REFERENCE MANUAL
for the --;.
CPD N-MOS Il PROCESSOR

Calculator Products Division August 1976

0

-

TABLE OF CONTENTS

v oo CHAPTERS <o oorooororarooroo

PREFACE . . 5 " . oviii

— PROCESSOR —

DESCRIPTION OF THE PROCESSOR .1
GENERAL INFORMATION . 2
MEMORY CONVENTIONS .3

MEMORY CYCLES i §
THE BYTE LINE . B
RAL LINE . : . 3

FUNCTIONAL DESCRIPTION OF THE BPC - 8

INDIRECT ADDRESSING . 8
MULTI-LEVEL INDIRECT ADDRESSING - . 8
SINGLE-LEVEL INDIRECT ADDRESSING- . 9

MEMORY REFERENCE INSTRUCTIONS AND PAGE ADDRESSING - . -9
ABSOLUTE ADDRESSING - . ; : . , ; .11
RELATIVE ADDRESSING - “H
BASE PAGE ADDRESSING - i ; ; :) 4 .11
CURRENT PAGE ADDRESSING : ; ; ‘ ‘ ; .12

SUBROUTINES - » B . : 15

FLAGS - ' . ’ ; . . «15

BUS REQUESTS AND INTERRUPTS - -15

FUNCTIONAL DESCRIPTION OF THE IOC - - . S £
GENERAL INFORMATION ABOUT 1/0 -18
1/0 BUS CYCLES - - =« «18
STANDARD 1/0 : : 5 % ; ; i . . Syl

ADDRESSING THE PERIPHERAL . : : . : s 4
CHECKING STATUS - : . "21
INITIATING 1/0 BUS CYCLES . : > N : N .21
THE ODDBALL POSSIBILITIES . ; ; . ; : .22

THE INTERRUPT SYSTEM -23
PRIORITY 5 ; ; ; ' . ' ' . .23
INTERRUPT POLLS - , : : . ; ; ; .23
INTERRUPT TABLE - . : . : : " . .24
INTERRUPT PROCESS SUMMARY . :) b . . .26

INTERRUPT SERVICE ROUTINES . . . 5 3 i .26

TABLE OF CONTENTS

oo CHAPTERS 2oovooonoomonooomaon

— PROCESSOR ——

FUNCTIONAL DESCRIPTION OF THE I0C

THE INTERRUPT SYSTEM (CONT.)
HOW A PERIPHERAL KNOWS WHETHER TO USE INTERRUPT

OR SIMPLE 1/0 . .28

BOMBPROOF ING THE MAINLINE FIRMWARE . . 4 . .28
"SIMULTANEOUS' ACTIVITIES . . . i . . .28
WHEN TO CEASE INTERRUPT MODE OPERATION ! ‘ . .29
RETURNING FROM INTERRUPT SERVICE ROUTINES , . . .30
DISABLING THE INTERRUPT SYSTEM . > a ‘ ; .30
DIRECT MEMORY ACCESS -31
ENABLING AND DISABLING THE DMA MODE . b 3 . .
REGISTER SET-UP32

DMA INITIATION . . 8 . . . o ‘ L
DATA REQUEST AND TRANSFER . . : g . A .39

DMA TERMINATION . 5 . . . P § 3 @35

THE PULSE COUNT MODE . R a . . - % 353
PLACE AND WITHDRAW - A . .34
THE NOTATION OF A STACK . ‘ . . i s 34
STACK OPERATIONS . S . i . . : ¥ . 34
PLACE AND WITHDRAW FOR BYTES . . ‘ ‘ ‘ + 35
INITIALIZATION OF TURN-ON -38
GENERAL INFORMATION ABOUT THEEMC - . .« . . .39
NOTATION - 3 > 5 i 2 : . s «39
DATA FORMAT - . . . » " Lo
A BEGINNER'S LOOK AT CALCULATOR ARITHPEHC L
NUMER ICAL REPRESENTATIONS - H1
BINARY . . . : . " ; . 2 . 41
BINARY-CODED DECIMAL 4 42
BINARY ARITHMETIC 43
BINARY COMPLEMENTS . i s . . , . 43
TWO'S COMPLEMENT SUMMATION . B . . S . J45
TWO'S COMPLEMENT SUBTRACT [ON % i : v 4 A5

TWO'S COMPLEMENT OVERFLOW . : »50

TABLE OF CONTENTS

<o CHAPTERS <<oooorororoomoroonoon

—— PROCESSOR —
A BEGINNER’S LOOK AT CALCULATOR ARITHETIC (cont.)

MULTI-PRECISION BINARY ARITHMETIC -52
ARITHMETIC SHIFTS53
BINARY MULTIPLY -55
BCD ARITHMETIC -55
DECIMAL CARRY56
TEN'S COMPLEMENT FOR BCD56
TEN'S COMPLEMENT ARITHMETIC DEMONSTRATION59
FLOATING-POINT SUMMATIONS -61
OFFSETS.61
MANTISSA ADDITION.62
NORMALIZATION63
ROUNDING -63
FLOATING-POINT MULTIPLICATION -64
FLOATING-POINT BCD DIVISION66
THE DIVISION ALGORITHM,66
THE FDV INSTRUCTION -68
SAMPLE DIVISION ROUTINE 71

—— INSTRUCTIONS —/

INTRODUCTION TO THE MACHINE INSTRUCTIONS. -1
NOTATION . . .1
BPC MACHINE INSTRUCTIONS .2
MEMORY REFERENCE GROUP . 2
SHIFT-ROTATE GROUP b
ALTER-SKIP GROUP- .5
COMPLEMENT-EXECUTE GROUP -10
I0C MACHINE INSTRUCTIONS - -« « = . . .12
STACK GROUP-12
1/0 GROUP - 14
INTERRUPT GROUP -14

DMA GROUP -15

TABLE OF CONTENTS

oo oo CHAPTERS «©oooororororoooorononon

—— INSTRUCTIONS ——

EMC MACHINE INSTRUCTIONS - - - =« .« . .16
THE FOUR WORD GROLP - - - - .«16
THE MANTISSA SHIFT GROP - - -16
THE ARITHMETIC GROWP - - - - -17

—— ASSEMBLER ——

INTRODUCTION TO THE ASSEMBLER - c 1
GENERAL INFORMATION -1
INSTRUCTION FORMAT -2

STATEMENT CHARACTERISTICS .2
LABEL FIELD3
OPCODE FIELD. b
OPERAND FIELD5
SYMBOLIC TERMS . 6
NUMERIC TERMS 8
THE ASTERISK. 8
EXPRESSIONS 8
INDIRECT ADDRESSING 9
BASE PAGE AND CURRENT PAGE ADDRESSING. . . 9
COMMENT FIELD 9
STATEMENT LENGTH10

ASSEMBLER PSEUDO INSTRUCTIONS - 11

ASSEMBLER CONTROL - 11
ORG AND ORR11
NEW INSTRUCTION DEFINITION12
PARTITIONING A BINARY TAPE . .14
CONDITIONAL ASSEMBLY15
AUTOMATIC STATEMENT REPETITION .17
SOURCE TERMINATION .17

ADDRESS AND SYMBOL DEFINITION -18

CONSTANT DEFINITION - 20

. .
N
N

STORAGE ALLOCATION - . . .
ASSEMBLY LISTING CONTROL

I

Tv

TABLE OF CONTENTS

fh oo CHAPTERS <oorororoooororoonoonon

—— ASSEMBLER —

ASSEMBLER INPUT AND OUTPUT -26
THE CONTROL STATEMENT- - A
THE SOURCE PROGRAM -27
THE LISTING-27
BINARY OUTPUT28

—— APPENDIX —

APPENDIX -1
ASSEMBLER ERROR MESSAGES -1
BINARY LOADERS -3
OUTPUT PAPER TAPE FORMAT - . . . -5

ABSOLUTE BINARY OBJECT PROGRAM 5
ADDING PRE-DEFINED SYMBOLS TO ASMA . 6
THE STRUCTURE OF THE ASSEMBLER - . 9

o PSEUDO INSTRUCTIONS -11
MACHINE INSTRUCTIONS -12
INSTRUCTION BIT PATTERNS -18

MEMORY REFERENCE GROUP,18

SHIFT-ROTATE GROUP18

SKIP GROUP19

RETURN GROUP.19

COMPLEMENT GROUP20

ALTER GROUP20

EXECUTE GROUP21

16-BIT IOC ONLY GROUP21

STACK GROUP22

INTERRUPT GROUP22

DMA GROUP22

FOUR WORD OPERATION GROUP23

MANTISSA SHIFT GROUP23

ARITHMETIC GROUP .,23

- 15/16 BIT BPC CONSOLIDATED CODING SHEET -24
15/16 BIT I0C CONSOLIDATED CODING SHEET -24

15/16 BIT EMC CONSOLIDATED CODING SHEET -24

TABLE OF CONTENTS
A,

oo CHAPTERS «woorororonoroonowoonoronaon

APPENDI X ——
APPENDIX (conT.)

HP CHARACTER SET- .25
CHARACTER CODES - .26
BPC INSTRUCTION EXECUTION TIMES.27
EMC INSTRUCTION EXECUTION TIMES-. .28
IOC INSTRUCTION EXECUTION TIMES- .29

EXPLANATION OF BOOTH'S ALGORITHM30

oo FIGURES «wooooororoonomoonon

—— PROCESSOR —0—

Figure P-1. Simplified Block Diagram of the Processor . 1
Figure P-2, Nature of the BIB's .3
Figure P-3, Simplified Read Memory Cycle . . .5
Figure P-4, Simplified Write Memory Cycle 6
Figure P-5, Base Page Description10
Figure P-6. Relative Addressing .14
Figure P-7. Bus Request Protocol .16
Figure P-8, A Write 1/0 Bus Cycle . .20
Figure P-9. A Read 1/0 Bus Cycle .20

Figure P-10. The Interrupt Table With I5-Bit or 16-Bit Addressing.

25

Figure P-11. How Not To Use The Interrupt Table . .25

Figure P~12. Sixteen-Bit Stack Pointer Addressing . .36

Figure P-13. Floating-Point Data Format .)
Figure P-14. The Internal Floating-Point Representation of

.003587219 (= 3.587219 x 107%) . : 43

Figure P-15, Multi-Word Binary Addition Using the Extend Register.52

Figure P-i6. Two's Complements of Multi-Word Binary Numbers . .53

Figure P~17. Floating-Point Data Format . .54

vi

TABLE OF CONTENTS

oo TABLES ovorororororonovoromonononon

—PROCESSOR —
Table P-1. Addressable Registers b

Table P-2. Current Page Absolute Addressing for Memory
Reference Instructions . . .13

Table P-3. Comparison of Decimal, Binary, and Octal . . 41

—— ASSEMBLER ——

Table A-1. Symbols Pre-Defined by the Assembler7

vii

PREFACE

This book is the result of an extensive revision of the "CPD PROCESSOR"
manual first issued in early 1975. Things have changed a bit since then,
and the old manual was getiling pretty shakey. The development of the I16-bit
version of the processor provided the opportunity to revise the entire
book.

First, this book covers both versions of the processor; one with
I5-bit (32K) addressing, and the other with 16-bit (64K) addressing. The
assembler (ASMA) described herein has also been updated to work with the
16=-bit version.

Next, numerous mistaken and misleading explanations have been corrected.
Also, the information relating fto the general attributes and operation of
the hardware has been col lected together and organized as an introduction
and overview of the entire processor. However, the bocok does not educate
the reader in the general notion of what a processor is, or in the ins
and outs of assembly language programming; it is still very helpful if
one is familiar with the 2100-series computers.

As before, the book is aimed primarily at engineers and technicians
within HP who wil!l recognize the attributes of the processor and apply
them to ftheir own situation, Even so, there are still places where the
explanation becomes detailed. The explanations of the interrupt process
and of arithmetic are examples. There are other areas which the reader
is simply expected to absorb on his own. The assembler is a good example;
all the explanation in the world (and we give quite a bit) won't remove
the need for a little bit of experience.

| f you are a beginner, you probably shouldn't try to read the book
from cover to cover, in the order given. |+ would be better if you
mix your exposure to the system overview (at least skip the arithmetic),
machine-instructions, and the assembler.

A comment on the section on arithmetic is in order., First, it would
be impossible to understand the EMC arithmetic instructions without
reference to some detailed examples. Second, its been my experience that
typical ly there's one guy who sits in a corner, mutters out loud a lot,
and who writes all the math routines. He's the only guy who knows how
they work, and even he makes frequent references to the texts he used
in school. And in general, if you ask three differenct people about some
aspect of arithmetic, you'll get three different answers.

| don't suppose that too many people are really concerned about the
nature of the EMC instruction set. But it needs explanation none the less.
To do that, detailed examples are needed. To understand the examples,
some familiarity with arithmetic techniques is needed. So | went the
last mile and started at the beginning.

At present, there is exactly zero interfacing information that would

allow a designer to create hardware that will function with the processor.
We hope to remedy this shortly.

see
VARR

”@%

SN

PREFACE

If you find a snarf in the book, please bring it to my atfention. tf
it's serious enough, you may win a six-pack of Coors.

May 1977 Revision

Affecting pages:
PROCESSOR -1

R

=55
INSTRUCTIONS-17
ASSEMBLER -6

APPENDIX -6

¥Non-significant typing error only

June 1978 Revision

Affecting pages:
PROCESSOR -1

PREFACE

June 1978 Revision (Cont.)

INSTRUCTIONS-3*
-12
-14
-15
-17
-19

ASSEMBLER -7

APPENDIX -8

¥Non-significant typing error only

Ed MI
Ft.

ler
Collins CPD
June 1978

T-d05S320¥4d

POWER SUPPLIES 15-BIT A TWICE-SPEED TTL
CLOCK INPUT FROM

AND GROUNDS VERSION ONLY wnicu ThE BPC CAN l
PR NS ,—’\ GENERATE @1 AND 92,
lg — 1NN g (2N é r;s: 8, €3 [t [« g Ié bd 1 BIT
EER seERRBE B g gEEE EEEE Igm . };RS[ON
8L ONLY
. CONTROL SIGNALS 575
PAB RDW (WRITE)
PERIPHERAL J3ami i
ADDRESS %§%% e
16-BIT INPUT EXTENDED BINARY FYTE
VERSION ONLY OUTPUT MATH PROCESSOR
Yo BE \\N CONTROLLER CHIP CHIP DIRECTION CONTROL PEG) 10 BUS
r-- g PROCESSOR CONTROL
IRECTION g [1 .1 (100) (BM0) (BPC) BUEFER ENABLE CIRCUIT
!.@_ - g
R 1 1 1 1
VERSION ORLY 8-BIT 8-BIT
BIB | BIB
100,-10D 5 <—>S L IDA BUS (IDAg-1DA;) — S = IDAy-ThAs
1/0 DATA 8-BIT "\ ~ ; 8-BIT TO EXTERNAL
BUS TO B]B ; PERIPHERAL BIB'S MEMORY BIB'S \N BIB MEMORY
PERIPHERALS
HYBRID MICRO PROCESSOR

Figure P-l. Simplified Block Diagram of the Processor.

DESCRIPTION OF THE PROCESSOR

GENERAL INFORMATION

The CPD Processor consists of seven integrated circuits mounted on a
ceramic substrate. Of these, three are N-channel MOS LS| chips. The remaining
four chips are entirely bi-polar and serve as buffers to connect the LS|
circuitry of the other chips to circuitry external to the substrate. Because
the processor is an assemblage of components mounted on a substrate, it is
often referred to as the "hybrid", "hybrid micro-processor", or simply as the
"processor".

Figure P-1 is a simplified block diagram of the processor. The LSI
chips are the Binary Processor Chip (BPC), Input-Output Controlter (10C},
and the Extended Math Chip (EMC). All of the processing capability of the
processor resides in those three chips; except for inversion the four Bi-
Directional Interface Buffers (BIB's) are logically powerless. The three
LS| chips communicate among themselves, and also with the outside world, via
a collection of contfrol signals and a I6-bit bus called the IDA Bus (IDA
stands for Instruction/Data/Address).

The processor is available in two versions. One version uses [5-bit
addressing for a maximum memory size of 32K words, and implements multi-
level indirect addressing. The other version uses |6-bit addressing for
a maximum memory size of 64K words, and implements a single level of indirect
addressing. The 15-bit processor uses 15-bit versions of the BPC and 10C;
the 16-bit processor uses 16-bit versions. The EMC is currently a |6-bit
version that works in either processor; an obsolete 15-bit version of the
EMC also exists but is not currently being produced.

The two versions of the processor are far more alike than they are
different. Some new machine-instructions were added for the 16-bit 10C.
However, they represent an alternate method of doing something (in light
of the different way the 16th address bit is used) rather than a major
extension of capability. Other than for size, both processors are alike
in the general way they interface to memory. Their sets of machine-
instructions are nearly identical; in fact, an assembler exists fthat can
be used for both. The information in this book Is generally applicable to
both processors; information that applies to a particular version is
labeled as such.

The IDA Bus is buffered as it leaves the hybrid, but the control signals
are not. The BIB's are grouped together to buffer the IDA Bus in a way
that allows it to perform two different functions. Each BIB can buffer
eight bits of the IDA Bus. Two BIB's are grouped together to connect the
IDA Bus to the (main and external) memory; those BIB's are called the
Memory BIB's. The remaining two BIB's are grouped together to connect
the IDA Bus to the 10D Bus. The 10D Bus (1/0 Data Bus) is the data bus
that serves peripheral devices. Accordingly, the BIB's connecting the IDA
Bus with the |0D Bus are called the Peripheral BIB's. The Memory BIB's are
enabled by a circuit (external to the hybrid) which detects memory traffic
on the IDA Bus. The Peripheral BIB's are controlled by the 10C as the
various types of input-output operations are performed.

PROCESSOR-2

DESCRIPTION OF THE PROCESSOR

GENERAL INFORMATION (conT.)

Figure P-2 illustrates the nature of the BIB's, Each bit of the IDA
Bus is buffered in both directions by tri-state buffers confrolled by non-
overlapping buffer enable signals.

HIGH R—L, TTL-—MOS

L— R, MOS— TTL

(1]

DIRECTION 5 M/x//ESZXD

CONTROL
RIIFEER | ENSURES THAT THE
@ > <__—§ BUFFER ENABLE LINES
ENABLE ARE NON-OVERLAPPING

F——— == — = — = = —— - —l—n

| 1 OF 8 BUFFER CIRCUITS |

| TRI-STATE LEFT TO RIGHT ENABLE |

| ourpurs |

| ii |

I |

| L(N) 1 >—< RN I

| (MOS SIDE) (TTL SIDE) I

| |

| I

| RIGHT TO LEFT ENABLE [

I I

b e e e e e e e ——— e — — _] —

Figure P-2. Nature of the BIB's.
MEMORY CONVENTIONS
The term "memory" will be used to refer to any addressable memory

location, regardless of whether that location is physically within the hybrid
micro-processor, or external to it. The term "external memory" refers to
memory that is not physically within the hybrid. The term "register" refers
to various storage locations within the hybrid micro-processor itself. These
registers range in size from | 1o 16 bits. Most of the registers are 16 bit
registers. The term "addressable register" refers to a register within one
of the LS| chips that responds as memory when addressed. Most registers are
not addressable. In most of the discussions that fol low the context
clarifies whether or not a register is addressable so that it is deemed
unnecessary to explicitly differentiate between addressable and non-
addressable registers. Those registers that are addressable are included

in the meaning of the ferm "memory". The term "memory cycle" refers o a
read or write operation invoiving a memory location.

PROCESSOR-3

DESCRIPTION OF THE PROCESSOR

MEMORY CONVENTIONS (conT.)

The first 32 memory addresses do noi refer to external memory. Instead,
these addresses (0-37g) are reserved to designate addressable registers
within the micro-processor. Table P-l lists the addressable registers
within the micro-processor.

Table P-1. Addressable Registers.

A2§;Z;s Name Location Description (# of Bits)
0 A BPC Arithmetic Accumulator (16)
I 8 BPC Arithmetic Accumulator (16)
2 p BPC Program Location Counter (least |5 of 16 or 16)
3 R BPC Return Stack Pointer (least 15 of 16 or 16)
4 R4 10C Peripheral Activity Designator (—)
5 RS iGC Peripheral Activity Designation (—)
6 R6 1¢C Peripheral Activity Designator (—)
7 R7 IcC Peripheral Activity Designator (—)
10 v 1CC Interrupt Vector (upper 12 of 16)
¥ —>> 11 PA 10C Peripheral Address Register (least 4 of 16)
12 W 10C Working Reqister (16)
+—> 13 DMAPA 10C 2 MSB = CB & DB; 4 LSB = DMA Periph, Add. Reg.
14 DMAMA 10C DMA Memory Address & Direction Register ([1)
15 DMAC 10C DMA Count Register (16)
16 C 10C Stack Pointer (I16)
17 D 10C Stack Pointer (16)
20-23 AR2 EMC BCD Arithmetic Accumulator (4 x 16)
24 SE EMC Shift Extend Register (least 4 of 1€)
*r—> 25-217 X EMC Internal Arithmetic Register (3 X 16)
30-37 UNASS IGNED
;;;;gé ARI R/W BCD Arithmetic Register (4 x 16)
¥ Not available for general use. Part of processes internal to a chip. It
is best to pretend that these registers co not exist.
i Read register I38 produces:
CcB ?nd DB are acfyally discrete Bit 15 Bit OF—TL
registers, and while they can
only be read by reading RI3, || _ _ _ __ VOID = = = = =
SToringing inTo RI3 will Tof
e o e e e Cvorue or 08 —
instructions for that purpose. Value of CB DMA
Ssrz?gnDSnTxisT in the 16-bit | > Uoper Select Code
v 0 2 Lower

PROCESSCR-4

DESCRIPTION OF THE PROCESSOR

MEMORY CONVENTIONS (cont.)

Most of the traffic on the IDA Bus has to do with memory. Both address
of memory locations, and the contents of those locations (data and machine-
instructions) are transmitted over the same |6-bit bi-directional bus
(the IDA Bus). Further, memory can be physically distributed along +he Bus.
Each of the three chips in the processor contains registers which are
addressable, and addressable memory also exists external to the processor.

MEMORY CYCLES

A memory cycle involves some control lines as well as the IDA Bus.
Start Memory (STM) is used to initiate a memory cycle by identifying the
contents of the IDA Bus as an address. Memory Complete* is used to identify
the conclusion of a memory cycle. A line called Read/Write (RDW) specifies
the direction of data movement; out of or into memory, respectively.

Each element in the system decodes the addresses for which it contains
addressable memory. To initiate a memory cycle, an element of the processor
puts the address of the desired location on the IDA Bus, sets the Read/Write
line, and gives Start Memory. Then, elsewhere in the system the address is
decoded and recognized, and that agency begins to function as memory. It is
part of the system definition that whatever is on the IDA Bus when a Start
Memory is given is an address of a memory (or register) location.

Here is a complete description of the entire process: An originator
originates a memory cycle by putting the address on the IDA Bus, setting
the Read/Write line, and giving a Start Memory. The respondent identifies
itself as containing the object location of the memory cycle, and handles
the data. |If the originator is a sender (write) it puts and holds the data
on the |DA Bus until the respondent acknow!ledges receipt by sending Memory
Complete. |If the originator is a receiver (read) the respondent obtains
and puts the data onto the IDA Bus and then sends Memory Complete. The
originator then has one clock time fo capture the data; no additional
acknowledgement is involved. THIS IS WHEN THE

DATA IS CAPTURED

Figures P-3 and P-4 illustrate typical memory cycles.
IDA BUS 7 [nooRess | 7 < pata —| >
7 7
RDW (HIGH=READ)
STM
-— egs b dun eun fuS e
- e b Gin = B s
UMC
SMC
Figure P-3. Simplified Reac Memory Cycle.
There Is no single signal called "emory Complete”. Instead there is Unsynchronized Memory Complete
(UMC) and Synchronized Memory Complete (SMC), They mean the same tting for our present purposes,

and their exact differences need not concern us here,

PROCESSOR-5

DESCRIPTION OF THE PROCESSOR

- MEMORY COMVENTIONS

MEMORY CYCLES (CONT.)

RDW MAY TRANSITION
l AS LATE AS HERE
-T—r=~-

DATA

le
N

Y

IDA BUS 7/ ADDRESS

N

RDW (LOW=WRITE)

STM

UMC

Figure P-4, Simplified Write Memory Cycle.
THE BYTE LINE

The 10C generates a signal called BYTE that affects memory operation.
BYTE signifies that a memory cycle is to involve a left-half or right-half
g@h of a word rather than the entire word. The I0C is the only entity that is
allowed to generate BYTE, which is used during the execution of certain I10C
machine-instructions (+he place and withdraw byte instructions).

During a read memory cycle the memory can supply the entire word regardless
of the status of the BYTE line; the I0C will automatically extract The desired
byte from the supplied word. However, during a write memory cycle +he memory
must merge the transmitted byte with the existing other half of the word
(which is already in memory). The fransmitted byte will be sent as the
left-hal f or right-half of a word (that is, on the upper eight bits or on
The lower eight bits of the IDA Bus), as is appropriate for whichever byte
it is supposed to be.

The 15-bit and 16-bit versions of the 10C differ in the way they indicate
which half of the word is being sent to memory. (These indicators are
actually in force for both read and write memory cycles, but may be entirely
ignored during read memory cycles.) For 15-bit I0C's the left-right infor-
mation appears in the left-most bit of the address word; only 15 bits are
needed for addressing the word anyway. In this scheme a one in bit I5
indicates a left-half. For I6-bit I0OC's the entire 16 bits is required for
addressing, and a separate signal (BL - Byte Left Not) is supplied to the
memory. When bit 15 is used to designate the byte, bit 15 must be latched
by the memory at the time the address is sent, as it is effectively sent as
part of the address. On the other hand, BL is a steady state signal valid
for the duration of the memory cycle.

@Mh When acting as memory themselves, none of the BPC, 10C, or EMC utilize
the BYTE line during a write memory cycle. This means that a byte can be

PROCESSOR-6

DESCRIPTION OF THE PROCESSOR

MEMORY CONVENTIONS

THE BYTE LINE (CONT.)D
read from a register in any of those chips, but that only entire words can

be written to those registers.

RAL LINE
Among several service functions performed by fthe BPC for the I0C and EMC

is the generation of a signal called RAL (Register Access Line) whenever an

address on the IDA Bus is within the range reserved for register designation
RAL functions to prevent the external memory from responding fto any memory

cycle having such an address.

PROCESSOR-7

)

FUNCTIONAL DESCRIPTION OF THE BPC

@Wﬁ

The BPC has two main functions. The first is to fetch machine-instructions
from memory for itself, the 10C, and for the EMC. A fetched instruction may
pertain to one or more of those chips. A chip that is not associated with
a fetched instruction simply ignores that instruction. The second main
function of the BPC is to execute the 56 instructions in its own repertoire.
These instructions include general purpose register and memory reference
instructions, branching instructions, bit manipulation instructions, and
some binary arithmetic instructions. Most of the BPC's instructions involve
one of the two accumulator registers: A and B.

There are four addressable registers within the BPC and they have the
following functions: The A and B registers are used as accumulator registers
for arithmetic operations, and also as source or destination locations for
most BPC machine~instructions referencing memory. The R register is an
indirect pointer into an area of read/write memory designated to store return
addresses associated with nests of subroutines encountered during program
execution. The P register contains the program counter; its value is the
address of the memory location from which the next machine-instruction will
be fetched.

Upon the completion of each instruction the program counter (P register)
has been incremented by one, except for the instructions JMP, JSM, RET, and
SKIP instructions whose SKIP condition has been met. For those instructions
the value of P will depend on the activity of the particular instruction.

INDIRECT ADDRESSING

Indirect addressing is a technique in which an instruction that references
memory freats the first one or more references as intermediate steps to
referencing the final destination. Each intermediate reference yields the
address of the next location to be referenced. When an intermediate location
can point fo yet another intermediate location, such addressing is termed
multi-level indirect addressing. Indirect addressing is not a property of
the memory; it is property of the chips that use the memory. Any chip that
is to implement instructions employing indirect addressing must contain a
special gear works for that purpose,

MULTI-LEVEL INDIRECT ADDRESSING

BPC's that can address 32K of memory can perform multi-level indirect
addressing. Memory addresses appear on the {DA Bus as I5-bit patterns during
the address portion of a memory cycle. The BPC machine-instructions that
reference memory are capable of multi-level indirect addressing. The initial
indirect indicator is a particular bit in the machine-instruction itself
(the most-significant, or left-most, bit: Bit 15). The internal operation
of the BPC is so arranged that if the memory content of that address also
has a one in bit |5, the other bits -of the contents are themselves taken as

@Wh an indirect address. The process of accessing via an indirect address continues

PROCESSOR-8

FUNCTIONAL DESCRIPTION OF THE BPC

INDIRECT ADDRESSING

MULTI-LEVEL INDIRECT ADDRESSING (CONT.D

until a location is accessed which does nof have a one in bit 15. At that
+ime the content of that location is taken as the final address; that is, it
is taken to be the address of the desired location and the memory cycle is
completed when that final desired location is accessed.

SINGLE LEVEL INDIRECT ADDRESSING

BPC's that can address 64K of memory are not capable of multi-level
indirect addressing; they can perform only one level of indirect addressing.
As before, bit 15 of the particular memory reference instruction witl be set.
The contents of the referenced location will be read, and its entire 16-bit
contents treated as the address of the final destination to be read from or
written into. This is because addressing 64K of memory requires the use of
bit |15 as an actual address bit; +hus bit I5 is not available to indicate
that the remaining bifs are an indirect address. The format of the memory
reference instructions Themselves has not changed; bit 15 of those instructions
still indicates an Initial indirect reference, but no further indirect
references can be indicated as memory is read. Hence only one level of
indirect addressing is possible.

MEMORY REFERENCE INSTRUCTIONS & PAGE ADDRESSING

Machine-instructions fetched from memory are [6-bit instructions. Some
of those bits represent the particular type to which the particular instruction
befongs. Other bits differentiate the instruction from others of the same
type. [f a BPC machine-instruction is one that involves reading from, storing
into, or otherwise manipulating the contents of a memory location, it is
said to be a memory reference instruction. Load into A (LDA), Store from B
(STB), and Jump (JMP) are examples. There are |4 memory reference instructions
and they each contain bits fo represent the address of the location that is
to be referenced by the instruction. Only ten bits are devoted fto indicating
the address to be referenced. Those ten bits represent one of 1024, locations
on either the base page or the current page of memory. An additional bit in
the machine-instruction indicates which. The base page is always a particular,
non-changing, range of addresses, exactly 1024;¢ in number. A memory
reference machine-instruction fefched from any location in memory (i.e.,
from any value of the program counter) may directly reference (that is, need
not use indirect addressing) any location on the base page.

For 15-bit addressing the base page is addresses 00000g-00777s and
770006-777778. For 16-bit addressing The base page addresses are 000000s-
000777¢ and 177000g~177777¢. Figure P-5 depicts the base page.

There are two types of current pages. Each type is also 1024,
consecutive words in length. Except for base page references, a
memory reference machine-instruction can directly reference only
locations that are on the same current page as it; that is, locations
+hat are within the page containing the current value of the

PROCESSOR-9

(I

FUNCTIONAL DESCRIPTION OF THE BPC

MEMORY REFERENCE INSTRUCTIONS & PAGE ADDRESSING (conT.)

(1/0) 7 7 000 —_—————

OCTAL ADDRESSES-l

(1/0) 72 72777

>BASE
r— - 00000 PAGE
=L | \ REGISTER

3
b Y

LOCATIONS

ALY
{

ABSOLUTE
"ZERO" <
PAGE

3
183
)
LY

Figure P-5. Base Page Description.

program counter (P).*¥ Thus the value of P determines the particular collection
of addresses that are the current page at any given time. This is done in

one of two distinct ways, and the particular way is determined by whether the
signal called RELA is grounded or not., |f RELA is ungrounded, the BPC is sald
to address memory in the "relative" mode. |If RELA is grounded it is sald to
operate in the "absolute" mode.

*
Off-page references that are not base page references must be made using indirect addressing.

PROCESSOR-10

—~—

FUNCTIONAL DESCRIPTION OF THE BPC

MEMORY REFERENCE INSTRUCTIONS & PAGE ADDRESSING (cowT.)

During the execution of each memory reference machine-instruction the
BPC forms a full 15-bit or I6-bit address based on the ten bits of address
contained within the instruction. How the supplied ten bits are manipulated
before becoming part of the actual address, and how the remaining five or
six bits are supplied, depends upon whether the instruction calls for a base
page reference or not, and upon whether the addressing mode is relative or
absolute. The differences are determined primarily by the two different
definitions of the current page; one for each mode of addressing. Base page
addressing is the same in either mode.

‘D

ABSOLUTE ADDRESSING

In the absolute mode of addressing the memory address space is divided
into a base page and 32 or 64 possible current pages. The possible current pages
are the consecutive 10244 word groups beginning with 00000g. The possible
current pages can be numbered, O through 3l14; or O through 63;9. Thus the
"zero page" is addresses 00000g-01777g. Note that the base page is not the
same as the zero page; the base page overlaps pages zero and 3] for 32K
machines, and overlaps pages zero and 63 for 64K machines.

RELATIVE ADDRESSING

In relative addressing there are as many possible current pages as there
are values of the program counter. In the relative addressing mode a current -
page is the 51219 consecutive locations prior (that is, having lower valued /ﬁ%
addresses) to the current location (value of P), and the 5|1;4 consecutive
locations following the current location.

BASE PAGE ADDRESSING

All memory reference machine-instructions include a 10-bit field that
specifies the location referenced by the instruction. What goes in this
field is a displacement from some reference location, as an actual complete
address has too many bits in it to fit in the instruction. This 10-bit
field is bit O through bit+ 9. Bit 10 tells whether the referenced location
is on the base page, or someplace else. Bit 10 is called the B/C bit, as
it alone is used to indicate base page references. Bit 10 will be a zero
if the reference is to the base page, and a one if otherwise.

If bit 10 is zero for a memory reference instruction (base page refer-
ence), the |0-bit field is sufficient to indicate completely which of the
1024 locations on the base page is to be referenced. There are fwo way to
describe the rule that is the correspondence between bit patterns in the
10-bit field, and the locations that are the base page: (|) the least
significant 10 bits of the "real address" (i.e., (1)77,000 through 7775)
are put into the 10-bit field, bit for bit; (2) as a displacement beftween
+777g and -|1000s about 0, with bit 9 being the sign.

The 32 register addresses are considered to be a part of the base page.

Base page addressing is always done in the manner indicated above, regardless /W%
of whether relative or non-relative addressing is employed by the BFC. :

PROCESSOR-11

FUNCTIONAL DESCRIPTION OF THE BPC

MEMORY REFERENCE INSTRUCTIONS & PAGE ADDRESSING (cont,)

CURRENT PAGE ADDRESSING

Current page addressing refers to memory reference instructions which
reference a location which is not on the base page. The same |0-bit field
of the machine-instruction is involved, but the B/C bit is a one (C). Now,
since there are more than 1024 locations that are not the base page, the
10-bit field by itself, is not enough to completely specify the exact location
involved. An assumption has to be made about which page of the memory is
involved.

For absolute addressing the assumption is that the most significant 5
(or 6) bits of the P register correspond to the page, and the last |0 bits
of the machine-instruction determine the location within that page. This
assumption requires that there will be no page changes except by certain
ways. This means that once the program counter is set to a particular
location the top 5 (or 6) bits need not be changed for any addressing on
that (which ever it is) page. When the assembler assembles a memory
reference instruction, it computes the least 10 bits and puts them in the
instruction. When the BPC executes the instruction it concatenates its own
top 5 (or 6) bits of P with the address represented by the least 10 bits
of the instruction; that produces the complete address for the location
referenced by the instruction.

However, the least 10 bits produces by the assembler and placed in the
machine-instruction do not correspond exactly to the "real" memory address
that is referenced. Bit 9 (the |0th bit) is complemented before it is placed
in the address field of the instruction. The other 2 bits are left unchanged.
This induces a one-half page offset whose effect is to make current page
addressing relative to the middle of the page. Table P-2 depicts current
page absolute addressing. This similarity between current page and base
page addressing is deliberate, and results in simplified harcware in the BFC.

Page changes can be accomplished in two ways: (incrementing or decrementing
the program counter in the BPC, and through indirect addressing. An example
of incrementing to a new page is a continuous block of code that spans two
adjacent pages. A page change through an increment or decrement can occur
in tThe same general way due to skip instructions.

Indirect addressing allows page changes because the object of an indirect
reference is always taken as a full I5-bit or 16-bit address. Indirect
addressing is the method used for an instruction on a given page to either
reference a memory location on another page (LDA, STA, etc.), or, to jump
(JMP or JSM) to a location on another page.

Instructions on any page can make references to any location on the base
page without using indirect addressing. This is because the B/C bit designates
whether the 10-bit field in the instruction refers to the base page or to the
current page. |If B/C is a zero (B), the BPC automatically assumes the upper
5 or 6 bits are all zeros, and thus the 10-bit field refers to the base page.
If B/C is a one (C), the top 5 or 6 bits are taken for what they are, and the
current page is referenced (whichever 1t is).

PROCESSOR-12

FUNCTIONAL DESCRIPTION OF THE BPC

MEMORY REFERENCE INSTRUCTIONS & PAGE ADDRESSING

CURRENT PAGE ADDRESSING (CONT.)

Table P-2.

for Memory Reference Instructions.

Current Page Absolute Addressing

LEAST 10 BITS

OF ASSEMBLER "REAL OCTAL ADDRESS"
OUTPUT (octal)

TOP 5 (6) BITS OF P LOWER 10 BITS

1000 X X START OF PAGE 0000
1001 X X 0001
100 2 X X 000 2
1777 . 0777
0000 . 1000
0001 . 1001
000 2 . 1002
07 77 X X END OF PAGE 1777

I+ is the responsibility of the assembler to control
time the machine~instruction is assembled.
determining if the address of the operand (or its "value'") of an instruction

is in the range of (1)77,0004 through 0, or, G through 7774.
it is a base page reference and B/C is made a zero for that instruction.

Relative addressing does not require the concept of a fixed page, as in
The word "page" can still be used, but requires a new

absolute addressing.
definition:

PROCESSOR-13

the B/C bit at the
It does this easily enough by

1f it is, then

FUNCTIONAL DESCRIPTION OF THE BPC

MEMORY REFERENCE INSTRUCTIONS & PAGE ADDRESSING

CURRENT PAGE ADDRESSING (CONT.)

In relative addressing, a page is 102414 consecutive locations, having
51210 locations prior to the current location, and 51 1;¢ locations
following the current location,

As before, direct addressing is possible anywhere within the page. But
off-page references (other than to the base page) require indirect addressing,
which, once started, works as before - it is not relative, but produces a
full 15-bit or 16-bit absolute address.

Figure P=6 illustrates relative addressing. Relative current page
addressing is done much the same way as base page addressing. The |0-bit
field in the memory reference instructions is encoded with a displacement
relative to the current location.

Bit 9 (the 10th, and most significant bit of the 10) is a sign bit. If
it is a zero, then the displacement is positive, and bits 0-8 are taken at
face value. If bit 9 is a one, the displacement is negative. Bits 0-8
have been complemented and then incremented (+wo's complement) before being
placed in the field. To get the absolute value of the displacement, simply
complement them again, and increment, ignoring bit 9.

