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HP OMEGA

“"HP Omega’’ specifies a new line of Hewlett-Packard computers.
This introductory manual defines a specific model of this new line:
Omega-32.

Omega-32 is a 32-bit system, designed to cover a large range of
computing power. It is not to be construed specifically as a large
system or a small system.

To accomplish this large range of power, Omega utilizes a fully
modular approach. This means simply that we have independent,
asynchronous plug-in modules that communicate with each other by
way of a common Data Bus. Intermodule commands and responses
are transmitted through a Control Bus. Operations within the mod-
ules may be proceeding in parallel, at their own rates.

A module is any unit that may require data communication with
another unit. This includes arithmetic processors, memory units, 1/0

processors, or any future special-purpose processors. The module
mix determines the size, cost, and performance of the system. Up to
four Central Processor Units can operate simultaneously in the
Omega system.

The system can accommodate a maximum of 15 modules. Modules
are numbered 1 through 15. These numbers are assignable by the
user, and easily changed by moving plug-in components within each
module. This number becomes the module’s “Module Address’’.

Each module includes a Module Control Unit (MCU) consisting of
six PC cards. Data is gated in or out of the modules under control of
the MCU.

The ““Module Data Unit” is a general term used in this text to
denote the primary functional part of a module excluding the MCU.
This may be memory control logic, central processor logic, etc.
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Control Bus Lines Total
LOINH 14
HIINH 15
BUSY 15
CPINH 4
Clock 1
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Data Bus Lines Total

Data Bits (0-31) 32
Parity Bits (data) 4
FROM 4
TO 4
To-From Parity Bit 1
Power On 1
Power Fail 1
System Parity Error 1
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MNEMONICS
LOINH Low Inhibit
HITNH High Inhibit
CPINH Central Processor Inhibit
DES Destination
MADD Module Address
SL Select
SLEN Select Enable
LORQ Low Request
HIRQ High Request
MRQ Multiple Request
RY Ready to Receive
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THE BUS SYSTEM

As indicated in the previous diagram, the Data Bus connects to the
Data Unit of each module, and the Control Bus connects to the
Control Unit in each module. The connection, however, is not
direct. Each incoming and outgoing line goes through a driver or
receiver in the module. Since there are a total of 97 lines, 97 drivers
and 97 receivers are required. These occupy the front portions of
the two MCU cards. The rear portions of the MCU cards contain
the bus control logic; this arrangement reduces the need for back-
plane signal routing.

As shown at left, short cable stubs from the module tap directly
onto the buses, which run through the center of the system. (The
physical routing is illustrated later.) In addition to the 97 active lines,
each alternate line is a ground line to minimize interference, so there
are actually 194 conductors in the buses and mating stubs.

The system Clock is generated in one of the system’s MCU’s and is
distributed on the Bus to the other MCU'’s. Since the physical bus
distance from the Clock generator to each module is not uniform,
the Clock is variably delayed within each module, so that the
modules will operate on the same reference times. The Clock cycle
time is 100 nanoseconds. It is a design rule that all control and
storage elements for the Bus may change state only on the leading
edge of the system Clock.

The bus lines listed on the facing page will be explained in
subsequent descriptions. With reference to the mnemonics, a
parenthetical number will frequently be used to indicate one
specific line of a group. Thus, BUSY (6) means the Busy line
from Module 6.
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MCU FUNCTIONS

The fact of having a common Data Bus necessitates a means of
deciding which module gets the Bus when there are several simul-
taneous requests to transmit.

It is the function of the Module Control Unit (MCU) to establish the
priority of transmission.

Priority might be visualized as a series of flags that can be raised to a
Request position, as shown in the upper diagram at left. The raised
Request with the lowest module number is the first in view,
blocking or ‘“inhibiting”’ those behind it. Module 2 in the
diagram will be the first selected, then (unless 1, 3,or 4
comes up at this time) Module 5 will be next. Requests can
be raised on any Clock cycle, so priority checking is con-
tinuous in the MCU's.

There are two levels of priority: high and low. See lower illustration.
High priority is categorized as a “completion’’ transmission, and
Low priority is categorized as an “initiating’’ transmission. This
means that a transmission that completes some earlier action (for
example, returning data from memory that was requested earlier)

always has priority over starting a new operation. Since memory
can never initiate an operation by itself, its transmission requests
are always ‘‘completions”, i.e., high priority. CPU’s and 1/O Pro-
cessors can both initiate and complete.

For reasons of priority, Module Addresses are ordinarily assigned
in the following order: memory modules, then 1/O Processor mod-
ules, then Central Processor modules. The reasoning is that mem-
ory transfers are most important because some other module will be
waiting for its data. 1/O Processors are next most important, since
they operate with real-time devices, which may have very fast
synchronous data transfer rates. CPU's, on the other hand, operate
in machine time, and execution delays of a few cycles — or many —
are usually of little consequence.

Although priority is primarily dependent on the Module Address,
there is one exception. In systems with more than one Central
Processor, none has fixed priority over the other; the first ong to
request will be the first one selected. Apart from this exception,
priority descends from Module 1 Completion (highest) to Module
15 Initiating (lowest).
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MCU LOGIC

The following pages will describe the MCU operation. First,
however, note the major logic elements of the MCU on the facing

page.

The Module Control Unit itself consists of the elements above the
dashed line, plus the Drivers and Recievers for the Bus lines along
the right edge of the diagram. Signal lines going to and from the
Module Data Unit are unidirectional, marked with arrowheads
where they cross the dashed line. Signal lines going to and from
the Buses are bidirectional, coming in through a Receiver circuit
and out through a Driver.

Transmit and Receive Logic in the Data Unit are shown as gener-
alized blocks here. Actual logic will vary from module to module.
There may be, for example, more than one DATA IN or DATA
OUT registers.

The Module Address Generator (ADD GEN) continuously supplies
two forms of the Module Address: a 4-line binary output, and a
selected single-line output (1 of 15). The address is generated by a
hardwired adapter board, unique for each module, into which the

MCU control cards are seated. The 4-line output identifies the
transmitting module (FROM code, to the Bus via G17), and controls
inputs at G20 so only those transmissions intended for ‘‘this mod-
ule’” will be accepted. The single-line output selects one of a series
of 15 gates, at four separate points (represented as 4 single gates:
G8, G10, G14, G16). If, for example, “‘this module” is Module 6,
G8 represents the 6th of 15 gates, enabling the Lo Inhibit flip-flop
to control the LOINH(6) line on the Data Bus.

The four flip-flops indicate the state of the module:

LO INHIBIT:The module is making a low priority request to use the

Bus.

HI INHIBIT: The module is making a high priority request to use
the Bus.

SELECT: The module is selected to use the Bus.

BUSY: The module is not ready to receive data.

The sequence of events on the following pages illustrates a typical
case: Module 3 initiates a transmission to Module 6, then Module 6
returns data to Module 3 with a completion transmission.
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INITIATING TRANSMISSION

. Module 3 initiates a Low Request (LORQ) together with a
4-bit Destination address. This address (6, in this case) is stored
in the DES register, and is decoded and compared with
BUSY(6) at gate G1.

_If G1 indicates Module 6 is not Busy, LORQ sets the Lo In-
hibit flip-flop on the next Clock transition, via G2. (The CPINH
input is a special case, discussed later; assume itislow.)

. The Lo Inhibit output is gated with MADD(3) at G8, and is
sent out on the Control Bus as LOINH(3).

_If G15 detects no other LOINH with a module number less
than 3, or no HIINH (Hi Inhibit) of any number, and if Mod-
ule 6 is still not Busy, G9 enables the next Clock to set the
Select flip-flop.

. Since the transmission to Module 6 is now assured to occur on
the next cycle, Module 3 immediately raises Module 6's BUSY
line so that it will appear busy to all other modules. Module 3
does this via G13 and a BSY register (which holds the signal
for one cycle, since DES may be removed as soon as selection
occurs). BUSY (6) sets Module 6’s Busy flip-flop via G22. (The

Busy flip-flop will be cleared after Module 6 has received the
transmission and issues Ready signal RY.)

. Simultaneously (same Clock that sets Select), the set output of

the Lo Inhibit flip-flop, fed back via G5, clears that flip-flop.
However, if G15 had inhibited the setting of Select (at G9, in
step 4), G15 would also inhibit G5 from clearing Lo Inhibit.
This, in effect, would keep Module 3's request for priority
(LOINH) active.

. Select strobes out data, the FROM code, and the TO code at

G17, G18, and G19. Select also signifies Tranmission Complete
(TC) to the Transmit Logic.

. All free modules clock the Bus data into their DATA IN regis-

ter, since G25 (in all modules) normally supplies a high to
G26. However, only in Module 6 does the TO code compare
with MADD (at G25). So, providing there is no restriction on
the FROM code (discussed further on the next page), G25
inhibits G26, thus locking in the data.

. The low G25 output goes back to the Receive Logic, signifying

Receive-Complete (RC). Module 6 now cannot be transmitted
to until it has used the information in the DATA IN register,
and clears the Busy flip-flop again with an RY signal.
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COMPLETION TRANSMISSION

1. The high-priority Completion transmission to Module 3 implies

that Module 3 is expecting the data, and so cannot accept
transmissions from any module except Module 6. This is
accomplished by having Module 3 keep its Busy flip-flop set,
while applying a low FROM-OK to G2. The Receive Logic stores
the number ‘6" in a register, and will not raise the FROM-OK
line until the FROM bits on the Bus compare exactly with the
contents of this register.

. Module 6 issues a High Request (HIRQ) via G7 to set the Hi
Inhibit flip-flop on the next Clock transition. Note that no check
for receiver-busy is made. (The G6 input to the Hi Inhibit
flip-flop is used for multiple transmissions, discussed on the
following pages.) The Destination address is simultaneously
stored in the Destination register.

. HIINH(6) is raised or the Bus via G13. If G14 detects no higher
priority Inhibit {only HIINH with address less than 6), Select is
set on the next Clock.

. Simultaneously, the set output of the Hi Inhibit flip-flop, fed

back via G9, clears that flip-flop. However, if a higher priority
Inhibit had prevented setting Select (preceding step), or if this is
to be a Multiple Request (MRQ), G9 would be prevented from
clearing Hi Inhibit. This would keep Module 6's request for
priority (HIINH) active.

. Select strobes out data, the FROM code, and the TO code at

G20, G21, and G22. The data is clocked into all free DATA IN
registers, including that of Module 3.

. In Module 3, the Receive Logic compares the FROM code on the

Bus with the stored code (step 1), and raises FROM-OK. G2 also
compares TO with MADD, and having all three inputs high, now
inhibits G3, locking the data in the DATA IN register.

. The low G2 output goes back to the Receive Logic, signifying

Receive-Complete (RC). After Module 3 has used the in-
formation in its DATA IN register, it clears the Busy flip-flop
with an RY signal.
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SPECIAL MCU OPERATIONS

CPU REQUESTS

As mentioned before, the system can have up to four Central
Processor Units, and none has fixed priority over the other. In-
stead, the following rules apply:

1. The first CPU to make a request for priority (Lo Inhibit set)
will prevent all other CPU’s from requesting priority until the
first CPU is selected.

2. If more than one CPU make simultaneous requests for priority,
they will be selected in order of priority. The other CPU’s will be
inhibited until the original group has been selected. (Lo Inhibit is
stored until the module is selected.)

The logic is implemented by assigning each CPU to one of four
CPINH lines, so that G7 in one CPU can inhibit G2 in the others.
The assignment of lines to CPU’s is made by decoding the two
least significant bits of MADD, which necessarily means that the
CPU’s must have consecutive addresses (or 4 different combi-
nations of the two least significant bits). Jumper W1 is connected
only in CPU modules.

MULTIPLE TRANSFERS

The Module Data Unit (MDU) has 3 lines on which it can pull to
provide for different types of transfers: either low or high pri-
ority, and single or multiple request — or some combination of
these. The 3 lines are: LORQ (Low Request), HIRQ (High Re-
quest), and MRQ (Multiple Request). In addition, the MCU has 4
Destination lines, to determine where each transmission is to go.

Multiple transfers are accomplished by raising the desired combina-
tion of lines, and controlling the duration of each signal. The MDU
has two inputs from the MCU that tell the MDU when it may
change the control lines. These inputs are SLEN (Select Enable) and
SL (Select). SLEN, actually consiting of the five lines that set Select
(the inputs of G9 and G11), tells the MDU that its data will be
strobed out on the next Clock. It may therefore proceed, for
example, to enable another DATA OUT register in preparation for
Multiple Transfer. SL tells the MDU that transmission is now oc-
curing, and is complete at the end of that cycle.

