Series 9800 Desktop Computers

Assembly Development
ROM Manual

For the HP 9845

S
o a”’lﬁi’

i
,”é?”;,; o

f i
i ¢ St P

u i 0 i
,,3;@‘ o A

(D et

HEWLETT
[ﬁ/) PACKARD
Warranty Statement

Hewlett-Packard products are warranted against defects in
materials and workmanship. For Hewlett-Packard Desktop
Computer Division products sold in the U.S.A. and Canada, this
warranty applies for ninety (90) days from date of delivery.”
Hewlett-Packard will, at its option, repair or replace equipment
which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any.
Equipment returned to Hewlett-Packard for repair must be
shipped freight prepaid. Repairs necessitated by misuse of the
equipment, or by hardware, software, or interfacing not provided
by Hewlett-Packard are not covered by this warranty.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR
CONSEQUENTIAL DAMAGES.

*For other countries, contact your local Sales and Service Office
to determine warranty terms.

Assembly Development ROM

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorade 80525

Copyright by Hewlett-Packard Company 1980

“

\S

ii

Printing History

Periodically, this manual is updated. Each new edition of this manual incorporates all material

updated since the previous edition. Each new or revised page is indicated by a revision date.
The date on the back cover changes only when each new edition is published.

First Printing...March 1, 1980

Table of Contents

Chapter 1: General Information

Equipment Supplied e 1-2
Structure of the Manual 1-2
Purpose of the ROMs 1-3
ROM Installation i i e e e 1-3
BUzzwordso 1-5
Fundamental Syntax e 1-7

Chapter 2: Getting Started

Developing Routines for Later Use e 2-1
OV TV W ..ttt e 2-3
Program Creation e 2-3
Program Entry 2-8
Other Extensions e 2-10
Modules and Routines 2-11
NaAMES . . oo e 2-11
Survey of Modules and Routines 2-12
Setting Aside Memoryttt 2-13
Retrieving and Storing Modules 2-16
Chapter 3: The Processor and the Operating System
Machine Architecture i i e 3-1
Registers 3-2
General Memory Organizationcco it 3-4
Protected Memory 3-6
Baseand CurrentPage i 3-6
Nesting of Subroutine Calls i, 3-6
Data Structures 3-8
Integers o 3-8
STINIgS .« o oot e e 3-8
Full-Precision Numbers............ .o e ienes 3-9
Short-Precision Numbers i e e 3-9
Machine Instructions i e 3-10
ODeTaANAS . . . 3-10
Indirect Addressing 3-12
Load/Store Group 3-12
Integer Math Group 3-13
Branch Group 3-14
Test/Branch Group 3-15
Test/Alter /Branch Group i 3-16
Shift /Rotate Group 3-18
Logical GroUp 3-19
Stack GroUD ... o 3-20
BCD Math GroUp ..o ottt e e 3-23
/O Groupo 3-26

MiISCellaneousottt 3-27

iii

iv

Chapter 4: Assembly Language Fundamentals

Program Entry 4-1
Assembly Language Source............. e 4-3
ACHONS . oo 4-3

Labels. ... 4-3
COMMENTS . . . e 4-5
Syntaxing the Source 4-5
Creating Modules i 4-7
S} o3 =Y =1 AP 4-8
Modules 4-8
Variables 4-8
Data Generatorst 49
Repeating Instructions i 4-12
Assembling e 4-13
Effect of BASIC Environments i, 4-14
Source Listing Control 4-14
PageFormat. 4-16

Page Length 4-16
End-of-Page Control 4-17

Page Headings e 4-18

Blank Line Generation i 4-18
Non-Listable Pseudo-Instructions............oiiiiiin. 4-19
Conditional Assembly e 4-19
Control of Indirection e 4-22
Relocation 4-22
Module Reassembly e 4-23
Symbolic Operationst e 4-24
Predefined Symbols 4-24
Defining Your Own o 4-26
Lterals ... o 4-27
Evaluation of Literalscoiiiie i 4-27
Nesting Literals 4.28
Nonsensical Uses of Literals i 4-29

Literal Pools 4-30
EXPIeSSIONS .. 4-31
External Symbolsand Elements i i 4-33
Other Absolute Elements e 4-34
UHteS . ..o 4-36

Chapter 5: Arithemetic

Integer Arithmetic e 5-2
Representation of Integers e 5-2
Integer Arithmetic 5-2
Multi-Word Integer Arithmetic i 5-5
Binary Coded Decimal i 5-7
Arithmetic Machine Instructions........... i, 5-7
BCD Registersii i 5-8
BCD Arithmetic 5-8
Addition ... 5-9
Ten’s Complementfor BCD i 5-9

Floating Point Summations i 5-11

Normalization 5-12

Rounding o 5-12
Floating Point Multiplication RO 5-13
Floating Point Division 5-15
The FDV Instruction e 5-17
Thirteen-Digit Dividends 5-18
Floating-Point Division Example............ o ... 5-19
Arithmetic UtIlities 5-21
Utility: Rel math 5-21
Utility: Rel to int 5-24
Utility: Rel to sho......... . e 5-25
Utility: Int__to__rel ... 5-26
Utility: Sho _to rel 5-27
Chapter 6: Communication Beiween BASIC and Assembly Langiuage

The ICALL Statement O 6-1
Corresponding Assembly Language Statements 6-2
ATQUIMENTS . . oo e 6-3
“Blind” Parameters e 6-6
Getting Information on Arguments e 6-7
Utility: Get info....... 6-8
Retrieving the Value of an Argument 6-12
Utility: Get value 6-12

Utility: Get_element 6-14

Utility: Getbytes S 6-15

Utility: Get elem bytes i 6-16
Changing the Value of an Argument o ... 6-18
Utility: Put value 6-18

Utility: Put element 6-19

Utility: Put_—_bytes .. 6-20

Utility: Put_elem bytes.......... 6-22

Using COMMONt e 6-23
Busy Bits 6-26
Utility: Busy ... 6-27

Utility: To_system ... 6-28

Chapter 7: 1/0 Handling

Peripheral-Processor Communication 7-1
Interfaces o 7-2
Registers 7-2
Select Codes ... 7-3
Status and Control Registers i 7-4
Statusand FlagLines 7-4
Programmed [/ 0 7-6
Interrupt 1/ O .. 7-7
Priorities 7-8
Interrupt Service Routines and Linkage 7-9
Breaking Interrupt Service Routine Linkage 7-9
ACCRSS L i 7-10
Utility: Isr_access i 7-13
Disabling Interrupts 7-15

State Preservation and Restoration ... 7-17

vi

Indirect Addressingin ISRs 7-18
Enabling the Interface Card i i i 7-19
Interrupt Transfer Example i 7-20

Direct Memory Access (DMA) i e 7-22
DMA Registersuuiueiiie e e 7-22
DMA Transfers it e e 7-23

BASIC BranchingonInterrupts 7-27

ON INT Statement e 7-27

Signallingo 7-28

Prioritizing ON INT Branches i 7-30

Environmental Considerations i 7-32

Disabling ON INT Branchingo i 7-32

Mass Storage Activitiesc..ooiiiiii e 7-33

Reading from Mass Storagec..o it 7-33
Utility: Mm_read start 7-35
Utility: Mm read xfer 7-35

Writing to Mass STOTaGeottt ettt e e e 7-37
Utility: Mm_write_start 7-37
Utility: Mm_write_test....... 7-38

System File Information 7-39
Utility: Get_file_info 7-40
Utility: Put_file info........ 7-41

Communication with BASIC Data Files e 7-42
Interrelation of Record Types i 7-43
Crossing Record Boundaries 7-44
File Markso 7-47
Determining Data Typest 7-48

Printing e 7-49

Utility: Printer _select........ 7-49

Utility: Print string.................... e 7-50

Utility: Print_no M. ... 7-52

The Beep Signal e 7-53

Expediting L/ O ... 7-53

Chapter 8: Debugging

Symbolic Debugging 8-2

Stepping Through Programs i 8-3

Individual Instruction Execution 8-3

Setting Break Points 8-7
Simple Pausing 8-7
Transfers 8-8
Environments 89
Data Locationsot e e 8-11
IBREAK Everywhere 8-12
Number of Break Points i 8-13
Clearing Break Points 8-13
Interrogating Processor Bits i 8-14

DUMIDS .o o 8-14

Value Checking e 8-17

FUunctions 8-17
DECIMAL . 8-17

OC T AL . 8-18

LAD R L 8-19
IMEM L 8-19
Interrupting Registersand Flags i i, 8-20
PatChing i 8-21
Stepping vs. Running 8-22
Chapter 9: Errors and Error Processing
Types Of ErrOrs . ..o 9-1
Syntax-Time and Assembly-Time Errors ...t . 9-2
Run-Time Errors 9-2
Utility: Error exit........ 9-3
RUN-TIMe MeSSAGESttt e e e e e e e e 9-5
Assembly-Time Messages P 9-8
Chapier i0: Graphics
Introduction 10-1
The Graphics Raster e 10-2
Displaying the Graphics Raster......... i 10-2
The Graphics Memory 10-3
Graphics Operations. i e 10-5
Checking for Graphics Hardware i i 10-5
OVeIVIOW .ottt 10-5
Operation: Writing Individual Pixels i ... 10-7
Operation: Writing Full Words i 10-11
Operation: ClearingFull Words oo 10-15
Operation: Reading FullWords 10-18
Operation: Cursor Operationsttt 10-22
Comprehensive Example 10-25
Line Drawing o 10-27
Appendix A: ASCII Character Set
ASCII Character Codesot e e A-1
Appendix B: Machine Instructions
Detailed List B-1
Condensed Numerical List i, B-12
Alphabetical List e B-12
Bit Patterns and Timings e B-13
Appendix C: Pseudo-Instructions C-1
Appendix D: Assembly Language BASIC Language Extensions Formal Syntax D-1
Appendix E: Predefined Assembler Symbols E-1
Appendix F: Utilities F-1

Appendix G: Writing Utilities e G-1

vii

viii

Appendix H: 1/ 0 Sample Programs

Handshake String Qutput H-1
Handshake String Input H-3
Interrupt String Output H-5
Interrupt String Input H-7
DMA String OUtputo H-10
DMA String Input H-12
HP-IB Output/Input Drivers. i H-15
Real Time Clock Example i H-19
Appendix I: Demonstration Cartridge
Using the Tape [-1
Typing Aids I-1
Appendix J: Error Messages
Mainframe Errors J-1
[/70 Device Errorso J-11
CSTATUS Element O Exrors e e J-12
Assembly-Time Errors J-12
IMAGE Status Errors. J-13
Appendix K: Maintenance
Maintenance Agreementsttt K-1
Appendix L: 9835/9845 Compatibility, L-1

Subject Index

Chapter 1

General Information

Welcome to the world of assembly language programming on the System 45

It is the design of the Assembly Execution and Development Read Only Memory (ROM) and
the Assembly Execution ROM to help extend the capabilities of your 9845 by giving you greater
control and speed through the use of machine instructions, pseudo-instructions, and exten-

sions to the BASIC language.

The assembly language system is provided to you as one of two ROMs which plug into the right
ROM drawer of your System 45. The two ROMs are:

o The Assembly Execution and Development ROM — used to write and debug assembly
language programs on the System 45, and has the complete capability of the Assembly
Execution ROM.

o The Assembly Execution ROM — provides the capability to load, run, and store assem-
bled routines and modules. Information about this ROM can be found in the Assembly

Execution ROM manual.

When installed, the Assembly Execution and Development ROM reserves some read / write
memory which cannot be accessed for storage of programs or data. (The Assembly Execution
ROM also reserves memory.) The following table describes the actual read / write memory used

(in 8-bit bytes) under various configurations:

Execution ROM Only Execution and Development ROM
I/0O ROM Present 170 ROM Not Present | 1/0 ROM Present 1/0 ROM Not Present
Power on 270 334 590 654
After
first 708 772 1028 1092
pre-run

It is assumed throughout this manual that you are familiar with the basic operation and lan-
guage of the 9845. [t is also assumed that you are reasonably well-acquainted with at least one

other assembly language.

1 The assembly language programming capability is not available for the System 45A computer.

1-2 General Information

Equipment Supplied

The following items are supplied with the Assembly Execution and Development ROM —

Item Part Number

Assembly Development ROM Manual 09845-91083
Assembly Execution ROM Manual 09845-91082
Assembly Language Quick Reference 09845-91080
BASIC Language Interfacing Concepts | 09835-90600
Demonstration Cartridge 11141-10155
Error Label 7120-8771

Structure of the Manual

It is the intent of this manual that you should be able to find between its covers everything you
need to know to use the assembly language effectively. However, since assembly language
programming is a complex topic, the manual relies a great deal on your past experience. Most
of the information is in succinct presentations of a particular topic; it is not the intent to ‘‘teach”

assembly language programming to someone not familiar with the topic.

The major topics covered are: assembly language program creation, the processor and relevant
operating system constructs, assembly language fundamentals, BCD and integer arithmetic,
communications with BASIC, I/ O handling, debugging tools, errors and error processing, and
graphics. Each topic (chapter), has a summary at the beginning detailing the information to be

presented therein.

The manual is organized so that each topic can be covered completely within a given chapter.
This approach was chosen over the strict syntactical or semantical treatment of the individual
statements and instructions. As a consequence, you may find this difficult to use as a ‘‘quick

reference’ for syntax and meaning of the individual commands.

To meet your needs for ““quick reference’’ material, an Assembly Language Quick Reference
Manual (HP part number 09845-91080) is provided. In addition, you will find much of the
information in this manual condensed and tabulated in the various appendices of this manual.

A recommended method for using the manuals is to start with this one as your basic learning
tool. Then you should be able to use the Quick Reference Manual effectively for all future

reference.

General Information

Purpose of the ROMs

The Assembly Execution and Development ROM is used to write and debug assembly language
programs on the System 45, and also has the complete capability of the Assembiy Execution
ROM. The Assembly Execution ROM provides the capability to load, run, and store assembled

routines and modules.

The Assembly Execution ROM is used independently of the Assembly Execution and De-
velopment ROM. Because of the overhead required by the debugging features of the Assembly
Execution and Development ROM, programs run slightly more rapidly if the Assembly Execu-
tion ROM is used rather than the Assembly Execution and Development ROM.

ROM Installation

Before assembly language programming can proceed, the ROMs must be in place. The installa-

tion is a simple process.

There are two ROM drawers for the computer: one on the right side of the machine one on the
left. The ROM is installed in the right ROM drawer, using these steps:

o Pull the right ROM drawer out.
e Squeeze the sides of the plastic cover and lift to gain access to the drawer connectors.
e Position the ROM over one of the connectors denoted by a © or O marking.

o Press the ROM onto the ROM drawer connector so that it seats all the way down. The
small circular keys on the sides of the ROM drawer should fit into the recesses in the

bottom of the plastic ROM case. If they don’t, make sure that you have properly oriented
the ROM.

1-3

1-4

General Information

Assembly Language System ROM

After inserting the ROM, close the drawer until it is flush with the outside cover of the machine.

With this done, you are now ready to begin writing assembly language programs.

Figure 1. Installing the Assembly Execution and Development ROM

General Information 1-5

Buzzwords

During the course of the discussions in this manual, words and phrases are used which are in
common circulation among those who are familiar with assembly languages. While the mean-
ings of most are either well-known, or are deducible from the context, there are a few which
may be unfamiliar, or unique to the 9845 assembly language, or are variable from one assem-

bly language to the next and thus need to be defined for this one. They are —

assembled location — a reference to a location in memory which may be specified in one

of the following forms —

{symbol} [. {numeric expression}]

{expression} [. {numeric expression}]

where:

{symbol} is an assembly location. It may be a label for a particular machine instruction (in
which case the address of the associated instruction is used), or an assembler-defined
symbol (in which case the associated absolute address is used), or a symbol defined by an

mAr

EQU instruction (described in the “Symbolic Operations’ section of Chapter 4).

{expression} may be a numeric expression or a string expression. If numeric, a decimai
calculation is performed and the result is interpreted as an octal value; if the result is not
an octal representation of an integer, an error results. If a string expression is used, the
string must be interpretable as either an octal integer constant or a known assembly
symbol (see {symbol} above).

{numeric expression} serves as a decimal offset from the given label or constant.

busy bits — each variable located in the BASIC value or common areas has associated
with it two bits: a ‘‘read” busy bit, and a ‘‘write”” busy bit. When a ‘‘read” busy bit is set,
attempts should not be made to perform a function on that variable. A read operation may
be performed on a “‘write-busy’’ variable. When the busy bit is cleared, the function may

be performed on the variable.

byte — a group of 8 binary digits (bits).

conditional assembly — an assignation that certain portions of a modiile are not to be
assembled unless a condition has been set. The portions begin with any of the IFA through
IFH, and IFP, pseudo-instructions, and end with the next XIF pseudo-insiruction. IFA
uses the A-condition as a test, and so on. The conditions are set by the statement assem-
bling the module (IASSEMBLE).

1-6 General Information

interrupt service routine (ISR) — an assembly language routine intended to perform a
certain action, or set of actions, when the computer receives a request from an external
device. An “‘active’’ ISR is one which is currently enabled for a given device.

mass storage unit specifier (msus) — a single word corresponding to the BASIC lan-
guage mass storage unit specifier as described in either the 9845 Operating and Pro-
gramming Manual or the Mass Storage Techniques Manual. An msus has one of the
following structures —

Unit HPIB Device Select
Number? Address Type! Code
T 1 |) | [| | | [T

| | | | | | |] | l J l
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

or
Unit Device Select
Number Type'! Code
] |] | | I] [| | !
I] | | | | | l | ||

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

for the 9885MS Flexible Disk Drive

An msus can designate the current default as its mass storage device (meaning it will use
the device indicated by the last MASS STORAGE IS statement executed). This is desig-

nated by having the msus be all ones (i.e., equal to — 1).

object module — a section of assembled code stored in the particular region of memory
set aside for it. Though the source module for the object code may no longer be resident in
memory, when created, the module was delimited by certain pseudo-instructions (NAM
and END) and is referenced by the name given to it by the NAM pseudo-instruction.

octal expression — a numeric expression which, when displayed or printed, appears as
an octal (base-8) number. Within arithmetic operations, it has a decimal value (base-10).
Thus, the value 17s will appear as 17 (representing the value 1510), but if arithmetic was
performed on it, it would act as if it were 1710. All octal expressions are necessarily
integers in the range of 0 to 177777s.

1 The device type is the ASCII code for the type minus 100B.
2 For tape operations, bits 9-15 are zeros.

General Information

pixel — picture element — the smallest unit of resolution on the CRT.

source module — a section of assembly language source code beginning with a NAM

pseudo-instruction and ending with the END pseudo-instruction.

word — two bytes; a group of 16 binary digits (bits).

B — octal radix specifier. For example 177777B is 177777 octal. If the trailing “B” is not

present, the assembler assumes decimal.

*— shorthand for current location. For example,

[y
“ry
b

18
w
i
{

ji
A

Fundamental Syntax

The syntax conventions used in this manual are those used in the Operating and Programming
Manual for the 9845.

All syntax items displayed in dot matrix form should be pro-

grammed as shown.
[] Items contained in brackets are optional items.

Ellipses mean that the previous item may be repeated

indefinitely.

In addition, the following convention is employed throughout the Assembly Language series of

manuals —

{} Items contained in braces are syntax items considered as a
unit. The names inside are usually descriptive of the function
intended for that item. Whenever an item enclosed in braces
appears in the text, the notation refers to the same notation

within an earlier syntax.

1-7

1-8 General Information

2-1

Chapter 2
Getting Started

Summary: This chapter contains a general discussion of the assembly language sys-
tem. A format for the creation of an assembly language program is presented. Topics
such as modules, routines, and memory allocation are discussed, along with methods of
using them effectively. Also discussed is the storage and retrieval of modules on mass

storage.
The thing to remember about the assembly language system is that it has been thoroughly
integrated into the operating system of the System 45. Once the ROMs have been installed, you
are able immediately to begin programming in assembly language. In addition, you have the
capability to load and store your programs on mass storage, to assemble them separately or
leave them in source form, to execute them from BASIC and pass BASIC variables to them,

and to debug them, including a full pausing and stepping capability.

Developing Routines for Later Use

Most assembly language programs are written with the intent that they will be used many times,
not just at the time they are written. It is for just such program development that the full
capabilities of the assembly language system come into play. The development comes in
several stages. Each stage has its unique requirements and the tools to meet those require-

ments.

The first stage is creation of the source program. This is achieved by the use of the editing
capabilities of the System 45. Additionally, the mass storage capabilities of the computer can be

used.

The second stage is the creation of the object (or machine) code. This requires not only an
assembly of the source, but the ability to allocate special locations in memory to hold the newly

created object code.

The third stage is the validation of the routines as written, commonly known as ‘‘debugging”.
This is enabled by calls from a BASIC driver, followed by application of various debugging
tools provided by the assembly system. The capabilities to pause and step a program have been

extended to assembly language instructions to assist this process.

2-2 Getting Started

The fourth stage is to store away the debugged object code so that it may be used at a later
time. A special mass storage statement is provided by the assembly language system. This
statement stores object code into a special assembly file.

Finally, the end-user of the routines must be able to retrieve the object code from mass storage
as it is needed. He also must be able to access the routines from BASIC programs. Both these
needs are met with the Execution ROM, so the capabilities are not only provided, but they are
provided independently of the program development capabilities located in the Assembly
Execution and Development ROM.

Each of the topics involved in these stages is discussed at length in this manual.

Figure 2 presents a graphical presentation of this overview.

Mass Storage Editing
Capabilities Source Capabilities
of System 45 | Statements of System 45

(Source) Program Creation

Assembly
Memory)
Allocation
EEE— (Object) Module Creation
Calls from
BASIC
Y Assembly Language System’s
Routine Validation Eebuggmg Tools
(Debugging)
Storage
Special Files
Y

Mass Storage

Retrieval

\

User’s BASIC Programs
(includes calls to routines)

Figure 2. Overview of Assembly Language Routine Development Process

Getting Started 2-3

Overview

At this point, there are three fundamental structures to be explained: programs, modules, and

routines.

A program is the set of source statements from which the object (or machine) code is gener-
ated. The assembly source statements are extensions to the BASIC language which is used in
the System 45. The statements themselves are stored in the machine as part of the BASIC
program in which they reside. At some point, you must take the assembly source statements
and assemble them into object code, in order for them to be run. The object code is stored in a
ified location in the machine.

A module is a subset of the object code. It is a means of separating and identifying parts of the
code so that those parts may be used individually (as in mass storage operations). There may
be any number of modules present at any one time, limited only by the amount of memory

allocated for object code.

A routine is a “‘callable’ section of a module. It is analogous to the subprogram in BASIC. It
has a named entry point, possibly a parameter list, and a return. A moduie may contain any
number of routines, again limited only by the amount of memory allocated to hold the object

code.

In short, the usefulness of each structure is as follows —

o Programs contain assembly language source code.
o Modules contain object code to be loaded from or stored on mass storage.

e Routines are executable sections of object code.

Program Creation

The first matter which is likely to concern you about the assembly language system is how to

create an assembly language program.

In general, the process of creating an assembly language subprogram consists of the following

steps —
1. Enter and store the source code (program).
2. Create an area in memory which will ultimately contain the object code.

3. Assemble the source code into object code, storing the latter into the area of memory set

aside for it.

4. Execute the object code (routines) from BASIC ‘‘drivers”.

2-4 Getting Started

Each of these steps will be discussed at length in the pages of this manual, along with a number
of not-so-incidental side-topics (such as ‘‘debugging’ techniques). The purpose of this short
section is to give you an impression of the general procedure through which an assembly

language subprogram is created.

As an example to use to demonstrate the process, suppose the following task has been assigned

to you —

Requirement: Write an assembly language subprogram which takes two integer
values and multiplies them together as integers. If the result overflows the range of
an integer (— 32 768 to + 32 767), then the subprogram should return the same

error as the system would (i.e., error number 20).

With this task in hand, suppose that you have completed a programming analysis that suggests

that the following assembly language source code would fulfill the subprogram’s functions —!

1 The fact thatit s rarely possible to create a running program at this stage should not get in the way of accepting the example.
Usually there is debugging involved in later stages.

Getting Started

machine as a program. This is done by preceding each and every assembly language statement
with the keyword ISOURCE and entering it as a program line. The process of entering (with the
keyword included) is the same as with any other BASIC statement — so you can use EDIT or
AUTO and the @ key in the same way you normally enter any BASIC statement. (This
process is fully described in the ‘‘Program Entry” section of this chapter.)

The final result of entering the routine would look something like —

This source code demonstrates the three critical items in assembly subprograms. First, a routine
has to be part of a module; modules are delimited with the NAM and END pseudo-instructions
(see lines 10 and 270 in the source). Second, a routine has to have an entry point; this consists
of a SUB pseudo-instruction (see line 40), any parameters (see lines 50 through 70), and a
name (the label used on the first machine instruction following the SUB, see line 80). Finally, a
routine must be able to return to the BASIC program which called it; this is accomplished with
the RET 1 instruction (see line 260).

The NAM, END, and SUB pseudo-instructions are discussed in Chapter 4. The RET 1 instruc-
tion is discussed in Chapter 3.

2-5

2-6 Getting Started

The next three steps in program creation are each satisfied with BASIC-executable statements.
Creation of a storage area for the object code for the program (which can be estimated at less
than 40 words; there is essentially one word of object code per line of source) is accomplished

by programming the staterment —

SEE IooM 48

(The ICOM statement is fully discussed in the ‘‘Setting Aside Memory’’ section of this chapter.)

This can be followed in the same program by an instruction to assemble the source code into

object code —

]
[uA]

1A=

Pt

(The IASSEMBLE statement is fully discussed in Chapter 4.)

If the assembly is successful (and it will be in this example), then the routine can be called and

used as desired. A typical call looks like —

Muttipl:

(The ICALL statement is fully discussed in Chapter 6.)

Thus, the final result could easily be —

Getting Started 2-7

It isn’t necessary that a program be assembled in every BASIC program which uses it. Object

code can be stored on mass storage with a statement like —

So if the example were instead made to read —

2-8 Getting Started

the object code is consequently stored into the file “MULT"".

Later programs can retrieve the object code for use, such as in the following program —

, Dimenzios, Subscript s

(Both ISTORE and ILOAD are discussed in the ‘‘Retrieving and Storing Modules” section of
this chapter.)

Program Entry

The assembly language source statement is an extension to the BASIC language used in the
System 45. This means that each assembly language statement is entered using a
“*keyword” — in this case ISOURCE — as a message to the operating system that the line is an

assembly language statement.

By looking at an example, you can see what is meant —

I R
JOURR R]

[ix]

HAM Esampd

g

EHD Examgd

L N T I N PN I (NI
-+
=

Do e

Lines 10, 20, 30, and 70, are all recognizable as BASIC statements. The keywords they
use — LET, PRINT, and END — direct that certain actions take place. Lines 40, 50, and 60,
are all assembly language statements; this was indicated by the ISOURCE keyword used in

these lines.

Entering assembly language statements, by using the ISOURCE keyword, is thereby the same
process as entering other types of BASIC statements. You may use all of the system editing
features that you are used to using in the creation of BASIC programs — EDIT, AUTO, etc. You
store each line with the @ key, as you would any other BASIC line. See Appendix I for Demo

Tape Special Function Keys which are useful for program entry.

Getting Started 2-9

Also, assembly lines do not have to be in any special place in the BASIC program. The previous

example could be re-arranged as follows —

ENT

Thus, you are free to enter your assembly statements anywhere in your BASIC program. But,
you may ask, what is the effect of spreading them out like this? The answer is, simply, none.
When the time comes to use them, assembly statements and BASIC statements are separated
by the operating system and treated differently.

When the BASIC program is run, only the BASIC statements are executed. The ISOURCE
statements are ignored, and, as you will be shown in Chapter 4, when the assembly language
lines are assembled, the BASIC statements are ignored. A way to consider it is that there are
two programs in one — BASIC’s and the assembler’s. So you can envision the example above

as being this way —

BASIC ASSEMBLER

You should note, then, that ISOURCE statements are not ‘“‘executable” in the usual BASIC
sense. Their location in the program does not indicate the place where they will be executed.
Assembly instructions are not executed until a routine is “‘called’; this is discussed in detail in
Chapter 4.

Now that it has been said that the two types of statements can be thoroughly intermixed, it
should also be said that the practice is not recommended. As a good programming practice —
i.e., for readability and to preserve the self-documenting features of BASIC — it is recom-

mended that assembly statements be collected together and placed in one spot in the program.

The first example is a recommended practice over the second, even though the second is

permissible.

2-10 Getting Started

Other Extensions

In addition to the ISOURCE statement, there are a number of other BASIC language exten-

sions provided by the assembly languge system. Unlike the ISOURCE statement, they are

“‘executable”, and their appearances are part of the BASIC lines (as distinguished from the

assembler’s). Where they appear is where the action associated with them is taken. This is

identical to the way the other BASIC statements perform. The statements involved are —

IASSEMBLE
IBREAK
ICALL
ICHANGE
ICOM
IDELETE
IDUMP
ILOAD
INORMAL
IPAUSE OFF
IPAUSE ON
ISTORE
OFF INT
ONINT

Also provided are four numeric functions —

DECIMAL
IADR
IMEM
OCTAL

The functions can be used wherever numeric functions in general may be used.

All of these statements (except ICOM and ISOURCE) and the functions are available to you as

live keyboard operations as well as programmable statements. A full discussion of each of the

statements and functions can be found within this manual.

Getting Started 2-11

Modules and Routines

There are three basic activities associated with using assembled modules and routines. First,
there is the need to retrieve them from wherever they may be stored (including providing a
place for them to be kept while they are resident in the memory of the machine). Second, there
is the actual execution of the routines. And third, there is the occasional requirement to store,
or re-store a module on mass storage (including, perhaps, the need to free the space in memory
it previously occupied).

Names

n e v T +h
N tnem may Of may noi oear some

Routines, moduies, and files ail have names. The names giv

s give
significance to one another; that depends upon you and the way that you name things.

Conventions for the naming of files and methods of general file manipulation can be found in
the Operating and Programming Manual and in the Mass Storage Techniques Manual. The

conventions are not any different than for files in general.

Names for modules are assigned with the creation of the source. In the assembly language
source code, you have a NAM pseudo-instruction. This serves two purposes — to designate the
beginning of the module and to assign the module a name. All of the assembly source state-
ments which follow the NAM are in that module until an END pseudo-instruction is encoun-

tered. Thus, recalling the previous example —

All of the ISOURCE statements between lines 20 and 60 (in this case, just the one) form the

module called “Example”. The formal syntaxes of these pseudo-instructions are —

{module name}

{module name}

{module name} is a symbol which becomes the name of the module. It follows the same rules as
names in BASIC: up to fifteen characters; starts with a capital letter; followed by only non-

capital letters, numbers, or the underscore character.

2-12 Getting Started

The {module name} in the END statement must correspond to the {module name} of the NAM

statement or an assembly error (‘“‘EN"’) results.

You may have any number of modules in your source code. Each module begins with a NAM

and ends with an END pseudo-instruction as above.

Mass Storage Memory User

L
|
|

|
I
|
|
!
I module 1 jet— IDELETE module 1
! !
IL ile 1
fite 1 OAD : file o |
1 |
| module 2 | .
] ICOM L . ICOM size
. = T
region
! l
may or | ~_ :
may not ILOAD | file2 T~o
be on file 2 : ' \\\\ |
devi ! s — | 1cALL routine 1
device | L routine 1. l routine
i routine 5 | ICALL routine 2
| s | routined e ' ICALL routine 3
| S routing 4. ¢ e | ICALL routine 4
il 3 ISTORE I'module 4 AN “routing 5 e ' ICALL routine 5
f—— -y |- ~ - . K
e module 5 1 TO file 3 S Croutine s e ICALL routine 6
L module 5 |
|
I
I
I
[

Figure 3. Overview of Routines and Modules

Survey of Modules and Routines

To sketch the functional relationships of modules and routines, please refer to Figure 3 above.

Modules are stored in files and may be retrieved and placed in memory using the “ILOAD”
command. When the ILOAD command is executed, all of the modules in the file are loaded into
the memory. Note that many files can be loaded, with many modules each, with all of the

modules able to remain resident in the memory.

Getting Started 2-13

Alternatively, modules which are already in memory may be stored into a single file using the
“ISTORE” command. When the ISTORE command is executed, the designated modules are
stored into an ‘‘option ROM” (OPRM) type of file (on tape cartridges) or an ‘‘Assembly”
(ASMB) type of file (on non-tape mass storage media). After storage, the modules are still in
memory. They may be removed (i.e., the space they occupy in memory is “‘freed”) by using
the “IDELETE” command.

The area of memory where the modules are stored is called the “ICOM region”. It is a particu-
lar contiguous area which must be large enough to hold all of the object code you wish to have

resident in the memory at any one time.

Each module contains one or more routines. Your access to the routines is through the ICALL
statement, which is very similar to the CALL statement used for BASIC subprograms. The
ICALL statement may have arguments which you need to ‘“‘pass” (send down) to the routine
itself. What these arguments, if any, may be, and what meaning they hold depends upon what
you have in mind for that routine. There are corresponding items in the assembly source code;

these are discussed in Chapter 6.

Setting Aside Memory

As indicated by Figure 3, you cannot load a module until there is an ICOM region into which to
load it. Neither can you assemble your source code into object code unless there is an [COM

region into which the object code can go.

The statement to use to create an ICOM region is —

i1 {size}

where {size} is a non-negative integer constant indicating the number of words to be used to

form the ICOM region. The maximum size is 32 718 words.

The ICOM statement is a ‘“declaration’’; that is, it is not executable, but rather is used when
assignment of memory takes place just before a program is run. This is similar to a DIM or COM
statement. As with a DIM or COM statement, the statement cannot be executed from the

keyboard.

Once created, the ICOM region remains in existence uniii it is explicitly destroyed. But it is

possible to change the size by using another ICOM statement.

2-14 Getting Started

The order in which modules appear in the ICOM region is determined by the order in which
they are loaded using the ILOAD statement discussed in the next section or are created by the
[IASSEMBLE statement discussed in Chapter 4.

In most cases, the space which is freed by reducing the size of the ICOM region is returned to
your available memory space. Sometimes, however, it is not returned, this being caused by the
status of the common area allocated in memory, or by other option ROMs. The space is

returned whenever —

o There is no common area assigned (with the COM statement); and,

o The requirements of another option ROM do not interfere.
There may be any number of ICOM statements in a program. The current size of the ICOM
region is determined by the last one which appears in the program when the key is pressed

(or the command RUN is executed).

For example, suppose you have a program with the following statements in it —

Za o IooM 924
o DIm AFLI0E]
e IooM 492
£16 10O 2EED

Upon pressing , the ICOM region would be 2 000 words long. This is because line 610 is
the final ICOM appearance.

The region continues to exist even if you load in another program which contains no ICOM

statements. All ICOM statements must appear in the main program, not in any subprogram.

ICOM statements in a program must appear before any COM statement. This is to insure that

the ICOM region will be allocated before the common is allocated.

Getting Started 2-15

There are three ways to eliminate the ICOM region —

e Execute SCRATCH A

e Execute ICOM 0 in a program.

e Turn off the machine.
After any of these actions, the region is no longer in existence. If there are any modules in the
region, they disappear as well. If any of those modules contain an active interrupt service
routine, you get an error (number 193) if you try to eliminate the region using ICOM 0. If any of

your routines provided to other users contain active ISRs, your documentation for the routine

should warn the users of that fact so they can avoid this error.

Two methods are recommended for deleting all previous modules. The methods differ only in

the times at which the deletion operation is performed.

The first method involves the following sequence of statements:

bt bt

which assures that an ICOM region of 2000 words is in existence at program execution, and
that the ICOM region is completely clear of any previously loaded modules. The deletion

operation takes place every time the key is pressed, before program execution begins.

The second method involves the use of the IDELETE statement in the following sequence:

The IDELETE statement clears the ICOM region when executed, and is executed only when it
is encountered in a program. Therefore, the deletion of the ICOM region can be avoided by

starting or continuing execution at a point beyond the IDELETE statement.

When you are altering the size of the ICOM region, the new size specified becomes the size of
the region from the moment of running the program. If the size being requested is larger than
that which already exists, the additional space needed is requested from the operating system.
If the space is available, everything proceeds uneventfully. If the space is not available, an error
(number 2) results. To make the space available, one of the following procedures must be

foliowed —
e Execute SCRATCH A.

o Execute SCRATCH C.

2-16 Getting Started

Each procedure has its separate effects, and the course selected should be determined by your
circumstances at the time. Consult the Operating and Programming Manual for details on the

other effects of each of these commands.

If the size being requested is smaller, modules are deleted if they no longer fit into the smaller

region. For example, suppose the following situation existed —

IAf “old” ICOM size *—{
|
module module module module module
A B C D E
|

'4——— “new" ICOM size ————»{

Upon compilation of the new ICOM statement, the modules E, D, and C are deleted. None of

those modules may contain an active interrupt service routine or an error results (number 193).

Retrieving and Storing Modules

Modules are stored in files on mass storage media as Option ROM (OPRM) or Assembly
(ASMB) types of files. On tape media, they are stored in the OPRM type and on non-tape

media they are stored in the ASMB type. In this case, the two file types are equivalent.’

To retrieve a module, or modules, from mass storage, identify the file name of the file contain-
ing the module. Combine the name with the mass storage unit specifier? of the device to form a

file specifier. Then execute the statement —

i {file specifier}

This retrieves all the modules in the file and stores them in the ICOM region.

If there are modules already loaded in the ICOM region, these additional modules are added to
them, (not written over them). If an existing module in the ICOM area has the same name as
one of the modules being loaded, the existing module is deleted and the loaded version takes

its place.

1 OPRM-type files may be created by other option ROMs for their particular purposes. In those cases, the contents are entirely
different.

2 Not to be confused with the single-word msus described in Chapter 1. This form is used by BASIC's Mass Storage statements
(see the Operating and Programming Manual or Mass Storage Techniques Manual).

Getting Started

If you do not want all the modules in a given file, you can purge the unwanted ones from the
ICOM region using the IDELETE statement —

' {module name} [,{module name}{,...]]

For example, if you had loaded a file which had the routines Larry, Pat, Ed, and Piper, and you

want to keep only Larry, then you execute the statements —

or, more simply —

Deletions do not have to be done immediately after loading. They can be done at any time.
After the IDELETE has been executed, the portion of the ICOM region which the module
previously occupied is made available for use in loading other modules. The space is NOT
returned to the generally available memory; that action is done with an ICOM statement with a

smaller size.

Whenever a module is deleted, other modules are moved, as necessary, to take up any slack
space in the ICOM region. This is done so that all of the free space in the region is at the end. If
a module is being deleted, or being moved as above, and it contains an active interrupt service

routine, an error results (number 193).

No error results when an IDELETE statement is used to delete a non-existent module.

If you desire at any time to delete all of the modules in your I[COM region, you can do so by

executing either of the following statements —

IDELETE ALL is the most efficient method of deleting all modules.

Sometimes you may desire to move modules in the opposite direction — from memory to mass

storage. This is done with the ISTORE statement. The statement has the form —

- {module name} [. {module name} [....]] ¢ {file specifier}

2-17

2-18 Getting Started

A {module name} must be the name of a module currently stored in the ICOM region. Upon
execution of the statement, a file with the name and mass storage unit specifier given in the {file
specifier} is created and the modules are stored in the file, in the order listed.

The file created by an ISTORE statement is an OPRM or ASMB type, as appropriate to the

medium involved. It can then be used in ILOAD statements at a later time.

In the case that you might want to store all of the routines currently in the ICOM region into a

particular file, you can use either of the following statements —

ALz {file specifier}

- {file specifier}

NOTE
Executing a {Cwm) command during a module load, store

or delete operation may clear the entire ICOM region.

Chapter 3

The Processor and
the Operating System

Summary: ry information on the structure of the

processor and the operating system. Topics covered are: machine architecture, memory
organization, data structures, and the machine instructions.

Before proceeding to the actual assembly language, it is useful to discuss the processor and
operating system with which you are dealing. This chapter discusses various concepts related to
the processor, the machine instruction set, the operating system organization, and data struc-

tures.

Machine Architecture

The System 45 has two ‘‘hybrid” processors. For the purposes of assembly language, the two
processors function together as a single unit. The hybrid consists of a Binary Processor Chip
(BPC), an Input-Output Controller (I0C), and an Extended Math Chip (EMC). Each has its
own set of instructions, but all three work in conjunction. It is not necessary in using the
assembly system that you know on which chip a particular instruction resides. In the presenta-
tion of the instruction set — and for all practical purposes while working with the computer —
no distinction need be made between the processors, and the entire instruction set may be

considered as being resident on a single processor.

In addition to the processors, the hybrid also contains an [/ O bus which is controlled by certain
instructions. The [/ O bus has an “address” part and a “‘data’ part. Some of the instructions (it
is indicated which ones) cause an ‘“‘input cycle” to occur on the bus, which means that an
address is given to the address part of the bus, and the data which appears on the data part is
considered to be input. Other instructions cause an ‘‘output cycle”’, which means that the data

is to be output to the given ‘“‘address’’.

Figure 4 is a graphical representation of this architecture.

3-1

3-2 TheProcessor and the Operating System

PROCESSOR
peripheral
0 <] address address TO
—————— PERIPHERAL
MEMORY DEVICES
data data
Figure 4. Generalized Machine Architecture
Registers

The memory locations in the machine are addressed from 0 to 177777B. There are 32 memory
locations which are addressed as if they were part of the computer read / write memory, but
actually are part of the processor. These locations are called ““internal registers’. Each internal
register has a specific location and has been given a name. As you will learn in ‘‘Symbolic
Operations” (Chapter 4), these names have been reserved and cannot be redefined while

using the assembly system.

The internal registers are —

Name |Address Description
(Octal)
A 0 Arithmetic accumulator
Ar2 20-23 |BCD arithmetic accumulator
B 1 Arithmetic accumulator
C 16 |Stack pointer
Cb 13 |Block bit for byte pointer in C (use most significant bit only, read only)
D 17 [Stack pointer
Db 13 |Block bit for byte pointer in D (use second most significant bit only, read
only)
Dmac 15 |DMA count register

Dmama 14 |DMA memory address register

Dmapa 13 {DMA peripheral address register (use lower 4 bits only)

P 2 Program counter

Pa 11 |Peripheral address register (use lower 4 bits only)
R 3 Return stack pointer

R4 4

};2 2 [/ 0 (Input/ Output) registers

R7 7

Se 24 | Shift-extend register (use lower 4 bits only)

The Processor and the Operating System 3-3

|84

Figure 5 is a map of where these registers lie. In addition to these registers, the addresses 25B
through 37B are also registers, but are not (except for a few isolated cases) used in assembly

programming.

address
A 0
B 1
P 2
R 3
R4 4
R5 5
R6 6
R7 7
{(reserved) 10
Cb! | Pa', 1
N (reserved) 12
[] [Dmapa’] 13
Db’ Dmama 14
Dmac 15
C 16
D 17
20
Ar2 21
22
23
| (S, | 24
25
(reserved)
37

Figure 5. Map of Lowest Memory

All of these registers can be referenced either by their names or by their actual addresses. The
two methods are equivalent, though reference by name is recommended as a programming

practice.

1 See Chapter 8 for debugging considerations.

3-4 The Processor and the Operating System

In addition to the above internal registers, there are some ‘“‘external’’ registers which reside in

the computer read / write memory. They are —

Name Address Description

(octal)
Arl 177770-177773 | BCD arithmetic accumulator
Base page 177645-177655 | Base page temporary area (9 words)
Oper_1 177656 Arithmetic utility operand address registers
Oper_2 177657
Result 177660 Arithmetic utility result address register
Utltemps 177661-177665 | Utility temporary storage area
Utlcount 177666 Used to create user utilities

General Memory Organization

In order to find your way around the machine effectively, you should be aware of where things
are stored in memory. Occasionally these areas can become considerations in your program-

ming.

First in the memory come the internal registers. They were discussed above.

Next in the memory comes the ICOM area. The starting location is dependent upon system
needs, but never lower than 41B. The size of the ICOM region depends upon the size desig-
nated by the [COM statement. Its maximum ending address is 77756B. This is the reason for

the limitation on the size in the ICOM statement.

Next in the memory comes the area reserved for the system to store programs and the like. This
area extends from the end of the ICOM region to 177644B.

This area is followed by the registers in the read / write memory (see the list in the previous

section) with a number of interspersed system-reserved areas.

Figure 6 is a graphical presentation of this organization.

The Processor and the Operating System 3-5

address*
’ 1
: CPU
37 registers
40 (reserved)
(at least 1 word)
in—a1 starting address
min= dependent upon g lower block
user data system needs
(ICOM area)
max=
77756 ending address
77777 (reserved) dependent upon
(at least 17:0 words)| starting address,
N length of ICOM,
100000 and system
(reserved) needs
177557
177560
: Return stack
177627
177630
(reserved)
177644
177645
: Base page
177655 > upper block
177656 Oper_1
177657 Oper_2
177660 Result
177661
177665 Utltemps
177666 Utlcount
177767 (reserved)
177770
: Ar1
177773
177774
: (reserved)
177777)

*in octal representation

Figure 6. Memory Map

The immediately addressable memory consists of 65 536 words, which is all that can be ad-
dressed by a 16-bit word (the basic unit of memory in the system). Note that the memory is
divided into two blocks —an ‘‘upper” block and a ‘“lower” one. This distinction between

blocks becomes significant when addressing individual bytes in memory.

3-6 The Processor and the Operating System

Protected Memory

All of the reserved areas mentioned above are known as ‘‘protected memory”. To give some

measure of security to the operating system, it is advised that no attempt should be made to
write or branch into these areas.

Access to certain portions of protected memory (e.g., BASIC variables) is provided by utilities

within the assembly system. The user should access those areas only through the utilities.

Some measure of protection against access into these areas is provided during debugging. See
the chapter entitled “Debugging’ for a discussion of how this is done and the extent of the
protection provided.

Base and Current Page

A concept that occasionally arises during discussion of the instructions and the assembler is that

of the “‘page”, the ‘‘base’” and ‘‘current” pages in particular.
A page is 1 024 words of memory.

The ‘“‘base” page is a wrap-around page. It consists of the upper half of the last page in the
machine (addresses 177000B to 177777B) and the lower half of the zero page (addresses 0 to
777B). This is the same as a page which runs from — 512 to + 511, effectively ‘‘wrapping
around’ address O.

During execution, the program counter (P) points to the address of the current instruction. The
“current”’ page is those 1 024 words of memory centered upon the current instruction. There-

fore, the current page is a continually changing page, extending from (P)— 512 to (P)+ 511.

Nesting of Subroutine Calls

Assembly language subroutines are called using the JSM instruction and exited using the RET
instruction, both of which are described later in this chapter. Subroutine calls may be nested,
just as they are in BASIC.

The JSM and RET instructions automatically adjust the R register (return stack pointer) so that
the machine doesn’t ““lose its place’ in the midst of subroutine calls and returns. The R register
contains an address within an area of memory called the R stack, which is 40 words in size.

The Processor and the Operating System 3-7

You are not free to use ail 40 words in the R stack, however. The operating system and ICALL
require 5 words. Interrupt service routines (refer to Chapter 7 for more information on ISRs)
require 10 words. Break points (refer to Chapter & for more information on the IBREAK
statement) require 5 words.

Thus, 20 words are left for the nesting of user JSMs. Calling system utilities also requires some
of these 20 words. Appendix F, Utilities, contains the information necessary to determine the

number of words needed by the various utilities.

For example, the following program segment illustrates the use of the R stack space —

The system does not check for R stack overflow. Violation of the R stack limits could result in a

machine lock up.

3-8 The Processor and the Operating System

Data Structures

It is common to access BASIC variables from an assembly language routine then retrieve the
contents, manipulate them, or alter them. To be effective at it, you should be aware of how

BASIC stores a value in each of its data types.

There are four data types in BASIC: full-precision numeric values, short-precision numeric

values, integers, and strings. Each is stored in its own unique structure.

Integers

The simplest of the types is the integer. (Variables are declared as integers using BASIC’s
INTEGER statement.) An integer consists of a single word. Values between — 32 768 and
+ 32 767 can be stored in the word. Negative values are stored in two’s complement form. An
integer looks like —

15 14 0 Bit

T

I

|

1
\Sign Bit

Strings

Strings are the next simplest structure. A string is a succession of bytes, one character to a byte.
A string may be of variable length. To be able to designate the length, the string is preceded by

a word which contains the number of bytes in the string.

If a string has an odd number of bytes in it, then the left-over byte in the word containing the

last character of the string is wasted. A typical string of length n looks like —

n(length)
byte 1 byte 2
byte 3 byte 4
byte 5 byte 6

byte n-2 byte n-1
byte n -

The Processor and the Operating System

.11 D___ s = __ NT_____ 1L ____
ruili-rrecCisioin iNummoers
Full-precision numeric values are stored as 12-digit, BCD (Binary Coded Decimal), floating
point numbers. They occupy four words each. The first word contains the sign of the exponent,
a two’s-complement 10-bit exponent, and the sign of the mantissa. The other three words

contain the twelve mantissa digits, 4 to each word. The words look like this —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit
Exp I I [I I | !] | | | | I Man
Signl Exponent 0 0 0 O O |sign
1
D1
(most significant digit) D2 Ds D4
Ds Ds D7 Ds
D12
De Do D1 (least significant)

The exponent is always adjusted during arithmetic routines so that there is an implied decimal

point following D1. Thus, every mantissa value looks like —

Di1. D2 D3 D4 Ds De D7 Ds D9 D10 D11 D12

Short-Precision Numbers

Short-precision numeric values are stored as 6-digit, BCD floating point numbers. Unlike
full-precision, they occupy two words each instead of four. The first word contains a 7-bit
exponent, the sign of the mantissa and the two most significant mantissa digits. The second

word contains the remaining four mantissa digits. The words look like this —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit
Exp 1T 1 [I Man [] T I T T
Sign Exponent Sign D1 D2
Ds D4 Ds Ds

As with full-precision, the exponent is stored in two’s complement form and the implied deci-

mal point follows D1.

If you are unfamiliar with BCD arithmetic or need a refresher in floating point operations, it is
suggested that you refer to Chapter 5.

3-9

3-10 The Processor and the Operating System

Machine Instructions

The machine instruction set underlying the assembly language system consists of 92 instruc-

tions, divided into eleven groups. The groups are —

Load /Store

Integer Math
Branch

Test/Branch
Test / Alter / Branch
Shift / Rotate
Logical

Stack
BCD Math
I/0

Miscellaneous

Operands

Operations placing values into registers or memory.
Operations involving integer arithmetic.
Operations altering the execution sequence unconditionally.

Operations altering the execution sequence, dependent upon

some condition.

Operations altering the execution sequence and a value, de-

pendent upon some condition.

Operations performing re-arrangments of the bits in the A or

B register.

Operations performing logical functions on the A or B regis-

ters.

Operations managing stacks.

Operations involving Binary Coded Decimal arithmetic.
Operations specifically involving 1/ O operations.

Some unclassifiable operations.

Most instructions require operands. These operands have general forms which they may assume.

Many instructions contain an operand which is the address on which the function is to be

performed. This {location} may be a constant {octal or decimal) or it may be a symbol. It also

may be an expression containing any allowable combination of constants and symbols. For a

full discussion of allowable expressions and symbols, and the ‘‘types’ they are allowed to

assume, consult ‘“‘Symbolic Operations’ in Chapter 4.

The Processor and the Operating System 3-11

e

For exampie, note the operands in the following —

A {location} may be either ‘‘relocatable’” or ‘‘absolute” (see ‘‘Relocation” and ‘‘Symbolic
Operations” in Chapter 4 for a full treatment of these types). If a relocatable {location} is used,
the assembler generates machine code which uses ‘‘current page” addressing, and thus the
{location} must be within — 512 words and + 511 words of the instriiction.
{location} is used, the assembler generates machine code which uses ‘‘base page’ addressing
(meaning it takes the address as an offset from location 0).

An {address} is a {location} the same as above, except the intended location must be

relocatable and within — 32 and + 31 words of the current instructions.

A {register} may be specified either through its absolute address or by its pre-defined symbol.
The permissible registers are those with addresses between 0 and 7, inclusive. These are
registers A, B, P, R, R4 R5, R6, and R7.

A number of instructions are followed by a {value}, which is a numeric expression usually in the
range of 1 through 16. This {value} frequently indicates the number of bits involved in the

operation. For example —

right-shifts the A register by 8 bits.

NOTE
Specifying the R4, R5, R6, or R7 registers (absolute
locations 4 through 7) in an instruction causes an “I/O bus
cycle” to occur. Consult Chapter 7, ‘17O Handling”’, for the

proper use of these registers.

3-12 The Processor and the Operating System

Indirect Addressing

Some instructions may also employ ‘‘indirect addressing’’. This is indicated by including the

optional indicator , I, such as —

There is only one level of indirect addressing provided with the processor. Of course, if further
levels are desired, it is possible to implement them on your own. Some flagging scheme could
be adopted, for example. One approach could be to adopt the policy that the sign bit (bit 15) of
a word would indicate further indirection, with the remaining bits being the value. In such an

approach, a load accumulator instruction would become two instructions —

Load/ Store Group

This group of instructions allows transfers of data to take place. With the instructions below you
can move information to and from the arithmetic accumulators (the A and B registers). You can

also transfer the contents of one contiguous set of words in memory to another contiguous set.

Instruction

Description

.07 {location} [, 1]

L I1E {location} [,]

I

=T+ {location} [, 1]

Loads register A with the contents of the specified location.
Loads register B with the contents of the specified location.

Stores the contents of the A register into the specified

location.

Stores the contents of the B register into the specified

location.

Clears (zeroes out) the specified number of words, beginning
at the location specified by the A register. {value} must be an

integer between 1 and 16.

Transfers the specified number of words, from one location to
another. The starting address of the location being
transferred from must be stored in the A register. The starting
address of the location being transferred to must be stored in
the B register. {value} must be an integer between 1 and 16.

Integer Math Group

The Processor and the Operating System 3-13

This group of instructions allows you to perform fundamental arithmetic operations on the

contents of the arithmetic accumulators (the A and B registers).}

Instruction

Description

AL {location} [, I]

ALE {location} [, I]

Adds the contents of the specified location to the contents of
the A register, leaving the result in A. [f a carry occurs, the
Extend flag is set in the processor. If an overflow occurs (a
carry from bits 14 or 15, but not both), the Overflow flag is set

in the processor.

Adds the contents of the specified location to the contents of
the B register, leaving the result in B. If a carry occurs, the
Extend flag is set in the processor. If an overflow occurs (a
carry from bits 14 or 15, but not both}, the Overflow flag is set

in the processor.