00000 8
f
X X XXX g " 777 8
L L
—_r 1-
| CURRENT VALUE
RR
ol xxxxxg |V 0F PROGRAM
COUHTER
9 X X XXX 8 + 776 8
(y 77717 8

Figure P-6. Relative Addressing.

PROCESSOR-14

FUNCTIONAL DESCRIPTION OF THE BPC

SUBROUTINES

The processor implements subroutines in the following way. The JSM
memory reference instruction is used to cause a jump (change in value of P)
to the start of the subroutine. Also as part of the JSM, the BPC saves the
value of P that corresponds to the word of programming that is the JSM. That
value is saved in a section of read/write memory called the return stack.

The return stack is a group of contiguous locations, whose starting address
less one was initially stored in the R register (in the BPC). Thus R is an
indirect pointer. What a JSM does is to increment the value in R and then use that
new value as the address at which to store the value of P that is 1o be saved.

Once this activity is complete, P is actually set to the address of the first
word of the subroutine and its execution commences.

A subroutine is terminated with a RET n instruction. The essence of this
instruction is to read the location that R points at, set P to that value plus
n, and then decrement R, The garden variety return is a RET |. Different
values of n permit different returns corresponding fo error or other special
conditions.

Subroutines can be nested as deep as the size of the return stack will
allow. The subroutines themselves can be either in ROM or read/write memory.

FLAGS

The BPC is capable of branching based on the condition of each of four
signals external ly supplied to the chip. These signals are Decimal Carry
(DC), Halt (HLT), Flag (FLG), and Status (STS). The EMC acts as a source
for Decimal Carry, which represents an overflow condition during certain
arithmetic operations performed by the EMC. The other signals can be defined
in any way that is suitable for the system in which the processor is operating;
they are not used for inter-chip communication within the processor.

BUS REQUESTS AND INTERRUPTS

Two protocols that do involve inter-chip communication are those of
Bus Request and Interrupt. Bus Request (BR) provides a way for a chip in
the processor, or even a device external to the processor, to request
unfettered use of the IDA Bus. A signal called Bus Grant (BG) is generated
if all chips and any other interested entities agree to do so. The requesting
agency can use the IDA Bus for whatever purpose it wants, (typically To do
memory cycles). During the time that Bus Grant is in effect all chips
suspend their activity. Bus Grants can be given even in the middie of the
execution of an instruction. Because of this, the chips do not grant bus
requests indiscriminately. Furthermore, a Bus Grant not requested by the
10C is used by the 10C to create Extended Bus Grant (EXBG), which is routed
from chip to chip in a definite order; chips or other entities not at the
top of the chain can exercise the right not to pass along the signal. This

PROCESSOR-15

FUNCTIONAL DESCRIPTION OF THE BPC

BUS REQUESTS AND INTERRUPTS (conT.)

allows a Bus Request from the 10C to have a higher priority than any
entity further down the chain. Even if both are requesting the bus, the
I0OC can "steal" EXBG by not passing it along. Further down the chain from
the 10C, BG serves to indicate only that the bus is being granted to some-
body; a paticular requesting device must wait until it sees EXBG before it
can use the bus.

The Bus Request protocol includes these additional considerations:
Any entity on the bus may ground BG as long as 8G is not already being given.
This allows any entity anywhere in the chain to protect its own access to
the bus against all agencies. Further, the BPC itself refuses fo issue a
BG as long as any memory cycle is in progress.

Figure P-7 illustrates the usage of the Bus Request, Bus Grant, and
Extended Bus Grant protocol.

[DA BUS

BR(BUS REQUEST)

‘ l BG (BUS SRANT) EXBG

1__.__1L lJ rfﬁ
1y { {

Q-—q\o——

INTERNAL INTERNAL
BUS GRANT BUS GRANT
BPC 10C EMc CRY

Figure P-7. Bus Request Protocol.

Following is a description of how the inter-chip mechanism for interrupt
acts. During an instruction fetch a line called Interrupt (INT) can signal
that the [10C has agreed to allow an interrupt requested by a peripheral.

The management of this decision is complicated and its description belongs
with a description of the I0C. However, once the decision is made, the I0C
signals the BPC with INT. This has fto occur during a2 certain period of
time ending with the end of the instruction fetch. (A signal called SYNC
indentifies the instruction fetch.)

What the chips in the system must do when an interrupt occurs is to

abort the execution of the instruction just fetched (it will be fetched
again, later). Then the BPC executes the instruction JSM [0g Indirect.

PROCESSOR-16

FUNCTIONAL DESCRIPTION OF THE BPC

BUS REQUESTS AND INTERRUPTS (conT.)

Register address 10g is located in the 10C, and is the Interrupt Vector
register (1V). That register is a pointer into a stack of addresses

of the starting locations for the various interrupt service routines.
These routines handle the traffic needed by the interrupting peripheral.
A special mechanism in the 10C sets the bottom four bits of IV to
correspond to the particular peripheral that requested the interrupt.

Thus |V points to different service routines, according to which peripheral
inferrupted.

In any event, fthe JSM [0g Indirect causes the value of P for +the aborted
instruction tc be saved on the return stack. A RET 0 at the end of the service
routine results in that very instruction being fetched over again, at the
conclusion of the service routine.

PROCESSOR-17

%

ﬁ%

@Wﬁ

FUNCTIONAL DESCRIPTION OF THE I0C

The |0C has two main functions. One Is to manage the transfer of information
between the processor and external peripheral devices. This is done by

providing capabilities classified as Standard 1/0, Interrupt and Direct

Memory Access (DMA). The second main function is to provide machine-instructions
allowing software management of two stacks in Read/Write Memory.

To implement these tasks the ICC contains a number of addressable registers.
The function of each will be discussed as the various topics of |0C operation
are covered.,

GENERAL INFORMATION ABOUT 1/0

The I10C allows up to 16 peripheral devices to be present at one time.
Each peripheral device is connected to the 10D Bus, Peripheral Address Bus,
and the various control signals necessary for that particular device's
operation. [Individual 1/0 operations (exchanges of single words) occur
between the processor and one peripheral at a time, although Interrupt and
DMA modes of operation can cause automatic interleaving of individual operations.
A select code transmitted by the Peripheral Address Bus (PABO-PAB3) indentifies
which of the 16 devices is the object of an individual 1/0 operation.

In addition, the peripheral interface is the source of the Flag and
Status bits for the BPC instructions SFS, SFC, SSS, and SSC. Since there
can be many interfaces, but only one each of Flag and Status, only the
interface addressed by the select -code is allowed to ground these lines. Their
logic is such that if the addressed peripheral is not present on the 1/0
Bus, Status and Flag are logically false.

ICI and IC2 are two control [ines that are sent to each peripheral
interface by the 10C. The state of these two |ines during the non-DMA
transfer of information can be decoded to mean something by the interface.
Just what 'something' will be is subject to agreement between the firmware
designer and the interface designer - it can be anything they want, and
might not be the same for different interfaces. These fwo lines act as a four
position mode switch on the interface, controlled by the I0C during an 1/0
operation.

1/0 BUS CYCLES

There are no specific machine~instructions for which the IOC responds
by doing /0 operations. That is, there is no "output instruction", and no
"input instruction". The real workhorse of /0 is a thing called an I/0
Bus Cyele. An 1/0O Bus Cycle is an exchange of a word between the IDA Bus and
the 10D Bus, via the Peripheral BiIB's. The exchange is not of the handshake
variety. 1/0 Bus Cycles are termed read or write 1/0 Bus Cycles, depending
upon whether information is being read from, or written to, a peripheral.

Each of the three modes of |/0 operation (Standard 1/0, Interrupt, and

PROCESSOR-18

FUNCTIONAL DESCRIPTION OF THE 10C

1/0 BUS CYCLES (conT.))

DMA) utilize 1/0 Bus Cycles. After we have examined how an |/0 Bus Cycle
works, the explanation of the various modes of 1/0 will amount to showing
different ways to initiate 1/0 Bus Cycles.

For example, during Standard 1/0 operation, an 1/0 Bus Cycle is initiated
by a reference to one of R4 through R7 in the I0C. One way that can be done
is with a BPC memory reference instruction; for instance, STA R4 (for a write
cycle), or LDA R4 (for a read cycle).

The 10C includes a register called the Peripheral Address Register (PA)
which Is used in establishing the select code surrently in use. The peripheral
address is established by storing the desired select code into PA with an
ordinary memory reference instruction. The bottom four bits of tThis register
are brought out of the 10C as PABO through PAB3. Each peripheral interface
decodes PABO-PAB3 and thus determines if it is the addressed interface.

Consider a write 1/0 Bus Cycle as illustrated in Figure P-8. This is
initiated with a reference to one of R4-R7. The 10C sees this as an address
between 4 and 7 on the IDA Bus while STM is low. The Read line is low to denote
a write operation. The IOC enables the Perjpheral BIB's and specifies the
direction. If also sets the control lines ICl and [C2, according to which
of R4 through R7 was referenced. Meanwhile, the BPC has put the word that
is to be written onto the IDA Bus. Because both the Memory BIB's and Peripheral
BIB's are enabled, that word is felt at all peripheral interfaces. The =
interface that is addressed uses DOUT to understand it's to read something, /fB
and uses TOSB as a strobe for doing it. After 10SB is given, the I0C gives
[Synchronized] Memory Complete (SMC) and the process terminates. The BPC has
written a word to the interface whose select code matched the number in the
PA register.

T

A read 1/0 Bus Cycle is similar, as shown in Figure P-9. Here the BPC
expects to receive a word from the addressed peripheral interface. Read,
DOUT and BE are different because the data is now moving in the ofher direction.

In either case, the critical control signals SMC and TOSB are given by
the 10C, and their timing is fixed. There can be no delays due fo something's
not being ready, nor is there any handshake between the interface and the IOC.

It is the responsibility of the firmware not Yo initiate an 1/0 Bus

cycle involving a device that is not ready. To do so will result in lost
data, and there will be no warning that this has happened.

PROCESSOR-19

FUNCTIONAL DESCRIPTION OF THE IOC

1/0 BUS CYCLES (conT.)

THIS IS A WRITE MEMORY) THIS IS THE BEGINNING OF THE ACTUAL I/0 BUS CYCLE
CYCLE THAT INITIATES A |J?
WRITE I/0 BUS CYCLE. ITL T2 ~3 T4 TS

—e TLONLLILL L

\ |

_EMT T
i
L

| L i
| [
ROW \ Lo |
1 T ‘
s ‘ | I \—/
‘ I ‘
: i — THE STATES OF THESE
ic1 LN ; ’ TWO SIGNALS ARE

| S U

i DETERMINED BY WHICH
. ‘ : OF R4-R7 WAS

NS A EES U I I REFERENCED
I

Bout | N ‘ w ‘ ‘
[R ‘

BE |

"~
~N

B

NOTES

1. THIS 1/0 BUS CYCLE WAS INITIATED BY ANY WRITE-INTO-MEMORY INSTRUCTION
WHICH REFERENCED ONE OF R4 THRU R7.

2. CONTROL INFORMATION 1S VALID ON BOTH EDGES OF IOSB.

3. DATA IS LATCHED INTO THE INTERFACE ON THE TRAILING EDGE OF I10SB.

Figure P-8. A Write |/0 Bus Cycle.

THIS IS A READ MEMORY I THIS IS THE BEGINNING OF THE ACTUAL I/0 BUS CYCLE
CYCLE THAT INITIATES ||

A READ I/0 BUS CYCLE.
Tl T2 T3 T4 TS Té

|
2 ' —}_J—]_J LJF]__
w |
ADDRESS\ || T ‘
10A Re-R7 | 1
ST { |
!]
ROW [‘ I 1
! | 1S |
s Cod i - | P
| ‘ |
: L — J ——— THE STATES OF THESZ
el b INC L L L 1 __ L o7 = THO SIGNALS ARE
\ I A ! '{' 7 DETERMINED BY WHICH
‘ OF R4-R7 WAS
N /
1c2 ; [I P S P _!. R /} REFERENCED
h |
DouUT) } l I\
‘ | ‘
BE i | } /
! i oo]
10SB \ , | ‘ I : | 1 | {
]

NOTES

1. THIS 1/0 BUS CYCLE WAS INITIATED BY ANY READ-FROM-MEMORY INSTRUCTION
WHICH REFERENCED ONE OF R4 THRU R7.

2. CONTROL INFORMATION IS VALID ON BOTH FDGES OF IOSB.

3, DATA FROM THE INTERFACE IS LATCHED INTO THE BPC CURING T4.

Figure P-9. A Read 1/0 Bus Cycle.

PROCESSOR-20

FUNCTIONAL DESCRIPTION OF THE I0C

STANDARD 1/0

Standard (programmed) 1/0 involves three activities:

I} Setting the peripheral address
2) lInvestigating the status of the peripheral
3) Initiating an 1/0 Bus Cycle

ADDRESSING THE PERIPHERAL

A peripheral is selected as the addressed peripheral by storing its octal
select code into a 4-bit register called PA (Peripheral Address - address llg).
Only the four least significant bits are used to represent the select code.

CHECKING STATUS

The addressed peripheral is allowed to control the Flag and Status lines.
(That is, it is up to the interface to not ground Flag or Status unless it is
the addressed interface.) These lines have an electrical logic such that when
floating they appear false (clear, or not set) for SFS, SFC, SSS, and SSC.

The basic idea (and it can be done in a variety of ways) is fo use
sufficient checks of Flag and Status before and amongst the 1/0 Bus Cycles
such that there is no possibility of initiating an 1/0 Bus Cycle fo a device
that is not ready to handle it. One way to do this with Standard 1/0 is to
precede every 1/0 Bus Cycle with the appropriate checks.

INITIATING I/0 BUS CYCLES

An 1/0 Bus Cycle occurs once each ftime one of R4 — R7 (45-7g) is accessed
as memory. An instruction that "puts'" something into R4-R7 results in an
output (write) 1/0 Bus Cycle. Conversely, an instruction that "gets" something
from R4-R7 results in an input (read) 1/0 Bus Cycle. However, there are no
R4 through R7. The use of address 4-7 is just a device to get an 1/0 Bus
Cycle started; they do not correspond to actual physical registers in the 10C.

Consider the following hypothetical case, (specially invented for
purposes of illustration) - Suppose we are to write a driver for a smarter
than average paper tape punch: Upon a single command it can output 50 feed-
frames for leader. The routine is to have two entry points; one for outputting
a single word of data, and one for causing the leader. Also, the punch sets
the status line if it gets low on tape. Prior to caliing our driver, the
main program puts the word fo be outpuited into DATA, and the select code
of the punch in PUNSC,

I. PUNCH JSM SETUP SET SELECT CODE, CHECK AVAILABILITY

2. LDA DATA GET OUTPUT DATA WORD

3. STA R4 QUTPUT THE DATA (IC1 = 0, 1C2 = 0)

4. RET 1 RETURN TO MAIN PROGRAM

5. LEADR JSM SETUP SET SELECT CODE, CHECK AVAILABILITY
6. STB RS OUTPUT LEADER (ICI =1, IC2Z = 0)

7. RET I RETURN TO MAIN PROGRAM

8. SETUP LDA PUNSC GET SELECT CODE

9. STA PA PUT IT INOT PERIPHERAL ADDRESS REG

0. SFC % WAIT |F PUNCH NOT AVAILABLE

PROCESSOR-21

FUNCTIONAL DESCRIPTION OF THE 10C

STANDARD 1/0

INITIATING I/0 BUS CYCLES (CONT.)

SSS BXCRS SKIP IF PUNCH OUT OF TAPE
RET | OK, DO CUTPUT OPERATION

3. BXCRS : HANDLE THE OUT OF TAPE SITUATION
14, PUNSC NOP TAPE PUNCH SELECT CODE
15. DATA NOP OUTPUT DATA WORD

Lines | and 5 invoke lines 8 through 12. Lines 8 and 9 set the select
code, and line 10 checks for presence and availability (both must be "yes",
or, at the inferface the Flag will be false). Line Il checks for the out-of-
tape condition; it is the responsibility of the punch-interface combination to
set Status high when the tape supply is low and the punch is addressed by PA.
The routine at BXCRS handles the out of tape condition.

Lines 2 and 3 punch a word of data onto the tape. Line 3 causes a
"write" (oufput) 1/0 Bus Cycle. The contents of (in this case) A are written
to the addressed peripheral. Because it is R4 that is referenced, IC| and
IC2 are both zeros. The interface understands an output 1/0 Bus Cycle with
ICi and IC2 both zeros o be a command to punch the supplied word.

Line 6 gives the command to punch leader. Because it is a write operation

referencing R5, an output 1/0 Bus Cycle is done with ICI = | and 1C2 = 0.

In this instance the contents of B is sent to the punch (we will assume that
it is ignored, however). The interface understands an output 1/0 Bus Cycle
with ICl = | and IC2 = 0 as the command to generate leader.

The 16~bit word transmitted from B need not be ignored. An even smarter
punch might use it as the number of feed-frames fo punch. A more general
approach would be for the interface to recognize that ICI =1 and IC2 = 0
signifies that the accompanying word is to be decoded to determine the
instruction/control information. The possibilities are numerous.

THE ODDBALL POSSIBILITIES

By this time in your reading you no doubt instantly recognize LDB R4
as an input operation where a word is read from the addressed peripheral
and placed into B. But what about the other memory reference instructions?
What, for instance, does ADA R4 do, or a CPA R4, or an 1SZ R4, or worse
still, a LDB R4,I? Some of these things do not have a known practical use,
but they each work in a logically straight-forward manner.

An ADA R4 will read a word of data from the addressed peripheral, and
then add it to the contents of A, leaving the result in A.

A CPA R4 will read a word of data from the addressed peripheral, and

then compare that with the existing contents of A. The BPC will skip the
next instruction if the two are unequal.

PROCESSOR~-22

FUNCTIONAL DESCRIPTION OF THE 10C

STANDARD 1/0

THE ODDBALL POSSIBILITIES (CONT.)

An 1SZ R4 is an input/incremeri-and-skip/output instruction. It reads
a word of data from the addressed peripheral and increments the resulting
value. If the sum is zero, the next instruction is skipped. Buf in any case,
the incremented value is writfen back to the same peripheral it came from,
The interface sees a read 1/0 Bus Cycle fol lowed a very short time later by
a write 1/0 Bus Cycle.

An LDB R4,I does the obvious thing. A word of data is read from the
addressed peripheral. Once the data is read it is treated exactly as if it
had come from regular memory, and the action proceeds just as for any other
Load B-indirect.

THE INTERRUPT SYSTEM

The idea behind interrupt is that for certain kinds of peripheral
activity, the processor can go about other business once the |/0 activity
is intiated, leaving the bulk of the 1/0 activity to an interrupt service
routine. Vhen the peripheral is ready to handle another ration of data (i
might be a single byte or a whole string of words) it requests an interrupt.
When the processor grants the interrupt, the program segment currently being
executed is automatically suspended, and there is an automatic JSM fo an
intferrupt service routine that corresponds to the device that interrupted. /ﬁ%
The service routine uses Standard |/0 to accomplish its task. A RET O,P '
terminates the activity of the service routine and causes resumption of
the suspended program.

PRIORITY

The interrupt system allows even an interrupt service routine to be
interrupted and is therefore a multi-level interrupt system, and it has a
priority scheme to determine whether to grant or ignore an interrupt request.

The 10C allows two levels of interrupt, and has an accompanying two levels
of priority. Priority is determined by select code; select codes 0-7g are
the lower level (priority level 1), and select codes 10g-17a are the higher
level (priority level 2). Level 2 devices have priority over level | devices;
that is, a disc drive operating at level 2 could interrupt a plotter operating
at level |, but not vice versa. Within a priority level all devices are of
"equal" priority, and operation is of a first come-first served basis; a level
| device cannot be interrupted by another leve!l | device, but only by a level
2 device. However, priorities are not equal in the case of simultaneous
requests by two or more devices on the same level. In such an instance the device
with the higher numbered select code has priority. With no interrupt service
routine in progress, any interrupt will be granted.

INTERRUPT POLLS

Devices request an interrupt by pulling on one of two interrupt request
lines (IRL and IRH - one for each priority level). The |0OC determines the
requesting select code by means of an interrupt poll, to be described in the
next paragraph. |f the I0C grants the interrupt it saves the existing select

PROCESSOR-23

FUNCTIONAL DESCRIPTION OF THE 10C
THE INTERRUPT SYSTEM

INTERRUPT POLLS (CONT.)

code located in PA, puts the interrupting select code in PA, and does a JSM-
Indirect through an interrupt tabie to get fo the interrupt service routine.

An interrupt poll is a special |/0 Bus Cycle to determine which interface(s)
is (are) requesting an interrupt. An interrupt poll is restricted to one
level of priority at a time, and is done only when the I10C is prepared to
grant an interrupt for that level.

The interfaces distinguish an Interrupt Poll Bus Cycle from an ordinary
1/0 Bus Cycle through the INT line being low. Also, during this Bus Cycle
PAB3 specifies which priority level the poll is for. An interface that is
requesting an interrupt on the level being polled responds by grounding the
nth 1/0 Data |ine of the |/0 Bus, where n equals the device's select code
module eight. |If more than one device is requesting an interrupt, the one
with the higher select code will have priority.

The 10C has a three-deep first-in last-out hardware stack. The top of
the stack is the Peripheral!l Address register (PA-llg). The stack is deep
enough to hold the select code in use prior to any interrupts, plus the
select codes for two levels of interrupt. When an interrupt is granted, the
I0C automatically pushes the select code of the interrupting device (as
determined by the interrupt poll) onto the stack. Thus the previous select
code-in-use is saved, and the new select code-in-use becomes the one of the
interrupting device.

INTERRUPT TABLE

It is the responsibility of the firmware to maintain an interrupt table
of 16 consecutive words, starting at some Read/Write Memory address whose
four least-significant bits are zeros. The words in the interrupt table
are set to the starting addresses of the various interrupt service routines
in use for the 16 different select codes. When a peripheral is allowed
to interrupt its select code is used to determine which interrupt service
routine o JSM to. The interrupt service routine then handles the 1/0
operations needed by the interrupting device.

The firmware must also store the address of the first word of the inter-
rupt table in the IV register (lInterrupt Vector register, address 10g, located
in the I0C). Those contents will merge with the select code 1o produce the
address of the appropriate table entry. In either version of the processor
a fwo-level indirect jump is used to arrive at the interrupt service routine.
This happens automatically because the BPC generates a JSM IV ,I as part
of what it does during an interrupt. See Figures P-10 and P-10%. In I5-bit
processors the indirect chain could be longer if desired. |t cannot be shorter,
however, due fo a bug in the I5-bit I0C. Thus, the scheme depicted in Figure

P-11 cannot be used. Even with I6-bit processors the scheme in Figure P-11 is
not possible; in 16-bit processors the |0C forces the BPC to do two consecutive
"first-level" indirect accesses, so that the effect is exactly that shown

in Figure P-11, except that it doesn't matter then whether bit I5 of IV is
set or not.

In I5-bit processors bit 15 of IV must be set. This does two things.
First, it guarantees that the JSM 10g,I involves at least two levels of
indirect. Second, it avoids a bug in the I0C. |If bit |5 were a zero, the
machine would attempt to implement the situation shown in Figure P-1l. But

PROCESSOR-24

FUNCTIONAL DESCRIPTION OF THE 10C

THE INTERRUPT SYSTEHM
INTERRUPT TABLE (CONT.)

a race condition between the BPC and 10C is involved; its effect is To make
bit |5 of IV look like a one even when it was a zero. The bug is somewhat
dependent upon clock frequency. Reliable operation can be ensured only by
using a two-level JSM through IV and the interrupt table.

In 16-bit processors the bug was fixed by permanently deciding the race
condition in the 10C's favor. Nothing was done fo the BPC; it still only
understands one level of indirect addressing. But the I0C keeps the INT
line grounded long enough to force the BPC to treat the contents of IV
itself as an indirect address. This causes the BPC to read the next address
(the one in the interrupt fable) and treat ¢¢s contents as the destination
address, just as in multi-level indirect addressing. Thus, in the 16-bit
processor the JSM through the interrupt table is always a two-level process
as shown in Figure P-10%, regardiess of whether bit 15 of IV is set or not.
Bit I5 of IV becomes simply an address bit, helping indicate where in
memory the interrupt table is located.

losi-l\l) 15 A FIRST-LEVEL

ISDIRECT ADDRESS 104(=1¥) 1S A FIRST-LIVEL 10g(~1v) IS AS INDIRECT ADDRESS
INTERRUPT VECTOR INDIRECT ADDRESS INTERRUPT VECTOR
= AR ¥ %l o e
L (" HUST DE A oxe f 5 I_ gr:g g::nggunmlzn 18 I0C 1V(10,)) é
I LXXXXXXXXXXX 0000 l——- g!}§§° Iu/u:xxxuxxxxxx 0000 1——, OXXXXXXXXXXX 0000 —
24 \) a FHELT 3 N
m{xlszfvnamm.n DETERMINED BY § EEEQL DETERMINED DY THIS 1S A DETERMINED DY
SECOND-LEVEL THE INTERRUPT POLL <gugup THE INTERRUPT POLL VARIADLE THE INTERRUPT POLL
INDIRECT ADDRESS & _‘.‘533‘.: 1v(10y) 8 DESTIRATICH
WIERRUPT TABLE 18§ FHESHS qurearut TABLE It 8 INTERRUPT TABLE IN
g : S
READ/WRITE HENORY : :; E'E.E.ﬁ READ/WRITE HEHORY E READ/WRITE. MEMORY :
r-) SERVICE RGUTINE ADDR. "-‘ §> gggs SERVICE ROUTINE ADDR. ‘._\ : r—) IMP < SERVICE ROUTINE ARDR.D (\ ﬁn
° 1a- Falg :[_) 1 o ° ° | aﬂ
] 1 ﬁ 3 a [~}
] [u ta g - - . 18-
bt loa 8 ! Ea 8 182
. | :'4 [3] - - - @«
& EN 5 LES g I 28
2 '§§ 2 [™ 4 . . - 1 gs
© ! a 188 & R . 0% - 158
= | = 1% & Q}!‘ { gk
))) A i I
' .) '1& b
Cd o\ .
o . » :&-—15$L———-——-
2 - = < : :
. [N
§ § f
H o w
g 5 ¢
L) SERVICE ROUTINE ADDR. l—) SERVICE ROUTISE ADDR. [-) JHP < SERVICE ROUTINE ADDR.>
JSM,1 THROUGH THE INTERRUPT TABLE WITH JSH, | THROUGH THE INTERRUPT TABLE WITH JSH,T THRGUGH THE INTERRUPT TABLE
“NATURAL® FULTI-LEVEL THDIRECT ADDRESSIKG "FERCED” FULTI-LEVEL INDIRECT AWURESSING WITH SIGLE-LEVEL INDIRECT ADDRESSHIG
Figure P-10. Figure P-10%. Figure P-11.
The Interrupt Table With The Interrupt Table With How Not To Use
15-Bit Addressing. 16-Bit Addressing. The Interrupt Table.

After the interrupt poll is complete the select code of the interrupting
device is made to be the four least-significant bits of the IV register. Thus
'V now points at the word in the Interrupt Table which corresponds to the
appropriate interrupt service routine. All that is needed now is a JSM IV,1I,

PROCESSOR-25

‘)

FUNCTIONAL DESCRIPTION OF THE I0C

THE INTERRUPT SYSTEM

INTERRUPT TABLE (CONT.)

and the interrupt service routine will be under way. This is accomplished by
the BPC as summarized below.

INTERRUPT PROCESS SUMMARY

The 10C inspects the interrupt requests IRL and IRH during the time sync
is given. Based on the priority of the interrupt requests, and the priority
of any interrupt in progress, the |0C decides whether or not to grant_an
interrupt. If it decides to allow an interrupt it immediately pulls INT to
ground, and also begins an interrupt poll.

The grounding of INT serves three purposes: It allows the interfaces to
identify the forthcoming 1/0 Bus Cycle as an interrupt poll; it causes any
other chips in the system, except the BPC, to abort their instruction decode
process {(which by this time is in progress) and return ftheir idle states; and
it causes the BPC to abort its instruction decode and execute a JSM [Qg, |
instead.

The 10C uses the results of the interrupt poll fo form the interrupt vector,
which is then used by the JSM 10g,!. It also pushes the new select code onto
the peripheral address stack, and puts itself into a configuration where all
interrupt requests except those of higher priority will be ignored.

INTERRUPT SERVICE ROUTINES

The majority of the interrupt activity described so far is accomplished
automatically by the hardware. All the firmware has been responsible for
has been the |V register, the maintenance of the interrupt table, and (probably)
the initiation of the particular peripheral operation involved (ploftting a
pcint, backspace, finding a file, efc.). Such operations (initated through a
command given by simple programmed |/0) may involve many subsequent |/0 Bus
Cycles, done at odd time-intervals, and requested by the peripheral through
an interrupt. It is the responsibility of the interrupt service routine to
handle the 1/0 activity required by the peripheral without upsetting the
routine that was interrupted.

It's difficult to say specific things about interrupt service routines
in general; a lot depends upon the particulars of the host software system.
In the next few pages we will examine some generalities relating to interrupt
service routines, and sketch some examples. The result may leave some readers
with an unsatisfied feeling; specific information is not available except as
part of a description of a particular software system.

OQur first observation is on the number of service routines. |In general,
there is not one service routine for each select code, or even for each
peripheral. The usual case is collections of routines that perform related
functions within the needs of a certain class of peripheral activity; each
class of activity has it own collection.

PROCESSOR-26

FUNCTIONAL DESCRIPTION OF THE 10C

THE INTERRUPT SYSTEM)

INTERRUPT SERVICE ROUTINES (CONT.)

For instance, it is unlikely that there would be a single interrupt
service routine for & disc. On the customer's level there are many commands
in the disc operating system. On the firmware level there are a series of
routines that perform 'fundamental units' cf activity, where each 'fundamental
unit! involves some amount of 1/0. Most commands in the user's disc operating
system are made up of a series of these 'fundamental units' of activity.
'Fundamental units' of activity for the disc are things like: moving the
head to a given frack, reading a given sector from a track into such and such
a buffer, and writing from such and such a buffer info a given sector. It
is these fypes of activity that are most likely to have corresponding interrupt
service routines.

Let's sketch a hypothetical example. Assume a fairly involved disc user's
command is to be performed, one requiring reading the directory on the disc
to determine the location of certain file on the disc, and then l!oading that
file into memory. The kind of thing that happens here is to move the head
to the start of the directory, read through the information in the directory
sector by sector until the information about the desired file is found, moving
the head to the file's location, reading its header, reading its first sector,
etc., etc.

Each service routine is smart enough to know which service routine follows
it for the particular high level task at hand, and, if it has a choice based fﬁ%
on the way events turn out (error conditions, etc.}, it knows how to handle
that, too. As each new step in the sequence requiring a different interrupt
service routine is reached, the concluding routine changes the appropriate
entry of the interrupt table o the starting address of the next service
routine. In this way a versitile collection of interrupt service routines
can serve many purposes.

As another example of this, consider a smart tape cassette, whose internal
architecture was of variabla length files composed of fixed length records.
Such a cassette would resemble a cisc from the user's point of view, and it
is possible that some of the disc interrupt service routines would work for
the cassette, also.

And lastly, consider the case of formatted output to lins printers, punches,
teletypes and CRT's. Some of these devices may differ slightly in their mainline
Tirmware drivers, but there is an excellent chance that they could use the
same general purpose Interrupt service routine(s).

So much for the chicken, now for the egg. At the beginning of the
operation the mainline firmware sets up any initial conditions that are
required (e.g., selecting a buffer and setting a word count or a velue of
a pointer). The mainline firmware also selects the interrupt service

routine by modifying an entry in the interrupt table. It also gives the
first 1/0 Bus Cycle, which wakes up the peripheral and gets things going.
After this first [/0 Bus Cycle the mainline firmware can go on about its =
other business. ,-}

PROCESSOR-27

FUNCTIONAL DESCRIPTION OF THE 10C

THE INTERRUPT SYSTEM

INTERRUPT SERVICE ROUTINE (CONT.)

Perhaps some questions have occured to you: '"How does a peripheral know
if it is supposed to interrupt, or operate in some other mode?" (A Low-end
calculator might not use interrupt - or on a given calculator a peripheral
may use interrupt sometimes but not others); "How is it that the routine that
is in progress doesn't get bombed when an interrupt occurs?"; "And, come to
think of it, how can the calculator proceed with other activity when it has
essentially passed over unfinished business - might not things run amuck?";
and lastly, "How does the peripheral know when to stop interrupting, especially
in the case of an output operation where an arbitrary amount of information
is transmitted?"

HOW A PERIPHERAL KNOWS WHETHER TO USE INTERRUPT OR SIMPLE I/0

There are several possibilities here: it might never use interrupt; it
might always use interrupt, it might use interrupt always with one mainframe
but not with another due to different interface cards; it might have a smart
interface card that knows what calculator it's in, and thus use interrupt or
not; or, it might have a smarter yet interface that allows the calculator to
tell the peripheral when to begin using the interrupt system, and when to
stop.

The last possibility could work like this: The initial 1/0 Bus Cycle
given by the mainline firmware could reference, say, R5. This would be
understood by the interface as a command to interrupt as soon as the device
is ready to handle the next ration of data. A scheme |like this allows 1/0
statements referencing R4 free for simple, non-interrupt operation.

BOMBPROOFING THE MAINLINE FIRMWARE

The calculator could be almost anywhere in its infernal coding when an
interrupt is granted. Since the code is suspended with a JSM, the way is
clear to get back to the right spot with a RET O,P. But it won't do any
good to come back it the items in memory related to the routine are not the
same, The interrupt service routine must save and later restore any memory
location that will be directly or indirectly disturbed by the activity of
the service routine. This could include the extend and overflow registers
of the BPC, decimal carry and shift-extend of the EMC, and possibly CB and
DB in the 16-bit version of the i0C.

As long as the sevice routine does all its own laundry, it's easy to
tell what to save; it's whatever gets used thai's not private to that service
routine. But if the service routine farms out some of its work to utility
subroutines in the main sysiem, what needs to be saved is not always obvious.

""'SIMULTANEQUS" ACTIVITIES

The main system software must be designed with interrupt in mind fo take
full advantage of the interrupt system. This generally involves an entirely
different approach to 1/0 than in less sophisticated machines where there
is no interrupt capability. The following example illustrates the sort of

PROCESSOR-28

FUNCTIONAL DESCRIPTION OF THE I0C

THE INTERRUPT SYSTEM

"SIMULTANEOUS" ACTIVITIES (CONT.)
approach used with interrupt systems.

Consider the following program segment:

50 WRITE (6,100} A,B,C,
55 X=(A+B+C)3

60 A=A+

100 FORMAT IIO, 2F20.5

The write statement of line 50 is to be done under interrupt. Basically,
the idea is that once the firmware that executes the write statement has
gotten things started, the calculator can begin to execute the next line
in the program. In this example it is safe to immediately execute |ine 55,
as it will not affect the on-going process for line 50. But line 60 is
another matter., Whether or not it is safe to execute line 60 depends upon
how the main system works.

Suppose the main system has lots of memory to burn, and that the WRITE
routine, as part of its initialization, went and got the values of A, B, and
C, and saved them in a buffer., Then nothing can hurt line 50; line 60 can
be executed immediately.

On the other hand, consider & system with not so much memory, and conse-
quently, little or no buffering. |t could compromise by setting a bit in
the symbol table entries of A, B, and C, marking them as busy. As each is
outputted, it would be un-marked. Then line 60 would be executed if A were
not busy, or, there would be a delay at |line 60 while the main system waits
for A fo become non-busy.

WHEN TO CEASE INTERRUPT MODE OPERATION

In some cases the peripheral and the corresponding firmware may each know
in advance how many items are involved, and each just goes to sleep when
everything is done.

in the case of arbitrary length transfers, or transfers controlled by
one party, however, somebody has to decide when it's all done, and notify
the other party. For most output operations, and for input operations
involving dumb peripherals, the smarts are in the firmware. What the

peripheral will do is interrupt as soon as it is available following the
exchange of some data, even if the previous exchange was the "last" one
(which the peripheral didn't know). |t will do this, unless the interruot

mode in the interface is shut off before It has the chance to interrupt
again.

PROCESSOR-29

')

FUNCTIONAL DESCRIPTION OF THE I10C

THE INTERRUPT SYSTEM

WHEN TO CEASE INTERRUPT MODE OPERATION (CONT.)

Now for hardware reasons the peripheral will, while requesting an interrupt,
keep its Interrupt Request line active until it gets a (data) 1/0 Bus Cycle
for that device.* The consequences of this are that once the interrupt is
granted the interrupt service routine cannot decline to exchange more data
and terminate itself by simply executing only a RET O,P. To do so would
leave the interface thinking it never got recognized (no data I/0 Bus Cycle),
while the 10C thinks the interrupt is over. So on the next instruction
fetch the interrupt is granted again!! (Assuming the priority situation
has not changed.)

So, unless the device is smart enough to know, by itself, not to interrupt
after the last exchange, the firmware must shut the thing off. This easy
enough to do, and could be done by taking advantage of the ability to set
ICI and IC2 during an 1/0 Bus Cycle (i.e., STA R5 or STA R6, perhaps with
a special code in A). So the result i1s a different (and perhaps an extra)
trailing 1/0 Bus Cycle to put the interrupt mode of the peripheral to sleep.

RETURNING FROM INTERRUPT SERVICE ROUTINES

The last things done by an interrupt service routine are to: (if
necessary) shut off the interrupt mode of the interface; restore any saved
values; and to execute a RET O,P,

The RET O part acts to return to the routine that was interrupted, so that
its execution will continue. The P acts to pop peripheral address stack and
adjust the 10C's internal indicator of what priority level of interrupt is
in progress. By popping the peripheral address stack, PA is set back fo
whatever it was prior to the most recent interrupt.

DISABLING THE INTERRUPT SYSTEM

The interrupt system can be "turned off" by a DIR instruction. After this
instruction is given the I0C will refuse to grant any interrupts whatsoever,
until the interrupt system is turned back on with the instruction EIR. While
the 10C won't grant any interrupts, the RET O,P works as usual so that
interrupt service routines may be safely terminated, even while the interrupt
system is turned off.

It has tc be this way because this is the orly way a device requesting an interrupt can determine
that it has been granted an infterrudt. TIhe mere doing of an interrupt poll for that level is not
enough - & device on the same level but withr a higher select code may be the winner, Nor can an
interface tell if it is the winner by looking at the PA lines - the only signal usable as a sitrobe
for that is given before they are set up.

PROCESSOR-30

FUNCTIONAL DESCRIPTION OF THE I0C

DIRECT MEMORY ACCESS

Direct Memory Access is a means o exchange entire blocks of data between
memory and peripherals. A tlock is a series of consecutive memory locations.
Once started, the process is mostly automatic; it is done under control of
hardware in the 10C, and regulated by the interface.

