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SECTION 1

ALPHA I/O OVERVIEW

The design of the Alpha I/0 system allows I/0 devices to operate independently, and
without control, of the CPU. To this end, the I/O bus was given an MCU bus port,
shared with the CPU, to ALPHA memory. A simple example of the resultant system

is shown in figure 1.

By making the IOP an integral part of the CPU, direct commands can be issued to the
I/0 devices from the CPU itself. This would be the only mode of operation possible in

the system of figure 1.

With the addition of a Multiplexed SIO card or Selector Channel and more sophisticated
device controllers, it is possible to control I/0 devices without the use of direct CPU
commands. Figure 2 details one such possible I/0 system. Control of the device
controllers in this system is handled by the Multiplexed SIO card or channel. They
have the capability of fetching I/0O program orders from memory through the IOP and
executing them, thereby generating control signals to the device controllers via the

SIO bus. The I/O orders and their formats are explained later.

The SIO card can time division multiplex the execution of up to 16 1/0 programs.
The particular device controller program serviced during any given time slice is

determined by a hardware service priority established at system configuration time.

An 1/0 system incorporating a channel, a multiplexed SIO card, and a simple CPU
controller device, is diagrammed in figure 3. Device controller 1 can be operated
only under direct CPU control, while device controller 2 can also be controlled by
I/0 program executed by the multiplexed SIO logic. As with every other device
controller, device controller 3 can be directed by CPU commands, in addition to

being controlled by the channel.

All Data to the non-channel device controllers and the Multiplexed SIO card is trans-

mitted on the IOP Bus, in addition to the CPU control signals, interrupt system signals,



and several SIO-IOP communication signals. A complete IOP bus breakdown is given

in figure 4,

The SIO bus provides for individual service request lines for each of the 16 devices
that can be operated by the SIO card, 4-coded lines used to inform a particular device
controller that it is currently being serviced by the SIO-IOP, and 22 SIO command
and device controller response lines. A complete SIO bus breakdown is given in

figure 5.

The channel bus replaces the SIO bus on device controllers operating with the channel.
The channel bus uses the 16 service request lines for the data path to the device con-
troller, but otherwise creates the same control signals to the device controller as the

Multiplexed SIO card.



CPU

MCU
BUS

10P I1/0 BUS
DEVICE
CONTROLLER
MEMORY DEVICE

Figure 1. Simple Direct I/0 System
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SI0 CONTROLLER | | CONTROLLER |
- #1 1 #2 '
! ! i . { .|
i
I\/IE‘MORY 3 \E g [V S 5
. DEVICE | {  DEVICE |
i #1 E { 52
i

Figure 2. Multiplexed SIO and Direct I/0
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Figure 3. High Speed Channel, Multiplexed SIO, and Direct I/0



1 PARITY LINE

1 PARITY ERROR LINE
3 DIRECT CPU COMMAND LINES
8 DEVICE ADDRESS LINES
3 SIO TO I0P COMMAND LINES
16 DATA LINES
8 " INTERRUPT ADDRESS LINES
4 INTERRUPT REQUEST LINES
1 INTERRUPT ACKNOWLEDGE LINE
1 SERVICE OUT STROBE LINE
1 SERVICE IN RESPONSE LINE
1 SERVICE REQUEST LINE
1 I/0 RESET LINE
1 POWER ON LINE
1 POWER FAIL LINE
1 CLOCK LINE
1 INBOUND/OUTBOUND
2 DATA POLL LINES (In and Out)
2 INTERRUPT POLL LINES (In and Out)

*Separately wired; not part of ribbon cable.

Figure 4. IOP Bus Signals

PARITY
XERR
'CMD OUT
DEV ADDR
CMD IN
10P DATA

INT ADDR

IREQ

IACK
9
ST

SREQ

IORST

PON

PFW

CLOCK

OUTBND

DPOLL*

IPOLL*



CHANNEL SERVICE OUT LINE
CHANNEL ACKNOWLEDGE LINE
SIO INITIATION REQUEST LINE
SERVICE REQUEST LINES
ACKNOWLEDGE SR LINE
DEVICE SELECT LINES
ENABLE SIO LINE

TRANSFER ERROR LINE
TOGGLE LINES

JUMP MET LINE

DEVICE END LINE

END OF TRANSFER LINE

STROBE LINES

CHAN SO
CHAN ACK
REQ

SRO thru SR15
ACK SR
SELECT

ENABLE

XFER ERROR
TOGGLE IN/OUT XFER, SR, SIO OK
JMP MET

DEV END

EOT

P STAT STB

SET INT

SET JUMP

RD NEXT WD

P READ STB

P WRITE STB

PCMD1

P CONT STB

DEV # DB

Note: High-Speed Channel lines are identical except the 16 Service Request lines

are used as high-speed data lines.

Figure 5. Multiplexed SIO Bus Signals
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SECTION 2
INPUT/OUTPUT PROGRAMMING

I/0 programming is handled by a portion of the CPU microprogram along with special
hardware which enables data transfer between devices and memory to proceed in

parallel with normal CPU operation.

2.1 CPU INSTRUCTIONS

There are five CPU I/0 instructions and addressing capability for 253 device con-

trollers. The I/O instructions are: Start I/O (SIO), Read I/O (RIO), Write I/O (WI0),
Test I/0 (TIO), and Control I/0 (CIO). They expect a device controller number in the
stack. For TIO and for a rejected SIO, RIO or WIO, a 16 bit device status word (DSW)

is returned to the top of the stack.

Start I/O (SIO) causes the initiation of an I/0 program pointed to by an entry in the
Device Reference Table (DRT). The DRT is a table beginning in memory location 4
containing at most 253 four word entries. Each table entry corresponds to a unique
device number and the first word contains the address of the next I/O command instruc—

tion for that device.

The execution of an SIO causes the transfer of the DRT entry specified by the instruc-
tion to be made to the corresponding device controller. The controller then assumes
control of the I/O program execution and transfers data to and from the bus. Note

that once the device operation has been initiated, the CPU is free to continue processing.
Both tasks run concurrently until device termination caused by the appropriate I/0

command instruction.

2.2 SIO PROGRAMMING

An SIO type transfer is initiated by the CPU executing a Start I/0 instruction for the

desired device, assuming that there is an I/O Command program stored in memory.



The DRT entry associated with the device must be pointing to the beginning of the

I/O Command program.

The I/0 command program consists of a set of doubleword instructions which con-
trols the transfer of data between device and memory. The format of an I/0 in-

struction doubleword is shown in figure 6. Definitions are as follows:

o 1 |

IOCW DC| ORDER | COUNT |
(— 1 l
I0AW : Data Address/Control Info/Sense Storage ‘
l ' n
0,1----- 3,4==——-m—mmmmmmm——c— s —— e e 15

DC = Data Chain upon command execution complete. DC bit

should be 1 if the ORDER code of the next sequential I/0
program doubleword is the same as the current ORDER.

This applies only to READ and WRITE ORDER codes.

ORDER = 1/0 operation code
IOCW (4) = wused on conditional Jump and End.
COUNT = Logical transfer count — may be bytes, words or records

depending upon the particular device controller. All
standard controllers will use a word count. The count is
a two's complement negative of the 12 bit count. This

field may also be used for control information
I0CW = 1/0 Command Word

I0AW = 1/0 Address Word — the Transfer address or the control

information or the storage for the returned status.

Figure 6. I/O Command Doubleword

10



2.3 I/0 COMMAND CODES

CONDITIONAL JUMP (000) If IOCW(4) = 1, a conditional jump to the address given
by the IOAW is made at the discretion of the controller. If IOCW(4) = 0, an uncondi-

tional jump is made.

RETURN RESIDUE (001) This causes the residue of the count to be returned to the
IOAW.

INTERRUPT (010) This causes the device controller to interrupt the CPU.

END (011) End of the I/0 program. If IOCW(4) = 1, then the device controller also
interrupts the CPU. Device status is returned to the IOAW, l

CONTROL (100) This causes transfer of a 16 bit control word in the IOAW to the

device controller, as well as the 12 bit count field.

SENSE (101) This causes transfer of a 16 bit status word from the device to the
IOAW.

WRITE (110) This causes COUNT words of data to be transferred between core and
the device starting at the address given by the IOAW,

READ (111) This causes COUNT words of data to be transferred between the device
and core starting at the address given by the IOAW,

2.4 EXTERNAL INTERRUPTS

The external interrupt structure is a "polling" structure with a maximum of 253 devices

allowed on the Interrupt Poll (IP) line.

Servicing of the external interrupts is done in descending order of priority, i.e., the
highest priority interrupt is serviced first. The interrupt priority of a device is
determined by its logical proximity to the CPU on the IP line. The interrupt structure
is nested such that a higher priority interrupt can pre-empt a lower one. A 16 bit Mask
register is provided for the purpose of masking off groups of external interrupts. Up

to 16 external interrupts may be assigned to a mask group.



In the ALPHA I/0 system there are four characteristic numbers or values associated

with an I/0 device. (Note that they are fixed at hardware system configuration time.)

These are Device Number, Data Service Priority, Interrupt Priority and Interrupt

Mask Number.

These characteristic values are all independent of each other, giving

the following advantages:

1.

Device Numbers may be numbered consecutively, starting at 3 and
proceeding to the number of devices on the system. When a new 1I/0
device is added to the system, it is merely assigned the next highest

available number, if desired.

Since both Data Service and Interrupt Priorities are independent of
device number, a new device to the system may be placed anywhere
in the priority chain, independent of physical location within the

cabinet.

Since Data Service Priority and Interrupt Priority are independent
of each other, a device which requires a high data transfer rate

may be assigned a low interrupt priority, if desired (such as a disc),
or a device which has a very low data rate may be configured to a

high priority interrupt (such as an alarm condition).

Since Interrupt Masks are independent of device numbers and priorities,
devices may be masked in groups related to any desired function. For
example, if two data terminals were on the system and each has both a
high speed and a low speed device, the interrupts could be masked for

each terminal, rather than on a data rate basis.

Each device has five interrupt states:

12

Quiescent: Device is not attempting to request an interrupt.

Masked: Device is attempting to request an interrupt but its Mask

bit is set (=1).

Requesting: Device is requesting an interrupt and its Mask bit is

clear (=0) but there is a higher priority interrupt current and/or active.



4, Current: Device's interrupt routine is currently being executed on the

Interrupt Control Stack (ICS). The device's Active bit is set.

5. Active: Device's Active bit is set, but a higher priority interrupt has

occurred which is now executing on the ICS.

The interrupt response time is defined to be the maximum time that may elapse between
setting of the active state of an interrupt and the start of the execution of the first
instruction of the interrupt routine for the highest priority unmasked interrupt. This

response time is approximately 30 microseconds.

13/14






SECTION 3

I0P BUS DEFINITION

3.1 INTRODUCTION
IOP bus consists of 52 signals. These signals, by function, can be divided into four
groups:

(a) Request-Response group: which consists of the signals that are raised to
request transfer of information, or as a response to such request.

These signals are SREQ, SI, SO, DPOLL, IREQ, IPOLL, IACK.

(b)  Control group: These are the signals that control the type and the
direction of the transfer that must take place. Control group consists

of CMD OUT bus (0, 1, 2) and CMD IN bus (0, 1, 2).

(¢) Information group: These lines carry information between the IOP and
the device adaptors. Information group consists of TOP DATA bus
(0-15), /O ADDR bus (0-7), INT ADDR bus (0-7), XERR, PARITY,
INBOUND/OUTBOUND. |

(d) System Status group: These lines carry system power status to the

I/0 adaptors. Status lines consist of PFW, PON, IORST.

The following three sections describe the IOP bus signals.

3.2 I0P BUS, FUNCTIONAL DESCRIPTION

3.2.1 CMD OUT Bus

The CMD OUT (0, 1, 2) bus is a unidirectional bus that carries the I/O commands to
the I/0 adaptors. The I/O commands and their CMD OUT codes are as follows:

15



10 COMMAND CMD OUT CODE

SET INT 000
RESET INT 001
START 1/0 (SI1O) 010
SET MASK 011
CONTROL I/0 100
TEST 1/0 101
WRITE I/0 110
READ I/0O 111

CMD OUT bus must only be interpreted by a device controller if the following two

conditions are true:
(a) DEV ADDR bus (0-7) contains the address of 10 device.
(b) 'SO signal is asserted.

CMD OUT bus is activated by the IOP one clock time before the SO signal is asserted.
This is to allow the CMD OUT bus to stabilize, at the device adaptor end, before any
strobing takes place.

3.2.2 DEV ADDR Bus

This is an outbound bus that carries the device address of the device that must inter-
pret the I/O command, currently contained in the CMD OUT bus. DEV ADDR bus (0-7)
is activated by the IOP one clock time before the SO signal is asserted.

3.2.3 IOP DATA Bus

This is a bidirectional bus that carries the I/0 data, control, status, and I/O memory

address to or from the device adaptors as follows:

(2) During the outbound transfers IOP activates the I/0 bus one clock
time before the SO signals are asserted. This is to allow the IOP
DATA bus to stabilize before any strobing by the device adaptors

16



takes place. IOP DATA bus remains active for at least one clock

time after the SO is deactivated.

(b)  During the inbound transfers IOP expects to receive S1 signal as an
indication that the IOP DATA bus contains a message from the device
controller. Data must be gated on to the IOP DATA bus by the I/0O

adaptor no later than the time SI is asserted.

3.2.4 SERVICE OUT (SO)

The SERVICE OUT signal is outbound, and is used as follows:

(a) During the execution of direct commands, SO is used to indicate the
validity of the CMD OUT bus, DEV ADDR bus, and IOP DATA bus
(WIO, CIO only).

-~

(b)  During the outbound SIO transfers, SO is used to indicate the validity
of the IOP DATA bus.

(¢)  During the inbound SIO transfers, SO is used as the IOP request for
data. Device controller must respond by returning the inbound data

and asserting SI.

In all cases SO is responded to by SI.

3.2.5 SERVICE REQUEST (SREQ)

This line is asserted by the device adaptors to request transfer of a word of data to or
from memory. This line, once activated by a device adaptor, must be kept active until

DPOLL reaches that device adaptor.

