
REFERENCE MANUAL

for the

CPD N-MOS II PROCESSOR

Ca lcu lator Products Divis ion Augus t 1976

·­·· '
·'

_,.
.. , ;..;.
.J ,"

...

TABLE OF CONTENTS

PREFACE v i i i

PROCE SSO R

IISCRIPTION OF 1HE PffiCES~R
GENERAL INFORMAT ION
MEMORY CONVENTIONS

MEl'-ORY CYCLES

THE BYTE LINE

RAL LI NE

FUNCTIONAL DESCRIPTION OF THE BPC
INDIRECT ADDRESSING

MULT1-LEVEL IND IRECT ADDRESSING

SINGLE-LEVEL IND IRECT ADDRESSING ·

MEMORY REFERENCE INSTRUCTIONS AND PAGE ADDRESS ING
ABSOLUTE ADDRESSING

RELATIVE ADDRESSING

BASE PAGE ADDRESS ING

CURRENT PAGE ADDRESSING

SUBROUTI NES ·
FLAGS ·
BUS REQUESTS AND INTERRUPTS

FUNCTIOril\L DESCR IPTION OF THE IOC
GENERAL INFORMA.T ION ABOUT J/O
I/O BUS CYCLES ·
STANDARD 1/0

ADDRESSING THE PERIPHERAL

CHECKING STATUS .

INITIATING I/0 BUS CYCLES

THE ODDBALL POSSIBILITIES

THE INTERRUPT SYSTEM ·
PRIOR ITY

INTERRUPT POLLS .

1NTERRUPT TABLE .

INTERRUPT PROCESS SU/v'MA.RY

INTERRUPT SERVICE ROUT INES

1

2

3

• 5

6

7

8

8

8

9

9

. 11

. 11

. 11

. 12

. 15

. 15

. 15

.18

. 18

. 18

. 21

. 21

. 21

. 21

. 22

. 23

. 23

. 23

. 24

. 26

. 26

TABLE OF CONTENTS

PROCESSOR

FUNCTIONAL DESCRIPTION OF THE IOC
THE INTERRUPT SYSTEM (CONT.)

HO~/ A PERIPHERAL KNOWS WHETHER TO USE INTERRUPT

BOMBPROOF I NG THE /"\.A I NLI NE FIRMWARE

"SIMJLTANEOUS" ACTIVITIES .

OR SIMPLE 1/0

WHEN TO CEASE INTERRUPT tvODE OPERATION

RETURNING FRO~ INTERRUPT SERVICE ROUT INES

DISABLING THE INTERRUPT SYSTEM .

DIRECT MEMORY ACCESS ·
ENABLING AND DISABLING THE OMA /'-ODE

REGISTER SET-UP .

Dl'AA INITIATION

DATA REQUEST AND TRANSFER

OMA TERMINATION .

THE PULSE COU\JT MOOE .

PLACE AND WITI-IDRAW
THE NOTATION OF A STACK

STACK OPERATIONS .

PLACE AND WITHDRAW FOR BYTES

INITIALIZATION OF TURN-ON ·
GENERAL I NF0~1AT I ON AEOUT THE EYC

NOTATION
DATA FORMAT·

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC
NL.MERICAL REPRESENTATIONS

BINARY .

BI NARY-CODE'.) DEC It·IAL

BINARY ARITHMETIC
Bl~lARY COMPLEMENTS

TV..O'S COMPLEMENT SU/vMATION

TWO ' S COMPLEMENT SUBTRACTfON

TWO'S COMPLEMENT OVERFLOW .

ii

. 28

. 28

. 28

. 29

. 30

. 30

. 31

. 31

. 32

. 32

. 33

. 33

. 33

. 34

. 34

. 34

. 35

. 38

. 39

. 39

. 40

. 41

. 41

. 41

. 42

. 43

.43

. 45

. 45

.so

TABLE OF CONTENTS

PROCESSOR--

A BEGINNER'S LCXJK AT CALCULATOR ARITHf\'fflC (coNT.)
MULTI-PRECISION BINARY ARITl-METIC
ARITl-METIC SHIFTS
BINARY MULTIPLY ·
BCD ARITl-METIC ·

DECIMA.L CARRY

TEN'S COMPLEMENT FOR BCD

TEN'S COMPLEMENT ARITHMETIC DEfvONSTRATION •

FLOATING-POINT Sl..JM"<1ATIONS •
OFFSETS.

MA.NTISSA ADDITION.

NORMALIZATION
ROUNDING
FLOATING-POINT MULTIPLICATION ·
FLOATING-POINT BCD DIVISION

THE DIVISION ALGORITl-M.

THE FDV INSTRUCTION ·
SAMPLE DIVISION ROUTINE

INSTRUCTIONS-­

IITTRlllJCTION TO lHE filACHINE INSTRUCTIONS.
NOTATION

BPC filACH !NE I NSf RUCTIONS ·
MEMORY REFERENCE GROUP
SHIFT-ROTATE GROUP
ALTER-SKIP GROUP·
C~PLEMENT-EXECUTE GROUP ·

IOC MACHINE INSTRUCTIONS ·
STACK GROUP·
J/O GROUP ·
INTERRUPT GROUP ·
DMl\ GROUP ·

iii

.52

. 53

.55

.55

. 56

.56

• 59

.61

.61

.62

.63

.63

.64

.66

.66

.68

.71

. 1

. 1

• 2

. 2

. 4

. 5

.10

. 12

.12

.14

.14

.15

TABLE OF CONTENTS

~-INSTRUCTIONS~-

OC Ml\CHINE INSlRUCTIONS •
THE FOUR \«lRD GROUP ·
THE MANTISSA SHIFT GROUP •
THE ARITl-METIC GROUP •

ASSEMBLER

INTl{)DUCTION TO THE ASSEMBLER •
GENERAL INFORMATION •
INSTRUCTION FORMl\T

STATEMENT CHARACTERISTICS •

LABEL FIELD •

OPCODE FIELD.

OPERAND FIELD

SYMBOLIC TERMS

NLMERIC TERMS

THE ASTERISK.

EXPRESSIONS .

INDIRECT ADDRESSING

BASE PAGE AND CURRENT PAGE ADDRESSING.

COf'/MENT FIELD

STATEMENT LENGTH .

ASSEMBLER PSEUDO INSTRUCTIONS •
ASSEMBLER CONTROL

ORG AND ORR .

NEW INSTRUCTION DEFINITION •

PARTITIONING A BINARY TAPE •

CONDITIONAL ASSEMBLY •
AUTOfv1A.TIC STATEMENT REPETITION .

SOURCE TERMINATION

ADDRESS AND SYMBOL DEFINITION ·
CONSTANT DEFINITION •
STORAGE ALLOCATION
ASSEMBLY LISTING CONTROL ·

tv

.16

.16

.16

.17

. 1

. 1

. 2

. 2

. 3

. 4

• 5

. 6

. 8

. 8

. 8

. 9

. 9

• 9
.10

.11

.11

.11

.12

.14

.15

.17

.17

.18

.20

.23

.23

TABLE OF CONTENTS

--ASS EMBLER

ASSEMBLER INPUT AND OUTPUT
lHE CONTROL STATEMENT·
THE SOURCE PROGRAM
THE LISTI NG·
BINARY OUTPUT

APPENDIX

APPENDIX ·
ASSEMBLER ERROR MESSAGES ·
BINARY LOADERS ·
OUTPUT PAPER TAPE FORM«\T ·

ABSOLUTE BINARY OBJECT PROGRAM •

ADDING PRE-DEFINED SYMBOLS TO A'2JllA ·
THE STRUCTURE OF THE ASSEMBLER ·
PSEUDO INSTRUCTIONS ·
t-'ACH I NE INSTRUCTIONS ·
INSTRUCTION BIT PATTERNS •

MEMORY REFERENCE GROUP.

SHIFT-ROTATE GROUP

SKIP GROUP •

RETURN GROUP.

COMPLEMENT GROUP •

ALTER GROUP •

EXECUTE GROUP

16-BIT IOC a-JLY GROUP •

STACK GROUP •

INTERRUPT GROUP •

OMA GROUP
FOUR \'.ORD OPERATION GROUP .

MANTISSA SHIFT GROUP •

ARITl-METIC GROUP •

15/16 BIT BPC CONSOLIDATED CODING SHEET ·
15/16 BIT IOC CONSOLIDATED CODING SHEET ·
15/16 BIT EMC CONSOLIDATED CODING SHEET ·

v

.26

.26

.27

• 27

.28

. 1

• 1

• 3

• 5

• 5
. 6

. 9

.11

.12

.18

.18

.18

.19

.19

.20

.20

.21

.21

.22

.22

.22

.23

.23

.23

.24

. 24

.24

TABLE OF CONTENTS

APPENDIX

APPENDIX (CONT.)
HP CHARACTER SET·
CHl\RACTER CODES ·
BPC INSTRUCTION EXECUTION TIMES·
OC INSTRUCTION EXECUTION TIMES·
roe INSTRUCTION EXECUTION TIMES·
EXPLANATION OF BOOTH / S ALGOR ITl·M

Figure P-1.

Figure P-2.

Figure P-3.

Figure P-4.

Figure P-5.

Figure P-6.

Figure P-7.

Figure P-8,

Figure P-9.

PROCESSOR

Si mp I if ied Block Diagram of the Processor •

Nature of the BIB's

Simplified Read Memory Cycle

Simplified Write Memory Cycle

Base Page Description •

Relative Addressing

Bus Request Protocol

A Write 1/0 Bus Cycle .

A Read 1/0 Bus Cycle .

.25

• 26

.27

.28

.29

.30

. 1

. 3

. 5

. 6

.10

.14

.16

. 20

.20

Figure P-10. The Interrupt Table ~Jith 15-Bit or

Figure P-1 I. How Not To Use The Interrupt Table

16-Bit Addressing.25

.25

Figure P-12. Sixteen-Bit Stack Pointer Addressing •

Figure P-13. Floating-Point Data Format •

• 36

.40

Figure P-14. The Internal Floating-Point Representation of
.003587219 (= 3.587219 x 10- 3) • • • .43

Figure P-15. Multi-Word Binary Addition Using the Extend Register.52

Figure P-16. Two's Complements of Multi-Word Binary Numbers . .53

Figure P-17. Floating-Point Data Format • .54

vi

~

~
~

TABLE OF CONTENTS

--PROCESSOR

Table P-1. Addressable Registers . • 4

Table P-2. Current Page Absolute Addressing for Memory
Reference Instructions • .13

Table P-3. Comparison of Decimal, Binary, and Octal .41

ASSEMBLER

Table A-1. Symbols Pre-Defined by the Assembler • . 7

vii

PREFACE

This book is the result of an extensive rev1s1on of the "CPD PROCESSOR"
manual first issued in early 1975. Things have changed a bit since then,
and the old manual was getting pretty shakey. The development of the 16-bit
version of the processor provided the opportunity to revise the entire
book.

First, this book covers both versions of the processor; one with
15-bit (32K) addressing, and the other with 16-bit (64K) addressing. The
assembler (ASMA) described herein has also been updated to work with the
16-bit version.

Next, numerous mistaken and misleading explanations have been corrected.
Also, the information relating to the general attributes and operation of
the hardware has been co I I ected togei·her and organized as an introduction
and overview of the entire processor. However, the book does not educate
the reader in the general notion of what a processor is, or in the ins
and outs of assembly language programming; it is stil I very helpful if
one is familiar with the 2100-series computers.

As before, the book is aimed primarily at engineers and technicians
within HP who wi 11 recognize the attributes of the processor and apply
them to their own situation. Even so, there are stil I places where the
explanation becomes detailed. The explanations of the interrupt process
and of arithmetic are examples. There are other areas which the reader
is simply expected to absorb on his own. The assembler is a good example;
all the explanation in the world (and we give quite a bit) won't remove
the need for a I ittle bit of experience.

If you are a beginner, you probably shouldn't try to read the book
from cover to cover, in the order given. It wou Id be better if you
mix your exposure to the system overview (at least skip the arithmetic),
machine-instructions, and the assembler.

A comment on the section on arithmetic is in order. First, it would
be impossible to understand the EMC arithmetic instructions without
reference to some detailed examples. Second, its been my experience that
typically there's one guy who sits in a corner, mutters out loud a lot,
and who writes al I the math routines. He's the only guy who knows how
they work, and even he makes frequent references to the texts he used
in school. And in general, if you ask three differenct people about some
aspect of arithmetic, you' I I get three different answers.

I don't suppose that too many people are really concerned about the
nature of the EMC instruction set. But it needs explanation none the less.
To do that, detailed examples are needed. To understand the examples,
some familiarity with arithmetic techniques is needed. So I went the
last mi le and started at the beginning.

At present, there is exactly zero interfacing information that would
al low a designer to create hardware that wi 11 function with the processor.
We hope to remedy this shortly.

viii

PREFACE

If you find a snarf in the book, please bring it to my attention. If
It's serious enough, you may win a six-pack of Coors.

May 1977 Revision

Affecting pages:

PROCESSOR -1

-3

-4

-13*

-25

-28

-37

-38

-44*

-55

INSTRUCT! ONS-17

ASSEMBLER -6

~ -7
APPENDIX -6

-8
-10

*Non-significant typing error only

June 1978 Revision

Affecting pages:
PROCESSOR -1

-4

-5
-6

-24*

-38*

-59

ix

PREFACE

June 1978 Revision <Cont.)

I NSTRUCTI ONS-3 *
-12

-14

-15

-17

-19

ASSEMBLER -7

-9

APPENDIX -8

-14

-16

-29

-32

-34

-35

*Non-significant typing error only

x

Ed Miller

Ft . Co I I i n s CPD

June 1978

·~

U
l\80

PERIPHERAL PAlll
ADDRESS ~

PAB3

"'O

~ 1/0 SUFFER
@ ENABLE
en
en
0

1'

DIRECTION
CONTROL

15-BIT ~
VERSION OULY

r--
11
hao
L--

·~ I0Do-IOD15 ~

1/0 DATA 7
BUS TO

PERIPHERALS

,
I

j

0 I~ u ~ El I~ z ii! ci

16-BIT INPUT
VERSI~ ONLY_____. OUTPUT

)-, CONTROLLER

<IOC> .. _
f?lg SJ. ra 8:BJT

BIB 1--i ~

1r; ~
8-BIT

15-BIT
VERSION ONLY

r--..

A TWICE-SPEED TTL
CLOCK INPUT FRml

I"' 0

"'

POWER SUPPLIES
AHD GROUNDS
r ""' r' 1.,, 1~ 1~ ~ ~ 1~ r :s "' 18 r;! f;; .:l 0 :>< > z w

'& '& :.: r.i Ill 0 t!l I>:

WllICll THE BPC C1\N I
GENEllATE !211 AND 02. t

iiiiTM VERSION
Cl.K IN } 16-BIT

COtlTROL SIGNALS

EXTENDED BINARY
MATH PROCESSOR

,__
DIRECTION CONTROL

CHIP CHIP
PROCESSOR

<EMC> <BPC) DUFFER ENABLE

rr s-i
~ 8-BJT ~ BIB 1--

. ~~ IDA BUS CIDAo-lllA15>

8-BIT 1--

5

iiL ONLY

ffi
ROW (WRlTE)

SMC

iiMC
RA!.

nm

PllJ TO BUS
CONTROL

PBE CIRCUIT

~ IliAo-mA1s

"' TO EXTERNAL Llj .-J~ . ~ ~
BIB I----'"""~ PERIPHERAL Diil' S MEMORY BIB'S ,_____ BIB

~
MEMORY

HYBRID MICRO PROCESSOR

Figure P-1. Simplified Block Diagram of the Processor.

.. ·)
J

(i\
J

DESCRIPTION OF THE PROCESSOR

c GENERAL INFO~TION
The CPD Processor consists of seven Integrated circuits mounted on a

ceramic substrate. Of these, three are N-channel MOS LSI chips. The remaining
four chips are entirely bl-polar and serve as buffers to connect the LSI
circuitry of the other chips to circuitry external to the substrate. Because
the processor is an assemblage of components mounted on a substrate, It Is
often referred to as the "hybrid", "hybrid micro-processor", or simply as the
"processor11

•

Figure P-1 is a simplified block diagram of the processor. The LSI
chips are the Binary Processor Chip CBPC), Input-Output Controller CIOC),
and the Extended Math Chip (EMC). Al I of the processing capabi I ity of the
processor resides in those three chips; except for inversion the four Bi­
Directional Interface Buffers CBI B's) are logically powerless. The three
LSI chips communicate among themselves, and also with the outside world, via
a collection of control signals and a 16-bit bus cal led the IDA Bus (IDA
stands for Instruction/Data/Address).

The processor ls available in two versions. One version uses 15-bit
addressing for a maximum memory size of 32K words, and implements multi­
level indirect addressing. The other version uses 16-btt addressing for
a maximum memory size of 64K words, and Implements a single level of indirect
addressing. The 15-bit processor uses 15-bit versions of the BPC and IOC;
the 16-bit processor uses 16-bit versions. The EMC is currently a 16-bit
version that works in either processor; an obsolete 15-bit version of the
EMC also exists but is not currently being produced.

The two versions of the processor are far more alike than they are
different. Some new machine-Instructions were added for the 16-bit IOC.
However, they represent an alternate method of doing something Cin I lght
of the different way the 16th address bit is used) rather than a major
extension of capability. Other than for size, both processors are al Ike
in the general way they interface to memory. Their sets of machine­
instructions are nearly Identical; in fact, an assembler exists that can
be used for both. The information in this book ts generally applicable to
both processors; Information that applies to a particular version is
labeled as such.

The IDA Bus ts buffered as it leaves the hybrid, but the control signals
are not. The BIB's are grouped together to buffer the IDA Bus in a way
that al lows it to perform two different functions. Each BIB can buffer
eight bits of the IDA Bus. Two BIB's are grouped together to connect the
IDA Bus to the (main and external) memory; those BIB's are cal led the
Memory BIB's. The remaining two BIB's are grouped together to connect
the IDA Bus to the IOD Bus. The 100 Bus Cl/O Data Bus) ls the data bus
that serves peripheral devices. Accordingly, the BIB's connecting the IDA
Bus with the 100 Bus are cal led the Peripheral Bl B's. The Memory Bl B's are
enabled by a circuit (external to the hybrid) which detects memory traffic
on the IDA Bus. The Peripheral BIB's are control led by the IOC as the
various types of Input-output operations are performed.

PROCESSOR-2

DESCRIPTION OF THE PROCESSOR

GB'IERJ\L lflf()~:1£\TION (CONT I)

Figure P-2 ii lustrates the nature of the BIB 1 s. Each bit of the IDA
Bus is buffered in both directions by tri-state buffers control led by non­
overlapping buffer enable signals.

DIRECTION
CONTROL

BUFFER
ENABLE

HIGH = R~L, TTL~MOS
/i/LOW = L~R, MOS~TTL

>---9--1

r---------------
1 OF 8 BUFFER CIRCUITS

L(N) R(N)
(MOS SIDE) (TTL SIDE)

RIGHT TO LEFT ENABLE

--- ENSURES THAT THE
BUFFER ENABLE LINES
ARE NON-OVERLAPPING

-,
I
I
I
I
I
I
I
I
I
I
I

L--------------- _.J

Figure P-2. Nature of the BIB's.

fitrORY CONVENTIONS
The term "mernory 11 w i 11 be used to refer to any addressab I e memory

location, regardless of whether that location is physically within the hybrid
micro-processor, or external to it. The term 11 external memory" refers to
memory that Is not physically within the hybrid. The term "register11 refers
to various storage locations within the hybrid micro-processor itself. These
registers range in size from I to 16 bits. Most of the registers are 16 bit
registers. The term "addressable register 11 refers to a register within one
of the LSI chips that responds as memory when addressed. Most registers are
not addressable. In most of the discussions that fol low the context
clarifies whether or not a register is addressable so that it is deemed
unnecessary to exp I icitly differentiate between addressable and non­
addressable registers. Those registers that are addressable are included
in the meaning of the term "memory". The term "memory cycle" refers to a J
read or write operation involving a memory location.

PROCESSOR-3

DESCRIPTION OF THE PROCESSOR

ffm)RY aJf'NENTIONS (CONT I)

The first 32 merrory addresses do no7 refer to externa I memory. Instead,
these addresses (0-37 8) are reserved to designate addressable registers
within the micro-processor. Table P-1 I ists the addressable registers
within the micro-processor.

*

Table P-1. Addressable Registers.

Octal
Address r~ame Location Description {# of Bits)

0 A BPC Arithmetic Accumulator { 16)

I B BPC Arithmetic Accumulator { 16)

2 p BPC Program Location Counter {I east 15 of 16 or 16)

3 R BPC Return Stack Pointer {least 15 of 16 or 16)

4 R4 IOC Peripheral Activity Designator (-)

5 R5 IOC Peripheral Activity Designation {-)

6 R6 IOC Peri phera I A::tivity Designator {-)

7 R7 ICC Peripheral Activity Designator (-)

10 IV ICC Interrupt Vector <urper 12 of 16)

11 PA IOC Peripheral Address Register (I east 4 of 16)

12 w IOC Working Reqistcr (16)

13 OMA PA IOC 2 MSB = CB & 08; 4 LSB = OMA Periph. Add. Reg.

14 OMA MA IOC OMA 1·1emory Address & Direction Reqister

15 DMAC IOC OMA Count Register { 16)

16 c IOC Stack Pointer { 16)

17 D 10: Stack Pointer { 16)

20-23 AR2 Et.'C BCD P.rithmetic Accumulator (4 x 16)

24 SE EMC Shift Extend Register (least 4 of 16)

25-27 x EMC I nterna I Ari~hmetic Register (3 X 16)

30-37 UNASSIGNED

77770/
ARI R/W BCD Arithmetic Register (4 x 16) 177770

Not ava i I ab I e for genera I use. Pad of processes i nterna I to a chip. It
is best to pretend that these registers co not exist.

(I 'l

t Read register 13
8

produces:

CB and DB are actually discrete
registers, and while they can
only be read by reading Rl3,
storinging into Rl3 wi II not
alter their v<ilues. Use the
CBL, CBU, DBL and DBU machine
instructions for that purpose.
CB and DB exist in the 16-bii
version only.

tit'-''.
11 Value of

Value of

'---'
I ~ Upper
0 ~ Lower

PROCESSOR-4

Bit O~

VOID - -11111
DB '---'
CB OMA

Select Code

DESCRIPTION OF THE PROCESSOR

re·'DRY crnvoo 1 ONS <coNr. >

Most of the traffic on the IDA Bus has to do with memory. Both address
of memory locations, and the contents of those locations (data and machine­
instructions) are transmitted over the same 16-bit bl-directional bus
(the IDA Bus). Further, memory can be p,ysical ly distributed along the Bus.
Each of the three chips in the processor contains registers which are
addressable, and addressable memory also exists external to the processor.

MEl"ORY CYCLES

A memory cycle involves some control I ines as wel I as the IDA Bus.
Start tv'emory (STM) is used to initiate a memory cycle by identifying the
contents of the IDA Bus as an address. Memory Complete* is used to identify
the conclusion of a memory cycle. A I ine cal led Read/Write (ROW) specifies
the direction of data movement; out of or Into memory, respectively.

Each element in the system decodes the addresses for which It contains
addressable memory. To initiate a memory cycle, an element of the processor
puts the address of the desired location on the IDA Bus, sets the Read/Write
I ine, and gives Start Memory. Then, elsewhere in the system the address is
decoded and recognized, and that agency begins to function as memory. It is
part of the system definition that whatever Is on the IDA Bus when a Start
Memory is given is an address of a memory (or register) location.

Here is a complete description of the entire process: An originator
originates a memory cycle by putting the address on the IDA Bus, setting
the Read/Write I ine, and giving a Start Memory. The respondent identifies
itself as containing the object location of the memory cycle, and handles
the da-ra. If the originator is a sender (write) it puts and holds the data
on the IDA Bus until the respondent acknowledges receipt by sending Memory
Complete. If the originator is a receiver (read) the respondent obtains
and puts the data onto the IDA Bus and then sends Memory Complete. The
originator then has one clock time to capture the data; no additional
acknowledgement is involved. THIS IS WHEN THE

[

DATA IS CAPTURED
Figures P-3 and P-4 ii lustrate typical memory cycles.

~- ... -----,.......,
IDA BUS ~ ADDRESS ,....._. ~ IE-+- DATA ---t-7 ___ _

ROW (HIGH=READ)
,,_ _ _..,_...., - + - +- - +- - +---+---!!---+----!

..,_ _..,_...., - + - +- - +- - t-­

+---+---!~ --I - -+ - t- -,

Figure P-3. Simplified Read Memory Cycle.
There Is no single signal called ""~emery Cornrlete". Instead there is Unsynchronized 1·'.emory Coriplete
(i]:i.C) anc Synchronized 1·~emory Comp I etc (SMC). They Mean the same tr i ng for our present purpos<:?s,
<lnd their exact differences need not concern us here.

PROCESSOR-5

DESCRIPTION OF THE PROCESSOR

MEr'ORY CONVENT IONS
MEfvORY CYCLES (CONT.)

IDA BUS

RDW (LOW=WRITE)

r-RDW MAY TRANSITION
~ AS LATE AS HERE

.,.,.,~----...... -~-.., - .,.. - ~ - ~ -----
!----+-~~· ADDRESS ~T '~,--t--t-- DATA ?-__ .,.

,...._.__~i---+--+ - + -f-'" -,_~
................ -+---4 - + - i- - ~ - 1---

l---+----+-....... -4-- - 1--1--~

+---+--+-+---! - - - + - ~ - I---+-.....

Figure P-4. Simplified Write Memory Cycle.

THE BYTE LINE

The IOC generates a signal cal led BYTE that affects memory operation.
BYTE signifies that a memory cycle is to involve a left-half or right-half
of a word rather than the entire word. The IOC is the only entity that is
al lowed to generate BYTE, which is used during the execution of certain IOC
machine-instructions (the place and withdraw byte instructions).

During a read mem£.!)'._cycle the memory can supply the entire word regardless
of the status of the BYTE I ine; the IOC wi I I automatically extract ~he desired
byte from the supplied word. However, during a write memory cycle 7he memory
must merge the transmitted byte with the existing other half of the word
(which is already in memory). The transmitted byte wi I I be sent as the
left-half or right-half of a word (that is, on the upper eight bits or on
the lower eight bits of the IOA Bus), as is appropriate for whichever byte
it is supposed to be.

The 15-bit and 16-bit versions of the IOC differ In the way they indicate
which half of the word is being sent to memory. (These indicators are
actually in force for both read and write memory cycles, but may be entirely
ignored during read memory cycles.) For 15-bit IOC's the left-right infor­
mation appears in the left-most bit of the address word; only 15 bits are
needed for addressing the word anyway. In this scheme a one in bit 15
indicates a left-half. For 16-bit IOC's the entire 16 bits is required for
addressing, and a separate signal (BL - Byte Left Not) is supplied to the
memory. When bit 15 is used to designate the byte, bit 15 must be latched
by the memory at the time the address is sent, as it is effectively sent as
part of the address. On the other hand, BL is a steady state signal val id
for the duration of the memory cycle.

f!""' \~hen acting as memory themselves, none of the BPC, IOC, or EMC uti I ize
the BYTE I ine during a write memory cycle. This means that a byte can be

PROCESSOR-6

DESCRIPTION OF THE PROCESSOR

MOORY COWENTIONS
THE BYTE LINE (CONT.)

read from a register in any of those chips, but that only entire words can
be written to those registers.

RAL LINE

Among several service functions performed by the BPC for the IOC and EMC
is the generation of a signal cal led RAL (Register Access Line) whenever an
address on the IDA Bus is within the range-reserved-for register designation.
RAL functions to prevent the external memory from responding to any memory
cycle having such an address.

PROCESSOR-7

FUNCTIONAL DESCRIPTION OF THE BPC

The BPC has two main functions. The first is to fetch machine-instructions
from memory for itself, the IOC, and for the EMC. A fetched instruction may
pertain to one or more of those chips. A chip that is not associated with
a fetched instruction simply Ignores that Instruction. The second main
function of the BPC is to execute the 56 instructions in Its own repertoire.
These instructions Include general purpose register and memory reference
instructions, branching instructions, bit manipulation instructions, and
some binary arithmetic instructions. Most of the BPC's instructions involve
one of the two accumulator registers: A and B.

There are four addressable registers within the BPC and they have the
fol lowing functions: The A and B registers are used as accumulator registers
for arithmetic operations, and also as source or destination locations for
most BPC machine-instructions referencing memory. The R register is an
indirect pointer into an area of read/write memory designated to store return
addresses associated with nests of subroutines encountered during program
execution. The P register contains the program counter; its value is the
address of the memory location from which the next machine-instruction wil I
be fetched.

Upon the completion of each instruction the program counter (p register)
has been incremented by one, except for the instructions JMP, JSM, RET, and
SKIP instructions whose SKIP condition has been met. For those Instructions
the value of P wil I depend on the activity of the particular instruction.

INDIRECT ADDRESSING
Indirect addressing is a technique in which an instruction that references

memory treats the first one or more references as intermediate steps to
referencing the final destination. Each intermediate reference yields the
address of the next location to be referenced. When an intermediate location
can point to yet another intermediate location, such addressing is termed
rrrulti-Zevel indirect addressing. Indirect addressing is not a property of
the memory; it is property of the chips that use the memory. Any chip that
is to implement instructions employing indirect addressing must contain a
special gear works for that purpose.

MULTI-LEVEL INDIRECT ADDRESSING

BPC's that can address 32K of memory can perform multi-level indirect
addressing. Memory addresses appear on the IDA Bus as 15-bit patterns during
the address portion of a memory cycle. The BPC machine-instructions that
reference memory are capable of multi-level indirect addressing. The initial
indirect indicator is a particular bit in the machine-instruction itself
(the most-significant, or left-most, bit: Bit 15). The internal operation
of the BPC is so arranged that if the memory content of that address also
has a one in bit 15, the other bits ·of the contents are themselves taken as
an indirect address. The process of accessing via an indirect address continues

PROCESSOR-8

FUNCTIONAL DESCRIPTION OF THE BPC

INDIRECT ADDRESSING
MULTI-LEVEL INDIRECT ADDRESSING (CONT.)

until a location is accessed which does not have a one in bit 15. At that
time the content of that location is taken as the final address; that is, it
is taken to be the address of the desired location and the memory cycle is
completed when that final desired location is accessed.

SINGLE LEVEL INDIRECT ADDRESSING

BPC's that can address 64K of memory are not capable of multi-level
indirect addressing; they can perform only one level of indirect addressing.
As before, bit 15 of the particular memory reference instruction wil I be set.
The contents of the referenced location wil I be read, and its entire 16-bit
contents treated as the address of the final destination to be read from or
written into. This is because addressing 64K of memory requires the use of
bit 15 as an actual address bit; thus bit 15 is not available to indicate
that the remaining bits are an Indirect address. The format of the memory
reference instructions themselves has not changed; bit 15 of ·rhose Instructions
stll I indicates an Initial Indirect reference, but no further indirect
references can be indicated as memory is read. Hence only one level of
indirect addressing is possible.

fVBIORY REFERENCE INSTRUCTIONS & PAGE ADDRESSING
Machine-instructions fetched from memory are 16-bit instructions. Some

of those bits represent the particular type to which the particular instruction
belongs. Other bits differentiate the instruction from others of the same
type. If a BPC machine-instruction is one that involves reading from, storing
into, or otherwise manipulating the contents of a memory location, it is
said to be a memory reference instruation. Load into A (LOA), Store from B
CSTB), and Jump (JMP) are examples. There are 14 memory reference instructions
and they each contain bits to represent the address of the location that is
to be referenced by the instruction. Only ten bits are devoted to Indicating
the address to be referenced. Those ten bits represent one of 1024 10 locations
on either the base page or the aurrent page of memory. An additional bit in
the machine-instruction indicates which. The base page is always a particular,
non-changing, range of addresses, exactly 102410 in number. A memory
reference machine-instruction fetched from any location in memory (i.e.,
from any value of the program counter) may directly reference (that is, need
not use indirect addressing) any location on the base page.

For 15-bit addressing the base page is addresses 00000a-00777a and
77000 8-77777 0 • For 16-bit addressing the base page addresses are 000000e-
000777a and 177000a-177777a. Figure P-5 depicts the base page.

There are two types of current pages. Each type Is also 102410
consecutive words in length. Except for base page references, a
memory reference machine-instruction can directly reference only
locations that are on the same current page as it; that is, locations
that are within the page containing the current value of the

PROCESSOR-9

FUNCTIONAL DESCRIPTION OF THE BPC

r f'EMJRv im:RENcE 1NSrRucr1rns & PAGE ADn1£ss1NG ccoNT. >

ABSOLUTE
"ZERO"

PAGE

(1/0) 7 7 0 0 0

OCTAL ADDRESSES).

(1/0) 7 7 7 7 7

00000 }
..i.. ,._ REGISTER
~1-1:.--------------1..!1"' LOCATIONS

0 0 0 3 7

0 0 7 7 7

0 1 0 0 0

0 1 7 7 7

0 2 0 0 0

Figure P-5. Base Page Description.

BASE
PAGE

program counter (P).* Thus the value of P determines the particular collection
of addresses that are the current page at any given time. This is done in
one of two distinct ways, and the particular way is determined by whether the
signal called RELA is grounded or not. If RELA is ungrounded, the BPC is said
to address memory in the "relative" mode. If RELA is grounded it is said to
operate in the "absolute" mode.

* Off-page references that are not base page references must be made using indirect addressing.

PROCESSOR-10

FUNCTIONAL DESCRIPTION OF THE BPC

MOORY REFERENCE INSTRJCTIONS & PAGE ADDRESSING (coNT.)

During the execution of each memory reference machine-instruction the
BPC forms a full 15-blt or 16-bit address based on the ten bits of address
contained within the instruction. How the supplied ten bits are manipulated
before becoming part of the actual address, and how the remaining five or
six bits are supplied, depends upon whether the instruction cal Is for a base
page reference or not, and upon whether the addressing mode ls relative or
absolute. The differences are determined primarily by the two different
definitions of the current page; one for each mode of addressing. Base page
addressing is the same in either mode.

ABSOLUTE ADDRESSING

In the absolute mode of addressing the memory address space is divided
into a base page and 32 or 64 possible current pages. The possible current pages
are the consecutive 102410 word groups beginning with 00000 8 • The possible
current pages can be numbered, 0 through 31 10; or O through 63 10. Thus the
"zero page" is addresses 00000 8 -01777 8 • Note that the base page is not the
same as the zero page; the base page overlaps pages zero and 31 for 32K
machines, and overlaps pages zero and 63 for 64K machines.

RELATIVE ADDRESSING

In relative addressing there are as many possible current pages as there
are values of the program counter. In the relative addressing mode a current
page Is the 51210 consecutive locations prior (that is, having lower valued
addresses) to the current location (value of P), and the 511 10 consecutive
locations fol lowing the current location.

BASE PAGE ADDRESSING

Al I memory reference machine-instructions include a 10-bit field that
specifies the location referenced by the instruction. What goes in this
field is a displacement from some reference location, as an actual complete
address has too many bits in it to fit in the instruction. This 10-bit
field is bit 0 through bit 9. Bit 10 tel Is whether the referenced location
is on the base page, or someplace else. Bit 10 is cal led the B/C bit, as
it alone is used to indicate base page references. Bit 10 wil I be a zero
if the reference is to the base page, and a one if otherwise.

If bit 10 is zero for a memory reference instruction (base page refer­
ence), the 10-bit field is sufficient to indicate completely which of the
1024 locations on the base page Is to be referenced. There are two way to
descr I be the ru I e that Is the correspondence be·t·ween bit patterns in the
10-bit field, and the locations that are the base page: Cl) the least
significant 10 bits of the "real address" (i.e., (1>77,0008 through 777 8)

are put into the 10-bit field, bit for bit; (2) as a displacement between
+777 8 and -IOOOa about O, with bit 9 being the sign.

The 32 register addresses are considered to be a part of the base page.
Base page addressing is always done in the manner indicated above, regardless
of whether relative or non-relative addressing is employed by the BPC.

PROCESSOR-11

FUNCTIONAL DESCRIPTION OF THE BPC

r ~RY REFERENCE INSTRUCT I ms & PAGE ADDRESSING (CONT I)
CURRENT PAGE ADDRESSING

Current page addressing refers to memory reference instructions which
reference a location which is not on the base page. The same 10-bit field
of the machine-instruction is involved, but the B/C bit is a one CC). Now,
since there are more than 1024 locations that are not the base page, the
10-bit field by itself, is not enough to completely specify the exact location
involved. An assumption has to be made about which page of the memory is
involved.

For absolute addressing the assumption is that the most significant 5
(or 6) bits of the P register correspond to the page, and the last 10 bits
of the machine-instruction determine the location within that page. This
assumption requires that there wi I I be no page changes except by certain
ways. This means that once the program counter is set to a particular
location the top 5 (or 6) bits need not be changed for any addressing on
that (which ever it is) page. When the assembler assembles a memory
reference instruction, it computes the least 10 bits and puts them in the
instruction. When the BPC executes the instruction it concatenates its own
top 5 (or 6) bits of ? with the address represented by the least 10 bits
of the instruction; that produces the complete address for the location
referenced by the instruction.

However, the least 10 bits produces by the assembler and placed in the
machine-instruction do not correspond exactly to the "real" memory address
that is referenced. Bit 9 (the 10th bit) is complemented before it is placed
in the address field of the instruction. The other 9 bits are left unchanged.
This induces a one-half page offset whose effect is to make current page
addressing relative to the middle of the page. Table ?-2 depicts current
page absolute addressing. This similarity between current page and base
page addressing is de! iberate, and results in simplified harcware in the BPC.

Page changes can be accomplished in two ways: incrementing or decrementing
the program counter in the BPC, and through indirect addressing. An example
of incrementing to a new page is a continuous block of code that spans two
adjacent pages. A page change through an increment or decrement can occur
in the same general way due to skip instructions.

Indirect addressing al lows page changes because the object of an indirect
reference is always taken as a ful I 15-bit or 16-bit address. Indirect
addressing is the method used for an instruction on a given page to either
reference a memory location on another page (LOA, STA, etc.), or, to jump
(JMP or JSM) to a location on another page.

lnstructlons on any page can make references to any location on the base
page without using indirect addressing. This is because the B/C bit designates
whether the 10-bit field in the instruction refers to the base page or to the
current page. If B/C is a zero (8), the BPC automatically assumes the upper
5 or 6 bits are al I zeros, and thus the 10-bit field refers to the base page.
If B/C is a one (C), the top 5 or 6 bits are taken for what they are, and the

fff"""' current page is referenced (whichever It is).
\

PROCESSOR-12

FUNCTIONAL DESCRIPTION OF THE BPC

t'OORY REFERENCE INSTRUCTIONS & PAGE ADDRESS ING
CURRENT PAGE ADDRESSING (CONT.)

Table P-2. Current Page Absolute Addressing
for Memory Reference Instructions.

LEAST 10 BITS
OF ASSEMBLER "REAL OCTAL ~DDRESS"
OUTPUT (octal)

TOP 5 (6) BITS OF P LOWER

1 0 0 0 x x START OF PAGE 0 0 0

1 0 0 1 x x 0 0 0

1 0 0 2 x x 0 0 0

. . .

. . .

. . .
1 7 7 7 . 0 7 7

0 0 0 0 . 1 0 0

0 0 0 1 . 1 0 0

0 0 0 2 . 1 0 0

. . .

. . .

. . .
0 7 7 7 x x END OF PAGE 1 7 7

10

0

1

2

7

0

1

2

7

BITS

It is the responsibility of the assembler to control the 8/C bit at the
time the machine-instruction is assembled. It does this easily enough by
determining if the address of the operand (or its "va I ue") of an instruction
is in the range of (1)77,0008 through 0, or, 0 through 7778 • If it is, then
it is a base page reference and B/C is made a zero for that instruction.

Relative addressing does not require the concept of a fixed page, as in
absolute addressing. The word "page" can stil I be used, but requires a new
definition:

PROCESSOR-13

FUNCTIONAL DESCRIPTION OF THE BPC

MOORY REFERENCE INSTRUCTIONS & PAGE ADDRESSING
CURRENT PAGE ADDRESSING (CONT.)

In relative addressing, a page is 102410 consecutive locations, having
512 10 locations prior to the current location, and 51110 locations
fol lowing the current location.

As before, direct addressing is possible anywhere within the page. But
off-page references (other than to the base page) require indirect addressing,
which, once started, works as before - it is not relative, but produces a
fut t 15-bit or 16-bit absolute address.

Figure P-6 illustrates relative addressing. Relative current page
addressing is done much the same way as base page addressing. The 10-bit
f ietd in the memory reference instructions is encoded with a displacement
relative to the current location.

Bit 9 (the 10th, and most significant bit of the 10) is a sign bit. If
it is a zero, then the displacement is positive, and bits 0-8 are taken at
face value. If bit 9 is a one, the displacement is negative. Bits 0-8
have been complemented and then incremented (two's complement) before being
placed in the field. To get the absolute value of the displacement, simply
complement them again, and increment, ignoring bit 9.

CURRENT
PAGE

I
0 0 0 0 0 8 i .,...

x x x x x 8 - 7 7 7 8

i----------------1 ~CURRENT VALUE
x x x x x 8 OF PROGRAM

x x x x x 8 + 7 7 6 8

(1) 7 7 7 7 7 8

....... .,...

...

I
Figure P-6. Relative Addressing.

PROCESSOR-14

COUiHER

FUNCTIONAL DESCRIPTION OF THE BPC

SUBROUTINES
The processor implements subroutines in the fol lowing way. The JSM

memory reference instruction is used to cause a jump (change in value of P)
to the start of the subroutine. Also as part of the JSM, the BPC saves the
value of P that corresponds to the word of programminq that is the JSM. That
va I ue is saved in a section of read/write memory ca I I ed the return sta.ak.

