
IFX

Device Driver

DEVELOPER'S GUIDE

Document Number 523311002
May 26, ~989

REV. MANUAL REVISION HISTORY PRINT
DATE

-002 IFXl68000, software release 1.06 5/26/89
-002 IFXl386, software release 1.05 5/26/89

-002 IFXl86, software release 1.05 5/26/89

Ready Systems makes no warranty of any kind with regard to this material, including, but not limited to, the im
plied warranties of merchantability and fitness for a particular purpose. Ready Systems assumes no responsibility
for any errors that may appear in this document. The information in this document is subject to change without
notice.

Ready Systems software products are copyrighted by and shall remain the property of Ready Systems. Use, duplica
tion, or disclosure is subject to restrictions stated in Ready Systems' software license. No part of this document may
be copied or reproduced in any form or by any means without the prior written consent of Ready Systems.

AIITX, VRI'X, VRrX32, IFX, lOX, FMX, VMX, TRACER, TRACER32, MPY, lITC, Hyperlink, RTscope, ART
scope, and lITAda alone or followed by a numerical suffix (such as VRTX32/68000) are registered trademarks of
Ready Systems. These trademarks may be used only to identify Ready Systems products.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b) (3) (ii) of
the Rights in Thchnical Data and Computer Software clause at 52.227-7013.

Copyright © 1989
Ready Systems

470 Potrero Avenue
P.O. Box 60217

Sunnyvale, California 94086
408n36-2600

FAX: 408n36-3400
TELEX: 711510608 (domestic)

0231510608 (international)

All rights reserved
Printed in U.S.A.

UNIX is a registered trademark of AT&T. M68000 is a registered trademark of Motorola. iAPX86 is a registered trademark of

Intel.

Table of Contents
~READY
SYSTEMS

How To Use This Manual

Chapter 1 Overview
1.1 Introduction ... 1-1

Chapter 2 Calling Conventions
2.1 Introduction .. ".. 2-1

2.1.1 Parameters .. 2-2
2.1.2 Register Conventions'.................. 2-3
2.1.3 Status Codes . 2-4
2.1.4 Writing a Device Driver in C for IFX/68000 2-4
2.1.5 Writing a Device Driver in C for IFX/386 2-6

2.2 Device Control Block ~ 2-6
2.3 Device Driver Control Block 2-8

Chapter.3 Managing Multitasking
3.1 Introduction
3.2 Locking Mechanisms

3.2.1 Simple Locking -................ .
3.2.2 Concurrent Reads and Writes

3.3 Order of Processing Requests
3.4 Preemptive Device Scheduling
3.5 Locking by High-Level Device Managers
3.6 Global Variables .. .
3.7 Reentrancy
3.8 Dependent Devices
3.9 Direct Memory Access

May 26, 1989

3-1
3-1
3-2
3-2
3-3
3-4
3-5
3-5
3-5
3-6
3-7
3-7

i

Table of Contents IFX Device Driver Developer's Guide

Chapter 4 Handling Interrupts

4.1 Introduction . 4-1
4.2 Mailboxes . 4-1
4.3 Event Flags . 4-4
4.4 Using UI _ENTER and UI _EXIT 4-4

4.5 Writing an Interrupt Service Routine in C . 4-5
4.6 Installing Interrupt Service Routines 4-8
4.7 Using Time-outs .. 4-10

Chapter 5 Device Driver Guidelines

5.1 Introduction.. 5-1
5.2 Disk Device Drivers 5-1

5.2.1 Physical Format'.' 5-1
5.2.2 Logical Format ~ . 5-4
5.2.3 Formatting the Disk 5-4
5.2.4 Byte-Swapping....................................... 5-5
5.2.5 Sector Interleaving ::.. 5-6
5.2.6 Multiple Sector Transfers . 5-8

5.3 Serial Device Drivers 5-8
5.3.1 Serial 1/0 5-9
5.3.2 Serial Control Block (IFXSCB).. 5-10
5.3.3 ISR Operation . 5-11

5.4 Clock Device Drivers 5-12
5.5 Custom and Block Device Drivers 5-12
5.6 Device Managers . 5-13

5.6.1 Installation.. 5-13
5.6.2 Calling the Underlying Driver. 5-13

5.7 Pathname Driver . 5-15
5.7.1 Implementing IFXFOPEN 5-15
5.7.2 1/0 Handler. 5-16
5.7.3 Descriptor Control Block. 5-17

ii May 26, 1989

IFX Device Driver Developer's Guide Table of Contents

Chapter 6 Supporting Function Codes

6.1 Introduction ... 6-1
6.2 Generic Function Codes 6-2

6.2.1 IFXFDRIVER (Install Driver) . 6-2
6.2.2 IFXFRMDRIVER (Remove Driver) 6-2
6.2.3 IFXFINSTALL (Install Device) . 6-3
6.2.4 IFXFREMOVE (Remove Device) 6-5
6.2.5 IFXFIOCfL (I/O Control) . 6-5
6.2.6 IFXFDEVCfL (Device Control) . 6-6
6.2.7 IFXFACANCEL (Asynchronous Cancel) 6-8

6.3 Supporting Disk Function Codes ' .. : 6-9
6.3.1 IFXFREADS (Read Sectors) 6-9
6.3.2 IFXFWRITES (Write Sectors) . 6-10
6.3.3 IFXFIOCfL (I/O Control) : 6-11
6.3.4 IFXFACANCEL (Asynchronous Cancel) 6-14

6.4 Supporting Serial Function Codes . 6-15
6.4.1 IFXFINSTALL (Install Device) '. . 6-15
6.4.2 IFXFIOCfL (I/O Control) . 6-15
6.4.3 IFXFACANCEL (Asynchronous Cancel) 6-16

6.5 Supporting Clock Function Codes . 6-17
6.5.1 IFXFGTIME (Get System Time) 6-17
6.5.2 IFXFSTIME (Set System Time) 6-17

6.6 Supporting Pathname Function Codes 6-17
6.6.1 IFXFCREATE (Create File) 6-17
6.6.2 IFXFDELETE (Delete File) b-18

6.6.3 IFXFMKDIR (Make Directory) 6-18
6.6.4 IFXFRMDIR (Remove Directory) 6-18
6.6.5 IFXFRENAME (Rename File) . 6-19
6.6.6 IFXFSWKDIR (Set Working Directory) 6-19
6.6.7 IFXFGWKDIR (Get Working Directory) 6-19
6.6.8 IFXFSLABEL (Set Volume Label) '. 6-20

May 26, 1989 iii

Table of Contents IFX Device Driver Developer's Guide

6.6.9 IFXFGLABEL (Get Volume Label) 6-20
6.6.10 IFXFMARKBAD (Mark Bad Sectors) 6-20
6.6.11 IFXFOFFLINE (Mark Device Off-Line) 6-21
6.6.12 IFXFDEVCTL (Device Control) 6-21
6.6.13 IFXFOPEN (Open) ~ . 6-21

Chapter 7 Installing IFX Devices
7.1 Introduction.. 7-1
7.2 Installing and Removing Device Drivers and Managers. 7-2

7.2.1 ifx driver... 7-3 - .
7.2.2 ifx rmdriver . 7-3

7.3 Installing, Mounting and Removing Devices 7-3
7.3.1 ifx install ... 7-4
7.3.2 ifx mount . 7-4
7.3.3 ifx_remove ... 7-5

7.4 Using the Disk Buffer Cache Manager ~ 7-5
7.4.1 Mounting the Disk Buffer Cache Manager '0' • 7-6
7.4.2 Determining the Number of Buffers 7-7
7.4.3 Determining Size of Buffers 7-8

7.5 Using the Line Editor Device Manager '. . . . 7-8
7.5.1 Mounting the Line Editor Device Manager 7-9

7.6 Using the Circular Buffer Device Manager. 7-9
7.6.1 Installing the Circular Buffer Device Manager ' 7-10
7.6.2 Step-by-Step Summary. 7-11

7.7 Standard Device Drivers . 7-11
7.7.1 NULL 0 • • • • • • • • • • • 7-12
7.7.2 CONSOLE ~ -. 7-43
7.7.3 PIPE... 7-13
7.7.4 SOFrCLCK... '7-14
7.7.5 BYTERAM - SECTORAM 7-15

7.8 MVME320 Disk .. 7-17

Appendix A Example Device Drivers
A.l Introduction ... A-I
A.2 Advanced Request Ordering. A-I

iv May 26,1989

IFX Device Driver Developer's Guide Table of Contents

Appendix B Sample 68000 Device Drivers
B.l Introduction . B-1
B.2 sectorarn.c ... B-2
B.3 ifxsrarn.h... B-6
B.4 rnrn58274.c . B-7
B.5 rnvrnel33.c . B-11
B.6 rnvrne133i.a68 .. B-12
B.7 mvrne320.c B-15
B.8 rnvrne320La68 .. B-23
B.9 ifxmv320.h ... B-25
B.lO rf3500.c .. "... B-29
B.ll rf3500La68 .. ".. B-49

Appendix C Sample 386 Device Driver
C.l Introduction.. C-l
C.2 IFX Device Driver ... C-l

C.2.l descrp.inc .. : C-l
C.2.2 rfmain.asrn ". C-2
C.2.3 ifxr2500.h . C-3
C.2.4 rf'2500.h .. . C-3
C.2.5 rfdriver.c C-15
C.2.6 rferror.c .. C-18
C.2.7 rfbrqerr.c ... C-19
C.2.8 rfinit.c... C-20
C.2.9 rflpinit.c ". C-23
C.2.l0 rfread.c.. C-27
C.2.II rfwrite.c ... C-28
C.2.I2 rfcntl.c .. C-29
C.2.I3 rfmkuns.c . C-30

C.3 MBn Level Services C-31
C.3.I mpc.inc... C-31
C.3.2 adrna.inc.. C-34
C.3.3 mb2lib.asm ... C-35

May 26, 1989 v

Table of Contents IFX Device Driver Developer's Guide

Glossary

Index

List of Illustrations

Figure 1-1 Virtual Disk Device Layers 0 0 0 0 0 0 0 1-2
Figure 2-1 Stack Format After Entering Device Driver 000. 0 0 • 0 • 0 0 0 0 2-3
Figure 2-2 68000 Conversion Routine o. 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 •• 0 0 • 0 2-5
Figure 5-1 Physical Disk Format 0 •••• ". • 5-2
Figure 5-2 Interleave Factor 1:1 5-6
Figure 5-3 Interleave Factor 1:2 5-6
Figure 5-4 Interleave Factor 2:4 5-7
Figure 6-1 Installing a Device with IFXFINSTALL 6-3
Figure 6-2 Rc;moving a Device with IFXFREMOVE...... 6-5
Figure 6-3 Reading Sectors with IFXFREADS 6-9
Figure 6-4 Writing Sectors with IFXFWRITES 6-10
Figure 6-5 Formatting a Track with IFXOFMTTRK 6-12

List of Tables

Table 2-1 Standard Parameter Sizes 0 ••••••••••••••••••••• 0 • 2-3
Thble 5-1 Sector Number Conversion 0 0 • 0 •• 00 0 0 0 0 0 5-3
Table 6-1 Device Codes 0.......................... 0 0 ••• 0 0 0 0 0 0 0 6-4
Thble 6-2 1/0 Control Operations 0 0 0 0 0 •••••••••• 0 • • • • • • • • • • 6-7

List of Examples

Example 2-1 68000 Assembly Language Conversion Routine. 2-5
Example 2;....2 80386 Assembly Language Conversion Routine. 2-6
Example 3-1 Locking with Semaphores 0 • • 3-2
Example 3-2 Controlling Concurrent Reads & Writes with Semaphores 3-3
Example 4-1 Device Driver 0 • • • • • • • • • • • • • • • • • • • 0 0 0 • 0 4-3
Example 4-2 Interrupt Service Routine 0 • • 4-4
Example 5-1 Converting Application Write Calls 0 • • • • • • • • • • • • • • • • • 5-14

vi May 26,1989

How To Use This Manual
~READY
SYSTEMS

Purpose Of This Manual

IFX is available for several different microprocessor types. This manual contains
information on how to write and install device drivers that are compatible with
IFX/68000 version 1.06, IFX/386 version 1.05, and IFX/86 version 1.05.

It also i~cludes samples of some commonly used device drivers and device managers,
and examples that illustrate how to maximize your driver's performance. You can use
the sample device drivers, which are included on ·your shipping media, to develop your
own device drivers.

We recommel)d that you first install IFX as supplied and test it using the example
application given in Appendix D of the IFX User's Guide. The example installs IFX
standard devices, which require only minimal memory for operation.

Once you have the example application up and running, you can start developing your
own device drivers following the guidelines given in this manual. We recommend you
develop and test a single device at a time, so that it is easier to locate and correct any
problems.

