions. See the description of the utilities in the preceding sections of this chapter to determine how they are used.

The item pseudo-instructions used with the COM pseudo-instruction can have their own labels, just as the parameter declarations used with a SUB may have. And just as in a BASIC subprogram, they need not have the same names as were given the corresponding items in BASIC. For example, suppose the following BASIC common statement exists at the time of a call to an assembly language routine —

```
COM Q(20),Z$[10]
```

then you could access $Q(\star)$ and Z\$ by using these pseudo-instructions —

ISOURCE COM ISOURCE X: REL (*) ISOURCE Y: STR

Note the differences in names.

If the number of item pseudo-instructions in the assembly language routine exceeds the number of items in common at the time the routine is called, an error results (number 199).

Similar to BASIC, a common declaration can contain more than one COM sequence. All the COM sequences are treated together as a single common area. For example —

BASIC: COM REAL A1,B1,INTEGER,C1,D1 ASSEMBLY: COM A1: REL B1: REL . . COM C1: INT D1: INT

NOTE

If a BASIC COM statement is changed, modules containing the COM pseudo-instruction should be re-IASSEMBLEd or re-ILOADed before executing an ICALL statement.

Busy Bits

Overlapped processing in the 9845 is partially implemented through the facility of "busy bits".

Each variable located in the BASIC value or common areas has associated with it two bits which are independent of the value — a "read" busy bit, and a "write" busy bit. Each time an I/O operation is executed that cannot be buffered, one of the busy bits is set. If a variable is having its value changed by the I/O operation, then the read busy bit is set. If the variable is outputting its value in the I/O operation, then its write busy bit is set. If a variable is not involved in a pending I/O operation both bits are cleared. When the I/O operation is completed, the busy bits for the variables involved are cleared.

When an I/O operation is encountered during execution of BASIC statements, the appropriate busy bits are set and a request is made by the operating system for the resources to satisfy the operation. Until that operation is complete, BASIC (in OVERLAP mode), continues to execute succeeding lines in the program until it encounters a statement which contains variables with busy bits that are set.

If the statement is attempting to use the value of a variable and its read busy bit is set, then the further execution of the statement waits until the busy bit is cleared. The same is true for a statement attempting to change the value of a variable when either its read or write busy bit is set. When the I/O operation completes, the busy bits are cleared and the waiting statement is executed.

In short, overlapped processing uses busy bits as a signal as to whether a statement can be executed or not.

If an ICALL statement is executed with overlapped processing, it is possible that a BASIC variable may be "busy" when the routine wants to access it. Although it is still possible to access the variable without regard to the status of the busy bits, frequently that is not a desirable programming approach. You may on occasion want to check the value of the busy bits when you suspect the user of the routine may be using overlapped processing.

Busy bits are checked from an assembly program using the "Busy" utility to be described shortly. If you are checking the bits for a busy condition, and the busy condition is set, it remains set throughout the time you are in the assembly routine. For it to become un-busy, you must give the operating system a chance to perform the I/O operation and clear the busy bits. One way to do this is to exit the ICALL and return to BASIC.

For example —

330 ICALL Sort(Busy) 340 IF Busy THEN 330

If the Sort routine exits, setting Busy to 0 if a busy condition is not encountered, and to non-zero otherwise, this keeps trying to execute Sort until the common variables which are busy become un-busy and it can proceed on its way. By exiting the routine after each unsuccessful attempt, the operating system is given an opportunity to perform the I/O operation which has the variable(s) tied up.

UTILITY: Busy

The Busy utility checks the status of the busy bits of a variable.

General Procedure: The utility is given the location of the declaration for the variable. It returns the value of the busy bits for that variable into the A register.

Special Requirements: This utility should be used for all variables involved in overlapped I/O operations.

Calling Procedure:

- 1. Load register B with the address of the pseudo-instruction of the declaration to be checked.
- 2. Call the utility.

Exit Conditions: The utility returns the busy bits in the A register. The "read" busy bit is in bit 0 and the "write" busy bit is in bit 1. The other bits are cleared.

In the following example, if any of the busy bits among three common variables is set, a flag is set and the routine is exited —

ISOURCE ISOURCE	Variable1:	COM INT
ISOURCE	Variable2:	SHO
ISOURCE	Variable3:	REL
	E	
	2	
ISOURCE		SUB
ISOURCE	Busy_bits:	INT
ISOURCE	Sort:	LDB =Variable1
ISOURCE		JSM Busy
ISOURCE		RZA Is_busy
ISOURCE		LDB =Variable2
ISOURCE		JSM Busy
ISOURCE		RZA Is busy
ISOURCE		LDB =Variable3
ISOURCE		SZA Go_ahead
ISOURCE	Is busy:	LDA == 1
ISOURCE		LDB =Busy_bits
ISOURCE		JSM Put_value
ISOURCE		RET 1
ISOURCE	Go_ahead:	! Continue processing.
ISOURCE	Work: ! Cor	ntinue processing

The overhead of exiting and re-entering the ICALL statement while waiting for a variable to become unbusy can be avoided. It is sufficient to allow the operating system to perform an I/O operation without having to go back to BASIC. A special utility, To_system, is provided for this purpose.

UTILITY: To_system

The To_system utility gives the operating system a chance to move toward completion of any I/O operation which has not already completed.

General Procedure: Each call to the utility gives the operating system one chance to perform an I/O operation.

Calling Procedure: Call the utility.

Exit Conditions: The utility always returns the instruction following the JSM To_system instruction. There are no error exits from the utility.

In the following example, the Sort routine waits until all busy bits in the three common variables are cleared before proceeding with execution:

ISOURCE ISOURCE ISOURCE ISOURCE	Var1: Var2: Var3:	COM INT SHO REL	! ! Common declarations. !
Toolbor		- -	
ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	Sort:	SUB LDB =Var1 JSM Busy RZA Is busy LDB =Var2 JSM Busy RZA Is busy LDB =Var3 JSM Busy SZA Go ahead	! Check busy bits.
ISUURCE ISOURCE ISOURCE	is_busy: Go ahead:	JSM To_system JMP Sort !	! Allow system to do some I/O. ! Check busy bits again. ! Continue processing.

$\textbf{6-30} \quad \text{Communication Between BASIC and Assembly Language}$

Chapter **7** I/O Handling

Summary: This manual should be used in conjunction with "BASIC Language Interfacing Concepts" which covers the specifics of different interface cards. This chapter describes the various techniques of handling the receiving and sending of information to peripheral devices. Topics are: a review of I/O machine instructions, registers, applicable utilities, interrupts and interrupt service routines, handshake I/O, direct memory access, and mass storage devices.

A major usage for assembly language programs is to improve or customize the performance of the 9845 with respect to data transfers with peripheral devices. The types of devices dealt with are those which communicate via the various interface cards (e.g., HP 98032, HPIB, etc.). The types of I/O which the assembly language supports are **programmed** (handshake-type), **interrupt**, and **direct memory access** (or DMA).

A number of detailed examples have been provided demonstrating the various types of I/O using different interfaces. These examples can be found in Appendix H.

Peripheral-Processor Communication

All I/O, except for that to the internal devices (tape cartridges, keyboard, printer, CRT, or Graphics), necessarily takes place through the "backplane". The backplane is that physical area of the machine where the interface cards are inserted (also known as the I/O "slots").

Figure 8. Location of I/O Slots (Backplane)

Interfaces

The processor does all its talking, through the backplane, to peripheral interfaces, never directly to a peripheral itself. An interface is a complex electronic circuit which provides mechanical, electrical, data format, and timing compatibility between the 9845 and the peripheral device to which it is connected. From a programmer's point of view, the primary task of an interface is to provide a means of exchanging data between the 9845 and the peripheral. An interface isolates the programmer from the details of electronics and timing, appearing as a simple "black box" through which information is exchanged.

The processor can talk to as many as 12 peripheral interfaces through the backplane. Each can be talked to individually, and there may be a mix of peripherals using programmed, interrupt, or DMA types of transfers.

Individual I/O operations (i.e., exchanges of single words) occur between the processor and one interface at a time, although interrupt and DMA modes of operation can be programmed to allow automatic interleaving of individual operations.

A peripheral is addressed through a select code and a transfer occurs through four special registers reserved for the purpose. These will each be discussed shortly.

Discussion of the techniques and methods presented in this chapter uses the common HP interfaces as examples. A full discussion of the operation of these interfaces can be found in the BASIC Language Interfacing Concepts manual (HP part number 09835-90600) and also from your Sales and Service office.

Example programs utilizing various I/O techniques with a number of the standard interfaces can be found in Appendix H.

Registers

All I/O operations go through a set of four registers maintained by the 9845. The four registers named R4, R5, R6, and R7 are the sole means of communicating data between the processor and peripheral interfaces. While the registers are actually on the interface cards, they may be thought of as being in the computer memory. This makes the cards themselves accessible by simple memory referencing instructions.

The 9845 sees the registers as single-words and always sends or receives a full word of data when it references one of them. If a particular interface utilizes less than the full sixteen bits (when exchanging 8-bit extended ASCII data bytes, for example), then the most significant bits (8 through 15) are received as zeroes. On output, if fewer than 16 bits are utilized by the interface, it ignores the most significant bits. The value of these bits, in this case, is a "don't care" (i.e., may be any pattern of ones or zeroes).

Register	On Input	On Output
	Primary Data In	Primary Data Out
R5	Primary Status In	Primary Control Out
R6	Secondary Data In	Secondary Data Out
R7	Secondary Status In	Secondary Control Out

All of the HP 9803X series of interface cards use the registers as follows —

The R4 register, then, is almost always used for data transfers. R5 is always used for status and control information. The "secondary" registers — R6 and R7 — perform the indicated functions only nominally. The exact interpretation as to how the register is used depends upon the interface card being used (see the BASIC Language Interfacing Concepts manual for details).

In order to give some specific examples for using the registers, the 98032 16-Bit Parallel Interface (sometimes called General Purpose Input/Output — GPIO) is used. This card defines the secondary registers as -

:	Register	On Input	On Output
-	R41	Low-Byte Data In	High Bype Data Out
	R5	Status In	Control Out
	R61	High-Byte Data In	High-Byte Data Out
	R7	(unused)	Trigger

Select Codes

As mentioned earlier, more than one interface card may be connected to the 9845. It becomes necessary, then, that there be a mechanism whereby a particular interface can be chosen to respond when an I/O register is referenced for either input or output. This mechanism is the Peripheral Address Register (Pa).

Pa holds a binary number in the range 0 to 15 (utilizing only the lower four bits of the word, 0 to 3). Each interface has an externally-settable select code switch which can also be set to a value between 0 and 15. However, since select codes 0, 13, 14 and 15 are reserved for the internal printer, Graphics and tape cartridge units, respectively, the permissible select code settings are 1 through 12.

Whenever an operation to one of the I/O registers is performed, the System 45 makes the contents of the Pa register available to all the interfaces connected to the backplane. Each card compares the value with its own select code. If they match, the interface responds to the operation.

¹ These registers contain the same data if the 98032 card is not jumpered for byte mode. See BASIC Language Interfacing Concepts.

So, for example, if the following statements are executed in turn —

ISOURCE	LDA =8	! Choose peripheral on select code :	3
ISOURCE	STA Pa		
ISOURCE	LDA R4	! Read from the interface	

then a status byte is read from the interface card set to select code 8.

The label "Pa" is reserved by the assembler for the Peripheral Address register.

Status and Control Registers

The primary purpose of any interface is to allow data to be exchanged between the computer and the peripheral device to which it is connected. But HP's 9803X series of interface cards are even more versatile, possessing a programmable capability of their own. This in turn provides optional capabilities with the card that can be set and changed by control instructions from the System 45. (For details on what capabilities are provided, consult the BASIC Language Interfacing Concepts manual.)

The programming of the interface is done by the 9845 using the R5 register. Some of the interfaces use other registers for extended control bits (these are also described in the BASIC Language Interfacing Concepts manual).

Interface cards can also return information to the 9845 about which optional programming features are currently selected. This information, called the status byte, is obtained through an input operation using register R5. The status byte (8 bits) is determined solely by the characteristics of the interface card being addressed in the Pa register. (Again, information on particular cards can be found in BASIC Language Interfacing Concepts).

Remembering that these registers are not really memory locations, but instead are registers on the card being addressed by the Pa register, storing information to these locations is not the same as storing to other memory locations or registers. For example, storing a value in R5 to set the control register sends the information to the addressed interface. Later, if you were to read a value from R5, the information you sent would not be what is returned. Instead, the contents of the status register in the interface would be returned.

Status and Flag Lines

Whenever an I/O register is accessed, the interface with the same select code as is in the Pa register responds. The primary response depends upon the nature of the interface and which register is accessed (see discussion above). However, in all cases there is a secondary effect. Part of every interface's response is to set or clear the Status and Flag lines.

The **Status** line (not to be confused with the status register discussed above), is a single bit indicating whether the interface is operational or not. By inclusion, this can also mean the status of the actual peripheral to which the interface is connected. For example, if a peripheral device has a line coming from it that indicates its power is on, it could be connected to the Status line in the interface. Then the program could quickly determine whether the device is turned on or off. As another example, a printer might have the Status line connected to the out-of-paper indicator (should it have one) to indicate to the program when it is inoperable because of lack of paper.

The **Flag** line is a momentary "busy/ready" indicator used to keep the computer from getting ahead of the peripheral. The line shows that the interface is busy processing the last task given it by the 9845 or that it is ready for another operation. If the line is set, it indicates "ready"; if the line is cleared, it indicates "busy". For example, if the computer has a sequence of ASCII characters to send to a slow printer, it sends one character (making the Flag line "busy") and then waits for the Flag line to go "ready" again before sending the next character.

There are four instructions, part of the I/O group, which can check these lines —

SFS Skip if Flag line is set (i.e., "ready") SFC Skip if Flag line is cleared (i.e., "busy") SSS Skip if Status is set (i.e., "operational") SSC Skip if Status is cleared (i.e., "non-operational")

These instructions have the capability of skipping up to 31 locations in a forward branch, up to 32 locations in a backward branch, or to the same instruction.

Programmed I/O

Programmed I/O is the process whereby software controls the transfer of information between memory and an interface. In the process the program must decide when and where to make the transfer, how to make it, and how much information to transfer. The decision even to originate the transfer comes under program control.

The Status line can be used to determine the availability of an interface. The interface is selected, under program control, by the contents of the Pa register. Then the Status line is checked to see if the interface (and by inclusion its associated peripheral) is operational.

After an operational interface has been chosen, the Flag line can be used to determine when the interface (i.e., peripheral) is ready for a transfer and when it has not finished with the previous transfer.

With sufficient checks of Flag and Status before and between I/O operations, it is possible to eliminate initiating an I/O operation to an interface which isn't ready for it. The following example checks the status (status bit set) of an interface card:

ISOURCE	STA Pa	! Choose the peripheral.	
ISCURCE	SSS Status ok	! Check for operational device.	
ISOURCE	LDA =164	! Not operational, error 164.	
ISOURCE	JSM Error exit	! Inform user.	
ISOURCE Status ok:	SFC *	! Wait until card is ready.	
ISOURCE	2		
ISOURCE	e	! I/O operation done here.	
ISOURCE	я		
		-	

The instruction sequence for a software controlled output transfer differs slightly from that of an input transfer. An output transfer involves waiting for the interface flag, outputting the data and then starting the output handshake. The following is an illustration of this sequence. The essential instructions are preceded by an asterisk in the comments column.

ISOURCE	1			
ISOURCE	LDA	Select_code	!	Grab select code.
ISOURCE	STA	Pa	ļ	Put it in Pa.
ISOURCE Again:	SSS	* + 3	ļ	Check device status.
ISOURCE	LDA	=164	ļ	Flag error,
ISOURCE	JSM	Error exit	ļ	if device down.
ISOURCE	LDA	Buffer pointer, I	!	Grab word from buffer.
ISOURCE	ISZ	Buffer pointer	ļ	Increment pointer.
ISOURCE	SFC		!	* Wait for flag set.
ISOURCE	STA	R4	ļ	* Output the word.
ISOURCE	STR	R7	ļ	* Trigger the handshake.
ISOURCE	JMP	Again	!	Do it again.
ISOURCE	ļ	***		

An input transfer involves signalling an input operation, triggering the input handshake, waiting for the interface flag and then inputting the data. This sequence is illustrated here with the essential instructions preceded by asterisks in the comments column.

```
ISOURCE
                      1
ISOURCE
                    LDA Select_code
                                         ! Grab select code.
                                         ! Put it in Pa.
ISOURCE
                    STA Pa
ISOURCE Again:
                    SSS *+3
                                         ! Check device status.
ISOURCE
                    LDA =164
                                         ! Flag error,
ISOURCE
                    JSM Error exit
                                         ! if device down.
                    SFC *
ISOURCE
                                         ! * Wait for flag.
ISOURCE
                    LDA R4
                                         ! * Signal input operation.
ISOURCE
                    STA R7
                                         ! * Trigger input handshake.
                                         ! * Wait for flag.
ISOURCE
                    SFC *
ISOURCE
                    LDA R4
                                         ! * Grab input data.
                    JMP Again
ISOURCE
                                         ! Do it again.
ISOURCE
                     ţ
```

Interrupt I/O

Interrupt I/O is a means of allowing control to pass temporarily to an assembly language routine other than the routine (BASIC or assembly language) currently executing. The "interrupt", which causes the control to be passed, is detected through the backplane and is associated with a particular interface. After the "interrupt service" routine completes its tasks, control is passed back to the original routine.

The process looks something like this —

7-8 I/O Handling

The sequence of events in interrupt I/O can be detailed as follows -

- The interface sends a request for service to the backplane which passes it along to the processor. Conditions which generate this request for service are different for each I/O card. See BASIC Language Interfacing Concepts.
- 2. The processor alters the flow of execution so that the routine associated with that interrupting source can be executed. The processor saves its place in the interrupted routine so that it can later return to it. The current contents of the Pa register are saved internally in the processor and the Pa is then set to the select code of the device causing the interrupt.
- 3. The interrupt service routine is executed, performing whatever functions are desired. Frequently these functions involve some form of programmed I/O or direct memory access. The service routine may signal an end-of-line BASIC branch, indicating to BASIC that some condition occurred (discussed below).
- 4. The service routine returns the processor to the interrupted routine so that the "original" process can resume.

The uses for interrupt I/O are so diverse that it is difficult to generalize about them. However, one particular use is fairly well-defined and of general applicability — data transfers.

Interrupt I/O is normally used in data transfers whenever a particular data device has a transfer rate which is significantly slower than that of the computer. Peripheral devices with transfer rates less than 7000 characters per second are candidates for interrupt I/O.

The usual approach is to transfer a word to or from the peripheral device, then go away to do some other processing while waiting for the device to interrupt by becoming "ready" for another transfer. An example illustrating the general procedure for an interrupt I/O transfer is presented following some more background information concerning priorities, ISR linkage, access, preservation and indirect addressing.

Priorities

Select codes are assigned hardware "priority" levels to control what should be processed when an interrupt service routine is executing and another interrupt is received, or when two or more simultaneous interrupts are received. There are two priority levels —

Highfor select codes 8 to 15Lowfor select codes 0 to 7

An interrupt received from a high-priority select code may interrupt a service routine which is executing for an interrupt from a low-priority select code. But an interrupt from a low-priority select code may not interrupt any other service routine.

Interrupt Service Routines and Linkage

An interrupt service routine is associated, or "linked", with a select code by the Isr_access utility described later. This linkage establishes where the interrupt service routine resides, and to which select code it applies. An interrupt service routine typically does one or more of the following —

- Talks to the interface (i.e., satisfies or acknowledges the interface's interrupt).
- Passes data to (or retrieves data from) the rest of the program, when appropriate.
- Breaks the linkage, if desired.

The method of talking to the interface depends upon the type of interface. Some devices or applications do not require the passage of data; the acknowledgement of the interrupt is usually the desired effect in such cases.

Interrupt service routines are always exited with a RET 1 instruction.

Breaking Interrupt Service Routine Linkage

The interrupt service routine-select code linkage can be broken from within the interrupt service routine by executing one of two statements. If the linked select code is high priority, the statement is —

```
JSM End_isr_high,I
```

If the linked select code is low priority, the statement is -

JSM End_isr_low,I

After execution of one of these linkage-breaking statements, the interrupt service routine is exited with a RET 1 instruction.

Several important facts to keep in mind concerning the JSM End_isr_low,I and JSM End_ isr high,I statements are the following:

- The names, End_isr_low and End_isr_high, do **not** represent utilities or routines. Therefore, they should not be declared as externals.
- Neither statement may appear outside of the appropriate interrupt service routine.
- These linkage-breaking statements should only be executed inside the appropriate interrupt service routine when you no longer need select code linkage to the ISR. In most cases, this is when the ISR is no longer needed because the data transfer is complete.
- The contents of the Pa register are used by End_isr_high and End_isr_low to determine what resources to free and what interrupt linkages to break. Upon entry to the ISR the Pa register contains the select code of the interrupting interface, but you can change Pa during execution of the ISR. If this is done, you must ensure that Pa is set to the desired value before calling End_isr_high or End_isr_low.

Here is an example of a short interrupt service routine which simply reads and processes words from the interface and terminates when it encounters a linefeed.

ISOURCE	Lf:	EQU	10
		=	
ISOURCE	Isr:	LDA	R4 ! Retrieve character from interface.
ISOURCE		CPA	=Lf ! Is it a line feed?
ISOURCE		JMP	Terminate ! Yes; go to terminate routine.
			! If not,
			! process the
			! character.
ISOURCE		STR	R7 ! Trigger another handshake.
ISOURCE		RET	 Return to background program.
		a	
ISOURCE	Terminate:	JSM	End_isr_low,I ! Break ISR linkage.
ISOURCE		RET	1

NOTE

Utilities cannot be called from an interrupt service routine. Attempts to do so lock up the machine.

Access

The operating system (OS) contains a mechanism to regulate requests for hardware capabilities in order to eliminate conflicting uses of these capabilities. For instance, since there is only one DMA¹ channel, it is necessary that there be a mechanism to prohibit two simultaneous DMA transfers.

 $1\,\text{DMA}$ (Direct Memory Access) is explained further in later sections of this chapter.

The OS mechanism which regulates the use of DMA (and also interrupt) transfers either grants or does not grant what is called "access". Before starting either an interrupt or DMA operation, access should be requested from the operating system.

Another example — suppose a device operating on a high priority select code has a relatively slow data rate. This is an ideal situation in which to use interrupt driven I/O. Suppose further that the device operates in such a fashion that the data must be transferred within a fixed time period following its issuance of an interrupt or the data is lost (the internal tape drive is such a device.) If there are other interrupt type transfers operating concurrently on other high priority select codes, it may not be possible to service our slow device within the necessary time frame. When the operating system grants access, this type of conflict is impossible.

Users of the assembly language system are required to request access from the operating system. The OS grants access if granting this access does not compromise any previously granted access.

Devices such as that discussed above which require interrupt service within a specified time frame are called "synchronous", and should use "synchronous" access. Devices with no such time constraints are called "asynchronous", and should use "asynchronous" access.

Abortive access is intended to be used by routines that will be executed only extremely infrequently. For instance, if the System 45 is monitoring a potentially dangerous manufacturing process, it may be necessary to have an interrupt service routine to shut down the process when something goes awry. This could be accomplished with an abortive routine. The advantages of access code 0 (abortive access) is that no other modes of access are prohibited by its use. Thus, the infrequently used routine will not prevent another routine from getting the type of access it needs.

Access code 0 should be used with caution. An interrupt routine with abortive access can exist on the same priority level as an interrupt routine with synchronous access. If the abortive routine is in progress when an interrupt occurs requiring the synchronous routine, the abortive routine will finish before the synchronous routine can be serviced. The timing requirements of the sychronous routine might thus be violated.

Access code 0 is also used to release access in a particular type of DMA transfer to be explained later in this chapter.

7-12 I/O Handling

The regulation of access incorporates the following points -

- When the operating system grants synchronous access to an operation, it is guaranteeing that the requesting process will have its interrupts serviced with maximum priority.
- DMA conflicts with synchronous access since DMA's cycle stealing causes the processor to run slower and could thus compromise a synchronous process.
- Synchronous access on a low priority select code conflicts with asynchronous access on a high priority select code since the asynchronous device could interrupt the synchronous ISR, thus compromising the timing requirements of the synchronous device. Synchronous access conflicts with asynchronous access on the same priority level. Remember an interrupt request on the same priority level as a currently executing ISR will not be processed until the executing ISR completes.

The following table summarizes the granting of access —

Access Already Granted

			Abortive		ASYN		DMA	SYN	
			_	\longrightarrow		~		\sim	_
			L	Н	L	Η		Η	L
Requested	Abortiva	∫ Low	У	У	У	У	У	У	d
	Abortive	l High	У	У	У	У	У	d	d
	ASVN	f Low	У	У	У	У	У	У	n
	norm	l High	У	У	У	У	У	n	n
ss l	DMA		У	У	У	У	n	n	n
ခသ	SVN	∫ High	У	d	У	n	n	n	n
A	om	Low	d	d	n	n	n	n	n

n = Not granted
d = Dangerous, but granted
y = Granted

BASIC statements also obtain and release access as I/O is performed. The following table lists some of the ways access is used by the system —

Use	Access
Cartridge Operations	SYNC (HIGH select code)
Flexible Disk Operations	DMA
PRINT, PRINT USING	ASYNC
Plotter Drivers	ASYNC
CARD ENABLE	ASYNC
ENTER/OUTPUT INT	ASYNC
ENTER/OUTPUT DMA	DMA
ENTER/OUTPUT FHS ¹	DMA

In general, single BASIC statements could cause access to be granted and released several times. For example, the cartridge operations obtain and release synchronous access once for each physical record transferred.

It is imperative that access be released after an interrupt service routine has been executed for the last time or a DMA transfer is complete. Such occurrences as tape drive lockout, can occur if access is not released. Use the JSM End_isr_high,I or JSM End_isr_low,I instructions to free access, depending on the select code used.

UTILITY: Isr_access

This utility is used to request access and, if the access is granted, to create the linkage between an interrupt service routine (ISR) and a select code. Valid select codes are 1 through 13. Pressing RESET ((0,0,0,0,0)) during execution of the utility may cause a SCRATCH A to be issued.

General Procedure: The utility is told where the ISR resides and what kind of access is required. If access is granted, it returns successfully. If access is not granted immediately, it keeps trying periodically until it is successful or until a specified number of attempts have been made (in which case it returns unsuccessfully).

¹ In addition to obtaining DMA access (which in this case is used just to ensure there is no synchronous access granted), the FHS (Fast Handshake) drivers disable all interrupts during the actual transfer loop.

Bits	Description					
0-3	Select code to be linked to the ISR					
4 - 5	Access code					
8 - 14	Number of attempts to be made before aborting					

The access codes are —

- 0 Abortive access
- 1 Asynchronous access
- 2 DMA with asynchronous access
- 3 Synchronous access

Calling Procedure:

- 1. Load register A with the address of the ISR.
- 2. Load register B with the information described above.
- 3. Call the utility.

Exit Conditions:

- RET 2 If the attempt at linkage is successful, the utility returns to the second word following its call. Register Pa is set to the select code; if access code 2 was specified then Dmapa has also been set to the select code.
- RET 1 If the attempt at linkage is unsuccessful, the utility returns to the first word following the call. Register A contains an indication of the type of difficulty encountered
 - -1 Access couldn't be obtained after specified number of attempts.
 - -2 Select code is still linked to an assembly language ISR.

As an example of the use of the Isr_access utility, suppose an ISR is to be linked to select code 2 for asynchronous access. The following would be a sequence to establish such a linkage —

ISUURCE	EXT Isr_access
	3
	=
	r
ISOURCE	LDA =Read
ISOURCE	LDB =(64*256)+(1*16)+2 ! 64 trials, asynch, SC 2
ISQURCE	JSM Isr access
ISOURCE	JMP Error
	1
	8
ISOURCE Error:	ISZ A
ISOURCE	JMP Nested isr ! Handler for SC busy
ISOURCE	.IMP No resources / Handler for time-out
	-

NOTE

Access must be released after the execution of an interrupt or DMA transfer is complete with a JSM End_isr_high,I or a JSM End_isr_low,I instruction, depending on the select code used.

Disabling Interrupts

At times it is necessary to disable all interrupts in order to execute a particular sequence of instructions. This is typically necessary for one of two reasons:

- The instructions are modifying some data used by an ISR, and the ISR would become confused if it happened to occur when this data was in a transitory state.
- All ISRs are prohibited in order to minimize the execution time for some task (i.e. fast handshake transfers).

In general, it is allowable to disable interrupts (using the DIR instruction) for up to 100 μ s without "notifying" the operating system. (Interrupts are re-enabled using the EIR instruction.) Attempts to disable for more than 100μ s without this notice could compromise any synchronous transfers that may be in progress. Specifically, it could cause loss of data if a tape operation were in progress.

If is necessary to disable interrupts for more than 100μ s, the Isr_access utility should be used to acquire an access which ensures that no synchronous transfers are jeopardized. Typical access code requests to do this are DMA, ASYNC HIGH, or SYNC (high or low). The one to choose depends on the application.

For example, suppose you would like to minimize the execution time for a segment of code. The segment takes longer than 100μ s, but you need to disable interrupts for the duration. The ideal access to request may be DMA. Once DMA has been granted there can be no DMA transfers (which might slow the processor) and there can be no synchronous transfers in progress. Therefore, interrupts can be disabled for as long as necessary.

When Isr_access is used for this purpose (i.e. to get access rather than to set-up ISR linkages), the entry and exit conditions are as previously described except that the A register must contain a zero.

When access is obtained in this manner, it is freed by calling Isr_access a second time with the A register containing a zero. However, the access code requested in bits 4 and 5 of the B register must be zero. This technique of freeing access can be used only if the original access was granted without interrupt linkage (i.e. the A register was 0). Attempts to do otherwise cause Isr access to give the fail return (RET 1).

The following example illustrates the technique for a fast handshake transfer to a 98032 interface on select code 6.

	3		
	=		
ISOURCE	Keep_trying:LDA	=0	Get DMA access without
ISOURCE	LDB	=(127*256)+(2*16)	15! interrupt linkage.
ISOURCE	JSM	Isr access	
ISOURCE	JMP	Keep trying	
ISOURCE	DIR		Now disable interrupts.
ISOURCE	LDA	=Buffer	
ISOURCE	STA	<u>_</u> ;	
ISOURCE	LDA	=-Count+1	
ISOURCE	SFC	÷	
ISOURCE	ЫМС	R4.I	! Fast handshake loop.
ISOURCE	STA	R7	!
ISOURCE	RIA	*-3	!
ISOURCE	EIR	!	Re-enable interrupts.
ISOURCE	LDA	=8	Release access.
ISOURCE	LDB	=(127*256)+6 !	
ISOURCE	JSM	Isr access	
ISOURCE	.JMP	Error ret 1	Should never get RET 1.
	x	******	
	E		
	(x_1, y_2, \dots, y_n) , and $(x_1, \dots, x_n) \in \{y_1, y_2, \dots, y_n\}$, where (y_1, \dots, y_n) ,	#N1	

State Preservation and Restoration

When an interrupt is detected and an interrupt service routine is called, the operating system automatically saves the state of some of the registers so that their values can be restored upon return from the ISR. Other registers are left alone and if your service routine uses them, it is up to your ISR to save them and restore them before returning from the ISR.

The registers which are automatically preserved are —

A B C Cb P Pa

Also, the state of the Overflow and Extend processor flags are preserved and restored before the return from the interrupt.

The D and Db registers are not automatically saved. Saving and restoring location Db is not trivial due to the fact that this location is a read-only location. The following program segment saves and restores D and Db:

ISOURCE ISOURCE	D_save_low: Db_save_low:	BSS BSS	- fra-		
ISOURCE ISOURCE ISOURCE ISOURCE	Save_d:	LDA STA LDA STA	D D_save_low Db Db_save_low		Save D and Db.
ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	Restore_d:	DBL LDA SAL SAP DBU LDA STA	Db_save_low 1 *+2 D_save_low D	· · · · · · · · · · · · · · · · · · ·	Clear Db. Get Db_save_low. Test most significant bit. If minus, set Db Restore D.

If your ISR contains any of the following types of instructions -

Indirect addressing Stack group CLR XFR

and the operand of the instruction(s) is an address in the ICOM region, then it is necessary that the following instruction sequence be executed in the ISR before any such instruction is executed —

```
Save35_low: BSS 1
.
LDA 35B
STA Save35_low
LDA 34B
STA 35B
.
```

Then, before the ISR exits, and after the affected instructions have been executed, the following sequence must be executed —

```
:
LDA Save35_low
STA 35B
:
```

Indirect Addressing in ISRs

Indirect addressing in ISRs can produce anomalies unless the following rules are followed ---

- 1. If indirect addressing is employed with the operand being an address in the ICOM region, one of the processor registers must be preserved. For the method of doing this, consult the "State Preservation and Restoration" section immediately above.
- If indirect addressing is used in a JMP or JSM (including any jumps to external symbols or symbols more than 512 words away from the current instruction, both of which have implied indirect addressing), then the most significant bit must be set in the address. For example, instead of —

```
EXT Sub
```

```
in an ISR the procedure must be —
EXT. Sub
JSM (=Sub+100000B), I
```

The assembler can generate an indirect instruction when you have not specified a ,I after the instruction. These indirect instructions lock the machine if executed within an ISR, and therefore must be re-written. IOF (indirect off) and ION (indirect on) are used to find those instructions for which the indirection is done automatically by the assembly. At the beginning of ISR use the IOF instruction. At the end of ISR use the ION instruction to restore the assembler to its normal state. Between an IOF / ION pair, any instruction for which the assembler would have generated an automatic indirect, a range error (RN) is generated.

Enabling the Interface Card

The particular interface card that you are using must be enabled for interrupts. The 98032 Interface card is used for illustration purposes. Setting bit 7 of the R5 OUT register enables this particular card for interrupts. The R5 OUT register is represented here —

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ENABLE INT	ENABLE DMA	RESET	ENABLE AUTO HAND- SHAKE	Х	х	CTL1	CTL0

98032 — R5 Register

- Bit 7: Logical 1 enables card to interrupt
- Bit 6: Logical 1 enables DMA
- Bit 5: Logical 1 resets interface card
- Bit 4: Logical 1 enables auto handshake
- Bit 3: (Don't card)
- Bit 2: (Don't card)
- Bit 1: Optional peripheral control bit 1
- Bit 0: Optional peripheral control bit 0

Control bits 0 and 1 are used to drive interface lines CTL0 and CTL1, respectively.CTL0 and CTL1 are optional peripheral control lines.

(Representations of the I/O registers for each interface are provided in the Assembly Language Quick Reference manual.)

The 98032 card is enabled for interrupts with the instructions -

```
ISOURCE LDA = 200B
ISOURCE STA R5
```

and disabled with —

ISOURCE LDA = 0 ISOURCE STA R5

The interface card is typically enabled for the first data transfer, disabled at the beginning of the ISR and re-enabled before the ISR is exited.

Interrupt Transfer Example

An example of setting up an interrupt service routine for inputting character data is given in the example below. This example should bring together the information presented in the previous five sections of this manual. Note the procedures for requesting and giving up access, enabling and disabling the interface card for interrupts and processor register preservation and restoration because of indirect addressing in the ISR.

```
10
      ! This program illustrates an interrupt transfer.
20
                       1
30
        IDELETE ALL
                         ! Clear ICOM region.
40
       ICOM 200
                         ! Reserve 200 words in ICOM region.
50
       IASSEMBLE ALL
                         ! Assemble.
       ICALL Set_up
69
                         ! Call the set up routine.
                       I
70
80
90
      ! BASIC background routine.
100
     1
110
     ЕНD
                       ļ
120
130
       ISOURCE
                           NAM Interrupt
                                              ! Module name.
                          EXT Isr_access
                                              ! Declare externals.
140
       ISOURCE
150
       ISOURCE Select_code:EQU 2
                                              ! Select code is 2.
                       EQU 10
                                              ! ASCII for line feed.
160
       ISOURCE Lf:
170
       ISOURCE Buffer:
                         BSS 81
                                              ! Character buffer.
180
       ISOURCE Buf last: EQU *-1
                                              ! End of buffer.
                                              ! Buffer pointer.
       ISOURCE Buf point: DAT Buffer
190
                          BSS 1
200
       ISOURCE Save35:
210
       ISOURCE
                           SUB
       ISOURCE Set up: LDA =Select_code
220
                                              ! Routine entry point.
                                              ! Put select code in Pa.
230
       ISOURCE
                          STA Pa
                          LDA =Isr
                                              ! Get asynchronous access,
249
       ISOURCE
                         LDB =(64*256)+(1*16)+Select code
250
       ISOURCE
                         JSM Isr access ! with Isr access.
260
       ISOURCE
                         JMP Set_up
270
       ISOURCE
                                              ! Try again.
                         SFC *
280
       ISOURCE
                                              ! Wait for flag.
290
                          LDA R4
       ISOURCE
```
300	ISOURCE	STA R7	! Trigger the input.
310	ISOURCE	LDA =200B	! Send interrupt enable
320	ISOURCE	STA R5	! mask to R5.
330	ISOURCE	RET 1	! Return to BASIC.
340	ISOURCE		
350	ISOURCE Isr:	LDA =0	! Interrupt service routine.
360	ISOURCE	STA R5	! Disable interupts.
370	ISOURCE	LDA R4	! Input the character.
380	ISOURCE	CPA =Lf	! Is it a line feed?
390	ISOURCE	JMP Terminate	! Yes; go to Terminate.
498	ISOURCE	LDB 35B	! No; save processor register
410	ISOURCE	STB Save35	! because on indirection.
420	ISOURCE	LDB 34B	! Magic code.
430	ISOURCE	STB 35B	Ì
440	ISOURCE	STA Buf point,I	! Put character in buffer.
450	ISOURCE	LDB Save35	
460	ISOURCE	STB 35B	! Restore processor register.
470	ISOURCE	LDA Buf_point	! Get buffer pointer.
480	ISOURCE	ADA =1	! Increment it.
490	ISOURCE	CPA =Buf_last	! End of the buffer?
500	ISOURCE	JMP Terminate	! Yes; got to terminate.
510	ISOURCE	STA Buf_point	! No; update pointer.
520	ISOURCE	SFC *	! Wait for flag.
530	ISOURCE	LDA R4	
540	ISOURCE	STA R7	! Trigger next input.
550	ISOURCE	LDA =200B	! Card enable mask
560	ISOURCE	STA R5	! enables interrupts.
570	ISOURCE	RET 1	! Retrun to BASIC.
580	ISOURCE Terminate:	LDA =0	! Access freeing routine.
590	ISOURCE	STA R5	! Disable interrupts.
688	ISOURCE	JSM End_isr_low,I	! After last transfer, give
610	ISOURCE	RET 1	! up access and return.
620	ISOURCE	ļ	
630	ISOURCE	END Interrupt	

Direct Memory Access (DMA)

Direct memory access (DMA) is a means to exchange entire blocks of data between memory and peripherals. A block is a series of consecutive memory locations. Once started, the process is automatic; it is done under processor control, regulated by the interface. Since only the 98032 Interface supports DMA, the following discussion is in terms of that interface.

To the peripheral, the DMA operation appears as programmed I/O. The transfer, however, is actually performed by special DMA hardware. Information regarding the transfer is stored in the DMA registers for the DMA hardware to use. This information is the select code, the initial memory location, and the number of words to be transferred. The memory location register and the count register are successively adjusted after each word transferred until the transfer is complete. Upon completion of the transfer, the interface and the DMA hardware stop automatically.

The direction of the transfer is specified before the transfer takes place. It can be specified as either "inward" (i.e., from the peripheral to memory), or "outward" (i.e., from the memory to the peripheral). To set the direction outwards, the instruction —

SDO

is used. To set the direction inwards, the instruction —

SDI

is used.

DMA Registers

There are three registers which contain information used by the DMA hardware — Dmapa, Dmama, and Dmac. Before any DMA transfer takes place, the appropriate values must be loaded into these registers.

Dmapa contains the peripheral address of the device requesting DMA. Only the least significant bits of the register specify the select code which is to be the peripheral side of the DMA activity. During DMA transfers, the address bus takes its address from the Dmapa register rather than Pa as in other I/O transfers. The value is supplied to Dmapa by the Isr_access utility when it grants DMA access.

Dmama contains the address of the first word in memory (i.e., lowest address) where the data transferred is (or will be) stored. After each word transferred, this register is automatically incremented. Note that the entire block to be transferred must reside within the ICOM region.

Dmac is the count register for a DMA transfer. Before the transfer begins, it should be set to n-1, where n is the number of words to be transferred. After each word transfer, the count is decremented. If, during a word transfer, the value of Dmac is 0 (meaning that this is the last word to be transferred), the processor automatically informs the interface that the DMA operation will be complete after the present word is transferred.

DMA Transfers

There are two techinques for using DMA. Both initiate the DMA transfer in a similar manner but differ in how the end of the transfer is detected. The more commonly used method uses an interrupt generated by the interface. The second method uses a programmed test.

DMA transfers using interrupt are initiated with a sequence of six distinct actions.

- Step 1: The Isr_access utility is used to obtain access to the DMA channel and to set up the ISR linkage used when the transfer terminates.
- Step 2: The direction is set for input using an SDI instruction or for output using an SDO instruction.
- Step 3: The appropriate values are stored into the Dmama and Dmac registers. (Dmapa is set by the Isr access.)
- Step 4: For input, the first handshake is initiated with these instructions:
 - SFC * LDA R4 STA R7

For output, this step is deleted.

- Step 5: The interface is enabled for DMA and interrupt by setting bits 4, 6, and 7 of R5 OUT to one. (i.e. $320B \rightarrow R5$)
- Step 6: The DMA requests are enabled using the instruction DMA.

At this point you can do other processing if desired since data is being transferred automatically by the hardware. When all words have been transferred the interface interrupts the processor, causing the previously linked ISR to be executed. This ISR should:

- Disable the interface (bits 4, 6, and 7 of R5 OUT set to 0).
- Free the DMA acces by using End isr high or End isr low.

The following is a program segment to input 1024 words of data into an internal buffer area using interrupt to terminate the transfer.

	ISOURCE :	Buffer:	BSS	1024		
	ISOURCE :	Sc:	EQU	2		
ļ.	ISOURCE		-			
i	ISOURCE					
!	ISOURCE		=			
	ISOURCE	Linkage:	LDA	=I≤r	į	Step 1: Link ISR.
	ISOURCE		$\Box DB$	=(10*256)+(2*	-16	5)+Sc
	ISOURCE		JSM	Isr_access	Į.	Get DMA access.
	ISOURCE		JMP	Error_ret_1	ļ	Should never get here.
	ISOURCE		SDI		1	Step 2: Set DMA inward.
	ISOURCE		LDA	=1023	į	Step 3: Load IMA registers.
	ISOURCE		STR	Dmac	Į	Specify DMA count.
	ISOURCE		LDA	=Buffer		
	ISOURCE		STR	Dmama	ł	Specify buffer address.
	ISOURCE		SFC	÷	ļ	Step 4: Wait for flag.
	ISOURCE		LDA	R4	ļ	Set up first transfer.
	ISOURCE		STĤ	R7	Į	Trigger.
	ISOURCE		LDA	=320B	ļ	Step 5: Enable DMA.
	ISOURCE		STA	R5	!	and interrupt.
	ISOURCE		DMH		ļ	Step 6: Notify DMA hardware.
	ISOURCE		RET	1	ļ	Return.
1	ISOURCE		=			
ļ.	ISOURCE					
ţ	ISOURCE					
	ISOURCE	Isr:	LDA	=Ø	ļ	Interrupt service routine.
	ISOURCE		STA	R5	ļ	Disable interrupts.
	ISOURCE		DDR		!	Disable DMA.
	ISOURCE		LDA	Pa	į	Depending on select code,
	ISOURCE		ADA	=-8	ļ	terminate ISR linkage.
	ISOURCE		SAP	* + 3		
	ISOURCE		JSM	End_isr_low,	Ι	
	ISOURCE		JMP	*+2		
	ISOURCE		JSM	End_isr_high	,ī	
1	ISOURCE		RET	-tt-	ļ	Return.
I !	ISOURCE		-			
I İ	ISOURCE		=			
i į	ISOURCE		=			
		ISOURCE ISOURCE	ISOURCE Buffer: ISOURCE Sc: ISOURCE	ISOURCE Buffer: BSS ISOURCE Sc: EQU ! ISOURCE Sc: EQU ! ISOURCE . ! ISOURCE . ISOURCE Linkage: LDA ISOURCE LINKAGE: LDA ISOURCE JSM ISOURCE JSM ISOURCE SDI ISOURCE SDI ISOURCE STA ISOURCE JSTA ISOURCE STA ISOURCE STA	ISOURCE Buffer: BSS 1024 ISOURCE Sc: EQU 2 ISOURCE : ISOURCE : ISOURCE Linkage: LDA =Isr ISOURCE Linkage: LDB =(10*256)+(2) ISOURCE ISM Isr_access ISOURCE JMP Error_ret_1 ISOURCE SDI ISOURCE STA Dmac ISOURCE STA Dmac ISOURCE STA Dmaca ISOURCE STA Dmama ISOURCE STA R7 ISOURCE STA R7 ISOURCE STA R7 ISOURCE STA R7 ISOURCE STA R7 ISOURCE STA R7 ISOURCE STA R5 ISOURCE DMA ISOURCE STA R5 ISOURCE STA R5 ISOURCE STA R5 ISOURCE DMA ISOURCE STA R5 ISOURCE ST	ISOURCE Buffer: BSS 1024 ISOURCE Sc: EQU 2 ISOURCE : ISOURCE : ISOURCE Linkage: LDA =Isr ! ISOURCE LINK UDB =(10*256)+(2*16 ISOURCE JMP Erron_ret_1 ! ISOURCE JMP Erron_ret_1 ! ISOURCE SDI ! ISOURCE SDI ! ISOURCE STA Dmac ! ISOURCE STA Dmac ! ISOURCE STA Dmama ! ISOURCE STA Dmama ! ISOURCE STA Dmama ! ISOURCE STA Dmama ! ISOURCE STA R4 ! ISOURCE STA R7 ! ISOURCE STA R7 ! ISOURCE STA R7 ! ISOURCE STA R7 ! ISOURCE STA R5 ! ISOURCE STA R5 ! ISOURCE STA R5 ! ISOURCE STA R5 ! ISOURCE STA R5 ! ISOURCE STA R5 ! ISOURCE STA R5 ! ISOURCE STA R5 ! ISOURCE STA R5 ! ISOURCE DDR ! ISOURCE DDR ! ISOURCE STA R5 ! ISOURCE DDR ! ISOURCE STA R5 ! ISOURCE JSTA R5 ! ISOURCE JSTA R5 ! ISOURCE STA R5 ! ISOURCE JSTA R5 ! ISOURCE JSTA R5 ! ISOURCE STA R5 ! ISOURCE JSTA R5 ! ISOURCE STA R5

In the previous example, the end of the DMA transfer is signaled by an interrupt which causes execution of an ISR. The ISR, in turn, gives up the DMA access and terminates the ISR linkage with End_isr_low,I or End_isr_high,I.

DMA transfers without interrupt are initiated with a sequence of six steps.

- Isr_access is used to obtain the DMA channel, but **not** to set-up an ISR (A register has a 0 value).
- The direction is set for input using an SDI instruction or for output using an SDO instruction.
- The appropriate values are stored in Dmac and Dmama.
- For input, the first handshake is initiated with these instructions:
 - SFC * LDA R4 STA R7
- The interface is enabled for DMA by setting bits 4 and 6 of R5 OUT (i.e. $120B\rightarrow$ R5).
- The DMA requests are enabled using the instruction DMA.

At this point you can do other processing if desired since data is being transferred automatically by the hardware. To determine if the transfer is complete, the Dmac register is tested. If it is negative, the transfer is complete and you should:

- Disable the interface (bits 4, 6 and 7 of R5 OUT set to 0).
- Free the DMA access by using Isr_access with the A register containing a 0 and an access code of 0.

The following is a program segment to output 1024 words of data from an interrupt buffer area without using interrupt to terminate the DMA.

10 20 31 ! 40 50 61 62 63 64 70	ISOURCE Buffer: ISOURCE Sc: ISOURCE ISOURCE ISOURCE Dma: ISOURCE ISOURCE ISOURCE ISOURCE Dma_no_int: ISOURCE ISOURCE ISOURCE ISOURCE	BSS 1024 EQU 2 LDR =Sc STA Pa SSS *+2 ! Check for operational card. JMP Card_down LDR =0 ! Step 1: No end-of-transfer LDB =(10*256)+(2*16)+Sc ! interrupt. JSM Isr_access ! Get DMA access. JMP Error_ret_1 ! Should never get here.
--	--	---

88	ISOURCE	SDO	! Step 2: Set DMA outward.
98	ISOURCE	LDA =1023	! Step 3: Load DMA registers.
100	ISOURCE	STA Dmac	! Specify DMA count.
110	ISOURCE	LDA =Buffer	
120	ISOURCE	STA Dmama	! Specify buffer address.
130	ISOURCE	LDA =120B	! Step 5: Enable IMA only.
140	ISOURCE	STA R5	
150	ISQURCE	DMA	! Step 6: Notify DMA hardware.
190	ISOURCE Check:	LDA Dmac	! See if DMA is done.
200	ISOURCE	SAP *+2	
210	ISOURCE	JSM Terminate	
211 !	ISOURCE		
212 !	ISOURCE	=	! Other processing.
213 !	ISOURCE	=	
230	ISOURCE	JMP Check	! Go back and check DMA.
240	ISOURCE Terminate:	LDA =0	
250	ISOURCE	STA R5	! Clear R5.
251	ISOURCE	LDB =(64*256)+Sc	! Ask for 0 access.
260	ISOURCE	JSM Isr_access	
270	ISOURCE	JMP Error_ret_1	! Should never get here.
271	ISOURCE	RET 1	! Return.
272	ISOURCE Card_down:	LDA =167	
273	ISOURCE	JSM Error_exit	! Give error message.
350	ISOURCE	RET 1	
351 !	ISOURCE	=	
352 !	ISOURCE	=	
353 !	ISOURCE	*	

BASIC Branching on Interrupts

The handling of interrupts can be integrated into BASIC programs by using the ON INT statement. The object is to allow the flexibility of combining the high-level features of BASIC with the capabilities of assembly language in asynchronous I/O applications. And since ISRs cannot use the system utilities, in particular those that access a BASIC variable, a means of taking action on an interrupt after completion of the ISR is a necessity.

ON INT Statement

The ON INT statement is an executable BASIC statement which acts in a similar fashion to the ON KEY statement (see the System 45 Operating and Programming Manual). The statement allows the BASIC programmer to specify where, in his BASIC program, to branch whenever an End-of-line branch is signalled for the select code he specifies.

As with the ON KEY statement, there are three ways these branches can be taken —

- ON INT #{select code}[,{priority}]CALL {subprogram name}
- ON INT #{select code} [, {priority}] GOSUB {line identifier}
- ON INT # {select code} [, {priority}] GOTO {line identifier}

Whenever an interrupt is signalled from an ISR for a particular select code, if ON INT has been executed for that select code, then at the end of execution of the BASIC line which was executing when the signal came, the indicated branch in the ON INT is taken.

In the GOTO version, the branch is "absolute", which is to say that the program goes to the line indicated and picks up its execution there, forgetting where it was before. This has the effect of an "abortive" type of branch, and should only be used by the BASIC programmer when he wants the program to resume execution at some pre-determined point after handling an interrupt, without regard to where the program was before the interrupt occurred.

In the CALL and GOSUB versions, the branch is only temporary. After the subprogram or subroutine has been executed and the SUBEXIT, SUBEND, or RETURN (as appropriate) has been executed, then the program returns to the line following the one where it was interrupted. This is the same as if the CALL or GOSUB was in between the interrupted line and the one following it.

The {line identifier} and {subprogram name} in the CALL, GOSUB, and GOTO statements are the same as elsewhere in BASIC, except that a CALL may not have any parameters.

The {select code} specified in an ON INT statement restricts the branching action to occurring only when the assembly language triggers the ON INT condition for that select code. The interrupt may have occurred in actuality on another select code. This can be a way of allowing more than one branch for interrupts from a single interrupting device.

As an example ---

```
100 ON INT#3 GOSUB Print_result
110 ON INT#5 GOSUB End_data
```

Should an interrupt occur anywhere in the program, causing an assembly language interrupt service routine to be executed, that assembly language ISR has the capability to cause either the branch of line 100 or the branch of line 110 to be taken. Thus, an assembly language ISR signals BASIC either to print an intermediate result or to note that all data has been processed.

Signalling

The {select code} specified in an ON INT statement restricts the branching action to occurring only when a branch is "signalled" for that select code. In actuality, an interrupt may not have occurred on that select code at all. Conversely, an interrupt may occur on the select code, but BASIC and its ON INT condition may never hear about it. It is necessary for the ISR which does the actual handling of an interrupt to inform, or "signal", the operating system that the interrupt occurred and trigger the ON INT conditions which may be set up at the time.

The responsibility of the ISR to signal the ON INT is also an opportunity. This signalling allows you in an ISR to decide whether or not you want BASIC to know about the interrupt. If you do not want BASIC to know, simply do not signal the condition. The signalling also allows you to signal different interrupt conditions. An example of doing this might be a case where, after an interrupt, a peripheral indicates whether it wants to input or output data. Your routine could signal one select code to execute an input routine and signal another select code to execute an output routine.

