HEULETT PACKARD

COMPUTER SYSTEMS - 19447 Pruneridge Ave. Cupertino CA 95014

Cc:

.)
Bert Speelpenning X4133 Date: February 8, 1983
Dick Anderson Subject: VISION architecture
Alan Christensen status (CPU)

Shane Dickey

Bob Erickson

Bob Frankenberg
Bill Gimple

Larry Goldman (IND)
Rich Hammons (TCG)
Carson Kan

Leon Leong (IND)
Jim Nissen

Ed Olander

Elik Porat

Howard Smith

Ken Spalding

Alan Hewer
Jim Miller
Dave Salomaki

An updated description of the HP3000 mode of the Vision architecture
has now been released, through the efforts of Terry Jackson.
For questions or comments, please refer to Terry.

The following issues have been resclved, clarified or addressed
“sirce the previous Vision CPU architecture memo.

1, Mode switch

We have identified several ways to shave time from the mode switch
operations between Vision mode and HP3000 mode. This is clearly
important for the performance of HPE. . ,

a) smxtch marker

watchlng nodes is not a truly asynchronous event llke
an external interrupt*: This allois us to get by with

. saving only a subset” of the register values, under software

’ contgol This means that fewer pushes and pops are

- required to do the mode switch., ~ In order to accompllsh
this we need to distinguish betueen a switch marker and
a full blown interrupt marker. Ue also need to give IEXIT
the means to distinguish between the two markers.

Basically, a switch marker will be an external procedure
marker with STATUSB added; an interrupt marker is then a
suitch marker with X0-X15 and B0-B5 added.

An additional bit in the TICB, called RSUIP (return-switch
in progress) will keep the IEXIT logic straight,

Updated ACD pages are provided.

b

-~

switch entry point

A dedicated object in group zero {see under 11) will
provide the entry point for the switch software in
-native mode. The suitch operation is no longer regarded
‘as a trap. It will have no parameters.

This will save some exgecution time at the expense of
some replicated code.

2. Nil‘Eb}ect specifications

The Nil'object is further defined (relative to the ACDwersion 5)
to guarantee that all implementations cause consistent traps to
occur when attempting to access memory through the nil pointer.
The full statement is that operating system softuare shall set
the OD of object zero in group zero to values that correspond to
an object type of data, access fights R3W3, a lower bound of 1
and an upper bound of O tual object number of the nil
object shall also be’ flxed é é:

3. SIT trap

The SIT trap (DBSIT) will report the pointer to the next
instruction as its parameter rather than the previous instruction
address. The obvious- harduare lmplementatlon for SIT uses similar
logic as for external: 1nterrupts and it is unnecessarlly expensive
for hardyare to hang on to the previous instruction counter.

Ue don't expect thls to create any dlffx:ulty for software,

4.~ Access rights checking

Both VCF60 and VCF50 teams have requested reconsideration of
certain aspects of the access rights checking rules.

a) wurite access to imply read access

Hardware simplifications accrue {and redesign can be
avoided) if write access to a data object always implies
‘read access. .The access right fields in an Object
Descriptor -keep their original meaning; we plan to merely
‘add a statement that operating system software shall
- not. create. objects that have write access without also
granting them. read access.

b} read access to the current code object

The ACD makes a distinction between read access to the
current code object and read access to the same object
when it does not happen to be the current code object.
It does this by stating that read access to the current
code obJect is always granted regardless of the contents
of the Object Descriptor for the.code object,

xCurrently, this can be 1mplemented on the VCFGO and the
'VCESO only by d01ng extra work in CALLX and EXIT, which
“will slou these important instructions doun.

e therefore feel that very strong redasons are needed

to retain this exceptional treatment of the current code
object in the Vision architecture. If you feel you have
such strong reasons, we would like to hear them by Feb 15,
On the HP3000, P-relative addressing of data is a basic
addressing mode and the only one available to offer
protection to third-party software. - On Vision, no
performance benefits derive from Keeping data in your
code segnent rather than in some data segment, and third-
party software can be protected by separate privilege
level and by exploiting the group structure.

5. Interruptible instructions

Questions have been raised regarding the expected behavior when
an interruptible instruction is resumed and finds that its data
on the stack has been corrupted. In particular, what should
happen when the IIP bit is set but the word popped from the stack
(which represents how many times around the loop have already
been performed) is found to be negative?

The expected behavior in this and similar cases is allowed to be
implementation dependent, as long as the "damage" does not extend
to another task. For exrample, it is acceptable to immediately
continue to the next instruction when this happens; it is not
acceptable to hang in an infinite microcode loop.

6, "Overlap"

The notion of overlap between source and destination of an
instruction needs some revision to get around some nasty
microcode implications. An instruction such as

MOVE8 source, destination

is only guaranteed to obtain the expected result when.the
destination does not "overlap” the source. This is to allow
harduare to do the move in either one 64-bit gulp or two 32-bit
gulp or (probably in case of misaligments) in some number of odd-
sized gulps, and yet be able to recover from a page fault in

the middle of the move. The exclusion of overlap makes it
permissible to restart the instruction even if the destination
had been partially modified,

For this to really work, we need to extend the notlon of overlap
to cover the case exempllfled by MOVES [B5+X6],

1f MOVE8 encounters a page fault at [B5+X6+1], the value of X6
may already have been modified to the value at [B5+X6].