There are 5 basic types of transfers, illustrated by timing diagrams
on the following page. The time periods, TO through T7, are for
reference only, and are 100 nanoseconds each.
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TYPES OF TRANSFERS

LORQ SINGLE TRANSFER. A Lo Request and Destination code
are issued to MCU at TO. The Lo Inhibit sets at T1, during which
time LOINH propagates through the system, and other Inhibits
could arrive to inhibit Select. Assuming there is no higher-priority
Inhibit, Select sets and strobes out the Data at T2, while SLEN
turns off LORQ and DES. The Source also raises the BUSY signal of
the Destination at T2, causing its Busy flip-flop to set at T3. Data
propagates to the Destination during T2, and is clocked in at T3.

LORQ MULTIPLE TRANSFER. Instead of permitting SLEN to
clear LORQ, as above, LORQ is maintained high for as many data
Selects as desired. Note that SL occurs on alternate cycles. Each
transfer is to a different Destination. A new DES address must
therefore be supplied by the MDU on receipt of each SLEN. On
the last SLEN, the MDU must turn off the LORQ. Concurrent
with SL, the Source raises the BUSY line of each addressed
destination.

HIRQ SINGLE TRANSFER. Timing is identical to the LORQ
Single Transfer, except that the destination module has set its

Busy flip-flop at some earlier time. Busy signals are therefore not
involved.

HIRQ MULTIPLE TRANSFER. The HIRQ is kept high until the
last SLEN occurs. In addition, the MRQ line is raised, which
allows Data to be put on the Bus in successive cycles rather than
alternate cycles (as in LORQ Multiple Transfer). The first trans-
mission will occur two cycles after Request (HIRQ) to allow prior-
ity to be established (HIINH). Thereafter, transfers are consecutive,
and the MDU must supply DES addresses at the times shown.

LORQ/HIRQ TRANSFER. Unlike preceding Multiple Transfers
(both LORQ and HIRQ), a LORQ/HIRQ double transfer is addres-
sed to only one Destination. Both LORQ and HIRQ are raised
simultaneously, and DES is held constant. The Lo Request is
granted first (LOINH), which starts SL at T2, then HIINH occurs and
keeps SL set during T3. The first set of data (low priority) is strobed
out during T2, and the MDU uses SLEN to switch registers for the
second data transmission (high priority)at T3.
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POWER DISTRIBUTION

Rather than one large central dc power supply, Omega uses a
primary voltage pre-regulator to supply a clipped, regulated
3-phase waveform to ‘‘satellite’’ power supplies associated with
each module.

This pre-regulation of the ac input lessens the degree of regulation
required of the dc regulators, permitting simpler, less costly
circuitry.

Furthermore, each satellite supply needs to generate only those
voltages actually required by the associated module.

Efficient power distribution is an additional advantage, owing to
the use of comparatively high voltage (120V peak). Large

conductor buses are not necessary, and conductor losses are kept
to a minimum.

The input is an isolated delta configuration for simplicity, with
selectable taps for 208V (North American) or 230V (European)
operation. Sources of 50 or 60 Hz may be used.

Each phase is separately controlled to minimize mutual interference.

The output to the satellite supplies is a Y (4-wire) configuration, for
both the regulated and unregulated lines. (The unregulated supply is
primarily for the ventilating fans.)

When loaded to capacity (10A per 208V line, or 8.7A per 230V
line), about 3.5 kilowatts is drawn from the source.
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SYSTEM PACKAGING

The Omega system is packaged in a system cabinet expressly de-
signed for minimum bus length and convenient access to internal
hardware.

The system illustrated, not necessarily typical, accommodates 5
modules and 2 in-cabinet device controllers. The controilers are
shown in the bottom card cage of the left bay, each occupying half
of the card cage. The middle module of the left bay is assumed to be
an 1/0 Module, and the top module might be, for example, a Central
Processor Unit. For completeness, the right bay could be assumed to
contain 3 memory modules. Larger systems would have additional
bays, 3 modules per bay. A full 15-module system would therefore
occupy 5 bays.

The satellite power supply for each module is located to the rear of
each module, and swings out for access to the power supply circuits
and the module backplane. The primary supply is located at the
bottom rear of the mainframe, and is capable of supplying regulated
ac to those satellites immediately above.

Each module card cage can accept up to 24 printed-circuit cards.
The boards are 12 x 12 inches in size, and have a backplane pin
capacity of 140 pins. There is a total of 90 microcircuit locations
(i.e., 6 x 15 grid). Those cards that have front-edge connection
capability normally provide two 50-pin edge connectors.

The system bus is routed horizontally in a channel of the mainframe
between the top and middle modules, and vertically to each module

in a vertical channel on the right side of each bay. So that the bus
stubs may be as short as possible, the MCU cards which accept the
stubs are always the rightmost two cards of each module. Provision
is also made to route other cables through the same channels, such
as the IOP (1/O Processor) and high-speed Channel buses, as il-
lustrated. Jumpering of the 10P bus between controllers is shown,
between the middle two cards of the controller card cage. Since the
Channel bus (coming in to the second card from the right) is not
shown jumpered to the left controller, the implication is that the
left controller is for a low speed device, and the right controller is
for a high speed device. (The descriptions and connection of 1/0
buses are given later in this manual.)

The bottom front of the cabinet contains a cavity in which
connector-type conversions can be made for peripheral device
cables. It is assumed that device cabling will be routed under a
subfloor of the system site.

Module ventilation occurs by drawing cool air in at the bottom of
the system, and forcing it up through the three modules and
exhausting at the top. This provides very efficient cooling for the
logic elements. The power supplies have less critical heat rises, and
are separately cooled.

A maintenance panel is available for each type of module, and may
be moved to test other modules of the same type by means of
disconnect hinges. Electrical connection is made by front-edge con-
nectors to the module cards. When doing extensive service, the
cabinet doors and panels may be removed completely.
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COMPUTER WORD

0/ 23 4 50 7 8 F 0l (2434 IS16 17 1819 20 2 21 23 24 25 26 77 2821 30 3 37 3339Y 35
BYTE FORMAT
BYTE © BYTE | BYTE 2 BYTE 2
0-—--=-————-78———-—— == )5 J6——— —— — 23 24— — — ——— 31 32 32 3¢ 35
MEMORY COMMAND WORD
/ / V4 ////7//
(NOT UsED) MEMORY ADDRESS
L Yy i
o !/ 2 3 [2 e e - —— = — — — o~ — 31 32 3339 35
i
‘ (20 BITS = 1,049,57¢,)
MEMORY | MNEMONIC FUNCTION
OPCODE
0O 00O NOP No Operation
0001
0010 RBWQ Read Byte/ Write O
0011 CBW§® Clear Byte/ Write O
01 00 RMW Read/Modify/Write
0101 CW Clear/Write
0110 RBW1 Read Byte/Write 1
0111 CBW1 Clear Byte/Write 1
1 0 0O
1 0 0 1
1010 RBW2 Read Byte/Write 2
1 011 CBWZ2 Clear Byte/Write 2
1100 RW Read/Write
1101
1110 RBW3 Read Byte/Write 3
1111 CBW3 Clear Byte/Write 3
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MEMORY WORD CHARACTERISTICS

Omega-32 uses basically a 32-bit word in transmissions between
modules. Accompanying each word that goes in or out of memory
are 4 parity bits, one for each 8 bits of the basic word (even-parity).

Accordingly, Omega memory modules store information as 36-bit
words. Additionally, however, provision is also made to accept,
store, and retrieve 8-bit bytes. Thus, information stored in memory
may be in either word format or byte format. In byte format, four
bytes are packed in one memory location, as shown. Byte in-
structions will always specify which of the four byte positions is
being referenced.

Note that bits are numbered from 0 (most significant) on the left, to
31 (least significant) on the right. Bytes are numbered O through 3,
left to right. Parity bits correspond numerically: bit 32 for bits 0-7,
33 for 8-15, 34 for 16-23, and 35 for 24-31.

The third word shown at left is the Memory Command Word. All
memory transfers consist of at least two transmissions. The first
transmission must be the Command Word, directed to the
memory module, specifying the memory address affected, plus an
Opcode specifying the function to be performed. The second
transmission transfers data in or out of memory on the Data Bus,
according to the Opcode command.

The table at left lists all Memory Opcodes. (Those not used are
interpreted as NOP’s.) These will be further explained in the

following pages on Memory; but, in brief, the Opcodes provide 5
basic operations, as follows:

RW Read/Write (to retrieve a 32-bit word)

CW  Clear/Write (to store a 32-bit word)

RMW Read/Modify/Write (to read a word, modify it in the
initiating module, and store it back
in the same memory location)

(to retrieve one of Bytes 0-3)

(to store in one of Bytes 0-3)

RBW Read Byte/Write
CBW Clear Byte/Write

The memory module does not check parity on the information
that it stores and reads out. It does, however, check parity on the
Memory Command Word (does a NOP if an error is detected) and
on the eight TO/FROM bits (pulls on the System Parity Error
line). The parity of memory data must be checked by the re-
ceiving module when the information is read out. The receiver
therefore, in a single check, simultaneously checks for possible
errors in the earlier transmission to memory, the storage in
memory, and the transmission from memory.

The following two pages describe the logic operations involved in
reading and writing memory data. The descriptions apply to all
memory modules, regardless of memory speed (750 nsec, 950
nsec, 2 Usec, etc.)
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READ
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READ MEMORY

LOAD COMMAND WORD READ WORD OR BYTE

1. The initial state of Register Control is the COMMAND position 1. Reading a word (RW) or a byte (RBW) begins with Read Tim-

(G5 enabled).

. The Command Word from the initiating module is clocked into
the Memory Address Register from the Bus. The four TO (in)
bits compare with MADD ("'this module’) at G3, which locks
the word in the register. Register Control goes not-ready (RY),
and read timing starts (regardiess of whether a read action will
be completed by the particular command).

. Bits 12-31 are decoded and apply enabling signals to the Driver
and Switch circuits. The X-Y co-ordinate outputs will select
one specific memory cell when activated. If the system uses
memory interleaving, the appropriate high and low order bits
are interchanged by the Interleaver wiring. (An example of
memory interleaving ~ould be to have a CPU or I/O Module
address different meinory modules for odd and even addresses,
or perhaps four different modules determined by the two least
significant bits of the address. It is the responsibility of the
CPU'’'s or IOM’s Address Mapper to select the correct module,
and it is the responsibility of the memory module’s Interieaver
to arrange the address bits for addressing its own core without
gaps. The net effect is that the CPU or IOM can make
successive memory transfers a faster rate, since it can be
transmitting to an alternate module while waiting for another
to complete its cycle.)

. The decoded Memory Opcode (Bits 0-4) immediately switches
Register Control to the DATA position (G4), and initiates one
of the following actions (this page and the next).

ing signals being sent to Core Memory via G6 and G8. (The
Memory Data Register is also set to all-ones at this time.)

I "

. All cores in the selected location are switched to the ‘“‘one

state, so that any cores that were zero will change state. This
change of state is detected by the Sense Amplifiers, and resets
the corresponding flip-flop in the Data Register when strobed
by a signal to G11.

. A signal called RAC (Read Almost Complete), which is delayed

from Read by a fixed time, causes the Transmit Request Logic
to issue a High-Priority Request (HIRQ). This permits priority
checks in MCU to proceed concurrently.

. When data is in the register, an appropriate strobe signal to

either G21 (for word reading) or one of G17 through G20 (for
byte reading) applies the data to G24. (Note that bytes are
always routed on Bus lines 24-31, regardless of original
position.)

. When selected, G24 sends data to the initiating module via the

Data Bus, along with the FROM and TO codes. The TO code is
derived via G1 from the stored FROM code, which originally
came with the Command Word.

. The word in the Data Register is now written back into mem-

ory through the Inhibit Drivers (see Write, step 4).

. The Ready signal switches the Register Control Logic back to

the COMMAND position for the next Command Word, and
clears the Busy flip-flop in the MCU.

12
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WRITE, AND READ/MODIFY/WRITE

LOAD COMMAND WORD

Same as on preceding page.

WRITE WORD OR BYTE

1. Writing a word (CW) or a byte (CBW) begins with a simulated
read operation, as described on the preceding page, except that
previous stored data is cleared instead of being read-out. This
occurs simply by not enabling G11. (Or, for byte operations,
G11 is selectively enabled to load in the Register only the 3
bytes not involved in the current operation.) Write is suspended
until the initiating module supplies data (next step).

2. The Register Control switches to DATA immediately upon
starting the Clear operation. The module is now ready to re-
ceive data. However, comparator G2 will act only on data that
has the correct FROM code. The resulting FROM-OK signal
initiates a Delayed Write operation.

3. Incoming data from the Bus is clocked into the Memory Data
Register via G12 (for word writing) or one of G13 through
G16 (for byte writing). If the input is a byte, it will be re-
ceived from the bus in the desired byte position.

