HDS

human designed systems, inc.
3700 Market Street, Philadelphia, Pennsylvania 19104 (215) 382-5000

CONCEPT INFORMATION UPDATE

NUMBER: 14
DATE: APRIL 1, 1980

SUBJECT: WINDOWING

The purpose of this update is to review the basic structure
of windowing within the concept terminals, provide an intro-
duction to a multiple-window application, and present the
advanced user with a more detailed understanding of device
windows.

Basic Definition-Window

A "window" is a rectangular area of display memory, defined
by the user for each device within the terminal (keyboard,
line 1, and line 2).

A window can be of any size and starting location, limited
only by the 80 columns and 24 lines (96 lines for a 4-page
terminal) of the terminal's physical display memory.

A window is a "logical" definition which sets the boundaries
for character display, in that characters cannot be written
past the right-hand edge of the window, for example, or below
the bottom line. When the terminal is powered on, all
devices have a default window definition corresponding to

all of the terminal's physical display memory.

At a given point in time each device has an "active" window
definition, which may be changed at any time. Terminal operations
are performed relative to the current, active window definition.
Such operations include character display, cursor movement,
cursor addressing, clear, send, etc. For example, moving

the cursor to line 5, column 5 (relative to the window's

home position of line 0, column 0) can be executed as long

as the window defined is large enough to contain that address;
however, the effect to the user may be different, since the
windows could have different home positions. Figure 1-A shows
the effects of addressing to line 5, column 5 for a one-page
window defined as 5, 5, 10, 10 (that is: home position line,
home position column, number of lines on the window, number

of columns in the window); figure 1-B shows the same write
address command with a window defined as 10, 20, 10, 10.

In this example, in situation A the cursor is physically

DN2300-8004-5

FIGURE 1-A

~ -

1
'
1
]
1
i
!
-
1
:
1
1
]
13
.
1‘
4
%
4
A
—
e
I
i
]
]
4
peyem

l
+
il
]
.
|

|
1
M
) S
i
X
]
1
|
i
.
1
4
1
1
R
4
-
d
|
,
1
1]
13
]
.
|
i
N
1
1
1
~
1]
J‘T
14
}
.
-
+
|
R}
B |

T {H1 1 H-

|
T
!
i
'
|
—|
{
A
—
e
I
H
-
+—
T
4
-
]
—
1

hd V;bTu‘

|

T

;
!

T

]

1

]
1
i
T
|

]

i

I8

1
1

14

|

+
1
X
d
1

Sizioieje j~ o ||

REEOOC
1
T
!
|
B
1
i
|
J
y

(=]

1

.

]

"

b

]

i

4

1

;

1

]

—_—

i

]

;

1

4

1

i

N {

L

l

n

i

+

]

1

t

'

1

|

e

]

+

Bl

—

+

i

-~ S (R - G .

T=] =
L
+
{
B
T
i
1
)
1
"
1
i
|
‘
I

m 11T 81 1T 1 -4-4-f-1— N ~~1T-1_ -4 11 -4- -4-1 b—4 —
‘»-—1»--1'—— — — - . -r—* -1 -4+ +4-1- =11 1+ 1 = - - +t+tt—t-t+1-
-+ _T———— N S S - - W = b j_w,_‘w__ .1 .
1T =1 - - 1T°r-¥1-1-1—1 - »1“ -t 1" -1 T 11 - - ’—-"-'—r‘— T 111 -
-~ —4}- 4—-1--1- -4 -
- -4 -4~ e B B Tﬁ_ .>Ar._.A4 1 -1 - 4 - - -ra»»- -4+ -+ 1 -
1 -+ 4 - -+ — -1 -4 - -4 - - “+—++-11 -+ -t +—+
. - 4~ + - ~ -1 1+ g -+ -~ - 4 - — r— — “1-t-11 1—1
-+ B O N N A I N O I O O IO 14 S N O O O O
- Fv-1— —l:»—— - - “L - . I {—{ — 1 1+
—d 4 44 —d
[y S ‘ » 4 t o ¢ i X [N) ' ' « 7 M 4 't - 1

Window Définition = 5,5,10,10 (relative to 0)