To signal an ON INT, your ISR must execute the following instructions -

ISOURCE	LDB Isr_psw
ISOURCE	LDA =103B
ISOURCE	STA B,I
ISOURCE	ADB=3
ISOURCE	LDA Mask ! Determines which SC to signal
ISOURCE	STA B,I

Mask necessarily contains the select code to be signalled. Rather than containing the number of the select code, however, it has the bit set for the appropriate select code. For example, if you are signalling select code 2, you set bit 2 to 1 in Mask and leave the others 0. Similarly, if you are signalling select code 5, you set bit 5. Thus, the statement containing Mask in the above could just as easily be a literal. For example —

LDA = 32

would signal select code 5.

If the select code is not known at assembly time or if the ISR is shared by more than one select code, the following segment of code can be used to build the appropriate mask. (Pa cannot be zero, because zero is not a valid select code for the Isr access utility.)

ISOURCE Mask: ISOURCE Sb1_1:	BSS 1 SBL 1	! Storage word for the mask. ! Shift B left instruction.
	=	
	-	
ISOURCE	LDA Pa	
ISOURCE ISOURCE	CPA=0 JMP Cant_use_zero	
ISOURCE ISOURCE ISOURCE ISOURCE	ADA =-1 IOR Sb1_1 LDB =1 EXE A	! ! Create the mask. !
ISOURCE	STB Mask	! Store the mask.
	2	
	=	

When you want to signal a select code after others have already been signalled, a slightly different instruction sequence is required —

ISOURCE	LDB Isr psw
ISOURCE	LDA =103B
ISOURCE	STA B,I
ISOURCE	ADB=3
ISOURCE	LDA Mask
ISOURCE	DIR
ISOURCE	IOR B,I ! Ors in the select code
ISOURCE	STA B,I
ISOURCE	EIR

Mask is the same as above.

As a further example, suppose you want both to signal BASIC when a device sends a line-feed character to the computer, and to terminate the ISR's linkage. Then the ISR might appear as —

```
ISOURCE Lf:
                EQU 10
                 π
                 LDA R4
ISOURCE Isr:
               CPA =Lf
ISOURCE
ISOURCE
                JMP Terminate
                STA R7
ISOURCE
                RET 1
ISOURCE
ISOURCE Terminate: JSM End_isr_high, I
ISOURCE LDB Isr psw
                                    ! Signal BASIC
TSOURCE
                LDA =103B
ISOURCE
                STA B.I
               ADB =3
ISOURCE
                                  ! Signal "input"
               LDA =1
ISOURCE
ISOURCE
                STA B,I
                                    ! Return to BASIC.
ISOURCE
                RET 1
```

Prioritizing ON INT Branches

Since more than one interrupt may occur while a single BASIC statement is executing, it is possible that by the time the line finishes there may be a number of ON INT branches waiting to be executed. In such situations you may want to assure that some ON INT branches are taken before others, or that you finish one routine (caused by an ON INT GOSUB or ON INT CALL) before you start another. This can be achieved by using the {priority} option of the ON INT statement, thereby "prioritizing" the branching caused by interrupts.¹

There is a "system priority" for ordering this interrupt branching. For an ON INT to be honored at the end of a BASIC line, its priority must be greater than the current system priority.

Initially, the system priority is set to 0. When a BASIC line finishes, and there is at least one ON INT branch pending which is greater than the system priority, then the system takes the branch associated with the ON INT with the greatest {priority}. The values assigned to {priority} may be any integer numeric expression from 1 to 15. If {priority} is omitted, 1 is assumed.

If the ON INT branch to be executed is a GOTO, then the system priority level is unchanged. But if the branch to be executed is a GOSUB or a CALL, then the system priority level is changed to the priority level of the ON INT. Whenever the subroutine or subprogram is finished executing, then the previous system priority level is restored.

¹ This "prioritizing" also holds between the various types of end-of-line branch statements that have the priority parameter. Thus an ON KEY with high priority is executed before an ON INT with low priority.

Thus, with the GOSUB and CALL versions, there are two effects involving priorities —

- The subroutine or subprogram is not allowed to execute until its priority is the highest one pending.
- Whenever the subroutine or subprogram is executing, it locks out any other interrupting branches unless they have a higher priority.

With the GOTO version there are also two effects, slightly differing -

- The branch is not taken until it has the highest priority of all pending branches.
- The execution of the branch does not lock out any other branches, so that at the end of the line to which it branches, if there are other pending branches, the highest one of those is executed.

For example, suppose there are these four statements in effect —

ON INT #4, 1 GOTO Routine_4 ON INT #5, 9 GOSUB Routine_5 ON INT #6, 5 GOTO 1000 ON INT #7, 15 GOSUB Routine_7

and also suppose that at the end of some BASIC line in the program, an interrupt had been received from all four of the interfaces involved. Then the process of dealing with them proceeds like this —

EVENT	NEXT ACTION	SYSTEM PRIORITY
Reaches end of current BASIC line	GOSUB Routine_7	Changes from 0 to 15
Finishes Routine_7	GOSUB Routine_5	Changes from 15 to 9

Suppose at this point another interrupt is received from select code 7.

EVENT	NEXT ACTION	SYSTEM PRIORITY
Reaches end of current BASIC line in Routine_5	GOSUB Routine_7	Changes from 9 to 15
Finishes Routine_7	Returns to interrupted point in Routine_5	Changes from 15 to 9
Finishes Routine_5	GOTO 1000	Changes from 9 to 0
Finishes with line 1000	GOTO Routine_4	Stays at 0

Environmental Considerations

Changes in program environment (i.e., calling a subprogram or returning from one) can affect whether an ON INT is in effect or not.

Once executed, the CALL version of an ON INT is **always** in effect, if it is in the main program, until it is redefined by another ON INT or is specifically disabled (see below).

In the GOSUB or GOTO versions, the statement is in effect **only** in the same program environment. This is to say that if you have executed an ON INT statement in your main program, then it is effective only while your program is executing part of the main program. The instant the program goes into a subprogram (through a CALL statement), the statement is no longer effective until the execution returns to the main program. Similarly, if you define an ON INT in a subprogram, it is effective only while the program is executing that subprogram.

A side-effect occurs here when you use the CALL version of an ON INT. By calling the subprogram with an ON INT, you have the effect of locking out the other interrupts, except those which are executed in the subprogram itself and other CALL versions. This is regardless of priority. In the priority example in the previous section, if the ON INT#5 had been a CALL instead of a GOSUB, then the second interrupt from select code 7 would not have been acknowledged until the subprogram had finished.

Since recursive calls of subprograms are possible, it is also possible that many calls to the same subprogram may be stacked up because an interrupt from a different select code with a CALL version of an ON INT in effect may be received while processing the CALL caused by a previous interrupt.

Disabling ON INT Branching

The branching enabled by an ON INT statement can be disabled using an OFF INT statement for the same select code. It is effective for the ON INT statement within the same program environment (main program or subprogram) or for the CALL versions of the ON INT within any environment.

The statement has the form —

OFF INT # {select code}

where {select code} is a numeric expression for any valid interface select code between 1 and 13, inclusive.

The effect of the OFF INT statement is to disable the ON INT for that select code within the current environment. If there is no ON INT statement currently in effect for the select code, then the OFF INT has no effect.

The DISABLE and ENABLE statements work the same way for the ON INT statements as they do for the ON KEY statements. They should not be confused with the DIR and EIR machine instructions, which disable and enable the interrupt system.

Mass Storage Activities

For devices meeting the operating system's criteria for mass storage peripherals, utilities are provided for the reading and writing of records. The relationship between physical, logical, and defined records is discussed later in this chapter.

If a device has been specified in a MASS STORAGE IS statement in BASIC, as in -

MASS STORAGE IS ":F"

or is capable of being so specified, then it is possible to use utilities to access it. Note that the Mass Storage ROM is necessary to access any device other than the internal tape drive(s).

NOTE BUFFER# must not be used with files which are accessed using these utilities.

There are two utilities involved in reading from a mass storage device — Mm_read_start and Mm_read_xfer — and there are two utilities involved in writing to a mass storage device — Mm_write_start and Mm_write_test. The reading utilities are always used together. So, too, are the writing utilities.

Reading from Mass Storage

The flow of data to and from a mass storage device is buffered. For each device there is a "device buffer" in memory which holds data corresponding to a physical record (256 bytes). Device buffers are dynamically allocated by the operating system and their actual locations at any given time are of no concern.

To get information from a mass storage device into its device buffer, use the Mm_read_start utility. Then to get the information out of the buffer and into your user space, use the Mm_read_xfer utility. The transfer of data, therefore, looks something like this —

The utilities accomplish their purposes with the help of two locations containing vital information for their use. The first is the Mass Storage Descriptor (MSD) and the second is the Mass Storage Transfer Identifier (MSTID).

The MSD is three words in the ICOM region which contains the following information -

This information must be provided by your program. You must determine this information in advance of attempting the reading operation. The msus is given in one of two forms —

If the MSUS word contains a -1, the mass storage device indicated by the MASS STORAGE IS statement is used. The instructions —

LDA = -1 ! -1 in the Aregister. STA Msd ! Store in the first word of the MSD.

 $\mathbf 1$ The device type is the ASCII code for the type minus 100B.

2 For tape operations, bits 9-15 are zeroes.

specify the default mass storage device.

The MSTID is a single word. The information in it is returned by the Mm_read_start utility and used by the Mm_read_start utility.

The usual procedure in reading a record from mass storage (which is all that can be read at one time) is to call the Mm_read_start utility and then, if all goes well with that, to call the Mm_read_xfer utility. Because the latter utility may have to wait on the operating system or the device, it is possible the utility may return without having completed the transfer. In that case, it is your option either to loop back and keep trying, or to do something else and try again later.

UTILITY: Mm read start

General Procedure: The record number is determined, then the transfer of the record's contents is made from the device to the device buffer. If the buffer allocation causes a memory overflow, there is an error.

Special Requirements: The record number and msus must be loaded into the MSD in advance of the call. There must be a stable location (not changed by other activities) for the MSTID to be held.

Calling Procedure:

- 1. Store the msus and record number into the MSD area.
- 2. Load register A with the address of the MSD area.
- 3. Call the utility.

Exit Conditions:

- RET 1 Occurs if there is a memory overflow during execution of the utility.
- RET 2 Occurs if all went normally. Register A contains the MSTID. This should be immediately stored in the location reserved for it.

UTILITY: Mm read xfer

General Procedure: The MSTID is used to retrieve the record from the device buffer. The record is stored into a location set aside for this purpose.

Special Requirements: The MSTID must be available from a previous call to Mm_read_start. A location of 128 consecutive words must be set aside to hold the contents of the record when they are returned by the utility.

Calling Procedure:

- 1. Load register A with the contents of the MSTID.
- 2. Load register B with the address of the storage location for the data.
- 3. Call the utility. The transfer may not be completed on the first or subsequent calls (see exit conditions). In that case, to successfully complete the transfer, all three steps must be repeated.

Exit Conditions:

- RET 1 Occurs when the transfer is not completed. It is up to your routine at this point to decide whether another attempt should be made immediately, or whether something else should be executed (and to come back later).
- RET 2 Occurs when the transfer is complete. The location specified contains the data. If register A contains a non-zero value, an error occurred and A contains the error number. In addition to mass storage errors (80 through 99), error 19 is returned if the MSTID parameter is invalid.

CAUTION

PRESSING RESET (CONTROL STOP) DURING EXECUTION OF EITHER OF THE ABOVE UTILITIES MAY CAUSE A SCRATCH A TO OCCUR.

The following is an example of a typical call to these utilities to read a record from mass storage —

```
ISOURCE Number: BSS 2
ISOURCE Mad:
                BSS 3
ISOURCE Mstid:
                BSS 1
ISOURCE Record: BSS 128
ISOURCE
                LDA =(((T-100B)*16+14) ! MSUS for ":T14"
                             ! Create the MSD
ISOURCE
                STA Msd
                                 ! Store low-order bits of record number
                LDA Number
ISOURCE
ISOURCE
                STA Msd+i
                                 ! Store high-order bits of record number
ISOURCE
                LDA Number+i
ISOURCE
                STA Msd+2
ISOURCE.
                LDA =Msd
                JSM Mm read start! From device to buffer
ISOURCE
ISOURCE.
                JMP Memory overflow
```

ISOURCE	STA Mstid	! Keep the MSTID
ISOURCE Fetch:	LDA Mstid	
ISOURCE	LDB =Record	
ISOURCE	JSM Mm read xfer	! Transfer record to ICOM buffer
ISOURCE	JMP Fetch	! Not completed (RET 1)
ISOURCE	SZA *+2	! Check for errors (RET 2)
ISOURCE	JSM Error_exit	

Writing to Mass Storage

Writing to mass storage is very much like reading from it. The flow of data is buffered. To get the data from the user space into the device buffer, and then to transfer the data from the buffer to the mass storage device, the Mm_write_start utility is used. Then a test can be made to determine when the transfer is complete by using the Mm_write_test utility. Thus, the transfer looks like —

As with the reading utilities, these utilities accomplish their purposes with the help of the same two locations — MSD and MSTID. They contain the same information as they do in the reading utilities and are used in a similar fashion.

UTILITY: Mm_write_start

General Procedure: The record number is determined, then the transfer of the data is made from the ICOM region to the device buffer. If the buffer allocation causes a memory overflow, there is an error.

Special Requirements: The record number and msus must be loaded into the MSD in advance of the call. There must be a stable location (not changed by other activities) for the MSTID to be held. The data to be transferred must be ready (256 bytes — 128 consecutive words).

Calling Procedure:

- 1. Store the data to be transferred in its location. Store the msus and record number into the MSD area.
- 2. Load register A with the address of the MSD area.
- 3. Load register B with the address of the data location.
- 4. Call the utility.

Exit Conditions:

- RET 1 Occurs if there is a memory overflow during execution of the utility.
- RET 2 Occurs if all went normally. Register A contains the MSTID. This should be immediately stored in the location reserved for it.

UTILITY: Mm write test

General Procedure: The MSTID is used to check to see if the data from the buffer has been transferred to the mass storage device.

Special Requirements: The MSTID must be available from a previous call to Mm_write_start.

Calling Procedure:

- 1. Load register A with the contents of the MSTID.
- 2. Call the utility. The transfer may not be completed on the first or subsequent calls (see exit conditions). In that case, to successfully test for a completed transfer, both steps in the calling procedure must be repeated.

Exit Conditions:

- RET 1 Occurs when the transfer from the device buffer to the device is not completed. It is up to your routine at this point to decide whether another test should be made immediately, or whether something else should be executed (and to come back later).
- RET 2 Occurs when the transfer is complete. If register A contains a non-zero value, an error occurred and A contains the error number. In addition to mass storage errors (80 through 99), error 19 is returned if the MSTID parameter is invalid.

CAUTION

PRESSING RESET (CONTROL (STOP)) DURING EXECUTION OF EITHER OF THE ABOVE UTILITIES MAY CAUSE A SCRATCH A TO OCCUR. The following is an example of a typical call to these utilities to write a record to mass storage —

```
ISOURCE Number: BSS 2
ISOURCE Mad:
                BSS 3
ISOURCE Mstid:
                BSS 1
ISOURCE Record: BSS 128
                 =
                LDA =(('T-100B)*16+14 ! MSUS for ":T14"
ISOURCE
               STA Msd ! Create the MSD
ISOURCE
               LDA Number
                               ! Store low_order bits of record number
ISOURCE
ISOURCE
               STA Msd+1
ISOURCE
               LDA Number+1 ! Store high-order bits of record number
ISOURCE
               STA Msd+2
               LDA =Msd
ISOURCE
               LDB =Record
ISOURCE
              JSM Mm_write_start ! Put record in buffer
JMP Memory_overflow
STA Mstid ! Keep the MSTID
ISOURCE
ISOURCE
ISOURCE
ISOURCE Test: LDA Mstid
               JSM Mm_write_test ! Is transfer of data complete?
ISOURCE
ISOURCE
               JMP Test ! Not completed
ISOURCE
               SZA *+2
                                ! Check for errors
ISOURCE
               JSM Error exit
```

System File Information

As an ASSIGN statement is executed in BASIC, a file-descriptor is created for that assignment in the operating system's files table. The ASSIGN statement essentially has two parameters the file number and the file name (including the BASIC language mass storage unit specifier).

The file number is, for all practical purposes, an offset into the files table. The file name and the BASIC language mass storage unit specifier are translated and the critical information associated with them comprise an entry in the files table (i.e., the "file descriptor").

Word	Description
0	Lower 16 bits of the address of the first physical record in the file
1	Number of defined records in the file
2	BASIC's Current defined record number
	(i.e., an offset from the file's beginning).
3	BASIC's offset to current word within current defined record
4	Size of the defined record (in words)
5	Mass storage unit specifier (msus)
6	BUFFER# flag (0=no BUFFER# active) ¹
7	Check read status ($0 = off, 1 = on$)
8	Highest 7 bits of the first physical record in the file
9	(Reserved by the operating system)

The file descriptor consists of 10 words containing the following information -

Note that words 5, 0 and 8 contain the information necessary to create an MSD. You may access a file descriptor through two utilities — Get_file_info to obtain the information, and Put file info to change the information.

NOTE

A files table is created for each BASIC "environment" (i.e., main program and subprograms). When access is made through utilities to the files table, the table accessed is the one associated with the BASIC environment which called the assembly language program.

UTILITY: Get_file_info

General Procedure: The utility is given the file number and the location of a place to store the file descriptor. It retrieves the designated descriptor and stores it, provided the file has been assigned.

¹ If this flag is non-zero, it indicates that a BUFFER# is active for this file. Therefore, Mass Storage utilities should no be used. Executing another ASSIGN statement for this file clears the BUFFER# flag.

Special Requirements: There must be a ten-word area available for the utility to store the information from the descriptor.

Call Procedure:

- 1. Load register A with the address of the ten-word area where you desire the information to be stored.
- 2. Load register B with the file number (an integer from 1 to 10).
- 3. Call the utility.

Exit Conditions:

RET 1 Occurs if the file is not currently assigned by a BASIC ASSIGN statement.

RET 2 Occurs if all went normally.

Here is an example of a routine which has a file number passed to it, and then gets the file descriptor —

		=					
ISOURCE	File_descriptor:	BSS	10				
ISOURCE	File:	BSS	1				
		=					
		-					
		=					
ISOURCE		SUB					
ISOURCE	Parameter:	FIL					
ISOURCE	Routine:	LDA	=File	ļ	Get	file	number
ISOURCE		LDB	=Parameter				
ISOURCE		JSM	Get value				
ISOURCE		JMP	=File descriptor	~ !	Get	file	descriptor
ISOURCE		LDB	File				
ISOURCE		JSM	Get file info				
ISOURCE		JMP	No file error	Į	File	e not	assigned
		2					-
		-					
		=					

UTILITY: Put_file_info

General Procedure: The utility is given the file number and the location of the area containing the new file descriptor information. It stores that information into the files table as indicated by the file number, provided that the file has been assigned.

Special Requirements: The new pointer information must be stored in the designated area before calling the utility. This information must be in the correct form and location or file difficulties may ensue. Most of the information is normally returned by the "Get_file_info" utility and only a couple of words are changed to change the pointer in the file (e.g., the current record and word numbers). Only words 2, 3, and 7 should be changed in the descriptor.

Calling Procedure:

- 1. Load register A with the address of the ten-word area where the information is stored.
- 2. Load register B with the file number (an integer from 1 to 10).
- 3. Call the utility.

Exit Conditions:

- RET 1 Occurs if the file has not been assigned by a BASIC ASSIGN statement.
- RET 2 Occurs if all went normally.

Here is an example where the next defined record in a file is specified —

```
File: BSS 1 | File number

File_descriptor: BSS 10 | File information

.

.

ISZ File_descriptor+2 | Increment record number

LDA =0

STA File_descriptor+3 | Set word to 0

LDA =File_descriptor

LDB File

JSM Put_file_info

JMP No file error | File not assigned
```

Communication with BASIC Data Files

It is perfectly acceptable and practical for assembly language programs to write data patterns to data files and read them back. This has the advantages of simplicity and efficiency. However, such files cannot be properly read by the BASIC READ# statement or written for assembly routine use by the BASIC PRINT# statement. Therefore, if it is necessary for an assembly language program to read or write data which is compatible with READ# and PRINT#, the assembly language program must recognize and conform to the conventions used by these two BASIC statements. This section discusses these conventions.

Interrelation of Record Types

Recall from the System 45 Operating and Programming manual that there are three types of records used with the System 45 as follows:

- Physical record 256-byte, fixed units which are established when a mass storage medium is initialized. Every file starts at the beginning of a physical record.
- **Defined record** established using the CREATE statement. Defined records can be specified to contain any number of bytes in the range 4 to 32 767 (rounded up to an even number). The first defined record of a file starts at the beginning of a physical record.
- Logical record a collection of data items that are grouped together conceptually. Different logical records may have different lengths within the same file. If a logical record is not immediately followed by another logical record and does not end on a defined record boundary, it is followed by either an EOR (end of record) or EOF (end of file) mark.

In order to locate logical records within a file, it is necessary to know the relationship between logical and defined records. This relationship depends on the method of file access used to write the information into the file. When a file is written using strictly serial file access, the first logical record starts at the beginning of the first physical record, the second logical record starts immediately after the first logical record and so on. Logical records may cross defined record boundaries. When a file is written using strictly random file access, each logical record starts at the beginning of a defined record and is contained entirely within the defined record. A hybrid method is also possible. With this method, logical records are written starting at the beginning of defined records may start immediately after other logical records, as well as at the beginning of defined records. Illustrations representing files produced by each of the three methods described above are presented here —

File produced by hybrid access.

The READ# and PRINT# statements read and write logical records which may be optionally positioned on defined record boundaries. Physical records are essentially invisible to the BASIC user. On the other hand, the assembly language mass memory utilities deal with physical records. To keep the relationship between defined and physical records simple, it is recommended that data files be created with 256 bytes per defined record (this is the default byte per record number used by the CREATE statement when the record length argument is not supplied). When 256 bytes per defined record, the relationship between physical and defined records are identical. If you choose not to use 256 bytes per defined record, the relationship between physical and defined records is also fairly simple if the number of bytes per defined record is a power of 2 (e.g., 64) or is an integer multiple of 256 (e.g., 768).

Crossing Record Boundaries

The subject of what happens when a logical record crosses a physical and defined record boundary is now considered. The sequence of data words is not affected as the **physical record boundary** is crossed. For example, suppose there are three words remaining in a physical record and the next data item to be written is a real number (which requires four words). The first three words are written at the end of the current physical record and the last word is written at the beginning of the next physical record.

However, the same is not true when a sequence of data words crosses a **defined record boundary**. Numeric data items are not allowed to cross defined record boundaries. When writing a data item, the follow three cases exist:

- If there are enough words left in the current defined record to contain the item, the item is written in that record.
- If there are no words left in the current defined record, the item is written at the beginning of the next record.
- If there are one or more words left in the current record but not enough to hold the data item, an end of record mark is written immediately after the previous data item in the current record and the new data item is written at the beginning of the next record.

Of course, these cases apply when physical record boundaries coincide with defined record boundaries. A fourth case exits and involves an attempt to write a full-precision number into a file with 4 or 6 byte defined records or to write a string into a file with 4 byte defined records. If either operation is attempted, ERROR 61 results.

Strings may cross defined record boundaries but special rules apply in this case. These rules are described later when string data types are discussed.

A full-precision number exits in a data file as four words in a form tha looks like this —

This is the same format as that shown in Chapter 3, except for the type bits which are used to identify the number as full precision. A full-precision number **must** have the type bits set to the pattern 01101 when written to a mass storage device, otherwise READ# will not interpret the data correctly. A full-precision number **must** have its type bits cleared before it is used with the math utilities or sent back to BASIC. Erroneous results occur if the type bits are not cleared. A full-precision number must not cross a defined record boundary.

A short-precision number exists in a data file as two words in the following form:

This is exactly the same as the usual short-precision format. READ# identifies short-precision numbers by the fact that D_1 and D_2 are valid BCD digits. A short-precision number must not cross a defined record boundary.

An integer precision number exits in a data file as two words in the following form —

The first word is a type word which allows READ# to identify the data as an integer. The second word is the integer value in the usual two's complement form. An integer precision number must not cross a defined record boundary.

Strings are stored in data files in various forms, depending on how many defined record boundaries are crossed. The simplest case occurs when the string fits entirely within the current defined record. The fundamental format is illustrated here —

When the string does not fit entirely within on record, it is stored as a "first part", zero or more "middle parts" and a "last part". The following illustration represents a 300-byte string which has been written into 256-byte records starting at the third-to-last word of the record.

Note the different type words for the various parts. Also note that the length words contain the total number of bytes remaining in the string.

Strings are written according to the following rules:

- 1. If defined records are only 4 bytes long, then ERROR 61 results.
- 2. If the string fits entirely within the current record, the entire string is written into that record. (Null strings fall under this rule if there are at least 2 words available).
- 3. If there are 1 or 2 words left in the current record, an end-of-record mark is written after the previous data item. If there are 0, 1 or 2 words left in the current defined record (before an EOR was written), then the data file pointer is moved to the beginning of the next defined record and the string is then written starting in the new current record as in Step 2 above.
- 4. Otherwise, as much of the string as will fit in the current record is written as a first part string. Zero or more middle parts are written, one per defined record, and then the last part string is written.

File Marks

End-of-record (EOR) and end-of-file (EOF) marks exists as single word markers as shown below.

An EOR indicates that there is no more valid data in the current defined record. If a serial READ# tries to read more data when the file pointer is positioned at an end-of-record mark or positioned past the end of the defined record, the READ# skips to the beginning of the next defined record and tries to read data there.

An EOF indicates an end of data. If a READ# tries to read more data when the file pointer is positioned at an end-of-file mark or past the end of the last defined record, then an ERROR 59 results unless there is an ON END# condition active for that file pointer.

For best results when writing data files, write EOR and EOF marks according to the following rules:

- Write EOR marks as indicated in the discussion of string data files, given in the previous section and according to the rules outlined in the section "Crossing Record Boundaries". If these rules are not followed, the BASIC READ# statement will attempt to interpret the unused words at the end of defined records and will probably give ERROR 65, incorrect data type.
- 2. In a serial access file, write an EOF immediately after the last logical record. If there is no room in that record for the EOF mark, write the EOF at the beginning of the next defined record. If this is not done, you may not know where your data ends when you try to read it later. If another logical record is to be appended to the end of the previous data, the first word of the new data must overwrite the previous EOF. If there is no space in that record for an actual data item, the EOF must at least be replaced with an EOR.
- 3. If random access is used to find the end of data in a serial file, be sure that there is an EOF at the beginning of all unused defined records.
- 4. A defined record in a random access file can be made empty by writing an EOF at the beginning of that record.
- 5. The nature of programs that use random access is such that they usually do not try to read more data than was written. But for safety sake, it is a good idea to write an EOF or EOR after each logical record in a random access file, if there is room in each defined record.

Determining Data Types

The type of data item in a data file can be determined by ANDing the first word of the data item with 76B. The result (the type bits) can be used in conjunction with the following table to determine the data type:

Type Bits ¹	Data Type
12B	Integer number
32B	Full-precision number
14B	Middle part of a string
34B	First part of a string
54B	Last part of a string
74B	Total string
36B	EOR
76B	EOF
Other	If the right byte consists of two valid BCD digits
	the data type is a short-precision number.

 ${\bf 1}$ The remaining codes have not yet been assigned but are reserved.

Printing

Three utilities are provided to enable you to gain access to the standard system printer: Printer_select, Print_string and Print_no_lf. An additional utility, To_system, allows you to expedite the printing process.

UTILITY: Printer_select

Background Information: Printer_select allows you to set the standard system printer to a select code of your choosing.

General Procedure: The utility is given the select code to be assigned as the standard system printer and the desired printing width. The utility makes the assignment and returns with the previous values of both the select code and printer width.

Special Requirements: The select code value must be in the range of 0 through 18 for the utility to work properly. The select code and associated device for committed printer select codes are as follows:

- 0 internal printer
- 16 CRT alpha raster
- 17 display line of the CRT (as used for the DISP instruction)
- 18 system message line of the CRT (as used for system error messages)

HP-IB devices are not allowed for use with the Printer select utility.

Calling Procedure:

- 1. Load register A with the desired select code.
- 2. Load register B with the desired printer width.
- 3. Call the utility.

Exit Conditions: There are no error exits from the utility, so it always returns to the instruction following the call. Register A contains the value of the previous select, and register B contains the value of the previous printer width.

The utility can feasibly be used just to interrogate the current value of the printer's select code. However, a second call to the utility is needed in such cases to assure that the select is not changed by the first call. So, for example —

```
ISOURCE LDA =16
ISOURCE LDB =30
ISOURCE JSM Printer_select
ISOURCE STA Select_code
ISOURCE STB Printer_width
ISOURCE JSM Printer_select
```

This results in an unchanged printer specification and the values for the select code and width being stored in the ICOM area for future use.

Because of the possibility that a RESET ($(\begin{subarray}{c} \begin{subarray}{c} \b$

UTILITY: Print_string

Background Information: Print_string allows you to print a string to the standard system printer. A carriage-return line-feed sequence is sent following the string.

General Procedure: The utility is given the address of a string, and it prints that string to the standard system printer.

Special Requirements: The string to be printed must be in standard string format (see "Data Structures" in Chapter 3). The string must be no longer than 506 characters.

Calling Procedure:

- 1. Load register A with the address of the string to be printed.
- 2. Call the utility.

Exit Conditions:

- RET 1 If a memory overflow occurs during execution of the utility.
- RET 2 If the (s_{TOP}) key is pressed during execution of the utility.
- RET 3 If all goes normally.

For example —

```
ISOURCE String: DAT 13, "ERROR IN CALL"
                              z
                              .
                     LDA =String
JSM Print_string
JMP Overflowerror
JMP Stop_routine
NOP
    ISOURCE
    ISOURCE
                                                     ! Overflow condition.
    ISOURCE
    ISOURCE
                                                      ! Stop key pressed.
                                                      ! Normal exit.
    ISOURCE
or
                        LDA ==13,"ERROR IN CALL"
JSM Print_string ! No DAT statement!
JMP Overflowerror ! Overflow condition.
    ISOURCE
    ISOURCE
    ISOURCE
    ISOURCE
                             JMP Stop_routine ! Stop key pressed.
                             NOP
    ISOURCE
                                                       ! Normal exit.
```

The DAT statement and the location counter (*) can be used to calculate string length so that strings can be modified without having to constantly specify length. The following example illustrates this useful feature:

ISOURCE		NAM	Stringlength	į	Module name.
ISOURCE		EXT	Print string	ļ	Declare externals.
ISOURCE	String1:	DAT	(Lengthi-*-i)*2	ł	Length information.
ISOURCE	-	DAT	"STRING #1"	ļ	Modifiable String1.
ISOURCE	Length1:	¥		ļ	Location counter.
ISOURCE	String2:	DAT	(Length2-*-1)*2	ļ	Length information.
ISOURCE		DAT	"STRING #2"	ļ	Modifiable String2.
ISOURCE	Length2:	¥		ļ	Location counter.
ISOURCE		SUB			
ISOURCE	Entrypoint:	ļ		ļ	Routine entry point.
ISOURCE		j			
ISOURCE	Print:	LDA	=String1		
ISOURCE		JSM	Print string	ļ	Print String#1.
ISOURCE		JMP	Overflow	ļ	Overflow routine.
ISOURCE		JMP	Stopkey	!	Stop key pressed.
ISOURCE		LDA	=String2		
ISOURCE		JSM	Print string	Į	Print String#2.
ISOURCE		JMP	Overflow	ł	Overflow routine.
ISOURCE		JMP	Stopkey	ļ	Stop key pressed.
ISOURCE		ļ			
ISOURCE		ŧ			
ISOURCE		RET	1	ļ	Return to BASIC.
ISOURCE		END	Stringlength		

The strings in this example can be modified to any length less than 507 characters. The number of characters need not be placed in the DAT statement as this is taken care of in lines 30 through 50 and 60 through 80.

CAUTION PRESSING RESET (CONTROL (STOP)) DURING EXECUTION OF THE PRINT_STRING UTILITY OR THE PRINT_NO_LF MAY CAUSE A SCRATCH A TO OCCUR.

UTILITY: Print_no_lf

Background Information: Print_no_lf operates in an identical fashion to the Print_string utility except that no carriage-return line-feed sequence is appended to the end of the string. This is analogous to using PRINT (<print list>;) in BASIC.

General Procedure: The utility is given the address of a string, and it prints that string to the standard system printer.

Special Requirements: The string to be printed must be in standard string format (see "Data Structures" in Chapter 3). The string must be no longer than 506 characters.

Calling Procedure:

- 1. Load register A with the address of the string to be printed.
- 2. Call the utility.

Exit Conditions:

- RET 1 If a memory overflow occurs during execution of the utility.
- RET 2 If the (stop) key is pressed during execution of the utility.
- RET 3 If all goes normally.

For example —

	•	
ISOURCE	LDA ==27,"MESSAGE	#1 IS CONCATENATED "
ISOURCE	JSM Print_no_lf	
ISOURCE	JMP Overflow	! Overflow routine.
ISOURCE	JMP Stopkey	! Stop key pressed.
	-	
ISOURCE	LDA ==14,"TO MESS	AGE #2."

ISOURCE JSM Print_string ISOURCE JMP Overflow ! Overflow routine. ISOURCE JMP Stopkey ! Stop key pressed. ISOURCE NOP ! Normal exit.

The result that is sent to the standard printer is -

MESSAGE# 1 IS CONCATENATED TO MESSAGE #2.

The Beep Signal

An audible tone (beep) can be produced from assembly language programs by storing 100000B into R7 while Pa=0. This procedure can be used in interrupt service routines as well as in background programs. Here is an example —

ISOURCE LDB Pa ! Save old Pa. ISOURCE LDA =0 ISOURCE STA Pa ! Clear Pa. ISOURCE LDA =100000B ISOURCE STA R7 ! Beep! ISOURCE ! Restore Pa. STB Pa .

Expediting I/O

The design of the System 45 operating system is such that an assembly language routine can be executing while there is one or more I/O operations pending or "queued up" by the system. This condition may arise when BASIC statements such as PRINT, OUTPUT, ENTER, PLOT, IASSEMBLE and others are executed in OVERLAP mode before an ICALL statement or when utilities such as Print_string or Print_no_lf initiate I/O from within the assembly language module itself. The operating system doesn't get a chance to move these I/O operations toward completion as long as the assembly routine is executing.

This fact is typically of little concern since the operating system resumes its attempt to complete the I/O operation as soon as the ICALL completes. However, there are three specific cases in which expedition of an I/O operation is useful or even necessary. These three cases follow:

- 1. when the assembly routine is waiting for a busy variable to become not busy.
- 2. when the assembly routine takes a long time to execute and the programmer wishes to continue working on queued up I/O.

3. when the assembly routine needs to guarantee that I/O to a particular select code has completed.

Case 1 has been discussed in Chapter 6. Case 2 can be taken care of by including an occassional JSM To_system in a long assembly routine. The third case might arise in situations where the routine must make sure that a message is printed on the CRT before starting a long computation process. This situation might also arise when the assembly routine must communicate with an I/O interface card which may be involved in an OVERLAPPED I/O operation. Consider the following example:

```
PRINTER IS 6
PRINT LIN(3), "HI THERE"
ICALL Mine
.
.
ISOURCE SUB
ISOURCE Mine: LDA =6
ISOURCE STA Pa
ISOURCE LDA =1
ISOURCE STA R5
.
```

If this segment of code is executed in SERIAL, the ICALL would not begin until the PRINT is completed and there is no problem. If, however, the segment is executed in OVERLAP, the ICALL is allowed to begin, even though the operating system has not yet completed the PRINT. The results of this kind of situation are unpredictable.

A technique called "flushing" is used to ensure that all I/O operations on a particular select code have completed. The process of flushing involves interrogating a special table within the operating system to determine if an I/O operation is pending on a particular select code. The following routine flushes all I/O from the select code passed in the A register.

ISOURCE Flush poiunter:	BSS 1
ISOURCE Flush io:	SAL 1 ! Compute offset into table.
ISOURCE	ADA =177000B ! Compute pointer into table.
ISOURCE	STA Flush_pointer
ISOURCE Flush_loop:	LDA Flush pointer, I ! Is select code busy?
ISOURCE	SZA Flush_done ! Yes.
ISOURCE	JSM To_system
ISOURCE	JMP Flush loop
ISOURCE Flush_done:	RET 1

The flushing technique should not be used in the following two cases:

- Mass memory devices: Use the mass memory utilities to communicate with mass memory devices.
- 2. The Isr_access utility: It automatically flushes the select code of all activity.

Chapter **8** Debugging

Summary: This chapter describes techniques for isolating and correcting logic problems in assembly programs. Included in the discussion are techniques for stepping through programs, getting dumps, patching, and using the keyboard.

The assembly system has provided you with a number of BASIC language tools to help you debug your assembly language programs during their development stages.

These tools are for run-time debugging, so your source code must have been assembled into object code and stored in the ICOM region before attempting to use any of the debugging features detailed in this chapter.

There are three classes into which these tools fall: stepping through programs, dumps, and value checking. There is also an additional capability provided for the correction of some errors — patching.

The BASIC statements available for debugging are —

IBREAK IBREAK ALL IBREAK DATA ICHANGE IDUMP INORMAL IPAUSE OFF IPAUSE ON

and the following BASIC functions are available ----

DECIMAL IADR IMEM OCTAL

Symbolic Debugging

Many statements allow symbolic addressing. The general rules are —

An {address} or {assembled location} can have two forms -

```
{symbol} [ , {numeric expression} ]
{expression} [ , {numeric expression} ]
```

where,

{symbol} is an assembly location. It may be either a label for a particular machine instruction, an assembler-defined symbol or a symbol defined by an EQU instruction.

{expression} may be a numeric or string expression. Variables in expressions are assumed to be BASIC variables. If numeric, a decimal calculation is done and the result is interpreted as an octal value; an error results if the result is not an octal representation of an integer. If a string expression is used, the string must be interpretable as either an octal integer constant or a known assembly symbol.

{numeric expression} serves as a **decimal** offset from the given label or constant. Variables in these expressions are assumed to be BASIC variables. An undefined BASIC variable is always given the value 0.
Stepping Through Programs

"Logic" difficulties are some of the hardest problems to solve in debugging programs. In batch environments, the usual solution is to print the contents of variables at critical points in the program or to print dumps. The capabilities for both of these methods are provided. However, advantage has been taken of the interactive, "hands-on" nature of the 9845 and a feature has been added which allows you to execute the assembly statements individually. This permits you to examine the flow of the program as it executes rather than having to decipher a dump or trying to print the contents of specific variables at what you guess is the critical point.

If you wish to look only at particular points in the program, or at particular variables, there is also the ability to establish "break points" for these items, so that your debugging routines can be invoked only when certain conditions arise. You can also establish different routines for different break points, adding to the flexibility.

Individual Instruction Execution

Normally, all BASIC lines, including the ICALL statement, act as a **unit**. That is to say, whenever you press the $\begin{pmatrix} P \\ Q \\ P \end{pmatrix}$ key, the line which is currently executing is allowed to finish before the program is actually interrupted. Thus, if you press $\begin{pmatrix} P \\ P \\ P \end{pmatrix}$ during execution of the line —

100 LET A=1+1

For example, if you press $\begin{pmatrix} P \\ Q \\ Q \end{pmatrix}$ during the execution of —

120 ICALL Sort(A(*))

then the assembly routine completes before the $\begin{pmatrix} \mu \\ g \end{pmatrix}$ is honored. This is not always desirable, especially during debugging of the assembly routine. This technique does not allow you to look at the execution of the routine to help you determine what may be going wrong.

The same problem occurs with the **STEP** key. Pressing **STEP** causes an entire BASIC line to be executed. Thus, if you stepped through line 120 as above, the entire routine Sort would be executed, and you would not be able to observe its execution on an instruction-by-instruction basis.

To permit you to analyze the execution of assembly language routines, an executable BASIC statement has been provided —

IPAUSE ON

Now, should you have the sequence in your program —

```
110 IPAUSE ON
120 ICALL Sort(A(*))
```

then pressing $\begin{pmatrix} k \\ k \end{pmatrix}$ during the execution of line 120 would cause program execution to be interrupted after completion of whatever machine instruction is being executed at the time. Further, the assembly language source line associated with the following instruction is displayed according to certain rules.

If the source lines are still in memory when you press $\begin{pmatrix} k \\ k \end{pmatrix}$ (e.g., you just assembled the object code which you are running), then the source line is displayed. If the source is no longer in memory (e.g., the object code was obtained through an ILOAD), then the instruction displayed is the result of a "reverse assembly". If there is an operand with an instruction which is reverse assembled, then the octal value of that operand is displayed (this is because the reverse assembly process has no way of knowing what symbols you might have used to assemble the instruction originally).

After pressing $\begin{pmatrix} k \\ k \\ k \end{pmatrix}$, all you have to do to resume normal execution is press $\begin{pmatrix} s \\ k \\ k \end{pmatrix}$.

After pressing $\begin{pmatrix} a \\ b \\ b \end{pmatrix}$, you may want to observe the flow of execution of your assembly routine. This can be done by successively pressing the seven the key. Each time the key is pressed, another machine instruction is executed and the assembly source line associated with the next machine instruction is displayed. You may continue this way for as long as you like — until you press $\begin{pmatrix} c \\ b \\ c \end{pmatrix}$ to allow processing to proceed uninterrupted until the end of the routine.

In summary, IPAUSE ON allows two unique features —

- The $\begin{pmatrix} k \\ k \\ k \end{pmatrix}$ key can be used to halt execution within an assembled routine.
- The STEP key can be used to execute individual assembly language instructions.

Some key things to remember in using the IPAUSE ON facility —

- This is an execution-time debugging tool. You must be executing your previouslyassembled object code with an ICALL statement.
- If the source code is available for display, it will be displayed, otherwise the line is "reverse assembled".
- Utilities are not stepped instruction-by-instruction, but rather as a unit.
- The **STEP** key performs in BASIC just as before.
- Keeping the (SIEP) key and the (HEAN) key depressed causes repeated execution of the stepping function, the same as in BASIC.

By way of example, suppose you had the following source code —

```
10
      DIM A$[10]
      ICOM 100
28
30 IPAUSE ON
40 IASSEMBLE Extract
50 Loop: LINPUT A$
60 PAUSE
70 ICALL Extract(A$)
80 PRINT "<";A$;">"
90
       GOTO Loop

    100
    ISOURCE
    NAM Extract ! Extracts part of a

    110
    ISOURCE
    ! string preceding c

    120
    ISOURCE
    EXT Get_value,Put_value

                                                           ! string preceding comma
130 ISOURCE String: BSS 6
140 ISOURCE
                                    SUB
150 ISOURCE Parameter:STR
160 ISOURCE Extract: LDA =String / Retrieve string

      170
      ISOURCE
      LDB =Parameter

      180
      ISOURCE
      JSM Get_value

      190
      ISOURCE
      LDB String
      ! Initialize counter

      200
      ISOURCE
      LDA =String
      ! Initialize stack pointer

      210
      ISOURCE
      SAL 1

180 ISOURCE
190 ISOURCE
200 ISOURCE
210 ISOURCE
220 ISOURCE
                                  ADA String
                                   ADA =1
230 ISOURCE
240 ISOURCE
                                    STA C
                                    CBL
250 ISOURCE
260 ISOURCE Loop: WBC A
                                                                ! Retrieve next character
270ISOURCECPA =1,Isotracommulation280ISOURCEJMP Yes290ISOURCEDSZ B! Decrement. Done?300ISOURCEJMP Loop310ISOURCERET 1! No commee, no extracte320ISOURCE Yes:ADB =-1! Found comma, extract330ISOURCESTB String! by changing length340ISOURCELDA =String! then extracting
                                    CPA =′,
270 ISOURCE
                                                                 ! Is it a comma?
                                                                 ! No commee, no extractee
                                  LDB =Parameter
350 ISOURCE
360 ISOURCE
                                   JSM Put_value
                                   RET 1
370 ISOURCE
                                    END Extract
380 ISOURCE
```

Then the following would be the display lines you would see as you executed this program using the [STEP] key —

```
DIM A$[10]
 10
20
         ICOM 100
39
        IPAUSE ON
 40
        IASSEMBLE Extract
50 Loop: LINPUT A$
 \mathcal{D}
 12345,6789
 160 00053 002026 Extract:LDA =String ! Retrieve string
170 00054 006026 LDB =Parameter
180 00055 142026 JSM Get_value
190 00056 007763 LDB String ! Initialize counter
200 00057 002022 LDA =String ! Initialize stack pointer
210 00060 170600 SAL 1

        219
        200001
        Process
        Cline

        220
        00061
        023760
        ADA String

        230
        00062
        022022
        ADA =1

        240
        00063
        030016
        STA C

        250
        00064
        070510
        CBL

 260 00065 074760 Loop:WBC A
                                                                              ! Retrieve next character

        270
        000066
        012017
        CPA =',

        290
        00070
        054001
        DSZ B

        300
        00071
        067774
        JMP Loop

                                                                              ! Is it a comma?
                                                                              ! Decrement. Done?
260 00065 074760 Loop:WBC A
                                                                              ! Retrieve next character

        270
        00066
        012017
        CPA =',

        290
        00070
        054001
        DSZ B

        300
        00071
        067774
        JMP Loop

                                                                              ! Is it a comma?
                                                                              ! Decrement. Done?
                                                                              ! Retrieve next character
! Is it a comma?
 260 00065 074760 Loop:WBC A
270 00066 012017 CPA =',
290 00070 054001 DSZ B
                                                                               ! Decrement. Done?
300 00071 067774 JMP Loop
                                                                          ! Retrieve next character
! Is it a comma?
260 00065 074760 Loop:WBC A
270 00066 012017 CPA =',
290 00070 054001 DSZ B
                                                                              ! Decrement. Done?
 300 00071 067774 JMP Loop
 260 00065 074760 Loop:WBC A
                                                                              ! Retrieve next character
270 00066 012017 CPA =',
                                                                               ! Is it a comma?

      270
      00066
      012017
      CPH =7,

      280
      00067
      066004
      JMP Yes

      320
      00073
      026013
      ADB =-1

      330
      00074
      037745
      STB String

      340
      00075
      002004
      LDA =String

      350
      00076
      006004
      LDB =Parameter

      360
      00077
      142010
      JMP Put_value

      370
      00100
      170201
      RET 1

                                                                                ! Found comma, extract
                                                                        .
                                                                               ! by changing length
                                                                                         then extracting
80 PRINT "<";A$;">"
<12345>
        GOTO Loop
 ΩЙ
 50 Loop: LINPUT A$
```

Note that the address of the instruction, as well as the octal value of the instruction, is displayed along with the source line.

This stepping facility can also be used, quite effectively, with the IBREAK statement (discussed below).

IPAUSE OFF

The two statements can appear repeatedly in a program, allowing the stepping facility to be used in testing some programs but skipping over already proven programs. For example, suppose you had two programs — Sorta and Sortn — but the first was already tested and the second was not. Then this sequence might appear in your program —

```
110 IPAUSE OFF
120 ICALL Sorta(A$(*))
130 IPAUSE ON
140 ICALL Sortn(A(*))
```

Stepping through this sequence results in lines 110, 120, and 130 executing without interruption, but line 140's call to Sorth would be executed instruction-by-instruction.

Executing IPAUSE ON when the facility is already in effect causes no change. Similarly, executing IPAUSE OFF when the facility is already off causes no change.

Both IPAUSE ON and IPAUSE OFF can be executed from the keyboard.

Setting Break Points

It is possible to define points in an assembly language routine where the execution should pause should it ever reach that point. These are called "break points". They can be used to pause execution — allowing you to utilize the stepping activity described above in IPAUSE ON or to investigate the contents of variables, etc. They can also be used to allow branching to some BASIC routine, giving you the power of BASIC in doing some of your debugging.

Simple Pausing

To simply pause at a break point, you need to execute the following statement in advance of reaching that point (either in the program or from the keyboard) —

IBREAK {address}

where {address} is the assembled location¹ for the break point desired.² Following execution of this statement, anytime the program execution reaches this address, it pauses. You may do any keyboard operations necessary at this point, or you may start stepping the program, (if IPAUSE ON has been executed), or you may resume execution using the $\left(\begin{array}{c} 0\\ 0\\ T\end{array}\right)$ key. The address must have been assembled before the IBREAK is executed.

1 See "Symbolic Debugging" in this chapter for the definition of "assembled location".

² The use of IBREAK significantly slows execution of assembly programs.

8-8 Debugging

If you were to execute —

IBREAK Hook,4

then every time the fourth word past assembly label "Hook" is reached during execution, the program execution pauses. If you were to execute —

IBREAK Hook+4

then Hook is assumed to be a BASIC variable, and the result of the expression is assumed to be an absolute address using whatever the value of Hook is when the statement is executed.

You can also specify the number of occurrences of reaching a break point before pausing should come into effect. This is done by executing —

IBREAK {address} ; {counter}

where {counter} is a numeric expression; any variables within {counter} are BASIC variables. A pause occurs when {address} has been reached {counter} number of times. {counter} is reset after each pause.

When a break point is reached and a pause is to be taken, the pause takes place **before** execution of the contents of that address.

After execution of the IBREAK statement, the contents of the assembled location for the break point are changed by the operating system; however, this does not affect the execution of the instruction contained therein.

If an ICALL statement is executed from the keyboard and an IBREAK is active for a location within the ICALLed routine, program execution is returned to BASIC when the breakpoint is reached. Stepping of the assembly language routine is halted and the CRT is cleared.

Transfers

Instead of just pausing at a break point, it is possible to branch to a BASIC routine. The intent of this facility is to give you access to BASIC's capabilities, particularly the printing and variable-testing facilities, during your debugging efforts.

The branch can be any of the three standard forms of BASIC branching -

IBREAK {address} [; {counter}] CALL {subprogram} IBREAK {address} [; {counter}] GOSUB {line identifier} IBREAK {address} [; {counter}] GOTO {line identifier}

When either CALL or GOSUB has been designated, execution of the assembly language routine is suspended when {address} is reached. Then the designated subprogram or subroutine is executed. When that subprogram or subroutine is completed, then execution of the assembly language routine resumes with {address}.

When GOTO is specified, an unconditional branch is taken when {address} is encountered and execution of the assembly language routine is terminated.

{counter} performs the same as in the simple pausing form.

In the GOSUB and GOTO forms, there is an "environmental" restriction. The {line identifier} must be in the same BASIC environment (i.e., main program or subprogram) as that in which the IBREAK statement is executed. More on this in "Environments" below.

You should avoid recursive use of the ICALL statement when using the IBREAK statement to branch to a BASIC subroutine or subprogram. The problem arises when an ICALL statement in the BASIC debug subroutine or subprogram calls the broken assembly routine. The IBREAK transfer occurs at the same assembly routine address each time it is encountered. This process results in non-productive looping.

Environments

The GOSUB and GOTO types of break points are related to the BASIC "environment" (i.e., main program or subprogram) in which they are executed. Whenever an IBREAK statement of either type is encountered, the resulting break point is effective only for the environment in which the statement is located. The CALL version of break points is in effect in all environments.

For example ----

```
200 SUB Test
210 IBREAK Hook GOTO Check_hook
.
.
```

the break point established for "Hook" is good only in the subprogram "Test". Leaving "Test" causes the break point to be cleared.

Executing an IBREAK statement from the keyboard is effective only for the environment executing at the time the statement is made. For example, if the following program lines had been executed —

```
200 SUB Test
210 PAUSE
```

and while the pause caused by line 210 is still in effect —

```
IBREAK Hook GOTO Check hook
```

is executed, then the break point established for "Hook" is good only in the subprogram "Test". As with the above, leaving Test causes the break point to be cleared.

If no program is executing when an IBREAK is executed from the keyboard, then the main program is considered to be the environment for the break point. If the program is replaced, as with a GET or a LOAD, then the break point is cleared.

If a LINK command is used to replace all or part of a program, existing break points are still active. If the LINK eliminated the line label or subprogram referenced in the IBREAK, then ERROR 186 results when the break point is reached. If a GET command is used to replace all or part of a program, all GOTO/GOSUB breaks are cleared. IBREAK CALLs are still active. Again, if the line label or subprogram referenced by the IBREAK is eliminated, then ERROR 186 results. If the program is replaced with a LOAD, all break points are cleared. You must re-execute the IBREAK statements in the new program. Only ENT and SUB symbols are defined in this new program until an IASSEMBLE is executed.

Care should be taken when calling BASIC subroutines or subprograms after an IBREAK has been set and before an ICALL has been executed. A CALL to a subprogram clears break points of the IBREAK...GOTO and IBREAK...GOSUB varieties; however, IBREAK...CALL is not cleared. This is because CALL executes an INORMAL which clears all break points except IBREAK...CALL. (An INORMAL is also executed when the with key or where the pressed). Here is an example of break points being cleared by a CALL —

10	IDELETE ALL	! Clear ICOM area.
20	ICOM 100	! Set aside 100 words.
30	IASSEMBLE ALL	! Assemble all modules.
40	IBREAK Middle GOSUB Breakfound	! Break at location Middle.
50	CALL Callable	! CALL subprogram.
60	ICALL Entrypt	! Do assembly routine.
70	END	·
80	Breakfound: PRINT "Breakpoint found."	! Break subroutine.
90	RETURN	! Subroutine end.