The DMA process can transfer data in two ways: single words are transferred
one at a time, on a cycle-steal basis; strings of words can bte fransferred
consecutively in a burst mode. |In either instance data is transferred one
word at a time. To transfer a word, a peripheral signals the I0C, which
then requests control of the IDA Bus with BR., That results in an external
halt in all other system activity on the Bus for the duration of the peripheral's
requesi for DMA service. Herein lies the difference between burst mode and
cycle-steal operation; in cycle-steal operation the peripheral ceases to
request service after one word is transferred, and requests service again when
ready, while in the burst mode the request is held to allow a series of
high-speed consecutive transfers fo occur.

During a DMA transfer of a block of data the I0C knows the next memory
focation involved, whether input or output, which select code, (and possibly)
whether or not the transfer of the entire block is complete. This information
is in registers in the |0C, which are set up by the firmware before the
peripheral is fold to begine DMA activiiy.

Actual transfers are initiated at the request of the interface. To
request a DMA transfer a device grounds the DMA Request line (DMAR), Since
there is only one channe!l of DMA hardware, and one DMA Request line, only
one peripheral at a time may use CMA. A situation where two or more devices
compete for the DMA channel must be resolved by the firmware, and it is
absolutely forbidden for two or more devices to ground DMAR at the same time.
(A data request for CMA is not like an interrupt request; there is no
priority scheme, and no means for the hardware to select, identify and notify
an interface as the winner of a race for DMA service.) Furthermore, a device
must not begin requesting DMA transfers on its own; it must wait until
instructed to do so by the firmware.

The DMA process is altogether indeperdent of the operation of standard
1/0 and of the interrupt system, and except for theft of the IDA Bus for
memory cycles, does not interfere with them in any way.

ENABLING AND DISABLING THE DMA MODE

DMA transfers as described above are referred to as the DMA Mode., The
MA Mode can bz disabled iwo ways: by a DDR (Disable Data Request), or by
a PCM (Pulse Count Mode - described later). A DDR causes the I0C to simply
ignore DMAR; no more, no less. The insiruction DMA (DMA Mode) causes the
ICC to resume DMA Mode operation; DMA cancels DDR, and vice versa, ODMA also
cancels PCM, and vice versa. Also, DDR cancels PCM, and vice versa.

Also, the I0C turns on as if it has just been given a DDR. DDR (along
with DIR) is useful during system initialization (or possible error recovery)
routines, where it is unsafe to allow any system activity ito proceed until

PROCESSOR-31

FUNCTIONAL DESCRIPTION OF THE 10C

DIRECT MEMORY ACCESS

ENABLING AND DISABLING THE DMA MODE (CONT.)
the system is properly initialized (or restarted).
REGISTER SET-UP

There are several registers that must be set up prior to the onset of DMA
activity. - These are shown below:

Name Address Meaning
DMAPA (=133) OMA Peripheral Address
DMAMA (=14s) DMA Memory Address (and direction
for I5-bit addressing)
DMAC (=15g) DMA Count
DMAD - DMA Direction (for [6-bit addressing)

The four least significant bits of DMAPA specify the select code which is
to be the peripheral side of the DMA activity. During an !/0 Bus Cycle given
in response to a DMA data request, the content of the PAB lines will be determined
by the four least significant bits of DMAPA, rather than by the PA register.

DMAC can, if desired, be set 1o n-l, where n is the number of words to
be transferred. During each transfer the count in DMAC is decremented. Ouring
the last transfer the |0C automatical ly generates signals which the interface
can use to recognize the last transfer. In the case of a transfer of unknown
size, DMAC should be set to a very large count, to thwart the aufomatic
fermination mechanism. [n such cases it is up to the interface to identify
the last transfer.

DMAMA is set to the address of the first word in the block to be
transferred. This is the lowest numbered address; after each transfer DMAMA
is automatically incremented by the |0C. For 15-bit addressing, bit |5 of
DMAMA specifies input or output (relative to the processor); a zero specifies
input and a one specifies output. With |6-bit+ addressing a separate one-bit
register (DMAD) exists to specify the direction of the transfer; DMAD is
controlled by its own set and clear instructions, and is not addressable.

DMA INITIATION

Once the control registers are set up, a "start DMA" command is given to
the interface through standard programmed /0. The "start DMA" command is
an output 1/0 Bus Cycle with a particular combination of ICI, 1C2, (and
perhaps) a particular bit pattern in the transmitted word. The patterns
themselves are subject to agreement between the firmware designer and the
interface designer. Sophisticated peripherals using DMA in both directions
will have two start commands, one for input and one for ocutput. I[i's also
possible that other information could be encoded in the start command (block
size, for instance).

PROCESSOR-32

FUNCTIONAL DESCRIPTION OF THE I0C

DIRECT MEMORY ACCESS (conT.) &)

DATA REQUEST AND TRANSFER

The interface exerts DMAR low whenever i+ is ready to exchange a word
of data. When DMAR goes low the I0C requests control of the IDA Bus. When
granted the Bus, the 10C initiates an 1/0 Bus Cycle with the PA lines controlled
by DMA Peripheral Address, and does a memory cycle. (The order of these two
operations depends upon the direction of the tfransfer.)

Next the ICC increments DMA Memory Address and decrements DMA Count.

DMA TERMINATION

Both the 15-bit and 16-bit addressing processors employ an automatic DMA
termination indicator that involves [C2. The I5-bit version of the I0C
contains an additional mechanism involving a signal called CTM. Automatic
termination is usable only when the block size is known in advance and is
based on the count in DMAC going negative.

Recal | that at the start of the operation DMAC is set o n-l, where n is
the size of the transfer in words. During the transfer of_ine nth word,
the 10C will signal the interface by temporarily exerting IC2 high during
the 1/0 Bus Cycle for that exchange. The interface can detect this and
cease DMA operations.

The other means of automatic termination would be detection by the inter- ’%3
face of a Count Minus signal (CTM). CTM is generated by the I5-bit version
of the 10C; it means that the count in the least significant |15 bits of DMAC
has gone negative. CTM is a steady-state signal, given as soon as, and as
long as, the count in DMAC is negative. While CTM is generated by the 10C,
it proved unsatisfactory and it is not utilized in the configuration employed

in the present 15-bit hybrid micro-processor. That is, CTM never leaves
the 10C.

For DMA transferes of unknown block size, the interface determines when
the transfer is complete, and flags or interrupts the processor.

THE PULSE COUNT MODE

The Pulse Count Mode is a means of using the DMA hardware to acknowledge,
but do nothing about, some number of DMA requests. The Pulse Count Mode is
initiated by a PCM, and resembles the DMA Mode, but without the memory
cycle. The activities of the registers DMAPA, DMAC, DMAMA, and DMAD remain
as described for DMA Mode cperation. The only difference is that no data
is exchanged with memory; no memory cycle is given. (The ICC even requests
the IDA Bus, but when granted it, releases it without doing the memory cycle.)

A dummy 1/0 Bus Cycle is given, and DMAC decremented. Also, the automatic

termination mechanism stilt functions; in fact, that is the object of the
entire operation. The Pulse Count Mode is intended for applications like

PROCESSOR-33

FUNCTIONAL DESCRIPTION OF THE 10C

DIRECT MEMORY ACCESS

THE PULSE COUNT MODE (CONT.)

the following: Suppose it were desired to move a tape cassette a known number
of files. The firmware puts the appropriate number into DMAC, gives PCM,

and instructs the cassette to begine moving. The cassette would give a DMA
Request each time it encounters a file header. In this way the DMA hardware
and the automatic termination mechanism count the number of files for the
cassette. PCM cancels DMA and DDR. Both DMA and DDR cancel PCM.

PLACE ARD WITHDRAW

THE NOTATION OF A STACK

A stack is a series of consecutive memory locations. A stack is treated
as a unit of memory having a single 'depository' into which or from which all
information in the stack must pass in a first-in, last-out, order. The depository
is the 'top of the stack'. A stack that can contain one hundred words of
information is one hundred words 'deep'.

Consider a 100 word stack containing one entry. That entry would be
'on top of the stack' and the remaining 99 words 'below' the top of the
stack would be 'empty'. Suppose a second entry is made. Then this latest
entry is on top of the stack, the first entry is just below it, and 98 empty
words below that.

Data is removed from a stack in a way that is the reverse of the way it
is put in: the top of the stack is deleted and the entries below 'move up'
one location, with the entry formeriy one below the top of the stack now
becoming the new top of the stack.

Physically, a stack can be implemented in hardware or in firmware. In
a genuine hardware stack all the entries actuatly move from their present
locations to the next one, and, they all do it at the same time as a single
operation. Obviously, this requires a considerable amount of interconnection
between the locations In the stack.

A stack that is implemented in firmware is simply a series of consecutive
memory locations, accessed indirectly through a pointer. Instead of the
entries in the stack changing their physical locations in the memory during
additions and deletions, the value of the pointer is incremented or decremented.

STACK OPERATIONS

The 10C includes some firmware stack manipulation instructions. Two registers
are provided as stack pointers: C and D. There are eight place and
withdraw instructions for putting things into stacks and getting them out.
Furthermore, the place and withdraw instructions can handle full 16-bit+ words,
or pack 8-bit bytes in words of a stack. And last, there are provisions
for automatic incrementing and decrementing of the stack pointer registers,
C and D.

PROCESSOR-34

FUNCTIONAL DESCRIPTION OF THE I10C

PLACE AND WITHDRAH)

STACK OPERATIONS (CONT.)D

The mnemonics for the place and withdraw instructions are easy to decipher.
All place instructions begin with P, and all withdraw instructions begin
with W. The next character is a W or B, for word or byte, respectively. The
next character is either a C or D, depending upon which stack pointer is
to be used. There are eight combinations, and each is a legitimate
instruction.

A PWD A,| reads as follows: place the entire word of A into the stack
pointed at by D, and increment the pointer before the operation. The instruction
WWC B,D is read: Withdraw an entire word from the stack pointed at by C, put
the word into B, and decrement the stack pointer D after the operation.

The place and withdraw instructions outwardly resemble the memory reference
instructions of the BPC: a mnemonic followed by an operand that is understood
as an address, followed by an optional 'behavior modifier'. The range of
values that the operand may have is restricted, however. The value of the
operand must be between 0 and 7, inclusive. Thus, the place and withdraw
instructions can place from, or, withdraw into, the first eight registers.
These are A, B, P, R, and R4 through R7. Therefore, the place and withdraw
instructions can initiate /0 Bus Cycles; they can do 1/0.

The place and withdraw instructions automatically change the value of the
stack pointer each time the stack is accessed. In the source text an increment /W3
or decrement is specified by including a ,I or a ,D respectively, after the
operand.

Regardless of which of increment or decrement is specified, a place
instruction will do the increment or decrement of the pointer prior to the
actual place operation. Contfrariwise, the withdraw insfructions do the
increment or decrement after actual withdraw operation. The reason for this
is that it always leaves the stack with the pointer poinfing at the new
'Yfop-of-the-stack', and allows intermixing of place and withdraw instructions
without adjustment of the pointer.

PLACE AND WITHDRAW FOR BYTES

One of the differences between the I5-bit and 16-bit versions of the
processor is the way they handle byte operations for the place and withdraw
instructions. Because the stack in memory is composed of words, rather
than bytes, some means are required to extend the addressing of the pointer
registers to include designation of bytes within the addressed word.

In I15-bit processors this is done with an unused bit in the pointer
registers themselves; they are |6-bit registers while only 15-bits are
needed fo address the memory. Furthermore, the place and withdraw instructions
do not allow a place or withdraw through C or D indirect. These conditions
leave the left-most bit (bit 15) free to designate which byte (of the word
at the ftop of the stack) is the byte in question. A one in bit 15 designates /m%
the left-half of the word at the top of the stack. It is up to the firmware p
fo see that bit 15 is properly set prior to beginning stack operations.

PROCESSOR~35

FUNCTIONAL DESCRIPTION OF THE I0OC

PLACE AND WITHDRAW

PLACE AND WITHDRAW FOR BYTES (CONT.)

After each place or withdraw bit |5 is automatically toggled to provide
a left-right-left-right sequence. During an automatic increment to the
poinfter register (,I) the address in the lower |5 bits increments during
the zero-to-one transition of bit 15, Similarly, during an automatic decrement
of the pointer register (,D) the transition of bit 15 from a one to a zero
is accompanied by a decrement of the lower |5 bits.

The incrementing and decrementing schemes just described are only for
increments and decrements brought about by a ,I or ,D following the operand
of a Place or Withdraw instruction. Increments or decrements to the pointer
register with 1SZ or DSZ do not automatically toggle bit I5.

In I6-bit processors leff-right indication of bytes is accomplished with
a signal called BL; there is no unused address bit as in 15-bit addressing.
BL (Byte Left Not) is in turn controlled oy bit O of either the C or D
registers, as shown in Figure P-12. Sixteen-bit addressing is maintained by
providing an additional one->it register for use with each stack pointer
register. The non-addressable registers are called CB (C Block) and DB
(D Block). They are designated "block" because, as the most-significant
bit of the word pointer value, they divide the address space into two halves,
or "blocks".

STACK WORD POINTER
VALUE TO IDA BUS

BL
(" IDA(I5) - IDA(O) W [

CB C REGISTER

C(0) = O DESIGNATES LEFT HALF
C(0) = | DESIGNATES RIGHT HALF

Figure F-12. Sixteen-Bit Stack Pointer Addressing.

PROCESSOR-36

FUNCTIONAL DESCRIPTION OF THE I0C

PLACE AND WITHDRAW

PLACE AND WITHDRAW FOR BYTES (CONT.)

Figure P-12 shows how CB is used with C for place-byte and withdraw-byte
operations that use the C register as the stack pointer. For such operations
that use the D register instead, D3 acts as the most-significant bit of the
address, and bit 0 of D conirols BL.

During the automatic increment or decrement to the pointer register, CB
and DB function as most-significant 17th bits for their respective registers.
An advantage of having the bit that designated the byte be the least-significant
bit is simplification of the process of arithmetic computation upon byte-addresses.

The CB and DB registers can be set to their initial values by machine-
instructions for setting and clearing each register. For instance, DBU
(D Block Upper) sets the DB register; CBL (C Block Lower) clears the CB
register.

During the execution of a program the current values of CB and DB can be
obtainad by reading the contents of the DMAPA Register (13g). While the four
least-significant bits are the select code of a DMA-related peripheral, bit 15
reflects CB and bit 14 reflects DB. A one stands for upper, while a zero
means lower, See Table P-1. Please note that CB and DB cannot be altered
by writing into register 13g; such alteration must be done by using the
machine-instructions mentioned in the previous paragraph. |f, for instance,
an interrupt service routine involves the use of place or withdraw byte
instructions, the service routine would need to save and later restore the
initial values of whichever block-pointers were used (CB & DB), as well as set
them up for use within the routine itself.

The place-byte instructions cannot be used to place bytes into the
registers within the BPC,_EMC and I0C. The reason for this is that these
chips do not utilize the BYTE line of the IDA Bus during references to their
internal registers.

The BYTE line is_a signal supplied by the 10C for use by any interested
memory entity, The BYTE line indicates that whatever is being fransferred
to or from memory is a byte (8 bits) and that bit 15 of the address (for I5-bit
processors) or BL (for 16-bit processors) indicates right or left half. During
a write memory cycle it is up tfo the memory to merge the byte in question with
its companion byfte in the addressed word.

In the case of a withdraw-byte the memory can supply the full |6-bi+t
word (that is , ignore the BYTE line). The IOC will extract the proper byte
from the full word and store it as the right-half of the referenced register;
the left-half of the referenced register is cleared. |In the case of a place-
byte, however, the I0C copies the entire referenced register into an internal
working register (W), and outputs its right-half as either the upper of lower
byte (according to bit 15 of the address) in a full 16-bit word. The full
word is transmitted to the memory, and the "other" byte is all zeros. Thus,
in This case the memory must utilize the BYTE line.

PROCESSOR-37

FUNCTIONAL DESCRIPTION OF THE 10C

PLACE A\D WITHDRAY

PLACE AND WITHDRAW FOR BYTES (CONT.)

The consequence of the above is that any byte-oriented stacks to be
managed using the place instructions must not include registers in any of the
BPC, EMC, or |0C; that is, C and D must not assume any value between 0 and
37g inclusive for a place-byte instruction.

NOTE

An anomaly has been discovered in the operation of the I0C., |If, while
BYTE is low in conjunction_with a memory cycle which is in progress, a
Bus Request occurrs, then BYTE may pulse high for 10-40 nsec at the
beginning of each #2, for the duration of that memory cycle. The
severity of the glitch is related to the inherent speed of the chip,
and to the exact timing relatiorship between @i and #2. There doesn't
appear to be any way 1o avoid the glitch, and therefore it maybe
necessary for the designer to design around it.

INITIALIZATION OF TURN-ON

There is a signal called POP which is generated by the power supply. Its
function is to prevent the chips from running except when power supply conditions
are adequate. Chips can use POP to initialize certain internal conditfions
upon turn-on. The I0C does this. After turn-on the interrupt and DMA
systems are left in the disabled state. The contents of the internal
registers are random,

In the 15-bit version POP is_held low by the sower supply until all
voltages have stabilized. Then POP is pulled high at the beginning of a #2.

In the 16-bit version POP synchronizer circuit was added to each chip.
The intent is fo free POP from synchronous phasing restrictions. The only
requirement is that POP transition sharply to avoid threshold ambiguities in
the various synchronizers. Unfortunatly however, some troublc has been
experienced with this scheme. At least one designer has claimed flatly that
the new scheme does not work, and that the old synchronous-with-92 rule
must still be observed.

PROCESSOR~38

AN

GENERAL INFORMATION ABOUT THE EMC

The Extended Math Chip (EMC) provides 15 insfructions. Eleven of these /ﬁ%
operate on BCD-coded three-word mantissa data. Two operate on blocks of data
of from | to 16 words. One is a binary multiply and one clears the Decimal
Carry (DC) register.

Unless specified oftherwise, the contents of fthe registers A, B, SE and
DC are not changed by the execution of any of the EMC's instructions.

The EMC communicates with other chips along the IDA Bus in ways similar
to how the I0C communicates via the Bus.

NOTATION

A number of notational devices are employed in describing the operation
of the EMC.

The symbols <....> denofe a reference to the actual contents of the
named location. For instance:

<A> + <HOOK> + A
represents the instruction ADA HOOK.

A,_s @nd By . denofe the four least significant bit-positions of the A
and B registers, respectively. Similarly, Au_lr denotes the {2 most-signif~
icant bit-positions of the A register. And by the previous convention,
<A,_,> represents the bit pattern contained in the four least-significant
bi$-posi+ions of A.

ARl is the label of a four-word arithmetic register located in R/W
memory, locations (1)77770g through (1)777734. The assembler (ASMA) pre-
defines the symbol ARl as address 77770g (for |5-bit assemblies), or as
address 177770 (for 16-bit assemblies).¥

ARZ is the label of a four-word arithmetic accumulator register located
within the EMC, and occupying register addresses 20g through 235. ASMA
pre~-defines the symbol AR2 as address 20s.

SE is the label for the four-bit shift-extend register, located within
the EMC. Although SE is addressable, and can by read from, and stored into,
its primary use is as internal intermediate storage during those EMC instructions
that read something from, or put something into, Ao-a' ASMA pre~defines SE
as 248 .

DC is the mnemonic for the one-bit decimal-carry register located within
the EMC. DC is set by the carry output of the decimal adder. Sometimes, in
the schematic illustrations of what the EMC instructions do, we show DC as

L] o
ASMA is the DOS-RTE assembler for CPD Processor. ASVMA is a 2100-sceries-computer program, written N\j
in H-P Assembly Language.

PROCESSOR-39

GENERAL INFORMATION ABOUT THE EMC

NOTATION (conT.)

being part of the actual computation, as well as being a repository for
overflow. In such cases the initial value of DC affects the result. However,
DC will usually be zero at the beginning of such an instruction. The

firmware sees to that by various means.

DC does not have a register address. Instead, it is the object of the
BPC instructions SDS and SDC (Skip if Decimal Carry Set anc Skip if Decimal
Carry Clear), and the EMC instruction CDC (Clear Decimal Carry).

DATA FORMAT

The EMC can perform operations on twelve-digit, BCD-encoded, floating-
point numbers. Such numbers occupy four words of memory, and the various
parts of a number are put into specific porticns of the four words, as shown
in Figure P-13. The twelve mantissa digits are denoted by D; through Di,.
D; is the most-significant digit, and Dy2 is the least-significant digit.

I+ is assumed that there is a decimal point between D; and D,.

ADDRESS IS5114113112111]101 918|765 3121110
M Es TWO'S COMPLEMENT EXPONENT EMPTY Ms
M+ D D5 D3 D4
M+ 2 Ds Dg D, Dg
M+3 Dg Dig Dy Dj2
Figure P-13. Floating-Point Data Format.

Eg and Mg each represent positive and negative (signs) by zero and one,

respectively.

Those unfamiliar with two's complement arithmetic, and possibly the
general procedures of firmware-implemented arithmetic, will find a modest
A Beginner's Look at Calculator Arithmetic.

explanation in the next section:

PROCESSOR-40

~

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

This survey of arithmetic techniques is offered as an introduction for
those not familiar with them. |+ doesn't cover the entire subject, nor is
it always rigorous, Methods of implementing arithmetic differ widely, and
the best we can do is tip our hats fto some fundamentals, and to some gencral
approaches., We will, however, be able to explain certain hardware features
of the BPC and EMC that are related to arithmetic, as well as why certain
instructions are fashionec as they are.

NUMERICAL REPRESENTATIONS

If someone were to ask you Jack Benny's age, you would immediately znswer,
"Why, thirty-nine, of course."* You probably wouldn't say:

a. one-oh-oh=-one-one-one
b. oh=oh-one-one, one-oh-oh-one

C. eX=ex=cX-eyc-ex

As humans, wc have developed a "natural" method of representing numbers
by using combinations of ten symbols, and we call it the decimal system. 1+
works fine for calculations done mentally, with pencil and paper or other
computing aids, and for the internal goings-on of the ferocious and many-
toothed monster, the mechanical adding machine. Unfortunately, the decimal
system is not directly implementable inside calculators or computers.

BINARY

You are no doubt familiar with binary and octal, and know that there are
conversion processes for converting numbers expressed in a given base to any
other base. The natural appeal of binary for computing mechanisms is irre-
sistidole, because its two digits one and rero so nicely match existing
technology, and because it does not require complex circuitry to implement,

Table -3,

COMPARISON OF DECIMAL, BINARY, AND OCTAL

DECIMAL BINARY OCTAL DECIMAL BINARY OCTAL

0 0 0 6 110 6

l ! ! 7 oy 7

2 10 2 8 1000 10

3 I 3 9 1001 I

4 100 4 10 1010 12

5 101 5 [1011 13
The Sreat dack Bensy T2 now tne Doate ok Deneyl Yone aotnor mag the bas Cadgerest to hang tnis
cearple on soreone who wen reas 1y 1010000 years o,

PROCESSOR-41

G@M\

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

NUMERICAL REPRESENTATIONS

BINARY (CONT.)

Binary is an arabic number system* (as is decimal), producing carries
during addition, and allowing a binary point for writing fractional parts
of a number. In fact, pencil and paper arithmetic can be done on binary
numbers using exactly the same general procedures as for decimal numbers --
simply use binary addition and multiplication tables.

Still, there is always a fly in the ointment. |It's not likely that the
customer will be willing to key in his data using binary. This necessitates
conversion; a distasteful process to many. What's more, many fractions
that can be represented exactly in decimal cannot be represented exactly in
binary (e.g., .11¢=.00011000112). [Lest you assume that there is
something wrong with binary, the same thing happens in decimal:

[/7 = .1428571428571]

For these and other reasons, representing numbers directly in binary
in HP calculators is usually limited to cases where it is easy to do so, few
arithme*ic computations other than addition and subtraction are required,
and to where the numbers involved are apt to be integers.

BINARY-CODED DECIMAL

The customer's numbers do get encoded, but in our case, info binary-
coded decimal (BCD). Not only that, but the elements of the resulting
code are arranged in a floating-point format. BCD is the familiar scheme
of using four-bit binary codes in place of the decimal digits. Thus a
I2-digit integer can be represented by 48 bits. |In addition, the use of
floating-point conventions adds sign information, and greatly enhances
the maximum and minimum sizes of the numbers that can be encoded.

THE BCD DIGITS
0 0000 5 0101
I 000! 6 0110
2 0010 7 O
3 0011 8 1000
4 0100 9 1001

An arabic number system is one in which a number is expressec as the sum of multiples of successive
integer nowers of a number n (called the radix), using n digits; 0, ... , n=1:

X = ... d,n> ¢ dlnl b donu +.d_,/n+ d /n...
; - -2
radix point

There are other schemes for representing numbers, such as the (abominsble) roman numeral system,
Multiplication is reportediy very difficult in that system,

PROCESSOR-42

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

NUMERICAL REPRESENTATIONS

BINARY-CODED DECIMAL (CONT.)

ADDRESS 15114 13}12|11{1019]|8|7|6]5]14|3|2|1]0

M Myttt 10 1o o0 0 0 0}o0
M+ 0011 010l 1000 Ol
M+2 0010 000! 1001 0000
M+3 0000 0000 0000 0000

Figure P-14, The Internal Floating Point Representation of
.003587219 (= 3.587219 x 107%),

While BCD does allow exact representations of the original things the
customer keys in (unless he is in the habit of keying in fractions like 1/7),
BCD gives rise to certain drawbacks. First, BCD is wasteful of bits, Each
four-bit combination can encode 16 symbols, while only [0 of these are ever
used, The net result is that it takes more bits to encode numbers in BCD
than it does to represent them directly in binary. (You could even have
floating-point binary numbers if you wanted to.) The second thing is that
BCD is indeed just a code, and not in itself an arabic numbering system.

In general, you cannot add two BCD integers, bit-by-bit, and expect the
result to be the correct (or even another) BCD number.

It takes a special gear works fto handle BCD numbers. Done in firmware
alone, such a gear works would be slow and cumbersome. The EMC supplies
some useful operations on portions of BCD floating-point numbers, This
trims the gear works in size, and speeds it up by quite a bit.

BINARY ARITHMETIC

Both the BPC and EMC have binary arithmetic capabilities. The BPC has
binary add and complement instructions, while the EMC has a binary multiply
instruction.

BINARY COMPLEMENTS

The BPC provides instructions for doing two kinds of complements:
two's complements with TCA and TCB, and one's complements with CMA and CMB.

The one's complement of a binary number is its bit-by-bit complement.

Another way to express this is to say that the number is subtracted from
all one's, or if the number has n digits, from 2"-I,

PROCESSOR-43

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BINARY ARITHETIC

BINARY COMPLEMENTS (CONT.)

N LT

P <

-101 < D - 0101011 < Y
010 <— IS I'S COMPLEMENT OF 1010100 €—1S 1'S COMPLEMENT OF

With the CPD processor, one's complements are not used in arithmetic,
but do find use in logical operations,

The two's complement of an n-bit binary number can be found in two ways:
(1), by adding one to the one's complement; or (2), by subtracting the
number from 2N,

ERRN 1000000
- 101011 - 101011

010100 010101
N

010101

The CPD processor does use two's complements in binary arithmetic. The
notion of a two's complement does two things: first, it provides a compact
and useful method of representing negative numbers*; second, it removes the
need for a subtraction gear works in the hardware.

The use of the (signed) ftwo's complement form to represent negative
numbers has additional advantages: it eliminates The frequent need to
recompiement an answer after a summation between numbers with different signs;
and it automatically generates the proper sign in the answer (assuming no
overflow).

These are significant advantages, not to be taken lightly. |f you will,
take a moment and consider algegraic BCD summations:

The need to re-complement occurs often in BCD arithmetic as performed by
the CPD processor. In those cases numbers are always represented in
uncomp | emented form, regardiess of sign. Numbers are complemented only
to allow summations between numbers whose signs are different. After such
a summation it is necessary to complement the answer if no "overflow"
occurred. |f overflow did occur, then everything is alright, and the
"overflow" is ignored. Also, special attention must be given to the sign
of the result.

*
There are other compact methods of representing negative numbers. One such is sign-magnitude,

There a single bit, say the most significant one, represents the sign, while the least significant
bits always represent to absolute value of the number (its magnitude). By and large it is not as
handy as two's complement representation. |t requires either a hardware subtraction qear works,
or extended handling in firmware, as described for BCD in a few paragraphs.

PROCESSOR-44

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BINARY ARITHVETIC

BINARY COMPLEMENTS (CONT.)

As you read the next section, describing fwo's complement arithmetic,
don't associated the "overflow" of the previous paragraph with binary
overflow as discussed for two's complement arithmetic. They are not the
same thing. The "overflow" for BCD arithmetic is simply a carry-out from
the left-most digit, which results in DC (Decimal Carry) being set. The
corresponding thing in our binary arithmetic is the setting of the E
(Extend) register whenever there is a carry-out from bit |5. Binary over-
flow (the setting of OV) is a much more sophisticated condition.

TWO'S COMPLEMENT SUMMATION

Signed two's complement arithmetic in 16 bits limits the value of a
single precision (one word) binary number to the range +2'3-1 (15 ones)
through -2'% (a one followed by I5 zeros).

(+1) =000000000000000! (=t)y =01l
(+2) =0000000000000010 (=2) =hirrerirerirento
(+3) =000000000000001 | (=3) =11itrtrririnol
(+32767) =0l LI LEILLIITL] (-32767) = 100000000000000 |
(+0) =0000000000000000 (-32768) = 1000000000000000

In the above examples, the left-most bit serves as a sign bit, as well
as a part of a complemented (and thus negative) number. Any number whose
bit 15 is zero is a positive number and any number whose bit |5 is one is
a negative number. The range |imitation mentioned in the preceeding paragraph
arise from there being only 15 bits (0-14) availabie to represent magnitudes
of individual numbers.

Even though signed two's complement representation is often thought of
as |5 bits of true-form or complement-form number, preceeded by a sign bit,
the actual hardware mechanism that does the signed summations knows very
little about signs or the two's complement format; it does a straight
I6-bit binary add, with a carry out from bit 15 into the Extend (E) register.
The only special property is the detection of overflow (results out of
range); but even this only monitors events during summation, without
changing them.

TWO'S COMPLEMENT SUBTRACTICN
The rationale behind complement arithmetic is that the difference

between two numbers can be found by the addition of one number fo the
complement of the other.

PROCESSOR-45

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BINARY ARITHMETIC

TWO'S COMPLEMENT SUBTRACTION (CONT.)

The 16-bit two's complement of a I5-bit binary integer is:

16 ZEROS
ﬁ = 2,6 -0 Ol/ \

N%/000000000000000
«— 15 BIT n —>

n = || REST OF ANSWER

in a sense, O is the additive inverse of n:

(n +7) mod 2}¢ = (n + (2'® = n)) mod 2'® = 2'® mod 2'¢ = 0

* * * * * * * *

The fact that two's complement arithmetic automatically produces the
correct sign for the result is an important advantage, although it isn't
at all obvious why it should be that way. The following demonstrations shows
that correct answers are obtained.

Case I: X+ Y (X>0,Y>0)

15 14 0
0 |5 BITS OF X
+ 0 15 BITS OF Y

0 15 BITS OF X+Y

Both X and Y are positive. We assume that X and Y are such
that their sum can be represented in |15 bits. Thus there is
no possible carry out of bit 14, and the two bit 15's can only
add up to zero, making the result positive.

Case II: X +Y (X <0, Y<O0)

For this case we note that =X-Y = -(X+Y)<0 which we complement
and represent as 2'® - (X+Y). Once more we assume that X+Y does
not exceed 1|5 bits.

PROCESSOR-16

A BEGINNER’'S LOOK AT CALCULATOR ARITHMETIC

BINARY ARITHMETIC

TWO'S COMPLEMENT SUBTRACTION (CONT.)

Case II: (cont.)

0.1
\6l000000000000000
ULl 15 BiTS oF x+

0l 219~ (x+Y)
|tsm~ BIT
NO I7th BIT, E NOT SET

Because of the borrowing, the sign bit is a |, and the answer
We note also that a | preceeding

is negative as we expect.
215 — (X4Y) is the same as 2!® - (X+Y), which is the required
answer.

Case III: X - Y (XY < 0)

X=-Y = X + Y =216 + x - v
= |X-Y| which we add

We can think of the terms + X-Y as some n
or subtract to 2%, depending upon whether X > Y, or Y > X,
respectively. (If X =Y, we can do either, since n = 0).

For X > Y:

10000000000000000
+ L[up 10 15 BITS OF n

0| SAME n AS ABOVE
" —siGn BIT

I7th BIT SETS E

Here X > Y and n > 0, so n is added. Since each of the 15 bits

of n is added to a zero bit, there can be no carries and the 16th
This certainly agrees with

bit (the sign) must be zero, alsoc.
X-Y > 0 when X > Y,

PROCESSOR-47

gﬁ“

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BINARY ARITHVETIC

TWO'S COMPLEMENT SUBTRACTION (CONT.)

Case III: (cont.)

But if X < Y:

SAME AS 10 FOLLOWED BY 14 ZEROS, OR 29
0 ¥~ ,
Wl000000000000000
_l{[lupT015BITS OF

iLSIGN BIT
NO I7th BIT, E NOT SET

Because of the borrowing, the sign bit is a 1. Thus the answer
is negative, and this agrees with X - Y < 0 when X < Y. Finally,
we should note that a | preceeding 2!® - n is the same as 2!® - n,
which is indeed the answer we set out to get.

By now you might be prepared to make the following objJection: "The
demonstration would be satifying, except that fthe hardware does not magically
produce n, and then proceed to add it to, or subtract it from, 2'%; and,
if it could do that, we probably wouldn't need two's complement arithmetic!"

True. The demonstration rests on the behavior of "equivalent" entities
during "equivalent" operations. 1t is valid in that it does show that we
don't ever get the wrong answer (assuming no binary overflow). But it doesn't
give us any idea as to why it "really" works when the hardware adds up
the bits.

We shall indulge in some quick examples that show how it really works.

First, consider the table of 5-bit two's complement numbers, on the
next page.

Consider 7-8. When the binary for 7 is added to the complement of 8,
the result is the "biggest thing" that can fit into 5 bits, but there is no
carry-out from the left-most bit. Looking at the table you can see that
there is no carry-out for 7-n where 16 > n > 7. Likewise, if | < n <7,

n's complement is always big enough to generate a carry-out of the left-most
bit.

PROCESSOR-48

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BINARY ARITHMETIC)
TWO'S COMPLEMENT SUBTRACTION (CONT.) -

0 = 00000 8 = 01000 -F = 1L -9 = 101t1

| = 00001l 9 = 0100| -2 = 11110 -10 = 10110

2 = 00010 10 = 01010 -3 = [110l -1l = 1010l

3 = 00011} i = 01011 -4 = 11100 -12 = 10100

4 = 00100 12 = 01100 -5 = {10l1 -13 = 10011

5 = 0010] I3 = 0110l -6 = 11010 -14 = 10010

6 = 00110 14 = 01110 -7 = 11001 -15 = 10001

7 = 00111 15 = 0Ll -8 = {1000 -16 = 10000

I+ is the carry-out of the left-most bit that is the vital clue. Consider
16-bit X and Y:

5 14 0
xv= 50 [o

OR VICE

versa 1 [0,

The sign bit (bit I5) will be a | (-) unless a carry is produced by the
addition of the two bit I4's (d, and d,). In fact, there will be a carry
from bit 15 if and only if there is a carry from bit (4.

Suppose X > Y. Why must there be a carry? We are adding and get:

X + 26y 22

——— N

THESE ARE THE TWO BIT PATTERNS.

Think, if you wish, of the adder doing X increments to the bit pattern
for 2'® - Y, Since X > Y, the effect of the -Y is entirely removed,
causing a carry-out from bit 15. So we get carries out of both bits 14
and 15. This causes the sign to be positive, and sets | into the E register.*

Suppose Y > X. Then Y would absorb all of X before the sum reaches 2'°®.

~ "'M)
€ is generally ignored during binary arithmetic unless a multi-precision operation is in progress.
See the Scction after next.

PROCESSOR-49

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BINARY ARITHVETIC

TWO'S COMPLEMENT SUBTRACTION (CONT.)D

Thus there is no carry out of bit 14, and therefore none out of bit 15, The
sign is negative and £ does not get set.

TWO'S COMPLEMENT OVERFLOW

The conventions of signed two's complement arithmetic provide a useful
method of detecting the generation of a result which is too large in magnitude
to be represented in 16-bit signed two's complement form. We call this the
overflow condition, and it occurs whenever there is a carry-out from bit 14,
or, a carry-out from bit 15, but not if both carry-outs occur. The occurrence
of the overflow condition sets the OV register fo a one.

That the exclusive or of the carry-outs from bits |4 and |5 corresponds
to the overflow condition is not at all obvious. There are three cases:

Case I: X +Y

Both numbers are positive. There can be no carry from bit 15,
There is an overflow if and only if there is a carry from bit 14
(X and Y too big for a I5 bit sum).

15 14 0
0 UP TO 15 BITS OF X

+ 0 UP TO I5 BITS OF Y

Case II: (=-X) + (-Y)

15 14 0
| 15 BITS OF =X

+ | 15 BITS OF =Y

Both numbers are negative. There is always a carry from bit I5.
Overflow results if and only if there is no carry from bit |4,
Frankly, this is a tough one to properly explain by simply looking
at the bits. So consider:

=X + (=Y) = 218 x4 216 _ vy =217 L (x4 Y)

The maximum allowable size for X + Y without causing overflow is
215, This is shown by the three subtractions on the next page.

PROCESSOR-50

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BINARY ARITHMETIC

TWO'S COMPLEMENT OVERFLOW (CONT.)

14 0

0.1 .
Wel0000000000000000=2
-411000000000000000:=20=x+Y

01!l

[GNORE THESEJ LSIGN 8IT

0.1l
\000000000000000 =27

SN s Y (RS VP T
011

IGNORE THESE—j t——SIGN BIT

The two subtractions above show that if (X + Y) is ir range,
a carry out result from bit 14 during the actual computation of
-X-Y.* For the only way the sign bit in the answer could wind up
a one is with a carry into bit 15. Likewise, it implies a carry
out from bit 15, since both original bit !5's were ones to begin
with, Both carries occurred, so there was no overflow.

Now suppose X + Y > 2%, Here we get overflow.

01|
Walel000000000000000 = 2!7

0 N——AT LEAST ONE | SOMEPLACE
T_si6N BIT

Because X + Y > 2!5, extra borrowing on the 2!7 is necessary,
This guarantees a zero in the sign bit of the result of the actual
computation for -X-Y. Since the resulting sign bit is a zero, there
could not have been a carry out of bit 4. Thus we are left with

a solitary carry out of bit 15, (both original bit I5's were I's,
remember), and overflows results.

We need to establish the link between the (positive) X + Y of our demonstration, and the (negative)
=X=Y of the stated oroblem, This is casy, for if the Limit on X + Y is 2%, thon:

X4 ¥ =20 v ey s a2t s ey SIS This omos s ono surprise, as =2'% is the algebroaically
smatlest aumber rapresentable with lo=nit ciz-ad ta's complament notation,

PROCESSOR-51

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BINARY ARITHMETIC

TWO'S COMPLEMENT OVERFLOW (CONT.)D

Case III: X-Y

The numbers have opposite signs. There can be a carry from bit 15
if and only if there is a carry from bit 14. That is, either both
carries are present, or neither is present. The exclusive or condition
can never be met,

0 15 BITS OF X
+ | 15 BITS OF Y

MULTI-PRECISION BINARY ARITHMETIC

The main reason that the E register exists is to allow for the possibility
of summations between binary numbers thaT are each two or more words in
length, See Figure P-15.

