COMPANY PRIVATE

OMEGAOMEGAOMEGAO
MEGAOMEGAOMEGAOMEGAOMEGAOM
AOMEGAOMEGAOMEGAOMEGAOMEGAOME
GAOMEGAOMEGAOMEGAOMEGAOMEGAOMEG
GAOMEGAOMEGAOMEGAOMEGAOMEGAOMEGA

GAO
AOMEG
OMEGAO

GAOMEGAOMEGAOMEGAOMEGAOMEGAOME GAOMEGAONME
GAOMEGAOMEGAOME OMEGAOMEGAOME GA
AOMEGAOMEGAO AOMEGAOMEGAOQO

AOMEGAOMEGA GAOMEGAOME
OMEGAOMEG OMEGAOMEG
OMEGAOMEG EGAOMEGAOQ
MEGAOMEG AOMEGAOM
EGAOMEG MEGAOME
GAOMEGA EGAOMEG
AOMEGA INSTRUCTION SET AOMEGA
MEGAO BREADBOARD MODEL OMEGA
EGAOM MEGAO
GAOME AUGUST 11ls 1969 EGAOM
OMEGA ROkt GO0 EGAOM
EGAO ' GAOM
GAOME GAOME
OMEG AOME
EGAO AOME
GAOM . OMEG
OMEG ' OMEG
EGAO . OMEG
AOME OMEG
OMEG . MEGA
EGAO ’ MEGA
M -AOM . - . EGA E
GAO - MEG EGA OME
OMEGA EGA GAO GAOME
MEGAOMEGA AOM GAO OMEGAOMEG
GAOMEGAOMEG MEG GAO GAOMEGAOMEG
OMEGAOMEGAOMEG GAO GAO OMEGAOMEGAOMEG
MEGAOMEGAOMEGAOMEGAOME GAOMEGAOMEGAOMEGAOMEGA
EGAOMEGAOMEGAOMEGAOMEGA GAOMEGAOMEGAOMEGAOMEGAO

W#s//

l.

3.
Ge
Se
6.
Te
8.

10.
11.
12.
13.
14,
15.
16.
17,
18.
19.
20.

SECTION I

FORMATS AND DESCRIPTIONS

INSTRUCTION FORMATS AND ADDRESSING TYPES
REGISTERS

ADDRESS SPACE

DATA FORMATS

STACK MARKER WORD FORMATS

PROGRAM LABEL FORMAT

DATA LABEL FORMATS

TABLES

EXTERNAL DIRECTORY

PROGRAM SEGMENT TABLE (PST)

DATA SEGMENT TABLE (DST)

INDIRECT ADDRESSING AND ARRAY REFERENCES
I/0 PROGRAMMING

170 DEVICE STATUS TABLE

INTERRUPT TABLE

INTERRUPT PROCESSING

TRAP PROCESSING

BUS FORMATS

CONDITION CODE PATTERNS

MODES OF OPERATION

PAGE

1

l.

PAGE 2

INSTRUCTION FORMATS AND ADDRESSING TYPES

ree ey ey R LT X 2.0 22 222X 0 L-0- 2k Ak L g R g

% & - % -2 -4
#]# OP # R # X # A o
® & 4% <&* - &%
66#&0“###&#*&9#96#&&##06#4#9%##06%%6““##“0##%#
O9lm====TyB8==10s11=13y1b4mmmcocccmmcamaanacl]

I INDIRECT BIT
OP = OPERATION CODE (0=~127)

R = REGISTER REFERENCE (FIRST OPERAND)

X REGISTER REFERENCE (INDEX REGISTER)

A = ADDRESS FIELD

MEMORY ADDRESS (M) COMPUTATION:

THE MEMORY ADDRESS SPECIFIED IN AN INSTRUCTION CONSISTS OF
3 PARTS: THE A FIELDs 1 FIELDs AND X FIELDs 1IN GENERALs THE A
FIELD SPECIFIES A DIRECT ADDRESSs THE I FIELD (1 BIT) INDICATES
INDIRECT ADDRESSINGs AND THE X FIELD INDICATES AN INDEX
REGISTER WHOSE VALUE IS TO BE ADDEDe. THE DEFINITION OF THE
A FIELD IS AS FOLLOWS: ! ‘

TYPE CODING DIRECT ADDRESS _RANGE

DB+ AL14=151=00 DB+AL16-31] (DBy»DB+65535])
IMMEDIATE A[14=15)=01 (SEE EXPLANATION ON NEXT PAGE)
PB+ Al14-151=10 PB+A[18=31) (PBsPE+16383]
R AL14-17)=1100 A[29-31) (RO=R7]
DST/PST All4-171}=1101 AL20-31) [0+4095)

Q+ Al14-181=11100 Q+A[19-31) [QsQ+B181]
Q-. AL14=18)=11101 Q=2+12+A(19=31] (Q=1+Q-8192)
S+ Al14=18)=11110 S+A(19=31) [SsS+E191])

S- A(14-181=11111 S=2#12+A(19-31] [S=15s5-8192)

NOTE: WHEN DST/PST = TYPE ADDRESSING IS USEDs BRANCH AND CALL
INSTRUCTIONS INDEX INTO THE PSTs AND ALL OTHER INSTRUCTIONS
INDEX INTO THE DST. g

IF I=0 AND Xx#0s THE CONTENT OF X IS ADDED TO THE ADDRESS TO PRODUCE
A FINAL ADDRESS. IN DOUBLEWORD INSTRUCTIONS (X) IS DOUBLED BEFORE
BEING ADDEDs AND IN THE BYTE INSTRUCTIONS LDB AND STB IT IS QUARTERED.

IN CERTAIN INSTRUCTIONSs IF R=TYPE ADDRESSING IS USED AND I=0»
THE EFFECTIVE ADDRESS 1S GIVEN BY THE CONTENT OF REGISTER Ry
WHICH MUST BE A PROGRAM OR DATA LABEL (T0 BE DESCRIBED BELOW).
THESE INSTRUCTIONS ARE:

LDB BRE BRNN PPDS PCAL
STB BRP BRZ LAR ECAL
BCC BRN BRNZ LBAR SIO

BRO BRNP PSDS LAS

PAGE 3
MEANING OF IMMEDIATE FIELD:

IF THE INSTRUCTION USES FULL=-WORD OPERANDSs THE I BIT OF THE
INSTRUCTION 1S PLACED IN BITS 0-15 OF THE OPERANDs AND BITS
16=31 OF THE INSTRUCTION BECOME BITS 16~31 OF THE OPERAND. THE
RANGE OF OPERANDS IS [=-655369+655351.

: FOR DOUBLEWORD INSTRUCTIONSs THE I BIT OF THE INSTRUCTION IS

PLACED IN THE ENTIRE FIRST WORD AND BITS 0-15 OF THE SECOND WORD
OF THE OPERANDs AND BITS 16=31 OF THE INSTRUCTION BECOME BITS 16-31
OF THE SECOND WORD OF THE OPERAND. THE RANGE OF OPERANDS IS
[=655369+65535].

FOR THE LDB INSTRUCTIONs BITS 24=31 OF THE INSTRUCTION FORM
THE OPERAND.

FOR FLOATING POINT INSTRUCTIONS (INCLUDING DOUBLE PRECISION)
THE I BIT OF THE INSTRUCTION BECOMES BIT 0 OF THE OPERANDs AND
BITS 16=31 OF THE INSTRUCTION BECOME BITS 1-16 OF THE OPERAND.
BITS 17-31 OF THE OPERANDs AND THE ENTIRE SECOND WORD (IF ANY),
ARE SET TO ZEROS. THE RANGE OF OPERANDS IS APPROXIMATELY
(24 (=256) 9242561 AND [=2*(=256)1~242561]

FOR INSTRUCTIONS FOR WHICH AN IMMEDIATE OPERAND IS NOT
MEANINGFULs SUCH AS STORs A TRAP RESULTS.

2.

REGISTERS

22X -R-X-E-2-2-2-2-2-2-0-K-2-2-X-2-2-X- 2 X-X-X-2-2-%.)

) ROs NO INDEXING #
BRBROBUBDNBLUEORROBBIBRDBROORBEIO RSN

Rls X1
P R R R LT R R P R R R PP gy

& R2s X2 &
['Z-X-2X-X-X- X2 X-X-2-X-X-X-X-X-X-F-2-¥-F-X.X-F X-X-F-X-X°F-X-X:X-J
& ' R3s X3 #
“Q#QQ#Qbﬁ*Q#ﬁb“%é%ﬂﬂb#b#&&b#*####“
R4y X&
- X-2-X-X-X-2-X-T-2-X-X-X-X-X-X:-%.-X-X-X-Z-F-X-X-X-X-2-2-%-X-X-X-X-X-J

R5s X5 @
R g R R R g Y

& ‘ R6y X6 &

X2 X-X-2-2-X-2 4 X-X- X X:-2-2-2%-2-2-2-% 3-2-X-X-T 22X 2-%-3-1

&

R7¢ X7 ®

L2222 22 X2 2-2-X:-2:-2-2-- %22 X-X-2-X-X-2-X-2-2-2-X-2 3-X-%°

PAGE 4

THE EIGHT GENERAL-PURPOSE 32-BIT REGISTERS MAY BE USED AS

OPERANDS OR AS INDEX REGISTERS.

SPECIFIEDs NO INDEXING OCCURS.

PB3

0B:

S

PROGRAM BASE REGISTER3 20 BITS
CONTAINS THE ABSOLUTE ADDRESS OF THE
~OF THE CODE SEGMENT BEING EXECUTED.

DATA BASE REGISTER} 20 BITS
CONTAINS THE ABSOLUTE ADDRESS OF THE
(BOTTOM) OF THE STACK.

STACK POINTER REGISTER3 20 BITS
CONTAINS THE ABSOLUTE ADDRESS OF THE
LAST USED CORE LOCATION OF THE STACK

STACK MARKER POINTER} 20 BITS
'CONTAINS THE ABSOLUTE ADDRESS OF THE
MARKER BEING USED WITHIN THE STACK.

STACK LIMIT POINTERS 20 BITS
CONTAINS THE ABSOLUTE ADDRESS OF THE
MEMORY AVAILABLE TO THE STACK.

PROGRAM COUNTERS 20 BITS
| CONTAINS THE ABSOLUTE ADDRESS OF THE
BEING EXECUTED.

IF INDEX REGISTER 0 IS

FIRST LOCATION

FIRST LOCATION

(TOP OF THE STACK}).

CURRENT STACK

LAST WORD OF

INSTRUCTION

PAGE 5

DST: DATA'SEGMENT TABLE REGISTERS 20 BITS
CONTAINS THE ABSOLUTE ADDRESS OF THE FIRST WORD OF THE
DATA SEGMENT TABLE.

DSLt DATA SEGMENT LENGTH REGISTER3 12 BITS
~ CONTAINS THE LENGTH OF THE DATA SEGMENT TABLE.

STA: STATUS REGISTER3 32 BITS
INCLUDES:

XNO (8 BIT EXTERNAL NO.)
SNO (10 BIT SEGMENT NO.)
CC (3 BIT CONDITION CODE)
PM (PRIVILEGED MODE BIT)
ID (INTERRUPT DISABLE BIT)
TD (TRACE DISABLE BIT)

MOD (4 BIT MODULE NO.)

3. ADDRES

PROGR

DATA

PAGE 6

S SPACE
(HIGHER ADDRESSES ARE DOWNWARD IN THE FIGURE)
AM AREA

YT R-2-X- 222X R 2-2-2- 2 2-2-2-2- 2 L L 8 2 2 2 X

et ¢ & & & X &%
x & 2 % % X %X

FrYYY s 22222 2-2.2-2-2°2-2-2-2-2-2- L0 -2 2 X 2 0 &}

T EEEERER]
EEEEEER.

Y Y Y ee-2-2-2-0-2-2-2--X-2-2-2-2-2-2-2-L-X-L-X-2 2-L 0 8- R 8

AREA

PP T T T E Y TP e ey Y T Y Yy)
' : ' ™
& #
&
“ e
& #
&
T I Iy e Y e T X R Y -3
@ o ‘ o
o #
)]
% ' &

YT YRR 0-E-E-2-2-2-2-2 2 2 22 0

i
. 4
%#*#Q#QQQ%#“%Q&&#ﬁ*#&#ﬁ*#ﬁ%#ﬁﬁ%ﬁ#

e % % % x %

4
&
&
&
&
L
&%

« PB POSSIBLE TYPES OF

ADDRESSING
PB+
4 P
PR+
49 DB
DB+s Q=9 S~
4 Q
DB+9 Q¢9 S~
q S

DB+s Q+9e S¢

PAGE 7
4, DATA FORMATS

FIXED POINT FORMAT: 32 BITs TWO'S COMPLEMENT

rryryreerre ey -2 L2 -2 8 2 4 2 Lk A b R Ak

e o "
aSe o
o o : s

revevyrrrererr e Y2200 R0 R R 8 A kg h g d

(FOR DOUBLE=-WORD FIXED POINT FORMATs 32 MAGNITUDE BITS
ARE ADDED ON THE RIGHT)

LOGICAL FORMATs 32 BIT POSITIVE INTEGER

Frrrerrerreyerry ey LI LT ETEER-E- DAL L R AL L kR Al

4%
L L
& #
“ﬁ#ﬁﬁ”ﬁ%hﬁﬁﬁﬂ#QG####%&#Q#Q#%G#%##%*ﬁﬁ#@ﬁﬁ#ﬁ&%#
e e e L e crmememmemeecseanaa3]

FLOATING POINT FORMATSs SIGN ¢ MAGNITUDE REPRESENTATION

SINGLE PRECISION

Pyrryrererereery YT ETEY2-2- D22 L L LA L AR R d LA

& o ® %
#SH E # F #
& @) h #

Y Y Y Y e e 22X -2 2202 22222 L4 Rk kg

0ylmmmem==gy]fmmmmmcmcomenmemeenencenaaeaa]]

$ = FRACTION SIGN BIT (0 FOR POSITIVEs 1 FOR NEGATIVE)
E = EXPONENT+256 (RANGE 0 TO 511)
F = FRACTION (RANGE 0 TO (2+22) = 1)

PAGE 8
DOUBLE PRECISION

Y2 XXX R X-X-2- 2220 X-2- 2 X-2- L K-2- R 2% 4 3-8 L 2% 2]

4 @ # &
#Se E) FM &
& o & o

Y YYYTY X000 L R XL AR R Ak kg

Oplmmmeme=gylfmmmmmccmcmcrcemcennacnnnanaa]]

poddNRBQOBRBUERBBERTDEOBESBERESSESGEROOORNSIROONLG S

@ &
FL ’)
&

Y2y y2.2-22-2.2.2°2-2-2-2-2-2:2-2-2-2-2-2-L-X-2-2-L-2-2-2-2-2 2L L2202 L R-X X/

0--'--‘--‘---‘----------_-------- --------- 31

S = FRACTION SIGN BIT (0 FOR POSITIVEs 1 FOR NEGATIVE)
E = EXPONENT+256 (RANGE 0 70O 511)

FM = FRACTION MOST SIGNIFICANT (RANGE 0 To (2*22)-1)

FL = FRACTION.LEAST SIGNIFICANT (RANGE 0 TO (2432)-1)

NOTE: IN SIGN + MAGNITUDE REPRESENTATIONs THE FRACTION IS ALWAYS
POSITIVE WITH THE S BIT CONTAINING THE SIGN OF THE NUMBER. THE
BINARY POINT IS ASSUMED TO THE LEFT OF BIT 10 wITH AN IMPLIED

LEADING 1 TO THE LEFT OF THE BINARY POINT. THUS ALL FLOATING
POINT NUMBERS ARE STORED IN NORMALIZED FORMs BUT NO BIT IS WASTED
ON THE LEADING ls MAKING ALL FRACTION BITS SIGNIFICANT. THE
EXCEPTIONS ARE THAT 0 IS A WORD CONTAINING ALL 0'Ss AND A ONE IN
THE SIGN POSITION WITH THE REMAINDER OF THE WORD CONTAINING ZEROS
IS AN UNDEFINED RESULT. THEREFORE:

SINGLE PRECISION

DECIMAL VALUE
DECIMAL VALUE

(=114 & 2+ (E=256) ® (1+Fa2+(=22))
O WHEN S = E = F = 0

nun

DOUBLE PRECISION

DECIMAL VALUE
DECIMAL VALUE

(=1)45 & 24 (E=256) & (1+FM#21(=22) +FLe#24(=54))
0 WHEN S = E = FM = FL = 0

CASES WHICH MAY CAUSE CONFUSION

XXX 2220 0-X-2-2-3-X-2-2:2-3-2-2-R-2-%-L-3-2-2-X-2- 4.2 -2-2 24

#0#00000000020000000000000000000000¢ = 0
BURBAOUHBETORUR BB HERLBDRR R BERLBBDG
#0#100000000#0000000000000000000000% = 1
BOOHBDBHBRBHBBHBLBBABRBEDOBIDUSRORTY
#12000000000#0000000000000000000000% = UNDEFINED

#oeoBBOEBBORRBLORSBESBSSRBEREBORGHSSL

5,

STACK MARKER WORD FORMATS
FIRST STACK MARKER WORD

YT Y YT I I R 2R 222 2222 22 2 2 g kg R ok d g

& & % #
» EXT # PSTSEG # OFFSET @
* -] L. &
0&9####““##*Q“ﬁ“%ﬂQQQG%#Q#O#*OQ####&O““#%Q#&HQ
T £ e W AP L:EL T 1 -mmmeemeas3]

EXTt EXTERNAL INDEX OF CALLER
PSTSEG: PST SEGMENT INDEX OF CALLER

OFFSET: RETURN ADDRESS RELATIVE TO PSTSEG

SECOND STACK MARKER WORD

PP Rre Yy e e 2 Y. 2-2- 2 2-2-2-2-2-2- 22 2-2-2-2-X-2-2-X-L:2 -2 % -5 8 &4
o o e e ' o K
#pa]e CC @ UNUSED] QDECR &
4 & o % & *
YTy ey e ry 2 X222 2-2-2-2- 22 2-2-2-2- 2222 2-2 & 2-2-2-2-2 -2 %
0 ’ 1 ’2--4 N 5-‘-- 15 ’ 16&---.--“--0-------31

P: PRIVILEGED MODE FLIP=-FLOP SETTING OF CALLER

I: INTERRUPT DISABLE FLIP=-FLOP SETTING OF CALLER

CC: CONDITION CODE SETTING OF CALLER

PAGE 9

QDECR: VALUE TO BE SUBTRACTED FROM Q REGISTER TO OBTAIN

Q@ VALUE OF CALLER

FALE LV
6. PROGRAM LABEL FORMAT

A PROGRAM LABEL IS USED WHENEVER AN INDIRECT PROGRAM REFERENCE

IS NEEDED.
vy ey 2. LY 222 L2020 2 8 X X L 4 21
L] &% L-2 &
s UNUSED # SEG o OFFSET #
* ® &% %
vy eyryyee ey ey 222222222 0222 8 2- 2L X 4
e . B aand A3 L RELIE Lt Ly --===3]

SEG: PST INDEX OF CALLED SEGMENT RELATIVE TO CURRENT PST
INDEXs MODULO 1024

OFFSET: ADDRESS RELATIVE TO BASE OF CALLED SEGMENT

7. DATA LABEL FORMATS
ORDINARY DATA LABEL

THIS LABEL IS USED FOR INDIRECT ADDRESSING AND FOR

ACCESSING ARRAY ELEMENTSe IF SEG IS NONZEROs IT AUTOMATICALLY
TRIGGERS A PROCESS WHEREBY THE INDEX REGISTER SPECIFIED IN THE
INSTRUCTIONs AND SUCCESSIVE REGISTERSs ARE USED TO

INDEX ALONG THE DIMENSIONS OF THE ARRAY.

YT YT ey ey 2222 -2 -0 022 2220 A0 X 2 h A

#* & # - *
«14000% SEG - OFFSET &
L % : 3 : . &
PP P ePere ey -y y-1-2.2- 0.2 0-2-2-2-2-2-2- 2.2 222 22 8
09l=3sbmmmcccccccccn]5y]fmmmmmmrmecceccsaal]

I: INDIRECT BITe. 1IF I=0s LABEL POINTS DIRECTLY TO AN
OPERANDS IF I=ls LABEL POINTS TO ANOTHER LABEL.
(NOTE: WHEN MULTI-LEVEL INDIRECT ADDRESSING IS USEDs
NO MEMBER OF THE CHAIN OF INDIRECT DATA LABELS MAY BE
AN ELEMENT OF AN ARRAY OF MORE THAN ONE DIMENSION.)

SEG: THE ADDRESS OF AN ARRAY DESCRIPTION BLOCKs RELATIVE
TO THE BEGINNING OF THE DST.

OFFSET: A VALUE USED TO INDEX ALONG THE FIRST DIMENSION OF
THE ARRAYs IN ADDITION TO THE INDEX REGISTER.

PAGE 11

EXTERNAL CALL DATA LABEL

THIS LABEL IS USED TO CONVERT A NORMAL DATA REFERENCE TO
AN EXTERNAL CALL (ECAL) TO THE DESIGNATED SEGMENT.

9#0“#““*“#“0&&6##60####*9#“§§&0#§§“0#0Q§*§§&##

® & Y ' R &
@0l UNUSED o EXT & SEG &
e & 3 o #

FYeTeereerrey ey ey ey R 240 LAL AL kA

EXT: EXT INDEX OF CALLED SEGMENT
SEG: PST SEGMENT NUMBER OF CALLED SEGMENT
PROCEDURE CALL DATA LABEL
THIS LABEL IS USED TO CONVERT A NORMAL DATA REFERENCE TO

A PROCEDURE CALL (PCAL) TO THE DESIGNATED SEGMENT WITHIN
THE CURRENT PST.

#6000##QﬁG%#GQ6#QG&QG#&##	###9&###9#“&#%@#0&

T # @
#0014UNUSED® SEG & OFFSET #
o) & % h o

9*§§90ﬁ#ﬁ%ﬂ*“##“ﬁﬁﬁﬁﬁ#ﬁ*#“%##ﬁ*“Qﬁﬁﬁﬁﬁﬂﬁﬁﬁﬁﬁfﬁ
0-2 Py 3-»--7 9 8:-:‘--—.-—--1 7 ’ 18---.-------------31

SEG: PST INDEX OF CALLED SEGMENT RELATIVE TO CURRENT
PST INDEXs MODULO 1024

OFFSET: ADDRESS RELATIVE TO BASE OF CALLED SEGMENT.

8. TABLES
THE FOLLOWING TABLES ARE ALWAYS PRESENT IN CORE?
EXTERNAL DIRECTORY (IN A DEDICATED LOCATION)
PROGRAM SEGMENT TABLES (POSSIBLY SEVERAL)
DATA SEGMENT TABLES (POSSIBLY SEVERAL)
170 DEVICE STATUS TABLE (IN A DEDICATED LOCATION)
INTERRUPT TABLE (IN A DEDICATED LOCATION)

EACH OF THESE TABLES IS DESCRIBED BELOW.

9., EXTERNAL DIRECTORY

PAGE 12

THE EXTERNAL DIRECTORY OCCUPIES 256 WORDS. OF CORE IN A DEDICATED

LOCATIONe IT HAS AN ENTRYs CALLED AN EXTERNAL POINTERS

FOR EACH

PROGRAM WHICH EXISTS IN THE SYSTEM. THE FORMAT FOR AN EXTERNAL

POINTER IS AS FOLLOWS:

##G&Q“Qﬁﬁ#*%G#ﬂ*ﬁ&%ﬁ%#*Gﬁﬂﬁﬁhﬁﬁﬁﬁéﬁﬁﬁﬁﬁbﬁuéﬁﬁb

& @ o+ : @
apaTe LIMIT o ADDRESS #
o 8 & @ i @

0	#“##*““#90%#0&&&“&###ﬁ&#&#ﬁﬁ#éﬁ&%*#“#b*ﬁﬁ%

P: PRESENCE BIT. P=0 IF PST IS PRESENT AND LOCATED AT
WADDRESS". P=1 IF PST IS NOT PRESENT (CAUSES PRESENCE

TRAP) «

T: TRACE BITe IF T=0s NO ACTION. IF T=1s TRACE TRAP

OCCURS.

LIMIT: LARGEST PST INDEX AVAILABLE TO ECAL INSTRUCTION
(ONE LESS THAN LENGTH OF PSTe) CAUSES LIMIT=-TRAP

IF EXCEEDED BY ECAL.

ADDRESS: ABSOLUTE MEMORY LOCATION OF BEGINNING OF PST IF

PST IS PRESENT (P=0).

PAGE 13

10, PROGRAM SEGMENT TABLE (PST)

EACH PROGRAM WHICH EXISTS IN THE SYSTEM HAS A PROGRAM SEGMENT
TABLE WHICH MAY BE UP TO 1024 WORDS IN LENGTHe EACH SEGMENT

OF A PROGRAM HAS AN ENTRYs CALLED A PROGRAM SEGMENT CONTROL WORD
(PSCw)s IN THE PSTe THE FORMAT OF A PSCW IS AS FOLLOWS:

Cx-2-2-2-2-2-2-2-2-2-2-2-2-X-X-2-X-2-X-2:2-Z-2-2-32-2-2-X-2-%-%-2-2-2-2-X-2-2-2-K-2-X-2-X-X-J

® 0 4 8 o & ™ : %
sPoTel#MeUSUNUSED ¢ ADDRESS &
& & 8 # & @ ' &

22 2-X-X-2-X-2-2-X-X-X-2-K-2-2-2-X-X-%-2-2-%-2-3-2-Z2-2-%-X-2-2-2-2-X-2-2-2-F-X-2-X-2-%-X-J

Pt PRESENCE BIT. P=0 IF SEGMENT IS PRESENT AND LOCATED AT
WADDRESS". P=1 IF SEGMENT IS NOT PRESENT (CAUSES
PRESENCE TRAP),

T: TRACE BITe. IF T=0s NO ACTIONe IF T=1y TRACE TRAP
OCCURS. :

Lt LINK BIT. IF L=0s THE PSCW POINTS TO THE CODE SEGMENT.
IF L=1s THE PSCW POINTS TO ANOTHER PSCW (RELATIVE TO
BASE OF PST).

M: MODE BIT. IF M=0(1)s THE CODE SEGMENT POINTED TO IS
UNPRIVILEGED (PRIVILEGED) .

Us MUNCALLABLE® BITe IF U=ls A TRAP OCCURS WHENEVER THIS
PSCW IS REFERENCED BY AN ECAL INSTRUCTION.

ADDRESS: ABSOLUTE MEMORY LOCATION OF BEGINNING OF SEGMENT
IF SEGMENT IS PRESENT (P=0).

PAGE 14

11, DATA SEGMENT TABLE (DST)

EACH PROGRAM WHICH EXISTS IN THE SYSTEM HAS A DATA SEGMENT TABLE.,
THE DST DESCRIBES A COLLECTION OF ARRAYS WHICH MAY BE REFERENCED
BY THE PROGRAMs EACH OF WHICH HAS AN ARRAY DESCRIPTION BLOCK IN
THE DST. EACH ARRAY DESCRIPTION BLOCK CONTAINS ONE DESCRIPTORS
FOLLOWED BY A DIMENSION WORD FOR EACH DIMENSION OF THE AKRAY.

THE FORMATS ARE?

DESCRIPTOR
Y Y 2 Rl L Ly T R G A
® ® o 8 8 © o &®
#paTa0#Ds UNUSED « ADDRESS . #
® 8 & 88 © s

LEA R A2 e s 2222222222220y Yey Y

P: PRESENCE BIT. P=0 IF VECTOR POINTED TO IS PRESENT AND
LOCATED AT "ADDRESS". P=1 IF VECTOR IS NOT PRESENT
(CAUSES PRESENCE TRAP.)

T: TRACE BITe IF T=0s NO ACTIONe IF T=1ly TRACE TRAP OCCURS.,

Dt DIRTY BIT. D=1 IF THE ARRAY POINTED TO BY THIS
DESCRIPTOR HAS BEEN ALTERED SINCE IT WAS ENTERED INTO CORE.

ADDRESS: FOR SINGLE=-DIMENSIONAL ARRAYSs THE ABSOLUTE ADDRESS
OF THE ACTUAL ARRAY., FOR MULTIPLE~DIMENSIONAL
ARRAYSs THE ABSOLUTE ADDRESS OF A VECTOR OF
SECONDARY DESCRIPTORSs EACH OF WHICH IN TURN POINTS
TO ANOTHER VECTOR OF DATA OR SECONDARY DESCRIPTORS.
THE SECONDARY DESCRIPTORS HAVE THE SAME FORMAT AS
THE ABOVEs AND MAY EXIST ANYWHERE IN MEMORY.

PAGE 15

DIMENSION WORD

22222 2-2- 222 2-2-X-X-2-R-2-2-2-X0-R-K:ER-L4-X-X- 240 K28R L L2822 2 2

& & & @ -]
sFelele LB ® SIZE s
&% & » &]
XX X-X-2-F-F-X-2-X-X-2-2-X-3-%-%-%X-2-%-F-F-X-X-X-2-X-2-3-3-R:X-2-F-3-2-X-2 - 2-%-Z-F:F-X L]
0919293=mmmmmemmn ~=15y16===memmmemmeecaaa3]

F: DIMENSION WORD TYPE. F=0 MEANS VARIABLE INDEX TYPE.
F=1 MEANS FIXED-INDEX TYPE.

L: LAST DIMENSION BITe L=0 MEANS ANOTHER DIMENSION WORD
FOLLOWSe L=1 MEANS THIS IS THE LAST DIMENSION WORD IN
THE ARRAY DESCRIPTOR BLOCK.

VARIABLE~-INDEX TYPE FORMAT (F=0)
(THIS TYPE OF DIMENSION WORD ALLOWS THE INDEX ALONG ITS
DIMENSION TO BE SPECIFIED BY AN INDEX REGISTER.)

LB: LOWER BOUND OF DIMENSION (=4096 <= LB <= 4095)
SIZE: SIZE OF DIMENSION (0 <= SIZE <= 2¢16~-1).

FIXED-INDEX TYPE FORMAT (F=1)
(THIS TYPE OF DIMENSION WORD SETS THE INDEX ALONG ITS
- DIMENSION EQUAL TO A FIXED OFFSETs RATHER THAN TO THE
CONTENT OF AN INDEX REGISTER.)

LB: UNUSEDs EXCEPT IF BIT 3 IS ON AND THE INSTRUCTION
IS A DOUBLEWORD INSTRUCTIONs A TRAP OCCURS.

SIZE: OFFSET USED TO SELECT ELEMENT OF VECTOR
(0 <= SIZE <= 2t16-1).

12. INDIRECT ADDRESSING AND ARRAY REFERENCES

WHEN THE INDIRECT BIT OF AN INSTRUCTION IS 1s THE WORD ADDRESSED
BY THE INSTRUCTION CONTAINS A DATA LABEL OR A PROGRAM LABEL. IF THE
WORD IS A DATA LABELs IT SPECIFIES A SEGMENT NUMBER AND AN OFFSET.
IF THE SEGMENT NUMBER IS ZEROs THE OFFSET SPECIFIES A WORD DISPLACEMEN
RELATIVE TO DB$ THIS IS SIMPLE INDIRECT ADDRESSING. MULTIPLE LEVELS
OF INDIRECT ADDRESSING ARE ALLOWED. ON THE LAST LEVEL OF INDIRECTIONS
WHEN A DATA LABEL IS FOUND WITH INDIRECT BIT = 0y THE INDEX REGISTER X
SPECIFIED IN THE INSTRUCTION IS ADDED TO THE OFFSET FIELD .OF THE DATA
LABEL TO FIND THE ACTUAL DATA WORD,) | :

IF THE SEGMENT NUMBER FIELD OF THE DATA LABEL IS NONZEROs IT
SPECIFIES A DISPLACEMENT RELATIVE TO THE BEGINNING OF THE DSTs AND
TRIGGERS AN ARRAY=ACCESSING PROCESSe IN THIS CASEs THE WORD POINTED
TO IN THE DST WILL BE THE BEGINNING OF AN ARRAY DESCRIPTION BLOCK
CONTAINING A DESCRIPTOR AND SEVERAL DIMENSION WORDSs ONE FOR EACH

PAGE 16

DIMENSION OF THE ARRAY. MULTIPLE~DIMENSIONAL ARRAYS ARE STORED AS
TREES OF DESCRIPTORS. THE ARRAY DESCRIPTOR POINTS TO (CONTAINS THE
ABSOLUTE ADDRESS OF) A VECTOR OF SECONDARY DESCRIPTORS., EACH SECONDAF
DESCRIPTOR ON THE LOWEST LEVEL POINTS TO A VECTOR OF ACTUAL DATA WORDS
THE NUMBER OF LEVELS OF DESCRIPTORS IN THE CHAIN IS EQUAL TO THE NUMBE
OF DIMENSION WORDS IN THE ARRAY DESCRIPTION BLOCK IN THE DST.