This developer's guide is part two of a two-volume manual set. Part one is the IFX
User's Guide. It contains general information about IFX that you need to be familiar
with before you can successfully write a custom device driver.

Intended Audience

This manual is for the system programmer who wants to write and install device drivers
that are compatible with IFX. Knowledge of the C programming language, assembly
language, and the architecture of your target microprocessor would facilitate your
understanding of this manual. You should also be familiar with IFX system calls and
basic concepts of real-time, multitasking programming. Consult the IFX User's Guide
for more information about IFX.

May 26, 1989 vii

How To Use This Manual IFX Device Driver Developer's Guide

How This Manual Is Organized

This manual is organized as follows: '

• Chapter 1 defines a device driver and device manager, and their relationship to
IFX.

• Chapter 2 presents general calling conventions that are applicable to all device
driver types. These conventions must be observed by your device driver in order
to maintain compatibility with IFX. .

• Chapter 3 provides guidelines for managing multiple and simultaneous task
operations.

• Chapter 4 shows how to implement interrupt handlers.

• Chapter 5 describes how to write a device driver for commonly used device
types, such as disk, serial, and clock.

• Chapter 6 provides a reference of the function codes used with IFX device
drivers.

• Chapter 7 explains how to install your IFX device driver and device manager.

• Appendices contain source code for sample device drivers that are included on
your IFX shipping media, and examples useo to illustrate programming

· techniques.

• A glossary is provided to explain technical terms that may not be familiar to you.
Terms defined in the-glossary are set in bold type throughout the manual.

Where To Start

viii

You should read Chapters 1, 2, 3, and 4 to familiarize yourself with general concepts
that are applicable to all device driver types.

Chapters 5 and 6 provide necessary information for developing an IFX device driver.

To install your device driver, read Chapter 7.

Refer to the appendices for ready-to-use device driver samples and additional help . .

May26,1989

IFX Device Driver Developer's Guide How To Use This Manual

Conventions

There are several conventions you should be aware of as you read the IFX Device
Driver Developer's Guide:

• The term device driver is used to encompass both device drivers and device
managers.

• Examples and functions are described using standard C language format. C
examples frequently use a variable called status to receive a function return
value. Because this variable is always declared as an int, the declaration is not
repeated in each example.

• Hexadecimal numbers are represented in standard C language format. They
start with Ox. Numbers not prefixed by Ox are decimal numbers.

• A notation, such as R[7:0), stands for register R, bits 7 through O. Bit 0 is the
least significant bit.

• Unless stated otherwise, the term device driver applies to both true device drivers
and device managers. Only when the term device manager is used is a distinction
made.

Related Documents

We recommend the following documents for additional information:

May 26, 1989

• Your VRTX32 user's guide describes the VRTX32 real-time multitasking kernel
used with IFX.

• The IFX User's Guide describes how to install and use IFX, and it prepares you
for developing your own device driver.

• Getting Started With Ready Systems Software Components provides details on the
real-time software development process.

• How to Write a Board Support Package for VRTX provides information on writing
device initialization and device interrupt handler code.

• Interfacing a lAnguage to Silicon Software Components provides guidelines for
writing an interface that allows a high-level language to make system calls to
Ready Systems' software components.

ix

How To Use This Manual IFX Device Driver Developer's Guide

• Interfacing a Language to Silicon Software Components provides guidelines for
writing an interface that allows a high-level language to make system calls to
Ready Systems' software components:

• The C Programming Language by Kernighan and Ritchie provides a definition of
the C language.

Questions/Suggestions

x

If you have questions about IFX that are not answered by this manual, contact Ready
Systems Application Engineering Department. To give us suggestions about this
manual, use the reader comment card at the back of the manual. If the card is missing,
send rour suggestions to Ready Systems Technical Publications Department. Contact us
at this address:

Ready Systems
470 Potrero Avenue

P.O. Box 60217
Sunnyvale, California 94086

4081736-2600
FAX:4081736-3400

TELEX: 711510608 (domestic)
0231510608 (international)

May 26, 1989

Chapter 1

Overview
~READY
SYSTEMS

1.1 Introduction

IFX provides several layers of software that your application can use to interact wi~h
hardware devices. These layers provide your application with the ability to access a
device at different levels of complexity. Your application can work on a high-level with
very little knowledge of the underlying device. Or, it can work at a low-level requiring
some knowledge of device characteristics.

Each of these layers represents a different way of interacting with a device; thus, they
are called virtual devices. Figure 1-1 illustrates the different IFX virtual device layers.
A device driver is the function that IFX calls to handle 110 operations on a virtual
device. A device manager is a particular type of device. driver that translates high-level
110 requests, such as open file, to much simpler operations, such as read disk sector.

While IFX is generic and can be used with any kind of device, the device driver is
specific to a particular device. The following built-in device drivers and device
managers are included with IFX.

• Console terminal driver

• Pipe driver

• Clock driver

• Null driver

• MS-DOS File Manager

• Disk Buffer Manager

• line-Edit Manager

• Circular Buffer Manager

These device drivers and managers are provided in binary form in the IFX component.
Source code for additional device drivers is also provided on your shipping media and
in Appendices Band C. The source code includes comments and installation
instructions.

May 26, 1989 1-1

Overview IFX Device Driver Developer's Guide

Your Application

Disk Driver (device:)

Physical Disk Device

Figure 1-1 Virtual Disk Device Layers

1-2 May 26, 1989

~.

Chapter 2 ~READY
SYSTEMS Calling Conventions

2.1 Introduction

All device drivers use a particular set of calling conventions to interact with a device.
This chapter explains the guidelines for interfacing IFX device drivers and managers
with your device. More detailed information for each device type, and how to install
devices can be found in the remaining chapters of this manual.

IFX and the device driver follow the conventions described below.

• The device driver should only be called by IFX. Do not call the d~vice driv~r
directly from an application task or other user code.

• The device driver runs in the context of a task, as opposed to an interrupt
handler. However, serial device dri"ers are devided into two parts: one part
runs in a context of a task, and the other part is an ISR.

• IFX calls the device driver with interrupts enabled. If the device driv~r needs to
disable interrupts, it should restore the interrupt status before retur:ning.

• For the M68000 processor family, the device driver executes in supervisor mode.
In particular, on the 68020 and 68030, the device driver uses the regular
supervisor stack, as opposed to the interrupt stack.

• For the 80386, the device driver executes at privilege level O.

• The device driver is allowed to call VRTX32 services, such as sCJ]end, that
suspend the caller.

• We do not recommend that the device driver call any IFX services. In particular,
be aware of the potential for deadlock if the device driver calls an IFX service
that involves another device.

• The device driver should return when it completes its operation or detects an
error.

There are also rules that govern the use of parameters, registers, and status codes.
These conventions are described in the following sections.

May26,1989 2-1

Calling Conventions IFX User's Guide

2.1.1 Parameters

2-2

The device driver gets its input parameters on the stack. The leftmost parameter is
nearest to the top of the stack. The device driver should not remove the parameters
from the stack when it returns. That is the responsibility of IFX.

• The first (leftmost) parameter to the device driver is an integer function code
that tells the device driver what to do. The various function codes are listed in
the appropriate section for each device type. IFX may call the device driver with
other function codes and control operation codes that are not mentioned in this
chapter. Refer to the discussion on Status Codes in Section 2.1.3.

• The second parameter to the device driver is a pointer to its Device Control
Block, defined as the IFXDCB structure. Refer to Section 2.2 for more
information.

• The third parameter to the device driver is a pointer to a parameter list
containing other parameters needed for the specified function. Refer to the
appropriate section for each device type for information on the parameter list.

The device driver returns all other outputs indirectly, through input parameters that are
actually pointers to where to store the result. This corresponds to call by reference in
high-level language terminology.

NOTE]
You should read your C compiler manual for paramete
passing conventions. Conventions may vary from compiler
to compiler. and even from version to version of the same
compiler.

To summarize, IFX calls the device driver in C language as follows:

status - device_driver (func_code, &IFXDCB, ¶m_list);

Figure 2-1 illustrates parameter conventions.

May 26,1989

IFX User's Guide Calling Conventions

pOinter-to-parameter list

IFXDCB pointer

function code

high address

stack pointer --...... ~
low address

return address

Figure 2-1 Stack Format After Entering Device Driver

All of the C device driver examples assume that your compiler pushes parameters onto
the stack from right to left, and that the size of each parameter is that shown in Table
2-1. H this is not the case for your compiler (in particular the Aleyon and Intermetrics .
compilers), you may have to modify your parameter types so that the correct size value
is pushed onto the stack.

Table 2-1 Standard Parameter Sizes

int long pointer

68000 32 bits 32 bits 32 bits

80386 32 bits 32 bits 64 bits (32-bit offset, 16-bit
selector, 16-bit filler)

8086 16 bits 32 bits 32 bits (16-bit offset, 16-bit
segment)

2.1.2 Register Conventions

The device driver is allowed to destroy selected registers. If it uses any others, it should
save and restore them.

May 26, 1989

• For M68000 processors, the device driver is allowed to destroy registers D1. AD,
and A1.

• For the 80386 processor, the device driver is allowed to destroy registers EDX,
EDI, and ES.

• For iAPX86 processors, the device driver is allowed to destroy registers BX, DX,
DI, and ES.

2-3

Calling Conventions IFX User's Guide

Upon entry to the device driver:

• For M68000 processors, AS contains the address of IFX workspace.

• For the 80386 processor, DS contains the selector of IFX workspace.

• For iAPX86 processors, DS contains the segment of IFX workspace.

This fact can be used to your advantage when using the direct-calling convention.
Consult the IFX User's Guide for more information on IFX workspace.

2.1.3 Status Codes

A status code is an integer value returned by each IFX function that indicates the
disposition of the requested operation. Your device driver should do the following:

• Return either zero (RET_OK), if successful, or an error status. If the device
driver doesn't support a particular feature or understand the function code, it
should return the error code IFXENOTIMP.

• Return the status code in register DO for M68000 family processors, EAX for the
80386, and AX for iAPX86 family processors.

2.1.4 Writing a Device Driver in C for I FX/68000

2-4

The calling conventions for IFX device drivers are directly compatible with the code
generated by the following 68900 C compilers:

• Ready Systems RTC

• Microtec

• Oasys/Green Hills

• Sun-3

For these compilers, you can directly install a C device driver. For other compilers,
especially those with different calling conventions, you will need to write an assembly
language routine that converts the IFX calling conventions to those used by your
compiler.

For example, suppose your C compiler user's guide states that a function is allowed to
destroy registers rio, Dl, D2, AO, AI, and A2, with return values placed in register D7.

May 26, 1989

IFX User's Guide Calling Conventions

The code in Example 2-1 does the conversion:

May 26, 1989

MOVEM.L D2/D7/A2,-(SP)
MOVE.L 24(SP),-(SP)
MOVE.L 24(SP) ,-(SP)
MOVE.L 24(SP),-(SP)
JSR C-portion
LEA 12(SP),SP
MOVE.L D7,DO
MOVEM.L (SP)+,D2/D7/A2
RTS

* save registers not saved by compiler
* copy parameter list pointer
* copy IFXCCB pointer
* copy function code
* call C portion of driver
* clean up stack
* move status code to correct register
* restore registers
* return to IFX

Example 2-1 68000 Assembly Language Conversion Routine

IFX

01, AD, A1, DO destroy

DO, 01, 02, AD, A 1, A2, 07 4t---- allow

device driver

07,A2 save

Figure 2-2 68000 Conversion Routine

2-5

Calling Conventions IFX User's Guide

2.1.5 Writing a Device Driver in C for 1FX/386

For IFX/386, there must be an assembly portion for changing the data segment register
(DS), since the IFX data segment is different than the driver data segment. The
assembly routine in Example 2-2 should be defined as a FAR procedure. The C
portion should be defined as "near."

push
move
push
push
mov
mov
les
push
push
les
push
push
mov
push
call
add
pop
pop
pop
DB

ebp
ebp.esp
es
ds
aX.NEW_DS
ds.ax
eax. [ebp+018h]
es
eax
eax. [ebp+010h]
es
eax
eax. [ebp+OCh1
eax
C-portion
esp.014h
ds
es
ebp
OCBH

Save stack frame register
Prepare stack frame register
Save register to be used
Save IFX data segment register
Restore DS to be the driver data segment register

Copy parameter list pointer (onto the stack)

Copy IFXDCB pointer (onto the stack)

Copy function code" (onto the stack)

Call C portion of the driver
Clean up stack
Restore IFX data segment register
Restore registers

RETF - far return to the caller.