! Cursor Address = 5,5

(0 03 @ATI3eT2X)

0t‘0T1‘0Z‘0T

‘G = ssa2appV

= UOT3TUTIILaQ

Iosand

MODPUTM

[XRIE] 1, CRER R - 1 . t EEETIN) te x N
-1 T T 1 71T T
L 24
- Y W U N . N 4} SR . . -
h 44
-4 4 4 4 ;r; - - - - - | B i e S IR B 4-
4
r- b-4-484- & 4434 4 - +- 44 -4 - - 4+ — —4 - . ﬁ . -
(k4
L Tﬁ -+ 1 A R UH G DU G G I N D G G SN G N S R S -
j O W Y N S W Wy . JT U W S A o B O O W B I S S I o - -4
1
.4 4 & L_l;! - U JS Gy . N W W W N W U SR SR D S
wi
W 1S 50 I Y O 5 0N O 44 SN0 SRy WD W Ul S BN NS SNy W O O & -1 -+
{1
18- I G W . - tf,'.lTnY - - + i4+44-F = -
9" ﬁ
P S S —4—4 4 B R e ok e = SN TR SRS S — 4 4 - -$-4 —4--
t
4-4-3- - 44+ 444 - N I S O
\4
] L]] S U O N -1 4L N o L 414 -
\4
-8 -3 4 S —8 4 L - §- - — - |— 4 -4 4--4-1-14- -+ b 4- -} -
k4] L
— 4 44 L | _ JU B o | - W g . . . 4- - 41 I .
" f
- b4 4 B N G T O O W S = 44— - RN IOND S S U O IS S U
01
-t 3 SIS N N W - - tl.;ﬁ 4= 4 44—+ }- 4+ - -4 L -4- & - 4
|
) - 15 N 1D I O O OO O I O B A N L . J0 U A N O O A O B O
y |
- ~-4-4+ $— ‘?.. L; —4 . b — 4o 44 -4 - § -+ - I
{
YMf 4 433 T Y GO S G —4 - N N B O O -
YmL, -4~ -4 - - + 4 —-{- b - - -+~ -F - -4 -4 - - -
rﬂ P - 4 L -4 4- | - -4 - L - 1
S . . 4+ 44+ } -}- | 4 - S S N S R B S -1 F - -
€
- 4 ﬁ S D Sy Wy S .ﬁun - SRS NN Gy N S S - - - 4
t |
r... vLﬁlr‘k(vﬂLTnVy,f#- 4 $ 4444 44 LY L —4-4-F 41
rLrl!.' JEDINY PSSR NEDUN N S S5 - 'rn.l..‘.:_r' IM - ln..-LA'l.1|r| S - - ! -
e - = e o - Aatmee W — - - - - —— B @tm - + ' S G - e e - - - '

g-T Jd0NDId

v‘JYir .. Avvll.ll-l ¢ » A ! [BEEE S 4, t ot 1
vz
—4— -4 -4 - - - $-
=
- e - - - -4 44— 444444 vl!ﬁ;
L4
- - - -4 -4 -4 s <4+ —}
t7.
— - - -4 P -4--4 $— —_—
- = g
— 4 -4+t -1- -4-+- 1+ & - 4— —1-t—4+-%-1
- 6!
- 4 - -
!
O S B 4 S W . 4444
/1
- U S W SN N - L I S . D N T .
X ﬁ o
b N - A W = — —4 A - 44— - N S
. -t - - - 44 N N S N St
"y
- - S D QN - -4 4 4 -4
€l
—4- - L S 4-4-—4-1- —§-+ 4- = [
4
4 -4 44 — 4 - 4 S N Sy . 4 -4+
1]
—} — 4—19- ﬁ,‘: — -4 -4
0t
e 3 - - —¢ -1t 4+-14-+—4+—4++ T-..IL — — —¢ -4
6
4 -+ |-t - -+ b4-4 44 -}- 4- 1 —- 4
L]
- — -4 - - - - - 443 §- 4 -4—4 +4 4
! ¢
- -4 b— - - —4— 44— § 4
Q
S S I -4- 44 .
<
- - -f-++4 + }—4-- —4— —4 -
’
- 4 -4 4-4- 4 —4-$--4+ - - -4} 4+
3
- - - -+ $-- b -4--} - L —§ —4—4{--% 4
1]
- §-- - b - = 4- — §-4 -
B I T 0 UL L N DULIOS O O 1% O O O LB
D — —— e o A

located (that is, relative to the actual screen display) at
line 10, column 10; in situation B, the cursor is physically
located at line 15, column 25.