4. Write Timing signals strobe G10 and G7/9 to write the data
into memory through the Inhibit Drivers, at the location selec-
ted by the Switches and Drivers. The core-magnetizing direc-

tion is the reverse of Read (now tendingtowrite zeros), so any
Register bits that are “‘one’” will inhibit writing of a zero.

5. The Ready signal switches Register Logic back to the
COMMAND state.

READ/MODIFY/WRITE

This operation, which combines both the Read and Write oper-
ations, is for words only. The Write operation does not proceed
until data is returned, so the initiating module has the opportun-
ity to modify the read-out word before returning it for the write
operation. The following sequence is condensed.

1. Read Timing signals strobe G6/8, causing the Drivers and
Switches to read Core data out to the Sense Amplifiers.

2. The Sense Amplifier output is strobed into the Memory Data
Register at G11, then out to the Bus via G21 and (when selec-
ted) G24. Register Control switches to DATA.

3. The initiating module receives the word, modifies it as desired,
then re-transmits it.

4. The returned word is strobed into the Memory Data Register at
G12, and the accompanying FROM code initiates a Delayed
Write. Write Timing signals strobe G10 and G7/9, writing the
word back into memory.
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FORMAT OF I/0 INSTRUCTIONS

1| oPCODE R X ADDRESS
0 1 l 7 €-10 1 -13 14 3
[§ ~— _J
SIO MEMORY
TIO ADDRESSING
RIO
wIQO
R[tom [oence = 107777
0 3 4 o7 3

FORMATS OF I/O0 PROGRAM WORDS
1ocw (commanp) |opcone // ///// MEMORY ADDRESS OR 1/0 COMMAND

0 * 3 1A 3/
READ
WRITE
CONTROL
SENSE
Jump
INTERRUPT
END
. s ~l
IODw (u/‘x) l-q—— BYTE ADDRESS -
LOW SPEED pc| BYTE COUNT MEMORY ADDRESS BLE
TRANSFERS
o 4 7 10 28 30-3;
BiGH SPLED :
A FERS pc| WORD COUNT MEMORY ADDRESS
o/ n )2 31

MEMORY map (I/0)

MAIN -
PROGRAM SO oK
e I1/0 PROGRAM _

e —— DATA
—_— BLOCK
DEVICE P—
REFERENCE E—
TARLE P ——
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OMEGA 1/0 PROGRAMMING

The Omega system architecture provides for 5 input/output instruc-
tions and addressing capability for 256 devices. The 5 I/O instruc-
tions are: Start 1/0, Test 1/0O, Read 1/0, Write 1/0, and Command
1/0. The nominal limit of 256 devices assumes only one |/O Module
in the system. More devices can be accommodated by adding an
additional 1/0O module; however, special programming considera-
tions must also be made since the Device Reference Table (discussed
later) provides entries for a maximum of 256 devices.

Assuming that there is an 1/O Program stored in memory for each
device, /O transfers are initiated simply by addressing a Start 1/0
instruction to the desired device. The program in progress may
continue immediately to succeeding instructions while the 1/0
Module independently executes the I/O transfer. When the transfer
is complete, (typically) the 1/O Module interrupts a CPU module to
signify completion.

Other transfer modes are also possible. For example, the 1/0
Program may be bypassed for CPU-1/0O transfers by using the direct
write/read instructions (W10, RIO).

Command /0 instruction ClIO permits a command to be directed to
the device, without a data transfer being involved. Test I/O, TIO,
permits status checking of the device.

Definitions of the 5 input/output instructions are as follows.

SIO R,M (Start 1/0)

The left 12 bits of register R contain the I/O Module number (4
bits) and the device number (8 bits). The right 20 bits of register R
contains the address of an 1/O program which is to be executed by
the 1/0 processor. |f rejected, a branch to M occurs. Condition Code
is unaffected. S10 is a privileged instruction.

TIO R.M (Test 1/0)

The left 12 bits of register R contain the |/O Module number (4
bits) and the device number (8 bits). A halfword containing the
status of the device is returned to the right half of M. Condition
Code is unaffected. T10 is a privileged instruction.

RIO R,M (Read 1/0)

The left 12 bits of register R contain the |I/O Module number (4
bits) and the device number (8 bits). If successful, a data inbound
halfword is read directly from this device into the right half of R.
The left half of R is undisturbed. Processing does not continue until
the read is completed. If rejected, a branch to M occurs. Condition
Code is unaffected. RIO is a privileged instruction.

WIO R,M (Write 1/0O)

The left 12 bits of register R contain the 1/O Module number (4
bits) and the device number (8 bits). A halfword is written directly
from the right halfword of R into the device data outbound half-
word. Processing does not continue until the write is completed. If
rejected, a branch to M occurs. Condition Code is unaffected. WIO
is a privileged instruction.

CIO R,M (Command 1/0)

The left 12 bits of register R contain the 1/0O Module number (4
bits) and the device number (8 bits). A halfword is written directly
from the right halfword of M into the device command register.
Processing continues immediately. This command can also be used
to send a halfword to another CPU or to any other module whose
number is placed in register R. Condition Code is unaffected. C10 is
a privileged instruction.

The format of 1/0 instructions is shown in the upper figure on the
facing page. Bits 1-7 specify the instruction, bits 8-10 point to one
of the R registers in the CPU, and bits 11-31 point to the starting
address, in memory, where the 1/0O program for this device is stored.
The R register identified by bits 8-10 will previously have been
loaded, as shown, by the program in progress (hereinafter called
“’Main Program’’). Bits 0-3 of R give the 1/O Module number, bits
4-11 give the device number; bits 12-31 are not used.

The /O program for each device consists of /O Command Words
(IOCW) and I/O Data Words (IODW). If the IOCW is a Read or
Write, the Address field is not used and the following word will be
an |0ODW, telling the 1/0 Module how much data to transfer, and
where in memory to start the transfer. If the IOCW is a Control
command, bits 16-31 convey control information; if more control
information is needed, another IOCW can follow. If the IOCW is a
Sense or Jump, bits 12-31 are used to specify a memory location.
For Sense, that location receives the 16 Status bits of the device.
For Jump, the 1/O program simply jumps to that location for its
next IOCW. If the IOCW is an Interrupt, the I/O Module requests an
interrupt of a CPU. End terminates the I/O program.

There are two different types of I/O Data Words, one for low speed
transfers, and one for high speed transfers. For low speed transfers,
data is transferred between 1/0O and memory one byte at a time. The
Count value is therefore a byte count, and the byte number is
shifted into the two least significant bits of the word, so that for
programming purposes bits 10-31 can be thought of as a “'byte
address’’. For high speed transfers, data bytes are packed into full
words in the I/O Module, so that data is transferred between 1/0
and memory one word at a time. The Count value is therefore, for
convenience, a word count.

In the case of high-speed transfers, hardware provision is made for a
device to “‘inhibit decrement’” for a given number of counts, pro-
vided it has the counting logic to perform this function. Thus the
Count can then become a record count, rather than a word count.

To visualize where all these different word-types are stored, refer to
the Memory Map. (Memory addresses are assumed to ascend from
the lower left corner.) The I/O instructions are imbedded in the
Main Program. The IOCWs and IODWs make up the 1/O Program.
The Data Blocks (normally in a different Memory Module from
programs) are locations where data is transferred in or out. The
Device Reference Table contains a doubleword entry for each of the
256 devices (512 locations). The entry in this table is initialized at
the start of each transfer (first action of the SIO instruction). This
allows several devices to use the same |/O program, or conversely,
one device may use any of a number of different I/O programs. The
Device Reference Table occupies dedicated locations 1000-1777
octal.
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THE OMEGA 1/0 SYSTEM

There are several types of modules that communicate with /O
devices. Three are shown in the illustration at left: the Buffered Bus
Communicator, the Communications Module, and the 1/0O Module.

The Buffered Bus Communicator provides bus access for special
purpose modules. The BBC itself provides generalized communi-
cation with the system buses; special purpose interfaces are addi-
tionally required in order to adapt the BBC logic to specific
applications. A BBC interface exists for 2116-family computers,
allowing such computers to look like a module in the Omega
system.

The Communications Module provides connection for remote
terminals. Since the Communications Module uses a different Device
Reference Table than that of the I/O Module, there may be 256
terminals in addition to the 256 devices connected to the 1/O
Module.

The 1/0 Module provides for two different types of transfers:
low-speed, under control of a microprocessor within the module,
and high-speed, bypassing the microprocessor through one of 7
Direct Memory Access (DMA) channels. The DMA channels are
initialized by the microprocessor, then perform their transfers in
blocks. Once a device gets the channel, no other device on that
channel may begin until the current device finishes its block
transfer. Data from low-speed devices, however, is multiplexed byte
by byte on a priority basis.

The Device Controllers translate the general 1/O Module commands
into specific timing and control required for the peripheral devices.
Several Device Controllers can be installed in a Controller rack (card
cage), and the 1/O buses are cabled in series through each rack.

Priority order is from the nearest Controller on the bus (nearest the
1/0 Module) to the farthest (lowest priority).

The descriptions on the following pages explain the operation of the
I/0 Module, and for simplicity will show only 1 of the 7 DMA
Channels, with only one Device Controller of each type (high speed
and low speed). Note, however, that each Channel can handie
several Device Controllers, and some Controllers may handle several
devices of a given type.

The organization of the following descriptions provides sequencing
information first (pages 16 through 22), showing the information
exchanges that occur to accomplish both low and high speed
transfers. This is followed by logic descriptions (pages 23 through
33), discussing the internal logic of each sub-unit of the 1/O Module,
with little relation to time sequences.

For now, the following definitions of the I/O Module sub-units will
suffice.

MODULE CONTROL UNIT. Receives data from the other Omega
modules, and determines when this module (the I/O Module) may
transmit its data to the other modules, based on its assigned
priority.

1/0 PROCESSOR. Multiplexes low-speed transfers, and initializes
DMA Channels for high-speed transfers.

PORT CONTROLLER. Selects which one of 8 “ports’”’ (7 DMA
Channels, plus the 1/0 Processor) may make a request to the MCU

to transmit.

DMA CHANNEL. The high-speed transfer logic.
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STARTING AN I/0 TRANSFER

As stated earlier, 1/O transfers are initiated by addressing a ‘'Start
1/0’" (SIO) instruction to the desired device. But before the 1/0
Module can process the SIO, it must be told where its I/O Program
is. The location of the |/O Program can be changed at any time, and
in fact, a choice of several programs may be available, depending on
the application.

The diagram at left shows how the Main Program establishes the
Program Address (PAD), and gets the 1/O program started. The I/O
Program itself will tell the device what to do: start, stop, input data,
output data, how much data to transfer, where in memory to put or
take the data, and so on. These actions of the I/O Program will be
discussed on succeeding pages. Operations are identical for both low
and high speed devices until actual data transfer begins (page 19).

The Program Address is established by the following procedure.
(Step numbers refer diicctly to numbers on the facing diagram.)

START SIO SEQUENCE

1. Main Program loads Left Half of R (i.e., one of the 8 “R"’
Registers in the CPU), to identify the desired device.

2. Main Program issues SI10 instruction to the CPU.

3. CPU relays the SIO (now including the Device Number from R,
and the computed address of the 1/O Program from the SIO
instruction) to the |/O Module. Within the 1/O Module, the 1/0
Processor interprets the SIO and begins to execute an SIO
program sequence from its internal Read-Only-Memory
(ROM). The first action of the ROM program is to obtain the
status of the device (next 3 steps).

CHECK STATUS

4. The I/O Processor sends a command word to the Device
Controller, consisting of the Command code (CMD) for **Read
Status’’, and 8 bits of Device address (DEV #). The complete
set of CMD codes (ground-true, positive-false) is as follows:

CMD Bit

1 2 3 Command

0O 0O O NOP

0o 0 1 Read Data from Device

o 1 O Read Status from Device

0o 1 1 Write Data to Device

1 0 O Write Command to Device

1 0 1 Write Scratch to Device

1 1 0 Issue DIL (Data Index Low) to Channel
11 1 Issue DIH (Data Index High) to Channel

5. Controller sends 16 bits of Status, with CMD ACK (Command
Acknowledge) to I/0 Processor, via Data-In lines.

6. 1/O Processor transmits Status to right half of a register in the
CPU. If bit 29 says that the device is not ready to accept the
S10, a branch to M occurs; otherwise, the SIO procedure
continues, and the CPU is from now on not involved.

INITIALIZE DRT
7. 1/0 Processor addresses first location of Device’s 2-word alloca-
tion in the Device Reference Table (DRT), with a Clear/Write

memory command.

8. 1/O Processor transmits Program Address PAD and CPU
Module number to DRT.