To avoid this, the definition of "overlap" must incorporate the
components of an address calculation for the source operands.

7. Code object size

A Vision mode code object is limited in size to 2724 bytes.
This is not currently stated explicitly in the ACD but could be
assumed from the format of the external procedure marker.

Ue now make this assumption explicit.

8. DST and CST descriptors

Ue will extend the MOVEfSP8 instruction to allow software to
get access to the current values of the CST and DST descriptors.

9." Bounds checking on variable length instructions

Some instructions such as MOVEC and CMPC involve a sequence of
byte operations over a length given in the instruction.

The way bounds checking is performed optimally in such an
instruction depends on the organization of the hardware. O0On the
VCF60, bounds checking is performed in parallel with an actual
access. On the VCF50, bounds checking is done explicitly in
microcode As a consequence, on the VCF60 it is fastest to start up
the loop of MOVEC or CMPC and trap out when the end of the object
is reached before the loop counter is exhausted. In contrast, on
the VCE50 it is fastest to check whether both first and last byte
are within bounds and not do any bounds checking for intermediate
bytes once the loop starts.

The issue then arises when and how a bounds violation must be
reported and how much of the instruction should be presumed to
have been completed when this occurs.

We have decided that hardware should be left free to choose the
sequence that is optimal for it. The definition for MOVEC will
now state that if MOVEC cannot be completed due to a bounds violation,
the effect of MOVEC is that a contiguous but unspecified number of
bytes has been moved, all within the object’s bounds.

A similar modification will serve for CMPC.

10. Page fault trap

The parameters for the page fault trap are currently listed as
including an 8-byte Virtual Page Number (left justified) and

a 4-byte Page Offset (right justified).

Ue have collapsed these now to a single 8-byte Virtual Address,

11. Architecturally fixed object numbers

Ue have received a request from HPE-I to dedicate certain objects
in group zero for certain uses and to fix these objects
architecturally. In the version 5 ACD, four objects are fired by
their logical address (the NIL object, trap code object, channel
interrupt code object and processor interrupt code object} and
four are fixed by their virtual address (SYSCOM area, hash table,
page directory and PME). Ue have been asked to extend this list
and also to move the logical object numbers for trap code object,
etc. downward so that SYSCOM area, etc. can be glven a logical
object number that is the same as its virtual object number,

e believe that the only object numbers (logical or virtual) that
need to be fixed architecturally are those that must be knoun to
both software and microcode. Any other object numbers can be fixed
by software cornvention, not -architectural mandate.

We are willing to move the logical object numbers for trap code
object, etc, downward in order to make it possible for HPE-I to
implement the scheme they proposed as a software convention.

The revised numbering is shoun below, More object numbers will

be fixed only after it has been demonstrated that both software

and hardvare (microcode) are affected.

logical address

NIL object group 0, object 0

trap object group 0, object 10
channel interrupt object group 0, object 11
processor interrupt object group 0, object 12
switch handler (mm) object group 0, object 13

12. Decimal instructions

e have decided to allow conversions from 64-bit integers to
both 8-byte decimal and 16-byte decimal and vice versa.

All these instructions will be moved to the CONVERT escape

group.

We have also decided to combine the ZEXT3 and TRUNC3 instructions
of the previous status memo into a single MOVE3 instruction.

We will include a fuller description of these later.

An updated opcode chart, though still tentative, is included.

13, IEEE floating point

The Proposed Standard for floating poidt arithmetic has come

one important step closer to becomxng the Standard for floating
point arltnmetlc

In the latest round of ballotlng some small amendments uere passed.
We will include a description of this later In the mean time,
please consult Bill Ames. . C

14, "MEMSAC" instructions

Ue have decided in principle to adopt the memory diagnostic
capabilities proposed by Jim Wichelman and Jim Chiochios.

Ue are in the process of refining all the encodings to assist
the hardware in implementing these.

The latest iteration is reflected in a memo by Brian Button
dated Feb 1,

15. STATUSC and STATUSD

The current definition of STATUSC and STATUSD is based on the
difference in behavior of changes in status in a shared-memory
multiprocessor system. Items in STATUSC, when changed, do not
affect any other processor in the systenm; whereas changes to
STATUSD must be propagated to all other processors in the shared-
memory multiprocessor systenm.

We are currently investigating whether the responsibility- for
notifying other processors can be relegated to system software;
this would make the multiprocessor implementation potentially
simpler, faster and more reliable.

Until this investigation is complete, we will hold off on other
changes to STATUSC and STATUSD that have been proposed, such as
removing the mode bit from STATUSC,

It is quite possible that the eventual result will be to move all
items of STATUSC and STATUSD into the SYSCOM area.

