ALPHALPHALPHAL ALPHA 1

PHALPHALPHALPHALPHAL

ALPHALPHALPHALPHALPHALPH EXTERNAL

HALPHALPHALPHALPHALPHALPHAL

HALPHAL PHAL PHAL PHALPHALPHALP REFERENCE

HALPHAL PHALPHALPHALPHA

HAPHAL LPHALPHALPHALPH SPECIFICATIONS

HALPH ALPHALPHALPHA
ALPH LPHALPHALPHAL
LPH PHALPHALPHALPHA
HA HALPHALPHALPHALP
AL HALPHALPHALPHALPH
AL ALPHALPH PHALPHAL
LP ALPHALPH HALPHALP
HA LPHALPHA LPHALPHA
PH PHALPHAL PHALPHAL
A PHALPHAL ALPHALPH
L PHALPHALP LPHALPHA
P HAPHALPH HALPHALP
HALPHALPH ALPHALPH
ALPHALPH PHALPHAL
LPHALPHA HALPHALP
LPHALPHAL LPHALPH
PHALPHAL PHALPHAL
PHALPHALP ALPHALP
HALPHALP LPHALPHA
ALPHALPHA LPHALPHAL
ALPHALPHALPHAL AL ALPHALP
LPHALPHALPHALPHA PHA PHALPHA
LPHALPHALPHALPHALPH HALPHALP
PHALPHA ALPH LPHALPH
PHALPHALP HALPHAL
HALPHALP ALPHALP
ALPHALPH LPHALPH

P
PH
LPH

ALPHALPH HALPHALPHALPHALP
LPHALPHA ALPHALPHALPHALP

LPHALPHAL PHALPHALPHALP
ALPHALPH ALPHALPHALP
ALPHALPH PHALPHALP

HEWLETT-PACKARD PRI VATE

JULY 20, 1970

DO NOT REPRODUCE=-=========- copy ﬁ_%_

H

A

Mmoo wm>

AOTMMOO®E>

OMMOoOO ®>

(g Mool

OO W>

HP ALPHA 1 7-20-70 COPY 42 PAGE 1 of 82
HEWLETT-PACKARD PRIVATE=--DO NOT REPRODUCE

TABLE 0 F CONTENTS

SECTION 1| - SYSTEM INTRODUCTION

SECTION 11 - SYSTEM HARDWARE MODULES
CENTRAL PROCESSOR MODULE PAGE &
MEMORY MODULE PAGE 5
HIGH-SPEED CHANNELS MODULE - PAGE 5
BUFFERED BUS COMMUNICATOR MODULE PAGE 5
MODULE CONTROL UNIT (MCU) & DATA BUS PAGE 5

SECTION 11l - DESCRIPTIONS AND FORMATS
DEFINITIONS PAGE 6
CENTRAL PROCESSOR REGISTERS PAGE 6
ADDRESS SPACES (CODE SEGMENTS, STACKS) PAGE 9
ADDRESSING CONVENTIONS PAGE 9
INSTRUCTION FORMATS PAGE 12
DATA FORMATS PAGE 15
STACK MARKER FORMATS PAGE 17

SECTION IV - TABLES
SEGMENT TABLE POINTER & SEGMENT DESCRIPTOR TABLE PAGE 18

SEGMENT TRANSFER TABLE (STT) PAGE 19
CURRENT PCB POINTER (CPCB) PAGE 20
PROCESS CONTROL BLOCK (PCB) PAGE 20
PRIVILEGED DATA TABLE (PDT) PAGE 20
DEVICE REFERENCE & EXTERNAL INTERRUPT TABLE (DRT) PAGE 21
INTERRUPT STACK BASE AND LIMIT (Ql & ZI) PAGE 21

SECTION V - INPUT/OUTPUT

CPU INSTRUCTIONS PAGE 22
S10 PROGRAMMING PAGE 22
1/0 COMMAND CODES PAGE 23

SECTION VI - INTERRUPT AND TRAP PROCESSING

EXTERNAL INTERRUPTS PAGE 25
INTERNAL INTERRUPTS PAGE 29
TRAPS PAGE 29
POWER ON & COLD START PROCESSING PAGE 30

PAGE 2 of 82° “HP ALPHA 1 7-20-70 cory 4 £
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

SECTION VI! - INSTRUCTION SET

A. LOAD INSTRUCTIONS PAGE
B. STORE INSTRUCTIONS PAGE
C. MEMORY REFERENCE INTEGER INSTRUCTIONS PAGE
D. BRANCH INSTRUCTION PAGE
E. CONDITIONAL BRANCHES PAGE
F. LOOP CONTROL BRANCH INSTRUCTIONS PAGE
G. INTEGER INSTRUCTIONS PAGE
H. LOGICAL INSTRUCTIONS PAGE
I. DOUBLE INTEGER INSTRUCTIONS PAGE
J. FLOATING POINT INSTRUCTIONS PAGE
K. BOOLEAN INSTRUCTIONS PAGE
L. TEST INSTRUCTIONS PAGE
M. INCREMENT & DECREMENT INSTRUCTIONS PAGE
N. ZERO INSTRUCTIONS PAGE
0. DUPLICATE & DELETE INSTRUCTIONS PAGE
P. EXCHANGE INSTRUCTIONS PAGE
Q. INDEX TRANSFER INSTRUCTIONS PAGE
R. INDEX ARITHMETIC INSTRUCTIONS PAGE
S. CONTROL INSTRUCTION PAGE
T. SINGLE WORD SHIFT INSTRUCTIONS PAGE
U. DOUBLE WORD SHIFT INSTRUCTIONS PAGE
V. TRIPLE WORD SHIFT INSTRUCTIONS PAGE
W. BIT TEST INSTRUCTIONS PAGE
X. FIELD INSTRUCTIONS PAGE
Y. [IMMEDIATE INSTRUCTIONS PAGE
Z, IMMEDIATE INDEX INSTRUCTIONS PAGE

AA. PROGRAM CONTROL INSTRUCTIONS PAGE

BB. MOVE INSTRUCTIONS PAGE

CC. 1/0 & INTERRUPT INSTRUCTIONS PAGE

DD. REGISTER CONTROL INSTRUCTIONS PAGE

EE. SPECIAL CONTROL INSTRUCTIONS PAGE

FF. LIST SEARCH INSTRUCTION PAGE

GG. UNASSIGNED INSTRUCTION COMBINATIONS PAGE

APPENDIX A - ALPHABETICAL LISTING OF INSTRUCTIONS
APPENDIX B - NUMERICAL LISTING OF INSTRUCTIONS

HP ALPHA 1 7-20-70 COPY PAGE 3 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRO E

SECTION | - SYSTEM INTRODUCTION

The ALPHA 1 is a computer system desligned for efficient
operation in a single processor/multiprogramming realtime environ-
ment. The operating domain for an executing program consists of a
stack, an executing code segment and a global (or Common) data area.

The central processor contains address registers for spec-
ifying the location and limits of the currently operational
address space. Direct addressing modes, with Indexing, rel-
ative to these registers are provided into the stack and into
the currently executing code segment.

Memory protection is provided to assure that all memory
references remain within the address space assigned to the
executing program. Changes to the address space may be made
only when the CPU is in privileged mode under control of
the operating system.

The hardware is organized on a modular basis with commun-
ication between modules occurring over an asynchronous priority
demand data bus. Modules consist of a central processor,
memories, high speed channels, and other equivalent higher level
devices. Peripheral devices transfer data to and from memory, or the
CPU through and under control of the 1/0 processor portion of the
CPU.

The system architecture incorporates an omnibus concept. The
maximum number of modules (7) and the comunication rate are set
to minimize cost and maximize the 1/0 capabilities of the machine.

DATA BUS
| | | |
MEMORY CPU/10P HS CHANNELS BBC

	--device
-=-=	=-=-contrl---

16 bit=-=-| | |--16 bit

data | | | data

bus |] | bus
| | -Command |
| | |

bus

PAGE L4 of 82 HP ALPHA 1 7-20-70 copPY 42
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

SECTION Il - SYSTEM HARDWARE MODULES

A. CENTRAL PROCESSOR MODULE

The CPU is a stack oriented processor designed to give both
high code density and a flexible addressing structure suitable for a
real time environment and a multiprogramming environment.

The internal organization of the CPU/IOP is designed to give
the maximum 1/0 rate and flexibility at the minimum cost. To this
end a major portion of the hardware of the CPU is shared with the
10P. The following sketch gives the general configuration:

MCU DATA BUS

Module Control Unit

Priority Resolver

—— S — — — T — — — — —— — — — A S — — — —— — — —
— — — — — — — — — — — — —— ——— — — — — — — —

| |
| |
| |
| |
CcPU | Shared | loP
special | CPU/IOP | Special
hardware | micro- | hardware
| processor |
| |
(includingl | (including
data path | | data path
to MCU) | | to MCU)
| |
| |
| | | I
e
I

| Interrupt System |
|

||
.
Mask bus (16)=====- P 1|
Interrupt request----| |
Command bus===========- |
Device # bus (8)==-=====- |
1/0 data bus (16)========== |

HP ALPHA 1 7-20-70 COPY 42 PAGE 5 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

B. MEMORY MODULE

A memory module may contain from 4k to 65k words of any speed
storage medium., The maximum addressable storage Is 65k words.

The memory will run asyncronously to the bus execpt for communi-
cation on the bus. This will facilitate the addition of new memory
technologies as they become avallable. A1l memory in a glven module
must be of the same type. A memory module will contain its own

address and data registers.

C. HIGH-SPEED CHANNELS MODULE

This module is an optional port onto the Internal data bus
for high-speed input-output devices.

D. BUFFERED BUS COMMUNICATOR MODULE

This module presents a standard 16 bit interface from the
bus to the outside world. It is a glorified microcircuit register.

E. MODULE CONTROL UNIT (MCU) & DATA BUS

The MCU processes requests from the various modules to use the
Data Bus. It controls the assignment of the bus time slices to the
requesting modules on a two level priority basis. All communication
on the Data Bus is synchronous with the MCU clock, although each
module may be asynchronous to the other modules.

PAGE 6 of 82 'HP ALPHA 1 7-20-70
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

B.

cory 4 .

SECTION 11!l - DESCRIPTIONS AND FORMATS

DEFINITIONS

TOS ==wccmceccccccccn -~ Top of stack

CIR ===ermcerccccece e n—— Current instructlon register

Condition codes ===-=====- CCA sets CC = CCL if operand < 0
CC = CCE If operand = 0
CC = CCG if operand > 0

CCB sets CC = CCL if special ASCII
character.

CC = CCE if alphabetic ASCII
character, upper &
lower case.

CC = CCG if numeric ASCII
character.

CCC sets CC = CCL iIf opndl < opnd2

CC = CCE 1f opndl = opnd2

CC = CCG If opndl > opnd2

CENTRAL PROCESSOR REGISTERS

DB: Data base register - 16 bits
contains the absolute address of
(bottom) of the stack.

Stack marker pointer - 16 bits
contains the absolute address of
being used within the stack.

fo

the first location

the current stack marker

SM:

SR:

DL:

PB:

PL:

HP ALPHA 1 7-20-70 copy 42 PAGE 7 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

Memory stack pointer register - 16 bits
contains the absolute address of the last used core
location of the stack.

Register stack pointer register - 3 blits
contains the number of reglsters in the CPU which
contain elements on the TOS.

Logical quantity which always points to the top
element of the stack.

S = SM + SR

Stack 1imit pointer - 16 bits
contains the absolute address of the last word of memory
available to the stack.

Data limit register - 16 bits
contains the absolute address of the last word of
memory availble to the user's data space.

Program base register - 16 bits
contains the absolute address of the first location of the
code segment being executed.

Program counter - 16 bits
contains the absolute address of the instruction being

executed.

Program 1imit register - 16 bits
contains the absolute address of the last location of
the current code segment.

PAGE 8 of 82 . HP ALPHA 1 7-20-70 coPy 42

STA:

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

Status reglister - 16 bits

includes:

| | | | | | | | |

I M| I} TITR]JO]C] CC| SEGMENT # |

| | | | | | | | |
co,1, 2,3, 4,5 ,6--7,8=-c-c-ccmcnmnec—--- 15

where...

M = Privileged mode bit
| = Enable/Disable External Interrupts bit
T = Enable/Disable traps bit

R = Right Stack Op bit -- set to 1 if execution will
proceed with Stack Op B of the instruction word

0 = Overflow bit
C = Carry bit

CC = Condition code
CCG = 00, CCE = 01, CCL = 10 or 11

SEGMENT # = The double word index into the
Segment Descriptor Table (SDT).

HP ALPHA 1 7-20-70 COPYII'Z‘ PAGE 9 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

C. ADDRESS SPACES (CODE SEGMENTS, STACKS)

The address space of a user will be organized as follows

increasing memory addresses

\
PCB DATA AREA

| DB === > |---DB

I S I I |

I I I |

| I I I
I I---Q
I I
I I
I D I
| C |===SM
I I |B_ |
! I |_A_|---S
| |==--Z SR = 2
I I
I I
| I
| |-=--DL

SDT

: :

|__I{PL=PB)/bL| CODE SEGMENT

| PL |======- > |---PB

I I ! I
I ! ISTATUS |
I | -
I |---P |_MASK |
I I N
I | . S
| |=---PL

D. ADDRESSING CONVENTIONS

1. S relative
Operations use the top elements of the stack as
implicit operand addresses and an address computed
by subtracting the displacement from S.
This mode will typically be used for accessing tem-
porary variables in subroutines.

PAGE 10 of 82 HP ALPHA 1 7-20-70 COPY 42
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

2. Q relative
Operations use the top of the stack as Implicit
addresses |f needed and an address computed by adding
(or subtracting) the displacement field to (from) Q.
This is useful for parameter passing and local
variable storage in procedures.

3. DB relative
Operations use the top of the stack as implicit
addresses if needed and an address computed by adding
a displacement field to DB. This is used for
global variable addressing.

L, P relative
Operations use the top of the stack as Implicit
addresses if needed and an address computed by
adding (or subtracting) the displacement to (from) P.
This 1s used for branches, procedure calls, literals, etc.

Address computation

The following are definitions used throughout In discussing
address computation:

E = Effective address
RA = Relative address
X = If the X-bit, CIR(4), = 0 then 0 else the content

of the X register
S = SM + SR, where SM and SR are the CPU registers

defined previously.

The following are the different cases of address computa-
tion and how the above quantities are computed.

1. Code, direct E =P+ D+ X
or E =P ~-D + X
RA = E - PB
2. Code, indirect E = (P + D) + X + PB
or E = (P - D) +# X + PB
RA = E PB
3. Data, direct E =DB + D + X
or E=0+D + X
or E=0-D+X
or E =S =D+ X
RA = E - DB
4, Data, indirect E = (DB + D) +# X + DB
or E = (Q + D) + X + DB
or E=(0-D) + X + DB
or E = (S - D) + X + DB
RA = E - DB

HP ALPHA 1 7-20-70 COPY é? PAGE 11 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

Bounds check:
If E lies outside of the following ranges, a trap

will occur.

Code, direct or Indirect
PB <= E <= PL

Data, direct

DB <= E <= SM (memory)
or SM+1l <= E <= § (TOS registers)
Data, indirect
DB <= E <= SM (memory)
or SM+1 <= E <= § (TOS registers)
or Z <= E <= DL (memory)

Bounds checking is applied according to the following

table:
USER PRIVILEGED
MODE MODE
Code read Yes No
Code execute Yes Yes
Data read Yes No
Data write Yes No
Stack overflow Yes Yes
(S <= 2)

This glves the following address modes

1. P+ D 13, Q + D

2. P+ D + X 14, Q + D + X

3., (P + D) + PB 15, (Q + D) + DB

4, (P + D) + X + PB 16, (Q + D) + X + DB
5. P =-D 17. Q - D

6. P -D + X 18. Q - D + X

7. (P - D) + PB 19. (Q - D) + DB

8., (P - D) + X + PB 20, (Q - D) + X + DB
9, DB + D 21. S - D

10. DB + D + X 22. S - D + X

11. (DB + D) + DB 23, (S - D) + DB

12. (DB + D) + X + DB 24, (S - D) + X + DB

Addressing arithmetic is done modulo 65k words.
One level of indlirect addressing is allowed.

PAGE 12 of 82 HP ALPHA 1 7-20-790 COPY “'2'
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

E. INSTRUCTION FORMATS

Instructions may take one of eight formats. Please
see attached sheets for instruction descriptions.

1. Memory reference

I
|oP COD

[I
E|X|!| ADDRESS |
f_1_1_l |
O=====- 3,4,5,6=======<~ 15
| Indirect bit
X Indexing to be used

If both X =1 and | = 1 then post indexing will occur.
The displacement is a positve gquantity, giving sign-magnitude
addressing modes.

Address decoding

P+ CIR(6:7) = 00
CIR (8:15) = Displacement
Range(P,P+255)

p- CIR(6:7) = 01
CIR (8:15) = Displacement
Range(P-255,P)

DB+ CIR (6:7) = 10
CIR (8:15) = Displacement

Range(DB,DB+255)

0+ CIR (6:8) = 110
CIR (9:15) = Displacement
Range(0,Q+127)

Q- CIR (6:9) = 1110

CIR (10:15) = Displacement
Range(0-63,Q)

S- CIR (6:9) = 1111
CIR (10:15) = Displacement
Range(S=-63,S)

HP ALPHA 1 7-20-70 COPY4£ PAGE 13 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

CIR
8 9 10 11 12 13 14 15
....Displace. (0:255)
....Displace. (0:255)
....Displace. (0:255)
0 ..Displace. (0:127)
1 0 Displace. (0: 63)
1 1 Displace. (0: 63)

P+ relative
P- relative
DB+ relative
Q+ relative
Q- relative
S- relative

HEHEHHRMEOOM
RO OSSN

2. Stack & Contro!l

| I I I
| 0000 |STACKOP|STACKOP|
| I A I B |
o 3, - 9,10----15

Execution is from left to right (A first, then B)

3. Shifts, bit tests, conditional branches

Note that in this format the Y bit, CIR(4), is a true Index
bit on the shift and bit test instructions, and is the
indirect addressing bit for the conditional branches.

4, Immediate

I I |
| 0010 |SUBOP 2|OPERAND
I

5. Linkage and control instructions

I l I I
| 0011 |SUBOP 3|ARGUMENT|
l

I I |

PAGE 14 of 82 HP ALPHA 1 7-20-70 cory .
HEWLETT-PACKARD PRIVATE=--DO MNOT REPRODUCE

6. Special Opcodes

I I | !
| 0000 |SPECIAL| K-FIELD]|
I |__op | |
) JE—— 3,4====7,8=----11,12-=~-~ 15

7. Move Opcodes

| | | I | I
| 0011 | 0000 | MOVE OP | SDEC | CCF |
| I I | I I
0==m—m—= 3, hmm==T, 8= 10,11--12,13--15

8. Mini Opcodes

I I I
| 0000 | 0000 | MINI OP|
I | I I

"HP ALPHA 1 7-20-70 COoPY 42 PAGE 15 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

F. DATA FORMATS

Fixed point format: 16 bit, two's complement

(For double-word fixed point format, 16 magnitude bits
are added on the right).

