ALPHALPHALPHAL
PHALPHALPHALPHALPHAL
ALPHALPHALPHAL PHALPHAL PH
HALPHAL PHAL PHALPHALPHAL PHAL
HALPHALPHALPHALPHALPHALPHALP

HALPHAL PHALPHALPHALPHA
HAPHAL LPHALPHALPHALPH
HALPH ALPHALPHALPHA
ALPH LPHALPHALPHAL
LPH PHALPHALPHALPHA
HA HALPHALPHALPHALP
AL HALPHALPHALPHALPH
AL ALPHALPH PHALPHAL
LP ALPHALPH HALPHALP
HA LPHALPHA LPHALPHA
PH PHALPHAL PHALPHAL
A PHAL PHAL ALPHALPH
L .- PHALPHALP LPHALPHA
P HAPHALPH HALPHALP
HALPHALPH ALPHALPH
ALPHALPH PHALPHAL
LPHALPHA HALPHALP
LPHALPHAL LPHALPH
PHALPHAL PHALPHAL
PHALPHALP ALPHALP
HALPHALP LPHALPHA
ALPHALPHA LPHALPHAL
ALPHALPHALPHAL AL ALPHALP
LPHALPHALPHALPHA PHA PHALPHA
LPHALPHALPHALPHALPH HALPHALP A
PHALPHA ALPH LPHALPH H
PHALPHALP HALPHAL P
HALPHALP ALPHALP PH
ALPHALPH LPHALPH LPH
ALPHALPH HALPHALPHALPHALP
LPHALPHA ALPHALPHALPHALP
LPHALPHAL PHALPHALPHALP
ALPHALPH ALPHALPHALP
ALPHALPH PHALPHALP

REFERENCE MANUAL

HEWLETT-PACKARD PRIVATE

ALPHA COMPUTER SYSTEM

and

Central

Processor Module

HEWLETT (hp: PACKARD

Do Not Reproduce _-iZL

FOREWORD

This section (IV) is the only one written as of this date. Ultimately the manual will
consist of ten sections which will be released one at a time as they are completed. Major
topics not discussed in this section are /0, interrupts, and instruction definitions. For
now the ERS must be referred to for this information. Although the format looks
somewhat final this material is no more than a first draft. Changes can and will be made
before final review around the end of this year. The double column format is used
primarily for reproduction economy. Due to time considerations, we do not plan to
update this draft until just before final review.

One anticipated change, decided upon just prior to this printing, is that the terms
primary memory and secondary memory will be used in place of the restrictive terms
core memory and disc memory. This will lessen or delay the chances of documentation
obsolescence due to the coming new memory technologies.

This material is Hewlett-Packard Company Private April 15, 1971

SECTION 1V

of

Alpha Reference Manual
—System and Central Processor—

Table of Contents
IV MEMORY SEGMENTATION Code and Data Segments 4.5
Segmentsin Memory 4-6
Introduction 41 CodeSegments 4.7
ReservedCore 4.3 DataSegments 49
System Library 4.3 Examples of Stack Operation 4-14
Operating System 4.3 Basic Arithmetic 4-14
Compilers 4-5 ProcedureCalls 4-15
User Allocations 4-5 Recursion 4-18
INDEX
Terms Defined in Section IV
absent, ... 4-1 parameter passing 4.15
actual parameters 4-15 privileged dataarea 4-10
allocate 4-2 procedure, 4-7
BEGIN statement 4-16 procedurebody 4-16
codesegment 4-1 procedurecall 4.7
code segment number, 4-7 procedure declaration 4-16
Code Segment Table 4-2 procedurehead 4-16
Code Segment Table Pointer 4.3 procedurename 4-16
Current Process Control Block pointer 49 procedure parameters 4-13
datadomain 4.5 procedure statement 4-16
datasegment 4-2 Process i e e 4-5
Data Segment Table 4-2 ProcessControl Block 4.5
deallocate 4-2 Process Control Block Extension 4-10
deltaQ, 4-13 program L. e 4-5
ENDstatement 4-16 recursive procedure 4-18
external programlabel 4.7 re-entrant, 4-1
filearea 4-2 relocatable binary module 4-2
formal parameters 4-15 segment 4-1
freespacelinks 4.6 Segment Transfer Table 4-7
globaldataarea 4-12 stack L, 411
globalvariable 4-16 stackmarker 4-13
implicit addressing 4-15 swappingarea 41
job . 4.5 systemlibrary 4-3
Job Main Process 4.5 temporary storage 4-14
local programlabel 4-7 top-of-stack, 4-11
local variables 4-14 uncallablebit 4-9
mainmemory links 4.6 valuepart 4-16
operating system 4-3 virtualmemory 4-1

Memory Segmentation
Section IV

SECTION IV

MEMORY SEGMENTATION

In most instances, the user need never be aware of the
structural details to be presented in this section. Memory
addressing is accomplished automatically by features of the
hardware under control of a software operating system,
which in turn serves a language compiler. Thus the user is
normally several levels removed from the intricacies of the
hardware.

The primary intent of this section is to illustrate the power
and flexibility built into the system. But additionally, this
section also serves as an introduction to the subject of
memory segments for those persons, such as interface
designers, operating system programmers, and maintenance
personnel, who have a requirement for such knowledge.

INTRODUCTION

To begin with, it is assumed that the reader is familiar with
the system characteristics—that is, as viewed externally by
the user through standard software, It is the purpose of this
introduction to provide a bridge from the overall “system”
viewpoint into the functionings of the hardware, as regards
memory operations. Therefore no attempt will be made to
explain the concepts of jobs and processes, any more than
is necessary for the following discussions. The reader should
refer to separate documentation for the software systems, if
full definitions of these concepts are required,

First it is necessary to establish what is meant by virtual
memory. As shown in figure 4-1, virtual memory consists of
the main core memory plus an area of mass storage called
the swapping area. The swapping area, typically on disc or
drum memory, consists of a collection of pieces of code or
data, defined as segments, which are not presently in core
but which may be called in by the executing programs. A
segment is the basic entity for transfers between core
memory and the swapping area. Whether a segment is in
core or absent (on disc), it is nevertheless part of the virtual
memory. From the point of view of the user, he is working
with a memory that appears to be many times larger than
actual core size. In fact, his own program may exceed the
65K-word maximum of core capacity, and still allow room
for many other users on the same machine.

At this point the reader should be visualizing a dynamic
situation in which various segments are being swapped
rapidly between core memory and the swapping area of disc
memory, according to the demands of the executing
programs. Also bear in mind that several users may be on
the machine at a given time, and that each user may have
several segments.

Now the questions arise: where did the segments come
from (i.e.,how were they created), and how are they
eventually eliminated? To answer these questions it is
necessary to understand that there are two distinct types of
segments, code segments and data segments. Thus there are
two methods of origin. See figure 4-2.

A code segment consists entirely of information that is not
subject to change during program execution. This includes
the instructions of the program itself, constants, and an
area for interprocedure links. No modifiable data may be
interspersed with the instructions in a code segment, and.in
no way is it possible to write into or alter a code segment
(or its formative parts) once it has been compiled. It is this
feature which allows code to be re-entrant, meaning that a
given sequence of instructions can be in simultaneous use
by several users — or, can be entered several times by the
same user, whether or not preceding entries are concluded.
An example at the end of this section (Recursion) will
illustrate a procedure which, after being entered by the
main program, will call itself several times before any exit is
given.

SWAPPING AREA
OF
DISC MEMORY

Sesmtn‘t e

0

|

CORE
MEMORY

il

o,

L
00

Figure 4-1. Virtual Memory

41

Memory Segmentation

Section IV
r Yy
Relocatable 'inary Module
R P
]
VIRTUAL MEMORY] p— 11—
z .
Dl ® {1
b B
Code
Segment !:
Compiler ::
\ |core]
- . FILE
| { e AREA
1
— 5
= | |
k)
Data /
CODE Segment DATA
SOURCE SOURCE

Figure 4-2. Sources of Segments

As shown in figure 4-2, code is entered into the computer
in some source language, is translated to binary form by a
compiler, and is stored in the file area. The file area is
strictly a storage or holding area, and instructions are not
executable from here. This area may be on the same mass
storage device as the swapping area, but may also be a
separate unit such as a slower disc — since speed of transfer
is not as crucial here as it is for dynamic swapping of
segments.

Each compiled program or subprogram exists in the file
area as a relocatable binary module, When the user is ready
to execute his program, the appropriate command is given
and the operating system loads the binary modules of his
program into the swapping area of virtual memory. Simul-
taneously with this transfer, the binary modules are formed
into segments. This occurs in one of three ways, illustrated
by examples A, B, and C in figure 4-2. The choice depends
on what commands the user may have given. In example A,
the user has specified three binary modules to be combined
into one segment. In example B, one module forms one
segment. In example C, the module is split into two
segments; in this case, the user may have specified a break-
point, or it may have been left to the discretion of the
loader. Again, these are matters of programming and the
methods of specifying a segment are of no great significance
in the present context.

