mu% =
1=
JJ)S?

TABLE OF CONTENTS

THE UTILIZATION OF THE HP 3000 AT
PROMON - A BRAZILIAN ENGINEERING

|
CONSULTING COMPANY

SOFTWARE OPTIMIZATION THROUGH-

RESEGMENTATION
BASIC FOR INSTRUCTIONAL USE

DATA COMMUNICATIONS

Section I

Section 1I

Section III

Section IV

SECTION I

HP/3000 USERS GROUP MEETING
MIAMI, FLORIDA
FEBRUARY, 1975

THE UTILIZATION OF THE HP/3000 AT
PROMON - A BRAZILIAN- ENGINEERING
CONSULTING COMPANY.

DENIS F LEITE
~ PROMON

~ BRAZIL

ABSTRACT

PROMON was not the first company to have installed an
HP/3000 but it is surely one of the first to consider
it for installation. '

The environment where the HP/3000 is located is described.
PROMON's characteristics: organizational structure, size,
"its main projects, etc. are mentioned as well as its '
computing past.

A description was made of the characteristics of its
work and how a hypothetical computer, to best fit
PROMON's needs, was derived, based on past experience.

The difficult decision process of buying the HP/3000,
how well it fit the profile and the purpose of its
usage.

The work being developed since it was installed, in
August/74, the accomplishments and drawbacks, both in
Engineering and Administrative Aplications.

The computing future at PROMON after six months of
experience with the HP/3000.

PROMON'S ENVIRONMENT .

CONTENTS

o 0 0 0 0 00 00 00

1

PROMON'S COMPUTING SERVICES cecesireieseess b

CHARACTERISTICS OF PROMON'S WORK ...
SPECIFICATION OF A HYPOTHETICAL COMPUTER
DECISION ON BUYING THE HP/3000 ..
WORK 1IN DEVELQPMENT cooe

ACCOMPLISHMENTS AND DRAWBACKS

FUTURE

ooooooooooooo

o © 0 00 00 0

11

. 14

22

24

27

. 31

HP/3000 USER'S GROUP

PROMON'S ENVIRONMENT

Organized in 1966, PROMON is today a leading consulting
engineering firm in Brazil, with a multidisciplinary
staff that numbers some 1700 people, including §ome

600 professionals, offering a wide range of services

in many areas for the economy.

PROMON is wholly owned by its staff and acts as a
fully independent firm.

PROMON has been experiencing significant growth in
the past few years. Approximately 2,000,000 hours of
engineering and architectural work were produced

for over 70 major clients in 1974.

Development

In view of its activities, the structure of its ownership
and its market, PROMON can be considered not only as

a consulting firm but also as as technological
development center. :

In effect, its activities include conception, study and
development of engineering techniques applicable to a
wide range of problems. PROMON's development is,
therefore, closely dependent upon the technological
capability of its professionals. The broader their
knowledge and skills, the more significant will be the
contribution of the company in the projects in which

it participates.

Because of the structure of its ownership PROMON is
really a community of professional people. It belongs
‘exclusively to its staff members, with'approximately
400 stockholders at present, whose individual
participation does not exceed 8%.

PROMON's market encompasses, basically, those companies -
in Brazil and abroad - which are in a position to invest
in large scale projects. As a consulting engineering
firm, PROMON shares many common points with them, acting
often as an extention of the client's organization.

Offering technology as its end product and operating
in a market where government companies prevail, it is
only natural that PROMON's objectives should approach
those of technological centers and institutes. In this
respect, it should be noted that, at present, some 50
PROMON staff members teach in Brazilian Universities.

The firm's technological capabilities, which make possible

its participation in projects such as Brazil's first
Nuclear Power Plant at Angra dos Reis, are largely due
to its long-standing policy of setting aside substantial
funds for technological advancement.

Operations

From approximately 160 projects conducted by the company
during 1974, the following deserve special mention:

Furnas Centrais Eletricas S/A - Continuation of work on
the design of the Nuclear Power Plant of Angra (626 MW)
and of the hydroelectric power plant of Marimbondo
(1,400 MW), the latter in association with Chas.T.Main,
Inc.

Centrais El&tricas de Sio Paulo S/A - CESP - The detail
design for the hydroelectric power plant of Agua

Vermelha (1,380 MW), in association with Themag Engenharia
Ltda. '

Telecomunicagoes Brasileiras S/A - TELEBRAS - Master Plan
of Telecommunications for the States of Sao Paulo, Piauf
and Maranhao.

Telecomunicacoes do Estado de Sao Paulo S/A - TELESP -
Master plan and basic design for the main
telecommunications system of the State of Sao Paulo
metropolitan area and design of the telecommunications
system for the Baixada Santista. '

Companhia de Telecomunicagoes do Estado de Sao Paulo -
COTESP - Design and project management of the
telecommunications system in the area under COTESP's
Jurisdiction.

Petroleo Brasileiro S/A - P£TROBRAS - Design of the
Marine Terminal of the Baia da Ilha Grande in Angra dos
Reis and of the cold storage and handling facilities
for petroleum gases, as well as of the electrical
design for Santa Catarina-Parana pipeline stations.

Petrocoque S/A - Industria e Comércio - Continuation of
work 'on the design and installation of the petroleum
coke calcining plant, in Cubatio, Sio Paulo.

Companhia Petroquimica Brasileira - COPEBRAS - Design
of a substantial part of a fertilizer complex in Cubatao,
Sao Paulo.

Companhia Vale do Rio Doce - Several design and inspection
serv1ces, specially for the iron ore f1nes concentration
plant in Itabira, Minas Gerais.

Companhia do Metropolitano de S3ao Paulo - METRO -
Continuation of work on the detail design of Section 3

of the Sao Paulo Rapid Transit System; it should be noted
that PROMON has participated since 1967 in the studies ’
for the construction of the rapid transit system in Sao
Paulo.

Ford Brasil S/A - Design df the foundry and engine plant
in Taubaté, Sao Paulo.

Finance

The company's net revenue in 1974 totaled CR$ 190,000,000.00
representing an increase of 108% over the previous year.

The great expansior. of the year when the total staff grew
from 1000 to over 1700 people, was financed with the
company's own funds.

Conclusions

Market prospects for PROMON are very favorable. Present
backlog, as shown in the Financial Statements, totals
CR$ 220,000,000.00 assuring the company of continuous
development and growth.

PROMON'S COMPUTING SERVICES

Basic Decisions

Following is a summary of Promon's present data processing
activities after 7 years of systematic use of batch .
machines in service bureaux, for administrative tasks as
well as for engineering applications.

During the year of 1967/1968, the first isolated initiatives
to use data processing services were made. Thus, the BULL/GE
bureau was requested to process the payroll and produce
reports on man-hour control and project cost allocation.

The bureau was responsible for the analysis, programming,
testing and operation of these jobs. Engineering applications
were initiated upon request of a few interested users, as
piping engineers, who needed a program for pipe stress
analysis, using matrix inversion techniques. By the end of
1968, a systems analyst was hired to centralize all effort
for the development of a computer program library for
internal use.

Data processing services at PROMON started, therefore, with
the more typical and widespread computer applications:
payroll and matrix inversion.

Two basic points were emphasized in our approach:

a) the existance of a centralized work-team
b) the absence of an in-house machine.

The fact that this working team was centralized allowed a
global idea of company wide needs, in engineering as well
as in management.

The absence of an in-house computer, on the other hand,
permitted our personnel to think in terms of company
needs, not machine needs. Avoiding hardware acquisitions
was a deliberate policy made to avoid a commitment that
would have been premature because of our limited
experience and of the small volume of work being done.

During these years, our competitors acquired their first
computers, all based on the IBM 1130 system. Ar first
sight, PROMON was placed in a disavantageous position.

What was really at stake was a deep-set belief that the
choice of a computer should be the consequence of knowledge
gained from direct experience. '

There is, however, a great difference on how the

development of a data processing department is regarded
within the company depending on whether it has its own
machine or not. In the first case, it is common belief

that this development will be achieved through an increase
on existing facilities (a typical example would be to

expand from an IBM 1130 to an IBM/370-135). The existing
system imposes constraints that inhibit consideration

of alternatives. This frequently results from the great
initial effort spent in making the first equipment
operational; pride of achievement and the status obtained

by the team in charge encourages a rigidity in outlook that
makes it very difficult for the same team to abandon an
on-going process and start on an entirely different one.
Therefure, the first installed computer determines, to a great
extent, the fut:-e development of data processing activities
in the company; and its selection should then be handle
wWith extreme care.

This selection can be done under the most favorable conditions
by those that have chosen the bureau as their learning method,
as long as their ambition is not simply to reproduce a bureau

in their own center.

Administrative Area

Up to the end of 1969, the only administrative computer
" gervices were those offered by the BULL/GE bureau, and
even at that time those services were not satisfactory;
at the BULL system start-up, the company had only about
150 employees and one standard way of invoicing; in
December 69 the number of employees exceeded 400 and
many other ways of invoicing had become necessary,
making the reports produced by the bureau practically
useless. As the services had been introduced assuming
the existence of rigid processing rules, it soon became
inadequate and modifications were almost impossible.

Another problem regarding bureau use was to kegp under
control response time and processing quality, since
PROMON did not directly participate in the operation.
The computer used, GAMMA 10, could not accomodate any
development and backup was nonexistent for practical.
purposes.

From this first experience, it was necessary to establish

new guidelines for developing applications for the
administrative area. Three decisions were taken:

- to transfer the responsibility for program development,

jmplementation and operation to PROMON's EDP group -

the company should have its own personnel and only rent

computer time from the bureau;

- definition of more flexible programs - which would,

therefore, be more stable and would make changes in the

final products possible, thus being able to follow the
growth and to accomodate new needs of the company
without heavy maintenance requirements.

- to use IBM/360 series in DOS, because of availability
and backup considerations. ‘

From de end of 1969 until 1972 that had been the approach
taken, which resulted in a working team, consisting of

2 analysts, 2 programmers, one operator and two key-punch
operators.

The permanent files in use are all sequential and updated
monthly: Personnel, Financial, Time Sheet, Cost/Revenue and
Forecast.

Based on those files, the following services were being
performed using COBOL and ASSEMBLER programs: Payroll,
‘Invoicing, Project/Production Control, Queries and Forecast.

A1l these services, in a certain way, were based on the
BULL services, and, although they have given origin to more
sophisticated files and computer programs, they were not
based on new concepts. The benefits have originated more
from the availability of the new bureau computer than from
any general idea regarding services to be rendered.
"Essentially, we kept on considering the whole company

as inflexible and cyclic system. The programs, presently
more resourceful, allowed important variations on processing
results, but call for more time of high-cost personnel for
the preparation of tables and parameters to guide its
execution.

We found out that even for the administrative data processing,
batch machines were not apropriate.

a) they are not suitable for data aquisition, and their
processing power is of 1ittle relevance since the volume
of data is relatively small;

b) they lack resources for the implementation of a query
system. In PROMON, this activity is at least as
significant as the basic cyclic processing.

Engineering Area

The computer was first used for engineering problems in
1962, using canned programs. The first programs developed
in house, in 1969, helped solve very complex problems
where there was no alternative but to use the computer.
These jobs were concentrated in the civil engineering
area.

Having thus made available the more critical programs, a
more systematic effort was started in mid-1970 to identify
and establish priorities for new 5pplications; The
organization of the group (3 engineers and a programmer)
in 1972; and of the existing program library reflects the
following decision taken at this time: to work in

“closed shop", whenever possible$ use canned applicationsy
to work in a vertical basisj to assign liaison engineers
in the production areas.

The existing library was formed by 3 types of program:
PROMON's Programs, Packages and Adapted Programs.

Initially the library was physically located in the same
bureau where administrative applications were being
performed. As its initial use was infrequent, being
restricted to complex programs only, the response time was
not too critical. However, once the frequency of small
programs started to increase and the average number of
runs per day reached 3 or 4, the time lag between filling
out the forms 31d getting the printouts became critical.
It was necessary to transfer the library to another bureau
that did not work in block time only, and that allowed
immediate response. Thus, programs are today available

at a /360 - mod. 65 in an IBM bureau, operating in O0S.

10

11

CHARACTERISTICS OF PROMON'S WORK

Besides the conventional use of computers in the

mechanization of administrative routines and the solution
~ complex scientific problems, there are some other
‘nortant aspects in Promon's environment :

- projects tend to be non-repetitive, of short duration and

frequently require new skills. Consequently, the entire

company organization must have characteristics of great
- mobility, making it difficult to define and maintain

procedures; thus, the use of computer within the

conventional framework of mechanization of poutines would
result in severe limitations of its potential: first, the
services would be limited to only some tasks such as payroll,
accounting, and general control reports; second, the
maintenance costs caused by frequent changes in the company
would be high if compared to the small amounts of data

to be processed;

- projects start and finish at random dates, generate data

in random dates and require control information also in
random dates.This suggests a data entry/data retrieval
system independent of time cycles, with characteristics

¢imilar to those of real-time processing. However, the
applications generally implemented in batch machines are
“autines related to cyclical administrative processing,
4211y in a monthly basis, thus presuming data collection
reporting in the same cycle;

ojects in Promon are of variable nature and importance.

This means that not all of them require the same control
procedures. However, in batch processing it is extremely
convenient that the company be treated as a whole; thus

a single error in a relatively unimportant area may delay
the whole process. The processing itself is fast but
prenaration of files is slow and difficult. The company
loses reponsiveness and reports are systematically late;

12

- projects are performed in separate physical locations.
This requires the establishment of direct communication
means between each location and the data processing
center, since the EDP facilities must be available for
the whole company. If the EDP center uses batch machines,
its physical zone of influence will be restricted to
only the adjacent areas, or at best, to areas located
in the same city.

- projects require only a small amount. of complex calculations.
The use of the computer for some calculations is

" indispensable, but this doeé not mean a full utilization
of computer in a project. The use of the computer for
complex calculations reveals in fact a discontinuity in
the computing aids available for the engineer: on one
side, the slide rule and the desk calculators, on the
other, a computer of high performance but of difficult
access (not only physically but technically).

Traditional data processing centers do not meet then the
needs of medium and small-sized calculations; for this

kind of computatiohs, ease of access to the computing
facilities is more important than the actual processing
capacity of the facilities. It is also very important to
recognize the conversational nature of many problems,
impossible to satisfy when using batch machines. At present,
engineering applications satisfy only a small number of
users, in a small number of projects within a short space
of time. The attempts to extend use of the computer to

some simpler and more frequent applications have not
succeeded in many cases. The delay in getting answers has
caused the engineers to abandon the use of several programs.

If these points are ignored, the processing center must
become restricted to a marginal role in the company, and
its existence and development are limited to a narrow range

of uses. Cost displacement analysis becomes the only
criterion for the choice of computer applications, and
break even calculations would indicate when to switch
from service bureaus to an in-house machine.

In a company 1ike PROMON, this narrow concept of data
processing activities was thought, in the long run, to

be harmful, and was replaced by the definition of the
computer as a generalized information processing machine
and as new communications medium. Significant progress is
being made today in the use of computer system using this
‘new approach and we are-convinced that far-reaching
benefits can be expected from-a made of operation that
stresses man-machine interactiqn.

It is within this framework that hardware choices were
considered in PROMON leading toward time-sharing oriented
machines, and not toward batch-oriented machines.

It is also in this context that two long range goals.
should guide the data processing center activities:

- the implementation of a management information system;

- the development of the company's ability to use advanced
computer-aided design techniques.

"Information Systems" are today a rather controversial
subject.

Although an irtegrated information system may appear to be
a distant objective, the set up of a MIS Project seems to
be the best approach to develop data processing services
in the management area.

In the same sense, the engineers do not yet use displays
to produce drawings, but should start getting acquainted,
through the use of terminals, with computer potentialities,

thus preparing themselves to more advanced ways of
computer utilization.

13

o/u

SPECIFICATION OF A HYPOTHETICAL COMPUTER

Applications

It is possible to identify a wider group of applications
for a terminal-oriented computer system than it would

be possible if only mechanization of routines or the
solution of complex engineering problems were being
considered.

These applications cover such a 1aﬁge array of processihd
techniques and require such varied machine characteristics
that the difficulty of keeping the cost/performance ratio
at adequate levels for all applicatiohs in a single
equipment soon becomes evident.

One feasible solution would be a combination of a small
in-house machine and a large machine in a service bureau.
The problems exceeding the capacity of the in-house system
could be transferred to the bureau. Even in these cases,
PROMON's machine could be used for data preparation and
for listing of results. The transfer of the job to the
bureau could be made either by physical transportation

of tapes or by the use of some kind of inter-machine.
communication system. He could eventually arrive at a
type of solution inwhich the user would not know where
his processing is being made.

The integrated combination of two machines depends however
on the interest that the bureaus might have in this kind
of service and on the availability of good telephone
communications. In Sao Paulo, this combination of machines
is difficult presently, and also would represent a degree
of sophistication that is initially unnecessary. The
transfer of jobs and results through tapes, as a %irst
solution, was deemed satisfactory. :

14

As to administrative tasks, it is our intention to reach

a high degree of integration, including the data collection,
file updating, processing and data retrieval phases. In

some of these phases, the machine wauld have to operate in
the time-sharing mode and in others it would be used for
batch processing. Total compatibility between files created
in both modes is then required. Also, the two systems should
be available simultaneously so as to avoid schedules and
set-ups that would tend to reduce the system throughput, as
well as to avoid undue interference in the services being
entered via terminal. The connection of the batch and
time-sharing modes in thg same machine is also important
for engineering services. Many of the programs that are
being used nowadays and others still to be developed are
large and need not be conversational. Therefore, they can

be processed in the batch mode, but the user can still use
the terminal to place his job in the batch queue.

The variety of applications requires also a corresponding
variety of hardware and software, particularly for
terminals, languages and file access methods.

Finally, as a continuous increase in the volume of services
is expected, equipment performance should be maintained
through the installation of additional capacity without
having to resort to equipment substifution. Therefore, in
order to reach a reasonably lasting solution, the computer
must be modular and have a maximum capacity well beyond

the needs anticipated today.

A1l the above :haracteristics are necessary so that
applications such as those listed below can be executed
concurrently in the same machine:

- cyclical processing

- engineering and economic calculations
- data entry and retrieval

- text editing and material takeoffs

Cyclical Processing

This refers to the'basic monthly routines. It involves
payroll, invoicing, accounting and project and personnel
control reports. Associated to this processing we have
the core of PROMON's control systems, the manpower
allocation and control system. At first si git, it seems
to be a typical application of the batch mode. .

However it takes 4 or 6 working days, to gather and check
all the data originating from various sources, at different

" dates. The use of display terminals for data entry and '
eventually for the maintenance of some files to be kept
on-line and the reduction of the time span between
periodical data collection - time span need not to be
monthly nor must it be the same for all types of data -

will improve the process.

Engineering and Economic Calculations

This refers both to engineering computations executed by
project personne]nand to administrative computations.

The basic difference is.that the computations relating

to administrative applications, such as cash flow, budget,
statistics, vacation pay, severance pay, break even
analyses, etc. are relatively straightforward. These
calculations are very frequent for middle management,
although they are also sometimes performed by senior

staff personnel.