16. PROBE and BPROBE,

PROBE is intended for use by system intrinsics to allow them to
test whether the caller has passed a legal address (range) to the
intrinsic.

Jim Miller has made a proposal, with Alan Hewer, for a change

in the definition of PROBE and for a new variant (BPROBE) of
PROBE that takes the address to be probed from a base register
rather than from memory. The change in PROBE closes a protection
hole having to do with the fact that the value of S in the
environment of the procedure doing the PROBE is larger than the
value of 8 that applied in the environment of the caller,

The variant BPROBE would help make passing address parameters

in base registers more .effective.

Updated ACD pages for these two instructions are provided.

Note that the encodings for "ring" have been changed as well.

17. CHECKA and CHECKB.

Currently, the definition of CHECKA,B includes a special way

of treating the operand of the instruction. If the bit CBA

or CBB is not set, the specification prohibits trapping on

an illegal operand, This was done so that implementations
could implement CHECKA,B without having to do an operand fetch;
this could speed up the (frequent) case where CBA,CBB is clear
at the expense of the case where the bit is set.

Houever, it turns out that in many situations the operand fetch
does not slow down execution and the special prohibition on
operand traps incurs a cost simply because it involves a special
case.

In retrospect, it is therefore clear that CHECKA and CHECKB were
overspecified. A better statement is that CHECKA and CHECKB are
not required to trap an operand violation if CBA,CBB are clear.

18. Ring level for code running on the ICS

Ue are looking into the possibility of relegating more code that
must run on the ICS to ring level 1 rather than level 0.

This would allow better granularity on protection in system code.

It would also allow the trap object to run at level 1,

Changes to IEXIT would be required to allow it to exit into code
that runs at a higher level,

We hope to have a proposal by next month.

ERRATA

all references to "time of day" should be replaced with "time
of century"

MOVEtSP4: setting CBA and CBB does not require special privilege,
Privilege level 3 is sufficient.

MOVEfSP4: CBA and CBB do not warrant their oun selector,
Accessing CBA and CBB must nou be done using MOVEfSP STATUSB1.

The breakrange trap does not return the operand responsible for
tripping the breakrange, It is up to softuware to determine what
values changed within the breakrange. It is precisely because it
is not very feasible for hardware to keep track of the operand
responsible that the VISION architecture has a breakrange for write
but not for read and not for execute.

section 7.1.2 still mentions SI. This is an unintended carry-over
from the version 3 ACD. Because of the redefinition of the
dispatcher marker, in version 5 QI and SI are one and the same.
Hence any reference to SI should be deleted.

TCBX is no longer architecturally defined. In version 5 the TCB
is accessible to software, so a MOVEf/tSP is no longer needed

to manipulate a TCBX pointer. The TCB-extension is a software
concept only.

clarification: MOVEtSP4 task clock enable has no effect when
egecuted on the ICS.

corrections and clarifications prove necessary in the definitions
of CALLX, EXIT and PDDEL. Updated ACD pages are provided.

VISION ARCHITECTURE CONTROL DOCUMENT 02/08
DO NOT COPY -- HP PRIVATE INFORMATION

6.1.4 Opcode Assignments

The following chart shows the association of opcodes with the
instruction name (mnemonic). The 8-bit encoding of the opcode
is found by adding the hexadecimal number in the row of the
instruction to the heradecimal number in its column,

OPCODE
+100 +101 +102 +103 +104 +105 +106 +107
100 NCP EXIT SEXIT TESTA TESTB TESTOV
g8 * * * * PSEB PSDB DISP TRY

110 DISABLE ENABLE INTERRUPT UNTRY EXTEND DELETE CHECKA CHECKB
* * *

118 TESTSTRIP* * BRX *

120 * * QUAD4 * POP8 * * POP16
128 PUSH1 PUSH2 PUSH8 * TESTDOUN UP DOUN PUSH16
<130 POP1 POP2 * * * TESTREF * TEST16D
138 * TEST2 TEST8 TEST4F TEST4D TEST8D TESI8F TEST16F
140 AND4 * * MPY4F MPYS * MPYSF MPY16F
148 NOT4 * DIV4 DIV4F DIV8 * DIVBF DIV16F
{50 OR4 REM4 NEG4 NEG4F NEG8 REM8 NEGSF NEGI16F

158 XOR4 MOD4 ABS4 ABS4F ABS8 MOD8 ABSS8F ABS16F

160 CMP1 CMP2 CMP4 CMP4F CcMP8 BCMP8 CMPSF CMP16F

168 MOVE1 MOVE2 MOVE4 * MOVES BSET8 ¥ MOVE16

170 TESTBIT 1SC42 ADD4 ADD4F ADD8 BGET4 ADDSF ADD16F
*

178 MPY4 SUB4 SUB4F SUB8 BSET4 SUBSF SUB16F
180 MOVEADR BMOVEADR* * * * * *

188 * * MOVEfSP4 MOVEfSP8 TESTSEMASL4D SL8D SL16D
190 ¥ * MOVEtSP4 MOVEtSP8 MOVESEMASR4D SR8D SR16D
198 CHECKLO CHECKHI DUP OVPUNCH MOVE3 CMP4D CMPS8D CMP16D