In any case, to transfer a code segment into virtual
memory, in the manner indicated above, is to allocate that

4-2

segment. Every allocated code segment has an entry in the
Code Segment Table, which is a set of reserved locations in
core memory that tells both the hardware and the software
exactly where each code segment is located. The table lists
a memory address if the segment is core resident, or a disc
address if disc resident, plus the segment length. It is
maintained by the operating system,

A data segment consists only of data. Like the code
segment, a data segment is fully protected. No user (more
strictly, no process) may have access to the data segment of
another user (or process). Generally speaking, each process
defined by a user causes a data segment to be created.
Initially, when the code segments are allocated, the data
segment contains no actual data, but consists only of an
initial stack having some initializing information. (Stack is
defined later.) But at least the data segment is aliocated —
that is, a place for data is established.

Like code segments, data segments have entries in a table,
called the Data Segment Table, which keeps track of where
each data segment is located, Unlike the Code Segment
Table, however, the Data Segment Table is not maintained
in reserved core; its location is known only to the operating
system software.

Once all segments have been allocated, the operating system
transfers into core memory the code segment containing
the entry point of the first process in the program, and
execution begins. The data segment will also be present in
core at this time,

As execution progresses, data will enter and leave the data
segment — perhaps as the result of various computations, or
perhaps via an external data source (exampleD in
figure 4-2).

Eventually the last instruction in a given process will be
executed. At that time the operating system will deallocate
all segments associated exclusively with that process. That
is, they will lose’ their entries in the Code Segment Table
and the Data Segment Table, and the respective code and
data will be overlaid by other segments coming into the
system. For a time, of course, the old code and data will
physically continue to exist in the virtual memory, but
there is no means by which this information can be
retrieved. Thus if there is some information to be saved as
the result of process execution, the process itself must save
such information in the file area.

Referring back to figure 4-1, the reader should at this point
be able to visualize not only the swapping of segments in
and out of core, but also the creation and elimination of
various segments as new user processes come into the
system and other processes come to an end. Obviously the
areas occupied by segments in both core memory and disc
memory will dynamically shrink and expand according to
demands placed on the system. (To maintain optimum
efficiency, the operating system has a timer and method of
keeping usage statistics, so that the less important or less
frequently used segments are most eligible for temporary
swapping out to the disc.)

Now that the basic concept of a segment has been
introduced, it is possible to show how the segment fits into
the overall scheme of things.

Figure 4-3 is an overview of the major system elements,
This figure shows the software that might exist in the hard-
ware at a given instant of time. It does not attempt to show
the possible links between elements, nor the relationships
that can exist among various processes, It is simply a snap-
shot view of elements, showing location and constitution.

Note that the software exists either (or both) in core
memory or in mass storage, here assumed to be disc. Note
also that when a user’s information is on disc (both code
and data), it can be either in the file area or, after being
formed into segments, in the swapping area.

The following paragraphs describe each of the elements
shown in figure 4-3.

RESERVED CORE

Only 12 memory locations are “reserved” in the strictest
sense — i.e., having a known, fixed address. These are the
first 12 addresses. See table 4-1. In addition, however, there
is also a permanent table which is reserved in the sense that,
once established, each entry has a permanent allocation.
The upper limit of the table, however, is flexible, depending
on how many entries there are in the table. This table is the
Device Reference Table (to be defined and discussed in a
later section). It begins at octal location 14 and uses four
locations for each device existent in the system.

The 12 fixed memory allocations can be divided into four
groups, the first of which is only a single location,
address 0. This location contains the Code Segment Table
Pointer, which is the absolute address of the first entry in
the Code Segment Table. Since this table may be moved by
the operating system to any convenient place in memory at
any time, the easily referenced location of address O makes
the current location of the table readily known to both
hardware and software.

The second group of fixed memory allocations, addresses 1,
2, and 3, is used for cold load operation. Location 1 will
contain the initial P-register value, and locations 2 and 3
will be used by the cold load program during execution.

The third and fourth groups each apply to separate
processors, if a dual-processor system is used. Locations 4
through 7 provide a Current Process Control Block pointer,
two interrupt stack pointers, and an interrupt reference
counter for processor 1, Octal locations 10 through 13 pro-
vide the same for processor 2. The Current Process Control
Block pointers will be discussed in this section under the
heading ‘‘Data Segments”, and the interrupt stack pointers
and counters will be discussed in the section on interrupt
processing.

Memory Segmentation
Section IV

Table 4-1. Fixed Memory Allocations

LOCATION CONTENTS

0 | Code Segment Table Pointer
I | P-Register Cold Load Value
i1 | For Cold Load

3 | For Cold Load

¥ | CPCB Pointer 1

1 Qll
6
7
0

Z1 1
IR 1
/ CPCB Pointer 2
1 QIra
12 ZI 2
13 IR 2
14
5 First Entry
b Device Reference
16 . Table
17 (Device #‘3)

SYSTEM LIBRARY

The system library is a flexible means of sharing frequently
used routines among many users. In addition to standard
library routines, the user may enter and delete routines of
his own in the library.

A library routine might be one procedure in a segment, a
whole segment, or a set of segments. As shown in
figure 4-3, some segments which contain (or are a part of)
certain library routines are permanently allocated. That is,
they have entries in the Code Segment Table. Other library
segments remain in the file area until such time that a user
makes a request for one of its routines. At that time the
operating system will load the affected segments, create
entries in the Code Segment Table, and provide appropriate
links for the user to access the desired routine.

OPERATING SYSTEM

The operating system is the master supervisory program,
overseeing the allocation of memory, controlling the loader,
swapping user segments in and out of core, designating time
to individual users, and so on. ’

In this manual, no particular version or configuration of an
operating system is implied, but rather the usage of the
term is meant to apply in a general sense to any operating
system used with this computer.

4-3

Memory Segmentation
Section IV

IN CORE

‘ON DISC

RESERVED CORE,
PERMANENT TABLES

SYSTEM LIBRARY
?crmanzntly Re;ident

OPERATIN G SYSTEM|

Permanent Modules

SYSTEM LIBRARY
Allocatable Routines

COMPILER(S)

-

OPERATING SYSTEM
Allocatable Modules

USER ALLOCATIONS

INDIVIDUAL USER'S JoB

COMPILER(S)

SWAPPING AREA

DATA SEGMENT

|

le
e

(Other uSer)

PROGRAM FILE AREA
PROCESS PROGRAM
CODE SEGMENT FILE USER
SUBPRO GRAM SUBPROGRAM
Copy of all LIBRARY
Code Segmants (USL)
A
SUBPROGRAM for this User
and
CODE SEGMENT
[o SYSTEM
RELOCATABLE
PROCESS LIBRARY
KILE
(SRLF)
DATA DOMAIN
DATA SEGMENT
Privileged DatTa ABSENT
MENT AT,
STACK DATA SEG S DATA
FILES
(Th.‘s User)
STACK (2nd Process)
- .
™ >
OTHER WUSER(S)
CODE SEGMENT
PROGRAM UsL
FILE and
CODE SEGMENT
S£4 SRLF

“ ABSENT DATA [4—®| DATA FILES

4-4

Figure 4-3. Software Elements in Hardware

As indicated in figure 4-3, not all parts of the operating
system need to be permanently resident in core. Certain
modules may be retained in the file area, and be allocated
on a requirement basis.

COMPILERS

Several language compilers are available. If only one
compiler is used on a system, it might remain permanently
resident. For a multicompiler system; however, it is more
efficient to retain the permanent copy of each compiler in
the file area, and to copy the compiler into core memory
only when required. Due to the re-entrant feature for all
programs run on this computer, only one copy of a
compiler needs to be present in core, regardless of how
many users may be simultaneously compiling. The
cperating system keeps a count of how many users are
using a given compiler, and when this count reaches zero,
the compiler is deallocated.

USER ALLOCATIONS

As shown in figure 4-3, the remaining space (after alloca-
tions for reserved core, library, operating system, and
compilers) is available for users. This space includes both
core space and disc space. Bear in mind that the relative
block sizes in figure 4-3 do not indicate comparative sizes
of space; the file and swapping areas, for example, may be
many times the size of any allocation in core memory.

USER JOB. When a user logs into the system, he estab-
lishes a job. During the course of his job he will execute a
program upon information contained in a separate and
distinet data domain. A program embraces all code which
may come into the machine during the course of a job.
Similarly, the user’s data domain consists of all data that is
used or generated during the course of a job.

PROCESS. A program is executed on the basis of indi-
vidual processes. A process cannot be strictly defined as a
physical entity (e.g., that it contains a certain number of
code segments). Rather, a process should be viewed in a
dynamic sense, as a “window” across the system, embracing
a varying set of segments that come and go, typically
including segments from the system library.

During the course of a process, various code segments will
necessarily become allocated, and it may even create other
processes which will in turn allocate still other code
segments. When at last a process comes to an end, all of the
segments it has (exclusively) caused to be allocated will
become deallocated.

An important feature of a process is that each process
created causes one data segment to be created. The data
segment created by a process is for the exclusive use of that
process (though the operating system does provide for
communication of data between related processes). Note in
figure 4-3 that two data segments are shown in the data
domain, corresponding to the two shown processes.

Memory Segmentation
Section IV

As implied earlier, the operating system keeps track of the
various processes existing in the system. It does this
through an interdependence or relationship between
processes, whereby information embedded in each main
process tells what other processes are currently existing (or
“descendant™) on that particular branch of a tree structure,
and where they are located. Each Job Mein Process (the
“ancestor” process for a given job) maintains this infor-
mation in a Process Control Block table, and a “progenitor”
process in the operating system keeps track of each Process
Control Block.