Small time-sharing programs, would solve these problems
well, and it would even better if general files (such as
information on personnel, manhour estimates, accounting
entries, etc.) could be consulited. As to engineering
computations they can be devided into "conversational",
and"non-conversational" ones. The former should be
processed in time-sharing, and the latter in batch mode

either in the in-house machine or in a bureau. In any
case, the engineer would always use the same terminal
for both types of applications. If communication with
the bureau is through the physical transportation of
the tape the user statements in the terminal should
enable the generation of the corresponding job stream.
For the engineer, the availability of such a terminal,
plus a desk <calculator would define a continuum of
facilities:

desk calculator;
time-sharing terminal;

in-house batch proceésing;
batch processing in the bureau.

Data Entry and Retrieval

These are applications generated by the need for special
information (based on the latest available data) at
random dates. These applications are important to PROMON
and can not be obtained through the cyclical processing.
Thus, in several cases, data acquisition would be more
frequent than necessary for monthly processing only.

Data retrieval is oriented to the following basic systems
and to combinations thereof:

- man-hour allocation system

- financial and accounting system
- manhour forecast system

- technical irnformation system

- personnel system

- marketing system

The data retrieval imagined for PROMON would be made in
two levels: the first one would consult small files and
would produce simple reports, with a small amount of

17

18

printed information and not requiring é]aborate output
formats. Searches in large files, searches requiring
use of data from several files or reports requiring
specially formatted printouts would be part of the
second level of retrieval. In the first case, the files
could be kept on-line and the data retrieval could be
made in the time-sharing mode. Second level data
retrieval could be made in the batch-mode.

In addition to the basic software to support the _

development of application programs, it will be necessary
" to hrave special file access methods to make data retrieval
efficient.

Text Editing and Material Takeoffs

Included here are the typing of long texts requiring
frequent modifications, that can be assembled from standard
paragraphs used as building blocks, such as proposals,
contracts, and major equipment specifications. Also
included are material takeoffs from detailed drawings

for the preparation of material requisitions. These tasks
are typical time-sharing applications, requiring only a
terminal or printer with good printing quality having
both lower and upper case letters, since the output will
be considered as final document. The material takeoff
programs can also be used to prepare, as a byproduct,
preliminary material cost estimates.

Characterist (s Required

We can now proceed to ana]yse'these uses as a function of
the following basic variables:

Volume to be processed

Time required for results

Degree of planning necessary for use

19

Man-machine interaction

Number of direct users

These variables, when considered in terms of batch or

time sharing operating systems are not independent.

Figure 1 shows the type of the qualitative dependence:

the volume being processed, time for results and degree

of planning are considered large when in batch systems

and very small in time-sharing. Inversely, a large

number of direct users and a strong interaction with

the computer are characteristics of time-sharing only.

A batch system is not designed for these purposes. The
shaded areas in the right hand side of Figure 1 indicates
the most suitable solution for each of the above mentioned
applications. From Figure 1, it is obvious that a computer
for PROMON should be able to operate on both time-sharing
as well as on batch basis.

Following the idea explained under item 4, the PROMON °
computer would itself be the terminal of a larger machine.

The trade-off point between a PROMON machine and the use
of the bureau has to be displaced to medium size batch
uses,leaving to the bureau only the very large processing
tasks such as for example, calculations of structures by
finite elements, or again, the use of packages such as
ICES.

However, since it has been stated that the best solution
for the problemr ~ould involve a combination of in-house
hardware capabilities and use of bureaus, it will be
necessary for the in-house machine to have tapes compatible
with IBM equipment, and furthermore that it be compatible
with IBM systems for Remote Job Entry.

20

Another important featuré, as mentioned above, is the
possibility of modular expansion. This would increase
the system useful life, by making it possible to
acommodate future needs. ‘

The main core capacity, assuming an efficiency similar

~ to IBM machines, should be at least 64 kbytes (a /360

model operating in DOS with this size core is sufficient
for all engineering and business applications developed

to date). Naturally, this estimate may prove inadequate,
depending on the space taken up by the operating system,

on the efficiency of the object code, or on the performance
‘requirements for time-sharing operation:

For time-sharing it is important that three types of
terminals be considered as standard: teletype (for
engineering and queries), dispiay (for data acquisition)
and "hard copy" terminals with upper and lower case letters
and good printing quality (text editing).

For batch processing, the usual peripheral equipment would
be necessary: 2 tapes, 1600 or 800 bpi (compatible with
IBM) card reader and printer (132 columns). The card reader
and the printer would not have to be very fast (at present,
in the bureau, 60.000 cards are read and 1.300.000 lines
are printed monthly). However, as their perfdrmance is not
high, it would be interesting if multi-programming in batch
and the possibility of using spooling techniques were
available. Disks with fixed heads because of construction
or for convenience.

The software needs are:

Accounting routines - to appropriate computer usage to the
several projects and the internal accounts of the company.

High level languages - FORTRAN, COBOL, and BASIC, all with
advanced features.

21

Machine-oriented language.

Conventional utility programs for time-sharing, such as
text-editing and routines for statistical calculations.

Conventional utility programs for batch applications,
such as SORT/MERGE.

Basic supporting software for the information system
(of a nature similar to the IMS - Information Management

System of IBM). .

Extensive library of application programs.

22

DECISION ON BUYING THE HP/3000

Based on our profile, described earlier, we started
looking for the closest fit, in the market, to our
hypothetical computer.

The main companies marketing computers in Brazil in 1972
were by order of size: IBM;Burroughs, UNIVAC, Honeywell-
Bull, HP, NCR, Siemens (Germany) and C.I.I. (France).

We had our first contact with the HP/3000 through a copy
of a preliminary external specification in the 3rd quarter
of 1972.

It is easy to understand our excitement since it was almost
a perfect match to our profile.

From then on we stopped looking for others and started
studying the HP/3000 move deeply. .

In Brazil, the selling of the idea and taking of a decision,
in this matter, is not an easy task. IBM holds about 60% of
the market and Burroughs 30%. The last 10% were divided
among the other companies.

We submitted a preliminary order based ona preliminary
proposal. The plirs were to start the HP/3000 project in
1973 and have it installed in January 1974,

In february 1973 we received an advanced word that the
HP/3000 had project delays and that it would not be
marketed in Brazil in the foreseeable future.

The following events developed next:

Feb-May/73 - Look for an alternative and comparison of
the considered systems.

- June/73 - Issuing of a report recommending the PDP-11/45
with RSTS/E and RSX-11.D

- June/73 - Visit to several PDP/11 installations in USA.

- August/73 - Acceptance of DEC proposal and issuing of a -

draft contract.

- November/73 - HP/3000 back to Brazilian market with a
concrete proposal.

- December/73 - Visit to HP in USA.
- January/74 - Contract signed with HP.

- July/74 - HP/3000 installed.

23

24

WORK IN DEVELOPMENT

Administrative

In this area we are developing the first phase of the
project which should be running in July/75.

It is essentially a "conversion® of the Bureau applications,
i. e., we are going to have essentially the same services in
the HP/BOOO hopefully, much better services, on line and
with an enlarged Data Base. The applications in the Bureau
are all batch with sequential files. In the HP/3000 we are
using IMAGE with many more data items.

In this first phase we still keep some programs in the
Bureau mainly the heaviest batch ones. Communication w111 be
done by tapes.

The HP/3000 will do all data collection and validation.
Validated files will go to Bureau processing on tapes, and
results on tapes will be fed back to HP/3000 for report and
consultation.

.The first phase should be ready by mid 75. Our plans are
to have all Administrative Systems run in the HP/3000 by
the end of 1976. ' '

This will be possible because the data processing problem
in Promon is bounded more by dinamic changes in the system
and also by response time than by large volumes of data.

25

Engineering

In this area the work is being deve]oped;in three fronts:

1.
Conversion of Bureau Programs to run on the HP/3000:

.ll]
In batch with no changes besides the ones required for
conversion.

] .'2 . .
With small I/0 changes to make the program conversational.

].3
With complete redesign to incorporate the capabilities of
on-line processing.

2.
Design of Medium and Small Size Programs

With the experience of use in the Bureau we concluded that
only very large and complex applications were done in
computer. The response time to run small and medium size
applications was prohibitive. A batch system in-house would
have helped but not much. The idea is to develop a core of
day to day engineering application and let the project
groups themselves develop new ones as they arise.

26

3.
Engineering Training

There are courses being run to train Engineers and
Technicians in the Engineering Areas to do their own
development and use of programs. The expectation is that
in the long range small and medium size programs will -be
developed by the engineers (users) themselves and'only the
large programs that require computer expertise will be
left to the Computing Department. The courses are:

Basic for Beginners

Advanced Basic

MPE for Beginners

Advanced MPE

Fortran Refresher

HP/3000 Subsystems and Programs

To avoid duplication of work and coordination in the
development, there is a commitee composed of members
representing one or more related areas of engineering to
decide on polices and also audit the work being developed.

27

ACCOMPLISHMENTS -AND DRAWBACKS

The strongest features of the HP/3000 are well advertised
by HP and according to our view the following are really
proved:

- Versatility

- Capability

- Simplicity of use

- Hardware reliability

- Project (Hard/Software) Integration
- Price/performance '

Although it may sound strangé to you the weakest points
exist because of its nicest features.

One which is, by now, well known, specially by HP, is a
software, too powerful for its hardware. We are counting

on a better CPU and more real memory. Since the capabilities
are there, people tend to use them and, at this point,

all feel a lack of more processing power.

Cobol and Sort under version B are extremely slow,relatively
speaking. We have indications that Sort was improved a ot
under version C. We expected a much better Cobol compiler and
it came slower. If it, at least, would not degrade the over
all system performance as much as the old version it will be
~acceptable. We do not have indications on that as yet.

There are some inconsistencies in the System that are hard
to believe in such an Integrated System :

28

- Use of a Data Base restricted to the specific account
and group where it was created. This completely breaks
the accounting capabilities. No way of charging different
users without loosing some of the account security.

- A data file created by Star is incompatible with the
Editor.

- Integer in Fortran on a single word. One of the more
frequent conversion problems.

- Logical records in unformatted reads or writes are
incompatible with IBM Systems. This 'is specially bad when
using BACKSPACE.

- Intrinsics incompatible with Cobol and Fortran due to
addressing.problems parameters.

- Lack of spooling and capability of freeing the terminal on
long sessions (available on version C). '

We have not run into any big problem conversion, exéept for
a few, more or less easily detected, mainly in syntax
differences compatibility in parameter passing, lack of
entry points in Fortran, dificulty in finding detailed .
~information in manuals, - when not missing - , segmentation
and file conversion.

We think the commercial features can and should be improved.

Manuals should also be improved specially, Fortran, Cobol

and Image. Perhaps there is a manual, missing, in the set,
for use of the subsvstems. Something of the kind of IBM
Programmer's Guide that explains how to use the system when '
you already know a language and do not want to read the big
MPE manual.

Error messages and debugging aids at run time should also

be improved. This is specially true in Cobol where,

together with the slowness of the compiler, you almost loose
the conversational capabilities of the HP/3000.

Special Problems:

In Brazil, due to our pioneer installation, for which
even HP Brazil was not quite prepared, we had three major
problems: internal trainning, software and SPL programming. -

1.

The backgrounds of most of the Brazilian computer
professionals are developed on IBM machines running DOS and
using Cobol and Assembler. It was not easy to convey some
of the different concepts of the HP/3000.

It took about 3 months of actual use for them to get
confidence and we spent a great deal of -man power in
training. HP ran only one course of System Utilization, in
Engliéh, when the machine was not installed yet and most

of the appreciation for the course was lost.

2.

We did not plan to have our own software specialist from
the very beginning since we were the only installation

and we would have one software specialist from HP. However,
this did not work. In the day to day operation, many times,
we felt the need for a handy software specialist to quickly
give an answer to 31 user who was not sure about the reason
of his problem, whether misuse or software problems.

30

3.

We diq not foresee at the beginning so much SPL programming.
Actually we did not plan for any SPL programming. Our
jntention was to use Cobol all the way and use SPL later
for optimization. This was not possible due to the |
complexity of the project and also slowness of Cobol which
would become prohibitive in some instances. To teach SPL
was also difficult. Algol and PL/I 1like languages are not
very much used yet.

Nevertheless it was SPL that made it possible seriously
to start using Structured Programming. We even derived our
own rules for making Structured Programming also possible
in Basic, Fortran and Cobol. We are having great success
using this technique. ' '

In the Engineering Area we are done with conversion and -
running on schedule with new developments.

The administrative project is also on schedule with no
major'problems due to HP/3000 besides the ones already
pointed.

31

FUTURE

So far we are very happy with our decision on buying the
HP/3000. '

We are convinced it is presentely the machine that best
fits our profile. We are counting on its own future with
improvements in performance. We know however, that when
they come they may already be»somewhathlate for us.

We foresee a future where we would have a dual HP/3000, one
backing up the other, doing all internal administrative
processing and all medium and small size engineering programs.
For large programs we would be linked, through the HP/3000,

to larger machines doing remote job entry or even working

as a front end computer to a time-sharing Bureau.

A11 branches of PROMON nationwide will be linked through
portable terminals to our computer.

A11 indications are that all this will be possible in the
near future.

B

32

BATCH MACHINE CHARACTER/ISTICS

VOLUME TO B)
___ PRocEsSED. DEGREE OF PLANNING |
S A A el S e G D G Sm G SE S D IR GRS W R D GNP AP Sim G Gme GV m Gme s Gma ~mm s e - 20 L nlkadbadh shedood
"i':'::' Q}
uR
o |l :
. Sy fled BE
ug || X L
) R I N
o o EM S S
"U"g "uj ==
N 4
Qg N
< N Sy
' -4
_________________ 20 IR S it
‘u L T K : ‘Q
8 | B I | TS
Wil = Sl I B
_?r B I~ S,
SO0 | IR | SRR | i
_ gy PEGSCUQUIE EISAUS | IR | NEFIN | RO Y I
MAN-MACHINE NUMBER OF .
INTERACT]ON DIRECT USERS APPLICATIONS OF
TIME-SHARING MACHINE CHARACTERISTICS - DATA PROCESSING
. : N PROMON

¢ | FIGURE £

ONS

ENGINEERING APPLICATY/

ASR~33 TERMINALS
For

HP3000
INITIAL CONFIGURATION ForR PRomMon

-

MEMORY MEMORY MEMORY MarroRy

MODULE MODULE MODULE MODULE

16K W fexk W 76 £ W (1.4
CONTROLLER CONTROLLER

CENTRAL 2ATA BUS -

CENTRAL

PROc&ESssOR |

AND
I/0 PROCESSOR

CONSOLE
3O0cps

TERMINAL
CONTROLLER

33

Controller

Controller m
. _ niro’ e {6/#3/:::’246%/5

MULTIPLEXER
CHANNEL

(ptors
fermnals)

(O

. Lfo BUs

FoR

? DISPLAY vwITS

DATA £ENTRY

P50 Kby tos
per second

COvVrROLLER

llllll 2/5¢ l 312KB/s

TAPE
PDRIVER

TArPE
DRIVER

40—6;05
9 Frock
1600 é,b.f

COANTROLLED

LINE PRINTER
400 /z2m
06 chorec.

CONTAOLLER

nn

|

llislelele

-~

- .- a

ASR =23 AND

DISPLAY UNIT
For

DEVELOPMENT

esssseme mom e

CARD READER
€00 cpmy

SECTION 1II

SOFTWARE OPTIMIZATION

THROUGH RESEGMENTATION

MIKE CLARKSON

presented to:

HP-3000 USERS GROUP MEETING
in

MIAMI, FLORIDA

February 27, 1975

Section I-1

I. INTRCDUCTION

During the past couple of years, we at Data Base Management '
Systems, Inc., have developed quite a few large, sophisticated soft-
ware packages. These packages tax quite heavily the resources of
the HP-3000 and tend to exercise the machine, both hardware and
software, to its limits. In order to keep our program development
from overwhelming the 3000, we have developed methods for efficiently
maintaining our source code and for optimizing the execution of our
programs. It is extremely important to have the most efficiént
software possiblé when dealing with a computer such as the 3000,
which is very sophisticated, but yet has such small memory limita-
tions. The 3000 can perform very well if the programmer will take
time to optimize his software so that it complements the 3000's
resource management. This paper will outline several areas for
program optimization and will expound on the area of program

resegmentation.

Section II-1

II. SOFTWARE OPTIMIZATION

The need for program optimization should be intuitively
obvious, since it is very unlikely that a program will exist in its
most optimal form when it is first written. Since most sophisticated
programs will require optimizing before they will run at all, pro-
grammers will make a "first approximation" before the program is
even run for the first time. From the initial run on, the programmer
will continuously learn new short cuts as well as observe his program's
running characteristics; thus, there is the continuing need for program
optimization. There are many areas available that the programmer
can attack in order to make his programs more efficient. Following
are several examples:

Since MPE is a relatively unknown factor to most programmers,
one should avoid calls to MPE as much as possible. If a call to MPE
is unavoidable, one should attempt to call the lowest level intrinsic
available in order to avoid unnecessary overhead, even if it means
making the call in privileged mode. Privileged mode execution need
not be avoided as long as one is very careful of each instruction that
is executed while in privileged mode. The higher level, user mode
MPE intrinsics have a lot of overhead determining if the user has the

capability to perform the desired operations.

I1-2

Another area for consideration is minimizing disc accesses.
If small scrétch files are necessary, one should weigh the advantages
of a local dynamic array or an "OWN'' array as opposed to a disc
file (keep in mind, however, that a larger stack could cause more
disc accessing by memory management). Also, we have found that
it is much more efficient to have our own buffer manager which uses
direct access disc files with "'no buffering" option, rather than de-
pending on the file system to optimize our disc accesses.

Another area which is not in the scope of this paper, but is
well worth mention, is modular, structured progranﬁming with clean
paragraphing in order to minimize program maintenance time. 1

Finally, but not exhaustively, is the area of program re-

segmentation which is discussed in detail in subsequent sections.

Section III-1

III. RESEGMENTATION

We have found that one of the best and yet simple methods of
program optimization is resegmentation. Since the memory size of
the 3000 is limited to a maximum ‘of 64K words and many SPL pro-
grams require more code than available memory, the programmer is
able to group his code into segments by using the SPL command
"$CONTROL SEGMENT=name'. This is called segmenting the code.
One should attempt to gather into a segment, procedures which call
each other since there is additional run time overhead involved when
one procedure calls a second procedure that is in a different segment.
If a relatively small procedure is called very often by some other
procedure, and the small procedure is in a different segment and can-
not be moved, then it is useful to make a copy of the small procedure
and make it a subroutine inéide the calling procedure. This eliminates
both overhead of PCAL execution and segment swapping. We have
found that an optimal code segment size is around 2000(octal) words.
Reasonable limits are from 1400(octal) to 3000(octal) words. Procedures
which are called infrequently such as initialization, termination, and
error handling procedures should be grouped into larger segments.
One should use as many segments as necessary to make his program run
efficiently, but at the same time, should be frugal with segments, since
there is a hardware limitation of 256 segments which can be active at any

one time.