{A0 LSL4 ASL4 BCMP4 GETSIGN ZEXT2 ADDAD ADDS8D ADD16D
'A8 LSR4 ASR4 BADD4 VALN # SUB4D SUB8D SUB16D

{B0O LSL8 ASL8 BSUB4 VALD ¥ MPY4D MPYS8D MPY16D
{B8 LSR8 ASR8 * * ¥ DIV4D DIVBD DIV16D
1CO PROBE BPROBE MOVEBIT MOVEC * * MOVEBLR CMPB
!C8 DPF ¥ REP CMPC * TRANSL MOVEBRL CMPT
!D0 POLY4F POLYSF POLY16F SCANUNTIL¥* * * *

D8 * * * * * VECTOR SYS CONVERT
@®!E0 BRG BRGE BRGL BRNU PUSH4 PUSHADR POP4 BPOP8
@!E8 BRGU BRNL BRNE BR TESTLSB TEST1 TEST4 BTEST8
@!FO BRN BRE BRL BRLE CALL CALLX * BREAK

{F8 BRU BREU BRLU BRNG * * * ERROR

Note 1: the rows marked with "@ contain the instructions that
can be packed two per word,

Note 2: the instructions VECTOR ,SYS and CONVERT are escapes to
a secondary set of opcodes,

6-13

VISION ARCHITECTURE CONTROL DOCUMENT 02/08
DO NOT COPY -- HP PRIVATE INFORMATION

6,2.6.2 CALL target.r4

Procedure call. A procedure marker is pushed onto the stack
and control is passed to “"target", interpreted as
a 32-bit half-word offset relative to the start of
the CALL instruction. CALL requires the procedure
to be within the current code object.

IIP :=
IIP :=
S := S + 4; {pushes garbage}
PUSH4 P[32..63];

PUSH4 Q[32..63];

Q:=8S;

P := P + target * 2;

1-1IP; if IIP=1 and PTE=1 then Trap"DBCALL";
03

Traps: STKOVE
CODEBNDSV
DBCALL

6.2.6.3 CALLX loi.r4

External call, A procedure marker is pushed onto the stack and
control is passed to the entry point specified in the
OD for "loi". *"Loi" contains the high 32 bits of a
logical address into the target object.

IIP := 1-
1IP := 0;
PUSH8 Preturn;

(s-4)[0..2] := STATUSA[0..2];

PUSH4 Q[32..631;

Q:=8S;

if loi non-existent-object then Trap"CODEODIV";
if OD(1o0i).TYP <> VisionCode then Trap"CODETYPV";
if STATUSA.XL > 0D(loi).PR then Trap"CODERINGV";
STATUSA.XL := OD(loi).XL;

Ptarget[0..31] := loi;

Ptarget[32..63] := OD(loi).EPUQ * 4;

P := Ptarget;

1I1P; if IIP=1 and PTE=1 then Trap"DBCALL";

Traps: STKOVF
CODEODTV
CODETYPV
CODEBNDSV
CODERNGV
DBCALL

6-47

6.2.6.5 EXIT

VISION ARCHITECTURE CONTROL DOCUMENT 02/08
DO NOT COPY -- HP PRIVATE INFORMATION

Exit from procedure. This instruction can be used to return
from a procedure called with CALL or CALLX. The
procedure marker located at Q contains the necessary
information to restore the context of the caller.

If the caller executed in a different code object
than the current one, a number of checks are made.

Status:

Traps:

if (Q-8)[0] = 1 then begin

{external exit}

Pobject := (G-12)[0..31];

Poffset := (Q-8){8..31], zero-extended;

ST return := (Q@-8)[0. 7j

if STATUS. XL > SI return XL then Trap"CODERINGV";

if Pobject non-existent then Trap"CODEODIV";

if OD(Pobject).TYPE <> VisionCode then Trap"CODETYPV";
if ST_return.XL > STATUSB.XTL then Trap"INSXIL";

end

else begin

{internal exit}

Pobject := P[0,.31];
Poffset := (Q-8)[0..31];
ST_return := STATUSA;
end

Q_ offset := (a-4)[0. .31};

if Q offset < 0 or Q_offset > Q[32..63] - 12
then Trap“STKCONSISTV"'

if Poffset[31] = 1 and {implementation choice}
then Trap"INSODDP“~

Poffset[31] :=

s[32..63] .= Q[32 .63] - 12;

af32..63] := Q_offset;

P[0..31] := Pobject;

P[32..63] := Poffset;

STATUSA 1= ST_ return {SIT and DBP bits not to take

effect until next instruction}

restored from marker on external exit
INSXTL

CODEODTV

CODERINGV

CODETYPV

STKCONSISTV

CODEBNDSV

INSODDP

6-49

VISION ARCHITECTURE CONTROL DOCUMENT 02/08
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.4.9 SCANUNTIL 1limit.r4, charset.mr, string.mr, index.ru4

Scan string until condition satisfied. The string of characters
(bytes) pointed to by "string" is scanned for a character
that satisfies a particular condition. Scanning starts
at the byte index "index" into the string and will not
go beyond "limit". SCANUNTIL sets "index" to the value
of the first byte scanned that satisfies the condition
if such a byte exists; it leaves "index" at the value of
"limit”, otherwise. The condition to be satisfied by the
character is encoded as a 256-bit bit array (similar to a
Pascal set). Bits found set in the bit array "charset"
signify that the corresponding character satisfies the
condition.