3.2.6 DPOLL

This signal is the IOP's response to the SREQ; also it marks the beginning of the
transfer cycle. DPOLL line is ""daisy chained" among the device adaptors according

to their priority. The higher priority devices are closer to the IOP on DPOLL line,

17
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thus if two device adaptors request service simultaneously, the higher priority
multiplexed SIO card stops the Poll from reaching the lower priority multiplexed

SIO card. The adaptor that stops the poll must:
(2) Deactivate its SREQ
(b)  Assert SI in conjunction with CMD IN code (see section 3.2.7)

(c) Gate the Memory address onto the IOP DATA bus no later than when

SI is asserted.

IOP drops DPOLL on the same clock that it loads the Memory Address Buffer from
the IOP DATA bus.

3.2.7 CMD IN Bus

This bus is an inbound unidirectional bus that carries the transfer code to the IOP.
Transfer code indicates to the IOP the type of transfer that must be performed during

the current transfer cycle. Transfer codes are as follows:

TRANSFER CODE TYPE OF TRANSFER
012
100 Chain (DRTE fetch)
010 JMP
001 Memory Bound
000 Device Bound

CMD IN bus will be deactivated once the trailing edge of the DPOLL has reached
the multiplexed SIO card.

3.2.8 SERVICE IN (SI)

This signal is the device controllers and multiplexed SIO response to either DPOLL

or SO signals, as follows:

(a) As aresponse to DPOLL, SI is asserted by the I/0 adaptor to indi-

cate that CMD IN bus contains the transfer command code and



I0P DATA bus contains the memory address of the transfer. The
address will be loaded in Memory Address Buffer in the I0OP.

(b)  As a response to SO, SI is asserted by the I/0 adaptor either as
"data received' signal (during outbound transfers), or as an indi-
cator that IOP DATA bus contains the memory data (during inbound

transfers).

For the cases where SI must be used to strobe the I/0 bus to strobe the I/0 bus to
either the IOP Memory Address Register or Memory Data Register, SI is always
skewed by the IOP for 1/2 clock time (to allow the bus to stabilize) before it is
used to strobe the bus. SI must be deactivated when SO or DPOLL signals are
deactivated.

3.2.9 INTERRUPT REQUEST (IREQ)

This signal is used by the 10 device controller as a request for software program
interruption. IOP responds to the IREQ by asserting its IPOLL. The requesting

controller must deactivate its IREQ when it has received TPOLL.

3.2.10 INTERRUPT POLL (IPOLL)

This signal is initiated by the IOP as the response to IREQ. Its function is similar
to that of DPOLL line. The requesting device controller that is reached by the IPOLL

must respond as follows:

(a) If its IREQ is active, it must stop IPOLL propagation and assert IACK.
It must also gate its interrupt address onto the INT ADDR bus.

(b)y If it is in "interrupt active" state, it must assert its IACK and gate

0's onto the INT ADDR bus.

(c) If it is neither requesting nor active, it must let the IPOLL propagate.
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3.2.11 INTERRUPT ACKNOWLEDGE (IACK)

This signal is initiated by the device controllers as the response to IPOLL. It is
used by the IOP to strobe the interrupt address into the Interrupt Address Register.

3.2.12 INTERRUPT ADDRESS Bus

The INT ADDR bus (0-7) is inbound unidirectional bus that is used by the device
controllers to transfer the interrupt address of the currently requesting device to
the IOP. IOP uses the skewed (by 1/2 clock time) TACK to strobe the interrupt
address into the Interrupt Address Register. If interrupt address is zero when
IACK is active, this is an indication that TPOLL was stopped by a device adaptor that

has a currently active interrupt which is higher priority than the requesting device.

3.2.13 CLOCK

This line carries the system clock to the device controllers. System clock is a

symmetrical square wave.

3.2.14 POWER ON (PON)

This signal is sourced at the CPU power supply. It is the indication of the states of
the DC supplies in the system. Its level is above 3.5 volts as long as all the DC
supplies in the system remain above their threshold voltage, and drops to ground
level when any of the DC supplies reaches below their threshold voltage. (See

figure 7.)

3.2.15 POWER FAIL WARNING (PFW)

This line is normally high until 500 us before any of the DC supplies fail, at which
point it drops to ground level. (See figure 7.)
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3.2.16 I/O RESET

The IORST line is normally low, it goes up to true state when I/O RESET button is
depressed. (See figure 7.)

3.2.17 TRANSFER ERROR (XERR)

This signal is an outbound signal. It is asserted by the IOP when one of the following

error conditions has been detected in the current transfer:

(a) Ilegal Address. This error comes up when the IOP receives a memory
address that is higher than the highest address in the memory system.

IOP cancels the current transfer when this error is detected.

(b) Memory Address Parity Error. This error is detected by the

memory.
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(¢) Memory System Error. This error is detected by the memory.

The device controller that is currently engaged in data transfer must strobe XERR

with the trailing edge of SO signal.

3.2.18 DATA PARITY

This line carries odd parity for the IOP DATA bus (a) during the SIO address trans-
fer and (b) during the outbound SIO data transfer. Data Parity Line is true when the
IOP DATA bus is true.

3.2.19 OUTBOUND SIGNAL

The IOP will bring a data direction signal called OUTBND to P1-12 and P1-11.
These pins are spares and will not be carried along the bus. If at some future date
it is decided to extend the IOP bus and line drivers/buffers are needed then OUTBND

will be necessary to control the Data Bus buffer logic.

3.3 PHYSICAL DESCRIPTION

The IOP bus consists of a 50-wire ribbon cable that occupies the P3 connector posi-
tion of the I/0 backplane, and a portion of the 56-pin connector printed circuit cable
that serves also as the power distribution cable. Assignment of signals to the wires

is listed in Tables 1 and 2.

3.4 ELECTRICAL DESCRIPTION

1/0 bus lines, except for PON, are driven and received by HP 104B and HP 106B
respectively. The characteristics impedance of each line is approximately 90 ohms.,
Each line is terminated at two extreme ends with a terminating network. A discus-

sion of the terminating techniques follows.



Clock signal is available to the device controllers. It must be noted that IOP bus
is a true "handshake" bus, and the clock signal is not needed in interfacing to this
bus. Device controllers that usé the clock for their internal use must be prepared
to run at variable clock rate, since the clock cycle varies depending on whether
the system is running under internal clock or the external clock mode. Under
external clock mode there is no guaranteed minimum clock speed or maximum

clock period.
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Table 1

IOP BUS PIN ASSIGNMENTS,

CONNECTOR P3

IOP PIN

NUMBER

29
33
31
35
32
37
34
41
36
43
38
45
42
47
44
49
46
48
51
50
53
52
55
54

© 0 1 o U o W N M

[T R R N S N T T T o S o S e S o S Gy Gy e I
S I N I A . L I S =

I/0 SIGNAL

NAME

SPARE XERR
SPARE PARITY

SPARE GND
CMD OUT 0
CMD OUT 1
CMD OUT 2

DEV ADDR 0
DEV ADDR 1
DEV ADDR 2
DEV ADDR 3

DEV ADDR 4
DEV ADDR 5
DEV ADDR 6

DEV ADDR 7

‘CMD IN 0
CMD IN 1
CMD IN 2
GND
DATA 0
DATA 1
DATA 2
DATA 3
DATA 4
DATA 5
DATA 6

IOP PIN

NUMBER

57
56
59
58
61
62
63
64
65

67
66
69
68
71
70
73
72

74
75
76
77

79

I/0 SIGNAL

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

NAME

DATA 7
DATA 8
DATA 9
DATA 10
DATA 11

DATA 12
DATA 13
DATA 14
DATA 15
GND

INT ADDR 0
INT ADDR 1
INT ADDR 2
INT ADDR 3
INT ADDR 4
INT ADDR 5
INT ADDR 6
INT ADDR 7

GND
INT REQ 1

INT REQ 2
INT REQ 3
INT REQ 4

GND

INT ACK
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Table 2

56 PIN POWER BUS (PC BACKPLANE)

PIN

IOP PIN

55
53
51
49
47
45
43
41
39
37
35
33
31
29
27
25
23
21
19
17
15
13
11

L o 3 ©

20

18

16
14

SIGNAL
NAME
POLL GND

So

POLL GND
SI SIG
POLL GND
SREQ
POLL GND

+20
+20

-20
~20
GND

-15

+15

+15

GND

-5

GND
CLK GND
SPARE
PON
SPARE
PF WARNING
+5

SIGNAL
NAME
DPOLL IN
SO GND
DPOLL OUT
‘ST GND
INT POLL
SREQ GND
INT POLL OUT

+20
+20

-20
-20
GND
-15
-15
+15
+15
GND

GND
CLK
SPARE
IORST
SPARE
SPARE
+5

IOP PIN

PIN

19

17

15
13

56
54
52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4/2
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SECTION 4

I/0 TERMINATING TECHNIQUES

Some preliminary tests have been completed on the IOP bus and the SIO bus. To
minimize crosstalk and settling time, the following recommendations for bus ter-

minations are made.

4.1 PROTECTED CIRCUITS

The accepted method of using 50-conductor flat cable, 3M #3365, is to have each

circuit protected with an adjacent ground return lead. The so-called protected

circuits are found on edge sensitive signals such as CHAN SO, CLOCK, REQ, etc.
They are all unidirectional, either originating at IOP or SIO and driving the bus,

or wired-or at each device controller and terminating at the IOP or SIO board.

When properly terminated with 100 ohms the pulse fidelity is excellent. When
mismatched with a 200-ohm termination, the negative going edge will ring, creating
a +0.3v noise oscillation peak after 50 ns. A Schottky diode to ground (as will be
found in the 106A/B receivers when they are installed) effectively clamps the

oscillation. The positive edge ringing is not troublesome.
The recommended termination is thus a 200-ohm resistor to +3.6v. See figure 10.

For signals originating at the IOP or SIO board, the terminating network will be built
on the Terminator Board at the end of the backplane. For the wired-or signals, the

terminator will be on the IOP or SIO board itself.

4.2 UNPROTECTED CIRCUITS

Many of the bus signals are unprotected, notably the 16 data leads, DEV ADDR, INT
ADDR, etc. These do not have ground returns between the signal leads. Also, some

are bi-directional and at times all transmitters may be disabled.
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Figure 10. Terminations for Protected Lines

Due to inductive coupling between the leads, it was found that almost any current in
the circuit caused crosstalk. The worst case being where all signals were changing

in the same direction.

The standard 200-ohm terminator is not suitable for unprotected circuits. Cross-

talk lasting over 500 ns was observed.

HP 104 drivers or TTL gates are not suitable as bus receivers. The TTL drive
current per input caused 1/2v of crosstalk in the I/O simulator with only a single
device controller plugged in. The total crosstalk causing drive current in this

example being 8 ma.

The minimum possible current in the circuit is that required by the 106 receivers
when the line is in the high state and the 104 drivers in the disabled state. The

106 receiver drive is 100 pa and the driver leakage is 40 pa.

Tests have been run with 3 ma of drive current representing 30 HP 106 receivers on
the line. The ribbon cable length was 6 feet. Crosstalk was 0.1 to 0.2 volt, close
to the measurement limit. The signals were entirely satisfactory, settling in less

than 30 ns. The recommended terminator is shown in figure 11.

The negative going overshoot is caught by the Schottky diode input of the 106

receivers, the positive overshoot is caught by the diode on the terminator board.

Note that the state of the line is undefined when all transmitters are disabled.
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Figure 11. Terminations for Unprotected Lines

4.3 UNPROTECTED EDGE-SENSITIVE CIRCUITS

A third class of signals is found on both the IOP bus and the SIO bus. These are
handshake type edge-sensitive signals that are not protected by adjacent grounds.
Examples are DEV END, ENABLE, RD NEXT WD, etc.

These signals are wired-or with pull-up resistors to Vecc. It is not possible to use
3-state gates and eliminate the pull-ups since the state of the line must be defined

at all times. We are thus forced to live with the crosstalk.

Two factors save us:
(a) In general, only one line is asserted at a time.

(b)  The high state (the 0 state) can be defined to be +3.6v, this affording

us an additional 1.2v of noise margin.

The recommended receiver is thus the same as that shown in part 1, above (200 ohms
to 3.6v). Tests over the 6-foot ribbon cable have shown a noise pulse of 0.7v (3.6v

to 2.9v) when one of the lines is asserted.

Note
The drivers must be well bypassed. A 0.1 MFD capacitor by each

104 DIO is recommended.
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SECTION 5
INTERFACE CONSIDERATIONS FOR DEVICE CONTROLLERS

Most device controllers communicate with the ALPHA via the bus logic and I0P
bus. Each device controller is an individual case and to try to describe each device
controller would be prohibitive. Some device controllers will have command
registers, some will not. Some device controllers will have a status register;
some will not. Some will have data registers; others will rely on the data register

within the device themselves.

There are two sets of strobes emanating from the bus logic interface. These are
the DIRECT strobes (generated by direct I/0 instructions) and the PROGRAMMED
strobes (generated by I/0 orders within an I/0 program). There are four strobes

in each group:

Data In

Data Out
Status In
Command Out

These devices which utilize the direct I/O commands only will use only the direct
strobes. Those devices which may execute I/0 programs (SIO type) may use both

sets of strobes.

The SIO type device can 'or' the strobes of the same type (i.e., the direct Status In
and the Programmed Status In may be ORed together to produce a single status
strobe). Or the strobes may be kept separate. For example, a device controller
may have two 16-bit status registers, one which is read by the I/O program and

the other which is read by the CPU by a TIO command,

Some devices perform only one simple operation. When they receive a data word

they perform some operation on it (e.g., a D to A converter). For such devices,
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a command register would be unnecessary. However, most devices will require a
command from the ALPHA to tell them what to do. Figure 12 depicts the command

register and the associated gating.

The command strobe (which may be the logical OR of the direct and programmed
strobes) clocks the 16-bit command register consisting of four quad latches or
equivalent, The 16 data-out lines contain the command during the time the com-
mand strobe is asserted (remember data-out lines are plus-true). The command
strobe is shown going to the device controller in figure 12, The device controller

may set a flip-flop, or perform some other operation when the command strobe
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Figure 12, Command Register Gating
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is generated. That is the command strobe not only strobes the command into the
command register, but is also may signal the device controller that a command

has been generated.

