HP 9831A Desktop Computer
Flexible Disk
Operating & Programming

This manual describes installing and operating HP
9885M/S Flexible Disk Drives. All operations available
with the 98218A Flexible Disk ROM are covered here.

The operating instructions here assume that you are
familiar with programming the HP 9831A Desktop
Computer, as explained in its operating and program-
ming manual.

Hewlett-Packard Fort Collins Division
P.O. Box 1550, Fort Collins, Colorado 80521, Tel. (303)221-5000
(For World-wide Sales and Service Offices see back of manual.)
Copyright by Hewlett-Packard Company 1977

N\

7,

Manual Summary

Chapter 1: General Information

Introduces the key parts of your 9885 Flexible Disk System.
Disk and file structure are also covered for the programmer.

Chapter 2: Program File Operations

The statements used to handle program and key (special func-
tion) files are described here.

Chapter 3: Data File Operations

The statements used with serial, random and logical data files
are explained.

Chapter 4: Matrix Operations

Statements for handling data matrices are covered here.

Chapter 5: Additional Operations

Multiple disk systems, and other statements and functions are

introduced.

Appendix A: Installation and Service

Installation and checkout procedures, disk care, and service are

explained.

Appendix B: Reference Information

Disk specifications, storage requirements, and a glossary of
disk terms are listed.

Appendix C: Disk Utility Routines

Binary and BASIC language programs available on the Utility
Routines Disk are covered here.

Appendix D: Disk BASIC Syntax

Syntax guidelines, disk statements and functions, and disk
error messages are listed.

iii

OCHONMONCHECON®

@ [

iv

Table of Contents

Chapter 1: General Information

Introduction

The 9885M Disk Drive

The 9885S Disk Drive

The Flexible Disk ROM

The Disk , ,

Write-Protecting the Disk

Suggested Disk Manufacturers
Getting Started — A Checklist
Disk Structure

Systems Area

Systems Table

File Directory

Availability Table .

Backup Track .

Storage Area .
File Structure

Program Files ..

Data Files

Serial File Access -

Random File Access

Logical File Access

Comparing Data Access Methods
Syntax Guidelines .

Chapter 2: Program File Operations

Introduction
SAVE
RESAVE .
CAT

GET

CHAIN
KILL

SAVE KEY
GET KEY .
SAVE MEM

© © 00 00 00 0 I T O U bhWWND NN R e

T
N = = O O

13
14
15

- 15

16
19
21
21
22
22

GET MEM
GET BIN

Chapter 3: Data File Operations

Introduction .

Overview of Data File Operations

OPEN

CAT

AVAIL . .

FIL . . .
KILL.....
FILES
Data Pointers = ..
ASSIGN o o
Data Access Methods
Serial File Access

Serial PRINT#

Serial READ#

Repositioning the Record Pointer .

Random File Access
Random PRINT# .
Random READ#

Logical File Access o

Logical PRINT#
Logical READ# . .
IF END#

Chapter 4: Matrix Operations

Introduction to Matrices
Dimensioning Matrices
Filling Matrices .

MAT PRINT# ..

MAT READ# .

MAT ZERO

MAT CON

REDIM .

.22
. 22

.23

24
25

. 25

25
26

. 26
. 26

27
28
30
30
30

. 338

34
37

.37

39

. 40
. 40
. 42
. 45
.47

49

. 49

49
50

.51

52

. 52

. 53
. 54

56
58
58

vi

Chapter 5: Additional Operations

Introduction

UNIT -

Disk Labels -
PRINT LABEL
READ LABEL . .

DCOPY

DREN

DSAVE

DGET

DBYTE

DEXP

CERROR

UCASE

WCTL , (

Additional Functions -
FRAC
LEX
NUM
UPOS
STD

Appendix A: Installation and Service

Unpacking Your System
Equipment Supplied
Option 002 Rack Mount Kit
Rack Mount Installation
Checking Fuses, Voltage and Power Cords
Fuses
Power Requirements
Option 001 for 50 Hz Operation -
Power Cords -
Connecting the System

Setting Drive and Select Code Switches - - .

Installing the ROM
Installing the Disk - .-
Turn On-
System Tests

Self Test

- 61
- 62
- 63
- 63
- 64

64

- 63

66
66

. 66

67

- 68
- 68
. 68

69

- 69

70
70

71
-7

73

.73

74

- 74
-5
- 75
- 75

76

.78

7
78
79
79

- 80

80

- 80

Maintenance Agreements e 82

Disk Care Guidelines
System Reliability

Sales and Service Offices

Appendix B: Reference Information

Disk Specifications L. e e 87
Disk Capacity Ce e
Disk Speed e ... 87

Storage Requirements o ... 87
Program Files e88
DataFiles B 88

Data Verification o e . 89
Write Verification o oo ... 89
Read Verification e 90

Glossary of Disk Termso i e 91

ASCII Character Codest i ... 94

Appendix C: Disk Utility Routines
Introduction i95
INIT - Imitializing Blank Diskso oo, 96
KILLALL e .
BACKUP e ,
REPACK U R .. 99
Dump and Load Routines . o e 100
DISK DUMP e e 101
DFDUMP .. R (0}]
DISKLOAD e e 101
Utility Routines Commands e e 102
HELP e ie......... 108
SCAT e e 103
DCOMPARE R e 104
EXCHANGE U ... 104
MAINTOSPARE e e 104
SPARE TO MAIN e e 104
LIST AT 105
RECREATE AT P 105
TRLOAD e e .. 106

viii

TRINIT
DFLIST
DFEDIT
CHECK

Appendix D: Disk BASIC Syntax

Syntax Guidelines
Statements and Functions

Disk Drive (hardware) Errors

Flexible Disk ROM (software) Errors

Subject Index

106
106

- 108

110

111
112

122
122

123

Chapter 1

General Information

Introduction

The HP 9885 Disk Drive is a mass storage device that uses a flexible disk as the
storage medium. Flexible disks can be accessed much faster than tape cartridges and
have more than twice the storage capacity. Almost % million words can be stored on
each disk. The drive’s short data access time, combined with disk and file access by
name, make it an extremely powerful yet easy to use storage unit for the HP 9831A
Desktop Computer.

This manual shows how to install each 9885 Disk Drive and explains controlling it
with your desktop computer. The disk control statements and functions are provided
via the HP 98218A Flexible Disk ROM.

The 9831A and 9885 Disk Drive

The 9885M Disk Drive

The 9885M is the master drive, or the controller, in single and multiple drive systems.
The 9885M can hold and operate one flexible disk at a time. At least one 9885M is
required for the system to operate, although up to eight 9885M’s can be connected in
one system. An HP 9878A I/O Expander is required if more than three peripherals are
to be connected to the desktop computer.

2 General Information

HP 9885M and S Flexible Disk Drives

The 9885S Disk Drive

The 98858 is the slave drive used in multiple drive systems. Up to three 9885S Drives
can be connected to each 9885M in the system. Each drive can hold and operate one
flexible disk at a time.

The Flexible Disk ROM

The HP 98218A Flexible Disk ROM plugs into the desktop computer and adds the
statements and functions for controlling 9885 Disk Drives. The ROM is supplied with
a 9885M Option 031 Drive.

The Disk

The flexible disk is the storage medium for the 9885.
Each disk can hold about % million words. Only one side
of the disk is used for storage. Be sure to read and follow
the Disk Care Guidelines described in Appendix A of this
manual.

The Flexible Disk

Each disk must be initialized before it can be used for the first time. One of the disks
supplied with the 9885M has been initialized and is ready for use. To initialize other
disks, refer to the procedure in Appendix C.

General Information 3

Write-Protecting the Disk

The data and programs on a disk can be protected from being written over. The disk is
write-protected by uncovering a hole in the sealed protective jacket at the location
shown below. When the write protect hole is uncovered, nothing can be written on the
disk. When the write protect hole is covered, as shown below, writing is allowed on the
disk. HP disks are supplied with the hole covered, enabling you to write on the disk.

Write Protect Hole Tab

*) 7
(:f;) (Q ©>
{ L L |

A package of opaque WRITE tabs is supplied with each disk drive. Any opaque tape,
such as black electrical tape, can also be used.

Fold Over Back of Diskette

Suggested Disk Manufacturers

A list of approved disk manufacturers is available through your HP sales and service
office. Use only those disks with your 9885 Flexible Disk Drive. Loss of data, damage

to the read/write head, and high maintenance costs are likely to result from use of
non-approved disks.

CAUTION
DO NOT USE DISKS OTHER THAN THOSE AP-
PROVED BY HP, OTHERWISE PERMANENT DAM-
AGE TO YOUR DRIVE MAY RESULT.

General Information

3.2 mm

fe——— 158.8 mm —

If a disk does not have the write protect T
hole (see previous section), you can punch /
a 3.2 mm (% inch) hole in the disk jacket at ml';e Protect
the location shown here - SO
O
N / L— Index

S~
QA'// Access Hole

1

Getting Started

An initialized disk is supplied with your system. With this disk installed, you can

begin using your system immediately. Follow the steps below to get your system set
up and ready to use (referring to the detailed instructions in Appendix A, when neces-

sary).

Unpack your 9831A and 9885M Drive(s) and check them for physical damage;
complete unpacking instructions are on page 73.

Check for the appropriate fuse, line voltage and power cords; more electrical

information is on page 75.

WARNING
ALWAYS DISCONNECT THE DRIVE FROM AC
POWER BEFORE CHANGING FUSES OR SETTING
VOLTAGE SELECTOR SWITCHES.

Connect the desktop computer to the drive(s) using the interface cable(s)

supplied. Then connect the system to an ac power source; for further informa-
tion, see page 77.

Set the drive number on the back panel of each drive; the drive number (0 thru 3)
selected is the one opposite the dot on the switch. Then set the select code switch (8
thru 15) on each interface card used; see page 78 for additional information.

Install the Flexible Disk ROM in the desktop computer; instructions are on

page79.

General Information

Install the HP disk with the “Initialized” label if you want to use your system

immediately. (The other disk provided is not initialized.) Instructions for in-
stalling a disk are on page 79 .

Switch the desktop computer and disk drive(s) on.

To be sure your system is installed and functioning properly, perform the 9885
tests in the System Test Booklet supplied with the 9831A. Before continuing to
the next chapters on disk operations, be sure to read the followng pages on

Disk Structure, File Structure and Syntax Guidelines.

To initialize a blank disk, follow the procedure beginning on page 96 .

Disk Structure

The disk used in the 9885 is a circle of plastic 20 cm (7% inches) in diameter, enclosed
in a sealed black plastic jacket. Bonded onto the surface of the disk is a ferromagnetic
iron oxide with characteristics similar to magnetic tape. Data is stored in the form of
binary digits represented by magnetized spots on the disk. Information is stored and
retrieved by a read/write head that comes in contact with the lower surface of the disk.

Data is stored in concentric tracks on the disk. Each disk has 67 tracks, numbered O
thru 66. The disk is also subdivided into 30 pie-shaped sections called records (1
record = 128 words).

T

e,
Co, ot

Disk Structure

6 General Information

Records are not numbered sequentially; they are numbered alternately, instead. This
shortens the time it takes to access a record since a complete revolution of the disk
between execution of read (or write) statements is avoided.

A diagram of disk tracks and records with their alternating numbering system is
shown next. The shaded area shows the location of a specific record — Track 1, Re-
cord 26.

Flexible Disk Records

In addition to an alternating numbering system, the location of the beginning record
(record 0) of each track is skewed to avoid a revolution when the drive accesses a new
track. For example, after Record 29, Track O is accessed, then Record 0, Track 1 is

accessed without an extra revolution.

Systems Area

Some of the area on the disk is reserved for use by the system (tracks 0 and 1). The rest
of the disk area (tracks 2 thru 66) is available for your use. Each track in the systems
area has a duplicate copy of these items —

e Systems Table.

e Directory to file locations and their sizes (once you’'ve defined them).

e Availability Table that indicates remaining usable disk space.

General Information 7

Track

Track 1

Systems Area

User
Area

Systems Area

Tracks
217U 66

"

Systems Area of Disk

Systems Table

Record O of the systems table indicates the computer (e.g., an HP 983 1A or 9825A)
used to initialize the disk, an optional disk label (name), the number of defective
tracks, and the location of the beginning of the user area.

When a disk is initialized, the number of defective tracks is recorded in the systems
table. If more than six tracks are defective, the disk is rejected (conté,ct HP for a
replacement). The first word of the system table indicates the number of defective
tracks. The physical location of the defective tracks is not accessible. This results in a
contiguous set of logical tracks with no intervening defective tracks. For example, if
there are two defective tracks on a disk, the usable tracks will be numbered O thru 64.

File Directory

The directory in records 1 thru 22 contains entries for 352 possible files, one entry for
each file written on the disk. Each entry (8 words) contains information such as file

name, location, size and type of each file. If the Directory in track O cannot be read, the
spare directory from track 1 is automatically read.

8 General Information

Availability Table

The availability table in records 23 thru 28 monitors the amount and location of
remaining disk space. The availability table is automatically updated after any file is

added to, or removed from, the disk.

Any space on the disk that becomes available (after execution of a KILL statement) is
automatically combined with other available disk space if the areas are contiguous.
This creates larger available spaces on the disk instead of numerous shorter spaces.

Record 29 of the Systems Area is unused.

Backup Track

Track 1 contains the same system information as track 0. The information on track 1
is automatically used if track O should become defective.

Storage Area

Tracks 2 thru 66 are used for recording your files and programs. The tables in the
systems area are updated whenever new information is added to, or deleted from, the
disk and whenever the disk is reorganized (repacked). With 30 records per track and
128 words per record, there are 249,600 words of available storage space per disk.

File Structure

The flexible disk system is organized around user defined memory areas called files.
Each disk can have up to 352 files, depending on the size of each file. Files can be used
to hold data (data files), programs (program files), entire machine memory (memory
files), special function keys (key files) and binary programs (binary files).

You create these files, name them and — for data files — specify their size. The
programming statements and functions described in the next chapters enable you to
store information on, and retrieve information from, your disk files.

Each file contains one or more records. A record contains 128 words of memory. A
word is the smallest addressable unit of data on the disk which can be accessed di-
rectly. A file cannot be greater than 1950 records (the maximum available storage
space on the disk).

General Information 9

The size of a program, memory or key file is automatically determined: it is the
number of words (and the number of records) required to store the program. When
you create a data file, however, you must specify its size in records. The differences
between program files and data files follows.

Program Files

Programs are stored on a disk using as many complete records as necessary, each
record containing 128 words. So if a program is 129 words long, two records are
required to store it on the disk.

Data Files

There are three ways to store and access data: serially, randomly, and logically. It's
up to you to determine which method of data access best suits your needs. Since your
decision will be based on the amount of available disk storage and the time required
for your operations, an understanding of data file structure is necessary for the most

efficient use of your system.

For example, suppose you are working with thousands of customer account numbers
and their balances due; your job is to output a daily list of all customers and their
balances. In this situation, it’s best to pack all data items (customer numbers and
balances due) together tightly in a data file to save space on the disk and to save time

when accessing the data. This is serial file access.

To update individual customer balances, you’ll need another file containing customer
numbers, names, addresses, items purchased and balances due. The data in this file is
arranged so that each individual item (customer name or number) can be accessed.
This method of storing data usually takes more space on the disk. The advantage to
this method is that any item can be easily updated since individual items can be

accessed much faster. This is random file access.

When you wish to update many individual portions of a file as fast as possible, logical
file access can be used. Using this method allows better storage efficiency than ran-
dom file access.

10 General Information

Serial File Access

Data treated as a unit of information (instead of as individual items) can be handled
using serial PRINT# and serial READ# statements. When serial PRINT# statements
are used to store data on the disk, data items are stored compactly without identifiable
marks between items. These data items make up a file and can contain as many re-
cords as necessary. Data lists can contain numerics and strings.

All or part of the information stored originally can be retrieved in one serial READ#
statement. The list of data elements read does not have to be identical to the list
originally printed in the file, but these data lists must be identical in size, type and
order. (The names you assign to these elements can still vary.)

The beginning of a serial file is the only point where direct access is possible. Storage
space is utilized with maximum efficiency when a serial PRINT# is done, since data is
packed solidly and no unused space is left between items.

Random File Access

When data items are to be handled individually (instead of as a unit), random PRINT#
and random READ# operations can be used (the same PRINT# and READ# state-
ments are used with an additional parameter to specify record number). Each data
item is stored in one (or more, if required) record so that every data item is directly
accessible. Storing data randomly may not utilize storage space effectively, since only
a part of a record (or records) required for storage may be used.

Each of the data items stored originally can be retrieved by using a random READ#.
The list of data items does not have to be identical to the list originally printed in the
record, but the data items must be identical in size, type and order. (The names you
assign to these elements can still vary.)

When working with data using random PRINT# and READ# statements, you specify
which record within a file you want to access. The advantage of this method is that
every record is directly accessible, in any order.

General Information 11

Logical File Access

When you wish to handle data as individual units, and also wish to specify the exact
point within a record where the data is to be printed or read from, use logical file
access. This access method is specified by adding another parameter, called a word
pointer, to the READ# and PRINT# statements.

Logical file access offers the best accessibility to data, since you specify the exact word
at which the read or print begins. Use of disk storage space is good, too, since end of
record (EOR) marks are not added after the data to fill the record. So any remaining
space in the record can be used for more data storage.

Comparing Data Access Methods

As mentioned before, you decide on which method of data accessing is best for your
particular needs. This decision is usually not made easily, because of the advantages
and disadvantages of each method. For example, more efficient storage space utiliza-
tion must be sacrificed for a shorter access time, and vice versa. Once your decision
has been made, it is difficult to change later, so make your decision carefully.

The advantages and disadvantages of accessing data with each method are sum-
marized below.

Comparison of Data Access Methods

Access Time Storage Efficiency
Serial Varies — longer for Best — data is packed solidly
Egher-numbered records
Random Good — direct access Varies — EOR marks fill
to any record remainder of each record
Logical Best — only partofa Good — EORs not used

record need be accessed

12

General Information

Syntax Guidelines

The disk operations available with the Flexible Disk ROM are described in the next
chapters. The conventions and terms most often used within the syntaxes for state-

ments and functions are listed here.
brackets [] Items enclosed in brackets are optional.
Items in dot matrix must appear as shown.