START 1/0 PROGRAM

9. 1/0 Processor tells Controller to request a Program Word. This
is done by sending a ‘‘Write Scratch’’ command word (see step
4 above) to the Controller and placing the desired loading of
the Scratch Register (SCR) on the Data-Out lines. When the
Scratch word is written into the Scratch Register, bit 6 (set)
tells the Controller to request a Program Word, and bit 3
(cleared) tells the Controller to expect an |/O Control Word
(IOCW). Bit O is permanently wired set or cleared, depending
on whether the device is low or high speed.

10. Command Acknowledge CMD ACK frees the 1/O Processor.
|/O Processor may now process any other operation phase for
any other device, while waiting for the Controller to request its
Program Word (next page)
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EXECUTING THE I/O0 PROGRAM

DEVICE ASKS FOR PROGRAM WORD

Device Controller issues SRLO (Service Request Low) to 1/O
Processor, in response to 1/O Processor’'s command (preceding

page).

I/0O Processor polls all Controllers, in “‘series”’, with ACKSR
(Acknowledge Service Request) to determine whose SRLO it
has.

Highest-priority requesting device responds by reading out its
Device Number and Scratch Register contents. Remember that
bit 6 says that a Program Word is requested.

INCREMENT PAD

4.

Before obtaining the Program Word, the 1/O Processor first
reads PAD out of the DRT (Read/Write memory command).

1/0 Processor receives PAD and increments it.

The incremented value of PAD is stored back in DRT (Clear/
Write memory command).

EXECUTE IOCW

1/0 Processor reads out the contents of PAD (pre-incremented
value), which in this case (first Program Word) is an 1/0O
Command Word. The coding of the Opcode bits (1-3) will
direct the 1/O Processor to one of 7 command programs in
ROM, as follows:

IOCW Bit

1 2 3| Command Definition

0 0 0| END Terminates 1/O Program.

0 0 1| SENSE 16 bits of Status are transmitted to
memory (at Address specified in |OCW).

0 1 0| CONTROL Right 16 bits of IOCW are transferred to
Device Command Register (see also page
22).

0 1 1) JUmP Fetch next IOCW from Address specified
in IOCW.

1 0 0| WRITE Begin output transfer, according to
block-size and starting address specified
in the lIODW immediately following.

1 0 1 READ Begin input transfer, according to block-

size and starting address specified in the
10DW immediately following.

Device is told to request a CPU Interrupt
(SRLO, with Status transmission to
CPU).

0| INTERRUPT

ASK FOR NEXT WORD

8.

1/0 Processor tells Controller to ask for next Program Word
(by setting bit 6 of SCR) and to expect, for example, an 1/0
Data Word (IODW) by setting bit 3. Any number of IOCW's
could follow the first one, unless the command is READ or
WRITE, in which case an IODW must immediately follow.

CMD ACK frees 1/O Processor.
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ESTABLISHING TRANSFER PARAMETERS

DEVICE ASKS FOR PROGRAM WORD

1. Device issues SRLO to 1/O Processor, in response to 1/O
Processor’s command.

2. 1/0 Processor polls all Controllers with ACKSR.

3. Highest-priority requesting device responds by reading out its
Device Number and Scratch Register contents (wants a
Program Word).

INCREMENT PAD

4. 1/0 Processor addresses first word of Device’s entry in DRT to
get PAD.

5. Memory sends PAD.
6. 1/0 Processor increments PAD, and stores it back in DRT.
GET IODW

7. 1/0O Processor addresses memory (Read/Write at PAD address),
and memory sends its next Program Word (IODW).

then either:

STORE IN DRT

8. For low-speed transfers, |/O Processor addresses second word
of Device’s allocation in DRT.

9. Sends IODW values (Count and Address) to DRT. Address is
also referred to as Data Address, or DAD.

OR STORE IN DMA CHANNEL

10. For high-speed transfers, |/O Processor tells the Controller (by
Commands discussed in step 4 of page 16) to issue DIL and
DIH signals to the Channel logic. DIL loads the lower half of
IODW in the COUNT/DAD (““Index’’) register. IACK (Index
Acknowledge) allows DIH to load the lower half of IODW, and
a Channel-Busy signal (not shown) inhibits other devices on the
same channel.

START DEVICE

11. 1/0 Processor tells Controller to ask for a Data transfer (set bit
7) and to clear the Program Word request (bit 6). Bit 7 will
start device (e.g., Read, or some mechanical operation), and
will enable Channel Interface, if a high-speed transfer.

12. CMD ACK frees 1/O Processor.

To page 19 for low-speed devices.
To page 20 for high-speed devices.

18



-

@ |:,]Icoun‘;'|m PAD — Vs
MCU
MEMORY
MODULE PATA
MAIN gLOCK
PROGRAM
1/0
PROGRAM
| — DATA
BLOCK
a 3 12 3t ] —_—
& v M N —
N —DRT__ \ —
R i — =
77 Y
2y '
MCU

cPU
'MODULE

@

[-

0 2 21 g
1 Q) w7 A
START () 2w 4 M J// (
/
[ sTATUS REGISTER | @Y RN
o 5 24 3
' I/o MODULE
Varers OB
Tel  Tz]3J«]s]e[7] CMD: WRITE SR | MCU
oft |eeoq  [pata DATA: SCR T
RH INCREMENT
N DC > ‘® DONQ: s DECREMENT
\—D—RE——CONrROL €MD JACK |
- _o6ic | ackse(2) —— I/
B - ser/oey #(3) o lprocessor
|\ -
SPEED DEVICE CHONTROLLER o /’
LOW- SP DEVICE CON N
Y777 oAata_ ¥
/] 7R 15
ISTER
]D STATUS REGIST 'Js TR s
CONTROLLER]
SCRATCH
serateh [T =[] ¥[5[4]7]
CHANNEL 1
oc COUNT DAD DATA
02 eor | [ | LT o=
LOGIC
DMA
CHANNEL
Losic

o 7
HIGH- SPEED pEVICE CONTROLLER

19A




LOW SPEED TRANSFERS

DEVICE ASKS FOR DATA TRANSFER

When ready to read or write (Data Request signal DRQ from
Device), Controller issues SRHI (Service Request High) to 1/0
Processor, in response to |/O Processor's command.

1/0 Processor polls all Controllers will ACKSR.
Highest-priority requesting device responds by reading out its

Device Number and Scratch Register contents (wants Data
transfer).

UPDATE COUNT AND DAD

4.

I/O Processor sends out to DRT (second word) for

COUNT/DAD.
Memory sends it.

1/0 Processor increments DAD, decrements COUNT, and
returns word to memory.

OUT (DEVICE BOUND)

7.

8.

9.

1/0 Processor sends to memory for data byte.
Memory sends it. (On least significant bit lines of the bus.)

1/0 Processor transfers data to Controller’s Data buffer. This is
done by issuing a Command word for ““Write Data’’ to Device

10.

11.

12.

(see step 4 of page 16), and placing the data on bit lines 8-15
of the Data-Out bus. Controller returns CMD ACK.

1/O Processor checks for Count-zero.
If not zero, 1/O Processor tells Controller to ask for another
Data transfer. CMD ACK frees 1/O Processor. Controller
re-issues START.

REPEAT TO STEP 1 ABOVE
If zero, 1/O Processor tells Controller to ask for a new Program
Word, and to clear the Data request. CMD ACK frees 1/0

Processor.

REPEAT TO PAGE 17

IN (MEMORY BOUND)

13.

14.

15.

16.

17.

START action (preceding page, step 11) has caused a device-
read, and DRQ (step 1 above) signifies that data is in the Data
buffer.

After updating COUNT/DAD above, 1/O Processor transfers
data to itself. (CMD: Read Data.)

1/0 Processor addresses memory with CBW (Clear Byte/Write).
1/0 Processor sends data to memory.

Check if block done (10, 11, 12 above).
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HIGH SPEED TRANSFERS

When the 1/O Processor received its IODW (page 18), it
initialized the Controller, which in turn initialized the Channel
to which it is connected (step 10). The Channel therefore has
COUNT/ADDRESS and direction {(memory bound or device

‘bound). If the direction is device bound, the Channel proceeds

immediately to get the first word from memory, without
waiting for the device to ask for it. Furthermore, the Channel
contains a backup Data Buffer, so it can go ahead and get a
second word while sending out the first word (in bytes) to the
Device. (Device bound transfer described below.)

When the 1/O Processor told the Controller to request Data
transfer (page 18, step 11), the Controller issued START to the
Device. The Controller is now waiting for DRQ (Device
Request). The 1/0O Processor is from now on not involved.

OUT (DEVICE BOUND)

3.

The Device begins the transfer by issuing DRQ to the Con-
troller Logic, which relays the request to the Channel as CHRQ
(Channel Request).

The Channel responds by sending out the first byte of data
(low order byte first). The accompanying CHACK (Channel
Acknowledge) tells the Controller “here is data"’.

CHACK is relayed to the Device as DACK (Device Acknowl-
edge). This terminates the DRQ. After the Device has accepted
the data and is ready for more, it re-issues DRQ. Steps 3, 4,
and 5 are repeated until all 4 bytes have been transferred to the
Device. Then proceed to step 6.

The fourth CHACK causes the Channel to increment DAD and
decrement COUNT (if Inhibit Decrement is inactive) and to
transfer its next data word (waiting in the Buffer) into the
Shift Register. The Channel-to-Device transfer continues
uninterrupted (steps 3, 4, 5). Meanwhile, the Channel initiates
the procedure to refill the Buffer. The Channel logic con-
tinuously checks which memory module corresponds to Data
Address, DAD, and whether that module is ready. If memory is
ready, the Channel issues RQB (Request Bus) to the Port
Controller for priority checks.

When selected, the Channel addresses memory (at the
incremented DAD value), with a Read/Write memory opcode.
When memory retrieves the data, it transmits the word to the
Channel, where it is loaded into the Buffer.
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HIGH SPEED TRANSFERS
(Continued)

IN (MEMORY BOUND) DATA CHAINING/END OF TRANSFER

On DRQ, Controller sends CHRQ and data to Channel. 6. When COUNT = 0, Channel loads its next IODW, if any, from
CHACK to Controller triggers read/DRQ cycle (4 times to load its Backup Buffer (not shown) and tells the Controller to ask
full word in Channel). Channel generates destination module I0P for another IODW (SRLO signal).
number, and checks if that module is ready.
7. If the 1/O Processor is holding a Data Chaining bit from the
If destination module is ready, Channel issues RQB to Port pB)revklous IOfIfI)W,' it hgetéhthe r:evlvf IﬁD\:\;oar;d sends lc: to th:
Controller for priority checks. (Simultaneous LORQ and ackup Buffer !"‘ the . annel. It the rocessor does no
have a Data Chaining bit, proceed to step 8.

HIRQ.) :
W h , E E 8. When Device signals End-of-Transfer, the Controller issues

hen selected, Channel’s ADDRESS CYCL s.ends c/w Device End, and the 1/O Processor tells the Controller to issue
opcode to memory at DAD address. DATA CYCLE is set. DI L/DiH
On second select from MCU, data is enabled for transmission 9.  The result reads COUNT/DAD residue out to the second word

to memory. DATA CYCLE terminates, increments DAD, and
decrements COUNT.

CHACK to Controller (‘“data is in'’) causes another read cycle
in the device. (Repeat back to step 1.)

of DRT. This tells the system how many words were
transferred to/from where in memory. An Interrupt IOCW may
be written into the 1/O Program to notify CPU of transfer
completion. Index Acknowledge, IACK, prevents the Con-
troller from making further Channel Requests.
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OTHER 1/0 INSTRUCTIONS

The preceding pages illustrated the operation of the Start 1/0 (S10)
instruction. As mentioned earlier, there are four other 1/O
instructions:

RIO Read 1/0
wWIO Write 1/0
Clo Command 1/0
TIO Test 1/0

The first three of these instructions transfer a 16-bit halfword be-
tween a CPU and a Device Controller. The TIO instruction simply
transfers the Status halfword from the Device Controller to a CPU,
Status is not returned for the CIO instruction (the only exception).

Following is the sequence of operations for the above instructions.
Differences are noted within the text.

START INSTRUCTION SEQUENCE (ALL)

1.  Program loads left half of R to identify the desired device and
(if CIO or WIO) appropriate information in the right half.

2. Program issues instructions to a CPU,

3. CPU relays the instruction to the 1/O Module.

CHECK STATUS (ALL EXCEPT CIO)

4, 1/O Processor sends a °‘‘Read Status’” command to the
Controller.

5. Controller sends 16 bits of Status, with CMD ACK, to I/O
Processor via Data-In lines. The |/O Processor begins its ROM
program for the particular instruction.