If the logical address of “charset" is within 32 bytes
of the object’s upper bound, an addressing violation trap
is raised. This 1nstruct10n nust be interruptible.

Status:
Traps:

MOVEADR string, St;

if IIP = 0 then C := index

else POP4 C;

IIP := 0;

CC := CCL;

Notyetdone := C <= limit;

while Notyetdone do begin
Char := (St + C) [0..7]; {zero-extend}
TESIBIT Char, charset;
if CC = CCG then begin

Notyetdone := false;

index := C;
end
else begin
C:=C+ 1

Notyetdone := C <= limit;
{ if implementation chooses to acknouledge
an external interrupt here, then
PUSH4 C; set IIP := 1; Notyetdone := false;

cC
AddressingV

6-40

VISION ARCHITECTURE CONTROL DOCUMENT 02/08
DO NOT COPY -~ HP PRIVATE INFORMATION

6.2.8.4 PDDEL ppn.r4

Delete from PDIR, The Physical Page Descriptor PPD for the

physical page with physical page number 'ppn" is
removed from its hash chain.
Ring 0 privilege is required.

Searchpa := PDIR.PA + 16 ¥ ppn + 12;
VPN := (PDIR.PA + 16 * ppn + 4)70..51];
Linkpa := HASH.PA + 4 * hash(VPN);
repeat
0ldlinkpa := Linkpa;
if (Linkpa)[0..31] = O then Trap"ADRPDIR";
Linkpa := (Linkpa)([0..31] + 12;
until Linkpa = Searchpa;
(0ldlinkpa) [0..31] := (Searchpa){0..31];

Notes: (consult carefully when implementing a VISION machine

1)

2)

3)

capable of running as a shared-memory multi-processor)

Address translation aids (TLB) must be synchronized (by
harduare) with the state of the PDIR/HASH before harduare
may execute the instruction following PDDEL.

In a shared-memory multi-processor system, implementations
must guarantee that read-uwrite operands never fault on the
write. The burden for ensuring this can be placed entirely
on the implementation of PDDEL. This requires PDDEL to
complete a handshake with all processors in the system
before the instruction following PDDEL executes,

Various functions compete for access to hash bucket and PPDs
and these functions must be carefully synchronized by
hardware. These functions are: address translation; uriting
dirty/reference bits; PDINS; TESTREF; PDDEL.

Each hash bucket and each PPD has a bit for semaphore use by
harduware, It is sufficient to lock the appropriate hash
bucket for the entire duration of each function. Houever,
doing so might add overhead to writing dirty/reference bits.
The following scheme is also sufficient: when writing dirty/
reference bits lock only the PPD; when translating addresses
lock hash bucket and each PPD in the chain and unlock each
immediately after reading its contents; PDINS locks the hash
bucket; PDDEL locks two consecutive links in the chain
(starting with the hash bucket) and unlocks the first one
only after it has obtained the lock for the third one.
Hardware must unlock all semaphores when a trap occurs,

Traps: ADRPDIR

VISION ARCHITECIURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION
6.2.6.10 CHECKA parameter.rd
Conditional break. If the "CBA" enable bit is set, a trap is
taken. The value of "parameter" is passed to the trap
handler. It is permissible for hardware to not trap on
an illegal operand if CBA is clear.

if STATUSB.CBA = 1 then Trap"DBCHECKA";

Traps: DBCHECKA

6.2.6.11 CHECKB parameter.r4

Conditonal break. If the "CBB" enable bit is set, a trap is
taken, The value of "parameter" is passed to the trap
handler, It is permissible for hardvare to not trap on
an illegal operand if CBB is clear.

if STATUSB.CBB = 1 then Trap"DBCHECKB";
Traps: DBCHECKB

6.2.6.12 CHECKLO source.r4, lobound.r4

Check lower bound. If "source" is less than "lobound", a
bounds check trap occurs. The comparison is a two’s
complement 32-bit compare.

if source ¢ lobound then Trap"INSCHKLO";

Traps: INSCHKLO

6.2.6.13 CHECKHI source.r4, hibound.r4

Check upper bound. If "source" is greater than "hibound", a
bounds check trap occurs. The comparison is a two’s
complement 32-bit compare.

if source > hibound then Trap"INSCHKHI";

Traps: INSCHKHI

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

4.7 Task Control Block

Harduare needs a certain amount of information in order to
erecute the current task, This information is stored in the
Task Control Block (ICB), located by a register TCB.VA.