Commands may be used to establish initial conditions in a device controller, to set

the device controller into a particular mode, to tell it whether to read or write, etc.

The status register is used to convey to the program the status of the device ‘and/ or
device controller. Figure 13 depicts the status register and its associated gating.
The Status Strobe gates the contents of the status register onto the data-in lines.
Since some of the status lines from a device are static in nature, these need not be
stored in a flip~flop register. They may simply be gated onto the data-in lines.

An example of such a status line is shown in figure 13.

The status register may contain any information which may be informative to the
program. Such information may include reason for error interrupt, current mode

of the device, file protected, card jammed, on-line/off-line, etc.

Data registers may reside either in the device controller or in the device itself,

depending on the specific device involved.

The gating is similar to the gating shown in figures 12 and 13 for commands and
status. Again the Data-in and Data-out strobes may be used by the device con-

troller as "proceed' signals.

Of course it is up to the device controller to assure that data is valid before it
requests service from the ALPHA to input the data word. Or the device controller

must take the data from the ALPHA before requesting another word.

5.1 INTERRUPT INTERFACING

The interface to the Interrupt Logic portion of the bus logic interface is extremely
simple., Figure 14 shows this interface. The four lines from the SIO Interface are
SET INT, RESET INT, DEV INT and INT ACTIVE. The device controller designer
MUST connect these three lines as shown in figure 14. These lines are connected

to the direct set, direct reset anda terminals respectively of either a D/flip-flop
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Figure 13. Status Register Gating
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or a J-K/flip-flop. The device controller may set the flip-flop only by the edge
sensitive clock input of the flip-flop (and of course, the D or J-K terminals). No
attempt should be made to direct set the flip~flop because the RESET INT signal

may occur while the active LOW SET is asserted.
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The interrupt circuitry is independent of the data transferring circuitry of the Inter-
face. Hence, setting the interrupt flip-flop does not terminate or in any other way

affect the execution of the I/0 program.

The SET INTerrupt line allows for a programmed interrupt or a CPU generated
interrupt. The RESET INTerrupt line resets the device's interrupt flip-flop at the

time the interrupt route is exiting.

INT ACTIVE is asserted for the duration of the interrupt processing, i.e., from
IPOLL to RESET INT. The device controller Interrupt FF is reset when the IPOLL

is received by the requesting device controller.

5.2 I/0 BUS LOGIC

To help the device controller designer interface with the IOP Bus and the multiplexed

SIO card or Selector Channel, three versions of bus logic are provided:
() Direct CPU Commands only
(b)y  Multiplexed SIO
(c)  Multiplexed SIO or Selector Channel

Both (b) and (c¢) provide the direct CPU capability.

The functions of the bus logic are listed below:

1. Decode direct CPU commands to provide the direct strobes, respond-

ing to SO by returningS_I.

2. Initiate the CPU external interrupt by asserting IREQ to the IOP, and
provide the handshaking required to transfer the device number to the

IOP in response to IPOLL.

3. Generate a REQ to start an I/O program to the multiplexed SIO card

or Selector Channel in response to the direct CPU command SIO.

4., Buffer the Programmed Strobes generated by the multiplexed SIO

or Selector Channel in response to an executing I/O program.



In most cases the interfacing signals are ground true when asserted. The data
buses (DATA IN bus and DATA OUT bus) can be defined by the device controller
designer remembering that the data bus in the IOP bus is ground true. The invert-
ing and non-inverting drivers and receivers can be used to provide either sense for
the interface to IOP bus, thus providing maximum versatility for the designer. The
signal XFER ERROR is positive true from the bus logic interface. The CLK XFER

ERROR signal is also positive true from the bus logic interface.

In the discussion "asserted", '"true" and "active' will all mean a ground true signal

unless otherwise noted.

The signals are all TTL type signals.

5.2.1 Master Reset

This signal is generated from the IOP bus signal IORST. It is ground true and can
be used by the device controller to reset any of its various states. The bus logic

resets with the signal Master Reset to an idle condition.

5.2.2 Direct Strobes

These are READ, WRITE, STATUS, CMD. These lines are asserted when a RIO,
WIO, TIO or CIO instruction is executed by the ALPHA. The direct strobe will
remain true until the device controller acknowledges by asserting the ACK line.

The DATA IN and the STATUS strobes should gate the contents of the data in regis-
ter and the status register respectively onto the DATA IN bus., The DATA OUT and
CMD strobes should strobe the DATA OUT bus into the data out register and the com-

mand register respectively. Either edge or active low may be used.

5.2.3 SERV RQ

This line should be asserted by the device controller when a) it has completed

the execution of the last programmed Command issued, b) when it has data ready to
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be transferred to memory (the data should already be in the device controller's
data in register), c) when it wants a word from memory, or d) when the IN XFER
or OUT XFER has gone false (word count has gone to zero) and the device is ready
for the next order, e) following the first word of programmed control information.
The SERV RQ line is used only for SIO type devices. The I/O program will not con-
tinue following execution of a Control, Read or Write order until the SERV RQ is

asserted.

The SERV RQ must be held true by the device controller until the SIO Interface
asserts the SR ACK line. SERV RQ must not be asserted again until SR ACK goes

false. See Selector Channel discussion for the specifics when connected to the channel.

5.2.4 SR ACK

This line is the multiplexed SIO response to SERV RQ. SERV RQ must be held true
until SR ACK is asserted, and must not become true again until SR ACK goes false.

The Selector Channel does not generate SR ACK.

5.2.5 DEV END

This line is asserted by the device controller only when an I/O programmed Read or
Write is being executed by the controller. This line terminates the block transfer.
The DEV END should be used by devices which read variable length records (paper
tape, magnetic tape, for example) or by devices which terminate a write operation
before the word count has gone to zero. This line should be asserted before the
device controller would normally assert the SERV RQ; SERV RQ need not be asserted
by the device controller but there is no harm in doing so. DEV END must be held
true by the device controller until the SIO Interface asserts SR ACK.

5.2.6 OUT XFER and IN XFER

One of these lines will be asserted by the bus logic interface when a block transfer is
to take place (SIO type device only). It will remain true until the word count has gone

to zero in the WC register AND the last word has been transferred. This line will



remain true during data-chaining. The data-chaining will not be apparent to the de-
vice controller. Needless to say, OUT XFER will be true for a Write order and IN
XFER will be true for a Read order.

5.2.7 SET JMP CONDX and JUMP

During an I/O program a conditional jump may be encountered. When this occurs a
pulse will be generated by the SIO Interface on the SET JMP CONDX line. The device
controller should use this line to clock a flip—flop which should set if a jump condition
is met and reset if not. The Q of this flip-flop should be sent to the bus logic on the
JUMP MET line.

The question is: what determines whether a jump condition is met or not? This is
up to the device controller designer. For example, a special command might contain
a mask which will determine which condition(s) will cause a jump. For instance the
mask could enable or disable a jump on parity error, jump on hopper empty, jump

on end of tape, jump on file mark, jump on track not found, etc.

5.2.8 ACK

There are actually four ACK lines, but they are logically ORed in the bus logic. The
ACK must be the immediate response to any of the strobes, direct or programmed.
Where the device controller has all of the data, status and command registers locally
the strobes may merely be turned around and sent back as ACK signals. Since the
entire I/0 system will be hung-up waiting for the ACK, it is imperative that the ACK

not be delayed any more than necessary.

5.2.9 DATA OUT Bus

This 16-line bus provides the command and data out path for both direct and pro-
grammed data transfers. It contains valid data only when appropriate strobes are
asserted., Since this bus is shared by all device controllers its state cannot be

predicted or guaranteed except during strobe time.
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The DATA OUT bus may be used to drive D flip-flops or latches (D or L terminals

respectively) or may be gated to set-reset flip-flops.

5.2.10 Programmed Strobes

These are DATA IN, DATA OUT, STATUS, CMD, PCMDIL. These lines are asserted
respectively when the device is executing an I/0 programmed Read order, Write
order, Sense order or Control order. The strobe will remain true until the device
controller acknowledges by asserting the ACK line. The DATA IN and STATUS
strobes should gate the contents of the data in register and status register respec-
tively onto the DATA IN bus. The DATA OUT and CMD strobes should strobe the
DATA OUT bus into the data out register and command registers respectively.

Data is not valid at the leading edges of Write and CMD when strobes are generated

in the Selector Channel.

The direct strobes and the programmed strobes may be ORed or remain separate,

depending on the particular device controller.

5.2.11 DATA IN Bus

This 16-line bus provides the status and data in path for both direct and programmed
data transfers. Data should be gated onto this bus only when the appropriate strobes

are asserted.

5.2.12 Clear Interface

The CL INTFC line should be pulsed by the device controller when it aborts an I/0
program, This would be the case when, for example, an error occurring during

execution of an I/0 program is catastrophic enough to warrant abortion of the pro-
gram and a CPU interrupt to be generated., This signal should not be confused with
DEV END which merely terminates a Read order or Write order, but continues the

I/O program. This line will be asserted in response to a XFER ERROR signal.



5.2.13 SIO OK

This signal, when asserted, means the SIO interface is in the idle state. It must be
returned to the SIO Interface as status bit 0. The device controller may logically
AND this signal with its own ""device ready' type of signal, and then return it as
status bit 0. In this way the ALPHA is guaranteed not to execute an SIO instruction
unless both the SIO Interface and the device are ready. Similarly, bit 1 of the
status word must be used by all device controllers to indicate that either a WIO or

RIO shall be permitted. The SIO OK signal need only be used for SIO type devices.

5.2.14 Power On Pulses

These are discussed previously in the IOP bus definition.

5.2.15 Read Next Word

The RD NEXT WD line is asserted by the SIO Interface only during a programmed
Read order. It tells the device controller to fetch another word from the device.
This line should be useful for such devices as card readers and paper tape readers.

This signal will occur simultaneously with the programmed DATA IN Strobe.

Note

During data transfers to and from memory an error condition may
arise due to:

Illegal Address

Memory Address Parity

Data Parity
If this happens during an SIO program it may be necessary to return
the error condition to the CPU as a part of the status word. The signal
XFER ERROR will be asserted (pulled low) if an error has been detected
during Data time. It may be necessary to store the information in a
flip—flop, return the information as part of the STATUS WORD and then
clear the flip-flop. See figure 15.
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Transfer Error Logic

The trailing edge of Service OUT must be used to CLOCK the XFER

ERROR line. A device controller must respond to a true error con-

dition by:

1) Asserting Clear Interface and terminating the I/0

program

2) Generate Interrupt

3) Set status bit to indicate that the condition has occurred.

The bus logic provides a clock signal to be used for clocking the XFER
ERROR line. This line is called CLK XFER ERROR and it is positive

true.



See the Multiplexed SIO and Selector Channel discussions for more
specific information and timing considerations for the signals and

strobes discussed here briefly.
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SECTION 6

ALPHA INTERRUPT SYSTEM

This section provides the device controller designer with some insight as to the
response of the Interrupt Request generated by the bus logic made by the Alpha

interrupt processing system firmware.

6.1 INTRODUCTION

The Alpha interrupt processing system is a combination of hardware and firmware
used to control the transition to and from software modules needed to process I/0O
demands and various internal CPU events, The hardware is used to sense the need
for an interrupt and inform the firmware of what action to take, while the firmware
actually does all the processing necessary to transfer to and from an interrupt

segment.

Interrupts may be separated into two distinct types, internal and external, and each

is handled in a different manner.

6.2 INTERRUPT STACK

All the software interrupt modules whose segment number is less than 8, use the

Interrupt Control Stack (ICS) for processing interrupts. Thus, the firmware not only

changes the program segment, but also the stack area. The ICS and associated

pointers are shown in figure 16. QI and ZI are pointers which locate the bottom and
top limits of the stack. The bottom of the stack is capped off with a dispatcher stack
marker put there at cold load time and retained permanently. It has special signifi-

cance which will be shown later.
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6.3 INTERRUPT PROCESSING

Interrupt processing may be separated into two types, external and internal. External
types will be discussed first. Figure 17 shows the overall flow diagram of the inter-

rupt processor.

During a currently executing instruction the CPU hardware detects the need for an
external interrupt via the IOP. At the end of the instruction, microcode control is
transferred by hardware to microcode location 2 in ROM. This starts the interrupt
processor. From here, everything is handled by microcode. Looking into the run
state interrupt register (CPX1), microcode determines that this is an external inter-
rupt and stores a 0 for segment number in one scratch register, and the device ad-
dress from the IOP interrupt address register into another scratch register. Then
control is passed to a microcode program used by all interrupts who need to transfer

to the interrupt control stack. (Segment Number < 8).

A standard four word stack marker is pushed onto the stack, followed by the current
value of the DB register. (DB will change). The CPU knows if it is on the interrupt
stack through the use of a hardware flag (ISF). If ISF = 0, then control is transferred
to the interrupt stack, while ISF =1 bypasses the transfer to maintain the stack integ-
rity. This flag is reset by the SETR instruction when Z is set to a value other than
ZI (as when control is passed from the ICS back to the users stack), To transfer to
the interrupt stack from a user stack, Q is set to QI, Z is set to ZI, the current
value of the user's S is saved at QI - 5, and S is set to QI + 1 (to preserve the dis-
patcher marker). The ISF is set to 1, and the dispatcher flag (DF) is set to 0.

Then, the interrupt parameter, which is the device address, is pushed onto the stack.
Now that the stack transfer has been completed, the remaining task is to set up the
program environment and, because this is an external interrupt, the DB register.
The program limits are set to the memory extremes, PB <0, PL + 216 -1,

Status is set to 140000, meaning privileged mode and interrupts enabled. The P

register is set to PBI and DB is set to DBI from the device reference table in lower

memory. This completes the program transfer.
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After completion of the external interrupt routine, it returns to the operating system
environment via the EXIT instruction. In the case of an external interrupt, the EXIT
microcode will reset the active interrupt state of the device whose device number is
located at Q + 2 (this device number is the parameter put at Q + 2 during the interrupt
transfer), which means that the I/0 interrupt program must retain the contents of
location Q + 2 during execution. If the device cannot be reset, the computer will halt.
After resetting the device, EXIT will look to see if any lower priority devices are
waiting to interrupt. If there are, then EXIT will go to the interrupt processor and
set up the desired interrupt routine. This saves doing a full EXIT followed by another
full interrupt process. If no other interrupts are pending, EXIT will complete as a

normal exit.