6. If the instruction is TIO or WIO, Status is returned to the CPU,
(T10 is complete at this point.) For RIO or WIO Status is
checked before proceeding to the following steps.

TRANSFER HALFWORD (ALL EXCEPT TIO)

7. For RIO, 1/O Processor sends a ‘“Read Data’’ command to the
Controller. Controller returns its Data register contents (up to
16 bits on the Data-In lines), with CMD ACK.

8. For RIO, data and Status are transmitted to the CPU, which
loads the data into the right half of the R register specified in
the R field of the RIO instruction. (RIO is complete at this
point.)

9. For CIO or WIO, the I/O Processor places the data (up to 16
bits) on the Data-Out lines, and sends a ‘“Write Command’’ (for
CIO) or ““Write Data’’ (for WIO) to the Controller. This loads
the data into the Command or Data Registers, respectively.
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SUB-UNITS OF THE 1/0 MODULE

The basic 1/0O Module includes the following sub-units:

ROM MICROPROCESSOR (3 cards). This is a small, general pur-
pose arithmetic logic unit, providing 16-bit processing with 16 basic
instructions and 7 accumulators.

1/0 PROCESSOR (3 cards). The 1/0 Processor logic cards adapt the
ROM Microprocessor for the specific purpose of handling the
Omega 1/0. These logic cards plus the ROM Microprocessor are
together frequently considered to comprise ‘‘the |/O Processor’’, for
simplicity.

PORT CONTROLLER (1 card). Determines internal priority
among the 7 available DMA Channels and the |/O Processor (the 8th
port) for transmission on the system bus. (An Address Mapper
board is necessary for each two ports used.)

MODULE CONTROL UNIT (2 cards). Provides information on the
status of other system modules, so that the Port Controller and |/O
Processor can determine their transmission priorities.

In addition to these 4 basic sub-units, provision is made for up to 7
Direct Memory Access (DMA) Channels (2 cards each). These
channels provide a data route that bypasses the |/O Processor. Each
Channel keeps track of transfer counting and memory addressing,
packs and unpacks full words for bus transmission, and is capable of
concurrently handling the device transfers for one word while doing
the memory transfer of another word. All of these factors con-
tribute to an achievable transfer rate of 5 million 32-bit words per
second (dependent on device capability and system configuration),
with a worst case rate of about 500,000 wps (compared with
100,000 bytes per second at best through the 1/O Processor).

The block diagram on the facing page shows the relationships of the
5 sub-units of the 1/O Module (right side) and 2 external Device
Controller racks. Heavy lines illustrate data routes for high-speed
and low-speed transfers. Lighter lines show some of the major
control signals.

Each of the sub-units will be discussed in detail in the following 10
pages. Briefly, however, the overall procedures for transferring data
between peripheral devices and the System Buses are as follows.
(Assume that the Devices are input devices.)

LOW SPEED TRANSFERS

When the Device has read its data, it transfers that data into a buffer
in the Device Controller. A Data Request signal (DRQ) tells the |OP
Interface to proceed with a Service Request (SR) to the 1/0
Processor.

The 1/0O Processor inputs this Service Request to the ROM Micro-
processor (which may be operating some unrelated program
segment). When ready to process the SR, the Microprocessor tells
the 1/O Processor to send out an ACKSR (Acknowledge Service
Request). This signal propagates in series through the |OP Interface
of each Device Controller. The first Controller encountered that has
a set SR gets highest priority, and stops the ACKSR propagation.

Since the 1/0 Processor does not yet know what kind of service is
requested, nor which Device is requesting it, the first message to be

transmitted on the |OP Bus is a 16-bit word to the |/O Processor: 8
bits of request identification ('’Scratch Register’’ contents) and 8
bits of Device Address.

With this information, the 1/O Processor looks up the appropriate
program in ROM and addresses a ‘‘Read Data’’ command (in this
example) to the Controller. The Controller now sends the data byte
to the I/O Processor, through the Microprocessor.

A Request-Bus signal (RQB) to the Port Controller is checked for
priority with the other 7 ports (DMA Channels). Priority is assigned
by plug adapters, and the 1/O Processor may be assigned any one of
the 8 positions.

When the Port Controller determines that no DMA transfer is in
progress and that the 1/O Processor is the highest priority port, a
Priority-Select signal (PS) is sent to the 1/O Processor. This enables
the Module priority checking logic, using priority information of
other system modules, supplied by the MCU. (The 1/O Processor
assumes some of the functions that normally occur within an MCU.)

Then, when the 1/0 processor determines that the 1/O Module is the
highest priority module requesting to transmit, the data is sent in on

the System Buses.

HIGH SPEED TRANSFERS

High speed (DMA) transfers begin in the same way as low speed
transfers. That is, the Controller must tell the 1/O Processor what
kind of service it wants. Repeating this part of the procedure in
brief:

a. Dataisreceived in the Device Controller.

b. Controller says ‘‘Operation Complete’” (OPC).
c.  Service Request (SR) is sent to |/O Processor.

d. ACKSR is returned when 1/0O Processor is ready.

e. ACKSR in Controller reads out its Scratch Register.

Part of the Scratch Register information says that a high speed
transfer is requested. This prompts the I/O Processor to get an
I0ODW from memory and send it via the Index Bus to the appro-
priate channel. (Since the IODW is 32 bits, two transmissions on the
Index Bus are necessary.)

On receipt of the IODW, the Channel operates directly with the
Device Controller (bypassing the 1/O Processor), and packs 4 bytes
into a buffer in the Channel. The Channel then asks the Port
Controller for priority (RQB), which responds when ready with
Priority Select (PS).

When the Channel determines that it may transmit (using priority
information from MCU), it makes a low-priority Address trans-
mission to memory, followed by a high-priority Data transmission.
The Channel maintains a count of how many words it has
transferred, and increments the Address as necessary.
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MODIFIED MCU

When used in the I/O Module, the Module Control Unit is modified
to furnish 3 additional outputs and 2 additional inputs. These are:
Outputs: Hi Inhibit FF

Hi Enable (*‘no higher HIINH present in system’’)

Lo Enable (*’no higher LOINH, no HIINH present’’)
Inputs: Set Hi Inhibit FF

Set Select FF

These modifications allow various parts of the 1/0 Module to do
their own determinations of module priority.

Those logic elements shown shaded in the facing diagram are never

used, in this application of the MCU.

Otherwise, the detailed operation of the MCU is the same as

discussed earlier in this manual.
NOTE

This diagram and the 8 following logic diagrams are
specially arranged so they may be joined together
in the exact layout illustrated by the overall block
diagram on the preceding page.
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Coding Table — ROM Microprocessor
FIELD : FUNCTION R BUS S BUS | ROTATE |DESTINATION
QELECT SELECT GELECT| SELECT SELECT
‘ Bit: o0 /1 2 3| ¢4 5 ¢ g 9| w0 uw 1z2| 13 ¢ s
Binary .
0 ZEROS ZEROS | NO SHIFT | NO STORE
/ ACI ACS L1 AC1
2 AC2 ACe R1 AC2
3 AC3 EXT X A AC3
4 ACY X B AC¥
5 CA1 oT ACSE
¢ 4CQ xC \ ACH
7 cal {DL} ACQ
] AQO
9 AQ1
0 AQ2
7] A3
12 ARY
13 ARS
" AQG
15 ART
OPTIONAL CONDITION GRANCH ouTPUT
FIELD : SELECT Abbrese SELECT
0 ZERO ZERO oT1
/ CFl IMMED ov2
2 CF2 AC3 oT3
3 - [MMED DR AC3 oTY
i CF3 o1y
5 - 07T%
6 - oT7
7 - 381
8 ZERO
7 CF¥
/0 CF§
/ CF¥
12 CF6
13 -
I¥ -
15 -
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ROM MICROPROCESSOR

The external functions performed by the ROM Microprocessor are
dependent on the application, or more specifically, on the micro-
programs written and permanently stored in the Read-Only Memory
(ROM). In this context, the application is assumed to be the control
of Omega 1/0. As part of the “I/O Processor’’, the Microprocessor
looks for an SIO instruction from a CPU, relative to a specific
device, then branches to a routine that begins the 1/O service. Some
of the initial operations performed are to extract the device number
from the CPU instruction, get Status from that device and return it
to the CPU, and (if the device's status indicates that it is ready to
start 1/0) tell the device to request its first program word (IOCW).
These operations (the exact sequences were discussed earlier), are
external functions of the micro-programs in ROM.

However, the internal functions of the ROM Microprocessor are
general in nature. The Microprocessor is actually a small computer,
containing the usual Instruction Register, Arithmetic Logic Unit,
Accumulators (7), and R-S-T bus system. It has an instruction set of
13 basic instructions, plus 7 micro-instructions for rotate-shift
options, Instruction coding is shown on the facing page; definitions
are as follows.

FUNCTIONS (0-3)

NOP No operation

BRT Branch on selected condition True, to selected Branch
Address

BRF Branch on selected condition False, to selected Branch
Address

I0R Inclusive OR of R and S buses onto T bus

XFS Transfer S bus onto T bus

XFR Transfer R bus onto T bus

AND Logical AND of R and S buses onto T bus

ADD Arithmetic addition of R and S buses onto T bus

INC Arithmetic addition and increment (R +S + 1) onto T bus
XOR Exclusive OR of R and S buses onto T bus

CMS Complement of S bus onto T bus

CMR Complement of R bus onto T bus

CLT Clear T (zeros onto T bus)

R BUS/CONDITION (4-7)

ZEROS Zeros forced onto R bus
AC( ) AC( ) enabled onto R bus

CA1 Conditional AC1. If external (wired) condition is true,
AC1 enabled onto R bus; if condition is false, zeros
forced onto R bus.

AQ( ) ACQ enabled onto R bus, and one of 8 (numbered) inputs
replaces old contents of ACQ. Number 0 (AQO) puts old
contents of ACQ back into ACQ. If bits 13-14-15 select
ACQ as a destination, repiacement input selected by
AQ( ) is overridden.

ZERO Forces False condition, for unconditional BRF branching

CF( ) Selects numbered Condition Flip-flop for conditional
branching

S BUS/BRANCH ADDRESS (8-9)

ZEROS Zeros forced onto S bus

AC5/6 AC5 or ACG6 enabled onto S bus

EXT Immediate operand onto S bus

ZERO Branch to address Zero

IMMED Branch to address specified in Operand field

AC3 Branch to address specified in AC3 register

IMMED Branch to address resulting from inclusive OR of Operand
OR field and AC3 contents
AC3

ROTATE (10-12)

ZEROS No shift

L1 Rotate left one onto V bus

R1 Rotate right one onto V bus

XA/B Select rotate option A or B

oT Send 3-bit Output code (bits 13-14-15) to external logic

for selectable destination of T bus

If external (wired) condition is true, a left-one shift is
made (Divide Left); if condition is false, rotate option C is
selected. (Machine does not distinguish between the
binary codes for XC and DL; selection is made only by
the input condition.)

XC/DL

DESTINATION/OUTPUT (13-15)

ZEROS No store

AC( ) Store V Bus into AC( ) register

oT( ) Store T Bus into one of 8 external destinations; enabled
by OT code of bits 10-11-12.

25



ROM MICROPROCESSOR

[_—_"—_—"_’—"'—_—'——"— - - I |
MCU CLOCK ADDRESS _ 1
" ( )
cLOCK [ rRom 2 |
l TIMING M 0 ADDRESS ] CONDITION l
CHECKING f——
l MATRIX l
| i |
READ - ONLY A CONDITION
MEMAORY TRUE-FALSE CODES |
BRANCHING
(gits 4-7
| AND 10 UP) I
32) |
| INSTRUCTION y REGISTER |
' oli{2|3]|4|s|e|7|8|9|0]u|i2|13]i¢|r5] IMMEDIATE/BRANCH ADDRESS J |
! N ——, A ! s XJ
! | [ ' ' ' ' 16//
| | | ] / |
(R N | UiyP) W )
| L q R BUS SELECT I
J s:umcug ‘
ADDRES
g - SePEcT, I
ROTATE /OUTPUT N5 it J
__SELECT J S 8us ::::sss |
e SELECT
‘ < __J Y I
PESTINATION SELECT 16
AC& FUNCTION
g ( SELECT IMMEDIATE A 4
OPERAKND
y
- AcQ F——— ‘ |
] a1 |
| o 1 - E}—)—J—\
l N Act |
| o acz — |
| Jl
‘ \,{ AC3 JT_A |
| N | |
_\R BUS .
= ACH | < \ [/ NOP |
’ ToR =
XFS
l XFR !
e ACs F ~ AND |
ADD T |
] , INC ‘
{
s 8US XoR |
ACH | cMS i
I CMR ‘
cLT
ARITHMET| C
\ V B8US LOGIC UNIT
l __ IOP DATA QUT J l
‘ (16
A .
| -
- ] ROTATE- CONDITION I
| | SHIFT - INPUTS l
DIAoT: / v T BUS
m ouT -J
| —— | s — —— — L e - ——— ——— | —— 1 T T ——
Iy 7] ExT -/
v ‘( r Yy v SHIFT
26A LINES




MICROPROCESSOR LOGIC

READ-ONLY MEMORY

The capacity of the ROM is expandable, but in the basic 1/O
Processor configuration it provides 256 words of 32 bits each.
Addressing therefore requires 8 of the available 16 address bits of
the instruction word. The ROM address is incremented auto-
matically after each instruction, unless overridden by a new address
from AC3 register or from the operand field. (The ““or”” of both
sources is also possible, as well as address zero; see previous page.)