Performs a two’s complement of the A register (i.e., one’s
complement, incremented by 1). if a carry occurs, the Extend
flag in the processor is set. If an overflow occurs (a carry from
bits 14 or 15, but not both), the Overfiow flag in the

processor is set.

Performs a two’s complement of the B register (i.e., one’s
complement, incremented by 1). If a carry occurs, the Extend
flag in the processor is set. If an overflow occurs (a carry from
bits 14 or 15, but not both), the Overflow flag in the

processor is set.

Binary multiply. Uses Booth’s Algorithm. The values of the A
and B registers are multiplied together with the product
placed into A and B. The A register contains the least
significant bits and the B register contains the most significant
bits and the sign. (An anomaly in the processor results in an

improper result whenever B equals — 32 768.)

1 A discussion of integer arithmetic techniques is found in the “‘Arithmetic’”’ chapter of this manual.

3-14 The Processor and the Operating System

Branch Group

This group of instructions allows you to alter the execution sequence unconditionally. It

includes the “jumps’ and “‘returns’’ from subroutines.

Instruction

Description

{location} [, 1]

7 {value}

Unconditionally branches to the specified location.

Jumps to a subroutine. The value of the R register is
incremented and the current value of the P register (i.e., the
location of the JSM instruction itself) is stored into the
address pointed to by the R register. Execution then proceeds
to the specified location.

Returns from a subroutine. {value} is added to the contents of
the address pointed to by the R register. The results are
stored in the P register (i.e., specifying the next location for
execution) and the R register is decremented. This is, in
effect, a return from a JSM instruction to the instruction
which is {value} instructions from the JSM itself. The ‘‘usual”

return is RET 1. {value} must be an integer between —32 and
31.

Test/Branch Group

The Processor and the Operating System 3-15

Similar to the Branch group, this group of instructions allows you to alter the execution

sequence, but cenditionally upon the result of some test. Most instructions involve tests on all

or part of one of the arithmetic accumulators (the A and B registers), but a couple allow a test

on a location in memory which you can specify, and a couple test the current activity of the

CRT.

Instruction

Description

:75 {location} [,]

i {location} [, 1]

ZE6 {address}

: {address}

=Zf {address}

=1L {address}

H

=1f {address}

%1% {address}

SHT {address}

ZHE {address}

Compares the contents of the A register with the contents of
the specified location. Execution skips over the next word if
the contents are not equal.

Compares the contents of the B register with the contents of
the specified location. Execution skips over the next word if

the contents are unequal.

Skips to {address} if register A is O.
Skips to {address} if register B is 0.
Skips to {address} if register A is not 0.
Skips to {address} if register B is not 0.

Skips to {address} if register A is 0, then increments A
regardless. The Extend and Overflow flags in the processor

are not affected by the incrementing action.

Skips to {address} if register B is 0, then increments B
regardless. The Extend and Overflow flags in the processor

are not affected by the incrementing action.

Skips to {address} if register A is not 0, then increments A
regardless. The Extend and Overflow flags in the processor
are not affected by the incrementing action.

Skips to {address} if register B is not 0, then increments B
regardless. The Extend and Overflow flags in the processor
are not affected by the incrementing action.

Skips tc {address} if CRT is scanning its raster.

Skips to {address} if CRT is doing vertical retrace.

3-16 The Processor and the Operating System

Test/ Alter /Branch Group

Similar to the Test/Branch group, this group of instructions allows you to conditionally alter
the execution sequence. In addition to tests, you can also alter the contents of the item being
tested (such as set or clear a bit, or increment or decrement a register). Certain bits in the
processor (Extend and Overflow) can be tested with some of these instructions, as well as
registers and memory locations.

Some instructions may be followed by either of the following —

indicating that the bit being tested by the instruction will either be set (S) or cleared (C) after the
test has been made.

Instruction Description

157 {location} [, 1] Increment the contents of the specified location and skip

execution of the next word if the result is 0.

DEZ {location} [, I] Decrement the contents of the specified location and skip

execution of the next word if the resultis 0.

SHF {address} [, =] Skips to {address} if the A register is positive or zero (bit 15 is
ZAF {address} [,] 0).
ZEF {address} [, &] Skips to {address} if the B register is positive or zero (bit 15 is
ZEF {address} [, 7] 0).

A {address} [, 5] Skips to {address} if the A register is negative (bit 15 is 1).

{
=AM {address} [,]

St {address} [, &] Skips to {address} if the B register is negative (bit 15 is 1).
SEM {address} [,]

L H {address} [, =] Skips to {address} if the least significant bit of the A register is
ZLA {address} [, 1] 0.
ZLE {address} [, =] Skips to {address} if the least significant bit of the B register is

=LE {address} [, 7] 0.

The Processor and the Operating System 3-17

Instruction Description
=LA {address} [« =] Skips to {address} if the least significant bit of the A register is
Fi A {address} [] not 0.
Fi_E {address} [=] Skips to {address} if the least significant bit of the B register is
=i E {address} [] not 0.
zii% {address} [= Skips to {address} if the Overflow flag in the processor is set.

% {address} [, 1]

L |

{address} [, = Skips to {address} if the Overflow flag in the processor is

> {address} [fs] cleared.

ZEZ {address} [=] Skips to {address} if the Extend flag in the processor is set.
ZEZ {address} []

ZEC {address} [3] Skips to {address} if the Extend flag in the processor is

ZEC {address} [] cleared.

NOTE
The Extend and Overflow flags can be cleared only by using
the SEC, SES, SOC, and SOS instructions with the ,

option.

3-18 The Processor and the Operating System

Shift/ Rotate Group

This group of instructions performs re-arrangements of bits in the arithmetic accumulators (the

A and B registers). Circular and non-circular shifts are available.

Instruction Description

ZHE {value} Shifts the A register right the indicated number of bits with all
vacated bit positions becoming O.

Shifts the B register right the indicated number of bits with all

vacated bit positions becoming 0.

SHL. {value} Shifts the A register left the indicated number of bits with all

vacated bit positions becoming O.

ZEL {value} Shifts the B register left the indicated number of bits with all
vacated bit positions becoming 0.

ARE {value} Shifts the A register right the indicated number of bits with
the sign bit filling all vacated bit positions. (Arithmetic right)

HEFR {value} Shifts the B register right the indicated number of bits with
the sign bit filling all vacated bit positions. (Arithmetic right)

=R {value} Rotates the A register right the indicated number of bits. Bit 0

rotates into bit 15 each time. (Right circular)

=ER {value} Rotates the B register right the indicated number of bits. Bit 0
rotates into bit 15 each time. (Right circular)

=AL {value} Rotates the A register left the indicated number of bits. Bit 15
rotates into bit O each time. (Left circular)

FEL {value} Rotates the B register left the indicated number of bits. Bit 15

rotates into bit 0 each time. (Left circular)

The Processor and the Operating System 3-19

Logical Group
This group of instructions performs logical {Boolean) operations upon the contents of an

arithmetic accumulator (on A or B register). Logical ““and’ and ‘“‘or’’ operations are available,

along with complementing and clearing operations.

Instruction Description

: {address} [.] Logical ‘“‘and” operation. The contents of the A register are
compared bit by bit, with the contents of the specified
location. For each bit-comparison a 1 results if both bits are
1’s, a O results otherwise. The 16-bit result is left in A.

Logical ““inclusive or’”’ operation. The contents of the A
register are compared, bit by bit, with the contents of the
specified location. For each bit-comparison, a 0 results if both
bits are 0’s, a 1 otherwise. The 16-bit result is left in A.

Performs a one’s complement of the A register (i.e., bit-by-bit

inversion of all 16 bits).

Performs a one’s complement of the B register (i.e., bit-by-bit

inversion of ail 16 bits).

Clears register A. This instruction is identical to SAR 16.

Clears register B. This instruction is identical to SBR 16.

3-20 The Processor and the Operating System

Stack Group

The Stack group of instructions provides you with operations for managing stacks. The
instructions withdraw items from (also called “pop” or “pull”’) or push items onto a stack
pointed to by either the C or D register. The items are pushed from or withdrawn into a
specified register (other than C or D) and the C or D register is incremented or decremented
appropriately.

Pushing instructions increment or decrement the C or D register prior to doing the pushing.
Withdrawing instructions increment or decrement the C or D register after doing the
withdrawal. Consequently, the pointer is always left pointing to the ““top’’ of the stack after the

operation.

Decrementing the C or D register is indicated by including , I! after the operand. For

“withdrawing’’ instructions, D is the default. For example, the following are equivalent —

Incrementing is specified by including , I after the operand. This is also the default for
“‘pushing’ instructions if neither I nor D is included. For example, the following are

equivalent —

..
=

The instructions for pushing and withdrawing bytes require the ability to address bytes rather
than words. This essentially multiplies the memory map by two, requiring an additional address
bit. When using the byte oriented stack instructions, the Cb and Db registers provide an
additional high order bit to the C and D registers, respectively. A typical set up for pushing
items onto a stack is as follows:

The Processor and the Operating System

Note the use of the CBL instruction in both cases.

One use of the push and withdraw byte instructions is for input and cutput operations involving
strings. Manipulating byte stacks allows byte packing of character data. The first word of the
string storage space can be cleared initially and incremented as each character comes in. At the
end of the transfer, the first word of the string contains the string length, making the string
BASIC compatible. Keep in mind that the push byte instruction increments first, then pushes.
The lower bit of the C register determines whether the upper byte or the lower byte is address-

ed in the manner illustrated here —

C register least significant bit ! Byte address

0 Upper
1 Lower

The character string “HELLO” appears in a byte-oriented stack upon input as illustrated

here —

(string length)
H E
L L
0 « o e
NOTE

When using the byte instructions (PBC, PBD, WBC, WBD),
the address pointed to by the C or D register must not have

an absolute address less than 40B.

3-21

3-22 The Processor and the Operating System

Instruction

Description

{register} . I
- {register} [I]

{register} . i

‘41 {register} [,]

" {register{ , i
i {register} [, I]

“211 {register} , I

FED {register} [- 1]

_ {register} [, I
" {register} . I

T.,
ii
+ 1]

T

" {register} [, I]
" {register} , I

T {register} [, I1]
{EL {register} , I

Pushes contents of {register} onto the stack pointed to by the
C register.

Pushes contents of {register} onto the stack pointed to by the

D register.

Pushes the lower byte (right half) of {register} onto the stack
pointed to by the Cb and C registers. If the least significant bit
of Cis a1, the byte is placed in the lower byte of the word in
the stack; if it is a 0, it is pushed into the upper byte.

Pushes the lower byte (right half) of {register} onto the stack
pointed to by the Db and D registers. If the least significant bit
of D is a 1, the byte is placed in the lower byte of the word in
the stack; if it is a O, it is pushed into the upper byte.

Withdraws a word from the stack pointed to by the C register

and stores it into {register}.

Withdraws a word from the stack pointed to by the D register

and stores it into {register}.

Withdraws a byte from the stack pointed to by the Cb and C
registers and places it into the lower byte (right half) of {regis-
ter}. If the least significant bit of C is a 1, the byte is withdrawn
from the lower byte of the word in the stack; if it is a 0, it will

be withdrawn from the upper byte.

Withdraws a byte from a stack pointed to by the Db and D
registers and places it into the lower byte (right half) of {regis-
ter}. If the least significant bit of D is a 1, the byte is withdrawn
from the lower byte of the word in the stack; if it is a O, it is
withdrawn from the upper byte.

Clears the Cb register (indicates lower block of memory).
Sets the Cb register (indicates upper block of memory).

Clears the Db register (indicates lower block of memory).

Sets the Db register (indicates upper block of memory).

The Processor and the Operating System 3-23

BCD Math Group
This group of instructions provides you with BCD arithmetic operations using the Arl and Ar2

registers.

In general, the instructions associate the Arl register with “X”” and the Ar2 register with ‘Y in
the mnemonic for the instruction. Both registers contain values which are considered BCD

full-precision values when operated upon by instructions in this group.

The mantissas referred to below consist of 12 BCD digits. All the shifting operations manipulate
the digits as units (i.e., 1 digit — or 4 bits — at a time). In addition, shifting operations involve

an additional digit in the A register (located in the lower 4 bits, numbered 0 through 3).

All arithmetic is performed in BCD. The values being operated upon are assumed to be nor-
malized BCD floating-point (full-precision) values. Signs and exponents are left strictly alone.
There is a flag in the processor, called Decimal Carry, which is set when an overflow occurs
during a BCD operation.

A full discussion of BCD arithmetic techniques can be found in Chapter 5.

Instruction Description

Mantissa right shift on Arl. The number of digits to be shifted
is specified in the lower 4 bits (0-3) of the B register. The shift

is accomplished in three stages —

1. The digit in bits (0-3) of the A register is right-shifted into
the first digit of the mantissa, with the twelfth digit being
lost. This is the first shift.

2. The mantissa digits are then right-shifted for the remaining
number of digits specified. The twelfth digit, except for the
last shift, is lost on each shift and the vacated digits are

zero-filled.

3. Finally, the last right-shift takes place with the twelfth digit
shifting into the A register. The Decimal Carry flag in the
processor is cleared along with the upper 12 bits of the A
register (4-15).

3-24 The Processor and the Operating System

Instruction Description

re

MRy Mantissa right-shift on Ar2. The number of digits to be shifted
is specified in the lower four bits (0-3) of the B register. The
shift is accomplished in three stages —

1. The digit in bits (0-3) of the A register is right-shifted into
the first digit of the mantissa, with the twelfth digit being
lost. This is the first shift.

2. The mantissa digits are then right-shifted for the remaining
number of digits specified. The twelfth digit, except for the
last shift, is lost on each shift, and the vacated digits are
zero-filled.

3. Finally, the last right-shift takes place, with the twelfth digit
shifting into the A register. The Decimal Carry flag in the
processor is cleared along with the upper 12 bits of the A
register (4-15).

MY Mantissa left-shift on Ar2 for one digit. This is a circular shift,
with the digit in bits (0-3) of the A register forming a thir-
teenth digit. The non-digit part of the A register is cleared
(i.e., bits 4-15), and the Decimal Carry flag in the processor is
cleared.

IRZ Mantissa right-shift on Arl for one digit. The twelfth digit is
shifted into the A register (bits 0-3). The non-digit part of the
A register is cleared (i.e., bits 4-15), and the Decimal Carry
flag in the processor is cleared. The first digit in the mantissa
issetto 0.

i Normalizes the Ar2 mantissa. The mantissa digits are left-
shifted until the first digit of the mantissa is non-zero, or until
twelve shifts have taken place, whichever comes first. If the
original first digit is already non-zero, no shifts occur. The
number of shifts required is stored as the first four bits (0-3) of
the B register. If twelve shifts were required, the Decimal

Carry flag in the processor is set, otherwise it is cleared.

R Ten’s complement of Arl. The mantissa of Arl is replaced

with its ten’s complement and Decimal Carry is cleared.

The Processor and the Operating System 3-25

Instruction Description

Ten’s complement of Ar2. The mantissa of Ar2 is replaced

with its ten’s complement and Decimal Carry is cleared.

Fuf Fixed-point addition. The mantissas of Arl and Ar2 are
added together, and the result is placed into Ar2. Decimal
Carry is added to the twelfth digit. After the addition, Decimal
Carry is set if an overflow occurred, otherwise Decimal Carry

is cleared.

Mantissa word addition. The contents of the B register are
added to the ninth through twelfth digits of the mantissa of
Ar2. Decimal Carry is added to the twelfth digit; if an over-
flow occurs, Decimal Carry is set, otherwise it is cleared.

Fast Multiply. Performs the multiplication by repeated addi-
tions. The mantissa of Arl is added to the mantissa of Ar2 a
specified number of times. The number of times is specified in
the lower 4 bits (0-3) of the B register. The result accumulates
in Ar2. If intermediate overflows occur, the number of times
they occur appears in the lower 4 bits of the A register after
the operation is complete. The upper 12 bits of the A register
are cleared along with Decimal Carry.

Fo Fast divide. The mantissas of Arl and Ar2 are added together
until the first decimal overflow occurs. The result accumulates
into Ar2. The number of additions without overflow is placed
into the lower 4 digits of the B register (0-3). The remainder
of the B register is cleared, as is the Decimal Carry flag in the
processor.

et

Lo Clears the Decimal Carry flag in the processor.

£ {address} Skips to {address} if Decimal Carry is set. Decimal Carry is a
flag in the processor which may be set as the result of certain

BCD arithmetic operations (see Chapter 5 for details).

=14 {address} Skip to {address} if Decimal Carry is cleared. Decimal Carry is

a flag in the processor which may be sei as the result of

certain BCD arithmetic operations (see Chapter 5 for details).

3-26 The Processor and the Operating System

I/ 0 Group

The I/ 0O group of instructions provides you with some of the operations necessary to accessing

peripheral devices through the /0 bus. In addition to the instructions contained here, there

are instructions in other groups which can have 1/ O effects (e.g., LDA, STA...).

The techniques useful to the implementation of I/ O operations using the instructions in this

group and the other groups are discussed in Chapter 7.

Instruction

Description

S {address}

LZFC {address}

2% {address}

=51 {address}

Skips to {address} if the Flag line is set (ready). The Flag line
is associated with a peripheral on the current select code (see
Chapter 7 for details).

Skips to {address} if the Flagline is clear (busy). The Flag line
is associated with a peripheral on the current select code (see
Chapter 7 for details).

Skips to {address} if the Status line is set (ready). The Status
line is associated with a peripheral on the current select code
(see Chapter 7 for details).

Skips to {address} if the Status line is clear (busy). The Status
flag is associated with a peripheral on the current select code

(see Chapter 7 for details).
Enables the interrupt system. Cancels the DIR instruction.

Disables the interrupt system. Cancels the EIR instruction.

Sets DMA outwards. Directs that DMA operations read from

memory, write to the peripheral.

Sets DMA inwards. Directs that DMA operations read from
the peripheral, write to memory.

Enables the DMA mode. Cancels the DDR instruction.

Disables Data Request. Cancels the DMA instruction.

The Processor and the Operating System 3-27

FURPRN | PR
Mlsceuaﬁeuua

The following instructions cannot be classified into any of the other groups.

Instruction Description

Null operation. This is exactly equivalent to LDA A.

EXE {value} [, I] The contents of any register can be treated as the current
instruction and executed. {value} is a numeric expression in
the range O through 31, indicating the register to be used.
The register is left unchanged, unless the instruction code
causes it to be altered. The next instruction to be execuied is
the one in the word following the EXE, unless the code in the
executed register causes a branch.

3-28 The Processor and the Operating System

Chapter 4

Assembly Language
Fundamentals

Summary: This chapter discusses some of the basic statements and syntaxes used
throughout the assembly language system. Program entry, assembling, symbolic opera-
tions, module creation, program and variable storage, and utilities are the topics co-
vered.

When writing assembly language programs there are a number of things with which you will be
involved constantly. In the beginning, questions arise on how to use the language: How do you
enter the scurce code? What kind of symbolic addressing is there? How do you create and
distinguish modules? How do you create the object code and where is it stored? What utilities
are available and how do you use them?

The answers to those questions form the underlying capabilities through which you write your
applications. These are things which nearly every assembly language program uses. As essen-

tial as they are, however, none are difficult to master.

Program Entry

You were introduced early in Chapter 2 to the integrated nature of the assembly language with
its host language, BASIC. You know from that chapter how assembly language statements can
be intermingled with BASIC statements — that you can employ the usual editing features on
the assembly statements. However, there is more to the ISOURCE statement than just its
integrated nature with BASIC.

As stated in Chapter 2, all assembly language statements are designated with the keyword
“ISOURCE”. The keyword is followed by {assembly language source}. So the syntax of the

entry line is —

{line number} [{BASIC label} :] I: _E {assembly language source}

4-1

4-2 Assembly Language Fundamentals

Here’s a simple example of this from Chapter 2 —

HAM Exampie
HiGP
EMD Exampis

The {line number} and {BASIC label} are the same as you are used to in BASIC. However, it
should be noted that the statement is not an executable one, so the BASIC label is only useful
for documentation and EDIT purposes.

To BASIC, the ISOURCE statement appears as a comment. If you were to change the above so
that it read —

i

=T o
MO E

and then executed a statement ‘‘GOTO Example”, the result would be to simply execute the

END statement in line 70. That is because, to BASIC, the lines appear the same as —

48 Exampls
i

or —
48 Exampls !
15 !
(=15 !

o
]
=)

The BASIC label on an ISOURCE line finds its most useful characteristic in being able to be
referenced, as any other BASIC label on any other type of line may be, with an EDIT com-

mand. Thus, if you were to execute —

on the above, you would be working in the editor, starting with line 40. This feature will

become useful during program development as will be pointed out shortly.

Assembly Language Fundamentals

Assembly Language Source

You may have recognized the assembly language instruction and pseudo-instructions to the
right of ISOURCE in the examples above. This is where your instructions and pseudo-
instructions appear. However, the source is a little more versatile than that. In general, {assem-
bly language source} has the syntax —

[{label} : J{action}[! {comment}]
Or, the action may be omitted and only a comment appears —
[{label} :] ! {comment}

Alabel is always optional in the source, but either an {action} or a {comment} must be present

in every source line.

Actions

An {action} in assembly language source is —

¢ A machine instruction, with any operand it may require. These were discussed at some
length in Chapter 3.
e A pseudo-instruction, with any operand it may require. These are discussed under the

topics to which they relate.

The actions contained in the above example were —

Labels

The {label} in assembly language source is part of the symbolic addressing capability of the
assembler. This {label} is used by the assembler only. Neither the operating system nor BASIC

is aware of its existence.

4-3

4.4 Assembly Language Fundamentals

The label follows the same form and rules as do labels in BASIC —

e Up to 15 characters long.
o First character must be a capital letter (A-5).

e Only the non-capital letters (z-=), the numerals (& to %), or the underscore (_) may be

used following the first character.

No two labels are allowed to be the same in a given module. If your source consists of two or
more modules, then the same label may be defined more than once, provided each definition is
in a different module. (Distinguishing between modules is discussed in ‘‘Creating Modules”,

later in this chapter.) So you may not code —
Fumpesistiitskind LDA B

in one place in the module and later in the same module code —

Fumpsiztittzhing
There are other restrictions as well on the choosing of labels. For instance, there are symbols
already defined by the assembler and you are not allowed to choose one of them as a label.
This is discussed at length in ‘‘Symbolic Operations’” in this chapter.

Both a BASIC label and an assembly language source label can appear in the same line, and
they are distinct from one another. BASIC does not know about the source label and the
assembly language system does not know about the BASIC label.

Since neither BASIC nor the operating system is aware of the existence of source labels, actions

ouside the assembler cannot reference these labels. Thus, if you had the source line —

You can say neither GOTO Rumpelstiltskin nor EDIT Rumpelstiltskin. Neither of these can find

“Rumpelstiltskin’’, since only the assembler can know it is there.

Assembly Language Fundamentals

This can be a nuisance in some instances during program development. Many programmers
use labels almost exclusively and rarely consider the line number when using the editor to
change a line. For instance, in the above, they would not be used to saying, “EDIT 100" to get
at the line in order to change it. They are more used to saying, “‘EDIT Rumpelstiltskin’. A way

for them to do it would be to change the line to —

Note that, as the example demonstrates, the name can be the same in the BASIC label as in the

source. This takes advantage of the fact that BASIC and the assembler are unaware of each

-

other’s labels. The names do not have to be the same.

Comments

As with any BASIC line, a comment may be included by simply adding an exclamation point (})
and typing your comment after it. Since you have a total of 160 characters for a line, your
comment may fill up the remainder of the 160 characters left after the rest of the statement has

ot

been provided {line number, ISOURCE keyword, label, action).

Syntaxing the Source

When you are creating your source program, you are either entering it from the keyboard or
retrieving it from mass storage (LINK or GET). In either case, as the statement is entered (the
@ key on the keyboard is pressed or a record is read from mass storage), the operating
system takes note of any use of the keyword ISOURCE. When a line has this keyword, the
operating system turns over the remainder of the line following the keyword to the assembly

system. The assembly system, then and there, checks the syntax of the source.

By checking the syntax at the time of entry of the statement, a considerable amount of proces-
sing time is saved when the time comes to assemble the source into object code. In addition, it
gives you, as the programmer, immediate feedback when a syntactical error occurs. You do not

have to wait until assembly time just to find out that you misspelled NOP.

4-5

4-6 Assembly Language Fundamentals

At syntax time, the assembler takes care of capitalization, lower case, and spacing for the
source. It's quite similar to the SPACE DEPENDENT mode of entry for BASIC statements (that
mode is not required to get the effect with the assembly system). It follows the following rules in

syntaxing the source —

o Everything between the ISOURCE and the colon (if present) is the label. Its initial charac-
ter is capitalized and the remaining letters are converted to lower-case. This is regardless

of whether they were entered in that form.

o The label, if present, is left-justified to the second column following the keyword
ISOURCE.

o The first three letters following the colon (or just the first three letters, if there is no label)
are considered the machine instruction or pseudo-instruction and are capitalized. The
instruction will remain in the same column as it was entered, and, if possible, a space is
added after it.

e Everything after the instruction or pseudo-instruction is considered the operand for the
instruction, up until the exclamation point before the comment (if any). Any label (sym-
bol) in the operand will have its initial character capitalized and the remaining letters

converted to lower case automatically.
e Comments are unchanged and remain in the same columns as entered, whenever possi-

ble.

In short, simply enter the statement in your most comfortable fashion and the assembly system
automatically assures that what you enter is in the proper form (though it still can’t guarantee
that you have entered the right instruction for what you mean to do).

As a demonstration of this facility, consider the following line ready for syntaxing —

1@ ISOURCE PUMPELETILTSHIME

hipbatid

It becomes —

188 ISOURCE Rumpelstiitskind

Assembly Language Fundamentals

Creating Modules

When you were introduced in Chapter 2 to the concept of a module, it was said that a module is

given a name through the NAM pseudo-instruction.

So, when you enter a source line which has the following form —

{module name}

you are assigning a name to a module, and you are also delimiting the beginning of the module.
By the inclusion of this statement, all source lines which follow are part of the module with the
name designated in this source line, that is, all lines until the END pseudo-instruction is encoun-
tered in the source. It has the form —

Z {module name}

Its {module name} must be the same as in the NAM pseudo-instruction.

It is by the use of these two instructions that modules are created. The source lines which
appear between them comprise a single module, and the name assigned to the module is the
one with which the module is referenced (with the ILOAD and ISTORE statement for example).

When it comes time to assemble the source into object code, the assembler treats the source

lines in a module as a unit.

In actuality, therefore, there are two modules — a source module and an object module. When
you are assembling a module, the name you use refers to the source module and creates the
object module. Later, other statements, such as ISTORE and ILOAD, refer solely to the object
module.

4-7

4.8 Assembly Language Fundamentals

Storage
Modules

When assembly converts a source module into an object module, there must be a place to keep
the object module. That is the function of the ICOM region.

You were introduced to the ICOM region in Chapter 2 in connection with the loading and
storing of modules. It is also used to hold modules which are created through assembly. Once a
module has been assembled, the object code appears in the ICOM region just as if you had
loaded it from mass storage.

Variables

Within a module, you may want to set aside one or more words of memory for your use. For
example, you might need a location to store a variable, or keep a counter, or save a register.
This is done with the BSS pseudo-instruction —

EZEZ {number}

where {number} is the number of words to be set aside. {number} can be any absolute expres-
sion, provided the expression evaluates to a positive integer (see ‘‘Symbolic Operations”, later
in this chapter).

This kind of storage is part of the object code and is set aside ‘“‘in-line’’. This means that
wherever it appears in the source, the storage appears in the same relative location in the object

module.

For example, suppose a module contained the following source lines —

Ca e W B

Assembly Language Fundamentals

Then, at some appropriate spot in the object module (relative to the other insiructions in the

module) there would be the following contiguous locations —

Save_a 1 word
Save 4 4 words
Renras some number of words equal to ‘‘the absolute symbol, Larry”*

Again 1 word

The locations at labels Save_a, Save 4, and Renras are merely reserved by the BSS pseudo-

instructions, and their contents are not initialized to any particular value.

It is possible to accidentally execute these locations when the routine is run if you’re not
careful. Ordinarily, you should place these locations somewhere safely out of the potential
execution sequence, since they are used just for storage. Some applications, though, use

self-generating code, and a BSS is a way to set aside locations for it.

Data Generators

A ‘“‘data generator” is very much like a BSS operation. The function, as with the BSS, is to set
aside words of memory at a particular location in the object code. But in addition, the words are
to be initialized to some value. The initialization occurs at the same time the words are set aside

(i.e., at assemble-time).
This is done using the DAT pseudo-instruction which has the form —
LT {expression} [, {expression}[: ...]]

An {expression} may be any absolute or relocatable expression. The various forms that an

expression may take are discussed in ‘“Symbolic Operations’ later in this chapter.

As an example, suppose you want the value 100 (a decimal integer) to be located at location
“X”” in the object module. You can achieve this by identifying the location in the source code
(ultimately the object code) where you want the value to be, then placing this instruction at that

point —

1such symbols are discussed at length in the ‘‘Symbolic Operations’’ section later in this chapter.

4-9

4-10 Assembly Language Fundamentals

Upon encountering this pseudo-instruction, the assembler generates the words necessary to
store the value (in this case, only 1 word is necessary). It then stores the value (100) into the
word(s) and proceeds with the remaining assembly. Thus, the location of the words is depen-
dent upon the instruction’s relative position in the source module, the same as with any

machine instruction.

The number of data words generated for each {expression} is dependent upon the result of the

{expression} —
Result Words
Full-precision 4
Short-precision 2
Decimal integer 1
Octal integer 1
Address! 1
Literal 1
String actual length (2 characters per word)

If more than one {expression} is present, the necessary data words are generated in the order in

which they appear in the list. As an example, if you were to include the instructions —

1 including ‘‘external’’

Assembly Language Fundamentals 4-11

-» decimal integer 24

= octal integer 24

full-precision 2.4 E1

full-precision —2.4 ES

short-precision 2.4 E6

short-precision 4.567

“HELLO” string

BASIC “HELLO” string?; first value (5} is character count

- “C” character
- Address of first word in ten word buffer

Ten word buffer (values are meaningiess)

— Address of last word in ten word buffer

- Address of word containing integer value 3

-» Address of first word of an area containing three integers
- integer value 3

= Integer value 3, first word in a group of three words

> [nteger value 4

-» Integer value 5

1 BASIC strings must be generated for communication between BASIC and assembly language as brought about through the
use of the Put_value (Chapter 6) and the Print_string (Chapter 7) utilities.

4-12 Assembly Language Fundamentals

Repeating Instructions

To help relieve the tedium of writing the same instruction many times (which many applications

occasionally require), a ‘‘repeat’ pseudo-instruction is provided —

{expression}

The pseudo-instruction causes the immediately following machine instruction to be duplicated

in the object code {expression} number of times.

For example, suppose you are writing a real-time application where timing was critical, and to

make things work correctly you need 10 NOPs at a certain location. Ordinarily you would

type —

and the same effect would be achieved.

Some pseudo-instructions may not be replicated. They are —

Assembly Language Fundamentals

Object code is created by “‘assembling’ the source code. Again, modules are a key factor. The
assembly directive is aimed at modules, using the module name as a delimiter in the source
code so the assembler can tell which ISOURCE statements to assemble as part of the module.

Of course this same name is also used to store the object code using mass storage.

The IASSEMBLE statement is the vehicle for assembling modules. It has the forms —

£ {module} [, {module}[. ...]]1[: {option} [. {option} [, ...]1]
£ [#LL][5 {option}[, {option} [, ...11]

Each {module} indicated is assembled, in the order given by the statement. Only those modules
are assembled; any others which may be present in the source at the time are ignored. If the
ALL version of the statement is used (with or without the optional word ALL), every module
present in the source is assembled.

An {option} falls into one of two categories: listing directives and conditions (for conditional

assembly). These are discussed separately below. The options, and their categories, are —

Listing directives

T

Conditions

i

Control of indirection

References to multiple-line functions cannot appear in the IASSEMBLE statement. If an IAS-
SEMBLE ALL statement is executed and no source code is present, no error message is given.

4-13

4-14 Assembly Language Fundamentals

Effect of BASIC Environments

To assemble a module, all of its source lines (between the NAM and END pseudo-instructions)
must lie within the same BASIC “‘environment”’. That is, the NAM and END for a module must
lie within the main program or within the same subprogram or multi-line function. For modules
where this is not true, an error {“EN’’ assemble-time error) occurs.

Source Listing Control

Listings of the source code in a module can be obtained during an assembly. These listings
contain the line numbers, instructions, and comments from the source lines along with the
associated machine addresses and contents of that address.

Here is part of a typical listing —

\

line absolute contents actions comments
numbers addresses

The addresses and contents are displayed in octal representation.
Listings are not automatic. They are obtained in one of two ways —

e By using the LIST option in the [ASSEMBLE statement. This directs that a listing is

desired for all the modules in the statement. The statement would look like the following

examples —

e By using the LST pseudo-instruction in the source code itself.

Assembly Language Fundamentals 4-15

Modules can be just partially listed, if desired. This kind of control is achieved by using the LST
and UNL pseudo-instructions within the source code, placing the LST before any instructions
which you want listed, and placing the UNL before any instructions you do not want listed. For

example, if the following source lines are assembled —

only lines 430 through 500 would be listed.

The primary purpose of this capability is to allow as much modularity in the listings as you can

get in source code. To implement this purpose, a ‘listing counter” is used.

Whenever an LST instruction is encountered during an assembly, the listing counter is in-
cremented. Whenever an UNL instruction is encountered during an assembly, the listing
counter is decremented. Source lines are listed whenever the counter is greater than 0.

Whenever it is equal to O or negative, then no lines are listed.

The counter is set to 0 upon execution of the IASSEMBLE statement. This is why there is no
automatic listing. However, if the LIST option is included in the IASSEMBLE statement, then
the counter is initialized to 1. This is why that option creates a listing. Thus, you could defeat a
LIST option by placing an UNL instruction at the beginning of a module. This initialization
process occurs for each module assembled, so if you have more than one module indicated in

your JASSEMBLE statement, the counter is set at the beginning of the assembly for each.

This capability sees its greatest usefulness during debugging stages and while working with
independently written sections of source code. For example, a number of people could be
writing different sections of code, each containing their own LST and UNL instructions. These
instructions could then be overridden when they were combined into a single module by
preceding the sections with an LST instruction (to get a listing) or an UNL (to suppress the
listings).

4-16 Assembly Language Fundamentals

Page Format

Each and every assembly listing page has the following format —

e The word “PAGE” and the current page number of the listing occurs on the first line
starting at column 49.

e A heading occurs on the second line, left-justified. The heading always includes —

where {name} is the name of the module currently being assembled. Additional heading

information can be specified for this line (see ‘‘Page Headings” below).
e A blank line follows the heading.

o The text follows the blank line. The number of lines printed depends upon the LINES
option in the IASSEMBLE statement, the number of source lines encountered, and the
SKP pseudo-instructions which may be encountered while assembling the source. LINES
and SKP are described in the following sections.

o [f the EJECT option is not included in the IASSEMBLE statement, then a minimum of
three blank lines (carriage return/line feed pairs) will be printed at the end of a page. The
number may exceed three if the number of source lines printed on a page is less than the

standard length for a listing page.

Page Length

The length of the text in each page of your assembly listings can be specified through the
IASSEMBLE statement using the LINES option, which has the form —

{numeric expression}

This option directs that any listing of the modules being assembled have pages of the length
indicated by the absolute value of {numeric expression}. If {numeric expression} evaluates to a
positive number, the listing for each module is printed on a separate page with the indicated
number of lines. If {numeric expression} evaluates to a negative number, the pagination at the
end of each module listing is suppressed. An error is generated if {numeric expression}

evaluates to zero.

Assembly Language Fundamentals 4-17

| P Al Lo e
vceliy useu, nowevel,

is used, producing an

—+
5
=
=
.
=
®©
2
c
©
S5
=3
<
=
®©
<
o
-
©
[’
o
©
O
~
©
a
—_
5
®
o w
ks
=
o
=}
=
o
3
—-
~*
®
a
o]
<
=R
c
®©
o
o,
o
o o

overall page size of 66 lines.

Printer control characters, such as line-feed and form-feed, in a comment can affect the actual
printing length of the pages independent of the length you specify. Thus, a page length of 60
could result in actually 61 lines if one of the comments in your ISOURCE statements contains a

line-feed character.

End-of-Page Control

At any time during the assembly of a module, you can force the listing to continue printing at

the top of the next page by including —

(]
3

at the desired spotin the module. If a listing is being generated when this pseudo-instruction is
encountered in the source code, the printer is sent to top-of-form. This is physically done in one

of two ways —

o If the EJECT option was included in the IASSEMBLE statement which is assembling the
module, then a form-feed character (ASCII character 14B), is sent to the printer. This
feature is intended for perforated paper.

o If the EJECT option was not included, sufficient CR/LF pairs (ASCII characters 15B and
12Bj) are sent to the printer to fill out the standard length of a listing page (plus three at the
end of the page). Thus, if you already have printed 10 lines on a page, and an SKP
instruction was encountered, the assembler sends (length—10 + 3) CR/LF pairs. This

feature is intended for non-perforated paper.

The SKP instruction is not required to cause pagination to occur when the standard length of a
listing page is exceeded. Thus, if you are working with a default length of 60 for your standard
length, then each 60 lines from the last page break forces a new page break.

4.18 Assembly Language Fundamentals

Page Headings
The heading for each listing page is —

HULE D {name}

where {name} is the name of the module currently being assembled. This heading can have
additional information added to it through the HED pseudo-instruction. This instruction has the
form —

L

HED {comment}

When this instruction is encountered, and a listing is being generated, pagination immediately
occurs, the same as with the SKP instruction (see above). On the new page, and on all pages
after it, the indicated {comment} appears after {name} in the heading, replacing any previous

information specified by an earlier HED instruction.

You can change the heading any number of times in a listing. This is frequently done in order to
generate documentation by sections, even though all sections may reside in a single module.

The heading appears on the page exactly the same as in {comment}, including the positioning
of blanks, control characters, etc.

Blank Line Generation

If occasional blank lines are desired in a listing {usually to set off sections of code, or com-

ments), they may be generated by including —

ZPC {number}

at the desired spot in the source statements. {number} designates the number of blank lines
desired. {number} can be any absolute expression, provided the expression evaluates to a

positive integer (see ‘“‘Symbolic Operations’ later in this chapter).

Assembly Language Fundamentals

Non-Listable Pseudo-Instruciions

The following pseudo-instructions do not appear in a listing —

Conditional Assembly

For reasons of complexity or length, it is occasionally desirable to selectively assemble only
parts of a module. This is particularly true during the debugging stage of longer, complex
assembly programs. ‘“‘Conditional assembly” is the ability to designate certain portions of a
module for assembly, depending upon conditions established by the IASSEMBLE statement.

You may recall from the description of the IASSEMBLE statement earlier, there are options
called ““‘conditions’ available with the statement. These conditions —

y

txl

L B A

T

are used to designate which conditions are ‘‘set” during the assembly. By including one or
more of these conditions, all conditional assembly statements predicated upon that condition
are assembled. For example, if the following statement is executed —

then any occurrence of conditional assemblies based on “A’ are assembled. Also, any condi-
tional assemblies based on B through H are not assembled, since those conditions were not
included in the options for the IASSEMBLE statement.

4-19

4-20

Assembly Language Fundamentals

The conditional assembly sections are delimited by pseudo-instructions. A conditional section

begins with one of the following —

IFH

and it concludes with —

In addition to the lettered conditions, a numeric condition can be tested by using an IFP

pseudo-instruction. It has the form —
IFF {absolute expression}

The condition is considered true if {absolute expression} evaluates as a positive value. It should
be noted that this is an assembly-time construct, meaning that the variables contained in the

expression are evaluated at the time of assembly.

The IFP instruction performs in the same manner as the IFA through IFH instructions. It also
terminates with the XIF instruction.

The conditional assembly is based upon a flag. At the beginning of the assembly for a module
the flag is set so that object code is generated for all instructions. An IF conditional encountered
during the assembly which does not have its condition set turns off the flag so that no further
code is generated. Encountering an XIF statement resets the flag so that code generation can

resume. For instance, if the source —

Assembly Language Fundamentals 4-21

is executed, lines 430 through 460, 480, and 490 are assembled, but 520 through 550 are not.
Line 570 is assembled.

The XIF pseudo-instruction actually affected both conditions. This effect is more dramatically

illustrated if line 320 is changed to —

where neither A nor B is set. In this case 480, 490, 520 through 550 are not assembled. But 570

is assembled!

The effect of the XIF, then, is as a flag for all the conditions. As a consequence, it is not possible

to “nest’”’ conditional assemblies. This effect is the same with the IFP conditional.

4-22

Assembly Language Fundamentals

Control of Indirection

The assembler can generate an indirect instruction, even when you have not specified a,I after
the instruction. The pseudo-instructions IOF (indirect off) and ION (indirect on) control these
automatic indirects. While automatic indirection is turned off (by IOF), a range error (RN) is
generated for any instruction which the assembler would have generated an automatic indirect
for. ION turns automatic indirection back on, restoring the assembler to its normal state. These
pseudo-instructions are used in pairs, with IOF first and ION last, to specify an interval for

which you wish to control automatic indirection.

Relocation

The code talked about in this section is relocatable. You do not have to worry about the
absolute location of your module. The assembler automatically generates the appropriate
machine codes for each of your instructions to assure that the correct location is reached when

referenced.

Some instructions generate relocatable object code in which the operand address is an offset
from the current address and the relocating loader has to make no changes to the object code

for them as long as they are within — 512 and + 511 of the current address.

For indirect addressing, and for instructions which are more than 512 words away from the
current address, it is required of the loader to adjust the address in the intermediate word to
reflect the actual address being referenced. For indirect addressing generated by the assembler,

this activity is automatic.

Some instructions permit you to specify an absolute machine address for its operand. In those
cases, the assembler generates the code necessary to perform the reference to the absolute

location.
For example, if the instruction was assembled —

IR R
(which essentially says ‘‘load register A with the contents of register B) the result would be a
machine instruction which references the B register (absolute address 1). This reference would

be independent of the actual location of the instruction itself.

There are a couple of ways to produce an absolute address in an operand. Using pre-defined
symbols is one way. There is a type of expression known as ‘‘absolute’” which is another way.

Both of these are dicussed in the next section, ‘‘Symbolic Operations’.

Assembly Language Fundamentals

You should never try to use absolute addressing within the ICOM region, since not only is the

location of the region itself not fixed, but modules can also be moved around within the region.

Module Reassembly

Modules that have been assembled can be reassembled at any time. Debugging a routine often

times leads to changes and reassembly. A discussion of this process is in order.

The steps involved in the reassembly of two modules with the statement —

are the following:

o Step 1 — both modules appear in their original positions in the ICOM region.
e Step 2 — Module_1 is deleted and Module 2 is moved and linked.

e Step 3 — Module 1 is assembled.

e Step 4 — Module 2 is deleted and Module 1 is moved and linked.

e Step 5 — Module_ 2 is assembled.

Module 1 Module 2
deleted deleted

Module 1 Module 2 Module 2 Module 1 Module 1
(Relinked) (Relinked)
Module 1
Module 2 (assembled) Module_2
(assembled)
Step 1 Step 2 Step 3 Step 4 Step 5

The impact of this is that during debugging with the stepping feature (Chapter 9), the lines of
the reassembled modules are listed erroneously. The simple solution to this problem is to

execute an IDELETE ALL statement before reassembling more than one module.

4-23

4-24 Assembly Language Fundamentals

Symbolic Operations

You have been introduced, in small doses, to symbols throughout the chapters preceding this
one. The idea of symbols in an assembly language is the same as it is in a higher language such

as BASIC — to make operations simpler and the code more understandable.

Several symbolic tools are provided for you in this assembly language system. You have
already seen one described in detail in this chapter — labels. There are some pre-defined
symbols the assembly system provides for certain locations in the machine (mostly registers).
There are ways to define your own symbols (and give them a “‘type’’). And, there are ways to
access symbols in other modules.

Symbols can be used as operands in machine instructions and in some pseudo-instructions.

They can be part of expressions in an operand.

Predefined Symbols

The assembler has predefined a number of symbols and has reserved them as references to
special locations in memory. Each of the locations has a special meaning and function. The
symbols themselves are ‘‘reserved’, meaning they cannot be re-defined (by using them as

labels on something else). The symbols are —

Symbol Description

A Arithmetic accumulator

Arl } BCD arithmetic accumulators

Ar2

B Arithmetic accumulator

Base page Global temporary area (9 words)

C Stack pointer

Cb Address-extension bit for byte pointer in C
D Stack pointer

Db Address-extension bit for byte pointer in D
Dmac DMA count register

Dmama DMA memory address register

Dmapa DMA peripheral address register

End_isr high

End isr low] Reserved symbols for interrupt service routines
Isr_psw

8?)2:—; } Arithmetic utility operand address registers
P Program counter

Pa Peripheral address register

R Return stack pointer

Assembly Language Fundamentals

Symbol Description

R4)

R5 [/ O registers

R6 i

R7

Result Arithmetic utility result address register
Se Shift-extend register

Utlcount

Utlend } Reserved symbols for writing utilities
Utltemps

The meaning of each of these locations is discussed in other chapters. The absolute locations of
the registers can be found in Chapier 2. A description of the function of the accumuiators and
pointers can be found in Chapter 3 as part of the discussion on machine instructions. A
discussion of the I/ O registers and symbols can be found in Chapter 7. The arithmetic registers
are discussed in Chapter 5.

Using a pre-defined symbol in a machine instruction is the same as using its address. For

example —

means simply that register A will be loaded with the contents of register B. The same effect

could have been achieved with —

beeef

E Loe §

except that the symbolic form makes it more obvious what is intended by the operation. This is
true with most symbols.

4-25

4-26 Assembly Language Fundamentals

Defining Your Own

You are defining your own symbol each time you specify a label on an instruction or pseudo-
instruction. Normally the “value’ of the label is the address associated with the instruction.
However, in two cases it is possible to create the label and specify what its value is to be. One
case is when the label is on the EQU pseudo-instruction; the other case is when the label is on

the SET pseudo-instruction.
The EQU is an assembly-time construct. It exists only at the time of assembly to give you
value-assigning capability to symbols. It generates no code itself, and it has no implementation

or ‘‘location’ in the object module.

To define a symbol using an EQU, the form is —

{label}: i{expression}

the resulting symbol ({label}) has the same ‘“‘type’ as the expression (see ‘‘Expressions’’ later

in this chapter) and it has the same value as the result of the expression.
As an example, assembling the statement —

IS0URCE Thres: Eql =

means that in all references in the module to the symbol “Three”, it is the same as referring to
the value 3. Thus —

means load A with the contents of location 3.

A common use for this instruction is to assign a symbol an address which is an offset from

another address. For example, if this sequence were in a module —

ISOURCE Save regizters:
ISOURCE Saws bl

then Save_b would refer to the second word in the BSS area ““Save_registers”, and it would

probably be used to store away the contents of the B register sometime —

.
]

g

ISOURCE STE Sauw

Assembly Language Fundamentals

and later retrieve the value —

The SET pseudo-instruction defines a symbol in identical fashion to an EQU. Consequently, it

has the same general form —

{label}: ZET {expression}

The difference between the two is that the SET instruction can have its {label} be a symbol
which has been previously defined. The effect in that case is to alilow a redefinition of the

symbol. For example, after assembling the following instructions —

Emld =
SET 22E

IECE Thres!

the symbol ‘‘Three’ has the value 30B.

Literals

Literals are a special means of defining your own symbols without actually having to go to the
trouble to do so. The result is a form of symbolic addressing without the symbol! The assembler
automatically allocates space at the end of each module for the storage of literal values. This
area is called a literal pool.

The form of a literal is —
= {expression} [. {expression}[,...]]
where {expression} may be any absolute or relocatable expression (see ‘‘Expressions” below).
Evaluation of Literals
When a literal is encountered in an operand, three things occur —

1. The literal is converted to its binary value. If there is more than one expression in the
literal, then they are all converted.

2. The binary value is stored in a literal pool. If there is more than one expression in the

literal, then they are stored contiguously in the order specified.

3. The address where the value is stored is then substituted for the literal in the operand.

4-27

4-28 Assembly Language Fundamentals

If the same literal is used in more than one instruction, only one value is generated in the literal
pool. All instructions using this literal refer to the same location.

Literals can be part of expressions as well as having expressions as part of them. Since they
ultimately are replaced by an address (pointing to a specific location within a literal pool), their

“type’’ is ‘‘relocatable”. See the section on “Expressions’ later in this chapter.

Basically, a literal means ‘‘the address of {expression}’’. An example should help in the under-
standing of literals. Suppose that you want to store the value 1 into the A register. There are
two ways you could accomplish that purpose. You could code —

Ones DAT 1

LIA Ore
or, you could use a literal and code —
LA =1
Using the literal method is easier and is more self-documenting. While the literal form strictly
says ‘‘load A with the contents of the address of the constant 17, it can also be read as “load A

with the constant 1”’, and this short-hand version can be an excellent way of self-documenting
your programs, not to mention the elimination of a lot of unnecessary symbols.

The value of symbols defined with the EQU pseudo-instruction are referenced using the literal
specifier. For example —

i

ﬁji

11

]
L]

i}

Nesting Literals

Since literals use expressions, and literals may be used in expressions, it is possible to have a
literal within a literal (nesting). In fact, it may be done to any depth, though the most useful

form of nesting is a single level.

Assembly Language Fundamentals

Suppose you want to initialize a variable to the value of pi each time you enter a routine. A

nested literal would be a way of accomplishing this in a clean, straight-forward fashion —

Chge
T e

]
ER]
o
i

R
ok b ®
Ao o

and the locations starting at “Pi”’ now contains the full-precision value indicated (which is a fair

approximation to pi). This would replace coding which could have looked like this (without

using literals) —

--1:
.

-
e b
D T
e i R
T Y e

s | Ty

~|
trd
EE
(i}
Ju

Literals are also used to provide an instruction or a utility (e.g., the XFR instruction and the
Print_string utility) with the address of the first word of a string, or full-precision or short-

precision number. In these cases the ‘= ="’ specifier is used. For example —

puts the address of the first word of the short-precision number in the A register for the XFR

instruction. Likewise —

puts the address of the first word of the BASIC string “EXAMPLE” in the A register for the
Print_string utility. (See Chapter 7, 1/0 Handling, for an explanation of the Print_string

utility).

Nonsensical Uses of Literals

A literal, basically, is an address. Since it can be used in an operand wherever an address may

be used, it is possible to use it in instructions where the result is a little nonsensical.

4-29

4-30 Assembly Language Fundamentals

For example, consider the result of doing some of the following —

Caution dictates that you well consider the appropriateness of the action when using the literal.
Literals can be a highly useful tool, but only when properly employed.

Literal Pools

Literals are assemble-time constructs, but they eventually resolve to an actual address in the

object code. That address points into the literal “pool’.

The literal pool is part of your module where the actual values of literals are stored. There is
automatically a literal pool assigned at the end of each module where literals are used. As many
literal values as possible are stored there by the assembler. However, in some cases, a literal
pool is needed earlier in the program (a need indicated by the assembler with the “LT”
assembly-time error). In that case a pool should be created using the LIT pseudo-instruction.

This instruction has the form —

LIT {size}

where {size} is the number of words to be set aside (it may be a positive numeric expression).
The instruction acts very much like a BSS. And, like a BSS, it should be placed at a location in
your code where it is not likely to be inadvertently executed.

Most modules do not need assignment of an extra literal pool. However, one is needed where
there is a literal used beyond 512 words from the first available space in the literal pool at the
end of the module. To alleviate the problem, a literal pool must be created with the LIT

statement within 512 words of the instruction.

A common cause of this kind of problem is a large BSS assignment between the instruction and
the end of the module. Sometimes moving the BSS to some other location is a solution to the

problem.

Assembly Language Fundamentals

Expressions

Literals, some pseudo-instructions (particularly EQU), and a number of machine instructions,
all permit “expressions’” to be used as an operand. These expressions take one of two
forms — ““absolute’” or “‘relocatable”.The type of an expression depends upon the type of the

individual elements in it.
An element is of the type “absolute” if it is any of the following —

o A decimal integer (like 0, 1, 2, 1 024).

& An octal integer (like 10B, 40B, 100000R).

e A string (enclosed by quote marks) (like “‘ERROR”’)

o An ASCII character, preceded by an apostrophe (like 'A).

e A label associated with an EQU or SET pseudo-instruction whose expression is also

evaluative as type absolute (like EQU 40B).

An element is of the type “relocatable” if it is any of the following —

e A label not associated with an EQU or SET pseudo-instruction (i.e., it is an “address’).
e A literal (like =0).

e An asterisk, symbolizing ‘‘current address”.

o A label associated with an EQU or SET pseudo-instruction whose expression is also

evaluative as type relocatable (like EQU *).

An expression is a list of elements each pair of which is separated by one of the following

operators —

meaning addition, subtraction, division, and multiplication, respectively, as in BASIC.

The result of an expression is either absolute or relocatable depending upon the following

rules:

4-31

4-32 Assembly Language Fundamentals

An absolute expression is any expression which contains —

e Only absolute elements.

e An even number of relocatable elements, paired in sequence and by sign (i.e., for each
relocatable element there is another relocatable element adjacent to it, of opposite sign).

These pairs may be in combination with absolute elements.
A relocatable expression is any expression which contains —

e An odd number of relocatable elements, paired in sequence and by sign, except the last,

which must be positive.

e An odd number of relocatable elements, as above, in combination with any number of
absolute elements.

Any combination of absolute or relocatable elements which does not result in either an abso-

lute or relocatable value, by the rules above, results in an error.

These rules and the rules for using # and - can be summarized as —

The expression is — The type is —
absolute + absolute absolute
absolute + relocatable relocatable
relocatable + absolute relocatable
relocatable — relocatable absolute 1
relocatable + relocatable error

absolute — relocatable error

absolute x absolute absolute
absolute / absolute absolute
absolute * relocatable error
relocatable * absolute error
absolute/relocatable error
relocatable / absolute error

Assembly Language Fundamentals 4-33

Unlike BASIC, there is no precedence among the operators. All are of equal precedence.

Where precedence is desired, parentheses must be used. So where BASIC requires —
2%x16+3%8

to resultin 56, the same expression in the assembly language results in 280 (assembly language
operators are evaluated from left to right). However, 56 would be the result if it were expressed

as —
(2*16)+(3*8)

An expression may be of any length and contain as many operators and parentheses as desired,
as long as the result can be evaluated and the parentheses are properly paired. All operators
are evaluated from left to right. Multiplication and division can only be used with elements that

are of type absolute.
Both operands are considered to be unsigned integers for assembler division (/). Overflows in

all assembler arithmetic operations are ignored.

