
f ' I

HDB
human designed systems, inc.
3700 Market Street, Philadelphia, Pennsylvania 19104 (215) 382-5000

CONCEPT INFO~mTION UPDATE

NUMBER: 14

DATE: APRIL 1, 1980

SUBJECT: WINDOWING

The purpose of this update is to review the basic structure
of windowing within the concept terminals, provide an intro­
duction to a multiple-window application, and present the
advanced user with a more detailed understanding of device
windows.

Basic Definition-Window

A "window" is a rectangular area of display memory, defined
by the user for each device within the terminal (keyboard,
line 1, and line 2).

A window can be of any size and starting location, limited
only by the 80 columns and 24 lines (96 lines for a 4-page
terminal) of the terminal's physical display memory.

A window is a "logical" definition which sets the boundaries
for character display, in that characters cannot be written
past the right-hand edge of the window, for example, or below
the bottom line. When the terminal is powered on, all
devices have a default window definition corresponding to
all of the terminal's physical display memory.

At a given point in time each device has an "active" window
definition, which may be changed at any time. Terminal operations
are performed relative to the current, active window definition.
Such operations include character display, cursor movement,
cursor addressing, clear, send, etc. For example, moving
the cursor to line 5, column 5 (relative to the window's
home position of line 0, column 0) can be executed as long
as the window defined is large enough to contain that address;
however, the effect to the user may be different, since the
windows could have different horne positions. Figure I-A shows
the effects of addressing to line 5, column 5 for a one-page
window defined as 5, 5, 10, 10 (that is: home position line,
home position column, number of lines on the window, number
of columns in the window); figure l-B shows the same write
address command with a window defined as 10, 20, 10, 10.
In this example, in situation A the cursor is physically

DN2300-8004-5

- 1 -

i 1

'l

~

•
)

6

7

II

IS
-.,
10

II

181

19

1
IV
1

. ,

, i ,
.1_ --' .. r

J I" , I • II ! I t I"...; I, ~

FIGURE l-A

, I" ./- ' ,I

'----,.-,--.-;--,-,-" r-

I-- -~-I--'-'

I-

1-- +-i

--
-1-·1 +--

JT- -+-+-+4 -t--fJn -t-
t- - 1--1 +++ H--1-+-I++-+

-, -&--. -. -t-

iIfij~mmla~n~li~
,--

-++-+--+--+- t-- 1-+-t--'

-. - - t-t- -i .1,

~ .,
, -
t.!.
t, .-
10

rhI
W~ t--J--t-++ +-t- ,il

-.-+--t- ~tmln.-
-+-+- 1 1 1 1-+++-+-+ /--t-

---+-1 +-+---1._~_
-0-_- 1--t--1-+-+-- -+-- l--t -t-t- -1-H-

I - ,~- +-t---t ~ -.- +-
-~

H--t-- ++iilf83J-i1ltttt-tr I I I I I

t- -. -t-+++---- -....,

-t--
-H1J~. rl-t-

_.-+-+ I~-
---f-I- -I-+- --+--+-4 --++- t- I-++++-+-++-.....