RIGHT HALVES

A/B
Ist
ADDITION +
v~ CARRY
3
|
LEFT HALVES :
A/B
2nd
ADDITION +
v Y v \
TWO WORD ANSWER

Figure P-15, Multi-Word Binary Addition Using the Extend Register.

PROCESSOR-52

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

MULTI-PRECISION BINARY ARITHMETIC (cont.)

The scheme shown in Figure P-15 must be implemented in firmware; the
ADA and ADB instructions do not automatically add in E. That must be done
after testing with SES or SEC.

In multi-precision arithmetic, OV is ignored during all but the last
addition, while E is checked after all but the last addition.

Complement arithmetic works perfectly well with multi-precision schemes.
(Remember, ADA and ADB are full 16-bit adds.) Exfra work is required to
comp lement multi-word numbers, however, and cannot be done with just repeated
applications of TCA or TCB. See Figure P-16.

START AT FAR RIGHT
<

< <
""" Ist NON-ZERO | - - - ALL ZEROS
l CMA/B l J/ TCA/B l l NO CHANGE J,
ALL ZEROS
EACH REMAINING THE FIRST NON- EACH FAR RIGHT
WORD, IF ANY, GETS ZERO WORD GETS ALL-ZERO WORD,
A ONE'S COMPLEMENT. A TWO'S COMPLE- IF ANY, IS NOT
MENT. CHANGED.

Figure P-16., Two's Complements of Multi-Word Binary Numbers.

Of course, it could also be done by simply doing a one's complement on
each word, and then adding one to the result (using the multi-precision add).

ARITHVETIC SHIFTS

It sometimes happens that it is necessary to pack two's complement
numbers of |imited magnitude info fields within a word. An example is the
exponent in the floating-point BCD format.

Assume that a copy of the exponent word is in A. Then an arithmetic

right shift of six (AAR 6) will make the exponent in a proper |6-bit two's
complement number,

PROCESSCOR-53

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

ARITHMETIC SHIFTS (conT,)

apDREss [15|14{ 1312|1098 7|6]|5|4a|3]2]|1]o0
M Es| TWO'S COMPLEMENT EXPONENT EMPTY Ms

M+ D Do D3 Dy

M+ 2 Ds De D7 Dg

M+3 Dg Dig Dy Dr

Figure P-17. Floating-Point Data Format.

Suppose the field labeled "empty" contained a 5-bit two's complement
number. |t could be made ready for use by an SAL 10 followed by an AAR II.

The basis for this is that AAR and ABR propagate the sign while they
shift the number. Consider the numbers *3 in 5 bits, 10 bits, and 16 bits.

-3 +3
1110l€ >000 1 |
1111111101 >00000000 11

FrLtrritl11101€<=>000000000000001 1

Starting with A containing:

An AAR || would produce:

g—-—PROPAGATED SIGN

AVAAVNANAND "%

SSSSSSS8SSS

Arithmetic right shifts are provided for both the A and B registers.

PROCESSOR-5t

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BINARY MULTIPLY -~

The EMC provides a hardware implemented binary multiply for signed
two's complement integers, using Booth's algorithm. See the description of
the MPY instruction in the EMC MACHINE INSTRUCTIONS section for a complete
definition.

Some explanatory material concerning the principles of Booth's algorithm
is located in the Appendix.*

BCD ARITHMETIC

AR2 frequently functions as an accumulator for EMC operations on BCD
numbers, much like the A and B registers are accumulators for the instructions
ADA and ADB.

For the sake of completeness we will review some of the characteristics
of the four-word packing formats for BCD numbers (see Figure P-17). The
exponent and mantissa signs (Eg and Mg, respectively) are encoded as 0/
for positive and negative, respectively. All of the digits D; through Di»2
are encoded in BCD, while the exponent is a 10-bit signed two's complement
number. A decimal point is assumed to be between Dy and D,. D, is the most
significant digit, and Dy; is the least significant digit.

Except for intermediate results within the individual arithmetic operations,
D; will never be zero unless the entire number is zero. Sometimes, after ‘w5
each individual arithmetic operation the answer needs to be normalized; that
is, the digits of the answer shifted towards D; until Dy is no longer zero.
The exponent then needs fo be adjusted to reflect the change.

The "empty" field of bits I-5 in the exponent word is for possible
fufture use in systems that allow different types of variable besides the
full-precision real number which the present floating-point format accommodates.
In such systems the "empty" field could contain a "type" indentifier, or
some other information.

An important thing to keep in mind when examining BCD arithmetic, as
implemented with the CPD processor, is that mantissas are represented in
a sign-magnitude format. Ten's complements are used in the computational
processes, but only as an intermediate step. Furthermore, it is done in
such a way that the automatic generation of the correct sign of a sum does
not occur. There is also the frequent need to re-complement an answer.
All in all, BCD arithmetic is not as simple as two's complement binary
arithmetic.

*
For another explanation of Bootn's Algorithm, refer to this book:

Digital Computer Design Fundamentals

Chu, Yaochan

McGraw=Hill (1962) ’“§
TK7888.3.C5

PROCESSOR-55

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BCD ARITHMETIC (conT.)

DECIMAL CARRY

The one bit Decimal Carry register (DC), located on the EMC, serves a
function similar to that of OV for binary addition, although it is set by
a rule similar to that for E.

mCARRY DC
Dy 1 0o D3 f--- e D TR T)
—— ARl & AR2
A O e R e R e e s
DC [Dy | D | D3 |-~ =D | By { D2 | «—AR2

DC is set to a one or zero, depending upon the occurrence or absense of
a carry from the addition of the two Di's, respectively. In this sense DC
resembies E. But since the mantissas are represented in sign-magnitude
form (with the sign in the exponent word rather than part of what gets added),
DC also represents overflow for 12-digit mantissa additions.

Notice also that DC is part of the addition, in the D2 position.
Frankly, this feature is seldom taken advantage of, if ever. It has potential
use with multiple precision floating point arithmetic, and perhaps it will
come in handy in some unknown future application.

There are three instructions that have to do only with DC. These are
SDS (Skip if Decimal Carry Set) and SOC (Skip if Decimal Carry Clear) in the
BPC instruction set, and CDC (Clear Decimal Carry) in the EMC instruction set.

TEN'S COMPLEMENT FOR BCD

The addition of the ten's complement of 2 number is used in lieu of a
subtraction mechanism. |If the signs of two numbers to be summed are different,
one of the numbers is complemented (it doesn't really matter which onel,
before the addition.

The ten's complement of a 12-digit decimal integer X is:

X = 1012 - X

The ten's complement of a floating point number has the same exponent

as the original number. The mantissa m of a floating point number fits

the requirement:

0 <m < 10 (assuming the decimal point after D))

PROCESSOR-56

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BCD ARITHMETIC

TEN'S COMPLEMENT FOR BCD (CONT.)
Therefore the complerent of the mantissa alone is:
m = [0-m

Accordingly, all that is necessary to complement a floating point
number is to complement the mantissa. It is immaterial whether the mantissa
is treated as a 12-digit integer, or as a number between zero and ten; the
same sequence of digits results.

Incidentally, here is a handy rule for finding the ten's complement of
a decimal number: Ignore any right-most zero's--they stay the same. Subtract
the right-most non-zero digit from ten, and those to the left of that, from
nine.

As with two's complement, ten's complements are additive inverses,
modulo 1012:

X+ X = (X + (10'2 =X)) mod 10'%2 = [10'% mod 102 = 0

The EMC provides two instructions for doing ten's complements: CMX
for ARl and CMY for AR2. The only difference between these two instructions
is that each operates upon a different "AR" register. What they do is
replace each BCD digit, in the mantissa of the referenced register, with
its appropriate digit of the complement.

Case I:
9 9 9
0l = *& Yo % 1o 00000000
- X X x x 00000000
09-x9-x 9-x10-x00000000
0 T
DC D, Djp
Case II:

0,999,999 9

02 - Uk % %% o 00

- 000000 x x x x 00
09999999-x9-x 9-x I0-x 00

/1 T

DC D, Djp

PROCESSOR-57

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BCD ARITHMETIC

TEN'S COMPLEMENT FOR BCD (CONT.)

CMX and CMY leave the exponent word completely alone, This means that
the sign of the mantissa, and the entire exponent are left unchanged in a
ten's complement by CMX and CMY.

If you think about the above examples you'll see that we don't complement
the actual floating point number in a Case II situation. For instance
3.561 x 10™ complements to 6.439 x [0=* if the mantissa is normalized.
But soulcd the mantissa not be normalized, (and it frequently isn't when
numbers are initially complemented - due to decimal point 'non-alignment!'),
the answer can be different. For instance, .003561 x 10~} complements to
9.96439 x 10~} when the mantissa is actually 00356l. Now .00356! x [0~}
= 3,561 x 107", but 9.96439 x 10”! misses 6.439 x 10~ by quite a ways.

Its puzzling at first glance, but it works. A good approach to BCD
arithmetic is to treat the mantissa as an integer greater than or equal
to zero, but less than 10'%2. After all, if two numbers have equal exponents,
it is strictly the sequence of digits in the two mantissas that determine
the sequence of digits of the answer for any of the arithmetic operations.
The exponent of the answer is determined by separate calculations involving
only the exponents.¥

It's making the exponents the same that causes the frequent "de-
normal izing" of previously normalizad floating-point numbers:

63,278 =6.3278 E4 = 6.3278¢E4
531 =5.31 E2 =4 .0531 E4
6.3809 E4 = 63,809
If you are willing to consider the mantissas by themselves, then its

best to think of them as integers, as previously suggested, and pretend the
decimal point is after D;2. Normalized mantissas are then represented by
big integers: a one through nine followed by eleven other digits. A non-
normal mantissa is simply a smaller integer by the extent it has zeros

on the left. In two's complement representation the left-most zeros
cemplement into ones; here they complement into nines.

There is a case III that we should mention:

Case III:
lO'2 = 1000000000000
= 0
0 %! 000000000000
25DC
Overflow &nd underflow in the resulting mantissa can also affest the coemputed exponent,

PROCESSOR-58

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BCD ARITHYETIC

TEN'S COMPLEMENT FOR BCD (CONT.)

If a mantissa c¢f zero is complemented, the entire mantissa remains zero,
and DC is not set, as you might expect. OC is always set to zero by CMX
and CMY,

TEN'S COMPLEMENT ARITHMETIC DEMONSTRATION

Given n, subtract x, or, add -x: S = n-X D]
We assume only that the signs of n and x differ, The sign of S will be the
same as n if nl > |x|, and the same as x if |x| > |n|.
Complement x: X = 10k - x (2)
denctes an operation we perform, hut not necessarily strict mathematical eguatity
Then: S&(n+ %) mod 10K = (n + 10K - x) mod 10K, or (3)
Is| < (|n| - |x| + 10K) mod 10k (4)
Yote: (Thing) mod IOk is a way to denote the o rightemost digits of an integer.
We resort ﬁo this notaticnal device because in a strict mathematical sense
sEn+ |07 - x., (How can it, if 5 really eguale n - x? There is a difference
of 10k -

Line 4 is not as bad as it looks. First, it says that the k-digit sum
is always formed as positive, regardles of its actual sign. Also, n and
x are treated as positive, regardless of their signs. This is reminiscent
of |a-b] =|la]l - |bl|. Finally, a word about the k-digit restriction.
It works because: a) to subtract, the firmware changes the sign of the
subtrahend and proceeds as in addition; b) The complement mechanism is
only used when addition involves opposing signs. Now, two k-digit things
will have at most a k-digit difference.

I Assume |n| - |x|] =d >0

Then S<& (10K + d) mod 10K

Now 10K + d = €&——> 1000000 « k zero's
+ ..d.. + max of k digits

Overflow sets DC=l&——>| ..d.. « k + | digits total

Accordingly, we drcp the overflow by simply noting that DC is
set, and then ignoring (or perhaps clearing) it.

Thus, if overflow results, the resulting answer is the correct
sequence of digits, and since |n| > |x|, the answer should be assigned

the sign of n.

PROCESSCOR-59

éﬁ\

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BCD ARITHMETIC

TEN'S COMPLEMENT ARITHMETIC DEMONSTRATION (CONT.)

II Assume |n| - |x| = d < 0 (note that |S| = |d|)

Then S & (10k - d) mod 10k
But 10k - d = d, thus S&d, but |S| = |d|, not |d|

Note that 10K - d already is at most k digits due to borrowing
when doing the subtraction:

099
Wl00000 «—kK ZERO'S
- <«d—> <—MAX OF K DIGITS

0e—d—>

This guarantees that DC ends up a zero.
Thus, if the result in DC is zero, the answer needs fo be re-complemented,
and since]nl < |x|, the answer should be assigned the sign of x.

In the event we had choosen to complement n instead of x, the process
would still work.

S=n-x

And S € (10k - |n| + {x|) mod 10k

But 10k- |n] + x| = 10k = (|n]| - |x|) and we have the same
n| - |x| as before.

Here is the rule for doing decimal summations with ten's complements:

If the signs of the numbers are the same, simply add them and leave
the signs alone.

PROCESSOR-60

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

BCD ARITHMETIC

TEN'S COMPLEMENT ARITHMETIC DEMONSTRATION (CONT.)D

If the signs are different, complement one of the numbers, then add.
If the result is accompanied by overflow, drop the overflow digit (DC).
1 overflow does not accompany the result, complement the answer. Ensure
that the result is assigned the sign of the addend having the larger absolute
value.

FLOATING-POINT SUMMATIONS

Specific procedures for implementing floating-point addition and subtraction
vary widely. One thing that is fairly standard in this, however: To
subtract, the software simply changes the sign of t+he subtrahend and proceeds

as in addition. The addition routine is capable of handling all possibifities
of signs and relative absolute values on two addends.

Another common practice is firmware checking of each addend for equality

to zero. If either of the addends is zero, then the other addend is promptly
taken as the answer,

OFFSETS

Addition can proceed only when the exponents of the two addends are the
same. |f they are not the same to start out with, they are made the same by
shifting one of the mantissas an amount equal to the exponent difference.

This difference is easily found by subtracting the (algebraically) smaller
exponent from the larger one. If the difference is eleven or less, it is
possible to offset the maniissa ¢f the number with the smaller exponent.

XXXXXXXXXXXX E6 + YYYYYYYYYYYY E4
SAVED IN A
XXXXXXXXXXXX E6

+ O0YYYYYYYYYYYY E6

2222222221211 A E6

THESE TWO DIGITS ARE LOST
DURING THE SHIFTING PROCESS,
EXCEPT FOR THE LEFT-MOST ONE,
WHICH IS SAVED IN AO-3 FOR
ROUND-OFF PURPOQSES.

When offsetting mantissas for addition, the mantissa with the (algebraically)

larger exponent is left alone, and mantissa with the (lagebraically) smaller
exponent is the onc that is right-shifted.

PROCESSOR-61

éﬁh

A BEGINNER'’S LOOK AT CALCULATOR ARITHMETIC

FLOATING-POINT SUMMATIONS

OFFSETS (CONT.)

As can be seen from the illustration, a shift of twelve or more digits
would result in a mantissa of all zeros. The firmware detects the condition
of an exponent difference greater than eleven, and simply takes the number
with the larger exponent as the answer.

The EMC provides an n-many mantissa right-shift instruction for each of
ARl and AR2. These are MRX and MRY, respectively.

For each instruction, the number of digits to be shifted is assumed to
be in the B register. Zero's are shifted into D:¥*, and all but the last of
the Dia's is lost; it is saved in A, for round-off after the addition. Also,
DC is set fo zero in anticipation of the forthcoming addition activity.

MANTISSA ADDITION

The instruction FXA is used to add the mantissas after any necessary
offset has been previously induced. FXA knows nothing of signs, complements,
or exponents; it is strictly a positive-integer-addition process:

<:l\R' >= [), 022[)3 """"" DIZ
< AR2>: DI 02 D3 """""" D,z
+ <DC><-INITIAL VALUE OF DC
"]
(OVERFLOW)—> DO D' D2 D3 ------- - DI2 < AR2

DC (FINAL VALUE OF DC)

The reason for including DC itself in the addition of the Djp's if that
it would come in handy if FXA were used to add mantissas having more than
12 digits. In this way DC could function like the E register of the BPC.

If the signs of the original numbers were different, an overflow (DC=1)
means that the resulting AR2Z need not be complemented, and DC is to be
ignored. Coniriwise, a resulting DC of 0 means the resulting AR2 must be
comp lemented, after which DC can be ignored.

#*
MRX and MRY do not necessarily shift in a zero on the first shift; on the first shift <Ag.3> is
what is shifted in, Subsequent shiffs do shift in zero. During offsets in preparation for
floating-point addition, the firmware ensurcs that <A¢-3> = 0, however.

PROCESSOR-62

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

FLOATING-POINT SUMMATIONS

MANTISSA ADDITION (CONT.)

There are still some loose ends. Suppose the signs were the same, and
DC ended up a |? In such a case DC represents a digit of | to the left of
Dy; AR2 plus DC constitute a 13 digits answer. What is required now is a
one-digit right shift of AR2, shifting a | into Di. MRY is the basis for
this operation. Such a shift must also be accompanied by an increment (and
test for overflow) of the AR2 exponent.

The situation described in the previous paragraph cannot occur if the
original numbers had opposing signs. Why not??

The case of opposing signs has its own rub, however. Read on.

NORMALIZATION

The raw result of an arithmetic operation might not be a floating-point
number that fits the standard form. |If might have a leading DC needing to
be incorporated into the number, as we have seen. Another possible deviation
Is a resulting D; of zero (and no overflow). There could also be several
zero-digits as left-most digits of the mantissa.

Such a situation calls for the NRM instruction. It shifts ARZ left
until D; is non-zero. The number of shifts is left as a binary number in

the B register. The maximum number of shifts NRM will perform is 12, |If
NRM must do all 12 shifts, AR2 must have been zero. This is indicated by
count of 12 in B, and well as by result of | in DC. For all other shift-

counts, NRM leaves DC=0.

The firmware must complete the normalization process as follows:
The resulting number of shifts (in B) is subtracted from the AR2 exponent,
and the result tested for underflow.

ROUNDING

The EMC does not have an instruction to automatically round a result - it
is the firmware's responsibility to determine when to round, and there are
various approaches to this problem. However, once the decision is made to
round ARZ2 up (one count in D), the easiest way to do this is to set B to
0000014, and execute an MWA,

This is in every respect the same as setting ARl to one, and then doing
an FXA, except that it is easier. Why not simply increment the word
containing D12? (D2 is on the far right of that word.) Such a move would
not generate BCD carries if they were needed. |f for instance, the mantissa
being rounded up is all nines, the carry would need fo propagate all the
way up to DOC.

PROCESSOR-63

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

ROUNDING (con,)

After rounding, AR2 must be checked for overflow, and if necessary,
right-shifted with the exponent incremented and tested for overfiow.

FLOATING-POINT MULTIPLICATION

This section will itlustrate the function of the FMP instruction (fast
multiply) as it is used in floating-point multiplications. We shall pursue
this through the use of an example, assuming four-digit integers.

We can get by nicely on this because the exponents have only fo do with
the exponent of the preliminary answer (that is, possibly non-normal answer);
the sequence of mantissa digits in the answer is determined solely by the
digit-sequences of the multiplier and multiplicand. Therefore, we can
treat the mantissas as integers during the actual multiply process.

The sign of the product is, of course, determined in advance by inspection
of the signs of the original factors.

The fact that our illustration uses only four digits In no way invalidates

the explanation; it merely reduces the amount of symbolism by eighty-nine
percent,

Let's assume that the two mantissas we seek to multiply are:

il

ABCD
WXYZ

Multiplicand

1]

Multiplier

One symbolic way to indicate how this multiplication is done is:

A B C D
(x) W X Y 2Z

(1) Zy 2 Zp 23 25 = 2(ABCD) xi0®
(2) Yo Y| Yp Y3 Y O = Y(ABCD) xiof
(3) Xoy X| Xp X3 X4 0 0 = X(ABCD) xi0?

W(ABCD) x 103

(4) + W,, W, Wo WgWg 0 0 O

[—EIGHT DIGIT NUMBER —]

PROCESSOR-64

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

FLOATING-POINT MULTIPLICATION (conT.)

Consider how Zn, Z1 Z2 Z3 Zy is found (this is where FMP is used). It
is really ABCD added to itself Z-times. Similarly, Yoy Y1 Y2 Y3 Yy is A3CD
added to itself Y-times., Prior fto adding line | to line 2, we shift line |
one digit to the right (including Zoy-it goes into the new Z;). This allows
line 2 to have ten fimes the weight of line |I. The resulting summation is
shifted once to the right and added to line 3, and so on. These shifts are
illustrated ty the right-most zeros in lines 2, 3 and 4.

Now lets take a moment and look at how FMP generates a partial product.
Consider Z(ABCD). AR2 is cleared and AR| loaded with ABCD. Bg-3 contains
Z. Now FMP is given. ARl and AR? are added together Z-times, producing
Z(ABCD) in AR2. The digit Zoy ends up in Ag-3. |t can be anything from a
zero to an eight.* Notice that the mantissa right-shifts MRX and MRY each
shift <Ag.3> 1into D). So the right-shifting of the partial product also
takes care of retaining its overflow digit.

Now we are ready to find Yoy Y1 Y2 Y3 Y. Generally speaking, this is
not found separately and then added to Z,, Z1 Z2 Z3. |Instead, ABCD is merely
added to Zgy Z1 Z2 Z3 Y-times. This both increases speed and saves memory
over saving all partial products before summation, with no undue loss of
accuracy. As before, the overflow digit Y,y is left in Ao-3. And so it
goes, ARZ is shifted right one more time, making Yoy the left-most digit
of the partial products as summed to date. B¢-3 is made to contain X, and
FMP is given a third fime.

We can make a number of minor points in conclusion. First, at each step
of partial product summation we throw away a significant digit due fo the
shift. This can't be helped. In general, the product of two 12 digits
numbers has 24 digits of precision, buf we are limited to 12, so we Throw
the bottom 12 digits away.*

These digits can be inspected, however. The MRY used to shift ARZ puts
the lost digit into Ag_3. This orovides an easy way for a rounding mechanism
to check on those digits as they tossed out. Indeed, the rounding routine
will need to save the last digit thrown out, for use in rounding in the
event the last use of FMP produces no overflow digi+t,

Lastly, notice that we can put WXYZ into B at the very start of the process,
and simply shift B right with and SBR 4 in-between uses of FMP. After all,
FMP uses only < Bo-3 > as the number of times to add ARl to ARZ.

Wnen adding ABZD to ABCD, the worst carry *nat con cccur is o | precceding a remyinirg four diaits
of sum. For each subsequent add of ABUD to the sur, the left-most digit can only increase by one,

But to rultiply 2 nurber by nine (the worst caned, you anby add it to itself with eight adcit ons,
Hence o marirum of 2ight for the overflos 2igi

» N
Anoerror analysis of this algorithm gisc'ones that dropping these digits causes the enswer, on fhe
average, 1o be slightiy smaller than i1 should be, Rounding intraduces a similar error in the

other dircction.

PROCESSOR-65

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

FLOATING-POINT BCD DIVISION

So much for the easy part. The other arithmetic operations could be
explained without fco much ado, and their pertinent EMC instructions
readily rationalized in terms of the desired activity. Not only is the
floating~point division algorithm messier and inherently less obvious, but
we shall have to resort to examining a section of code to get a clear
idea of how FDV is actually employed. This is necessary because FDV does
not, percentage-wise, do as much for division as, say, FMP does for
multiply (<« author's opinion).

THE DIVISION ALGORITHM

Somebody out there is probably muttering: "Wait a minufte, why can't they
just reverse the multiplication process....?" The answer is "significant
digits". Suppose a |2-digit DVD had been found by multiplying Q by DVR,
cach of which were 12-digit numbers (then Q = DVD/DVR). The multiplication
would have produced a 24-digit DVD; but we tThrow the least-significant 12
digits away. In order to reverse the multiplication process we would have
to have those missing digits. But divide only ever tas 12-digit numbers
to work with. So a different procedure is needed. We take the coward's
way out, and choose one that is essentially the same as the pencil and
paper method for long division.

As in multiplication, the sign and exponent of the intermediate answer
can be determined in advance.

Suppose we are going to divide:

(1) 480/15 = 32

(2) THEN (32)-(15) = 480

(3) (32) - (I15) = (30+2)-(15) = {30)-(15) + (2) -(I5)
(4) = (3)-(150)+ (2)-(15)

We want to do this thing as a series of subtractions. However, we
resist the folly of subtracting 15 from 480 thirty-two times! Instead,
we look at lire (4), and note that there are three 150's in 480. Perhaps
if we subtracted them out and then found out how many 15's were in the
difference..... Yes!

If you did that, you'd find that indeed, 150 can be subtracted three
times, leaving a remainder of 30, and that |5 can be subtracted from 30
two times. Now, since subtracting 150 three times is the same as subfracting
15 thirty times (after all, 150 x 3 = |5 x 30), there must be (30 + 2) 15's
in 480. So the answer Is 32.

The division algorithm we are going to develop uses just a scheme.
Following are some points to keep in mind.

PROCESSOR-66

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

FLOATING-POINT BCD DIVISION

THE DIVISION ALGORITHM (CONT.)

The digit sequence of the quotient is determined solely by The digit
sequences of the mantissas of the dividend and the divisor - the mantissas
are always normalized to begin with, and the exponents do not enter into
the actual division activity. Thus our above example illustrates (in a
three digit machine) the division of any number whose mantissa is 4.80 by
any other number whose mantissa is 1.50:

4.80x103/1.5x 10°2=3.20x10°

Just as for the previous operations we have examined, the easiest way is
fo forget about the alleged decimal point between D, and D2, and consider
the mantissas to be I2-digit Integers.

The divisor witl be in ARl (memory outside the EMC) and the dividend in
AR2 (accumulator registers with the EMC). The basic activity is to subtract
ARl from ARZ until AR2 gets smal ler than ARI. The number of subtractions
required for that to occur is the next digit of the quotient. Then AR2 is
shifted left and the process is repeated until either a zero remainder occurs,
or sufficient digits have been calculated, whichever occurs first. The
quotient digits are merged, one at a time, info a complete quotient held
in R/W memory. This is the firmware's responsibility, and it alone determines
where in R/W the quotient is kept.

Now:

) D) of the quotient might be zero (suppose AR| is greater than
the original AR2). In that case we accept the zero and shift
as described below.

2) The number of subtractions will always be nine or fewer. This
is because D; of ARl can't be zero. You may want to think about
that a minute and convince yourself.

3) If (1) occurs, or, after successful application of (2), we need
to do something that corresponds to changing the 150 to 15 and
getting ready to subtract it from 30 (the remainder).

Now for various reasons we don't want to fool around with the
150. Instead, we shift the 30 left and make it 300. We get the
same result, however.

4) 1f (1) occurs for D, of the quotient, it can't also occur for
Dz. The basic reason for this is that Dy of AR2 can't initially
be zero. After D1, "zero" quotient-digits can occur for several
digits in a row, however. But because 00--- can't occur, it is
always sufficient to compute |3 digits (assuming no extra digit
for rounding - and counting a leading zero as one of the 13).%

*
Suppose the leading quotient diglt were zero. Then you might consider computing 4 digits, so that
aftter normalization (when there would only be 13 diglits left) you would be able to round to 12
diglts based on the I3th digit. That sample divisfon routine given shortly does not do thlis,

PROCESSOR-67

"M)

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

- FLOATING-POINT BCD DIVISICN

THE DIVISION ALGORITHM (CONT.)

5) Consider a (i)-like situation for either D; or some other
digit of the quotient. The necessary shift (via MLY) moves
the left-most digit of ARZ into A. We cannot ignore this digit
when subtracting ARI. [Indeed, now we must deal with a I3-digit
dividend; A followed by ARZ. Here is some bad news; FDV knows
nothing of 13 digit arithmetic!! The software's use of FDV will
have to make up the difference.

THE FDV INSTRUCTION

FOV is used to accomplish the equivalent of automatically repeated sub-
traction of ARl from AR2, until ARZ becomes smal ler than ARI. |t does this
by adding ARl to ARZ until overflow occurs. This assumes that ARZ has
been complemented prior to the execution of FDV.

Your author feels that it makes more sense to describe floating-point
division in terms of subtractions, rather than additions to a complement.
We shall designate subtractions that are really complement-additions as
"subtractions".

- FDV returns the number of successful "subtractions" as a binary number
@wh (same as BCD) in By-3; By—35 are returned as zero.

In general, affter an application of FDV it is necessary to patch-up AR2
before shifting and using FDV again. This is because ARZ retains the result
of the first unsuccessful "subtraction". What is done is to de-complement
AR2 and add ARI| back one time, so as to undo the effect of the unsuccessful
"subtraction'". Then AR2 is shifted, and then complemented. ARl remains
untouched throughout the entire process.

There is one case where AR2 does not need to be adjusted. This is when
the result in AR2 is zero. This means that the divisor is contained within
the dividend exactly an integral number of times. This produces an eventual
zero remainder (the result in AR2). We say that such an event generates a
perfect quotient.

Now, in the event of a perfect quotient the number returned in Bo-3 is
one count too small. (You might have to think about that for a few minutes -
but its ftrue. Normally, overflow is associated with the first unsuccessful
"subtraction" because the answer should really be negative. But it just
so happens that the generation of a result of zero - which is basically still
a successful "subtraction" - is accompanied by overflow.) So the loop
that employs FDV has constantly got to be on the look-out for a perfect
quotient. This is desirable for another reason. Once a perfect quotient
has been discovered, it is undesirable to proceed with further division
activity.

PROCESSOR-68

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

THE FDV INSTRUCTION (con.)

Another aspect of FDV to be aware of is the way it refturns quotient digits
into B. Each digit is placed into B¢—-3, and By-15s are cleared. This means
you can't simply shift B left in-between the extraction of four consecutive
quotient digits, and then store B into the sequence of words used to receive
the answer. Instead, the sequence of digits has to be individually stored
in the answer as they are found; B cannot be used as temporary storage for
a group of quotient digits.*

There is one last fly in the ointment. This is the business of the dividend
frequently being 13 digits; A followed by AR2. Your author knows of only
one solution to this, and it's a good one, but it will take some explaining.
Clever things tend to not be obvious.

A series of FDV's can be used to "subtract" a 12-digit ARl from a [|3-digit
A-followed-by-AR2Z.

Suppose we have a complemented |13-digit number in A and AR2, as shown below:

7\
A AR2

ARI

DC AR2

When FDV is given it adds the 12 digits of ARl and the |2 digits of AR2
together until an overflow occurs, (FDV does not set DC, however.) Now if
FOV were a |3-digit operation the carry from ARZ would be used to increment
A. Also, there is nothing wrong with the resulting digit sequence in AR2.
The digits simply "turn-over" and keep going. But after each FDV the soft-
ware has to "increment A and detect when it goes from nine to ten".* When
the digit in A goes from nine to ten we have "real overflow" of the 13
digit number,.

This drawback would be avoided if FDV simply returned the number of successful "subtractions" to
Bo-3, leaving By_15 entirely alone. The designers of the EMC were well aware of this, but faced
internal constraints, such as chip size, and number of internal states. These constraints prevented
the implementation of the more desirable definition.

That, or equivalent behavior. The example we develop later doesn't physically do exactly what's
shown above - but what it does do is egquivalent fo it.

PROCESSOR-69

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

THE FDV INSTRUCTION (conT.)

Each use of FDV adds ARI and ARZ (into AR2) until ARZ overflows. When
that happens we increment A and add again with FOV if A is less than ten - no
adjustment is made to the digit sequence in ARZ - none is needsd. BDBut, the
digit sequence of AR2 reflects the "subtraction” that produces the overflow.
The number returned to B is one less than that. AR2 and Bg-3 are out of
step, so to speak.

What we want to know is the total number of possible "subtractions'" of
ARl from A-ARZ. We get that number by summing the values of < B > + | for
all uses of FDV, except the last one, during the [2-from-13-digit "subtractions".
The resulting digit sequence in AR2Z, when the 12-from-13-digit-"subtraction"
is completed, is like always, the result of an overflow, which in this case
we don't want. So as before if there is no perfect quotient, ARZ will be
de-complemented and ARl added to it. Then the previous FDV needs to
contribute only < Bg-3 > fto the sum of the latest quotient digit, not < B3 > + I.

For example, if there were three uses cf DV for a certain quotient
digit of a [2-from-13-digit "subtraction", we wouid form the (non-perfect)
quotient digit as:

Q, = (<By_z> +I) + (<Bg-z>+1) + <By 3>
:AFTER Ist USE :AFTER 2nd USE <_AJF\TER FINAL USE
OF FDV OF FDV OF FDV

|f the same general situation produced a perfect quotient on the nth
digit, then for the same reasons as before, we do not count the last
"subtraction":

= < BO 3> +]) + < BO 3> +1) + (< B0—3> +1)

: :AFTER 2nd USE CA}FTER FINAL USE

AFTER Ist USE

OF FDV OF FOV OF FOV
Somebody is probably wondering what happens if Q, turns out to be greater
than nine. 1t doesn't. Ever. Think in terms of the uncomplemented 13
digit A-ARZ. That number is always less than ten times greater than ARI
(D; of ARI # 0, remember). This is left as an exercise for the reader - it's

not worth pursuing here.
As a matter of implementation, it is tedious 1o check if A has been

incremented to ten. We can always tell in advance, from each new and
uncomp lemented value that is shifted info A, how many overflows out of ARZ

PROCESSOR-70

A BEGINNER’S LOOK AT CALCULATOR ARITHMETIC

THE FDV INSTRUCTION (conT.)

would be required if we were to increment and test on A. The easiest thing
to do is to put that number of needed FDV's into A as a count to be either
incremented or decremented to zero. Then each use of FOV for a 12-from-13
digit subtraction updates A until A is zero.

In the sample program segment that follows, the value returned to Bp_3
is always incremented by one immediately after it is returned. The increment
will later be taken out as the quotient digit is stored in its final destination,*
provided that it should be taken out. It is easier to always do the
increment and then test for when to take it out, rather than to test for when
to put it in.

SAMPLE DIVISION ROUTINE

The rule is this:
1) Always increment the value returned in Bg-3.

2) First check for multiple FDV's as a part of a I2-from-|13-digit
subtraction. |f so, loop immediately, performing no other
tests or activities,

3) When a quotient digit has been found, check to see if the quotient
is now a perfect quotient. |If so, exit the division loop
without removing the last increment. Save the last digit found
as part of the answer.

4) |If the quotient is not a perfect quotient, decrement the value
of the last quotient digit found, and save it as part of the
answer.

The test for a perfect quotient is simple, although not super-short:
if AR2 is zero the divisor has subtracted out evenly from the dividend.

The sample segment shown does not include the testing for and handling
of these things:

1) signs

2) division by zero
3) division into zero
4) exponents

5) overflow

6) rounding

All of these areas are handled by additional code segments not part
of the division loop proper.

*
Final destination here means with respect fo the divide routine, and is probably o temporary
location, not the final destination called for in the user's prograr,

PROCESSOR-71

oovl
0002
0003
0004
0005
0006
0007
0008
0009
00lo
0011
00l2
0013
0014
0015
0016
0017
001ls8
oolo
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060

L.

USEFUL EQUATES

-]

AR2M]1 EQU
ARZ2M? EOQU
AR2M3 EQU

L2

ARP ¢+ {=218) #)] AR?2 MANTISSA WORDL
Ak2+2 (=22B) #2 ARZ MANTISSA wWORD
ARP+3 (=238) #3 AR?2 MANTTISSA wORD

THESE WORDS IN ROM

-]

M100 DEC
M1D DEC
ZERO OCT
P1D DEC
P4D DEC
P13D DEC
P1768 OCT
P20o8 oCT
QWPIV DEF

-2

=10
-1
0

1

4
13
17
20

Wwil-1 PERMANENT STARTING VALUE OF QWPTR

THESE WORDS IN READ/WRITE

-4

QWPTR BSS
Gwl BSS
Qwe BSS
QW3 BSS
Qwe BSS
DIGCT BSS
wwDCT BSS
FOVCT BSS

L]

[]

1 QUOTIENT
1 QUOTIENT
1 QUOTIENT
1 QUOTIENT
1 QUOTIENT
]
1
1

WORD POINTER

WORD #1

WORD #2

WORD #3

WORD #4 (FOR DIGIT #13)

DIGIT COUNTER (13 = 1)
WITHIN WORO DIGIT COUNTER (1 = 4)
FOV RE=APPLICATION COUNTER

DIVIDEND ALREADY IN ARZ
DIVISOR ALREADY IN ARl

IVID LDa
STA
cMY
LDB
STB
LDA

#

ONXTwW ISZ

o
#
)
START OF FUNDAMENTAL DIVISION LOOP
©
O

WwWplIVv SET QUOTIENT WORD POINTER TO

WWPTR INITIAL VALUE (=QWl-1)
COMPLEMENT THE DIVIDEND
P130D {=+13 VEC)

OIGCT INITIALIZE DIGIT COUNT TO 13

MlDp ==]

DEC) INITIALIZE FOV REP COUNT FOR DIGIT #1

GWPTR INCREMENT QUOTIENT wORD POINTER

PROCESSOR-72

0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
o7l
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
oose
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
o110
0111
0l12
0113
0lls
0115
0lle
0117
0118
Olle
0120

LDB
ST8

ONXTD SBL
STB
STA

FOvVLP FDV
ADB
ADB
STB

1s2
JMP

LDA
I0R
IOR
SZA

s & & B

CMY
FXA
LDO8
ADB
ST8
CMY

LDA
MLY
ADA

THE FDV

& % s & ¢ &0 0 % &S s G &G G SO

DSz

JMP

JMP

0sZ

JMP

JMP
®

YESPQ DSZ

A MOMENT)

P4D
WWDCT

A
QWPTRe 1
FOvCT

QWPTRe I
PlD
QWPTRy 1

FOVCT
FovLP

AR2M]
AR2M2
AR2M3
YESPQ

QWPTRY]
M1D
QWPTRY I
ZERO

MloD

(2+4 DEC) SET THE WITHIN=WORO
COUNT TO 4

CLEAR B¢<0=3>
CLEAR NEXT WORD IN RECIEVING LOCATION
STORE NEXT DIGIT FDV REP COUNT

ARZ2=ARZ2+AR] UNTIL OVERFLOW

M%

MERGE NEW DIGIT WITH REST OF CURRENT ANSWER WORD

INCREMENT THE NEW DIGIT
SAVE THIS NEWEST PIECE OF THE ANSWER

INCREMENT FDV REP COUNTy LOOP IF NON=ZERO

UNFINISHED 12=-FROM=13-DIGIT SUBTRACTION. RE~DO FDV

WOR® ALL 3 WORDS OF THE AR2 MANTISSA
TOGETHER. CHECK FOR RESULTING ALL
ZEROS, IF SOy THEN HAVE
PERFECT QUOTIENT,

NO PERFECT QUOTIENT,., DIVIDE AGAINe BUT FIRST RESTORE DIVIDEND,
SHIFT IT LEFTe AND THEN FIND NEW FDV REP COUNT.

