
REFERENCE MANUAL 

for the 

CPD N-MOS II PROCESSOR 

Ca lcu lator Products Divis ion Augus t 1976 

·­·· ' 
·' 

_,. 
.. , ;..;. 
.J ," 

... 





TABLE OF CONTENTS 

PREFACE v i i i 

PROCE SSO R 

IISCRIPTION OF 1HE PffiCES~R 
GENERAL INFORMAT ION 
MEMORY CONVENTIONS 

MEl'-ORY CYCLES 

THE BYTE LINE 

RAL LI NE 

FUNCTIONAL DESCRIPTION OF THE BPC 
INDIRECT ADDRESSING 

MULT1-LEVEL IND IRECT ADDRESSING 

SINGLE-LEVEL IND IRECT ADDRESSING · 

MEMORY REFERENCE INSTRUCTIONS AND PAGE ADDRESS ING 
ABSOLUTE ADDRESSING 

RELATIVE ADDRESSING 

BASE PAGE ADDRESS ING 

CURRENT PAGE ADDRESSING 

SUBROUTI NES · 
FLAGS · 
BUS REQUESTS AND INTERRUPTS 

FUNCTIOril\L DESCR IPTION OF THE IOC 
GENERAL INFORMA.T ION ABOUT J/O 
I/O BUS CYCLES · 
STANDARD 1/0 

ADDRESSING THE PERIPHERAL 

CHECKING STATUS . 

INITIATING I/0 BUS CYCLES 

THE ODDBALL POSSIBILITIES 

THE INTERRUPT SYSTEM · 
PRIOR ITY 

INTERRUPT POLLS . 

1NTERRUPT TABLE . 

INTERRUPT PROCESS SU/v'MA.RY 

INTERRUPT SERVICE ROUT INES 

1 

2 

3 

• 5 

6 

7 

8 

8 

8 

9 

9 

. 11 

. 11 

. 11 

. 12 

. 15 

. 15 

. 15 

.18 

. 18 

. 18 

. 21 

. 21 

. 21 

. 21 

. 22 

. 23 

. 23 

. 23 

. 24 

. 26 

. 26 



TABLE OF CONTENTS 

PROCESSOR 

FUNCTIONAL DESCRIPTION OF THE IOC 
THE INTERRUPT SYSTEM (CONT.) 

HO~/ A PERIPHERAL KNOWS WHETHER TO USE INTERRUPT 

BOMBPROOF I NG THE /"\.A I NLI NE FIRMWARE 

"SIMJLTANEOUS" ACTIVITIES . 

OR SIMPLE 1/0 

WHEN TO CEASE INTERRUPT tvODE OPERATION 

RETURNING FRO~ INTERRUPT SERVICE ROUT INES 

DISABLING THE INTERRUPT SYSTEM . 

DIRECT MEMORY ACCESS · 
ENABLING AND DISABLING THE OMA /'-ODE 

REGISTER SET-UP . 

Dl'AA INITIATION 

DATA REQUEST AND TRANSFER 

OMA TERMINATION . 

THE PULSE COU\JT MOOE . 

PLACE AND WITI-IDRAW 
THE NOTATION OF A STACK 

STACK OPERATIONS . 

PLACE AND WITHDRAW FOR BYTES 

INITIALIZATION OF TURN-ON · 
GENERAL I NF0~1AT I ON AEOUT THE EYC 

NOTATION 
DATA FORMAT· 

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC 
NL.MERICAL REPRESENTATIONS 

BINARY . 

BI NARY-CODE'.) DEC It·IAL 

BINARY ARITHMETIC 
Bl~lARY COMPLEMENTS 

TV..O'S COMPLEMENT SU/vMATION 

TWO ' S COMPLEMENT SUBTRACTfON 

TWO'S COMPLEMENT OVERFLOW . 

ii 

. 28 

. 28 

. 28 

. 29 

. 30 

. 30 

. 31 

. 31 

. 32 

. 32 

. 33 

. 33 

. 33 

. 34 

. 34 

. 34 

. 35 

. 38 

. 39 

. 39 

. 40 

. 41 

. 41 

. 41 

. 42 

. 43 

.43 

. 45 

. 45 

.so 



TABLE OF CONTENTS 

PROCESSOR--

A BEGINNER'S LCXJK AT CALCULATOR ARITHf\'fflC (coNT.) 
MULTI-PRECISION BINARY ARITl-METIC 
ARITl-METIC SHIFTS 
BINARY MULTIPLY · 
BCD ARITl-METIC · 

DECIMA.L CARRY 

TEN'S COMPLEMENT FOR BCD 

TEN'S COMPLEMENT ARITHMETIC DEfvONSTRATION • 

FLOATING-POINT Sl..JM"<1ATIONS • 
OFFSETS. 

MA.NTISSA ADDITION. 

NORMALIZATION 
ROUNDING 
FLOATING-POINT MULTIPLICATION · 
FLOATING-POINT BCD DIVISION 

THE DIVISION ALGORITl-M. 

THE FDV INSTRUCTION · 
SAMPLE DIVISION ROUTINE 

INSTRUCTIONS-­

IITTRlllJCTION TO lHE filACHINE INSTRUCTIONS. 
NOTATION 

BPC filACH !NE I NSf RUCTIONS · 
MEMORY REFERENCE GROUP 
SHIFT-ROTATE GROUP 
ALTER-SKIP GROUP· 
C~PLEMENT-EXECUTE GROUP · 

IOC MACHINE INSTRUCTIONS · 
STACK GROUP· 
J/O GROUP · 
INTERRUPT GROUP · 
DMl\ GROUP · 

iii 

.52 

. 53 

.55 

.55 

. 56 

.56 

• 59 

.61 

.61 

.62 

.63 

.63 

.64 

.66 

.66 

.68 

.71 

. 1 

. 1 

• 2 

. 2 

. 4 

. 5 

.10 

. 12 

.12 

.14 

.14 

.15 



TABLE OF CONTENTS 

~-INSTRUCTIONS~-

OC Ml\CHINE INSlRUCTIONS • 
THE FOUR \«lRD GROUP · 
THE MANTISSA SHIFT GROUP • 
THE ARITl-METIC GROUP • 

ASSEMBLER 

INTl{)DUCTION TO THE ASSEMBLER • 
GENERAL INFORMATION • 
INSTRUCTION FORMl\T 

STATEMENT CHARACTERISTICS • 

LABEL FIELD • 

OPCODE FIELD. 

OPERAND FIELD 

SYMBOLIC TERMS 

NLMERIC TERMS 

THE ASTERISK. 

EXPRESSIONS . 

INDIRECT ADDRESSING 

BASE PAGE AND CURRENT PAGE ADDRESSING. 

COf'/MENT FIELD 

STATEMENT LENGTH . 

ASSEMBLER PSEUDO INSTRUCTIONS • 
ASSEMBLER CONTROL 

ORG AND ORR . 

NEW INSTRUCTION DEFINITION • 

PARTITIONING A BINARY TAPE • 

CONDITIONAL ASSEMBLY • 
AUTOfv1A.TIC STATEMENT REPETITION . 

SOURCE TERMINATION 

ADDRESS AND SYMBOL DEFINITION · 
CONSTANT DEFINITION • 
STORAGE ALLOCATION 
ASSEMBLY LISTING CONTROL · 

tv 

.16 

.16 

.16 

.17 

. 1 

. 1 

. 2 

. 2 

. 3 

. 4 

• 5 

. 6 

. 8 

. 8 

. 8 

. 9 

. 9 

• 9 
.10 

.11 

.11 

.11 

.12 

.14 

.15 

.17 

.17 

.18 

.20 

.23 

.23 



TABLE OF CONTENTS 

--ASS EMBLER 

ASSEMBLER INPUT AND OUTPUT 
lHE CONTROL STATEMENT· 
THE SOURCE PROGRAM 
THE LISTI NG· 
BINARY OUTPUT 

APPENDIX 

APPENDIX · 
ASSEMBLER ERROR MESSAGES · 
BINARY LOADERS · 
OUTPUT PAPER TAPE FORM«\T · 

ABSOLUTE BINARY OBJECT PROGRAM • 

ADDING PRE-DEFINED SYMBOLS TO A'2JllA · 
THE STRUCTURE OF THE ASSEMBLER · 
PSEUDO INSTRUCTIONS · 
t-'ACH I NE INSTRUCTIONS · 
INSTRUCTION BIT PATTERNS • 

MEMORY REFERENCE GROUP. 

SHIFT-ROTATE GROUP 

SKIP GROUP • 

RETURN GROUP. 

COMPLEMENT GROUP • 

ALTER GROUP • 

EXECUTE GROUP 

16-BIT IOC a-JLY GROUP • 

STACK GROUP • 

INTERRUPT GROUP • 

OMA GROUP 
FOUR \'.ORD OPERATION GROUP . 

MANTISSA SHIFT GROUP • 

ARITl-METIC GROUP • 

15/16 BIT BPC CONSOLIDATED CODING SHEET · 
15/16 BIT IOC CONSOLIDATED CODING SHEET · 
15/16 BIT EMC CONSOLIDATED CODING SHEET · 

v 

.26 

.26 

.27 

• 27 

.28 

. 1 

• 1 

• 3 

• 5 

• 5 
. 6 

. 9 

.11 

.12 

.18 

.18 

.18 

.19 

.19 

.20 

.20 

.21 

.21 

.22 

.22 

.22 

.23 

.23 

.23 

.24 

. 24 

.24 



TABLE OF CONTENTS 

APPENDIX 

APPENDIX (CONT.) 
HP CHARACTER SET· 
CHl\RACTER CODES · 
BPC INSTRUCTION EXECUTION TIMES· 
OC INSTRUCTION EXECUTION TIMES· 
roe INSTRUCTION EXECUTION TIMES· 
EXPLANATION OF BOOTH / S ALGOR ITl·M 

Figure P-1. 

Figure P-2. 

Figure P-3. 

Figure P-4. 

Figure P-5. 

Figure P-6. 

Figure P-7. 

Figure P-8, 

Figure P-9. 

PROCESSOR 

Si mp I if ied Block Diagram of the Processor • 

Nature of the BIB's 

Simplified Read Memory Cycle 

Simplified Write Memory Cycle 

Base Page Description • 

Relative Addressing 

Bus Request Protocol 

A Write 1/0 Bus Cycle . 

A Read 1/0 Bus Cycle . 

.25 

• 26 

.27 

.28 

.29 

.30 

. 1 

. 3 

. 5 

. 6 

.10 

.14 

.16 

. 20 

.20 

Figure P-10. The Interrupt Table ~Jith 15-Bit or 

Figure P-1 I. How Not To Use The Interrupt Table 

16-Bit Addressing.25 

.25 

Figure P-12. Sixteen-Bit Stack Pointer Addressing • 

Figure P-13. Floating-Point Data Format • 

• 36 

.40 

Figure P-14. The Internal Floating-Point Representation of 
.003587219 ( = 3.587219 x 10- 3 ) • • • .43 

Figure P-15. Multi-Word Binary Addition Using the Extend Register.52 

Figure P-16. Two's Complements of Multi-Word Binary Numbers . .53 

Figure P-17. Floating-Point Data Format • .54 

vi 

~ 



~ 
~ 

TABLE OF CONTENTS 

--PROCESSOR 

Table P-1. Addressable Registers . • 4 

Table P-2. Current Page Absolute Addressing for Memory 
Reference Instructions • .13 

Table P-3. Comparison of Decimal, Binary, and Octal .41 

ASSEMBLER 

Table A-1. Symbols Pre-Defined by the Assembler • . 7 

vii 



PREFACE 

This book is the result of an extensive rev1s1on of the "CPD PROCESSOR" 
manual first issued in early 1975. Things have changed a bit since then, 
and the old manual was getting pretty shakey. The development of the 16-bit 
version of the processor provided the opportunity to revise the entire 
book. 

First, this book covers both versions of the processor; one with 
15-bit (32K) addressing, and the other with 16-bit (64K) addressing. The 
assembler (ASMA) described herein has also been updated to work with the 
16-bit version. 

Next, numerous mistaken and misleading explanations have been corrected. 
Also, the information relating to the general attributes and operation of 
the hardware has been co I I ected togei·her and organized as an introduction 
and overview of the entire processor. However, the book does not educate 
the reader in the general notion of what a processor is, or in the ins 
and outs of assembly language programming; it is stil I very helpful if 
one is familiar with the 2100-series computers. 

As before, the book is aimed primarily at engineers and technicians 
within HP who wi 11 recognize the attributes of the processor and apply 
them to their own situation. Even so, there are stil I places where the 
explanation becomes detailed. The explanations of the interrupt process 
and of arithmetic are examples. There are other areas which the reader 
is simply expected to absorb on his own. The assembler is a good example; 
all the explanation in the world (and we give quite a bit) won't remove 
the need for a I ittle bit of experience. 

If you are a beginner, you probably shouldn't try to read the book 
from cover to cover, in the order given. It wou Id be better if you 
mix your exposure to the system overview (at least skip the arithmetic), 
machine-instructions, and the assembler. 

A comment on the section on arithmetic is in order. First, it would 
be impossible to understand the EMC arithmetic instructions without 
reference to some detailed examples. Second, its been my experience that 
typically there's one guy who sits in a corner, mutters out loud a lot, 
and who writes al I the math routines. He's the only guy who knows how 
they work, and even he makes frequent references to the texts he used 
in school. And in general, if you ask three differenct people about some 
aspect of arithmetic, you' I I get three different answers. 

I don't suppose that too many people are really concerned about the 
nature of the EMC instruction set. But it needs explanation none the less. 
To do that, detailed examples are needed. To understand the examples, 
some familiarity with arithmetic techniques is needed. So I went the 
last mi le and started at the beginning. 

At present, there is exactly zero interfacing information that would 
al low a designer to create hardware that wi 11 function with the processor. 
We hope to remedy this shortly. 
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DESCRIPTION OF THE PROCESSOR 

c GENERAL INFO~TION 
The CPD Processor consists of seven Integrated circuits mounted on a 

ceramic substrate. Of these, three are N-channel MOS LSI chips. The remaining 
four chips are entirely bl-polar and serve as buffers to connect the LSI 
circuitry of the other chips to circuitry external to the substrate. Because 
the processor is an assemblage of components mounted on a substrate, It Is 
often referred to as the "hybrid", "hybrid micro-processor", or simply as the 
"processor11

• 

Figure P-1 is a simplified block diagram of the processor. The LSI 
chips are the Binary Processor Chip CBPC), Input-Output Controller CIOC), 
and the Extended Math Chip (EMC). Al I of the processing capabi I ity of the 
processor resides in those three chips; except for inversion the four Bi­
Directional Interface Buffers CBI B's) are logically powerless. The three 
LSI chips communicate among themselves, and also with the outside world, via 
a collection of control signals and a 16-bit bus cal led the IDA Bus (IDA 
stands for Instruction/Data/Address). 

The processor ls available in two versions. One version uses 15-bit 
addressing for a maximum memory size of 32K words, and implements multi­
level indirect addressing. The other version uses 16-btt addressing for 
a maximum memory size of 64K words, and Implements a single level of indirect 
addressing. The 15-bit processor uses 15-bit versions of the BPC and IOC; 
the 16-bit processor uses 16-bit versions. The EMC is currently a 16-bit 
version that works in either processor; an obsolete 15-bit version of the 
EMC also exists but is not currently being produced. 

The two versions of the processor are far more alike than they are 
different. Some new machine-Instructions were added for the 16-bit IOC. 
However, they represent an alternate method of doing something Cin I lght 
of the different way the 16th address bit is used) rather than a major 
extension of capability. Other than for size, both processors are al Ike 
in the general way they interface to memory. Their sets of machine­
instructions are nearly Identical; in fact, an assembler exists that can 
be used for both. The information in this book ts generally applicable to 
both processors; Information that applies to a particular version is 
labeled as such. 

The IDA Bus ts buffered as it leaves the hybrid, but the control signals 
are not. The BIB's are grouped together to buffer the IDA Bus in a way 
that al lows it to perform two different functions. Each BIB can buffer 
eight bits of the IDA Bus. Two BIB's are grouped together to connect the 
IDA Bus to the (main and external) memory; those BIB's are cal led the 
Memory BIB's. The remaining two BIB's are grouped together to connect 
the IDA Bus to the IOD Bus. The 100 Bus Cl/O Data Bus) ls the data bus 
that serves peripheral devices. Accordingly, the BIB's connecting the IDA 
Bus with the 100 Bus are cal led the Peripheral Bl B's. The Memory Bl B's are 
enabled by a circuit (external to the hybrid) which detects memory traffic 
on the IDA Bus. The Peripheral BIB's are control led by the IOC as the 
various types of Input-output operations are performed. 
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DESCRIPTION OF THE PROCESSOR 

GB'IERJ\L lflf()~:1£\TION (CONT I) 

Figure P-2 ii lustrates the nature of the BIB 1 s. Each bit of the IDA 
Bus is buffered in both directions by tri-state buffers control led by non­
overlapping buffer enable signals. 

DIRECTION 
CONTROL 

BUFFER 
ENABLE 

HIGH = R~L, TTL~MOS 
/i/LOW = L~R, MOS~TTL 

>---9--1 

r---------------
1 OF 8 BUFFER CIRCUITS 

L(N) R(N) 
(MOS SIDE) (TTL SIDE) 

RIGHT TO LEFT ENABLE 

--- ENSURES THAT THE 
BUFFER ENABLE LINES 
ARE NON-OVERLAPPING 

-, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L--------------- _.J 

Figure P-2. Nature of the BIB's. 

fitrORY CONVENTIONS 
The term "mernory 11 w i 11 be used to refer to any addressab I e memory 

location, regardless of whether that location is physically within the hybrid 
micro-processor, or external to it. The term 11 external memory" refers to 
memory that Is not physically within the hybrid. The term "register11 refers 
to various storage locations within the hybrid micro-processor itself. These 
registers range in size from I to 16 bits. Most of the registers are 16 bit 
registers. The term "addressable register 11 refers to a register within one 
of the LSI chips that responds as memory when addressed. Most registers are 
not addressable. In most of the discussions that fol low the context 
clarifies whether or not a register is addressable so that it is deemed 
unnecessary to exp I icitly differentiate between addressable and non­
addressable registers. Those registers that are addressable are included 
in the meaning of the term "memory". The term "memory cycle" refers to a J 
read or write operation involving a memory location. 
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DESCRIPTION OF THE PROCESSOR 

ffm)RY aJf'NENTIONS (CONT I ) 

The first 32 merrory addresses do no7 refer to externa I memory. Instead, 
these addresses (0-37 8 ) are reserved to designate addressable registers 
within the micro-processor. Table P-1 I ists the addressable registers 
within the micro-processor. 

* 

Table P-1. Addressable Registers. 

Octal 
Address r~ame Location Description {# of Bits) 

0 A BPC Arithmetic Accumulator { 16) 

I B BPC Arithmetic Accumulator { 16) 

2 p BPC Program Location Counter {I east 15 of 16 or 16) 

3 R BPC Return Stack Pointer {least 15 of 16 or 16) 

4 R4 IOC Peripheral Activity Designator (-) 

5 R5 IOC Peripheral Activity Designation {-) 

6 R6 IOC Peri phera I A::tivity Designator {-) 

7 R7 ICC Peripheral Activity Designator (-) 

10 IV ICC Interrupt Vector <urper 12 of 16) 

11 PA IOC Peripheral Address Register (I east 4 of 16) 

12 w IOC Working Reqistcr ( 16) 

13 OMA PA IOC 2 MSB = CB & 08; 4 LSB = OMA Periph. Add. Reg. 

14 OMA MA IOC OMA 1·1emory Address & Direction Reqister 

15 DMAC IOC OMA Count Register { 16) 

16 c IOC Stack Pointer { 16) 

17 D 10: Stack Pointer { 16) 

20-23 AR2 Et.'C BCD P.rithmetic Accumulator (4 x 16) 

24 SE EMC Shift Extend Register (least 4 of 16) 

25-27 x EMC I nterna I Ari~hmetic Register (3 X 16) 

30-37 UNASSIGNED 

77770/ 
ARI R/W BCD Arithmetic Register (4 x 16) 177770 

Not ava i I ab I e for genera I use. Pad of processes i nterna I to a chip. It 
is best to pretend that these registers co not exist. 

(I 'l 

t Read register 13
8 

produces: 

CB and DB are actually discrete 
registers, and while they can 
only be read by reading Rl3, 
storinging into Rl3 wi II not 
alter their v<ilues. Use the 
CBL, CBU, DBL and DBU machine 
instructions for that purpose. 
CB and DB exist in the 16-bii 
version only. 

tit'-''. 
11 Value of 

Value of 

'---' 
I ~ Upper 
0 ~ Lower 
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DESCRIPTION OF THE PROCESSOR 

re·'DRY crnvoo 1 ONS <coNr. > 

Most of the traffic on the IDA Bus has to do with memory. Both address 
of memory locations, and the contents of those locations (data and machine­
instructions) are transmitted over the same 16-bit bl-directional bus 
(the IDA Bus). Further, memory can be p,ysical ly distributed along the Bus. 
Each of the three chips in the processor contains registers which are 
addressable, and addressable memory also exists external to the processor. 

MEl"ORY CYCLES 

A memory cycle involves some control I ines as wel I as the IDA Bus. 
Start tv'emory (STM) is used to initiate a memory cycle by identifying the 
contents of the IDA Bus as an address. Memory Complete* is used to identify 
the conclusion of a memory cycle. A I ine cal led Read/Write (ROW) specifies 
the direction of data movement; out of or Into memory, respectively. 

Each element in the system decodes the addresses for which It contains 
addressable memory. To initiate a memory cycle, an element of the processor 
puts the address of the desired location on the IDA Bus, sets the Read/Write 
I ine, and gives Start Memory. Then, elsewhere in the system the address is 
decoded and recognized, and that agency begins to function as memory. It is 
part of the system definition that whatever Is on the IDA Bus when a Start 
Memory is given is an address of a memory (or register) location. 

Here is a complete description of the entire process: An originator 
originates a memory cycle by putting the address on the IDA Bus, setting 
the Read/Write I ine, and giving a Start Memory. The respondent identifies 
itself as containing the object location of the memory cycle, and handles 
the da-ra. If the originator is a sender (write) it puts and holds the data 
on the IDA Bus until the respondent acknowledges receipt by sending Memory 
Complete. If the originator is a receiver (read) the respondent obtains 
and puts the data onto the IDA Bus and then sends Memory Complete. The 
originator then has one clock time to capture the data; no additional 
acknowledgement is involved. THIS IS WHEN THE 

[

DATA IS CAPTURED 
Figures P-3 and P-4 ii lustrate typical memory cycles. 

~- ... -----,......., 
IDA BUS ~ ADDRESS ,....._. ~ IE-+- DATA ---t-7 ___ _ 

ROW (HIGH=READ) 
,,_ .... _ ......... _..,_...., ....... - + - +- - +- - +---+---!!---+----! 

..,_ .... _..,_...., ....... - + - +- - +- - t-­

+---+---!~ ............ --I - -+ - t- - ......., 

Figure P-3. Simplified Read Memory Cycle. 
There Is no single signal called ""~emery Cornrlete". Instead there is Unsynchronized 1·'.emory Coriplete 
(i]:i.C) anc Synchronized 1·~emory Comp I etc (SMC). They Mean the same tr i ng for our present purpos<:?s, 
<lnd their exact differences need not concern us here. 
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DESCRIPTION OF THE PROCESSOR 

MEr'ORY CONVENT IONS 
MEfvORY CYCLES (CONT.) 

IDA BUS 

RDW (LOW=WRITE) 

r-RDW MAY TRANSITION 
~ AS LATE AS HERE 

.,.,.,~----...... -~-.., - .,.. - ~ - ~ -----
!----+-~~· ADDRESS ~T '~,--t--t-- DATA ?-__ .,. 

,...._.__~i---+--+ - + -f-'" -,_~ ............ 
................ -+---4 - + - i- - ~ - 1---

l---+----+-....... -4-- - 1--1--~ 

+---+--+-+---! - - - + - ~ - I---+-..... 

Figure P-4. Simplified Write Memory Cycle. 

THE BYTE LINE 

The IOC generates a signal cal led BYTE that affects memory operation. 
BYTE signifies that a memory cycle is to involve a left-half or right-half 
of a word rather than the entire word. The IOC is the only entity that is 
al lowed to generate BYTE, which is used during the execution of certain IOC 
machine-instructions (the place and withdraw byte instructions). 

During a read mem£.!)'._cycle the memory can supply the entire word regardless 
of the status of the BYTE I ine; the IOC wi I I automatically extract ~he desired 
byte from the supplied word. However, during a write memory cycle 7he memory 
must merge the transmitted byte with the existing other half of the word 
(which is already in memory). The transmitted byte wi I I be sent as the 
left-half or right-half of a word (that is, on the upper eight bits or on 
the lower eight bits of the IOA Bus), as is appropriate for whichever byte 
it is supposed to be. 

The 15-bit and 16-bit versions of the IOC differ In the way they indicate 
which half of the word is being sent to memory. (These indicators are 
actually in force for both read and write memory cycles, but may be entirely 
ignored during read memory cycles.) For 15-bit IOC's the left-right infor­
mation appears in the left-most bit of the address word; only 15 bits are 
needed for addressing the word anyway. In this scheme a one in bit 15 
indicates a left-half. For 16-bit IOC's the entire 16 bits is required for 
addressing, and a separate signal (BL - Byte Left Not) is supplied to the 
memory. When bit 15 is used to designate the byte, bit 15 must be latched 
by the memory at the time the address is sent, as it is effectively sent as 
part of the address. On the other hand, BL is a steady state signal val id 
for the duration of the memory cycle. 

f!""' \~hen acting as memory themselves, none of the BPC, IOC, or EMC uti I ize 
the BYTE I ine during a write memory cycle. This means that a byte can be 
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MOORY COWENTIONS 
THE BYTE LINE (CONT.) 

read from a register in any of those chips, but that only entire words can 
be written to those registers. 

RAL LINE 

Among several service functions performed by the BPC for the IOC and EMC 
is the generation of a signal cal led RAL (Register Access Line) whenever an 
address on the IDA Bus is within the range-reserved-for register designation. 
RAL functions to prevent the external memory from responding to any memory 
cycle having such an address. 
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The BPC has two main functions. The first is to fetch machine-instructions 
from memory for itself, the IOC, and for the EMC. A fetched instruction may 
pertain to one or more of those chips. A chip that is not associated with 
a fetched instruction simply Ignores that Instruction. The second main 
function of the BPC is to execute the 56 instructions in Its own repertoire. 
These instructions Include general purpose register and memory reference 
instructions, branching instructions, bit manipulation instructions, and 
some binary arithmetic instructions. Most of the BPC's instructions involve 
one of the two accumulator registers: A and B. 

There are four addressable registers within the BPC and they have the 
fol lowing functions: The A and B registers are used as accumulator registers 
for arithmetic operations, and also as source or destination locations for 
most BPC machine-instructions referencing memory. The R register is an 
indirect pointer into an area of read/write memory designated to store return 
addresses associated with nests of subroutines encountered during program 
execution. The P register contains the program counter; its value is the 
address of the memory location from which the next machine-instruction wil I 
be fetched. 

Upon the completion of each instruction the program counter (p register) 
has been incremented by one, except for the instructions JMP, JSM, RET, and 
SKIP instructions whose SKIP condition has been met. For those Instructions 
the value of P wil I depend on the activity of the particular instruction. 

INDIRECT ADDRESSING 
Indirect addressing is a technique in which an instruction that references 

memory treats the first one or more references as intermediate steps to 
referencing the final destination. Each intermediate reference yields the 
address of the next location to be referenced. When an intermediate location 
can point to yet another intermediate location, such addressing is termed 
rrrulti-Zevel indirect addressing. Indirect addressing is not a property of 
the memory; it is property of the chips that use the memory. Any chip that 
is to implement instructions employing indirect addressing must contain a 
special gear works for that purpose. 

MULTI-LEVEL INDIRECT ADDRESSING 

BPC's that can address 32K of memory can perform multi-level indirect 
addressing. Memory addresses appear on the IDA Bus as 15-bit patterns during 
the address portion of a memory cycle. The BPC machine-instructions that 
reference memory are capable of multi-level indirect addressing. The initial 
indirect indicator is a particular bit in the machine-instruction itself 
(the most-significant, or left-most, bit: Bit 15). The internal operation 
of the BPC is so arranged that if the memory content of that address also 
has a one in bit 15, the other bits ·of the contents are themselves taken as 
an indirect address. The process of accessing via an indirect address continues 
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INDIRECT ADDRESSING 
MULTI-LEVEL INDIRECT ADDRESSING (CONT.) 

until a location is accessed which does not have a one in bit 15. At that 
time the content of that location is taken as the final address; that is, it 
is taken to be the address of the desired location and the memory cycle is 
completed when that final desired location is accessed. 

SINGLE LEVEL INDIRECT ADDRESSING 

BPC's that can address 64K of memory are not capable of multi-level 
indirect addressing; they can perform only one level of indirect addressing. 
As before, bit 15 of the particular memory reference instruction wil I be set. 
The contents of the referenced location wil I be read, and its entire 16-bit 
contents treated as the address of the final destination to be read from or 
written into. This is because addressing 64K of memory requires the use of 
bit 15 as an actual address bit; thus bit 15 is not available to indicate 
that the remaining bits are an Indirect address. The format of the memory 
reference instructions themselves has not changed; bit 15 of ·rhose Instructions 
stll I indicates an Initial Indirect reference, but no further indirect 
references can be indicated as memory is read. Hence only one level of 
indirect addressing is possible. 

fVBIORY REFERENCE INSTRUCTIONS & PAGE ADDRESSING 
Machine-instructions fetched from memory are 16-bit instructions. Some 

of those bits represent the particular type to which the particular instruction 
belongs. Other bits differentiate the instruction from others of the same 
type. If a BPC machine-instruction is one that involves reading from, storing 
into, or otherwise manipulating the contents of a memory location, it is 
said to be a memory reference instruation. Load into A (LOA), Store from B 
CSTB), and Jump (JMP) are examples. There are 14 memory reference instructions 
and they each contain bits to represent the address of the location that is 
to be referenced by the instruction. Only ten bits are devoted to Indicating 
the address to be referenced. Those ten bits represent one of 1024 10 locations 
on either the base page or the aurrent page of memory. An additional bit in 
the machine-instruction indicates which. The base page is always a particular, 
non-changing, range of addresses, exactly 102410 in number. A memory 
reference machine-instruction fetched from any location in memory (i.e., 
from any value of the program counter) may directly reference (that is, need 
not use indirect addressing) any location on the base page. 

For 15-bit addressing the base page is addresses 00000a-00777a and 
77000 8-77777 0 • For 16-bit addressing the base page addresses are 000000e-
000777a and 177000a-177777a. Figure P-5 depicts the base page. 

There are two types of current pages. Each type Is also 102410 
consecutive words in length. Except for base page references, a 
memory reference machine-instruction can directly reference only 
locations that are on the same current page as it; that is, locations 
that are within the page containing the current value of the 
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r f'EMJRv im:RENcE 1NSrRucr1rns & PAGE ADn1£ss1NG ccoNT. > 

ABSOLUTE 
"ZERO" 

PAGE 

(1/0) 7 7 0 0 0 

OCTAL ADDRESSES ). 

(1/0) 7 7 7 7 7 

00000 } 
..i.. ,._ REGISTER 
~1-1:.--------------1..!1"' LOCATIONS 

0 0 0 3 7 

0 0 7 7 7 

0 1 0 0 0 

0 1 7 7 7 

0 2 0 0 0 

Figure P-5. Base Page Description. 

BASE 
PAGE 

program counter (P).* Thus the value of P determines the particular collection 
of addresses that are the current page at any given time. This is done in 
one of two distinct ways, and the particular way is determined by whether the 
signal called RELA is grounded or not. If RELA is ungrounded, the BPC is said 
to address memory in the "relative" mode. If RELA is grounded it is said to 
operate in the "absolute" mode. 

* Off-page references that are not base page references must be made using indirect addressing. 
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MOORY REFERENCE INSTRJCTIONS & PAGE ADDRESSING (coNT.) 

During the execution of each memory reference machine-instruction the 
BPC forms a full 15-blt or 16-bit address based on the ten bits of address 
contained within the instruction. How the supplied ten bits are manipulated 
before becoming part of the actual address, and how the remaining five or 
six bits are supplied, depends upon whether the instruction cal Is for a base 
page reference or not, and upon whether the addressing mode ls relative or 
absolute. The differences are determined primarily by the two different 
definitions of the current page; one for each mode of addressing. Base page 
addressing is the same in either mode. 

ABSOLUTE ADDRESSING 

In the absolute mode of addressing the memory address space is divided 
into a base page and 32 or 64 possible current pages. The possible current pages 
are the consecutive 102410 word groups beginning with 00000 8 • The possible 
current pages can be numbered, 0 through 31 10; or O through 63 10. Thus the 
"zero page" is addresses 00000 8 -01777 8 • Note that the base page is not the 
same as the zero page; the base page overlaps pages zero and 31 for 32K 
machines, and overlaps pages zero and 63 for 64K machines. 

RELATIVE ADDRESSING 

In relative addressing there are as many possible current pages as there 
are values of the program counter. In the relative addressing mode a current 
page Is the 51210 consecutive locations prior (that is, having lower valued 
addresses) to the current location (value of P), and the 511 10 consecutive 
locations fol lowing the current location. 

BASE PAGE ADDRESSING 

Al I memory reference machine-instructions include a 10-bit field that 
specifies the location referenced by the instruction. What goes in this 
field is a displacement from some reference location, as an actual complete 
address has too many bits in it to fit in the instruction. This 10-bit 
field is bit 0 through bit 9. Bit 10 tel Is whether the referenced location 
is on the base page, or someplace else. Bit 10 is cal led the B/C bit, as 
it alone is used to indicate base page references. Bit 10 wil I be a zero 
if the reference is to the base page, and a one if otherwise. 

If bit 10 is zero for a memory reference instruction (base page refer­
ence), the 10-bit field is sufficient to indicate completely which of the 
1024 locations on the base page Is to be referenced. There are two way to 
descr I be the ru I e that Is the correspondence be·t·ween bit patterns in the 
10-bit field, and the locations that are the base page: Cl) the least 
significant 10 bits of the "real address" (i.e., (1>77,0008 through 777 8 ) 

are put into the 10-bit field, bit for bit; (2) as a displacement between 
+777 8 and -IOOOa about O, with bit 9 being the sign. 

The 32 register addresses are considered to be a part of the base page. 
Base page addressing is always done in the manner indicated above, regardless 
of whether relative or non-relative addressing is employed by the BPC. 
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r ~RY REFERENCE INSTRUCT I ms & PAGE ADDRESSING (CONT I) 
CURRENT PAGE ADDRESSING 

Current page addressing refers to memory reference instructions which 
reference a location which is not on the base page. The same 10-bit field 
of the machine-instruction is involved, but the B/C bit is a one CC). Now, 
since there are more than 1024 locations that are not the base page, the 
10-bit field by itself, is not enough to completely specify the exact location 
involved. An assumption has to be made about which page of the memory is 
involved. 

For absolute addressing the assumption is that the most significant 5 
(or 6) bits of the P register correspond to the page, and the last 10 bits 
of the machine-instruction determine the location within that page. This 
assumption requires that there wi I I be no page changes except by certain 
ways. This means that once the program counter is set to a particular 
location the top 5 (or 6) bits need not be changed for any addressing on 
that (which ever it is) page. When the assembler assembles a memory 
reference instruction, it computes the least 10 bits and puts them in the 
instruction. When the BPC executes the instruction it concatenates its own 
top 5 (or 6) bits of ? with the address represented by the least 10 bits 
of the instruction; that produces the complete address for the location 
referenced by the instruction. 

However, the least 10 bits produces by the assembler and placed in the 
machine-instruction do not correspond exactly to the "real" memory address 
that is referenced. Bit 9 (the 10th bit) is complemented before it is placed 
in the address field of the instruction. The other 9 bits are left unchanged. 
This induces a one-half page offset whose effect is to make current page 
addressing relative to the middle of the page. Table ?-2 depicts current 
page absolute addressing. This similarity between current page and base 
page addressing is de! iberate, and results in simplified harcware in the BPC. 

Page changes can be accomplished in two ways: incrementing or decrementing 
the program counter in the BPC, and through indirect addressing. An example 
of incrementing to a new page is a continuous block of code that spans two 
adjacent pages. A page change through an increment or decrement can occur 
in the same general way due to skip instructions. 

Indirect addressing al lows page changes because the object of an indirect 
reference is always taken as a ful I 15-bit or 16-bit address. Indirect 
addressing is the method used for an instruction on a given page to either 
reference a memory location on another page (LOA, STA, etc.), or, to jump 
(JMP or JSM) to a location on another page. 

lnstructlons on any page can make references to any location on the base 
page without using indirect addressing. This is because the B/C bit designates 
whether the 10-bit field in the instruction refers to the base page or to the 
current page. If B/C is a zero (8), the BPC automatically assumes the upper 
5 or 6 bits are al I zeros, and thus the 10-bit field refers to the base page. 
If B/C is a one (C), the top 5 or 6 bits are taken for what they are, and the 

fff"""' current page is referenced (whichever It is). 
\ 
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t'OORY REFERENCE INSTRUCTIONS & PAGE ADDRESS ING 
CURRENT PAGE ADDRESSING (CONT.) 

Table P-2. Current Page Absolute Addressing 
for Memory Reference Instructions. 

LEAST 10 BITS 
OF ASSEMBLER "REAL OCTAL ~DDRESS" 
OUTPUT (octal) 

TOP 5 (6) BITS OF P LOWER 

1 0 0 0 x x START OF PAGE 0 0 0 

1 0 0 1 x x 0 0 0 

1 0 0 2 x x 0 0 0 

. . . 

. . . 

. . . 
1 7 7 7 . 0 7 7 

0 0 0 0 . 1 0 0 

0 0 0 1 . 1 0 0 

0 0 0 2 . 1 0 0 

. . . 

. . . 

. . . 
0 7 7 7 x x END OF PAGE 1 7 7 

10 

0 

1 

2 

7 

0 

1 

2 

7 

BITS 

It is the responsibility of the assembler to control the 8/C bit at the 
time the machine-instruction is assembled. It does this easily enough by 
determining if the address of the operand (or its "va I ue") of an instruction 
is in the range of (1)77,0008 through 0, or, 0 through 7778 • If it is, then 
it is a base page reference and B/C is made a zero for that instruction. 

Relative addressing does not require the concept of a fixed page, as in 
absolute addressing. The word "page" can stil I be used, but requires a new 
definition: 
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MOORY REFERENCE INSTRUCTIONS & PAGE ADDRESSING 
CURRENT PAGE ADDRESSING (CONT.) 

In relative addressing, a page is 102410 consecutive locations, having 
512 10 locations prior to the current location, and 51110 locations 
fol lowing the current location. 

As before, direct addressing is possible anywhere within the page. But 
off-page references (other than to the base page) require indirect addressing, 
which, once started, works as before - it is not relative, but produces a 
fut t 15-bit or 16-bit absolute address. 

Figure P-6 illustrates relative addressing. Relative current page 
addressing is done much the same way as base page addressing. The 10-bit 
f ietd in the memory reference instructions is encoded with a displacement 
relative to the current location. 

Bit 9 (the 10th, and most significant bit of the 10) is a sign bit. If 
it is a zero, then the displacement is positive, and bits 0-8 are taken at 
face value. If bit 9 is a one, the displacement is negative. Bits 0-8 
have been complemented and then incremented (two's complement) before being 
placed in the field. To get the absolute value of the displacement, simply 
complement them again, and increment, ignoring bit 9. 

CURRENT 
PAGE 

I 
0 0 0 0 0 8 i .,... 

x x x x x 8 - 7 7 7 8 

i----------------1 ~CURRENT VALUE 
x x x x x 8 OF PROGRAM 

x x x x x 8 + 7 7 6 8 

(1) 7 7 7 7 7 8 

....... .,... 

... 

I 
Figure P-6. Relative Addressing. 
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SUBROUTINES 
The processor implements subroutines in the fol lowing way. The JSM 

memory reference instruction is used to cause a jump (change in value of P) 
to the start of the subroutine. Also as part of the JSM, the BPC saves the 
value of P that corresponds to the word of programminq that is the JSM. That 
va I ue is saved in a section of read/write memory ca I I ed the return sta.ak. 

The return stack is a group of contiguous locations, whose starting address 
less one was initially stored in the R register (in the BPC). Thus R is an 
indirect pointer. What a JSM does is to increment the value in R and then use that 
new va I ue as the address at which to store the va I ue of P i·hat is to be saved. 
Once this activity is complete, P is actually set to the address of the first 
word of the subroutine and its execution commences. 

A subroutine is terminated with a RET n instruction. The essence of this 
instruction is to read the location that R points at, set P to that value plus 
n, and then decrement R. The garden variety return is a RET I. Different 
values of n permit different returns corresponding to error or other special 
conditions. 

Subroutines can be nested as deep as the size of the return stack will 
al low. The subroutines themselves can be ei·t·her in ROM or read/write memory. 

FLAGS 
The BPC is capable of branching based on the condition of each of four 

signals externally supplied to the chip. These signals are Decimal Carry 
CDC), Halt CHLT), Flag CFLG), and Status (STS>. The EMC acts as a source 
for Decimal Carry, which represents an overflow condition during certain 
arithmetic operations performed by the EMC. The other signals can be defined 
in any way that is suitable for the system in which the processor is operating; 
they are not used for inter-chip communication within the processor. 

BUS REQUESTS AND INTERRUPTS 
Two protocols that do involve inter-chip communication are those of 

Bus Request and Interrupt. Bus Request CSR) provides a way for a chip in 
the processor, or even a device external to the processor, to request 
unfettered use of the IDA Bus. A signal cal led Bus Grant (BG) is generated 
if all chips and any other interested entities agree to do so. The requesting 
agency can use the IDA Bus for whatever purpose it wants, (typically to do 
memory cycles). During the time that Bus Grant is in effect al I chips 
suspend their activity. Bus Grants can be given even in the middle of the 
execution of an instruction. Because of this, the chips do not grant bus 
requests indiscriminately. Furthermore, a Bus Grant not requested by the 
JOC is used by the IOC to create Extended Bus Grant CEXBG), which is routed 
from chip to chip in a definite order; chips or other entities not at the ~ 
top of the chain can exercise the right not to pass along the signal. This 
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("" BUS REQUESTS AND INTERRUPTS (CONT' ) 

al lows a Bus Request from the IOC to have a higher priority than any 
entity further down the chain. Even if both are requesting the bus, the 
IOC can "steal" EXBG by not passing it along. Further down the chain from 
the IOC, BG serves to indicate only that the bus is being granted to some­
body; a paticular requesting device must wait unti I It sees EXBG before it 
can use the bus. 