Example 2-2 80386 Assembly Language Conversion Routine

2.2 Device Control Block

2-6

The Device Control Block, or IFXDCB, is a data structure that is associated with each
IFX device. There is one IFXDCB per device. The IFXDCB is allocated by IFX when
the device is installed with ifx_install or ifx_mount. The IFXDCB is released by IFX
when the device is removed with ifx_,emove .. A pointer to the IFXDCB is passed to a
device driver as its second parameter.

May26,1989

IFX User's Guide Calling Conventions

/* Device Control Block */

typedef struct IFXOCB {
long *reservedl; /* reserved for use by Ready Systems */
unsigned char device_type; /* null, RAM disk, disk, volume, etc, */
char reserved2[111; /* reserved for use by Ready Systems */
struct IFXDCB *mounted_on; /* address of underlying device's IFXOCB */
char *device_driver; /* address of device driver code */
char *dt; /* device-type specific information */
long reserved3[31; /* reserved for use by Ready Systems */
I FXODCB *MY_driver; /* address of driver's IFXODCB */
long reserved4[51; /* reserved for use by Ready Systems */

} IFXDCB;

The IFXDCB contains a number of fields, some of which are undocumented and
reserved for use by IFX, and others that are documented and of interest to a device
driver. Your device driver should not refer to the undocumented fields, as they are
subject to change.

The documented fields are:

device_driver This field is set by IFX to point to the device driver code. Device
drivers should ignore this field. Device managers use it to ca'U the
underlying device driver.

device_type This must be set by the driver to the device type code (IFXD ...) when
the driver is called with the IFXINSTALL opcode. The initial value is
IFXDUNKNOWN (zero).

dt This is a general-purpose field that is reserved for use by the driver.
The field is the size of a pointer (4 bytes for 68000 and 8086, 6 bytes
for 80386). Th.e field typically points to global variables used by the
driver. The initial value is NULL (zero).

mounted_on For device drivers, this field is always zero and should be ignored. For
device managers, this field is set by IFX to point to the IFXDCB of the
underlying device.

my_driver This field is set by IFX to point to the associated Device Driver Control
Block, or IFXDDCB for this device. Most device drivers can safely
ignore it, but it is occasionally useful for reentrant drivers that need to
keep track of variables that are shared among all devices serviced by
the same driver. Refer to Section 2.3 for more information.

May 26, 1989 2-7

Calling Conventions IFX User's Guide

2.3 Device Driver Control Block

2-8

The Device Driver Control Block, or IFXDDCB, is a data structure that is associated
with each device driver. There is one IFXDDCB per device driver. The IFXDDCB is
allocated by IFX when the device driver is installed with ifx_driver. The IFXDDCB is
released by IFX when the device driver is removed with ifx_rmdriver. A pointer to the
IFXDDCB is stored in field my_driver of the IFXDCB.

/* Device Driver Control Block */

typede! struct IFXDDCB {
long reservedl[5]; /* reserved for use by Ready System~ */
char
long

} IFXDDCB;

ddt; / driver specific information */
reserved2[2]; /* reserved for use by Ready Systems */

The IFXDDCB contains a number of fields, all of which are undocumented and reserved
for use by IFX, except for one that is of interest to a device driver. Your device driver
should not refer to the undocumented fields, as they are subject to change. The
documented field is:

ddt This is a general-purpose field that is reserved for use by the driver.
The field is the size of a pointer (4 bytes for 68000 and 8086, 6 bytes
for 80386). The field typically points to global variables u~ed by the
driver. The initial value is NULL (zero).

May 26, 1989

Chapter 3

Managing Multitasking
~READY
SYSTEMS

3.1 Introduction

IFX assumes that the device can perform an unlimited number of 110 operations
concurrently. For this reason, IFX does not lock the device during 110. If the device is
not capable of concurrent 110 operations, then the device driver is responsible for
servicing requests in the appropriate order.

This chapter discusses how to manage concurrent 1/0 operations by using mailboxes,
semaphores, and high-level device managers. These locking mechanisms can control
concurrent reads and writes, the order in which tasks pend, as well as preemptive device
scheduling.

3.2 Locking Mechanisms

The driver can prevent simultaneous 1/0 operations by using an appropriate VRTX32
locking mechanism, such as a mailbox or semaphore.

IFX/68000 also provides a very fast semaphore that device drivers can use for locking
without incurring the overhead of VRTX32 mailbox or semaphore calls. It is
implemented in the IFXSEMA structure contained in the ifxvisi.h file. (Consult the IFX
User's Guide for information on definition files included with your shipping media.)
Your shipping media contains assembly language routines that use IFXSEMA. These
routines are contained in a file with the filename root of semavisi (for example,
semavisi.a68 for the 68000 family of processors).

May 26, 1989

CAUTIONI
Avoid using VRTX32 scJpend and scJpost, VRTX32 sc_lock
and sc_unlock, or interrupt disabling to prevent simultaneous
I/O operations. These mechanisms may have potential race con
ditions (scJpend and scJpost), may disable scheduling too long
(sc_lock-and sc_unlock), or may disable interrupts too long (in
terrupt disabling).

3-1

Managing Multitasking IFX Device Driver Developer's Guide

3.2.1 Simple Locking

3-2

For most devices, a simple semaphore is adequate for managing multitasking. Example
3-1 provides disk driver code that shows how to use a semaphore to prevent multiple
simultaneous 1/0 operations.

int disk_driver (opcode , dCb_ptr, plist)
int opcode;
1FXDCB *dcbytr;
PL *plist;
{

}

static int sema; /* holds semaphore 1D number */
int err;
switch (opcode) {
case 1FXF1NSTALL:

sema - sc_screate(l, 0, &err);
/* do other initialization here */
break;

. case I FXFREADS :
sc_spend(sema, OL, &err);
/* do read here */
sc_spost(sema, &err);
break;

case 1FXFWR1TES:
sc_spend(sema, OL, &err);
/* do write here */
sc_spost(sema, &err);
break;

case 1FXFREMOVE:
sc_sdelete(sema, &err);
break;

}
return err;

Example 3-1 Locking with Semaphores

May26,1989

IFX Device Driver Developer's Guide Managing Multitasking

3.2.2 Concurrent Reads and Writes

There are some devices that can do both a read and a write simultaneously, but no
more than one read or write at once. An example of this device type is a serial
communication line. By using two semaphores, one for reading and the other for
writing, the driver can enforce this rule.

int serial_driver (opcode, dcb-ptr, plist)
int opcode;
IFXDCB *dcb-ptr;
PL *plist;
{

}

static int read_sema, write_sema;
int err:
switch (opcode) {
case IFXFINSTALL:

read_sema - sc_screate(l, 0, &err);
write_sema - sc_screate(l, 0, &err):
/* do other initialization here */
break;

case IFXFREAD:
sc_spend(read_sema, OL, &err);
/* do read here */
sc_spost(read_sema, &err):
break;

case IFXFWRlTE:
sc_spend(write_sema, OL, &err);
/* do write here */
sc_spostcwrite_sema, &err);
break;

case IFXFREMOVE:
sc_sdeletecread_sema, &err);
sc_sdelete(write_sema, &err);
break;

}
return err;

Example 3-2 Controlling Concurrent Reads and Writes with Semaphores

May26,1989 3-3

Managing Multitasking IFX Device Driver Developer's Guide

3.3 Order of Processing Requests

3-4

If you use either a mailbox or the IFX fast semaphore, then 1/0 requests that arrive
while another 1/0 operation is active pend in task-priority order. If you use a VRTX32
semaphore, then you can choose whether tasks pend in priority order or first-in first-out
order (a parameter to sc_screate selects the order). However, you may desire more
sophisticated control over the order in which requests are processed.

For example, for a disk you may want tasks to pend in one of the following orders:

• Shortest seek time first. Choose the 1/0 request whose starting sector number is
nearest to the sector that was just transferred. This tends to reduce the amount
.of disk head movement.

• Shortest transfer count first. Choose the 1/0 request that has the smallest
transfer count. This tends to give preference to small 1/0 requests over large
1/0 requests.

• Elevator. Choose 110 requests in increasing order by starting sector number,
until there are no more requests. Then choose 110 requests in decreasing order
by ending sector number, until there are no more requests. Continue alternating
between increasing order and decreasing order. This is called the elevator
algorithm because it resembles a building elevator that moves in one direction
until there are no more passengers to pick up, then switches direction.

It is not possible to implement any of the above order sequences using a mailbox or
semaphore alone. However, by adding data structures to keep track of 1/0 requests
that have been received but not started, these orderings and many others can be
implemented. The advanced request-ordering example in Appendix A. shows how to
do this.

For most applications, we recommend that your driver process requests in either
task-priority or first-in first-out order. Experience shows that if the average queue
length of waiting requests is small (one or two), then the order of processing requests
makes no difference. If the"/average queue length is large, then the order of processing
requests is significant. Yet this indicates that there may be a severe mismatch in
performance between the application and the device. Perhaps a faster device is needed
rather than clever scheduling.

May26,1989

IFX Device Driver Developer's Guide Managing Multitasking

3.4 Preemptive Device Scheduling

There are considerations for a device driver that completes one 110 operation before it
begins the next one. If a low-priority task is in the middle of a long data transfer and a
high-priority task calls the driver, then the high-priority task must wait for the
low-priority task to finish before it can begin using the device. An advanced driver
could implement preemptive scheduling of the device. This type of driver could
suspend the low-priority task's 110 operation, then do the high-priority task's 110, and
finally resume the low-priority task's 110.

For most applications, we do not recommend such elaborate device scheduling.
T~!)lementation of preemptive scheduling is beyond the scope of this manual. Instead,
••. ~ suggest that you use separate physical devices for critical and noncritical tasks,
rather than share a device. For example, critical tasks could use a small hard disk to
store incoming data. Noncritical tasks could use a large optical disk to archive this
data. Then, periodically, you could copy files from the small disk to the large disk. As
a result, there would be no contention for disk resources.

3.5 Locking by High-Level Device Managers

It may appear that a disk device driver is never called simultaneously by more than one
task. This is because the higher-level disk managers, such as the disk buffer cache
manager and volume manager, use their own semaphores to enforce mutual exclusion.
Thus, there is little chance for the disk device driver to be called simultaneously from
more than one task, but it is not entirely impossible. For example, if an application
task opens the disk device by name, and issues ifx_,eads or ifx_writes calls to the device,
then it will bypass the semaphores of the Disk Buffer Cache Manager and the Volume
Manager. The result is that the disk device driver can be called simultaneously by more
than one task. Therefore, we recommend that your driver include the semaphores to
handle this case, even if it appears unnecessary. (See Figure 1-1 for an illustration of
virtual device layers.)

3.6 Global Variables

When a driver returns to its caller, any information that it has put in variables on the
stack or in registers will be lost. Therefore, if the driver needs to keep information
around for a longer period, such as across calls to the driver, it has three choices:

May 26, 1989 3-5

Managing Multitasking IFX Device Driver Developer's Guide

1. Keep the information in global variables. This is the simplest solution, but it has
the disadvantage of making the driver nonreentrant (the driver can only service
one device). If there were more than one device of the same class (for example,
two disk drives), then there would be no way for the driver to know which
device, and which global variables, it should use.

2. If the global storage required is only a few bytes, the driver can simply store the
information directly in the dt field of the IFXDCB.

3. If the global storage required is greater than the size of a pointer, then the driver
should place a pointer to a structure containing the information into the dt field.
This pointer should be initialized by the driver when it is called with opcode
IFXFINSTALL to point to global variables used by the driver.

3.7 Reentrancy

3-6

Since IFX may reenter the device driver before it exits from a previous call, the devic;e
driver must be reentrant. A fully reentrant function can be used by more than one task
at the same time. The reentrant function can be interrupted at any point and resume
processing later at that same point without loss of data. Reentrant functions do not
store any data to the data segment (global memory).

To illustrate the need for reentrant code, suppose a task places a value in a global
variable. When the task is preempted, a second task might use the same functioJ.l and
overwrite the variable with its own value. When the first task resumes execution, the
original value of the variable has been destroyed.

There are many advantages to making your device driver reentrant, such as greater
versatility and better structure. A reentrant .device driver can service more than one
device attached to a single controller board. And if there are several controller boards
of the same kind, the device driver can even service more than one controller board.

It is easy to achieve reentrancy. A device driver should only use registers or the stack
for local variables, and avoid using global variables, self-modifying code, and other
nonreentrant programming practices. If global variables must be used, they should be
protected by a locking mechanism around the critical region of code.

May 26, 1989

IFX Device Driver Developer's Guide Managing Multitasking

3.8 Dependent Devices

IFX assumes that each device is independent of all other devices. However, this is not
true if two devices share a common controller board that is not capable of simultaneous
110 operations on both devices. For example, a typical disk controller board can
handle up to four disk drives, but can only service one disk drive at a time. If you have
dependent devices, add a locking mechanism in each device driver around the critical
region of code.