-t- -H-t- .• -t-- "i1--+-++-- .l.
~~~""_L_~_I-~"'~I-LI 1 1 I I I I I I I I ' , 11 t 1,'. I '.,. ,..'_, I j~ 

• I; i • .-,. I ... '" "c. ."' ... 1- -. ~ ,. I''', LL r., , ;; .4 - l ~ •. , 11 . -
Window Definition = 5,5,10,10 (relative to 0) 

Cursor Addr8ss = 5,5 





located (that is, relative to the actual screen display) at 
line 10, column 10; in situation B, the cursor is physically 
located at line 15, column 25. 

Basic Definition-Cursor 

Every window definition has associated with it a "cursor", 
which points to the location at which the next character is 
to be displayed. This cursor is updated whenever a character 
is displayed or the cursor is explicitly moved via a terminal 
command, for example. As mentioned above, each device within 
the terminal can have its own window definition; similarly, 
associated with each window definition and device is its cursor. 
The keyboard's cursor is represented as a blinking underline 
or blinking block and will always be visible to the user. The 
cursors for Line 1 and Line 2, if used, are "invisible"; 
that is, they are logical pointers to the next available 
character location, but are not represented directly on the 
screen. 

Tied Windows 

While each device may have its own window definition, in 
many applications (and when the terminal is powered on) 
only the keyboard's window definition and cursor are actually 
used; all other devices are "tied" to the keyboard. This 
means the characters and commands received from Line 1 and 
Line 2 will actually move the keyboard cursor, as will 
characters and commands for the keyboard. (In fact, Line 1 
and Line 2 do have their "own" window definitions and cursors; 
however, they are not used when their windows are tied to 
the keyboard.) 

Separate Windows 

For many applications it is desirable for the keyboard and 
the communication line (Line 1) to be "independent" and 
have separate windows and cursors. For example, an application 
may have the user entering data in the keyboard window with 
appropriate error messages and responses appearing in a separate 
Line 1 window. 

The windows for Line 1 and Line 2 can be separated from the 
keyboard (their default condition) by "tieing" the line to 
itself (that is, "un-tieing" it from the keyboard window). 
This is done by the Tie Window command (MC q device). When 
a device is tied to itself, it uses its own window definition, 
as opposed to the keyboard's window definition. The Tie 
Window command would then typically be followed by the line 
issuing a Define Window command for (presumably) a new 
window that is different than the keyboard window. Figure 
2 shows the Escape sequences issued by Line 1 to configure 
a one-page terminal with two separate windows - the keyboard 

- 4 



Commands (*) 

ESC " J6 J6 , p 

(**) ESC q 

ESC.V' , J6 , p 

Figure 2 

SEPARATE ~'1INDOWS EXAMPLE 

Decimal 
Equivalent 

27 118 32 32 44 112 

27 113 33 

27 118 44 32 44 112 

Comment 

Line 1 defines the keyboard 
window to be the "top" half 
of the screen (a home position 
of 0,0; 12 lines long and 
80 columns wide). Note 
that after this command all 
display, from both the key­
board and Line 1, would 
appear only in the top half. 

Line 1 is tied to itself. 
After this command keyboard 
data would appear in the 
top half only; Line 1 data 
would appear in the entire 
screen (its default window 
definition) 

Line 1 defines its window 
to be the "bottom" half of 
the screen; a home position 
of 12, 0; 12 lines long and 
80 columns wide). After this 
command all keyboard data 
appears in the top half and 
all Line 1 data in the 
bottom half. 

-------------------------------------------------------------------
(*) This assumes that Line 1 is issuing the command. To perform 

the same function from the keyboard, do the following (using 
Function Routing) : 

ESC v J6 J6 , p 27 118 32 32 44 112 Define keyboard window 

ESC Q ! ESC q tw 
27 81 33 27 113 33 23 Function route Line 1 tie window 

ESC Q ESC v , J6 , P tw 
27 81 33 27 118 
44 32 44 112 23 

Function route Line 1 
window definition 

(**) On some older terminals it may be necessary to Function 
Route a null command to a device other than Line 1 at this 
point; that is, send: 

ESC q ! ESC Q J6 t@ tw 27 113 33 27 81 32 a 23 

- 5 -



is the top half and the communications line is the bottom 
half. (Users with mUltiple-page terminals should be sure 