The Bus Request protocol includes these additional considerations: 
Any entity on the bus may ground BG as long as BG is not already being given. 
This al lows any entity anywhere in the chain to protect its own access to 
the bus against al I agencies. Further, the BPC itself refuses to issue a 
BG as long as any memory cycle is in progress. 

Figure P-7 i I lustrates the usage of the Bus Request, Bus Grant, and 
Extended Bus Grant protocol. 

llG (BUS :;R,\NTJ 

BPC 

IDA BUS 
W(BUS REQUEST) 

1:xnc 

J,;TERNA!. 
DUS GRANT 

IOC EMC 

Figure P-7. Bus Request Protocol. 

EXBG 

INTERNAL 
B~S GRANT 

CRT 

EXBG 

Fol lowing is a description of how the inter-chip mechanism for interrupt 
acts. During an instruction fetch a I ine cal led Interrupt <INT) can signal 
that the IOC has agreed to al low an interrupt requested by a peripheral. 
The management of this decision is comp I icated and its description belongs 
with a description of the IOC. However, once the decision is made, the IOC 
signals the BPC with INT. This has to occur during a certain period of 
time ending with the end of the instruction fetch. (A signal cal led SYNC 
indentifies the instruction fetch.) 

What the chips in the system must do when an interrupt occurs is to 
abort the execution of the instruction just fetched (it wil I be fetched 
again, later). Then the BPC executes the Instruction JSM 108 Indirect. 
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BUS REQUESTS AND INTERRUPTS (CONT I) 

Register address 108 is located in the IOC, and is the Interrupt Vector 
register (IV). That register is a pointer into a stack of addresses 
of the starting locai·ions for the various interrupt service routines. 
These routines handle the traffic needed by the interrupting peripheral. 
A special mechanism in the IOC sets the bottom four bits of IV to 
correspond to the particular peripheral that requested the interrupt. 
Thus IV points to different service routines, according to which per i phera I 
interrupted. 

In any event, the J SM I 08 Indirect causes the va I ue of P for ·t·he aborted 
instruction to be saved on the return stack. A RET 0 at the end of the service 
routine results in that very instruction being fetched over again, at the 
conclusion of the service routine. 
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The IOC has two main functions. One is to manage the transfer of information 
between the processor and external peripheral devices. This is done by 
providing capabilities classified as Standard 1/0, Interrupt and Direct 
Memory Access CDMA). The second main function is to provide machine-instructions 
al lowing software management of two stacks in Read/Write Memory. 

To implement these tasks the IOC contains a number of addressable registers. 
The function of each wil I be discussed as the various topics of IOC operation 
are covered. 

GENERAL INFO~TI~ tmJT 1/0 
The IOC al lows up to 16 peripheral devices to be present at one time. 

Each peripheral device is connected to the 100 Bus, Peripheral Address Bus, 
and the various control signals necessary for that particular device's 
operation. Individual 1/0 operations (exchanges of single words) occur 
between the processor and one peripheral at a time, although Interrupt and 
OMA modes of operation can cause automatic interleaving of individual operations. 
A select code transmitted by the Peripheral Address Bus <PABO-PAB3) indentif ies 
which of the 16 devices is the object of an individual 1/0 operation. 

In addition, the peripheral interface is the source of the Flag and 
Status bits for the BPC instructions SFS, SFC, SSS, and SSC. Since there 
can be many interfaces, but only one each of Flag and Status, only the 
interface addressed by the select·code is al lowed to ~round these I ines. Their 
logic is such that if the addressed peripheral is not present on the 1/0 
Bus, Status and Flag are logically false. 

ICI and IC2 are two control I ines that are sent to each peripheral 
interface by the IOC. The state of these two I Ines during the non-OMA 
transfer of information can be decoded to mean something by the interface. 
Just what 'something' wil I be is subject to agreement between the firmware 
designer and the interface designer - it can be anything they want, and 
might not be the same for different interfaces. These two I ines act as a four 
position mode switch on the interface, control led by the IOC during an 1/0 
operation. 

110 P!JS CYCLES 
There are no specific machine-instructions for which the IOC responds 

by doing 1/0 operations. That is, there is no "outpui- instruction", and no 
"input instruction". The real workhorse of 1/0 is a thing cal Jed an I/O 
Bus Cycle. An 1/0 Bus Cycle is an exchange of a word between the IDA Bus and 
the JOO Bus, via the Peripheral BIB's. The exchange is not of the handshake 
variety. 1/0 Bus Cycles are termed read or write 1/0 Bus Cycles, depending 
upon whether information is being read from, or written to, a peripheral. 

Each of the three modes of 1/0 operation (Standard 1/0, Interrupt, and 
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1/0 BUS CYCLES (CONT.) 

OMA) utilize 1/0 Bus Cycles. After we have examined how an 1/0 Bus Cycle 
works, the explanation of the various modes of 1/0 wil I amount to showing 
different ways to initiate 1/0 Bus Cycles. 

For example, during Standard 1/0 operation, an 1/0 Bus Cycle is initiated 
by a reference to one of R4 through R7 in the IOC. One way that can be done 
Is with a BPC memory reference instruction; for instance, STA R4 (for a write 
cycle), or LOA R4 (for a read cycle). 

The IOC includes a register cal led the Peripheral Address Register CPA) 
which is used in establishing the select code surrently in use. The peripheral 
address is established by storing the desired select code into PA with an 
ordinary memory reference instruction. The bottom four bits of this register 
are brou9.b.:!:._out of the IOC as PABO through PAB3. Each peripheral interface 
decodes PABO-PAB3 and thus determines if it is the addressed interface. 

Consider a write 1/0 Bus Cycle as illustrated in Figure P-8. This is 
initiated with a reference to one of R4-R7. The IOC sees this as an address 
between 4 and 7 on the IOA Bus while STM is low. The Read I ine is low to denote 
a write operation. The IOC enables the Per!.Q.beral ~'s and specifies the 
direction. It also sets the control I ines ICI and IC2, according to which 
of R4 through R7 was referenced. Meanwhile, the BPC has put the word that 
is to be written onto the IDA Bus. Because both the Memory BIB's and Peripheral 
BIB 1s are enabled, that word is felt at al I peripheral interfaces. The 
interface that Is addressed uses DOUT to understand it's to read something, ~ 
and uses IOSB as a strobe for doing it. After IOSB is given, the IOC gives 
[Synchronized] Memory Complete (SMC) and the process terminates. The BPC has 
written a word to the interface whose select code matched the number in the 
PA register. 

A read 1/0 Bus Cycle is similar, as shown in Figure P-9. Here the BPC 
expects t£._receive a word from the addressed peripheral interface. Read, 
DOUT and BE are different because the data is now moving in the other direction. 

In either case, the critical control signals SMC and IOSB are given by 
the IOC, and their timing is fixed. There can be no delays due to something's 
not being ready, nor is there any handshake between the interface and the IOC. 

It is the responsibility of the firmware not to initiate an 1/0 Bus 
cycle involving a device that is not ready. To do so wil I result in lost 
data, and there w i I I be no warning that ·this has happened. 
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1/0 BUS CYCLES (CONT I ) 

IDA 

ROW 

IDA 

STM 

ROW 

SMC 

ICl 

IC2 

i50uT 

iiE 

IOSB 

THIS IS A WRITE MEMORY llf THIS IS Tl!E BEGINNING OF THE ACTUAL 1/0 BUS CYCLE 
CYCLE THAT INITIATES A 
WRITE I/0 BUS CYCLE. Tl T2 73 T4 TS T6 

---+-+-----;.---------------1--- THE STATES OF THESE 
1' 
I "- - - I - - - - - - -- - -I ' I 

/ 

d----------""' ,...._,__.,_..,......,..--+-----..... ,------+----
1: 

---- NOTES----

TWO SIGNALS ARE 
DETERMINED B"i WHICH 
OF R4-R7 WAS 
REFERENCED 

l. THIS 1/0 BUS CYCLE WAS INITIATED BY ANY WRITE-INTO-MEMORY INSTRUCTION 
WHICH REFERENCED ONE OF R4 THRU R7. 

2. CONTROL INFORMATION IS VALID ON BOTll EDGES OF IOSB. 
3. DATA IS LATCllEO I:ITO THE INTERFACE ON TllF. TRAILING EDGE OF IOSB. 

02 

l. 

2. 
3. 

Figure P-8. A Write 1/0 Bus Cycle. 
THIS IS A READ MEMORY 
CYCLE THAT INITIATES 
A READ 1/0 BUS CYCLE. 

IS THE BEGINNING OF THE ACTUAL 1/0 BUS CYCLE 

Tl T4 TS T6 

,I I 

1----------.,.....-r-r-+.....,-,...._,..--+-"t""""----- THE STATES OF THES:: 
_J _ i_ l TWO SIGNALS ARE 

1 DETERMINED BY WHICH ,__ ___ _,_ _ __, ____ ,___,_ ___ _,___, __ ...,.. __ ..,,__OF R4-R7 WAS 

REFERENCED 

---- NOTES---­

THIS I/O nus CYCLE WAS INITIATED BY ANY REl\0-FROM-MEMORY INSTRUCTION 
WHICH REFERENCED ONE OF R4 TllRU R7. 
CONTROL INFORMATION IS VALID ON BOTll l·:DGf:S OF IOSB. 
DATA FROM THE INTERFACE IS LATCHED INTO TllE BPC CURING T4. 

Figure P-9. A Read 1/0 Bus Cycle. 
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STANDARD 1/0 
Standard (programmed) 1/0 involves three activities: 

I) Setting the peripheral address 
2) Investigating the status of the peripheral 
3) Initiating an 1/0 Bus Cycle 

ADDRESSING THE PERIPHERAL 

A peripheral is selected as the addressed peripheral by storing its octal 
select code into a 4-bit register cal led PA (Peripheral Address - address I le). 
Only the four least significant bits are used i·o represent the select code. 

CHECKING STATUS 

The addressed peripheral is al lowed to control the Flag and Status I ines. 
(That is, it is up to the interface to not ground Flag or Status unless it is 
the addressed interface.) These I ines have an electrical logic such that when 
floating they appear false (clear, or not set) for SFS, SFC, SSS, and SSC. 

The basic idea (and it can be done in a variety of ways) is to use 
sufficient checks of Flag and Status before and amongst the 1/0 Bus Cycles 
such that there is no possibility of initiating an 1/0 Bus Cycle to a device 
that is not ready to handle it. One way to do this with Standard 1/0 is to 
precede every 1/0 Bus Cycle with the appropriate checks. 

INITIATING 1/0 BUS CYCLES 

An 1/0 Bus Cycle occurs once each time one of R4 - R7 (4 9-7e} is accessed 
as memory. An instruction that 11 puts 11 something into R4-R7 results in an 
output (write} 1/0 Bus Cycle. Conversely, an instruction that "gets" something 
from R4-R7 results in an input (read} 1/0 Bus Cycle. However, there are no 
R4 through R7. The use of address 4-7 is just a device to get an 1/0 Bus 
Cycle started; they do not correspond to actual physical registers in the IOC. 

Consider the fol lowing hypothetical case, (specially invented for 
purposes of illustration) - Suppose we are to write a driver for a smarter 
than average paper tape punch: Upon a single command it can output 50 feed­
frames for leader. The routine is to have two entry points; one for outputting 
a sing I e word of data, and one for causing -~he I eader. A I so, the punch sets 
the status I ine if it gets low on tape. Prior to cal I ing our driver, the 
main program puts the word to be outputted into DATA, and the select code 
of the punch in PUNSC. 

I. PUNCH JSM 
2. LDA 
3. STA 
4. RET 
5. LEADR JSM 
6. STB 
7. RET 
8. SETUP LDA 
9. STA 

10. SFC 

SETUP 
DATA 
R4 
I 
SETUP 
R5 
I 
PUN SC 
PA 
* 

SET SELECT CODE, CHECK AVAILABILITY 
GET OUTPUT DATA WORD 
OUTPUT THE DATA CICI = 0, IC2 = 0) 
RETURN TO MAIN PROGRAM 
SET SELECT CODE, CHECK AVAILABILITY 
OUTPUT LEADER CICI = I, IC2 = 0) 
RETURN TO MAIN PROGRAM 
GET SELECT CODE 
PUT IT INOT PERIPHERAL ADDRESS REG 
WAIT IF PUNCH NOT AVAILABLE 
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r' STANDARD I/O 
INITIATING I/0 BUS CYCLES (CONT.) 

I I • 
12. 
13. 

14. 
15. 

BXCRS 

SSS BXCRS 
RET I 

PUNSC NOP 
DATA NOP 

SKIP IF PUNCH OUT OF TAPE 
OK, DO OUTPUT OPERATION 
HANDLE THE OUT OF TAPE SITUATION 

TAPE PUNCH SELECT CODE 
OUTPUT DATA WORD 

Lines I and 5 invoke I ines 8 through 12. Lines 8 and 9 set the select 
code, and I i ne I 0 checks for presence and ava i I ab i I i ty C both must be "yes", 
or, at the interface the Flag wil I be false). Line II checks for the out-of­
tape condition; it is the responsibility of the punch-interface combination to 
set Status high when the tape supply is low and the punch is addressed by PA. 
The routine at BXCRS handles the out of tape condition. 

lines 2 and 3 punch a word of data onto the tape. line 3 causes a 
"write" (output) 1/0 Bus Cycle. The contents of (in this case) A are written 
to the addressed peripheral. Because it is R4 that is referenced, ICI and 
IC2 are both zeros. The interface understands an output 1/0 Bus Cycle with 
ICI and IC2 both zeros to be a command to punch the supplied word. 

Line 6 gives the command to punch leader. Because it is a write operation 
referencing RS, an output 1/0 Bus Cycle is done with ICI = I and IC2 = 0. 
In this instance the contents of B is sent to the punch (we wi I I assume that 
it is ignored, however). The interface understands an output 1/0 Bus Cycle 
with ICI = I and IC2 = 0 as the command to generate leader. 

The 16-bit word transmitted from B need not be ignored. An even smarter 
punch might use it as the number of feed-frames to punch. A more general 
approach would be for the interface to recognize that ICI = I and IC2 = 0 
signifies that the accompanying word is to be decoded to determine the 
instruction/control information. The possibilities are numerous. 

THE ODDBALL POSSIBILITIES 

By this time in your reading you no doubt instantly recognize LDB R4 
as an input operation where a word is read from the addressed peripheral 
and placed into B. But what about the other memory reference instructions? 
What, for instance, does ADA R4 do, or a CPA R4, or an ISZ R4, or worse 
stil I, a LOB R4,I? Some of these things do not have a known practical use, 
but they each work in a logically straight-forward manner. 

An ADA R4 wil I read a word of data from the addressed peripheral, and 
then add it to the contents of A, leaving the result in A. 

A CPA R4 wi I I read a word of data from the addressed peripheral, and 
then compare that with the existing contents of A. The BPC wil I skip the 
next instruction if the two are unequal. 
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STPNDARD I/O 
THE ODDBALL POSSIBILITIES (CONT.) 

An ISZ R4 is an input/incremert-and-skip/output instruction. It reads 
a word of data from the addressed peripheral and increments the resulting 
value. If the sum is zero, the next instruction is skipped. But in any case, 
the incremented value is written back to the same peripheral it came from. 
The interface sees a read 1/0 Bus Cycle fol lowed a very short time later by 
a write 1/0 Bus Cycle. 

An LOB R4,I does the obvious thing. A word of data is read from the 
addressed peripheral. Once the data is read it is treated exactly as if it 
had come from regular memory, and the action proceeds just as for any other 
Load B-indirect. 

THE I ITTERRUPT SYSTEM 
The idea behind interrupt is that for certain kinds of peripheral 

activity, the processor can go about other business once the 1/0 activity 
is intiated, leaving the bulk of the 1/0 activity to an interrupt service 
routine. When the peripheral is ready to handle another ration of data (it 
might be a single byte or a whole string of words) it requests an interrupt. 
When the processor grants the interrupt, the program segment currently being 
executed is automatically suspended, and there is an automatic JSM to an 
interrupt service routine that corresponds to the device that interrupted. 
The service routine uses Standard 1/0 to accomplish its task. A RET O,P 
terminates the activity of the service routine and causes resumption of 
the suspended program. 

PRIORITY 

The interrupt system al lows even an interrupt service routine to be 
interrupted and is therefore a multi-level Interrupt system, and it has a 
priority scheme to determine whether to grant or ignore an interrupt request. 

The IOC al lows two levels of interrupt, and has an accompanying two levels 
of priority. Priority is determined by select code; select codes 0-7 8 are 
the lower level (priority level I), and select codes 108-17e are the higher 
level (priority level 2). Level 2 devices have priority over level I devices; 
that is, a disc drive operating at level 2 could interrupt a plotter operating 
at level I, but not vice versa. Within a priority level al I devices are of 
"equal 11 priority, and operation is of a first come-first served basis; a level 
I device cannoi· be interrupted by another level I device, but only by a level 
2 device. However, priorities are not equal in the case of simultaneous 
requests by two or more devices on the same level. In such an instance the device 
with the higher numbered select code has priority. With no interrupt service 
routine in progress, any interrupt wil I be granted. 

INTERRUPT POLLS 

Devices request an interrupt by pulling on one of two interrupt request 
lines CIRL and IRH - one for each priority level). The IOC determines the 
requesting select code by means of an interrupt pol I, to be described In the 
next paragraph. If the IOC grants the interrupt it saves the existing select 
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THE IITTERRUPT SYSTEM 
INTERRUPT POLLS (CONT.) 

code located in PA, puts the interrupting select code in PA, and does a JSM­
lndirect through an interrupt table to get to the interrupt service routine. 

An interrupt pol I Is a special 1/0 Bus Cycle to determine which lnterface(s) 
Is (are) requesting an interrupt. An interrupt pol I is restricted to one 
level of priority at a time, and is done only when the IOC is prepared to 
grant an interrupt for that level. 

The interfaces distinguish an Interrupt Pol I Bus Cycle from an ordinary 
1/0 Bus Cycle through the INT I ine being low. Also, during this Bus Cycle 
PAB3 specifies which priority level the pol I is for. An interface that Is 
requesting an interrupt on the level being pol led responds by grounding the 
nth 1/0 Data I ine of the 1/0 Bus, where n equals the device's select code 
module eight. If more than one device is requesting an interrupt, the one 
with the higher select code wi I I have priority. 

The IOC has a three-deep first-in last-out hardware stack. The top of 
the stack is the Peripheral Address register CPA-I 18 ). The stack is deep 
enough to hold the select code in use prior to any interrupts, plus the 
select codes for two levels of interrupt. When an interrupt is granted, the 
IOC automatically pushes the select code of the interrupting device (as 
determined by the interrupt pol I) onto the stack. Thus the previous select 
code-in-use is saved, and the new select code-in-use becomes the one of the 
interrupting device. 

INTERRUPT TABLE 

It is the responsibi I ity of the firmware to maintain an interrupt table 
of 16 consecutive words, starting at some Read/Write Memory address whose 
four least-significant bits are zeros. The words in the interrupt table 
are set to the starting addresses of the various interrupt service routines 
in use for the 16 different select codes. When a peripheral is al lowed 
to interrupt its select code is used to determine which interrupt service 
routine to JSM to. The interrupt service routine then handles the 1/0 
operations needed by the interrupting device. 

The firmware must also store the address of the first word of the inter­
rupt table in the IV register (Interrupt Vector register, address 108 , located 
in the IOC). Those contents wil I merge with the select code to produce the 
address of the appropriate table entry. In either version of the processor 
a two-level indirect jump is used to arrive at the interrupt service routine. 
This happens automatically because the BPC generates a JSM IV ,I as part 
of what it does during an interrupt. See Figures P-10 and P-10~. In 15-bit 
processors the indirect chain could be longer if desired. It cann.ot be shorter, 
however, due to a bug in the 15-bit IOC. Thus, the scheme depicted in Figure 
P-1 I cannot be used. Even with 16-bit processors the scheme in Figure P-1 I is 
not possible; in 16-bit processors the IOC forces the BPC to do two consecutive 
"first-level" indirect accesses, so that the effect is exactly that shown 
in Figure P-1 I, except that it doesn't matter then whether bit 15 of IV is 
set or not. 

In 15-bit processors bit 15 of IV must be set. This does two things. 
First, it guarantees that the JSM 10 8 ,I involves at least two levels of 
indirect. Second, it avoids a bug in the IOC. If bit 15 were a zero, the 
machine would attempt to implement the situation shown in Figure P-1 I. But 
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1HE INlERRUPT SYSlEM 
I NTERRUPf TABLE (CONT I) 

a race condition between the BPC and IOC is inv~lved; its effect is to make 
bit 15 of rJ look I ike a one even when it was a zero. The bug is somewhat 
dependent upon clock frequency. Reliable operation can be ensured only by 
using a two-level JSM through rJ and the interrupt table. 

In 16-bit processors the bug was f lxed by permanently deciding the race 
condition in the IOC's favor. Nothing was done to the BPC; it sti 11 only 
understands one level of indirect addressing. But the IOC keeps the INT 
I ine grounded long enough to force the BPC to treat the contents of rJ 
itself as an indiPeat add.Pess. This causes the BPC to read the next address 
(the one in the interrupt table) and treat its contents as the destination 
address, just as in multi-level indirect addressing. Thus, in the 16-bit 
processor the JSM through the interrupt table is always a two-level process 
as shown in Figure P-10~, regardless of whether bit 15 of IV is set or not. 
Bit 15 of rJ becomes simply an address bit, helping indicate where in 
memory the interrupt table is located. 

r 10
9

t•lV) IS A t•t~T .. LEVEL 
lt:Dl PL.._,. AI>:JRESS 

UrtERRt:M' VECTOR 
(1'ABL'E POINTER) 

.JSK IV.I IVClO ) IW IOC 

l r~~EAO•E 
1XXXXX.XXXXXX 0000 

_.--:--., \...,,.J fl 
THIS IS /\ V/\RIADLC 

SCC'OND•LL'\'f.L 
lNDl RCCT ADDRESS 

DETERMINED BY = 
THE INTERRUPT l'<lLL ili 

"' tl 
c INTERRUPT TABlE Ill 

READ/WRITE r.El-XlRY ~ 

m 1-------I .,. 
.. 
8 

~ 
"' e 
L) StRVlCE. ROU1'lU£ ADDR. 

JSH, I THROUGH THE INTERRUPT TABLE WITH 
"NATUP.AL' tlllTl-LEVEL INDIRECT ADDRESSlllG 

Figure P-10. 
The Interrupt Table With 

15-Bi t Addressing. 

.,.m 1-------l 

.. 
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~ .. 
e 
4 S&RV ICE 5tOU'TUU: ADDA. 
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Figure P-1 O~. 
The Interrupt Table With 

16-Bit Addressing. 
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DESTINA'TJCN 

oxxxxxxxxxxx 0000 

\...,,.J 
PL"Tl.RMIUE:D DY 

'fHE UfTER~UrT l'<llL 

ADDRESS 
INTERRUPT TABlE IN 

~ 
8 

~ 
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READ/WRITE l'll'DRY 

~ . . . 
4 JMP < SERYJCI: ROQTJN£ ADDR .) 

JS/1, I THROUGH TllE INTERRUPT TABLE 
WITH SINGlE-LEVEL INDIRECT ADDRESSlllG 

Figure P-11 • 
How Not To Use 

The Interrupt Table. 

After the interrupt pol I is complete the select code of the interrupting 
device is made to be the four least-significant bits of the IV register. Thus ~ 
IV now points at the word in the Interrupt Table which corresponds to thi; 
appropriate interrupt service routine. Al I that is needed now is a JSM IV,l, 
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f(' THE IITTERRUPT SYST8'1 
INTERRUPT TABLE (CONT.) 

and the interrupt service routine wi I I be under way. This is accomplished by 
the BPC as summarized below. 

INTERRUPT PROCESS SUfv!MARY 

The IOC inspects the interrupt requests IRL and IRH during the time sync 
is given. Based on the priority of the interrupt requests, and the priority 
of any interrupt in progress, the IOC decides whether or not to grant an 
interrupt. If it decides to al low an interrupt it immediately pul Is INT to 
ground, and also begins an interrupt pol I. 

The grounding of INT serves three purposes: It al lows the interfaces to 
identify the forthcoming 1/0 Bus Cycle as an interrupt pol I; it causes any 
other chips in the system, except the BPC, to abort their instruction decode 
process (which by this time is in progress) and return their idle states; and 
it causes the BPC to abort its instruction decode and execute a JSM 108 , I 
instead. 

The IOC uses the results of the interrupt pol I to form the interrupt vector, 
which is then used by the J SM I Oe, I . It a I so pushes the new se I ect code onto 
the peripheral address stack, and puts itself into a configuration where al I 
interrupt requests except those of higher priority wi I I be ignored. 

INTERRUPT SERVICE ROUTINES 

The majority of the interrupt activity described so far is accomplished 
automatically by the hardware. Al I the firmware has been responsible for 
has been the IV register, the maintenance of the interrupt table, and (probably) 
the initiation of the particular peripheral operation involved (plotting a 
point, backspace, finding a file, etc.). Such operations Cinitated through a 
command given by simple programmed 1/0) may involve many subsequent 1/0 Bus 
Cycles, done at odd time-intervals, and requested by the peripheral through 
an interrupt. It is the responsibility of the interrupt service routine to 
handle the 1/0 activity required by the peripheral without upsetting the 
routine that was interrupted. 

It's difficult to say specific things about interrupt service routines 
in general; a lot depends upon the particulars of the host software system. 
In the next few pages we wi II examine some generalities relating to interrupt 
service routines, and sketch some examples. The result may leave some readers 
with an unsatisfied feeling; specific information is not available except as 
part of a description of a particular software system. 

Our first observation is on the number of service routines. In general, 
there is not one service routine for each select code, or even for each 
peripheral. The usual case is collections of routines that perform related 
functions within the needs of a certain class of peripheral activity; each 
class of activity has it own collection. 
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THE INTERRUPT SYSTEM 
INTERRUPT SERVICE ROUTINES (CONT.) 

For instance, it is uni ikely that there would be a single interrupt 
service routine for a disc. On the cust·omer's level there are many commands 
in the disc operating system. On the firrm·mre level there are a series of 
routines that perform 'fundamental units' of activity, where each 'fundameni·al 
unit' involves some amount of 1/0. Most commands in the user's disc operating 
system are made up of a series of these 'fundamental units' of activity. 
'Fundamental unii·s 1 of activity for the disc are things I ike: moving the 
head to a given frack, reading a given sector from a track into such and such 
a buffer, and writing from such and such a buffer into a given secfor. It 
is these types of activity i·hat are most I ikely to have corresponding interrupt 
service routines. 

Let's sketch a hypothetical example. Assume a fairly Involved disc user's 
command is to be performed, one requiring reading the directory on the disc 
to determine the location of certain fl le on the disc, and then !oading that 
fl le into memory. The kind of thing that happens here is to move the head 
to the start of the directory, read through the information in the directory 
sector by sector unt i I the Information about the desired f i I e is found, moving 
the head to the f i I e's I oca·t· ion, reading its header, reading its first sector, 
etc., etc. 

Each service routine is srnar·r enough to know which service routine fol lows 
it for the particular high level task at hand, and, if it has a choice based ~ 
on the v1ay events i·urn out (error conditions, etc.), it knows hm1 to handle 
that, too. As each new step in the sequence requiring a different interrupt 
service routine is reached, the concluding routine changes the appropriate 
entry of the interrupt table to the starting address of the next service 
routine. In this way a versi·ri le col led ion of interrupt service routines 
can serve many purposes. 

As another example of this, consider a smart tape cassette, whose internal 
architecture was of variable length files composed of fixed length records. 
Such a cassette would resemble a cisc from the user's point of view, and it 
is possible that some of the disc interrupi· service routines would \-Jork for 
the cassette, also. 

And lastly, consider the case of formatted output ·t·o I ine printers, punches, 
teletypes and CRT's. Some of these devices may differ slightly in their main! ine 
firmware drivers, but there is an excel lent chance that they could use the 
same genera I purpose interrupt service routine( s). 

So much for the chicken, now for the egg. At the beginning of the 
operation the main! ine firmware sets up any initial conditions that are 
required (e.g., selecting a buffer and setting a word count or a value of 
a pointer). The mainline firmware also selects the interrupt service 
routine by modifying an entry in the interrupt table. It also gives the 
f i rs·r I /0 Bus Cycle, which 1·1a kes up the per i phera I and gets th i rigs going. 
After this first l/O Bus Cycle the main I ine firmware can go on about its 
other business. 
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r" THE INTERRUPT SYSTEM 
INTERRUPT SERVICE ROUTINE (CONT.) 

Perhaps some questions have occured to you: "How does a peripheral know 
If it is supposed to interrupt, or operate in some other mode?" (A Low-end 
calculator might not use interrupt - or on a given calculator a peripheral 
may use interrupt sometimes but not others); "How is it that the routine that 
is in progress doesn't get bombed when an interrupt occurs?"; "And, come to 
think of it, how can the calculator proceed with other activity when it has 
essentially passed over unfinished business - miqht not things run amuck?"; 
and lastly, "How does the peripheral know when to stop interrupting, especially 
In the case of an output operation where an arbitrary amount of information 
is transmitted? 11 

I-OW A PERIPHERAL KNOWS WHETHER TO USE INTERRUPT OR SIMPLE 1/0 

There are several possibilities here: It might never use interrupt; it 
might always use interrupt, it might use Interrupt always with one mainframe 
but not with another due to different interface cards; it might have a smart 
interface card that knows what calculator it's in, and thus use interrupt or 
not; or, it might have a smarter yet interface that al lows the calculator to 
tel I the peripheral when to begin using the interrupt system, and when to 
stop. 

The last possibl lity could work I Ike this: The initial 1/0 Bus Cycle 
given by the main I ine firmware could reference, say, R5. This would be 
understood by the interface as a command to interrupt as soon as the device 
Is ready to handle the next ration of data. A scheme I Ike this al lows 1/0 
statements referencing R4 free for simple, non-interrupt operation. 

BOMBPROOFING THE MAINLINE FIRMWARE 

The calculator could be almost anywhere in its internal coding when an 
interrupt is granted. Since the code ls suspended with a JSM, the way is 
clear to get back to the right spot with a RET O,P. But it won't do any 
good to come back it the items in memory related to the routine are not the 
same. The interrupt service routine must save and later restore any memory 
location that wil I be directly or indirectly disturbed by the activity of 
the service routine. This could include the extend and overflow registers 
of the BPC, decimal carry and shift-extend of the EtJC, and possibly CB and 
DB in the 16-bit version of the IOC. 

As long os the sevice routine does al I its own laundry, it's easy to 
tel I what to save; it's whatever gets used that's not private to that service 
routine. But if the service routine farms out some of its work to uti I ity 
subroutines in the main system, what needs to be saved is not always obvious. 

"SIMULTANEOUS" ACTIVITIES 

The main system software must be designed with interrupt in mind to take 
ful I advantage of the interrupt system. This generally involves an entirely 
different approach to 1/0 than in less sophisticated machines where there 
is no interrupt capability. The fol lowing example illustrates the sort of 
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THE INTERRUPT SYSTEM 
"SIMULTANEOUS'' ACTIVITIES (CONT.) 

approach used with interrupt systems. 

Consider the following program segment: 

50 

55 

60 

100 

\'IR I TE ( 6, I 00) A,B,C, 

X = CA + B + C)/3 

A = A + I 

FORMAT IIO, 2F20.5 

The write statement of 1 ine 50 is to be done under interrupt. Basically, 
the idea is that once the firmware that executes the write statement has 
gotten things started, the calculator can begin to execute the next I ine 
in the program. In this example it is safe to immediately execute I ine 55, 
as it wil I not affect the on-going process for 1 ine 50. But I ine 60 is 
another matter. \'/hether or not it is safe to execute I ine 60 depends upon 
how the main system works. 

Suppose the main system has lots of memory to burn, and that the WRITE 
routine, as part of its initialization, went and got the values of A, B, and 
C, and saved th0fll in a buffer. Then nothing can hurt I ine 50; I ine 60 can 
be executed immediately. 

On the other hand, consider a system with not so much memory, and conse­
quently, I ittle or no buffering. It could compromise by setting a bit in 
the symbol table entries of A, B, and C, marking them as busy. As each is 
outputted, it would be un-marked. Then I ine 60 would be executed if A were 
not busy, or, there would be a delay at I ine 60 while the main system waits 
for A to become non-busy. 

WHEN TO CEASE INTERRUPT MODE OPERATION 

In some cases the peripheral and the corresponding firmware may each know 
in advance how many items are involved, and each just goes to sleep when 
everyt1ing is done. 

In the case of arbitrary length transfers, or transfers control led by 
one party, however, somebody has to decide when it's all done, and notify 
the other party. For most output operations, and for input operations 
involving dumb peripherals, the smarts are in the firmware. What the 
peripheral wil I do is interrupt as soon as it is available fol lowing the 
exchange of some data, even if the previous exchange was the "last11 one 
(which the peripheral didn't know). It wi I I do this, unless the interruot 
mode in the interface is shut off before It has the chance to interrupt 
again. 
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THE Im-ERRUPf SYSTEM 
WHEN TO CEASE INTERRUPT l'IODE OPERATION (CONT.) 

Now for hardware reasons the peripheral wit I, while requesting an interrupt, 
keep its Interrupt Request line active until it gets a (data) 1/0 Bus Cycle 
for that device.* The consequences of this are that once the interrupt is 
granted the interrupt service routine cannot decline to exchange more data 
and terminate itself by simply executing only a RET O,P. To do so would 
leave the interface thinking it never got recognized (no data 1/0 Bus Cycle), 
while the IOC thinks the interrupt is over. So on the next instruction 
fetch the interrupt is granted again!! (Assuming the priority situation 
has not changed.) 

So, unless the device ls smart enough to know, by itself, not to interrupt 
after the last exchange, the firmware must shut the thing off. This easy 
enough to do, and could be done by taking advantage of the ability to set 
ICI and IC2 during an 1/0 Bus Cycle (i.e., STA R5 or STA R6, perhaps with 
a special code in A). So the result is a different (and perhaps an extra) 
trai I ing 1/0 Bus Cycle to put the interrupt mode of the peripheral to sleep. 

RETURNING FROM INTERRUPT SERVICE ROUTINES 

The last things done by an interrupt service routine are to: (if 
necessary) shut off the interrupt mode of the interface; restore any saved 
values; and to execute a RET O,P. 

The RET 0 part ads to return to the routine that was interrupted, so that 
its execution wil I continue. The Pacts to pop peripheral address stack and 
adjust the IOC's internal indicator of what priority level of interrupt is 
in progress. By popping the peripheral address stack, PA is set back to 
whatever it was prior to the most recent interrupt. 

DISABLING THE INTERRUPT SYSTEM 

The interrupt system can be "turned off" by a DIR instruction. After this 
instruction is given the IOC wi I I refuse to grant any interrupts whatsoever, 
until the interrupt system is turned back on with the instruction EIR. While 
the IOC won't grant any interrupts, the RET O,P works as usual so that 
interrupt service routines may be safely terminated, even while the interrupt 
system is turned off. 

* It has tc be this way beca1Jse this is the orly wiJy iJ device requesting an interrupt c<Jn dcterMine 
that it has been granted <Jn intcrru::it. rn.:: mere doing of an int•}rrupt poll for that level is not 
enough - a device on the same level but wit~ a higher select code ~iy be the winner. Nor can an 
interface tell if it is the winner by looking at the PA I ines - the only signal us.sble <is a strobe 
for that is given before thoy arc set up. 
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DIRECT MEJY'ORY ACCESS 
Direct Memory Access is a means to exchange entire blocks of data between 

memory end peripherals. A clock is a series of consecutive memory locations. 
Once started, the process is mostly automatic; it is done under control of 
hardware in the IOC, and regulated by the interface. 

The OMA process can transfer dai"a in two ways: single words are transferred 
one at a time, on a cycle-steal basis; strings of words can be transferred 
c~nsecutively in a burst mode. In either instance data is transferred one 
1-1ord at a time. To transfer a \'/Ord, a per.!J?heral signals the IOC, 11hich 
then requests contra I of ·f·he I DA Bus w i ·rh BR. That resu I ts in an externa I 
ha It in a 11 other system activity on ·rtrn Bus for the duration of the peri phera I 's 
request for OMA service. Herein I ies the difference between burst mode and 
cycle-steal operation; in cycle-steal operation the peripheral ceases to 
request service after one word is transferred, and requests service again when 
ready, while in the burst mode the request is held to al low a series of 
high-speed consecutive transfers to occur. 

During a DMA transfer of a block of data the IOC kno11s the next memory 
location involved, 11hether input or output, which select code, (and possibly) 
1<1hether or not the transfer of the entire block is complete. This information 
is in registers in the IOC, which are set up by the firmware before the 
peripheral is told to begine OM.A. activity. 

Actual transfers are initiated at the request of the interface. To 
request a OMA transfer a device grounds the OMA Request Ii ne (OMAR). Si nee 
there is only one channel of OMA hardware, and one OMA Request I ine, only 
one per-ipheral at a time may use DMA. A si·ruation where two or more devices 
compete for the OMA channel must be resolved by the firmware, and it is 
absolutely forbidden for two or more devices to ground OMAR at the same time. 
(A data request for DMA is not I i ke an interrupt request; there is 'lO 

priority scheme, and no means for the hardwc:ire to select, identify and notify 
an interface as the winner of a race for DMA service.) Furthermore, a device 
must not begin requesting OMA transfers on its own; i ·f· must wait unt i I 
i nstrucfod to do so by tho f i rmvrn re. 

The OMA process is a I together i ndoperderrr of the operaT 1 on of standard 
-1/0 and of the interrupt system, and except for thefi· of the IDA Bus for 
memory cycles, does not interfere with them in any way. 

ENABLING AND DISABLING THE OMA MODE 

OMA transfers as described above arc rnferred to as the DMA Mode. The 
Dr.:!A i,1odc con be di sab I ed ·h-10 ways: by Ll DOR (0 i sab I e Data Request), or by 
a PCM (Pulse Count Mode - described later). A DOR causes the IOC i"o simply 
ignore OMAR; no more, no I ess. The instruct ion OMA <DMA Mode) causes the 
IOC to resume OMA Mode opcrution; DMJ\ cancels DOR, and vice versa. OMA also 
cancels PCM, and vice vor-sa. Also, DDf~ ce:1ncels PCM, and vice versa. 

Also, the IOC turns on c:is if it has just been given a DOR. DOR (along 
1·dth DIR) is useful during system initializa·tion (or possible error recovery) 
routines, l'lhcra it is Ui1S<.ife to allow any system activity to proceed until 
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rf!:" DIRECT MEJV[)RY ACCESS 
ENABLING AND DISABLING THE OMA MODE (CONT.) 

the system is properly initialized (or restarted). 

REGISTER SET-UP 

There are several registers that must be set up prior to the onset of OMA 
activity. · These are shown below: 

Name Address Meaning 

OMA PA (=13e) OMA Peripheral Address 

OM AMA (=14e) OMA Memory Address (and direction 
for 15-bit addressing) 

OMAC (=159) OMA Count 

OMAD ------ OMA Direction (for 16-bit addressing) 

The four least significant bits of DMAPA specify the select code which is 
to be the peripheral side of the OMA activity. During an 1/0 Bus Cycle given 
in response to a OMA data request, the content of the PAS I ines wil I be determined 
by the four least significant bits of OMAPA, rather than by the PA register. 

OMAC can, if desired, be set to n-1, where n is the number of words to 
be transferred. During each transfer the count in DMAC is decremented. During 
the last transfer the IOC automatically generates signals which the interface 
can use to recognize the last transfer. In the case of a transfer of unknown 
size, DMAC should be set to a very large count, to thwart the automatic 
termination mechanism. In such cases it is up to the interface to identHy 
the last transfer. 

DMAMA is set to the address of the first word in the block to be 
transferred. This is the lowest numbered address; after each transfer DMAMA 
is automatically incremented by the IOC. For 15-bit addressing, bit 15 of 
DMAMA specifies input or output (relative to the processor); a zero specifies 
input and a one specifies output. With 16-bit addressing a separate one-bit 
register CDMAD) exists to specify the direction of the transfer; DMAD is 
controlled by its own set and clear instructions, and is not addressable. 

a--tA INITIATION 

Once the control registers are set up, a "start OMA" command is given to 
the interface through standard programmed 1/0. The "start DMA 11 command is 
an output 1/0 Bus Cycle with a particular combination of ICI, IC2, (and 
perhaps) a particular bit pattern in the transmitted word. The patterns 
themselves are subject to agreement between the firmware designer and the 
interface designer. Sophisticated peripherals using OMA in both directions 
wil I have two start commands, one for input and one for output. It's also 
possible that other information could be encoded in the start command (block 
size, for instance). 
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DIRECT MWORY ACCESS (CONT I ) 

DATA REQUEST AND TRANSFER 

The interface exerts OMAR low whenever it is ready to exchange a word 
of data. When OMAR goes low the IOC requests control of the IDA Bus. \1hen 
granted the Bus, the IOC initiates an 1/0 Bus Cycle with the PA I ines control led 
by OMA Peripheral Address, and does a memory cycle. (The order of these two 
operations depends upon the dir€ction of the transfer.) 

Next the IOC increments OMA Memory Address and decrements OMA Count. 

OMA. TERMINATION 

Both ·the 15-b it and 16-b it addressing processors emp I oy an automatic DMA 
termination indicator that involves IC2. The 15-bit version of the IOC 
contains an additional mechanism involving a signal cal led CTM. Automatic 
termination is usab I e on I y when the b I ock size is known in advance and is 
based on the count in OMAC going negative. 

Reca I I that at the start of the operation DMAC is set to n-1, \'1here n is 
the size of the transfer in words. During the transfer of the nth word, 
i·he IOC wi 11 signal the interface by temporarily exerting IC2 high during 
the 1/0 Bus Cycle for that exchange. The interface can detect this and 
cease OMA operations. 

The other means of automatic term i na·t· ion wou Id be detection by the inter­
f ace of a Count Minus signal (CTM). CTM is generated by the 15-bit version 
of the IOC; it means that the count in the least significant 15 bits of DMAC 
has gone negative. CTM is a steady-state signal, given as soon as, and as 
long as, the count in DMAC is negative. \'/hi le CTM is generated by the IOC, 
it proved unsatisfactory and it is not utilized in the configuration employed 
in the present 15-bii" hybrid micro-processor. That is, CTM never leaves 
the IOC. 