Processes will again be mentioned under the headings of
“Code Segments” and “Data Segments”, but further details
regarding their relationships, substates, priorities, means of
data communication, queuing, dispatching,etc., are
extraneous to the present discussion. Refer to the operating
system documentation for this type of information.

CODE SEGMENT. Code segments were defined earlier as
consisting primarily of instruction code, and being the basic
entity for transfers of code between core and the swapping
area,

As shown in figure 4-3, a code segment may contain several
subprograms, each of which may have been separately
compiled in the file area before becoming part of a segment
in the swapping area. Subprograms may be further broken
down into a mixture of procedures and serial code, but this
is dependent on the nature of the source language and
specific coding.

One important point to note about code segments is that,
since code cannot be changed after it is compiled, the copy
of a segment in the swapping area is identical with any copy
that has been transferred into core. Thus when the oper-
ating system decides to swap out a code segment, no actual
transfer needs to take place, The operating system simply
makes note that the segment is now absent, and may then
overlay the core area occupied by that segment. This is
unlike the data segment which, being constantly subject to
change, must be physically transferred to disc if swapping is
required. (Note unidirectional arrows for code segment
swapping and bidirectional arrows for data segment
swapping in figure 4-3.)

CODE AND DATA SEGMENTS

The preceding introduction provided a bridge between the
external aspects of the system and the inner workings of
the hardware, which now follow. Attention is to be focused
on main core memory, regarding the swapping area only as
a place where segments can be sent when main memory
becomes too crowded.

4-5

Memory Segmentation
Section IV

At first, memory will be viewed as a whole, as a repository
for some number of segments — whether they be code or
data — with perhaps some spaces between. It will be shown
how space is managed in an orderly and efficient manner,
Following this, code segments and their interrelationship

during execution will be discussed, followed finally by data
segments and the stack concept.

SEGMENTS IN MEMORY

Figure 4-4 shows three segments being present in core
memory. (The actual number could be up to 2565.) They are
separated by three blank segments, such as might typically
be the case during operation.

To assist the operating system in its task of filling core with
variable sized segments, the memory is threaded with two
major systems of links. These are the main memory links
and the free space links. The main memory links contain
pointers which link all segments, both used and free, while
the free space links are responsible for linking only the free
(or blank) segments. (Figure 4-4 is a simplified form of the
link structure used by the operating system, and should not
be construed as documentary.)

Linking pointers are given for both the forward direction
and the backward direction. Note first the main memory
links, These consist of a few words preceding every used
and free segment. The first word is the segment head, and it
includes information to state which type the segment is —
used or free. A second word contains an absolute address
pointing to the segment head of the next segment in core.
This is the forward direction (i.e., to a higher address). Note
that the forward pointer for the last segment wraps around
the end of core to point at the first segment. A third word
contains an absolute address pointing to the segment head
of the preceding segment in core — i.e.,the backward
direction. Wraparound also occurs in this case, from the
first segment to the last segment.

The free space links are similar to the main memory links,
but are embedded in the segment rather than preceding it.
The first word contains an absolute address pointing to the
third word of the next free segment. Similarly, the second
word points back to the third word of the preceding free
segment. The significance of pointing to the third word is
that it contains the size of the free segment. This makes the
sizes of free segments easy to reference; in fact the
operating system may easily find segment space of a desired
size by issuing only one instruction, the Linked List Search
(LLSH) instruction.

When segments are deallocated or overlaid, the links are
automatically updated by the operating system. For
example, if the middle filled segment shown in figure 4-4
should become deallocated, it will, together with the blank
segments immediately preceding and following that
segment, form one larger blank segment. The intervening
links are eliminated, and the links preceding and following
this new larger block are extended to define one contiguous
blank segment.

4-6

MAIN MEMORY
LINKS

Backward Forwaed
—
e

r""

RESERVED
CORE

USED
FORWARD

BACKWARD

Y
AR

FREE
FORWARD

BACKWARD

FORWARD FREE
BACKWARD FREE

FREE SPACE
LINKS

Backward Forward

SIZE

.
.
.
.
.

Blawnk Segment

s000 0 o

USED

FORWARD

BACK WARD

FREE

FORWARD

BACKWARD

FORWARY FREE

BACKWARD FREE

S|ZE

Blank .chmcwt

USED

FORWARD

BALKWARD

FREE

FORWARD

BACK WARD

FORWARD FRFEE

L
A
J

BACKWARD FREE

Incrusiny

S1Z&

Addresses

Bjank .565 mﬂ-ﬂt

Figure 4-4. Contents of Core Memory

As another example, suppose that a segment coming in is
too large to fit any of the blank spaces, and the operating
system determines (again) that the middle segment must go.
The operating system swaps the middle segment out to the
disc, and begins allocating the new segment immediately
following the top segment. At some point the allocation
ends, leaving a certain amount of blank space from that
point to the next filled segment. The operating system
accordingly establishes all the necessary new links to restore
an accurate portrayal of memory space.

CODE SEGMENTS

During the execution of one user’s process, there will
typically be several code segments in core and a single data
segment. Assume that the current process presently has two
code segments in core, as shown in figure 4.5, (The data
segment, not shown, will be discussed later.)

The purpose of figure 4-5 is to show how the system keeps
track of where code segments are, and how references may
be made from one segment to another. Although the figure
illustrates hardware, it remains the responsibility of the
operating system to control the actions shown here.

The Code Segment Table and the CST Pointer have both
been mentioned before. In summary, it was explained that
the CST Pointer is permanently resident in location 0, and
that it contains an absolute address pointing (1) to the
starting location of the Code Segment Table, This table tells
where each code segment (present or absent) is located.

Each entry in the Code Segment Table has a unique
number, called the code segment number, which identifies a
particular segment. Each entry consists of a doubleword
descriptor which includes the absolute address of the
related segment and its length. (The format of CST entries
is given in figure 4-6.) Entry number 0 in the table is unique
in that it simply points (2) to the final entry in the table;
this defines the length of the table for the benefit of the
operating system in allocating core space for the table itself.
Segment number 0 does not exist.

The example Code Segment Table in figure 4-5 presumably
has 212 entries for all code segments of all users currently
on the machine. Assume that one user is executing a
process which requires code segments 22 through 25.
Segments 22 and 23 are required to be in core, since there
is a reference that has caused a link between them, whereas
segments 24 and 25 are not presently needed and so are
absent on disc.

The process is currently executing instructions in
segment 23. This means that the address value contained in
the second word of CST entry 23 has been loaded into the
PB-register. Thus the PB-register is pointing (3) at PB(a).
The PL-register, using a value derived from the segment
length, is pointing at PL(a). The P-register is advancing from
PB(a) toward PL(a), and instruction referencing is relative
to the current values of the P-register.

Memory Segmentation
Section IV

The last nine locations of segment 23 are not part of the
coded segment, but were added by the operating system
when the segment was loaded into the virtual memory. This
is the Segment Transfer Table, which contains linking refer-
ences for every procedure call in the segment. A procedure
call is an instruction which references a set of instructions
elsewhere in the code segment; that set of instructions is
structured as a procedure, to perform a standardized oper-
ation or computation and then return control to the
instruction immediately succeeding the call instruction.

Note that entries in the Segment Transfer Table are
numbered from the end back towards the code. Entry
number 0 gives the Segment Transfer Table length (see STT
Length word format in figure 4-6). This indicates (4) the
number of the last STT entry, so that the hardware can
make validity checks on procedure call references; for
example a call to entry number 9 would be invalid. (If a call
to entry O is made, the reference will be taken from the top
of the stack instead of from the Segment Transfer Table.)

When the execution sequence reaches the first PCAL
instruction, a call is made (5) to the Segment Transfer
Table. The call requests the fourth entry in the table;
i.e., since the PCAL instruction uses PL- addressing, the
instruction references cell PL-. This location contains a
local program label (see format in figure 4-6), which implies
that the called procedure is located within the same
segment. The reference is a PB relative address pointing (6)
to the beginning of a procedure or block.

After some preparatory operations, which include saving
the return address on the stack, the PCAL instruction
transfers control to the procedure. Upon encountering an
EXIT instruction in the procedure, control returns to the
instruction immediately following the first PCAL.

In this example there were no references outside the
current segment. In the following example an external
reference is made.

When the execution sequence reaches the second PCAL,
another call is made (7) to the Segment Transfer Table. The
call requests the fifth entry in the table, which happens to
be an exiternal program label, indicated by a “1” in bit 0
(see format in figure 4-6). This implies that the called pro-
cedure or block is in some other segment. The contents of
the label tells which segment, and also gives the STT
number in that segment which contains the local reference.