A trap will be invoked if an integer arithmetic operation
(not addressing or indexing) encounters the illegal integer

represented by

in single word integer instructions or the integer represented
above followed by another word of all zeroes in double

word integer format.

Logical format, 16 bit positive Integer

PAGE 16 of 82 HP ALPHA 1 7-20-70 copy
HEWLETT-PACKARD PRIVATE--DO NOT REP UCE

Floating point format, sign + magni tude representation

I |

1S E | F |

1| | I

0,1------- 9,10 ---emmmmmme———m===mm—=m---- 31
S = Fraction sign bit (0 for positive, 1 for negative)
E = Exponent+256 (Range 0 to 511)
F = Fraction (Range 0 to (2#%22) - 1)

Note: |In sign + magnitude representation, the fraction is always
positive with the S bit containing the sign of the number. The
binary point is assumed to the left of bit 10 with an implied
leading 1 to the left of the binary point. Thus all floating
point numbers are stored in normalized form, but no bit is wasted
on the leading 1, making all fraction bits significant. The
exceptions are that 0 is a word contalning all 0's, and a one in
the sign position with the remainder of the word containing zeros
is Illegal and if encountered causes a trap.

*

Decimal value (=1)**S * 2*x*x(E-256) (1+4F*2%%(=22))
Decimal value 0 when S = E=F =0

Note the following special cases:

0
1
I LLEGAL

101 10000000000000000000000|
Igl10Q000000IOOQQOOQOQOOOQOOOQOOOOOI
1110000000 0100000000000000000000001

Definitions:

floor (X) = largest integer <= X
sign (X) =1, if X > 0

0, if X =20

-1, if X <0

exp (X) = floor (logbase2 [xy1), if X °=0

undefined, if X =0
trunc (X) = sign (X) * floor (IX}])
round (X,N) = 0, if X =0

2 %% (exp (X) = N) = sign (X) =*
floor (2xx(N-exp (X)) = |X| + 0.5), if X 7= 0
where N+1 is the number of significant bits

42

HP ALPHA 1 7-20-70 COoPY PAGE 17 of 82

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

G. STACK MARKER FORMATS

RELATIVE P

STATUS

DELTA Q

S,Q

DELTA Q

STATUS
RELATIVE

Value to be subtracted from the Q register to obtain
the Q value of the caller. .

The content of the status reglster.

= P+1 - PB
(The instruction to be returned to)

PAGE 18 of 82 HP ALPHA 1 7-20-70 COPY éL‘L_
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

SECTION IV - TABLES

There are seven classes of tables resident In the Alpha
operating system. They are classified below:

NAME MNEMONIC # LENGTH WHERE

Segment Table Pointer SDTB 1 1 Fixed location 0

Current PCB Pointer CPCB 1 1 Fixed location 1
Interrupt Stack Base Ql 1 1 Fixed location 2
Interrupt Stack Limit Zl 1 1 Fixed location 3

Device Reference and DRT 1 <=255 Fixed locations 4--1777
Ext. Interrupt Table 4L word entries, 255 max.
Segment Descriptor SDT 1 <=256 Starts at location SDTB
Table 2 word entries, 256 max.
Segment Transfer Table STT var var Dynamically allocated
Process Control Block PCB var var Dynamically allocated
Privileged Data Table PDT var var Dynamically allocated

The entries in these tables are described below.

A. SEGMENT TABLE POINTER & SEGMENT DESCRIPTOR TABLE

The segment descriptor table is actually the controlling
table of the system. It resides at a known location in memory
(SDTB pointer) containing a known number of double word entrles
determined at system generation time. Segment # 0 is reserved
for interrupt use, and the zeroth entry in the SDT contains the
address SDTL of the last entry in the SDT. There are a maximum
of 255 double word descriptors. Five distinct regions exist in
the Segment Descriptor Table:

. Monitor intrinsics

. Library subroutines

Processors and shared programs

User programs (both segmented & non-segmented)
Internal Interrupts and Traps

VMTFE WK =

HP ALPHA 1 7-20-70 copPyY PAGE 19 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

The length of regions 1-3 are fixed at system generation time.
The length of reglon 4 is dynamically allocated at job execution
time. The length of region 5 is permanently fixed, but the des-
criptors may change dynamically (Note that External Interrupts
are not contained in the SDT).

The entries of the SDT have the following form:

| |
| Al M| RS | R | L |
| | | | | |
| |
| ADDRESS |
I |
0 , 1, 2 , 3 ,feecememcceee—- 15
A = Absence bit, set to 1 if the code segment is absent from core.
M = Mode bit, set to 1 if segment is to be executed in

privileged mode.
RS = Reserved for future use

Reference bit, set to 1 when this descriptor is accessed.

=
n

For an N-word segment, L = ((N-1) + 3)/4, such that
PL = PB + L4=*L >= PB + N -1 and Uu4*xL _- (N-1) <= 3.

-
]

ADDRESS = Absolute address of PB if the segment Is present,
otherwise it indicates the absolute disc address

B. SEGMENT TRANSFER TABLE (STT)

A segment transfer table is assoclated with each segment and
appended to each generated program segment at load time. PL-
addressing Is used by the CALL instructions to access the table.
It contains 1 word entries which are of two basic types: external
reference and local reference. The entries are:

External entry

Segment # = Logical entry number in the SDT

STT Entry # = Number to index from PL to obtain entry point
into segment.

" PAGE 20 of 82 HP ALPHA 1 7-20-70 COPY 42
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

Local entry

U = Uncallable bit. This bit is ignored when referenced within
a segment or when in privileged mode. It is set to 1 when
the entry point is uncallable from a non-privileged segment.

PL entry (The last word of any program segment)

STTL = # of entries in this Segment Transfer Table (STT).

A transfer through STT entry # 0 implies that execution will
begin at P = PB.

Note: Any call outside the current program segment may only
reference the first 128 entries in any other segment transfer
table (PL, PL-127).

C. CURRENT PCB POINTER (CPCB)

The current PCB pointer is one word of core in a dedicated
location which points to the process control block which is
currently executing on the machine.

D. PROCESS CONTROL BLOCK (PCB)

A process control block is associated with each user. This
variable length block (entries to be defined) keeps track
of the location of the user's stack area, privileged data table,

etc.

E. PRIVILEGED DATA TABLE (PDT)

A privileged data table is associated with each user. The
location of the privileged data table is known to the system via
the process control block (PCB) associated with that user. The
entries are descriptor words (to be defined) pointing to
file addresses, 1/0 commands, directories, buffers, etc.

HP ALPHA 1 7-20-70 CoPY _42 PAGE 21 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

F. DEVICE REFERENCE & EXTERNAL INTERRUPT TABLE (DRT)

This dedicated table contains one 4 word entry for each device
number, up to the maximum of 255 devices. The first word of each
entry corresponds to a unique device and contalns the address of
the next 1/0 command instruction for that device. The second word
of each entry contains the absolute program address Pl at which
execution will begin for that external interrupt, and the third
word contains the absolute data base address DBl associated with
that external Interrupt. Bit 0 of the fourth word is the Interrupt
Reference Flag, IRF. It may be set by the SIRF instruction to In-
dicate the presence of an interrupt from the device. Note that
device number 0 does not exist.

G. |INTERRUPT STACK BASE AND LIMIT (Ql & ZI)

These two dedicated locations point to the start and end of the
memory area allocated to the interrupt stack.

FIXED MEMORY ALLOCATION

Octal Segment Descriptor Table
Location Use
0 SDTB=-=-emrcmcrnc e e e > SDTL | ===
01 CPCB | |
02 Ql seg. 1 |_I1_I1_I_I |
03 Z1 | ||
seg. 2 |_I_I_I_I I
| I
| . I
| . I
| . o
| I
last seg. |_l_1_1_I | ==
[|
DRT -
oy 1/0 prog. dev. 1 1/0 program address = ubxdevice #
05 Pl dev. 1 P! address = Lxdevice # + 1
06 DBl dev.10 DBl address = L*xdevice # + 2
07 IRF dev. 1 IRF address = 4xdevice # + 3
10 1/0 prog. dev. 2
11 Pl dev. 2 Address calculation above is in octal.
12 DBl dev. 2
13 IRF dev. 2

1774 1/0 prog. dev. 255 Note that the DRT need contain
1775 Pl dev. 255 only as many entries as there
1776 DBl dev. 255 are devices on the system.
1777 |IRF dev. 255

42

PAGE 22 of 82 HP ALPHA 1 7-20-70 cerPy
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

SECTION V = INPUT/OUTPUT

1/0 programming is handled by a portion of the CPU micro-
program along with special hardware which enables data transfer be-
tween devices and memory to proceed in parallel with normal
CPU operation.

A. CPU INSTRUCTIONS

There are five CPU 1/0 instructions and addressing capabllity
for 256 device controllers. The |/0 instructions are: Start 1/0
(S10), Read 1/0 (R10), Write 1/0 (WIO), Test 1/0 (TIO), and
Control 1/0 (Cl10). They expect a device controller number in the
stack. For T!0 and for a rejected S10, RIO or WIO a 16 bit device
status word (DSW) is returned to the top of the stack.

Start 1/0 (S10) causes the initiation of an 1/0 program pointed
to by an entry In the Device Reference Table (DRT). The DRT Is a
table beginning in memory location 4 containing at most 255 four
word entries. Each table entry corresponds to a unique device
number and the first word contalns the address of the next /0
command instruction for that device.

The execution of an SI0 causes the transfer of the DRT entry
specified by the instruction to be made to the corresponding
device controller. The controller then assumes control of the [/0
program execution and transfers data to and from the bus. Note
that once the device operation has been initiated, the CPU is
free to continue processing. Both tasks run concurrently until de-
vice termination caused by the appropriate !/0 command instruction.

B. SI0 PROGRAMMING

An SI0 type transfer is initiated by the CPU executing a Start
1/0 instruction for the desired device, assuming that there is an
1/0 Command program stored in memory. The DRT entry associated
with the device must be pointing to the beginning of the 1/0 Command
program.

The 1/0 command program conslsts of a set of doubleword
instructions which controls the transfer of data between device and
memory. The format of an 1/0 instruction doubleword is:

42

HP ALPHA 1 7-20-70 Copy PAGE 23 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

[I
DC|ORDER | COUNT

l I
10Cw | |
I I l
! I
I I
!

| 0AW Data Address/Control Info/Sense Address

DC = Data Chain upon command execution complete.
DC bit should be 1 if the ORDER code of the next
sequential | /0 program doubleword is the same as
the current ORDER. This applies only to READ and
WRITE ORDER codes.
ORDER = 1/0 operation code
COUNT = Transfer count--may be bytes, words or records depending
upon the particular device controller,
1/0 Command Word
1/0 Address Word--the Transfer address

1oCW
I 0AW

C. 1/0 COMMAND CODES

CONDITIONAL JUMP (000) The count field of the 10CW is examined
by the controller and a conditional jump to the address given
by the I0AW is made at the discretion of the controller.

RETURN RESIDUE (001) This causes the residue of the count to
be returned to the memory address given by the [0AW.

INTERRUPT (010) This causes the device controller to interrupt
the CPU.

END (011) End of the |/0 program.

CONTROL (100) This causes transfer of a 16 bit control word at
core location specified by I0AW to the device controller.

SENSE (101) This causes transfer of a 16 bit status word from the
device to memory at address given by the [10AW.

WRITE (110) This causes COUNT words of data to be transfer-
red between core and the device starting at the address given

by the 10AW.

READ (111) This causes COUNT words of data to be transfer-
red between the device and core starting at the address given
by the I0AW,

STACK

p—slop|sa3sio] k |

\
N\

(S-KI—>f |device y DRT
l«— 4 octal
2 2
I/0 PROGRAM

4xJ dev.J Prog. Ptr. —>1DqOrde Count | DATA AREA
Pl Address | o
DBI . e
IRF] 2

rder| Count 2 DATA AREA

Address 2 [---3 ?

(¢]
[-]
[
2
N

SI0O PROGRAMMING

T VHdIV dH ¢8 30 %¢ 39vd

0,L-02-L

32NQa0¥d3Y 1ON 00--31VAldd QUVIIVd-1Ll3TM3H
AdOJ

42

HP ALPHA 1 7-20-70 CoPY PAGE 25 of 82
HEWLETT-PACKARD PRIVATE~--DO NOT REPRODUCE

SECTION VI =~ INTERRUPT AND TRAP PROCESSING

A. EXTERNAL INTERRUPTS

The external interrupt structure is a "polling" structure with
a maximum of 255 devices allowed on the Interrupt Poll (IP) line.

Servicing of the external interrupts is done In descending
order of priority, i.e. the highest priority Interrupt Is serviced
first. The interrupt priority of a device is determined by Iits
logical proximity to the CPU on the IP line. The interrupt struc-
ture Is nested such that a higher priority Interrupt can pre-empt
a lower one. A 16 bit Mask register is provided for the purpose
of masking off groups of external interrupts. Each bit of the MASK
may be associated with a device by connecting the device to that
bit on the mask portion of the 1/0 bus. Up to 16 external inter-
rupts may be assigned to a mask group.

In the ALPHA 1/0 system there are four characteristic numbers
or values associated with an 1/0 device. (Note that they are fixed
at hardware system configuration tive. These are Device Number
Data Service Priority, Interrupt Priority and Interrupt Mask
Number. These characteristic values are all independent of each
other, giving the following advantages:

1. Device Numbers may be numbered consecutively, starting
at 1 and proceeding to the number of devices on the system.
When a new 1/0 device is added to the system, it Is merely
assigned the next highest available number, if desired.

2. Since both Data Service and Interrupt Priorities are
independent of device number, a new device to the system may
be placed anywhere in the priority chain, independent of
physical location within the cabinet.

3. Since Data Service Priority and Interrupt Priority are
independent of each other, a device which requires a high
data transfer rate may be assigned a low interrupt priority,
if deslred (such as a disc), or a device which has a very
low data rate may be configured to a high priority interrupt
(such as an alarm condition).

L, Since Interrupt Masks are independent of device numbers
and priorities, devices may be masked in groups related to
any desired function. For example if two data terminals were
on the system and each has both a high speed and a low speed
device, the interrupts could be masked for each terminal,
rather than on a data rate basis.

PAGE 26 of 82 HP ALPHA 1 7-20-70 COPY 4(
HEWLETT=-PACKARD PRIVATE~--DO NOT REPRODUCE

Each interrupt has four states: 1. Masked, 2. Unmasked,
3, Pending, 4. Active. An interrupt may not move to the Active
state if it is masked off. The interrupt system is automatically
turned off when an interrupt occurs and must be turned back on by
an instruction in the interrupt routine.

The interrupt response time is defined to be the maximum time
that may elapse between the setting of the active state of an lInter-
rupt and the start of the execution of the first instruction of the
interrupt routine for the highest priority unmasked interrupt. This
response time is approximately 25 microseconds.

Upon receipt of an external interrupt by the CPU, the currently
executing instruction is terminated, the current DB pointer is
pushed onto the stack, and a standard format 3 word stack marker
is created on the current stack. The hardware top of stack registers
are pushed Into core memory such that S = SM and SR = 0. The new
value of S (note that Q = S points to the stack marker) Is stored
into the Process Control Block (PCB) of the non-interrupt process.
The stack environment is changed to the Interrupt Stack by setting
: I <<from memory location 2>>;
| <<from memory location 3>>;
+ 1;
(S) := Device Number of External Interrupt;
{{note that operating system guarantees (Q) = 0>>

ONO

Q
Z
Q

3
13
.
*
.

The CPU references the entry in the Device Reference Table and
External Interrupt Table (DRT) for this device number, setting

PB := 0;

PL :¢= 2%%x16 - 1 {{highest addressable memory location>>;
P := PI <{from DRT>>;

DB := DBI {<from DRT>>;

{{segment # = 0 for all ext. intrps>>;

STATUS(8:15) 0
10 <<priv. mode, disabled ext. interrupts>>;

STATUS(0:1) :=

Code executlon begins In privileged mode at the instruction
pointed to by the Pl entry for the interrupting device. The exter-
nal interrupt system is disabled.

The steps in the External Interrupt processing described above
are shown in the following diagram and explanation:

PDT

DBo —

USER STACK

DBo—
So—
D
C
B
A
DBo or DB
P+l - PB
STATUS
Q,5S—| DELTA Q
Z 0o~ |
DLo—

@~ b N~

A\

A\

A\
A\

A\
A\

PCB FIXED MEMORY
DBo | cpcB
S 10 Ql

Z\

DRT—

AN

4%xDev.No.—3 I/0 PROG. PTR.

Pl

DB/

IRF|

9

12

\\
N\ A\
— \\ AR}
—/—wl /

INTERRUPT STACK

0

DEVICE No.

D8I

Pt

STAYUS

DELTA Q,

2nd DEVICE No.

13

INTERRUPT CODE

EXTERNAL INTERRUPT PROCESSING

16

INTERRUPT DATA

30NA0dd3y LON 00--3LVAlYdd QUVYIIVH=-LLITMIH

T VHdTV dH

0L-0C-L

?$ Ad0Q

¢8 340 LT 39vd

42

PAGE 28 of 82 : HP ALPHA 1 7-20-70 coPY

STEP

VME WO

QWoo~NM

12
13

1L

15
16

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

ACTION

An External Interrupt request is received by the CPU.

The four top of stack reglisters are pushed into
memory if they contalin valid information. This
takes a maximum of four cycles if all four are
full.

The current value of the user's DB is pushed onto
his stack in memory.

A normal three word stack marker is created and pushed
into memory, saving P + 1 - PB, STATUS and
Delta Q.

The Current PCB pointer is fetched from locatlion 1.

The user's current value of S is stored in his PCB.
Note that the PCB always contains the fixed cur-
rent values DBo, Zo, DLo; they need not be resaved.

The Interrupt Stack Base QI is fetched and loaded
into the Q reglister.

The Interrupt Stack Limit Z! is fetched and loaded
into the Z reglster.

The devices are polled and the highest prioity In-
terrupting device returns its device number. Note
that this may not be the same device that issued
the original Interrupt Request, if a higher pri-
ority device has requested an interrupt in the
intervening time. S is set to QI + 1 and the
device number is stored at S. The external in-
terrupt system is turned off and no further in-
terrupts are accepted.

Using the device number to generate an index Into
the DRT, the Program Pointer for this device is
fetched and stored in the P register. PB is set
to zero and PL is set to the highest addressable
memory location. The segment # in STATUS Is set
to zero.

The interrupt program's data base, DBIl, is fetched
from the DRT and loaded into the DB register.

The first instruction of the interrupt receiving
routine is fetched and execution begins.

The diagram also shows the items stacked when a higher priority
device interrupts the current interrupt. DBI, P+1, STATUS, Delta Q
are stacked and steps 13 through 16 are followed.

The approximate time for the processes are

a. 16 memory cycles for the first interrupt (steps 1-16)

b. 8 memory cycles for succesive higher priority
interrupts (steps 5-8, 13-16)

c. L memory cycles for a pending intermediate priority
interrupt upon EXIT from the higher priority routine
(steps 13-16).