For OMA transferes of unknown block size, the interface determines when 
·the transfer is complete, and flags or interrupts the processor. 

THE PULSE COUNT MODE 

The Pulse Count Mode is a means of using the OMA hard\oJare to acknowledge, 
but do nothing about, some number of OMA requests. The Pulse Count Mode is 
initiated by a PCM, and resembles the OMA Mode, but without the memory 
cycle. The activities of the registers DMAPA, DMAC, DMAMA, and OMAD remain 
as described for OMA Mode operation. The only difference is that no data 
is exchanged with memory; no memory cycle is given. CThe ICC even requests 
the IDA Bus, but when granted it, releases it without doing the memory cycle.) 

A dummy 1/0 Bus Cycle is given, and DMAC decremented. Also, the automatic 
termination mechanism sti I I functions; in fact, that is the object of the 
entire operation. The Pulse Count Mode is intended for applications I ike 
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c DIRECT f'EM)RY ACCESS 
THE PULSE COUNT MODE (CONT.) 

the fol lowing: Suppose it were desired to move a tape cassette a known number 
of files. The firmware puts the appropriate number into DMAC, gives PCM, 
and instructs the cassette to begine moving. The cassette would give a OMA 
Request each time it encounters a file header. In this way the OMA hardware 
and the automatic termination mechanism count the number of files for the 
cassette. PCM cancels OMA and DOR. Both DMA and DOR cancel PCM. 

PLACE AND WITHDRL\W 
THE NOTATION OF A STACK 

A stack is a series of consecutive memory locations. A stack is treated 
as a unit of memory having a single 'depository' into which or from which al I 
information in the stack must pass in a first-in, last-out, order. The depository 
is the 'top of the stack'. A stack that can contain one hundred words of 
information is one hundred words 'deep'. 

Consider a 100 word stack containing one entry. That entry would be 
'on top of the stack' and the remaining 99 words 'below' the top of the 
stack would be 'empty'. Suppose a second entry is made. Then this latest 
entry is on top of the stack, the first entry is just below it, and 98 empty 
words below that. 

Data is removed from a stack in a way that is the reverse of the way it 
is put in: the top of the stack is deleted and the entries below 'move up' 
one location, with the entry formerly one below the top of the stack now 
becoming the new top of the stack. 

Physically, a stack can be implemented in hardware or in firmware. In 
a genuine hardware stack al I the entries actually move from their present 
locations to the next one, and, they al I do it at the same time as a single 
operation. Obviously, this requires a considerable amount of interconnection 
between the locations In the stack. 

A stack that is implemented in firmware is simply a series of consecutive 
memory locations, accessed indirectly through a pointer. Instead of the 
entries in the stack changing their physical locations in the memory during 
additions and deletions, the value of the pointer is incremented or decremented. 

STACK OPERATIONS 

The IOC includes some firmware stack manipulation instructions. Two registers 
are provided as stack pointers: C and D. There are eight place and 
withdraw instructions for putting things into stacks and getting them out. 
Furthermore, the place and withdraw instructions can handle full 16-bit words, 
or pack 8-bit bytes in words of a stack. And last, there are provisions 
for automatic incrementing and decrementing of the stack pointer registers, 
C and D. 

PROCESSOR-34 



FUNCTIONAL DESCRIPTION OF THE IOC 

PLACE AND WITHDRAW 
STACK OPERATIONS (CONT.) 

The mnemonics for the place and withdraw instructions are easy to decipher. 
Al I place instructions begin with P, and all withdraw instructions begin 
with W. The next character is a W or B, for word or byte, respectively. The 
next character is either a C or D, depending upon which stack pointer is 
to be used. There are eight combinations, and each is a legitimate 
instruction. 

A PWO A, I reads as fo I lows: place the entire word of A into the stack 
pointed at by D, and increment the pointer before the operation. The instruction 
WWC B,O is read: Withdraw an entire word from the stack pointed at by C, put 
the word into B, and decrement the stack pointer 0 after the operation. 

The place and withdraw instructions outwardly resemble the memory reference 
instructions of the BPC: a mnemonic fol lowed by an operand that is understood 
as an address, fol lowed by an optional 'behavior modifier'. The range of 
values that the operand may have is restricted, however. The value of the 
operand must be between 0 and 7, inclusive. Thus, the place and withdraw 
instructions can place from, or, wi·f-hdraw into, the first eight registers. 
These are A, B, P, R, and R4 through R7. Therefore, the place and withdraw 
instructions can initiate 1/0 Bus Cycles; they can do 1/0. 

The place and withdraw instructions automatically change the value of the 
stack pointer each ti me the stack is accessed. In the source text an increment r:> 
or decrement is specified by including a ,I or a ,D respectively, after the 
operand. 

Regardless of which of increment or decrement is specified, a place 
instruction wil I do the increment or decrement of the pointer prior to the 
actual place operation. Contrariwise, the withdraw instructions do the 
increment or decrement after actual withdraw operation. The reason for this 
is that it always leaves the stack with the pointer pointing at the new 
'top-of-the-stack', and al lows intermixing of place and withdraw instructions 
without adjustment of the pointer. 

Pl.ACE AND WITHDRAW FOR BYTES 

One of the differences between the 15-bit and 16-bit versions of the 
processor is the way they handle byte opera·f-ions for the place and withdraw 
instructions. Because the stack in memory is composed of words, rather 
than bytes, some means are required to extend the addressing of the pointer 
registers to include designation of bytes within the addressed word. 

In 15-bit processors this is done with an unused bit in the pointer 
registers themselves; they are 16-bit registers while only 15-bits are 
needed to address the memory. Furthermore, the place and withdraw instructions 
do not al low a place or withdraw through C or D indirect. These conditions 
leave the left-most bit (bit 15) free to designate which byte (of the word 
at the top of the stack) is the byte in question. A one in bit 15 designates ·~ 
the left-half of the word at the top of the stack. It is up to the firmware . 
to see that bit 15 is properly set prior to beginning stack operations. 
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PLACE AND WITHDRAW 
PLACE AND WITHDRAW FOR BYTES (CONT.) 

After each place or withdraw bit 15 is automatically toggled to provide 
a left-right-left-right sequence. During an automatic increment to the 
pointer register ( ,I) the address in the lower 15 bits increments during 
the zero-to-one transition of bit 15. Similarly, during an automatic decrement 
of the pointer register ( ,D ) the transition of bit 15 from a one to a zero 
is accompanied by a decrement of the lower 15 bits. 

The incrementing and decrementing schemes just described are only for 
increments and decrements brought about by a , I or , D fo I I owing the operand 
of a Place or Withdraw instruction. Increments or decrements to the pointer 
register with ISZ or DSZ do not automatically toggle bit 15. 

In 16-bit processors left-ri9ht indication of bytes is accomplished with 
a signal cal led BL; there is no unused address bit as in 15-bit addressing. 
BL (Byte Left Not) is in turn control led "JY bit 0 of either the C or D 
registers, as shown in Figure P-12. Sixteen-bit addressing is maintained by 
providing an additional one-jit register for use with each stack pointer 
register. The non-addressable registors are cal led CB (C Block) and DB 
(0 Block). They are designated "block" because, as the most-significant 
bit of the word pointer value, they divide the address space into two halves, 
or "blocks". 

15 

STACK WORD POINTER 

VALUE TO /DA BUS 

IDA (15} - IDA(O) 

C REGISTER 

C {O) = 0 DESIGNATES LEFT HALF 
C {O) = I DESIGNATES RIGHT HALF 

0 

Figure F-12. Sixteen-Bit S7ack Pointer Addressing. 
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PLACE AND WITHDRAW FOR BYTES (CONT.) 

Figure P-12 shows how CB is used with C for place-byte and withdraw-byte 
operations that use the C register as the stack pointer. For such operations 
that use the D register instead, D3 acts as the most-significant bit of the 
address, and bit 0 of D controls BL. 

During the automatic increment or decrement to the pointer register, CB 
and DB function as most-significant 17th bits for their respective registers. 
An advantage of having the bit that designated the byte be the least-significant 
bit is simplification of the process of arithmetic computation upon byte-addresses. 

The CB and DB registers can be set to their initial values by machine­
instructions for setting and clearing each register. For instance, DBU 
(D Block Upper) sets the DB register; CBL (C Block Lower) clears the CB 
register. 

During the execution of a program the current values of CB and DB can be 
obtained by mad i ng the contents of the Dtv!APA Register ( 13a). Wh i I e the four 
least-significant bits are the select code of a OMA-related peripheral, bit 15 
reflects CB and bit 14 reflects DB. A one stands for upper, while a zero 
means lower. See Table P-1: Please note that CB and DB cannot be altered 
by writing into register 13a; such alteration must be done by using the 
machine-instructions mentioned in the previous paragraph. If, for instance, 
an interrupt service rout~ne involves the use of place or withdraw byte 
instructions, the service routine would need to save and later restore the 
initial values of whichever block-pointers were used (CB & DB), as well as set 
them up for use within the routine i tse If. 

The place-byte instructions cannot be used to place bytes into the 
registers within the BPC, EMC and IOC. The reason for this is that these 
chips do not utilize the BYTE I ine of the IDA Bus during references to their 
internal registers. 

The BYTE I ine is~ignal supplied by the IOC for use by any interested 
memory entity. The BYTE I ine indicates that whatever is being transferred 
to or from memory is a byte (8 bits) and that bit 15 of the address (for 15-bit 
processors) or BL (for 16-bit processors) indicates right or left half. During 
a write memory cycle it is up to the memory to merge the byte in question with 
its companion byte in the addressed word. 

In the case of a withdraw-byte the memory can supply the ful I 16-bit 
word (that is, ignore the BYTE I ine). The IOC wi I I extract the proper byte 
from the full word and store it as the right-half of the referenced register; 
the left-half of the referenced register is cleared. In the case of a place­
byte, however, the IOC copies the entire referenced register into an internal 
working register (W), and outputs its right-half as either the upper of lower 
byte (according to bit 15 of the address) in a fu 11 16-b it word. The fu II 
word is transmitted to the memory, and the "other" byte is al I zeros. Thus, 
in this case the memory must utilize the BYTE I ine. 
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PLACE AND WITHDRAW FOR BYTES (CONT.) 

The consequence of the above is that any byte-oriented stacks to be 
managed using the place instructions must not include registers in any of the 
BPC, EMC, or IOC; that is, C and D must not assume any value between 0 and 
37e inclusive for a place-byte instruction. 

NJTE 

___fu} anomaly has been discovered in the operation of the IOC. If, while 
BYTE is low in conjunction with a memory cycle which is in progress, a 
Bus Request occurrs, then BYTE may pulse high for 10-40 nsec at the 
beginning of each 02, for the duration of that memory cycle. The 
severity of the glitch is related to the inherent speed of the chip, 
and to the exact timing relationship between 01 and 02. There doesn't 
appear to be any way to avoid the glitch, and therefore it maybe 
necessary for the designer to design around it. 

INITIALIZATION OF TURN-ON 
There is a s i gna I ca I I ed POP which is generated by the power supp I y. I ts 

function is to prevent the ch~ from running except when power supply conditions 
are adequate. Chips can use POP to initialize certain internal conditions 
upon turn-on. The IOC does this. After turn-on the interrupt and OMA 
systems are left in the disabled state. The contents of the internal 
registers are random. 

In the 15-bit version POP is held low by the JOwer supply until al I 
voltages have stabi I ized. Then POP is pulled high at the beginning of a 02. 

In the 16-bit version POP synchronizer circuit was added to each chip. 
The intent is to free POP from synchronous phasing restrictions. The only 
requirement is that POP transition sharply to avoid threshold ambiguities in 
the various synchronizers. Unfortunatly however, some trouble has been 
experienced with this scheme. At least one designer has claimed flatly That 
the new scheme does not work, and that the old synchronous-with-~2 rule 
must sti I I be observed. 
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The Extended Math Chip CEMC) provides 15 instructions. Eleven of these ~ 
operate on BCD-coded three-word mantissa data. Two operate on blocks of data 
of from I to 16 words. One is a binary multiply and one clears the Decimal 
Carry CDC) register. 

Unless specified otherwise, the contents of the registers A, B, SE and 
DC are not changed by the execution of any of the EMC's instructions. 

The EMC communicates with other chips along the IDA Bus in ways similar 
to how the IOC communicates via the Bus. 

OOTATION 
A number of notational devices are employed in describing the operation 

of the EMC. 

The symbols< ••.• > denote a reference to the actual contents of the 
named location. For instance: 

<A> + <HOOK> + A 

represents the instruction ADA HOOK. 

A
0

_
3 

and 80 _
3 

denote the four least siqnif icant bit-positions of the A 
and 8 registers, respectively. Similarly, A4 _ 1 ~ denotes the 12 most-signif­
icant bit-positions of the A register. And by fhe previous convention, 
<AQ_

3
> represents the bit pattern contained in the four least-significant 

bit-positions of A. 

ARI is the label of a four-word arithmetic register located in R/W 
memory, locations (I )77770 8 through (I )77773 8 • The assemb Jer (ASMA) pre­
defines the symbol ARI as address 77770 8 (for 15-bit assemblies), or as 
address 1777708 (for 16-bit assemblies).* 

AR2 is the label of a four-word arithmetic accumulator register located 
within the EMC, and occupying register addresses 200 through 238 • ASMA 
pre-defines the symbol AR2 as address 20a. 

SE is the label for the four-bit shift-extend register, located within 
the EMC. Although SE is addressable, and can by read from, and stored into, 
its primary use is as internal intermediate storage during those EMC instructions 
that read something from, or put something into, A

0
_

3
• ASMA pre-defines SE 

as 240. 

DC is the mnemonic for the one-bit decimal-carry register located within 
the EMC. DC is set by the carry output of the decimal adder. Sometimes, in 
the schematic i I lustrations of what the EMC instructions do, \'le show DC as 

;,5:.~A is the DOS-RTE asserr.tilor for CPD Processor. AS'..'.A is a 2100-series-compu!er program, ·,;ri !ten 
in H-P Assembly Language. 
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being part of the actual computation, as wel I as being a repository for 
overflow. In such cases the initial value of DC affects the result. However, 
DC wil I usually be zero at the beginning of such an instruction. The 
firmware sees to that by various means. 

DC does not have a register address. Instead, it is the object of tho 
BPC instructions SOS and SOC (Skip if Decimal Carry Set and Skip if Decimal 
Carry Clear), and the EMC instruction CDC (Clear Decimal Carry). 

Ill\TA FOWLAT 
The EMC can perform operations on twelve-digit, BCD-encoded, floating­

point numbers. Such numbers occupy four words of memory, and the vurious 
parts of a number are put into specific portions of the four words, as shown 
in Figure P-13. The twelve mantissa digits are denoted by 0 1 through 0 12 • 

01 is the most-significant digit·, and D1 2 is the !oust-significant digit. 
It is assumed that there is a decimal point between D1 and 02 • 

ADDRESS 15 14113112 111101918 716 514 3121 I 0 

M Es Two's COMPLEMENT EXPONENT EMPTY Ms 

M +I D1 D2 D3 D4 

M+2 D5 D6 D7 D9 

M+3 Dg D10 D11 012 

Figure P-13. Floating-Point Data Format. 

Es and Ms each represent positive and negative (signs) by zero and one, 
respectively. 

Those unfamiliar with two's complement ari7hmetic, and possibly the 
general procedures of firm1-1are-irnplernented arithmetic, vii 11 find a modest 
explanation in the next section: A Beginner's Look at Calculator Arithmetic. 
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This survey of arithmetic techniques is offered as an introduction for """ 
those not familiar with them. It doesn't cover the entire subject, nor is 1 
it always rigorous. Methods of implementing arithmetic differ widely, and 
tho best we can do is tip our hats to some fundamentals, and to some general 
appro<Jches. We w i 11, however, be ab 1 e to exp I a in certain hard\'Jare features 
of the BPC and EMC that arc related to arithmetic, as l'lel I as 1·1hy certain 
instructions arc fashionec as they are. 

NUMERICAL REPRESENTATIONS 
If someone were to ask you JJck Benny's age, you would immedi~tely answer, 

"l•lhy, thirty-nine, of course."* You probably wouldn't- say: 

a. one-oh-oh-8nc-one-onc 

b. oh-oh-one-one, ono-oh-oh-one 

c. ox-ex-ox-eye-ex 

As humans, wo have developed a "natural" method of representing numbers 
by using combinations of ten symbols, and we cal I it the decimal system. It 
works fine f~r calculations done mentally, wif"h pcnci I and paper or other 
computing aids, and for the internal goings-on of t~e ferocious and many­
toothed monster, the mechanical adding machine. Unfortunately, the decimal 
system is not directly imolcmontable inside calculators or computers. 

BINARY 

You are no doubt fdmi I iar with binary and octal, and know that there are 
conversion processes for converting numbers expressed in a given base to any 
other base. The natural appeal of binary for computing mechanisms is irro­
sistiJ le, because its two digits one and ~ero so nicely mat-ch existing 
tect1nology, and because it does not require complex circuitry to implement. 

Tabl~ f)-3. 

COMPARISON OF DEC/MAL, BINARY, AND OCTAL 

DECIMAL BINARY OCTAL DECIMAL BINARY OCTAL 

0 0 0 6 110 6 
I I I 7 I II 7 
2 10 2 8 1000 10 
3 II 3 9 100/ I I 
4 100 4 10 1010 12 
5 IOI 5 II 1011 13 

Tt1(• :n~df ,!J·.-:-.~ ~·~r1·1'l j~-, 11'/~ t'""(' it; I~.=~ ;-1+·r1·-·,-. ·,,1ii; dl...;i•1 r- '"',,1cl tt1· t1:::i1.~ ·,JiJ·;··rr·=-·-.~ tl' ha:·1c; tr1i·-, 
•'"'dr-{JI;_-_. ,;n ,-,O'l'(;Cfl•' wtF) ·.-.,!) ~!__l__:i li)l~)C)()i') y~·-_1r~-, 1-;l·l. 
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r NUrvtR I CAL REPRESE~ITATI ONS 
BINARY (CONT.) 

Binary is an arabic number system* (as is decimal), producing carries 
during addition, and al lowing a binary point for writing fractional parts 
of a number. In fact, penci I and paper arithmetic can be done on binary 
numbers using exactly the same general procedures as for decimal numbers -­
simply use binary addition and mu I tip I ication tables. 

Sti 11, there is always a fly in the ointment. It's not I ikely that the 
customer wil I be wi I ling to key in his data usin9 binary. This necessitates 
conversion; a distasteful process to many. What's more, many fractions 
that can be represented exactly in decimal cannot be represented exactly in 
binary (e.g., .1 10 =.0001100011 .... 2). [Lest you assume that there is 
something wrong with binary, the same thing happens in decimal: 
1/7 = .1428571428571 .... ] 

For these and other reasons, representing numbers directly in binary 
in HP calculators is usually I imited to cases where it is easy to do so, few 
arithme7ic computations other than addition and subtraction are required, 
and to where the numbers involved are apt to be integers. 

BINARY-CODED DECIMAL 

The customer's numbers do get encoded, but in our case, into binary­
coded decimal (BCD). Not only that, but the elements of the resulting 
code are arranged in a floating-point format. BCD is the fami I iar scheme 
of using four-bit binary codes in place of the decimal digits. Thus a 
12-digit integer can be represented by 48 bits. In addition, the use of 
floating-point conventions adds sign information, and greatly enhances 
the maximum and minimum sizes of the numbers that can be encoded. 

THE BCD DIGITS 

0 0000 5 0101 

I 0001 6 0110 
2 0010 7 0111 
3 0011 8 IOOO 

4 0100 9 1001 

/~n arabi,: numtJer system is one in v.hich i1 n.1mber is exprP~:.s.::>C 35 tht· •;um of ~ult iples of successive 
integer <iowers of a number n (crllled the ra:lixl, using n <Jigits; 0, ... , n-1: 

x = ••• d 7 n2 
• d 1 n1 1 d 0 n° + .d_ 1/n + d_

2
/n 2 ••• 

~rdrjix ;)r_1int 

There i.Jrc ulher s:::hemes for representing nu.,,bers, ScJc:h c1s !ht< (abomin,:ble) ror-.an nc:'T.eral svst.:'111. 
Multipl ic<Jtion is reportedly very difficult in that sy<;tern. 
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NUMERICAL REPRESENT AT IONS 
BINARY-CODED DECIMAL (CONT.) 

ADDRESS 15 14 I 13 l 12 11l10 J 9 J a 1J 6 5 I 4 3I2J1 

M I I I I I I I I 0 I 0 0 0 0 0 

M+I 00 II 0101 IOOO 011/ 

M+2 0010 0001 1001 0000 

M+3 0000 0000 0000 0000 

Figure P-14 . The Internal Floating Point Representation of 
. 003587219 ( = 3.587219 x 10- 3 ). 

0 

0 

While OCD does al low exact representations of the original things the 
customer keys in (unless he is in the habit of keying in fractions I ike 1/7), 
BCD gives rise to certain drawbacks. First, BCD is wasteful of bits. Each 
four-bit combination can encode 16 symbols, while only 10 of these are ever 
used. The net result is that it takes more bits to encode numbers in BCD 
than it does to represent them directly in binary. (You could even have ~ 
floating-point binary numbers if you wanted to.) The second thing is that 
BCD is indeed just a code, and not in itself an arabic numbering system. 
In general, you cannot add two BCD integers, bit-by-bit, and expect the 
result to be the correct (or even another) BCD number. 

It takes a special gear works to handle BCD numbers. Done in firmware 
alone, such a gear works would be slow and cumbersome. The EMC supplies 
some useful operations on portions of BCD floating-point numbers. This 
trims the gear works in size, and speeds it up by quite a bit. 

BINARY ARITHMETIC 
Both the BPC and EMC have binary arithmetic capabilities. The BPC has 

binary add and complement instructions, while the EMC has a binary multiply 
instruction. 

BINARY COMPLEMENTS 

The BPC provides instructions for doing two kinds of complements: 
two's complements with TCA and TCB, and one's complements with CMA and CMB. 

The one's complement of a binary number is its bit-by-bit complement. 
Another way to express this is to say that the number is subtracted from 
al I one's, or if the number has n digits, from 2n-1. 
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BINARY ARITH'1ETIC 
BINARY COMPL8'1ENTS (CONT.) 

II I 
-IOI < 

0 I 0 ~ IS I 1S COMPLEMENT OF) 

1111111 
- 0101011 < 

1010100 ~IS l1S COMPLEMENT OF) 

With the CPD processor, one's complements are not used in arithmetic, 
but do find use in logical operations. 

The two's complement of an n-bit binary number can be found in two ways: 
(f ), by adding one to the one's complement; or (2), by subtracting the 
number from 2n. 

II II II 
- IOIOI I 

010100 

+ I 

010101 

1000000 

10101 I 
01010 I 

The CPD processor does use two's complements in binary arithmetic. The 
notion of a two's complement does two things: first, it provides a compact 
and useful method of representing negative numbers*; second, it removes the 
need for a subtraction gear works in the hardware. 

The use of the (signed) two's complement form to represent negative 
numbers has additional advantages: it eliminates the frequent need to 
recomplement an answer after a summation between numbers with different signs; 
and it automatically generates the proper sign in the answer (assuming no 
overf I ow). 

These are significant advantages, not to be taken lightly. If you wil I, 
take a moment and consider algegraic BCD summations: 

The need to re-complement occurs often in BCD arithmetic as performed by 
the CPD processor. In those cases numbers are always represented in 
uncomplemented form, regardless of sign. Numbers are complemented only 
to al low summations between numbers whose signs are different. After such 
a summation it is necessary to complement the answer if no "overflow" 
occurred. If overflow did occur, then everything is alright, and the 
"overflow" is ignored. Also, special attention must be given to the sign 
of the result. 

Thero are other comJact meth:>ds of representing neg<ltive numbers. One such is sign-m<ignitude. 
There a single bit, say the most sigr.ificant one, rcpr.:isen!s the sign, while the least si;inificc1nt 
bi ts a I ways represent to <ibso I ute v<i I ue of the number (its magn i tudel. By and I arge it is not <1s 
handy as two's complement representation. It requires either a hardware subtraction gear works, 
or extended hand! ing in firmware, as descrihed for OCO in a f<>w paragr<iphs. 
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BHlARY ARITH"lETIC 
BINARY COMPLEMENTS (CONT.) 

As you read the next section, describing two's complement arithmetic, 
don 1 t associated the "overflow" of the previous paragraph with binary 
overflow as discussed for two 1 s complement arithmetic. They are not the 
same thing. The "overflow" for BCD arithmetic is simply a carry-out from 
the left-most digit, which results in DC (Decimal Carry) being set. The 
corresponding thing in our binary arithmetic is the setting of the E 
(Extend) register whenever there is a carry-out from bit 15. Binary over­
flow (the setting of OV) is a much more sophisticated condition. 

TWO'S CQ\'\PLEMENT SUMMATION 

Signed two's complement arithmetic in 16 bits I imits the value of a 
single precision (one word) binary number to the range +2 15-1 (\5 ones) 
through -2 15 (a one fol lowed by 15 zeros). 

(+I) = 000000000000000 I 

~2) =0000000000000010 
(+3) = 0000000000000011 

(+32767) = 0 I I I I I I I I I I I I I I I 
(±0) = 0000000000000000 

(-I) = I 11 I I 11 111 I 111 I I 

(-2) = I 11 I I 11 I I I I I I I I 0 
(-3) = I I I I I I I I I I I I I I 0 I 

(-32767) - 100000000000000 I 

(-32768) = 1000000000000000 

In the above examples, the left-most bit serves as a sign bit, as wel I 
as a part of a complemented (and thus negative) number. Any number whose 
bit 15 is zero is a positive number and any number whose bit 15 is one is 
a negative number. The range I imitation mentioned in the preceeding paragraph 
arise from there being only 15 bits <0-14) available to represent magnitudes 
of individual numbers. 

Even though signed two's complement representation is often thought of 
as 15 bits of true-form or complement-form number, preceeded by a sign bit, 
the actual hardware mechanism that does the signed summations knows very 
I ittle about signs or the two's complement format; it does a straight 
16-bit binary add, with a carry out from bit 15 info the Extend (E) register. 
The only special property is the detection of overflow (results out of 
range); but even this only monitors events during summation, without 
changing them. 

TWO'S COMPLEMENT SUBTRACTION 

The rationale behind complement arithmetic is that the difference 
between two numbers can be found by the addition of one number to the 
complement of the other. 
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BU'U\RY ARITHMETIC 
TWO'S COMPLEMENT SUBTRACTION (CONT.) 

The 16-bit two's complement of a 15-bit binary integer is: 

ii = 216 - n 

ii = 

----16ZEROS------­
O I 
"'~'00000 00 00000000 

11-<--15 BIT n --> 

1 I REST OF ANSWER 

In a sense, TI is the additive inverse of n: 

(n + n) mod 216 = (n + (2 16 - n)) mod 216 = 216 mod 216 = 0 

* * * * * * 
The fact that two's comp I ement ar i thmei"i c automat i ca 11 y produces the 

correct sign for the result ls an important advantage, although it isn't 
at al I obvious why i·r should be that way. The fol lowing demonstrations shows 
that correct answers are obtained. 

Case I: X + Y (X > 0, y > 0) 

15 14 0 

0 15 BITS OF X 

+ 0 15 BITS OF Y 

0 15 BITS OF X+Y I 
Both X and Y are positive. vie assume that X and Y are such 

that their sum can be represented in 15 bits. Thus there is 
no possible carry out of bit 14, and the two bit 15's can only 
add up to zero, making the result positive. 

Case II: X + Y (X < 0, Y < 0) 

For this case we note that -X-Y = -(X+Y)<O which we complement 
and represent as 216 - (X+Y). Once more we assume that X+Y does 
not exceed 15 bits. 
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BINARY ARITHMETIC 
TWO'S COMPLEMENT SUBTRACTION (CONT.) 

Case II: (cont.) 

01 
i.."&1oo ooo 00000000 oo 
l t I 15 BITS OF x + y I 
0 ii 215 - (X+Y) I 
t:SIGN BIT 

NO 17th BIT, E NOT SET 

aecause of the borrowing, the sign bit is a I, and the answer 
is negative as we expect. We note also that a I preceeding 
215 - (X+Y) is the same as 216 - (X+Y), which is the required 
answer. 

Case III: X - Y (XY < 0) 

X-Y = X + Y = 216 + X - Y 

We can think of the terms + X-Y as some n = IX-Yj which we add 
or subtract to 216 , depending upon whether X > Y, or Y > X, 
respectively. (If X = Y, we can do either, since n = 0). 

For X > Y: 

10000000000000000 

+ ~l I UP TO 15 BITS OF n I 
I 0 I SAME n AS ABOVE 

i"-= SIGN BIT 

\_17th BIT SETS E 

Here X > Y and n > 0, son is added. Since each of the 15 bits 
of n is added to a zero bit, there can be no carries and the 16th 
bit (the sign) must be zero, also. This certainly agrees with 
X-Y > 0 when X > Y. 
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BIW\RY ARITHMETIC 
TWO'S COMPLEMENT SUBTRACTION (CONT.) 

Case III: (cont.) 

But If X < Y: 

O I rSAME AS 10 FOLLOWED BY 14 ZEROS, OR 215 

'i.-l&'ooo o oo o o o oo 0000 

_ ll 1 UP TO 15 BITS OF n I 

I 0 I I 215 - n t:= SIGN BIT 
NO 17th BIT, E NOT SET 

Because of the borrowing, the sign bit is a I. Thus the answer 
is negative, and this agrees wi+h X - Y < 0 when X < Y. Finally, 
we should note that a I preceeding 215 

- n is the same as 216 
- n, 

which is indeed the answer we set out to get. 

By now you might be prepared to make the fol lowing objection: "The 
demonstration would be satifying, except that the hardware does not magically 
produce n, and then proceed to add it to, or subtract it from, 216 ; and, 
if it could do that, we probably wouldn't need two's complement arithmetic!" 

True. The demonstration rests on the behavior of "equivalent" entities 
during "equivalent" operations. It is val id in that it does show that we 
don't ever get the wrong answer (assuming no binary overflow). But it doesn't 
give us any idea as to why it "really" works when the hardware adds up 
the bits. 

We shal I indulge in some quick examples that show how it Peally works. 

First, consider the table of 5-bit two's complement numbers, on the 
next page. 

Consider 7-8. When the binary for 7 is added to the complement of 8, 
the result is the "biggest thing" that can fit into 5 bits, but there is no 
carry-out from the left-most bit. Looking at the table you can see that 
there is no carry-out for 7-n where 16 > n > 7. Likewise, if I < n < 7, 
n's complement is always big enough to generate a carry-out of the left-most 
bit. 
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BIW\RY ARITHrflIC 
TWO'S CCMPLEMENT SUBTRACTION (CONT.) 

0 = 00000 8 = 01000 -I = 11111 -9 = IOI I I 

I = 00001 9 = 01001 -2 = 11110 -10 = 10110 

2 = 00010 10 = 01010 -3 = 11101 -11 = IOIOI 

3 = 00011 11 = 01011 -4 = 11100 -12 = 10100 

4 = 00100 12 = 01100 -5 = 11011 -13 = 10011 

5 = 00 IO I 13 = 01101 -6 = 11010 -14 = 10010 

6 = 00110 14 = 01110 -7 = 11001 -15 = 10001 

7 = 00111 15 = 01111 -8 = 11000 -16 = 10000 

It is the carry-out of the left-most bit that is the vital clue. Consider 
16-bit X and Y: 

15 14 0 x -Y = o 1.--o-, ---------.1 
OR VICE_/ 

VERSA ~I D2 

The sign bit (bit 15) wil I be a I (-) unless a carry is produced by the 
addition of the two bit 14 1s (d 1 and d2 >. In fact, there wi 11 be a carry 
from bit 15 if and only if there is a carry from bit 14. 

Suppose X > Y. Why must there be a carry? We are adding and get: 

x + 216 - y ?. 216 
-.-- ~ 

i/ 
THESE ARE THE TWO BIT PATTERNS. 

Think, if you wish, of the adder doing X increments to the bit pattern 
for 216 

- Y. Since X > Y, the effect of the -Y is entirely removed, 
causing a carry-out from bit 15. So we get carries out of both bits 14 
and 15. This causes the sign to be positive, and sets I into the E register.* 

Suppose Y > X. Then Y would absorb al I of X before the sum reaches 216 • 

E is gonoral ly ignored during binary ari thmotlc unless a multi-precision operation is in progress. 
See tho Section after noxt. 
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B IW\RY ARITl-METI C 
TWO'S COMPLEMENT SUBTRACTION (CONT.) 

Thus there is no carry out of bit 14, and therefore none out of bit 15. The 
sign is negative and E does not get set. 

TWO'S COMPLEMENT OVERFLOW 

The conventions of signed two's complement arithmetic provide a useful 
method of detecting the generation of a result which is too large in magnitude 
to be represented in 16-bit signed two's complement form. We cal I this the 
overflow condition, and it occurs whenever there is a carry-out from bit 14, 
or, a carry-out from bit 15, but not if both carry-outs occur. The occurrence 
of the overflow condition sets the OV register to a one. 

That the exclusive or of the carry-outs from bits 14 and 15 corresponds 
to the overflow condition is not at al I obvious. There are three cases: 

Case I: X + Y 

Both numbers are positive. There can be no carry from bit 15. 
There is an overflow if and only If there Is a carry from bit 14 
(X and Y too big for a 15 bit sum). 

15 ~ 0 

0 I UP TO 15 BITS OF x I 
+ 0 I UP TO 15 BITS OF y I 

Case II: C-X) + (-Y) 

15 14 0 ...... 1 --,5-B_IT_S_O_F ---x ----.I 
+ .._I _1_5 _B_IT_S _o_F _-_Y __ I 

Both numbers are negative. 
Overflow results if and only 
Frankly, this is a tough one 
at the bits. So consider: 

There is always a carry from bit 15. 
if there is no carry from bit 14. 
to properly explain by simply looking 

-X + (-Y) = 216 - X + 216 - Y = 217 
- (X + Y) 

The maximum allowable size for X + Y without causing overflow is 
215

• This is shown by the three subtractions on the next page. 
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BINARY ARIT!-VvlEfIC 
TWO'S COMPLEMENT OVERFLOW (CONT.) 

O I 14 0 
'k1-&'ooo oo ooo oo 00000 o = 211 

- ii I 000000000000000 =2 15= X+Y 

0 I I 

IGNORE THESE ~ L SIGN BIT 

0 I I 
"'iQ.~000000000000000 = 217 

- J, ~O I - - - - - - - - - - - - - - = X + Y < 215 

0 I I 

IGNORE THESE J L SIGN BIT 

The two subtractions above show that if CX + Y) is in range, 
a carry out resu It from bit 14 during the actua I computation of 
-X-Y.* For the only way the sign bit in the answer could wind up 
a one is with a carry into bit 15. Likewise, it implies a carry 
out from bit 15, since both original bit 15 1 s were ones to begin 
with. Both carries occurred, so there was no overflow. 

Now suppose X + Y > 215 • Here we get overflow. 

0 I I 
"ki&~oooo 0000 o 000000 = 217 

I - - - - - - - - - - - - - - - = X + Y > 2 /5 

0 '\._AT LEAST ONE I SOMEPLACE 

't_SIGN BIT 

Because X + Y > 215 , extra borrowing on the 217 is necessary. 
This guarantees a zero in the sign bit of the result of the actual 
computation for -X-Y. Si nee the resu It i ng s i ~Jn bit is a zero, there 
could not have been a carry out of bit 14. Thus we are left with 
a solitary carry out of bit 15, (both original bit 15's were I's, 
remember), and overflows results. 

we need to •"',!dbl ish the I in~ between th" (pcsitivn) X ~ Y of our cl<>rwinstratiun, ;ind ti--.e (nPq.itivc) ~ 

-X-Y of thP ,;taft>d cirntJl .. m, This is ''":"y• for if tt11• liriit on X t Y is 2 15 , 1h•,n: ) 
X 1 Y = 7 15 ... -('•'. +- Y) -:, 1 ~ _,.. -\-Y -:' 15 • Tt1i'.;, 1•r1;_:~, .,'.-; nc_) S·Jt·prise, a::; -7 1

!, i:. the .. -J1,~:r:t;1-.Jic.~ll"~' 
..,.':'"l_Cj\ lest :11;r.1: .... r- r-·::: 1 r-c~=:.-cnt,Jt1J1_• ·,,ith 1~.,-:iir ~.::-;~-?d L·• )•.-, c,~ ..... ,r·l~r1(~nt nutation. 
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BINARY ARITMTIC 
TI>JO'S COMPLEMENT OVERFLOW (CONT.) 

Case III: X-Y 

The numbers have opposite signs. There can be a carry from bit 15 
if and only if there is a carry from bit 14. That is, either both 
carries are present, or neither is present. The exclusive or condition 
can never be met. 

0 15 BITS OF X 

+ 15 BITS OF Y 

f1.JLTI-PRECISION BINARY ARITHMETIC 
The main reason that the E register exists is to al low for the possibi I ity 

of summations between binary numbers that are each two or more words in 
length. See Figure P-15. 

2nd 
ADDITION + 

1st 
ADDITION + 

I 

LEFT HALVES 
I 
I 

I A/B I 
It ti 
I TWO WORD I I 

RIGHT HALVES 

A/B 

ANSWER 

Figure P-15. Mufti-Word Binary Addition Using the Extend Register. 
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MJLTl-PRECISION BINARY ARITHMETIC (CONT I) 

The scheme shown in Figure P-15 must be implemented in finnware; the 
ADA and ADB instructions do not automatically add in E. That must be done 
after testing with SES or SEC. 

In multi-precision arithmetic, OV is ignored during al I but the last 
addition, while E is checked after al I but the last addition. 

Complement arithmetic works perfectly well with multi-precision schemes. 
(Remember, ADA and ADB are ful I 16-bit adds.) Extra work is required to 
complement multi-word numbers, however, and cannot be done with just repeated 
applications of TCA or TCB. See Figure P-16. 

START AT FAR RIGHT 

< < 
~' __ _____,, · · · · · I 1st NON-ZERO I 
l CMA/B l l TCA/B l 

,,.._.._ -------.,, - -----., 
EACH REMAINING 
WORD, IF ANY, GETS 

A ONE~ COMPLEMENI 

THE FIRST NON­
ZERO WORD GETS 
A TWO'S COMPLE -
MENT. 

· I ALL ZEROS I 
l NO CHANGE l 
I ALL ZEROS I 
EACH FAR RIGHT 
ALL-ZERO WORD, 

IF ANY, IS NOT 
CHANGED. 

Figure P-16. Two's Complements of Multi-Word Binary Numbers. 

Of course, it could also be done by simply doing a one's complement on 
each word, and then adding one to the result (using the multi-precision add). 

ARITHMETIC SHIFTS 
It sometimes happens that it is necessary to pack two's complement 

numbers of I imited magnitude into fields within a word. An example is the 
exponent in the floating-point BCD format. 

Assume that a copy of the exponent word is in A. Then an arithmetic 
right shift of six (AAR 6) wl I I make the exponent in a proper 16-blt two's 
complement number. 

PROCESSOR-53 



A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC 

ARITH'UIC SHIFfS (CONT I) 

ADDRESS 15 14l13J12 11J10J9la 1 ls s I 4 3121 I 0 

M Es Two's COMPLEMENT EXPONENT EMPTY Ms 

M +I D1 D2 D3 D4 

M+2 D5 D5 D7 Da 

M+3 D9 010 o,, 012 

Figure P-17. Floating-Point Data Format. 

Suppose the field labeled "empty" contained a 5-bit two's complement 
number. It could be made ready for use by an SAL 10 fol lowed by an AAR I l. 

The basis for this is that AAR and ABR propagate the sign while they 
shift the number. Consider the numbers ±3 in 5 bits, 10 bits, and 16 bits. 

-3 +3 

I I 101~~~~~~~00011 
I I I I I I I l 0 I < ) 0 0 0 0 00 0 0 I I 

11 l 11 1111 I I I I I 01~00000000000000 I I 

Starting with A containing: 

SI 101----------

An AAR I I would produce: 

r PROPAGATED SIGN 

Arithmetic right shifts are provided for both the A and B registers. 
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BINARY MJLTIPLY 
The EMC provides a hardware implemented binary multiply for signed 

two's complement integers, using Booth's algorithm. See the description of 
the MPY instruction in the EMC MACHINE INSTRUCTIONS section for a complete 
definition. 

Some explanatory material concerning the principles of Booth's algorithm 
is located in the Appendix.* 

BCD ARITiffJIC 
AR2 frequently functions as an accumulator for EMC operations on BCD 

numbers, much 1 ike the A and B registers are accumulators for the instructions 
ADA and ADB. 

For the sake of completeness we wi I I review some of the characteristics 
of the four-word packing formats for BCD numbers (see Figure P-17). The 
exponent and mantissa signs <Es and Ms, respectively) are encoded as 0/1 
for positive and negative, respectively. Al I of the digits D1 through D12 
are encoded in BCD, while the exJonent is a 10-bit signed two's complement 
number. A dee i ma I point is assumed to be between D1 and D2 • D 1 is the most 
significant digit, and D12 is the least significant digit. 

Except for intermediate results within the individual arithmetic operations, ~ 
D1 wil I never be zero unless the entire number is zero. Sometimes, after ) 
each ind iv i dua I arithmetic operation ·tre answer needs to be nomaZized; that 
is, the digits of the answer shifted towards D1 unti I D1 is no longer zero. 
The exponent then needs to be adjusted to reflect the change. 

The "empty" field of bits 1-5 in the exponent word is for possible 
future use in systems that al low different types of variable besides the 
ful I-precision real number which the present floating-point format accommodates. 
In such systems the "empty" field could contain a "type" indentifier, or 
some other information. 

An important thing to keep in mind when examining BCD arithmetic, as 
implemented with the CPD processor, is that mantissas are represented in 
a sign-magnitude format. Ten's complements are used in the computational 
processes, but only as an intermediate step. Furthermore, it is done in 
such a way that the automatic generation of the correct sign of a sum does 
not occur. There is also the frequent need to re-complement an answer. 
Al I in al I, BCD arithmetic is not as simple as two's complement binary 
arithmetic . 