THE ARRAY ACCESSING MECHANISM NOW FOLLOWS THE CHAIN OF
DESCRIPTORSs INDEXING AT EACH LEVEL BY THE CONTENTS OF AN INDEX
REGISTER. THE FIRST DIMENSION IS INDEXED BY THE CONTENT OF THE INDEX
REGISTER X SPECIFIED IN THE ORIGINAL INSTRUCTIONs PLUS THE OFFSET
FIELD OF THE DATA LABEL WHICH POINTED INTO THE DSTe. THE SECOND
DIMENSION IS INDEXED BY THE CONTENT OF REGISTER X¢l. THE THIRD
DIMENSION IS INDEXED BY THE CONTENT OF REGISTER X+2s ETC. HOWEVER»
IF THE INDEX REGISTER X IN THE ORIGINAL INSTRUCTION IS REGISTER 09
NO INDEX REGISTERS ARE USEDs AND THE ONLY INDEXING IS ALONG THE FIRST
DIMENSIONs BY THE OFFSET FIELD OF THE ODATA LABELe. ALSOs IF ANY
DIMENSION IS INDEXED BY REGISTER 7s NO INDEX REGISTERS ARE USED wITH
ANY OF THE FOLLOWING DIMENSIONS (REGISTER WRAPAROUND DOES NOT OCCUR.)

IF ALL DIMENSION WORDS IN THE ARRAY DESCRIPTION BLOCK ARE
VARIABLE~INDEX TYPEs THE ARRAY ACCESSING PROCESS PROCEEDS AS ABOVESs
AND A BOUNDS~CHECKING PROCESS OCCURS ALONG EACH DIMENSION. EACH
DIMENSION WORD CONTAINS A LOWER BOUND AND A SIZE. THE INDEX QUANTITY
IS COMPUTED AS DESCRIBED ABOVEs AND THE LOWER BOUND 1S SUBTRACTED FROM
ITe IF THE ORIGINAL INSTRUCTION WAS A DOUBLEWORD INSTRUCTION AND THIS
IS THE LAST DIMENSION OF THE ARRAYs THE RESULT IS THEN MULTIPLIED BY
TWO. THIS FINAL RESULT IS NOW USED TO INDEX INTO THE NEXT VECTOR OF
DESCRIPTORS OR DATA. IN ADDITIONs THIS FINAL RESULT MUST BE LESS THAR
OR EQUAL TO THE SIZE FIELD OF THE DIMENSION WORDs OR ELSE AN ARRAY
BOUNDS TRAP RESULTS. o

HOWEVERs IF ANY DIMENSION WORD IN THE ARRAY DESCRIPTION BLOCK IS
FIXED=INDEX TYPEs NO INDEX REGISTER IS USED ALONG ITS DIMENSIONS
INSTEADy THE INDEX QUANTITY ALONG ITS DIMENSION IS FIXED AND EQUAL TO
THE SIZE FIELD OF THE DIMENSION WORDe THE INDEX REGISTER WHICH wOULD
HAVE BEEN USED ALONG THIS DIMENSION IS USED ALONG THE NEXT DIMENSION
INSTEAD. IN THIS CASEs NO BOUNDS CHECKING OCCURSs EXCEPT THAT IF BIT
OF THE DIMENSION WORD IS ONes AND THE INSTRUCTION IS A DOUBLEWORD
INSTRUCTIONs AND THIS IS THE LAST DIMENSION OF THE ARRAYs A BOUNDS
TRAP OCCURS. ‘ ‘

THE SAME OVERALL ARRAY=-ACCESSING MECHANISM IS TRIGGERED WHEN AN
INSTRUCTION USES DST-RELATIVE ADDRESSINGe THE WORD POINTED TO WILL
THEN BE THE BEGINNING OF AN ARRAY DESCRIPTION BLOCKs AND THE
PROCESS WILL OCCUR AS BEFORE. HOWEVERs IN THIS CASEs THERE IS NO
OFFSET FIELD OF THE DATA LABEL TO BE ADDED TO THE INDEX ALONG THE
FIRST DIMENSION. .)

IF ANY INSTRUCTION MODIFIES AN ELEMENT OF AN ARRAYs ALL
DESCRIPTORS ALONG THE CHAIN POINTING TO THAT ELEMENT HAVE THEIR
WDIRTY' BITS (BIT 3) SET TO 1.

- PAGE 17

—

13. 1/0 PROGRAMMING

BEFORE ISSUING A START I1/0 (SIO0) INSTRUCTIONs THE PROGRAMMER
MUST SET UP A PROGRAM IN CORE CONSISTING OF 1/0 COMMAND WORDS
(IOCW'S) AND I/0 DATA WORDS (IODW'S) ToO SPECIFY THE OPERATIONS
DESIRED. FEACH IOCW CONTAINS AN OPCODE AND CERTAIN MODIFIER
BITS. SOME IOCW'S ARE FOLLOWED BY ONE OR MORE IODW'Sy WHICH
SPECIFY THE AREA(S) IN MEMORY TO WHICH THEY PERTAIN. EACH
IODW CONTAINS A BYTE ADDRESS (22 BITS) AND A BYTE COUNT (9 BITS)
OR A WORD ADDRESS (20 BITS) AND A WORD OR RECORD COUNT (11 RITS),
WHEN AN SIO COMMAND IS ISSUEDs THE 1/0 PROCESSOR EXECUTES THE
FIRST IOCW OF THE I/0 PROGRAM SUCCESSIVELY ON EACH OF THE
FOLLOWING IODW'Ss THEN EXECUTES THE NEXT IOCW ON EACH OF THF
IODW'S FOLLOWING ITs ETCes UNTIL AN “END" TOCW IS ENCOUNTERED.

EACH 1/0 DEVICE HAS A DEVICE STATUS DOUBLEWORD 1IN
A DEDICATED POSITION IN LOWER CORE STORAGE. THE FIRST WORD
CONTAINS A POINTER TO THE NEXT I0CW OR 10DW TO BE EXECUTED RY
THE DEVICEs IF ANY. THE SECOND WORD IS USED ONLY FOR SLOW SPEED
DEVICES., IT CONTAINS THE CURRENT BYTE ADDRESS AND BYTE COUNT
FOR THE DATA TRANSFER BEING MADE BY THE DEVICE., FOR HIGH SPEED
DEVICESs THE WORD ADDRESS AND COUNT ARE STORED IN THE CHANNEL
WHICH HANDLES THE DATA TRANSFER FOR THE DEVICE. AS THE DEVICE
EXECUTES THE TRANSFER SPECIFIED BY AN I10DWs THE DATA ADDRESS IS
INCREMENTED AND THE DATA COUNT IS DECREMENTED UNTIL IT REACHES
ZERO$ THEN THE DEVICE PROCEEDS TO THE NEXT IODW.

IOCwW:
R AL AL L S AR LT R R Y R R R e
o 'y o o
#l1¢ OP # FLAGS = ADDRESS/CMD WORD #
¢« #) ©
e R L T Y X R T R A g
O09l===3y4mmmcua 119]12=mcccccnccccccaaaa. -==31

OP: 000 = END

001 = SENSE

010 = CONTROL

011 = Jump

100 = WRITE

101 = READ

110 = INTERRUPT A CPU

FLAGS: TO BE DEFINED

ADDRESS: ABSOLUTE CORE ADDRESSs USED 1IN SENSE AND Jump
INSTRUCTIONS.,

CMD WOPD: 16 BITS TO BE SENT TO DEVICEs USED IN CONTROL
INSTRUCTION. (RIGHT JUSTIFIED) '

PAGE 17A

10DW:
#4}9%ﬂ(}{&4&#QQG*Q(5(1'##Qﬁ%&#&#ﬁ&ﬁ*ﬂ&ﬁ#&QGQ&###G%G%Q
N # #
#Ce . COUNT # ADDRESS #
[2 -] L]
QQ{H?G#%##¢$§GkﬁG###&Q#ﬂ##d%##*#&#%{5#%#####%#%“%#
HEPELLE L L L L L 93] (0mmmmm e e ncn—- ~===3]

DC: DATA CHAINING. IF DC=1, ANOTHER IODW IMMEDIATELY
FOLLOWS.

COUNT: NUMBER OF BYTES OR WORDS TO BE PROCESSED.

ADDRESS: ABSOLUTE ADDRESS OF FIRST BYTE OR WORD TO BE
PROCESSED.

WHEN WORD TRANSFER 1S SPECIFIED (HIGH SPEED DEVICES)s THE
WORD OR RECORD COUNT OCCUPIES BITS 1-113 AND THE WORD ADDRESS
OCCUPIES BITS 12-31.

14.

PAGE 1R
I1/0 DEVICE STATUS TARLE

THE I/0 DEVICE STATUS TABLE OCCUPIES 512 WORDS OF CORF IN

A DEDICATED LOCATION. IT HAS A DOUBLEWORDs CALLED A

DEVICE STATUS DOUBLEWORDs FOR EVERY 1/0 DFVICE IN THE SYSTEM
(UP TO 256 DEVICES.) THE FORMAT OF THE DEVICE STATUS
DOURLEWORD IS

FIRST WORD

LR I Ry L Ty R s
@
«CPU # # UNUSED =+ PAD i
o ® @ %

LA A4 X-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-F-F.2-2.3-2.F. 22X X. 2. ¥

e Py § [LT S e 3|

SECOND WORD

LA AL Lk LR R 2R 2R 2R R X K- TR 2R -2 2R -2 R R

& -2 -]
#« COUNT = DAD
L I - 1 L-3 L]
-2 2-X-L-X-R-F-R-X-X-X-2-2-2-X-%-F:2-X-X-X-T-X-F-L-X-F-X: X 222 2-F-2-F. F-F-F-F-F X273
0slm=mmmmcccacg,](emmmmemmeeeecec—ceenaeea3]

CPU #: CPU MODULE NUMBER

- PAD: ABSOLUTE CORE ADDRESS OF THE NEXT IOCW OR IODW IN THE
I1/0 PROGRAM NOW BEING EXECUTEDs IF ANY,

COUNT: NUMBER OF BYTES OR WORDS REMAINING TO BE PROCESSED
UNDER THE CURRENT IODW.

DAD: ABSOLUTE BYTE OR WORD ADDRESS OF THE BYTE OR WORD
CURRENTLY BEING PROCESSED.

A HIGH SPEED DEVICE DOES NOT USE THE SECOND WORD. INSTEADS
THE WORD COUNT AND ADDRESS ARE KEPT IN THE CHANNEL REGISTERS.
HOWEVERs WHEN THE TRANSFER IS COMPLETEs THE RESIDUAL COUNT AND
ADDRESS ARE REMOVED FROM THE CHANNEL AND STORED IN THE SECOND
LOCATION OF THE DEVICE STATUS DOUBLEWORD. THF ADDRESS RESIDUE
IS 1 HIGHER THAN THE ADDRESS OF THE LAST WORD TRANSFERRED.

PAGE 19

15. INTERRUPT TABLE

THE INTERRUPT TABLE OCCUPIES 20 WORDS OF CORE IN A DEDICATED
LOCATION. EACH WORD CONTAINS THE ABSOLUTE CORE ADDRESS OF AN
INTERRUPT ROUTINE. BRANCHES TO THE 20 ROUTINES ARE CAUSED BY
EXTERNAL INTERRUPTS FROM THE 16 MODULESs AND BY THE SPECIAL
INTERRUPTS (PARITY ERRORs STACK OVERFLOWs POWER FAIL AND
NONRESPONDING MODULE.)

16, INTERRUPT PROCESSING

INTERRUPTS ARE OF TWO TYPES: EXTERNAL INTERRUPTS AND
SPECIAL INTERRUPTS. EXTERNAL INTERRUPTS ARE DEFINED AS INPUTS
TO THE CPU FROM OTHER MODULESs EXCEPTING THOSE INPUTS WHICH
THE CPU HAS REQUESTED AND IS WAITING FOR. SPECIAL INTERRUPTS
ARE OF FOUR TYPES: PARITY ERRORs STACK OVERFLOWs POWER FAIL
AND NONRESPONDING MODULE.

WHEN AN INTERRUPT ARRIVES AT THE CPUs INFORMATION DESCRIBING

THE INTERRUPT IS LOADED INTO THE INTERRUPT REGISTER. OTHER
INTERRUPTS ARE THEN PREVENTED FROM ACCESSING THE INTERRUPT
REGISTER UNTIL THE FIRST INTERRUPT HAS BEEN PROCESSEDe THE
INTERRUPT DISABLE BIT IN THE, STATUS REGISTER DISABLES OR ENABLES
ALL EXTERNAL INTERRUPTS (SPECIAL INTERRUPTS CANNOT BE DISABLED.)

- IF ENABLEDs AN INTERRUPT WILL BE SERVICED BETWEEN MACHINE
INSTRUCTIONS (SOME LONG INSTRUCTIONS ARE INTERRUPTABLEs AND
MUST BE RESTARTEDe) THE INTERRUPT IS SERVICED AS FOLLOWS:

l« A NEW TWO=WORD STACK MARKER (REGULAR FORMAT) IS PLACED
ON THE STACK.

2« THE INTERRUPT DISABLE BIT AND PRIVILEGED MODE BIT IN THE
STATUS REGISTER ARE TURNED ON. ‘

3. THE XNO AND SNO FIELDS IN THE STATUS REGISTER ARE SET TO 0.
4., THE PB REGISTER IS SET TO 0.

Se THE INTERRUPTING MODULE NUMBER IS USED TO INDEX INTO THE
INTERRUPT TABLEs WHICH CONTAINS THE ABSOLUTE ADDRESS OF THE
INTERRUPT-HANDLING ROUTINE. THE TABLE HAS ADDITIONAL
ENTRIES FOR THE SPECIAL INTERRUPTS. A BRANCH TO THE ADDRESS’
GIVEN BY THE TABLE ENTRY OCCURS.

PAGE 20

17. TRAP PROCESSING

A TRAP OCCURS WHEN AN UNUSUAL CONDITION IS DETECTED WITHIN
THE CPU DURING EXECUTION OF AN INSTRUCTION. EXAMPLES OF TRAP
CONDITIONS ARE OVERFLOWs PRESENCE FAULTs MEMORY BOUNDS VIOLATION,

ETC.

WHEN A TRAP OCCURSs THE CURRENT INSTRUCTION IN THE CPU IS
ABORTED. A PARAMETER WORD DESCRIBING THE FAULT IS PLACED ON
THE STACKs AND A PCAL IS EXECUTED TO SEGMENT 0 OF THE CURRENT
PSTs USING AN OFFSET DETERMINED BY THE TYPE OF TRAP.