External Symbols and Elements

There is an additional relocatable element, called “external”. It behaves in almost all respects
as does any other relocatable element, except that only one external item may appear in an

expression. Also, the expressions containing —

relocatable — relocatable

are not allowed when one of the relocatable elements is external. Externals are defined as

symbols appearing in an EXT pseudo-instruction —
£:T {symbol} [, {symbol} [....]]

These are entry points in another module or utility. “‘Entry points” are merely symbols in a

module which are listed in an ENT pseudo-instruction in that module —

EMT {symbol} [{symbol} [,...]]

4-34 Assembly Language Fundamentals

If one module contains —

then that symbol would be available to another module which contains —

i
il
o

The EXT instruction should appear before any other instruction using the symbols which are
listed in that EXT instruction. At execution time for a module with an EXT instruction, all of the
symbols listed in it must be either a utility name or be contained in an ENT or SUB (described in
Chapter 6) of another module. It is not necessary that the module be in source form; it may

already be an object module assembled from a source module which contained the symbol as
an ENT or SUB.

NOTE
When ICALLing an assembly routine, satisfaction of the ex-
ternal symbols specified by an EXT pseudo-instruction is
checked only for the first module after the ICALL. The ex-
ternal symbols of modules entered after the first module are
not checked. Undesirable results can be obtained if exter-
nally referenced modules cannot be found. Be sure that all

interrelated modules reside in the ICOM region before an
ICALL is executed.

Other Absolute Elements

There are additional absolute elements which may be used in expressions. These are

“machine addresses’’, short-precision numbers, and full-precision numbers.
A machine address is one of the following —

e An assembler pre-defined symbol.

e A symbol associated with an EQU or SET pseudo-instruction whose expression is
evaluated as a machine address (i.e., it contains a pre-defined symbol or another EQU-

associated symbol whose expression contains a pre-defined symbol).

Assembly Language Fundamentals

For the most part, machin

e addresses can be used ju utes. However, they remain
defined from assembly to assembly. By defining a machine address in one module (with an
EQU or SET), it then becomes available to you with the same value in other modules which you

assemble.

For example, if you were to assemble a module containing —

ISOURCE RIGDD EOU A+igg

then R100 is a machine address {ollowing the above rules, just as if the assembler ha
defined it. If you don’t do any SCRATCH or GET statements in the meantime, then the next
assembly you do would also have this symbol available without ever having to define it.

pre-

When full-precision numbers (like — 2.5, 3E3, 3.141592) and short-precision numbers (like
1.S, — 2.5S, 3.14159S, 3.E3S) are used in expressions, they become the entire expression.
This is because these numbers are only intended as simple data-generating devices in literals
and in DAT pseudo-instructions. Explicitly, the rules for using full- and short-precision numbers

are —

e They may only appear alone in an expression, i.e., they may not be in combination with

other elements.

e They may only appear in literals and in DAT pseudo-instructions.

4-35

4.36 Assembly Language Fundamentals

Utilities
A number of utilities have been provided to help make your programming tasks easier and to

give you direct access to some of the operating system’s capabilities and routines.

Descriptions of the utilities are made in conjunction with those topics where the utilities play a
part. The form of the description of a utility is somewhat standardized. Each description will tell

you —

o The name of the utility.

e The general procedure for using the utility.

e Any special requirements which must be satisfied for the utility to work properly.

e A step-by-step calling procedure for the utility.

e The exit conditions.
Utilities are a form of subroutine, so to execute them it is necessary to execute a jump-to-
subroutine instruction (JSM) if you want the utility to return to the routine which calls it. Most
utilities execute a RET 1 instruction to return, so in some cases where you follow a utility call

with a RET 1 of your own, you can save the RET instruction by using the JMP (unconditional
branch) instruction instead. For example, a typical utility call looks like —

LIA =Temp
LIE =Fointer

JEM Get_element

but if it happened to be followed by a RET 1 —

LIA =Temp
LDE =Fointer
JEM Get_element

FET 1

Assembly Language Fundamentals 4-37

the calling procedure could be changed to —

]
ot T
Ion

T3k
[y

and you save a word of code: the effect is otherwise the same. Check the exit conditions for a

utility before using this approach.

Utilities which you use in a module must have their names in an EXT pseudo-instruction for that
module. Otherwise, the assembler is unable to tell that you meant a utility and not one of your

own labels, causing an ‘‘undefined reference’ assembly error.

The contents of any or all of the processor registers may be altered after a return from a utility.

Be sure to save the contents of registers that you are using before you call a utility.
If you are using interrupts, the interrupt system may or may not be enabled upon return from a
utility. Use the EIR and DIR instructions to ensure the proper state of the interrupt system upon

return from a utility. A system utility cannot be called from an interrupt service routine (ISR).

Appendix F contains a short description of the utilities.

4-38 Assembly Language Fundamentals

The utilities currently available are —

Utility Description

Busy Tests the busy bits of a BASIC variable

Error exit Aborts an ICALL statement with a particular error number
Get_bytes Accesses substrings (or parts of parameters)

Get_elem_bytes
Get _element
Get file info
Get:info_

Get_value
Int_to rel
Isr_access
Mm_read_start
Mm read xfer
Mm_ write _start
Mm_write_test
Printer select
Print_no_If
Print_string
Put_bytes

Put _elem_bytes
Put element
Put file info
Put:valﬁe

Rel math

Rel to_int
Rel to_ sho
Sho_to rel
To_system

Same as “‘Get_bytes”’, but used for array elements

Same as “Get_value”, but used for array elements

Accesses the file-pointer of an assigned file

Returns the characteristics of a variable passed as a
parameter or existing in common

Returns the value of a BASIC variable

Data type conversion from integer to full-precision

Establishes hardware linkages for interrupts

Prepares to read a physical record from mass storage

Reads a physical record from mass storage

Writes a physical record to mass storage

Verifies a physical record was written to mass storage

Changes or interrogates select-code for standard printer

Outputs a string with no CR-LF sequence

Outputs a string to the standard printer

Replaces substrings (or parts of parameters)

Same as “‘Put_bytes’”’, used for elements in an array

Same as “Put_value”’, used for elements in an array

Manipulates the file-pointer of a file

Changes the value of a BASIC variable

Provides access to all the arithmetic routines

Data type conversion from full-precision to integer

Data type conversion from full-precision to short

Data type conversion from short-precision to full

Allows immediate printing with printing utilities

Chapter 5
Arithmetic

Summary: Arithmetic operations are reviewed and the arithmetic utilities are discus-
sed. Floating point and BCD arithmetic are explained, as well as integer arithmetic.

Numerical calculations are a large part of any computer’s operations. Implemented within the
System 45’s processor are both integer and primitive Binary Coded Decimal (BCD) floating-
point arithmetic operations. These operations are needed because three of the four BASIC
variable data types (explained in Chapter 3) are represented either as BCD floating point
numbers or as integer (binary) values. To be specific, full-precision numbers are presented as
12-digit, BCD floating point numbers, short-precision numbers are represented as 6-digit,
floating point numbers, and integers are represented as binary numbers. This chapter deals
with integer and floating point operations and is intended for those readers who may have no
acquaintance with this topic, or perhaps only a passing one. The particular machine instruc-

tions involved with such arithmetic are reviewed.

Because the processor provides only rudimentary floating-point operations and because com-
plete floating-point operations (e.g., subtract, divide) are not easy to write, BCD arithmetic
utilities have been provided to perform these calculations and are discussed later in this chap-
ter. Integer arithmetic operations are less complex; thus utilities can be written by you, as
described in the following section. If you are not interested in doing your own BCD or integer

arithmetic, it is recommended that you skip immediately to ‘‘Arithmetic Utilities’ .

Due to its speed increases over BCD floating point arithmetic, integer arithmetic is recom-

mended when you are performing the addition, subtraction, or multiplication of integers.

5-1

5-2 Arithmetic

Integer Arithmetic

Representation of Integers

Recall from Chapter 3 that integers are represented as —

15 14 0 Bit
I
|
]

\Sign Bit (1 = negative)

The range of integers represented by 16 bits in the 9845 is —
-32 767 to +32 767

This is further illustrated in the following table —

Bit 15 Bit0
Decimal j Binary Integer Representation j

-32768 1 000 000 000 000 000
-32 767 1 000 000 000 000 001

1 1 111 111 111 111 111
0 0 000 000 000 000 000
1 0 000 000 000 000 001
7

0 111 111 111 111 111

Notice that negative integers have their sign bit (bit 15) equal to one. There is another impor-
tant fact concerning negative numbers — they are represented in two’s complement form. This
is done so that subtraction can be implemented by complementing and adding. There are two
instructions (TCA and TCB) which enable you to form the two’s complement of an integer. An

example of the use of two’s complement is shown —

Integer Arithmetic’

The addition of integers is accomplished very easily. Two instructions (ADA and ADB) are
provided to do integer addition. A special situation to be aware of is the overflow condition. It is
possible to add two valid 16-bit integers and produce an answer which cannot be represented
in 16 bits.

1 For the purposes of this manual, the terms binary arithmetic and integer arithmetic are synonomous.

Arithmetic

For example, 15 000 + 25 000 = 40 000, and 40 000 is greater than 32 767 (the upper limit).

The following example illustrates how to detect this condition —

Of course, if you know that the result will be in the range —32 768 to +32 767, there is no need

to check for the overflow condition.

The subtraction of integers is handled almost exactly like addition. The following example

computes (X-Y) —

The processor contains an integer multiply instruction. There are two special considerations

concerning integer multiplication —

e When you multiply two 16-bit integers, the resulting product can always be represented as
a 32-bit integer. Hence, the processor’s MPY instruction produces a 32-bit answer, and
no overflow condition is possible. However, if you would like to restrict products to a valid

16-bit integer, you must provide your own 16-bit integer overflow check.

e An anomaly exists in the MPY instruction. If the B register contains —32 768, the MPY

instruction yields the wrong answer.

5-3

5-4 Arithmetic

The following example multiplies two 16-bit integers (X and Y) and tests the result to see if it is
a valid 16-bit integer —

oL

The processor does not contain an integer divide instruction. However, integer division can be
implemented quite easily. The following program implements integer division (X/Y) analog-
ous to the BASIC DIV operator with integer operands —

T
i
T
T
kS
T
i
T
i
T

Arithmetic 5-5

Multi-Word Integer Arithmetic

The processor does not directly support multi-word arithmetic. However, it does provide a
register (the E register) which facilitates multi-word addition. The E register indicates whether

there is a “‘carry’’ from bit 15 when an add instruction (ADA or ADB) is executed.

5-6 Arithmetic

The following program segment illustrates how 2-word integers can be added —

Subtraction can also be handled, by forming the two’s complement. The general algorithm is —

1. Form the two’s complement of the least significant, non-zero word.

2. Form the one’s complement {(using CMA or CMB) of all more significant words.

The following program segment illustrates how to compute the two’s complement of a two

word integer —

Arithmetic 5-7

Binary Coded Decimal

Binary Coded Decimal (BCD) uses four-bit binary codes to represent decimal digits. Thus, the
12-digit mantissa of a full-precision number is represented by 48 bits. The BCD digits are as

follows —

DECIMAL | BCD

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

o

O 00 N O O Wb W N =

A BCD number within this manual has its digits represented as D1, D2, D3, etc., with each digit
corresponding to some BCD digit. D1 is the most significant digit in a number. Since full-
precison numbers within the 9845 contain 12-digit BCD mantissas, 12-digit BCD numbers are
used as the most frequent examples in this discussion. In that case, D12 is the least significant

digit in a number.

Arithmetic Machine Instructions

There are some machine instructions which specifically operate upon the BCD registers. The
discussions in this chapter will make use of the capabilities of these instructions to develop the
techniques to write BCD arithmetic routines. If you have not done so already, you should
familiarize yourself with the instructions before moving on in this chapter. A description of the

instructions can be found in “Arithmetic Group’’ in Chapter 3.

5-8 Arithmetic

BCD Registers

There are two registers in the machine used for BCD arithmetic — Arl and Ar2. These symbols
are pre-defined by the assembly language to the registers’ locations in memory (see Chapter
3). The mnemonics for some instructions occasionally refer to these registers as X and Y

respectively (see Chapter 3).

BCD Arithmetic

To understand BCD arithmetic in the context of the 9845, recall from Chapter 3 that a full-

precision value is represented in four words which contain its information as follows —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit
Exp : | | T [I [T f T 1 [Man
Signl Exponent 0 0 0 O O |sign
1
D
(most significant digit) D2 Ds Da
Ds De D7 Ds
D
Do D1o Dr1 2

(least significant)

The exponent is stored in two’s complement form. The exponent and the mantissa are always
adjusted by arithmetic routines so that there is always an implied decimal point following D.

Thus, the mantissa of every value stored looks like —

D:. D2 D3 D4 Ds De D7 D8 D9 D10 D11 D12

Except possibly for intermediate results within the individual arithmetic algorithms, the most
significant digit of a full-precision value (D1) will never be 0 unless the entire number is 0.

Sometimes, after an individual arithmetic operation, the answer needs to be normalized, that
is, the digits of the answer shifted to the left until D1 is no longer 0. The exponent then needs to

be adjusted to reflect the change.

An important thing to keep in mind when examining BCD arithmetic, as implemented by the
processor, is that mantissas are represented in a ‘‘sign-magnitude’ format. This means that the
absolute value is stored as the actual mantissa, and the sign of the mantissa is maintained

separately.

Arithmetic

Addition
There is a one-bit Decimal Carry (DC) flag within the processor which serves a BCD function

similar to the Extend flag for binary addition.

DC is set to a one or zero, depending upon the occurrence or absence of a carry from the
addition of the two D1’s of the two BCD numbers being added. Since mantissas are represented
in a sign-magnitude form (with the sign in the exponent word rather than part of what gets

added), DC represents an overflow for 12-digit mantissa additions.

DC itself is part of the addition in the D12 position. This gives it potential use with multiple-
precision floating point arithmetic. The addition process looks like this —

carry
[o: [D2 [os [De [Ds [Ds [D7 [Do | Do | Dio | Di [Dz | Art
+ [Di [D2 [Ds [Da [Ds [Ds | D7 [Ds | Ds | Dio | D11 [D12 | Ar2
= [pc] o [Do]os [D [Ds [Ds [D7 [Ds | Do | Dio | D11 | Dr2 | Ar2

There are three instructions which concern themselves exclusively with DC. They are — SDS
(Skip if DC set), SDC (Skip if DC clear), and CDC (Clear DC).

Ten’s Complement for BCD

The addition of the ten’s complement of a number is used in lieu of a subtraction mechanism. If
the signs of the two numbers to be summed are different, one of the numbers is complemented

(it doesn’t really matter which one), before the addition.

The ten’s complement of a number with n digits to the left of the decimal point is —
X=10"-X

The ten’s complement of a floating-point number has the same exponent as the original
number. Since the mantissa (M) of a full-precision number can be assumed to have the decimal
point implied after D1, then the number must be less than 10 (but greater than 0) and the ten’s

complement of a mantissa becomes —
M=10-M

Accordingly, all that is necessary to complement a floating-point number is to complement the
mantissa. It is immaterial whether the mantissa is treated as a 12-digit integer or as a number

between 0 and 10; the same sequence of digits results.

5-9

5-10 Arithmetic

There are two instructions for doing ten’s complements — CMX and CMY. The only difference

between them is that CMX operates on the Arl register and CMY operates on the Ar2.

CMX and CMY leave the exponent word of a full-precision number completely alone. This
means that the sign of the mantissa and the entire exponent are left unchanged in a ten’s
complement by CMX and CMY.

Ten’s complement helps to accomplish addition, too. Rather than go into all of the nuances and
subtleties of the arithmetic process, there is a simple rule for accomplishing decimal summa-

tions using ten’s complements. Assuming the exponents are the same for the numbers to be
added —

o If the signs of the numbers are the same, simply add them and leave the signs alone. If DC

occurs, the result (Ar2) must be shifted to the right one place, and the exponent adjusted.

o If the signs of the numbers are different, complement, then add. A further complementing
action may be necessary: if DC occurs, then the result necessarily has the same sign as
the number which was not complemeted; if DC does not occur, then the result must be
complemented and then given the sign of the number which was complemented.

The FXA instruction is used to add mantissas. Here is a routine to implement the rule —

I[SOURCE LDA Al ! Check the =ign

ISOUHRCE ADA Arz

Juzt_add I Skip if thew are the sams
Vo Complement Fired

P Add the mantissas

Mas there an ousrd Tog?
Mo, =0 complement result

and switch exponents and signs

Siors the largsr sign

: Hrd
L HEE
: M Dore
ISOURCE JTust
ISOURCE FEA

P Do the additian

ISOURT ST Dorne

TS0URD LoE =i

ISOIRCE LIOE =1

IS0URCE Ry

ISOURCE LA Arz

1= RO =i00E

TZ0URT SZTH Arz

ISGURCE Dormet 0 COHTIHUE OH

Arithmetic

Ol 22 D 2 1 Q. &%
Floating Point Summations

In the example just completed, you may have noted that to copy the sign the entire exponent
word was copied. What if the exponents were different? The answer is — the exponents must
have been the same. In fact, the only reason the example worked at all was that the exponents

were the same.

If exponents are different, addition of mantissas cannot proceed properly. To add the numbers
it is necessary to make the exponents the same by shifting one of the mantissas an amount
equal to the exponent difference.

This difference is easily found by subtracting the smaller exponent from the larger. If the
difference is eleven or less (the precision of the 12-digit mantissa), it is possible to offset the

mantissa of the number with the smaller exponent.

For example suppose there are two numbers to be added —

X XXXXXXXXXXX E6
Y. YYYYYYYYYYY E4

By shifting the smaller one to the right by 2 digits {the difference between 6 and 4), it is possible

to align the exponents —

X XXXXXXXXXXX E6
0.0YYYYYYYYYYYY E6

2.227272727272727222 E6

As can be readily seen from the example, a shift of more than 11 digits would cause the smaller

value to be all zeroes in the significant 12 digits.

The digits to the right of the 12 most significant digits are lost in the action of shifting. That is, all
except the left-most one. When using the MRX or MRY instructions, this digit is retained in the

A register (bits 0-3) so that it can be used later for rounding purposes.

To use the MRX or MRY instructions, the number of digits to be shifted must be present in the B

register.

5-11

5-12 Arithmetic

The process for this “‘justification’” of exponents can be summed up as follows:

e Subtract one exponent from the other storing the absolute value of the difference in the B

register.

e Execute the MRX shift if the Arl register is smaller; execute the MRY shift if the Ar2

register is smaller.

Normalization

The raw result of an arithmetic operation (such as FXA) might not be a floating-point number
that fits the standard form. It might have a leading DC needing to be incorporated into the
number, as was seen in the ‘‘Addition’ section earlier. Another possible deviation is a resulting
D1 of zero and no overflow. There could also be several zero-valued digits as left-most digits of

the mantissa.

Such situations call for “‘normalization”. One type of normalization is accomplished with the
NRM instruction. This instruction shifts register Ar2 left, leaving the number of shifts required in
the B register as a binary number. The maximum number of shifts NRM performs is 12. If NRM
must do all twelve shifts, Ar2 must have been 0. This is indicated by a value of 12 left in B and
DC being set. For any other shift-count, NRM will leave DC at 0.

The rules for the normalization process are —

e Execute the NRM instruction.

o Follow this instruction by adding the complement of the contents of B (shifted left 6 bits)
to the Ar2 exponent unless DC is set. If DC is set, store 0 into Ar2.

o Test the exponent result for an underflow.

Rounding

The addition operation (FXA) does not automatically round a result, and there is no instruction
which does rounding in one step. Instead, it is necessary that a series of instructions be estab-

lished to accomplish the result.

Recalling from “Floating Point Summations” (above) that the rightmost digit for rounding
purposes (if any) is typically deposited in the A register by an MRX or MRY instruction, this digit

can be checked to determine if rounding is required.

Arithmetic

o Determine from register A if rounding is required (i.e., if it’s greater than or equal to 5).

o If rounding is not required, take no further action. If rounding is required, then load
register B with 1 and execute an MWA instruction. This has the effect of incrementing the
mantissa in Ar2 by 1. This action is an easier method than setting Arl to 1 and executing
an FXA and it’s faster, too. Don’t forget to check DC for an overflow.

e One way the sequence of rounding could appear is —

w2 e

[A A R T

Floating Point Multiplication

Twelve-digit BCD floating-point multiplication is partially accomplished using the FMP instruc-
tion. This instruction effectively multiplies the value in the Arl register by a digit contained in B
and adds the result to a partial product in Ar2.

Since, in the full multiplication process, exponents are merely added together, that part of the
process is trivial. The ultimate sign of the product is also a trivial matter, determined by
inspection of the signs of the original operands. Then the only matter of difficulty in the process
is the actual multiplication of the mantissas. By way of explanation, assume that there are two
mantissas to be multiplied —

multiplicand = ABCD
multiplier = WX Y Z

Just four digits are used to reduce the amount of symbolism required of the example. The same

procedures and conclusions are applicable to a full twelve BCD digits.

5-13

5-14 Arithmetic

One symbolic way to indicate how this multiplication is done is —

A B C D
x W X Y Z

0 0 0O 0 = partial productO
Zov 21 Z2 23 Z¢ = Z (ABCD)x 10°

Ps Ps Ps P7 Ps = partial product 1
Yoo Y1 Y2 Y3 Ya 0O = Y(ABCD)x 10!

Ps Ps Ps Ps¢ P7 Ps = partial product 2
Xow X1 X2 X3 X¢ 0 0 = X(ABCD)x10?

Pz Ps Ps Ps Ps P7 Ps = partial product3
Wow W1 Wz Wa Wa 0 0 0 = W(ABCD)x10°

P: P2z Ps Ps Ps Ps P7; Ps = partial product 4 (result)

Notice that at each stage the multiple of ABCD, such as X(ABCD), must be multiplied by an
increasing power of ten in order that the digits of the multiple line up appropriately with the
digits of the last partial product. An equivalent procedure is to have the partial product shifted
right one digit at each stage.

Now, consider for a moment what is necessary within the assembly language to generate partial
product 1 = 0 + Z (ABCD). Ar2 must be cleared and Arl1 is loaded with ABCD. Z is stored into
B in bits 0 to 3. Then the FMP instruction is executed. Arl is added to Ar2 Z times, producing Z
(ABCD) in Ar2. The overflow digit, Zov, ends up in the A register (bits O to 3). The overflow digit
could be any value from 0 to 9 (each add could cause a carry, and there can be up to nine

additions).

To create the next partial product, a mantissa right-shift on Ar2 must occur. Notice that man-
tissa right-shifting instructions (MRX and MRY) also shift bits 0 to 3 of the A register into Da.
Thus, the right-shifting of the partial product (which must occur to prepare Ar2 for the next

partial product) also automatically takes care of retaining the overflow digit.

Next, ABCD is added to Zov Z1 Z2 Z3 a total of Y times (again by use of the FMP instruction).

Partial product 2 is created. The process is repeated for the X and W digits, producing the result
in Ar2.

Arithmetic 5-15

After the final partial product has been calculated by the final execution of the FMP instruction,
it is possible that a non-zero digit may be present in bits 0-3 of the A register. Such a digit is
necessarily the most significant digit of the final product. In this case, another MRY execution is
required. Further, the exponent of the product (which was initially estimated as the sum of the

operand’s exponents) must be incremented by one to reflect this power-of-ten shift.

Upon each step of partial product summation, a significant digit is lost due to the shift. This
can’t be helped. In general, the product of two 12-digit numbers has 24 digits of precision, but
the bottom 12 digits must be discarded since only 12 BCD digits are stored in a mantissa. An
error analysis of the algorithm discloses that dropping these digits causes the answer, on
average, to be slightly smaller than it should be. However, rounding introduces a similar error,
but in the other direction. Note that the process did not round each partial product.

The discarded digits can be inspected before they are permanently lost. The MRY instruction
causes the digit to be placed in the A register (in bits 0 to 3). This provides an easy way for a
rounding mechanism to check on those digits as they are discarded. The rounding routine
needs to save the last digit discarded for use in rounding in the event the last use of FMP

produces no overflow digit.

Finally, it should be noted that you can put WXYZ into B at the very start of the process and
simply shift B right 4 bits (with an SBR 4 instruction) between each execution of FMP. After all,
FMP uses only bits 0 to 3 of the register as the number of times to add Arl and Ar2.

Floating Point Division

There are many possible algorithms to accomplish floating-point division. The one presented
here was chosen because of its effective use of the machine instructions and data structures

employed by the processor and operating system.

Remembering that full-precision numbers consist of both a signed mantissa and a signed
exponent, use can be made of the mathematical properties of both to reduce the division
problem to manageable proportions. Suppose that you have two full-precision values to di-

vide —
— 48E3 + 15E -2

The mathematical properties of exponents can be utilized and the second exponent can be

subtracted from the first giving the exponent of the answer (subject to possible later adjust-
ment). This is the first (and easiest) step in the division algorithm.

Secondly, the mathematical properties of signs within a division process can be used to deter-
mine the sign of the quotient from the signs of the divisor and dividend (negative quotient if the
signs are different, positive quotient otherwise).

5-16 Arithmetic

Thus, the problem can be reduced to the division of the mantissas —

(—4.8+1.5)E5

As long as the full-precision numbers have been normalized, this adjustment of the exponents
works for any pair of exponents. The normalization of the numbers also assures that the
division of the mantissas under the following algorithm is sufficient to produce the mantissa of
the result.

Since the decimal point of each mantissa is in the same place, they can be dropped altogether.
For example —

-48+15=-48+15

The algorithm can then consider both the divisor and the dividend as 12-digit integers.

The algorithm begins by placing the normalized values into the BCD arithmetic registers. The
divisor (1.5E—2 in the example) is transferred to register Arl. The dividend (- 4.8E3 in the
example) is transferred to register Ar2. Basically, the algorithm subtracts the absolute value of
the mantissa of Arl from the absolute value of the mantissa of Ar2 until Ar2 is smaller than Ar1.
The number of subtractions required for that to occur becomes the first digit in the quotient (it’ll
be some value between 0 and 9 because the mantissas are normalized). If there is a (non-zero)
remainder, then it is shifted left (multiplied by 10) and the subtraction process is repeated to
calculate another digit in the quotient. The process is repeated until either a zero remainder
occurs , or sufficient digits have been calculated, whichever occurs first. The resulting digits are

merged, in order, to form the complete mantissa of the quotient.
There are some points to keep in mind in following the algorithm —

e Suppose you have a divisor whose normalized mantissa is larger than the normalized

mantissa of the dividend, for example —
15 = 48

then the first digit of the quotient’s mantissa could easily be zero. If calculation of only
twelve digits were made, the first digit being zero would mean a loss of a significant digit:
To guarantee that there are always at least 12 significant digits calculated for the quotient,
it is necessary (and sufficient) to calculate 13 digits. The 13th digit can always be thrown
away, or used for rounding, if the first digit is not zero. Thirteen digits are always sufficient
because you can never have a quotient with two leading zeroes, if the divisor and the

dividend are both normalized.

Arithmetic 5-17

e The number of subtractions during the calculation of any digit in the quotient is always
nine or less. Again, this is true because the divisor is normalized and its first digit is always

non-zero.

e At times during the algorithm, it is necessary to left-shift the mantissa of Ar2 (the mantissa
at this point is the remainder). When shifting the remainder to the left (multiplying it by
10), you are shifting the first digit out of Ar2. If this digit is zero, this is not a problem. But,
if the digit is non-zero, you can’t ignore it during subtractions of the divisor. This in effect
means that you are dealing with a 13-digit dividend! Since the machine instructions deal

in 12-digit arithmetic, it is necessary that the algorithm handle the thirteenth.

The FDV Instruction

The FDV instruction provided by the processor is the primary tool used to implement the
algorithm in assembly language. The instruction works by accomplishing the equivalent of
automatically repeated subtractions of Arl (the divisor) from Ar2 (the dividend) until Ar2 is
smaller than Arl. The instruction actually adds the divisor to the ten’s complement of the
dividend until an overflow occurs. However, this is equivalent to subtracting until an ‘‘under-
flow” occurs. It is easier to understand the procedure if the discussion is in terms of ‘“‘subtrac-
tions”’, but it should be kept in mind that what is really occurring with the instruction is repeated
‘“‘complement-additions’ until overflow. This process is what is meant by the term ‘‘subtrac-

tions until overflow”.

The FDV instruction returns the number of subtractions without overflowing as a binary
number in the B register (bits 0-3). The remaining bits in the B register (4-15) are cleared.? In

effect, then B contains the next digit in the quotient.

This process is repeated for the number of digits to be calculated. After each FDV execution,
the result of the overflow subtraction is left in Ar2. Since Ar2 does not contain the remainder, it
is necessary to patch Ar2 so that it will contain the proper value for the next calculation. To get
the proper value it is necessary to add Arl back into ArZ2 to undo the results of the last

subtraction (which caused the overflow).?

There is one case, however, where Ar2 does not need to be patched up, and this is when the
remainder (Ar2) is zero. This situation implies not only that no patching up is needed, but also
that the quotient is complete — no further digits need be calculated. It should be noted that the
number of subtractions (which has been stored in the B register) is one count too small, thus B

has to be incremented in this case so that it can be used as the last digit in the quotient.

1 Since bits 4-15 of the register are cleared during execution of the FDV instruction, you can’t accumulate quotient digits there.
After each digit is calculated, it is necessary that you store the digit as part of a quotient which you keep stored in another
location.

2 This is equivalent to complementing Ar2, adding in Arl, then complementing Ar2 again.

5-18 Arithmetic

Thirteen-Digit Dividends

The largest difficulty in the algorithm is attempting to deal with those instances where the
dividend has thirteen digits. This situation arises when you shift the remainder left a place. The
most significant digit must be retained when it is non-zero so that the subtractions are sub-

tracted from the proper amount.

This shifting can be accomplished with the MLY instruction. With the way that the MLY instruc-
tion operates, the left-most digit (D1) ends up being shifted out of Ar2 into register A (in the
lower 4 bits, 0-3). Thus, the thirteen-digit algorithm must accomodate the most significant digit
residing in the A register and the twelve least significant digits in the Ar2 register. The use of

FDV must now take this modified situation into account.

When the FDV instruction is executed, Arl is subtracted from Ar2 until an overflow occurs.
When this overflow occurs, it is necessary to decrement A and keep subtracting (without
patching up Ar2). Each time an overflow occurs, A must be decremented until finally an
overflow occurs when A is 0. This can be handled very neatly within a small loop.

Another aspect of dealing with thirteen-digit dividends is the count placed in B with each
execution of FDV. Since each overflow is a ‘‘successful’’ subtraction in the sense that is part of
a proper count of subtractions (at least until A is 0), then that subtraction must be counted, too.
The difficulty with this is that FDV does not count this last (overflowing) subtraction. The
solution obviously is to add 1 to the value in the B register each time FDV causes an overflow.
However, with the last overflow, being the ‘“‘real” overflow, the 1 shouldn’t be added in, so
after adding it in (during the loop), you have to subtract it back out again (after leaving the
loop). To further complicate matters, if you have a zero remainder, you have to add it right
back in again.

For example, if there happened to be three uses of FDV for a certain quotient digit, you form

the quotient digit as —

Qn=(B+1),\ +(B+1)v\ +By\

value after Ist value after 2nd value after final
use of FDV use of FDV use of FDV

If the same general situation produced a zero remainder, then the quotient digit is formed as —

Qn=(B+1)\ +(B+1)\ +(B+1)\

value after Ist value after 2nd value after final
use of FDV use of FDV use of FDV

Arithmetic

Floating-Point Division Example

An example of a 13-digit division routine follows. The rules which it implements are —

1. Always increment the value returned in B after an FDV operation.

2. Afterincrementing B, check the contents of A. If non-zero, loop immediately, performing
no other tests or activities.

3. When a quotient digit has been found (i.e., A is zero), check to see if the remainder is O.

If so, exit the division loop. Save the last digit found as part of the answer.

4. If the remainder is not 0, decrement the value of the last quotient digit found and save it
as part of the answer. Then add back the divisor to the remainder.

The example does not include routines for testing and handling —

® signs

e division by zero
e exponents

e overflow

e rounding

These have to be handled in a real program before or after the division algorithm itself (as
appropriate).

i
3

5-19

5-20 Arithmetic

g b e bl peed boel bed e el

riamber of

£ odigits

MOWCRD

Ehift

Thorz

Arithmetic

L
il

{I 1
N
iy

Arithmetic Utilities

Now that you have been introduced to the complexities of BCD arithmetic and floating-point

operations, this is the time to present an easier way of accomplishing these operations — the
arithmetic utilities.

In order to make BASIC a useful programming tool, the operating system already contains a
number of floating-point routines. Recognizing that BCD and floating-point arithmetic can be a
difficult and laborious task to implement, the assembly language provides a utility by which the
operating system mathematical routines can be accessed. There are also utilities for the conver-

sion of numerical data types.

UTILITY: Rel math

The Rel _math utility provides access to all of the system floating point routines and functions.
General Procedure: The utility is told the execution address of the desired routine or function

full-precision form (4 words each). The result is a full-precision value.

5-21

5-22 Arithmetic

Special Requirements:

o If one operand is passed to the utility, the address of the operand is stored in register
Oper_1.

o If two operands are passed to the utility, the address of the first operand is stored in
register Oper_1 (as above), and the address of the second operand is stored in register
Oper 2.

e The address where the result should be stored must be stored in the register Result.
e All operands and the result are full-precision values and require 4 words each.

e Values passed must make sense for the routine or function being called (e.g., Oper_2

should not point to a value of 0 when calling the division routine), or else an error results.

o The storage areas for the operands and the result must reside either in the ICOM region or
in the Base_page register. Specifically, they cannot be specified as Arl or Ar2.

Calling Procedure:

1. Assure that Oper_1, Oper_2, and Result contain the proper addresses as above.

2. Load register A with the number of parameters required for the routine or function (see
the table on next page). Note that some routines require this number to be com-

plemented.

3. Load register B with the execution address of the routine or function (see the table on

the next page).
4. Call the utility.

Exit Conditions:
o The result is placed into the 4 words starting at the address pointed to by the Result
register.
o Register A contains 0 if no error is encountered during execution of the utility.

o Register A contains the error number should an error be encountered during execution of
the utility.

Arithmetic 5-23

Rel math Utility
Routines, Addresses,
and Parameters?

Octal
Operands Execution Address
(LDA =) Routine (LDB =)
Addition (Oper_1 + Oper_2) 146721B 2
Subtraction (Oper 1 — Oper_2) 146717B 2
Multiplication (Oper_1 * Oper_2) 147037B 2
Division (Oper_1 / Oper_2) 147155B 2
Exponentiation (Oper_1 A Oper_2) 34276B 2
Oper_1DIV Oper 2 33026B 2
Oper 1 MOD Oper_2 33157B 2
SQR 31450B 1
INT 33071B 1
FRACT 33262B 1
EXP 34173B 1
LOG 34203B 1
LGT 34263B 1
PROUND (Oper_1, Oper_2) 32225B -2
DROUND (Oper_1, Oper 2) 32247B -2
ABS 33054B 1
SGN 33651B 1
PI 362678 0
RND 33607B 0
RES 36307B 0
TYP! 6753B 1
SIN 34213B 1
Cos 34224B 1
TAN 34151B 1
ASN 34235B 1
ACS 34250B 1
ATN 34161B 1
ERRL? 61765B 0
ERRN! 61753B 0
DECIMAL!® 3 1620678 1
IADR (Oper 1, Oper_2)? 162230B -2
IMEM (Oper_1, Oper_2)? 162211B -2
OCTAL? 162146B 1
Oper 1AND Oper 2 32042B 2
Oper_1OR Oper_2Z 32057B 2
Oper_1EXOR Oper_2 32025B 2
NOT 32071B 1
Oper 1 < Oper 2 32077B 2
Oper_1 < = Oper_2 32105B 2
Oper_1 < > Oper_2 32137B 2
Oper_1 = Oper 2 32127B 2
Oper 1> = Oper_2 32121B 2
Oper 1 > Oper 2 32113B 2
MAX{Oper_1, Oper_2) 33744B -2
MIN (Oper_1, Oper_2) 33704B -2

Table 1. Routines, Addresses, and Parameters for Rel Math Utility

1 These functions return an integer value which is stored in the second word of the four words reserved by Result.
2 See the System 45 Operating and Programming manual for a detailed explanation of the function of each of these routines.
3 See the appropriate section of this manual for a detailed explanation of the function of each of these routines.

5-24

Arithmetic

By way of example, suppose you have established two full-precision values which need to be
multiplied. The call to the Rel math utility to accomplish the multiplication would look similar
to this —

ISOURCE ! Horking storage

Muleiplur D MULTIPLY THE GPERAHDS
i i

Al 1

LA
=TH
LI
2TH
LoR =
STH

LIA

Poall the multiply routins

P Tezt for any

SEEOEE

I Errar encountered, so

Note in the last line of the example the call to the Error _exit utility is made when register A is
not zero. When this occurs, A contains the error number of the error encountered — ready-

made for calling the Error_exit utility.

UTILITY: Rel to_int

The Rel _to_int utility provides for the conversion of a full-precision value into an integer.

General Procedure: The utility is given the address of the location of the full-precision value

and the address of the location where the integer is to be stored.

Special Requirements: The full-precision value must be within the range of integers
(— 32 768 to + 32 767).

Calling Procedure:

1. Store the address of the full-precision value into register Oper 1.
2. Store the address where the integer is to be stored into register Result.

3. Call the utility.

Arithmetic

Dotd £ A4 e . T o oz mse 0 .
LAIL COIIUILIOUIS.,. 1

integers.

An example —

UTILITY: Rel to_sho

The Rel to sho utility provides for the conversion of a full-precision value into a short-

precision one.

General Procedure: The utility is given the address of the location of the full-precision value

and the address of the location where the short-precision value is to be stored.
Special Requirements: A short-precision value requires 2 words to be stored.
Calling Procedure:

1. Store the address of the full-precision value into register Oper_ 1.
2. Store the address of the storage area for the short-precision value into register Result.

3. Call the utility.

Exit Conditions: The overflow bit in the processor is set if the result is outside the range of

integers.

5-25

5-26 Arithmetic

An example —

SOURCE Vo Working
URCE Operand?
URCE Yalue:

TH Essulit
M Rel to sho ! Conwert full to short

UTILITY: Int_to_rel

The Int_to_rel utility provides for the conversion of an integer into a full-precision value.

General Procedure: The utility is given the address of the location of the integer and the
address where the full-precision value is to be stored.

Calling Procedure:

1. Store the address of the integer into register Oper 1.

2. Store the address of the storage area for the full-precision value into register Result.

3. Call the utility.

Exit Conditions: The overflow bit in the processor is set if the result is outside the range of
integers.

An example —

15 U bk ieg
iz Sperand: U Contad
is Walue: b ERREE

Arithmetic 5-27

UTILITY: Shg tc rel

The Sho_to_rel utility provides for the conversion of a short-precision value into a full-

precision one.

General Procedure: The utility is given the address of the location of the short-precision

value and the address of where the full-precision value is to be stored.
Calling Procedure:

1. Store the address of the short-precision value into register Oper 1.
2. Store the address of the storage area for the full-precision value into register Result.

3. Call the utility.
Exit Conditions: No special exit conditions.

An example —

5-28 Arithmetic

Chapter 6

Communication
Between BASIC and
Assembly Language

Summary: This chapter discusses the techniques used to pass information to and from
assembly language programs. Calling assembly language routines and passing paramet-
ers are presented, along with issues involved in using common. Applicable utilities are
also discussed.

Once assembly language programs have been written, they are executed using the ICALL
statement. This statement is very similar to BASIC’s CALL statement for subroutines. In fact,
the function it performs is nearly identical in effect — the only difference is that the target
subroutine has been written in assembly language instead of in BASIC. The ICALL statement
also provides a means to pass data between BASIC and assembly programs through its argu-

ment list. Data can also be passed through common.

The ICALL Statement

There are two ways to execute an assembly language routine. One way is as an interrupt service
routine when an interrupt occurs on the select code to which the service routine has been
linked. This technique is discussed in Chapter 7. The other way is through executing an ICALL
statement, either in a BASIC program or from the keyboard.

The syntax of the statement is —

IZALL {routine name} [© {argument} [, {argument} [,...]] *]

{routine name} is the name of the assembly language routine to be executed. {argument} is a
data item that has the same characteristics as an argument in BASIC’s CALL statement — there
may be constants, variables, or expressions. (How these items correspond to instructions in the

assembly language will be discussed shortly.)

6-1

6-2 Communication Between BASIC and Assembly Language

By way of example, suppose that you have an ICALL that is being used to call a sort routine
and the routine was written in such a way as to require two arguments be passed to it — an
array to be sorted and the number of elements to be sorted (in that order). Then the following

would be valid calls to that routine —

Upon executing the ICALL statement, execution in a program transfers to the routine named.
Upon executing a RET 1 instruction from the main assembly language program, execution
returns to the BASIC statement which follows the ICALL. This is identical in effect to the CALL
statement in BASIC.

In executing the statement from the keyboard, the routine named is executed just as if it were
used in a program. Upon return from the routine, control is passed back to the keyboard. This is
unlike BASIC’s CALL statement, which cannot be executed from the keyboard.

To execute a routine, whether it be from a program or from the keyboard, its object code must

currently reside in the [COM region.

Corresponding Assembly Language Statements

When the ICALL is executed, it references a routine in the object code. When the module
containing the routine was assembled, it declared that routine name as a ‘‘subroutine” entry
point. (‘“Subroutine” and ‘“‘routine’’ are synonymous in this context.) This is done with a SUB

pseudo-instruction and a label.

When a SUB pseudo-instruction appears in the source code, it is a signal to the assembler that a
subroutine entry point follows. Then the first machine instruction must have a label and that
label becomes the routine name. If the label is missing, an error results (assembly-time “SQ”

error).

For example, in the above examples of ICALL, the Sort routine could have been defined by the

sequence —

except that there are arguments involved. (That exception is discussed in a moment.) The joint
use of these two statements results in the label “Sort” being identified as a routine name,
referenceable with an ICALL statement.

Communication Between BASIC and Assembly Language 6-3

In general, no machine instructions or code-generating pseudo-instructions can be inserted
between a SUB pseudo-instruction and the instruction containing the routine name. An excep-

tion to this exists when arguments are involved in a call.

Arguments

When a value is placed into an ICALL statement to be sent down to an assembly language
routine, that value is called an ‘“‘argument’’ (like the argument of a mathematical function). The
corresponding structure on the assembly language side is called a “parameter’”. A parameter
‘“‘declaration” is an assembly pseudo-instruction by which a parameter is created.

When a routine is to be called with arguments, a parameter declaration pseudo-instruction is
required for each one of the arguments. These declarations appear between the SUB pseudo-

instruction and the instruction containing the routine name.

Thus, when there is a call like —

To accommodate the two arguments, two parameter declarations had to appear between the
SUB instruction and the entry point. (In this example, they were the STR and REL declara-

tions.) These declarations may even have labels of their own —

The appearance of these labels does not affect the fact that ““Sort’’ is the name of the routine.

6-4 Communication Between BASIC and Assembly Language

Parameter declarations have “types’ just like variables. These types have to correspond to the
“types’’ of the arguments used in the ICALL. The declarations and their types are —

IHT meaning integer

FEL meaning full-precision
SHD meaning short-precision
STHE meaning string

FibL meaning a file number

In the above example, STR had to be used as the first parameter declaration because the first
argument was a string. Similarly, REL had to be the second declaration because the second

argument was a numeric expression {(which is always full-precision).

When an array is to be passed, the declaration is followed by an ‘‘array identifier”” — (). Thus,

when arrays are involved, the declarations appear as —

IHT =2 meaning an integer array
RELC®2 meaning a full-precision array
SHOC® meaning a short-precision array
STROED meaning a string array

File numbers are not passed in arrays, so that the declaration FIL cannot be followed by an
array identifier. When passing file numbers to assembly language routines, the file number
must be preceded by a ‘‘#’’ character.

ICALL Sort (#File_number,Entries, Type)

Failure to include the “#’’ before the file number or file number variable results in an error.

Since the example call above uses a string array as the first argument, the corresponding

assembly language parameter declaration uses an array identifier after STR.

The parameter declarations are associated with the arguments in the ICALL in the same order.
[f the types do not match when the ICALL is executed, an error occurs (number 8).

So, if the subroutine entry looks like —

1 - O3

I Ao

i

bt bl bt
i
o]

Communication Between BASIC and Assembly Language 6-5

but these ICALLs result in run-time errors —

Each declaration reserves three words in the object code upon assembly. As a result of the
ICALL execution, these words contain a descriptor of the corresponding argument. These
descriptors are used by the uiilities for feiching and storing values. Thus, in the Sort cailing
example above, when the ICALL is executed, a descriptor for Test$(*) is stored in the three
words starting at Parameter 1. Similarly, a descriptor for the constant 100 is stored in the three

words starting at Parameter 2.

The types discussed here do not apply just to simple variables, arrays, and constants. They also
apply to single elements of arrays and expressions. If you have a STR parameter declaration,
for example, any of the following would be valid as arguments in the ICALL statement —

[t is similar for numerical expressions.

The number of arguments passed by an ICALL statement must be no more than the number of
parameter declarations in the subroutine entry. There may be fewer, however. The actual
number passed is stored in the word reserved by the SUB pseudo-instruction.

Unlike the CALL statement in BASIC, the ICALL statement can be executed from the
keyboard. In doing so, any variables used as arguments pass their current values to the routine.

6-6 Communication Between BASIC and Assembly Language

“Blind’’ Parameters

With explicit parameter declarations, an error occurs if a different type of variable or expression
is passed. In many cases, the error is desirable — you do not want different types of arguments
corresponding to a single parameter declaration. But in other cases, the error might not be as
desirable. Take the example of a sort. You might want the sort to have the capability of sorting
any type of array. You have two choices in that case — you can make different routines, each
with the appropriate declarations, or you can use a single entry point and the ANY parameter

declaration.

The ANY declaration —

HHY

is “‘blind” to the type of the corresponding argument in the ICALL statement. When used, it
accepts any type of argument as valid — string, full-precision, short-precision, integer, file
number, array. The descriptor for the argument is stored in the three words set aside, just as in

the other declarations.

Now, if your entry looks like —

When using the ANY declaration, it becomes the responsibility of your assembly language
routine to determine what is a valid parameter and what is not. You lose the automatic type-
checking available with explicit declarations. Techniques for doing this are discussed in the

next section.

Communication Between BASIC and Assembly Language 6-7

Getting Information on Arguments

When an ICALL is executed with an argument, and the corresponding parameter is blind, then
it may be necessary for the purposes of your routine to know what type of argument is actually
passed. This need can be present even when one of the explicit type declarations is used, since

an expression or constant can be passed as easily as a variable.

A utility has been provided for obtaining this information, along with other “vital statistics”
which may be useful to know during the execution of your routine. Before describing the utility
itself, let’s look at the information which it can provide you about an argument.

The information returned by the utility is stored in an area which you set aside for it. The size of

the area can vary from 3 words to 39. The information, when returned, is in the following

form —

Word # | Description

0 Argument type (see description later)
1 Number of dimensions (0 for non-arrays)
2 Size, in number of bytes (dimensioned length, for strings)

(for arrays only:)

3 Total number of elements in array

4 Two’s complement of the lower bound of first dimension

5 Absolute size of first dimension (upper bound — lower + 1)

6 Two’s complement of the lower bound of second dimension (if any)
7 Absolute size of second dimension

8 Two’s complement of the lower bound of third dimension (if any)
9 Absolute size of third dimension

10 Two’s complement of the lower bound of fourth dimension (if any)
11 Absolute size of fourth dimension

12 Two’s complement of the lower bound of fifth dimension (if any)
13 Absolute size of fifth dimension

14 Two’s complement of the lower bound of sixth dimension (if any)
15 Absolute size of sixth dimension

16 Element offset (from the first element)

17 Size, in words, of each element (dimensioned length, for strings)

(dependent upon memory size of your machine:)

18-20 | Pointer parameters

21-23 Pointer parameters (only for machines over 64K bytes)
24-26 | Pointer parameters (only for machines over 128K bytes)
27-29 |Pointer parameters (only for machines over 192K bytes)
30-32 Pointer parameters (only for machines over 256K bytes)
33-35 | Pointer parameters (only for machines over 320K bytes)

36-38 | Pointer parameters (only for machines over 384K bytes)

6-8 Communication Between BASIC and Assembly Language

The argument type returned in word O is as follows —

Value | Type

0 String expression
Full-precision expression

2 Short-precision expression
3 Integer expression

4 String simple variable
5 Full-precision simple variable
6 Short-precision simple variable
7 Integer simple variable
8 String array element

9 Full-precision array element
10 Short-precision array element
11 Integer array element

12 String array

13 Full-precision array

14 Short-precision array

15 Integer array

16 File number

The size, in bytes, will be one of the following values —

For an integer 2

Short-precision 4

Full-precision 8

String variables dimensioned length
String expressions actual length

The utility which retrieves all this information is called “Get_info”.

UTILITY: Get_info

General Procedure: The utility is given the address where the information is to be returned
and the address of the parameter declaration. It returns with the information on the argument

in the ICALL corresponding to the parameter declaration.

Communication Between BASIC and Assembly Language 6-9

Speciai Requirements:

e The location where it is to store the information must be adequate to hold all that may be
returned. For non-arrays, 3 words will suffice. For arrays, up to 39 words may be required
(as above). If you are writing a general routine, it may be wise to play it safe by setting
aside a full 39 words.

e An argument must have been passed by the ICALL (in the case of parameters) or a
corresponding BASIC COM declaration must exist (in the case of common declarations).!

Calling Procedure:

1. Load register A with the address of the storage area for the information to be returned.

2. Load register B with the address of the parameter declaration corresponding to the

desired argument.

3. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction
following the JSM. Since there are no error exits, and there is no requirement that there be as
many arguments as there are parameter declarations, an argument must actually have been
passed by the ICALL in order for the utility to work correctly.

Following up on the example in the previous section, suppose the first thing that the Sort
routine does is check to see if the first parameter passed is an array. Then, by using the

Get _info utility, it is possible to have the instructions look as follows —

1 This and the following utilities are also used to access variables in the common area. An explanation of BASIC COM
declaration is found in the section of this chapter entitled ‘‘Using Common”’.

6-10 Communication Between BASIC and Assembly Language

The array information returned by the Get_info utility is used for accessing elements in arrays
passed as arguments. It is used by the element-retrieval utilities described in a later section of
this chapter. Once retrieved, the information is usable any number of times for accessing the
array associated with it. It is not necessary to retrieve the information every time you access an

array, as long as you have not altered the information (except the pointer) between accesses.

The seventeenth word of the array information (word 16 on the chart) is reserved to hold the
offset from the start of the array of the element to be accessed. Therefore, it is permissible
(indeed, it is necessary) to alter the contents of that location to indicate which element in the

array you wish to retrieve. None of the other words returned by the utility should be changed.

An example of how to calculate array offsets is given here. It is convenient to give labels to

some of the words of information returned by the Get_info utility.

Communication Between BASIC and Assembly Language

For a six-dimensional array, the computation of the element offsei (word 16 returned by

For an array with a smaller number of dimensions, the operations involving the higher sub-

scripts can be omitted.

Note that the indices in this example were not checked against the array bounds. Following is
an example of a program segment which checks the index against the upper and lower bounds

of a one-dimensional array:

There is no need to check for overflow, since the element offset is never greater than 32 767.

When making multiple accesses with the same information, caution should be taken if an array
is involved. The information returned by Get_info is a copy of the system information and as
such remains valid for as long as the ICALL lasts. However, as scon as an ICALL completes,
the system has an opportunity to change its own information (via REDIM or subprogram

recursion). This renders the original data returned by Get _info invalid.

6-11

6-12 Communication Between BASIC and Assembly Language

Thus, while it is sufficient to call Get_info only once during an ICALL (independent of the
number of times the information is used), it is advisable to use Get_info during each ICALL

rather than attempting to retain the information from one ICALL to the next.

Retrieving the Value of an Argument

At some point during execution of your assembly language routine, you may want to retrieve
the value of an argument so that you can use it in your processing. By doing so, you accomplish
one of the methods of communicating with assembly language — namely, passing a value to

the assembly language routine from BASIC.

There are a number of utilities for this purpose. The one to use is dependent upon the type of

argument passed. The utilities available are —

Name Used For Example Parameters
Get_value Simple variables, expressions, individual elements | Alpha,Z*SIN(Z),A$,"‘ABC”,
of arrays passed as arguments, and file numbers B$(10),Array(2,3),#5
Get_element Elements (from arrays passed as arguments) Array(*),Z$(*)
Get_bytes Substrings of strings passed as arguments either as| “DEF”’,String$,B$&C$,
simple string variables, expressions, or individual 2%(2,3),2%[5,6]

elements of arrays passed as arguments

Get_elem_bytes | Substrings of individual elements (from string Z$(*)
arrays passed as arguments)

How each of these utilities is used is described in the immediately following pages.

UTILITY: Get_value

General Procedure: The utility is given the address of the parameter declaration and the
address where the value of the argument is to be stored. It returns with that value stored in the
indicated area. It works on simple variables, expressions, strings, and individual elements of

arrays (passed as arguments) of any type.

Communication Between BASIC and Assembly Language

Co 1D ____s_ o
Special nequirements:

o The storage area set aside for the value must be large enough to hold the value. The size

of the storage area must be —

for a file number 1 word

for an integer value 1 word

for a short-precision value 2 words

for a full-precision value 4 words

for a string maximum length in bytes + 2 + 1 word

(+ 1 additional word if the maximum

string length is odd)

e An argument must have been passed by the ICALL (in the case of parameters) or a
corresponding BASIC COM declaration must exist (in the case of common declarations).

o The storage area must lie within the ICOM region.
Calling Procedure:

1. Load register A with the address of the storage area for the vaiue.
2. Load register B with the address of the parameter declaration.

3. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction

following the call.

In the case that it is used to pass a string value, the Get value utility returns the entire
dimensioned string (which includes all characters between the current length and the dimen-

sioned length of the string).

Here is an example call to the utility, retrieving information from a full-precision argument —

6-13

6-14 Communication Between BASIC and Assembly Language

UTILITY: Get_element

General Procedure: This is similar to the ““Get value” utility. This utility retrieves a value

from an element of an array passed as an argument. It works on arrays of any type.
Special Requirements:

e The storage area set aside for the value must be large enough to hold the value. The size

of the storage area must be —

for an integer 1 word

for a short-precision value 2 words

for a full-precision value 4 words

for a string maximum length in bytes+2 + 1 word

(+ 1 additional word if the maximum

string length is odd)

e The array information must be retrieved with the “Get_info” utility before calling this

utility.

e The offset of the element in the array must be correct in the array information (word 16
returned by “Get_info”’). It should be remembered that the offset of the element is
dependent upon the number of dimensions in the array and the length of each. A calcula-
tion may be necessary to arrive at the offset when accessing multiple-dimension arrays.