Conditional branching is determined by a Condition Checking
Matrix. Depending on Matrix wiring, up to 24 external Condition
Inputs may be connected to the input of the Matrix. In the I/O
Processor application, these inputs include Service Requests and
Command Acknowledges from Device Controllers, and transmit and
receive notifications. It is also possible to connect T bus bits,
overflow, and carry, etc.; in some of these cases, however, there are
multiplexing restrictions. (There are only 6 Condition Flip-flops in
the Matrix, selectable by bits 4-7; each flip-flop can have up to four
multiplexed input gates, selected by otherwise unused bits of the
instruction word. Typically, bits 16-23 of the address field are used,
but actually bits 10-23 are available for specifying Conditions, if not
otherwise modified.)

INSTRUCTION REGISTER

Instruction words coming out of ROM are clocked into the Instruc-
tion Register at the rate of 5 MHz. The higher order 16 bits are the
instruction code, and the lower order 16 bits are either an
immediate operand or a Branch address, depending on the instruc-
tion. The diagram on the facing page shows the grouping of
instruction bits and the logic elements they affect.

Bits 0-3 set up one of 11 functions in the arithmetic logic unit, or
select whether a branch address is ‘‘go’’ if the tested condition is
true or false (BRT or BRF).

Bits 4-7 can be used in one of 3 ways. If the function selected by
bits 0-3 is BRT or BRF, bits 4-7 read out the state of one of the 6
Condition flip-flops. Otherwise, bits 4-7 determine either what goes
onto the R bus (ACQ, AC1, AC2, AC3, ACA4, or all zeros) or what
goes into the ACQ register (self or external input) as a replacement
value while simultaneously reading out the current ACQ value to the
R bus. Only two external inputs are shown; these are the low order
and high order halves of the 32-bit words received from other
modules via the system Data bus. The wiring for conditionally
reading out AC1 to the R bus (CA1) shows bit 15 of ACQ as the
required condition; this configuration is for multiplication. How-
ever, for other applications the condition input could come from
any other register or external source.

Bits 8 and 9 can be used in one of 2 ways. If bits 0-3 selected BRT
or BRF, bits 8 and 9 determine what gets used as a new ROM
address: the low order bits from the current instruction word (8 bits
or more, depending on ROM capacity), or the contents of AC3, or
the logical “or’’ of both sources, or a forced address of zero. If bits
0-3 do not specify BRT or BRF, bits 8 and 9 determine what goes
onto the S bus: AC5, ACG6, all zeros, or ““External”. In this case,
External is wired to be the Immediate Operand from the Instruction
Register.

Bits 10-12, except when coded “OT"’, enable one of seven hard-
wired rotate/shift options. Inputs from either an internal source (T
bus) or an external source (IOP Data In, in this case) are rotated or
shifted out onto the V bus. Definitions of the options were given on
the preceding page. For the I/O Processor application, assignments
of the options are as follows: No-Shift, L1, and R1 use the T bus
input. Option A is a left-four rotate of the T bus, Option B is a
left-two rotate of the T bus, with 2-bit extend, and Option C routes
I0P Data In unshifted to the V bus. DL is not used. When bits 10-12
are coded “OT"’, Destination bits 13-15 are gated out of the Micro-
processor (for external routing control of output data) instead of, as
normally, to select one of the accumulators for a V bus destination.

ACCUMULATORS

Of the seven 16-bit accumulators, ACQ is the only one that outputs
and inputs directly from external sources. It may be selected as a
V bus destination by bits 13-15, or (not in the same instruction) it
may be read out onto the R bus by bits 4-7, with or without the
“replacement’” feature discussed earlier. AC1 through AC4 are
R bus sources, and AC5 and ACG6 are S bus sources. Additionally,
AC1 has the “conditional-read’’ feature, and AC3 is a ROM address
source. Together AC3 and AC4 provide 32-bit output for trans-
mission of full words to other modules. If the transmission type
happens to be an address to memory, bits 12-21 (most significant 10
address bits) are also sent to an Address Mapper in the 1/O
Processor.

ARITHMETIC LOGIC UNIT

The ALU is conventional, executing one of 11 functions on R
and/or S bus inputs, routed out on the T bus. Externally, the T bus
may be wired as desired. For the |/O Processor application, the
T bus is connected directly back in to the Rotate-Shift unit, and an
“or”" of all 16 bits is used as a condition input. Cther applications
might “pre-shift’” T bus bits before application to the Rotate-Shift
unit, and specific bits, such as sign or least significant bit, might be
wired as condition inputs.
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1/0 PROCESSOR LOGIC

The top half of the facing diagram is the transmit control logic. The
lower half shows the receive logic and the device command logic.

TRANSMIT CONTROL LOGIC

Logic elements of the upper half of the diagram are responsible for
all transmissions to other modules except high-speed data transfers.

There are 3 categories of transmission modes, arbitrarily labeled A,
B, C. Mode A rotates the 32-bit output of accumulators AC5 and
AC4 two bits to the right, before loading into the A input register.
This is for memory addressing, and moves the byte number from
right end to the left end, where it forms part of the memory
opcode. (Memory opcodes are listed on page 11A.)

Mode B provides un-rotated input (such as for data) for most other
transmissions. The exception is Mode C, which is strictly for
interrupts to a CPU. Since the CPU might not accept an interrupt
for appreciable lengths of time (a ‘‘ready’’ check is made at gate
Gb5), the interrupt word is held in the C input register so that the
1/0 Processor may proceed with other operations while waiting for
the CPU to become ready.

The transmission mode is determined by the Microprocessor, by
strobing a 15-bit control word from the T Bus (OT1 strobe) into the
Transmit Control Register. Various bits of this word set up or clear
the A, B, or C transmission mode, set the module “‘busy’’, limit the
transmission to 16 bits (Inhibit AC3), insert the memory opcode
into a memory addressing word, and determine whether “TO"
should be the same as the previous “FROM’’ (i.e., a return trans-
mission) or be determined by the Address Mapper. (The Address
Mapper has plug adapters that allow a memory module number to
be decoded from the 10 most significant bits of an absolute memory
address.)

The Transmit Logic is capable of providing Select for 3 types of
MCU transmissions: Hl-priority, LO-priority, and dual LO-HI trans-
missions. A LO-priority Select is made if the destination is ready
(checked at G7) and no HIINH or higher-priority LOINH exists in
the system (LOENB input from MCU). A Hl-priority Select is made
(for CPU Requests) if the Port Controller has set the Hi Inhibit FF
in MCU, and if there is no higher-priority HIINH. Two Selects occur
for In-Bound, non-CPU transfers, if both A and B Modes are enabled
and the appropriate priority inputs are present (DESRDY and
LOENB for LO-priority Select, and HIINH FF and HIENB for
Hl-priority Select).

The Select signal at G11 sends the data to the Data Bus, and at G12
it sends the TO code. The FROM code automatically is sent out for
all I/0 Module transmissions by a Select in the MCU.

RECEIVE LOGIC

Data intended for output to device is received in a 32-bit Holding
Register. It is locked in the register by a Hold signal, if receive
conditions are met.

Receive conditions are met if the data is not claimed by a DMA
Channel (Channel-Receiving signal CHRC), if the TO code is for this
module (IOM), and if this module is waiting for this data (FROM
must compare with the TO code retained at G10 input).

A Receive signal (Hold) is applied as a Condition input to the
Microprocessor, informing that the data has been received. Two
16-bit halves of the received data are available to the Microprocessor
at separate ACQ inputs.

DEVICE COMMAND LOGIC

The Service Requests from the Device, SRHI and SRLO, are routed
directly through the 1/0O Processor logic to the ROM Microprocessor
(top). The Microprocessor responds with a 16-bit command word.
An accompanying OT2 strobe loads 4 command bits into the
Command Register via G14, and an OT3 strobe loads 8 bits of
Device Address via G15. All bits go out to all Device Controllers.

A delay at the input of G13 allows time for the command to be
accepted by the input logic of the Device Controller. Then, the
Command Acknowledge flip-flop is set (now waiting for CMD
ACK), and G13 sends a Command Strobe to all Controllers.

The Controller which has been addressed will respond to the
Command Strobe by returning CMD ACK, meaning that the Con-
troller has received its command and is now processing it. This clears
the CMD ACK flip-flop, which relays the acknowledge to the
Microprocessor.

If, for any reason, the Device Controller does not respond, the 1/0O
Processor itself generates a pseudo CMD ACK (“’Long Delay’’). By
the absence of other information (e.g., no data on the input lines),
the ROM program can detect the failure and proceed accordingly.
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PORT CONTROLLER

The Port Controller performs the following functions:

SELECTS HIGHEST-PRIORITY RQB

Each time a DMA Channel or the |/O Processor wants to transmit
information to another module, it applies an RQB (Request Bus)
signal to the Port Controller. The Port Priority logic accepts these
RQB inputs, and causes the RQB with the highest pre-assigned
priority (from 1 to 8) to inhibit those with lower priority. The
selected RQB becomes a Priority Select (PS) output, on one of the 8
PS lines.

SETS UP TRANSMISSION TYPE

The Port Controller uses two input signals to determine transmission
type: In-Bound (true or false) and CPU Request (true or false).
Using this information, one of 3 types of bus transmissions is
initiated:

a. INBOUND. This requires a LO-priority transmission
(memory address and opcode), followed by a Hl-priority
transmission (data). Provided that the destination is ready
and the 1/O Module has highest priority (DESRDY and
LOENB input terms to G23), a Set Select signal is sent out to
MCU. Setting the MCU'’s Select flip-flop transmits the FROM
code, and the data and TO code of a priority-selected DMA
Channel. (The 1/O Processor uses Priority Select to generate
its own Select for data and TO.) The In-Bound signal at G22
additionally sends a set signal to the MCU’s High Inhibit
flip-flop, causing the MCU to initiate a Hl-priority trans-
mission following completion of the current Select.

b. OUTBOUND. This requires only a LO-priority transmission
(address and opcode to memory). This is the same as above
except G22 is not enabled (In-Bound false), so that the HI
Inhibit cycle does not get initiated.

c. INBOUND TO CPU. This requires only a Hl-priority trans-
mission (Status information to CPU). A CPU Request signal
from the 1/O Processor is applied directly (via ‘“CPU Wiring"’)
to Port Priority, instead of an RQB to G21. (Hl-priority
transmissions are not dependent on the DESRDY term.) The
Priority Select output (via G25) directly sends a set signal to
the MCU's Hi Inhibit flip-flop, bypassing G22. This avoids
the LOENB and DESRDY terms.

SENDS “BUSY" TO DESTINATION

For each LO-priority transmission, G24 causes the appropriate Busy
flip-flop (1 of 15) to issue a Busy signal to the destination module.
As discussed earlier (under MCU, page 5), this makes the destination
module go “‘busy’’ at the same time that it receives data.

PROVIDES FROM AND IOM

The four FROM lines of the system’s Data Bus are furnished to the
1/0 Prgcessor and the DMA Channels, for the purpose of identifying
an expected transmission from a specific module.

The IOM signal (1/O Module) is generated when the incoming TO
code compares exactly with the address of ‘‘this module’’, as coded
by plug adapters (MADD). |OM means that this module is currently
being addressed.

CHECKS FOR SYSTEM PARITY ERROR

The incoming TO and FROM bits (total of 8 bits) are checked
for proper parity with the accompanying To-From Parity Bit.
If an error occurs (parity not ‘‘even’’), a System Parity Error
(SPE) is sent out on the system control bus. This signal in-
dicates that a module-addressing error has occurred.
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DMA CHANNELS

The logic for each Direct Memory Access (DMA) Channel provides 3
distinct functions:

a. indexing the Count/Address (top third of diagram)
b. Transmit control (middle third)

c. unpacking and packing of byte-format data (bottom third)

INDEXING COUNT/ADDRESS

The IODW (I/O Data Word) is delivered to the Channel via the
Index Bus In, and is loaded into a backup Buffer by DIL and DIH
signals from the Device Controller. DIL (Data Index Low) loads the
first 16 bits, and DIH (Data Index High) loads the second 16 bits.
IACK (Index Acknowledge) is returned to the Controller on each
load.