• For another explanation of Boot~'s Algorithm, refer to this book: 
Digital Computer Design Fundamentals 
Chu, Yaohan 
McGraw-Hi I I <1962) 
TK7888.3.C5 
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r Ben ARITHfv'ff 1 c < caNT. ) 
DECIMAL CARRY 

The one bit Decimal Carry register (DC), located on the EMC, serves a 
function similar to that of OV for binary addition, although it is set by 
a rule similar to that for E. 

CARRY ~ 
o, D2 D3 1--- ---l 0JOI 011 I 012 I t 

1--- I D10 I I 012 I ~ 
ARI 8 AR2 

+ DI 02 D3 Oil 

~I o, 02 D3 1--- ---1 D10 I D11 I D12 I < AR2 

DC is set to a one or zero, depending upon the occurrence or absense of 
a carry from the addition of the two 01 1 s, respectively. In this sense DC 
resembles E. But since the mantissas are represented in sign-magnitude 
form (with the sign in the exponent word rather than part of what gets added), 
DC also represents overflow for 12-digit mantissa additions. 

Notice also that DC is part of the addition, in the 012 position. 
Frankly, this feature is seldom taken advantage of, if ever. It has potential 
use with multiple precision floating point arithmetic, and perhaps it wi I I 
come in handy in some unknown future application. 

There are three instructions that have to do only with DC. These are 
SOS (Skip if Decimal Carry Set) and SOC (Skip if Decimal Carry Clear) in the 
BPC instruction set, and CDC (Clear Decimal Carry) in the EMC instruction set. 

TEN'S COMPLEMENT FOR BCD 

The addition of the ten's complement of a number is used in I ieu of a 
subtraction mechanism. If the signs of two numbers to be summed are different, 
one of the numbers is complemented (it doesn't really matter which one), 
before the addition. 

The ten's complement of a 12-digit decimal integer X is: 

x = 10 12 
- x 

The ten's complement of a floating point number has the same exponent 
as the original number. The mantissa m of a floating point number fits 
the requirement: 

0 < m < 10 (assuming the decimal point after 01) 
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BCD ARITHMEf IC 
TEN'S COMPLEMENT FOR BCD (CONT.) 

Therefore the complerrent of the mantissa alone is: 

m = 10-m 

Accordingly, al 1 that is necessary to complement a floating point 
number is to complement the mantissa. It is Immaterial wbether the mantissa 
is treated as a 12-digit integer, or as a number between zero and ten; the 
same sequence of digits results. 

Incidentally, here is a handy rule for finding the ten's complement of 
a decimal number: Ignore any right-most zero's--they stay the same. Subtract 
the right-most non-zero digit from ten, and those to the left of that, from 
nine. 

As with two's complement, ten's complements are additive inverses, 
modulo 10 12

: 

X + X = (X + ( 10 12 -X)) mod 10 12 = 10 12 mod 10 12 = O 

The EMC provides two instructions for doing ten's complements: CMX 
for ARI and CMY for AR2. The only difference between these two instructions 
is that each operates upon a different "AR" register. ~/hat they do is 
replace each BCD digit, In the mantissa of the referenced register, with 
its appropriate digit of the complement. 

Case I: 

Case II: 

1012 -- ~ ~ ~ ~ "·~ ·~ ·~ lo 00000000 
x x x x 00000000 

0 9-x 9-x 9-x 10-xOOOOOOOO 
I t t 

DC D1 D12 

1012 =~{~{~~{{ ~ ~ 
000000 x x x 

1o o o 
x 00 

09999999-x 9-x 9-x 10-x 00 
j1 t 

DC o1 D12 
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(""' BCD ARITHMETIC 
TEN'S COMPLEMENT FOR BCD (CONT.) 

CMX and CMY leave the exponent word completely alone. This means that 
the sign of the mantissa, and the entire exponent are left unchanged in a 
ten's comPfement by CMX and CMY. 

If you think about the above examples you' I I see that we don't complement 
the actual floating point number in a Case II situation. For instance 
3.561 x 10-4 complements to 6.439 x 10-4 if the mantissa is normalized. 
But sou Id the mantissa not be normalized, (and it frequently isn't when 
numbers are initially complemented - due to decimal point 'non-alignment'), 
the answer can be different. For instance, .003561 x 10- 1 complements to 
9.96439 x 10- 1 when the mantissa is actually 003561. Now .003561 x 10- 1 

= 3.561 x 10-4
, but 9.96439 x 10- 1 misses 6.439 x 10-4 by quite a ways. 

Its puzzling at first glance, but it works. A good approach to BCD 
arithmetic is to treat the mantissa as an integer greater than or equal 
to zero, but less than 10 12

• After al I, if two numbers have equal exponents, 
it is strictly the sequence of digits in the two mantissas that determine 
the sequence of digits of the answer for any of the arithmetic operations. 
The exponent of the answer is determined by separate calculations Involving 
only the exponents.* 

It's making the exponents the same that causes the frequent "de­r normalizing" of previously normalized floating-point numbers: 

63,278 = 6.3278 E4 = 6.3278 E4 
5 3 I = 5. 31 E 2 = + .05 3 I E 4 

6.3809 E4 = 63,809 

If you are wi I I ing to consider the mantissas by themselves, then its 
best to think of them as integers, as previously suggested, and pretend the 
decimal point is after 0 12. Normalized mantissas are then represented by 
big integers: a one through nine fol lowed by eleven other digits. A non­
normal mantissa is simply a smaller integer by the extent it has zeros 
on the I eft. In two's complement representation the I ef t-most zeros 
complement into ones; here they complement into nines. 

There is a case III that we should mention: 

* 

Case III: 

1012 = I 000000000000 
0 

ctt-1000000000000 
04oc~ 

Overflow and underflow in the resulting mCJntissa cdn illso cifh·::t !he ccmruted expon.,nt. 
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OCD ARintUIC 
TEN'S COMPLEMENT FOR BCD (CONT.) 

If a mantissa cf zero is complemented, the entire mantissa remains zero, 
and DC is not set, as you might expect. DC is always set to zero by CMX 
and CMY. 

TEN'S COMPLEMENT ARITHMETIC DEMONSTRATION 

Given n, subtract x, or, add -x: S = n-x (I) 
We assume only that the signs of n and x differ. The sign of S wil I be the 
same as n if lnl > !xi, and the same as~ if !xi > In!. 

Complement x: x = 1ok - x 

Then: 
\, 

S¢=(n +x) mod 1ok = (n + 1ok- x) mod 1ok, or 

IS I ¢= ( In I - Ix I + I 0 k) mod I 0 k 

~late: <Thing) mod 10"- is a .iiJy h knote th.:·"- rir,~1t-r:ios1" digit-, "i iln integer·. 
We resort to thi', notationa~ tl"''.iu, because ind ·;tr·ict 1T1ilthe11:il! ~<di '":'n•;e 
s I- n + 10 - x. (How can 1t, if'> really equal•, n - x? There 1s ,J difference 
of 1ok!) --

(2) 

( 3) 

( 4) 

Line 4 is not as bad as it looks. First, it says that the k-digit sum 
is always formed as positive, regardles of its actual sign. Also, n and 
x are treated as positive, regardless of their signs. This is reminiscent 
of la - bl = I lal - lbl I. Finally, a word about the k-digit restriction. 
It works because: a) to subtract, the firmware changes the sign of the 
subtrahend end proceeds as in addition; b) The compiement mechanism is 
only used when addition involves opposing signs. Now, two k-digit things 
wi I I have at most a k-digit difference. 

I Assume lnl - Ix! = d > 0 

Then S~ (I Ok+ d) mod 1ok 

Now I oK + d = ( ) I 000000 + k zero's 

+ l .. d .. +max of k digits 

Overflow sets OC=l(:---71 .. d .. + k + digits total 

Accordingly, we drop the overflow by simply noting that DC is 
set, and then ignoring (or perhaps clearing) it. 

Thus, if overflow r·esults, the resulting answer is the correct 
sequence of digits, and since lnl > lxl, the answer should be assigned 
the sign of n. 
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("' BCD ARIT!flETI C 
TEN'S COMPLEMENT ARITHMETIC DEMONSTRATION (CONT.) 

II Assume lnl - lxl = d < 0 (note that Isl = !di) 

Then S ¢= ([Ok - d) mod [Ok 

But 1ok - d =Ci, thus s *=Ci, but ISi = jdj, not !Cfl 

Note that 1ok - d already is at most k digits due to borrowing 
when doing the subtraction: 

099 
'k~~OOOO 0 -E--K ZER0

1

S 
-E-d--7 <E--MAX OF K DIGITS 

O<E--d~ 

This guarantees that DC ends up a zero. 

Thus, if the result in DC is zero, the answer needs to be re-complemented, 
and since Jn! < lxl, the answer should be assigned the sign of x. 

~' In the event we had choosen to complement n instead of x, the process 
would sti 11 work. 

S = n - x 

And S ~ CIOk - lnl +\xi> mod IOk 

But 1ok- \nl + Jxl = IOk - <lnl - lxl> and we have the same 
lnl - lxl as before. 

* * * * * * * * * 

Here is the rule for doing decimal summations with ten's complements: 

If the signs of the numbers are the same, simply add them and leave 
the signs alone. 
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BCD ARITHMETIC 
TEN'S COMPLEMENT ARITHMETIC DEfvtONSTRATION (CONT.) 

If the signs are different, complement one of the numbers, then add. 
If the result is accompanied by overflow, drop the overflow digit CDC), 
If overflow does not accompany the result, complement the answer. Ensure 
that the result is assigned the sign of the addend having the larger absolute 
value. 

FLOATING-AJINT S~TIONS 
Specific procedures for implementing floating-point addition and subtraction 

vary widely. One thing that is fairly standard in this, however: To 
subtract, the software simply changes the sign of the subtrahend and proceeds 
as in addition. The addition routine is capable of hand I ing al I possibi I ities 
of signs and relative absolute values on two addends. 

Another common practice is firmware checking of each addend for equality 
fo zero. 1 f either of the addends is zero, then the other addend is promp-t-1 y 
taken as the answer. 

OFFSETS 

Addition can proceed only when the exponents of the two addends ure the 
same. If they are not the same to start out with, they are made the same by 
shifting one of the mantissas an amount equal to the exponent difference. 

This difference is easily found by subtracting the (algebraically) smaller 
exponent from the larger one. If the difference is eleven or less, it is 
poss i b I e to offset the mantissa of the number with the sma 11 er exponent. 

X.XXXXXXXXXXX E6 + Y.YYYYYYYYYYY E4 

/SAVED IN A 
X. X X X X X X X X X X X ..£ E6 

+ . 0 Y Y Y Y Y Y Y Y Y Y Y Y E6 

z. z z z z z z z z z z z T E6 
'--THESE TWO DIGITS ARE LOST 

DURING THE SHIFTING PROCESS, 
EXCEPT FOR THE LEFT-MOST ONE, 
WHICH IS SAVED IN A0_3 FOR 
ROUND-OFF PURPOSES. 

\</hen offsetting mantissas for addition, the mantissa with the (algebraically) 
largor exponent is left alone, and mantissa with the (lagebraical ly) smaller 
exponent is the one that is right-shifted. 
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((', FLOATING-POI NT SLM'1AT IONS 
OFFSETS (CONT.) 

As can be seen from the i I lustration, a shift of twelve or more digits 
would result in a mantissa of al I zeros. The firmware detects the condition 
of an exponent difference greater than eleven, and simply takes the number 
with the larger exponent as the answer. 

The EMC provides an n-many mantissa right-shift instruction for each of 
ARI and AR2. These are MRX and MRY, respectively. 

For each instruction, the number of digits to be shifted is assumed to 
be in -~he B register. Zero's are shifted into D1.J<·, and al I but the last of 
the D12 1s is lost; it is saved in A, for round-off after the addition. Also, 
DC is set to zero in anticipation of the forthcoming addition activity. 

MANTISSA ADDITION 

The instruction FXA is used to add the mantissas after any necesscry 
offset has been previously induced. FXA knows nothing of signs, complements, 
or exponents; it is strictly a positive-integer-addition process: 

<ARI >= o1 D2 D3- - - - - - - - D12 

< AR2 >= o1 D2 D3 - - - - - - - - D12 

+ <DC>~ INITIAL VALUE OF DC 

(OVERFLOW)-?" Do" o, D2 D3 - - - - - - - - o,2 ~ AR2 

t._DC (FINAL VALUE OF DC) 

The reason for including DC itself in the addition of the D12 1s if that 
it would come in handy if FXA were used to add mantissas having more than 
12 digits. In this way DC could function like the E register of the BPC. 

If the signs of the original numbers were different, an overflow CDC=I) 
means that the resulting AR2 need not be complemented, and DC is to be 
ignored. Contriwise, a resulting DC of 0 means the resulting AR2 must be 
complemented, after which DC can be ignored. 

* MRX and r.tRY do not necessarily shift in a zero on the first shif-1: on the first shift <A0_ 3> is 
what is shifted in, Subsequent shifts do shift in zero. During offsets in preparation for 
floating-point addition, the firmware ensurus that <Ac-3> = 0, however. 
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FLOATING-FDINT SUfYML\TIONS 
fv1ANTISSA ADDITION (CONT.) 

There are sti I I some loose ends. Suppose the signs were the same, and 
DC ended up a I? In such a case DC represents a digit of I to the left of 
D1 ; AR2 plus DC constitute a 13 digits answer. What is required now is a 
one-digit right shift of AR2, shifting a I into D1. MRY Is the basis for 
this operation. Such a shift must also be accompanied by an increment (and 
test for overflow) of the AR2 exponent. 

The situation described in the previous paragraph cannot occur if the 
original numbers had opposing signs. Why not?? 

The case of opposing signs has its own rub, however. Read on. 

NORil\LIZAT ION 
The raw result of an arithmetic operation might not be a floating-point 

number that fits the standard form. It might have a leading DC needing to 
be Incorporated into the number, as we have seen. Another possible deviation 
is a resulting D1 of zero (and no overflow). There could also be several 
zero-digits as left-most digits of the mantissa. 

Such a situation cal Is for the NRM instruction. It shifts AR2 left 
unti I J 1 is non-zero. The number of shifts is left as a binary number in 
the B register. The maximum number of shifts NRM wi I I perform is 12. If 
NRM must do all 12 shifts, AR2 must have been zero. This is indicated by 
count of 12 In B, and well as by result of I in DC. For all other shift­
counts, NRM leaves DC=O. 

The f I rmware must comp I ete the norma I i zat ion process as to I lows: 
The resu It Ing number of sh I tts ( in B) Is subtracted from the AR2 exponent, 
and the result tested for underflow. 

RJUNDING 
The EMC does not have an instruction to automatically round a result - It 

is the firmware's responsibility to determine when to round, and there are 
various approi'lches to this problem. However, once the decision is made to 
round AR2 up (one couni- in D 1 2 ) , the easiest way to do this is to set B to 
000001 8 , and execute an MWA. 

This is in every respect the same as setting ARI to one, and then doing 
an FXA, except that it is easier. \'/hy not s imp I y increment the word 
containing D12? CD 1 2 Is on the far right of that word.) Such a move would 
not generate BCD carries if they were needed. If for instance, the mantissa 
being rounded up is al I nines, the carry would need to propagate al I the 
way up to DC. 
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RJUNDING (CONT I) 

After rounding, AR2 must be checked for overflow, and if necessary, 
right-shifted with the exponent incremented and tested for overflow. 

FLOATING-POINT MULTIPLICATION 
This section wil I illustrate the function of the FMP instruction (fast 

multiply) as it ls used in floating-point multipl icatlons. We shal I pursue 
this through the use of an example, assuming four-digit integers. 

We can get by nicely on this because the exponents have only to do with 
the exponent of the prel lminary answer (that is, possibly non-normal answer); 
the sequence of mantissa digits in the answer is determined solely by the 
digit-sequences of the multiplier and multiplicand. Therefore, we can 
treat the mantissas as integers during the actual multiply process. 

The sign of the product is, of course, determined in advance by inspection 
of the signs of the original factors. 

The fact that our ii lustration uses only four digits In no way invalidates 
the explanation; it merely reduces the amount of symbol ism by eighty-nine 
percent. 

Let's assume that the two mantissas we seek to multiply are: 

Multlpl lcand =A s·c D 

Multipl ler = W X Y Z 

One symbolic way to indicate how this multiplication is done is: 

A 8 c D 

(x) w x y z 

( I) Zov z, Z2 Z3 Z4 = Z(ABCD) x IOO 

(2) yov v, Y2 Y3 Y4 0 - Y{ABCD) xl0 1 -

{3) Xov x, X2 X3 X4 0 0 = X{ABCD) xro2 

(4) + W0v W1 w2 w3 w4 0 0 0 = W(ABCD) x 103 

[-EIGHT DIGIT NUMBER-] 
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FLOATING-ffiINT MJLTIPLICATION (CONT I) 

Consider how Z0 v Z1 Z2 Z3 ~' is found (this is where FMP is used). It 
is really ABCO added to itself Z-times. Similarly, Y0 v Y1 Y2 Y3 Y4 is A3CD 
added to itself Y-times. Prior to adding I ine I to I ine 2, we shiH I ine I 
one digit to the right (including Z0 v-it goes into the new Z1>. This al lows 
I ine 2 to have ten times the weight of I ine I. The resulting summation is 
shifted once to the right and added to I ine 3, and so on. These shifts are 
ii lustrated t:y the right-most zeros in I ines 2, 3 and 4. 

Novi lets take a moment and look at how FMP generates a partial product. 
Consider ZCABCD). 1\R2 is cleared and ARI loaded with AGCO. Bo-3 contains 
Z. Now FMP is given. ARI and AR7 are added together Z-times, producing 
Z(AGCD) in AR2. The digit Z0 v ends up in Ao-3· It can be c:inything from a 
zero to an eight.* Notice thc:it the mantissa right-shifts MRX and MRY each 
shift <Ao_ 3> into 01. So the right-shifting of the partial product also 
takes care of retaining its overflow digit. 

Now we are ready to find Y0 v Y1 Y2 Y3 Y4. Generally speakinsJ, this is 
not found separately and then added to Z0 v Z1 Z2 Z3. Instead, AGCO is merely 
added to Z0 v Z1 Z2 Z3 Y-times. This both increases speed and saves memory 
over saving al 1 partial products before summation, with no undue loss of 
accuracy. As before, the overflow digit Y0 v is left in Ao-3. And so it 
goes, AR2 is shifted right one more time, making Y0 v the left-most digit 
of the partial products as summed to date. Bo-3 is made to contain X, and 
FMP is given a third time. 

We can make a number of minor points in conclusion. First, at each step 
of partial product summation we throw away a significant digit due to the 
shift. This can't be helped. In 9cneral, the product of two 12 digits 
numbers has 24 digits of precision, but we are I imited to 12, so we throv1 
the bottom 12 digits away.* 

These digits can be inspected, however. The MRY used to shift AR2 puts 
the lost digit into A0 _ 3. This orovides an easy way for a rounding mechanism 
to check on those digits as they tossed out. Indeed, the rounding routine 
vii 11 need to save the last digit thrown out, for use in rounding in the 
event -!-he last use of FMF' produces no overflow digit. 

Lastly, notice that we can put WXYZ into Bat the very start of the process, 
and simply shift Bright with and SBR 4 in-between uses of FMP. After al I, 
FMP uses only< Bo-3 >as the number of times to add ARI to AR2. 

\•iric:n addinci AB::D to AGCJ, th" worst can·,. !:,,:t c,irc cccur· is a I prc:·e:cding i:l rc>rninirg foc;r digits 
of ~urn. f-cJr cech subscr;ucrd ad·:j of t1.B'._,l' tu tth' s·Jrr, th1.::_• left-m,o;-)~)t :igit can only increoise b·l ·2n,-·. 
5L..:t tr; f"1ultir;I/ ~ nu~b.-}r ~J'11 ni·'e {the .,..c~r-c;t ':)>·~·/, VO'.l ~n!·,1 t)d,j it tc:, itself 't.1 ith Picht ad~it"on'~. 

~ien,:c ,, l"f,_:Yi~u~ of eight for thf· overfl::i·,.. ·:~ir;i•. --

,\;·1 t:rror ,_n1alysls of thi~. dlqorithrn disc·~·,·-, .. ,, thdt jroppin 1J th+~c;r- diqits caL;s~~':, tth-· <lns·w·er, on tnt• 
i:lVt:•rd:l", 10 be slightly '.,m<JI ler thun i 1 ',hc>1Jld be. Poundi""J intr-,-,,Juccs a sir"i ldr error in th'' -
other dir .. ction. 
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FLOATING-FDINT BCD DIVISION 
So much for the easy part. The other arithmetic operations could be 

explained v1ithout tco much ado, and their pertinent EMC instructions 
read I ly rationalized in terms of the desired activity. Not only is the 
floating-point division algorithrr messier and inherently less obvious, but 
we sha I I have to resort i·o examining a section of code to get a c I ear 
idea of how FDV is actually employed. ~his is necessary because FDV does 
not, percentage-wise, do as much for division as, say, FMP does for 
multiply ( +author's opinion). 

THE DIVISION ALGORITl-M 

Somebody out there is probably muttering: "Wait a minute, why can't they 
just r·everse the multiplication process .... ?" The answer is "significant 
digits". Suppose a 12-digit DVD had been found by multiplying Oby DVR, 
each of which were 12-digit numbers (then O = DVD/DVR). The multiplication 
would have produced a 24-digit DVD; but we throw the least-significant 12 
digits away. In order to reverse the multi pl !cation process we would have 
to have those missing digits. But divide only ever ~as 12-digit numbers 
to work with. So a different procedure is needed. We take the coward's 
way out, and choose one that is essentially the same as the penci I and 
paper method for long division. 

As in multiplication, the sign and exponent of the intermediate answer 
can be determined in advance. 

Suppose we are going to divide: 

{I) 

{2) 

{3) 
{4) 

THEN 

480/15 = 32 
{32). {15) = 480 

{32). {15) = {30+2) ·(15) = {30) ·{15) + (2) ·(15) 
= (3)·(150)+ (2)·(15) 

We want to do this thing as a series of subtractions. However, we 
resist the folly of subtracting 15 from 480 thirty-two times! Instead, 
we look at lir;e (4), and note that there are three 150's in 480. Perhaps 
if we subtracted them out and then found out how many 15's were in the 
difference ••..• Yes! 

If you did that, you'd find that indeed, 150 can be subtracted three 
times, leaving a remainder of 30, and that 15 can be subtracted from 30 
two times. Now, since subtracting 150 three times is the same as subtracting 
15 thirty times (after al I, 150 x 3 = 15 x 30), there must be (30 + 2) !S's 
in 480. So the answer is 32. 

The division algorithm we are going to develop uses just a scheme. 
Fol lowing are some points to keep in mind. 
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FLOATING-POINT BCD DIVISION 
THE DIVISION ALGORITl-M (CONT.) 

The digit sequence of the quotient is determined solely by the digit 
sequences of the mantissas of the dividend and the divisor - the mantissas 
are always normalized to begin with, and the exponents do not enter into 
the actual division activity. Thus our above example ii lustrates (in a 
three digit machine) the division of any number whose mantissa Is 4.80 by 
any other number whose mantissa is I .50: 

4.80 x 103 I 1.5 x I0- 2 = 3.20 x 10 5 

Just as for the previous operations we have examined, the easiest way is 
to forget about the alleged decimal point between D1 and D2 , and consider 
the mantissas to be 12-digit Integers. 

The divisor will be in ARI (memory outside the EMC) and the dividend in 
AR2 (accumulator registers with the EMC). The basic activity is to subtract 
ARI from AR2 until AR2 gets smaller than ARI. The number of subtractions 
required for that to occur is the next digit of the quotient. Then AR2 is 
shifted left and the process is repeated unti I either a zero remainder occurs, 
or sufficient digits have been calculated, whichever occurs first. The 
quotient digits are merged, one at a time, into a complete quotient held 
in R/W memory. This is the firmware's responsibi I ity, and it alone determines 
where in R/W the quotient is kept. 

* 

Now: 

I) D1 of the quotient might be zero (suppose ARI is greater than 
the original AR2). In that case we accept the zero and shift 
as described below. 

2) The number of subtractions will always be nine or fewer. This 
is because 01 of ARI can't be zero. You may want to think about 
that a minute and convince yourself. 

3) If Cl) occurs, or, after successful appl !cation of (2), we need 
to do something that corresponds to changing the 150 to 15 and 
getting ready to subtract it from 30 (the remainder). 

Now for various reasons we don't want to fool around with the 
150. Instead, we shift the 30 left and make It 300. We get the 
same result, however. 

4) If Cl) occurs for D1 of the quotient, it can't also occur for 
02. The basic reason for this is that 0 1 of AR2 can't Initially 
be zero. After 01, "zero" quotient-digits can occur for several 
digits in a row, however. But because 00--- can't occur, it is 
always sufficient to compute 13 digits (assuming no extra digit 
for rounding - and counting a leading zero as one of the 13).* 

Suppose the leading quotient digit were zero. Then you might consider computing 14 digits, so that 
after normalization (when there '.'lould only be 13 digits left) you would be able to round to 12 
digits based on the 13th digit. That sample division routine given shortly does not do this. 
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FLOATING-FUINf BCD DIVISION 
THE DIVISION ALGORITl-M (CONT.) 

5) Consider a (()-like situation for either D1 or some other 
digit of the quotient. The necessary shift (via MLY) moves 
the left-most digit of AR2 into A. We cannot ignore this digit 
when subtracting ARI. Indeed, now we must deal with a 13-digit 
dividend; A fol lowed by AR2. Here is some bad news; FDV knows 
nothing of 13 digit arithmetic!! The software's use of FDV wll I 
have to make up the difference. 

lliE FDV INSTRUCTION 
FDV is used to accomplish the equivalent of automatically repeated sub­

traction of ARI from AR2, unti I AR2 becomes smaller than ARI. It does this 
by adding ARI to AR2 unti I overflow occurs. This assumes that AR2 has 
been complemented prior to the execution of FDV. 

Your author feels that it makes more sense to describe f loating-polnt 
division In terms of subtractions, rather than additions to a complement. 
We shal I designate subtractions that are really complement-additions as 
"subtractions". 

FDV returns the number of successful "subtractions" as a binary number 
<same as BCD) in Bo-3i 84-15 are returned as zero. 

In general, after an application of FDV it is necessary to patch-up AR2 
before shifting and using FDV again. This is because AR2 retains the result 
of the first unsuccessful "subtraction". What Is done is to de-complement 
AR2 and add ARI back one time, so as to undo the effect of the unsuccessful 
"subtraction". Then AR2 is shifted, and then complemented. ARI remains 
untouched throughout the entire process. 

There is one case where AR2 does not need to be adjusted. This is when 
the result in AR2 is zero. This means that the divisor is contained within 
the dividend exactly an integral number of times. This produces an eventual 
zero remainder (the result in AR2). We say that such an event generates a 
perfect quotient. 

Now, in the event of a perfect quotient the number returned in Bo-3 is 
one count too smal I. (You might have to think about that for a few minutes -
but its true. Normally, overflow is associated with the first unsuccessful 
"subtraction" because the answer should really be negative. But it just 
so happens that the generation of a result of zero - which is basically stil I 
a successful "subtraction" - is accompanied by overflow.) So the loop 
that employs FDV has constantly got to be on the look-out for a perfect 
quotient. This is desirable for another reason. Once a perfect quotient 
has been discovered, It is undesirable to proceed with further division 
activity. 
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™E FDV INSTRUCTION (CONT I) 

Another aspect of FDV to be aware of is the way it returns quotient digits 
into B. Each digit is placed into Bo-3, and B.-1s al"e oZeaPed. This means 
you can't simply shift B left in-between the extraction of four consecutive 
quotient digits, and then store B into the sequence of words used to receive 
the answer. Instead, the sequence of digits has to be Individually stored 
in the answer as they are found; B cannot be used as temporary storage for 
a group of quotient digits.* 

There is one last fly in the ointment. This is the business of the dividend 
frequently being 13 digits; A followed by AR2. Your author knows of only 
one solution to this, and it's a good one, but it will take some explaining. 
Clever things tend to not be obvious. 

A series of FDV's can be used to "subtract" a 12-dlglt ARI from a 13-digit 
A-followed-by-AR2. 

Suppose we have a complemented 13-digit number in A and AR2, as shown below: 

~ 

0 .___I A_R2 ___ __. 

ARI 
+ 
~ 

~ --1 A-R2-------. 

When FDV is given it adds the 12 digits of ARI and the 12 digits of AR2 
together unti I an overflow occurs. CFDV does not set DC, however.) Now if 
FDV were a 13-digit operation the carry from AR2 would be used to increment 
A. Also, there is nothing wrong with the resulting digit sequence in AR2. 
The digits simply "tum-over" and keep going. But after each FDV the soft­
ware has to "increment A and detect when it goes from nine to ten".* When 
the digit in A goes from nine to ten we have 11 real overflow" of the 13 
digit number. 

• 

This drawback would be avoided if FDV simply returned the number of successful "subtractions" to 
B0 _ 3 , leaving B.-1s entirely alone. The designers of the EMC were well aware of this, but faced 
internal constraints, such as chip size, and number of internal staies. These constraints prevented 
the implementation of the more desirable definition • 

That, or equivalent behavior. The exam~le we develop later doesn't physically do exactly what's 
shown above - but what it does do is eq~ivalent to it. 
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A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC 

,.. ll-IE FDV INSTRUCT I ON (CONT I ) 

r"" 

Each use of FDV adds Ar~I and Al~2 (into AR?) until AR2 overflows. When 
that happens we increment A and add aqilin with FDV if A is less than ten - no 
adjustment is made to the digit sequence in AR2 - none is needed. But, the 
digil; sequence of AR2 Y'eflrcts the "subt;r>act-ion" that p11oduces the over>flow. 
The number returned to B fo one less -tl1<zn r:hat. .;R2 ,cind El 0 _ 3 arc out of 
step, so to speak. 

\~hat we want to knol'I is the total number of possible "subtractions" of 
ARI from A-AR2. We get that number by summing the values of< B > + I for 
all uses of FDV, except tho last one, during the 12-from-13-digit "subtractions". 
The resulting digit sequence in AR2, when the 12-from-13-digit-"subtraction" 
is completed, is I ike always, tho result of an overflow, which ln this case 
we don't want. So as before if there is no perfect quotient, AR2 wil I be 
de-complemented and ARI added to it. Then the previous FDV needs to 
contribute or1ly < 8 0 _ 3 >to tho sum of the liltest quotient digit, not< Bo-3 > + I. 

For example, if there were three uses cf rov for a certain quotient 
digit of a 12-from-13-digit "subtract-ion", 1-1e wouid form the (non-perfect) 
quotient digit as: 

Qn - (< 80-3 > +I) + ( < Bo-3 > + I) + < 80-3 > -

Crrn I st USE Cm 2nd USE Grrn FINAL USE 

OF FDV OF FDV OF FDV 

If the same general situation produced a perfect quotient on the nth 
digit, then for the same reasons QS before, we do not count the last 
"subtraction": 

= { < Bo-3 > + I ) 

Cm 1st USE 
OF FDV 

+ { < Bo-3 > + I) 

Grrn 2nd USE 
OF FDV 

+ { < Bo-3 > + I) 

c:;TER FINAL 

OF FDV 
USE 

Somebody is probably wondering what happens if On turns out to be greater 
than nine. It doesn't. [ver. Think in terms of the uncomplemented 13 
digit A-AR2. That number is alwJys less than ten times greater than ARI 
(0 1 of ARI ~ 0, remember). This is left as an exercise for the reader - it's 
not worth pursuing here. 

l\s a matter of implementation, it is tedious ta check if A has beon 
incremented to ten. lfo can always tel I in adv<ince, from each new and 
uncomplemonted value that i::; shifted into A, how many overflows out of AR2 
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A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC 

™E FDV INSTRUCTION (CONT I) 

would be required if we were to increment and test on A. The easiest thing 
to do is to put that number of needed FDV's into A as a count to be either 
incremented or decremented to zero. Then each use of FDV for a 12-from-13 
digit subtraction updates A unti I A is zero. 

In the sample program segment that follows, the value returned to Bo-3 
is always incremented by one immediately after it is returned. The increment 
wil I later be taken out as the quotient digit is stored in its final destination,* 
pI'OVided that it should be taken out. It is easier to always do the 
increment and then test for when to take it out, rather than to test for when 
to put it in. 

SAMPLE DIVISION ROUTINE 

The rule is this: 

I) Always increment the value returned in Bo-3· 

2) First check for multiple FDV's as a part of a 12-from-13-digit 
subtraction. If so, loop immediately, performing no other 
tests or activities. 

3) When a quotient digit has been found, check to see if the quotient 
is now a perfect quotient. If so, exit the division loop 
without removing the last increment. Save the last digit found 
as part of the answer. 

4) If the quotient is not a perfect quotient, decrement the value 
of the last quotient digit found, and save it as part of the 
answer. 

The test for a perfect quotient is simple, although not super-short: 
if AR2 is zero the divisor has subtracted out evenly from the dividend. 

The sample segment shown does not include the testing for and hand I Ing 
of these things: 

I ) signs 
2) division by zero 
3) division into zero 
4) exponents 
5) overflow 
6) rounding 

Al I of these areas are handled by additional code segments not part 
of the division loop proper. 

Finill des·tinatlon here means with respect to the divid" r·outine, and is probably a 1emporary 
l0c<ition, not the final destina1ion called for in Hie U'>t?r 1 s progrdrr. 
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0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
00~8 

0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
OOJ8 
0039 
0040 
0041 
00'+2 
0043 
0044 
00'+5 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
00!:>4 
0055 
OOSt:> 
0057 
00!:>8 
00!:>9 
OOl:>O 

0 

o USEFUL llilUATES 
0 

AR2Ml EQU AR2+1 
AR2M? EQU Ak2+2 
AR2M3 EQU AR?+3 

• 
• 
• 
• 
• 
• 

<=21~) #l AR? MANTTSSA WORU 
<=22~) #2 AR2 MANTISSA WORD 
1=238> #3 AR2 MANTISSA wORO 

o THESE WOROS IN ROM 

Ml OD 
MlD 
ZERO 
PlO 
P4D 
Pl3D 
Pl7B 
P20B 
QWPIV 

DEC -lo 
DEC -1 
OCT 0 
DEC 1 
DEC 4 
DEC 13 
OCT 17 
OCT ~O 

OEF- <.IWI-1 

• 
• 
• 
• 
• 
• 

P[HMANENT STARTING VALUc Of QwPTR 

o THESE WOHOS IN HlAU/WRITE 

QWPTR 
<.>Wl 
QW2 
QW3 
QW4 
DIGCT 
WW OCT 
FDVCT 

0 

ass 1 
BSS l 
~SS l 
BSS l 
SSS l 
BSS l 
BSS l 
BSS l 

• 
• 
• 
• 
• 
• 

QUOTIENT WORD POINTER 
QUOTIENT WOPD #l 
QUOTIENT WORD #?. 
QUOTIENT WORD #3 
QUOTIENT WORD #4 (FOR DIGIT #13> 
DIGIT COUNTER (13 • 1) 
WITHIN WORu DIGIT COUNTER <l - 4) 
FOV RE•APPLICATION COUNTER 

o DIVIDEND ALREADY IN AR2 
o DIVISOR ALREADY IN ARl 
o START OF FUNDAMENTAL DIVISION LOOP 

DIVID LOA UWPIV 
STA LIWPTR 
CMY 

0 

LOE! Pl30 
ST!:t OIGCT 
LUA MlO 

UNXTW ISZ UWPTR 

S~T QUOTl~NT WORU POINT~R TO 
INITIAL VALUE t=OWl-11 

COMPLEMfNT THf. OIVJOENU 
(::+13 UEC> 
INITIALIZE DIGIT COUNT TO 13 
<=-1 DEC> INITIALIZE FUV ~EP COUNT FOR OIGIT #l 

INCR~MENT YUOTIENT wo~u POINlER 
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0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0010 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
0098 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0117 
0118 
0119 
0120 

• 
LOB P4D 
STB WWDCT 

<=•4 DEC> SET THE WITHIN-WORD 
COUNT TO 4 

ONXTD SBL 4 CLEAR B<0-3> 
STB QWPTRtI CLEAR NEXT WORD IN RECIEVING LOCATION 
STA FOVCT STORE NEXT DIGIT FOV REP COUNT 

FDVLP FOV AR2=AR2+ARl UNTIL OVERFLOW 

* 

ADB QWpTRtI MERGE NEW DIGIT WITH REST OF CURRENT ANSWER WORD 
ADB PlO INCREMENT THE NEW DIGIT 
STB QWpTRtI SAVE THIS NEWEST PIECE OF THE ANSWER 

ISZ FDVCT 
JMP FOVLP 

LOA AR2Ml 
IOR AR2M2 
IOR AR2M3 
SZA YESPQ 

INCREMENT FDV REP COUNT, LOOP IF NON-ZERO 
UNFINISHED 12•FROM·l3•0IGIT SUBTRACTION, RE•DO FDV 

noRu ALL 3 WORDS OF THE AR2 MANTISSA 
TOGETHER. CHECK FOR RESULTING ALL 
ZEROS. IF SOt THEN HAVE 
PERFECT QUOTIENT. 

* NO PERFECT QUOTIENT. DIVIDE AGAINt BUT FIRST RESTORE DIVIDEND• 
* SHIFT IT LEFTt ANO THEN FIND NEW FDV REP COUNT. 

* 

CHY 
FXA 
LOB QWPTRtl 
ADB MlD 
STB QWPTRtl 
CMY 

LOA ZERO 
MLY 
ADA MlOO 

OECOMPLEMENT REMAINDER <AR2) 
ADD BACK DIVISOR (ARl) 
GET LAST CALCULATED DIGIT 
UNDO LATEST <ANO UN•NEEDED) INCREMENT 
SAVE THE NOW CORRECT PARTIAL ANSWER 
COMPLEMENT NEW DIVIDEND <AR2> 

CLEAR A SO AS TO NOT SHIFT IN JUNK BELOW 
SHIFT DIVIDEND LEFT 
FIND NEXT FDV REP COUNT 

* THE FDV REP COUNT IN A IS NEGATIVE SO THAT IT CAN BE COUNTED 
* UP TO ZERO. THE ABSOLUTE VALUE OF A IS THE NUMBER OF TIMES 
• FOV WILL BE APPLIED FOR THE QUOTIENT DIGIT BEING FOUND. FOR 
* A 12•DIGIT-FROM•l2•0IGIT•SUBTRACTIONt A=•lt AS ONLY ONE USE 
• OF FDV IS REQUIRED• 
• * THE MLY SHIFTS INTO THE A-REG A DIGIT WHOSE VALUE IS 9•Dl 
o WITH RESPECT TO THE UNCOMPLEMENTED AR2 <PRIOR TO ITS SHIFT>. 
*NOW, 9•01•10 IS SIMPLY ·<Dl+l>• FORGETTING THE MINUS SIGN FOR 
o A MOMENTt THIS SAYS THAT THE A-REG IS ONE COUNT HIGHER THAN 
o THE nREAL" LEFT•MOST DIGIT OF THE DIVIDEND. REMEMBERING THAT 
o A IS INCREMENTED UP TO ZERO, If THE 11 REAL 11 DIGIT IS ZEROt THEN 
* ONE f'DV IS DONE. IF THE "REAL" LEFT•MOST DIGIT IS ONEt THEN AN 
* EXTRA FDV IS DONE. FOR TWOt THREE FDV•St ETCet ETC. 
• 
• 
* BOTTOM-OF•LOOP MAINTENANCE FOLLOWS 
• 

DSZ DIGCT 
JMP *•2 
JMP DONE 
DSZ WWDCT 
JMP ONXTD 
JMP DNXTW 

YESPQ OSZ OlGCT 

DECREMENT TOTAL DIGIT COUNT, DONE IF ZERO 
NOT DONEt DIVIDE SOME MORE 
GO FINISH UP 
DECREMENT WITHIN-WORD DIGIT COUNT 
LOOP FOR NEXT DIGIT WITHIN SAME QUOTIENT WORD 
LOOP FOR NEXT DIGIT IN NEXT QUOTIENT WORD 

PERFECT QUOTIENT BEFORE ALL 13 DIGITS FOUND? 
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0121 JMP YES 
0122 JMP DONE NOt PERFECT QUOTIENT ON DIGIT #13 
0123 0 

0124 SBL 4 
0125 YES DSZ WWOCT SHIFT LATEST DIGITS TO LEFT AS NECESSARY 

r 0126 JMP ·-2 
0127 0 

0128 DONE STB QWPTRtI STORE LAST DIGITS OF QUOTIENT 
0129 LOA QWPIV SET 11 FROM" X-FER ADDRESS 
0130 ADA PlO 
0131 LOB P208 SET "TOn X-FER ADDRESS 
0132 XFR 4 X•FER QUOTIENT TO AR2 
0133 0 

0134 NRM NORMALIZE THE QUOTIENT IF NEEDED 
0135 SZB GO.ON GO ON IF IT WAS ALREADY OKt JOE 
0136 • 
0137 o HERE• THE FIRST DIGIT OF THE QUOTIENT WAS A ZERO. NRM GOT RIO 
0138 0 OF THAT ANO NOW WE PUT THE OLD DIGIT #13 IN AS THE NEW DIGIT #12. 
0139 0 

0140 LOA QW4 GET DIGIT #13 
0141 AND Pl7B RESTRICT IT TO 4 BITS 
0142 o ABOVE INST NEEDED ONLY IF QW4 USED ELSEWHERE FOR OTHER THINGS 
01•3 ADA QW3 PUT IT IN AS NEW DIGIT #12 <OLD DIGIT #12=0> 
0144 STA QW3 RESTORE THIRD WORD OF QUOTIENT 
0145 LOB SET EXPONENT ADJUST FLAG 
0146 • 
0147 • 
0148 • 
0149 • 
0150 • ,.- 0151 • 
0152 • 
0153 GO.ON . . . . . . . . . . . . .. 
0154 • 
0155 • 
0156 • 
0157 • 
0158 • 
0159 • 
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INTRODUCTION TO THE MACHINE INSTRUCTIONS 

r f\KJTATION 

~ 

Assembly languug() machine instructions are three-letter mr10rnonics. 
E<Jch machine instruct ion source statrn1c11 I corresponds to a m.-:ch i ne-operat ion 
in the object program produced by the assembler. Notation lJsod is representing 
source s;-atements is n:plained below: 

lc:ibcl 

m 

n 
( I ow er c<.isc) 

M 
(upper case) 

I 

D 

p 

reg. 0- 7 

reg. 4-7 

... I . .. 