Internal interrupts are essentially handled as a PCAL instruction except that segments
one through seven transfer to the interrupt stack and push DB, and that most interrupts
pass a parameter on the top of the stack. An EXIT from an interrupt is like any nor-

mal exit,

6.4 THE DISPATCHER

The last segment to run on the ICS exit to a software segment is known as a dispatcher.
This segment determines what has happened since it was last run, and what environ-
mental changes need to be performed at this point, such as allocation of system re-

sources, swapping of programs on and off the disk, and start up of programs.

The exit microcode is made aware of an exit to the dispatcher by the fact that the
stack marker A @ is zero. It sets a hardware dispatcher flag to keep track of the
fact that the dispatcher is executing., This flag is reset in the same manner as the
interrupt stack flag. If the dispatcher is interrupted by an external interrupt, the
dispatcher program is aborted by handling the interrupt as if it happened on the users

stack, except that the current value of S is not saved.

The I/0 interrupt program can make the dispatcher aware that it has serviced an

interrupt by setting the IRF bit in its DRT table with the SIRF instruction.
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SECTION 7

MULTIPLEXED SIO LOGIC

Figure 18 is a block diagram of the SIO card. It can be viewed as three separate
machines working in parallel. The first machine, or portion of the logic, executes
the SIO programs. This requires the unloading from and storing into the RAMs, in-
crementing the order and address registers, determining the next state, and generat-

ing control signals to the device controllers.

The second portion of logic is the parity control logic. It checks parity on each
transfer to the SIO card, transmits odd parity with each address sent to the IOP,
checks each output from the state RAM, and will generate an XFER ERROR signal
to the device controller whenever it detects an error. This logic is intended to

prevent SIO programs from executing outside their actual program area.

The third portion of logic included in the SIO design is the diagnostic controller.

This logic is not indicated in figure 18, but is included as part of the control logic.
It will allow all but the parity RAM to be loaded individually, and each of the RAMs
and registers to be read separately. The address and order registers can be incre-
mented with or without first being loaded from their respective RAMs. In addition,
the next state function of the SIO control logic can be tested by first loading the order
and state RAMs and then performing successive reads from the state RAM. These
diagnostic features have been included to allow nearly complete verification of the

operation of the Multiplexed SIO card by the CPU when in a bottom-up mode.

The following sections will cover each of the three sections discussed above in some-

what more detail.
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7.1 SIO PROGRAM CONTROL LOGIC
The SIO Control Logic has the capability of executing 8 I/O orders:

Read
Write

Control

Sense

Return Residue

Interrupt

Jump

0w =3 O O = w N

End, with optional interrupt

The word format for each of these orders is given in figure 19. In every case, the
first word of each order is stored in the order RAM, while the second word, if
needed, is stored in the address RAM. Only the JUMP address or the starting ad-
dress of the data block of a READ or WRITE is ever actually fetched and stored into
the address RAM. The second word of a CONTROL order is always fetched, but is
gated to the appropriate device controller to be used as control information and is
not loaded into the address RAM. The second word of the INTERRUPT order is

always fetched, but is disregarded.

The second word of the SENSE, RETURN RESIDUE, and END orders is used for
storage of information from the I/0O system. In the case of the SENSE and END
orders this second word will be loaded with status information sent from the device
controller, while the RETURN RESIDUE order will cause the contents of the SIO
card's order RAM to be stored.

As mentioned earlier the SIO card time division multiplexes the execution of up to
16 I/0 programs. During each time slice an address is sent to memory, which is

then followed by data to or from that address.

All transfers on the I/0 bus are asynchronous and are controlled by a handshake.

Initiation of each address-data transfer is done by the device controller by generating

95



56

DC

READ or

WRITE WORD COUNT

STARTING ADDRESS OF DATA BLOCK

CONTROL ' 12 CONTROL BITS

16 CONTROL BITS

SENSE or |
RETURN RESIDUE|

CELL FOR STATUS or RESIDUE STORAGE

END INT

CELL FOR STATUS STORAGE

BIT 4

JUMP COND

4 e me = et

INTERRUPT
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a service request to the SIO logic. If the SIO logic receives any service requests
it will, in turn, request service from the IOP. The IOP then responds with a data
poll, which is daisy-chained from one SIO card to the next. The highest priority
SIO requesting service will stop the poll and proceed through an address transfer

sequence.
An address transfer sequence consists of 3 major segments:
1. Securing a valid RAM address
2, Unloading RAMs and generating a select code to the device controllers

3. Returning an address and command to the IOP with the response to

the data poll (Service In)

A detailed description of the address transfer sequence is given in Section 7.4 and the
associated timing diagrams can be found in Section 7.4.1. It will suffice to say here
that the actions to be taken by the IOP during the data transfer sequence are deter-
mined by a command sent to the IOP from the SIO logic during the entire address-

data transfer.

If the DRT entry is to be sent by the IOP to the SIO logic, the IOP will increment the

entry by 2 after it is transferred and then restore it in memory.

Should the command to the IOP be a JUMP, the IOP will increment the address sent

to it during the data transfer sequence by 2 and then store it into the DRT.

In both of the above cases the DRT entry to be affected is determined by transferring
the device number during the address transfer sequence. By placing the device num-~
ber on bits 6-13 of the IOP DATA bus the device number is mapped into the correct

DRT entry of four times the device number,

In the case of data infto memory from the I/0 devices, the IOP will merely transfer
the data it receives during the data transfer sequence to the memory address it

receives during the address transfer sequence.

Finally, data out, from the address received by the IOP during the address transfer

sequence, is sent to the I/0 device during the data transfer sequence.
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A detailed description of the data transfer sequence can be found in Section 7. 4.2,
with corresponding timing diagrams in Figures 22 through 30. The portion of the
data transfer sequence that is of concern here is the control signals sent by the

SIO logic to the selected controller during the transfer.

If the SIO logic is executing either a SENSE or END a Programmed Status Strobe
will cause the selected device to gate its status to the IOP DATA bus, and hence
to memory through the IOP.

Execution of a WRITE order will cause a Programmed Write Strobe to be issued to
the selected device controller. The controller uses the signal to strobe data into a
holding register from the IOP DATA bus. Transfer of the data to the device is then

under control of the device controller.

The READ order execution will proceed similar to the WRITE, but the Programmed
Read Strobe signal will gate data from the controller's holding register onto the IOP
DATA bus. At the same time the Programmed Read Strobe is issued another signal,
READ NEXT WORD, will be issued. This signal can be used by device controllers
to initiate the transfer of the next data word from the device to the controller. As

is apparent, the READ NEXT WORD signal will precede the Programmed Read
Strobe by one pulse. That is, one RD NEXT WD pulse will occur before the first
Programmed Read Strobe, and the last Programmed Read Strobe will not have an

accompanying RD NEXT WD signal.

The execution of the CONTROL order will generate 2 signals — Program Command 1
and Programmed Control Strobe. At the same time the SIO logic loads the CONTROL
order into the Order RAM, it will generate the Program Command 1 signal to the
selected device controller. This will inform the controller that the 12 least signifi-
cant bits on the IOP DATA bus — bits 4 through 15 — can be used as control information,

Programmed Control Strobe will be issued by the SIO card whenever it fetches the
second word of the CONTROL order, and, as explained earlier, the information on

the IOP DATA bus will be used by the selected controller as control information.



By creating the 2 control signals, device controllers can optionally use up to 28 bits
of the CONTROL order for control information., This will reduce the number of
CONTROL orders needed for complex device controllers such as the ISS moving
head disc controller. This, and other capabilities, will reduce the dedicated mem-

ory required for I/0 driver programs.

Execution of the INTERRUPT order will generate a SET INT signal to the device
controller, forcing its interrupt flip-flop to set. This can also be done during execu-

tion of the END order by setting bit 4 to a one in the order word.

Execution of the JUMP order will cause one signal to be sent to the device controller
and one response to be returned. At the time the SIO logic receives the jump ad-
dress from the IOP, it will send the SET JUMP signal to the selected device con-
troller. This signal will be used to clock the controller's Jump flip-flop. The
inputs to this flip-flop are determined solely by the controller designer, but their
function is to permit conditional jumps in I/0O programs. This is accomplished by
having the SIO logic examine the Jump flip-flop's output when it normally requests
the DRT entry from the IOP. A conditional Jump order, with a set Jump flip-flop at
the device controller, will cause the jump address to be transferred to.the IOP. A
conditional jump order and a reset Jump flip-flop will cause the SIO logic to issue
a regular request for the DRT contents. Thus, the I/O program can be cau’sed to
jump when certain conditions are met in the device controller hardwafe, or to con~-
'l
tinue executing sequentially if the conditions are not met. Additionally, an uncondi-

tional jump can be performed by setting a bit 4 of the JUMP order to zero. Tlhe SIO

logic will perform as described above for a successful conditional jump.

Finally, execution of the RETURN RESIDUE instruction does not generate any signals
to the device controller, but gates the SIO logic's ORDER RAM to the IOP via the
IOP DATA bus.

With the above information it now becomes possible to describe how the SIO logic
combines a series of address-data transfers together to perform the necessary

control functions to the device controllers.
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Each I/0 order follows a specified sequence of address-data transfers, first to be
fetched, and then executed. The processing of each order can be in one of four

states:
(a) Fetch the 1st word of the I/0O order
(b)y  Fetch or Store into the 2nd word of the I/O order
(¢)  Fetch or Store into the DRT

(d) If READ or WRITE, transfer data until the word count rolls over or
the device terminates the order with DEVice END

The next state to be entered by the SIO logic when it services a particular device is
kept in the state RAM. The state RAM is updated every time the SIO logic services
a device — its update is determined by the state just unloaded from the state RAM
and the particular order currently being processed. The state sequences vary for
each order, and are presented in figure 20. In figure 20, the circles correspond to
the states stored in the state RAM, while the transitions can be viewed as an address-
data transfer. The letters assigned tothe states correspond to the 4 state descrip-
tions given above. A complete flowchart detailing all the actions taken by the SIO

Program Control Logic is given in Figures 31 through 40.

The SIO logic operates identically on all orders in state A by loading the data it
receives from the IOP into its order RAM, loading state B into its state RAM, and
restoring the incremented address it unloaded from the address RAM.

In state B the logic examines the new order, determining what signals to issue and
what next state to load into the state RAM. As can be seen, for READ or WRITE
orders, the next state is state D, and for all other orders except END it is state C.
No next state is stored if the order is END. When information is stored into the
RAMS during the data transfer sequence, the IOP DATA bus will be loaded into the
address RAM, the order RAM will be loaded with its old contents, and the state
RAM will be loaded with the proper next state.



Read or Write

Control, Sense, Retorn
Residve, Jomp, Interropt

End

Figure 20.

SIO State Transitions
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The next state for state C is A. In state C, the SIO logic will always gate the device
number to the IOP during the address transfer sequence. All orders but JUMP will
cause the returning data to be loaded into the address RAM. An unconditional jump,
or a conditional jump with the device controller's Jump flip-flop set, will cause the
SIO logic to gate the address unloaded from the address RAM to the IOP. At the
same time, the address will be loaded back into the address RAM to be used later
as the address of the next order. If a conditional jump is not met —i.e., the device
controller's jump flip-flop is not set — the JUMP will proceed as all the other orders
by loading the data returned by the IOP into the address RAM.

In state C, in all cases, the order RAM will be loaded with its old contents and the
state RAM will be loaded with a next state of A.

The last of the four states, state D, is entered whenever data is to be transferred to
or from the device. The next state for state D is state D until the word count rolls
over or the device controller terminates the transfer. Both the address and the word
count are incremented for every data word transferred to or from the device. They
are restored into their respective RAMs and the next state of D is stored into the
state RAM. When the word count rolls over, the next state loaded into the state
RAM becomes C.

If the device controller terminates the READ or WRITE prematurely, the SIO logic
will receive a DEVice END. The receipt of the DEV END will force the SIO logic to
execute the functions normally done in state C, and will cause the next state loaded into

the state RAM to be state A.

This completes the description of the SIO Program Control Logic. To summarize,

it has been shown that the SIO logic executes I/O programs one address-data sequence
at a time, interleaving the transfers for various programs. The rate of execution

for a single program is dependent on its device controller's service priority relative

to all other device controllers running SIO programs at the same time.

Each address — data transfer is comprised of 2 main segments — an address transfer

to the IOP and a data transfer. During the address transfer sequence, the RAMs on



the SIO card are addressed and unloaded into registers, and in most cases the ad-
dress RAM contents are sent to the IOP. During the data transfer sequence, the
RAMs are reloaded, the source of data being either the registers or the IOP DATA
bus. Concurrent with these operations signals are sent to the device controller being

serviced.

Each address — data sequence completes one state in the execution of an order, with
the state transitions determined by the order being executed. This process continues
until the last transfer is completed, namely the device controller status transfer dur-

ing the execution of an END order.

The following sections will describe the other 2 portions of the SIO Card — the Parity
Control Logic and the Diagnostic Control Logic. They will detail the error detecting
capabilities of the SIO card and the hardware diagnostic provisions made so that the

SIO Program Control Logic can be tested under software control.

7.2 PARITY CONTROL LOGIC

A portion of the logic on the SIO card is used to monitor several parts of the SIO

Program Control Logic and the IOP DATA bus during execution of I/0 programs.

First, every transfer to the SIO card is checked for odd parity. Secondly, the
memory may detect 2 violations: bad parity or non-existent memory being addressed.
It would then generate a parity error signal back to the SIO logic. If the parity check
by the SIO Logic detects an error, or if the memory sends back a parity error signal,
the SIO Parity Control Logic will generate a XFER ERROR signal to the device con-

troller then being serviced.

This signal is to be clocked into the device controller's XFER ERROR flip-flop on the
trailing edge of Channel SO. When the flip-flop sets, the device controller should
terminate its I/O program by asserting its CLEAR Interface Logic signal, and then
generate an interrupt to the CPU. The XFER ERROR flip-flop should also be provided

as a status bit.
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The Parity Control Logic will also monitor the State RAM by checking for an even
number of bits coming from the RAM. Since only one of the four bits should ever
be set at a time, the check will catch a faulty RAM or Next State Logic. If this
error occurs, the Parity Logic will generate an interrupt of its own to the CPU.
This will help to isolate failures to one area of the I/O control chain should they

occur.