HP ALPHA 1 7-20-70 CoPY 42 PAGE 29 of 82
HEWLETT-PACKARD PRIVATE=--DO NOT REPRODUCE

B. INTERNAL INTERRUPTS

The fifteen internal interrupts, including machine check con-
ditions and entry points into the operating system, occupy segment
numbers 1 through 15 in the Segment Descriptor Table (SDT); all
user related trap conditions enter one code segment, number 15 (see
Interrupt and Trap Table).

- When an internal interrupt condition Is detected by the CPU,
the interrupt is serviced as follows:

1. |If required, a parameter word is pushed onto the current
stack.

2. A new three word standard format stack marker is placed on
the stack.

3. The STATUS register is changed to Privileged mode and the
segment number set to the SDT entry for the particular
Interrupt being serviced; the Enable/Disable external
Interrupts bit is unchanged.

L, An Interrupt CALL is performed through the SDT by the hard-
ware, similar to a CALL instruction except that code exe-
cution will begin at PB in the called segment. (This is
equivalent to a CALL through STT entry 0.)

C. TRAPS

User related arithmetic and stack faults are trapped into an
Interrupt CALL on segment 15, if the Enable/Disable Traps bit in
STATUS is enabled. The parameter will be the trap number, as
shown in the Interrupt and Trap Table. |If traps are disabled,
no speclial action will occur.

corPy 42

PAGE 30 of 82 HP ALPHA 1 7-20-70
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

INTERRUPT and TRAP TABLE

Seg. # Priority Type

0 5 External Interrupts (via DRT and Interrupt Stack)

1 1 Power Fail

2 1 Power On

3 2 Parity Error

[} 2 Non-responding Module

5 3 Interrupt from another Module

6 [111egal Address (including Memory Protect Violation)
7 [} Stack Underflow (S ¢ DB or Q < DB)

8 6 Interrupt Stack Bottom (EXIT Seg # 0 & Delta N = 0)
9 4 Code Segment Presence (CALL or EXIT instruction)
10 [Stack Overflow (S > Z)

11 - Unassigned

12 - Unassigned

13 - Unassigned

14 7 Console interrupt

15 8 Traps, with parameter =

1, Integer Overflow

2, Floating Point Overflow

3, Floating Point Underflow

4, Integer Divide by Zero

5, Floating Point Divide by Zero
6, Undefined Integer

7, Undefined Floating Point

8, Stack Integrity (s < 0)

9, Privileged Instructlion
10, Unimplemented Instruction

D. POWER ON & COLD START PROCESSING

Wwhen power is turned on, the data control registers DB, Q, S,
7 and DL are initialized from the Process Control Block pointed to
by the CPCB pointer (the values were set by the Power Fail routine),
and an Interrupt CALL is performed to the Power On internal Iinter-
rupt, setting PB, P, PL and STATUS from the information in the Seg-
ment Descriptor Table (SDT). At this time one of two things will
happen:

1. |f Automatlic Restart from a power failure is enabled by a
panel switch, then the Power On interrupt segment will begin
execution at P = PB.

2. |f Automatic Restart is disabled, the computer will HALT
with P = PB pointing to the Power On interrupt segment.

At this point the operator must either
a. manually push the Resume button, causing the program
to start executlon at location P. :

HP ALPHA 1 7-20-70 copPy 42 PAGE 31 of 82
HEWLETT-PACKARD PRIVATE--DC NOT REPRODUCE

b. Manually push the Cold Load button, which initializes
the CPU registers as described below. An 1/0 program
is then generated to load memory from a device speci-
fied by the operator-set switches on the panel.

The Cold Load program reads an 8 bit device number
(DN) from SWITCH(8:15) and a preconditioning 1/0
device control byte from SWITCH(0:7). The Cold Load
program located at the end of the first 4K of memory
is as follows:

DRT(DN) :

= 7720; <<1/0 program counter>>
STATUS = Privileged mode, Enable ext. interrupts, Seg. # 0;
PB := P := 7700;
PL := 7704;
(7700) = 510 0; <<CPU instruction, device number in (S)>>
(7701) = BCC CCL or CCG, P+3; <<KHALT if SI10 rejected>>
(7702) = PAUS;
(7703) = BR P-1;
(7704) = HALT;
(7705) = control 1/0 word = eight 0's and SWITCH(0:7);
DB := Q := SM := 7706;
Z := DL := 7717;
SR =1

’
(S) := device number = SWITCH(8:15);

(7720) = Control ORDER; <<I1/0 instruction>>

(7721) = 7705; <<address of control information>>

(7722) = Read ORDER, word count = Lhdecimal; <<maximumd>>
(7723) = 7724; <<input read address>>

7724 through 7777 are Lhdecimal words of load area for the
1/0 program,

A1l addresses are given in octal.

42

'PAGE 32 of 82 - HP ALPHA 1 7-20-70 corPy

E

HEWLETT-PACKARD PRIVATE--DO NCT REPRCDUCE

SECTION VII = INSTRUCTION SET

MEMORY ADDRESS INSTRUCTIONS

= Effective address

PDQS = P+, P-, DB+, Q+, Q-, S-
DNS = DB+, 0O+, Q-, S-

P

*

D

= P+, P-

Indirect addressing allowable

Displacement field of instruction word used in address
computation. It is always a word displacement even in
byte and double word instructions.

Displacement field of Conditional Branch instructions.
The range is P - 31, P + 31.

Indexing allowed

LOAD INSTRUCTIOMNS

LOAD E (=, D, X, PDQS) {Load> Mem. OpCode=04
S := S + 1;
(S) := (E);

The content of E is pushed onto the stack.
Indicators = CCA

LB E (%, D, X, DQS) {Load byte> Mem. OpCode=15
CIR(B) =10
S := S + 1;
(S(0:7)) := 0;
if CIR(5) = 0 then
begin

(5(8:15)) := if CIR(4) = 0 or X(15) = 0 then (E(0:7))
else (E(8:15))
end else <<indirect addressing>>
begin
BE := (base + D) + if CIR(4) = 0 then 0 else X <<byte>>;
E := BE/2 <KE=DB < 2#%x1555;
if BE mod 2 = 0 then (S(8:15)) := E(0:7)
else (s(8:15)) := E(8:15);

end;

X contains a byte index. 0On indirect addressing the word
referenced by the direct address (base + D) contains a DB rela-
tive byte address. The byte index is added to te relative byte
address, and the byte referenced is then loaded onto the stack.
Indicators = CCB

HP ALPHA 1 7-20-70 cory 42 PAGE 33 of &2
HEWLETT~PACKXARD PRIVATE--D0O NCT REPRODUCE

LDD E (x, D, X, DOS) {Load double> Mem. OpCode=15
CIR(6) =1

S =S + 2;
(S-1, S) := (E, E+1);

X contains a double word index. The double word
in E, E+1 is pushed onto the stack, most significant word first.
Indicators = CCA

LDPP N <Load double from program, positive> Sub OpCode3=10

S :=
(s) :
S :=
(S)

wn

+ 1;
(P + N);
+ 1;
(P + N + 1);

.o
wniu

The doubleword contained at P + M is pushed onto
the stack.
Indicators = CCA

LDPN N <Load double from program, negative> Sub OpCode3=11
S := S + 1;
(S) := (P = N);
S = S + 1;
(S) := (P = N+ 1);

The doubleword in location P - N is pushed onto
the stack.
Indicators = CCA

LDX E (%, D, X, PDQS) {Load Index> Mem. OpCode=13
X = (E);
The content of E is loaded into the index register.
Indicators = Unaffected.
LRA E (x, D, X, PDOS) {Load relative address> Mem. OpCode=17

S =S + 1;
if CIR(6) = 0 then (S) := E-PB else (S) := E-DB;

The effective address is computed in the normal manner
and then the appropriate base register (PB for P+- addressing,
DB for DB+, N+-, and S- addressing) is subtracted from
the absolute address E. The relative address is pushed onto
the stack.

Indicators = Unaffected.

- PAGE 3L of 82 HP ALPHA 1 7-29-70 COPYI‘2

10.

HEWLETT-PACKARD PRIVATE--DC MOT REPRODUCE

STORE INSTRUCTIONS

STOR E (%, D, X, DQS) {Store> Mem. OpCode=05

(E) := (S);
S := S-1;
The content of the TOS is stored in memory location E.

The stack is popped.
Indicators = Unaffected

STB E (x, D, X, DOS) {Store byte> Mem. OpCode=16
CIR(B6) = 0

if CIR(5) = 0 then
begin
if CIR(L) = 0 or X(15) = 0 then (E(0:7)) := (S(8:15))
else (E(8:15)) := (S(8:15));
end else <<indirect addressing>>
begin
BE := (base + D) + if CIR(L4) = 0 then 0 else X <<byte>>;
E := BE/2 <<KE=-DB ¢ 2*x15>>;
if BE mod 2 = 0 then (E(8:15)) := (S(8:15))
else (E(0:7)) := (S(8:15));
end;
S =S - 1;

X contains a byte index. On Indirect addressing the word
referenced by the direct address (base + D) contains a DB rela-
tive byte address. The byte index is added to te relative byte
address, and the right hand byte of the TO0S is stored into the
referenced byte. The T0S is deleted.

Indicators = Unaffected

STD E (%, D, X, DCS) {Store double> Mem. OpCode=16
CIR(6) =1

(E, E+1) := (S-1, S);
S := S5-2;

X contains a double word index. The top two words on
the stack are stored at E, E+l.
Indicators = Unaffected

11.

12.

13,

14,

15,

16.

42

HP ALPHA 1 7-20-79 coPy PAGE 35 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

MEMORY REFERENCE INTEGER INSTRUCTIONS

cCMPM E (x, D, X, PDOS) {Compare memory> Mem. OpCode=06

CC := (S) : (E);

The condition code is set to pattern C as a result of the
comparison of (S):(E). The stack is popped.
Indicators = CCC

ADDM E (x, D, X, PDNS) <Add memory> Mem. 0OpCode=07

(S) = (S) + (E);

The content of E is added in integer form to the T0S. The
result replaces the operand on the TOS.
Indicators = CCA, Carry, Overflow

SUBM E (%, D, X, PD0OS) {Subtract memory> tem. QOpCode=10
(S) := (S) - (E);
The content of E is subtracted in integer form from the TCS.
The result replaces the operand on the TO0S.
Indicators = CCA, Carry, Overflow
MPYM E (%, D, X, PDNS) Multiply memory) Mem. OpCode=11

(S) := (S) = (E);

The TOS is multiplied in integer form by the content of E.
The least significant word of the result replaces the operand on
the TO0S.
Indicators = CCA, Carry, QOverflow

INCM E (x, D, X, DOS) {Increment memory> Mem. OpCode=12
CIR (6) =0
(E) := (E) + 1;
The content of E is incremented by 1 in integer form.
Indicators = CCA, Carry, Overflow
DECM E (=, D, X, D0OS) {Decrement memory> Mem. OpCode=12

CIR () =1
(E) := (E) - 1;

The content of E is decremented by 1 in integer form.
Indicators = CCA, Carry, Overflow

- PAGE 36 of 82 HP ALPHA 1 7-20-70 COPY 44

17.

18.

19.

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

BRANCH INSTRUCTION

BR E (*x, D, X, P or indirect DQS) {Branch> Mem., OpCode=1hL

if CIR(6) = 0 then P := E <<as defined in section 111-D>>
else P := PB + (DB or Q or S += D) + X; <indirect addrb>>

Control is transferred to location E.
Indicators = Unaffected.

CONDITIONAL BRANCHES
CIR(10) is the sign of P+- displacement
Range (P-31, P+31)
CIR(4) is the indirect bit for cond. branches
L = signed range

BCC L (%, L, P) <Branch on Condition Code> Mem. OpCode=14
CIR(5:6) = 01

If CC AND (CCF) "= 0 then P := P + L;

The branch addresses are in the range P-31, P+31.
Condition code field (CCF) in instruction is CIR (7:9).
Control is transferred to location P + L under the following

conditions:
If CCF = 0, Never branch

1, Branch if CC = CCL
2, 3ranch if CC = CCE
3, Branch if CC = CCL or CCE
4, Branch if CC = CCG
5, Branch if CC = CCG or CCL
6, Branch if CC = CCG or CCE
7, Always Branch

Indicators = Unaffected.

BCY L (=, L, P) <Branch on carry> Sub OpCodel=14

if STATUS(5) = 1 then P := P + L else P := P + 1;

If the carry bit of the status bit is on, control is
transferred to P + L.
Indicators = Carry cleared

42

HP ALPHA 1 7-20-70 CoPY PAGE 37 of 82
HEWLETT-PACKARD PRIVATE-~-DO NOT REPRODUCE

BNCY L (*, L, P) <Branch on no carry> Sub OpCodel=15
if STATUS(5) = 0 then P := P + L else P := P + 1;
If the carry bit of the status bit is off, control is

transferred to P + L,

Indicators = Carry cleared

BOV L (x, L, P) <Branch on overflow> Sub OpCodel=30
if STATUS(4) = 1 then P := P + L else P := P + 1;
If the overflow bit in the status word is on, control

is transferred to P + L.

Indicators = Overflow cleared

BNOV L (*, L, P) <Branch on no overflow> Sub OpCodel=31
if STATUS(4) = 0 then P := P + L else P := P + 1;
If the overflow bit in the status word is off, control

is transferred to P + L.

Indicators = Overflow cleared

BRO L (=, L, P) <Branch on T0OS odd> Sub OpCodel=36
if (S(15)) =1 then P := P + L;
If the TOS is odd, control is transferred to P + L.

Indicators = Unaffected

BRE L (+, L, P) <Branch on TOS even> Sub OpCodel=37
if (S(15)) = 0 then P := P + L;
If the TOS is even, control is transferred to P + L.

Indicators = Unaffected

IABZ L (x, L, P) <lncrement A branch if zero> Sub OpCodel=07

(S) = (S) + 1;
if (S) = 0 then P := P + L else P := P + 1;

The TOS is incremented. |If the result is then zero,
control is transferred to P + L.
Indicators = CCA, Overflow

42

- PAGE 38 of 82 HP ALPHA 1 7-20-70 corPY

26.

27.

28.

29.

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

IXBZ L (%, L, P) <lncrement X, branch if zero> Sub OpCodel=12

X

:= X
if X =

+ 1;
0 then P := P + L else P := P + 1;

The index register is incremented. |If the result is
then zero, control is transferred to P + L.

Indicators = CCA, Overflow

DABZ L (%, L, P) <Decrement A, branch if zero> Sub OpCodel=27

(S) := (S) - 1;
if (S) = 0 then P := P + L else P := P + 1;

The TOS is decremented. |f the result is then zero,
control is transferred to P + L.
Indicators = CCA, Overflow

L (=*) <Decrement X, branch if zero> Sub OpCodel=13
X 1=
if X

DXBZ

xS

en P := P + L else P := P + 1;

The index register is decremented. |If the result is
then zero, control is transferred to P + L.
Indicators = CCA, Overflow

CPRB L <Compare range and branch> Sub OpCodel=26
if (S-1) <= X <= (S) then
begin
€CC := CCE;
P =P + L;
end;
if X < (S-1) then CC := CCL;
if X > (S) then CC := CCG;
S = S - 2;

The integer in the index register is tested to determine
if it is within the interval defined by the upper bound integer on
the TOS and the lower bound integer found in the second word of
the stack. The condition code is set by the comparison. If the
integer in X is within the range then the branch to P + L occurs.
Indicators = Condition Code

F.

30.

31.

42

HP ALPHA 1 7-20-70 COPY
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

PAGE 39 of 82

LOOP CONTROL BRANCH INSTRUCTIONS

TBA E (D, P) {Test, branch, A> Mem. OpCode=05
CIR(4:6) = 000
VAR := ((S-2));
STEP := (S-1);
FINAL := (S);
if STEP >= 0 then
if VAR > FINAL then S := S - 3 else P := E;
if STEP < 0 then
if VAR < FINAL then S := S - 3 else P := E;

This instruction requires that the top 3 elements of the
stack are (T0S, TOS -1, TOS =-2) the final value, the step size
and the address (DB+ relative) of the varlable respectively.

VAR is tested against the limit. |If the 1limit is exceeded, then
pop the top 3 words from the stack and execution continues
at P + 1. |If the limit is not exceeded, then control is
transferred to E. The branch addresses are in the range
P-255, P+255,
Indicators = Unaffected.
MTBA E (D, P) {Modify, Test, Branch, A> item. OpCode=05
CIR(4:6) = 010
VAR := ((S-2));
STEP := (S-1);
FINAL := (S);
VAR := VAR + STEP;
((S-2)) := VAR;
if STEP >= 0 then
if VAR > FINAL then S := S - 3 else P:=E;
if STEP < 0 then
if VAR < FINAL then S := S - 3 else P:=E;
This instruction requires that the top 3 elements of the

stack are (T0S, TO0S -1, TOS =2)

the final value,

the step size

and the address (DB+ relative) of the variable respectively,.

The step size is added

the sum replaces the old value of the variable,

sum is tested against the limit.
then pop all

P+ 1. |IF the limit is not exceeded,
fered to E. The bhranch addresses are
Indicators = Unaffected.

If the 1Timit

then cont

in the range P-255,

in integer form to the variable,

and the
is exceeded

3 from the stack and execution continues at

Is trans-
P+255.

rol

42

PAGE 40 of 82 HP ALPHA 1 7-20-70 COPY

32.

33.

HEWLETT-PACKARD PR!IVATE--DO NOT REPRODUCE

TBX E (D, P) {Test, branch, X> Mem. OpCode=05
CIR(4:6) = 100
VAR := X;
STEP := (S-1);
FINAL := (S);
if STEP >= 0 then

if VAR > FINAL then S := S - 2 else P := E;
if STEP < 0 then
if VAR < FINAL then S := S - 2 else P := E;

This instruction requires that the the index register con-
tains the variable, and that the top 2 words of the stack are
(TOS, TOS - 1) the final value and the step size respectively.
VAR is tested against the limit. |If the 1imit is exceeded, then
pop the top 2 words from the stack and execution continues
at P + 1. If the limit is not exceeded, then control is
transferred to E.

Indicators = Unaffected.

MTBX E (D, P) {Modify, Test, Branch, X> Mem. OpCode=05
CIR(L:6) = 110

VAR := X;
STEP := (S
FINAL := (
VAR := VAR + STEP;
X := VAR;
if STEP >= 0 then

if VAR > FINAL then S
if STEP < 0 then

if VAR < FIMNAL then S

S - 2 else P:=E;

S - 2 else P:=E;

This instruction requires that the the index register con-
tains the variable, and that the top 2 words of the stack are
(TOS, TOS - 1) the final value and the step size respectively.
The step size is added in integer form to the variable, the
sum replaces the old value of the variable, and the sum is

tested against the limit. |If the 1imit is exceeded, then
pop the top 2 words from the stack and execution continues
at P + 1. |If the limit is not exceeded, then control is

transferred to E. The branch addresses are in the range
pP-255, P+255,
Indicators = Unaffected.

3.

35.

36.

37.