DECOMPLEMENT REMAINDER (ARZ2)

ADD BACK DIVISOR (AR1)

GET LAST CALCULATED DIGIT

UNDO LATEST (AND UN=NEEDED) INCREMENT
SAVE THE NOW CORRECT PARTIAL ANSWER
COMPLEMENT NEW DIVIDEND (AR2)

CLEAR A SO AS TO NOT SHIFT IN JUNK BELOW
SHIFT DIVIDEND LEFTY
FIND NEXT FDV REP COUNT

REP COUNT IN A IS NEGATIVE SO THAT IT CAN BE COUNTED

ONE FDV IS DONE.

DIGCT
902
DONE
WWwDCT
ONXTOD
ONXTW

OIGCT

UP TO ZERO., THE ABSOLUTE VALUE OF A IS THE NUMBER OF TIMES
FOV WILL BE APPLIED FOR THE QUOTIENT DIGIT BEING FOUNDe. FOR
A 12=D]GIT=-FROM=12=-DIGIT~SUBTRACTIONy A==1s AS ONLY ONE USE
OF FDV 1S REQUIRED.

THE MLY SHIFTS INTO THE A=-REG A DIGIT WHOSE VALUE IS 9-Dl

WITH RESPECT TO THE UNCOMPLEMENTED AR2 (PRIOR TO ITS SHIFT),
NOWy 9-Dl=10 IS SIMPLY «(Dl+1l). FORGETTING THE MINUS SIGN FOR
THIS SAYS THAY THE A~REG IS ONE COUNT HIGHER THAN
THE “REAL" LEFT=MOST DIGIT OF THE DIVIDEND. REMEMBERING THAT

A IS INCREMENTED UP TO ZEROs IF THE "REALY DIGIT IS ZEROs THEN
IF THE “REAL" LEFT=MOST DIGIT IS ONEs THEN AN
EXTRA FDV IS DONE. FOR TWOs THREE FDV'Sy ETCes» ETC.

BOTTOM=OF =1 OOP MAINTENANCE FOLLOWS

DECREMENT TOTAL DIGIT COUNT, DONE IF ZERO

NOT DONEe DIVIDE SOME MORE

GO FINISH uP

DECREMENT WITHIN-WORD DIGIT COUNT

LOOP FOR NEXT DIGIT WITHIN SAME QUOTIENT WORD
LOOP FOR NEXT DIGIT IN NEXT QUOTIENT WORD

PERFECTY QUOTIENT BEFQORE ALL 13 DIGITS FOUND?

PROCESSOR-73

™

0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
013)]
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0l4s
0145
0146
0147
0l48
0149
0150
0151
0152
0153
0154
0158
0156
0157
0158
0159

JMP YES
JMP DONE

SBL 4
YES DSZ WwpCT
JMP =2

DONE STB GWRTRsI
LDA Qwplv
ADA PlD
LD8 P20B
XFR 4

NRM
$ZB GO,ON

»
HERE»

THE FIRST

OF THAT AND NOW

o

NOs PERFECT QUOTIENT ON DIGIT #13
SHIFT LATEST DIGITS TO LEFT AS NECESSARY
STORE LAST DIGITS OF QUOTIENT

SET “FROM" X=-FER ADDRESS

SET "TO» X-FER ADDRESS
X=FER QUOTIENT TO AR2

NORMALIZE THE QUOTIENT IF NEEDED
GO ON IF IT WAS ALREADY OKs JOE

DIGIT OF THE QUOTIENT wAS A ZERO. NRM GOT RID
WE PUT THE OLD DIGIT #13 IN AS THE NEW DIGIT #l2,

LDA QW4 GET DIGIT #13
AND P17B RESTRICT IT TO 4 BITS
ABOVE INST NEEDED ONLY 1F QW4 USED ELSEWHERE FOR OTHER THINGS
ADA QW3 PUT IT IN AS NEW DIGIT #12 (OLD DIGIT #12=0)
STA QW3 RESTORE THIRD WORD OF QUOTIENT
LOB SET EXPONENT ADJUST FLAG
.
.
.
.
.
GOeON cecsseqocccea
o
.
.
.
.
.

PROCESSOR-74

@./\ _

éﬁ“

INTRODUCTION TO THE MACHINE INSTRUCTIONS

NOTATION

Assembly language maching instructions are three-letter mnemonics,
Fach machine instruction source statemeont corresponds to a machine-operation
in the object program produced by the assembler. HNotation used is representing
source statements is explained below:

label Ontional staiement label. Labels must begin with
an alphabetic character, period, or certain other
non-numeric characters. Labels may be one through
five characters in length., 1¥ present, a label
must begin in column I. A space terminates a
label. |f a statement docs not have label, then
column | must be a blank,

m Memory location. This can be an octal or decimal
integer, a symbol used as a labe! elsewhere, or,
an expression composed of a combination of these
combined through + and - operators. Parentheses
are not permitted in expressions.

n Numerical quantity. A numeric value that is not
{lower case) an address, but represents a shift or skip amount.

N Octal or decimal constant whose value is restricted
(upper case) to the range: | < N < 205 = 16,

SMA allows M 1o also be any expression, provided
that the value of the expression is within the
stated range.

I Indirect addressing indicator for memory reference
instructions. Also indicates an automatic increment
for place and withdraw instructions.

D Decrement indicator for place and withdraw
instructions.

P Indicator used in Return instructions to instruct
the 10C +to pop its peripheral address stack.

reg., 0-7 Register location. This can be an octal or decimal
integer, or an assembler-pre-defined symbol. |1 might
even be an expression. Regardless of what it is,
i+t must have a value of 0g through 75, inclusive.

reg. 4-7 Register location. Same rules as for reg. 0-7
above, except the value must be 4g - 7g, inclusive.
The slash indicates the item on either side (but not

T both) may be used at this place in the source
statement.

commenis Opiional comments. Comments must be separated
by at least one space from the material to the
left of the comment.

L1 Brackets indicate that the item contained within
them is optional.

INSTRUCTIONS-1

BPC MACHINE INSTRUCTIONS

MEMORY REFERENCE GROUP

Fach of the |4 mermory roeterence instractions performs some operation
nased npon the contents of a referenced memory location. Unless the
refoerence is to a locostion on the base page, it must be on The same current
ponge s the instruction, The assembler defermines which type of page-
roeforence s used, oand ot the B/C bit (bit 10) of the instruction
seoardinaly. The least o den sianificant bits of rhe address of the
roforsn g tocation are: P in bits 0=9 of the instruction. A memory
. Inodhe source ihis is indicated with a ,1I

3

crand. Thi, is assoratad by mening it 15 of the instruction

reterenss may be dndireod

lahel L DA ni ,I] comments

Load A from m. The A register is loaded with the contents of the
addressed merory location,
1 I {
label LDB I m [,I7] I comments

.

Losd B from m, The b register (s fcaded with the contents of the
i(rwd;vd marory location,

| ! 1
label | oA | w173 | comments
Compare the contents of m with the contents of A; skip 1f unequal.
The two 16-bit words are compared bit by bid. |f Thoy differ the next

instruction is skipped, otherwise it 15 oxecuted next.

|) 1
tabel B I m[,I] | comments

Compare the contents of mowith the contents of B; sk
o Tan E-tit words are comparec bit by bit. If they d
ivLiruction i9 skipped, otherwise i1 is executed next.

] 1 [

label I ADA I m{ ,I7] | comments

p if unecual.
ff

i
iffer the next

Add the contents of m to A. The contents of the addressed memory location
are added to those of A, The binary sum remains in A while the contents of
m remain unchanged. 1f a carry occurs from bit 15 the € register is sef
to a one, otherwise, s left unchanQﬁd I{ an overflow occurs the OV
reqister is set to a one, otherwize The DV reqister is left unchanged.
ihe overilow condition occurs if there is a carry from either bits 14 or
IH, but not both tcegoiher.

L l 1
lapel E I m r,17 | comments

Add the contents of m to B. Otherwise identical fto ADA,
[} 1

1
tabel [sra [o[,I] | comments

Store the contents of A in m. The confents of the A register are stored
into the addresscd memory location, whose previous contents are lost.

INSTRUCT IONS-2

BPC MACHINE INSTRUCTIONS

MEMORY REFERFNCE GROUP (cont.)

| {]
label I STB l m[(,I] | comments

Store the contents of B in m. The contents of the B register are stored
into the addressed memory location, whose previous contents are lost.
| } |
label | Jsm | m[,I] | comments

Jump to subroutine., JSM permits jumping to subroutines in either ROM
or R/W memory. The value of the pointer in the return stack register (R)
is incremented by one and the value of P (the location of the JSM) is stored
in R,I. Program execution resumes at m,

label JMP m[,1] comments

Jump to m. Program execution continues at location m,

label 152 m [,I] comments
fncrement m; skip if zero. |1SZ adds one to the contents of the referenced
focation, and writes the sum into that location. [|f the sum is zero, the
next instruction is skipped. |SZ does not alter the contents of E and OV.
| | 1
label DSZ | m[,I] | comments

Decrement m, skip if zero. DSZ subtracts one from the contents of the
referenced location, and writes the difference irto that location. If the
difference is zero, the next instruction is skipped. DSZ does not alter the
cortents of E and OV.

| |]
label AND m[,I] I comments

Logical and of A and m. The contents of A and m are and'ed, bit by bit,

and the result is left in A.
L { L

label I I0R | m[,I] I comments

Inclusive or of A and m. The contents of A and m are or'ed, bit by bit,
and the resulf is left in A, The irclusive or is the "ordinary or" operation.

The following four instructions are not, in the strictest sense, memory
reference instructions. They are included here for the sake of continuity.
|] |
label | RET | m[,P] | comments

Return. The R register is a pointer into a stack of words in R/W
memory containing the addresses of previous subroutine calls. A read
R,I occurs. That produces the address (P) of the latest JSM that occurred.
The BPC then jumps fo address P+n, and R is decremented. The value of n
may range from =32 to 3i, inclusive. The value of n is encoded into bits
0 through 5 of the instructions as a 6 bit, two's complement, binary numper.

INSTRUCTIONS-3

BPC MACHINE INSTRUCTIONS

MEMORY REFERENCE GROUP (conr.)

The ordinary, everyday garden variety return is RET 1.

If a P is present, it "pops" the interrupt system. Two things occur
when this happens: first, the peripheral address stack is popped, and
second, the interrupt grant network is "decremented".

The peripheral address stack is a genuine hardware stack, 4 bits wide,
and three levels deep. On the top of this stack is the current select
code for 1/0 operations. Select codes are stacked as interrupts occur
during 1/0 operations - A RET 0, P at the end of an interrupt service
routine puts the select code of the interrupted device back on the top
of the stack.

The interrupt grant network keeps track of which interrupt priority
level is currently in use. Ffrom this it determines whether or not to
grant an interrupt request. A RET 0, P at the end of an interrupt
service routine causes the interrupt grant network to change the current
interrupt priority level to the next lower level (unless it is already at
the lowest level),

l I

label CLA comments

Clear A. There is no machine-instruction called Clear A, The assembier
turns this mnemonic into an SAR 16 (shift A right 16). This has the effect
of clearing the A register.*

] l

label CLB comments

Clear B. There is no machine-instruction called Clear B. The assembler
turns this mnemonic into an SBR 16 (shift B right 16}, This has the effect
of clearing the B register.X

1 1

label NOP comments

Null operation. There is no machine-instruction for a no-operation,
per se. The assembler turns this mnemonic into a LDA A, (the machine-
instruction for which happens to be all zeros).

SHIFT-ROTATE GROUP

The shift-rotate instructions perform re-arrangements of the bits of
the A and B registers. Each shift-rotate instruction includes a four-bit
field in which the shift or rotate amount is encoded. The number to be
encoded in the ficld is represented by n. In the source text n may range
from | to 16, inclusive. The four-bit field (bits O through 3) will contain
the binary code for n-|.

*
CLA and CLB are probably not the best way to accomolish the desired result, [1f the program has in
it a word that is all zeros, then it is faster to (DA or LDB with that word.

INSTRUCTIONS-4

BPC MACHINE INSTRUCTIONS

SHIFT-ROTATE GROUP (con.)

|] |
label l AAR | n | comments

Arithmetic right shift of A. The A register is shifted right n places
with the sign bit (bit I5) filling all vacated bit positions; the n+! most
significant bits become equal +o the sign bit.

l l |
label I ABR I n | comments

Arithmetic right shift of B. The B register is shifted right n places
with the sign bit (bit 15) filling all vacated bit positions; the n+l most
significant bits become equal to the sign bit.

{abel SAR n comments

Shift A right. The A register is shifted right n places with all vacated
bit positions cleared: the n most significant bits become zeros.
1 [1
fabel | sBR | n | comments

Shift B right. The B register is shifted right n places with all vacated
bit positions cleared: the n most significant bits become zeros.
! 1

jabel I SAL | n I comments

Shift A left. The A register is shifted left n places; the n least
significant bits become zeros.
l 1]
label | SBL | n comments

Shift B left. The B register is shifted {eff n places; the n least

significant bits become zeros.
i 1 1

label RAR n | comments

Rotate A right. The A register is rotated right n places, with bit 0
rotating into bit I5.
| 1 l

label | RBR | n | comments

Rotate B right. The B register is rotated right n places, with bit O
rotating into bit |5.

ALTER-SKIP GROUP

The alter-skip instructions each contain a six bit field which allows
a relative branch of any of 64 locations. The distance of the branch is
represented by a displacement, n; n may be within the range of -32 to 3I,
inclusive.

INSTRUCTIONS-5

BPC MACHINE INSTRUCTIONS

ALTER-SKIP GROUP (conT.)

The arguments for the iastructions of this group are shown as *#n, or, m.
An argument of n by itself will generally cause an error, Internally, the
assembler subtracts ‘the current value of * from the argument as part of the
evaluation process. So ¥in-* is simply tn, and m-" becomes a relative
displacement rather than an actual address. This business of subtracting ¥
was done to allow symbols and addresses {ihese are m's) as arguments. Thus
it is possible to write SZA HOOK. All that Is required is that HOOK be
within the allowable skip distance of the instruction.

Bits O through 5 are coded with the value of n (or m-*) as follows: if
the value is positive or zero, bit 5 is zero, and bits O through 4 receive
the straight tinary code for ihe value of n - if the value is negative, bit 5
is a l, and bits 0 through 4 receive a2 complemented and incremented binary
code,

For n or m-* = bits 5 - 0 meaning:

-32 100000 if skip, next instruction is *¥-32

-7 111001 if skip, next instruction is *-7

- | AR if skip, next instruction is *-|
0 000000 if skip, repeat this instruction
! 000001 do next instruction, regardless
7 00011 | if skip, next instruction is *+7
31 oLl if skip, next irstruction is *+3l

All instructions in the alter-skip group have the "skip" properties
outlined above. Somz of the instructions also have an optional "alter" property.
This is where the general instruction form "skip if <some one bit condition>"
is supplemenied with the atility to alter the state of the bit mentioned in
the condition. The alteration is to either set the bit, or clear it. |If
specified, the alteration is done after the condition is tested, never before.

To indicate in a source statement that an instruction includes the alter
option, and to specify whether to clear or to set the tested bit, a comma-C
or comma-S follows *#n/m, The € indicates clearing the bit, while an S
indicates sefting the bit.

The "alter" information is encoded into the 16 bit instruction word
with 2 bi¥s. For such instructions, bit 7 is called the H/H {(Hold/Don't Hold)
bit, and bit 6 is the C/S (Clear/Set) bit. 1f bit 7 is a zero (specifying H)
the "alter™ ontion is not active; neither S nor C followed n In the source
statement of the instruction, and the tested bit is left unchanged. [f
bit 7 is a | (specifying H}, then "alter" option is active, and bit 6
specifies whether it is S or C.

l] l

[abel SZA ¥ 4 n/m comments

Skip if A zero, 1f all 16 bits of the A register are zero, skip the
amount indicated by n, or, to m,

INSTRUCT IONS-6

BPC MACHINE INSTRUCTIONS

ALTER-SKIP GROUP (conT.)

| l l
label | SZB I ¥+ n/m I comments

Skip if B zero. |If all 16 bits of the B register are zero, skip the
amount indicated by n, or, to m.
1]
label RZA | ¥ + n/m I comments

Skip if A not zero. |If any of the 16 bits of the A register are set,
skip the amount indicated by n, or, to m.

label RZB *¥ + n/m comments

Skip if B not zero. |f any of the 16 bits of the B register are set,

skip the amount indicated by n, or, fo m.
L 1

label SIA ¥ £ n/m I comments

Skip if A zero, and then increment A. The A register is tested, and
then incremented by one. |f all 16 bits of A were zero before the increment,
skip the amount indicated by n, or, to m. SIA does not affect the contents
of E or OV.

[1 1
label SiB * + n/m I comments

Skip if B zero, and then increment B. The B register is tested, and
then incremented by one. |If all 16 bits of B were zero before the increment,
skip the amount indicated by n, or, fo m. SIB does not affect the contents
of E or QV.

[1 1
label | RIA * + n/m | comments

Skip if A not zero, and then increment A. The A register is tested, and
then incremented by one. |If any bits of A were one before the increment,
skip the amount indicated by n, or, to m. RIA does not affect the contents
of E or OQV.

l l |

label RIB ¥ + n/m comments

Skip if B not zero, and then increment B. The B register is tested, and
then incremented by one. |If any bits of B were one before the increment,
skip the amount indicated by n, or, to m. RIB does not affect the contents
of E or OV.

In connection with the next four instructions, Flag and Status are
controlled by the peripheral interface addressed by the current select code.
The select code is the number that is stored in the register named PA, located
in the 10C. Both Status and Flag originate such that when a missing interface
is addressed Status and Flag will appear to be false, or not set.

INSTRUCTIONS-7

BPC MACHINE INSTRUCTIONS

ALTER-SKIP GROUP (conT.)

l l l
label | SFS | ¥ £ n/m I comments

Skip if Flag line set. |If the Flag line is true, skip the amount

indicated by n, or, to m.
1 ! !

label I SFC I ¥ + n/m I comments

Skip if Flag line clear. |If the Flag line is false, skip the amount

indicated by n, or, to m.
l l]

label | SSS l * + n/m | comments

Skip if Status line set. |f the Status l|ine is frue, skip the amount

indicated by n, or, to m,
l 1 l

label | ssc | *#n/m | comments

Skip if Status line clear. |f the Status line is false, skip the amount

indicated by n, or, to m.
1 1 1

label I SDS I ¥ + n/m I comments

Skip if Decimal Carry set. Decimal Carry (DC) is a one-bit register in
the EMC. |+ is controlled by the EMC, but connected to the decimal carry
input of the BPC. |If DC is set, skip the amount indicated by n, or, to m,

] | |
label sDC * + n/m | comments

Skip if Decimal Carry clear. Decimal Carry (DC) is a one-bit register in
the EMC. It is controllied by the EMC, but connnected to the decimal carry
input of the BPC. If DC is clear, skip the amount indicated by n, or, to m.

| | |

label I SHS | * + n/m l comments

Skip if Halt line set. |If the Halt line is true, skip the amount
indicated by n, or, to m,
| | |

label | SHC [*+a/m | comments

Skip if Halt line clear. |If the Halt line if false, skip the amount

indicated by n, or, to m.
[(] 1

label I SLA | *+n/m([,S/,C] I comments

Skip if the least significant bit cf A is zero. |f the least significant
bit (bit 0) of the A register is a zero, skip the amount indicated by n,
or, fom. |f either S or C is present, bit 0 is altered accordingly after
the test.

INSTRUCTIONS-8

BPC MACHINE INSTRUCTIONS

ALTER-SKIP GROUP (conT,)

| [|
tabel | SLB | ¥+ n/m[,S/,C] I comments

Skip if the least significant bit of B is zero. |f the least significant
bit (bit 0) of the B register is a zero, skip the amount indicated by n,
or, fom. If either S of C is present, bit O Is altered accordingly after
the test.
| | |
label RLA ¥+ n/m [,S/,C] | comments

Skip if the least significant bit of A is non-zero. If the least
significant bit (bit 0} of the A register is a one, skip the amount
indicated by n, or, tom., |f either S or C is present, bit 0 altered
accordingly after the test.

! ! |

label RLB ¥ + n/m [,S/,C] I comments

Skip if the least significant bit of B is non-zero. |If the least
significant bit (bit 0) of the B register is a one, skip the amount
indicated by n, or, fom. [|f either S or C is present, bit 0 is altered
accordingly after the test.

[1]
label SAP *+n/m [,s/,C] | comments

Skip if A positive. If the sign bit (bit [I5) of the A register is a
zero, skip the amount indicated by n, or, to m. |f either S or C is

present, bit 15 is altered accordingly after the test.
l 1 |

label SBP *+n/m[,s/,C] I comments

Skip if B positive. |f the sign bit (bit 15) of the B register is a
zero, skip the amount indicated by n, or, fom. |If either S or C is
present, bit 15 is altered accordingly after the test.

| l l

label SAM ¥ £ n/m[,s/,C] I comments

Skip if A minus. |f the sign bit (bit I5) of the A register is a one,
skip the amount indicated by n, or, tom. If either S or C is present,
bit I5 is altered accordingly after the test.

1 ! 1

label SBM ¥ +n/m[,s/,C] l comments

Skip if B minus., |If the sign bit (bit 15) of the B register is a one,
skip the amount indicated by n, or, tom. [If either S or C is present,
bit |15 is altered accordingly after the test.

] !]

label S0S ¥+ n/m [,S/,C] I comments

Skip if overflow set. |f the one-bit overflow register (CV) is set,
skip the amount indicated by n, or, tom. |I|f either S or C is present,
the OV register is altered accordingly after the test.

INSTRUCTIONS-9

BPC MACHINE INSTRUCTIONS

ALTER-SKIP GROUP (conT.)

] | 1
label I SoC I * +n/m [,s/,C 7] I comments

Skip if overflow clear., |f the one-bit overflow register is clear,
skip the amount indicated by n, or, fo m. If either S or C is present,
the OV register is altered accordingly after the test.

l l]

label SES ¥+ n/m[,s/,C] | comments

Skip if extend set. |If the extend register (E) is set, skip the amount
indicated by n, or, tom. |f either S or C is present, E is altered

accordingly after the test.
l L I

label I SEC * + n/m[,S/,C 1] | comments
Skip if extend clear. If the extend register (E) is clear, skip the
amount indicated by n, or, fom. |If either S or C is present, E is altered

accordingly after the test.

COMPLEMENT-EXECUTE GROUP

I |
label | oMA | comments

Complement A. The A register is replaced by its one's (bit by bit)
comp lement.
!

label i CcMB I comments

Complement B, The B register is replaced by its one's (bit by bit)
complement.
|

l
label | TCA l comments

Two's complement A. The A register is replaced by its one's (bit by bit)
complement, and then incremented by one. The E and OV registers are updated
according to the results of the increment, in the same fashion as for the
ADA instruction.

l l
label I CB I comments

Two's complement B. The B register is replaced by its one's (bit by bit)
complement, and the incremented by one. The E and OV registers are updated
according tc the results of the increment, in the same fashion as for the
ADB instruction.

INSTRUCTIONS-10

BPC MACHINE INSTRUCTIONS

COMPLEMENT-EXECUTE GROUP (conT.)

| | |
label | EXE | 0 <m< 3%7¢ [,I] comments

<

Execuie register m. The conients of any register can be treated as the
current instruction, and executed in the normal manner. The register is
teft unchanged unless the instruction code causes i1 to be altered. The
next instruction executed will be the one following the EXE m, unless the
code in m causes a branch,

Indirect addressing is allowed. An EXE m, T causcs the contents of m
to be taken as the address of the place in memory whose contents are to be
executed; this can be anywhere in memory, and need not be another register.
In 15-bit versions of the processor, multi-level indirect addressing with
EXE instruction is possible. Only one level is possible with the 16-bit
processor.

The 15-bit verion of the BPC has a bug in connection with the Execute
instruction. If fthe EXE machine-instruction is used to execute any of the
A, B, P, or R registers, and interrupi occurs during the insiruction fetch
out of one of those registers, the BPC slips a cog and fails fo give SMC
{Synchronized Memory Complete). This failure to complete a memory cycle
brings all system activity to a halt.

This bug is really not an exclusive property of the EXE instruction.
The fundamental problem lies in instruction fetches [rom addressable registers
within the BPC. An EXE instruction simply causes such a fetch. Such an
unlikely thing as JMP A (although very legal and quite possitle) would also
suffer the uncompleted memory cycle if an interrupt were to occur during
the fetch from A.

Note that EXE A ,I is not affected by the bug. Although it causes a
read from A, that read is net an instruction fetch. It is only an instruction
fetch from one of the addressable registers in the BPC that is susceptible
to the bug. However, also note that an EXE A ,TI is susceptible 1f A
points to one of the other addressable registers with the BPC.

I the system uses interrupt it is best to disable the infterrupt system
with DIR before doing any EXE machine-instructions.

This bug has been fixed in the 16-bit version of the BPC.

INSTRUCTIONS-11

I0C MACHINE INSTRUCTIONS

STACK GROUP ™

The stack group manages first-in, last-out firmware stacks. The "place"
instructions put a word or byte into a stack pcinted at by C or D.* The
item that is placed is reg. 0-7. The "withdraw" instructions remove a
word or a byte from a stack pointed at by C or D. The removed item is
written info reg. 0-7.

By the end of each place or withdraw instruction the stack pointer is
either incremented or decremented, as specified by the optional I or D,
respectively. |In the absence of either an I or a D, the assembler defaults
to I for place instructions, and D for withdraw instructions.

Place instructions increment or decrement the stack pointer prior to
the placement, and withdraw instructions do it after the withdrawal. In
this way the pointer is always left pointing at the top of the stack.

For byte operations using I5-bit version of the processor bit |5 of the
pointer register (C or D) indicates left or right half (I = left, 0 = right).
Stack instructions involving bytes foggle bit |15 at each increment or
decrement; but the lower bits of the pointer increment or decrement only
during the zero-to-one trarsition of bit 15.

In the 16-bit version of the processor, the least-significant bit of
the pointer register indicates left or right hatf (0 = left, | = right).
Full 16-bit addressing is maintained by a most-significant bit (for each /w%
pointer register) in the form of the CB and DB registers. The C and CB ;
registers, and D and DB registers, act as 17-bit registers during the
automatic increment or decrement to the pointer registers.

The values of C and D for place-byte instructions must not be the
address of any internal register for the BPC, EMC, or I10C. The place and
withdraw instructions can also initiate |/0 operations, so they are also
listed under the 1/0 aroup. ‘

label PWC reg. 0-7 [,I/,D] comments

Place the entire word of reg. into the stack pointed at by C.

label PWD reg. 0-7 [,1/,D] comments

Place the entire word of reg. into the stack pointed at by D.

label PBC reg. 0-7 [,I/,0] comments

Place the right half of reg. into the stack pointed at by C.

label PBD reg. 0-7 [,1/,0] comments

Place the right half of reg. into the stack pointed at by D.

-
C and D are registers in the 100; addresses [€g and |7y, respectively,

INSTRUCTIONS-12

I0C MACHINE INSTRUCTIONS

STACK GROUP (con.)

|] |
label | wic | reg. 0-7 [,1/,0] | comments

Withdraw an entire word from the stack pointed at by C, and put it
into reg.
] l l
label WWD reg. 0-7 [,I/,0] | comments

Withdraw an entire word from the stack pointed at by D, and put it
into reg.
l ! |
label WBC reg. 0-7 [,1I/,D] l comments

Withdraw a byte from the stack pointed at by C, and put it into the
right half of reg.

] { —]
label | weD reg. 0-7 [,1/,0] | comments

Withdraw a byte from the stack pointed at by D, and put it into the
right half of reg.

! 1
label l CBL¥* I comments

Set the CB register to a zero. This specifies the lower block of
memory pointed at by C and CB.
l

|abel cBU* comments

Set the CB register to a one. This specifies the upper block of memory
pointed at by C and CB.

label DBL¥ comments

Set the DB register to a zero. This specifies the lower block of
memory pointed at by D and DB.

label DBU* comments

Set the DB register to a one. This specifies the upper block of memory
pointed at by D and DB.

* Part of the 16-bit processor's instruction set only.

INSTRUCTIONS-13

I0C MACHINE INSTRUCTIONS

1/0 GROUP

The states of ICI and 1C2 during the 1/0 Bus Cycles initiated by the
instructions below depend upon which register is the operand of the
instruction:

ICI Ic2
R4 | |
R5 0 |
R6 |
R7 0 0
} | {
label I mem. ref. inst. reg. 4-7 [,I] I comments

Initiate an 1/0 Bus Cycle. Memory reference instructions 'reading'
from reg. cause input |/0 Bus Cycles; those 'writing' to reg. cause output
/0 Bus Cycles. In either case the exchange is between A or B and the
intferface addressed by the PA register (Peripheral Address Regisfer - |lg);
reg. 4-7 do not really exist as physical regisiers within any chip on the
IDA Bus.

1] l
label | stack inst. | reg. 4-7 [,1/,00 | comments

/ﬁ%

Initiate an 1/0 Bus Cycle. Place instructions 'read' from reg., therefore
they cause input 1/0 Bus Cycles. Withdraw instructions 'write' into reg.,
therefore they cause output 1/0 Bus Cycles. In either case the exchange is
between the addressed stack location and the interface addressed by PA.

INTERRUPT GRCUP

label EIR comments

Enable the interrupt system. This instruction cancels DIR.

label DIR comments

Disable the interrupt system. This instruction cancels EIR.

INSTRUCTIONS-14

@M\

I0C MACHINE INSTRUCTIONS

DMA GROUP

l l
label I SDO* | comments

Set DMA outwards. This instruction specifies the read-from-memory,
write-to-peripnheral direction for DMA transfers.
1]
label I SDI¥* | comments

Set DMA inwards. This instructlon specifies the read-from-peripheral,
write~to-memory direction for DMA transfers.

label DMA comments

Enable the DMA mode. This instructions cancels PCM and DDR.

label PCM comments

Enable the Pulse Count Mode. This instruction cancels DMA and DDR.

label DDR comments

Disable Data Request. This instruction cancels the DMA Mode and the
Pulse Count Moce.

NOTE

DDR is not usable with the 15-bit version of the processor. |f
the 10C should be in the process of executing a DDR and a DMA request
occurs, the processor will go out to lunch and never come back.
This bug has been fixed in the 16-bit version.

NOTE

The 10C will not execute I0C machine-instructions fetched from its
own internal registers.

»
Part of the 16-bit processor's instruction set only,

INSTRUCTIONS-15

EMC MACHINE INSTRUCTIONS

&

THE FOUR-WORD GROUP

|] }
label | CLR l N l comments

Clear N words. This instruction clears N consecutive words, beginning
with location < A >, Remember: | < N < {610.

0 + location < A >

0 » location < A > + |

0 + location < A > + N - |

| | |
label I XFR | N I comments

Transfer N words. This instruction transfers the N consecutive words
beginning at location < A > to those beginning at < B >. Remember:
| f.N f_|610.
location < A > + location < B >
location < A > + | » |ocation < B > + | /_)

(-]

[»]

location < A >+ N - | -+ location < B > + N - |

THE MAWTISSA SHIFT GROUP

| |
label I MRX I comments

Mantissa right shift of ARl r-times, r = < By~.3 >, and O < r <173 = 15;1,.
Ist shiff: < Ap_3 >+ Dy;....<Dj >+ Djp15.... D12 is lost

Jth shift: 0 +Dy;....<Dj >>Djs15.... D12 is lost

rth shift: 0 +*Dy;....< D5 >~ Di+1;“"< Diag > > Ag-3; 0 +DC; O + Ay-15
Notice:

1) The first shift does not necessarily shift in a zero; the
first shift shifts in < Ag_3 >,
2} The last digit shifted out ends up as < Ap-3 >.
3) If only one digit-shift is done, (1) and (2) happen together.
4) After (2), SE is the same as < Ap-3 >.
5) Any more than eleven shifts is wasteful. f@%

INSTRUCT IONS-16

EMC MACHINE INSTRUCTIONS

THE MANTISSA SHIFT GROUP (conT.)

label MRY comments

Mantissa right shift of ARZ < Bo.3 > -times. Otherwise identical to MRX.

label MLY comments

Mantissa left shift of ARZ one time.
<Ag-3 >+ Di12;...<Dj >>Dj15....< D1 > > Ag—3; 0>DC; 0 » Ay

At the conclusion of the operation SE equals < Ag_3; >.
| |

label DRS comments

Mantissa right shift of ARl one time.
0+D1;....<D; >+ Dj415....< D12 >+ Ag-3; 0 +DC; 0 > Ay-15

At the conclusion of the operation SE equals < Ap-3 >.
!]

label NRM comments

Normalize AR2. The mantissa digits of AR2 are shifted left until D1 # 0.
If the original D1 is non-zero, no shifts occur. |f twelve shifts occur,
then AR2 equalis zero, and no further shifis are done. The number of shifts
is stored as a binary number in B

i. 0 + By—15; # of shifts > Bg—-3; 0 » OC
ii. For0§<Bo_3 >i|l;O+DC
iii. I1f <Bo-3 >=12; | » DC

THE ARITHMETIC GROUP

|
abel | CMX comments

Ten's complement of ARI. The mantissa of ARl is replaced with its ten's
complement, and OC is set to zero.

NOTE

In the I5-bit version of the processor there is a bug concerning
CMX in 15-bit systems that also use DMA.

The bug concerns the way Sync is treated. Under the right conditions
a bus grant (think "DMA cycle") causes the EMC to give Sync too early. The
result is simultaneous use of the IDA Bus by the EMC and BPC. The most
apparent result is that the next instruction fefch by the BPC is garbled,
which is a disaster.

INSTRUCTIONS-17

EMC MACHINE INSTRUCTIONS

THE ARITHMETIC GROUP (cont.)

1 L
label | CMY IgicommenTS

Ten's complement of AR2. The mantissa of AR2 is replaced with it ten's
complement, and DC is set to zero.
| M|
label | CobC | comments

Clear Decimal Carry. Clears the N register; 0 - 0OC.
1 1
label I FXA I comments

Fixed-point addition. The mantissas of ARl and ARZ are added together,
along with DC (as a Dy» -digit), and the result is placed in AR2. If an
overflow occurs, DC is set to one, otherwise, DC is set to zero at the
completion of the addition.

During the addition the exponents are not considered, and are left
strictly alone. The signs are also left completely alone.

<ARI > = Dy D2 Dz---=---- D12
<ARZ > = Dy Dy Dg--m=we-- D12
+ < DC > <« initial value of DC
(overflow) - "D¢" D1 Dy Dz-===-m—- D1, > AR2
DC (final value cf DC)
I 1
label | MWA | comments

Mantissa Word Add. < B > is taken as four BCD digits, and added, as
Dg through D2, to AR2. DC is also added in as a Dy2. The result is left
in AR2, If an overflow occurs, CC is set to one, otherwise, DC is set to
zero at the completion of the addition.

During the addition the exponents are not considered, and are left
strictly alone, as are the signs. WA is intended primarily for use in
rounding routines,

< B> = ccmmmemaa Dy Dio D11 Dyo
< AR2 > = Dyj====-- Do Dio D11 Di2
+ < DC > <« initial value of OC
(overflow) - "Dg" Dyj------ Ds Dip Di1 D12 = AR2

\\ﬁ> DC (final value of OC)

INSTRUCTIONS-18

EMC MACHINE INSTRUCTIONS

THE ARITHMETIC GROUP (con.)

I }
label | FMP | comments

Fast multiply. The mantissas of ARl and ARZ are added together (along
with DC as Di12) < Bp-3>-times; the result accumulates in ARZ2.

The repeated additions are likely to cause some unknown number of overflows
to occur. The number of overflows that occurs is returned in Ag-3.

FMP is used repeatedly to accumulate partial products during BCD
multiplication. FMP operates strictly upon mantissa portions; signs and
exponents are left strictly alone.

< ARZ > + ((< ARl >) ¢ (< Bo-3 >)) + DC » ARZ

\ % !

DC doesn't enter into
these repeated additions
except for the first one
as shown at right. 0 + OC
immediately after each

Represents the initial
value of OC.

overf low.
0 -+~ OC, 0> Ay-15 # of overflows + Ag-3
label MPY comments

Binary Multiply Using Booth's Algorithm. The (binary) signed two's
comp lement contents of the A and B registers are multiplied together. The
thirty-two bit product is also a signed two's complement number, and is
stored back into A and B. B receives the sign and most-significant bits, and
A the least-significant bits:

CA>s>c< é/;—:\h > NOTE

There is a bug in MPY. See
the Appendix for its description.

l 1
label FDV comments

Fast Divide. The mantissas of ARl and AR2 are added together until
the first decimal overflow occurs. The result of these additions accumulates
into AR2, The number of additions without overflow (n) is placed info B.
< AR2 > + < ARl > + < DC > » AR2 (repeatedly until overflow)
then

0+DC, O =>By-1s, n -+ Bo-s

FOV is used in floating-point division to find the quotient digits of a
division. In general, more than one application of FDV is needed to find
each digit of the quotient.

As with the other BCD instructions, the signs and exponents of AR| and
AR2 are left strictly alone.

INSTRUCTIONS~-19

INTRODUCTION TO THE ASSEMBLER

GEMERAL INFORMATION

The assembler (ASMA) translates symbolic source language instructions
info an object program executable by the CPD processor. The source lan-
guage provides mnemonic codes for specifying machine operations, (machine
instructions) and for directing the assembler (pseudo instructions). The
assembler also provides symbolic addressing. ASMA (July '76 version)
serves both the 15 and 16 bit versions of fthe processor,

ASMA is a DOS-M or RTE based program; neither BCS nor MTS versions
exist. DOS-M and RTE are disc operating systems for HP 2100-series com-
puters. As of this writing there is alsoc a series of 3000-based programs
that assemble for the CPD processor. Presently several programs exist,
each having different attributes. There is some sentiment to combine these
programs. However, the move is not yel afoot, and the consensus was not
to mention any program names or definite attributes. Generally speaking,
the capabilities of the 3000-based assembler are much the same as those of
ASMA, except that the DFN and $33% pseudo instructions do not exist in the
3000 version. Also, the details of the "control statements” may differ.
Generally, however, the fwo assemblers overlap about 95%; they are alike
for more than they are different.

The assemblied program is always "absolute" in the sense that it is not
"relocatable"; the assembler assigns symbols definite addresses, and the
operand fields of address-sensitive instructions receive definife bit pat-
terns during assembly. |f a piece of executable code is to be moved from
one location to another, +he usual case is that is must be medified to
reflect the change in origin, and re-assembled. Assemblies must be self-
contained: no external references (externals), entry points, or detached
subroutines are possible.

With non-relocatability firmly in mind, we assign another meaning fo
the word absolute. The BPC has two modes of addressing: absolufe and
relative. Absolute addressing is a scheme with fixed page boundaries, and
1024 words per page. Relative addressing centers the page on the current
value of the program location counter (P} in fhe BPC; the page boundaries
change as P changes. The BPC operates in the absolute or relative addressing
mode, depending upon the external grounding of a pin on the chip (RELA).
It is expected that the two types of addressing will not be mixed. Complete
descriptions of each addressing scheme are found in the chapter titled
"DESCRIPTION OF THE PROCESSOR".