II1-2

Not only is it advisable to segment one's code optimally, but
at times one should also segment his data, the latter being slightly
more complicated. For example, say a program needs a 4000 word
buffer at various times during its execution, but it is undesirable
to incorporate the buffer into the normal stack, then an extra data
segment can be utilized. The intrinsic GETDSEG can be called,
giving it the desired buffer size and it will return the DST number
of the extra data segment. Then, during further execution whenever
it is necessary to access the buffer, call the intrinsic EXCHANGEDB(DST#)
and the DB register will then point to the extra data segment and it
can be accessed just like normal DB storage. Remember that the
regular storage normally accessed via the DB register and the extra data
segment cannot be accessed simultaneously. In order to switch back
to the regular DB storage, call EXCHANGEDB(0) and the DB register
will be returned to its original value. Many extra data segments can
be maintained in one program, but it is the responsibility of the program
to keep track of each extra data segment's DST number. When the pro-
gram is through with its processing, it is necessary to release each
obtained extra data segment back to MPE by calling the intrinsic
RELDSEG(DST#). The program must be in privileged mode in order to
call any of these intrinsics. It is important to release all extra data
s;egments back to MPE, or they will be lost until the system is COLDSTARTED

(or COOLSTARTED).

ITI- 3

Once a program is segmented, it can be run along with one
of the available monitoring programs such as TRACE (described
in subsequent sections) which will produce statistics describing
segment swapping, et cetera. The program can then be reseg-
mented by either recompiling after moving the "$:CONTROL SEGMENT"
cards or by using the SEGMENTER command NEWSEG. The pro-
duced statistics will indicate which procedures call which other
procedures in other segments, and using this information, the
programmer can regroup procedures which call each other most

often. The resegmenting, monitoring process can be performed

repeatedly until the most optimal segmentation is achieved.

Section IV -1

IV. AVAILABLE PROGRAMATIC ASSISTANCE

Presently, there are three packages available to aid the
systems programmer in optimizing his software. They are
(1) SAMPLER; (2) AUTOSEG; and (3) TRACE. SAMPLER is a
software sampling system used for measuring the relative time
spent executing various sections of code. SAMPLER requires
an extra clock/TTY interface board to be installed in the system
before it can run. The SAMPLER documentation in the appendix
completely describes all necessary steps. Be sﬁre to read the
complete documentation before attempting to use SAMPLER.
AUTOSEG is a performance enhancement tool which provides for
the automatic resegmentation of programs based on data gathered
under actual program operation. AUTOSEG in its present form is
not very useful because it is not quite smart enough to resegment
a USL file any more optimally than could casually be done by a
programmer. Sketchy documentation does exist in the appendix
describing the three functions of AUTOSEG. AUTOSEG does prompt
the user for the necessary information. TRACE uses the hardware
"trace' facility to collect data pertaining to processes at the time
of intersegment transfers caused by PCAL's and EXIT's. This

package is very useful in helping the programmer resegment his

Iv-2

programs by hand. The following section describes TRACE in

detail and additional information is located in the appendix.

Section V-1
V. TRACE

Thié section will discuss in detail the software monitoring
package TRACE which analyzes procedure calls external to a seg-
ment, showing caller, callee, presence of the called segment and
frequency. In order to use TRACE, a new version of MPE must
be generated and the produced tape must be COLDSTARTED. The
version of TRACE to be discussed runs under MPE32000B. 00, 09,
It is important to note that TRACE periodically halts the machine
and should therefore be run only when a program is to be TRACEd
and the regular operating system should be reloaded before ény

normal machine usage is resumed.

Following are the steps necessary to generate a TRACE cold
load tape:

1. Restore all files from the distribution tape which belong
in group/account "OUR. SYS."

2. Patch INITIAL to obtain a data segment for TRACE by
changing an "IF FALSE THEN'" to an "IF TRUE THEN".
The octal instruction to be changed is 25001 which is
found around address 2244(octal). Enter the following
command sequence:

:RUN PATCH
FILE=? INITIAL
? M, ¢, 2244
25001, 0600

?E

3. Execute the following jobstream to generate the TRACE
version of MPE:

:JOB MANAGER. SYS, OUR
:PURGE ININ
:SPL, M10MOOOB, , $NULL, S10S000B, NEWM10M
:SPL ININY,,, NEWMIOM
:PREP $OLDPASS, ININ;CAP=PM
:SAVE ININ
:PURGE NEWM10M
:PURGE EXIN
:SPL MI11M000B, , $NULL, S11S000B, NEWM11M
:SPL, EXINX,,, NEWM11M
:SAVE $OLDPASS, EXIN
:PURGE NEWM11M
:EQJ -
:JOB MANAGER. SYS
:FILE SYSTAPE;DEV=TAPE
:TELLOP MOUNT BLANK TAPE ON TAPE DRIVE UNIT
:SYSDUMP *SYSTAPE
YES
HS8
<< BLANK CARD>
NO
NO
NO
NO
NO
NO
NO
YES << SYSTEM PROGRA M CHANGES»
ININ, ININ. OUR
EXIN, EXIN. OUR
& BLANK CARD>>
NO
& BLANK CARD>»
:EOD
:EQJ

4. Note that EXIN is a USL file and ININ is a PROG file.

5. The tape produced by SYSDUMP should be loaded with

the COLDSTART option.

Once a TRACE cold start tape has been generated and a
program is ready to be traced, perform the following steps to ob-
tain printer output describing the program's segment activity:

1. CCLDSTART the TRACE version of MPE.

2. Run the program to be TRACEd from a terminal,
generating an LMAP on the line printer. If the CSTs
are not allocated contiguously, abort the program and
run it again until the CSTs are contiguous. Make sure
the program does not terminate until after step # 3.

3. From the console :ALLOCATE the running program.

4. Allow running program to terminate.

5. From console :RUN TRACE.OQUR.SYS - respond to

prompts as follows:

? INIT O
? TRACE %n/%m

where n is the first CST number on LMAP
and m is last CST number on LMAP

?RUN

If the system is equipped with an extra clock/TTY inter-

face board, rather than entering 0 with INIT, enter the

decimal DRT number of the clock board (eg. ?INIT 12).

6. Hang scratch tape on tape unit #7 with write ring in.

7. From the terminal run the program to be TRACEd with
valid input, output, etc.
8. When the program terminates on the terminal:
From console continue responding to TRACE prompts
as follows:
?EQF
?S3TOP
?CLEAR %n/%m (see above]
?EXIT : '
9. From console :RUN TRACERED. OUR. SYS
10. Respond to TRACERED prompt with:
?SEGMENT CALLER EXIT
11. Statistics will be printed on line printer.
(Note: If the machine halts during execution of the program being
TRACEd, merely hit the RUN/HALT switch and the machine will
continue executing. The halts are caused.by such things as no
write ring in tape or printer being used by another process. Also
make sure that the program to be TRACEd is the only program run-
ning on the system [ie. besides TRACE. OUR. SYS]J).

The next page is an example of one page of the output

geneirated by TRACERED.

. PAGE 1 HP3000 SEGMENT TRACE DATA REDUCTION PROGRAM
‘ SEG_ENTRY CNT. ABSENCES %ABS. STT ENTRY CNT, %SEGE TIMED ENT, $STTE TIME/C SDEVT/C PIN SEG DELTP CALLS #STTE
| -
51 - 121 564 73 _12.9__ 001 5_:_6__'{_}00‘.0_‘_,__ 432 T6.6 .28 ,13 026 144 00234 564 10040
] 122 2 1 S0.0 001 1 50.0 0 o0 <00 .00 026 136 00402 * 1 100.0
5 002 1 5040 0 «0 .00 ,00 026 136 00375 1 100.0
‘ S S A A S
Iy’ 126 72 13 18.1 001 24 33.3 24 10040 0l6 «01 026 130 02041 24 100.,0
Fn ___ o002 24 33.3 17 70.8 26 400 026 130 02060 24 100.0
b TT003TTTTTTTTTT O T 843 T T 4 6647 T T30 428 T 026 133 00364 T 6 100,07
o 004 11 15.3 11 100.0 27 +04 026 133 00356 6 54,5
2 026 136 03337 5 45,5
n 005~ 87T 649 T 5 100s0 7T 612 TTTTTL00 7026 133 00346 TS5 100,07
2 006 1 1.4 "1 10040 019 «00 026 133 00331 1 100.0
n 007 1 1.4 _0_ .0 +00 +00 026 133 00342 1 100,90
16| -
B 127 45 40 88.9 001 45 100,0 4 8.9 1.39 «32 026 133 00227 45 100,0
n . ’ .
9 130 512 6 11,9 001~ — 256" 50,0 135 527 1.21' 22177026 133 00173256 100,0——
£ 002 256 5040 150 S58.6 - 1.1l «15 026 133 00151 256 100.0
< 3 . : .
23 131 2 2 100.0 006 I50.0 0 0 200 5000267 133700250 “17100.0
¥ 010 1 50.0 0 o0 «00 .00 026 133 00252 1 100.0
gs 132 1 17100,0 001 T17100.0 TOTTTLOTTITI00TT 40077 026 131 00642 TTTTTTT 1100407
= 133 342 17 5.0 001 342 1000 .- 20 5.8 047 «04 026 122 00767 ’ 8 2.3
T - TUTTT026° 134 007736 TTTl.2T
3 026 135 01111 266 717.8
¥ L) o 026 136 03421 . 64 18,7
- 134 1 1 100.0 001, "1 10040 0 o0 «00 «00 026 135 00467 1 100.0
p4 135 165 30 18,27 00} 197 72T 1157 96.6 «09 2007 026 133 00621 44 " 37,07
T 026 134 00735 4 3.4
" 026 136 03136 2 1.7
” —_ T T T 026 136 03215 T T 69 58,0 T
= 002 2 1.2 2 10040 069 «11 626 133 00272 2 100.0
L 003 40 2442 0 o0 200 .00 026 133 00216 40 100.0
= 010 244 377750 "0 24 2017026 134 00774 ~4°100,07
13 - .
-] 136 15 5 33,3 006 1 6.7 (]) <00 «00 026 122 00222 1 100.0
3 YT T TTT010 T T T T T 3363 T T T8 710060 T T 609,007 026 153 00066 T T Tl 2040 T
o 026 157 00006 1 20,0
ks 026 160 00044 1 2040
I - - e TTUC026 161 001067 17 20,0~
E] 026 163 00124 1. 2040
3 012 9 6040 7 77.8 _ .09 .00 026 122 00731 9 100.0
%‘1 . 137 1 1 100.0 001 1 10040 0) «00 .00 026 135 01334 1 100.0
L3}
T 140 35 317 788.6" T001 T 350000 T T T U0 T T e 07T 0007777500 77026 133 004217 3571000~ "~
:
ol 141 20 12 60.0 001 1 5.0 1 10040 38 - L00 026 147 00043 1 100.0
- = 002 197798, 0 O T 4T T 1e42 T 444770267147 00100 "7 36487
‘ . ’ 026 147 00206 12 63.2

V-6

Th‘ere are sixteen columns of values, four of which are non-zero
because there was an extra clock/TTY interface board in the sys-
tem when the program was TRACEJ.
Following is a description of each of the sixteen columns
of information on the TRACE reduction printout (the first eleven
columns comprise the called segment statistics and the last five
columns comprise the caller statistics):
1. three digit octal CST (code segment table) number of
the segment
9. total PCAL entries to the segment
3. number of PCAL absences only (EXIT absences cannot
be traced)
4. absences as a percentage of total entries
5. three digit octal STT (segment transfer table) entry number
6. total calls to that STT entry
7. STT entries as a percentage of the total entries
8. number of timed STT entries (total number of STT
entries on which it was possible to gather timing information)
9. number of timed entries as a percentage of the total STT
entry count
10. average time per STT call in milliseconds with all TRACE
overhzad removed (this time is the time spent in this segment
less the.time spent in other segments which were being traced

and were called by this segment)

11. standard deviation of the time per call in milliseconds

12. three digit octal process identification number of caller

13. three digit octal CST number of caller

14. five digit octal delta P (ie. offset into calling segment to
PCAL made to called segment)

15. total calls made to this STT by the caller from this
delta P

16. number of calls as a percentage of the STT entries

An example of how to recognize potential optimizatiohs is as
follows: Notice that the segment at CST #140 was called 35 times
which caused 31 disc accesses or 88.6% of the total. This is a very
high percentage to have causing disc accesses. The only entry point
in the segment which was called was STT #001 and it was called from
only one place, which was 421(octal) words into the segment at CST #133.
Now one would look at the LMAP describing these segments and
determine which relative segments within the program were loaded at
CST entries 140 and 133. Then looking at the PMAP of the traced pro-
gram, one would analyze the present size of the segment corresponding
to CST #133 to see if it has room to add the code of the RBM located
at STT #001 of the segment corresponding to CST #140. If there is room

in the segment, 'he RBM can be moved by using the SEGMENTER

command NEWSEG or by changing the appropriate ""$CONTROL
SEGMENT" card in the SPL source and re-compiling the procedure.
This one optimization would save 31 disc accesses. It is important

to also determine if there are any other procedures in the CST #140
segment which make internal segment calls to the STT #001 procedure;
since they could make more than 35 callg the expected optimization
could cause a degradation.

The timing information found on the TRACE reduction print-
out is also useful. Through close observation of the timing statis-
tics, one can learn where in the code a major portion of execution
time is being spent. For example, two entry points (STT #001 and
STT #002) in the segment loaded at CST #130 were each called 256
times. Note from column ten of the TRACE reduction printout that
each call to these entry points averaged 1. 21 milliseconds and 1. 11
milliseconds respectively in duration. This time factor is somewhat
high relative to most of the other TRACEd STT entries. Given this
fact, one should analyze the code of the procedures which correspond
to these STT entries and determine if any code optimization could be
performed in order to help these procedures execute more quickly.

Following are some helpful hints for using TRACE that should

be utilized. In o-Cer to get good timings for every RBM of the program,

V-9

the USL file should first be run through AUTOSEG's NICRSP processor
to generate worst case segmentation so no internal segment PCALs
are executed. This is done by (1) make a copy of the USL file;

(2) :RUN NICRSP.OUR. SYS and give it the name of the USL copy;

(3) then prepare the resegmented USL copy and run it through TRACE.
There are two things to keep in mind when using TRACE: (1) TRACE.
OUR. SYS runs in privileged mode so the user needs privileged and
account capabilities; (2) TRACE. OUR. SYS uses its own tape driver
for I/O so MPE must not be allowed to use any other tape drive on

the same controller that TRACE is using. An extré. clock/TTY inter-
face board may be easily added to the system by assigning the extra
board an unused DRT number and plugging the board into the system.

MPE need not be reconfigured to recognize the new DRT.

Section VI-1

VI. CONCLUSIONS

We hope that the reader has gained an appreciation for pro-

gram optimization, especially through resegmentation. We at
DBMS have enjoyed performance improvements of as much as 400%
to 500%, using resegmentation alone. Resegmentation is an easy
first pass to make before getting into the optimizations that require
such things as changing existing code. The software monitoring
packages described in this paper will be released on the contributions
tape and are stored in the group/account "OUR. SYS". If any' system
anomalies occur during the use of TRACE, it should be assumed that
they are attributable to that usage and, therefore, no problem
reports should be submitted to Hewlett- Packard. The appendix
contains a description of the contents of OUR. SYS which will be on the
tape that is distributed to the users. If there are any questions con-
cerning the software monitoring packages, please direct them to me
at the following address:

Mike Clarkson, Vice President

Data Base Management Systems, Inc.

12100 N. E. 16th Avenue

North Miami, Florida 33161

REFERENCES

1. HP-3000 Users Group Proceedings, May 10, 1974, p. 69,

PROGRAM PERFORMANCE, by Stephen Sontz

APPENDIX

o R S Sy Sy S P
PN R R R TR Tl =

© 00 -1 D G WD -

CONTENTS

OF GROUP OUR.SYS

SAMPLE
SAMPLES
SAMPLING
SAMPLINS
DRS

DRSS
SYSGEN
M10MO00OB
M11MO0OOB
S10S000B
S11S000B
EXINX
ININX
ININY
TRACE
TRACES
TRACERED
TRREDS
NICRSP
NICRSS
ORSP
ORSS
ORTDRP
ORTDRS

<< SOURCE »
“SOURCE >

&« SOURCE »
<<OBSOLETE>>
<«PATCH DECK>
<PATCH DECK 3>
{¢SOURCE >
-<SOURCE »
«PATCH DECK>
<«PATCH DECK
< PATCH DECK >~

&SOURCE »

KSOURCE >~
«’SOURCE -7
.~'SOURCE

-+ SOURCE ™

SOFTHARE SAMPLING SYSTEM

qarch 7, 1973

B.
C.

D.)

F.
G.

Introduction . .

Hardware Requirerients for Sampler

Contents

Sampler Operation and Format . . .
Setting up the Sampler . . .
The Data Reduction Program .

A Case Study

-

Miscellaneous Comments . .

e

L

o
1]
k

- 0 O H W N -

A.

Introduction

The Software Sampling System is a useful tool for measuring the relative
time spent executing various sections of code. The system consists of
three parts:

1.

I1.

I11.

The Sampler interrupts the CPU at a prese]ected frequency and records
on tape the following information for any number of selected code
segmaents: :

1. Hunber of code segment interrupted.

2.. Relative P in that code segment prior to the interrupt..

3. Approximate size of the stack.

A1l user interaction with the sampler is done via the Setup program.
. L

There is a setup program u1th provision for initializing the sampler,

selecting segnents to be sampled and settlng the sempling interval.

A pqﬁaﬂnggg;jgp_gyggrqm is available to process the data tape. This
program w111 provide the Totiowing niscoyrams:
1. Relative time spent in each segment sampled.
2. Relative activity within selected segments.

. 3. " Size of stack from D5 to S for each sample.

-~

A. Introduction

The Software Sampling System is a useful tool for measuring the relative
time spent executing various sections of code. The system consists of
three parts:

l.

I1.

I11.

The Sampler interrupts the CPU at a preselected frequency and records

on tape the following information for any number of selected code

segments:

1. Humber of code segment interrupted.

2. Relative P in that coce segment prior to the interrupt..

3. Approximate size of the stack.

A1l user interaction with the sampler is done via the Setup program.
A L

There is a setup program with provision for initializing the samplew,

selecting segments to be sampled and setting the sempling interval.

A Data _Raduction Program is available to process the data tape. This
program w111 provide the tollowing niscograms:
1. Relative time spent in each segment sampied.
2. Relative activity within selected segments.
. 3, Size of stack from D5 to S for each sample.

-~

B. Hardware Reguirements for Sampnler

To run the Sampler in its present form requires the following hardware:
1. A 3000 System which will run MPE and for which the maximum DR] pumber

ggs been set to 70 greater than reguﬁred bx any device,

2. An extra clock/TTY board with a known distinct device number.
3.. A dedicated tapge drive and controller. ° i
4. An extra terminal from which to run the setup program.

'« w3 =i

C. Sampler Operation and Format

A

The sampler is an interrupt handler which resides in the upper DRT table
together with its buffer. This interrupt handler is activated by timer
interrupts from the extra clock/TTY interface board.