This TCB.VA register can be thought of as an extension of
STATUSC. TCB.VA must be a multiple of 16. The length of the
TCB is 176 bytes., Also, the TCB must be memory resident.

A 64-bit register TCB.LA accompanies TCB.VA; operating system
software is responsible for ensuring that the logical address
TCB.LA does in fact translate into the virtual address TCB.VA.
Moreover, the logical address TCB,LA must have a zero group
selector. Hardware implementations are free to use either
TCB.LA or TCB.VA to locate the TCB.

A task switch is accomplished by Dispatcher software through
simultaneously changing the TCB.VA and TCB.LA registers.

o 1 2 3 31
/TCB.LA D + +
\ICB.VA ==> |XM|SUIP|RSUIP| reserved |

tombmmm + +
+4 | for hardware |
B ittt +
+8 | reserved for system |
+12 | sof tuare
B ettt +
+16 | I
+20 | GD1 -- group descriptor|
+24 | for group 1 |
+28 | |
D e TP +
+32 | |
+108 | I
e +
+112 | !
+116 | GD7 -- group descriptor|
+120 | for group 7 |
+124 | !
Fmm e —————— +
+128 | |
+132 | Task Breakrange !
+136 | Descriptor
+140 | |
B +
+144 | |
4-16

02/08

VISION ARCHITECTURE CONTROL DOCUMENT 02/08
DO NOT COPY -- HP PRIVATE INFORMATION
I |
e + \
TCB.VA +144 | SC - HP3000 mode [
+148 | Stack Pointer | |
+- + > HP3000 mode
+152 | CSTX | | information
+156 | descriptor [
B e L T ER PR + /
+160 | SN - Vision mode AN
+164 | Stack Pointer I
B e S + |
+168 | logobjid of vCSa | > Vision mode
e e L L e L e Tt + | information
+172 | TRYOFFSET oo
T + /
+176 | !
XM -- execution mode of the task, On IEXIT to this task,
execution mode STATUSA.XM is set to this value,
SUIP -- swi;ch in progress. Used by IEXIT.
RSUIP -- return switch in progress. Used by IEXIT.
GDi -- Group Descriptors. The format of a Group Descriptor is

described in section 4.5,

Task Breakrange Descriptor. H
This descriptor is described in section 4.9.

sc -- Logical address of top-of-stack of the HP3000 mode
stack used to initialize S on IEXIT.

CSTX Descriptor.
The descriptor locates the CSTX used in HP3000 mode.
Its format is the same as described in section 4.10.

SN -- Logical address of top-of-stack of the Vision mode
stack used to initialize S on IEXIT.

logobjid of VCSA.
The logical object id of the logical object in use as
the Vector Context Save Area. See section 4.11.

TRYOFFSET.
The stack offset saved by the TRY instruction.

4-17

VISION ARCHITECTURE CONTROL DOCUMENT 02/08
DO NOT COPY -- HP PRIVATE INFORMATION

6.2,9.8 IEXIT

Interrupt Exit. This is used at completion of an interrupt
handler (either external or internal). A trap occurs
if the instruction is executed other than on the ICS.
Q must either point to the dispatcher marker, a switch
marker or an interrupt marker, otheruwise results are
unpredictable, If any of the pages of the ICS are
absent, results are unpredictable, If IEXIT returns
control to a task, the TCB of that task must be resident.
If any pages on the task’s stack containing the interrupt
condition, the appropriate trap is taken which runs as the
bottom routine on the ICS (at QI). Neither TCB nor the
task stack object are modified in any way. There are 3
cases of IEXIT which are sorted as follous:

Case 1: IEXIT should return control to a task without
involving the dispatcher.
This case obtains if Q=QI, while DRF=0 or dispatching
is otheruise disabled.

Case 2: IEXIT should run the dispatcher to have it select
a task to LAUNCH.
This case obtains if DRF=1 (dispatcher request flag),
dispatching is not disabled, and no interrupt handler
is pending. Note that it is possible for the dispatcher
to preempt itself.

Case 3: IEXIT should resume whatever code was running prior

to the interrupt handler. This may be a lower priority
interrupt handler that was left pending, or the dispatcher.

The IEXIT description uses these uninterruptible sequences:

RESTORE RETURN(Bregs): begin
B if (ICB.RSUIP = 0) or Bregs then begin
BPOPS B5; .. BPOPS BO;
POP4 X15; .. POP4 XO;

end;
POP8 STATUSB; TCB.RSUIP := 0;
Q :=S; EXIT;
end
RESTORE_HP3000: begin “POP2’ DelQ; Q := S - DelQ;

"POP8’ STATUSB; “PQP2’ Z.QOFFSET;
“POP2° DL.OFFSET; “POP2’ DB.OFFSET;
*POP2’ DB.DST;

end

6-65

VISION ARCHITECTURE CONTROL DOCUMENT 02/08
DO NOT COPY -- HP PRIVATE INFORMATION

IEXIT: if STATUSC.ICS = 0 then Trap"INSPRIV";
if @ = QI and not{todispatch) then begin
case 1: {return to task}
STATUSC.ICS := 0; XM := TCB.KM;
if ¥M = 0 then begin
{return to Vision mode}
S := TCB.SN[0..63];
if TCB.SGIP = 0 then RESTORE_RETURN(false)
else Dbegin