The loading signal from G30 also sets the Channel Busy flip-flop (so
that no other device may request an IODW), and sets the Buffer-Full
(BUFFUL) flip-flop. Assuming that this is the first IODW for this
transfer, the Index Register is ‘empty’’, indicated by the Index-Full
(INXFUL) flip-flop being clear. Gate G31 therefore enables G32 to
transfer the Buffer contents into the Index Register on the next
clock.

Note that G31 also clears the BUFFUL flip-flop (Buffer ‘empty’’)
which, with the INXFUL signal, enables G35 to send an IWRQ
(Index Word Request) to the Device Controller. The Controller
accordingly initiates a request for the next IODW, which will
proceed if it is holding a Data Chaining bit (bit 0) from the current
IODW. The new IODW will be obtained from the 1/O Program in
memory, and loaded into the backup Buffer during the time that
the current block transfer is proceeding.

The COUNT register part of the Index Register is decremented (by
the Data Cycle flip-flop) on each word transfer, and the ADDRESS
part is incremented. The Address is made available to G48 to be sent
to memory, and is applied to the Address Mapper to generate the
Destination module number (DES). The Count is applied to G33,
which checks for a count of zero; when this occurs, G33 clears the
INXFUL flip-flop. Then, depending on whether there is a new
IODW waiting in the Buffer, G32 transfers the IODW into the Index
Register, or G34 sends a Channel-End (CHEND) signal to the Device
Controller.

When the Device Controller signals ‘‘Device-End’’, it disables G30
(no more IODW's) and enables G38. The Controller can then read
out the residue contents of the Index Register to the 1/O Processor.
DIL reads the lower 16 bits onto the Index Bus Out, and DIH reads
out the higher 16 bits.

TRANSMIT CONTROL

A high-speed data transmission begins when 4 Channel Requests
have been counted. The C=0 signal signifies that a full word has
either gone to the device or has been received from the device. This
signal sets the Bus Request flip-flop.

The resulting RQB is sent for priority checking to the Port Con-
troller, while LOINH is sent out on the system bus to signify intent
to make a LO-priority transmission (address to memory). When the
Port Controller responds with Priority Select, G43 sets the Address
Cycle flip-flop, if the destination is ready (DESRDY) and module
priority allows (LOENB). Address Cycle reads out a memory
command word to the system Data bus, consisting of the 20
Address bits at G48 and either a Clear/Write opcode (if Memory-
Bound is true) or a Read/Write opcode (if Memory-Bound is false).

Additionally, Address Cycle reads out the TO code (G37), and sets
the Data Cycle flip-flop.

If this is a Memory Bound transfer (MEMBND), the Channel has
relayed this information (INBND) to the Port Controller. As
previously discussed, the Port Controller will request a Hl-priority
transmission (Set Hi Inhibit flip-flop) to the MCU, which responds
with Select when module priority allows. The Select signal at G42
and G44 reads out the TO code and the Data Register In contents to
the system Data Bus. G47 clears the Data Cycle flip-flop. Via G51
and G49, Select also sets the Channel Acknowledge flip-flop;
CHACK tells the Device Controller to send more data.

If this is a Device Bound transfer (not-MEMBND), G39 waits for a
FROM code matching the TO code (DES) sent out to memory in
the Address cycle. When this occurs, G46 sets the Hold flip-flop
(locking data in the Data Out register), clears the Data Cycle
flip-flop, and sets the Channel Acknowledge flip-flop. CHACK
(Channel Acknowledge) tells the Device Controller to begin
accepting the data.

Clearing the Data Cycle flip-flop (when data is sent to or received
from memory) decrements the word Count and increments the
Address in the Index Register. (Count decrementing can be
inhibited by a control line from the Device Controller, not shown
here.)

DATA PACKING/UNPACKING

Memory bound data (8 bits) is applied to each input gate, G52, 53,
54, and 55. The accompanying CHRQ, however, is sequentially
shifted by a Shift Register so that each gate (representing 8) is
enabled in sequence for 4 successive input bytes. These 4 bytes are
transferred into the Data Register In for transmission to memory.
Parity checking occurs on each input byte, and a Parity Error signal
is sent to the Device Controller if an error occurs. Correct parity is
independently generated, and accompanies each byte to the Data In
Buffer.

Device bound data (36 bits) is received from memory by the Data
Out register. Parity is independently generated on each input byte,
and compared with each incoming Parity bit. A Parity Error bit,
normally false, plus the generated correct Parity bit, shifts to the
right, in step with the data. (See next paragraph.)

Each CHRQ produces a Shift signal from the Shift Register, which
reads out the rightmost (low order) byte to the device and shifts the
remaining bytes to the next right position. After 4 CHRQ's, all 4
bytes and their respective Parity and Parity Error bits have been
shifted out.
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I0P INTERFACE
(Low Speed)

In order to process the commands of an SIO program, each device
interfaced to an Omega Device Controller rack requires, in addition
to the specific Controller logic, an I/O Processor (I0P) Interface. (It
is possible, however, to operate a device under direct control of a
CPU, using CIO, RIO, WIO, and TIO instructions. In this case, an
10P Interface may not be required.)

The 10P Interfaces for high and low speed devices are nearly
identical (differences will be covered later). The facing diagram

illustrates the low-speed 10P Interface.

COMMAND PROCESSING

Commands from the 1/0 Processor (listed on page 16) are decoded
into individual command lines by the Command Decoder (top of
diagram). The accompanying Command Strobe, which arrives
slightly delayed, enables G63. G64, which determines that the
command is for “‘this device’’, enables the other input of G63. Then,
any true command line at G61 permits G62 to return a Command
Acknowledge to the I/O Processor. (The acknowledge for Read and
Write commands must come to G61 externally from the Device
Controller; this signifies that the commanded action has been taken.

G63 also enables G60 to send the various commands to their

respective destinations (one to clock the Scratch Register, and
remainder to the Device Controller logic).

SCRATCH REGISTER

If the command is ““Write Scratch’’, information intended to be
loaded into the Scratch Register will be present on the Data Out
lines of the IOP Bus. As indicated by ““IOP Set”” and "‘IOP Clear”,
the 1/O Processor may set bits 3 through 7, and clear bits 1, 3, 5, 6,
7. Bit O is permanently wired to indicate ‘'Low-Speed’’.

The Device Controller may set bits 1, 2, and 4 (individually), and
clear (simultaneously) bits 1 through 7.

Bits 3, 5, 6, 7 are available to the Controller, and the entire Scratch
Register is read out to the |/O Processor when G67 is enabled by an
ACKSR. The significance of the Scratch Register bits is as follows.

Bit Significance For

0 Set: High speed device Local use
Clear: Low speed device

1 Set: End of Transfer 1/0 Processor

2 Not Assigned

3 Set: IODW expected Controller
Clear: IOCW expected

4 Set: CPU Interrupt Requested| /O Processor

5 Set: In Bound Controller and
Clear: Out Bound (to Device) Channel

6 Set: Program Word expected Controller

7 Set* Data Transfer requested Controller

INPUT ACKNOWLEDGE

The 1/O Processor tells the device that it has accepted a byte by
sending a ‘1"’ on bit O of the |OP Bus, accompanied by a Write
Scratch command. This is not a valid command for the Scratch
Register (bit O is not connected to that register), so it is used to
enable G66 to send a Data Acknowledge (DATACK) to the Device
Controller.

PROGRAM WORD REQUEST

The 1/0 Processor tells the Controller to request a Program Word via
bit 6 of the Scratch Register. When the Controller is ready to make
such a request, it sends an Operation Complete signal to G68. This
sets the SRLO flip-flop (Service Request, LO-priority) through G71.
SRLO is sent to the |/O Processor, and sets Service Request (SR)
flip-flop while waiting for an acknowledge from the 1/O Processor
(see ACKSR Propagation below). When this acknowledge arrives, it
reads back the Scratch Register contents to the 1/O Processor, via
G74 and G66. Bit 6 tells the |/O Processor to get the Program Word
and send it to the Controller.

DATA REQUEST

Each time the Controller is ready to input or accept byte, it sends a
Data Request to G70 which sets the SRHI flip-flop (Service
Request, Hl-priority). G69 is continuously enabled for low-speed
devices; the other input to G69 is inactive. Like SRLO, SRHI is sent
to the 1/O Processor and sets the SR flip-flop while waiting for
ACKSR. ACKSR reads back the Scratch Register to the 1/0
Processor. Bit 7 says that the Controller wants to transfer a byte,
and bit 5 tells which direction, in or out.

CPU INTERRUPT

The above two types of requests (Program Word and Data) are
initiated by the I/O Processor. A device-initiated transfer may be
obtained by means of CPU Interrupt. The I/0 Processor may inhibit
such requests by a Prevent Interrupt signal to G65. If permitted to
occur, the Controller sets bit 4 of the Scratch Register, resulting in
an SRLO to the I/O Processor. When ACKSR reads back the Scratch
Register, bit 4 tells the 1/O Processor to get the Controller’'s Status
Register contents, and send it to a CPU module. It is then up to the
CPU to interpret the Status information and, if appropriate, initiate
a data transfer.

ACKSR PROPAGATION

ACKSR (Acknowledge Service Request) from the I/O Processor is
received at G77 and G78, which are a pair of gates for one Con-
troller rack. G76 applies all Service Requests in that rack to both
G77 and G78. If there is no true SR present, ACKSR is passed
directly out of the rack via G77.

If there is at least one true SR at G76, ACKSR is routed in series
through each IOP Interface in the rack to determine which one is
requesting service (or which one has highest priority, if more than
one). If the SR flip-flop in the diagram is requesting service (set),
G75 is inhibited, preventing propagation of ACKSR any further.
G74 is enabled, allowing G73 and G67 to read out the Device
Number and Scratch Register respectively.

If the SR flip-flop shown were not set, G75 would pass on the

ACKSR to the next IOP Interface in the rack. The first true SR
encountered automatically gets highest priority.
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DEVICE CONTROLLERS

The specific Controller logic for various peripheral devices
necessarily varies considerably. Detailed logic, therefore, will not be
discussed here. Only the standard control signals and data paths to
and from the ‘‘Controller Logic’’ block are shown. The Controller
Logic will handle these signals as necessary, perhaps using a ROM
Microprocessor, the same as discussed earlier, and translates the
signals to specific Control signals for the external device.

In general, however, each Device Controller will have at Ieast one
Data In and/or Data Out register, plus a Status Register and a
Command Register. The four Command lines allow the Data In and
Status Registers to be read out onto the IOP ‘’Data In’’ Bus, and the

Data Out and Command Registers to be loaded from the 10P ““Data
Out’’ Bus. Information for the Command Register might have been
sent by a ClO instruction from the CPU, or by an IOCW of the
Control type from the |/O Program.

The shaded area represents one or more additional pairs of Device
Controller and IOP Interface logic units. As shown, the ACKSR
which runs in series through each I0OP Interface in the rack has no
connection to the 10P output connector. ‘‘Service Needed'’ also is a
line that is of significance only within the rack, and therefore not
connected out. The remaining lines, however, do continue on to the
next Controller rack.
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HIGH-SPEED IOP INTERFACE

Due to the fact that the DMA Channel, rather than the /O
Processor, handles the actual transfer of data for high-speed devices,
there are some minor differences from the low-speed IOP Interface
previously discussed. These differences are as follows.

HIGH-SPEED INDICATION

Bit O of the Scratch Register is now wired to indicate HI-Speed
(output high).

CHANNEL ENABLE

Bit 7 of the Scratch Register (was ‘‘Data Transfer’” requested) is
now Channel Enable. This bit sets a Channel Enable flip-flop, which
enables the Channel Interface. The flip-flop is cleared when the
Channel finishes its block transfer (last block if data chaining), and
goes not-Busy.

INDEX WORD REQUEST

When the Channel needs a new IODW (for data chaining), it sends
an Index Word Request to the SRHI flip-flop. If the previous IODW

had indicated Data Chaining, bit 3 of the Scratch Register is set,
with the result that the Index Word Request initiates an SRHI. The
use of Hl-priority gives added assurance that the next IODW (for
continuing the same transfer) will be available on completion of the
current block. Note that the normal request route for IODW's is
blocked at G88 by G87. This means that other devices on the
Channel may continue to request and process IOCW’s up to the
point of requesting the Channel for the actual data transfer, but
may not request the IODW. This contributes significantly to overall
system speed, owing to the fact that preliminary mechanical actions
of other devices may be occurring (under control of IOCW's), while
the Channel is busy transferring the data of the current device.