The sampler then traces stack markers backwards to determine vhich code
segment was executing prior to the interrupt. This code segment number
is used to index into an internal segmant bit-table which determines

whether this segnent's data should be recorded. If the segment has been
selected the contents of its status register is entered in the sampler's

. buffer together with the relative location (within that segment) of the next

instruction to be executed. The relative value of the top of the stack is

also entered and a user stack/interrupt control stack bit is set.

If the buffer is full interrupts are disabled and the buffer is written
directly onto tape. If constant timing interval has- been specified at

Selup Lime the woune regisier of the tiwer is Cleared just prive to exit.

However, if the randomized jitter has been specified on the timing interval, |
a pseudo-random number between 0 and 255 is loaded into the count rzgistar.
The switch register is used as one of the parameters of the random number
generator to allow the operator to influence the sequence generated.

>

Tape records produced by tne sampler are 128 words in lengtnh consisting of
16 logical records of 8 words each. The contents of each logical record
is as follows:

Word 0. Status word of interrupted procedure.

Word 1. Relative location of next instruction to be executed within that
procedure. ' :

Word 2. S-DB if on interrupt control stack and (DB-S) if on user stack.
Note that bit O indicates ICS/User Stack.

Word 3. Unused at present. |

Hord 4. - Record type. Bit 0 is 1 to indicate that the vecord was producad
by the sampler. ' '

Hords 5, 6, 7. Uruscd al presant.

-3-

A}

Setting up the Sampler

Before starting-up MPE ensure that the extra clock/TTY interface board is
inserted in the highest priority polled 1/0 slot. Coolstart MPE and raply .
"Y' to the question "AWY CHANGES?" Uhen the question "HIGHEST DRT NUMDER

= XX.?" s printed reply with a number which is 70 greater than the highest

i

DRT used by the sysiem. HNo other changes are required. lount a tape fitted
with a write ring and selzct unit 0. When the system is up log on and

tRUN SETUP1. The machine replies "TRACER/SAMPLER" and prompts for cormands
with "?". The first conmand to be entered must be "SLGAD" (as described
below) to initialize the sampler after which sahpler commands may be entered
in any ordar.
Commands specifically affecting the sampler are strings of length less than
7 having "$" as the first character. The second character determines the
command, and following characters are optional. All parameters are in
standard 3000 form ("%" prefix for octal numbers). .

.- , W '

)
$LOAD <timer device number>, <starting drt numter>
Tuis Jvads the sampier inlu Lie wi't tabie statting ab ~sturbing Gt
number> (which must be at least one greater than the highest drt
. entry used by the system). The <timer device number> is the device
" number of the extra clock/TTY interface.
- -
$TIME <count> <quantum>
This comnand sets the time between completion of onc sample and
start of the next.
<quantun> is "U" = microscconds
"M" = milliseconds

or "S" = seconds

<count> is an integer less than G4K. The timer is set-up sc that
the precision of nampling interval is better than 0.1%. This corwicnd
also halts the sampler if it was running. '

SRARD This comaand introduces a randem Jitter to the sawpling dinterval.

The purpose of ihis jitter is to avoid the possibility of the samdling

- intervals becoming synchronized with the sampled coda. The suitch
-4-

register is used as one of the parameters for the random number >

gencrator. Statistical tests have shoun that #176523 is a good number
to set in the switch register. Zero in the switch register resets
the $RAND command. .

$SET <segrent range list>

This command specifies the segments to be sampled. <segment range
list> is a 1ist of ranges of segment numbers separated by cormas,
where a range is a segment number or first segment nursSer/last segment
nusber.*

$CLEAR <segment range list>
" This command inhibits saripling for all segments in the ranges of the

<segment range list>*.

$60 Starts the sampler. (At least a "$LOAD" and a "$TIME" cormand should

have Leen issued previously.)
$HALT Helts the saupler.

The following general commands are also useful.

EOF Hrite an end of file ma;k on the tape.

DEBUG Enter debug. -

EXIT Terminate the setup program.

There are various self-explanatory error nessages. However, at present
‘there is no error che:king on the paremater values of the “SLOAD" comaand.

Since the program runs in privileged mwde care must be exercised wvhen
entering the $LOAD conmiand to avoid crashing MPE.

<segiant rancas: [segrent nebars 1o<seenent nusbers/<segnsnt numders
<segmant nupbers:: = any integer betw2en 0 and 253

*eseguant ronge Jists:i: = <seguant ranges |<scomant ranga list», <segrant rives:

-5

(-

The Data Reduction Progrem

A program is availab®l to process the data tape produced by the sampler.
Output is in the form of histograms of segment usage and relative activity
within each segment. :

The data reduction program is activated by the following sequence of
conrmands :

:FILE FTN@9; DEV = LP ; CCTL
tFILE FIN7; DEY = TAPE; REC = 128, 1, F, BINARY; O LhE L
IRUF ~HFEH TAPS S :

fi

The program makes a first pass through the tape, processing all recerds,

if any, produced by the old (now obsolete) trace routine and obtaining
norTalizing information zbout sampler records. At the end of the Tirst
pass the total number of records con the tape is printed on the line printer.
Assuming all records were produced by the sampler "ENTERING DATA REDUCT:ION

CAC CAMDLI TNU ﬁ' ruldndad An tcThn”T —n'l'la‘ Y | Ln - un»na—‘- Ernwm mamaranndea

P WL Wt ety [AIRETL R I T R] . LR SRV "V v MLD Y v vuda et W

for which an internal h1sto gram is desired. Enter these in the frec
format <segrum>, <p interval> follewad by carriage return where <segnum»
is the number of tha segment and <p interval> is the "width" of the bars
of the nistogram. If <p interval> is zero tha _program chooses @ bar width
such that .the histogram for that segment will fit on a sinyle page. OF
course, if <p interval: is 1 the histogram will shou the number of seaiples

‘ wnlch hit eech individuzl instruction.

Prefix octal numbers with "%". If <segnum> is a valid nuizber for a seqient

¢
but no samples interrupted that segment the machine replies “"BAD SEGHINT
RUMBER". To terminate the list of segmeht nusbar enter a <segnum> greater
than 255.

A response of "Y" to the question “COMPLETE PLOT OF STACKSIZE?" will

product a histecram of the value of S-D3 for every sample. This histogram

of stacksize consuzas much tima2 and paper.and is usua11y of little interest.

A second poss throu~h tho tape is then made, after \nirn the histoarams

requasiad c1r11"r arc printed on the lina priuter.. The number of the seamat
Qr-

Q-

{s shown at the top of each histogram. Each bar in an internal histogram
represents the number of sawples which hit the range of code locations
shown at the left of the bar. The actual number of samples ‘is shown at the
right. Bar lengths are normalized separately for each segment to emphasize
the high-usage sections of code within a segment.

The machine then prompts "SEGHIHT HISTGSRAH?® on $STDOUT. A reply "y
will cause a histogram of segment usage to be printed on the line printer.
This segment histcgram shows the number of samples which hit each segment.
For each segmant which was sampled at lcast once a bar appears in the
histogrem showing at the left, the segment number and, at the right, the
number of saiples which hit that segrent. Once again the bar lengths are
@ﬁh normalized so that the longest bar spans the page.

The machine then prompts "EXIT?" on $STDOUT. A reply "Y' terminatas the
program, whereas "N" rewinds the tape in preparation for repeating the ‘
second pass. '

The Sampling System in Action: A Case Stud

This section describes an exanple of the use of the software sarpling
systen to improve the performance of a specific program, namely the date
reduction program described in section E (henceforth referred to as DRS.)

DRS vias written in Fortran and run originally-on the HP 2100 and DOS-M.
When transferred to HP 3000 Fortran and run under FPE execution time becarme
distressingly larce. In an cttempt to improve this the sampler was run

~ while DRS was executing. The following is a description of the procedure

used.

" The system was started up with the extra DRT space (maximum DRT set to 1Gi)

and with the extra clock/TTY interface board (cevice number %13 = 11)

‘inserted in a polled I/0 slot. Two terminals were required for the measure-
R R

ment, a running terminal and a sempling terminal. -Since the only tape
controller availabie would be required by the sampler it was not possible
to run DRS with inmut from t2ne, The utility prooram FILECODY wine wcad 40
copy. a data tape (frem a previcus sampling session) to a disc file called
DATAS, and DRS was run using DATAS as the input file.

. » . ' ’)
Before running DRS from the running terminal the folloWing sequence of
commands was entered-from the measuring terminal (sysiem output underlined):

+RUN SETUP1

TRAC?R/SAHPLER

2 SLOAD 213, 31
2 $SET 0/255
2 STIME 4 M
2 $RAHND
(%176523 set in the switch register.)
2 $CLEAR. £107 '
(%107 was segment number of the dispatcher.)

At this point tho sampler is cet up to interrupt at 4 millisecend intorvals
with random jitter (i.e. tinie betwaen sawples is randouly chosen in the vange

-8~

(=
it

3.75 to 4 milliseconds). A1l segments are set to be sampled except the >
dispatcher (thus no tape w11] be written while the system is paused waiting
.for input).

At this time DRS was started on the running terminal. As soon as DRS
started executing the command

2 $60

*

was entered on the measuring terminal to start the sampler. When DRS
terminated, the sequence of conmands

. 2 $HALT |
? EOF - _ ‘ ‘
2 EXIT

was entered on the measuring terminal to stop the sampler, wr1te an end of
file mark on the tape and then terminate the setup program.

The da’fa tape was then manually rm-'onnd and DRS wvas vun with the data tano
. as lnpuy to produce the histogram of segment activity shown in Figuire 1.
This histogram immediately indicates that the Formatter consumzs more than
twice-the CPU time that the actual DRS code does. To deteriine exactly
vhere in thz forimatter this time was spent histograms of activity witihin
segment 132 were produced (during subsequent repetitions of the second
pass). One such histogram is shown in Figure 2. Checking the high uszga
sections of code suggests that formatter time could be reduced censiderably
by chahgipg sone data definitions, and by modifying the statairant which
reads from tape (from a do-implied 1ist to an array read), thercby reducing
the number of calls to the formatter. *

These changes were made to DRS and the above measurement procedure was
repaated. The resulting histogram of segment usage is shown in Figure 3.
(Hote that in this meastrament the dispatcher was sampled also.) This
shoum that the relative fornmatter tim2 has been reduced to 1sss than one
quarter of its previous value. In fact total exccution timz of DRS was
veduced 567,

(-
e

3.75 to 4 milliseconds). A1l segments are set to be sampled except the
dispatcher (thus no tapc w111 be written while the system is paused waiting

.for input).

At this time DRS was started on the running terminal. As soon as DRS
started executing the command ’

2 $60

was entered on the measuring termina) to start the sampler. When DRS
terminated, the sequence of cosmands

.2 SHALT
2 EOF
2 EXIT

was entered on the measuring terminal to stop the sampler, wr1te an end of
file mark on the tape and then terminate the setup program.

The data tape was then manually rewound and DRS was vun with tha data tano

. as input to produce the histogrem of segment activity shown in Figuie 1.

This histogram immadiately indicates that the Formatter consumezs more than
twice the CPU time that the actual DRS code does. To determine exactly
where in the formatter this time was spent histograms of activity witiin
segment 132 were produced (during subsequent repetitions of the second
pass). Ore such histogram is shown in Figure 2. Checking the high uszge
sections of code suggests that formatter time could be reduced censiderably
by chahgipg soin2 data definitions, and by todifying the statairent which
reads from tape (from a do-implied 1list to an array read), thercby reducing
the number of calls to the formatter.

The se changes were made to DRS and the above measurement procedure was
repeated. The rcsu]t1ng hlsLogram of segment usage is shown.In Figure 3.
(ote that in this measirament the dispatcher was sampled also.) This
shoum that the rela;ive fornatter tims has been reduced to less than one
quarter of its previous value. In fact total execution timz of DRS was
veduced 567,

.o

0 iGNt M oe

R R P R Y P R

DR T L

S A h A S SED GG N ‘Y SO S) T S S s b

. . .
' ' . .

SEGVENT . .

SZ6. NUVBER
cIToER LU¢C - e
fIJacoN Y 1976.2¢
ToTLed B 1.,€3
foagug L - - - AL TT—
eclons U «22 *
Todgon oy 97¢.2¢C
TTUIny IevieTee - - - 56 —_—
Cnool) ool 0 P44
[T Ir'.;.lo')l . 1.’cz
cLaliE teusid - e e e e e — T e ——em)y
:ht‘;: \:.v:_() * -3.‘20
2,283 grisi7osesosa 1633.€C0 .
ILirsl $.oleca0peanen - - e T 181¢ ——
$iTI.0 LTt (1.68
Ll T wvnL2? 2.,€¢
Ciogad a7 T T e - - T4 O —————
I1lIly Sevle 172.¢0
PORSACANE oS S 1.€2 °
{JiTvE Lisligneseso e m—— - - ~1363.C¢ —
R 3 R L . 453,.¢C
LL0Ler Pertys 83.¢9
RIS S I 4 - - 38 gee T —————
Zigead Cewizl 89,22
TLdivl Ttz 4422
£70°00 vuidlia - - == - 10 =7
LI el -‘claouuotoaou:mwaeoqou e Y Raow . 506%,29 “",
fl_08 vauls dounoeo.noo¢o¢n¢°no50OQooouoﬂooocQoquQQGQOO.QOQOODQQOQDGQQ1’.‘0...(!.00000.000'00&!0000000 senneenss 122425.00 WA
i‘zecc; cu.‘13341,QD‘OQQODDOCOOQGOGﬂb'ﬂ.ﬂOQ'."ﬂQ.'QQ’ﬂ VI' R i S St " T TS TS Sesemisess e 875.4‘¢c "‘ "L_

Figure 1. Histogram of segment usage (excludinj the dispatcher) for original version of ORS.

[
PR .
;f-:"
[]

R XN a
LI JCIPRIN
cfet v,y
‘et

.

.,\".‘)\.

NI re

DL P I X

d L e

YN L
S telo gt
— Nty

&

. e

[
~

Pl

~

SRy Py e

PN ICIU N o

CE N 1004w 03P, ay -
TUD e N I 0P e g

[R e T

. o 4o

LR R W AN LN W L W W

cte P 4NN
DUIN ~ o

X AP
Y
R

e,

L I I P S T
i Pe el N

Rt e NS AN A
X R DI VY AR

*dlo e -
ot 0. O ity e

oo LN LI

L O PO VI I Y

Cdld NS BN e e

LN SR LV Y

s CYPYO. o, p,

Pl PN

CIM)EIOY TN e ey
SN .-

N NN~

~

v

B Y ten e,

0od 0o b0 L b0 0y wrl

Lt >INV Dos vy (ay

N W A N WA

fa e tautes £ ¢, 2

(VIR W I WT) IV SR

) el i

LS TIEP AN

e Y - ' . 3~°.---=§;§.____
o «£<
' e

- - —_— . o— .. — ez -

|

2800000 0000000000000000001 030000 S0EsON0RRBORONS 223%3,.20

632,22

l

e - s . . e ¢ eaeme o s ee ae s - s - - e e . cr s ewe wmee - ---..-‘ " 276

5
X%

Jis.e2
PPOnCEos00U0000%000DANNDNCOBONABNNANINNGES ’ 1352,63

pee B R . M e e DTN =
SO NN2930040000020000000000C0RNITNLINNNDINNNIGROBIRNBONED IODORNEN #0900000000500020N0R00080002000000008 11170, 00
. T 221,22

. g o . B P LY .
Lesse

1] llt
. ded
d%d\'H.‘GDGQOQGQC!90!0600060996&040“000660DBQFOQOOQDQQCD !GQlQGGOOCQG“DOGGQBODQDGQQGQQQ“.ODOOGCQOBQ.O. ‘3“‘2.23
. . P C s e s it e e e smit =t e —— 756.:.'2'

2!.‘:3
€tl.3%
[S)
“Hdenw

|

|

.
<.

AR
te 04y v, =,

20 e de g mo

fh o

J ar

aUNINYICATADARVgRADIIO A

. o=

LA }

.. - .. s - e et e . - .. . e e ‘ee B . . et o com— -

cH\ﬂCGOO‘G90060'4QOGGOOOOOQQOIEOOQOQGOO55;00000QQQC006000-‘.6“00006GQQQGQQGQOOnQQOQQﬂ.G.’C.ﬂDCGOOQ ;2["_:,‘.2.,‘
:CdﬂOéﬂbﬂﬂhwvuﬂﬂﬂﬂOQGOOQ’Q!C’QGQC’COGGﬂoﬂﬂbbﬂﬂﬂQﬂl’b“ﬂ‘.}“e‘!Q')Bﬂﬂ@’ﬁ"ﬂ\"ﬂ{”ﬂ@ﬁﬂﬂuﬂ '235“!'-‘8
12enaos . . e R T PP
N -3 .23
1.¢2
fe tr ee el aae et e cee aeem s e e et e e o o c— - - +CC
«2C
GoEY
- - (R, - - - Y
ot
: . Ny
- - . e - 1t e m e St tmee——— ¢ v e oveon 59.22 P .
. J.C2
) 1.£€

Ve w
o

.

tu Vo VTV =) © 3ae

xS

:
LI VR TS I SV I WY RSP R

.