to remember that the keyboard cursor will always remain 
visible. If the keyboard were to be defined as page one 
and Line 1 as page four, the user would never be able to 
actually see any data sent by Line 1.) 

Windowing - A Detailed Explanation 

Each logical device within the terMinal (keyboard/video, Line 
1, and Line 2) has its own "device table", which is used to 
store information about that device. Included in the table 
is such information as: 

current cursor address 
current window definition 
"tie window" indicator 
attribute word 
network word 

Of particular interest are the first three, which combine 
to control where characters received from that device are 
to be displayed. While each device logically can have separate 
cursors/windows, the "tie window" indicator actually controls 
where characters are to be displayed, in that it specifies 
the actual device table to be used (and therefore the cursor 
address and window definition). Figure 3 shows the logical 
structure when the terminal is powered on. 

When a character is received over Line 1, for example, the 
following occurs: 

The device table for Line 1 is determined 

The tie window indicator is obtained, and the cursor 
address to use is retrieved from that device table 
(that is, the keyboard device table). 

The character is placed in memory at the current 
cursor address. 

The current device attribute for the receiving device 
(Line 1) is also placed into memory at the current 
cursor address. 

The current cursor address (in the keyboard device 
table) is incremented by one, wrapping around to 
the next line of the right margin of the (keyboard) 
window is reached. (See Figure 4) 

Note that even though data has been received from Line 1, 
its device table information has not been changed. 

Let us assume now that the user has "separated" the keyboard 
and Line 1, as in Figure 2. Figure 5 shows the device 

- 6 -



Figure 3 

DEFAULT STRUCTURE (*) 

Device 

Keyboard tt--I Tie Window Indicatorl I Cur sor Addre s s I I Window Definition 
I 
t 
I 
r-~I Keyboard 0, ° 0, 0, 24, 80 
I 
1 

I 
I 

Line 1 ~(~ Tie Window Indicatorl I Cursor Address I Window Definition 
I I -.....J 
I ~ 

Ke~rboard 0, 0 0, 0, 24, 80 

I 

I 

i-
t 

Line 2 L_ Tie Window Indicator Cursor Address I Window Definitio 

I 
Keyboard 0, ° 0, 0, 24, 80 

(*) Assumes l-page terminal 



I 
ex> 
I 

Device 

Keyboard 

Line 1 

Line 2 

Figure 4 

STRUCTURE AFTER RECEIPT OF ONE CHARACTER 

;-1 Tie Window Indicato~ 
t I 
I 
r-~ Keyboard 
I 
~ 

I 

~--l Tie Window Indicator 
I 
I .. 
I 
I 
I 

Keyboard 

i IT' t.1· d d . t L~ 1e '~1n ow In 1ca or 

Keyboards 

Cursor Addres.s 

0, 1 

Cursor Address 

0, 0 

Cursor Address I 

0, 0 

Window Definition 

0, 0, 24, 80 

Window Definition 

0, 0, 24, 80 

Window Definition 

0, 0, 24, 80 



Device 

Keyboard 

Figure 5 

SEPARATED WINDOWS STRUCTURE 

~<r -1 Tie Window Indicatorj 

't I 
t- --~ 

I 
+ 

Keyboard 

Cursor Address 

0, a 

Window Definition 

0, 0, 12, 80 

Line 1 ~ ~~ Tie Window Indicatorl I Cursor Address I I Window Definition 

+ t 1 I· 
: ~ Line 1 ~ I __ ~' _~_~ _____ 1 12, 0, 12, 80 

I 
I 

t 

Line 2 ~ __ Tie \Hndow Indicator Cursor Address Window Definitior 

Keyboard 0, a 0, 0, 24, 8D 



table structure after the Figure 2 escape sequences. Figure 
6 shows the same structure after the recept of one character 
from the keyboard and one character from Line 1. 

The user should be sure to note that many commands and functions, 
including Define Window, use the tie window indicator to deter­
mine which device table to change. That means, therefore, that 
a Define Window command received from Line 1 would normally 
change the keyboard window definition, unless Line 1 had 
previously been tied to itself. 

Also, note that devices may only be tied to themselves or to 
the keyboard. The keyboard can only be attached to itself 
(not Line'l or Line 2), and Line 1 cannot be tied to Line 2 
and vice-versa. 

- 10 -



Figure 6 

SEPARATE WINDOWS AFTER RECEIPT OF ONE CHARACTER 

Device 

Keyboard I"~~i Tie Window ~ndic:orl I Cursor Address I I Window Definition , 
t" 
L __ ~ Keyboard 0, 1 0, 0, 12, 80 , 
~ 

I 

I , 
Line 1 t r~ Tie Window Indicatod I Cursor Address I I Window Def ini tion 

I 
I I-' 

I-' 

~~ I 
0, 1 12, 0, 12, 80 Lire 1 

, 
Line 2 L + _ ~ Tie \Hndow Indicatorl I Cursor Address I I Window Definition 

Keyboard 0, a 0, 0, 24, 80 