The return stack is a group of contiguous locations, whose starting address
less one was initially stored in the R register (in the BPC). Thus R is an
indirect pointer. What a JSM does is to increment the value in R and then use that
new va I ue as the address at which to store the va I ue of P i·hat is to be saved.
Once this activity is complete, P is actually set to the address of the first
word of the subroutine and its execution commences.

A subroutine is terminated with a RET n instruction. The essence of this
instruction is to read the location that R points at, set P to that value plus
n, and then decrement R. The garden variety return is a RET I. Different
values of n permit different returns corresponding to error or other special
conditions.

Subroutines can be nested as deep as the size of the return stack will
al low. The subroutines themselves can be ei·t·her in ROM or read/write memory.

FLAGS
The BPC is capable of branching based on the condition of each of four

signals externally supplied to the chip. These signals are Decimal Carry
CDC), Halt CHLT), Flag CFLG), and Status (STS>. The EMC acts as a source
for Decimal Carry, which represents an overflow condition during certain
arithmetic operations performed by the EMC. The other signals can be defined
in any way that is suitable for the system in which the processor is operating;
they are not used for inter-chip communication within the processor.

BUS REQUESTS AND INTERRUPTS
Two protocols that do involve inter-chip communication are those of

Bus Request and Interrupt. Bus Request CSR) provides a way for a chip in
the processor, or even a device external to the processor, to request
unfettered use of the IDA Bus. A signal cal led Bus Grant (BG) is generated
if all chips and any other interested entities agree to do so. The requesting
agency can use the IDA Bus for whatever purpose it wants, (typically to do
memory cycles). During the time that Bus Grant is in effect al I chips
suspend their activity. Bus Grants can be given even in the middle of the
execution of an instruction. Because of this, the chips do not grant bus
requests indiscriminately. Furthermore, a Bus Grant not requested by the
JOC is used by the IOC to create Extended Bus Grant CEXBG), which is routed
from chip to chip in a definite order; chips or other entities not at the ~
top of the chain can exercise the right not to pass along the signal. This

PROCESSOR-15

FUNCTIONAL DESCRIPTION OF THE BPC

("" BUS REQUESTS AND INTERRUPTS (CONT')

al lows a Bus Request from the IOC to have a higher priority than any
entity further down the chain. Even if both are requesting the bus, the
IOC can "steal" EXBG by not passing it along. Further down the chain from
the IOC, BG serves to indicate only that the bus is being granted to some­
body; a paticular requesting device must wait unti I It sees EXBG before it
can use the bus.

The Bus Request protocol includes these additional considerations:
Any entity on the bus may ground BG as long as BG is not already being given.
This al lows any entity anywhere in the chain to protect its own access to
the bus against al I agencies. Further, the BPC itself refuses to issue a
BG as long as any memory cycle is in progress.

Figure P-7 i I lustrates the usage of the Bus Request, Bus Grant, and
Extended Bus Grant protocol.

llG (BUS :;R,\NTJ

BPC

IDA BUS
W(BUS REQUEST)

1:xnc

J,;TERNA!.
DUS GRANT

IOC EMC

Figure P-7. Bus Request Protocol.

EXBG

INTERNAL
B~S GRANT

CRT

EXBG

Fol lowing is a description of how the inter-chip mechanism for interrupt
acts. During an instruction fetch a I ine cal led Interrupt <INT) can signal
that the IOC has agreed to al low an interrupt requested by a peripheral.
The management of this decision is comp I icated and its description belongs
with a description of the IOC. However, once the decision is made, the IOC
signals the BPC with INT. This has to occur during a certain period of
time ending with the end of the instruction fetch. (A signal cal led SYNC
indentifies the instruction fetch.)

What the chips in the system must do when an interrupt occurs is to
abort the execution of the instruction just fetched (it wil I be fetched
again, later). Then the BPC executes the Instruction JSM 108 Indirect.

PROCESSOR-16

FUNCTIONAL DESCRIPTION OF THE BPC

BUS REQUESTS AND INTERRUPTS (CONT I)

Register address 108 is located in the IOC, and is the Interrupt Vector
register (IV). That register is a pointer into a stack of addresses
of the starting locai·ions for the various interrupt service routines.
These routines handle the traffic needed by the interrupting peripheral.
A special mechanism in the IOC sets the bottom four bits of IV to
correspond to the particular peripheral that requested the interrupt.
Thus IV points to different service routines, according to which per i phera I
interrupted.

In any event, the J SM I 08 Indirect causes the va I ue of P for ·t·he aborted
instruction to be saved on the return stack. A RET 0 at the end of the service
routine results in that very instruction being fetched over again, at the
conclusion of the service routine.

PROCESSOR-17

FUNCTIONAL DESCRIPTION OF THE IOC

The IOC has two main functions. One is to manage the transfer of information
between the processor and external peripheral devices. This is done by
providing capabilities classified as Standard 1/0, Interrupt and Direct
Memory Access CDMA). The second main function is to provide machine-instructions
al lowing software management of two stacks in Read/Write Memory.

To implement these tasks the IOC contains a number of addressable registers.
The function of each wil I be discussed as the various topics of IOC operation
are covered.

GENERAL INFO~TI~ tmJT 1/0
The IOC al lows up to 16 peripheral devices to be present at one time.

Each peripheral device is connected to the 100 Bus, Peripheral Address Bus,
and the various control signals necessary for that particular device's
operation. Individual 1/0 operations (exchanges of single words) occur
between the processor and one peripheral at a time, although Interrupt and
OMA modes of operation can cause automatic interleaving of individual operations.
A select code transmitted by the Peripheral Address Bus <PABO-PAB3) indentif ies
which of the 16 devices is the object of an individual 1/0 operation.

In addition, the peripheral interface is the source of the Flag and
Status bits for the BPC instructions SFS, SFC, SSS, and SSC. Since there
can be many interfaces, but only one each of Flag and Status, only the
interface addressed by the select·code is al lowed to ~round these I ines. Their
logic is such that if the addressed peripheral is not present on the 1/0
Bus, Status and Flag are logically false.

ICI and IC2 are two control I ines that are sent to each peripheral
interface by the IOC. The state of these two I Ines during the non-OMA
transfer of information can be decoded to mean something by the interface.
Just what 'something' wil I be is subject to agreement between the firmware
designer and the interface designer - it can be anything they want, and
might not be the same for different interfaces. These two I ines act as a four
position mode switch on the interface, control led by the IOC during an 1/0
operation.

110 P!JS CYCLES
There are no specific machine-instructions for which the IOC responds

by doing 1/0 operations. That is, there is no "outpui- instruction", and no
"input instruction". The real workhorse of 1/0 is a thing cal Jed an I/O
Bus Cycle. An 1/0 Bus Cycle is an exchange of a word between the IDA Bus and
the JOO Bus, via the Peripheral BIB's. The exchange is not of the handshake
variety. 1/0 Bus Cycles are termed read or write 1/0 Bus Cycles, depending
upon whether information is being read from, or written to, a peripheral.

Each of the three modes of 1/0 operation (Standard 1/0, Interrupt, and

PROCESSOR-18

FUNCTIONAL DESCRIPTION OF THE IOC

1/0 BUS CYCLES (CONT.)

OMA) utilize 1/0 Bus Cycles. After we have examined how an 1/0 Bus Cycle
works, the explanation of the various modes of 1/0 wil I amount to showing
different ways to initiate 1/0 Bus Cycles.

For example, during Standard 1/0 operation, an 1/0 Bus Cycle is initiated
by a reference to one of R4 through R7 in the IOC. One way that can be done
Is with a BPC memory reference instruction; for instance, STA R4 (for a write
cycle), or LOA R4 (for a read cycle).

The IOC includes a register cal led the Peripheral Address Register CPA)
which is used in establishing the select code surrently in use. The peripheral
address is established by storing the desired select code into PA with an
ordinary memory reference instruction. The bottom four bits of this register
are brou9.b.:!:._out of the IOC as PABO through PAB3. Each peripheral interface
decodes PABO-PAB3 and thus determines if it is the addressed interface.

Consider a write 1/0 Bus Cycle as illustrated in Figure P-8. This is
initiated with a reference to one of R4-R7. The IOC sees this as an address
between 4 and 7 on the IOA Bus while STM is low. The Read I ine is low to denote
a write operation. The IOC enables the Per!.Q.beral ~'s and specifies the
direction. It also sets the control I ines ICI and IC2, according to which
of R4 through R7 was referenced. Meanwhile, the BPC has put the word that
is to be written onto the IDA Bus. Because both the Memory BIB's and Peripheral
BIB 1s are enabled, that word is felt at al I peripheral interfaces. The
interface that Is addressed uses DOUT to understand it's to read something, ~
and uses IOSB as a strobe for doing it. After IOSB is given, the IOC gives
[Synchronized] Memory Complete (SMC) and the process terminates. The BPC has
written a word to the interface whose select code matched the number in the
PA register.

A read 1/0 Bus Cycle is similar, as shown in Figure P-9. Here the BPC
expects t£._receive a word from the addressed peripheral interface. Read,
DOUT and BE are different because the data is now moving in the other direction.

In either case, the critical control signals SMC and IOSB are given by
the IOC, and their timing is fixed. There can be no delays due to something's
not being ready, nor is there any handshake between the interface and the IOC.

It is the responsibility of the firmware not to initiate an 1/0 Bus
cycle involving a device that is not ready. To do so wil I result in lost
data, and there w i I I be no warning that ·this has happened.

PROCESSOR-19

,....
\

~

FUNCTIONAL DESCRIPTION OF THE IOC

1/0 BUS CYCLES (CONT I)

IDA

ROW

IDA

STM

ROW

SMC

ICl

IC2

i50uT

iiE

IOSB

THIS IS A WRITE MEMORY llf THIS IS Tl!E BEGINNING OF THE ACTUAL 1/0 BUS CYCLE
CYCLE THAT INITIATES A
WRITE I/0 BUS CYCLE. Tl T2 73 T4 TS T6

---+-+-----;.---------------1--- THE STATES OF THESE
1'
I "- - - I - - - - - - -- - -I ' I

/

d----------""' ,...._,__.,_..,......,..--+-----..... ,------+----
1:

---- NOTES----

TWO SIGNALS ARE
DETERMINED B"i WHICH
OF R4-R7 WAS
REFERENCED

l. THIS 1/0 BUS CYCLE WAS INITIATED BY ANY WRITE-INTO-MEMORY INSTRUCTION
WHICH REFERENCED ONE OF R4 THRU R7.

2. CONTROL INFORMATION IS VALID ON BOTll EDGES OF IOSB.
3. DATA IS LATCllEO I:ITO THE INTERFACE ON TllF. TRAILING EDGE OF IOSB.

02

l.

2.
3.

Figure P-8. A Write 1/0 Bus Cycle.
THIS IS A READ MEMORY
CYCLE THAT INITIATES
A READ 1/0 BUS CYCLE.

IS THE BEGINNING OF THE ACTUAL 1/0 BUS CYCLE

Tl T4 TS T6

,I I

1----------.,.....-r-r-+.....,-,...._,..--+-"t""""----- THE STATES OF THES::
_J _ i_ l TWO SIGNALS ARE

1 DETERMINED BY WHICH ,__ ___ _,_ _ __, ____ ,___,_ ___ _,___, __ ...,.. __ ..,,__OF R4-R7 WAS

REFERENCED

---- NOTES---­

THIS I/O nus CYCLE WAS INITIATED BY ANY REl\0-FROM-MEMORY INSTRUCTION
WHICH REFERENCED ONE OF R4 TllRU R7.
CONTROL INFORMATION IS VALID ON BOTll l·:DGf:S OF IOSB.
DATA FROM THE INTERFACE IS LATCHED INTO TllE BPC CURING T4.

Figure P-9. A Read 1/0 Bus Cycle.

PROCESSOR-20

FUNCTIONAL DESCRIPTION OF THE IOC

STANDARD 1/0
Standard (programmed) 1/0 involves three activities:

I) Setting the peripheral address
2) Investigating the status of the peripheral
3) Initiating an 1/0 Bus Cycle

ADDRESSING THE PERIPHERAL

A peripheral is selected as the addressed peripheral by storing its octal
select code into a 4-bit register cal led PA (Peripheral Address - address I le).
Only the four least significant bits are used i·o represent the select code.

CHECKING STATUS

The addressed peripheral is al lowed to control the Flag and Status I ines.
(That is, it is up to the interface to not ground Flag or Status unless it is
the addressed interface.) These I ines have an electrical logic such that when
floating they appear false (clear, or not set) for SFS, SFC, SSS, and SSC.

The basic idea (and it can be done in a variety of ways) is to use
sufficient checks of Flag and Status before and amongst the 1/0 Bus Cycles
such that there is no possibility of initiating an 1/0 Bus Cycle to a device
that is not ready to handle it. One way to do this with Standard 1/0 is to
precede every 1/0 Bus Cycle with the appropriate checks.

INITIATING 1/0 BUS CYCLES

An 1/0 Bus Cycle occurs once each time one of R4 - R7 (4 9-7e} is accessed
as memory. An instruction that 11 puts 11 something into R4-R7 results in an
output (write} 1/0 Bus Cycle. Conversely, an instruction that "gets" something
from R4-R7 results in an input (read} 1/0 Bus Cycle. However, there are no
R4 through R7. The use of address 4-7 is just a device to get an 1/0 Bus
Cycle started; they do not correspond to actual physical registers in the IOC.

Consider the fol lowing hypothetical case, (specially invented for
purposes of illustration) - Suppose we are to write a driver for a smarter
than average paper tape punch: Upon a single command it can output 50 feed­
frames for leader. The routine is to have two entry points; one for outputting
a sing I e word of data, and one for causing -~he I eader. A I so, the punch sets
the status I ine if it gets low on tape. Prior to cal I ing our driver, the
main program puts the word to be outputted into DATA, and the select code
of the punch in PUNSC.

I. PUNCH JSM
2. LDA
3. STA
4. RET
5. LEADR JSM
6. STB
7. RET
8. SETUP LDA
9. STA

10. SFC

SETUP
DATA
R4
I
SETUP
R5
I
PUN SC
PA
*

SET SELECT CODE, CHECK AVAILABILITY
GET OUTPUT DATA WORD
OUTPUT THE DATA CICI = 0, IC2 = 0)
RETURN TO MAIN PROGRAM
SET SELECT CODE, CHECK AVAILABILITY
OUTPUT LEADER CICI = I, IC2 = 0)
RETURN TO MAIN PROGRAM
GET SELECT CODE
PUT IT INOT PERIPHERAL ADDRESS REG
WAIT IF PUNCH NOT AVAILABLE

PROCESSOR-21

FUNCTIONAL DESCRIPTION OF THE IOC

r' STANDARD I/O
INITIATING I/0 BUS CYCLES (CONT.)

I I •
12.
13.

14.
15.

BXCRS

SSS BXCRS
RET I

PUNSC NOP
DATA NOP

SKIP IF PUNCH OUT OF TAPE
OK, DO OUTPUT OPERATION
HANDLE THE OUT OF TAPE SITUATION

TAPE PUNCH SELECT CODE
OUTPUT DATA WORD

Lines I and 5 invoke I ines 8 through 12. Lines 8 and 9 set the select
code, and I i ne I 0 checks for presence and ava i I ab i I i ty C both must be "yes",
or, at the interface the Flag wil I be false). Line II checks for the out-of­
tape condition; it is the responsibility of the punch-interface combination to
set Status high when the tape supply is low and the punch is addressed by PA.
The routine at BXCRS handles the out of tape condition.

lines 2 and 3 punch a word of data onto the tape. line 3 causes a
"write" (output) 1/0 Bus Cycle. The contents of (in this case) A are written
to the addressed peripheral. Because it is R4 that is referenced, ICI and
IC2 are both zeros. The interface understands an output 1/0 Bus Cycle with
ICI and IC2 both zeros to be a command to punch the supplied word.

Line 6 gives the command to punch leader. Because it is a write operation
referencing RS, an output 1/0 Bus Cycle is done with ICI = I and IC2 = 0.
In this instance the contents of B is sent to the punch (we wi I I assume that
it is ignored, however). The interface understands an output 1/0 Bus Cycle
with ICI = I and IC2 = 0 as the command to generate leader.

The 16-bit word transmitted from B need not be ignored. An even smarter
punch might use it as the number of feed-frames to punch. A more general
approach would be for the interface to recognize that ICI = I and IC2 = 0
signifies that the accompanying word is to be decoded to determine the
instruction/control information. The possibilities are numerous.

THE ODDBALL POSSIBILITIES

By this time in your reading you no doubt instantly recognize LDB R4
as an input operation where a word is read from the addressed peripheral
and placed into B. But what about the other memory reference instructions?
What, for instance, does ADA R4 do, or a CPA R4, or an ISZ R4, or worse
stil I, a LOB R4,I? Some of these things do not have a known practical use,
but they each work in a logically straight-forward manner.

An ADA R4 wil I read a word of data from the addressed peripheral, and
then add it to the contents of A, leaving the result in A.

A CPA R4 wi I I read a word of data from the addressed peripheral, and
then compare that with the existing contents of A. The BPC wil I skip the
next instruction if the two are unequal.

PROCESSOR-22

FUNCTIONAL DESCRIPTION OF THE IOC

STPNDARD I/O
THE ODDBALL POSSIBILITIES (CONT.)

An ISZ R4 is an input/incremert-and-skip/output instruction. It reads
a word of data from the addressed peripheral and increments the resulting
value. If the sum is zero, the next instruction is skipped. But in any case,
the incremented value is written back to the same peripheral it came from.
The interface sees a read 1/0 Bus Cycle fol lowed a very short time later by
a write 1/0 Bus Cycle.

An LOB R4,I does the obvious thing. A word of data is read from the
addressed peripheral. Once the data is read it is treated exactly as if it
had come from regular memory, and the action proceeds just as for any other
Load B-indirect.

THE I ITTERRUPT SYSTEM
The idea behind interrupt is that for certain kinds of peripheral

activity, the processor can go about other business once the 1/0 activity
is intiated, leaving the bulk of the 1/0 activity to an interrupt service
routine. When the peripheral is ready to handle another ration of data (it
might be a single byte or a whole string of words) it requests an interrupt.
When the processor grants the interrupt, the program segment currently being
executed is automatically suspended, and there is an automatic JSM to an
interrupt service routine that corresponds to the device that interrupted.
The service routine uses Standard 1/0 to accomplish its task. A RET O,P
terminates the activity of the service routine and causes resumption of
the suspended program.

PRIORITY

The interrupt system al lows even an interrupt service routine to be
interrupted and is therefore a multi-level Interrupt system, and it has a
priority scheme to determine whether to grant or ignore an interrupt request.

The IOC al lows two levels of interrupt, and has an accompanying two levels
of priority. Priority is determined by select code; select codes 0-7 8 are
the lower level (priority level I), and select codes 108-17e are the higher
level (priority level 2). Level 2 devices have priority over level I devices;
that is, a disc drive operating at level 2 could interrupt a plotter operating
at level I, but not vice versa. Within a priority level al I devices are of
"equal 11 priority, and operation is of a first come-first served basis; a level
I device cannoi· be interrupted by another level I device, but only by a level
2 device. However, priorities are not equal in the case of simultaneous
requests by two or more devices on the same level. In such an instance the device
with the higher numbered select code has priority. With no interrupt service
routine in progress, any interrupt wil I be granted.

INTERRUPT POLLS

Devices request an interrupt by pulling on one of two interrupt request
lines CIRL and IRH - one for each priority level). The IOC determines the
requesting select code by means of an interrupt pol I, to be described In the
next paragraph. If the IOC grants the interrupt it saves the existing select

PROCESSOR-23

FUNCTIONAL DESCRIPTION OF THE IOC

THE IITTERRUPT SYSTEM
INTERRUPT POLLS (CONT.)

code located in PA, puts the interrupting select code in PA, and does a JSM­
lndirect through an interrupt table to get to the interrupt service routine.

An interrupt pol I Is a special 1/0 Bus Cycle to determine which lnterface(s)
Is (are) requesting an interrupt. An interrupt pol I is restricted to one
level of priority at a time, and is done only when the IOC is prepared to
grant an interrupt for that level.

The interfaces distinguish an Interrupt Pol I Bus Cycle from an ordinary
1/0 Bus Cycle through the INT I ine being low. Also, during this Bus Cycle
PAB3 specifies which priority level the pol I is for. An interface that Is
requesting an interrupt on the level being pol led responds by grounding the
nth 1/0 Data I ine of the 1/0 Bus, where n equals the device's select code
module eight. If more than one device is requesting an interrupt, the one
with the higher select code wi I I have priority.

The IOC has a three-deep first-in last-out hardware stack. The top of
the stack is the Peripheral Address register CPA-I 18). The stack is deep
enough to hold the select code in use prior to any interrupts, plus the
select codes for two levels of interrupt. When an interrupt is granted, the
IOC automatically pushes the select code of the interrupting device (as
determined by the interrupt pol I) onto the stack. Thus the previous select
code-in-use is saved, and the new select code-in-use becomes the one of the
interrupting device.

INTERRUPT TABLE

It is the responsibi I ity of the firmware to maintain an interrupt table
of 16 consecutive words, starting at some Read/Write Memory address whose
four least-significant bits are zeros. The words in the interrupt table
are set to the starting addresses of the various interrupt service routines
in use for the 16 different select codes. When a peripheral is al lowed
to interrupt its select code is used to determine which interrupt service
routine to JSM to. The interrupt service routine then handles the 1/0
operations needed by the interrupting device.

The firmware must also store the address of the first word of the inter­
rupt table in the IV register (Interrupt Vector register, address 108 , located
in the IOC). Those contents wil I merge with the select code to produce the
address of the appropriate table entry. In either version of the processor
a two-level indirect jump is used to arrive at the interrupt service routine.
This happens automatically because the BPC generates a JSM IV ,I as part
of what it does during an interrupt. See Figures P-10 and P-10~. In 15-bit
processors the indirect chain could be longer if desired. It cann.ot be shorter,
however, due to a bug in the 15-bit IOC. Thus, the scheme depicted in Figure
P-1 I cannot be used. Even with 16-bit processors the scheme in Figure P-1 I is
not possible; in 16-bit processors the IOC forces the BPC to do two consecutive
"first-level" indirect accesses, so that the effect is exactly that shown
in Figure P-1 I, except that it doesn't matter then whether bit 15 of IV is
set or not.

In 15-bit processors bit 15 of IV must be set. This does two things.
First, it guarantees that the JSM 10 8 ,I involves at least two levels of
indirect. Second, it avoids a bug in the IOC. If bit 15 were a zero, the
machine would attempt to implement the situation shown in Figure P-1 I. But

PROCESSOR-24

FUNCTIONAL DESCRIPTION OF THE IOC

1HE INlERRUPT SYSlEM
I NTERRUPf TABLE (CONT I)

a race condition between the BPC and IOC is inv~lved; its effect is to make
bit 15 of rJ look I ike a one even when it was a zero. The bug is somewhat
dependent upon clock frequency. Reliable operation can be ensured only by
using a two-level JSM through rJ and the interrupt table.

In 16-bit processors the bug was f lxed by permanently deciding the race
condition in the IOC's favor. Nothing was done to the BPC; it sti 11 only
understands one level of indirect addressing. But the IOC keeps the INT
I ine grounded long enough to force the BPC to treat the contents of rJ
itself as an indiPeat add.Pess. This causes the BPC to read the next address
(the one in the interrupt table) and treat its contents as the destination
address, just as in multi-level indirect addressing. Thus, in the 16-bit
processor the JSM through the interrupt table is always a two-level process
as shown in Figure P-10~, regardless of whether bit 15 of IV is set or not.
Bit 15 of rJ becomes simply an address bit, helping indicate where in
memory the interrupt table is located.

r 10
9

t•lV) IS A t•t~T .. LEVEL
lt:Dl PL.._,. AI>:JRESS

UrtERRt:M' VECTOR
(1'ABL'E POINTER)

.JSK IV.I IVClO) IW IOC

l r~~EAO•E
1XXXXX.XXXXXX 0000

_.--:--., \...,,.J fl
THIS IS /\ V/\RIADLC

SCC'OND•LL'\'f.L
lNDl RCCT ADDRESS

DETERMINED BY =
THE INTERRUPT l'<lLL ili

"' tl
c INTERRUPT TABlE Ill

READ/WRITE r.El-XlRY ~

m 1-------I .,.
..
8

~
"' e
L) StRVlCE. ROU1'lU£ ADDR.

JSH, I THROUGH THE INTERRUPT TABLE WITH
"NATUP.AL' tlllTl-LEVEL INDIRECT ADDRESSlllG

Figure P-10.
The Interrupt Table With

15-Bi t Addressing.

.,.m 1-------l

..
8
!;

~ ..
e
4 S&RV ICE 5tOU'TUU: ADDA.

JSH, I THROUGH TffE llllERRUPT TABlE KITH
"FORCED" r:urn-lEVEl lllDIRECT AUURESSlllG

Figure P-1 O~.
The Interrupt Table With

16-Bit Addressing.

r 10
8

C•lV) IS AS INDIRECT ADDR!-SS

+ I HTEJUWtT VtcTOR
JSK IV 1 I CTAB~~ ~NTER)

lV (1081 ---i

THIS IS A .!
VARIABLE

DESTINA'TJCN

oxxxxxxxxxxx 0000

\...,,.J
PL"Tl.RMIUE:D DY

'fHE UfTER~UrT l'<llL

ADDRESS
INTERRUPT TABlE IN

~
8

~
"' !!

READ/WRITE l'll'DRY

~ . . .
4 JMP < SERYJCI: ROQTJN£ ADDR .)

JS/1, I THROUGH TllE INTERRUPT TABLE
WITH SINGlE-LEVEL INDIRECT ADDRESSlllG

Figure P-11 •
How Not To Use

The Interrupt Table.

After the interrupt pol I is complete the select code of the interrupting
device is made to be the four least-significant bits of the IV register. Thus ~
IV now points at the word in the Interrupt Table which corresponds to thi;
appropriate interrupt service routine. Al I that is needed now is a JSM IV,l,

PROCESSOR-25

FUNCTIONAL DESCRIPTION OF THE IOC

f(' THE IITTERRUPT SYST8'1
INTERRUPT TABLE (CONT.)

and the interrupt service routine wi I I be under way. This is accomplished by
the BPC as summarized below.

INTERRUPT PROCESS SUfv!MARY

The IOC inspects the interrupt requests IRL and IRH during the time sync
is given. Based on the priority of the interrupt requests, and the priority
of any interrupt in progress, the IOC decides whether or not to grant an
interrupt. If it decides to al low an interrupt it immediately pul Is INT to
ground, and also begins an interrupt pol I.

The grounding of INT serves three purposes: It al lows the interfaces to
identify the forthcoming 1/0 Bus Cycle as an interrupt pol I; it causes any
other chips in the system, except the BPC, to abort their instruction decode
process (which by this time is in progress) and return their idle states; and
it causes the BPC to abort its instruction decode and execute a JSM 108 , I
instead.

The IOC uses the results of the interrupt pol I to form the interrupt vector,
which is then used by the J SM I Oe, I . It a I so pushes the new se I ect code onto
the peripheral address stack, and puts itself into a configuration where al I
interrupt requests except those of higher priority wi I I be ignored.

INTERRUPT SERVICE ROUTINES

The majority of the interrupt activity described so far is accomplished
automatically by the hardware. Al I the firmware has been responsible for
has been the IV register, the maintenance of the interrupt table, and (probably)
the initiation of the particular peripheral operation involved (plotting a
point, backspace, finding a file, etc.). Such operations Cinitated through a
command given by simple programmed 1/0) may involve many subsequent 1/0 Bus
Cycles, done at odd time-intervals, and requested by the peripheral through
an interrupt. It is the responsibility of the interrupt service routine to
handle the 1/0 activity required by the peripheral without upsetting the
routine that was interrupted.

It's difficult to say specific things about interrupt service routines
in general; a lot depends upon the particulars of the host software system.
In the next few pages we wi II examine some generalities relating to interrupt
service routines, and sketch some examples. The result may leave some readers
with an unsatisfied feeling; specific information is not available except as
part of a description of a particular software system.

Our first observation is on the number of service routines. In general,
there is not one service routine for each select code, or even for each
peripheral. The usual case is collections of routines that perform related
functions within the needs of a certain class of peripheral activity; each
class of activity has it own collection.

PROCESSOR-26

FUNCTIONAL DESCRIPTION OF THE IOC

THE INTERRUPT SYSTEM
INTERRUPT SERVICE ROUTINES (CONT.)

For instance, it is uni ikely that there would be a single interrupt
service routine for a disc. On the cust·omer's level there are many commands
in the disc operating system. On the firrm·mre level there are a series of
routines that perform 'fundamental units' of activity, where each 'fundameni·al
unit' involves some amount of 1/0. Most commands in the user's disc operating
system are made up of a series of these 'fundamental units' of activity.
'Fundamental unii·s 1 of activity for the disc are things I ike: moving the
head to a given frack, reading a given sector from a track into such and such
a buffer, and writing from such and such a buffer into a given secfor. It
is these types of activity i·hat are most I ikely to have corresponding interrupt
service routines.

Let's sketch a hypothetical example. Assume a fairly Involved disc user's
command is to be performed, one requiring reading the directory on the disc
to determine the location of certain fl le on the disc, and then !oading that
fl le into memory. The kind of thing that happens here is to move the head
to the start of the directory, read through the information in the directory
sector by sector unt i I the Information about the desired f i I e is found, moving
the head to the f i I e's I oca·t· ion, reading its header, reading its first sector,
etc., etc.

Each service routine is srnar·r enough to know which service routine fol lows
it for the particular high level task at hand, and, if it has a choice based ~
on the v1ay events i·urn out (error conditions, etc.), it knows hm1 to handle
that, too. As each new step in the sequence requiring a different interrupt
service routine is reached, the concluding routine changes the appropriate
entry of the interrupt table to the starting address of the next service
routine. In this way a versi·ri le col led ion of interrupt service routines
can serve many purposes.

As another example of this, consider a smart tape cassette, whose internal
architecture was of variable length files composed of fixed length records.
Such a cassette would resemble a cisc from the user's point of view, and it
is possible that some of the disc interrupi· service routines would \-Jork for
the cassette, also.

And lastly, consider the case of formatted output ·t·o I ine printers, punches,
teletypes and CRT's. Some of these devices may differ slightly in their main! ine
firmware drivers, but there is an excel lent chance that they could use the
same genera I purpose interrupt service routine(s).

So much for the chicken, now for the egg. At the beginning of the
operation the main! ine firmware sets up any initial conditions that are
required (e.g., selecting a buffer and setting a word count or a value of
a pointer). The mainline firmware also selects the interrupt service
routine by modifying an entry in the interrupt table. It also gives the
f i rs·r I /0 Bus Cycle, which 1·1a kes up the per i phera I and gets th i rigs going.
After this first l/O Bus Cycle the main I ine firmware can go on about its
other business.

PROCESSOR-27

FUNCTIONAL DESCRIPTION OF THE IOC

r" THE INTERRUPT SYSTEM
INTERRUPT SERVICE ROUTINE (CONT.)

Perhaps some questions have occured to you: "How does a peripheral know
If it is supposed to interrupt, or operate in some other mode?" (A Low-end
calculator might not use interrupt - or on a given calculator a peripheral
may use interrupt sometimes but not others); "How is it that the routine that
is in progress doesn't get bombed when an interrupt occurs?"; "And, come to
think of it, how can the calculator proceed with other activity when it has
essentially passed over unfinished business - miqht not things run amuck?";
and lastly, "How does the peripheral know when to stop interrupting, especially
In the case of an output operation where an arbitrary amount of information
is transmitted? 11

I-OW A PERIPHERAL KNOWS WHETHER TO USE INTERRUPT OR SIMPLE 1/0

There are several possibilities here: It might never use interrupt; it
might always use interrupt, it might use Interrupt always with one mainframe
but not with another due to different interface cards; it might have a smart
interface card that knows what calculator it's in, and thus use interrupt or
not; or, it might have a smarter yet interface that al lows the calculator to
tel I the peripheral when to begin using the interrupt system, and when to
stop.

The last possibl lity could work I Ike this: The initial 1/0 Bus Cycle
given by the main I ine firmware could reference, say, R5. This would be
understood by the interface as a command to interrupt as soon as the device
Is ready to handle the next ration of data. A scheme I Ike this al lows 1/0
statements referencing R4 free for simple, non-interrupt operation.

BOMBPROOFING THE MAINLINE FIRMWARE

The calculator could be almost anywhere in its internal coding when an
interrupt is granted. Since the code ls suspended with a JSM, the way is
clear to get back to the right spot with a RET O,P. But it won't do any
good to come back it the items in memory related to the routine are not the
same. The interrupt service routine must save and later restore any memory
location that wil I be directly or indirectly disturbed by the activity of
the service routine. This could include the extend and overflow registers
of the BPC, decimal carry and shift-extend of the EtJC, and possibly CB and
DB in the 16-bit version of the IOC.

As long os the sevice routine does al I its own laundry, it's easy to
tel I what to save; it's whatever gets used that's not private to that service
routine. But if the service routine farms out some of its work to uti I ity
subroutines in the main system, what needs to be saved is not always obvious.

"SIMULTANEOUS" ACTIVITIES

The main system software must be designed with interrupt in mind to take
ful I advantage of the interrupt system. This generally involves an entirely
different approach to 1/0 than in less sophisticated machines where there
is no interrupt capability. The fol lowing example illustrates the sort of

PROCESSOR-28

FUNCTIONAL DESCRIPTION OF THE IOC

THE INTERRUPT SYSTEM
"SIMULTANEOUS'' ACTIVITIES (CONT.)

approach used with interrupt systems.

Consider the following program segment:

50

55

60

100

\'IR I TE (6, I 00) A,B,C,

X = CA + B + C)/3

A = A + I

FORMAT IIO, 2F20.5

The write statement of 1 ine 50 is to be done under interrupt. Basically,
the idea is that once the firmware that executes the write statement has
gotten things started, the calculator can begin to execute the next I ine
in the program. In this example it is safe to immediately execute I ine 55,
as it wil I not affect the on-going process for 1 ine 50. But I ine 60 is
another matter. \'/hether or not it is safe to execute I ine 60 depends upon
how the main system works.

Suppose the main system has lots of memory to burn, and that the WRITE
routine, as part of its initialization, went and got the values of A, B, and
C, and saved th0fll in a buffer. Then nothing can hurt I ine 50; I ine 60 can
be executed immediately.

On the other hand, consider a system with not so much memory, and conse­
quently, I ittle or no buffering. It could compromise by setting a bit in
the symbol table entries of A, B, and C, marking them as busy. As each is
outputted, it would be un-marked. Then I ine 60 would be executed if A were
not busy, or, there would be a delay at I ine 60 while the main system waits
for A to become non-busy.

WHEN TO CEASE INTERRUPT MODE OPERATION

In some cases the peripheral and the corresponding firmware may each know
in advance how many items are involved, and each just goes to sleep when
everyt1ing is done.

In the case of arbitrary length transfers, or transfers control led by
one party, however, somebody has to decide when it's all done, and notify
the other party. For most output operations, and for input operations
involving dumb peripherals, the smarts are in the firmware. What the
peripheral wil I do is interrupt as soon as it is available fol lowing the
exchange of some data, even if the previous exchange was the "last11 one
(which the peripheral didn't know). It wi I I do this, unless the interruot
mode in the interface is shut off before It has the chance to interrupt
again.

PROCESSOR-29

FUNCTIONAL DESCRIPTION OF THE IOC

THE Im-ERRUPf SYSTEM
WHEN TO CEASE INTERRUPT l'IODE OPERATION (CONT.)

Now for hardware reasons the peripheral wit I, while requesting an interrupt,
keep its Interrupt Request line active until it gets a (data) 1/0 Bus Cycle
for that device.* The consequences of this are that once the interrupt is
granted the interrupt service routine cannot decline to exchange more data
and terminate itself by simply executing only a RET O,P. To do so would
leave the interface thinking it never got recognized (no data 1/0 Bus Cycle),
while the IOC thinks the interrupt is over. So on the next instruction
fetch the interrupt is granted again!! (Assuming the priority situation
has not changed.)

So, unless the device ls smart enough to know, by itself, not to interrupt
after the last exchange, the firmware must shut the thing off. This easy
enough to do, and could be done by taking advantage of the ability to set
ICI and IC2 during an 1/0 Bus Cycle (i.e., STA R5 or STA R6, perhaps with
a special code in A). So the result is a different (and perhaps an extra)
trai I ing 1/0 Bus Cycle to put the interrupt mode of the peripheral to sleep.

RETURNING FROM INTERRUPT SERVICE ROUTINES

The last things done by an interrupt service routine are to: (if
necessary) shut off the interrupt mode of the interface; restore any saved
values; and to execute a RET O,P.

The RET 0 part ads to return to the routine that was interrupted, so that
its execution wil I continue. The Pacts to pop peripheral address stack and
adjust the IOC's internal indicator of what priority level of interrupt is
in progress. By popping the peripheral address stack, PA is set back to
whatever it was prior to the most recent interrupt.

DISABLING THE INTERRUPT SYSTEM

The interrupt system can be "turned off" by a DIR instruction. After this
instruction is given the IOC wi I I refuse to grant any interrupts whatsoever,
until the interrupt system is turned back on with the instruction EIR. While
the IOC won't grant any interrupts, the RET O,P works as usual so that
interrupt service routines may be safely terminated, even while the interrupt
system is turned off.

* It has tc be this way beca1Jse this is the orly wiJy iJ device requesting an interrupt c<Jn dcterMine
that it has been granted <Jn intcrru::it. rn.:: mere doing of an int•}rrupt poll for that level is not
enough - a device on the same level but wit~ a higher select code ~iy be the winner. Nor can an
interface tell if it is the winner by looking at the PA I ines - the only signal us.sble <is a strobe
for that is given before thoy arc set up.

PROCESSOR-30

FUNCTIONAL DESCRIPTION OF THE IOC

DIRECT MEJY'ORY ACCESS
Direct Memory Access is a means to exchange entire blocks of data between

memory end peripherals. A clock is a series of consecutive memory locations.
Once started, the process is mostly automatic; it is done under control of
hardware in the IOC, and regulated by the interface.

The OMA process can transfer dai"a in two ways: single words are transferred
one at a time, on a cycle-steal basis; strings of words can be transferred
c~nsecutively in a burst mode. In either instance data is transferred one
1-1ord at a time. To transfer a \'/Ord, a per.!J?heral signals the IOC, 11hich
then requests contra I of ·f·he I DA Bus w i ·rh BR. That resu I ts in an externa I
ha It in a 11 other system activity on ·rtrn Bus for the duration of the peri phera I 's
request for OMA service. Herein I ies the difference between burst mode and
cycle-steal operation; in cycle-steal operation the peripheral ceases to
request service after one word is transferred, and requests service again when
ready, while in the burst mode the request is held to al low a series of
high-speed consecutive transfers to occur.

During a DMA transfer of a block of data the IOC kno11s the next memory
location involved, 11hether input or output, which select code, (and possibly)
1<1hether or not the transfer of the entire block is complete. This information
is in registers in the IOC, which are set up by the firmware before the
peripheral is told to begine OM.A. activity.

Actual transfers are initiated at the request of the interface. To
request a OMA transfer a device grounds the OMA Request Ii ne (OMAR). Si nee
there is only one channel of OMA hardware, and one OMA Request I ine, only
one per-ipheral at a time may use DMA. A si·ruation where two or more devices
compete for the OMA channel must be resolved by the firmware, and it is
absolutely forbidden for two or more devices to ground OMAR at the same time.
(A data request for DMA is not I i ke an interrupt request; there is 'lO

priority scheme, and no means for the hardwc:ire to select, identify and notify
an interface as the winner of a race for DMA service.) Furthermore, a device
must not begin requesting OMA transfers on its own; i ·f· must wait unt i I
i nstrucfod to do so by tho f i rmvrn re.

The OMA process is a I together i ndoperderrr of the operaT 1 on of standard
-1/0 and of the interrupt system, and except for thefi· of the IDA Bus for
memory cycles, does not interfere with them in any way.

ENABLING AND DISABLING THE OMA MODE

OMA transfers as described above arc rnferred to as the DMA Mode. The
Dr.:!A i,1odc con be di sab I ed ·h-10 ways: by Ll DOR (0 i sab I e Data Request), or by
a PCM (Pulse Count Mode - described later). A DOR causes the IOC i"o simply
ignore OMAR; no more, no I ess. The instruct ion OMA <DMA Mode) causes the
IOC to resume OMA Mode opcrution; DMJ\ cancels DOR, and vice versa. OMA also
cancels PCM, and vice vor-sa. Also, DDf~ ce:1ncels PCM, and vice versa.

Also, the IOC turns on c:is if it has just been given a DOR. DOR (along
1·dth DIR) is useful during system initializa·tion (or possible error recovery)
routines, l'lhcra it is Ui1S<.ife to allow any system activity to proceed until

PROCESSOR-31

FUNCTIONAL DESCRIPTION OF THE IOC

rf!:" DIRECT MEJV[)RY ACCESS
ENABLING AND DISABLING THE OMA MODE (CONT.)

the system is properly initialized (or restarted).

REGISTER SET-UP

There are several registers that must be set up prior to the onset of OMA
activity. · These are shown below:

Name Address Meaning

OMA PA (=13e) OMA Peripheral Address

OM AMA (=14e) OMA Memory Address (and direction
for 15-bit addressing)

OMAC (=159) OMA Count

OMAD ------ OMA Direction (for 16-bit addressing)

The four least significant bits of DMAPA specify the select code which is
to be the peripheral side of the OMA activity. During an 1/0 Bus Cycle given
in response to a OMA data request, the content of the PAS I ines wil I be determined
by the four least significant bits of OMAPA, rather than by the PA register.

OMAC can, if desired, be set to n-1, where n is the number of words to
be transferred. During each transfer the count in DMAC is decremented. During
the last transfer the IOC automatically generates signals which the interface
can use to recognize the last transfer. In the case of a transfer of unknown
size, DMAC should be set to a very large count, to thwart the automatic
termination mechanism. In such cases it is up to the interface to identHy
the last transfer.