NOTE THAT THIS IMPLIES THAT ENTRY 0 OF THE PST OF EACH
USER MUST POINT TO A COLLECTION OF TRAP-HANDLING ROUTINES.
STANDARD ROUTINES MAY BE PROVIDED BY THE OPERATING SYSTEM FOR
THIS PURPOSE. | ' '

18,

BUS FORMATS

[-Z-X-X-X-3
-2 %
aMOD#
% -
- X-2-F-X-3

YY)
& o
#MOD#
&
sooos

Y
#
#MOD #
%
EE Y

X 2-X-X -1
$# 4%
#MOD#
&
LE-X-2-X-

GH
% »
#MOD#
#
Batas

% ¢ 3 20 &

#MOD#
S

LA 2 X-X-]

CPU = MEMORY

AR AR LI TR LT T R Y Y R Y R R e
®
#MOP# MEMORY ADDRESS #
&

LA LA LA LR R R R Y S e R

R e —

MEMORY = CPU

LA A LR TR T R R T R 2 R RS R O Ay
@
DATA OR ADDRESS OF PARITY ERROR
° #

AR AL AR R LR E-E-R- X R R R R R e e

=== e e e e 3]

CPU - MEMORY

§§#§§§¢%ﬁ#ﬁﬂQ#ﬁ%#*&9%0&##&%#**%&#*@“&#%#%Q##
% 4
o DATA o
4% -]

6%##%%##%%%ﬂ#*“***ﬂ#&#&ﬁ#%#####*&##ﬁ&ﬁ#**###

e e T T —— ¥

CPU - 1/0

LA LA LSS LR X212 R R R N R R R N Y
L] 4 i 4

#0P # DEVICE NO. # COMMANDsADDRESSsOR DATA #
®
LA LSS L LT LR TR R Y R g g

0=394mmmmcmcnc]],]Pmmmmmeccecmeccmccanaa3]

INTERRUPTING MODULE =~ CPU

LA AR L L Y R Y T L T L Ly Y e
% s # o
#XXX# DEVICE NO.# STATUS OR ADDRESS OF 4
PARITY ERROR &

#G#ﬁ%%**#%Q**%#*%%%##*%%Q%#&%#ﬁ#ﬂ&%%bﬂ&#%*#ﬂ

0=394mmmmmmccc]]y]Pmmmmmmecemmecccccamnaa]]

1/0 7 CPU
#ﬁ%&#ﬁ#%#ﬂ##%#%#%#%#%ﬁ#&ﬁ#&ﬂﬁ*ﬁﬁ%&#%&b%#%#
-3 [+ -2
DATA & STATUS
(READ DIRECT ONLY)# #*

LA SRR e LR R R R R R R R R R R R R R N

R ~=15y]16=mmmmmmmmmmmmaaeaa]]

22
%
L -4
% &
%4

4% 4% 3¢
&
¢ o
* &#
4 43 3

L XX
L2 -
* &
&
*38

93
* &
L- 2
* &
E- X4

L-2-2-4
% &
& 3
&%
LR R

[2%
% %
-2 -4
&
3

PAGF 21

«EXTRA BIT:

NOT USED

«EXTRA BIT:
PARITY ERROR

«EXTRA BIT:
NOT USED

«EXTRA BIT:
NOT USED

«EXTRA BIT:
MEMORY PARITY
ERROR

«EXTRA BIT
NOT USED

PAGE 22
19. CONDITION CODE PATTERNS
AT ALL TIMESs EXACTLY ONE CONDITION CODE BIT IS ON. THE BITS

ARE DESIGNATED 0s ls AND 2.
PATTERN A2

CC = 0 IF RESULT = 0
CC = 1 1F RESULT > 0
CC = 2 IF RESULT < 0
PATTERN B
CC = 0 IF ALL RESULT BITS ARE 0
CC = 1 IF ANY RESULT BITS ARE 1
PATTERN C:
CC = 0 IF OPERANDS ARE EQUAL
CC = 1 IF OPERAND 1 > OPERAND 2
CC = 2 IF OPERAND 1 < OPERAND 2

20, MODES OF OPERATION

THE MACHINE HAS TWO MODES: PRIVILEGED MODEs AND USER
MODE. PRIVILEGED INSTRUCTIONS MAY BE EXECUTED ONLY IN
PRIVILEGED MODE. IF A PRIVILEGED INSTRUCTION IS ENCOUNTERED
IN USER MODEs A TRAP OCCURS.

PAGF 23
——

SECTION II

1. INDEX OF INSTRUCTIONS
2. DEFINITIONS OF INSTRUCTIONS

IN THE FOLLOWING EXPLANATIONS,

R = THE REGISTER SPECIFIED IN THE R FIELD.

X = THE REGISTER SPECIFIED IN THE X FIELD.

M = THE RESULT OF NORMAL ADDRESS COMPUTATION. NOTE THAT M MAY
BE A REGISTERs A MEMORY ADDRESSs OR IMMEDIATE DATA.

A = THE A FIELD OF THE INSTRUCTION.

1.

INDEX OF INSTRUCTIONS

LOAD AND STORF INSTRUCTIONS

0. LOAD (LOAR)

1. LLH (LOAD LEFT HALF)

2« LRH (LOAD RIGHT HALF)
3. STOR (STORE)

4. SLH (STORE LEFT HALF)
5 SRH (STORE RIGHT HALF)
6 FEXCH (EXCHANGE)
ARITHMETIC AND BOOLEAN INSTRUCTIONS
7. ADD (ADD)

8. SUB (SUBTRACT)

9. MPYE (MULTIPLY EXTENDED)
10 MPY (MULTIPLY)
11 DIVE (DIVIDE EXTENDED)
12. DIV (DIVIDE)
13. AND (AND)
14, 1IOR (INCLUSIVE OR)
15. XOR (EXCLUSIVE OR)

16. ADDM (ADD TO MEMORY)

17« SUBM (SUBTRACT FROM MEMORY)
i8s ANDM (AND MEMORY)

1. IORM (INCLUSIVE OR MEMORY)
20, XORM (EXCLUSIVE OR MEMORY)

LOGICAL INSTRUCTIONS

2l. ADDL (ADD LOGICAL)

22. SUBL (SUBTRACT LOGICAL)
23. MPYL (MULTIPLY LOGICAL)
24, DIVL (DIVIDE LOGICAL)

FLOATING POINT INSTRUCTIONS

25. FADD (FLOATING ADD)

26, FSUB (FLOATING SUBTRACT)

27 FMYE (FLOATING MULTIPLY EXTENDED)
28« FMPY (FLOATING MULTIPLY)

29. FDIV (FLOATING DIVIDE)

30. FLT (FLOAT)

3le FIXR (FIX AND ROUND)

32. FIXT (FIX AND TRUNCATE)

33. FNEG (FLOATING NEGATE)

DOUBLE PRECISION FLOATING POINT INSTRUCTIONS

34. DFAD (DOUBLE FLOATING ADD)

35. DFSB (DOUBLE FLOATING SUBTRACT)
36. DFMP (DOUBLE FLOATING MULTIPLY)
37. DFDV (DOUBLE FLOATING DIVIDE)
38. INCM (INCREMENT M)

39. DECM (DECREMENT M)

40. INCR (INCREMENT R)

41. DECR (DECREMENT R)

PAGE 23A
a———

UNARY OPERATORS

42h. SSP (SET SIGN PLUS)
42B. SSM (SET SIGN MINUS)
42C. CHS (CHANGE SIGN)
42D. NEG (NEGATE

42E. ABS (ABSOLUTE VALUE)

42F. CMPL (COMPLEMENT)
42Ge ZERO (ZERO)
42H. TEST (TEST)

DOUBLEWORD INSTRUCTIONS

43. DLOD (DOUBLE LOAD)

44, DSTO (DOUBLE STORE)
45. DADD (DOUBLE ADD)

46. DSUB (DOUBLE SUBTRACT)
47. DCOM (DOUBLE COMPARE)
48+ DTST (DOUBRLE TEST)

BYTE INSTRUCTIONS

49, LDB (LOAD BYTE)

50. STB (STORE BYTE)

51. EDIT (EDIT BYTES)
COMPARES

52. ACM (ARITHMETIC COMPARE)

53. LCM (LOGICAL COMPARE)
54. FCM (FLOATING COMPARE)

55. DFCM (DOUBLE PRECISION FLOATING COMPARE)
S6é, BCC (BRANCH ON CONDITION CODE)

S7. BRO (BRANCH IF REGISTER 0DD)

S8. BRE (BRANCH IF REGISTER EVEN)

59. BRP (BRANCH IF REGISTER POSITIVE

60. BRNP (BRANCH IF REGISTER NON=-POSITIVE)

61, BRN (BRANCH IF REGISTER NEGATIVE)

62+ BRNN (BRANCH IF REGISTER NON=-NEGATIVE)

63. BRZ (BRANCH IF REGISTER ZERO)

64. BRNZ (BRANCH IF REGISTER NON=ZERO)
SHIFTS

65. LSL (LEFT SHIFT LOGICAL)

66. RSL (RIGHT SHIFT LOGICAL)

67. LSA (LEFT SHIFT ARITHMETIC)

68, RSA (RIGHT SHIFT ARITHMETIC)

69. LSC (LEFT SHIFT CIRCULAR)
70, RSC (RIGHT SHIFT CIRCULAR)

PAGE 23B
-

SPECIAL PURPOSE

71, EXF
72. DOPF
73. MVW
74. ASCI
75, BCDI
76. 1BCD
77. XEQ
78. PSDS
79. PPDS
80, LDOS
8l. STQS
82. STST
83, STRZ
84. LMS
85. ADS
86+ LAR
87. LBAR
88. LAS
89. LFP
90, PUSH
91. POP
92. PCAL
93. ECAL
94, EXIT
95. TRAC
PRIVILEGED
96, LSTA
97. LODZ
98. LDDB
99. STB
100, LODST
101 SDST
102, INT
103. PAUS
104. SIO
105, TIO
106 RIO
107. WIO
108 CIO

(EXTRACT FIELD)
(DEPOSIT FIELD)
(MOVE WORDS)
(ASCII TO INTEGER)

(BINARY-CODED=-DECIMAL TO INTEGER)
(INTEGER TO BINARY-CODED-DECIMAL)

(EXECUTE)

(PUSH DATA STACK)
(POP DATA STACK)
(LOAD Q AND S)
(STORE Q AND S)
(STORE STATUS)
(STORE 2)

(LOAD MEMORY ONTO STACK)

(ADD TO S REGISTER)

(LOAD ADDRESS INTO REGISTER)
(LOAD BYTE ADDRESS INTO REGISTER)
(LOAD ADDRESS ONTO STACK)

(LOAD FROM PROGRAM)
(PUSH)

(POP)

(PROCEDURE CALL)
(EXTERNAL CALL)
(EXIT)

(TRACE)

(LOAD STATUS)
(LOAD 2)
(LOAD DB)
(STORE DB)
(LOAD DST)
(STORE DST)
(INTERROGATE)
(PAUSE)
(START 1/0)
(TEST 1/0)
(READ 1/0)
(WRITE 1/0)
(COMMAND 1/0)

DECIMAL INSTRUCTIONS

10G.
110.

ADDD
suBD

(ADD DECIMAL)
(SUBTRACT DECIMAL)

PAGE 322

PAGE 24
2. DEFINITIONS OF INSTRUCTIONS

LOAD AND STORE INSTRUCTIONS:

0.

LOAD RsM (LOAD)
(R) &« (M)
REGISTER R IS LOADED WITH THE CONTENT OF M.
CC = UNAFFECTED.

1.

LLH RsM (LOAD LEFT HALF)
(R{16=311) &« (M[0~151)
(R[0=-151) & O
BITS 0-15 OF THE CONTENT OF M IS LOADED INTO BITS 16-31 OF R.
BITS 0~15 OF R ARE SET TO 7ERO.
CC = UNAFFECTED.

2.

LRH RsM (LOAD RIGHT HALF)
(R{16=311) &« (M[16=311)
(R{0=15]) & 0
BITS 16-31 OF THE CONTENT OF M IS LOADED INTO BITS 16=31 OF R.
BITS 0-15 OF R ARE SET TO ZERO.
CC = UNAFFECTED.

3.

STOR ReM (STORE)

(M) &« (R)

THE CONTENT OF R IS STORED IN M.
CC = PATTERN A,

4o

SLH

Se

SRH

6.

EXCH

PAGE

RsM (STORE LEFT HALF)
(M[0-15]) & (R[16-311))

BITS 16-31 OF R ARE STORED IN BITS 0-15 OF M.
BITS 16=31 OF M ARE UNCHANGED.
CC = PATTERN A ON THE RESULTING WORD M.

ReM (STORE RIGHT HALF)
(M[16=311) « (R{16=31)])
(M[0-151) « UNAFFECTED

BITS 16~31 OF R ARE STORED IN BITS 16=31 OF M.
BITS 0-15 OF M ARE UNCHANGED.
CC = PATTERN A ON THE RESULTING WORD M.

ReM (EXCHANGE)
(TEMP) « (R)
(R) &« (M) ‘
(M) « (TEMP)

THE CONTENT OF R AND THE CONTENT OF M ARE EXCHANGED.
CC = PATTERN A ON THE WORD STORED INTO M FROM R

25

PAGE 26

ARITHMETIC AND BOOLEAN* INSTRUCTIONS:

Te

ADD

8.
suB

9.

MPYE

10.

MPY

ReM (ADD)
(R) & (R)+(M)

THE CONTENT OF M IS ADDED TO REGISTER R IN FIXED POINT FORM.
THIS INSTRUCTION CAN CAUSE AN INTEGER OVERFLOW TRAP IN WHICH
CASE (R) IS UNCHANGED.

CC = UNAFFECTED.

ReM (SUBTRACT)
(R) &« (R)=(M)

THE CONTENT OF M IS SUBTRACTED FROM REGISTER R IN FIXED POINT
FORMe THIS INSTRUCTION CAN CAUSE AN INTEGER OVERFLOW TRAP IN
WHICH CASE (R) IS UNCHANGED.

CC = UNAFFECTED.

RoM (MULTIPLY EXTENDED)
(RyR+1) « (R)#(M)

THE CONTENT OF R IS MULTIPLIED BY THE CONTENT OF M IN FIXED
POINT FORMs AND THE DOUBLE-LENGTH PRODUCT IS LEFT IN R AND R¢l.
CC = PATTERN A ON THE DOUBLEWORD RESULT.

ReM (MULTIPLY)
(R) @ (R)®(M)

THE CONTENT OF R IS MULTIPLIED BY THE CONTENT OF M IN FIXED
POINT FORM AND THE 32 BIT RESULT IS LEFT IN Re. THIS INSTRUCTION
CAN CAUSE AN INTEGER OVERFLOW IN WHICH CASE (R) IS UNCHANGED.

CC = UNAFFECTED. ' ' ‘)

l11.

rAOL Ct

DIVE RsM (DIVIDE EXTENDED)

12.

D1V

13.

AND

l4.

IOR

15.

XOR

(R) &« INTEGER((RsR+1)/(M))
{R+1) &« (RyR+¢1) MODULO(M)

THE DOUBLE~LENGTH INTEGER IN REGISTERS R AND R+l IS DIVIDED BY
THE CONTENT OF M. THE QUOTIENT INTEGER IS LEFT IN R AND THE
REMAINDER IN R+le THIS INSTRUCTION CAN CAUSE AN INTEGER OVERFLOW
IN WHICH CASE THE REGISTERS ARE UNCHANGEDe

CC = UNAFFECTED.

ReM (DIVIDE)
(R) &« (R)/(M)

THE CONTENT OF R IS DIVIDED BY THE CONTENT OF M AND THE QUOTIENT
IS LEFT IN Re THIS INSTRUCTION CAN CAUSE AN INTEGER OVERFLOW IN
WHICH CASE THE REGISTER IS UNCHANGED. :

CC = UNAFFECTED.

Ry M (AND)
(R) &« (R)AND (M)

THE CONTENT OF R IS REPLACED BY THE LOGICAL "AND" OF R AND M.
CC = UNAFFECTED.

" ReM (INCLUSIVE OR)

(R) « (R) OR (M)

THE CONTENT OF R IS REPLACED BY THE “INCLUSIVE OR" OF R AND M.
CC = UNAFFECTED.

ReM (EXCLUSIVE OR)
(R) &« ((RIAND NOT(M)) OR (NOT(R)AND(M})

THE CONTENT OF R IS REPLACED BY THE "EXCLUSIVE OR" OF R AND M.
CC = UNAFFECTED.)

PAGE 28

16.

ADDM RoM (ADD TO MEMORY)
(M) &« (M)+(R)
THE CONTENT OF R IS ADDED TO THE CONTENT OF M IN FIXED POINT
FORMe THIS INSTRUCTION CAN CAUSE AN INTEGER OVERFLOW TRAPs IN WHICH
CASE M IS UNCHANGED.
CC = PATTERN Ae.

17.

SUBM ReM (SUBTRACT FROM MEMORY)
(M) & (M)=(R)
THE CONTENT OF R IS SUBTRACTED FROM THE CONTENT OF M IN FIXED
POINT FORM. THIS INSTRUCTION CAN CAUSE AN INTEGER OVERFLOW TRAP,
IN WHICH CASE M IS UNCHANGED.
CC = PATTERN A.