Dots tell you that the preceding item can be repeated.

drive no. An integer expression from 1 thru 3 indicating which
drive should be used. Also see “The UNIT Statement” in
Chapter 4.

file name The name used to define a specific file. It can contain up
to six characters; quotes ('), commas, colons, blank

cannot be used in the file name. The name can be either
text (characters within quotes) or a string variable

(quotes not used).
1stline number An integer number referencing a program line.

2nd line number The 2nd line number can be used only with the 1st line
number.

fileno. An integer expression from 1 thru 10 representing a
file name, as specified via a FILES or ASSIGN state-

ment.

record no. An integer expression specifying a physical record
within a file.

word pointer An integer expression from 1 thru 129 specifying the
starting point (word) for logical PRINT# and READ#
operations.

An “integer expression” can be an integer number (like i), a variable (like #or i.'%), or

an expression (like i+). Non-integer values are rounded before being used.

All disk statements and functions can be executed either from the keyboard or a
program. A complete list of disk BASIC syntax is in Appendix D and in the BASIC
Reference Booklet supplied with the desktop computer.

13

Chapter 2

Program File Operations

Introduction

Disk files can be used to hold data (data files), programs (program or binary files),
special function keys (key files), or the entire read/write memory (memory files). This
chapter introduces program, memory, binary, and key files and the statements used
to manipulate them. It is assumed here that you are working with one disk drive. For
information on operating more than one drive at a time, see The UNIT Statement in
Chapter 5.

The statements most often used when working with program files are —

Store program lines into a disk file.

Lists information about each file on the disk.

Loads program lines from the disk to the memory.

Same as GET, except that program variables are not

erased.

Erases a file name from the disk.

Store and load information on special function keys.

Store and load the entire read/write memory.

Load binary information from a prerecorded disk.

14 Program File Operations

The SAVE Statement

The SAVE statement initializes a file name and copies all or part of the current prog-
ram into the file. The operation of SAVE parallels the STORE (tape cartridge) state-
ment. The size of the file is automatically set by the size of the program copied onto the
disk.

The file name must be unique. If you try to save a program usmg a name that is
already in use on the same disk, the SAVE is cancelled and & Y Wi is displayed.

The optional line number parameters enable you to save part of your program, rather
than all of it. With one line number specified, SAVE stores all lines after and including

the specified line. With both parameters, the lines between and including the specified
lines are stored onto the disk.

For example, here’s a program that inputs values and computes their average (mean)
value. Then if the operator wishes, the input values can be printed.

10 DIM A[500]},A$[10]

20 A=0

30 FOR I=1 TO 500

40 DISP "ENTER VALUE'

50 INPUT V

60 IF V<0 THEN 100

70 A[N]}=V

80 A=A+V

90 NEXT N

100 PRINT "Average of "N"values equals A/N
110 DISP "PRINT ALL VALUES (yes or no)"-
120 INPUT AS

130 IF A$="yes" THEN 150

140 END

150 SERROR E,210

160 PRINT LIN2

170 FOR I=1 TO 500 STEP 5

180 PRINT A[I],A[I+1],A[I+2], A[I+3] JA[I+4]
190 NEXT I

200 END

210 IF E=40 THEN 240

220 DISP "ERROR"E"IN PRINTOUT ROUTINE”
230 END

240 PRINT LINS

250 END

Program File Operations

Once the program is in the desktop computer, you can save the entire program in a file
named “master”, for example, by executing —

You could also save portions of the program. For example, to save lines 150 thru 250
in a file named “print”, execute —

Or to save lines 10 thru 140 in a file named “avrge” (for average), execute —

Once a file has been set up using SAVE, it cannot be overwritten by using another
SAVE. So, after editing a program which has already been saved, use the RESAVE
statement to save the new program in the same file.

The RESAVE Statement

- file name [: 1st line number [: 2nd line number]]

The RESAVE statement allows you to copy the current program lines into a file which
already exists on the disk. RESAVE automatically adjusts the file’s size to hold the
new program,; all lines previously in the file are erased.

The CAT Statement

" [drive no.[: printer select code]]

The CAT (catalog) statement lists information about each file on the disk. When the
printer select code is not specified, the standard printer is used. When the drive
number is not specified, the drive specified by a UNIT statement (or drive no. O on
select code 8) is used.

15

18 Program File Operations

Here’s an example printout —

C LEHTALOG
CRAYATLABLE

HFME SR
keepsr OTHER R bl
cole o FROG & 18
flist FEOG 19 i
lister FREOG i

CEBteme DATH &

SORTIE FROG
aled FROG
TLIET DATA
binary BINARY

ke [N

Tt fet gt
bl & 2 5

t FROG

dtezt FROG 1

hester FROG -

cisot ETHARY &

bin MEMOEY &

e MEMOREY o

PR EIHARY 2 £

Notice that the file size (length) is given in words for program, key, memory and
binary files. All other types of files are listed in records. Also notice that TRACK and
RECORD designate the location of the particular file on your disk. Since the order in
which the files were created may differ, these numbers vary from disk to disk and
drive to drive. The file type OTHER indicates a file generated by an HP computer other
than the 9831A.

The GET Statement

! file name [: 1st line number[: 2nd line number]]

The GET statement loads a program from the disk to the 9831A. The values of all
variables not defined in a COM statement become undefined. GET can also renumber
the statements of the program and run it without further instructions. This statement
parallels operation of the LOAD (tape cartridge) statement.

When GET is executed, all program lines in the specified file are loaded into memory.
All program lines previously in the memory are erased unless the 1st line number is
specified.

Program File Operations 17

When the 1st line number is specified, the loaded program lines are renumbered with
the beginning line number corresponding to the specified 1st line number. Program
lines previously in memory, with line numbers lower than the 1st line number, are
retained; other lines previously in memory are erased.

After GET is executed from the keyboard —

o If the 2nd line number is not specified, the machine halts.

o If the 2nd line number is specified, program execution begins at that line
number.

After GET is executed from a program —

¢ If the 2nd line number is not specified, program execution is restarted either with
the program line immediately following GET in the original program, or with the
first line of the loaded program (if there were no lines after the GET statement in
the original program, or if the lines were erased by GET).

e If the 2nd line number is specified, program execution is restarted with that line
number.

For example, to load the program previously stored in the file named “master” (see

page 15), execute —

If you wish to load the same program again, but not erase the program in memory,
execute —

As shown in the following listing, the program originally loaded has not been erased;
the second program, beginning on line 300, has been loaded after it. Had the second
program been renumbered from line 30, only lines 10 and 20 of the original program

would have remained; all lines from 30 on would have been either printed over or
erased.

18 Program

10
20
30
40
50
60
70
80

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540

File Operations

DIM A[500], A$[10]
A=0

FOR I=1 TO 500
DISP “"ENTER VALUE"
INPUT V

IF v<0 THEN 100
A[N]=V

A=A+V

NEXT N

PRINT "Average of "N"values equals"A/N

DISP "PRINT ALL VALUES (yes or no)";
INPUT AS :

IF A$="yes" THhN 150

END

SERROR E,210

PRINT LINZ

FOR I=1 TO 500 STEP 5

PRINT A[I], A[I+l] A[I+2],A[1I+3], A{I+4]
NEXT I

END

IF E=40 THEN 240 ‘
DISP “ERROR"E IN PRINTOUT ROUTINE"
END

PRINT LINS

END ‘

DIM A([500],A$[10]

A=0

FOR I=1 TO 500

DISP "ENTER VALUE"'

INPUT V ,

IF V<0 THEN 390

A[N]=V

A=A+V

NEXT N

PRINT "Average of "N"values equals"A/N

DISP "PRINT ALL VALUES (yes or no)";
INPUT AS

IF A$="yes" THEN 440

END

SERROR E,500

PRINT LIN2

FOR I=1 TO 500 STEP 5

PRINT A[I],A[I+1], A[I+2] A[I+3],A[I+4]
NEXT I

END

IF E=40 THEN 530

DISP “ERROR"E“IN PRINTOUT ROUTINE“’;
END

PRINT LINS

END

+ first program

| second program

Program File Operations 19

The GET command can also be used to begin program execution automatically. For
example, to load only the printout routine previously saved in file “print” (see page

15), execute —

The above statement says to begin running the program at line 1. Since there is no line
1, the program begins at the first available line, line 10.

The CHAIN Statement

i file name [= 1st line number[: 2nd line number]]

The CHAIN statement is identical to GET, except that current values of variables are
not erased. This statement operates like the LINK (tape cartridge) statement.

The CHAIN statement is most often used in a program to link a program previously
stored on the disk to one currently in the memory. For example, key in and save these
three programs. First, to save this program -

10 PRINT "BEGIN executed."LIN2
20 CHAIN "MIDDLE",10,10
30 END

execute —

Then, to save this program -

10 X=0
20 GOTO 40
30 X=2
. 40 1IF X=1 THEN 80
50 IF X=2 THEN 100 : .
60 PRINT "MIDDLE chained to BEGIN and ran from llne 10 "LIN2
70 CHAIN "EnD",10,10
80 PRINT "MIDDLE chained to END and ran ftom 11ne 40.“LIN2
.90 CHAIN "END",110,30

100 PRINT "END chained to MIDDLE and ran ftom 11ne 36."LIN2
110 END

20 Program File Operations

execute —

Finally, to save this program —

10 IF X=2 THEN 50 :

20 PRINT "END chalned to mlddle and ran from llne 10. "LIN2
30 X=1 .

40 CHAIN ”MIDDLE",lO 40

50 PRINT "END"LINb ‘

60 END

execute —

In the above program segments, the values of J are retained when chaining from
program to program. In this way, selected portions of the last two program segments
are run. These programs are run by executing —

Here’s the printout —

BEGIN executed.

MIDDLE chained to BEGiN,andfrangf#om line 10.
END chained to MIDDgﬁlandEﬁéﬁ‘frbmyxiné 10.
MIDDLE chained;té END¥apdiﬁ€n frpm~liné 40.
END chained to MIDDEEfan&f;én from line 30.

END

Be careful when renumbering a program by using CHAIN or GET. It is possible that,
when renumbering a program from either the keyboard or another program, a line
number parameter will fall outside the range of from 1 thru 9999, causing i

Program File Operations 21

The KILL Statement

_ file name

The KILL statement erases the named file from the disk and releases the space it
occupied for further storage. For example, to erase the file named “print” recorded in
a previous example, execute —

An automatic update of the availability table is performed following the KILL state-
ment. This means that the space released is automatically combined with any contigu-
ous space on the disk to create larger available storage areas. For example in the
diagram below, files 0, 2, and 4 were previously killed.

fileo | file1 | file2 | file3 file 4

If file 1 is killed, the contiguous areas held by files O, 1, and 2 are combined and
becomes one larger available area instead of three smaller available areas. Notice that
the area of file 4, however, is not combined.

The SAVE KEY Statement

- file name

The SAVE KEY statement stores the current special function key definitions on the
specified file. SAVE KEY operates like the STORE KEY (tape cartridge) statement.

The definitions of all 24 special function keys can be stored in one file at a time. Since
only key definitions are saved with this statement, two files are required to save a
program which uses special function keys: one to save the program and one to save the
special function key definitions.

22 Program File Operations

The GET KEY Statement

< i file name

The GET KEY statement loads special function key definitions from the specified file
of the disk to the special function keys. The keys are then redefined as when they were
before the information was saved using SAVE KEY. The GET KEY statement works
like the LOAD KEY (tape cartridge) statement.

All program variables are erased by GET KEY.

The SAVE MEM Statement

i file name

The SAVE MEM (save memory) statement copies the entire read/write memory onto a
single file, and is similar in operation to the STORE MEM (tape cartridge) statement.
All program lines, variables, operating modes, subroutine pointers, etc. are copied
with SAVE MEM, allowing you to suspend 9831A status on disk. Use GET MEM to
reload the 9831A at a later time.

The GET MEM Statement

1 file name

The GET MEM (get memory) statement loads a memory file previously stored with
SAVE MEM. The entire read/write memory is loaded using GET MEM; see the previous
section.

The GET BIN Statement

i file name

The GET BIN (get binary) statement loads binary-coded information from a pre-
recorded disk file. GET BIN works like the LOAD BIN (tape cartridge) statement.
Remember that binary information cannot be viewed, listed, or rerecorded on tape or
disk.

Chapter 3

Data File Operations

Introduction

This chapter covers the statements and functions used when working with data files.

If you have just read the previous chapter, you’ll notice that the CAT (catalog) and
KILL statements are used in the same way here as with program files.

As in the previous chapter, it’s assumed here that you are working with one disk
drive. For information on controlling more than one drive, see The UNIT Statement in
Chapter 5.

The data file statements are —

Sets up and names each data file.

Lists information about each file on the disk.

Erases a specified file.

Indicates which files should be used in subsequent disk
operations.

Assigns data files names and determines the status of
an existing file.

Prints data into a specified file.

Reads data from a specified file.

Automatically exits a READ# or PRINT# operation
when an end of file (EOF) mark is seen.

23

24 Data File Operations

These functions are described here —

Returns the total number of records available (unused)
on the disk.

Returns the size of the largest unused area on the disk.

Determines the type of the next data item to be read.

If the next item to be read is a string variable, the string
length is returned. When the next data item is not a
string, —1 is returned.

Returns the size of a specified file.

Returns the current position of the record pointer in a
specified file.

Returns the current position of the word pointer for a
specified file; use with logical file access.

Overview of Data File Operations

Before you can do any data file operations, you must first find a free area on the disk
and give that area a name. This is done with the OPEN statement, which defines that
area as a data file. The file can be used to contain whatever data you want to put into it,

like readings from an instrument, inventory information, etc.

Since there can be numerous data files on a disk, a program must indicate which file(s)
are to be used at any given time. This is done by including a FILES or ASSIGN state-
ment in the program.

Once the program indicates the data files to be used, it can store information (numbers
and strings) in the files using PRINT# statements and can read back the information
using READ# statements. The parameters used in each PRINT# and READ# deter-
mine the data access method to be used: serial, random, or logical. Each method is
explained in the following pages.

The IF END# statement and the many functions described in this chapter expand your
control of data file operations.

Data File Operations 25

The OPEN Statement

file name : number of records

The OPEN statement creates a data file with a specified number of physical records,
assigns it a name, and places an end of file (EOF) mark in each word of each record in
the file. An OPEN statement indicating file name and size must be executed before
data can be printed in that data file. Each data file must be assigned a unique name.
The number of records parameter can be an integer or an expression. A file can con-
tain from one record (128 words) to 1,950 records. Attempting to open a file larger
than 1,950 records resultsin i = F

*.That error also indicates an attempt to open
a file larger than the largest free space currently available.

The first statement in many of the following example programs illustrating data
storage and retrieval is an OPEN statement. The OPEN statement is included only to
remind you that data files must be opened before data can be printed in them. It’s best
to execute the OPEN statement from the keyboard, however, since :

when you run the same program (open the same file) more than once.

The CAT statement and the AVAIL and FIL functions can be used to help you open
files.

The CAT Statement

The CAT (catalog) statement lists information about each file on the disk currently

addressed. See page 16 for a sample printout and further information.

The AVAIL Function

i.. drive no.

The AVAIL (available records) function returns the total number of records available

(unused) on the specified disk. This is the same number printed at the start of each
CAT listing.

268 Data File Operations

The FIL Function

i..drive no.

The FIL (file) function returns the size (in records) of the largest unused space availa-
ble on the specified disk. This number can then be used to open the largest possible
data file. For example, this statement —

opens a file named “large”; it’s size is determined by the largest unused area on the
disk in drive number O.

The KILL Statement

.. file name

The KILL statement erases the named file from the disk and releases the space it

occupied for further storage. For more information, see page 21.

The FILES Statement

= file name: or # [{drive no.1][: file name: or [:drive no.z]...]

The FILES statement indicates which data files are to be used, and optionally, the
number of the drive accessed for each file name. The files listed are assigned numbers
in the order in which they appear in the FILES list. These file numbers are then used
to reference specific files in PRINT# and READ# statements and various functions
described later.

For example, data A is assigned file number 1 and data B is assigned file number 2 in
the following statement —

Data File Operations 27

Up to ten file names, each with an optional drive number, can be specified in each
statement. As in the example, the position of each file name in the list determines its
file number. Notice that you do not use quotation marks around each file name. Also,
string variables cannot be used in FILES statements.

A single asterisk (%) can be used in place of a file name; this indicates that you wish to
specify the name of a file in a later ASSIGN statement, as explained in the next section.

The optional drive number can be an integer from O thru 3; it specifies the drive to be
used for that file, allowing you to specify more than one drive from a FILES statement.
When a drive no. is not specified, the drive specified by the last UNIT statement is
automatically used. (Drive no. O is used when UNIT is not given.) The UNIT statement

is described in Chapter 5.

list, execute i . 3

4, or by switching the desktop computer off.

Data Pointers

A record pointer for each file in the FILE list is automatically maintained. This pointer
is used to specify at which record data storage or retrieval begins in the file. A word
pointer is also maintained for each current record; it points to the first word of the
next data item to be accessed in the record.

After executing a FILES (or ASSIGN) statement, the record pointer is positioned at the
beginning of the first record in a file. The word pointer is then incremented through
the record as data items are stored (PRINT#) or retrieved (READ#). A new FILES
statement obsoletes the previous one and also resets all pointers for the specified files.
Executing a UNIT statement without a select code does not affect data pointers. When
a select code is used, however, all pointers may be reset; see The UNIT Statement in
Chapter 5. All pointers are reset for a specific drive when the door to that drive is
opened.

The current position of each pointer can be found by using the REC (record) and WRD
(word) functions, as described at the end of the chapter.

28 Data File Operations

The ASSIGN Statement

* file name : file no. [: return variable[: drive no.]]

The ASSIGN statement assigns a file number to any previously opened file name. The

file number can be -
® a number previously reserved in a FILES list with an #.
e an unused file number (to assign a new number).
e a number previously used (to re-assign an old number).