HP ALPHA 1 7-20-70 COPY 42 PAGE 41 of 82

AEWLETT-PACKARD PRIVATE--DO WNOT REPRODUCE

INTEGER INSTRUCTIONS

CMP {Compare> Stack OpCode=17

C := (S=1) : (S);
S =S - 2;

The condition code is set to pattern C as a result of
the integer comparison of (S-1):(S). The operands are deleted.
Indicators = CCC

ADD <Add> Stack OpCode=20

(s-1)

S := 35

(S5-1) + (S);
1;

The top two words of the stack are added in integer form
and they are then popped. The resulting sum is pushed onto

the stack.
Indicators = CCA, Carry, Overflow

SUB {Subtract> Stack OpCode=21
(S-1) := (S-1) - (S);
S :=§ - 1;

The top word of the stack is subtracted in integer
form from the second word and they are popped. The resulting
difference is pushed onto the stack.
Indicators = CCA, Carry, Overflow

MPY Multiply> Stack OpCode=22
(S-1) := (S-1) = (S3);

The top two words of the stack are multiplied in integer
form. The two words are deleted, and the least significant
word of the double length product is pushed onto the stack.
Carry is cleared if the high order 17 bits (including
the sign bit of the second word) were either all zeroes or all
ones, such that the low order 16 bits represent the true result.
Otherwise, the carry bit is set.
Indicators = CCA, Carry, Overflow

PAGE 42 of §2 HP ALPHA 1 7-20-70 COPY

38.

39.

Lo.

41.

L2,

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

DIV <Divide> Stack OpCode=23

TEMP := (S-1)/(S);

(S) := (S-1) mod (S);

(5-1) := TEMP;

The integer in the second word of the stack is divided by
the integer on the T0S. The second word is replaced by the
quotient, and the top word is replaced by the remainder.
Indicators = CCA, Overflow
MEG {Negate> Stack OpCode=24

(S) := =(S);

The TOS is replaced by its 2's complement.
Indicators = CCA, Overflow

LOGICAL INSTRUCTIONS

LCMP <lLogical compare> Stack OpCode=57

CC := (S-1):(S);
S =S - 2;

The condition code is set to pattern C on the comparison
of (5-1):(S). The two operands are deleted.
Indicators = CCC

LADD <Logical add> Stack OpCode=60

(s-1)

S = S

[]

(S-1) + (S) mod 2*=*16;
1;

The top two words of the stack are added as 16 bit
positive integers and they are deleted from the stack. The
resulting sum Is pushed onto the stack.

Indicators = CCA, Carry

LSUB <Logical subtract> Stack OpCode=61

(5-1) := (S-1) - (S) mod 2%x16;
-1;

S = S5
The top word of the stack is subtracted in logical

form from the second word and they are deleted. The resulting
di fference is pushed onto the stack.

Indicators = CCA, Carry

43,

1“4.

4L5.

42

HP ALPHA 1 7-20-70 CoPY PAGE 43 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

LMPY <Logical multiply> Stack OpCode=62
(s-1, S) := (S-1) = (S);

The top two words on the stack are multiplied as 16
bit positive integers. The words are replaced by the double
length product with the most significant half on the TO0S.
Carry is cleared if the high order 16 bits are all
zeroes such that the low order 16 bits represent the true re-
sult. Otherwise the carry bit is set.
Indicators = CCA, Carry

LDIV <Logical divide> Stack OpCode=63

TEMP := logical((s-2, S-1)/(S));

(S-1) := (S-2, S-1) mod (S);
(S-2) := TEMP;
S :=S -1;

The 32 bit positive integer in the 2nd and 3rd words of
the stack is divided by the 156 bit positive integer on the TOS.
The top three words are deleted. The quotient is pushed onto
the stack and then the remainder is pushed on.

Indicators = CCA, Overflow

NOT {One's complement> Stack OpCode=64
(S) := 7(S);
Converts the top word of the stack to its one's comp-

lement.
Indicators = CCA

PAGE L4 of 82 HP ALPHA 1 7-20-70 - .COPYI‘2

u6.

L7.

L8,

L9.

HEWLETT=-PACKARD PRIVATE--DO NOT REPRODUCE

DOUBLE INTEGER INSTRUCTIONS

DCMP <Double compare> Stack OpCode=10

CC := (s-3, $-2):(S8-1, S);
S =S8 - &;

The condition code is set to pattern C as a result of
the double word integer comparison of (S-3, S-2):(S-1, S).
The two double words are deleted from the stack.
Indicators = CCC

DADD <Double add> Stack 0pCode=11

(s-3, S-2) := (S=-3, S=-2) + (S-1, S);
S =S ~ 2;

The two double word integers contained in the top L4 ele-
ments of the stack are added in double length integer form and
they are deleted. The double word integer sum is pushed onto the

stack.
Indicators = CCA, Carry, Overflow

DSUB <Double subtract> Stack OpCode=12

($-3, $-2) := (S-3, S-2) - (S-1, S);
S :=S - 2;

The double word integer contained in the 1lst and 2nd
words of the stack is subtracted from the double word integer
contained in the 3rd and 4th words of the stack. The top 4 words
of the stack are deleted and the double word integer result is
pushed onto the stack.
Indicators = CCA, Carry, Overflow

MPYL <Multiply Long> Stack OpCode=13
(5-1, S) := (5-1) =* (35);

The top two words of the stack are multiplied in integer
form. The words are replaced by the double length product, with
the least significant half on the TOS.

Carry is cleared if the high order 17 bits (including
the sign bit of the second word) are either all zeroes or all
ones, such that the low order 16 bits represent the true result.
Otherwise, the carry bit is set.

Indicators = CCA, Carry, Overflow

50.

51.

52.

53.

HP ALPHA 1 7-20-70 COoPY 42 PAGE 45 of 82
HEWLETT~-PACKARD PRIVATE--DO NOT REPRODUCE

DIVL <(Divide Long> Stack OpCode=14
TEMP1 := (S-2, S-1)/(S);
TEMP2 := (S-2, S-1) mod (S);
S =S -1;
(S) := TEMP2;

(S-1) := TEMP1;

The double word Integer in the second and third elements
of the stack is divided by the integer in the T0S. The three
words are deleted, and the quotient is pushed onto the stack.
The remainder is pushed onto the stack.

Indicators = CCA, Overflow

DNEG <Double negate> Stack OpCode=15
(s-1, S) := - (S-1, S);

The double word integer contalned in the top 2 words
of the stack is negated and replaces the original double word
integer.
Indicators = CCA, Carry

FLOATING POINT INSTRUCTIONS

FCMP <Floating compare> Stack OpCode=50

CC := (S-3, 5-2):(S-1, S);
S =S - L4;

The condition code is set to pattern C as a result of the
floating point comparison of (S-3, S=-2):(S-1, S). The two
floating point doublewords are deleted.

Indicators = CCC

FADD <Floating add> Stack OpCode=51

(-3, S=2) := (S-3, $-2) + (S-1, S);
S =S - 2;

The two floating point numbers contained in the top 4
words of the stack are added in floating point form. The
top 4 words of the stack are deleted and the 2 word sum is
pushed onto the stack.

Note: Computed result = round (true result, 22);
Indicators = CCA, Overflow

PAGE L6 of 82 HP ALPHA 1 7-20-70 coPyY

51}.

55.

56.

57.

HEWLETT-PACKARD PRIVATE=--DO NOT REPRODUCE

FSUB <Floating subtract> Stack OpCode=52

(s-3, S-2) := (S-3, S=2) - (S-1, S);
S := S - 2;

The floating point number contained in the 1lst and 2nd
words of the stack is subtracted from the floating point number
contained in the 3rd and 4th words of the stack in floating point
form. The top 4 words of the stack are deleted and the 2 word
difference is pushed onto the stack.

Note: Computed result = round (true result, 22);
Indicators = CCA, Overflow

FMPY <Floating multiply> Stack OpCode=53

(s-3, S=2) := (S-3, S-2) * (5-1, S);
S =S - 2;

The two floating point numbers contained in the top 4
words of the stack are multiplied in floating point form. The
top 4 words of the stack are deleted and the 2 word result is
pushed onto the stack.

Note: Computed result = round (true result, 22);
Indicators = CCA, Overflow

FDIV <Floating divide> Stack OpCode=54

($-3, S=2) := (S-1, s) / (Ss-=3, S$=2);
S =S - 2;

The floating point number contained in the top 2 words
of the stack is divided by the floating point number contained
in the 3rd and 4th words of the stack. The top 4 words of the
stack are deleted and the 2 word quotient is pushed onto the stack.
Note: Computed result = round (true result, 22);
Indicators = CCA, Overflow

FNEG <Floating negate> Stack OpCode=55
(s-1, S) := -(s-1, S);
The floating point number contained in the top 2 words

of the stack is negated in floating point form.
Indicators = CCA

58.

59,

60.

61.

HP ALPHA 1 7-20-70 COPY 42 PAGE 47 of 82
HEWLETT~PACKARD PRIVATE--DO NOT REPRODUCE

FLT {Float> Stack OpCode=47

S =S + 1;
(S-1, S) := float (S-1);

Converts the integer on the TOS to a 32 bit floating point
number with rounding. The TOS is deleted and the double word
floating point result is pushed onto the stack.

Note: Computed result = round (true result, 22);
Indicators = CCA

DFLT <Double float> Stack OpCode=30
(S-1, S) := dfloat((S-1, S));

Converts the double word integer contained in the top
2 words of the stack to a floating point number with rounding.
Note: Computed result = round (true result, 22);
Indicators = CCA

FIXT <Fix and truncate> Stack OpCode=71
(S-1, S) := trunc((S-1, S));

The floating point number contained in the top
two words of the stack is truncated and converted to fixed
point form.

Carry is cleared if the high order 17 bits (including
the sign bit of the second word) are either all zeroes or all
ones, such that the low order 16 bits represent the true result.
Otherwise, the carry bit is set.
Indicators = CCA, Carry, Overflow

FIXR <Fix and round> Stack OpCode=70
(S=1, S) := trunc((S-1, S) + .5xsign(S-1, S));

The floating point number contained in the top 2 words of
the stack is rounded and converted to fixed point form.

Carry is cleared if the high order 17 bits (including
the sign bit of the second word) are either all zeroes or all
ones, such that the low order 16 bits represent the true result.
Otherwise, the carry bit is set.
Indicators = CCA, Carry, Overflow

42

PAGE 48 of 82 HP ALPHA 1 7-20-70 cory

62.

63.

bL.

65.

66.

67.

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

BOOLEAN INSTRUCTIONS

OR <0r, loglcal> Stack OplCode=65
(S=1) := (S-1) or (S);
S := S-1;

The top two words of the stack are logically inclusive ORed
together, the operands are deleted and the result is pushed

onto the stack.
Indicators = CCA on the new TOS

XOR <Excluslive or, logical> Stack OpCode=66

(S=-1) := ~(S-1)and(S) or (S=-1)and™(S);
S = S-1;

The top two words of the stack are logically exclusive
ORed together, the operands are deleted, and the result is pushed

onto the stack.
Indicators = CCA on the new TOS

AND <And, logical> Stack OpCode=67

(s-1)

S := 3

o

(S-1) and (S);
1;

The top two words of the stack are logically ANDed
together, the operands are deleted and the result is pushed

onto the stack.
Indicators = CCA on the new TOS

TEST INSTRUCTIONS

TEST <(Test TOS> Stack OpCode=25

Indicators = CCA on (S)

DTST <Test double word on TOS> Stack OpCode=27

Carry is cleared if the high order 17 bits (including
the sign bit of the second word) are either all zeroes or all
ones, such that the low order 16 bits represent the true result.
Otherwise, the carry bit is set.
Indicators = CCA on double word (S-1, S)

BTST <Test byte on TOS> Stack OpCode=31

69.

70,

71.

72.

73.

HP ALPHA 1
HEWLETT-PACKARD

INCREMENT & DECREMENT

INCA <lncrement A>

(S) = (S) + 1;

is
CCA,

The TOS

Indicators = Carry,

INCB <Increment B>

(S-1) := (S-1) + 1;
The second word of

form by one. The TOS is

Indicators = CCA, Carry,

INCX <lncrement index>

X := X + 1;

The content of the
integer form.
Indicators =

CCA, Carry,

DECA <Decrement A>

(S) := (S) - 1;
The TOS

Indicators = CCA, Carry,

DECB <Decrement B>

(S-1) := (S-1) - 1;
The second word of
form by one. The TO0S is

Indicators = CCA, Carry,

DECX <Decrement X>

X 1= X - 1;

The content of the
in integer form.
Indicators = CCA, Carry,

is decremented

7-20-70 CoPY PAGE 49 of 82

PRIVATE--DO MOT REPRO E

INSTRUCTIONS

Stack 0OpCode=33

incremented in integer form by one.

Overflow

Stack OpCode=73
the stack is incremented in integer
unchanged.
Overflow

Stack OpCode=04

index register is incremented by one in

Overflow

Stack OpCode=34

in integer form by one.

Overflow

Stack OpCode=74
the stack is decremented in integer
unaffected.
Overflow

Stack OpCode=05

index register is decremented by one

Overflow

PAGE 50 of 82 HP ALPHA 1 7-20-70 COPY42
HEWLETT-PACKARD PRIVATE--DC NOT REPRODUCE

N. ZERO INSTRUCTIONS

74. ZERO <Push zero> Stack OpCode=06
S =S + 1;
(S) := 0;

A zero word is pushed onto the stack.
Indicators = Unaffected.

75. DZRO <Double push zero> Stack OpCode=07
S 1= S + 1;
(S) := 0;
S =S + 1;
(S) := 0;

Two words containing all zeroes are pushed onto the stack.
Indicators = Unaffected.
76. ZROB <Zero B> Stack OpCode=41
(5-1) := 0;
The second word of the stack is replaced by zero. The
TOS is unaffected.
Indicators = Unaffected.
77. ZROX <KZero X> Stack OpCode=03
X = 0;

The content of the index register is replaced by zero.
Indicators = Unaffected.

HP ALPHA 1 7-20-70 CorPY 42 PAGE 51 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

DUPLICATE & DELETE INSTRUCTIONS

DEL {Delete A> Stack OpCode=40
S =S - 1;
The TOS is deleted.

Indicators = Unaffected

DDEL <Double delete> Stack OpCode=02
S :=S§ - 2;
The top 2 words of the stack are deleted.

indicators = Unaffected

DELB <Delete B> Stack OpCode=01

(S-1) := (S);
S =S5 -1;

The second word of the stack is deleted and the stack is
compressed. The TOS is unchanged.
Indicators = Unaffected.

DUP {Duplicate A> Stack OpCode=45

S (=5 +1;

(S) := (S-1);

The top word of the stack is duplicated by pushing a copy
of the TOS onto the stack.
Indicators = CCA

DDUP <Double duplicate> Stack OpCode=4L4b

S := S + 2;
(s-1, S) := (S-3, S5-2);

The double word in the top two words of the stack is
duplicated by pushing a copy of it onto the stack.
Indicators = CCA on the double word integer.

PAGE 52 of 82 ""HP ALPHA 1 7-20-70 COPY 42

83.

8L,

85.

86.

87.

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

EXCHANGE INSTRUCTIONS

XCH {Exchange A and B> Stack OpCode=32

TEMP := (S-1);
(S=1) := (S);
(S) := TEMP;

The top 2 words of the stack are interchanged.
Indicators = CCA on the new TOS

DXCH <Double exchange> Stack OpCode=16

TEMP := (S-1, S):;
(s-1, S) := (S-3, S$-2);
(s-3, S=-2) := TEMP;

The top two double word pairs are interchanged on the

stack.
Indicators = CCA on the new TOS double word

XAX {Exchange A and X> Stack 0OpCode=35

TEMP := X;
X = (S);
(S) := TEMP;

The content of TOS and the index register are Interchanged.
Indicators = CCA on the new TOS

XBX {Exchange B and X> Stack OpCode=75

TEMP := X;
X := (S-1);
(S-1) := TEMP;

The second word of the stack is interchanged with
the content of the index reglister.
Indicators = Unaffected

CAB {Rotate ABC> Stack OpCode=56

TEMP := ($-2);
(S-2) := (S-1);
(S=1) := (S);

(S) := TEMP;

The third word of the stack is removed from the stack,
the top two words are compressed onto the rest of the stack,
and the original third word is pushed onto the stack.

Indicators = CCA on the new TCS

88.

89.

90.

91.

HP ALPHA 1 7-20-70 COPY 42 PAGE 53 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

INDEX TRANSFER INSTRUCTIONS

LDXA <Load X onto stack> Stack OpCode=4}4
S = 8§ + 1;
(S) := X;

The content of the index register is pushed onto the stack.
Indicators = CCA on the new TOS.

LDXB <Load X into B> Stack OpCode=42
(S-1) := X;
The second word of the stack is replaced by the content

of the index register. The T0OS is unaffected.
Indicators = CCA on the new B

STAX <(Store A into X> Stack OpCode=43
X = (S);
S := S-1;

The TOS replaces the content of the index register, and

the stack is popped.
Indicators = CCA on the new X

STBX <KStore B into X> Stack OpCode=26
X = (S-1);
The second word of the stack replaces the content of

the index register, The stack is unchanged.
Indicators = CCA on the new X

PAGE 54 of 82 HP ALPHA 1 7-20-70 COPY 42

92.

93.

9’4.

95.

96.

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

INDEX ARITHMETIC INSTRUCT!ONS
ADAX <Add A to X> Stack OpCode=356

X = X + (S);

The TOS is added to the content of the index register in
integer form. The sum replaces the content of the index.
Indicators = CCA on the new X, Carry, Overflow
ADBX <Add B to X> Stack OpCode=76

X 1= X + (S-1);

The second word of the stack is added to the content of
the content of the index register in integer form, and the
result replaces the content of the index register.

Indicators = CCA on new X, Carry, Overflow
ADXA <Add X to A> Stack OpCode=37

(S) := (S) + X;

The content of the index register is added to the TOS,
and the sum replaces the TOS.

Indicators = CCA on the new T0S, Carry, Overflow
ADXB <Add X to B> Stack OpCode=77

(S=1) := (S-1) + X;

The content of the index register is added to the second
word of the stack in integer form, and the result replaces the
second word of the stack.

Indicators = CCA on new (5-1), Carry, Overflow
CONTROL INSTRUCTION
NOP {No operation> Stack OpCode=00

.
4

The users program space and data space remain unchanged.
Indicators = Unaffected.

97.

98.

99.

100.

101.

102.

HP ALPHA 1 7-20-70 COPY

HEWLETT-PACKARD PRIVATE--DO MOT REPRO E

SHIFTS ===-meececccmcccccc e Memory opcode = 01

PAGE 55 of 82

Sub OpCode = CIR(5:9)

Bit 4 is a true index bit

L = (CIR(10:15) + (if CIR(4) =1
then X else 0)) mod 64;

SINGLE WORD SHIFT INSTRUCTIONS

ASL L <Arithmetic shift left>

Sub 0OpCodel=00

The TOS is shifted left L bits, preserving the sign bit.