The offset is in terms of number of elements.!

e The storage area must lie within the ICOM region.

Calling Procedure:

1. Store the element offset within the array information (word 16 returned by ‘‘Get-info’’).
2. Load register A with the address of the storage area for the value.

3. Load register B with the address of word 0O of the information returned by the “Get _

info”’ utility (see description of that utility).
4. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction

following the call.

1 See the description of calculating array offsets under the “Get_info’ utility.

Communication Between BASIC and Assembly Language

Here is an example call, retrieving the third element (relative element 2) of an integer array and
placing it into Value —

UTILITY: Get_bytes

General Procedure: This is similar to the ““Get_value’ utility. This utility retrieves a substring
of a string passed as an argument, having been given the starting byte and the number of bytes
to be retrieved.

Special Requirements:

e The storage area set aside for the substring must be large enough to hold all of the
subsiring. This inciudes not only the siring itseif, but also two exira words. Remember, a

word holds two characters.
o A string must have been passed by the ICALL for the utility to work properly.

o The storage area must lie within the ICOM region.
Calling Procedure:

1. Store the number of the starting byte of the substring desired into the first word of the
storage area set aside for the substring. (Note that bytes 0 and 1 are the length word of
the string.)

Store the number of bytes in the substring into the second word of the storage area.
Load register A with the address of the storage area.

Load register B with the address of the parameter declaration.

Call the utility.

oA~ W N

Exit Conditions: There are no error exits from the utility. It always returns to the instruction
following the call. The subsiring is returned starting with the third word of the storage area.
(Note: Since the second word contains the length of the substring, you have a string data

structure starting with the second word!)

6-15

6-16 Communication Between BASIC and Assembly Language

For example —

In this example, Value is the storage area. Since 2 has already been generated and stored in the
first word, and 10 in the second, the first 10 bytes of the string would be transferred. Of course,
the original string must contain at least 10 characters — or the bytes which are returned may be
nonsense. Why was the value 2 stored as the byte number? Because bytes in a string are
numbered starting with 0, and bytes 0 and 1 contain the length of the string (see ‘‘Data
Structures’’ in Chapter 3).

UTILITY: Get_elem_bytes

General Procedure: This is a combination of the “Get__element” and “Get_bytes” utilities.
This utility retrieves a substring of an element of a string array passed as an argument. The

utility is given the starting byte and the number of bytes to be retrieved.
Special Requirements:

o The storage area set aside for the substring must be large enough to hold all of it. This
includes not only the string itself, but also two extra words. Remember, a word holds two

characters.
e The array information must be retrieved with the “Get_info” utility before calling this
utility.

e The offset of the element in the array must be correct in the array information (word 16
returned by “Get_info’’). It should be remembered that the offset of the element is
dependent upon the number of dimensions in the array and the length of each. A calcula-
tion may be necessary to arrive at the offset when accessing multiple-dimension arrays.

The offset is in terms of number of elements.?

e The storage area must lie within the ICOM region.

1 See the description of calculating array offsets under the ““Get_info" utility.

C

Communication Between BASIC and Assembly Language

alling Procedure:

o & W DN

Store the number of the starting byte of the substring desired into the first word of the
storage area set aside for the substring. (Note that bytes O and 1 are the length word of
the string.)

Store the number of bytes in the substring into the second word of the storage area.
Store the offset within the array information.

Load register A with the address of the storage area for the value.

Load register B with the address of word O of the information returned by the “Get _

utility (see description of that utility).

Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction

following the call. The substring is returned starting with the third word of the storage area.

(Note: since the second word contains the length of the substring, you have a string data

structure starting with the second word!)

For example —

In this example, Value is the storage area. Since 2 has already been generated and stored in the
first word, and 10 in the second, the first 10 bytes of the string element are transferred. Of
course, the string element must contain at least 10 characters — or the bytes which are re-

turned may be nonsense.

6-17

6-18 Communication Between BASIC and Assembly Language

Changing the Value of an Argument

At some point during the execution of your assembly language routine, you might want to
accomplish the other half of this method of communication with BASIC — namely, changing
the value of a BASIC variable which is used as an argument, in effect changing the value of a

BASIC variable from the assembly language routine.

As with retrieving a value, there are a number of utilities available for changing a value. The

one to use is dependent upon the type of argument passed. The utilities available are —

Name Used For Example Parameters
Put value Simple variables, strings and individual elements Alpha,A$,B$(10),Array(2,3)
of arrays passed as arguments
Put _element Elements (from arrays passed as arguments) Array(%),Z$(*)
Put_bytes Substrings of strings passed as arguments String $,2%$(2,3)

either as simple variables or as individual
elements of arrays passed as arguments.

Put_elem bytes | Substrings of elements (from string arrays Z${x)
passed as arguments)

Note that these utilities modify variables existing in the BASIC environment. They do not
modify the length of the variables as dimensioned in BASIC.

How each of these utilities is used is described in the immediately following pages.

UTILITY: Put_value

General Procedure: The utility is given the address of the parameter declaration and the
address of the value. It changes the value of the BASIC variable associated with the parameter.
[t works only on simple variables, expression strings, and individual elements of arrays (passed

as arguments) of any type.
Special Requirements:

o The value must have the appropriate data structure for the data type of the argument (see
“Data Structures” in Chapter 3).

e An actual argument must have been passed by the ICALL for the utility to work properly.

Calling Procedure:

1. Load register A with the address of the storage area of the value.
2. Load register B with the address of the parameter declaration.

3. Call the utility.

Communication Between BASIC and Assembly Language 6-19

Here is an example call to the utility, passing information to an integer argument —

UTILITY: Put_element

General Procedure: This is similar to the ‘““Put_value” utility. This utility changes the value

of a single element in an array passed as an argument. It works on arrays of any type.

Special Requirements:

e The value must have the appropriate data structure for the data type of the argument (see
‘‘Data Structures’ in Chapter 3).

e The array information must be retrieved with the “Get info” utility before calling this

utility.

o The offset of the element in the array must be correct in the array information for the array
(word 16 returned by ““Get_info”). It should be remembered that the relative element
number of the element is dependent upon the number of dimensions in the array and the
length of each. A calculation may be necessary to arrive at the offset when accessing

multiple-dimension arrays.

o The storage area must lie within the ICOM region.

6-20 Communication Between BASIC and Assembly Language

Calling Procedure:

1. Store the element offset into the array information (word 16).
2. Load register A with the address of the storage area for the value.

3. Load register B with the address of word O of the information returned by the
“Get_info” utility (see description of that utility).

4. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction
following the call.

Here is an example call, storing information from Value into element 0 of an integer array —

bl pod b bl pord

-
i
i
ot
s
T

UTILITY: Put_bytes

General Procedure: This is similar to the ‘“‘Put_value” utility. This utility changes the value
of a substring which is part of a string variable or an individual element of a string array, having

been given the starting byte and the number of bytes to be changed as well as the new
characters.

Communication Between BASIC and Assembly Language

Special Requirments:

o The bytes to be transferred are preceded by two words in the storage area. The two words
contain the starting byte for the substring and the number of bytes to be transferred.

e A string variable or an element of a string array must have been passed as an argument for

the utility to work properly.

Calling Procedure:

1. Store the number of the starting byte of the substring to be changed into the first word of
the storage area. (Note that bytes 0 and 1 are the length word of the string)

Store the number of bytes in the substring into the second word of the storage area.
Load register A with the address of the storage area.

Load register B with the address of the parameter declaration.

o kLN

Call the utility.

Exit Conditions: There are no error exits from the utility, so it always returns to the

instruction following the call.

For example —

i

1t
f
1]

In this example, Value is the storage area containing the string to be transferred. Since 2 has
already been generated and stored in the first word, and 10 in the second, the first 10 bytes of
the string are changed. Why was the value 2 stored as the byte number? Because bytes in a
string are numbered starting with 0, and bytes O and 1 contain the length of the string (see
“Data Structures’’ in Chapter 3).

6-21

6-22 Communication Between BASIC and Assembly Language

UTILITY: Put_elem_bytes

General Procedure: This is a combination of the “Put_element” and *‘Put_bytes” utilities.

This utility changes a substring of an element in a string array which has been passed as an

argument. The utility is given the starting byte and the number of bytes to be transferred.

Special Requirements:

o The bytes to be transferred are preceded by two words in the storage area. The two words

contain the starting byte for the substring and the number of bytes to be transferred.

e The array information for the array must be retrieved with the “Get_info” utility before

calling this utility.

o The offset of the element in the array must be correct in the array information for the array

(word 16 returned by “Get_info”). It should be remembered that the offset of the
element is dependent upon the number of dimensions in the array and the length of each.
A calculation may be necessary to arrive at the offset when accessing multiple-dimension

arrays. The offset is in terms of number of elements.!

Calling Procedure:

o kW DN

Store the number of the starting byte of the substring to be changed into the first word of
the storage area. (Note that bytes 0 and 1 are the length word of the string.)

Store the number of bytes in the substring into the second word of the storage area.
Store the element offset into the array information (word 16).
Load register A with the address of the storage area for the string to be transferred.

Load register B with the address of word O of the information returned by the
“‘Get_info” utility (see description of that utility).

Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction

following the call.

1 See the description of calculating array offsets under the “Get_info” utility.

Communication Between BASIC and Assembly Language 6-23

For example —

In this example, Value is the storage area for the string to be transferred. Since 2 has already
been generated and stored in the first word, and 10 in the second, the first 10 bytes of the string
element are changed. It is the responsibility of the software (not shown) to assure that 10

characters of valid data are stored in the remainder of the storage area.

Using Common

A faster way to pass information between BASIC and assembly language routines is through

BASIC’s common area.

You may recall from subprograms in BASIC that if you have a COM statement in the main
program, the locations named therein can be accessed by other BASIC subprograms and
functions through their own COM statements. Though the subprograms may change the
names, the locations are the same. The order of appearance in a COM statement is all-

important. If a main program has the statement —

Ioid

then X and A are the same storage location, B and Y are the same, and C and Z are the same.

6-24 Communication Between BASIC and Assembly Language

The same kind of operation is available in your assembly language routines with the COM

pseudo-instruction —
ol

As with the SUB pseudo-instruction, the COM only serves as a preface. It is followed by one or
more parameter declarations of the same types as in the SUB —

SHO
STH

The FIL is not permitted, since there is no corresponding item within BASIC’s COM syntax.

Each pseudo-instruction used after an assembly language COM corresponds to an item in the
COM declaration in the main BASIC program. Just as in a BASIC subprogram, the types must
agree.! However, the ANY pseudo-instruction fulfills the same function here as it does with the

SUB pseudo-instruction — to allow any type of item to be passed.

As with SUB, arrays are designated by following the type with an array identifier — 7% . If the
type is ANY, the array identifier is not allowed.

Each pseudo-instruction reserves three words of memory when assembled. And, like SUB, the
words are used to contain a descriptor. The descriptors are used by the variable retrieval
utilities for fetching and storing values in the common area. The same utilities used in fetching
and storing argument values are used for the same purposes for values in the common area.

These utilities are —

Get_info
Get_value
Get_element
Get_bytes
Get_elem_bytes
Put_value
Put_element
Put_bytes
Put_elem_bytes

1 1f the types do not correspond, an error results (number 198). This matching is checked only for the module containing the
routine which was ICALLed.

Communication Between BASIC and Assembly Language 6-25

description of the utilities in the preceding sections of this chapter to determine how they are

used.

The item pseudo-instructions used with the COM pseudo-instruction can have their own labels,
just as the parameter declarations used with a SUB may have. And just as in a BASIC subprog-
ram, they need not have the same names as were given the corresponding items in BASIC. For
example, suppose the following BASIC common statement exists at the time of a call to an

assembly language routine —
COM 028, 2301813

then you could access Q(x) and Z$ by using these pseudo-instructions —

—_
L

REL {%3

LT

Pl |

T
1
i
H
i

Note the differences in names.

If the number of item pseudo-instructions in the assembly language routine exceeds the

number of items in common at the time the routine is called, an error resuits (number 199).

Similar to BASIC, a common declaration can contain more than one COM sequence. All the
COM sequences are treated together as a single common area. For example —

BASIC: M
ASSEMBLY: {0

NOTE
If a BASIC COM statement is changed, modules containing
the COM pseudo-instruction should be re-IASSEMBLEd or
re-ILOADed before executing an ICALL statement.

6-26 Communication Between BASIC and Assembly Language

Busy Bits
Overlapped processing in the 9845 is partially implemented through the facility of “‘busy bits”.

Each variable located in the BASIC value or common areas has associated with it two bits which
are independent of the value — a “‘read” busy bit, and a “‘write” busy bit. Each time an [/ O
operation is executed that cannot be buffered, one of the busy bits is set. If a variable is having
its value changed by the [/ O operation, then the read busy bit is set. If the variable is output-
ting its value in the I/ O operation, then its write busy bit is set. If a variable is not involved in a
pending I/ O operation both bits are cleared. When the [/ O operation is completed, the busy
bits for the variables involved are cleared.

When an [/ O operation is encountered during execution of BASIC statements, the appropriate
busy bits are set and a request is made by the operating system for the resources to satisfy the
operation. Until that operation is complete, BASIC (in OVERLAP mode), continues to execute
succeeding lines in the program until it encounters a statement which contains variables with

busy bits that are set.

If the statement is attempting to use the value of a variable and its read busy bit is set, then the
further execution of the statement waits until the busy bit is cleared. The same is true for a
statement attempting to change the value of a variable when either its read or write busy bit is
set. When the [/ O operation completes, the busy bits are cleared and the waiting statement is

executed.

In short, overlapped processing uses busy bits as a signal as to whether a statement can be

executed or not.

If an ICALL statement is executed with overlapped processing, it is possible that a BASIC
variable may be “busy’’ when the routine wants to access it. Although it is still possible to
access the variable without regard to the status of the busy bits, frequently that is not a
desirable programming approach. You may on occasion want to check the value of the busy

bits when you suspect the user of the routine may be using overlapped processing.

Busy bits are checked from an assembly program using the ‘““‘Busy” utility to be described
shortly. If you are checking the bits for a busy condition, and the busy. condition is set, it
remains set throughout the time you are in the assembly routine. For it to become un-busy, you
must give the operating system a chance to perform the I/ O operation and clear the busy bits.
One way to do this is to exit the ICALL and return to BASIC.

Communication Between BASIC and Assembly Language 6-27

If the Sort routine exits, setting Busy to 0 if a busy condition is not encountered, and to
non-zero otherwise, this keeps trying to execute Sort until the common variables which are
busy become un-busy and it can proceed on its way. By exiting the routine after each unsuc-
cessful attempt, the operating system is given an opportunity to perform the 1/ O operation
which has the variable(s) tied up.

JTILITY: Busy

The Busy utility checks the status of the busy bits of a variable.

General Procedure: The utility is given the location of the declaration for the variable. It

returns the value of the busy bits for that variable into the A register.

Special Requirements: This utility should be used for all variables involved in overlapped

[/ O operations.
Calling Procedure:

1. Load register B with the address of the pseudo-instruction of the declaration to be
checked.

2. Call the utility.

Exit Conditions: The utility returns the busy bits in the A register. The ‘‘read’” busy bit is in bit
0 and the “‘write” busy bit is in bit 1. The other bits are cleared.

6-28 Communication Between BASIC and Assembly Language

In the following example, if any of the busy bits among three common variables is set, a flag is
set and the routine is exited —

The overhead of exiting and re-entering the ICALL statement while waiting for a variable to
become unbusy can be avoided. It is sufficient to allow the operating system to perform anl/0O
operation without having to go back to BASIC. A special utility, To_system, is provided for this
purpose.

UTILITY: To_system

The To_system utility gives the operating system a chance to move toward completion of any
[/ O operation which has not already completed.

General Procedure: Each call to the utility gives the operating system one chance to perform
an [/ 0 operation.

Calling Procedure: Call the utility.

Exit Conditions: The utility always returns the instruction following the JSM To_ system in-
struction. There are no error exits from the utility.

Communication Between BASIC and Assembly Language 6-29

In the following example, the Sort routine waits until all busy bits in the three common vari-

ables are cleared before proceeding with execution:

6-30 Communication Between BASIC and Assembly Language

Chapter 7
I/ 0 Handling

Summary: This manual should be used in conjunction with ‘“BASIC Language Inter-
facing Concepts” which covers the specifics of different interface cards. This chapter
describes the various techniques of handling the receiving and sending of information to
peripheral devices. Topics are: a review of 1/ 0 machine instructions, registers, applica-
ble utilities, interrupts and interrupt service routines, handshake I/0, direct memory
access, and mass storage devices.

A major usage for assembly language programs is to improve or customize the performance of
the 9845 with respect to data transfers with peripheral devices. The types of devices dealt with
are those which communicate via the various interface cards (e.g., HP 98032, HPIB, etc.). The
types of I/ O which the assembly language supports are programmed (handshake-type), inter-

rupt, and direct memory access (or DMA).

A number of detailed examples have been provided demonstrating the various types of [/ 0O

using different interfaces. These examples can be found in Appendix H.

Peripheral-Processor Communication

All 1/0, except for that to the internal devices (tape cartridges, keyboard, printer, CRT, or
Graphics), necessarily takes place through the ‘‘backplane”. The backplane is that physical

area of the machine where the interface cards are inserted (also known as the [/ O “slots”’).

—\../' J\/’

Qe =—"—a)|l|

Figure 8. Location of I/ O Slots (Backplane)

7-1

7-2

[/ O Handling

Interfaces

The processor does all its talking, through the backplane, to peripheral interfaces, never di-
rectly to a peripheral itself. An interface is a complex electronic circuit which provides mechani-
cal, electrical, data format, and timing compatibility between the 9845 and the peripheral
device to which it is connected. From a programmer’s point of view, the primary task of an
interface is to provide a means of exchanging data between the 9845 and the peripheral. An
interface isolates the programmer from the details of electronics and timing, appearing as a

simple “black box”’ through which information is exchanged.

The processor can talk to as many as 12 peripheral interfaces through the backplane. Each can
be talked to individually, and there may be a mix of peripherals using programmed, interrupt,
or DMA types of transfers.

Individual 1/ O operations (i.e., exchanges of single words) occur between the processor and
one interface at a time, although interrupt and DMA modes of operation can be programmed to

allow automatic interleaving of individual operations.

A peripheral is addressed through a select code and a transfer occurs through four special

registers reserved for the purpose. These will each be discussed shortly.

Discussion of the techniques and methods presented in this chapter uses the common HP
interfaces as examples. A full discussion of the operation of these interfaces can be found in the
BASIC Language Interfacing Concepts manual (HP part number 09835-90600) and also from
your Sales and Service office.

Example programs utilizing various [/O techniques with a number of the standard interfaces

can be found in Appendix H.

Registers

All1/ O operations go through a set of four registers maintained by the 9845. The four registers
named R4, R5, R6, and R7 are the sole means of communicating data between the processor
and peripheral interfaces. While the registers are actually on the interface cards, they may be
thought of as being in the computer memory. This makes the cards themselves accessible by
simple memory referencing instructions.

The 9845 sees the registers as single-words and always sends or receives a full word of data
when it references one of them. If a particular interface utilizes less than the full sixteen bits
(when exchanging 8-bit extended ASCII data bytes, for example), then the most significant bits
(8 through 15) are received as zeroes. On output, if fewer than 16 bits are utilized by the
interface, it ignores the most significant bits. The value of these bits, in this case, is a ‘‘don’t

care’’ (i.e., may be any pattern of ones or zeroes).

I/0 Handling

All of the HP 9803X series of interface cards use the registers as follows —

Register |On Input On Output
R4 |Primary Data In Primary Data Out
R5 Primary Status In Primary Control Out
R6 |Secondary Data In Secondary Data Out
R7 Secondary Status In Secondary Control Out

The R4 register, then, is almost always used for data transfers. R5 is always used for status and
control information. The “‘secondary” registers — R6 and R7 — perform the indicated func-
tions only nominally. The exact interpretation as to how the register is used depends upon the

interface card being used (see the BASIC Language Interfacing Concepts manual for details).

In order to give some specific examples for using the registers, the 98032 16-Bit Parallel
Interface (sometimes called General Purpose Input/ Output — GPIO) is used. This card de-

fines the secondary registers as —

Register lOn Input I On Output
R4! |Low-Byte Data In High Bype Data Out
R5 Status In Control Out
R6' jHigh-Byte Data In High-Byte Data Out
R7 {unused) I Trigger

Select Codes

As mentioned earlier, more than one interface card may be connected to the 9845. It becomes
necessary, then, that there be a mechanism whereby a particular interface can be chosen to
respond when an [/ O register is referenced for either input or output. This mechanism is the
Peripheral Address Register (Pa).

Pa holds a binary number in the range O to 15 (utilizing only the lower four bits of the word, 0 to
3). Each interface has an externally-settable select code switch which can also be set to a value
between 0 and 15. However, since select codes 0, 13, 14 and 15 are reserved for the internal
printer, Graphics and tape cartridge units, respectively, the permissible select code settings are
1 through 12.

Whenever an operation to one of the 1/0 registers is performed, the System 45 makes the
contents of the Pa register available to all the interfaces connected to the backplane. Each card
compares the value with its own select code. If they match, the interface responds to the

operation.

1 These registers contain the same data if the 98032 card is not jumpered for byte mode. See BASIC Language Interfacing
Concepts.

7-3

7-4

I/ 0 Handling

So, for example, if the following statements are executed in turn —

ISOURCE LDA =& ! Choose peripheral on select oods ©
ISOURCE STR Pa
CURECE LR B4 P Bead from the interface

then a status byte is read from the interface card set to select code 8.
The label “Pa” is reserved by the assembler for the Peripheral Address register.

Status and Control Registers

The primary purpose of any interface is to allow data to be exchanged between the computer
and the peripheral device to which it is connected. But HP’s 9803X series of interface cards are
even more versatile, possessing a programmable capability of their own. This in turn provides
optional capabilities with the card that can be set and changed by control instructions from the
System 45. (For details on what capabilities are provided, consult the BASIC Language Inter-
facing Concepts manual.)

The programming of the interface is done by the 9845 using the R5 register. Some of the
interfaces use other registers for extended control bits (these are also described in the BASIC
Language Interfacing Concepts manual).

Interface cards can also return information to the 9845 about which optional programming
features are currently selected. This information, called the status byte, is obtained through an
input operation using register R5. The status byte (8 bits) is determined solely by the charac-
teristics of the interface card being addressed in the Pa register. (Again, information on particu-
lar cards can be found in BASIC Language Interfacing Concepts).

Remembering that these registers are not really memory locations, but instead are registers on
the card being addressed by the Pa register, storing information to these locations is not the
same as storing to other memory locations or registers. For example, storing a value in R5 to set
the control register sends the information to the addressed interface. Later, if you were to read
a value from R5, the information you sent would not be what is returned. Instead, the contents

of the status register in the interface would be returned.

Status and Flag Lines

Whenever an 1/ O register is accessed, the interface with the same select code as is in the Pa
register responds. The primary response depends upon the nature of the interface and which
register is accessed (see discussion above). However, in all cases there is a secondary effect.

Part of every interface’s response is to set or clear the Status and Flag lines.

I/0 Handling 7-5

The Status line (not to be confused with the status register discussed above), is a single bit

L

indicating whether the interface is operational or not. By inclusion, this can also mean the
status of the actual peripheral to which the interface is connected. For example, if a peripheral
device has a line coming from it that indicates its power is on, it could be connected to the
Status line in the interface. Then the program could quickly determine whether the device is
turned on or off. As another example, a printer might have the Status line connected to the
out-of-paper indicator (should it have one) to indicate to the program when it is inoperable

because of lack of paper.

The Flag line is a momentary ‘‘busy /ready’’ indicator used to keep the computer from getting

ahead Afth o v }—.

1 Thaotlins abhnesea 4l
Ol ine€ peripnerai. ine iif no I

a 1a P R T o N o Pt T e dh o lnnd dna
ifi€e SNoOows uiat u i Lre iasi

i€ inter ask given
it by the 9845 or that it is ready for another operation. If the line is set, it indicates ‘‘ready’’; if
the line is cleared, it indicates ‘‘busy”’. For example, if the computer has a sequence of ASCII
characters to send to a slow printer, it sends one character (making the Flag line “busy’’) and

then waits for the Flag line to go ‘‘ready’’ again before sending the next character.

There are four instructions, part of the 1./ O group, which can check these lines —

- Skip if Flag line is set (i.e., “‘ready’)

:Skip if Flag line is cleared (i.e., ‘“‘busy’)
=% Skip if Status is set (i.e., “‘operational’’)

=5 Skip if Status is cleared (i.e., ‘“‘non-operational”)

These instructions have the capability of skipping up to 31 locations in a forward branch, up to

32 locations in a backward branch, or to the same instruction.

7-6

[/ 0O Handling

Programmed 1/ O

Programmed [/ O is the process whereby software controls the transfer of information between
memory and an interface. In the process the program must decide when and where to make the
transfer, how to make it, and how much information to transfer. The decision even to originate

the transfer comes under program control.

The Status line can be used to determine the availability of an interface. The interface is
selected, under program control, by the contents of the Pa register. Then the Status line is

checked to see if the interface (and by inclusion its associated peripheral) is operational.

After an operational interface has been chosen, the Flag line can be used to determine when
the interface (i.e., peripheral) is ready for a transfer and when it has not finished with the

previous transfer.

With sufficient checks of Flag and Status before and between [/ O operations, it is possible to
eliminate initiating an 1/ O operation to an interface which isn’t ready for it. The following
example checks the status (status bit set) of an interface card:

The instruction sequence for a software controlled output transfer differs slightly from that of an
input transfer. An output transfer involves waiting for the interface flag, outputting the data and
then starting the output handshake. The following is an illustration of this sequence. The

essential instructions are preceded by an asterisk in the comments column.

[0 Handling

Aninput transfer involve ation, triggering the input handshake, waiting

for the interface flag and then inputting the data. This sequence is illustrated here with the

essential instructions preceded by asterisks in the comments column.

Interrupt /O

Interrupt 1/0 is a means of allowing control to pass temporarily to an assembly language
routine other than the routine (BASIC or assembly language) currently executing. The “inter-
rupt”’, which causes the control to be passed, is detected through the backplane and is as-
sociated with a particular interface. After the ‘‘interrupt service’” routine completes its tasks,

control is passed back to the original routine.

The process looks something like this —

“original” | ¢
routine §.2
=
(o]
9]
x
o
k)
2
o
. ¥ ; inter{upt
e |
L routine
H
:
NS * NS
T M T
] . 1
i 1
O N H

7-7

7-8

[/ 0 Handling

The sequence of events in interrupt I/ O can be detailed as follows —

1. The interface sends a request for service to the backplane which passes it along to the
processor. Conditions which generate this request for service are different for each 1/0

card. See BASIC Language Interfacing Concepts.

2. The processor alters the flow of execution so that the routine associated with that inter-
rupting source can be executed. The processor saves its place in the interrupted routine
so that it can later return to it. The current contents of the Pa register are saved internally
in the processor and the Pa is then set to the select code of the device causing the

interrupt.

3. The interrupt service routine is executed, performing whatever functions are desired.
Frequently these functions involve some form of programmed /O or direct memory
access. The service routine may signal an end-of-line BASIC branch, indicating to

BASIC that some condition occurred (discussed below).

4. The service routine returns the processor to the interrupted routine so that the ““original”

process can resume.

The uses for interrupt I/ O are so diverse that it is difficult to generalize about them. However,

one particular use is fairly well-defined and of general applicability — data transfers.

Interrupt 1/ O is normally used in data transfers whenever a particular data device has a transfer
rate which is significantly slower than that of the computer. Peripheral devices with transfer

rates less than 7000 characters per second are candidates for interrupt [/ O.

The usual approach is to transfer a word to or from the peripheral device, then go away to do
some other processing while waiting for the device to interrupt by becoming ‘‘ready’ for
another transfer. An example illustrating the general procedure for an interrupt [/ O transfer is
presented following some more background information concerning priorities, ISR linkage,

access, preservation and indirect addressing.

Priorities

Select codes are assigned hardware “priority’’ levels to control what should be processed when
an interrupt service routine is executing and another interrupt is received, or when two or more

simultaneous interrupts are received.

[/0O Handling 7-9

There are two priority levels —

High for select codes 8 to 15
Low for select codes 0 to 7
An interrupt received from a high-priority select code may interrupt a service routine which is

executing for an interrupt from a low-priority select code. But an interrupt from a low-priority

select code may not interrupt any other service routine.

Interrupt Service Routines and Linkage

An interrupt service routine is associated, or “linked”, with a select code by the Isr access
utility described later. This linkage establishes where the interrupt service routine resides, and
to which select code it applies. An interrupt service routine typically does one or more of the
following —

e Talks to the interface (i.e., satisfies or acknowledges the interface’s interrupt).

o Passes data to (or retrieves data from) the rest of the program, when appropriate.

e Breaks the linkage, if desired.
The method of talking to the interface depends upon the type of interface. Some devices or

applications do not require the passage of data; the acknowledgement of the interrupt is usually

the desired effect in such cases.

Interrupt service routines are always exited with a RET 1 instruction.

Breaking Interrupt Service Routine Linkage

The interrupt service routine-select code linkage can be broken from within the interrupt
service routine by executing one of two statements. If the linked select code is high priority, the
statement is —

JSM End_isr_high,I
If the linked select code is low priority, the statement is —
JSMEnd_isr_low,l

After execution of one of these linkage-breaking statements, the interrupt service routine is

exited with a RET 1 instruction.

7-10 1,0 Handling

Several important facts to keep in mind concerning the JSM End_isr low,I and JSM End _
isr_high,I statements are the following:

e The names, End_isr low and End_isr high, do not represent utilities or routines. There-

fore, they should not be declared as externals.
o Neither statement may appear outside of the appropriate interrupt service routine.

o These linkage-breaking statements should only be executed inside the appropriate inter-
rupt service routine when you no longer need select code linkage to the ISR. In most
cases, this is when the ISR is no longer needed because the data transfer is complete.

e The contents of the Pa register are used by End_isr _high and End_isr low to determine
what resources to free and what interrupt linkages to break. Upon entry to the ISR the Pa
register contains the select code of the interrupting interface, but you can change Pa
during execution of the ISR. If this is done, you must ensure that Pa is set to the desired
value before calling End_isr _high or End_isr_low.

Here is an example of a short interrupt service routine which simply reads and processes words

from the interface and terminates when it encounters a linefeed.

NOTE
Utilities cannot be called from an interrupt service routine.

Attempts to do so lock up the machine.

Access

The operating system (OS) contains a mechanism to regulate requests for hardware capabilities
in order to eliminate conflicting uses of these capabilities. For instance, since there is only one
DMA!® channel, it is necessary that there be a mechanism to prohibit two simultaneous DMA
transfers.

1DMA (Direct Memory Access) is explained further in later sections of this chapter.

[/0 Handling 7-11

The OS mechanism which regulates the use of DMA (and also interrupt) transfers either grants
or does not grant what is called ‘‘access”. Before starting either an interrupt or DMA operation,

access should be requested from the operating system.

Another example — suppose a device operating on a high priority select code has a relatively
slow data rate. This is an ideal situation in which to use interrupt driven I/ O. Suppose further
that the device operates in such a fashion that the data must be transferred within a fixed time
period following its issuance of an interrupt or the data is lost (the internal tape drive is such a
device.) If there are other interrupt type transfers operating concurrently on other high priority
select codes, it may not be possible to service our slow device within the necessary time frame.
When the operating system grants access, this type of conflict is impossible.

Users of the assembly language system are required to request access from the operating
system. The OS grants access if granting this access does not compromise any previously
granted access.

Devices such as that discussed above which require interrupt service within a specified time
frame are called ‘‘synchronous”, and should use ‘“‘synchronous” access. Devices with no such

time constraints are called ‘‘asynchronous”, and should use “‘asynchronous’” access.

Abortive access is intended to be used by rouiines that will be executed only exiremely in-
frequently. For instance, if the System 45 is monitoring a potentially dangerous manufacturing
process, it may be necessary to have an interrupt service routine to shut down the process when
something goes awry. This could be accomplished with an abortive routine. The advantages of
access code 0 (abortive access) is that no other modes of access are prohibited by its use. Thus,
the infrequently used routine will not prevent another routine from getting the type of access it

needs.

Access code 0 should be used with caution. An interrupt routine with abortive access can exist
on the same priority level as an interrupt routine with synchronous access. If the abortive
routine is in progress when an interrupt occurs requiring the synchronous routine, the abortive
routine will finish before the synchronous routine can be serviced. The timing requirements of

the sychronous routine might thus be violated.

Access code 0 is also used to release access in a particular type of DMA transfer to be explained
later in this chapter.

7-12

I/ 0 Handling

The regulation of access incorporates the following points —

e When the operating system grants synchronous access to an operation, it is guaranteeing

that the requesting process will have its interrupts serviced with maximum priority.

o DMA conflicts with synchronous access since DMA’s cycle stealing causes the processor to

run slower and could thus compromise a synchronous process.

e Synchronous access on a low priority select code conflicts with asynchronous access on a
high priority select code since the asynchronous device could interrupt the synchronous
ISR, thus compromising the timing requirements of the synchronous device. Synchronous
access conflicts with asynchronous access on the same priority level. Remember an inter-
rupt request on the same priority level as a currently executing ISR will not be processed
until the executing ISR completes.

The following table summarizes the granting of access —
Access Already Granted

Abortive ASYN DMA SYN

|
|
|

L H L H H L
L d
- Abortive ow ¥y y y v 4 y
8 High v v vy vy vy d d
»
Q L
K High v v vy vy vy n n
§ DMA vy VYV y Yy n n n
Q High d
<‘::) SYN ig Y Y n n n n
Low d d n n n n n

n = Not granted
d = Dangerous, but granted
v = Granted

I/0 Handling 7-13

BASIC statements also obtain

[

nd release access as 1/ O is performed. The following table lists

some of the ways access is used by the system —

Use Access
Cartridge Operations SYNC (HIGH select code)
Flexible Disk Operations DMA
PRINT, PRINT USING ASYNC
Plotter Drivers ASYNC
CARD ENABLE ASYNC
ENTER/OUTPUT INT ASYNC
ENTER/OUTPUT DMA DMA
ENTER/OUTPUT FHS! DMA

In general, single BASIC statements could cause access to be granted and released several
times. For example, the cartridge operations obtain and release synchronous access once for

each physical record transferred.

It is imperative that access be released after an interrupt service routine has been executed for
the last time or a DMA transfer is complete. Such occurrences as tape drive lockout, can occur if
access is not released. Use the JSM End_isr _high,l or JSM End_isr low,l instructions to free

access, depending on the select code used.
UTILITY: Isr access

This utility is used to request access and, if the access is granted, to create the linkage between
an interrupt service routine (ISR) and a select code. Valid select codes are 1 through 13.
Pressing RESET (@) during execution of the utility may cause a SCRATCH A to be

issued.

General Procedure: The utility is told where the ISR resides and what kind of access is
required. If access is granted, it returns successfully. If access is not granted immediately, it
keeps trying periodically until it is successful or until a specified number of attempts have been

made (in which case it returns unsuccessfully).

1 In addition to obtaining DMA access (which in this case is used just to ensure there is no synchronous access granted), the FHS
(Fast Handshake) drivers disable all interrupts during the actual transfer loop.

7-14 1,0 Handling

Special Requirements: The B register must contain information as follows —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits | Description

0-3 Select code to be linked to the ISR
4-5 Access code
8—14 | Number of attempts to be made before aborting

The access codes are —

Abortive access
Asynchronous access

DMA with asynchronous access

w N = O

Synchronous access

Calling Procedure:

1. Load register A with the address of the ISR.
2. Load register B with the information described above.

3. Call the utility.

Exit Conditions:

RET 2 If the attempt at linkage is successful, the utility returns to the second word following

its call. Register Pa is set to the select code; if access code 2 was specified then
Dmapa has also been set to the select code.

RET 1 If the attempt at linkage is unsuccessful, the utility returns to the first word following

the call. Register A contains an indication of the type of difficulty encountered —

— 1 Access couldn’t be obtained after specified number of attempts.

— 2 Select code is still linked to an assembly language ISR.

[0 Handling

As an example of the use of the Isr access utility, suppose an ISR is to be linked to select code

2 for asynchronous access. The following would be a sequence to establish such a linkage —

ISOURCE EXT Iz mooesz

NOTE
Access must be released after the execution of an interrupt or
DMA transfer is complete with a JSM End_isr _high,l or a
JSM End_isr_low,l instruction, depending on the select

code used.

Disabling Interrupts

At times it is necessary to disable all interrupts in order to execute a particular sequence of

instructions. This is typically necessary for one of two reasons:

e The instructions are modifying some data used by an ISR, and the ISR would become

confused if it happened to occur when this data was in a transitory state.

e All ISRs are prohibited in order to minimize the execution time for some task (i.e. fast

handshake transfers).

In general, it is allowable to disable interrupts (using the DIR instruction) for up to 100 us
without “‘notifying” the operating system. (Interrupts are re-enabled using the EIR instruction.)
Attempts to disable for more than 100us without this notice could compromise any synchron-
ous transfers that may be in progress. Specifically, it could cause loss of data if a tape operation

were in progress.

Ifis necessary to disable interrupts for more than 100us, the Isr_access utility should be used to
acquire an access which ensures that no syrnchronous transfers are jeopardized. Typical access
code requests to do this are DMA, ASYNC HIGH, or SYNC (high or low). The one to choose
depends on the application.

7-15

7-16

I/ 0O Handling

For example, suppose you would like to minimize the execution time for a segment of code.
The segment takes longer than 100us, but you need to disable interrupts for the duration. The
ideal access to request may be DMA. Once DMA has been granted there can be no DMA
transfers (which might slow the processor) and there can be no synchronous transfers in

progress. Therefore, interrupts can be disabled for as long as necessary.

When Isr_access is used for this purpose (i.e. to get access rather than to set-up ISR linkages),
the entry and exit conditions are as previously described except that the A register must contain

a zero.

When access is obtained in this manner, it is freed by calling Isr_access a second time with the
A register containing a zero. However, the access code requested in bits 4 and 5 of the B
register must be zero. This technique of freeing access can be used only if the original access
was granted without interrupt linkage (i.e. the A register was 0). Attempts to do otherwise cause

Isr_access to give the fail return (RET 1).

The following example illustrates the technique for a fast handshake transfer to a 98032

interface on select code 6.

I/0 Handling

State Preservation and Restoration
When an interrupt is detected and an interrupt service routine is called, the operating system
automatically saves the state of some of the registers so that their values can be restored upon

return from the ISR. Other registers are left alone and if your service routine uses them, it is up

to your ISR to save them and restore them before returning from the ISR.

The registers which are automatically preserved are —

A
B
C
Cb
P
Pa

Also, the state of the Overflow and Extend processor flags are preserved and restored before
the return from the interrupt.

The D and Db registers are not automatically saved. Saving and restoring location Db is not
trivial due to the fact that this location is a read-only location. The following program segment
saves and restores D and Db:

7-17

7-18 1,0 Handling

If your ISR contains any of the following types of instructions —

Indirect addressing
Stack group

CLR

XFR

and the operand of the instruction(s) is an address in the ICOM region, then it is necessary that
the following instruction sequence be executed in the ISR before any such instruction is

executed —

SaussES Toal BRSO

Then, before the ISR exits, and after the affected instructions have been executed, the

following sequence must be executed —

LDA Sawe33 Tow
TR 3SE

Indirect Addressing in ISRs

Indirect addressing in ISRs can produce anomalies unless the following rules are followed —

1. If indirect addressing is employed with the operand being an address in the ICOM
region, one of the processor registers must be preserved. For the method of doing this,

consult the ““State Preservation and Restoration’’ section immediately above.

2. If indirect addressing is used in a JMP or JSM (including any jumps to external symbols
or symbols more than 512 words away from the current instruction, both of which have
implied indirect addressing), then the most significant bit must be set in the address. For

example, instead of —

EST Sub

JEM Sk

I/0 Handling

in an ISR the procedure must be —

JEM (=Sub+i00eaaEs, I

The assembler can generate an indirect instruction when you have not specified a I after the
instruction. These indirect instructions lock the machine if executed within an ISR, and
therefore must be re-written. IOF (indirect off) and ION (indirect on) are used to find those
instructions for which the indirection is done automatically by the assembly. At the beginning of
ISR use the IOF instruction. At the end of ISR use the ION instruction to restore the assembler
to its normal state. Between an IOF /ION pair, any instruction for which the assembler would

have generated an automatic indirect, a range error (RN) is generated.

Enabling the Interface Card

The particular interface card that you are using must be enabled for interrupts. The 98032
Interface card is used for illustration purposes. Setting bit 7 of the R5 OUT register enables this
particular card for interrupts. The R5 OUT register is represented here —

98032 — R5 Register

Bit 7 Bit 6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0
ENABLE ENABLE RESET ENABLE X X CTL1 CTLO
INT DMA AUTO
HAND-
SHAKE
Bit 7: Logical 1 enables card to interrupt
Bit 6: Logical 1 enables DMA
Bit 5: Logical 1 resets interface card
Bit 4: Logical 1 enables auto handshake
Bit 3: (Don’t card)
Bit 2: (Don’t card)
Bit 1: Optional peripheral control bit 1
Bit 0: Optional peripheral control bit 0

Control bits 0 and 1 are used to drive interface lines CTLO and CTL1, respectively. CTLO and

CTL1 are optional peripheral control lines.

(Representations of the [/ O registers for each interface are provided in the Assembly

Language Quick Reference manual.)

7-19

7-20 1/0 Handling

The 98032 card is enabled for interrupts with the instructions —

The interface card is typically enabled for the first data transfer, disabled at the beginning of the
ISR and re-enabled before the ISR is exited.

Interrupt Transfer Example

An example of setting up an interrupt service routine for inputting character data is given in the
example below. This example should bring together the information presented in the previous
five sections of this manual. Note the procedures for requesting and giving up access, enabling
and disabling the interface card for interrupts and processor register preservation and

restoration because of indirect addressing in the ISR.

o [

I

I

I

H E
I B
I

I

I:

7-21

17O Handling

7-22

[/ 0 Handling

Direct Memory Access
(DMA{

Direct memory access (DMA) is a means to exchange entire blocks of data between memory
and peripherals. A block is a series of consecutive memory locations. Once started, the process
is automatic; it is done under processor control, regulated by the interface. Since only the

98032 Interface supports DMA, the following discussion is in terms of that interface.

To the peripheral, the DMA operation appears as programmed [/ O. The transfer, however, is
actually performed by special DMA hardware. Information regarding the transfer is stored in
the DMA registers for the DMA hardware to use. This information is the select code, the initial
memory location, and the number of words to be transferred. The memory location register
and the count register are successively adjusted after each word transferred until the transfer is
complete. Upon completion of the transfer, the interface and the DMA hardware stop
automatically.

The direction of the transfer is specified before the transfer takes place. It can be specified as
either “inward” (i.e., from the peripheral to memory), or “‘outward” (i.e., from the memory to

the peripheral). To set the direction outwards, the instruction —

ST

P L]

is used. To set the direction inwards, the instruction —

is used.

DMA Registers

There are three registers which contain information used by the DMA hardware — Dmapa,
Dmama, and Dmac. Before any DMA transfer takes place, the appropriate values must be

loaded into these registers.

Dmapa contains the peripheral address of the device requesting DMA. Only the least
significant bits of the register specify the select code which is to be the peripheral side of the
DMA activity. During DMA transfers, the address bus takes its address from the Dmapa register
rather than Pa as in other [/ O transfers. The value is supplied to Dmapa by the Isr_access
utility when it grants DMA access.

I/0 Handling 7-23

Dmama contains the address of the first word in memory (i.e., lowest address) where the data
transferred is (or will be) stored. After each word transferred, this register is automatically
incremented. Note that the entire block to be transferred must reside within the ICOM region.

Dmac is the count register for a DMA transfer. Before the transfer begins, it should be set to
n-1, where n is the number of words to be transferred. After each word transfer, the count is
decremented. If, during a word transfer, the value of Dmac is O (meaning that this is the last
word to be transferred), the processor automatically informs the interface that the DMA

operation will be complete after the present word is transferred.

DMA Transfers

There are two techinques for using DMA. Both initiate the DMA transfer in a similar manner but
differ in how the end of the transfer is detected. The more commonly used method uses an
interrupt generated by the interface. The second method uses a programmed test.

DMA transfers using interrupt are initiated with a sequence of six distinct actions.

Step 1: The Isr_access utility is used to obtain access to the DMA channel and to set up the

ISR linkage used when the transfer terminates.

Step 2: The direction is set for input using an SDI instruction or for output using an SDO

instruction.

Step 3: The appropriate values are stored into the Dmama and Dmac registers. (Dmapa is set
by the Isr_access.)

Step 4: For input, the first handshake is initiated with these instructions:

For output, this step is deleted.

Step 5: The interface is enabled for DMA and interrupt by setting bits 4, 6, and 7 of R5 OUT to
one. (i.e. 320B—R5)

Step 6: The DMA requests are enabled using the instruction DMA.

7-24 1/0 Handling

At this point you can do other processing if desired since data is being transferred automatically
by the hardware. When all words have been transferred the interface interrupts the processor,
causing the previously linked ISR to be executed. This ISR should:

e Disable the interface (bits 4, 6, and 7 of R5 OUT set to 0).

o Free the DMA acces by using End_isr_high or End_isr _low.

The following is a program segment to input 1024 words of data into an internal buffer area
using interrupt to terminate the transfer.

Parduaee.

O R

A el b

H
T
I
I
1
T
i
H

In the previous example, the end of the DMA transfer is signaled by an interrupt which causes

execution of an ISR. The ISR, in turn, gives up the DMA access and terminates the ISR linkage
with End_isr _low,l or End_isr high,l.

[/0 Handling 7-25

DMA transfers without interrupt are initiated with a sequence of six steps.
e Isr_access is used to obtain the DMA channel, but not to set-up an ISR (A register has a 0
value).

e The direction is set for input using an SDI instruction or for output using an SDO

instruction.
e The appropriate values are stored in Dmac and Dmama.

e For input, the first handshake is initiated with these instructions:

e The interface is enabled for DMA by setting bits 4 and 6 of R5 OUT (i.e. 120B—R5).

o The DMA requests are enabled using the instruction DMA.

At this point you can do other processing if desired since data is being transferred automatically
by the hardware. To determine if the transfer is complete, the Dmac register is tested. If it is

negative, the transfer is complete and you should:

o Disable the interface (bits 4, 6 and 7 of R5 OUT set to 0).

o Free the DMA access by using Isr_access with the A register containing a 0 and an access
code of 0.

The following is a program segment to output 1024 words of data from an interrupt buffer area

without using interrupt to terminate the DMA.

7-26 1/0 Handling

[/ 0 Handling

BASIC Branching on Interrupts

The handling of interrupts can be integrated into BASIC programs by using the ON INT
statement. The object is to allow the flexibility of combining the high-level features of BASIC
with the capabilities of assembly language in asynchronous [/ O applications. And since ISRs
cannot use the system utilities, in particular those that access a BASIC variable, a means of

taking action on an interrupt after completion of the ISR is a necessity.

ON INT Statement

The ON INT statement is an executable BASIC statement which acts in a similar fashion to the
ON KEY statement (see the System 45 Operating and Programming Manual). The statement
allows the BASIC programmer to specify where, in his BASIC program, to branch whenever an

End-of-line branch is signalled for the select code he specifies.

As with the ON KEY statement, there are three ways these branches can be taken —

iT #{select code} [. {priority}] {subprogram name}

: {line identifier}

1 {line identifier}

{select code} [. {priority}]¢

Gh IHT # {select code} [, {priority}] =

Whenever an interrupt is signalled from an ISR for a particular select code, if ON INT has been
executed for that select code, then at the end of execution of the BASIC line which was

executing when the signal came, the indicated branch in the ON INT is taken.

In the GOTO version, the branch is ‘““absolute”’, which is to say that the program goes to the
line indicated and picks up its execution there, forgetting where it was before. This has the
effect of an ‘“‘abortive’ type of branch, and should only be used by the BASIC programmer
when he wants the program to resume execution at some pre-determined point after handling

an interrupt, without regard to where the program was before the interrupt occurred.

In the CALL and GOSUB versions, the branch is only temporary. After the subprogram or
subroutine has been executed and the SUBEXIT, SUBEND, or RETURN (as appropriate) has
been executed, then the program returns to the line following the one where it was interrupted.
This is the same as if the CALL or GOSUB was in between the interrupted line and the one
following it.

The {line identifier} and {subprogram name} in the CALL, GOSUB, and GOTO statements are
the same as elsewhere in BASIC, except that a CALL may not have any parameters.

7-27

7-28

[/ 0 Handling

The {select code} specified in an ON INT statement restricts the branching action to occurring
only when the assembly language triggers the ON INT condition for that select code. The
interrupt may have occurred in actuality on another select code. This can be a way of allowing

more than one branch for interrupts from a single interrupting device.

As an example —

O IMTHE GOSUR F‘%"‘i?‘xt___;‘"E'E-f.ﬁt
s

OR IMTHE GOSUR End datsa

i

i@

[]

Should an interrupt occur anywhere in the program, causing an assembly language interrupt
service routine to be executed, that assembly language ISR has the capability to cause either
the branch of line 100 or the branch of line 110 to be taken. Thus, an assembly language ISR
signals BASIC either to print an intermediate result or to note that all data has been processed.

Signalling

The {select code} specified in an ON INT statement restricts the branching action to occurring
only when a branch is “‘signalled” for that select code. In actuality, an interrupt may not have
occurred on that select code at all. Conversely, an interrupt may occur on the select code, but
BASIC and its ON INT condition may never hear about it. It is necessary for the ISR which does
the actual handling of an interrupt to inform, or ‘‘signal’’, the operating system that the inter-
rupt occurred and trigger the ON INT conditions which may be set up at the time.

The responsibility of the ISR to signal the ON INT is also an opportunity. This signalling allows
you in an ISR to decide whether or not you want BASIC to know about the interrupt. If you do
not want BASIC to know, simply do not signal the condition. The signalling also allows you to
signal different interrupt conditions. An example of doing this might be a case where, after an
interrupt, a peripheral indicates whether it wants to input or output data. Your routine could
signal one select code to execute an input routine and signal another select code to execute an

output routine.

To signal an ON INT, your ISR must execute the following instructions —

LDA Mazk boDetermines which S0 to sigral

TSOIRTE

[/ 0O Handling

Mask necessarily contains the select code to be signalled. Rather than containing the number of
the select code, however, it has the bit set for the appropriate select code. For example, if you
are signalling select code 2, you set bit 2 to 1 in Mask and leave the others 0. Similarly, if you
are signalling select code 5, you set bit 5. Thus, the statement containing Mask in the above

could just as easily be a literal. For example —

i
[

would signal select code 5.

If the select code is not known at assembly time or if the ISR is shared by more than one select
code, the following segment of code can be used to build the appropriate mask. (Pa cannot be
zero, because zero is not a valid select code for the Isr _access utility.)

When you want to signal a select code after others have already been signalled, a slightly

different instruction sequence is required —

Mask is the same as above.

7-29

7-30 1/0 Handling

As a further example, suppose you want both to signal BASIC when a device sends a line-feed

character to the computer, and to terminate the ISR’s linkage. Then the ISR might appear as —

1
i

ISOIRDE L2 EG 18

I

Prioritizing ON INT Branches

Since more than one interrupt may occur while a single BASIC statement is executing, it is
possible that by the time the line finishes there may be a number of ON INT branches waiting to
be executed. In such situations you may want to assure that some ON INT branches are taken
before others, or that you finish one routine (caused by an ON INT GOSUB or ON INT CALL)
before you start another. This can be achieved by using the {priority} option of the ON INT
statement, thereby ‘‘prioritizing”’ the branching caused by interrupts.?

There is a “‘system priority” for ordering this interrupt branching. For an ON INT to be honored

at the end of a BASIC line, its priority must be greater than the current system priority.

Initially, the system priority is set to 0. When a BASIC line finishes, and there is at least one ON
INT branch pending which is greater than the system priority, then the system takes the branch
associated with the ON INT with the greatest {priority}. The values assigned to {priority} may be

any integer numeric expression from 1 to 15. If {priority} is omitted, 1 is assumed.

If the ON INT branch to be executed is a GOTO, then the system priority level is unchanged.
But if the branch to be executed is a GOSUB or a CALL, then the system priority level is
changed to the priority level of the ON INT. Whenever the subroutine or subprogram is finished

executing, then the previous system priority level is restored.

1 This “‘prioritizing’’ also holds between the various types of end-of-line branch statements that have the priority parameter.
Thus an ON KEY with high priority is executed before an ON INT with low priority.

Thus, with the GOSUB

10 Handling 7-31

are two effects involving priorities —

o The subroutine or subprogram is not allowed to execute until its priority is the highest one

pending.

e Whenever the subroutine or subprogram is executing, it locks out any other interrupting

branches unless they have a higher priority.

With the GOTO version there are also two effects, slightly differing —

e The branch is not taken until it has the highest priority of all pending branches.

e The execution of the branch does not lock out any other branches, so that at the end of

the line to which it branches, if there are other pending branches, the highest one of those

is executed.

For example, suppose there are these four statements in effect —

and also suppose that at the end of some BASIC line in the program, an interrupt had been

received from all four of the interfaces involved. Then the process of dealing with them pro-

ceeds like this —

EVENT

NEXT ACTION

SYSTEM PRIORITY

Reaches end of current
BASIC line

Finishes Routine 7

Suppose at this point another interrupt is received from select code 7.

EVENT

GOSUB Routine 7

GOSUB Routine_5

NEXT ACTION

Changes from 0 to 15

Changes from 15 to 9

SYSTEM PRIORITY

Reaches end of current
BASIC line in Routine_5

Finishes Routine_7

Finishes Routine 5

Finishes with line 1000

GOSUB Routine_7

Returns to interrupted
point in Routine_5

GOTO 1000

GOTO Routine_4

Changes from 9 to 15

Changes from 15 to 9

Changes from 9 to 0

Stays at 0

7-32

[/ 0 Handling

Environmental Considerations

Changes in program environment (i.e., calling a subprogram or returning from one) can affect
whether an ON INT is in effect or not.

Once executed, the CALL version of an ON INT is always in effect, if it is in the main program,
until it is redefined by another ON INT or is specifically disabled (see below).