Basic Definition-Cursor

Every window definition has associated with it a "cursor",
which points to the location at which the next character is

to be displayed. This cursor is updated whenever a character
is displayed or the cursor is explicitly moved via a terminal
command, for example. As mentioned above, each device within
the terminal can have its own window definition; similarly,
associated with each window definition and device is its cursor.
The keyboard's cursor is represented as a blinking underline
or blinking block and will always be visible to the user. The
cursors for Line 1 and Line 2, if used, are "invisible";

that is, they are logical pointers to the next available
character location, but are not represented directly on the
screen.

Tied Windows

While each device may have its own window definition, in

many applications (and when the terminal is powered on)

only the keyboard's window definition and cursor are actually
used; all other devices are "tied" to the keyboard. This
means the characters and commands received from Line 1 and
Line 2 will actually move the keyboard cursor, as will
characters and commands for the keyboard. (In fact, Line 1
and Line 2 do have their "own" window definitions and cursors;
however, they are not used when their windows are tied to

the keyboard.)

Separate Windows

For many applications it is desirable for the keyboard and

the communication line (Line 1) to be "independent" and

have separate windows and cursors. For example, an application
may have the user entering data in the keyboard window with
appropriate error messages and responses appearing in a separate
Line 1 window.

The windows for Line 1 and Line 2 can be separated from the
keyboard (their default condition) by "tieing" the line to
itself (that is, "un-tieing" it from the keyboard window).
This is done by the Tie Window command (MC g device). When
a device is tied to itself, it uses its own window definition,
as opposed to the keyboard's window definition. The Tie
Window command would then typically be followed by the line
issuing a Define Window command for (presumably) a new
window that is different than the keyboard window. Figure

2 shows the Escape sequences issued by Line 1 to configure

a one-page terminal with two separate windows - the keyboard

Figure 2

SEPARATE WINDOWS EXAMPLE

Decimal
Commands (*) Equivalent Comment

ESCv BB ., p 27 118 32 32 44 112 Line 1 defines the keyboard
window to be the "top" half
of the screen (a home position
of 0,0; 12 lines long and
80 columns wide). Note
that after this command all
display, from both the key-
board and Line 1, would
appear only in the top half.

(**) BESC g ! 27 113 33 Line 1 is tied to itself.
After this command kevboard
data would appear in the
top half only; Line 1 data
would appear in the entire
screen (its default window
definition)

ESCv , B, p 27 118 44 32 44 112 Line 1 defines its window
to be the "bottom" half of
the screen; a home position
of 12, 0; 12 lines long and
80 columns wide). After this
command all keyboard data
appears in the top half and
all Line 1 data in the
bottom half.

s —————— —————————————————— —— — — ———— " —— ——————— . ————— —_— - - —r— o —————

(*) This assumes that Line 1 is issuing the command. To perform
the same function from the keyboard, do the following (using
Function Routing):

ESCv BK ,p 27 118 32 32 44 112 Define keyboard window

ESC Q ! ESC q ! W
27 81 33 27 113 33 23 Function route Line 1 tie window

ESCQ ! ESCv , B , p tw.
27 81 33 27 118 Function route Line 1
44 32 44 112 23 window definition

(**) On some older terminals it may be necessary to Function
Rogte a null command to a device other than Line 1 at this
point; that is, send:

ESC g ! ESC Q ¥ +@ +w 27 113 33 27 81 32 0 23

- 5 -

is the top half and the communications line is the bottom
half. (Users with multiple-page terminals should be sure
to remember that the keyboard cursor will always remain
visible. If the keyboard were to be defined as page one
and Line 1 as page four, the user would never be able to
actually see any data sent by Line 1.)