The assembler can assemble code for either absolute or relative addressing.
This is controlled with the control statement at the beginning of the
source text. See "ASSEMBLER INPUT AND OUTPUT", in this chapter.

The original source of a program will usually be paper tape or punched
cards, although it is possible with DOS-M to create a source file on the
disc directly from the system tele-printer. The assembler accepts paper
tape, punched cards, magnetic tape, and disc source files as input.
Magnetic tapes must be previosly generated by the operating system. Stan-
dard DOS-M provides disc source files, while source files are available
with RTE systems that have a file manager.

ASSEMBLER-1

INTRODUCTION TO THE ASSEMBLER

GENERAL INFORMATION (conT.)

Assembler outpui is of two types: a listing and the non-relocatable
binary. The listing can be generated on any "list device" in the systenm,
but the binary should be punched on a punch device. ASMA does not have
*he ability to store the binary in the job-binary-area of the disc. Further-
more, It is un-advisable to write the binary to a stendard tape iransport
with the idea of later use. DOS-M and RTE do not correctly handle non-
relocatable binary, even when it is just "in transit".

A basic binary loader is required to load the binary output into the
processor. The format of the binary output is shown in the section
"ASSEMBLER INPUT AND OUTPUT™; +he Appendix contains a discussion about
binary loaders.

ASHA is a modification of ASMB; ASMB is the HP assembler for the 2100-
series computers. Those who are familiar with the operation of ASMB under
DO5-M or RTE will have no difficulty with ASMA. Some of the pseudo instruc-
tions of ASMB are missing from ASMA (ihose pertaining to relocatable
assemblies), while some additionzl pseudo instructions have been added. See
"PSEUDO INSTRUCTIONS",

A cross reference gencrator is available for use with ASMA. The name
of this program is XRFA, and it runs with both DOS-M and RTE.

Additional information about the structure of the assembler is contained
in the Appendix,

INSTRUCTION FORMAT

A source language statement consists of a label, an operation code,
an operand, and comments., The label is used when needed as a reference
by other statements. The operation code may be a mnemonic representing a
mach inc-operation or an instruction to the assembler concerning the task
of assembly itself. An operand may be an expression consisting of an
alphanumeric symbol, a number, a special character, or any of these combined
by arithmetic operations. Indicators may be appended to the operand to
specify cortain functions such as indirect addressing. Thz comments portion
of the statement is optional.

STATEMENT CHARACTERISTICS

The field of The source statement appear in the following order:
Label Opcode Operand Comments

Cne or more spaces scparate the ficlds of a statement. An end-of-
statement mark terminates the entire statement. On paper Tape these marks
arc "return" and "line feed™. A single space following the end-of-statement
mark from the previous source statemert is the null field indicator for the
label field.

ASSEMBLER-2

INTRODUCTION TO THE ASSEMBLER

- INSTRUCTION FORMAT

STATEMENT CHARACTERISTICS (CONT.)
The characters that may appear in a statement are these:

A through Z

0 through 9

other valid label characters
{(period)

¥ (asterisk)

+ {plus)

- (minus)

, {commal

{space)

Any other ASCl! characters may appear in the Remarks field.

The letters A through Z, the numbers O through 9, the period, and certain
other characters, may be used in an alphanumeric symbol. In the first
position in the label field, an asterisk indiceates a comment; in the operand
éﬁh field, it represents the value of the program location counter in arithmetic

address expressions. The comma separates an expression and an indicator in
the operand fizld.

Spaces separate fields of a statement, Within a field they may be
used freely when following +, -, cr ,

The maximum length of a statement varies, but is at most 80 characters.
See "STATEMENT LENGTH" for a complete discussion.

LABEL FIELD

The label field indentifies the statement and may be used as a reference
by other statements in the program. (That is, the label is a place holder
for the address of a word that is used by other staterents that concern,
or operate on, fhat word.}

The field starts in position one of the statement; the first position
following an end-of-statemeni mark for the preceding statement. It is
terminated by a space. A space in position one is the null field indicator
for the label ficld; the statement is unlabeled,

A label is symbolic. |i may have one to five characters consisting
of A through Z, 0 through 9, and the symbols shown on the next page. The
first character must be non-numeric. A label of more fthan five characters
_ could be entered on the source language tape, but the assembler flags this
€a\ condition as an error and iruncates the label tc the left-most five characters.

ASSEMBLER-3

INTRODUCTION TO THE ASSEMBLER
INSTRUCTION FORMAT

LABEL FIELD (CONT.)D

A-Z ! / $
0_9 "
. (period) # €

Each label must be unique within the program; ftwo or more statements
may not have the same symbolic name.

Example:
T T T o] F==FS[T T T T No! L[B! 11 B
JABICID B C 1 [vAILTD| IL|ABIE|L!
12314 PTTTTTT T vaLTo] LABE[L | T 1 | ‘
Al 123 [T T T VALTIo] ILABE[L ; |
J C T T ivaiL Tiol 'LABEL I ? |
1].1AB] Ll LLLEG[AL ILIABEL] -] [FIZIRIS[T] \CHARAICITEEIR; &
B BB NUMER[TCl. T [TT] BEN R
AlBIC!1 2[3 | ILUEGIAL] ILAIBEL! -] ITIRUN|CAITIED] [Tio] " | |
L B _|aBct2. | [T ? IS
A[*BIC: Tl Ueslan) "LABEIL; -] |AISITERITISK INiOiT] | | !
| 1 [actoweo IN cABELLI [T T
AABICT LTI N ILAIBEIL -|THEE! TAlSISIEMBILIER' 'A[TITIEIMPIT'S
| [L[L 717 Ito IINTERPRIET [ABIC AlS. [AN OP[ERATIION
BEENN | TjeobEL T 1T T
F IR R R R nN A e Y it
- T T T BRE ; B

+ The caret symbol, . , indicates the presense of a space.

An asterisk in position one indicates that the entire statement is a
comment. Positions 2 through the end of the statement are available for
use. See "STATEMENT LENGTH". An asterisk with the label field is illegal
in any position other than one.

OPCODE FIELD

The operation code defines an operation to be performed by the processor
or the assembler. The opcode field follows the label field and is separated
from it by at least one space. |If there is no label, the operation code
may begin anywhere after position one. The opcode field is terminated by
a space immediately following an operation code. Operation codes are orga-
nized in the following categories:

Machine Operation Codes
BPC
Memory Reference
Shift-Rotate
Alter-Skip
Return-Comp | ement-Execute
ASSEMBLER-~4

INTRODUCTION TO THE ASSEMBLER

@ INSTRUCTION FORMAT

OPCODE FIELD (CONT.)

Machine Operation Codes {(cont'd)
[0C
/0 Control
Stack Operations
Interrupt
DMA
EMC
Four-Word Operation
Mantissa-Shift
Arithmetic
Pseudo Operation Codes
Assembler control
Address and symbol definition
Constant definition

Storage allocation

Assembly Listing Control
Machine operation codes are discussed in detail in the chapter titled
"MACHINE INSTRUCT IONS".
OPERAND FIELD

The meaning and format of the operand field depend on the type of
operation code used in the source statement. The field follows the opcode
field and is separated from it by at least one space. It is terminated by
a space except when the space follows <,>, <+>, <> or, if there are no
comments, by an end-of-statement mark.

The operand field may contain an expression consisting of one of the
fol lowing:
Single symbolic term
Single numeric term
Asterisk
Combination of symbolic terms, and the asterisk joined by
the arithmetic operators + and -.

An expression may sometimes be followed by a comma and an indicator.

The operands for certain instructions consists of a series of terms
separated by commas.

ASSEMBLER-5

INTRODUCTION TO THE ASSEMBLER

INSTRUCTION FORMAT (conT.)

SYMBOLIC TERMS

A symbolic term may be one fto five characters consisting of A through Z,
0 through 9, or the other label characters. The first character must be non-
numeric.

Example:

LT]Liola] JaT;2/304] [["7 [VALTD| [TF O[EFTINE[D] [[JTITTTTTTT]
| |apAl Bt |, IvALID[IF DEFINED | . | . | i
L] Jomp| JENTIRY] T [VALTI0| TiF e FITNEl] [T I T
i LIsiral [1'aBCc | . T |ILLEG|AL, oPJERAND| FIRS|T CHA[RACTER :
T N L INuMERIECL. [[I EEESN NN N
! siTe| JABCIDE|F| | ' |ILLIEG|AL] 'OPJERAND| IMORE| THAN| FIVE| !

‘ . [CHARAICTIERIS]. | | . RN =

| 1SRN NNEERNENRENEE
— 1 _ RN BRSNS
r : Ll REERR o
} a NERER ;

o b L N L] L B i

T EEREERE RS R AR DR N N e

Unless a symbol is pre-defined by the assembler, a syr ol used in the
operand field must be defined elsewhere in the program in one of the following
ways:

As a label in the labe! field of a machine operation.
As a label in the label field of a BSS, ASC, DEC, OCT, DEF, ABS, EQU

or REP pseudo operation.

The assembler assigns a value to a symbol when it appears in one of the
above fields of a statement.

The symbols that are pre-defined by the assembler are shown in Table
A-1. Information about modifying or adding to the list of pre-defined symbols
is contained in the Appendix. With the exception of ARI, all these symbols
refer to registers within the various elements of the system, The address
of ARl depends upon whether the assembly is for a |5 or 16 bit processor.

The one bit registers, E (Extend) and OV (Binary Overflow), are located
within tfhe BPC. The one~bit register, DC (Decimal Carry - BCD overflow), Is
located within the EMC. These registers are not addressable; they are accessed
through dedicated instructions. Therefore, their names are not pre-defined
by ASMA,

A symbolic term may be preceded by a plus or minus sign. |f preceded
by a plus or no sign, the symbol refers to its associated value. I[f
preceded by & minus sign, the symbol refers to the two's complement of its
associated value. A single negative symbolic operand may be used only with
the ABS pseudo operation.

ASSEMBLER-6

INTRODUCTION TO THE ASSEMBLER

INSTRUCTION FORMAT

SYMBOLIC TERMS (CONT.)

Table A-1. Symbols Pre-Defined by the Assembler.

Octal
Address Name Location Description (# of Bits)
0 A BPC Arithmetic Accumulatcer (16)
I B BPC Arithmetic Accumulater (16)
2 P BPC P}ogram Location Counter (least |15 of 16 or 16)
3 R BPC Return Stack “ointer (least 5 of 16 or 16)
4 R4 10C Peripheral Activity Designator (—)
5 RS 10C Peripheral Activity Designation (—)
6 R6 i0C Peripheral Activity Designatcr (—)
7 R7 10C Peripheral Activity Designator (—)
i0 Y 10C Interrupt Vector (upper |12 of 16)
> I PA 10C Peripheral Address Rexister (least 4 of |#8)
12 W 10C Workina Reais*er (16)
+ 13 DMAPA 10C 2 MSB = CB & DB; 4 LSB = DMA Periph. Add. Reg.
14 DMAMA 10C DMA Memory Address A4 Direction Reqister (1)
15 DMAC 10C DMA Count Register (16)
16 C 10C Stack Pointer (16)
17 D 10C Stack Pointer (16)
20-253 AR2 EMC BCO Arithmetic Accumu.ator (4 x 16)
24 SE EMC Shift Extend Kegister (least 4 of 16)
*—> 28-27 X EMC Internal Arithmetic Register (3 X 16)
3C-37 UNASSIGNED
T;;;gé AR R/ BCD Arithmetic Register (4 x '6)

Not available for general use.
is best to pretend that these registers do not exist.

Read register |38 produces:

CB and UB are actually discrete

registers, and while they can
only be read by reading RI3,
storinging into RI13 will not

alter their values.

Use the

CBL, CBU, DBL and DBU machine
instructions for that purpose.
CB and DB exist in the
version only.

16-bit

Part of processes internal to a chip., It

l l-—-Valuo of DB \—\,_/
Value of CB DMA
-

Select Code
I = Upper
0 = Lower

ASSEMBLER-7

INTRODUCTION TO THE ASSEMBLER

INSTRUCTION FORMAT (conr.)

NUMERIC TERMS

A numeric term may be decimal or octal. A decimal number is represented
by one to five digits within the range +32767. An octal number is represented
by one to six octal digits followed by the letter B; (0 to 177777B).

If a numeric is preceded by a plus or no sign, the binary equivalent
of the number is used in the object code. |f preceded by a minus sign, the
two's compliement of the binary equivalent is used. A negative numeric operand
may be used only with the RET, DEC, OCT, and ABS pseudo operations. The
maximum value of a numeric operand depends on the type of machine or pseudo
instruction.

THE ASTERISK

An asterisk in the operand field refers to the value in the program
location counter at the time the source program statement is encountered.

EXPRESS IONS
The asterisk, symbols, and numbers may be joined by the arithmetic

operators + and - fo form arithmetic address expressions. The assembler
evaluates an expression and produces a value in the object code.

Example:
LDIA] [SIY[MI+]6 ADD] 6] [T/o [TIHE[IVIAILIVE] OfF] [SIYIM] | | L
AIDA] [S[YIM-]3 suBTIRIACT] [3] FIRjoM[[THE] [VIAILIUE] [OlF] [S[YM
JMP| [*+5 ADD! |5| [Tl [THE] [CONTIEINTT|S| (OF' [THIE] [| |
PIROGRIAM_[LO|CATIT O[N] [ClOU[N[TIE[R]. '
: | NENARNARNRNAR
| Is[TiB] [-iarci-|ai [| [apD! [VALUE OF) [Al,] [THE| VIALUE loF]| C:
| AIND] |S[UB[TIRIA|CIT] |4I- %
l‘ b !
] | i
SITIA[[xTlAl* SUB[TIRIACT! VALUIE |OF! [PRIOGRIAM
LIOCAT|[T/ON._ CloUNTIER IFROM_VAL[UE [oF
XTALL LT] | | *
1 |
T ‘
| | |
!
‘ ‘ ;
T bk .

ASSEMBLER-8

INTRODUCTION TO THE ASSEMBLER

INSTRUCTION FORMAT

EXPRESSIONS (CONT.)D

An expression consisting of a single term has the value of that term.
An expression consisting of more than one term is reduced to a single value.
In expressions containing more than one operator, evaluation of the expression
proceeds from left to right. The algebraic expression A-(B~C+5) must be
represented in the operand field as A-B+C-5. Parentheses are not permitted
in expressions for the grouping of terms.

The range of values tolerated by the assembler during the evaluation of
an expression depends upon the type of operation, and whether the assembly is
for a I15-bit or 16-bit processor.

INDIRECT ADDRESSING

The processor provides an indirect addressing capabil ity for memory
reference instructions. The operand portion of an indirect instruction contains
an address of another location rather than an actual operand. For |5-bit
processors the secondary location may be the actual operand or it may be
indirect also, and give yet another location, and so forth. The chaining
ceases when a location is encountered that does not contain an indirect
address.* Only the initial indirect reference is possible with 16-bit
processors; the first address accessed indirectly contains a I16-bit destination
address. Indirect addressing provides a simplified method of address modifi-
cation as well as allowing access to any location in memory.

The assembler allows specification of indirect addressing by appending
a comma and the letter | to any memory reference operand. The actual
operand of the instruction may be given in a DEF pseudo operation; this
pseudo operation may also be used to indicate furiher levels of indirect
addressing (for |5-bit processors).

BASE PAGE AND CURRENT PAGE ADDRESSING

The processor provides a capability which allows the memory reference
instructions to address either the "current page" or the "base page". The
assembler adjusts all instructions in which the operands refer to the base page;
specific notation defining an operand as a base page reference is not required
in The source program. Any memory reference instruction; regardless of where
in memory it is stored, can reference an address on the base page. Things not
located on the base page are located on one of many different current pages.

A direct reference to a location not on the base page is possible only if the
instruction making the reference is on the same (current) page as the referenced
location.

COMMENT FIELD

The comment field allows the programmer to transcribe notes that will
be included with the source language coding on the list output produced by
the assembler. The comment field follows the operand field, and is separated
from it by at least one space.

*
For 15-bit processors such an Indirect address in memory is indicated by a one in bit 15; bits
0-14 contain the address that is Indirect. A non-indirect address has a zero in bit (5.

ASSEMBLER-9

INTRODUCTION TO THE ASSEMBLER

INSTRUCTION FORMAT

COMMENT FIELD (CONT.)

The comment field is terminated by the end-of-statement mark, or by
indirect means within DOS-M or the assembler itself. See the discussion in
the next section.

On listing, statements consisting entirely of comments begin in
position 27, Other statements begin in position 21. (The numbering assumes
the first position is named |.) This shifts the comment to the right so that
the label field column in the listing produced by the assembler is free of
anything except labels and errors. This makes it easier fo look for and find
a label in the listing.

STATEMENT LENGTH

The maximum length of a statement that is not a comment is 80 characters.
Comment statements are limited to 74 characters.

Punched cards |imit the length of a statement to what can be put on a
single card; there is no continuation-card mechanism. This limits a statement
1o 80 characters, the end of the card acts as an end-of-statement mark.

If the source was originally paper tape which was then stored as a
source file on DOS-M, it was truncated tfo a maximum of 80 characters per line
by DOS-M at that time. RTE has no such truncation mechanism, but the assembler /ﬁ3
still limits the length of a statement to 80 characters.

The assembler can read the source text directly from paper tape; the
same restrictions on length apply.

Characters beyond the limits are ignored, and not printed on the
listing.

ASSEMBLER-10

ASSEMBLER PSEUDO INSTRUCTIONS

The pseudo instructions conirol the assembler, as well as specify
various types of constants, blocks of memory, and labels used in the
program. Pseudo instructions also control the |isting.

ASSEMBLER CONTROL

The assembler control pseudo instructions establish and alter the
contents of the program location counter, and terminate assembly processing.
Labels may be used but they are ignored by the assembler.

ORG AND ORR
I | |

I ORG m | comments

The ORG statement defines the origin (initial value of the program counter)
of a program, or the origins of subsequent sections of programming.

Generally, a program begins with an ORG statement.¥ An ORG statement
must preceed any machine instructions. The operand, m, must be a decimal
or octal integer specifying The initial setting of the program location
counter.

ORG statements may be used elsewhere in the program to define starting
addresses for portions of the object code; the operand field, m, may be any
expression. Symbols in the operand must be previously defined. All instructions
following an ORG are assembled at consecutive addresses starting with the
value of the operand. For 15-bit assemblies the maximum value of the operand
is 777778. The value of the operand is not restrained for |6-bit assemblies.

| |
| ORR Icommen*s

ORR is an automatic reset of the value of the assembler's program
location counter. |Its action is described below.

The assembler traps the very first value given to the program location
counter (by the first ORG in the program). Thereafter, as the value of the
program location counter is incremented from that initial value by "natural
consumption" of address space (any in-line code except ORG's), a duplicate
copy of the current value of the program location counter is maintained.

An ORG subsequent to The first one causes the duplicate value to be saved,
and ‘the updating mechanism to be furned off.

The Conirol Statement, the HED instruction, and comments may appear prior to the ORG statement.
See "ASSEMNBLER INPUT AND QUTPUT" for a description of the Control Statement.

ASSEMBLER-11

ASSEMBLER PSEUDO INSTRUCTIONS

ASSEMBLER CONTROL
ORG AND ORR (CONT.)

An ORR causes the program location counter to be re-set to its earlier
value (that of the duplicate), and also re-invokes the mechanism for
maintaining the duplicate, so that the process can be repeated for other
ORG -- ORR pairs.

Example:

0001 ASMBaAsl «C

0007 HFD ORn TFEST

0003 ORG 10nK INITIAL VALUFE OF PLC
0004 MNP

0008 O

0NNA ORR NO FFFECTs NO SECONMD ORIGIN
0007 MO

HGE] NOP

0009 SPe

onln NRE 2001 SECOND DR |.ATFR ORTIGIN
0011 nNOP

001> tOP

0013 SPC 1

0nls NRG 30nR

onls NOP

0nlaA (XTaY3]

ont7 SPC |

001AR neR RFSFT ORIGIN

gol9 NOP

nn2o0 MOP

on21 NPR NO EFFECT ON PLC
002? rOP

nne2l MOP

0onz2a4 SPC

0ones ARG 4nn’

0026 MOP

0027 HOP

OnNen SPC 1

on”29 (PR RESFT ORIGIN AGAIN
0030 nOp

0031 NOP

0032 Frn

Bads | JST FAD #ass

NEW INSTRUCTION DEFINITION

ASMA allows the user to define, at assembly time, his own custom machine
instructions. The definitions must precede the use of such custom instructions,
and are in force for the duration of that assembly only. ASMA allows up to
70 custom instructions to be defined at one time,

ASSEMBLER-12

ASSEMBLER PSEUDO INSTRUCTIONS

ASSEMBLER CONTROL

NEW INSTRUCTION DEFINITIC: {CONT.)

L L | | |
|93N | ‘nemonic, type, bit pattern comments

Defines a machine instruction with the given 3-character mnemonic, with
the given basic bit pattern, and whose general properties (in terms of i+s
assembler-generated bit fields) is one of the types shown in the bit pattern
tabulations in the Appendix.

During the assembly of a program, an instruction in the source coding
is identified by matching it against a ftable in the assembler. The permanent
instruction table is searched first, followed, if nccessary, by a search of
table space generated by DFN's. Because of the order of this search, DFN
cannot be used to re-define existing instructions.

Each of the fields in the source Di'N instruction may be preceded by
leading blanks on the left. Trailing blanks between the substance of the
field and the indicated comma are not permitied.

The type and bit pattern fields arc assumed to represent octal integers;
do not follow them with a B.

Only existing "types" may be used in DFN instructions; see the tabulation
of types and bit patterns in the Appendix. There is no proteciion against
using an undefined or inappropriate type. To do so, however, is a sure-fire
way to send the assembler out-to-lunch.

Each generic type of manipulation performed by the assembler, as it
produces an instruction, is represented by a number called the "type".

The type field tells the assembler how to handle the newly defined instruction.
All instructions of a given type are processed identically, except for their
differerces in their basic bit patterns. New Types cannot be defined without
modifying fthe source of the assembler ifself.

The following two examples illustrate the properties of "type".

For instance, type 30 instructions never have operands or modifiers
like ,1. Such an instruction has a fixed 16-bit paitern, and every occur-
rence ot that instruction results in exactly that particular patiern. The
majority of the Math Chip instructions, and some of the [/0 Chip instructions
are ftype 30 instructions. Type 30 instructions work in either 15-bit or
16-bit assemblies. Type 46 instructions arc identical to type 30 instructions,
except that they are allowec only in 16-bit assemblies.

Memory reference insiructions are type 10, and arc perhaps the most

complicated type of instruction. The aciion of a type 16 instructions is
as follows:

ASSEMBLER-13

ASSEMBLER PSEUDO INSTRUCTIONS

ASSEMBLER CONTROL

NEW INSTRUCTION DEFINITION (CONT.)

1) Evaluates an operand, allowing expressions and a , 1.

2) Checks the resulting value for admissability, based on its
value vis-a-vis the program location counter (is the operand
on the current page, base page, or neither?).

3) Sets the B/C bit (bit 10) according to whether or not the
operand is on the base page.

4} Creates a certain type of |10-bit reference to the operand and
"or's" it (in the bit 0-9 positions) with the basic bit pattern.

5) Checks for a ,| following the operand, and sets bit 15 of the
instruction if there was one,

It is a characteristic of the assembler that it "or's" the value of any
computed operand into the supplied basic bit pattern. |If an instruction is
to have a four-bit fietd in bits 0-3, the basic bit pattern must be zeros in
those bits. Likewise, any bit that is to be set by a comma 1, or ofher
modifier, must also be a zero in the basic bit pattern.

Now, type 16 is closed, and not available for use if the processor
includes a BPC (a most likely state of affairs). This is because this fype
allows only bits |II-14 as basic bit pattern, and 14 of the 16 possible combi-
nations specify existing memory reference instructions in the BPC. The other
combinations are necessary ingredients of any non-memory-reference instruction.

Examples:
DFN ORX, 30, 076543

This defines an instruction whose name is QRX and whose basic bit
pattern is 076543 octal, with no operands or modifiers allowed.

DFN QRY, 27, 076560

This defines an insfruction whose name is QRY and whose bit pattern
is 076560 merged with a 4-bit field in bits 0-3. Other than for the
basic bit pattern, QRY is the same as a shift-rotate instruction, as
far as ASMA is concerned. QRY would be described thusly:

| L |
label I QRY l n I comments

QRY sets the brass-plated knudsen valve to ore of 16 positions,
depending upon the value of n; n may range from | to 16 in source,
bits 0-3 are encoded with the binary for n-I,

Good Luck!

PARTITIONING A BINARY TAPE

The assembler provides the capability to arbitrarily insert long sections
of feed-frames in the output binary tape. This causes the loader to stop. By

ASSEMBLER-14

ASSEMBLER PSEUDO INSTRUCTIONS

ASSEMBLER CONTROL

PARTITIONING A BINARY TAPE (CONT.)

utilizing this feature, several sections of independent code can be assembled
together, but loaded separately, or in a different order.

]]
$3% comments

Causes any binary generated to this point to be properly outpuited as a
complete record. Then causes the punching of 90 feed-frames (9 inches).
Such a break causes the binary leader fo stop loading at that point. It
also al lows easy visual identification of the sections of a binary tape.

$$% may be used anywhere in a program without disturbing the validity
of the resulting binary records on either side of the inserted feed-frames.

CONDITIONAL ASSEMBLY

The IFN and IFZ pseudo instructions cause the inclusion of instructions
in a program provided that either an "N" or "Z", respectively, is specified
as a parameter in the control statement. The IFN or IFZ instruction precedes
the set of statements that are to be included. The pseudo instruction XIF
serves as a terminator. If XIF is omitted, END acts as a terminator to both
the set of statements and the assembly.

{ |

IFN comments

XIF
All source language statements appearing between the IFN and the XIF

pseudo instructions are included in the program if the character "N" is
specified in the ASMB contreol statement.

1 1
| 1FZ comments

XIF
All source language statements appearing between the IFZ and the XIF

pseudo instructions are included in the program if the character "Z" is
specified in the ASMB control statement.

When the particular letter is not included on the control statement, the

related set of statements appears on the assembler output listing bul is not
assembled.

ASSEMBLER-15

ASSEMBLER PSEUDO INSTRUCTIONS

ASSEMBLER CONTROL

CONDITIONAL ASSEMBLY (CONT.)

Any number of IFN-XIF and IFZ-XIF sets may appear in a program; however,
they may not overlap. An |FZ or IFN intervening between an IFZ or IFN and
the XIF terminator results in a diagnostic being issued during assembly; the
second pseudo instruction is ignored.

Both IFN-XIF and IFZ-XIF pseudo instructions may be used in the program;

however, only one type will be selected in a single assembly. |f both
characters "N" and "Z" appear in the control statement, the character
which is listed last will determine the set of coding fthat is to be included

in the program.

Examples:

0o PSMH Aol oMo R

nnoz .

0ono3 .

0004 .

0nns TR

000k NFM WRye 306 123456 NEFINE QRX
0007 .

0nnA .

00ng .

00ln HNNK nPx

001 MR ZARTT
0nl> XJ]¥F

00113 .

0nlas .

nols .

0016 Fren

et | TST FND gedtdedt

0001 ASMKaAe| vhe?

0no0? .
onol .
0004 .
nnos 1F7
000A # NOw HRFAK AINARY TAPF IF Z TN CNTR|L STMT
0007 1T
000R YI1F
0009 .
0o0l1n o
nol N
0nl>? F M0

sgade | JST FMD heede

ASSEMBLER-16

6@“

ASSEMBLER PSEUDO INSTRUCTIONS

ASSEMBLER CONTROL (conT.)

AUTOMATIC STATEMENT REPETITION
The REP pseudo instruction causes the repetition of the statement
immediately following 11t a specified number of times.

| | l
label | REP | n | comments

The statement following the REP in the source program is repeated n times.
The n may be any expression. Comment lines (indicated by an asterisk in
character position 1) are not repeated by REP. |f a comment follows a REP
instruction, the comment is ignored and the insfruction following the comment
is repeated.

A label specified in the REP pseudo instruction is assigned fo fthe first
repetition of the statement. A label cannot be parf of the instruction fo

be repeated; it would result in a doubly defined symbol error.
Example:
CLA
TRIPL REP 3
ADA DATA

The above source code would generate the following:

CLA Clear the A-Register;
TRIPL ADA DATA the contents of DATA
ADA DATA is Tripled and stored in
ADA DATA the A-Register.
Example:
FILL REP 1008
NOP

The examnle above loads 100y memory iocations with the NOP instruction.
The first location is labeted FILL.
SOURCE TERMINATION

l 1
END I comments

This statement terminates thce program; it marks the physical end of the
source language statemenis.

The label field of the END statement is ignored.

ASSEMBLER-17

ASSEMBLER PSEUDO INSTRUCTIONS

ADDRESS AND SYMBOL DEFINITION

The pseudo operations is this group assign a value or a word location
to symbol which is used as an operand elsewhere in the program.
| | l

label I DEF | m{,1] I comments

The address definition statement generates one word of memory as a
I5-bit or 16-bit address which may be used as the object of an indirect
address found elsewhere in the source program. The symbol appearing in the
label is that which is referenced; it appears in the operand field of a
memory reference instruction,

The operand field of the DEF statement may be any positive expression.

The expression in the coperand field may itself be indirect and make
reference to another DEF statement elsewhere in the source program. The
,| causes the assembler to set the 16th bit of the generated word. This
feature is not illegal in 16-bit assemblies, although it really only makes
sense to do it in |5-bit assemblies.

Examples:

000 L NA IN]T A IS LOADED WITH ANNRESS OF BUFFR+3
000? *

ononsg .

0nna * .

0N0Ns [AREL NFF RIUEFR
0ONA THMST DIV KIEFDR+3
noa7 -

nonorR -

0009 .

nnln NRG 770NN
0N1) RUFFD 1SS 40

0onl» .

00113 .

0ola .

s | [ST FMy sededrar

ASSEMBLER-18

o

@W“

ASSEMBLER PSEUDO INSTRUCTIONS

ADDRESS AND SYMBOL DEFINITION (conT.)

Example (cont'd)

0001 LDA HOOK,1 A GETS LOADED WITH 171717

0002 .

0003 .

0004 .

0005 HOOK DEF ROOK.! THE o1 SETS BIT 15 OF HOOK

0006 .

0007 .

0008 .

0009 ROOK DEF ZIpPR

0o0lo .

0011 .

ool2 .

0013 Z1I1PPR OCT 171717

0014 .

001% .

0016 .

l ! l
label l ABS I m | comments
ABS defines a 16-bit value to be stored at the location represented by
the label. The operand field, m, may be any expression or single symbol.
Example:
AlB EQIU] {35 Als[slI[6]Nis| [THIE] [VIAIL OF| 135 E
Ti0| [THIE] Is|vimBiOIL| A i :
{ i |
‘ i i
M3i5 ABIS| |-|AB M3l5! (ClONTIAII|NIS] |-! 5 j
Pl3s] | | lajBS| |AB [PI35| [CIONTIAITINS] 35]. 5
P7/0 AlB/s| [Alg[+[AlB P[7lo] [CloN[TIAI|N[S! [7i0]. :
P|3/0 ABS| |ABI-15 P130| [CIONITAIINIS |30]. 5
: , ‘ Lo
i ! L] NEREE
T ! T T » - !
!
label EQU m comments

The EQU pseudo operation assigns to a symbol a value other than the one
normally assigned by the program value represented by the operand field.

operand field may contain any expression.

be negative. Symbols appearing in the operand must be previously defined

in the source program.

The EQU instruction may be used to symbolically equate two locations

in memory; or it may used to give a value to a symbol.

does not result in a machlne instruction.

ASSEMBLER-19

The EQU statement

The

The value of the operand may not

ASSEMBLER PSEUDO INSTRUCTIONS

ADDRESS AND SYMBOL DEFIMITIOH (cont.)

Example:

BOTH

LDA(W3 | ITHE sjrmBoOL[S ‘J‘F‘o{u‘nv AND 341

1
ADA| ONE | |IDENTIFY T[H;E: SAME LOCATION. TH[E
1 STAl [W3+1 | ~ |AND OPERATIION I|S PERFFORME[D ON |,
JIFOUR| JEQUl W3+1 |~ [THIS JLOCATION. | | .~ | Il
MwH__||aND| bFouRl |
| .

CONSTANT DEFINITION

The pseudo instructions in this class enter a string of one or more
constant values into consecutive words of the object progrem, The statements
may be named by labels; this allows other proqram statements Yo refer to ihe
strings of words qenerated by them,

l 1 |
label I ASC l n, <Zn characters> l comments

ASC converts a string of 2n alphanumeric characters in ASCII code into
n consecutive words.* One character is right justified in cach eight bits;
the most significant bit is zero. n may be any expression resulting in an
unsigred decimal value in the range 1 through 28. Symbols used in an oxpres-—
sion must be previously defined., Anything in the operand field followirg
2n cheracters is freated as comments. 1f less than Zn characters arc detecied
before the end-of-statement mark, the remaining characters arc assumed to be
spaces, and are stored as such. The label represents the address of the
first two characters.

Example:

- . —T . N, e - .- v o IR il T s -
TTYP | |asc aLA&cas..|‘...|....|..4-'....l.-yal....l.,
| |
To erter tre coce for the ASDHL oymn b ahioh profore e i tion (oo, M oarriane reotarn® e
"Vine fond"), the TOT poeado inctructi o must be usiad,

ASSEMBLER-20

ASSEMBLER PSEUDO INSTRUCTIONS

CONSTANT DEFINITION (cont,)

causes the fol lowing:

ALPHABETIC
15 14 8 7 6 0
TTYP 7/ A /
/ c
/)
EQUIVALENT iN OCTAL NOTATION
15 14 8 7 6 Q
Tvef1 1 o 1 P
/ 1 o0 3 1
/, 0 5 A 0
| 1
label | DEC | dl[,dz,...,dn] comments

DEC records a string of decimal constants into consecutive words. The

constants must be integers.

If no sign is specified, positive is assumed.

The decimal number is converted to its binary equivalent by the assembler,

The label,
the constant.

The decimal

32767, including zero.
Avoid +32768.

error.
namely, 100000.
as follows:

15 14

sisN—""{s| number

Example:

integer must fall within the following range: -32768 to
Absolute values of 32769 or greater result in an

IT resulfs in the same binary result as for -32768;
Each decimal integer appears as one binary word and appears

if given, serves as the address of the first word occupied by

)

4

50,3

[NT | [DiElc

28], -

3[00

T

ASSEMBLER-21

I

;

ASSEMBLER PSEUDO INSTRUCTIONS

CONSTANT DEFINITION (conT.)

causes the following (octal represcentation):

15 14 0
INT |O] O 0 o} 6 2
o © 0 5 1 o}
17 7 3 2 4
! | |
label oCT Ol[’OZ"°"On] comments

OCT stores one or more octal constants in consecutive words of the object
program. Each constant consists of one to six octal digits (0 to 177777}, |If
no sign is given, the sign is assumed to be positive. |f the sigr is negative,
the two's complement of the binary cquivalent is stored. Tne constants are
separated by commas; the last constant is terminated by a space. |If less
than six digits are indicated for a constant, the data is right justified
in the word. A label, if used, acts as the address of the first constant
in the string. The letter B must not be used after The constant in the
operand field.

Example:
T et g NN NN b BEONE MRS I
L1 0CT| [-2 I S ,4_,¢ﬁ.. S B ,,A,-tjg, I
NUM . .o,i_cﬂl_“‘??l..z.gﬁ;gé.t;;ﬁa_w e + SUDU ISR
Ve B, ralrrr, =, gl | LW‘._[]: N IO R I
| joeT| hgTeae, g) L f b
| Jecal o7 D |rULEGAL: coNTATNS (|
B T I S A 2 O B Y XNy BN DD BN B
o[r77e 1 lILLEGAL: cloNTAINS ||]
T __[CHARMCTER 18 N B
B ‘ - AR ISR SUDRN

ASSEMBLER-22

ASSEMBLER PSEUDO INSTRUCTIONS

CONSTANT DEFINITION (conT.)

The previous statements are stored as fol lows:

1514 0
o] o) 0 0 0
IEE 7 7 7 6
NuMm Jo| o) 1 7 7
o| 2 0 4 0 5
1|7 7 7 4 2
o] o 0 0 5 g
o| 7 7 7 7 7
1| 7 7 7 7 7
o] 1 0 1 0 1
1| o 7 6 4 2
L 4 2 ! ! THE RESULT OF
X] X X X X X >ATTEMPTING TO
o] o 0 0 0 1 DEFINE AN ILLEGAL
CONSTANT IS UN-
X| X X X X X PREDICTABLE
STORAGE ALLOCATION

The storage allocation statement reserves a block of memory for data
or for a work area.

] | 1
label I BSS I m l comments

The BSS pseudo operation advances the program location co&n?er according
to the value of the operand. The operand field may contain”any expression
that results in a positive integer. Symbols, if used, must be previously
defined in the program. The label, if given, is the name assigned to the
storage area and represents the address of the first word. The initial
content of the area set aside by the sidatement is unaltered by the loader.

ASSHBLY LISTING CONTROL

Assembly listing control pseudo instructions allow the user to control
the assembly listing output during the assembly process.

1 1
UNL comments

Output is suppressed from the assembly listing, beginning with the UNL

ASSEMBLER-23

ASSEMBLER PSEUDO INSTRUCTIONS

ASSEMBLY LISTING CONTROL (conT.)

pseudo instruction and continuing for all instructions and comments until
either an LST or END pseudo instruction Is encountered. Diagnostic messages
for arrors encountered by the assembler will be printed, however. The source

statement sequence numbers (printed in columns |-4 of the source program
listing) are incremented for the instructions skipped.

1 |
LST comments

The LST pseudo instruction causes the source program |isting, terminated
by a UNL, fo be resumed.

A UNL following a UNL, a LST following a LST, and a LST not preceded by
a UNL are not considered errors by the assembler.

{ l
SUP comments

The SUP pseudo instruction suppresses the output of additional code |ines
from the source program [isting. Certain pseudo instructions generate more
than one line in the listing. These additional lines are suppressed by a
SUP instruction until a UNS or the END pseudo instruction in encountered.

SUP will suppress additional lines in the following pseudo instructions:

ASC oCT CEC

UNS comments

The UNS pseudo instruction causes the printing of additional listing
lines, terminated by a SUP, to be resumed.

A SUP preceded by another SUP, UNS preceded by UNS, or UNS not preceded
by a SUP are not considered errors by the assembler.

] 1
I SKP comments

The SKP pseudo instruction causes the source program listing to skip
to the top of the next page. The SKP instruction is not |isted, but the
source statement sequence number is incremented for the SKP.

1]
| sPc | n

The SPC pseudo instruction causes the source program listing to include
a specified number of blank lines. The list output skips n blank lines,
or to the bottom of the page, whichever occurs first. The n may be any
absolute expression. The SPC instruction itself is not listed, but the
source statement sequence number is incremented.