In the GOSUB or GOTO versions, the statement is in effect only in the same program environ-
ment. This is to say that if you have executed an ON INT statement in your main program, then
it is effective only while your program is executing part of the main program. The instant the
program goes into a subprogram (through a CALL statement), the statement is no longer
effective until the execution returns to the main program. Similarly, if you define an ON INT in

a subprogram, it is effective only while the program is executing that subprogram.

A side-effect occurs here when you use the CALL version of an ON INT. By calling the
subprogram with an ON INT, you have the effect of locking out the other interrupts, except
those which are executed in the subprogram itself and other CALL versions. This is regardless
of priority. In the priority example in the previous section, if the ON INT#5 had been a CALL
instead of a GOSUB, then the second interrupt from select code 7 would not have been

acknowledged until the subprogram had finished.

Since recursive calls of subprograms are possible, it is also possible that many calls to the same
subprogram may be stacked up because an interrupt from a different select code with a CALL
version of an ON INT in effect may be received while processing the CALL caused by a

previous interrupt.

Disabling ON INT Branching

The branching enabled by an ON INT statement can be disabled using an OFF INT statement
for the same select code. It is effective for the ON INT statement within the same program
environment (main program or subprogram) or for the CALL versions of the ON INT within any

environment.
The statement has the form —
OFF IMT # {select code}

where {select code} is a numeric expression for any valid interface select code between 1 and

13, inclusive.

[0 Handling 7-33

The effect of the OFF

i

[s to disable the ON INT for that select code within the
current environment. If there is no ON INT statement currently in effect for the select code,
then the OFF INT has no effect.

NT statement is

The DISABLE and ENABLE statements work the same way for the ON INT statements as they
do for the ON KEY statements. They should not be confused with the DIR and EIR machine

instructions, which disable and enable the interrupt system.

Mass Storage Activities

For devices meeting the operating system’s criteria for mass storage peripherals, utilities are
provided for the reading and writing of records. The relationship between physical, logical, and
defined records is discussed later in this chapter.

If a device has been specified in a MASS STORAGE IS statement in BASIC, as in —

or is capable of being so specified, then it is possible to use utilities to access it. Note that the
Mass Storage ROM is necessary to access any device other than the internal tape drive(s).

NOTE
BUFFER# must not be used with files which are accessed

using these utilities.

There are two utilities involved in reading from a mass storage device — Mm_read _start and
Mm_read xfer — and there are two utilities involved in writing to a mass storage device —
Mm_write start and Mm_ write test. The reading utilities are always used together. So, too,

are the writing utilities.

Reading from Mass Storage

The flow of data to and from a mass storage device is buffered. For each device there is a
““device buffer” in memory which holds data corresponding to a physical record (256 bytes).
Device buffers are dynamically allocated by the operating system and their actual locations at

any given time are of no concern.

7-34 1/0 Handling

To get information from a mass storage device into its device buffer, use the Mm_read_start
utility. Then to get the information out of the buffer and into your user space, use the
Mm_read xfer utility. The transfer of data, therefore, looks something like this —

User
Space

Mass Mm - read - start
Storage

The utilities accomplish their purposes with the help of two locations containing vital
information for their use. The first is the Mass Storage Descriptor (MSD) and the second is the
Mass Storage Transfer Identifier (MSTID).

The MSD is three words in the ICOM region which contains the following information —

WORD
0 MSUS

lower 16 bits of

1 record number

don’t

2 care

upper 7 bits of
record number

15..7 6

o]

This information must be provided by your program. You must determine this information in

advance of attempting the reading operation. The msus is given in one of two forms —

Unit HPIB Device Select
Number? Address Type' Code

| | | T | | | |

| | | | | |] | I

15 14 13 12 11 10 9 6 2 1 0 Bit
or

Unit Device Select
Number Typel Code

| | | | | T T I | I I T

| | | 1 | | | | | | | |

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

for the 9885MS Flexible Disk Drive.
If the MSUS word contains a —1, the mass storage device indicated by the MASS STORAGE IS

statement is used. The instructions —

1 The device type is the ASCII code for the type minus 100B.
2 For tape operations, bits 9-15 are zeroes.

1/0 Handling 7-35

specify the default mass storage device.

The MSTID is a single word. The information in it is returned by the Mm_ read _start utility and
used by the Mm_ read xfer utility.

The usual procedure in reading a record from mass storage (which is all that can be read at one
time) is to call the Mm_read start utility and then, if all goes well with that, to call the
Mm_read xfer utility. Because the latter utility may have to wait on the operating system or
the device, it is possible the utility may return without having completed the transfer. In that
case, it is your option either to loop back and keep trying, or to do something else and try again

later.

UTILITY: Mm_read start

General Procedure: The record number is determined, then the transfer of the record’s
contents is made from the device to the device buffer. If the buffer allocation causes a memory

overflow, there is an error.

Special Requirements: The record number and msus must be loaded into the MSD in
advance of the call. There must be a stable location (not changed by other activities) for the
MSTID to be held.

Calling Procedure:

1. Store the msus and record number into the MSD area.
2. Load register A with the address of the MSD area.
3. Call the utility.

Exit Conditions:

RET 1 Occurs if there is a memory overflow during execution of the utility.

RET 2 Occurs if all went normally. Register A contains the MSTID. This should be

immediately stored in the location reserved for it.

UTILITY: Mm_read xfer

General Procedure: The MSTID is used to retrieve the record from the device buffer. The

record is stored into a location set aside for this purpose.

Special Requirements: The MSTID must be available from a previous call to
Mm_read_start. Alocation of 128 consecutive words must be set aside to hold the contents of

the record when they are returned by the utility.

7-36 1,0 Handling

Calling Procedure:

1. Load register A with the contents of the MSTID.
2. Load register B with the address of the storage location for the data.

3. Call the utility. The transfer may not be completed on the first or subsequent calls (see

exit conditions). In that case, to successfully complete the transfer, all three steps must
be repeated.

Exit Conditions:

RET 1 Occurs when the transfer is not completed. It is up to your routine at this point to
decide whether another attempt should be made immediately, or whether
something else should be executed (and to come back later).

RET 2 Occurs when the transfer is complete. The location specified contains the data. If
register A contains a non-zero value, an error occurred and A contains the error
number. In addition to mass storage errors (80 through 99), error 19 is returned if
the MSTID parameter is invalid.

CAUTION

PRESSING RESET (fom) (=) DURING EXECUTION OF
EITHER OF THE ABOVE UTILITIES MAY CAUSE A
SCRATCH A TO OCCUR.

The following is an example of a typical call to these utilities to read a record from mass
storage —

E Humber: B
M=d: b

™
]
ES
LIE =d0 T-ig@Brsis+idl Tig4®
STH Mzad Poore
LIA Humber b Store] Bits of record rumber
STH Mzd+i
LIA Humber+i I Store high-order bits of record number
STH Mg
LIA

FEH Me_reas

IE0URCE TP Memor: coserd e

[/ 0 Handling

Writing to Mass Storage

Writing to mass storage is very much like reading from it. The flow of data is buffered. To get
the data from the user space into the device buffer, and then to transfer the data from the buffer
to the mass storage device, the Mm_write start utility is used. Then a test can be made to
determine when the transfer is complete by using the Mm_write _test utility. Thus, the transfer
looks like —

=== Mm_ write_test

Mm_ write_start User

Space

Mass
Storage

Mm_write_ start

As with the reading utilities, these utilities accomplish their purposes with the help of the same
two locations — MSD and MSTID. They contain the same information as they do in the reading

utilities and are used in a similar fashion.

UTILITY: Mm_ write_start

General Procedure: The record number is determined, then the transfer of the data is made
from the ICOM region to the device buffer. If the buffer allocation causes a memory overflow,

there is an error.

Special Requirements: The record number and msus must be loaded into the MSD in ad-
vance of the call. There must be a stable location (not changed by other activities) for the
MSTID to be held. The data to be transferred must be ready (256 bytes — 128 consecutive
words).

Calling Procedure:

1. Store the data to be transferred in its location. Store the msus and record number into
the MSD area.

2. Load register A with the address of the MSD area.

Load register B with the address of the data location.

4. Call the utility.

7-37

7-38 1/0 Handling

Exit Conditions:
RET1 Occurs if there is a memory overflow during execution of the utility.

RET 2 Occurs if all went normally. Register A contains the MSTID. This should be im-
mediately stored in the location reserved for it.

UTILITY: Mm_ write_test

General Procedure: The MSTID is used to check to see if the data from the buffer has been
transferred to the mass storage device.

Special Requirements: The MSTID must be available from a previous call to Mm_ write
start.

Calling Procedure:

1. Load register A with the contents of the MSTID.

2. Call the utility. The transfer may not be completed on the first or subsequent calls (see
exit conditions). In that case, to successfully test for a completed transfer, both steps in
the calling procedure must be repeated.

Exit Conditions:

RET1 Occurs when the transfer from the device buffer to the device is not completed. It is
up to your routine at this point to decide whether another test should be made
immediately, or whether something else should be executed (and to come back
later).

RET 2 Occurs when the transfer is complete. If register A contains a non-zero value, an
error occurred and A contains the error number. In addition to mass storage errors
(80 through 99), error 19 is returned if the MSTID parameter is invalid.

CAUTION
PRESSING RESET (fom) (=) DURING EXECUTION OF
EITHER OF THE ABOVE UTILITIES MAY CAUSE A
SCRATCH A TO OCCUR.

170 Handling 7-39

d to mass storage —

System File Information

As an ASSIGN statement is executed in BASIC, a file-descriptor is created for that assignment
in the operating system’s files table. The ASSIGN statement essentially has two parameters —
the file number and the file name (including the BASIC language mass storage unit specifier).

The file number is, for all practical purposes, an offset into the files table. The file name and the
BASIC language mass storage unit specifier are translated and the critical information as-
sociated with them comprise an entry in the files table (i.e., the ““file descriptor’’).

7-40 1/0 Handling

The file descriptor consists of 10 words containing the following information —

Word Description

0 Lower 16 bits of the address of the first physical record in the file
1 Number of defined records in the file
2 BASIC’s Current defined record number

(i.e., an offset from the file’s beginning).
BASIC’s offset to current word within current
defined record
Size of the defined record (in words)
Mass storage unit specifier (msus)
BUFFER# flag (0=no BUFFER# active)}
Check read status (0 = off, 1 = on)
Highest 7 bits of the first physical record in the file
(Reserved by the operating system)

w

O 020 U p

Note that words 5, 0 and 8 contain the information necessary to create an MSD. You may
access a file descriptor through two utilities — Get_file info to obtain the information, and

Put_file_info to change the information.

NOTE
A files table is created for each BASIC ‘‘environment” (i.e.,
main program and subprograms). When access is made
through utilities to the files table, the table accessed is the
one associated with the BASIC environment which called the

assembly language program.

UTILITY: Get_file_info

General Procedure: The utility is given the file number and the location of a place to store the
file descriptor. It retrieves the designated descriptor and stores it, provided the file has been
assigned.

1 1f this flag is non-zero, it indicates that a BUFFER# is active for this file. Therefore, Mass Storage utilities should no be used.
Executing another ASSIGN statement for this file clears the BUFFER# flag.

170 Handling

Special Requirements: There must be a ten-word area available for the utility to store the

()

information from the descriptor.

Call Procedure:

1. Load register A with the address of the ten-word area where you desire the information

to be stored.
2. Load register B with the file number (an integer from 1 to 10).

3. Call the utility.

Exit Conditions:

RET 1 Occurs if the file is not currently assigned by a BASIC ASSIGN statement.

RET 2 Occurs if all went normally.

Here is an example of a routine which has a file number passed to it, and then gets the file

descriptor —

R

g

i}
[
1Ty
[
™t
-
=

I
+
[
Irs
151
"
el
m
[

UTILITY: Put_file_info

General Procedure: The utility is given the file number and the location of the area contain-
ing the new file descriptor information. It stores that information into the files table as indicated
t

by the file number, provided that the file has been assigned.

741

7-42

[/ 0O Handling

Special Requirements: The new pointer information must be stored in the designated area
before calling the utility. This information must be in the correct form and location or file
difficulties may ensue. Most of the information is normally returned by the “Get file info”
utility and only a couple of words are changed to change the pointer in the file (e.g., the current
record and word numbers). Only words 2, 3, and 7 should be changed in the descriptor.

Calling Procedure:

1. Load register A with the address of the ten-word area where the information is stored.
2. Load register B with the file number (an integer from 1 to 10).

3. Call the utility.

Exit Conditions:
RET 1 Occurs if the file has not been assigned by a BASIC ASSIGN statement.
RET 2 Occurs if all went normally.

Here is an example where the next defined record irj a file is specified —

Filel

File dezcriptor:

Communication with BASIC Data Files

It is perfectly acceptable and practical for assembly language programs to write data patterns to
data files and read them back. This has the advantages of simplicity and efficiency. However,
such files cannot be properly read by the BASIC READ# statement or written for assembly
routine use by the BASIC PRINT# statement. Therefore, if it is necessary for an assembly
language program to read or write data which is compatible with READ# and PRINT#, the
assembly language program must recognize and conform to the conventions used by these two

BASIC statements. This section discusses these conventions.

170 Handling 7-43

Interrelation of Record Types

Recall from the System 45 Operating and Programming manual that there are three types of

records used with the System 45 as follows:

o Physical record — 256-byte, fixed units which are established when a mass storage

medium is initialized. Every file starts at the beginning of a physical record.

e Defined record — established using the CREATE statement. Defined records can be
specified to contain any number of bytes in the range 4 to 32 767 (rounded up to an even

number). The first defined record of a file starts at the beginning of a physical record.

e Logical record — a collection of data items that are grouped together conceptually. Dif-
ferent logical records may have different lengths within the same file. If a logical record is
not immediately followed by another logical record and does not end on a defined record
boundary, it is followed by either an EOR (end of record) or EOF (end of file) mark.

In order to locate logical records within a file, it is necessary to know the relationship between
logical and defined records. This relationship depends on the method of file access used to
write the information into the file. When a file is written using strictly serial file access, the first
logical record starts at the beginning of the first physical record, the second logical record starts
immediately after the first logical record and so on. Logical records may cross defined record
boundaries. When a file is written using strictly random file access, each logical record starts at
the beginning of a defined record and is contained entirely within the defined record. A hybrid
method is also possible. With this method, logical records are written starting at the beginning
of defined records other than the first one, and the logical records may cross defined record
boundaries. Logical records may start immediately after other logical records, as well as at the
beginning of defined records. Illustrations representing files produced by each of the three

methods described above are presented here —

Defined Record Defined Record Defined Record

Al‘ <

Defined Record

- Lot I

+— | ogical Record —s{+—+—— Logical Record

| I
—»r— Logical Record —

File produced by serial access.

|
|
P
I
I
|
I
| |

T
«— Logical Record —»|
i

T
leLogical Record-»: e—— Logical Record —|

i File produced by random access. |
| 1 i

~——Logical Record

T I I
< Logical Record —»: «— Logical Record —»{
I 1

File produced by hybrid access.

7-44

[/ 0 Handling

The READ# and PRINT# statements read and write logical records which may be optionally
positioned on defined record boundaries. Physical records are essentially invisible to the
BASIC user. On the other hand, the assembly language mass memory utilities deal with physi-
cal records. To keep the relationship between defined and physical records simple, it is recom-
mended that data files be created with 256 bytes per defined record (this is the default byte per
record number used by the CREATE statement when the record length argument is not
supplied). When 256 byte records are used, physical and defined records are identical. If you
choose not to use 256 bytes per defined record, the relationship between physical and defined
records is also fairly simple if the number of bytes per defined record is a power of 2 (e.g., 64)
or is an integer multiple of 256 (e.g., 768).

Crossing Record Boundaries

The subject of what happens when a logical record crosses a physical and defined record
boundary is now considered. The sequence of data words is not affected as the physical record
boundary is crossed. For example, suppose there are three words remaining in a physical
record and the next data item to be written is a real number (which requires four words). The
first three words are written at the end of the current physical record and the last word is written
at the beginning of the next physical record.

However, the same is not true when a sequence of data words crosses a defined record
boundary. Numeric data items are not allowed to cross defined record boundaries. When

writing a data item, the follow three cases exist:

e [f there are enough words left in the current defined record to contain the item, the item is

written in that record.

o If there are no words left in the current defined record, the item is written at the beginning

of the next record.

o If there are one or more words left in the current record but not enough to hold the data
item, an end of record mark is written immediately after the previous data item in the

current record and the new data item is written at the beginning of the next record.

Of course, these cases apply when physical record boundaries coincide with defined record
boundaries. A fourth case exits and involves an attempt to write a full-precision number into a
file with 4 or 6 byte defined records or to write a string into a file with 4 byte defined records. If
either operation is attempted, ERROR 61 results.

Strings may cross defined record boundaries but special rules apply in this case. These rules are

described later when string data types are discussed.

[/ 0O Handling

wmber exits in a data file as four words in a form tha looks like this —

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

1 1 4 | Y 1] T 1 T T
Exponent -1 Exponent o 1 1 0 1 ~—Mantissa

i Sign
Sion | Di D2 Ds D4 9
Most~"]

Significant Ds Ds D7 Ds
Digit —}—Least
D9 D1o D11 D12 Significant
Digit

This is the same format as that shown in Chapter 3, except for the type bits which are used to
identify the number as full precision. A full-precision number must have the type bits set to the
pattern 01101 when written to a mass storage device, otherwise READ# will not interpret the
data correctly. A full-precision number must have its type bits cleared before it is used with the
math utilities or sent back to BASIC. Erroneous results occur if the type bits are not cleared. A

full-precision number must not cross a defined record boundary.

A short-precision number exists in a data file as two words in the following form:

15 14 183 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

T T | I B B T I rol '
Exponent—iu. Exponent D1 D2
Sign 4
D3 D4 / Ds Ds

!
Mantissa Sign

This is exactly the same as the usual short-precision format. READ# identifies short-precision
numbers by the fact that D1 and D2z are valid BCD digits. A short-precision number must not

cross a defined record boundary.

An integer precision number exits in a data file as two words in the following form —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 | Type Word

Integer

The first word is a type word which aliows READ# to identify the data as an integer. The
second word is the integer value in the usual two’s complement form. An integer precision

number must not cross a defined record boundary.

7-45

7-46 1,0 Handling

Strings are stored in data files in various forms, depending on how many defined record

boundaries are crossed. The simplest case occurs when the string fits entirely within the current

defined record. The fundamental format is illustrated here —

3)

L€

000 0OO0O0O0OOO0COT1TT1T 1100
n(Length)
Byte 1 J Byte 2
> E
Byte n l _—

Type Word
Length Word

When the string does not fit entirely within on record, it is stored as a “‘first part”’, zero or more

“middle parts’”’ and a “last part”’. The following illustration represents a 300-byte string which

has been written into 256-byte records starting at the third-to-last word of the record.

(Previous data item)

000OO0O0OO0OO0OO0COOOT1100

30010
Defined Byte 1 l Byte 2
Record 000000000000 1100
Boundary 29810
Byte 3 Byte 4
Byte 5 Byte 6
Defined Byte 253 | Byte 254
Record/0000000000101100
Boundary v
Byte 255 | Byte 256
P~ -

A}

Byte 299 i Byte 300

(Next data item, EOR or EOF)

Type Word (First Part)
Length Word

Type Word (Middle Part)
Length Word

Type Word (Last Part)
Length Word

Note the different type words for the various parts. Also note that the length words contain the

total number of bytes remaining in the string.

/0 Handling 7-47

Strings are written according to the following rules:

1. If defined records are only 4 bytes long, then ERROR 61 results.

2. If the string fits entirely within the current record, the entire string is written into that

record. (Null strings fall under this rule if there are at least 2 words available).

3. Ifthere are 1 or 2 words left in the current record, an end-of-record mark is written after
the previous data item. If there are 0, 1 or 2 words left in the current defined record
(before an EOR was written), then the data file pointer is moved to the beginning of the
next defined record and the string is then written starting in the new current record as in
Step 2 above.

4. Otherwise, as much of the string as will fit in the current record is written as a first part
string. Zero or more middle parts are written, one per defined record, and then the last

part string is written.

File Marks

End-of-record (EOR) and end-of-file (EOF) marks exists as single word markers as shown

below.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

End-of-record Mark

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

T T [LI !
OIOIOIOIO o o 0]01011]1 1 1 0

End-of-file Mark

An EOR indicates that there is no more valid data in the current defined record. If a serial
READ# tries to read more data when the file pointer is positioned at an end-of-record mark or
positioned past the end of the defined record, the READ# skips to the beginning of the next

defined record and tries to read data there.

An EOF indicates an end of data. If a READ# tries to read more data when the file pointer is
positioned at an end-of-file mark or past the end of the last defined record, then an ERROR 59

results unless there is an ON END# condition active for that file pointer.

7-48 1/0 Handling

For best results when writing data files, write EOR and EOF marks according to the following

rules:

1. Write EOR marks as indicated in the discussion of string data files, given in the previous
section and according to the rules outlined in the section ‘“‘Crossing Record Bound-
aries”’. If these ruies are not followed, the BASIC READ# statement will attempt to
interpret the unused words at the end of defined records and will probably give ERROR
65, incorrect data type.

2. In a serial access file, write an EOF immediately after the last logical record. If there is no
room in that record for the EOF mark, write the EOF at the beginning of the next defined
record. If this is not done, you may not know where your data ends when you try to read
it later. If another logical record is to be appended to the end of the previous data, the
first word of the new data must overwrite the previous EOF. If there is no space in that

record for an actual data item, the EOF must at least be replaced with an EOR.

3. If random access is used to find the end of data in a serial file, be sure that there is an

EOF at the beginning of all unused defined records.

4. A defined record in a random access file can be made empty by writing an EOF at the

beginning of that record.

5. The nature of programs that use random access is such that they usually do not try to
read more data than was written. But for safety sake, it is a good idea to write an EOF or
EOR after each logical record in a random access file, if there is room in each defined

record.

Determining Data Types

The type of data item in a data file can be determined by ANDing the first word of the data item
with 76B. The result (the type bits) can be used in conjunction with the following table to
determine the data type:

Type Bits! | Data Type
12B Integer number
32B Full-precision number
14B Middle part of a string
34B First part of a string
54B Last part of a string
74B Total string
36B EOR
76B EOF
Other If the right byte consists of two valid BCD digits
the data type is a short-precision number.

1 The remaining codes have not yet been assigned but are reserved.

/0 Handling 7-49

Printing
Three utilities are provided to enable you to gain access to the standard system printer:

Printer _select, Print_string and Print_no_If. An additional utility, To_system, allows you to

expedite the printing process.

UTILITY: Printer_select

Background Information: Printer select allows you to set the standard system printer to a

select code of your choosing.

General Procedure: The utility is given the select code to be assigned as the standard system
printer and the desired printing width. The utility makes the assignment and returns with the

previous values of both the select code and printer width.

Special Requirements: The select code value must be in the range of O through 18 for the
utility to work properly. The select code and associated device for committed printer select
codes are as follows:

0 — internal printer
16 — CRT alpha raster
17 — display line of the CRT (as used for the DISP instruction)
18 — system message line of the CRT (as used for system error messages)

HP-IB devices are not allowed for use with the Printer _select utility.
Calling Procedure:

1. Load register A with the desired select code.
2. Load register B with the desired printer width.
3. Call the utility.

Exit Conditions: There are no error exits from the utility, so it always returns to the instruc-
tion following the call. Register A contains the value of the previous select, and register B

contains the value of the previous printer width.

7-50 1,0 Handling

The utility can feasibly be used just to interrogate the current value of the printer’s select code.
However, a second call to the utility is needed in such cases to assure that the select is not

changed by the first call. So, for example —

This results in an unchanged printer specification and the values for the select code and width

being stored in the ICOM area for future use.

Because of the possibility that a RESET (), or similar interruption, may occur between
the first and second calls to the utility, it is recommended that the first call have a definite valid
value for the select code in A (as above). In that way, should there indeed be an interruption, a

valid select code for the printer can be assured.

UTILITY: Print_string

Background Information: Print string allows you to print a string to the standard system

printer. A carriage-return line-feed sequence is sent following the string.

General Procedure: The utility is given the address of a string, and it prints that string to the

standard system printer.

Special Requirements: The string to be printed must be in standard string format (see ‘‘Data
Structures’ in Chapter 3). The string must be no longer than 506 characters.

Calling Procedure:

1. Load register A with the address of the string to be printed.
2. Call the utility.

Exit Conditions:
RET 1 If a memory overflow occurs during execution of the utility.
RET 2 If the key is pressed during execution of the utility.

RET 3 If all goes normally.

I/0 Handling 7-51

The DAT statement and the location counter (%) can be used to calculate string length so that
strings can be modified without having to constantly specify length. The following example

illustrates this useful feature:

The strings in this example can be modified to any length less than 507 characters. The number
of characters need not be placed in the DAT statement as this is taken care of in lines 30
through 50 and 60 through 80.

7-52 1/0 Handling

CAUTION
PRESSING RESET) DURING EXECUTION OF
THE PRINT_STRING UTILITY OR THE PRINT_NO LF
MAY CAUSE A SCRATCH A TO OCCUR.

UTILITY: Print_no_If

Background Information: Print no_If operates in an identical fashion to the Print_string
utility except that no carriage-return line-feed sequence is appended to the end of the string.

This is analogous to using PRINT (<print list>;) in BASIC.

General Procedure: The utility is given the address of a string, and it prints that string to the
standard system printer.

Special Requirements: The string to be printed must be in standard string format (see ‘‘Data
Structures’’ in Chapter 3). The string must be no longer than 506 characters.

Calling Procedure:

1. Load register A with the address of the string to be printed.
2. Call the utility.

Exit Conditions:
RET 1 If a memory overflow occurs during execution of the utility.
RET 2 If the key is pressed during execution of the utility.
RET 3 If all goes normally.

For example —

LIE ==27, "MESSH

15 , GE #1 I3 COMCATEWATED &
1S JEM Print mo

I£= JHP Ouerflow U Querf low routine.,
1% JHP Stopkew D Stop key pressed.

T=0URCE LOA ==14,"7T0 MESZAGE #2.7

10 Handling 7-53

JEM Print string
JHF I
JHF Stophkew ISt
HOF i

The result that is sent to the standard printer is —

MESSAGE# 1 1S CONCATENATED TO MESSAGE #2.

The Beep Signal

An audible tone (beep) can be produced from assembly language programs by storing
100000B into R7 while Pa=0. This procedure can be used in interrupt service routines as well

as in background programs. Here is an example —

o

1 u_l
iy
L
o
3
-
il

s

Loy
Lt

R e N e I
g
Den}
[
[RA]
b
!
[
e

DU R TR i 1

-

Expediting I/ O

The design of the System 45 operating system is such that an assembly language routine can be
executing while there is one or more [/ O operations pending or ‘“‘queued up” by the system.
This condition may arise when BASIC statements such as PRINT, OUTPUT, ENTER, PLOT,
[IASSEMBLE and others are executed in OVERLAP mode before an ICALL statement or when
utilities such as Print_string or Print _no_If initiate [/ O from within the assembly language
module itself. The operating system doesn’t get a chance to move these [/ O operations toward

completion as long as the assembly routine is executing.

This fact is typically of little concern since the operating system resumes its attempt to complete
the [/ O operation as soon as the ICALL completes. However, there are three specific cases in

which expedition of an 1/ O operation is useful or even necessary. These three cases follow:

1. when the assembly routine is waiting for a busy variable toc become not busy.
2. when the assembly routine takes a long time to execute and the programmer wishes to

continue working on queued up 1/ 0.

7-54

1/0 Handling

3. when the assembly routine needs to guarantee that [/ O to a particular select code has

completed.

Case 1 has been discussed in Chapter 6. Case 2 can be taken care of by including an occas-
sional JSM To_system in a long assembly routine. The third case might arise in situations
where the routine must make sure that a message is printed on the CRT before starting a long
computation process. This situation might also arise when the assembly routine must com-
municate with an I/ O interface card which may be involved in an OVERLAPPED 1/ 0 opera-
tion. Consider the following example:

SR
LI
5TA
LA
STH

il
Ty

oo

£ g U

If this segment of code is executed in SERIAL, the ICALL would not begin until the PRINT is
completed and there is no problem. If, however, the segment is executed in OVERLAP, the
ICALL is allowed to begin, even though the operating system has not yet completed the
PRINT. The results of this kind of situation are unpredictable.

A technique called “flushing’’ is used to ensure that all [/O operations on a particular select
code have completed. The process of flushing involves interrogating a special table within the
operating system to determine if an I/ O operation is pending on a particular select code. The

following routine flushes all [/ O from the select code passed in the A register.

Fluzsh poiunter:
Fiush oo U Compute offsst into table,
- I Compute pointer into tabls.
] inter
Flush loop! i

b P b et fed el bl bl e

Filush done:
The flushing technique should not be used in the following two cases:

1. Mass memory devices: Use the mass memory utilities to communicate with mass mem-
ory devices.

2. Thelsr_access utility: It automatically flushes the select code of all activity.

Chapter 8
Debugging

Summary: This chapter describes techniques for isolating and correcting logic prob-
lems in assembly programs. Included in the discussion are techniques for stepping
through programs, getting dumps, patching, and using the keyboard.

The assembly system has provided you with a number of BASIC language tools to help you
debug your assembly language programs during their development stages.

These tools are for run-time debugging, so your source code must have been assembled into
object code and stored in the ICOM region before attempting to use any of the debugging
features detailed in this chapter.

There are three classes into which these tools fall: stepping through programs, dumps, and
value checking. There is also an additional capability provided for the correction of some

errors — patching.

The BASIC statements available for debugging are —

8-1

8-2 Debugging

Symbolic Debugging

Many statements allow symbolic addressing. The general rules are —

An {address} or {assembled location} can have two forms —

{symbol} [; {numeric expression}]

{expression} [. {numeric expression}]

where,

{symbol} is an assembly location. It may be either a label for a particular machine instruc-
tion, an assembler-defined symbol or a symbol defined by an EQU instruction.

{expression} may be a numeric or string expression. Variables in expressions are assumed
to be BASIC variables. If numeric, a decimal calculation is done and the result is inter-
preted as an octal value; an error results if the result is not an octal representation of an
integer. If a string expression is used, the string must be interpretable as either an octal
integer constant or a known assembly symbol.

{numeric expression} serves as a decimal offset from the given label or constant. Vari-
ables in these expressions are assumed to be BASIC variables. An undefined BASIC
variable is always given the value 0.

Debugging 8-3

Stepping Through Programs

“Logic’’ difficulties are some of the hardest problems to solve in debugging programs. In batch
environments, the usual solution is to print the contents of variables at critical points in the
program or to print dumps. The capabilities for both of these methods are provided. However,
advantage has been taken of the interactive, ‘“‘hands-on’’ nature of the 9845 and a feature has
been added which allows you to execute the assembly statements individually. This permits
you to examine the flow of the program as it executes rather than having to decipher a dump or
trying to print the contents of specific variables at what you guess is the critical point.

If you wish to look only at particular points in the program, or at particular variables, there is
also the ability to establish “break points’ for these items, so that your debugging routines can
be invoked only when certain conditions arise. You can also establish different routines for
different break points, adding to the flexibility.

Individual Instruction Execution

Normally, all BASIC lines, including the ICALL statement, act as a unit. That is to say,
4
whenever you press the @ key, the line which is currently executing is allowed to finish
EJ P
A

before the program is actually interrupted. Thus, if you press | ¥ | during execution of the

E
line —

the line finishes and the variable A contains the value 2. Then the takes effect. The sameis

true of a line containing an ICALL statement.

For example, if you press during the execution of —

CHLEL Sort (53]

Lo

then the assembly routine completes before the is honored. This is not always desirable,
especially during debugging of the assembly routine. This technique does not allow you to look
at the execution of the routine to help you determine what may be going wrong.

The same problem occurs with the key. Pressing causes an entire BASIC line to be
executed. Thus, if you stepped through line 120 as above, the entire routine Sort would be
executed, and you would not be able to observe its execution on an instruction-by-instruction
basis.

8-4 Debugging

To permit you to analyze the execution of assembly language routines, an executable BASIC
statement has been provided —

IFAUSE OH
Now, should you have the sequence in your program —

iig IPRYUSE OM
iZd IDALL SortifdEls

then pressing during the execution of line 120 would cause program execution to be
interrupted after completion of whatever machine instruction is being executed at the time.
Further, the assembly language source line associated with the following instruction is dis-
played according to certain rules.

If the source lines are still in memory when you press (e.g., you just assembled the object
code which you are running), then the source line is displayed. If the source is no longer in
memory (e.g., the object code was obtained through an ILOAD), then the instruction displayed
is the result of a “‘reverse assembly”. If there is an operand with an instruction which is reverse
assembled, then the octal value of that operand is displayed (this is because the reverse
assembly process has no way of knowing what symbols you might have used to assemble the
instruction originally).

—200

After pressing , all you have to do to resume normal execution is press .

After pressing , you may want to observe the flow of execution of your assembly routine.
This can be done by successively pressing the key. Each time the key is pressed, another
machine instruction is executed and the assembly source line associated with the next machine
instruction is displayed. You may continue this way for as long as you like — until you press
to allow processing to proceed uninterrupted until the end of the routine.

Of course, the key can be used to step through the BASIC program as you are used to
doing. That feature is unchanged. It is possible, therefore, to ‘‘step into” the assembly lan-
guage routine from the BASIC (i.e., you need only into line 120 above) and not have to
use the key at all.

In summary, IPAUSE ON allows two unique features —

e The key can be used to halt execution within an assembled routine.

eThe key can be used to execute individual assembly language instructions.

Debugging

TT

Q - 1 il . L 1 . . L1 TTYA (ol ol ot N
O0me Key Inings 10 remembober 1n using tne IrAUSL Ul

T

facility —
e This is an execution-time debugging tool. You must be executing your previously-
assembled object code with an ICALL statement.

o If the source code is available for display, it will be displayed, otherwise the line is
“‘reverse assembled”.

o Utilities are not stepped instruction-by-instruction, but rather as a unit.
e The key performs in BASIC just as before.
. . . s s R P
e Keeping the G key and the ==~ key depressed causes repeated execution of the step-

ping function, the same as in BASIC.

By way of example, suppose you had the following source code —

8-5

8-6 Debugging

Then the following would be the display lines you would see as you executed this program
using the key —

Note that the address of the instruction, as well as the octal value of the instruction, is displayed

along with the source line.

This stepping facility can also be used, quite effectively, with the IBREAK statement (discussed

below).

Debugging 8-7

Should the IPAUSE ON facility be no longer desired, it can be turned off with —

The two statements can appear repeatedly in a program, allowing the stepping facility to be
used in testing some programs but skipping over already proven programs. For example,
suppose you had two programs — Sorta and Sortn — but the first was already tested and the

second was not. Then this sequence might appear in your program —

Stepping through this sequence results in lines 110, 120, and 130 executing without interrup-

tion, but line 140’s call to Sortn would be executed instruction-by-instruction.

Executing IPAUSE ON when the facility is already in effect causes no change. Similarly, execut-
ing IPAUSE OFF when the facility is already off causes no change.

Both IPAUSE ON and IPAUSE OFF can be executed from the keyboard.

Setting Break Points

It is possible to define points in an assembly language routine where the execution should
pause should it ever reach that point. These are called ‘‘break points”’. They can be used to
pause execution — allowing you to utilize the stepping activity described above in IPAUSE ON
or to investigate the contents of variables, etc. They can also be used to allow branching to

some BASIC routine, giving you the power of BASIC in doing some of your debugging.

Simple Pausing

To simply pause at a break point, you need to execute the following statement in advance of

reaching that point (either in the program or from the keyboard) —

Ak {address}

where {address} is the assembled location® for the break point desired.? Following execution of
this statement, anytime the program execution reaches this address, it pauses. You may do any
keyboard operations necessary at this point, or you may start stepping the program, (if
[PAUSE ON has been executed), or you may resume execution using the @ key. The
address must have been assembled before the IBREAK is executed.

1 See “Symbolic Debugging’ in this chapter for the definition of ‘‘assembled location”.
2 The use of IBREAK significantly slows execution of assembly programs.

8-8 Debugging

If you were to execute —

then every time the fourth word past assembly label “Hook” is reached during execution, the

program execution pauses. If you were to execute —
IEBRERE Hook+d

then Hook is assumed to be a BASIC variable, and the result of the expression is assumed to be

an absolute address using whatever the value of Hook is when the statement is executed.

You can also specify the number of occurrences of reaching a break point before pausing

should come into effect. This is done by executing —

IBRERHE {address} 3 {counter}

where {counter} is a numeric expression; any variables within {counter} are BASIC variables. A
pause occurs when {address} has been reached {counter} number of times. {counter} is reset

after each pause.

When a break point is reached and a pause is to be taken, the pause takes place before
execution of the contents of that address.

After execution of the IBREAK statement, the contents of the assembled location for the break
point are changed by the operating system; however, this does not affect the execution of the

instruction contained therein.

If an ICALL statement is executed from the keyboard and an IBREAK is active for a location
within the ICALLed routine, program execution is returned to BASIC when the breakpoint is
reached. Stepping of the assembly language routine is halted and the CRT is cleared.

Transfers

Instead of just pausing at a break point, it is possible to branch to a BASIC routine. The intent of
this facility is to give you access to BASIC’s capabilities, particularly the printing and
variable-testing facilities, during your debugging efforts.

Debugging 8-9

The branch can be any of the three standard forms of BASIC branching —

AL {subprogram}
i% {line identifier}

IBRESE {address} [{counter}] 2T {line identifier}

When either CALL or GOSUB has been designated, execution of the assembly language
routine is suspended when {address} is reached. Then the designated subprogram or
subroutine is executed. When that subprogram or subroutine is completed, then execution of
the assembly language routine resumes with {address}.

When GOTO is specified, an unconditional branch is taken when {address} is encountered and

execution of the assembly language routine is terminated.
{counter} performs the same as in the simple pausing form.

In the GOSUB and GOTO forms, there is an ‘“‘environmental’ restriction. The {line identifier}
must be in the same BASIC environment (i.e., main program or subprogram) as that in which
the IBREAK statement is executed. More on this in ‘“‘Environments’ below.

You should avoid recursive use of the ICALL statement when using the IBREAK statement to
branch to a BASIC subroutine or subprogram. The problem arises when an ICALL statement in
the BASIC debug subroutine or subprogram calls the broken assembly routine. The IBREAK
transfer occurs at the same assembly routine address each time it is encountered. This process

results in non-productive looping.

Environments

The GOSUB and GOTO types of break points are related to the BASIC “‘environment” (i.e.,
main program or subprogram) in which they are executed. Whenever an IBREAK statement of
either type is encountered, the resulting break point is effective only for the environment in
which the statement is located. The CALL version of break points is in effect in all

environments.

For example —

cunk GOTO Dheck hook

the break point established for “Hook” is good only in the subprogram “Test’. Leaving

“Test” causes the break point to be cleared.

8-10 Debugging

Executing an IBREAK statement from the keyboard is effective only for the environment
executing at the time the statement is made. For example, if the following program lines had
been executed —

2p6 SUE Test

218 PAUSE

and while the pause caused by line 210 is still in effect —

is executed, then the break point established for ‘“Hook” is good only in the subprogram
“Test’’. As with the above, leaving Test causes the break point to be cleared.

If no program is executing when an IBREAK is executed from the keyboard, then the main
program is considered to be the environment for the break point. If the program is replaced, as
with a GET or a LOAD, then the break point is cleared.

If a LINK command is used to replace all or part of a program, existing break points are still
active. If the LINK eliminated the line label or subprogram referenced in the IBREAK, then
ERROR 186 results when the break point is reached. If a GET command is used to replace all or
part of a program, all GOTO/GOSUB breaks are cleared. IBREAK CALLs are still active.
Again, if the line label or subprogram referenced by the IBREAK is eliminated, then ERROR
186 results. If the program is replaced with a LOAD, all break points are cleared. You must
re-execute the IBREAK statements in the new program. Only ENT and SUB symbols are
defined in this new program until an IASSEMBLE is executed.

Care should be taken when calling BASIC subroutines or subprograms after an IBREAK has
been set and before an ICALL has been executed. A CALL to a subprogram clears break points
of the IBREAK...GOTO and IBREAK...GOSUB varieties; however, IBREAK...CALL is not
cleared. This is because CALL executes an INORMAL which clears all break points except

IBREAK...CALL. (An INORMAL is also executed when the (m) key or fwm) (=) keys are
pressed). Here is an example of break points being cleared by a CALL —

Tt

g b Moarea.

= Vg 16 words

=4 A all modules,

S GOSUR Breakfound LB Tocation Middie
58 (.

&4 ICALL Entrupt 1]

Vi EHT

28 EBreakfound: PRIMT “Breakpoint found. ® ! Break subrout ine,

=

ficn Iy

RETURH osubrout ine end.

Debugging 8-11

wampl e I Fodule nams.

T

o I Boutine sntrw point.

i

Stringl I Break locaticn.

1M

[T

samg]

The break point is cleared after execution of line 50.

Keeping in mind that different BASIC environments exist for the main program, each
subprogram and each multi-line function, IBREAK...GOTO and IBREAK...GOSUB remain in
effect only within the BASIC environment in which they are declared. IBREAK...CALL remains

in effect in all environments. A maximum of eight IBREAK...CALLs are allowed.

Data Locations

Break points can also be established for data locations. This is done with —

[T {address}

In this case, {address} is presumed to be a data location referenced by other instructions.

Whenever it is referenced by execution of some instruction, the pause occurs.

If you were to say —

a pause would occur for that instruction.

8-12 Debugging

A counter can also be specified with this form of break point —
IBREEAE DATH {address} ; {counter}

{counter} is of the same form, and operates in an identical fashion, to the counter of the

non-DATA form of break point.

Because the XFR machine instruction may access a particular location twice when it is
executed, the break point on a data location may not operate correctly if the instruction
referencing it is an XFR. The way to avoid this incorrect operation of the break point is to set
{counter} to 2. (The only time this problem occurs is when the destination area for the XFR

overlaps the origination area.)

Symmetry suggests that you should also be able to branch to BASIC routines with the DATA
form of break point just as you can with the non-DATA form. And so you can —

¥ IIHTH {address} [: {counter}] CFi L {subprogram}
A& DATH {address} [& {counter}]!
A IATH {address} [: {counter}] G

UE {line identifier}
i {line identifier}

They operate in an identical fashion to transfers of the non-DATA type and are under the same

“‘environmental’’ restrictions.

In order to determine whether an address is being referenced, each instruction is ‘‘interpreted”
{that is, analyzed for its components). Resultantly, a program runs much slower while an
IBREAK DATA statement is in effect.

In addition to the pausing capability, using IBREAK DATA also allows trapping on “‘protected

memory’’ violations (see ‘“Stepping vs. Running”’ section of this chapter).

IBREAK Everywhere

You may have a total of eight (8) break points (regardless of type) in effect at a given time,
except for one extreme case. It may be desirable to establish a break point at every location in

the ICOM region. This can be accomplished with —

IEREAR AL

This statement overrides all other IBREAK statements and causes a pause before execution of

every instruction in the ICOM region. There are also branching forms —

Debugging 8-13

Note, however, that there is no {counter} in any of these forms.

Number of Break Points

As was mentioned above, there can be no more than eight (8) IBREAK statements in effect at
one time, that is to say within the same environment. And only one IBREAK ALL can be in

effect at a given time.

In addition, there can only be one IBREAK or IBREAK DATA each in effect for a given
{address}. Executing an IBREAK or IBREAK DATA with the same {address} as specified in an
already effective IBREAK or IBREAK DATA statement causes the newly-executed statement to
override the previous one. While there may be an IBREAK and IBREAK DATA both for the

same {address}, the capability is not a useful one.

Clearing Break Points

There are a number of ways that break points can be cleared. One way as has already been
mentioned, is leaving the BASIC environment, which clears any GOSUB or GOTO type of
break points. Another way is to reassemble the module containing the break points. A third way
is to execute an INORMAL statement. This statement has the form —

HOEMAL {address}

After execution of the statement, whatever form of break point is established for the address
(except IBREAK ALL) is cleared.

If {address} is omitted in this statement —

then all break points are cleared. This is the only way to clear an IBREAK ALL which may be in

effect,

8-14 Debugging

Interrogating Processor Bits

During execution of a break point, the values of three processor flags are stored in specified

registers so that you can interrogate them. They are —

Decimal Carry stored as least significant bit in location 36B

Extend stored as most significant bit in location 37B
Overflow stored as least significant bit in location 37B
Dumps

A common tool of debugging is the memory ‘‘dump’’. This is a print-out {or display) of the
contents of selected locations in the memory. A typical use is to dump areas of the ICOM
containing data so that the actual contents at some point during execution can be compared
with the expected contents. All of this is in the hope that the comparison yields differences

which give a clue as to the source of the difficulties being encountered.
This tool is provided through the IDUMP statement which has the form —
IDUMF {location} [3 {location} [5...1]
This statement can be placed in a program to be executed (perhaps as the result of a branching
IBREAK statement) or it can be executed from the keyboard (perhaps during a pause caused by

stepping or IBREAK).

Any number of {location}s can be specified. They can take a number of forms. The simplest

is —

{address}
Thus, IDUMP {address} prints the contents of {address} to the current system printer. The
contents are printed in their octal representation. For an explanation of {address}, see the

“‘Symbolic Debugging” section of this chapter.

{location} can specify a whole range of addresses by using the form —

{address} Tii {address}

Debugging 8-15

With this form, the IDUMP statement prints the contents of all addresses starting with the first
and ending the last specified {address}. If the second address is numerically smaller than the

first, then a “‘wrap-around” through the end of memory into the top of memory is taken. For

example, if you execute —

then the contents of four addresses would be printed — those for 177776, 177777,0, and 1, in

that order. Again, the contents are printed in their octal (base-8) representation.

Addresses are always specified in their octal representation, or symbolically (such as ‘“Hook”
or “Loop’’). This is the same as for an assembled location, which is what {address} happens to

be.

Care must be used with symbolic addressing. In the statement —

the first “Hook” is interpreted as an assembled location. Since the second “Hook” appearsin
an expression, it is interpreted as a BASIC variable. If it is undefined, this expression is
evaluated as 4. To dump the fourth word past the assembled location ‘““‘Hook”, use the state-

ment —

The output of the IDUMP statement is always printed to the current system printer. It is in octal
form, unless otherwise specified. This specification is accomplished by preceding {address}

with {mode selection}, which is one of the following —

" for ASCII character representation

4 for binary representation (base-2)
* for decimal representation (base-10)
{ for hexadecimal representation (base-16)

I for octal representation (base-8)

Thus, the general form of {location} is —

[{mode selection}] {address} [Ti {address}]

8-16 Debugging

As an example of all this, take the example program at the beginning of the chapter. If a couple
of statements are added so that the main BASIC program reads —

AR RNl

W O

niv AFlisd
ICOM 100

K

1
et
o
il

B Dump
U D of ISOM region

Ipume 5

P I

x|

DRI B A 1 =

A

yul
=
X

2 Tangss IDUMP B TO B3 DEC Siring,l T String, S
fac L

el

then

Debugging 8-17

Value Checking

Value checking is a method of tracing the value of variables in your assembly language program
using the interactive capabilities of the 9845. You already have been introduced to break
points and dumps in earlier sections. The capability of value checking serves as a useful adjunct
to these procedures.

The value checking of assembly ‘‘variables’ is similar to the monitoring of variables in BASIC
during a debugging phase. Just as you would use a live-keyboard operation or judiciously
placed PRINT statements to trace the execution of a program or the change in value of a
variable in a BASIC program, so too can you use the monitoring tools for assembly programs.

Functions

Four additional functions are provided as extensions to BASIC which can be useful in the

monitoring of values in an assembly language program. The four are —

They can be used as other than monitoring tools, but their descriptions here are primarily in
that context. As functions, these items can be easily adapted for use in the special function
keys.

DECIMAL

This function has the form —

i {octal value} >

The function converts an octal integer value between —177 777 and +177 777, inclusive, into
its decimal representation. If the argument given is not octal, then an error (number 184)

results.

This can be used as a quick, simple way of converting octal numbers into the more familiar
decimal value. Being a function, it can be used anywhere any other BASIC numeric function
can be used. Often you will find it useful in PRINT statements which are a part of subroutines

called by break points.

8-18 Debugging

OCTAL

NOTE
The values resulting from the OCTAL function must be
treated with care. Though the result of the function is an
octal representation, the value is still base-10. This differ-
ence is unimportant unless you are going to do arithmetic

with the value resulting from the function.

This function is the converse of the DECIMAL function. Its role is to convert decimal values
between —65 535 and +65 535, inclusive, into their octal (base-8) representation. The func-

tion has the form —

Fi. 4 {decimal value} *
This can be used as a quick, convenient method of converting decimal numbers into their
frequently used octal representations (a form which is useful because of its ready conversion

into binary representation, and vice-versa).

As an example of this, suppose the decimal value 15 is to be converted into octal. The method

and the resultant value is 17, the octal representation of 15. Now, if the result has 1 added to it,

as with the expression —

the ultimate resultis 18. This can be a surprise since the usual octal arithmetic suggests that the

result of 17B + 1 be 20B. To get the proper octal result, the procedure is —

The correct result can also be obtained with —

or

Debugging

The preceding are examples of octal addition. Suppose you wanted the result of 17B + 14B.

The expression used to obtain the correct result in octal representation is —

The correct result is 33B.

IADR

This function yields the numeric value in octal representation of the address of an assembled

location. The form is —

{assembled location} *

As an example, take the case of the example program at the beginning of this chapter. The
result of —

is 76.

This function can be viewed as a convenient method of determining the address of a symbol, or

of an offset from a symbol.

IMEM

This function is a quick, convenient way to look at the contents of a specific location in
memory. The result is a numeric value, in octal representation, for the contents of a specified
address. The form is —

i © {assembled location} #*

1 For an explanation of {assembled location}, see the ““‘Symbolic Debugging’’ section of this chapter.

8-19

8-20 Debugging

The function is similar in many respects to the IDUMP statement. It is easiest, perhaps, to list

the differences —

o IMEM is a function, where IDUMP is a statement.
o IMEM deals only with a single address, where IDUMP can deal with many.

o IMEM represents the value only in octal, where IDUMP can use many different representa-

tions.

e IMEM can be displayed and stored, where IDUMP can only be printed.

An obvious use for this function is in a routine called by an IBREAK statement. By using the
function in such a manner, perhaps in a PRINT statement, you can ease the burden of checking
variables from the keyboard. You can even use the value returned as a comparison against
some set of limits so that you print only when the value exceeds those limits. There are many

other possibilities for its use.

Interrogating Registers and Flags

Interrogating the processor register A, B, P, R, Pa, Cb, Db, Dmapa, Dmama, Dmac, C, D, Ar2,
Se, and Arl yields meaningful results only when execution of an assembly language subpro-
gram has been suspended due to detection of a break point, or due to the use of the or

keys (see Stepping Through Programs).

Further, the values of cetain processor flags are stored in specific memory locations when a
subprogram is suspended as described above. The flags are then available for interrogation as

follows:

Decimal Carry least significant bit of location 30B
Overflow least significant bit of location 31B

Extend most significant bit of location 31B

It is important to note that interrogating an 1/ O register (R4, R5, R6, or R7) causes an input
I/ O bus cycle, using the current Pa register contents as the interface address. See Chapter 7 for

details on the effects of such an action.

Debugging 8-21

Patching
Patching is the practice of changing the contents of memory locations without re-assembling.
Patching as a standard procedure does not come highly recommended in the programming
world. Nonetheless, there are circumstances which arise that occasionally suggest patching as

the most profitable course of action.

To change a particular location in memory in the 9845 is not difficult. The statement to use is —

{assembled location} T {octal expression}

After execution of the statement, the specified {assembled location} contains the specified octal

value.

Changing the contents of a register is a common use of this facility. However, it should be
remembered that attempting to change the contents of the [/ O registers (R4, R5, R6, or R7)
causes an output I/ O bus cycle to occur, using the Pa register for the interface address. See

Chapter 7 for details on the effects of such an action.

Some precautions should be taken in attempting to change the DMA registers. The contents of
Dmapa are set by the Isr _access utility and should not be changed while stepping. The contents
of Cb and Db (contained in register 13 along with Dmapa) can be changed at any time. The
contents of Dmac and Dmama can be changed but be sure that your DMA routine has DMA
access at the time of the change. Changing the contents of these registers at a time when
another routine has DMA access can have disastrous results.

8-22 Debugging

Stepping vs. Running

You should be made aware at this point of some conditions that exist during stepping that do
not exist during a free run of a program. During stepping with the STEP key or when an
IBREAK DATA statement is in effect, an assembly language program is not allowed to access
(jump to or write into) certain portions of memory. These portions of memory are known as

“‘protected memory’’ and error 187 results if an attempt is made to access them.
All memory is protected except —

e The ICOM region.

e BASIC’s “value’ area (the region where BASIC variables are stored).

e BASIC’s common area (the region where BASIC common variables are stored).

o The processor registers.

e The temporary values stored in the base page (pre-defined symbol ‘“Base_page”).

o The utilities.

Protected memory exists only when you are stepping a program, when an IBREAK DATA
statement is in effect, or when you are using the ICHANGE statement. This feature reduces the
danger of inadvertent destruction of data or nonsensical execution of data by the processor.

Keep in mind that this feature does not exist when the program is free running.

Since the contents of the processor registers are stored in read / write memory, a full 16 bits is
used to represent the contents of each register, regardless of whether the register is a four-bit
register (Pa,Dmapa,Se) or not. Only the least significant four bits are of interest when an

IDUMP statement is used to interrogate the four-bit registers.

The second major difference between stepping and free running is that the processor registers
displayed by an IDUMP statement are, in actuality, read / write memory locations. These mem-
ory locations are updated only when the program is stopped. Therefore, running a program
that changes the contents of the processor registers does not appear to have changed them
when the IDUMP statement is used.

In addition, a breakpoint cannot be set for a location within an interrupt service routine. An
interrupt service routine cannot be stepped. Attempts to perform either function will lock up the
computer.

Chapter 9

Errors and
Error Processing

Summary: This chapter contains a discussion of Assembly Language ROM and other
related errors, and what causes them. Included are methods for trapping errors and
possible methods for correcting them.

Whether you are writing or accessing an assembly language routine, it is possible to encounter
an error resulting from your actions. The intent of this chapter is to give some guidance as to
how certain errors can be handled. It is not intended as a definitive checklist of what can go
wrong, nor is it an exhaustive treatment of the means to correct the difficulties which are listed.
Rather, it is meant as a reference for some of the things which can go wrong, what might cause
them, and how to deal with them. Each programmer has a unique method of approaching the
problem of error processing and there is no way to anticipate all of them. Even so, the following

should offer some assistance in identifying the source of an error.