18,

ANDM RsM ’ (AND MEMORY)
(M) &« (M)ANDI(R) ‘ ,
THE CONTENT OF M IS REPLACED BY THE LOGICAL Y“AND'" OF M AND R
CC = PATTERN B.

19,

IORM ReM (INCLUSIVE OR MEMORY)
(M) &« (M)OR(R)
THE CONTENT OF M IS REPLACED BY THE "INCLUSIVE OR" OF R AND M.
CC = PATTERN B)

20

XORM RoM (EXCLUSIVE OR MEMORY)

(M) « ((M)AND NOT(R)) OR (NOT(M)AND(R))
- .

THE CONTENT OF M IS REPLACED BY THE "EXCLUSIVE OR" OF R AND M.
CC = PATTERN B.

FAGE 29

LOGICAL INSTRUCTIONS:

2le.
ADDL

22.
SuBL

23.

MPYL

24.

DIVL

ReM - (ADD LOGICAL)
(R) &« (R)+(M) MOD 2432

THE CONTENT OF M IS ADDED LOGICALLY TO REGISTER R AS 32 BIT
POSITIVE INTEGERS.

CC = 0y IF NO CARRYOUT OF BIT 0 OCCURS.

CC = 1y IF A CARRYOUT OF BIT 0 OCCURS.

RseM (SUBTRACT LOGICAL)
(R) &« (R)=(M) MOD 2432

THE CONTENT OF M IS SUBTRACTED LOGICALLY FROM REGISTER R AS 32
BIT POSITIVE INTEGERSe NOTE THAT A CARRY OUT OF BIT 0 OCCURS IF
AND ONLY IF NO BORROW OCCURS.

CC = 0y IF A CARRYOUT OF BIT 0 OCCURS.
CC = 1y IF NO CARRYOUT OF BIT 0 OCCURS.
ReM (MULTIPLY LOGICAL)

(RyR+1) « (R)2(M)

THE CONTENT OF R IS MULTIPLIED LOGICALLY BY THE CONTENT OF M AS
32 BIT POSITIVE INTEGERS AND THE 64 BIT POSITIVE PRODUCT IS LEFT
IN R AND Re<l.

CC = PATTERN B ON THE DOUBLEWORD RESULT.

ReM (DIVIDE LOGICAL)
(R) &« LOGICAL ((RsR¢1)/(M))
(R+1) « (RsR+1l) MODULO (M)

THE 64 BIT POSITIVE DIVIDEND IN REGISTERS R AND R+1 IS DIVIDED
LOCICALLY BY THE 32 BIT POSITIVE DIVISOR IN M, THIS INSTRUCTION
CAN SET AN INTEGER OVERFLOW TRAPs IN WHICH CASE REGISTERS R AND
R+1 ARE UNCHANGED. '

CC = UNAFFECTED.

PAGE 30

FLOATING POINT INSTRUCTIONS:

NOTE 2

25.

FADD

26

FsuB

27

FMYE

28,

FMPY

IF A FLOATING POINT OVERFLOW TRAP OCCURSs THE STORED RESULT WILL

BE THE TRUE RESULT DIVIDED BY 2t512. IF A FLOATING POINT UNDERFLOW
TRAP OCCURSs THE STORED RESULT WILL BE THE TRUE RESULT MULTIPLIED
BY 2¢512. IF A DIVISION BY ZERO TRAP OCCURSy THE RESULT REGISTER
IS UNCHANGED.,

RsM (FLOATING ADD)
(R) « (R)<¢(M)

THE CONTENT OF M IS ADDED TO REGISTER R IN FLOATING POINT.
THIS INSTRUCTION CAN CAUSE FLOATING POINT OVERFLOW OR UNDERFLOW

TRAPS.
CC = UNAFFECTED.

ReM (FLOATING SUBTRACT)
(R) &« (R)=(M)

THE CONTENT OF M IS SUBTRACTED FROM REGISTER R IN FLOATING
POINT. THIS INSTRUCTION CAN CAUSE FLOATING POINT OVERFLOW OR
UNDERFLOW TRAPS. '

CC = UNAFFECTED.

ReM (FLOATING MULTIPLY EXTENDED)
(RyR¢1) « (R)#(M)

THE CONTENT OF R IS MULTIPLIED BY THE CONTENT OF M AND THE
DOUBLE-WORD RESULT IS LEFT IN (RyR+1l)e THIS INSTRUCTION CAN
CAUSE FLOATING POINT OVERFLOW OR UNDERFLOW TRAPS.

CC = PATTERN A ON THE DOUBLEWORD RESULT.

ReM (FLOATING MULTIPLY)
(R) & (R)®(M)

|
THE CONTENT OF R IS MULTIPLIED BY THE CONTENT OF M IN
FLOATING POINT. THIS INSTRUCTION CAN CAUSE FLOATING POINT
OVERFLOW OR UNDERFLOW TRAPS. '
CC = UNAFFECTED.

29.

FOIV

30.
FLT

31.

FIXR

32.
FIXT

33.

FNEG

PAGE 31

ReM (FLOATING DIVIDE)
(R) « (R)/(M)

THE CONTENT OF R IS DIVIDED BY THE CONTENT OF M IN FLOATING
POINT. THIS INSTRUCTION CAN CAUSE FLOATING POINT OVERFLOW
UNDERFLOWs OR DIVISION BY ZERO TRAPS.,

CC = UNAFFECTED.

ReM (FLOAT)
{R) « FLOAT (M)

THE INTEGER IN M IS ROUNDED OFF TO 23 SIGNIFICANT BITS AND THEN
FLOATED AND PLACED IN R.
CC = UNAFFECTED.

ReM (FIX AND ROUND)
(R) &« TRUNCATE((M)+.5#SIGN(M))

THE FLOATING POINT NUMBER IN M IS ROUNDED AND CONVERTED TO FIXED
POINT FORM AND PLACED IN R. THIS INSTRUCTION CAN CAUSE AN
INTEGER OVERFLOW TRAP. |

CC = UNAFFECTED.

RoM " (FIX AND TRUNCATE)
R « TRUNCATE (M)

THE FLOATING POINT NUMBER IN M IS TRUNCATED AND CONVERTED TO
FIXED POINT FORM AND PLACED IN Re THIS INSTRUCTION CAN CAUSE
AN INTEGER OVERFLOW TRAP.

CC = UNAFFECTED.

ReM (FLOATING NEGATE)

THE NUMBER IN Ms IF NON=ZEROs HAS THE SIGN BIT INVERTED AND IS
THEN STORED IN Re M IS UNCHANGED.
CC = UNAFFECTED.

PAGE 32

DOUBLE PRECISION FLOATING POINT INSTRUCTIONS.

34.

DF AD

35.
DF SB

36.

DF MP

37.

DFDV

RyM " (DOUBLE FLOATING ADD)
(ReR+1) « (RoR*1)+ (MyM*1)

THE CONTENT OF MsM+l IS ADDED TO REGISTERS RsR+]l IN DOUBLE
PRECISION FLOATING POINTe THIS INSTRUCTION CAN CAUSE FLOATING
POINT OVERFLOW OR UNDERFLOW TRAPS. 7

CC = PATTERN A ON THE DOUBLEWORD RESULT.

ReM (DOUBLE FLOATING SUBTRACT)
{ReR+1) &« (ReR*+1)=(MopM+1l)

THE CONTENT OF M¢M+1l IS SUBTRACTED FROM REGISTERS RsR+1 IN DOUBLE
PRECISION FLOATING POINTs THIS INSTRUCTION CAN CAUSE FLOATING
POINT OVERFLOW OR UNDERFLOW TRAPS.

CC = PATTERN A ON THE DOUBLEWORD RESULT.

RoM (DOUBLE FLOATING MULTIPLY) -
(RyR+1) @ (RyR*1) & (MgM+1)

THE CONTENT OF RsR+1 IS MULTIPLIED BY THE CONTENT OF MsM¢l IN
DOUBLE PRECISION FLOATING POINT. THIS INSTRUCTION CAN CAUSE
FLOATING POINT OVERFLOW OR UNDERFLOW TRAPS.

CC = PATTERN A ON THE DOUBLEWORD RESULT.

ReM (DOUBLE FLOATING DIVIDE)
(RyR+1) &« (ReR+1)/(MyM+]1)

THE CONTENT OF RsR+1 IS DIVIDED BY THE CONTENT OF MsM+¢1 IN DOUBLE
PRECISION FLOATING POINTe THIS INSTRUCTION CAN CAUSE FLOATING
POINT OVERFLOWs UNDERFLOWs OR DIVISION BY ZERO TRAFS.

CC = PATTERN A ON THE DOUBLEWORD RESULT.

PAGE

INCREMENT AND TEST INSTRUCTIONS:

38.

INCM

39.

DECM

40,

INCR

41.

DECR

ReM (INCREMENT M)
(M) &« (M)e+]l

THE CONTENT OF M IS INCREMENTED LOGICALLY BY 1.
CC = PATTERN C ON (M)3(R) IF R#0
ELSE PATTERN C ON (M)30.

ReM (DECREMENT M)
(M) « (M)=1

THE CONTENT OF M IS DECREMENTED LOGICALLY BY 1.
CC = IF R#0y PATTERN C ON (M)Z2(R).
ELSE PATTERN C ON (M) 30,

ReM (INCREMENT R)
(R) & (R)+1

THE CONTENT OF R IS INCREMENTED LOGICALLY BY 1.
CC = PATTERN C ON (R) 3 (M)

ReM (DECREMENT R)
(R) &« (R)=1

THE CONTENT OF R IS DECREMENTED LOGICALLY BY 1.
CC = PATTERN C ON (R) (M)

33

UNARY OPERATORS:

42A.

sSSP

428,

SSM

42C.
CHS

42E.

ABS

PAGE 34

ALL UNARY INSTRUCTIONS SHARE A SINGLE OPCODE. THE EIGHT
INSTRUCTIONS ARE DISTINGUISHED BY THEIR R FIELDS.

M (SET SIGN PLUS)
M{0] « 0

THE SIGN BIT OF M IS SET TO 0.
CC = PATTERN A.

M (SET SIGN MINUS)
MIO) « 1

THE SIGN BIT OF M IS SET TO l.
CC = PATTERN A.

M (CHANGE SIGN)
M[O] « NOT (MLOD)

THE SIGN BIT OF M IS COMPLEMENTED.
CC = PATTERN A.

M (NEGATE)
(M)« =(M)

THE CONTENT OF M IS NEGATED.

THIS INSTRUCTION CAN CAUSE AN INTEGER OVERFLOW TRAPs
CASE (M) IS UNCHANGED. '

CC = PATTERN A.

M (ABSOLUTE VALUE)
(M) « ABS(M)

" THE CONTENT OF M IS REPLACED BY ITS ABSOLUTE VALUE.

THIS INSTRUCTION CAN CAUSE AN INTEGER OVERFLOW TRAP:
CASE (M) IS UNCHANGED.
CC = PATTERN A.

IN WHICH

IN WHICH

PAGE 3O
42F .

CMPL M (COMPLEMENT)
(M) &« NOT (M)

THE CONTENT OF M IS REPLACED BY ITS ONE'S COMPLEMENT.
CC = PATTERN B

42G.

ZERO M - (ZERO)
(M) « 0

THE CONTENT OF M IS SET TO ZERO.
CC = UNAFFECTED.

42H.

TEST M (TEST)
CC « PATTERN A (M)

THE CONDITION CODE IS SET TO PATTERN A DEPENDING ON
THE CONTENT OF M. '

PAGE 36

DOUBLEWORD INSTRUCTIONS:

43.

DLOD

44,

DSTO

45,

DADD

ReM (DOUBLE LOAD)
(RyR+1)«(M9M+])

IN ADDRESS COMPUTATIONs THE INDEX REGISTER CONTAINS A DOUBLE=-
WORD COUNT RATHER THAN A WORD COUNT. THE WORDS IN M AND M+l
ARE LOADED INTO R AND R+l.

CC = PATTERN A ON THE DOUBLEWORD RESULT.

ReM (DOUBLE STORE)
(MyM+1)«(ReR*1)

IN ADDRESS COMPUTATIONs THE INDEX REGISTER CONTAINS A DOUBLE~-
WORD COUNT RATHER THAN A WORD COUNT. THE WORDS IN R AND R+l
ARE STORED IN M AND M+l.

CC = PATTERN A ON THE DOUBLE~-WORD RESULT.

RsM (DOUBLE ADD)
(ReR+1)a(RsR*1) ¢+ (M9gM+1)

IN ADDRESS COMPUTATIONs THE INDEX REGISTER CONTAINS A DOUBLE=-
WORD COUNT RATHER THAN A WORD COUNT. THE DOUBLE=WORD INTEGERS
IN Ry R+l AND Ms M+l ARE ADDEDs AND THE RESULT IS LEFT IN R
AND R+l. THIS INSTRUCTION CAN CAUSE AN INTEGER OVERFLOW TRAP.
CC = PATTERN A ON THE DOUBLEWORD RESULT. '

46.

DsuB

47

DCOM

48,

DTST

PAGE 37

ReM (DOUBLE SUBTRACT)
(RyR+1)a(RoR+1)=(MygM+1)

IN ADDRESS COMPUTATIONs THE INDEX REGISTER CONTAINS A DOUBLE-

WORD COUNT RATHER THAN A WORD COUNT. THE DOUBLE~WORD INTEGER

IN Ms M+l IS SUBTRACTED FROM THAT IN Rs R¢ls AND THE RESULT IS
LEFT IN ReR+1le THIS INSTRUCTION CAN CAUSE AN INTEGER OVERFLOW
TRAP.

CC = PATTERN A ON THE DOUBLEWORD RESULT.

ReM (DOUBLE COMPARE)
(RyR+1) 3 (MeM+1) '

IN ADDRESS COMPUTATIONs THE INDEX REGISTER CONTAINS A DOUBLE=~
WORD COUNT RATHER THAN A WORD COUNT. THE DOUBLE=WORD INTEGERS
IN Ry R+l AND Ms M+1 ARE COMPARED NUMERICALLY.

CC = PATTERN C.

M (DOUBLE TEST)

CC « PATTERN A (MeM+]1)

THE CONDITION CODE IS SET TO PATTERN A DEPENDING ON THE
DOUBLEWORD CONTENT OF M AND M*l.

PAGE 38

BYTE INSTRUCTIONS:

49.

L0B

50.

STB

ReM (LOAD BYTE)
IF R-TYPE ADDRESSING IS NOT USED THEN
BEGIN
M @ (A)+TRUNCATE(X/4)
BYTE ADDR«(X) MODULO 4
(R[0=23])«0
(R{26=31))«(BYTE [(BYTE ADDR] OF (M)}
END
ELSE
BEGIN
(R[0=-231)«0
(R{24=31))«BYTE REFERENCED BY DATA LABEL IN REGISTER X.
END

IN ADDRESS COMPUTATION FOR THIS INSTRUCTIONs THE INDEX

REGISTER IS ASSUMED TO CONTAIN A NUMBER OF BYTES RATHER THAN A
NUMBER OF WORDSe THE RESULT OF THE ADDRESS COMPUTATION IS A
BYTE ADDRESS Me THE BYTE AT M IS LOADED INTO THE LOW-ORDER 8
BITS OF Rs AND THE HIGH-ORDER 24 BITS OF R ARE SET TO ZERO.

IF R-TYPE ADDRESSING IS USEDs THE REGISTER SPECIFIED BY THE LAST
3 BITS OF THE A FIELD CONTAINS A DATA LABEL WHOSE OFFSET FIELD
CONTAINS A BYTE COUNT. “ |

CC = UNAFFECTED.

ReM (STORE BYTE)
IF R-TYPE ADDRESSING IS NOT USED THEN
BEGIN
Me (A) +TRUNCATE (X/4)
BYTE ADDR « (X) MODULO 4
(BYTE [BYTE ADDR] OF (M)« (R[24~311)
'END
ELSE :
BYTE REFERENCED BY DATA LABEL IN REGISTER X « (R{24=311)

IN ADDRESS COMPUTATION FOR THIS INSTRUCTIONs THE INDEX

REGISTER IS ASSUMED TO CONTAIN A NUMBER OF BYTES RATHER THAN

A NUMBER OF WORDS. THE RESULT OF THE ADDRESS COMPUTATION IS A
BYTE ADDRESS M. THE LOW=-ORDER 8 BITS OF REGISTER R ARE STORED
INTO THE PROPER BYTE OF M,

IF R=TYPE ADDRESSING IS USEDs THE REGISTER SPECIFIED BY THE LAST
3 BITS OF THE A FIELD CONTAINS A DATA LABEL WHOSE OFFSET FIELD
CONTAINS A BYTE COUNT.