3.9 Direct Memory Access

Many intelligent device controllers support Direct Memory Access (DMA). DMA is a
technique whereby an external device can transfer large amounts of information to and
from the processor's memory without the processor having to be involved. This offers
improved performance since the device can access memory in bursts at full bus speed
while the processor also continues to independently execute at almost full speed.

Memory that can be accessed by both the processor and via DMA is called dual-ported
memory. Dual-ported memory is addressed in two different ways depending on who is
using it. The address used by the processor is called the internal address. The address
used by DMA is called the external address. These two addresses often diffeF by a
fixed constant.

All address parameters passed to a device driver by IFX are internal addresses. It is the
device driver's responsibility to convert between internal addresses and external
addresses as necessary.

For example, the MVMEI33 68020 processor board includes 1 megabyte of memory.
This memory, as seen by the processor, is always addressed as OxOOOOOOOO to
OxOOOFFFFF (internal address). As seen from the VMEbus, however, the memory can
be located on any I-megabyte address boundary (external address). The actual address
boundary is selected by option jumpers on the MVMEI33 board. Therefore, if the
external address range was jumpered as Ox00200000 to OxO02FFFFF, then the device
driver would have to add 0x00200000 to any internal address in order to convert it to an
external address.

May26,1989 3-7

Chapter 4

Handling Interrupts
~READY
SYSTEMS

4.1 Introduction

IFX does not have special features related to interrupts, yet most device drivers
generate and wait for interrupts as part of their normal operation.

When IFX calls a device driver, it expects the driver to perform the operation and then
return to IFX with a status code. If the driver happens to use interrupts, this is of no
concern to IFX and should be completely hidden from it. An IFX driver is simply a
subroutine that is called at task level. Since the driver executes at task leve"l, it is free to
use VRTX32 features such as mailboxes, queues, semaphores, and event flags to
manage interrupts.

This chapter shows the recommended ways for a device driver to manage interrupts
using VRTX32 interrupt handlers.

This information is not applicable to serial drivers that are used with the Circular Buffer
Manager. Refer to Chapter 5 for information on handling serial interrupts.

4.2 Mailboxes

The simplest VRTX32 feature for managing interrupts is the mailbox. A mailbox is a
pointer-sized variable that you define, located in user read/write memory. Mailboxes
coordinate data transfer between a device driver and the interrupt handler. Mailboxes
are fast and easy to use, so in "the absence of other considerations, we recommend that
you use a mailbox to handle interrupts. -

We assume your device generates an interrupt when it completes an operation.
Therefore, the steps below should be followed in the driver to use a mailbox:

May 26, 1989 4-1

Handling Interrupts IFX Device Driver Developer's Guide

4-2

1. Initialize mailbox to zero.

2. Start the I/O operation.

3. Issue the scyend call to wait for an interrupt. An optional timeout may be used
if there is a chance that the interrupt won't happen.

4. If the scyend returns a timeout error code, then cancel the I/O and return an
error code.

5. Clean up after the 1/0 operation is done.

The interrupt service routine should look like this:

1. Save register DO, AX, or EAX, depending on the processor.

2. Issue UI_ENTER for 80386 and 8086, or 68000 and 68010, if interrupt stack
switching is enabled. . .

3. Save other registers used by interrupt service routine.

4. Check the device to make sure that it caused the interrupt. If not, "go to step 7.

5. If device returns a small amount of data at the end of the 1/0 operation, the
interrupt service routine should acquire this data from the device and save it in
a global variable. Large amounts of data (more than a few bytes) should be
transferred at task level to minimize the interrupt service routine execution time.

6. Issue the sc.,.POst call, passing it the address of the mailbox and any nonzero
message. This marks the task pending for the mailbox as ready to run.

7. Restore registers other than DO, AX, or EAX.

8. Issue the UI_EXIT call. This schedules the task to run.

Example 4-1 shows a device driver that uses a mailbox with a corresponding 68000
interrupt service routine (shown in Example 4-2). The device is capable of reading a
large number of bytes through direct memory access (DMA), and generating a single
interrupt when the transfer is done.

May 26, 1989

IFX Device Driver Developer's Guide

May 26, 1989

char *mailbox;

void device_driver (opcode, dcb-ptr. plist)
int opcode;
IFXDCB *dcb-ptr;
struct {

char *buffer;
long desired_count;
long *actual_count;

} *plist;
{

}

int err;
switch (opcode) {

case IFXFREAD:
mailbox - 0;

}

/* set up DNA controller here, using
'plist->buffer' and 'plist->desired_count'

*/
/* start read operation here */
sc-pend (&mailbox , OL, &err);
/* now the read is done */
*plist->actual_count c plist->desired_count;
break;

return err;

Example 4-1 Device Driver

Handling Interrupts

4-3

Handling Interrupts IFX Device Driver Developer's Guide

interrupt_service_routine:
MOVE.L DO,-(SP)
MOVEQ.L IUIFENTER,DO
TRAP 10
MOVEM.L DI/AO,-(SP)
BTST.B lDONE,IO~ort

BEQ.S not_done
MOVEA.L Imailbox,AO
MOVEQ.L II,DI
MOVEQ.L ISCFPOST,DO
TRAP 10

not_done:
MOVEM.L (SP)+,DI/AO
MOVEQ.L IUIFEXIT,DO
TRAP 10

* save DO
* issue UI_ENTER call

* save other registers
* check if I/O is done
* if not, ignore interrupt
* load mailbox address
* load message to post
* issue SC_POST call

* restore other registers
* issue UI_EXIT call .
* this also restores DO

Example 4-2 Interrupt Service Routine

4.3 Event Flags

Another VRTX32 feature suitable for managing interrupts is the event flag group. An
event flag group is a global, long-word (32-bit) structure in VRTX32 W. ;rkspace. Each
of the 32 bits in the event flag group is an event flag. The main advantage of event
flags over mailboxes is that you can wait for more than one event. With a mailbox, you
can wait for only one event. A detailed example of event flag use can be found in
Appendix A

4.4 Using UtENTER and UI_EXIT

4-4

The first instruction of an interrupt service routine is UI_ENTER, and the last is
UI_EXIT. The UI_ENTER and UI_EXIT pair serves three purposes:

• Prevents preemption in the middle of an interrupt service routine

• Ensures correct functioning of the task rescheduling mechanism

• Implements the optional interrupt stack switching mechanism for processors that
do not have built-in stack switching

May 26, 1989

IFX Device Driver Developer's Guide Handling Interrupts

To be safe we recommend that you always use VI_EXIT, and always use VI_ENTER
except for 68000 family processors.

It is possible to achieve a slight performance improvement by not using UI_ENTER and
UI_EXIT in an interrupt service routine, if certain strict conditions are met. The rules
are summarized below:

• If the interrupt service routine does not make any system calls and cannot
possibly be interrupted by another interrupt service routine which contains
VCENTER or VI_EXIT, 'then both VCENTER and VI_ExIT may be omitted.

• For 68000 and 68010 processors, VI_ENTER may be omitted ~f interrupt stack
switching is not enabled.

• If the interrupt service routine handles non-maskable interrupts, or f9r 68000
family processors, handles interrupts at or above component disable level, then
the interrupt service routine must not use VI_ENTER or VI_EXIT, and must not
make system calls.

If you do not follow these rules, any of the following things can happen:

• Interrupt service routines may be preempted

• Low priority tasks may run instead of high priority tasks

• Interrupt stack switching may not occur even when it is enabled

." System may crash

You should use caution in omitting VI_ENTER and VI_EXIT. For additional
information about VCENTER and VI_EXIT, consult your VRTX32 user's guide.

4.5 Writing an Interrupt Service Routine In C

It is possible to write an IFX interrupt service routine in C, but you must first write a
small assembly language program. The calling conventions of C compilers are
incompatible with processor conventions for interrupt service routines. The assembly
language code converts between the two conventions. Even C compilers that have an
option to produce interrupt code, still need this assembly language program because
they do not generate the required VI_ENTER and VI_EXIT system calls (refer to
Section 4.4).

May 26, 1989 4-5

Handling Interrupts IFX Device Driver Developer's Guide

4-6

C code for an interrupt service routine looks like this:

/* body of interrupt service routine goes here * /
}

If the C compiler supports run-time stack overflow detection, this featun: must be
disabled since an interrupt service routine can be called in the context of any task stack.

The remainder of this section contains assembly language examples for each of the
processors supported by IFX and for representative C compilers. For other compilers,
consult your compiler documentation for calling conventions.

Processor: 68000 or 68010
Compiler: Ready Systems RTC, Oasys/Green Hills, Microtec

XREF .c_code
isr:

MOVE.L DO,-(SP) * save DO
MOVEQ.L lUI FENTER ,DO * issue UI_ENTER call
TRAP 10
MOVEM.L DI/AO/A1,-(SP) * save registers not saved by compiler
JSR .c_code * call C function
MOVEM.L (SP)+,DI/AO/Al * restore other registers
MOVEQ.L IUIFEXIT,DO * issue UI_EXIT call
TRAP 10

Processor: 68020 or 68030
Compiler: Ready Systems RTC, Oasys/Green Hills, Microtec

XREF .c_code
isr:

MOVE.L DO,-(SP) * save DO
MOVEM.L DI/AO/A1,-(SP) * save registers not saved by co~piler
JSR .c_code * call C function
MOVEM.L (SP)+,DI/AO/Al * restore other registers
MOVEQ.L IUIFEXIT,DO * issue UI_EXIT call
TRAP 10

May26,1989

IFX Device Driver Developer's Guide

Processor: 68020 or 68030
Compiler: Sun-3

isr:
movel dO,spO-
moveml #Ox0302,sP@-
jsr _c_code
moveml spO+,#Ox40CO
moveql #UIFEXIT,dO
trap #0

Processor: 80386
Compiler: Metaware

EXTRN _c_code:FAR
isr:

PUSH EAX
MOV EAX,UIFENTER
INT OFFH
PUSH EBX
PUSH ECX
PUSH EDX
PUSH ESI
PUSH EDI
PUSH GS
PUSH FS
PUSH ES
PUSH OS
MOV AX,OGROUP
MOV OS,AX
CALL _c_code
POP OS
POP ES
POP FS
PoP GS
POP EDI
POP ESI
POP EDX
POP ECX
POP EBX
MOV EAX,UIFEXIT
INT OFFH

May 26, 1989

Handling Interrupts

save 00
save registers not saved by compiler
call C function
restore other registers
issue UI_EXIT call

save EAX
issue UI_ENTER call

save registers not saved by compiler

set up OS selector register

call C function
restore other registers

issue UI_EXIT call

4-7

Handling Interrupts IFX Device Driver Developer's Guide

Processor: 8086
Compiler: Microsoft

EXTRN _c_code:FAR
isr:

PUSH AX save AX
MOV AX, UIFENTER issue UI_ENTER call
INT 8IH
PUSH ax save registers not saved by compiler
PUSH CX
PUSH DX
PUSH SI
PUSH DI
PUSH ES
PUSH DS
MOV AX,DGROUP set up DS segment register
MOV DS,AX
CALL _c_code call C function
POP DS restore other registers
POP ES
POP DI
POP SI
POP DX
POP CX
POP ax
MOV AX,UIFEXIT issue UI_EXIT call
INT 8IH

4.6 Installing Interrupt Service Routines

4-8

This section shows how to install an interrupt service routine for each of the processors
supported by IFX. In each case, the symbol vector is the interrupt vector number, and
the symbol isr is the starting address of the interrupt service routine. If the interrupt
service routine is written in C, isr refers to the assembly language portion of the
interrupt service routine.

68000

LEA isr,AO
MOVEA.L Ivector*4,AI
MOVE.L AO,(AI)

68010,68020, and 68030

LEA isr,AO
MOVEC. L VBR, Al
ADDA.L Ivector*4,AI
MOVE.L AO,(AI)

* get interrupt service routine addres
* get interrupt vector address
* update interrupt vector

* get interrupt service routine address
* get vector base register address
* add interrupt vector offset
* update interrupt vector

May 26, 1989

IFX Device Driver Developer's Guide

80386

;Step 1: Build the IDT alias descriptor for the IDT

;If: IDT_ALIAS_DES - IDT alias within the GOT
IDT_BASE - the new IDT base address
IDT_SIZE - 2 • biggest interrupt number
STD_DATA_ACCESS - 092h
STD_DATA_GRAN - 040h
ES is prepared to have the GDT base address.

Handling Interrupts

The structure of each GDT entry is of the DESC structure.