Not every machine error is covered here — only those directly related to writing or accessing
assembly language routines. A complete listing of error messages (though not in the same detail
as in this chapter) can be found in Appendix J.

Error numbers 900 through 999 are reserved for your own use (with the Error _exit utility).

Types of Errors

There are three types of errors associated with assembly language routines: those which
occur during the writing (or entering) of the source code (called “‘syntax-time’ errors); those
which occur while assembling the source code (called ‘‘assembly-time” errors); and those
which occur during the execution of an assembly language routine (called ‘‘run-time” errors).
Some of these errors can be anticipated and trapped, others cannot.

9-1

9-2 Errors and Error Processing

Syntax-Time and Assembly-Time Errors

Syntax errors are caught when entering source code, usually with the message —

The error can then be immediately corrected and the statement reentered. A side-effect of this
entry-time check of the syntax is that the time required for assembly is greatly shortened over

what it would be if syntax-checking were deferred until assembly.

Errors encountered during the assembly process are indicated by the assembler in three ways:

e The message —

)
5

mooi P

EERD

IM LIHE nn

is displayed. nn is the line number of the IASSEMBLE statement. This is a fatal BASIC

error, unless otherwise trapped.

e Each line in the source code containing an assembly error is printed on the current system

printer. Included is the message —

followed by the error type.

e The message —

follows the listing of the individual errors. The total number of errors is also printed.

An explanation of the individual assembly-time errors can be found at the end of this chapter.

Run-Time Errors

Run-time errors can sometimes be anticipated. They come at two distinct times, and your error
processing is different depending upon which of those times are of concern. The times are

“program development” and ‘“‘production run’.

During program development, errors normally are handled using the debugging techniques
detailed in Chapter 8. Care should be taken in recognizing errors during development. Not all

of them are obvious or indicated by an error message — many simply lock up the machine.

Errors and Error Processing 9-3

During the running of production {debugged) routines, errors can be caused by the users of the
routines. For instance, the user may inadvertently assign an argument a value of zero when that
argument is to be used as a divisor within the assembly language routine. You should try to

anticipate these usage errors and program procedures to trap them.

There are many alternatives for actions to take when your routine encounters and traps a usage
error. For example, you may wish to assign a value to a particular return variable, or you may
want to print a warning message, or, perhaps, to correct the value and proceed with the
routine. Another method is to notify the user by issuing a BASIC error message. Such messages
can be issued through the Error _exit utility discussed below.

Of course, you need to tell the users (in the documentation of the routine) what kind of errors

can occur, when they can occur, and what to do about them.

UTILITY: Error_exit

The Error_exit utility provides you with the capability of aborting an assembly language
routine by ‘“‘creating” a BASIC error. Two types of BASIC errors can be created —
“‘recoverable’”’, which can be trapped by a BASIC ON ERROR statement; and ‘‘non-

recoverable” (or “‘fatal’’), which cannot be trapped.

General Procedure: The utility is given the number of the error to be created. Then the utility
is called with the JSM instruction, but no return is made to the original assembly language
routine from the utility. Instead, the utility uses the information placed on the return stack to
help create the error. The return stack is appropriately ‘‘cleaned up” and control is returned
either to the BASIC driver (if the error is non-fatal) or to the operating system (if the error is
fatal).

Special Requirements: Error numbers are passed to the utility in the A register. The value of
the error number is placed in bits 0-14. Bit 15 is set if the error is to be non-recoverable. If bit
15 is not set, the error will be recoverable. Error numbers 32 762 through 32 767, with bit 15

set, are reserved by the operating system and should not be used.

If you are setting bit 15 to specify a non-recoverable error, the use of negative numbers should
be avoided. For example, loading the A register with —8 does not result in non-recoverable
error 8. This is because the error number in bits 0-14 is not 8. A suggested method of setting bit
15is —

9-4 Errors and Error Processing

In addition, it is suggested that you limit your error numbers to three digits. The block of error
numbers 900 to 999 are reserved for your use in assembly language routines and will not be

used in future Hewlett-Packard products.

Calling Procedure:

1. Load the error number into the A register.

2. Call the utility using the JSM instruction.

Exit Conditions: The utility returns control to the BASIC driver which called the routine,
appropriately setting conditions so that ERRL, ERRM$, and ERRN work as expected. Also
triggers ON ERROR, if applicable.

The utility can be used anywhere in your assembly language, wherever you would like to abort
the execution of the current assembly language routine and where you would like to indicate to

BASIC what reason (error) caused the abortion.

For example, suppose somewhere in one of your assembly routines you wanted to abort the
routine if a certain variable (Flag) is non-zero at a certain point. Suppose also that the variable,

when non-zero, contained the error number, then your program could look like —

Similarly, there are some utilities which, when an error is encountered, return an error number
in register A. In these cases, a quick two-instruction sequence can give you an error-related

abort. For example, the Rel _math utility is such a utility —

T
T
i

Errors and Error Processing 9-5

Run-Time Messages

The following is a list of the system error messages you, or the users of your routines, may
receive should something go wrong retrieving, using, or storing assembly language routines. A

possible corrective action, or actions, is included in the discussion of the error.

ROM missing, or configuration error. To operate the 9845, all system ROMs
must be in place. In addition, to write assembly programs, the Assembly
Execution and the Development ROM must also be installed. Perform the

system test if the problem persists.

Memory overflow. You may have specified an ICOM which is too large for
your current available space. Some things to try: select a smaller ICOM size;
execute SCRATCH C (if no important data remain in common), delete mod-
ules and reduce the ICOM size; segment your BASIC programs; segment your
assembly programs. The error may also be caused by trying to load modules
which are too large for the current ICOM region (either collectively or indi-

vidually) or by placing a COM statement before an ICOM statement.

R The number of arguments passed by an ICALL statement exceeds the number
of parameter declarations in the subroutine entry section. This error is not
given if the number of arguments is equal to or fewer than the parameter
declarations. The actual number passed is stored in the word reserved by the

SUB pseudo-instruction.

i,
e

Improper argument in DECIMAL or OCTAL function. The OCTAL function
has a range from — 65535 to + 65535. The DECIMAL function has a range
for its arguments of — 177777B to + 177777B. Reference made to an abso-
lute address greater than 177777B or 65 53510.

,,,,,,,,,,,

Break Table overflow. A maximum of eight breaks can be established with the
IBREAK statements and be in effect at one time. If eight breaks are in effect,
then to allow other breaks to be established it is necessary to clear previous
breaks using the INORMAL statement.

Undefined BASIC label or subprogram name used in IBREAK statement.
When the IBREAK statement is executed, an undefined label or name is al-

lowed, but when the break actually occurs, the label or name must exist.

9-6 Errors and Error Processing

R 18 Attempt to write into protected memory; or, an attempt to execute an instruc-
tion not in the ICOM region. This is the result of an attempt to branch outside
of permissible areas or to change the contents of memory outside of the per-
missible areas. There is probably a difficulty in the logic of the program which
needs to be corrected. This error occurs when the key is being used, an
IBREAK DATA statement is in effect, when using the ICHANGE function or
when the IBREAK statement is used to break at a location in a non-existent

module or at a location beyond the current ICOM region.

2 Label used in an assembled location not found. Symbolic addressing requires
that all assembly symbols be resolved by execution time. This error probably
results from a misspelling of a label or forgetting to assemble the module

containing the label.

I:'

EREGRE 123 Doubly-defined entry point or routine. A module being assembled (with an
[ASSEMBLE statement) or loaded from mass storage (with an ILOAD state-
ment) contains a SUB or ENT entry point with the same label as a SUB or ENT
entry point within a module already resident within the ICOM region. Check
the other routines for the duplicate occurrences.

ERREGR 138 Missing ICOM statement. You must include an ICOM statement to create your
ICOM region before assembling or loading modules. Program an ICOM state-

ment of adequate size and re-run the program

ERFEORE 1% Module not found. The module indicated in an ISTORE or IASSEMBLE
statement is not currently resident in the ICOM region. Check the module
names used in your ISTORE statement to find the one which is missing from

memory.

%2 Errorsin assembly. At least one error was encountered while assembling one
of the modules in your IASSEMBLE statement.

G 1%D Attempt to move or delete module containing an active interrupt service
routine. This is the result of trying to reduce the size of the ICOM region (or to
eliminate it), or trying to delete a module, when one of the affected modules
contains an active interrupt service routine (ISR). The only ways to allow the
action to take place are to SCRATCH A (which affects a number of other
things) or to inactivate the ISR. To inactivate the ISR, consult the routine’s

documentation, or press Reset (),

i#4 IDUMP specification too large. The resulting dump would be more than
32 768 elements.

Errors and Error Processing 9-7

Routine specified in ICALL not found. You are specifying the wrong routine
name or you are failing to load the correct module. Double check the

documentation indicating the location and name of the routine.

Unsatisfied externals. Symbolic addressing requires that all references to sym-
bols outside the current module be resolved at the time any routine within the
current module is executed. This may possibly be a missing ENT instruction

within another module.

i%¥ Missing COM statement. The routine you are calling is expecting to find or
place some of its data in common, but you are not providing the COM state-
ment required. Add the appropriate COM statement in the BASIC program

and re-run it.

BASIC’S common area does not correspond to assembly module require-
ments. The routine you have called is expecting to find or place some of its
data in common, but your COM statement does not match up with the assem-
bly COM declarations in either type or size. Check both the COM statement in
the BASIC program and the COM declarations in the assembly routine.

122 Insufficient number of BASIC COM items. The routine you are calling is ex-
pecting to find or place some of its data in common, but your BASIC COM
statement does not provide enough variables to satisfy the routine’s needs.
Check both the COM statement in the BASIC program and the COM declara-

tions in the assembly routine.

9-8 Errors and Error Processing

Assembly-Time Messages

The following is a list of the assembler error messages you may receive while assembling a
module. All of these errors cause a ‘‘fatal’” error, which means that the assembly produced no
object code. After the error has been corrected, it is necessary to re-assemble the module

containing the error. A possible corrective action, or actions, is included in the discussion of the

error.

oo Doubly-defined label. A label can only be defined once in a module. In addi-
tion, any label used in an EXT instruction is restricted from being used again as
a label in the module. Check all spellings; change a label name to something
else, if necessary. Mixing SET and EQU on the same variable may also cause
this error to occur.

EH END statement missing; or module name does not match. The END statement

(in an ISOURCE statement) must be included to signify the end of a module.
The name in the END statement must match the name used in the immediately
preceding NAM statement. Particular ones to look out for: assembling more
than one module at a time, but leaving out the END instruction between
modules; or, the END statement is not in the same BASIC environment as the
NAM statement.

Expression evaluation error. This is a result of a mismatch of element types in

m

the operand of an instruction. The particular prohibited forms are: relocat-
able + relocatable; external + external; using the relocatable or external
forms with the x or / operators. Check the spelling and type of your symbols in
the expression.

-

i Literal pools full or out of range. You may have exhausted the storage given in
your literal pool (LIT) declarations. In this case you should add more LIT
declarations or increase the size of the ones you have. Another cause of the
error can be using a literal in an instruction and there is no literal pool within
512 words of the instruction. Additionally, for some instructions, the assem-
bler attempts to create an indirect reference automatically and requires a lit-
eral pool within 512 words of the instruction. In either case, add another literal

pool (using a LIT instruction) within range.

Errors and Error Processing 9-9

M ICOM region memory overflow. The current module being assembled has
caused object code generation which exceeds the current memory allowance
for the ICOM region. Either you must re-run the current main BASIC pro-
gram with a new ICOM statement increasing the ICOM size, or you must
rearrange your assembly so that the module fits. This latter course can include
deleting other modules or rewriting the abortive module so that it requires less

memory.

B Operand out of range. Some instructions using indirection require a relocat-
able expression to evaluate to an address within 512 words of the current
address. Skips must be no more than 32 words in either direction. The EXE
instruction requires a register (0 to 31) and the instructions in the Stack Group
require registers in the range of 0 to 7. Check to see that the operand used is
within the range appropriate for the instruction. Also, check the spelling on all

symbols to see that the right symbol was used.

Parameter declaration pseudo-instruction out of sequence. The ANY, FIL,
INT, REL, SHO, and STR pseudo-instructions must follow a SUB or COM
pseudo-instruction, or be a part of a group of such pseudo-instructions which
follow a SUB or COM pseudo-instruction. Any other appearance of these can

cause this error. It can also be caused if a SUB sequence does not terminate
with a machine instruction with a label. Check to see that you have not inad-
vertently omitted the SUB or COM, or have placed another instruction in
between the pseudo-instruction and its SUB or COM.

F Incorrect type of operand used. Each instruction requires that its operand be
of a certain type — relocatable or absolute. Check the type of all symbols used
in the expression in the operand and see that they correspond to the type
required by the instruction. If you are using a constant, check to see that a

constant is allowed by the instruction.

A Undefined symbol. By the end of the assembly, all symbols must have been
defined, either by use as a label on an instruction or as a symbol associated
with a value through an EQU, EXT, or SET pseudo-instruction. A symbol not
so defined (except those pre-defined by the assembler) and used in the as-
sembly, causes this error. Check the spelling of all undefined symbols to make
sure that you did not intend something else. The symbol otherwise has to be
defined, either by label or EQU, EXT, or SET.

9-10 Errors and Error Processing

Chapter 1 0

Graphics

Summary

The graphics topics described in this chapter include displaying the graphics
raster by setting individual pixels, reading and writing full words, the cursor oper-
ations, and line drawing.

Introduction

Computer graphics is the computer-aided creation and manipulation of images. These images
typically appear on the screen of a CRT or are drawn by a plotter. This chapter explains the
fundamental commands and techniques used to create images on the CRT of the System 45
using assembly language. Of course, your System 45 must have the graphics option installed in

order for graphics to be implemented.

The advantage of using assembly language rather than BASIC to create and manipulate images
on the CRT is one of speed. Graphical data can be manipulated, and input information can be

plotted in real time using assembly language in many cases where BASIC could not be used.

The CRT graphics is thought of as being a peripheral on select code 13. Displaying graphics
images from assembly language is essentially an I/ O operation to that select code.

10-1

10-2 Graphics

The Graphics Raster

The CRT of the System 45 computer is capable of displaying two independent rasters (display
areas). These are the alphanumeric raster and the graphics raster (when the graphics hardware
is installed). When the computer is turned on, the alphanumeric raster is displayed. This is the
raster used to display alphanumeric characters when entering programs, displaying program
results, etc. With a single command (GRAPHICS) from BASIC or a short sequence of instruc-
tions from assembly, the graphics raster is displayed. Both rasters cannot be displayed simul-

taneously. The alphanumeric and graphics rasters are illustrated below —

16.25 cm
12.29 cm

Displaying the Graphics Raster

The graphics raster is displayed from your programs by one of two methods. The first involves
executing the GRAPHICS command from BASIC. The graphics mode is exited and the al-
phanumeric raster is displayed with the EXIT GRAPHICS command.

Graphics 10-3

The second method invoives executing a short sequence of assembiy ianguage instructions.

The sequences used to enter and exit graphics from assembly are —

Thizs routine turns GREFHICE on.

el Bk P ool poed fod bl oed eef e

ot fed] bt e

Note that clearing bit 15 of word 70000B causes the graphics raster to be displayed and setting
this bit displays the alphanumeric raster. When the computer is turned on, bit 15 is automati-
cally set. It is imperative that the instructions referencing register 35 appear in the raster control

program segment. Failure to include these instructions will lock up the computer.

The Graphics Memory

The graphics raster is subdivided into 254 800 individually addressable dots or pixels. The
raster is 560 pixels wide and 455 pixels high. Pixels are specified by their X (horizontal, 0-559
and Y (vertical, 0-454) coordinates. Each pixel can be turned on or off, producing the graphics
image. This on/ off information for each pixel is stored (one bit per pixel) in a separate memory

known as the graphics memory.

The graphics memory consists of 16 384 16-bit words of read / write memory. Each bit of the
graphics memory determines the on/ off status of an individual pixel. This memory contains

information even when the graphics raster is not displayed.

10-4 Graphics

The graphics memory is mapped to the graphics raster in the manner represented by the

following illustration:

Wo (word 0)
|0}« / X ~|3
[/ 1o
0 0‘1|°'°r5 Wi W2 W34 Wss
1 Wa3s Was Wro W71

Addresses
36Y + 35
are not
displayed

W 16344 [Wie34s Wi16346 Wieazg |*++| Wisass

p - —_

Horizontal display Iimit/ This area is not displayed

Graphics Memory Map

Each pixel has a word address and a bit address associated with it for communication purposes.
For example, word 0, bit 0 holds the on/ off information for the pixel in the upper left corner of
the raster and word 16 378, bit 15, is mapped to the pixel in the lower right corner. As the
illustration indicates, word addresses represented by 36Y + 35, and 16 379 through 16 383

are not displayed.

The X and Y coordinates of an individual pixel are translated into word and bit addresses with

the following formulas:

word address = (36%xY)+INT(X/16)
bit address = X MOD 16

The origin, point (0,0), can be moved to the lower left corner of the raster by simply subtracting
the Y (vertical) coordinate from 454. This is done in some of the examples for consistency with
BASIC commands involving X,Y coordinates.

Graphics

Graphics Operations

Checking for Graphics Hardware

To test that the graphics hardware is present, execute the following statements —

[
el 1
)

I

L

I
I
i
Al
DR

The graphics hardware is not present if R5 = 0.

Overview

There are several different operations which the graphics hardware can perform. However,
each operation is accomplished by issuing a command and then transferring data to or from
select code 13. This section discusses the general procedures used to carry out these opera-
tions. Details necessary for each operation (such as command and data encoding) are discuss-

ed in later sections.
The following graphics operations are available:

o Writing individual pixels
o Writing full words

o Clearing full words

e Reading full words

e Cursor operations

Each graphics operation has a unique control code associated with it that is stored in register 5

with a STA R5 instruction. The control register is represented here —

15 14 13 12 I 10 9 8 7 6 5 4 3 2 | (0]
unused INT[DMA|RST| AH

opcode

where:

INT =interrupt enable bit

DMA =DMA enable bit

RST =reset bit (always sent with a new control code)
AH = auto-handshake bit(for DMA operations)

10-5

10-6 Graphics

Since each graphics operation can be carried out by handshake, interrupt or DMA, there are

many combinations of control codes.
The general algorithm for each operation includes the following steps —

1. Verify that the graphics hardware is present and operational.

2. If interrupts or DMA are to be used, call Isr _access to obtain the necessary access.
3. Wait for the graphics hardware to become ready.
4

Store the control code identifying the operation to be performed and any interrupt or

DMA enable information into R5 of select code 13.
The data necessary for the operation is sent to or received from select code 13.
6. If another operation is to be performed, continue with Step 3.

7. If interrupts or DMA are used, access must be released.

In general, the data transfer {Step 5) can be made using programmed [/ O or DMA methods.
However, interrupt is not recommended where speed is a consideration, and for some opera-
tions, only programmed I/ O is recommended. When choosing between programmed [/ O and
DMA, keep the following in mind —

e Programmed 1/0 is easier to implement but may or may not generate the faster

throughput.

e There is only one DMA channel. The rules of access to the DMA channel prevent attempts
by two 1/ 0 tasks which need the DMA channel (your graphics task and a disc or [/O
ROM operation, for example) from occurring simultaneously. In addition, DMA activity
cannot occur at the same time as a synchronous 1/ O task (such as writing to or reading
from a tape cartridge).

e The maximum data transfer rate to or from the graphics hardware using DMA is twice that

of programmed [/ O.

e When using DMA, the Isr _access utility must be called before using the DMA channel. In
addition, all data to be transferred to the graphics memory must be in contiguous memory
locations within the ICOM region (i.e. a buffer area). Thus the overhead encountered in
starting a DMA transfer is higher than that involved in starting a programmed [/ O trans-

fer.

e Several transfers may be initiated as a result of a single ICALL. In this case, the Isr_access
utility would be called only once and the resulting overhead distributed over all the

transfers.

Graphics

Generally speaking, then, if ease of implementation is a major concern or if the data transfers
are short and not numerous, then programmed [/ 0 is the preferred technique. If there are
many transfers or they are long, the additional overhead of using DMA will be cvercome by the
faster transfer rate, resulting in higher throughput.

Operation: Writing Individual Pixels

Individual bits within the graphics memory can be set or cleared using the ‘‘write pixels”
command. This capability might be used, for example, within a line drawing subroutine to turn

on a sequence of pixels.

General Procedure:

o A “‘write pixels’’ command is stored in R5.

e A data transfer is started to send word address, bit address, and new value for each bit to

be changed.

Special Considerations:

e The control code for the ‘‘write pixel” command is as follows —

5 4 13 12 1 10 9 8 7 6 5 4 3 2 | 0]
- INT[DMA] | o I OO0 I
where:
INT = interrupt enabled bit
DMA =DMA enabled bit
- =don’t care

e The data must be in a special format consisting of two words per bit to be changed. This is

represented in the following illustration.

. 15 4 13 12 I (0]] 8 T 6 5 4q 3 2 | 0
First
Word: | — | — CWA
Second | p - BA

word:
where:
CWA =complemented word address
BA =bit address
D = data value (1=0N, 0=0FF)

— =don’t care

10-7

10-8 Graphics

Thus for each pixel to be set or cleared, two words must be transferred to select code 13.

o Either DMA or programmed [/ O can be used.

Writing Pixels Using Programmed 1/ O

I GEAFHICE, WRITIMG INDIVIDUAL FIXELS USIHG PROGRAMMED I-0.
IC0M Zem
IDELETE ALL
GELEAR
GRAPHICE
IHTEGER ¥, %, O, OFF
IHZSEMELE P Z:/-IE'? O 8 o

-~
Bl R A

i,
fun]

LRI o B I LR § S N % B O

o
xR

fn=1
Ot =8

.,_
ISt
JOL N)

SOURE A Aot B

U

=1 piadi, ¥, 0n)

Dt I

MEXT %

IR x]
T
1
Exl
il
ey
=
bl
o
o
fr
%A
=

[B S| B S N WO R

=
]

o
L i HLL Hrite fl'i w2] f!‘ ol 1'1:, ":", Oy
5 HEXT
i !

BB [M b b b b bk bk e e

T T

i GOTO 128
|

fleeriig] = hane

_on of

3} e

ISOURCE

srmals

ISDUFY‘E?E oo

i
Yo
-
i}
ot
i
"
o
I}

W pErm
ISOURCE % _parm:
ISOURCE Bit_parm:
brite pi=el pio! LA =¢_coord P Getr ¥ coordisate

LDE =¥ parm
: JEH o
I=S0URCE LDA =Y coord P Get Y coordinate

IS0URCE LOE =" pars
» JER Get_walue
LIA =Eit P Get BIT status

LIE =Fit_parm

JEM Get walus

LDA =13 VPur zelect code i Pa
ETH Fa

U Check for GRAPHICE harduars

sHF|E
OURCE

:L!:!!'!"::E,

Serd WRITE FISEL comteol code

culate word address
ET D+ THT O 18

LA B R I Y

L B s ol I =T S GOt SN OO)
R I I s Bt B ot B s]

[
D

,_.
=
RN

10-9

Graphics

R L]

10-10 Graphics

Writing Individual Pixels Using DMA

WRITING INDIVIDUAL P

HE DA,

TR
T

DR I

ot

G
XA

Uy B R B
KRR RN

CALL Mrite ¥

xA

XX
T
— e

[x]
A R I
L

0 e L
3L

A

)

o
el
PO A T S S

O LT T e T T B e n B
o “d Ty
e
=

PO

R R R e R I R

o e o

Dot

brite @i

_dmas
STH

Graphics 10-11

Operation: Writing Full Words
The “write words” command is recommended when all bits within a graphics memory word are

to be changed, and especially when several contiguous words in the memory are to be

changed.

General Procedure:
o A “‘write words” command is stored in R5.
e A data transfer is started to send data to the graphics hardware. The first word sent

indicates the starting address within the graphics memory and subsequent words are

stored into the graphics memory at sequentially increasing addresses.

Special Considerations:

e The control code for the “write words’” command is as follows —

5 14 13 12 I 10 9 8 7 6 5 4 3 2 | 0
- INT [DMA] | 0 | oOJ]oOo}oO
where:
INT =interrupt enabled bit
DMA =DMA enabled bit
— =don’t care

o The data sent to the graphics hardware must be in the format illustrated here —

CWA

data

data
data

where:

CWA =complemented word address

data =the data to be written into the graphics memory
(Note that the most significant bit of each data word
represents the leftmost bit (bit 0) within the graphics memory.)

10-12 Graphics

e Recall that while there are only 35 words of graphics memory data displayed in each row
of the CRT raster, there are actually 36 words in the memory for each row. (One word is
never displayed.) When using the ‘‘write words”” command to write data into the last
words of one row and the first words of the next row, you must remember to supply data

for the “‘extra’” word.

o Either DMA or programmed [/ O can be used.

Writing Full Words Using Programmed 1/ O

10-13

Graphics

10-14 Graphics

Writing Full Words Using DMA

Graphics 10-15

Operation: Clearing Full Words

Clearing words within the graphics memory can be accomplished using the “‘write pixels” or
the “‘write words” commands discussed previously. However, if many sequential words are to
be cleared, the most efficient way is to use the ‘“‘clear words’” command with DMA. This
operation is identical to the ‘‘write words”’ command including the data transfer, except that

the data is ignored by the graphics hardware and zeroes are written into the graphics memory.

10-16 Graphics

General Procedure:
e A ‘‘clear words”’ command is stored in R5.
e A data transfer is started to send data to the graphics hardware. The first word sent

indicates the starting address within the graphics memory. Each subsequent word trans-

ferred causes one word of graphics memory to be cleared.

Special Considerations:

o The control code for the “‘clear words”’ command is as follows —

15 14 13 12 I 10 ° 8 7 6 5 4 3 2 | (0]
- INT|DMA] | 0 i o | 0]
INT =interrupt enabled bit
DMA =DMA enabled bit
- =don’t care
where:

o The data sent to the graphics hardware must be in the format illustrated here —

CwA
data
data
data
[]
.
°
where:
CWA =complemented word address
data =data is ignored

o Recall that while there are only 35 words of graphics memory data displayed in each row
of the CRT raster, there are actually 36 words in the memory for each row. (One word is
never displayed.) When using the ‘‘clear words”’ command to clear the last words of one

row and the first words of the next row, you must remember to allow for the “‘extra’ word.

Graphics 10-17

10-18 Graphics

Operation: Reading Full Words

The data in the graphics memory can be retrieved using the “read words”’ command. This is
the only way data can be retrieved since there is no ‘‘read pixels” command. This capability
might be used to store graphic images on mass memory or to update the graphic image using a

read-modify-write algorithm.

General Procedure:

e A ‘‘read words”’ command is stored in R5.

e A single word is sent to the graphics hardware to indicate the starting address within the

graphics memory.
e An input data transfer retrieves consecutive words from the graphics memory starting at

the specified address.

Special Considerations:

e The control code for the ‘“‘read words”” command is as follows —

15 14 13 12 I 10 9 8 7 6 5 4 3 2 | 0
— INT |DMA] | o I I {Oo{O
where:
INT =interrupt enabled bit

DMA =DMA enabled bit

- =don’t care

Graphics 10-19

e The data sent to the graphics hardware must be in the format illustrated here —

5 14 13 12 1l 0.9 8 7 6 65 4 3 2 I 0
CwA

where:

CWA =complemented word address

e Recall that while there are only 35 words of graphics memory data displayed in each row
of the CRT raster, there are actually 36 words in the memory for each row. (One word is
never displayed.) When using the ‘‘read words” command to read data from the last
words of one row and the first words of the next row, you must remember to allow for the

“‘extra’’ word.

o Either DMA or programmed [/ O can be used.

10-20 Graphics

Reading Full Words Using DMA

Graphics 10-21

10-22

Graphics

Operation: Cursor Operations

Three graphics cursors are provided for your use with the graphics hardware. These are a

non-blinking, full-screen, cross-line cursor, a small (9 pixels by 9 pixels), blinking, cross-line

cursor, and a horizontal underline, blinking cursor. The three cursors are illustrated here —

:

C

:

] |

_J

-

2

-)

_

)

horizontal cursor

General Procedure:

small blinking cursor

e An ‘X cursor position’” command is stored in R5.

full-screen cursor

e A value indicating the X (or horizontal) position of the cursor is sent to the hardware.

o A ‘Y cursor position”” command is stored in R5 (the command also identifies which cursor

appears).

o A value indicating the Y (or vertical) position of the cursor is sent to the hardware.

Graphics 10-23

Special Considerations:
o For most applications, only programmed [/ O is used for cursor control. Thus the values

stored in R5 should be selected from the following table —

Cursor Type Octal Control Code (to R5)
X cursor position 44
Y position (small blinking) 40
Y position (full-screen) 41
Y position (small horizontal) 42

o The data for the X coordinate must be in a special format as follows —

where:
CMX1 =one’s complement of (X coordinate + 63)

- =don’t care

e The data for the Y coordinate must be in a special format as follows —

where:
CMY1 =one’s complement of (Y coordinate + 44)

- =don’t care

10-24 Graphics

Setting the Cursor Using Programmed 1/ 0

The following program demonstrates the algorithm for controlling the cursor.

Graphics 10-25

10-26 Graphics

o et ol

]
§
]

! 3L K] LR ERUIC
L e R B R e ey

DU WUR I
T et el

Graphics 10-27

Line Drawing

Lines drawn on the CRT must be drawn pixel-for-pixel between two points because the System
45 graphics is a raster scan graphics. Line drawing routines are typically implemented in
software and called when needed. One such routine is provided for your use on the Demonstra-

tion Cartridge.

The Demo Cartridge line drawing routine is contained within a file called “BRAL”. To use this
routine, simple follow the prompts which are displayed.

A listing of the line drawing routine appears here —

Eegin: PRINT
FRIMT *
FRINT

Tirne will] iR

e Tine pattern

oot ine To draw lins

3 BEsgin P Repeat drawing linss
1 EMD

10-28 Graphics

1

HAM

]

sredinat e
coordinate

Ll]

i

s coordinat
coordinat
=5 1 Tid,
l=ita &~

m

s

il

Lipat:
HEH
lelta ¥

AR (Telta Y2

increment or

N N R

s

meEn L Poul 1ne

Iz: i 1 of # oo Y o increment o

mErt ot ine

Count

S5 ! PE I
o TART SiE U Graphics oommasnd

b

5]

FEC A R B e |

.,_
1
[R AR B

I
0 S T
IR

bt

o ..P Ja
L

o
AR A N BN
U
[e At B U B
I

e

TR ement

O e

Pt TR

conrdinats tnto ICOM

Poget First Y coordinates into ICGH

3
[N I

A

iato O

zecord

fi

il
EN

LIE
JEM
LA =Y

LOE =74
T

LI

IEMEY

I Get secorngd ¥

]
-
s
e
]
o+

LOE =T3
JEH et owalus 1

LoA Y
TCAH !
HIA

g

A

=
D
b I e xR

=

(ot

Graphics 10-29

a2

Tk i

Ll

I i
— T

I £ i i

I £ E !
£ = !
= .

10-30 Graphics

SOURCE

TS0URCE STH Del ' Tel= ~0a
B TG

L1
A Ia ! D= 20hbb—Izo
=
i

Hinlw)

i

Hinlul !

STH
LIF Del
Loops ALH Dbk
=] i

~Tg + Dhi

-

p

wlala

PP M

AR

e LS B
Doy B

O

DO R B B B R Rt B B M B |

H,._,.,.¢,_nu,..A,_‘.,__,,h....k_éy.*,_d.
I D O D
[T I T oy oy ey T T o o

ot ine

ot i

T tia

e e Rk X
[P e momomoor I

S S T S
ot e

w3

AT

bt

i
i

R
-
L
e e T anam B B B I B T T B B B T T B T B T B S B s B
D

[o
o
o,
-

kX

i

ASCII Character Codes

Appendix A
ASCII Character Set

EQUIVALENT FORMS

EQUIVALENT FORMS

EQUIVALENT FORMS

EQUIVALENT FORMS

Iéig‘l Binary | Oct | Hex Binary | Oct | Hex | Dec Binary | Oct | Hex ‘ Dec Binary | Oct | Hex { Dec !
NULL | 00000000 | 000 00 00100000 | 040 20 32 01000000 | 100 40 } 64 01100000 | 140 60 i 96 :
SOH | 00000001 | 001 01 00100001 | 041 21 33 01000001 | 101 41 65 01100001 | 141 61 97
STX | 00000010 | 002 02 00100010 | 042 22 34 01000010 | 102 42 66 01100010 | 142 62 98
ETX | 00000011 | 003 03 00100011 | 043 23 35 01000011 | 103 43 67 01100011 | 143 63 99
EOT | 00000100 | 004 04 00100100 | 044 24 36 01000100 | 104 44 68 01100100 | 144 64 100
ENQ | 00000101 | 005 05 00100101 | 045 25 37 01000101 | 105 45 69 01100101 | 145 65 101
ACK | 00000110 | 006 06 00100110 | 046 26 38 01000110 | 106 46 70 01100110] 146 66 102
BELL | 00000111 | 007 07 00100111 | 047 27 39 01000111 | 107 47 71 01100111 | 147 67 103
BS 010 08 00101000 | 050 28 40 01001000 | 110 48 72 01101000} 150 68 104
011 09 00101001 | 051 29 41 01001001 | 111 49 73 i 01101001 | 151 69 105
LF 00001010 | 012 0A 00101010 | 052 2A 42 01001010 | 112 4A 74 ’ 01101010 152 6A 106
vT 00001011 | 013 0B 00101011 053 2B 43 01001011 | 113 4B 75 | 01101011 153 6B 107
FF | 00001100 | 014 oC 00101100 | 054 2C 44 01001100 | 114 4C 76 01101106 | 154 6C 108
CR | 00001101 | 015 oD 00101101 | 055 2D 45 01001101 | 115 4D 77 011011014 155 6D 109
SO | 00001110 | 016 | OE 00101110 | 056 | 2E 46 01001110 | 116 4E 78 01101110} 156 6E 110
Si 00001111 | 017 OF 00101111 | 057 2F 47 01001111} 117 4F 79 01101111 157 6F 111
DLE | 00010000 | 020 10 00110000 | 060 30 48 01010000 | 120 50 80 01110000 | 160 70 112
DC1 | 00010001 | 021 11 00110001 | 061 31 49 01010001 | 121 51 81 01110001 | 161 71 113
DC2 | 00010010 | 022 12 00110010 062 32 50 01010010 | 122 52 82 01110010 162 72 114
DC3 | 00010011 023 13 00110011 | 063 33 51 01010011 | 123 53 83 01110011 J 163 73 115 1‘
DC4 | 00010100 | 024 14 00110100 | 064 34 52 01010100 | 124 54 84 01110100 | 164 74 116
NAK | 00010101} 025 15 00110101 | 065 35 53 01010101 | 125 55 85 011101011 165 75 117
SYNC| 00010110| 026 16 00110110 | 066 36 54 01010110 126 56 86 OlllOllOi 166 76 118
ETB | 00010111 027 17 00110111, 067 37 55 01010111 | 127 57 87 01110111 | 167 4 77 119
CAN | 00011000} 030 18 00111000 070 38 56 01011000 | 130 58 88 01111000" 170 ‘ 78 120 |
EM | 00011001} 031 19 00111001 | 071 39 57 01011001 | 131 59 89 i 01111001 \‘ 171 79 121
SUB | 00011010 032 1A 00111010 | 072 3a 58 01011010 | 132 5A 90 01111010, 172 7A 122 i
ESC | 00011011} 033 1B { 00111011! 073 3B 59 01011011 133 5B 91 01111011 “ 173 7B 123 }
Fs 000111001 034 ic 00111100 074 3C €0 01011100 124 5C 22 01111100 174 7C 124
GS | 00011101} 035 1D \ 00111101 | 075 3D 61 01011101 | 135 5D 93 01111101 . 175 7D 125
RS 00011110 036 1E on111110!1 076 3E 62 01011110 136 5E %4 01111110 176 7E 126
us 00011111} 037 1F 077 3F 63 137 SF 95 01111111 . 177 7F 127

| 00111111
L

01011111 |
|

A-2 ASCII Character Set

The following table gives the octal value for an ASCII character in the most significant byte
(“First Character’” column) and the least significant byte (‘“Second Character’” column) of a

word. The diagram illustrates the positions of the first and second character positions of a word.

First Character Second Character
15 | 14 | 13 | 12 | 11 10 9 8 7 6 5 4 3 2 1 C
ASCII First Character |Second Character ASCII First Character |Second Character
Character | Octal Equivalent | Octal Equivalent Character Octal Equivalent | Octal Equivalent
NUL 000000 000000 % 022400 000045
SOH 000400 000001 & 023000 000046
STX 001000 000002 ’ 023400 000047
ETX 001400 000003 (024000 000050
EOT 002000 000004) 024400 000051
ENQ 002400 000005) 025000 000052
ACK 003000 000006 + 025400 000053
BEL 003400 000007 . 026000 000054
BS 004000 000010 - 026400 000055
HT 004400 000011 . 027000 000056
LF 005000 000012 / 027400 000057
VT 005400 000013 0 030000 000060
FF 006000 000014 1 030400 000061
CR 006400 000015 2 031000 000062
SO 007000 000016 3 031400 000063
Sl 007400 000017 4 032000 000064
DLE 010000 000020 5 032400 000065
DC1 010400 000021 6 033000 000066
DC2 011000 000022 7 033400 000067
DC3 011400 000023 8 034000 000070
DC4 012000 000024 9 034400 000071
NAK 012400 000025 : 035000 000072
SYN 013000 000026 : 035400 000073
ETB 013400 000027 < 036000 000074
CAN 014000 000030 = 036400 000075
EM 014400 000031 > 037000 000076
SUB 015000 000032 ? 037400 000077
ESC 015400 000033 @ 040000 000100
FS 016000 000034 A 040400 000101
GS 016400 000035 B 041000 000102
RS 017000 000036 C 041400 000103
Us 017400 000037 D 042000 000104
SP 020000 000040 E 042400 000105
! 020400 000041 F 043000 000106
" 021000 000042 G 043400 000107
021400 000043 H 044000 000110
$ 022000 000044 I 044400 000111

ASCII Character Set A-3

ASCII First Character |Second Character ASCII First Character |Second Character
Character | Octal Equivalent | Octal Equivalent Character | Octal Equivalent | Octal Equivalent
dJ 045000 000112 e 062400 000145
K 045400 000113 f 063000 000146
L 046000 000114 g 063400 000147
M 046400 000115 h 064000 000150
N 047000 000116 i 064400 000151
o) 047400 000117 j 065000 000152
P 050000 000120 k 065400 000153
Q 050400 000121 ! 066000 000154
R 051000 000122 m 066400 000155
S 051400 000123 n 067000 000156
T 052000 000124 o 067400 000157
U 052400 000125 p 070000 000160
Vv 053000 000126 q 070400 000161
w 053400 000127 r 071000 000162
X 054000 000130 s 071400 000163
Y 054400 000131 t 072000 000164
Z 055000 000132 u 072400 000165
[055400 000133 v 073000 000166
§ 056000 000134 w 073400 000167
] 056400 000135 X 074000 000170
A 057000 000136 v 074400 000171
8 057400 000137 z 075000 000172
) 060000 000140 { 075400 000173
a 060400 000141 F 076000 000174
b 061000 000142 } 076400 000175
c 061400 000143 N 077000 000176
d 062000 000144 DEL 077400 000177

A-4 ASCII Character Set

Appendix B

Machine Instructions

Detailed List

Instruction

Group

Description

AAR

ABR

ADA

ADB

AND

loc} [, I]

{loc} [7]

Shift/Rotate

Shift/Rotate

Integer Math

Integer Math

Logical

Shifts the A register right the indicated number of
bits with the sign bit filling all vacated bit positions.
(Arithmetic right)

Shifts the B register right the indicated number of
bits with the sign bit filling all vacated bit positions.
(Arithmetic right)

Adds the contents of the specified location to the
contents of register A. The result is in A. If a carry
occurs, Extend is set, otherwise Extend is un-
changed. If an overflow occurs, Overflow is set,
otherwise Overflow is unchanged. A carry is from
bit 15; an overflow is a carry from bit 15 or 14, but
not both. Extend and Overflow are bits in the pro-
cessor. Specifying register R4, R5, R6, or R7 as
the location causes an input I/ O bus cycle to the
interface addressed by the Pa register. Indirect
addressing may be specified. {loc} must be on
base or current page.

Adds the contents of the specified location to the
contents of register B. The result is in B. If a carry
occurs, Extend is set, otherwise Extend is un-
changed. If an overflow occurs, Overflow is set,
otherwise Overflow is unchanged. A carry is from
bit 15; an overflow is a carry from bit 15 or 14, but
not both. Extend and Overflow are bits in the pro-
cessor. Specifying register R4, R5, R6, or R7 as
the location causes an input I/ O bus cycle to the
interface addressed by the Pa register. Indirect
addressing may be specified. {loc} must be on
base or current page.

Logical ‘“‘and” oper.ation. The contents of the A
register are compared, bit by bit, with the contents
of the specified location. For each bit comparison
a 1 results if both bits are 1's, a O results otherwise.
The 16-bit result is left in A. Specifying register
R4, R5, R6, or R7 causes an input bus cycle to the
interface addressed by the Pa register. Indirect
addressing may be specified. {loc} must be on
base or current page.

B-2 Machine Instructions

Instruction

Form

Group

Description

CBL

CBU

CDC
CLA

CLB

CLR

CMA

CMB

CMX

CMY

CPA

CPB

DBL

DBU

DDR

DIR

DMA

{loc} [1]

Stack

Stack

BCD Math
Shift

Shift

Load/Store

Memory

Memory

BCD Math

BCD Math

Test/Branch

Test/Branch

Stack

Stack

1/0

1/0

1/0

Clears the Cb register. Specifies the lower block of
memory for byte-referencing stack instructions.

Sets the Cb register. Specifies the upper block of
memory for byte-referencing stack instructons.

Clears Decimal Carry explicitly.

Clears register A. This is exactly equivalent to SAR
16.

Clears register B. This is exactly equivalent to SBR
16.

Clears the specified number of words, beginning
at the location pointed at by the A register. A
maximum of 16 words may be cleared.

Perform a one’s complement of the A register (bit
by bit inversion of all 16 bits).

Perform a one’s complement of the B register (bit
by bit inversion of all 16 bits).

Ten’s complement of Arl. The mantissa of Arl is
replaced with its ten’s complement and Decimal
Carry is cleared.

Ten’s complement of Ar2. The mantissa of Ar2 is
replaced with its ten’s complement and Decimal
Carry is cleared.

Compares the contents of register A with the con-
tents of the specified location and skips if they are
unequal. Indirect addressing may be specified.
Specifying register R4, R5, R6, or R7 causes an
input bus cycle to the interface addressed by the
Pa register. {loc} must be on base or current page.

Compares the contents of register B with the con-
tents of the specified location and skips if they are
unequal. Indirect addressing may be specified.
Specifying register R4, R5, R6, or R7 causes an
input bus cycle to the interface addressed by the
Pa register. {loc} must be on base or current page.
{loc} must be on base or current page.

Clears the Db register. Specifies the lower block of

memory for byte-referencing stack instructions.

Sets the Db register. Specifies the upper block of
memory for byte-referencing stack instructions.

Disables Data Request. Cancels the DMA
instruction.

Disables the interrupt system. Cancels the EIR
instruction.

Enables the DMA mode. Cancels the DDR
instruction.

Machine Instructions B-3

DSZ

EIR

EXE

FDV

FMP

FXA

O3Z {loc} [, I]

iE {reg} [, 1]

Fou

BCD Math

Test/ Alter/Branch

I/0

Miscellaneous

BCD Math

BCD Math

BCD Math

Mantissa right shift of Arl for one digit. The
twelfth digit is shifted into biis 0-3 of the A regis-
ter. The non-digit part of the A register is cleared
(bits 4-15), and the Decimal Carry bit in the pro-
cessor is cleared. The first digit in the mantissa is
setto 0.

Decrements the contents of the specified location
and skips if the new contents are 0. Specifying
register R4, R5, R6, or R7 causes an input (or an
input and an output) bus cycle to the interface
addressed by the Pa register. Indirect addressing
may be specified. {loc} must be on base or current

page.

Enables the interrupt system. Cancels the DIR in-
struction.

Executes the contents of a register. {reg} is an in-
teger in the range of 0 through 31, indicating the
register to be used (see Memory Map for the cor-
respondence between location and register). The
register is left unchanged unless the instruction
code causes it to be altered. The next instruction
to be executed is the one following the EXE, un-
less the code in the executed register causes a
branch. Indirect addressing may be specified.

Fast divide. The mantissas of Arl and Ar2 are
added together, along with Decimal Carry, until
the first decimal overflow occurs. The result ac-
cumulates into Ar2. The number of additions
without overflow is placed into the lower 4 bits of
the B register (0-3). The remainder of the B regis-
ter is cleared, as is the Decimal Carry bit in the
processor.

Fast Multiply. Performs the multiplication by re-
peated additions. The mantissa of Arl is added to
Ar2 along with Decimal carry, a specified number
of times. The number of times is specified in the
lower 4 bits (0-3) of the B register. The result ac-
cumulates in Ar2. If intermediate overflows occur,
the number of times they occur appears in the
lower 4 bits of the A register after the operation is
complete. The upper 12 bits of the A register are
cleared along with Decimal Carry.

Fixed-point addition. The mantissas of Arl and
Ar2 are added together and the result placed in
Ar2. Decimal Carry is used as the twelfth digit.
After the addition, Decimal Carry is set if an over-
flow occurred, otherwise Decimal Carry is cleared.

B-4 Machine Instructions

Instruction

Form

Group

Description

IOR

1Sz

JMP

JSM

LDA

LDB

MLY

MPY

{loc} [1]

floc} [, 1]

{loct [I]

{loc} [,]

floc}[,1]

Logical

Test/ Alter/Branch

Branch

Branch

Load/Store

Load/Store

BCD Math

Integer Math

Logical ‘‘inclusive or’’ operation. The contents of
the A register are compared, bit by bit, with the
contents of the specified location. For each bit
comparison, a 0 results if both bits are 0’s, a 1
otherwise. The 16-bit result is left in A. Specifying
register R4, R5, R6, or R7 causes an input bus
cycle to the interface addressed by the Pa register.
Indirect addressing may be specified. {loc} must
be on base or current page.

Increments the contents of the specified location
and skips if the new contents are 0. Specifying
register R4, R5, R6, or R7 causes an input (or an
input followed by an output) bus cycle to the inter-
face addressed by the Pa register. Indirect ad-
dressing may be specified. {loc} must be on base
or current page.

Unconditionally branches to the specified loca-
tion. Indirect addressing may be specified. {loc}
must be on base or current page.

Jumps to subroutine. The valuz of the R register
is incremented by 1 and the value of the P regis-
ter (i.e., thelocation of the JSM instruction itself)
is stored in the address pointed to by the R regis-
ter. Execution then proceeds to the specified lo-
cation. Return from the subroutine is effected by
the RET instruction. Indirect addressing may be
specified. {loc} must be on base or current page.

Loads register A with the contents of the
specified location. Specifying register R4, R5,
R6, or R7 causes an input /0 bus cycle to the
interface addressed by the Pa register. Indirect
addressing may be specified. {loc} must be on
base or current page.

Loads register B with the contents of the
specified location. Specifying register R4, R5,
R6, or R7 causes an input [/O bus cycle to the
interface addressed by the Pa register. Indirect
addressing may be specified. {loc} must be on
base or current page.

Mantissa left shift on Ar2 for one digit. This is a
circular shift, with the bits 0-3 of the A register
forming a thirteenth digit. The non-digit part of
the A register is cleared (bits 4-15), and the Dec-
imal Carry bit in the processor is cleared.

Binary multiply. Uses Booth’s Algorithm. The
values of the A and B registers are multiplied to-
gether with the product placed into A and B. The
A register contains the least significant bits and
the B register contains the most significant bits

and the sign. B may contain any integer within
the range —32 767 to +32 767.

Machine Instructions B-5

Instruction

MRX

MRY

MwA

NOP

NRM

fR

BCD Math

BCD Math

Miscellaneous

BCD Math

Mantissa right shift on Arl. The number of digits
to be shifted is specified in the lower 4 bits (0-3)
of the B register. The shift is accomplished in
three stages:

1) Bits 0-3 of the A register are right-shifted into
D1 of the mantissa, with the twelfth digit being
lost. This is the first shift. This shift always takes
place, evenif B = 0.

2) The digits are then right-shifted for the re-
maining number of digits specified. The twelfth
digit is lost on each shift (except for the last shift)
and the vacated digits are zero-filled.

3) Finally, the last right-shifting takes place, with
the twelfth digit shifting into the lower 4 bits (0-3)
of the A register. The Decimal Carry bit in the pro-
cessor is cleared and the non-digit part of the A
register is cleared (bits 4-15).

Mantissa right shift on Ar2. The number of digits
to be shifted is specified in the lower 4 bits (0-3)
of the B register. The shift is accomplished in
three stages:

1) Bits 0-3 of the A register are right-shifted into
D1 of the mantissa, with the twelfth digit being
lost. This is the first shift. This shift always takes
place, evenif B = 0.

2) The digits are right-shifted for the remaining
number of digits specified. The twelfth digit is lost
on each shift (except for the last shift) and the
vacated digits are zero-filled.

3) Finally, the last right-shifting takes place, with
the twelfth digit shifting into the lower 4 bits (0-3)
of the A register. The non-digit part of the A regis-
ter is cleared (bits 4-15), and the Decimal Carry bit
in the processor is cleared.

Mantissa word addition. The contents of the B
register are added to the ninth through twelfth
digits of the Ar2 register. Decimal Carry is added
to the twelfth digit; if an overflow occurs, Deci-
mal Carry is set, otherwise Decimal Carry is
cleared.

Null operation. This is exactly equivalent to LDA
A.

Normalizes the Ar2 mantissa. Up to twelve left-
shifts of the mantissa are performed until the first
digit of the mantissa is non-zero. If the original
first digit is already non-zero, no shifts occur. The
number of shifts required is stored in the first 4
bits (0-3) of the B register. If 12 shifts are re-
quired, the Decimal Carry bit in the processor is
set; otherwise, the Decimal Carry bit is cleared.
The exponent is not altered.

B-6 Machine Instructions

Instruction

Form

Group

Description

PBC

PBD

PWC

PWD

RAL

RAR

RBL

FEC {reg} [, I]

FET {reg} ,Ti

FEL {reg} [, I]

FHC {reg} , I

Pl {reg} [, I]

Flill {reg} , I
FUTl {reg} [, I]

A
oo

“AL {n}

FFAF {n}

FEL {n}

Stack

Stack

Stack

Stack

Shift/ Rotate

Shift/ Rotate

Shift/Rotate

Pushes the lower byte (right half) of the specified
register onto the stack pointed at by the Cb and C
registers. Specifying register R4, R5, R6, or R7
causes an input [/ O bus cycle to the interface ad-
dressed by the Pa register. Incrementing or dec-
rementing of the C register can be specified. In-
crementing is the default. {reg} must be in the
range of 0 through 7. The incrementing or decre-
menting action takes place before pushing.

Pushes the lower byte (right half) of the specified
register onto the stack pointed at by the Db and D
registers. Specifying register R4, R5, R6, or R7
causes an input I/O bus cycle to the interface ad-
dressed by the Pa register. Incrementing or dec-
rementing the D register can be specified. Incre-
menting is the default. {reg} must be in the range
of 0 through 7.The incrementing or decrementing
action takes place before pushing.

Pushes entire register (full word) onto the stack
pointed at by the C register. Specifying register
R4, R5, R6, or R7 causes an input /O bus cycle to
the interface addressed by the Pa register. Incre-
menting or decrementing the C register may be
specified. Incrementing is the default. {reg} must
be in the range of 0 through 7. The incrementing
or decrementing action takes place before
pushing.

Pushes the entire register (full word) onto the
stack pointed at by the D register. Specifying
register R4, R5, R6, or R7 causes an input /O bus
cycle to the interface addressed by the Pa register.
Incrementing or decrementing the D register may
be specified. Incrementing is the default. {reg}
must be in the range of 0 through 7. The
incrementing or decrementing action taken place
before pushing.

Rotates the A register left the indicated number of
bits. Bit 15 rotates into bit 0 (left circular).
Maximum rotation of 16 bits.

Rotates the A register right the indicated number
of bits. Bit O rotates into bit 15 (right circular).
Maximum rotation of 16 bits.

Rotates the B register left the indicated number of
bits. Bit 15 rotates into bit 0 (left circular).
Maximum rotation of 16 bits rotated.

Machine Instructions B-7

—

ction

Iy
s

ne

m
I
:1
£}

RBR

RET

RIA

RIB

RLA

RLB

RZA

RZB

SAL

SAM

SAP

REE {n}

FET {n}

FIA {adrs}

EIE {adrs}

FLr{adrs}[, 5]

g Y G J h
ELA {adrs} [, 2]

——
—

RLE {adrs} [, =]
RELE {adrs} [, 1]

EZA {adrs}

RZE {adrs}

SAL {n}

ZAM {adrs) [, 5]
ZAM {adrs} [,]

SAF {adrs) [, 5]

ESAF {adrs} [,]

Shift/Rotate

Branch

Test/Branch

Test/Branch

Test/ Alter/ Branch

Test/ Alter/Branch

Test/Branch

Test/Branch

Shift/ Rotate

Test/ Alter/ Branch

Test/ Alter/Branch

Rotates the B register right the indicated number
of bits. Bit O rotates into bit 15 {right circular).
Maximum rotation of 16 bits.

Returns from subroutine. {n} is added to the
contents of the address pointed to by the R
register. The R register is decremented by 1. This
is, in effect, a return from a JSM instruction (see
above), to {n} instructions following the JSM itself.
The ‘“usual” return is RET 1. {n} must be in the
range of — 32 through 31.

Skips to {adrs} if register A is not 0, then
increments register A by 1. Extend and Overflow
are not effected by the incrementing action, even
if a carry or overflow occurs. {adrs} must be within

— 32 and + 31 of the current location.

Skips to {adrs} if register B is not 0, then
increments register B by 1. Extend and Overflow
are not affected by the incrementing action, even
if a carry or overflow occurs. {adrs} must be within
— 32 and + 31 of the current location.

Skips to {adrs} if the least significant bit of the A
register is not 0. Setting or clearing the bit after the
test can be specified. {adrs} must be within — 32
and + 31 of the current location.

Skips to {adrs} if the least significant bit of the B
register is not 0. Setting or clearing the bit after the
test can be specified. {adrs} must be within — 32
and + 31 the current location.

Skips to {adrs} if register A is not 0. {adrs} must be
within — 32 and + 31 of the current location.