TCB.SWIP := 0;
BRX switch handler; {object 13}
end

else begin

{return to HP3000 mode}
S := TCB.SC[0..63];
RESTORE_HP3000; \ don’t allow
if TCB.SWIP = 0 then “EXIT 0’ / interrupts
else P := “SUITCHC" trap label;
TCB.SWIP := 0;
end
end
else if Q=QI or (todispatch and (Q)[4]1=1) then begin
case_2: {start dispatcher}
Q := QI'; DRF := 0;
STATUSB := DispatcherStatusBlnit;
EXIT <<but leave S at Q>> {Q doesn’t change}

end
else
case_3: {resume code running before interrupted}
§ 1= Q + 120

RESTORE_RETURN (true) ;

Note 1: implementations may substitute for the test Q = QI the
test (Q-4)[0..31] = QI{32..63].

Note 2; "todispatch" summarizes the condition that dispatching
is both desired (DRF=1) and possible (DDC=0, IE=1}).

Status: restored from marker
Traps: INSPRIV
STKUNT
STKCONSISIV
SWITCHC
AddressingV on all base register loads

6-66

VISION ARCHITECTURE CONTROL DOCUMENT 01/20
DO NOT COPY -- HP PRIVATE INFORMATION

10.5.2.3 SUITCH

The SWITCH instruction provides a switch of the execution
environment of a process from Native mode directly to
Compatibility mode, The Native mode stack is capped with a
Switch Stack Marker, the appropriate mode flags changed, and
control passed to the Compatibility SWITCH trap routine on the
Compatibility mode stack which executes above the previous
interrupt stack marker. Any interference, such as Page Faults,
aborts the operation after setting the “switch in progress’
flag which then takes effect on the subsequent IEXIT to the
process,

This instruction requires Ring level 1.

if STATUSC.ICS = 1 or STATUSB.IE = 0
then Trap" INSSWITCH"

else
begin
PUSH_EXTERNAL_PROCEDURE_MARKER; \
PUSH8 STATUSB; / Suitch Marker
TCB.SN := §;
TCB.XM := 13
TCB.SUIP := 1
erecute_case 1 of IEXIT;
end;

10-15

VISION ARCHITECTURE CONTROL DOCUMENT 02/08
DO NOT COPY -- HP PRIVATE INFORMATION

10.5.2.4 RSWITCH

The RSUITCH is the reverse operation to a corresponding SUT
instruction which occured from Compatibility mode and basically
returns erecution control back onto the Compatibility mode stack
environment, The Native mode stack is flushed to leave the old
suitch stack marker, the process mode flag set to Compatibility
mode, and a relaunch of the Compatibility mode process occurs.

This instruction requires Ring level 1,

if STATUSC.ICS = 1 or STATUSB.IE = O
then Trap" INSSUITCH"

else
begin
S 1= Q+8;
ICB.SN := S;
ICB.XM := 1,

TCB.RSWIP := 1;
execute_case_1_of_ IEXIT;
end;

10-16

VISION ARCHITECTURE CONTROL DOCUMENT 02/08
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.7 Interaction with Machine State

6.2,7,1 MOVEfSP4 selector.rl, destination.u4

Move from special register. This selects a certain register
or dedicated memory location based on the value of
"selector", This register or memory location is then
right justified, zero filled and stored in the 32-bit
"destination". An INSMOVSPL violation occurs when
either the value of the selector does not correspond
to any entry in the following list or when the current
execute level does not match the level required for
reading the selected register.

selector #bits req’d XL Assembler alias
0 condition code 2 3 GetCC

1 rounding mode 2 3 GetRM

2 exit threshold 2 3 GetXTL

3 exrecute level 2 3 GetXL

4 flpt trap enable 5 3 GetTEFLP
5 int trap enable 2 3 GetTEINT
6 dec trap enable 2 3 GetTEDEC
7 flpt mode 2 3 GetFPCMODE
8 STATUSA 32 3 GetSTATA
9 STATUSB1 32 3 GetSTATB1
10 STATUSB2 32 3 GetSTATB2
11 TRYoffset 32 3 GetTRY
12 task clock enable 1 1 GetTCE

13 STATUSC 32 1 GetSTATC
14 Interrupt Mask 16 1 GetIMR

15 STATUSD 32 1 GetSTATD
16 HASH.PA 32 1

17 HASH.LENGTH 32 1

18 PDIR.PA 32 -1

19 PDIR.LENGIH 32 1

Traps: INSMOVSPL
6-52

6.2.

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.2 MOVEtSP4 selector.rl, source.r4

Move to special register. This instruction selects a special

harduare register or dedicated memory location
based on the value of "selector"., The value of
"source" is stored into this register or location,
The least significant bits of "source" are used in
the assignment, without any overflou indication.