DIL/DIH COMMANDS

Two additional Commands are effective: “‘Issue Data Index Low'’
(DIL) and “'Issue Data Index High'' (DIH) to Channel. (See page 16
for complete list of Commands.) When the Controller has received
these Commands from the IOP Interface, it returns |ACK (Index
Acknowledge), which the IOP Interface relays to the I/O Processor
as ‘‘Command Acknowledge”. (Read/Write Acknowledge is no
longer present.)
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CHANNEL INTERFACE

The Channel Interface provides logic for servicing Data Requests
(DRQ), End of Transfer (EOT), and Index Word Requests (IWRQ).
Since the logic itself is simple (two flip-flops and a gate, as shown),
the following discussion is expanded to review the entire sequence
of a high speed transfer. Some reference to the Channel and IOP
Interface (High-Speed) diagrams will be necessary; these diagrams
are intended to adjoin the facing diagram at right and top,
respectively.

COMMAND THE DEVICE

Before the transfer starts, a device may require preliminary start-up
commands. These are applied in the usual way (IOCW or CIO
instruction) from the 1/O Processor, via the IOP Bus, to the Com-
mand Register. The Controller Logic translates the Command
Register contents to specific control signals to the device.

INITIALIZE

The first step involved in a transfer is for the |/O Processor to tell
the Channel to load the IODW. The 1/O Processor does this by
putting out the lower 16 bits of the IODW on the IOP Bus and
addressing a ‘‘send DIL" command to the device (IOP Interface),
not directly to the Channel. The IOP Interface accordingly sends
DIL (Data Index Low) to G30 in the Channel, via the Channel Bus.
(Routing DIL/DIH commands through the Device Controlier makes
it unnecessary for the |/O Processor, or the programmer, to know
which Channel a given device is connected to.) Since we are assum-
ing the Channel is presently not-Busy, the EOT flip-flop in the
Channel Interface is clear; this means Device End is low, enabling
G30 to load the waiting IODW bits into the Channel’s Buffer.

Now the Channel goes Busy; CHBSY sent to G87 in the I0P
Interface prevents other devices on the Channel from requesting an
IODW. Also, IACK (Index Acknowledge) is returned from the
Channel to the 1/O Processor as a Command Acknowledge. The |/O
Processor then puts out the higher 16 bits of the 10DW, and
commands the device (IOP Interface) to send DIH to the Channel.
DIH (Data Index High) loads the high IODW bits into the Channel’s
Buffer.

On the next clock, the Channel transfers the IODW from the Buffer
to the Index Register. At this point, if this is an output (device
bound) operation, G41 initiates a Bus Request in order to obtain
the first word from memory while the following operations are
taking place. The Buffer-empty and Index-full indications also
enable G35 to send IWRQ (Index Word Request) to the Channel
Interface, where it waits for Channel Enable. IACK returned to the
1/0 Processor allows it to send Channel Enable (bit 7 of the Scratch
Register). The IWRQ is now forwarded to G89 in the IOP Interface.
If the I/O Processor has detected a Data Chaining bit in the current
I0DW, it has set bit 3 of the Scratch Register, thus allowing an
SRHI for the next IODW to proceed. The IODW will arrive at the
I/O Processor at a random time, and will be loaded into the
Channel’s Buffer.

Channel Enable also enables the Controller Logic, and issues a Start
signal to the device.

TRANSFER

When the device has responded to the Start command (has read
input data or prepared for output data), it issues Data Request,
DRAQ. If this is an input operation, the Controller Logic loads the
input byte into the Data In register when it gets DRQ. Setting the
DRQ flip-flop sends Channel Request CHRQ to the Channel, thus
beginning the input or output operation.

If input, CHRQ enables G55 to load Byte 3 and its parity bit. The
G55 strobe also sets the Channel Acknowledge flip-flop via G49.
CHACK clears the DRQ flip-flop and causes the Controller to send
an acknowledge the device. This allows the device to send another
byte, with DRQ. DRQ sends CHRQ, which is shifted to enable G54
to load Byte 2. The process repeats with G53 and G52 loading
Bytes 1 and 0. Then the four bytes are transferred into the Data In
Buffer, and the Shift Register issues C=0 (Count = 0) to initiate a
transmission to memory. (RQB, Priority Select, Address Cycle, Data
Cycle.) The Data Cycle’s Select causes the fourth CHACK, via G51,
allowing the device to get more data while the memory transmission
is occurring.

If output, the memory data is transferred from the Data Out Buffer
to a shift register, and CHRQ causes a Shift signal that sets Channel
Acknowledge. C=0 causes a Bus Request, to reload the Data Out
Buffer while the Channel is outputting the current data as follows.
CHACK reads out Byte O, via G50, and causes the Controller Logic
to load the byte into its Data Out register. CHACK also clears the
DRQ flip-flop, and tells the Controller Logic to send an
acknowledge to the device, along with the data. (Meanwhile, the
Shift signal moves Bytes 1, 2, and 3 to the left.) When the device has
accepted the first byte, it sends another DRQ. The resulting CHRQ
regenerates Shift, which sets Channel Acknowledge. CHACK reads
out Byte 1 via G50, and causes the device to accept the byte. This
process repeats until all four bytes have been read out. The fifth
CHRQ causes C=0 to transfer the next word from the Data Out
Buffer, and to initiate a Bus Request to get another word for the
Buffer.

END OF TRANSFER

If large blocks are being transferred, the COUNT in the Index
Register may go to zero before completion of the transfer. In this
case, G33 clears the Index-Full flip-flop (INXFUL), causing G31 to
load the Buffer contents into the Index Register, and G35 to send
out for another IODW (IWRQ signal; see Initialize). Data transfer
can thus continue.

When the last byte of data has been transferred, the device issues
Operation Complete (OPC), and sets the EOT (End-of-Transfer)
flip-flop. EOT sets up the Channel to read out the residue of the
Index Register, by sending Device End to G38. Meanwhile, EOT
also sets the EOT bit in the Scratch Register, which in turn sets the
Program Word request bit, and clears the Channel Enable bit.

Since there is no further IODW request from the /O Processor, bit 3
of the Scratch Register is clear, thus allowing G87 to enable G88.
Operation Complete therefore is allowed to initiate an SRLO to the
I/0 Processor. The |/O Processor, when ready, reads back the
Scratch Register, and in recognition of the EOT bit, causes a DIL
(followed by DIH, after IACK). With Device End at G38, DIL/DIH
now reads the Index residue back to the I/O Processor.

At the same time, G36 clears the Channel Busy flip-flop. This in
turn clears the Channel Enable flip-flop, and allows G87 in the
other device controllers to make an SRLO for their IODW's. (The
highest priority SRLO will be acknowledged.)

If the amount of data transferred is greater than the allotted Count,
the condition will occur in which Buffer-Full and Index-Full will be
clear before End-of-Transfer occurs. G34 will then send a Channel-
End (CHEND) signal to the Device Controller, which interprets
CHEND as an alarm condition. The Controller may then take
appropriate action, such as setting a Status bit and interrupting a
CPU.
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CENTRAL PROCESSOR MODULE

CENTRAL PROCESSOR LOGIC,

The following description of Central Processor logic assumes fam-
iliarity with the Omega system architecture, described in a sep-
arate document. Only the basic logic is discussed here, based on
the sequence of events involved in executing an instruction.

First note the major logic elements shown in the facing diagram.
(The Module Control Unit, which together with the CPU proper
comprises the Central Processor Module, is omitted from the top of
the diagram since it was detailed earlier in this manual.) Counter-
clockwise from top left: the Read-Only Memory is addressed by the
ROM Address Register, and outputs its microprogrammed instruc-
tions to the ROM Output Register (in addition to controlling the
Transmit Request Logic). The seven fields of the ROM Output Reg-
ister (4 or 5 bits each) control all of the internal CPU operations.
The STOR field selects one of several registers (22 shown in this
diagram) in which to store the D bus. The R field selects one of
several sources (19 shown, including a Checkout Panel), to read
onto the R bus, and the S field selects a source (14 shown) for the S
bus. The FN (Function) field selects various ALU functions, plus
other functions not indicated in the diagram. The SE (Shift Enable)
field controls manipulation of T bus bits in the Shifter, before stor-
age of bits in the Destination Register. The SP (Special) field per-
forms miscellaneous controls throughout the CPU (only 4 shown
here, indicated by SP and INCT), and SK (Skip) selects one of
various bit or register conditions for skip testing (Condition Code
Flag, Overflow, register odd/even/positive/negative, etc.).

In the two arrays of registers shown as R and S bus inputs, the 17
registers excluding the SP registers are the only ones available to the
programmer. The remaining five SP (Scratch Pad) registers are for
use by the ROM program only. The same is true of the Counter
(CTR, lower left corner), which provides a 6-bit count register for
use by the ROM program; the two sets of inputs and outputs are for
normal counting or floating point usage.

The CPU Output Register (bottom) receives the D bus information
from the Destination Register. Its contents, with Parity generated
for each 8 bits, can be selected (SL) by the MCU for transmission to
other modules. The Opcode Generator, under control of the SP
field, inserts appropriate opcodes when sending command words to
1/0 or memory. The Byte Copy Logic is used only when transmit-
ting individual bytes; to be sure the byte is in the correct position in
the word, the byte is simply copied into all four positions before
transmitting. (The receiving module must know, or decode from the
Opcode, which byte position is valid.)

The shift logic includes the Shifter (a series of gates, controlled by
the SE field), an Extended Shift Register, and a Flag bit, in addition
to the Destination Register, which usually holds the end result of
shifting. Two independent sets of input and output buses (U,V,D,E)
provide a wide range of shift possibilities.

The Current Instruction Register holds the instruction currently be-
ing executed. It is loaded (gated by NEXT signal) from the Next
Instruction Register, which in turn received its contents from mem-
ory. To save time, the ROM program will send a request to memory
for the next instruction as soon as the NEXT transfer occurs. The
other two inputs from the MCU are the Operand Register (for ex-
pected responses from other modules) and the Interrupt Register
(for unsolicited inputs). The presence of an Interrupt is not tested
until the ROM program is in a position to process the Interrupt.
Parity is checked on all three types of inputs (after reading out of
the register), and also on the incoming TO/FROM bits; a parity
error triggers a parity error trap routine, sets a panel indication, and
sends out a System Parity Error signal. The Input Multiplexer

decides where to route incoming information from the MCU.

The Status Register is loaded primarily by the ROM program (from
the D bus), but also provides Module Address (MADD), from the
MCU) and Destination (from the Memory Mapper). Parity is gen-
erated on the 8 TO/FROM bits when transmitting.

SEQUENCE OF EVENTS

Assume that the CPU is currently executing a program and that the
current instruction is not of an addressing-modifying type (jump,
skip, etc.).

1. The ROM program calculates and loads an absolute memory ad-
dress into the CPU Output Register, together with a Read/Write
Opcode, then telis Transmit Request Logic to issue a LORQ. The
destination module is as mapped from the address by the Address
Mapper.

2. The MCU, when clear to transmit, issues Select (SL) which sends
the Address/Opcode to memory. The Input Multiplexer, ex-
pecting a response from that module, routes the returned
instruction word to the Next Instruction Register.

3. When the current instruction has been completed, the NEXT
signal from ROM loads the new instruction into the Current
Instruction Register.

4. The OP field of the instruction causes the Look-Up Table to look
up the starting address of the ROM microprogram for that
instruction.

5. The starting address is loaded into both ROM address registers,
and they step together through the microprogram. (The Save
Register stores the present address when the microprogram does
a JSB.)

6. ROM reads out the addressed microinstruction to the ROM
Output Register. Through logic not shown, the various fields of
the instruction word send out control signals to all CPU logic
elements, as described above, dependent on the specific
instruction.

7. The first action is to trigger a request to refill the Next
Instruction Register. The P Register contents (Program Counter)
is sent via the R bus to the ALU, which increments the value, and
(besides storing back in P) sends it out to program memory as in
steps 1 and 2 above.

8. Meanwhile, assuming the instruction requires an operand, the
ROM microprogram reads the A field of the instruction to the
ALU for address computation with DB, Q, and/or S on the R and
S buses.

9. The resultant address (and Memory Opcode) is sent out to
memory, while ROM waits for the return transmission of the
operand. (If there is another operation ROM could be doing, it
may do so at this point.)

10.The returned operand is routed by the Input Multiplexer to the
Operand Register, and the read-in strobe also lets ROM know
that it is ready to be processed.

11.The Operand is read onto the S bus, with possibly one of the R
bus register inputs, for manipulation in ALU.

12.When the instruction is fully executed, the result is disposed of
as required (perhaps to memory, or a register), and a new NEXT

signal repeats the process (to step 3).
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