¢

|

oD

NYPTIRN

W e e ciemem e mes metem - e cea WM S e emtmen ta e ke cemas: @ e s s et e oo e

[
-

.
-
Ve
v

.
L)

.
v

]
17
.
v

i
:
!
)

TR0 et ta

4
7
2

g

TS TS S et cmmtiriem cem s tmam e e imemtee = e st —— - o

|

R A ante ke SL 8 tirre B tom Wit e o e e e o e - b ate e ¢ e o -

<eéls - A , 12,22 ————
cezdye .) . 20
Lo iC3n0sen . L 162 .2¢
Jlealhovraenacana me—— - 318,02 —m—m
Licut] tensansa . 264,20
YUitan . - . 11,86 -
TudseTes - - : - - T 1.0 T i
vi2e2 . ‘ 2120 ' l
¢C2L7S : ’ ’ 15.22
valing Rt e o T T g ————
£5s00d 9ec2
wiilab . €422
';;31',zpunooouauocuooanMaoaoeao-o.on««weonou.aooeucmoouaaoqoo : S T s st e - 1965,29 ———
CUlitkI9000008000800GN 0008000380008 MCANCNAD . 1222.¢0
Ceoi2tiesae ') l14€.C2
eilze2 e - e e e o — . cap ——
Cei2En 22,28
Cuulle 4z .2¢
e et e et e e e - - —_ . e ———

<

¢ e e ecemesmm = va . Cee ee “ise w ee

]
wn
m
o)
<
"
A
-4
3
[
w
-4
Q
(3}
by
™
K

oe . meEs. 4 i s ¢ e ceew s teamermeees o

. : ' . NUMBER

. St n : .

e 2 £202729¢00acn0s : : ’ . ' 1092.00
o 5 Dguuilecoevcse . - R T e T e e e . . * 1335.00
9% 2 95%stee . 3.00
ol % 665 .0c00080 SONNABGRBONBISEGOBNAINRBANBRSED ¢ . 581%.00
[0 ax_--'_ut;a,;.aooooooanocoaoao»oooouoooﬂocooooaoo’oaouoooooiaoeoooo.a-.oo.ot CUT SESESie m seeiee o e R . 91290.C90
i i% DUULNT0000600000e80000008000C00ABRSN .) : . 4545.00
a S 9,4 7lec0ececc20000eD0 22°0.00
b 2 Sl 2.90
LA A ¥ I_;!'.:vooocbgooooon0990000..0006!o.Qo.l..06000000.0.0#01060'QD.QO!QQQ.Q.OO.QQQ..O.’ plsl‘é‘f’cﬁ&'& 11743.00
Ceustn CLulg0 . . 2.00
.20 00Cj]jeevsnasansoescesconss : : : v e T ©3095.00
Ylelel Cil]]lo%es0ssnn : 143¢+.00
(AT 2 & B 3.C0
J3LTU0 62a1YS . 4.29
£I00460 050526 :) 2.00
LavilD c:L-!390'.0000.000..500000o...90605.00..0.0.".600."0.0Q.lbO000.0... Fomﬁf'rﬁ'& k? 9393.00
A ooel31nooooooocwoo.aoobooooooooo.soocooqQogoofooolloooooosocoooou0060.60.0oocoooouooqoqo.oo...o;.l..go s 15086.00

< [
- .
. ; .
] . " .
Fioure 3. Histogram of segment usage for DRS with improved formatter calls.
- - - cee . e e e iems - STTIAR et e e e et s e ememme = .+ cee cee = b e mme———mer e e e e S e . .
. u - - C mmem@er . ¢ ee e .. eam G m A e - m commme o ewoes e -

Although the formatter time wes reduced it was stil} significant. To
determina whether this could be veduced any further histcgrams'were produced
showing activity within the formatter. Figure 4 3:::E:the cefault histogram
with ber width of =43 (obtained by entering "%130, 0" when prompted for
segment number of DRS). Clearly most of the formatter time is spent in

the section of code between 9430 and %472. To exemine this in more detail

a histogram was produced with unit bar width .(by entering “%130, 1" when
prompted for segrent number) shcwing the relative usage of each instruction.
Figure 5-3‘::& a portion of this detailed histogram. It was interesting

to note that the instructions in locations 467, 470 and 471 account for
75% of the formatter time and 102 of the total execution time! Examining
the formatter code shous that these instructions comprise the inner loop

of a FOR statement used to i1l a buffer with blanks.

Rather than attempting to modify the formatter, a tape reading routine was
written in SPL using file system instinsics and linked into DRS thereby
bypassing the foruatter. This version of DRES was wove than three iimes
taster tnan the original version. 1its segrent usage nistogram is snown
in Figure 6. ' .

The saﬁp]ing system could doubtlessly be used to improve the performance

of DRS still further-by concentrating now on the program itself and possibiy
the file system.

.{,

~ulI35 HISTOUGRAM FOR SEGMENT 130

PR
TLT%)
TUL N2
P
S
‘. L T
dvdewa
L tlé
.
oL Lol
P
LLns22
cr. =,
vewrbS
RERNE S
PRI
; ’

e e

s caiSe

.....

.
N
W e

\t
B P P [

N e (] v fe Y O

LA S A R TR AR 2
AT AT St e

NN e

&

~ Y

DR S T A L N

R SSRETREN I SN PUIRGE LN B U
2o v e g) et

N ee d OO0 gl

RS
[y

[P PO LR AURE IR - A PO O

Lo 88 A% ™ 05408 (™ gy v ¢

,.
Y

<o
™

v

o

o o
n

020027

cGuhTZoenea LYY YYY LYY Y2V VYT Y VY ROBOBAVDOBIGVIDIBNBOBBDIBISTRADONOBARCBRNEDIINCGBOBIGNISBADANAAROININIDONDSRDSS

)
[}

2.3, 00
- -

P VL L W Y
*

>
CAN S IS RS 3 & IS N L0

et b Be e ew (N (S L€
-~
LS 3

Lol S N T

M
&»
LI 3 °

1]

B O N e 1S -
WSO NS S AV (N
L
3

NN~

(S V¥ o

LR R IS W IRV G ISR RN S
N (> e
WWe Uy

DAV NS VO YD
PR I S R e R X T

[N S S N
Bl ok A LN DAY WARNAY KOs

. &

NS QNOUNIN N P

NI A ST NN AT A bRy N
NS N LY A 3

S NI

[-R V)

VDL S IO QI L Y

OO DD LIS Ny

n:9%3
[)
903311
Ccaiva

LLUSECPICAB0G60800

Figure 4.

([as AT IAL D)

Activity within the formatter for DRS with improved Formatter calls.

. .

NUMBER
«00
«C0
«00
<00

64.C0
10.60
9.00
69.00
T190.90
- 162400
1052.C0
88.00
¢ 5.00
103.C0
1.00
91.00
82.90
165.00
4Y.00
35.09
2.00
«00
«00
«00
«00
«00
«00
«00
<00
1.00
«09
«00
2.60
«00
6.00
6.00
4.C0
1.00
3.C0
1.00
*«00
«00
«C0
1.00
11.00
«00
64.00
. «00
%0.00
54.00

Trsezs fas *
¢ fite frtaye Address Histegra. /o Segm°nt Rumbey 130)
A LY AN S XY | F% <09
LWseR: C3na9 . 2.00
L0951 -CLuend . 3.00
TLUetZ Cona 3 2.00
Caetd 063 « 1.00
T e IIRAAUE N . ZO'JO
I leu2 i;.-!: 2.00
. .:'.l‘.l, yJ. ,_’ . .og
R q,‘.g7:oaq-acoonoddooco¢ooooaooouooo LY ¢ o0
L.0L4 2 LUUsTuo0a3008000000000 ce080804000000020000000000a 0 aaenesencace 2696.00
N M . - - -l
5'5“:2 z;x:;:cooooooooo.dcpoooucoo«oooooa«oo?oooo.utﬂoooooooc.oooobo.;owooooeﬁnocoqoooooooGoooaooocoooopocooooioo 3?33.33 7113
LLL6Trs ute s) ' 20.00
AU 2 S YW A . : 10.€C0 192 of ot
LLLefY 0nGalh S 1.¢0 >I0%2 of ¢o
Lolade Chuat e . 3.09 1
chualh . . execution
CLueli Cunaqr 029 time
LLuny LriLaY 15.99 Ho e
LL09E1 098591 2.09
srizad 90uthe . ! 1.00
TLhTas RN04502 +00 .
PR TR S LR T P . : 13.09 .
L LWD2D LYLULYS -14.00
LL.owin 50y . G0
DRCATTY YR YA ' 9.00
CLul9 854410 o 16.00
EORYS BRI 20.00
£Lriz Lainie 7-00 '
Loobis 230512 «00
L.z 550514 . : <00
IUUalS 257LYY) —_ « G0
Jtalsid LIeTis <00
PEAS-SEANIRTE S W 4 «00
{Lazed 559520 «00
Lol 52023 «00
tl.ued Qyunee . -00
JlTed §hL22 . «00
LeLLct SOz . 00
Y .bes LLESAY ’ .00
LebLulh PALLYH «00
«00

“Lael 454427 . —
. ~ . ' <00

9530 00uY%29
tuvwil wunszy : «00
LLLua2 LIuul ' . .- 9.00
C1lv30 THet23 i . 8.00
SuYn38 CSubis . : 10.00
L1525 059539 . . - 9.00 .
Lot as 350536 :) : 9.00
Lllo3T 30495127 . 3.00
Li0an ussan «00
TLlbel 025541 «00
LTl Lhna2 5.00
Tone Leyey 1.00
Tnloea Citmae .00
PRG-I A T 5. . «00
Lol L L ta . 1.09
LRt o, el . . «00
Pt Figure 5. Detail of Formatter Activi:y (compare Figure 4). oaw

a
4 . .
i .
! .
H
TLERAM e et e e-..-......_... RS o - -t et e e e e am———— ..o
. ‘NUMEER .
’ 'O 2000880.-: e e e e s e e R i L T e sea mam- o o s 13624 e28 ~e—————
: 280
: St e mete iw e - e e ——— - e = e iea e - e e———— e - ———— o -) Y SRR -
i 1.9
: X . “u.r'/r,!. L. ‘20 .
: . : _:cc-ovo&qooob.bdthbconoanﬂuooaaooooooogn B it = r— e ——cne e —————— . §2€1.08 . t:"’-..._
Tl AT el a B0 SN ol O L orric TV 6Lt 20
Sorend vl _-.--_- ccocooaoocooodoopauaaﬂunoccvocooooao sueovbovnosnas) e1az.08 "5
: Teoved SLrsilvE0e00ae0n00000B000aD (f{.'MlT'INE' . G e e e —— . - -3412,.¢0 L. NY ———
s TL20vE WvogY2v0eroanuno0snaGo MmRcas oA . : 2543.%‘: ‘.).-‘_.'
Polleere e aeny .
- . LA — . EEU RN T wes ce . - BIEER LS Uit et O We mwp Eh ts & W% e . s s - -a e me - tmie cEms tememm - e . O c————
L R R R S) R YZATR S F e ’|Po\u iy
Sevsee .""_g:,-‘,'oeoucaaoooaoono:aooqoo«oodbonooa“oqnonacloouoooaooﬂubaooteQﬂboobnoapooonu&e&o.n.ecﬁdbﬂocl . 13367 .70 2*. e
Cr e BELYLE . ‘5a2¢ . -
. PR S RRE jlveccoonnonensooonnen ro’_“,,;Ko T IIRe stsimiimie e o mve ¢ m e e i@ e e om e v—e— et e o v o e o s . e o o e ————a— ¢ ¢ st - —— 3¢42,¢22 -5,5.‘/.--
E | Y] vrdtla . ";-Cg
tl.l’l“‘ 9"!‘,,7 . .) . - . 1.0.:
< ..-:.a \.;.-:!3\: tonss /!..’ . . BT smes e te eiemneete s tee e e e .. s e - e . - DP o coes @ 78...n " . ;. - cmn—
P ol :_': ‘) l dcDOQD.IQCQGBGG”GQDQQOGQOGQQHGQOOQQC}QOOOGSQGOQGGQOGD.,“65.QQTQGﬁQQOOQCD.QQQ.QQG.GIOO..QQOOQQODQGG6990. 15!:5 .., Q'7.' :’

Figure 6. Segment usage of DRS using direct file system ~i_ntrinsics.

G.

Miscellanaous Ccmments

It ‘must be appreciated that the sampler does disturb the system. At least
the tiner interrupt will cause an extra dispatch if the CPU is operating on
the user stack. If the sampling interval is made too small the sampler
might be measuring the effects of its own perturbations. A sampling intarval
of greater than 3 milliseconds has been found' to yield accurate measurements.
However, when measuring events of short duration shorter sﬁbpling intervals
riay be necessary. In such cases it is important that the sampler does not

‘interrupt the dispatch which it causes. To prevent this the sampling

interval should never be less than 350 microseconds. If the sampler does
interrupt its own dispatch the CPU will be locked up in an infinite loop.
To terminate this loop the sampler can be manually disabled by setting bit
0 to 1 in the word at absolute location

4* <starting drt number> +3.

The sampling interval selected by means of the STIME comrand is the tine

botwaen onit from the canpleor and the cubcoquont dintorrunt returning 4o the
sampler. Thus the time spent in the sampler itself is excluded and the

only perturbation is the possible extra dispatch (approximately 300 microseconds).
However, relative timing of other I/0 operations is disturbed. ‘hen

measuring programs with high I/0 activity longer sampling intervals are
recommanded.

Overhead vhen sampling all segments at 3 millisecond intervals causes
approximately 20% degradation in throughput. '

In order to measure activity in segrent zero (external interrunts) it is
necessary to ensure that the extra clock/TTY intervace is polled for highest
priority. This will also guarantee the precision of the sampling interval.
However, unless preci.e sampling intervals are specificé]]y desired it is
strongly recommenced that the randemizing option (3RAND) be used. When-

using constant sawpling intervals the resultant histograms have beon seen

to exhibit spurious spikes due to synchronization of the sarpler and tie
sepled program, The randeaizing option has produced reliable data in ol
cases. '

-1-

The sampling system is not particu]ariy elegant and many improvements could
be made in its operation. However it is a useful tool for determining
which sections of code consume the most processing time. These results
are sometimas surprising even to the program.er who wrote the code. Opti-
mization of software can certainly be accelerated if it is possible to
identify the "10% of code which consumes 90% of CPU time". |

carg

o Measurement Distribution weect Modifications to The Software Saﬁp]ing

System

The original sampler used the switch régisfer to provide a parameter to the
random number generator for the randomized timing interval option. To free
the switch register this paramter is now fixed and resides in the sampler's
data area. A "S$FIX" command has been added to reset the "$RAND" command.

. The default is a constant sampling interval; "$RAND" introduces randomized

Jitter and "$FIX" resets the sampling interval to be constant.

The magnitude of the rahdomized jitter has been doubled by using a random number

.- between 0 and 511 to load the count register of the extra clock/TTY board. This

requires that randomization should not be used for §Eﬁbling intervals less than
600 microseconds. However, the greater randcmness of the samples improves the
validity of results. For most measurements a sampling interval of 11 milliseconds

- with randomized jitter will produce reliable results. In this case the sampling

interval will vary randomly from 6 to 11 milliseconds ensuring that dispatches
caused by the sampler are not sampled.

To conserve tape and reduce the overhead caused by the sampler the output record
format has been modified. Two word records are now produced with a blocking
factor of 64. The first word of each record contains the status regiéter of the
interrupted segment and the second word contains its P register. The data re-
duction program has been modified to handle the new format. Of course, stack
size statistics are no longer available but could be resurrected if necessary.

The new sampler can be set up using the pragram SETUP9 and the associated data B
reduction program is TAPEQ.

. b
Overhead caused by sampling all segments with a randomized sampling interval of
11 milliseconds is 7%. The Central Limit Theorem predicts that 25,000 samples
produce results accurate to 1% of total number of samplés with 99.9% confidence.
Indeed, experimerts have shown that segment histograms produced by the sampler
- agree to this extent with measurements made using the SUM hardware monitor.
These figures do not account for artifacts caused by disabling interrupts.

It should be noted that if interrupts are enabled just prior to an exit the

. sampler can only interrupt after the exit instruction has executed. This can
produce spikes in the histograms of segments calling procedures which disable
interrupts. The aberration will be avoided if there is at least one instruction
between the enable and the exit.

e luw‘l [lae ‘, FILE Fruet. ped= TR, PE(- P—‘l] OLF NocfREL

T4

°M¢ May 14, 1974
susecct - Program Sampling

The 3000 System Section has a program, SAMPLER, which determines relative time
spent in the various portions of a program. SAMPLER is very useful in
optimizing program code by determining what sections of a program is most

heavily used. Unfortunately SAMPLER requires hardware and software modifi i '
1Yo a 3000 svstem fo rug, A new vers1'on'g'T"57SM'P'E'ER—l'l'o called SAMPLE 71s now available

which requires no hardware changes and only a minimal software change. Specific-
ally about seven lines of SPL code must be added to procedure TIPC of EXIN. Some
capabilities have been lost in SAMPLE that was available in SAMPLER. However

the lost capabilities only affect users who are sampling system code segments.

For user code segments SAMPLE is fully as capable as SAMPLER. SAMPLE is available
for internal use from the 3000 System Section. Awrite up on SAMPLE has been
enclosed for evaluation.

DL/kg

Mt

INTRODUCTION

SAMPLER_is.a pac@age of three programs for use in measuring the relative time
spent within various portions of a program. The three programs are:

SAMPLE which the user runs to initiate the sampling of the program code,
SAMPLING which performs the actual sampling and 1
DRS which reduces the data generated by SAMPLING to a user readable form.

OPERATING INSTRUCTIONS

1. Load the program to be sampled and obtain the CST numbers of the segments
to be sampled.

2. Run SAMPLE. -
3. Run DRS to reduce the data tape created by SAMPLE.

SAMPLE writes the sample data on a file called SAMTAPE which is assumed to be
a magnetic tape but can be a disk file. DRS reads the sample data from a file
called DRSTAPE, also assumed to be a magnetic tape and lists the output on a file
called DRSLIST, assumed to be a line printer. ' K , '

MESSAGES
MACHINE ID? From SAMPLING. Type in name of 3000 that test is being run on.
SAMPLE ID? From SAMPLING: Type in identification for sample run.

SAMPLING INTERVAL = 50 MS? From SAMPLING. Type "Y" if a sampling interval of

S0 milliseconds is to be used, else type the number of milliseconds between samples.
The minimum interval is 10 milliseconds and the maximum interval is 1000 milli-
seconds. The shorter the interval the greater the number of samples that will

be obtained in a given time span. The larger the number of samples, the more

valid the results will be. However a short sampling interval will result in
considerable degradation of system performance. At 10 milliseconds the system

can be expected to run 70 percent slower, at 50 milliseconds degradation will

be about 15 percent. A minimum of 7 percent degradation is to be expected.

CST #'S? From SAMPLING. Type in a list of CST numbers of segments to be sampled.
The numbers are assumed to be octal and are typed in the following format

<CST list>::=<number range>|

<number range>,<CST list
<number range>::=<CST number> | .
<CST number 1>/<CST number 2>

<CST number 1> should be less than <CST number 2> and specifies that all segments
with CST numbers between <CST number 1> and <CST number 2> inclusive is to be
sampled. <CST list> can be continued onto a second line by .typing an &.

Example:
231, 240/243, &
277

Indicates that segments 231, 240, 241, 242, 243 and 277 are to be sampled.

PRINT -CSTAB(*)? From SAMPLING. Type "Y" to get a listing of CST numbers that
will be sampled else hit carriage return.

TYPE 'STOP' TO STOP: From SAMPLE. Type "STOP" at any time to stop sampling.

UNABLE TO CREATE SAMPLING PROGRAM From SAMPLE.
Possible causes are
1. SAMPLE do not have PH capability.

2. User or account does nat haye AS priority,
3. SAMPLING exists in another group or account.

- START = <CST number 1> > STOP = <CST number 2>.
From SAMPLING. Self-explanatory. If this error occurs, check CSTAB(*) afterwards.

% BAD NUMBER * From SAMPLING. A bad CST number was inputed. This message
will be preceded by <CST 1ist> up to and including the errant number but not
beyond. Most likely cause is typing in decimal CST numbers or extraneous %
preceding CST numbers. If this error occurs, check CSTAB(*) afterwards.

UNABLE TO OPEN SAMTAPE. = From SAMPLING. Will.be followed by file error information.
UNABLE TO WRITE HEADER From SAMPLING. Will be followed by file erfor information.

QUIT P=11 This is a MPE message. SAMPLING QUITs with P=11 when an error occurs
on SAMTAPE. .

DRS OUTPUT

DRS prints: _
1. A header page which is self-explanatory.

2. A summéhy histogram showing relative time spent in each segment that was
sampled. ‘

3. Detail histograms of each segment that was sampled.

The summary histogram consists of:
1. The CST wumber of the segment.
2. The histogram.

3. The number of samples taken from the segment, percentage of total samples
the numbers represents and cumulative percentages.