Every address transfer to the IOP must have an accompanying odd parity bit. Since
the parity generators require 90 nanoseconds, worst case, to generate parity, it is
generated in advance and stored in an auxiliary RAM. Refer to figure 18. The
generators are placed on the data input lines to the RAM and will generate, or check,

parity on the data present on that bus.

If the address RAMs are to be loaded from the register, the registers will be enabled
onto this bus beginning with the address transfer cycle. The address may be incre-
mented immediately following its transfer, so that correct parity will be generated in
the worst case, 140 nanoseconds after the trailing edge of the data poll. This parity
bit will be written into the auxiliary RAM with Service Out, which can be issued no
sooner than 160 nanoseconds after the data poll is removed. Thus sufficient time is
available to update the address and its parity before they are loaded back into the

RAMS.

When the address RAMs are loaded from the DATA BUS, the parity bit that is stored
is the bit sent by the IOP. This is due again to the long worst case time to generate
the parity locally. The generators will be used, however, and the parity they produce
is compared to the parity bit sent. If the 2 differ, an XFER ERROR will be issued to

the selected device controller to terminate its program.

Lastly, the parity bit is unloaded from the auxiliary RAM every time the RAMs are
accessed during an address transfer. Therefore, the parity bit for the address is
available simultaneously with the address, thus avoiding the problem of delaying

the parity for each address by the generation time.



7.3 DIAGNOSTIC CONTROL LOGIC

The SIO Diagnostic Control Logic has been included on the Multiplexed SIO card to
allow checkout of the SIO Program and Parity Control Logic. As indicated earlier
in this manual, the Diagnostic Logic will allow complete diagnostics for all but the

control signals to the device controllers.

The formats for the diagnostic command and status words are given in Figure 21,
along with the format of the information returned with the state RAM output. What

follows is a description of the functions of each of the bits in the three words.

The select number in the Control Word is used as the RAM address. Each number
corresponds to the same number service request line from the device controllers.
Thus, the portion of the RAMs used by a particular device controller can be ex-

amined by issuing a control word with that controller's select number,

Bits 4, 5, and 6 of the control word indicate which set of RAMs of the given select

number is to be operated upon. Only one of these 3 bits should be set at a time,

Bit 7, the Load bit, informs the Diagnostic Logic that the registers should be loaded
from the RAMs before the registers are gated to the IOP DATA bus during a READ.

When bit 8 is set, either the address register, or the order register will be incre-
mented after it is read. The register incremented is determined by which of the

two bits, the address bit or the order bit, has been set.

The sequence of events to perform a diagnostic operation is to issue a control word
followed by any number of READS or WRITES. Each RAM can be checked by writing
any bit pattern into it and then reading it back through the registers to the CPU.

The counting function of the registers can be checked by issuing the following se-

quence of commands from the CPU:
1. Control with the Load and Incr bits set
2, Write
3. Read

4, Control with the Load bit reset, and Incr bit set
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DIAGNOSTIC CONTROL WORD

SELECT # ADDR | ORDER { STATE | LOAD | INCR
0 3 4 5 6 7 .8

DIAGNOSTIC STATUS WORD

0 1 | ERROR SELECT #
0 1 2 3 6

DIAGNOSTIC STATE WORD

i ADDR |STATE
A B ] C 3 D l EOT PAR PAR

9 10 11 12 13 14 15
—

STATE RAM AUXILIARY RAM

Figure 21, SIO Diagnostic Word Formats
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Figure 22, Initiation of an SIO Program



Successive Reads should then increment the register, allowing the counting function

to be checked.

When the order register is incremented and rolls over, it will set the EOT FF. The
EOT FF will remain set until the state B is unloaded from the state RAM, and it

will be stored in the auxiliary RAM whenever a WRITE command is issued.

The diagnostic state word is used to verify 2 portions of the program Control Logic—

the next state function and the auxiliary RAM inputs.

Reading the STATE RAM will return the contents of the corresponding auxiliary RAM
address, and parity on the state read from the state RAM. Besides the EOT FF bit,
the auxiliary RAM stores the address parity bit and the data chaining bit of the order
register. This last bit is used by the SIO Program Control Logic and is not of con-
cern during diagnostic operation. During diagnostics, these 2 bits will also be
written into the auxiliary RAM with the EOT bit whenever a write command is issued.
It should be noted that the address parity bit will only be correct during diagnostics

when the address RAM is loaded from the address register.

This occurs because data sent from the CPU does not have parity, but whenever the
address RAM is loaded from the DATA BUS, the parity bit is loaded from the parity

line.
To check the next state logic the following command sequence should be followed:
1. Control with order bit set
2. Write of the desired order
3. Control with state bit set and order bit reset
4, Read of the state
5.  Write of desired starting state

If the above sequence is followed by successive Reads and Writes of the state RAM,
the next state function for the order set in the order RAM can be verified. Each
write to the state RAM must be with 0 for data. The data then written will be deter-

mined by the next state logic and can be read with the succeeding Read State Command.
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If the last address in the State RAM is known, the address parity circuit can be
checked when the state word is read back to the computer by checking the address

parity bit of the state word.

By setting the EOT FF as explained earlier, the next state function for a READ or
WRITE order can be fully checked. In both cases, the State RAM should be set to
state D. the data transfer state, since the EOT FF must be set to exit state D. The
set EOT FF can be verified by checking the EOT bit in the state word when it is read
into the CPU.

The diagnostic state word, then, contains the information needed to check the parity

generation logic and the next state function of the Program Control Logic.

The status word of the SIO card has 7 valid bits. Bit 0, the SIO permit bit, is always
false, while the READ-WRITE permit bit, bit 1, is always true. Bits 3-6 contain the
select number of the device controller last serviced by the SIO card, and bit 2 will be

set if the state RAM parity for that select number was found to be in error,

In summary, the Diagnostic Control Logic permits verification of the RAMS, the
counters, all data paths, the next state function of the Program Control Logic, and
much of the Parity Control Logic in a stand alone mode. If all of the above is deemed
operable by the diagnostic program, the remaining logic can be verified as operable
by issuing an SIO program to a selected device controller and then examining the

results of that program for any errors.
7.4 TRANSFER SEQUENCES

7.4.1 Address Transfer Sequence

Refer to figure 18 for the following discussion. Each of the 16 device controllers
controlled by the SIO card has a separate service request line. Every Service Request
generated by the device controller is acknowledged by the ACK SR line. This signal
will reset the controller's service request flip-flop when the request is honored by

the SIO card. The signal is issued 1-1/2 clocks after the SIO card receives the data

poll and it will last approximately 80 ns.



Service Requests from the device controller are required:
1. For every transfer during a READ or WRITE
2, To continue program execution after a READ or WRITE

3. To continue program execution after each of the 2 command transfers

of a CONTROL order.

Since the above cases are the only times service requests are required from the
device controller, they are the only times ACK SR will be issued. Thus asynchronous
setting of service requests is possible, as the requests will not be acknowledged until

they are actually needed by the SIO logic.

The state of the Service Request lines is latched up during each positive half of the
system clock cycle and during the entire duration of an SIO address — data transfer.
If a data poll is received by the SIO logic during the positive half of the cycle, the
Service Request latches will remain latched for the entire SIO transfer, otherwise the
latches are freed to pass a new state of the service request lines onto the priority

encoders during the second half of the clock cycle.

The priority encoders are used to generate a 4 bit RAM address and a device select
code from the highest priority service request present at their inputs, when the SIO
card is not in the diagnostic mode. During the running of diagnostics the priority
encoders are disabled and the RAM address is obtained from latches loaded under

CPU control.

Under normal operation, if a data poll is received during the positive half of the clock,
the select code determined by the encoders is returned to the device controllers, along

with a strobe line called Channel Service Out.

The first falling clock edge after receipt of the poll will start the loading of the regis-
ters from the RAMs. The load signal will last for one full clock cycle, terminating
on the next falling edge. Worst case delays indicate that valid data will appear at the
register outputs no later than 80 nanoseconds after the load pulse begins. Thus the
control logic will have valid information from the RAM's one clock cycle after a poll

is issued.
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At the same time the RAMs are being unloaded the select code is sent to the device
controllers. That device controller with the select code sent by the SIO card will
enable 16 SIO command and response lines., If the device controller is executing a
read or write order and terminates the transfer prematurely, it will issue a DEV
END signal to the SIO logic upon receipt of its select code from the SIO logic. Worst
case gate and transmission delays indicate the DEV END signal will reach the SIO
logic about 80 nanoseconds after the select code is issued by the SIO card. Thus

the DEV END signal and valid information from the RAMs will reach the SIO control

logic simultaneously, in the worst case, one clock cycle after a data poll is issued.

If a DEV END was issued or the SIO logic determines it has finished the last I/0
order, it will issue the control signal DEV # to DATA BUS, which will place the
selected device controller's device number onto the IOP DATA bus. At the same
time the SIO logic will generate the handshake response to the data poll, Service

In. In a worst case situation, the SI signal will be returned after one clock cycle
from the issuance of the data poll, while gate and transmission delays will delay

the strobing of the device number onto the data bus for an additional 80 nanoseconds,
or 1/2 clock cycle. This gives a worst case data bus settling time of 80 nano-

seconds before the IOP strobes the data into its address register.

If a DEV END is not issued and the SIO logic is executing an order, it will gate its
address register onto the data bus at the same time it generates SI, or one clock
after the data poll was issued. This affords a data settling time of 160 nanoseconds

for all Address Transfers from the SIO card.

In either of the above cases, the SIO logic will return a CMD IN Signal to the IOP
with the SI. The four commands to the IOP are:

1. DRT transfer
2, Jump in progress
3. Transfer to memory

4. Transfer from memory



In actuality three signal lines are sent to the I0P, one for each of the first three
commands. The fourth command, transfer from memory, is assumed if none of

the other three signals is asserted.

When the IOP receives the SI and CMD IN signals it will strobe the data bus into its
address register on the next rising system clock edge, providing the SI was received
during the previous high portion of the clock cycle. This will provide a minimum of

80 nanoseconds deskewing on data received by the IOP from the device controllers.

When the data is strobed by the IOP the data poll is removed. This will cause the
SI and IOP DATA bus signals to be terminated, completing the address transfer

sequence.

Two points should be noted. First the CMD IN to the IOP remains valid until the
data transfer sequence is completed. Secondly, the timing as described above
dictates that every address transfer will be 2 system clock cycles, or 320 nano-

seconds, in duration.

7.4.2 Data Transfer Sequence

The Data Transfer Sequence is governed by the Service Out signal issued by the IOP.
If data is sent from the IOP, it will be present on the IOP DATA bus 1/2 clock cycle
before and after Service Out is issued. When data is sent to the IOP, Service Qut
will be will be used to gate information from the device controller, or SIO logic,
onto the IOP DATA bus. The IOP will allow at least 80 nanoseconds for the bus to
settle before strobing the data into its register on a rising clock edge. This settling
time is achieved in the IOP by latching the Service In line during the 2nd half of each
clock cycle. Thus, the Service In signal will be passed through the latch during the
positive 1/2 of the system clock cycle and must become true sometime during the
positive half of the cycle in order to strobe the register on the next rising edge. This
same mechanism for deskewing incoming data is used on the data poll-service in

handshake.
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Each service out sent by the IOP during I/0 program execution will be used in the
SIO control logic as the enabling signal for most of the SIO command strobes. The
Service In response to Service Out will be generated by the selected device controller

whenever one of the commands below is issued to it by the SIO logic.
1. Programmed Read Strobe
2. Programmed Write Strobe
3. Programmed Status Strobe
4, Program Command 1
5. Programmed Control Strobe
In all other cases the SIO logic itself will return the Service In to the IOP.

The Service Out signal will also be used to write information back into the RAM loca-
tion that was unloaded during the address transfer sequence. The source of the in-
formation for each set of RAMs is determined by the control logic. For the ADDRESS
and ORDER RAMs, the source is either the registers loaded from the RAMs or the
IOP DATA bus. The RAMs will invert data input to them and must be presented with
ground true data. Since the IOP DATA bus is ground true, it is gated to the RAM
inputs through non-inverting receivers. The data setup and hold times for the RAMs
can be met when loading from the IOP DATA bus since the data is valid on the bus

80 nanoseconds on either side of Service Out., When the RAMs are loaded from the
registers, the data is gated through an inverting chip, so that the RAMs are again
loaded with ground true information. Their outputs will then always present positive

true data.

The state RAMs can be loaded from 2 sources — the output of the next state logic or
bits 0-3 of the data bus. The second source is used only during diagnostic checkout

and is provided to set various states into the state RAM.

Several major actions occur in the SIO logic on the trailing edge of Service Out. The
4 bits of the order register containing the order are zeroed out, as is the state regis-

ter. This is done to prevent execution of erroneous information while the RAMs are



unloaded to service the next request. The trailing edge of Service Out will disable
the select code and Channel SO Strobe to the device controller. The falling edge of
the strobe will clock four flip-flops on the device controller card. The inputs to

these flip-flops are:
1. Toggle Service Request
2. Toggle SIO OK
3. Toggle In XFER
4, Toggle Out XFER

As their names imply, these lines will toggle their respective flip-flops when they

are asserted during the falling edge of the Channel So Strobe.

The Service Request flip-flop is used to provide service requests not required from
the device controller, but necessary to execute the 1/0 program. The device con-
troller will issue requests only during a READ or WRITE, to transfer data; after
receiving Program Command 1 or Programmed Control Strobe, to allow the con-
troller to act on the control information sent; and after completion of a READ or
WRITE, to allow the controller to perform any housekeeping before continuing the

I/O program.

The Service Requests needed to fetch all orders and the DRT entry are provided from
the Service Request flip-flop. In addition, it will provide the Service Requests neces-
sary to execute the SENSE, RETURN RESIDUE, JUMP, INTERRUPT, and END orders.
At the start of each I/O program, this flip-flop will be set. It will be reset whenever
execution of a READ, WRITE, or CONTROL begins and set again upon completion of

these orders.