DESC STRUC
lim_0_15 DW 0 ; limit bits (0 .. 15)
bas_0_15 DW 0 ;base bits (0 .. 15)
bas_16_23 DB 0 ;base bits (16 .. 23)
access DB 0 ;access byte
gran DB 0 ;granularity byte
bas_24_31 DB 0 ;base bits (24 .. 31)

DESC ENDS

MOV EAX,IDT_BASE
MOV ·Word ptr ES:[IDT_ALIAS_DES].bas_0_15,AX
SHR EAX, 16
MOV Byte ptr ES: [IDT_ALIAS_DES].bas_16_23,AL
MOV Byte ptr ES: [IDT_ALIAS_DES].bas_24_31,AH
MOV Word ptr ES: [IDT_ALIAS_DES].lim_0_15,IDT_SIZE - 1
MOV Byte ptr ES:[IDT_ALIAS_DES].access,STD_DATA_ACCESS
MOV Byte ptr ES: [IDT_ALIAS_DES].gran,STD_DATA_GRAN

Step 2: Set up the ISR interrupt gate

;If: ISR_name - the ISR to be set
ISR_CODE_DES - the code descriptor in which ISR_name resides
INT_entry_no - the IDT entry number
INT_ACCESS - OEEOOh
ES is prepared to have the IDT base address.

The structure of each IDT entry is of the INTDESC structure

IDTDESC STRUC
IDT_off_0_15 DW 0 ;code offset (0 .. 15)
lOT_selector DW 0 ;code selector
IDT_access DW 0 ;access word
lDT_off_16_31 ow 0 ;code offset (16 .. 31)

lDTDESC ENDS

MOV EAX,offset ISR_name
MOV word ptr ES: [INT_entry_no*8].lDT_off_O_15,AX
SHR EAX,16

May 26, 1989 4-9

Handling Interrupts IFX Device Driver Developer's Guide

8086

MOV word ptr ES: [INT_entry_no*8l.IDT_off_16_31,AX
MOV word ptr ES: [INT_entry_no*8l.IDT_selector,ISR_CODE_DES
MOV word ptr ES: [INT_entry_no*81,IDT_access,INT_ACCESS

MOV
MOV
MOV
MOV
MOV
PUSHF
CLI
MOV
MOV

" POPF

DI,vector*4
AX,O
ES,AX
AX,OFFSET "isr
BX,SEC isr

ES: [Dll ,AX
ES: [DI+2] ,BX

get interrupt vector entry offset
load segment register with zero

get offset portion of routine address
get segment portion of routine address
save interrupt status
disable interrupts
update offset portion of vector
update segment portion of vector
restore interrupt status

4.7 Using Time-outs

4-10

A typical device driver follows these .steps:

1. Initiates the 1/0 operation

2. Waits for the 1/0 to complete

3. Returns results to the application

But what if step 2 never finishes; that is, the 1/0 never completes? Should the device
driver then wait indefinitely and never return to the application?

There are many reasons why the operation might not terminate:

• External device does not respond

• Hardware failure

• Lost interrupt

Many of these causes are transient in nature. It is intolerable in a real-time system for
a single failure, especially a temporary failure, to cause the application to suspend
indefinitely.

It is the responsibility of the device driver to recover from these situations. The driver
should either retry the operation or return an error code to the application, depending
on the severity of the error.

May 26, 1989

IFX Device Driver Developer's Guide Handling Interrupts

The recommended way for a device driver to recover is to use time-outs. A time-out is
a maximum period of time that the driver is willing to wait for the 110 operation to
complete. If the operation does not finish Within that interval, then the operation is
said to have "timed out."

A device driver that supports time-outs follows these steps:

1. Initiates the 110 operation

2. Waits for the 110 to complete, or for a time-out

3. If the 1/0 completes, then returns results to the application

4. Otherwise, if the 1/0 times out, returns an error code to the application

5. Returns results to the application

All VRTX32 synchronization features, such as mailboxes, queues, semaphores, and
event flags, support time-outs. All pend system calls, such as scye'!d, sc_qpend,
sc_spend, and scJpend, include a time-out parameter. -This parameter, if nonzero,
specifies the maximum number of clock ticks that the caller is willing to pend. If the
corresponding post call is not called within the time-out period, then the pend call
returns error code ER_TMO.

A first attempt to support time-outs might look like this:

May26,1989

#define TIMEOUT lOOL
char -mailbox;

int device_driver (opcode, dcb-ptr, plist)
int opcode;
IFXDCB -dcb-ptr;
struct {

char -buffer;
long desired_count;
long -actual_count;

} -plist;
{

int err, status;
switch (opcode) {

case IFXFREAD:
mailbox 0= 0;
,- set up DMA contoller here, using

'plist->buffer' and 'plist->desired_count' -,

4-11

Handling Interrupts IFX Device Driver Developer's Guide

4-12

}

}

1* start read operation here *1
sc-pend (&mailbox , TIMEOUT, &err);
if (err -- RET_OK) {

*plist->actual_count = plist->desired_count;
status = RET_OK;

} else if (err == ER_TMO) {
*plist->actual_count = OL;
status = IFXETlMEOUT;

}
break;

return status;

The interrupt handler is:

void interrupt_handler()
{

int err;
sc-post(&mailbox, (char *) 1, &err);

}

There is a subtle race condition in the above code. What happens if the time-out
occurs and scyend returns ER_TMO, then the I/O operation eventually cOIl?pletes long
after the device driver has returned to the applicaticm? This could be disastrous, since
the data buffer is overwritten, although the application no longer expects it to be
modified.

The "missing step is I/O cancel.lation. After a time-out, the device driver must cancel the
I/O operation so that it cannot complete later on. The revised device driver code looks
like this:

} else if (err _m ER_TMO) {

}

1* cancel IIO operation here *1
*plist->actual_count ~ OL;
status - IFXETlMEOUT;

There is still one more race condition in the above code. What happens if the 110
operation completes after the scyend call returns error code ER_TMO, but before the
I/O is canceled? The window of time during which this could occur varies from a few
microseconds to much longer, depending on whether the device driver is the highest
priority task in the system.

May 26,1989

IFX Device Driver Developer's Guide Handling Interrupts

A solution is to add a flag variable, which is set by the interrupt handler upon 110
completion. The device driver checks this flag after scyend returns, rather than rely on
the error code returned by scyend. This check and the following 1/0 cancellation must
be a single atomic (indivisible) operation. The recommended way to do this is to
disable interrupts before checking, and enable interrupts again after the 110 is canceled.

The final device driver code looks like this:

May 26, 1989

'define TIMEOUT 100L

char *mailbox;
int flag;

int device_driver (opcode, dcb-ptr, plist)
. int opcode;

IFXDCB *dcb-ptr;
struct {

char *buffer;
long desired_count;
long *actual_count;

} *plist;
{

}

int err, status;
switch (opcode) (

case IFXFREAD:
mailbox - 0;
flag - 0;

}

1* set up DMA contoller here, using
'plist->buffer' and 'plist->desired_count'

*1
1* start read operation here *1

sc-pend (&mailbox , TIMEOUT, &err);
disable_interrupts();
if (flag) (

enable_interrupts();
*plist->actual_count - plist->desired_count;
status - RET_OK;

} else (

}

1* cancel 1/0 operation here *1
enable_interrupts();
*plist->actual_count = OL;
status - IFXETlMEOUT;

break;

return status;

4-13

Handling Interrupts IFX Device Driver Developer's Guide

4-14

The final interrupt handler is:

void interrupt_handler()
{

}

int err;
sc~ost(&mailbox, (char *) 1, &err);
flag = 1;

Note that even in this solution, there is a chance that the 110 could complete between
the if flag test and the point where the 1/0 is canceled. This would not result in an
interrupt since interrupts are disabled at that point. There is no way to avoid this race
condition, as the processor and the device are inherently asynchronous. The worst that
could happen is that the driver could declare a time-out error, although the 110
completed successfully, and it would attempt to cancel the 1/0 unnecessarily. Because
of the slight possibility of this unavoidable condition, the device hardware must be
designed in such a way that there are no ill effects from canceling the 1/0 after it has
completed.

May 26, 1989

Chapter 5

Device Driver Guidelines

5.1 Introduction

~READY
SYSTEMS

This chapter describes how to write a device driver for different kinds of devices. It
includes information on disk, serial, and clock device drivers, and device managers ..
You should be familiar with the general information in Chapter 2 and your IFX User's
Guide before proceeding with development of a device driver.

5.2 Disk Device Drivers

This section briefly explains the media structure of an IFX disk, then shows how to
write a disk device driver. For each function code that IFX uses to call the driver, this
section describes the parameter list and the actions the driver should perform. You
should refer to Chapter 6 for detailed information on function calls.

5.2.1 Physical Format

A disk contains a fixed number of concentric cylinders. Each cylinder is made up of
one or.more tracks (one per surface). Each track is subdivided into several fixed-length
data blocks called sectors. The number of sectors per track and tracks per cylinder
varies depending on the media format. Similarly, the size of each sector also varies, but
512 bytes is the most common value.

A sector, as shown in Figure 5-1, is the unit of transfer from the disk to memory (for
reading), and from memory to the disk (for writing). It is not possible to transfer a
partial sector. However, it is possible to transfer more than one sector, if they are
contiguous (next to each other in order by logical sector number).

IFX refers to sectors by their sector number, which is an integer from zero to the total
number of sectors minus one. Except during track-by-track formatting, IFX does not
deal with tracks or cylinders, and makes no assumptions about the order of sectors on
the disk. This is considered the responsibility of the disk device driver. For this reason,
IFX is compatible with media that do not have a uniform number of sectors per track,
such as optical disks.

May 26, 1989 5-1

Device Driver Guidelines IFX Device Driver Developer's Guide

Figure 5-1 Physical Disk Format

5-2 May 26, 1989

IFX Device Driver Developer's Guide Device Driver Guidelines

During track-by-track formatting, IFX refers to cylinders by their cylinder number,
which is an integer from zero to the total number of cylinders minus one. Similarly,
IFX refers to tracks by their track number, which is an integer from zero to the total
number of tracks per surface minus one.

Disk drive and controller manufacturers may use the term sector number to refer to the
numbering of sectors within a given track. In this context, a sector number is an integer
from one to the number of sectors per track. To avoid confusion, we refer to this type
of sector number as a physical sector nUDi.:>er. A sector number as defined in the
previous paragraph is refered to as a logical sector number. Unless otherwise stated,
Ready Systems documentation uses only logical sector numbers.

Apply the equations below (for devices that have uniform number of sectors per track
only) to convert from logical sector numbers to physical sector, track, and cylinder
numbers:

__ .r .oJ logical sector
"",lnuer - ~::..---

total cylinders

.1. logical sector mod (sectors per track x tracks per cylinder)
~a~-~-----~--~~----~~-~ sectors per track

physical sector .. (logical sector mod sectors per track) + 1

Table 5-1 illustrates these equations for a 5~-inch diskette with 9 sectors per track, 2
tracks per cylinder, and 40 cylinders.

Table 5-1 Sector Number Conversion

Logical Physical Track Cylinder
Sector Sector

0 1 0 0

1 2 0 0

· .. · .. 0 0

8 9 0 0

9 1 1 0

· .. · .. 1 0

17 9 1 0

18 1 0 1

· .. ·
719 9 1 39

May 26, 1989 5-3

Device Driver Guidelines IFX Device Driver Developer's Guide

5.2.2 Logical Format

Application programs normally do not access a disk at the physical level of sectors,
tracks, or cylinders. Instead they access the disk at the logical level of files, directories,
and volumes. It is the responsibility of the disk driver to implement the physical level,
and the responsibility of the IFX volume manager to implement the MS-DOS 4.0
logical level.

5.2.3 Formatting the Disk

5-4

As described above, data on the physical media is separated into sectors. The
separation between sectors is called the format of the disk. The format has these
functions:

• Defines the structure of a sector

• Locates the data of a sector

• Compensates for variations in the recording media, drive head, or drive motor

Formatting is the process of writing the format pattern and initial data to each sector of
the disk. A distinction is made between physical formatting and logical formatting.
Physical formatting writes the timing information for each sector onto the disk, as
opposed to logical formatting, which imposes a logical structure of files and directories.

Physical formatting destroys any data previously stored in each sector by overwriting it
with a meaningless pattern, while logical formatting merely makes that data inaccessible
by name. If you were to compare a disk to an audio cassette tape, then physical
formatting of a disk is equivalent to erasing the whole tape in a bulk eraser machine.
Logical formatting is analogous to changing the label that indicates the songs on the
tape.

It is the responsibility of the disk driver to do physical formatting only. Logical
formatting is the responsibility of higher-level software, such as the volume manager.

Many disk controllers have the ability to format an entire disk in a single operation.
For this reason, IFX first calls the driver with the control code IFXOFMTDSK to format
a disk. If the driver returns IFXENOTIMP, indicating that the controller cannot format
the whole disk"at once, then IFX assumes that the controller supports track-by-track
formatting. It then calls the the driver repeatedly with the control code IFXOFMTrRK,
passing the cylinder and track numbers each time.