The PCAL instruction, after the usual preparatory
operations, transfers control to the called procedure as
follows. The segment number given in the external program
label points (8) to a specific entry in the Code Segment
Table; this is assumed to be entry number 22. A value for
PB is picked up in the second word of this entry, and is
loaded into the PB-register. This causes the PB-register to
point (9) to the starting location of code segment 22
(PB(b)). The limit (PL(b)) is also established. Meanwhile,
the STT value given in the external program label is
pointing (10) to entry number 4 of the Segment Transfer
Table. This causes a PB relative address to be picked up for

4-1

Memory Segmentation
Section IV

. [csT PoiNTER Location 0 1
CST END
---------- I
| : : @
Code : . 1
5¢3m¢nt’ 1 : 1
Number .
CODE SEGMENT 22
(———Tlu' e (s @ PB ()
23 r---- e @] ~ :
24 - 3 BEGIN~—
[S T, 4
2 12 END
i . ! .
! . X .
] . I 5
M A4 [0]U]PB Rel Address SEGMENT
T 3 T o P 3 TRANSFER
2 TABLE
SEG#22 1 : 0 PL(K)
SO G |y
STT #¥¢
CODE SEGQMENT 28
L_. P8 (a)
PCAL (%) —F———
: ®
PCAL (8) ——t—~
— » BEGIN
STT END
@ Entry .
Number .
8 "
7
)
. s[I[sTr#[sec = Ja’ SEGMENT
|~ ¢ [0[U] P8 el Address |¢—~———" > TRANSFER
. 3 TABLE
®
N—0 [Last STT# = 8 | PL()

Figure 4-5. Procedure Calls Within and Between Code Segments

CODE SEGMENT TABLE Double word

ol1 2 3|4 s'¢ 7'3'?(0'::':2[:3'1*'15
Alm|TIR LENGTH
SADDRE 55

Absence bit (=1 if segment Js abseat)
Mode bit (=1 i pn’v;‘le’ed mode)
Trace bit (31 to call Trace routine)

Reference bit (for statistical use by
operating system, Sot to | whea accessed)

LENGTH This value times 4 (wax = 1£,384)

ADDRESS Absolute memory address (for PB)
or absolute disc address i+ abseat

x>

SEGMENT TRANSFER TABLE Words

STT Length i
0 r_'2'3“'5'4l7'3‘9[/0':;‘:1 1371418
[o]ufo o 0 0 0 of LENGTH

U Uncallable bit
LENGTR Maximum = 255 (Calls from

external seg ments may reference omly
the first 128 entries, PL +thru PL-127.)

Local Froern« Label
ol17 27 3[‘/'5'417 879 lm'n 'n[rs‘m'u
[o]u] ADpRESS

U Uncallakle bit
ADDRESS P8 rdat:'ve) + onlj

External Program Lahel
o727 311/'5' c|7' &' q[;o'u 'llll!'l'{'ls’
[sTT # | SEG #

STT # STT entry number in target

- segment, maximum = |27

SEG # qu_ye‘t scfmcut

STATUS \ord

of17273 'f'5"4[7r8'9]/o'41'u£3'w'45
mM{zfT[r]o]c] cc|] seEqmENT #
M Mode bit (= for privileged mode)

1 Intcrrupt enable (‘)/d(;-h!e (0), external
T Traps enable (1)/disable (0), user
* R Right Stack Opcode bit (Pc,nd"nj = l)

O Overflow bit

C Caff'y bit

CC Conditiog Code
SEGMENT # o the caller

Figure 4-6. Formats Associated with Code Segments

Memory Segmentation
Seetion IV

the P-register. The P-register now points (11) to the starting
address of the procedure or block, and execution begins. (If
an STT number of 0 is given, execution would start at
PB(b).)

Calling procedures outside of the segment in this manner is
subject to a number of rules, checks, and safeguards. These
ensure that the call is allowable, and that other users are
fully protected from deliberate or accidental invasions of
privacy. The way in which the operating system sets up the
Segment Transfer Tables ensures that all transfers are legal
for that process. Even if the user transfers via the top-of-
stack reference into another user’s code segment (assuming
that it is callable) he can do no worse than execute part of
that other segment. He will certainly render his own stack
data meaningless, and furthermore can in no way read or
relocate the other user’s code or data. His end result is
completely unpredictable, but would likely eventually
invoke one of many possible error traps.

In addition, if the operating system ascertains that a local
reference in a segment is of a category that will not
normally have external references to it, the operating
system will set the uncallable bit in the STT entry. When
this bit is set, no external references in user mode may be
made to that procedure or block. One typical application of
this bit is to prohibit direct user access to the uncallable
intrinsics of the operating system — i.e., those operations
that the operating system will perform on behalf of a user,
but cannot be directly accessed by the user,

At the conclusion of the called procedure, control is
returned to the original segment by the EXIT instruction.
This instruction looks at the Status register, which saves the
segment number of the caller (see format in figure 4-6), and
thus (12) returns the PB-register value back to PB(a). The
saved P relative address on the stack re-establishes the
return point, and execution continues at the location
immediately following the second PCAL instruction.

DATA SEGMENTS

In the introductory paragraph under “Code Segments” it
was stated that one user’s process may have several code
segments, but only one data segment. The following few
pages deal with the data segment, particularly concentrating
on the stack area of that segment.

As a beginning point of reference, figure 4-7 shows how the
operating system establishes and keeps track of a particular
data segment. As indicated by a note in the figure, this is
accomplished by tables maintained by — and known only
to — the operating system.

Assuming we are working with processor number 1 of a
single- or dual-processor system, core location 4 contains
the Current Process Control Block pointer. In the example
shown, this pointer (1) has selected process number 31 by
pointing to that particular block in the Process Control
Block table. This means that process number 31 is currently
being executed on the machine.

49

Memory Segmentation

Section IV
Core
Location 0] CST Pointer b= — —— — —>(Fu'9ur¢ 4-5) DATA SEGMENT 27
2
y | Privil d
4] CPCB Pointer rivilege
5 - @ @ Data
Area

PCB Extension

__p.._@____._.._.._____

the operaling syslem

PCROCESS DATA SEGFEGE NT r (Stack reg values,
ONTROL Dat TABL . .
BLOCK Seypge:t file location, etcl)
TABLE No, Op=—=— — = ~—~— 1 '
T N p——
; | | . !
: | : |
" | . I Stack
. Af‘cd
: 27 f- = == ==~ T— (ch f.' 3 ’-I-S)
Process D
Control Code Segment Mog—— 28 — == — =~
Block . t
) pd . e < |
rocess °
Neo. 3! Y pata Seyment No. @ | l
Alternste DB > /
Other
‘Process J
Information z:;
. ! }
i 1 Tables maintained by 1 .
and knewn only To nereasing
l l Addresses

Figure 4-7. Locating the Stack for One Process

The Process Control Block contains considerable infor-
mation pertaining to the control of that process, such as
priority, queue pointers, descendancy pointers, and so on.
Included in this information (2) are saved stack register
values and other information which is actually contained
within the segment. This area of the segment is the Process
Control Block Extension.

However, relevant to the present discussion, the most
significant information consists of the code segment
number(s) and the data segment number. The absolute
address contained in the CST pointer location, indexed (3)
by the code segment number, identifies a particular code
segment as shown earlier in figure 4-5. The data segment
number points (4) to a doubleword descriptor in the Data
Segment Table. :

4-10

Assuming that the data segment for this process is number
27, entry number 27 in the Data Segment Table will be
pointed to. The second word of this entry will give an
absolute address pointing (5) to the beginning location of
the segment.

The data segment itself includes three separate areas, one of
which is the PCB Extension already mentioned. The privi-
leged data area is an auxiliary data area (i.e., additional to
the stack area), which is available to the user by means of
an alternate data base value (6) provided by the Process
Control Block. When this area is accessed, the DB-register
takes the alternate DB value, and addressing can then be
positive with respect to this value. Figure 4.7 shows this
area to be contiguous with the rest of the segment (thus
alternate DB also points to the beginning of the segment),

but this may not necessarily be the case. The operating
system may place the privileged data area in some other
part of core.

The remaining portion of the data segment consists of the
stack area. The stack is where most dynamic computational
operations take place, and it is the next major subject of
discussion. The study of the stack, its operation and effects,
will occupy the remaining portion of this section.

The stack can be defined as a linear list of data in which the
last element added to the list is in the prime position for
computational operations (comparable to an accumulator),
and is the first element to be removed when-the program
needs data from the stack. This type of data structure is
also more strictly identified as a “LIFO” (last in, first out)
stack, since data is removed from the stack in the reverse
order from which it was added.

Although many instructions can reference elements within
the stack, it is the element currently on the top of the stack
which is of greatest significance. Note that the top element
of the stack will be a different word, occupying a different
physical location, each time data is added to or deleted
from the stack. However, that top element has an identity,
to both hardware and software, and is termed the top-of-
stack element. It is also known by its acronym, TOS, and
loosely as the top of the stack.

Figure 4-8 shows the basic construction of the stack area
and the way stack registers in the CPU delimit the various
parts. Remember that there will normally be several stacks
in memory, one for each process, but only one will be
active at a given time. The stack registers point to the
currently active stack.

The stack area is bounded at the low end by the DL-register
and at the high end by the Z-register. A major division into
two parts is delimited by the DB-register, which points to
the base location of the stack. The area between the DB
and DL locations is not part of the stack itself, but is
closely associated with the stack by providing an area for
dynamic own arrays. Except for programmatical appli-
cations, this area is not particularly significant, and will be
ignored in the following discussions. Its existence, however,
should be acknowledged.