100			
110	ISOURCE	NAM Example	! Module name.
120	ISOURCE	!	
130	ISOURCE	!	
140	ISOURCE	SUB	
150	ISOURCE Entrypt:	LDA =Sc	! Routine entry point.
160	ISOURCE	ļ	• •
170	ISOURCE	ļ	
180	ISOURCE Middle:	LDA =String1	! Break location.
190	ISOURCE	ł	
200	ISOURCE	į	
210	ISOURCE	RET 1	! Return to BASIC.
220	ISOURCE	END Example	! Module end.
230	SUB Callable		! CALLed subprogram.
240	PRINT "Subprogram."		
250	SUBEND		! Subprogram end.

The break point is cleared after execution of line 50.

Keeping in mind that different BASIC environments exist for the main program, each subprogram and each multi-line function, IBREAK...GOTO and IBREAK...GOSUB remain in effect only within the BASIC environment in which they are declared. IBREAK...CALL remains in effect in all environments. A maximum of eight IBREAK...CALLs are allowed.

Data Locations

Break points can also be established for data locations. This is done with --

IBREAK DATA {address}

In this case, {address} is presumed to be a data location referenced by other instructions. Whenever it is referenced by execution of some instruction, the pause occurs.

If you were to say —

IBREAK DATA Renras

then whenever "Renras" is referenced, such as in ---

LDA Renras

a pause would occur for that instruction.

A counter can also be specified with this form of break point ---

IBREAK DATA {address} ; {counter}

{counter} is of the same form, and operates in an identical fashion, to the counter of the non-DATA form of break point.

Because the XFR machine instruction may access a particular location twice when it is executed, the break point on a data location may not operate correctly if the instruction referencing it is an XFR. The way to avoid this incorrect operation of the break point is to set {counter} to 2. (The only time this problem occurs is when the destination area for the XFR overlaps the origination area.)

Symmetry suggests that you should also be able to branch to BASIC routines with the DATA form of break point just as you can with the non-DATA form. And so you can —

IBREAK DATA {address} [; {counter}] CALL {subprogram} IBREAK DATA {address} [; {counter}] GOSUB {line identifier} IBREAK DATA {address} [; {counter}] GOTO {line identifier}

They operate in an identical fashion to transfers of the non-DATA type and are under the same "environmental" restrictions.

In order to determine whether an address is being referenced, each instruction is "interpreted" (that is, analyzed for its components). Resultantly, a program runs much slower while an IBREAK DATA statement is in effect.

In addition to the pausing capability, using IBREAK DATA also allows trapping on "protected memory" violations (see "Stepping vs. Running" section of this chapter).

IBREAK Everywhere

You may have a total of eight (8) break points (regardless of type) in effect at a given time, except for one extreme case. It may be desirable to establish a break point at every location in the ICOM region. This can be accomplished with —

IBREAK ALL

This statement overrides all other IBREAK statements and causes a pause before execution of every instruction in the ICOM region. There are also branching forms —

IBREAK ALL CALL {subprogram} IBREAK ALL GOSUB {line identifier} IBREAK ALL GOTO {line identifier}

Note, however, that there is no {counter} in any of these forms.

Number of Break Points

As was mentioned above, there can be no more than eight (8) IBREAK statements in effect at one time, that is to say within the same environment. And only one IBREAK ALL can be in effect at a given time.

In addition, there can only be one IBREAK or IBREAK DATA each in effect for a given {address}. Executing an IBREAK or IBREAK DATA with the same {address} as specified in an already effective IBREAK or IBREAK DATA statement causes the newly-executed statement to override the previous one. While there may be an IBREAK and IBREAK DATA both for the same {address}, the capability is not a useful one.

Clearing Break Points

There are a number of ways that break points can be cleared. One way as has already been mentioned, is leaving the BASIC environment, which clears any GOSUB or GOTO type of break points. Another way is to reassemble the module containing the break points. A third way is to execute an INORMAL statement. This statement has the form —

INORMAL {address}

After execution of the statement, whatever form of break point is established for the address (except IBREAK ALL) is cleared.

If {address} is omitted in this statement —

INORMAL

then all break points are cleared. This is the only way to clear an IBREAK ALL which may be in effect.

Interrogating Processor Bits

During execution of a break point, the values of three processor flags are stored in specified registers so that you can interrogate them. They are —

Decimal Carry	stored as least significant bit in location 36B
Extend	stored as most significant bit in location 37B
Overflow	stored as least significant bit in location 37B

Dumps

A common tool of debugging is the memory "dump". This is a print-out (or display) of the contents of selected locations in the memory. A typical use is to dump areas of the ICOM containing data so that the actual contents at some point during execution can be compared with the expected contents. All of this is in the hope that the comparison yields differences which give a clue as to the source of the difficulties being encountered.

This tool is provided through the IDUMP statement which has the form —

IIUMP {location} [; {location} [;...]]

This statement can be placed in a program to be executed (perhaps as the result of a branching IBREAK statement) or it can be executed from the keyboard (perhaps during a pause caused by stepping or IBREAK).

Any number of {location}s can be specified. They can take a number of forms. The simplest is —

{address}

Thus, IDUMP {address} prints the contents of {address} to the current system printer. The contents are printed in their octal representation. For an explanation of {address}, see the "Symbolic Debugging" section of this chapter.

{location} can specify a whole range of addresses by using the form —

 $address \in \{address\}$

With this form, the IDUMP statement prints the contents of all addresses starting with the first and ending the last specified {address}. If the second address is numerically smaller than the first, then a "wrap-around" through the end of memory into the top of memory is taken. For example, if you execute —

IDUMP 177776 TO 1

then the contents of four addresses would be printed — those for 177776, 177777, 0, and 1, in that order. Again, the contents are printed in their octal (base-8) representation.

Addresses are always specified in their octal representation, or symbolically (such as "Hook" or "Loop"). This is the same as for an assembled location, which is what {address} happens to be.

Care must be used with symbolic addressing. In the statement -

IDUMP Hook TO Hook + 4

the first "Hook" is interpreted as an assembled location. Since the second "Hook" appears in an expression, it is interpreted as a BASIC variable. If it is undefined, this expression is evaluated as 4. To dump the fourth word past the assembled location "Hook", use the statement —

IDUMP Hook TO Hook,4

The output of the IDUMP statement is always printed to the current system printer. It is in octal form, unless otherwise specified. This specification is accomplished by preceding {address} with {mode selection}, which is one of the following —

HSC for ASCII character representation EIN for binary representation (base-2) DEC for decimal representation (base-10) HEX for hexadecimal representation (base-16) OCT for octal representation (base-8)

Thus, the general form of {location} is —

```
[\{mode selection\}] \{address\} [\top 0 \{address\}]
```

As an example of all this, take the example program at the beginning of the chapter. If a couple of statements are added so that the main BASIC program reads —

```
10
    DIM A$[10]
20
   ICOM 100
30 IASSEMBLE Extract
40 IBREAK Loop GOSUB Dump
50 IDUMP 41 TO 104
                         ! Dump of ICOM region
    PRINT
60
70 Loop: LINPUT A$
80 ICALL Extract(A$)
90 PRINT "<";A$;">"
100 GOTO Loop
110 !
120 ! Dump A, B registers in octal form,
130 ! string length in decimal form, and
140 ! and the string in character form
150!
160 Dump: IDUMP A TO B; DEC String; ASC String, 1 TO String, 5
170 PRINT
180 RETURN
```

then running it results in the following print-out —

000041: 000005 030462 031464 032454 033067 034071 022265 1000003 022607 000012 000053: 021335 000001 100207 000000 000205 002025 006025 142025 007756 002021 000065: 170600 023753 022021 030016 070530 141714 012016 066004 054001 067774 000077: 170201 026012 037740 002003 006003 166007 000000: 000115 000012 000041: +00010 000042: 12345,6789\$5% 000000: 000071 000011 000041: +00010 000042: 12345,6789\$5% 000000: 000070 000010 000041: +00010 000042: 12345,6789\$5% 000000: 000067 000007 000041: +00010 000042: 12345,6789\$5% 000009: 000066 000006 000041: +00010 000042: 12345,6789\$5%

<12345>

Value Checking

Value checking is a method of tracing the value of variables in your assembly language program using the interactive capabilities of the 9845. You already have been introduced to break points and dumps in earlier sections. The capability of value checking serves as a useful adjunct to these procedures.

The value checking of assembly "variables" is similar to the monitoring of variables in BASIC during a debugging phase. Just as you would use a live-keyboard operation or judiciously placed PRINT statements to trace the execution of a program or the change in value of a variable in a BASIC program, so too can you use the monitoring tools for assembly programs.

Functions

Four additional functions are provided as extensions to BASIC which can be useful in the monitoring of values in an assembly language program. The four are —

DECIMAL IADR IMEM OCTAL

They can be used as other than monitoring tools, but their descriptions here are primarily in that context. As functions, these items can be easily adapted for use in the special function keys.

DECIMAL

This function has the form —

```
DECIMPL({octal value})
```

The function converts an octal integer value between -177777 and +177777, inclusive, into its decimal representation. If the argument given is not octal, then an error (number 184) results.

This can be used as a quick, simple way of converting octal numbers into the more familiar decimal value. Being a function, it can be used anywhere any other BASIC numeric function can be used. Often you will find it useful in PRINT statements which are a part of subroutines called by break points.

OCTAL

NOTE

The values resulting from the OCTAL function must be treated with care. Though the result of the function is an octal representation, the value is still base-10. This difference is unimportant unless you are going to do arithmetic with the value resulting from the function.

This function is the converse of the DECIMAL function. Its role is to convert decimal values between -65535 and +65535, inclusive, into their octal (base-8) representation. The function has the form —

OCTAL ({decimal value})

This can be used as a quick, convenient method of converting decimal numbers into their frequently used octal representations (a form which is useful because of its ready conversion into binary representation, and vice-versa).

As an example of this, suppose the decimal value 15 is to be converted into octal. The method is —

OCTAL(15)

and the resultant value is 17, the octal representation of 15. Now, if the result has 1 added to it, as with the expression —

OCTAL(15)+1

the ultimate result is 18. This can be a surprise since the usual octal arithmetic suggests that the result of 17B + 1 be 20B. To get the proper octal result, the procedure is —

The correct result can also be obtained with -

```
OCTAL(DECIMAL(17)+1)
```

or

OCTAL(DECIMAL(17) + DECIMAL(1))

The preceding are examples of octal addition. Suppose you wanted the result of 17B + 14B. The expression used to obtain the correct result in octal representation is —

OCTAL(DECIMAL(17) + DECIMAL(14))

The correct result is 33B.

IADR

This function yields the numeric value in octal representation of the address of an assembled location. The form is —

```
IADR \langle \{assembled \ location \} \rangle^1
```

As an example, take the case of the example program at the beginning of this chapter. The result of -

```
IADR(Loop,4)
```

is 76.

This function can be viewed as a convenient method of determining the address of a symbol, or of an offset from a symbol.

IMEM

This function is a quick, convenient way to look at the contents of a specific location in memory. The result is a numeric value, in octal representation, for the contents of a specified address. The form is —

```
IMEM \langle \{assembled \ location\} \rangle^1
```

The function is similar in many respects to the IDUMP statement. It is easiest, perhaps, to list the differences —

- IMEM is a function, where IDUMP is a statement.
- IMEM deals only with a single address, where IDUMP can deal with many.
- IMEM represents the value only in octal, where IDUMP can use many different representations.
- IMEM can be displayed and stored, where IDUMP can only be printed.

An obvious use for this function is in a routine called by an IBREAK statement. By using the function in such a manner, perhaps in a PRINT statement, you can ease the burden of checking variables from the keyboard. You can even use the value returned as a comparison against some set of limits so that you print only when the value exceeds those limits. There are many other possibilities for its use.

Interrogating Registers and Flags

Interrogating the processor register A, B, P, R, Pa, Cb, Db, Dmapa, Dmama, Dmac, C, D, Ar2, Se, and Ar1 yields meaningful results only when execution of an assembly language subprogram has been suspended due to detection of a break point, or due to the use of the (step) or $(\frac{1}{9})$ keys (see Stepping Through Programs).

Further, the values of cetain processor flags are stored in specific memory locations when a subprogram is suspended as described above. The flags are then available for interrogation as follows:

Decimal Carry	least significant bit of location 30B
Overflow	least significant bit of location $31B$
Extend	most significant bit of location 31B

It is important to note that interrogating an I/O register (R4, R5, R6, or R7) causes an input I/O bus cycle, using the current Pa register contents as the interface address. See Chapter 7 for details on the effects of such an action.

Patching

Patching is the practice of changing the contents of memory locations without re-assembling.

Patching as a standard procedure does not come highly recommended in the programming world. Nonetheless, there are circumstances which arise that occasionally suggest patching as the most profitable course of action.

To change a particular location in memory in the 9845 is not difficult. The statement to use is —

ICHANGE {assembled location} TO {octal expression}

After execution of the statement, the specified {assembled location} contains the specified octal value.

Changing the contents of a register is a common use of this facility. However, it should be remembered that attempting to change the contents of the I/O registers (R4, R5, R6, or R7) causes an output I/O bus cycle to occur, using the Pa register for the interface address. See Chapter 7 for details on the effects of such an action.

Some precautions should be taken in attempting to change the DMA registers. The contents of Dmapa are set by the Isr_access utility and should not be changed while stepping. The contents of Cb and Db (contained in register 13 along with Dmapa) can be changed at any time. The contents of Dmac and Dmama can be changed but be sure that your DMA routine has DMA access at the time of the change. Changing the contents of these registers at a time when another routine has DMA access can have disastrous results.

Stepping vs. Running

You should be made aware at this point of some conditions that exist during stepping that do not exist during a free run of a program. During stepping with the STEP key or when an IBREAK DATA statement is in effect, an assembly language program is not allowed to access (jump to or write into) certain portions of memory. These portions of memory are known as "protected memory" and error 187 results if an attempt is made to access them.

All memory is protected except —

- The ICOM region.
- BASIC's "value" area (the region where BASIC variables are stored).
- BASIC's common area (the region where BASIC common variables are stored).
- The processor registers.
- The temporary values stored in the base page (pre-defined symbol "Base_page").
- The utilities.

Protected memory exists only when you are stepping a program, when an IBREAK DATA statement is in effect, or when you are using the ICHANGE statement. This feature reduces the danger of inadvertent destruction of data or nonsensical execution of data by the processor. Keep in mind that this feature does not exist when the program is free running.

Since the contents of the processor registers are stored in read/write memory, a full 16 bits is used to represent the contents of each register, regardless of whether the register is a four-bit register (Pa,Dmapa,Se) or not. Only the least significant four bits are of interest when an IDUMP statement is used to interrogate the four-bit registers.

The second major difference between stepping and free running is that the processor registers displayed by an IDUMP statement are, in actuality, read/write memory locations. These memory locations are updated only when the program is stopped. Therefore, running a program that changes the contents of the processor registers does not appear to have changed them when the IDUMP statement is used.

In addition, a breakpoint cannot be set for a location within an interrupt service routine. An interrupt service routine cannot be stepped. Attempts to perform either function will lock up the computer.

Chapter 9 Errors and Error Processing

Summary: This chapter contains a discussion of Assembly Language ROM and other related errors, and what causes them. Included are methods for trapping errors and possible methods for correcting them.

Whether you are writing or accessing an assembly language routine, it is possible to encounter an error resulting from your actions. The intent of this chapter is to give some guidance as to how certain errors can be handled. It is not intended as a definitive checklist of what can go wrong, nor is it an exhaustive treatment of the means to correct the difficulties which are listed. Rather, it is meant as a reference for some of the things which can go wrong, what might cause them, and how to deal with them. Each programmer has a unique method of approaching the problem of error processing and there is no way to anticipate all of them. Even so, the following should offer some assistance in identifying the source of an error.

Not every machine error is covered here — only those directly related to writing or accessing assembly language routines. A complete listing of error messages (though not in the same detail as in this chapter) can be found in Appendix J.

Error numbers 900 through 999 are reserved for your own use (with the Error exit utility).

Types of Errors

There are three types of errors associated with assembly language routines: those which occur during the writing (or entering) of the source code (called "syntax-time" errors); those which occur while assembling the source code (called "assembly-time" errors); and those which occur during the execution of an assembly language routine (called "run-time" errors). Some of these errors can be anticipated and trapped, others cannot.

Syntax-Time and Assembly-Time Errors

Syntax errors are caught when entering source code, usually with the message -

```
IMPROPER ISOURCE STATEMENT
```

The error can then be immediately corrected and the statement reentered. A side-effect of this entry-time check of the syntax is that the time required for assembly is greatly shortened over what it would be if syntax-checking were deferred until assembly.

Errors encountered during the assembly process are indicated by the assembler in three ways:

• The message —

ERROR 192 IN LINE nn

is displayed. **nn** is the line number of the IASSEMBLE statement. This is a fatal BASIC error, unless otherwise trapped.

• Each line in the source code containing an assembly error is printed on the current system printer. Included is the message —

ERROR

followed by the error type.

• The message —

ERRORS IN ASSEMBLY

follows the listing of the individual errors. The total number of errors is also printed.

An explanation of the individual assembly-time errors can be found at the end of this chapter.

Run-Time Errors

Run-time errors can sometimes be anticipated. They come at two distinct times, and your error processing is different depending upon which of those times are of concern. The times are "program development" and "production run".

During program development, errors normally are handled using the debugging techniques detailed in Chapter 8. Care should be taken in recognizing errors during development. Not all of them are obvious or indicated by an error message — many simply lock up the machine.

During the running of production (debugged) routines, errors can be caused by the users of the routines. For instance, the user may inadvertently assign an argument a value of zero when that argument is to be used as a divisor within the assembly language routine. You should try to anticipate these usage errors and program procedures to trap them.

There are many alternatives for actions to take when your routine encounters and traps a usage error. For example, you may wish to assign a value to a particular return variable, or you may want to print a warning message, or, perhaps, to correct the value and proceed with the routine. Another method is to notify the user by issuing a BASIC error message. Such messages can be issued through the Error_exit utility discussed below.

Of course, you need to tell the users (in the documentation of the routine) what kind of errors can occur, when they can occur, and what to do about them.

UTILITY: Error_exit

The Error_exit utility provides you with the capability of aborting an assembly language routine by "creating" a BASIC error. Two types of BASIC errors can be created — "recoverable", which can be trapped by a BASIC ON ERROR statement; and "non-recoverable" (or "fatal"), which cannot be trapped.

General Procedure: The utility is given the number of the error to be created. Then the utility is called with the JSM instruction, but no return is made to the original assembly language routine from the utility. Instead, the utility uses the information placed on the return stack to help create the error. The return stack is appropriately "cleaned up" and control is returned either to the BASIC driver (if the error is non-fatal) or to the operating system (if the error is fatal).

Special Requirements: Error numbers are passed to the utility in the A register. The value of the error number is placed in bits 0-14. Bit 15 is set if the error is to be non-recoverable. If bit 15 is not set, the error will be recoverable. Error numbers 32 762 through 32 767, with bit 15 set, are reserved by the operating system and should not be used.

If you are setting bit 15 to specify a non-recoverable error, the use of negative numbers should be avoided. For example, loading the A register with -8 does not result in non-recoverable error 8. This is because the error number in bits 0-14 is not 8. A suggested method of setting bit 15 is —

In addition, it is suggested that you limit your error numbers to three digits. The block of error numbers 900 to 999 are reserved for your use in assembly language routines and will not be used in future Hewlett-Packard products.

Calling Procedure:

- 1. Load the error number into the A register.
- 2. Call the utility using the JSM instruction.

Exit Conditions: The utility returns control to the BASIC driver which called the routine, appropriately setting conditions so that ERRL, ERRM\$, and ERRN work as expected. Also triggers ON ERROR, if applicable.

The utility can be used anywhere in your assembly language, wherever you would like to abort the execution of the current assembly language routine and where you would like to indicate to BASIC what reason (error) caused the abortion.

For example, suppose somewhere in one of your assembly routines you wanted to abort the routine if a certain variable (Flag) is non-zero at a certain point. Suppose also that the variable, when non-zero, contained the error number, then your program could look like —

```
ISOURCE LDA Flag
ISOURCE SZA *+2
ISOURCE JSM Error_exit
```

Similarly, there are some utilities which, when an error is encountered, return an error number in register A. In these cases, a quick two-instruction sequence can give you an error-related abort. For example, the Rel math utility is such a utility —

```
ISOURCE JSM Rel_math
ISOURCE SZA *+2
ISOURCE JSM Error_exit
```

As an example of a fatal error, suppose the error desired is 8. The error sequence could be --

ISOURCE LDA =100010B ISOURCE JSM Error exit

Run-Time Messages

The following is a list of the system error messages you, or the users of your routines, may receive should something go wrong retrieving, using, or storing assembly language routines. A possible corrective action, or actions, is included in the discussion of the error.

- ERROR 1 ROM missing, or configuration error. To operate the 9845, all system ROMs must be in place. In addition, to write assembly programs, the Assembly Execution and the Development ROM must also be installed. Perform the system test if the problem persists.
- ERROR 2 Memory overflow. You may have specified an ICOM which is too large for your current available space. Some things to try: select a smaller ICOM size; execute SCRATCH C (if no important data remain in common), delete modules and reduce the ICOM size; segment your BASIC programs; segment your assembly programs. The error may also be caused by trying to load modules which are too large for the current ICOM region (either collectively or individually) or by placing a COM statement before an ICOM statement.
- ERROR 9 The number of arguments passed by an ICALL statement exceeds the number of parameter declarations in the subroutine entry section. This error is not given if the number of arguments is equal to or fewer than the parameter declarations. The actual number passed is stored in the word reserved by the SUB pseudo-instruction.
- ERROR 184 Improper argument in DECIMAL or OCTAL function. The OCTAL function has a range from - 65535 to + 65535. The DECIMAL function has a range for its arguments of - 177777B to + 177777B. Reference made to an absolute address greater than 177777B or 65 53510.
- ERROR 185 Break Table overflow. A maximum of eight breaks can be established with the IBREAK statements and be in effect at one time. If eight breaks are in effect, then to allow other breaks to be established it is necessary to clear previous breaks using the INORMAL statement.
- ERROR 186 Undefined BASIC label or subprogram name used in IBREAK statement. When the IBREAK statement is executed, an undefined label or name is allowed, but when the break actually occurs, the label or name must exist.

9-6 Errors and Error Processing

- ERROR 187 Attempt to write into protected memory; or, an attempt to execute an instruction not in the ICOM region. This is the result of an attempt to branch outside of permissible areas or to change the contents of memory outside of the permissible areas. There is probably a difficulty in the logic of the program which needs to be corrected. This error occurs when the see key is being used, an IBREAK DATA statement is in effect, when using the ICHANGE function or when the IBREAK statement is used to break at a location in a non-existent module or at a location beyond the current ICOM region.
- ERROR 188 Label used in an assembled location not found. Symbolic addressing requires that all assembly symbols be resolved by execution time. This error probably results from a misspelling of a label or forgetting to assemble the module containing the label.
- ERROR 189 Doubly-defined entry point or routine. A module being assembled (with an IASSEMBLE statement) or loaded from mass storage (with an ILOAD statement) contains a SUB or ENT entry point with the same label as a SUB or ENT entry point within a module already resident within the ICOM region. Check the other routines for the duplicate occurrences.
- ERROR 190 Missing ICOM statement. You must include an ICOM statement to create your ICOM region before assembling or loading modules. Program an ICOM statement of adequate size and re-run the program
- ERROR 191 Module not found. The module indicated in an ISTORE or IASSEMBLE statement is not currently resident in the ICOM region. Check the module names used in your ISTORE statement to find the one which is missing from memory.
- ERROR 192 Errors in assembly. At least one error was encountered while assembling one of the modules in your IASSEMBLE statement.
- ERROR 193 Attempt to move or delete module containing an active interrupt service routine. This is the result of trying to reduce the size of the ICOM region (or to eliminate it), or trying to delete a module, when one of the affected modules contains an active interrupt service routine (ISR). The only ways to allow the action to take place are to SCRATCH A (which affects a number of other things) or to inactivate the ISR. To inactivate the ISR, consult the routine's documentation, or press Reset (corres) (stop)).
- ERROR 194 IDUMP specification too large. The resulting dump would be more than 32 768 elements.

- ERROR 195 Routine specified in ICALL not found. You are specifying the wrong routine name or you are failing to load the correct module. Double check the documentation indicating the location and name of the routine.
- ERROR 196 Unsatisfied externals. Symbolic addressing requires that all references to symbols outside the current module be resolved at the time any routine within the current module is executed. This may possibly be a missing ENT instruction within another module.
- ERROR 197 Missing COM statement. The routine you are calling is expecting to find or place some of its data in common, but you are not providing the COM statement required. Add the appropriate COM statement in the BASIC program and re-run it.
- ERROR 198 BASIC'S common area does not correspond to assembly module requirements. The routine you have called is expecting to find or place some of its data in common, but your COM statement does not match up with the assembly COM declarations in either type or size. Check both the COM statement in the BASIC program and the COM declarations in the assembly routine.
- ERROR 199 Insufficient number of BASIC COM items. The routine you are calling is expecting to find or place some of its data in common, but your BASIC COM statement does not provide enough variables to satisfy the routine's needs. Check both the COM statement in the BASIC program and the COM declarations in the assembly routine.

Assembly-Time Messages

The following is a list of the assembler error messages you may receive while assembling a module. All of these errors cause a "fatal" error, which means that the assembly produced no object code. After the error has been corrected, it is necessary to re-assemble the module containing the error. A possible corrective action, or actions, is included in the discussion of the error.

- DD Doubly-defined label. A label can only be defined once in a module. In addition, any label used in an EXT instruction is restricted from being used again as a label in the module. Check all spellings; change a label name to something else, if necessary. Mixing SET and EQU on the same variable may also cause this error to occur.
- EN END statement missing; or module name does not match. The END statement (in an ISOURCE statement) must be included to signify the end of a module. The name in the END statement must match the name used in the immediately preceding NAM statement. Particular ones to look out for: assembling more than one module at a time, but leaving out the END instruction between modules; or, the END statement is not in the same BASIC environment as the NAM statement.
- EX Expression evaluation error. This is a result of a mismatch of element types in the operand of an instruction. The particular prohibited forms are: relocatable + relocatable; external ± external; using the relocatable or external forms with the * or / operators. Check the spelling and type of your symbols in the expression.
- LT Literal pools full or out of range. You may have exhausted the storage given in your literal pool (LIT) declarations. In this case you should add more LIT declarations or increase the size of the ones you have. Another cause of the error can be using a literal in an instruction and there is no literal pool within 512 words of the instruction. Additionally, for some instructions, the assembler attempts to create an indirect reference automatically and requires a literal pool within 512 words of the instruction. In either case, add another literal pool (using a LIT instruction) within range.

MÜ ICOM region memory overflow. The current module being assembled has caused object code generation which exceeds the current memory allowance for the ICOM region. Either you must re-run the current main BASIC program with a new ICOM statement increasing the ICOM size, or you must rearrange your assembly so that the module fits. This latter course can include deleting other modules or rewriting the abortive module so that it requires less memory.

RN Operand out of range. Some instructions using indirection require a relocatable expression to evaluate to an address within 512 words of the current address. Skips must be no more than 32 words in either direction. The EXE instruction requires a register (0 to 31) and the instructions in the Stack Group require registers in the range of 0 to 7. Check to see that the operand used is within the range appropriate for the instruction. Also, check the spelling on all symbols to see that the right symbol was used.

- SQ Parameter declaration pseudo-instruction out of sequence. The ANY, FIL, INT, REL, SHO, and STR pseudo-instructions must follow a SUB or COM pseudo-instruction, or be a part of a group of such pseudo-instructions which follow a SUB or COM pseudo-instruction. Any other appearance of these can cause this error. It can also be caused if a SUB sequence does not terminate with a machine instruction with a label. Check to see that you have not inadvertently omitted the SUB or COM, or have placed another instruction in between the pseudo-instruction and its SUB or COM.
- TP Incorrect type of operand used. Each instruction requires that its operand be of a certain type — relocatable or absolute. Check the type of all symbols used in the expression in the operand and see that they correspond to the type required by the instruction. If you are using a constant, check to see that a constant is allowed by the instruction.
- UN Undefined symbol. By the end of the assembly, all symbols must have been defined, either by use as a label on an instruction or as a symbol associated with a value through an EQU, EXT, or SET pseudo-instruction. A symbol not so defined (except those pre-defined by the assembler) and used in the assembly, causes this error. Check the spelling of all undefined symbols to make sure that you did not intend something else. The symbol otherwise has to be defined, either by label or EQU, EXT, or SET.

9-10 Errors and Error Processing

Chapter 10 Graphics

Summary

The graphics topics described in this chapter include displaying the graphics raster by setting individual pixels, reading and writing full words, the cursor operations, and line drawing.

Introduction

Computer graphics is the computer-aided creation and manipulation of images. These images typically appear on the screen of a CRT or are drawn by a plotter. This chapter explains the fundamental commands and techniques used to create images on the CRT of the System 45 using assembly language. Of course, your System 45 must have the graphics option installed in order for graphics to be implemented.

The advantage of using assembly language rather than BASIC to create and manipulate images on the CRT is one of speed. Graphical data can be manipulated, and input information can be plotted in real time using assembly language in many cases where BASIC could not be used.

The CRT graphics is thought of as being a peripheral on select code 13. Displaying graphics images from assembly language is essentially an I/O operation to that select code.

The Graphics Raster

The CRT of the System 45 computer is capable of displaying two independent rasters (display areas). These are the alphanumeric raster and the graphics raster (when the graphics hardware is installed). When the computer is turned on, the alphanumeric raster is displayed. This is the raster used to display alphanumeric characters when entering programs, displaying program results, etc. With a single command (GRAPHICS) from BASIC or a short sequence of instructions from assembly, the graphics raster is displayed. Both rasters cannot be displayed simultaneously. The alphanumeric and graphics rasters are illustrated below –

Displaying the Graphics Raster

The graphics raster is displayed from your programs by one of two methods. The first involves executing the GRAPHICS command from BASIC. The graphics mode is exited and the alphanumeric raster is displayed with the EXIT GRAPHICS command.

The second method involves executing a short sequence of assembly language instructions. The sequences used to enter and exit graphics from assembly are —

10	ISOURCE Graph on:	LDB 35B
20	ISOURCE -	LDA =1 ! This routine turns GRAPHICS on.
30	ISOURCE	STA 35B
40	ISOURCE	LDA (=70000B),I
50	ISOURCE	SAP *+1.C ! If bit 15 set, clear it.
60	ISOURCE	STA (=70000B),I
70	ISOURCE	STB 35B
80	ISOURCE	RET 1
90	ISOURCE	
100	ISOURCE Alpha on:	LDB 35B
110	ISOURCE	LDA =1 ! This routine turns GRAPHICS off.
120	ISOURCE	STA 35B
130	ISOURCE	LDA (=70000B),I
140	ISOURCE	SAP *+1,S ! If bit 15 is clear, set it.
150	ISOURCE	STA (=70000B),I
160	ISOURCE	STB 35B
170	ISOURCE	RET 1

Note that clearing bit 15 of word 70000B causes the graphics raster to be displayed and setting this bit displays the alphanumeric raster. When the computer is turned on, bit 15 is automatically set. It is imperative that the instructions referencing register 35 appear in the raster control program segment. Failure to include these instructions will lock up the computer.

The Graphics Memory

The graphics raster is subdivided into 254 800 individually addressable dots or pixels. The raster is 560 pixels wide and 455 pixels high. Pixels are specified by their X (horizontal, 0-559 and Y (vertical, 0-454) coordinates. Each pixel can be turned on or off, producing the graphics image. This on / off information for each pixel is stored (one bit per pixel) in a separate memory known as the graphics memory.

The graphics memory consists of 16 384 16-bit words of read/write memory. Each bit of the graphics memory determines the on/off status of an individual pixel. This memory contains information even when the graphics raster is not displayed.

The graphics memory is mapped to the graphics raster in the manner represented by the following illustration:

Graphics Memory Map

Each pixel has a word address and a bit address associated with it for communication purposes. For example, word 0, bit 0 holds the on/off information for the pixel in the upper left corner of the raster and word 16 378, bit 15, is mapped to the pixel in the lower right corner. As the illustration indicates, word addresses represented by 36Y + 35, and 16 379 through 16 383 are not displayed.

The X and Y coordinates of an individual pixel are translated into word and bit addresses with the following formulas:

word address = $(36 \star Y) + INT(X / 16)$ bit address = X MOD 16

The origin, point (0,0), can be moved to the lower left corner of the raster by simply subtracting the Y (vertical) coordinate from 454. This is done in some of the examples for consistency with BASIC commands involving X,Y coordinates.

Graphics Operations

Checking for Graphics Hardware

To test that the graphics hardware is present, execute the following statements —

LDA =13 STA Pa LDA R5

The graphics hardware is **not** present if R5 = 0.

Overview

There are several different operations which the graphics hardware can perform. However, each operation is accomplished by issuing a command and then transferring data to or from select code 13. This section discusses the general procedures used to carry out these operations. Details necessary for each operation (such as command and data encoding) are discussed in later sections.

The following graphics operations are available:

- Writing individual pixels
- Writing full words
- Clearing full words
- Reading full words
- Cursor operations

Each graphics operation has a unique control code associated with it that is stored in register 5 with a STA R5 instruction. The control register is represented here —

15	14	13	12	11	ю	9	8	7	6	5	4	3	2	1	0
unused							INT	DMA	RST	AH		– орс	ode -		

where:

INT = interrupt enable bit

DMA = DMA enable bit

RST = reset bit (always sent with a new control code)

AH = auto-handshake bit(for DMA operations)

Since each graphics operation can be carried out by handshake, interrupt or DMA, there are many combinations of control codes.

The general algorithm for each operation includes the following steps -

- 1. Verify that the graphics hardware is present and operational.
- 2. If interrupts or DMA are to be used, call Isr access to obtain the necessary access.
- 3. Wait for the graphics hardware to become ready.
- 4. Store the control code identifying the operation to be performed and any interrupt or DMA enable information into R5 of select code 13.
- 5. The data necessary for the operation is sent to or received from select code 13.
- 6. If another operation is to be performed, continue with Step 3.
- 7. If interrupts or DMA are used, access must be released.

In general, the data transfer (Step 5) can be made using programmed I/O or DMA methods. However, interrupt is not recommended where speed is a consideration, and for some operations, only programmed I/O is recommended. When choosing between programmed I/O and DMA, keep the following in mind —

- \bullet Programmed I/O is easier to implement but may or may not generate the faster throughput.
- There is only one DMA channel. The rules of access to the DMA channel prevent attempts by two I/O tasks which need the DMA channel (your graphics task and a disc or I/O ROM operation, for example) from occurring simultaneously. In addition, DMA activity cannot occur at the same time as a synchronous I/O task (such as writing to or reading from a tape cartridge).
- The maximum data transfer rate to or from the graphics hardware using DMA is twice that of programmed I/O.
- When using DMA, the Isr_access utility must be called before using the DMA channel. In addition, all data to be transferred to the graphics memory must be in contiguous memory locations within the ICOM region (i.e. a buffer area). Thus the overhead encountered in starting a DMA transfer is higher than that involved in starting a programmed I/O transfer.
- Several transfers may be initiated as a result of a single ICALL. In this case, the Isr_access utility would be called only once and the resulting overhead distributed over all the transfers.
Generally speaking, then, if ease of implementation is a major concern or if the data transfers are short and not numerous, then programmed I/O is the preferred technique. If there are many transfers or they are long, the additional overhead of using DMA will be overcome by the faster transfer rate, resulting in higher throughput.

Operation: Writing Individual Pixels

Individual bits within the graphics memory can be set or cleared using the "write pixels" command. This capability might be used, for example, within a line drawing subroutine to turn on a sequence of pixels.

General Procedure:

- A "write pixels" command is stored in R5.
- A data transfer is started to send word address, bit address, and new value for each bit to be changed.

Special Considerations:

• The control code for the "write pixel" command is as follows —

where:

INT = interrupt enabled bit

DMA = DMA enabled bit

= don't care

• The data must be in a special format consisting of two words per bit to be changed. This is represented in the following illustration.

where:

CWA = complemented word address

- BA = bit address
- D = data value (1=ON, 0=OFF)
- = don't care

Thus for each pixel to be set or cleared, two words must be transferred to select code 13.

• Either DMA or programmed I/O can be used.

Writing Pixels Using Programmed I/O

10 !	GRAPHICS, WRITING INDIVI	DUAL PIXELS USING P	ROGRAMMED I/O.
20	ICOM 200		
30	IDELETE ALL		
40	GCLEAR		
50	GRAPHICS		
60	INTEGER X.Y.On.Off		
70	IASSEMBLE Pixel on off		
80	1		
<u>9</u> й	0n=1		
100	Off=0		
110	011-0		
1 203	: EDP V-199 TO D99		
120	NOR A-100 10 200		
130	ITO ICOLI Unita nival ni	270 V 063	
150	NEAL MULCE DIVEL DI	ova, i, onz	
100			
100			
170	FUR X=100 10 200		
180	Y=X		
190	ICALL Write_pixel_pi	o(X,Y,Off)	
200	NEXT X		
201	1		
210	GOTO 120		
220	!		
230	ISOURCE	NAM Pixel on off	! Module name
240	ISOURCE	EXT Get value	! Declare externals
250	ISOURCE X coord:	BSS 1	! Storage for X
260	ISOURCE Y coord:	RSS 1	l Storage for Y
279	ISOURCE Bit:	BSS 1	l Storage for BIT status
280	ISOURCE	SUB	. Svorage for bit skakka
290	ISOURCE X mamm.	INT	
300	ISOURCE Y parm.	тыт	
310	ISOURCE Rit norm.	1.11 ThiT	
220	ICOURCE Unite nivel	nio: IDO -Y coord	1 Cat V coordinate
020 000	TOOLOCE MILLE PIXEL	$_{\rm LDD}$ $_{\rm COOPU}$: det A Coordinate
0300 040	IOURUE	LDB -A parmi	
040 050	ISUURUE	JSPIGET VALUE	1 C A M A CHARTER
300 060	ISUURLE	LUH =ï_coord	! Get i coordinate
360 070	ISUURLE	LDR =r_parm	
370	ISUURCE	JSM Get_value	
386	ISOURCE	LDA =Bit	! Get BIT status
390	ISOURCE	LDB =Bit_parm	
400	ISOURCE	JSM Get_value	
410	ISOURCE	LDA =13	! Put select code in Pa
420	ISOURCE	STA Pa	
430	ISOURCE	LDA R5	! Check for GRAPHICS hardware
440	ISOURCE	SZA No graphics	
450	ISOURCE	LDA =51B	! Send WRITE PIXEL control code
460	ISOURCE	SFC *	
470	ISOURCE	STA R5	
480	ISOURCE	LDB Y coord	! Calculate word address
490	ISOURCE	LDA =36	! (36*Y) + INT(X/16)
500	ISOURCE	ME'Y	
	and and another		

510 ISO	JURCE .	LDB	X coord		
520 ISO	JURCE	SBR	4		
530 ISO	URCE	ADA	В		
540 ISO	JURCE	CMA		ł	Complement address
550 ISO	URCE	SFC	×	ļ	Wait for flag
560 ISO	IURCE	STA	R4	i	Send word address
570 ISO	URCE	STA	R7	ļ.	Trigger output
580 ISO	JURCE	LDA	X coord	1	Calculate bit address
590 ISO	JURCE	AND	=17B	ļ	X MOD 16
600 ISO	URCE	LDB	Bit	ļ	Get BIT status
610 ISO	JURCE	SBL	15	ļ	Shift to bit 15
620 ISO	JURCE	IOR	В	ļ	Combine bit status & address
630 ISO	JURCE	SFC	÷	1	Wait for flag
640 ISO	JURCE	STĤ	R4	ļ	Send bit status and address
650 ISO)URCE	STA	R7	Ì	Trigger output
660 ISO	JURCE	RET	1	Į	Return to BASIC
670 ISO	JURCE	ł			
680 ISO)URCE No graphics:	RET	<u>+</u>		
690 ISO	JURCE	END	Pixel_on_off	ļ	Module end

Writing Individual Pixels Using DMA

```
10 ! GRAPHICS, WRITING INDIVIDUAL PIXELS USING DMA.
20
         ICOM 200
30
          IDELETE ALL
40
         GOLEAR
50
          GRAPHICS
60
          IASSEMBLE Write pixel dma
70
          1
80
         ICALL Write pixel dma
98
         I
100
       STOP
110
         ISOURCE
120
                                                 NAM Write pixel dma ! Module name
               ISOURCE EXT Get_value ! Declare externa
ISOURCE EXT Isn_access
ISOURCE Buffer: DAT 177003B,100001B ! Data word pairs
ISOURCE DAT 177003B,100002B
ISOURCE DAT 177003B,100002B
130
                                                                           ! Declare externals
140
150
160
                                              DAT 177003B,100003B
170
              ISOURCE
                                              DAT 177003B,100004B
180
              ISOURCE

      ISOURCE
      DAT 177003B, 100004B

      ISOURCE
      DAT 177003B, 100005B

      ISOURCE
      DAT 177003B, 100006B

      ISOURCE
      DAT 177003B, 100006B

      ISOURCE
      DAT 177003B, 100007B

      ISOURCE
      DAT 177003B, 100004B

      ISOURCE
      DAT 1770047B, 100004B

      ISOURCE
      DAT 177113B, 100004B

      ISOURCE
      DAT 177157B, 100004B

      ISOURCE
      DAT 176737B, 100004B

      ISOURCE
      DAT 176673B, 100004B

      ISOURCE
      DAT 176673B, 100004B

      ISOURCE
      DAT 176673B, 100004B

      ISOURCE
      DAT 176673B, 100004B

      ISOURCE
      DAT 176673B, 100004B

      ISOURCE
      DAT 176673B, 100004B

      ISOURCE
      DAT 176673B, 100004B

      ISOURCE
      DAT 176673B, 100004B

      ISOURCE
      DAT 176677B, 100004B

      ISOURCE
      DAT 176673B, 100004B

190
200
210
220
230
240
250
260
270
280
290
              ISOURCE
                                                 SUB
300
              ISOURCE Write_pixel_dma: LDA =13
                                                                                 ! Put select code in Pa
310
               ISOURCE
                                                STA Pa
              ISOURCE
                                                 LDA R5
                                                                                    ! Check for GRAPHICS hardware
320
                ISOURCE
                                                  SZA No_graphics
330
                ISOURCE Try_again: LDA =Isr
                                                                                    ! Get IMA Resource
340
350
                ISOURCE LDB =(64*256)+(2*16)+13
                ISOURCE
                                              JSM Isr_access
JMP Try_again
360
               ISOURCE
370
380
               ISOURCE
                                               LDA Count
                                                                                    ! Set Dmac to Count
390
               ISOURCE
                                                STA Dmac
400
                                              LDA =Buffer
                                                                                    ! Set Dmama to BUFFER address
               ISOURCE
410
              ISOURCE
                                              STA Dmama
                                              SDO
DMA
              ISOURCE
                                                                                    ! Set DMA direction to OUT
420
430
               ISOURCE
                                                                                    ! Notify DMA hardware
                                              LDA =51B+300B
440
                ISOURCE
                                                                                   ! Send DMA WRITE pixel Command
450
                ISOURCE
                                                                                    ! NOTE: Bit 5 is ONE
               ISOURCE
                                                 SFC *
460
                                                                                    ! Wait for flag
               ISOURCE
470
                                                 STA R5
480
              ISOURCE
                                                  RET 1
                                                                                    ! Return to BASIC
490
               ISOURCE
                                                  1
500
              ISOURCE No_graphics:RET 1
510
               ISOURCE
                                                 1
               ISOURCE Isr:
                                                 LDA =0
                                                                                   ! End of transfer interrupt
520
530
                ISOURCE
                                                 STA R5
                                                                                    ! Clear control register
                                                 JMP End_isr_high, I ! Release DMA access
540
                ISOURCE
550
                 ISOURCE
560
                ISOURCE
                                                 END Write pixel dma ! Module end
```

Operation: Writing Full Words

The "write words" command is recommended when all bits within a graphics memory word are to be changed, and especially when several contiguous words in the memory are to be changed.

General Procedure:

- A "write words" command is stored in R5.
- A data transfer is started to send data to the graphics hardware. The first word sent indicates the starting address within the graphics memory and subsequent words are stored into the graphics memory at sequentially increasing addresses.

Special Considerations:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	I	0
								INT	DMA	1	0	1	0	0	0

where:

INT = interrupt enabled bit

DMA = DMA enabled bit

- = don't care
- The data sent to the graphics hardware must be in the format illustrated here —

CWA
data
data
data
•
•
•

where:

- CWA = complemented word address
- data = the data to be written into the graphics memory

(Note that the most significant bit of each data word

represents the leftmost bit (bit 0) within the graphics memory.)

- Recall that while there are only 35 words of graphics memory data displayed in each row of the CRT raster, there are actually 36 words in the memory for each row. (One word is never displayed.) When using the "write words" command to write data into the last words of one row and the first words of the next row, you must remember to supply data for the "extra" word.
- Either DMA or programmed I/O can be used.

Writing Full Words Using Programmed I/O

```
10 ! GRAPHICS, WRITING FULL WORDS USING PROGRAMMED 1/0.
20
      ICOM 200
30
      IDELETE ALL
49
      GCLEAR
50
      GRAPHICS
      INTEGER X, Y, Data
60
70
      IASSEMBLE Write_word_pio
80
      1
90
      Data=255
100
      FOR X=100 TO 200
110
120
      Y = X
      ICALL Write_word(X,Y,Data,9)
130
140
      NEXT X
150
     i
160
     STOP
170
     1
                              NAM Write word_pio ! Module name
180
          ISOURCE
                                                  ! Declare externals
190
         ISOURCE
                              EXT Get_value
         ISOURCE X_coord:
                              BSS i
                                                   ! Storage for X
200
210
          ISOURCE Y coord:
                              BSS 1
                                                  ! Storage for Y
         ISOURCE Data:
                              BSS 1
                                                   ! Storage for DATA WORD
220
230
         ISOURCE Parm number:SUB
         ISOURCE X_parm:
240
                              INT
         ISOURCE Y parm:
250
                              INT
         ISOURCE Data1_parm: INT
260
         ISOURCE Data2_parm: INT
270
280
         ISOURCE Write_word: LDA =X_coord
                                                   ! Get X coordinate
290
          ISOURCE
                              LDB =X_parm
300
          ISOURCE
                              JSM Get value
                                                   ! Get Y coordinate
                              LDA =Y coord
310
          ISOURCE
                              LDB =Y parm
          ISOURCE
320
                              JSM Get_walue
330
         ISOURCE
                                                   ! Get first DATA WORD
340
         ISOURCE
                              LDA =Data
350
         ISOURCE
                              LDB =Datai parm
360
                              JSM Get_value
          ISOURCE
                                                   ! Put select code in Pa
370
          ISOURCE
                              LDA =13
380
          ISOURCE
                              STA Pa
                                                   ! Check for GRAPHICS hardware
381
                              LDA R5
          ISOURCE
                              SZA No_graphics
382
          ISOURCE
                              LDA =50B
                                                   ! Send WRITE WORD control code
390
         ISOURCE
400
         ISOURCE
                              SFC *
                                                   ! Wait for flag
                              STA R5
410
         ISOURCE
         ISOURCE
                              LDB Y coord
                                                   ! Calculate word address
429
                                                   ! (36*Y) + INT(X/16)
430
         ISOURCE
                              LDA =36
                              MPY
440
          ISOURCE
                              LDB X_coord
450
          ISOURCE
          ISQURCE
460
                              SBR 4
```

470	ISOURCE	ADA	B		
480	ISOURCE	CMA		ļ	Complement address
490	ISOURCE	SFC	÷	į	Wait for flag
500	ISOURCE	STA	R4	ļ	Send word address
510	ISOURCE	STA	R7	ļ	Trigger output
520	ISOURCE	LDA	Data	ļ	Get DATA WORD
530	ISOURCE	SFC	×	!	Wait for flag
540	ISOURCE	STA	R4	į	Send DATA WORD
550	ISOURCE	STA	R7	ļ	Trigger output
560	ISOURCE	LDA	Parm number	ļ	Check for second WORD
570	ISOURCE	ADA	=-4		
580	ISOURCE	SAP	Send second		
590	ISOURCE	RET	1	1	Return to BASIC
591	ISOURCE	!			
592	ISOURCE	No graphics:RET	1		
593	ISOURCE	1			
600	ISOURCE	Send second:LDA	=Data	ţ	Get second DATA WORD
610	ISOURCE	LDB	=Data2 parm		
620	ISOURCE	JSM	Get value		
630	ISOURCE	LDA	Data		
640	ISOURCE	SFC	X	ļ	Wait for flag
650	ISOURCE	STA	R4	ļ	Send DATA WORD
660	ISOURCE	STR	R7	ļ	Trigger output
670	ISOURCE	RET	1	ļ	Return to BASIC
680	ISOURCE	ЕНД	Write_word_pio	ļ	Module end

Writing Full Words Using DMA

```
10 ! GRAPHICS, WRITING FULL WORDS USING DMA.
20
       ICOM 20000
30
       IDELETE ALL
       GCLEAR
40
50
       GRAPHICS
60
        SCALE 0,559,0,454
70
        FRAME
80
        MOVE 100,454-100
90
        DRAW 450,454-450
        INTEGER X, Y, Count
190
110
        IASSEMBLE Write_word_dma
120
130 Count=500
140 FOR X=100 TO 400 STEP 50
150
        Y=X
160
            ICALL Write_word(X,Y,Count)
170
        NEXT X
180
        1
190 STOP
200 !
210
             ISOURCE
                                        NAM Write word dma ! Module name
220
            ISOURCE
                                       EXT Get value
                                                                       ! Declare externals
230
           ISOURCE
                                        EXT Isr_access

      ISOURCE
      Entitist_access

      ISOURCE X_coord:
      BSS 1
      ! Storage for X

      ISOURCE Y_coord:
      BSS 1
      ! Storage for Y

      ISOURCE Count:
      BSS 1
      ! Storage for WORD COUNT

      ISOURCE Cwa:
      BSS 1
      ! Complemented WORD ADDRESS

      ISOURCE Buffer:
      BSS 16384
      ! FOLLOWED BY Storage for data

      ISOURCE
      SUB
      .

240
250
260
261
270
280
           ISOURCE X_parm: INT
ISOURCE Y parm: INT
290
           ISOURCE Y_parm:
300
           ISOURCE Count_parm: INT
310
                                                                     ! Get X coordinate
320
           ISOURCE Write word: LDA =X_coord
          ISOURCELDB=XparmISOURCEJSMGet_valueISOURCELDA=YISOURCELDB=YISOURCEJSMGet_valueISOURCELDA=CountISOURCELDB=CountISOURCELDB=CountISOURCEJSMGet_valueISOURCELDB=Sount_parmISOURCELDB=S25255BISOURCEADA=1ISOURCEADA=1ISOURCEJMP*+2ISOURCEJMPAgainISOURCELDA=13ISOURCELDA=13ISOURCESTAPa
            ISOURCE LDB =X parm
330
340
350
                                                                       ! Get Y coordinate
360
370
380
                                                                       ! Get WORD count
390
400
410
                                                                       ! Initilize BUFFER
420
430
440
450
460
470
480
                                                                       ! Put select code in Pa
490
           ISOURCE
                                       STA Pa
                                       LDA R5
           ISOURCE
                                                                       ! Check for GRAPHICS hardware
500
510
            ISOURCE
                                       RZA Graphics_here
511
             ISOURCE
512
             ISOURCE
                                          RET 1
                                                                       ! NO GRAPHICS EXIT
513
             ISOURCE
550
            ISOURCE Graphics_here:LDB Y_coord
                                                                       ! Calculate word address
            ISOURCE LDA =36
560
                                                                       ! (36*Y) + INT(X/16)
570
            ISOURCE
                                        MPY
580
            ISOURCE
                                        LDB X_coord
590
            ISOURCE
                                        SBR 4
                                         ADA B
600
             ISOURCE
```

610	ISOURCE	CMA	! Complement address
630	ISOURCE	STA Cwa	! Save word address
650	ISOURCE	LDA Count	! Check for max WORD count
660	ISOURCE	ADA =-16384	
670	ISOURCE	SAM Count ok	
680	ISOURCE	LDA =16384	! Set count to max allowed
690	ISOURCE	STA Count	
700	ISOURCE Try_ag	ain:	
710	ISOURCE Count	ok: LIA =Isr	! Get DMA Resource
720	ISOURCE	LDB =(64*256)+(2*	:16)+13
730	ISOURCE	JSM Isr access	
740	ISOURCE	JMP Try again	
750	ISOURCE	LDA Count	! Set Dmac to COUNT
770	ISCURCE	STA Dmac	
780	ISOURCE	LDA =Cwa	! Set Dmama to Complemented
781	ISOURCE		! Address
790	ISOURCE	STA Dmama	
800	ISCURCE	SDO	! Set DMA direction to QUT
820	ISOURCE	DMA	! Notify DMA hardware
838	ISOURCE	LDA =50B+300B	Send DMA WRITE WORD Command
840	ISOURCE		! NOTE: Bit 5 is ONE
850	ISOURCE	SFC *	! Wait for flag
860	ISOURCE	STA R5	"
870	ISOURCE	RET 1	! Return to BASIC
888	ISOURCE	1	
890	ISOURCE Isr:	LDA =0	! End of transfer interrupt
900	ISOURCE	STA R5	! Clear control register
920	ISOURCE	JMP End isr hiah.	I ! Release DMA access
940	ISOURCE		
950	ISOURCE	END Write word dm	a ! Module end

Operation: Clearing Full Words

Clearing words within the graphics memory can be accomplished using the "write pixels" or the "write words" commands discussed previously. However, if many sequential words are to be cleared, the most efficient way is to use the "clear words" command with DMA. This operation is identical to the "write words" command including the data transfer, except that the data is ignored by the graphics hardware and zeroes are written into the graphics memory.