Indicators = CCA

ASR L <Arithmetic shift right>

The TOS is shifted right L bits, propagating

Indicators = CCA

LSL L <Logical shift left>

The TOS is shifted left L bits logically.
Indicators = CCA
LSR L <Logical shift right>

The TOS is shifted right L bits logically.
Indicators = CCA
CSL L <Circular shift left>

The TOS is shifted left L bits circularly.
Indicators = CCA
CSR L <Circular shift right>

The TOS is shifted right L bits circularly.
Indicators = CCA

Sub

the

Sub

Sub

Sub

Sub

OpCodel=01

sign bit.

OpCodel=02

OpCodel=03

OpCodel=04L

OpCodel=05

PAGE 56 of 82 HP ALPHA 1 7-20-70 cory
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

103. SCAN {Scan bits> Sub OpCodel=06
if CIR(4) = 0 then X := 0;
if (S) 7= 0 then
begin
while (S(0)) = 0 then
begin
logical shift left A by 1;
X 1= X + 1;
end;

logical shift left A by 1;
end else X := X + 16;

The TOS is shifted left until S(0) = 1, then shifted

left one more bit. The shift count is left in the index register.
Indicators = CCA on final TOS

U. DOUBLE WORD SHIFT INSTRUCTIONS

104, DASL L <Double arithmetic shift left> Sub OpCodel=20

The doubleword contained in (S-1, S) is shifted
left L bits, preserving the sign bit, (5S-1(0)).
Indicators = CCA

105. DASR L <Double arithmetic shift right> Sub OpCodel=21
The doubleword contained in (5-1, S) is shifted
right L bits, propagating the sign bit, (5-1(0)).
Indicators = CCA
106. DLSL L <Double logical shift left> Sub OpCodel=22
The double word contained in (S-1, S) is shifted
left L bits logically.
Indicators = CCA
107. DLSR L <Double logical shift right> Sub 0OpCodel=23
The double word contained in (S-1, S) is shifted
right L bits logically.
Indicators = CCA
108. DCSL L <Double circular shift left> Sub OpCodel=24

The double word contained in (S-1, S) is shifted
left L bits circularly.
Indicators = CCA

HP ALPHA 1 7-20-70 coprPy 42 PAGE 57 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

109. DCSR L <Double circular shift right> Sub OpCodel=25
The double word contained in (S-1, S) is shifted

ritht L bits circularly.
Indicators = CCA

V. TRIPLE WORD SHIFT INSTRUCTIONS

110, TASL L <(Triple arithmetic shift left> Sub OpCodel=10
The 3 word integer contained in (S$S-2, S-1, S) is
shifted left L bits preserving the sign bit, (5-2(0)).
Indicators = CCA
111, TASR L <(Triple arithmetic shift right> Sub OpCodel=1l1
The 3 word integer contained in (S-2, S-1, S) is
shifted right L bits propagating the sign bit, (S-2(0)).
Indicators = CCA
112. TNSL {Triple normalizing shift left> Sub OpCodel=16

if CIR(4) = 0 then X := 0;
if (-2, S-1, S) 7= 0 then

begin
while (S-2(0)) = 0 do
begin
X = X + 1;
arithmetic left shift 1 of (S-2, S-1, S);
end;

end else X := X + 42;

The top 3 words of the stack are shifted left arith-
metically until (S-2(6)) = 0. The shift count is stored
in the index register.

Indicators = CCA on final value of ($-2,S5-1,S)

PAGE 58 of 82 HP ALPHA 1 7-20-70 COP&Z

W.

113.

11k,

115.

116.

117.

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

BIT TEST INSTRUCTIONS

TRBM L <Test and reset bit in memory> Sub OpCode3=14

TEMP := (DB + N) and T(S); <<clear bit>>
(S) := (DB + N) and (S); <<get bit>>
(DB + N) := TEMP;

A1l bit positions of the DB+ relative memory word that
have a 1 in the corresponding position on the top of the stack
are cleared; at the same time the memory word replaces the TOS.
Interrupts may not occur during the execution of this instruction.
Indicators = CCA on new TOS

TBC L <Test bit and set condition code> Sub OpCodel=32

The bit position of the TOS to be tested is specified by
(CIR(10:15) + (if CIR(4) ~= 0 then X else 0)) mod 16.
Note that CIR(L4) is a true index bit for the bit number.

Indicators = CCE if the bit was 0
CCL or CCG if the bit was 1

TRBC L <Test and reset bit, set condition code> Sub OpCodel=33

This instructions operation is Ifdentical to that of TBC
except that the tested bit is reset to 0 after the test.
Indicators = CCE if the bit was 0

CCL or CCG if the bit was 1

TSBC L <Test, set bit, set condition code> Sub OpCodel=34

This instructions operation is identical to that of TBC
except that the tested bit is set to 1 after the test.
Indicators = CCE if the bit was 0

CCL or CCG if the bit was 1

TCBC L <Test and complement bit and set CC> Sub OpCodel=35

This instructions operation is identical to that of TBC
except that the tested bit is complemented after the test.
Indicators = CCE if the bit was 0

CCL or CCG if the bit was 1

118.

119.

HP ALPHA 1 7-20-70 copry _ 4 PAGE 59 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

FIELD INSTRUCTIONS

J = (CIR(8:11))
K = (CIR(12:15))
EXF J,K <Extract field> Sub OpCode2=15

0<=J<=15 specifies the first (leftmost) bit in the source
field. 0<= K <=15 specifies the number of bits in the field.

(S(16-K:15)) := (S(J:J+K-1));
(S(0:15-K)) := 0;

Bits J, J+1, J+2, ... , J+K-1 are extracted from the TOS,
and the TOS is deleted. The K+1 bit field is right justified
with high order zeroes, and this result is pushed onto the
stack.

Indicators = CCA on new TOS

DPF J,K {Deposit field> Sub OpCode2=16

0<{=J<=15 specifies the first bit in the destination
field. 0<= K <=15 specifies the number of bits in the field.

(S=1(J:Jd+K=1)) := (S(16-K:15));
(S=1(0:d)) := (S-1(0:J));
(S=-1(J+K:15)) := (S-1(J+K:15));
S (=S ~-1;

The K least significant bits of the TOS are placed
in bits J, J+1, ..., J+K-1 of the second word of the stack;
the remaining bits of the second word of the stack are unchanged.
The source operand is deleted from the stack.
Indicators = Unaffected.

PAGE 60 of 82 HP ALPHA 1 7-20-70 COPY

120.

121.

122.

123.

124,

HEWLETT-PACKARD PRIVATE--DO MOT REPRODUCE

IMMEDIATE INSTRUCTIONS
N = (CIR(8:15)) 0 <= N <= 255

LDl =N <Load immediate> Sub OpCode2=02
S =S + 1;
(S) = N;

The immediate positive quantity N is pushed onto the
stack as a positive integer.
Indicators = CCA on the new TOS

LDN! =N <Load negative immediate> Sub OpCode2=12

S =S + 1;
(S) := =N:

The immediate positive quantity N is 2's complemented and
pushed onto the stack as a negative integer.
Indicators = CCA on the new TOS

CMP! =N <Compare immediate> Sub OpCode2=04

CC := (S):N;
S (=S - 1;

The condition code is set to pattern C as a result of the
comparison of the TOS with the positive quantity N. The TOS is

deleted.
Indicators = CCC

CMPN =N <Compare negative immediate> Sub OpCode2=14

CC := (S) : =N
S :=§ - 1;

The condition code is set to pattern C as a result of the
comparison of the TOS with the 2's complement of the positive
quantity N. The T0S is deleted.

Indicators = CCC

ADD! =N <Add immediate> Sub OpCode2=05
(S) := (S) + N;
The immediate positive quantity N is added to the TOS in

integer form, and the sum replaces the TOS.
Indicators = CCA on the new T0S, Carry, Overflow

125,

126.

127.

128.

129.

130.

42

HP ALPHA 1 7-20-70 CopPY PAGE 61 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

SUBI =N <Subtract immediate> Sub OpCode2=06
(S) := (S) - N;
The immediate positive quantity N is subtracted from the

TOS is integer form, and the result replaces the TOS.
Indicators = CCA, Carry, Overflow

MPYIl =N <Multiply immediate> Sub OpCode2=07
(S) := (S) = N;
The immediate positive quantity N is multiplied with the

TOS in integer form; the 16 bit integer result replaces the TOS.
Indicators = CCA on the new TOS, Overflow

DIVI =N <KDivide immediate> Sub OpCode2=10
(S) := (S) div N;
The immediate positive quantity N is divided into the TOS

in integer form; the 16 bit integer quotient replaces the TOS.
Indicators = CCA on the new T0S, Carry, Overflow

ORI =N <lLogical OR immediate> Sub OpCode3=15

(S) := (S) or N;

The immediate positive quantity n is expanded to 16 bits
with high order zeroes and inclusive ORed with the TOS; the
result replaces the TO0S.

Indicators = CCA

XOR!l =N <Logical Exclusive OR irmmediate> Sub OpCode3=16

(S) := 7(S) and N or (S) and TN;

The immediate positive quantity n is expanded to 16 bits
with high order zeroes and exclusive ORed with the T0S; the
result replaces the TOS.

Indicators = CCA

ANDI =N <lLogical AND immediate> Sub OpCode3=17

(S) := (S) and N;

The immediate positive quantity N is expanded to 16 bits
with high order zeroes and ANDed with the TOS; the result re-

places the TOS.
Indicators = CCA

42

PAGE 62 of 82Y HP ALPHA 1 7-20-70 COPY

131.

132.

133,

134,

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

IMMEDIATE INDEX INSTRUCTIONS

LDXl =N <load X immediate> Sub OpCode2=03
X = N;

The index register is loaded with the positive immediate

operand N.
Indicators = Unaffected.

LDXN =N <lLoad X negative immediate> Sub OpCode2=13

X 1= =N;

The index register is loaded with the 16 bit 2's comple-
ment of the immediate operand.
Indicators = Unaffected.

ADX! =N <Add immediate to X> Sub OpCode2=00
X = X + N;
The immediate positive quantity N is added to the content

of the index register in integer form,
indicators = CCA on X

SBXI =N <Subtract immediate from X> Sub OpCode2=01
X = X = N3
The immediate positive quantity N is subtracted from the

content of the index register in integer form.
Indicators = CCA on X

AA.

135,

136.

HP ALPHA 1 7-20-70 copy PAGE 63 of 82

HEWLETT=-PACKARD PRIVATE--DO NOT REPRODUCE

PROGRAM CONTROL INSTRUCTIONS

PCAL N <Procedure call> Sub OpCode3=02
if N =0 then
begin
TEMP := (S);
S =S ~-1;
end else TEMP := (PL - i);
S =S + 1;
(S) := P +1 - PB;
S =S + 1;
(S) := STATUS;
S = 5 + 1;
(S) := S - Q;
Q := S;
P := evaluation of label in TEMP;

Control is transferred to the location evaluated by the
label contained on the T0OS if N = 0 or by the label con-
tained in PL - N otherwise. Then a three word stack mark-
er is placed on the stack. The labels have the two forms discus=
sed in section IV - D. If reference is made to a local
label, transfer 1s made to the PB relative address and the stack
linkage is created ignoring the U bit.

|f reference is made to an external label whose Segment
descriptor table number is different than the present number and
the machine is in user mode, the U bit of the target segment
linkage must not be set, otherwise a trap occurs. Furthermore if
an external label is referenced a local label must occur in
the STT table of the called segment.
Indicators = Unaffected

SCAL N <Subroutine Call > Sub 0OpCode3=01

if N =0 then
begin
TEMP := (S);
S :=§ -1;
end else TEMP
S := S + 1;
(S) := P + 1 - PB;
P := evaluation of label in TEMP;

(PL - MN);

Control is transferred to the location pointed to by the
evaluation of the local label on the T0S, if N = 0, otherwise
by the evaluation of the local label at PL - N. The return ad-
dress is then pushed onto the stack. Labels are evaluated identi-
cally to the PCAL instruction, except only local labels are
allowed.
Indicators = Unaffected

-

4¢

PAGE 64 of 82 HP ALPHA 1 7-20-70 cory

137.

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

EXIT N <Procedure and interrupt exit > Sub OpCode3=03

if STATUS(8:15) = 0 then
begin <<in an external interrupt routine>>
DN := (0 + 1); <<Q+1 contains device # that Interrupted>>
Reset active state of device DN;
end;
if External Interrupt Request then
begin << another external interrupt waiting>>
S := 0+ 1;
(S) := Device # of new External Interrupt;
Remainder of normal External Interrupt CALL; <<see
Section V=A>>
end else
begin
if (Q) = 0 and (STATUS(8:15)) = 0 then
begin <<bottom of interrupt stack>>
Q := S := old S stored in current PCB;
Generate Internal Interrupt to Segment # 8 except
do not create a new stack marker;

end else
begin <<normal exit>>

S = Q;

Q2 := S - (S);

S =58 -1;

STATUS := (S); Note that user mode may not EXIT to
privileged mode and may not change the
interrupt disable bit, |.

S :=S§S -1;

PB, PL := evaluation of the segment descriptor

specified by STATUS(8:15);
if STATUS(8:15) = 0 then PB := 0,
PL := 2%+16 - 1;

P := PB + (5);

S := S ~ N - 1; <{Note that delta Q@ = 0 and
segment # 7= 0 causes an
integrity trap because S < Q.>>

end;
end;

This instruction is used to return from routines called by
the PCAL instruction and by an Interrupt CALL.

If an External Interrupt routine is being exited, then
the active state of the device's interrupt is reset.

If an External Interrupt is walting then its routine is
CALLed without removing the old stack marker or creating a new one.

If an External Interrupt is being exited and there are no
pending interrupts, then a check is made to see if this is the
bottom interrupt on the interrupt stack. |If it is, then move
Q and S to point to the users stack given in the Current
Process Control Block and cause an Internal Interrupt to
Segment # 8.

Otherwise, a normal exit occurs by setting O to Q -Delta Q,
STATUS to the previous status and P to the previous P. (See
Section 111=-G for the stack marker format.)

HP ALPHA 1 7-20-70 COoPY ".d PAGE 65 of 82

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

138, SXIT N <Subroutine exit) Sub OpCode3=04
P := PB + (35);
S (=S -N-1;

This instruction is used to return from subroutines
specified by the SCAL instruction.
Indicators = Unaffected

139. HALT K <Halt> Spec. 0OpCode=17

This is a privileged instruction. The machine halts.
This instruction is non-interruptable and manual intervention
is required to restart the machine. The K field is ignored.
Indicators = Unaffected.

140. PAUS K <Pause> Spec. OpCode=01

This is a privileged instruction. The machine pauses.
This instruction is interruptable. The K field is ignored.
Indicators = Unaffected.

141. XEQ K <Execute> Spec. 0OpCode=06
CIR := (S - K);

The content of the word in the stack at S - K is placed in the
current instruction register to be executed.

Control is returned to the instruction after the XEQ
unless a transfer of control was executed.
Indicators = Set by the executed instruction or StackOps.

42

PAGE 66 of 82 HP ALPHA 1 7-20~-70 COPY
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

BB, MOVE INSTRUCTIONS
Memory OpCode = 03
Sub OpCode3 = 07
Move OpCode = CIR(8:10)
SDEC = CIR(11:12)
CCF = CIR(13:15)

CIR(13) = Numeric
CIR(14) = Alphabetic
CIR(15) = Special
142, MOVE <Move words> Move OpCode=0C
while X 7= 0 do
begin
((S=1)) := ((8));
(S-1) := (S=-1) + sign(X);
(S) := (S) + sign(X);
X 1= X = sign(X);
end;

S := S - SDEC;

This instruction expects a signed word count in the index
register, a source word address on the TOS and a destination
word address in the second word of the stack. [I|f the word
count is positive the words are moved in a left to right manner
from the source area to the destination area. A negative word
count will cause a right to left move form the source area to the
destination area.
S is decremented by the amount indicated in the SDEC field.
Indicators = Unaffected

143, MVB {Move bytes> Move OpCode=01
while X 7= 0 do

begin
((S-1)) := ((S));

(S-1) := (S=1) + sign(X);
(S) := (S) + sign(X);
X := X = sign(X);

end;

S := S - SDEC;

This instruction expects a signed byte count in the index
register, a source byte address on the TOS, and a destination
byte address in the second word of the stack.

S is decremented by the amount indicated in the SDEC field.
Indicators = Unaffected

14k,

145.

146.

HP ALPHA 1 7-20-70 COoPY PAGE 67 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

MVBW <Move bytes while> Move OpCode=04

while CCB on ((S)) = CCF do
begin
((S-1)) := ((S));
(S-1) := (S-1) + 1;
(S) := (S) + 1;
end;
S := S - SDEC;

This instruction expects the TOS to contain a source
byte address, the second word of the stack to contain a
destination byte address. As long as the byte in the source
string is one of the types specified by the CCF, it is moved.
The byte count moved is kept in the TOS. S is decremented by the
amount indicated in the SDEC field.
Indicators = CCB on last character scanned

SCwW {Scan while> Move OpCode=02

while ((S-1)) = (S(8:15)) do (S=-1) := (S-1) + 1;
if ((S-1)) = (S(0:7)) then Carry := 1 else
Carry := 0;
CC := CCB;
S := S - SDEC;

This instruction expects the TOS to contain a terminal
character in the left byte and a test character in the
right byte. The second word of the stack contains a source
byte address. Bytes are scanned until the source string
presents a character different from the test character.
If the terminating character is the same as the left byte of
the T0OS, the carry bit is set.
S is decremented by the amount indicated in the SDEC field.
Indicators = CCB on last character scanned, Carry

SCu {Scan until> Move OpCode=03

while ((S=1)) 7= (S(8:15)) and ((S-1)) ~= (S(0:7))do
(S-1) := (sS-1) + 1;

Carry := if ((S=1)) = (S(8:15)) then 1 else 0;

S := S - SDEC;

This instruction expects the TOS to contain a terminal
character in the left byte and a test character in the right
byte. The second word of the stack contains a source byte
address. Bytes are scanned until either the terminal
or test character is encountered. The address of this character
is found in the second word of the stack. S is decremented by
the amount indicated in the SDEC field.

If the last character scanned = the terminal character
then Carry = 1 else Carry = 0.

Indicators = Carry

4e

PAGE 68 of 82 HP ALPHA 1 7-20-70 COPY
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

147. CMPB <Compare bytes> Move OpCode=05
while ((S)) = ((S-1)) and X > 0 do
begin
(S-1) := (S-1) + 1;
(S) := (S) + 1;
X 1= X -1;
end;

CC := if X = 0 then CCE else if ((S-1)) > ((S)) then
CCG else CCL.
S := 5 - SDEC;

This instruction expects a byte count in the index
register, a source byte address in the T0S and a tarsget
byte address in the second word of the stack. As long as
the bytes in the source string compare with the tartet string
the count in the index register is decremented. The instruction
terminates when either a comparison fails or the byte count in
the index register reaches zero. S is decremented by the
amount indicated in the SDEC field.
Indicators = if X = 0 then CCE else if the final target byte =

the last source byte scanned then CCG else CCL

CC. 1/0 & INTERRUPT INSTRUCTIONS

For the 1/0 instructions assume the following definitions:

(S-K(8:15)) contains a device number.

DRT is the base address of a Device Reference Table.