Just as the DB-register points to the base location of the
stack, so the SM-register points to the current top-of-stack
location (in memory). The convention of drawing stack
diagrams corresponds to the manner in which code is
written (or any written language), beginning at the top of
the page and proceeding to the bottom. Thus the stack
appears inverted, with the last entry (top-of-stack) toward
the bottom of the diagram. Addresses increase in a down-
ward direction. :

Whereas the DB-register and Z-register contents are static,
the SM-register content is constantly changing as the pro-
gram progresses, moving up and down the stack area. At all
times, the area between DB and SM is filled with valid data,
while the area between SM and Z is available for additional

Memory Segmentation

Section IV
CPU MEMORY
Stack Rey-‘sfcrs Stack and Array Area
| DL-Register }— > T
. Owa
. Array
. Area
; Iy
| D8 - Register | 7 3
Base
o" .
Stack : 4
. Filled
[Q*Registci‘} ' P
: 4 > <
| SM-Register } 7 /7 - s
TOp :
of .
Stack ¢
Increasing
Addresses Avail- |
‘, . able
[Z- Register |- 4

Figure 4-8. Stack Registers and One Stack

data. Should the quantity of data exceed the available
space, the attempt to move SM past Z will invoke an inter-
rupt to the operating system, which may grant additional
space (new Z value), one or more times —within certain
limits.

Unlike the fluid cell-at-a-time movement of the SM pointer,
the Q-register value moves sporadically in jumps. It is the
purpose of the Q-register to retain the starting point of data
relating to the current procedure. Thus when a new pro-
cedure begins, the Q pointer jumps ahead to establish a new
starting point at the current top of the stack. Conversely,
when a procedure ends, the Q pointer jumps back to the
place it had marked earlier for the preceding procedure,
This action will be illustrated shortly.

As far as the current procedure is concerned, its stack data
consists of the locations from a “base’ of Q to the current
top of the stack.

4-11

Memory Segmentation
Section IV

In the foregoing discussion of basic stack structure, the
SM-register was assumed to point at the absolute top of the
stack. This is true only for the portion of the stack “in
memory”. In actual fact, provision is made to allow a few
top words of the stack (maximum of four) to “spill over”
into hardware registers in the CPU. This is shown in
figure 4-9, where the three topmost words are actually in
the CPU. The SM.-register points to the last stack element in
memory, but the actual top-of-stack is in the third CPU
register. The actual top of the stack is designated as S.

The four registers in the CPU reserved for receiving top
stack elements are scratch pad registers employed only by
the CPU hardware. They may not be addressed externally.
Externally, the programmer is interested only in the S loca-
tion contents. The hardware defines the address for him to
be at (in this example) the SM-register value plus 3. The
value 3 is retained in the SR-register, a three-bit register,
which will never indicate a value higher than 4,

The address value S obtained by adding the SR-register
contents to the SM-register contents is a completely valid
address, In fact, when the CPU registers must be cleared for
some other operation (e.g.,a new procedure or an inter-
rupt), the register contents are physically transferred to the
numerically corresponding memory locations. In this
example, the SM pointer would move up by three locations,
and the SR-register content would become 0.

Again it must be stressed that the user is not aware of these
registers, The reason for their existence is speed. For
example, it is possible to perform computations on the four
top elements of the stack without making a single memory
fetch.

cPU ME MORY

Stack

[Q—Reyister‘} L

| SM- Register }

SR- Regfs‘ter
(

m\,\
-
[
|
|
!
!
!
I
|
1
L

= (5M) + (SR)

Address Address + 3

Figure 4-9. Top- of- Stack in the CPU

4-12

Since the actual top of the stack (S) is the value of interest,
and since S is a valid address, the separate existence of SM
and SR values is commonly disregarded, as in the following
discussions.

The action of the Q-register in marking the starting location
for each procedure’s data is shown in figure 4-10,

This figure will be discussed in detail, butdriefly, what has
occurred in the example shown is the following. The
currently executing code segment was working with data in
the temporary storage area immediately following the “first
Q” location. At that time, the Q-register was pointing at
“first Q”, S was indicating the top of the stack, and the
Z-register was pointing to the end of the data segment. If
the executing code segment never called a procedure, the
stack picture would never get more complicated. However,
at some point the code called a procedure (perhaps a
lengthy mathematical routine) by means of a PCAL in-
struction. This caused additions to the stack as indicated
(procedure A). New data was incurred as the procedure
began, and S pointed to the top of that data as it was
generated. Then procedure A called procedure B (perhaps a
frequently used equation), which resulted in new additions
to the stack, as shown. Then still later, procedure B called
procedure C (perhaps a library routine for a trigonometrical
function), resulting in a final picture of the stack as shown.

What will happen next is that procedure C will end, saving
its answer in a convenient place for procedure B to access,
and issuing an EXIT instruction. Then all the other stack
additions due to procedure C will be eliminated (by moving
the S and Q pointers back), and procedure B will continue
its computations on its own stack data. Likewise, pro-
cedure B will come to an end, save its data, and exit,
resulting in the elimination of the procedure B stack data.
And finally procedure A will do the same, returning the net
answer to the new top of the stack, on the main temporary
storage area.

It is obvious from this brief outline of events that each time
control is returned from the called procedure to the caller's
procedure — within the code segment — the stack registers
also return to the caller’s data area. Thus the stack mark
chain virtually eliminates system overhead in keeping track
of lexicographical levels (nesting of procedures). For
example, the simple return sequence described above, C-to-
B-to-A-to main program, is not imperative. Procedure C
could have been called again before the return to the main
program was complete. Or other procedures (D,E,F, etc.)
could enter the picture. But the return for both code and
data will always remain perfectly in step — from the called
to the caller.

Now the details. Beginning at the top of figure 4-10, note
that the area between DB and the first Q is the global data
area, The locations in this area are reserved by the process
for variables (possibly arrays) which it has declared to be
global for all procedures incurred by that process. That is,
any procedure using this particular data segment may refer-
ence the variables in this area.

Memory Segmentation
Section IV

The individual locations in the global data area may contain
an actual value, or may contain an indirect address pointing
08 —» to some other location. (That other location either will
Primary contain the value or will be the start of an array.) Since DB
GLOBAL (25¢) relative addressing is limited to a maximum of DB+255,
- — -~ DATA - — - - only the first 256 locations of this area may be addressed
-» AREA Secon directly. These locations are denoted as the primary global

. data area. If the number of entries exceeds 256, indirect
addressing must be used. Locations in this area (convenient
First @ w for arrays) are denoted as the secondary global data area.

: dary

When the operating system finishes assigning space for the
global variables, it points the Q-register at the next
Tc»\parafy succeeding location (first Q). This is the actual start of the

Sto rage stack proper. Initially the S pointer is also pointed at this
location, since there is as yet no data on the stack. As the
executing code segment proceeds to obtain, manipulate,
and generate data for the stack, the S pointer moves away
from Q, indicating at all times the top of such data.
Procedure farameters (Examples of typical operations will be given under the

Stack next major heading, “Examples of Stack Operation™.)
-J Marker

~

Previous

Qr- - =-essscsccc-onog

L.Yi

-

Then at some time during execution of the code segment, it
is assumed that Procedure A is called. Accompanying the
call are a set of procedure parameters which are placed on
the stack just prior to issuance of the PCAL instruction.
. These are actual parameters, to be substituted for formal
parameters in the procedure, and are referenced by Q-
addressing.

Procedure A

Procedure Farameters

Stack Calling the procedure causes a four-word stack marker to be
Marker placed on the stack. The format of this marker is shown in
figure 4-11. The first word saves the current contents of the
X-register. The second word saves the return address for the
code segment —i.e., the P-register address (plus one) relative
to the PB-register contents. The third word saves the Status
register contents, which includes the code segment number
of the caller, in case the called procedure is external to the
current code segment. (This was described earlier under
“Code Segments™.) The fourth word is the one of most
interest to the present discussion. This word contains the
Procedure Parameters delta Q value, which tells how far back it is to the previous

Stack location to which Q was pointing. In this case, delta Q is
}Harker pointing to “first Q”. The Q-register now points at this
delta Q location.

Previous

A}
-

Procedure B

JE S > J PN
’
’,

Y
Allocationg
due to
calling
Procedure C

T
L

|

Lecal Variables

A

Allecationg
local to
Procedure C

Temporary
Storage

of1"2"3]4'57¢ 7'8'7]/0'//'/2 131415
-%—k X-Register Contents

‘ PB Relative Keturn Address for P-Reg
MII[T[r[o]c] cc | Code Segment =
Delta Q

P e e e o o e

[4

Figure 4-10. Stack Mark Chain Figure 4-11. Stack Marker Format

4-13

Memory Segmentation
Section IV

The sequence of events described in the preceding two para-
graphs is repeated when proceduresB and C are called.
Each time, the Q-register will point to the delta Q location
of the current stack marker, and the contents of that
location will point back to the previous setting of Q. Thus
it is seen that when procedure C is executing, there will be a
chain of delta Q stack marks linking the present Q setting
back to the first Q.

Just as the links are established as the procedures are called,
so are they used and eliminated as the procedures are
exited. When procedure C ends, the EXIT instruction
returns S to equal Q, essentially placing the delta Q value
temporarily on the top of the stack. This allows the EXIT
instruction to compute a new value for the Q-register
(“previous Q”), and it appropriately moves Q back. The
EXIT instruction causes S to decrement step-by-step
through the stack marker, restoring Status, P-, and X-
register contents for procedure B.

Lastly, S is moved back to eliminate the unwanted param-
eters of procedure C. Presumably one or more parameters
will be computed answers resulting from procedure C, and
so S is only moved back so far as to preserve those desired
answers (which are now on the top of the stack). This
ability to move S back selectively is one of the functions of
the EXIT instruction (refer to instruction definition).