[ J 

0Jtional statement label. Labels must begin with 
an alphabel"ic charCJctcr, period, or certain other 
non-numeric chaructors. Labels may be one through 
five charr.:c-b·r~> in I ength. If present, a I abe I 
must begin in column I. A space terminates a 
I abe I . If a sta i·ement docs not have I abe I , then 
column I must be a blank. 

Merrory location. This can be an octal or decimal 
integer, a symbol used as a label else\·1here, or, 
an expression composed of a combination of these 
combined through+ and - operators. Parentheses 
are not permi~ted in expressions. 

Numerical quantity. A numeric value that is not 
an address, but represents a shif·t· or skip amount. 

Octa I or dee i ma I constant vi hose va I ue is restricted 
to the range: I ~ N ~ 20 8 = 1610 

f\'.:)1.~i .. d I I mis M ·to n I so be c:iny expression, provided 
that ttw villue of t·he expression is within the 
stated range. 

Ind i reci addressing indicator for memory refe ronce 
instruct· ions. A I so indicates an automaf" i c i ncremerrl 
for place and withdraw instructions. 

Decrement ind ica·t·or for p I ace and withdraw 
instructions. 

Indicator used in Return instructions to instruct 
the IOC to pop its peripheral address stack. 

Register location. This can be an octal or decimal 
i ntcger, or an assemb I er-pre-defined symbo I. It rn i ght 
even be an expression. Regardless of what it is, 
i-t- rr:ust h<.ivc a vulue of 0 8 through 7 8 , inclusive. 

Register locution. Same rules as for reg. 0-7 
above, except the value must be 48 - 78 , inclusive. 

The slash indicates the item on either side (but not 
both) may be used c:it this place in the source 
statement. 

Op i· i ona I comments. Comments must cc separated 
by at leasl one space from the material to the 
left of the co~nent. 

Br-c:ickets inclicale ·f-hat the i·tem conlained within 
them is optionul. 
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BPC MACHINE INSTRUCTIONS 

MEfvDRY REFERENCE GROUP 
l•ich of ttH: 1'1 rn1 r>1•wy r•:·fr:rcnc:o in:;tr·ylinn", performs some operation 

:J.1',•··J 1Jr1on the cordt>ril·. of cJ rr·fc:renc.,d m1:rnory loci1tion. Unless the 
r···f··rencc: is lo i1 l11r ii ir>1·1 011 the ~·ase pag(-, i I rnU'~t be on -i-he same current 
'•l'lf' _1·. 1hE inslTtJ 1~ii 0 ,11. :ri•· as::;t~mbler cit:dE'rn1in··" v1hich type of page­
,,.f,.:··-·nu; i:> usc:d, ,_,nd .,,; hr '8/ 1= bit (bii 10) 0f the ins-:-ruction 

r·,.f. ,. : ._.,; lo 1>1ti.-:1 ·ii•: ··r: 1_lr:1,;·:<j i··1 C>it·c, ()-'<of th(;; instruction. 1\ murr.ory 
,-, •··r·._,:1:.:- r:-1'1/ :,.-. ir1dir-.·.i. I;, the :=.oL:r:•· i'd; is indicated with a ,I 
:fi·r· fhe C)~·•:·ciJrriJ. irii is :i:;:;t;rr:il~<J b•1' rncir,in•; bit 15 Of the instruction 

t:1 j _! ., .. J 

I ,J~' r: I lD/\ ri[,IJ comrn(:n t·s 

l.rJdd A from m. r lw i\ ,-,,g i ·:;t<:r i ~; I Odded w i th I he contents of the 
.Hldnoc;•;ed rn~::r'•)r-y locd I inri. 

I o:Jel LDG n: [ , I J 

Lc·;;::j S fn-;r;i r". ih·: u r 0 c;ister is kiJded wi 1'11 the contents of the 
1dr;,-,_.s,:o-2d rr,.:;r:•Jr-y lu_.,ti•)n. 

I iJbu I C[-'t\ r.i [ 'I J comments 

Compare thr' con!L•nl'; of m 1-Jith the corrh::nts of A; skip if unequal. 
ftw two 16-bit word<: dr(: compared bit by bit. If they differ the ncx·t· 
iw;lruction is i r is oxccu l!)d next. 

label (::f 'l~ m [ ,I ] comrm:nts 

'Jirnodre the· c.Jntenl', nf m .-11Tn the content:; of B; skip if unccual. 
Ir"· ~-.·11 IC-t:ii v1onl~ Z.Jrc o~>mpc.ir-ec bit bv bit. If !hey differ the next 
r".ir1._~\ion i'~ ·:;kipped, 0rh .. :n1isc it i~ executPd next. 

AD/\ rn [ ,I] 1:omments 

1\dd the contents of rn to/\. ·111e conlenh of l·hc addressed memory location 
.ire· ddded to those of/\. The binriry sum remains in Awhile the contents of 
rr1 r-·:rriiin unchang(~d. If a carr·y .xcur-. fr-orn tiit l'J the [register is set 
j,, .:: :1.:-, olhendsc:, l h lt?ft unchanged. If <Jn overflm1 occurs the OV 
r··•ii:-t·~:r- is set to done, othcn1ise the :'JV rcqist·er ~s left unchanged. 
it1t nv._:-.rfhv.· condition occurs if there is a c::n-v from either bits 14 or 
11

1, but rut both tcg•;'itr··r. 

ADB m [ ,I J 

I ah(~ I SI/\ m [ , I ] conunc-n ·ts 

Store the contenh ti!/\ in m. The c.onlcnl'._; 11 f !he I\ regi~-;ter arc stored 
into !ht: i.lddresc,cd m<'rinry lncation, ·.-1hosc' previous contents are lost. 
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BPC MACHINE INSTRUCTIONS 

MEJ''ORY REFERFNCE GROUP (CONT I) 

I abel I STB I m[ ,I] comments 

Store the contents of B in m. Tho contents of the B register are stored 
into the addressed memory location, whose previous contents are lost. 

label JSM m [ ,I] comments 

Jump to subroutine. JSM permits jumping to subroutines in either ROM 
or R/\'I memory. The va I ue of the pointer in the return stack register (R) 

is incremented by one and the value of P (the location of the JSM) is stored 
in R,I. Program execution resumes at m. 

label JMP ffi [ 'I J comments 

Jump to m. Program execution continues Llt location m. 

label ISZ I m [ ,I ] I comments 

Increment m; skip if zero. ISZ adds one to the contents of the referenced 
location, and writes the sum into that location. If the sum is zero, the 
next instruction is skipped. ISZ does not alter the co1tents of E and OV. 

label DSZ I m [ ,I ] comments 

Decrement m, skip if zero. DSZ subtracts one from the contents of the 
referenced location, and writes the difference irto that location. If the 
difference is zero, the next instruction is skipped. DSZ does not alter the 
cortents of E and OV. 

label AND 

Logical and of A and m. 
and the result is left in A. 

label IOR 

Inclusive or of A and m. 
and the result is left in A. 

m [ ,I J comments 

The contents of A and m are and'ed, bit by bit, 

rn [ ,I ] comments 

The contents of A and mare or'ed, bit by bit, 
The ir'clusive or is the "ordinary or" operation. 

The fol lowin~ four insi"ructions are not, in the strictest sense, memory 
reference instructions. They are included here for the sake of continuity. 

label RET m [ ,P ] I commcn·ts 

Return. The R register is a pointer into a stack of words in R/W 
memory containing the addresses of previous subroutine cal Is. A read 
R,I occurs. That produces i"he address (P) of the latest JSM that occurred. 
The BPC then jumps to address P+n, and R is decre'Tlented. The value of n 
may range from -32 to 31, inclusive. Tho value of n is encoded into bits 
0 through 5 of the instructions as a 6 bit, two's complement, binary numoer. 
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BPC MACHINE INSTRUCTIONS 

~'tf11RY REFERENCE GRJUP (coNr.) 

The ordinary, everyday garden variety return is RET I. 

If a Pis present, it "pops" the interrupt system. Two things occur 
when this happens: first, the peripheral address stack is popped, and 
second, the interrupt grant network is "decremented". 

The peripheral address stack is a genuine hardware stack, 4 bits wide, 
and three levels deep. On the top of this stack is the current select 
code for 1/0 operations. Select codes are stacked as interrupts occur 
during 1/0 operations - A ~ET 0, Pat the end of an interrupt service 
routine puts the select code of the interrupted device back on the top 
of the stack. 

The interrupt grant network keeps track of which interrupt priority 
level is currently in use. From this it determines whether or not to 
grant an interrupt request. A RET 0, P at the end of an interrupt 
service routine causes the interrupt grant network to change the current 
interrupt priority level to the next lower level (unless it is already at 
the lowest level). 

label I CLA comments 

Clear A. There is no machine-instruction cal led Clear A. The assembler 
turns this mnemonic into an SAR 16 Cshif·t A right 16). This has the effect 
of clearing the A register.* 

label I CLB I comments 

Clear B. There is no machine-inst-ruction cal led Clear B. The assembler 
turns this mnemonic into an SBR 16 (shift Bright 16). This has the effect 
of clearing the B register.* 

label NOP I comments 

Nul I operation. There is no machine-instruction for a no-operation, 
per se. The assembler turns this mnemonic into a LOA A, (the machine­
instruction for which happens to be al I zeros). 

SHIFT-ROTATE GRJUP 
The shift-rotate instructions perform re-arrangements of the bits of 

the A and B registers. Each shift-rotate instruction includes a four-bit 
field in which the shift or rotate amount is encoded. The number to be 
encoded in the f i c Id is represented by n. In the source text n may range 
from I to 16, inclusive. The four-bit field (bits 0 through 3) wi 11 contain 
the binary code for n-1. 

* CIA and CLB arc probably not the best way to acc8mJI ish the desired result. If the program has in 
It <J word that is cill zeros, t'if'r1 it is fas1er to LOA or LDB with that word. 
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BPC MACHINE INSTRUCTIONS 

~ SHIFT-ROTATE GROUP (coNT.) 

label AAR n comments 

Arithmetic right shift of A. The A register is shifted right n places 
with the sign bit (bit 15) ti I I ing al I vacated bit positions; the n+I most 
significant bits become 0.qual t0 the sign bit. 

label ABR n corrments 

Arithmetic right shift of B. The B register is shifted right n places 
with the sign bit (bit 15) fi 11 ing al I vacated bit positions; the n+I most 
significant bits become equal to the sign bit. 

label SAR n comments 

Shift A right. The A register is shifted right n places with al I vacated 
bit positions cleared; then most significant bits become zeros. 

label SBR n comments 

bit 
Shift Bright. The B register is shifted right n places with al I vacated 
positions cleared; the n most significant bits '"1ecome zeros. 

label I SAL I n I comments 

Shift A left. The A 
significant bits become 

label SBL 

Shift 8 left. The 8 
significant hits become 

label RAR 

Rotate A right. The 
rotating into bit I 5. 

label I RBR 

register is shifted left n places; the n least 
zeros. 

n comments 

register is shifted left n places; the n least 
zeros. 

n comments 

A register is rotated right n places, with bit 0 

n comments 

Rotate 8 right. The B register is rotated right n places, with bit 0 
rotating into bit 15. 

ALTER-SKIP GROUP 
The alter-skip instructions each contain a six bit field which al lows 

a relative branch of any of 64 locations. The distance of the branch is 
represented by a displacement, n; n may be within the range of -32 to 31, 
inclusive. 
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BPC MACHINE INSTRUCTIONS 

ALTER-SKIP GROUP (CONT I) 

The arguments for· the ilstructions of t·his group <ire shown as x±n, or, m. 
An a rgurnent of n by i tse I f w i I I genera I I y CLltJ se an error·. I nterna I I y, the 
asscmb I er· subtracts t·he current va I ue of )( from the ar~iurnent as part of the 
evaluation process. So *±n-* is simply !n, and m-K becomes a relative 
displacement rather ~han an actual address. This business of subtracting* 
was done to al I0\·1 symbols and addresses C ihcse are m's> as arguments. Th'Js 
it is possible to write SZA HOOK. Al I that is required is that HOOK be 
within tho al I0\·1ablc skip distance of the instruction. 

Bits 0 -through 5 are coded 1·1ith the value of n (or m-*) as fol lows: if 
the value is positive or zero, bi I 5 is zero, and bits 0 through 4 receive 
the str·aight cinary code for ihc value of n - if the vulue is negative, bit 5 
is a I, <rnd bits 0 through 4 receive a complemented and incremented binary 
code. 

For n or m-* ::: bi !s 5 - 0 meaning: 

-32 100000 i f skip, next instruction is *-32 
7 111001 if skip, next instruction is *-7 
I I 11111 i f skip, next instruction is *-1 
0 000000 if skip, repoa+ this i ns·ITucti on 
I 000001 do next instruction, rcgo rd I ess 
7 000111 i f skip, riext instruction is *+7 

31 011111 if skip, next irstruction is *+31 

A I l instructions in the <.i I ter-s kip grour have the "skip" properties 
out Ii ncd above. Some of the instructions i) I so have an opt i ona I "a I ter" property. 
This is where the general instruclion form "skip if <some one bi·t· condi·t·ion>" 
is supplemented with the ability to alter the state of the bit mentioned in 
the condition. Tho alteration is to either se~ tho bit, or clear it. If 
specified, the al·t·cration is done after• the condition is tested, never before. 

To indicate in a source stalement that an instruction inc I udes I-he a I ter 
option, and to srecify \·1hether to cle<Jr- or to set the tested bit, a cornrna-C 
or comma-S fol lows •±n/rn. Thu C indicaies clearing the bit, while an S 
indicates setting the bit. 

The "a I ter" in format ion is encoded into the 16 bi I instruct ion v1ord 
1·1ith 2 bits. For such instructions, bit 7 is cal led the H/H (Hold/Don't Hold) 
bit, and bii 6 is the C/S !Clear/Set) bit. If bit 7 is a zero (specifying H) 
the "alter" ootion is not active; neitl1t~r S nor C fol lowed n in tho source 
statement of tho instruction, Clncl the lestcd bit is left unchanged. If 
bit· 7 is a I <srocifying H), then "alter" option is active, and bit 6 
specifies whethAr it is Sor C. 

label I SZA I )( ·l n/m comments 

Skip if A zerr,. If al! 16 bits of itw /1 register are zero, skir the 
arrount indicated by n, or, ·f·o rn. 
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BPC MACHINE INSTRUCTIONS 

AL1ER-SKIP GRJUP (CONT.) 

label SZB * ± n/m comments 

Skip if B zero. If al I 16 bits of the B register are zero, skip the 
amount indicated by n, or, to m. 

label RZA * ± n/m comments 

Skip if A not zero. If any of the 16 bits of the A register are set, 
skip the amount indicated by n, or, to m. 

label I RZB * ± n/m comments 

Skip if B not zero. If any of the 16 bits of the B register are set, 
skip the amount indicated by n, or, to m. 

label I SIA I * ± n/m I comments 

Skip if A zero, and then increment A. The A register is tested, and 
then incremented by one. If al I 16 bits of A were zero before the increment, 
skip the amount indicated by n, or, tom. SIA does not affect the contents 
of E or OV. 

label SIB * ± n/m comments 

Skip if B zero, and then increment B. The B register is tested, and 
then incremented by one. If al I 16 bits of B were zero before the increment, 
skip the amount indicated by n, or, to m. SIB does not affect the contents 
of E or OV. 

label RIA * ± n/m comments 

Skip if A not zero, and then increment A. The A register is tested, and 
then incremented by one. If any bits of A were one before the increment, 
skip the amount indicated by n, or, tom. RIA does not affect the contents 
of E or OV. 

label RIB * ± n/m comments 

Skip if B not zero, and then increment B. The B register is tested, and 
then incremented by one. If any bits of B were one before the increment, 
skip the amount indicated by n, or, tom. RIB does not affect the contents 
of E or OV. 

In connection with the next four instructions, Flag and Status are 
control led by the peripheral interface addressed by the current select code. 
The select code is the number that is stored in the register named PA, located 
in the IOC. Both Status and Flag originate such that when a missing interface 
is addressed Status and Flag wi I I appear to be false, or not set. 
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BPC MACHINE INSTRUCTIONS 

ALTER-SKIP GRCl.JP (CONT I) 

I abel SFS 

Skip if Flag line set. 
indicated by n, or, to m. 

label I SFC 

Skip if Flag I ine clear. 
indicated by n, or, to m. 

label SSS 

* ± n/m comments 

If the Flag I ine is true, skip the amount 

* ± n/m comments 

If the Flag I ine is false, skip the amount 

* ± n/m comments 

Skip if Status I ine set. If the Status I ine is true, skip the amount 
indicated by n, or, to m. 

label SSC * ± n/m comments 

Skip if Status I ine clear. If the Status I ine is false, skip the amount 
indicated by n, or, to m. 

label 

Skip 
the EMC. 
input of 

label 

sos * ± n/m comments 

if Decimal Carry set. Decimal Carry CDC) is a one-bit register in 
It is control led by the EMC, but connected to the decimal carry 

the BPC. If DC is set, skip the amount indicated by n, or, tom. 

I soc * ± n/m comments 

Skip if Decimal Carry clear. Decimal Carry CDC> is a one-bit register in 
the EMC. It is control led by the EMC, but connnected to the decimal carry 
input of the BPC. If DC is clear, skip the amount indicated by n, or, to m. 

label I SHS I * ± n/m I comments 

Skip if Halt I ine set. If the Halt I ine is true, skip the amount 
indicated by n, or, to m. 

label SHC * ± n/m comments 

Skip if Halt Ii ne clear. If the Halt Ii ne if false, skip the amount 
indicated by n, or, to m. 

I abel I SLA * ± n/m [ ,S/,C J comments 

Skip if the least significant bit of A is zero. If the least significant 
bit (bit 0) of the A register is a zero, skip the amount indicated by n, 
or, tom. If either Sor C is present, bit 0 is altered accordingly after 
the test. 
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BPC MACHINE INSTRUCTIONS 

r AfJER-SKIP Gf{)UP (coNT.) 

r:' 

label SLB * ± n/m [ ,S/,C ] comments 

Skip if the least significant bit of Bis zero. If the least significant 
bit (bit 0) of the B register is a zero, skip the amount indicated by n, 
or, tom. If either S of C is present, bit 0 ls altered accordingly after 
the test. 

label RLA * ± n/m [ ,S/,C ] comments 

Skip if the least significant bit of A is non-zero. If the least 
signif iccnt bit (bit 0) of the A register is a one, skip the amount 
indicated by n, or, tom. If either Sor C is present, bit 0 altered 
accordingly after the test. 

label RLB * ± n/m [ , SI ,C ] comments 

Skip if the least significant bit of B is non-zero. If the least 
significant bit (bit 0) of the B register is a one, skip the amount 
indicated by n, or, tom. If either Sor C is present, bit 0 is altered 
according I y after the ·test. 

label I SAP * ± n/m [ ,S/,C ] corrments 

Skip if A positive. If the sign bit (bit 15) of the A register is a 
zero, skip the amount indicated by n, or, to m. If either S or C is 
present, bit I s is a I tered accordingly after the test. 

label I SBP I * ± n/m [ ,S/,C ] I comments 

Skip if B positive. If the sign bit (bit 15) of the B register Is a 
zero, skip the amount Indicated by n, or, tom. If either Sor C is 
present, bit 15 is altered accordingly after the test. 

I abel I SAM * ± n/m [ ,S/,C ] I comments 

Skip if A minus. If the sign bit (bit 15) of the A register is a one, 
skip the amount indicated by n, or, tom. If either Sor C is present, 
bit 15 is altered accordingly after the test. 

label I SBM I * ± n/m [ ,S/,C ] I comments 

Skip if B minus. If the sign bit (bit 15) of the B register is a one, 
skip the amount indicated by n, or, tom. If either S or C is present, 
bit 15 is altered accordinqly after the test. 

label I sos I * ± n/m [ ,S/,C ] I comments 

Skip if overflow set. If the one-bit overflow register (OV) is set, 
skip the amount indicated by n, or, tom. If either Sor C is present, 
the OV register is altered accordingly after the test. 
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BPC MACHINE INSTRUCTIONS 

ALTER-SKIP GROJP (CONT I) 

label soc * ± n/m [ ,S/,C] comments 

Skip if overflow clear. If the one-bit overflow register is clear, 
skip the amount indicated by n, or, tom. If either Sor C is present, 
the OV register is altered accordingly after the test. 

label I SES I * ± n/m [ , S/, C ] I comments 

Skip if extend set. If the extend register (E) is set, skip the amount 
indicated by n, or, tom. If either Sor C is present, Eis altered 
accordingly after the test. 

label I SEC * ± n/m [ ,S/,C] comments 

Skip if extend clear. If the extend register CE) is clear, skip the 
amount indicated by n, or, tom. If either Sor C is present, E is altered 
accordingly after the test. 

CQ\1PLEMEMf-EXECUfE GROUP 

label CMA comments 

Complement A. The A register is replaced by its one's (bit by bit) 
complement. 

label CMB comments 

Complement B. The B register is replaced by its one's (bit by bit) 
comp I ement. 

I abel TCA comments 

Two's complement A. The A register is reolaced by its one's (bit by bit) 
complement, and then incremented by one. The E and OV registers are updated 
according to the results of the increment, in the same fashion as for the 
ADA instruction. 

label TCB comments 

Two's complement B. The B register is replaced by its one's (bit by bit) 
complement, and the incremented by one. The E and OV registers are updated 
according to the results of the increment, in the same fashion as for the 
ADB instruction. 
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BPC MACHINE INSTRUCTIONS 

~ C0'1PLEJ'f:tIT-EXECUTE GROUP (coNT.) 

label EXE 0 < m < 370 [ ,I ] cornmen·~s 

Execute register m. The contents of any reg1s1er can be treated as tho 
current instruction, and exocutod in the normnl manner. Th~ register is 
lef·f- unchanged unless f"he instruction code ctiuses i I lo be altered. Tho 
next instruction executed \·Ii I I be ihe one fol lrn·1in9 the EXE rt., unless the 
codc- in rn causes a br~rnch. 

Ind i r·cct addressing is a 11 <Med. /\n EXE rn, I cau~;Ps th0 contents of m 
to be taken as J·h0 ad~Jross of I he DI nee in mer::ory \·those contents <ffe to be 
executed; this can be anywhere in mernury, and need ne_Yf be another register·. 
In 15-bit versions of the processor, multi-level indirect addressing with 
EXE instruction is pos';iblo. Only onP level is possible \'lith t-he 16-bit 
processor. 

Tho 15-b it vcr ion of the 13PC ha~, d bug in connoclion with the Execute 
ins~ruction. If the EXE machine-instruction is used io execute any of the 
A, B, P, or R registers, and interrupt occurs during the ins~ruction fetch 
out of crn0 of those registers, the E3PC slips a cog and fai Is to give SMC 
(Synchronized tv'.ernory Comp I ete). This fa i I ur0 l·o comp I ete a rnemory eye I e 
brings al I system activity to a halt. 

This bug is really not an exclusive property of the EXE instruclion. 
The fund<Jmen"fa I prob I em I i es i 11 ins tr>uct-ion j'r.tehes j'i•om addr•essab le pegiH ter>s 
within the BPC. An EXE instrucf"ion simply causes such a felch. Such an 
uni ikely thing as JMP A (although very legal and quite possible) would also 
suffer the unco•npleted memory cycle if an interrupt were to occur during 
·t·he fetch from A. 

t\lo"fc that EXE A ,I is not affected by the bug. f\l·though it muses a 
read from A, th<1·t read is not; <Jn instr·uction fetch. It is only an instruction 
fetch from one of the addressable registe:-s in the Bl)C that is susceptible 
to the bug. Ho1·10ver, a I so no·le that an EXE A , I is suscept i b I e if /\ 
points fo one of the other addressable registers with the BPC. 

If the sys"l"Pm uses inter-rupt it is best to disable the inlerrupt system 
\vith DIR before doing any EXE machine-instructions. 

This bug has been Fixed in the 16-bit version of the BPC. 
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IOC MACHINE INSTRUCTIONS 

STACK GROUP 
The stack group manages first-in, I ast-out firmware stacks. The "p I ace" 

instructions put a word or byte into a stack pointed at by C or D.* The 
it-em that is placed is reg. 0-7. The "withdraw" instructions remove a 
word or a byte from a stack pointed at by C or D. The removed item is 
written into reg. 0-7. 

By the end of each place or withdraw instruction the stack pointer is 
either incremented or decremented, as specified by the optional I or D, 
respectively. In the absence of either an I or a D, the assembler defaults 
to I for place instructions, and D for withdraw instructions. 

Place ins~ructions increment or decrement the stack pointer prior to 
the placement, and withdraw instructions do it after the withdrawal. In 
this way the pointer is always left pointing at the top of the stack. 

For byte operations using 15-bit version of the processor bit 15 of the 
pointer register <C or 0) indicates left or right half (I = left, 0 =right). 
Stack instructions involving bytes toggle bit 15 at each increment or 
decrement; but the lower bits of the pointer increment or decrement only 
during the zero-to-one transition of bit 15. 

In the 16-b it ver·s ion of foe processor, tho I east-significant bit of 
the pointer register indicates left or right half (0 = left, I = right). 
Ful I 16-bit addressing is maintained by a most-significant bit (for each 
pointer register) in the form of the CB and DB registers. The C and CB 
registers, and D and DB registers, act as 17-bit registers during the 
automatic increment or decrement to the pointer registers. 

The values of C and D for place-byte instructions must not be the 
address of any i nterna I register for the BPC, EMC, or I OC. The p I ace and 
withdraw instructions can also initiate 1/0 operations, so they are also 
I isted under the 1/0 qroup. 

label I PWC I reg. 0-7 [,I/,D] I comments 

Place the entire word of reg. into the stuck pointed at by C. 

label PWD I reg. 0-7 [,I/,D] I comments 

Place the entire word of reg. into the stack pointed at by D. 

label PBC I reg. 0-7 [,I/,D] I comments 

Place the right ha I f of reg. into the stack pointed at by c. 

label PBD reg. 0-7 [,I/,D] comments 

Place the right hi:J I f of reg. into the stack pointed at by D. 

C and Dare registE:rs in thP I('('; addresses 16a and 17e, r·"~'..J~H~ctively. 
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IOC MACHINE INSTRUCTIONS 

STACK GROUP (CONT I ) 

label wwc reg. 0-7 [,I/,D] comments 

Withdraw an entire word from the stack pointed at by C, and put it 
into reg. 

label WWD reg. 0-7 [,I/,D] comments 

Withdraw an entire word from the stack pointed at by D, and put it 
into reg. 

label WBC reg. 0-7 [,I/,D] comments 

Withdraw a byte from the stack pointed at by C, and put it into the 
right half of reg. 

label I WBD reg. 0-7 [,I/,D] comments 

Withdraw a byte from the stack pointed at by D, and put it into the 
right half of reg. 

label I CBL* I comments 

Set the CB register to a zero. This specifies the lower block of 
memory pointed at by C and CB. 

label I CBU* I comments 

Set the CB register to a one. This specifies the upper block of memory 
pointed at by C and CB. 

label I DBL* comments 

Set the DB register to a zero. This specifies the lower block of 
memory pointed at by D and DB. 

label DBU* comments 

Set the DB register to a one. This specifies the upper block of memory 
pointed at by D and DB. 

* Part of tho 16-bit processor's Instruction set only. 
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IOC MACHINE INSTRUCTIONS 

1/0 Gl{)UP 
The states of ICI and IC2 during the 1/0 Bus Cycles initiated by the 

instructions below depend upon which register is the operand of the 
instruction: 

label 

R4 

R5 

R6 

R7 

mem. ref. inst. 

TCT 
I 

0 

0 

0 

0 

reg. 4-7 [,I] comments 

Initiate an 1/0 Bus Cycle. Memory reference instructions 'reading' 
from reg. cause input 1/0 Bus Cycles; those 'writing' to reg. cause output 
1/0 Bus Cycles. In either case the exchange is between A or Band the 
interface addressed by the PA register (Peripheral Address Register - I 18 ); 

reg. 4-7 do not really exist as physical registers within any chip on the 
IDA Bus. 

label stack inst. reg. 4-7 [,I/,D] comments 

Initiate an 1/0 Bus Cycle. Place instructions 'read' from reg., therefore 
they cause input 1/0 Bus Cycles. Withdraw instructions 1\ffite 1 into reg., 
therefore they cause output 1/0 Bus Cycles. In either case the exchange is 
between the addressed stack location and the interface addressed by PA. 

I NTERRUPf GROUP 

label EIR comments 

Enable the interrupt system. This instruction cancels DIR. 

label I DIR I comments 

Disable the interrupt system. This instruction cancels EIR. 
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IOC MACHINE INSTRUCTIONS 

~ IJ1l\ GROUP 

label SDO* comments 

Set OMA outwards. This instruction specifies the read-from-memory, 
write-to-perioheral direction for DMA transfers. 

I abe I I SD I* I comments 

Set OMA inwards. This instruction specifies the read-from-peripheral, 
write-to-memory direction for OMA transfers. 

label OMA comments 

Enable the OMA mode. This instructions cancels PCM and DOR. 

label PCM comments 

Enable the Pulse Count Mode. This instruction cancels OMA and DOR. 

label DOR comments 

Disable Data Request. This instruction cancels the OMA Mode and the 
Pulse Count Mo~e. 

* 

NOTE 

DD~ is not usable with the 15-bit version of the processor. If 
the IOC should be in the process of executing a DOR and a OMA request 
occurs, the processor wil I go out to lunch and never come back. 
This bug has been fixed in the 16-bit version. 

NOTE 

The IOC wi 11 noi- execute IOC machine-instructions fetched from its 
own internal registers. 

Part of the 16-bl t processor's instnictlon set only. 
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EMC MACHINE INSTRUCTIONS 

1HE FOUR-WORD GROUP 

label CLR N comments 

Clear N words. This instruction clears N consecutive words, beginning 
with location < A >. Remember: I < N < 1610. 

label XFR N 

- -
0 + location < A > 

0 + location < A > + I 
0 

0 

0 

0 + location < A > + N - I 

comments 

Transfer N words. This instruction transfers the N consecutive words 
beginning at location < A >to those beginning at < B >. Remember: 
I < N < I 61 o. 

location < A > + location < B > 

location < A > + I + location < B > + I 
0 

0 

0 

location < A > + N - I + location < B > + N - I 

lHE Ml\NTISSA SHIFT GRJUP 

I abe I MRX I comments 

Mantissa right shift of ARI r-times, r = < 80 _ 3 >, and 0 .::_ r .::_ 17 8 = 15 10 • 

1st shift: 
jth shift: 
rth shift: 

< Ao-3 >+Di; .... < Di>+ Di+1; ..•• 012 is lost 
0 + Di; .... < Di > + 0i+1; . . • . 0 i 2 is I ost 
0 +Di; •... < Oj > + Oi+1; .•.. < Oi2 > + Ao-3; 0 +DC; 0 + A4-1s 

Notice: 

I) The first shift does not necessarily shift in a zero; the 
first shift shifts in< Ao-J >. 

2) The last digit shifted out ends up as < Ao-3 >. 
3) If only one digit-shift is done, (I) and (2) happen together. 
4) After (2), SE is the same as< Ao-3 >. 
5} Any more than e I even shifts is wastefu I . 
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EMC MACHINE INSTRUCTIONS 

~ THE Ml\NTISS'\ SHIFT GOOUP (coNT.) 

label MRY comments 

Mantissa right shift of AR2 < 80_ 3 > -times. Otherwise identical to MRX. 

I ab e I I ML Y J coirments 

Mantissa left shift of AR2 one time. 
< Ao-3 > + 012; ... <Di>+ Di-1; .... < 01 > + Ao-3; 0 +DC; 0 + A4-15 

At the conclusion of the operation SE equals< Ao-3 >. 

label DRS comments 

Mantissa right shift of ARI one time. 
0 + D1; .... < Di>+ Di+1; .... < 012 > + Ao-3; 0 +DC; 0 + A4-15 

At the conclusion of the operation SE equals< Ao-3 >. 

label I NRM I comments 

Normalize AR2. The mantissa digits of AR2 are shifted left until 01 # O. 
If the original D1 is non-zero, no shifts occur. If twelve shifts occur, 
then AR2 equals zero, and no further shifts are done. The number of shifts 
is stored as a binary number in B 

i. 0 + B~-1s; #of shifts+ Bo-3; 0 +DC 
ii. For 0 < < Bo-3 > < I I; 0 +DC 
iii. If< Bo-3 > = 12;-I +DC 

TI-IE ARITHMETIC GRJUP 

I abel CMX I comments 

Ten's complement of ARI. The mantissa of ARI is replaced with its ten's 
complement, and DC is set to zero. 

NOTE 

In the 15-bit version of the processor there is a bug concerning 
CMX in 15-bit systems that also use OMA. 

The bug concerns the way Sync is treated. Under the right conditions 
a bus grant (think "OMA cycle") causes the EMC to give Sync too early. The 
result is simultaneous use of the IDA Bus by the EMC and BPC. The most 
apparent result is that the next instruction fetch by the BPC is garbled, 
which is a disaster. 
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EMC MACHINE INSTRUCTIONS 

lHE ARITHMITIC GOOUP (CONT I) 

label CMY corrments 

Ten's complement of AR2. The mantissa of AR2 is replaced with it ten's 
complement, ~nd DC is s0t to zero. 

label CDC comments 

Clear nncimal Carry. Clears the n~ register; 0 -~DC. 

label FXA comments 

Fixed-point c:iddition. The rnan·tissas of ARI and AR2 are added together, 
0long with DC (as a 012 -digit), and the result is placed in AR2. If an 
overflow occurs, DC is set to one, othor~isc, DC is set to zero at the 
completion of tho addition. 

During the addition the exponents are not considered, and are left 
strictly alone. The signs are also left completely alone. 

< ARI > = 01 
< AR2 > = 01 

+ 

D2 D3--------D12 
D2 D3--------D12 

< DC > ~- in it i a I va I ue of DC · 

(overflm'I) -+"Do" 01 

~DC (final value of DC) 

label MvJA comments 

Mantissa Word Add. < B > is taken as four BCD digits, and added, as 
D9 through D12, to AR2. DC is also added in as a 012. The result is left 
in AR2. If an overflow occurs, DC is se-t to one, otherwise, DC is set to 
zero at the comp I et ion of the addition. 

During the addition the exponents are not considered, and are left 
strictly alone, as are the signs. M\'/A is intended prirnc:iri ly for use in 
rounding routines. 

< B > = --------D9 
< AR2 > ~ D1------09 

+ 

D10 D11 D12 
010 011 012 

< DC > + i n i t i a I v a I u c of DC 

(ovcrflow)+"Do" D1------D9 D10 D11 D12-+AR2 

~DC (final value of DC) 
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EMC MACHINE INSTRUCTIONS 

~ TI-IE ARlll-lfUIC GRJUP (coNT,) 

label FMP l comments 

Fast multiply. The mantissas of ARI and AR2 are added together (along 
with DC as D12) < Bo-3>-times; the result accumulates in AR2. 

The repeated additions are I ikely .to cause some unknown number of overflows 
to occur. The number of overflows that occurs Is returned in Ao-3· 

FMP is used repeatedly to accumulate partial products during BCD 
multiplication. FMP operates strictly upon mantissa portions; signs and 
exponents are left strictly alone. 

label 

< AR2 > + ( ( < AR I > ) • ( < Bo - 3 > ) ) + DC + AR2 

0 + DC, 

MPY 

~ )" i 
DC doesn't enter into 
these repeated additions 
except for the first one 
as shown at right. O +DC 
irrmediately after each 
overflow. 

comments 

Represents the initial 
value of DC. 

# of overflows + Ao-3 

Binary Multiply Using Booth's Algorithm. The (binary) signed two's 
complement contents of the A and B registers are multiplied together. The 
thirty-two bit product is also a siqned two's complement number, and is 
stored back into A and B. B receives the sign and most-significant bits, and 
A the least-significant bits: 

label 

~ 
<A>•<B>+<B><A> 

FDV comments 

NOTE 
There is a bug in MPY. See 

the Appendix for its description. 

Fast Divide. The mantissas of ARI and AR2 are added together unti I 
the first decimal overflow occurs. The result of these additions accumulates 
into AR2. The number of additions without overflow (n) is placed into B. 

< AR2 >+<ARI >+<DC>+ AR2 (repeatedly unti I overflow) 

then 

0 + DC, n + Bo-3 

FDV is used in floating-point division to find the quotient digits of a 
division. In general, more than one application of FDV is needed to find 
each digit of the quotient. 

~ As with the other BCD instructions, the signs and exponents of ARI and 
AR2 are left strictly alone. 
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INTRODUCTION TO THE ASSEMBLER 

( GENERAL INFO~TION 
The assembler (ASMA) translates symbolic source language instructions 

into an object program executable by the CPD processor. The source lan­
guage provides mnemonic codes for specifying machine operations, (machine 
instructions) and for directing the a ssemb I er (pseudo instructions). The 
assembler also provides symbolic addressing. ASMA (July 176 version) 
serves both the 15 and 16 bit versions of the processor. 

ASMA is a DOS-Mor RTE based program; neither BCS nor MTS versions 
exist. DOS-Mand RTE are disc operating systems for HP 2100-series com­
puters. As of this writing there is also a series of 3000-based programs 
that assemble for the CPD processor. Presently several programs exist, 
each having different attributes. There is some sentiment to combine these 
programs. However, the move is not yet afoot, and the consensus was not 
to mention any program names or definite attributes. Generally speaking, 
the capabi I ities of the 3000-based assembler are much the same as those of 
ASMA, except that the DFN and $$$ pseudo instructions do not exist in the 
3000 version. Also, the details of the "control statements" may differ. 
Generally, however, the two assemblers overlap about 95%; they are alike 
for more than they are different. 

The assembled program is always 11absolute11 in the sense that it is not 
"relocatable"; the assembler assigns symbols definite addresses, and the 
operand fields of address-sensitive instructions receive definite bit pat­
terns during assembly. If a piece of executable code is to be moved from 
one location to another, the usual case is that is must be modified to 
reflect the change in origin, and re-assembled. Assemblies must be self­
contained: no external references (externals), eni-ry points, or detached 
subroutines are possible. 

With non-relocatabi I ity firmly in mind, we assign another meaning to 
the word ab so I ute. The BPC has t\-10 modes of addressing: ab so I ute and 
relative. Absolute addressing is a scheme with fixed page boundaries, and 
I 024 words per page. Re I at i ve addressing centers the page on the c1Jrrent 
value of the program location counter (P) in the BPC; the ~ge boundaries 
change as P changes. The BPC operates in the absolute or relative addressing 
mode, depending upon the external grounding of a pin on the chip (RELA). 
It is expected that the two types of addressing wil I not be mixed. Complete 
descriptions of each addressing scheme are found in the chapter titled 
"DESCRIPTION OF THE PROCESSOR". 

The assembler can assemble code for either absolute or relative addressing. 
This is control led with the control statement at the beginning of the 
source text. See "ASSEMBLER INPUT J\ND OUTPUT", in this chapter. 

The original source of a program wi I I usually be paper tape or punched 
cards, although it is possible with DOS-M to create a source file on the 
disc directly from the system tele-printer. The assembler accepts paper 
tape, punched cards, magnetic tape, and disc source files as input. 
Magnetic tapes must be prev i os I y generai·ed by the operai· i ng system. Si"an­
dard DOS-M provides disc source files, while source files are available 
with RTE systems that have a file manager. 
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INTRODUCTION TO THE ASSEMBLER 

GENERAL I NFOWATI ON (coNT. ) 

Assembler output is of two types: a I isting and the non-relocatable 
binary. The I isting can be generated on any "I ist device" in the system, 
but the bi nary shou Id be punched on a pu:-ich device. ASMA does not have 
the ability to store the binary in the job-binary-area of the disc. Further­
r1oro, i·f· is un-advisable to write the binary to a standard tape transport 
with the idea of I a-l·er use. DOS-M and lffE do not correct I y hand I e non-
rc I ocatab I e binary, even \·/hen it is j us·f· "in transit". 

A basic binary loader is required to load the binary output into the 
processor. Tho formal of the binary output is shmm in the sectio:-i 
"ASSEMBLER INPUT AND OUTPUT"; the Appendix coni"ains a discussion about 
binary loaders. 

ASMA is a modification of ASMB; ASMB is the HP assembler for the 2100-
series computers. Those who are familiar with the operation of ASMB under 
005-M or RTE wil I have no difficulty with ASMA. Some of the pseudo instruc­
tions of ASi•iB are rnissinq from ASMA <those pertaining to relocatable 
assombl ics), while some additional pseudo instructions have been added. See 
"PSEUDO IMSTRUCTIONS". 

A cross reference generator is avai I able for use \·lith ASMA. The name 
'.Jf this progrmn is XRFA, and it runs \oJith both DOS-Mand RTE . 

. l\dditional infonnotion about ·rhc structure of the assembler is contained 
in the /\ppondix. 

INSTRUCT I OM F0~1A T 
A source language si"<itemont consists of a label, an operation code, 

an operand, and comments. The I :J be I is used \•1hen needed as a reference 
by other stai"ements. The o;:ioration code may be a mnemonic representing a 
machinc-opor:ii"ion or an instr-uction to the assembler concerning the task 
of iJSScrnbly itself. An operand may be an expression consisting of an 
alphanumeric symbol, o number, a special character, or any of these combined 
by arithmetic opcrotions. Indicators may be appended to the operand to 
specify cort:Jin functions such as indirect addressing. The comments portion 
of the stntemont is optional. 

STATEMENT CHARACTERISTICS 

The fi,~ld of the source s·t·atemcnt nppear in the fol lowing order: 

Label Opcode Opt: rand Corrments 

One or more ~•pacos so pa rr:itc the f i c Ids of a statement. An end-of­
st11terncnt rnar·k tcrmi nates the 0·1 t· in~ statement. On paper t<Jpe t'lese marks 
aro "return" .ind "I ine feed". l\ single space fol lo\'1ing the end-of-statement 
m<:wk from the prov i ous :.ourcc slc:d rnner:t is tho nu I I fie Id indicator for the 
I a tic I f i e Id. 
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INTRODUCTION TO THE ASSEMBLER 

(" INSTRUCTION FOR'tL\T 
STATEMENT CHARACTERISTICS(CONT.) 

The characters that may appear in a statement are these: 

/\ through Z 

0 through 9 

other val id label characters 

. (period) 

x <asterisk) 

+ (plus) 

- (minus) 

, (comma) 

(space) 

Any other ASC I I characters may up pear in the Remarks fie Id. 

The letters f\ through Z, tho numbers 0 thrnugh 9, the period, and certain 
other characters, may be used in an alphanumeric symbol. In the first 
position in the label field, an asterisk indicates a comment; in the operand 
field, it represents the value of the program location counter in arithmetic 
address expressions. Tho comma separates an expression and an indicator in 
the operand field. 