The optional return variable is used to determine a file’s status. This parameter can be

either a simple or an array variable.

Since a FILES statement can contain up to ten file names or asterisks, the file number
in an ASSIGN statement must be a positive integer from 1 thru 10. For example —

10 FILES datal,*,data3,*
20 ASSIGN "data2",2,V

In this example, the first asterisk in the FILES statement is assigned the file name
“datal”. (Assume that the data file, data2, was opened before the ASSIGN statement
was executed.) Additional ASSIGN statements can be placed later in the same program
to reassign a different file name to any file number. Each ASSIGN statement sets the
data pointers to the first item of the first record in the specified file.

V is the return variable in the previous example. Its value is assigned during execu-
tion of the ASSIGN statement and can then be used anytime in the program. The value

of the return variable indicates these conditions —

Return Value Meaning

File is available.

File type is not data.

Drive no. is not from O thru 3.
File has not been opened.

File no. is not from 1 thru 10.

ARWNOHHO

By checking the value of the return variable, you can avoid errors like !
(file not found).

Data File Operations 29

The following program shows how the ASSIGN statement can be used with a string
variable to open new data files.

10 DISP "OPEN NEW DATA FILES"

20 WAIT 2000

30 DIM AS([6]

40 DISP "FILE NAME";

50 INPUT AS

60 ASSIGN AS$,1,V

70 1F v=3 THEN 110

80 DISP "FILE NAME "AS$S" ALREADY EXISTS!"
90 WAIT 1000

100 GOTO 40

110 DISP "NUMBER OF RECORDS";

120 INPUT R

130 OPEN AS$,R

140 DISP AS$"™ OPENED WITH"R"RECORDS.";
150 WAIT 1000

160 GOTO 40

170 END

In this example, line 70 branches to line 110 if the file name you enter does not exist,
and opens the file. Without this IF statement, i * occurs when you attempt to

create a file which has been previously opened. Use of the return variable avoids that
error message.

Remember that a string variable cannot be used directly as a file name in a FILES
statement, but a string variable can be used in an ASSIGN statement, as shown in the
previous program.

As shown in the example, it’s not necessary to use a FILES statement before using
ASSIGN. The ASSIGN statement can be used to set the data pointer to the first item of a
specified file without affecting file pointers for any other files previously specified.

ASSIGN can also be used to reassign file positons (numbers) from the previous FILES

statement. For example, in the sequence on the next page —

30 Data File Operations

10 FILES names,IDs,*,grades
20 ASSIGN "class",3,V

[]
100 ASSIGN "report",4,Vv

[]
500 ASSIGN "finals",5,v,1

Line 20 assigns the file named ‘““‘class” to the third position (number 3) in the FILES
list. Then line 100 reassigns the fourth position to be a file named “report”. Finally,
line 500 adds a fifth position, a file named “finals”. Notice that finals is on drive no. 1.

Data Access Methods

The PRINT# and READ# statements allow you to store and retrieve data in any of
three methods: serial, random or logical. Briefly stated, serial access handles data in
blocks, random access handles data in records, and logical access handles data in
item-by-item quantities. Each method offers unique advantages, as explained in Chap-
ter 1.

You specify which data access method to use by including the appropriate parameters
in each PRINT# and READ# statement. The syntaxes for each statement and method
are shown in the following sections. The IF END# statement and various data file

functions are described at the end of the chapter.

Serial File Access

Serial file access is used to handle data in blocks. As shown in the READ# and
PRINT# syntaxes, you merely specify which file number to access — the system
automatically decides where to place the data within the file.

The Serial PRINT# Statement

The serial PRINT# statement stores data in the specific file, either after the last item
read or printed, or at the beginning of the file. The list of data items can consist of
constants, variables, or text. The length of the data list is limited by the length of the
BASIC statement (80 characters), or by the size of the file.

Data File Operations 31

After a serial PRINT# is executed, end of record (EOR) marks are used to fill the rest
of the last record printed. When the optional parameter is used, however, an end
of file (EOF) mark is placed immediately after the last data item; then the rest of the

record is filled with EORs. The EOF mark can be used later to find out how much data
is in the file.

The record and word pointers mentioned earlier move through the file as you store or
retrieve data items. Data is printed or read consecutively from the position of the
pointers, which are set at the beginning of the file when a FILES or ASSIGN statement
for that file is executed.

Here is an example using the serial PRINT# statement to record five students’ iden-
tification numbers and test grades.

10 OPEN "ID$",1

20 OPEN "grades",l

30 FILES ID#,grades

40 FOR J=1 TO 5

50 DISP “"STUDENT’S ID#";
60 INPUT I

70 PRINT #1;I

80 DISP "NEXT TEST SCORE";
90 INPUT S

100 PRINT #2;8

110 NEXT J

120 END

The program can be used to print these identification numbers in a file named “ID#”,
and the corresponding grades in a file name “grades” —

ID# Grade
1111 88
2222 67
3333 98
4444 81
5555 99

The above program uses two separate files: one for the students’ identification num-

bers and one for their grades. The information can be combined into one file, as in the
next program.

32 Data File Operations

10 OPEN "scores
20 FILES scores
30 FOR J=1 TO 5

"'1

40 DISP "STUDENT’S ID#, GRADE";

50 INPUT I,G
6C PRINT #1;I,G
70 NEXT J

80 PRINT #1;END

90 END

Line 60 prints the I.D. and test scores of the students into the file named “scores”. The
data items (I.D. numbers and grades) are printed alternately. Line 80 places an EOF
mark after the five sets of data are printed. Since an EOF mark prevents reading data,

beyond its position, the

! parameter should be used with care.

Using string variables allows you to enter students’ names, rather than their I.D.

numbers. For instance, a string variable can replace the variable I in the last program,
allowing names to be used —

Name Grade
Suzie Page 99
Blue Gill 90
Carol Rose 88
Jack Allison 74
Sean Thomas 80

Here’s a program which uses a string variable for students’ names; it prints names

and test scores in a file called “class”

10 OPEN "class"
20 DIM N$[15]

30 FILES class
40 FOR I=1 TO 5

r1

50 DISP "STUDENT S NAME";

60 INPUT NS

70 DISP "NEXT TEST SCORE";

80 INPUT S
90 PRINT #1;NS,
100 NEXT I

S

110 PRINT #1;END

120 END

Data File Operations 33

The Serial READ# Statement

file no. [: data list] or [: record no.]

The serial READ# statement reads numbers and strings into variables serially from
the specified file, starting after the last item printed or read. The data list can be
replaced by a record number to reposition the record pointer, as explained later.

Before you can work with data which has been printed in a file, you must first read the
data into the desktop computer. Remember that you are not erasing the data on the
disk by reading it; data is merely copied into the variables specified. (This data can be

updated and reprinted, either into the original file, without using a KILL command,
or into a new file.)

For example, the program on page 31 printed data into files named “ID#” and
“grades”. To read the data from those files and output the data on the standard
printer, use this program -—

10 FILES 1Ib#,grades .
20 PRINT "Student ID# - Grade"
30 READ #1;I : :
40 READ #2;G
50 PR NT I,G

The FILES statement serves two purposes in this program: it references the file
number parameters in the serial READ# statements (lines 30 and 40) and it resets the
pointers to the beginning of both files before the serial READ# statements are exe-
cuted. Here’s the final printout —

Student ID# ~Grade
1111 88
2222 67
3333 ~ 98
4444 81
5555 99

Data printed in the file named “class” (see the program on the previous page) can be

read by using the next program.

34 Data File Operations

10 DIM AS([15]

20 FILES class ;

30 PRINT " Name Grade"
40 FOR I=1 TO 5

50 READ #1;AS$,A

60 PRINT AS$,A

70 NEXT 1

80 END

Notice that the serial READ# statement must specify the types of data (data elements
or string variable) in the order in which they were originally stored in the file. Line 50
reads a string variable and then a data point. This program can run only when the
order of the data on file is known. Here’s the printout —

Name Grade
Suzie Page 99
Blue Gill - 90
Carol Rose -~ 88
Jack Allison 74
Sean Thomas 80

The variables into which you read data items do not necessarily have to be the same
variables from wich you printed the data items on the file. Although the variable name

changes (from N$ and S, when stored, to A$ and A, when retrieved), the order in
which the two data types are accessed is the same.

When a serial READ# statement encounters the EOF mark previously placed by the
last PRINT# statement, the program ends and &}

.4 indicates file overflow. The
program can be written to end without displaying an error by using the IF END#
statement described later in the chapter.

Repositioning the Record Pointer

As mentioned earlier, data pointers are automatically maintained. The pointers are
automatically positioned at the beginning of the first record in a file after execution of

a FILES statement or an ASSIGN statement. The word pointer is then automatically
positioned at the next available storage location in the physical record after execution
of a PRINT# statement. Finally, it is positioned at the next stored data item location of
a physical record after execution of a READ# statement. The pointers are left un-
changed in each file before execution of a serial PRINT# or READ# statement.

Data File Operations 395

It’s often necessary to position the record pointer to the beginning of a specific record
in a file before executing a serial READ# statement. This is done by using only file
number and record number parameters in a random READ# statement —

file no. : record no.

A serial PRINT# or READ# statement can then be executed after the record pointer
has been repositioned, to access the beginning of the specified record, rather than the
beginning of only the first record in the file.

To see how this works, first use the next program to store consecutive numbers be-
ginning from the 8th record of a 15-record file named “data15” -

10 OPEN "datal5",15 | | | S

20 FILES datal5
30 I=1

‘40 READ #1,8

50 PRINT #1,1
60 I=I+1

70 GOTO 50

80 END

The FILES statement sets the record pointer to the beginning of the first record in the

file. The pointer is then repositioned to the beginning of the 8th record of datal5 by
line 40.

is displayed. This indi-
cates that the physical end of file has been reached and no additional data can be
printed in that file.

Now use this program to read the data, beginning at record 14 -

10 FILES datals
30 READ #1;A,B,
40 PRINT A;B;C;
50 GOTO 30

60 END

o
D;E

’
.
’

The FILES statement automatically sets the record pointer to the beginning of the
first record. The pointer is then repositioned to the beginning of record 14 by line 20.
The serial READ# statement begins reading data from that point on.

36 Data File Operations

Since each full-precision number uses 4 words of memory, 32 numbers can be printed
into a 128-word record!. On the file datal5, for example, the following numbers are
stored on these corresponding records —

Record No. Full-precision numbers
1 thruv7 (none)
8 1 thru 32
9 33 thru 64
10 65 thru 96
11 97 thru 128
12 129 thru 160
13 161 thru 192
14 193 thru 224
15 225 thru 256

The previous program read the data on records 14 and 15, and then output the data,
eight numbers per row. Here’s the printout —

193 194 195 196 197 198 199 200)
201 202 203 204 205 206 207 208 _
209 210 211 212 213 214 215 216

217 218 219 220 221 222 223 224 |
225 226 227 228 229 230 231 232
233 234 235 236 237 238 239 240 |
241 242 243 244 245 246 247 248

249 250 251 252 253 254 255 256]

ERROR 93 is displayed at this point, indicating that the physical end of file has been
reached and there is no more data to be read. This error message can be avoided by
using the IF END# statement, described later in the chapter.

1 See Appendix B for details on how to estimate file size.

Data File Operations 37

Random File Access

Data stored in a random manner is stored into specific physical records within a file.

Variations of the previously discussed PRINT# and READ# statements are used to

access data in particular records. As in serial file access, data pointers keep track of
the data item currently being accessed. Unlike serial file access, however, in random

file access, a specific record number within a file must be specified in each random
PRINT# and random READ# statement. The record pointer is positioned at the be-

ginning of the specified record before printing or reading occurs. Data is then printed

or read consecutively from the beginning of the record.

The Random PRINT# Statement

file no. : record no.[: data list [:

{7 # file no. * record no. :

The random PRINT# statement is used when data items are to be stored and accessed
individually in specified records within a file.

The record number represents the location of a record in a specific file. This number
can be an integer expression which does not exceed the number of records in the file.
The data items can be variables, expressions, strings or substrings, or characters, and
are printed from the beginning of the specified record.

The optional ¥ ! parameter places an EOF (end of file) mark after the last data item

printed in the last record. When &

! is not used, an EOR (end of record) mark is
placed after the last item printed. In either case, the rest of the record is filled with
EORs. The IF END# statement and the TYP function can be used to detect EOFs, as
described later in the chapter.

The program below prints consecutive numbers onto each odd-numbered physical
record of a 10-record file named TEN.

10 OPEN "TEN",10
20 R=A=l

30 FILES TEN

40 IF R>10 THEN 90
50 PRINT #1,R;A
60 A=A+l

70 R=R+2
80 GOTO 40

90 END

38 Data File Operations

In line 50, the record number parameter is specified by the variable R. Line 70 incre-
ments this variable by 2 so that only odd-numbered records are accessed.

By printing in specific records of the file TEN, previous data in those records is erased
and replaced by the new data. File TEN now contains —

Record No. Data
1 1 (EOR)
2 (EOR)
3 2 (EOR)
4 (EOR)
5 3 (EOR)
6 (EOR)
7 4 (EOR)
8 (EOR)
9 5 (EOR)
10 (EOR)

The end of each odd-numbered record is automatically filled with EORs.

When neither the data list nor i are used in a PRINT# statement, it erases the

contents of the specified record and fills it with EORs. For example, this program

erases every third record of file TEN, which was opened and accessed in the previous
program -—

10 FILES TEN I
20 FOR F=1 TO 10 STEP 3
30 PRINT #1,F

40 NEXT F

50 END

Data File Operations 39

The information now left in the fileis —

Record No. Data

1 (EORs)
2 (EOR)

3 2 (EOR)
4 (EORs)
5 3 (EOR)
6 (EOR)

7 (EORs)
8 (EOR)
9 5 (EOR)
10 (EORs)

When an EOR is detected by either a random or serial READ# statement, it skips over
the entire record and attempts to access data in the next record. You can use a PRINT#
statement to write over the EOR marks.

When the data list is omitted from a PRINT# statement -

file no. s record no. :

an EOF is placed at the beginning of the specified file; then the rest of the record is
erased and filled with EORs. If a serial or random READ# then attempts to read from
that file, reading the EOF causes :

The Random READ# Statement

file no. : record no.[: data list]

The random READ# statement reads numbers and strings into variables from a
specified record in a file, starting from the beginning of that record. String data and
substrings can be read. A variation of this syntax can be used to reposition the record
pointer, as shown later.

40 Data File Operations

As with serial READ# statements, the variables into which you read data items do not
have to be the same variables from which you printed the data items on the record, but
they must be the same type and in the same order.

The following program reads the data printed in the 5th and 9th records of the file
names TEN —

10 FILES TEN

20 READ #1,5:%X

30 READ #19Y : : .

40 PRINT "Data in record 5

50 PRINT "Data in record 9 -"Y
60 END

This data was originally printed into odd-numbered records of file TEN (see page37).
The data in records 1 and 7 was erased. The program above reads the data from
records 5 and 9 and outputs the data on the standard printer. If the program had
specified to read every record in the file, however,
EOR was read in record number 1. Here’s the printout —

% would appear after the

Data in record §

Data in record 9

5

non

Logical File Access

Logical file access allows you to begin printing or reading data at any given word

within a specified record of a file. This enables you to define subrecords or lagical
records within each physical record.

The Log'lca,l PRINT# Statement

% file no. : record no. : word pointer][: data list|[:

)

The logical PRINT# statement stores data items in a specified record of a file, begin-
ning at the specified word. The file number and record number are the same as with a
random file access. The word pointer can be an integer expression from 1 thru 129,

and specifies where the f1rst word of data is to be printed. 129 indicates the first word
of the next record; so i B Ta R

Data File Operations 41

The optional parameter places an EOF after the last data item printed. When

is not used, the remainder of the record is left unchanged. Remember that IF
END# and TYP can be used to detect EOF’s, as explained later in this chapter. When

the data list and & [parameters are not used, EORs are printed from the specified
word to the end of that record.

Here’s an example program which opens a 1,000-record file named “stock”. Each
record can contain 128 words of data about each part to be stocked; for now the

program enters only four items: part number, description, unit cost, and current
quantity on hand -

10 REM (OPEN STOCK FILE)

20 OPEN "stock”",1000

30 DIM P$[20],D$([20]

40 FILES stock

50 PRINT LIN5,SPA30"PARTS SET UP"
60 PRINT "Part No. Descr1pt10n”TAB40'Un1t Cost Qty. On Hand"LIN2
70 FOR 1I=1 TO 1000

80 DISP "PART NO.";

90 INPUT P$[1,20]

100 IF P$[1,4)}="done" THEN 230
110 DISP "DESCRIPTION";

120 INPUT D$[1,20])

130 DISP "UNIT COST";

140 INPUT C

150 DISP "INITIAL QUANTITY";

160 INPUT Q

170 PRINT #1,I,1;P$

180 PRINT #1,I,13;D$

190 PRINT #1,I,25;C

200 PRINT #1,1,29;Q

210 PRINT P$,D$;TAB35;C,Q

220 NEXT I

230 PRINT "DONE"LINS

240 END

Lines 50 thru 160 print headings for a table of input data, and then input the four
items to be printed in each file; line 100 exits the input loop when the operator enters
“done” for a part number. Lines 170 thru 200 print each item into logical records

within the currently specified physical record (record I). Line 210 outputs the input
data on the standard printer.

=]

42 Data File Operations

Notice that the word pointer parameter within each PRINT# (lines 170 thru 200)
specifies the first word for each logical record. The data in each physical record looks
like this -

(Part No.) (Description) (Cost) Qty.)

— J J \) J
v v v g

12 words 12 words 4 words 4 words

These four items use only 32 words of each physical record; there are still 96 words
available in each record for more data!

It’s important to know the exact length of each string variable printed using logical
PRINT#. For example, lines 90 and 120 in the last program generate 20-character
strings, regardless of the number of characters input. This, in turn, ensures that
20-character (12 word) logical records will be printed in lines 170 and 180. If the
subscripts were not used in lines 90 and 120, the first two logical records printed in
each physical record would vary in size, depending on the current string length. This
would change the location (first word) of each successive logical record!