Once again, the sequence of events described in the
preceding two paragraphs are repeated, until all procedure
data and stack marks are eliminated, and only the final
answer is on the top of the stack.

As a final note, observe the breakdown of allocations for
one procedure (procedure C illustrated). As shown, the pro-
cedure parameters and stack marker are allocations due to
calling the procedure. The remaining locations are allo-
cations local to the procedure, which are further broken
down into an area for local variables and an area for
temporary storage.

EXAMPLES OF STACK OPERATION

Up to now, the mechanics of the stack have been examined
without the application of specific values or problems. To
conclude this section, various examples of stack operation
will be given. The examples are progressively instructive
and, in each case, the advantages of this type of archi-
tecture over the register structured computer will be
illustrated.

The examples do not necessarily show all the advantages of
a stack machine. In fact one of the major advantages has
already been shown — that of preserving code and data
conditions by marking the stack. This facilitates rapid
environment changes (e.g., swapping users), saves overhead

4-14

for unlimited nesting of procedures, and helps to make
code re-entrant. Another major advantage, that it allows
fast interrupt handling, will be covered in a later section.
The following examples are primarily designed to aid in
understanding the stack concept.

BASIC ARITHMETIC

Figure 4-12 shows a sequence of basic instructions being
executed on some data which is presumed to exist in the
stack. The upper row shows the most elementary method
of adding and removing data to and from the stack, via load
and delete instructions. The lower row shows the effects of
four arithmetic instructions.

As shown for the initial stack condition (A), the data
consists of six numbers in consecutive locations. The A-
register points to the oldest element on the stack, and S
points to the element currently on the top of the stack. A
Delete instruction (DEL), executed between A and B,
causes the number 44 to be removed from the stack; this is
accomplished by simply decrementing the S pointer by one.
Then, between B and C, a LOAD instruction causes the
number 37 to be loaded onto the stack; this is accom-
plished by storing the number 37 (from another memory
location) into the location formerly occupied by the
number 44, and then incrementing the S pointer by one,

Between C and D, an ADD instruction is executed. This
instruction adds the two top elements of the stack together,
deletes both from the stack, places the answer (100) on the
top of the stack, and points S at the answer.

Note

As mentioned previously, up to four of
the top stack elements may exist in CPU
registers. Obviously, to execute the ADD
instruction, at least the two top elements
must exist in the CPU., To ensure that this
is the case, the hardware checks the
content of the SR-register. If the number
contained therein is not at least 2, one or
more memory fetches are made so that
the instruction can be carried out.

Between D and E, a Multiply instruction (MPY) is
executed. This instruction multiplies the two top elements
of the stack together, deletes both from the stack, places’
the answer (700) on the top of the stack, and points S at
the answer.

To subtract (SUB), the top element is subtracted from the
next-to-top element. Thus the answer at F is the result of
500-700, or -200. (As before, only the answer remains
after computation is performed.) Finally, at G, negation is
performed. This simply reverses the sign of the number on
the top of the stack; in binary form a two’s complement
operation is performed.

Memory Segmentation

®

Section IV
LOAD/DELETE After Delete After Load
Initial Stack Iastruction Instruction
Q —» ! Q—> ! Q —P /
' 1 /1l
500 s00 Soo
7 7 7
63 5 —» 63 63
S —» 44 S —P 37

- ©

ADD/MULTIPLY /SUBTRACT /NEGATE

Aftar Add After Multiply
InstrucTieon Inglruction
Q —»] 1 Q —» [
1/ 11
So00 £00
7 S —» 700

S — 100

® ®

After Subtract After Negate

Instruction Instruction
Q —» / Q]
1 1
S—» -200 S —» 200

® - ©®

Figure 4-12. Basic Arithmetic Stack Operations

Although the sequence A through G in figure 4-12 is a very
simple series of operations, it does illustrate the advantages
of the stack technique in computation. First, note that
regardless of how many elements of data there are or what
memory cells they occupy, the operand for each instruction
is consistently the same — the top of the stack. This permits
implicit addressing; i.e., since the operand is understood to
be the top of the stack, it is not necessary to give an
operand address in the instruction word. Thus (except for
LOAD, which must specify a relative address to load from),
the instruction can simply say ‘“add”, or “multiply”, etc.
The immediate benefit of this is that it allows code com-
pression. Two instructions can be given in a single word.
The sequence D through G, for example, can be given in
two instruction words. Since this reduces the number of
memory fetches, the speed of computation is considerably
increased.

A second point to note is that temporary storage of inter-
mediate results is automatically provided. For example,
once the parameters 63 and 37 (at C) have been added,
they are no longer required and so are thrown away. But
the answer, which is substituted on the top of the stack, is
automatically in position (adjacent to 7) for the ensuing
multiplication. Thus there is no need to provide a dedicated
location to save the temporary quantity 100 (or any of the
other intermediate results).

It is apparent that the order of placing elements on the
stack is very important. However, it is one of the compiler’s
functions to provide the correct order, and (except in
assembly mode) this is of little concern to the programmer.

PROCEDURE CALLS

Figures 4-13 and 4-14 illustrate the operations involved in a
procedure call. Figure 4-13 shows programmatically how a
procedure is set up and called, and figure 4-14 shows what
happens to the stack when the procedure is called and
executed, .

The purpose of this example is to demonstrate the ease and
simplicity of parameter passing — i.e., the means by which a
program can substitute actual parameters for the formal
parameters declared in a procedure. In this example (see
bottom block in figure 4-13), the formal parameters are J
and K, and the actual parameters to be passed to the pro-
cedure are 25 and 10, respectively.

As shown in the bottom block of figure 4-13, the calling of
a procedure has an equivalency in mathematical terms. That
is, a procedure is like a predetermined equation, in this case
“ANSWER = J/K”. Calling the procedure is like a request
to solve the equation for the specific values of 25 for J and

4-15

Memory Segmentation
Section IV

SOURCE LANGUAGE

I BEGIN INTEGER ANSWER;

(2 INTEGER PROCEDURE QUOTIENT(J,K);
3 VALUE JK;
4 INTEGER J KX;

Pro-

cedure | 5 BEGIN
é QUOTIENT < J/K;
L7 END;

Call {8 ANSWER < QUOTIENT(25,10);
9 END:

)

MACHIME LANGUAGE

ASSQMH} Qctal
(10 LOAD Q-5 041605
I LOAD Q-4 041604
pg3;~4 12 DIV, DEL 002340
¢ 13 STOR Q-6 051606
L EXIT, 2 031¥02
I5 ZERO, NoOP 000600
J 16 LDI, 31 02103
Call £ 17 LDI, J2 021012
/8 PCAL, 20 031020
L /9 STOR DB+0 051000
20 PCAL (to system) 031XXX
MATHEMATICAL LANGUAGE
Procedure: ANSWER = J/K
Call: Solve ANSWER for
J = 25 and = J0
Execution: ANSWER = 25/I0

2, remainder §

Note: Decimal 25
Decimal 10

"

Octal 31
Octal |2

Figure 4-13. Declaring and Calling a Procedure

10 for K. Executing the procedure is to perform the
computation, in this case getting an answer of 2. (To keep
things simple, the example procedure will be made to work
strictly with integer numbers; thus the fractional remainder
5/10 will automatically be discarded.)

The upper two boxes in figure 4-13 list two forms of the
program that will accomplish the example procedure. The
top box shows how the program would be written in the
source programming language. The middle box shows the
machine language code that would be emitted by the

4-16

compiler. The machine language code is shown both in
assembly (or mnemonic) form, and in an octal form of the
actual binary machine code.

Both the source and machine language versions of the
program will now be considered on a line by line basis.
First, the source language program.

Line 1 begins the program block, just as line 9 ends it.
Although the entire program consists only of one procedure
and a call to that procedure, it nevertheless remains
necessary to enclose the program between a BEGIN state-
ment and an END statement. These statements define a
program. ANSWER is declared to be a global variable for
this program by giving its name within the BEGIN state-
ment. This will cause the variable ANSWER to reside in the
global data area, and thus allow its access by another pro-
cedure — such as an output routine to print out the resuit.
The type declaration INTEGER specifies that ANSWER
will always be an integer, and tells the compiler to reserve
one word for the result (rather than two or three).

Lines 2 through 7 comprise the procedure declaration,
which includes the procedure head (lines 2, 3, 4) and the
procedure body (lines 5, 6, 7). The procedure declaration in
a program cannot cause execution by itself; it must be
called before any execution can take place. Thus the pro-
cedure declaration is always separate and distinct from the
procedure call. They need not be immediately adjacent, as
in this example.

Line 2 gives the procedure name, QUOTIENT, and declares
that the procedure is of type INTEGER, which means that
the result will be in integer form. It also gives the names of
the formal parameters, J and K. Line 3 is the value part of
the procedure declaration. Declaring J and K as values
means that a value (rather than a pointer) will be passed as
a procedure parameter, in both cases. This permits working
with a copy and eliminates any need to change the actual
parameter. Line 4 declares that actual parameters for J and
K must be integers; if any other type is given (floating
point, for example), a compilation error will result,

Line 5 begins the procedure body. Actually, since this pro-
cedure consists of only one statement, the BEGIN state-
ment and END statement (line 7) are superfluous. They are
included here, however, to illustrate the common form for
a procedure (normally involving a compound statement).
Line 6 is the procedure statement, the executable part of
the procedure body. It is this statement which will cause
the division of J by K, and will temporarily store the
quotient as a procedure result, identified by the procedure
name QUOTIENT.