DMAMA is set to the address of the first word in the block to be
transferred. This is the lowest numbered address; after each transfer DMAMA
is automatically incremented by the IOC. For 15-bit addressing, bit 15 of
DMAMA specifies input or output (relative to the processor); a zero specifies
input and a one specifies output. With 16-bit addressing a separate one-bit
register CDMAD) exists to specify the direction of the transfer; DMAD is
controlled by its own set and clear instructions, and is not addressable.

a--tA INITIATION

Once the control registers are set up, a "start OMA" command is given to
the interface through standard programmed 1/0. The "start DMA 11 command is
an output 1/0 Bus Cycle with a particular combination of ICI, IC2, (and
perhaps) a particular bit pattern in the transmitted word. The patterns
themselves are subject to agreement between the firmware designer and the
interface designer. Sophisticated peripherals using OMA in both directions
wil I have two start commands, one for input and one for output. It's also
possible that other information could be encoded in the start command (block
size, for instance).

PROCESSOR-32

FUNCTIONAL DESCRIPTION OF THE IOC

DIRECT MWORY ACCESS (CONT I)

DATA REQUEST AND TRANSFER

The interface exerts OMAR low whenever it is ready to exchange a word
of data. When OMAR goes low the IOC requests control of the IDA Bus. \1hen
granted the Bus, the IOC initiates an 1/0 Bus Cycle with the PA I ines control led
by OMA Peripheral Address, and does a memory cycle. (The order of these two
operations depends upon the dir€ction of the transfer.)

Next the IOC increments OMA Memory Address and decrements OMA Count.

OMA. TERMINATION

Both ·the 15-b it and 16-b it addressing processors emp I oy an automatic DMA
termination indicator that involves IC2. The 15-bit version of the IOC
contains an additional mechanism involving a signal cal led CTM. Automatic
termination is usab I e on I y when the b I ock size is known in advance and is
based on the count in OMAC going negative.

Reca I I that at the start of the operation DMAC is set to n-1, \'1here n is
the size of the transfer in words. During the transfer of the nth word,
i·he IOC wi 11 signal the interface by temporarily exerting IC2 high during
the 1/0 Bus Cycle for that exchange. The interface can detect this and
cease OMA operations.

The other means of automatic term i na·t· ion wou Id be detection by the inter­
f ace of a Count Minus signal (CTM). CTM is generated by the 15-bit version
of the IOC; it means that the count in the least significant 15 bits of DMAC
has gone negative. CTM is a steady-state signal, given as soon as, and as
long as, the count in DMAC is negative. \'/hi le CTM is generated by the IOC,
it proved unsatisfactory and it is not utilized in the configuration employed
in the present 15-bii" hybrid micro-processor. That is, CTM never leaves
the IOC.

For OMA transferes of unknown block size, the interface determines when
·the transfer is complete, and flags or interrupts the processor.

THE PULSE COUNT MODE

The Pulse Count Mode is a means of using the OMA hard\oJare to acknowledge,
but do nothing about, some number of OMA requests. The Pulse Count Mode is
initiated by a PCM, and resembles the OMA Mode, but without the memory
cycle. The activities of the registers DMAPA, DMAC, DMAMA, and OMAD remain
as described for OMA Mode operation. The only difference is that no data
is exchanged with memory; no memory cycle is given. CThe ICC even requests
the IDA Bus, but when granted it, releases it without doing the memory cycle.)

A dummy 1/0 Bus Cycle is given, and DMAC decremented. Also, the automatic
termination mechanism sti I I functions; in fact, that is the object of the
entire operation. The Pulse Count Mode is intended for applications I ike

PROCESSOR-33

FUNCTIONAL DESCRIPTION OF THE IOC

c DIRECT f'EM)RY ACCESS
THE PULSE COUNT MODE (CONT.)

the fol lowing: Suppose it were desired to move a tape cassette a known number
of files. The firmware puts the appropriate number into DMAC, gives PCM,
and instructs the cassette to begine moving. The cassette would give a OMA
Request each time it encounters a file header. In this way the OMA hardware
and the automatic termination mechanism count the number of files for the
cassette. PCM cancels OMA and DOR. Both DMA and DOR cancel PCM.

PLACE AND WITHDRL\W
THE NOTATION OF A STACK

A stack is a series of consecutive memory locations. A stack is treated
as a unit of memory having a single 'depository' into which or from which al I
information in the stack must pass in a first-in, last-out, order. The depository
is the 'top of the stack'. A stack that can contain one hundred words of
information is one hundred words 'deep'.

Consider a 100 word stack containing one entry. That entry would be
'on top of the stack' and the remaining 99 words 'below' the top of the
stack would be 'empty'. Suppose a second entry is made. Then this latest
entry is on top of the stack, the first entry is just below it, and 98 empty
words below that.

Data is removed from a stack in a way that is the reverse of the way it
is put in: the top of the stack is deleted and the entries below 'move up'
one location, with the entry formerly one below the top of the stack now
becoming the new top of the stack.

Physically, a stack can be implemented in hardware or in firmware. In
a genuine hardware stack al I the entries actually move from their present
locations to the next one, and, they al I do it at the same time as a single
operation. Obviously, this requires a considerable amount of interconnection
between the locations In the stack.

A stack that is implemented in firmware is simply a series of consecutive
memory locations, accessed indirectly through a pointer. Instead of the
entries in the stack changing their physical locations in the memory during
additions and deletions, the value of the pointer is incremented or decremented.

STACK OPERATIONS

The IOC includes some firmware stack manipulation instructions. Two registers
are provided as stack pointers: C and D. There are eight place and
withdraw instructions for putting things into stacks and getting them out.
Furthermore, the place and withdraw instructions can handle full 16-bit words,
or pack 8-bit bytes in words of a stack. And last, there are provisions
for automatic incrementing and decrementing of the stack pointer registers,
C and D.

PROCESSOR-34

FUNCTIONAL DESCRIPTION OF THE IOC

PLACE AND WITHDRAW
STACK OPERATIONS (CONT.)

The mnemonics for the place and withdraw instructions are easy to decipher.
Al I place instructions begin with P, and all withdraw instructions begin
with W. The next character is a W or B, for word or byte, respectively. The
next character is either a C or D, depending upon which stack pointer is
to be used. There are eight combinations, and each is a legitimate
instruction.

A PWO A, I reads as fo I lows: place the entire word of A into the stack
pointed at by D, and increment the pointer before the operation. The instruction
WWC B,O is read: Withdraw an entire word from the stack pointed at by C, put
the word into B, and decrement the stack pointer 0 after the operation.

The place and withdraw instructions outwardly resemble the memory reference
instructions of the BPC: a mnemonic fol lowed by an operand that is understood
as an address, fol lowed by an optional 'behavior modifier'. The range of
values that the operand may have is restricted, however. The value of the
operand must be between 0 and 7, inclusive. Thus, the place and withdraw
instructions can place from, or, wi·f-hdraw into, the first eight registers.
These are A, B, P, R, and R4 through R7. Therefore, the place and withdraw
instructions can initiate 1/0 Bus Cycles; they can do 1/0.

The place and withdraw instructions automatically change the value of the
stack pointer each ti me the stack is accessed. In the source text an increment r:>
or decrement is specified by including a ,I or a ,D respectively, after the
operand.

Regardless of which of increment or decrement is specified, a place
instruction wil I do the increment or decrement of the pointer prior to the
actual place operation. Contrariwise, the withdraw instructions do the
increment or decrement after actual withdraw operation. The reason for this
is that it always leaves the stack with the pointer pointing at the new
'top-of-the-stack', and al lows intermixing of place and withdraw instructions
without adjustment of the pointer.

Pl.ACE AND WITHDRAW FOR BYTES

One of the differences between the 15-bit and 16-bit versions of the
processor is the way they handle byte opera·f-ions for the place and withdraw
instructions. Because the stack in memory is composed of words, rather
than bytes, some means are required to extend the addressing of the pointer
registers to include designation of bytes within the addressed word.

In 15-bit processors this is done with an unused bit in the pointer
registers themselves; they are 16-bit registers while only 15-bits are
needed to address the memory. Furthermore, the place and withdraw instructions
do not al low a place or withdraw through C or D indirect. These conditions
leave the left-most bit (bit 15) free to designate which byte (of the word
at the top of the stack) is the byte in question. A one in bit 15 designates ·~
the left-half of the word at the top of the stack. It is up to the firmware .
to see that bit 15 is properly set prior to beginning stack operations.

PROCESSOR-35

FUNCTIONAL DESCRIPTION OF THE IOC

PLACE AND WITHDRAW
PLACE AND WITHDRAW FOR BYTES (CONT.)

After each place or withdraw bit 15 is automatically toggled to provide
a left-right-left-right sequence. During an automatic increment to the
pointer register (,I) the address in the lower 15 bits increments during
the zero-to-one transition of bit 15. Similarly, during an automatic decrement
of the pointer register (,D) the transition of bit 15 from a one to a zero
is accompanied by a decrement of the lower 15 bits.

The incrementing and decrementing schemes just described are only for
increments and decrements brought about by a , I or , D fo I I owing the operand
of a Place or Withdraw instruction. Increments or decrements to the pointer
register with ISZ or DSZ do not automatically toggle bit 15.

In 16-bit processors left-ri9ht indication of bytes is accomplished with
a signal cal led BL; there is no unused address bit as in 15-bit addressing.
BL (Byte Left Not) is in turn control led "JY bit 0 of either the C or D
registers, as shown in Figure P-12. Sixteen-bit addressing is maintained by
providing an additional one-jit register for use with each stack pointer
register. The non-addressable registors are cal led CB (C Block) and DB
(0 Block). They are designated "block" because, as the most-significant
bit of the word pointer value, they divide the address space into two halves,
or "blocks".

15

STACK WORD POINTER

VALUE TO /DA BUS

IDA (15} - IDA(O)

C REGISTER

C {O) = 0 DESIGNATES LEFT HALF
C {O) = I DESIGNATES RIGHT HALF

0

Figure F-12. Sixteen-Bit S7ack Pointer Addressing.

PROCESSOR-36

BL

FUNCTIONAL DESCRIPTION OF THE IOC

A.ACE AND WITHDRAW
PLACE AND WITHDRAW FOR BYTES (CONT.)

Figure P-12 shows how CB is used with C for place-byte and withdraw-byte
operations that use the C register as the stack pointer. For such operations
that use the D register instead, D3 acts as the most-significant bit of the
address, and bit 0 of D controls BL.

During the automatic increment or decrement to the pointer register, CB
and DB function as most-significant 17th bits for their respective registers.
An advantage of having the bit that designated the byte be the least-significant
bit is simplification of the process of arithmetic computation upon byte-addresses.

The CB and DB registers can be set to their initial values by machine­
instructions for setting and clearing each register. For instance, DBU
(D Block Upper) sets the DB register; CBL (C Block Lower) clears the CB
register.

During the execution of a program the current values of CB and DB can be
obtained by mad i ng the contents of the Dtv!APA Register (13a). Wh i I e the four
least-significant bits are the select code of a OMA-related peripheral, bit 15
reflects CB and bit 14 reflects DB. A one stands for upper, while a zero
means lower. See Table P-1: Please note that CB and DB cannot be altered
by writing into register 13a; such alteration must be done by using the
machine-instructions mentioned in the previous paragraph. If, for instance,
an interrupt service rout~ne involves the use of place or withdraw byte
instructions, the service routine would need to save and later restore the
initial values of whichever block-pointers were used (CB & DB), as well as set
them up for use within the routine i tse If.

The place-byte instructions cannot be used to place bytes into the
registers within the BPC, EMC and IOC. The reason for this is that these
chips do not utilize the BYTE I ine of the IDA Bus during references to their
internal registers.

The BYTE I ine is~ignal supplied by the IOC for use by any interested
memory entity. The BYTE I ine indicates that whatever is being transferred
to or from memory is a byte (8 bits) and that bit 15 of the address (for 15-bit
processors) or BL (for 16-bit processors) indicates right or left half. During
a write memory cycle it is up to the memory to merge the byte in question with
its companion byte in the addressed word.

In the case of a withdraw-byte the memory can supply the ful I 16-bit
word (that is, ignore the BYTE I ine). The IOC wi I I extract the proper byte
from the full word and store it as the right-half of the referenced register;
the left-half of the referenced register is cleared. In the case of a place­
byte, however, the IOC copies the entire referenced register into an internal
working register (W), and outputs its right-half as either the upper of lower
byte (according to bit 15 of the address) in a fu 11 16-b it word. The fu II
word is transmitted to the memory, and the "other" byte is al I zeros. Thus,
in this case the memory must utilize the BYTE I ine.

PROCESSOR-37

FUNCTIONAL DESCRIPTION OF THE IOC

r MCE /.\ND WillIDRAW
PLACE AND WITHDRAW FOR BYTES (CONT.)

The consequence of the above is that any byte-oriented stacks to be
managed using the place instructions must not include registers in any of the
BPC, EMC, or IOC; that is, C and D must not assume any value between 0 and
37e inclusive for a place-byte instruction.

NJTE

___fu} anomaly has been discovered in the operation of the IOC. If, while
BYTE is low in conjunction with a memory cycle which is in progress, a
Bus Request occurrs, then BYTE may pulse high for 10-40 nsec at the
beginning of each 02, for the duration of that memory cycle. The
severity of the glitch is related to the inherent speed of the chip,
and to the exact timing relationship between 01 and 02. There doesn't
appear to be any way to avoid the glitch, and therefore it maybe
necessary for the designer to design around it.

INITIALIZATION OF TURN-ON
There is a s i gna I ca I I ed POP which is generated by the power supp I y. I ts

function is to prevent the ch~ from running except when power supply conditions
are adequate. Chips can use POP to initialize certain internal conditions
upon turn-on. The IOC does this. After turn-on the interrupt and OMA
systems are left in the disabled state. The contents of the internal
registers are random.

In the 15-bit version POP is held low by the JOwer supply until al I
voltages have stabi I ized. Then POP is pulled high at the beginning of a 02.

In the 16-bit version POP synchronizer circuit was added to each chip.
The intent is to free POP from synchronous phasing restrictions. The only
requirement is that POP transition sharply to avoid threshold ambiguities in
the various synchronizers. Unfortunatly however, some trouble has been
experienced with this scheme. At least one designer has claimed flatly That
the new scheme does not work, and that the old synchronous-with-~2 rule
must sti I I be observed.

PROCESSOR-38

GENERAL INFORMATION ABOUT THE EMC

The Extended Math Chip CEMC) provides 15 instructions. Eleven of these ~
operate on BCD-coded three-word mantissa data. Two operate on blocks of data
of from I to 16 words. One is a binary multiply and one clears the Decimal
Carry CDC) register.

Unless specified otherwise, the contents of the registers A, B, SE and
DC are not changed by the execution of any of the EMC's instructions.

The EMC communicates with other chips along the IDA Bus in ways similar
to how the IOC communicates via the Bus.

OOTATION
A number of notational devices are employed in describing the operation

of the EMC.

The symbols< ••.• > denote a reference to the actual contents of the
named location. For instance:

<A> + <HOOK> + A

represents the instruction ADA HOOK.

A
0

_
3

and 80 _
3

denote the four least siqnif icant bit-positions of the A
and 8 registers, respectively. Similarly, A4 _ 1 ~ denotes the 12 most-signif­
icant bit-positions of the A register. And by fhe previous convention,
<AQ_

3
> represents the bit pattern contained in the four least-significant

bit-positions of A.

ARI is the label of a four-word arithmetic register located in R/W
memory, locations (I)77770 8 through (I)77773 8 • The assemb Jer (ASMA) pre­
defines the symbol ARI as address 77770 8 (for 15-bit assemblies), or as
address 1777708 (for 16-bit assemblies).*

AR2 is the label of a four-word arithmetic accumulator register located
within the EMC, and occupying register addresses 200 through 238 • ASMA
pre-defines the symbol AR2 as address 20a.

SE is the label for the four-bit shift-extend register, located within
the EMC. Although SE is addressable, and can by read from, and stored into,
its primary use is as internal intermediate storage during those EMC instructions
that read something from, or put something into, A

0
_

3
• ASMA pre-defines SE

as 240.

DC is the mnemonic for the one-bit decimal-carry register located within
the EMC. DC is set by the carry output of the decimal adder. Sometimes, in
the schematic i I lustrations of what the EMC instructions do, \'le show DC as

;,5:.~A is the DOS-RTE asserr.tilor for CPD Processor. AS'..'.A is a 2100-series-compu!er program, ·,;ri !ten
in H-P Assembly Language.

PROCESSOR-39

GENERAL INFORMATION ABOUT THE EMC

NJTATION (coNT.)

being part of the actual computation, as wel I as being a repository for
overflow. In such cases the initial value of DC affects the result. However,
DC wil I usually be zero at the beginning of such an instruction. The
firmware sees to that by various means.

DC does not have a register address. Instead, it is the object of tho
BPC instructions SOS and SOC (Skip if Decimal Carry Set and Skip if Decimal
Carry Clear), and the EMC instruction CDC (Clear Decimal Carry).

Ill\TA FOWLAT
The EMC can perform operations on twelve-digit, BCD-encoded, floating­

point numbers. Such numbers occupy four words of memory, and the vurious
parts of a number are put into specific portions of the four words, as shown
in Figure P-13. The twelve mantissa digits are denoted by 0 1 through 0 12 •

01 is the most-significant digit·, and D1 2 is the !oust-significant digit.
It is assumed that there is a decimal point between D1 and 02 •

ADDRESS 15 14113112 111101918 716 514 3121 I 0

M Es Two's COMPLEMENT EXPONENT EMPTY Ms

M +I D1 D2 D3 D4

M+2 D5 D6 D7 D9

M+3 Dg D10 D11 012

Figure P-13. Floating-Point Data Format.

Es and Ms each represent positive and negative (signs) by zero and one,
respectively.

Those unfamiliar with two's complement ari7hmetic, and possibly the
general procedures of firm1-1are-irnplernented arithmetic, vii 11 find a modest
explanation in the next section: A Beginner's Look at Calculator Arithmetic.

PROCESSOR-40

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

This survey of arithmetic techniques is offered as an introduction for """
those not familiar with them. It doesn't cover the entire subject, nor is 1
it always rigorous. Methods of implementing arithmetic differ widely, and
tho best we can do is tip our hats to some fundamentals, and to some general
appro<Jches. We w i 11, however, be ab 1 e to exp I a in certain hard\'Jare features
of the BPC and EMC that arc related to arithmetic, as l'lel I as 1·1hy certain
instructions arc fashionec as they are.

NUMERICAL REPRESENTATIONS
If someone were to ask you JJck Benny's age, you would immedi~tely answer,

"l•lhy, thirty-nine, of course."* You probably wouldn't- say:

a. one-oh-oh-8nc-one-onc

b. oh-oh-one-one, ono-oh-oh-one

c. ox-ex-ox-eye-ex

As humans, wo have developed a "natural" method of representing numbers
by using combinations of ten symbols, and we cal I it the decimal system. It
works fine f~r calculations done mentally, wif"h pcnci I and paper or other
computing aids, and for the internal goings-on of t~e ferocious and many­
toothed monster, the mechanical adding machine. Unfortunately, the decimal
system is not directly imolcmontable inside calculators or computers.

BINARY

You are no doubt fdmi I iar with binary and octal, and know that there are
conversion processes for converting numbers expressed in a given base to any
other base. The natural appeal of binary for computing mechanisms is irro­
sistiJ le, because its two digits one and ~ero so nicely mat-ch existing
tect1nology, and because it does not require complex circuitry to implement.

Tabl~ f)-3.

COMPARISON OF DEC/MAL, BINARY, AND OCTAL

DECIMAL BINARY OCTAL DECIMAL BINARY OCTAL

0 0 0 6 110 6
I I I 7 I II 7
2 10 2 8 1000 10
3 II 3 9 100/ I I
4 100 4 10 1010 12
5 IOI 5 II 1011 13

Tt1(• :n~df ,!J·.-:-.~ ~·~r1·1'l j~-, 11'/~ t'""(' it; I~.=~ ;-1+·r1·-·,-. ·,,1ii; dl...;i•1 r- '"',,1cl tt1· t1:::i1.~ ·,JiJ·;··rr·=-·-.~ tl' ha:·1c; tr1i·-,
•'"'dr-{JI;_-_. ,;n ,-,O'l'(;Cfl•' wtF) ·.-.,!) ~!__l__:i li)l~)C)()i') y~·-_1r~-, 1-;l·l.

PROCESSOR-41

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

r NUrvtR I CAL REPRESE~ITATI ONS
BINARY (CONT.)

Binary is an arabic number system* (as is decimal), producing carries
during addition, and al lowing a binary point for writing fractional parts
of a number. In fact, penci I and paper arithmetic can be done on binary
numbers using exactly the same general procedures as for decimal numbers -­
simply use binary addition and mu I tip I ication tables.

Sti 11, there is always a fly in the ointment. It's not I ikely that the
customer wil I be wi I ling to key in his data usin9 binary. This necessitates
conversion; a distasteful process to many. What's more, many fractions
that can be represented exactly in decimal cannot be represented exactly in
binary (e.g., .1 10 =.0001100011 2). [Lest you assume that there is
something wrong with binary, the same thing happens in decimal:
1/7 = .1428571428571]

For these and other reasons, representing numbers directly in binary
in HP calculators is usually I imited to cases where it is easy to do so, few
arithme7ic computations other than addition and subtraction are required,
and to where the numbers involved are apt to be integers.

BINARY-CODED DECIMAL

The customer's numbers do get encoded, but in our case, into binary­
coded decimal (BCD). Not only that, but the elements of the resulting
code are arranged in a floating-point format. BCD is the fami I iar scheme
of using four-bit binary codes in place of the decimal digits. Thus a
12-digit integer can be represented by 48 bits. In addition, the use of
floating-point conventions adds sign information, and greatly enhances
the maximum and minimum sizes of the numbers that can be encoded.

THE BCD DIGITS

0 0000 5 0101

I 0001 6 0110
2 0010 7 0111
3 0011 8 IOOO

4 0100 9 1001

/~n arabi,: numtJer system is one in v.hich i1 n.1mber is exprP~:.s.::>C 35 tht· •;um of ~ult iples of successive
integer <iowers of a number n (crllled the ra:lixl, using n <Jigits; 0, ... , n-1:

x = ••• d 7 n2
• d 1 n1 1 d 0 n° + .d_ 1/n + d_

2
/n 2 •••

~rdrjix ;)r_1int

There i.Jrc ulher s:::hemes for representing nu.,,bers, ScJc:h c1s !ht< (abomin,:ble) ror-.an nc:'T.eral svst.:'111.
Multipl ic<Jtion is reportedly very difficult in that sy<;tern.

PROCESSOR-42

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

NUMERICAL REPRESENT AT IONS
BINARY-CODED DECIMAL (CONT.)

ADDRESS 15 14 I 13 l 12 11l10 J 9 J a 1J 6 5 I 4 3I2J1

M I I I I I I I I 0 I 0 0 0 0 0

M+I 00 II 0101 IOOO 011/

M+2 0010 0001 1001 0000

M+3 0000 0000 0000 0000

Figure P-14 . The Internal Floating Point Representation of
. 003587219 (= 3.587219 x 10- 3).

0

0

While OCD does al low exact representations of the original things the
customer keys in (unless he is in the habit of keying in fractions I ike 1/7),
BCD gives rise to certain drawbacks. First, BCD is wasteful of bits. Each
four-bit combination can encode 16 symbols, while only 10 of these are ever
used. The net result is that it takes more bits to encode numbers in BCD
than it does to represent them directly in binary. (You could even have ~
floating-point binary numbers if you wanted to.) The second thing is that
BCD is indeed just a code, and not in itself an arabic numbering system.
In general, you cannot add two BCD integers, bit-by-bit, and expect the
result to be the correct (or even another) BCD number.

It takes a special gear works to handle BCD numbers. Done in firmware
alone, such a gear works would be slow and cumbersome. The EMC supplies
some useful operations on portions of BCD floating-point numbers. This
trims the gear works in size, and speeds it up by quite a bit.

BINARY ARITHMETIC
Both the BPC and EMC have binary arithmetic capabilities. The BPC has

binary add and complement instructions, while the EMC has a binary multiply
instruction.

BINARY COMPLEMENTS

The BPC provides instructions for doing two kinds of complements:
two's complements with TCA and TCB, and one's complements with CMA and CMB.

The one's complement of a binary number is its bit-by-bit complement.
Another way to express this is to say that the number is subtracted from
al I one's, or if the number has n digits, from 2n-1.

PROCESSOR-43

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

BINARY ARITH'1ETIC
BINARY COMPL8'1ENTS (CONT.)

II I
-IOI <

0 I 0 ~ IS I 1S COMPLEMENT OF)

1111111
- 0101011 <

1010100 ~IS l1S COMPLEMENT OF)

With the CPD processor, one's complements are not used in arithmetic,
but do find use in logical operations.

The two's complement of an n-bit binary number can be found in two ways:
(f), by adding one to the one's complement; or (2), by subtracting the
number from 2n.

II II II
- IOIOI I

010100

+ I

010101

1000000

10101 I
01010 I

The CPD processor does use two's complements in binary arithmetic. The
notion of a two's complement does two things: first, it provides a compact
and useful method of representing negative numbers*; second, it removes the
need for a subtraction gear works in the hardware.

The use of the (signed) two's complement form to represent negative
numbers has additional advantages: it eliminates the frequent need to
recomplement an answer after a summation between numbers with different signs;
and it automatically generates the proper sign in the answer (assuming no
overf I ow).

These are significant advantages, not to be taken lightly. If you wil I,
take a moment and consider algegraic BCD summations:

The need to re-complement occurs often in BCD arithmetic as performed by
the CPD processor. In those cases numbers are always represented in
uncomplemented form, regardless of sign. Numbers are complemented only
to al low summations between numbers whose signs are different. After such
a summation it is necessary to complement the answer if no "overflow"
occurred. If overflow did occur, then everything is alright, and the
"overflow" is ignored. Also, special attention must be given to the sign
of the result.

Thero are other comJact meth:>ds of representing neg<ltive numbers. One such is sign-m<ignitude.
There a single bit, say the most sigr.ificant one, rcpr.:isen!s the sign, while the least si;inificc1nt
bi ts a I ways represent to <ibso I ute v<i I ue of the number (its magn i tudel. By and I arge it is not <1s
handy as two's complement representation. It requires either a hardware subtraction gear works,
or extended hand! ing in firmware, as descrihed for OCO in a f<>w paragr<iphs.

PROCESSOR-44

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

BHlARY ARITH"lETIC
BINARY COMPLEMENTS (CONT.)

As you read the next section, describing two's complement arithmetic,
don 1 t associated the "overflow" of the previous paragraph with binary
overflow as discussed for two 1 s complement arithmetic. They are not the
same thing. The "overflow" for BCD arithmetic is simply a carry-out from
the left-most digit, which results in DC (Decimal Carry) being set. The
corresponding thing in our binary arithmetic is the setting of the E
(Extend) register whenever there is a carry-out from bit 15. Binary over­
flow (the setting of OV) is a much more sophisticated condition.

TWO'S CQ\'\PLEMENT SUMMATION

Signed two's complement arithmetic in 16 bits I imits the value of a
single precision (one word) binary number to the range +2 15-1 (\5 ones)
through -2 15 (a one fol lowed by 15 zeros).

(+I) = 000000000000000 I

~2) =0000000000000010
(+3) = 0000000000000011

(+32767) = 0 I I I I I I I I I I I I I I I
(±0) = 0000000000000000

(-I) = I 11 I I 11 111 I 111 I I

(-2) = I 11 I I 11 I I I I I I I I 0
(-3) = I I I I I I I I I I I I I I 0 I

(-32767) - 100000000000000 I

(-32768) = 1000000000000000

In the above examples, the left-most bit serves as a sign bit, as wel I
as a part of a complemented (and thus negative) number. Any number whose
bit 15 is zero is a positive number and any number whose bit 15 is one is
a negative number. The range I imitation mentioned in the preceeding paragraph
arise from there being only 15 bits <0-14) available to represent magnitudes
of individual numbers.

Even though signed two's complement representation is often thought of
as 15 bits of true-form or complement-form number, preceeded by a sign bit,
the actual hardware mechanism that does the signed summations knows very
I ittle about signs or the two's complement format; it does a straight
16-bit binary add, with a carry out from bit 15 info the Extend (E) register.
The only special property is the detection of overflow (results out of
range); but even this only monitors events during summation, without
changing them.

TWO'S COMPLEMENT SUBTRACTION

The rationale behind complement arithmetic is that the difference
between two numbers can be found by the addition of one number to the
complement of the other.

PROCESSOR-45

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

BU'U\RY ARITHMETIC
TWO'S COMPLEMENT SUBTRACTION (CONT.)

The 16-bit two's complement of a 15-bit binary integer is:

ii = 216 - n

ii =

----16ZEROS------­
O I
"'~'00000 00 00000000

11-<--15 BIT n -->

1 I REST OF ANSWER

In a sense, TI is the additive inverse of n:

(n + n) mod 216 = (n + (2 16 - n)) mod 216 = 216 mod 216 = 0

* * * * * *
The fact that two's comp I ement ar i thmei"i c automat i ca 11 y produces the

correct sign for the result ls an important advantage, although it isn't
at al I obvious why i·r should be that way. The fol lowing demonstrations shows
that correct answers are obtained.

Case I: X + Y (X > 0, y > 0)

15 14 0

0 15 BITS OF X

+ 0 15 BITS OF Y

0 15 BITS OF X+Y I
Both X and Y are positive. vie assume that X and Y are such

that their sum can be represented in 15 bits. Thus there is
no possible carry out of bit 14, and the two bit 15's can only
add up to zero, making the result positive.

Case II: X + Y (X < 0, Y < 0)

For this case we note that -X-Y = -(X+Y)<O which we complement
and represent as 216 - (X+Y). Once more we assume that X+Y does
not exceed 15 bits.

PROCESSOR-46

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

BINARY ARITHMETIC
TWO'S COMPLEMENT SUBTRACTION (CONT.)

Case II: (cont.)

01
i.."&1oo ooo 00000000 oo
l t I 15 BITS OF x + y I
0 ii 215 - (X+Y) I
t:SIGN BIT

NO 17th BIT, E NOT SET

aecause of the borrowing, the sign bit is a I, and the answer
is negative as we expect. We note also that a I preceeding
215 - (X+Y) is the same as 216 - (X+Y), which is the required
answer.

Case III: X - Y (XY < 0)

X-Y = X + Y = 216 + X - Y

We can think of the terms + X-Y as some n = IX-Yj which we add
or subtract to 216 , depending upon whether X > Y, or Y > X,
respectively. (If X = Y, we can do either, since n = 0).

For X > Y:

10000000000000000

+ ~l I UP TO 15 BITS OF n I
I 0 I SAME n AS ABOVE

i"-= SIGN BIT

_17th BIT SETS E

Here X > Y and n > 0, son is added. Since each of the 15 bits
of n is added to a zero bit, there can be no carries and the 16th
bit (the sign) must be zero, also. This certainly agrees with
X-Y > 0 when X > Y.

PROCESSOR-47

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

BIW\RY ARITHMETIC
TWO'S COMPLEMENT SUBTRACTION (CONT.)

Case III: (cont.)

But If X < Y:

O I rSAME AS 10 FOLLOWED BY 14 ZEROS, OR 215

'i.-l&'ooo o oo o o o oo 0000

_ ll 1 UP TO 15 BITS OF n I

I 0 I I 215 - n t:= SIGN BIT
NO 17th BIT, E NOT SET

Because of the borrowing, the sign bit is a I. Thus the answer
is negative, and this agrees wi+h X - Y < 0 when X < Y. Finally,
we should note that a I preceeding 215

- n is the same as 216
- n,

which is indeed the answer we set out to get.

By now you might be prepared to make the fol lowing objection: "The
demonstration would be satifying, except that the hardware does not magically
produce n, and then proceed to add it to, or subtract it from, 216 ; and,
if it could do that, we probably wouldn't need two's complement arithmetic!"

True. The demonstration rests on the behavior of "equivalent" entities
during "equivalent" operations. It is val id in that it does show that we
don't ever get the wrong answer (assuming no binary overflow). But it doesn't
give us any idea as to why it "really" works when the hardware adds up
the bits.

We shal I indulge in some quick examples that show how it Peally works.

First, consider the table of 5-bit two's complement numbers, on the
next page.

Consider 7-8. When the binary for 7 is added to the complement of 8,
the result is the "biggest thing" that can fit into 5 bits, but there is no
carry-out from the left-most bit. Looking at the table you can see that
there is no carry-out for 7-n where 16 > n > 7. Likewise, if I < n < 7,
n's complement is always big enough to generate a carry-out of the left-most
bit.

PROCESSOR-48

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

BIW\RY ARITHrflIC
TWO'S CCMPLEMENT SUBTRACTION (CONT.)

0 = 00000 8 = 01000 -I = 11111 -9 = IOI I I

I = 00001 9 = 01001 -2 = 11110 -10 = 10110

2 = 00010 10 = 01010 -3 = 11101 -11 = IOIOI

3 = 00011 11 = 01011 -4 = 11100 -12 = 10100

4 = 00100 12 = 01100 -5 = 11011 -13 = 10011

5 = 00 IO I 13 = 01101 -6 = 11010 -14 = 10010

6 = 00110 14 = 01110 -7 = 11001 -15 = 10001

7 = 00111 15 = 01111 -8 = 11000 -16 = 10000

It is the carry-out of the left-most bit that is the vital clue. Consider
16-bit X and Y:

15 14 0 x -Y = o 1.--o-, ---------.1
OR VICE_/

VERSA ~I D2

The sign bit (bit 15) wil I be a I (-) unless a carry is produced by the
addition of the two bit 14 1s (d 1 and d2 >. In fact, there wi 11 be a carry
from bit 15 if and only if there is a carry from bit 14.

Suppose X > Y. Why must there be a carry? We are adding and get:

x + 216 - y ?. 216
-.-- ~

i/
THESE ARE THE TWO BIT PATTERNS.

Think, if you wish, of the adder doing X increments to the bit pattern
for 216

- Y. Since X > Y, the effect of the -Y is entirely removed,
causing a carry-out from bit 15. So we get carries out of both bits 14
and 15. This causes the sign to be positive, and sets I into the E register.*

Suppose Y > X. Then Y would absorb al I of X before the sum reaches 216 •

E is gonoral ly ignored during binary ari thmotlc unless a multi-precision operation is in progress.
See tho Section after noxt.

PROCESSOR-49

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

B IW\RY ARITl-METI C
TWO'S COMPLEMENT SUBTRACTION (CONT.)

Thus there is no carry out of bit 14, and therefore none out of bit 15. The
sign is negative and E does not get set.

TWO'S COMPLEMENT OVERFLOW

The conventions of signed two's complement arithmetic provide a useful
method of detecting the generation of a result which is too large in magnitude
to be represented in 16-bit signed two's complement form. We cal I this the
overflow condition, and it occurs whenever there is a carry-out from bit 14,
or, a carry-out from bit 15, but not if both carry-outs occur. The occurrence
of the overflow condition sets the OV register to a one.

That the exclusive or of the carry-outs from bits 14 and 15 corresponds
to the overflow condition is not at al I obvious. There are three cases:

Case I: X + Y

Both numbers are positive. There can be no carry from bit 15.
There is an overflow if and only If there Is a carry from bit 14
(X and Y too big for a 15 bit sum).

15 ~ 0

0 I UP TO 15 BITS OF x I
+ 0 I UP TO 15 BITS OF y I

Case II: C-X) + (-Y)

15 14 0 1 --,5-B_IT_S_O_F ---x ----.I
+ .._I _1_5 _B_IT_S _o_F _-_Y __ I

Both numbers are negative.
Overflow results if and only
Frankly, this is a tough one
at the bits. So consider:

There is always a carry from bit 15.
if there is no carry from bit 14.
to properly explain by simply looking

-X + (-Y) = 216 - X + 216 - Y = 217
- (X + Y)

The maximum allowable size for X + Y without causing overflow is
215

• This is shown by the three subtractions on the next page.

PROCESSOR-SO

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

BINARY ARIT!-VvlEfIC
TWO'S COMPLEMENT OVERFLOW (CONT.)

O I 14 0
'k1-&'ooo oo ooo oo 00000 o = 211

- ii I 000000000000000 =2 15= X+Y

0 I I

IGNORE THESE ~ L SIGN BIT

0 I I
"'iQ.~000000000000000 = 217

- J, ~O I - - - - - - - - - - - - - - = X + Y < 215

0 I I

IGNORE THESE J L SIGN BIT

The two subtractions above show that if CX + Y) is in range,
a carry out resu It from bit 14 during the actua I computation of
-X-Y.* For the only way the sign bit in the answer could wind up
a one is with a carry into bit 15. Likewise, it implies a carry
out from bit 15, since both original bit 15 1 s were ones to begin
with. Both carries occurred, so there was no overflow.

Now suppose X + Y > 215 • Here we get overflow.

0 I I
"ki&~oooo 0000 o 000000 = 217

I - - - - - - - - - - - - - - - = X + Y > 2 /5

0 '\._AT LEAST ONE I SOMEPLACE

't_SIGN BIT

Because X + Y > 215 , extra borrowing on the 217 is necessary.
This guarantees a zero in the sign bit of the result of the actual
computation for -X-Y. Si nee the resu It i ng s i ~Jn bit is a zero, there
could not have been a carry out of bit 14. Thus we are left with
a solitary carry out of bit 15, (both original bit 15's were I's,
remember), and overflows results.

we need to •"',!dbl ish the I in~ between th" (pcsitivn) X ~ Y of our cl<>rwinstratiun, ;ind ti--.e (nPq.itivc) ~

-X-Y of thP ,;taft>d cirntJl .. m, This is ''":"y• for if tt11• liriit on X t Y is 2 15 , 1h•,n:)
X 1 Y = 7 15 ... -('•'. +- Y) -:, 1 ~ _,.. -\-Y -:' 15 • Tt1i'.;, 1•r1;_:~, .,'.-; nc_) S·Jt·prise, a::; -7 1

!, i:. the .. -J1,~:r:t;1-.Jic.~ll"~'
..,.':'"l_Cj\ lest :11;r.1: r- r-·::: 1 r-c~=:.-cnt,Jt1J1_• ·,,ith 1~.,-:iir ~.::-;~-?d L·•)•.-, c,~ ,r·l~r1(~nt nutation.

PROCESSOR-51

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

BINARY ARITMTIC
TI>JO'S COMPLEMENT OVERFLOW (CONT.)

Case III: X-Y

The numbers have opposite signs. There can be a carry from bit 15
if and only if there is a carry from bit 14. That is, either both
carries are present, or neither is present. The exclusive or condition
can never be met.

0 15 BITS OF X

+ 15 BITS OF Y

f1.JLTI-PRECISION BINARY ARITHMETIC
The main reason that the E register exists is to al low for the possibi I ity

of summations between binary numbers that are each two or more words in
length. See Figure P-15.

2nd
ADDITION +

1st
ADDITION +

I

LEFT HALVES
I
I

I A/B I
It ti
I TWO WORD I I

RIGHT HALVES

A/B

ANSWER

Figure P-15. Mufti-Word Binary Addition Using the Extend Register.

PROCESSOR-52

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

MJLTl-PRECISION BINARY ARITHMETIC (CONT I)

The scheme shown in Figure P-15 must be implemented in finnware; the
ADA and ADB instructions do not automatically add in E. That must be done
after testing with SES or SEC.

In multi-precision arithmetic, OV is ignored during al I but the last
addition, while E is checked after al I but the last addition.

Complement arithmetic works perfectly well with multi-precision schemes.
(Remember, ADA and ADB are ful I 16-bit adds.) Extra work is required to
complement multi-word numbers, however, and cannot be done with just repeated
applications of TCA or TCB. See Figure P-16.

START AT FAR RIGHT

< <
~' __ _____,, · · · · · I 1st NON-ZERO I
l CMA/B l l TCA/B l

,,.._.._ -------.,, - -----.,
EACH REMAINING
WORD, IF ANY, GETS

A ONE~ COMPLEMENI

THE FIRST NON­
ZERO WORD GETS
A TWO'S COMPLE -
MENT.

· I ALL ZEROS I
l NO CHANGE l
I ALL ZEROS I
EACH FAR RIGHT
ALL-ZERO WORD,

IF ANY, IS NOT
CHANGED.

Figure P-16. Two's Complements of Multi-Word Binary Numbers.

Of course, it could also be done by simply doing a one's complement on
each word, and then adding one to the result (using the multi-precision add).

ARITHMETIC SHIFTS
It sometimes happens that it is necessary to pack two's complement

numbers of I imited magnitude into fields within a word. An example is the
exponent in the floating-point BCD format.

Assume that a copy of the exponent word is in A. Then an arithmetic
right shift of six (AAR 6) wl I I make the exponent in a proper 16-blt two's
complement number.

PROCESSOR-53

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

ARITH'UIC SHIFfS (CONT I)

ADDRESS 15 14l13J12 11J10J9la 1 ls s I 4 3121 I 0

M Es Two's COMPLEMENT EXPONENT EMPTY Ms

M +I D1 D2 D3 D4

M+2 D5 D5 D7 Da

M+3 D9 010 o,, 012

Figure P-17. Floating-Point Data Format.

Suppose the field labeled "empty" contained a 5-bit two's complement
number. It could be made ready for use by an SAL 10 fol lowed by an AAR I l.

The basis for this is that AAR and ABR propagate the sign while they
shift the number. Consider the numbers ±3 in 5 bits, 10 bits, and 16 bits.

-3 +3

I I 101~~~~~~~00011
I I I I I I I l 0 I <) 0 0 0 0 00 0 0 I I

11 l 11 1111 I I I I I 01~00000000000000 I I

Starting with A containing:

SI 101----------

An AAR I I would produce:

r PROPAGATED SIGN

Arithmetic right shifts are provided for both the A and B registers.