A trap is taken when the selector does not match
any of the entries in the follouing table or if
the current ring level does not match the required

ring level.
selector #bits req’d XL Assembler Alias
0 condition code 2 3 SetCC
1 rounding mode 2 3 SetRM
2 exit threshold 2 < source SetXTL
3 flpt trap enable 5 3 SetTEFLP
4 int trap enable 2 3 SetTEINT
5 dec trap enable 2 3 SetTEDEC
6 flpt mode 3 3 SetFPCMODE
7 STATUSB2 32 3 SetSTATB2
8 Q_offset 32 3 SetQ
9 task breakrange LOI 32 3 SetTBR
10 cond break A 1 3 SetCBA
11 cond break B 1 3 SetCBB
12 task clock enable 1 0 SetICE
13 Interrupt mask 16 0 SetIMR
14 Debug ring level 2 0 SetDRL
15 sys breakrange LOI 32 0 SetSBR
Status: depends on selector
Traps: depends on selector
SELECTORV
INSPRIV
STKCONSISTIV- (if setting Q offset to value

outside SB and S)

6-53

6.2.7.3

Move from

VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

MOVEfSP8 selector.rl, destinaiton.u8

special register, This instruction is used to
obtain the contents of a special hardvare register
or dedicated memory location identified by the
value of "selector", Values of "selector" not
represented in the following list cause the trap
“SELECTORV" to be raised.

selector #bits req’d XL Assenbler Alias
0 program counter 64 3 GetP
1 ODTO.LA 64 1
2 TCB.LA 64 1 GetICB
3 interval timer 64 1
4 task clock' 64 1
5 time of century 64 1
6 QI.LA 64 1
7 DST descriptor 64 1
8 CST descriptor 64 1
Traps: SELECIORV
INSPRIV
6.2.7.4 MOVEtSP8 selector.rl, source.r8

Move to special register. This instruction stores the
value of "source" into the special hardware
register or dedicated memory location identified
by "selector",

selector #bits req’d XL Assembler Alias
0 interval timer 64 0
1 task clock 64 0
2 time of century 64 0
3 QI.LA 64 0
4 DST descriptor 64 0
5 CST descriptor 64 0

Traps: dependent on selector

SELECTORV
INSPRIV

6.2.8

VISION ARCHITECTURE CONTROL DOCUMENT 02/08
DO NOT COPY -- HP PRIVATE INFORMATION

Instructions that interact with the address space

6.2.8.1 PROBE ring_access.rl, address.m, length.r4, s_upper.ré

Probe access rights. This instruction sets condition codes

dependent on the legality of accessing the address
range given by “address" and "length". PROBE tests
whether in the ring level specified by "ring" the type
of access represented by "access" would be legal .
everywhere in the logical address range starting at
"address" and ending at "address"+"length"-1.

A negative "length" is considered illegal; a zero
length represents the case where the address range will
not be used, yet the address may have to be loaded into
a base register.

If the object is the stack object, then the ending
address is compared against "s_upper" instead of the
present value of S or SL.

PROBE requires ring 1 privilege.

ring := ring access[0..3];
access := ring access[4..7];

Encodings: ri access
0 0 instruction_fetch
1 1 memory_read
2 2 memory urite
3 3
4 caller’s

Values not in this list will cause a SELECTORV trap.

The resulting conditon code settings are as follous:
CCL: the object does not exist or the indicated
access is illegal or the length is negative.

CCE: the indicated access is legal but the indicated
address range is not wyholly within the object.

CCG: the indicated access is legal at the indicated
privilege level over the entire address range
specified; or: the object exists, the access is
legal and the length is zero.

Status: CC
Traps: INSPRIV

SELECTORV

6-56

VISION ARCHITECTURE CONTROL DOCUMENT 02/08
DO NOT COPY -- HP PRIVATE INFORMATION
6.2.8.2 BPROBE ring_access.rl, address.b, length.r4, s_upper.r4
Probe access rights. This instruction sets condition codes
dependent on the legality of accessing the address
range given by "address" and "length".
This instruction differs from PROBE only in that the
address is already loaded into a base register. This
implies that the object is already knoun to exist.
BPROBE requires level 1 privilege.

Status: CC
Traps: SELECTORV

6-56.5

VCF 60 SPU BLOCK DIAGRAM

POWER
SYSTEM

PSCB

PHYSICAL
FRONT
| PANEL

CONTROL
SUPPORT
PROCESSOR

RS232C | HPIB

O

/

C— >

CONSQLE/VIRTUAL
FRONT PANEL

MODEM

INTERFACE

OPTIONAL
FLOATING
CENTRAL POINT
PROCESSOR
PROCESSOR
DBI UNIT CONTROL BUS
SIB
P CACHE
L MEMORY MEMORY BUS
CONTROLLER
(
MENORY
ARRAY CHANNEL
ADAPTER
MEMORY "===+: -_=j.
ARRAY DEVICE DEVICE
. ADAPTER ADAPTER |- ---
: :‘ RS282C HPIB
MEMORY
ARRAY