The SIO PERMIT flip-flop is used with controller conditions to form bit 0 of the con-
troller's status. This flip-flop will be set at the beginning of the execution of an I/0
program. It will be reset when the SIO logic executes the END order and generates
Toggle SIO PERMIT during transfer of the device controller status. As long as it is
set, bit 0 of the controller's status will be false, causing rejection of any other SIO

commands issued by the CPU to that device.
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The IN XFER flip-flop is set for the duration of execution of a READ order, If
several READ orders are chained together, it will remain set until the last READ
is completed. The Toggle IN XFER signal will be sent to the controller during the
last data transfer, so the IN XFER flip-flop will be reset on the trailing edge of the

last Programmed Read Strobe.

The OUT XFER flip-flop operates identically to the IN XFER flip-flop but for WRITE
orders. These two flip-flops are provided to inform the controllers of the initiation

and completion of a data block transfer.

One additional signal is provided to the device controller to inform it of the status of
its I/O program. This is the End of Transfer signal, which is asserted every time
the word count rolls over, or when the device generates DEVice END. It is cur-
rently used by the disc controllers to enable them to handle chained READS or

WRITES that are not exactly multiples of their sector size.

During data transfers the trailing edge of the data poll increments the word count
portion of the order register. When this word count rolls over, it will set an EOT
flip-flop in the SIO logic, generating the EOT signal to the device controller. There-
fore, the signal will be asserted slightly after completion of the address transfer

sequence and will remain valid until the data transfer sequence is finished.

The main actions of the data transfer sequence, then, are to store updated informa-
tion into the RAMSs, set the correct state of the 4 flip-flops in the device controller,

and transfer data from either the SIO card or the device controller.



SECTION 8

MODULE CONTROL UNIT

8.1 INTRODUCTION

Module Control Unit (MCU) is the means by which a module interfaces to the MCU
bus. The MCU bus is the universal means of communication between all the modules
in the ALPHA system. Each module, in order to communicate with another module in
the system, must obtain a time slice on the MCU bus and transmit its "message" to
another module during that time slice. Each time slice on the bus consists of one
clock cycle. Modules, in order to obtain a bus cycle must request the bus from their
MCU. Each module has a priofity rank such that if more than one module request

the bus simultaneously, the module with the highest priority gets the next bus cycle.

Each module in the ALPHA system has an assigned module number. This number is

used for addressing the module in all communications with that module.
8.2 FUNCTIONAL DESCRIPTION

8.2,1  Transmit Operation

When a module decides to transmit a message to another module, it must present its
MCU with either a LO REQUEST (LREQ) or a HIGH REQUEST (HREQ) and the module
number of the destination module. It must then wait for the MCU to send it a SELECT
(SEL) pulse. Module uses SEL as a go ahead signal to send the message to the destin-
ation, MCU depending on the modules specific requirement can be designed to handle

LREQ and/or HREQ.
For LREQ, MCU checks two items:

(a) It checks the RDY line of destination module to see if it can accept a

message or not (see figure 41). If the destination RDY line is true,
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from getting selected. Such that two modules are not selected at the same time.

Figure 41. MCU Priority Network



the transmitting module must then pull its ENB line low to keep all

lower priority modules from using the bus.

(b) It checks the ENB lines of all the higher priority modules to see if
any higher priority module is waiting to transmit a message on the
bus, if so, this module must stay away from the bus until all ENB
lines of the higher priority modules are high, i.e., no higher priority

module is waiting to use the bus (see figure 41).

If both (a) and (b) check positively, i.e., the destination module is ready and no
higher priority module is trying to use the bus, this module will then receive the

"SELECT'" line from its MCU during the next clock cycle.

For HREQ, MCU checks item (b) only. This is because MCU expects the host module
to use the HREQ when the destination module is "busy", e.g., during the CWA to
memory, two messages must be transferred to the memory. The first message is
the memory address and the second message is the data that must be stored in the
memory at that address. After the address is transmitted to the memory, memory
goes ""busy' waiting for the data to arrive. The transmitting module must therefore

use HREQ in order to be able to transmit the data to the memory.

Figure 42 shows typical interface lines between a module and its MCU.

8.2.2  Receive Operation
There are two receive modes:

(a) Expected receive mode, in which module is expecting to receive a
message from another module. In this mode, the expecting module
must store the module number of the module that it is expecting to
receive a message from. When addressed, module must compare the
stored module number with the content of FROM BUS (0,1,2) (con-
taining the module number of the transmitting module). If they com-

pare the message received is from the expected module (See figure 42).
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(by  Unexpected receive mode. In this mode a module receives a message
from another module when it is not expecting it. This mode, if appli-
cable, causes different actions in different modules. For example,

in memory modules, unexpected messages, if accompanied by non

NOP opcode, is interpreted as the address for RWA or CWA.
8.3 MCU BUS DESCRIPTION

8.3.1 Ready

The RDY (1-7) lines indicate the busy/ready status of the modules numbers, one
through seven. High state indicates the module is RDY. There is one RDY line per
module. RDY lines are bi-directional. They are pulled low (""busy' state) by the
transmitting MCU during the transmission cycle. This is done to keep the receiving
module from getting selected on the cycle after it receives the message. It is,
however, up to the receiving module to maintain its "busy" status thereafter, until
the operation complete time, if it so desires. RDY lines can change state no later

than 20 ns after the clock reference edge.

8.3.2 Enable

The ENB (1-7) lines are unidirectional. Each line is dedicated to a single module.
Module uses its ENB line to disable the lower priority modules from using the bus
by pulling it to the logical low state (see figure 41). The conditions that must be
present before a module can pull on its ENB line is according to the following

equation.

il

ENB(n) = LREQ * RDY (destination) + HREQ
n = 1-7

The part of the MCU logic that pulls down on the ENB line must be designed such that

the path after the RDY receivers to the input of the ENB driver is no longer than 20 ns.
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8.3.3 TO Bus

The TO bus (0, 1, 2) carries the module number of the destination module (line 0 is
the most significant bit). TO BUS is bi-directional, it is used by all modules. The
module that is selected to use the MCU BUS in the current cycle must gate its destin-

ation onto TO BUS no later than 20 ns after the reference edge of the clock.
8.3.4 FROM Bus

This bus carries the module number of the source module (line 0 is the most signifi-
cant bit), FROM BUS is bi-directional, and is used by all modules. The module that
is selected to use the MCU BUS in the current cycle must gate its own module number

onto TO BUS no later than 20 ns after the reference edge of the clock.,

8.3.5 OPCODE Bus

The OPCODE bus (0, 1) is a bi-directional bus that carries the two bits opcode. Op-
code can mean different operations to different modules, e.g., memory interprets

these two bits as follows:

0, 0 = NOP
0, 1 = Write
1, 0 = Read
1, 1 = Read No Write

8.3.6  Control Parity

The CPAR line carries odd parity for combined TO, FROM, MOP buses. This
parity is calculated by the transmitting module, and is checked by the receiving
module. If an error is detected the receiving module must activate the Control
Parity Error (CPE) line for one cycle, and ignore the current transmission. The
transmitting module must gate CPAR no later than 20 ns after the reference edge of
the clock.



8.3.7 MCU DATA Bus

The MCU DATA bus (0-16) is bi-directional and carries address, data, and control
information between transmitting and receiving modules. This bus is 17 bits wide,
of which the 17th bit is the odd parity on the first 16 bits. The parity must be
generated on the 16 bits data by the transmitting module before the SELECT cycle,
so that the 16 bits data and the one bit parity are gated onto the bus, during the

select cycle, no later than 20 ns from the reference edge of the clock.

8.3.8 Address Parity Error

This line is bi-directional and is asserted by the receiving module, for one cycle,
during the cycle after the message is received, provided: (a) message had parity
error and (b) module is designated to recognize the error and flag the error back to
the transmitting module. For example, memory module interpret the first cycle
that it is addressed as the address cycle. During this cycle memory looks for an
address parity error and flags it back to the transmitting module, and internally

it ignores the message.

8.3.9 CLOCK

This line carries the system clock. CLOCK is a symmetrical square wave, The
falling edge of the CLOCK is defined to be the reference edge. System modules must
use this signal in all their synchronizing logic and their MCU logic.

8.3.10 Master Reset

This line is normally in the high state. It goes low when either front panel system
reset button is depressed, or when any of the system DC voltages reach below the
specified threshold voltages. After power first goes on MASTER RESET remains

low for approximately 500 usec.

Modules must use MASTER RESET to reset all their state FF's.
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8.4 ELECTRICAL AND PHYSICAL DESCRIPTION

MCU line are driven by HP 104A TTL Drivers and are received by HP 106A TTL

Receivers.

MCU cable is a 50 wire ribbon cable that is connected to the P2 connector. The
characteristic impedance of each line is approximately 25 ohms. The cable is
terminated at both extreme ends. The terminating network on each end consists

of two 1K resistors, one connected to +5V and one connected to GND.

Clock signal is available to all system modules via the 56 pin power connector.
This signal should be received by each module with no more than one HP 106A
receiver. This is to avoid any excessive AC loading of the clock signal. For
clock to match in different modules, the clock receiver in each module must be
cascaded with inverting and non-inverting gates to obtain CLOCK and CLOCK re-

spectively,
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SECTION 9

HIGH SPEED SELECTOR CHANNEL

9.1 INTRODUCTION

The Alpha High Speed Channel (HSC) is designed to complement the SIO I/0O system

of the Alpha. It provides compatibility for high speed I/0O devices to interface directly
with the Alpha MCU Bus resulting in higher transfer rates than provided by the SIO
system. Hardware and software compatibility with the SIO system is maintained,
providing versatility and interchangeability. The HSC executes all SIO order pairs,

provides buffering and control of the device controller and interfaces with memory.

Each Selector Channel comprises two logic boards, one containing the control logic
and the other containing the registers, counters and buffers required for the execu-
tion of the SIO program. The two boards communicate using the three connectors
across the top of the boards. Each Selector Channel is capable of interfacing with up
to 8 device controllers in a shared manner. That is, only one I/O program can
execute at any one time. All other devices must wait until the program executing
either Ends or Clear Interface is initiated by the device. At this time, one of the
other devices may initiate an I/0 program. The device executing has complete and
dedicated control of the HSC until the program completes or is terminated by some

other means, e.g. clear interface.

The HSC communicates with the device controller via the Channel Cable. This 50
connector ribbon cable contains a data path to and from the device (not the same as
the IOP Bus) and control signals to and from the device. The cable connects to all

those devices which are interfaced to the HSC. See Section 9.9

The HSC interfaces with the MCU Bus through a logic card called the Port Controller.
The Port Controller multiplexes 4 individual HSC onto the MCU Bus. The multiplex-
ing is accomplished by assigning two priority levels within the Port Controller which

process HSC requests for MCU Bus service.
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Each HSC has a potential transfer rate of 2.0 M words/sec maximum. The actual
rate will be determined by the device and memory speeds. Device controllers that
interface with the HSC require the Channel-SIO Bus Logic option. This provides
for compatibility with the I/O Bus and the Multiplex SIO Board.

9.2 L.OGIC FUNCTIONS

A convenient method to understand the operation of the HSC is to break the overall
HSC into a group of smaller logic functions or controllers. These controllers per-
form some function, e.g. fetch next order pair, each time they are initiated. Then
by understanding each function, the overall/channel operation is easily formulated

and understood.
The logic functions are:

- Initiator Section
Fetch Sequencer
Device Controller Interface
Pre-fetching Sequencer
Program Execution Controller
Terminator Section

Error Controller

Often during the explanation of the HSC two phrases will appear; first, Channel SO

cycle, and second, Transfer Cycle. These terms are defined in Section 9. 6.

9.2.1 Initiator Section

Each device controller requesting to start an I/O program must pass through the
Initiator Controller once. When the device controller decodes the SIO direct com-

mand and initiates a request to the HSC, the HSC sets its Active FF and makes

Enable false. No other device controller can now initiate its I/O program as long

as the Active FF is set. When the device controller initiated the request, it also

puts its device number multiplied by 4 and its select number onto the channel Bus.



DEV # * 4 is the address of the DRT where the I/O Program Counter (IOPCNT)
resides, and the select number is the effective address of the device running its 1/0

program.

When the Active FF sets, the Initiator sequencer generates DEV # and Select Enables
to load their respective registers, enables the DEV # Register onto the Channel Ad-
dress lines and initiates a Transfer Cycle Outbound. The sequencer then returns SI
to the IOP for the device controller and waits for Request to be removed by the IOP.
When Request is removed the Initiator sequencer enables the Fetch Sequencer. The

Initiator Section is now complete.

When the Transfer Cycle Outbound was initiated the DEV # * 4 was transferred to
memory and the IOPCNT was returned as data and loaded into IOPCNT Counter
Register. The Transfer Cycle completes when the IOPCNT is loaded.

The Select number resides permanently in the Select Register. It is encoded and be-
comes active lines on the Channel Bus to the device. Valid select numbers are 0-5,

14, 15.

9.2.2 TFetch Sequencer

The Fetch Sequencer is used to fetch order parts from memory except for pre-
fetching, Whenever the orders Read or Write are executing and chaining is true,

the Fetch Sequencer is disabled. But in all other cases, this controller is used for
getting the next order to be executed. The sequencer is conditioned to start when

the following condition is met. The presently executing order is completed "And"

no Transfer Cycle is in progress ""And" the initiator section is completed "And"

the last order executed was not Read, Write or Command, "And" the presently
executing order is not Read or Write with Chaining. If the last order executed was
Read without chaining, Write without chaining, or Command, the Fetch Sequencer will
start only after the above conditions are met and a Device Service Request is gen-

erated by the device controller.

When the conditions are met, the Fetch Sequencer initiates a Transfer Cycle Out-

bound and enables the IOPCNT onto the Channel Address lines. This transfer Cycle
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is for the I/0 Command Word (IOCW). When data is returned from memory it is
loaded into the IOCW Register Active, and the IOPCNT is incremented. The Fetch
Sequencer then initiates a second Transfer Cycle Outbound and enables the IOPCNT
onto the Channel Address lines. This Transfer Cycle is for the I/O Address Word
or Operand (I0OAW). When data is returned from memory, it is loaded into the
IOAW Register Active, and the IOPCNT is incremented. A flag is set (the order
complete FF is reset) at this time indicating to the Program Execution Controller

that a new order is present and execution can begin.