PROCESSOR-54

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

BINARY MJLTIPLY
The EMC provides a hardware implemented binary multiply for signed

two's complement integers, using Booth's algorithm. See the description of
the MPY instruction in the EMC MACHINE INSTRUCTIONS section for a complete
definition.

Some explanatory material concerning the principles of Booth's algorithm
is located in the Appendix.*

BCD ARITiffJIC
AR2 frequently functions as an accumulator for EMC operations on BCD

numbers, much 1 ike the A and B registers are accumulators for the instructions
ADA and ADB.

For the sake of completeness we wi I I review some of the characteristics
of the four-word packing formats for BCD numbers (see Figure P-17). The
exponent and mantissa signs <Es and Ms, respectively) are encoded as 0/1
for positive and negative, respectively. Al I of the digits D1 through D12
are encoded in BCD, while the exJonent is a 10-bit signed two's complement
number. A dee i ma I point is assumed to be between D1 and D2 • D 1 is the most
significant digit, and D12 is the least significant digit.

Except for intermediate results within the individual arithmetic operations, ~
D1 wil I never be zero unless the entire number is zero. Sometimes, after)
each ind iv i dua I arithmetic operation ·tre answer needs to be nomaZized; that
is, the digits of the answer shifted towards D1 unti I D1 is no longer zero.
The exponent then needs to be adjusted to reflect the change.

The "empty" field of bits 1-5 in the exponent word is for possible
future use in systems that al low different types of variable besides the
ful I-precision real number which the present floating-point format accommodates.
In such systems the "empty" field could contain a "type" indentifier, or
some other information.

An important thing to keep in mind when examining BCD arithmetic, as
implemented with the CPD processor, is that mantissas are represented in
a sign-magnitude format. Ten's complements are used in the computational
processes, but only as an intermediate step. Furthermore, it is done in
such a way that the automatic generation of the correct sign of a sum does
not occur. There is also the frequent need to re-complement an answer.
Al I in al I, BCD arithmetic is not as simple as two's complement binary
arithmetic .

• For another explanation of Boot~'s Algorithm, refer to this book:
Digital Computer Design Fundamentals
Chu, Yaohan
McGraw-Hi I I <1962)
TK7888.3.C5

PROCESSOR-SS

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

r Ben ARITHfv'ff 1 c < caNT.)
DECIMAL CARRY

The one bit Decimal Carry register (DC), located on the EMC, serves a
function similar to that of OV for binary addition, although it is set by
a rule similar to that for E.

CARRY ~
o, D2 D3 1--- ---l 0JOI 011 I 012 I t

1--- I D10 I I 012 I ~
ARI 8 AR2

+ DI 02 D3 Oil

~I o, 02 D3 1--- ---1 D10 I D11 I D12 I < AR2

DC is set to a one or zero, depending upon the occurrence or absense of
a carry from the addition of the two 01 1 s, respectively. In this sense DC
resembles E. But since the mantissas are represented in sign-magnitude
form (with the sign in the exponent word rather than part of what gets added),
DC also represents overflow for 12-digit mantissa additions.

Notice also that DC is part of the addition, in the 012 position.
Frankly, this feature is seldom taken advantage of, if ever. It has potential
use with multiple precision floating point arithmetic, and perhaps it wi I I
come in handy in some unknown future application.

There are three instructions that have to do only with DC. These are
SOS (Skip if Decimal Carry Set) and SOC (Skip if Decimal Carry Clear) in the
BPC instruction set, and CDC (Clear Decimal Carry) in the EMC instruction set.

TEN'S COMPLEMENT FOR BCD

The addition of the ten's complement of a number is used in I ieu of a
subtraction mechanism. If the signs of two numbers to be summed are different,
one of the numbers is complemented (it doesn't really matter which one),
before the addition.

The ten's complement of a 12-digit decimal integer X is:

x = 10 12
- x

The ten's complement of a floating point number has the same exponent
as the original number. The mantissa m of a floating point number fits
the requirement:

0 < m < 10 (assuming the decimal point after 01)

PROCESSOR-56

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

BCD ARITHMEf IC
TEN'S COMPLEMENT FOR BCD (CONT.)

Therefore the complerrent of the mantissa alone is:

m = 10-m

Accordingly, al 1 that is necessary to complement a floating point
number is to complement the mantissa. It is Immaterial wbether the mantissa
is treated as a 12-digit integer, or as a number between zero and ten; the
same sequence of digits results.

Incidentally, here is a handy rule for finding the ten's complement of
a decimal number: Ignore any right-most zero's--they stay the same. Subtract
the right-most non-zero digit from ten, and those to the left of that, from
nine.

As with two's complement, ten's complements are additive inverses,
modulo 10 12

:

X + X = (X + (10 12 -X)) mod 10 12 = 10 12 mod 10 12 = O

The EMC provides two instructions for doing ten's complements: CMX
for ARI and CMY for AR2. The only difference between these two instructions
is that each operates upon a different "AR" register. ~/hat they do is
replace each BCD digit, In the mantissa of the referenced register, with
its appropriate digit of the complement.

Case I:

Case II:

1012 -- ~ ~ ~ ~ "·~ ·~ ·~ lo 00000000
x x x x 00000000

0 9-x 9-x 9-x 10-xOOOOOOOO
I t t

DC D1 D12

1012 =~{~{~~{{ ~ ~
000000 x x x

1o o o
x 00

09999999-x 9-x 9-x 10-x 00
j1 t

DC o1 D12

PROCESSOR-57

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

(""' BCD ARITHMETIC
TEN'S COMPLEMENT FOR BCD (CONT.)

CMX and CMY leave the exponent word completely alone. This means that
the sign of the mantissa, and the entire exponent are left unchanged in a
ten's comPfement by CMX and CMY.

If you think about the above examples you' I I see that we don't complement
the actual floating point number in a Case II situation. For instance
3.561 x 10-4 complements to 6.439 x 10-4 if the mantissa is normalized.
But sou Id the mantissa not be normalized, (and it frequently isn't when
numbers are initially complemented - due to decimal point 'non-alignment'),
the answer can be different. For instance, .003561 x 10- 1 complements to
9.96439 x 10- 1 when the mantissa is actually 003561. Now .003561 x 10- 1

= 3.561 x 10-4
, but 9.96439 x 10- 1 misses 6.439 x 10-4 by quite a ways.

Its puzzling at first glance, but it works. A good approach to BCD
arithmetic is to treat the mantissa as an integer greater than or equal
to zero, but less than 10 12

• After al I, if two numbers have equal exponents,
it is strictly the sequence of digits in the two mantissas that determine
the sequence of digits of the answer for any of the arithmetic operations.
The exponent of the answer is determined by separate calculations Involving
only the exponents.*

It's making the exponents the same that causes the frequent "de­r normalizing" of previously normalized floating-point numbers:

63,278 = 6.3278 E4 = 6.3278 E4
5 3 I = 5. 31 E 2 = + .05 3 I E 4

6.3809 E4 = 63,809

If you are wi I I ing to consider the mantissas by themselves, then its
best to think of them as integers, as previously suggested, and pretend the
decimal point is after 0 12. Normalized mantissas are then represented by
big integers: a one through nine fol lowed by eleven other digits. A non­
normal mantissa is simply a smaller integer by the extent it has zeros
on the I eft. In two's complement representation the I ef t-most zeros
complement into ones; here they complement into nines.

There is a case III that we should mention:

*

Case III:

1012 = I 000000000000
0

ctt-1000000000000
04oc~

Overflow and underflow in the resulting mCJntissa cdn illso cifh·::t !he ccmruted expon.,nt.

PROCESSOR-58

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

OCD ARintUIC
TEN'S COMPLEMENT FOR BCD (CONT.)

If a mantissa cf zero is complemented, the entire mantissa remains zero,
and DC is not set, as you might expect. DC is always set to zero by CMX
and CMY.

TEN'S COMPLEMENT ARITHMETIC DEMONSTRATION

Given n, subtract x, or, add -x: S = n-x (I)
We assume only that the signs of n and x differ. The sign of S wil I be the
same as n if lnl > !xi, and the same as~ if !xi > In!.

Complement x: x = 1ok - x

Then:
\,

S¢=(n +x) mod 1ok = (n + 1ok- x) mod 1ok, or

IS I ¢= (In I - Ix I + I 0 k) mod I 0 k

~late: <Thing) mod 10"- is a .iiJy h knote th.:·"- rir,~1t-r:ios1" digit-, "i iln integer·.
We resort to thi', notationa~ tl"''.iu, because ind ·;tr·ict 1T1ilthe11:il! ~<di '":'n•;e
s I- n + 10 - x. (How can 1t, if'> really equal•, n - x? There 1s ,J difference
of 1ok!) --

(2)

(3)

(4)

Line 4 is not as bad as it looks. First, it says that the k-digit sum
is always formed as positive, regardles of its actual sign. Also, n and
x are treated as positive, regardless of their signs. This is reminiscent
of la - bl = I lal - lbl I. Finally, a word about the k-digit restriction.
It works because: a) to subtract, the firmware changes the sign of the
subtrahend end proceeds as in addition; b) The compiement mechanism is
only used when addition involves opposing signs. Now, two k-digit things
wi I I have at most a k-digit difference.

I Assume lnl - Ix! = d > 0

Then S~ (I Ok+ d) mod 1ok

Now I oK + d = () I 000000 + k zero's

+ l .. d .. +max of k digits

Overflow sets OC=l(:---71 .. d .. + k + digits total

Accordingly, we drop the overflow by simply noting that DC is
set, and then ignoring (or perhaps clearing) it.

Thus, if overflow r·esults, the resulting answer is the correct
sequence of digits, and since lnl > lxl, the answer should be assigned
the sign of n.

PROCESSOR-59

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

("' BCD ARIT!flETI C
TEN'S COMPLEMENT ARITHMETIC DEMONSTRATION (CONT.)

II Assume lnl - lxl = d < 0 (note that Isl = !di)

Then S ¢= ([Ok - d) mod [Ok

But 1ok - d =Ci, thus s *=Ci, but ISi = jdj, not !Cfl

Note that 1ok - d already is at most k digits due to borrowing
when doing the subtraction:

099
'k~~OOOO 0 -E--K ZER0

1

S
-E-d--7 <E--MAX OF K DIGITS

O<E--d~

This guarantees that DC ends up a zero.

Thus, if the result in DC is zero, the answer needs to be re-complemented,
and since Jn! < lxl, the answer should be assigned the sign of x.

~' In the event we had choosen to complement n instead of x, the process
would sti 11 work.

S = n - x

And S ~ CIOk - lnl +\xi> mod IOk

But 1ok- \nl + Jxl = IOk - <lnl - lxl> and we have the same
lnl - lxl as before.

* * * * * * * * *

Here is the rule for doing decimal summations with ten's complements:

If the signs of the numbers are the same, simply add them and leave
the signs alone.

PROCESSOR-60

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

BCD ARITHMETIC
TEN'S COMPLEMENT ARITHMETIC DEfvtONSTRATION (CONT.)

If the signs are different, complement one of the numbers, then add.
If the result is accompanied by overflow, drop the overflow digit CDC),
If overflow does not accompany the result, complement the answer. Ensure
that the result is assigned the sign of the addend having the larger absolute
value.

FLOATING-AJINT S~TIONS
Specific procedures for implementing floating-point addition and subtraction

vary widely. One thing that is fairly standard in this, however: To
subtract, the software simply changes the sign of the subtrahend and proceeds
as in addition. The addition routine is capable of hand I ing al I possibi I ities
of signs and relative absolute values on two addends.

Another common practice is firmware checking of each addend for equality
fo zero. 1 f either of the addends is zero, then the other addend is promp-t-1 y
taken as the answer.

OFFSETS

Addition can proceed only when the exponents of the two addends ure the
same. If they are not the same to start out with, they are made the same by
shifting one of the mantissas an amount equal to the exponent difference.

This difference is easily found by subtracting the (algebraically) smaller
exponent from the larger one. If the difference is eleven or less, it is
poss i b I e to offset the mantissa of the number with the sma 11 er exponent.

X.XXXXXXXXXXX E6 + Y.YYYYYYYYYYY E4

/SAVED IN A
X. X X X X X X X X X X X ..£ E6

+ . 0 Y Y Y Y Y Y Y Y Y Y Y Y E6

z. z z z z z z z z z z z T E6
'--THESE TWO DIGITS ARE LOST

DURING THE SHIFTING PROCESS,
EXCEPT FOR THE LEFT-MOST ONE,
WHICH IS SAVED IN A0_3 FOR
ROUND-OFF PURPOSES.

\</hen offsetting mantissas for addition, the mantissa with the (algebraically)
largor exponent is left alone, and mantissa with the (lagebraical ly) smaller
exponent is the one that is right-shifted.

PROCESSOR-61

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

((', FLOATING-POI NT SLM'1AT IONS
OFFSETS (CONT.)

As can be seen from the i I lustration, a shift of twelve or more digits
would result in a mantissa of al I zeros. The firmware detects the condition
of an exponent difference greater than eleven, and simply takes the number
with the larger exponent as the answer.

The EMC provides an n-many mantissa right-shift instruction for each of
ARI and AR2. These are MRX and MRY, respectively.

For each instruction, the number of digits to be shifted is assumed to
be in -~he B register. Zero's are shifted into D1.J<·, and al I but the last of
the D12 1s is lost; it is saved in A, for round-off after the addition. Also,
DC is set to zero in anticipation of the forthcoming addition activity.

MANTISSA ADDITION

The instruction FXA is used to add the mantissas after any necesscry
offset has been previously induced. FXA knows nothing of signs, complements,
or exponents; it is strictly a positive-integer-addition process:

<ARI >= o1 D2 D3- - - - - - - - D12

< AR2 >= o1 D2 D3 - - - - - - - - D12

+ <DC>~ INITIAL VALUE OF DC

(OVERFLOW)-?" Do" o, D2 D3 - - - - - - - - o,2 ~ AR2

t._DC (FINAL VALUE OF DC)

The reason for including DC itself in the addition of the D12 1s if that
it would come in handy if FXA were used to add mantissas having more than
12 digits. In this way DC could function like the E register of the BPC.

If the signs of the original numbers were different, an overflow CDC=I)
means that the resulting AR2 need not be complemented, and DC is to be
ignored. Contriwise, a resulting DC of 0 means the resulting AR2 must be
complemented, after which DC can be ignored.

* MRX and r.tRY do not necessarily shift in a zero on the first shif-1: on the first shift <A0_ 3> is
what is shifted in, Subsequent shifts do shift in zero. During offsets in preparation for
floating-point addition, the firmware ensurus that <Ac-3> = 0, however.

PROCESSOR-62

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

FLOATING-FDINT SUfYML\TIONS
fv1ANTISSA ADDITION (CONT.)

There are sti I I some loose ends. Suppose the signs were the same, and
DC ended up a I? In such a case DC represents a digit of I to the left of
D1 ; AR2 plus DC constitute a 13 digits answer. What is required now is a
one-digit right shift of AR2, shifting a I into D1. MRY Is the basis for
this operation. Such a shift must also be accompanied by an increment (and
test for overflow) of the AR2 exponent.

The situation described in the previous paragraph cannot occur if the
original numbers had opposing signs. Why not??

The case of opposing signs has its own rub, however. Read on.

NORil\LIZAT ION
The raw result of an arithmetic operation might not be a floating-point

number that fits the standard form. It might have a leading DC needing to
be Incorporated into the number, as we have seen. Another possible deviation
is a resulting D1 of zero (and no overflow). There could also be several
zero-digits as left-most digits of the mantissa.

Such a situation cal Is for the NRM instruction. It shifts AR2 left
unti I J 1 is non-zero. The number of shifts is left as a binary number in
the B register. The maximum number of shifts NRM wi I I perform is 12. If
NRM must do all 12 shifts, AR2 must have been zero. This is indicated by
count of 12 In B, and well as by result of I in DC. For all other shift­
counts, NRM leaves DC=O.

The f I rmware must comp I ete the norma I i zat ion process as to I lows:
The resu It Ing number of sh I tts (in B) Is subtracted from the AR2 exponent,
and the result tested for underflow.

RJUNDING
The EMC does not have an instruction to automatically round a result - It

is the firmware's responsibility to determine when to round, and there are
various approi'lches to this problem. However, once the decision is made to
round AR2 up (one couni- in D 1 2) , the easiest way to do this is to set B to
000001 8 , and execute an MWA.

This is in every respect the same as setting ARI to one, and then doing
an FXA, except that it is easier. \'/hy not s imp I y increment the word
containing D12? CD 1 2 Is on the far right of that word.) Such a move would
not generate BCD carries if they were needed. If for instance, the mantissa
being rounded up is al I nines, the carry would need to propagate al I the
way up to DC.

PROCESSOR-63

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

RJUNDING (CONT I)

After rounding, AR2 must be checked for overflow, and if necessary,
right-shifted with the exponent incremented and tested for overflow.

FLOATING-POINT MULTIPLICATION
This section wil I illustrate the function of the FMP instruction (fast

multiply) as it ls used in floating-point multipl icatlons. We shal I pursue
this through the use of an example, assuming four-digit integers.

We can get by nicely on this because the exponents have only to do with
the exponent of the prel lminary answer (that is, possibly non-normal answer);
the sequence of mantissa digits in the answer is determined solely by the
digit-sequences of the multiplier and multiplicand. Therefore, we can
treat the mantissas as integers during the actual multiply process.

The sign of the product is, of course, determined in advance by inspection
of the signs of the original factors.

The fact that our ii lustration uses only four digits In no way invalidates
the explanation; it merely reduces the amount of symbol ism by eighty-nine
percent.

Let's assume that the two mantissas we seek to multiply are:

Multlpl lcand =A s·c D

Multipl ler = W X Y Z

One symbolic way to indicate how this multiplication is done is:

A 8 c D

(x) w x y z

(I) Zov z, Z2 Z3 Z4 = Z(ABCD) x IOO

(2) yov v, Y2 Y3 Y4 0 - Y{ABCD) xl0 1 -

{3) Xov x, X2 X3 X4 0 0 = X{ABCD) xro2

(4) + W0v W1 w2 w3 w4 0 0 0 = W(ABCD) x 103

[-EIGHT DIGIT NUMBER-]

PROCESSOR-64

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

FLOATING-ffiINT MJLTIPLICATION (CONT I)

Consider how Z0 v Z1 Z2 Z3 ~' is found (this is where FMP is used). It
is really ABCO added to itself Z-times. Similarly, Y0 v Y1 Y2 Y3 Y4 is A3CD
added to itself Y-times. Prior to adding I ine I to I ine 2, we shiH I ine I
one digit to the right (including Z0 v-it goes into the new Z1>. This al lows
I ine 2 to have ten times the weight of I ine I. The resulting summation is
shifted once to the right and added to I ine 3, and so on. These shifts are
ii lustrated t:y the right-most zeros in I ines 2, 3 and 4.

Novi lets take a moment and look at how FMP generates a partial product.
Consider ZCABCD). 1\R2 is cleared and ARI loaded with AGCO. Bo-3 contains
Z. Now FMP is given. ARI and AR7 are added together Z-times, producing
Z(AGCD) in AR2. The digit Z0 v ends up in Ao-3· It can be c:inything from a
zero to an eight.* Notice thc:it the mantissa right-shifts MRX and MRY each
shift <Ao_ 3> into 01. So the right-shifting of the partial product also
takes care of retaining its overflow digit.

Now we are ready to find Y0 v Y1 Y2 Y3 Y4. Generally speakinsJ, this is
not found separately and then added to Z0 v Z1 Z2 Z3. Instead, AGCO is merely
added to Z0 v Z1 Z2 Z3 Y-times. This both increases speed and saves memory
over saving al 1 partial products before summation, with no undue loss of
accuracy. As before, the overflow digit Y0 v is left in Ao-3. And so it
goes, AR2 is shifted right one more time, making Y0 v the left-most digit
of the partial products as summed to date. Bo-3 is made to contain X, and
FMP is given a third time.

We can make a number of minor points in conclusion. First, at each step
of partial product summation we throw away a significant digit due to the
shift. This can't be helped. In 9cneral, the product of two 12 digits
numbers has 24 digits of precision, but we are I imited to 12, so we throv1
the bottom 12 digits away.*

These digits can be inspected, however. The MRY used to shift AR2 puts
the lost digit into A0 _ 3. This orovides an easy way for a rounding mechanism
to check on those digits as they tossed out. Indeed, the rounding routine
vii 11 need to save the last digit thrown out, for use in rounding in the
event -!-he last use of FMF' produces no overflow digit.

Lastly, notice that we can put WXYZ into Bat the very start of the process,
and simply shift Bright with and SBR 4 in-between uses of FMP. After al I,
FMP uses only< Bo-3 >as the number of times to add ARI to AR2.

\•iric:n addinci AB::D to AGCJ, th" worst can·,. !:,,:t c,irc cccur· is a I prc:·e:cding i:l rc>rninirg foc;r digits
of ~urn. f-cJr cech subscr;ucrd ad·:j of t1.B'._,l' tu tth' s·Jrr, th1.::_• left-m,o;-)~)t :igit can only increoise b·l ·2n,-·.
5L..:t tr; f"1ultir;I/ ~ nu~b.-}r ~J'11 ni·'e {the .,..c~r-c;t ':)>·~·/, VO'.l ~n!·,1 t)d,j it tc:, itself 't.1 ith Picht ad~it"on'~.

~ien,:c ,, l"f,_:Yi~u~ of eight for thf· overfl::i·,.. ·:~ir;i•. --

,\;·1 t:rror ,_n1alysls of thi~. dlqorithrn disc·~·,·-, .. ,, thdt jroppin 1J th+~c;r- diqits caL;s~~':, tth-· <lns·w·er, on tnt•
i:lVt:•rd:l", 10 be slightly '.,m<JI ler thun i 1 ',hc>1Jld be. Poundi""J intr-,-,,Juccs a sir"i ldr error in th'' -
other dir .. ction.

PROCESSOR-65

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

FLOATING-FDINT BCD DIVISION
So much for the easy part. The other arithmetic operations could be

explained v1ithout tco much ado, and their pertinent EMC instructions
read I ly rationalized in terms of the desired activity. Not only is the
floating-point division algorithrr messier and inherently less obvious, but
we sha I I have to resort i·o examining a section of code to get a c I ear
idea of how FDV is actually employed. ~his is necessary because FDV does
not, percentage-wise, do as much for division as, say, FMP does for
multiply (+author's opinion).

THE DIVISION ALGORITl-M

Somebody out there is probably muttering: "Wait a minute, why can't they
just r·everse the multiplication process ?" The answer is "significant
digits". Suppose a 12-digit DVD had been found by multiplying Oby DVR,
each of which were 12-digit numbers (then O = DVD/DVR). The multiplication
would have produced a 24-digit DVD; but we throw the least-significant 12
digits away. In order to reverse the multi pl !cation process we would have
to have those missing digits. But divide only ever ~as 12-digit numbers
to work with. So a different procedure is needed. We take the coward's
way out, and choose one that is essentially the same as the penci I and
paper method for long division.

As in multiplication, the sign and exponent of the intermediate answer
can be determined in advance.

Suppose we are going to divide:

{I)

{2)

{3)
{4)

THEN

480/15 = 32
{32). {15) = 480

{32). {15) = {30+2) ·(15) = {30) ·{15) + (2) ·(15)
= (3)·(150)+ (2)·(15)

We want to do this thing as a series of subtractions. However, we
resist the folly of subtracting 15 from 480 thirty-two times! Instead,
we look at lir;e (4), and note that there are three 150's in 480. Perhaps
if we subtracted them out and then found out how many 15's were in the
difference ••..• Yes!

If you did that, you'd find that indeed, 150 can be subtracted three
times, leaving a remainder of 30, and that 15 can be subtracted from 30
two times. Now, since subtracting 150 three times is the same as subtracting
15 thirty times (after al I, 150 x 3 = 15 x 30), there must be (30 + 2) !S's
in 480. So the answer is 32.

The division algorithm we are going to develop uses just a scheme.
Fol lowing are some points to keep in mind.

PROCESSOR-66

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

FLOATING-POINT BCD DIVISION
THE DIVISION ALGORITl-M (CONT.)

The digit sequence of the quotient is determined solely by the digit
sequences of the mantissas of the dividend and the divisor - the mantissas
are always normalized to begin with, and the exponents do not enter into
the actual division activity. Thus our above example ii lustrates (in a
three digit machine) the division of any number whose mantissa Is 4.80 by
any other number whose mantissa is I .50:

4.80 x 103 I 1.5 x I0- 2 = 3.20 x 10 5

Just as for the previous operations we have examined, the easiest way is
to forget about the alleged decimal point between D1 and D2 , and consider
the mantissas to be 12-digit Integers.

The divisor will be in ARI (memory outside the EMC) and the dividend in
AR2 (accumulator registers with the EMC). The basic activity is to subtract
ARI from AR2 until AR2 gets smaller than ARI. The number of subtractions
required for that to occur is the next digit of the quotient. Then AR2 is
shifted left and the process is repeated unti I either a zero remainder occurs,
or sufficient digits have been calculated, whichever occurs first. The
quotient digits are merged, one at a time, into a complete quotient held
in R/W memory. This is the firmware's responsibi I ity, and it alone determines
where in R/W the quotient is kept.

*

Now:

I) D1 of the quotient might be zero (suppose ARI is greater than
the original AR2). In that case we accept the zero and shift
as described below.

2) The number of subtractions will always be nine or fewer. This
is because 01 of ARI can't be zero. You may want to think about
that a minute and convince yourself.

3) If Cl) occurs, or, after successful appl !cation of (2), we need
to do something that corresponds to changing the 150 to 15 and
getting ready to subtract it from 30 (the remainder).

Now for various reasons we don't want to fool around with the
150. Instead, we shift the 30 left and make It 300. We get the
same result, however.

4) If Cl) occurs for D1 of the quotient, it can't also occur for
02. The basic reason for this is that 0 1 of AR2 can't Initially
be zero. After 01, "zero" quotient-digits can occur for several
digits in a row, however. But because 00--- can't occur, it is
always sufficient to compute 13 digits (assuming no extra digit
for rounding - and counting a leading zero as one of the 13).*

Suppose the leading quotient digit were zero. Then you might consider computing 14 digits, so that
after normalization (when there '.'lould only be 13 digits left) you would be able to round to 12
digits based on the 13th digit. That sample division routine given shortly does not do this.

PROCESSOR-67

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

FLOATING-FUINf BCD DIVISION
THE DIVISION ALGORITl-M (CONT.)

5) Consider a (()-like situation for either D1 or some other
digit of the quotient. The necessary shift (via MLY) moves
the left-most digit of AR2 into A. We cannot ignore this digit
when subtracting ARI. Indeed, now we must deal with a 13-digit
dividend; A fol lowed by AR2. Here is some bad news; FDV knows
nothing of 13 digit arithmetic!! The software's use of FDV wll I
have to make up the difference.

lliE FDV INSTRUCTION
FDV is used to accomplish the equivalent of automatically repeated sub­

traction of ARI from AR2, unti I AR2 becomes smaller than ARI. It does this
by adding ARI to AR2 unti I overflow occurs. This assumes that AR2 has
been complemented prior to the execution of FDV.

Your author feels that it makes more sense to describe f loating-polnt
division In terms of subtractions, rather than additions to a complement.
We shal I designate subtractions that are really complement-additions as
"subtractions".

FDV returns the number of successful "subtractions" as a binary number
<same as BCD) in Bo-3i 84-15 are returned as zero.

In general, after an application of FDV it is necessary to patch-up AR2
before shifting and using FDV again. This is because AR2 retains the result
of the first unsuccessful "subtraction". What Is done is to de-complement
AR2 and add ARI back one time, so as to undo the effect of the unsuccessful
"subtraction". Then AR2 is shifted, and then complemented. ARI remains
untouched throughout the entire process.

There is one case where AR2 does not need to be adjusted. This is when
the result in AR2 is zero. This means that the divisor is contained within
the dividend exactly an integral number of times. This produces an eventual
zero remainder (the result in AR2). We say that such an event generates a
perfect quotient.

Now, in the event of a perfect quotient the number returned in Bo-3 is
one count too smal I. (You might have to think about that for a few minutes -
but its true. Normally, overflow is associated with the first unsuccessful
"subtraction" because the answer should really be negative. But it just
so happens that the generation of a result of zero - which is basically stil I
a successful "subtraction" - is accompanied by overflow.) So the loop
that employs FDV has constantly got to be on the look-out for a perfect
quotient. This is desirable for another reason. Once a perfect quotient
has been discovered, It is undesirable to proceed with further division
activity.

PROCESSOR-68

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

™E FDV INSTRUCTION (CONT I)

Another aspect of FDV to be aware of is the way it returns quotient digits
into B. Each digit is placed into Bo-3, and B.-1s al"e oZeaPed. This means
you can't simply shift B left in-between the extraction of four consecutive
quotient digits, and then store B into the sequence of words used to receive
the answer. Instead, the sequence of digits has to be Individually stored
in the answer as they are found; B cannot be used as temporary storage for
a group of quotient digits.*

There is one last fly in the ointment. This is the business of the dividend
frequently being 13 digits; A followed by AR2. Your author knows of only
one solution to this, and it's a good one, but it will take some explaining.
Clever things tend to not be obvious.

A series of FDV's can be used to "subtract" a 12-dlglt ARI from a 13-digit
A-followed-by-AR2.

Suppose we have a complemented 13-digit number in A and AR2, as shown below:

~

0 .___I A_R2 ___ __.

ARI
+
~

~ --1 A-R2-------.

When FDV is given it adds the 12 digits of ARI and the 12 digits of AR2
together unti I an overflow occurs. CFDV does not set DC, however.) Now if
FDV were a 13-digit operation the carry from AR2 would be used to increment
A. Also, there is nothing wrong with the resulting digit sequence in AR2.
The digits simply "tum-over" and keep going. But after each FDV the soft­
ware has to "increment A and detect when it goes from nine to ten".* When
the digit in A goes from nine to ten we have 11 real overflow" of the 13
digit number.

•

This drawback would be avoided if FDV simply returned the number of successful "subtractions" to
B0 _ 3 , leaving B.-1s entirely alone. The designers of the EMC were well aware of this, but faced
internal constraints, such as chip size, and number of internal staies. These constraints prevented
the implementation of the more desirable definition •

That, or equivalent behavior. The exam~le we develop later doesn't physically do exactly what's
shown above - but what it does do is eq~ivalent to it.

PROCESSOR-69

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

,.. ll-IE FDV INSTRUCT I ON (CONT I)

r""

Each use of FDV adds Ar~I and Al~2 (into AR?) until AR2 overflows. When
that happens we increment A and add aqilin with FDV if A is less than ten - no
adjustment is made to the digit sequence in AR2 - none is needed. But, the
digil; sequence of AR2 Y'eflrcts the "subt;r>act-ion" that p11oduces the over>flow.
The number returned to B fo one less -tl1<zn r:hat. .;R2 ,cind El 0 _ 3 arc out of
step, so to speak.

\~hat we want to knol'I is the total number of possible "subtractions" of
ARI from A-AR2. We get that number by summing the values of< B > + I for
all uses of FDV, except tho last one, during the 12-from-13-digit "subtractions".
The resulting digit sequence in AR2, when the 12-from-13-digit-"subtraction"
is completed, is I ike always, tho result of an overflow, which ln this case
we don't want. So as before if there is no perfect quotient, AR2 wil I be
de-complemented and ARI added to it. Then the previous FDV needs to
contribute or1ly < 8 0 _ 3 >to tho sum of the liltest quotient digit, not< Bo-3 > + I.

For example, if there were three uses cf rov for a certain quotient
digit of a 12-from-13-digit "subtract-ion", 1-1e wouid form the (non-perfect)
quotient digit as:

Qn - (< 80-3 > +I) + (< Bo-3 > + I) + < 80-3 > -

Crrn I st USE Cm 2nd USE Grrn FINAL USE

OF FDV OF FDV OF FDV

If the same general situation produced a perfect quotient on the nth
digit, then for the same reasons QS before, we do not count the last
"subtraction":

= { < Bo-3 > + I)

Cm 1st USE
OF FDV

+ { < Bo-3 > + I)

Grrn 2nd USE
OF FDV

+ { < Bo-3 > + I)

c:;TER FINAL

OF FDV
USE

Somebody is probably wondering what happens if On turns out to be greater
than nine. It doesn't. [ver. Think in terms of the uncomplemented 13
digit A-AR2. That number is alwJys less than ten times greater than ARI
(0 1 of ARI ~ 0, remember). This is left as an exercise for the reader - it's
not worth pursuing here.

l\s a matter of implementation, it is tedious ta check if A has beon
incremented to ten. lfo can always tel I in adv<ince, from each new and
uncomplemonted value that i::; shifted into A, how many overflows out of AR2

PROCESSOR-70

A BEGINNER'S LOOK AT CALCULATOR ARITHMETIC

™E FDV INSTRUCTION (CONT I)

would be required if we were to increment and test on A. The easiest thing
to do is to put that number of needed FDV's into A as a count to be either
incremented or decremented to zero. Then each use of FDV for a 12-from-13
digit subtraction updates A unti I A is zero.

In the sample program segment that follows, the value returned to Bo-3
is always incremented by one immediately after it is returned. The increment
wil I later be taken out as the quotient digit is stored in its final destination,*
pI'OVided that it should be taken out. It is easier to always do the
increment and then test for when to take it out, rather than to test for when
to put it in.

SAMPLE DIVISION ROUTINE

The rule is this:

I) Always increment the value returned in Bo-3·

2) First check for multiple FDV's as a part of a 12-from-13-digit
subtraction. If so, loop immediately, performing no other
tests or activities.

3) When a quotient digit has been found, check to see if the quotient
is now a perfect quotient. If so, exit the division loop
without removing the last increment. Save the last digit found
as part of the answer.

4) If the quotient is not a perfect quotient, decrement the value
of the last quotient digit found, and save it as part of the
answer.

The test for a perfect quotient is simple, although not super-short:
if AR2 is zero the divisor has subtracted out evenly from the dividend.

The sample segment shown does not include the testing for and hand I Ing
of these things:

I) signs
2) division by zero
3) division into zero
4) exponents
5) overflow
6) rounding

Al I of these areas are handled by additional code segments not part
of the division loop proper.

Finill des·tinatlon here means with respect to the divid" r·outine, and is probably a 1emporary
l0c<ition, not the final destina1ion called for in Hie U'>t?r 1 s progrdrr.

PROCESSOR-71

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
00~8

0029
0030
0031
0032
0033
0034
0035
0036
0037
OOJ8
0039
0040
0041
00'+2
0043
0044
00'+5
0046
0047
0048
0049
0050
0051
0052
0053
00!:>4
0055
OOSt:>
0057
00!:>8
00!:>9
OOl:>O

0

o USEFUL llilUATES
0

AR2Ml EQU AR2+1
AR2M? EQU Ak2+2
AR2M3 EQU AR?+3

•
•
•
•
•
•

<=21~) #l AR? MANTTSSA WORU
<=22~) #2 AR2 MANTISSA WORD
1=238> #3 AR2 MANTISSA wORO

o THESE WOROS IN ROM

Ml OD
MlD
ZERO
PlO
P4D
Pl3D
Pl7B
P20B
QWPIV

DEC -lo
DEC -1
OCT 0
DEC 1
DEC 4
DEC 13
OCT 17
OCT ~O

OEF- <.IWI-1

•
•
•
•
•
•

P[HMANENT STARTING VALUc Of QwPTR

o THESE WOHOS IN HlAU/WRITE

QWPTR
<.>Wl
QW2
QW3
QW4
DIGCT
WW OCT
FDVCT

0

ass 1
BSS l
~SS l
BSS l
SSS l
BSS l
BSS l
BSS l

•
•
•
•
•
•

QUOTIENT WORD POINTER
QUOTIENT WOPD #l
QUOTIENT WORD #?.
QUOTIENT WORD #3
QUOTIENT WORD #4 (FOR DIGIT #13>
DIGIT COUNTER (13 • 1)
WITHIN WORu DIGIT COUNTER <l - 4)
FOV RE•APPLICATION COUNTER

o DIVIDEND ALREADY IN AR2
o DIVISOR ALREADY IN ARl
o START OF FUNDAMENTAL DIVISION LOOP

DIVID LOA UWPIV
STA LIWPTR
CMY

0

LOE! Pl30
ST!:t OIGCT
LUA MlO

UNXTW ISZ UWPTR

S~T QUOTl~NT WORU POINT~R TO
INITIAL VALUE t=OWl-11

COMPLEMfNT THf. OIVJOENU
(::+13 UEC>
INITIALIZE DIGIT COUNT TO 13
<=-1 DEC> INITIALIZE FUV ~EP COUNT FOR OIGIT #l

INCR~MENT YUOTIENT wo~u POINlER

PROCESSOR- 72

0061
0062
0063
0064
0065
0066
0067
0068
0069
0010
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120

•
LOB P4D
STB WWDCT

<=•4 DEC> SET THE WITHIN-WORD
COUNT TO 4

ONXTD SBL 4 CLEAR B<0-3>
STB QWPTRtI CLEAR NEXT WORD IN RECIEVING LOCATION
STA FOVCT STORE NEXT DIGIT FOV REP COUNT

FDVLP FOV AR2=AR2+ARl UNTIL OVERFLOW

*

ADB QWpTRtI MERGE NEW DIGIT WITH REST OF CURRENT ANSWER WORD
ADB PlO INCREMENT THE NEW DIGIT
STB QWpTRtI SAVE THIS NEWEST PIECE OF THE ANSWER

ISZ FDVCT
JMP FOVLP

LOA AR2Ml
IOR AR2M2
IOR AR2M3
SZA YESPQ

INCREMENT FDV REP COUNT, LOOP IF NON-ZERO
UNFINISHED 12•FROM·l3•0IGIT SUBTRACTION, RE•DO FDV

noRu ALL 3 WORDS OF THE AR2 MANTISSA
TOGETHER. CHECK FOR RESULTING ALL
ZEROS. IF SOt THEN HAVE
PERFECT QUOTIENT.

* NO PERFECT QUOTIENT. DIVIDE AGAINt BUT FIRST RESTORE DIVIDEND•
* SHIFT IT LEFTt ANO THEN FIND NEW FDV REP COUNT.

*

CHY
FXA
LOB QWPTRtl
ADB MlD
STB QWPTRtl
CMY

LOA ZERO
MLY
ADA MlOO

OECOMPLEMENT REMAINDER <AR2)
ADD BACK DIVISOR (ARl)
GET LAST CALCULATED DIGIT
UNDO LATEST <ANO UN•NEEDED) INCREMENT
SAVE THE NOW CORRECT PARTIAL ANSWER
COMPLEMENT NEW DIVIDEND <AR2>

CLEAR A SO AS TO NOT SHIFT IN JUNK BELOW
SHIFT DIVIDEND LEFT
FIND NEXT FDV REP COUNT

* THE FDV REP COUNT IN A IS NEGATIVE SO THAT IT CAN BE COUNTED
* UP TO ZERO. THE ABSOLUTE VALUE OF A IS THE NUMBER OF TIMES
• FOV WILL BE APPLIED FOR THE QUOTIENT DIGIT BEING FOUND. FOR
* A 12•DIGIT-FROM•l2•0IGIT•SUBTRACTIONt A=•lt AS ONLY ONE USE
• OF FDV IS REQUIRED•
• * THE MLY SHIFTS INTO THE A-REG A DIGIT WHOSE VALUE IS 9•Dl
o WITH RESPECT TO THE UNCOMPLEMENTED AR2 <PRIOR TO ITS SHIFT>.
*NOW, 9•01•10 IS SIMPLY ·<Dl+l>• FORGETTING THE MINUS SIGN FOR
o A MOMENTt THIS SAYS THAT THE A-REG IS ONE COUNT HIGHER THAN
o THE nREAL" LEFT•MOST DIGIT OF THE DIVIDEND. REMEMBERING THAT
o A IS INCREMENTED UP TO ZERO, If THE 11 REAL 11 DIGIT IS ZEROt THEN
* ONE f'DV IS DONE. IF THE "REAL" LEFT•MOST DIGIT IS ONEt THEN AN
* EXTRA FDV IS DONE. FOR TWOt THREE FDV•St ETCet ETC.
•
•
* BOTTOM-OF•LOOP MAINTENANCE FOLLOWS
•

DSZ DIGCT
JMP *•2
JMP DONE
DSZ WWDCT
JMP ONXTD
JMP DNXTW

YESPQ OSZ OlGCT

DECREMENT TOTAL DIGIT COUNT, DONE IF ZERO
NOT DONEt DIVIDE SOME MORE
GO FINISH UP
DECREMENT WITHIN-WORD DIGIT COUNT
LOOP FOR NEXT DIGIT WITHIN SAME QUOTIENT WORD
LOOP FOR NEXT DIGIT IN NEXT QUOTIENT WORD

PERFECT QUOTIENT BEFORE ALL 13 DIGITS FOUND?