General Procedure:

- A ''clear words'' command is stored in R5.
- A data transfer is started to send data to the graphics hardware. The first word sent indicates the starting address within the graphics memory. Each subsequent word transferred causes one word of graphics memory to be cleared.

Special Considerations:

INT = interrupt enabled bit DMA = DMA enabled bit - = don't care

where:

• The data sent to the graphics hardware must be in the format illustrated here —

CWA
data
data
data
•
•
•

where:

CWA = complemented word address

data = data is ignored

• Recall that while there are only 35 words of graphics memory data displayed in each row of the CRT raster, there are actually 36 words in the memory for each row. (One word is never displayed.) When using the "clear words" command to clear the last words of one row and the first words of the next row, you must remember to allow for the "extra" word.

Clearing Full Words Using DMA

10 !	GRAPHICS, CLEARING FULL (WORDS USING DMA.	
20	ICOM 200		
30	IDELETE ALL		
40	GCLEAR		
50	GRAPHICS		
60	SCALE 0,559,0,454		
70	FRAME		
80	MOVE 100,454-100		
90 90	UKHW 450,454-450		
100	INTEGER X, Y, Count		
110	IHSSEMBLE LIEAr_word_dms	3	
120			
138	COUNT=300		
140	TUR A-100 IU 400 SIEF JR	2	
100	TCOLL Class wasd/V V Ca	10.4)	
100	NEVT V	ari, 2	
100			
100	: etad		
170 200	1		
200 210	TSALIPOE	NAM Clear word dwa	/ Module name
220 220	ISOURCE	FXT Get value	/ Neclare externals
238	ISOURCE	FXT Isr access	
240	ISOURCE X coord:	BSS 1	! Storage for X
250	ISOURCE Y coord:	BSS 1	! Storage for Y
260	ISOURCE Count:	BSS 1	! Storage for WORD COUNT
270	ISOURCE CWa:	BSS 1	! Storage for Complemented
280	ISOURCE		! WORD ADDRESS
290	ISOURCE	SUB	
300	ISOURCE X parm:	INT	
310	ISOURCE Y parm:	INT	
320	ISOURCE Count parm:	IHT	
330	ISOURCE Clear word:	LDA =X coord	! Get X coordinate
340	ISOURCE	LDB =X parm	
350	ISOURCE	JSM Get_walue	
360	ISOURCE	LDA =Y_coord	! Get Y coordinate
370	ISOURCE	LDB =Y_parm	
380	ISOURCE	JSM Get_value	
390	ISOURCE	LDA =Count	! Get WORD count
400	ISOURCE	LDB =Count_parm	
410	ISOURCE	JSM Get_value	
420	ISOURCE	LDA =13	! Put select code in Pa
430	ISOURCE	STA Pa	
440	ISOURCE	LDA R5	! Check for GRAPHICS hardware
450	ISOURCE	RZA Graphics_here	
460	ISUURCE	!	
470	ISUURCE		! NU GRHPHICS EXIT
480 400	IBUUKUE Iooupor Guardai a i	!	
490	ISUUKLE Graphics_hei	reilus (coord	! Laiculate Word address
000 510	ISUUKLE Ioolidae	LUH =36 Mov	! (36*Y) + INI(A/16)
510 500	TOURCE	ITP V seend	
520	TODONOL	CDD /	
000 540	TOOLDCE	oda d	
550 550	ISOURCE	CMA	! Complement address
560	ISOURCE	STA Cua	Store starting word address
579	ISOURCE	LIIA Count	! Check for max WORD count
580	ISOURCE	ADA =-16384	
590	ISOURCE	SAM Count ok	
600	ISOURCE	LDA =16384	! Set count to max allowed
610	ISOURCE	STA Count	

620	ISOURCE Tr	vy again:			ļ	
630	ISOURCE Co	ount ok: L	_DA	=lsr	ļ	Get DMA Resource
640	ISOURCE	L	_DB =	=(64*256)+(2*16)	+1	13
650	ISOURCE	Ĵ	JSM	Isr access		
660	ISOURCE		JMP	Try again		
670	ISOURCE	L	_DA	Count	ļ	Set Dmac to COUNT-1
689	ISOURCE	F	₽DΑ ∶	=-1		
690	ISOURCE	5	STA	Dmac		
700	ISOURCE	L	_DA :	=Cwa	ļ	Set Dmama to start address
710	ISOURCE	e	STA	Dmama		
720	ISOURCE	9	SDO		ł	Set DMA direction to OUT
730	ISOURCE	1	DMA		ł	Notify DMA hardware
740	ISOURCE	L	_DA	=52B+300B	1	Send DMA CLEAR WORD Command
750	ISQURCE				ļ	NOTE: Bit 5 is one
760	ISOURCE	ç	SFC	÷	i	Wait for flag
770	ISOURCE	S	STA	R5		
780	ISOURCE	F	RET		ļ	Return to BASIC
790	ISOURCE	:	ļ			
800	ISOURCE Is	sr i l	LDA	=9	ļ	End of transfer interrupt
810	ISOURCE	ç	STA	R5	ļ	Clear control register
820	ISOURCE		JMP	End isr high,I	ļ	Release DMA access
830	ISOURCE		!	and the second second		
840	ISOURCE	ĩ	END	Clear_word_dma	ļ	Module end

Operation: Reading Full Words

The data in the graphics memory can be retrieved using the "read words" command. This is the only way data can be retrieved since there is no "read pixels" command. This capability might be used to store graphic images on mass memory or to update the graphic image using a read-modify-write algorithm.

General Procedure:

- A ''read words'' command is stored in R5.
- A single word is sent to the graphics hardware to indicate the starting address within the graphics memory.
- An input data transfer retrieves consecutive words from the graphics memory starting at the specified address.

Special Considerations:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								INT	DMA	I	0	1		0	0

where:

INT = interrupt enabled bit

DMA = DMA enabled bit

- = don't care

• The data sent to the graphics hardware must be in the format illustrated here —

where:

CWA = complemented word address

- Recall that while there are only 35 words of graphics memory data displayed in each row of the CRT raster, there are actually 36 words in the memory for each row. (One word is never displayed.) When using the "read words" command to read data from the last words of one row and the first words of the next row, you must remember to allow for the "extra" word.
- Either DMA or programmed I/O can be used.

Reading Full Words Using Programmed I/O

```
10 ! GRAPHICS. READING FULL WORDS USING PROGRAMMED 1/0.
20
      ICOM 200
      IDELETE ALL
30
40
      GCLEAR
50
      GRAPHICS
      SCALE 0,559,0,454
60
70
      MOVE 100,455-100
80
      DRAW 200,455-200
      INTEGER X, Y, Data
90
100
      IASSEMBLE Read word pio
110
129
      WAIT 1000
      EXIT GRAPHICS
130
140
      1
159
      FOR X=100 TO 200
      Y=X
160
170
      ICALL Read word(X,Y, Data)
      PRINT Data, OCTAL(Data)
180
190
      NEXT X
200
      ł
210
      STOP
220
      ļ
230
          ISOURCE
                               NAM Read word pio
                                                     ! Module name
240
          ISOURCE
                               EXT Get value
                                                     ! Declare externals
250
          ISOURCE
                               EXT Put_value
260
          ISOURCE X coord:
                               ESS 1
                                                     ! Storage for X
270
          ISOURCE Y coord:
                               BSS 1
                                                     ! Storage for Y
280
          ISOURCE Data:
                               BSS 1
                                                     ! Storage for DATA WORD
290
          ISOURCE
                               SUB
          ISOURCE X_parm:
300
                               INT
310
          ISOURCE Y_parm:
                                INT
320
          ISOURCE Data_parm:
                               INT
330
          ISCURCE Read word:
                               LDA =X_coord
                                                     ! Get % coordinate
340
          ISOURCE
                               LDB =X parm
350
          ISOURCE
                               JSM Get value
                               LDA =Y coord
                                                     ! Get Y coordinate
360
          ISOURCE
                               LDB =Y parm
370
          ISOURCE
```

389	ISOURCE	JSM	Get value		
390	ISOURCE	LDA	=13	!	Put select code in Pa
400	ISOURCE	STR	Pa		
410	ISOURCE	LDA	R5	ļ	Check for GRAPHICS hardware
420	ISOURCE	SZA	No graphics		
430	ISOURCE	LDA	=54B	ļ	Send READ WORD control code
440	ISOURCE	SFC	×	ļ	Wait for flag
450	ISOURCE	STA	R5		
460	ISOURCE	LDB	Y coord	ļ	Calculate word address
470	ISOURCE	LDA	=36	ļ	(36*Y) + INT(X/16)
480	ISOURCE	MPY			
490	ISOURCE	LDB	X_coord		
500	ISQURCE	SBR	4		
510	ISOURCE	ADA	B		
520	ISOURCE	СМА		ļ	Complement address
530	ISOURCE	SFC	X	l	Wait for flag
540	ISOURCE	STA	R4	ļ	Send word address
550	ISOURCE	STA	R7	ļ	Trigger output
560	ISOURCE	SFC	÷	ļ	Wait for flag
570	ISOURCE	LDA	R4	ļ	Get DATA WORD
580	ISOURCE	STA	Data		
590	ISOURCE	LDA	=Data	ļ	Send DATA WORD to BASIC
600	ISOURCE	LDB	=Data_parm		
610	ISOURCE	JSM	Put value		
620	ISOURCE	RET	1	ţ	Return to BASIC
630	ISOURCE	l			
640	ISOURCE No_graphics:	RET	1		
650	ISOURCE	!			
660	ISOURCE	END	Read_word_pic	ļ	Module end

Reading Full Words Using DMA

10 !	GRAPHICS, READING FULL (WORDS USING DMA.		
20	ICOM 20000			
30	IDELETE ALL			
40	GCLEAR			
50	GRAPHICS			
60	SCALE 0,559,454,0 ! (0,0) IS AT UPPER LEF	T & (559,454) IS AT LOWER RIGH	T
70	FRAME			
80	MOVE 100,100			
90	DRAW 110,110			
100	INTEGER X, Y, Count			
110	IASSEMBLE Read word dma	a		
120	1			
130	WAIT 1000			
140	EXIT GRAPHICS			
150	Count=100			
160	FOR X=100 TO 110			
170	Y=X			
180	ICALL Read_word(X,Y,	,Count)		
190	IDUMP Buffer TO Buf	fer,39		
200	PR INT			
210	NEXT X			
220				
230	STOP			
240				
250	ISOURCE	NAM Read word dma	! Module name	
260	ISOURCE	EXT Get Value	! Declare externals	
270	ISOURCE	EXT Isr_access		
236	ISCURCE X coord:	RSS 1	! Storage for X	

290 300 310 320 330 340	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	Y_coord: Count: Buffer: X_parm: Y_parm:	BSS BSS ESS SUB INT INT	1 1 16384		Storage for Y Storage for WORD COUNT Storage for data
360 360 370	ISOURCE ISOURCE	Read_word:	LDA LDB	=X_coord =X_parm	ļ	Get X coordinate
380 390 400	ISOURCE ISOURCE ISOURCE		JSM LDA LDB	Get_value =Y_coord =Y_parm	ļ	Get Y coordinate
410 420	ISOURCE ISOURCE		JSM LDA	Get_value =Count	!	Get WORD count
438 440 450	ISOURCE ISOURCE		JSM LDA	-count_parm Get_value =13		Put select code in Pa
460 470 480	ISOURCE ISOURCE		STA LDA RZA	Pa R5 Graphics here	ļ	Check for GRAPHICS hardware
490 500 510	ISOURCE ISOURCE		! RET	т. 	ļ	NO GRAPHICS EXIT
520 530	ISOURCE ISOURCE	Graphics_her	re:Li SFC	DA =54B *		Send READ WORD control code Wait for flag
540 550 560	ISOURCE ISOURCE ISOURCE		SIH LDB LDA	KD Y_coord =36		Calculate word address (36*Y) + INT(X/16)
570 580 590	ISOURCE ISOURCE ISOURCE		MPY LDB SBR	X_coord 4		
600 610 620	ISOURCE ISOURCE ISOURCE		ADA CMA SFC	B *	!	Complement address Wait for flag
630 640 650	ISOURCE ISOURCE		STA STA	R4 R7 Count		Send word address Trigger output Check for max WORT count
660 670	ISOURCE ISOURCE		ADA	=-16384 Count_ok		
690 700	ISOURCE ISOURCE ISOURCE	Try_again:	STR	=16384 Count		Set count to max allowed
710 720 730	ISOURCE ISOURCE ISOURCE	Count_ok:	LDA LDB JSM	=Isr =(64*256)+(2*16) Isr access	! +(Get IMA Resource 13
740 750 760	ISOURCE ISOURCE ISOURCE		JMP LDA ADA	Try_again Count =-1		Set Dmac to COUNT-1
770 780 790	ISOURCE ISOURCE ISOURCE		STA LDA STA	Dmac =Buffer Dmama		Set Dmama to BUFFER address
800 810 820	ISOURCE ISOURCE ISOURCE		SDI DMA LDA	=14B+300B	!	Set DMA direction to IN Notify DMA hardware Send DMA Read Word Command
830 840 850	ISOURCE ISOURCE ISOURCE		SFC STA	* R5	!	NOTE: Bit 5 is ZERO Wait for flag
860 870 880	ISOURCE ISOURCE ISOURCE	Isr:	RET ! LDA	1 =0	····	Return to BASIC End of transfer interrupt
890 900 910	ISOURCE ISOURCE		STA JMP	R5 End_isr_high,I	!	Clear control register Release DMA access
920	ISOURCE		END	Read_word_dma	ļ	Module end

Operation: Cursor Operations

Three graphics cursors are provided for your use with the graphics hardware. These are a non-blinking, full-screen, cross-line cursor, a small (9 pixels by 9 pixels), blinking, cross-line cursor, and a horizontal underline, blinking cursor. The three cursors are illustrated here —

horizontal cursor

small blinking cursor

full-screen cursor

General Procedure:

- An "X cursor position" command is stored in R5.
- A value indicating the X (or horizontal) position of the cursor is sent to the hardware.
- A "Y cursor position" command is stored in R5 (the command also identifies which cursor appears).
- A value indicating the Y (or vertical) position of the cursor is sent to the hardware.

Special Considerations:

• For most applications, only programmed I/O is used for cursor control. Thus the values stored in R5 should be selected from the following table —

Cursor Type	Octal Control Code (to R5)
X cursor position	44
Y position (small blinking)	40
Y position (full-screen)	41
Y position (small horizontal)	42

• The data for the X coordinate must be in a special format as follows —

15	14	13	12	П	10	9	8	7	6	5	4	3	2	I	0
				– CM	XI —					_	_	-	-	-	1

- where:
- CMX1 = one's complement of (X coordinate + 63)

- = don't care

• The data for the Y coordinate must be in a special format as follows —

15	14	13	12		10	9	8	7	6	5	4	3	2	I	0
CMYI								-	_	-	-	-	-		

where:

CMY1 = one's complement of (Y coordinate + 44)

– = don't care

Setting the Cursor Using Programmed I/O

The following program demonstrates the algorithm for controlling the cursor.

```
10 ! GRAPHICS, SETTING CURSOR USING PROGRAMMED I/O.
  20
         ICOM 200
  30
        IDELETE ALL
  40
        GCLEAR
  50
        GRAPHICS
  60
        FRAME
  7A
        INTEGER X, Y, Type
  ŘА
        IASSEMBLE Cursor_pio
  90
        FOR Type=0 TO 2 ! 0 = SMALL, 1 = LARGE, 2 = HORIZONTAL
  110
  120
           FOR X=0 TO 454
  130
              Y=X
  140
              ICALL Cursor(X,Y,Type)
  150
          NEXT X
  160 NEXT Type
  170
        I
       STOP
  180
       ļ
  190
                                 NAM Cursor_pio
                                                     ! Module name
  200
            ISOURCE
           ISOURCE
                              EXT Get_value
BSS 1
BSS 1
BSS 1
BSS 1
  210
                                                     ! Declare externals
           ISOURCE X_coord:
ISOURCE Y_coord:
  220
                                                     ! Storage for X
  230
                                                     ! Storage for Y
           ISOURCE Type:
  240
                                                     ! Storage for TYPE word
  250
           ISOURCE
                                SUB
         260
  270
  280
  290
                                                     I Get X coordinate
  300
  310
  320
                                                     ! Get Y coordinate
  330
  340
  350
                                                      ! Put select code in Pa
  360
  361
                                                      ! Check for GRAPHICS hardware
           ISOURCE
  362
                               RZA Graphics here
           ISOURCE
  363
           ISOURCE
ISOURCE
  364
                                RET 1
                                                      ! NO GRAPHICS EXIT
  365
           ISOURCE Graphics_here:LDA =44B
  370
                                                     ! Send CURSOR X LOAD control
           ISOURCE
                     SFC *
  380
                                                     ! Wait for flag
           ISOURCE
  390
                                STA R5
400
           ISOURCE
                               LDA X coord
                                                     ! Get X address
  410
           ISOURCE
                               ADA =63
                                                     ! Add offset
           ISOURCE
                               CMA
                                                     ! Complement and
  420
                              UMH
SAL 6
SFC *
STA R4
STA R7
LDA =Type
LDB =Type_parm
JSM Get_value
LDA Type
CPA =0
.IMP 9mal1
          ISOURCE
ISOURCE
ISOURCE
ISOURCE
ISOURCE
  430
                                                     ! shift X coordinate
  440
                                                     ! Wait for flag
  450
                                                     ! Send X address
  460
                                                     ! Trigger output
  470
                                                     ! Get TYPE code
          ISOURCE
ISOURCE
  439
  490
  590
           ISOURCE
           ISOURCE
                                                     ! Is it small cursor?
  510
           ISOURCE
                              JMP Small
CPA =1
                                                     ! Yes
  520
  530
           ISOURCE
                                                     ! Is it large cursor?
  540
            ISQURCE
                                 JMP Large
                                                     l Yes
```

550	ISOURCE	CPA =2		Is it horizental cursor?
560	ISOURCE	JMP Horizontal		Yes
570	ISOURCE	RET 1		None, return to BASIC
580	ISOURCE .Small:	LDA =408		Send SMALL CURSOR Y LOAD
590 600	ISOURCE Y_load: ISOURCE	SFC * STA R5	ļ	Wait for flag
610	ISOURCE	LDA Y coord		Get Y address
620	ISOURCE	ADA =44		Add offset
638	ISUURCE	UMH		Complement and
648	ISOURCE	SAL 6		shift Y coordinate
658	ISOURCE	SEC +		Wait for flag
669	ISOURCE	STA R4		Send Y address
679	ISOURCE	STA R7		Trigger output
680	ISOURCE	RET 1		Return to BASIC
690	ISOURCE Large:	LDA =41B		Get LARGE CURSOR Y LOAD
700 710 720	ISOURCE ISOURCE Horizontal: ISOURCE	JMP Y_load LDA =42B JMP Y_load	I	Get HORIZONTAL Y LOAD
730 740	ISOURCE	: END Cursor_pio	ļ	Module end

Comprehensive Example

```
10 ! GRAPHICS, MOVING SYMBOL USING WRITE FULL WORDS WITH DMA.
20
       ICOM 20000
30
        IDELETE ALL
40
      GCLEAR
50
     GRAPHICS
       SCALE 0,559,0,454
60
70
       FRAME
89
      MOVE 100,454-100
90 DRAW 450,454-450
100 INTEGER X,Y,Count
110 IASSEMBLE Write_dma
120 !
130 X=RND*559
140 Y=RND*454
150 ICALL Write_symbol(X,Y)
160 GOTO 130
161
        170 X=100
180 FOR Y=100 TO 400
190
           ICALL Write_symbol(X,Y)
200 NEXT Y
210 FOR Y=400 TO 100 STEP -1
220
         ICALL Write_symbol(X,Y)
230 NEXT Y
240 GOTO 180
250 !
      STOP
260
      Į
270
280
              ISOURCE
                                        NAM Write dma
                                                                      ! Module name
290
             ISOURCE
                                         EXT Get_value
                                                                      ! Declare externals
           ISOURCE EXT Isr_access
ISOURCE X coord: BSS 1
ISOURCE Y_coord: BSS 1
300
                                                                      ! Storage for X
310
                                                                      ! Storage for Y
320
           ISOURCE CWa:
330
                                         BSS 1

        330
        ISOURCE Cwa.
        BSS 1

        340
        ISOURCE Line_1:
        DAT 1,0,0
        !

        350
        ISOURCE Line_2:
        DAT 2,0,0
        .

        360
        ISOURCE Line_3:
        DAT 3,100001B,100000B
        .

        370
        ISOURCE Line 4:
        DAT 4,100002B,40000B

                                                                      ! FIRST LINE OF SYMBOL
```

ίθ	Get X coordinate Get Y coordinate	Put select code in Pa Check for GRAPHICS hardware	NO GRAPHICS EXIT Calculate word address (36*Y) + INT(X/16)	Substract 8 LINES for symbol Complement address Store address All addresses stored? Yes Point to next address word Calculate next address	Get DMA Resource 13 Set Dmac to COUNT-1 Set Dmama to Complemented Address	Set IMA direction to GUT Notify IMA hardware Send DMA WRITE WORD Command NOTE: Bit 5 is ONE Wait for flag
0AT 5,10004B,20203 0AT 6,10010B,10003B 0AT 7,100020B,4003B 0AT 3,100040B,20003B 0AT 10,100040B,20003B 0AT 11,100010B,100003B 0AT 11,100010B,100003B 0AT 12,100001B,100003B 0AT 12,100001B,100003B 0AT 15,0,0 0AT 15,0,0 1AT 15,0,0,0 1AT 15,0,0,0,0 1AT 15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	:LDA =X_coord ! _DB =X_parm JSM Get_ualue _DA =Y_coord ! _DB =Y_parm JSM Get_ualue	_DA =13 STA Pa _DA R5 _ZA Graphics_here	%ET 1 ! DH =36 Coord TPY =36 SBR 4 Coord SBR 4 TDH B		_DA =1sr _DB =(64*256)+(2*16)+ JSM Isr_access JMP Try_again STA Dmac LDA =Line_1	518 Dwama 500 DMA 10F = 508+3008 570 * 508 571 R5 = 508 5
SOURCE Line 5: SOURCE Line 5: SOURCE Line 6: SOURCE Line 8: SOURCE Line 9: SOURCE Line 10: SOURCE Line 12: SOURCE Line 12: SOURCE Line 12: SOURCE Line 14: SOURCE Line 15: SOURCE Line 15: SOURCE Line 15: SOURCE Line 16: SOURCE Count parm: SOURCE Count parm:	SOURCE Mrite_symbol SOURCE SOURCE SOURCE SOURCE SOURCE	SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE	SOURCE SOURCE Graphics here SOURCE Graphics here SOURCE SOURCE SOURCE SOURCE SOURCE	SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE	source Try again: source cont: source cont: source source source source source source	source source source source source source source source source source
сса 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 7 4 4 4 4		м м м м м м м м м м м м м м м м м м м	1 2 2 2 2 2 2 2 2 2 2 2 2 2	740 750 757 760 7760 7760 7760 7760 7760 7		ФФФФФФФФ ФФФФФФФ ФФФФФФ ФФФФФФ ФФ

1010	ISOURCE	RET 1	! Return to BASIC
1020	ISOURCE Isr:	! LDA Dmama	! End of transfer interrupt
1040	ISOURCE	ADA =0	
1050	ISOURCE	CPA =Line_16+3	! At end of symbol yet
1060	ISOURCE	JMP End_isr_high,I	! Release DMA access
1070	ISOURCE	STA Dmama	
1080	ISOURCE	LDA Width	
1898	ISOURCE	STA Dmac	
1100	ISOURCE	JMP Send cmd	
1110	ISOURCE	ION	
1120	ISOURCE		
1130	ISOURCE	END Write dma	! Module end

Line Drawing

Lines drawn on the CRT must be drawn pixel-for-pixel between two points because the System 45 graphics is a raster scan graphics. Line drawing routines are typically implemented in software and called when needed. One such routine is provided for your use on the Demonstration Cartridge.

The Demo Cartridge line drawing routine is contained within a file called "BRAL". To use this routine, simple follow the prompts which are displayed.

A listing of the line drawing routine appears here —

```
10
  *^n
20 PRINT "*
            BRESENHAM ALGORITHM FOR LINE TO DOT CONVERSION
ICOM 1000
40
50
   ON KEY #6 GOTO Last
   PRINT "Press KEY6 to exit"
60
70
   INTEGER X1, Y1, X2, Y2, Lipat
  IDELETE ALL
89
90 IASSEMBLE Mod1
100
      GCLEAR
110 Begin: PRINT
120
        PRINT "enter the X,Y coordinates of the 2 points, maximum X value is"
        PRINT "559 and maximum Y value is 454"
130
140
        INPUT X1,Y1,X2,Y2 ! Get coordinates of 2 points line will join
150
    PRINT "enter the line pattern type: eraser= 0, solid= 1"
   INPUT Lipat
160
                            ! Get line type: solid or erase
170 FRINT "point coordinates: X1=";X1; "Y1=";Y1; "X2=";X2; "Y2=";Y2
180
      GRAPHICS
190 ICALL Draw(X1,Y1,X2,Y2,Lipat) ! Call assembly routine to draw line
200
                              ! between 2 points
210 PAUSE
220 EXIT GRAPHICS
230 GOTO Begin
                              ! Repeat drawing lines
240 Last: END
```

250	ISOURCE	NAM Modi					
260	ISOURCE	EXT Get val	lue				
270	ISOURCE X1:	BSS 1	! First X coordinate				
280	ISAURCE Y1:	BSS 1	L First Y coordinate				
290	ISOURCE X2:	BSS 1	1 Second X coordinate				
300	ISOURCE Y2:	BSS 1	/ Second Y coordinate				
210	TCALLACE inst .	DOC 1 1	llino tuno: tecolid Otopoco				
20A	ISOURCE ETPAC. ISOURCE Dat	BSS 4	I Dam X2-X1 ->Delta X				
000 000	TODUIDAE THE	pec d 1	1 Dbb= V2-V1 ->Dolta V				
000 040	ISOUNCE DED.	pec 4	$\frac{1}{1} \frac{1}{1}	070 050	ICONDOC IS.	DOO 7 :	I Oddposs of Y on Y increment on
330 270	1300RCE 11.	: 1 GGG	I descent workford				
000 070	toolooo to.		: decrement noutine				
370	1500RCE 12:	1 66 0	! Hodress of a or i increment or				
380 000			! decrement routine				
390	ISUURCE Nxcnt:	BSS 1	! Next count				
400	ISOURCE Del:	BSS 1	! Del= (-Da)				
418	ISOURCE Gloadc:	DAT 51B !	! Graphics command				
420	ISOURCE	!					
430	ISOURCE	ļ	! octant Dx Dy Dxy				
440	ISOURCE Octia:	DAT 1001B !	! 8 0 0 0				
450	ISOURCE	DAT 402B !	! 7 0 0 1				
460	ISOURCE	DAT 2001B !	! 1 0 1 0				
470	ISOURCE	DAT 404B !	! 2 0 1 1				
480	ISOURCE	DAT 1003B !	! 5 1 0 0				
490	ISOURCE	DAT 1402B !	! 6 1 0 1				
500	ISOURCE	DAT 2003B !	! 4 1 1 0				
510	ISOURCE	DAT 1404B !	! 3 1 1 1				
520	ISOURCE	1	1				
530	ISOURCE 112a:	*+ 1					
540	ISOURCE	DAT Incx	1 Address of X increment routine				
550	ISOURCE	DAT Inc.	1 Address of Y increment routine				
560	TROURCE	DAT Decy	I Address of X decrement routine				
500	TOOHDOE	DAT Deck	l Address of A decrement routine				
510	Teolibee	CHD	: Hodress of 7 decrement roatine				
000 500	IOURCE ICONDEE TIN	JUD					
579 799	IOUDEE II. Icouper to.	1141					
600	ISUURUE 12. Icouper to:	1141					
010	ISUURCE (S.	1141					
520 700	IOUURUE 14. Iooudoe Te.	101 101					
630	ISUURLE ID:						
549	ISUURCE Draw:	$LDH = \times 1$! Get first & coordinate into ICUM				
650	ISUURCE	LDB = 11					
660 	ISUURCE	JSM Let_val	lue !				
670	ISOURCE	LDA =Yi	! Get first Y coordinate into ICOM				
680	ISOURCE	LDB =T2	l.				
690	ISOURCE	JSM Get_val	lue !				
700	ISOURCE	LDA =X2	! Get second X coordinate into ICOM				
710	ISOURCE	LDB =T3	ļ				
720	ISOURCE	JSM Get_val	lue !				
730	ISOURCE	LDA =Y2	! Get second Y coordinate into ICOM				
740	ISOURCE	LDE =T4	!				
750	ISOURCE	JSM Get_val	lue !				
760	ISOURCE	LDA =Lipat	! Get line type into ICOM				
770	ISOURCE	LDB =T5	l.				
780	ISOURCE	JSM Get val	lue !				
790	ISOURCE	LDA Yi —	! Offset origin to lower left				
800	ISOURCE	TCA	! conner by subracting Y from				
810	ISOURCE	ADA =454	! 454				
820	ISOURCE	STA YI					
830	ISOURCE	LDA Y2					
84ñ	ISOURCE	TCA					
850	ISOURCE	ADA =454					
860	ISOURCE	STA Y2	1				
	and the fact and the first face	and the table					

	T		n en ser en ser en ser en ser en ser en ser en ser en ser en ser en ser en ser en ser en ser en ser en ser en s
870	ISUURCE Ucommand:	LDH =13	! Send out graphics command
880	ISOURCE	STA Pa	! to CRT at select code 13
890	ISOURCE	SFC *	Ì
999		IND Cloade	1
200	TOUGNEL		
910	IBUUKUE	DIE KO	
920	ISOURCE Brham:	LDA X1	! Calculate X2-X1 and store in Da
930	ISOURCE	TCA	1
040	TONIDOC	ana vo	•
270	IOUDAUE	nuri az	:
90 6	ISUURUE	SIH DA	1
960	ISOURCE	SAP *+2	
97A	ISOURCE	TCA	
<u>aoa</u>	Teniore		/ Calculate V2-V1 and stens in Dbb
200	Tealber	Top	· calculate la filanta store in pop
330	IBUURCE	ICB	1
1999	ISOURCE	ADB Y2	!
1010	ISOURCE	STB Dbb	1
1020	TSAURCE	SRM ¥+2	
1000	TONIDE	TOD	$I = - \Delta P C (D_{-}) + - V $
1000	IOUKUE		: DF THDONDEINE I/
1040	ISUURCE	HTH R	! H= HBS(Delta X)- HBS(Delta Y)
1050	ISOURCE	STA Dxy	! Store in Dxy
1060	ISAURAE	SAM Cha	I If Dvik Q then point is in octant
1000	ICOUDOE		10 0 7 - 7
10/0	IBUURUE		! ∠, 3, 5, 0N /
1080	ISOURCE	LDA Da	! Otherwise point is in octant
1090	ISOURCE		! 1. 4. 5. or 8
1100	ISOHRCE	DE DHH	<i>, , ,</i> ,
1110	TONIDAC	TMO Debast	
1110	IOUKUE	JULE DEFENIT	
1120	ISUURCE Chs:	LDH Da	! If DXXX 0 then switch Da and Dbb .
1130	ISOURCE	LDB D66	
1140	ISOURCE	STA D66	
1150	Tenipee	CTD D-	I
1100	ICOUDOE	OID DA	
1190	IBUURLE		!
1170	ISOURCE Brhm1:	SAR 13	! Calculate octant using sign:
1180	ISOURCE		(+)=0 and $(-)=1$
1100	Teniore		I Octors Do Du Dou
1170	ICOURCE	our la	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1200	IOURLE	HND =4	
1210	ISOURCE	SBR 14	! 7 0 0 1
1220	ISOURCE	IOR B	! 1 0 1 0
1230	ISOURCE	AND =6	1 2 8 1 1
1040	ICOUDEE		
1240	IBUURUE	LUB UXY	
1250	15UURCE	SBK 15	! 6 1 Ø 1
1260	ISOURCE	IOR B	! 4 1 1 0
1270	ISOURCE	ADA =Octia	1 3 1 1 1
1000	Tenijere		ست ش ش ∼يب .
1200	ICOUNCE	L D D 0 0 1	
1538	IBUUKLE	LUH B	
1300	ISOURCE	AND =7	
1310	ISOURCE	ADA =I12a	! Calculate I1 and I2:
1300	TONIDOE		1 address of routines for X and Y
1020	ICOURCE	ere r:	: address of roadines for n and r
1330	ISUURLE	SIH II	! decrement or increment
1340	ISOURCE	LDA B	
1350	ISOURCE	SAR 8	<u>!</u>
1360	TSOURCE	ADA =1125	
1070	TCOHDOC	ing a T	
1010	IBUURUE		
1386	ISUURUE	SIH 12	
1390	ISOURCE	LDA D65	! Calculate ABS(Dbb)
1400	ISOURCE	SAP Brhm2	
1410	TSOURCE	TCA	
1400	a course de la course de la course de la course de la course de la course de la course de la course de la cours	OTO DEE	
1420	IOUKLE	SIN DDD	
1430	1SOURCE Brhm2:	LDA Da	
1440	ISOURCE	SAP Brhm3	
1450	ISAURCE	TC:9	
1 <i>42</i> 0	Tenibec	ста п-	
1700			
1470	ISCURCE Brhm3:	нШН =1	

1480 1490	ISOURCE ISOURCE	STA Nxent LDA Da	
1500	ISOURCE	тся	
1510	ISOURCE	STA Del !	Tel= -Da
1529	ISOURCE	ADA DHH	
1530	ISOURCE	SAL 1	
1540	ISOHIPCE	STA Da I	Da= 2(D66-Da)
1550		ITA TEE .	DA- 27000 DA:
1556	TOALDAC		
1000	TEALDER		
1010	TEAHDEE	1 TO T-1	DUU-2×DUU
1000	TOURCE Lassa	CDA DE!	
1070	ISOURCE LOOPH. Icource		
1000	IOUURUE Toouber i Luke		Del= -DA + DDO
1510	ISUUKLE LOOPD:	LDB 71 !	Get Word address:
1020	IOURLE	LUM =06 !	SB#(1 + Al/15
1000	IOURCE		complemented
1040	ISUUKLE Iooupor	LDB AI	
1600	ISUUKLE	5BK 4 !	
1660	1SUUKUE	HUH B !	
1679	ISUUKLE	UNH !	
1000	ISUUKLE	Joh Gata !	Send out word address
1570	ISUUKLE	LUH XI !	Let bit address:
1700	ISUURCE	HND =178 !	Lower 4 bits are address and
1710	ISUURCE	LUB Lipat !	most significant bit is whether
1720	ISOURCE	SBL 15 !	pixel is turned on or not
1730	ISUURCE	IUK B !	· · · · · · · · · · · · · · · · · · ·
1740	ISUURCE	JSM Gdata !	Send out bit address
1750	ISUURCE Uldpt:	1952 Nixent !	Decrement Nxcnt
1760	ISUURCE	JMP *+2	
1770	ISUURCE	REI 1 !	Exit if Nxcnt is 0
1780	ISUURCE	JSM 11,1 !	Update X and Y addresses
1790	ISOURCE	LDA Del !	
1800	ISUURUE	SHP *+2 !	
1819	ISUURCE	JMP Loopa	
1829	ISUURCE	JSM 12,1 !	
1839	ISUURCE	HUH Da	
1840	ISOURCE	STA Del	
1850	ISOURCE	JMP Loopb	
1860	ISOURCE Inc×:	ISZ X1 !	X address increment routine
1870	ISOURCE	RET 1	
1880	ISOURCE Incy:	ISZ Y1 !	Y address increment routine
1890	ISOURCE	RET 1	
1900	ISOURCE Decx:	DSZ X1 !	X address decrement routine
1910	ISOURCE	RET 1	
1920	ISOURCE	RET 1	
1930	ISOURCE Decy:	DSZ Y1 !	Y address decrement routine
1940	ISOURCE	RET 1	
1950	ISOURCE	RET 1	
1960	ISOURCE Gdata:	SFC * !	Routine to output data to
1970	ISOURCE	STA R4 !	the CRT using registers
1980	ISOURCE	STA R7 !	R4 and R7
1990	ISOURCE	RET 1	
2000	ISOURCE	END Mod1	

Appendix Å ASCII Character Set

ASCII Character Codes

	EQUIV	VALEN	FORM	15			EQUI	ALEN	FORM	15] [EQUIV	ALENI	FORM	15		EQUI	ALENT	FORM	15
ASCII Char.	Binary	Oct	Hex	Dec		Char.	Binary	Oct	Hex	Dec		Char.	Binary	Oct	Hex	Dec	ASCII Char.	Binary	Oct	Hex	Dec
NULL	00000000	000	00	0	s	space	00100000	040	20	32		@	01000000	100	40	64	`	01100000	140	60	96
SOH	00000001	001	01	1		!	00100001	041	21	33		A	01000001	101	41	65	а	01100001	141	61	97
STX	00000010	002	02	2		,,	00100010	042	22	34		в	01000010	102	42	66	ь	01100010	142	62	98
ETX	00000011	003	03	3		#	00100011	043	23	35		с	01000011	103	43	67	с	01100011	143	63	99
EOT	00000100	004	04	4		\$	00100100	044	24	36		D	01000100	104	44	68	d	01100100	144	64	100
ENQ	00000101	005	05	5		%	00100101	045	25	37		E	01000101	105	45	69	e	01100101	145	65	101
ACK	00000110	006	06	6		&	00100110	046	26	38		F	01000110	106	46	70	f	01100110	146	66	102
BELL	00000111	007	07	7		,	00100111	047	27	39		G	01000111	107	47	71	g	01100111	147	67	103
BS	00001000	010	08	8		(00101000	050	28	40		н	01001000	110	48	72	h	01101000	150	68	104
нт	00001001	011	09	9)	00101001	051	29	41		I	01001001	111	49	73	i	01101001	151	69	105
LF	00001010	012	0A	10		*	00101010	052	2A	42		J	01001010	112	4A	74	j	01101010	152	6A	106
VT	00001011	013	OB	11		+	00101011	053	2B	43		к	01001011	113	4B	75	k	01101011	153	6B	107
FF	00001100	014	0C	12		,	00101100	054	2C	44		L	01001100	114	4C	76	1	01101100	154	6C	108
CR	00001101	015	0D	13		-	00101101	055	2D	45		м	01001101	115	4D	77	m	01101101	155	6D	109
so	00001110	016	0E.	14			00101110	056	2E	46		Ν	01001110	116	4E	78	n	01101110	156	6E	110
SI	00001111	017	0F	15		/	00101111	057	2F	47		0	01001111	117	4F	79	0	01101111	157	6F	111
DLE	00010000	020	10	16		0	00110000	060	30	48		Р	01010000	120	50	80	р	01110000	160	70	112
DC1	00010001	021	11	17		1	00110001	061	31	49		Q	01010001	121	51	81	q	01110001	161	71	113
DC2	00010010	022	12	18		2	00110010	062	32	50		R	01010010	122	52	82	r	01110010	162	72	114
DC3	00010011	023	13	19		3	00110011	063	33	51		S	01010011	123	53	83	S	01110011	163	73	115
DC4	00010100	024	14	20		4	00110100	064	34	52		Т	01010100	124	54	84	t	01110100	164	74	116
NAK	00010101	025	15	21		5	00110101	065	35	53		U	01010101	125	55	85	u	01110101	165	75	117
SYNC	00010110	026	16	22		6	00110110	066	36	54		v	01010110	126	56	86	v	01110110	166	76	118
ETB	00010111	027	17	23		7	00110111	067	37	55		w	01010111	127	57	87	w	01110111	167	77	119
CAN	00011000	030	18	24		8	00111000	070	38	56		х	01011000	130	58	88	х	01111000	170	78	120
EM	00011001	031	19	25		9	00111001	071	39	57		Y	01011001	131	59	89	у	01111001	171	79	121
SUB	00011010	032	1A	26		:	00111010	072	3A	58		Z	01011010	132	5A	90	z	01111010	172	7A	122
ESC	00011011	033	1B	27		;	00111011	073	3B	59		ĺ	01011011	133	5B	91	{	01111011	173	7B	123
FS	00011100	034	1C	28		<	00111100	074	3C	60		١	01011100	134	5C	92	ł	01111100	174	7C	124
GS	00011101	035	1D	29		=	00111101	075	3D	61	2]	01011101	135	5D	93	}	01111101	175	7D	125
RS	00011110	036	1E	30		>	00111110	076	3E	62		۸	01011110	136	5E	94	~	01111110	176	7E	126
US	00011111	037	1F	31		?	00111111	077	3F	63		-	01011111	137	5F	95	DEL	01111111	177	7F	127

The following table gives the octal value for an ASCII character in the most significant byte ("First Character" column) and the least significant byte ("Second Character" column) of a word. The diagram illustrates the positions of the first and second character positions of a word.

First Character								Second Character								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

ASCII Character	First Character Octal Equivalent	Second Character Octal Equivalent	ASCII Character	First Character Octal Equivalent	Second Character Octal Equivalent
NUL	000000	000000	%	022400	000045
SOH	000400	000001	&	023000	000046
STX	001000	000002	,	023400	000047
ETX	001400	000003	(024000	000050
EOT	002000	000004)	024400	000051
ENQ	002400	000005	*	025000	000052
ACK	003000	000006	+	025400	000053
BEL	003400	000007		026000	000054
BS	004000	000010	-	026400	000055
HT	004400	000011		027000	000056
LF	005000	000012	/	027400	000057
VT	005400	000013	0	030000	000060
FF	006000	000014	1	030400	000061
CR	006400	000015	2	031000	000062
SO	007000	000016	3	031400	000063
SI	007400	000017	4	032000	000064
DLE	010000	000020	5	032400	000065
DC1	010400	000021	6	033000	000066
DC2	011000	000022	7	033400	000067
DC3	011400	000023	8	034000	000070
DC4	012000	000024	9	034400	000071
NAK	012400	000025	:	035000	000072
SYN	013000	000026	÷	035400	000073
ETB	013400	000027	<	036000	000074
CAN	014000	000030	=	036400	000075
EM	014400	000031	>	037000	000076
SUB	015000	000032	?	037400	000077
ESC	015400	000033	@	040000	000100
FS	016000	000034	А	040400	000101
GS	016400	000035	В	041000	000102
RS	017000	000036	С	041400	000103
US	017400	000037	D	042000	000104
SP	020000	000040	Е	042400	000105
!	020400	000041	F	043000	000106
"	021000	000042	G	043400	000107
#	021400	000043	Н	044000	000110
\$	022000	000044	I	044400	000111

ASCII Character	First Character Octal Equivalent	Second Character Octal Equivalent	ASCII Character	First Character Octal Equivalent	Second Character Octal Equivalent
J	045000	000112	e	062400	000145
к	045400	000113	f	063000	000146
L	046000	000114	g	063400	000147
м	046400	000115	h	064000	000150
N	047000	000116	i	064400	000151
0	047400	000117	j	065000	000152
Р	050000	000120	k	065400	000153
Q	050400	000121	1	066000	000154
R	051000	000122	m	066400	000155
S	051400	000123	n	067000	000156
Т	052000	000124	0	067400	000157
U	052400	000125	р	070000	000160
V	053000	000126	q	070400	000161
w	053400	000127	r	071000	000162
Х	054000	000130	s	071400	000163
Y	054400	000131	t	072000	000164
Z	055000	000132	u	072400	000165
[055400	000133	v	073000	000166
۸.	056000	000134	w	073400	000167
]	056400	000135	х	074000	000170
^	057000	000136	У	074400	000171
8	057400	000137	z	075000	000172
•	060000	000140	{	075400	000173
а	060400	000141	F	076000	000174
ь	061000	000142	}	076400	000175
с	061400	000143	\sim	077000	000176
d	062000	000144	DEL	077400	000177

A-4 ASCII Character Set

Appendix **B** Machine Instructions

Detailed List

Instruction	Form	Group	Description
AAR	AAR {n}	Shift/Rotate	Shifts the A register right the indicated number of bits with the sign bit filling all vacated bit positions. (Arithmetic right)
ABR	ABR{n}	Shift/Rotate	Shifts the B register right the indicated number of bits with the sign bit filling all vacated bit positions. (Arithmetic right)
ADA	HDA {loc} [, I]	Integer Math	Adds the contents of the specified location to the contents of register A. The result is in A. If a carry occurs, Extend is set, otherwise Extend is unchanged. If an overflow occurs, Overflow is set, otherwise Overflow is unchanged. A carry is from bit 15; an overflow is a carry from bit 15 or 14, but not both. Extend and Overflow are bits in the processor. Specifying register R4, R5, R6, or R7 as the location causes an input I/O bus cycle to the interface addressed by the Pa register. Indirect addressing may be specified. {loc} must be on base or current page.
ADB	HDE{loc}[,I]	Integer Math	Adds the contents of the specified location to the contents of register B. The result is in B. If a carry occurs, Extend is set, otherwise Extend is unchanged. If an overflow occurs, Overflow is set, otherwise Overflow is unchanged. A carry is from bit 15; an overflow is a carry from bit 15 or 14, but not both. Extend and Overflow are bits in the processor. Specifying register R4, R5, R6, or R7 as the location causes an input I/O bus cycle to the interface addressed by the Pa register. Indirect addressing may be specified. {loc} must be on base or current page.
AND	θΝD {loc} [, Ι]	Logical	Logical "and" operation. The contents of the A register are compared, bit by bit, with the contents of the specified location. For each bit comparison a 1 results if both bits are 1's, a 0 results otherwise. The 16-bit result is left in A. Specifying register R4, R5, R6, or R7 causes an input bus cycle to the interface addressed by the Pa register. Indirect addressing may be specified. {loc} must be on base or current page.

Instruction	Form	Group	Description
CBL	CBL	Stack	Clears the Cb register. Specifies the lower block of memory for byte-referencing stack instructions.
CBU	CBU	Stack	Sets the Cb register. Specifies the upper block of memory for byte-referencing stack instructons.
CDC	CDC	BCD Math	Clears Decimal Carry explicitly.
CLA	CLA	Shift	Clears register A. This is exactly equivalent to SAR 16.
CLB	CLB	Shift	Clears register B. This is exactly equivalent to SBR 16.
CLR	CLR {n}	Load/Store	Clears the specified number of words, beginning at the location pointed at by the A register. A maximum of 16 words may be cleared.
СМА	CMA	Memory	Perform a one's complement of the A register (bit by bit inversion of all 16 bits).
СМВ	CMB	Memory	Perform a one's complement of the B register (bit by bit inversion of all 16 bits).
СМХ	СМХ	BCD Math	Ten's complement of Ar1. The mantissa of Ar1 is replaced with its ten's complement and Decimal Carry is cleared.
СМҮ	СМУ	BCD Math	Ten's complement of Ar2. The mantissa of Ar2 is replaced with its ten's complement and Decimal Carry is cleared.
СРА	CPA {loc} [, I]	Test/Branch	Compares the contents of register A with the con- tents of the specified location and skips if they are unequal. Indirect addressing may be specified. Specifying register R4, R5, R6, or R7 causes an input bus cycle to the interface addressed by the Pa register. {loc} must be on base or current page.
СРВ	CPB {loc} [, I]	Test/Branch	Compares the contents of register B with the con- tents of the specified location and skips if they are unequal. Indirect addressing may be specified. Specifying register R4, R5, R6, or R7 causes an input bus cycle to the interface addressed by the Pa register. {loc} must be on base or current page. {loc} must be on base or current page.
DBL	DBL	Stack	Clears the Db register. Specifies the lower block of memory for byte-referencing stack instructions.
DBU	DBU	Stack	Sets the Db register. Specifies the upper block of memory for byte-referencing stack instructions.
DDR	DDR	I/O	Disables Data Request. Cancels the DMA instruction.
DIR	DIR	I/O	Disables the interrupt system. Cancels the EIR instruction.
DMA	DMA	I/O	Enables the DMA mode. Cancels the DDR instruction.

Instruction	Form	Group	Description
DRS	DRS	BCD Math	Mantissa right shift of Ar1 for one digit. The twelfth digit is shifted into bits 0-3 of the A regis- ter. The non-digit part of the A register is cleared (bits 4-15), and the Decimal Carry bit in the pro- cessor is cleared. The first digit in the mantissa is set to 0.
DSZ	DSZ {loc} [, I]	Test/Alter/Branch	Decrements the contents of the specified location and skips if the new contents are 0. Specifying register R4, R5, R6, or R7 causes an input (or an input and an output) bus cycle to the interface addressed by the Pa register. Indirect addressing may be specified. {loc} must be on base or current page.
EIR	EIR	I/O	Enables the interrupt system. Cancels the DIR in- struction.
EXE	EXE {reg} [, I]	Miscellaneous	Executes the contents of a register. {reg} is an in- teger in the range of 0 through 31, indicating the register to be used (see Memory Map for the cor- respondence between location and register). The register is left unchanged unless the instruction code causes it to be altered. The next instruction to be executed is the one following the EXE, un- less the code in the executed register causes a branch. Indirect addressing may be specified.
FDV	FDV	BCD Math	Fast divide. The mantissas of Ar1 and Ar2 are added together, along with Decimal Carry, until the first decimal overflow occurs. The result ac- cumulates into Ar2. The number of additions without overflow is placed into the lower 4 bits of the B register (0-3). The remainder of the B regis- ter is cleared, as is the Decimal Carry bit in the processor.
FMP	FMP	BCD Math	Fast Multiply. Performs the multiplication by re- peated additions. The mantissa of Ar1 is added to Ar2 along with Decimal carry, a specified number of times. The number of times is specified in the lower 4 bits (0-3) of the B register. The result ac- cumulates in Ar2. If intermediate overflows occur, the number of times they occur appears in the lower 4 bits of the A register after the operation is complete. The upper 12 bits of the A register are cleared along with Decimal Carry.
FXA	FXA	BCD Math	Fixed-point addition. The mantissas of Ar1 and Ar2 are added together and the result placed in Ar2. Decimal Carry is used as the twelfth digit. After the addition, Decimal Carry is set if an over- flow occurred, otherwise Decimal Carry is cleared.

Instruction	Form	Group	Description
IOR	IOR {loc} [, I]	Logical	Logical "inclusive or" operation. The contents of the A register are compared, bit by bit, with the contents of the specified location. For each bit comparison, a 0 results if both bits are 0's, a 1 otherwise. The 16-bit result is left in A. Specifying register R4, R5, R6, or R7 causes an input bus cycle to the interface addressed by the Pa register. Indirect addressing may be specified. {loc} must be on base or current page.
ISZ	ISZ {loc} [, I]	Test/Alter/Branch	Increments the contents of the specified location and skips if the new contents are 0. Specifying register R4, R5, R6, or R7 causes an input (or an input followed by an output) bus cycle to the inter- face addressed by the Pa register. Indirect ad- dressing may be specified. {loc} must be on base or current page.
JMP	JMP {loc} [, I]	Branch	Unconditionally branches to the specified loca- tion. Indirect addressing may be specified. {loc} must be on base or current page.
JSM	JSM {loc} [, I]	Branch	Jumps to subroutine. The value of the R register is incremented by 1 and the value of the P regis- ter (i.e., the location of the JSM instruction itself) is stored in the address pointed to by the R regis- ter. Execution then proceeds to the specified lo- cation. Return from the subroutine is effected by the RET instruction. Indirect addressing may be specified. {loc} must be on base or current page.
LDA	LIA {loc} [, I]	Load/Store	Loads register A with the contents of the specified location. Specifying register R4, R5, R6, or R7 causes an input I/O bus cycle to the interface addressed by the Pa register. Indirect addressing may be specified. {loc} must be on base or current page.
LDB	LDB {loc} [, I]	Load/Store	Loads register B with the contents of the specified location. Specifying register R4, R5, R6, or R7 causes an input I/O bus cycle to the interface addressed by the Pa register. Indirect addressing may be specified. {loc} must be on base or current page.
MLY	MLY	BCD Math	Mantissa left shift on Ar2 for one digit. This is a circular shift, with the bits 0-3 of the A register forming a thirteenth digit. The non-digit part of the A register is cleared (bits 4-15), and the Dec- imal Carry bit in the processor is cleared.
МРҮ	МРΥ	Integer Math	Binary multiply. Uses Booth's Algorithm. The values of the A and B registers are multiplied together with the product placed into A and B. The A register contains the least significant bits and the B register contains the most significant bits and the sign. B may contain any integer within the range -32767 to $+32767$.