CC = UNAFFECTED.

PAGE 39
S5l

EDIT RoXoM (EDIT BYTES)

REGISTER R CONTAINS A RELATIVE BYTE ADDRESSs CALLED THE SOURCE
POINTER. WE WILL REFER TO THE BYTE POINTED TO BY REGISTER
R AS Rle. '

REGISTER R+l CONTAINS A RELATIVE BYTE ADDRESS, CALLED THE
DESTINATION POINTER. WE WILL REFER TO THE BYTE POINTED TO
BY REGISTER R+l AS R2.

REGISTER X CONTAINS AN EDIT CONTROL WORD (FORMAT BELOW).

REGISTER X+1 CONTAINS A BYTE COUNT IN TWOS=COMPLEMENT FORM,
WHICH MAY BE INCREMENTED TO ZERO TO TERMINATE THE INSTRUCTION.

M POINTS TO A TRANSLATION TABLE (INDEXING IS NOT ALLOWED.)
THE TABLE HAS THE FOLLOWING STRUCTURES

CW3 CWZ2 CWl Cw0 T1 T2
BB BB BB RO RGO R B OB R AB RO OB ORI G IR LB RO B RO DGR BB OGN
® # @ # # 256 BYTES ¢ 256 BYTES ©

-2-2-2-2-X-2-2-X-2-X-2-X-22-2-X-XX-2-2 XXX 3-R-X-Z- XX X2-X2 2222 KL L2222 0822222 %X XXX
. o ’
M

THE SECTION OF THE TABLE BEGINNING AT LOCATION M IS CALLED
Tls AND SPECIFIES A BYTE-TO-BYTE TRANSLATION FUNCTION.
ADJACENT TO T1 IN MEMORY MAY BE ANOTHER 256-BYTE TRANSLATION
TABLE T2. THE FOUR WORDS PRECEDING Tl IN MEMORY MAY CONTAIN
ADDITIONAL CONTROL WORDS TO BE USED BY THE INSTRUCTION.

THE FORMAT OF THE EDIT CONTROL WORD IS:

1222222 X-2-2-2-2-2-2-2-2-2-2°X-2-%-X-2-%:-2-X-2-2-3-2-2-2-X-2-F-2-2-2-X- 2 % £:2:-2-X-2-2-2-2- 2222 2-X-X-2-2-X-2-2-

" ' # # & o ™
#CONTROL BYTE 1# E #COND #TEST #CONTROL BYTE 2#TEST BYTE (TB)#
s ‘ & & 4 # s ’ ' #

[-2-2-2-X-2-X-2-%-2-X-2-2-X-%-2-2-X-R:X-X-X-X-X-X-2<X-X-2°F-%-2-2-2'%-2:2-F-X-2-2-X-%-T:X-¥.-3-2-%-X-X-X-2-2-2-2-X-X-X-F-X:-X-
(momeemreceeeaT)8=9s10=12913=15)l6mmnmmcanua?],2jmnnamnanen]]

THE FORMAT OF EACH CONTROL BYTE IS
BITS FIELD

0-2 A (ACTION)
3 I1 (INCREMENT REG. R)

4 I2 (INCREMENT REG. R+1)
5 I3 (INCREMENT REG. X+1)
6 H (HALT)

7 C (NEW CONTROL WORD)

THE INSTRQCTI?N OPERATION IS AS FOLLOWS:

1.

2e

3.

4y

Se

THE TEST FIELD DESIGNATES A COMPARISON OF TwO BYTES:

TEST=0 TEST IS TRUE (SEE BELOW)
TEST=1 R1tR2

TEST=2 TBIT1(R])

TEST=3 TB:T1(R2)

TEST=4 TB:RI1

TEST=5 TB:R2

TEST=6 TB:T2(R1)

TEST=7 TB:T2(R2)

THE CONDITION CODE IS SET TO PATTERN C ON THE RESULT
OF THE TESTs AND IS THEN ANDED WITH THE COND FIELD.

IF THE RESULT IS NONZEROs OR IF TEST=0s THE REMAINDER
OF THE CYCLE IS CONTROLLED BY CONTROL BYTE 1.
OTHERWISEs THE REMAINDER OF THE CYCLE IS CONTROLLED BY
CONTROL BYTE 2.

THE A FIELD OF THE CONTROL BYTE NOW DETERMINES THE
ACTIONs WHICH IS THE MOVE OF A SINGLE BYTE:

A=0 NO ACTION
A=1 Rl « T1(Rl)
A=2 Rl & T2(RD)
A=3 Rl « TB
As=4 " R2 &« R1
A=S R2 « T1(R1)
A=6 R2 « T2(R1)
A=7 R2 «

1s INCREMENT REGISTER R.

IF THE I2 BIT = ls INCREMENT REGISTER R+l.

IF THE I3 BIT = ls INCREMENT REGISTER X+l.
IF REGISTER X+1 IS THEN 0s SET CC=0 AND TERMINATE
THE INSTRUCTION.

IF THE H BIT = 1, SET CC=1 AND TERMINATE THE
INSTRUCTION,

IF THE C BIT = ls REPLACE THE CONTENT OF REGISTER

7 X BY THE CONTROL WORD IN LOCATION M=l=E.

IF THE I1 BIT

Huu

IF THE INSTRUCTION HAS NOT TERMINATEDs RETURN TO STEP 1.

_ PAGE 41
NOTE: REGISTER Rs R+1ls Xs AND X¢1 SHOULD NOT OVERLAP.

THE EDIT INSTRUCTION CAN PERFORM CERTAIN FUNCTIONS WITHOUT THE
AID OF TRANSLATION TABLESe TWO EXAMPLES ARE GIVEN?

l« TO MOVE A FIXED NUMBER OF BYTES FROM A SOURCE FIELD TO
A DESTINATION FIELDs SET UP THE FOLLOWING:

REGISTER R = SOURCE FIELD POINTER

REGISTER R+1 = DESTINATION FIELD POINTER
REGISTER X = 10011100000000000000000000000000
REGISTER X+¢1 = TWOS-COMPLEMENT OF BYTE COUNT

2. TO COMPARE A FIXED NUMBER OF BYTES OF FIELD 1 70 FIELD 2,
SET UP THE FOLLOWING:

REGISTER R = FIELD 1 POINTER

REGISTER R+1 = FIELD 2 POINTER

REGISTER X = 00011100001000010000001000000000
REGISTER X+1 = TWOS-COMPLEMENT OF BYTE COUNT

WHEN THE INSTRUCTION TERMINATESs CC=0 IF THE FIELDS
WERE EQUAL. IF THE FIELDS WERE NOT EQUALs CC=1 AND
REGISTERS R AND R+1 POINT TO THE BYTES WHICH COMPARED
UNEQUAL « ' :

FALL ScC

COMPARES?
524
ACM RsM (ARITHMETIC COMPARE)
(R) 3 (M)

THE CONTENT OF R IS COMPARED NUMERICALLY WITH THE CONTENT
OF M IN FIXED POINT FORM.
CC = PATTERN C.

LCM RsM (LOGICAL COMPARE)
(R) 3 (M)
THE CONTENT OF R IS COMPARED LOGICALLY WITH THE CONTENT
OF Ms AS 32-BIT POSITIVE NUMBERS.
CC = PATTERN Co
54 o
FCM RsM (FLOATING COMPARE)
(R) 3 (M)
THE CONTENT OF R IS COMPARED WITH‘THE CONTENT OF M AS
FLOATING POINT NUMBERS.
CC = PATTERN C.
55,
DFCM RsM (DOUBLE PRECISION FLOATING COMPARE)

THE CONTENT OF R AND R+1 IS COMPARED WITH THE CONTENT OF M AND
M+1 AS DOUBLE PRECISION FLOATING POINT NUMBERS.
CC = PATTERN C.

PAGE 43

BRANCHES:
56
BCC RsM (BRANCH ON CONDITION CODE)
A BRANCH TO LOCATION M IS EXECUTED UNDER THE FOLLOWING
CONDITIONS:
IF R = 0y NEVER BRANCH
R = ls BRANCH IF CC = 0
R = 25 BRANCH IF CC = 1
R = 3y BRANCH IF CC = 0 OR 1
R = 4, BRANCH IF CC = 2
R = 59 BRANCH IF CC = 0 OR 2
R = 6y BRANCH IF CC = 1 OR 2
R = 7y ALWAYS BRANCH
CC = UNAFFECTED. -
57,
BRO RsM (BRANCH IF REGISTER 0DD)
IF (R{311)=1 THEN (P)«(M) ELSE (P)a(P)+l
A BRANCH TO LOCATION M IS EXECUTED IF THE NUMBER IN REGISTER
R IS 0DD.
CC = UNAFFECTED.
584
BRE RsM (BRANCH IF REGISTER EVEN)

IF (R[311)=0 THEN (P)&a(M) ELSE (P)a(P)+]

A BRANCH TO LOCATION M IS EXECUTED IF THE NUMBER IN REGISTER
R IS EVENe
CC = UNAFFECTED.

FAOL 44

59,
BRP RsM (BRANCH IF REGISTER POSITIVE)
IF (R)>0 THEN (P)a(M) ELSE (P)a(P)+]
A BRANCH TO LOCATION M IS EXECUTED IF THE NUMBER IN REGISTER
R IS POSITIVE.
CC = UNAFFECTED.
60,
BRNP RsM (BRANCH IF REGISTER NON-POSITIVE)
IF (R)<=0 THEN (P)«(M) ELSE (P)a(P)+]
A BRANCH TO LOCATION M IS EXECUTED IF THE NUMBER IN REGISTER
R IS LESS THAN OR EQUAL TO ZERO.
CC = UNAFFECTED.
61
BRN RsM (BRANCH IF REGISTER NEGATIVE)
IF (R)<O THEN (P)&(M) ELSE (P)a(P)+l
A BRANCH TO LOCATION M IS EXECUTED IF THE NUMBER IN REGISTER
R IS LESS THAN ZERO. |
CC = UNAFFECTED.
62,
BRNN RsM (BRANCH IF REGISTER NON-NEGATIVE)

IF (R)>=0 THEN (P)«(M) ELSE (P)«(P)+]

A BRANCH TO LOCATION M IS EXECUTED IF THE NUMBER IN REGISTER
R IS GREATER THAN OR EQUAL TO ZERO.
CC = UNAFFECTED.

PAGE 45

63,

BRZ RsM (BRANCH IF REGISTER ZERO)

.~ IF (R)=0 THEN (P)a(M) ELSE (P)&(P)+l
A BRANCH TO LOCATION M IS EXECUTED IF THE NUMBER IN REGISTER
R IS ZERO.
CC = UNAFFECTED.

644

BRNZ RsM (BRANCH IF REGISTER NON=-ZERO)

IF (R)#0 THEN (P)a(M) ELSE (P)&(P)«]

A BRANCH TO LOCATION M IS EXECUTED IF THE NUMBER IN REGISTER
R IS NON=ZERO.
CC = UNAFFECTED.

SHIFTS:

65.
LSL
66.
RSL

67.
LSA
68.

RSA

69.
LSC
70
RSC

PAGE 46

Ry X9 A (LEFT SHIFT LOGICAL)

ReyXsA (RIGHT SHIFT LOGICAL)

THE CONTENTS OF REGISTERS R AND X ARE SHIFTED LEFT (RIGHT)
TOGETHER A (MOD 64) BITS (R IS ASSUMED TO BE ON THE LEFT) AND THE
VACATED BITS ARE SET TO ZEROS. 1IF R = Xs ONLY ONE REGISTER

IS SHIFTED.

CC = UNAFFECTED.

ReXsA (LEFT SHIFT ARITHMETIC)

ReXsA (RIGHT SHIFT ARITHMETIC)

THE CONTENTS OF REGISTERS R AND X ARE SHIFTED LEFT (RIGHT)
TOGETHER A (MOD 64) BITS (R IS ASSUMED TO BE ON THE LEFT)s EXCEPT
THAT THE LEFTMOST (SIGN) BIT OF R IS UNCHANGED. VACATED
LOW=ORDER BITS ARE SET TO ZERO$ VACATED HIGH=ORDER BITS ARE

SET TO THE SIGN BITe IF R = Xs ONLY ONE REGISTER IS

SHIFTEDs AND ITS SIGN BIT IS PRESERVED.

LSA OVERFLOWS IF BIT 1 IS DIFFERENT FROM BIT 0 BEFORE SHIFTING.
CC = UNAFFECTED.

ReXs A - (LEFT SHIFT CIRCULAR)

ReX9A (RIGHT SHIFT CIRCULAR)

THE CONTENTS OF REGISTERS R AND X ARE ROTATED LEFT (RIGHT)
TOGETHEK A (MOD 64) BITS (R IS ASSUMED TO BE ON THE LEFT).
IF R = X9 ONLY ONE REGISTER IS ROTATED.

CC = UNAFFECTED.

SPECIAL

71
EXF

T2
DPF

73.

MVW

T4

ASCI

PAGE 47

PURPOSE ¢

ReXsA (EXTRACT FIELD)

Al = BITS 22-26 OF A3 A2 = BITS 27-31 OF A.

BITS Als Al+ls eees A2 OF REGISTER X ARE PLACED IN THE

LEAST SIGNIFICANT END OF Re THE REMAINING BITS OF R ARE

SET TO ZERO.

CC = UNAFFECTED.

RsXsA (DEPOSIT FIELD)

Al = BITS 22-26 OF A3 A2 = BITS 27-31 OF A.

THE A2-Al+l LEAST SIGNIFICANT BITS OF X ARE PLACED IN BITS

Als Al+ls eees A2 OF Re THE REMAINING BITS OF R ARE UNCHANGED.
CC = UNAFFECTED.

RsX (MOVE WORDS)

THE FIELD BEGINNING AT THE SEGMENT ADDRESS IN R IS MOVED

INTO THE FIELD BEGINNING AT THE SEGMENT ADDRESS IN R+l. THE
WORD COUNT TO BE MOVED IS IN Xe DURING EXECUTIONs REGISTERS

Rs R+ls AND X ARE INCREMENTEDs UNTIL R AND R+l POINT TO THE NEXT
WORD AFTER THEIR RESPECTIVE FIELDS AND X CONTAINS ZERO. INDIRECT
ADDRESSING AND A ARE IGNORED.

CC = UNAFFECTED.

Rs X (ASCIT TO INTEGER)

THE ASCII FIELD BEGINNING AT THE SEGMENT BYTE ADDRESS :
CONTAINED IN X+1 IS CONVERTED TO INTEGER FORMAT UNTIL A NON-=
NUMERIC CHARACTER IS ENCOUNTERED OR THE MAXIMUM NUMBER OF .
CHARACTERS TO CONVERT (CONTAINED IN X)s IS COMPLETEDe THE RESULT
IS ADDED TO REGISTERS R AND R+l. DURING EXECUTIONs X IS
INCREMENTED TO ZERO OR UNTIL A NON-NUMEKIC CHARACTER IS
ENCOUNTEREDe. REGISTERS R AND R+1 SHOULD BE INITIALIZED 1O

THE DESIRED VALUE (USUALLY ZERO) BEFORE ISSUING THIS INSTRUCTION.
THIS INSTRUCTION CAN SET ARITHMETIC OVERFLOW.

CC = UNAFFECTED.

75.
BCDI

76,

I8CD

7.

XEQ

PAGE 48

ReM (BINARY=-CODED=-DECIMAL TO INTEGER)

THE CONTENT OF M IS INTERPRETED AS EIGHT 4~-BIT BINARY=CODED=-
DECIMAL DIGITS. THIS NUMBER IS CONVERTED TO A BINARY INTEGER
AND PLACED IN Re INVALID BCD CODES ARE TREATED AS ZEROS;
HOWEVERs AN INTEGER OVERFLOW TRAP TAKES PLACE IF AN INVALID
BCD CODE IS FOUND.

CC = UNAFFECTED.