PROCESSOR-73

0121 JMP YES
0122 JMP DONE NOt PERFECT QUOTIENT ON DIGIT #13
0123 0

0124 SBL 4
0125 YES DSZ WWOCT SHIFT LATEST DIGITS TO LEFT AS NECESSARY

r 0126 JMP ·-2
0127 0

0128 DONE STB QWPTRtI STORE LAST DIGITS OF QUOTIENT
0129 LOA QWPIV SET 11 FROM" X-FER ADDRESS
0130 ADA PlO
0131 LOB P208 SET "TOn X-FER ADDRESS
0132 XFR 4 X•FER QUOTIENT TO AR2
0133 0

0134 NRM NORMALIZE THE QUOTIENT IF NEEDED
0135 SZB GO.ON GO ON IF IT WAS ALREADY OKt JOE
0136 •
0137 o HERE• THE FIRST DIGIT OF THE QUOTIENT WAS A ZERO. NRM GOT RIO
0138 0 OF THAT ANO NOW WE PUT THE OLD DIGIT #13 IN AS THE NEW DIGIT #12.
0139 0

0140 LOA QW4 GET DIGIT #13
0141 AND Pl7B RESTRICT IT TO 4 BITS
0142 o ABOVE INST NEEDED ONLY IF QW4 USED ELSEWHERE FOR OTHER THINGS
01•3 ADA QW3 PUT IT IN AS NEW DIGIT #12 <OLD DIGIT #12=0>
0144 STA QW3 RESTORE THIRD WORD OF QUOTIENT
0145 LOB SET EXPONENT ADJUST FLAG
0146 •
0147 •
0148 •
0149 •
0150 • ,.- 0151 •
0152 •
0153 GO.ON
0154 •
0155 •
0156 •
0157 •
0158 •
0159 •

PROCESSOR-74

INTRODUCTION TO THE MACHINE INSTRUCTIONS

r f\KJTATION

~

Assembly languug() machine instructions are three-letter mr10rnonics.
E<Jch machine instruct ion source statrn1c11 I corresponds to a m.-:ch i ne-operat ion
in the object program produced by the assembler. Notation lJsod is representing
source s;-atements is n:plained below:

lc:ibcl

m

n
(I ow er c<.isc)

M
(upper case)

I

D

p

reg. 0- 7

reg. 4-7

... I . ..

[J

0Jtional statement label. Labels must begin with
an alphabel"ic charCJctcr, period, or certain other
non-numeric chaructors. Labels may be one through
five charr.:c-b·r~> in I ength. If present, a I abe I
must begin in column I. A space terminates a
I abe I . If a sta i·ement docs not have I abe I , then
column I must be a blank.

Merrory location. This can be an octal or decimal
integer, a symbol used as a label else\·1here, or,
an expression composed of a combination of these
combined through+ and - operators. Parentheses
are not permi~ted in expressions.

Numerical quantity. A numeric value that is not
an address, but represents a shif·t· or skip amount.

Octa I or dee i ma I constant vi hose va I ue is restricted
to the range: I ~ N ~ 20 8 = 1610

f\'.:)1.~i .. d I I mis M ·to n I so be c:iny expression, provided
that ttw villue of t·he expression is within the
stated range.

Ind i reci addressing indicator for memory refe ronce
instruct· ions. A I so indicates an automaf" i c i ncremerrl
for place and withdraw instructions.

Decrement ind ica·t·or for p I ace and withdraw
instructions.

Indicator used in Return instructions to instruct
the IOC to pop its peripheral address stack.

Register location. This can be an octal or decimal
i ntcger, or an assemb I er-pre-defined symbo I. It rn i ght
even be an expression. Regardless of what it is,
i-t- rr:ust h<.ivc a vulue of 0 8 through 7 8 , inclusive.

Register locution. Same rules as for reg. 0-7
above, except the value must be 48 - 78 , inclusive.

The slash indicates the item on either side (but not
both) may be used c:it this place in the source
statement.

Op i· i ona I comments. Comments must cc separated
by at leasl one space from the material to the
left of the co~nent.

Br-c:ickets inclicale ·f-hat the i·tem conlained within
them is optionul.

INSTRUCTIONS-I

BPC MACHINE INSTRUCTIONS

MEfvDRY REFERENCE GROUP
l•ich of ttH: 1'1 rn1 r>1•wy r•:·fr:rcnc:o in:;tr·ylinn", performs some operation

:J.1',•··J 1Jr1on the cordt>ril·. of cJ rr·fc:renc.,d m1:rnory loci1tion. Unless the
r···f··rencc: is lo i1 l11r ii ir>1·1 011 the ~·ase pag(-, i I rnU'~t be on -i-he same current
'•l'lf' _1·. 1hE inslTtJ 1~ii 0 ,11. :ri•· as::;t~mbler cit:dE'rn1in··" v1hich type of page­
,,.f,.:··-·nu; i:> usc:d, ,_,nd .,,; hr '8/ 1= bit (bii 10) 0f the ins-:-ruction

r·,.f. ,. : ._.,; lo 1>1ti.-:1 ·ii•: ··r: 1_lr:1,;·:<j i··1 C>it·c, ()-'<of th(;; instruction. 1\ murr.ory
,-, •··r·._,:1:.:- r:-1'1/ :,.-. ir1dir-.·.i. I;, the :=.oL:r:•· i'd; is indicated with a ,I
:fi·r· fhe C)~·•:·ciJrriJ. irii is :i:;:;t;rr:il~<J b•1' rncir,in•; bit 15 Of the instruction

t:1 j _! ., .. J

I ,J~' r: I lD/\ ri[,IJ comrn(:n t·s

l.rJdd A from m. r lw i\ ,-,,g i ·:;t<:r i ~; I Odded w i th I he contents of the
.Hldnoc;•;ed rn~::r'•)r-y locd I inri.

I o:Jel LDG n: [, I J

Lc·;;::j S fn-;r;i r". ih·: u r 0 c;ister is kiJded wi 1'11 the contents of the
1dr;,-,_.s,:o-2d rr,.:;r:•Jr-y lu_.,ti•)n.

I iJbu I C[-'t\ r.i ['I J comments

Compare thr' con!L•nl'; of m 1-Jith the corrh::nts of A; skip if unequal.
ftw two 16-bit word<: dr(: compared bit by bit. If they differ the ncx·t·
iw;lruction is i r is oxccu l!)d next.

label (::f 'l~ m [,I] comrm:nts

'Jirnodre the· c.Jntenl', nf m .-11Tn the content:; of B; skip if unccual.
Ir"· ~-.·11 IC-t:ii v1onl~ Z.Jrc o~>mpc.ir-ec bit bv bit. If !hey differ the next
r".ir1._~\ion i'~ ·:;kipped, 0rh .. :n1isc it i~ executPd next.

AD/\ rn [,I] 1:omments

1\dd the contents of rn to/\. ·111e conlenh of l·hc addressed memory location
.ire· ddded to those of/\. The binriry sum remains in Awhile the contents of
rr1 r-·:rriiin unchang(~d. If a carr·y .xcur-. fr-orn tiit l'J the [register is set
j,, .:: :1.:-, olhendsc:, l h lt?ft unchanged. If <Jn overflm1 occurs the OV
r··•ii:-t·~:r- is set to done, othcn1ise the :'JV rcqist·er ~s left unchanged.
it1t nv._:-.rfhv.· condition occurs if there is a c::n-v from either bits 14 or
11

1, but rut both tcg•;'itr··r.

ADB m [,I J

I ah(~ I SI/\ m [, I] conunc-n ·ts

Store the contenh ti!/\ in m. The c.onlcnl'._; 11 f !he I\ regi~-;ter arc stored
into !ht: i.lddresc,cd m<'rinry lncation, ·.-1hosc' previous contents are lost.

JNSTRUCTJONS-2

BPC MACHINE INSTRUCTIONS

MEJ''ORY REFERFNCE GROUP (CONT I)

I abel I STB I m[,I] comments

Store the contents of B in m. Tho contents of the B register are stored
into the addressed memory location, whose previous contents are lost.

label JSM m [,I] comments

Jump to subroutine. JSM permits jumping to subroutines in either ROM
or R/\'I memory. The va I ue of the pointer in the return stack register (R)

is incremented by one and the value of P (the location of the JSM) is stored
in R,I. Program execution resumes at m.

label JMP ffi ['I J comments

Jump to m. Program execution continues Llt location m.

label ISZ I m [,I] I comments

Increment m; skip if zero. ISZ adds one to the contents of the referenced
location, and writes the sum into that location. If the sum is zero, the
next instruction is skipped. ISZ does not alter the co1tents of E and OV.

label DSZ I m [,I] comments

Decrement m, skip if zero. DSZ subtracts one from the contents of the
referenced location, and writes the difference irto that location. If the
difference is zero, the next instruction is skipped. DSZ does not alter the
cortents of E and OV.

label AND

Logical and of A and m.
and the result is left in A.

label IOR

Inclusive or of A and m.
and the result is left in A.

m [,I J comments

The contents of A and m are and'ed, bit by bit,

rn [,I] comments

The contents of A and mare or'ed, bit by bit,
The ir'clusive or is the "ordinary or" operation.

The fol lowin~ four insi"ructions are not, in the strictest sense, memory
reference instructions. They are included here for the sake of continuity.

label RET m [,P] I commcn·ts

Return. The R register is a pointer into a stack of words in R/W
memory containing the addresses of previous subroutine cal Is. A read
R,I occurs. That produces i"he address (P) of the latest JSM that occurred.
The BPC then jumps to address P+n, and R is decre'Tlented. The value of n
may range from -32 to 31, inclusive. Tho value of n is encoded into bits
0 through 5 of the instructions as a 6 bit, two's complement, binary numoer.

I NS TRUCT IONS- 3

BPC MACHINE INSTRUCTIONS

~'tf11RY REFERENCE GRJUP (coNr.)

The ordinary, everyday garden variety return is RET I.

If a Pis present, it "pops" the interrupt system. Two things occur
when this happens: first, the peripheral address stack is popped, and
second, the interrupt grant network is "decremented".

The peripheral address stack is a genuine hardware stack, 4 bits wide,
and three levels deep. On the top of this stack is the current select
code for 1/0 operations. Select codes are stacked as interrupts occur
during 1/0 operations - A ~ET 0, Pat the end of an interrupt service
routine puts the select code of the interrupted device back on the top
of the stack.

The interrupt grant network keeps track of which interrupt priority
level is currently in use. From this it determines whether or not to
grant an interrupt request. A RET 0, P at the end of an interrupt
service routine causes the interrupt grant network to change the current
interrupt priority level to the next lower level (unless it is already at
the lowest level).

label I CLA comments

Clear A. There is no machine-instruction cal led Clear A. The assembler
turns this mnemonic into an SAR 16 Cshif·t A right 16). This has the effect
of clearing the A register.*

label I CLB I comments

Clear B. There is no machine-inst-ruction cal led Clear B. The assembler
turns this mnemonic into an SBR 16 (shift Bright 16). This has the effect
of clearing the B register.*

label NOP I comments

Nul I operation. There is no machine-instruction for a no-operation,
per se. The assembler turns this mnemonic into a LOA A, (the machine­
instruction for which happens to be al I zeros).

SHIFT-ROTATE GRJUP
The shift-rotate instructions perform re-arrangements of the bits of

the A and B registers. Each shift-rotate instruction includes a four-bit
field in which the shift or rotate amount is encoded. The number to be
encoded in the f i c Id is represented by n. In the source text n may range
from I to 16, inclusive. The four-bit field (bits 0 through 3) wi 11 contain
the binary code for n-1.

* CIA and CLB arc probably not the best way to acc8mJI ish the desired result. If the program has in
It <J word that is cill zeros, t'if'r1 it is fas1er to LOA or LDB with that word.

INSTRUCTIONS-4

BPC MACHINE INSTRUCTIONS

~ SHIFT-ROTATE GROUP (coNT.)

label AAR n comments

Arithmetic right shift of A. The A register is shifted right n places
with the sign bit (bit 15) ti I I ing al I vacated bit positions; the n+I most
significant bits become 0.qual t0 the sign bit.

label ABR n corrments

Arithmetic right shift of B. The B register is shifted right n places
with the sign bit (bit 15) fi 11 ing al I vacated bit positions; the n+I most
significant bits become equal to the sign bit.

label SAR n comments

Shift A right. The A register is shifted right n places with al I vacated
bit positions cleared; then most significant bits become zeros.

label SBR n comments

bit
Shift Bright. The B register is shifted right n places with al I vacated
positions cleared; the n most significant bits '"1ecome zeros.

label I SAL I n I comments

Shift A left. The A
significant bits become

label SBL

Shift 8 left. The 8
significant hits become

label RAR

Rotate A right. The
rotating into bit I 5.

label I RBR

register is shifted left n places; the n least
zeros.

n comments

register is shifted left n places; the n least
zeros.

n comments

A register is rotated right n places, with bit 0

n comments

Rotate 8 right. The B register is rotated right n places, with bit 0
rotating into bit 15.

ALTER-SKIP GROUP
The alter-skip instructions each contain a six bit field which al lows

a relative branch of any of 64 locations. The distance of the branch is
represented by a displacement, n; n may be within the range of -32 to 31,
inclusive.

I NSTRUCTI ONS-5

BPC MACHINE INSTRUCTIONS

ALTER-SKIP GROUP (CONT I)

The arguments for· the ilstructions of t·his group <ire shown as x±n, or, m.
An a rgurnent of n by i tse I f w i I I genera I I y CLltJ se an error·. I nterna I I y, the
asscmb I er· subtracts t·he current va I ue of)(from the ar~iurnent as part of the
evaluation process. So *±n-* is simply !n, and m-K becomes a relative
displacement rather ~han an actual address. This business of subtracting*
was done to al I0\·1 symbols and addresses C ihcse are m's> as arguments. Th'Js
it is possible to write SZA HOOK. Al I that is required is that HOOK be
within tho al I0\·1ablc skip distance of the instruction.

Bits 0 -through 5 are coded 1·1ith the value of n (or m-*) as fol lows: if
the value is positive or zero, bi I 5 is zero, and bits 0 through 4 receive
the str·aight cinary code for ihc value of n - if the vulue is negative, bit 5
is a I, <rnd bits 0 through 4 receive a complemented and incremented binary
code.

For n or m-* ::: bi !s 5 - 0 meaning:

-32 100000 i f skip, next instruction is *-32
7 111001 if skip, next instruction is *-7
I I 11111 i f skip, next instruction is *-1
0 000000 if skip, repoa+ this i ns·ITucti on
I 000001 do next instruction, rcgo rd I ess
7 000111 i f skip, riext instruction is *+7

31 011111 if skip, next irstruction is *+31

A I l instructions in the <.i I ter-s kip grour have the "skip" properties
out Ii ncd above. Some of the instructions i) I so have an opt i ona I "a I ter" property.
This is where the general instruclion form "skip if <some one bi·t· condi·t·ion>"
is supplemented with the ability to alter the state of the bit mentioned in
the condition. Tho alteration is to either se~ tho bit, or clear it. If
specified, the al·t·cration is done after• the condition is tested, never before.

To indicate in a source stalement that an instruction inc I udes I-he a I ter
option, and to srecify \·1hether to cle<Jr- or to set the tested bit, a cornrna-C
or comma-S fol lows •±n/rn. Thu C indicaies clearing the bit, while an S
indicates setting the bit.

The "a I ter" in format ion is encoded into the 16 bi I instruct ion v1ord
1·1ith 2 bits. For such instructions, bit 7 is cal led the H/H (Hold/Don't Hold)
bit, and bii 6 is the C/S !Clear/Set) bit. If bit 7 is a zero (specifying H)
the "alter" ootion is not active; neitl1t~r S nor C fol lowed n in tho source
statement of tho instruction, Clncl the lestcd bit is left unchanged. If
bit· 7 is a I <srocifying H), then "alter" option is active, and bit 6
specifies whethAr it is Sor C.

label I SZA I)(·l n/m comments

Skip if A zerr,. If al! 16 bits of itw /1 register are zero, skir the
arrount indicated by n, or, ·f·o rn.

INSTRUCTIONS-6

BPC MACHINE INSTRUCTIONS

AL1ER-SKIP GRJUP (CONT.)

label SZB * ± n/m comments

Skip if B zero. If al I 16 bits of the B register are zero, skip the
amount indicated by n, or, to m.

label RZA * ± n/m comments

Skip if A not zero. If any of the 16 bits of the A register are set,
skip the amount indicated by n, or, to m.

label I RZB * ± n/m comments

Skip if B not zero. If any of the 16 bits of the B register are set,
skip the amount indicated by n, or, to m.

label I SIA I * ± n/m I comments

Skip if A zero, and then increment A. The A register is tested, and
then incremented by one. If al I 16 bits of A were zero before the increment,
skip the amount indicated by n, or, tom. SIA does not affect the contents
of E or OV.

label SIB * ± n/m comments

Skip if B zero, and then increment B. The B register is tested, and
then incremented by one. If al I 16 bits of B were zero before the increment,
skip the amount indicated by n, or, to m. SIB does not affect the contents
of E or OV.

label RIA * ± n/m comments

Skip if A not zero, and then increment A. The A register is tested, and
then incremented by one. If any bits of A were one before the increment,
skip the amount indicated by n, or, tom. RIA does not affect the contents
of E or OV.

label RIB * ± n/m comments

Skip if B not zero, and then increment B. The B register is tested, and
then incremented by one. If any bits of B were one before the increment,
skip the amount indicated by n, or, tom. RIB does not affect the contents
of E or OV.

In connection with the next four instructions, Flag and Status are
control led by the peripheral interface addressed by the current select code.
The select code is the number that is stored in the register named PA, located
in the IOC. Both Status and Flag originate such that when a missing interface
is addressed Status and Flag wi I I appear to be false, or not set.

INSTRUCTIONS-7

BPC MACHINE INSTRUCTIONS

ALTER-SKIP GRCl.JP (CONT I)

I abel SFS

Skip if Flag line set.
indicated by n, or, to m.

label I SFC

Skip if Flag I ine clear.
indicated by n, or, to m.

label SSS

* ± n/m comments

If the Flag I ine is true, skip the amount

* ± n/m comments

If the Flag I ine is false, skip the amount

* ± n/m comments

Skip if Status I ine set. If the Status I ine is true, skip the amount
indicated by n, or, to m.

label SSC * ± n/m comments

Skip if Status I ine clear. If the Status I ine is false, skip the amount
indicated by n, or, to m.

label

Skip
the EMC.
input of

label

sos * ± n/m comments

if Decimal Carry set. Decimal Carry CDC) is a one-bit register in
It is control led by the EMC, but connected to the decimal carry

the BPC. If DC is set, skip the amount indicated by n, or, tom.

I soc * ± n/m comments

Skip if Decimal Carry clear. Decimal Carry CDC> is a one-bit register in
the EMC. It is control led by the EMC, but connnected to the decimal carry
input of the BPC. If DC is clear, skip the amount indicated by n, or, to m.

label I SHS I * ± n/m I comments

Skip if Halt I ine set. If the Halt I ine is true, skip the amount
indicated by n, or, to m.

label SHC * ± n/m comments

Skip if Halt Ii ne clear. If the Halt Ii ne if false, skip the amount
indicated by n, or, to m.

I abel I SLA * ± n/m [,S/,C J comments

Skip if the least significant bit of A is zero. If the least significant
bit (bit 0) of the A register is a zero, skip the amount indicated by n,
or, tom. If either Sor C is present, bit 0 is altered accordingly after
the test.

INSTRUCTIONS-8

BPC MACHINE INSTRUCTIONS

r AfJER-SKIP Gf{)UP (coNT.)

r:'

label SLB * ± n/m [,S/,C] comments

Skip if the least significant bit of Bis zero. If the least significant
bit (bit 0) of the B register is a zero, skip the amount indicated by n,
or, tom. If either S of C is present, bit 0 ls altered accordingly after
the test.

label RLA * ± n/m [,S/,C] comments

Skip if the least significant bit of A is non-zero. If the least
signif iccnt bit (bit 0) of the A register is a one, skip the amount
indicated by n, or, tom. If either Sor C is present, bit 0 altered
accordingly after the test.

label RLB * ± n/m [, SI ,C] comments

Skip if the least significant bit of B is non-zero. If the least
significant bit (bit 0) of the B register is a one, skip the amount
indicated by n, or, tom. If either Sor C is present, bit 0 is altered
according I y after the ·test.

label I SAP * ± n/m [,S/,C] corrments

Skip if A positive. If the sign bit (bit 15) of the A register is a
zero, skip the amount indicated by n, or, to m. If either S or C is
present, bit I s is a I tered accordingly after the test.

label I SBP I * ± n/m [,S/,C] I comments

Skip if B positive. If the sign bit (bit 15) of the B register Is a
zero, skip the amount Indicated by n, or, tom. If either Sor C is
present, bit 15 is altered accordingly after the test.

I abel I SAM * ± n/m [,S/,C] I comments

Skip if A minus. If the sign bit (bit 15) of the A register is a one,
skip the amount indicated by n, or, tom. If either Sor C is present,
bit 15 is altered accordingly after the test.

label I SBM I * ± n/m [,S/,C] I comments

Skip if B minus. If the sign bit (bit 15) of the B register is a one,
skip the amount indicated by n, or, tom. If either S or C is present,
bit 15 is altered accordinqly after the test.

label I sos I * ± n/m [,S/,C] I comments

Skip if overflow set. If the one-bit overflow register (OV) is set,
skip the amount indicated by n, or, tom. If either Sor C is present,
the OV register is altered accordingly after the test.

INSTRUCTIONS-9

BPC MACHINE INSTRUCTIONS

ALTER-SKIP GROJP (CONT I)

label soc * ± n/m [,S/,C] comments

Skip if overflow clear. If the one-bit overflow register is clear,
skip the amount indicated by n, or, tom. If either Sor C is present,
the OV register is altered accordingly after the test.

label I SES I * ± n/m [, S/, C] I comments

Skip if extend set. If the extend register (E) is set, skip the amount
indicated by n, or, tom. If either Sor C is present, Eis altered
accordingly after the test.

label I SEC * ± n/m [,S/,C] comments

Skip if extend clear. If the extend register CE) is clear, skip the
amount indicated by n, or, tom. If either Sor C is present, E is altered
accordingly after the test.

CQ\1PLEMEMf-EXECUfE GROUP

label CMA comments

Complement A. The A register is replaced by its one's (bit by bit)
complement.

label CMB comments

Complement B. The B register is replaced by its one's (bit by bit)
comp I ement.

I abel TCA comments

Two's complement A. The A register is reolaced by its one's (bit by bit)
complement, and then incremented by one. The E and OV registers are updated
according to the results of the increment, in the same fashion as for the
ADA instruction.

label TCB comments

Two's complement B. The B register is replaced by its one's (bit by bit)
complement, and the incremented by one. The E and OV registers are updated
according to the results of the increment, in the same fashion as for the
ADB instruction.

INSTRUCTIONS-10

BPC MACHINE INSTRUCTIONS

~ C0'1PLEJ'f:tIT-EXECUTE GROUP (coNT.)

label EXE 0 < m < 370 [,I] cornmen·~s

Execute register m. The contents of any reg1s1er can be treated as tho
current instruction, and exocutod in the normnl manner. Th~ register is
lef·f- unchanged unless f"he instruction code ctiuses i I lo be altered. Tho
next instruction executed \·Ii I I be ihe one fol lrn·1in9 the EXE rt., unless the
codc- in rn causes a br~rnch.

Ind i r·cct addressing is a 11 <Med. /\n EXE rn, I cau~;Ps th0 contents of m
to be taken as J·h0 ad~Jross of I he DI nee in mer::ory \·those contents <ffe to be
executed; this can be anywhere in mernury, and need ne_Yf be another register·.
In 15-bit versions of the processor, multi-level indirect addressing with
EXE instruction is pos';iblo. Only onP level is possible \'lith t-he 16-bit
processor.

Tho 15-b it vcr ion of the 13PC ha~, d bug in connoclion with the Execute
ins~ruction. If the EXE machine-instruction is used io execute any of the
A, B, P, or R registers, and interrupt occurs during the ins~ruction fetch
out of crn0 of those registers, the E3PC slips a cog and fai Is to give SMC
(Synchronized tv'.ernory Comp I ete). This fa i I ur0 l·o comp I ete a rnemory eye I e
brings al I system activity to a halt.

This bug is really not an exclusive property of the EXE instruclion.
The fund<Jmen"fa I prob I em I i es i 11 ins tr>uct-ion j'r.tehes j'i•om addr•essab le pegiH ter>s
within the BPC. An EXE instrucf"ion simply causes such a felch. Such an
uni ikely thing as JMP A (although very legal and quite possible) would also
suffer the unco•npleted memory cycle if an interrupt were to occur during
·t·he fetch from A.

t\lo"fc that EXE A ,I is not affected by the bug. f\l·though it muses a
read from A, th<1·t read is not; <Jn instr·uction fetch. It is only an instruction
fetch from one of the addressable registe:-s in the Bl)C that is susceptible
to the bug. Ho1·10ver, a I so no·le that an EXE A , I is suscept i b I e if /\
points fo one of the other addressable registers with the BPC.

If the sys"l"Pm uses inter-rupt it is best to disable the inlerrupt system
\vith DIR before doing any EXE machine-instructions.

This bug has been Fixed in the 16-bit version of the BPC.

INSTRUCTJONS-11

IOC MACHINE INSTRUCTIONS

STACK GROUP
The stack group manages first-in, I ast-out firmware stacks. The "p I ace"

instructions put a word or byte into a stack pointed at by C or D.* The
it-em that is placed is reg. 0-7. The "withdraw" instructions remove a
word or a byte from a stack pointed at by C or D. The removed item is
written into reg. 0-7.

By the end of each place or withdraw instruction the stack pointer is
either incremented or decremented, as specified by the optional I or D,
respectively. In the absence of either an I or a D, the assembler defaults
to I for place instructions, and D for withdraw instructions.

Place ins~ructions increment or decrement the stack pointer prior to
the placement, and withdraw instructions do it after the withdrawal. In
this way the pointer is always left pointing at the top of the stack.

For byte operations using 15-bit version of the processor bit 15 of the
pointer register <C or 0) indicates left or right half (I = left, 0 =right).
Stack instructions involving bytes toggle bit 15 at each increment or
decrement; but the lower bits of the pointer increment or decrement only
during the zero-to-one transition of bit 15.

In the 16-b it ver·s ion of foe processor, tho I east-significant bit of
the pointer register indicates left or right half (0 = left, I = right).
Ful I 16-bit addressing is maintained by a most-significant bit (for each
pointer register) in the form of the CB and DB registers. The C and CB
registers, and D and DB registers, act as 17-bit registers during the
automatic increment or decrement to the pointer registers.

The values of C and D for place-byte instructions must not be the
address of any i nterna I register for the BPC, EMC, or I OC. The p I ace and
withdraw instructions can also initiate 1/0 operations, so they are also
I isted under the 1/0 qroup.

label I PWC I reg. 0-7 [,I/,D] I comments

Place the entire word of reg. into the stuck pointed at by C.

label PWD I reg. 0-7 [,I/,D] I comments

Place the entire word of reg. into the stack pointed at by D.

label PBC I reg. 0-7 [,I/,D] I comments

Place the right ha I f of reg. into the stack pointed at by c.

label PBD reg. 0-7 [,I/,D] comments

Place the right hi:J I f of reg. into the stack pointed at by D.

C and Dare registE:rs in thP I('('; addresses 16a and 17e, r·"~'..J~H~ctively.

INSTRUCT IONS-12

~

~

IOC MACHINE INSTRUCTIONS

STACK GROUP (CONT I)

label wwc reg. 0-7 [,I/,D] comments

Withdraw an entire word from the stack pointed at by C, and put it
into reg.

label WWD reg. 0-7 [,I/,D] comments

Withdraw an entire word from the stack pointed at by D, and put it
into reg.

label WBC reg. 0-7 [,I/,D] comments

Withdraw a byte from the stack pointed at by C, and put it into the
right half of reg.

label I WBD reg. 0-7 [,I/,D] comments

Withdraw a byte from the stack pointed at by D, and put it into the
right half of reg.

label I CBL* I comments

Set the CB register to a zero. This specifies the lower block of
memory pointed at by C and CB.

label I CBU* I comments

Set the CB register to a one. This specifies the upper block of memory
pointed at by C and CB.

label I DBL* comments

Set the DB register to a zero. This specifies the lower block of
memory pointed at by D and DB.

label DBU* comments

Set the DB register to a one. This specifies the upper block of memory
pointed at by D and DB.

* Part of tho 16-bit processor's Instruction set only.

INSTRUCTIONS-13

IOC MACHINE INSTRUCTIONS

1/0 Gl{)UP
The states of ICI and IC2 during the 1/0 Bus Cycles initiated by the

instructions below depend upon which register is the operand of the
instruction:

label

R4

R5

R6

R7

mem. ref. inst.

TCT
I

0

0

0

0

reg. 4-7 [,I] comments

Initiate an 1/0 Bus Cycle. Memory reference instructions 'reading'
from reg. cause input 1/0 Bus Cycles; those 'writing' to reg. cause output
1/0 Bus Cycles. In either case the exchange is between A or Band the
interface addressed by the PA register (Peripheral Address Register - I 18);

reg. 4-7 do not really exist as physical registers within any chip on the
IDA Bus.

label stack inst. reg. 4-7 [,I/,D] comments

Initiate an 1/0 Bus Cycle. Place instructions 'read' from reg., therefore
they cause input 1/0 Bus Cycles. Withdraw instructions 1\ffite 1 into reg.,
therefore they cause output 1/0 Bus Cycles. In either case the exchange is
between the addressed stack location and the interface addressed by PA.

I NTERRUPf GROUP

label EIR comments

Enable the interrupt system. This instruction cancels DIR.

label I DIR I comments

Disable the interrupt system. This instruction cancels EIR.

INSTRUCTIONS-14

IOC MACHINE INSTRUCTIONS

~ IJ1l\ GROUP

label SDO* comments

Set OMA outwards. This instruction specifies the read-from-memory,
write-to-perioheral direction for DMA transfers.

I abe I I SD I* I comments

Set OMA inwards. This instruction specifies the read-from-peripheral,
write-to-memory direction for OMA transfers.

label OMA comments

Enable the OMA mode. This instructions cancels PCM and DOR.

label PCM comments

Enable the Pulse Count Mode. This instruction cancels OMA and DOR.

label DOR comments

Disable Data Request. This instruction cancels the OMA Mode and the
Pulse Count Mo~e.

*

NOTE

DD~ is not usable with the 15-bit version of the processor. If
the IOC should be in the process of executing a DOR and a OMA request
occurs, the processor wil I go out to lunch and never come back.
This bug has been fixed in the 16-bit version.

NOTE

The IOC wi 11 noi- execute IOC machine-instructions fetched from its
own internal registers.

Part of the 16-bl t processor's instnictlon set only.

INSTRUCTIONS-15

EMC MACHINE INSTRUCTIONS

1HE FOUR-WORD GROUP

label CLR N comments

Clear N words. This instruction clears N consecutive words, beginning
with location < A >. Remember: I < N < 1610.

label XFR N

- -
0 + location < A >

0 + location < A > + I
0

0

0

0 + location < A > + N - I

comments

Transfer N words. This instruction transfers the N consecutive words
beginning at location < A >to those beginning at < B >. Remember:
I < N < I 61 o.

location < A > + location < B >

location < A > + I + location < B > + I
0

0

0

location < A > + N - I + location < B > + N - I

lHE Ml\NTISSA SHIFT GRJUP

I abe I MRX I comments

Mantissa right shift of ARI r-times, r = < 80 _ 3 >, and 0 .::_ r .::_ 17 8 = 15 10 •

1st shift:
jth shift:
rth shift:

< Ao-3 >+Di; < Di>+ Di+1; ..•• 012 is lost
0 + Di; < Di > + 0i+1; . . • . 0 i 2 is I ost
0 +Di; •... < Oj > + Oi+1; .•.. < Oi2 > + Ao-3; 0 +DC; 0 + A4-1s

Notice:

I) The first shift does not necessarily shift in a zero; the
first shift shifts in< Ao-J >.

2) The last digit shifted out ends up as < Ao-3 >.
3) If only one digit-shift is done, (I) and (2) happen together.
4) After (2), SE is the same as< Ao-3 >.
5} Any more than e I even shifts is wastefu I .

INSTRUCT IONS-16

/~

EMC MACHINE INSTRUCTIONS

~ THE Ml\NTISS'\ SHIFT GOOUP (coNT.)

label MRY comments

Mantissa right shift of AR2 < 80_ 3 > -times. Otherwise identical to MRX.

I ab e I I ML Y J coirments

Mantissa left shift of AR2 one time.
< Ao-3 > + 012; ... <Di>+ Di-1; < 01 > + Ao-3; 0 +DC; 0 + A4-15

At the conclusion of the operation SE equals< Ao-3 >.

label DRS comments

Mantissa right shift of ARI one time.
0 + D1; < Di>+ Di+1; < 012 > + Ao-3; 0 +DC; 0 + A4-15

At the conclusion of the operation SE equals< Ao-3 >.

label I NRM I comments

Normalize AR2. The mantissa digits of AR2 are shifted left until 01 # O.
If the original D1 is non-zero, no shifts occur. If twelve shifts occur,
then AR2 equals zero, and no further shifts are done. The number of shifts
is stored as a binary number in B

i. 0 + B~-1s; #of shifts+ Bo-3; 0 +DC
ii. For 0 < < Bo-3 > < I I; 0 +DC
iii. If< Bo-3 > = 12;-I +DC

TI-IE ARITHMETIC GRJUP

I abel CMX I comments

Ten's complement of ARI. The mantissa of ARI is replaced with its ten's
complement, and DC is set to zero.

NOTE

In the 15-bit version of the processor there is a bug concerning
CMX in 15-bit systems that also use OMA.

The bug concerns the way Sync is treated. Under the right conditions
a bus grant (think "OMA cycle") causes the EMC to give Sync too early. The
result is simultaneous use of the IDA Bus by the EMC and BPC. The most
apparent result is that the next instruction fetch by the BPC is garbled,
which is a disaster.

I NSTRUCTI ONS-17

EMC MACHINE INSTRUCTIONS

lHE ARITHMITIC GOOUP (CONT I)

label CMY corrments

Ten's complement of AR2. The mantissa of AR2 is replaced with it ten's
complement, ~nd DC is s0t to zero.

label CDC comments

Clear nncimal Carry. Clears the n~ register; 0 -~DC.

label FXA comments

Fixed-point c:iddition. The rnan·tissas of ARI and AR2 are added together,
0long with DC (as a 012 -digit), and the result is placed in AR2. If an
overflow occurs, DC is set to one, othor~isc, DC is set to zero at the
completion of tho addition.

During the addition the exponents are not considered, and are left
strictly alone. The signs are also left completely alone.

< ARI > = 01
< AR2 > = 01

+

D2 D3--------D12
D2 D3--------D12

< DC > ~- in it i a I va I ue of DC ·

(overflm'I) -+"Do" 01

~DC (final value of DC)

label MvJA comments

Mantissa Word Add. < B > is taken as four BCD digits, and added, as
D9 through D12, to AR2. DC is also added in as a 012. The result is left
in AR2. If an overflow occurs, DC is se-t to one, otherwise, DC is set to
zero at the comp I et ion of the addition.

During the addition the exponents are not considered, and are left
strictly alone, as are the signs. M\'/A is intended prirnc:iri ly for use in
rounding routines.

< B > = --------D9
< AR2 > ~ D1------09

+

D10 D11 D12
010 011 012

< DC > + i n i t i a I v a I u c of DC

(ovcrflow)+"Do" D1------D9 D10 D11 D12-+AR2

~DC (final value of DC)

INSTRUCTIONS-18

EMC MACHINE INSTRUCTIONS

~ TI-IE ARlll-lfUIC GRJUP (coNT,)

label FMP l comments

Fast multiply. The mantissas of ARI and AR2 are added together (along
with DC as D12) < Bo-3>-times; the result accumulates in AR2.

The repeated additions are I ikely .to cause some unknown number of overflows
to occur. The number of overflows that occurs Is returned in Ao-3·

FMP is used repeatedly to accumulate partial products during BCD
multiplication. FMP operates strictly upon mantissa portions; signs and
exponents are left strictly alone.

label

< AR2 > + ((< AR I >) • (< Bo - 3 >)) + DC + AR2

0 + DC,

MPY

~)" i
DC doesn't enter into
these repeated additions
except for the first one
as shown at right. O +DC
irrmediately after each
overflow.

comments

Represents the initial
value of DC.

of overflows + Ao-3

Binary Multiply Using Booth's Algorithm. The (binary) signed two's
complement contents of the A and B registers are multiplied together. The
thirty-two bit product is also a siqned two's complement number, and is
stored back into A and B. B receives the sign and most-significant bits, and
A the least-significant bits:

label

~
<A>•+<A>

FDV comments

NOTE
There is a bug in MPY. See

the Appendix for its description.

Fast Divide. The mantissas of ARI and AR2 are added together unti I
the first decimal overflow occurs. The result of these additions accumulates
into AR2. The number of additions without overflow (n) is placed into B.

< AR2 >+<ARI >+<DC>+ AR2 (repeatedly unti I overflow)

then

0 + DC, n + Bo-3

FDV is used in floating-point division to find the quotient digits of a
division. In general, more than one application of FDV is needed to find
each digit of the quotient.

~ As with the other BCD instructions, the signs and exponents of ARI and
AR2 are left strictly alone.

INSTRUCTIONS-19

INTRODUCTION TO THE ASSEMBLER

(GENERAL INFO~TION
The assembler (ASMA) translates symbolic source language instructions

into an object program executable by the CPD processor. The source lan­
guage provides mnemonic codes for specifying machine operations, (machine
instructions) and for directing the a ssemb I er (pseudo instructions). The
assembler also provides symbolic addressing. ASMA (July 176 version)
serves both the 15 and 16 bit versions of the processor.

ASMA is a DOS-Mor RTE based program; neither BCS nor MTS versions
exist. DOS-Mand RTE are disc operating systems for HP 2100-series com­
puters. As of this writing there is also a series of 3000-based programs
that assemble for the CPD processor. Presently several programs exist,
each having different attributes. There is some sentiment to combine these
programs. However, the move is not yet afoot, and the consensus was not
to mention any program names or definite attributes. Generally speaking,
the capabi I ities of the 3000-based assembler are much the same as those of
ASMA, except that the DFN and $$$ pseudo instructions do not exist in the
3000 version. Also, the details of the "control statements" may differ.
Generally, however, the two assemblers overlap about 95%; they are alike
for more than they are different.

The assembled program is always 11absolute11 in the sense that it is not
"relocatable"; the assembler assigns symbols definite addresses, and the
operand fields of address-sensitive instructions receive definite bit pat­
terns during assembly. If a piece of executable code is to be moved from
one location to another, the usual case is that is must be modified to
reflect the change in origin, and re-assembled. Assemblies must be self­
contained: no external references (externals), eni-ry points, or detached
subroutines are possible.

With non-relocatabi I ity firmly in mind, we assign another meaning to
the word ab so I ute. The BPC has t\-10 modes of addressing: ab so I ute and
relative. Absolute addressing is a scheme with fixed page boundaries, and
I 024 words per page. Re I at i ve addressing centers the page on the c1Jrrent
value of the program location counter (P) in the BPC; the ~ge boundaries
change as P changes. The BPC operates in the absolute or relative addressing
mode, depending upon the external grounding of a pin on the chip (RELA).
It is expected that the two types of addressing wil I not be mixed. Complete
descriptions of each addressing scheme are found in the chapter titled
"DESCRIPTION OF THE PROCESSOR".

The assembler can assemble code for either absolute or relative addressing.
This is control led with the control statement at the beginning of the
source text. See "ASSEMBLER INPUT J\ND OUTPUT", in this chapter.

The original source of a program wi I I usually be paper tape or punched
cards, although it is possible with DOS-M to create a source file on the
disc directly from the system tele-printer. The assembler accepts paper
tape, punched cards, magnetic tape, and disc source files as input.
Magnetic tapes must be prev i os I y generai·ed by the operai· i ng system. Si"an­
dard DOS-M provides disc source files, while source files are available
with RTE systems that have a file manager.

ASSEMBLER-1

INTRODUCTION TO THE ASSEMBLER

GENERAL I NFOWATI ON (coNT.)

Assembler output is of two types: a I isting and the non-relocatable
binary. The I isting can be generated on any "I ist device" in the system,
but the bi nary shou Id be punched on a pu:-ich device. ASMA does not have
the ability to store the binary in the job-binary-area of the disc. Further­
r1oro, i·f· is un-advisable to write the binary to a standard tape transport
with the idea of I a-l·er use. DOS-M and lffE do not correct I y hand I e non-
rc I ocatab I e binary, even \·/hen it is j us·f· "in transit".

A basic binary loader is required to load the binary output into the
processor. Tho formal of the binary output is shmm in the sectio:-i
"ASSEMBLER INPUT AND OUTPUT"; the Appendix coni"ains a discussion about
binary loaders.

ASMA is a modification of ASMB; ASMB is the HP assembler for the 2100-
series computers. Those who are familiar with the operation of ASMB under
005-M or RTE wil I have no difficulty with ASMA. Some of the pseudo instruc­
tions of ASi•iB are rnissinq from ASMA <those pertaining to relocatable
assombl ics), while some additional pseudo instructions have been added. See
"PSEUDO IMSTRUCTIONS".

A cross reference generator is avai I able for use \·lith ASMA. The name
'.Jf this progrmn is XRFA, and it runs \oJith both DOS-Mand RTE .

. l\dditional infonnotion about ·rhc structure of the assembler is contained
in the /\ppondix.

INSTRUCT I OM F0~1A T
A source language si"<itemont consists of a label, an operation code,

an operand, and comments. The I :J be I is used \•1hen needed as a reference
by other stai"ements. The o;:ioration code may be a mnemonic representing a
machinc-opor:ii"ion or an instr-uction to the assembler concerning the task
of iJSScrnbly itself. An operand may be an expression consisting of an
alphanumeric symbol, o number, a special character, or any of these combined
by arithmetic opcrotions. Indicators may be appended to the operand to
specify cort:Jin functions such as indirect addressing. The comments portion
of the stntemont is optional.

STATEMENT CHARACTERISTICS

The fi,~ld of the source s·t·atemcnt nppear in the fol lowing order:

Label Opcode Opt: rand Corrments

One or more ~•pacos so pa rr:itc the f i c Ids of a statement. An end-of­
st11terncnt rnar·k tcrmi nates the 0·1 t· in~ statement. On paper t<Jpe t'lese marks
aro "return" .ind "I ine feed". l\ single space fol lo\'1ing the end-of-statement
m<:wk from the prov i ous :.ourcc slc:d rnner:t is tho nu I I fie Id indicator for the
I a tic I f i e Id.

ASSEMBLER-2

INTRODUCTION TO THE ASSEMBLER

(" INSTRUCTION FOR'tL\T
STATEMENT CHARACTERISTICS(CONT.)