The Logical READ# Statement

file no. » record no. : word pointer[§ data list]

The logical READ# statement reads numbers and strings into variables from a
specified record, starting from a specified word. Strings and substrings can be read.

As with serial and random READ# statements, the variables into which you read data
items do not necessarily have to be the same variables from which you printed the data
items on the record, but they must be the same type and in the same order as the
originals, When the data list is not used, the logical READ# resets the record pointer
and word pointer to the specified record and word.

Data File Operations 43

The previous example program opened a file to hold information on parts to be stored.
The next program opens a file named “ordrpt” (for “order point”) and then searches
the file “stock” for any item with a quantity-on-hand of less than 10 (lines 70 thru
100). When such an item is found, lines 120 thru 140 read the part number, print the

part number and quantity in record I of file “ordrpt”, and output the same data on the
standard printer -—

10 REM (ORDER POINT REPORT)

20 OPEN "ordrpt", 200

30 DIM P$(20],D$([20]

40 FILES stock,ordrpt

50 PRINT LIN5,SPA20,“"PARTS TO REORDER"
60 PRINT "Part No. Qty. On Hand“LIN2
70 FOR I=1 TO 1000

80 READ #1,I,29;Q

90 IF Q<10 THEN 120

100 NEXT I

110 GOTO 160

120 READ #1,I,1;P$,D$

130 PRINT #2;PS$,Q

140 PRINT P$;D$;TAB35;0Q

150 NEXT I

160 PRINT "DONE"LINS

170 END

Notice that logical READ# (lines 80 and 120) enables you to read only the items
required from a record, thus saving memory space and program execution time. Data
is printed into file “ordrpt” serially, since it need not be accessed separately.

As another example of logical file access, the next program can be used to update the
cost and quantity data for each record of file “stock’ used in the previous programs.
Lines 40 thru 130 print headings for a table and input data to update each record. As
in the first program, this program exits the input loop when the operator inputs
“done” for a part number.

After the operator enters each set of data, a subroutine (lines 210 thru 290) searches
the file for the appropriate record. After the record is found, lines 150 and 160 print

the new list and quantity into that record. Line 170 then outputs the new data on the
standard printer.

44 Data File Operations

10 REM (UPDATE STOCK FILE)

20 DIM P$[20],NS[20]

30 FILES stock

40 PRINT LINS, SPAZO"PARTS RECEIVED' :) :)
50 PRINT ”Part No. - Cost ‘Qty. Received Qty. On Hand"LIN2
60 FOR I=1 TO 1000 : S ' R
70 DISP "PART NO.";

80 INPUT P$[1,20]

90 IF P$[1l,4]="done" THEN 190

100 DISP "QUANTITY RECEIVED";

110 INPUT Q1

120 DISP "UNIT COST";

130 INPUT Cl

140 GOsuB 210

150 PRINT #1,I,25;C1

160 PRINT #1,I,29;Q+Ql1

170 PRINT P$,C1,Q1,Q0+01

180 NEXT I

190 PRINT "DONE"LINS

200 END

210 REM (FILE SEARCH ROUTINE)

220 FOR J=1 TO 1000

230 READ #1,J,1;N$

240 IF P$=N$ THEN 290

250 NEXT J

260 DISP "PART NOT ON FILE!";

270 WAIT 2000

280 GOTO 70

290 RETURN

300 END

Data File Operations 485

The IF END# Statement

+ fileno. T

“{ line no.

The IF END# statement sets up a branching condition in the program. If the physical
end of file is encountered during a PRINT# or READ# statement, or if an EONV
MARK IS ENCOUNTERED DURING A READ# statement, the program branches to
the line number specified. This avoids

7 and makes it possible to use a file
whose exact contents are unknown.

The IF END# statement will also cause a branch out of a random or logical PRINT# or
a READ# when the physical end of record is seen.

The IF END# statement may be executed from the keyboard, but READ# and PRINT#
operations executed from the keyboard will not reference it.

appears after the last itm
is accessed, telling you that the physical end of file has been reached. This error
message can be avoided by including an IF END# statement in the program. Here is a
modified version of the program shown on page 35. The program branches to line 70
when the end of file is reached.

10 FILES datal5
20 READ #1,8

30 IF END#1 THEN 70

40 READ #1;A,B,C,D,E,F,G,H

50 PRINT A;B;C;D;E;F;G;H

60 GOTO 40 , ,
70 PRINT LIN2"END OF DATA REACHED!"LIN2
80 END

Notice that IF END# is executed before entering the serial READ#/PRINT# loop.
Since IF END# established the exit procedure for this loop, it has to be executed before

entering the loop, but should not be included in the loop. Repeated execution of IF
END# should be avoided, since it will only increase program execution time.

46 Data File Operations

NOTE
An IF END# statement sets up a condition to detect an
EOF mark. If you attempt to access a non-existent or
invalid record without a previously executed IF END#,
ERROR 93 is displayed. If a file has not been assigned
into an * position which is referenced, or no FILES
statement is given, executing the IF END# results in

If the line number to which the IF END# statement refers does not exist, ERROR 44 is
displayed. This error refers to a PRINT# or READ# statement, not the IF END#
statement, since the PRINT# or READ# caused the error.

As another example, this program prints four data items into each record of the file
“pwr10”. When variable A is incremented to a value greater than 10 (the number of
records in the file) the condition set up by the IF END# statement is met. In this case,
the program branches to line 80 when the physical end of file is encountered. In this
way, & i is avoided.

10 OPEN "pwrl0",10

20 FILES pwrlo0

30 A=]1

40 IF END#1 THEN 80

50 PRINT #1,A;A,A"2,A"3,A"4
60 A=A+l

70 GOTO 50

80 PRINT LIN2"FILE pwrl0 FILLED!"LIN2
90 END

Data File Operations

The TYP Function

"+ file no.

TF {~-file no. !

The TYP (type) function identifies the type of the next data item to be accessed in a
specified file. It returns one of these codes —

Type Code Meaning
0 Item not printed via the 9831A.
1 Next item is a full-precision number.
2 Next item is a string variable contained in one record.
2.1 First part of a multi-record string.
2.2 Intermediate part of a multi-record string.
2.3 Last part of a multi-record string.
3 Next item is an EOF or the physical end of file.
4 Next item is an EOR or the physical end of record.
5 Next item is a split-precision number.
6 Next item is an integer-precision number.

When the file number is a positive number, TYP advances the word and record poin-

ters to the data item type returned. To not advance the word pointer, use a negative

file number.

When a file number of O is given, the data type of the next DATA item to be read via the

next READ statement in the program is returned.

The program on the next page shows how to use TYP. But first run this program to

print (serially) various types of data on a new file named “type?” -

47

48 Data File Operations

10 OPEN "type?",5

20 FILES type?

30 DIM A,BS$[10),CSs,DI

40 A=1111

50 BS$="STRING"

60 C[1l]=2222

70 D[1]}=3333

80 PRINT #1;A(1],BS$,C[1l],D[1]
90 END

Now run this program to identify each data item and then store it into the appropriate
type of variable —

10 FILES type?
[::) 20 pDIM A,BS[10],CS,DI
30 READ #1,1
40 GOTO TYP(-1) OF 50,80,110,130,150,180
50 READ #1;A
60 PRINT A"is a full-precision number."
70 GOTO 40
80 READ #1;8$
90 PRINT BS$" is a sting variable."
100 GOTO 40
110 PRINT "EOF mark is next."
120 GOTO 210
130 PRINT "EOR mark is next."
140 GOTO 210
150 READ #1:;C[1]
160 PRINT C[l1]" is a split-precision number."
170 GOTO 40
180 READ #1;D[1]
190 PRINT D[1l]" is an integer-precision number."
200 GOTO 40
210 END

Line 30 sets the record pointer to record 1 of file “type?”. The computed GOTO state-
ment (line 40) branches the program to one of six line numbers, depending upon the
value returned by 7' (-1 i. This statement is executed before the READ# to deter-
mine which type of data is to be read next. Here’s the printout —

1111 is a full-precision number.
STRING is a string variable.
2222 is a split-precision number.

3333 is an integer-precision number.

Data File Operations

Notice that if the record pointer had been set to any other record of file “type?” (for

example, i+) the TYPE function would return 3, indicating an EOF mark.
Remember that each record is filled with EOF’s when it is opened; the EOFs are re-

placed by data via PRINT# statements.

As shown in the last program, TYP is the means of checking for EOF and EOR marks.
While an IF END# statement sets up a branching condition for either mark during a
random or logical access operation, IF END# can only check for EOF marks during a
serial access operation. T ¥ {1 ! is the only method available to check for EORs. Be
sure to use a negative file number when checking for EOR marks, to avoid advancing
the word pointer.

The SLEN Function

file no.

The SLEN (string length) function is used to check for strings in the specified file. If
the next item is a string variable, its length, in characters, is returned. —1 is returned
if the next item is not a string.

The SIZE Function

file no.

The SIZE function returns the size, in records, of a specified file. This is the same as
the LENGTH value printed via the CAT (catalog) statement.

The REC Function

" file no.

The REC (record) function returns the current position of the record pointer within
the specified file. The record pointer is described on page 27.

49

850 Data File Operations

The WRD Function

file no.

The WRD (word) function returns the current position of the word pointer for the
specified file. The value can be from 1 thru 129; 1 indicates the first word of the
record, while 129 indicates that the next item to be printed will go into the first word
of the next record.

Chapter 4
Matrix Operations

The matrix operations available with the Flexible Disk ROM enables you to initialize

data matrices, and then store and read matrices using disk storage. These matrix
statements are available —

Print data matrices from array variables into a
specified file.

Read data matrices from the disk into array variables.

Set all specified array elements to O.

Set all array elements to a specified value.

Change the current working size of an array for matrix
operations.

Introduction to Matrices

A table of data, or any collection of data elements arranged in rows and columns, is
known as a matrix. A list of data, or any collection of data elements arranged in a
single row or column, is known as a vector.

Here is an example of a matrix —

Grade Boys Girls
2 9 : - 8
3 9 10
4 7 9
5 7 10
6 9 11

51

52 Matrix Operations

Here is an example of a vector — ,
Test Scores

93
85
79
89
69
g5
100

Dimensioning Matrices

Matrices are stored in array variables. Since arrays can be named from A thru Z, up to
26 matrices can be assigned in one program at a time.

To reserve storage space for arrays, a DIM or COM! statement is used. Arrays not
listed in a DIM statement are assumed to have 10 elements if they are one-
dimensional, or 10 rows and 10 columns if they are two-dimensional.

The number of elements in a one-dimensional array (vector) or the number of rows or
columns in a two-dimensional array (matrix) can be specified as an integer from 1
thru 256. For example —

10 DIM A[100]
20 DIM B[75,30]
30 DIM C[30,30]

Line 10 dimensions array A, a column vector of 100 row elements. Line 20 dimensions
array B to 75 rows by 10 columns. This row-column convention exists throughout the
manual. Line 30 dimensions array C, which has the same number of rows and col-
umns.

Filling Matrices
The INPUT and READ (with DATA) statements are used to enter values into matrices.

For example, this sequence inputs a 5 by 3 matrix, one row at a time —

10 DIM A[S5,3]

20 FOR J=1 TO 5

30 INPUT Al[J, l] A[J 2] A[J 3]
40 NEXT J

50 END

1 The COM statement must be the first statement stored in a program. Refer to the 9831A Operating and Program-
ming Manual for more details on COM.

Matrix Operations

As another example, you can include the values to be stored in a matrix into a DATA
statement, and then use READ, with a for-next loop, to fill the matrix —

10 DIM G[6,2]

20 DATA 10,7,9,8,9,10,7,9,7,10,9,11
30 FOR C=1 TO 6

40 FOR R=1 TO 2

50 READ G[C,R]

60 NEXT R

70 NEXT C

The PRINT statement allows you to print headings and other information with a
matrix. This sequence, for example, prints the 6 by 2 matrix (A) filled above —

80 PRINT "Grade Boys Girls"
90 FOR R=1 TO 6

100 PRINT R,G[R,1],G[R,2]

110 NEXT R

120 END

The printout is on page 51.

The HP 98223 Matrix/Plotter ROM provides MAT READ and MAT PRINT statements
for filling matrices from DATA lists and printing matrices on the standard printer.
The ROM also has many other matrix operations, such as matrix arithmetic, inversion
and transposition. Refer to the Matrix/Plotter ROM Programming Manual for details.

The MAT PRINT# Statement

The MAT PRINT# statement prints an entire matrix into a specified record or file.
MAT PRINT# routines are easier to program, require less memory and execute faster
than individual PRINT# statements.

Matrices can only be printed into data files. The size of the matrix you want to store is
limited by the number of records you specify when opening that file. For example, a
one-record file, which contains 128 words, can hold up to 32 full-precision numbers.
This means that a 4 by 8 matrix is the largest matrix of full-precision numbers that
one record can hold. Of course, by printing a matrix into a multi-record file, the
matrix size is not limited to 128 words. In this case it is limited by the number of

records in the file multiplied by 128 words per record.

53

54 Matrix Operations

This program, for example, prints a 4 by 4 matrix serially into a file named
“matrix” —

10 OPEN "matrix",5
20 DIM A[4,4]

30 FILES matrix

40 FOR I=1 TO 4

50 FOR J=1 TO 4

60 A[I,J]=10*I+J
70 NEXT J

80 NEXT I

90 MAT PRINT # 1;A
100 END

The elements of a matrix are printed consecutively, in row-column order, from the
beginning of the file or record specified. When the record number is omitted, the
matrix is printed into the file from the position of the record pointer. By including this
optional parameter, however, the matrix is printed beginning at the specified record.
Any number of records can be printed.

If the matrix is too large for the file specified, an EOF mark will be encountered and
‘ * will be displayed. Of course, an IF END# statement can be used to detect

the EOF and avoid the error.

The MAT READ# Statement

The MAT READ# statement reads the matrix from a specified record or file. MAT
READ# uses less memory and executes faster than individual READ# statements. For
example, to read the matrix created in the previous example program and print it on
the standard printer, use this program -

10 oIM B[4,4]

20 FILES matrix

30 MAT READ # 1:8

40 FOR R=1 TO 4

50 PRINT B[R,1},B[R,2},8[R,3],B[R,4]
60 NEXT R ,

70 END

Line 30 reads the matrix from file “matrix” into the memory. Lines 40 thru 60 then
prints the entire matrix. Notice that although array A was used to define the original
matrix, any array can be used to read it back again (in this case, B is used). This array
must be dimensioned as in line 10. The ;;f-intout is on the next page.

Matrix Operations 595

11 12 13 14
21 22 23 ‘ 24
31 32 33 - 34
41 42 43 44

A matrix can be read in any format less than or equal to the original size. In the next

program, for example, a 4 by 4 matrix is read as an 8 by 2 matrix by dimensioning the
array variable in that manner.

10 DIM B[8,2]

20 FILES matrix

30 MAT READ # 1:B

40 FOR R=1] TO 8

50 PRINT B[R,1]},BI[R,2]
60 NEXT R

70 END

Here’s the printout —

11 12
13 14
21 22
23 24
31 | 32
33 34
41 42
43 44

Notice that data element (2,1) for example, is 13. This is because the data elements of
the original matrix were printed on the file point by point; they were not stored in
unique randon locations.

If you run a program in which a matrix was dimensioned larger than the original
matrix, i Ep

%% is displayed. This error message can be avoided, however, by
using an IF END# statement to detect the end of record.

The MAT READ# statement will automatically redimension the specified array when
subscripts are used. For example, to read the data from file “matrix” into a 3 by 5
format, use this program -—

10 DIM C{4,4]

20 FILES matrix

30 MAT READ # 1;C[3,5]

40 FOR R=l TO 4

50 PRINT C[R,1]);C[R,2]);CI[R,3];C[R,4];CI[R,5]
60 NEXT R

70 END

Notice that the DIM statement (line 10) dimensions an array that is at least as large as
that specified by the MAT READ#. The printout is on the next page.

56 Matrix Operations

11 12 13 14 21
22 23 24 31 32
33 3¢ 41 42 43

The MAT ZERO Statement

iiarray list

The MAT ZERO statement sets all elements in the specified array(s) to 0. If array
subscripts are used, the array is automatically redimensioned to the specified work-
ing size before being zeroed.

For example, this sequence —

200 DIM 2[5,5]
210 MAT ZERO Z[5, 3]

initializes this array and matrix —

(column)
2345

(0]

(row)

R
©C O © O O |~
© O ©O O O
© O O O

Use of the subscripts in MAT ZERO specifies a matrix working size of 5 by 3; in this
case, columns 4 and 5 are left undefined; matrjx operations would not access these
undefined columns unless specified by subscripts.

Since 0 is the logical value for “false”, a zeroed matrix is useful for logic initalization.
For example, assume that the first record of a file called “grades” has these 20 scores
for students in a programming course —

Student Grade Student Grade
1 93 11 80
2 85 12 66
3 79 13 52
4 89 14 79
5 68 15 98
6 95 16 95
7 100 17 89
8 66 18 68
9 79 19 72

10 85 20 96

Matrix Operations

This program can be used to read the matrix from the file into array G and then count
the number of students receiving each grade -

10
20

30

40
50
60
70
80
90

DIM A[100],G[20]}
FILES grades
MAT READ # 1;G
FOR I=1 TO 20
G=G[I]
A[G]=A[G]+1
NEXT I

PRINT "Grade Number of Students"
FOR I=1 TO 100

100 IF A[Il=0 THEN 120
110 PRINT I,A[I]

120 NEXT I

130 END

After array G is filled by the matrix stored in file “grades”, line 40 zeros a second

array. The first for-next loop then records each element of array G and increments an
element of array A corresponding to the grade’s value; this array is the grade counter.
The second for-next loop scans array A and prints only the non-zero elements as the
number of students receiving each grade. Here’s the printout —

Grade Number of Students
52 1
66
68
72
79
80
85
89
93
95
96
98
100

FHEHENREDNNEFEWRENDN

57

58

Matrix Operations

The MAT CON Statement

"{ expression i array list

The MAT CON (constant) statement initializes each element of each specified array to
the value of the expression. When array subscripts are used, the array is automatic-

ally redimensioned to the new working size before being initialized. For example, this
statement sets all elements of array Ato1 —

The REDIM Statement

“ array list

The REDIM (redimension) statement changes the matrix working size of the specified
array(s) to new specified boundaries. The subscripts specifying the new working size
must be equal to or larger than the original array size. (The working size of a matrix is
the same as the physical array size unless it is redimensioned.) When subscripts are
not used, the working size is redimensioned to the array’s original size.