DRTE is the address of a particular DRT entry.

K is a four bit displacement 0 <= K <= 15

A1l 1/0 and lInterrupt control instructions are PRIVILEGED.

148. SI0 K {Start 1/0> Spec. OpCode=07

Device # := (S-K(8:15));

DRTE := DRT + 3 * (S=-K(8:15));

(DRTE) is passed to device controller
(DRTE) := (DRTE) + 2;

if 1/0 error then

begin

S := S +
(s) := |
end;

1;
/0 INSTRUCTION STATUS;

The address of the 1/0 program is passed to the device
specified in the right byte of the word in the stack at S - K.
The 1/0 instruction status is pushed on the stack if there is
an 1/0 error. This is a privileged instruction.

Indicators = if error then CCL or CCG else CCE

HP ALPHA 1 7-20-70 CoPY 42 PAGE 69 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

149, RIO K <{Read 1/0> Spec. OpCode=10

Device # := (S=-K(8:15));

S =S +1;

(S) := 16 BI!T DATA “WORD FROM DEVICE CONTROLLER;
if 1/0 error then

begin

S =5 + 1;

(S) := 1/0 INSTRUCTION STATUS;
end;

The 16 bit direct data word from the device specified
is pushed onto the stack. The 1/0 instruction status is
pushed onto the stack. This is a privileged instruction.
Indicators = if error then CCL or CCG else CCE

150. WIO K Write /0 Spec. OpCode=11
Device # := (S=-K(8:15));

16 BIT DIRECT DATA WORD TO DEVICE CONTROLLER := (S);
if 1/0 error then

begin

S =S + 1;

(S) := 1/0 INSTRUCTION STATUS;
end
else S := S - 1;

Assume TOS contains the data word. The 16 bit data
word is obtained from the stack and transmitted to the out-
put device specified by the right byte of the content of
S - K. |If no error is detected, the data word is deleted;
otherwise, the 1/0 instruction status is pushed onto the
stack. This is a privileged instruction.

Indicators = if error then CCL or CCG else CCE

151. TIO K {Test 1/0> Spec. OpCode=12

Device # := (S=-K(8:15));
S := S + 1;
(S) := 16 BIT DEVICE STATUS;

The 16 bit device status word is pushed onto the stack.
Note that T10 does not reset the device status bits. This is
a privileged instruction.
Indicators = If error then CCL or CCG else CCE

42

PAGE 70 of 82 ~ HP ALPHA 1 7-20-70 coPY

152.

153.

154,

155.

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

Clo K {Control 1/0> Spec. 0OpCode=13

Device # := (S-K(8:15));
16 BIT DIRECT CONTROL WORD TO DEVICE COMTROLLER := (S);
if I/0 error then
begin
S :=§ + 1;
(S) := 1/0 INSTRUCTION STATUS;
end
else S := S - 1;

Assume TOS contains the control word. The 16 bit control
word is obtained from the stack and transmitted to the
device specified by the right byte of the content of
S - K. |If no error is detected, the control word is deleted;
otherwise, the 1/0 instruction status is pushed onto the
stack. This is a privileged instruction.
Indicators = if error then CCL or CCG else CCE

SED K {Set enable/disable external interrupts> Spec. OpCode=02
STATUS(1) := CIR(15);

The interrupt system is enabled or disabled corres-
ponding to the least significant bit of the instruction.
K =1 implies enable, K = 0 disable. This is a privileged
instruction.
Indicators = Unaffected

SIN K {Set interrupt> Spec. OpCode=16

Sets the interrupt flip flop in the device specified
by the content of S = K. This is a privileged instruction,
Indicators = if error then CCL or CCG else CCE

SIRF K <Set external interrupt reference flag> Spec. UpCode=15

Device # := (S = K);
E := Device # * L;
(E) := (E) or 2 *x 15;

The IRF bit in the Device Reference Table (see Section |V-F)
corresponding to the device number in the stack at S - K is
set to 1. S remains unchanged. This is a privileged instruction.
Indicators = Unaffected

HP ALPHA 1 7-20-70 CoPy l\.Z PAGE 71 of 82
HEWLETT-PACKARD PRIVATE--DO MNOT REPRODUCE

156. CHMD K {Command> Spec. OpCode=14

MCU Module # := (S-K(12:15));
Command := (S=-K(8:11));

16 BIT DATA WORD := (S);

S :=§ -1;

The 16 bit data word in the TOS and the 4 bit
command in $S-K(8:11) are sent over the [1CU bus to
the module given in S$-K(12:15); the data word
is deleted from the stack. This is a privileged instruction.
Indicators = Unaffected

DD. REGISTER CONTROL INSTRUCTIONS

157. PSHR N <Push registers> Sub OpCode2=11
if CIR(15) = 1 then PUSH(S-DB):
if CIR(14) = 1 then PUSH(Q-DB);
if CIR(13) = 1 then PUSH(Z-DB);
if CIR(12) = 1 then PUSH(DL-DB);
if CIR(11) = 1 then PUSH(DB);
if CIR(10) = 1 then PUSH(STATUS);
if CIR(9) = 1 then PUSH(MASK);
if CIRC 8) = 1 then PUSH(X);
where...

PUSH(REGISTER) is defined to be
procedure(REGISTER) ;
begin
S := S
(s) :=
end;

+ 1;
REGISTER;

Note for pushing S-DB the following occurs:

S := S + 1;

(S) := S - DB;

The registers specified by CIR(8:15) are pushed onto the
stack.

Indicators = Unaffected

42

PAGE 72 of 82 HP ALPHA 1 7-20-70 cory
'HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

153. SETR N {Set registers> Sub OpCode2=17
if CIR(8) = 1 then POP(X);
if CIR(9);= 1 and PRIV, MODE then POP(MASK);
if CIR(10) = 1 and PRIV. MODE then POP(STATUS);
if CIR(11) = 1 and PRIV. MODE then POP(DB);
if CIR(12) = 1 and PRIV. MODE then POP(DL + DB);
if CIR(13) = 1 and PRIV. MODE then POP(Z + DB);
if CIR(14) = 1 then POP(Q + DB);
if CIR(15) = 1 then POP(S + DB);
where...

POP(REGISTER) is defined to be
procedure(REGISTER);

begin
REGISTER := (S);
S :1=§ -1;

end;

The registers specified by CIR(8:15) are filled by an
absolute value from the T0OS for PB, MASK, STATUS, and DB,
and an absolute value computed by adding DB to the TO0S for
the others. After each register is set, the TOS is deleted.
Indicators = Unaffected

159. ADDS N <Add to S> Sub OpCode3=05
if N> 0 then § := S + N;
if N =0 then S := 5§ =1 + (S);

If the eight bit operand is zero, the content of the TOS
is added to S - 1, otherwise the operand is added to S.
Indicators = Unaffected

160. SUBS N {Subtract from S> Sub OpCode3=06
S := S - N;

The eight bit immediate operand is subtracted from S.
Indicators = Unaffected

161. XCHD K {Exchange DB> Spec OpCode=03

TEMP := DB;
DB := (S);
(S) := TEMP;

This instruction expects a new DB value on the TOS.
The current DB repalces that value on the TOS, while the new
value is placed in DB. K is ignored.
This is a privileged instruction.
Indicators = Unaffected

EE.

162.

163.

16k,

HP ALPHA 1 7-20-70 CoPY PAGE 73 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

SPECIAL CONTROL INSTRUCTIONS

PLDA <Privileged load from absolute address> Mini OpCode=01

S =S + 1;
(S) := (X);

The content of the index register is a 16 bit absolute
address; the content of this address Is pushed onto the stack.
This is a privileged instruction.

Indicators = CCA

PSTA <Privileged store into absolute address> Mini OpCode=03

The content of the index register is a 16 bit absolute
address; the top word of the stack is stored into memory at
that address, and then deleted from the stack.

This is a privileged instruction,
Indicators = Unaffected

RSW {Read Switch register> Mini OpCode=00
S :=§ + 1;
(S) := Switch register;

The content of the Switch register is pushed onto the stack.
Indicators = CCA

PAGE 74 of 82. . HP ALPHA 1 7-20-70 CoPY é?
HEWLETT=-PACKARD PRIVATE--DG NOT REPRODUCE

FF. LIST SEARCH INSTRUCTION

165. LLSH <Linked list search> Mini OpCode=02
while X > 0 and ((S)) < (5 - 1) do
begin
(S) := ((S) + (S - 2));
X = X - 1;
end;

The TOS contains an absolute pointer into a linked

list., This pointer references a target number which is

compared to a source number in the second word of the stack.

If the count in the index register is zero, or if the

target number is logically greater or equal to the source

number, the instruction terminates. (If the target number Is

all ones, the instruction terminates.) Otherwise another

pointer is expected a distance delta away from the target

number. This delta is contained in the third word of the

stack. The pointer referenced replaces the TOS, the count is

decremented, and the instructlion repeats again.

Indicators = CCL if terminate on
CCE if terminate on ((
CCG if terminate on ((

>
|

GG. UNASSIGNED INSTRUCTION COMBINATIONS

Stack OpCode= 72
Sub OpCodel= 17
with 6 bit L parameter, optional indexing
or indirect addressing with the Y bit
Sub OpCode3= 12,13
each with 8 bit N parameter
Spec. OpCode= 04,05
each with 4 bit K parameter

HP ALPHA 1 7-20-70 COPY gPAGE 75 of 82
HEWLETT-PACKARD PRIVATE--DO NOT REPROD

APPENDIX A - ALPHABETICAL LISTING OF INSTRUCTIONS

92. ADAX <Add A to X> PAGE 54
93, ADBX <Add B to X> PAGE 54
35. ADD <Add> PAGE 41
124, ADD! =N <Add immediate> PAGE 60
12. ADDM E (*, D, X, PDQS) <{Add memory> PAGE 35
159. ADDS N <Add to S> PAGE 72
94, ADXA <Add X to A> PAGE 54
95, ADXB <Add X to B> PAGE 54
133, ADXI =N <Add immediate to X> PAGE 62
64. AND <And, logical> PAGE 48
130. ANDI =N <Logical AND immediate> PAGE 61
97. ASL L <Arithmetic shift left> PAGE 55
98. ASR L <Arithmetic shift right> PAGE 55
18. BCC E (x, L, P) <Branch on Condition Code> PAGE 36
19. BCY L (*, L, P) <Branch on carry> PAGE 36
20, BNCY L (*, L, P) <Branch on no carry> PAGE 37
22. BNOV L (%=, L, P) <Branch on no overflow> PAGE 37
21. BOvV L (x, L, P) <Branch on overflow> PAGE 37
17. BR E (x, D, X, P or indirect DQS) {Branch> PAGE 36
24, BRE L (+x, L, P) <Branch on TOS even> PAGE 37
23. BRO L (x, L, P) <Branch on TOS odd> PAGE 37
67. BTST <Test byte on TOS> PAGE 48
87. CAB {Rotate ABC> PAGE 52
152. Cl10 K <Control 1/0> PAGE 70
156. CMD K <Command> PAGE 71
34, CMP {Compare> PAGE 41
147. CMPB <Compare bytes> PAGE 68
122. CMPlI =N <Compare immediate> PAGE 60
11. ¢cMPM E (*, D, X, PDQS) {Compare memory> PAGE 35
123. CMPN =N <Compare negative immediate> PAGE 60
29, CPRB L <Compare range and branch> PAGE 38
101. CSL L <Circular shift left> PAGE 55
102. CSR L <Circular shift right> PAGE 55
27. DABZ L (%, L, P) <Decrement A, branch if zero> PAGE 38
47. DADD <Double add> PAGE ub
104. DASL L <Double arithmetic shift left) PAGE 56
105. DASR L <Double arithmetic shift right> PAGE 56
46. DCMP <Double compare> PAGE 4b
108. DCSL L <Double circular shift left> PAGE 56
109. DCSR L <Double circular shift right> PAGE &7
79. DDEL <Double delete> PAGE 51
82. DDUP <Double duplicate> PAGE 51
71. DECA <Decrement A> PAGE 49
72. DECB <Decrement B> PAGE 49
16. DECM E (=, D, X, DQS) {Decrement memory> PAGE 35
73. DECX <Decrement X> PAGE 49
78. DEL {Delete A> PAGE 51
80. DELB <Delete B> PAGE 51
59. DFLT <Double float> PAGE 47

38, DIV {Divide> PAGE 42

PAGE 76 of 82 -~ HP ALPHA 1 7-20-70 COPY #2
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

127. DIVl =N <Divide immediate> PAGE 61
50. DIVL <Divide Long> PAGE 45
106. DLSL L <Double logical shift left> PAGE 56
107. DLSR L <Double logical shift right> PAGE 560
51. DNEG <Double negate> PAGE L5
119. DPF J,K {Deposit field> PAGE 59
48. DSUB <Double subtract> PAGE LbL
66. DTST <Test double word on TOS> PAGE 48
81. DUP <Duplicate A> PAGE 51
28. DXBZ L (*, L, P) <Decrement X, branch if zero> PAGE 38
8L4. DXCH <Double exchange> PAGE 52
75. DZRO <Double push zero> PAGE 50
118. EXF J,K <Extract field> PAGE 59
137. EXIT N <Procedure and interrupt exit > PAGE 64
53. FADD <Floating add> PAGE 45
52. FCMP <Floating compare> PAGE 45
56, FDIV <Floating divide> PAGE 46
61. FIXR <Fix and round> PAGE 47
60. FIXT <Fix and truncate> PAGE 47
58. FLT {Float> PAGE 47
55. FMPY <Floating multiply> PAGE 46
57. FNEG <Floating negate> PAGE L6
54, FSUB <Floating subtract> PAGE 46
139. HALT K <Halt> PAGE 65
25. IABZ L (%, L, P) <lncrement A branch if zero> PAGE 37
68. INCA <lncrement A> PAGE 49
69. INCB <lncrement B> PAGE 49
15. INCM E (%, D, X, DQS) {lncrement memory> PAGE 35
70. INCX <lIncrement index> PAGE 49
26. IXBZ L (%, L, P) <lncrement X, branch if zero> PAGE 38
41. LADD <Logical add> PAGE 42
40. LCMP <Logical compare> PAGE 42
2. LDB E (%, D, X, DQS) {Load byte> PAGE 32
3. LDD E (x, D, X, DQS) {Load double> PAGE 33
120. LD!I =N <Load immediate> PAGE 60
L4, LDIV <lLogical divide> PAGE 43
121. LDNI =N <Load negative immediate> PAGE 60
5. LDPN N <Load double from program, negative> PAGE 33
L. LDPP N <load double from program, positive> PAGE 33
6. LDX E (x, D, X, PDQS) {Load Index> PAGE 33
88. LDXA <Load X onto stack> PAGE 53
89. LDXB <lLoad X into B> PAGE 53
131. LDX! =N <Load X immediate> PAGE 62
132. LDXN =N <Load X negative immediate> PAGE 62
165. LLSH <Linked 1list search> PAGE 74
43, LMPY <logical multiply> PAGE 43
1. LOAD E (=, D, X, PDQS) {Load> PAGE 32
7. LRA E (%, D, X, PDQS) (Load relative address> PAGE 33
99, LSL L <lLogical shift left> PAGE 55
100. LSR L <lLogical shift right) PAGE 55
42, LSUB <Logical subtract> PAGE 42
142. MOVE <Move words> PAGE 66
37. MPY Multiply» PAGE 41

126. MPYl =N <Multiply immediate> PAGE 61

. HP ALPHA 1 7-20-70 COPY PAGE 77 of 82
HEWLETT-PACKARD PRIVATE--DC NOT REPRO E

49, MPYL <Multiply Long> PAGE 44
14, MPYM E (x, D, X, PDQS) Multiply memory> PAGE 35
31. MTBA E (D, P) {Modify, Test, Branch, A> PAGE 39
33. MTBX E (D, P) <Modify, Test, Branch, X> PAGE 40
143, MVB {Move bytes> PAGE 66
144, MVBW <Move bytes while> PAGE 67
39. HEG {Negate> PAGE 42
36. NOP {No operation> PAGE 54
45, NOT {One's complement> . PAGE 43
62. OR <0r, logical> ’ . PAGE 48
128. ORI =N <(Logical OR immediate> PAGE 61
140, PAUS K <Pause> PAGE 65
135. PCAL N <Procedure call> PAGE 63
162. PLDA <Privileged load from absolute address> PAGE 73
157. PSHR N {Push registers> PAGE 71
163. PSTA <Privileged store into absolute address> PAGE 73
149. RIO K <Read 1/0> PAGE ©69
164. RSW {Read Switch register> PAGE 73
134, SBX! =N <Subtract immediate from X> PAGE 62
136. SCAL N <Subroutine Call > PAGE 63
103. SCAN {Scan bits> PAGE 56
146. SCU {Scan until> PAGE 67
145, SCW {Scan while> PAGE 67
153. SED K <Set enable/disable external interrupts> PAGE 70
158. SETR N {Set registers> PAGE 72
154, SIN K <Set interrupt> PAGE 70
148, SI0 K <Start /0> PAGE 68
155. SIRF K <Set external interrupt reference flag> PAGE 70
90, STAX <Store A into X> PAGE 53
9, STB E (=, D, X, DQS) {Store byte> PAGE 34
91. STBX <Store B into X> PAGE 53
10. STD E (x, D, X, DQS) {Store double> PAGE 34
8. STOR E (=, D, X, DQS) {Store> PAGE 34
36. SUB {Subtract> PAGE 41
125. SUBI =N <Subtract immediate> PAGE 61
13. suBM E (*x, D, X, PDQS) {Subtract memory> PAGE 35
160. SUBS N <(Subtract from S$> PAGE 72
138. SXIT N <Subroutine exit> PAGE 65
110. TASL L <(Triple arithmetic shift left> PAGE 57
111. TASR L <(Triple arithmetic shift right> PAGE 57
30. TBA E (D, P) {Test, branch, A> PAGE 39
114, TBC N <Test bit and set condition code> PAGE 58
32. TBX E (D, P) {Test, branch, X> PAGE 40
117. TCBC N <Test and complement bit and set CC> PAGE 58
65. TEST <Test TOS> PAGE 48
151. TI10 K <(Test 1/0> PAGE 61
112. TNSL {Triple normalizing shift left> PAGE 57
115. TRBC N <(Test and reset bit, set condition code> PAGE 58
113. TRBM N <Test and reset bit in memory> PAGE 58
116. TSBC N <Test, set bit, set condition code> PAGE 58
150. wWlO K <dWrite 1/0> PAGE 69
85. XAX {Exchange A and X> PAGE 52
86. XBX {Exchange B and X> PAGE 52

83. XCH {Exchange A and B> PAGE 52

4e

PAGE 78 of 82 HP ALPHA 1 7-20-7¢C COPY

161.
141,
63.
129.
Th.
76.
77.

XCHD
XEQ

XOR

XOR
ZERO
ZROB
ZROX

HEWLETT~-PACKARD PRIVATE--DO NOT REPRODUCE

K <Exchange DB>
K <Execute>
<Exclusive or, logical>
=N <Logical Exclusive OR immediate>
{Push zero>
{Zero B>
{Zero X>

PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE

72
65
L3
61
50
50
50

1.
20
3.
L,
5.
6.
7.
80
g.
10.
11.
12,

14,
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34,
35.
36.
37.
38.
39.
L"Oo
L1.
L2,
L3.
Ly,
45.
L6.
L7.
48.