May26,1989

IFX Device Driver Developer's Guide Device Driver Guidelines

5.2.4 Byte-Swapping

At the physical media level, each disk sector contains a fixed number of 8-bit bytes.
However, at the logical level, it is necessary to combine several bytes to represent 16-bit
and 32-bit integers. There are two standard representations for integers as byte
sequences, known as big-endian and little-endian. The big-endian order is used by
Motorola processors, while little-endian is used by Intel processors.

Since MS-DOS disk media was originally used only by the Intel 8086 processor, th~
MS-DOS logical media format contains integers in the little-endian order. When
accessed by a Motorola processor, it is necessary to swap the bytes to big-endian order.

However, your 68000 family disk device driver should not swap bytes to compensate for
the different byte ordering. The IFX/68000 file manager is designed to do all the
necessary byte-swapping. In general, your disk device driver should not do any

. byte-swapping at all.

The followi~g value types are swapped by the IFX/68000 file manager:

• Directory entry date, time, file length, and starting cluster

• File Allocation Table (FAT) entries

• BIOS Parameter Block (BPB) field

• Master boot sector partition table fields

Data files are not swapped by IFX. Therefore, if you are transporting only ASCII data
files between a PC and a 68000 system, you wi~l have no problem. If any files contain
binary integer data, then byte-swapping may need to be done at the application level
(that is, after the ifx_Tead and before the ifx_write). Do not byte-swap in the device
driver because that would swap all bytes, including those values that are not supposed
to be swapped.

There is one exception to the rule for disk device driver byte-swapping: If your disk
controller swaps bytes automatically in the hardware, then your device driver must
unswap the bytes to restore them to the correct order. Virtually no disk controllers
have this feature, but we know of at least one disk controller that does do this.
Therefore, please check your disk controller reference manual to make sure that it
doesn't do the swapping.

May 26, 1989 5-5

Device Driver Guidelines IFX Device Driver Developer's Guide

5.2.5 Sector Interleaving

5-6

Normally, the physical sector numbers (as defined in Section 5.2.1) are assigned in
increasing numerical order, as shown in Figure 5-2 below.

Figure 5-2 Interleave Factor 1:1

Sector interleaving is a convention for assigning physical sector numbers in an order
that skips alternating sectors. The interleave factor is a ratio expressed as N:M, where
N indicates how many physical sector numbers are assigned after every M sectors of
rotation. For example, the disk in Figure 5-2 has an interleave factor of 1:1, or no
interleaving. The disk in Figure 5-3 has an interleave factor of 1:2. The sector
interleaving is chosen during formatting.

Figure 5-3 Interleave Factor 1:2

May 26, 1989

IFX Device Driver Developer's Guide Device Driver Guidelines

The disk in Figure 5-4 below has an interleave factor of 2:4.

Figure 5-4 Interleave Factor 2:4

The mean time to read one sector on either of these disks is U revolution (to wait for
the sector to arrive under the head), plus ~ revolution (to transfer the data). Now
suppose that the application reads one sector and processes the· data, which takes a few
milliseconds, then reads the next sequential sector. On the disk with the 1:1 interleave
factor, by the time the application is ready to read the second sector. the beginning of
that sector has already passed by the head. Therefore, the application mus~ wait for
another full revolution before the second sector arrives under the head again. The
mean time to read two sectors in this way is: U + ~ + 1 + ~, or 1~ revolutions.

Compare this with a disk that has a 1:2 interleave factor. The time to read the second
sector after reading the first sector is ~ + ~ revolutions, giving a mean time to read
both sectors of only U + ~ + ~ + ~, or ~ revolutions. This is twice as fast!

From this discussion, it might seem that interleaving is the best way to improve your
disk pedormance. A long time ago when memory was expensive, this was true. But
now memory is relatively cheap, and so it is better to speed up your disk 1/0 through
buffering. The IFX disk buffer cache manager reduces the number of disk operations
by reading and writing more sectors than your applications ask for. Later, when the
application asks for the next sector, it is taken from the buffer instead of having to do
another disk operation. The reduced number of disk accesses more than compensates
for the time wasted due to transferring unnecessary sectors.

For almost all applications, the disk buffer cache pedorms much better than
interleaving. Only for systems that are extremely short on memory should you choose
an interleave factor other than 1:1.

May 26, 1989 5-7

Device Driver Guidelines IFX Device Driver Developer's Guide

5.2.6 MuHiple Sector Transfers

IFX assumes that the disk device driver can transfer an unlimited number of contiguous
sectors in a single operation. Some floppy disk controllers can transfer up to one track
per operation, while some SCSI controllers can transfer up to 256 sectors at once. If
your disk controller has limitations such as these, then your device driver should contain
a loop to do as many separate transfers as necessary, in order to satisfy the request. Be
sure to update the actual count after each transfer, so that if an 1/0 err~r occurs, the
actual count correctly reflects the number of sectors that were sllccessfully transferred
before the 1/0 error.

5.3 Serial Device Drivers

5-8

This section explains how to write a serial device driver. The serial device-driver,
supplied by either you or Ready Systems, implements low-level hardware-specific serial
1/0 operations, such as initialization and receiverltransmitter interrupts.

A serial device driver is different from other kinds of IFX device drivers because it
contains several parts.

• The device driver proper is a routine that IFX only calls for device installation,
device removal, and 1/0 control operations. The device driver also includes the
transmitter driver, a routine that IFX calls to transmit the first character of a
given output stream. IFX does not call the device driver routine for normal 1/0

~ transfers, except for the initial call to the transmitter driver to send the first
character.

• The receiver Interrupt Service Routine (ISR) is an interrupt service routine that
handles interrupts for incoming characters.

• The transmitter Interrupt Service Routine (ISR) is an interrupt service routine
that handles interrupts when the transmitter is ready to accept another character.

This section discusses the serial 1/0 process, the Serial Control Block used by the serial
device ISRs, ISR calling conventions. and the serial device driver proper.

May26,1989

IFX Device Driver Developer's Guide Device Driver Guidelines

5.3.1 Serial 1/0

The IFX Circular Buffer Manager maintains separate first-in-first-out (FIFO) buffers
for reads and writes from a serial device. The ifx_write function places characters into
the output buffer. When the buffer is full, application tasks suspend until there is room
in the buffer. The ifx_read function retrieves characters from the input buffer. When
the buffer is empty, application tasks suspend until there is a character in the buffer.
The default size of each FIFO buffer is 64 bytes, but this can be changed when the
device is installed. Due to the way the buffers are implemented, I-byte is reserved, so
actually there are only 63 buffer bytes available for use.

ISRs call two routines within IFX to pass characters, one at a time, to and from the
buffers. These two routines are called serial_receive_character and
serial_transMit_ready. The routines are called by a direct procedure call instruction
(such as JSR or CALL) to avoid the overhead of going through the VRTX32
component routing, which uses a software trap instruction such as TRAP or INT. The
parameters are passed in registers instead of on the stack. This makes these routines
extremely fast.

The receiver ISR calls seriaCreceive_character to transfer each character to the input
buffer as the character is received from the USART. If an application task is waiting for
a character during an ifx_read, the received character is transferred directly to the
application buffer. Otherwise, the character is placed at the end of the input
(type-ahead) buffer. If this buffer is full, error code IFXEBUFFULL is returned.

When the USART generates a transmit-ready interrupt, the transmitter ISR is invoked.
This ISR calls seriaClransmit_ready to tell IFX that the device is ready. If there are
characters in the output buffer, the next one is returned to the ISR. The ISR can
output the character directly, or it can call the transmitter driver routine to output the
character. (The transmitter ISR does not have to use the transmitter driver, but it is
recommended for well-structured programs.) The transmitter driver transmits the
character to the USART, enables interrupts from the USART if they were disabled, then
returns.

If the output buffer is empty, seriaCtransmit_ready returns the IFXEBUFEMPTY error
code to the transmitter ISR. IFX notes the ready status of the USART. When the ISR
sees the error code, it does not call the transmitter driver routine, but simply exits. The
next time ifx_write puts a character into the empty output buffer and the device is ready,
IFX calls the transmitter driver routine directly to transmit the character.

May 26, 1989 5-9

Device Driver Guidelines IFX Device Driver Developer's Guide

5.3.2 Serial Control Block (IFXSCB)

5-10

Because the IFX serial calls are designed to be called from high-speed interrupt service
routines, the overhead associated with a device name lookup would be unacceptable.
To increase performance, you specify the device by the address of the internal IFX data
structure called the Serial Control Block (lFXSCB), rather than by its name. IFX passes
the IFXSCB address to the serial device driver when the device is installed. The driver
should save the IFXSCB address in a global variable that is accessible to the interrupt
service routines.

The IFXSCB looks like this:

typedef struct {
void (*serial_receive_character)();
int (*serial_transmit_ready)();

} IFXSCB;

The fields seriaLreceive _character and seriaL transmitJeady contain the addresses of
the corresponding IFX routines. In the C declaration of the IFXSCB, these fields are
shown as being C function pointers. However, these routines can be called only from
assembly language due to their special calling conventions. Refer to the ifxvisi.inc file
on your shipping media for an assembly language definition of the IFXSCB.

A serial device driver can report 1/0 errors up to the application level as follows: To
'cause an error code to be returned from ifx_read, the driver should set the long word at
offset Ox14 within the IFXSCB to that error code. The error code is then returned to
the current ifx_read request along with a short actual count. If there is no current
ifx_read request, then the error code is returned to the next ifx_read request along with
a zero actual count. Similarly, to cause an error code to be returned from ifx_write, the
driver should set the long word at offset Ox7C within the IFXSCB to that error code.
This method of reporting errors up to the application level is likely to change in the
next version of IFX/68000. Therefore, you should isolate any code that relies on this
technique, so that it can be easily changed in the future.

May26,1989

IFX Device Driver Developer's Guide Device Driver Guidelines

5.3.3 ISR Operation

For higher performance, the conventions of the receiver ISR and transmitter ISR are
different than those of the device driver.

The receiver ISR is invoked by an interrupt when the device receives a character. It
should take the character from the device, then pass the character to IFX by calling
IFX's seriaCreceive _character routine.

• M68000 family processors. Before calling the seriaCreceive _character routine,
the receiver ISR should set register AO to point to the IFXSCB, and 01[7:0] to
the character that was just received. Upon return, DO contains either RET_OK
or IFXEBUFFULL, if the type-ahead input buffer is full. In the latter case, the
character passed in 01[7:0] is discarded. The seriaCreceive_character routine
destroys registers AO-A2IDO-D2.

• iAPX86 processors. The receiver ISR should set ES:BX to point to the IFXSCB,
and CH to the character that was received. The seriaCreceive _character routine
destroys registers AXIBX/CXIDX/SIIDIIES.

The transmitter ISR is invoked by an interrupt when the device is ready to. transmit
another character. It should get the next character from IFX by calling IFX's
seriaCtrans'1Zit_ready routine. If a character is available for transmission, it should
transmit the character to the device.

May26,1989

• M68000 family processors. Before calling the seriaCtransmit_ready routine, the
transmitter ISR should set register AO to point to the IFXSCB. Upon return,
either DO contains RET_OK, and register D1[7:0] contains the character to be
transmitted, or DO has the error code IFXEEBUFEMPTY. There are two
reasons why status code IFXEBUFEMPTY may be returned: Either the transmit
buffer is empty, or the buffer is not empty, yet transmission is temporarily
disabled because an XOFF (I Controll{])) was received. The seriaCtransmit_ready
routine destroys registers AO-A21D0-D2.

• iAPX86 processors. The ISR should set ES:BX to point to the IFXSCB. Upon
return, AX contains the status code and CH contains the character to be
transmitted. The seriaCtransmit_ready routine destroys registers
AXIBX/CXIDX/SIIDIIES.

5-11

Device Driver Guidelines IFX Device Driver Developer's Guide

5.4 Clock Device Drivers

This section explains how to write a clock device driver. IFX calls the clock device
driver periodically to determine the current date and time, or to change the date and
time.

The time and date are stored in the IFXTIME data structure, shown below:

typedef struct IFXTlME {
uns igned char hour; /* 0 to 23 */
uns igned char minute; /* 0 to 59 */
unsigned char second; /* 0 to 59 */
unsigned char year; /* 0 - 1900 */
unsigned char month; /* 1 to 12 */
unsigned char day; /* 1 to 31 */
short reserved; /* reserved */

} IFXTlME;

Clock device drivers should observe these properties of the IFXTIME structure:

• The hour is in the range 0 to 23 (military format), not 0 to 11 (AM/PM format).

• The year is in the range 0 to 199, corresponding to 1900 to 2099.

• The driver must handle February 29 during leap years. For the range 1901 to
2099, a simple test for leap year is "(year & 3) = = 0".