When a new working size is specified for an array containing data, the data is not
erased, but rearranged. When the new working size is smaller than the original size,
any data not included in the new size is not lost, but it is currently inaccessible via

matrix operations (see the next examples). This data is available again when the array
is redimensioned to its original size.

The array’s matrix working size can also be redimensioned by using subscripts in
MAT READ#, MAT ZERO, and MAT COM statements. For example, this program first
dimensions a 10 by 10 array and then initializes a 5 by 6 matrix to zero —

10 DIM A[10,10]

20 MAT ZERO A[5,6]

30 FOR R=1 TO 5

40 FOR C=1 TO 6

50 A[R,C]=R*C

60 NEXT C

70 NEXT R

80 FOR I=1 TO 5

90 PRINT A[I,1l];A[I,2];A(1,3]; A[I 4];A[1,5]);A[I,6]
100 NEXT I

Matrix Operations

Lines 30 thru 100 fill the matrix with integer data and then print the matrix -

1 2 3 4 5 6

2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30

The next sequence redimensions the matrix and prints it again —

110 REDIM A[10,3]

120 FOR I=1 TO 10

130 PRINT A[{I,1l]};A[I,2]1;A[I,3]
140 NEXT I

Matrix A now has a working size of 10 by 3. Notice that the data is not lost, but
rearranged to fill the new working size —

1 2 3
4 5 6
2 4 6
8 10 12
3 6 9
12 15 18
4 8 - 12
16 20 24
5 10 15
20 25 30

This sequence stores the 10 by 3 matrix into a previously-opened file named
“redim” —

150 FILES redim
160 MAT PRINT # 1;A

The last sequence reads the matrix back into array A and prints the data —

170 MAT READ # 1,1;A[3,10]
180 FOR R=1 TO 3

190 FOR C=1 TO 10

200 PRINT A[R,Cl;

210 NEXT C

220 PRINT

230 NEXT R

240 END

60 Matrix Operations

Notice that the matrix working size is changed to 3 by 10 in line 170, so the matrix
now looks like this —

il gl 02 PR 8

1 2 6 |
10 12 9 12 15 18 4 8
12 16 5 10 15 20 25 30

Chapter 5
Additional Operations

Introduction

The statements described in this chapter are —

Specify the disk drive to be used for subsequent opera-
tions.

Identify each disk by name.

Duplicate existing disk files.

Rename an existing disk file.

Store and load source programs.

Convert an expression to a string character.
Convert an expression to a four-character string.
Cancel the SERROR (error recovery) condition.
Convert a string to uppercase.

Output a control number to an interface card.

These functions are described here —

Return the fractional part of a number.
Compare two strings by their value.
Return the numerical value of a string character.

(continued)

61

82 Additioral Operations

Return the position of one string within another, re-
gardless of whether the letters are in uppercase or low-

ercase.

Return the current select code specified by STDPR
(standard printer).

The UNIT Statement

i drive no. [: select code]

The UNIT statement specifies the disk drive number and optionally, the drive select
code, to be used by subsequent disk operations. This statement changes the drive
number (0) and the select code (8) automatically specified for disk operations when the
desktop computer is switched on. Drive numbers O thru 3 and select codes 8 thru 15
can be used.

As mentioned eariler, up to three 98858 (slave) disk drives can be connected via each
9885M (master) drive. If needed, up to eight! 9885M drives can be connected to the
desktop computer. Each set of drives consists of a master and its slave drives, and all
respond to the select code set on the master drive’s interface card (set to select code 8 at
the factory). So each drive in the set must respond to a different drive number. The
drive number switch is on the back of each drive. Instructions for setting the switch

are in Appendix A.

Once a UNIT statement has been executed, all subsequent disk operation which do not
specify a drive number are addressed to the new drive number and select code. Sub-

sequent UNIT statements can be used to change the drive number and select code
G or L.

again. The UNIT drive number and select code are canceled when
" is executed or when the desktop computer is switched off (drive number 0 and

select code 8 are reset).

Executing a UNIT statement with a select code other than that previously set automat-
ically erases the current FILES list of file names and numbers (see The FILES State-
ment in Chapter 3).

1 An HP 9878A 1/0 Expander enables more than three peripheral devices to be connected to the desktop computer.

Additional Operations

For example, to transfer a program stored in a file called “print A”, which is on the
disk in drive no. 0, to a new file called “print B” on the disk in drive no. 1, use these
statements —

Now assume that you have three data items stored on the fifth record of the file named
“give” on drive 1. To copy this data from that file to the sixth record of a new file
named “take” on drive 2, run this program -

10
20
30
40
50
60

UNIT 2

OPEN " take",10
FILES give:l,take:2
READ #1,5;A,B,C
PRINT $#2,6:;A,B,C
END

Notice that specifying drive numbers in the FILES list allows you to easily access more

than one drive.

Disk Labels

The next two statements allow you to assign a name to each disk and then identify the
disk by name.

The PRINT LABEL Statement

i.: drive no.: 'text = or string variable

This statement assigns an alphanumeric label to the disk in the specified drive. The
label is stored in the Systems Table on the disk (see Disk Structure in Chapter 1). The
label can be up to 224 characters long.

For example, to assign the label “database” to the disk in drive no. 0, execute —

83

684 Additional Operations

The READ LABEL Statement

: drive no. : string variable

This statement reads the label on the disk and stores it in the specified string or
substring. If the disk doesn’t have an assigned label, the null string is returned.

Here’s a program sequence which reads and prints the current disk’s label —

90 :

100 DIM AS[224]

110 READ LABEL,0,A$

120 IF A$="" THEN 150

130 PRINT AS" is in drive no. 0."LIN2

140 GOTO 160

150 P?INT "The disk in drive no. 0 is unlabeled."LIN2
160 o

The DCOPY Statement

The DCOPY statement duplicates the contents of one file into another. The optional
drive numbers allow you to copy a file from one drive to another.

Non-Data Files

When copying non-data files, the second file is automatically initialized to the same
size as the first file; if the second file name already exists, however, the operation is
canceled with &5

. As an example, this statement could be used in place of the
first example sequence on page to transfer a program from a file on drive O to a new
file on drive 1 —

An advantage of using DCOPY here is that the UNIT drive number and select code
have not been changed.

If a checkword error occurs while a non-data file is being copied, the operation is
canceled.

Additional Operations 65

Data Files

When copying data into a new file, the second file name is automatically opened with
the same size as the first file. After the new file is opened, the data is copied and any
remaining space is filled with EOF marks. This statement, for example, opens a new
data file called “take” on drive 2 and copies the data from an already existing file
named “give” on drive 1.

Before copying data into a file name which already exists, the size of the second file is
checked. If it is larger than the first file, the data is copied and the rest of the file is
filled with EOFs. If the second file is smaller than the first, however, data will be
copied only if all extra records in the second file are filled with EOFs or EORs. Other-
wise, the operation is canceled. When data is copied into a smaller file than the origi-
nal, data is copied until the smaller file is filled.

If a checkword error occurs while a data file is being copied, the operation will be
completed before the error message is displayed.

The DREN Statement

i old file name ' iinew file name

The DREN (rename) statement allows you to change the name of any file. The contents
of the file remain the same.

For example, here’s a program which changes file names on the currently set drive
number —

10 DIM AsS[6],BS[6]

20 DISP "PRESENT FILE NAME";

30 INPUT AS ‘

40 ASSIGN A$,1,%

50 IF %=3 THEN 120

60 DISP "NEW FILE NAME";

70 INPUT BS

80 ASSIGN BS,1,2

90 IF z#3 THEN 140

100 DREN A$ TO BS , ‘

110 END | ,
120 PRINT A$" does not exist...is it spelled correctly?"LIN2
130 GOTO 20 SIS RN

140 PRINT B$" is already in use...select another name, "LIN2
150 GOTO 60 .

160 END

As shown in line 100, string variables can be used for file names in DREN.

668 Additional Operations

The DSAVE Statement

i file name [: 1st line no.[: 2nd line no.]]

The DSAVE statement stores a program as a source program, a series of data strings,
in the specified file. The file must have previously been opened. The optional line
numbers allow you to store selected lines of the program currently in the memory.

The DGET statement is used to reload a source program back into the memory. The
SAVE and GET statements (see Chapter 2) cannot be used to handle source programs.

A source program is printed sequentially into a data file as a series of string variables,

one BASIC statement per string. After the last statement (string), an EOF mark is
written to separate old data from the source program.

The DGET Statement

T file name [= £]

The DGET statement loads a source program previously stored with DSAVE back into
the memory. The program is syntax-checked as it is loaded. The machine begins
running the program after it has been loaded. The optional ¥ parameter is used to
prevent the program from being automatically run.

The DBYTE Statement

- expression : string variable

The DBYTE statement converts the value of the expression to its binary equivalent
character. This binary character is then stored as a single character in the specified
string or substring. The value stored is the decimal equivalent of an ASCII character.
For example, if you set Y equal to 32, A$ will contain the quotation mark (decimal 34)
by executing -

A table of ASCII-decimal values is in Appendix B.

Additional Operations 87

As another example, here’s a short program which generates a string containing each
of the characters in the display character set —

10
20
30
40
50
60
70
- 80

90

DIM A$[129]

FOR 1=0 TO 128
DBYTE I,A$[I+1]
NEXT I

DBYTE 32,A$[1,1]
DBYTE 32,A$(11,11]
DBYTE 32,AS$[14,14]

FOR I=1 TO 128 STEP 32

DISP AS[I])

100 WAIT 5000
110 NEXT I
120 END

Since ASCII-decimal values O (null), 13 (carriage return), and 10 (linefeed) are not

used with the display, those values are replaced by decimal 32 (character spaces) in
lines 50 thru 70. The displays are -

The DEXP Statement

“ expression : string variable

The DEXP statement converts the value of the specified expression into a 4-digit
character string with leading zeros. DEXP can be used, for example, to generate line
numbers for BASIC statements. If you set X equal to 10, the first four characters of A$
will contain the string 0010 by executing —

68 Additional Operations

The CERROR Statement

The CERROR (clear error) statement cancels any error recovery routine set by SER-
ROR. The SERROR statement is described in Chapter 3 of the 9831A Operating and
Programming Manual.

The UCASE Statement

string variable

The UCASE (uppercase) statement convert all characters in the specified string or
substring to uppercase.

For example, this program sequence asks the operator for a YES or NO answer, and
then inputs the reply. Line 100 ensures that the reply is in uppercase —

70 o

80 DISP "DO YOU WANT A REPORT (YES OR NO)";

90 INPUT AS

100 UCASE AS$

110 IF A$="NO" THEN 250

120
} print report

240

250

The WCTL Statement

7 L. select code : expression

The WCTL (write control) statement outputs a binary number for controlling various
functions on the specified interface card. The number sets a combination of bits on the
interface card’s control register, R5. The WTCL statement controls the lower four bits
on the control register, bits O thru 3. Each bit has a unique binary weight, from 1 (the
first or least-significant bit) to 8 (the 4th bit). Although the expression can range from
O thru 32787, its effective range is only from O thru 15. An introduction to binary

coding is in the 9831A Peripheral Control Manual.

Additional Operations 69

The control bits available with each HP interface card are described in its Installation
and Service Manual. For example, these control bits are available with the HP 98032A
Interface (the interface used with the 9885M Disk Drive) —

Not Controlled ——— N/A N/A CTL 1 CTLO

I I |

98032A Control Bits with WCTL

Control bits O and 1 are used to transfer information to a peripheral device. These bits
are automatically used with the 9885 Disk Drive and must not be controlled with
WCTL.

Control bits 2 and 3 are not used on the 98032A, but may be used on other interface
cards; again, refer to the interface installation and service manual.

Additional Functions

The following functions enhance string and data-handling capability.

The FRAC Function

- expression

This function returns a fractional part of the expression. Here are some examples —

—

Notice that the fraction, when added to the integer (INT) part of the expression, re-

turns the original value. Using the second example —

X=INTX)+ FRACX) = -2+ .9=-1.1

70 Additional Operations

The LEX Function

¥ istring variable: “text = or string variable !

The LEX (lexicon) function compares the two strings, character-by-character, accord-
ing to the ASCII value of their characters. If the first string is greater than the second,
1 is returned. If the strings are of equal value, O is returned. If the first string is less
than the second, —1 is returned.

Here are some examples (assume that A$ has been dimensioned as a 10-character

string) —
(F)
----- (=1 (A$<"ABD" \)
e (As>AB" \]
£ E (A$="ABC")) J
= (as<tascoy)

Here's a program line that branches the program to line 20 when the value of A$ is
greater than B$ —

The NUM Function

4 istring variable }

The NUM (number) function returns the ASCII-decimal value of the first character of
the specified string or substring. If the string is a null string, O is returned. For
example, assuming that A$ is still dimensioned and assigned as in the previous
example —

J

J

e g
—
——— ———— ——— e

J

[(null string)

Additional Operations 71

The UPOS Function

i istring variable: “text ~ or string variable :

The UPOS (uppercase position) function returns the position of the first character of
the second string within the first string. The strings are temporarily converted to
uppercase before being compared. The strings are returned to their original state
after the position is returned.

UPOS allows you to find the first occurrence of a specified string within another
string, regardless of whether the characters are in lowercase or uppercase. For exam-
ple, assume that A$ is still dimensioned as a 10-character string -

J

U

(
[
[
[

_J

The STD Function

The STD (standard) function returns the standard printer select code currently
specified by the STDPR statement. Select code 2 is automatically set when the desktop

computer is switched on or when | i is executed.

For example, if you wish to use the WRITE statement to control the standard printer,
but the currently set STDPR select code is not known, this method could be used —

‘s lineno. i...

STD is used here in place of the select code parameter.

The WRITE and STDPR statements are explained in Chapter 8 of the 9831A Operating
and Programming Manual.

72

Appendix A

Installation and Service

Unpacking Your System

You should have already carefully removed your desktop computer, 9885M Drive, and
98858 Drive(s) if ordered, from their shipping packages. After unpacking the
drive(s), remove the foam shipping piece from the drive door.

Equipment Supplied

Check to be sure that the following equipment is supplied with your Disk Drive. Notice

that some items are supplied only with each 9885M Drive.

Description

Part Number

Disk Operating and Programming

Manual
Disk Care Note
Flexible Disk ROM
Initialized Disk
Blank Disk
9885S Interface Cable
HP 98032A Interface Card
Power Cord (USA)?
Spare Fuses
(3 amp for 110 volts)
(2 amp for 220 volts)
Fuse Cap, European

Drive Number Labels (O thru 3)
Select Code Labels (8 thru 15)

Disk Labels
WRITE Tabs
Notebook

Equipment Supplied
9885M 98858
1 (0]

1 1

1 0

1 0]

1 2

0] 1

1 0

1 1

1 1

1 1

1 1
1 Set 1 Set
1 Set 1 Set
1 Set 1 Set

1 Sheet 1 Sheet
1 (0]

09885-90050
09885-90020
HP 98218A
09885-90060
1
09885-61607
HP 98032A Opt. 185
8120-1378

2110-0381
2110-0303
2110-0544
7120-5160
7120-5161
7120-5330
7120-5388
9282-0580

1 Blank disks may be ordered in packages of five using part number 09885-80004.
2 Other power cords are shown on page 76.

73

74 Installation & Service

Option 002 Rack Mount Kit

This option allows you to mount your drive or an HP 9878A I/O Expander in a stan-
dard 19-inch rack mount cabinet. This option is installed at the factory, although a
rack mount field installation kit is available.

Rack Mount Installation

The rack mount brackets are not able to support the entire weight of the equipment. A

shelf or other support should be provided by the equipment rack or cabinet to support
the weight.

To install the rack mount kit, first replace the standard side panels with those
supplied in the rack mount kit (refer to the next figure). Then install the rack mount
brackets with the screws provided in the kit.

/Equipment Front Panel

Rack Mount Bracket

Screws

Side Panel Retaining Screw

Side Panel

Rack Mount Kit Installation

Installation & Service

Checking Fuses, Voltage and Power Cords
Fuses

Always be sure that the correct fuse is installed. Failure to follow this precaution may
result in damage to the drive.

A different fuse is required for each of the two voltage ranges of 100-120 Vac and

220-240 Vac. Be sure that the fuse on the rear panel is the proper type and rating, as
shown below.

Fuses
Voltage Fuse HP Part
Setting Rating Number

100, 120 | 3 amp (SB) | 2110-0381
220,240 | 2amp(SB) | 2110-0303

WARNING
TO AVOID THE POSSIBILITY OF SERIOUS INJURY,
DISCONNECT THE AC POWER CORD BEFORE RE-
MOVING OR INSTALLING A FUSE.

To change a fuse —

o Insert a screwdriver or a coin in the slot of the fuse cap on the rear panel (see page
77).

e Press in slightly on the cap and turn it counterclockwise.

o Pull the fuse cap from the rear panel.

o Remove the original fuse from the fuse cap and install the new fuse (either end) in
the cap.

o Install the fuse cap and fuse on the rear panel. Press in slightly on the cap and
turn it clockwise.

Power Requirements

The 9885M or S can operate on line voltage of either 100, 120, 220, or 240 Vac (+5%,
—10%). The line frequency must be within 3.5% of 50 or 60 Hz. The voltage selector
switches on the rear panel must be set to the nominal ac line voltage in your area. The
next illustration shows the correct settings for each nominal line voltage.

76 Installation & Service

100v 100V 100V 100V
- 120v - 120V - 120v - 120V

240V 240V 240V 240V
220V 220V 220V 220V
100 volts 120 volts 220 volts 240 volts

Switch Settings for the Nominal Powerline Voltages

CAUTION
ALWAYS DISCONNECT THE DRIVE FROM ANY AC
POWER SOURCE BEFORE SETTING THE VOLTAGE
SELECTOR SWITCHES.