The call to the procedure is given at line 8. This is an
executable statement, as opposed to a procedure decla-
ration. When this statement is encountered in a program, it
will cause the procedure named QUOTIENT to be
executed, passing actual parameters of 25 and 10 to the
procedure, and will cause the global variable ANSWER to
assume the value of the result. At this point (line 9) the
program is complete,

Memory Segmentation

Section IV
CALLING THE PROCEDURE v
Stack After After After After
ZERO Instruction LDI 31 LpI 12 PCAL 20
DB —»| (Answer) DB —¥ D8 —P
Q—> Q —» Q —»
S —» 0 0
S —» 3/ 3
S —» 12
EXECUTING THE PROCEDURE
After After After After
LOAD Q-5 LOAD Q-¥ plv DEL
D8 —» DB —» DB —» DB —»

®

SAVING PROCEDURE RESULTS

After
STOR @-6

D8 —»

\
!
\

Q_— — G - - —

w

After
EXIT 2
DB —»
Q—>
S —» 2

®

After
STOR DB+0

DB —Ww

2

S, @—»

®

Note:
area is Stack Marker

Gray sh

aded

Figure 4-14. Executing a Simple Procedure

4-17

Memory Segmentation
Section IV

Lines 10 through 19 show the machine language code
which the compiler emits for the two executable statements
in the program. That is, line 6 causes lines 10 through 14 to
be generated, and line 8 causes lines 15 through 19 to be
generated.

In order to explain the operation of the program in
machine language, it is necessary to examine what is
happening on the stack. Figure 4-14 will therefore be
referred to in the following discussions. Furthermore, to aid
in visualizing the operations, they will be described in
chronological order; i.e., the machine language program will
begin to execute at line 15.

First of all, it is assumed that the user has logged onto the
system, has compiled the program, and is ready to run (or is
running a program that will shortly encounter the state-
ment in line 8). Loading the program has caused space to be
allocated for the one global variable, ANSWER, which is at
DB+0 (see A in figure 4-14). Since there are no other global
variables, Q and S initially point at the immediately
following location. (The content of that location will never
be significant; in essence it is a dummy delta Q location.) It
may be instructive to refer back to figures 4-10 and 4-8,

Additionally, during program loading, the operating system
has evaluated the program in order to set the Z-register
appropriately for an initial estimated stack size. Also, since
no dynamic own arrays are declared, DL is set coincident
with DB,

Now it is assumed that the user issues a system command to
run the program or, in other words, to execute the pro-
cedure call given in line 8 of figure 4-13. This causes control
to be passed to line 15 in the machine language program,
where the sequence to call the procedure begins.

The first instruction is a ZERO, NOP. Executing this in-
struction puts a 0 on the stack and increments the S pointer
(see A in figure 4-14). This reserves a location for the pro-
cedure result.

Next (B and C; lines 16 and 17), the parameter values 31
and 12 are passed directly from the instruction words to
the stack (area reserved for procedure parameters). Octal
notation is used for these values.

Then (D, and line 18) a procedure call instruction, PCAL,

causes a four-word stack marker to be placed on the stack.

The S and Q pointers point to the delta Q location of the
marker, which now indicates 7 (the number of locations
back to the initial Q location). It is assumed that entry
number 20 in the Segment Transfer Table will direct the
call to the correct procedure starting point.

Now execution of the procedure begins (line 10). The first
two instructions (lines 10 and 11) load copies of the pro-
cedure parameters onto the top of the stack (E and F),
using Q- relative addressing. The next instruction (line 12)
divides the top-of-stack parameter into the next-to-top
parameter, and substitutes the quotient (2) and the
remainder (5) on the top of the stack, as shown at G. The

4-18

second half of the same instruction (DEL) discards the
remainder word by decrementing S, as shown at H.

To save the result, the STOR Q-6 (line 13) first copies the
top-of-stack into the location reserved for the procedure
result, formerly occupied by a 0, as shown at I. Then it is
possible to exit from the procedure. The EXIT instruction
(line 14) restores Q to its initial setting, and the “2”
included with the instruction causes S to move back two
locations past the stack marker. As shown at J, this leaves

_the result, 2, in the location reserved for QUOTIENT — now

on the top of the stack. The EXIT instruction also returns
program control to line 19, which causes the content for
QUOTIENT to be stored in the location for ANSWER in
the global data area. This produces the final result shown
at K.

Finally (line 20), a procedure call to the system returns
control back to the system.

RECURSION

The last example in this series demonstrates the stack
principles involved in a recursive procedure. A recursive
procedure is one which calls itself one or more times during
execution. ‘

Recursion is a powerful programming technique which
derives from the re-entrant capability of the code. The
advantages and other considerations of this technique are
beyond the scope of this manual, and the example to be
given does not necessarily illustrate the niceties of the
technique. Rather the example is intended to show only
how recursion is accomplished on the stack.

The example chosen is purposely kept simple in order to
provide continuity with the preceding example. (Note that
the form of the source language program for this example,
in table 4-2, is nearly identical to that of the preceding ex-
ample in figure 4-13.) The procedure simply computes N!
(N factorial), where N is the formal parameter, The pro-
cedure will be called with an actual parameter of 4, so that
computation of 4! willbe: 1 X2 X 3X 4 =24,

'In essence, this problem consists of repetitively multiplying

the previous product by a parameter which is incremented
by one on each repetition. To provide a starting point
(initial “previous product’), the value 1 is automatically
given, The procedure is designed to perform this multipli-
cation sequence by repetitively calling itself, after it has
been called once by the main program. Thus for any N, the
procedure will be called N+1 times. In this example there
will be one call by the main program and four recursive
calls,

Table 4-2 lists the source and machine language forms of a
program block to solve this problem. Since the source
language program is so similar to the preceding example, it
need not be discussed at this point. The machine language

Memory Segmentation
Section IV

Table 4-2. Recursive Program

 SOURCE LANGUAGE

L d

BEGIN INTEGER Y;

VALUVE N;
INTEGER N;

Y <« FACTORIAL ()

INTEGER PROCEDURE FACTORIAL (N);

FACTORIAL < IF N20 THEN 1 ELSE N % FACTORIAL (N-1);

END; .

MACHINE [ANGUAGE
Pfdg::‘z:;v: Instructions ?"j’?e’ Comments

0011 Y LOAD Q- 004 04160% Lead Parqmcter‘

00115 cMel, 000 022000 Test it for zero

00116 BNE P+ 003 141503 If not zero, branch to 00I2|

00117 LD1, 00/ 021001 1f zero, load 1 as initial multiplicand
00120 BR 006 140006 Branch to 00/26 (to Exit loops)

00121 ZERO, NOP 000600 Save space for intermediate product
ao122 LOAD Q- 004 04160% Load parameter

00123 SUBI, 00! 023001 Decrement for use as new parameter
00124 PCAL, 020 031026 Recurgive call

00128 MPYM Q- 004 11160% Multiply parameter by TOS

00/2¢ STOR Q- 005 0516058 Store this recursion’s product

00127 EXIT, 001 031401 Save the product and exit

00130 ZERO, Nor 000600 Save space for final product

00131 LD}, 004 021004 Load initial actual parameter
00132 PCAL, 026 031026 Main program'’s call to the procedure
0033 STOR DB (0I5 051015 Save final product in global area
00134 PCAL, XXX 031XxXXx Return to system

form has been slightly changed to more closely resemble an
actual program listing. Some assumed PB relative addresses
are given for each instruction, beginning at address 00114,
The assumption here is that this program block is
embedded in a larger “main” program. (Note that the
assigned STT entry for this procedure is assumed to be 026,
and the global assignment for Y is DB+15.) The starting
point for execution is at address 00130.

Figure 4-15 illustrates the program in flowchart form.
Box 1 in the diagram calls the procedure (boxes 2 through
9), box 10 saves the result, and then control reverts to the
main program at box 11. The procedure consists of two
phases. The call phase begins when the procedure is called
by the program, and is repeated four times. Briefly, what
happens in this phase is that a succession of N values are
placed on the stack, along with a space for intermediate

answers. The N values are decremented to zero and then the
exit phase begins. This phase successively multiplies an
accumulating product by each of the N values loaded on
the stack in the call phase — in the reverse order. On each
loop unneeded stack information is deleted, saving only the
answer for that loop, until only the final answer is left. At
that time (box 9) the final EXIT instruction finds that its
return address points back to the calling block, and so the
final answer is stored in the global area and control reverts
to the main program,

As will be shown in the following detailed discussion, the
return address check at box 9 is not literally a test for a
specific address. Rather it specifies. a return to the address
given in each stack marker. Obviously the last return (first
one placed on the stack) will be a return to the outer block.

4-19

Memory Segmentation
Section IV

0]

l

Y«—FACTORIAL (%)

Call to
Procedure

CALL
PHASE

Main Program
Call

Recuruve
Calls

@ + ¥
l.oad on Stack:
1. Space for result
2. Parameter (N)
3. Stack Marker

4
l Decrement hL}—J

®

(write Answer)|

!