Spaces separate fields of a statement. Within a field they may be 
used free I y \·1hen to I I owing +, - , or- , • 

Tho maximum length of a statement varies, but is at most 80 characters. 
See "STATEMENT LENGTH" for a complete discussion. 

LABEL FIELD 

The label field indentifies tho statement and may be used as a r~ference 
by other statements in the orogram. <That is, the label is a place holder 
for tho ::id dress of a word that is used by other statorrents that concern, 
or operate on, that word.) 

Tho field starts in position one of the statement; the first position 
fol lowing an end-of-statement mark for the preceding statement. It is 
terrn l ncited by a space. f\ space in position one is the nu I I fie Id indicator 
for the label field; the statement is unlabeled. 

A label is symbolic. It may have one to five characters consisting 
of A through Z, 0 through 9, and the symbols shown on the next rage. The 
first character must be non-numoric. A l3bel of rnor0 than five characters 
could be entered on the sour~e language tape, but the assembler flags this 
condition as an er-ror and truncates the I abe I to the I ef·t-most five characters. 
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INTRODUCTION TO THE ASSEMBLER 

INSTRUCTION FOR!tl\T 
LABEL FIELD (CONT.) 

A-Z 

0-9 

• (period) 

II 

# 

I 
? 

@ 

$ 

% 

& 

Each label must be unique within the program; two or more statements 
may not have the same symbolic name. 

Example: 

iei:. c...-:•,.. c~c-· ,_, 
I ' 

,, .. .. " ~ " " 
., "' ie..tt 11 LOA -1- - -l- 11 N10! JL AB EL! jl l l ! j: 

• Aj_B go '\-~ ~1-h l 
ViAILiI D LAJBE Li T J I j : I 

• 1 :213i4 , -r VA'Ll!,O .L~BIE Li l I , I ' [ j: --'ViA1.L!Ilo 
' ' 

A .1112\3 l 1 +:++ !LA BE LI J_ _L _l ; I 
' I 

. 1 -1 i 
-r : . ViA 1lj_I D tA BE L1 J J I i ! f ! : I 

1 • ABj _l j I;l'iLJE GA!L LA B!E L 1- FI RjS T CIHIA R1AC TIE RJ: 
11 I I I I 

' I N!UM:E R fiC l I : I ! 1 l : I I I .i I ' 
~B cf1J2 3 I I l IJL1LIE G A1L IL1A BIEL I- TR UIN CATEO TlO i T1 

' I I' i 

1J A'BC 112 ' 
I ' r l l •ii 

i l I 
1: l I 

IIL'LjE1G 
' I ' ' 

A *IB C! I I ' A:LI 'LA BIEIL1 l- AST}E R ISTK! NOIT I 11 
i I 

+ +-t i 

A,LLjO:wJ EOi lN ,L,AIB,E L • J l : i 1 ! ! l : ' t I I 

"AIB err r N1o1 JLJA BEU J_ T}HIE !A SS E1M
1
8 LIER1 1A TITE MP TJs: 

+1+ + 
I ! J T_iO, JIN T1EJRP:R EIT_i A1B Cl AS, AN 1Q,P E'RJA T,I 01N! 

I , ' . 1 c101of1. 1111 I! ' T 'l; T ! I 
I I 

j_ l JI I 
---+ 

111 I i I 11 JI l i I ..LI l i ,Tl+ 
I 

• ! IT I ' '' ' ' T --ri I 
··- ~--,---- --·- --4 

t The caret synbol, A , indicates tt1e prcsensc of a space. 

An asterisk in position one indicates that the entire statement is a 
comment. Positions 2 through the end of the statement are avai I able for 
use. See "STATEMENT LENGTH". An asterisk with the label field is ii legal 
in any position other than one. 

OPCODE FIELD 

The operation code defines an operation to be performed by the processor 
or the assembler. The opcode field fol lows the label field and is separated 
from it by at least one space. If there is no label, the operation code 
may begin anywhere after position one. The opcode field is terminated by 
a space immediately fol lowing an operation code. Operation codes are orga­
nized In the fol lowing categories: 

Machine Operation Codes 

BPC 

Memory Reference 

Shift-Rotate 

Alter-Skip 

Return-Complement-Execute 
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INTRODUCTION TO THE ASSEMBLER 

INSTRUCTION FOR'V\T 
OPCODE FI ELD (CONT. ) 

Machine Operation Codes (cont'd) 

IOC 

EMC 

1/0 Contro I 

Stack Operations 

Interrupt 

OMA 

Four-Word Operation 

Mantissa-Shift 

Arithmetic 

Pseudo Operation Codes 

Assembler control 

Address and symbol def lnition 

Constant definition 

Storage allocation 

Assembly Listing Control 

Machine operation codes are discussed in detai I In the chapter titled 
"MACHINE INSTRUCTIONS". 

OPERAND FIELD 

The meaning and format of the operand field depend on the type of 
operation code used in the source statement. The field fol lows the opcode 
field and is separated from it by at least one space. It is terminated by 
a space except when the space follows<,>,<+>,<-> or, if there are no 
comments, by an end-of-statement mark. 

The operand field may contain an expression consisting of one of the 
fol lowing: 

Single symbolic term 

Single numeric term 

Asterisk 

Combination of symbolic terms, and the asterisk joined by 

the arithmetic operators + and -

An expression may sometimes be followed by a comma and an indicator. 

The operands for certain instructions consists of a series of terms 
separated by commas. 
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INTRODUCTION TO THE ASSEMBLER 

INSTRUCTION FO~T (CONT I) 
SYMBOLIC TERMS 

A symbolic term may be one to five characters consisting of A through Z, 
0 through 9, or the other label characters. The first character must be non­
numeric. 

Examp I e: 

l•-· ':i-·····,.. ·~~ 
r-.. •• 

' " 
,, r " < " .. ., >o 

I 1 I L DA A 112 314 : 1'1 vJAfb.fe> 11iF'..JD rrrTN1E D}_I :_. TIT 1 T 1 T I : 
I : I AD-"-A 91.11 ' i I ' VALIDIJ DEFINED, ! ~il i • : 

t- 1 1 · J p E'Nlr Rv : ITT v 1A1~110 r F~ 'ftE·(rfN1D-- :. 1 , TJ : 1 r , 1 -HH-s~lt-fiiA·~~:-, ~, fLLE.GALi ·o·Ptw1·tict°'-~ST :cH'A~ful: 
~lli± r j I . N·U~jR ifi~ 

--· -
I ! l 

f;RlAIND 
l I 

~~ 
I 
I 

Fl t+- !1LLE'G1 I - l---1 S T:B A:81C DlE M]ORE T,HAN I 
I 

I 11 li ElffIS I i I 

_......, 
I C1H1A,RA CiT i 1 

I I 

•I I , I I 

11 1 l 111 [ 11 ! l ll llll l JllJ JI r ~ ' I ' I : ! 
I I I I 

' 
I I 

Jl l': ! 
--

I--~ r--J l J I J U1 11 1 
. 

_.'._: I 
I 

I I I I 
I 

T I l I 
I l" I I I 11 . I I j ] · T I [ I 

I I --
! 11 ' +t-r+ i I J ! ~I 

I I 

' -
I I 1 i 

I I I I 

I 1 '. I l + 
11' T 1 I I j ! T: 

r--~ ,-, 
: I I 

Unless a symbol is pre-defined by the assembler, a sy~ ol used in the 
operand field must be defined elsewhere in the program in one of the fol lowing 
ways: 

As a label in the label field of a machine operation. 

As a label in the label field of a BSS, ASC, DEC, OCT, DEF, ABS, EQU 

or REP pseudo operation. 

The assembler assigns a value to a symbol when it appears in one of the 
above fields of a statement. 

The symbols that are pre-defined by the assembler are shown in Table 
A- I . Information about modifying or adding to the I i st of pre-defined symbo Is 
is contained in the Appendix. With the exception of ARI, al I these symbols 
refer to registers within the various elements of the system. The address 
of ARI depends upon whether the assembly is for a 15 or 16 bit processor. 

The one bit registers, E (Extend) and OV (Binary Overflow), are located 
within the BPC. The one-bit register, DC (Decimal Carry - BCD overflow), ls 
located within the EMC. These registers are not addressable; they are accessed 
through dedicated instructions. Therefore, their names are not pre-defined 
by ASMA. 

A symbolic term may be preceded by a plus or minus sign. If preceded 
by a plus or no sign, the symbol refers to its associated value. If 
preceded by a minus sign, the symbol refers to the two's complement of its 
associated value. A single negative symbolic operand may be used only with 
the ABS pseudo operation. 
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INTRODUCTION TO THE ASSEMBLER 

INSTRUCTION FO~T 

7 

SYMBOLIC TERMS (CONT. ) 

Table A-I. Symbols 0 re-Def ined by the Assembler. 

Octa I 
Address Narr.e Location Description (# of Bits> 

0 A GPC ''rithmetic Accumulator ( 16) 

I B BPC Arithmetic Accumulator ( 16) 
------1 r----·-------- -----

2 p BPC Program Location Counter (least 15 o' 16 0r 16) 

3 R BPC Return Stack ::>o inter (I east 15 of 16 or 16) 

4 R4 IOC Peri phera I Activity Des iqnator (-) 

5 R5 IOC f'er i phera I f;ct iv i ty Designation (-) 

6 R6 IOC Peripheral Adivity Designator (-) 

7 R7 toe Peripheral Activity Designator (-) 

10 IV IOC Interrupt Vector (upper I;' of 16) 

II PA toe Peripheral .Address Ro:iister <I east 4 of 16) 

12 w IOC Work i nri P.eois+or ( 16) 

13 OMA PA IOC 7 '·1SB = CB & OEl; 4 LSEl = OMI\ Periph. Add. Reg. 

14 DMAMA IOC OMA Memory Address ,_r;, Direction Rcqister ( 1•) 

15 OMAC IOC OMA Count f~e'J i ster ( I(:) 

16 c toe Stack Pointer ( 16) 

17 D IOC Stack Pointer ( 16) 

20-23 AR2 EMC BCD Arithmetic Accurr.u: a tor (4 x 16) 

24 SE FMC Shi ft Extend f<:egister <least 4 of 16) 

25-27 x EMC I nterna I Arithmetic Register ( 3 x 16) 

3C-37 UNASSIGNED 

77770/ 
ARI R/~I f'/=o Arithr-ietic Register (4 '6) 

177770 x 

Not available for general use. Part of processes internal to a chip. It 
is best to pretend that these registers do not exist. 

Read register 138 produces: 

CB and DB are actually discrete 
registers, and while they can 
only be road by reading Rl3, 
storinging into Rl3 wi 11 not 
alter their values. Use the 
CBL, CBU, DBL and DBU machine 
instructions for that purpose. 
CB and DB exist in the lG-bit 
version only. 

61"; t I\ 

I - - -
tt Valueof 

Value of 
'-.,_) 

* Upper 
0 ~ Lower 
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INTRODUCTION TO THE ASSEMBLER 

INSTRUCTION FOR'\'\ T ( CON"f I ) 

NUMERIC TERMS 

A numeric term may be decimal or octal. A decimal number is represented 
by one to five digits within the range ±32767. An octal number is represented 
by one to six octal digits fol lowed by the letter B; (0 to 1777778). 

If a numeric is preceded by a plus or no sign, the binary equivalent 
of the number is used in the object code. If preceded by a minus sign, the 
two's complement of the binary equivalent is used. A negative numeric operand 
may be used only with the RET, DEC, OCT, and ABS pseudo operations. The 
maximum value of a numeric operand depends on the type of machine or pseudo 
instruction. 

THE ASTERISK 

An asterisk in the operand field refers to the value in the program 
location counter at the time the source program statement is encountered. 

EXPRESSIONS 

The asterisk, symbols, and numbers may be joined by the arithmetic 
operators + and - to form arithmetic address expressions. The assembler 
evaluates an expression and produces a value in the object code. 

Example: 

l<l>t>tl C.'P.·~··.,,. C.-•....J 
c-.. •• I ' " 

,, 
"' 

,, JO " ., ., 
" 

LOA SY M+6 AD DI 6 TO THE VA LU E 'OF SYM J I: 
ADA SY M-3 SU Bir RA CT 3 FR'OM TH Ej VA LUE OIF Is YlM: 

J I: . l 
I 

. 
I i l I I I T I : 

I . J ; l _l I I T l: 
JMP *+5 AD.D 5 T 0 T H1E co NT ENlT s OFf THE + l: . I 11 PRiO:G R~ IL10 CAT I,O N cou NT E Rj. I I I 

I i I . j + 1: . I ' I I T 1 T: : I I 

I I STB -A ]±!Ci- 4 ' AlDlDi i- 1V AILU El 01F1 A, TH E lVi~L U!E OF 1c: I 
I 

' 1 AN!D S UB TRA CT 4. f 
I I ! I . -d I . ! I I TI I T, I ! i I 

I , I I . i I I I lr I l ! I : ! 
I 

I I 

STA XT A-* l SU1BT R A'cTTT v ~uu E OF PIR 01G!RAM I I 
I I 

I I ! I I 1 LOIC1AT I O'N· C 01UiN TE R1 flRO M1 VAL U\E 01F I 
I 

I XT A. I il I l J] ! 11 l i I 

I I J I TI I 

1 
I I i ! I : -TT I T-'-I 

' I 
I j 1 _l I 

T T T ! 1 I I T 
l I i I I I I I i I 

I : ! +J_ ! ,l I ..l .J.. 
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INTRODUCTION TO THE ASSEMBLER 

INSTRUCTION FOPW\T 
EXPRESS IONS (CONT.) 

An expression consisting of a single term has the value of that term. 
An expression consisting of more than one term is reduced to a single value. 
In expressions containing more than one operator, evaluation of the expression 
proceeds from left to right. The algebraic expression A-<B-C+5) must be 
represented in the operand field as A-B+C-5. Parentheses are not permitted 
in expressions for the grouping of terms. 

The range of values tolerated by·the assembler during the evaluation of 
an expression depends upon the type of operation, and whether the assemply is 
for a 15-bit or 16-bit processor. 

INDIRECT ADDRESSING 

The processor provides an indirect addressing capability for memory 
reference i·nstructions. The operand portion of an indirect instruction contains 
an address of another location rather than an actual operand. For 15-bit 
processors the secondary location may be the actual operand or it may be 
indirect also, and give yet another location, and so forth. The chaining 
ceases when a location is encountered that does not contain an indirect 
address.* Only the initial indirect reference is possible with 16-bit 
processors; the first address accessed indirectly contains a 16-bit destination 
address. Indirect addressing provides a simplified method of address modif i-

~' cation as well as al lowing access to any location in memory. 

The assembler al lows specification of indirect addressing by appending 
a comma and the letter I to any memory reference operand. The actual 
operand of the instruction may be given in a DEF pseudo operation; this 
pseudo operation may a I so be used to ind I cate furi·her I eve Is of indirect 
addressing (for 15-bit processors). 

BASE PAGE AND CURRENT PAGE ADDRESSING 

The processor provides a capability which al lows the memory reference 
instructions to address either the "current page" or the "base page". The 
assembler adjusts al I instructions in which the operands refer to the base page; 
specific notation defining an operand as a base page reference is not required 
in the source program. Any memory reference instruction; regardless of where 
in memory it is stored, can reference an address on the base page. Things not 
located on the base page are located on one of many different current pages. 
A direct reference to a location not on the base page is possible only if the 
instruction making the reference is on the same (current) page as the referenced 
location. 

COIYMENT FIELD 

The comment field al lows the programmer to transcribe notes that wil I 
be included with the source language coding on the I ist output produced by 
the assembler. The comment field fol lows the operand field, and is separated 
from it by at least one space. 

* For 15-bit processors such an Indirect address in memory Is indicated by a one in bit 15; bits 
0-14 contain the address that is Indirect. A non-Indirect address has a zero In bit 15. 
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INTRODUCTION TO THE ASSEMBLER 

INSTRUCTION FO!mT 
CotvMENT FI ELD (CONT. ) 

The comment field is terminated by the end-of-statement mark, or by 
indirect means within OOS-M or the assembler itself. See the discussion In 
the next section. 

On I isting, statements consisting entirely of comments begin In 
position 27. Other statements begin in position 21. (The numbering assumes 
the first position is named I.) This shifts the comment to the right so that 
the label field column in the listing produced by the assembler is free of 
anything except labels and errors. This makes it easier to look for and find 
a label in the I isting. 

STATEMENT LENGTH 

The maximum length of a statement that is not a comment is 80 characters. 
Comment statements are limited to 74 characters. 

Punched cards I imit the length of a statement to what can be put on a 
single card; there is no continuation-card mechanism. This limits a statement 
to 80 characters, the end of the card acts as an end-of-statement mark. 

If the source was originally paper tape which was then stored as a 
source file on 005-M, it was truncated to a maximum of 80 characters per I ine 
by 005-M at that time. RTE has no such truncation mechanism, but the assembler ~ 
stil I limits the length of a statement to 80 characters. 

The assembler can read the source text directly from paper tape; the 
same restrictions on length apply. 

Characters beyond the I imits are ignored, and not printed on the 
I i sting. 
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ASSEMBLER PSEUDO INSTRUCTIONS 

The pseudo instructions control the assembler, as wel I as specify 
various types of constants, blocks of memory, and labels used in the 
program. Pseudo instructions also control the I isting. 

ASSEMBLER COITTRJL 
The assembler control pseudo instructions establish and alter the 

contents of the program location counter, and terminate assembly processing. 
Labels may be used but they are ignored by the assembler. 

ORG AND ORR 

I ORG m comments 

The ORG statement defines the origin (initial value of the program counter) 
of a program, or the origins of subsequent sections of programming. 

Genera I I y, a program begins with an ORG statement.* An ORG statement 
must preceed any machine instructions. The operand, m, must be a decimal 
or octal integer specifying the initial setting of the program location 
counter. 

~\ ORG statements may be used elsewhere in the program to define starting 
addresses for portions of the object code; the operand field, m, may be any 
expression. Symbols in the operand must be previously defined. Al I instructions 
fol lowing an ORG are assembled at consecutive addresses starting with the 
value of the operand. For 15-bit assemblies the maximum value of the operand 
is 777778. The value of the operand is not restrained for 16-bit assemblies. 

I ORR I comments 

ORR is an automatic reset of the value of the assembler's program 
location counter. Its action is described below. 

The assembler traps the very first value given to the program loca-~ion 
counter (by the first ORG in the program). Thereafter, as the value of the 
program location counter is incremented from that initial value by 11 natural 
consumption" of address space (any in-I ine code except ORG 1s), a duplicate 
copy of the current value of the program location counter is maintained. 
An ORG subsequent to the first one causes the duplicate value to be saved, 
and the updating mechanism to be turned off. 

The Centro I Statement, the HED i nsfruct ion, and comments may nppear prior to the ORG statement. 
See "ASSE:.'.i3LER l!JPUT AND OUTPUT" for a description of the Control Statement. 
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ASSEMBLER PSEUDO INSTRUCTIONS 

ASSEMBLER COOROL 
ORG AND ORR (CONT.) 

An ORR causes the program location counter to be re-set to its earlier 
value (that of the duplicate), and also re-invokes the mechanism for 
maintaining the duplicate, so that the process can be repeated for other 
ORG -- ORR pairs. 

Example: 

0001 A <;MH, '""I • C 
000? Hf fl llPn TFST 
000] orn; ) fl"'"~ tNITIAL VALIJF. OF PLC 
0004 f\1()1J 

OOO&:i NOP 
OOOF- O~I? NO FFFErT, !\JO SFCOr.1n ORtGTN 
0007 f\l(lP 

000).\ "lf'P 

OOOCJ ';Pf'. 

ooln nfJr- ?On·~ SF.CO"'Jn OR LATFR ORJCHN 
0011 f\!()1-> 

on 1 ;:> "'rlP 
0011 5Pf 
0014 nPr, 311n~ 

ootc; f\JOP 

OOlA tMlP 

0017 r:;Pr 

OOlA fHU~ RFSFT ORIGlf\J 
OOlQ f\t()P 

0020 '"f'\P 

0021 (HJ~ NO EFFEr.T ON PLC 
00?? f\1()1-' 

00?.1 /\.l(l p 

0024 c;Pr 
ont'c; ('\P~ 40n~ 

OO?.n ~If) P 

0027 11nP 
002~ e,pr· 
OO?Q r1PI~ RESFT OPIGIN Ar,A ll\J 
00'30 "!()µ 

0031 f\tOP 

003? F~IP 

**** I Tr:; T F"tn {H•U-1> 

NEW INSTRUCTION DEFINITION 

ASMA al lows the user to define, at assembly time, his own custom machine 
instructions. The definitions must precede the use of such custom instructions, 
and are in force for the duration of that assembly only. ASMA al lows up to 

~ 

70 custom instructions to be defined at one time. ~ 
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ASSEMBLER PSEUDO INSTRUCTIONS 

((' ASSEMBLER CONTROL 
NEW INSTRUCT! ON DEF INITW:: (CONT.) 

· inemon i c, tvpe, bit pattern comments 

Defines a rnnchine instrnction 1•1ith the 0iven 3-character- mnemonic, with 
ihc given basic bit pattern, and whose general properties (in terms of i~s 

assernb I er-generated bit fields) is one of tho types shown in the bi ·t· pattern 
tabulations in the Appendix. 

During the assembly of a program, an instruct ion in tho source coding 
is i dent if i cd by mutch i ng it against a tab I c in the c:isscrnb I er. The permaneni· 
instruction table is searched firs·t-, followed, if nccess()ry, by a search of 
table space generated by DFN's. Because of the order of this search, DFM 
cannot be used to rc-defino existing instructions. 

Each of the fields in !'he source DFN instruction may be preceded by 
lending blanks on ·t·he leH. Trai I ing blanks between the substance of the 
field and the indicated comma are not permitted. 

The type and bit pattern fie Ids arc assumed to represent octa I i nteger-s; 
do not fol low them with a 8. 

Only existing "types" may be used in DFN instructions; see the tnbulation 
of types and bit patterns in the Appendix. There is no protection against 
using an undefined or inappropriate type. To do so, however, is a sure-fire 
way to send the assembler out-to-lunch. 

Each generic type of manipulation performed by the assembler, as it 
produces an instruction, is represented by a number cal led the "type". 
The type field tel Is the assembler how to handle the newly defined instruction. 
Al I instructions of a given type CJ re processed i den'l'i ca 1 I y, except for their 
differer,ces in their basic bit patterns. Nm·1 types cannot be defined without 
modifying the source of the CJssembler itself. 

The fol lowing two examples i I lustrate the properties of "type". 

For instance, type 30 instructions never have operands or modifior-s 
Ii ke , I. Such an instruction has a f i xod 16-b it pattern, and every occur­
rence ot that instruction results in exactly that particular pattern. The 
major Hy of the Math Chip instructions, and some: of the I /0 Chip i ns·rruct ions 
are type 30 instructions. Type 30 instructions work in either 15-bit or 
16-bit assemblies. Type 46 instructions arc identical to type 30 instruct' ions, 
except that they are al lowec only in 16-bit assemblies. 

Memory reference instructions are tyr-e 16, and arc perhaps the most 
comp I icated type of instruction. The action of a type 16 instructions is 
as fol lo1·:s: 
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ASSEMBLER PSEUDO INSTRUCTIONS 

ASSEJ.1Blf R CONTROL 
NEW INSTRUCTION DEFINITION (CONT.) 

I) Evaluates an operand, al lowing expressions and a, I. 

2) Checks the resulting value for admissabi I ity, based on its 
value vis-a-vis the program location counter (is the operand 
on the current page, base page, or neither?). 

31 Sets the B/C bit (bit 10) according to whether or not the 
operand is on the base page. 

4) Creates a certain type of 10-bit reference to the operand and 
"or's" it (in the bit 0-9 positions) with the basic bit pattern. 

5) Checks for a , I fol lowing the operand, and sets bit 15 of the 
instruction if there was one. 

It is a characteristic of the assembler that it "or's'' the value of any 
computed operand into the supplied basic bit pattern. If an instruction is 
to have a four-bit field in bit:; 0-3, the basic bit pattern must be zeros in 
those bits. Likewise, any bit that is to be set by a comma I, or other 
modifier, must also be a zero in the basic bit pattern. 

Now, ty~e 16 is closed, and not avai I able for use if the processor 
includes a BPC (a most I ikely state of affairs). This is because this type 
al lows only bits I 1-14 as basic bit pattern, and 14 of the 16 possible combi­
nations specify existing memory reference instructions in the BPC. The other 
combinations are necessary ingredients of any non-memory-reference instruction. 

Examples: 

DFN QRX, 30, 076543 

This defines an instruction whose name is QRX and whose basic bit 
pattern is 076543 octa I, with no operands or modifiers a 11 owed. 

DFN QRY, 27, 076560 

This defines an instruction whose name is QRY and whose bit pattern 
is 076560 merged with a 4-bit field in bits 0-3. Other than for the 
basic bit pattern, ORY is the same as a shift-rotate instruction, as 
far as ASMA is concerned. ORY would be described thusly: 

label QRY comments 

QRY sets the brass-plated knudsen valve to o~e of 16 positions, 
depending upon the value of n; n may range from I to 16 in source, 
bits 0-3 are encoded with the binary for n-1. 

Good Luck! 

PARTITIONING A BINARY TAPE 

The assembler provides the capability to arbitrarily insert long sections 
of feed-frames in the output binary tape. This causes the loader to stop. By 
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ASSEMBLER PSEUDO INSTRUCTIONS 

(' ASSEMBLER mtITROL 
PARTITIONING A BINARY TAPE (CONT.) 

utilizing this feature, several sections of independent code can be assembled 
together, but loaded separately, or in a different order. 

$$$ comments 

Causes any binary generated to this point to be properly outputted as a 
complete record. Then causes the punching of 90 feed-frames (9 inches). 
Such a break causes the binary leader to stop loading at that point. It 
also al lows easy visual identification of the sections of a binary tape. 

$$$ may be used anywhere in a program without disturbing the validity 
of the resulting binary records on either side of the inserted feed-frames. 

CONDITIONAL ASSEMBLY 

The IFN and IFZ pseudo instructions cause the inclusion of instructions 
in a program provided that either an "N" or "Z", respective I y, is spec if i ed 
as a parameter in the control statement. The IFN or IFZ instruction precedes 
the set of statements that are to be included. The pseudo instruction XIF 
serves as a terminator. If XIF is omitted, END acts as a terminator to both 
the set of statements and the assembly. 

IFN comments 

XIF 

Al I source language statements appearing beh1een the IFN and the XIF 
pseudo instructions are included in the program if the character "N" is 
specified in the ASMB contro I sta-t ement. 

IFZ comments 

XIF 

Al I source language statements appearing between the IFZ and the XIF 
pseudo instructions are included in the program if the character "Z" is 
specified in the ASMB control statement. 

When the particular letter is not included on the control statement, the 
related set of statements appears on the assembler output I isting but is not 
assembled. 
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ASSEMBLER PSEUDO INSTRUCTIONS 

ASSEMBLER ffiNTRlL 
CONDITIONAL ASSEMBLY (CONT.) 

Any number of IFN-XIF and IFZ-XIF sets may appear in a program; however, 
they may not overlap. An IFZ or IFN Intervening between an IFZ or IFN and 
the XIF terminator results in a diagnostic being issued during assembly; the 
second pseudo instruction is ignored. 

Both IFN-XIF and IFZ-XIF pseudo instructions may be used in the program; 
however, only one type wil I be selected in a single assembly. If both 
characters "N" and "Z" appear in the control statement, the character 
which is I isted last wil I determine the set of coding that is to be included 
in the program. 

Examples: 

0001 
000? 
0001 
0004 
onoc; 
OOOf. 
0007 
0 Ol)A 

nnl)q 

0010 
on l l 
on l ::> 
0011 
0014 
on l c; 
on 1,; 
***-II-

0001 
000? 
0001 
0004 
onoc; 
non~ 

0007 
000~ 

oooq 
on 1 ri 
001 l 
001? 
**** 

r9.rn.11.1 
• "' • H 
• 
• 
• 

T F r 
l)f ~.I 1Jf.J v. 10. l 214'if. nEFlNf QPX 

• 
• 

H ()()t< ()PX 
. J~~ µ lllt.>TT 
)( J F 

• 
• 

Ft·r1 
1.T<\T Fl\ln {~ * iH~ 

A<;MH.ri.( oH•/ 

• 

TF7 
n J N/\RY TAPF IF Z TN CNTRL STMT 

nr 

• 
• 

Fl'' fl 

LJ<;T F"ln **** 
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ASSEMBLER PSEUDO INSTRUCTIONS 

("" ASSEMBLER CO~ITROL (CONT I ) 

AUTOMATIC STATEMENT REPETITION 

The REP pseudo instruction causes the repetition of the statement 
immediately fol lo1·ling it a specified number of times. 

label REP n commeni·s 

The statement following the REP in the source program is repeated n times. 
Then may be any expression. Comment I ines (indicated by an asterisk in 
character posit ion I) are not repeated by REP. If a comment fo 11 ows a l~EP 
instruction, the comment is ignored and the instruction fol lowing the comment 
is repeated. 

A label specified in i~e REP pseudo instruction is assigned to the first 
repetition of the statement. A label cannot be part of the instruction to 
be repeated; J ·t· wou Id resu It in a daub I y defined symbo I error. 

Example: 

TRIPL 

CLA 

REP 

ADA 

3 

DATA 

The above source code \'IOU Id generate the fo 11 m1 Ing: 

CLA Clear the /\-Register; 

TRIPL /\DA DATA the contents of DATA 

AD/\ DATA is tripled and stored in 

AD/\ DATA the A-Register. 

Example: 

FILL l~EP 1006 

MOP 

The cxamn I e above I oc:ids 1 00 n memory i ocat ions "'' i th the NOP instruction. 
The first location is labeled FILL. 

SOURCE TERMINATION 

ENO comments 

This statement term i mi-t·es tho program; it marks ·t·ho phys i ca I end of the 
source language statemonls. 

Tho label field of the~ END sliJlernoril is ignored. 
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ASSEMBLER PSEUDO INSTRUCTIONS 

ADDRESS AND S'flv1BOL DEF IN IT ION 
The pseudo operations is this group assign a value or a word 

to symbol which is used as an operand elsewhere in the program. 

I abel 
DEF ' m [,I ] ' 

comments 

location 

The address definition statement generates one word of memory as a 
15-bit or 16-bit address which may be used as the object of an indirect 
address found elsewhere in the source program. The symbol appearing in the 
label is that which is referenced; it appears in the operand field of a 
mel!'Dry reference instruction. 

The operand field of the DEF statement may be any positive expression. 

The expression in the operand field may itself be indirect and make 
reference to another DEF statement elsewhere in the source program. The 
, I causes the assembler to set the 16th bit of the generated word. This 
feature is not ii legal In 16-blt assembl les, although It really only makes 
sense to do it in 15-bit assemblies. 

Examples: 

0001 t n ·' I Ne:: T A IS LOftnEn WITH AnnRESS OF BUFFR+3 
000::> • 
nno1 • 
0004 
oonc; L IH~E I fl FF •41.lrF~ 

nnoA 1 ~.,~ T I) r· 1: Hll!='F0+3 

0007 
on 01~ 
OOOQ • 
o o l 11 ()j.l (~ /7nnrrn 
0011 kl IF Fr..> 11 "c:-, '• n 
001? • 
0011 
0014 
.g.-cH~U I 1 c: T F~·'') ''-tr -tr'' 
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ASSEMBLER PSEUDO INSTRUCTIONS 

flDDRESS MID SYMBOL DEFINITION (CONT I) 

Example (cont'd) 

0001 LOA HOoK,I A GETS LOADED WITH 171717 
0002 • 
0003 • 
0004 • 
0005 HOOK DEF ROOK ti THE •I SETS BIT 15 OF HOOK 
0006 • 
0007 • 
0008 • 
0009 ROOK DEF ZIPPR 
0010 • 
0011 • 
0012 • 
0013 ZIPPR OCT 171717 
0014 • 
0015 • 
0016 • 

label ABS m comments 

ABS defines a 16-bit value to be stored at the location represented by 
the label. The operand field, m, may be any expression or single symbol. 

Example: 

..... ~rOil- Os-• .... c_ .. ., 
1 ' 10 " "' " )) " •O ., ., 

IAB EQU 35 AS SI G~S THE V~L UE OIF 35 1 
1 

ITO THE SY MB OL !AB ! i : 1 

I 1 
I 

! i 1 
I 1 

!M35 fABS -AB M315 co NTIA INS -i3 5. I I 
! 

1 
! 1 

P3 5 A~S B P35 co NT AI NS 315. I I I 
1 

P7 0 ABS B+ AB P70 co NT Al NS 110. + 
1 
1 

• P30 ABS ~B -5 P30 C01N T1A I N s 3'0. i I : 

T t 

l ! l I r 
I I i 

I I I 1: ! I I I 

i 
I 

I il + 
1 

I 1 I 

T T I I I I . I I I I I I I T• 

label EQU m comments 

The EQU pseudo operation assigns to a symbol a value other than the one 
normally assigned by the program value represented by the operand field. The 
operand field may contain any expression. The value of the operand may not 
be negative. Symbols appearing in the operand must be previously defined 
in the source program. 

The EQU instruction may be used to symbol !cal ly equate two locations 
in memory; or it may used to give a value to a symbol. The EQU statement 
does not result in a machlne instruction. 
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ASSEMBLER PSEUDO INSTRUCTIONS 

ADDRESS AND SYf'1BOL DEF HHTI ON (CONT I ) 

E.·::irnple: 

·------------~------ --------

i· 
J 3 _: . ~Ef 

L DA J 3 .... ·~- - ~ 

ADA ONE 

l 
S T~A J 3+1 

J F):~_R EOJJ J 3+ 1 

\ 

M H 

CONSTANT DEFIMITia~ 

I . . . 

THE slYMBOJ >FO'UR AN!o· .J 3+ 1 so:TH 
I DE NT,II_F __ Y T!H.E. s.AME L_oc.A.T I.ON_.' _T_H E. 
AND OP_ERAT'l.O,N_ .IS. PE.RF:O.RM.ED O.N1 1 
THIS LOCATI.O;N.- 1 ! 

I 

~ -1 . 
. 1- -

I 
. I 

The pseudo instruct ions in lh i c; c I ass nnler a stri nq of one or rnon; 
constant volues into consecutive 1'/ords of the object program. The shif"erncnts 
may be named by labels; this cJI lows other pro~ram stotcments to refer to the 
strings of words ~e,eraf"ed by them. 

label ASC n, <2n characters> comments 

ASC converts a string of ?n a I phanumer i c characters in /\SC 11 code i rllo 
n consecutive \\lords.* One charcJcter is right just if ic~d in each eight bits; 
the most significant bit is zero. n ma'( be any expression rcsultirn1 in an 
unsigrcd decimal value in ih0 rdnge I throu,1h 28. Symbols used in an c~.pre:;­

sion must be previously defin(:cl. Anvthinq in HH? orerand field foll·;wirq 
2n ch2racters is treated as cornrnunts. If less than 2n characters arcJ delec:ie(j 
before the end-of-stntcment m<Jrk, the n-m1a in i ng characters arc us~;unH:cl to be 
spaces, and are stored as such. The label represents the address of the 
first two chaructors. 

Exumrle: 

T • .. 

·--t 

l·J •:r ter t~-.:: c:-~,c~·! •()r ~h,• .:1-,-- 11 ::i··/fY':, I ,d1i • ; r--.:_-t,=,r""· 1,- • i, ,n 

"I inc· 1 eed"), the· :·-·1.T t:··~1_•11ij1_'+ in'.-=-,tru,- ~ i '1 1·1,·--~ b"' 'Jc,,.ij, 
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ASSEMBLER PSEUDO INSTRUCTIONS 

~ CONSTANT DEFINITION (CONT I) 

causes the fol lowing: 

ALPHABETIC 

15 14 8 7 6 0 

TTYP~ A 

~ 
B 

I 

c D 

E A 

EQUIVALENT IN OCTAL NOTATION 
15 14 8 7 6 0 

TTYP 1 0 1 1 0 2 

1 0 3 1 0 4 
1 0 5 0 4 0 

label DEC comments 

DEC records a string of decimal constants into consecutive \'lords. The 
constants must be integers. If no sign is specified, positive is assumed. 
The decimal number is converted to its binary equivalent by the assembler. 
The label, if given, serves as the address of the first word occupied by 
the constant. 

The decimal integer must fal I within the fol lowing range: -32768 to 
32767, including zero. Absolute values of 32769 or greater result in an 
error. Avoid ±32768. It results in the same binary result as for -32768; 
namely, 100000. Each decimal integer appears as one binary word and appears 
as fol lows: 

15 14 0 

s1GN.-s-j s I number 

Example: 
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ASSEMBLER PSEUDO INSTRUCTIONS 

CONSTANT DEF IN IT ION (CONT I ) 

causes the fol lowing (octal represcntCJtion): 

15 14 0 

INT 0 0 0 0 6 2 

0 0 0 5 1 0 

1 7 7 3 2 4 

label OCT o
1
[,o.,, ... ,o J 

L n 
comments 

OCT stores one or more octal constants in consecutive words of the object 
rrogrcim. Each constant consists of one to six octal digits (0 to 177777). If 
no sign is given, the sign is assumed to be positive. If the sigr is negative, 
the two's comrlemen+ of the binary equivalent is stored. Tne constants are 
separared by commas; the I 3st constant is terminated by a space. If I ess 
than six digits are indicated for a constant, the data is right justified 
in the \·lord. A label, if used, acts CJS the address of the first constant 
in the string. The letter B must not be used after the constant in the 
orerand field. 

Example: 

I 

-··- -- --~ - ·----------t-· ----------· 
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ASSEMBLER PSEUDO INSTRUCTIONS 

<tr"· CONSTJWf DEFINITION (CONT I) 

The previous statements are stored as fol lows: 

1514 0 

0 0 0 0 0 0 

1 7 7 7 7 6 

NUM 0 0 0 1 7 7 

0 2 0 4 0 5 

1 7 7 7 4 2 

0 0 0 0 5 1 

0 7 7 7 7 7 

1 7 7 7 7 7 

0 1 0 1 0 1 

1 0 7 6 4 2 
1 7 7 0 7 7 

x x x x x x 
0 0 0 0 0 1 

x x x x x x 

STORAGE ALLOCATION 

[/ 
THE RESULT OF 
ATTEMPTING TO 
DEFINE AN ILLEGAL 
CONSTANT IS UN­
PREDICTABLE 

The storage a I I ocat ion statement reserves a b I ock of memory for data 
or for a work area. 

label SSS m I comments 

The SSS pseudo operation advances the program location codnter according 
to the value of the operand. The operand field may contain~any expression 
that results in a positive integer. Symbols, if used, must be previously 
defined in the program. The label, if given, is the name assigned to the 
storage area and represents the address of the first word. The initial 
content of the area set aside by the s-rd'tement is unaltered by the loader. 

ASSEMBLY LISTING COtITROL 
Assemb I y Ii sting contro I pseudo instruct ions a 11 ow the .Jser to control 

the assembly I isting output during the assembly process. 

UNL comments 

Output is suppressed from the assembly I isting, beginning with the UNL 
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ASSEMBLER PSEUDO INSTRUCTIONS 

ASSEMBLY LISTI NG COITTROL (CONT I ) 

pseudo instruction and continuing for al I instructions and comments unti I 
either an LST or END pseudo instruction is encountered. Diagnostic messages 
for .:;rrors encountered by the assemb I er w i I I be printed, however. The source 
statement sequence numbers (printed in columns 1-4 of the source program 
l istlng) are incremented for the instructions skipped. 

LST comments 

The LST pseudo instruction causes the source program listing, terminated 
by a UNL, to be resumed. 

A UNL fol lowing a UNL, a LST fol lowing a LST, and a LST not preceded by 
a UNL are not considered errors by the assembler. 

SUP comments 

The SUP pseudo instruction suppresses the output of additional code I Ines 
from the source program I !sting. Certain pseudo insi-ructions generate more 
than one I ine in the I !sting. These additional I Ines are suppressed by a 
SUP instruction until a UNS or the END pseudo Instruction in encountered. 
SUP wil I suppress additional I ines in the fol lowing pseudo instructions: 

ASC OCT DEC 

UNS comments 

The UNS pseudo instruction causes the printing of additional I !sting 
I ines, terminated by a SUP, to be resumed. 

A SUP preceded by another SUP, UNS preceded by UNS, or UNS not preceded 
by a SUP are not considered errors by the assembler. 

SKP comments 

The SKP pseudo instruction causes the source program I isting to skip 
to the top of the next page. The SKP instruction is not listed, but the 
source statement sequence number is incremented for the SKP. 

SPC n 

The SPC pseudo instruction causes the source program I !sting to include 
a specified number of blank I Ines. The I 1st output skips n blank I Ines, 
or to the bottom of the page, whichever occurs first. Then may be any 
absolute expression. The SPC instruction itself is not I isted, but the 
source statement sequence number is incremented. 
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ASSEMBLER PSEUDO INSTRUCTIONS 

f:" ASSEMBLY LISTING Crt'ITROL (CONT I) 

I HED <heading> 

The HED pseudo instruction allows the programmer to specify a heading 
to be printed at the top of each page of the source program listing. 

The heading, m, (a string of up to 56 ASCII characters), is printed at 
the top of each page of the source program I isting fol lowing the occurrence 
of the HED pseudo instruction. If HED is encountered before the ORG at 
the beginning of a program, the heading wil I be used on the first page 
of the source program listing. A HED instruction placed elsewhere In the 
program causes a skip to the top of the next page. 

The heading specified in the HED pseudo in~truction wil I be used on 
every page unti I it is changed by a succeeding instruction. 

The source statement containing the HED wil I not be I isted, but source 
statement sequence number wil I be incremented. 
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ASSEMBLER INPUT AND OUTPUT 

The assembler accepts as input: paper tape; punched cards; magnetic 
tape; disc source files. The output produced by the assembler consists 
of a I isting containing diagnostics, and a punched paper tape containing 
the object program. The assembler can also automatically begin the 
execution of the cross reference program, following the assembly. 

THE CDNTROL STAIB·fNT 
The control statement specifies whether to assemble for 15-bit or 16-bit 

processors, and specifies the output to be produced by the assembler. 