Instruction	Form	Group	Description
MRX	MRX	BCD Math	Mantissa right shift on Ar1. The number of digits to be shifted is specified in the lower 4 bits (0-3) of the B register. The shift is accomplished in three stages:
			1) Bits 0-3 of the A register are right-shifted into D_1 of the mantissa, with the twelfth digit being lost. This is the first shift. This shift always takes place, even if $B = 0$.
			2) The digits are then right-shifted for the re- maining number of digits specified. The twelfth digit is lost on each shift (except for the last shift) and the vacated digits are zero-filled.
			3) Finally, the last right-shifting takes place, with the twelfth digit shifting into the lower 4 bits (0-3) of the A register. The Decimal Carry bit in the pro- cessor is cleared and the non-digit part of the A register is cleared (bits 4-15).
MRY	MRY	BCD Math	Mantissa right shift on Ar2. The number of digits to be shifted is specified in the lower 4 bits (0-3) of the B register. The shift is accomplished in three stages:
			1) Bits 0-3 of the A register are right-shifted into D_1 of the mantissa, with the twelfth digit being lost. This is the first shift. This shift always takes place, even if $B = 0$.
			2) The digits are right-shifted for the remaining number of digits specified. The twelfth digit is lost on each shift (except for the last shift) and the vacated digits are zero-filled.
			3) Finally, the last right-shifting takes place, with the twelfth digit shifting into the lower 4 bits (0-3) of the A register. The non-digit part of the A regis- ter is cleared (bits 4-15), and the Decimal Carry bit in the processor is cleared.
MWA	МША	BCD Math	Mantissa word addition. The contents of the B register are added to the ninth through twelfth digits of the Ar2 register. Decimal Carry is added to the twelfth digit; if an overflow occurs, Deci- mal Carry is set, otherwise Decimal Carry is cleared.
NOP	NOP	Miscellaneous	Null operation. This is exactly equivalent to LDA A.
NRM	NRM	BCD Math	Normalizes the Ar2 mantissa. Up to twelve left- shifts of the mantissa are performed until the first digit of the mantissa is non-zero. If the original first digit is already non-zero, no shifts occur. The number of shifts required is stored in the first 4 bits (0-3) of the B register. If 12 shifts are re- quired, the Decimal Carry bit in the processor is set; otherwise, the Decimal Carry bit is cleared. The exponent is not altered.

Instruction	Form	Group	Description
РВС	PBC {reg} [, I]	Stack	Pushes the lower byte (right half) of the specified register onto the stack pointed at by the Cb and C registers. Specifying register R4, R5, R6, or R7 causes an input I/O bus cycle to the interface ad- dressed by the Pa register. Incrementing or dec- rementing of the C register can be specified. In- crementing is the default. {reg} must be in the range of 0 through 7. The incrementing or decre- menting action takes place before pushing.
PBD	PBD {reg} , D PBD {reg} [, I]	Stack	Pushes the lower byte (right half) of the specified register onto the stack pointed at by the Db and D registers. Specifying register R4, R5, R6, or R7 causes an input I/O bus cycle to the interface ad- dressed by the Pa register. Incrementing or dec- rementing the D register can be specified. Incre- menting is the default. {reg} must be in the range of 0 through 7. The incrementing or decrementing action takes place before pushing.
PWC	РЫС {reg} , D РЫС {reg} [, I]	Stack	Pushes entire register (full word) onto the stack pointed at by the C register. Specifying register R4, R5, R6, or R7 causes an input I/O bus cycle to the interface addressed by the Pa register. Incre- menting or decrementing the C register may be specified. Incrementing is the default. {reg} must be in the range of 0 through 7. The incrementing or decrementing action takes place before pushing.
PWD	РШD {reg} , D РШD {reg} [, I]	Stack	Pushes the entire register (full word) onto the stack pointed at by the D register. Specifying register R4, R5, R6, or R7 causes an input I/O bus cycle to the interface addressed by the Pa register. Incrementing or decrementing the D register may be specified. Incrementing is the default. {reg} must be in the range of 0 through 7. The incrementing or decrementing action taken place before pushing.
RAL	RAL {n}	Shift/Rotate	Rotates the A register left the indicated number of bits. Bit 15 rotates into bit 0 (left circular). Maximum rotation of 16 bits.
RAR	RAR {n}	Shift/Rotate	Rotates the A register right the indicated number of bits. Bit 0 rotates into bit 15 (right circular). Maximum rotation of 16 bits.
RBL	RBL {n}	Shift/Rotate	Rotates the B register left the indicated number of bits. Bit 15 rotates into bit 0 (left circular). Maximum rotation of 16 bits rotated.

Instruction	Form	Group	Description
RBR	RBR {n}	Shift/Rotate	Rotates the B register right the indicated number of bits. Bit 0 rotates into bit 15 (right circular). Maximum rotation of 16 bits.
RET	RET {n}	Branch	Returns from subroutine. $\{n\}$ is added to the contents of the address pointed to by the R register. The R register is decremented by 1. This is, in effect, a return from a JSM instruction (see above), to $\{n\}$ instructions following the JSM itself. The "usual" return is RET 1. $\{n\}$ must be in the range of -32 through 31.
RIA	RIA {adrs}	Test/Branch	Skips to {adrs} if register A is not 0, then increments register A by 1. Extend and Overflow are not effected by the incrementing action, even if a carry or overflow occurs. {adrs} must be within - 32 and + 31 of the current location.
RIB	RIB {adrs}	Test/Branch	Skips to {adrs} if register B is not 0, then increments register B by 1. Extend and Overflow are not affected by the incrementing action, even if a carry or overflow occurs. {adrs} must be within - 32 and $+ 31$ of the current location.
RLA	RLA {adrs} [, S] RLA {adrs} [, C]	Test/Alter/Branch	Skips to {adrs} if the least significant bit of the A register is not 0. Setting or clearing the bit after the test can be specified. {adrs} must be within -32 and $+31$ of the current location.
RLB	RLB {adrs} [, S] RLB {adrs} [, C]	Test/Alter/Branch	Skips to {adrs} if the least significant bit of the B register is not 0. Setting or clearing the bit after the test can be specified. {adrs} must be within -32 and $+31$ the current location.
RZA	RZA {adrs}	Test/Branch	Skips to $\{adrs\}$ if register A is not 0. $\{adrs\}$ must be within -32 and $+31$ of the current location.
RZB	RZB {adrs}	Test/Branch	Skips to {adrs} if register B is not 0. {adrs} must be within -32 and $+31$ of the current location.
SAL	SAL {n}	Shift/Rotate	Shifts the A register left the indicated number of bits with all vacated bit positions becoming 0. Maximum shift is 16 bits.
SAM	SAM {adrs} [, S] SAM {adrs} [, C]	Test/Alter/Branch	Skips to {adrs} if the A register is negative (bit 15 is 1). Setting or clearing the bit after the test can be specified. {adrs} must be within -32 and $+31$ of the current location.
SAP	SAP {adrs} [, S] SAP {adrs} [, C]	Test/Alter/Branch	Skips to {adrs} if the A register is positive or zero (bit 15 is 0). Setting or clearing the bit after the test can be specified. {adrs} must be within -32 and $+31$ of the current location.

Instruction	Form	Group	Description
SAR	SAR {n}	Shift/Rotate	Shifts the A register right the indicated number of bits with all vacated bit positions becoming 0. Maximum shift is 16 bits.
SBL	SBL {n}	Shift/Rotate	Shifts the B register left the indicated number of bits with all vacated bit positions becoming 0. Maximum shift is 16 bits.
SBM	SBM $\{adrs\}$ [,S]	Test/Alter/Branch	Skips to {adrs} if the B register is negative (bit 15 is
	SBM {adrs} [, C]	Test/Alter/Branch	 Setting or clearing the bit after the test can be specified. {adrs} must be within - 32 and + 31 of the current location.
SBP	SBP {adrs} [, S]	Test/Alter/Branch	Skips to {adrs} if the B register is positive (bit 15 is
	SBP {adrs} [, C]		0). Setting or clearing the bit after the test can be specified. {adrs} must be within -32 and $+31$ of the current location.
SBR	SBR {n}	Shift/Rotate	Shifts the B register right the indicated number of bits with all vacated bit positions becoming 0. Maximum shift is 16 bits.
SDC	SDC {adrs}	BCD Math	Skips to {adrs} if Decimal Carry is clear. Decimal carry is a single bit in the processor which may have been set by certain arithmetic operations. {adrs} must be within - 32 and + 31 of the cur- rent location.
SDI	SDI	I/O	Sets DMA inwards. Reads from peripheral, writes to memory.
SDO	SDO	I/O	Sets DMA outwards. Reads from memory, writes to peripheral.
SDS	SDS {adrs}	BCD Math	Skips to {adrs} if Decimal Carry is set. Decimal carry is a single bit in the processor which may have been set by certain arithmetic operations. {adrs} must be with -32 and $+31$ of the current location.
SEC	SEC {adrs} [, S]	Test/Alter/Branch	Skips to {adrs} if Extend is clear. Extend is a single
	SEC {adrs} [, C]		bit in the processor which may have been set by certain arithmetic operations. Setting or clearing the bit after the test can be specified. {adrs} must be within -32 and $+31$ of the current location.
SES	SES {adrs} [, S]	Test/Alter/Branch	Skips to {adrs} if Extend is set. Extend is a single
	SES {adrs} [, C]		bit in the processor which may have been set by certain arithmetic operations. Setting or clearing the bit after the test can be specified. {adrs} must be within -32 and $+31$ of the current location.
Instruction	Form	Group	Description
-------------	---------------------------	-------------------	---
SFC	SFC {adrs}	I/O	Skips to {adrs} if the Flag line is false (clear). The Flag line is the one associated with a peripheral on the current select code (pointed to by the Pa register). {adrs} must be within -32 and $+31$ of the current location.
SFS	SFS {adrs}	I/O	Skips to {adrs} if the Flag line is true (set). The flag line is that associated with the peripheral on the current select code (pointed to by the Pa register). {adrs} must be within - 32 and + 31 of the current location.
SHC	SHC{{adrs}	Test/Branch	Skips to {address} if CRT is scanning its raster. {adress} must be within -32 and $+31$ of the current location.
SHS	SHS{adrs}	Test/Branch	Skips to {address} if CRT is doing vertical retrace. {address} must be within -32 and $+31$ of the current location.
SIA	SIA {adrs}	Test/Branch	Skips to {adrs} if register A is 0, then increments register A by 1. Extend and Overflow are not affected by the incrementing action, even if a carry or overflow occurs. {adrs} must be within -32 and $+31$ of the current location.
SIB	SIB {adrs}	Test/Branch	Skips to {adrs} if register B is 0, then increment register B by 1. Extend and Overflow are not af- fected by the incrementing action, even if a carry or overflow occurs. {adrs} must be within -32 and $+31$ of the current location.
SLA	$SLA \{adrs\}[,S]$	Test/Alter/Branch	Skips to {adrs} if the least significant bit of the A
	SLA {adrs} [, C]		register is 0. Setting or clearing the bit after the test can be specified. {adrs} must be within – 32 and + 31 of the current location.
SLB	SLB { adrs } [, C]	Test/Alter/Branch	Skips to {adrs} if the least significant bit of the B
	SLB {adrs} [, S]		register is 0. Setting or clearing the bit after the test can be specified. {adrs} must be within -32 and $+31$ of the current location.
soc	SOC {adrs} [, S]	Test/Alter/Branch	Skips to {adrs} if Overflow is clear. Overflow is a
	SOC {adrs} [, C]		single bit in the processor which may have been set by certain arithmetic operations. Setting or clearing the bit after the test can be specified. $\{adrs\}$ must be within - 32 and + 31 of the cur- rent location.

Instruction	Form	Group	Description
SOS	SOS {adrs} [, S] SOS {adrs} [, C]	Test/Alter/Branch	Skips to {adrs} if the Overflow is set. Overflow is a single bit in the processor which may have been set by certain arithmetic operations. Setting or clearing the bit after the test can be specified. {adrs} must be within - 32 and + 31 of the current location.
SSC	SSC {adrs}	I/O	Skips to {adrs} if Status line is false (clear). The status line is the one associated with the peripheral on the current select code (pointed to by the Pa register). {adrs} must be within -32 and $+31$ of the current location.
SSS	SSS {adrs}	I/O	Skips to {adrs} if the Status line is true (set). The status line is the one associated with the peripheral on the current select code (pointed to by the Pa register). {adrs} must be within - 32 and + 31 of the current location.
STA	STA {loc} [, I]	Load/Store	Stores the contents of the A register into the specified location. Specifying register R4, R5, R6, or R7 causes an output bus cycle to the interface addressed by the Pa register. Indirect addressing may be specified. {loc} must be on base or current page.
STB	STB {loc} [, I]	Load/Store	Stores the contents of the B register into the specified location. Specifying register R4, R5, R6, or R7 causes an output bus cycle to the interface addressed by the Pa register. Indirect addressing may be specified. {loc} must be on base or current page.
SZA	SZA {adrs}	Test/Branch	Skips to {adrs} if register A is 0. {adrs} must be within -32 and $+31$ of the current location.
SZB	SZB {adrs}	Test/Branch	Skips to {adrs} if register B is 0. {adrs} must be within -32 and $+31$ of the current location.
TCA	TCA	Integer Math	Performs a two's complement of the A register (one's complement, incremented by 1). If a carry occurs, Extend is set, otherwise Extend is un- changed. If an overflow occurs, Overflow is set, otherwise Overflow is unchanged. A carry is from bit 15; an overflow occurs when complementing - 32 768. Extend and Overflow are bits in the processor.
TCB	тсв	Integer Math	Performs a two's complement of the B register (one's complement, incremented by 1). If a carry occurs, Extend is set, otherwise Extend is un- changed. If an overflow occurs, Overflow is set, otherwise Overflow is unchanged. A carry is from bit 15; an overflow occurs when complementing - 32 768. Extend and Overflow are bits in the processor.

Instruction	Form	Group	Description
WBC	WBC {reg} [, D] WBC {reg} , I	Stack	Withdraws a byte from the stack pointed at by the Cb and C registers and places it into the lower byte (right half) of the specified register. Specifying reg- ister R4, R5, R6, or R7 causes an output I/O bus cycle to the interface addressed by the Pa register. Incrementing or decrementing the C register can be specified. Decrementing is the default. {reg} must be in the range of 0 through 31. The incrementing or decrementing routine takes place after the withdrawal.
WBD	WBD {reg} [, D] WBD {reg} , I	Stack	Withdraws a byte from the stack pointed at by the Db and D registers and places it into the lower byte (right half) of the specified register. Specifying reg- ister R4, R5, R6, or R7 causes an output I/O bus cycle to the interface addressed by the Pa register. Incrementing or decrementing the D register can be specified. Decrementing is the default. {reg} must be in the range of 0 through 31. The incrementing or decrementing routine takes place after the withdrawal.
wwc	₩₩С {reg} [, D] ₩₩С {reg} ,I	Stack	Withdraws a full word from the stack pointed at by the C register and places it into the specified regis- ter. Specifying register R4, R5, R6, or R7 causes an output I/O bus cycle to the interface addressed by the Pa register. Incrementing or decrementing of the C register can be specified. Decrementing is the default. {reg} must be in the range of 0 through 31. The incrementing or decrementing action takes place after the withdrawal.
WWD	₩₩D {reg} [, D] ₩₩D {reg} , I	Stack	Withdraws a full word from the stack pointed at by the D register and places it into the specified regis- ter. Specifying register R4, R5, R6, or R7 causes an output I/O bus cycle to the interface addressed by the Pa register. Incrementing or decrementing of the D register can be specified. Decrementing is the default. {reg} must be in the range of 0 through 31. The incrementing or decrementing action takes place after the withdrawal.
XFR	XFR {n}	Load/Store	Transfers the specified number of words, from the location starting at the address pointed at by the A register to the location starting at the address pointed at by the B register. A maximum of 16 words can be transferred.

Instruction							Bi	t Pat	tern							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NOP LD ^A /B CP ^A /B AD ^A /B ST ^A /B JSM AND ^I /D SZ IOR JMP	0 D/1 D/1 D/1 D/1 D/1 D/1 D/1 D/1	0 0 0 0 1 1 1 1 1	0 0 1 1 0 0 0 1 1	0 0 1 0 1 1 0 1 '/c 0 0	0 ^//B ^//B ^//B ^//B ^//B 0 0 1 0 1 0	0	0	0	0	0 Addr	0 ess Fie	0 Id	0	0	0	0
EXE SD ⁰ /i ^E /oIR DMA DDR ^D /cB ^U /L ^P /w ^W /B ^C /D MWA CM ^Y /x FXA XFR CLR NRM CDC FMP FDV MRX DRS MRY MLY MPY				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ \sqrt[9]{x} \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{array}$	0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0	0 1 0 1 ^{U/L} P/w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B ^O / ₁ ^E / _D 0 1 ^D / _C C/ _D 0 0 0 0 0 0 0 0 0 0 0 0 0	egister 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Addre 0 1	ss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1
$S^{F_{/b}S^{\prime}/c}$ $^{R_{/s}Z_{/1}A_{/B}}$ $^{S_{/R}}L^{A_{/B}}$ $SS^{S_{/c}}$ $S^{A_{/B}B^{\prime}/M}$ $S^{O/E^{C_{/S}}}$ RET $TC^{A_{/B}}$ $CM^{A_{/B}}R$ $A^{A_{/B}}R$ $R^{A_{/B}}R$ $R^{A_{/B}}L$	0 0 0 0 1 1 1 1 1 1 1 1 1 1 1		$ \begin{array}{c} 1 \\ $	$ \begin{array}{c} 1 \\ $	0 ^A / _B ^A / _B	$ \begin{array}{c} 1\\1\\1\\1\\1\\1\\1\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s/c s/r s/r s/c s/r s/c p/m c/s 0 0 1 1 1 1 1	10 H/FT 11 H/FT 10000 R/s 11	F/D Z/1 C/S 0 1 C/S C/S 0 0 1 1 0 1 0 1 0 1	ift ift 1 1 0 0 0 0 0	bit 5 is 0 n=bits 5 = 1 n=two 0 0 0 0 0 0 0 0 0 0 0 0 0	Skip D, then 0-4 , then s s comp olement 0 0 1 in t cor	Field skip to(lement ed skip 0 0 1 Shift source binary=	P+n), of bits <u>field</u> 0 1 Field n=1-1 a(n-1) mited sh	0-4 0 1 6

Approximate Numerical List Bit Patterns

Instruction							Bi	t Pat	tern					_			Timin	g
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Direct	Indirect
AAR n ABR n ADA ADB AND CBL CBU CDC CLA CLB CLR n CMA CMB CMX CMY CPA CPB DBL DBU DDR DIR DIR DMA DRS DSZ	15 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	14 1 0 1	13 1 1 1 1 1 1 1 1 1 1 1 1 1	12 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	111 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 B/C B/C 0 0 0 0 0 0 0 0 0 0 0 0 0	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0	5 0 0 add add 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 0 ress ress 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	$3 \\ \leftarrow \\ \leftarrow \\ 1 \\ 1 \\ 0 \\ 1 \\ \leftarrow \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0$	2 n- n- 0 0 0 0 1 1 n- 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} \text{Direct} \\ \begin{array}{c} n+9 \\ n+9 \\ 13 \\ 13 \\ 12 \\ 12 \\ 12 \\ 11 \\ 25 \\ 25 \\ 6n+16 \\ 9 \\ 9 \\ 59 \\ 23 \\ 16 \\ 16 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$	Indirect 19 19 19 22 22 22 22
USZ EIR EXE FDV FMP FXA IOR ISZ JMP JSM LDA LDB MLY MPY MRX	D×1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1	$ \begin{array}{c} 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 0\\ 1\\ 0\\ 0\\ 0\\ 1\\ 1\\ 1 \end{array} $	1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	B×C 0 0 0 0 B×C B×C B×C B×C B×C B×C 0 0 0 0	$ \begin{array}{c} \leftarrow \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ \leftarrow \\ \leftarrow \\ \leftarrow \\ 1 \\ 1 \\ 1 \\ 1$	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} $	0 0 0 1 1 0	0 0 0 0	add 0 0 1 0 add add add add add 1 0 0	ress 1 ← 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 register 0 0 0 0	0 0 0 0 0	$ \begin{array}{c} \rightarrow \\ 0 \\ \rightarrow \\ 1 \\ 0 \\ 0 \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ 1 \\ 1 \\ 0 \end{array} $	19 12 8 37+13B 42+13B 40 13 19 8 17 13 13 32 65+2T 62+4B	14 19 25 14 23 19 19
MRY MWA NOP NRM PBC r PBD r PWC r PWC r	0 0 0 0 0 0 0	1 1 0 1 1 1 1 1	1 1 0 1 1 1 1 1	1 0 1 1 1 1	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{array} $	0 0 0 0 0 0 0 0	1 1 0 1 0 0 0 0	1 0 1 1 1 1	0 0 1 D 1 D 1 D	1 0 1 1 1 1 1	0 0 0 1 1 1 1	0 0 0 0 0 0 0	0 0 0 0 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 r r r r r	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	33+4B 28 11 23+Z 23 23 23 23 23 23	

Alphabetic List Bit Patterns and Timings

						Bi	it Pa	ttern							Timing	
15	14	13	12	11	10	9	8	7	6	5	4	3	2 1	0	Direct	Indirect
$ \begin{array}{c} 15\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	14 1 <	13 1 <	12 1	$\begin{array}{c} 111 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$	$ \begin{array}{c} 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 0\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	$\begin{array}{c} 9 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 8\\ 1\\ 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 1\\ 1\\ 1\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	7 1 1 1 1 1 1 1 1 1 1 1 0 1 </td <td>6 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td></td> <td>4 0 0 0 0 0 0 0 0 0 0 0</td> <td>3 ↓</td> <td>2 1 15 - n - 1 15 - n - 1 15 - n - 1 15 - n - 1 n</td> <td></td> <td>$\begin{array}{c} \textbf{Direct} \\ \textbf{25-n} \\ \textbf{n+9} \\ \textbf{25-n} \\ \textbf{n+9} \\ \textbf{16} \\ \textbf{14} \\ \textbf{14} \\ \textbf{14} \\ \textbf{14} \\ \textbf{14} \\ \textbf{14} \\ \textbf{14} \\ \textbf{14} \\ \textbf{n+9} \\ \textbf{n+9} \\ \textbf{14} \\ 1$</td> <td>Indirect 19 19</td>	6 1 1 1 1 1 1 1 1 1 1 1 1 1		4 0 0 0 0 0 0 0 0 0 0 0	3 ↓	2 1 15 - n - 1 15 - n - 1 15 - n - 1 15 - n - 1 n		$\begin{array}{c} \textbf{Direct} \\ \textbf{25-n} \\ \textbf{n+9} \\ \textbf{25-n} \\ \textbf{n+9} \\ \textbf{16} \\ \textbf{14} \\ \textbf{14} \\ \textbf{14} \\ \textbf{14} \\ \textbf{14} \\ \textbf{14} \\ \textbf{14} \\ \textbf{14} \\ \textbf{n+9} \\ \textbf{n+9} \\ \textbf{14} \\ 1$	Indirect 19 19
D/I 0 1 1 0 0 0 0 0	0 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 0 1 1 1 1 0 0	B · c 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	← 0 0 0 0 0 0 0 0 0 0	1 1 0 1 1 1 1	0 0 0 1 D 1 D 1 D	0 0 0 1 1 1 1	addi ← 1 1 1 1 1 1	0 0 1 1 1 1	sk sk 0 0 0 1 0 1	$ \begin{array}{c} ip \\ ip \\ \hline 0 & 0 \\ \hline 0 & 0 \\ \leftarrow & r \\ \leftarrow & r \\ \leftarrow & r \\ \leftarrow & r \\ \leftarrow & r \end{array} $	$ \begin{array}{c} \rightarrow \\ \rightarrow \\ \hline 0 \\ 0 \\ \hline \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array} $	13 14 14 9 23 23 23 23 23	19
	$\begin{array}{c} 15\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	15 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 <t< td=""><td>15 14 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1</td><td>15 14 13 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1</td><td>15 14 13 12 11 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>15 14 13 12 11 10 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<</td><td>15 14 13 12 11 10 9 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1<</td><td>15 14 13 12 11 10 9 8 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<</td><td>15 14 13 12 11 10 9 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<</td><td>15 14 13 12 11 10 9 8 7 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<</td><td>15 14 13 12 11 10 9 8 7 6 5 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 + 0 1 0 0 1 + 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1<</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>15 14 13 12 11 10 9 8 7 6 5 4 3 1 1 1 1 0 0 0 1 1 1 0 0 + 1 1 1 1 0 0 0 1 1 1 0 0 + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<></td></td></t<>	15 14 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1	15 14 13 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1	15 14 13 12 11 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>15 14 13 12 11 10 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<</td> <td>15 14 13 12 11 10 9 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1<</td> <td>15 14 13 12 11 10 9 8 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<</td> <td>15 14 13 12 11 10 9 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<</td> <td>15 14 13 12 11 10 9 8 7 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<</td> <td>15 14 13 12 11 10 9 8 7 6 5 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 + 0 1 0 0 1 + 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1<</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>15 14 13 12 11 10 9 8 7 6 5 4 3 1 1 1 1 0 0 0 1 1 1 0 0 + 1 1 1 1 0 0 0 1 1 1 0 0 + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<></td>	15 14 13 12 11 10 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	15 14 13 12 11 10 9 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1<	15 14 13 12 11 10 9 8 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	15 14 13 12 11 10 9 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	15 14 13 12 11 10 9 8 7 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	15 14 13 12 11 10 9 8 7 6 5 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 + 0 1 0 0 1 + 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 14 13 12 11 10 9 8 7 6 5 4 3 1 1 1 1 0 0 0 1 1 1 0 0 + 1 1 1 1 0 0 0 1 1 1 0 0 + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Bit Patterns and Timings

Notes on timings:

All timings are in clock cycles. One clock cycle = 175 nanoseconds. (The clock rate is 5.7 megahertz.)

The symbols used to represent timing information are as follows:

- n number of bit positions to be shifted or rotated.
- N the current value in bits 0-3 of the instruction word.
- B the current value in bits 0-3 of the instruction word.
- T the total number of $0 \rightarrow 1$ and $1 \rightarrow 0$ transitions in the A register using an imaginary 0 to the right of bit 0.
- Z the number of leading zeroes in the mantissa of Ar2. If Z = 12, then the total timing is 69 clock cycles.

Other factors that affect timing are as follows:

- Up to 4.3% of the total processor execution time is dedicated to dynamic memory refresh.
- The total execution time dedicated to CRT refresh is -

Minimum	Typical	Maximum
6 clock cycles every 1/60 sec. (GRAPHICS mode)	5%	30% (Full screen of alternating blinking, underlined or inverse-video characters)

- Interrupt response depends upon certain hardware and software considerations. The processor must be enabled with an EIR instruction. The operating system is allowed to disable interrupts for up to 100 μ s during various operations. A fast handshake transfer locks out interrupts until the transfer is complete. The processor must complete the currently executing instruction before acknowledging an interrupt.
- Add two clock cycles to the instruction execution time if an interrupt is pending. Software overhead involved in getting to a user interrupt service routine consitutes a delay of approximately 50 μs to get to the service routine and 50 μs to return from the service routine. These delays can be lengthened by the effects of DMA, CRT refresh and memory refresh.

• The processor locks out the initiation of a DMA transfer for a minimum of two clock cycles and a maximum of 64 clock cycles. The times involved for DMA transfers are –

DMA read = 3 + (10n + d) + lockout timeDMA write = 3 + (9n + d) + lockout time

where n is the number of words transferred and d is the dual-port conflict time (0 = no conflict...5 = continuous conflict). Since DMA transfers take priority over instruction execution, these transfers can take up to 100% of the processor time, depending on the data transfer rate of the peripheral device. The worst case involves data transfers to and from a high-speed, hard disc.

• Due to bus conflicts resulting from two processors requesting one bus, processor interference can affect timing. If a background program is executed entirely from the ICOM region, processor interference does not come into play. This is the typical case. The worst case involves executing a BASIC program simultaneously with an ISR. In this case, program execution time can be as much as doubled.

Appendix C Pseudo-Instructions

The following table lists the available assembler pseudo-instructions with a short description of each.

Instruction	Form	Description
ANY	ANY	Specifies a common or subroutine declaration to be any type
BSS	BSS {expression}	Reserves a block of memory
сом	C0M	Preface for assembly language common declarations
DAT	<pre>DAT {expression}[,{expression}[,]]</pre>	Defines data generators
END	END {name}	Designates the end of a module
ENT	ENT {symbol}[, {symbol}[,]]	Identifies entry points in the module
EQU	EQU {expression}	Defines a symbol
EXT	EXT {symbol}[, {symbol}[,]]	Identifies external entry points
FIL	FIL	Specifies a subroutine declaration to be a file number
HED	HED {comment}	Source listing control for top-of-page with change of heading
IFA IFB IFC IFD IFE IFF IFG IFH IFP	IFA IFB IFC IFD IFE IFF IFG IFH IFP {numeric expression}	Beginning of conditional assembly
INT	INT [(*)]	Specifies a common or subroutine declaration to be an integer
IOF	IOF	Turns off automatic indirection by the assembler
ION	ION	Turns on automatic indirection by the assembler
LIT	LIT {expression}	Reserve memory for literals and links
LST	LST	Source listing control for enabling the listing

Instruction	Form	Description
NAM	NAM {name}	Designates the beginning of a module
REL	REL [(*)]	Specifies a common or subroutine declaration to be full-precision
REP	REP {expression}	Repeats instructions
SET	SET {expression}	Defines a symbol
SHO	SHO [(*)]	Specifies a common or subroutine declaration to be short-precision
SKP	SKP	Source listing control for top-of-page
SPC	SPC {integer expression}	Source listing control for printing blank lines
STR	STR [(*)]	Specifies a common or subroutine declaration to be a string
SUB	SUB	Preface for a subroutine entry point Contains actual number of parameters passed by ICALL statement after assembly.
UNL	UNL	Source listing control for disabling the listing
XIF	XIF	End of a conditional-assembly block

Appendix D Assembly Language BASIC Language Extensions Formal Syntax

The following is an alphabetical list of the BASIC Language extensions provided by the Assembly Language ROMs.

Assembled Location

{symbol} [, {BASIC numeric expression}]
{expression} [, {BASIC numeric expression}]

where:

{BASIC numeric expression} serves as a decimal offset from the given label or constant.

{symbol} is an assembly location. It may be either a label for a particular machine instruction (in which case the address of the associated instruction is used), or an assemblerdefined symbol (in which case the associated absolute address is used), or a symbol defined by an EQU instruction (in which case the associated value is used).

{expression} may be a numeric expression or a string expression. If numeric, a decimal calculation is performed and the result is interpreted as an octal value; if the result is not an octal representation or an integer, an error results. If a string expression is used, the string must be interpretable as either an octal integer constant or a known assembly symbol (see {symbol} above).

DECIMAL Function

DECIMAL ({BASIC numeric expression})

IADR Function

IADR ({assembled location})

IASSEMBLE

IASSEMBLE {module} [, {module} [, ...]][; {option} [, {option} [, ...]]] IASSEMBLE [ALL][; {option} [, {option}]]

where {module} is the name of an existing module in the source program.

{option} may be any of the following:

```
A
B
C
D
E
EJECT
F
G
H
LINES {numeric expression}
LIST
XREF
```

IBREAK

IBREAK [DATA] {address} [; {counter}][CALL {subprogram}] IBREAK [DATA] {address} [; {counter}][GOSUB {line identifier}] IBREAK [DATA] {address} [; {counter}][GOTO {line identifier}] IBREAK ALL [CALL {subprogram}] IBREAK ALL [GOSUB {line identifier}] IBREAK ALL [GOTO {line identifier}]

where:

{address} is an assembled location.
{subprogram} is the name of a BASIC subprogram.
{counter} is a numeric expression.
{line identifier} is a line in the BASIC program.

ICALL

 ${\tt ICALL \{routine\} [\ (\{argument\} [\ , \{argument\} [\ , ...]] \) \]}$

where {routine} is the label associated with a SUB pseudo-instruction sequence and {data item} takes on the same forms and attributes as parameters in BASIC's CALL statement.

ICHANGE

ICHANGE {assembled location} TO {octal expression}

ICOM

ICOM {integer constant}

IDELETE

IDELETE {module} [, {module} [,...]]
IDELETE [ALL]

where {module} is the name of an existing module in the ICOM region.

IDUMP

```
IDUMP \{location\} [ ; \{location\} [ ; ... ] ]
```

where {location} has the following syntax:

 $[\{mode selection\}] \{address\} [\top \ \{address\}]$

with {address} an assembled location and {mode selection} taking on any of the following forms —

- ASC for ASCII character representation
- BIN for binary representation
- DEC for decimal representation
- HEX for hexadecimal representation
- OCT for octal representation

ILOAD

ILOAD {file specifier}

where {file specifier} is of the same form as elsewhere in BASIC (see Mass Storage Techniques manual, or Operating and Programming manual).

IMEM Function

IMEM ({assembled location})

INORMAL

INORMAL [{address}]

where {address} is an assembled location.

IPAUSE OFF

IPAUSE OFF

IPAUSE ON

IPAUSE ON

ISOURCE

ISOURCE {source line}

where {source line} may take either of the following forms —

[{label} :] {action} [! {comment}] [{label} :] ! {comment}

and:

{label} is of the same form as elsewhere in BASIC; {action} is a machine instruction, pseudo-instruction, or data generator; {comment} is any combination of characters

ISTORE

ISTORE {module} [, {module} [,...]] ; {file specifier}
ISTORE [ALL]; {file specifier}

where:

{module} is the name of a module currently existing in the ICOM region.

{file specifier} is of the same form as elsewhere in BASIC (see the Mass Storage Techniques manual or the Operating and Programming manual).

LITERALS

= $\{expression\}$ [, $\{expression\}$ [, ...]]

{expression} may be absolute or relocatable

OCTAL Function

OCTAL ({numeric expression})

Appendix E

Predefined Assembler Symbols

The assembler has predefined a number of symbols and has reserved them as references to special locations in memory. Each of these locations has a special meaning and function. You may not redefine these symbols. They are —

Name	Description
Α	Arithmetic accumulator
Ar1	
Ar2	BCD arithmetic accumulators
В	Arithmetic accumulator
Base_page	Base page temporary area (9 words)
С	Stack pointer
СЪ	Block bit for byte pointer in C(most significant bit of address $13B$)
D	Stack pointer
Db	Block bit for byte pointer in D(second most significant bit of address 13B)
Dmac	DMA count register
Dmama	DMA memory address register
Dmapa	DMA peripheral register (lower 4 bits of address 13B)
End_isr_high	
End_isr_low	Reserved symbols for use with interrupt service routines
lsr_psw	
Oper_1	Arithmetic utility on around a dense registers
Oper_2	Animmetic utility operand address registers
Р	Program counter
Pa	Peripheral address register (lower 4 bits of address 11B)
R	Return stack pointer
R4	
R5	1/0 registers
R6	17 O Tegisters
R7)
Result	Arithmetic utility result address register
Se	Shift-extend register
Utlcount	
Utlend	Reserved symbols for writing utilities
Utltemps	
	l l

Each predefined symbol references a particular location in memory, except for the Utlend symbol, which refers to an execution address of a system routine. A graphical representation of these locations, plus others of interest, is presented on the next page.

addre	<u>ss*</u>		<u>a</u>	ddress*
0	CPU		А	0
: 37	registers		В	1
40	(reserved)	N	Р	2
min=41	(at least 1 word)		R	3
1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-starting address	R4	4
	user data	system needs	R5	5
max≔	(ICOM area)		R6	6
77756~		address	R7	10
77777	(reserved) (at least 1710 words)	dependent upon starting address	(reserved)	10
100000		and length	(reserved)	12
100000				13
•	(reserved)	\ Db	<u>≠</u> Dmama	14
177557		, ,	Dmac	15
177560	Poturn stock	l l	С	16
177627	neturn stack		D	17
177630		1		20
:	(reserved)	\ \	Ar2	21
177644 177645		1		22
÷	Base_page			23
177655		\ \	Se	24
177656	Oper_1	, ,		25
177657	Oper_2		(reserved)	
177660	Result			
177661 177665	Utitemps	Ň		37
177666	Uticount			
177767	(reserved)			
:	Ar1			
177773				
177 774	(reserved)			
177777	(,			

*in octal representation

	1										
Utility Name	LDA with:	LDB with:	Exits	Other	Description	``Minimum R-stack Entries``	Utility Name	LDA with:	LDB with:	Exits	
Busy	address of bit pattern	address of parameter	RET 1		Retrieves busy bits for a BASIC variable	2	Mm_write_start	address of mass storage	address of storage area	RET 1 — memory overflow RET 2 — normal	Mas Stor
Error_exit	error number	NZA	None — returns to BASIC		Aborts execution of ICALL statement, setting an error number	5		descriptor		(A contains mass storage transfer ID)	inf
Get_bytes	address of storage area	address of parameter	RET 1	Storage area consists of: lst word — starting byte 2nd word — number of bytes to be transferred 3rd word on — sufficient space for string	Accesses substrings (or parts of arguments)	2	Mm_write_test	mass storage transfer ID	N∕A	RET 1 — transfer incomplete RET 2 — transfer complete (A contains 0, or error number encountered during transfer)	Mas: Mn
Get_elem_bytes	address of storage area	address of array info	RET 1	Array info obtained by Get_info utility. Relative element number must be stored in array pointer (word 16) of array info. Storage area same as in Get_bytes.	Same as "Get_bytes" used for accessing elements of string arrays	2	Printer_select	select·code	printer width	RET 1 (A contains previous printer select code; B contains previous printer width)	
Get_file_info	address of storage area	file number	RET 2 — normal RET 1 — file unassigned	Storage area contents after return: word 0 – lower 16 bits of file address word 1 – number of defined records word 2 – current record number	Accesses a file-pointer		Print_no_lf	address of string	N∕A	RET 1 — memory overflow RET 2 — (stop) pressed RET 3 — normal	Strir
		word 3 – current word in current record word 4 – size of defined record word 5 – mass storage unit specifier word 6 – buffer address word 7 – check read (0=off, 1=on)		2	Print_string	address of string	N∕A	RET 1 — memory overflow RET 2 — ^{STOP} pressed RET 3 — normal	Strir		
Cathint		11 6		word 8 - high 7 bits of file address word 9 - (reserved by system)			Put_bytes	address of storage area	address of parameter	RET 1	Stor
Get_into	address of storage area	address of array info	KET I	Storage area must be at least: 3 words — simple variables 18 words — arrays (arrays) (41)	Returns the characteristics of a variable passed as a parameter or existing in common	3	Put_elem_bytes	address of storage area	address of array info	RET 1	Sam
Get element	address of	address of	RFT 1	bytes in your machine's memory	Same as "Get ualue", used for elements in		Put_element	address of storage area	address of array info	RET 1	Sam
	storage area	parameter		utility. Relative element_number must be stored in array pointer (word 16) of array info.	an array	2	Put_file_info	address of storage area	file number	RET 1 — file unassigned RET 2 — normal	Sam
				Storage area must be sufficient size to hold value.			Put_value	address of storage area	address of parameter	RET 1	
Get_value	address of storage area	address of parameter	RET 1	Storage area must be sufficient size to hold value	Returns the value of a BASIC variable	2	Rel_math	number of	execution	RET 1	Add
Int_to_rel	N⁄A	N⁄A	RET 1	Load address of integer into Oper_1 and address of storage area into Result. Storage area must be at least 4 words	Data type conversion from integer to full-precision	2		operands	address	number)	into area is fo
lsr_access	address of ISR	select code in bits 0-3; access code in	RET 1 — linkage not established for reason found in register A:	select code is 0-7 for low-level or 8-15 for high-level; resource code is: 0 — no resources 1 — asynchronous access	Establishes linkages for interrupts		Rel_to_int	N∕A	N∕A	RET 1 Overflow bit may be set	Add conv in O area
		bits 4-5: trial counter bits 8-14	 1 = resources unobtainable 2 = select code linked to another ISR RET 2 — normal 	 2 — asynchronous access with DMA 3 — synchronous access trial counter is number of attempts before aborting (RET 1, with A set to - 1) 		5+u*	Rel_to_sho	N∕A	N∕A	RET 1 Overflow bit may be set (A contains error number)	Add conv Ope area shou
Mm_read_start	address of mass storage	N⁄A	RET 1 — memory overflow RET 2 — normal	Mass storage descriptor is 3 words containing: word 1 — mass storage unit specifier	Prepares to read a physical record from mass storage	5±*	Sho_to_rel	N∕A	NZA	RET 1	Sam
	descriptor		(A contains mass storage transfer ID)	word 2 — least significant 16 bits of record number word 3 — most significant 7 bits of record number		"u+c	To_system	N/A	N/A	RET 1	Use to p
Mm_read_xfer	mass storage transfer ID	address of storage area	RET 1 — transfer incomplete RET 2 — transfer complete (A contains 0, or error number encountered during transfer)	Storage area must be at least 128 words Mass storage transfer ID would be returned from Mm_read_start utility. Storage area receives transferred information	Reads a physical record from mass storage	5÷u*	(Be sure to save th	he contents of v	Laluable processo	l or registers before calling a utility.	L

Utility Name	LDA with:	LDB with:	Exits	Other	Description	''Minimum R-stack Entries''
Mm_write_start	address of mass storage descriptor	address of storage area	RET 1 — memory overflow RET 2 — normal (A contains mass storage transfer ID)	Mass storage descriptor same as in Mm_read_start. Storage area must be at least 128 words and contain information to be transferred	Writes a physical record to mass storage	5+u*
Mm_write_test	mass storage transfer ID	N∕A	RET 1 — transfer incomplete RET 2 — transfer complete (A contains 0, or error number encountered during transfer)	Mass storage transfer ID is returned from Mm_write_start utility.	Verifies a physical record was written to mass storage	5+u*
Printer_select	select·code	printer width	RET 1 (A contains previous printer select code; B contains previous printer width)		Changes or interrogates select-code for standard printer	1
Print_no_lf	address of string	N∕A	RET 1 — memory overflow RET 2 — (\$100) pressed RET 3 — normal	String must be in same for as standard string.	Gives the operating system a chance to complete I/O operations	5+u*
Print_string	address of string	N/A	RET 1 — memory overflow RET 2 — ^{STOP} pressed RET 3 — normal	String must be in same form as standard string	Outputs a string to the standard printer	5+u*
Put_bytes	address of storage area	address of parameter	RET 1	Storage area same as Get_bytes	Replaces substrings (or parts of arguments)	2
Put_elem_bytes	address of storage area	address of array info	RET 1	Same as Get_elem_bytes	Same as "Put_bytes", used for accessing elements of string arrays	2
Put_element	address of storage area	address of array info	RET 1	Same as Get_element	Same as ''Put_value'', used for elements in an array	2
Put_file_info	address of storage area	file number	RET 1 — file unassigned RET 2 — normal	Same as Get_file_info	Manipulates a file-pointer	2
Put_value	address of storage area	address of parameter	RET 1		Changes the value of a BASIC variable	2
Rel_math	number of operands	execution address	RET 1 (A contains 0, or an error number)	Address of first operand into Oper_1 and address of second operand into Oper_2. Address of result area into Result. Execution address is for the desired routine.	Provides access to all the arithmetic routines	5+u*
Rel_to_int	N∕A	N∕A	RET 1 Overflow bit may be set	Address of the value to be converted should be stored in Oper_1, address of storage area of integer into Result	Data type conversion from full-precision to integer	2
Rel_to_sho	N/A	N/A	RET 1 Overflow bit may be set (A contains error number)	Address of the value to be converted should be stored in Oper_1; address of storage area for converted number should be stored in Result	Data type conversion from full-precision to short	3
Sho_to_rel	N/A	N/A	RET 1	Same as Rel_to_sho	Data type conversion from short-precision to full	2
To_system	N⁄A	N∕A	RET 1	Used within a loop, executed as many times as lines to print. Expedites printing process.	Outputs string to standard printer without carriage- return linefeed sequence.	5+u*

(Be sure to save the contents of valuable processor registers before calling a utility.

 $\star u$ = the number of levels of JSMs called by the user immediately after the utility is invoked.

F-1,2

Appendix **F** Utilities

Appendix **G** Writing Utilities

A utility is a "special" assembly language subroutine. What makes it special is a set of instructions which keeps it from being displayed when a program is being stepped through using the step key. By creating a utility, you can make your STEP actions in debugging simpler. If you already know what a section of code does, and don't want to have to step through each instruction in that section each time it is encountered, you can make it into a utility. Then, whenever it is encountered, the section is stepped through as if it were a single statement. The stepping of programs is explained in Chapter 8, Debugging.

The following must be done to make a section of code into a utility —

1. The entry point for the utility must consist of the instruction —

ISZ Utlcount

2. Each exit point from the utility must consist of the following instructions —

DSZ Utlcount RET n (n may be any number, -32 through +31, depending upon the desired returning point) JSM Utlend

For example, here is a simple utility ----

10	ISOURCE Temp_result:	BSS 1	
20 !	_		
30 !		=	
40	ISOURCE Users:	ISZ Utlcount	! Utility entry point.
50	ISOURCE	LDA Temp result	
60	ISOURCE	SAL 1	! Example code segment.
70	ISOURCE	STA Temp_result	1 -
80	ISOURCE	DSZ Utleount	
90	ISOURCE	RET 1	! Utility exit instructions.
100	ISOURCE	JSM Utlend	
110 !		=	
120 !		-	

The locations Utltemps, Utltemps+1, Utltemps+2, Utltemps+3 and Utltemps+4 are available to you for temporary storage. The absolute addresses of these locations are 177661 through 177665. The locations can be used at any point in your assembly language routine but are most convenient for use within utilities.

System utilities also use the Utltemps locations. If you are calling system utilities from your own utilities, the Utltemps locations should be saved before the system utility call or avoided altogether.

The Utltemps locations as well as the locations Oper_1 and Oper_2 cannot be stepped through for debugging purposes.

It is not required that a utility actually be a subroutine. It may also be in-line code by replacing the RET with JMP \star +2.

Utilities, and calls to utilities, are not allowed in interrupt service routines (ISRs).