To alter the setting of the selector switches —

¢ Insert the top of a small screwdriver (or any small tool) into the slot on the switch.

e Slide the switch so that the position of the slot corresponds to the appropriate

voltage as shown.

Option 001 for 50Hz Operation

This option is installed at the factory. It enables the drive to operate properly on a
50Hz line frequency.

Power Cords

Power cords with different plugs are available for the equipment; the part number of
each cord is shown next. Each plug has a ground connector. The cord packaged with
the equipment depends upon where the equipment is to be delivered. If your equip-
ment has the wrong power cord for your area, please contact your local HP sales and

service office.

£
%%\ .

POWER-INPUT
SOCKET

8120-1378 8120-0698 8120-2104

Power Cord Options

Installation & Service 77

Power cords supplied by HP have polarities matched to the power-input socket of the
equipment —

L=Line or Active Conductor (also called “live” or “hot”)

N=Neutral or Identified Conductor

E=Earth or Safety Ground

WARNING
IF IT IS NECESSARY TO REPLACE THE POWER
CORD, THE REPLACEMENT CORD MUST HAVE THE

SAME POLARITY AS THE ORIGINAL. OTHERWISE A
SAFETY HAZARD FROM ELECTRICAL SHOCK TO
PERSONNEL, WHICH COULD RESULT IN INJURY OR
DEATH, MIGHT EXIST. IN ADDITION, THE EQUIP-
MENT COULD BE SEVERELY DAMAGED IF EVEN A
RELATIVELY MINOR INTERNAL FAILURE OCCUR-
RED.

Connecting the System

For a single drive system, connect the 9885M to the desktop computer by inserting the
card end of the 98032A Interface into the back of the computer. Connect the other end
of the interface to the top I/O connector on the back of the 9885M.

Line Voitage
Selector Switches Fuse

IS

1/O Connectors

. /
AC Power Input ~ Test Switch* Tegt Light ~ Drive Select
(9885M Only) (9gg5M Only) ~ Switch

9885 Rear Panel

78 Installation & Service

For multiple drive systems, connect the 9885M as just described. Then, up to three
98858 drives can be connected in series to the 9885M drive by using 09885-61607
cables between drives. (Note: A 9885S drive cannot be connected directly to the

desktop computer.

Next 9885 S connects here

Connecting the 9885 Drives

Repeat this procedure for systems with more than one 9885M drive.

Connect one end of the ac power cord to the power-input connector on the rear panel of
the desktop computer and the other end to an appropriate ac power source.

Connect one end of an ac power cord to the power-input connector on the rear panel of

each drive and the other end to an appropriate ac power source.

Setting Drive and Select Code Switches

Once all drives are connected, set the drive select switch on the rear panel of each drive
to the desired number (O thru 3). One drive should be set to 0. The drive number
selected is the one opposite the dot on the switch. Each of the drives connected to the
desktop computer via the same interface card must have a different drive number. A

maximum of four drives can be connected using one interface card.

0!l 23

Drive Select Switch Select Code Switch

Installation & Service 79

Set each 98032A Option 185 Interface Card in your system to a different select code (8
thru 15). One interface should be set to select code 8. Up to eight! 9885M drives can be
connected to the desktop computer, each having a different select code.

Installing the ROM

Be sure that the desktop computer is switched off before installing the Flexible Disk
ROM. With the label right side up, slide the ROM through the ROM slot door. Press it
in until the front of the ROM card is even with the front of the machine, as shown.

Installing the Disk

Follow the steps below to install a disk in your drive.

CAUTION
USE ONLY FLEXIBLE DISKS APPROVED BY HP. ANY
OTHER DISK MAY CAUSE PERMANENT DAMAGE TO
THE READ/WRITE HEAD IN THE DRIVE. FOR A LIST
OF APPROVED DISKS, CONTACT AN HP SALES AND
SERVICE OFFICE.

e Once all drives are properly connected, open the door of the drive by pushing in
on the small bar on the front of the drive (below the door handle).

e Then remove the disk from its protective envelope®and carefully slide the disk in
(label side up and nearest you) until you hear a click.

e Close the door by pressing down firmly on the handle until the door locks closed.
(The disk can be installed with power on and the spindle rotating without damage
to the disk).

e The disk can be removed by pressing the bar below the handle on the front of the
drive. The door springs open and the disk is released. When the disk is removed,

it should always be replaced in its protective envelope.

1 An HP 9878A 1/0O Expander is required if more than three interface cards (including those for 9885M Drives) are
connected to the desktop computer

2 Never remove the disk from its sealed black jacket. For more information about handling disks, see Disk Care
Guidelines.

80 Installation & Service

Installing a Disk

Turn On

Once the system is properly connected and the Flexible Disk ROM and a disk are
installed, your system is ready to turn on —

e Turn on the desktop computer using the power switch on the right.

e Turn on all 9885M and 9885S power switches located on the front panel of each
drive. All drives in a system must be turned on before the system can be operated.

System Tests

Programs for testing each 9885 Disk Drive are on the 9831 A System Test Cartridge.
Instructions for running the tests are in the System Test Booklet.

Self Test

To check the electrical performance of the drive, follow this self test procedure. The
drive can be checked with or without a disk installed. The disk door must be closed
before the self test can be performed, even if a disk is not installed.

CAUTION
PERFORMING THE SELF TEST WITH A DISK IN-
STALLED WILL ERASE DATA AND INITIALIZATION
ON THE DISK. USE A BLANK (NON-INITIALIZED)
DISK FOR THE SELF TEST. (IF THE DISK CONTAINS
DATA OR INITIALIZATION AND IS TO BE USED LA-
TER, IT MUST BE COMPLETELY REINITIALIZED.)

Installation & Service 81

To perform the self test —

¢ Disconnect the 98032A Option 185 Interface cable from the 9885M.
e Close the doors on all the drives in the system.

o Insert the blade of a screwdriver into the slot of the TEST switch on the rear panel
of the 9885M and slide the switch down; then release it. The light next to the
TEST switch should go on.

WITHOUT the disk installed, the self test —

e Checks the microprocessor and program memory.
e Checks the drive control and drive status circuits.

o Checks the I/O functions.
WITH the disk installed, the self test —

e Checks the microprocessor and program memory.
e Checks the drive control and drive status circuits.
e Checks the I/O functions.

e Checks the read/write electronics.

e Checks the head positioning circuits.

Although the self test does not check all of the drive functions, it gives a high confi-
dence level that the drive is functioning properly. The test takes less than one minute
to complete. When the test is complete, the light by the TEST switch will go out.

If the test fails, the light will remain on. So if the light stays on longer than one
minute, the test has failed. To repeat the test, be sure all drive doors are closed prop-
erly, and the 98032A Interface is disconnected from the drive. Then slide the TEST
switch again. If the test fails again, contact your HP sales and service office for
assistance.

82

Installation & Service

Maintenance Agreements

Service is an important factor when you buy Hewlett-Packard equipment. If you are to
get maximum use from your equipment, it must be in good working order. An HP
Maintenance Agreement is the best way to keep your equipment in optimum running

condition.
Consider these important advantages —

o Fixed Cost — The cost is the same regardless of the number of calls, so it is a

figure that you can budget.

® Priority Service — Your Maintenance Agreement assures that you receive prior-

ity treatment, within an agreed upon response time.

® On-Site Service — There is no need to package your equipment and return it to
HP. Fast and efficient modular replacement at your location saves you both time

and money.
¢ A Complete Package — A single charge covers labor, parts, and transportation.

® Regular Maintenance — Periodic visits are included, per factory recommenda-

tions, to keep your equipment in optimum operating condition.

® Individualized Agreements — Each Maintenance Agreement is tailored to sup-

port your equipment configuration and your requirements.

After considering these advantages, we are sure you will see that a Maintenance

Agreement is an important and cost-effective investment.

For more information, please contact your local HP sales and service office.

Disk Care Guidelines

The flexible disk is basically maintenance free, but should be handled with care. Here
are some guidelines to avoid loss of data or damage to your disks. By following these
suggestions, you’ll greatly improve the reliability of your disks.

¢ Use only HP approved disks since use of others can result in damage to your
drive. (Contact your local HP sales and service office for a list of recommended

manufacturers.)

Installation & Service

® Replace worn disk envelopes and always return disks to their storage envelopes
after removing them from the drive to protect them from damage. Envelopes can
be ordered from HP.

® Since fingerprints on the disk can cause loss of data, NEVER touch the surface of
the disk showing through the protective sealed jacket.

® Avoid writing on the sealed plastic jacket with lead pencil or ball-point pen. Use a
soft felt-tip pen and write on the label only.

® Although the disk is flexible, do not bend or fold it since this, too, can cause
damage to the disk.

® Never subject disks to temperatures below 100C (500F) or above 520C (1250F) or
relative humdity in excess of 20% to 80%.

® Contamination from dust, ashes, smoke, etc. can damage disks.

® Avoid placing disks in strong magnetic fields like transformers or magnets,
since this can cause loss of data.

® Never remove disks from their sealed protective jackets.

® The inside surface of the sealed protective jacket is coated with a special material
that cleans the disk as it rotates. Any other method of cleaning may scratch the
disk and cause loss of data.

System Reliability

The reliability of your system depends directly on the care you exercise in handling
your disks and in avoiding the situations just described. Disks and drives that are not
subjected to these “extremes” will perform maintenance free for a longer period of

time than those handled without regard to the disk care guidelines.

83

84 Installation & Service

87

Appendix B

Reference Information

Disk Specifications
Disk Capacity

The following is a list of the number of words of storage required to store full-

precision data elements and string variables. Strings and numerics can be mixed
within a record.

Total usable storage per disk — 249,600 words or 1950 records.

Maximum number of files per disk — 352 files

Full-precision numbers per disk — 62,400 numbers

String characters per disk — 491,400 characters

Words per record — 128 words

Disk Speed

Disk speed — 360 revolutions per minute
Average access time — 267 ms
Maximum transfer rate — 11,500 words per second

Instantaneous transfer rate — 31,250 words per second

Storage Requirements

This section describes the space required to store programs and data on the disk.

88 Reference Information

Program Files

The SAVE statement (Chapter 2) and the DCOPY statement (Chapter 5) each automati-
cally opens a program file large enough to accomodate the program in memory. If the
number of words the program uses is not a multiple of 128 (it rarely is), the disk drive
rounds the number of physical records reserved in the file to the next whole number.
So a program of 127 words requires one physical record, but a program of 129 words
requires two physical records.

Data Files

The following table lists the number of words of memory required to store full, split
and integer-precision data elements and string variables. Strings and numbers can be
mixed within a physical record, as long as each item fits within the bounds of the

record.
Data Storage Requirements
Words Per Data Items Per
Type of Data Data Item Physical Record

full precision 4 32

split precision 2 64
integer precision 2 64
string variable (see below) 252 characters
EOR or EOF mark! 1 -

Notice that the disk drive reserves two words of memory for interger-precision accu-
racy, rather than one word, as reserved in the desktop computer.

The type of data retrieved, as determined by READ# and MAT READ# statements, can
differ from the type of data stored, as determined by PRINT# and MAT PRINT#
statements. Data stored with full-precision accuracy, for example, can be retrieved
with full, split, or integer precision. An error message is displayed if you try to
convert a full- or split-precision number greater than 32,767 to an integer-precision
number, or if you try to convert a number greater than 9.999999E63 to split preci-

sion.

Use this equation to find the space required to store string variables —

No. of words = INT (no. of characters = 2+1) +2 per record
2

1 An extra word is not required for an EOR mark when the record is completely filled, or an EOF mark when the end
of file is reached.

Reference Information 89

As shown, a string requires 2 words of overhead in addition to the normal % word per
character requirement (plus another % word if the string has an odd number of
characters). So up to 252 characters (and 2 words of overhead) can be stored into each
record. Printing longer strings will overlap record boundaries. Two extra words of
overhead are needed, however, when the string overlaps each boundary.

For example, storing a 600-character string requires —

¢ 300 words for string characters
e 2 words of string overhead

e 2 words of extra overhead as the string crosses a record boundary (4 words are
needed here).

record 1 record 2 record 3
- alg - N - -
252 char. 252 char. 96 char.
2 words for 2 words
string overhead overhead for crossing

each record boundary

Data Verification

Write Verification

The disk drive routinely checks to ensure that all the information being transferred
between it and the desktop computer’s memory corresponds exactly to the original.
During PRINT# and MAT PRINT# operations, this is done by automatically execut-
ing the entire data list a second time and then comparing the two copies; if a difference
is found, the operation is repeated up to 10 times in an attempt to store the informa-
tion correctly. If the write operation is not successful after 10 tries, it’s canceled and
ERROR 59 is displayed. (ERROR 59 also indicates a tape verify error, as described at
the back of Chapter 6 of the 9831A Operating and Programming Manual.)

If you get ERROR 59 during a PRINT# or MAT PRINT# operation, it probably means
that the surface of the disk where the data is to be written has been damaged.! Since
other write errors will probably occur with that disk, you should initialize a new disk
and transfer any data on the damaged one to the new one (use DCOPY if you have more
than one disk drive). Then you can reinitialize the damaged disk (see Appendix C)and
test it, as described in the 9831A System Test Booklet. The test will tell you if the disk
is permanently damaged.

1 For auto verification, the entire list of data items in each PRINT# statement is executed a second time (im-
mediately after the data is written on the disk) so that each item can be compared with its corresponding item on
the disk. Since the entire data list is re-executed a second time, ERROR 59 will occur when an item in the data list
generates a different value each time it is executed. For example, PRINT#;RNDO computes a different random
number each time RNDO is executed. When this situation can’t be avoided, switch auto-verify OFF.

90

Reference Information

If you wish to switch off the auto-verify routine, use the VERIFY statement —

- turns off the auto-verify routine.

v [{#] turns auto-verify back on.

Since each write operation takes at least twice as long to execute with the auto-verify
routine, it may be helpful to switch auto-verify off when many write operations are to
be done in quick succession — but remember that the data will not be automatically
checked when auto-verify is switched off.

The VERIFY statement also controls data verification with tape cartridges, as de-
scribed in Chapter 6 of the 9831A Operating and Programming Manual.

Read Verification

During a read (load) operation, the disk drive automatically compares a checkword
with another checkword originally written on the disk; if a difference is found, the
data is reread again. If the data cannot be read successfully after 10 tries, the opera-
tion is canceled with ERROR 85.

If you get ERROR 85, a read error, data cannot be read from a record because the
checkword for that record is not identical to the one generated during the read opera-
tion. For data files, the DCOPY statement can be used to correct the checkword by
recopying the entire file back into the same space on the disk. This operation will not
halt when reading the file, but ERROR 85 will be displayed after the file is rewritten
with a new, correct checkword. For example, to recopy file “data” on drive number 1,
execute —

If ERROR 85 occurs while reading a program file, however, DCOPY cannot be used to
correct the checkword. In this case, the program is not recoverable.

Reference Information 91

Glossary of Disk Terms

availability table — Table in systems area that monitors the amount and location of
remaining disk space.

backup track — Track 1 of an initialized disk contains the same information as track
O: the systems table, the file directory and the availability table.

checkword — A unique 16-bit word automatically written on the disk at the end of
each record during a write operation. Also called the CRC —Cyclic Redundancy Code.

checkword error — When a record is read, a checkword is generated and is compared
to the checkword at the end of the record for data validity. If not identical after 9
rereads, & :

" is displayed.

controller — An electronic assembly in the 9885M drive (not contained in the 98858S)
that monitors and controls all drive functions.

defective track — A track on the disk where the reading and writing of data is not
possible, usually because of a scratch, dirt, or lack of magnetic oxide on the surface of
the disk. The number of defective tracks is identified during initialization and is
recorded in the systems table.

disk — The flexible disk is the storage medium for the 9885M or 98858 drive. Data is
written on a thin magnetic oxide film coated on plastic. The disk is enclosed in a sealed

plastic jacket for protection.

drive — The 9885M and 9885S are referred to as drives.

drive number — The drive number (O thru 3) is selected by the drive select switch on
the rear panel of the disk drive.

double density — The type of recording techniques used by the 9885, giving in-
creased storage capacity and higher transfer rates over a tape cartridge.

EOF mark — A mark placed in the first word of each record when a file is opened and
at the end of the data in a file when the =
past this mark, although it can be written.

i parameter is used. Data cannot be read

92 Reference Information

EOR mark — Marks placed after the last data item when the !
ted.

' parameter is omit-

file — A file is one or more user records written on the disk.

file directory — A directory in the systems area containing entries for every file on
the disk indicating file name, size, type and location.

flexible disk — The disk is also referred to as a flexible disk.

head - The read/write head contains the read, write, and erase elements (coils) en-
cased in ceramic. The head is in contact with the lower surface of the disk when data is
transferred.

header — A unique bit pattern representing the address of the record, written at the

beginning of each record during initialization.

hard error — A hard error is usually non-recoverable. A softwar error-recovery

routine, however, can be used to try to recover from the error.

initialize — When a disk is initialized, addresses are written on it, it is tested by

writing and reading patterns from the disk, and the systems area is set up.

label — An alphanumeric name assigned to each disk by using
load pad — Pad opposite the head (touching the upper surface of the disk).

logical file access — A method of storing and retrieving data items separately, word

by word.

multirecord strings — Long string variables are automatically stored in successive

records.

random file access — A method of storing and retrieving data items, record by re-

cord.

record — A block of 128 data words written on the disk, following a header and

followed by a checkword.

Reference Information

seek — Movement of the head from one track to another.

soft error — Soft errors are recoverable and are usually caused by dirt in the air or on
the disk, random electrical noise, small defects on the disk, or a defective load pad.

select code — The address which each interface card and its peripheral devices re-
sponds to. In a 9885 system, each 98032A Option 185 Interface must be set to a
different select code (8 thru 15).

serial file access — A method of storing and retrieving data items as a group, instead
of individually.

storage area — Tracks 2 thru 66 are available for your data storage.

systems area — The systems area consists of disk tracks O and 1. It contains the
systems table, file directory, availability table, and backup track.

systems table — Table in systems area indicating the computer used to initialize the
disk, number of defective tracks, beginning of user area, and an optional disk label
(name).

track — Any one of 67 concentric circles on the surface of the disk, about 0.012
inches wide and numbered O thru 66.

transition — A flux reversal caused by writing on the disk producing an electrical
transition during a read that is decoded into bits (O or 1).

tight margin — A restriction in the time allowed for a read during which a flux
transition can be interpreted as a bit (a 1 or 0).

verify error — When auto-verification (7) if on, each

operation is reread under tight margin to ensure accuracy. If an error is

found during a write operation, & “is displayed.

word — The smallest unit of disk storage and equivalent to a word of read/write
memory. A record can hold 128 words of data or program information.