Skips to {adrs} if register B is not 0. {adrs} must be
within — 32 and + 31 of the current location.

Shifts the A register left the indicated number of
bits with all vacated bit positions becoming 0.
Maximum shift is 16 bits.

Skips to {adrs} if the A register is negative (bit 15 is
1). Setting or clearing the bit after the test can be
specified. {adrs} must be within — 32 and + 31 of
the current location.

Skips to {adrs} if the A register is positive or zero
{bit 15 is 0). Setting or clearing the bit after the test
can be specified. {adrs} must be within ~ 32 and
+ 31 of the current location.

B-8 Machine Instructions

Instruction

Form

Group

Description

SAR

SBL

SBM

SBP

SBR

SDC

SDI

SDO

SDS

SEC

SES

ZEM {adrs} [, 5]
SEM {adrs} [, 0]

SEF {adrs} [, =]

ZEF {adrs} [, 7]

SER {n}

=0T {adrs}

Shi

SO0

=Ts {adrs}

SEL {adrs} [, 5]
SEC {adrs} [,]

ZES {adrs} [, 3]
SES {adrs} [, 2]

Shift/Rotate

Shift/Rotate

Test/ Alter/ Branch
Test/ Alter/ Branch

Test/ Alter/Branch

Shift/ Rotate

BCD Math

1/0

I/0

BCD Math

Test/ Alter/ Branch

Test/ Alter/Branch

Shifts the A register right the indicated number of
bits with all vacated bit positions becoming 0.
Maximum shift is 16 bits.

Shifts the B register left the indicated number of
bits with all vacated bit positions becoming 0.
Maximum shift is 16 bits.

Skips to {adrs} if the B register is negative (bit 15 is
1). Setting or clearing the bit after the test can be
specified. {adrs} must be within — 32 and + 31 of
the current location.

Skips to {adrs} if the B register is positive (bit 15 is
0). Setting or clearing the bit after the test can be
specified. {adrs} must be within — 32 and + 31 of
the current location.

Shifts the B register right the indicated number of
bits with all vacated bit positions becoming 0.
Maximum shift is 16 bits.

Skips to {adrs} if Decimal Carry is clear. Decimal
carry is a single bit in the processor which may
have been set by certain arithmetic operations.
{adrs} must be within — 32 and + 31 of the cur-
rent location.

Sets DMA inwards. Reads from peripheral, writes
to memory.

Sets DMA outwards. Reads from memory, writes
to peripheral.

Skips to {adrs} if Decimal Carry is set. Decimal
carry is a single bit in the processor which may
have been set by certain arithmetic operations.
{adrs} must be with — 32 and + 31 of the current
location.

Skips to {adrs} if Extend is clear. Extend is a single
bit in the processor which may have been set by
certain arithmetic operations. Setting or clearing
the bit after the test can be specified. {adrs} must
be within — 32 and + 31 of the current location.

Skips to {adrs} if Extend is set. Extend is a single
bit in the processor which may have been set by
certain arithmetic operations. Setting or clearing
the bit after the test can be specified. {adrs} must
be within — 32 and + 31 of the current location.

Machine Instructions B-9

Instruction

Group

Description

SFC

SFS

SHC

SHS

SIA

SIB

SLA

SLB

SOoC

SFS {adrs}

SHC{{adrs}

ZHZ{adrs}

IR {adrs}

4

SIE {adrs}

s

ZLA {adrs} [, 5]
S {adrs} [,]

SLE {adrs} [,]
SLE {adrs} [, 5]

S0C {adrs} [, 5]
00 {adrs} [, ©]

/0

1/0

Test/Branch

Test/Branch

Test/Branch

Test/Branch

Test/ Alter/Branch

Test/ Alter/ Branch

Test/ Alter/ Branch

Skips to {adrs} if the Flag line is false (clear). The
Flagline is the one associated with a peripheral on
the current select code (pointed to by the Pa regis-
ter). {adrs} must be within — 32 and + 31 of the
current location.

Skips to {adrs} if the Flag line is true (set). The flag

line is that associated with the peripheral on the

current select code (pointed to by the Pa register).

{adrs} must be within - 32 and + 31 of the current

location.

Skips to {address} if CRT is scanning its raster.
i

Fodooccl oooon Lo oal s s d 121 £l e
aaressy must ve witnin —32 and +31 of the cur-

rent location.

Skips to {address} if CRT is doing vertical retrace.
{address} must be within —32 and +31 of the cur-
rent location.

Skips to {adrs} if register A is 0, then increments
register A by 1. Extend and Overflow are not af-
fected by the incrementing action, even if a carry
or overflow occurs. {adrs} must be within — 32
and + 31 of the current location.

Skips to {adrs} if register B is 0, then increment
register B by 1. Extend and Overflow are not af-
fected by the incrementing action, even if a carry
or overflow occurs. {adrs} must be within — 32
and + 31 of the current location.

Skips to {adrs} if the least significant bit of the A
register is 0. Setting or clearing the bit after the
test can be specified. {adrs} must be within — 32
and + 31 of the current location.

Skips to {adrs} if the least significant bit of the B
register is 0. Setting or clearing the bit after the
test can be specified. {adrs} must be within — 32
and + 31 of the current location.

Skips to {adrs} if Overflow is clear. Overflow is a
single bit in the processor which may have been
set by certain arithmetic operations. Setting or
clearing the bit after the test can be specified.
{adrs} must be within — 32 and + 31 of the cur-
rent location.

B-10 Machine Instructions

Instruction

Form

Group

Description

SOS

SSC

SSS

STA

STB

SZA

SZB

TCA

TCB

505 {adrs} [, 5]
205 {adrs) [,]

S5 {adrs}

ZTA {loc} [, 1]

STE {loc} [, I]

ZZA {adrs}

ZZE {adrs}

TCA

Test/ Alter/ Branch

I/0

I/0

Load/Store

Load/Store

Test/Branch

Test/Branch

Integer Math

Integer Math

Skips to {adrs} if the Overflow is set. Overflow is a
single bit in the processor which may have been
set by certain arithmetic operations. Setting or
clearing the bit after the test can be specified.
{adrs} must be within — 32 and + 31 of the cur-
rent location.

Skips to {adrs} if Status line is false (clear). The
statusline is the one associated with the peripheral
on the current select code (pointed to by the Pa
register). {adrs} must be within — 32 and + 31 of
the currentlocation.

Skips to {adrs} if the Status line is true (set). The
status line is the one associated with the peripheral
on the current select code (pointed to by the Pa
register). {adrs} must be within — 32 and + 31 of
the current location.

Stores the contents of the A register into the
specified location. Specifying register R4, R5, R6,
or R7 causes an output bus cycle to the interface
addressed by the Pa register. Indirect addressing
may be specified. {loc} must be on base or current
page.

Stores the contents of the B register into the
specified location. Specifying register R4, R5, R6,
or R7 causes an output bus cycle to the interface
addressed by the Pa register. Indirect addressing
may be specified. {loc} must be on base or current
page.

Skips to {adrs} if register A is 0. {adrs} must be
within — 32 and + 31 of the current location.

Skips to {adrs} if register B is 0. {adrs} must be
within — 32 and + 31 of the current location.

Performs a two’s complement of the A register
(one’s complement, incremented by 1). If a carry
occurs, Extend is set, otherwise Extend is un-
changed. If an overflow occurs, Overflow is set,
otherwise Overflow is unchanged. A carry is from
bit 15; an overflow occurs when complementing
—~ 32768. Extend and Overflow are bits in the
processor.

Performs a two’s complement of the B register
(one’s complement, incremented by 1). If a carry
occurs, Extend is set, otherwise Extend is un-
changed. If an overflow occurs, Overflow is set,
otherwise Overflow is unchanged. A carry is from
bit 15; an overflow occurs when complementing
— 32 768. Extend and Overflow are bits in the
processor.

Machine Instructions B-11

Instruction

Form

Group

Description

WBC

WBD

WWC

WWD

XFR

WEL {reg} [, I']

WEC {reg} , I

WET {reg} [, I1]
WED {reg} , I

Wi {reg} [, I1]

i {reg} , I

D {reg} [, T]
WidI {reg} , I

HFF {n}

Stack

Stack

Stack

Stack

Load/Store

Withdraws a byte from the stack pointed at by the
Cb and C registers and places it into the lower byte
(right half) of the specified register. Specifying reg-
ister R4, R5, R6, or R7 causes an output /O bus
cycle to the interface addressed by the Pa register.
Incrementing or decrementing the C register can
be specified. Decrementing is the default. {reg}
must be in the range of 0 through 31. The incre-
menting or decrementing routine takes place after
the withdrawal.

Withdraws a byte from the stack pointed at by the
Db and D registers and places it into the lower byte
(right half) of the specified register. Specifying reg-
ister R4, R5, R6, or R7 causes an output [/O bus
cycle to the interface addressed by the Pa register.
Incrementing or decrementing the D register can
be specified. Decrementing is the default. {reg}
must be in the range of 0 through 31. The incre-
menting or decrementing routine takes place after
the withdrawal.

Withdraws a full word from the stack pointed at by
the C register and places it into the specified regis-
ter. Specifying register R4, R5, R6, or R7 causes
an output I/ O bus cycle to the interface addressed
by the Pa register. Incrementing or decrementing
of the C register can be specified. Decrementing is
the default. {reg} must be in the range of 0 through
31. The incrementing or decrementing action
takes place after the withdrawal.

Withdraws a full word from the stack pointed at by
the D register and places it into the specified regis-
ter. Specifying register R4, R5, R6, or R7 causes
an output I/ O bus cycle to the interface addressed
by the Pa register. Incrementing or decrementing
of the D register can be specified. Decrementing is
the default. {reg} must be in the range of 0 through
31. The incrementing or decrementing action
takes place after the withdrawal.

Transfers the specified number of words, from the
location starting at the address pointed at by the A
register to the location starting at the address
pointed at by the B register. A maximum of 16
words can be transferred.

B-12 Machine Instructions

Approximate Numerical List
Bit Patterns

Instruction Bit Pattern

15} 14 13 12]11 10 918 7 6] 5 4 3| 2 1 0
NOP oo 0 o}Jo0o 0 o}o O OJ]O O O}JO O o
LD%s %10 0 O0f %
CP%s 1 0 0 1] %
AD%s %l 0 1 0 e
ST*s %1 0 1 1| %
JSM 11 0 0] 0 Address Field
AND %11 O 1 0
inSZ %11 0 vl 1
IOR 51 1 1 0] 0
JMP %11 1 0 1
EXE o) 1 1 1 0 0 0 0 0 0 0 0 | Register Address
SDY% 0 1 1 110 0 O 1 0 0] 0 O °%}0 0 O
IR 0 1 1 1 0O 0 O 1 0 0] O 1 %10 0 0
DMA 0 1 1 1 0O 0 o 1 0 O 1 0O 01o O O
DDR 0 1 1 1 0O 0 o 1 0 0 1 1 1 0 0 O
/B 0 1 1 1 0O 0 o0 1 0 1 0 Y% %lo 0 O
Plwlet/o 0l 1 1 11% 0 0]1 % 1 1 W b Register Address
MWA 0 1 1 1 0 0 1 0 0 0y 0 O OjO0 O O
CM"/x 0 1 1 1 0 0 1 0O 0 Y1 0 O0]JO O O
FXA 0 1 1 1 0 0 1 0 1 6010 0O O0OJO O O
XFR 0 1 1 1 0 0 1 1 0 0 0 0 N=# of words
CLR 0 1 1 1 0 0 1 1 1 0 0 0 binary=({n—-1)
NRM 0 1 1 1 0 0 1 1 0 1 0 0 O0jo 0 O
CDC 0 1 1 1 0 0 1 1 1 1 0 0 O0}0 O O
FMP 0 1 1 1 1 0 1 0 0 ojJO0O O O]J]O O O
FDV 0 1 1 1 1 0 1 0O 0 O 1 0 0]0 O 1
MRX 0 1 1 1 1 0 1 1 O oJ]oO0 O O0O]JO0O O O
DRS 0 1 1 1 1 0 1 1 0 O 1 0 0}0 O 1
MRY 0 1 1 1 1 0 1 1 0 1 0O 0o 0]0 0 O
MLY 0 1 1 1 1 0 1 1 0 1 1 0 0J]J0 O 1
MPY 0 1 1 1 1 0 1 1 1 0] 0 0 1 1 1 1
SFiole of1 1 110 1 O%% 1 Fh Skip Field
RlsZ/ Mg 0O]1 1 11|* 1 O[®% O % if bit 5 is 0, then skip to(P+n),
L% 011 1 1% 1 1% " % n=bits 0-4
SSSe o]1 1 1{({1 1 0% 1 O if bit 5= 1, then skip to(P—n),
SHS,¢ 0 1 1 1 1 1 0S¢ 1 1
S /m 1 1 1 1 s 1 0 Mo MR Ys n=two's complement of bits 0-4
S%Ss 111 1 1% 1 1]|% " %
RET 1 1 1 1 0 0 0 0 1 0 _complemented skip field
TC*s 1 1 1 1% 0 00 0 O 1 0 0]J]O0O O O
CM*%s 1 1 1 11% 0 04{0 O 1 1 0 010 O O
CL% 1 1 1 1{% 0 0 1 0 1 0 0 1 1 1 1
A%sR 111 1 1% O O0]1 O O0]JoOo O Shift Field
Rs*s R 1 1 1 1 g 0 0 1 Rls 1 0 0 in source,n=1-16
S*eL 1 1 1 1]% 0 O 1 1 0] 0 O binary=(n—1)
R*sL 1 1 1 1 s 0 0 1 1 1 0 0 complemented shift

Timings

c
rns and

Alphabetic List

Rit Patte

-
[
2 oo o NI Yo R— o TN
o 5
=
-] Mm M
£ S lao e nm o ~N
i ST FOONONN—UN T 5 6 QNOONNNNNOAN = OmMR MmN W=+ NN NN
R=] nn.lllllln/_n/_n AN A~ D 00 o 11135%%2132222
(@] %) 59 R N
o 11T T MNeoco~rtloocoo|l flocoocoo~tlojt~mee(t Tt T T 1T Tm—ococococoft T 11
~ 1 ccomm lococo cooooco| o lcoo OO0 OOO|~ = = =
[| 5
~ | EF coo—~r|floooco cocoocoocco| lolilooco o—~ocoocoo
15
%) Ll o ~rl|lloooco cor—oo |lo looo OO0 —~ O —
< OOy 2 gI©OorT QOO0 COOO|yg go—m— = QO sleOOOss«N%ssOOOOOOOOOOO
e 2 Y [1 gy ¥ 2 L2
333 33 | T33III3
n |ools 8 lococoo~—~—H|8 Sloo~O~—lfloO—~OO|% 8 8 8 8 YOO ODODODO H —
O (e N ew) N reA A A A O A~ — O — - OO O [N e Noleo N HOOAQOO — rr — r—
=
s | ~|oo CO~OOH0OO0OO cocococo| lcoco~ o—~ocoococo ° 5 °2°
=
D.m o0 — e - OO OO o = -~ OO OO A A OO =
-
M o |ooll |l |lco~roo~oco~H]| llcoococo ~|l{lco~~~ll | |]l |||~~~ —~0c~0c0co00
Sloco Y% cocoocovocococoo fcoocooo Yoocooco Y 'co000cco0o0oc00
— o @ m)) M 0 @ @ @ ®
T|loro~0c000CO0OMHMTO0OO0O M0N0 000O 0000 A HOO A~ AHAAO0O0O0 " ~0OO
w A OO rdArdrdrdrdrdrd rd rdA A A rd A A A rdA A A A A A A 1O OO OO0 A r+A QO
B HrrA A A O A A rA A rA A A r"d A~ OO A A A A~ At O A A A A A A O O OO rrdrd A QO o~ —
.AI.“ H A OO rmirHdrA A A r4rA A4 A A OO A rdrA A rdtrtrdrd rdrd A A A =S A OO = O~
VWl i L 00O~ OO0 £ 000000 1O 1000 4 aceenPO0000000OC
g
= [l = nABXV.. o < MrrPrv.Dr.
9 <O 1D <M <D LN WD A, s <> X S PN O Na
3 ABDDNBBDLLLMMMMPPBBDmMRSRXDMMDOHQVMWDDLPRRWORBBWW
= CCCcCc<cO0O0O00OOOO0LLVLANALOAANUWE N =LSsad0222=2=2ZzZa o ahf
=

-
|7}
= oo
d — -
o £
£
—
£ o o o o o o ™
e o | +6444444+44++44+ NN I FITITITITITIITTFTFTNDN S +
'".. 5 R B e B e B e B I | — — - R B S T o B e T T e B o B I I e B I B I I e I I I] [
[[[~ [=
(o) N ~N
—
o |1 rTTrrr () o oft S N N A N O O B 1
— [l o O —
|
|
0
=
[aV} — o O
.............. a8 8 £ g 8 g 8 2008000 004084000a4a s e
e e - X X X X X X X X X X X X X x i X
5 & 5 % 5 I R T A S - I S = =
o | =) !
<t o o O 2 2 — O
¥
£ 3
w o I o ol A I ~o
w woon N
O — o o ~O O O === O, 90 > oc oo —o
£ _ 1Tz . . OO_H_H_H_H1
8 o~ _— — OO i al r T T T — o O OO o
®
[« [o'e} — —OO O O — - O Or1 O OO0 QO — r—
-
M o |o coococooo cocooco~~mmooll ll ©
o (SIS
= o e OO O 11111111111881 OO
o le HAHOO OO Ot OO HOO——0O ~O oo
m Aanl 4 ™ R I TR o TR e T e R e B e B e B e R o B R IO e I Ranl
RO — — e e T I T o N i g —
M — 4 — —~ = - o o e e e OO — o o - -
o CO0OHHHHHH A 1000000000000 ~—<0O 4 00—~ OODOO
]
o
um c e ce <] nnM =1 =
. CONCMIZAXEIZAE QN0 L LY <cnQNOncma o
g AMBBEMBLLmZAAAABBBBDDDDEEFFHHMBLLOOSSTTZ i
* [aq) (s ofifa ol ofifa s Sl 0 o EKOOODOLODDNDNDDNDNNDDDDNDDDDNDNDLDDDDDLNDNDDW >
=]
L)

Machine Instructions B-13

Bit Patterns and Timings
Notes on timings:

All timings are in clock cycles. One clock cycle = 175 nanoseconds. (The clock rate is 5.7
megahertz.)

The symbols used to represent timing information are as follows:

n — number of bit positions to be shifted or rotated.
N — the current value in bits 0-3 of the instruction word.

B — the current «

t nt value in bits 0-3 of the instruction word

T — the total number of 0—1 and 1—0 transitions in the A register using an imaginary O to the
right of bit 0.

Z — the number of leading zeroes in the mantissa of Ar2. If Z = 12, then the total timing is 69
clock cycles.

Other factors that affect timing are as follows:

¢ Up to 4.3% of the total processor execution time is dedicated to dynamic memory refresh.

e The total execution time dedicated to CRT refresh is —

Minimum Typical Maximum

6 clock cycles 5% 30%

every 1/60 sec. (Full screen of alternating

(GRAPHICS mode) blinking, underlined or
inverse-video characters)

e Interrupt response depends upon certain hardware and software considerations. The
processor must be enabled with an EIR instruction. The operating system is allowed to
disable interrupts for up to 100 us during various operations. A fast handshake transfer
locks out interrupts until the transfer is complete. The processor must complete the cur-

rently executing instruction before acknowledging an interrupt.

o Add two clock cycles to the instruction execution time if an interrupt is pending. Software
overhead involved in getting to a user interrupt service routine consitutes a delay of
approximately 50 us to get to the service routine and 50 us to return from the service
routine. These delays can be lengthened by the effects of DMA, CRT refresh and memory
refresh.

B-14 Machine Instructions

e The processor locks out the initiation of a DMA transfer for a minimum of two clock cycles

and a maximum of 64 clock cycles. The times involved for DMA transfers are —

DMA read = 3 + (10n + d) + lockout time
DMA write = 3 + (9n + d) + lockout time

where n is the number of words transferred and d is the dual-port conflict time (0 = no
conflict...5 = continuous conflict). Since DMA transfers take priority over instruction
execution, these transfers can take up to 100% of the processor time, depending on the
data transfer rate of the peripheral device. The worst case involves data transfers to and
from a high-speed, hard disc.

e Due to bus conflicts resulting from two processors requesting one bus, processor interfer-
ence can affect timing. If a background program is executed entirely from the ICOM
region, processor interference does not come into play. This is the typical case. The worst
case involves executing a BASIC program simultaneously with an ISR. In this case, pro-

gram execution time can be as much as doubled.

The following table lists the available assembler pseudo-instructions with a short description of

Appendix C

Pseudo-Instructions

each.
Instruction | Form Description
ANY ARy Specifies a common or subroutine
declaration to be any type
BSS ESZ {expression} Reserves a block of memory
COM Co Preface for assembly language common
declarations
DAT IAT {expression} [,{expression}[,...]] Defines data generators
END EHI {name} Designates the end of a module
ENT EMT {symbol} [, {symbol} [,...1] Identifies entry points in the module
EQU Efl {expression} Defines a symbol
EXT EXT {symbol} [, {symbol} [,...]] Identifies external entry points
FIL FIL Specifies a subroutine declaration to be a
file number
HED HED' {comment} Source listing control for top-of-page with
change of heading
IFA IFA
IFB IFm
IFC IFC
IFD IFD
IFE IFE Beginning of conditional assembly
IFF IFF
IFG IFS
IFH IFH
IFP IFF {numeric expression}
INT IHT [o#2] Specifies a common or subroutine
declaration to be an integer
(o) IoF Turns off automatic indirection by
the assembler
ION I0H Turns on automatic indirection by
the assembler
LIT LIT {expression} Reserve memory for literals and links
LST LET Source listing control for enabling the
listing

C-1

C-2 Pseudo-Instructions

Instruction | Form Description
NAM +A {name} Designates the beginning of a module
REL REL [<x0] Specifies a common or subroutine
declaration to be full-precision
REP FEF {expression} Repeats instructions
SET Z7 {expression} Defines a symbol
SHO SHG [%] Specifies a common or subroutine
declaration to be short-precision
SKP Source listing control for top-of-page
SPC P {integer expression} Source listing control for printing blank
lines
STR TR [or] Specifies a common or subroutine
declaration to be a string
SUB SR Preface for a subroutine entry point
Contains actual number of parameters
passed by ICALL statement
after assembly.
UNL LHL Source listing control for disabling the
listing
XIF wIF End of a conditional-assembly block

Appendix D

Assembly Language
BASIC Language Extensions
Formal Syntax

The following is an alphabetical list of the BASIC Language extensions provided by the Assem-
bly Language ROMs.

Assembled Location

{symbol} [. {BASIC numeric expression}]
{expression} [., {BASIC numeric expression}]

where:

{BASIC numeric expression} serves as a decimal offset from the given label or constant.

{symbol} is an assembly location. It may be either a label for a particular machine instruc-
tion (in which case the address of the associated instruction is used), or an assembler-
defined symbol (in which case the associated absolute address is used), or a symbol

defined by an EQU instruction (in which case the associated value is used).

{expression} may be a numeric expression or a string expression. If numeric, a decimal
calculation is performed and the result is interpreted as an octal value; if the result is not
an octal representation or an integer, an error results. If a string expression is used, the
string must be interpretable as either an octal integer constant or a known assembly

symbol (see {symbol} above).

DECIMAL Function

IADR Function

IALE +« {assembled location}

D-1

D-2 Assembly Language BASIC Language Extensions Formal Syntax

IASSEMBLE

IHZZEMELE {module} [, {module} [....]1][3 {option} [, {option} [....]]]
IASSEMBLE [ALLI[& {option} [, {option} [....]1]]

where {module} is the name of an existing module in the source program.

{option} may be any of the following:

A B]

S e B

T

L IMES {numeric expression}
LIST

FEAE [DATA] {address} [5 {counter}][©HLL {subprogram}]
FERE [IATA] {address} [; {counter}][E0ELE {line identifier}]
£, [BATH] {address} [; {counter}][ZZ7T {line identifier}]
£ ALl [CALL {subprogram}]

SUE {line identifier}]

ALL [GOSt

£ ALL [GOTO {line identifier}]

[I e B P A T |
L B o Y T e T e O
p Al

where:

{address} is an assembled location.

{subprogramy} is the name of a BASIC subprogram.
{counter} is a numeric expression.

{line identifier} is a line in the BASIC program.

ICALL
IZHLL {routine} [{argument} [, {argument} [,...]] *]

where {routine} is the label associated with a SUB pseudo-instruction sequence and {data
item} takes on the same forms and attributes as parameters in BASIC’s CALL statement.

Assembly Language BASIC Language Extensions Formal Syntax

i {integer constant}

IDELETE

OELETE {module} [, {module} [....]]

TELETE [ALL]

froed ot

where {module} is the name of an existing module in the ICOM region.

IDUMP
IR {location} [3 {location} [z...]]
where {location} has the following syntax:
[{mode selection}] {address} [T:: {address}]

with {address} an assembled location and {mode selection} taking on any of the

following forms —

for ASCII character representation
for binary representation

for decimal representation

for hexadecimal representation

for octal representation

ILOAD

IL8AD {file specifier}

where {file specifier} is of the same form as elsewhere in BASIC (see Mass Storage

Techniques manual, or Operating and Programming manual).

IMEM Function

T i

©. {assembled location}

D-3

D-4 Assembly Language BASIC Language Extensions Formal Syntax

INORMAL
THCEMAL [{address}]

where {address} is an assembled location.

IPAUSE OFF
IFFLISE OFF

IPAUSE ON
IFFLSE 0

where {source line} may take either of the following forms —

[{label} :]{action}[! {comment}]
[{label} :] | {comment}

and:

{label} is of the same form as elsewhere in BASIC;
{action} is a machine instruction, pseudo-instruction, or data generator;

{comment} is any combination of characters

£ {module}[. {module}[,...]1]: {file specifier}
FE [ALL]: {file specifier}

{module} is the name of a module currently existing in the ICOM region.

{file specifier} is of the same form as elsewhere in BASIC (see the Mass Storage

Techniques manual or the Operating and Programming manual).

LITERALS

{expression} may be absolute or relccatable

OCTAL Function

=i © {numeric expression}

E-1

Appendix E
Predefined Assembler Symbols

The assembler has predefined a number of symbols and has reserved them as references to
special locations in memory. Each of these locations has a special meaning and function. You

may not redefine these symbols. They are —

Name Description
A Arithmetic accumulator
Arl }))
BCD arithmetic accumulators
Ar2
B Arithmetic accumulator
Base_page Base page temporary area (9 words)
C Stack pointer
Cb Block bit for byte pointer in C(most significant bit of address 13B}
D Stack pointer
Db Block bit for byte pointer in D(second most significant bit of address 13B)
Dmac DMA count register
Dmama DMA memory address register
Dmapa DMA peripheral register (lower 4 bits of address 13B)
End_isr_high
End_isr_low Reserved symbols for use with interrupt service routines
Isr_psw
Oper_1 Arithmetic utility operand address registers
Oper_2
P Program counter
Pa Peripheral address register (lower 4 bits of address 11B)
R Return stack pointer
R4
22 [/ 0O registers
R7
Result Arithmetic utility result address register
Se Shift-extend register
Utlcount
Utlend Reserved symbols for writing utilities
Utltemps

Each predefined symbol references a particular location in memory, except for the Utlend
symbol, which refers to an execution address of a system routine. A graphical representation of

these locations, plus others of interest, is presented on the next page.

E-2 Predefined Assembler Symbols

address*

address”
0o ——————— - ————
. CPU A 0
37 registers B 1
P 2
40 (reserved)
min=41 (at least 1 word) \ R 3
starting address R4 4
dependent upon RS 5
user data system needs
(ICOM area) R6 6
max:= R7 7
77756 address
77777 (reserved) dependent upon (reserv'er:l) 10
(atleast 1710 words)| starting address , Pa | 11
and length
100000 of ICOM (reserved) 12
. Cb L
(reserved) \\ Db ——1 L LDmapa 13
. \ Dmama 14
177557 \ Dmac 15
177560 \\ c
. 16
: Return stack \
D 17
177627 \
177630 \\ 20
(reserved) \ Aro 21
177644 \ 22
177645 \
: Base page \\ 23
. — LI 24
177655 \\ 1 s
177656 Oper_1 \ 25
177657 Oper 2 \
per_ \ (reserved)
177660 Result \
\
177661
177665 Utitemps \ 37
177666 Utlcount
177767 (reserved)
177770
: Art
177773
177774
. (reserved)
177777

*in octal representation

Utility Name LDA with: | LDB with: Exits Other Description “Minimum R-stack Entries” Utility Name LDA with: LDB with: Exits
Busy address of address of RET 1 Retrieves busy bits for a BASIC variable 2 Mm_write_start | address of address of RET 1 — memory overflow Mas:
bit pattern parameter mass storage | storage area | RET 2 — normal Stor
Error exit error N/A None — returns to Aborts execution of I[CALL statement, descriptor (A contains mass inf
- ; 5 storage transfer 1D)
number BASIC setting an error number
Get_bytes address of address of RET 1 Storage area consists of: Accesses substrings (or parts of arguments) Mm_ write_test mass storage [N/A RET 1 — transfer incomplete Mas:
storage area | parameter Ist word — starting byte transfer ID RET 2 — transfer complete Mn
2nd word — number of bytes to be 2 (A contains 0, or error
transferred number encountered
3rd word on — sufficient space during transfer)
for string
- . i - i RET 1
Get_elem bytes | address of address of RET 1 Array info obtained by Get_info Same as “Get_bytes” used for accessing elements Printer_select select-code al;gltther (A contains previous
storage area | array info utility. Relative element number of string arrays . P .
 be stored i int 2 printer select code; B
?\l}u;rd (1265) orfe r;n a.rr?y pointer contains previous printer
ot array info. width)
Storage area same as in Get_bytes.
Get file info address of file RET 2 — normal Storage area contents after return: Accesses a file-pointer Print no If address of N/A RET 1 — memory overflow Strir
_tile__ _no_| v
storage area | number RET 1 — file unassigned word 0 — lower 16 bits of file address string RET 2 — pressed
word 1 — number of defined records RET 3 — normal
word 2 — current record number
word 3 — current word in current record 2 Print_string address of N/A RET 1 — memory overflow Strir
word 4 — size of defined record - string)
word 5 — mass storage unit specifier RET 2 — %) pressed
word 6 — buffer address RET 3 — normal
word 7 — check read (0O=off, 1=o0n)
word 8 — high 7 bits of file address Put_bytes addressof | addressof | RET1 Stor
word 9 — (reserved by system) storage area | parameter
Get info address of address of RET 1 Storage area must be at least: Returns the characteristics of a variable
’ storage area | array info 3 words — simple variables passed as a parameter or existing in common 3 Put_elem_bytes | address of address of RET 1 Sam
18 words — arrays storage area | array info
for arrays, add 3 words for each 64K
bytes in your machine's memory Put_element address of address of RET 1 Sam
storage area | array info
Get _element address of address of RET 1 Array info obtained by Get_info Same as “'Get_value’™, used for elements in _
storage area [parameter utility. Relative'element_n.umber an array Put_file_info address of file RET 1 — file unassigned Sam
must be stored in array pointer 2 storage area | number RET 2 — normal
(word 16) of array info.
Storage area must be sufficient Put_value addressof | addressof | RET1
size to hold value. storage area | parameter
Get_value address of address of RET 1 Storage area must be sufficient Returns the value of a BASIC variable 2] Add
storage area| parameter size to hold value Rel _math number of execution RET 1 X
operands address (A contains 0, or an error Ope
Int_to_rel N/A N/A RET 1 Load address of integer into Data type conversion from number) into
Oper_1 and address of storage integer to full-precision 2 area
area into Result. Storage area is fo
must be at least 4 words. i
. Add
Isr _access address of select code RET 1 — linkage not select code is 0-7 for low-level or 8-15 for Establishes linkages for interrupts Rel_to_int N/A N7A RET 1 . b com
ISR in bits 0-3; established for high-level: resource code is: Overflow bit may be set in O
access reason found in 0 — noresources area
code in register A: 1 — asynchronous access _ .
bits 4-5: ~ 1 = resources 2 — asynchronous access with DMA o+u ndd
trial unobtainable 3 — synchronous access Rel_to_sho N/A N/A RE)T 1ﬂ bi be set cont
counter — 2 = select code trial counter is number of attempts before ver 0“.} it may be si) Ope
bits 8-14 linked to aborting (RET 1, with A setto — 1) (A contains error number area
another ISR shot
RET 2 — normal
Mm_read start address of RET 1 — memory overflow Mass storage descriptor is 3 words containing: Prepares to read a physical Sho_to_rel N7A N/A RET 1 Sam
mass storage] N/A RET 2 — normal word 1 — mass storage unit specifier record from mass storage 5+u*
descriptor (A contains mass word 2 — least significant 16 bits of record number To_ system N/A N/A RET 1 Use
storage transfer 1D) word 3 — most significant 7 bits of record number - top
Mm_read xfer mass storage| address of RET 1 — transfer incomplete Storage area must be at least 128 words - - .
transfer ID storage area | RET 2 — transfer complete Mass storage transfer ID would be returned 5—u* (Be sure to save the r ontents of valuable processor registers before calling a utility.

(A contains 0, or
error number encountered
during transfer)

from Mm_read_ start utility.
Storage area receives transferred information

Reads a physical record from mass storage

Utility Name LDA with: LDB with: Exits Other Description ‘‘Minimum R-stack Entries’”’
Mm_write_start | address of address of RET 1 — memory overflow Mass storage descriptor same as in Mm_read_start. Writes a physical record to mass storage
mass storage | storage area | RET 2 — normal Storage area must be at least 128 words and contain 54uk
descriptor (A contains mass information to be transferred
storage transfer ID)
Mm_ write_test mass storage | N/A RET 1 — transfer incomplete Mass storage transfer ID is returned from Verifies a physical record was
transfer ID RET 2 — transfer complete Mm_ write_start utility. written to mass storage .
(A contains 0, or error 5+u
number encountered
during transfer)
Printer _select select-code printer RET 1 Changes or interrogates select-code
width (A contains previous for standard printer
printer select code; B 1
contains previous printer
width)
Print_no_If address of N/A RET 1 — memory overflow String must be in same for as standard string. Gives the operating system a chance to complete .
string RET 2 — pressed I/ O operations 5+u
RET 3 — normal
Print_string address of N/A RET 1 — memory overflow String must be in same form as standard string Outputs a string to the standard printer
strin
s RET 2 — pressed S+u*
RET 3 — normal
Put_buytes address of address of RET 1 Storage area same as Get _bytes Replaces substrings (or parts of arguments) 2
storage area | parameter
Put_elem bytes| address of address of RET1 Same as Get_elem_ bytes Same as ‘‘Put_bytes’’, used for accessing elements of 2
storage area | array info string arrays
Put_element address of address of RET 1 Same as Get_element Same as ‘‘Put_value’’, used for elements in an array 9
storage area | array info
Put_file info address of file RET 1 — file unassigned Same as Get_file_info Manipulates a file-pointer 2
storage area | number RET 2 — normal
Put value address of address of RET1 Changes the value of a BASIC variable 2
storage area | parameter
Rel math number of execution RET 1 Address of first operand into Provides access to all the arithmetic routines
operands address (A contains 0, or an error Oper_1 and address of second operand
number) into Oper_2. Address of result 5+u*
area into Result. Execution address
is for the desired routine.
Rel to_int N/A N/A RET 1 Address of the value to be Data type conversion from full-precision to integer
Overflow bit may be set converted should be stored 2
in Oper__1, address of storage
area of integer into Result
Rel to_ sho N/A N/A RET 1 Address of the value to be Data type conversion from full-precision to short
Overflow bit may be set converted should be stored in
(A contains error number) Oper_1; address of storage 3
area for converted number
should be stored in Result
Sho_to_rel N/A N/A RET 1 Same as Rel _to_sho Data type conversion from short-precision to full 2
To_system N/A N/A RET 1 Used within a loop, executed as many times as lines | Outputs string to standard printer without carriage- -
u

to print. Expedites printing process.

return linefeed sequence.

(Be sure to save the r antents of valuable processor registers before calling a utility.

*u = the number of levels of JSMs called by the user immediately after the utility is invoked.

Appendix F
Utilities

F-1,2

Appendix G
Writing Utilities

A utility is a “‘special”’ assembly language subroutine. What makes it special is a set of instruc-
tions which keeps it from being displayed when a program is being stepped through using the
& key. By creating a utility, you can make your STEP actions in debugging simpler. If you
already know what a section of code does, and don’t want to have to step through each
instruction in that section each time it is encountered, you can make it into a utility. Then,
whenever it is encountered, the section is stepped through as if it were a single statement. The

stepping of programs is explained in Chapter 8, Debugging.

The following must be done to make a section of code into a utility —

1. The entry point for the utility must consist of the instruction —

FET n (n may be any number, — 32 through + 31, depending upon the desired

returning point)

G-1

G-2 Writing Utilities

The locations Utltemps, Utltemps+1, Utltemps+2, Utltemps+3 and Utltemps+4 are available
to you for temporary storage. The absolute addresses of these locations are 177661 through
177665. The locations can be used at any point in your assembly language routine but are most
convenient for use within utilities.

System utilities also use the Utltemps locations. If you are calling system utilities from your own
utilities, the Utltemps locations should be saved before the system utility call or avoided al-

together.

The Utltemps locations as well as the locations Oper 1 and Oper_ 2 cannot be stepped
through for debugging purposes.

It is not required that a utility actually be a subroutine. It may also be in-line code by replacing
the RET with JMP * +2.

Utilities, and calls to utilities, are not allowed in interrupt service routines (ISRs).

Appendix
I/ O Sample Programs

Handshake String Output

[/ O Sample Programs

H-2

I/0 Sample Programs H-3

~ Handshake String Input

1/ 0 Sample Programs

H-4

P e peed

-
i

ot ot

1/0 Sample Programs H-5

Interrupt String Output

H-6 1/0 Sample Programs

[/0 Sample Programs H-7

I/ 0O Sample Programs

H-8

bt

[}

-

Tt

oot
R

00

L e e]

bt

e

-
Ll

L

it

DN I O

Pt bl o o

i)

L
[y

(SR

i

[

i
ot b

bt

[/0 Sample Programs H-9

[/ 0O Sample Programs

H-10

DMA String Output

1/0 Sample Programs H-11

H-12 [/0 Sample Programs

A STRIMG USIHG DM

FLUICHELE ARE:

bl o

]

e o] g

g

i
L

[/ 0 Sample Programs H-13

[

H-14 1/0 Sample Programs

T
i

b
+
S

bl bt
=

[/0 Sample Programs H-15

T T T e B I B S I

.

(i

IHTEGER

i

H-16 1/0 Sample Programs

e
ENTER

IHFUT "HFIE ZELECT CODETY,S
FRIMT "EEY © — TUTPUT 4
DIsF “IDLE"
GOTO 370
Dutpatt s GOSUE Lispat omd
LIMPUT "DARTA 7O S
ICALL Hpib cutputi
FRIMT ®
FETURM
Enters
ICALL Hpib ente
FREINT *
RETURH
1 :
Lirpust_cmd: LIMPUT "COMMAND EYTES?", Cud$
RETURH

[xa)

XA B I A

=lect code, Cmdd, Dataf:

DATA SEMT =";D=ta¥

GOSUR Lirgut omd
tect code N CmdF 2 VarEr
AT ="piard

IRTH FERD

.,_.

RS WIS B

A A
T

- T
[en

3

PR R R S SR S ST N S (A o)
X RN e YR T SO PR OV
T [y

Hipib

R et B o SR B O}

Seigct codsl

|
!
Farm ptrl !

bl bt b | fed feed

OG0 0 O w0 O

]
(U S U Y IR B R B e o R R

ISOURCE
SOURCE
ISOURCE

I50

(R AR O R B (R

1o

Out_parm: SUE

ISURCE
ISOURCE F_datal
ISCURCE Hpib output ILDE =0uil_parm !
ISGURECE Hpib setup
ISOURCE LDA Cut parm !
CPR =2
Ho output: RET 1 !
IS0URCE LI =Datz !
ISDURCE : =F data
ISOURCE Get_ualus
1S0URCE A Tatm !
ISOURCE Mo otput !
ISOURCE 1 Hpik status !
ISOURCE Statusd !

[%

S T

-
v
el
7
7
el
¥

-] T

IS3URECE AMD =488

TSQURCE EZR #+3

ISOURCE LA =561 !
ISOURCE TZM Ervor exit

IECURCE LA =lata+] i

L
F
[s

SFC #
i, I
Ilata
Data loop

FET 1

Data Toop!

ITSOURCE
TSOURCE
ISDiRCE
T=0URCE
TSOURCE s
ISOURCE

Ert_paral

m

I CHECE BYTE

f 5 - ERITH

St walue, Pul wvalus, BEreor exit

STRING TO HOLD CRD BYTES
STRIMG TO HOLD DATA EYTES
IMTERFACE SELECT CODE
FOGIMTER TO PARM PSEUDD OPS
EQUATES

S WORDE TG COMTRIM STATUS
BYTES FROM 9263

CALL SETUR ROGUTIHE

IS5 THERE A DATH PARAMETERT

[y

TO BASIC
IT

M3, RETURH
TES, FETCH

COUNT

IF ZERG, DO MOTHIMG

MAKE SURE ME RARE ADDRESSED
TG THLE

ELSE GIVE ERROR 561

ELZE COMPUTE EYTE FOINTER

1 S0 WE CAH MITHDRAW BYTES
I FROM THE STRING

WRIT FOR CARD

OUTRUT A BYTE

SEE IF DOME WITH STRIHG
MG

DOME, S0 GO BRCK TO BRSIC

I/ 0 Sample Programs H-17

! CALL SETUF REQUTIHE

P IS THERE A DATAH PARAFETERT

L]

[ey S

[
=

!ELSE GIVE ERREOR D82

CLEAR DRTA STRIMG COUNTER

C1OSET UR BYTE POIHTER FoR DRATA

L WAIT F
'OETART
POWAIT F
READ DATA FROM

LIS

I
I

=
=

IT TtF?IHﬁTBF'

T BYTE INTH STRING
BUMF STRING LENGTH

REFEAT FOR MEXT EYTE

{ RETURN DATA TO PARAMETER

’T‘l

SETUR ROUTIHE
i B F*EUES P DCOMTAING PRRM COUNTS

WERIFY CARD IS A 92834
STRING PRRPMETER AND OUTPUT IT

1
1

1
is
i

I
e
I
1
T

i
T
ik
It
I
'{

I
1
z

1
{

1
1
i
T

1
1
13
I
I
T
T o
L

T

H

I
T

&
IS
I
I
T
I
i
I
I

Pret foh et b foud foel ot]

OOHECK RAMGE FOR 1 70 i4

OIF OUT OF EAMGE, SIVE
P

i SET UF PR OAMD D0 STRTUS
POM CARRDOTO VERIFY IT

| Enadn

IMTERFACE

£
C
ﬁ

H-18 1/0 Sample Programs

LDE
HIE
LI

ISP

Pt peet ped el fd e

s

Pt e el e

£

e

Cud joop!

LIRRE

o,
il

-
B
TEL

AU

(RN

L
oy
-
5

Pt pete Bl e e ok jenh et

104

L

e et
AU

e

(I wx
Ja
"

1258 ! Zx THE COMTROLLER FULL
1568 ! THE LIR

o

S TO DIR BEFCRE THE LIA R
AHY SYHCHROHUS TMTERRUPT
FLE THE TAPE :

e
[

i

THE GHLY ALTERWATIVE

i

E
(A R x|

[T
N
XX

[}

POIF MY, GIVE ERROR

& i
& !

T O O T (O T (T A T e e e e

. =
1 ":" L&l
AR BRI

2

oot oo ot bt el P o ol fend et et o fod bl bl el bl el bl et bl bl bl bl poef Bl g el b b o el deed bd bl b brd bt b bl bt el e bl i bk b bl et bt el bt bl ok bl bt B
.) L) LY . ; 3 (LY o

1
e ke b b

"l

Ay

i
RN Y

1/0 Sample Programs H-19

Clock Example

Real Time

o

it

A

H-20 1/0 Sample Programs

=]

s R

[/0 Sample Programs H-21

H-22 1,0 Sample Programs

I-1

Appendix I
Demonstration Cartridge

Along with the Assembly Language Development and Execution ROMs, a tape cartridge has
been provided to demonstrate the capabilities of the assembly language system. This Dem-
onstration Cartridge (HP part number 11141-10155) is specifically intended to —

o Graphically display the kind of speed increases which can be obtained by using assembly
language subprograms for certain types of applications.

e Provide a number of programs which can serve as examples of how to write assembly
language subprograms.’

o Provide a set of definitions for some of the special function keys so that those keys can be

used as typing aids.

Using the Tape

To run any of the demonstration programs, execute the statement —

A set of instructions is displayed which can then be followed interactively.

Typing Aids

The starting and final cursor positions of the typing aids were chosen with assembly listings in
mind. The intent in selecting these positions was to make it easy to enter source as it would

appear when listed within an assembly listing.

The following table gives, for each key, the typing aid, the position where the typing aid begins,
and the position where the cursor will finally reside. Because some typing aids end with a blank,
the triangle (A) has been chosen to indicate the end of the typing aid. All blanks &.*er the start of
the typing aid, and before the triangle, will appear when the key is pressed.

1 The commented source for the chess program is contained in file CHESS.

I-2 Demonstration Cartridge

Typing Aid Final Cursor
Key | Typing Aid Starting Position | Position

0 iz 11 31

1 I 11 19

2 I 11 21

3 L home

4 i home
7 (over second quote mark
in insert character mode)

5 @ home 6

6 @ ; T7A home 11 (over second quote mark
in insert character mode

7 I FA 11 53

8 | (we) ZET #¢A home 6 (over second quote mark
in insert character mode)

9 LOAD FPRA home 7 (over second quote mark
in insert character mode)

10 SHYE FRA home 7 (over second quote mark
in insert character mode)

11 STORE PEA home 8 (over second quote mark
in insert character mode)

12 | (Gee) ERIT A home 6

13 | (iwe) T ##A home 6 (over second quote mark
in insert character mode)

14 = home 6

15 home 9

16 home 12

17 = home 13

18 home

19 home

20 home 11

21 | (used by other keys)

22 | (used by other keys)

23 fA 51 53

24 THA home 18 (over second quote mark
in insert character mode)

25 | BIH current — 1 current + 4 (over second

(use only after using keys 9 or 11) quote mark in insert

character mode)

Demonstration Cartridge -3

Typing Aid Final Cursor
Key | Typing Aid Starting Position Position

E
26 EE~- @ home

{use before keys 10 or 11)

27 | EEY current — 1 current + 4 (over second
(use only after using Keys 9 or 11) quote mark in insert

character mode)

28 current current + 2

29 current current + 2

30 home 8 (over second quote mark
in insert character mode)

31 home 9 (over second quote mark

in insert character mode)

I-4 Demonstration Cartridge

Appendix J
Error Messages

Mainframe Errors

Missing ROM or configuration error. Also, check to see if all option ROMs are
installed properly.

Memory overflow; subprogram larger than block of memory. Also check to see
£

H + 3 ~
if your arrays are too large to fit in memory.

Line not found or not in current program segment. Check the spelling of line

labels and line identifiers.

Improper return. Branched into the middle of a subroutine.
Abnormal program termination; no END or STOP statement.
Improper FOR/NEXT matching.

Undefined function or subroutine. Check spellings.

Improper parameter matching. Check the parameter lists in SUB and CALL,
and DEF FN and FN statements to see if they match in number and type.

Improper number of parameters. Check the number of arguments used in an
FN or CALL reference.

String value required.
Numeric value required.

Attempt to redeclare variable. Once a variable name has been declared in a
DIM, COM, REAL, SHORT or INTEGER statement, it can’t be redeclared in

that program segment.

Array dimensions not specified. You must dimension the array, either

explicitly or implicitly.

Multiple OPTION BASE statements or OPTION BASE statement preceded by
variable declarative statements.

Invalid bounds on array dimension or string length in DIM, COM, REAL,
SHORT or INTEGER statement. Strings can’t be longer than 32 767 charac-
ters. The range of array subscripts is —32 767 through 32 767.

J-1

d-2 Error Messages

15 Dimensions are improper or inconsistent; more than 32 767 elements in an
array. Check for wrong number of subscripts in an array reference. Check any

matrix multiplication for proper sizes.
17 Subscript out of range.

i Substring out of range or string too long. Check substring specifiers against
length of string.

i% Improper value. Check numbers being entered, especially their exponents.

o)
=
s

Integer precision overflow. The range is —32 768 through 32 767.

=1 Short precision overflow. Short-precision numbers have six significant digits

and an exponent in the range —63 through 63.

22 Real precision overflow. Full-precision numbers have twelve significant digits

and an exponent in the range —99 through 99.

2 Intermediate result overflow.

TAN (n % 7/ 2), when n is odd

I
Y

23 Magnitude of argument of ASN or ACS is greater than 1.

L]

Zero to negative power.

By

Negative base to non-integer power.

LOG or LGT of negative number.

[

Wi

LOG or LGT of zero.

O]

i SQR of negative number.

Ei Division by zero; or XMOD Y with Y = 0.

o String does not represent valid number or string response when numeric data
required. Check any use of VAL function and its argument. Check for correct
spelling of variable name.

a3 Improper argument for NUM, CHR$, or RPT$ function.

ad Referenced line is not IMAGE statement. Check the line identifier in the
PRINT USING statement.

a5 Improper format string.

Out of DATA. Make sure READ and DATA statements correspond. Use RE-
STORE if appropriate.

Error Messages d-3

27 EDIT string longer than 160 characters. Try using a substring.

[/ O function not allowed. TYP and other I/ O functions aren’t allowed in any
I/ 0 statement like DISP or PRINT. Place the value into a variable.

i

Function subprogram not allowed. An FN reference isn’t allowed in any I/0O

statement, or in redim subscripts. Place the value into a variable.

48 Improper replace, delete or REN command. SUB and DEF FN can only be
replaced by another SUB or DEF FN. They can only be deleted if the rest of
the corresponding subprogram is deleted. A renumbering may cause out-of-

range line numbers if completed, so an error occurs; check increment value.
41 First line number greater than second.

iz Attempt to replace or delete a busy line or subprogram. Typically, this is
caused by trying to delete an input statement that is still requesting values.

473 Matrix not square. The dimensions of an identity matrix or of one used to find

an inverse or determinant must be the same size.

dd [llegal operand in matrix transpose or matrix multiply. The result matrix can’t

be one of the operands.
45 Nested keyboard entry statements.

£ No binary in memory for STORE BIN or no program in memory for SAVE.

Check line numbers in SAVE against program in memory.

47 Subprogram COM declaration is not consistent with main program. Check

number, type and dimensions of variables.

4 Recursion in single-line DEF FN function. Only subprograms can be called

recursively.

E Line specified in ON declaration not found.

B File number less than 1 or greater than 10.

= File not currently assigned. Execute an ASSIGN statement for the file, or check

the accuracy of the file number used.

52 Improper mass storage unit specifier. Check the values of the select code, unit

code and controller address.

Improper file name. A file name can have 1-6 characters and can’t contain a

J-4 Error Messages

Improper file name. A file name can have 1-6 characters and can’t contain a
colon, quote mark, NULL or CHR$(255).

Duplicate file name. Choose another name or PURGE the old one.

Directory overflow. There is a maximum number of files that a mass storage

medium can hold. A file will have to be removed to add another.
File name is undefined. Check the spelling.
Mass Storage ROM is missing. Check to see that the ROM is installed properly.

Improper file type. Use LOAD for PROG files, ASSIGN and GET on DATA
files and LOADKEY for KEYS files.

Physical or logical end-of-file found. Attempting to READ# or PRINT# past
the end of the file. Compare the data list to the file size.

Physical or logical end-of-record found in random mode. Compare the data

list to the record size.

Defined record size is too small for data item. You can either PURGE and

RE-CREATE the file with longer records or regroup the data being recorded.

File is protected or wrong protect code specified. Check to see that the protect
code is included and spelled properly.

The number of physical records is greater than 32 767. That’s the limit; use

something smaller.

Medium overflow (out of user storage space). A file can’t be set up because

there isn’t enough space. Use another medium or purge unwanted files.

Incorrect data type. You can’t use GET on a DATA file that doesn’t contain a
program. Use TYP to find out what kind of data the computer is trying to be

read.

Excessive rejected tracks during a mass storage initialization. The medium
can’t be initialized. If the medium is a flexible disk, use a different one. If the
medium is a hard disc, call your HP Sales and Service Office for assistance, to

determine whether there has been a hardware failure.

Mass storage parameter less than or equal to 0. Check values of variables.
Record numbers, record lengths and number of defined records must be posi-

tive numbers.

()]

o]
b
Bt

Error Messages

Invalid line number in GET or LINK operation. Check line numbers. May be

trying to LINK to file that doesn’t contain a program.
Format switch on the disc off. Turn it on.

Not a disc interface. Check mass storage unit specifier.
Disc interface power off. Turn it on.

Incorrect controller address, controller power off, or disc time out. Check mass

storage unit specifier; make sure controller is on.
Incorrect device type in mass storage unit specifer.
Drive missing or power off.

Disc system error, type 1.

Incorrect unit code in mass storage unit specifier.
Disc system error, type II*.

Reserved for future use.

Cartridge out or door open. Also check to see if interface is connected prop-
erly.

Mass storage device failure. Possible power failure.

Mass storage device not present. Check mass storage unit specifier.

Write protected. Check the write-protection device on the medium or drive.
Record not found. There is a bad spot on the medium.

Mass storage medium is not initialized.

Not a compatible tape cartridge.

Record address error; information can’t be read. Hardware failure. Check for a
dirty read head.

Read data error. Hardware failure. Check for a dirty read head.
Check read error.

Mass storage system error.

Reserved for future use.

Item in print using list is string but image specifier is numeric.

1 See the Mass Storage Techniques Manual.

d-5

Jd-6 Error Messages

181 [tem in print using list is numeric but image specifier is string.
18z Numeric field specifier wider than printer width.

ERGHE: Item in print using list has no corresponding image specifier.

g4 ON KBD or TOPEN not allowed in subprogram.
185183 Reserved for future use.
1ig Plotter type specification not recognized. Check spelling of “GRAPHICS”,

“9872A” or “INCREMENTAL”.
iii Plotter has not been specified. Check select codes.
112 No graphics hardware installed in the System 45B.
= LIMIT specifications out of range.
1i4 98036 card improperly configured.
11T TDISP not allowed unless peripheral keyboard active.
118 TOPEN is active on another select code.
1iF—14% Reserved for future use.
158 Improper select code.