Appendix **H**

I/O Sample Programs

Handshake String Output

! THIS PROGRAM OUTPUTS A STRING USING HANDSHAKE TO A GPIO-LIKE INTERFACE. 10 20 30 ! INTERFACE CARDS APPLICABLE ARE: 40 i i 50 98032 16 BIT PARALLEL 60 ! 98035 REAL TIME CLOCK ļ 70 98036 SERIAL INTERFACE 80 90 IDELETE ALL 100 ICOM 1000 110 DIM Input \$[160] ! ALLOW FOR 160 CHARACTER STRING 120 INTEGER Select_code ! BASIC VARIABLE TO HOLD THE SELECT CODE 130 IASSEMBLE 140 INPUT "SELECT CODE TO WRITE TO?", Select_code 150 ! 160 Input: LINPUT "STRING TO WRITE?", Input\$! ASK USER FOR STRING TO OUTPUT 170 ICALL Output gpio hs(Select code, Input\$) 180 GOTO Input 190 ! NAM Output_gpio_hs 200 ISOURCE EXT Get_value,Error_exit 210 ISOURCE ISOURCE EXT Get_value, Error_extv ISOURCE Select_code:BSS 1 ! RESERVED TO HOLD SELECT CODE ISOURCE String: BSS 81 ! RESERVED FOR 160 CHAR STRING ISOURCE String: SOULT: FOUNTES FOR CR/LF 220 230 ISOURCE Cr: 240 EQU 13 ! EQUATES FOR CR/LF 250 EQU 10 ISOURCE Lf: 260 ISOURCE ! 270 ISOURCE ! ROUTINE TO OUTPUT A STRING FOLLOWED BY CR/LF TO A GPIO-LIKE 280 ISOURCE ! INTERFACE USING HANDSHAKE. ISOURCE ! INTERFACE USING HANDSHARE. ISOURCE ! ISOURCE ! ENTRY POINT: OUTPUT_gpio_hs ISOURCE ! PARAMETERS: 1) INTEGER CONTAINING SELECT CODE (1 TO 14) ISOURCE ! 2) STRING TO BE OUTPUT ISOURCE ! 2) STRING TO BE OUTPUT ISOURCE ! ISOURCE ! 164 CARD OR PERIPHERAL DOWN ISOURCE ! 290 300 310 320 330 340 350 360 370 ISOURCE ! 380 ISOURCE SUB ISOURCE Parm_sc: ISOURCE Parm_sc: INT ISOURCE Parm_str: STR 390 400 410 ISOURCE Output_gpio_hs: LDA =Select_code ! GET THE SELECT CODE PARM ISOURCE 420 LDB =Parm sc JSM Get value 430 ISOURCE LDA Select_code 440 ISOURCE ! COPY TO PA 450 ISOURCE STA Pa 460 ISOURCE ADA =-1 ! CHECK FOR VALID RANGE (1-14) 470 ISOURCE SAM Sc_error ADA =-15+1 ISOURCE 480 ISOURCE SAM Sc_ok ISOURCE Sc_error: LDA =19 498 500 I GIVE ERROR 19 IF SELECT CODE

510 520	ISOURCE !	JSM Error_exit	! IS OUT OF RANGE
530	ISOURCE Sc ok:	LDA =String	! GET THE STRING PARAMETER
540	ISOURCE	LDB =Parm str	
550	ISOURCE	JSM Get value	
560	ISOURCE	LDA =Strina+1	! SET UP C TO GET BYTES FROM
570	ISOURCE	SAL 1	! THE STRING
580	ISOURCE	STA C	
590	ISOURCE	CBL	
600	ISOURCE	LDA String	! IF THE STRING LENGTH IS ZERO
610	ISOURCE	SZA Done	! THEN THERE IS NOTHING TO DO.
620	ISOURCE Write loop:	WBC A,I	! GET THE NEXT CHAR FOR OUTPUT
630	ISOURCE	JSM Write byte	! OUTPUT THE CHARACTER TO CARD
640	ISOURCE	DSZ String	! SEE IF DONE
650	ISOURCE	JMP Write_loop	! IF NOT, REPEAT
660	ISOURCE Done:	LDA =Cr	! NOW OUTPUT CR/LF
670	ISOURCE	JSM Write byte	
680	ISOURCE	LDA =Lf	
690	ISOURCE	JSM Write_byte	
700	ISOURCE	RET 1	! RETURN TO BASIC
710	ISOURCE !		
720	ISOURCE ! SUBROUTINE	E TO OUTPUT ONE CHARP	ACTER TO GPIO-LIKE CARD.
730	ISOURCE ! CHARACT	FER IS PASSED IN A	
740	ISOURCE !		
750	ISOURCE Write_byte:	SSC Card_down	! SKIP IF CARD IS DOWN
769	ISOURCE	SFC Write_byte	! ELSE WAIT FOR CARD
779	ISOURCE	STA R4	! OUTPUT DATA TO CARD
780	ISOURCE	STA R7	! TRIGGER HANDSHAKE
790	ISOURCE	RET 1	
899	ISOURCE !		
810	ISOURCE Card_down:	LDA =164	! RETURN ERROR 164 TO BASIC
820	ISOURCE	JSM Error_exit	
830	ISOURCE !		
840	ISOURCE	END Output_gpio_hs	

Handshake String Input

! THIS PROGRAM INPUTS A STRING USING HANDSHAKE FROM A GPIO-LIKE DEVICE. 10 28 30 ! INTERFACE CARDS APPLICABLE ARE: 98032 16 BIT PARALLEL 98033 BCD 40 1 ļ 50 98035 REAL TIME CLOCK 69 1 98036 SERIAL INTERFACE 70 ! 80 i 90 IDELETE ALL 100 ICOM 200 110 DIM Input\$[160] ! ALLOW FOR 160 CHARACTER STRING 120 INTEGER Select_code ! BASIC VARIABLE TO HOLD THE SELECT CODE 130 IASSEMBLE 140 INPUT "SELECT CODE TO READ FROM?", Select code 150 160 ICALL Read_gpio(Select_code, Input\$) 170 PRINT "STRING READ="; Input\$ 180 END 190 ! ISOURCE NAM Gpio_input TSOURCE EXT Get_value,Put_value,Error_exit PESERVEN TO } 200 210 220

 220
 ISOURCE Series Code.b35 1
 IRESERVED FOR 160 CHAR STRING

 230
 ISOURCE String: BSS 81
 IRESERVED FOR 160 CHAR STRING

 240
 ISOURCE Cr:
 EQU 13
 IEQUATES FOR CR/LF

 250
 ISOURCE Lf:
 EQU 10

 260
 ISOURCE ! ROUTINE TO INPUT A STRING FOLLOWED BY LF FROM A GPIO-LIKE

 280
 ISOURCE ! ROUTINE TO INPUT A STRING FOLLOWED BY LF FROM A GPIO-LIKE

 280
 ISOURCE ! A MAX OF 160 CHARACTERS WILL BE READ. CR'S ARE IGNORED.

 300
 ISOURCE ! A MAX OF 160 CHARACTERS WILL BE READ. CR'S ARE IGNORED.

 300
 ISOURCE ! ENTRY POINT: READ_gpio

 320
 ISOURCE ! ENTRY POINT: READ_gpio

 320
 ISOURCE ! ENTRY POINT: READ_gpio

 320
 ISOURCE ! ENTRY POINT: READ_gpio

 320
 ISOURCE ! ENTRY POINT: READ_gpio

 320
 ISOURCE ! ENTRY POINT: READ_gpio

 320
 ISOURCE ! ENTRY POINT: READ_gpio

 320
 ISOURCE ! ONE ENTRY POINT: READ_gpio

 320
 ISOURCE ! ENTRY POINT: READ_gpio

 320
 ISOURCE ! POSSIBLE ERRORS: 19 SELECT CODE OUT OF RANGE

 370
 ISOURCE ! ISOURCE ! IGA CARD OR PERIPHERAL DOWN

 380
 ISOURCE ! SUB

 400
 ISOURCE P 230 ISOURCE String: BSS 81 ! RESERVED FOR 160 CHAR STRING ISOURCE ISOURCE 450 LDA Select code ! COPY TO PA 460 ISOURCE STA Pa 470 ISOURCE ADA =-1 ! CHECK FOR VALID RANGE (1-14) 480 SAM Sc_error ISOURCE 85 490 500 510 720 ISOURCE ADA =-15+1 SAM Sc_ok ! GIVE ERROR 19 IF SELECT CODE ISOURCE Sc_error: LIA =19 JSM Error_exit ! IS OUT OF RANGE ISOURCE 530 ISOURCE !
 550
 ISOURCE :

 540
 ISOURCE Sc_ok:
 LDA =0

 550
 ISOURCE
 STA Str

 560
 ISOURCE
 LDA =St

 570
 ISOURCE
 SAL 1
 ! INITIALIZE THE STRING LENGTH STA String LDA =String ! SET UP C TO PUT BYTES INTO ! THE STRING

580	ISOURCE	ADA =1	
590	ISOURCE	STA C	
600	ISOURCE	CBL	
610	ISOURCE	SSC Card_down	! SKIP IF CARD/PERIPH ARE DOWN
620	ISOURCE	SFC *-1	! ELSE WAIT FOR CARD
630	ISOURCE	LDA R4	! SIGNAL THIS IS AN INPUT
640	ISOURCE Read_loop:	STA R7	! TRIGGER THE INPUT HANDSHAKE
650	ISOURCE	SFC *	! WAIT FOR CARD TO COMPLETE
660	ISOURCE	LDA R4	! THEN GET THE BYTE
670	ISOURCE	CPA =Lf	! IF LINE FEED
680	ISOURCE	JMP Done	! THEN WE ARE DONE
690	ISOURCE	CPA =Cr	! IF CARRIAGE RETURN
799	ISOURCE	JMP Read_loop	! THEN IGNORE IT
710	ISOURCE	PBC A,I	! ELSE PUT CHARACTER IN STRING
720	ISOURCE	LDA String	! AND BUMP STRING LENGTH
730	ISOURCE	ADA =1	
740	ISOURCE	STA String	
750	ISOURCE	CPA =160	! HAVE WE INPUT 160 CHARS?
760	ISOURCE	JMP Done	! YES! SO QUIT NOW
770	ISOURCE	JMP Read_loop	! IF NOT THEN REPEAT
780	ISOURCE Done:	LDA =String	! SEND THE STRING TO BASIC
790	ISOURCE	LDB =Parm_str	
800	ISOURCE	JSM Put_value	
810	ISOURCE	RET 1	! RETURN TO BASIC
820	ISOURCE !		
839	ISOURCE Card_down:	LDA =164	! RETURN ERROR 164 TO BASIC
840	ISOURCE	JSM Error_exit	
850	ISOURCE !		
868	ISOURCE	END Gpic_input	

Interrupt String Output

```
! THIS PROGRAM OUTPUTS A STRING USING INTERRUPT TO A GPIO-LIKE INTERFACE.
10
20
    1
30
    ! INTERFACE CARDS APPLICABLE ARE:
49
5A
         98032 16 BIT PARALLEL
    i
60
        98036 SERIAL INTERFACE (INTERRUPT ENABLE BYTE SHOULD BE CHANGED)
70
80
   IDELETE ALL
90
   ICOM 1000
100 DIM Input$[160]
                                    ! ALLOW FOR 160 CHARACTER STRING
110 INTEGER Select_code
                                     ! BASIC VARIABLE TO HOLD THE SELECT CODE
120 IASSEMBLE
130
    INPUT "SELECT CODE TO WRITE TO?", Select_code
140 ON INT #Select code GOTO Isr done ! SET UP END OF LINE BRANCH
150
160 Input: LINPUT "STRING TO WRITE?", Input$ ! ASK USER FOR STRING TO OUTPUT
170 ICALL Output gpio int(Select code, Input$)
180 !
190 DISP I
                                     ! DO OTHER WORK WHILE INTERRUPT
200 I=I+1
                                     ! OUTPUT IS IN PROGRESS
210 GOTO 190
220
230 Isr done: DISP " OUTPUT COMPLETE...NEXT "; ! GET HERE WHEN ISR OUTPUT IS
240 GOTO Input
                                     ! COMPLETE...SO REPEAT
250 !
260
        ISOURCE
                          NAM Output_gpio_int
        ISOURCE
                         EXT Get_value,Error_exit,Isr_access
270
        ISOURCE Select code:BSS 1
                                              ! RESERVED TO HOLD SELECT CODE
280
290
        ISOURCE String: BSS 81
                                             ! RESERVED FOR 160 CHAR STRING
        ISOURCE Byte pointer:BSS 1
                                             ! BYTE POINTER FOR ISR
300
        ISOURCE Eol_mask: BSS 1
                                              ! TEMP FOR ISR
310
                                            ! TEMP FOR ISR
        ISOURCE Save35: BSS 1
320
        ISOURCE Cr:
330
                           EQU 13
                                              ! EQUATES FOR CR/LF
                           EQU 10
340
350
        ISOURCE Enable mask:EQU 200B
                                             98032 INTERRUPT ENABLE MASK
360
        ISOURCE !
370
        ISOURCE ! ROUTINE TO OUTPUT A STRING FOLLOWED BY CR/LF TO A GPIO-LIKE
380
        ISOURCE ! INTERFACE USING INTERRUPT.
390
        ISOURCE !
400
        ISOURCE ! ENTRY POINT: Output_gpio_int
        ISOURCE !
410
        ISOURCE ! PARAMETERS: 1) INTEGER CONTAINING SELECT CODE ( 1 TO 14 )
429
        ISOURCE !
430
                             2) STRING TO BE OUTPUT
440
        ISOURCE !
        ISOURCE ! POSSIBLE ERRORS: 19 SELECT CODE OUT OF RANGE
450
460
        ISOURCE !
                                  164 CARD OR PERIPHERAL DOWN
470
        ISOURCE !
480
        ISOURCE
                          SUB
        ISOURCE Parm sc:
490
                           INT
500
        ISOURCE Parm str: STR
510
        ISOURCE Output_gpio_int:LDA =Select_code ! GET THE SELECT CODE PARM
        ISOURCE LDB =Parm_sc
520
                          JSM Get_value
LDA Select_code
530
        ISOURCE
        ISOURCE
540
                                             ! LOAD A WITH SELECT CODE
                          ADA =-1
550
        ISOURCE
                                             ! CHECK FOR VALID RANGE (1-14)
                          SAM Sc error
560
        ISOURCE
570
        ISOURCE
                          ADA =−15+1
```

588	ISOURCE	SAM Sc ok	
590	ISOURCE Sc error:	LDA =19	GIVE ERROR 19 IF SELECT CODE
600	ISOURCE -	.ISM Error exit	IS OUT OF RANGE
610	TSOURCE !	Luma Luma	
620	ISOURCE Sr ok:	LNA Select code	SFF IF CARD IS NK
630		STA Pa	FIRST CORV SELECT CODE TO PA
640 640	TenHDrc	CCC Canad House 1	QUID IS TALK
040 /EG	TODAC	IDO LI-	
0.00	TOURCE	LDU -IDU :	OFI UP NA LOR No totoo progunotu, opuus
558		LDB = (10*206/*(1*16/)	10 IKIES, KESUUKUE=I=HSINU
670	ISUUKUE	HDB Select_code	
688	ISOURCE	JSM isr_access	
690	ISOURCE	JMP Sc_ok !	IF COULDN'T GET IT, RETRY
700	ISOURCE	LDA =String !	GET THE STRING PARAMETER
710	ISOURCE	LDB =Parm_str	
720	ISOURCE	JSM Get value	
730	ISOURCE	LDA =Strina+1 !	SET UP BYTE POINTER FOR ISR
749	ISHURCE	SAL 1	TO GET CHARS FROM STRING
759	ISNURCE	STA Bute pointer	
760	TEALIPEE	ADA String	AND CRAIF TO END OF STRING
770	ICOUDE	ano	Hand was an in the Estimation of the station
700 700	TODACE	ара ———————————————————————————————————	
708	TCOUDEC		
179 000	ICOUDE		
000	IOUUNUE		
819	ISUUKLE	FBU H,I	
820	ISUUKCE		
830	ISUURCE	PBC A,I	
840	ISOURCE	LDA String !	BE SURE AND ADD 2 TO LENGTH
850	ISOURCE	ADA =2	SO ISR WILL OUTPUT CR/LF
860	ISOURCE	STA String	
870	ISOURCE	LDA =Enable_mask !	ENABLE THE CARD TO INTERRUPT
880	ISOURCE	STA R5	
890	ISOURCE	RET 1	GO BACK TO BASIC.
900	ISOURCE !		
910	ISOURCE Card down:	LDA =164	
920	ISOURCE	JSM Error exit	
936	ISHIRCE		
940 940	IGNIPCE Icr.		CILICE I AM CAILIC TA NA CTARV
053		CTG CRUZOG I	ABEDATIANE I MNET CAVE 25
230	TEAHDAE	Ing over 1	ONERNITIONS, I NOST ONVE OD
200 670	ICONDE	eto den	UND THILLOCICE II
710	IOUURUE		
380		LDH Byte_pointer !	SET OF THE BYTE PUINTER
990	ISUURUE	SIH U !	SO I CHN GEL H DHIH BYTE
1999	ISOURCE	CBL	
1010	ISOURCE	WBC R4,I !	SEND THE DATA BYTE TO CARD
1020	ISOURCE	STA R7 !	DO HANDSHAKE
1030	ISOURCE	LDA C !	RESAVE BYTE POINTER
1040	ISOURCE	STA Byte pointer	
1050	ISOURCE	DSZ String !	SFF IF DONE
1 860	ISOURCE	IMP Exit.	IE NAT. THEN EXIT THE ISR
1979	ISOURCE	1 TA =0	DISABLE THE CARD
1080	ISUIBLE	STA 25	ange men fan it lener Anne Sanne - Sie a Banne - Gant e stifte after
1090	ISNIRCE		ПЕРЕМЛІКС ОН МИЕТИЕР ТИЕ
1100	ISOHRCE	Ang =_9	CELEPT PATE TO UTOU AD LOU
111G	Tenlibre	- 1001 - 0 · · · · · · · · · · · · · · · · · ·	COLLECT CODE TO ATOM, ON LOW COLL THE CADDECT TEDMINICTION
1100	TEALDAC	TOM FLU LANDA T	DOUTING OURACUL LERITINGLIUM
1120	LOUURUE LOOUROE	Jon English Tow, 1 !	RUUTINE
1138	IOUKLE		
1140	1500KCE	JSM End_isr_high,I	
1150	TROAKCE	LDA Pa !	AND NOW TRIGGER AN END OF
B. S. 277 F.4		and state that is a second sec	
1100	ISOURCE	ADA =-1 !	LINE BRANCH. TO DO THIS, THE

1180	ISOURCE	LDB =1	į	CALCULATED BY A COMPUTED
1190	ISOURCE	EXE A	ļ	SHIFT INSTRUCTION
1200	ISOURCE	STB Eol mask	i	SAVE THIS MASK
1210	ISOURCE	LDB Isr <u></u> psw	ļ	AND USE MAGIC CODE TO
1220	ISOURCE	LDA =103B	ļ	TRIGGER THE EOL BRANCH
1230	ISOURCE	STA B,I		
1240	ISOURCE	ADB =3		
1250	ISOURCE	LDA Eol_mask		
1260	ISOURCE	DIR		
1270	ISOURCE	IOR B,I		
1280	ISOURCE	STA B, I		
1298	ISOURCE	EIR		
1300	ISOURCE Exit:	LDA Save35	ļ	RESTORE 35
1310	ISOURCE	STA 35B		
1320	ISOURCE	RET 1	ļ	RETURN FROM INTERRUPT
1330	ISOURCE SE11:	SBL 1	ļ	BIT MASK FOR INSTRUCTION
1340	ISOURCE !			
1350	ISOURCE	END Output_gpio_int		

Interrupt String Input

```
! THIS PROGRAM INPUTS A STRING USING INTERRUPT FROM A GPIO-LIKE INTERFACE.
10
20
    1
30
    ! INTERFACE CARDS APPLICABLE ARE:
40
    1
    ļ
            98032 16 BIT PARALLEL
58
     !
            98033 BCD
69
            98036 SERIAL INTERFACE (INTERRUPT ENABLE BYTE SHOULD BE CHANGED)
70
     ļ
80
      1
      IDELETE ALL
90
100 ICOM 1000
110 DIM Input$[160]
                                                ! ALLOW FOR 160 CHARACTER STRING
120 INTEGER Select_code
                                                ! BASIC VARIABLE TO HOLD THE SELECT CODE
130 IASSEMBLE
140 INPUT "SELECT CODE TO READ FROM?", Select code
150 ON INT #Select code GOTO Isr done ! SET UP END OF LINE BRANCH
160 ICALL Enter gpio int(Select code) ! START THE READ OPERATION
170
180 ICALL Read result(Input$)
                                                ! WHILE WAITING FOR IT TO COMPLETE,
180 ICALL Read_result(Input$) ! WHILE WAITING FOR IT TO COM
190 DISP "PARTIAL RESULT=";Input$ ! DISPLAY THE PARTIAL RESULTS
200 GOTO 180
210
220 Isr done: ICALL Read result(Input$)
230 DISP " INPUT COMPLETE...STRING=";Input$
240 END
250 !

        260
        ISOURCE
        NAM Enter_gpio_int

        270
        ISOURCE
        EXT Get_value, Put_value, Error_exit, Isr_access

          ISOURCE Select_code:BSS 1 | RESERVED TO HOLD SELECT CODE
ISOURCE String: BSS 81 | RESERVED FOR 160 CHAR STRING
ISOURCE Byte_pointer:BSS 1 | BYTE POINTER FOR ISR
ISOURCE Sciencek: BSS 1 | TEMP FOR ISP
280
290
300
          ISOURCE Eol_mask: BSS 1
                                                           ! TEMP FOR ISR
310
          ISOURCE Save35: BSS 1
320
                                                           ! TEMP FOR ISR
330ISOURCE Cr:EQU 13! EQUATES FOR CR/LF340ISOURCE Lf:EQU 10350ISOURCE Enable_mask:EQU 200B! 98032 INTERRUPT ENABLE MASK360ISOURCE !
                                                         ! EQUATES FOR CR/LF
```

LOWED BY LF FROM A GPIO-LIKE		INING SELECT CODE (1 TO 14)	מחב מוד מב המ אורד	UNE UNI UT MANNE PERIPHERAL DOWN			TRIN THE INPUT DATA			LET HE SELECT COUE PHER		LOAD A WITH SELECT CODE	: CHECK FOR VALID RANGE (1-14)		- CIME EPPOP 19 TE SELECT CODE	I IS OUT OF RANGE		! SEE IF CHKU IS UK FIRGT FORY CELENT FONE TO PA	I SKIP IF DOWN	I SET UP AN ISR	! 10 TRIES, RESOURCE=1=ASYMC		! IF COULDN'T GET IT, RETRY	I INITIALIZE BYTE COUNT OF	! SIKING BUFFEK HKEH eet up bvit pointed fod 1ed	I DEL UF BYTE FUINER FUR LOK I TO PHT CHARC INTO STRING			I WAIT FOR CARD I START FIRST INPUT OPERATION		I ENABLE THE CARD TO INTERRUPT	H GO BACK TO BASIC.									! SINCE I AM GOING TO DO STACK	! OPERATIONS, I MUST SAVE 35 akm initial 175 it	I THE THAT FIRE THE THE
TO INPUT A STRING FOL USING INTERRUPT.	MT: Enter_gpio_int	I) INTEGER CONTR		EKKURD. 17 DELEUT U 164 CARD OR	MT. Read Pocult		: 1) STRING TO CON		- - - - - - - - - - - - - - - - - - -	lnt: LDH =5elect code LDR =P∍rm εr	JSM Get value	LDA Select_code	RDH =-1 COM Cr concor	ADA =-15+1	SAM Sc.ok 1 na =(<u>a</u>	JSM Error exit		LUH Select code cto p.	ssc card down	LDA =Isr	LDB =(10*256)+(1*16)	NUB Select Code JSM Isr access	JMP Sclok	LDA =0	SIN String LTO -Ctains	CLUH ≕STRING SAL 1	ADA - L	STA Byte_pointer	SFC * I TA P4	STR 77	LDA =Enable_mask			LDA =164 TOM Envior putt		SUB	018 • DD -0+5150	LDB =Parm str	JSM Put_value	RET 1	LDA 358	STA Save35 The same	
CE I ROUTINES . CE I INTERFACE	CE - CE - ENTRY POIL	CE PARAMETER	CE ! CE ! D000101		CE I FF I FNTRY POTI		CE I PARAMETER	– L	CE Parm sc:	CE Enter_gpio_ re	čr.	Ц Ц		ц	СП Ст. с. ГП С.	in the set of .	н Ц		ц Ц	Щ.		n r	L LL L	ů,		u L	цШ	1	с П ц	ليا ر بي (ш 2			NE Card_down: rr		CE CE	NCE Parm str: Pre poud social:	сп 546 С	Ш	-		ЦЦ	U.
378 ISOUR 389 ISOUR	390 ISOUR 460 ISOUR	410 1500R	430 ISOUR 446 ISOUR	450 ISOUR	460 ISOUR 476 ISOUR	480 ISOUR	496 ISOUR	500 ISOUR 518 ISOUR	528 ISOUR	539 ISUR 546 ISUR	556 ISOUR	569 ISOUR	578 ISOUR Sea Teolio	596 ISOUR	689 ISOUR	629 ISOUR	630 ISOUR	644 ISUUR 250 ICOUR	660 ISOUR	670 ISOUR	638 ISOUR	698 ISUUR 708 ISUUR	710 ISOUR	720 ISOUR	748 ISUUK 748 Teorite		769 ISOUR	770 ISOUR	7866 ISOUR 798 ISOUR	SBG ISOUR	810 ISOUR	820 ISUUR 836 ISUUR	849 ISOUR	858 ISOUR of a Teolip	878 ISOUR	889 I SOUR	890 ISOUR 2008 150UR	910 ISOUR	920 I SOUR	930 ISOUR ode ISOUR	958 ISOUR	960 ISOUR 976 Tenup	21 S

980	ISOURCE	STA 35B		
990	ISOURCE	LDA Byte pointer	l	SET UP THE BYTE POINTER
1999	ISOURCE	STA C	ļ	SO I CAN PUT A DATA BYTE
1010	ISOURCE	CBL	ł	INTO THE STRING
1020	ISOURCE	LDA R4	ļ	GET THE NEXT CHARACTER FROM
1030	ISOURCE	CPA =Cr	ļ	THEN CARDIGNORE CR'S
1848	ISOURCE	JMP Do another		
1050	ISOURCE	CPA =Lf	ļ	IF LINE FEED, THE TERMINATE
1060	ISOURCE	JMP Terminate	ļ	THE ISR TRANSFER
1070	ISOURCE	PBC A,I	ļ	ELSE PUT CHARACTER IN STRING
1080	ISOURCE	LDA C	ļ	SAVE NEW BYTE POINTER
1090	ISOURCE	STA Byte_pointer		
1100	ISOURCE	LDA String	ļ	AND BUMP STRING LENGTH
1110	ISOURCE	ADA =1		
1120	ISOURCE	STA String		
1130	ISOURCE	CPA =160	ļ	HAVE WE RECEIVED 160 CHARS
1140	ISOURCE	JMP Terminate	ļ	IF YES, THEN SHUT DOWN
1150	ISOURCE Do_another:	STA R7	į	START ANOTHER HANDSHAKE
1160	ISOURCE	JMP Exit	į	THEN EXIT THE ISR
1170	ISOURCE !			
1180	ISOURCE Terminate:	LDA =0	!	DISABLE THE CARD
1190	ISOURCE	STA R5		
1200	ISOURCE	LDA Pa	1	DEPENDING ON WHETHER THE
1210	ISOURCE	ADA =-8	!	SELECT CODE IS HIGH, OR LOW
1220	ISUUKCE	SHM **3	!	CHLL THE CURRECT TERMINHTION
1230	ISUUKUE	JSM End_1sr_low,1	!	RUUTINE
1240	ISUUKLE Issues			
1200	ISUUKLE Teologe	John English nigh, I		SUB US: TRIFTER SU PUB ST
1268	ISUURLE Icourae	Lun Fa	1	HNU NUW IKIGGEK HN ENU UF
1278	IOUUKLE Ioouber		:	CODDECT MOCK LODD MUCT DE
1200	IOUUKUE Teauper	IUK SDII IDD -1	!	CURRELI MASE MURD MUSI BE
1279	TOURCE	LUB =I	:	CHECULHIED BY H CUMPUIED
1010	TOUCKUE		:	SMIRI INSTRUCTION COUR TUTE MORY
1010	TOURCE		:	ONYE INIO MOGIO CODE IO
1920	IGNIDE	LDB ISP_PSW	:	TRICTED THE CAL BOAKPH
1000			:	INTEGEN THE COL DIVIDION
1350	TSOHECE	ADR =2		
1360	ISAURCE	INA Fol mack		
1370	ISNURCE	nip		
1380	ISOURCE	IOR B. I		
1390	ISOURCE	STA R.I		
1400	ISOURCE	FIR		
1410	ISAURCE Exit:	LTA Save35	I	RESTORE 35
1420	ISOURCE	STA 35B		
1430	ISOURCE	RET 1	ļ	RETURN FROM INTERRUPT
1440	ISOURCE Sb11:	SBL 1	ļ	BIT MASK FOR INSTRUCTION
1450	ISOURCE !			
1460	ISOURCE	END Enter_gpio_int		

DMA String Output

```
! THIS PROGRAM OUTPUTS A STRING USING DMA TO A GPIO INTERFACE.
   10
   20
            !
  30 ! INTERFACE CARDS APPLICABLE ARE:
            . .
   40
   50
                           98032 16 BIT PARALLEL
   60
            IDELETE ALL
   70
            ICOM 1000
   80
   90 DIM Input$[160]
                                                                                                       ! ALLOW FOR 160 CHARACTER STRING
   100 INTEGER Select code
                                                                                                         ! BASIC VARIABLE TO HOLD THE SELECT CODE
   110 IASSEMBLE
   120 INPUT "SELECT CODE TO WRITE TO?", Select_code
  130 ON INT #Select code GOTO Dma_done ! SET UP END OF LINE BRANCH
   149
   150 Input: LINPUT "STRING TO WRITE?", Input$ ! ASK USER FOR STRING TO OUTPUT
   160 ICALL Output_gpio_dma(Select_code, Input$)
   170
   180 DISP I
                                                                                                           ! DO OTHER WORK WHILE INTERRUPT
   190 I=I+i
                                                                                                           ! OUTPUT IS IN PROGRESS
  200 GOTO 180
   210 !
  220 Dma done: DISP " OUTPUT COMPLETE...NEXT "; ! GET HERE WHEN ISR OUTPUT IS
                                                                                                           ! COMPLETE...SO REPERT
   230 GOTO Input
  240 !

      240
      :

      250
      ISOURCE

      260
      ISOURCE Select_code:BSS 1

      270
      ISOURCE Select_code:BSS 1

      280
      ISOURCE String: BSS 81

      290
      ISOURCE String: BSS 80

      300
      ISOURCE Eol_mask: BSS 1

      310
      ISOURCE Save35: BSS 1

      320
      ISOURCE Cr: EQU 13

      *COURCE Lf: EQU 10

                                                                              NAM Output gpio_dma
                                                                            EXT Get_value,Error_exit,Isr_access
                                                                                                                                    ! RESERVED TO HOLD SELECT CODE
                                                                                                                                   ! RESERVED FOR 160 CHAR STRING
                                                                                                                                   ! RESERVED TO EXPAND STRING
                                                                                                                                  ! TEMP FOR ISR
                                                                                                                                   ! TEMP FOR ISR
                                                                                                                                   ! EQUATES FOR CR/LF
                        ISOURCE Enable_mask:EQU 320B
                                                                                                                                  ! 98032 DMA/INT/AH ENABLE MASK
   350
                        ISOURCE !
                     ISOURCE ! ROUTINE TO OUTPUT A STRING FOLLOWED BY CR/LF TO A GPIO-LIKE
ISOURCE ! INTERFACE USING DMA.
ISOURCE !
   360
   370
   380
   390
                        ISOURCE ! ENTRY POINT: Output_gpio_dma
                    ISOURCE ! ENTRY POINT: Uutput_gpio_gma

ISOURCE !

ISOURCE ! PARAMETERS: 1) INTEGER CONTAINING SELECT CODE ( 1 TO 14 )

ISOURCE ! 2) STRING TO BE OUTPUT

ISOURCE ! 2) STRING TO BE OUTPUT

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PERIPHERAL DOWN

ISOURCE ! 164 CARD OR PER
   490
   410
   420
   430
   440
   450
   460
   470
   480
   490
   500
                        ISOURCE Output_gpio_dma:LDA =Select_code ! GET THE SELECT CODE PARM
             ISOURCE Output_gpio_dma:LDA =Select_code ! GET THE SELECT
ISOURCE DIB =Parm_sc
ISOURCE JSM Get_value
ISOURCE LDA Select_code ! LOAD A WITH SELE
ISOURCE ADA =-1 ! CHECK FOR VALID
ISOURCE SAM Sc_error
ISOURCE ADA =-15+1
ISOURCE SAM Sc_ok
ISOURCE Sc_error: LDA =19 ! GIVE ERROR 19 IF
ISOURCE JSM Error exit ! IS OUT OF RANGE
   510
   520
                                                                                                                                ! LOAD A WITH SELECT CODE
   530
                                                                                                                                 ! CHECK FOR VALID RANGE (1-14)
   540
   550
   560
   570
                                                                                                                                  ! GIVE ERROR 19 IF SELECT CODE
   588
   590
```

600	ISOURCE	I		MARCO II		
610	ISOURCE	Sc ok:	LDA	Select code	ļ	SEE IF CARD IS OK
620	ISOURCE	uoouna.	STA	Pa	ļ	FIRST COPY SELECT CODE TO PA
638	ISOURCE		SSS	Card ok	ļ	SKIP IF CARD IS UP
640	ISOURCE		LDA	=164	į	ELSE GIVE ERROR 164
650	ISOURCE		JSM	Error exit		
660	ISOURCE	ł		(Manunu		
670	TSOURCE	Card ok:	LINA	=lsr	I	SET UP AN ISR
699	TSOURCE		INR	=(10+256)+(2+16)	1	10 TRIFS PESNIRCE=2=DMA
500 690	ISOURCE		ANR	Salart rnda	•	to mitto; mooonot to on:
700	ISOURCE		ISM	Jer arroce		
710	ISOURCE		īMi	P Sc ak	I	TE CONTINUE CET IT RETRY
720	TONIDAE		Ino	-Ctaina	:	TET THE STRING PARAMETER
720	TODURCE			=Duning =Parm of r	:	der mie onkrind mikineren
740	ICOURCE		TOM	Cot uplue		
759	Tenuper		со., гЦС к	JORMAN STRING FOR	мc	AT UNNYT THE THE MOTH MUST
750	TENIPCE	I DE CTADEN	nkie	BYTE DED LINDT C	ŝ	
779	TENIDOC	I EVPARIT TUS	CIL C CTI	DITE FER MORD, O DITE FER MORD, O	0 24	
706	Tenhore	: COLOND 100	1 DO	Cina nnu nuu n un -Ctaiaali		-' ETDOT OFT HD DYTE DATHTED TA
700	TCOURCE		CDU	-otrung-t	:	UTTURDOU THE LOCT CHOROCTER
(78) 000	ICOURCE		ODO		:	CIDET
866	ISUURLE		HUH	string	!	FIKSI
810	ISUUKUE		НШН	=-1		
820	ISUURCE		SIH	C	į	USE C FUR THE BYTE PUINTER
830	ISUURCE		CBL			
840	ISOURCE		LDA	=String+3	ļ	NOW COMPUTE A WORD POINTER
850	ISOURCE		ADA	String	i	TO WHERE TO PLACE THE LF
860	ISOURCE		STA	D		
870	ISCURCE		LDA	=Lf	i	MOVE IN A LF
888	ISOURCE		РЫД	A,D		
890	ISOURCE		LDA	=Cr·	1	AND CR
900	ISOURCE		ΡWD	A,D		
910	ISOURCE		LDB	String	ļ	NOW LOOP TO COPY ALL BYTES
920	ISOURCE		TCB			
930	ISOURCE		SIB	*+4		
940	ISOURCE		MBC	A,D		
950	ISOURCE		РЫЛ	A,D		
968	ISOURCE		RIB	* −2		
970	ISOURCE		LDA	String	Į	SET UP DMA CONTROL REGISTERS
980	ISOURCE		ADA	=1	Ī	COUNT = #CHARS-1
998	ISOURCE		STA	Dmac		
1999	ISOURCE		LDA	=String+1	ł	DMAA = DATA ADDRESS
1010	ISOURCE		STA	Dmama		
1020	ISOURCE		SDO		!	SET DMA OUTWARDS
1030	ISOURCE		LDA	=Enable mask	I	ENABLE THE CARD TO INTERRUPT
1949	ISOURCE		STA	R5		
1959	ISOURCE		TIMA			
1060	ISOURCE		RFT	t	I	GO BACK TO BASIC.
1070	TSOURCE			-	•	
10.0	ISOURCE	Ter-*	I DA	358	i	T WITH CET THE INTERRIPT
1000	ICOURCE	4 B	CTO	250625	•	THE THAT TRANSFER IS COMPLETE
1100	TENHORE		IDO	04D	•	
1110	Tenubee		eto	utu ozo		
1110	TEOHOCE			-0 -0	ł	
1100	TODURUE			-u 55	:	ON RIGHTER ILE PURA
1130	TOUUKUE		DIC	NU .	ĩ	DICODIE DMG
1148	1500KUE Tenuber		DDK DDK	D	1	DIORBLE UNIC ON HUCTUCO THE
1100	TODUKUE		LUH ODO	rd - Ö	:	DEFENDING ON WHEIMEN THE
1100	100UKUE Toolioos		HUH COC		:	SELECT CODE 15 MIGH, UK LUW
1178	ISUUKLE		SHM	ನಾರ ಕ್ಷಾಮ ಸಂಘ ಶ	:	CHEL THE CURRECT TERMINHIIUN
1180	1SUUKCE		JSM	End_isr_low,1	ţ	KUUTINE
1190	1SUURCE		JMP	*+2		
1200	ISOURCE		JSM	End_isr high,I		

1210	ISOURCE	LDA Pa	i	AND NOW TRIGGER AN END OF
1220	ISOURCE	ADA =-1	ļ	LINE BRANCH. TO DO THIS, THE
1230	ISOURCE	IOR S611	ļ	CORRECT MASK WORD MUST BE
1240	ISOURCE	LDB =1	8	CALCULATED BY A COMPUTED
1250	ISOURCE	EXE A	į	SHIFT INSTRUCTION
1260	ISOURCE	STB_Eol_mask.	İ	SAVE THIS MASK
1270	ISOURCE	LDB Isr_psw	Ī	AND USE MAGIC CODE TO
1280	ISOURCE	LDA =103B	1	TRIGGER THE EOL BRANCH
1290	ISOURCE	STA B,I		
1300	ISOURCE	ADB =3		
1310	ISOURCE	LDA Eol_mask		
1320	ISOURCE	DIR		
1330	ISOURCE	IOR B,I		
1340	ISOURCE	STA B,I		
1350	ISOURCE	EIR		
1360	ISOURCE	LDA Save35	Į	RESTORE 35
1370	ISOURCE	STA 35B		
1380	ISOURCE	RET 1	į	RETURN FROM INTERRUPT
1390	ISOURCE SENT:	SBL 1	ļ	BIT MASK FOR INSTRUCTION
1400	ISOURCE !			
1410	ISOURCE	END Output_gpio_dma		

DMA String Input

10 20	! THIS PROGRAM INPUTS A STRING USING	DMA FROM A GPIO INTERFACE.
30 40	! INTERFACE CARDS APPLICABLE ARE:	
50 50	98032 16 BIT PARALLEL	
70 70	IDELETE ALL	
90 90	DIM Input \$[160]	ALLOW FOR 160 CHARACTER STRING
100	INTEGER Select code	BASIC VARIABLE TO HOUT THE SELECT COTE
110	INTEGER Character count	VARIABLE TO HOLD INPUT CHARACTER COUNT
120	INTEGER A.C !	VARIABLES FOR "BACKGROUND PROCESS"
130	IASSEMBLE	
140	INPUT "SELECT CODE TO READ FROM?", Se	lect code
150	ON INT #Select_code GOTO Isr_done !	SET UP END OF LINE BRANCH
160	INPUT "NUMBER OF CHARACTERS TO READ?	",Character_count
170	ICALL Enter_gpio_dma(Select_code,Cha	racter_count) ! START THE READ
180		
190	ICHLL (est_dma(C,H) !	WHILE WHITING, DISPLAY DMA COUNT AND
200	DISF "D"H COURT=";C, "HDDRESS=";H,I !	HTMKE00
210	1-171 FATA 198	
220		
200 240	Isr done: ICALL Read result(Input\$)	
250	NISP " INFUT COMPLETESTRING=":Inp	ut.\$
260	END	
270		
280	ISOURCE NAM Enter g	pio dma
290	ISOURCE EXT Get val	ue,Put value,Error exit,Isr access
399	ISOURCE Select code:BSS 1	! RESERVED TO HOLD SELECT CODE
310	ISOURCE String: BSS 81	! RESERVED FOR 160 CHAR STRING
320	ISOURCE BSS 80	! RESERVED FOR EXPANDED STRING
330	ISOURCE Eol_mask: BSS 1	! TEMP FOR ISR
340	ISOURCE Save35: BSS 1	! TEMP FOR ISR

350 ISOUR	CE Enable_mask:	EQU 320B	! 98032 DMA/INT/AH ENABLE MASK
360 ISOUR	CE!		
370 ISOUR	GE ! ROUTINES TO	D INPUT A FIXED LEN	IGTH STRING FROM A GPIO
380 ISOUR	CE INTERFACE	JSING DMA.	
390 ISOUR	CE !		
400 ISOUR	CE ! ENTRY POIN 	F: Enter_gpio_dma	
410 ISUUR	UE ! Se i popolieres.	مېم و دې وې وې وې وې وې وې وې وې وې وې وې وې وې	
420 1500K	CE ! PHKHMEIEK:	1) INTEGER CUNT	HINING SELECT CODE (1 TO 14)
438 1500K	UE ! NE I	2) NUMBER OF UN	MRALIEKS IU KEAD (I IU 80 /
	NE ! NE I DACCIDIE M		
400 1000K	CE : FUSSIDLE EN FE I	KORD. 17 DELEU! 124 radin ad	CODE OK CHIIK COOMI ODI OF KHINGE • DEDTBLEBGI TAUKI
470 ISOUR	or :	TOL CURP ON	
499 75009	CE I ENTRY POIN	I. Test das	
499 ISOUR	DE LENNA IOM		
599 TSOUR	CE I PARAMETERS	1) INTECEP TO 4	N TI CHREENT TIMA COUNT
510 ISOUR	CE !	2). INTEGER TO H	IOLD CURRENT DMA ADDRRESS
520 ISOUR	CE 1		
530 ISOUR	CE ! ENTRY POIN	F: Read result	
540 ISOUR	CE !	· · · ·	
550 ISOUR	CE ! PARAMETER:	1) STRING TO CO	NTAIN THE INPUT DATA
560 ISOUR	CE !		and the second second second second second second second second second second second second second second second
570 ISOUR	CE :	3LIB	e a construction de la construction de la construction de la construction de la construction de la construction
580 ISOUR	CE Parm_sc:	INT	
590 ISOUR	CE Parm_count: 3	It I	
600 ISOUR	CE Enter_gpio_d	ma: LDA =Select_cod	le ! GET THE SELECT CODE PARM
610 ISOUR	CE I	_BB =Parm_sc	
620 ISOUR	CE	JSM Get_value	
630 ISOUR		_DA Select_code	! LOAD A WITH SELECT CODE
640 1500K		-10H =-1	! CHECK FOR VHLID RHNGE (1-14)
650 ISUUK	UE :	oHM Sc_error	
558 1500K		10H =-10+1	
200 1000K	VE CE Ca Annant I	опії ос <u>ок</u> по <u>-</u> :о	I FILE EDDOD 10 TE OF FOT CODE
	pe de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de l Contra de la contra d	IDA -19 IOM Ennon ovit	I TO OUT OF DOMES
788 TOUR	CE .	101 HILONTEXIC	: TO ODI OF REINDE
710 ISOUR	regenter 1	DA = Stains	I CET BYTE CALKIT PADAMETED
720 ISOUR		DR =Parm Count	
730 ISOUR	ČE .	ISM Get value	
749 ISOUR	CE I	_DA String	! CHECK IT FOR RANGE
750 ISOUR	CE :	3AM Sc error	
760 ISOUR	CE s	3ZA Sc error	
770 ISOUR	ÇE (ADA =−81	
780 ISOUR	CE s	3AP Sc.error	
790 ISOUR	CE Check_card:	_DA Select_code	! SEE IF CARD IS OK
800 ISOUR	CE — s	STA Pa	! FIRST COPY SELECT CODE TO PA
810 ISOUR	CE	388 Card_ok	! SKIP IF CARD IS OK
820 ISOUR	CE I	_DA =164	! ELSE GIVE ERROR 164
830 ISOUR	CE .	JSM Error_exit	
840 ISOUR	CE !		
850 ISOUR	CE Card_ok:	_DH =Isr	! SET UP AN ISR
868 ISOUR		_UB =(10*256)+(2*16)! 10 TRIES, RESOURCE=2=IMA
870 150UR		TUB Select_code	
669 1500R	ue .	Jon Isr access	
078 15UUK	ue or ,	JNF LNECK_Card	: IF LOULDN'I GET IT, RETRY
200 1300K 019 100	ue l re (un string mo+	: INITIALIZE DMA KEGIDTEKO
210 1000K 920 TSOUR	ve i CF	nun: STA Dmar	
930 TQUHP		NA =String+1	
940 ISOUR	CE (STA Dmama	
950 ISOUR	CE	SDI	

960 970 980	ISOURCE ISOURCE ISOURCE	SFC * LDA R4 STA R7	! WAIT FOR CARD ! START FIRST INPUT OPERATION
998 1998	ISOURCE	LDA =Enable_mas	k ! ENABLE THE CARD TO INTERRUPT
1000 1010 1020 1030	ISOURCE ISOURCE ISOURCE !	DMA RET 1	! ENABLE PROCESSER FOR DMA ! GO BACK TO BASIC.
1040 1050 1060	ISOURCE ISOURCE C_parm: ISOURCE A parm:	SUB INT INT	
1070	ISOURCE Test_dma:	LDA Dmac	
1000 1090	ISOURCE	SIM IEMP LDA =Temp	
1100	ISOURCE	LDB =C parm	
1110	ISOURCE	JSM Put_value	
1120	ISOURCE	LDA Dmama	
1130 1140	ISUURLE	SIM LEMP LDA =Temp	
1150	ISOURCE	LDB =A parm	
1160	ISOURCE	JSM Put value	
1170	ISOURCE	RET 1	
1180	ISOURCE Temp:	BSS 1	
1200	ISUUKLE ! Isnupre	CHD	
1210	ISOURCE Parm str:	STR	
1220	ISOURCE Read result	LDA =String+1	! I MUST PACK THE STRING FROM
1230	ISOURCE	STA D	! FROM 1 BYTE TO 2 BYTES PER
1240	ISOURCE	SAL 1	
1250	ISOURCE	ADA =-1	
1260	ISOURCE	SIH L CRI	
1280	ISOURCE	LDA String	! GET CHARACTER COUNT
1290	ISOURCE	TCA	
1300	ISOURCE	SIA *+4	
1310	ISOURCE	WWD B, I	! GET A BYTE
1320	ISUUKUE TenHere	PBU B, I DTO X-7	! PHLK II
1340	ISOURCE	LDA =Strina	! RETURN RESULT TO BASIC
1350	ISOURCE	LDB =Parm_str	
1360	ISOURCE	JSM Put_value	
1370	ISOURCE	RET 1	
1308	IBUURLE ! Igniidae Iam•	1 114 950	I TUTH CET AN INTEDDIDT LUCK
1400	ISOURCE	STA SaveR5	I THE THE IS COMPLETE
1410	ISOURCE	LDA 34B	
1420	ISOURCE	STA 35B	
1430	ISOURCE	LDA Dmac	! I GET TO HERE WHEN DMA DONE
1440	IGUUKLE Tenijore	HUH =1 Tra	! LUMPUTE HLIUHL NUMBER UP I ruadartede toakeeseth
1460	ISOURCE	ADA String	: CHIRNETERS INTHOLERED
1470	ISOURCE	STA String	! SAVE IN STRING LENGTH WORD
1480	ISOURCE	LIA =0 -	! DISABLE THE CARD
1490	ISOURCE	STA R5	
1588	ISOURCE	DDK LDG D-	! DISHELE UMH , peoclatur on lucture tur
1520 1520	ISOURCE	LUN FA ANA =-8	: DEFEMDING ON WHEIMER IME I SELECT COME IS HIGH OR LOW
1530	ISOURCE	SAP *+3	! CALL THE CORRECT TERNINATION
1540	ISOURCE	JSM End_isr_low	,I ! ROUTINE
1550	ISOURCE	JMP *+2	_
1560	ISOURCE	JSM End_isr_hig	h, I

1570	ISOURCE	lda Pa	!	AND NOW TRIGGER AN END OF
1580	ISOURCE	ADA =-1	ļ	LINE BRANCH. TO DO THIS, THE
1590	ISOURCE	IOR Sb11	Į	CORRECT MASK WORD MUST BE
1600	ISOURCE	LDB =1	ļ	CALCULATED BY A COMPUTED
1610	ISOURCE	EXE A	!	SHIFT INSTRUCTION
1620	ISOURCE	STB Eol mask	!	SAVE THIS MASK
1630	ISOURCE	LDB Isr psw	ł	AND USE MAGIC CODE TO
1640	ISOURCE	$LDH = 10\overline{3B}$	ļ	TRIGGER THE EOL BRANCH
1650	ISOURCE	STA B.I		
1660	ISOURCE	ADB =3		
1670	ISOURCE	LDA Eol mask		
1680	ISOURCE	DIR		
1690	ISOURCE	IOR B,I		
1700	ISOURCE	STA B,I		
1710	ISOURCE	EIR		
1720	ISOURCE	LDA Save35		
1730	ISOURCE	STA 35B		
1740	ISOURCE	RET 1	Į	RETURN FROM INTERRUPT
1750	ISOURCE Sb11:	SBL 1	į	BIT MASK FOR INSTRUCTION
1760	ISOURCE !			

HP-IB Output / Input Drivers

END Enter_gpio_dma

1770

ISOURCE

```
10
    ! 98034A HPIB CARD DRIVER
20
    1
30
    ON KEY #0 GOSUB Output
40
    ON KEY #1 GOSUB Enter
50
    ON KEY #6 GOTO Last
    PRINT " HPIB DRIVER"
69
70
    PRINT
80
    PRINT
   PRINT "TWO ASSEMBLY LANGUAGE DRIVERS ARE PROVIDED...ONE FOR OUTPUT AND ONE"
90
100 PRINT "FOR INPUT. BOTH HAVE PROVISIONS FOR INCLUDING A BUS COMMAND STRING"
110 PRINT "FOR ADDRESSING THE BUS."
120
130 PRINT "SYNTAX:"
140
150 PRINT "ICALL Hpib_output( <ISC>, <CMD$>, [ <DATA$> ] >"
160 PRINT "ICALL Hpib_enter ( <ISC>, <CMD$>, [ <VAR$> ] )"
170 PRINT
180 PRINT "
              (ISC) := INTERFACE SELECT CODE (1 TO 14) (INTEGER)"
190 PRINT " <CMD$> ::= STRING TO OUTPUT WITH ATN TRUE"
200 PRINT " <DATA$> ::= STRING TO OUTPUT WITH ATN FALSE"
210 PRINT " < VAR$ ::= STRING VARIABLE TO HOLD DATA READ FROM BUS"
220 PRINT LIN(5);"Press key #6 to exit."
230 DISP "Press CONTINUE to execute program"
240 PAUSE
245 ICOM 1000
250 ! POSSIBLE ERRORS:
260 !
270 !
          164 CARD WAS NOT AN HPIB CARD
280 !
          500 <CMD$> WAS NON-NULL BUT THE CARD WAS NOT ACTIVE CONTROLLER
290 !
          501 (DATA$) WAS NON-NULL BUT THE CARD WAS NOT ACTIVER TALKER
300 !
          502 <VAR$> WAS SPECIFIED BUT THE CARD WAS NOT ACTIVE LISTENER
310
320 INTEGER Select code
330 DIM Cmd$[160],Data$[160],Var$[160]
340 IASSEMBLE
```

350 INPUT "HPIB SELECT CODE?", Select_code 360 PRINT "KEY 0 - OUTPUT ÉKEY 1 - ENTER KEY 6 - EXIT" 370 DISP "IDLE" 380 GOTO 370 390 Output: GOSUB Linput cmd 400 LINPUT "DATA TO SEND?", Data\$ 410 ICALL Hpib_output(Select_code,Cmd\$,Data\$) 420 PRINT " DATA SENT =";Data\$ 430 RETURN 440 Enter: GOSUB Linput cmd 450 ICALL Hpib_enter(Select_code,Cmd\$,Var\$) DATA READ =":Var\$ 460 PRINT " 470 RETURN 480 ! 490 Linput cmd: LINPUT "COMMAND BYTES?",Cmd\$ 500 RETURN 510 ! ast: SUBEXIT 520 ISOURCE NAM Нріб EXT Get_value,Put_value,Error_exit ISOURCE 530 ISOURCE Cmd: BSS 81 ! STRING TO HOLD CMD BYTES ISOURCE Data: EQU Cmd ! STRING TO HOLD DATA BYTES 540 ! STRING TO HOLD DATA BYTES
! INTERFACE SELECT CODE 550 ISOURCE Select_code:BSS 1 560 ! POINTER TO PARM PSEUDO OPS ISOURCE Parm_ptr: BSS 1 ISOURCE Lf: EQU 10 ISOURCE Cr: EQU 13 570 ! EQUATES 580 590 ISOURCE Statusi: BSS i ISOURCE Status2: BSS i ! 4 WORDS TO CONTAIN STATUS ! BYTES FROM 98034 600 610 ISOURCE Status3: BSS 1 ISOURCE Status4: BSS 1 620 630 640 ISOURCE ! 650 ISOURCE Out parm: SUB ббй. ISOURCE INT 670 ISOURCE STR 680 ISOURCE P data: STR ! CALL SETUP ROUTINE 690 ISOURCE Hpib output:LDB =Out parm 700 ISOURCE JSM Hpib setup 710 ISOURCE LDA Out_parm ! IS THERE A DATA PARAMETER? ISOURCE CPA =2 720 730 ISOURCE No output: RET 1 ! NO, RETURN TO BASIC ISOURCE No_output:RET 1! NO, RETURN TO BASICISOURCELDA =Data! YES, FETCH ITISOURCELDB =P_dataISOURCEJSM Get_valueISOURCELDA Data! CHECK BYTE COUNTISOURCESZA No_output! IF ZERO, DO NOTHINGISOURCEJSM Hpib_status! MAKE SURE WE ARE ADDRESSEDISOURCELDA Status4! TO TALKISOURCERZA *+3!ISOURCELDA =501! ELSE GIVE ERROR 501 740 750 760 770 780 790 800 810 820 LDA =501 ISOURCE ! ELSE GIVE ERROR 501 830 LDM =001 JSM Error_exit LDA =Data+1 ! ELSE COMPUTE BYTE POINTER 901 1 ! SO WE CAN WITHDRAW BYTES 840 ISOURCE 850 ISOURCE SAL 1 860 ISOURCE ! FROM THE STRING 870 STA C ISOURCE 880 ISOURCE CBL 890 ISOURCE Data_loop: SFC * ! WAIT FOR CARD ISOURCE WBC R4,I DSZ Data ! OUTPUT A BYTE 900 910 ISOURCE ! SEE IF DONE WITH STRING JMP Data_loop 920 **ISOURCE** ! NO 930 ISOURCE RET 1 ! DONE, SO GO BACK TO BASIC 940 ISOURCE ! 950 ISOURCE Ent parm: SUE
960		ISOURCE		INT			
970		ISOURCE		STR			
980		ISOURCE	Ent_var:	STR			
990		ISOURCE	Hpib enter:	LDB	=Ent parm	ļ	CALL SETUP ROUTINE
1000		ISOURCE		JSM	Hpib setup		
1010		ISOURCE		LDA	=Ent parm	į	IS THERE A DATA PARAMETER?
1020		ISOURCE		CPA	=2		
1030		ISOURCE		RET	1	Į	NO. THEN I'D DONE
1040		ISOURCE		JSM	Hnih status	I	MAKE SURE I'M A I ISTENER
1050		ISOURCE		ITA	Statue4		
1060		ISOHPOE		AND	=20P		
1000		TEAUDOE		070	-200		
1070		TOOLDOR		1 00	⊼T3 _E00	т	
1686		ISUURCE		LDH	=082		ELSE GIVE EKKUK DUZ
1090		ISUUKLE		350	Error_exit		
1100		ISUURCE		LUH	=6	. !	CLEHR DHIH STRING COUNTER
1110		ISOURCE		STA	Data		· · ·
1120		ISOURCE		LDA	=Data	. 1	SET UP BYTE POINTER FOR DATA
1130		ISOURCE		SAL	1		
1140		ISOURCE		ADA	=1		
1150		ISOURCE	1	STA	C		
1160		ISOURCE		CBL			
1170		ISOURCE	Enter loop:	SFC	÷.	- 1	WAIT FOR CARD
1180		I'SOURCE	•	LDA	R4	ļ	START ACCEPTOR HANDSHAKE
1190	-	ISOURCE		SEC	¥	I	WATT FOR DATA
1000		ISOURCE		ITA	PE	i	PEAN NATA EPOM CAPN
1010		TenilBre		CPO			TO IT A PETIION?
1210		TOOUNCE		TMD	Totas Isaa	:	TE ON TEMPE TT
1440		TOOURUE		200	Eurer_ioob		IF OU, IGNORE II
1230	. •	ISOURCE		UTH			15 II TERMINITION:
1240		1SUURCE		JMF	Ent_done	4	YES, SKIP
1250		ISOURCE	•	PRC	H,1	!	ELSE PUI BYTE INTU STRING
1260		ISOURCE		ISZ	Data	I	BUMP STRING LENGTH
1270		ISOURCE		JMP	Enter_loop		REPEAT FOR NEXT BYTE
1280		ISOURCE	Ent_done:	LDA	=Data	Į.	RETURN DATA TO PARAMETER
1290		ISOURCE		LDB	=Ent_var	1. J. J.	
1300		ISOURCE		JSM	Put_value		
1310		ISOURCE	· · · · ·	RET	1		
1320		ISOURCE	į				
1330		ISOURCE	! HPIB SETUR	ROL	JTINE		
1340		ISOURCE	B POINT	rs ti) SUB PSEUDO (OP (CC	NTAINS PARM COUNT)
1350	•	ISOURCE	1 1) VERTE	TY P	ARAMETER COUNT	T >=2	
1360		TSOURCE	1 2) FETCH	4 SEI	FOT CODE AND	VERTE	Y CARD IS 8 980348
1370		ISOUPCE	1 3) FETCI		MAND STRING R	PAPAM	
1200		TCOURCE	1 07 1210	:	inning onicand i	1 11 11 11 11 11	Lief find gon of th
1000		TCOURCE	: Unib coturt	I TIO	ът	1	AUCAN DODM CONKIT
1070		TONHOC	ubin secob.			-	CALCAN FRANT COURT
1400		TOUCKE		cob	2	1	ONTO IT 1-0
1410		1500RUE		500	* * 3	!	SKIF IF /=2
1420		ISUURCE		LDH	=3	!	IF (2, GIVE EKRUK 8
1430		ISOURCE		JSM	Error_exit		
1440		ISOURCE		ADB	=1	-	POINT TO SELECT CODE PARM
1450		ISOURCE		STB	Parm_ptr		
1460		ISOURCE		LDA	=Select_code	ł	FETCH IT
1470		ISOURCE		JSM	Get value		
1480		ISOURCE		LDA	Select code	ŧ	CHECK RANGE FOR 1 TO 14
1490		ISOURCE		ADA	=-1		
1500		ISOURCE		SAM	Sc error		
1510		TSOURCE		ATA	=-15+1		
1520		ISOURCE		CAM	*+3 **.*		
1500		TODUNCE	Ce oppost		-10	l	
1000		TODURUE	oc_ennon.	TOM	-17 Ennor cuit	: 1	TO OUT OF MEMORY GIVE EARON.
1040		LOUUKUE Teoluoee		100	CITOR EXIL	:	17 CET UD DA GUD DO CTOTUC CEO
1000		1500KUE		LUH	Select_CODe	!	OF OF THE MAD DU SIMIUS SEV
1560		I SUURCE		SIH	Fa	!	UN LHKU IU VEKIFY II IS H
1570		TROOKUE		JSM	Hpib_status	!	98034H INTERFHCE