LOAD
LDB
LDD
LDPP
LDPN
LDX
LRA
STOR
STB
STD
CHPM
ADDM
SUBM
MPYM
INCM
DECM
BR
BCC
BCY
BNCY
BOV
BNOV
BRO
BRE
1ABZ
1 XBZ
DABZ
DXBZ
CPRB
TBA
MTBA
TBX
MTBX
CMP
ADD
SuB
MPY
DIV
NEG
LCMP
LADD
LSuB
LMPY
LDIv
NOT
DCMP
DADD
DSUB

APPENDIX B - MUMERICAL LISTING OF

mMmMmMMMmMEEeECECECECECFCCCEFEMMMmMmMmMMmMMmMmMMmmammmmZZmmm

HP ALPHA 1

(x, D, X, PDQS)
(x, D, X, DQS)

(x, D, X, DQS)
{Load double from
{Load double from
(x, D, X, PDQS)
PDQS)
DQS)
DQS)
DQS)
PDQS)

X, PDQS)

X, PDQS)

X, PDQS)
DQS)

, D@s)

X, P or ind
P) <Branch
{Branch
P) <Branch
P) <Branch
{Branch
{Branch
{Branch

LR VI NI NI N
XXX XX
N N N NS

S N N N N NN
>
~

NN N N N NS
© U U0 R
Nt N N N o’

PN NN PN N PN N PN N O PN PN N PN O PN N NS N S
* % % % % % % % % % F % F ¥ X ¥ * * * ¥ *
~
©
~

ol autll mudl pudl pulll gudl sl sudll aulll puii v e B Jlw R w R w i o Jlw Nl w i w i o)

VN N N N N N N N N N NS N NS YN Y Y Y Y NS DS

~
V]
N

(=, L, P)
{Compare range and
(D, P) {Test,
(D, P) Modify
(D, P) {Test,
(D, P)

<Increment
{lncrement X,
{Decrement A,
{Decrement

<Modify,

{Compare>
<Add>

{Subtract>
Multiply>
{Divide>
{Negate>
{Logical
{lLogical
{Loglcal

compare>
add>
subtract>
{Logical multiply>
(Logical divide>
{One's complement>
{Double compare>
{Double add>
{Double subtract>

7-20-70

<Load>

{Load byte>

{Load double>
program, positive>
program, negative>
<{Load lIndex>

{Load relative address>

{Store>

{Store byte>
{Store double>
{Compare memory>
<Add memory>
{Subtract memory>
ultiply memory>
{lncrement memory>
{Decrement memory>
irect DQS)
on Condition Code>
on carry>

on no carry>

on overflow>

on no overflow>

on TOS odd>
on T0S even>
A branch
branch
branch
X, branch
branch>
branch, A>
, Test, Branch, A>
branch, X>
Test, Branch, X>

{Branch>

if zero>
if zero>
if zero>
if zero>

INSTRUCTIONS

Mem,
Mem.
Mem.
Sub
Sub
Mem.
Mem.
Mem.
Hem.
Mem.
Mem.
Mem.,
Mem.,
Mem.
Mem.
Mem.,
Mem.
Mem.
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Mem.
Mem.
Mem.
Mem.

Stack

COPY 42 PAGE 79 of 82
HEWLETT-PACKARD PRIVATE=--DO NOT REPRODUCE

OpCode=0UL
OpCode=15
OpCode=15
OpCode3=10
OpCode3=11
OpCode=13
OpCode=17
OpCode=05
OpCode=16
OpCode=16
0OpCode=00
OpCode=07
OpCode=10
OpCode=11
OpCode=12
OpCode=12
OpCode=14L
OpCode=14
OpCodel=1L
OpCodel=15
OpCodel=39
OpCodel=31
OpCodel=36
OpCodel=37
OpCodel=07
OpCodel=12
OpCodel=27
OpCodel=13
OpCodel=26
OpCode=05
OpCode=05
OpCode=05
OpCode=05

Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack

OpCode=17
OpCode=20
OpCode=21
OpCode=22
OpCode=23
OpCode=24
OpCode=57
OpCode=60
OpCode=061
OpCode=62
OpCode=63
OpCode=6kL
OpCode=10
OpCode=11
OpCode=12

PAGE 80 of 82

L9.
50.
51.
52.
53.
Sk,
55.
56.
57.
58.
59.
60.
61.
62.
63.
6L .
65.
66.
67.
68.
69.
70.
71.
72.
73.
4.
75.
76.
77.
78,
79.
80.
31.
82.
83.
8L,
85.
86.
37.
88.
89.
90.
91.
92.
93.
9L,
95.
96.
97.
98.
99.
100.
101.

MPYL
DIVL
DNEG
FCMP
FADD
FSUB
FMPY
FDIV
FNEG
FLT
DFLT
FIXT
F1XR
OR
XOR
AND
TEST
DTST
BTST
INCA
INCB
INCX
DECA
DECB
DECX
ZERO
DZRO
ZRO3
ZROX
DEL
DDEL
DELB
DUP
DDUP
XCH
DXCH
XAX
XBX
CAB
LDXA
LDXB
STAX
STBX
ADAX
ADBX
ADXA
ADXB
NOP
ASL
ASR
LSL
LSR
CsSL

HP A

{Multiply
{Divide Lo
{Double ne
(Floating
{Floating
{Floating
<Floating
{Floating
<Floating

LPHA 1 7-20-70

Long>

ng>

gate>
compare>
add>
subtract>
multiply>
divide>
negate>

{Float>

<Double float>
<Fix and truncate>
<{Fix and round>
<0r, logical>
{Exclusive or,
<And, logical>
{Test TOS>
{Test double word on TOS>
{Test byte on TO0S>
{lncrement A>

{lncrement B>

{Increment index>
<{Decrement A>

{Decrement B>

<{Decrement X>

{Push zero>

<{Double push zero>

{Zero B>

{(Zero X>

<Delete A>

{Double delete>

{Delete B>

{Duplicate A>

<Double duplicate>
{Exchange A and B>

{Double exchange>
{Exchange A and X>
{Exchange B and X>

{Rotate ABC>

{Load X onto stack>

<Load X into B>

{Store A into X>

{Store B into X>

<Add A to X>

<Add B to X>

<Add X to A>

<Add X to B>

{No operation>

L <Arithmetic shift left>
L <Arithmetic shift right>
L <Logical shift left>

L <Logical shift right>

L <Circular shift left>

logical>

COPY é 2

HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack

OpCode=13
OpCode=14
OpCode=15
OpCode=50
OpCode=51
OpCode=52
OpCode=53
OpCode=54
OpCode=55
OpCode=47
OpCode=30
OpCode=71
OpCode=70
OpCode=565
OpCode=65
OpCode=67
OpCode=25
OpCode=27
OpCode=31
OpCode=33
OpCode=73
OpCode=04
OpCode=34
OpCode=74
OpCode=05
OpCode=06
OpCode=07
OpCode=41
OpCode=03
OpCode=40
OpCode=02
OpCode=01
OpCode=45
OpCode=Lb
OpCode=32
OpCode=16
OpCode=35
OpCode=75
OpCode=56
OpCode=u44
OpCode=42
OpCode=43
OpCode=26
OpCode=35
OpCode=76
OpCode=37
OpCode=77
OpCode=00

Sub 0OpCodel=00
Sub OpCodel=01
Sub OpCodel=02
Sub OpCodel=03
Sub OpCodel=04

102.
103.
104,
105.
106.
107.
108.
109.
110.
111.
112.
113.
114,
115.
116.
117.
118.
119.
120.
121.
122.
123.
124,
125.
126.
127.
128.
129.
130.
131.
132.
133,
134,
135.
136.
137,
138.
139.
140.
141,
142,
143,
144,
145,
146.
147,
148.
149.
150.
151.
152,
153,
154,

CSR
SCAN
DASL
DASR
DLSL
DLSR
DCSL
DCSR
TASL
TASR
TNSL
TRBM
TBC
TRBC
TSBC
TCBC
EXF
DPF
LDI
LDNI
crpl
CHMPN
ADDI
SuBl
MPY I
DIVI
ORI
XORI1
AND
LDXI
LDXN
ADX1
SBXI
PCAL
SCAL
EXIT
SXIT
HALT
PAUS
XEQ
MOVE
MVB
MVBW
SCuW
SCU
CMP3
S10
RIO
WIO
TIO
Clo
SED
SIN

RARARARARARARAARRXR

Woaononowononwon NN

REZZZZZ2Z2Z2Z2Z2ZLZLZZZ2ZEIN S ZZ2Z2Z22

-

rerrrerrrrrr

~

K

AR

COoPY

HP ALPHA 1 7-20-70 l"d
HEWLETT-PACKARD PRIVATE--DO

{Circular shift right>
{Scan bits>
{Double arithmetic shift left>
{Double arithmetic shift right>
{Double logical shift left>
{Double logical shift right>
{Double circular shift left>
{Double circular shift right>
{Triple arithmetic shift left>
{Triple arithmetic shift right>
K<Triple normalizing shift left>
{Test and reset bit in memory>
<Test bit and set condition code>
{Test and reset bit, set condition code>
{Test, set bit, set condition code>
{Test and complement bit and set CC>
{Extract field>
<Deposit field>
{Load immediate>
{Load negative immediate>
{Compare immediate>
{Compare negative immediate>
{Add immediate>
{Subtract immediate>
Multiply immediate>
<Pivide immediate>
<Logical OR immediate>
{Logical Exclusive OR immediate>
{Logical AND immediate>
{Load X immediate>
{Load X negative immediate>
{Add immediate to X>
{Subtract immediate from X>
{Procedure call>
{Subroutine Call >
{Procedure and interrupt exit >
{Subroutine exit>
<{Halt>
{Pause>
{Execute>

{Move words>

{Move bytes>

{Move bytes while>
{Scan while>

{Scan until>
{Compare bytes>

{Start
{Read

{Write
{Test 1/0>

{Control 1/0>

{Set enable/disable external
{Set Interrupt>

1/0>
1/0>
1/0>

interrupts>

10T REPRODUCE

PAGE

Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Spec.
Spec.
Spec.
Move

Move

Move

Move

Move

Move

Spec.
Spec.
Spec.
Spec.
Spec.
Spec.
Spec.

81 of 82

OpCodel=05
OpCodel=00
OpCodel=20
OpCodel=21
OpCodel=22
OpCodel=23
OpCodel=24
OpCodel=25
OpCodel=10
OpCodel=11
OpCodel=16
OpCode3=14
OpCodel=32
OpCodel=33
OpCodel=34
OpCodel=35
OpCode2=15
OpCode2=16
OpCode2=02
OpCode2=12
OpCode2=04
OpCode2=14
OpCode2=05
OpCode2=06
OpCode2=07
OpCode2=10
OpCode3=15
OpCode3=16
OpCode3=17
OpCode2=03
OpCode2=13
OpCode2=00
OpCode2=01
OpCode3=02
OpCode3=01
OpCode3=03
OpCode3=04

OpCode=17
OpCode=01
OpCode=06
OpCode=00
OpCode=01
OpCode=04
OpCode=02
OpCode=03
OpCode=05
OpCode=07
OpCode=10
OpCode=11
OpCode=12
OpCode=13
OpCode=02
OpCode=16

PAGE 82 of 82 HP ALPHA 1 7-20-70 COPY42
HEWLETT-PACKARD PRIVATE--DO NOT REPRODUCE

155. SIRF K <Set external interrupt reference flag> Spec. OpCode=15
156. CMD K {Command> Spec. OpCode=1k
157. PSHR N {Push registers> Sub OpCode2=11
158, SETR N {Set registers> Sub OpCode2=17
159. ADDS N <Add to S> Sub OpCode3=05
160. SUBS N {Subtract from S> Sub OpCode3=06
161. XCHD K {Exchange DB> Spec OpCode=03
162. PLDA <Privileged load from absolute address> Mini OpCode=01
163. PSTA <Privileged store into absolute address> Mini OpCode=03
164. RSW {Read Switch register> Mini OpCode=00

165. LLSH <Linked list search> Mini OpCode=02

1

LPHA I CON

SOLIDATED CODING SHEET 7-20-70 HEWLETT-PACKARD PRIVATE DO NOT REPRODUCE

Fa 3 s > grieiE TR, 3 ¥ I
g 7.l .3 5. 436 111 112 %13 1 1bh 415 iz 5 i 5 6 7 g 9 4330 113
e L0 TEL SULOPCOLE 2 TN iy G |
oeLs 41 ZROB : ‘ ! 15 PLDA
DDEL 42 LDX8 . 16 . LLSH
ZR0OX 43 STAX 17 PITA
NEX i LOXA 01 | SPARE
. IDECX L5 DuP - 02 Lot b LMEDTATE
IERQ . W6 npup 03 | LDYI "
DLRO ’ 87 | FLT 0% | cnpt : ki
DeHP 50 FOMP 05 | ADDI . "
SDADD 51 FADD 06 | suB! "
iDsuB 52 FSUB 97 | eyl)
et 53 FlPY 10| Divi "
DIVL S5k FDIYV 11 PSHR A_FIASK 1 STA 94
DMEG 55 FHEG 12 LOKY TRVEDTATE K
DXCH 56 CAB 13 | LDXM - "
cip- 57 . LCHp Ut '
ADD 60 LADD S50 ExF BEGINIITNG ©1T #
SUB 61 LSUB 16 1 pPF j" nln
rPY 62 Lupy 1A sETR N AT
Div . 63 LDV SUB OPCODE 3 00 | SPECTAL OP G0 SPAL
CJNEG 61 NOT 01 PALS
ITEST 65 0R 02 SED
STBX : 56 XCR 03 XCHD
7 ; DTST ber AND oL SPARE
; 30 : DFLT 70 FIXR 05 |- SPARE
£ ! 1 BTST 71 FIXT | 06 | LED
; 32 : XCH 72 S PARE] 07 510
% 33 HHCA ‘ 73 1NCB 10 RI0
% ! ‘ 34 - IDECA , 74 DECH 11 W10
i i 35 JXAX S 75 . XBX 12 TIO
35 - ADAY 76 ADEX 13 10
. S . 37 ARXA : i ADXB 1k cn
5 1 { 1 X f0d ASL SHIFT COUNT L 15 | SiRF :
j’qi X 01 CJASR " I " 16 St i " i 3
:% Y 02 L3L . ‘ 1" "] 17 HALT] 1t 3
i § : X fo3 LSR o " woou 01| scaL . COUSTT EdiRy Fon |]
i ! i X 0k st N 821 POAL ' S L i %
Eﬁ X 05 CSR 1 ou 1 1 03 EXIT i FIELD - i é
i P « fos |scAN : [on | suiT LN | |
g-f. ; i bofor 1ABZ +/= | P RELATIVE DiSPLACEMENT 05 | ADDS o i ?
g,% : X 1o TASL . SHIFT COUNT L! | 06.| 3UBS : o : b
a ! X j1l TASR mooa oy i 07 | SPARE : 8
4 | : b 1X8Z +7= § P RELATIVE D!SPLACEMENT & a4 16| LopP P+ DISPLACEMENT H “%
i i IBX57 W/ i " S %2 11| LoPH P- DISPLACENELT N, i £
& ! o ois BCY wfe 4 ol " 12 1 ADXi VSMEDFATE - CPERAND ¥ : ;
i H i 135 BHCY v/ = n " ‘ i g 13 58%1 - " i " " H
§§ ' M | THSL SHIFT COUNT L B 1| TREN !
= ; Y {17 I SPARE | . + 15, OR1 .
i i i X 29 DASL SHIFT COUNT L i 16 | xoei ! ;
8 i X i1 DASR " ntoon ? 170 ALDI
' x 122 IDLSL : u v oL LOAD X i P0US A
! : ! X § 23 DLSR " woon é 5 BA 0 0 0 1 +/=
& ¢ | X Iy DeStL Con H " & M8 9 1 ¢ =
B ; : X i25 oesh u weoon ; TBX 1 0 0 | 4/~
i : b 2o . |EPRB +7= | P RELATIVE DISPLACEMENT ; HTB 1 1 o s
: : ! . - IDABZ SV A " " ; ! STOR X ! 1 055 A
§ﬁ ; : 1 139 B3OV AR AL " " 06 CHPi: X ! F0DOS
N : N 3 - IBNOY N B " " g o7 At X 1 o
& i i X 32 T8¢ BIT POSITION o SUBH x 1 "
5‘ i ; X 433 - ITRBC " " 5 il MRy X | " 4
i i X §3u JITSBC " ! 1" 212 1NCH X 1 7 £Qs
i | i NE 35 : TCBe R) : DECH % e N &
: ! | N BR0 | 7= P RELATIVE DISPLACEHENT % 13 LD x 4o PpaOS i
; : 37 3RE v it " Y X 1 | ;
TEOETY 00 1 LOVE UPS i) ShEC RESERVED k}, PN 1 ADDRES !
! 1 n RESERVED ! ! n ETon Celt ¥
H 2! " RESERVED H X 1 0 o055 A !
, 3) ALSCRVED % 2 ' 5 n |
: i { 4 ! cealc Tl ® g X b ! ;
S P s . IR s L i o I . i
EERNE S s RS e B e e A 2 T o e e A A A A R ok 5 X 1 } !

HP ALPHA 1 7-20-70 CoPY
HEWLETT~-PACKARD PRIVATE--DO NOT REPRODUCE

ERRATA # 1 7-26-70 PAGE 1 of 2

Page 14
Move opcodes should be

I l | |
| MOVE OP | SDEC | CCF |
|

0----- ST B Ppe—— 10,11--12,13--15

Mini opcodes should be

I ! | | |

| 0010 | 0000 | MIMI OP | RESERVED |

l | | I |

O ----- 3/"4-_--7 8 ----- 11,12 “““““““ 15
Page 32 7

~bn. LDB the line beginning BE := (base + D) + if should read

BE := (base + Bre2+—Hf—CIRI=—0-then9-else X _<<byted>;

kn STBthe-Tine begtnning BEr=tbase~+-by~+ifshould read

«.BE := (base .+-D)Y*2+-1fCIR(L) = 0 then 0 else X <<byte>>;
Page 38, 79 ' '
29. CPRB should read

29, CPRB L (%, L, P) <Compare range and branch> Sub 0OpCodel=206

Page 62, 81
133. ADX! should read

t

133, ADX! =N <Add immediate to X> Sub OpCode3=12

134, SBX1 should read
134, SBAL =H <Subtract immediate from X> " Sub OpCode3=13

Page 66
The BB. section heading first 3 lines should read

B2. MOVE {HNSTRUCTIOHNS
Memory OpCode = 02
Sub OpCode? = 00

HP ALPHA 1 7-20-70 Copy
HEWLETT-PACKARD PRIVATE--DO MNOT REPRODUCE

ERRATA # 1 7-26-70

Page 73, 82
162. PLDA should read

162, PLDA <(Privileged load from absolute address>
163. PSTA should read

163. PSTA <(Privileged store into absolute address>
164, RSW should read

164, RSW {Read Switch register>

Page 74, 82 /
165. LLSH should read

165. LLSH <linked list search>

Page 70
Section GG should read

GG. UNASSIGNED INSTRUCTION COMBINATIONS

Stack OpCode= 72
Sub OpCodel= 17
with 6 bit L parameter, optional indexing
or indirect addressing with the Y bit
Sub 0pCode2= 01
with 8 bit N parameter
Sub OpCode3= 07
with 8 bit N parameter
Spec. OpCode= 00,04,05
cach with 4 bit K parameter

Page 75
29. CPRB should read

28, CPRB L (=, L, P) <Compare range and branch>

Page 22
The second lYine of section A. should read

for 255 device controllers. The 1/0 instructions are:

Please report all other corrections to Bert Forbes.