• The driver is not responsible for keeping track of the day of the week (Sunday,
Monday, etc.).

When the application calls ifxJtime, IFX first checks the time for validity. If the time is
invalid, IFX returns error code IFXEBADTIME to the application without calling the
driver. likewise, when the application calls ifxJlime, IFX calls the driver with function
code IFXFGTIME, then checks the time that.~he driver returned for validity. If the time
is invalid, IFX returns error code IFXEBADTIME to the application.

5.5 Custom and Block Device Drivers

5-12

This section summarizes how to write a driver for a device type other than disk, serial,
clock, manager, or pathname (volume). This information also applies to a serial driver
that does not use the Circular Buffer Manager. Examples of such devices include
printers, tape drives, etc.

Your driver only needs to implement five function codes: IFXFINSTALL,
IFXFREMOVE, IFXFREAD, IFXFWRITE, and IFXF10CTL. For all other function

May 26, 1989

IFX Device Driver Developer's Guide Device Driver Guidelines

codes, the driver should return error code IFXENOTIMP. The driver should handle
IFXFINSTALL and IFXFREMOVE in the normal way. When the driver is called with
IFXFREAD or IFXFWRITE function codes, it should transfer the data between the
application program's buffer and the device buffer. (You should consult your device
controller hardware manual for information about how to do this, since it is very
device-specific.) When the driver is called with the IFXFIOCfL (liD control) function
code, the driver should examine the first parameter, which is an integer control code.
This control code indicates which control operation should be performed. You can add
new control operations that are device-specific, such as "rewind tape" or "skip file."
These control operation codes should have the form "0xFFXX" to avoid overlapping
with standard control codes.

5.6 Device Managers

A device manager does not access hardware devices directly. Instead, it converts
application 110 requests to simpler requests and passes these on to another device
driver to do the real work.

5.6.1 Installation

Device managers are installed with the ifx_mount system call rather than ifx_instalJ, as
shown below:

extern int device_manager();

status - ifx_driver(IIMNGRDRVR", device_manager);
status .. ifx_mount("mahager: ", "device: ", "MNGRDRVR", parameters ...);

In this example, the underlying device is called device:, the managing device is called
manager:, and the device manager is called MNGRDRVR. Additional parameters to
ifx_mount are ignored by IFX, but are passed ·on to ~he device manager.

5.6.2 Calling the Underlying Driver

1\vo fields in the IFXDCB data structure arC' of particular interest to a device manager:
mounted_on and device_driver. The mounted_on field contains a pointer to the
IFXDCB of the underlying device. This pointer can be used to locate the address of the
underlying device driver, device_driver. Then it is a simple matter to call the
underlying driver by following the same calling conventions described in Chapter 2.

Example 5-1 shows a device manager that converts an application ifx_write request to a
call to the underlying driver to write a sector to disk.

May 26, 1989 5-13

Device Driver Guidelines IFX Device Driver Developer's Guide

5-14

int device_manager(func_code. dcb-ptr. plist)
int func_code;
IFXDCB *dcb-ptr;
PL *plist;
{

}

struct {
char *buffer_address;
long sector_number;
long number_of_sectors;
long *actual_count;

} params;
long actual;

switch (func_code) {
case IFXFWRITE:

}

params.buffer_address - ... ,
params.sector_number c ••• ;

params.number_of_sectors = lL;
params.actual_count - &actual_count;
status - (*dcb_ptr->mounted_on->device_driver)

(IFXFWRITES, dcb-ptr->mounted_on. ¶ms);
break;

return status;

Example 5-1 Converting Application Write Calls

In Example 5-1, the parameter listparams, which is passed to the device driver, is
identical to the parameter list defined under IFXFWRITES in Chapter 6. The
underlying device driver is called through an indirect C function call. The second
parameter to the driver is its own IFXDCB pointer.

It is possible to write a device manager entirely in C, provided that the calling
conventions of the C compiler are identical to those given in Chapter 2. For other
compilers, you will need to write a small assembly language routine that converts the
calling conventions of your compiler to those of IFX.

Appendix A contains an example device manager that maintains statistics about a disk
device.

May26,1989

IFX Device Driver Developer's Guide Device Driver Guidelines

5.7 Pathname Driver

A pathname driver is a device driver or manager that implements the pathname
function codes. These function codes are characterized by their first parameter, which
is always a NULL-terminated ASCII string. By the time the driver is called with a
pathname function code, the IFX dispatcher has already stripped off any leading device
name from the pathname. For example, for both of the following calls to ifx_create, the
driver is called with function code IFXFCREATE and pathname equal to the string file:

status - ifx_sdefault("device:");
status - ifx_create(IIfile ll);

status - ifx_create(IIdevice:file ll);

5.7.1 Implementing IFXFOPEN

The implementation of all pathname function codes, except for IFXFOPEN, is fairly
straightforward. However, the correct implementation of IFXFOPEN requires some
additional discussion.

When a pathname driver is called with function code IFXFOPEN, the driver should call
ifx_attach to allocate a descriptor ID. Consult the IFX User's Guide for the formal
declaration of ifx_attach. The parameters to ifx_attach are:

110 operation handler The address of a subroutine that IFX calls to handle
descriptor operations such as IFXFREAD, IFXFWRlTE, and
IFXFIOCTL.

Access mode The access mode for the new descriptor.

Descriptor ID The new descriptor ID is returned indirectly through this
reference parameter.

Descriptor control block The address of the descriptor. control block (IFXCCB) is
returned indirectly through this reference parameter.

If ifx_attach returns an error code, then the pathname driver should abort the open
operation and return the error code back to the caller. If ifx_attach returns RET_OK,
then the descriptor has been partially created in an embryo state. This means that the
descriptor ID number is assigned, but attempts to do 110 operations on this descriptor
fails with error code IFXEDESCNOPEN. as if the descriptor were not open.

To complete the initialization of the descriptor, the pathname driver must set two fields
in the IFXCCB (refer to Section 5.7.3 for more information on IFXCCB):

May 26, 1989 5-15

Device Driver Guidelines IFX Device Driver Developer's Guide

• Set the u field of IFXCCB to point to a driver-defined data structure that
identifies this descriptor .

• Set the ready field of IFXCCB to 1.

Now the descriptor creation is complete and the descriptor is ready for use.

5.7.2 1/0 Handler

5-16

If the application performs an I/O operation on the descriptor, IFX calls the descriptor
I/O handler with these parameters:

status - IO_handler(func_code, ccb-ptr, plist);

The I/O handler routine should be declared as follows:

int IO_handler(func_code, ccb-ptr, plist)
int func_code;
IFXCCB *ccb-ptr;
PL *plist;
{

}

int status;

switch (func_code) {
case IFXFREAD:

break;
case IFXFWRlTE:

break;
case IFXFIOCTL:

break;
default:

status - IFXENOTIMP;
break;

}
return status;

In many ways, an I/O handler routine looks almost identical to a device driver. It
implements the same function codes, same parameter lists, and same calling
conventions. The only difference is that the second parameter is a pointer to an
IFXCCB, rather than to an IFXDCB.

May26,1989

IFX Device Driver Developer's Guide Device Driver Guidelines

5.7.3 Descriptor Control Block

The Descriptor Control Block (IFXCCB) is a data structure that is associated with each
descriptor. There is one IFXCCB per descriptor. The IFXCCB is allocated by IFX
when the descriptor is created with ifx_attach. The IFXCCB is released by IFX when
the descriptor is deleted with ifx_close. A pointer to the IFXCCB is passed to an 110
handler as its second parameter. The IFXCCB contains a number of fields, some of
which are undocumented and reserved for use by IFX, and others that are documented
and of interest to an 1/0 handler. Your 1/0 handler should not refer to the
undocumented fields, since they are subject to change. The documented fields are:

access mode ...

currentJ)osition

u

ready

The access mode of the descriptor, as specified in ifx_open. The
ifx_attach call sets this field and the 110 handler should not change
it thereafter.

The current position of the descriptor, as set by ifx_sposn.

This is a general-purpose field that is reserved for use by the 1/0
handler. The field is the size of a pointer (4 bytes for 68000 and
8086, 6 bytes for 80386). The field typically points to a data
structure used by the 110 handler. The initial value is NULL
(zero).

This is a Boolean field that indicates whether 110 operations are
allowed on the descriptor. The initial value is FALSE (zero). The
1/0 handler should set it to TRUE (one) when it is ready to accept
1/0 operations.

/* Descriptor Control Block */

typedef struct IFXCCB {
long reservedl[3];
unsigned short access_mode;
char reserved2[2];
long current-position;
char *u;
long reserved3;
unsigned char ready;
char reserved4[3];

} IFXCCB;

May 26, 1989

/* reserved for use by Ready Systems */
/* access mode option bits */
/* reserved for use by Ready Systems */
/* position in units of bytes */
/* descriptor specific information */
/* reserved for use by Ready Systems */
/* whether descriptor is ready for I/O */
/* reserved for use by Ready Systems */

5-17

Chapter 6

Supporting Function Codes

6.1 Introduction

~READY
SYSTEMS

This chapter lists the functions that a device driver should support. When IFX calls the
driver, it passes a function code, a pointer to the Device Control Block (IFXDCB). and
a pointer to the parameter list.

Function codes are classified as either generic or device-specific. Generic function
codes are applicable to all device types. Device-specific function codes are -unique to
one device type.

- Within these two categories, there are required function codes and optional function
codes. Required function codes must be implemented by the driver, but optional
function codes may be ignored. If the driver chooses to ignore an optional function
code, it should return the error code IFXENOTIMP.

The IFXDCB is a data structure that is associated with each IFX device. Refer to
Chapter 2 for details about IFXDCB.

The parameter list supplies necessary data to the device driver that is specific to each
fun~on. The parameter list varies for each function code and so it is expressed as a C
umon:

union {
struct {

} ul;
struct {

} u2;

} parameter_list;
I

The parameter list for each function is defined within the discussion of that function.

May26,1989 6-1

Function Codes IFX Device Driver Developer's Guide

6.2 Generic Function Codes

The function codes below must be supported by all device drivers. This section covers
general information that is applicable to all device types. Device-specific information
can be found in Sections 6.3 through 6.5.

6.2.1 IFXFDRIVER (Install Driver)

The parameter list points to the third parameter of ifx_driver. For example, if the driver
is installed this way:

status - ifx_driver(IIDRlVER", device_driver, OxFFFFC040L, 2.0);

then the parameter list is:

struct {

} ;

long pl;
double p2;

/* OxFFFFC040L */
/* 2.0 */

This allows any driver-specific parameters to be put at the end of the ifx_driver call.
These extra parameters are not used by ifx_driver itself, but can be used by the device
driver.

As there are no devices installed yet when the driver is called with this function code,
the IFXDCB data structure cannot be a real one. Instead, IFX constructs a temporal)'
dummy IFXDCB whose only valid field is my_driver. This field points to the IFXDDCB
of the driver.

The device driver should:

1. Initialize data structures shared by all devices serviced by this driver

2. Set the IFXDDCB ddt field to point to global variables used by the driver

3. Return RET_OK, IFXENOTIMP, or an error code

If the driver returns an error code other than IFXENOTIMP, then the driver is not
installed.

6.2.2 IFXFRMDRIVER (Remove Driver)

6-2

There is no parameter list.

As there are no longer any devices installed when the driver is called with this function
code, the IFXDCB data structure cannot be a real one. Instead, IFX constructs a
temporary dummy IFXDCB whose only valid field is my_driver. This field points to the
IFXDDCB of the driver.

May 26, 1989

IFX Device Driver Developer's Guide Function Codes

The device driver should:

1. De-initialize data structures shared by all devices serviced by this driver

2. Return RET OK, IFXENOTIMP, or another error code

By the time the driver is called with function code IFXFRMDRIVER, it is too late for
the driver to prevent itself from being removed. If the driver returns an error code
other than IFXENOTIMP, then the driver is removed, but the error code is still passed
back to the application.

6.2.3 IFXFINSTALL (Install Device)

The parameter list points to the third parameter of ifx_install. For example, if the
device is installed this way:

status .. ifx_install("device:", "DRIVER", 12345, "hello");

then the parameter list is:

struct {
int p1;
char *p2;

} ;

/* 12345 */
/* "hello" */

This allows any driver-specific parameters to be put at the end of the ifx_install call.
These extra parameters are not used by ifx_install itself, but can be used by-the device
driver. .

z

y

- x Reserved

dt

Parameter Ust IFXDDISK

DCB Pointer - Reserved -
IFXFINSTALL Device Control Block

SP--' Return PC
Driver-Specific -Information -

Figure 6-1 Installing a Device with IFXFINSTALL

May26,1989 6-3

Function Codes IFX Device Driver Developer's Guide

6-4

The device driver should:

1. Initialize the device

2. Set up interrupt vectors

3. Set the IFXDCB device_type field to one of the codes in Thble 6-1

4. Set the IFXDCB dt field to point to global variables used by the driver

5. Return RET_OK or an error code

If the driver returns an error code other than RET_OK or IFXENOTIMP, then the driver
is not installed.