151 A negative select code was specified that does not match present bus address-
ing.
e Parity error.

153 Either insufficient input data to satisfy enter list, attempt to ENTER from

source into source or enter count exhausted without linefeed.

154 Integer overflow, or ENTER count greater than 32 767 bytes or 16 383 words.

Invalid interface register number. (Can only specify 4-7.)

o

iy

Improper expression type in READIO, WRITEIO, or STATUS list.

No linefeed was found to satify % ENTER image specifier, or no linefeed

record delimiter was found in 512 characters of input.

Improper image specifier or nesting image specifiers more than 4 levels deep.

Numeric data was not received for numeric enter list item.

Repetition of input character more than 32 768 times.

oo

Error Messages

Attempted to create CONVERT table or EOL sequence for source or destina-

tion variable which is locally defined in a subprogram.
Atitempted to delete a nonexistent CONVERT table or EOL sequence.

[/ 0O error, such as interface card not present, device timeout, interface or
peripheral failure {Interface FLAG line=0.}, stop key pressed or improper
interface card type.

Transfer type specified is incorrect type for interface card.

A FHS or DMA transfer with no format specifies a count that exceeds th size of

the variable, or an image specifier indicates more characters than will fitin th

o

specified variable.

A NOFORMAT FHS or DMA type transfer does not start on an odd numbered

character position, such as A$[3].

Interface status error, TRLL Character or an EOIl was received on an HP-IB

Interface before ENTER list or image specification was satisfied.

Reserved for future use.

Improper argument for OCTAL or DECIMAL function or assembled location.
Break Table overflow.

Undefined BASIC label or subprogram name used in IBREAK statement.

Attempt to write into protected memory; or, attempt to execute instruction not
in ICOM region.

Label used in an assembled location not found.
Doubly-defined entry point or routine.

Missing [COM statement.

Module not found.

Errors in assembly.

Attempt to move or delete module containing an active interrupt service
routine.

[IDUMP specification too large. Resulting dump would be more than 32 768

elements.

Routine not found.

J-8 Error Messages

Unsatisfied externals.
Missing COM statement.

BASIC’s common area does not correspond to assembly module require-

ments.
Insufficient number of BASIC COM items.
Reserved for future use.

Binaries not allowed in LOAD SUB file. Do LOAD, SAVE, SCRATCH A, GET
and STORE on the file to get rid of binaries. However, the loaded program

may not run after the binaries are removed.

Volume not mounted. Mount it and execute a VOLUME DEVICES ARE state-
ment.

Operation not allowed on tape. Only the BKUP file used in DBBACKUP and
DBRECOVER is allowed on tape.

Bad status array. It must be defined as integer precision with = 10 elements.
Check spelling and current size.

Improper data base specified or data base not open. Improper name, or per-

forming data base operation with invalid name.

Data set not found. Check set name or number and make sure it is on the

volume specified in the schema.

Reserved for future use.

Data base requires creation. Perform a DBCREATE.
Reserved for future use.

Volume name not part of data base. Check spelling.

Out of available memory for a DBOPEN, DBBACKUP or DBRECOVER. Out
of read / write memory if executed from main program. Out of special area if

executed from subprogram, so perform the DBOPEN in the main program.

Improper or illegal use of maintenance word. Check spelling and leading or

trailing blanks.
Data set not created.

Reserved for future use.

Error Messages dJ-9

b—

mproper backup file. In DBRECOVER| backup file has incorrect information
in header or no primary DBBACKUP /RECOVER currently in progress (for

secondary operation).

=S5 Incomplete backup file. More than one volume in backup; probably mounted

in the wrong order. Start the recovery over.

225 Improper utility version number in root file. Rerun Schema Processor to gen-

erate new root file.

pRpE Corrupt data base — must purge and redefine. Purge root file and run Schema

Processor.

227 Corrupt data base — all sets require erasure.
Z2EE Data sets cannot be re-created without root file.
s Operation not allowed while DBOPEN current. Perform a DBCLOSE mode 1.

2EG Improper set listin DBBACKUP, DBCREATE, DBERASE, DBPURGE or dup-
licate sets in the set list.

EEI-ZEZ Reserved for future use.

233 Required data set root file not mounted. Mount it and perform a VOLUME
DEVICES ARE.

L Referenced line not a PACKFMT statement. Make sure line identifier is correct
and that it references a PACKFMT statement.

255 Reserved for future use.

B Insufficient length in a PACK statement, or insufficient current length in an
UNPACK. Insufficient length in a DBBACKUP or DBRECOVER statement.

27 List length > 32 767 in PACK or UNPACK. Array in PACKFMT too large.

Make sure it is the correct variable; redimension if necessary.

SEE Numeric conversion error. Improper real number found. Check PACKFMT to
make sure a REAL or SHORT variable, not INTEGER is being unpacked.

2% UNPACK requires a source string of greater length.
SER—EEE Reserved for future use.

CCOM area not allocated

a8l Not allowed when channel is active

J-10 Error Messages

CMODEL statement required

Not allowed when trace is active

Too many characters in CWRITE

New CCOM size not allowed when channel is active
98046 card failure

Insufficient CCOM allocation

Illegal character in CWRITE of non-TRANSPARENT data
Not allowed for this CMODEL

CCONNECT statement required

Not allowed while Data Comm is suspended

Improper CSTATUS array

Reserved for future use.

Lexical table size exceeds array size.

Improper pointer array*.

Non-existent dimension specified in MAT REORDER.
Pointer array contains out-of-range subscript value.
Pointer array length does not equal number of records.
Pointer array is not one-dimensioned.

Number of records (plus twice the number of secondary keys plus twice the
number of substrings) exceeds 16 383.

Subscript extends beyond dimensioned maximum length.
Subscript out-of-range in key specifier.

Starting location is an out-of-range subscript value.
Lexical table is too small to include all characters.

Main lexical table length plus mode section length does not equal specified
table length.

* This error occurs when data is lost in the process of reordering the array. If this error does not occur, it does not necessarily
imply that the pointer array contains a permutation.

Error Messages dJ-11

ok

e Array is not one-dimensioned or is not integer.
a3 Lexical mode section pointer out-of-range.
Zdd Lexical table length exceeds 16 383.

Reserved for user.

- octal number ¢ octal number

This error indicates a malfunction in the machine’s firmware system. Contact your Sales

and Service Office.

I/ O Device Errors

Two. error messages can occur when attempting to direct an operation to an 1/ O device that is
not ready for use. A printer which is out of paper or no device at a specifed select code are

examples. The first message that appears is —

- select code

If the condition is not corrected, the machine beeps intermittently and the following message

replaces the first —

select code

The I/0 device can be made usable by correcting the error (loading paper, or changing the

select code, for example), then executing the READY# command —

select code

This command readies the [/ O device and the operation which was attempted is attempted

again. The select code must be specified by an integer.

If you get an [/ O error on select code 0 and the printer is not out of paper, call your Sales and
Service Office.

In some cases, such as an interface which is not connected, READY# for that select code may
not solve the I/ O error. In this case, STOP should be pressed to regain control of the compu-
ter. Be sure to turn the power off before inserting an interface. After the problem is remedied,

the operation or program can be tried again.

J-12 Error Messages

If you get an 1/ O error and you have an ON KBD statement in effect, you must press STOP to
gain control of the computer. Otherwise, the READY# command will be trapped by ON KBD.

CSTATUS Element 0 Errors

i Timeout before connection

11 Clear to Send line false or missing clock
1643 Channel MEMLIMIT overflow

181 [llegal protocol from remote

L M Input buffer overflow

g3 Internal buffer overflow

Rt Autodisconnect forced

1EE RETRIES count exceeded
igs NOACTIVITY timeout

=8 98046 buffer overflow

Assembly-Time Errors

oo Doubly-defined label
B END instruction missing; or module name does not match.
¥ Expression evaluation error.
Literal pools full or out of range.

ICOM region overflow.
R Operand out of range.
i Argument declaration pseudo-instruction out of sequence.
H Incorrect type of operand used.

Undefined symbol.

Error Messages

IMAGE Status Errors

The following are possible values and meanings of the condition word (first element of the

status array). After an error, the status array is as follows —

Element

Description

1
24

—
oWV X0,

Condition word is non-zero

No change

DBOPEN mode

Statement identification number
Program line number

0

Value of the mode parameter
Integer-for system use only

Each statement has an identification number.

Condition

Word Value Error Description

i Successful execution — no error

Number | Statement
401 DBOPEN
402 DBINFO
403 DBCLOSE
404 DBFIND
405 DBGET
406 DBUPDATE
407 DBPUT
408 DBDELETE

-1 Improper data base name; already have read / write access to the data base

—i5 You may not open additional data bases; five are already opened

-ii Bad data base name or preceding blanks missing. Don’t change the first two

characters. Data base may not be open.

-1 DBPUT, DBDELETE and DBUPDATE not allowed in DBOPEN mode 8

-z Bad password — grants access to nothing or not to that set. Check spelling.

Data item, data set, or volume nonexistent or inaccessible. Check spelling and

DBOPEN password. Volume references must be numeric for DBINFO.

J-13

d-14 Error Messages

Detail data set required
You lack write access to this data set

DBPUT or DBUPDATE not allowed on Automatic Master. Check correctness

of set reference.

Improper mode in data base statement. DBGET mode 5 bad — specified data

set lacks chains

Item specified is not an accessible key item in the specified set. Bad @

. P

parameter — must be *#; " or *E ¥ or TEY,

Root file name in disc directory and name in root file are different. Make sure

root file not moved or renamed.

Root file version not compatible with current IMAGE /45 statements. Incorrect

version of Schema Processor used.

Data base requires creation

Data or structure information lost. Data base must be erased or redefined.
Cannot DBOPEN while a DBBACKUP or DBRECOVER is going on.

End of file on serial DBGET; no entries following the current record.

Negative record number on directed DBGET. Check record number and spel-
ling.

Record number greater than capacity on directed DBGET. Check record
number and spelling.

End of chain encountered
The data set is full

No current record or the current record is empty; make sure that a current
record is defined for this set. There is no chain for the key item value. There is

no entry with the specified key value
Broken chain. Must UNLOAD the data base.

DBUPDATE will not alter a key item. Make sure correct key item values are in

the correct places in the buffer string.

Duplicate key item value in master not allowed.

XX

Error Messages

Can’t delete a Master entry with non-empty detail chains
Buffer string is too small for requested data. Redimension if necessary.

Argument parameter type incompatible with key field type (DBGET, mode 7
or DBFIND) or current length of string argument is less than the string length of

the key item value.

Data set’s volume is not on line; or set not created.
Corrupt data base successfully opened in mode 8
There is no chain head for path xx

The automatic master for path xx is full

The master data set for path xx is not on-line (Applies to DBPUT and DBDE-
LETE for detail data sets)

Root file volume isn’t mounted.

Needed volume on-line; created data set xx isn’t there

J-15

d-16 Error Messages

Appendix K

Maintenance

Maintenance Agreements

Service is an important factor when you buy Hewlett-Packard equipment. If you are to get
maximum use from your equipment, it must be in good working order. An HP Maintenance

Agreement is the best way to keep your equipment in optimum running condition.
Consider these important advantages —
o Fixed Cost — The cost is the same regardless of the number of calls, so it is a figure that

you can budget.

e Priority Service — Your Maintenance Agreement assures that you receive priority treat-
ment, within an agreed-upon response time.

o On-Site Service — There is no need to package your equipment and return it to HP. Fast

and efficient modular replacement at your location saves you both time and money.
o A Complete Package — A single charge covers labor, parts, and transportation.

e Regular Maintenance — Periodic visits are included, per factory recommendations, to

keep your equipment in optimum operating condition.

e Individualized Agreements — Each Maintenance Agreement is tailored to support your

equipment configuration and your requirements.

After considering these advantages, we are sure you will see that a Maintenance Agreement is

an important and cost-effective investment.

For more information, please contact your local HP Sales and Service Office.

K-1

K-2 Maintenance

Appendix L
98359845 Compatibility

System 35 and System 45 assembly language programs are for the most part source code
compatible. The exceptions to this are noted below. For example, a GET command can be
used by a System 45 to retrieve source code which has been SAVE’d on a System 35, and vice
versa. However, object code files (ILOAD, ISTORE) are not compatible.

The following items specify the differences between the two assembly language systems.

1. The following 9835 /9845 differences affect source code compatibility —

e The 9845 has 9 Base page temporaries; the 9835 has 50.

e The absolute addresses of the routines within the Rel math utility are different, and
must be changed between the 9845 and the 9835.

e The 9845 has two fewer return stack entries than the 9835.

e The Get_info utility returns additional information when used with the 9845. The
number of words returned depends upon the memory size of the machine used —
— 33 words for machines over 256K
— 36 words for machines over 320K
— 39 words for machines over 384K
Additional space for this information may need to be reserved in assembly language

programs which are moved to larger machines.

e The Isr_flag link is not needed in the code that notifies BASIC of an interrupt, on
the 9845. This link is used only in the 9835 code, and should be removed from any
code run on the 9845.

e The keyboards of the 9845 and 9835 differ. Keyboard and printer register opera-
tions differ also. (See the Assembly Language Quick Reference manual.)

2. The 9845 has two additional utilities, To_system and Print_no__1f.
3. The LINES option to the IASSEMBLE statement has been expanded on the 9845 to

include a negative line number. If a negative number is used, no additional carriage-
return, linefeed characters are sent after each module has been printed. Of course, if the

EJECT option has been specified, a formfeed character is sent after each page.

L-2 9835/9845 Compatibility

4, The 9845 allows symbolic debugging (e.g., IDUMP Test) of all ENT and SUB symbols,
regardless of whether they appear in assembled code or in ILOAD’ed code. The 9835
allows symbolic debugging only if the symbols appear in assembled code which is in its
original, unmoved position in the ICOM region.

5. IOF and ION have been added as pseudo-instructions in the 9845 Assembly Language.
They are used to control the automatic setting of indirect bits in generated code.

6. Rel to_shoreturns O or an error number in the A register, for the 9845.

Note that two processors are used in the 9845 and one is used in the 9835. (For non-ISR
assembly language code, the two 9845 processors function together as a single unit to maintain
compatibility with the 9835.) The advantages of two processors are —

e Overlapped I/0 (in the OVERLAP mode) can in some cases bring about speed en-

hancements.

e An ISR (interrupt service routine) can be executed simultaneously with a BASIC pro-

gram,

Subject Index 1

Subject Index

AARl 3:18,B:1,12-14
Abortiveaccess 7:11
ABR ...l 3:18;,B:1,12-14
ABS function 5:23
Absolute expression 4:31,32
Absolute location 3:11;4:22,23
Access:

abortive.................. ... 7:11

asynchronous 7:11,27

granting 7:10-13

synchronous 7:11
Accumulators:

General 3:2,12,13,18;4:24;E:1

7Y o SN 3:3
ACS function., 5:23
ADA................. 3:13;5:2,B:1,12-14
ADB................. 3:13;5:2;B:1,12-14
Addition:

General. ...l 3:13

BCD ... 5:9,10

integer 5:1,2,3
Address, machine 4:34
Addressing:

General 3:11

indirect 3:12;7:18—-21
Alphanumericraster 10:2
AND:

instruction 3:19;B:1,12—-14

operation 5:23
ANY ... 6:6,24;C:1
Arguments:

changingvaluesof 6:18

passing from BASIC............ 6:3,12

system information about 6:7,8
Arithmetic:

General ... 5:1

BCD.................. 3:23-25;5:1,8

integer 5:1,2-6

utilities. 5:1,21-27
Arrays:

changing valuesin 6:20,21

identifiers 6:26,27

obtaining informationon......... 6:8,9

retrieving elements from....... 6:14,15

retrieving substrings from-.... .. 6:16,17

system information about 6:7

ASC declaration................. 8:15;D:3
ASCII characterset A:1-3
ASMB file-type 2:13,16,18
ASN function 5:23
Assembled location 1:5;D:1
Assembling process 4:13
Assembly:
conditional, defined. 1:5
Execution and Development ROM .. 1:1
ExecutionROM 1:1
ASSIGN 7:39-42
Asynchronous access 7:11,27
ATN function 5:23
B,defined 1:7
Backplane 7:1,2
Basepage 3:6,11
BASIC:
General 2:2-7:6:18;8:7
assembly language
extensions 2:8;D:1-4
assembly sourceentry 2:9
branching on interrupts 7:27
calling assembly language 2:1
COMMON . o\eeeeeeeeeeeeaan.. 6:23
comparison of expressions........ 4:32
comparison of operators.......... 4:33
drivers 2:3
end-of-line branches 7:8
labels. 4:1,245
passingvariables.................. 1:6
relation to assembly language 4:1
routines 8:8,9
subprograms 7:32,40;8:9,12,13
variables:
General 6:18;8:8
structure 3:8
BCD:
General 3:9;5:7
addition....................... 5:9,10
arithmetic 3:23-25;5:1,8
division 3:25;5:15-21

2 Subject Index

Mathgroup 3:10,23-25
multiplication 3:25;5:13-15
normalization 3:23;5:8,12
registers 5:7,8
rounding 5:12
subtraction 5:9-10
Beepsignal 7:53
BIN declaration 8:15;D:3
Binary Processor Chip (BPC) 3:1,2
Bit patterns and timings, machine
instructions B:12
Blank lines, inlistings 4:16,18
Blind parameters 6:6
Boolean operations 3:19
Booth’s algorithm 3:13;B:4
Braces (in syntax), explained 1.7
Brackets (in syntax), explained 1:7
Branchgroup 3:10,14
Branching:
General 3:14
end-of-line 7:8
interrupt, prioritizing 7:30,31
oninterrupts 7:27-33
Break points 8.7
BSS 4:8,26,30;C:
Buffers, device............... 7:33-35,38
Bus, [/O ... 3:26
Buscycles, [/O 3:1,11;8:21
Busybits 1:5;6:26-28
Busy utility 4:38:6,26—-28;F:1
Buzzwords 1:5-7
Bytes:
General 3:20-22
definition......................... 1:5
pointers................, 4:24
retrieving from BASIC 6:15-17
CALL 2:13;6:1,2
CBL 3:20-22;B:2,12-14
CBU 3:22;B:2,12-14
CDC ... 3:25;5:9;B:2,12-14
CLA 3:19;B:2,12-14
CLB 3:19;B:2,12-14
Clearing full words 10:15-18
Clocktimes B:13
CLR 3:12;B:2,12—-14
CMA 3:19;B:2,12-14
CMB.................... 3:19;B:2,12-14

CMX 3:24;5:10;B:2,12-14

CMY 3:25;5:10;B:2,12-14
Code:
object 2:1-3,6-8,13;4:7,13
SOUICEvovvnn.n. 2:1-6;4:3-6,13
COM:
pseudo-instruction 4:12;6:24;C:1
statement 2:14;6:9,23-25
Commands:
EDIT............ 4.2
SCRATCHA 2:15
SCRATCHC 2:15
Comments, in assembly source 4:5
Commonccvunn.. 6:23
Compatibility, 9835/9845 L:1,2
Complement:
ONE'S © ittt 3:19
ten’s .o 5:9,10
tWo's ..o 3:8,9,13;5:2
Conditional assembly:
General 4:13,19
definition......................... 1:5
flags 4:20
Control codes, graphics 10:5-7,11
Control of indirection 4:13,22
Controlregisters 7:2,3
COSfunction 5:23
CPA 3:15;B:2,12-14
CPB 3:15;B:2,12-14
Currentpagec.oon.. 3:6,11
Cursor operations 10:5,22-25
Cursortypes 10:22,23
DAT ... 4:9,10;C:1
Data:
generators 4:9-11
locations 8:11,12
structures 3:8,9
tUPES . e 3:8;7:48
DBL ...l 3:22;B:2,12-14
DBU 3:22;B:2,12-14
DDR ... 3:26;,B:2,12-14
Debugging 2:1,2;4:15,19,23;8:1-22
DEC declaration 8:15;D:3
DECIMAL 2:10;5:23;8:1,17-19;D:1
Decimal Carryflag........... 3:23,25;8:20
Declarations:
ANY ... 6:6,24;C:1
ASC 8:15;D:3
BIN ... 8:15;D:3

DEC 8:15;D:3
FIL ... 6:4,24;C:1
HEX 8:15;D:3
INT 6:4,24,C:1
OCT........ 8:15;D:3
REL 6:4,24,;C:2
SHO...................... 6:4,24;C:2
STR 6:4,5,24,C:2
Definedrecord 7:43
Demonstration cartridge........ 1:2;2:8;1:1
Device buffers 7:33-35,38
DIR 3:26;4:37;B:2,12-14
Direct memory access (DMA):
General 3:26;7:1,10—13,22-26
lockouttime B:14
registers.................... 4:24;7:22
timings B:13,14
transfers 7:23-26
DISABLE 7:33
DIV function 5:23
Division:
BCD................... 3:25;5:15-21
integer 545
DMA instruction 3:26,7:23;B:2,12—-14
DMA string input example
program H:12-15
DMA string output example
Programc.c..... H:10-12
Dot matrix, explained 1:7
DROUND........................... 5:2
DRS ... 3:24;B:3,12-14
DSZ..................... 3:16;B:3,12-14
Dumpsl 8:14
EDIT 4:2
EIR 3:26;4:37;B:3,12—-1
EJECT option, IASSEMBLE
statement 4:13,16,17;D:2
Ellipses (in syntax), explained 1:7
ENABLE 7:33
END pseudo-
instruction 2:5,11,12;4:7,12;C:1
End isr_high..................... 7:9,10
End isr low...................... 7:9,10
ENT 4:33,34;C:1
Entrypoints......................... 4:33
EQU 4:12,26,28;C:1
Equipment supplied 1:2

ERRL ..o\ 5:23:9:4

Subject Index

ERRMS$ 9:4
ERRN 5:23;9:
Error_exit utility 4:38;9:3 4;F:1
Errorlabels 1:2
Errors:

" assembly-time 9:1,2
complete listing J:1-15
mainframe J:1-11
messages:

General 9:1
assembly-time 9:8,9;J:12
run-time 9:5-7
IMAGE status................ d:13-15
[/Odevice J:11
processing.c........ 9:1-4
run-time...................... 9:1,2,3
syntax-time 9:1,2
EXE..................... 3:27,B:3,12-14
EXITGRAPHICS.................... 10:2
EXOR 5:23
EXPfunction........................ 5:23
Expressions: ‘
General 4:31-33;8:31
absolute 4:31,32
octal, defined 1:
relocatable 4:31
typeofresult 4:32
EXT.. 4:12,33,34,37;C:1
Extendflag 3:13,15-17;7:17;8:20
Extended Math Chip (EMC) 3:1,2
External 4:33
FDV 3:25;5:17-19;B:3,12—-14
FIL 6:4,24;C:1
Filemarks 7:47,48
Files:
ASMB-type 2:13,16,18
descriptor 7:39,40
NAMES .« oot 2:11
OPRM-type 2:13,16,18
Flagline..................... 3:26;7:4,5,6
Flags:
Conditional assembly 4:20
Decimal Carry 3:23,25;8:20
Extend......... 3:13,15-17;7:17;8:20
Overflow 3:13,15-17;7:17;8:20
FMP 3:25;5:13-15;B:3,12—-14
FRACT, 5:23
Full-precision numbers 3:9;4:25;7:45

3

4 Subject Index

Functions:
ABS .. 5:23
ACS . 5:23
ASN .. 5:23
ATN . 5:23
COS ... 5:23
DECIMAL ... 2:10;5:23;8:1,17—-19;D:1
DIV. .. 5:23
DROUND 5:23
ERRL 5:23;9:4
ERRMS ... 9:4
ERRN....................... 5:23;9:4
EXP ... 5:23
FRACT ..., 5:23
IADR 2:10;5:23;8:1,17,19;D:1
IMEM 2:10;5:23;8:1,17,19,20;D:3
INT .. 5:23
LGT ... 5:23
LOG........ e 5:23
OCTAL ... 2:10;5:23;8:1,17,18,19;D:4
Pl o 5:23
PROUND 5:23
RES ... 5:23
RND ... 5:23
SGNo 5:23
SIN ... 5:23
SQR ... 5:23
TAN ... 5:23
TYP .. 5:23
FXA................ 3:25;5:12;B:3,12-14

g

Get_bytes utility .. 4:38;6:12,15,16,24;F:1

Get_elem_bytes
utility 4:38;6:12,16,17,24;F:1
Get_element utility 4:38;6:12,14,15,24;F:1
Get_file_info utility 4:38;7:40,41;F:1
Get_info utility 4:38;6:8—12,24;F:1
Get_value utility 4:38:6:12,13,24;F:1
Glossarycoovviniiiiiiinn, 1:5-7
GRAPHICS 10:2
Graphics:
comprehensive example 10:25
CUISOTS v veeeinenaenns 10:22,23
displaying 10:2,3
exiting 0. 10:2,3
MEMOTY ..ot aneinnss 10:3,4
operations 10:5-27
operations, general algorithm 10:6

optionol 10:1

raster ... 10:2,3
selectcode 10:1
Graphics hardware, checking for. 10:5
Groups:
BCDMath 3:10,23-25
Branch 3:10,14
I/O oo 3:10,26
Integer Math 3:10,13
Load/Store.................. 3:10,12
Logical 3:10,19
Miscellaneous 3:10,27
Shift/Rotate 3:10,18
Stackl 3:10,20
Test/Alter/Branch 3:10,16,17
Test/Branch 3:10,15

Handshake string input example

Programcoeeeeeuunnn... H:3,4
Handshake string output example

Programc..ooueeeunnnnn.. H:1,2
HED 4:18,19;C:1
HEX declaration 8:15;D:3
HP-IB output/input drivers example

program H:15-18

i

IADR 2:10;5:23;8:1,17,19;D:1
IASSEMBLE 2:6,10;4:13,19,23;D:2
IASSEMBLEALL 4:13;D:2
IBREAK........... 2:10;3:7;8:1,7—11;D:2
IBREAKALL............... 8:1,12,13;D:2
IBREAKDATA 8:1,11,12;D:2
ICALL 2:6,10,13;3:7;4:34;6:1-6;D:2
ICHANGE 2:10;8:1,21;D:3
ICOM 2:6,10,13-16;D:3
ICOM region .. 2:13-18;3:4;4:8,23,34;6:2
IDELETE 2:10,13,15,17;D:3
IDELETEALL 2:15,17;4:23;D:3
IDUMP 2:10;8:1,14,15;D:3
IF conditional 4:20
IFA . 4:20;C:1
IFB .. 4:20;C:1
IFC .. 4:20;C:1
IFD ... 4:20;C:1
IFE.. 4:20;C:1
IFF . 4:20;C:1

IFG ... 4:20;C:1
IFH 4:20;C:1
IFP 4:20,21;C:1
ILOAD.............. 2:8,10,12,18;4:7;D:3
IMEM......... 2:10;5:23;8:1,17,19,20;D:3
Indirect addressing:
General 3:12;4:22 23
inISRs 7:18-21
Indirection, controlof 4:13,22
INORMAL 2:10;8:1,10,13;D:4
Input cycle, explained 3:1
[/0:
bus ... 3:26
buscycles3:1,11;8:21
expediting 7:53,54
o3 o101 » RN 3:10,26
interrupt 7:1,7-21
operations, relation to busy
bits. ..o 6:26—-29
programmed 7:1
registers 3:2;4:24:7:2.3
sample programs H:1-21
Input-Output Controller (IOC) 3:1,2
Instructions:
individual executionof 8:3
machine:
General 3:10-27:B:1-14
AAR 3:18;B:1,12-14
ABR 3:18;B:1,12-14
ADA 3:13;5:2;B:1,12-14
ADB 3:13;5:2;B:1,12—-14
AND 3:19;B:1,12-14
arithmetic 5.7
CBL 3:20-22;B:2,12—-1
CBU............. 3:22;B:2,12-14
CDC 3:25;5:9;B:2,12—-14
CLA 3:19;B:2,12-14
CLB............. 3:19;B:2,12-14
CLR 3:12;B:2,12-14
CMA............. 3:19;B:2,12—-14
CMB............. 3:19;B:2,12-14
CMX........ 3:24;5:10;B:2,12-14
CMY 3:25;5:10;B:2,12—-14
CPA 3:15;B:2,12-14
CPB............. 3:15;B:2,12-14
DBL 3:22;B:2,12-14
DBU............. 3:22;B:2,12-14
DDR 3:26;B:2,12—-14
DIR......... 3:26;4:37;B:2,12—-14
DMA............. 3:26;B:2,12—-14
DRS 3:24;B:3,12-14
DSZ 3:16;B:3,12—-14

Subject Index 5

EIR 3:26;4:37;B:3,12-14
EQU 4:12,26,28;C:1
EXE 3:27;B:3,12-14

FDV3:25;5:17-19;B:3,12-14
FMP 3:25;5:13-15;B:3,12-14

FXA 3:25;5:12;B:3,12—-14
o3 20111 o 1T 3:10
IOR.............. 3:19;B:4,12-14
ISZ 3:16;B:4,12-14
JMP 3:14,B:4,12-14
JSM........ 3:6,14;6:9;B:4,12-14
LDA 3:12,27;B:4,12-14
LDB........... 3:12-4;B:4,12-14
MLY 3:24;5:18;R:4,12-14
MPY 3:13;B:4,12—-14
MRX 3:23;5:11,12;B:5,12-14
MRY 3:24;5:11,12;B:5,12-14
MWA 3:25;5:13;B:5,12-14
NOP............. 3:27;B:5,12-14
NRM........ 3:24;5:12;B:5,12-14
operands 3:10
PBC 3:21,22;B:6,12—-14
PBD 3:21,22,B:6,12-14
PWC.......... 3:20,22;B:6,12—-14
PWD.......... 3:20,22;B:6,12-14
RAL 3:18;B:6,12-14
RAR 3:18,B:6,12-14
RBL 3:18;B:6,12-14
RBR 3:18,B:7,12-14
RET 2:5;3:6,14;6:2;B:7,12—-14
RIA.............. 3:15;B:7,12-14
RIB.............. 3:15,B:7,12-14
RLA 3:17;B:7,12-14
RLB 3:17;B:7,12-14
RZA 3:15;B:7,12-14
RZB 3:15;B:7,12-14
SAL 3:18;B:7,12-14
SAM 3:16;B:7,12-14
SAP 3:16;B:7,12-14
SAR 3:11,18;B:8,12—-14
SBL 3:18;B:8,12-14
SBM............. 3:16;B:8,12-14
SBP 3:16;B:8,12—-14
SBR 3:18;5:15;B:8,12-14
SDC............. 3:25;B:8,12-14
SDL 3:26;7:22;B:8,12-14
SDO 3:26;7:22;B:8,12—-14
SDS.......... 3:25,5:9;B:8,12-14
SEC 3:17;B:8,12-14
SES 3:17;B:8,12-14
SFC.......... 3:26;7:5;B:9,12-14

SFS 3:26;7:5;B:9,12—-14

6 Subject Index

SHC 3:15;B:9,12—-14
SHS 3:15;B:9,12-14
SIA 3:15;B:9,12-14
SIB.............. 3:15;B:9,12-14
SLA 3:16;B:9,12-14
SLB 3:16;B:9,12-14
SOC............. 3:17;B:9,12-14
SOS 3:17;B:10,12-14
SSC 3:26;7:5;B:10,12—-14
SSS......... 3:26;7:5;B:10,12—-14
STA 3:12;B:10,12-14
STB 3:12;B:10,12—-14
SZA 3:15;B:10,12-14
SZB 3:15;B:10,12-14
TCA 3:13;5:2;B:10,12—-14
TCB 3:13;5:2;B:10,12—-14
WBC 3:21,22;B:11,12-14
WBD 3:21,22;B:11,12-14
WWC........ 3:20,22;B:11,12-14
WWD........ 3:20,22;B:11,12-14
XFR 3:12;4:29;B:11,12-14
patching 8:21

o] (oTol=1-1-Yo) SN 3:1
pseudo-:
General 4:3;C:1,2
ANY ... 6:6,24,C:1
BSS................ 4:8,26,30;C:1
COM............... 4:12;6:24;C:1
DAT 4:9,10;C:1
END 2:5,11,12;4:7,12;C:1
ENT 4:33,34;C:1
EQU 4:12,26,28;C:1
EXT 4:12,33,34,37;C:1
HED 4:18,19;C:1
IFA ... 4:20;C:1
IFB ... 4:20;C:1
IFC 4:20;C:1
IFD 4:20;C:1
IFE 4:20;C:1
IFF 4:20;,C:1
IFG, 4:20;C:1
IFH, 4:20;C:1
IFP 4:20,21;C:1
LIT 4:30;C:1
LST.................. 4:14,19;C:1
NAM 2:5,11;4:7,12;,C:2
non-listable 4:19
REP 4:12;C:2
SET......... 4:27:C:2
SKP 4:16,17,19;C:2
SPC ... 4:18,19;C:2
SUB........... 2:5;4:12;6:2,3;C:2

UNL ... 4:15,19;C:2
XIF oo, 4:20,21;C:2
repeating 4:12
INT:
declaration 6:4,24:C:1
function......................... 5:23
Int_to_relutility............ 4:38;5:26;F:1
INTEGER 3:8
Integer:
addition 5:1,2,3
arithmetic 5:1,2-6
multi-word 5:5,6
division 5:45
multiplication 5:1,3,4
subtraction 5:1,3
Integer Math group 3:10,13
Integers:
General 3:8;5:2,24,25;6:8
octal 4:10
structure 3:8;5:2
Interfaces:
General 7:2,4,22
98032 (GPIO) 7:3,16,22;G:1-14
98033 (BCD).............. H:3,4,7-9
98034 (HP—IB)............. H:15-18
98035 (Clock) H:1-4,19,20
98036 (Serial)................. H:1-9
Interrupt1/O0 7:1-21
Interrupt service routines:
General AU 2:15;3:7;,7:7—-10
called from BASIC 7:27-33
definition......................... 1:6
linkage..................... 7:9,10,3
reserved symbols 4:24,25
statein 7:17
Interrupt string input example
Program.ouueeeeonn. H:7-9
Interrupt string output example
Program.c.c.eeuuennn.. H:5-7
Interrupts:
disabling 7:15,16
enabling 7:19,20
executiontime B:13
lockouttime B:13
related machine instructions 3:26
signalling 7:28,29
IOF 4:13,22;C:1
ION ... 4:13,22;C:1
IOR ... oo 3:19;B:4,12-14
[PAUSEOFF 2:10;8:1,7;D:4
IPAUSEON 2:10;8:1,4-7;D:4

ISOURCE 2:5,8,9;4:2,5,6;D:4

ISR, defined 1:6

Isr_access utility 4:38;7:13,14,15;F:

ISTORE 2:7,10,13,17,18;4:7;D:4

ISTOREALL e 2:18,D:4

ISZ 3:16;B:4,12-14
)

JMP ... 3:14;,B:4,12-14
dJSM ...l 3:6,14;6:9;B:4,12—-14
i

Labels:
assembly language 4:3-6
BASIC 4:1.245
LDA 3:12,27;B:4,12—-14
LDBl 3:12;B:4,12-14
LGT function 5:23
Linedrawing 10:27
Line drawing routine, Demonstration
cartridge 10:27-30
Lines:
blank, inlistings 4:16,18
Flag..................... 3:26;7:4,5,6
Status 3:26;7:4,5,6
LINES option, IASSEMBLE
statement.................. 4:13,16;D:2
LIST option, IASSEMBLE
statement.................. 4:13,14;D:2
Listing:
General 4:14,15
directives 4:13
LIT ... 4:30;C:1
Literals:
General 4:27,28
as data generators 4:10
evaluationof 4:27,28
formof 4:27;D:4
nesting 4:28,29
nonsensicaluseof 4:29,30
poolsl 4:27,30
Load/Storegroup 3:10,12
Lockouttimes B:14
LOG function 5:23
Logical:
record L. 7:43
GrOUD + oottt 3:10,19
operations 3:19

LST . 4:14,19;C:1

Subject Index 7

Machineaddress 4:34
Machine architecture............... 3:1-7
Machine instructions 3:10—-27;B:1-14
Maintenance agreements.............. K:1
Mantissa shifting 3:23,24
Manual:
Assembly Development ROM 1:2
Assembly Execution ROM 1:2
Assembly Language Quick
Reference 1:2;7:19
BASIC Language Interfacing
Concepts 1:2,7:1,2
structure il 1:2
Mass storage:
General 2:2,12;7:33
Descriptor (MSD) 7:34
readingfrom 7:33
Transfer Identifier (MSTID) 7:34,35
unit specifier (msus) 1:6;7:34
wriingto 7:37-39
MASS STORAGEIS 1:6;7:33,34
MAX .. 5:23
Memory:
General 4:8
AUITIPS .. oe ettt e 8:14
general organization............... 3:4
graphics....................... 10:3,4
19011 o JARUA P 3:3,5;E:2
protected 3:6:;8:12,22
read/writel 1:1
reserved 1:1;3:4,6
MIN......... P 5:23
Miscellaneous group, machine
instructions 3:10,27
MLY, 3:24;5:18;B:4,12-14

Mm_read_start utility . .. 4:38:7:33-35;F:1
Mm_read xfer utility 4:38;7:33-35,36;F:1
Mm_write_start utility 4:38;7:33,37,38;F:1
Mm write test utility . 4:38;7:33,38,39;F:1

MOD operationoo.... 5:23

Modules:
General 2:16
creation 2:11:4:7
definiion.......................... 2:3
NAmMesuuenn. 2:11,12;4:1
objectl 1:6;4:7,8
reassembly 4.23
SOUICE . .o veeieeinannnn. 1:7;4:7,8,13
storageoiiiiiinii 2:12:4:8

MPY 3:13;B:4,12-14

8 Subject Index

MRX 3:23;5:11,12;B:5,12—-14
MRY 3:24:5:11,12;B:5,12—-14
Multiplication:
BCD ...l 5:13-15
integer 5:1,34
MWA............... 3:25;5:13;B:5,12-14
NAM 2:5,11;4:7,12;,C:2
Names, module 2:11,12:4:16
Nesting subroutinecalls 3:6,7
NOP 3:27,B:5,12-14
Normalization 5:8,12
NOT operation 5-23
NRM 3:24;5:12;B:5,12-14
Numbers:
full-precision............ 3:9;4:35;7:45
integer precision 3:8;7:45
octal 1:6
short-precision 3:9;4:35,7:45
Object
code 2:1-3,6-8,13;4:7,13
modules 1:6;4:7,8
OCT declaration 8:15;D:3
OCTAL 2:10;5:23;8:1,17,18,19;D:4
Octal expression, defined 1:6
OFFINT 2:10;7:32,33
ONERRORcoiii.. 9:34
ONINT 2 10;7:27,28,30— 32
One’s complement 3:19
Operands.............c.ociviiiannn. 3:10
Operatingsystem 7:10
Operations:
AND 5:23
EXOR ... oo 5:23
Logical 3:19
MOD 5:23
NOT............. ... 5:23
OR ... 5:23
Orderof 4:33
OPRM file-type 2:13,16,18
OR.... 5:23
Output cycle, explained 3:1
Overflow condition, integer arithmetic 5:2,3
Overflow flag 3:13,15-17,7:17;8:20
Overlapmode. 6:27

Page:
base ... 3:6;B:13
current 3:6;B:13
definition......................... 3:6
endcontrol 4:17
format, listings................... 4:16
headings, listings 4:16,18
length, listings 4:16,17
Parameters:
blind........... ... 6:6
in SUB pseudo-instruction 6:4
Pausing L 8:3,4,7
PBC 3:21,22;B:6,12—-14
PBD 3:21,22;B:6,12-14
Physicalrecord 7:43
Pl 5:23
Pixel 1:7;10:1,3,4,7—-10
Pixels, writing individual 10:7-10
Pointers, stack................ 3:2,20;4:24
Pooals, literal 4:27,30
Predefined symbols 4:24 25:E:1
Print_no_If utility 4:38;7:48,52,53;F:1
Print_string
utility 4:29,38;7:48,50—-52;F:1
Printer select utility 4:38;7:49,50;F:1
Priorities, for selectcodes 7:8
Processors:
General 3:1,2
Binary Processor Chip (BPC) 3:1,2
bus ... 3:1
Extended Math Chip (EMC) 3:1,2
Input-Output Controller (IOC) ... 3:1,2
instructions 3:1
Programmed /O 7:1
Programs:
assembly language, developing ... 2:1,2
counter 3:2;4:24
counter, mapc.... 3:3
creation 2:1-34-8
definition......................... 2:3
entry 2:8,9:4:1
stepping 8:22
Protected memory 3:6;8:12,22
PROUNDt 5:23
Pseudo-instructions 4:3;C:1,2

Put_bytes utility . .
Put_elem bytes

. 4:38;6:18,20,21,24;F:1

utility 4:38;6:18,22—24;F:1
Put_element utility 4:38;6:18,19,20,24;F:1
Put_file info utility 4: 38 7:41,42;F:1

Put_value utility 4:38;6:18,19,24;F:1

PWC................. 3:20,22;B:6,12—-14
PWD................. 3:20,22;B:6,12-14
RAL 3:18;B:6,12—-14
RAR 3:18;B:6,12-14
Raster:
alphanumeric 10:2
graphics, 10:2-4
RBL 3:18;,B:6,12-14
RBR 3:18;B:6,12—-14
Readbusybit 6:26
Real time clock example program H:19-21
Record boundaries 7:44
Recordtypes........................ 7:43
Reading full words 10:18-21
REDIM 6:12
Registers:
General 3:2
arithmetic 4:24;5:15—-17;E:1
BCD ... 5.7,8
control 7:2,3
DMA. 4:24:7:22
DMA,map 3:3
external 3:4
[/O. 7:2,3
internal 3:2
internal, map 3:3
1097-1 o PP 3:3
Peripheral Address (Pa) 7:3,4,10
preservation by ISRs 7:17
stack ... 3:20
status 7:3
timingc il B:13,14
REL 6:4,24;C:2
Rel math utility 4:38:5:21-24;F:1
Rel to_intutility 4:38;5:24,25;F:1
Rel to shoutility 4:38;5:25,26;F:1
Relocatable expression 4:31,32
Relocatable location 3:11;4:22
Relocation....................... 4:22 23
REP ... 4:12;C:2
RESfunction........................ 5:23
RET 2:5;3:6,14;6:2;B:7,12-14
RETURN 7:27
RIA 3:15;B:7,12-14
RIB 3:i5;B:7,12-14
RLA 3:17;B:7,12—-14
RLB 3:17;B:7,12-14
RND function 5:23

Subject Index

ROMs:

Assembly Execution 1:1,3

Assembly Execution and

Development 1:1,34

Graphics 10:1

installation 1:34

requirements of others 2:14
Rotation 3:18;B:6,7
Routines:

BASIC 8:8,9

definition......................... 2:3

NAMESvvuieeennannnnnn 2:11,12
RZA..................... 3:15;B:7,12-14
RZB..................... 3:15;B:7,12—14
SAL............. 3:18;B:7,12-14
SAM ... 3:16;B:7,12-14
SAP........... 3:16;B:7,12-14
SAR ... 3:11,18;B:8,12-14
SBL..................... 3:18;B:8,12-14
SBM ... 3:16;B:8,12—-14
SBP..................... 3:16;B:8,12—-14
SBR................ 3:18;5:15;B:8,12-14
SCRATCHA........................ 2:15
SCRATCHC 2:15
SDC ... 3:25;B:8,12-14
SDI 3:26;7:22;B:8,12-14
SDO 3:26;7:22;B:8,12—-14
SDS................. 3:25;5:9;B:8,12—-14
SEC 3:17,B:8,12—-14
Select code, graphics 10:1
Select codes, priorities 7:8
SES ... 3:17;B:8,12—-14
SET .. 4:27,C:2
SFC 3:26;7:5;B:9,12—-14
SFS ... 3:26,7:5;B:9,12-14
SGNfunctionc..ooo.. .. 5:23
SHC 3:15;B:9,12-14
Shift /Rotate group 3:10,18
Shifting, mantissa 3:23-25
SHO 6:4,24;C:2
Sho to relutility 4:38:5:27;F:1
Short-precision numbers 3:9;4:35;7:45
SHS 3:15;B:9,12-14
SIA ... 3:15;B:9,12-14
SIB ... 3:15;B:9,12-14
Sign-magnitude format................ 5:9
Signalling interrupts 7:28,29

SIN function 5:23

9

10 Subject Index

SKP. ... 4:16,17,19:C:2
SLA. ... 3:16;B:9,12—-14
SLB............. 3:16;B:9,12-14
SOC 3:17;B:9,12-14
SOS ... 3:17;B:10,12-14
Source:
code 2:1-6;4:3-6,13
listing control 4:14-19
modules 1:7;4:7,8,13
Space dependentmode 4 6
SPC ... 4:18,19;C:2
SQR function 5:23
SSC............ ..., 3:26;,7:5;B:10,12—-14
SSS ... 3:26,7:5;B:10,12—-14
STA 3:12;B:10,12-14
Stackgroup...................... 3:10,20
Stack group, inISRs 7:18,19
Stacks:
General 3:20
pointers:
General 3:2,20
1671 o T 3:3
registers 3:20
Statements, BASIC:
ASSIGN 7:39-42
CALL 2:13;6:1,2
COM 2:14,6:9,23-25
DISABLE 7:33
EDIT.. 4:2
ENABLE........................ 7:33
IASSEMBLE ... 2:6,10;4:13,19,23;D:2
IASSEMBLEALL............ 4:13;D:2
IBREAK 2:10;3:7;8:1,7-11;D:2
IBREAKALL 8:1,12,13;D:2
IBREAK DATA 8:1,11,12;,D:2
ICALL .. 2:6,10,13;3:7;4:34;6:1-6;D:2
ICHANGE............ 2:10;8:1,21;D:3
ICOM 2:6,10,13-16;D:3
IDELETE 2:10,13,15,17;D:3
IDELETEALL 2:15,17;4:23,D:3
IDUMP............ 2:10;8:1,14,15;D:3
ILOAD 2:8,10,12,18;4:7;D:3
INORMAL 2:10;8:1,10,13;D:4
IPAUSEOFF 2:10;8:1,7;D:4
IPAUSEON 2:10;8:1,4-7;D:4
ISOURCE 2:5,8,9:4:2,5,6;D:4
ISTORE 2:7,10,13,17,18;4:7;D:4
ISTOREALL 2:18;D:4
MASS STORAGEIS 1:6,7:33,34
OFFINT 2:10;7:32,33
ONERROR..................... 9:3,4

ONINT.......... 2:10;7:27,28,30-32

REDIM 6:12
RETURN........................ 7:27
SUBEND 7:27
SUBEXIT Lo 127
Statusline................... 3:26;7:4,5,6
Status registers 7:3
STB 3:12;B:10,12-14
Stepping programs 8:3-14
STR ... 6:4,5,24,C:2
Strings:
General 3:8;7:46
as data generators 6:12,13
SUB pseudo-instruction 2:5;4:12;6:2,3;C:2
SUBEND ... 7:27
SUBEXIT ... 7:27
Subprograms, BASIC ... 7:32,40;8:9,12,13
Subroutines 3:6,14
Substrings:
changingvalueof............ 6:22-24
retrieving 6:15-17
retrieving from arrays 6:16,17
Subtraction, integer 5:1,3
Symbolic operations............. 4:25-33
Symbols:
General 4:24
addressof 8:19
defining...................... 4:26,27
external 4:33,34
predefined 4:24 25
Synchronous access 7:11
Syntax, fundamental 1:7
System 35/ System 45 compatibility . L:1,2
SZA ... 3:15;B:10,12~ 14
SZB ... 3:15;B:10,12-14
TAN function 5:23
Tape cartridge, Demonstration .. 1:2;2:8;I:1
TCA 3:13;5:2;,B:10,12-14
TCB 3:13;5:2;B:10,12—-14
Ten’s complement................. 5:9,10
Test/ Alter/Branch group 3:10,16,17
Test/Branch group 3:10,15
Timings:
cdock ... B:13
execution B:13,14
lockout B:14
To system utility 4:38;6:28,29;F:1
Transfers, DMA 7:23-26

Two’s complement 3:8,9,13;5:2
TYPfunction. 5:23
Typing aids, demonstration cartridge . 1:1-3

UNL ...l 4:15,19;C:2

Utilities:
General 4:36,37
Arithmetic................. 5:1,21-27
Arithmetic, operand registers....... 3:4
Busy 4386262728F1
Error_exit 4:38;9:3,4
Executionof 8-5
Get bytes..... 4:38;6:12,15,16,24;F:1

Get elem_bytes 4:38;6:12,16,17,24;F:1
Get_element .. 4:38;6:12,14,15,24;F:1

Get_file info........ 4:38;7:40,41;F:1
Get _info 4:38;6:8—-12,24;F:1
Get value........ 4:38:;6:12,13,24;F:1
Int to rel 4:38;5:26;F:1
Isr_access........ 4:38;7:13,14,15;F:1
Mm read start..... 4:38;7:33—-35;F:1

Mm - read xfer . 4:38;7:33-35,36;F:1
Mm_write_start . .\4 :38,7:33,37,38;F:1
Mm write - _test ... 4:38;7:33,38,39;F:1

Prlnt no lf 4:38;7:48,52,53;F:1
Print . strmg . 4:29,38;7:48,50—-52;F:1
Printer select 4:38;7:49,50;F:1
Put bytes..... 4:38:6:18,20,21,24;F:1

Put:elem__bytes . 4:38;6:18,22—-24;F:1
Put element .. 4:38;6:18,19,20,24;F:1

Put_file_info........ 4:38;7:41,42;F:1
Put value........ 4:38;6:18,19,24;F:1
Rel math4:38;5:21—-24;F:1
Rel to int 4:38;5:24,25;F:1
Rel to sho 4:38;5:25,26;F:1
Reserved symbols 4:25
Sho to rel............. 4:38;5:27;F:1
To system 4:38;6:28,29;F:1
Writing ..., G:1,2

Value checking.................. 8:17-20
Variables:
General 4:8
BASIC 3:8;6:18;8:8
retrieving values from 6:12,13

value checking 5:17-20

Subject Index 11

WBC 3:21,22;B:11-14
WBD ... 3:21,22;B:11-14
Word

General 3:22

defined 1:7

transfers 3:12;B:11
Words:

clearing 10:15-18

reading 10:18-21

wrting 10:11-14
Write busy bit 6:26
Writing fullwords 10:11-14
Writing individual pixels 10:7-10
WWC.................. 3:20,22;B:11-14
WWD 3:20,22;B:11-14

XFR.........oo ... 3:12;4:29;B:11-14

XIF ..o 4:20,21;C:2

XREF option, IASSEMBLE
statement..................... 4:13;D:2

Your Comments, Please...

Your comments assist us in improving the usefulness of our publications; they are an important
part of the inputs used in preparing updates to the publications.

In order to write this manual, we made certain assumptions about your computer background.
By completing and returning the comments card on the following page you can assist us in
adjusting our assumptions and improving our manuals.

Feel free to mark more than one reply to a question and to make any additional comments.

Please do not use this form for questions about technical applications of your system or re-
quests for additional publications. Instead, direct those inquiries or requests to your nearest HP
Sales and Service Office.

If the comments card is missing, please address your comments to:

HEWLETT-PACKARD COMPANY
Desktop Computer Division

3404 East Harmony Road

Fort Collins, Colorado 80525 U.S.A.

Attn. Customer Documentation
Dept. 4231

All comments and suggestions become the property of Hewlett-Packard.

Comments Card for the Assembly Development ROM Manual

i Yourself

1. What is your major application of your Series 9800 Desktop Computer?

2. Which Series 9800 Desktop Computer do you have?

C 9835A O 9835B O 9845B O 9845C

e - - - - -

3. What was your level of programming knowledge before you started using this manual?

overall manual

What do you suggest we do to improve the areas that you consider weak?

i
1
: O none O beginner O intermediate O expert
1
i

_l ___
]
t
'The Manual
i .

n inimal i

: 1. Did you have any difficulty in: one minima some considerable
1
: understanding material in manual? O O O O
: applying that information? e} O e} o
I
1
1
1
1
R
1
: 2. How would you rate the:
1
: ~ excellent good fair poor
1
1 areas covered O o} O (@]
: depth of coverage O O O O
: examples O O O O
1 indexing o (@] O o
: organization O 0] O O
: O O ©) O
1
'
]
1
]
1
1
1
1

'The Method

1. By which method would you have preferred to learn the use of your computer?

O Present set of manuals

O Manuals using programmed-learning approach

O Training workbooks with corresponding tape cartridge

O Manuals resident in computer’s memory, accessible through the keyboard and displayed on the CRT
O Training in classroom situation at Hewlett-Packard

General comments:

Name:

Address:

|
|
1
1
1
1
1
1
i
1
1
I
1
1
I
!
1
|
1
1
1
t
L]
i
!
]
!
1
1
i
1
1
t
t
'

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company

Desktop Computer Division

Attn: Cust. Documentation/Dept. 4231
3404 East Harmony Road

Fort Collins, Colorado 80525

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

W T e i . e e e e M s M e e T M R e e e e MK MR R S W B e e e e e s e e M e e w4 N NN e e e e o e e W e M M M e e e e M o N S 4 e e e mm T M= = i i e me me S e e e e v = e - - mm v A - e -

Assembly Language ROM Errors

Improper argument for OCTAL or DECIMAL function or assembled location.
Break Table overflow.

Undefined BASIC label or subprogram name used in IBREAK statement.

Attempt to write into protected memory; or, attempt to execute instruction not
in ICOM region.

Label used in an assembled location not found.
Doubly-defined entry point or routine.

Missing ICOM statement.

Module not found.

Errors in assembly.

Attempt to move or delete module containing an active interrupt service

routine.

IDUMP specification too large. Resulting dump would be more than 32 768

elements.

Routine not found.
Unsatisfied external symbols.
Missing COM statement.

BASIC’s common area does not correspond to assembly module require-

ments.

Insufficient number of items in BASIC COM declarations.

Assembly-Time Errors
Doubly-defined label
END instruction missing; or module name does not match.
Expression evaluation error.
Literal pools full or out of range.
[ICOM region overflow.
Operand out of range.
Argument declaration pseudo-instruction out of sequence.
Incorrect type of operand used.

Undefined symbol.

Part No. 09845-91083
Microfiche No. 09845-98083

K

HEWLETT
PACKARD

Printed in U.S.A.
March 1, 1980

WOY uawdojana(g Ajquiassy

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-49
	07-50
	07-51
	07-52
	07-53
	07-54
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12a
	B-12b
	B-12c
	B-13
	B-14
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	F-01a
	F-01b
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	I-01
	I-02
	I-03
	I-04
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	J-09
	J-10
	J-11
	J-12
	J-13
	J-14
	J-15
	J-16
	K-01
	K-02
	L-01
	L-02
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	replyA
	replyB
	xBackA
	xBackB