WRITE tab — An opaque tab which permits writing on the disk. When the WRITE tab
is removed, writing on the disk is not allowed.

93

94

ASCII Character Codes

Ascil| EQUIVALENT FORMS Ascit] EQUIVALENT FORMS Asci| EQUIVALENT FORMS AsCli| EQUIVALENT FORMS
Char. Binary Octal Dec Char. Binary Octal Dec Char. Binary Octal Dec Char. Binary Octal Dec
NULL | 00000000 000 0 space | 00100000 040 32 @ 01000000 100 64 01100000 140 96
SOH 00000001 001 1 ! 00100001 041 33 A 01000001 101 65 a 01100001 141 97
STX 00000010 002 2 00100010 042 34 B 01000010 102 66 b 01100010 142 98
ETX 00000011 003 3 # 00100011 043 35 C 01000011 103 67 c 01100011 143 99
EOT | 00000100 004 4 $ 00100100 044 36 D 01000100 104 68 d 01100100 144 100
ENQ | 00000101 005 5 % 00100101 045 37 E 01000101 105 69 e 01100101 145 101
ACK 00000110 006 6 & 00100110 046 38 F 01000110 106 70 f 01100110 146 102
BELL | 00000111 007 7 00100111 047 39 G 01000111 107 71 g 01100111 147 103
BS 00001000 010 8 (00101000 050 40 H 01001000 110 72 h 01101000 150 104
HT 00001001 on 9) 00101001 051 41 | 01001001 1m 73 i 01101001 151 105
LF 00001010 012 10 * 00101010 052 42 J 01001010 112 74 i 01101010 152 106
Vas 00001011 013 1 + 00101011 053 43 K 01001011 113 75 k 01101011 153 107
FF 00001100 014 12 , 00101100 054 44 L 01001100 114 76 01101100 154 108
CR 00001101 015 13 - 00101101 055 45 M 01001101 115 77 m 01101101 155 109
SO 00001110 016 14 00101110 056 46 N 01001110 116 78 n 01101110 156 110
SI | 00001111 017 15 /| oo101111 057 47 o | otoot111 117 79 o | ottot111 157 111
DLE 00010000 020 16 ["] 00110000 060 48 P 01010000 120 80 p 01110000 160 112
DCt 00010001 021 17 1 00110001 061 49 Q 01010001. 121 81 q 01110001 161 113
DC: 00010010 022 18 2 00110010 062 50 R 01010010 122 82 r 01110010 162 114
DC; | 00010011 023 19 3 00110011 063 51 S 01010011 123 83 s 01110011 163 15
DCs 00010100 024 20 4 00110100 064 52 T 01010100 124 84 t 01110100 164 116
NAK ‘ 00010101 025 21 5 00110101 065 53 U 01010101 125 85 u 01110101 165 17
SYNC (0010110 026 22 6 00110110 066 54 \ 01010110 126 86 v 01110110 166 118
ETB 00010111 027 23 7 00110111 067 55 w 01010111 127 87 w 01110111 167 119
CAN 00011000 030 24 8 00111000 070 56 X 01011000 130 88 X 01111000 170 120
EM : 00011001 031 25 9 00111001 071 57 Y 01011001 131 89 y 01111001 171 121
|

SUB | 00011010 032 26 00111010 072 58 z 01011010 132 90 z 01111010 172 122
ESC | 00011011 033 27 ; 00111011 073 59 [01011011 133 91 { 01111011 173 123
Fs | ooo11100 o034 28 < | 00111100 074 60 \ 01011100 134 92 ; 01111100 174 124
GS | 00011101 035 29 = 00111101 075 61] 01011101 135 93 ' 01111101 175 125
RS | 00011110 036 30 00111110 076 62 - 01011110 136 94 - 01111110 176 126
us :000111” 037 31 ? cot11111 077 63 _ 01011111 137 95 peL Fortiir 477 127

95

Appendix C
Disk Utility Routines

The Disk Utility Routines are a set of binary and BASIC language programs that
perform supplementary disk operations. These binary statements are available —

Initialize a blank disk with a systems area.

Erases all files from a disk.
Duplicates all files from one disk to another.

Packs all files into one area, freeing up unused disk
space.

Transfer information from one disk to tape cartridges.

Transfers information from one data file to tape.

Transfers information from tape cartridges to disks.

Transfers information from a tape file to a disk data
file.

These commands are available for recovering data and performing other useful
operations —

Produces a list of disk utility commands.

Produces a catalog listing using the spare directory.

Compares the spare and main directories.

Exchanges the main the spare directories.
Copies the main directory into the spare.

Copies the spare directory into the main.

Produces a list of the availability table.

(continued)

96 Disk Utility Routines

Recreates the availability table from the directory.

Dumps the specified track to tape.

Loads the track recorded on tape back onto the disk.
Initializes the specified track.

Lists contents of records in data files.

Allows editing specified records in a data file.

Checks format of record O of System Table.

CAUTION
MOST OF THE ROUTINES AND COMMANDS DE-
SCRIBED IN THIS APPENDIX ARE INTENDED FOR
THE ADVANCED PROGRAMMER. IMPROPER USE
CAN QUICKLY ERASE ALL INFORMATION ON THE
DISK!

The routines described here are available on the Utility Routines Disk (Part No.
09885-90014), which is supplied with the 9885M (option 031) Disk Drive.

Most of the routines assume that the Utility Routines Disk is used in a drive set to
drive O and select code 8. If not, execute the UNIT statement to specify the drive being
used (UNIT is covered in Chapter 5).

If a second drive is available, the general procedures can be simplified by using the
Utility Routines Disk in the master drive (drive O, select code 8) and the second disk in

the slave drive.

Initializing Blank Disks

The initialization (INIT) routine writes addresses on the disk so that specific locations
may be referenced by the system. During initialization, test patterns are also written
on the disk and then read for verification. This takes less than four minutes per disk.
Once initialization starts, all previous information on the disk is lost.

Each blank disk must be initialized before it can be used with your system. Once this
procedure is complete, the disk remains initialized and does not have to be
reinitialized each tme the system is turned on. Remember that a disk can be acciden-
tally erased via the Pattern Test or the 9885 Self Test, as described in the 9831A
System Test Booklet.

Disk Utility Routines 99

Type in the drive number holding the new disk.
6. Now verify the drive numbers —

L

If the drive numbers are correct, press . If not, press to abort the

routine.

"7 indicates that the select code specified by the routine is not cur-
rently set. If this error occurs, use the UNIT statement to specify the correct
drive select code. Then return to Step 4.

7. The routine now duplicates all files from the original disk onto the new one. The
display is —

[

The time required for the routine varies (from 2 thru 12 minutes) depending on how

much read/write memory is available and whether VERIFY is ON or OFF. If verify is
ON, the information on the new disk is compared against that on the original for

accuracy. : %% will result if the VERIFY comparison fails.

The routine automatically compares the number of available tracks on each disk be-
fore duplicating the files. If the new disk has less defective tracks than the original
disk, the duplication is performed. If the new disk has more defective tracks than the
original, however, the routine checks to see if the defective tracks are needed. If not,
the duplication is performed. If a REPACK is required (to free any extra storage space
is displayed. See The REPACK Routine next. If
i indicates that the

on the original disk),

there are too many defective tracks on the new disk, &
routine has been aborted.

When the new disk has a different number of defective tracks than the original one
(but duplication is still possible), the availability table on the new disk is updated to
reflect the actual amount of unused space on that disk.

The REPACK Routine

The REPACK routine moves all user files to the beginning of the storage area on a
disk. The routine consolidates all unused space (from files previously killed) into one
area, making future use of the disk more efficient. Execution of disk statements is
often faster, since the average distance between user files is decreased.

100 Disk Utility Routines

This routine can take up to 12 minutes, depending on how much read/write memory is

available. For fastest results, execute i before continuing.

1. Insert the Utility Routines Disk in the drive and close the door.

2. Key in and execute —

3. Replace the Utility Routines Disk with the disk to be repacked and close the

door.

4. Key in and execute — “.n where n is the disk drive number.

5. The routine first takes about 10 seconds to compact the file directory —

[J

6. Then the storage area is repacked —

[)

The running time depends upon the amount of available read/write memory, the
number of files to be repacked, and whether VERIFY is ON or OFF (up to 12
minutes). The file directory is updated after each file is repacked.

If a read or write error occurs while the directory is being compacted, the routine is
aborted. A read error does not affect the contents of the directory, but indicates that
the main directory (track 0) may be partially defective. A write error, however, indi-
cates that either directory is bad and some files may be inaccessible. In this case,

execute i. {7 to list the files available.

If a read or write error occurs while the storage area is being reproduced, an error

message indicates the defective file by name. The routine will then either halt or

display ¥ - and halt after a few moments. This last display ap-
pears while the routine is rearranging the files so that they are accessible and updat-

ing the availability table.
The Dump and Load Routines

The disk dump routines store the entire disk or indicated data file from the disk to the
specified tape files. The disk load routines transfer data from tape files created by the
disk dump routine to disk files.

To load the disk dump and load routines, execute —

Disk Utility Routines 101

The DISK DUMP Routine

" [no. of disk records per tape file]

The DISK DUMP routine transfers the entire disk onto tape cartridges, starting with
track O, file O of the first tape cartridge.

The optional parameter indicates whether the tape is to be marked automatically, or
not, and the number of disk records to be dumped per tape file. The parameter can be
an integer other than O (128 words of memory are needed per record). If sufficient

memory is not available to perform the dump (or load), = occurs. If the
parameter is positive, the tape is marked automatically. If negative, you must have

marked the tapes beforehand.

The File Dump Routine

~ disk file name[: tape track[: tape file [+ no. of records per file]]]

This routine transfers the indicated data file from the disk to tape, starting at the
specified tape file. The optional parameter has the same effect here as for the DISK
DUMP.

The DFDUMP routine transfers disk information on the current track (starting at the
first file number given) until the current tape track is filled (or the null file is reached
for premarked tapes). After the track is filled (if the current track is 0), the tape
automatically rewinds and continues with track 1, file 0. If the current track is track
1, however, i -

is displayed and the routine waits

for tapes to be changed; then it continues with track 0, file O of the new tape.

fa i is displayed, pull out the cartridge, slide the
RECORD tab to the right, reinsert the cartridge, and press .

The DISK LOAD Routine

The DISK LOAD routine transfers the entire disk from the tape files recorded via DISK
DUMP.

The disk is loaded, starting from tape track O, record 0. If the DISK DUMP used ten
records per tape file, for example, there must be 1280 words of available memory to
perform the load. If not,

- results. With one record per tape file, there are no
memory requirements.

102 Disk Utility Routines

The FILE LOAD Routine
i disk file name[: tape track[: tape file]]

This routine transfers data, starting from a specified tape file on the current track
into the disk data file named. The tape file must have been created by a DFDUMP

routine.

The data file is transferred, starting at the specified tape file number on the current
track. The tape file number must be the same as for the corresponding DFDUMP. If the
DFDUMP used ten records per tape file, for example, there must be 1280 words of
 results. With one record

available memory to perform the DFLOAD. If not, i
per tape file, there are no memory requirements. The size of the disk file must be
greater than or equal to the size of the original file from which the data was dumped,

otherwise : is displayed. Any extra records in the destination file are not

affected.

NOTE
The dump and load statements require that the Flexi-
ble Disk ROM be installed. ERROR 300 will occur if
you attempt to execute or store these statements with-
out the ROM.

Utility Routines Commands

The utility routines commands are a set of BASIC language programs accessed by first
loading the “UTILTY” binary program from the Utility Routines Disk —

Then executing each of the command names loads and runs the corresponding BASIC

language program from the disk.

Since these programs are stored on the Utility Routines Disk, it must be installed
whenever one of these commands is executed. This poses a problem on single disk
systems, since it’s not possible to have both the utility disk and the user’s disk instal-
led simultaneously. When only one disk drive is available, the operator is asked

ML EDTT after executing each command, except HELP,
to remind the operator to remove the utility disk and install the user’s disk. Then
press @ to continue command execution. Be sure to replace the utility disk when the

command is complete.

Disk Utility Routines

The HELP Command

This command produces a list of all 14 commands along with a brief description of
each. The listing is printed on the standard printer. Here’s a sample printout —

LIST OF AVATLABLE COMMAMDG:

volist of all availoble commonds,

oloa listing using the nnrk dlrw-*nr
t ke are ond moin dires
the main arnd spare dir
main directory into the se
B spare directary into the wmoin.
LIST AT of the ovailability table.
RECREATE AT the ovailobility table from the directors,
TRIIMP Dumes the zpecified trock to taps,
TRELOAD Lnnd~ the track recorded on tape back onto the diskette,
TEINIT i ime cified tra
DFLIST 3 records i dota §iles.
LFEDIT] gditing specified recards in o doto §ile,
CHECE formt of record 8 of sveten table.

The SCAT Command

TO SPARE
SFHRE TO MATH

The SCAT (spare catalog) command produces a catalog listing using the spare direc-

tory rather than the main. Note that since parameters are not permitted, SCAT works

only for the drive specified by the most recent UNIT statement. Here’s a sample lis-
ting -

SPRREE CATALOG OF DREIVE 1

AVATLABLE RECORDS: "

HAME TIF& LEHGTH TERLC RECORD

SCAT PROG
HELP PROG
SETOMH PROG
HH TOSP FROG
EXCHAM FPROG
UTILTY BINARY
RECEAT PPHu

o
bxd

PRI P

i s

o

L Pl DR e

CH : 11
DFLIET L
DFEDIT 29
COMFAR 11
LISTAHT i
TRIUMF 12
TELOAD 23

TRIMIT FFHG
DMPLOD BIHMARY i
REFACE BIHARY 1H54b

O e e e Pl e i D3 a0 L0 Tl P P

103

104 Disk Utility Routines

The DCOMPARE Command

This command compares the spare directory to the main. Any differences are noted on

the standard printer. If differences occur, the following actions should be taken -

Availability Table in error — Use RECREATE AT to build a new table. Then execute
DCOMPARE again.

Directory in error — Use CAT and SCAT to determine which directory is incorrect.

Then copy the good one to the bad one.

Record O of System Table is in error — Use CHECK to list the contents of record O of
the main system table. If it’s OK, copy MAIN TO SPARE. If not, try an EXCHANGE,
and then use CHECK to check the spare table. Then use CAT to check the catalog. If the
catalog is correct, copy MAIN TO SPARE. If not, use EXCHANGE again to put the disk

back in its original configuration. As a last try, dump track O onto tape by using
TRDUMP. Then initialize the track using TRINIT and let the system copy the spare to
the main. If the catalog (CAT) is still wrong, save the tape containing track O and call
HP for assistance.

The EXCHANGE Command

This command swaps the main the spare directories. Except as an emergency recovery
procedure, EXCHANGE should not be used if DCOMPARE indicates that record O of
the system table doesn’t match the spare. See the DCOMPARE command.

The MAIN TO SPARE Command

This command copies the main directory to the spare.

The SPARE TO MAIN Command

This command copies the spare directory to the main.

Disk Utility Routines 1095

The LIST AT Command

This command produces a list of the availability table. The unused storage areas on
the disk, their locations and sizes are listed. The amount of unused storage area is
then printed. For example -

AYATLABILITY TRBLE:

TEACK # : # LEMGTH
& 1 Fan
ki “ &
& 22 1

UMUSED STORAGE 3 CITEE

The RECREATE AT Command

This command recreates the availability table based on the information in the direc-
tory. RECREATE AT should be used when the directory is known to be correct, but
either the main and spare availability tables don’t match or the availability table does
not indicate the space actually available on the disk.

The TRDUMP Command

The TRDUMP (track dump) command records the contents of the specified track onto a
tape. The tape is rewound and three files are marked on both tracks 0 and 1 to provide
duplication of information in case a tape error occurs.

106 Disk Utility Routines

The TRLOAD Command

The TRLOAD (track load) command reloads the track previously dumped on tape back
onto the disk. Since the track number is retained in the data recorded on tape, it’s not

necessary to re-enter the track number to execute TRLOAD.

The TRINIT Command

The TRINIT (track initialize) command re-initializes the specified track. Before

executing this command, the track should first be dumped to tape using '
. If the track to be initialized is in either the

)

and afterwards reloaded using |
spare directory or the main directory, the operator is asked if the main is to be re-
loaded from the spare, or vice versa, as appropriate. This is not necessary, but may be
a desirable precaution. If the track to be initialized is either the main or spare direc-
tory, however, DCOMPARE should be executed afterwards to verify that the contents

are correct.

TRINIT should be used whenever ERROR 83, 84, or 85 occurs while reading informa-
tion from the same track. To determine which track is bad, use the Checkread (CKRD)
test. as described in the 9831A System Test Booklet. This test is also recorded on the
Utility Routines Disk and can be loaded into the computer by executing —

The DFLIST Command

The DFLIST (data file list) command prints a list of the specified data file. The user is
requested to specify whether the file is a “logical file ” (a file created using logical

prints), and a range of records to be printed.

Disk Utility Routines 107

For example, here’s a list of records 1 thru 5 of a 50-record file named “X” —

File = ¢ 58 P s

List of records | Thru 5

Feoord 1

Foode 14915 mho1a e 14
FiHi there!

ECF 1% werels s

Feomrds Lhirig 5

B

Full-precision numbers are prefixed by “F:”, split by “S:”, integer by “I.”, and strings
by “$:”. If a string is too long to completely fit on a line, the remainder is printed on
following lines preceded by “&:”. “Null string” indicates a string length of 0. If the
record terminates with an EOF, “EOF” is printed.
As another example, this listing is of a 1-record file named “Y” —

File v o 1 Il b I

List of recorad 1

Feomrad

Te LHDEF Su LIHDEF Fo INDEF
OO worels uisend

Flevsionl ernod of file.