1580 1590 1600	ISOURCE ISOURCE ISOURCE		LDB ADB LDA	Parm_ptr =3 =Cmd	į	NOW FETCH COMMAND STRING
1619 1629	ISOURCE		LDA	Cmd	Į	SEE IF THERE IS ANYTHING
1630	ISOURCE		SZR	No cmd	ļ	OUTPUT, IF NOT, SKIP
1640	ISOURCE		LDA	Status4	ĺ	MAKE SURE I AM ACTIVE
1650	ISOURCE		AND	=100B	ļ	CONTROLLER
1660	ISOURCE		RZA	* + 3	ļ	SKIP IF YES
1679	ISOURCE		LDA	=500	į	ELSE GIVE ERROR 500
1680	ISOURCE		JSM	Error_exit		
1690	ISOURCE		LDA	=Cmd+1	i	NOW OUTPUT THE COMMHNDS
1700	ISUURCE		SHL			
1710	15UUKUE		SIN	С.		
1720	TOUURUE	Ond lass:	ODL	ж.		
1730 1740	ISOURCE	cmu_roop.	URC	× RG I	ł	SEND OUT OMD BYTE
1750	ISOURCE		DS7	ford .	ì	SEE TE DONE
1768	ISOURCE		IMP	Cmd loon	i	NOT YET
1779	ISOURCE	No cmd:	RET	1	i	TIONE !
1780	ISOURCE	1		-	•	
1790	ISOURCE	! STATUS SEC	QUENC	E FOR 98034 CARI),	NOTE THAT THIS SEQUENCE
1800	ISOURCE	! COULD FOR	CE TH	E CARD TO VIOLAT	Έ	THE IFC TIME SPECS IF
1810	ISOURCE	! THE FOLLO	AING	CONDITIONS EXIST	:	
1820	ISOURCE	! 1) CARI	0 IS	NOT SYSTEM CONTR	201	LER
1830	ISOURCE	! 2> A HA	ARDWA	RE INTERRUPT OCC	UF	RS AFTER THE LDA R5 BUT
1840	ISOURCE	! BEF	ORE .	THE DIR		
1850	ISOURCE	! 3) THE	CONT	ROLLER PULLS IFC	È	AFTER THE LDA RS BUT BEFORE
1860	ISOURCE	! THE	DIR			
1870	ISOURCE	! THE ONLY (ALTER	RNATIVE TO THIS I	[S	TO DIR BEFORE THE LDA R5.
1870 1880	ISOURCE ISOURCE	! THE ONLY (! THIS HOWE)	ALTER VER (RNATIVE TO THIS I COULD COMPROMISE	(S Ał	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT
1870 1880 1890	ISOURCE ISOURCE ISOURCE	! THE ONLY I ! THIS HOWE! ! TRANSFER :	ALTER VER (IN PR	RNATIVE TO THIS I COULD COMPROMISE COGRESS (FOR EXP	IS Al AMP	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE).
1870 1880 1890 1900	ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE) ! TRANSFER : !	ALTER VER (IN PR	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXF	(S Al IMF	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE).
1870 1880 1890 1900 1910	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTEF VER (IN PF SFC	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP *	IS Al IMF !	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE >. GET THE CARD INTO
1870 1880 1890 1900 1910 1920	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTEF VER (IN PF SFC LDA	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5	IS Alt AMF ! !	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE.
1870 1880 1890 1900 1910 1920 1930	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTER VER (IN PR SFC LDA AND	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =608	(S AH AMF ! !	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034
1870 1880 1890 1900 1910 1920 1930 1940	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTER VER (IN PF SFC LDA AND CPA	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =50B	(S Alt AMF ! !	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034
1870 1880 1890 1900 1910 1920 1930 1940 1950	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTEF VER (IN PF SFC LDA AND CPA JMP	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B *+3 -101	(S AH AMF ! !	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES
1870 1880 1890 1900 1910 1920 1930 1940 1950 1950	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTEF VER (IN PF SFC LDA AND CPA JMP LDA	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B *+3 =164	(S A 	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE >. GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164
1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTEF VER (IN PF LDA AND CPA JMP LDA JSM	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B *+3 =164 Ernor_exit	(S A) MF ! !	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164
1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTEF VER (IN PF LDA AND CPA JMP LDA JSM SFC	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B *+3 =164 Error_exit *	(S A) AMF ! !	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MARE IT SO DISONSE MY
1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1990 2990	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTEF VER (IN PF LDA AND CPA JMP LDA JSM SFC DIR	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B *+3 =164 Error_exit *	(S) AMF MF ! ! ! ! !	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MADE IT, SO DISABLE MY
1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1990 2000 2010	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTEF VER (IN PF LDA AND CPA JMP LDA JSM SFC DIR SFC	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B *+3 =164 Error_exit *	(S) AMM !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MADE IT, SO DISABLE MY INTERRUPTS FOR THE REST OF
1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 2000 2010 2020	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTEF VER (IN PF SFC LDA AND CPA JMP LDA JSM SFC DIR SFC LDA SFC	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B *+3 =164 Error_exit * R6 Status1	IS AM AM I I I I I I I I I I I I I I I I I	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MADE IT, SO DISABLE MY INTERRUPTS FOR THE REST OF THE STATUS SEQUENCE.
1870 1880 1890 1900 1910 1920 1930 1940 1950 1950 1960 1970 1980 2000 2010 2020 2030	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTER VER (IN PF LDA AND CPA JMP LDA JSM SFC DIR SFC SFC	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B *+3 =164 Error_exit * R6 Status1 *	IS AMP I I I I I I I I I I I I I I I I I I I	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MADE IT, SO DISABLE MY INTERRUPTS FOR THE REST OF THE STATUS SEQUENCE.
1870 1880 1890 1900 1910 1920 1930 1940 1950 1950 1960 1970 1980 2000 2010 2020 2030 2040	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTER VER (IN PF LDA AND CPA JMP LDA JSM SFC DIR SFC LDA SFC	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B *+3 =164 Error_exit * R6 Status1 * P6	ISAM MF !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MADE IT, SO DISABLE MY INTERRUPTS FOR THE REST OF THE STATUS SEQUENCE.
1870 1880 1890 1900 1910 1920 1930 1940 1950 1950 1960 1970 2000 2010 2020 2030 2040 2050	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTER VER (IN PR LDA AND CPA JMP LDA JSM SFC DIR SFC SFC SFC SFC SFC SFC SFC	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B *+3 =164 Error_exit * R6 Status1 * R6 Status2	ISAM MF !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MADE IT, SO DISABLE MY INTERRUPTS FOR THE REST OF THE STATUS SEQUENCE.
1870 1880 1890 1900 1910 1920 1920 1930 1940 1950 1950 1960 1970 2000 2010 2020 2030 2040 2050 2050 2050	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTER VER (IN PR LDA AND CPA JMP LDA JSM SFC DIR SFC LDA SFC SFC SFC SFC SFC	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B =648 Error_exit * R6 Status1 * R6 Status2 *	ISAM IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MADE IT, SO DISABLE MY INTERRUPTS FOR THE REST OF THE STATUS SEQUENCE.
1870 1880 1890 1900 1910 1920 1920 1930 1940 1950 1950 1960 1970 2000 2010 2020 2030 2040 2050 2050 2050 2050 2050	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTER VER (IN PR LDA AND CPA JMP LDA JSFC DIR SFC LDA SFC SFC SFC LDA SFC LDA	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B =60B =464 Error_exit * R6 Status1 * R6 Status2 * R6	IS AMP AMP ! ! ! ! ! !	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MADE IT, SO DISABLE MY INTERRUPTS FOR THE REST OF THE STATUS SEQUENCE.
1870 1880 1890 1900 1910 1920 1920 1930 1940 1950 1950 1960 1970 2000 2010 2020 2030 2040 2050 2050 2050 2050 2050 2070 2080	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTER VER (IN PR LDA AND CPA JMP LDA JSFC DIR SFC SFC SFC SFC SFC SFC SFC SFC SFC SFC	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B =40B =40B =164 Error_exit * R6 Status1 * R6 Status2 * R6 Status2 * R6 Status3	(S) AMF ! ! ! ! !	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MADE IT, SO DISABLE MY INTERRUPTS FOR THE REST OF THE STATUS SEQUENCE.
1870 1880 1890 1900 1910 1920 1920 1930 1940 1950 1950 1960 1970 2000 2010 2020 2030 2040 2050	ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTER VER (IN PR LDA AND JMP JSA JMP JSA JSA SFC LDA SFC SFC SFC SFC SFC SFC SFC SFC SFC SFC	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B =40B =40B =40B =164 Error_exit * R6 Status1 * R6 Status2 * R6 Status2 * K6 Status3 *	(S) AN MF ! ! ! ! ! !	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MADE IT, SO DISABLE MY INTERRUPTS FOR THE REST OF THE STATUS SEQUENCE.
1870 1880 1890 1900 1910 1920 1920 1930 1940 1950 1950 1960 1970 2000 2010 2020 2030 2040 2050	ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTER VER (IN PR LDA AND JMP LDA JSFC DIR SFC SFC SFC SFC SFC SFC SFC LDA SFC LDA SFC LDA	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B =40B =40B =164 Error_exit * R6 Status1 * R6 Status1 * R6 Status2 * R6 Status3 * R6	IS AL	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MADE IT, SO DISABLE MY INTERRUPTS FOR THE REST OF THE STATUS SEQUENCE.
1870 1880 1890 1900 1910 1920 1920 1930 1940 1950 1950 1960 1970 2000 2010 2020 2030 2040 2050	ISOURCE ISOURCE	! THE ONLY (! THIS HOWE' ! TRANSFER : ! Hpib_status	ALTER VER (IN PR LDA AND JSA JSA JSA JSA SFC LDA SFC SFC SFC SFC SFC SFC SFC SFC SFC SFC	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B =40B =40B =164 Error_exit * R6 Status1 * R6 Status1 * R6 Status2 * R6 Status3 * R6	ISAN INTERNAL INTERNAL INTERNAL	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MADE IT, SO DISABLE MY INTERRUPTS FOR THE REST OF THE STATUS SEQUENCE.
1870 1870 1880 1900 1910 1920 1920 1930 1940 1950 1950 1960 1970 2000 2010 2020 2030 2040 2050	ISOURCE ISOURCE	! THE ONLY ! THIS HOWE ! TRANSFER : ! Hpib_status	ALTER VER (IN PR LDA SFC JMP JSM JSFC DIR SFC SFC SFC SFC SFC SFC SFC SFC SFC SFC	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B =40B =40B =40B =40B =40B =40B =40B =4	IS AN AMP ! ! ! ! ! !	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MADE IT, SO DISABLE MY INTERRUPTS FOR THE REST OF THE STATUS SEQUENCE.
1870 1880 1890 1900 1910 1920 1920 1930 1940 1950 1950 1970 1980 2000 2010 2020 2030 2040 2050	ISOURCE ISOURCE	! THE ONLY ! THIS HOWE ! TRANSFER : ! Hpib_status	ALTER VER (IN PR LDA SFC JMP JSMC JMP JSFC DIR SFC SFC SFC SFC SFC SFC SFC SFC SFC SFC	RNATIVE TO THIS I COULD COMPROMISE ROGRESS (FOR EXP * R5 =60B =60B =60B *+3 =164 Error_exit * R6 Status1 * R6 Status1 * R6 Status2 * R6 Status2 * R6 Status3 * R6 Status4 1	IS AN AMP ! ! ! ! ! !	TO DIR BEFORE THE LDA R5. NY SYNCHRONUS INTERRUPT PLE THE TAPE CARTRIDGE). GET THE CARD INTO IT'S STATUS SEQUENCE. MAKE SURE IT IS A 98034 YES IF NOT, GIVE ERROR 164 (THIS IS THE CRITICAL TIME) MADE IT, SO DISABLE MY INTERRUPTS FOR THE REST OF THE STATUS SEQUENCE.

Real Time Clock Example

10 PROGRAM TO DEMONSTRATE USING THE CLOCK FOR INTERRUPTS 20 ! THIS EXAMPLE SHOWS HOW TO USE THE CLOCK INTERRUPT TO PUT THE TIME 30 4A . ! OF DAY INTO THE SYSTEM MESSAGE AREA AS LONG AS THE PROGRAM IS RUNNING. 59 ! THE CLOCK IS PROGRAMMED TO GENERATE AN INTERRUPT EVERY SECOND. THE бй 70 ASSEMBLY INTERRUPT SERVICE ROUTINE TRIGGERS AN END OF LINE BRANCH. THE ! EOL BRANCH ROUTINE CALLS AN ASSEMBLY ROUTINE TO PUT THE TIME OF DAY 80 90 ! INTO THE SYSTEM MESSAGE AREA. 100 ! 110 IDELETE ALL 120 ICOM 200 130 IASSEMBLE

 140
 ICALL Setup clock
 ! SET UP ISR AND START CLOCK

 150
 ON INT #9 CALL Time
 ! SET UP EOL BRANCH

 160 ! 170 ! BACKGROUND PROGRAM: 180 ! 190 DISP I 200 I=I+1 210 GOTO 190 220 ! 230 SUB Time 240 ICALL Display_time 240ICALLDisplay_time250SUBEXIT260ISOURCEEXT Enror_exit, Printer_select, Print_string280ISOURCEEXT Isr_access290ISOURCE Eol_mask:SET 1300ISOURCE Eol_mask:SET 1310ISOURCE Eol_mask:SET 1320ISOURCE Col_mask:SET 1320ISOURCE Col_mask:SET Eol_mask*2320ISOURCE Cr:EGU 13320ISOURCE Cr:EGU 13320ISOURCE Lf:EGU 10320ISOURCE String:BSS 20320ISOURCE Old_pi:BSS 1320ISOURCE Old_pw:BSS 1320ISOURCE 0ld_pw:BSS 1320ISOURCE 0ld_pw:BSS 1320ISOURCE 1SUB320ISOURCE 2SUB320ISOURCE 1SUB321ISOURCE 2SUB322ISOURCE 2SUB</ 250 SUBEXIT 260 ISOURCE 520 530 540 550 ISOURCE Start_card: LDA =="U4H/U4=04/U4P1000/U4G"+Lf ISOURCE SAL 1 ! SET UP C TO POINT TO STRING

 ISOURCE
 STA C
 ! WHICH I WILL OUTPUT

 ISOURCE
 CBL
 ! CLOCK TO PROGRAM IT.

 ISOURCE
 LDB =-21
 ! B IS -(CHAR COUNT-1)

 ISOURCE Out_loop:
 SFC *
 ! WAIT FOR CARD

 ! WHICH I WILL OUTPUT TO THE 560 570 580

590	ISOURCE	WBC R4,I	SHOVE NEXT BYTE OUT TO CHRU
500		SINK	! IRIGGER HHNUSHHKE
610	ISOURCE	RIB Out_loop	! LOOP UNTIL DONE
620	ISOURCE	LDA =200B	! ENABLE THE CARD TO INTERRUPT
630	ISOURCE	STA R5	
640	ISOURCE	RET 1	
650	ISOURCE !		
660	ISOURCE	SUB	
670	ISOURCE Display tim	e:LDA =Select code	! FETCH TIME FROM CLOCK
680	ISOURCE	STA Pa	
690	ISOURCE	SSC Card down	I NOPSCARD WENT DOWN
700	TSALIROF	THP = P	I ONTPUT "R" TO CLOCK TO GET
710	TSOURCE	SEC +	I IT TO CIVE ME THE TIME
720	TCOUPCE	ста р <i>и</i>	v mit tingt van dit Egym i Them. I fithem tin tin Flame.
700	IOUUNUE Ioninee		
100 740			
740			
700		3FL *	
768	ISUURCE	SIH R4	
770	ISOURCE	STA R7	
780	ISOURCE	LDA =String	! SET UP C TO PUT TIME OF DAY
790	ISOURCE	SAL 1	! DATA INTO STRING
800	ISOURCE	ADA =1	
810	ISOURCE	STA C	
820	ISOURCE	CBL	
839	ISOURCE	LDA =0	! CLEAR THE STRING COUNT
840	ISOURCE	STA String	
858	TSOURCE	SFC *	UNAIT FOR CARD
960 860	TSAUDAE		I START INPUT OPERATION
900 979	ISOURCE Read loop'	STA P7	I TRICCER HANDSHAKE
000	Tenubre	CEP x	LUGIT COD CODN
000	1000RUE Teaunae	DEC X I DO DA	: WHI! FUR UNRU L CET THE NEVT BUTE
070	IBUUKUE	LUH K4	: GET THE MEAT DITE
300	ISOURCE	UPH =Ur	! IGNUKE UK 3
910	ISUURCE	JMP Read_loop	
950	ISUURCE	CPH =L+	! TERMINHIE ON LINEFEED
930	ISOURCE	JMP Got_time	
940	ISOURCE	PBC A,I	! ELSE PUT CHARACTER INTO
950	ISOURCE	ISZ String	! STRING AND BUMP COUNT
960	ISOURCE	JMP Read loop	! REPEAT
970	ISOURCE Got time:	LDA =18	! SET UP "PRINTER IS" FOR THE
980	ISOURCE	LDB =80	! MESSAGE AREA
990	ISOURCE	JSM Printer select	
1000	ISOURCE	ia bin ATS	! SAVE OLD
1010	TSOURCE	STR 01d pu	
1020	TSAUPCE	l TA =String	I NO THE POINT
1020	Tenipre	TCM Drint string	
1939	TOOLOCE	TMD Menou	I TIMP TE MEMORY OUEDELOU
1070	ICALDAE	NOD	I TENDE CTAD VEV
1000	ICONDER DESIGNATION		I DECT HEDINTED ICH
1920	ISUURUE RESCORE_p1:		KESEL TRINKER IS
1070	ISOURCE	LDR OIG_PW	
1080	ISOURCE	JSM Printer_select	
1090	ISTOKCE .	KEI 1	! RETURN TO BHSIC
1100	ISOURCE Memov:	JSM Restore_pi	! RESTORE THE PRINTER IS
1110	ISOURCE	LDA =2	! AND GIVE ERROR 2
1120	ISOURCE	JSM Error_exit	
1130	ISOURCE !		
1140	ISOURCE Isr:	LDA =0	! SIGNAL CARD THAT WE GOT THE
1150	ISOURCE	STA R5	! INTERRUPT BY DISABLING AND
1160	ISOURCE	LDA =200B	! THEN RE-ENABLING THE CARD

.

1170	ISOURCE	STA R5	
1180	ISOURCE	LDB Isr psw	! TRIGGER EOL BRANCH
1190	ISOURCE	LDA =103B	
1200	ISOURCE	STA B,I	
1210	ISOURCE	ADB =3	
1220	ISOURCE	LDA =Eol mask	
1230	ISOURCE	DIR	
1240	ISOURCE	IOR B,I	
1250	ISOURCE	STA B,I	
1260	ISOURCE	EIR	
1270	ISOURCE	RET 1	i Iche
1280	ISOURCE	END Time	

H-22 I/O Sample Programs

Appendix \mathbf{I} Demonstration Cartridge

Along with the Assembly Language Development and Execution ROMs, a tape cartridge has been provided to demonstrate the capabilities of the assembly language system. This Demonstration Cartridge (HP part number 11141-10155) is specifically intended to —

- Graphically display the kind of speed increases which can be obtained by using assembly lánguage subprograms for certain types of applications.
- Provide a number of programs which can serve as examples of how to write assembly language subprograms.¹
- Provide a set of definitions for some of the special function keys so that those keys can be used as typing aids.

Using the Tape

To run any of the demonstration programs, execute the statement —

LOAD "DEMO",1

A set of instructions is displayed which can then be followed interactively.

Typing Aids

The starting and final cursor positions of the typing aids were chosen with assembly listings in mind. The intent in selecting these positions was to make it easy to enter source as it would appear when listed within an assembly listing.

The following table gives, for each key, the typing aid, the position where the typing aid begins, and the position where the cursor will finally reside. Because some typing aids end with a blank, the triangle (Δ) has been chosen to indicate the end of the typing aid. All blanks after the start of the typing aid, and before the triangle, will appear when the key is pressed.

1 The commented source for the chess program is contained in file CHESS.

Key	Typing Aid	Typing Aid Starting Position	Final Cursor Position
0	ISOURCE A	11	31
1	ISOURCE Δ	11	19
2	ISOURCE ! A	11	21
3	(LINE) PRINT "A=: ", IMEM(A),	home	
	"B=: ",IMEM(B) ()		
4	(\underline{LINE}) LINK "" Δ	home	7 /
			7 (over second quote mark in insert character mode)
5	(LINE) CONT	home	6
6	(LINE) REWIND ":T"A	home	11 (over second quote mark in insert character mode
7	ISOURCE ! A	11	53
8		home	6 (over second quote mark in insert character mode)
9		home	7 (over second quote mark in insert character mode)
10	CLEAR SAVE ""A	home	7 (over second quote mark in insert character mode)
11	CLAR STORE ""A	home	8 (over second quote mark in insert character mode)
12	$(LIAR)$ EDIT Δ	home	6
13		home	6 (over second quote mark in insert character mode)
14	$(LIAR)$ LIST Δ	home	6
15	$(LIAR)$ SCRATCH Δ	home	9
16	(LAR) PRINTER IS Δ	home	12
17	$(LEAR)$ PRINTALL IS Δ	home	13
18	$(LINE)$ IBREAK Δ	home	8
19	(INF) IPAUSE Δ	home	8
20	$(LINE)$ IASSEMBLE Δ	home	11
21	(used by other keys)		
22	(used by other keys)		
23	! Δ	51	53
24	(LINE) MASS STORAGE IS "" Δ	home	18 (over second quote mark in insert character mode)
25	BIN (use only after using keys 9 or 11)	current — 1	current + 4 (over second quote mark in insert character mode)

Key	Typing Aid	Typing Aid Starting Position	Final Cursor Position
26	$RE - \left(\underbrace{F}_{x} \right)$ (use before keys 10 or 11)	home	
27	KEY (use only after using Keys 9 or 11)	current — 1	current + 4 (over second quote mark in insert character mode)
28	ŧΤΔ	current	current + 2
29	:FΔ	current	current + 2
30		home	8 (over second quote mark in insert character mode)
31	CLEAR CREATE "" A	home	9 (over second quote mark in insert character mode)

I-4 Demonstration Cartridge

Appendix J Error Messages

Mainframe Errors

	Missing ROM or configuration error. Also, check to see if all option ROMs are installed properly.
2	Memory overflow; subprogram larger than block of memory. Also check to see if your arrays are too large to fit in memory.
3	Line not found or not in current program segment. Check the spelling of line labels and line identifiers.
큭	Improper return. Branched into the middle of a subroutine.
5	Abnormal program termination; no END or STOP statement.
6	Improper FOR/NEXT matching.
7	Undefined function or subroutine. Check spellings.
8	Improper parameter matching. Check the parameter lists in SUB and CALL, and DEF FN and FN statements to see if they match in number and type.
9	Improper number of parameters. Check the number of arguments used in an FN or CALL reference.
10	String value required.
11	Numeric value required.
12	Attempt to redeclare variable. Once a variable name has been declared in a DIM, COM, REAL, SHORT or INTEGER statement, it can't be redeclared in that program segment.
13	Array dimensions not specified. You must dimension the array, either explicitly or implicitly.
***** ****	Multiple OPTION BASE statements or OPTION BASE statement preceded by variable declarative statements.
15	Invalid bounds on array dimension or string length in DIM, COM, REAL, SHORT or INTEGER statement. Strings can't be longer than 32 767 characters. The range of array subscripts is -32 767 through 32 767.

16	Dimensions are improper or inconsistent; more than 32 767 elements in an array. Check for wrong number of subscripts in an array reference. Check any matrix multiplication for proper sizes.
17	Subscript out of range.
18	Substring out of range or string too long. Check substring specifiers against length of string.
19	Improper value. Check numbers being entered, especially their exponents.
20	Integer precision overflow. The range is -32768 through 32767.
21	Short precision overflow. Short-precision numbers have six significant digits and an exponent in the range -63 through 63.
22	Real precision overflow. Full-precision numbers have twelve significant digits and an exponent in the range -99 through 99.
23	Intermediate result overflow.
24	TAN (n $\star \pi/2$), when n is odd
25	Magnitude of argument of ASN or ACS is greater than 1.
26	Zero to negative power.
27	Negative base to non-integer power.
28	LOG or LGT of negative number.
29	LOG or LGT of zero.
30	SQR of negative number.
31	Division by zero; or X MOD Y with $Y = 0$.
32	String does not represent valid number or string response when numeric data required. Check any use of VAL function and its argument. Check for correct spelling of variable name.
33	Improper argument for NUM, CHR\$, or RPT\$ function.
34	Referenced line is not IMAGE statement. Check the line identifier in the PRINT USING statement.
35	Improper format string.
36	Out of DATA. Make sure READ and DATA statements correspond. Use RE-

STORE if appropriate.

37	EDIT string longer than 160 characters. Try using a substring.
38	$\rm I/O$ function not allowed. TYP and other $\rm I/O$ functions aren't allowed in any $\rm I/O$ statement like DISP or PRINT. Place the value into a variable.
39	Function subprogram not allowed. An FN reference isn't allowed in any $\rm I/O$ statement, or in redim subscripts. Place the value into a variable.
40	Improper replace, delete or REN command. SUB and DEF FN can only be replaced by another SUB or DEF FN. They can only be deleted if the rest of the corresponding subprogram is deleted. A renumbering may cause out-of- range line numbers if completed, so an error occurs; check increment value.
41	First line number greater than second.
42	Attempt to replace or delete a busy line or subprogram. Typically, this is caused by trying to delete an input statement that is still requesting values.
43	Matrix not square. The dimensions of an identity matrix or of one used to find an inverse or determinant must be the same size.
44	Illegal operand in matrix transpose or matrix multiply. The result matrix can't be one of the operands.
45	Nested keyboard entry statements.
46	No binary in memory for STORE BIN or no program in memory for SAVE. Check line numbers in SAVE against program in memory.
47	Subprogram COM declaration is not consistent with main program. Check number, type and dimensions of variables.
48	Recursion in single-line DEF FN function. Only subprograms can be called recursively.
49	Line specified in ON declaration not found.
50	File number less than 1 or greater than 10.
	File not currently assigned. Execute an ASSIGN statement for the file, or check the accuracy of the file number used.
52	Improper mass storage unit specifier. Check the values of the select code, unit code and controller address.
53	Improper file name. A file name can have 1-6 characters and can't contain a

J-4 Error Messages

50	Improper file name. A file name can have 1-6 characters and can't contain a colon, quote mark, NULL or CHR\$(255).
54	Duplicate file name. Choose another name or PURGE the old one.
55	Directory overflow. There is a maximum number of files that a mass storage medium can hold. A file will have to be removed to add another.
56	File name is undefined. Check the spelling.
57	Mass Storage ROM is missing. Check to see that the ROM is installed properly.
58	Improper file type. Use LOAD for PROG files, ASSIGN and GET on DATA files and LOADKEY for KEYS files.
59	Physical or logical end-of-file found. Attempting to READ# or PRINT# past the end of the file. Compare the data list to the file size.
60	Physical or logical end-of-record found in random mode. Compare the data list to the record size.
61	Defined record size is too small for data item. You can either PURGE and RE-CREATE the file with longer records or regroup the data being recorded.
62	File is protected or wrong protect code specified. Check to see that the protect code is included and spelled properly.
63	The number of physical records is greater than 32 767. That's the limit; use something smaller.
64	Medium overflow (out of user storage space). A file can't be set up because there isn't enough space. Use another medium or purge unwanted files.
65	Incorrect data type. You can't use GET on a DATA file that doesn't contain a program. Use TYP to find out what kind of data the computer is trying to be read.
66	Excessive rejected tracks during a mass storage initialization. The medium can't be initialized. If the medium is a flexible disk, use a different one. If the medium is a hard disc, call your HP Sales and Service Office for assistance, to determine whether there has been a hardware failure.
67	Mass storage parameter less than or equal to 0. Check values of variables. Record numbers, record lengths and number of defined records must be posi- tive numbers.

68	Invalid line number in GET or LINK operation. Check line numbers. May be trying to LINK to file that doesn't contain a program.
69	Format switch on the disc off. Turn it on.
70	Not a disc interface. Check mass storage unit specifier.
71	Disc interface power off. Turn it on.
72	Incorrect controller address, controller power off, or disc time out. Check mass storage unit specifier; make sure controller is on.
73	Incorrect device type in mass storage unit specifer.
74	Drive missing or power off.
75	Disc system error, type I ¹ .
76	Incorrect unit code in mass storage unit specifier.
77	Disc system error, type II ¹ .
78–79	Reserved for future use.
80	Cartridge out or door open. Also check to see if interface is connected prop- erly.
81	Mass storage device failure. Possible power failure.
82	Mass storage device not present. Check mass storage unit specifier.
83	Write protected. Check the write-protection device on the medium or drive.
84	Record not found. There is a bad spot on the medium.
85	Mass storage medium is not initialized.
86	Not a compatible tape cartridge.
87	Record address error; information can't be read. Hardware failure. Check for a dirty read head.
88	Read data error. Hardware failure. Check for a dirty read head.
89	Check read error.
90	Mass storage system error.
91-99	Reserved for future use.
+ 66	Itom in print using list is string but image specifier is numeric

J-6 Error Messages

101	Item in print using list is numeric but image specifier is string.
182	Numeric field specifier wider than printer width.
183	Item in print using list has no corresponding image specifier.
104	ON KBD or TOPEN not allowed in subprogram.
105-109	Reserved for future use.
110	Plotter type specification not recognized. Check spelling of "GRAPHICS", "9872A" or "INCREMENTAL".
111	Plotter has not been specified. Check select codes.
112	No graphics hardware installed in the System 45B.
113	LIMIT specifications out of range.
114	98036 card improperly configured.
115	TDISP not allowed unless peripheral keyboard active.
116	TOPEN is active on another select code.
117-149	Reserved for future use.
150	Improper select code.
151	A negative select code was specified that does not match present bus address- ing.
152	Parity error.
153	Either insufficient input data to satisfy enter list, attempt to ENTER from source into source or enter count exhausted without linefeed.
154	Integer overflow, or ENTER count greater than 32 767 bytes or 16 383 words.
155	Invalid interface register number. (Can only specify 4-7.)
156	Improper expression type in READIO, WRITEIO, or STATUS list.
157	No linefeed was found to satify $\%$ ENTER image specifier, or no linefeed record delimiter was found in 512 characters of input.
158	Improper image specifier or nesting image specifiers more than 4 levels deep.
159	Numeric data was not received for numeric enter list item.
160	Repetition of input character more than 32 768 times.

161	Attempted to create CONVERT table or EOL sequence for source or destina-
	tion variable which is locally defined in a subprogram.

- 162 Attempted to delete a nonexistent CONVERT table or EOL sequence.
- 163 I/O error, such as interface card not present, device timeout, interface or peripheral failure (Interface FLAG line=0.), stop key pressed or improper interface card type.
- 164 Transfer type specified is incorrect type for interface card.
- A FHS or DMA transfer with no format specifies a count that exceeds th size of the variable, or an image specifier indicates more characters than will fit in the specified variable.
- A NOFORMAT FHS or DMA type transfer does not start on an odd numbered character position, such as A\$[3].
- 167 Interface status error, TRL Character or an EOI was received on an HP-IB Interface before ENTER list or image specification was satisfied.
- 168–183 Reserved for future use.
- 184 Improper argument for OCTAL or DECIMAL function or assembled location.
- 185 Break Table overflow.
- 186 Undefined BASIC label or subprogram name used in IBREAK statement.
- 187 Attempt to write into protected memory; or, attempt to execute instruction not in ICOM region.
- Label used in an assembled location not found.
- 189 Doubly-defined entry point or routine.
- 190 Missing ICOM statement.
- 191 Module not found.
- 192 Errors in assembly.
- Attempt to move or delete module containing an active interrupt service routine.
- 194 IDUMP specification too large. Resulting dump would be more than 32 768 elements.
- **Routine not found**.

J-8 Error Messages

196	Unsatisfied externals.
197	Missing COM statement.
198	BASIC's common area does not correspond to assembly module require- ments.
199	Insufficient number of BASIC COM items.
200-206	Reserved for future use.
207	Binaries not allowed in LOAD SUB file. Do LOAD, SAVE, SCRATCH A, GET and STORE on the file to get rid of binaries. However, the loaded program may not run after the binaries are removed.
208	Volume not mounted. Mount it and execute a VOLUME DEVICES ARE state- ment.
209	Operation not allowed on tape. Only the BKUP file used in DBBACKUP and DBRECOVER is allowed on tape.
210	Bad status array. It must be defined as integer precision with ≥ 10 elements. Check spelling and current size.
211	Improper data base specified or data base not open. Improper name, or per- forming data base operation with invalid name.
212	Data set not found. Check set name or number and make sure it is on the volume specified in the schema.
213	Reserved for future use.
214	Data base requires creation. Perform a DBCREATE.
215-217	Reserved for future use.
218	Volume name not part of data base. Check spelling.
219	Out of available memory for a DBOPEN, DBBACKUP or DBRECOVER. Out of read/write memory if executed from main program. Out of special area if executed from subprogram, so perform the DBOPEN in the main program.
220	Improper or illegal use of maintenance word. Check spelling and leading or trailing blanks.
221	Data set not created.
222	Reserved for future use.

223	Improper backup file. In DBRECOVER, backup file has incorrect information in header or no primary DBBACKUP/RECOVER currently in progress (for secondary operation).
224	Incomplete backup file. More than one volume in backup; probably mounted in the wrong order. Start the recovery over.
225	Improper utility version number in root file. Rerun Schema Processor to generate new root file.
226	Corrupt data base — must purge and redefine. Purge root file and run Schema Processor.
227	Corrupt data base — all sets require erasure.
228	Data sets cannot be re-created without root file.
229	Operation not allowed while DBOPEN current. Perform a DBCLOSE mode 1.
230	Improper set list in DBBACKUP, DBCREATE, DBERASE, DBPURGE or dup- licate sets in the set list.
231-232	Reserved for future use.
233	Required data set root file not mounted. Mount it and perform a VOLUME DEVICES ARE.
234	Referenced line not a PACKFMT statement. Make sure line identifier is correct and that it references a PACKFMT statement.
235	Reserved for future use.
236	Insufficient length in a PACK statement, or insufficient current length in an UNPACK. Insufficient length in a DBBACKUP or DBRECOVER statement.
237	List length $> 32~767$ in PACK or UNPACK. Array in PACKFMT too large. Make sure it is the correct variable; redimension if necessary.
238	Numeric conversion error. Improper real number found. Check PACKFMT to make sure a REAL or SHORT variable, not INTEGER is being unpacked.
239	UNPACK requires a source string of greater length.
240-329	Reserved for future use.
300	CCOM area not allocated

J-10 Error Messages

302	CMODEL statement required
303	Not allowed when trace is active
304	Too many characters in CWRITE
305	New CCOM size not allowed when channel is active
386	98046 card failure
307	Insufficient CCOM allocation
308	Illegal character in CWRITE of non-TRANSPARENT data
309	Not allowed for this CMODEL
310	CCONNECT statement required
311	Not allowed while Data Comm is suspended
312	Improper CSTATUS array
313-329	Reserved for future use.
330	Lexical table size exceeds array size.
331	Improper pointer array*.
332	Non-existent dimension specified in MAT REORDER.
333	Pointer array contains out-of-range subscript value.
334	Pointer array length does not equal number of records.
335	Pointer array is not one-dimensioned.
336	Number of records (plus twice the number of secondary keys plus twice the number of substrings) exceeds 16 383.
337	Subscript extends beyond dimensioned maximum length.
338	Subscript out-of-range in key specifier.
339	Starting location is an out-of-range subscript value.
340	Lexical table is too small to include all characters.
341	Main lexical table length plus mode section length does not equal specified table length.

^{*} This error occurs when data is lost in the process of reordering the array. If this error does not occur, it does not necessarily imply that the pointer array contains a permutation.

- 342 Array is not one-dimensioned or is not integer.
- 343 Lexical mode section pointer out-of-range.
- Carteria Control Contr
- 900–999 Reserved for user.

System Error octal number; octal number

This error indicates a malfunction in the machine's firmware system. Contact your Sales and Service Office.

I/O Device Errors

Two error messages can occur when attempting to direct an operation to an I/O device that is not ready for use. A printer which is out of paper or no device at a specifed select code are examples. The first message that appears is –

```
I/O ERROR ON SELECT CODE select code
```

If the condition is not corrected, the machine beeps intermittently and the following message replaces the first -

```
I/O TIMEOUT ON SELECT CODE select code
```

The I/O device can be made usable by correcting the error (loading paper, or changing the select code, for example), then executing the READY# command -

```
READY# select code
```

This command readies the I/O device and the operation which was attempted is attempted again. The select code must be specified by an integer.

If you get an I/O error on select code 0 and the printer is not out of paper, call your Sales and Service Office.

In some cases, such as an interface which is not connected, READY# for that select code may not solve the I/O error. In this case, STOP should be pressed to regain control of the computer. Be sure to turn the power off before inserting an interface. After the problem is remedied, the operation or program can be tried again.

If you get an I/O error and you have an ON KBD statement in effect, you must press STOP to gain control of the computer. Otherwise, the READY# command will be trapped by ON KBD.

CSTATUS Element 0 Errors

10	Timeout before connection
11	Clear to Send line false or missing clock
100	Channel MEMLIMIT overflow
101	Illegal protocol from remote
102	Input buffer overflow
183	Internal buffer overflow
194	Autodisconnect forced
105	RETRIES count exceeded
186	NOACTIVITY timeout
200	98046 buffer overflow

Assembly-Time Errors

DD	Doubly-defined label
EH	END instruction missing; or module name does not match.
ΕX	Expression evaluation error.
LT	Literal pools full or out of range.
MO	ICOM region overflow.
RN	Operand out of range.
SQ	Argument declaration pseudo-instruction out of sequence.
TP	Incorrect type of operand used.
UN	Undefined symbol.

IMAGE Status Errors

The following are possible values and meanings of the condition word (first element of the status array). After an error, the status array is as follows -

Element	Description
1	Condition word is non-zero
2-4	No change
5	DBOPEN mode
6	Statement identification number
7	Program line number
8	0
9	Value of the mode parameter
10	Integer-for system use only

Each statement has an identification number.

Number	Statement
401	DBOPEN
402	DBINFO
403	DBCLOSE
404	DBFIND
405	DBGET
406	DBUPDATE
407	DBPUT
408	DBDELETE

Condition

Word Value	Error Description
0	Successful execution – no error
	Improper data base name; already have read/write access to the data base
-10	You may not open additional data bases; five are already opened
-11	Bad data base name or preceding blanks missing. Don't change the first two characters. Data base may not be open.
-14	DBPUT, DBDELETE and DBUPDATE not allowed in DBOPEN mode 8
-21	Bad password – grants access to nothing or not to that set. Check spelling. Data item, data set, or volume nonexistent or inaccessible. Check spelling and DBOPEN password. Volume references must be numeric for DBINFO.

-22	Detail data set required
-23	You lack write access to this data set
-24	DBPUT or DBUPDATE not allowed on Automatic Master. Check correctness of set reference.
-31	Improper mode in data base statement. DBGET mode 5 bad — specified data set lacks chains
-52	Item specified is not an accessible key item in the specified set. Bad @ parameter – must be " \mathbb{B} ; " or " \mathbb{B} " or " \mathbb{B} ".
-74	Root file name in disc directory and name in root file are different. Make sure root file not moved or renamed.
-91	Root file version not compatible with current IMAGE $/45$ statements. Incorrect version of Schema Processor used.
-92	Data base requires creation
-94	Data or structure information lost. Data base must be erased or redefined.
-95	Cannot DBOPEN while a DBBACKUP or DBRECOVER is going on.
11	End of file on serial DBGET; no entries following the current record.
12	Negative record number on directed DBGET. Check record number and spel- ling.
13	Record number greater than capacity on directed DBGET. Check record number and spelling.
15	End of chain encountered
16	The data set is full
17	No current record or the current record is empty; make sure that a current record is defined for this set. There is no chain for the key item value. There is no entry with the specified key value
18	Broken chain. Must UNLOAD the data base.
수민	DBUPDATE will not alter a key item. Make sure correct key item values are in the correct places in the buffer string.
43	Duplicate key item value in master not allowed.

44	Can't delete a Master entry with non-empty detail chains
50	Buffer string is too small for requested data. Redimension if necessary.
53	Argument parameter type incompatible with key field type (DBGET, mode 7 or DBFIND) or current length of string argument is less than the string length of the key item value.
80	Data set's volume is not on line; or set not created.
94	Corrupt data base successfully opened in mode 8
İxx	There is no chain head for path xx
Зхх	The automatic master for path xx is full
₫XX	The master data set for path xx is not on-line (Applies to DBPUT and DBDE- LETE for detail data sets)
500	Root file volume isn't mounted.
5xx	Needed volume on-line; created data set xx isn't there

J-16 Error Messages

Appendix K Maintenance

Maintenance Agreements

Service is an important factor when you buy Hewlett-Packard equipment. If you are to get maximum use from your equipment, it must be in good working order. An HP Maintenance Agreement is the best way to keep your equipment in optimum running condition.

Consider these important advantages -

- Fixed Cost The cost is the same regardless of the number of calls, so it is a figure that you can budget.
- Priority Service Your Maintenance Agreement assures that you receive priority treatment, within an agreed-upon response time.
- On-Site Service There is no need to package your equipment and return it to HP. Fast and efficient modular replacement at your location saves you both time and money.
- A Complete Package A single charge covers labor, parts, and transportation.
- Regular Maintenance Periodic visits are included, per factory recommendations, to keep your equipment in optimum operating condition.
- Individualized Agreements Each Maintenance Agreement is tailored to support your equipment configuration and your requirements.

After considering these advantages, we are sure you will see that a Maintenance Agreement is an important and cost-effective investment.

For more information, please contact your local HP Sales and Service Office.

K-2 Maintenance

Appendix L 9835/9845 Compatibility

System 35 and System 45 assembly language programs are for the most part source code compatible. The exceptions to this are noted below. For example, a GET command can be used by a System 45 to retrieve source code which has been SAVE'd on a System 35, and vice versa. However, object code files (ILOAD, ISTORE) are not compatible.

The following items specify the differences between the two assembly language systems.

- 1. The following 9835/9845 differences affect source code compatibility
 - The 9845 has 9 Base page temporaries; the 9835 has 50.
 - The absolute addresses of the routines within the Rel_math utility are different, and must be changed between the 9845 and the 9835.
 - The 9845 has two fewer return stack entries than the 9835.
 - The Get_info utility returns additional information when used with the 9845. The number of words returned depends upon the memory size of the machine used
 - 33 words for machines over 256K
 - 36 words for machines over 320K
 - 39 words for machines over 384K

Additional space for this information may need to be reserved in assembly language programs which are moved to larger machines.

- The Isr_flag link is not needed in the code that notifies BASIC of an interrupt, on the 9845. This link is used only in the 9835 code, and should be removed from any code run on the 9845.
- The keyboards of the 9845 and 9835 differ. Keyboard and printer register operations differ also. (See the Assembly Language Quick Reference manual.)
- 2. The 9845 has two additional utilities, To_system and Print_no_lf.
- 3. The LINES option to the IASSEMBLE statement has been expanded on the 9845 to include a negative line number. If a negative number is used, no additional carriage-return, linefeed characters are sent after each module has been printed. Of course, if the EJECT option has been specified, a formfeed character is sent after each page.

- 4. The 9845 allows symbolic debugging (e.g., IDUMP Test) of all ENT and SUB symbols, regardless of whether they appear in assembled code or in ILOAD'ed code. The 9835 allows symbolic debugging only if the symbols appear in assembled code which is in its original, unmoved position in the ICOM region.
- 5. IOF and ION have been added as pseudo-instructions in the 9845 Assembly Language. They are used to control the automatic setting of indirect bits in generated code.
- 6. Rel to sho returns 0 or an error number in the A register, for the 9845.

Note that two processors are used in the 9845 and one is used in the 9835. (For non-ISR assembly language code, the two 9845 processors function together as a single unit to maintain compatibility with the 9835.) The advantages of two processors are -

- Overlapped I/O (in the OVERLAP mode) can in some cases bring about speed enhancements.
- An ISR (interrupt service routine) can be executed simultaneously with a BASIC program.

Subject Index

a

AAR 3:18 ;B:1,12–14
Abortive access
ABR 3:18 ;B:1,12–14
ABS function
Absolute expression
Absolute location
Access:
abortive
asynchronous 7·11 27
7.10-13
sunchronous 7.11
Accumulators
General 3 .2 19 13 18.4.24.F.1
$\begin{array}{c} \text{Oeneral} \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
MCS function 5.22
ACS Iuliciioii
ADR
ADD
Addition:
General
BCD 5:9,10
integer 5:1,2,3
Address, machine 4:34
Addressing:
General 3:11
indirect 3:12 ;7:18–21
Alphanumeric raster 10:2
AND:
instruction 3:19 ;B:1,12-14
operation 5:23
ANY 6:6 ,24;C:1
Arguments:
changing values of 6:18
passing from BASIC 6:3,12
system information about 6:7,8
Arithmetic:
General
BCD 3:23-25; 5: 1,8
integer $5:1,2-6$
utilities
Arrays:
changing values in
identifiers 6:26.27
obtaining information on
retrieving elements from 6:14.15
retrieving substrings from 6.16.17
system information about 6:7

ASC declaration 8:15;D:3
ASCII character set A:1-3
ASMB file-type 2:13 ,16,18
ASN function
Assembled location 1:5;D:1
Assembling process 4:13
Assembly:
conditional, defined 1:5
Execution and Development ROM 1:1
Execution ROM 1:1
ASSIGN
Asynchronous access 7:11 ,27
ATN function 5:23

b

B, defined	L:7
Backplane	1,2
Base page 3:6 ,	11
BASIC:	
General 2:2 -7;6:18;8	3:7
assembly language	
extensions 2:8; D:1	-4
assembly source entry	2:9
branching on interrupts7:	27
calling assembly language	2:1
common 6:	23
comparison of expressions 4:	32
comparison of operators	33
drivers	2:3
end-of-line branches	7:8
labels	1,5
passing variables	l:6
relation to assembly language4	l :1
routines 8:8	3,9
subprograms 7:32 ,40;8:9,12,	13
variables:	
General 6:18 ;8	3:8
structure 3	3:8
BCD:	
General 3:9;	5:7
addition 5:9,	10
arithmetic	L, 8
division 3:25; 5:15 -	21

Math group	3: 10, 23 -25
multiplication3	:25; 5:13 -15
normalization	. 3:23; 5:8 ,12
registers	5:7,8
rounding	5:12
subtraction	5:9-10
Beep signal	7:53
BIN declaration	8:15 ;D:3
Binary Processor Chip (BPC) .	3:1,2
Bit patterns and timings, maching	ne
instructions	B:12
Blank lines, in listings	4: 16, 18
Blind parameters	6:6
Boolean operations	3:19
Booth's algorithm	3:13 ;B:4
Braces (in syntax), explained .	1:7
Brackets (in syntax), explained	
Branch group	3: 10, 14
Branching:	
Branching: General	
Branching: General end-of-line	
Branching: General end-of-line interrupt, prioritizing	3:14 7:8 7:30,31
Branching: General end-of-line interrupt, prioritizing on interrupts	
Branching: General end-of-line interrupt, prioritizing on interrupts Break points	
Branching: General end-of-line interrupt, prioritizing on interrupts Break points BSS	
Branching: General end-of-line interrupt, prioritizing on interrupts Break points BSS	
Branching: General end-of-line interrupt, prioritizing on interrupts Break points BSS	
Branching: General end-of-line interrupt, prioritizing on interrupts Break points BSS Busffers, device Bus, I/O Bus cycles, I/O	
Branching: General end-of-line interrupt, prioritizing Break points BSS Busffers, device Bus, I/O Bus cycles, I/O Busy bits	
Branching: General end-of-line interrupt, prioritizing Break points BSS Bus, I/O Bus cycles, I/O Busy bits Busy utility	
Branching: General end-of-line interrupt, prioritizing Break points BSS Busffers, device Bus, I/O Busy vits Busy utility Buzzwords	
Branching: General end-of-line interrupt, prioritizing on interrupts Break points BSS Buffers, device Bus, I/O Bus cycles, I/O Busy bits Busy utility Buzzwords Bytes:	
Branching: General end-of-line on interrupt, prioritizing Break points BSS Bus, I/O Bus, I/O Busy bits Busy utility Busy utility Buzzwords Bytes: General	
Branching: General end-of-line on interrupt, prioritizing Break points BSS Bus, I/O Bus, I/O Busy bits Busy utility Busy utility Busy utility Bytes: General definition	
Branching: General end-of-line interrupt, prioritizing Break points BSS Bus, I/O Bus, I/O Busy bits Busy utility Buzzwords Bytes: General pointers	

С

CALL	
CBL	3:20-22;B:2,12-14
CBU	3:22 ;B:2,12-14
CDC	. 3:25;5:9;B:2,12-14
CLA	3:19 ;B:2,12-14
CLB	3:19 ;B:2,12–14
Clearing full words	
Clock times	B:13
CLR	3:12 ;B:2,12-14
СМА	3:19 ;B:2,12–14
СМВ	3:19 ;B:2,12–14
СМХ	3:24;5:10;B:2,12-14

СМУ	3:25;5:10;B:2,12-14
Code:	
object	2:1 -3,6-8,13;4:7,13
source	2:1 -6;4:3-6,13
COM:	
pseudo-instruct	ion 4:12; 6:24 ;C:1
statement	2:14; 6: 9, 23 -25
Commands:	
EDIT	
SCRATCH A	
SCRATCH C	
Comments, in asser	nbly source
Common	
Compatibility, 9835	√9845 L:1,2
Complement:	
one's	
ten's	
two's	3: 8,9, 13 ;5:2
Conditional assemb	ly:
General	
definition	
flags	
Control codes, grap	hics 10:5-7,11
Control of indirection	on
Control registers	
COS function	
СРА	3:15 ;B:2,12-14
СРВ	3:15 ;B:2,12-14
Current page	
Cursor operations .	
Cursor types	
~.	,

d

DAT	
Data:	
generators	
locations	8:11,12
structures	3:8,9
types	
DBL	3:22 ;B:2,12-14
DBU	3:22 ;B:2,12-14
DDR	3:26 ;B:2,12-14
Debugging 2:1,2	2;4:15,19,23; 8:1 -22
DEC declaration	
DECIMAL 2:10;	5:23;8:1,17-19;D:1
Decimal Carry flag	3:23,25;8:20
Declarations:	
ANY	6:6 ,24;C:1
ASC	
BIN	

DEC	8:15 ;D:3
FIL	6:4 .24:C:1
HEX	8:15 D.3
INT	6.4 24.C.1
OCT	9.15 .D.2
DEI	6:15 ;D:5
REL	0:4 ,24;C:2
SHU	6:4 ,24;C:2
SIR	. 6:4 ,5,24;C:2
Defined record	
Demonstration cartridge	1:2;2:8; I:1
Device buffers	7:33 –35,38
DIR 3:26 ;4:	37;B:2,12-14
Direct memory access (DMA)	:
General 3:26; 7: 1,	10-13,22-26
lockout time	B:14
registers	4·24· 7·22
timings	B·13 14
transførs	7.23-26
DISABI F	7.33
DIV function	E.92
Division:	
Division:	0.05 5.15 01
BCD	3:25;5:15-21
integer	
DMA instruction 3:26 ;7:	23;B:2,12-14
DMA string input example	
program	\dots H:12-15
DMA string output example	
program	H:10–12
Dot matrix, explained	
DROUND	
DRS	24 ;B:3,12-14
DSZ	16 :B:3.12-14
Dumps	8.14
r- · · · · · · · · · · · · · · · ·	

e

ERRM\$ 9:4
ERRN 5:23;9:4
Error exit utility
Error labels 1:2
Errors:
assembly-time
complete listing $\ldots J:1-15$
mainframe
messages:
General
assembly-time 9:8 ,9;J:12
run-time
IMAGE status J:13-15
I/O device J:11
processing 9:1-4
run-time
syntax-time
EXE 3:27 ;B:3,12–14
EXIT GRAPHICS 10:2
EXOR 5:23
EXP function 5:23
Expressions:
General 4:31 -33;8:31
absolute 4:31,32
octal, defined 1:6
relocatable 4:31
type of result
EXT 4: 12, 33 ,34,37;C:1
Extend flag 3:13 ,15-17;7:17;8:20
Extended Math Chip (EMC) 3:1,2
External 4:33

f

FDV 3:25 ;5:17–19;B:3,12–1	4
File marke $7.47.6$: I 1 Q
Files:	PO
ASMB-type 2:13 ,16,1	8
descriptor 7:39,4	łO
names 2:1	1
OPRM-type 2:13 ,16,1	8
Flag line	,6
Flags:	
Conditional assembly	20
Decimal Carry 3:23 ,25;8:2	20
Extend 3:13 ,15-17;7:17;8:2	20
Overflow 3:13 ,15-17;7:17;8:2	20
FMP 3:25 ;5:13-15;B:3,12-1	4
FRACT 5:2	23
Full-precision numbers 3:9 ;4:25;7:4	ł5