ASSEMBLER-24

ASSEMBLER PSEUDO INSTRUCTIONS

ASSEMBLY LISTING CCOY'TROL (conT.)

| |
, HED l <heading>

The HED pseudo instruction allows the programmer to specify a heading
to be printed at the top of each page of the source program listing.

The heading, m, (a string of up to 56 ASCI1 characters), is printed at
the top of each page of the source program listing following the occurrence
of the HED pseudo instruction. |If HED is encountered before the ORG at
the beginning of a program, the heading will be used on the first page
of the source program listing. A HED instruction placed elsewhere in the
program causes a skip to the top of the next page.

The heading specified in the HED pseudo instruction will be used on
every page until it is changed by a succeeding instruction.

The source statement containing the HED will not be listed, but source
statement sequence number will be incremented.

ASSEMBLER-25

ASSEMBLER INPUT AND OUTPUT

The assembler accepts as input: paper tape; punched cards; magnetic
tape; disc source files. The output produced by the assembler consists
of a listing containing diagnostics, and a punched paper tape containing
the object program. The assembler can also aufomatically begin the
execution of the cross reference program, following the assembly.

THE CONTROL STATEMENT

The control statement specifies whether to assemble for [5-bit or 16-bit
processors, and specifies the ouiput to be produced by the assembier.

AsSMB,P,,P,,---,P
2 n

l’
"ASMB," is entered in positions | through 5. Following the comma are
one or more paramefers, in any order, which define the output to be produced.
The parameters may be any legal combination of the following, starting in

position 6:

F Fifteen-bit: The assembler assembles for processors that
utilize 15-bit addressing.

) Sixteen-bit: The assembler assembles for processors that
utilize |16-bit addressing.

A Absolute: The assembler assembles for fixed-page addressing;
the |0-bit address fields for memory reference instructions
are generated according to the absolute addressing scheme.

R Relative: The assembler assembles for relative-page addressing;
The 10-bit address fields for memory reference instructions are
generated according to the relative addressing scheme.

B Binary Output: The non-relocatable object program (which
is either absolute or relative) is punched on the punch
device.

L Program Listing: A program listing is produced on the list

device. The listing is annotated with diagnostics, should
errors be detected in the program during assembly.

T Symbol Tablie Listing: A listing of the symbol table generated
by the assembler is produced. This listing precedes a
program |isting, regardless of the order of the respective
parameters. The symbol table listing occurs in the order the
symbols are defined, beginning with pre-defined symbols.

Do not confuse this listing with the cross reference.

This listing is produced by the assembler; the cross reference
is produced by a separate program, callable by the assembler,
and also as a stand alone program by the user,

Include sets of instructions following the IFN pseudo instruction.

Include sets of instructions following the |FZ pseudo instruction.

Begin the cross reference program (XRFA) immediately after assembly.

ASSEMBLER-26

ﬂ@%

ASSEMBLER INPUT AND OUTPUT

THE CONTROL STATEMENT (conT.)

Either F or S must be specified. Likewise either A or R must be specified.

Also, one of B, L, or T must be specified. Specifying C is optional. Also
the control statement must be the very first statement in the program.

THE SOURCE PROGRAM

The first statement of a program must be a control statement; no other
control statements are allowed in the program. The next statement required
before assembly can proceed in an ORG statement. However, HED and comment
statements can occur between the control statement and the first ORG
statement. But no other types of statements may precede the first ORG. The
last statement must be an END statement.

THE LISTING

Fields of the object program are listed in the following prirt columns.

Columns Content
I Blank
2-5 Source statement sequence number generated by
the assembler
6 Blank
7-12 Location (octal)
13 Blank
14-19 Object code word in octal
20 Blank
21-100 First 80 characters of source statement

Lines consisting entirely of comment (i.e., *in column |) are printed
as follows:

Columns Content
1 Blank
2-5 Source statement sequence number
27-100 Up to 74 characters of comment

A symbol table listing has the following format:

Columns Content
| Blank
2-6 Symbo |
7-8 Blank
9-14 Value of the symbol

ASSEMBLER-27

ASSEMBLER INPUT AND OUTPUT

THE LISTING (conT.) %

Internally, ASMA 1s a two-pass process. During the first pass a
symbol table is generated, and if the source is from a device other than
the disc, the source is read onto the work area of the disc, in preparation
for the second pass. It is at the end of the first pass that a listing of
the symbol table is printed, if requested. The second pass generates the
program listing and the actual object program (binary tape).

At the end of each pass, the following is printed:¥*

¥NO ERRORS
or
¥*nnnnERRORS*

The value nnnn indicates the number of errors,

BINARY QUTPUT

A binary output tape consists of a series of records; each record has
the format shown below. Records vary in length, but are maximum of 67,
words long.

ODuring the second pass of assembly, the object binary is accumulated in
a buffer. The contents of the buffer will become a record on the output oy
tape. A record is punched when the buffer gets full, or when it is necessary ,ﬁ)
to begin a new record. Instructions like ORG, BSS and $33% always cause the
accumulated previous record to be punched (unless the buffer was empty),
and a new record started.

The numbers rafer to the number of arrors detected during each pass only; it is possible for

either number to be zero while the other is not., Always check both numbers, not just the one at

the end of tha listing. Also, poss one error diagnostics are simply printed, by themselves, ot

the start of the listing; they include the error mnemonic as well as the offending statement,

Pass two error diagnostics are merged with the [isting proper; the diagnostic itself has the seme ﬁﬁa
form as for pass one, but immeciately precends regular listing of the offending stalement. 1t s

possible for a defective statement to produce more than one diagnostic message,

ASSEMBLER-28

ASSEMBLER INPUT AND OUTPUT

BINARY QUTPUT (conT.)

OBJECT TAPE FORMAT

CONTENT EXPLANATION
15 87 01514 015 0
7 RECORD LENGTH = NUMBER OF
' WORDS IN RECORD EXCLUDING
RECORD) ABSOLUTE INSTRUCTION WORDS | AND 2 AND TH
AST WORD.,
LENGTH I ADDRESS WORD,
ABSOLUTE LOAD ADDRESS:
g STARTING ADDRESS FOR
- LOADING THE INSTRUCTIONS
woro 1 T WORD 2 WORD 3 WHICH FOLLOW
INSTRUCTION WORDS:
s 015 015 0 g%sook%{s INSTRUCTIONS
INSTRUCTION CHECKSUM
WORD; CHECKSUM: ARITHMETIC
TOTAL OF ALL WORDS
EXCEPT FIRST AND LAST
WORD n =1 WORD n

fEach word represents two frames arranged as follows:
Bit 8 — -— Bito

— I*ced Holes

ASSEMBLER-29

APPENDIX

ASSEMBLER ERROR MESSAGES

During the assembly of a program, error messages are printed on the

list output device o aid the programmer in debugging programs.

Errors

detected in the source program are indicated by |- or 2- letter mnemonic
followed by the sequence number and the first 62 characters of the statement

in error.
indicated.

Error
Code and Pass
Cs !

FU |

IL 2

Description

Control statement error:

a) The control statement contains
a parameter other than one in
the legal set.

b) Nelther A nor R, or both A and
R, are specified.

¢c) Neither $ nor F, or both S and
F, are specified.

d} There Is no output parameter
(B, T, or L).

Doubly defined symbol: A name

defined in the symbol table appears

more than once as:

a) A label of a machine instruction.

b} A label of one of the pseudo

operations:

8SS EQU
ASC ABS
DEC ocT
DEF

Too many DFN statements.

An IFZ or an IFN follows either
an IFZ or an IFN without an
intervening XIF. The second

pseudo instruction is ignored.

Iilegal character: A numeric term
used in the operand field contains
an illegal character (e.g. an octal
constant contalns other than +,-,

or 0-7).

Error

Code and Pass

M

APPENDTX~1

1,2

The messages are printed on the output device during the passes

Description

Illegal operand:

a)

b)

c)

d)

e)

f)

No origin definition:

Operand is missing for an
opcode requiring one,
A negative operand is used with
an opcode fleld other than ABS,
or OCT.
A character other than I
follows a comma in one of the
following statements:

LDA ADB AND

LB STA DSZ

CPA 578 I0R

CPB JSM JWP

ADA ISZ DEF
A character other than S or C
follows a comma in one of the
following statements:

SLA SAM
SLB SBM
RLA S0s
RLB soC
SAP SES
SBP SEC

An illegal operator aopears in
an operand field (e.qg. + or -
as the last character),

An integer expression in an
instruction does not meet a

size requirement.

The first

statement in the assembly containing
a valid opcode following the ASMB
Control Statement (and remarks and/or
HED, if present) is not an ORG
statement,

APPENDIX

ASSEMBLER ERROR MESSAGES (conT.)

Error Error

Code and Pass Description Code and Pass

oP 1,2 Tllegal opcode preceding first SY 2 Illegal symbol: A symbolic term in
valid opcode. Also, a comment the operand field is greater than
fails to not contain an five characters; the symbol is
asterisk in position one. The truncated to the left-most 5
statement is assumed to contain characters.

an illegal opcode; it is treated

as a remarks statement, UN 1,2 Undefined symbol:
a) A symbolic term in an operand
oP 1,2 Itlegal opcode: A mnemonic fleld is not deflned in the
appears 1n the opcode field which label fleld of an instruction.
is not valid. A word is generated b) A symbol appearing in the
in the object program, however. operand field of one of the

following pseudo operations
oP

(V]

Opcode is valld in l6-bit assemblies, was not defined previousiy in
but invalid in present 15-bit the source program:
assembly. BSS ASC EQU ORG

ov 1,2 Numeric operand overflow. The
numeric value of a term or expression

has overflowed Tts limit.

S0 | There are more symbols defined in
the program than the symbol table
can handle.

sy 1,2 Illegal symbol: A label field
contains an illegal character or is
greater than 5 characters. A label
with illegal characters may result
in an erroneous assembly if not
corrected. A long label is truncated

1o the left-most 5 character,

APPENDIX-2

APPENDIX

BINARY LOADERS

There are two basic approaches to loading a binary object program into

memory.

The first (and the simplest and most primitive) way is to imitate the
basic binary loader for the 2100-series computers. With this approach there
is a 30 to 50 word program that must be resident in some unused portion of
the BPC system's memory. This program performs the necessary input activity
while understanding the format of the binary tape. There are several things
to note about this approach:

l.

The binary loader itself can only be loaded by hand - a tedious and
error-prone activity. This is an especially grievous drawback if
no non-volatile memory is available to contain the loader.

I+ is possibie that the system under development might eventually
not have room in memory for a resident loader.

I the system does not have an |0C, a special interface to the IDA
bus is necessary. These come in fwo flavors:

=8

Build a special interface that acts |ike a memory address. |t
can be set to respond to an unused register address (very easy

if RAL is used) or fo a non-existent or non-decoded main-memory
address. To load a byte in A from a photo reader whose interface
thinks it is location 30s, the loader would do a LDA 30B. The
interface recognizes the memory address as its own, starts the
photo reader and gefs the byte, and holds the byte on the IDA
bus, giving Memory Complete only when all photo reader activity

is complete. In this way no spectial handshake is required, and
to read a word from the tape it is necessary only to:

LDA 30B

SAL 8

IOR 308

Use a Model 30, or other calculator, programmed to read the
data from the photo reader, The calculator sends the data fo
the IDA bus through an |1202-BIB combination (slightly
supplemented) -~ all of which are off-the-shelf components.
This allows a somewhat simpler interface and also a simpler
resident binary loader: +the check-sum can be checked and then
removed from the instruction-word-stream by the program in the
calculator.

The 11202-BIB combination must be supplemented with memory
address decoding; however the existing Flag convention can
take the place of the missing Memory Complete circuitry. The

resident binary loader stil! addresses memory to get a byte
from the reader:

LDBYT SFC LDBYT

LDA 1/0AD, |
SAL 8
SFC *
IOR 1/0AD, |

1 /0AD DEF XXX ADDRESS DECODED BY INTERFACE

APPENDIX-3

APPENDIX

BINARY LOADERS (conT.)

The second general approach is much more sophisticated, but is a lot
easier. |t is to use the ET-8332. The ET-8332 is much more than just a
loader; it is that in addition to being a full-scale test apparatus for
control ling traffic on the IDA bus and debugging software. |+ is controlled
by software executed by a Model 30, and has many useful features. As far
as loading is concerned, no resident loader is required in the memory of
the BPC system under development, and object code can be stored on a disc.
The ET-8332 is general ly considered superior to an ordinary single-step-
tester,

APPENDIX-4

APPENDIX

OUTPUT PAPER TAPE FORMAT

ABSOLUTE BINARY OBJECT PROGRAM

CONTENT
15 87 01514 015
4
Y
RECORD) A“fgkg“ INSTRUCTION
LENGTH ’ ASouERs WORD,
//
woro 1 1 WORD 2 WORD 3
15 015 015
; INSTRUCTION
WORD CHECKSUM
WORD n -1 WORD n

TEach word represents two frames arranged as follows:

Bit 8§ — -— Bito

-— Fcced Holes

Bit 15 — (e8] «— Bit 7

g Tape Trovel

APPEND I X~5

EXPLANATION

RECORD LENGTH = NUMBER OF
WORDS IN RECORD EXCLUDING
WORDS 1 AND 2 AND THE
LAST WORD.

ABSOLUTE LOAD ADDRESS:
STARTING ADDRESS FOR
LOADING THE INSTRUCTIONS
WHICH FOLLOW

INSTRUCTION WORDS:
ABSOLUTE INSTRUCTIONS
OR DATA

CHECKSUM: ARITHMETIC
TOTAL OF ALL WORDS
EXCEPT FIRST AND LAST

APPROXIMATE LINE NUMBERS

APPENDIX

ADDING PRE-DEFINED SYMBOLS TO ASMA

I+ is a relatively easy task to add pre-defi
is necessary is the creation of some extra sourc

ned symbols to ASMA. What
e text for ASMAl and ASMA4.

Both must be changed; whatever modification made to one must also be made

to the other. After modification, these segment
and the entire program collection re-loaded.

s must be re-assembled,

Below is a partial source listing of ASMA1 and ASMA4, in the vicinity of

lines 415-430.
up trying to keep this

~

page accurate).

0411 COUNT DEC 58
0412 PRELD OCT 2010190 A REG = 0
0413 0CT 2010241 B REG = 1
0414 OCT 2012092 P REG = 2
0415 0CT 20122,3 R REG = 3
0416 OCT 3012293204094 R4=4
0417 OCT 30122+32440,5 R5=5
0418 OCT 3012243304046 R6
0419 OCT 3012293344057 R7
0420 OCT 301119530404+10

{ 0421 OCT 30120,40440411
0422 0CT 20127412
0423 OCT 40104+4650195010113
0424 OCT 40104+46501+46501914
0425 OCT 40104+46501941440+15
0426 OCT 20103416
0427 OCT 20106417
0428 AR1AD OCT 30101+51061+77770
0429 OCT 3010195106220
0430 OCT 30123+42440+24

. 06431 OCT 090505040

sons | IST END a#eos

Here is how to add a pre-defined symbol:

|. The symbol to be added must, in every

(The exact location in each keeps changing over time.

I give

nu
~o

Iv

PA

W

DMAPA
OMAMA
DMAC

c

D

AR1

AR2 20
SE - 24

DUMMY END OF SYMBOL TARLE

way, conform to the rules

for labels and their permissible values.

I f the symbol has an even number of characters, imagine that it

2.
has a trailing blank (&) as the right most character, so that
the "number of characters" is always odd.

3, Using the ASCI| conversion table in this appendix, convert the

symbol into one or more octal

integers.

Note how the left-most

character is right-justified into an all-zero word.

DOGG
DOGG b
all zeros = 000000
D =+000104
000104

APPENDIX-6

@*\

APPENDIX

ADDING PRE-DEFINED SYMBOLS TO ASYA

3.

{cont.)
0 = 047400
G = +000107
047507
G = 043400
4 = +000040
043440

So far we have the sequence:
000104, 047507, 043440

The next step is to add one more word, representing the octal
value of the symbol. Suppose DOGG is to equal 77B. Then this
generates the sequence:

000104, 047507, 043440, 000077

- Count the number of words (in this case 4). Insert this number

into the first word exactly as shown beiow:

040104, 047507, 043440, 000077
+

Create an OCT statement that will generate the same sequence of
vwords:

OCT 40104,47507,43440,77
Note that leading zeros may be omitted.

One other change in the program source text is necessary:
The value of the word called COUNT must be changed (line 398
in ASMA4). COUNT is the total number of words in the symbol
table pre-load.

In our example, we are adding four words. So COUNT would change
from its base value of 58;4 to:

COUNT DEC 62

Prepare edits that will change COUNT to its new value in both
ASMA! and ASMA4, and that will insert the new octal constants
between lines 418 and 419 of ASMAI and between lines 417 and 418
of ASMA4.

Make the edits, re-assemble, and re-load.

You can verify proper behavior of the symbol table pre~load, as
well as obtain a complete list of the pre-loaded symbols, by
assemb!ing any program including a T in its Confrol Statement.

APPENDIX-7

APPENDIX

ADDING PRE-DEFINED SYMBOLS TC ASMA (conr,)

The symbols that are pre-defined by the assembler are shown below. With
the excepfion of ARI, all these symbols refer to registers within the various
elements of the system.

REGISTERS & ASMA PRE-DEFINED SYMBOLS

Octal
Address Name Location Description (# of Bits)
0 A 8pP2 Arithmetic Accumulator (16)
I 8 BRC Arithmetic Accumulator (16)
2 P BPC o Program Lg;;rion Cdﬁnfer (least 15 of 16 or 16)
3 R 8FC Return Stack Pointer (least 15 of 16 or 16)
4 4 10C Paripheral Activity Cesignator (—)
5 K5 15C Feripheral Activity Cesianation (—)
6 R6 10C Peripheral Activity Cesignator (—)
R7 10C Peripheral Activity Designator (—)
10 v 10C Interrunt Yector (upner 7 of 16)
It PA 10C Periprheral Aagdress Becister {least & 0f {7)
12 W 10C Working “enister (16)
13 DMAPA |oC 2 MSB = B & DB; 4 LSB = DMA Periph. Add. Reg.
14 DMAMA, 10C DMA Memory Address & Diraction Regicter (1)
15 DMAC 10C DA Count Cecister (16)
16 C 108 Stack Pointer (18)
17 o} 10C Stack Pointer (18)
20-23 AR2 EMC BCD Arithmetic Accumutator (4 x 16)
24 SE EMC Shift txtend Register (least 4 of 16)
25=27 X EMC internal Arirrmetic Register (3 X 16)
30-37 UNASSIGRED
?;;;gé AR R/ BCD Arithmatic Recister (4 x 16)

Not available for general use. Part of processes internal to a chip. [IY
is best to pretenc that these registers do not exist.

Read register 13, produces:

8
CB and 0B are actually discrete 8it 15 8it 0O
reqisters, and while they can \E :L

only be read by reading RI3, [] _____ VOD = = = = = II r]w
storinging into RI3 will not -

alter rthei es, Use the 11__
Fiter eir value the Value of D8 \‘“v—J

C8L, CBU, D8L and DBU mactine
instructicns for that purpose.

Cits and DB exist in the 16-bit —
version only.

Value of CB DrA
Select Code

APPENDIX-8

APPENDIX

THE STRUCTURE OF THE ASSEMBLER

The assembler is a segmented program that can run under either DOS-M
or RTE. The names of the segments are:

ASMA the main segment
ASMAD overlay segment
ASMA L overlay segment
ASMA?2 overlay segment
ASMA4 overlay segment
ASMAS5 overlay segment

Note that there is no ASMA3., Special procedures are required when
lcading segmented programs; see the operating manual for your system.

The differences between the DOS-M version and the RTE version is
entirely contained within ASMA (main segment). Whether ASMA is for DOS-M
or for RTE is controllied at the ftime ASMA itself is assembled (by ASMB, the
regular assembler)., It is merely a matter of an N or a Z in the Control
Statement of the source for ASMA (main segment only). This is fully
explained by the comments in the listing.

The illustration on the next page is a pictorical representation of
ASMA when it is in core.

APPENDI X-9

Length of ASMA:

approximately

62005 (varies

from RTE to
DOS-M)
Approximate
Segment lLengths:
ASMAD 550,
ASMAT 11754
ASMAZ 1445,
ASMA4 1170,
ASMAS 14304

Length of XRFA:
approximately 42609\W

APPENDIX

Order of execution:

Relative Non-Relative ("Absolute™)
ASMA ASMA

ASMAD ASMAD

ASMAI (uses ASMA) ASMA4 (uses ASMA)

ASMAZ (uses ASMA) ASMAS (uses ASMA)

&

, The segments have . different lengths,

\J

J)

Symbol Table

((
1}

S
“r’,,—SysTem Load Address
} Main Instruction Table
} DFN Instruction Table
ASMA
Various utility subroutines common
to relative and absolute assemblies
-t Actual overlay point
for every segment
Collection of shared constantg ASMAD (lst segment
2259 words executed)
__________________ «4—CEtffective overlay
Self-destructive code P/0 ASMAD point for all seg-
ments except ASMAD
ASMA[- ASMAS
Each program has a
L J BSS 225B and a list
. of EQU's into that

area to recover the
constants

The Assembler ccmputes
this address based on
its own length

Max address less
basic loader

Binary Loader

APPENDIX-10

to get this address from
the System.

‘.\\\The Assembler knows how

”@%

APPENDIX

PSEUDO INSTRUCTIONS

ABS m
Defines a |6=-bit value to be stored at the
location represented by the label.
{ASMA: Assembler-~19)

ASC n, < 2n characters >
Converts a string of 2n alphanumeric characters
in ASCI! code into n consecutive words.
(ASMA: Assembler-20)

B8SS m
Advances the program location counter according
to0 the value of the operand.
(ASMA: Assembler-23)

CLA
Clear A. The assembler turns this mnemonic into
an SAR (6 {shift A right I6). This has the effect
of clearing the A register. (BPC: Instructions-4)
cL8

Clear B. Similar to CLA. (BPC: Instructions-4}

DEC d1[,d2,....,dp]
Records a string of integer decimal constants
into consecutive words. (ASMA: Assembler-21)

0EF m [,1]
Generaies one word of memory as a 15-bit or 16-bIit
address which may be used as the object of an
indirect address found elsewhere in the source
program. (AMSA: Assembler-18)

DFN < mnemonic >, < type >, < bit pattern >
Defines a machine instruction with the given
3-character mnemonic. (ASMA: Assembler-13)

END
Terminates the program; marks the physical end
of the source language statements.
(ASMA: Assembler-17)}

APPENDIX-11

EQU

HED

IFN

IFZ

LST

NOP

ORG

ORR

m

Assigns to a symbol a value other than the one
normal ly assigned by the program location
counter. (ASMA: Assembler-19)

< heading >

Allows the programmer to specify a heading to be
printed at the top of each page of the source
program listing. {(ASMA: Assembler-25)

Source language statements after |FN and before
the next XIF are included in the program if the
character "N" 1s specified in the ASMB control
statement. (ASMA: Assembler-15)

Source language statements after the IFZ and
before the next XIF pseudo instructions are

included in the program if the character "Z"
is specified in the ASMB contro! statement.

{ASMA: Assembler-15)

Causes the source program listing, terminated
by a UNL, to be resumed. (ASMA: Assembler-24)

Null operation. The assembler turns this
mnemonic into o LDA A. (BPC: Instructions-4)

¢1(,02,....,0q0]

Stores one or more integer octal constants in
consecutive words of the object program.
(ASMA: Assembler-22)

m

Defines the origin of a program, or the origins
of subsequent sections of programming.

(ASMA: Assembler-11)

Automatic reset of the value of the program
location counter. (ASMA: Assembler-11)

APPENDIX

PSEUDO INSTRUCTIONS (conT.)

REP

SKP

SPC

SUP

n

Causes the repetition of the next statement a
specified number of times.

(ASMA: Assembler-17)

Causes the source program listing to be skipped
to the top of the next page.
(ASMA: Assembler-24)

n
Causes the source program listing to be skipped
a specified number of lines.

(ASMA: Assembler-24)

Suppresses the output of additional code lines
from the source program |isting.

(ASMA: Assembler-24)

MACHINE INSTRUCTIONS

AR

ABR

ADA

ADB

AND

n

Arithmetic right shift of A, A is shifted right
n places with the sign bBit (bit I5) filling all
vacated bit positions. (BPC: Instructions-5}

n

Arithmetic right shift of B. B is shifted right
n places with the sign bit (bit 15} filling all

vacated bit positions. (BPC: Instructions-5)

m[,1]

Add the contents of m to A.
{BPC: Instructions-2}
m{,1]

Add the contents of m to B,
(BPC: Instructions-2)

m [,I]

Logical "“and" of A and m; the result is left in

A. (BPC: Instructions-3)

APPENDIX-12

UNL

UNS

XIF

$33

cBL

csy

coc

CLR

CMA

Output is suppressed from the assembly |1sting
for all subsequent instructions and comments
until either an LST or END is encountered.
(ASMA: Assembler-23)

Causes the printing of additional coding |ines,
terminated by a SUP, to be resumed.
{ASMA: Assembler-24)

Terminates conditional assembly text.

{ASMA: Assembler-15)

Causes any as yet un-outputted blnary to be
properly outputted as a complete record.
(ASMA: Assembler-15)

C Block Lower. Clears the CB register. 16-bit
10C only. (10C: instructions~13)
C Block Upper. Sets the CB register. |16-bit

10C only, (10C: [Instructions-13)

Clear Decimal Carry. (EMC: Instructions-18)

N

Clear N words. This instructions clears 1-16

consecutive words, beginning with location < A >,

(EMC: Instructions-16)

Complement A. The A register is replaced by its
one's (bit by bit) complement.

(BPC: Instructions-10)

APPENDIX

MACHINE INSTRUCTIONS (cont.)

cMB
Complement B. The B register is replaced by its
one'!s (bit by bit) complement.
(BPC: Instructions-10)

CMX
Ten's compiement of ARI. 15-bit version has

a DMA-related bug. (EMC: Instructions-17)

CMY

Ten's complement of AR2. {EMC: Instructions-18)
CPAmE[,I]

Compare the contents of m with the contents of

A; skip if unequal, (BPC: Instructions-2)

cre m (,I]
Compare the contents of m with the contents of

B; skip if unequal. (BPC: Instructions-2}

DBL

D Block Lower. Clears the DB register,
10C only, (10C:

lé~-bit
Instructions-13)

oBY
D 8lock Upper. Sets ‘the DB register,
10C only. (10C:

16~bit
Instructions-13)

DDR
Disable Data Recuest. Cancels the DMA Mode and
the Pulse Count Mode. 15-bit version has DMA~
related bug; DDR is usable in the |6-bit version
only. (10C: |Instructions-15)

DIR
Disable the Interrupt system, cancels EIR.
(10C: Instructions-14)

DMA
Enable the DMA mode. Cancels PCM and DOR.
(10C: Instructions-15)

DRS

Mantissa right shift of ARl one +ime.
(EMC: Instructions-17)

APPENDIX-13

0sZ m [,I]
Decrement m; then skip if zero.
(BPC: Instructions-3)

EIR
Enable the interrupt system.
(10C: Instructions=-14)

EXE 0 < m < 37s [,I]
Execute register m. The contents of any register
can be treated as the current instruction, and
executed in the normal manner, The next
instruction executed will be the one fol lowing
the EXE m, unless the code in m causes a branch.
I5-bit version has minor bug retated to Interrupt.
(BPC: Instructions-I11)

FOV
Fast Divide. The mantissas of ARl and AR2 are
added together until the first decimal overfliow
occurs, The result of these additions accumulates

in ARZ. (EMC: Instructions-19)

FMP
Fast Multiply. The mantissas of ARl and AR2 are
added together (along with DC as Dj2) < Bg-3 >-
times; the result accumulates in AR2.
(EMC: Instructions-19)

FXA
Fixed-point addition. The mantissas of ARI| and
ARZ are added together, and the result is left
In ARZ. (EMC: Instructiong-18)

1I0R m [,I]
Inclusive {ordinary} "or"” of A and m; the result

is left in A, (BFC: Instructions-3)

152 m {,1I]
Increment m; then skip if zero.
{(BPC: Instructions-3)

JWP m [,T]
Jump to m. Program execution continues at

lecation m. (BPC: Instructicons-3)

APPENDIX

MACHINE INSTRUCTIONS (conT.)

Jsm [,I]

Jump to subroutine. The contents of the return
stack register (R} are incremented by one and
the contents of P stored in R,I.

(BPC:

Program

execurion resumes at m. Instructions-3)

oA m [,1]

Load A from m. (BPC: Instructions-2)
B m [,1]

Load B from m. (BPC: Instructions-2)

<mem. ref. inst.> <reg. 4-7> [,1]
tnitiate an 1/0 Bus Cycle., Memory reference
instructions 'reading' from req. couse input
1/0 Bus Cycles; those 'writing' ro reg. cause
output 1/0 Bus Cycles. In elither case the
exchange is between A or B and the interface

addressed by the PA register (Peripheral Address

Register - llg}. (10C: Instructions-14)
MLY
Mantissa left shiflt of AR2 one time,
(EMC: Instructions-17)
MPY
Binary Multiply Using Booth's Algorithm,
(EC: Instructions-19)
MRX
Mantissa right shift of ARl < Bgp-3 >-times.
(EMC: Instructions-16)
MRY
Mantissa right shift of AR2 < Bg-3 >-times,
{(EMC: Instructions-17)
MWA

Mantissa Word Add. < B > is taken as four BCD
digits, and added, as Dg through D)2, to ARZ,
DC is also added in as a Dy2. The result is

left in AR2., (EMC: Instructions-18)

APPENDIX-14

HRM

PBC

PED

PCM

PRC

PwD

RAR

RBR

RET

Normalize ARZ. The mantissa ¢igits of AR2 are

shifted left until Dy # O.

(EMC: Instructions-17)

reg. 0-7 [,1/,0]

Place the right half of reg. into the stack

nointed at by C. (10C: Instructions-12}
reg. 0-7 [,1/,0]

Place the right half of reg. into the stack
(1oc:

pointed at by 0. Instructions-12)

Enable the .Pulse Count Mode.
{10C: Instructions-15)
reg. 0-7 [,I/,0]

Place the entlire word of
(10C:

into the stack

Instructions~12)

reg.
pointed at by C.

reg. 0-7 [,1/,0]
Place the entire word of
{IcC:

reg. into the stack

pointed at by D. Instructions-12)
n

Rotate A right.
with bit 0 rotating into bit I5.
(BFC:

A is rotated right n places,
Instructions-5)
n

Rotate B right.
with bit O rotating inte bit 15.

B is rotate right n places,

(BPC: Instructions~5)

n[,P]

Return. A read R,I occurs. That produces the
address {< P >) of the latest JSM that occurred.
The BFC then jumps to address < P > + n. The value
of n may range from -32 to 31, inclusive. AT

the conclusion of the RET R is decremented by one.
The ordinary, everyday, return is RET I. [f
a P ic present, it "pops" the interrupt system,

(8PC: Instructions-~3)

APPENDIX

MACHINE INSTRUCTIONS (conT.)

RIA

RIB

RLA

RLB

RZA

RZB

SAL

SAM

SAP

SAR

* ¢ n/m

Skip if A 1s not zero, then increment A.
(BPC: Instructions=7}

* & n/m

Skip if B Is not zero, then increment B.
{BPC: Instructions-7)

* & n/m[,5/,C]

Skip if the least signiflcant bit of A is non-
zero. |f either S or C is present, bit O is
altered accordingly after the test.

(BPC: Instructions~9)

* & n/m[,S/,C)

Skip if the least significant bit of B is ron-
zero. |f either S or C Is present, bit 0 is
altered accordingly after the test.

(BPC: Instructions-9)
* +n/m

Skip if A not zero. (BPC: Instructions-¥)

* tn/m

Skip if B not zero. (BPC: Instructions=7)

n

Shift A left., A 1s shifted left n places with
all vacated bit positions cleared.

(BPC: Instructions-5)
x + n/m{,s/,C]
Skip if A minus.
bit |5 is altered accordingly after the test.
(BPC:

If either S or C is present,

Instructions-9)

* + n/m(,5/,C]
Skip if A positive.
bit 15 is altered accordingly after the test.
{(BPC: Instructions-9)
n

Shift A right.
all vacated bit positions cleared.

(BPC: Instructions-5)

APPENDIX-15

{f either S or C is present,

A 1s shifted right n places with

SBL

SBM

58P

SBR

s0C

SDI

SBO

50S

SEC

n
Shift B left.
all vacoted bit positicns cleared.
(BPC:

B is shifted left n places with

Instructions-5)
* & n/m (,S/,C]
Skip if B minus. If either Sor C is present,
bit 15 is altered accordingly after the test.
(BPC: Instructions=9)
*+ n/m [,8/,C]
Skip if B positive. If either Sor C is
present, bit 15 is altered accordingly after
the test. (BPC: Instructions-9)
n

Shift B right.
all vacated blt positions cleared.
(BPC: Instructions=5)

¥ % n/m

Skip if decimal carry clear.

(BFC: Instructions-8)

Set DMA Inwards. I16-bit I0C instruction that
sets the direction of DMA transfers to be from
the peripheral to the memory.

(10C: Instructions-15)

Set DMA Outwards., 16-bit 10C instruction that
sets the direction of DMA transfers to be from
the memory to the peripheral.

(10C: Instructions-1%5)

* % n/m

Skip if decimal carry set.

{(BPC: Instructions-8)

% &

+ a/m,s/,C]

Skip 1f extend clear. |If either S or C is

present, E Is altered accordingly after the test.

(BPC: Instructions-10)

B is shifted right n places with

APPENDIX

MACHINE INSTRUCTIONS (conT.)

SES * * n/m [,S$/,C]
Skip if extend set., |If either Sor C is
presert, E is altered accordingly after the test.
{(BPC: Instructions=10)
SFC * &+ n/m
Skip if Flag line clear.
(BPC: Instructions=8)
SFS * ¢ n/m
Skip 1f Flag line set.
{(BPC: Instructions-8)
SHC * ¢ n/m
Skip if Halt line clear.
(BPC: Instructions-8)
SHS * * n/m
Skip if Halt line set.
(BRC: Instructions-8)
SiA * ¢
Skip if A 1s zero, then increment A.
(BPC:

n/m
Instructions-7)

SiIB * ¢ n/m
Skip if B is zero, then increment 8.
(BPC: Instructions-7)

StA * * n/m [,8/,C]
Skip if the least slgnificant bit of A is zero.
1f either S or C is present, bit O is altered
accordingly after the test.
(BPC; Instructions-8)

SLE * ¢ n/m [,s/,C]
Skip if the least significant bit of B Is zero.
1f either S or C is present, bit 0 is altered
accordingly after the test.
(BPC: Instructions-9)

SOC ¥ ¢ N/m [,S/,C]

Skip if overflow clear. If either S or C is
present, the OV register is altered accordingly
(BPC:

after the test. Instructions-10?}

APPENDIX-16

S0s * ¢ n/m [,S/,C]
Skip if overflow set. If either S or C is
present, the OV register is altered accordingly
after the test. (BPC: Instructions-9)
SSC ¥ & n/m
Skip if Status line clear.
(BPC: Instructions~8)
SSS ¥ + n/m
Skip if Status line set.
(BPC: Instructions-87
sTAm [, 1]
Store the contents of A in m,
{BPC: Instructions-2)
<stack inst.> <reg. 4-7> [,1/,D]
Initiate an /0 Bus Cycle. Place instructions
‘read' from reg., therefore they cause input 1/0
Bus Cycles. Withdraw instructions 'write' into
reg., therefore they cause output 1/0 Bus Cycles.
In either case the exchange is between the
addressed stack location and the interface

addressed by PA, (10C: Instructions-|4}

st8 m [,1]

Store the contents of B In m,

{BPC: Instructions~3)
SZA ¥ * n/m

Skip if A zero. (BPC: Instructions-6)
SZB * * n/m

Skip if B8 zero. (BPC: Instructions=7)

TCA

Two's complement A. The A register is replaced
by its one's (bit by bit) complement, and then
(BPC:

increrented by one. Instructions-10)

TCB

Two's complemert B. The B register is replaced
by its one's (bit by bit) complement, and then
{BPC:

Tncremented by one, Instructions=10)

APPENDIX

MACHINE INSTRUCTIONS (conT.)

WBC reg. 0-7 [,1/,D]
Withdraw a byte from the stack pointed at by C,
and put It into the right half of reg.
(10C: Instructions-13)

w80 reg. 0-7 [,I/,D]
Withdraw a byte from the stack pointed at by D,
and put it into the right half of reg.
(1CC: Instructions-13)

WWC reg. 0-7 [,I/,0]
Withdraw an entire word from the stack pointed
at by C, and put it into reg.
(10C: Instructions-13}

APPENDIX-17

WWD reg. 0-7 (,1/,0]
Withdraw an entire word from the stack pointed
at by 0, and put it into reg.
{10C: Instructions-13)

XFR N
Transfer N words. This instruction transfers
the |-16 (N) consecutive words beginning at
location < A > to those beginning at < B >,
(EMC: Instructions-16)

APPENDIX

INSTRUCTIONS BIT PATTERNS

GROUP: MEMORY REFERENCE (ASMA TYPE 16)

INST.
NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LDA D/I| O 0 0 0 B/C
* 10 BIT ADDRESS FIELD.
LDB D/I | O 0 0 1 B/C
* ADDRESSES 0-378 ARE REGISTERS.
CPA D/I | O 0 1 0 B/C
* FOR BIT 9=0, BITS 0-8 = POSITIVE ADDR.
CPB pD/1] 0 0 1 1 B/C
* FOR BIT 9=1, ADDRESS IS NEGATIVE.
ADA D/1| 0 1 0 0 B/C
IGNORE BIT 9, COMPLEMENT BITS 0-8,
ADB D/1| 0 1 0 1 B/C
THEN ADD ONE.
STA D/1| 0O 1 1 0 B/C
* BASE PAGE ADDRESS ENCODING IS ALWAYS
STB D/1 | 0 1 1 1 B/C
WITH RESPECT TO MEMORY LOCATION ZERO.
JSM D/I| 1 0 0 0 B/C
* CURRENT PAGE ENCODING:
1S2 D/I | 1 0 0 1 B/C
(ABSOLUTE) RELATIVE TO THE
AND D/I {1 0 1 0 B/C
MIDDLE OF THE PAGE (1000B, 3000B,
DSZ D/I| 1 0 1 1 B/C
ETC.)
IOR D/1| 1 1 0 0 B/C
JMP D/1 |1 1 0 1 B/C (RELATIVE) RELATIVE TO THE
CURRENT VALUE OF P, +511, -512.

D/I (DIRECT/INDIRECT) AND B/C (BASE PAGE/CURRENT PAGE) ARE CODED AS 0/1.

CROUP: SHIFT-ROTATE (ASMA TYPE 27)

INST.
NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AAR 1 11 110 0 0 1 0 0 0 0
* 4 BITS OF
ABR 111 1|1 0 0 1 0 0 0 0
SHIFT-
SAR 1 11 1 |0 0 0 1 0 1 0 0
ROTATE
SBR 111 1 |1 0 0 1 0 1 0 0
FIELD.
SAL 1 101 1 |o 0 0 1 1 0 0 0
| * IN SOURCE
SBL 1 1 1 1|1 0 0 1 1 0 0 0
1-N%16.
RAR 1 1 1 1|0 0 0 1 1 1 0 0
* BINARY IN
RBR 1 101 1 |1 0 0 1 1 1 0 0
THIS FIELD
IS N-1.