The characters that may appear in a statement are these:

/\ through Z

0 through 9

other val id label characters

. (period)

x <asterisk)

+ (plus)

- (minus)

, (comma)

(space)

Any other ASC I I characters may up pear in the Remarks fie Id.

The letters f\ through Z, tho numbers 0 thrnugh 9, the period, and certain
other characters, may be used in an alphanumeric symbol. In the first
position in the label field, an asterisk indicates a comment; in the operand
field, it represents the value of the program location counter in arithmetic
address expressions. Tho comma separates an expression and an indicator in
the operand field.

Spaces separate fields of a statement. Within a field they may be
used free I y \·1hen to I I owing +, - , or- , •

Tho maximum length of a statement varies, but is at most 80 characters.
See "STATEMENT LENGTH" for a complete discussion.

LABEL FIELD

The label field indentifies tho statement and may be used as a r~ference
by other statements in the orogram. <That is, the label is a place holder
for tho ::id dress of a word that is used by other statorrents that concern,
or operate on, that word.)

Tho field starts in position one of the statement; the first position
fol lowing an end-of-statement mark for the preceding statement. It is
terrn l ncited by a space. f\ space in position one is the nu I I fie Id indicator
for the label field; the statement is unlabeled.

A label is symbolic. It may have one to five characters consisting
of A through Z, 0 through 9, and the symbols shown on the next rage. The
first character must be non-numoric. A l3bel of rnor0 than five characters
could be entered on the sour~e language tape, but the assembler flags this
condition as an er-ror and truncates the I abe I to the I ef·t-most five characters.

ASSEMBLER-3

INTRODUCTION TO THE ASSEMBLER

INSTRUCTION FOR!tl\T
LABEL FIELD (CONT.)

A-Z

0-9

• (period)

II

I
?

@

$

%

&

Each label must be unique within the program; two or more statements
may not have the same symbolic name.

Example:

iei:. c...-:•,.. c~c-· ,_,
I '

,, " ~ " "
., "' ie..tt 11 LOA -1- - -l- 11 N10! JL AB EL! jl l l ! j:

• Aj_B go '\-~ ~1-h l
ViAILiI D LAJBE Li T J I j : I

• 1 :213i4 , -r VA'Ll!,O .L~BIE Li l I , I ' [j: --'ViA1.L!Ilo
' '

A .1112\3 l 1 +:++ !LA BE LI J_ _L _l ; I
' I

. 1 -1 i
-r : . ViA 1lj_I D tA BE L1 J J I i ! f ! : I

1 • ABj _l j I;l'iLJE GA!L LA B!E L 1- FI RjS T CIHIA R1AC TIE RJ:
11 I I I I

' I N!UM:E R fiC l I : I ! 1 l : I I I .i I '
~B cf1J2 3 I I l IJL1LIE G A1L IL1A BIEL I- TR UIN CATEO TlO i T1

' I I' i

1J A'BC 112 '
I ' r l l •ii

i l I
1: l I

IIL'LjE1G
' I ' '

A *IB C! I I ' A:LI 'LA BIEIL1 l- AST}E R ISTK! NOIT I 11
i I

+ +-t i

A,LLjO:wJ EOi lN ,L,AIB,E L • J l : i 1 ! ! l : ' t I I

"AIB err r N1o1 JLJA BEU J_ T}HIE !A SS E1M
1
8 LIER1 1A TITE MP TJs:

+1+ +
I ! J T_iO, JIN T1EJRP:R EIT_i A1B Cl AS, AN 1Q,P E'RJA T,I 01N!

I , ' . 1 c101of1. 1111 I! ' T 'l; T ! I
I I

j_ l JI I
---+

111 I i I 11 JI l i I ..LI l i ,Tl+
I

• ! IT I ' '' ' ' T --ri I
··- ~--,---- --·- --4

t The caret synbol, A , indicates tt1e prcsensc of a space.

An asterisk in position one indicates that the entire statement is a
comment. Positions 2 through the end of the statement are avai I able for
use. See "STATEMENT LENGTH". An asterisk with the label field is ii legal
in any position other than one.

OPCODE FIELD

The operation code defines an operation to be performed by the processor
or the assembler. The opcode field fol lows the label field and is separated
from it by at least one space. If there is no label, the operation code
may begin anywhere after position one. The opcode field is terminated by
a space immediately fol lowing an operation code. Operation codes are orga­
nized In the fol lowing categories:

Machine Operation Codes

BPC

Memory Reference

Shift-Rotate

Alter-Skip

Return-Complement-Execute

ASSEMBLER-4

INTRODUCTION TO THE ASSEMBLER

INSTRUCTION FOR'V\T
OPCODE FI ELD (CONT.)

Machine Operation Codes (cont'd)

IOC

EMC

1/0 Contro I

Stack Operations

Interrupt

OMA

Four-Word Operation

Mantissa-Shift

Arithmetic

Pseudo Operation Codes

Assembler control

Address and symbol def lnition

Constant definition

Storage allocation

Assembly Listing Control

Machine operation codes are discussed in detai I In the chapter titled
"MACHINE INSTRUCTIONS".

OPERAND FIELD

The meaning and format of the operand field depend on the type of
operation code used in the source statement. The field fol lows the opcode
field and is separated from it by at least one space. It is terminated by
a space except when the space follows<,>,<+>,<-> or, if there are no
comments, by an end-of-statement mark.

The operand field may contain an expression consisting of one of the
fol lowing:

Single symbolic term

Single numeric term

Asterisk

Combination of symbolic terms, and the asterisk joined by

the arithmetic operators + and -

An expression may sometimes be followed by a comma and an indicator.

The operands for certain instructions consists of a series of terms
separated by commas.

ASSEMBLER-5

INTRODUCTION TO THE ASSEMBLER

INSTRUCTION FO~T (CONT I)
SYMBOLIC TERMS

A symbolic term may be one to five characters consisting of A through Z,
0 through 9, or the other label characters. The first character must be non­
numeric.

Examp I e:

l•-· ':i-·····,.. ·~~
r-.. ••

' "
,, r " < " .. ., >o

I 1 I L DA A 112 314 : 1'1 vJAfb.fe> 11iF'..JD rrrTN1E D}_I :_. TIT 1 T 1 T I :
I : I AD-"-A 91.11 ' i I ' VALIDIJ DEFINED, ! ~il i • :

t- 1 1 · J p E'Nlr Rv : ITT v 1A1~110 r F~ 'ftE·(rfN1D-- :. 1 , TJ : 1 r , 1 -HH-s~lt-fiiA·~~:-, ~, fLLE.GALi ·o·Ptw1·tict°'-~ST :cH'A~ful:
~lli± r j I . N·U~jR ifi~

--· -
I ! l

f;RlAIND
l I

~~
I
I

Fl t+- !1LLE'G1 I - l---1 S T:B A:81C DlE M]ORE T,HAN I
I

I 11 li ElffIS I i I

_......,
I C1H1A,RA CiT i 1

I I

•I I , I I

11 1 l 111 [11 ! l ll llll l JllJ JI r ~ ' I ' I : !
I I I I

'
I I

Jl l': !
--

I--~ r--J l J I J U1 11 1
.

.'.: I
I

I I I I
I

T I l I
I l" I I I 11 . I I j] · T I [I

I I --
! 11 ' +t-r+ i I J ! ~I

I I

' -
I I 1 i

I I I I

I 1 '. I l +
11' T 1 I I j ! T:

r--~ ,-,
: I I

Unless a symbol is pre-defined by the assembler, a sy~ ol used in the
operand field must be defined elsewhere in the program in one of the fol lowing
ways:

As a label in the label field of a machine operation.

As a label in the label field of a BSS, ASC, DEC, OCT, DEF, ABS, EQU

or REP pseudo operation.

The assembler assigns a value to a symbol when it appears in one of the
above fields of a statement.

The symbols that are pre-defined by the assembler are shown in Table
A- I . Information about modifying or adding to the I i st of pre-defined symbo Is
is contained in the Appendix. With the exception of ARI, al I these symbols
refer to registers within the various elements of the system. The address
of ARI depends upon whether the assembly is for a 15 or 16 bit processor.

The one bit registers, E (Extend) and OV (Binary Overflow), are located
within the BPC. The one-bit register, DC (Decimal Carry - BCD overflow), ls
located within the EMC. These registers are not addressable; they are accessed
through dedicated instructions. Therefore, their names are not pre-defined
by ASMA.

A symbolic term may be preceded by a plus or minus sign. If preceded
by a plus or no sign, the symbol refers to its associated value. If
preceded by a minus sign, the symbol refers to the two's complement of its
associated value. A single negative symbolic operand may be used only with
the ABS pseudo operation.

ASSEMBLER-6

INTRODUCTION TO THE ASSEMBLER

INSTRUCTION FO~T

7

SYMBOLIC TERMS (CONT.)

Table A-I. Symbols 0 re-Def ined by the Assembler.

Octa I
Address Narr.e Location Description (# of Bits>

0 A GPC ''rithmetic Accumulator (16)

I B BPC Arithmetic Accumulator (16)
------1 r----·-------- -----

2 p BPC Program Location Counter (least 15 o' 16 0r 16)

3 R BPC Return Stack ::>o inter (I east 15 of 16 or 16)

4 R4 IOC Peri phera I Activity Des iqnator (-)

5 R5 IOC f'er i phera I f;ct iv i ty Designation (-)

6 R6 IOC Peripheral Adivity Designator (-)

7 R7 toe Peripheral Activity Designator (-)

10 IV IOC Interrupt Vector (upper I;' of 16)

II PA toe Peripheral .Address Ro:iister <I east 4 of 16)

12 w IOC Work i nri P.eois+or (16)

13 OMA PA IOC 7 '·1SB = CB & OEl; 4 LSEl = OMI\ Periph. Add. Reg.

14 DMAMA IOC OMA Memory Address ,_r;, Direction Rcqister (1•)

15 OMAC IOC OMA Count f~e'J i ster (I(:)

16 c toe Stack Pointer (16)

17 D IOC Stack Pointer (16)

20-23 AR2 EMC BCD Arithmetic Accurr.u: a tor (4 x 16)

24 SE FMC Shi ft Extend f<:egister <least 4 of 16)

25-27 x EMC I nterna I Arithmetic Register (3 x 16)

3C-37 UNASSIGNED

77770/
ARI R/~I f'/=o Arithr-ietic Register (4 '6)

177770 x

Not available for general use. Part of processes internal to a chip. It
is best to pretend that these registers do not exist.

Read register 138 produces:

CB and DB are actually discrete
registers, and while they can
only be road by reading Rl3,
storinging into Rl3 wi 11 not
alter their values. Use the
CBL, CBU, DBL and DBU machine
instructions for that purpose.
CB and DB exist in the lG-bit
version only.

61"; t I\

I - - -
tt Valueof

Value of
'-.,_)

* Upper
0 ~ Lower

ASSEMBLER-7

3i1 o~

VOID - -11111
DB '-.,_)

CB OMA
Select C::idc

INTRODUCTION TO THE ASSEMBLER

INSTRUCTION FOR'\'\ T (CON"f I)

NUMERIC TERMS

A numeric term may be decimal or octal. A decimal number is represented
by one to five digits within the range ±32767. An octal number is represented
by one to six octal digits fol lowed by the letter B; (0 to 1777778).

If a numeric is preceded by a plus or no sign, the binary equivalent
of the number is used in the object code. If preceded by a minus sign, the
two's complement of the binary equivalent is used. A negative numeric operand
may be used only with the RET, DEC, OCT, and ABS pseudo operations. The
maximum value of a numeric operand depends on the type of machine or pseudo
instruction.

THE ASTERISK

An asterisk in the operand field refers to the value in the program
location counter at the time the source program statement is encountered.

EXPRESSIONS

The asterisk, symbols, and numbers may be joined by the arithmetic
operators + and - to form arithmetic address expressions. The assembler
evaluates an expression and produces a value in the object code.

Example:

l<l>t>tl C.'P.·~··.,,. C.-•....J
c-.. •• I ' "

,,
"'

,, JO " ., .,
"

LOA SY M+6 AD DI 6 TO THE VA LU E 'OF SYM J I:
ADA SY M-3 SU Bir RA CT 3 FR'OM TH Ej VA LUE OIF Is YlM:

J I: . l
I

.
I i l I I I T I :

I . J ; l _l I I T l:
JMP *+5 AD.D 5 T 0 T H1E co NT ENlT s OFf THE + l: . I 11 PRiO:G R~ IL10 CAT I,O N cou NT E Rj. I I I

I i I . j + 1: . I ' I I T 1 T: : I I

I I STB -A]±!Ci- 4 ' AlDlDi i- 1V AILU El 01F1 A, TH E lVi~L U!E OF 1c: I
I

' 1 AN!D S UB TRA CT 4. f
I I ! I . -d I . ! I I TI I T, I ! i I

I , I I . i I I I lr I l ! I : !
I

I I

STA XT A-* l SU1BT R A'cTTT v ~uu E OF PIR 01G!RAM I I
I I

I I ! I I 1 LOIC1AT I O'N· C 01UiN TE R1 flRO M1 VAL U\E 01F I
I

I XT A. I il I l J] ! 11 l i I

I I J I TI I

1
I I i ! I : -TT I T-'-I

' I
I j 1 _l I

T T T ! 1 I I T
l I i I I I I I i I

I : ! +J_ ! ,l I ..l .J..

ASSEMBLER-8

INTRODUCTION TO THE ASSEMBLER

INSTRUCTION FOPW\T
EXPRESS IONS (CONT.)

An expression consisting of a single term has the value of that term.
An expression consisting of more than one term is reduced to a single value.
In expressions containing more than one operator, evaluation of the expression
proceeds from left to right. The algebraic expression A-<B-C+5) must be
represented in the operand field as A-B+C-5. Parentheses are not permitted
in expressions for the grouping of terms.

The range of values tolerated by·the assembler during the evaluation of
an expression depends upon the type of operation, and whether the assemply is
for a 15-bit or 16-bit processor.

INDIRECT ADDRESSING

The processor provides an indirect addressing capability for memory
reference i·nstructions. The operand portion of an indirect instruction contains
an address of another location rather than an actual operand. For 15-bit
processors the secondary location may be the actual operand or it may be
indirect also, and give yet another location, and so forth. The chaining
ceases when a location is encountered that does not contain an indirect
address.* Only the initial indirect reference is possible with 16-bit
processors; the first address accessed indirectly contains a 16-bit destination
address. Indirect addressing provides a simplified method of address modif i-

~' cation as well as al lowing access to any location in memory.

The assembler al lows specification of indirect addressing by appending
a comma and the letter I to any memory reference operand. The actual
operand of the instruction may be given in a DEF pseudo operation; this
pseudo operation may a I so be used to ind I cate furi·her I eve Is of indirect
addressing (for 15-bit processors).

BASE PAGE AND CURRENT PAGE ADDRESSING

The processor provides a capability which al lows the memory reference
instructions to address either the "current page" or the "base page". The
assembler adjusts al I instructions in which the operands refer to the base page;
specific notation defining an operand as a base page reference is not required
in the source program. Any memory reference instruction; regardless of where
in memory it is stored, can reference an address on the base page. Things not
located on the base page are located on one of many different current pages.
A direct reference to a location not on the base page is possible only if the
instruction making the reference is on the same (current) page as the referenced
location.

COIYMENT FIELD

The comment field al lows the programmer to transcribe notes that wil I
be included with the source language coding on the I ist output produced by
the assembler. The comment field fol lows the operand field, and is separated
from it by at least one space.

* For 15-bit processors such an Indirect address in memory Is indicated by a one in bit 15; bits
0-14 contain the address that is Indirect. A non-Indirect address has a zero In bit 15.

ASSEMBLER-9

INTRODUCTION TO THE ASSEMBLER

INSTRUCTION FO!mT
CotvMENT FI ELD (CONT.)

The comment field is terminated by the end-of-statement mark, or by
indirect means within OOS-M or the assembler itself. See the discussion In
the next section.

On I isting, statements consisting entirely of comments begin In
position 27. Other statements begin in position 21. (The numbering assumes
the first position is named I.) This shifts the comment to the right so that
the label field column in the listing produced by the assembler is free of
anything except labels and errors. This makes it easier to look for and find
a label in the I isting.

STATEMENT LENGTH

The maximum length of a statement that is not a comment is 80 characters.
Comment statements are limited to 74 characters.

Punched cards I imit the length of a statement to what can be put on a
single card; there is no continuation-card mechanism. This limits a statement
to 80 characters, the end of the card acts as an end-of-statement mark.

If the source was originally paper tape which was then stored as a
source file on 005-M, it was truncated to a maximum of 80 characters per I ine
by 005-M at that time. RTE has no such truncation mechanism, but the assembler ~
stil I limits the length of a statement to 80 characters.

The assembler can read the source text directly from paper tape; the
same restrictions on length apply.

Characters beyond the I imits are ignored, and not printed on the
I i sting.

A5SEMBLER-10

ASSEMBLER PSEUDO INSTRUCTIONS

The pseudo instructions control the assembler, as wel I as specify
various types of constants, blocks of memory, and labels used in the
program. Pseudo instructions also control the I isting.

ASSEMBLER COITTRJL
The assembler control pseudo instructions establish and alter the

contents of the program location counter, and terminate assembly processing.
Labels may be used but they are ignored by the assembler.

ORG AND ORR

I ORG m comments

The ORG statement defines the origin (initial value of the program counter)
of a program, or the origins of subsequent sections of programming.

Genera I I y, a program begins with an ORG statement.* An ORG statement
must preceed any machine instructions. The operand, m, must be a decimal
or octal integer specifying the initial setting of the program location
counter.

~\ ORG statements may be used elsewhere in the program to define starting
addresses for portions of the object code; the operand field, m, may be any
expression. Symbols in the operand must be previously defined. Al I instructions
fol lowing an ORG are assembled at consecutive addresses starting with the
value of the operand. For 15-bit assemblies the maximum value of the operand
is 777778. The value of the operand is not restrained for 16-bit assemblies.

I ORR I comments

ORR is an automatic reset of the value of the assembler's program
location counter. Its action is described below.

The assembler traps the very first value given to the program loca-~ion
counter (by the first ORG in the program). Thereafter, as the value of the
program location counter is incremented from that initial value by 11 natural
consumption" of address space (any in-I ine code except ORG 1s), a duplicate
copy of the current value of the program location counter is maintained.
An ORG subsequent to the first one causes the duplicate value to be saved,
and the updating mechanism to be turned off.

The Centro I Statement, the HED i nsfruct ion, and comments may nppear prior to the ORG statement.
See "ASSE:.'.i3LER l!JPUT AND OUTPUT" for a description of the Control Statement.

ASSEMBLER-II

ASSEMBLER PSEUDO INSTRUCTIONS

ASSEMBLER COOROL
ORG AND ORR (CONT.)

An ORR causes the program location counter to be re-set to its earlier
value (that of the duplicate), and also re-invokes the mechanism for
maintaining the duplicate, so that the process can be repeated for other
ORG -- ORR pairs.

Example:

0001 A <;MH, '""I • C
000? Hf fl llPn TFST
000] orn;) fl"'"~ tNITIAL VALIJF. OF PLC
0004 f\1()1J

OOO&:i NOP
OOOF- O~I? NO FFFErT, !\JO SFCOr.1n ORtGTN
0007 f\l(lP

000).\ "lf'P

OOOCJ ';Pf'.

ooln nfJr- ?On·~ SF.CO"'Jn OR LATFR ORJCHN
0011 f\!()1->

on 1 ;:> "'rlP
0011 5Pf
0014 nPr, 311n~

ootc; f\JOP

OOlA tMlP

0017 r:;Pr

OOlA fHU~ RFSFT ORIGlf\J
OOlQ f\t()P

0020 '"f'\P

0021 (HJ~ NO EFFEr.T ON PLC
00?? f\1()1-'

00?.1 /\.l(l p

0024 c;Pr
ont'c; ('\P~ 40n~

OO?.n ~If) P

0027 11nP
002~ e,pr·
OO?Q r1PI~ RESFT OPIGIN Ar,A ll\J
00'30 "!()µ

0031 f\tOP

003? F~IP

**** I Tr:; T F"tn {H•U-1>

NEW INSTRUCTION DEFINITION

ASMA al lows the user to define, at assembly time, his own custom machine
instructions. The definitions must precede the use of such custom instructions,
and are in force for the duration of that assembly only. ASMA al lows up to

~

70 custom instructions to be defined at one time. ~

ASSEMBLER-12

ASSEMBLER PSEUDO INSTRUCTIONS

((' ASSEMBLER CONTROL
NEW INSTRUCT! ON DEF INITW:: (CONT.)

· inemon i c, tvpe, bit pattern comments

Defines a rnnchine instrnction 1•1ith the 0iven 3-character- mnemonic, with
ihc given basic bit pattern, and whose general properties (in terms of i~s

assernb I er-generated bit fields) is one of tho types shown in the bi ·t· pattern
tabulations in the Appendix.

During the assembly of a program, an instruct ion in tho source coding
is i dent if i cd by mutch i ng it against a tab I c in the c:isscrnb I er. The permaneni·
instruction table is searched firs·t-, followed, if nccess()ry, by a search of
table space generated by DFN's. Because of the order of this search, DFM
cannot be used to rc-defino existing instructions.

Each of the fields in !'he source DFN instruction may be preceded by
lending blanks on ·t·he leH. Trai I ing blanks between the substance of the
field and the indicated comma are not permitted.

The type and bit pattern fie Ids arc assumed to represent octa I i nteger-s;
do not fol low them with a 8.

Only existing "types" may be used in DFN instructions; see the tnbulation
of types and bit patterns in the Appendix. There is no protection against
using an undefined or inappropriate type. To do so, however, is a sure-fire
way to send the assembler out-to-lunch.

Each generic type of manipulation performed by the assembler, as it
produces an instruction, is represented by a number cal led the "type".
The type field tel Is the assembler how to handle the newly defined instruction.
Al I instructions of a given type CJ re processed i den'l'i ca 1 I y, except for their
differer,ces in their basic bit patterns. Nm·1 types cannot be defined without
modifying the source of the CJssembler itself.

The fol lowing two examples i I lustrate the properties of "type".

For instance, type 30 instructions never have operands or modifior-s
Ii ke , I. Such an instruction has a f i xod 16-b it pattern, and every occur­
rence ot that instruction results in exactly that particular pattern. The
major Hy of the Math Chip instructions, and some: of the I /0 Chip i ns·rruct ions
are type 30 instructions. Type 30 instructions work in either 15-bit or
16-bit assemblies. Type 46 instructions arc identical to type 30 instruct' ions,
except that they are al lowec only in 16-bit assemblies.

Memory reference instructions are tyr-e 16, and arc perhaps the most
comp I icated type of instruction. The action of a type 16 instructions is
as fol lo1·:s:

ASSEMBLER-13

ASSEMBLER PSEUDO INSTRUCTIONS

ASSEJ.1Blf R CONTROL
NEW INSTRUCTION DEFINITION (CONT.)

I) Evaluates an operand, al lowing expressions and a, I.

2) Checks the resulting value for admissabi I ity, based on its
value vis-a-vis the program location counter (is the operand
on the current page, base page, or neither?).

31 Sets the B/C bit (bit 10) according to whether or not the
operand is on the base page.

4) Creates a certain type of 10-bit reference to the operand and
"or's" it (in the bit 0-9 positions) with the basic bit pattern.

5) Checks for a , I fol lowing the operand, and sets bit 15 of the
instruction if there was one.

It is a characteristic of the assembler that it "or's'' the value of any
computed operand into the supplied basic bit pattern. If an instruction is
to have a four-bit field in bit:; 0-3, the basic bit pattern must be zeros in
those bits. Likewise, any bit that is to be set by a comma I, or other
modifier, must also be a zero in the basic bit pattern.

Now, ty~e 16 is closed, and not avai I able for use if the processor
includes a BPC (a most I ikely state of affairs). This is because this type
al lows only bits I 1-14 as basic bit pattern, and 14 of the 16 possible combi­
nations specify existing memory reference instructions in the BPC. The other
combinations are necessary ingredients of any non-memory-reference instruction.

Examples:

DFN QRX, 30, 076543

This defines an instruction whose name is QRX and whose basic bit
pattern is 076543 octa I, with no operands or modifiers a 11 owed.

DFN QRY, 27, 076560

This defines an instruction whose name is QRY and whose bit pattern
is 076560 merged with a 4-bit field in bits 0-3. Other than for the
basic bit pattern, ORY is the same as a shift-rotate instruction, as
far as ASMA is concerned. ORY would be described thusly:

label QRY comments

QRY sets the brass-plated knudsen valve to o~e of 16 positions,
depending upon the value of n; n may range from I to 16 in source,
bits 0-3 are encoded with the binary for n-1.

Good Luck!

PARTITIONING A BINARY TAPE

The assembler provides the capability to arbitrarily insert long sections
of feed-frames in the output binary tape. This causes the loader to stop. By

ASSEMBLER-14

ASSEMBLER PSEUDO INSTRUCTIONS

(' ASSEMBLER mtITROL
PARTITIONING A BINARY TAPE (CONT.)

utilizing this feature, several sections of independent code can be assembled
together, but loaded separately, or in a different order.

$$$ comments

Causes any binary generated to this point to be properly outputted as a
complete record. Then causes the punching of 90 feed-frames (9 inches).
Such a break causes the binary leader to stop loading at that point. It
also al lows easy visual identification of the sections of a binary tape.

$$$ may be used anywhere in a program without disturbing the validity
of the resulting binary records on either side of the inserted feed-frames.

CONDITIONAL ASSEMBLY

The IFN and IFZ pseudo instructions cause the inclusion of instructions
in a program provided that either an "N" or "Z", respective I y, is spec if i ed
as a parameter in the control statement. The IFN or IFZ instruction precedes
the set of statements that are to be included. The pseudo instruction XIF
serves as a terminator. If XIF is omitted, END acts as a terminator to both
the set of statements and the assembly.

IFN comments

XIF

Al I source language statements appearing beh1een the IFN and the XIF
pseudo instructions are included in the program if the character "N" is
specified in the ASMB contro I sta-t ement.

IFZ comments

XIF

Al I source language statements appearing between the IFZ and the XIF
pseudo instructions are included in the program if the character "Z" is
specified in the ASMB control statement.

When the particular letter is not included on the control statement, the
related set of statements appears on the assembler output I isting but is not
assembled.

ASSEMBLER-15

ASSEMBLER PSEUDO INSTRUCTIONS

ASSEMBLER ffiNTRlL
CONDITIONAL ASSEMBLY (CONT.)

Any number of IFN-XIF and IFZ-XIF sets may appear in a program; however,
they may not overlap. An IFZ or IFN Intervening between an IFZ or IFN and
the XIF terminator results in a diagnostic being issued during assembly; the
second pseudo instruction is ignored.

Both IFN-XIF and IFZ-XIF pseudo instructions may be used in the program;
however, only one type wil I be selected in a single assembly. If both
characters "N" and "Z" appear in the control statement, the character
which is I isted last wil I determine the set of coding that is to be included
in the program.

Examples:

0001
000?
0001
0004
onoc;
OOOf.
0007
0 Ol)A

nnl)q

0010
on l l
on l ::>
0011
0014
on l c;
on 1,;
***-II-

0001
000?
0001
0004
onoc;
non~

0007
000~

oooq
on 1 ri
001 l
001?

r9.rn.11.1
• "' • H
•
•
•

T F r
l)f ~.I 1Jf.J v. 10. l 214'if. nEFlNf QPX

•
•

H ()()t< ()PX
. J~~ µ lllt.>TT
)(J F

•
•

Ft·r1
1.T<\T Fl\ln {~ * iH~

A<;MH.ri.(oH•/

•

TF7
n J N/\RY TAPF IF Z TN CNTRL STMT

nr

•
•

Fl'' fl

LJ<;T F"ln ****

ASSEMBLER-16

ASSEMBLER PSEUDO INSTRUCTIONS

("" ASSEMBLER CO~ITROL (CONT I)

AUTOMATIC STATEMENT REPETITION

The REP pseudo instruction causes the repetition of the statement
immediately fol lo1·ling it a specified number of times.

label REP n commeni·s

The statement following the REP in the source program is repeated n times.
Then may be any expression. Comment I ines (indicated by an asterisk in
character posit ion I) are not repeated by REP. If a comment fo 11 ows a l~EP
instruction, the comment is ignored and the instruction fol lowing the comment
is repeated.

A label specified in i~e REP pseudo instruction is assigned to the first
repetition of the statement. A label cannot be part of the instruction to
be repeated; J ·t· wou Id resu It in a daub I y defined symbo I error.

Example:

TRIPL

CLA

REP

ADA

3

DATA

The above source code \'IOU Id generate the fo 11 m1 Ing:

CLA Clear the /\-Register;

TRIPL /\DA DATA the contents of DATA

AD/\ DATA is tripled and stored in

AD/\ DATA the A-Register.

Example:

FILL l~EP 1006

MOP

The cxamn I e above I oc:ids 1 00 n memory i ocat ions "'' i th the NOP instruction.
The first location is labeled FILL.

SOURCE TERMINATION

ENO comments

This statement term i mi-t·es tho program; it marks ·t·ho phys i ca I end of the
source language statemonls.

Tho label field of the~ END sliJlernoril is ignored.

ASSEMBLER-17

•

ASSEMBLER PSEUDO INSTRUCTIONS

ADDRESS AND S'flv1BOL DEF IN IT ION
The pseudo operations is this group assign a value or a word

to symbol which is used as an operand elsewhere in the program.

I abel
DEF ' m [,I] '

comments

location

The address definition statement generates one word of memory as a
15-bit or 16-bit address which may be used as the object of an indirect
address found elsewhere in the source program. The symbol appearing in the
label is that which is referenced; it appears in the operand field of a
mel!'Dry reference instruction.

The operand field of the DEF statement may be any positive expression.

The expression in the operand field may itself be indirect and make
reference to another DEF statement elsewhere in the source program. The
, I causes the assembler to set the 16th bit of the generated word. This
feature is not ii legal In 16-blt assembl les, although It really only makes
sense to do it in 15-bit assemblies.

Examples:

0001 t n ·' I Ne:: T A IS LOftnEn WITH AnnRESS OF BUFFR+3
000::> •
nno1 •
0004
oonc; L IH~E I fl FF •41.lrF~

nnoA 1 ~.,~ T I) r· 1: Hll!='F0+3

0007
on 01~
OOOQ •
o o l 11 ()j.l (~ /7nnrrn
0011 kl IF Fr..> 11 "c:-, '• n
001? •
0011
0014
.g.-cH~U I 1 c: T F~·'') ''-tr -tr''

ASSEMBLER-18

ASSEMBLER PSEUDO INSTRUCTIONS

flDDRESS MID SYMBOL DEFINITION (CONT I)

Example (cont'd)

0001 LOA HOoK,I A GETS LOADED WITH 171717
0002 •
0003 •
0004 •
0005 HOOK DEF ROOK ti THE •I SETS BIT 15 OF HOOK
0006 •
0007 •
0008 •
0009 ROOK DEF ZIPPR
0010 •
0011 •
0012 •
0013 ZIPPR OCT 171717
0014 •
0015 •
0016 •

label ABS m comments

ABS defines a 16-bit value to be stored at the location represented by
the label. The operand field, m, may be any expression or single symbol.

Example:

..... ~rOil- Os-• c_ .. .,
1 ' 10 " "' ")) " •O ., .,

IAB EQU 35 AS SI G~S THE V~L UE OIF 35 1
1

ITO THE SY MB OL !AB ! i : 1

I 1
I

! i 1
I 1

!M35 fABS -AB M315 co NTIA INS -i3 5. I I
!

1
! 1

P3 5 A~S B P35 co NT AI NS 315. I I I
1

P7 0 ABS B+ AB P70 co NT Al NS 110. +
1
1

• P30 ABS ~B -5 P30 C01N T1A I N s 3'0. i I :

T t

l ! l I r
I I i

I I I 1: ! I I I

i
I

I il +
1

I 1 I

T T I I I I . I I I I I I I T•

label EQU m comments

The EQU pseudo operation assigns to a symbol a value other than the one
normally assigned by the program value represented by the operand field. The
operand field may contain any expression. The value of the operand may not
be negative. Symbols appearing in the operand must be previously defined
in the source program.

The EQU instruction may be used to symbol !cal ly equate two locations
in memory; or it may used to give a value to a symbol. The EQU statement
does not result in a machlne instruction.

ASSEMBLER-19

ASSEMBLER PSEUDO INSTRUCTIONS

ADDRESS AND SYf'1BOL DEF HHTI ON (CONT I)

E.·::irnple:

·------------~------ --------

i·
J 3 _: . ~Ef

L DA J 3 ·~- - ~

ADA ONE

l
S T~A J 3+1

J F):~_R EOJJ J 3+ 1

\

M H

CONSTANT DEFIMITia~

I . . .

THE slYMBOJ >FO'UR AN!o· .J 3+ 1 so:TH
I DE NT,II_F __ Y T!H.E. s.AME L_oc.A.T I.ON_.' _T_H E.
AND OP_ERAT'l.O,N_ .IS. PE.RF:O.RM.ED O.N1 1
THIS LOCATI.O;N.- 1 !

I

~ -1 .
. 1- -

I
. I

The pseudo instruct ions in lh i c; c I ass nnler a stri nq of one or rnon;
constant volues into consecutive 1'/ords of the object program. The shif"erncnts
may be named by labels; this cJI lows other pro~ram stotcments to refer to the
strings of words ~e,eraf"ed by them.

label ASC n, <2n characters> comments

ASC converts a string of ?n a I phanumer i c characters in /\SC 11 code i rllo
n consecutive \\lords.* One charcJcter is right just if ic~d in each eight bits;
the most significant bit is zero. n ma'(be any expression rcsultirn1 in an
unsigrcd decimal value in ih0 rdnge I throu,1h 28. Symbols used in an c~.pre:;­

sion must be previously defin(:cl. Anvthinq in HH? orerand field foll·;wirq
2n ch2racters is treated as cornrnunts. If less than 2n characters arcJ delec:ie(j
before the end-of-stntcment m<Jrk, the n-m1a in i ng characters arc us~;unH:cl to be
spaces, and are stored as such. The label represents the address of the
first two chaructors.

Exumrle:

T • ..

·--t

l·J •:r ter t~-.:: c:-~,c~·! •()r ~h,• .:1-,-- 11 ::i··/fY':, I ,d1i • ; r--.:_-t,=,r""· 1,- • i, ,n

"I inc· 1 eed"), the· :·-·1.T t:··~1_•11ij1_'+ in'.-=-,tru,- ~ i '1 1·1,·--~ b"' 'Jc,,.ij,

ASSEMBLER-20

ASSEMBLER PSEUDO INSTRUCTIONS

~ CONSTANT DEFINITION (CONT I)

causes the fol lowing:

ALPHABETIC

15 14 8 7 6 0

TTYP~ A

~
B

I

c D

E A

EQUIVALENT IN OCTAL NOTATION
15 14 8 7 6 0

TTYP 1 0 1 1 0 2

1 0 3 1 0 4
1 0 5 0 4 0

label DEC comments

DEC records a string of decimal constants into consecutive \'lords. The
constants must be integers. If no sign is specified, positive is assumed.
The decimal number is converted to its binary equivalent by the assembler.
The label, if given, serves as the address of the first word occupied by
the constant.

The decimal integer must fal I within the fol lowing range: -32768 to
32767, including zero. Absolute values of 32769 or greater result in an
error. Avoid ±32768. It results in the same binary result as for -32768;
namely, 100000. Each decimal integer appears as one binary word and appears
as fol lows:

15 14 0

s1GN.-s-j s I number

Example:

ASSEMBLER-21

ASSEMBLER PSEUDO INSTRUCTIONS

CONSTANT DEF IN IT ION (CONT I)

causes the fol lowing (octal represcntCJtion):

15 14 0

INT 0 0 0 0 6 2

0 0 0 5 1 0

1 7 7 3 2 4

label OCT o
1
[,o.,, ... ,o J

L n
comments

OCT stores one or more octal constants in consecutive words of the object
rrogrcim. Each constant consists of one to six octal digits (0 to 177777). If
no sign is given, the sign is assumed to be positive. If the sigr is negative,
the two's comrlemen+ of the binary equivalent is stored. Tne constants are
separared by commas; the I 3st constant is terminated by a space. If I ess
than six digits are indicated for a constant, the data is right justified
in the \·lord. A label, if used, acts CJS the address of the first constant
in the string. The letter B must not be used after the constant in the
orerand field.

Example:

I

-··- -- --~ - ·----------t-· ----------·

ASSEMBLER-22

' ' - ___,.
' '

I
I

--4
'

ASSEMBLER PSEUDO INSTRUCTIONS

<tr"· CONSTJWf DEFINITION (CONT I)

The previous statements are stored as fol lows:

1514 0

0 0 0 0 0 0

1 7 7 7 7 6

NUM 0 0 0 1 7 7

0 2 0 4 0 5

1 7 7 7 4 2

0 0 0 0 5 1

0 7 7 7 7 7

1 7 7 7 7 7

0 1 0 1 0 1

1 0 7 6 4 2
1 7 7 0 7 7

x x x x x x
0 0 0 0 0 1

x x x x x x

STORAGE ALLOCATION

[/
THE RESULT OF
ATTEMPTING TO
DEFINE AN ILLEGAL
CONSTANT IS UN­
PREDICTABLE

The storage a I I ocat ion statement reserves a b I ock of memory for data
or for a work area.

label SSS m I comments

The SSS pseudo operation advances the program location codnter according
to the value of the operand. The operand field may contain~any expression
that results in a positive integer. Symbols, if used, must be previously
defined in the program. The label, if given, is the name assigned to the
storage area and represents the address of the first word. The initial
content of the area set aside by the s-rd'tement is unaltered by the loader.

ASSEMBLY LISTING COtITROL
Assemb I y Ii sting contro I pseudo instruct ions a 11 ow the .Jser to control

the assembly I isting output during the assembly process.

UNL comments

Output is suppressed from the assembly I isting, beginning with the UNL

ASSEMBLER-23

ASSEMBLER PSEUDO INSTRUCTIONS

ASSEMBLY LISTI NG COITTROL (CONT I)

pseudo instruction and continuing for al I instructions and comments unti I
either an LST or END pseudo instruction is encountered. Diagnostic messages
for .:;rrors encountered by the assemb I er w i I I be printed, however. The source
statement sequence numbers (printed in columns 1-4 of the source program
l istlng) are incremented for the instructions skipped.

LST comments

The LST pseudo instruction causes the source program listing, terminated
by a UNL, to be resumed.

A UNL fol lowing a UNL, a LST fol lowing a LST, and a LST not preceded by
a UNL are not considered errors by the assembler.

SUP comments

The SUP pseudo instruction suppresses the output of additional code I Ines
from the source program I !sting. Certain pseudo insi-ructions generate more
than one I ine in the I !sting. These additional I Ines are suppressed by a
SUP instruction until a UNS or the END pseudo Instruction in encountered.
SUP wil I suppress additional I ines in the fol lowing pseudo instructions:

ASC OCT DEC

UNS comments

The UNS pseudo instruction causes the printing of additional I !sting
I ines, terminated by a SUP, to be resumed.

A SUP preceded by another SUP, UNS preceded by UNS, or UNS not preceded
by a SUP are not considered errors by the assembler.

SKP comments

The SKP pseudo instruction causes the source program I isting to skip
to the top of the next page. The SKP instruction is not listed, but the
source statement sequence number is incremented for the SKP.

SPC n

The SPC pseudo instruction causes the source program I !sting to include
a specified number of blank I Ines. The I 1st output skips n blank I Ines,
or to the bottom of the page, whichever occurs first. Then may be any
absolute expression. The SPC instruction itself is not I isted, but the
source statement sequence number is incremented.

ASSEMBLER-24

~
I

ASSEMBLER PSEUDO INSTRUCTIONS

f:" ASSEMBLY LISTING Crt'ITROL (CONT I)

I HED <heading>

The HED pseudo instruction allows the programmer to specify a heading
to be printed at the top of each page of the source program listing.

The heading, m, (a string of up to 56 ASCII characters), is printed at
the top of each page of the source program I isting fol lowing the occurrence
of the HED pseudo instruction. If HED is encountered before the ORG at
the beginning of a program, the heading wil I be used on the first page
of the source program listing. A HED instruction placed elsewhere In the
program causes a skip to the top of the next page.

The heading specified in the HED pseudo in~truction wil I be used on
every page unti I it is changed by a succeeding instruction.

The source statement containing the HED wil I not be I isted, but source
statement sequence number wil I be incremented.

ASSEMBLER-25

ASSEMBLER INPUT AND OUTPUT

The assembler accepts as input: paper tape; punched cards; magnetic
tape; disc source files. The output produced by the assembler consists
of a I isting containing diagnostics, and a punched paper tape containing
the object program. The assembler can also automatically begin the
execution of the cross reference program, following the assembly.

THE CDNTROL STAIB·fNT
The control statement specifies whether to assemble for 15-bit or 16-bit

processors, and specifies the output to be produced by the assembler.

"ASMB," is entered in positions I through 5. Fol lowing the comma are
one or more parameters, in any order, which define the output to be produced.
The parameters may be any legal combination of the following, starting in
position 6:

F Fifteen-bit: The assembler assembles for processors that
utilize 15-blt addressing.

s

A

R

B

Sixteen-bit: The assembler assembles for processors that
utilize 16-bit addressing.

Absolute: The assembler assembles for fixed-page addressing;
the 10-bit address fields for memory reference instructions
are generated according to the absolute addressing scheme.

Relative: The assembler assembles for relative-page addressing;
the 10-bit address fields for memory reference instructions are
generated according to the relative addressing scheme.

Binary Output: The non-relocatable object program (which
is either absolute or relative) is punched on the punch
device.

L Program Listing: A program listing is produced on the I ist
device. The I isting is annotated with diagnostics, should
errors be detected in the program during assembly.