T TOS «— 1
(Initia] “ Result*)
Resuit N »
F f : 4
X 1= Muitiply Resuit
| X 2=2 by Previous N
2x3=4 @
1
6 X4 =
X 2f Fill Space Reserved
for Resuit
4
Delete Marker
and Parameter
EXIT
PHASE 1
2~ Recursive
Yg,» Exits
Exit to
Main Program
1
Saye Result in
I 2 Global Area
Continue I:

4-20

Figure 4-15. Example of Recursive Procedure

Figures 4-16 and 4-17 show the overall process of building
up the stack by recursive calls, and then paring it down
with recursive exits. These two figures will be used in the
following discussions. Also the machine language program
in table 4-2 will be referred to; individual lines will be
identified by PB relative address, omitting the leading zeros.

MAIN PROGRAM CALL. As before, the main program has
already reserved global space for the final answer (Y) before
the procedure is called. When the call is given, the ZERO,
NOP instruction at address 130 reserves space for the pro-
cedure result, FACTORIAL. (Compare stack pictures A and
Z.) This is the first stack addition due to calling the
procedure.

Next, the actual parameter 4 is loaded on (B), and then the
PCAL instruction is issued. This causes the first stack
marker to be loaded (C). This marker differs from the ones
which will follow in that it contains return information to
the outer block which called the present procedure. That is,
the “return P” word is a P relative address for return to the
caller in the code segment, and delta Q points back to the Q
value that the caller was using earlier in the stack. Now, S
and Q are both pointing at the last word of the first marker
for this procedure.

TEST FOR ZERO. At addresses 114 and 115 (stack
pictures D and E), the procedure parameter is first tested
for zero. This is done by copying it onto the top of the
stack (LOAD Q-4) and giving a CMPI 0 instruction. This
instruction sets the condition code according to comparison
results and deletes the tested word (E). Since the first test is
non-zero (i.e.,4), the branch instruction at line 116
transfers control to address 121 (i.e., P+4). This test and
branch will be repeated in each of the following recursion
loops until the parameter has become zero.

FIRST RECURSIVE CALL. The branch to address 121
causes the procedure to call itself. As usual, the first action
of the call is to load the procedure parameters onto the
stack,. The parameters in this case are the variable
FACTORIAL and a decremented form of the original
passed parameter. Thus the ZERO, NOP instruction
reserves a location for FACTORIAL (see F), strictly for use
by this recursion (i.e., distinct from the final FACTORIAL
location reserved at A); then (G,H) the new parameter is
obtained by copying the preceding value to the top of the
stack (LOAD Q-4) and decrementing with a SUBI1
instruction.

After loading parameters for the new call, another PCAL
instruction is issued. This causes a new stack marker (see I)
and, via the Segment Transfer Table, transfers control back
to the starting point of the procedure, address 114. The
new stack marker gives as its return P value the address

" immediately following the PCAL, which is 125. (This will

be important to remember when the exit sequence is
discussed.) Also, the delta Q value is 6, since the prevnous
delta Q was six locations back.

SUCCESSIVE RECURSIONS. Now all of the steps
described in the preceding three paragraphs are repeated,

Memory Segmentation

Section IV
CALL, AND FIRST TEST FOR ZERO
After After After After After
ZERO Instruction LDI % PCAL 26 LOAD Q-4 CMPI 0
| Data of _|
|_Previous |
Procedure .
S —» 0 0 [0 0
S —»]] Y]
X
133
STA
;- AQ Q —» 5,Q >
s+ ¥ o ‘
® © O] ®
FIRST RECURSIVE CALL '
After After After After
ZERO LOAD Q-4 SUBI 1 PCAL 26 AFTER LAST
: RECURSIVE CALL
0 0 0 0 (and LOAD Q-4)
¥ ¥ L 7
| -
' ¥
Q- 0 —> Q> -
S —» 0 0 0 0 i
S —» Y S —» 3 3 \\
X .
125 ’ 0
STA ; 3
5—»__6 [X
| 125
@ @ @ @ [SsTA
P
SECOND RECURSIVE CALL I 0
After After After After I 2
ZERO LOAD Q-4 suBrI 1 PCAL 26 1 12);
|
0. 0 0] NJ_STA
4 Y ¥ 4 s 6
/ 0
| /
: X
| 125
J7] 0 0 0 " STA
3 3 3 3 A__¢
X X X X II 0
125 125 125 125 | 0
STA STA STA STA | l2Xs
—» ¢ Q —»] é Q—» 3 6 |
?» 0 0 0 0 W L9TA
"§—» 3 5 —» 2 2 Q—» 6
X S —» 0
- 125
STA
s, & ®

Figure 4-16. Recursive Calls

4-21

Memory Segmentation

Section IV

FIRST MULTIPLICATION

After After After After After
CMPI 0 LDI 1 STOR Q-5 EXIT 1 MPYM Q-4
()] 0 0 0 0.
y 4 3 4 y
. . | . ' . 1 i . i
: Lo | T I
. | . i : ! . | 1 A
0 0] 0 0
i T 7 @-% I]
X X X X X
125 125 125 125 125
STA STA STA STA STA
6 é p 6 Q— 6 Q> 6
0 0 4 i g —»] S —» I
0 0 : 0
X X | X
125 125 | 125
STA STA (N STA
53— é Q— é 5,4 6
S —»]
® @ ® ® ®
SECOND MULTIPLICATION AFTER NEXT
After After After After STOR Q-S
STOR Q-5 EXIT 1 MPYM Q-4 STOR Q-5
0 0 0 0 0
4 ¥ 4] Y
t X
I 133
‘W[_STA
AQ
0 0 0 0 (x [4
3 3 3 3] 3
X X X X | X
125 125 125 125 | j25
STA STA STA STA [STA
6 é 3 - 3 s,Q 6
0 0 0 / 2
2 (a-%) 2 2 : 2 ®
X X X \ X
125 125 125 " 125
STA STA STA | STA AFTER FINAL
A__¢ Q- ¢ P s, ¢ STOR Q-5
(/ g S+ 2 (ana EXIT 1)
i
| X - -
| { BN
" S
5% ¢ > g
© © @) ®

422

Figure 4-17. Recursive Exits

beginning with the parameter test for zero. Since the
parameter is 3 on the second recursion, the branch to
address 121 again occurs. The first actions, again, are to
reserve a location for this recursion’s answer (J) and to load
a decremented parameter value of 2 (K and L). After this,
the procedure call back to the beginning is again made,
resulting in another stack marker (M) which is identical to
the one generated on the first recursion.

The third and fourth recursions repeat the entire process
again, loading parameters of 1 and O followed each time by
a stack marker. Thus when the final LOAD Q-4 occurs in
preparation for the zero test, the stack appears as shown
at N,

FIRST EXIT. The check at address 115 now finds that the
parameter is zero. The checked copy of the parameter is
deleted from the stack (P in figure 4-17) and the branch at
address 116 transfers control to address 117 (rather than
121),

As mentioned earlier (fourth paragraph under the
Recursion heading), an assumed value of 1 is necessary as
an initial “previous product” in order to begin the multipli-
cation loops. This is accomplished by a LDI 1 instruction
(address 117), which puts a 1 on the top of the stack

(see Q).

Then an unconditional branch at address 120 transfers
control to address 126, where the “1” on the top of the
stack is stored into the location reserved for this recursion’s
answer, as shown at R. The next instruction is then the
EXIT 1 instruction at address 127. This causes Q to move
back six locations (delta Q = 6) and S five locations
(EXIT 1 saves one parameter), as shown at S. The return
address for the P-register, as will be remembered from five
paragraphs back, is the MPYM Q-4 instruction at
address 125. This causes the parameter at Q-4 (1) to be

Memory Segmentation
Section:IV
multiplied by the 1 on the top of the stack, leaving the
answer as the new top-of-stack element. Since 1 X1 =1
there is no apparent change from S to T, but in fact a multi-
plication has occurred.

FIRST RECURSIVE EXIT. The answer of the first multi-
plication is now stored in the location reserved for it (Q-5)
as shown at U, by the STOR Q-5 instruction at
address 126. The next instruction, at 127, is again the

. EXIT 1 instruction, which peels back the stack as shown at

V and returns the P-register to the MPYM Q-4 instruction
at address 125. The parameter for multiplication (at Q-4) is
now 2, so the multiplication result at W is 2. Again, this is
stored back in the location reserved for it (Q-5) as shown
at X,

SUCCESSIVE EXITS. After saving the result, the next
EXIT 1 is again encountered, causing the S and Q stack
pointers to move back to the next marker, leaving the
answer 2 on the top of the stack. The return for the P-
register is again 125, so the MPYM Q-4 instruction multi-
plies 2 X 3, and the following STOR Q-5 puts the answer 6
into the reserved location as shown at Y.

Likewise, the last recursive exit causes the value 6 to be left
on the top of the stack when the last return to address 125
is made. Then the final multiplication multiplies 6 X 4, and
the last STOR Q-5 instruction puts the answer 24 into the
location originally reserved for the end result FACTORIAL.

The last EXIT instruction finds the return for the Q-register
(delta Q) pointing back to the origin of an earlier pro-
cedure, and so is no longer shown in the stack diagram at Z.
However, since one parameter is saved, the final answer
remains on the top of the stack, as shown. The P-register,
meanwhile, returns to the next instruction in the outer
block, which is the STOR DB 15 instruction at address 133.
This saves the answer in the global area, and a final PCAL
returns control to the system.

4-23

	000
	001
	4-001
	4-002
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23