The user will be prompted for how detail he wants the detail histograms to be.
The prompt is ' ~ :

SEG # <CST number> (<number of samples>SAMPLES)?
Hit carriage return to omit the histogram of this segment. Type zero to get a
one page histogram. DRS will scale the histogram to fit in one page. Type an.

integer n to get a histogram where the interval are n words wide. The detail
histograms consists of:

1. Segment CST. number.

2. Two PB relative addresses in octal specifying the beginning and end of each
interval. : :

3. The hisfogram. .
4. The number of samples in the interval.

5. The percentage the number is of the total number of samples for this
segment. .

6. Cumulate percentage.

DRS contains a restart facility and will ask the user if he wishes to restart.
Type "Y" or "N" as desired. ‘

NOTES:
SAMPLE and SAMPLING require PH and PN capability.

SAMPLING fequires Askptiorjty.

AUTOMATIC. PROGRAM RESEGMENTATION

oate: February 1, 1974

svccr: Automatic Program Resegmentation on the
HP 3000

A new performance enhancement tool has been developed. This tool provides for
the resegmentation of programs based on data gathered under actual program
operation. The resegmentation system will be discussed first, followed by a
case study.

The resegmentation system consists of three programs, and utilizes the segment
trace facility to gather'the data necessary for resegmentation. See Figure 1
for an overall view of the operation. Only two items are needed to start the
process. These are a USL file of the program requiring resegmentation, and an
adequate test case to exercise the program when segment trace is performed.

The first program (NICRSP) takes the USL file and resegments it such that no
procedure in a segment calls any other procedure in that segment. This elim-
ination of internal segment calls is necessary for segment trace since internal
procedure calls cannot be traced. The resultant USL file is then prepared into
a program file. The program file is run and the segment trace data gathered.
Then this USL file and the trace tape are input to program two (ORTDRP). This
program reduces the :race data into a usable form for the third program and
puts the data in a disk file. Finally, the resegmentation program is run (ORSP)
using the file built by program two and the USL file. The output is the re- .
segmented USL file. :

It is a good idea to use a copy of the USL for resegmentation. Then the
original can be kept in case another resegmentation is desired with a different

segment size. The max imum segment size is kept in DB+@ of both ‘program one
and three. This location may be modified by calling debug when the program
is started. This may be done by starting the program at its secondary entry
point DBG. Note that program's one and three require privileged mode and
process handling capability. Another requirement is that when the program is
traced, the segment numbers are assigned in a linear order. This may be
verified by running the program with the LMAP option. This assignment order
can be insured. by starting immediately after cold load.

‘// Samé Fie —\

NO INTERNAL
PROCEDURE CALLS

USL . PROGRAM | > | UsL
FILE I ONE FILE
(NICRSP)
v/
PREPARE P
N
PROGRAM SEGMENT S
FILE "> TRacE
PROGRAM
J .
REEEEENCE «— O
(ORTDRP)
PROGRAM usL
THREE < FILE
(ORSP) <
2/
UsL o~
FILE <« ©
Figure 1

Rese yientation Procedure

FCOPY

" A Case Study - COBOL |
The COBOL compiler was chosen as a test case because it is one of the largest
subsystems and its authors had already carefully segmented the code by hand.
.Thus, it would test the program's ability to resegment a large system,.and the
results could be directly compared to the original compiler. Four different
tests were conducted. The first test consisted of resegmenting the compiler
based on the results of tracing one cbmpi]e. This same compile was then tested
against the original compiler. The following three tests were conducted on a
version of the compilation of nine different source files. Tests were made on three
over the compile of nine different source files. Tests were made on three -
modes of operation; stand-alone, multiprogramming against itself (code sharing)
and multiprogramming against another large subsystem. The results of each
test are shown in tables one through four.

Each test was conducted on four different maximum segment sizes; one thousand
through four thousand word segments in multiples of one thousand words.

PROGRAM Number of Elapsed Code Segment
Segments Time Faults .
COBOL 28 147 587
4K Reseg. 20 206 1423
3K Reseg. 28 195 1376
2K Reseg. 39 162 - 949
1K Reseg. 56 132 45]

Table 1 - One program traced & run alone

PROGRAM Number of Elapsed Code Segment
Segments Time Faults
CoBOL 28 . 336 1069
4K Reseg. 23 484 2874
3K Reseg. 28 342 992
2K Reseg. 34 397 2078
1K Reseg. 52 325 859

Table 2 - Cobol run alone (4 Compiles)

PROGRAM Elapsed CPU Run Code Segment
Time Time Faults

. COBOL 197 83 1915

4K Reseg. 178 77 1414

3K Reseg. 167 4 73 1450

2K Reseg. 165 71 1680

1K Reseg 153 71 1631

Table 3 - Cobol multiprogrammed against itself (one compile)

PROGRAM - Elapsed CPU Run Code Segment
Time Time Faults

COBOL 206 85 1807

4K Reseg. 225 82 2023

3K Reseg. 189 80 1589

2K Reseg. 201 83 1857

1K Reseg. 225 94 - 2321

Table 4 - Cobol multiprogrammed against another large subsystem
(one compile) '

An examination of the tables shows thét programmatic resegmentation can do
about as well as a human. Different segment sizes yield much different results,
so some experimentation must be done to pick a good segment size. For this
experiment, the 3K segment size appears to be about the best of the four sizes
used.

SEGMENT TRACE SYSTEM

Segmant Trace System-

Tne Secment Trace System (STS) uses the hardsars *trace” facility to
collact czta pertaining to procescses at the tire of interceqront transfers
caused by PCAL's and £¥1T's. Sufficient information is avaiiable to gatner
statistics on both code and data of processes, or o examine an individuz]
segmeni. Data are ccllected on unit % of the system magnziic tape uait
(DKT &) and reduced o7fiine on the 3980 by a dats reduction program,
Because of the amount of code executed for each {rensfer iraced and the
non-overlapped tape 1/0, tracing large numbers of seqnents can cause sevaye
sysien performance degradation. The trace scgment has bzen mide an intearal
part of the operating systenm to reduce the provlels cf incorpor Ling it afier
each MPE vpdate and to make it available cn every davelopmiant system,

CONSTITUENTS OF STS

STS consists of the following three software componentis:

1. An MPE system containing a special version of the ININ code segment
and a 300 word data segment.

2. A pregram to cantrol the tracing proceés (Tce).

"3. A data reducticn program.

STS is inert when no trace bit4 are set and should cause no noticeable
loss of system performance.

USTHG STS

CoL
1. Eééa Yoad a copy of MPE containing the trace segmant.

2. Ready a mag tape on unit P

3. Run th2 TCP program from a session. Use the command sequence (exp1a1ned n

r-o‘l':*-'] nn rase 7
o ‘-

It ' Ciock dri

SET : set trace bits

RUN . tracing beginrs
sToP tracing ceases
CLEAR - Clear trace bits
EOF writes EOF ON TAPE
EXIT - terminates TCP

4. Reﬂind and dismount tape.

5. Procass tapes using reducLlon program.
STS - TRACE

Seguwent trace da:t are collected by a segment added to secmznt IRIN

in MPE. This segmzat is called from the absence Lrap seument (%14) and

the trace trap seoment (316) uhen these segments have determined that tracing
is to ba Jane. The trasce trap sa ;'nnt processes ihe break and Control -

Y Teciurss of o scesion, and these will nre-cwpt 2 segmint trace. To aid
underitanding of tha capahiliiics and limitations oi trace, a description

of the handuare treae featwre follows

*1-

A procedure call to a segment will cause a trap to the trace segment

if bit 2 of the first word of that segment's CST entry is set to one and
bit 0 is not set to one (absence). ’

r—trace bit

H

Length

TIR

P B Address .

Figure 1

CST Entry

Trace and absence traps due to PCAL's are identical in their effect

on the stack.

Q~»
S -

X

AP

STATUS

AQ

3\

X -

AP=-1

STATUS

6Q=4

The result is two stack markers and an external label.

-. return marker for calling segiiont

3 durmy return marker for called
segriant created by PCAL

EXTERQAL LADEL

Figure 2 - Stack After PCAL Trace or Absense Trap

-2

b

The external label is a copy of the one referenced by the PCAL in the
calling segrﬂnt With this label, the trace routine can calculate the
correct delta P in the dumiiy marker to enter the called segment.

An EXIT trace occurs if bit 0 of delta P in the return marker i§ a one
and an EXIT instruction is executed using that marker. The marker is left

on the stack and control is passed to the trace trap segment. The value N
fron the

- ' T
x.
bit0o=1 - AP
STATUS
s Q
" !
J

Figure 3 - Stack A.ter EXIT Trace Trap

-

EXIT N of the called segrent is pushed on the stack so the trace trap
processor can XEQ the correct EXIT i off the stack at the corwletion of

the trace process. The trace routine must reset delta P to the correct
valuz before the EXIT is executed. Currently, bit 1 of delta P determines
if it is a trace trap (bit 1=1) or a break trap and the Trace Qegmont (£16)
takes the appropriate action.

The harduare trace facility has some Timitations. PCAL's and EXIT's
within a segment cannot be traced, nor can interrupts be traced. Another
inportant exception is a PCAL of a segrant to itself via an external label.

The PLIL can be traced, but ih2 corresponding EXIT cannot. The trace seoment
will unzess tracing such EXIT's,

vhere R = Record Type §

The trace data collection segment works as follows. When the trace
scement is called, the trace opt%ons vord in the system global arca (SYSPG +
245)(figure 4) is checked. If. bit 1=p then the trace segment will exit to the
caller with condition code set to less than. This means that no tracing is .
being done. If bit 2 = P, the trace request will exit without collecting
any data. This bit is used to start and-stop the physical collection of
data. If bit 3 = 1 and the trace was from a PCAL, delta P of the return
segment will be set so the corresponding EXIT can be traced if a segment
is not calling itself via an external label. ,If the Clock DRT is non-zero,

timing measuremants will be made.

0 1 2 3 4 5 - 15
wrD 0 | R|IJA|T|o]|C PIN

1 LABEL (PCAL) or N (EXIT)

2 CALLER STATUS

3 _CALLER DELTA P

4 STACK DB (QI - 4)

3 n

6 DL

7 Q.

8 Z

9 T STACK DST <CPCB (2)>
10 EXTRA DST <CPCB (3)>
n TIME

Trace Record

1

[
"

previosus record.

A = Absence - the call for this record came from the absence trap.
T = extra clock being used.

0 = timer overflow bit (16th bit).
C = timer carry bit (17th bit).

INFORIMATLO: RECORD
Interrupt Bit - on interrupt occurred betwezn this record and the

Figure 4 - Trace Record Format

.

>

0 1 2 3 8 15
syspg +245 | D | T I AlE | Clock prT

SYSDB + 246 SYSDB relative data segment pointer

where D = dispatch bit (set to one cach time the dispatcher is executed)
T = trace bit (set to one while tracing‘is active)
A = arm bit (if this bit is a one, trace trep will be processed, else they
will be ignored) |
E = exit bit (if this bit is a one, the trace processor will set the EXIT
‘marker to invoke a trace trap each time a PCAL trace is processed)

Figure 5 - Trace Control Format in System Global Area

0 Record Index

1 Record Ceount

2 | Record Limit

3 $I10 PROS INDEX]

4 MAG TLPE SIO <G

13 PROZRAY
14
o5 Record 1 g

) Record H

Figure 6 - Trace Data Segment Format

. e oo o

After the options check, the trace tape record is built. Word ¢
contains -6 bits of status information and the prdbess identification number
as shown in Figure 4. Word 1 contains the label if a PCAL is traced or N
if an EXIT M is traced. Hords 2 and 3 contain the status and delta P as
they appear in the calling segment stack marker. Hord 4 contains the current
process stack DB located in Q1 - 4. Words 5 through 8 contain the valucs
of the process stack registers. Words 9 and 10 centain the stack DST and
extra data segmant DST located in the current process control block. If
timing measurements are being made, wotd 11 will contain a current tine

stamp.

An extra clock board provides the time base for timing measurements.
The clock is read at the beginning of each trace, and this value is loadad

‘back into the clock at the completion of the trace, so that the trace

overhead is removed from the measurement. The LR = CR and LR = CR overflow
bits of the clock are used to extend the clock period to 18 bits instead

OF the 16 Dils avaiiabie in inhe Clock countiing redister. AL o LEN niCigsElong
counting intervel, 1.9 seconds of time can elapse before m2asurerent overflow
occurs. This cannot happen since time of day updstes occur oncz each

second in MPE and timing analysis will not be done through interrupts.

Trace Control Progran

The Trace Control Program (TCP) provides the user with a converient
means of setting and clearing trace bits, and initializing and controlling
the trace operatien. TCP must run in priviledged rode so that user account
capability is needed. —

The commands to TCP may be input from a terminal (TCP prompts with a
"?") or card reader, depending on the moda (sessicn or job). Commands
are entered ene per line (card). Terminal input is terminztad with a
carriage return. Some examnles of cermand syntax are shown in Figure 7.

A blank or comma may be used as a data item separator, but blanks are
otherwise ignored. Humbers may be either octal or decimal, with a "%"
character preceding an octal number. A "/" between two numbers indicates
a range.

mT 0 O

TRACE 45, %27/41 %102
RUN

STOP ,

CLEAR %20/130

EXIT
Figure 7 - TBC Command Examples

TBC features a comprehensive set of diagnostics. A1l but the following
two abort the current command: ' '

RAD CST NIIRFR X (X <%20 or too large)
UMASSIGHED CST X (This CST not used)
If,bﬁ%fgzoccurs within a <range>, execution of the <range> continues.
15 .

The TBC program itself is divided into three parts, which are the
scanner, the interpreter, and the main program. The scanner picks "toikens™
from the current line, leaving the ASCII representation in the byte array
TOKEH, a type indicator in T, end the valve, if numeric,. in V. The main
procedurc of the scanner is MEXT. A token is defined to be a comma ",")

a slash("/"), a carriage return, or a string of alphamerics not including
blanks, comias, slashes, or carriage returns.

The main program fetches new lines, requests the first token (by
calling HEXT) and attempts to intarpret it as a ccmimand. IT this is success-
ful, control passes to a procedure in the internrater which executes the
coinmand.

One can add new comrnands simply by adding an equate for the "type" of

the command, enlarging the case statement in the main program,'and inserting
WD to detect it. An actual procedure

)0

an IF clause in procedurc CGM

nust be put in the interpreter section to perform the actual execution.

<cormand>:: = TRACE <t list> |
CLEAR <t list> |
SHO! <addr> |
STORE <addr>, <value> |
INIT <drt> |

RUN |
STOP |
EOF |
EXIT

<T list>:: = <t element>, <t list>

<T eienent>:: = <pum>|<range>

<range>:: = <jower bound>!<upper bound>

<lower bound>::

<num>

<upper bounds:: = <pum>

<addi>:: = <nump

<value>:: = <pum>

<drt>:: = <num>
<nu>:: = Octal nurber < 177777

(Teading 0's ignored)

Figure 8 - TBC Coumand Syntax'

TRACE/CLEAR <t list>

Trace bits are set/clearcd in CST entries described by <t list>.
f

a <range> is specified
bound- inclusive are a

’
s
[R)

the trace bits in <lower bound> through <upper

ected.

<lower bound> nust be < <upper bound>.

If

INIT <drt>
A1l necessary initialization is performed, <drt> is the DRT index
of the extra clock board. This command must be-issued before any
RUN's.

RUN
Tracing beings.

STOP .
Tracing ceases; it can be restarted with a RWI.

EOF
An end-of-file mark is written on the trace tape.

EXIT .
TBS terminates (cannot be tracing when this command is executed.

rigure 3 - T8¢ Comnand Semaniics

Data Reduction Program

The data reduction program will be capable of presenting the data

~either by process or by code segments. The segment statistics should Lo

useful for analyzing library routines and other segrients where oniy information
about ihose particular seguents are of interest. Process statistics can

be used to examine both the code and data bchavior of software sub-

systems.

Segent statistics include both measuremants of time and statistics
concerning information about the’segments wiich call the traced scorent.
Timing data includes the tota) time spent in the segment, the average
;ime and standard deviation of all the calls to that secment. The calls
will be bruken dovm by STT numbers, calling segment numbers, and process
numbers.

Process statistics will exanine the minimum and maximum stack size;
the nurber of times the stack is added to; the size of the user's own area,
and how many times that size is changed. Extra data segment use can also
be determined. The flow of program control can be shown by showing the
segments used, who called them, and how many times thcy were called.

== e Y XY
- Ok — oSSR g = SRV

May 7, 1973
STS - TRACE Data Reductlon Program

J

chnmnnln Tuwmoarmna Nade Nadicndlana Naa caa
et~ ML - 0 Mt we v VWU W WV [VS‘ Ulll

A program is available tc process the tape produced by the STS-TRACE program.
(For a description of STS-TRACE, consult prior memo dated March 20, 1973.)
Output is in the form of entry, caller, and timing statistics for each segment
traced.

The data reduction program file name is TRACERED énd is activated using the

MPE Run commanca. The program may be run from batch or interactive access. If
interactive access is used, the program prompts with a “?". Currently the pro-
gram will recognize three commands, as shown:

SEGHENT - causes the program to prccess a trace tape and produce segment
statistics. This command.may be executed once only per line.

CALL - in addition to' the segment statistics. above, this option causes the
processing o7 a trace tare L0 include the caller statistics, and the caller
statistics to be incluced in the output. Hote that this command must be

e e eee

SATTMEML 4 L s rieg e e e s, Y cmegertt, ¢ e et - terse i e

issued each time the segment command is issued if caller statistics are desired.

L4

EXIT - causes the reduction p}ogram to terminate after other commands included
in this line have been executed.

The commands may be input in any order. Any non-alpha character may be used

for delimiting commands. Any alpha input other than the above will cause an

error message to be emitted, but will otherwise be ignored. After input, the
commands will be executed and, if no EXIT command was included, will request.
the next cormand. '

All statistical output from the program is directed to the line printer. The
following is an explanation of each column of data. Please refer to Fig. 1.

The first eleven columns comprise the called segment statistics. The first

" column is a three digit octal segment number. The second column is the total

PCAL entries to that segment.

The thivd colunh is the oceurrance of PCAL absences oniy. EXIT absences cannot
be traced, and therefore cannot be displayed. The fourth column is absences as
a percentage of the total entries. Column 5 is a three digit octal segment trans-
fer table (STT) entry number. Column 6 is the total calls to that STT. Column

7 is STT entries as a percentage of the total entries. Column 8 is the number

of timed STT entries. This is the total number of STT entries on which it was
possible to gather timing information. Column 9 is the number of timed entries

as a percentage of the total STT entry count. Column 10 is the average time per
STT call in mi]liseconés with all trace overhead removed. MNote that this time is
the time spent in this segment less the time Spent in other segments which were
being traced and were called by this segment. Column 11 is the standard deviation
of the time per call in milliseconds. '

Columns twelve tﬁrough sixteen comprise the caller statistics. Columns twelve
through fourteen contain the caller ID, that is the process identification number,
the segment number ard delta P value of the calling segment. A1l three are rep-
resented in octal. Column fifteen is the total calls made to this segment by

the caller, and Column s.xtesn is the number of calls as a percentage of the STT
entries.