9.2.3 Device Controller Interface

This logic section contains the signal lines that interface with the device controller.
The lines are defined below and timing diagrams appear in Appendix II. These dia-
grams are also applicable for the Program Execution Controller. Also see Sec-

tion 9.9.

Device Service Request

This signal is used by the device controller to initiate a CHAN SO cycle for data
transfer or to indicate that the next order pair should be fetched following the execu-

tion of Read, Write or Command Order.

ACK SR

Unlike the MUXSIO Logic, the HSC does not generate ACKSR. This signal used by
the device controller to reset the device SR FF is generated in the bus logic. The

device can use this signal (Chan Ack) to clear his own SR FF or inhibit it,

CHAN SO

Signal used to initiate the Channel SO cycle. It is used by the device controller in
éonjunction with the select lines to enable the input buffers to the channel bus. CHAN

SO remains true until CHAN ACK is returned by the device controller.



CHAN ACK

This signal is returned by the device controller in response to the following signals,

Read Strobe, Write Strobe, CMD Strobe, PCMDI Strobe, Sense Strobe, In and Out

XFER Toggles, Set Int, Set Jump, Read Next Word, WCDV.

The device controller may use CHAN ACK to reset the device SR FF.

CLOCK

The HSC provides a version of the system clock to be used by the device controller
to clock the SERVICE REQUEST FF. The SR FF should be a negative edge triggered

device. See Section 9.11 for a suitable service request circuit.

DEV END

During the execution of a Read or Write order, the device may prematurely terminate

the order by asserting DEV END. DEV END will cause the following condition to

occur for Read and Write orders.

DEV END and Write
A. If Chaining:
1. Write strobe is not generated
2. OUT XFER will not toggle

3. DEV END FF will terminate Channel So cycle by generating
WCDV.

*4, Wait for DEV SR for next transfer.

*When chaining, the pre-fetch controller is on and the next write order is pre-

fetched and waiting in buffers until the actively executing order is complete.
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B. If not chaining:
1. DEV END will terminate Channel SO cycle.
2. Write Strobe is not generated.

3. OUT XFER Toggle is generated to clear the device OUT XFER FF.

DEV END and Read
A, If chaining:
1. In XFER will not toggle
2. Read next word will be generated for the DEV SR pending.

3. DEV END FF will terminate the Chan SO cycle from Read Next
Word.

*4, Wait for DEV SR for next transfer
B. If not chaining:
1. DEV END FF sets, aborting Read next Word.
2. DEV END will terminate the CHAN SO cycle.
3. In XFER toggle is generated to clear the device IN XFER FF.

The DEV END input to the channel is only active during the execution of Read or Write

orders.

IN XFER TOGGLE

Signal generated by HSC to toggle the IN XFER FF in the device controller. The de-
vice IN XFER FF is clocked on the trailing edge of CHAN SO.

OUT XFER TOGGLE

Signal generated by HSC to toggle the OUT XFER FF in the device controller. The
device OUT XFER FF is clocked on the trailing edge of CHAN SO.
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REQ

This line is asserted by the device controller when its I/O program is to be executed
by the HSC. The device controller asserts REQ in response to the direct I/O com-

mand SIO.

CLR IL

Clear Interface is a line used by the device controller to prematurely terminate its
I/0 program. The HSC accepts CLR IL only following the active FF being set, and
then immediately terminates the I/0 program. The HSC also will restore the current

value of the IOPCNT into the DRT at DEV # * 4 in responses to CLR IL.

The signals REG and CLR IL are time-shared on the same line from the device con-
troller. The state of the Active FF in the HSC is used to differentiate between REQ
and CLR IL.

ENABLE

Enable is similar to the SIO multiplexed signal SIO OK. When no I/O program is
kexecuting in the HSC, ENABLE is asserted. As soon as REQ is asserted and the

channel goes active, ENABLE is made false,

Upon executing the order END or upon receipt of CLR IL, ENABLE is again asserted.

SET JMP

Signal generated by the channel during the execution of a conditional jump order to
clock the device Jump FF. The device conditions this FF and returns the JMP MET

line to the channel.

JMP CONDX MET

The HSC interrogates this input following generating the SET JMP clock. If this line
is true then the HSC transfers the IOAW to the IOPCNT and initiates a Transfer Cycle
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Outbound for the next IOCW. If JMP MET is false, then a Transfer Cycle is initi-
ated without updating the IOPCNT from the IOAW.,

SET INT

This strobe line is used to set the device interrupt FF when the Int, Order executes.
If the MSB of WC Register is one when executing an END order, the SET INT strobe

is generated.

SENSE STROBE

This strobe line is asserted during the execution of the Sense Order and the End
Order. The device controller returns the contents of its status register in response

to the SENSE STROBE and generates CHAN ACK.

RD STROBE

The strobe line is asserted during the execution of the Read Order and the following
a device generated service request. The device controller returns the contents of

its data in buffer and generates CHAN ACK.

READ NEXT WORD

A signal used in conjunction with the RD STROBE. It is used to indicate to the de-
vice controller that a Read Order is beginning and to inform the device controller

that it can read a new word from the device.

WRITE STROBE

This line is asserted by the channel during the execution of the Write order and in

response to a device generated service request. The HSC puts data onto the channel

bus and when WRITE STROBE is asserted, the device controller can accept the data.

The device controller returns CHAN ACK which terminates the WRITE STROBE and
then the data. Data is not valid at the leading edge of this strobe.



PCMD1

The Programmed Command 1 strobe indicates to the device controller that the
first word of Control information is on the Channel Bus. The device controller
must return CHAN ACK and generate a device service request for the second word

of control information. Data is not valid at the leading edge of this strobe.

CMD STROBE

This strobe indicates that the second word of control information is available to the
device controller. It is asserted following a device generated service request. The
device controller must return CHAN ACK and also generate device service request
for the program to continue execution. Data is not valid at the leading edge of this

strobe,

XFER ERROR

The XFER ERROR line from the HSC to the device controller indicates that an error

has occurred. The XFER ERROR is generated by the following conditions:

a. lllegal Address — The Address Lines contain an address larger than

that which is permitted.

b. Address Error — The memory has detected a Parity Error on the last

address sent to memory from the HSC.

c. System Parity Error — the HSC Port Controller has detected a control

parity error.

d. Data Parity Error — The HSC has detected a parity error on the data

transferred from memory to the channel.

Any of the above conditions will cause the HSC to initiate a Chan So cycle to transfer

XFER ERROR to the device controller. The device controller will then generate a
CLR IL signal terminating its I/O program and generate an Interrupt, The HSC will
terminate the program, restore the IOPCNT to memory and re-assert ENABLE
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permitting another device controller to initiate the channel with a REQ for service

to start an I/0 program.

See Section 9.9 for the Channel Bus interchange drawing. This drawing gives all the
signals and direction that are used for communication between the HSC and its re-

spective device controllers.

EOT

The signal EOT (End of Transmission) is passed to the device controller during the
CHAN SO cycle for the last data word. The word count register is not incremented

for DEV END.

9.2.4  Pre-fetching Sequences

The Pre-fetching sequencer is activated whenever Read or Write orders with chain-
ing are executing. To enhance the speed, and to make the transition between orders
when chaining is taking place smoother, the next order to execute is fetched and

stored in buffer registers until the presently executing order is complete. The pre-

fetching takes place during the data transfers conditioned on two simple rules.

Data transfers during Read and Write orders utilize two buffers. For Write Orders,
the HSC is actively keeping both buffers full independently of the device controller.
For Read orders, the HSC is attempting to keep to the input buffers empty by trans-

ferring their contents to memory.

If chaining is active and a Write is executing, a Pre-fetch cycle will initiate only when
both output buffers are full. If a Read order is executing, a Pre-fetch cycle will

initiate only when both input buffers are empty.

The Pre-fetch Sequencer must initiate two Transfer Cycles Outbound, the first for
the IOCW and the second for the IOAW. The stated conditions pertaining to the input

and output buffers in the chammel must be valid for both Transfer cycles.



The Pre-fetch sequencer generates the enables to load the buffer registers where
the IOCW and IOAW are temporarily stored. When the executing order completes
and both data buffers are empty, the logic generates a set of enables to transfer the
IOCW and IOAW buffers into the active registers and sets the flag indicating that

execution can continue.

For Write orders, when the order completes, the OUTPUT data buffer flags are set
to empty so that the pre-fetch sequencer can transfer the buffers to active, but when
the Read Order completes, valid data will be present in the input data buffers. One
or two Transfer Cycles Inbound will be generated to unload the input data buffers
until both input flags are reset. Only when the input flags are reset will the set of

enables to transfer the IOCW and IOAW buffers into the active registers be generated.

The inputs into the Pre-fetch Sequencer indicate the state of the order buffers, empty
or full, and also indicate the state of the data buffers, empty or full. These signals
steer the logic to permit the fetching of the order pair, interleaved with the trans-

ferring of data.

9.2,5 Program Execution Controller

The Program Execution Controller encompasses the logic which decodes the order,
interfaces with the Device Controller Interface, and initiates Transfer Cycles for
data transfer. Also, when the order completes, the Program Execution Controller

conditions the fetch sequencer to start for the next order pair.

The Program Execution Controller (PEC) initiates whenever the order complete flag
is reset indicating that the next order has been fetched and is in the active buffers

ready for decoding and execution,

The PEC decodes and executes eight orders: Read, Write, Control, Jump, END,
Sense Interrupt and Return Residue. Timing diagrams for these eight orders are

found in Section 9.7.

Following completion of the order or DEV END in the case of Read or Wr1te, the
order complete FF sets indicating that the PEC has completed.
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The PEC also initiates Transfer Cycles for data transfer. For example, following
the completion of the Sense Order the status information read from the device con-

troller must be transferred to memory.

For Read, Write and Control, CHAN SO Cycles are initiated by the device control.
For Int, Jump, Sense, and END the CHAN SO cycles are initiated by the HSC. Re-

turn Residue requires no CHAN SO cycle for execution,

9.2.6 Terminator Section

The Terminator Section responds to two inputs, the END order and the device con-
troller generated CLEAR Interface, CLR IL. The Terminator Section must transfer

the IOPCNT to the DRT and re-enable device controllers to initiate new SIO programs.

The END order resets the Order Complete FF and transfers status to memory. The
CLR IL signal from the device controller is asynchronous to the sequencing of the
HSC. To make both inputs to the Terminator Sequence similar, the CLR IL FF in
the HSC generates the condition to reset the Order Complete FF.

The following sequence of events occur in the Terminator Section when initiated.
Fetch Sequencer Inhibited from starting,

Order Complete FT resets (CLR IL only. For END, the Order Complete
FF has already been set).

Channel Active FF and CLR IL FF are reset.
When the Channel Active FF resets, the Fetch Sequencer is hard reset.

The Initiator Sequencer steps to its reset state removing the qualifiers on

the Fetch Sequencer.

As soon as the TIP (Transfer In Progress) FF resets, then a Transfer
Cycle is initiated to restore the IOPCNT in the DRT; A general reset is

made.
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9.2.7 Error Controller
The Error Controller has four inputs which indicate error.
ILLEGAL Address
Address Parity Error
System Parity Error
DATA Parity Error

These errors require the device controller to generate an Interrupt and CLR IL
terminating its I/O program. A CHAN SO cycle is required to transfer the XFER
ERROR signal to the device controller.

When the Error Controller detects one of the errors listed above, it conditions the

XFER ERROR true and initiates a CHAN SO cycle. It is possible that the HSC may

be presently in a CHAN SO cycle, To insure that the device controller XFER ERROR
FF is set, the Error Controller permits both CHAN SO cycles to execute concurrently,
therefore, only one clock is generated ensuring that the device controller recoghizes
the error conditions; The concurrent cycle is important. Informing the device
controller as soon as possible that an error has occurred permits the device con-

troller to take whatever action is required to protect the integrity of the system.,

9.3 GENERAL SPE CIFICATIONS

2.0 MEGAWORD/SEC maximum transfer rate; Typical Rates, 2.0 MHZ Read
1.7 MHz Write

SIO Hardware and Software compatibility

Executes READ orders
WRITE
CONTROL
SENSE
INTERRUPT
JUMP
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RETURN RESIDUE

END with optional interrupt
Requires the Channel-SIO version of the Bus Logic.

Fully double buffers for input and output

Generates XFER ERROR for the following conditions:
Address Parity Error
System Parity Error
Data Parity Error
Tllegal Address
Up to 4 HSC can be multiplex through one port onto the MCU Bus.

IOPCNT Resident in the HSC — Restored for END orders and device generated
CLR IL.

Operates in a shared mode, with a maximum of 8 device controllers sharing

one High Speed Selector Channel.

9.4 PORT CONTROLLER

The Port Controller provides for multiplexing four HSC onto MCU Bus through a
single port or module number. Each HSC requests to the Port Controller for service
and indicates the nature of the request, Read Write or Clear Write., The Port Con-
troller resolves priorities, both the Alpha MCU Bus priorities and the internal

priorities between the individual HSC.

The Port Controller generates Control Parity on the control lines, MOP, TO, FRM
and checks parity on the same set of lines. It also monitors the Address Parity
Error from memory and responses by transferring the state of the line to all the HSC

Error Controllers.
The Port Controller MCU Bus interface is similar to that used in the IOP.

See Section 9.10 for the Port Controller Bus Interchange.



Two priority levels are established in the HSC to facilitate the throughput in the
Port Controller. All Low Requests made to the Port Controller are arranged in
priority from 1 to 4, with 1 being the highest, and 4 the lowest. All Low Requests

are processed in order according to this scheme.

If one of the Low Requests is accompanied by a High Request (CLEAR Write), as
soon as the Low Request is processed, the High Request will override all pending
Low Requests. The High Request will execute when enabled. The next L.ow
Request with highest priority will be enabled as soon as the High Request completes,

A typical MCU bus transfer is shown in figure 44,

9.5 HIGH SPEED SELECTOR CHANNEL DIAGNOSTIC

The HSC does not interface with the Alpha CPU directly. It provides a path from the
device controller to and from memory, but does not interface with the IOP. Diag-
nostics could be run indirectly if a device controller or test fixture provided the link
between the HSQ and the IOP Bus. The test fixture could be programmed in the
direct Read/Write mode to provide the various inputs and outputs for the HSC. This

would permit the HSC to run test diagnostics.