APPENDIX-18

APPENDIX

INSTRUCTIONS BIT PATTERNS (conT.)

GROUP: SKIP (ASMA TYPE 25)

INST.
NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
RZA 0 1l 1 1 0 1l 0 0 0 0
* 6 BIT SKIP FIELD,
RZB 0 1 1 1 1 1l 0 0 0 0
+31, -32.
SZA 0 1 1l 1 0 1 0 1 0 0
* IF BIT 5=0, SKIP
SZB 0 1 1 1l 1 1l 0 1 [0} 0
TO P+#; #=BITS
RIA 0 1 1 1l 0 1 0 0 0 1
0 THRU 4.
RIB 0 1 1 1 1l 1 0 0 0 1
* IF BIT 5=1, SKIP
SIA 0 1 1 1 0 1 0 1 0 1
TO P-#; #=1+ COMP
SIB 0 1 1 1 1 1 0 1 0 1l
QF BITS 0-4.
SFS 0 1l 1 1 0 1 0 0 1 0
SFC 0 1l 1 1l 0 1 1] 1 1 0
SSs 0 1 1 1 1l 1 0 0 1 0
SsC 0 1 1 1 1 1 0 1l 1 0
SDS 0 1 1 1 0 1 0 0 1 1
sSbC 0 1 1 1 0 1l 0 1 1 1
SHS 0 1l 1 1 0 0 1l 1
SHC 0 1 1 1 1l 1l 0 1l 1 1

GROUP: RETURN {(ASMA TYPE 42)

INST.
NAME 15 14 13 12 i1 10 9 8 7 6 5 4 3 2 1
RET 1 1 1 1 o] 0 0 0 1 P/p 6 BIT, 2'S COMPLEMENT

SKIP FIELD (ALLOWS -32

P/P (DON'T POP/POP THE IOC) ENCODED AS 0/1. THRU +31).

APPENDIX-19

APPENDIX

INSTRUCTIONS BIT PATTERNS (conT.)

GROUP: COMPLEMENT (ASMA TYPE 30)

INST.

NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CMA 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0
CMB 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0
TCA 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0
TCB 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0

GROUP: ALTER (ASMA TYPE 53)

INST.
NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RLA 0 1 1 1|0 1 1 1 H/H c/s

_ * 6 BIT SKIP FIELD, +31,
RLB 0 1 1 1 |1 1 1 1 H/H ¢/s

-32.

SLA 0 L | 1 0 1 1 0 H/H c/s

_ * IF BIT 5=0, SKIP TO P+#;
SLB 0 1 1 1|1 1 1 0 H/H cC/s

_ #=BITS 0 THRU 4.
SAP 1 1 1 1 0 1 0 0 H/H C/S

_ * IF BIT 5=1, SKIP TO P-§,
SBP 1 11 111 1 0 0 H/H c/s

_ #=1+ COMP OF BITS 0-4.
SAM 1 1 1 1|0 1 0 1 H/H C/s
SEM 1 1 1 1 {1 1 0 1 u/ii c/s
soc 1 1 1 1]o0 1 1 0 H/H c/s
sS0S 1 11 1]0 1 1 1 H/H C/s
SEC 1 11 1 {1 1 1 0 H/H cC/s
SES 1 1 1 1|2 1 1 1 H/H C/S

H/H (HOLD/DON'T HOLD) AND C/S (CLEAR/SET) ARE CODED AS 0/1.
HOWEVER: H/H IS SET BY THE ASSEMBLER ITSELF. IF NEITHER S NOR C IS PRESENT,

BOTH H/H AND C/S ARE MADE 0'S. THE PRESENCE OF EITHER A C OR AN S PRODUCES H

(A 1).

APPENDIX-20

APPENDIX

@ INSTRUCTION BIT PATTERNS (conT.)

GROUP: EXECUTE (ASMA TYPE 41)

INST.
NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
EXE o/il 1 1 110 0 0 0 0 0 0 5 BIT REGISTER
D/I (DIRECT/INDIRECT) ENCODED AS 0/1. ADDRESS (0-37g).
GROUP: 16-BIT 10C ONLY (ASMA TYPE 46)
INST.
NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2
SDO 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0
SDI 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0
DBL 0 1 1 1 0 0 0 1 0 1 o 0 0 0 0
CBL 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0
DBU 0 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0
CBU 0 1 1 1 0 0 0 | 0 1 0 1 1 0 o 0

APPENDIX~-21

APPENDIX

INSTRUCTION BIT PATTERNS (conT.)

GROUP: STACK (ASMA TYPE 43)

INST.

NAME 15 14 11 10 9 8 7 & 5 a 1 o0
PWC 0 1 0 0 0 1 I/D 1 1 4] 3 BIT REGISTER
PBC o |1 1 o o |1 1m 1|1 o ADDRESS FIELD

(0-7g) .
PWD o |1 o 0 o |1 1/ 1|1 o
PBD 0 1 1 0 0 1 10 1 1 0 PLACE INST'S
INC/DEC THE
WWi
c 0 1 0 0 0 1 /D 1 1 1 STACK POINTER
WBC o |1 1 o o |1 1 1|1 1 BEFORE THE
WWD 0 1 0 0 0 1 1/0 1 1 1 OPERATION.
WBD o |1 1 o ol 1 m 1|1 1 WITHDRAW INST'S
INC/DEC THE
STACK POINTER
AFTERWARDS.
1. I/D (INCREMENT/DECREMENT) IS ENCODED AS 0/1
THE ASSEMBLER DEFAULTS TO INCREMENT FOR PLACE
INSTRUCTIONS, AND TO DECREMENT FOR WITHDRAW
INSTRUCTIONS.
3. FOR 15-BIT/16-BIT BYTE INSTRUCTIONS, A 1 IN
BIT 15/0 OF THE POINTER REGISTER IMPLIES A
LEFT-HALF
GROUP: INTERRUPT (ASMA TYPE 30)

INST.

NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0
EIR o |1 1 1 lo o ol 1 o oo 1 olo o o
DIR o l1 1 1|0 o ol1 o oo 1 110 o o

GROUP: DMA (ASMA TYPE 30)

INST.

NAME 15 14 13 12 11 11l 9 8 7 6 5 a4 3 2 1 o0
DMA o |1 1 1]lo o ol 1 o o1 o ofo o o
peM o l1 1 1 |o o ol 1 o o|l1 o 10l0 o o
DDR o |1 1 1]o o ol 1 o o1 1 110 o o

APPENDIX-22

APPENDIX

INSTRUCTION BIT PATTERNS (conT.)

¢ GROUP: FOUR WORD OPERATION (ASMA TYPE 27)
INST.
NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
CLR 0 1 1l 1 4] 0 1 1 1 0 0 0 * 4 BIT FIELD
XFR 0 1 1 1 0 0 1 1 0 0 0 0 # OF WORDS
* BINARY = N-1

GROUP: MANTISSA SHIFT (ASMA TYPE 30)

INST.
NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
MRX 0 1l 1 1 1 0 1 1 0 0 0 0 0 0 0 0
DRS 0 1l 1 1 1 0 1 1 0 0 1 0 0 0 0 1
MLY 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 1
MRY 0 1 1 1 1 0 1 1 0 0 0 0 0 0
Gﬁh\ NRM 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0

GROUP: ARITHMETIC (ASMA TYPE 30)

INST.

NAME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

FXA 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0

MWA 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0

CMX o 1 1 1 0 0 1 0 0 1 1 0 0 o 0

CcMY 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0
FMP 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
FDV 0 1 1 1 1 0 1 0 0 0 1 0 0 0 1
MPY 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1
CcDC 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 o

APPENDIX~23

15/16 BIT 10C CONSOLIDATED CODING SHEET

I5/16 BIT BPC CONSOLIDATED CODING SHEET

APPENDIX

|5||4l|31|2|n||o|918I7161514l3121 1[0

olejolololeloloNodo Yo
ofolololololololoYole)
oJelololololololoYolo)

O—0—0——=0—0—32
00 ——00—-00——0~—

eYeYoYoYeToTo e Yo aToYoTe!
0000000000000
oYeYoYeoYoYoYoRoXo Yo Yo NI

— e ————— — — — — — — —
—— — ——— — — —— — o — — —

—— — —— — — —— — — — — —

0000000000000

~— NOTES —
5 PLACE INST'S INC/DEC THE STACK POINTER BEFORE THE

OPERATION
6. WITHDRAW INST'S INC/DEC THE STACK POINTER AF TERWARDS

O—~Xxd=ES0rJdaDD8s

O0O——00000O00—-—-0
00000000000 -0
00000000000 —0

N=# OF WORD:!
BNARY = (N-1)

OCO0CO0O000O0000O~—0

|5||4||3||21| o[8[r[6l514[3[2] 110]

(eYeYoYoYoYoYoYoYoYeYoYo o Yo o)
OCOCO0——0000——0—00

0000———00—-0000—
|OOOOOO OOOOOII

OOOOOOOOOOOOOOO
OO0—==——00000——=0

uuummuuuﬂmmmmww

OOOOOOOOQOOOOOO

15/16 BIT EMC CONSOLIDATED CODING SHEET

EEXN>>>»>SAIX>A>>0

n
g8
Ew
mamm
D@3y
ESg
NN . N z
LR ESNONE O W IREARN IR SR -cx IE vogys
00LAFNNZNOSXN—-—N—LONIT JJXFFoWOoSWEeEeye mmamm
dONDOD —CO—DOUWETNNDONNNNENNNHFOELNVE meumw
. J [N — \ —~— S At mmmBD
R
e ! 556682
&g L 1w 222220
S& © gt rg 1BEEE.
vl a = T T TLnEL
=W X - o= Lo
(i 7] < O e

APPENDIX-24

=
@
N
g
= %)
QO-——-S00DmO®H®® s & Jurrlexrxx=ESS0ao
nwnwanoaoooLoLA S €25 OXSOSESZLSOOLLISO
e e N) w H 4 . I\ -~ e 2
Cwp a9 (&) O
_Dlu Mmmmw o < [t
S Saxdc0 % Q %) L
T * SESw o = o b
g W g D I o088 8 S 25 E
= B = E E $555Y s g9 T
o £ B n) $28¢2 re = %
8885
TRt e
- NN m < %
: o
O il o w ocol3lk ¢ ;3 zZ F o5
L g g & = : . . colflz:€F 2z ¢ g
i - w 0w w5z alf- o 3 & I
o ¥ ow e bl & oS24 ;2% OOz g 331 =2 , ¢
s g 2.8 |8 2y 0Fl P73l oolglt£28) & £ g
9 £ o IfL B 55 202 s O0LI220o 8 b 4
of § 2 EE g5, (o' T HHzOODD 5 § .
mm W o“ Sw ¥ 00-0—-0—-0-X Xo—-Xo—0-— nww w
N s :fif3_ |loocoo—--—¥ foo-oo--| Fgi o,
O£ 7 132858 |20 R RO-Q=-NN00O0———=| FEE 22
o+ v 7 OOOOOOOOOIIOOIIOOOOOOO_xwmmm
EN PO - —— = Ooooooomxnxyﬁ
= —X0-0-0-0OX— X000~ =N N0 -0k e—= g © = °
No-o—-00—--00——-——————"——————— ——— — — _
Moo —-—0000—————————————— ————— —— — — —
o000 0 - — ==~~~ T TSI
VX NO00O00000000———————————

APPENDIX

HP CHARACTER SET

by 0 0 o o 1 [1 [
bg o 0 1 [[+) 0 ')
bs [}]] Q 1 [+) [}
by
by
b2

] l Iy
of{ofololnuLL]oco | » 0 @ P
ololo||somloc, | ' |l a o | ""l'
ojofrfoleoafocz| » [2 | 8 | r | | 1 o]
OjO0f | 1|EOM DCy | oo 3 C S5 N
‘o[viofofeor 1801 8 [4 | o [7 I 1 4]
ofvio|[qwhu]err] % | s 1 € | v | ~n |8
e[fo] rufswcl a [6 [7 | v [A7)0
Ol o]]|BELL)LEM [tapony] 7 G w 5 N
t{o|o{o|FEo| S¢ | (8 | H x | 17]E"
N N2~ T I O O 2 N
veji]e] LFT s, - : J Z BN
tJols [t viaa, Ss | + ; K [4 :D- "4
[t folo] FF 1 Se oot < | L \ ACK
ofeiJerR Ss]l - [={mM 3| TO®
[T el so s, > | N | ¢ [| [esc
ol st s, 7 |72 o [+« |} Joee

Standord 7-bit set code positional order and nolation are shown below with b, the high-order
and b, the low-order, bit position.

NULL

b,
1

EXAMPLE: The code for "R" is:
LEGEND

NuII/ldIe DC:‘DC;
Start of messoge DCa{Stop)
End of oddress ERR
End of message SYNC
End of transmission LEM
"Who are you?" So-5r
"Are you...?" b
Audible signal
Format effector <
Horizontal tabulation >
Skip (punched card) 4
Line feed <
Verticol tobulation A
Form feed ACK
Carriage return 0]}
Shift out €sC
Shift in DEL

Device control reserved for
data link escape

APPENDIX~25

by b, b, by b, b,
cC 1.0 C 1 0

Device Control

Device control (stop)

Error

Synchronous idle

Logical end of media

Separator {informotion)

Word separator (spoce, normally
non-printing)

Less thon

Greater than

Up orrow (Exponentiation)

Left orrow {Implies/Replaced by)

Reverse slant

Acknowledge

Unassigned control

Escape

Delete/Idle

APPENDIX

CHARACTER CODES

ASCH Fitst Character Secnnd Character ASC1HI First Character Sacond Characer w
Character Octal Equivalent Octal Equivalant Character Octal Equivalent Cctat Equivalent
A 0403100 00101 : 035000 000072
8 041000 000102 : 035400 000073
c 041400 000103 < 036600 000G74
b} 012000 600104 = 0364GC 0noN75
E 042400 00N105 > 037000 0C0076
F 043060 000106 ? 027400 300077
G 043400 000107 @ 040000 000100
H 044000 000110 { 055400 000133
| 044400 000111 N 056G30 000134
J 045000 000112) 056400 000135
K 045400 000113 { 057000 000136
L 04600 000114 - 057400 00N137
M 046400 000115 ACK 036000 000174
N 047000 020176 0] 036400 000175
0 047400 000117 €SC 037000 000176
P 050000 000120 DEL 037460 000177
Q 050400 000121 NULL 000000 000000
R 051000 000122 SUM 000400 000u01
s 051400 000123 EOA 001000 000002
T 052000 000124 EON 001400 000003
u 052400 000125 EoT 002000 009004
\Y 053000 000126 WRU 002400 000095
w 053400 000127 RU 003000 000006
X 054000 00130 BELL 003400 060007
Y 054400 000131 FEg 004000 0c0010 w
z 035000 20012 HT/SK 004400 000011
LF 0050350 002342
0 030000 000060 Vrag 005400 000013
1 030400 000061 FF 006920 0u0014
2 031000 0UC062 CR 006400 000015
3 031400 000063 SO 007000 000016
4 032000 000064 St 007400 000017
5 032400 000065 DCy 010000 000020
6 033000 000066 oc, 010400 000021
7 033400 C00067 DCy 011900 000022
8 024000 000070 DCy 011400 000023
9 034400 000071 DC, 012000 000024
ERR 012400 000025
space 020000 £O0040 SYNC 013000 000028
! 020400 00C041 LEM 013400 000027
" 021000 00G042 So 014000 000030
021400 000043 S, 014400 000031
$ 022000 c00044 Sy 015000 000032
9% 022400 000045 S 015400 000033
& 023000 000046 S, 016000 000034
’ 023400 0cC0a7 Sg 016400 000035
(024060 000050 6 017000 ©00036
] 024400 000051 Sy 017400 000037
025000 000052
+ 025400 000053
R 026000 Q00054 First Character Second Character
- 026400 000055 AL
: 027000 000056 " Y I ™
/ 027400 000057 L | 1
Pisliafisfiofvifro] efal7T6[z[a 321][0}

APPENDIX-26

APPENDIX

BPC INSTRUCTION EXECUTION TIMES (IN CLOCK-TIMES)

INSTRUCT ION TIME FORMULA
{DA, LDB R(I+ 2) + 1
ADA, ADB
AND, IOR
CPA, CPB R(I + 2) + 4
STA, STB R(I+ 1) + W+ |
isZ, DSZ R(I + 2) + W + |
JMP R(I+ 1)+ 2
JSM RIT+ 1) +W+5
EXE R(L+ 1) + 2
RET 2R + 4
After-Skip Group R+ 8
Shift-Rotate Group R+ 3+ S
CMA, CMB R+ 3
TCA, TCB

Where:

R = read-memory cycle time, expressed In BPC clock-times (must be an

@ﬁN infeger > 4).

W = write-memory cycle time, expressed in BPC clock-times (must be an
infeger > 4).
| = number of levels of indirect addressing (normally = 0).
S = number of positions to be shifted (I < S < 16).
Note:

The read and write memory cycle times for a register located within
+he BPC, 10C, or EMC are 5 clock-times, unless such a reference is not
a genuine register access; e.g., an |/0 operation. In the latter case,
it is simply however long it fakes. {(The 4 clock~time minimum is still
effective however.)

APPENDIX-27

APPENDIX

EMC INSTRUCTION EXECUTION TIMES (IN CLOCK-TIMES)

INSTRUCT ION TIME FORMULA CONDIT!ON
CLR R+ Nw + 10 -
XFR RN + |) + NW + |5 -~
MRX R+ 20 If N=20
4R + 3W + 4B + 20 IfN>0
DRS 4R + 34 + 14 -
MLY R+ 26 -
MRY R+ 20 If N=20
R + 4B +27 £ N >0
NRM R+Z+ |7 If 0 <N < I2
R + 63 If N> 12
FXA 4R + 16 _
MWA R+ 22 —_—
CMX 4R + 3 + |7 -
cMY R+ 17 , -
FMP R+ 28 IfB =20
4R + |3B + 18 If B>0
FDV 4R + 3B + I3 -—
MPY R+ 2T + 59 -
CDC R+ 5 -
Where:
R = read-memory cycle time, expressed in BPC clock-+imes {(must be an
integer > 4).
W = write-memory cycle time, expressed in BPC clock-times (must be an
integer > 4),
N = bits 0-3 of the instruction word. (0 =+ 16)
Z = pumber of leading zeros in the mantissa of ARZ.
B = bits of 0-3 of the B register contents.
T = number of 0-! transitions plus the number of -0 transitions, in
the A register, counting from an imaginary 0 just to the "right"
of the LSB of A, to the MSB of A.
Note:

The read and write memory cycle times for register located within the
system are the same as for the BPC.

APPENDIX-28

”‘"‘3

APPENDIX

[0C EXECUTION TIMES (IN cLOCK-TIMES)

REGISTER
Ry - Ry
Rs - Ris

INSTRUCTION TIMES

EIR, DIR, PCM, DMA,
DDR, SDO, SD!, DBL,
cBL, DBU, CBU

Pu*, PB¥, WB¥*, Ww*

INTERRUPT
Lockout (LI)
Execution
DMA

Lockout (LD)

Read
Write

PCT

Where:

ol
]

3 m_x= X
s

non
noon

H
1

APPENDIX-29

CLOCK-TIMES

7
5

TIME FORMULA

RmM + 6
Ry * Wy * I

M

LIMaX =E+ 2

Ligin = 2
RR + RM(I + 1) + wM + 12
LOyin = 2
Oy = 10

LD + 3 + n(RM + 4)
Lo + 3 + n(WM + 3)

O+ 6n + 3

read-memory cycle time in BPC clock-times. RM >4
read-register cycle fime in BPC clock-times.

write-memory cycle time in BPC clock-times., W, > 4

M

execution time of longest possible instruction.
number of DMA words transferred during one DMA Request.

levels of indirect addressing excliuding the indirect in RB.

APPENDIX

M=MULTIPLICAND

X -0 01 1 1 0 1 O--- (MULTIPLIER)
&~ © 1 o2 N N A
+ + + + + + +
e -

T o T I I
Q4 a9 a0 a 2 a0 a a

n-1
PRODUCT = E biZlM WHERE n=NUMBER OF BITS IN THE MULTIPLIER
i=0

NOTICE THAT ONE ADDITION
IS REQUIRED FOR EVERY
ONE IN THE MULTIPLIER. 0

SUCH MULTIPLICATION ALSO
REQUIRES EXTERNAL M
INSPECTION OF SIGNS
AND SUBSEQUENT '.I <
COMPLIMENTING TO M
ALLOW MULTIPLICATION ONE-BIT
OF NUMBERS WITH SHIFT
DIFFERING SIGNS. M

PRODUCT

The Principle Of "Standard" Binary Multiplication.

APPENDIX-30

1¢£-XTAN3ddV

DECOMPQSE THE MULTIPLIER INTO A SUM

OF NUMBER COUNTING EITHER ALL ZEROS
OR SINGLE SERIES OF ADJACENT ONES
AND THEN DISTRIDUTE THE MULTIPLICATION. ¢

CONCERNING THE SIGNS
OF THE FACTORS AND

I MsMULTIPLICAND I I M
X 001111010 -- E M
lt MULTIPLIER>M)
(SEE NOTES 3 & 4 r M J
+

THEIR PRODUCT}

Alx go0o000D0O00Q

AIX 00000010
S e,

® 066

X00111000

000 ® :

.

=

=

= lg_» M
L

©-

LX)

AJX 000060000

REPLACE EACH NUMDER HAVING ONE OR
MORE ONES IN IT BY ANOTHER NUMBER
WITH A SINGLE ONE AND A SUBTRACTION.

(THE PRINCIPLE USED HERE
IS THAT 1111=10000-1}

THE NUMBER OF

;]X go000100 -l

SHIFTS ALREADY
PERFORMED PRIOR
TO THE TIME OF

M A]X 10

THE SUBTRACTION

|x 01000000 -I

TAKE CARE OF
MULTIPLYING M

M A]X 1000

BY THESE POWERS
OF TWO.

@@

®

HOW THE MULTIPLIER IS USED AS IT IS SCANNED,
RIGHT-TO-LEFT, ONE BIT AT A TIME:

A ZERO-TO-ONE TRANSITION REQUIRES AN IMMEDIATE
SUBTRACTION, FOLLOWED BY A SHIFT.

SUBSEQUENT ONE-TO-ONE TRANSITIONS THEN REQUIRE
ONLY WHAT WOULD NORMALLY BE REQUIRED FOR
ZERO-TO-ZERO TRANSITIONS, 1.e., ONE SHIFT EACH.

HESE ONE=TO-ZERO TRANSITIONS CORRESPOND TO ONES
AND (G), RESPECTIVELY, AND EACH REQUIRES AN
ADDITION.

A ZERO-TO-ZERO TRANSITION REQUIRES ONLY A SHIFT.

SUCCESSIVE ADDITIONS AND SUBTRACTIONS OF INCREASING POWERS-OF-TWO
TIMES M ARE ACHIEVED BY SHIFTING THE ACCUMULATION TO THE RIGHT. ._)

=

P

THIS IS ZERO T
PRIOR TO mvia raccuanwluc PARTIAL | PRODUCT]
1

ADDITIONS OR
SUBTRACTIONS

:

) &——— 16 BITS —

[MULTIPLICAND

SUBTRACTION .

SINCE NO OTHER USE IS MADE OF THE
MULTIPLIER, IT CAN BE RIGNT-SHIFTED
INTO A BIT TRANSITION MECHANISM,
AND THE PORTION ALREADY USED

THROWN AWAY.

Operation On Booth's Aigorithm When The Multiplier

i
= 16 BITS, K

EVENTUALLY

by
_ IMAGINARY ZEROS, CORRECT
—l'— ‘—1/Fon BOTH ADDITION AND

NOTES:

1.

Is Positive, Or When One Of The Factors Is Zero.

FOR PURPOSES OF DETERMINING A TRANSITION
ASSOCIATED WITH THE RIGHT-MOST BIT OF
THE MULTIPLIER, A ZERO IS ASSUMED TO LIE
TO THE RIGHT OF THAT BIT.

NOTICE THAT THERE CANNOT BE A ONE-TO-ZERQ
TRANSITION WITHOUT PRECEEDING ZERO-TO-ONE
TRANSITION. THUS, A SUBTRACTION PRECEEDS
EACH ADDITION.

ASSUMING THE SIGN OF THE MULTIPLIER IS
POSITIVE, THE SIGN OF THE PRODUCT IS THE
SAME AS THE SIGN OF THE MULTIPLICAND.
BUT THIS IS GUARANTEED BY TUE ALGORITHM
BECAUSE THE PRODUCT IS FORMED SOLELY
THROUGH OPERATIONS EXACTLY EQUIVALENT TO
ADDITIONS, AND BY ARITHMETIC SHIFTS.
NEITHER OF THOSE CAN CREATE A RESULT
HAVING A SIGN OPPOSITE THAT OF THE
MULTIPLICAND,

MULTIPLICATION BY A NEGATIVE MULTIPLIER
IS CONSIDERED IN ANOTHER DRAWING.

MULTIPLICATION WITH A MULTIPLICAND OF
ZERQO WORKS BECAUSE, NO MATTER HOW IT IS
DONE, ZERO, ADDED T0 OR SUDTRACTED FROM
ITSELF, IS STILL ZERO.

MULTIPLICATION BY A MULTIPLIER OF ZERO
WORKS BECAUSE THEN THERE ARE NEVER ANY
TRANSITIONS TO CAUSE ANY ADDITIONS OR
SUBTRACTIONS. SINCE THE PARTIAL PRODUCT
STARTS OUT ZERO, IT STAYS ZERO.

X1aN3ddV

APPENDIX

IN THE EVENT THAT THE MULTIPLIER IS NEGATIVE, THE SIGN OF THE PRODUCT
IS OPPOSITE THE SIGH OF MULTIPLICAND. WE SHALL DIVIDE THE POSSIBLE
INSTANCES OF MULTIPLYING BY A NEGATIVE MULTIPLIER INTC THREE CATEGORIES
AND SHOW THAT PROPER RESULTS ARE OBTAINED IN EACH CASE.

CASE 1 PRODUCT==1+M

LET M=MULTIPLICAND
LET MULTIPLIER=-1=1111111111111111
le—16 BITS —3|

THIS CASE WORKS BECAUSE THERE IS AN IMMEDIATE ZERQ-TO-ONE THANSITION,
CAUSING A SUBTRACTION FROM ZERO (WHNICH GIVES THE PARTIAL PRODUCT A
S5IGN OPPOSITE THAT OF THE MULTIPLICAND) .* BUT SINCE THE REST OF THE
MULTIPLIER 15 ALL ONES, OHLY ARITHMETIC SHIFTS FOLLOW THIS SUBTRACTION.

THE COMPLEMENTED MULTIPLICAND IS5 SHIFTED TO FAR RIGHT OF THE 32-BIT
ANSWER, THUS ITS MAGNITUDE (ADSOLUTE VALUE) REMAINS UNCHANGED, AND
SINCE THE SHIFTS ARE ARITHMETIC SHIFTS, THE SIGN IS PRESERVED.

CASE II PRODUCT=-2"-n
LET M=MULTIPLICAND P ZEROS

P g——
LET MULTIPLIER=-2"=111100 + « - 0
le—16 BITS —

IN THIS CASE THERE ARE P LEADING ZERO-TO-ZERO TRANSITIONS, EACH OF
WHICH SHIFTS A PARTIAL PRODUCT WHICH IS ZERO, AS NOTHING HAS BEEN
ACCUMULATED YET. SO THOSE SHIFTS HAVE ABSOLUTELY NO EFFECT.

THE SINGLE ZERO-TO-OHE TRANSITION CAUSES A SUBTRACTION FROM 2ZERO,

WHICH ESTABLISHES THE SIGN OF THE PRODUCT AS OPPOSITE THAT OF THE
HMULTIPLICAND.* THE REMAINING ONES IN THE MULTIPLIER CAUSE 16-P ARITHMETIC
SHIFTS, WHICH PRESERVE THE SIGN. BUT THESE SHIFTS FALL P SHIFTS

SHORT OF FULLY SHIFTING THE COMPLEMENTED MULTIPLICAND 7O THE RIGHT

IN THE 32-BIT ANSWER SPACE. TMIS IS AN EFFECTIVE LEFT-SHIFT OF

P PLACES IN THAT 32-BIT SPACE. HENCE THE PRODUCT 1S THE COMPLEMENT

OF THE MULTIPLICAND, MULTIPLIED BY 2P.

CASE III1 PRODUCT==-Y+M
LET M=MULTIPLICAND

LET -Y REPRESENT A NEGATIVE NUMBER DIFFERENT THAN -1 OR THE NEGATIVE
OF A POWER OF 2:

-¥i-1
-yg-2K

THEN -¥Y CAN BE DECOMPOSED IHTO THE SUM OF SOME X>0 AND -Zp FOR SOME P:
-¥=111010110--- = 111000000"'=-2P

+ 010110---= X
111010110+ ==Y

THEN, -Y+Ms(-20+%} Ma-2" Mexent

AS THE MULTIPLIER IS SCANNED, X*M IS FORMED IN_THE FASHION FOR
POSITIVE MULTIPLIERS. THEN THE PRODUCT FOR -ZPfH 1§ ACCUMULATED

TO IT. THE PROCEDURE OF TIE ALGORITHM IS SUCH THAT THE FORMING OF
X*M IS INDEPENDENT OF, AND DOES NOT INTERFERE WITH, THE SUBSEQUENT
FORMATION OF -2F+M, IT IS, SO TC SPEAK, AS IF THE FORMATION OF
-2P+M PICKS UP WHERE FORMING X*M LEAVES OFF. THE ONLY DIFFERENCE

IS THAT IN THE FORMATION OF -2P-M THE MULTIPLICAND IS NOT SUBTRACTED
FROM 2ERO, BUT FROM X°M. THE SIGH OF THE RESULT OF THAT SUBTRACTION
WILL BE OPPOSITE THE SIGH OF %X-M, SINCE 2P>X. SINCE X-M HAS THE
SIGN OF THE MULTIPLICAND, THIS MEANS THE FINAL PRODUCT HAS THE SIGN
OPPOSITE THAT OF THE MULTIPLICAND, WHICH IS CORRECT.

*HOT TRUE IH 15-B1T COMPLEMENT ARITHMETIC IF THE
MULTIPLICAND IS 1 000 000 000 000 000 (-3276B).
THE ARGORITHM FAILS WITH THAT MULTIPLICAND YOR
THIS REASON. SEE THE BUG DESCRIPTION AT THE END
CF THIS SECTION.

Operation Of Booth's Algorithm When
The Multiplier Is Negative.

APPENDIX-32

£¢~-XIAN3dd¥

MPY DISABLES THE ARITHMETIC SHIFT OF LEAST-SIGNIFICANT BITS OF
(RIGHT-SHIFT OF X1 N F— x2 & x3 DURING MPY ¢ THE ACCUMULATING PRODUCT
*)V x; X2
wy {USER'S PROGRAM VALUE
SSE "‘l OF Y2 SAVED HERE) (ACCUMULATED PARTIAL PRODUCT) [= ‘X3
]—> THIS "BOUNDARY" MOVES RIGHT
| ~ ONE BIT EACH SHIFT. WAS
1O ADDER/ | ORIGINALLY AT PAR LEFT.
— 5 COMPLEMENTER COMPLEMENTER-ADDER
CONTROL (+) X2+4Y¥2—> X2 {
OR {-) X2+YZ—»Xx2 |
B |
ADD/SUB |
LATCH 7 f——————n
N (COPY OF MULTIPLICAND) - —dtmacinary 2eR08)l
QUALIFIER TO THE FLOWCHART . ————— ——

IN CONTROL OF SEQUENCE.

HIGH = ACCUMULATE AS PER
ADD/SUB LATCH THEN SHIFT.

LOW = SHIFT ONLY. THESE *ZEROS® REPLECT THE “SHIFTING OF
THE MULTIPLICAND TO THE LEFT" TO GIVE
IT 2" TIMES ITS VALUE. 1IN FACT, THE
ACCUMULATED PARTIAL PRODUCT IS SHIFTED
RIGIT, AND ONE IMAGINARY ZERO APPENDS
(ASSUMING S/ASQ = 1) €& S ITSELF TO Y2 FOR EACH SUCH SWIFT. IT
/ASQ 1S MOST FORTUNATE THAT, REGARDLESS OF
WIETHER Y2 OR Y2 IS BEING ADDED, THE
ZEROS ARE CORRECT. THAT IS, RIGHT-
MOST ZEROS, IN FACT, DO NOT CHANGE WHEN
A TWO'S COMPLEMENT NUMBER IS COMPLEMENTED.

0€—1 TRANSITION SET5 LATCH = 1 (SUBTRACT)
1€—0 TRANSITION SETS LATCH = 0 (ADD)

HOLDS THE PREVIOUS BIT SHIFTED

3 5 OUT SO THAT A COMPARISON WITH
{REMAINING MULTIRLIER} THE NEXT BIT REVEALS THE TYPE
. PuVilros— OF TRANSITION.
H THIS "BOUNDARY® MOVES ‘:
RIGHT ONE BIT EACH
SHIFT. WAS ORIGINALLY INITIALLY A ZERO
AT FAR LEFT.

Block Diagram Of The Hardware Controlled By The
Flow Chart Which Does The Booth's Multiply.

XIAN3ddV

#£-X1AN3daV

CASE |

A+ 0 000 000 000 000 09! (MULTIPLIER=1)

2. SEQUENCE OF HULTIPLIER TRANSITIONS:
[

0 000 00C 000 000 ODY 1

N v !

B = 1 000 CO0 000 000 000 (MULTIPLICAND=+32768) 1.

[N

o(s"'FOR INITIAL COMPARISON PURPOSES

- p L/ZBRO-?O-O.‘-'E
t = ONE-TO-2ERO
18 ZERO-TO=2ERO TRAKSITIONS

3.

3. LERO-TO-ONE TRANSITION; SUBTRACT B FROM ACCUNMULATION (i.e., 2'S COMPLEMENT

LET:

CASE 11

B « G 000 000 000 0090 00! (MULTIPLICAND-1)

A = 1 000 000 000 000 000 {MULTIPIER«:32768)

SEQUERCE OF MULTIPLIER TRANKSITIONS:

[] N N
1 000 000 000 000 000 i o«= FOR I!
\

SITIAL COMPARISON PURPOSES
'

1

Wlﬁ ZERO=TO=ZERO TRANSITIONS

TLRO=-TO~O%GL

FIRST THERE ARE 15 ZERO=TO-ZERO TRAHSITIONS, EACH ACCOMPARIED BY & SHIFT.
BUT THE ACCUMULATION 18

ZERO TO BEGIN WITH, AND SO IT REMAING 28RO,

%D ADD 1T 70 2ERO-W THE INITIA 'E OF THE ACCUMULATION). THEN - \
B AND ADD IT 70 ERO-WHICH 1S THE INITIAL VALUE OF THE ACCUMULATION). THE MTER 15y B 500 000 006 000 500 | © 000 000 000 300 G0-
SNIFT ACCUMULATION RIGHT ONCE. SHIFTS 0
1 1 L] 14 ey
0 111 111 111 111 111« 1% COMPLEMENT OF 3 3. ZERO-TO-ONE TRANSITION: 2:§ COMPLEMENT B AND ADD TO ACCUMULATION, THEN SHIFT.
™M MEN 1) N
COMPLEMERTY 2 ™ ADD OKE 1111 111 111 111 110€=1°S COMPLEMENT OF b
000 000 000€& 2'S COMPLEMENT OF B: — on o
ADD . o NOTE THAT THERE IS X0 CMANGE- cout """‘5"7{ L ADD OBE
{ 2'S COMPLEMENT OF -32768 IS -32768 1111 111 111 11) 11)1G=2°S COMPLEMENT OF B
1 000 000 000 000 00O M R 1
e . ADD lo 0 000_000_000_000 000 | 0 000 600 000 000 0O~
suirr | ¥ 100 000 000 000 000 3 O === =an ~a= === =a- 1111 111 111 111 320 ¢ 0 000 VOO UL VOO BO-
S}/‘V (
¢ 1 111 111 111 111 111 1 1 000 000 000 OO 00D

4. ONE=TO-ZERC TRANSITION: ADD B TO ACCUMULATION, THER SHIFT.

TH1S NLVLR

HAPPERS S) 104 000 000 000 000 10 —-m - -
ADD +) 000 000 00O 00O _00Q)

1 0 100 000 000 000 00D) D === === ~m-m
&\ﬂ]

SHIET | G 010 000 000 00D 000 ! O 0-- === -—-

5. NOW THERF ARE 14 ZERO~T0-ZERC TRAKRSITIONS, EACH

AFTER 14
SHIFTS !

32=BIT RESULTW\)
4 ¢00 000 040 000 00G : 1 a00 €000 000
-

9.

DIFFEREST RESULT!

ACCOMPANIED BY A SHIFT.

|

(
400 300 :

Bug In MPY

——D SHIFT

THE RESULT ABOVE 1S
MULTIPLICATION WITH

32-81T RESULT

THE SEGATIVE OF THE RESULT IN THE OTHER CAsb.

+ 32768 1S NOT COMMUTATIVE.

1's covpL

© 000 000 000 0G0 000 E 0111 1¥ nesenr 1x
.) 1 ADD ONL
0 000 000 00CG 000 000 i 1 000 000 0G0 000 000€-2°5 COMPLEMENT O

RESULT 1K CrA8L 1)
SAML AS BRESUL
CASL 1

XIAN3ddV

APPENDIX

CHIP DESCRIPTION VERSION
15-bit 16-bit

BPC — EXE of, or instruction fetch from, N
an addressable register in the BPC
fails to give SMC

10C — DDR not reliable v

— 10C releases INT at wrong time v
to allow single level indirect
for interrupt vector

— 10C doesn't allow I0C machine- ¥ v
instructions to be fetched from
its own registers

— Glitch on BYTE

- Pulse Count Mode unuseable due to v -
“timing difficulties”

EMC — Multiplication with -32768 is v v
not commutative
- CMX not useable with DMA y
ALL — POP synchronizer is unreliable? -)

Processor Bug List

Also:

Currently, during a DMA write-into-memory operation, the I0C gives Buffer
Enable (BE) a half-state too soon. This (wrongfully) allows both the peripheral
and the 10C to drive the IDA Bus for a short time. The problem is shown in 10C
figure 24-17, note I, in the How They Do Dat Manual. The statement there that
this causes no problems is false. |t goofs up the AEC (Address Extension Chip)
if the relative speeds of the various chips in the system is just right. Accord-
ingly, at this time (June '78) some sort of fix to the 10C is being contemplated.

APPENDIX-35

	Binder01.pdf
	2017_08_26_20_27_21.pdf
	2017_08_26_20_28_19.pdf
	2017_08_26_20_29_50.pdf

	Binder02.pdf
	2017_08_26_20_35_45.pdf
	2017_08_26_20_36_40.pdf
	2017_08_26_20_38_14.pdf