Functions:

ABS 5:23
ACS 5:23
ASN 5:23
ATN 5:23
COS
DECIMAL 2:10;5:23;8:1,17-19;D:1
DIV
DROUND 5:23
ERRL 5:23;9:4
ERRM\$
ERRN 5:23;9:4
EXP 5:23
FRACT 5:23
IADR 2:10;5:23;8:1,17,19;D:1
IMEM 2:10;5:23; 8: 1,17, 19 ,20;D:3
INT 5:23
LGT 5:23
LOG
OCTAL 2:10;5:23; 8: 1,17, 18 ,19;D:4
PI 5:23
PROUND 5:23
RES 5:23
RND
SGN 5:23
SIN 5:23
SQR 5:23
TAN 5:23
TYP 5:23
FXA 3:25 ;5:12;B:3,12–14

g

Get_bytes utility 4:38;6:12,15,16,24;F:1
Get_elem_bytes
utility
Get element utility 4:38;6:12,14,15,24;F:1
Get_file_info utility 4:38; 7:40 ,41;F:1
Get_info utility 4:38;6:8-12,24;F:1
Get_value utility 4:38; 6:12 ,13,24;F:1
Glossary 1:5–7
GRAPHICS 10:2
Graphics:
comprehensive example 10:25
cursors 10:22,23
displaying 10:2,3
exiting 10:2,3
memory 10:3,4
operations 10:5-27
operations, general algorithm 10:6
option 10:1

raster 10:2,3
select code 10:1
Graphics hardware, checking for $\dots 10.5$
Groups:
BCD Math 3:10,23-25
Branch
I/O
Integer Math
Load/Store
Logical
Miscellaneous
Shift/Rotate
Stack
Test/Alter/Branch 3:10,16,17
Test / Branch 3:10,15
,

h

Handshake string input example	
program	H:3,4
Handshake string output exampl	e
program	H:1,2
HED	4:18,19;C:1
HEX declaration	8:15;D:3
HP-IB output/input drivers exar	mple
program	H:15-18

i

IADR 2:	10;5:23; 8: 1,17, 19 ;D:1
IASSEMBLE	2:6,10; 4:13 ,19,23;D:2
IASSEMBLE ALL	
IBREAK 2	2:10;3:7; 8: 1, 7 -11;D:2
IBREAK ALL	
IBREAK DATA	
ICALL 2:6,10,1	13;3:7;4:34; 6:1 -6;D:2
ICHANGE	2:10; 8: 1, 21 ;D:3
ICOM	2: 6,10, 13 –16;D:3
ICOM region 2:13	-18;3:4;4:8,23,34;6:2
IDELETE	2: 10,13,15, 17 ;D:3
IDELETE ALL	2: 15, 17 ;4:23;D:3
IDUMP	2:10; 8: 1, 14 ,15;D:3
IF conditional	
IFA	
IFB	
IFC	
IFD	
IFE	
IFF	

IFG	1
FH	1
IFP	1
LOAD	3
MEM	3
Indirect addressing:	
General	3
in ISRs 7:18-2	1
Indirection, control of 4: 13, 2	2
INORMAL	4
Input cycle, explained 3:	1
1/0:	
bus 3:20	6
bus cycles 3:1 ,11;8:2	1
expediting 7:53,54	4
group 3: 10, 2	6
interrupt 7: 1, 7 -2	1
operations, relation to busy	
bits 6:26-29	9
programmed	1
registers 3:2;4:24; 7:2 ,	3
sample programs H:1-2	1
Input-Output Controller (IOC) 3:1,5	2
Instructions:	
individual execution of8:	3
machine:	
General 3:10 -27;B:1-14	4
AAR 3:18 ;B:1,12–14	4
ABR 3:18 ;B:1,12-14	4
ADA 3:13 ;5:2;B:1,12-14	4
ADB 3:13 ;5:2;B:1,12-14	4
AND 3:19 ;B:1,12–14	4
arithmetic5:	7
CBL 3:20 -22;B:2,12-14	4
CBU 3:22 ;B:2,12–14	4
CDC 3:25 ;5:9;B:2,12–14	4
CLA 3:19 ;B:2,12–14	4
CLB 3:19 ;B:2,12–14	1
CLR 3:12 ;B:2,12–14	1
CMA 3:19 ;B:2,12–14	1
CMB 3:19 ;B:2,12–14	4
CMX	4
CMY $3:25;5:10;B:2,12-14$	4
CPA 3:15 ;B:2,12–14	4
CPB 3:15 ;B:2,12–14	4
DBL 3:22;B:2,12-14	4
DBU 3:22 ;B:2,12–14	4
DDK 3:26 ;B:2,12-14	4
DIR $3:26;4:37;B:2,12-14$	4
DMA	1 1
DKS 3:24 ;B:3,12-14	4
DSZ	+

EIR	3:26 ;4:37;B:3,12-14
EQU	4: 12, 26 ,28;C:1
EXE	3:27 ;B:3,12–14
FDV	3:25 ;5:17–19;B:3,12–14
FMP	3:25 ;5:13-15;B:3,12-14
FXA	3:25 ;5:12;B:3,12-14
groups	
IOR	3:19 ;B:4,12–14
ISZ	3:16 ;B:4,12–14
JMP	3:14 ;B:4,12–14
JSM	3: 6, 14 ;6:9;B:4,12–14
LDA	3:12 ,27;B:4,12-14
LDB	3:12-4;B:4,12-14
MLY	3:24 ;5:18;B:4,12-14
MPY	3:13 ;B:4,12–14
MRX	. 3:23 ;5:11,12;B:5,12-14
MRY	. 3:24;5:11,12;B:5,12-14
MWA	3:25 ;5:13;B:5,12-14
NOP	
NRM	3:24 ;5:12;B:5,12-14
operands	
PBC	3: 21, 22 ;B:6,12–14
PBD	3: 21, 22 ;B:6,12-14
PWC	3: 20, 22 : B:6, 12-14
PWD	3: 20, 22 :B:6,12–14
RAL	3:18 ;B:6,12–14
RAR	3:18 ;B:6,12–14
RBL	3:18 :B:6.12-14
RBR	3:18 :B:7.12-14
RET	2:5: 3: 6. 14 :6:2:B:7.12-14
RIA	3:15 :B:7.12-14
RIB	3:15 :B:7.12-14
RLA	3:17 :B:7.12–14
RLB	3:17 :B:7.12–14
RZA	3:15 :B:7.12–14
RZB	3:15 :B:7.12–14
SAL	3:18 :B:7.12–14
SAM	3:16 :B:7 12–14
SAP	3:16 :B:7 12–14
SAR	3: 11 18 :B:8 12–14
SBL	3.18 B·8 12–14
SBM	3.16 ·B·8 12–14
SBP	3:16 ·B·8 12–14
SBR	3:18 :5:15:B:8.12-14
SDC	3:25 :B:8 12-14
SDI	3.26 .7.22.B.8 12–14
SDO	3:26 :7:22:B:8.12-14
SDS	3:25 :5:9:B·8 12–14
SEC	3:17 :B·8 12–14
SES	3:17 ·B·8 12–14
SFC	3:26 :7.5.B.9 12–14
SFS	3:26 :7:5:B:9.12–14

SHC	3:15 ;B:9,12–14
SHS	3:15 ;B:9,12–14
SIA	3:15 ;B:9,12–14
SIB	3:15 ;B:9,12–14
SLA	3:16 ;B:9,12–14
SLB	3:16 ;B:9,12–14
SOC	3:17 ;B:9,12–14
SOS	3:17 ;B:10,12–14
SSC	3:26 :7:5:B:10.12-14
SSS	3:26 :7:5:B:10.12-14
STA	3:12 :B:10.12-14
STB	3:12 :B:10 12–14
SZA	3:15 :B:10 12-14
SZB	3.15 ·B·10 12–14
TCA	3.13 .5.2 B·10 12-14
TCR	3.13.5.2; B.10,12-14
WRC	3.91 22 B 11 12 14
	3.91 22.B.11,12 14
	3.90 22.B.11,12 - 14
WWC	9.90 99.P.11 19 14
	9.19 ,4.20,P.11,12-14
	. 3:12 ;4:29; D :11,12-14
patching	
processor	
pseudo-:	4.0.0.1.0
General	
ANY	6:6 ,24;C:1
BSS	
СОМ	
DAT	
END	2: 5, 11 ,12;4:7,12;C:1
ENT	
EQU	
EXT	4: 12, 33 ,34,37;C:1
HED	
IFA	
IFB	
IFC	
IFD	
IFE	
IFF	4:20 ;C:1
IFG	
IFH	
IFP	
LIT	
LST	
NAM	2:5,11; 4:7 ,12;C:2
non-listable	
REP	
SET	4:27 :C:2
SKP	
SPC	
SUB	2:5;4:12; 6:2 ,3;C:2

XIF 4:20,21;C:2 repeating 4:12 INT: declaration 6:4,24;C:1 function 5:23 Int_to_rel utility 4:38;5:26;F:1 INTEGER 3:8 Integer: addition addition 5:1,2,3 arithmetic 5:1,2,-6 multi-word 5:5,6 division 5:1,3,4 subtraction 5:1,3 Integer Math group 3:10,13 Integers: General General 3:8;5:2,24,25;6:8 octal 4:10 structure 3:8;5:2 Interfaces: General General 7:2,4,22 98032 (GPIO) 7:3,16,22;G:1-14 98033 (BCD) H:3,4,7-9 98034 (HP-IB) H:15-18 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-9 Interrupt I/O 7:1-21 Interrupt string output example program general 2:15;3:7;7:7-10 called from BASIC 7:27-33 definition 1:6 </th <th>UNL 4:15,19;C:2</th>	UNL 4:15 ,19;C:2
repeating 4:12 INT: declaration 6:4,24;C:1 function 5:23 Int_to_rel utility 4:38;5:26;F:1 INTEGER 3:8 Integer: addition addition 5:1,2,3 arithmetic 5:1,2,3 arithmetic 5:1,2,4 arithmetic 5:1,2,6 division 5:4,5 multiplication 5:1,3,4 subtraction 5:1,3 Integer Math group 3:10,13 Integers: General 4:10 structure 3:8;5:2,24,25;6:8 octal octal 4:10 structure structure 3:8;5:2 Interfaces: General 7:2,4,22 98032 (GPIO) 98033 (BCD) H:3,4,7-9 98034 (HP-IB) 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-4,19,20 98036 (Serial) H:1-9 Interrupt I/O 7:1-21 Interrupt drom BASIC 7:27-33 definition 1:6 linkage 7:9,10,30 <td>XIF</td>	XIF
INT: declaration	repeating
declaration 6:4,24;C:1 function 5:23 Int_to_rel utility 4:38;5:26;F:1 INTEGER 3:8 Integer: addition addition 5:1,2,3 arithmetic 5:1,2,-6 multi-word 5:5,6 division 5:1,2,-6 multiplication 5:1,3,4 subtraction 5:1,3 Integer Math group 3:10,13 Integers: General 4:10 structure 3:8;5:2,24,25;6:8 octal octal 4:10 structure 3:8;5:2 Interfaces: General 7:2,4,22 98032 (GPIO) 7:3,16,22;G:1-14 98033 (BCD) 98033 (BCD) H:3,4,7-9 98034 (HP-IB) H:1-4,19,20 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-4,19,20 98036 (Serial) H:1-4,19,20 98036 (Serial) H:1-4,19,20 98036 (Serial) H:1-7,77.7-10 called from BASIC 7:27,-33 definition 1:6 linkage 7:9,	INT:
function 5:23 Int_to_rel utility 4:38;5:26;F:1 INTEGER 3:8 Integer: addition 5:1,2,3 arithmetic 5:1,2,6 multi-word 5:5,6 division 5:1,3,4 subtraction 5:1,3 Integer Math group 3:10,13 Integers: General 3:8;5:2,24,25;6:8 octal 4:10 structure 3:8;5:2 Interfaces: General 7:2,4,22 98032 (GPIO) 7:3,16,22;G:1-14 98033 (BCD) H:3,4,7-9 98034 (HP-IB) H:15-18 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-4,19,20 98036 (Serial) H:1-9 Interrupt I/O 7:1-21 Interrupt service routines: General General 7:27-33 definition 1:6 linkage 7:9,10,30 reserved symbols 4:24,25 state in 7:17 Interrupt string input example program program H:5-7	declaration 6:4 ,24;C:1
Int_to_rel utility $4:38;5:26;F:1$ INTEGER $3:8$ Integer: addition $5:1,2,3$ arithmetic $5:1,2,3$ arithmetic $5:1,2,-6$ multi-word $5:5,6$ division $5:1,3,4$ subtraction $5:1,3,3,4$ subtraction $5:1,3,3,4$ Integer Math group $3:10,13$ Integers: General $3:8;5:2,24,25;6:8$ octal $4:10$ structure $3:8;5:2$ Interfaces: General $7:2,4,22$ 98032 (GPIO) $7:3,16,22;G:1-14$ 98033 (BCD) $H:3,4,7-9$ 98033 (BCD) $H:3,4,7-9$ 98034 (HP-IB) $H:1-4,19,20$ 98035 (Clock) $H:1-4,19,20$ 98036 (Serial) $H:1-9$ Interrupt I/O $7:1-21$ Interrupt I/O $7:2,7-33$ definition $1:6$ linkage $7:9,10,30$ reserved symbols $4:24,25$ state in $7:17$ Interrupt string output example program $H:5-7$ Interrupt string output example $p:0,20$	function
INTEGER 3:8 Integer : addition 5:1,2,3 arithmetic 5:1,2,-6 multi-word 5:5,6 division 5:1,3,4 subtraction 5:1,3 Integer Math group 3:10,13 Integers: General 3:8;5:2,24,25;6:8 octal 4:10 structure 3:8;5:2 general 7:2,4,22 98032 (GPIO) 7:3,16,22;G:1-14 98033 (BCD) H:3,4,7-9 98034 (HP-IB) H:15-18 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-4,19,20 98036 (Serial) H:1-9 Interrupt I/O 7:1-21 Interrupt service routines: General General 2:15;3:7;7:7-10 called from BASIC 7:27-33 definition 1:6 linkage 7:9,10,30 reserved symbols 4:24,25 state in 7:17 Interrupt string output example program program H:5-7 Interrupt string output example program	Int to rel utility 4:38; 5:26 ;F:1
Integer : addition 5:1,2,3 arithmetic 5:1,2,-6 multi-word 5:5,6 division 5:4,5 multiplication 5:1,3,4 subtraction 5:1,3 Integer Math group 3:10,13 Integers: General 3:8;5:2,24,25;6:8 octal 4:10 structure 3:8;5:2 Interfaces: General 7:2,4,22 98032 (GPIO) 7:3,16,22;G:1-14 98033 (BCD) H:3,4,7-9 98034 (HP-IB) H:15-18 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-4,19,20 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-7-91 Interrupt I/O 7:1-21 Interrupt service routines: General General 2:15;3:7;7:7-10 called from BASIC 7:27-33 definition 1:6 linkage 7:9,10,30 reserved symbols 4:24,25 state in 7:17 Interrupt string output example program program </td <td>INTEGER</td>	INTEGER
addition 5:1,2,3 arithmetic 5:1,2,-6 multi-word 5:5,6 division 5:4,5 multiplication 5:1,3,4 subtraction 5:1,3 Integer Math group 3:10,13 Integers: General 5:2,24,25;6:8 octal 4:10 structure 3:8;5:2,24,22;6:1 general 7:2,4,22 98032 (GPIO) 7:3,16,22;G:1-14 98033 (BCD) H:3,4,7-9 98034 (HP-IB) H:15-18 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-4,19,20 98036 (Serial) H:1-9 Interrupt I/O 7:1-21 Interrupt service routines: General General 2:15;3:7;7:7-10 called from BASIC 7:27-33 definition 1:6 linkage 7:9,10,30 reserved symbols 4:24,25 state in 7:17 Interrupt string output example program program H:5-7 Interrupt string output example program	Integer:
arithmetic $5:1,2-6$ multi-word $5:5,6$ division $5:4,5$ multiplication $5:1,3,4$ subtraction $5:1,3,2,5,2$ Interfaces: $General, 7:2,4,22,9$ 98034 (HP -IB) H:3,4,7-9 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-4,19,20 <td< td=""><td>addition 5:1,2,3</td></td<>	addition 5: 1, 2 ,3
multi-word 5:5,6 division 5:4,5 multiplication 5:1,3,4 subtraction 5:1,3 Integer Math group 3:10,13 Integer Math group 3:10,13 Integer Math group 3:10,13 Integers: General 3:8;5:2,24,25;6:8 octal 4:10 structure 3:8;5:2 Interfaces: General 7:2,4,22 98032 (GPIO) 7:3,16,22;G:1-14 98033 (BCD) H:3,4,7-9 98034 (HP-IB) H:15-18 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-9 Interrupt I/O 7:1-21 Interrupt service routines: General General 2:15;3:7;7:7-10 called from BASIC 7:27-33 definition 1:6 linkage 7:9,10,30 reserved symbols 4:24,25 state in 7:17 Interrupt string output example program program H:5-7 Interrupts disabling 7:19,20 execution time<	arithmetic 5: 1, 2 -6
division 5:4,5 multiplication 5:1,3,4 subtraction 5:1,3 Integer Math group 3:10,13 Integers: General 3:8;5:2,24,25;6:8 octal 4:10 structure 3:8;5:2 Interfaces: General 7:2,4,22 98032 (GPIO) 7:3,16,22;G:1-14 98033 (BCD) H:3,4,7-9 98034 (HP-IB) H:15-18 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-9 Interrupt I/O 7:1-21 Interrupt service routines: General General 2:15;3:7;7:7-10 called from BASIC 7:27-33 definition 1:6 linkage 7:9,10,30 reserved symbols 4:24,25 state in 7:17 Interrupt string input example program program H:5-7 Interrupts disabling 7:19,20 execution time B:13 lockout time B:13 lockout time B:13 related machine instructions 3:26 <	multi-word 5:5,6
multiplication5:1,3,4subtraction5:1,3Integer Math group3:10,13Integers:GeneralGeneral3:8;5:2,24,25;6:8octal4:10structure3:8;5:2Interfaces:GeneralGeneral7:2,4,2298032 (GPIO)7:3,16,22;G:1-1498033 (BCD)H:3,4,7-998034 (HP-IB)H:15-1898035 (Clock)H:1-4,19,2098036 (Serial)H:1-9Interrupt I/O7:1-21Interrupt service routines:GeneralGeneral2:15;3:7;7:7-10called from BASIC7:27-33definition1:6linkage7:9,10,30reserved symbols4:24,25state in7:17Interrupt string input exampleprogramH:5-7Interrupt string output exampleprogramH:5-7Interrupts:disablingdisabling7:15,16enabling3:26signalling7:28,29IOF4:13,22;C:1ION4:13,22;C:1ION4:13,22;C:1ION4:13,22;C:1ION4:13,22;C:1ION4:13,22;C:1ION4:13,22;C:1IOR3:19;B:4,12-14IPAUSE OFF2:10;8:1,7;D:4	division
subtraction 5:1,3 Integer Math group 3:10,13 Integers: General 3:8;5:2,24,25;6:8 octal 4:10 structure 3:8;5:2 Interfaces: General 7:2,4,22 98032 (GPIO) 7:3,16,22;G:1-14 98033 (BCD) H:3,4,7-9 98034 (HP-IB) H:15-18 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-9 Interrupt I/O 7:1-21 Interrupt service routines: General General 2:15;3:7;7:7-10 called from BASIC 7:27-33 definition 1:6 linkage 7:9,10,30 reserved symbols 4:24,25 state in 7:17 Interrupt string input example program program H:5-7 Interrupts disabling 7:15,16 enabling 7:19,20 execution time B:13 lockout time 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1	multiplication 5: 1, 3 ,4
Integer Math group $3:10,13$ Integers: General $3:8;5:2,24,25;6:8$ octalStructure $3:8;5:2$ Interfaces: General $7:2,4,22$ 98032 (GPIO) $7:3,16,22;G:1-14$ 98033 (BCD) $7:3,16,22;G:1-14$ 98033 (BCD) 98034 (HP-IB) $H:3,4,7-9$ 98034 (HP-IB) 98035 (Clock) $H:1-4,19,20$ 98036 (Serial) 98036 (Serial) $H:1-9$ Interrupt I/O $7:1-21$ Interrupt service routines: General $2:15;3:7;7:7-10$ called from BASIC $7:27-33$ definition $1:6$ linkageInkage $7:9,10,30$ reserved symbols $4:24,25$ state in $4:24,25$ state in $7:7$ Interrupt string input example programprogram $H:7-9$ Interrupt string output example programprogram $H:5-7$ Interrupts: disabling $7:15,16$ enablingenabling $7:19,20$ execution timeexecution time $B:13$ lockout time $10Ckout time$ $3:19;B:4,12-14$ IPAUSE OFF $2:10;8:1,7;D:4$	subtraction 5: 1, 3
Integers: General $3:8;5:2,24,25;6:8$ octal 4:10 structure $3:8;5:2$ Interfaces: General $7:2,4,22$ 98032 (GPIO) $7:3,16,22;G:1-14$ 98033 (BCD) $H:3,4,7-9$ 98034 (HP-IB) H:15-18 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-9 Interrupt I/O $7:1-21$ Interrupt service routines: General General $2:15;3:7;7:7-10$ called from BASIC $7:27-33$ definition 1:6 linkage $7:9,10,30$ reserved symbols $4:24,25$ state in $7:17$ Interrupt string input example program program H:5-7 Interrupt string output example program program $7:19,20$ execution time $8:13$ lockout time $8:13$ related machine instructions $3:26$ signalling $7:28,29$ IOF $4:13,22;C:1$ ION $4:13,22;C:1$ <td< td=""><td>Integer Math group 3:10,13</td></td<>	Integer Math group 3:10,13
General $3:8;5:2,24,25;6:8$ octal $4:10$ structure $3:8;5:2$ Interfaces:GeneralGeneral $7:2,4,22$ 98032 (GPIO) $7:3,16,22;G:1-14$ 98033 (BCD) $H:3,4,7-9$ 98034 (HP-IB) $H:15-18$ 98035 (Clock) $H:1-4,19,20$ 98036 (Serial) $H:1-9$ Interrupt I/O $7:1-21$ Interrupt service routines:GeneralGeneral $2:15;3:7;7:7-10$ called from BASIC $7:27-33$ definition $1:6$ linkage $7:9,10,30$ reserved symbols $4:24,25$ state in $7:17$ Interrupt string input exampleprogram $H:7-9$ Interrupt string output exampleprogram $H:5-7$ Interrupts:disabling $7:15,16$ enabling $3:26$ signalling $7:28,29$ IOF $4:13,22;C:1$ ION $4:13,22;C:1$ ION $4:13,22;C:1$ IOR $3:19;B:4,12-14$ IPAUSE OFF $2:10;8:1,7;D:4$	Integers:
octal 4:10 structure 3:8;5:2 Interfaces: General General 7:2,4,22 98032 (GPIO) 7:3,16,22;G:1-14 98033 (BCD) H:3,4,7-9 98034 (HP-IB) H:15-18 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-9 Interrupt I/O 7:1-21 Interrupt service routines: General General 2:15;3:7;7-10 called from BASIC 7:27-33 definition 1:6 linkage 7:9,10,30 reserved symbols 4:24,25 state in 7:17 Interrupt string input example program program H:5-7 Interrupt string output example program program H:5-7 Interrupts: disabling 7:15,16 enabling 7:19,20 execution time B:13 lockout time B:13 lockout time S:13 related machine instructions 3:26 signalling 7:28,29	General 3:8 ;5:2,24,25;6:8
structure3:8;5:2Interfaces:General7:2,4,2298032 (GPIO)7:3,16,22;G:1-1498033 (BCD)H:3,4,7-998034 (HP-IB)H:15-1898035 (Clock)H:1-4,19,2098036 (Serial)H:1-4,19,2098036 (Serial)H:1-4,19,2098036 (Serial)H:1-9Interrupt I/O7:1-21Interrupt service routines:General2:15;3:7;7:7-10called from BASIC7:27-33definition1:6linkage7:9,10,30reserved symbols4:24,25state in7:17Interrupt string input exampleprogramH:5-7Interrupt string output exampleprogramH:5-7Interrupt string output exampleprogramH:5-7Interrupts:disabling7:15,16enabling7:19,20execution timeB:13lockout timeB:13Iokout timeB:13Iokout timeB:1	octal
Interfaces: General 7:2,4,22 98032 (GPIO) 7:3,16,22;G:1-14 98033 (BCD) H:3,4,7-9 98034 (HP-IB) H:15-18 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-4,19,20 98036 (Serial) H:1-9 Interrupt I/O 7:1-21 Interrupt service routines: General General 2:15;3:7;7:7-10 called from BASIC 7:27-33 definition 1:6 linkage 7:9,10,30 reserved symbols 4:24,25 state in 7:17 Interrupt string input example program program H:5-7 Interrupt string output example program program H:5-7 Interrupt string output example program program H:5-7 Interrupts: disabling disabling 7:15,16 enabling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14	structure
General7:2,4,22 98032 (GPIO)7:3,16,22;G:1-14 98033 (BCD) $H:3,4,7-9$ 98034 (HP-IB) $H:15-18$ 98035 (Clock) $H:1-4,19,20$ 98036 (Serial) $H:1-4,19,20$ 98036 (Serial) $H:1-9$ Interrupt I/O $7:1-21$ Interrupt service routines:GeneralGeneral $2:15;3:7;7:7-10$ called from BASIC $7:27-33$ definition1:6linkage $7:9,10,30$ reserved symbols $4:24,25$ state in $7:17$ Interrupt string input exampleprogram $H:7-9$ Interrupt string output exampleprogram $H:5-7$ Interrupts:disabling $7:15,16$ enabling $7:19,20$ execution time $B:13$ lockout time $B:13$ related machine instructions $3:26$ signalling $7:28,29$ IOF $4:13,22;C:1$ ION $4:13,22;C:1$ IOR $3:19;B:4,12-14$ IPAUSE OFF $2:10;8:1,7;D:4$	Interfaces:
98032 (GPIO) $7:3,16,22;G:1-14$ 98033 (BCD) $H:3,4,7-9$ 98034 (HP-IB) $H:15-18$ 98035 (Clock) $H:1-4,19,20$ 98036 (Serial) $H:1-4,19,20$ 98036 (Serial) $H:1-4,19,20$ 98036 (Serial) $H:1-4,19,20$ 98036 (Serial) $H:1-9$ Interrupt I/O $7:1-21$ Interrupt service routines: General $2:15;3:7;7:7-10$ called from BASIC $7:27-33$ definition $1:6$ linkage $1:6$ linkage $7:9,10,30$ reserved symbols $4:24,25$ state in $7:17$ Interrupt string input example program $H:7-9$ Interrupt string output example program program $H:5-7$ Interrupts: disabling $7:15,16$ enabling $7:19,20$ execution time $p:13$ lockout time $8:13$ $related$ machine instructions $3:26$ $signalling$ $7:28,29$ IOF $4:13,22;C:1$ <t< td=""><td>General 7:2,4,22</td></t<>	General 7:2 ,4,22
98033 (BCD) H:3,4,7-9 98034 (HP-IB) H:15-18 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-4,19,20 98036 (Serial) H:1-9 Interrupt I/O 7:1-21 Interrupt service routines: General General 2:15;3:7;7:7-10 called from BASIC 7:27-33 definition 1:6 linkage 7:9,10,30 reserved symbols 4:24,25 state in 7:17 Interrupt string input example program program H:7-9 Interrupt string output example program program H:5-7 Interrupts: disabling disabling 7:15,16 enabling 7:19,20 execution time B:13 lockout time B:13 related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	98032 (GPIO) 7:3 ,16,22;G:1–14
98034 (HP - IB) H:15-18 98035 (Clock) H:1-4,19,20 98036 (Serial) H:1-9 Interrupt I/O 7:1-21 Interrupt service routines: General General 2:15;3:7;7:7-10 called from BASIC 7:27-33 definition 1:6 linkage 7:9,10,30 reserved symbols 4:24,25 state in 7:17 Interrupt string input example program program H:7-9 Interrupt string output example program program H:5-7 Interrupts: disabling disabling 7:15,16 enabling 7:19,20 execution time B:13 lockout time B:13 lockout time 3:13 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	98033 (BCD) H:3 ,4,7–9
98035 (Clock) $H:1-4,19,20$ 98036 (Serial) $H:1-9$ Interrupt I/O $7:1-21$ Interrupt service routines: $7:1-21$ Interrupt service routines: $7:1-21$ Interrupt service routines: $7:1-21$ Interrupt service routines: $7:1-21$ Interrupt service routines: $7:27-33$ definition $1:6$ linkage $7:27-33$ definition $1:6$ linkage $7:27-33$ definition $1:6$ linkage $7:27-33$ definition $1:6$ linkage $7:27-33$ definition $1:6$ linkage $7:27-33$ definition $1:6$ linkage $7:27-33$ definition $1:6$ linkage $7:27-33$ definition $1:6$ linkage $7:27-33$ definition $1:6$ program $H:7-9$ Interrupt string output example program program $7:15,16$ enabling <td>98034 (HP–IB) H:15–18</td>	98034 (HP–IB) H:15–18
98036 (Serial) $H:1-9$ Interrupt I/O $7:1-21$ Interrupt service routines:General $2:15;3:7;7:7-10$ called from BASIC $7:27-33$ definition $1:6$ linkage $7:9,10,30$ reserved symbols $4:24,25$ state in $7:17$ Interrupt string input exampleprogram $H:7-9$ Interrupt string output exampleprogram $H:5-7$ Interrupts:disabling $7:15,16$ enabling $7:19,20$ execution time $B:13$ lockout time $B:13$ related machine instructions $3:26$ signalling $7:28,29$ IOF $4:13,22;C:1$ ION $4:13,22;C:1$ IOR $3:19;B:4,12-14$ IPAUSE OFF $2:10;8:1,7;D:4$	98035 (Clock) H:1-4,19,20
Interrupt I/O $7:1-21$ Interrupt service routines:GeneralGeneral $2:15;3:7;7:7-10$ called from BASIC $7:27-33$ definition1:6linkage $7:9,10,30$ reserved symbols $4:24,25$ state in $7:17$ Interrupt string input exampleprogram $H:7-9$ Interrupt string output exampleprogram $H:5-7$ Interrupts:disabling $7:15,16$ enabling $7:19,20$ execution time $B:13$ lockout time $B:13$ related machine instructions $3:26$ signalling $7:28,29$ IOF $4:13,22;C:1$ ION $4:13,22;C:1$ IOR $3:19;B:4,12-14$ IPAUSE OFF $2:10;8:1,7;D:4$	98036 (Serial)
Interrupt service routines:General $2:15;3:7;7:7-10$ called from BASIC $7:27-33$ definition $1:6$ linkage $7:9,10,30$ reserved symbols $4:24,25$ state in $7:17$ Interrupt string input exampleprogram $H:7-9$ Interrupt string output exampleprogram $H:5-7$ Interrupts:disabling $7:15,16$ enabling $7:19,20$ execution time $B:13$ lockout time $B:13$ related machine instructions $3:26$ signalling $7:28,29$ IOF $4:13,22;C:1$ ION $4:13,22;C:1$ IOR $3:19;B:4,12-14$ IPAUSE OFF $2:10;8:1,7;D:4$	Interrupt I/O 7:1–21
General 2:15;3:7;7:7-10 called from BASIC 7:27-33 definition 1:6 linkage 7:9,10,30 reserved symbols 4:24,25 state in 7:17 Interrupt string input example program program H:7-9 Interrupt string output example program program H:5-7 Interrupts: disabling disabling 7:15,16 enabling 7:19,20 execution time B:13 lockout time B:13 related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	Interrupt service routines:
called from BASIC	General
definition 1:6 linkage 7:9,10,30 reserved symbols 4:24,25 state in 7:17 Interrupt string input example program program H:7-9 Interrupt string output example program program H:5-7 Interrupts: disabling disabling 7:15,16 enabling 7:19,20 execution time B:13 lockout time B:13 related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	called from BASIC 7:27–33
linkage 7:9,10,30 reserved symbols 4:24,25 state in 7:17 Interrupt string input example program program H:7-9 Interrupt string output example program program H:5-7 Interrupts: disabling disabling 7:15,16 enabling 7:19,20 execution time B:13 lockout time B:13 related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	definition 1:6
reserved symbols	linkage 7:9 ,10,30
state in 7:17 Interrupt string input example program program H:7-9 Interrupt string output example program program H:5-7 Interrupts: disabling disabling 7:15,16 enabling 7:19,20 execution time B:13 lockout time B:13 related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	reserved symbols 4:24,25
Interrupt string input example program H:7-9 Interrupt string output example program H:5-7 Interrupts: disabling disabling 7:15,16 enabling 7:19,20 execution time B:13 lockout time B:13 related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	state in
program H:7-9 Interrupt string output example program program H:5-7 Interrupts: disabling disabling 7:15,16 enabling 7:19,20 execution time B:13 lockout time B:13 related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	Interrupt string input example
Interrupt string output example program H:5-7 Interrupts: disabling disabling 7:15,16 enabling 7:19,20 execution time B:13 lockout time B:13 related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	program H:7-9
program H:5-7 Interrupts: disabling disabling 7:15,16 enabling 7:19,20 execution time B:13 lockout time B:13 related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	Interrupt string output example
Interrupts: disabling 7:15,16 enabling 7:19,20 execution time B:13 lockout time B:13 related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	program H:5-7
disabling 7:15,16 enabling 7:19,20 execution time B:13 lockout time B:13 related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	Interrupts:
enabling 7:19,20 execution time B:13 lockout time B:13 related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	disabling
execution time B:13 lockout time B:13 related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	enabling
Iockout time B:13 related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	execution time
related machine instructions 3:26 signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	lockout time B:13
signalling 7:28,29 IOF 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	related machine instructions 3:26
ION 4:13,22;C:1 ION 4:13,22;C:1 IOR 3:19;B:4,12-14 IPAUSE OFF 2:10;8:1,7;D:4	signalling
IOR	IOI
IPAUSE OFF	ION
IF AUGL OFF	IDALISE OFE 9.10.0.1 7.D.4
IPALISE ON $2.10.2.1 \text{ A}_{-}7.1.1$	IPAUSE ON 2.10,0:1,7,D:4
ISOURCE	ISOURCE
ISR, defined	1:6
--------------------	--
Isr access utility	4:38; 7:13 ,14,15;F:1
ISTORE	2: 7,10,13, 17 ,18;4:7;D:4
ISTORE ALL	2:18 ;D:4
ISZ	3:16 ;B:4,12–14

j

JMP	3:14 ;B:4,12–14
JSM	3: 6, 14 ;6:9;B:4,12–14

1

Labels:

assembly language	4:3–6
BASIC	4: 1, 2, 4,5
LDA 3:12,2	27;B:4,12-14
LDB	12 ;B:4,12–14
LGT function	
Line drawing	10:27
Line drawing routine, Demons	tration
	10:27-30
blank in listings	4.16 10
Elag	2.26.7.4 E 6
Flag	. 3:20; 7: 4, 3 ,0
I INES option IASSEMBLE	. 3:20;7:4,3,0
statement	1.13 16.D.9
I IST option IASSEMBLE	. 4:13,10,D.2
statement	1.13 11.D.9
	. 4: 13, 14 ,D:2
Conoral	4.14 15
dimontinuos	1.12، 4:14,13 1.12
	1.20 .C.1
Literals:	4:30 ,0.1
General	1.97 98
as data gaparators	<i>1</i> .10 م
as units generators	4.10 <i>1</i> .97 A
form of	4.97 .D.4
nesting	4.28.29
nonsensical use of	4.29.30
pools	4:27 .30
Load/Store group	3 ·10 12
Lockout times	B:14
LOG function	
Logical:	
record	7:43
group	3: 10, 19
operations	3:19
LST	. 4:14 ,19;C:1

m

Machine address	
Machine architecture	3:1-7
Machine instructions 3:10-	-27;B:1-14
Maintenance agreements	K:1
Mantissa shifting	3:23.24
Manual:	
Assembly Development ROM	1 1.2
Assembly Execution BOM	1.2
Assembly Language Quick	
Reference	1.2.7.10
BASIC Language Interfacing	··· 1.2,8.19
Concepts	1.9. 7.1 9
concepts	1.2
Mana stars set	
Mass storage:	9.9 19. 7.99
Deservice (MCD)	2:2,12;7:33
Descriptor (MSD)	
reading from	
Transfer Identifier (MSTID)	/:34,35
unit specifier (msus)	1:6;7:34
writing to	/:37-39
MASS STORAGE IS	1:6;7:33,34
MAX	
Memory:	
General	
dumps	8:14
general organization	
graphics	10:3,4
map	3:3 ,5;E:2
protected	3:6; 8: 12, 22
read/write	1:1
reserved	1:1 ;3:4,6
MIN	5:23
Miscellaneous group, machine	
instructions	3:10,27
MLY	3:B:4.12-14
Mm read start utility 4:38:	7:33-35:F:1
Mm read xfer utility 4:38:7:3	3-35.36:F:1
Mm_write_start utility_4:38:7:	33. 37 .38:F:1
Mm_write_test utility . 4:38:7:	33. 38 .39:F:1
MOD operation	
Modules	
General	2:16
creation	2·11· 4·7
definition	2.3
namos	2.11 12.4.16
object	1.6 .4.7 Q
rassambly	, ۲.1,0, ۲ . ۲. ۲. ۵ ۸.92
	1.7.1.7 Q 12
source	1.1 , 4 .7,0,10 9.19.1.0
Slorage	2:12;4:0 9.12.1 19 14
MFY 3:13	D ; D :4,12-14

MRX	3:23 ;5:11,12;B:5,12–14
MRY	3:24 ;5:11,12;B:5,12-14
Multiplication:	
BCD	
integer	5: 1, 3 ,4
MWA	3:25 ;5:13;B:5,12-14

n

NAM	2:5,11; 4:7 ,12;C:2
Names, module	2:11 ,12;4:16
Nesting subroutine calls	s 3:6,7
NOP	3:27;B:5,12-14
Normalization	····· 5:8,12
NOT operation	
NRM 3	B:24;5:12;B:5,12-14
Numbers:	
full-precision	3:9 ;4:35;7:45
integer precision	3:8 ;7:45
octal	1:6
short-precision	3:9 ;4:35;7:45

Object:

•	
code 2:1 -3,6-8,13;4:7,13	3
modules 1:6 ;4:7,5	8
DCT declaration	3
OCTAL 2:10;5:23;8:1,17,18,19;D:	4
Octal expression, defined1:	6
OFF INT	3
ON ERROR	4
ON INT	2
One's complement	9
Operands	0
Derating system	0
Operations:	
AND 5:2	3
EXOR 5:2	3
Logical 3:1	9
MOD 5:2	3
NOT	3
OR 5:2	3
Order of 4:3	3
OPRM file-type 2:13 ,16,1	8
OR	3
Output cycle, explained3:	1
Overflow condition, integer arithmetic 5:2,	3
Overflow flag 3:13 ,15-17;7:17;8:2	0
Overlap mode6:2	7

p

Page:
base 3:6 ;B:13
current 3:6 ;B:13
definition
end control
format, listings
headings. listings
length. listings
Parameters:
blind
in SUB pseudo-instruction
Pausing
PBC 3: 21. 22 :B:6.12–14
PBD
Physical record
РІ 5:23
Pixel $1:7;10:1,3,4,7-10$
Pixels, writing individual 10:7–10
Pointers, stack
Pools, literal
Predefined symbols 4:24 ,25;E:1
Print_no_lf utility 4:38; 7: 48, 52 ,53;F:1
Print_string
utility
Printer_select utility 4:38; 7:49 ,50;F:1
Priorities, for select codes
Processors:
General 3:1,2
Binary Processor Chip (BPC) 3:1,2
bus
Extended Math Chip (EMC) 3:1,2
Input-Output Controller (IOC) 3:1,2
instructions 3:1
Programmed I/O
Programs:
assembly language, developing 2:1,2
counter
counter, map 3:3
creation
definition 2:3
entry 2:8 ,9;4:1
stepping 8:22
Protected memory 3:6; 8: 12, 22
PROUND
Pseudo-instructions 4:3;C:1,2
Put bytes utility 4:38;6:18,20,21,24;F:1
Put elem bytes
utility
Put element utility 4:38;6:18,19,20,24;F:1
Put file info utility 4:38;7:41,42;F:1
Put_value utility 4:38;6:18,19,24;F:1

PWC								3: 20, 22 ;B:6,12-14
PWD				•				3:20,22;B:6,12-14

r

RAI	3.18 ·B·6 12-14
	3.19 , D : 0 , 12 14 3.19 , B : 6 12 - 14
DAN	3.10 , D .0, 1 2 – 1 4
nasiei.	10.9
graphics	
RBL	3:18 ;B:6,12-14
RBR	3:18 ;B:6,12–14
Read busy bit	
Real time clock example	program H:19-21
Record boundaries	
Record types	7:43
Reading full words	10:18–21
REDIM	6:12
Registers:	
General	
arithmetic	4:24;5:15-17;E:1
BCD	5:7,8
control	
DMA	
DMA, map	
external	
I/O	
internal	3:2
internal man	3.3
man	2.2
Poripharal Address (E	7.9 / 10
relipitetal Address (r	a) 7:3 ,4,10 7.17
preservation by ISKS	2.20
STACK	
	B:13,14
REL	6:4 ,24;C:2
Rel_math utility	4:38;5 :21 -24;F:1
Rel_to_int utility	. 4:38; 5:24 ,25;F:1
Rel_to_sho utility	. 4:38; 5:25 ,26;F:1
Relocatable expression .	4:31,32
Relocatable location	3:11 ;4:22
Relocation	
REP	
RES function	
RET 2:5; 3: 6	14;6:2;B:7,12-14
RETURN	
RIA	3:15;B:7.12-14
RIB	3:15;B:7.12-14
RLA	3:17 :B:7.12-14
RLB	3:17 :B:7.12–14
RND function	5:23

ROMs:
Assembly Execution 1:1,3
Assembly Execution and
Development 1:1 ,3,4
Graphics 10:1
installation1:3,4
requirements of others 2:14
Rotation 3:18 ;B:6,7
Routines:
BASIC 8:8,9
definition
names 2:11,12
RZA 3:15 ;B:7,12–14
RZB 3:15;B:7,12–14

S

SAL	3:18 ;B:7,12–14
SAM	3:16 ;B:7,12–14
SAP	3:16 ;B:7,12–14
SAR	. 3: 11, 18 ;B:8,12–14
SBL	3:18 ;B:8,12–14
SBM	3:16 ;B:8,12–14
SBP	3:16 ;B:8,12–14
SBR	3:18 ;5:15;B:8,12-14
SCRATCH A	
SCRATCH C	
SDC	3:25 ;B:8,12–14
SDI	3:26 ;7:22;B:8,12-14
SDO	3:26 ;7;22;B:8,12-14
SDS	3:25 :5:9:B:8.12-14
SEC	3:17 :B:8,12–14
Select code, graphics	
Select codes, priorities	
SES	3:17 :B:8.12–14
SET	4:27 :C:2
SFC	3:26 :7:5:B:9.12-14
SFS	3:26 :7:5:B:9.12-14
SGN function	5:23
SHC	3:15 :B:9.12-14
Shift / Rotate group	3: 10. 18
Shifting, mantissa	3:23-25
SHO	6:4 .24:C:2
Sho to relutility	
Short-precision number	ers 3:9 :4:35:7:45
SHS	3:15 ;B:9,12–14
SIA	3:15 ;B:9,12–14
SIB	3:15 ;B:9,12–14
Sign-magnitude forma	t 5:9
Signalling interrupts .	
SIN function	

SKP	4: 16, 17 ,19;C:2
SLA	3:16 ;B:9,12–14
SLB	3:16 :B:9.12–14
SOC	3:17 :B·9 12-14
SOS	3.17 ·B·10 12–14
Source	
code	2.1_6. 1.3 _6 13
	4.14 10
	1747019
modules	
Space dependent mo	de 4:6
SPC	
SQR function	
SSC	3:26 ;7:5;B:10,12–14
SSS	3:26 ;7:5;B:10,12–14
STA	3:12 ;B:10,12–14
Stack group	3: 10, 20
Stack group, in ISRs	
Stacks:	, , , , , , , , , , , , , , , , , , , ,
General	3.20
nointers.	0.20
General	3.2 90
man	2.2
Statements BASIC	
Statements, BASIC:	5 .00, 40
ASSIGN	
CALL	
COM	2:14; 6: 9, 23 –25
DISABLE	7:33
EDIT	
ENABLE	
IASSEMBLE	2:6.10: 4:13 .19.23:D:2
IASSEMBLE ALI	4:13 :D·2
IBREAK	$2 \cdot 10 \cdot 3 \cdot 7 \cdot 8 \cdot 1 \ 7 - 11 \cdot D \cdot 2$
IBREAK ALL	8.1 19 13.D.9
	9.1 11 19.D.2
	12.2.7.4.24.6.1 6.D.2
	13;3:7;4:34; 0:1 =0;D:2
1СОМ	2: 6,10, 13 –16;D:3
IDELETE	2: 10,13,15, 17 ;D:3
IDELETE ALL	2: 15, 17 ;4:23;D:3
IDUMP	2:10; 8: 1, 14 ,15;D:3
ILOAD	. 2: 8,10, 12 ,18;4:7;D:3
INORMAL	2:10; 8: 1,10, 13 ;D:4
IPAUSE OFF	
IPAUSE ON	2:10: 8: 1. 4 -7:D:4
ISOURCE	2: 5. 8 .9:4:2.5.6:D:4
ISTORE 2	7 10 13 17 18.4.7.D.4
ISTORE ALL	9.18.D.A
MASS STODACE	1.6.7.22.24
	9,10.7.90
ON EKKUK	
	z:10; /:z/ ,28,30-32

REDIM 6:12
RETURN
SUBEND 7:27
SUBEXIT 7:27
Status line 3:26; 7: 4, 5 ,6
Status registers
STB 3:12;B:10,12-14
Stepping programs 8:3-14
STR 6:4,5,24;C:2
Strings:
General 3:8 ;7:46
as data generators 6:12,13
SUB pseudo-instruction 2:5;4:12;6:2,3;C:2
SUBEND 7:27
SUBEXIT 7:27
Subprograms, BASIC 7:32,40;8:9,12,13
Subroutines 3:6,14
Substrings:
changing value of 6:22-24
retrieving 6:15-17
retrieving from arrays 6:16,17
Subtraction, integer 5:1,3
Symbolic operations 4:25–33
Symbols:
General 4:24
address of 8:19
defining
external
predefined 4:24,25
Synchronous access
Syntax, fundamental 1:7
System 35/System 45 compatibility . L:1,2
SZA 3:15 ;B:10,12–14
SZB 3:15;B:10,12–14

t

TAN function 5:23	3
Tape cartridge, Demonstration 1:2;2:8;I:	1
TCA 3:13 ;5:2;B:10,12-14	4
TCB 3:13 ;5:2;B:10,12-14	4
Ten's complement 5:9,10	0
Test/Alter/Branch group 3:10,16,17	7
Test/Branch group 3:10,13	5
Timings:	
clock	3
execution B:13,14	4
lockout B:14	4
To_system utility 4:38;6:28,29;F:	1
Transfers, DMA 7:23-20	6

.

Two's complement	3: 8,9, 13 ;5:2
TYP function.	5:23
Typing aids, demonstration	cartridge . I: $1-3$

U

UNL
Utilities:
General
Arithmetic
Arithmetic, operand registers 3:4
Busy 4:38; 6: 26, 27 ,28;F:1
Error exit 4:38; 9:3 ,4;F:1
Execution of 8:5
Get_bytes 4:38; 6: 12, 15 ,16,24;F:1
Get_elem_bytes 4:38;6:12,16,17,24;F:1
Get_element 4:38;6:12,14,15,24;F:1
Get_file_info 4:38; 7:40 ,41;F:1
Get_info 4:38; 6:8 -12,24;F:1
Get_value 4:38; 6:12 ,13,24;F:1
Int_to_rel 4:38; 5:26 ;F:1
lsr_access 4:38; 7:13 ,14,15;F:1
Mm_read_start 4:38; 7: 33- 35 ;F:1
Mm_read_xfer 4:38; 7: 33- 35 ,36;F:1
Mm_write_start4:38;7:33,37,38;F:1
Mm_write_test 4:38; 7: 33, 38 ,39;F:1
Print_no_lf 4:38; 7: 48, 52 ,53;F:1
Print_string 4:29,38; 7: 48, 50 -52;F:1
Printer select 4:38; 7:49 ,50;F:1
Put bytes 4:38;6:18,20,21,24;F:1
Put ⁻ elem bytes . 4:38; 6: 18, 22 -24;F:1
Put_element 4:38;6:18,19,20,24;F:1
Put_file_info 4:38; 7:41 ,42;F:1
Put_value 4:38; 6:18 ,19,24;F:1
Rel math 4:38; 5:21 -24;F:1
Rel_to_int
Rel_to_sho
Reserved symbols
Sho_to_rel
To_system
Writing G:1,2

V

Value checking	8:17-20
Variables:	
General	
BASIC	3:8; 6:18 ;8:8
retrieving values from	· 6:12,13
value checking	5:17-20

W

WBC WBD	3: 21, 22 ;B:11-14 3: 21, 22 ;B:11-14
Word:	
General	
defined	1:7
transfers	3:12 ;B:11
Words:	
clearing	10:15-18
reading	10:18-21
writing	10:11-14
Write busy bit	
Writing full words	10:11-14
Writing individual pixels .	
WWC	3: 20, 22 ;B:11-14
WWD	3: 20, 22 ;B:11-14

X

XFR	2;4:29;B:11-14
XIF	4:20 ,21;C:2
XREF option, IASSEMBLE	
statement	4:13 ;D:2

Your Comments, Please...

Your comments assist us in improving the usefulness of our publications; they are an important part of the inputs used in preparing updates to the publications.

In order to write this manual, we made certain assumptions about your computer background. By completing and returning the comments card on the following page you can assist us in adjusting our assumptions and improving our manuals.

Feel free to mark more than one reply to a question and to make any additional comments.

Please do not use this form for questions about technical applications of your system or requests for additional publications. Instead, direct those inquiries or requests to your nearest HP Sales and Service Office.

If the comments card is missing, please address your comments to:

HEWLETT-PACKARD COMPANY Desktop Computer Division 3404 East Harmony Road Fort Collins, Colorado 80525 U.S.A.

Attn. Customer Documentation Dept. 4231

All comments and suggestions become the property of Hewlett-Packard.

irse	elf								
1.	What is your major applica	ation	of you	ır Series 980	0 Des	ktop Comj	puter?		
0		0		. 1 1	2				
۷.		op C	08255	er do you na 2	ver	09458		0 0945	C
	0 90338	0	9033L	2	0	904 <u>3</u> D		0 9040	C
3.	What was your level of pro	ogra	mming	knowledge	before	you starte	ed using this	manual?	
	0 none	0	beginr	ner	0	intermedi	ate	0 exper	t
Ma	anual								
1.	Did you have any difficulty	in:		none	m	inimal	some	cons	iderable
	understanding material	in ma	anual?	0		0	0		0
	applying that informatio	n?		0		0	0		0
2.	How would you rate the:								
				excellent	9	300d	fair	I	poor
	areas covered			0		0	0		0
	depth of coverage examples	ge		0		0	0		0
	indexing			0		0	0		0
	organization overall manual			0 0		0	0		0
	What do you suggest we do	o to i	mprove	e the areas th	iat you	consider	weak?		
					2				
1.	By which method would y	ou h	ave pro	eferred to lea	arn the	use of yo	ur computer	?	
	 Present set of manuals Manuals using program Training workbooks with 	nmeo ith co	1-learni prrespo	ing approach Inding tape c	artridg	e			
	 Manuals resident in co Training in classroom s 	mpu situa	ter's m tion at	emory, acce Hewlett-Pac	ssible t kard	nrough the	e keyboard a	na display	ea on the CK
(General comments:								

.....

Address:

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

٠

Hewlett-Packard Company Desktop Computer Division Attn: Cust. Documentation/Dept. 4231 3404 East Harmony Road Fort Collins, Colorado 80525

Assembly Language ROM Errors

184	Improper argument for OCTAL or DECIMAL function or assembled location.
185	Break Table overflow.
186	Undefined BASIC label or subprogram name used in IBREAK statement.
187	Attempt to write into protected memory; or, attempt to execute instruction not in ICOM region.
188	Label used in an assembled location not found.
189	Doubly-defined entry point or routine.
198	Missing ICOM statement.
191	Module not found.
192	Errors in assembly.
193	Attempt to move or delete module containing an active interrupt service routine.
194	IDUMP specification too large. Resulting dump would be more than 32 768 elements.
195	Routine not found.
196	Unsatisfied external symbols.
197	Missing COM statement.
198	BASIC's common area does not correspond to assembly module require- ments.
199	Insufficient number of items in BASIC COM declarations.
	Assembly-Time Errors
DD	Doubly-defined label
EH	END instruction missing; or module name does not match.
EX	Expression evaluation error.
LT	Literal pools full or out of range.
MO	ICOM region overflow.
RH	Operand out of range.
SQ	Argument declaration pseudo-instruction out of sequence.
TP	Incorrect type of operand used.
UN	Undefined symbol.

Part No. 09845-91083 Microfiche No. 09845-98083 Printed in U.S.A. March 1, 1980