Windowing - A Detailed Explanation

Each logical device within the terminal (keyboard/video, Line
1, and Line 2) has its own "device table", which is used to
store information about that device. Included in the table
is such information as:

. current cursor address

. current window definition
. "tie window" indicator

. attribute word

. network word

Of particular interest are the first three, which combine

to control where characters received from that device are

to be displayed. While each device logically can have separate
cursors/windows, the "tie window" indicator actually controls
where characters are to be displayed, in that it specifies

the actual device table to be used (and therefore the cursor
address and window definition). Figure 3 shows the logical
structure when the terminal is powered on.

When a character is received over Line 1, for example, the
following occurs:

. The device table for Line 1 is determined

. The tie window indicator is obtained, and the cursor
address to use is retrieved from that device table
(that is, the keyboard device table).

. The character is placed in memory at the current
cursor address.

. The current device attribute for the receiving device
(Line 1) is also placed into memory at the current
cursor address.

. The current cursor address (in the keyboard device
table) is incremented by one, wrapping around to
the next line of the right margin of the (keyboard)
window is reached. (See Figure 4) '

Note that even though data has been received from Line 1,
its device table information has not been changed.

Let us assume now that the user has "separated" the keyboard
and Line 1, as in Figure 2. Figure 5 shows the device

-6 -

Figure 3

DEFAULT STRUCTURE (*)

Device

Keyboard -+ Tie Window Indicator Cursor Address Window Definition
|
v
> Keyboard 0, 0 0, 0, 24, 80
I
A
1
|
|
| |

Line 1 }G-Tie Window Indicator Cursor Address , Window Definition
i t
A ; |
: Kevboard ; 0, O T 0, 0, 24, 80
1 1
|
I
4
| i

Line 2 L.| Tie Window Indicator Cursor Address Window Definition

Keyboard 0, O 0, 0, 24, 80

(*) Assumes l-page terminal

Figure 4

STRUCTURE AFTER RECEIPT OF ONE CHARACTER

Device

Keyboard g--1 Tie Window Indicator Cursor Address Window Definition
] . ,
v
> Keyboard 0, 1 0, 0, 24, 80
|
A
|
1
l g

Line 1 <-4 Tie Window Indicator] Cursor Address ; Window Definition
|
, |
A
. Keyboard 0, 0 % 0, 0, 24, 80
|
|
]
|
’ |

Line 2 L_l Tie Window Indicator Cursor Address i Window Definition

Keyboards 0, 0 % 0, 0, 24, 80

Device

Keyboard

Line 1

Line 2

Figure 5

SEPARATED WINDOWS

—<-—t Tie Window Indicator

STRUCTURE

Cursor Address

e Keyboard

0, O

- Tie Window Indicator

'
1

Cursor Address

L » Line 1

0, O

k—-4 Tie Window Indicator

Keyboard

Cursor Address%
0, O ‘
' |

Window Definition

o, 0, 12, 80

Window Definition

12, 0o, 12, 80

Window Definition

I o, 0, 24, 80

table structure after the Figure 2 escape sequences. Figure
6 shows the same structure after the recept of one character
from the keyboard and one character from Line 1.

The user should be sure to note that many commands and functions,
including Define Window, use the tie window indicator to deter-
mine which device table to change. That means, therefore, that
a Define Window command received from Line 1 would normally
change the keyboard window definition, unless Line 1 had
previously been tied to itself.

Also, note that devices may only be tied to themselves or to
the keyboard. The keyboard can only be attached to itself
(not Line 1l or Line 2), and Line 1 cannot be tied to Line 2
and vice-versa.

.."[I_

Figure 6

SEPARATE WINDOWS AFTER RECEIPT OF ONE CHARACTER

Device
Keyboard ¢——-- Tie Window Indicator Cursor Address Window Definition
|
¥
#»—» Keyboard 0, 1 o, 0, 12, 80
A
|
|
' !
Line 1 » +—| Tie Window Indicator Cursor Address |, Window Definition
| |
I 1
T Lire 1 0, 1 ‘ 12, 0, 12, 80
|
|
A
|]
|
Line 2 L< -4 Tie Window Indicator Cursor Address Window Definition
| l
Keyboard 0, 0 | ! 0, 0, 24, 80