.
»

T S s U T IR Y e er W WAL (IR0 10 0 e o R N e s s e ¢ b

bt ime o w e

Segment Trace In Action - A Case Study

This section describes an example of the use of the software trace system. A
calibration program has been written in order to calibrate the constants in the

- trace data reduction program which removes the tracing overhead from segment

timings. All system output is underlined.

First, the trace control program is brought up and initialized.

SRUN TRACE

HP3000- TRACE CONTROL PROGRAM

2 INIT 15

Next, the calibration program is started with the LMAP option to find out which
segments the program would use. The segments used were %123 through %137. The

calibration program requests the number of passes to make, and at this point,
the following trace commands are issued.

2 TRACE %123/%137
2 RUN

Now trace is ready to operate, so 100 is issued to the calibration program. Trac-
ing proceeds until the calibration program has run to completion. Next, the follow-
ing commands are given to the trace control program.

.2 sT0P | . ST

~.

? EOF
2 EXIT

" This terminates the program execution. Note that the CLEAR command was not necessary

since the CST entries were deallocated when the calibration program terminated.

After the trace operation is complete, the data is reduced. Two reductions vere
made with and without caller statistics are shown in Figures 2 and 3.

e emmm e cma s e e e e ee e L

: RUN TRACERED

HP3000 TRACE_TAPE_REDUCTION: PROGRAM
2 SEGHMENT
2 SEGMENT CALL EXIT

Note that the measured time for an EXIT only is .02 milliseconds are shown in
segments %131, %132, and %137; whereas a PCAL, EXIT pair is .05 milliseconds
as shown in segments %124, %125, %133, and %134. These are approximate since
an exit takes 21.7 microseconds, and both a PCAL and EXIT take 50.4 micro-
seconds. They are not in exact agreement since the trace system only receives
one clock count each 10 microseconds. Therefore the error could be as large
as 10 microseconds for each segment traced.

e mmmeai e . oca o gawe v a eser T MTPLIE MRASH OISO L L S es B e R e Ee G i e SASPYIN ¢ L SV S Bt L MG Pet o . - S s o - acmam e

PAGL 2 HP3000 SEGMENT TRACE DATA KEDUCTIUN PRUGRAM : . i

~— SEC_ENTRY CnT. _ABSENCES. %ABS. STT ENTHY CNTe SLGE TIMED ENT. $STTE TIME/C. SUEVT/C. PIN SEG DELTP . CALLS ®STTE.
W lza 99 1. 1.0 001 9% 100.0 ., __._ 81 PleB ____ 405 ___..00_ 027123 0004% _ _ _ _ 99-300.0._.__ __ _ _
'1es %9 : 1 1.0 001 99 100.0 85 €5.9 .05 <00 027 124 00001 99 10040

X .

’E:’"& KT TL 1D w0l T T T ve 100000 T T vz 62,097 T TLu2 T w007 027 125 00001 T Teg 100 T T
t . - - - .

L1227 99 1140 L 001 . 99 100,0 . _ Y5, She0 ____ 406 __.00 __ 027 126 0UOOL _______ 99 100.0..______ __
" -

" 13 1 1100.0 .v01 1 100.0 v o0 o000 <00 027 123 00020 1 100.0

”

"i“ 131) 1 100000 001 . 0T T1Tae6e0 T 1710040 w2’ <00 027 130 ooout T " "1i00e0
" 132 1 110040 | 001 . - 1100.0 . 1300e0___ .02 ___ 00 _ 027 123 00017 ______ 1 100.0. . _____
v oya3 ¥ 100 - 1 1.0 o0l 100 10040 Y 59.0 .05 <00 027 123 00030 . 100 100.0

” . -

I 134 100 17 1.0 001 77T 100 10040 T T 61407 w05 T T 400 7 T027 133 0000l T 100 100.0 0 T T
]

"L__13% 100 . 1__1.0 001 . _ 100 100.0 ______ _ 61 6le0 .8 ___ .00_ 027 134 0V001 _ . 100 100.0 ___ __ ____
»

5 126 200 1 o5 001 200 100.0 163 81.5 .08 «00 027 135 o0v00L 100 50,0

" _ e o 027 135 00002 100 5040 —_—
n .

w137 400 1 .3 001 400 100.0 389 97.2 e02 <00 027 136 0000} 200 50,0

" e een ot o — 027_136_00002 _ ____ 200_ 50,0

-

n <" et - - - -

) . :

” -

" -— .

LY

" R - _— : o
A 4

o -

o

u[— - e e e — — — + o - —— s =
"L

o 3
” .

- e - . r eamam e e e A e nii casas - wm c @ meaieme o mae- . ————— e —— at —— § - ————- . w———— @ & w——

——SEG_ENTRY_CNT.__AUSENCES, _%AUS. _

]

. .

HP3000 SEGMENT TR.ACE DATA KRELUCTION PROGHRAM

STT ENTHY CNTe SELE. TIMED ENTe RS TE TIME/C ._SOEVT/C___PIN SEG. DELTP ___CALLS___®STTE _____ -

ji___,l?} 99 1.__1.0 __ 001 99 10060 81 _BYe8___ 405 .00 —_— : i
'oazs 99 1 1.0 ool 99 100.0 85 35.9 .05 00

RE 99 1700 7001 T TTY9 10000 T 92 T2,y .02 «00

.:!L 127 49 1 1e0__ 001 __ ___ 99.100.0 9S. _3040 .06 #00

' 130 1 1 100.0 001 1 100.0 0 o0 «00 «00

131 1 1 1'60'."6—"001'""."—I—x"'1oo.o'"_""°"'1"1'60.o" Te027T L00 -
*!_;_:gz 1 110060 _ 001 ___ 1.100.0_____ 1 10C.0 $02 00 _

. 133 100 1 1.0 o001 100 10040 59 $8.0 .05 <00

;:r 13 100 1 1.0 " 001 100 1000 T 617 6140 T 05 T T 00 T "’ :

i;i_nb 100 1_1.0.__001_ 100 100.0________ 61_ 6140 .08 .00

" 136 200 1 <5 001 200 100.0 163 61.5 .08 .00

?:}'""13”7 4p0 1 .3 o001 " 400 100.0 77 309 97.2 J02 .00 T ’) -
; S —

.

| - e e — ——— —- —_—— -
of o)

e -

[- - : - -

' F il vrv C Q. .

. v

O

I , o
z ¢ [| ‘

" . e © = —— ————— 4 ot - w0

PAGE 3 | HP3000 SEGMENT TRACE DATA REDUCTION PROGRAM _
___SLG ENTRY CHT. ABSENCES 2ABS. STT ENTHY CNT. ®SELE TIMEU ENT. SSTTE TIME/C CSDEVY/C . PIN SEG DELTP ... CALLS .. %STTE . __ ... ___
rl N) .
| Yes .99 _.__..1._.2.0 oul 9y 100.0 . __81 Al.B ___ o05 ____e00 __027 123 00041 _______99.1004.0
s 125 99 1 1.0 001 99 100.0 65 85949 005 .00 027 124 00001 99 100.0
1]

T Je6 99 T 1.0 001 T 99710040 927 92.9 $02 .00 027 125 00001 99 100.0

' .

L_Jer 99 L 1e0__ U0l 99.100.0______95._94.0 $06 $00 __027.126 00001} 99..100.0

" 130 1 1 100.0 .v01 ' 1 100.0 0 .0 <00 .00 027 123 00020 . 1 100.0
L1
o 131 1 1 1000 o001 . 1710040 17100.0 .02 .00 027 130 00001 1 100.0

"L__132 o rdov.0 0ol 1.100.0 __ 1.104.0 $02 200027123 000171 _100.0

v 133 100 1 1.0 oul 100 100.0 59 5740 .05 .00 027 123 puoie 100 100.0

T 136 100 YL 0T 00 T T 00 100.0 61 6140 . 0Y W00 027 133 oo000! 100 100.0

" 13% 100 1 __1.0 001 _ ___ 100 100.0 _61__61,40 08 <00 __ 027 134 00001 _ 100 30040

136 200 1 5 001 200 100.0 163 815 <08 .00 027 135 00001 100 50.0 .

n B L R L €27 135 00002 100__S0.0 -
n

~§ 137 400 1 .3 001 400 10040 389 97.2 .02 .00 027 136 0000: 200 50.0

i - - .. e i et et ___027 136 o00C~s _ . _ 200 SC.O0 __ __
»n

n

— e

v:i

" .- e e e e e v e o= R e e e e s o m e i = <

- A
o '

ol

: e s

" ol -

, o o guve S

" e—— e Smesr memRc S -

XY

' .

4 e e a2

' e e e —

o

" e e e e ———— e — e e e e e e e e e e e e e
, — .

1

P 3

May 15, 1973
. w7 Changes to the Segment Trace System
cc: Measurement Distribution

The following two changes have been made to the STS trace segment. The first
involves the trace record fornat and the record involves the operation of the
trace code segment.

The following changes have been made to the output record format of the trace
segment. Refer to Figure 1. The positions of D3 and DL within the record have
been reversed. Bite six and seven of the first word are now being used as
indicators. Bite six indicates an end-of-data condition, that is, that this
record and all subsequent records are invalid. Bit seven indicates that this
record was not generated as the result of a trace or ahcence interpunt, hut

vas genérated as the resuit of a direct procedure all to the EXTRACE segment.

Word Use
0 1 2 3 4 5 6 7 8 15
1laltlolclelel
LABEL (PCAL) or N (EXIT)
CALLER STATUS:
CALLER DELTAP
STACK D3 <QI-4>
DL
' DB
Q
Z
STACK DST <CPCB (2)>
EXTRA DST <CPCS (3)>
TINE

where R = Record Type
I = Interrupt
A = Absence
T= Segment timing
0 = Timer Overflow
C = Timer Carry
L = Last Record
E = External Call

The time segment now has the capability of recovering from a tape write error.
If the. error occurs, the program will stop with a HALT 1. The tape controller
status will be displayed in RA so that the source of trouble can be determined.
(Press run, and the program will issue a backspace and gap to the tape drive.
6@\ If this is successful, the operation will continue in a normal manner. If
unsuccessful, the program will stop with a HALT 2. Pressing run will allow
tracing to continue, but the tape will contain an error which will probably
inhibit the data reduction program from reading the tape past that point. This
means that it is he<t to terminate the tracing operation and restart with a
different tape mounted.

R R T e T PO, e, o
S R T L U LL TP P el L PeURINe W WS @ew oo et cepesrmn @ -a

SECTION III

BASIC

FOR

INSTRUCTIONAL USE

James P. Schwar v
Computer Center
Lafayette College
Easton, Pennsylvania

February, 1975

ABSTRACT

3000 BASIC serves as the introductory programming.
-language for the arts, sciences and engineering at
Lafayette College. The self-teaching (interpretive)
nature.of the language, coupled with its power and versa-
tility makes BASIC a natural choice for the first pro-
gramming course. The tutor programs, upgraded and ex-
panded from 2000 BASIC, are an integral part of the
course. Two, three-credit courses are 6ffered in intro-
ductory programming, one for engineers, the other for
science and liberal arts students. The HP-3000, through
terminal access, provides "hands-on' experience for each
student. A minimum of four programming problems are re-
quired from each participant in the courses, with com-
puter-output mandated for each assignment. Course syl-

labi are included.

INTRODUCTION

An introductory course in computer programming
should

1. - acquaint the student with the fundamentals of

computer programming,

2. instill an appreciation of computing and com-

puting applications,

3. direct the student toward a logical solution

of problems via flow-charting and programming,

4. reinforce the above coﬁcepts through the writing

of computer programs.

BASIC (Beginners All-Purpose Symbolic Instruction
Code) was selected as the primary programming language
due to its interpretive nature. The ability to interact
through the language is invaluable in an instructional
environment. This benefit more than offsets the slow
execution of interpreted programs. Experience has also
shown that the BASIC interpreter does not generate the
machine loading that results from a compiler (such as
Fortran). This would not necessarily be the case in a
production environment. The 3000 BASIC language is in
itsell a very powerful superset of Dartmouth BASIC and
is equal to if not superior to Fortran for programming
capability.

-2-

COURSE ORGANIZATION

Two distinct student types must be instructed in pro-
~gramming. ’The engineering and the science/liberal arts
student. Programming for the engineer is incorporated
within a 3 credit, second semester engineering science
course. This course is divided into three, 1l-credit
parts: two-dimensional statics, programming (figure 1),
and vector statics. Three programs are assigned for the
programming section with a fourth program on vector
statics given during the last part of the course (figure
2). Each part of the course consists of 15 periods, in-
cluding an examination. The vector statics programming
assignment attempts to demonstrate the application of the
computer to the solution of an 'engineering' problem.

The science/liberal arts course, also an engineering
sciencg course, is a three-credit offering. It meets for
two lectures per week and one drill period per week. Six
quizzes are held approximately every other drill period
(see figure 3) with a quiz average computed from the five
highest quiz grades. There are five programming problems
assigned. Each problem must be run on the computer. The
required format for problem submission and the grading
criteria is given in a hand-out -- Good Programming De-
mands fhat....(figure 4). The course grade is computed

-3-

based on the following schedule:

Quizzes ...vciieeenn ceeee. 80%

Programming problems 20%
Students are encouraged to proceed at their own pace
through the course material. A brief introduction to
Fortran is included at the end of course, ;s many appli-
cation‘pfograms are written in this language. The cover-
age of Fortran is more of a survey, although a program-
ming assignment is required, with parallels drawn to BASIC
whenever possible. Compilatibn and execution of a Fortran
program quickly demonstrates to the student the'differ—
ences between an interpreter and a compiler.

Preparation of a BASIC source program via the text
editor is encouraged toward the end of the BASIC program-
ming section of the course. For the science/liberal arts
student a working knowledge of the editor is critical dur-
ing his brief introduction to Fortran. For the engineer-
ing student later use of library programs require the
editor when building data files. 1In either case, BASIC
serves as a starting point for an introduction to the
text editor with a 5-10 minute discussion of this sub-
system incorporated in the classroom lecture over a two
week period. This (editor) material is presented con-

currently with BASIC programming concepts.

TUTORIAL BASIC

An integral part of a student's experience in the
introductory courses is the tutorial BASIC series. This
series serves as a very important adjunct to the class-
Toom 1écfure. It not only drills the student on the
fundamentals of the BASIC language, but through terminal
access acquaints the student with log-in and log-out pro-
cedures, simple MPE commands, BASIC commands and state-
ments, typing and keyboard layout, etc.

The tutor series presently consists of five lessons
(figure 5) in BASIC. Each lesson is approximately 30-40
minutes in length. All input is character oriented and
response to correct and incorrect answers generates a
randomly selected typed output. The areas currently cov-
ered by the tutor series are:

introduction to BASIC
array, looping and control
functions and subroutines
strings

formatting

Topics to be added are matrix operators and file handling.

GENERAL CONSIDERATIONS

For the freshman engineering student, the brief
introduction to BASIC in the second semester engineering
science course is but a building block for computer ap-
plications in later courses. In the sophomore year ad-
vanced mechanics courses, circuits and a numerical math
course require problem solutions via Basic programming.
In the junior/senior level courses, while programming
continues to be used, some emphasis is placed on using
library programs (figure 6) such as COGO, ECAP and LEANS
as well as programs developed strictly for departmental
use. Fortran is occasionally the programming language
for a few problems and Fortran is also the language for
many library programs.

The science/liberal art student schedules the 3
credit "engineering science course any time during his
undergraduate stay at Lafayette. The course is offered
each semester. After completing engineering science 24,
future programming efforts are at the discretion of the
departments in which he is taking courses. Most depart-
ments (e.g. psychology, physics, mathematics, education)
have developed their own programs, particularly statistical
routines. Litrary programs are also available for use
(figure 6).

-6-

An advanced computer course dealing with the 3000
system (file structure and intrinsics, segmenter, etc.)
is offered in alternate years. The 3 credit engineering
science 24 course oT its equivalent is a prerequisite.
Fortran, rather than BASIC, is 'the' programming language

-

for the course.

LAFAYETTE COLLEGE
Department of Engineering Science
E.S. 26 Spring 1975

Text: Basic Programming by Murrill and Smith

Part II: Computer Programming

Period Topic Pages
16 Introduction 1 - 11
17 ° Arithmetic, Input-Output 11 - 28
18,19 Control 29 - 52
20,21 Loops 53 - 72
22,23 Arrays 73 - 94
24 More on Input-Output | 95 - 115
25,26,27 Intro. to MAT operators 123 - 127
28,29 Functions and Subroutines 116 - 122
30 Exam II

A due date for each problem will be set by your instructor.
All programming problems must include:

(1) 1log-in

(2) program listing

(3) run with sample data

(4) 1log-off
All programs should be documented and all computer output

must contain suitable headings.

Figure 1. TIntroductory Programming for Engineers

$BASIC

BASIC 3.0
»GET STATICS/SCH
>LIST
STATICS - -
10 REM SOLUTION OF VECTOR STATICS PROBLEM
20 REM LOADS ARE A, B, C
30 REM LOADS CANNOT EXCEED 6oos
40 REM LOADS MUST BE COMPRESSIVE
S@ REM X & Z ARE TABLE DIMENSIONS
68 PRINT , ;
70 PRINT ° X z A B ¢
80 FOR X=1 TO 6
.98 FOR Z=1 TO 4 .
™ 100 REM EQUILIBRIUM EQUATIONS FOLLOW
118 Cz3600/X,A=(2808-C%Z2)/4, B 1268=A=C

120 IF A<Pp OR A»€80 THEN 160
136 = 1F B<@ OR B>600 THEN 160
140 IF C<6 OR C>600 THEN 160
150 PRINT USI¥G 1803 X,Z,A,B,C
160 NEXT 2 '
170 HEXT X

180 IMAGE 2(D,DDXX),3¢X6D)
198 PRINT LINCI), CPU TIME =";CPU(D)

>RUN
STATICS - \

X z A B Y
6,020 1,20 350 50 600
6,00 2,00 400 2008 600

@WN.BO 3,00 250 358 609

3,80 4,00 100 508 - 680
" CPU TIME = ,496 '

Figure 2. Vector Statics Program

Week of:

1/20
1/27

%2/3

2/10
*2/17

2/24
*3/3

3/10
*3/17
a/7
4/14
*4/21
4/28
*5/5
5/12

LAFAYETTE COLLEGE
Department of Engineering Science

E.S. 24 Syllabus

Topic
Introduction

simple programs
transfer of control
loops -

arrays

input-output

functions and
subroutines

more on input-output
strings

MAT operators

intro. to Fortran
intro. to Fortran
Fortran

applications

review

*Friday quiz scheduled for this week

Text: Basic Programming

Ref: HP-3000 BASIC INTERPRETER Manual

———

by Murrill and Smith

HP-3000 FORTRAN manual

Figure 3.

-10-

Spring 1975

Reading
Pp. 1-5
6-28
29-52
53-72
73-94
95-115

116-122

(95-115)

(102-104)

123-133
N

“vn W 3 O

Introductory Programming for Science/Liberal
Arts Students

1. Remarks are included in the program to title the program and to
explain steps.

2. All programs have labeled output.

3. Handwritten programs use valid BASIC statements (i.e., a statement
number followed by a BASIC instruction. Remember that instruction
words in BASIC are written in capital letters.