T Symbol Table Listing: A I isting of the symbol table generated
by the assembler is produced. This I isting precedes a
program I isting, regardless of the order of the respective
parameters. The symbol table I isting occurs in the order the
symbols are defined, beginning with pre-defined symbols.

Do not confuse this I !sting with the cross reference.
This I isting is produced by the assembler; the cross reference
is produced by a separate program, cal I able by the assembler,
and also as a stand alone program by the user.

N Inc I ude sets of instructions fo 11 owing the I FN pseudo instruction.

z
c

Include sets of instructions fol lowing the IFZ pseudo instruction.

Begin the cross reference program CXRFA) immediately after assembly.

ASSEMBLER-26

r

ASSEMBLER INPUT AND OUTPUT

THE CONT[)L STAID'Ei'IT (coNT.)

Either For S must be specified. Likewise either A or R must be specified.
Also, one of B, L,~T must be specified. Specifying C is optional. Also
the control statement must be the very first statement in the program.

lHE SOURCE PROGIW-1
The first statement of a program must be a control statement; no other

control statements are al lowed in the program. The next statement required
before assembly can proceed in an ORG statement. However, HED and comment
statements can occur between the control statement and the first ORG
statement. But no other types of statements may precede the first ORG. The
last statement must be an END statement.

THE LISTING
Fields of the object program are I isted in the fol lowing prir.t columns.

Columns

2-5

6

7-12

13

14-19

20

21-100

Content

Blank

Source statement sequence number generated by
the assembler

Blank

Location (octal)

Blank

Object code word in octal

Blank

First 80 characters of source statement

Lines consisting entirely of comment (i.e., *in column 1) are printed
as fol lows:

Columns

2-5

27-100

Content

Blank

Source statement sequence number

Up to 74 characters of comment

A symbol table I isting has the fol lowing format:

Co I umns Content

Blank

2-6 Symbol

7-8 Blank

9-14 Value of the symbol

ASSEMBLER-27

ASSEMBLER INPUT AND OUTPUT

THE LISTING (CONT.)

I nterna I I y, 1\SM1\ is a tv10-pass process. During the first pass a
symbol table is generated, and if the source is from a device other than
the disc, the source is read onto the work area of the disc. in preparation
for the second pass. It is at the end of the first pass tlwt a I i sting of
the symbol table is printed, if requested. The second pass generates the
program I isting and the actual objed program (binary tape).

At the end of each pass, the fo I I O\'i i ng is printed:*

**NO ERRORS*
or

**nnnnERRORS*

The value nnnn indicates the number of errors.

BINARY OUTPUT
A binary output tape

the format shown below.
words long.

consists of a series of records; each record has
Records vary in length, but are maximum of 67

10

During the second pass of assembly, the object binary is accumulated in
a buffer. The contents of the buffer wi I I become a record on the output
tape. A record is punched when the buffer gets ful I, or when it is necessary
to begin a ne\oJ record. Instructions I ike ORG, SSS and $$$ah-Jays cause ·t·he
accumulated previous record to be punched (unless the buffer was empty),
and a new record started.

The numbers refer ~o the :iur:iber ~>f orrors det,;clcrJ dlir·ing each p<1'.;s only; it is possible for
ei Hier nur:iber lo be zero while the other is not, Always check t>oth numbers, not just the one ,JI
the end of 1'11n listing. Also, 1i.1';', one error diagnostics arc~ '.;lruply printed, by t·hernselvcs, ill
the start of tlw listing; they include the error mner:10nic as well '15 the offending statemm1t.
Pass two error didgnostics are mcr(]cd with th0 I ist ir1g ~roo(~r; the diagnostic itself has the sume
form as for p:lss one, but irr.meci,)1ely prece~:ds regular I ist ing of th~'! offencJin9 ~t(1:crncnt. I! i~

poss i b I e for a Cef ec: i Vt~ srat.:-r·h~·n t to ;Jroduc•:- r.-.. 'Jr~~ ~ han one di dqno~ tic message.

ASSEMBLER-28

~
J

ASSEMBLER INPUT AND OUTPUT

~' B !NARY OUf PUT (coNT.)

IS

15

RECORD
LENGTH

87

WORD It

CONTENT

01514

015

OBJECT TAPE FORMAT

ABSOLUTE
LOAD

ADDRESS

WORD 2

INSTRUCTION
WORD.

I

WORD n-1

015

0 15

INSTRUCTION
WORD 1

WORD J

CHECKSUM

WORD n

tEach word represents two frames arranged as follows:

Bil 8 - Bil O

Fel'd lloles

Bil 15 Bil 7

~ Tape Travel
ASSEMBLER-29

0

0

EXPLANATION

RECORD LENGTH"' NUMBER OF
WORDS IN RECORD EXCLUDING
WORDS 1 AND 2 AND THE
LAST WORD.

ABSOLUTE LOAD ADDRESS:
STARTING ADDRESS FOR
LOADING THE INSTRUCTIONS
WHICH FOLLOW

INSTRUCTION WORDS:
ABSOLUTE INSTRUCTIONS
OR DATA

CHECKSUM: ARITHMETIC
TOTAL OF ALL WORDS
EXCEPT FIRST AND LAST

APPENDIX

~ AS.SEMBLER ERIUR f'ESSl\GES
During the assembly of a program, error messages are printed on the

I ist output device to aid the programmer in debugging programs. Errors
detected in the source program are indicated by I- or 2- letter mnemonic
fol lowed by the sequence number and the first 62 characters of the statement
in error. The messages are printed on the output device during the passes
indicated.

Error

Code and Pass

cs

DD

FU

IF

IL 2

Description

Control statement error:

a) The control statement contains

a parameter other than one in

the legal set.

bl Neither /1 nor R, or both A and

R, arc specified.

cl Neither S nor F, or both S and

F, are specified.

dl There Is no output parameter

CB, T, or U.

Doubly defined symbol: A name

defined in the symbol table appears

more than once as:

al A label of a machine instruction.

bl A label of one of ii1e pseudo

operations:

BSS
ASC

DEC

DEF

EQU
ABS

OCT

Too many DFN statements.

An IFZ or an IFN follows either

an IFZ or an IFN without an

intervening XIF. The second

pseudo Instruction is ignored.

Illegal character: A numeric term

used in the operand field contains

an i 11 ega I character (e.g. an octa I

constant contains other than +,-,
or 0-7l.

Error

Code and Pass

1,2

NO I ,2

APPEND TX-I

Description

Illegal operand:

al Operand is missing for an

opcode requiring one.

b) A negative operand is used with

an opcode fleld other than ABS,

or OCT.

cl A character other than I

fol lows a comma in one of the

following statements:

LDA ADB AND

LDB STA DSZ

CPA STB IOR

CPS JSM JMP

ADA I SZ DEF

dl A character other than S or C

fol lows a cor.ma In one of the

following statements:

SLA

SLB

RLA

RLB

SAM

SBM

sos
soc

SAP SES

SBP SEC

e) An illegal operator a~pears in

an operand field (e.g. +or -

as the last character>.

f) An integer expression in an

Instruction does not meet a

size requirement.

No origin definition: The first

statement in the assembly containing

a valid opcode fo 11 ow Ing the ASMB

Control Statement (and remarks and/or

HED, if present) is not an ORG

statement.

APPENDIX

ASSEMBLER ERROR MESS~GES (CONT I)

Error

Code and Pass

OP 1,2

OP 1,2

OP 2

ov 1,2

so

SY 1,2

Description

Illegal opcode preceding first

valid opcode. Also, a comment

falls to not contain an

asterisk in position one. The

statement is assumed to contain

an i I t ega I opcode; i t I s treated

as a remarks statement.

Illegal opcode: A mnemonic

appears Jn the opcode f leld which

I s not va I id. A word ~ generated

in the object program, however.

Opcode is valid in 16-blt assembl les,

but invalid in present 15-blt

assembly.

Numeric operand overflow. The

numeric value of a term or expression

has overflowed its I imit.

There are more symbols def lned in

the program than the symbol table

can handle.

11 legal symbol: A label field

conta ins an i I I ega I cha racier or is

greater than 5 characters. A label

wirh illegal characters may result

in an erroneous assembly if not

corrected. A long label is truncated

to the left-most 5 character.

Error

Code and Pass

SY 2

UN 1,2

APPENDIX-2

Illegal symbol: A symbol le term In

the operand field Is greater than

five characters; the symbol Is

truncated to the left-most 5

characters.

Undefined symbol:

al A symbolic term in an operand

field is not defined in the

label field of an Instruction.

bl A symbol appearing in the

operand field of one of the

following pseudo operations

was not defined previously In

the source program:

SSS ASC EOU ORG

APPENDIX

BINARY LOADERS
There are two basic approaches to loading a binary object program into

memory.

The first (and the simplest and most primitive)
basic binary loader for the 2100-series computers.
is a 30 to 50 word program that must be resident in
the BPC system's memory. This program performs the
while understanding the format of the binary tape.
to note about this approach:

way is to imitate the
With this approach there
some unused portion of
necessary input activity
There are several things

I. The binary loader itself can only be loaded by hand - a tedious and
error-prone activity. This is an especially grievous drawback if
no non-volatile memory is available to contain the loader.

2. It is possible that the system under development might eventually
not have room in memory for a resident loader.

3. If the system does not have an IOC, a special interface to the IDA
bus is necessary. These come in two flavors:

a. Build a special interface that acts I ike a memory address. It
can be set to respond to an unused register address (very easy
if RAL is used) or to a non-existent or non-decoded main-memory
address. To load a byte In A from a photo reader whose interface
thinks it is location 300, the loader would do a LOA 308. The
interface recognizes the memory address as its own, starts the
photo reader and gets the byte, and holds the byte on the IDA
bus, giving Memory Complete only when al I photo reader activity
is complete. In this way no special handshake is required, and
to read a word from the tape it is necessary only to:

LDA 308
SAL 8
IOR 308

b. Use a Model 30, or other calculator, programmed to read the
data from the photo reader. The calculator sends the data to
the IDA bus through an I 1202-818 combination Cs! ightly
supplemented) - all of which are off-the-shelf components.
This al lows a somewhat simpler interface and also a simpler
resident binary loader: the check-sum can be checked and then
removed from the instruction-word-stream by the program in the
calculator.

The I 1202-BIB combination must be supplemented with memory
address decoding; however the existing Flag convention can
take the place of the missing Memory Complete circuitry. The
resident binary loader stil I addresses memory to get a byte
from the reader:

LDBYT

l/OAD

SFC
LOA
SAL
SFC
IOR

DEF

LDBYT
I /OAD, I
8

*
l/OAD, I

XXX ADDRESS DECODED BY INTERFACE

APPENDIX-3

APPENDIX

BI NARY LOADERS (CONT I)

The second general approach is much more sophisticated, but is a lot
easier. It is to use the ET-8332. The ET-8332 is much more than just a
loader; it is that in addition to being a ful I-scale test apparatus for
control ling traffic on the IDA bus and debugging software. It is control led
by software executed by a Model 30, and has many useful features. As far
as loading is concerned, no resident loader is required in the memory of
the BPC system under development, and object code can be stored on a disc.
The ET-8332 is generally considered superior to an ordinary single-step­
tester.

APPENDIX-4

APPENDIX

OUTPUT PAPER TAPE FOPmT

15

15

ABSOLUTE BINARY OBJECT PROGRAM

RECORD
LENGTH

87

WORD 1 t

CONTENT

01514

0 15

ABSOLUTE
LOAD

ADDRESS

WORD2

INSTRUCTION
WORDi

WORD n-1

015

0 15

INSTRUCTION
WORD 1

WORD 3

CHECKSUM

WORD n

0

0

tEach word represents two frames arranged as follows:

Bit 8 - Bil 0

Fl'cd Holes

Bit 15 Bit 7

Tape Travel

APPENDIX-5

EXPLANATION

RECORD LENGTH= NUMBER OF
WORDS IN RECORD EXCLUDING
WORDS I AND 2 AND THE
LAST WORD.

ABSOLUTE LOAD ADDRESS:
STARTING ADDRESS FOR
LOADING THE INSTRUCTIONS
WHICH FOLLOW

INSTRUCTION WORDS:
ABSOLUTE INSTRUCTIONS
OR DATA

CHECKSUM: ARITHMETIC
TOT AL OF ALL WORDS
EXCEPT FIRST AND LAST

(/')
a:=
LI.I
co
:::E:
:::> z
LI.I
z -....I
LU
I-

~ -><
0 a:=
0.
0.
c:(

APPENDIX

ADDING PRE-DEFINED S'tMOOLS TO A'l"A
It is a relatively easy task to add pre-defined symbols to ASMA. What

is necessary is the creation of some extra source text for ASMA! and ASMA4.
Both must be changed; whatever modif icatlon made to one must also be made
to the other. After modification, these segments must be re-assembled,
and the entire program collection re-loaded.

Below is a partial source listing of ASMAl and ASMA4, in the vicinity of
lines 415-430. (The exact location in each keeps changing over time. I give
up trying to keep this page accurate).

0411 COUlllT DEC 58
0412 PRELD OCT 20101•0 A REG = 0
0413 OCT 20102.1 B REG = 1
0414 OCT 20120.2 p REG = 2
0415 OCT 20122,3 R REG = 3
0416 OCT 30122•32040•4 R4=4
0417 OCT 30122,32440,5 RS=S
0418 OCT 30l22t33040t6 R6=6
0419 OCT 30122t33440t7 R7=7
0420 OCT 30111'53040•10 IV
0421 OCT 30120.40440,11 PA
0422 OCT 20121.12 w
0423 OCT 40104t46501,S010ltl3 DMAPA
0424 OCT 40104•4650lt4650ltl4 OMAMA
0425 OCT 40104t4650lt41440tl5 UMAC
0426 OCT 20103•16 c
0427 OCT 20104tl7 D
0428 ARlAD OCT 3010lt5106lt77770 ARI
0429 OCT 30101•51062.20 AR2 = 20
0430 OCT 30123t42440t24 SE - 24
0431 OCT o.o.o.o.o DUMMY END OF SYMBOL TARLE
0000 LIST END 0000

Here Is how to add a pre-defined symbol:

I. The symbol to be added must, in every way, conform to the rules
for labels and their permissible values.

2. If the symbol has an even number of characters, imagine that it
has a trail Ing blank (t>) as the right most character, so that
the "number of characters" is a 1 ways odd.

3. Using the ASCII conversion table in this appendix, convert the
symbol into one or more octal integers. Note how the left-most
character is right-justified into an al I-zero word.

OOGG

OOGG t>

APPENDIX-6

al I zeros= 000000

D =+000104

000104 Alli\
J

,.....
'(

APPENDIX

ADDING PRE-DEFINED SYMBOLS TO ASML\
3.

4.

(cont.)
0 = 047400

G = +000107

047507

G = 043400

1> = +000040

043440

So far we have the sequence:

000104, 047507, 043440

The next step is to add one more word, representing the octal
value of the symbol. Suppose DOGG is to equal 778. Then this
generates the sequence:

000104, 047507, 043440, 000077

5. ·Count the number of words (in this case 4). Insert this number
into the first word exactly as shown below:

040104, 047507, 043440, 000077
t

6. Create an OCT statement that wil I generate the same sequence of
words:

OCT 40104,47507,43440,77

Note that leading zeros may be omitted.

7. One other change in the program source text is necessary:
The value of the word cal led COUNT must be changed Cline 398
in ASMA4). COUNT is the total number of words in the symbol
table pre-load.

In our example, we are adding four words. So COUNT would change
from its base value of 58 10 to:

COUNT DEC 62

8. Prepare edits that wi I I change COUNT to its new value in both
ASMA! and ASMA4, and that wil I insert the new octal constants
between I ines 418 and 419 of ASMAI and between I ines 417 and 418
of ASMA4.

9. Make the edits, re-assemble, and re-load.

10. You can verify proper behavior of the symbol table pre-load, as
wel I as obtain a complete I ist of the pre-loaded symbols, by
assembling any program including a T in its Control Statement.

APPENDIX-7

APPENDIX

A'1DING PRE-DEFINED SYMBOLS Tc Asr'll\ <coNr.)

The symbols that are pre-defined by the assembler are shown below. With
the exception of ARI, al I these symbols refer to registers within the various
elements of the system.

REGISTERS & ASMA PRE-DEFINED SYMBOLS

Oda I
Address Ncime Location Description (II of Bits)

0 1; SP: t,ri thl'1et i c Accumulator (16)

I B BPC .A. r i t hmP t i c 1\ccumu I a1or (16)
-· ----- --- -

2 p BPC Progr-ar~ Loca Ii on Counter (I east 15 of 16 or 16)

3 R BPC ~etur·n SL1ck rointer <I cast 15 of 16 or 16)

'·
..--., .~

·~, .. IOC Peripheral i1ctivity C'esi1-iator (-)

~ R~)'""
~·~ f'er i ;:;her<: I !1ct iv i ty ~·esi1,1atior. (-)

6 R6 IOC Peripheral /1ct i vi ty Cesignator (-)

7 R7 IOC Peripherul Activity DesiCjnator (-)

10 IV IOC lnterru~I Vector (u r~~~er I:' of 16)

II P/1 IOC Per-ip·it:r-JI i10Jress r?.?:~ is t~Jr (lec:s- .. ,;Ji 1::.)

12 \•.1 IOC Work T no ;~~'lr~ is t t_:r (If.)

13 DMAP/\ IOC ,.,
MSG = :;[1 &. DB; 4 LSG .. [)~1!\ 0 eriph. 1\dd. ~eg. .._

14 DMAMf\ IOC OMA Memory Address ,~'. [; i r<'C t i Ori Rcq i •, l<,r (I')
-

15 DM1\C IOC ~~.!A r'- lo ,_nun, '·~Q:-: is ter (lt:1l

16 c IOC Stack t'o int.,r (16)

17 D IOC Stack ?o i :1tc·r (16)

20-23 AR? EMC BCD !1rithme·1 ic .~,ccurnu I di ur (tl x 16)

?4 SE EMC Shi ft lx:cnd Register (I OdSt 4 of 16)

:i:,-27 x [VC Int er n,J I r11· i tr.met i c R·::g i ·:,!er (3 x 16)

3J-37 LJ'i1\S 51 Gi::::O

77770/
1\R I ~/·.-· &::1 ·~ r i t firrh? t i c Register (.1 x !Gl

177770

Not available for general use. Part of proces~;es internal to a chip. It
is best to protcnc that these registers dn riot exist.

Road register 13
8

produces:

CB and GB are actually discrete
registers, and while they can
only be read by reading Rl3,
storinging into Rl3 wi II not
a I ter their vc1 I ucs. Use the
CBL, CBU, Q6L cJnd DBU ma ct i n0
instructions for that purpose.
Cb and DB exist in tne 16-bi t
version only.

rua;t IS

I - - -
1L\al ue

Value
\.._,_/

? Upper·
0 ? Lower

APPENDIX-8

Git O~

VDIJ 11111

l_;f :JG
of CB o~.~t\

St.' I ect Code

APPENDIX

IBE STRUClURE OF THE ASSEMBLER
The assembler is a segmented program that can run under either DOS-M

or RTE. The names of the segments are:

ASMA the ma i n segment
ASMAD overlay segment
ASMA! overlay segment
ASMA2 overlay segment
ASMA4 overlay segment
ASMA5 overlay segment

Note that there is no ASMA3. Special procedures are required when
loading segmented programs; see the operating manual for your system.

The differences between the 005-M version and i·he RTE version is
entirely contained within ASMA (main segment). Whether ASMA is for OOS-M
or for RTE is control led at the time ASMA itself is assembled Cby ASMB, the
regular assembler). It is merely a matter of an Nor a Z in the Control
Statement of the source for ASMA (main segment only). This is fully
explained by the comments in the I isting.

The ii lustration on the next page is a pictorical representation of
ASMA when it is in core.

APPENDJX-9

Length of ASMA:

approximately

6200 8 (varies

from RTE to

DOS-M>

Approximate
Segment Lengths:

AS MAD 550 8

1\Sr.iA I ll 75a

ASMA2 14450

A31·iA4 ll 70a

ASMA5 1430a

APPENDIX

Order of execution:
=:~~~~-~~~

Relative
ASMA

Non-Relative ("Absolute")
ASMA

AS MAO ASMAO
ASMA I (uses ASMA)
ASMA2 (uses ASMA)

ASMA4 (uses ASMA>
ASMA5 (uses ASMA)

J

a: Main Instruction Table

DFN Instruction Table

Various uti I ity subroutines common
to relative and absolute assemblies

D} Col I ection of shared constants
2250 words

------------------Self-destructive code P/0 ASMAO

The segments have; different lengths 1

Length of XRFA: ~~

approximately 42600

~ Symbol Table
L-~~~~~~~~~~~~~~~~~--t

Binary Loader

APPEND I X-10

~ System Load Address

j
'> ASMA
I

4 Actua I over I ay point

~
for every segment

ASMAD Clst segment
executed)

~Effective overlay
point for al I seg­
ments except ASMAD

Each ~rogram has a
BSS 2258 and a I ist
of EQU's into that
area to recover the

~ constants

The Assembler ccmputes
this address based on
its own length

_ ./ Max address I ess
¥ basic loader

~The Assembler knows how
to get this address from
the System.

APPENDIX

PSEUOO INSTRUCTIONS

ABS m

Defines a 16-bit value to be stored at the

location represented by the label.

(ASMA: Assembler-19)

ASC n, < 2n characters >

Converts a string of 2n alphanumeric characters

in ASCII code into n consecutive words.

CASMA; Assembler-20)

BSS m

CLA

CLB

Advances the program location counter according

to the value of the operand.

(ASMA: Assemb ler-23)

Clear A. The assembler turns this mnemonic into

an SAR 16 (shift A right 16). This has the effect

of clearing the A register. CBPC: lnstructions-4)

Clear B. Similar to CLA. CBPC: lnstructions-4)

DEC d1[,dz, •••• ,dnJ

Records a string of Integer decimal constants

into consecutive words. (ASMA; Assembler-21 l

DEF m [,I]

Gencra'fes one word of memory as a 15-b it or 16-b 11'

address which may be used as the object of an

indirect address found elsewhere In the source

program. CAMSA: Assembler-IS)

OFN < mnem:inic >, < type >, < bit pattern >

ENO

Def Ines a ma chi no instruct I on with ·t·he g i von

3-character mnem:inic. (ASMA: Assembler-13)

Terminates the program; marks tho physical end

of the source language statements.

(ASMA: Assembler-17)

APPENDIX-11

EQU m

Assigns to a symbol a value other than the one

normally assigned by the program location

counter. CASMA: Assembler-19)

HED < heading >

IFN

IFZ

LST

NOP

Al lows the prograrrmer to specify a heading to be

printed at the top of each page of the source

program Ii sting. <ASMA: Assemb I er-25l

Source language statements after IFN and before

the next XIF are included in the program If the

character "N" Is spec If i ed In the ASMB contro I

statement. (ASMA: Assembler-15l

Source language statements after the IFZ and

be fore the next XI F pseudo i nstruct i on s a re

included In the program if the character "Z"

is specified in the ASMB control statement.

C/1SMA: Assemb I er-15 l

Causes the source program listing, terminated

by a UNL, to be resumed. (ASMA: Assembler-24)

Null operation. The assembler turns this

mnemonic into a LOA A. CBPC: lnstructions-4)

OCT 01[,02, •••• ,On]

Stores one or more integer octal constants in

consecutive words of the object program.

(ASMA: As semb I er-22 l

ORG m

ORR

Defines the origin of a program, or the origins

of subsequent sections of prograrrming.
(ASMA: Assemb I er- I I)

Automatic reset of the value of the program

location counter. (ASMA: Assembler-Ill

APPENDIX

PSEUOO INSTRUCTIONS (coNr.)

REP n

SKP

Causes the repetition of the next si'atement a

specified number of tirr.es.

(ASf.V\: Assemb I er- I 7 l

Causes the source program I isting to be skipped

to tho top of the next page.

<ASMA: Assembler-24)

SPC n

SUP

Causes the source program I istlng to be skipped

a speci f ied number of I i nes.

<ASMA: Assembler-24)

Suppresses the output of additional code I ines

from the source program listing.

CASMA: Assembler-24)

Ml\CHINE INSTRUCTIONS
MRn

Arithmetic right shift of A. A is shifted right

n places with the sign bit (bit 15l filling al I

vacated bit positions. CBPC: lnstructions-5)

ABR n

Arithmetic right shift of B. B is shifted right

n places with the sign bit Cb it 15l f i I I ing al I

UNL

UNS

XIF

$$$

CBL

CBU

vacated bit positions. CBPC: Instruct ions-5 l CDC

ADA m [.I]

Output is suppressed from the assembly I I sting

for all subsequent Instructions and cor.vnents

until either an LST or END Is encountered.

<ASMA: Assemb I er-23)

Causes the printing of additional coding I Ines,

terminated by a SUP, to be resumed.

(ASMA: Assembler-24)

Terminates conditional assembly text.

CASWA: Assembler-15)

Causes any ilS yet un-outputted binary to be

properly outputted as a complete record.

(ASMA: Assembler-15)

C Block Lower. Clears the CB register. 16-blt

IOC only. (IOC: lnstructions-13)

C Block Upper. Sets the CB register. 16-blt

IOC only. (IOC: lnstructions-13)

CI car Dec i ma I Carry. (Et·t::: Instruct i ons-18 l

Add the contents of m to A.

< BPC: Instruct ions-2)

CLR N

AOB m [.I]

Add the contents of m to B.

(BPC: lnstructions-2)

AND m [.I]

Logicill "and" of A and m: the result is left In

A. <BPC: lnstructions-31

APPENDIX-12

CMA

Clear N words. This instructions clears 1-16

consocui·lve words, beginning with location < A >.

CEMC: lnstructions-16>

Complement A. The A register is replaced by Its

one's (bit by bit) complement.

<BPC: Instructions-IOI

APPENDIX

r ~CHINE INSTRUCTIONS CcoNT.)

CMS

CMX

CMY

Complement B. The B register Is replaced by Its

one's Cbit by bitl complement.

CBPC: Instructions-IQ)

Ten's complement of ARI. 15-blt version has

a OMA-re I ated bug. (EM'.:: Instruct ions- 17 l

Ten's complement of AR2. (EMC: Instructions-IS)

CPA m [,I)

Compare the contents of m with the contents of

A; skip if unequal. CBPC: lnstructions-21

CPB m [,I]

DBL

OBU

DOR

Compare the contents of m with the contents of

B; skip if unequal. CBPC: lnstructions-2)

D Block Lower. Clears the OB register. 16-blt

IOC only. CIOC: lnstructions-13)

D Block Upper. Sets the DB register. \6-bit

IOC only. CIOC: lnstructions-13l

DSZ m [,I]

EIR

Decrement m; then skip if zero.

(BPC: lnstructions-3)

Enab I e the Interrupt system.

(IOC: lnstructions-14)

EXE 0 ~ m ~ 37e [,I)

FDV

FMP

Execute register m. The contents of any register

can be treated as the current instruction, and

executed in the normal manner. The next

Instruction executed wll I be the one fol lowing

the EXE m, unless the code in m causes a branch.

15-blt version has minor bug related to Interrupt.

CBPC: Instruct i ons-1 I l

Fast Divide. The mantissas of ARI and AR2 are

added together until the first decimal overflow

occurs. The result of these additions accumulates

in AR2. CEMC: lnstructlons-19)

Fast Multiply. The mantissas of ARI and AR2 are

added together (along with DC as D12l < Bo-3 >­

times; the result accumulates in AR2.
CE~'C: lnstructions-19)

Disable Data Recuest. Cancels the OMA Mode and FXA

DIR

OMA

DRS

the Pulse Count Mode. 15-blt version has DMA-

related bug; DOR Is usable In the 16-blt version

only. CIOC: lnstructions-15l

Disable the Interrupt system, cancels EIR.

(IOC: lnstructions-14l

Enable the OMA mode. Cancels PCM and DOR.

CIOC: lnstructlons-15)

Mantissa right shift of ARI one time.

CEMC: Instruct ions-I 7l

APPENDIX-13

Fixed-point addition. The mantissas of ARI and

AR2 are added together, and the result is left

In AR2. CEMC: lnstructlons-18l

IOR m [,I)

Inclusive <ordinary) "or" of A and m; the result

is left in A. <BPC: lnstructlons-3l

ISZm[,I)

Increment m: then skip if zero.
CBPC: I nstructions-3)

JMP m [,I)

Jump to m. Program execution continues at

location m. CBPC: lnstructions-3l

APPENDIX

Ml\CHINE INSTRUCTIONS (coNT,)

JSM m [,I]

Jump to subroutine. The contents of the return

stack register (R) are incremented by one and

the contents of P stored in R,I. Program

execu~ion resumes at m. CBPC: lnstructions-3)

LDA m [,I]

Load A from m. CBPC: lnstructions-2)

LDB m [,I]

Load B from m. CBPC: Instruct I ons-2)

<mem. ref. inst.> <reg. 4-7> [.I]

MLY

MPY

MRX

MRY

MWA

In iii ate an I /O Bus Cyc I e. Memory reference

instruct ions 1 reading 1 from reg. cause input

1/0 Bus Cycles; those 'writing' ro reg. cause

output 1/0 Bus Cycles. In either case the

exchange is between A or B and tho interface

addressed by the PA reg i stcr (Per I phera I Address

Register - 11 a>. (IOC: lnstructions-14)

Mantissa left' shift of A~2 one time.

(EMC: lnstructions-17)

Binary Multiply Using Booth's Algorithm.

CE!.'C: lnstructions-19)

Mantisst1 right shift of ARI < Bo- 1 >-times.

CEMC: lnstructions-16)

Mantissa right shift of AR2 < Bo-J >-times.

C Er • ..:;: Instruct i :ms-17)

Mantissa 'tlord Add. < 8 > is taken as four BCD

digits, t1nd added, t1s D~ through 012. to AR2.

DC Is also added in ar. a 012. Tho result is

left in AH2. CEf·'.C: lnsl·ructions-18)

APPENDIX-14

t!RM

Normalize AR2. The mantissa olgits of AR2 are

shifted loft until D1 -F O.

CEMC: I nstrucl'i ons-17 l

PBC reg. 0-7 [,I/,DJ

Pl ace the right ha J f of reg. into tho st<ick

poi rited at by C. (IOC: lnstr•Jctions-12)

PBO reg. 0-7 [,I/,0]

PCM

Place the right half of reg. into tho sfock

pointed at by 0. (IOC: lnstructions-12)

Enable the .Pulse Count Mode.

C IOC: lnstru::tions-15)

PWC reg. 0-7 [,I/,D]

Place the orrtlro word of reg. into the stack

pointed at by C. (IOC: lnstructions-12)

P\'i'O reg. 0-7 [, I/, D]

PI aca ·the en t· ire word of reg. into the stack

pointed at by D. < IOC: lnstructions-12)

RA.R n

Rotate A right. A is rotated right n places,

with ~it 0 rotating into bit 15.

CBPC: lnstructions-5)

RBR n

Hotatc 8 right. B is rotate right n places,

with bit 0 rotating into bit· 15.

COPC: I nst rue!' Ions-5)

RET n [,P]

Raturn. A road R,I occurs. That produces the

address « P >) of the latest JSM that occurred.

Tho BPC then jumps to address< P > + n. The value

of n may range from -32 to 31, inclusive. At

the conclusion of the RET R is decremented by one.

The ordinary, everyd<iy, return is RET I • I f

a P is present, it "pops" tho interrupt system.

WPC: I nstruc I lons-3)

APPENDIX

W\CHINE INSTRUCTIONS (coNT.)

RIA * :!: n/m
Skip if A Is not zero, then increment A.

CBPC: I nstructions-7>

RIB * :!: n/m
Skip if B is not zero, then increment B.

(BPC: lnstructlons-7)

RLA * ± n/m [,S/,C]
Skip if the least significant bit of A is non­

zero. If either Sor C is present, bit 0 is

altered accordingly after the test.

CBPC: lnstructlons-9)

RLB * :!: n/m [.S/,C]
Skip if the least significant bit of B is non­

zero. If either Sor C Is present, bit 0 is

altered accordingly after the test.

CBPC: lnstructlons-9>

RZA 11 ± n/m

Skip if A not zero. CBPC: lnstructions-7)

RZB * :!: n/m
Skip if B not zero. CBPC: lnstructlons-'7>

SAL n

Shift A left. A Is shifted left n places with

all vacated bit positions cleared.

<BPC: lnstructions-5)

SAM * :!: n/m [,S/,C]

Skip if A minus. If either Sor C is present·,

bit 15 is altered accordingly after the test.

CBPC: lnstructlons-9l

SBL n
Shift B left. B is shifted left n places with

all vacated bit positions cleared.

CBPC: lnstructlons-5)

SB\! * :!: n/m [,S/,C)

Skip If B minus. If either Sor C is present,

bit 15 is altered accordingly after the test.

CBPC: lnstructlons-9)

SBP * :!: n/m [,S/,C]

Skip i f B pos It Ive, I f either S or C Is

present, bit 15 is altered accordingly after

the test. CBPC: lnstructions-9)

SBR n

Shift Bright. B Is shifted right n places with

all vacated bit positions cleared.

CBPC: lnstructions-5)

SOC * ± n/m

SDI

soo

Skip If decimal carry clear.

CBPC: Instructions-Bl

Set OMA Inwards. 16-bit ICX:: Instruction that

sets the direction of DMA transfers to be from

the peripheral to the memory.

C IOC: lnstructions-15)

Set DMA Outwards. 16-bit IOC instruction that

sets the direction of OMA transfers to be from

the merrory to the peripheral.

C I OC: Instruct I ons-15 l

SA? * ± n/m [,S/,C] SOS * :!: n/m

Skip if A positive. It either Sor C is present, Skip If decimal carry set.

bit 15 is altered accordingly after the test. CBPC: Instructions-Bl

CBPC: Instruct lons-9 l

SAR n

Shift A right. A is shifted right n places with

all vacated bit positions cleared.

CBPC: I nstruc·t lons-5>

APPENDIX-15

SEC * ± n/m ~,S/,C]

Skip if extend clear. If either Sor C is

present, E Is altered accordingly after the test.

CBPC: Instructions-IQ)

APPENDIX

Ml\CHINE INSTRUCTIONS (coNr.)

SES • ± n/m [,S/,C]

SFC

SFS

SHC

SHS

SIA

Si<ip if extend set. If either Sor C is

presor:i·, E is a I tared according I y il f t·er tho test.

<BPC: lnstruci'ions-10)

* t n/m

Skip if Flag I inc clear.

CBPC: Instructions-Bl

• t n/m

Skip if Flag I ine set.

<BPC: I nstructions-8)

• ! n/rn

Skip if Hil It I ine clear.

<BPC: lnstrudions-8)

• ! n/m

Skip if Halt I ine set.

CE3PC: I nstructions-8)

• ± n/m

Skip if A Is zero, then increment A.
(BPC: Instructions- 7)

SIB * ! n/m

Skip if B is zero, then i~crement 6.

<BPC: Instruct ions-7}

SLA • ! n/m [,S/,C]

Skip If the least significant bit of A is zero.

If either Sor C is present, bit 0 is altered

accordingly after the test.

(BPC: 1 nstr11ct i ons-8)

SLB • ± n/m [,S/,C]

SOS * ± n/m [,S/,C]

Skip if overflow set. If either Sor C is

present, the OV register is a I tered accordingly

after the test. CBPC: lnstructions-9)

SSC * ± n/m

Skip if Status line clear.

CBPC: Instructions-Bl

SSS * ± n/m

Skip if Status line set.

(BPC: Instructions-BS

STA m [,I]

Store the contents of A in m.

<BPC: lnstructions-2)

<stack inst.> <reg. 4-7> [,l/,D]

Initiate an 1/0 Bus Cycle. Place instructions

'read' from reg., ther1? fore they cause input I /0

Bus Cycles. Withdraw instructions 'write' into

reg., therefore they cause output 1/0 Bus Cycles.

In either case the exchange is between the

addressed stack location and the interface

addressed by PA. (IOC: Instruct ions-I 4)

STB m [.I]

Store the contents of B In m.

(BF'C: Instruct ions-3)

SZA * ± n/m

Skip if A zero. <BPC: lnstructions-6)

SZl3 * ± n/m

Skip if B zero. CBPC: lnstructions-7)

Skip if the least significant bit of Bis zero. TCA

If either Sor C is present, bit 0 is altered

accordingly after the test.

<BPC: Instruct i ons-9)

soc * ! n/m LS/ ,CJ

Skip if overflow clear. If either Sor C is

present, the OV register is altered accordingly

a Her the 1 est. <BPC: Instruct i ons-10 l

APPENDIX-16

TCB

Two's c0111plement A. The A register Is replaced

by i"i's one's <bii· by bi-I') complement, and then

incre~ented by one. CBPC: lnstructions-10)

Two's complcmer.t B. The B regis~er is replaced

by i1·s one's (bit by bit> complement, and then

i ncremonted tiy one. (BPC: Instruct i ens- I 0 l

APPENDIX

M!\CHINE INSTRUCTIONS (coNr.)

WBC reg. 0-7 [,I/,D]

Withdraw a byte from the stack pointed at by C,

and put It into the right half of reg.

Cl OC: Instruct ions-13)

WBD reg. 0-7 [,I/,D]
Withdraw a byte from the stack pointed at by 0,

and put It into the right half of reg.

(IOC: lnstructions-13)

WWC reg. 0-7 [,I/,D]
Withdraw an entire word from the stack pointed

at by C, and put it Into reg.

(IOC: I nstructions-13)

APPENDIX-17

WWD reg. 0-7 [,I/,D]
Withdraw an entire word from the stack pointed

at by 0, and put it into reg.

(IOC: Instruct ions-13)

XFR N

Transfer N words. This instruction transfers

the 1-16 CN) consecutive words beginning at

location < A > to those beginning at < B >,

(EMC: lnstructlons-16)

APPENDIX

INSTRUCTIONS BIT PATTERNS
GROUP: MEMORY REFERENCE (ASMA TYPE 16)

INST.

NAME 15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0

LOA D/I 0 0 0 0 B/C
* 10 BIT ADDRESS FIELD.

LOB D/I 0 0 0 1 B/C
* ADDRESSES 0-37 8 ARE REGISTERS.

CPA D/I 0 0 1 0 B/C
* FOR BIT 9=0, BITS 0-8 = POSITIVE ADDR.

CPB D/I 0 0 1 1 B/C
* FOR BIT 9=1, ADDRESS IS NEGATIVE.

ADA D/I 0 1 0 0 B/C
IGNORE BIT 9, COMPLEMENT BITS 0-8,

ADB D/I 0 1 0 1 B/C
THEN ADD ONE.

STA D/I 0 1 1 0 B/C
* BASE PAGE ADDRESS ENCODING IS ALWAYS

STB D/I 0 1 1 1 B/C
WITH RESPECT TO MEMORY LOCATION ZERO.

JSM D/I 1 0 0 0 B/C
* CURRENT PAGE ENCODING:

ISZ D/I 1 0 0 1 B/C
(ABSOLUTE) RELATIVE TO THE

AND D/I 1 0 1 0 B/C
MIDDLE OF THE PAGE (10008, 3000B,

DSZ D/I 1 0 1 1 B/C
ETC.)

IOR D/I 1 1 0 0 B/C

JMP D/I 1 1 0 1 B/C (RELATIVE) RELATIVE TO THE

CURRENT VALUE OF P, +511, -512.

D/I (DIRECT/INDIRECT) AND B/C (BASE PAGE/CURRENT PAGE) ARE CODED AS 0/1.

GROUP: SHIFT-ROTATE (ASMA TYPE 27)

INST.

NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AAR 1 1 1 1 0 0 0 1 0 0 0 0
* 4 BITS OF

ABR 1 1 1 1 1 0 0 1 0 0 0 0
SHIFT-

SAR 1 1 1 1 0 0 0 1 0 1 0 0
ROTATE

SBR 1 1 1 1 1 0 0 1 0 l 0 0
i FIELD.

SAL 1
I

1 1 1 0 0 0 1 1 0 0 0
* IN SOURCE

SBL 1 1 1 1 1 0 0 1 1 0 0 0
l::.N.:2_16.

RAR 1 1 1 1 0 0 0 1 1 1 0 0
* BINARY IN

RBR 1 1 1 1 1 0 0 1 1 1 0 0
THIS FIELD

IS N-1.

APPENDIX-18

APPENDIX

INSTRUCTIONS BIT PATTERNS (cONr.)

GROUP: SKIP <ASMA TYPE 25)

INST.

NAME 15 14 13 12 11 10 9

RZA

RZB

SZA

SZB

RIA

RIB

SIA

SIB

SFS

SFC

SSS

SSC

SDS

soc

SHS

SHC

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

l

1

1

1

1

1

l

1

1

1

1

l

1

1

l

l

l

1

1

l

1

l

1

l

1

l 1

l 1

l l

1

1

l

1

1

1

l

l

1

1

1

l

1

0

l

0

1

0

1

0

1

0

0

1

l

0

1 0

1 1

1 1

GROUP: RETURN (ASMA TYPE 42)

1

1

1

1

l

l

l

1

l

1

1

1

l

1

l

l

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

INST.

NAME 15 14 13 12 11 10 9

RET l l l l 0 0 0

8

0

0

l

l

0

0

l

1

0

l

0

l

0

l

0

1

8

0

7

0

0

0

0

0

0

0

0

l

1

l

l

l

l

l

l

7

l

P/P (DON'T POP/POP THE IOC) ENCODED AS 0/1.

APPENDIX-19

6

0

0

0

0

l

l

l

l

0

0

0

0

l

l

l

l

6

5

*

*

*

5

4 3 2 l

6 BIT SKIP FIELD,

+31, -32.

IF BIT 5=0, SKIP

TO P+#; #=BITS

0 THRU 4.

IF BIT 5=1, SKIP

TO P-#; #=l+ COMP

OF BITS 0-4.

4 3 2 l

P/P 6 BIT, 2'S COMPLEMENT

SKIP FIELD (ALLOWS -32

THRU +31).