To maximize the test fixture's usefulness, it must be able to interface with all the
signals in the Chan., Bus and provide conditions like CLR IL, DEV END, SERVICE
REQUEST, check the STATE of XFER FF, respond to the programmed strobes and the
XFER ERROR condition, and provide a jump FF which can be conditioned true and
false.

It must also have a data register which can be loaded and read with both the SIO pro-
grammed strobes and the direct Read/Write Strobes, control logic to generate device

service requests and the Channel-SIO version of the bus logic.
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9.6 COMMUNICATION AND TRANSFER CYCLES

9.6.1 Channel SO Cycles

Throughout the execution of the I/0 program, the HSC must communicate with the
device controller over the Channel Bus. The communication may take many forms,
transfer data to or from the device controller, set the Interrupt FF in the device
controlier or interrogate the status of the Jmp FF in the device controller. Also,
the signal XFER ERROR must be passed onto the device controller when the HSC
detects that the condition has occurred. Whenever the HSC communicates with the

device controller, a Channel SO cycle will take place.

This cycle can be initiated either by the device by setting the Service Request FF
or by the HSC. When the cycle is initiated, CHAN SO is asserted and all pending
strobes or control signals are released to the device controller. When the device

controller receives CHAN SO and providing it is not being addressed by the IOP,

the Channel Bus Logic will return CHAN ACK. CHAN ACK is generated from all the
strobes and control signals provided by the HSC. CHAN ACK indicates to the HSC
that the cycle may terminate. All signals (except data) sent to the device controllers

return CHAN ACK.

For data transfers (Read or Write), the device Service Request FT is used in addi-

tion to requesting service to win priority usage of the bus logic over the IOP.

9.6.2 Transfer Cycle

Each HSC communicates with the Port Controller through the Transfer Cycle. This
cycle initiates the Port Controller into starting a memory transfer from the HSC.
The HSC generates Transfer Cycles whenever data is to be transferred to or from
memory, to fetch order pairs, to fetch the IOPCNT from the DRT, and to restore
the IOPCNT in the DRT.

The Transfer Cycle can be one of two forms; Inbound or Outbound, see table.
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MOP 0 | 1

CLEAR WRITE 0 1 INBOUND

READ WRITE 1 0 OUTBOUND

MOP is defined as Memory Operation, two lines from the HSC to memory indicating
what function memory is to perform. The HSC will never initiate a Transfer Cycle
if one is presently in progress. The cycle terminates whenever data is received
from memory (STROBE) or whenever data is transferred to memory (HSEL). The
HSC terminates its Transfer Cycle before memory becomes ready in single memory
systems. This permits maximum memory usage by the HSC by initiating a new

Transfer Cycle even before memory becomes ready.

9.7 CYCLE TIMING

The timing diagrams for the eight orders executed by the HSC are shown in figure
45, Also points are indicated to show where Transfer Cycles begin, The timing
diagrams show the occurrence of the CHAN SO cycle for those orders requiring
communication with the device controller., The clock is the basic Alpha System

Clock, 160 ns period.

9.7.1 Sense

The data from the Sense order is loaded into the memory location following the IOCW.
To accomplish this, the IOPCNT is counted down by one and enabled onto the Chan-
nel Address lines, The Transfer Cycle initiated is Inbound with the IOPCNT as the

address.

9.7.2 Return Residue

This order requires no device controller interaction. Whenever a new order is
transferred into the active register, the WC (word count) is STORED for the last
order executed. This permits the Return Residue order to read the WC register

for the last order. See figure 46.
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Returns Residue like Sense returns the data (SC Register) to the location following
the IOCW. When the Transfer Cycle is initiated, the IOPCNT is counted down by

one and enabled onto the Channel Address lines.

9.7.3  Interrupt

The Interrupt order does not return CHAN ACK. The HSC must generated this con-
~ dition internally to complete the CHAN SO cycle. No data is transferred for the
Interrupt Order.

The Transfer Cycle enables the IOPCNT to the Address lines for the fetching of the
next IOCW,
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9.7.4 END

The End Order executes identically as the Sense order. In addition, if the MSB of
the WC register is set to one, then the END order generates an Interrupt Strobe,
END returns status to the location following the IOCW. END also conditions the
Terminator section to start which transfers the IOPCNT to the DRT and puts the
channel in the inactive state. At completion of the End order and with the data trans-

ferred to memory, the IOPCNT contains the address of the location END+2.

9.7.5 JUMP

Both unconditional and conditional jumps are permitted. Conditional jumps test the
status of the device controller Jump FF for a valid condition met. The Set Jump
Clock used to interrogate device controller Jump FF does not return CHAN ACK.
The HSC must internally generate the CHAN ACK.
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Figure 48 shows a conditional jump. Here, the Jump Met line is true. If False,

then B1 would not be generated, i.e., the IOPCNT would not be updated.

A: The Jmp Met line from the device controller is sampled at time A. If it is

true the Jump Met FF sets which transfers IOAW — IOPCNT and initiates the Fetch

Sequencer,

Figure 49 shows an unconditional jump. This jump does not require a CHAN SO

cycle—The IOAW is transferred to the IOPCNT and the Fetch Sequencer is initiated.

9.7.6 Command

The command order issues two strobes, PCMDI and CMD STROBE. The first
strobes the contents of the IOCW onto the data lines to the device controller. The

second strobes the contents of the IOAW word onto the data lines to the device
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controller. In both cases valid data is not present preceding the strobes, but is

present 80 nsec following the trailing edge of the strobes.

9.7.7 Read and Write

These two orders have similar timing diagrams with two small exceptions. First,
the Read order generates Read Next Word Strobes and the Write order does not.
The second and most obvious difference is the direction of data transfer, Read, from

the device controller and Write, to the device controller.

Figures 51 and 52 are the diagrams for Read and Write orders, the differences are
pointed out, without chaining, and terminated both by DEV END and Word Count
rolling over to 0. When terminated by Word Count rolling over to zero 0, it was

assumed that initially the WC Register was set to -3.

Read and Write orders differ somewhat in the way Transfer Cycles are initiated.
During Reads and Writes, the Transfer Cycles are initiated by the buffer controllers.
These controllers attempt to keep both buffers full during Write orders, and both
buffers empty during Read orders. The other orders which transfer data, e.g.
Sense, generate Transfer Cycles from the PEC. This is not the case for Read and

Write Orders.

To fully understand the operation of DEV END; the reader should refer back to the

previous section 9.2. 3 where it is defined explicitly.

9.8 CHANNEL FLOWCHART

The overall Flow Chart for the Selector Channel appears in Figure 53. This chart

shows the various controllers and sections of the logic discussed.

To help understand the chart the block WAIT needs to be defined., This block appears
whenever a CHAN SO cycle is in progress. It is not shown for the Read and Write
Orders. The charts pertaining to the Read and Write orders are the actual buffer

controllers and not the Program Execution Controller.
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The two data buffers are indicated by A and B. The Write buffer controller attempts
to keep both buffers empty.

Definitions for the flow chart in figure 53 are as follows:

A, B ~  Data Buffers
- IOCW - 10 Command Word

I0AW - 10 Address Word or Operand

TIP -  Transfer In Progress

TIP - No transfer in Progress

WAIT - CHAN SO cycle in Progress

MOP - Memory operation

IOPCNT - IO Program Counter,

PAUSE - A STATE where the HSC is waiting for some operation to
complete. The various pauses shown are not necessary
the same STATE.

9.9 HSC INTERFACE

The interchange diagram, figure 54, shows all the signals in the Channel Bus. Each
HSC has one bus for all its device controllers. The diagram also shows which logic,
the HSC or the device controller, initiates the signal. Those signal names listed
under the HSC are initiated by the HSC, those listed under the device controller are

initiated by the device controller,

The 16 data lines are used by the device controller to transmit its device number

and select number to the HSC during the Initiator sequence.

The REQ, CLR IL line is time shared, both signals initiating from the device

controller.

The arrows indicate the signal direction. Double arrows indicate a bi-directional bus.
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9.10 PORT CONTROLLER BUS LINES

The control lines in the Port Controller bus are grouped into four sets. See figure 55.
Those marked by #1 belong to one set, #2 to a second set, #3 to a third set, and #4

to the fourth set. Each set represents one HSC interface. The 16 data lines are
common to all HSC along with the data pai‘ity line. Similarly system Clock, Master

Reset and Channel Error line are common to all HSC.
Signal Definitions

TO: These lines represent the output of the address to module
mapper in each HSC. The Port Controller interrogates the
addressed module RDY condition before initiating a MCU

Bus transfer.

MOP;LR: These lines perform two functions. Each Transfer
cycle is initiated by the LR (Low Request) and the type of
transfer to be initiated is coded by the MOP lines.

STROBE: Data directed to each HSC from memory in response to
a Read Write memory cycle is "strobed" into the respective

HSC by the STROBE lines.

LSEL: The Port Controller strobes the address from the respective

HSC onto the MCU bus with the LSEL signal.

HSEL: The Port Controller strobes the data from the respective
HSC onto the MCU bus during a clear Write memory cycle

with the HSEL signal.

Channel Error Line: The Port Controller passes the state of the
Address Error Line and the System Parity Error logic onto

the HSC Error Controllers.

The sets of control lines are jumper selectable in the individual HSC. Each channel

must be a different number 1 to 4.
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9.11 SERVICE REQUEST FLIP-FLOP

Figure 56 shows a typical device SE FF showing the clock and a method for resetting
the FF.

DEVILE
ACTIVATED
SR

L SpEV SR TO RS LOGIC

{ crAN Ack xRom  Qug lcf)lc

Figure 56. Service Request Gating (HSC)
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SECTION 10

COLD-LOAD OPERATION

10.1 INTRODUCTION

The Cold-Load feature is intended to replace the usual core-resident bootstrap
loader normally required to load a program into memory when a system is initiated.
The Cold-Load feature is even more valuable if volatile memories are used, and

the bootstrap loader is destroyed when power is shut off,

The operation consists of the microcode initiating a transfer from a device into

core according to bits specified in the switch register when the Cold-Load button is
pushed. The first data transferred by this means is then used as an I/O program to
continue the transfers from the device to core at addresses specified within the first
block of data transferred. When the transfers that have been specified are complete,
the device issues an interrupt which can start the CPU processing at a location that is

specified by the data transferred from the device.

10.2 COLD-LOAD SPECIFICATION

When the COLD-LOAD button is pushed, the processor reads bits (8:15) from the

switch register, and creates the following I/0 program at location (device number *4):

*+1 DRT I/0O Program counter for device
%40000 8 I/0 Control Command
SW(0:7) right just 8-bit Control Byte from (0:7) of SW. Reg.
Read -%40 8 I/0 Read command of %40 words
*4+1 Read address of *+1

At this point the CPU starts the I/O program shown above running. The device

receives a control word, specified by SW (0:7), followed by a read of %40 5 words
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into the I/0 program. Then the I/0 program continues by executing the first words
transferred in by the read of %40 g* These words are expected to cause blocks to
be transferred in that will establish the stack, code domain, and I/O drivers for

whatever program that is being COLD-LOADed.

The CPU, after initiating the I/O program waits for an external interrupt from the
COLD-LOAD device with registers set to the following values:

PB

= 0
PL = 177777 g
P = contents of word 1 of memory

This establishes a code domain of a starting address of the location specified by word
1 of memory. It is assumed that this cell was set up by one of the transfers specified

by the 40 word block first brought in.

The stack domain is set up as follows:

DB = 0

QR = Qi

Z = Zi

DL = 0

S = Q+1
Interrupt = 1
Stack Flag

This is the normal interrupt stack environment. The STATUS register is set to

%140006 g’ This indicates privileged mode, interrupts enabled, and segment 6.

10.3 COLD-LOAD REQUIREMENTS

For devices such as disks, where it is expected that COLD-LOAD will be used to
start up operating systems, it is important that the controller be capable of doing this

with the format of the I/O program specified above. For example, the 8-bits of



control information can be used to specify a track number that the transfer will be

made from.

Also in the case of a disk, it is advisable that the MASTER CLEAR signal reset the
cylinder, track, and sector registers to zero so that when the control word to start
a COLD-LOAD operation at the specified location occurs, the transfer will begin at

sector 0.

Note that the first words read in from the device are executed as I/0O program. This
means that if the device should return with zeros or bad data, then the COLD-LOAD
will be hopelessly lost. For example, in a paper tape reader, if feed holes are
read, then the zeros will cause the COLD-LOAD to crash. A possible solution that

could work would be to have a control word which would pass up feed holes in tape.

Of course, it is always possible to require that the reader be aligned to the first

data word on the tape before the COLD-LOAD button is pushed.
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I/0 Alpha Pin Assignments (P3)

*1.  PARITY *23.  DATA 2 45. INT REQ 2
PARITY ERROR *24. DATA 3 46.  GND
GND 25.  GND 47. INT REQ 3
*4. CMD IN-OUT 9 *26. DATA 4 48. INT REQ 4
*5, CMD IN-OUT 2 *27. DATA § 49. GND
*6. CMD IN-OUT 1 28. GND 50. INT ACK
7. GND *29. DATA 6
*8.  DEV-INT ADR @ *30.  DATA 7
*9.  DEV-INT ADR 1 31. GND
10.  GND *32. DATA 8
*11.  DEV-INT ADR 2 *33.  DATA 9
*12.  DEV-INT ADR 3 34. GND
13.  GND *35,  DATA 10
*14.  DEV-INT ADR 4 *36.  DATA 11
*15.  DEV-INT ADR & 37. GND
*16.  GND *38.  DATA 12
*17.  DEV-INT ADR 6 *39.  DATA 13
*18.  DEV-INT ADR 7 40.  GND
19. GND *41. DATA 14
*20. DATA § : *42.  DATA 15
*21. DATA 1 43.  GND
22. GND 44, INT REQ 1

*=Bi-directional (IOP Requires termination on all lines except No. 2)
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