"ASMB," is entered in positions I through 5. Fol lowing the comma are 
one or more parameters, in any order, which define the output to be produced. 
The parameters may be any legal combination of the following, starting in 
position 6: 

F Fifteen-bit: The assembler assembles for processors that 
utilize 15-blt addressing. 

s 

A 

R 

B 

Sixteen-bit: The assembler assembles for processors that 
utilize 16-bit addressing. 

Absolute: The assembler assembles for fixed-page addressing; 
the 10-bit address fields for memory reference instructions 
are generated according to the absolute addressing scheme. 

Relative: The assembler assembles for relative-page addressing; 
the 10-bit address fields for memory reference instructions are 
generated according to the relative addressing scheme. 

Binary Output: The non-relocatable object program (which 
is either absolute or relative) is punched on the punch 
device. 

L Program Listing: A program listing is produced on the I ist 
device. The I isting is annotated with diagnostics, should 
errors be detected in the program during assembly. 

T Symbol Table Listing: A I isting of the symbol table generated 
by the assembler is produced. This I isting precedes a 
program I isting, regardless of the order of the respective 
parameters. The symbol table I isting occurs in the order the 
symbols are defined, beginning with pre-defined symbols. 

Do not confuse this I !sting with the cross reference. 
This I isting is produced by the assembler; the cross reference 
is produced by a separate program, cal I able by the assembler, 
and also as a stand alone program by the user. 

N Inc I ude sets of instructions fo 11 owing the I FN pseudo instruction. 

z 
c 

Include sets of instructions fol lowing the IFZ pseudo instruction. 

Begin the cross reference program CXRFA) immediately after assembly. 
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ASSEMBLER INPUT AND OUTPUT 

THE CONT[)L STAID'Ei'IT (coNT.) 

Either For S must be specified. Likewise either A or R must be specified. 
Also, one of B, L,~T must be specified. Specifying C is optional. Also 
the control statement must be the very first statement in the program. 

lHE SOURCE PROGIW-1 
The first statement of a program must be a control statement; no other 

control statements are al lowed in the program. The next statement required 
before assembly can proceed in an ORG statement. However, HED and comment 
statements can occur between the control statement and the first ORG 
statement. But no other types of statements may precede the first ORG. The 
last statement must be an END statement. 

THE LISTING 
Fields of the object program are I isted in the fol lowing prir.t columns. 

Columns 

2-5 

6 

7-12 

13 

14-19 

20 

21-100 

Content 

Blank 

Source statement sequence number generated by 
the assembler 

Blank 

Location (octal) 

Blank 

Object code word in octal 

Blank 

First 80 characters of source statement 

Lines consisting entirely of comment (i.e., *in column 1) are printed 
as fol lows: 

Columns 

2-5 

27-100 

Content 

Blank 

Source statement sequence number 

Up to 74 characters of comment 

A symbol table I isting has the fol lowing format: 

Co I umns Content 

Blank 

2-6 Symbol 

7-8 Blank 

9-14 Value of the symbol 
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ASSEMBLER INPUT AND OUTPUT 

THE LISTING (CONT.) 

I nterna I I y, 1\SM1\ is a tv10-pass process. During the first pass a 
symbol table is generated, and if the source is from a device other than 
the disc, the source is read onto the work area of the disc. in preparation 
for the second pass. It is at the end of the first pass tlwt a I i sting of 
the symbol table is printed, if requested. The second pass generates the 
program I isting and the actual objed program (binary tape). 

At the end of each pass, the fo I I O\'i i ng is printed:* 

**NO ERRORS* 
or 

**nnnnERRORS* 

The value nnnn indicates the number of errors. 

BINARY OUTPUT 
A binary output tape 

the format shown below. 
words long. 

consists of a series of records; each record has 
Records vary in length, but are maximum of 67

10 

During the second pass of assembly, the object binary is accumulated in 
a buffer. The contents of the buffer wi I I become a record on the output 
tape. A record is punched when the buffer gets ful I, or when it is necessary 
to begin a ne\oJ record. Instructions I ike ORG, SSS and $$$ah-Jays cause ·t·he 
accumulated previous record to be punched (unless the buffer was empty), 
and a new record started. 

The numbers refer ~o the :iur:iber ~>f orrors det,;clcrJ dlir·ing each p<1'.;s only; it is possible for 
ei Hier nur:iber lo be zero while the other is not, Always check t>oth numbers, not just the one ,JI 
the end of 1'11n listing. Also, 1i.1';', one error diagnostics arc~ '.;lruply printed, by t·hernselvcs, ill 
the start of tlw listing; they include the error mner:10nic as well '15 the offending statemm1t. 
Pass two error didgnostics are mcr(]cd with th0 I ist ir1g ~roo(~r; the diagnostic itself has the sume 
form as for p:lss one, but irr.meci,)1ely prece~:ds regular I ist ing of th~'! offencJin9 ~t(1:crncnt. I! i~ 

poss i b I e for a Cef ec: i Vt~ srat.:-r·h~·n t to ;Jroduc•:- r.-.. 'Jr~~ ~ han one di dqno~ tic message. 
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ASSEMBLER INPUT AND OUTPUT 

~' B !NARY OUf PUT (coNT. ) 

IS 

15 

RECORD 
LENGTH 

87 

WORD It 

CONTENT 

01514 

015 

OBJECT TAPE FORMAT 

ABSOLUTE 
LOAD 

ADDRESS 

WORD 2 

INSTRUCTION 
WORD. 

I 

WORD n-1 

015 

0 15 

INSTRUCTION 
WORD 1 

WORD J 

CHECKSUM 

WORD n 

tEach word represents two frames arranged as follows: 

Bil 8 - Bil O 

Fel'd lloles 

Bil 15 Bil 7 

~ Tape Travel 
ASSEMBLER-29 

0 

0 

EXPLANATION 

RECORD LENGTH"' NUMBER OF 
WORDS IN RECORD EXCLUDING 
WORDS 1 AND 2 AND THE 
LAST WORD. 

ABSOLUTE LOAD ADDRESS: 
STARTING ADDRESS FOR 
LOADING THE INSTRUCTIONS 
WHICH FOLLOW 

INSTRUCTION WORDS: 
ABSOLUTE INSTRUCTIONS 
OR DATA 

CHECKSUM: ARITHMETIC 
TOTAL OF ALL WORDS 
EXCEPT FIRST AND LAST 
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~ AS.SEMBLER ERIUR f'ESSl\GES 
During the assembly of a program, error messages are printed on the 

I ist output device to aid the programmer in debugging programs. Errors 
detected in the source program are indicated by I- or 2- letter mnemonic 
fol lowed by the sequence number and the first 62 characters of the statement 
in error. The messages are printed on the output device during the passes 
indicated. 

Error 

Code and Pass 

cs 

DD 

FU 

IF 

IL 2 

Description 

Control statement error: 

a) The control statement contains 

a parameter other than one in 

the legal set. 

bl Neither /1 nor R, or both A and 

R, arc specified. 

cl Neither S nor F, or both S and 

F, are specified. 

dl There Is no output parameter 

CB, T, or U. 

Doubly defined symbol: A name 

defined in the symbol table appears 

more than once as: 

al A label of a machine instruction. 

bl A label of one of ii1e pseudo 

operations: 

BSS 
ASC 

DEC 

DEF 

EQU 
ABS 

OCT 

Too many DFN statements. 

An IFZ or an IFN follows either 

an IFZ or an IFN without an 

intervening XIF. The second 

pseudo Instruction is ignored. 

Illegal character: A numeric term 

used in the operand field contains 

an i 11 ega I character (e.g. an octa I 

constant contains other than +,-, 
or 0-7l. 

Error 

Code and Pass 

1,2 

NO I ,2 

APPEND TX-I 

Description 

Illegal operand: 

al Operand is missing for an 

opcode requiring one. 

b) A negative operand is used with 

an opcode fleld other than ABS, 

or OCT. 

cl A character other than I 

fol lows a comma in one of the 

following statements: 

LDA ADB AND 

LDB STA DSZ 

CPA STB IOR 

CPS JSM JMP 

ADA I SZ DEF 

dl A character other than S or C 

fol lows a cor.ma In one of the 

following statements: 

SLA 

SLB 

RLA 

RLB 

SAM 

SBM 

sos 
soc 

SAP SES 

SBP SEC 

e) An illegal operator a~pears in 

an operand field (e.g. +or -

as the last character>. 

f) An integer expression in an 

Instruction does not meet a 

size requirement. 

No origin definition: The first 

statement in the assembly containing 

a valid opcode fo 11 ow Ing the ASMB 

Control Statement (and remarks and/or 

HED, if present) is not an ORG 

statement. 
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ASSEMBLER ERROR MESS~GES (CONT I ) 

Error 

Code and Pass 

OP 1,2 

OP 1,2 

OP 2 

ov 1,2 

so 

SY 1,2 

Description 

Illegal opcode preceding first 

valid opcode. Also, a comment 

falls to not contain an 

asterisk in position one. The 

statement is assumed to contain 

an i I t ega I opcode; i t I s treated 

as a remarks statement. 

Illegal opcode: A mnemonic 

appears Jn the opcode f leld which 

I s not va I id. A word ~ generated 

in the object program, however. 

Opcode is valid in 16-blt assembl les, 

but invalid in present 15-blt 

assembly. 

Numeric operand overflow. The 

numeric value of a term or expression 

has overflowed its I imit. 

There are more symbols def lned in 

the program than the symbol table 

can handle. 

11 legal symbol: A label field 

conta ins an i I I ega I cha racier or is 

greater than 5 characters. A label 

wirh illegal characters may result 

in an erroneous assembly if not 

corrected. A long label is truncated 

to the left-most 5 character. 

Error 

Code and Pass 

SY 2 

UN 1,2 

APPENDIX-2 

Illegal symbol: A symbol le term In 

the operand field Is greater than 

five characters; the symbol Is 

truncated to the left-most 5 

characters. 

Undefined symbol: 

al A symbolic term in an operand 

field is not defined in the 

label field of an Instruction. 

bl A symbol appearing in the 

operand field of one of the 

following pseudo operations 

was not defined previously In 

the source program: 

SSS ASC EOU ORG 
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BINARY LOADERS 
There are two basic approaches to loading a binary object program into 

memory. 

The first (and the simplest and most primitive) 
basic binary loader for the 2100-series computers. 
is a 30 to 50 word program that must be resident in 
the BPC system's memory. This program performs the 
while understanding the format of the binary tape. 
to note about this approach: 

way is to imitate the 
With this approach there 
some unused portion of 
necessary input activity 
There are several things 

I. The binary loader itself can only be loaded by hand - a tedious and 
error-prone activity. This is an especially grievous drawback if 
no non-volatile memory is available to contain the loader. 

2. It is possible that the system under development might eventually 
not have room in memory for a resident loader. 

3. If the system does not have an IOC, a special interface to the IDA 
bus is necessary. These come in two flavors: 

a. Build a special interface that acts I ike a memory address. It 
can be set to respond to an unused register address (very easy 
if RAL is used) or to a non-existent or non-decoded main-memory 
address. To load a byte In A from a photo reader whose interface 
thinks it is location 300, the loader would do a LOA 308. The 
interface recognizes the memory address as its own, starts the 
photo reader and gets the byte, and holds the byte on the IDA 
bus, giving Memory Complete only when al I photo reader activity 
is complete. In this way no special handshake is required, and 
to read a word from the tape it is necessary only to: 

LDA 308 
SAL 8 
IOR 308 

b. Use a Model 30, or other calculator, programmed to read the 
data from the photo reader. The calculator sends the data to 
the IDA bus through an I 1202-818 combination Cs! ightly 
supplemented) - all of which are off-the-shelf components. 
This al lows a somewhat simpler interface and also a simpler 
resident binary loader: the check-sum can be checked and then 
removed from the instruction-word-stream by the program in the 
calculator. 

The I 1202-BIB combination must be supplemented with memory 
address decoding; however the existing Flag convention can 
take the place of the missing Memory Complete circuitry. The 
resident binary loader stil I addresses memory to get a byte 
from the reader: 

LDBYT 

l/OAD 

SFC 
LOA 
SAL 
SFC 
IOR 

DEF 

LDBYT 
I /OAD, I 
8 

* 
l/OAD, I 

XXX ADDRESS DECODED BY INTERFACE 
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BI NARY LOADERS (CONT I) 

The second general approach is much more sophisticated, but is a lot 
easier. It is to use the ET-8332. The ET-8332 is much more than just a 
loader; it is that in addition to being a ful I-scale test apparatus for 
control ling traffic on the IDA bus and debugging software. It is control led 
by software executed by a Model 30, and has many useful features. As far 
as loading is concerned, no resident loader is required in the memory of 
the BPC system under development, and object code can be stored on a disc. 
The ET-8332 is generally considered superior to an ordinary single-step­
tester. 
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OUTPUT PAPER TAPE FOPmT 

15 

15 

ABSOLUTE BINARY OBJECT PROGRAM 

RECORD 
LENGTH 

87 

WORD 1 t 

CONTENT 

01514 

0 15 

ABSOLUTE 
LOAD 

ADDRESS 

WORD2 

INSTRUCTION 
WORDi 

WORD n-1 

015 

0 15 

INSTRUCTION 
WORD 1 

WORD 3 

CHECKSUM 

WORD n 

0 

0 

tEach word represents two frames arranged as follows: 

Bit 8 - Bil 0 

Fl'cd Holes 

Bit 15 Bit 7 

Tape Travel 
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EXPLANATION 

RECORD LENGTH= NUMBER OF 
WORDS IN RECORD EXCLUDING 
WORDS I AND 2 AND THE 
LAST WORD. 

ABSOLUTE LOAD ADDRESS: 
STARTING ADDRESS FOR 
LOADING THE INSTRUCTIONS 
WHICH FOLLOW 

INSTRUCTION WORDS: 
ABSOLUTE INSTRUCTIONS 
OR DATA 

CHECKSUM: ARITHMETIC 
TOT AL OF ALL WORDS 
EXCEPT FIRST AND LAST 
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ADDING PRE-DEFINED S'tMOOLS TO A'l"A 
It is a relatively easy task to add pre-defined symbols to ASMA. What 

is necessary is the creation of some extra source text for ASMA! and ASMA4. 
Both must be changed; whatever modif icatlon made to one must also be made 
to the other. After modification, these segments must be re-assembled, 
and the entire program collection re-loaded. 

Below is a partial source listing of ASMAl and ASMA4, in the vicinity of 
lines 415-430. (The exact location in each keeps changing over time. I give 
up trying to keep this page accurate). 

0411 COUlllT DEC 58 
0412 PRELD OCT 20101•0 A REG = 0 
0413 OCT 20102.1 B REG = 1 
0414 OCT 20120.2 p REG = 2 
0415 OCT 20122,3 R REG = 3 
0416 OCT 30122•32040•4 R4=4 
0417 OCT 30122,32440,5 RS=S 
0418 OCT 30l22t33040t6 R6=6 
0419 OCT 30122t33440t7 R7=7 
0420 OCT 30111'53040•10 IV 
0421 OCT 30120.40440,11 PA 
0422 OCT 20121.12 w 
0423 OCT 40104t46501,S010ltl3 DMAPA 
0424 OCT 40104•4650lt4650ltl4 OMAMA 
0425 OCT 40104t4650lt41440tl5 UMAC 
0426 OCT 20103•16 c 
0427 OCT 20104tl7 D 
0428 ARlAD OCT 3010lt5106lt77770 ARI 
0429 OCT 30101•51062.20 AR2 = 20 
0430 OCT 30123t42440t24 SE - 24 
0431 OCT o.o.o.o.o DUMMY END OF SYMBOL TARLE 
0000 LIST END 0000 

Here Is how to add a pre-defined symbol: 

I. The symbol to be added must, in every way, conform to the rules 
for labels and their permissible values. 

2. If the symbol has an even number of characters, imagine that it 
has a trail Ing blank ( t> ) as the right most character, so that 
the "number of characters" is a 1 ways odd. 

3. Using the ASCII conversion table in this appendix, convert the 
symbol into one or more octal integers. Note how the left-most 
character is right-justified into an al I-zero word. 

OOGG 

OOGG t> 
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al I zeros= 000000 

D =+000104 

000104 Alli\ 
J 
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ADDING PRE-DEFINED SYMBOLS TO ASML\ 
3. 

4. 

(cont.) 
0 = 047400 

G = +000107 

047507 

G = 043400 

1> = +000040 

043440 

So far we have the sequence: 

000104, 047507, 043440 

The next step is to add one more word, representing the octal 
value of the symbol. Suppose DOGG is to equal 778. Then this 
generates the sequence: 

000104, 047507, 043440, 000077 

5. ·Count the number of words (in this case 4). Insert this number 
into the first word exactly as shown below: 

040104, 047507, 043440, 000077 
t 

6. Create an OCT statement that wil I generate the same sequence of 
words: 

OCT 40104,47507,43440,77 

Note that leading zeros may be omitted. 

7. One other change in the program source text is necessary: 
The value of the word cal led COUNT must be changed Cline 398 
in ASMA4). COUNT is the total number of words in the symbol 
table pre-load. 

In our example, we are adding four words. So COUNT would change 
from its base value of 58 10 to: 

COUNT DEC 62 

8. Prepare edits that wi I I change COUNT to its new value in both 
ASMA! and ASMA4, and that wil I insert the new octal constants 
between I ines 418 and 419 of ASMAI and between I ines 417 and 418 
of ASMA4. 

9. Make the edits, re-assemble, and re-load. 

10. You can verify proper behavior of the symbol table pre-load, as 
wel I as obtain a complete I ist of the pre-loaded symbols, by 
assembling any program including a T in its Control Statement. 
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A'1DING PRE-DEFINED SYMBOLS Tc Asr'll\ <coNr.) 

The symbols that are pre-defined by the assembler are shown below. With 
the exception of ARI, al I these symbols refer to registers within the various 
elements of the system. 

REGISTERS & ASMA PRE-DEFINED SYMBOLS 

Oda I 
Address Ncime Location Description (II of Bits) 

0 1; SP: t,ri thl'1et i c Accumulator ( 16) 

I B BPC .A. r i t hmP t i c 1\ccumu I a1or ( 16) 
-· ----- --- -

2 p BPC Progr-ar~ Loca Ii on Counter (I east 15 of 16 or 16) 

3 R BPC ~etur·n SL1ck rointer <I cast 15 of 16 or 16) 

'· 
..--., .~ 

·~, .. IOC Peripheral i1ctivity C'esi1-iator (-) 

~ R~ )'"" 
~·~ f'er i ;:;her<: I !1ct iv i ty ~·esi1,1atior. (-) 

6 R6 IOC Peripheral /1ct i vi ty Cesignator (-) 

7 R7 IOC Peripherul Activity DesiCjnator (-) 

10 IV IOC lnterru~I Vector ( u r~~~er I:' of 16) 

II P/1 IOC Per-ip·it:r-JI i10Jress r?.?:~ is t~Jr (lec:s- .. ,;Ji 1::.) 

12 \•.1 IOC Work T no ;~~'lr~ is t t_:r (If.) 

13 DMAP/\ IOC ,., 
MSG = :;[1 &. DB; 4 LSG .. [)~1!\ 0 eriph. 1\dd. ~eg. .._ 

14 DMAMf\ IOC OMA Memory Address ,~'. [; i r<'C t i Ori Rcq i •, l<,r (I') 
-

15 DM1\C IOC ~~.!A r'- lo ,_nun, '·~Q:-: is ter ( lt:1l 

16 c IOC Stack t'o int.,r ( 16) 

17 D IOC Stack ?o i :1tc·r ( 16) 

20-23 AR? EMC BCD !1rithme·1 ic .~,ccurnu I di ur (tl x 16) 

?4 SE EMC Shi ft lx:cnd Register (I OdSt 4 of 16) 

:i:,-27 x [VC Int er n,J I r11· i tr.met i c R·::g i ·:,!er ( 3 x 16) 

3J-37 LJ'i1\S 51 Gi::::O 

77770/ 
1\R I ~/·.-· &::1 ·~ r i t firrh? t i c Register ( .1 x !Gl 

177770 

Not available for general use. Part of proces~;es internal to a chip. It 
is best to protcnc that these registers dn riot exist. 

Road register 13
8 

produces: 

CB and GB are actually discrete 
registers, and while they can 
only be read by reading Rl3, 
storinging into Rl3 wi II not 
a I ter their vc1 I ucs. Use the 
CBL, CBU, Q6L cJnd DBU ma ct i n0 
instructions for that purpose. 
Cb and DB exist in tne 16-bi t 
version only. 

rua;t IS 

I - - -
1L\al ue 

Value 
\.._,_/ 

? Upper· 
0 ? Lower 
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IBE STRUClURE OF THE ASSEMBLER 
The assembler is a segmented program that can run under either DOS-M 

or RTE. The names of the segments are: 

ASMA the ma i n segment 
ASMAD overlay segment 
ASMA! overlay segment 
ASMA2 overlay segment 
ASMA4 overlay segment 
ASMA5 overlay segment 

Note that there is no ASMA3. Special procedures are required when 
loading segmented programs; see the operating manual for your system. 

The differences between the 005-M version and i·he RTE version is 
entirely contained within ASMA (main segment). Whether ASMA is for OOS-M 
or for RTE is control led at the time ASMA itself is assembled Cby ASMB, the 
regular assembler). It is merely a matter of an Nor a Z in the Control 
Statement of the source for ASMA (main segment only). This is fully 
explained by the comments in the I isting. 

The ii lustration on the next page is a pictorical representation of 
ASMA when it is in core. 
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Length of ASMA: 

approximately 

6200 8 (varies 

from RTE to 

DOS-M> 

Approximate 
Segment Lengths: 

AS MAD 550 8 

1\Sr.iA I ll 75a 

ASMA2 14450 

A31·iA4 ll 70a 

ASMA5 1430a 

APPENDIX 

Order of execution: 
=:~~~~-~~~ 

Relative 
ASMA 

Non-Relative ("Absolute") 
ASMA 

AS MAO ASMAO 
ASMA I (uses ASMA) 
ASMA2 (uses ASMA) 

ASMA4 (uses ASMA> 
ASMA5 (uses ASMA) 

J 

a: Main Instruction Table 

DFN Instruction Table 

Various uti I ity subroutines common 
to relative and absolute assemblies 

D} Col I ection of shared constants 
2250 words 

------------------Self-destructive code P/0 ASMAO 

The segments have; different lengths 1 

Length of XRFA: ~~ 

approximately 42600 

~ Symbol Table 
L-~~~~~~~~~~~~~~~~~--t 

Binary Loader 

APPEND I X-10 

~ System Load Address 

j 
'> ASMA 
I 

4 Actua I over I ay point 

~ 
for every segment 

ASMAD Clst segment 
executed) 

~Effective overlay 
point for al I seg­
ments except ASMAD 

Each ~rogram has a 
BSS 2258 and a I ist 
of EQU's into that 
area to recover the 

~ constants 

The Assembler ccmputes 
this address based on 
its own length 

_ ./ Max address I ess 
¥ basic loader 

~The Assembler knows how 
to get this address from 
the System. 
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PSEUOO INSTRUCTIONS 

ABS m 

Defines a 16-bit value to be stored at the 

location represented by the label. 

(ASMA: Assembler-19) 

ASC n, < 2n characters > 

Converts a string of 2n alphanumeric characters 

in ASCII code into n consecutive words. 

CASMA; Assembler-20) 

BSS m 

CLA 

CLB 

Advances the program location counter according 

to the value of the operand. 

(ASMA: Assemb ler-23) 

Clear A. The assembler turns this mnemonic into 

an SAR 16 (shift A right 16). This has the effect 

of clearing the A register. CBPC: lnstructions-4) 

Clear B. Similar to CLA. CBPC: lnstructions-4) 

DEC d1[,dz, •••• ,dnJ 

Records a string of Integer decimal constants 

into consecutive words. (ASMA; Assembler-21 l 

DEF m [,I] 

Gencra'fes one word of memory as a 15-b it or 16-b 11' 

address which may be used as the object of an 

indirect address found elsewhere In the source 

program. CAMSA: Assembler-IS) 

OFN < mnem:inic >, < type >, < bit pattern > 

ENO 

Def Ines a ma chi no instruct I on with ·t·he g i von 

3-character mnem:inic. (ASMA: Assembler-13) 

Terminates the program; marks tho physical end 

of the source language statements. 

(ASMA: Assembler-17) 
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EQU m 

Assigns to a symbol a value other than the one 

normally assigned by the program location 

counter. CASMA: Assembler-19) 

HED < heading > 

IFN 

IFZ 

LST 

NOP 

Al lows the prograrrmer to specify a heading to be 

printed at the top of each page of the source 

program Ii sting. <ASMA: Assemb I er-25l 

Source language statements after IFN and before 

the next XIF are included in the program If the 

character "N" Is spec If i ed In the ASMB contro I 

statement. (ASMA: Assembler-15l 

Source language statements after the IFZ and 

be fore the next XI F pseudo i nstruct i on s a re 

included In the program if the character "Z" 

is specified in the ASMB control statement. 

C/1SMA: Assemb I er-15 l 

Causes the source program listing, terminated 

by a UNL, to be resumed. (ASMA: Assembler-24) 

Null operation. The assembler turns this 

mnemonic into a LOA A. CBPC: lnstructions-4) 

OCT 01[,02, •••• ,On] 

Stores one or more integer octal constants in 

consecutive words of the object program. 

(ASMA: As semb I er-22 l 

ORG m 

ORR 

Defines the origin of a program, or the origins 

of subsequent sections of prograrrming. 
(ASMA: Assemb I er- I I ) 

Automatic reset of the value of the program 

location counter. (ASMA: Assembler-Ill 
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PSEUOO INSTRUCTIONS (coNr.) 

REP n 

SKP 

Causes the repetition of the next si'atement a 

specified number of tirr.es. 

( ASf.V\: Assemb I er- I 7 l 

Causes the source program I isting to be skipped 

to tho top of the next page. 

<ASMA: Assembler-24) 

SPC n 

SUP 

Causes the source program I istlng to be skipped 

a speci f ied number of I i nes. 

<ASMA: Assembler-24) 

Suppresses the output of additional code I ines 

from the source program listing. 

CASMA: Assembler-24) 

Ml\CHINE INSTRUCTIONS 
MRn 

Arithmetic right shift of A. A is shifted right 

n places with the sign bit (bit 15l filling al I 

vacated bit positions. CBPC: lnstructions-5) 

ABR n 

Arithmetic right shift of B. B is shifted right 

n places with the sign bit Cb it 15l f i I I ing al I 

UNL 

UNS 

XIF 

$$$ 

CBL 

CBU 

vacated bit positions. CBPC: Instruct ions-5 l CDC 

ADA m [.I] 

Output is suppressed from the assembly I I sting 

for all subsequent Instructions and cor.vnents 

until either an LST or END Is encountered. 

<ASMA: Assemb I er-23) 

Causes the printing of additional coding I Ines, 

terminated by a SUP, to be resumed. 

(ASMA: Assembler-24) 

Terminates conditional assembly text. 

CASWA: Assembler-15) 

Causes any ilS yet un-outputted binary to be 

properly outputted as a complete record. 

(ASMA: Assembler-15) 

C Block Lower. Clears the CB register. 16-blt 

IOC only. (IOC: lnstructions-13) 

C Block Upper. Sets the CB register. 16-blt 

IOC only. ( IOC: lnstructions-13) 

CI car Dec i ma I Carry. ( Et·t::: Instruct i ons-18 l 

Add the contents of m to A. 

< BPC: Instruct ions-2) 

CLR N 

AOB m [.I] 

Add the contents of m to B. 

(BPC: lnstructions-2) 

AND m [.I] 

Logicill "and" of A and m: the result is left In 

A. <BPC: lnstructions-31 
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CMA 

Clear N words. This instructions clears 1-16 

consocui·lve words, beginning with location < A >. 

CEMC: lnstructions-16> 

Complement A. The A register is replaced by Its 

one's (bit by bit) complement. 

<BPC: Instructions-IOI 
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r ~CHINE INSTRUCTIONS CcoNT.) 

CMS 

CMX 

CMY 

Complement B. The B register Is replaced by Its 

one's Cbit by bitl complement. 

CBPC: Instructions-IQ) 

Ten's complement of ARI. 15-blt version has 

a OMA-re I ated bug. (EM'.:: Instruct ions- 17 l 

Ten's complement of AR2. (EMC: Instructions-IS) 

CPA m [,I) 

Compare the contents of m with the contents of 

A; skip if unequal. CBPC: lnstructions-21 

CPB m [,I] 

DBL 

OBU 

DOR 

Compare the contents of m with the contents of 

B; skip if unequal. CBPC: lnstructions-2) 

D Block Lower. Clears the OB register. 16-blt 

IOC only. CIOC: lnstructions-13) 

D Block Upper. Sets the DB register. \6-bit 

IOC only. CIOC: lnstructions-13l 

DSZ m [,I] 

EIR 

Decrement m; then skip if zero. 

(BPC: lnstructions-3) 

Enab I e the Interrupt system. 

( IOC: lnstructions-14) 

EXE 0 ~ m ~ 37e [,I) 

FDV 

FMP 

Execute register m. The contents of any register 

can be treated as the current instruction, and 

executed in the normal manner. The next 

Instruction executed wll I be the one fol lowing 

the EXE m, unless the code in m causes a branch. 

15-blt version has minor bug related to Interrupt. 

CBPC: Instruct i ons-1 I l 

Fast Divide. The mantissas of ARI and AR2 are 

added together until the first decimal overflow 

occurs. The result of these additions accumulates 

in AR2. CEMC: lnstructlons-19) 

Fast Multiply. The mantissas of ARI and AR2 are 

added together (along with DC as D12l < Bo-3 >­

times; the result accumulates in AR2. 
CE~'C: lnstructions-19) 

Disable Data Recuest. Cancels the OMA Mode and FXA 

DIR 

OMA 

DRS 

the Pulse Count Mode. 15-blt version has DMA-

related bug; DOR Is usable In the 16-blt version 

only. CIOC: lnstructions-15l 

Disable the Interrupt system, cancels EIR. 

( IOC: lnstructions-14l 

Enable the OMA mode. Cancels PCM and DOR. 

CIOC: lnstructlons-15) 

Mantissa right shift of ARI one time. 

CEMC: Instruct ions-I 7l 

APPENDIX-13 

Fixed-point addition. The mantissas of ARI and 

AR2 are added together, and the result is left 

In AR2. CEMC: lnstructlons-18l 

IOR m [,I) 

Inclusive <ordinary) "or" of A and m; the result 

is left in A. <BPC: lnstructlons-3l 

ISZm[,I) 

Increment m: then skip if zero. 
CBPC: I nstructions-3) 

JMP m [,I) 

Jump to m. Program execution continues at 

location m. CBPC: lnstructions-3l 
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Ml\CHINE INSTRUCTIONS (coNT,) 

JSM m [,I] 

Jump to subroutine. The contents of the return 

stack register (R) are incremented by one and 

the contents of P stored in R,I. Program 

execu~ion resumes at m. CBPC: lnstructions-3) 

LDA m [,I] 

Load A from m. CBPC: lnstructions-2) 

LDB m [,I] 

Load B from m. CBPC: Instruct I ons-2) 

<mem. ref. inst.> <reg. 4-7> [.I] 

MLY 

MPY 

MRX 

MRY 

MWA 

In iii ate an I /O Bus Cyc I e. Memory reference 

instruct ions 1 reading 1 from reg. cause input 

1/0 Bus Cycles; those 'writing' ro reg. cause 

output 1/0 Bus Cycles. In either case the 

exchange is between A or B and tho interface 

addressed by the PA reg i stcr (Per I phera I Address 

Register - 11 a>. ( IOC: lnstructions-14) 

Mantissa left' shift of A~2 one time. 

(EMC: lnstructions-17) 

Binary Multiply Using Booth's Algorithm. 

CE!.'C: lnstructions-19) 

Mantisst1 right shift of ARI < Bo- 1 >-times. 

CEMC: lnstructions-16) 

Mantissa right shift of AR2 < Bo-J >-times. 

C Er • ..:;: Instruct i :ms-17) 

Mantissa 'tlord Add. < 8 > is taken as four BCD 

digits, t1nd added, t1s D~ through 012. to AR2. 

DC Is also added in ar. a 012. Tho result is 

left in AH2. CEf·'.C: lnsl·ructions-18) 

APPENDIX-14 

t!RM 

Normalize AR2. The mantissa olgits of AR2 are 

shifted loft until D1 -F O. 

CEMC: I nstrucl'i ons-17 l 

PBC reg. 0-7 [,I/,DJ 

Pl ace the right ha J f of reg. into tho st<ick 

poi rited at by C. ( IOC: lnstr•Jctions-12) 

PBO reg. 0-7 [,I/,0] 

PCM 

Place the right half of reg. into tho sfock 

pointed at by 0. ( IOC: lnstructions-12) 

Enable the .Pulse Count Mode. 

C IOC: lnstru::tions-15) 

PWC reg. 0-7 [,I/,D] 

Place the orrtlro word of reg. into the stack 

pointed at by C. ( IOC: lnstructions-12) 

P\'i'O reg. 0-7 [, I/, D] 

PI aca ·the en t· ire word of reg. into the stack 

pointed at by D. < IOC: lnstructions-12) 

RA.R n 

Rotate A right. A is rotated right n places, 

with ~it 0 rotating into bit 15. 

CBPC: lnstructions-5) 

RBR n 

Hotatc 8 right. B is rotate right n places, 

with bit 0 rotating into bit· 15. 

COPC: I nst rue!' Ions-5) 

RET n [,P] 

Raturn. A road R,I occurs. That produces the 

address « P >) of the latest JSM that occurred. 

Tho BPC then jumps to address< P > + n. The value 

of n may range from -32 to 31, inclusive. At 

the conclusion of the RET R is decremented by one. 

The ordinary, everyd<iy, return is RET I • I f 

a P is present, it "pops" tho interrupt system. 

WPC: I nstruc I lons-3) 
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W\CHINE INSTRUCTIONS (coNT.) 

RIA * :!: n/m 
Skip if A Is not zero, then increment A. 

CBPC: I nstructions-7> 

RIB * :!: n/m 
Skip if B is not zero, then increment B. 

(BPC: lnstructlons-7) 

RLA * ± n/m [,S/,C] 
Skip if the least significant bit of A is non­

zero. If either Sor C is present, bit 0 is 

altered accordingly after the test. 

CBPC: lnstructlons-9) 

RLB * :!: n/m [.S/,C] 
Skip if the least significant bit of B is non­

zero. If either Sor C Is present, bit 0 is 

altered accordingly after the test. 

CBPC: lnstructlons-9> 

RZA 11 ± n/m 

Skip if A not zero. CBPC: lnstructions-7) 

RZB * :!: n/m 
Skip if B not zero. CBPC: lnstructlons-'7> 

SAL n 

Shift A left. A Is shifted left n places with 

all vacated bit positions cleared. 

<BPC: lnstructions-5) 

SAM * :!: n/m [,S/,C] 

Skip if A minus. If either Sor C is present·, 

bit 15 is altered accordingly after the test. 

CBPC: lnstructlons-9l 

SBL n 
Shift B left. B is shifted left n places with 

all vacated bit positions cleared. 

CBPC: lnstructlons-5) 

SB\! * :!: n/m [,S/,C) 

Skip If B minus. If either Sor C is present, 

bit 15 is altered accordingly after the test. 

CBPC: lnstructlons-9) 

SBP * :!: n/m [,S/,C] 

Skip i f B pos It Ive, I f either S or C Is 

present, bit 15 is altered accordingly after 

the test. CBPC: lnstructions-9) 

SBR n 

Shift Bright. B Is shifted right n places with 

all vacated bit positions cleared. 

CBPC: lnstructions-5) 

SOC * ± n/m 

SDI 

soo 

Skip If decimal carry clear. 

CBPC: Instructions-Bl 

Set OMA Inwards. 16-bit ICX:: Instruction that 

sets the direction of DMA transfers to be from 

the peripheral to the memory. 

C IOC: lnstructions-15) 

Set DMA Outwards. 16-bit IOC instruction that 

sets the direction of OMA transfers to be from 

the merrory to the peripheral. 

C I OC: Instruct I ons-15 l 

SA? * ± n/m [,S/,C] SOS * :!: n/m 

Skip if A positive. It either Sor C is present, Skip If decimal carry set. 

bit 15 is altered accordingly after the test. CBPC: Instructions-Bl 

CBPC: Instruct lons-9 l 

SAR n 

Shift A right. A is shifted right n places with 

all vacated bit positions cleared. 

CBPC: I nstruc·t lons-5> 

APPENDIX-15 

SEC * ± n/m ~,S/,C] 

Skip if extend clear. If either Sor C is 

present, E Is altered accordingly after the test. 

CBPC: Instructions-IQ) 
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Ml\CHINE INSTRUCTIONS (coNr.) 

SES • ± n/m [,S/,C] 

SFC 

SFS 

SHC 

SHS 

SIA 

Si<ip if extend set. If either Sor C is 

presor:i·, E is a I tared according I y il f t·er tho test. 

<BPC: lnstruci'ions-10) 

* t n/m 

Skip if Flag I inc clear. 

CBPC: Instructions-Bl 

• t n/m 

Skip if Flag I ine set. 

<BPC: I nstructions-8) 

• ! n/rn 

Skip if Hil It I ine clear. 

<BPC: lnstrudions-8) 

• ! n/m 

Skip if Halt I ine set. 

CE3PC: I nstructions-8) 

• ± n/m 

Skip if A Is zero, then increment A. 
(BPC: Instructions- 7) 

SIB * ! n/m 

Skip if B is zero, then i~crement 6. 

<BPC: Instruct ions-7} 

SLA • ! n/m [,S/,C] 

Skip If the least significant bit of A is zero. 

If either Sor C is present, bit 0 is altered 

accordingly after the test. 

( BPC: 1 nstr11ct i ons-8) 

SLB • ± n/m [,S/,C] 

SOS * ± n/m [,S/,C] 

Skip if overflow set. If either Sor C is 

present, the OV register is a I tered accordingly 

after the test. CBPC: lnstructions-9) 

SSC * ± n/m 

Skip if Status line clear. 

CBPC: Instructions-Bl 

SSS * ± n/m 

Skip if Status line set. 

(BPC: Instructions-BS 

STA m [,I] 

Store the contents of A in m. 

<BPC: lnstructions-2) 

<stack inst.> <reg. 4-7> [,l/,D] 

Initiate an 1/0 Bus Cycle. Place instructions 

'read' from reg., ther1? fore they cause input I /0 

Bus Cycles. Withdraw instructions 'write' into 

reg., therefore they cause output 1/0 Bus Cycles. 

In either case the exchange is between the 

addressed stack location and the interface 

addressed by PA. ( IOC: Instruct ions-I 4) 

STB m [.I] 

Store the contents of B In m. 

(BF'C: Instruct ions-3) 

SZA * ± n/m 

Skip if A zero. <BPC: lnstructions-6) 

SZl3 * ± n/m 

Skip if B zero. CBPC: lnstructions-7) 

Skip if the least significant bit of Bis zero. TCA 

If either Sor C is present, bit 0 is altered 

accordingly after the test. 

<BPC: Instruct i ons-9) 

soc * ! n/m LS/ ,CJ 

Skip if overflow clear. If either Sor C is 

present, the OV register is altered accordingly 

a Her the 1 est. <BPC: Instruct i ons-10 l 

APPENDIX-16 

TCB 

Two's c0111plement A. The A register Is replaced 

by i"i's one's <bii· by bi-I') complement, and then 

incre~ented by one. CBPC: lnstructions-10) 

Two's complcmer.t B. The B regis~er is replaced 

by i1·s one's (bit by bit> complement, and then 

i ncremonted tiy one. (BPC: Instruct i ens- I 0 l 
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WBC reg. 0-7 [,I/,D] 

Withdraw a byte from the stack pointed at by C, 

and put It into the right half of reg. 

Cl OC: Instruct ions-13) 

WBD reg. 0-7 [,I/,D] 
Withdraw a byte from the stack pointed at by 0, 

and put It into the right half of reg. 

( IOC: lnstructions-13) 

WWC reg. 0-7 [,I/,D] 
Withdraw an entire word from the stack pointed 

at by C, and put it Into reg. 

( IOC: I nstructions-13) 

APPENDIX-17 

WWD reg. 0-7 [,I/,D] 
Withdraw an entire word from the stack pointed 

at by 0, and put it into reg. 

( IOC: Instruct ions-13) 

XFR N 

Transfer N words. This instruction transfers 

the 1-16 CN) consecutive words beginning at 

location < A > to those beginning at < B >, 

(EMC: lnstructlons-16) 
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INSTRUCTIONS BIT PATTERNS 
GROUP: MEMORY REFERENCE (ASMA TYPE 16) 

INST. 

NAME 15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0 

LOA D/I 0 0 0 0 B/C 
* 10 BIT ADDRESS FIELD. 

LOB D/I 0 0 0 1 B/C 
* ADDRESSES 0-37 8 ARE REGISTERS. 

CPA D/I 0 0 1 0 B/C 
* FOR BIT 9=0, BITS 0-8 = POSITIVE ADDR. 

CPB D/I 0 0 1 1 B/C 
* FOR BIT 9=1, ADDRESS IS NEGATIVE. 

ADA D/I 0 1 0 0 B/C 
IGNORE BIT 9, COMPLEMENT BITS 0-8, 

ADB D/I 0 1 0 1 B/C 
THEN ADD ONE. 

STA D/I 0 1 1 0 B/C 
* BASE PAGE ADDRESS ENCODING IS ALWAYS 

STB D/I 0 1 1 1 B/C 
WITH RESPECT TO MEMORY LOCATION ZERO. 

JSM D/I 1 0 0 0 B/C 
* CURRENT PAGE ENCODING: 

ISZ D/I 1 0 0 1 B/C 
(ABSOLUTE) RELATIVE TO THE 

AND D/I 1 0 1 0 B/C 
MIDDLE OF THE PAGE (10008, 3000B, 

DSZ D/I 1 0 1 1 B/C 
ETC.) 

IOR D/I 1 1 0 0 B/C 

JMP D/I 1 1 0 1 B/C (RELATIVE) RELATIVE TO THE 

CURRENT VALUE OF P, +511, -512. 

D/I (DIRECT/INDIRECT) AND B/C (BASE PAGE/CURRENT PAGE) ARE CODED AS 0/1. 

GROUP: SHIFT-ROTATE (ASMA TYPE 27) 

INST. 

NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

AAR 1 1 1 1 0 0 0 1 0 0 0 0 
* 4 BITS OF 

ABR 1 1 1 1 1 0 0 1 0 0 0 0 
SHIFT-

SAR 1 1 1 1 0 0 0 1 0 1 0 0 
ROTATE 

SBR 1 1 1 1 1 0 0 1 0 l 0 0 
i FIELD. 