0

0

APPENDIX

INSTRUCTIONS BIT PATTERNS CcoNr.)
GROUP: COMPLEMENT (ASMA TYPE 30)

INST.

NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

CMA l l l l 0 0 0 0 0 l l 0 0 0 0 0

CMB l l l l l 0 0 0 0 l l 0 0 0 0 0

TCA l l l 1 0 0 0 0 0 0 l 0 0 0 0 0

TCB l l l l l 0 0 0 0 0 1 0 0 0 0 0

GROUP: ALTER (ASMA TYPE 53)

INST.

NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

RLA 0 1 l l 0 l l l U/H C/S
* 6 BIT SKIP FIELD, +31,

RLB 0 l l l l 1 l 1 H/H C/S
-32.

SLA 0 1 l l 0 1 1 0 H/H C/S ~ * IF BIT 5=0, SKIP TO P+il:
SLB 0 l 1 l 1 1 1 0 H/H C/S

#=BITS 0 THRU 4.
SAP 1 1 1 l 0 1 0 0 H/H C/S

* IF BIT 5=1, SKIP TO P-1!,
SBP 1 1 1 l 1 l 0 0 H/H C/S

~=l+ COMP OF BITS 0-4.
SAM l l 1 l 0 1 0 1 H/H C/S

SBM 1 1 1 1 1 1 0 1 11/if C/S

soc l l 1 l 0 1 l 0 H/ii C/S

sos 1 1 1 1 0 1 1 1 n/if C/S

SEC l l 1 l 1 l l 0 H/H C/S

SES l 1 1 1 1 1 1 1 H/H C/S

H /ff (HOLD/DON'T HOLD) AND C/S (CLEAR/SET) ARE CODED AS 0/1.

HOWEVER: H/H rs SET BY THE ASSEMBLER ITSELF. IF NEITHER S NOR C IS PRESENT,

BOTH H/H AND C/S ARE MADE O'S. THE PRESENCE OF EITHER A C OR AN S PRODUCES H

(A l).

APPENDJX-20

APPENDIX

r INSTRUCTION BIT PATTERNS (coNT.)

('··

GROUP: EXECUTE (ASMA TYPE 41)

INST.

NAME 15 14 13 12 11 10 9 8

EXE D/I l l l Io 0 0 0

D/I (DIRECT/INDIRECT) ENCODED. AS

GROUP: 16-BIT IOC ONLY <ASMA TYPE 46)

INST.

NAME

SDO

SDI

DBL

CBL

DBU

CBU

15

0

0

0

0

0

0

14 13

l 1

1 1

l 1

1 1

l 1

l l

12 11 10 9

l 0 0 0

1 0 0 0

l 0 0 0

l 0 0 0

l 0 0 0

1 0 0 0

APPENDIX-21

3

l

l

1

l

l

1

7 6 5 4 3 2 1 0

0 0 0 5 BIT REGISTER

0/1. ADDRESS (0-37 8).

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 1 0 0 0

0 1 0 1 0 0 0 0

0 l 0 1 l 0 0 0

INST.

NAME

PWC

PBC

PWD

PBD

wwc

WBC

WWD

WBD

APPENDIX

INSTRUCTION BIT PATTERl~S (CONT I)

GROUP: STACK (ASMA TYPE 43)

15

0

0

0

0

0

0

0

0

14 13 12 11 10 9 8 7 6 5

1 l l 0 0 0 l I/D l 1

1 1 1 1 0 0 1 I/D l l

1 1 1 0 0 0 1 I/D l l

1 l l l 0 0 l I/D l l

l l 1 0 0 0 l I/D l l

1 l l l 0 0 1 I/D 1 l

1 l 1 0 0 0 l I/D l 1

1 l l l 0 0 1 I/D 1 l

1. I/D (INCREMENT/DECREMENT) IS ENCODED AS 0/1

2. THE ASSEMBLER DEFAULTS TO INCREMENT FOR PLACE

INSTRUCTIONS, AND TO DECREMENT FOR WITHDRAW

INSTRUCTIONS.

3. FOR 15-BIT/16-BIT BYTE INSTRUCTIONS, A l IN

BIT 15/0 OF THE POINTER REGISTER IMPLIES A

LEFT-HALF

GROUP: INTERRUPT (ASMA TYPE 30)

INST.

NAME

EIR

DIR

15 14

0 l

0 l

13 12 11

1 l 0

l 1 0

GROUP: OMA (ASMA TYPE 30)

INST.

NAME

OMA

PCM

DOR

15 14

0 l

0 1

0 1

13 12 11

l 1 0

l 1 0

l 1 0

10 9 8 7 6 5

0 0 l 0 0 0

0 0 l 0 0 0

10 9 8 7 6 5

0 0 1 0 0 1

0 0 l 0 0 1

0 0 l 0 0 l

APPENDIX-22

~ .,

4 3 2 l 0

0 0 * 3 BIT REGISTER

0 0 ADDRESS FIELD

0 1
(0-78).

0 l * PLACE INST'S

INC/DEC THE
1 0 STACK POINTER

l 0 BEFORE THE

l l OPERATION.

1 1 * WITHDRAW INST'S

INC/DEC THE

STACK POINTER

AFTERWARDS.

4 3 2 1 0

l 0 0 0 0

1 l 0 0 0

4 3 2 1 0

0 0 0 0 0

0 l 0 0 0

l 1 0 0 0

INST.

NAME

CLR

XFR

INST.

NAME

MRX

DRS

MLY

MRY

NRM

INST.

NAME

FXA

MWA

CMX

CMY

FMP

FDV

MPY

CDC

APPENDIX

INSTRUCTION BIT PATTERNS (coNT.)

GROUP: FOUR WORD OPERATION (ASMA TYPE 27)

15 14 13 12 11 10 9 8

0 1 1 1 0 0 1 1

0 1 1 1 0 0 1 1

GROUP: MANTISSA SHIFT (ASMA TYPE 30)

15 14 13 12 11 10 9 8

0 1 1 1 1 0 1 1

0 1 1 1 1 0 1 1

0 1 1 1 1 0 1 1

0 1 1 1 1 0 1 1

0 1 1 1 0 0 1 1

GROUP: ARITHMETIC (ASMA TYPE 30)

15 14 13 12 11 10 9 8

0 l l 1 0 0 1 0

0 1 1 l 0 0 l 0

0 1 l 1 0 0 l 0

0 l l l 0 0 1 0

0 l l l 1 0 l 0

0 l l l 1 0 1 0

0 l l 1 l 0 1 1

0 l 1 l 0 0 1 l

APPENDIX-23

7 6 5 4 3 2 1 0

1 0 0 0 * 4 BIT FIELD

0 0 0 0 # OF WORDS

* BINARY = N-1

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 1 1 0 0 0 0 1

0 1 0 0 0 0 0 0

0 l 0 0 0 0 0 0

7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 l l 0 0 0 0 0

0 0 l 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1

l 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0

)>
'1J
'1J

15/16 BIT BPC CONSOLIDATED CODING SHEET

MEMORY
REFERENCE

L D Ye
c p Ye
A DYe
ST%
JSM
I S Z
AND

15li4113]2J11]0 9}8}7}6 5}4 3J2I 1Jo
x:o 0 o:Ye% -IO·BIT ADDRESS FIELD

:o 0 I: I
:o I 0 -0-379 ARE REGISTERS

: 0 I I Ye -1F B1T 9=0, BITS o-e ARE
' 0 o:o
I 0 o: I
: 0 I :o
: 0 I: I

: I o:o

POSll JVE ADDRESS

-IF BIT 9=1, BITS o-e ARE
NEGATIVE ADDRESS;
COMPLEMENT BITS 0-8 THEN
ADD I

x:
o:
o:
o:

101%
1 o o '=o~:-=o-o=--=o:-::--=0~1=RE=G=1sT=E=R =AD=D.~I
I Ye o:ooo
I ' I 0 : 0 0 I -6-BIT SKIP FIELD

0 I I 0 0 •31,-32

~ SKIP

DSZ
IOR
JMP
EXE
RZX
R I Ye
s z Ye
S I Ye
SF Yc
S DYc
SS%
SH%
SLX
R L ~~
SYe P
S YeM
S 0%
SE Ys

O;
o:
o:
o:
o:

%
0
0

0 I 0 I -IF BIT 5•0, SKIP
0 1

1

5 /c I 0 /C TO (P•N), N• 0
x
I

r-..:i
~

ALTER

COMPLE­
MENT

SHIFT­
ROTATE

{
TC Ye
CM.%
RET

{

AYeR
S%R
S .%L
R.%R

0
o;

I:
I:
I:
I.
I :

, I
I

Ye

:1

0 : I I I BITS 0-4
o: I 0
0 Yc I I -IF BIT 5•1, SKIP
I 0 %% TO (P-N), N=I+

0 :o BITS 0-4
I I 11 COMPLEMENT OF

:Ye 0 1 I
'O I;%'
: I I %'%%'-------'I
:Ye 0 0 ,O 0 0: I 0 0, 0 0 0
:.% 0 0 : 0 0 I : I 0 0: 0 0 0
: 0 0 0 0 I ~I ts COMP. SKIP FIELD!
:Ye 0 0 ' I 0 0 0 0 4-BIT SHIFT
'I 0 0 I 0 I 0 0 FIELD,N=i-16
: 0 0 : I I 0 : 0 0 IN SOURCE,
:Ye 0 0: I I I :o 0 BINARY=(N-1)

-NOTES-
I X ALWAYS REPRESENTS 9'r 6. Yc DENOTES "SET" OR "CLEAR" IN AN INSTRUC-
2 ~-DENOTES THE A ORB REGISTER TION MNEMONIC
3 ~:DENOTES DIRECT OR INDIRECT 7 Y;; DENOTES HOLD OR CHANGE THE TESTED
4 !I{ DENOTES BASE PAGE OR CURRENT PAGE BIT
5 !Y,. DENOTES DON'T POP OR POP THE IOC'S 8. % DENOTES CLEAR OR SET (,C OR ,S) THE

PA STACK TESTED BIT

_)

15/16 BIT IOC CONSOLIDATED CODING SHEET
1514131211109 8 7 6 5 4 3 2 I 0

OMA* {SD 0
SDI

INTERRUPT { E I R
D IR

OMA

STACK*

STACK

I ,';ALWAYS ENCODED AS 0
,

2 '~ DENOTES WORD/BYTE

{

D MA
PCM
DOR

{

D SL
CSL
DSU
CSU

{ P%%
W%%

O: I
o: I
o: I
01
O, I
o: I
0' I
01
01
01
01
O: I
O: I

1.0 0 o:
I :o 0 0,
I :o 0 O,
1000
1000
I :OOO,
I :o oo:
I 'O 0 O'.
1000
I 0 0 O,
I :O 00:
I i%00,
I 'YeO o:

-NOTES-

0 o:o 0 o:o 0 0
0 0 0 0 I .'O 0 0
0 0 0 I o:o 0 0
00011000
00100000
00,101;000
0 o: I I I :o 0 0
0 I :o 0 o:o 0 0
0 I 'O 0 I 0 0 0
0 I ,0 I o.o 0 0
0 I :o I I :o 0 0
Yo I : I 0 Yo 3-BIT
Yo I ' I I Yo REG ADO

5 PLACE INST'S INC/DEC THE STACK POINTER BEFORE THE
OPERATION

:J> .,, .,,
3 /p DENOTES INCREMENT /DECREMENT
4 'r;DENOTES THE CORD REGISTERS

6 WITHDRAW INST'S INC/DEC THE STACK POINTER AFTERWARDS m
* 16 BIT VERSION ONLY-ALL OTHERS ARE 15/16 BIT

_)

15/16 BIT EMC CONSOLIDATED CODING SHEET
15141312 11 10 9 8 7 6 5 4 3 2 I 0

FOUR WORD { C L R XFR

MANTISSA [~ ~ ~
SHIFT MR y

NRM
FXA
MWA
CMX

ARITHMETIC C M y
FMP
FDV
MPY
CDC

O: I '0 0 I I I 0 0 0 N=110FWORO

0 I 0 0 I _I 0 0 0 0 BfW!Y•(N-1)
o: I I 0 I I 0 0 0 0 o:o 0 0
O: I : I 0 I: I 0 o: I 0 o:o 0 I
o: I : I 0 I: I 0 I' I 0 0'.0 0 I
Q: I : I 0 I I 0 I 0 0 0 0 0 0
O: I 0 0 I LO I 0 0 o.o 0 0
0: I : 0 0 I Q_ I 0 I 0 0 0 I 0 0 0
0:1 :oo 1:000:000:000
O: 1·~~:0 0 1_:0-0 I I 0 o:o 0 0
O: I 0 0 I 0 0 0 I 0 o:o 0 0
0:1 :1 0 l _ _Q_OOOOOOOO
0: I I ; I 0 J :o 0 0: I O _ 0: 0 0 I
Q:J I : I Q _I_: I_ I O,Q 0 I: I I I
o: I I :o 0 I; I I I :o 0 o:o 0 O

z
c -><

APPENDIX

HP CHARACTER SET

~ D D 0 0 I I I I

~ 0 0 I I 0 0 I '
b5 0 ' 0 I D I 0 '

114

l r b2 l \•
0 0 0 0 NULL OCo ti 0 @ p - - ·:f-0 0 0 I SOM oc, ! I A Q -- -
0 D ' 0 EOA DC2 .. z 8 R __ u_
D D I I EOM oc, ... 3 c s N

1ffo~1 - -· --. -D I D 0 EOT $ 4 0 T
--5 -!o -U-

I '0 I WRU ERR O/o 5 E u N s
0 ' I 0 RU SYNC a 6 F v -.- --. -

-S- --G -
0 I I I BELL LEM CAPOS! 7 G w s N
I 0 0 0 FEo So (8 H x -.- ""E -

~·
-G-w I 0 0 I s, } 9 t y
-~-LF! S2 -

I 0 I 0 : .J z
Ss t

-o-
I 0 I I Vue + K

I I 0 0 FF S4 <a>io ... < L \ I ACK -I ' 0 I CR 1 s, - = M J ..JlL
' ' I 0 so s, > N t ESC

SI j - - i-on-I I I I S1 I ? 0 -
Standard 7-bit set code positional ordiu and notation ore shown below with b, the high-order
ond b, the low-order, bit position.

b7
I EXAMPLE: The code for "R" is:

LEGEND

NULL Null/Idle DC,-DCs
SOM Start of message DC.(Stop)
EOA End of address ERR
ECM End of message SYNC
EOT End of transmission LEM
WRU "Who ore you?" So-Sr
RU "Are you ••• ?"

Ii
BELL Audible signal
FEo Format effector <
HT Horizontal tabulation >
SK Skip (punched cord) +
LF line feed +-
Vue Vertical tabulation \

FF Form feed ACK

CR Carriage return ©
so Shift out ESC
SI Shift in DEL

DCo Device control reserved for
data link escape

APPENDIX-25

b,
I

Device Control
Device control (stop)
Error
Synchronous idle
logical end of media
Separator (information)
Word separator (space, normally

non-printing)
Less than
Greater than
Up arrow (Exponentiation)
Left or row (lmpl ies/Replaced by)
Reverse slant
Acknowledge
Unassigned control
Escape
Delete/Idle

APPENDIX

CHARACTER coor:s

I.sen FiVil Ch;u<1CIN ~cnncl Char.1ctcr ASCII Frr~t Ch;1r<1ct~'f
! S?..:011.I Ch.11,1c.u

I Ch.n .. 1clcr Oct,11 Eq1:ov:llt•nt Oi;tJI Eq111val>!rll Ch.-.1 actt·r Oi;t:il Eci•11•:ihmt Oct•~' Equl\·;;ll'•ol

···-1 ·------··---
A 010.:00 000101 : 035000 001)0/2

3 0-11COO Ol101C2 ; 035400 000013
c 041400 000103 < 036000 00007'1
D ().1'.'000 Ci00104 = 03640G 000')75
E 04'.'400 Oll0105 > 037000 OC0076
F 043000 000106 ? 03"i400 000077
G 013400 Oll0107 @ (}110000 000100
H O-l4000 000110 [055400 0001:<3
I 044400 000111 ' 056000 000134
J 045000 000112 I 05G400 000135
K 045400 000113 t 057000 000136
L 045000 000114 - 057400 000137
M 046400 000115 ACK 036000 000174
N 047000 0001i6 Q) 036400 000175
0 047400 000117 ESC 037000 000176
p 050000 000120 DEL 037400 000177
a 050400 000121 NULL 000000 000000
R 051000 0001 :n SUM 000400 000001
s 051400 000123 EOA 001000 000002
T 052000 000124 EOl'v' 001400 000003
u 052400 000125 EOT 002000 00'.JOM
v 053000 000126 WRU 002400 OCOOJ5
w 053400 000127 RU 003000 000006
x 054000 0)0130 BELL 003400 000007
y 054·100 000131 FE 0 004000 000010
z O:iGOOO 000132 HT!SK 004uQIJ 000011

LF 0050.)(1 ooc~;:

0 030000 000060 VT~'\B 005400 000013
1 030400 000061 FF 006\JOO 000014
2 031000 Ou0062 CR 006400 000015
3 031400 000063 so 007000 000016
4 032000 000064 SI 007400 000017
5 032400 000065 DC0 010000 000020
6 033000 000066 DC1 010400 000071
7 033400 C00067 DC2 011000 000022
8 034000 000070 DC3 011400 000023
9 034400 000071 DC4 012000 000024

ERR 012400 000025
spact! 020000 000040 S'INC 013000 0000:!6

! 020400 000041 LEM 013400 000027 .. 021000 0000'12 So 014000 000030
j; 021400 000043 S1 014400 000031
s 022000 0000'14 52 015000 00003?
% 022400 0000,;5 S3 015400 000033
& 023000 000046 s., 016000 000034

023400 OGC0-17 55 016400 000035

I 024000 000050 " VG 017000 000036

I 024400 000051 S7 017400 000037 . 025000 000052
+ 025400 000053 . 026000 000054 First Character Second Character

- 026'100 000055
027000 000056

·~~-~ .)..__-~~--
(y ' I 027400 000057

J ~~fuH.,l 11 i 1 •i•la! 1!o;ls!4!3l2!1T~
APPENDIX-26

APPENDIX

BPC INSTRUCTION EXEClffION TIMES (IN CLOCK-TIMES)

INSTRUCT ION

LDA, LDB
ADA, ADB
AND, IOR

CPA, CPB

STA, STB

ISZ, DSZ

JMP

JSM

EXE

RET

After-Skip Group

Shift-Rotate Group

CMA, CMB
TCA, TCB

~/here:

TIME FORMULA

RCI + 2) + I

RCI + 2) + 4

RCI + I) + w +

RCI + 2) + w +
R(I + I) + 2

R(I + I) + w +
RCI + I) + 2

2R + 4

R + 8

R + 3 + s
R + 3

5

R = read-memory cycle time, expressed in BPC clock-times (must be an
integer > 4) .

W = write-menory cycle time, expressed in BPC clock-times (must be an
integer > 4).

I =number of levels of indirect addressing (normally= 0).
S = number of positions to be shifted (I < S < 16).

Note:

The read and write memory cycle times for a register located within
the BPC, IOC, or EMC are 5 clock-times, unless such a reference is not
a genuine register access; e.g., an 1/0 operation. In the latter case,
it is simply however long it fakes. <The 4 clock-time minimum is sti 11
effective however.)

APPENDIX-27

APPENDIX

EMC INSTRUCTION EXECUTION TIMES (IN CLOCK-TIMES)

INSTRUCTION TIME FORMULA

CLR R + NW + 10

XFR R(N + I) + NW + 15
MRX R + 20

4R + 3W + 48 + 20

DRS 4R + 3~1 + 14

MLY R+ 26

MRY R + 20
R + 48 +27

NRM R + Z + 17
R + 63

FXA 4R + 16

MWA R + 22

CMX 4R + 3\'I + 17
CMY R + 17
FMP R + 28

4R + 138 + 18

FDV 4R + 138 + 13

MPY R + 2T + 59

CDC R + 5

~/here:

CONDITION

If N = 0
If N > O

If N = 0

If N > 0

If 0 < N < 12
If N > 12

If B = O
If B > 0

R = read-memory cycle time, expressed in 8PC clock-times (must be an
integer _::: 4) •

W = write-memory cycle time, expressed in BPC clock-times (must be an
integer _::: 4) .

N = bits 0-3 of the instruction word. CO~ 16)
Z =number of leading zeros in the mantissa of AR2.
8 = bits of 0-3 of the B register contents.
T = number of 0-1 transitions plus the number of 1-0 transitions, in

the A register, counting from an imaginary 0 just to the "right"
of the LS8 of A, to the MSB of A.

Note:

The read and write memory cycle times for register located within the
system are the same as for the BPC.

APPENDIX-28

APPENDIX

IOC EXECUTION TIMES (IN CLOCK-TIMES)

REGISTER

Ri+ - R1
Rs - R1 s

INSTRUCTION TIMES

EIR, DIR, PCM, DMA,
DDR, SDO, SDI, DBL,
CBL, DBU, CBU

P\'I*, PB*, WB*, ~M*

INTERRUPT

Lockout (LI)

Execution

OMA

Loe kout (LD)

Read

Write

PCT

Where:

CLOCK-TI MES

7
5

TIME FORMULA

RM + 6

LI Max = E + 2

LIMin = 2

RR + RM(I + I) + WM + 12

LOMin = 2

LDMax = 10

LD + 3 + n(~ + 4)

LD + 3 + n(WM + 3)

LD + 6n + 3

read-memory cycle time in BPC clock-times. ~..:::. 4

read-register cycle time in BPC clock-times.

write-memory cycle time in BPC clock-times. w > 4 M-
execution time of longest possible instruction.

n = number of DMA words transferred during one DMA Request.

I = levels of indirect addressing excluding the indirect in RB.

APPENDIX-29

APPENDIX

M=MULTIPLICAND

X ·· ·O 0 1 1 1 0 1 O·· · (MULTIPLIER)
!""- ~ U")~ MN r-1
+ + + + + + +
·r-1 ·rt ·r-1 ·r-1 ·r-1 ·r-1 ·r-1 ·r-1

..Q ..Q ..Q .a ..Q .a ..Q ..Q

n-1

PRODUCT=~ bi2iM WHERE n=NUMBER OF BITS IN THE MULTIPLIER

i=O

NOTICE THAT ONE ADDITION
IS REQUIRED FOR EVERY
ONE IN THE MULTIPLIER.

SUCH MULTIPLICATION ALSO
REQUIRES EXTERNAL
INSPECTION OF SIGNS
AND SUBSEQUENT
COMPLIMENTING TO
ALLOW MULTIPLICATION
OF NUMBERS WITH
DIFFERING SIGNS.

+

M

0

0

0

0

PRODUCT

0

M

0

M

M

0

0

0

0

I
1~

The Principle Of 11 Standard 11 Binary Multiplication.

APPENDIX-30

I

l
ONE-BIT

SHIFT

DECOMPOSI: THE MULTIPLIER INTO A SUM
or NUMBER COUNTING EITllER ALL ZEROS
OR SINGLE SERIES OF ADJACENT ONES

~-----A:..:?:.:]l):::._T:;l::;IE:::;N DISTRIDUTE TllE HUl,TlPLICATION. •

REPLACE EACH NUMBER HAVING ONE OR
HORE ONES IN IT DY ANOTHER NUMBER
WITH A SINGLE ONE AND A SUBTRACTION.

HuHULTIPLICAND '------H ____ ..JI x 0 0 0 0 0 0 0 0 I M Ix o o o o o o o o

X · · ·0 0 1 1 1 0 1 O· · •

~ MULTIPLIER>O

(SEE NOTES 3 & 4
CONCERNING THE SIGNS
OF TllE FACTORS AND
THEIR PRODUCT) +

H Ix

Ix

0 0 0 0 0 0 1 0 H

© ©@
0 0 1 1 0 0 0 M

Ix 0 0 0 0 0 1

©_..11
lxo10000 -©@®® © @Y

@

now THE MULTIPLIER IS USED AS IT IS SCANNED,

lllGHT-TO-LEFT, ONE BIT AT A TIME:

A ZERO-TO-ONE TRANSITION REQUIRES AN IM.'iEDIATE
SUBTRACTION, FOLLOWED BY A SHIFT.

GD SUBSEQUENT ONE-TO-ONE TRANSITIONS THEN REQUIRE
ONLY WHAT WOULD NORMALLY DE REQUIRED FOR
ZERO-TO-ZERO TRA.~SITIONS, i.e., ONE SHIFT EACH.

0

0

(£}@ 'IJlESE ONE-TO-ZERO TRANSITIONS CORRESPOND TO ONES
l!J AND @, RESPECTIVELY, AND EACH REQUIRES AN
ADDITION,

@ A ZERO-TO-ZERO TRANSITION REQUIRES ONLY A SHIFT.

SUCCESSIVE ADDITIONS AND SUBTRACTIONS or INCREASING POWERS-OF-TWO
TIMES H ARE ACHIEVED BY SHIFTING THE JICCUHOLAT!ON TO THE RIGHT. ~

THIS IS~~ .
PRIOR TO ANY ---::0
ADDITIONS OR
SUBTRl,CTIO!IS

16 BITS

I PRODUCT

~
IHl\GlNl\RY ZEROS, CORRECT

- - - - - 1 FOR DOTll ADDITION AND
~--M_u_LT_Il-'L_I_c_A_N_D __ _,_ - - - - J SUDTllACTION.

SINCE NO OTHER USE IS MADE OF THE
MULTIPLIER, IT CAN DE RIGHT-SHIFTED
INTO A BIT TRANSITION MECHANISM,
11.'lD THE PORTION Al.RF.JIOY USED
THROWN AWAY.

--3l1 16 BITS, ~
EVENTUALLY

0 -I
0 -I

r ITHE PRINCIPLE USED HERE
\(/ IS THAT 1111~10000-1)

M Ix 1 0

M Ix 1 0 0

!:!Q!!ill:

THE NUMBER OF
SHIFTS ALREAl>Y

}

PERFORMED PRIOR
TO THE TIME OF
TUE SUBTRACTION
TAKE CARE OF

0 MULTIPLYING M
DY THESE POWERS
OF TWO.

l. FOR PURPOSES OF DETERMINING A TRANSITION
ASSOCIATED WITH THE RIGHT-MOST BIT OF
THE MULTIPLIER, A ZERO IS ASSUMED TO LIE
TO THE RIGHT OF THAT BIT.

2. NOTICE THAT THERE CANtlOT BE A ONE-TO-ZERO
TRANSITION WITHOUT PRECEEDING ZERO-TO-ONE
TRANSITION. THUS, A SUBTRACTION PRECEEDS
EACH ADDITION.

3, ASSUMING THE SIGN OF THE MULTIPLIER IS
POSITIVE, THE SIGN or THE PRODUCT IS THE
SAME AS THE SIGN Of' THE MULTIPLICAND.
BUT THIS IS GUARANTEED DY THE ALGORITHM
BECAUSE THE PRODUCT IS FOR.MEO SOLELY
TllROUGll OPERATIONS EXACTLY l::QUIVALENT TO
ADDITIONS, AND BY ARITllH£TIC SHIFTS.
NEITHER OF THOSE CAN CREATE A RESULT
HAVING A SIGN OPPOSITE THAT OF THE
MULTIPLICAND.

4. MULTIPLICATION BY A ?lEGATIVE MULTIPLIER
IS CONSIDERED IN ANOTHER DRAWING.

S. MULTIPLICATION WITH A MULTIPLICAND OF
ZERO WORKS BECAUSE, NO MATTER HOW IT IS
DONE, ZERO, ADDED TO OR SUBTRACTED FROM
ITSELF, IS STILL ZERO,

6. MULTIPLICATION DY A MULTIPLIER OF ZERO
WORKS BECAUSE THEN THERE ARE NEVER ANY
TRANSITIONS TO CAUSE ANY ADDITIONS OR
SUBTRACTIONS. SINCE THE PARTIAL PRODUCT
STARTS OUT ZERO, IT STAYS ZERO.

Operation On Booth's Algorithm When The Multiplier
Is Positive, Or When One Of The Factors Is Zero.

J> .,,
-a m
z
c -><

APPENDIX

l. IN THE EVENT TllAT THE MULTIPLIER IS NEGATIVE, THE SIGll OF THE PRODUCT
IS OPPOSITE THE SIGN OF MULTIPLICT.!ID. WE SWILL DIVIDE TUE POSSIBLE
INSTA.~CES OF MULTIPLYING BY A NEGATIVE MULTIPLIER INTO THREE CATEGORIES
AND SHOW TllAT PROPER RESULTS ARE OBTAINED rn EACH CASE.

2. ~ PRODUCTa-1 • M

LET K;MULTIPLICAND
LET KULTIPLIER;-l;llllllllllllllll

IE--- 16 BITS~

THIS CASE WORRS BECAUSE THERE IS AN IMMEDIATE ZERO-TO-ONE TRANSITION,
CAUSING A SUBTRACTION FROM ZERO (WHICH GIVES TUE PARTIAL PRODUCT A
SIGN OPPOSITE TllAT OF THE Mtll.Tll'!.ICi\!lll).. BUT swc~: THE REST OF THE
MULTIPLIER IS AI,L ONES, ONLY ARITHMETIC SHIFTS FOLLOW TllIS SUBTRACTION.

THE COMPLEMENTED MULTIPLICAND IS SHIFTED TO FAR RIGHT OF THE 32-DIT
ANSWER, THUS ITS MAGNITUDE (ABSOLUTE VALUE) nEMAINS UNCHANGED, /\ND
SINCE THE SHIFTS ARE ARITHMETIC SHIFTS, TUE SIGN IS PRESERVED.

3. ~ PRODUCTa-2p• H

LET ff;MULTIPLICAND P ZEROS

LET MULTIPLIERa-2pallll00 • • · 0
jE-16 BITS~

Iii THIS CASE THERE ARE P LEADIHG ZERO-TO-ZERO TRANSITIONS, EACll OF
WHICH SHIFTS A PARTIAL PRODUCT WHICH IS ZERO, AS NOTHING HAS BEEll
ACCUMULATED YET. SO THOSE SHIFTS HAVE ABSOLUTELY NO EFFECT.

TUE SINGLE ZERO-TO-O!lt: TRAUSITION CAUSES A SUBTRACTION FROM ZERO,
WHICH ESTABLISHES THE SIGN Of' THE PRODUCT AS OPPOSITE THAT OF TllE
:-IULTIPLICA!;o.. Tiii: ll~:M;. rn 1:;G o:a:s 1:; THE MULTI !'LIER c;.usE 16-P ARITl!m:TIC
SHIFTS, WHICH PRESERVE THE SIGN. BUT THESE SHIFTS FALL P SHIFTS
SHORT OF FULLY SHIFTING THE COMPLEMENTED MULTIPLICAND TO TUE RIGHT
IN THE 32-BIT ANSWER SPACE. THIS IS AN EFFECTIVE LEFT-SllIFT OF
P PLACES IN THAT 32-BIT SPACE. HF.NCE THE PRODUCT IS THE COMPLEMENT
OF THE MULTIPLICAND, MULTIPLIED DY 2P.

4. CASE III PRODUCTa-Y•H

LET H;HULTIPLICAND
LET -Y REPRESENT /\ NEGATIVE HUMBER DIFFERENT THAN -1 OR TllE NEGATIVE
OF A POWER OF 2:

-Y/-1

-Yf-2K

THEil -Y CAN DE DECOMPOSED IHTO TllE SUH OF SOME X>O AND -2p FOR SOME P:

-Y;lllOlOllO· ·· lll000000•••;-2p
+ OlOllO···a X

111010110• ••c-Y

AS THE MULTIPLIER IS SCAllNED, X•M IS FORMED IN THE FASHION FOR
POSITIVE MULTIPLIERS. THEN TllE PRODUCT FOR -2P•M IS ACCUMULATED
TO IT. TUE PROCEDURE OF TUE Al.GORITllH IS SUCH .THAT THE. FORMING OF
X•M IS INDEPENDENT OF, AND DOES NOT INTERFERE WITH, THE SUBSEQUENT
FORMATION OF -2P•M. IT IS, SO TO SPEAK, AS IF THE FORMATION OF
-2P•K PICKS UP WHERE FORMING X•M LEAVES OFF. THE ONLY DIFFERENCE
IS THAT IN THE FORMATION OF -2P•M THE MULTIPLICAND IS NOT SUBTRACTED
FROM ZERO, nur FROM X·M. THE SIGN OF TUE RESULT OF THAT SUBTRACTION
WILL BE OPPOSITE THE SIGU OF X•M, SINCE 2P>x. SINCE X•M HAS THE
SIGN OF THE MULTIPLICAND, THIS MEANS THE FINAL PRODUCT HAS THE SIGN
OPPOSITE TllAT OF TllE MULTIPLICAND, WllICll IS CORRECT.

'rlOT T:lUI: Ill 16-lllT COMl'I,f::•1f;NT AllITllllETIC IF TllE
!'lUL":'IPLICMlD IS l 000 000 000 000 000 (· 32768).
':'Ill:. ARGORl'rHM l"i1!1.S WITIL TllAT !-IUL':'IPLlCAND !"OR
;111s Rl:Aso::. SF.I·: Tiii: nuc; lll:SCRIPTlON AT Tl!E END
or Tll Is s1:cr rnii.

Operation Of Booth's Algorithm When
The Multiplier Is Negative.

APPENDIX-32

~ .,,
rn z
0 -x
I

v.i
v.i

:a

MPY DISABLES THE ARITHMETIC SHIFT OF
RIGHT-SHIFT OF Xl ~ t------7 X2 L X3 DURING MPY

{USER'S PROGRAM VALUE "'ii.... X2
OF Y2 SAVEil llt:RE) 7f\7 (ACCUMULATE:> PARTIAL PRODUCT)

TO ADDER/
COMPLEMENTER

CONTROL (+) X2+Y2~X2

OR <-l x2+Y2~x2

ADD/SUB
LATCH Y2

O~l TRANSITION SETS LATCH a l (SUBTRACT) ==l
l~O TRANSITION SETS LATCH ; 0 {ADD)---,--!

(ASSUMING S/ASO ~ l) EE'---------

X3
(REMAINZ::G MULTIPLIER)

QUALIFIER TO THE FLOWCHART
IN CONTROL OF SEQUENCE.

HIGH - ACCUMULATE AS PER
ADD/SUB LATCH THEN SHIFT.

LOW a SHIFT ONLY.

X3(0)

(COPY OF MULTIPLICAND)

~ THIS "BOUNDARY" MOVES
RIGHT ONE BIT EACH

HOLDS THE PREVIOUS BIT SHIFTED
OUT SO THAT A COMPARISON WITH
THE NEXT BIT RF.VF.ALS THE TYPE
OF TRANSITION.

L INITIALLY A ZERO SHIFT. WAS ORIGINALLY
AT FAR LEFT.

LEAST-SIGNIFICANT BITS OF r THE ACCUMULATING PRODUCT

~1 X3 .S
1---? THIS "BOUNDARY" MOVES RIGHT

I ONE BIT EACH SHIFT. WAS

I
I
I
I
I r------,

--..f(IMAGINARY ZEROSlf L ______ J

ORIGINALLY AT FAR LEFT.

l ,.~, .,.,.,. '""''" "" """""ro " TllE f!ULTIPLICAND TO THE LEFT" TO GIVE
IT 2 TIMES ITS VALUE. IN FACT, TllE
ACCUMULATED PARTIAL PRODUCT IS SHIFTED
RIGllT, AND ONE IMAGINARY ZERO APPENDS
ITSELF TO Y2 FOR EACH SUCH SllIFT. IT
IS MOST FORTUNATE THAT, REGARDLESS or
WHETHER Y2 OR Yi IS BEING ADDED, THE
ZEROS JIRE CORRECT. TllJIT IS, RIGHT-
MOST ZEROS, IN FACT, DO NOT CHANGE WHEN
A TWO'S COMPLEMENT NUMBER IS COMPLEMENTED.

Block Diagram Of The Hardware Controlled By The
Flow Chart Which Does The Booth's Multiply.

> .,, .,,
m
z
c -><

?b
"'O m z
0

x
I

.i:-

J

CASE I

l. Ll:T: B 000 COO 000 000 000 (Ml:L71PLIC/,::D• • 32768)

A • 0 000 000 000 000 001 <Ml:LTIPLIER:l!

i. or !l~LT?Pt.IER ':"R,,;~iSITim;s:
o 000 OOO OO~ OOO OOl : o<...S--FOR I:.ITlA:O COMPARISm.; PURPOSES

~ t ~ZERO-TO-ONE t 1 O:lE-TO-ZERO

14 ZERO-•O-ZERO TRANSITIONS

3. Zt;RO-TO-OSt TR,,.,::SlTIO?:; SUBTRJ',CT a 1·ROM ;\CCt:~:uLJ,TIO~ '1.e. ~ 2'S COM?LE."'!C:.11'

a M:U M>O IT ~ Z£RO-ioiHICH IS THE: naTI,'",L V,\LCF. or THE ; ... ccuMctJ,TIO?:J. ":'HF.N

Slllf"T ACCCMCL;...';'IO~; RIGH':' O?:CE.

CO!'.PLL'IE!:T { •

0 111 111 Ill 111 111 ~ l ~ s CO~PL£.~£NT or iJ

ADD ONE

000 000 000 000 000<:-2'5 COMPL£.~E~;T Of' B:

llOll I . 0 ~:OT£ THAT THl:RE IS ~O CUMt:CJ;-
2' S COMPLE:~E~T OF' ·32i68 IS • 32768

I 000 000 000 000 000

SUliT ~f1:oo 000 000 000 000 --- --- --- ---

4. om:-TO-ZF-llO TMNSl'OION: '100 B TO llCCIJMUU.TlON, THEN SHIFT.

TlllS NLVl:Rw
llllPJ>!:NS{ l lOO 000 000 000 000 --- --- --- --- ---

ADO + I 000 000 000 000 000

l 0 JOO 000 000 000 000

SHJ!'T ~ £-ro1c 000 000 000 000 0--

5. llOW TllERF. r.1u: 14 ZERO-":'O-ZERO TMNSITIOllS, EACH r.CCOMPAllll:D DY A SHIFT.

l\l'TER 14

SUirTS

~32-BIT RESULT~

0 000 000 000 000 000 : l 000 000 000 000 000
I •

CASE II

l. II • 0 000 000 000 000 00 ! (!!Ul.Tll'l.IC;,:m• 11

.. l 000 000 000 000 000 (!!IJl.TlrlER•. nu.a I

2.

l. f'lRST' Tm;~t 1\Mt; l ~ ZtitO-TO-Ztf.tO ':"JV,::s1-:-1o:~s. c;,c:11 ,·,cc.·0~1·,-.:;u::> UY ;, SJl:f'7 -
Ul:T Tiit M.'.'Ct:MULi,Ttm: IS Zl:Ro ":'O Dl:GI~: AI":'H, ,·,,~m so I':' ru:?J.,,\I~;s zr.thl.

;,~;.~~-:-! ~ 1 ~:!oo ooo ooo ooo ooo : o ooo ooo ooo ooo oo-

CO!'.rl.1~'1F.~T { •

111 111 Ill 111 11 0-E- ! • s CO!-ll'l.EMl:~;T or ll

! ; .. oo 0::1:
I !I Ill ! II Ill I l !(-l 'S COV.l'l.EMl:~;7 or n

1 ·
000 000 000 000

I
000 000 000 oo-1\DD 0 000 I 000

I

I 111 111 111 111 1 ll I 0 000 000 000 000 oo-
' s-n!I I

SlllfT Ill l 11 II! 111 ' I 000 000 000 000 000

'--..s-.. J2-:llT 1<1:su1.T----"

5. Tllf; ~ESULT l\llOV& IS Tiii; :lLGATIVI: 01" THI: J<t.S~l.1" I:l TUI: O"l"/U:ll l'M•t:.

MULTIPLICl\':'!011 WITll • 32768 IS llOT COllMUTATIVI:. I'S O!'

o ooo ooo ooo ocio ooo o 111 111 111 111 111.v.'m:s~~~v.~~;i:~;~;~i: 11

,•\t>u o~n;

0 000 000 000 000 000 000 000 000 000 OOO<i-2 'S CO.V.l'J.!.m;,,·:· "I'

Rl:SUL':' H~ t'l•SL t l l .-:

SJ\M1: ;\s n1:sc:::- , •
CASI: I

Bug In MPV

l>
"'U
"'U
m
z
c -><

APPENDIX

CHIP DESCRIPTION VERSION
15-bi t 16-bit

BPC - EXE of, or instruction fetch from, I

an addressable register in the BPC
fails to give SMC

IOC ·- DOR not reliable I

- IOC re 1 eases INT at wrong time /
l

to allow single level indirect
for interrupt vector

IOC doesn't allow IOC machine- I I
- l' l/

instructions to be fetched from
its own registers

- Glitch on BYTT I l

- Pulse Count Mode unuseable due to /

' ---
"timing difficulties"

EMC - Multiplication with -32768 is I I

not commutative

··· CMX not useable with OMA I

ALL - POP synchronizer is unreliable? --- I

Processor Bug List

Also:

Curren·tly, during a OMA write-into-riemory operation, the IOC gives Buffer
Enable <BE) a half-state too soon. This (wrongfully) c.il lows both the peripheral
and the IOC fo drive the IDA Bus for a shod time. The problem is shown in IOC
figure 24-17, note I, in the How They Do Dat Manual. The statement there that
this causes no problems is false. It goofs up the AEC (Address Extension Chip)
if the relative speeds of the various chips in the system is just right. Accord­
ingly, at this time (June 1 78) some sort of fix to the IOC is being contemplated.

APPENDIX-35

	Binder01.pdf
	2017_08_26_20_27_21.pdf
	2017_08_26_20_28_19.pdf
	2017_08_26_20_29_50.pdf

	Binder02.pdf
	2017_08_26_20_35_45.pdf
	2017_08_26_20_36_40.pdf
	2017_08_26_20_38_14.pdf