“UNDEF” indicates undefined data items.

A warning is printed if the first item in the first record to be printed is of mid-string or

end-string type (this does not necessarily constitute an error).

In the case of a logical file, the contents (if any) following the first EOR or EOF mark

are printed.

108

Disk Utility Routines

The DFEDIT Command

The DFEDIT (data file edit) command allows you to review and, if needed, change any
item in a data file.

The DFEDIT command should be used to correct data in a file in which that data has
been destroyed. Here is the general procedure —

1. After executing this command, you will be asked -

)

2. Enter the name of the file with the record to be corrected. Then you will be
asked -

3. Enter the number of the record which has the error. Then you will be asked ~

]

4. Enter the word at which editing is to start. If this is not a logical file, the number
should be 1; if it’s a logical file, the number should be the starting word number
of the desired logical record.

5. Then a header specifying the file name, start record and start word for the edit
will be printed, along with a title for the data to be printed and the first item in
the file (see sample printout). You will be asked —

(

6. Ifit’scorrect, press and the next item will be printed. (If the last item was an
EOR or an EOF, the edit is complete.) If it is not correct, press @ -

[)

7. If the data type is not correct, press @ You will then be asked for the new type
and the new length, if it is a string. The data item will then be printed again
(return to step 6). If it’s correct, press and you will be asked -

Disk Utility Routines

8. If the value is correct, press . The next item is printed (return to step 6). If
the value is not correct, press @ Then enter the correct value as requested.
For long strings, enter substring of 80 characters and press and press after

each, until the entire string is entered. After the value has been changed, the
new value will be printed.

9. Return to step 6 to check each item in the record.
ELLT OF =
RECORD 1 v WOED
ITEM#E WORD T

1 FULL 2141
g HOEPLIT 1
SOSPLIT 1

4 ¢ ITHTEGER 14
©RRLIT

TOEPLIT 0 TE.E
R
] R T

5 1e EOF

Here’s another example printout, showing the messages printed when PRINT ALL is
switched ON -

STHET W

EDIT 0OF
RECORD 1 s WORED

ITEM# WORD TYFE

WHRLLUE

11 FULL 31415
1% ITEM CO

5 OITEM CORR

TYPE COFR
5 YALLUE ©0
JEW VHLUE

e wd

109

110 Disk Utility Routines

AT

MEM WALLE
MEW WAL
i} »

The CHECK Command

This command checks the Systems Table (record 0) to verify that it is correct, and then

prints information contained in the table. Here’s a sample printout —

g Lok e

List of record B of

L= 1 [

ITevitinl

Syntax Guidelines

Appendix D
Disk BASIC Syntax

The disk operations available with the Flexible Disk ROM are summarized here. The

conventions and terms most often used within the syntaxes for statements and func-

tions are —

brackets [|

drive no.

file name

1st line number

2nd line number

file no.

record no.

word pointer

Items enclosed in brackets are optional.
Items in dot matrix must appear as shown.
Dots indicate that the preceding items can be repeated.

An integer expression from 1 thru 3 indicating which
drive should be used. Also, see “The UNIT Statement” in
Chapter 5.

The name used to define a specific file. It can contain up
to six characters; quotes ('), commas, colons, blank

cannot be used in the file name. The name can be either
text (characters within quotes) or a string variable
(quotes not used).

An integer number referencing a program line.

The 2nd line number can be used only with the 1st line
number.

An integer expression from 1 thru 10 representing a
file name, as specified via a FILES or ASSIGN state-
ment.

An integer expression specifying a physical record
within a file.

An integer expression from 1 thru 129 specifying the
starting point (word) for logical {# and H
operations.

111

112 Disk BASIC Syntax

ASSIGN Statement

i file name : file no. : return variable [: drive no.]

Assigns a file number to a single file name and optionally, the drive number for the
file specified. An optional return variable can be used for further file information.

Return value Meaning
o File is available.
1 File type is not data.
2 Drive no. is not from O thru 3.
3 File has not been opened.
4 File no. is not from 1 thru 10.
AVAIL Function

i i. drive no.

Returns the total number of records available (unused) on the specified file.

CAT Statement

i.#71 [drive no.[: printer select code]]

Prints information about all user files on the disk. An example printout is shown on
page18.

CERROR Statement

Cancels any error recovery routine set by SERROR. The SERROR statement is de-
scribed in Chapter 3 of the 9831A Operating and Programming Manual.

CHAIN Statement

It file name [: 1st line number|[: 2nd line number]]

Loads the program specified from the disk into the memory and retains the values of
all variables. (Same line number rules as for the GET statement apply.)

Disk BASIC Syntax 113

DBYTE Statement

Converts an expression to a string character and stores the character in the string
variable or substring.

DCOPY

7 file name [: drive no.] 7 i file name [: drive no.]

Duplicates the contents of one file into another. The optional drive numbers allow you
to copy a file from one drive to another.

DEXP Statement

i expression : string variable

Converts the value of the specified expression into a 4-digit character string with

leading zeros. A substring may be specified.

DGET Statement

1 file name [#]

Loads a source program previously stored with | - back into the memory. The

option O parameter prevents the program from being automatically run.

DREN Statement

! old file name | i new file name

Changes the name of any file; the contents of the file remain the same.

DSAVE Statement

~file name [: 1st line no.[: 2nd line no.]]

Stores a program as a source program, a series of data strings. The file name must @]

have prviously been opened.

[)

114 Disk BASIC Syntax

FIL Function

' 1i.drive no.

Returns the size (in records) of the largest unused space available on the specified
disk.

FILES Statement

#[¥drive no.z]...]

Assigns file numbers (1 thru 10) to the files named and optionally the drive number
for each file named. Asterisks may be substituted for file names when an ASSIGN
statement follows. File names must be text without quotes; string names are not
allowed in FILES.

FRAC Function

{. expression

Returns the fractional part of the value of the expression.

GET Statement

‘file name [: 1st line number[: 2nd line number]]

Loads the program specified from the disk into the memory. Variable values are not

retained.

1st line number — If specified, the loaded program lines are renumbered with
the beginning line number corresponding to the specified first line number.
(Program lines in memory with line numbers lower than the first line number
are retained.)

2nd line number — Execution starts at the second line number. (If executed
from within a program, execution of the program begins automatically.) If the
second line number is omitted, program execution begins at the first line

number.

GET BIN Statement

i file name

Loads a binary program from the disk into the memory.

Disk BASIC Syntax

GET KEY Statement

- file name

Loads all special function key definitions from the specified file to the special function
keys.

GET MEM Statement

1 file name

Loads the entire read/write memory from the specified file, returning machine to its

state before ::i i was executed.

IF END# Statement

- file no. ' {line no.

Sets up a branching condition in the program to automatically exit a READ# or
PRINT# operation when an end of file (EOF) mark is seen.

KILL Statement

{i.l.file name

Erases the file from the disk and makes the file space available. The availbility table is
automatically updated (repacked) following KILL.

LEX Function

&7 istring variable: “text” or string variable :

Compares the two strings, character-by-character, according to the ASCII value of
each character. If the first string is greater than the second, 1 is returned. If the
strings are of equal value, O is returned. If the first string is less than the second, —1
is returned.

MAT CON Statement

expression : array list

Initializes each element of each specified array to the value of the expression.

115

116 Disk BASIC Syntax

MAT PRINT# Statement

Prints an entire matrix into a specified record or file.

MAT READ# Statement

t file no. [: record no.[: word pointer]] : matrix list

Reads the matrix from a specified record or file.

MAT ZERO Statement

iarray list

Sets all elements in the specified array(s) to O.

NUM Function

{string variable :

Returns the ASCII-decimal value of the first character of the specified string or sub-

string.

OPEN Statement

i file name : number of records

Creates a data file on the disk, with the indicated number of (128 word) records and

assigns it the name specified. End of file (EOF) marks are written in each record.

Serial PRINT# Statement

file no. : data list [=

Stores data in the specific file, after the last item read or printed. End of record (EOR)
marks are used to fill the rest of the last record containing data. When the optional
END parameter is used, however, and end of file (EOF) mark is placed immediately
after the last data item; then the rest of the record is filled with EORs.

Disk BASIC Syntax 117

Random PRINT# Statement

file no. : record no. [# data list[:

file no. : record no. :
Prints specified data items in the file number indicated, starting at the beginning of
the record number specified. The optional END parameter places an EOF mark after
the last data item printed in the last record. When END is not used, an EOR mark is
placed after the last item printed. In either case, the rest of the record is filled with
EORs.

Logical PRINT# Statement

! # file no. : record no. : word pointer [: data list[

Stores data items in a specified record of a file, beginning at the specified word. The
file number and record number are the same as with random file access. The word
pointer can be an integer expression from 1 thru 129, and specifies where the first

word of data is to be printed. The optioal i parameter places an EOF after the last

data item printed. When is not used, the remainder of the record is left un-

changed.

PRINT LABEL Statement

.+ drive no. : "text ~ or string variable

This statement assigns an alphanumeric label to the disk in the specified drive. The
label can be up to 224 characters long.

Serial READ# Statement

i # file no. [{ data list]

Reads data from the specified file, starting after the last item printed or read.

Random READ# Statement

file no. : record no. [: data list]

Reads data from a specified file, starting at a specified record. When the data list is @
omitted, this statement repositions the file pointer to the beginning of the specified

record in the file.

118 Disk BASIC Syntax

Logical READ# Statement

i file no. : record no. : word pointer [: data list]

Reads numbers and strings into variables from a specified record, starting from a

specified word.

READ LABEL Statement

i.: drive no. : string variable

Reads the label on the disk and stores it in the specified string or substring. If the disk

doesn’t have an assigned label, the null string is returned.

REC Function

i file no.

Returns the current position of the record pointer within the specified file.

REDIM Statement

“larray list

Changes the matrix working size of the specified array(s) to new specified boundaries.
The array subscripts must be equal to or larger than the original array size. (The
working size of a matrix is the same as the physical array size unless it is redimen-
sioned.) When subscripts are not used, the working size is redimensioned to the ar-

ray’s original size.

RESAVE Statement

" file name [: 1st line number[: 2nd line number]]

Stores a new program, or the lines indicated by the line numbers, on the disk using a
previous file name. The same line number rules apply as for the SAVE statement.

Disk BASIC Syntax

SAVE Statement

i file name [= 1st line number[: 2nd line number]]

Stores an entire program, or the lines between and including the specified line num-
bers, into the file named.

SAVE KEY Statement

7 file name

Stores all present special function key definitions in the named file.

SAVE MEM Statement

4 file name
Stores the entire read/write memory in the specified file.

SIZE Function

- file no.
Returns the size, in records, of a specified file.

SLEN Function

file no.

Checks for strings in the specified file: if the next item is a string variable, its length,
in characters, is returned. —1 is returned if the next item is not a string.

STD Function

Returns the standard printer select code currently specified by the STDPR statement.

119

120 Disk BASIC Syntax

TYP Function

T4 file no.

Identifies the type of the next data item to be accessed in a specified file. TYP returns

one of these codes —

Type Code Meaning
o Item not printed via the 9831A.
1 Next item is a full-precision number.
2 Next item is a string variable contained in one record.
2.1 First part of a multi-record string.
2.2 Intermediate part of a multi-record string.
2.3 Last part of a multi-record string.
3 Next item is an EOF or the physical end of file.
4 Next item is an EOR or the physical end of record.
5 Next item is a split-precision number.
6 Next item is an integer-precision number.

UCASE Statement

i string variable

Converts all characters in the specified string or substring to uppercase.

UNIT Statement

T drive no. [: select code]

Specifies the disk drive number (O thru 3) and optionally, the drive select code (8 thru
15), to be used by subsequent disk operations. UNIT changes the drive number (0) and
the select code (8) automatically specified for disk operations when the 9831A is

switched on.

Disk BASIC Syntax

UPOS Function

{string variable : “text ' or string variable !

Returns the position of the first character of the second string within the first string.
The strngs are temporarily converted to uppercase before being compared.

WCTL Statement

i1 select code : expression

The WCTL (write control) statement outputs a binary number for controlling various
functions on the specified interface card.

WRD Function

i file no.

Returns the current position of the word pointer for the specified file. The value can be
from 1 thru 129; 1 indicates the first word of the record, while 129 indicates that the
next item to be printed will go into the first word of the next record.

121

122 Error Messages

Error Messages

Disk Drive (hardware) Errors

I/O interrupt: for example, an interface card is plugged in while power

is switched on.

All disk drives not switched on.

Disk drive door open.

Disk not installed or specified drive number not set.
Write-protected disk.

Disk drive record-header error.

Disk track not found.

Disk data checkword error.

Disk drive hardware failure. Press to regain system control.

Verify data error: occurs during auto-verify routine. Try to reprint the
data.

Flexible Disk ROM Errors

Miscellaneous disk ROM syntax error: for example, storing an incor-
correct IF END# statement.

Incorrect disk drive number or select code. Also, incorrect record

pointer or word pointer.
Incorrect disk file name or file not found.

Available disk file space exceeded; also directory or availability table is
full.

File name already exists on drive.

EOF (end of file) mark reached or physical end of file encountered.

Disk file format error: for example, a multirecord string not intact.

A

Additional equipment
Approved disks . .
ASCII code table . . .
ASSIGN statement .
AVAIL function .
Availability table

B

BACKUP command
Backup track
Brackets (in syntax)

C

CAT (catalog) statement
CERROR statement

CHAIN statement
Checkread test .
Checkword .

Connecting drives & ca,bles ,
Contiguous file areas
Conventions (in syntax)

D

Data access methods

Data files

Data file numbers

Data file operations

Data file pointers

Data storage requirements .
DBYTE statement
DCOPY statement
Default values (0,8)
DEXP statement
DFDUMP command
DFLOAD command
DGET statement.
Directory . .

Subject Index 123

Subject Index

Disk . 2
Disk capacity 87
Diskcare 82
.73 Disk drives (9885M/9885S) 1
. 3 DISK DUMP command . 101
.. 94 DISK LOAD command . . 101
.. 28 Disk manufacturers, recommended. . 3
. 25 Disk specifications 87
8 Disk speed . 87
Disk structure. .. = 5B
Disk utility routines 95
Disk system tests 80
Disk terms (glossary) 91
Disk test 80
08 DREN statement 65
6 Drive number switch . .. 78
12 DSAVE statement 66
15,25 Electrical (self) test) 80
68 END, with PRINT# 30,37,39,40
19 EOF marks 31,91
80 EORmarks = . 11,31,92
90 91 Equipment supplled 73
77 Erasing disks ... 97
6,21 Error messages .. o o122
.12 Error recovery routines 95
8,11,30 FIL function = 26
- 9,23 File directory . . , 7
. 26 File names (11m1ta.t10ns) 12
' =3 File numbers 26
R7,34 File operations .. . 13,23
87 File pointers . . . o . 27,34
66 File structure. . .. = . 8
g; File types (TYP) . . . 47
’ 67 FILES statement .. == . . 26
‘ ‘ '101 Flexible Disk ROM . .2
102 FRAC fur}cpion VVVVV . 69
Full-precision data . 47

. 66
e Fuses . 75

124 Subject Index

G

GET statement 16
GET BIN statement 22
GET KEY statement 22
GET MEM statement . 22
Getting started with your system 4
Glossary of disk terms . 91
Hard errors 122
Heads, record ‘ 92
HP approved disks 3
IF END# statement . .45
Initialization (INIT) routine . 96
Initializing a disk - 96
Integer-precision data 47
Interface cables:

HP 98032A Opt. 185 77

98858 cable . 78
KILL statement . 21,26
KILLALL command . .97
LEX function 70
Line voltage 75
Loading spare directory 7,104
Logical file access . ‘ ... 9,11,40
Logical PRINT# statement .40
Logical READ# statement .42

M

MAT PRINT# statement 53
MAT READ# statement .. 54
Matrix operations . 51
MAT ZERO statement 56
NUM function 70
OPEN statement - 25
Options, 9885:

Opt. 001 for 50 Hz operation . 76

Opt. 002 rack mount kit 74

Opt. 031 . : 2,73
Pattern test o . 80
Positioning the file pointers 27,34
Power cords 76
Power requirements ... 75
Preventative maintenance 82
PRINT# statements . 24,30,37,40
PRINT LABEL statement ... 63
Program file operations == 13
Program files 13
Program storage requirements 86
Protecting the disk from writes. = . 3
Rack mount kit installation 74
Random file access .. 10,30,37
Random PRINT# statement ... 37
Random READ# statement 39

READ LABEL statement .
REC function = .

Records
Record pointer

REDIM statement .
REPACK command .
Replacement disks

Repositioning the file pomters

RESAVE statement
ROM installation

S

Sales and service offices
SAVE statement . .

SAVE KEY statement . .
SAVE MEM statement . .
Select code settings =
Self test (electrical) . . .
Serial file access : ;
Serial PRINT# statement .
Serial READ# statement ..
Service

Setting drive number sw1tches :

Setting select codes .

SIZE function .

SLEN function

Soft errors .. S
Spare directory
Split-precision data .
Statement summary .
STD function .

Storage area
String overhead . .
Suggested disk manufacturers
Syntax, disk operations ..
System installation
System reliability . .
System set up

Systems area

Systems table

64
50

. 27,34

. 58
99

34
. 15
.79

85
14
.. 21
. 22
.78
80

10,30

. 30
.. 33
. 82
.. 78
.. 78
.. 49
.. 49
122

. 47

- 111

71
86

111
.73
83
77

Subject Index 125

T

Tight margin93

TYPE function R Y 4

UCASE statement 68
UNIT statement ..~862
Unpacking yoursystem 73
Utility routines 95
UPOS function 171
Verify errors o 89
VERIFY statement 89
Verification,data 89
Voltage requirements 75

\"

Warranty statement (inside front cover)

WCTL statement 68
WRD function. 50
Word pointer27
WRITE tabs 3
Write protecting the d1sk3

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125