ReM (INTEGER TO BINARY-CODED=-DECIMAL)
THE POSITIVE INTEGER IN M IS CONVERTED TO BINARY=-CODED=-DECIMAL

FORM (EIGHT 4-BIT DIGITS) AND PLACED IN R AND R+1l.
CC = UNAFFECTED.

RoM (EXECUTE)

THE INSTRUCTION IN M IS FETCHEDs "INCLUSIVE=ORED" WITH THE
CONTENT OF Rs AND EXECUTEDe. THE INSTRUCTION LEFT IN M IS

- UNCHANGEDe. IF R=0s THE INSTRUCTION IS NOT MODIFIED.

78
PSDS

CC = SET BY THE EXECUTED INSTRUCTION.,

ReM (PUSH DATA STACK)

THE ADDRESS M POINTS TO A DATA LABEL. THE INDEX FIELD OF THIS
WORD IS INCREMENTEDs AND THE WORD IS THEN USED AS IF THE
INSTRUCTION WAS AN INDIRECT STOREe. AN ARRAY BOUNDS TRAP OCCURS
IF THE DATA STACK AREA OVERFLOWS. :

CC=UNAFFECTED.

79,
PPDS RsM (POP DATA STACK)

THE ADDRESS M POINTS TO A DATA LABEL. A LOAD THROUGH THIS WORD
IS PERFORMEDs AND THEN THE INDEX FIELD OF THE DATA LABEL IS
DECREMENTED.

CC = UNAFFECTED.

80,
LDQS M (LOAD Q@ AND S)
(Q)&a«(ML16=311])+(DB)
(S)«(M[0~15])) +(DB)
REGISTER DB IS ADDED TO THE CONTENT OF EACH HALFWORD OF Ms AND THE
RESULTS ARE LOADED INTO Q AND S.
CC = UNAFFECTED.
8l.
STQS M (STORE @ AND S)

(M(0=15]))«(S)=(DB)
(M[16=3111«(Q)~(DB)

REGISTER DB IS SUBTRACTED FROM REGISTERS Q@ AND Se. Q=DB IS STORED

IN BITS 16-31 OF M3 S~DB IS STORED IN BITS 0-15 OF Me REGISTERS DB
Qs AND S ARE UNCHANGED. ‘ '

CC = UNAFFECTED. ‘

82

STST

83.

STRZ

84,

LMS

85.

ADS

86,

LAR

PAGE 50

M (STORE STATUS)
(M)« (STATUS)

THE STATUS WORD IS STORED IN M.
CC = UNAFFECTED.

M (STORE 2)
(Z) « (M)=DB

REGISTER DB IS SUBTRACTED FROM REGISTERS Z. Z-DB IS STORED IN
M3 REGISTERS DB AND Z ARE UNCHANGED.

THIS IS A PRIVILEGED INSTRUCTION.

CC = UNAFFECTED.

M (LOAD MEMORY ONTO STACK)
S &« Se¢} ‘
(S)a(M)

THE STACK POINTER S IS INCREMENTED BY ONE. THE CONTENT OF M IS
PLACED INTO THE CORE WORD POINTED TO BY S.

THIS INSTRUCTION CAN CAUSE A STACK OVERFLOW TRAP.

CC = PATTERN A.

M (ADD TO S REGISTER)
(S) « (S)+(M)

THE CONTENT OF M IS ADDED TO THE S REGISTER. A STACK INTEGRITY
TRAP RESULTS IF THE CONDITION Q<=S<=Z DOES NOT HOLD AFTED TuE ANRTTTAM
CC = UNAFFECTED.

ReM (LOAD ADDRESS INTO REGISTER)
R{0~111)«03
R{12=31)4M}

THE RELATIVE ADDRESS M IS COMPUTEDsWITH MULTILFVEL INDIRECT
ADDRESSING ALLOWEDsAND PLACED IN THE LOW ORKDER BITS OF Re.
CC = UNAFFECTED.

87,

LBAR

88,

LAS

89

CLFP

PAGE 51

RsM - {LOAD BYTE ADDRESS INTO REGISTER)

THIS INSTRUCTION 1S IDENTICAL TO LAR EXCEPT THAT THE REGISTER IS
SHIFTED TwO BITS LEFT AFTER LOADINGe IF INDEXING IS USED,
REGISTER X CONTAINS A BYTE ADDRESS WHICH IS ADDED TO R AFTER THE
LEFT SHIFT. ‘

CC = UNAFFECTED.

RsM (LOAD ADDRESS ONTO STACK)
SaS+1 '
(S)aM

THE STACK POINTER S IS INCREMENTED BY ONE. THE RELATIVE ADDRESS
M IS COMPUTEDs WITH MULTILEVEL INDIRECT ADDRESSING ALLOWEDs AND
STORED IN THE CORE WORD POINTED TO BY S. |

CC = UNAFFECTED. |

Rstd (LOAD FROM PROGRAM)

© THE WORD IN M IS A PROGRAM LABEL. THE WORD IT REFERENCES

90,

PUSH

IS LOADED INTO Re.
CC = UNAFFECTED.

Rs X (PUSHY
TEMP @ R3 '
WHILE TEMP # X DO
BEGIN
S ¢ S+13
" {S) 4 {TEMP)3
TEMP « TEMP¢l MOD 8
END3 -
S« S + 13
(S) « (TEMP)3}

ALL THE WORDS FROM REGISTER R TO REGISTER X ARE PUSHED ONTO
THE STACK. IF BIT 31 OF THE INSTRUCTION IS 1 AND THE MACHINE
IS IN PRIVILEGED MODEs STACK OVERFLOW IS NOT CHECKED.

CC = UNAFFECTED. ' '

PAGE S

9l
POP RsX . (POP)
TEMP « X3 '
S WHILE TEMP # R DO
- BEGIN
(TEMP) « (S)3
S 4 S~13%
‘ TEMP « TEMP-=1 MOD 83
ENDS .
(TEMP) « (S)3
S @S =~ 13
THE STACK IS POPPED AND ITS DATA IS STORED IN REGISTERS FROM
X DOuWN TO Re ‘ ' L ' .
CC = UNAFFECTED.
92,
PCALL RoeM (PROCIDURE CaLL)
IF R=0 THEN
BEGIN
S & S+13
{S) &« PROGRAM LABEL REFERENCE TO P*+13
S &« 5+13 ' ‘
(S) & CCe¢ IDFFs PMFFs S=Q3
Q@ &« S3
P « M3
END ’
ELSE
BEGIN o
(R) « PROGRAM LABEL REFERENCE TO P+13
a M3 ‘ :
END3

A BRANCH TO M
AND PLACED ON
PLACED IN Re
cc

OCCURSs IF R=0s A NEW STACK MARKER IS C?EATED
THE STACK. OTHERWISEs THE RETURN ADDRESS IS

UNAFFECTED,

e

93,

ECAL

PAGE 53

A (EX?&RNAL CALLY .

THE OPERATION oF TFIS INSTRUCTION IS IDENTICAL TO THAT oF PCALe
EXCEPT THAT THE TRANSFER IS MADE TO THE SEGHENT wWHOSE XNO IS -
GIVEN BY BITS 14-21 OF THE INSTRUCTION AND WHQOSE SNO IS GIVEN ,
BY BITS 22=31 OF THE INSTRUCTIONs THE INDIRECT BIT IS IGNORED IN

© THIS INSTRUCTION.

9%,

EXIT

95,

TRAC

CC = UNAFFECTED.

A : (EXIT)

THIS INSTRUCTION IS USED TO RETURN FROM ROUTINES CALLED BY PCAL
AND ECAL. THE STACK MARKER WORD IN (Q=1) SPECIFIES THE RETURN
ADDRESS. CC IS RESTORED FROM THE CC FIELD IN (Q)e IF PMFF=1ls

THE IDFF AND THE PMFF BITS IN (Q) ARE USED TO RESET IDFF AND PMFF .
FINALLYs S IS SET TO Q<A AND Q@ IS SET TO Q-~(Q[1€=311) (THE QDECR
FIELD OF THE STACK MARKER WORD.) THE INDIRECT BIT IS IGNORED IN
THIS INSTRUCTION. : -

CC = UNAFFECTEDS

(TRACE)

THE TRACE DISABLE BIT OF THE STATUS REGISTER IS SET EQUAL TO

BIT 0 OF THE INSTRUCTYION WORDo
CC = UNAFFECTED.

PRIVILEGED: (PRIVILEGED INSTRUCTIONS ARE EXECUJERL

96.

LSTA

97

LoDz

98

.0DB

99,

STD8

M (LOAD STATUS?
(STATUS) & (M)

LR A "

£ ONLY IN PRIVILEGED MODE)

THE STATUS WORD IS LOADED FROM THE CONTENT OF M.
- THIS IS A PRIVILEGED INSTRUCTION.

M (LOAD 2Z)
(2} &« (M) +DB

REGISTER DB IS ADDED TO THE CONTENT OF Ms AND THE RESULT IS

LOADED INTO Z.
THIS IS A PRIVILEGED INSTRUCTION.
CC = UNAFFECTED.

M ‘ (LOAD D)
DB &« (M)

THE CONTENT OF M IS LOADED INTO REGISTER DB.
PRIVILEGED INSTRUCTION.
CC = UNAFFECTED.

M ‘ {STORE DB)
M « (DB)

THE CONTENT OF DB IS STORED INTO M. THIS IS
INSTRUCTION.

~ CC = UNAFFECTED.

THIS IS A

A PRIVILEGED

PAGE 55

100,

LDST M (LOAD DST)
DST & (M)[12=31]
DSL & (M)[0=11] |
THE DST AND DSL REGISTERS ARE LOADED FROM THE WORD CONTAINED IN M.
THIS IS A PRIVILEGED INSTRUCTION.
CC = UNAFFECTED.

101,

SDST M (STORE DST)
MIO=111 « DSL
M{12-31) « DST
THE DST AND DSL REGISTERS ARE STORED INTO LOCATION M. THIS IS
A PRIVILEGED INSTRUCTION.
CC = UNAFFECTED.

102,

INT M (INTERROGATE)
M« (INR) -
THE CONTENT OF THE INTERRUPT REGISTER IS PLACED IN M.
THIS IS A PRIVILEGED INSTRUCTION.
CC = UNAFFECTED.

103

PAUS (PAUSE}

THE MACHINE IDLES UNTIL AN INTERRUPT OCCURS.
THIS IS A PRIVILEGED INSTRUCTION
CC = UNAFFECTED.

104,
S10

105.

TIO

106.
RIO

PAGE 56
- —

ReM (START 1/0)

THE LEFT 12 BITS OF REGISTER R CONTAIN THE 1/0 PROCESSOR
NUMBER (4 BITS) AND THE DEVICE NUMBER (8 BITS)., M IS THE
ADDRESS OF AN I/0 PROGRAM WHICH IS TO BE EXECUTED BY THE
170 PROCESSOR. AN 170 STATUS HALFWORD IS RETURNED

TO THE RIGHT HALF OF REGISTER R BY THE I/0 PROCESSOR.
THIS IS A PRIVILEGED INSTRUCTION.

CC = UNAFFECTED.

R (TEST 1/0)

THE LEFT 12 BITS OF REGISTER R CONTAIN THE I/0 PROCESSOR NUMBER
(4 BITS) AND THE DEVICE NUMBER (8 BITS). A HALFWORD CONTAINING
THE STATUS OF THE DEVICE IS RETURNED TO THE RIGHT HALF OF
REGISTER R.

THIS IS A PRIVILEGED INSTRUCTION.

CC = UNAFFECTED.

ReM (READ 1I/70)

THE LEFT 12 BITS OF REGISTER R CONTAIN THE I/0 PROCESSOR NUMBER

(4 BITS) AND THE DEVICE NUMBER (8 BITS)e IF SUCCESSFULs A DATA
INBOUND HALFWORD IS READ DIRECTLY FROM THIS DEVICE INTO THE

RIGHT HALF OF M. THE LEFT HALF OF M IS ZEROED. PROCESSING DOES

NOT CONTINUE UNTIL THE READ IS COMPLETED. THE DEVICE STATUS HALFWORD
IS RETURNED TO THE RIGHT HALF OF REGISTER R.

THIS IS A PRIVILEGED INSTRUCTION,

CC = UNAFFECTED.

107,

WwIO

108.
CIio

PAGE 57
A——"

ReM (WRITE 1/0)

THE LEFT 12 BITS OF REGISTER R CONTAIN THE I/0 PROCESSOR NUMBER
(4 BITS) AND THE DEVICE NUMBER (8 BITS). A HALFWORD IS WRITTEN
DIRECTLY FROM THE RIGHT HALFWORD OF M INTO THE DEVICE DATA
OUTBOUND HALFWORD. PROCESSING DOES NOT CONTINUE UNTIL THE WRITE
IS COMPLETED. THE DEVICE STATUS HALFWORD IS RETURNED TO THE
RIGHT HALF OF REGISTER R.

THIS IS A PRIVILEGED INSTRUCTION.

CC = UNAFFECTED.

ReM (COMMAND 1/0)

THE LEFT 12 BITS OF REGISTER R CONTAIN THE I/0 PROCESSOR NUMBER
(4 BITS) AND THE DEVICE NUMBER (8 BITS)e A HALFWORD IS WRITTEN
DIRECTLY FROM THE RIGHT HALFWORD OF M INTO THE DEVICE COMMAND
REGISTER. PROCESSING CONTINUES IMMEDIATELY. THIS COMMAND CAN
ALSO BE USED TO SEND A HALFWORD TO ANOTHER CPU OR TO ANY OTHER
MODULE WHOSE NUMBER IS PLACED IN REGISTER R.

THIS IS A PRIVILEGED INSTRUCTION,

CC = UNAFFECTED.

PAGE 58
i

DECIMAL INSTRUCTIONS

109,

ADDD RoM (ADD DECIMAL)
(R) &« (M) + (R)
IN ADDRESS COMPUTATION FOR THIS INSTRUCTIONs THE INDEX REGISTER
IS ASSUMED TO CONTAIN A NUMBER OF BYTES RATHER THAN A NUMBER
OF WORDS. ADDRESS COMPUTATION RESULTS IN A BYTE ADDRESS M,
THE LOW~ORDER FOUR BITS OF THE BYTE AT M ARE ADDED DECIMALLY TO
THE LOW=ORDER FOUR BITS OF REGISTER Re THE CARRY~IN IS TAKFN
AS 0 OR 1 ACCORDING TO WHETHER THE CONDITION CODE IS 0 OR NONZERO.
THE CARRY=QUT IS LOADED INTO THE CONDITION CODE. INVALID DIGITS
ARE TREATED AS ZEROSs AND CAUSE A TRAP,
CC = 0 IF NO CARRY=-OUT '
CC =1 IF A CARRY=-0QOUT OCCURS.,

110.

SUBD ReM (SUBTRACT DECIMAL)

(R} &« (R} = (M)

IN ADDRESS COMPUTATION FOR THIS INSTRUCTIONs THE INDEX REGISTER

IS ASSUMED TO CONTAIN A NUMBER OF BYTES RATHER THAN A NUMBER

OF WORDS. ADDRESS COMPUTATION RESULTS IN A BYTE ADDRESS M.

THE LOW-ORDER FOUR BITS OF THE BYTE AT M ARE SUBTRACTED DECTMALLY
FROM THE LOW-ORDER FOUR BITS OF REGISTER R. IF THE CONDITION

CODE IS 1+ A BORROW=-IN IS ASSUMED (THE CONTENT OF R IS DECREMENTED
BY 1 BEFORE SUBTRACTING,) IF THE SUBTRACTION RESULTS IN A BORROW-OUT
(BECAUSE (R) < (M))o THE CONDITION CODE IS SET TO 1% ELSE THE
CONDITION CODE IS SET TO 0. INVALID DIGITS ARE TREATED AS ZEROS,
AND CAUSE A TRAP,

CC = 1 IF RORROW=QUT.

CC = 0 IF NO BORROW=-0OUT.