4. A check for a final data value is included if appropriate (i.e.,
the program does not end on an QUT-OF-DATA error or by typing con-
trol Y in response to an INPUT statement.

5. Counters or indexes are used where appropriate.

6. Sufficient and appropriate data is supplied in a DATA statement.

7. Functions are used rather than arithmetic statements (i.e., such
things as using SQR(X) rather than X+.5).

8. Programs to hand in include log-in, log-ocut and a correct final
listing of the program.

S. A READ statement is used when data is indicated to be read and an
INPUT statement used where data is indicated to be inputted.

10. The statement referred to in an IF...THEN statement is not a GO TO
statement.
11. All arrays are DIMed.

12. GO TO's are minimized.

Grading starts @90. Points added for excellence in programming but points

subtracted if any of above violated or specific program requirements not met.

Figure 4. 43ood Programming Demands that....

-11-

;%ggRTUTOR'PUB
TUTOR IS A COLLECTION OF PROGRAMS DESIGNED TO INTRODUCE
YOU TO THE FUNDAMENTAL CONCEPTS OF THE BASIC PROGRAMMING
LANGUAGE, BASIC (BEGIHNERS ALL=~PURPOSE SYMBOLIC IMSTRUCTION
CODE) IS A COMPUTER PROGRAMMING LANGUAGE FOR C O}PUTATIONAL
ANALYSIS, TEXT EDITING, COMPUTER AIDED INSTRUCTION, AND
MANY OTHER APPLICATIO!S.
ALL PROGRAMMING LANGUAGES COHSIST OF A SET OF ORDERED
IKSTRUCTIONS TO THE CCAPUTER THAT PERMITS
ARITHMETIC CALCULATIONS :
CONTROL OF PROGRAM LOGIC i
IKRPUT OF DATA
QUTPUT OF RESULTS '
_ SPECIFICATIONS AND FUNCTION DEFINITION,
THIS ORDERED SET OF IHSTRUCTIONS 1S YOUR COMPUTER PROGRAM,

THERE ARE SEVERAL LESSONS IN THIS SERIES.

@mzv AREs .

LESSON | - TUTG1.PUB = INTRODUCTION TO THE °‘BASIC” LANGUAGE.
LESSON 2 - TUTO2.PUB = ARRAYS, LOOPING, AND CONDITIONAL STATEMENTS,
LESSON 3 = TUT33.PUB = FURCTIONS AND SUBROUTINES.

LESSON 4 = TUTA4.PUB = STRIHGS.
LESSON 5 = TUTGS.PUB « FORMATTING,

T0 BEGIN YOUR TUTOR LESSONS, TYPE
RUN TUTG!.PUB
FOLLOWING THE » SYMBOL.

">RUN TUTO1,PUB
TuTO!

TUTOR/3008 LESSON 1
("LCOME TO THE FIRST “BASIC ° LESSON,

BEFORE WE CAN WRITE A PROGRAM WE NEED TO REVIEW THE SYMBOLS
AVAILABLE,

/ %k e« =x 4 ()

WHICH OF THE SYMBOLS IS USED FOR ADDITION?+
NICE GOING }

VHICH OF THE SYMBOLS IS USED FOR SUBTRACTION?-
HOT BAD, YOU’R RIGHT

.WHICH OF THE SYMROLS IS USED FOR MULTIPLICATION?

Figure 5. Tutor Series

-12-

PROGRAM

BASIC
COBOL
C0GO
CPUTIME
CUFIT
CURFIT
ECAP
 EDITOR
_FCOPY
FORTR AN
LEANS
LINPRO
MULTREG
PLOT
POLAR
POLRT
RAND
ROOTS
SIMSQ
SIMUL

SORT/MERGE

SPL
STAR
TUTOR
XYPLOT

PROGRAM TYPE

SUBSYSTEM
SUBSYSTEM
FORTRAN PROGRAM
FORTRAN SUBPROG
FORTRAN PROGRAM

"BASIC PROGRAM

FORTRAN PROGRAM
SUBSYSTEM

SPL PROGRAM
SUBSYSTEM
FORTRAN PROGRAM
BASIC PROGRAM
BASIC PROGRAM
FORTRAN SUBPROG
BASIC PROGRAM
FORTRAN SUBPROG
FORTRAN SUBPROG
FORTRAN PROGRAM
FORTRAN SUBPROG
BASIC PROGRAM
SPL PROGRAMS
SUBSYSTEM
SUBSYSTEM

BASIC PROGRAM
BASIC PROGRAM

Fijnire 6.

DESCRIPTION

BASIC INTERPRETER

COBOL COMPILER

COORDINATE GEOMETRY

COMPUTES CPU TIME IN SECONDS
POLYNCMIAL CURVE FITTING

LEAST SQUARES CURVE FITTING

ELECTRONIC CIRCUIT ANALYSIS PROGRAM
TEXT EDITOR

FILE COPIER

FORTRAN COMPILER

ANALOG SIMULATOR

LINEAR PROGRAMMING

MULTIPLE LINEAR REGRESSION

PRINTER PLOTTING ROUTINES

POLAR FUNCTION PLOTTING ROUTINE

REAL AND COMPLEX ROOTS OF A POLYNOMIAL
RANDOM NUMBER GENERATOR ,

REAL AND COMPLEX ROOTS OF A POLYNOMIAL
SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS
SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS
FILE SORT/MERGE UTILITIES

SYSTEMS PROGRAMMING LANGUAGE COMPILER
STATISTICAL ANALYSIS ROUTINES

BASIC TUTORIAL SERIES

X=Y FUNCTION PLOTTING ROUTINE

Library Programs

-13-

REFERENCES

. BASIC Programming, Murrill and Smith, Intext (1971).

BASIC For Self-Study or Classroom Use, Albrecht,

Finkel and Brown, Wiley (1973).

Basic BASIC Programming Self-Instruction Manual and

Text, Peluso, Bauer and DeBruzzi, Addison-Wesley

(1972).

'LEANS (Lehigh Analog Simulator), IBM 1130 Contributed

Program Library, 11.1.001.

IBM Electronic Circuit Analysis Program, Jensen and

Lieberman, Prentice-Hall (1968).

Civil Engineering Coordinate Geometry (COGO) for

IBM 1130 Model II, application Description, GH20-0143.

-14.

SECTION 1V

> o A et

t-mo—c-\-:"m—'m- ron

® R hm e 0 T Sase e e e e ann s

REOII n: ol & S b ! 17 LA T s

o adciAdaadht

ELS

SIMPLEX

HALF DUPLEX

0-0-0-

FULL DUPLEX

oo}

ITCP-2

(ASYNCHRONOUS)
S B S S S
T T T T
A -+ A —» O A = B —» 0
R P R P
T T

SERIAL SYNCHRONOUS

PARALLEL

® ADVANTAGES
DIRECT DIGITAL TRANSMISSION
MAXIMUM DATA RATE
TOTAL CONTROL OF MEDIA (CABLE)
LOW COST

o DISADVANTAGES

VERY LIMITED DISTANCE

TP

SYNICHRONOUS (HarDwiRED)
» ADVANTAGES |

DIRECT DIGITAL TRANSMISSION
TOTAL CONTROL OF MEDIA (CABLE)

CABLE LENGTH > PARALLEL

DD DISADVANTAGES

PARALLEL TO SERIAL CONVERSION
DATA RATE < PARALLEL

LIMITED CABLE LENGTH

C S

ITcPs

SYNCHRONOUS
(VOICE GRADE)

©® ADVANTAGES

UNLIMITED DISTANCE

SWITCHED OR LEASED CONNECTION

® DISADVANTAGES
MORE COMPLEX AND COSTLY EQUIPMENT
DATA RATE LIMITED BY BANDWIDTH |
COMMON CARRIER TRANSMISSION MEDIA

NOT DIRECT DIGITAL TRANSMISSION

€

ITCP-6

- ASYNGHRONOUS
- (U0ICE GRADE)

A ADVANTAGES
IRREGULAR INPUT (TERMINALS)

LOW COST

A DISADVANTAGES
SLOW DATA RATE

MINIMAL ERROR CHECKING

ITCP-7

C C

DATA
SOURCE

_— - OO0 =0

rmrrr>X0P>

MODULATOR

IMAITMI200

DEMODULATOR

Spups

0
1
SERIAL 0] DATA
CONVERTER | 0] SINK
1
1
ITCP 8

SYNCHRONOUS
MODEMS
N S\

2000 BPS HALF-DUPLEX ON SWITCHED LINE
2400 BPS HALF DUPLEX ON 2-WIRE PRIVATE LINE =

2400 BPS HALF DUPLEX ON SWITCHED OR 2-WIRE
PRIVATE LINE

4800 BPS HALF DUPLEX 4-WIRE PRIVATE LINE

4800 BPS HALF DUPLEX ON SWITCHED LINES

ITCP-9

DN
g

MODEm TUR

B

(HALF DUPLEX)

0

R

TIME REQUIRED TO REVERSE THE DIRECTION OF
TRANSMISSION FROM SEND TO RECEIVE OR VICE VERSA.

send |
acknowledge 150-200 ms
/
150-200 ms send \
—
acknowledge 150-200 ms
~agilf J
ITCP10

SWITCHED -
2% LINE CONNECTED BY PUBLIC EXCHANGE

R LESS EXPENSIVE FOR SHORTER PERIODS
¥ MOBILITY

LEASED

¥ CONNECTED PERMANENTLY OR SEMI-PERMANENTLY
BETWEEN MACHINES (NON-SWITCHED)

3% HIGHER TRANSMISSION SPEED CAN BE OBTAINED

3% LESS EXPENSIVE FOR LONG PERIODS OF TIME

¥ CAN BE TREATED FOR DISTORTION (CONDITIONING)
 WIDEBAND FACILITIES ARE AVAILABLE

€ €

ITCP-11

o T,

SAUDOT CODE

Last 3

£ N\ Drits 227

2|;Z)sitgits 000({001{010{011(100]101{110(111
OD Ulpek| 5 |cr | G [space ;%f;?‘ 3
CO LCank| T |cr| O [swace| H | N [1]
C1T LC e |) |4 &8 |wo] ;|
O1 L+ LIRG|1T|PIC|V
1O UC3|» |G| 2| | BT |/
1O|LCE|Z|DB|S|Y|F|X
11 UG =] = |7 Jsowes| 7|1 | (feen
11 LC AW J we U[Q K]

ITCP-13

AS

c\

BIT POSITIONS 0,1,2,3

BIT 0000 | 0001 | 0010 | 0011 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
POSITIONS - :

4567 |[HEX! o | v, 2 | 3| a4 | s | 6 |7 | 8| o | a8 icl|lol| e] ¢
0000 0 |NULL|DLE| SP | 0 | @ | P p

0001 1 | son [oc1 | 1 1 A a| a | q ; ;

0010 2 |{stx |loc2| | 2|8 | R [0b | 1 ’

0011 3 jevx |pea| = | 3 ¢ | s | ¢ | s l Y

0100 4 |eoTr |pca| s | 4 [D [T | a4 | i |

0101 5 [ENQ [NAK| % | 5 | E | v Pe |

0110 6 |ACK [SYN| & | 6 . F | v 1 B :'

0111 7 | BEL |ETB 76 | W ! g oW ‘f

1000 8 I BS |CAN| 1 8 ' H X h | ox !

1001 9 |HT [EM |) 9 | v ooy . i

1010 A [LF |suB| = i z |y 2 i !

101 B |vr [esc| + Pk k A '

1100 C [FF |Fs L [

1101 o |crR |es =M | m !

1110 E |so |[Rs N n | i

1" F | s us / > 1 0 - o i DEL L

ITCP-14

CHARACTER BCD CODE CHARACTER BCD CODE CHARACTER BCD CODE

MOODDD + ©CONODTDHBEWNSLO

00
01
02
03
04
05
06
07
10
11
20
21
22
23
24
25

'vezzu-x'i-l

F
G
H
|

W =

-
-8

26
27
30
31
33
34
35
36
40
41
42
43
44
45
46
47

*%ID

(blank)

N<S<XS<<CH®m~

-

50
51
53
54
60
61
62
63
64
65
66
67
70
n
73
74

ITCP-15

Y LAI‘.

BIT POSITIONS0,1,2.3

EBCDIC

BIT 0000 | 0001.| 0010 | 0011 | 0100 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1107 | 1110 | 1IN
POSITIONS -
4,567 [HEX| O 1 2 3 4 5 6 7 8 9 | A 8 C D E F
0000 0 | NUL | DLE | DS sP | & \ (]
0001 1 | SOH | bc1 | sos a j ~ A J 1
0010 2 |sTX | DC2 | FS | SYN b k s 8 K| s 2
0011 3 | FTX | DC3 c | t c L T 3
0100 4 | PF RES | BYP | PN d m u D ™M v 4
0101 5§ |HT |NL |LF |RS e n v E N \" 5
0110 6 |LC |BS y uc f o w F o w 6
ET8
PRE

0111 7 | DEL | 1L E/sc EOT g | o | x s |l e | x| 7
1000 8 CAN h q Yy H Q
1001 9 | RLF | EM \ ' r z | R y 4
1010 ‘A |SMM | CC | S™M ¢ '
1011 B |vT s
1100 C | FF | IFS oca | - . %
1101 D |CR |I1CS | ENQ| NAK |) -
1110 E |SO | IRS | ACK + >
1 F | S IUS | BEL | SuB ?

ITCP-16

Excessm=3

OCTAL cunpacter OCTAL cuaracTER Qqpp CHARACTER

CODE CODE CODE
00 —~— 26 c 53 Q
01 SPACE 27 D 54 R
02 - 30 E 55 $
03] 31 F 56 *
04 1 32 G 57 -
05 2 33 ‘H 60 -
06 3 34 | 61 -
07 4 35 # 62
10 5 36 - 63
1 6 37 ~— 64 /
12 7 40 A 65 S
13 8 41 ~ 66 T
14 9 42 — 67 U
15 ’ 43) 70 Vv
16 & 44 J 71 w
17 (45 K 72 X
20 A 46 L 73 Y
21 , 47 M 74 y4
22 . 50 N 75 %
23 ; 51 o 76 s
24 A 52 P 77 ~ ITCP-17
25 B

¢ ¢

INVOLVED ONLY 2 DEVICES.

DEVICE ADDRESSING NOT REQUIRED

COST PER TERMINAL CONSTANT

SIMPLE LINE CONNECTION.
GUARANTEED ACCESS

TYPICALLY USED IN CONTENTION MODE

ITCP-19

S
IMVOLVES 3 OR MORE DEVICES
COMPLEX LINE CONNECTION
DEVICE ADDRESSING
14 VEORARY LOCKOUT MAY OCCUR
COST PER TERMINAL ON SLIDING SCALE
.
TYPICALLY Lo T POLLED
"1’ ;JE{;’/ ' o ’\%
- S "4 ‘-,‘ v :
OIS K

\

MASTER

MASTER

SLAVE

MASTER

LINE PROTOCOL

anything to send ' ’

<

¢

LINE PROTOCOL USED TO:

DISTINGUISH SENDER FROM RECEIVER
ALLOW ORDERLY TRANSFER OF DATA

PERMITS ERROR DETECTION AND RETRY

ITCP-22

¢ C

22 * MESSAGE BLOCKS AND SYNCHRONIZATION
E— {;\\’/y

< CONTROL CHARACTERISTICS

@) TRANSPARENT-TEXT MODE

Y, @@
Bompps o

(HEVER)

L LY ur

=
=
&

~
Y

ITCP-23

¢ ¢

ROOK THANSMILS O

PR

CHAPTER S5 AGLE

PARAGHAMH TEXT BLOCK

i
X =D

| ‘X G TENCUINTERMEDIATE BLOCK

S S S slis . -

NY hyg M M HEADER . T
N N \|‘

S slis S -

N N N M EADER T

N N N HEA * '

\ J
%\%\\ \\\@ s

arks optional portions

1

! =
| TexTsrock | alE
| | 1] ¢
! B
INTERMEDIATE] | 1| | ¢
TEXT BLOCK e
| B
T c
Bl] C
2
s 15
7| |nTERMEDIATE | o1 ¢
TEXT BLOCK
X e
ITCP-25

PRRITY OPTIONS

CRC CYCLIC REDUNDANCY CHECKING

Discard Quotient
Constant Character
Constant X Quotient

Remainder + next character
Constant X Quotient

—

Remainder + next character
Constant X Quotient

Remainder + next character
Constant X Quotient

Check character at any time ETB, ETX, or US is recognized — Remainder

Cyclic Redundancy Checking

used when not ASCII non-transparent

1ITCP-27

VRC/LRC

VERTICAL REDUNDANCY CHECKING
7 BIT ASCII AND ODD PARITY BIT

LONGITUDINAL REDUNDANCY CHECKING

EXCLUSIVE OR OF ALL ASCII CHARACTERS AND
OWN ODD PARITY BIT .

USED WITH. NON-TRANSPARENT ASCII

ITCP-28

HALF OR FULL DUPLEX
POINT-TO-POINT OR MULTI-POINT

LOOP
COMPREHENSIVE ERROR DETECTION/RECOVERY

TRANSMITS DATA IN BIT STREAM AND IS INDEPENDENT
OF CONTROL CHARACTERS

»
»
M MINIMIZES LINE DELAYS
»
»

TRANSMITS DATA IN BIT STREAM AND IS INDEPENDENT OF CONTROL CHARACTERS

SDLC TRANMISSION FRAME

Bt - : FRAME —
BEGINNING ENDING
F A C ! FCS F
1111110 11111180
L]_]_]lll;ll'lllll:llllll]i ,Llunullluu:rllll
|] o
| FLAG | ADDRESS | CONTROL | Variable | CHECK FIELD I FLAG |
| | | Length | A I I
Information
| le—8 BITS— | | Field ble————16BITS——l]
1. | (may be | |
le— 16 BITS——»| absent) | |
| | | |
e SPAN OF CRC AND ZERO INSERTION —»l
| ' |
| |
ITCP-30

ZERO INSERTION

SDLC’S METHOD OF ACHIEVING TRANSPARENCY

A BINARY ZERO IS INSERTED AFTER ANY SUCCESSION OF FIVE CONTIGOUS I's

TRANSMITTER
101111111000011711110
RECEIVER 0 | 0

10111110110000171111100

j A

C ¢

e HALF OR FULL DUPLEX
@ POINT-TO-POINT OR MULTI-POINT

©® SYNCHRONOUS AND ASYNCHRONOUS MODES

® SERIAL OR PARALLEL TRANSMISSION FACILITIES
@ REQUIRES NO SPECIAL CHARACTER SCANS

£.) ALLOWS BOOTSTRAP STARTUP OF REMOTE TERMINALS

Y RUNS ON EXISTING HARDWARE

ITCP-32

DOCMP

RESPONSE|} FIELD IADDRESS' CRC l DATA_I CRC l
FIELD NUMBER FIELD

SOH | COUNT

G>rmm

BITSf- 8~ 14 24 8 - 3 ~f 8 16 16

DATA MESSAGE FORMAT

ITCP-33

———

	Table of Contents
	Section I
	The Utilization of the HP/3000 at PROMON - A Brazilian Engineering Consulting Company
	Section II
	Software Optimization through Resegmentation
	Section III
	BASIC for Instructional Use
	Section IV