PAGE 2

Mini O

Mini O

Mini O

Mint 0O

PAGE

Start

of 2

pCode=15

pCode=17

pCode=1L

pCode=10

33

170

PAGE
PAGE

- PAGE

PAGE

November 3, 1970
Page 1

ERATA TO ALPHA ERS

Sec. B, 2nd paragraph, 1st line change "execpt" to "except"‘
In the P definition, change "procram" to "program"

I

]

Enable/Disable (1/0) external interrupt bit

T = Enable/Disable (1/0) user traps bit

i

CC = Condition Code
CCG = @@, CCE = 1p, CCL = 01

Delete the first sentence of paragraph ard substitute:

The address space of a user is divided into separate areas for
program code and data. The program code is partitioned into Tlogical
code segments, one of which is active in core while the remaining
segments are inactive and may reside in core or in secondary store.
The data area and the currently executing code segment are directly
addressable while the rest of the code segments are callable through
a virtual memory structure using program labels. Each code segment
has a maximum size of 16K words while the data area may be up to
65K words. :

The active address space of a user (data area and executing code
segment) are defined by hardware and are organized as follows:

Change DATA AREA in picture label to read DATA AREA (MAX 65K)
Change Code Segment label to read CODE SEGMENT (MAX 16K)

Change second SDT picture entry from PL to PB

November 3, 1970
Page 2

PAGE 10
Address Computation definitions
Insert after S = ----

D = Displacement field of instruction word (See E-1 of
instruction formats).

PAGE 11
Bounds check: Data, indirect
orz+14<E&G DL
Bounds checking table USER PRIV

MODE MODE
Code read yes no
Program transfers yes yes
Stack Overflow yes yes
Stack Underflow yes no
PAGE 17
ADD

H. Program Label Formats

External Program Label

1| STT Entry #| Segment #

STT Entry # = Number to index from PL into the STT table
to obtain entry point into the program segment.

Segment # = Logical entry number into the segment descriptor
table (SDT).

Local Program Label

OJU{PB relative address

U = Uncallable bit. When set to 1 this entry point is
uncallable from a non-privileged external segment.
If so called, an interrupt to the system results. .
This bit is ignored when referenced from within the
Tocal segment or when in privileged mode.

November 3, 1970
Page 2A.

PAGE 17

Replace Section G with the following:

G. Stack Marker Formats

X

RELATIVE P
STATUS

DELTA Q

S,Q

X = Contents of the Index Register-

RELATIVE P = P+1 - PB
(The instruction to be returned to)

STATUS = The content of the Status register.

DELTA Q = Value to be subtracted from the Q register to obtain
the Q value of the caller.

PAGE 18

PAGE 19

November 2, 1970
Page 3

AR. Segment - - -

Third 1ine number of double word segment descriptor
entries determined at system generation time. Each entry contains
control information about the segment and gives the length and
starting address of the segment. Segment # 0 is reserved for
interrupt use,

Change the definition of L to read:

L = for an N word code segment, L = N/4 and PL = PB + 4 * L - 1.
Note: N is always an exact integer multiple of 4 and that the
maximum L = 212 - 1. The maximum segment size, therefore
is 16,384 words.

Change in section STT
- - - - It contains 1 word entries of two basic tybés which are the

program labels having the formats given in section III - H.
References to external programs segments use the

External Program Label entry

1] STT ENTRY #| SEGMENT #

0,1mmmmmmmmm=7 ,Bennnmannn 15

STT ENTRY # = Number to index from PL to obtain entry point into
segment.

SEGMENT # = Logical entry number in SDT.

References from within the segment or calls through external labels
to this segment use the

CHANGES CONTINUED ON PAGE 20 OF ERS

November 3, 1970
Page, 4

PAGE 20
Local Program Label entry
P{U|PB relative address
R O — 15
U= Uncal]ab]é bit prevents calls from unpriviledged external
segments to this section of code.
PL Entry (The last word - - - -
PAGE 21
Under 03 ZI Add
04 Interrupt counter
05 Unassigned
06 Unassigned
07 Unassigned;
DRT
10 I/0 program dev. 2 (same)
1 PI dev. 2
12 DBI dev. 2
13 IRF dev. 2
14 I/0 prog. dev. 2
15 PI dev. 3
16 DBI dev. 3
17 IRF dev. 3
1774 1/0 prog. dev.255
etc. ’
PAGE 23 ,
-~ COUNT = Logical transfer count - - - may be bytes, words - - -

PAGE 25

Third paragraph change "tive" to "time"

PAGE 26

PAGE 27

PAGE 30

November 3, 1970
Page 5

Change third paragraph to read:

- - - - is terminated, a standard 4 word stack marker is created

on the current stack and then the current DB pointer is pushed onto
the stack. If the interrupt occurred while operating in the user
stack, the hardware top of stack registers are pushed into core
memory such that S=SM and SR=@. The new value of S is stored into
the Process Control Block (PCB) of the non-interrupt process. A
hardware interrupt stack flag is set and the stack environment

is changed to the Interrupt Stack by setting

e=Q - - -

---- . The external interrupt system is Teft enabled.

Change the user stack picture to:

S D
0 C 2
B 13
A .14
—2 :
P+ - PB 6
STATUS _ 7
DELTA O 8
DB, or DB,'| 9
INTERRUPT AND TRAP TABLE
SEGMENT # TYPE

- Seryiced on Interrupt Stack

External Interrupts (via DRT)
Powerfail :
Power On

Stack Overflow

Module interrupt

Console interrupt

Unassigned

CORRECTIONS TO PAGE 30 CONTINUED ON NEXT PAGE

YO AR WN =S

November 6

Page' 6
SEGMENT # ‘ TYPE
Serviced on Current Stack

8 - . Unassigned

9 Unassigned

10 Parity Error [A11 three types)

11 Misc. Error
TYPE SEGMENT #
Non-responding module @
I11egal address 1
Stack underflow 2
SDT Bounds violation 3
STT Bounds violation 4
Module violation 5

12 Code Segment Absense

13 Traps
SUB SEGMENT # - TYPE

User traps controlled by trap enable bit in status

Unassigned
Intepger Overflow
Floating Point Over
Floating Pt. Underf
Inteprger divide by

L 5 , F1t. Pt. divide by
System traps that are always active.

6 Priviledged Inst.

7 ‘Unimplemented Instr

NH2WN -

PAGE 32
Change LDB instructions:

X contains a byte index. The byte referenced is loaded
into the right half of the top of the stack. Note that byte
indexing can cover only 32K of addresses. On indirect addressing
the word referenced by the direct address (base + D) contains
a DB relative byte address. The byte index is added to the .
relative byte address to obtain the effective byte address.

November 3, 1970
Page 7

PAGE 35

In instruction 14, change the last line to read
Indicators = CCA Overflow.

PAGE 37

In instruction 23, add the line "S := S-1" after the If statement
in the algol definition. : '

In instruction 24, add the line "S := S-1" after the If statement

in the algol definition.

In instruction 25, change the last line to read:
Indicators = CCA, Carry, Overflow.

PAGE 38

In # 26, IXBZ, the first line of the English definition should
read: The index register is logically incremented.
The last line should read: Indicators = unaffected.

. In # 27, DABZ, the 1ast 11ne shou]d read Indicators = CCA, Carry,
' 0verf1ow B

In # 28, the first Tine of the Eng11sh definition should read
The 1ndex register is logically decremented. ..
The last line should read: Indicators = unaffected

In # 29, CPRB, the algol definition should read:

..ﬁ := P + L;
end else
if X

PAGE 41
In the instruction MPY, #37, the algol defintion should read:

(51)S %Sl) (S)s
Alsu, delete the second paragraph of the English def1nt1on and insert:

If the high order 17 bits (including the sign bit of the second
word) are not all zeroes, or all ones, overflow is set.
Indicators = CCA, Overflow.

November 3, 1970
Page 8

PAGE 43

In instruction #43, LMPY, change the word "most" to "least" in the
th1rd line of the Eng11sh definition. It will then read:

. length product with the least s1gn1f1cant

In instruction LDIV, #44, add to the English description the '
sentence: "If overflow occurs, the remainder will be modulo 2**16."

"PAGE 45]
In 1nstructioh #51, DNEG, the last line should'read:
Indfcators = CCA, Overflow.
PAGE 46
‘In instruction FDIV, #56,»the algol definition should read:
(s-3,5-2) := (S-3,5-2)/(S-1,S)
S:=5-2 :

The EngTish definitidn should read:
The float1ng point number contained in the 3rd and 4th words -
of the stack is divided by the floating point number contained
in the Ist and 2nd words of the stack.
PAGE 48
Instruction #67, should appear as follows:
67. BTST ~ Test double word on TO0S
Indicators = CCB on (S(8:15)).
PAGE 49 |
The English definition of 1nstrucu1on #70, INCX, should read:
The content of the index reg1ster is 1ncremented by one in

logical form.
Indicators = CCA.

PAGE 51

PAGE 57

November 3, 1970
Page 9

The last line of the English def1n1t1on in instruction # 81
should read:
Indicators = unaffected

The Tast line of the English definition in 1nstruct1on # 82

should read:
_ Indicators = unaffected.

The fourth line of the Algol definition in instruction # 112,
TNSL, should read:
while (S-2(6)) = 0 do

- The second Tine of the Engl1sh definition in the same. instruction,

PAGE 58

TNSL, should read:’ -
... until (S-2(6)) = 1. The-shlft count . . .

Instruction # 113 now appears as follows;

TSBM. N (Test and set bits in memory) .
TEMP := (DB+N) or (S); set bits
(S) := (DB+N) and (S); _ get bits
(DB+N) := TEMP;

ATl bit pos1t1ons of the DB+ re]at1ve memory word that

- have a 1 in the corresponding position on the top of the stack are

PAGE 59

PAGE 61

set; at the same time the memory word ANDed with the mask in the TOS
replaces the T0S. Interrupts may not occur during the execution

of this instruction. , 4
Indicators = CCA on the new TOS.

In instructions #115, #116, and #117 the first three words of the
English definition should read: ‘This instruction's operation . .

The following change should be made to instruction # 118, EXF:
Second line:TOS is deleted. The K bit field is

~ The second Tine of the Eng]xsh definition in 1nstruct1on #125

SUBI, should read: TOS in 1nteger form,

November 3, 1970
Page 10

PAGE 61 (CONT.)
In the DIVI 1nstruct1on, #127 the last 1ine should read:

Ind1cators CCA on the new TOS

PAGE 63

In 1nstruct1on #135, PCAL, 1nsert after 11ne s1x of the Algol
def1n1t1on the fo]]ow1ng

(S)
S+1 L
Change third line of the Enlish definition in the same instruction
to read: .
........ . otherwise. Then a four word stack

In instruction SCAL, # 136, add then statement to the last Tine.
...allowed. Non local label gives illegal address trap.

PAGE 64
Replace the Algol definition of instruction #137, EXIT..
EXIT | <Procedure and 1nterrupt ex1t>
 TEMP := 4 |
~If in 1nterrupt stack. then 1nterruptlstack flag is set
Beg1n If STATUS(8 15) = @ then
~ Begin {{in an external interrupt routine >

DB s= (Q+1); <{Q+1 contains the DB of the 1nterrupt routin
= (Q+2); (Q+2 contains the device # that interrupted)
: d Reset act1ve state of device DN;
En
If Externa] interrupt request then
Begln <another external interrupt wa1t1ng>>
_.Q+]
(S) = Device # of new External Interrupt;
Rema1nder of normal_External 1nterrupt CALL
8 See section V-A))
End;
CIf (Q) = @ then
Begin Temp := -1;
Set Dispatches flag;
End; :
End;
Begin <Knorma1 ex1t/>
TEMP Q - TEMP;

© CONTINUED ON NEXT PAGE

November 3, 1970
Page 11

CONTINUED FROM PAGE 10

=S - (S):

=S - 1, :
STATUS = (S); Note that user mode may not EXIT to
privileged mode and may not change the
interrupt disable bit, 1.

wn .0

If STATUS(8:15)

= @ then
Begin PB := @;
PL := 2%*16-1;
End

Else PB,PL := evaluation of segment descr1ptor specified
By STATUS(B 15);

S :=S-1;

P := PB + (S);

S := S-1:

X = (3);

S :=TEMP - N Note that in exits from interrupt routine

N must be 0.

In the English definition of the EXIT 1nstruct1on delete the
fourth paragraph.

PAGE 66
~ Change BB. MOVE INSTRUCTIONS to;

Memory Opcode =

Sub Opcode2 = 00

Move Opcode = CIR(8:;10)

SDEC = CIR(14:15) :

On some instructions optional base addresses are
ava11ab]e for relative addressing where
BASE ;= If CIR(11) =1 then DB else PB;

Change instruction #142, MOVE to appear as follows:

- while (S) # @ do

begin
?BASE + (S-)) := (BASE) + (S=1);
~(5-2) := (5-2) + S1gn($);
(S-1) := (S-1) + Sign(S);
(S-1) :=(S) ~ Sign(S);
end; :
S ;=S - SDEC;

- MOVE INSTRUCTION CONTINUED ON NEXT PAGE

November 3, 1970
Page 12

PAGE 66 (CONT.)
CONTINUATION of MOVE instruction(English definition):

This instruction expects a signed word count in the T0S, a
source word relative address in the second word of the stack and
a destination word relative address in the third word of the stack.
If the word count is positive the words are moved in a Tower to
higher address sequence from the source area to the destination
area. A negative word count will cause a higher to lower address
move from the source area to the distination area.

The first six lines of the Algol definition of the MVB instruction
should appear as follows:

While (S) # @ do

Begin

(BASE + (S-2)/2) := (BASE + (S-1)/2)
(S-2) := (s-2) + S1gn(S ;

(S-1) := (S-1) + Sign(S);

(S) := (S) - Sign(s)

PAGE 67
The Algol definition of the MVBW instruction, #144, should read:

CCF = CIR(11;13)
CIR(]]) = Numeric
CIR(12) = Alphabetic
CIR(13) = Special
While CCB on (DB L (S)) = CCF do
Begin
b + (5-1)/2) = (0B + (5)/2);
(S=1) &= (S-1) + T;
(S) := (S) + 13
End;

The Algol definition of the SCW instruction, #145, should read:

While (DB + (S-1)/2) = (S(8:15)) do (S-1) := (S-1) + 1;
If (DB + (S-1)/2) = (S(0:7) then carry := 1 else
Carry := 0;
CC := CCB;
S =S - SDEC;

H

November 3, 1970
Page 13

PAGE 67 (CONT.)

The Algol definition of the SCU instruction, #146, should read:

th;elg) (éS;])/Z) # (S(8: 15‘) and (DB + (S-1)/2) # (S(0:7)) do
Carry := if (DB + (S-1/2) = (S8:15)) then 1 else §; -
S :=S ~ SDEC;

PAGE 68
The Algol definition of instruction #147, CMPB, should appear:

While (BASE +(S-1)) = (BASE + (S-2)) and (S) @ do
Begin 3 ' ' :
%5-2) (S 2) +1;
+ 13

CC := if (S) = 0 then CCE else 1f (BASE + (S 2))) (Base + (S-1)
then CCG else CCL.
S := S -~ SDEC;

The English defintion of the same instruction should appear:

This instruction expects a-byte count in T0S, a service byte
address in T0S-1, and a target byte address in the third word of
the stack. As long as the bytes in the source string compare with
the target string, TOS is decremented. The instruction terminates
when either a comparison fails or the byte count in TOS reaches
zero. S is decremented by the amount indirected in the SDEC field.
Indicators = if TOS = 0 then CCE else
: if the final target byte the last source byte scanned

then CCG else CCL.

In the Sub-title CC. I/0 Interrupt Instruct1ons, after the 1ast
Tine add:

A non-responding device controller will terminate 1/0
instructions and set indicator to CCL.

RepTace the second line of the Algol def1n1t1on in 1nstruct1on
#148, SI0, with the following:

DRTE ;= DRT + 4 * (S—K(8:15)); ‘
The last line of the same instruction, SI0, should read:

Indicators = if 1/0 error then CCG else CCE

November 3, 1970

Page 14
PAGE 69
In the RIO instruction, #149, change the fifth line of the
English definition to read:
. 1nstruct1on status is pushed onto the stack if there is an
error. This
The Tast Tine should read:
Indicators = if I/0 error the CCG else CCE
In the WIO instruction, #150, the last Tine should read:
Indicators = if I/0 error then CCG else CCE
In the TIO instruction, #151, the last Tine should read:
Indicators = if I/0 error then CCG else CCE
PAGE 70

In the CIO instruction, #152, change the algol definition to read:

Device # := (S-K(8:15));
16 bit direct control word to device controller := (S);
S :=S8-1;

Change the last four Tines of the English definition to read:

S -~ K. If no error is detected the control word is deleted.
This is a priviledged 1nstruct1on
Indicators = if non-responding module then CCL else CCE.

The second Tine of the algol definition in instruction #155, SIRF,
- should read:

Dev1ce # * 4 + 3;
(E(O)) o
(Address 4) ;= (Address 4) + 1;

The third line of the English definition of the same instruction,
#1553 should be change to:

set to 0. S remains unchanged. This is a priviledged instruction.

November 3, 1970
Page 15

PAGE 71
Replace 1ine 11 of the PSHR instruction, #157, with:

Procedure push (Register);
Value register; Integer register;

The 18th Tine of the same instruction should read:
(S) := S-DB-1;
PAGE 72
Line 3 of the SETR instruction should be replace with:

if CIR(10) = 1 and if PRIV. MODE then
POP(STATUS(0:15)) else
POP(STATUS(2,4:70

Replace the last five lines of the Algol definition with:

Procedure Pop(Register);
Begin
Register := (S);
if Reg1ster = "§"
then S := S-1;
End;

The second 1ine of the English definition of the SETR instruction:
should read:

absolute value from the TOS for X, MASK, STATUS, and DB

PAGE 74

Change the first Tine of the A]go1 definition of the LLSH
instruction, #165, to read:

‘while X > 0 and ((S)) < (S-1) do
Add to the end of the English definition of the same instruction:

This is a pr1v11eged instruction.
Indicators = CCL if terminate on X=0
CCE if terminate on ((S)) »= (S-1)
CCG if terminate on ((S)) = 2%%16 - 1.
«all ones)

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	A-01
	B-01
	B-02
	C-01
	C-02
	C-02a
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15