- “ PAGE 17
13. 1/0 PROGRAMMING Fﬂbfﬁky’ﬂ“éﬁ (jQ;aLVETYIU I SR
* * LY

TO DO 170+ THE PROGRAMMER MUST SET UP A PROGRAM IN CORE
CONSISTING OF 1/0 COMMAND WORDS (I0CW*®S) AND I/0 DATA vOKDS
(IODW'S). EACH I0OCW HAS BIT 0 = ls AND CONTAINS AN OPCOUDE AND
CERTAIN MODIFIER BITS. EACH I0CW MAY BE FOLLOWED BY ONE OR
MORE IODW'Sy WHICH SPECIFY THE AREA(S) IN MEMORY ON WHICH IT
IS TO OPERATE. EACH IODW HAS BIT 0 = 0Os AND CONTAINS A BYTE
ADDRESS (22 BITS) AND A BYTE COUNT (9 BITS). WHEN AN SIO
COMMAND IS ISSUEDs THE I/0 PROCESSOR EXECUTES THE FIRST IOCW
OF THE I/0 PROGRAM SUCCESSIVELY ON EACH OF THE FOLLOWING
I0ODW!Ss THEN EXECUTES THE NEXT IOCw ON EACH OF THE IODW*S
FOLLOWING ITs ETCes UNTIL AN “END"™ IOCW IS ENCOUNTERED.

EACH I/0 DEVICE HAS A DEVICE STATUS DOUBLEWORD (DSD) 1IN
A DEDICATED POSITION IN LOWER CORE STORAGE. THE FIRST WORD
CONTAINS A POINTER TO THE IOCW OR I0DW CURRENTLY BEING EXECUTED
BY THE DEVICEs IF ANYe THE SECOND WORD CONTAINS THE CURRENT
BYTE ADDRESS AND BYTE COUNT FOR THE DATA TRANSFER BEING MADE
BY THE DEVICE. AS THE DEVICE EXECUTES THE TRANSFER SPECIFIED
BY AN IODWs THE BYTE ADDRESS IS INCREMENTED AND THE BYTE COUNT
1S DECREMENTED UNTIL IT REACHES ZERO3 THEN THE DEVICE PROCEEDS
TO THE NEXT IODW.

I0CwW:?
Y IXYYY YT Y y-2- 22 x-x-r's-2- ¥ X- 2 2-X-F-2-2-R-2.X-X-2°8-X-X-2°2-X-X-X-X-X-X-X-2 24
® # o & ' ‘ &
#le OP # FLAGS +# ADDRESS &
¢ & # @ #
FY 222222y x-2-2-2- XX 2-X-X-2-X-X-2:-2-2-X-X1-22-2-2-2 282 X-X-X-X'X-X 4
0sl===3yb=ccacc]llylPecmcmcmenemncancccnan- 31

OP: 000 = END

001 = SENSE

010 = CONTROL

011 = JUMP

100 = WRITE

101 = READ

110 = INTERRUPT THE CPU WHOSE MODULE NOe IS IN BITS 12-15

FLAGS: NOT YET DEFINED

ADDRESS: ABSOLUTE CORE ADDRESSs USED IN SENSEs CONTROLS
AND JUMP INSTRUCTIONSe

IODwW:S

BORB RO ARG B RO GG R E BB RO RBR ORI B R BRI BIRORDGRO R SR
& @ s ‘ 4
#0s COUNT “ BYTE @
® ™ @

“ﬁﬁ#“#%###ﬁ*@Q%%ﬂ%####@#ﬁ%%“##§#*#*#0%#9Gﬁﬁ%ﬂ%

COUNT: NUMBER OF BYTES TO BE PROCESSED.

ADDRESS: ABSOLUTE BYTE ADDRESS OF FIRST BYTE TO BE
PROCESSED.

PAGE 18

14, 170 DEVICE STATUS TABLE

THE I/0 DEVICE STATUS TABLE OCCUPIES 512 WORDS OF CORE IN

A DEDICATED LOCATIONe IT HAS A DOUBLEWORDs CALLED A

DEVICE STATUS DOUBLEWORDs FOR EVERY I/0 DEVICE IN THE SYSTEM
(UP TO 256 DEVICES.) THE FORMAT OF THE DEVICE STATUS
DOUBLEWORD 1S3 ‘ ‘

FIRST WORD

ﬁguynanuoqaﬁaoonno&«ﬁuﬂvéououoa9§§¢494¢uaunqno
& o ’ 4 ‘ ’)
¢« MOD # UNUSED ¢ PROG &
& # ™ #

L4820 22022222222 22 2-X-2-2-2-2-2-2-2-2-2-X-X-2:-2-2-2-F'%-F-F-X-3-F.]

0====3y4=ccmc=c]]y]2emmmccamcnnrncca—eaaa3]

SECOND WORD

L2222 2222 222222022222 2Ry yyyyyy2ayyyyyyyeyy;

o o ' # &
* @ COUNT & ADDR &
& o © : #

LA A AL AL 2222222222222y yyyyyyyyyryy ey

0 v 1-.-—--_---—-9 . 1 O---------—-n—--a----u-a-3l

MOD: CPU MODULE NUMBER

PROG: ABSOLUTE CORE ADDRESS OF THE CURRENT 10CW OR I0DW
- IN THE I/0 PROGRAM NOW BEING EXECUTEDs IF ANY.

COUNT: NUMBER OF BYTES OR WORDS REMAINING TO BE PROCESSED UNDER
THE CURRENT IODW. (IF WORD COUNTy THIS FIELD OCCUPIES
BITS 1-11.)

ADDR: ABSOLUTE BYTE OR WORD ADDRESS OF THE BYTE OR WORD CURRENTLY
BEING PROCESSED. (IF WORD ADDRESSs THIS FIELD OCCUPIES
BITS 12-31.)

18.

BUS FORMATS

L2 X-2-2°J
% ®
#MOD®
[&
X X-X2- X3

Ty
o
#MOD#
.
suaan

sause
& ®
«MQD#
o o
seoae

[-2-X-X-X)
% -]
sMOD#®
-] #
-X-X-2-% -]

GHBE
& &
#MOD#
o @
Baosn

L2-Z-X:X-]

#MOD#
@ &
T

CPU - MEMORY

Y2222 22222 2.2 %-2.2-2.2-2.X.2-2-2-2-X-X-X-X-X-X-&-X-X -X-X-3-J
® o ' @

#MOP+« MEMORY ADDRESS @
4 ‘ &
B BREREODNBE BN R BB RO RBIRR D RRUBBARORRBO RO

MEMORY = CPU

(Y 222222 XXX2XXXX'2-X-X-X-2-X-X-F-X-X-R-X-2-X-X-2 -2 -2'X-X-X-X - Z-2 X -2 2
-] &
@ DATA OR ADDRESS OF PARITY ERROR @
! L]
Yy YYYyY e ey s 2 XY r.2.00.2.2.X-2.2.-2-2°2-2-2-2-2- - 2- 2 X- -2 -X-2-%-2-X -

CPU = MEMORY

FZ Iz X2 X-2 222X 2-2-2-2-X-X-2-2-X-2-X-2-2-2-2-2-2-2-2-%-X-1
' ' ' o @
L DATA #
8 'y

Qﬁﬁﬁﬁﬁﬁﬂﬁﬁﬁﬁ&QQ####Q%#&%ﬁ%ﬁﬂ#0“#9“%9###9###&

fmmmmmecmececsccccccscnmcreem e n e 3]

CPU = 1I/0

P A R R Y T T 1T T T
@ - @ ‘ I
#]0P® DEVICE NO. # COMMAND ADDRESS OR DATA #
@ @ @ : o
P R Y Y T T Y Y R ss]

INTERRUPTING MODULE = CPU

oaaoa«oua*oooauunouuauoc&coaa#auu#oeo»#ﬁuu#o
@ " ' # o T
#XXX% DEVICE NO.# STATUS OR ADDRESS OF #
o #* # PARITY ERROR @

PP TR ey e Ty e ey - Y Ty -2 ey

0”394‘"-~-’“‘~11912---‘-‘-'--~--~-~“—--‘-31

1/0 / CPU
ﬁﬁﬁbﬁ#ﬂ@”#9%&#GG#“G##0#“##6#““####0#%#&*#&00
[-] . L 4
s DATA » STATUS o
(READ DIRECT ONLY)# iy .

%%ﬁﬁﬁ#“ﬁﬂ#*#“ﬂ“#ﬁ##ﬂﬁ”ﬁﬁﬁ#ﬁ&ﬁ*#ﬁ#ﬁﬁ##b#”#ﬂ#é

Qemmemocmcmeammena]5y]fmmenamm—ceeenenna=]3]

- 2%
& &

%4 o
&40

4% 4 3
&
4 @
% o
L-2-2-

[-2-2 "4
& #
* #
& &
- 221

2%
%

L3

&4 &
L-2-X-]

L- 224
& &
* &%
o
L2241

&

PAGE 21

QEXTRA BIT:
NOT USED

«EXTRA BIT?
PARITY ERROR

«EXTRA BIT:
NOT USED

«EXTRA BIT:
NOT USED

«EXTRA BIT?
MEMORY PARITY -«
ERROR

«EXTRA BIT
NOT USED

PAGE 23

SECTION II

MACHINE INSTRUCTIONS

IN THE FOLLOWING EXPLANATIONS

THE REGISTER SPECIFIED IN THE R FIELDe

R =
X = THE REGISTER SPECIFIED IN THE X FIELD.
M = THE RESULT OF NORMAL ADDRESS COMPUTATION. NOTE THAT M MAY

BE A REGISTERs A MEMORY ADDRESSs OR IMMEDIATE DATA.

>
1]

THE A FIELD OF THE INSTRUCTION,

PAGE 24
LOAD AND STORE INSTRUCTIONS:

LY

0.
LOAD RsM (LOAD)
) . {R) &« (M)
REGISTER R IS LOADED WITH THE CONTENT OF M.
CC = UNAFFECTED.
1e
LLH RsM (LOAD LEFT HALF)
(R[16=311) « (M[0-15])
(R[O=151) « 0
BITS 0-15 OF THE CONTENT OF M IS LOADED INTO BITS 16-31 OF R.
BITS 0-15 OF R ARE SET TO ZERO.
CC = UNAFFECTED.
2.
LRH RyM (LOAD RIGHT HALF)
(R(16=313) « (M[16-311)
(RLO-151) « 0 | | |
BITS 16=31 OF THE CONTENT OF M IS LOADED INTO BITS 16-31 OF R.
BITS 0=15 OF R ARE SET TO ZERO.
CC = UNAFFECTED.
3.
STOR ReM (STORE)

(M) &« (R)

THE CONTENT OF R IS STORED IN M.
CC = PATTERN A.

104,

SI0

1050

T10

106,

HIO

PAGE

ReM (START 170}

THE LEFT 12 BITS OF REGISTER R CONTAIN THE 1/0 PRGCES%OR
NUMBER (4 BITS) AND THE DEVICE NUMBER (8 BITS).. "M IS THE
ADDRESS OF AN 170 PROGRAM WHICH IS TO BE EXECUTED Y THE
1/0 PROCESSOR. AN I/Z0 STATUS HALFWORD IS RETURNED "
TO THE RIGHT HALF OF REGISTER R BY THE I/0 PROCESSOR.
THIS IS A PRIVILEGED INSTRUCTION. '
CC = UNAFFECTED.

R ’ (TEST I/O)

56

THE LEFT 12 BITS oF REUIST%R P CONTAIN THE 170 PROCESSOR NUMBER
(4 BITS! AND THE DEVICE NUMBER (8 BITS)e A HALFWORD CONTAINING

THE STATUS OF THE DEVICE IS RETURNED TO THE RIGHT HALF OF
REGISTER Re.

THIS IS A PRIVILEGED INSTRUCTICON.

CC = UNAFFECTED. “

R - (HALT 170}

THE LEFT 12 BITS OF REGISTER R CONTAIN THE I/0 PROCESSOR NUMBER

(4 BITS) AND THE DEVICE NUMBaPV\ MBXTS)n» THIS DEVICE IS
HALTEDs AND ITS STATUS HALFHGQU Ib RETURNED TO THE RIGHT
HALF OF REGISTER R.

- THIS IS A PRIVILEGED INSTRUQTION.

CC = UNAFFECTED.

108.

WIO

109,

CIO

PAGE 57

RoM (READ 1/0)

THE LEFT 12 BITS OF REGISTER R CONTAIN THE 1/0 PROCESSOR NUMBER

(4 BITS) AND THE DEVICE NUMBER (8 BITS)e IF SUCCESSFULs A DATA
INBOUND HALFWORD IS READ DIRECTLY FROM THIS DEVICE INTO THE

RIGHT HALF OF Me THE LEFT HALF OF M IS ZEROED. PROCESSING DOES

NOT CONTINUE UNTIL THE READ IS COMPLETED. THE DEVICE STATUS HALFWORD
IS RETURNED TO THE RIGHT HALF OF REGISTER R

"THIS IS A PRIVILEGED ENSTRUCTION.

CC = UNAFFECTED.

RoM (WRITE 1701

THE LEFT 12 BITS OF REGISTER R CONTAIN THE I/0 PROCESSOR NUMBER
t4 BITS) AND THE DEVICE NUMBER (& BITS)e A HALFWORD IS WRITTEN
DIRECTLY FROM THEZ RIGHMT HALFWORD OF M INTO THE DEVICE DATA
OUTBOUND HALFUWORD. PROCESSING DOES NOT CONTINUE UNTIL THE WRITE
IS COMPLETED. THE DEWICE STATUS HALFWORD IS RETURNED TO ThHE
RIGHT HALF OF REGISTER R,

THIS IS A PRIVILEGED ¥INSTRUCTION,

CC = UNAFFECTED.

ReM (CO%MQMD I/@)

THE LEFT 12 BITS OF REGISTER R CONTAIN THE I/0 PROCESSOR NUMBER
(4 BITS) AND THE DEVICE NUMBER (8 BITS)o A HALFWORD IS WRITTER
DIRECTLY FROM THE RIGHT HALFWORD OF M INTO THE DEVICE COMMAND
REGISTER. PROCESSING CONTINUES IiﬁEDiﬂTtLY¢ THIS COMMAND CAN
ALSO BE USED TO SEND A& HALFWORD TO ANOTHER CPU OR TO ANY OTHER
MODULE WHOSE NUMBER IS PLACED IN REGISTER R.

THIS IS A PRIVILEGED INSTRUCTION.

CC = UNAFFECTED.

PAGE 58
DECIMAL INSTRUCTIONS

110,

ADDD RsM (ADD DECIMAL)
(R) « (M) + (R)
IN ADDRESS COMPUTATION FOR THIS INSTRUCTIONs THE INDEX REGISTER
IS ASSUMED TO CONTAIN A NUMBER OF BYTES RATHER THAN A NUMBER
OF WORDS. ADDRESS COMPUTATION RESULTS IN A BYTE ADDRESS M.
THE LOW=ORDER FOUR BITS OF THE BYTE AT M ARE ADDED DECIMALLY TO
THE LOW~ORDER FOUR BITS OF REGISTER Re THE CARRY~IN IS TAKEN
AS 0 OR 1 ACCORDING TO WHETHER THE CONDITION CODE IS 0 OR NONZERO.
THE CARRY=OUT IS LOADED INTO THE CONDITION CODEe INVALID DIGITS
ARE TREATED AS ZEROSs AND CAUSE A TRAP.
CC = 0 IF NO CARRY=OUT |
CC = 1 IF A CARRY=-OUT OCCURS.

111,

SUBD RsM (SUBTRACT DECIMAL)

(R) & (R} = (M)

IN ADDRESS COMPUTATION FOR THIS INSTRUCTIONs THE INDEX REGISTER

IS ASSUMED TO CONTAIN A NUMBER OF BYTES RATHER THAN A NUMBER

OF WORDS. ADDRESS COMPUTATION RESULTS IN A BYTE ADDRESS M.

THE LOW-ORDER FOUR BITS OF THE BYTE AT M ARE SUBTRACTED DECIMALLY
FROM THE LOW-ORDER FOUR BITS OF REGISTER R. IF THE CONDITION

CODE IS 1s A BORROW=IN IS ASSUMED (THE CONTENT OF R IS DECREMENTED
BY 1 BEFORE SUBTRACTINMG.) IF THE SUBTRACTION RESULTS IN A BORROWw=0UT
(BECAUSE (R} < (M})9 THE CONDITION CODE IS SET TO 15 ELSE THE
CONDITION CODE IS SET TO O INVALID DIGITS ARE TREATED AS ZEROS,
AND CAUSE A TRAP : '

CC = 1 IF BORROW=0UT.

CC = 0 IF NO BORROW=0UT.