SAL 1 
I 

1 1 1 0 0 0 1 1 0 0 0 
* IN SOURCE 

SBL 1 1 1 1 1 0 0 1 1 0 0 0 
l::.N.:2_16. 

RAR 1 1 1 1 0 0 0 1 1 1 0 0 
* BINARY IN 

RBR 1 1 1 1 1 0 0 1 1 1 0 0 
THIS FIELD 

IS N-1. 

APPENDIX-18 
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INSTRUCTIONS BIT PATTERNS (cONr.) 

GROUP: SKIP <ASMA TYPE 25) 

INST. 

NAME 15 14 13 12 11 10 9 

RZA 

RZB 

SZA 

SZB 

RIA 

RIB 

SIA 

SIB 

SFS 

SFC 

SSS 

SSC 

SDS 

soc 

SHS 

SHC 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

l 

1 

1 

1 

1 

1 

l 

1 

1 

1 

1 

l 

1 

1 

l 

l 

l 

1 

1 

l 

1 

l 

1 

l 

1 

l 1 

l 1 

l l 

1 

1 

l 

1 

1 

1 

l 

l 

1 

1 

1 

l 

1 

0 

l 

0 

1 

0 

1 

0 

1 

0 

0 

1 

l 

0 

1 0 

1 1 

1 1 

GROUP: RETURN (ASMA TYPE 42) 

1 

1 

1 

1 

l 

l 

l 

1 

l 

1 

1 

1 

l 

1 

l 

l 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

INST. 

NAME 15 14 13 12 11 10 9 

RET l l l l 0 0 0 

8 

0 

0 

l 

l 

0 

0 

l 

1 

0 

l 

0 

l 

0 

l 

0 

1 

8 

0 

7 

0 

0 

0 

0 

0 

0 

0 

0 

l 

1 

l 

l 

l 

l 

l 

l 

7 

l 

P/P (DON'T POP/POP THE IOC) ENCODED AS 0/1. 
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6 

0 

0 

0 

0 

l 

l 

l 

l 

0 

0 

0 

0 

l 

l 

l 

l 

6 

5 

* 

* 

* 

5 

4 3 2 l 

6 BIT SKIP FIELD, 

+31, -32. 

IF BIT 5=0, SKIP 

TO P+#; #=BITS 

0 THRU 4. 

IF BIT 5=1, SKIP 

TO P-#; #=l+ COMP 

OF BITS 0-4. 

4 3 2 l 

P/P 6 BIT, 2'S COMPLEMENT 

SKIP FIELD (ALLOWS -32 

THRU +31). 

0 

0 
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INSTRUCTIONS BIT PATTERNS CcoNr.) 
GROUP: COMPLEMENT (ASMA TYPE 30) 

INST. 

NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 

CMA l l l l 0 0 0 0 0 l l 0 0 0 0 0 

CMB l l l l l 0 0 0 0 l l 0 0 0 0 0 

TCA l l l 1 0 0 0 0 0 0 l 0 0 0 0 0 

TCB l l l l l 0 0 0 0 0 1 0 0 0 0 0 

GROUP: ALTER (ASMA TYPE 53) 

INST. 

NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 

RLA 0 1 l l 0 l l l U/H C/S 
* 6 BIT SKIP FIELD, +31, 

RLB 0 l l l l 1 l 1 H/H C/S 
-32. 

SLA 0 1 l l 0 1 1 0 H/H C/S ~ * IF BIT 5=0, SKIP TO P+il: 
SLB 0 l 1 l 1 1 1 0 H/H C/S 

#=BITS 0 THRU 4. 
SAP 1 1 1 l 0 1 0 0 H/H C/S 

* IF BIT 5=1, SKIP TO P-1!, 
SBP 1 1 1 l 1 l 0 0 H/H C/S 

~=l+ COMP OF BITS 0-4. 
SAM l l 1 l 0 1 0 1 H/H C/S 

SBM 1 1 1 1 1 1 0 1 11/if C/S 

soc l l 1 l 0 1 l 0 H/ii C/S 

sos 1 1 1 1 0 1 1 1 n/if C/S 

SEC l l 1 l 1 l l 0 H/H C/S 

SES l 1 1 1 1 1 1 1 H/H C/S 

H /ff (HOLD/DON'T HOLD) AND C/S (CLEAR/SET) ARE CODED AS 0/1. 

HOWEVER: H/H rs SET BY THE ASSEMBLER ITSELF. IF NEITHER S NOR C IS PRESENT, 

BOTH H/H AND C/S ARE MADE O'S. THE PRESENCE OF EITHER A C OR AN S PRODUCES H 

(A l). 

APPENDJX-20 
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r INSTRUCTION BIT PATTERNS (coNT.) 

('·· 

GROUP: EXECUTE (ASMA TYPE 41) 

INST. 

NAME 15 14 13 12 11 10 9 8 

EXE D/I l l l Io 0 0 0 

D/I (DIRECT/INDIRECT) ENCODED. AS 

GROUP: 16-BIT IOC ONLY <ASMA TYPE 46) 

INST. 

NAME 

SDO 

SDI 

DBL 

CBL 

DBU 

CBU 

15 

0 

0 

0 

0 

0 

0 

14 13 

l 1 

1 1 

l 1 

1 1 

l 1 

l l 

12 11 10 9 

l 0 0 0 

1 0 0 0 

l 0 0 0 

l 0 0 0 

l 0 0 0 

1 0 0 0 
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3 

l 

l 

1 

l 

l 

1 

7 6 5 4 3 2 1 0 

0 0 0 5 BIT REGISTER 

0/1. ADDRESS (0-37 8). 

7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 1 0 0 0 0 0 0 

0 1 0 0 1 0 0 0 

0 1 0 1 0 0 0 0 

0 l 0 1 l 0 0 0 



INST. 

NAME 

PWC 

PBC 

PWD 

PBD 

wwc 

WBC 

WWD 

WBD 

APPENDIX 

INSTRUCTION BIT PATTERl~S (CONT I) 

GROUP: STACK (ASMA TYPE 43) 

15 

0 

0 

0 

0 

0 

0 

0 

0 

14 13 12 11 10 9 8 7 6 5 

1 l l 0 0 0 l I/D l 1 

1 1 1 1 0 0 1 I/D l l 

1 1 1 0 0 0 1 I/D l l 

1 l l l 0 0 l I/D l l 

l l 1 0 0 0 l I/D l l 

1 l l l 0 0 1 I/D 1 l 

1 l 1 0 0 0 l I/D l 1 

1 l l l 0 0 1 I/D 1 l 

1. I/D (INCREMENT/DECREMENT) IS ENCODED AS 0/1 

2. THE ASSEMBLER DEFAULTS TO INCREMENT FOR PLACE 

INSTRUCTIONS, AND TO DECREMENT FOR WITHDRAW 

INSTRUCTIONS. 

3. FOR 15-BIT/16-BIT BYTE INSTRUCTIONS, A l IN 

BIT 15/0 OF THE POINTER REGISTER IMPLIES A 

LEFT-HALF 

GROUP: INTERRUPT (ASMA TYPE 30) 

INST. 

NAME 

EIR 

DIR 

15 14 

0 l 

0 l 

13 12 11 

1 l 0 

l 1 0 

GROUP: OMA (ASMA TYPE 30) 

INST. 

NAME 

OMA 

PCM 

DOR 

15 14 

0 l 

0 1 

0 1 

13 12 11 

l 1 0 

l 1 0 

l 1 0 

10 9 8 7 6 5 

0 0 l 0 0 0 

0 0 l 0 0 0 

10 9 8 7 6 5 

0 0 1 0 0 1 

0 0 l 0 0 1 

0 0 l 0 0 l 
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~ ., 

4 3 2 l 0 

0 0 * 3 BIT REGISTER 

0 0 ADDRESS FIELD 

0 1 
(0-78). 

0 l * PLACE INST'S 

INC/DEC THE 
1 0 STACK POINTER 

l 0 BEFORE THE 

l l OPERATION. 

1 1 * WITHDRAW INST'S 

INC/DEC THE 

STACK POINTER 

AFTERWARDS. 

4 3 2 1 0 

l 0 0 0 0 

1 l 0 0 0 

4 3 2 1 0 

0 0 0 0 0 

0 l 0 0 0 

l 1 0 0 0 



INST. 

NAME 

CLR 

XFR 

INST. 

NAME 

MRX 

DRS 

MLY 

MRY 

NRM 

INST. 

NAME 

FXA 

MWA 

CMX 

CMY 

FMP 

FDV 

MPY 

CDC 

APPENDIX 

INSTRUCTION BIT PATTERNS (coNT.) 

GROUP: FOUR WORD OPERATION (ASMA TYPE 27) 

15 14 13 12 11 10 9 8 

0 1 1 1 0 0 1 1 

0 1 1 1 0 0 1 1 

GROUP: MANTISSA SHIFT (ASMA TYPE 30) 

15 14 13 12 11 10 9 8 

0 1 1 1 1 0 1 1 

0 1 1 1 1 0 1 1 

0 1 1 1 1 0 1 1 

0 1 1 1 1 0 1 1 

0 1 1 1 0 0 1 1 

GROUP: ARITHMETIC (ASMA TYPE 30) 

15 14 13 12 11 10 9 8 

0 l l 1 0 0 1 0 

0 1 1 l 0 0 l 0 

0 1 l 1 0 0 l 0 

0 l l l 0 0 1 0 

0 l l l 1 0 l 0 

0 l l l 1 0 1 0 

0 l l 1 l 0 1 1 

0 l 1 l 0 0 1 l 
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7 6 5 4 3 2 1 0 

1 0 0 0 * 4 BIT FIELD 

0 0 0 0 # OF WORDS 

* BINARY = N-1 

7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 1 

0 1 1 0 0 0 0 1 

0 1 0 0 0 0 0 0 

0 l 0 0 0 0 0 0 

7 6 5 4 3 2 1 0 

1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 l l 0 0 0 0 0 

0 0 l 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 1 

l 0 0 0 1 1 1 1 

1 1 0 0 0 0 0 0 



)> 
'1J 
'1J 

15/16 BIT BPC CONSOLIDATED CODING SHEET 

MEMORY 
REFERENCE 

L D Ye 
c p Ye 
A DYe 
ST% 
JSM 
I S Z 
AND 

15li4113]2J11]0 9}8}7}6 5}4 3J2I 1Jo 
x:o 0 o:Ye% -IO·BIT ADDRESS FIELD 

:o 0 I: I 
:o I 0 -0-379 ARE REGISTERS 

: 0 I I Ye -1F B1T 9=0, BITS o-e ARE 
' 0 o:o 
I 0 o: I 
: 0 I :o 
: 0 I: I 

---

: I o:o 

POSll JVE ADDRESS 

-IF BIT 9=1, BITS o-e ARE 
NEGATIVE ADDRESS; 
COMPLEMENT BITS 0-8 THEN 
ADD I 

x: 
o: 
o: 
o: 

101% 
1 o o '=o~:-=o-o=--=o:-::--=0~1=RE=G=1sT=E=R =AD=D.~I 
I Ye o:ooo 
I ' I 0 : 0 0 I -6-BIT SKIP FIELD 

0 I I 0 0 •31,-32 

~ SKIP 

DSZ 
IOR 
JMP 
EXE 
RZX 
R I Ye 
s z Ye 
S I Ye 
SF Yc 
S DYc 
SS% 
SH% 
SLX 
R L ~~ 
SYe P 
S YeM 
S 0% 
SE Ys 

O; 
o: 
o: 
o: 
o: 

% 
0 
0 

0 I 0 I -IF BIT 5•0, SKIP 
0 1

1

5 /c I 0 /C TO (P•N), N• 0 ...... 
x 
I 

r-..:i 
~ 

ALTER 

COMPLE­
MENT 

SHIFT­
ROTATE 

{
TC Ye 
CM.% 
RET 

{

AYeR 
S%R 
S .%L 
R.%R 

0 
o; 

I: 
I: 
I: 
I. 
I : 

, I 
I 

Ye 

:1 

0 : I I I BITS 0-4 
o: I 0 
0 Yc I I -IF BIT 5•1, SKIP 
I 0 %% TO (P-N), N=I+ 

0 :o BITS 0-4 
I I 11 COMPLEMENT OF 

:Ye 0 1 I 
'O I;%' 
: I I %'%%'-------'I 
:Ye 0 0 ,O 0 0: I 0 0, 0 0 0 
:.% 0 0 : 0 0 I : I 0 0: 0 0 0 
: 0 0 0 0 I ~I ts COMP. SKIP FIELD! 
:Ye 0 0 ' I 0 0 0 0 4-BIT SHIFT 
'I 0 0 I 0 I 0 0 FIELD,N=i-16 
: 0 0 : I I 0 : 0 0 IN SOURCE, 
:Ye 0 0: I I I :o 0 BINARY=(N-1) 

-NOTES-
I X ALWAYS REPRESENTS 9'r 6. Yc DENOTES "SET" OR "CLEAR" IN AN INSTRUC-
2 ~-DENOTES THE A ORB REGISTER TION MNEMONIC 
3 ~:DENOTES DIRECT OR INDIRECT 7 Y;; DENOTES HOLD OR CHANGE THE TESTED 
4 !I{ DENOTES BASE PAGE OR CURRENT PAGE BIT 
5 !Y,. DENOTES DON'T POP OR POP THE IOC'S 8. % DENOTES CLEAR OR SET (,C OR ,S) THE 

PA STACK TESTED BIT 

_) 

15/16 BIT IOC CONSOLIDATED CODING SHEET 
1514131211109 8 7 6 5 4 3 2 I 0 

OMA* {SD 0 
SDI 

INTERRUPT { E I R 
D IR 

OMA 

STACK* 

STACK 

I ,';ALWAYS ENCODED AS 0
, 

2 '~ DENOTES WORD/BYTE 

{ 

D MA 
PCM 
DOR 

{ 

D SL 
CSL 
DSU 
CSU 

{ P%% 
W%% 

O: I 
o: I 
o: I 
01 
O, I 
o: I 
0' I 
01 
01 
01 
01 
O: I 
O: I 

1.0 0 o: 
I :o 0 0, 
I :o 0 O, 
1000 
1000 
I :OOO, 
I :o oo: 
I 'O 0 O'. 
1000 
I 0 0 O, 
I :O 00: 
I i%00, 
I 'YeO o: 

-NOTES-

0 o:o 0 o:o 0 0 
0 0 0 0 I .'O 0 0 
0 0 0 I o:o 0 0 
00011000 
00100000 
00,101;000 
0 o: I I I :o 0 0 
0 I :o 0 o:o 0 0 
0 I 'O 0 I 0 0 0 
0 I ,0 I o.o 0 0 
0 I :o I I :o 0 0 
Yo I : I 0 Yo 3-BIT 
Yo I ' I I Yo REG ADO 

5 PLACE INST'S INC/DEC THE STACK POINTER BEFORE THE 
OPERATION 

:J> .,, .,, 
3 /p DENOTES INCREMENT /DECREMENT 
4 'r;DENOTES THE CORD REGISTERS 

6 WITHDRAW INST'S INC/DEC THE STACK POINTER AFTERWARDS m 
* 16 BIT VERSION ONLY-ALL OTHERS ARE 15/16 BIT 

_) 

15/16 BIT EMC CONSOLIDATED CODING SHEET 
15141312 11 10 9 8 7 6 5 4 3 2 I 0 

FOUR WORD { C L R XFR 

MANTISSA [ ~ ~ ~ 
SHIFT MR y 

NRM 
FXA 
MWA 
CMX 

ARITHMETIC C M y 
FMP 
FDV 
MPY 
CDC 

O: I '0 0 I I I 0 0 0 N=110FWORO 

0 I 0 0 I _I 0 0 0 0 BfW!Y•(N-1) 
o: I I 0 I I 0 0 0 0 o:o 0 0 
O: I : I 0 I: I 0 o: I 0 o:o 0 I 
o: I : I 0 I: I 0 I' I 0 0'.0 0 I 
Q: I : I 0 I I 0 I 0 0 0 0 0 0 
O: I 0 0 I LO I 0 0 o.o 0 0 
0: I : 0 0 I Q_ I 0 I 0 0 0 I 0 0 0 
0:1 :oo 1:000:000:000 
O: 1·~~:0 0 1_:0-0 I I 0 o:o 0 0 
O: I 0 0 I 0 0 0 I 0 o:o 0 0 
0:1 :1 0 l _ _Q_OOOOOOOO 
0: I I ; I 0 J :o 0 0: I O _ 0: 0 0 I 
Q:J I : I Q _I_: I_ I O,Q 0 I: I I I 
o: I I :o 0 I; I I I :o 0 o:o 0 O 

z 
c ->< 
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HP CHARACTER SET 

~ D D 0 0 I I I I 

~ 0 0 I I 0 0 I ' 
b5 0 ' 0 I D I 0 ' 

114 

l r b2 l \• 
0 0 0 0 NULL OCo ti 0 @ p - - ·:f-0 0 0 I SOM oc, ! I A Q -- -
0 D ' 0 EOA DC2 .. z 8 R __ u_ 
D D I I EOM oc, ... 3 c s N 

1ffo~1 - -· --. -D I D 0 EOT $ 4 0 T 
--5 -!o -U-

I '0 I WRU ERR O/o 5 E u N s 
0 ' I 0 RU SYNC a 6 F v -.- --. -

-S- --G -
0 I I I BELL LEM CAPOS! 7 G w s N 
I 0 0 0 FEo So ( 8 H x -.- ""E -

~· 
-G-w I 0 0 I s, } 9 t y 
-~-LF! S2 -

I 0 I 0 .... : .J z 
Ss t 

-o-
I 0 I I Vue + K 

I I 0 0 FF S4 <a>io ... < L \ I ACK -I ' 0 I CR 1 s, - = M J ..JlL 
' ' I 0 so s, > N t ESC 

SI j - - i-on-I I I I S1 I ? 0 -
Standard 7-bit set code positional ordiu and notation ore shown below with b, the high-order 
ond b, the low-order, bit position. 

b7 
I EXAMPLE: The code for "R" is: 

LEGEND 

NULL Null/Idle DC,-DCs 
SOM Start of message DC.(Stop) 
EOA End of address ERR 
ECM End of message SYNC 
EOT End of transmission LEM 
WRU "Who ore you?" So-Sr 
RU "Are you ••• ?" 

Ii 
BELL Audible signal 
FEo Format effector < 
HT Horizontal tabulation > 
SK Skip (punched cord) + 
LF line feed +-
Vue Vertical tabulation \ 

FF Form feed ACK 

CR Carriage return © 
so Shift out ESC 
SI Shift in DEL 

DCo Device control reserved for 
data link escape 

APPENDIX-25 

b, 
I 

Device Control 
Device control (stop) 
Error 
Synchronous idle 
logical end of media 
Separator (information) 
Word separator (space, normally 

non-printing) 
Less than 
Greater than 
Up arrow (Exponentiation) 
Left or row (lmpl ies/Replaced by) 
Reverse slant 
Acknowledge 
Unassigned control 
Escape 
Delete/Idle 
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CHARACTER coor:s 

I.sen FiVil Ch;u<1CIN ~cnncl Char.1ctcr ASCII Frr~t Ch;1r<1ct~'f 
! S?..:011.I Ch.11,1c.u 

I Ch.n .. 1clcr Oct,11 Eq1:ov:llt•nt Oi;tJI Eq111val>!rll Ch.-.1 actt·r Oi;t:il Eci•11•:ihmt Oct•~' Equl\·;;ll'•ol 

···-1 ·------··---
A 010.:00 000101 : 035000 001)0/2 

3 0-11COO Ol101C2 ; 035400 000013 
c 041400 000103 < 036000 00007'1 
D ().1'.'000 Ci00104 = 03640G 000')75 
E 04'.'400 Oll0105 > 037000 OC0076 
F 043000 000106 ? 03"i400 000077 
G 013400 Oll0107 @ (}110000 000100 
H O-l4000 000110 [ 055400 0001:<3 
I 044400 000111 ' 056000 000134 
J 045000 000112 I 05G400 000135 
K 045400 000113 t 057000 000136 
L 045000 000114 - 057400 000137 
M 046400 000115 ACK 036000 000174 
N 047000 0001i6 Q) 036400 000175 
0 047400 000117 ESC 037000 000176 
p 050000 000120 DEL 037400 000177 
a 050400 000121 NULL 000000 000000 
R 051000 0001 :n SUM 000400 000001 
s 051400 000123 EOA 001000 000002 
T 052000 000124 EOl'v' 001400 000003 
u 052400 000125 EOT 002000 00'.JOM 
v 053000 000126 WRU 002400 OCOOJ5 
w 053400 000127 RU 003000 000006 
x 054000 0)0130 BELL 003400 000007 
y 054·100 000131 FE 0 004000 000010 
z O:iGOOO 000132 HT!SK 004uQIJ 000011 

LF 0050.)(1 ooc~;: 

0 030000 000060 VT~'\B 005400 000013 
1 030400 000061 FF 006\JOO 000014 
2 031000 Ou0062 CR 006400 000015 
3 031400 000063 so 007000 000016 
4 032000 000064 SI 007400 000017 
5 032400 000065 DC0 010000 000020 
6 033000 000066 DC1 010400 000071 
7 033400 C00067 DC2 011000 000022 
8 034000 000070 DC3 011400 000023 
9 034400 000071 DC4 012000 000024 

ERR 012400 000025 
spact! 020000 000040 S'INC 013000 0000:!6 

! 020400 000041 LEM 013400 000027 .. 021000 0000'12 So 014000 000030 
j; 021400 000043 S1 014400 000031 
s 022000 0000'14 52 015000 00003? 
% 022400 0000,;5 S3 015400 000033 
& 023000 000046 s., 016000 000034 

023400 OGC0-17 55 016400 000035 

I 024000 000050 " VG 017000 000036 

I 024400 000051 S7 017400 000037 . 025000 000052 
+ 025400 000053 . 026000 000054 First Character Second Character 

- 026'100 000055 
027000 000056 

·~~-~ .)..__-~~--
( y ' I 027400 000057 

J ~~fuH.,l 11 i 1 •i•la! 1!o;ls!4!3l2!1T~ 
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BPC INSTRUCTION EXEClffION TIMES (IN CLOCK-TIMES) 

INSTRUCT ION 

LDA, LDB 
ADA, ADB 
AND, IOR 

CPA, CPB 

STA, STB 

ISZ, DSZ 

JMP 

JSM 

EXE 

RET 

After-Skip Group 

Shift-Rotate Group 

CMA, CMB 
TCA, TCB 

~/here: 

TIME FORMULA 

RCI + 2) + I 

RCI + 2) + 4 

RCI + I ) + w + 

RCI + 2) + w + 
R(I + I) + 2 

R(I + I ) + w + 
RCI + I ) + 2 

2R + 4 

R + 8 

R + 3 + s 
R + 3 

5 

R = read-memory cycle time, expressed in BPC clock-times (must be an 
integer > 4) . 

W = write-menory cycle time, expressed in BPC clock-times (must be an 
integer > 4). 

I =number of levels of indirect addressing (normally= 0). 
S = number of positions to be shifted (I < S < 16). 

Note: 

The read and write memory cycle times for a register located within 
the BPC, IOC, or EMC are 5 clock-times, unless such a reference is not 
a genuine register access; e.g., an 1/0 operation. In the latter case, 
it is simply however long it fakes. <The 4 clock-time minimum is sti 11 
effective however.) 
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EMC INSTRUCTION EXECUTION TIMES (IN CLOCK-TIMES) 

INSTRUCTION TIME FORMULA 

CLR R + NW + 10 

XFR R(N + I) + NW + 15 
MRX R + 20 

4R + 3W + 48 + 20 

DRS 4R + 3~1 + 14 

MLY R+ 26 

MRY R + 20 
R + 48 +27 

NRM R + Z + 17 
R + 63 

FXA 4R + 16 

MWA R + 22 

CMX 4R + 3\'I + 17 
CMY R + 17 
FMP R + 28 

4R + 138 + 18 

FDV 4R + 138 + 13 

MPY R + 2T + 59 

CDC R + 5 

~/here: 

CONDITION 

If N = 0 
If N > O 

If N = 0 

If N > 0 

If 0 < N < 12 
If N > 12 

If B = O 
If B > 0 

R = read-memory cycle time, expressed in 8PC clock-times (must be an 
integer _::: 4) • 

W = write-memory cycle time, expressed in BPC clock-times (must be an 
integer _::: 4) . 

N = bits 0-3 of the instruction word. CO~ 16) 
Z =number of leading zeros in the mantissa of AR2. 
8 = bits of 0-3 of the B register contents. 
T = number of 0-1 transitions plus the number of 1-0 transitions, in 

the A register, counting from an imaginary 0 just to the "right" 
of the LS8 of A, to the MSB of A. 

Note: 

The read and write memory cycle times for register located within the 
system are the same as for the BPC. 
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IOC EXECUTION TIMES (IN CLOCK-TIMES) 

REGISTER 

Ri+ - R1 
Rs - R1 s 

INSTRUCTION TIMES 

EIR, DIR, PCM, DMA, 
DDR, SDO, SDI, DBL, 
CBL, DBU, CBU 

P\'I*, PB*, WB*, ~M* 

INTERRUPT 

Lockout (LI) 

Execution 

OMA 

Loe kout ( LD) 

Read 

Write 

PCT 

Where: 

CLOCK-TI MES 

7 
5 

TIME FORMULA 

RM + 6 

LI Max = E + 2 

LIMin = 2 

RR + RM( I + I ) + WM + 12 

LOMin = 2 

LDMax = 10 

LD + 3 + n(~ + 4) 

LD + 3 + n(WM + 3) 

LD + 6n + 3 

read-memory cycle time in BPC clock-times. ~..:::. 4 

read-register cycle time in BPC clock-times. 

write-memory cycle time in BPC clock-times. w > 4 M-
execution time of longest possible instruction. 

n = number of DMA words transferred during one DMA Request. 

I = levels of indirect addressing excluding the indirect in RB. 

APPENDIX-29 



APPENDIX 

M=MULTIPLICAND 

X ·· ·O 0 1 1 1 0 1 O·· · (MULTIPLIER) 
!""- ~ U")~ MN r-1 
+ + + + + + + 
·r-1 ·rt ·r-1 ·r-1 ·r-1 ·r-1 ·r-1 ·r-1 

..Q ..Q ..Q .a ..Q .a ..Q ..Q 

n-1 

PRODUCT=~ bi2iM WHERE n=NUMBER OF BITS IN THE MULTIPLIER 

i=O 

NOTICE THAT ONE ADDITION 
IS REQUIRED FOR EVERY 
ONE IN THE MULTIPLIER. 

SUCH MULTIPLICATION ALSO 
REQUIRES EXTERNAL 
INSPECTION OF SIGNS 
AND SUBSEQUENT 
COMPLIMENTING TO 
ALLOW MULTIPLICATION 
OF NUMBERS WITH 
DIFFERING SIGNS. 

+ 

M 

0 

0 

0 

0 

PRODUCT 

0 

M 

0 

M 

M 

0 

0 

0 

0 

I 
1~ 

The Principle Of 11 Standard 11 Binary Multiplication. 
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DECOMPOSI: THE MULTIPLIER INTO A SUM 
or NUMBER COUNTING EITllER ALL ZEROS 
OR SINGLE SERIES OF ADJACENT ONES 

~-----A:..:?:.:]l):::._T:;l::;IE:::;N DISTRIDUTE TllE HUl,TlPLICATION. • 

REPLACE EACH NUMBER HAVING ONE OR 
HORE ONES IN IT DY ANOTHER NUMBER 
WITH A SINGLE ONE AND A SUBTRACTION. 

HuHULTIPLICAND '------H ____ ..JI x 0 0 0 0 0 0 0 0 I M Ix o o o o o o o o 

X · · ·0 0 1 1 1 0 1 O· · • 

~ MULTIPLIER>O 

(SEE NOTES 3 & 4 
CONCERNING THE SIGNS 
OF TllE FACTORS AND 
THEIR PRODUCT) + 

H Ix 

Ix 

0 0 0 0 0 0 1 0 H 

© ©@ 
0 0 1 1 0 0 0 M 

Ix 0 0 0 0 0 1 

©_..11 
lxo10000 -©@®® © @Y 

@ 

now THE MULTIPLIER IS USED AS IT IS SCANNED, 

lllGHT-TO-LEFT, ONE BIT AT A TIME: 

A ZERO-TO-ONE TRANSITION REQUIRES AN IM.'iEDIATE 
SUBTRACTION, FOLLOWED BY A SHIFT. 

GD SUBSEQUENT ONE-TO-ONE TRANSITIONS THEN REQUIRE 
ONLY WHAT WOULD NORMALLY DE REQUIRED FOR 
ZERO-TO-ZERO TRA.~SITIONS, i.e., ONE SHIFT EACH. 

0 

0 

(£}@ 'IJlESE ONE-TO-ZERO TRANSITIONS CORRESPOND TO ONES 
l!J AND @, RESPECTIVELY, AND EACH REQUIRES AN 
ADDITION, 

@ A ZERO-TO-ZERO TRANSITION REQUIRES ONLY A SHIFT. 

SUCCESSIVE ADDITIONS AND SUBTRACTIONS or INCREASING POWERS-OF-TWO 
TIMES H ARE ACHIEVED BY SHIFTING THE JICCUHOLAT!ON TO THE RIGHT. ~ 

THIS IS~~ . 
PRIOR TO ANY ---::0 
ADDITIONS OR 
SUBTRl,CTIO!IS 

16 BITS 

I PRODUCT 

~ 
IHl\GlNl\RY ZEROS, CORRECT 

- - - - - 1 FOR DOTll ADDITION AND 
~--M_u_LT_Il-'L_I_c_A_N_D __ _,_ - - - - J SUDTllACTION. 

SINCE NO OTHER USE IS MADE OF THE 
MULTIPLIER, IT CAN DE RIGHT-SHIFTED 
INTO A BIT TRANSITION MECHANISM, 
11.'lD THE PORTION Al.RF.JIOY USED 
THROWN AWAY. 

--3l1 16 BITS, ~ 
EVENTUALLY 

0 -I 
0 -I 

r ITHE PRINCIPLE USED HERE 
\(/ IS THAT 1111~10000-1) 

M Ix 1 0 

M Ix 1 0 0 

!:!Q!!ill: 

THE NUMBER OF 
SHIFTS ALREAl>Y 

} 

PERFORMED PRIOR 
TO THE TIME OF 
TUE SUBTRACTION 
TAKE CARE OF 

0 MULTIPLYING M 
DY THESE POWERS 
OF TWO. 

l. FOR PURPOSES OF DETERMINING A TRANSITION 
ASSOCIATED WITH THE RIGHT-MOST BIT OF 
THE MULTIPLIER, A ZERO IS ASSUMED TO LIE 
TO THE RIGHT OF THAT BIT. 

2. NOTICE THAT THERE CANtlOT BE A ONE-TO-ZERO 
TRANSITION WITHOUT PRECEEDING ZERO-TO-ONE 
TRANSITION. THUS, A SUBTRACTION PRECEEDS 
EACH ADDITION. 

3, ASSUMING THE SIGN OF THE MULTIPLIER IS 
POSITIVE, THE SIGN or THE PRODUCT IS THE 
SAME AS THE SIGN Of' THE MULTIPLICAND. 
BUT THIS IS GUARANTEED DY THE ALGORITHM 
BECAUSE THE PRODUCT IS FOR.MEO SOLELY 
TllROUGll OPERATIONS EXACTLY l::QUIVALENT TO 
ADDITIONS, AND BY ARITllH£TIC SHIFTS. 
NEITHER OF THOSE CAN CREATE A RESULT 
HAVING A SIGN OPPOSITE THAT OF THE 
MULTIPLICAND. 

4. MULTIPLICATION BY A ?lEGATIVE MULTIPLIER 
IS CONSIDERED IN ANOTHER DRAWING. 

S. MULTIPLICATION WITH A MULTIPLICAND OF 
ZERO WORKS BECAUSE, NO MATTER HOW IT IS 
DONE, ZERO, ADDED TO OR SUBTRACTED FROM 
ITSELF, IS STILL ZERO, 

6. MULTIPLICATION DY A MULTIPLIER OF ZERO 
WORKS BECAUSE THEN THERE ARE NEVER ANY 
TRANSITIONS TO CAUSE ANY ADDITIONS OR 
SUBTRACTIONS. SINCE THE PARTIAL PRODUCT 
STARTS OUT ZERO, IT STAYS ZERO. 

Operation On Booth's Algorithm When The Multiplier 
Is Positive, Or When One Of The Factors Is Zero. 

J> .,, 
-a m 
z 
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l. IN THE EVENT TllAT THE MULTIPLIER IS NEGATIVE, THE SIGll OF THE PRODUCT 
IS OPPOSITE THE SIGN OF MULTIPLICT.!ID. WE SWILL DIVIDE TUE POSSIBLE 
INSTA.~CES OF MULTIPLYING BY A NEGATIVE MULTIPLIER INTO THREE CATEGORIES 
AND SHOW TllAT PROPER RESULTS ARE OBTAINED rn EACH CASE. 

2. ~ PRODUCTa-1 • M 

LET K;MULTIPLICAND 
LET KULTIPLIER;-l;llllllllllllllll 

IE--- 16 BITS~ 

THIS CASE WORRS BECAUSE THERE IS AN IMMEDIATE ZERO-TO-ONE TRANSITION, 
CAUSING A SUBTRACTION FROM ZERO (WHICH GIVES TUE PARTIAL PRODUCT A 
SIGN OPPOSITE TllAT OF THE Mtll.Tll'!.ICi\!lll).. BUT swc~: THE REST OF THE 
MULTIPLIER IS AI,L ONES, ONLY ARITHMETIC SHIFTS FOLLOW TllIS SUBTRACTION. 

THE COMPLEMENTED MULTIPLICAND IS SHIFTED TO FAR RIGHT OF THE 32-DIT 
ANSWER, THUS ITS MAGNITUDE (ABSOLUTE VALUE) nEMAINS UNCHANGED, /\ND 
SINCE THE SHIFTS ARE ARITHMETIC SHIFTS, TUE SIGN IS PRESERVED. 

3. ~ PRODUCTa-2p• H 

LET ff;MULTIPLICAND P ZEROS 

LET MULTIPLIERa-2pallll00 • • · 0 
jE-16 BITS~ 

Iii THIS CASE THERE ARE P LEADIHG ZERO-TO-ZERO TRANSITIONS, EACll OF 
WHICH SHIFTS A PARTIAL PRODUCT WHICH IS ZERO, AS NOTHING HAS BEEll 
ACCUMULATED YET. SO THOSE SHIFTS HAVE ABSOLUTELY NO EFFECT. 

TUE SINGLE ZERO-TO-O!lt: TRAUSITION CAUSES A SUBTRACTION FROM ZERO, 
WHICH ESTABLISHES THE SIGN Of' THE PRODUCT AS OPPOSITE THAT OF TllE 
:-IULTIPLICA!;o.. Tiii: ll~:M;. rn 1:;G o:a:s 1:; THE MULTI !'LIER c;.usE 16-P ARITl!m:TIC 
SHIFTS, WHICH PRESERVE THE SIGN. BUT THESE SHIFTS FALL P SHIFTS 
SHORT OF FULLY SHIFTING THE COMPLEMENTED MULTIPLICAND TO TUE RIGHT 
IN THE 32-BIT ANSWER SPACE. THIS IS AN EFFECTIVE LEFT-SllIFT OF 
P PLACES IN THAT 32-BIT SPACE. HF.NCE THE PRODUCT IS THE COMPLEMENT 
OF THE MULTIPLICAND, MULTIPLIED DY 2P. 

4. CASE III PRODUCTa-Y•H 

LET H;HULTIPLICAND 
LET -Y REPRESENT /\ NEGATIVE HUMBER DIFFERENT THAN -1 OR TllE NEGATIVE 
OF A POWER OF 2: 

-Y/-1 

-Yf-2K 

THEil -Y CAN DE DECOMPOSED IHTO TllE SUH OF SOME X>O AND -2p FOR SOME P: 

-Y;lllOlOllO· ·· lll000000•••;-2p 
+ OlOllO···a X 

111010110• ••c-Y 

AS THE MULTIPLIER IS SCAllNED, X•M IS FORMED IN THE FASHION FOR 
POSITIVE MULTIPLIERS. THEN TllE PRODUCT FOR -2P•M IS ACCUMULATED 
TO IT. TUE PROCEDURE OF TUE Al.GORITllH IS SUCH .THAT THE. FORMING OF 
X•M IS INDEPENDENT OF, AND DOES NOT INTERFERE WITH, THE SUBSEQUENT 
FORMATION OF -2P•M. IT IS, SO TO SPEAK, AS IF THE FORMATION OF 
-2P•K PICKS UP WHERE FORMING X•M LEAVES OFF. THE ONLY DIFFERENCE 
IS THAT IN THE FORMATION OF -2P•M THE MULTIPLICAND IS NOT SUBTRACTED 
FROM ZERO, nur FROM X·M. THE SIGN OF TUE RESULT OF THAT SUBTRACTION 
WILL BE OPPOSITE THE SIGU OF X•M, SINCE 2P>x. SINCE X•M HAS THE 
SIGN OF THE MULTIPLICAND, THIS MEANS THE FINAL PRODUCT HAS THE SIGN 
OPPOSITE TllAT OF TllE MULTIPLICAND, WllICll IS CORRECT. 

'rlOT T:lUI: Ill 16-lllT COMl'I,f::•1f;NT AllITllllETIC IF TllE 
!'lUL":'IPLICMlD IS l 000 000 000 000 000 ( · 32768). 
':'Ill:. ARGORl'rHM l"i1!1.S WITIL TllAT !-IUL':'IPLlCAND !"OR 
;111s Rl:Aso::. SF.I·: Tiii: nuc; lll:SCRIPTlON AT Tl!E END 
or Tll Is s1:cr rnii. 

Operation Of Booth's Algorithm When 
The Multiplier Is Negative. 
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rn z 
0 -x 
I 

v.i 
v.i 

:a 

MPY DISABLES THE ARITHMETIC SHIFT OF 
RIGHT-SHIFT OF Xl ~ t------7 X2 L X3 DURING MPY 

{USER'S PROGRAM VALUE "'ii.... X2 
OF Y2 SAVEil llt:RE) 7f\7 (ACCUMULATE:> PARTIAL PRODUCT) 

TO ADDER/ 
COMPLEMENTER 

CONTROL (+) X2+Y2~X2 

OR <-l x2+Y2~x2 

ADD/SUB 
LATCH Y2 

O~l TRANSITION SETS LATCH a l (SUBTRACT) ==l 
l~O TRANSITION SETS LATCH ; 0 {ADD)---,--! 

(ASSUMING S/ASO ~ l) EE'---------

X3 
(REMAINZ::G MULTIPLIER) 

QUALIFIER TO THE FLOWCHART 
IN CONTROL OF SEQUENCE. 

HIGH - ACCUMULATE AS PER 
ADD/SUB LATCH THEN SHIFT. 

LOW a SHIFT ONLY. 

X3(0) 

(COPY OF MULTIPLICAND) 

~ THIS "BOUNDARY" MOVES 
RIGHT ONE BIT EACH 

HOLDS THE PREVIOUS BIT SHIFTED 
OUT SO THAT A COMPARISON WITH 
THE NEXT BIT RF.VF.ALS THE TYPE 
OF TRANSITION. 

L INITIALLY A ZERO SHIFT. WAS ORIGINALLY 
AT FAR LEFT. 

LEAST-SIGNIFICANT BITS OF r THE ACCUMULATING PRODUCT 

~1 X3 .S 
1---? THIS "BOUNDARY" MOVES RIGHT 

I ONE BIT EACH SHIFT. WAS 

I 
I 
I 
I 
I r------, 

--..f(IMAGINARY ZEROSlf L ______ J 

ORIGINALLY AT FAR LEFT. 

l ,.~, .,.,.,. '""''" "" """""ro " TllE f!ULTIPLICAND TO THE LEFT" TO GIVE 
IT 2 TIMES ITS VALUE. IN FACT, TllE 
ACCUMULATED PARTIAL PRODUCT IS SHIFTED 
RIGllT, AND ONE IMAGINARY ZERO APPENDS 
ITSELF TO Y2 FOR EACH SUCH SllIFT. IT 
IS MOST FORTUNATE THAT, REGARDLESS or 
WHETHER Y2 OR Yi IS BEING ADDED, THE 
ZEROS JIRE CORRECT. TllJIT IS, RIGHT-
MOST ZEROS, IN FACT, DO NOT CHANGE WHEN 
A TWO'S COMPLEMENT NUMBER IS COMPLEMENTED. 

Block Diagram Of The Hardware Controlled By The 
Flow Chart Which Does The Booth's Multiply. 

> .,, .,, 
m 
z 
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?b 
"'O m z 
0 

x 
I ...... 

.i:-

J 

CASE I 

l. Ll:T: B 000 COO 000 000 000 (Ml:L71PLIC/,::D• • 32768) 

A • 0 000 000 000 000 001 <Ml:LTIPLIER:l! 

i. or !l~LT?Pt.IER ':"R,,;~iSITim;s: 
o 000 OOO OO~ OOO OOl : o<...S--FOR I:.ITlA:O COMPARISm.; PURPOSES 
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APPENDIX 

CHIP DESCRIPTION VERSION 
15-bi t 16-bit 

BPC - EXE of, or instruction fetch from, I 

an addressable register in the BPC 
fails to give SMC 

IOC ·- DOR not reliable I 

- IOC re 1 eases INT at wrong time / 
l 

to allow single level indirect 
for interrupt vector 

IOC doesn't allow IOC machine- I I 
- l' l/ 

instructions to be fetched from 
its own registers 

- Glitch on BYTT I l 

- Pulse Count Mode unuseable due to / 

' ---
"timing difficulties" 

EMC - Multiplication with -32768 is I I 

not commutative 

··· CMX not useable with OMA I 

ALL - POP synchronizer is unreliable? --- I 

Processor Bug List 

Also: 

Curren·tly, during a OMA write-into-riemory operation, the IOC gives Buffer 
Enable <BE) a half-state too soon. This (wrongfully) c.il lows both the peripheral 
and the IOC fo drive the IDA Bus for a shod time. The problem is shown in IOC 
figure 24-17, note I, in the How They Do Dat Manual. The statement there that 
this causes no problems is false. It goofs up the AEC (Address Extension Chip) 
if the relative speeds of the various chips in the system is just right. Accord­
ingly, at this time (June 1 78) some sort of fix to the IOC is being contemplated. 
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