Table 6-1 Device Codes

Device 'fYpe Device Code

Disk IFXDDISK

Serial IFXDSERIAL

Clock IFXDCLOCK

Other OxFO to OxFF

May 26, 1989

IFX Device Driver Developer's Guide Function Codes

6.2.4 IFXFREMOVE (Remove Device)

There is no parameter list.

The device driver should:

1. De-initialize the device

2. Restore interrupt vectors

3. Return RET_OK, IFXENOTIMP, or another error code

By the time the driver is called with function code IFXFREMOVE, it is too late for the
driver to prevent the device from being removed. If the driver returns an error code
other than IFXENOTIMP, then the device is removed, but the error code is still passed
back to the application.

Reserved

eft

Parameter List IFXDDISK

DCB Pointer - Reserved -
I FXFREMOVE Device Control Block

SP--' Return PC
Driver-Specific -Information -

Figure 6-2 Removing a Device with IFXFREMOVE

6.2.5 IFXFIOCTL (1/0 Control)

The parameter list is:

struct {
int control_code;
/* additional parameters here */

} ;

Control codes are classified as either generic or device-specific. Generic control codes
are applicable to all device types, while device-specific control codes are unique to one
device type.

May 26, 1989 6-5

Function Codes IFX Device Driver Developer's Guide

Within these two categories, there are required control codes and optional control
codes. Required control codes must be implemented by the driver, but optional control
codes may be ignored. If the driver chooses to ignore an optional control code, it
should return the error code IFXENOTIMP.

Following the control code are additional parameters, which supply necessary data to
the device driver that is specific to each control operation. The additional parameters
vary for each control code, so they are expressed as a C union:

struct {
int control_code;
union {

struct {

} ul;
struct {

} u2;

} additional-parameters;
} parameter_list;

The additional parameters for each control operation are defined within the discussion
of that operation.

Many I/O control operations are implemented by the device driver itself. However,
there are a few control operations that are implemented by higher-level device
managers or by the IFX dispatcher. Thble 6-2 shows the standard control operations
and which layer is responsible for implementing each. Optional operations are marked
with an asterisk.

6.2.6 IFXFDEVCTL (Device Control)

6-6

The parameter list is:

struct {

} ;

char *path_name;
int control_code;
/* additional parameters here */

It is not neceSSary for the device driver to implement the IFXFDEVCfL operation. The
IFX dispatcher automatically translates IFXFDEVCfL to the corresponding IFXOIOCfL
operations. The driver should return IFXENOTIMP for this function code.

May 26, 1989

IFX Device Driver Developer's Guide Function Codes

Table 6-2 1/0 Control Operations

Operation
IFXOGGEOM

IFXOFLUSHOUT

IFXODISCIN

IFXODISCOUT

IFXOGDvrYPE

IFXOGMlDVNM

IFXOGOPNCNT

IFXOGMNTCNT

IFXOGVOLCLS
IFXOGLEDCHR

IFXOSLEDCHR

IFXOGXNFFf

IFXOSXNFFT

IFXOGINBSIZ

IFXOGOUTBSIZ

IFXOGLEDFf

IFXOSLEDFf

IFXOGCOLPOSN

IFXOSCOLPOSN

IFXOGEOFBSIZ

IFXOGLEDBSIZ

IFXOGDISKBUF

IFXOFMTI'RK

IFXOTXRDY

!FXOGSYNCERR

IFXOFMlDSK

May 26, 1989

Description'
get disk geometry
flush output buffer

discard input buffer

discard output buffer

get device type
get mounted-on device
name
get open count
get mount count
get volume clusters
get line-editing characters
set line-editing characters
get XONIXOFF features
set XONIXOFF features
get input buffer size

get output buffer size

get line-editing features
set line-editing features
get column position
set column position
get end-of-file buffer size
get line-editing buffer size
get disk-buffer cache status
format track
transmit character
get synchronization errors
format disk

Responsible Layer
disk driver
disk volume manager
disk buffer manager
circular buffer manager
pipe driver, disk ~river *
disk buffer manager
circular buffer manager
pipe driver, disk driver *
disk buffer manager
circular buffer manager
pipe driver, disk driver *
dispatcher
dispatcher

~ispatcher

dispatcher
disk volume manager
line-editing manager
line-editing manager
circular buffer manager
circular buffer manager
circular buffer manager
pipe driver
circular buffer manager
pipe driver
line-editing manager
line-editing manager
line-editing manager
line-editing manager
pipe driver
line-editing manager
disk buffer manager
disk driver*
serial driver
disk volume manager
disk driver*

6-7

Function Codes IFX Device Driver Developer's Guide

6.2.7 IFXFACANCEL (Asynchronous Cancel)

6-8

The parameter list is identical to one passed to a previous 1/0 function. It is not the
parameter list of the IFXFACANCEL caller. Thus, if the device driver can support more
than one 1/0 operation at once, the parameter list can be used to determine which
operation should be canceled.

IFX may need to call a device driver while there is an 1/0 operation in progress (for
example, canceling an asynchronous 1/0). In this case, the three parameters to the
device driver are:

1. The device driver should return RET_OK for opcode IFXFACANCEL, even if it
cannot determine which 1/0 request is being canceled.

2. The driver should arrange for the other execution thread that was doing the 1/0
to receive a short actual transfer count and error code IFXEASCANCEL.

3. The driver should support asynchronous cancellation if the device is slow,
meaning that it can take an indefinite time for the device to complete an ilo
operation. For such devices, supporting asynchronous cancellation allows the
application to recover from the pending 1/0 operation.

When the driver is called with opcode IFXFACANCEL, it should:

1. Check for II0s in progress. If no 1/0 is in progress, then go to the last step.

2. Compare the parameter list address to that of the current 1/0 operation. If it
does not match, then g~ to the last step. Note that there may be more than one
active 1/0 operation. In this case, the driver should compare the parameter list
address to that of each active 1/0 operation.

3. Attempt to cancel the 1/0 operation. ·If the 1/0 cannot be canceled because it
has progressed too far, then go to the last step.

4. Arrange for the driver to return error code IFXEASCANCEL (asynchronous 110
canceled) to the 110 initiator, for the actual transfer count to be less than the
desired transfer count.

5. Return RET_OK.

May 26, 1989

IFX Device Driver Developer's Guide Function Codes

6.3 Supporting Disk Function Codes

The function codes below must be supported by disk device drivers.

6.3.1 IFXFREADS (Read Sectors)

The parameter list is:

struct {

} ;

long sector-position;
char *buffer_address;
long number_sectors;
long *actual_count;

The device driver should:

1. Transfer number_sectors sectors, beginning from disk sector number
sectorJ)osition, to memory at buffer_address.

2. Set the variable pointed to by actuaLcount to the number of sectors that were
successfully transferred.

3. Return RET_OK, IFXEIOERR, or a more specific 1/0 error code, such as
IFXECRCERR, IFXEIOTIMOUT, IFXESECN1FND, or IFXESEEKFAIL.

- I I Actual Count I

Actual Transfer Count
Number of Sectors

~ Application Buffer

- Starting Sector Number Reserved -
dt

Parameter Ust
DCB Pointer - Reserved

IFXFREADS Device Control Block
SP .. Retum PC

Driver-Specific -Information -

Figure 6-3 Reading Sectors with IFXFREADS

May 26, 1989 6-9

Function Codes IFX Device Driver Developer's Guide

6.3.2 IFXFWRITES (Write Sectors)

6-10

The parameter list is:

struct {

} ;

long sector-position;
char -buffer_address;
long number_sectors;
long -actual_count;

The device driver should:

1. Thansfer number_sectors sectors, from memory at buffer_address, to disk
beginning with sector number sector -position.

2. Set the variable pointed to by actuaL count to the number of sectors that were
successfully transferred.

3. Return RET_OK, IFXEIOERR, IFXERDONLYM, or a more specific 1/0 error
code, such as IFXECRCERR, IFXEIOTIMOUT, IFXESECNTFND, or
IFXESEEKFAIL.

- I Actual Count I
Actual Transfer Count

Number of Sectors

Application Buffer ~

- Starting Sector Number Reserved

dt
Parameter Ust

DCB Pointer - Reserved -
IFXFWRITES Device Control Block

SP ~ Return PC
- Driver-Specific -Information -

Figure 6-4 Writing Sectors with IFXFWRITES

May 26, 1989

IFX Device Driver Developer's Guide

6.3.3 IFXFIOCTL (1/0 Control)

The control codes below must be supported by disk device drivers.

IFXOGGEOM (Get Disk Geometry)

The additional parameters are:

struct { .
IFXGEOMETRY *disk-Beometry;

} ;

The device driver should:

Function Codes

1. Return information about the physical configuration in the various fields of the
disk_geometry structure. This tells IFX what the disk looks like. The disk
geometry returned by the driver must satisfy these constraints:

• sector_size must be a power of 2 between 128 and 32768

• sectors..per_track must be greater than 0

• tracks_per _cylinder must be greater than 0

• totaL cylinders must be greater than 0

• totaL sectors must be equal to the product of sectors_per _track,
. tracks "per_cylinder, and totaL cylinders

The disk geometry should describe the entire disk, including any boot sectors,
partition tables, and all partitions. The volume manager will take care of
subdividing the disk, if necessary.

2. Return RET_OK

IFXOFMTDSK (Format Disk)

There are no additional parameters.

The device driver should format the entire disk. If the device driver is incapable of
formatting the entire disk in one operation, then the driver should return error code
IFXENOTIMP. IFX will then call the device driver with control opcode IFXOFM'ITRK
once per track and cylinder to format the disk a track at a time.

May 26, 1989 6-11

Function Codes IFX Device Driver Developer's Guide

6-12

If the device driver is capable of formatting the entire disk in one operation, then the
driver should:

1. Format the entire disk, or

2. Return RET_OK, IFXEIOERR, IFXERDONLYM, or a more specific 110 error
code

IFXOFMTTRK (Format Track)

The additional parameters are:

struct {

} ;

int cylinder;
int track;

The device driver should:

-

SP

1. Format the specified track.

2. Return RET_OK, IFXEIOERR, IFXERDONLYM, or a more specific 110 error
code

Track (Head)

Cylinder Number

IFXOFMTrRK Reserved

dt

Parameter Ust
Reserved

DCB Pointer -
IFXFIOCTL Device Control Block

- Return PC
Driver-Specific -Information -

Figure 6-5 Formatting a Track with IFXOFMTTRK

May26,1989

IFX Device Driver Developer's Guide

IFXODISCIN (Discard Input Buffer)

There are no additional parameters.

Function Codes

IFXODISCIN tells the driver to discard all buffered data, including dirty buffers. The
driver need only implement this operation if the disk controller supports hardware
buffering (in addition to IFX's disk buffer cache). The only input parameter is the
control operation code.

The device driver should:

1. Discard all buffered data (including dirty buffers), if the controller has hardware
buffering.

2. Return RET_OK, if the controller has hardware buffering and the buffers were
successfully discarded. Return IFXENOTIMP, if the controller does not have
hardware buffering. Or, return an 110 error code, such as IFXEIOERR,
IFXERDONLYM, or another 110 error code, if the operation was attempted but
not successful.

IFXODISCOUT (Discard Output Buffer)

There are no additional parameters.

IFXODISCOUT tells the driver to discard only dirty buffered data. The driver need only
implement this operation if the disk controller supports hardware buffering (in addition
to IFX's disk buffer cache). The only ir)ut parameter is the control operation code.

The device driver should:

1. Discard all dirty buffers, if the controller has hardware buffering.

2. Return RET_OK, if the controller has hardware buffering and the buffers were
successfully discarded. Return IFXENOTIMP, if the controller does not have
hardware buffering. Or, return an 110 error code, such as IFXEIOERR,
IFXERDONLYM, or another 110 error code, if the operation was attempted but
not successful.

IFXOFLUSHOUT (Flush Output Buffer)

There are no additional parameters.

IFXOFLUSHOUT tells the driver to flush all dirty buffered data to the disk. The driver
need only implement this operation if the disk controller supports hardware buffering
(in addition to IFX's disk buffer cache). The only input parameter is the control
operation code.

May 26, 1989 6-13

Function Codes IFX Device Driver Developer's Guide

The device driver should:

1. Flush all dirty buffers to the disk, if the controller has hardware buffering.

2. Return RET_OK, if the controller has hardware buffering and the buffers were
successfully discarded. Return IFXENOTIMP, if the controller does not have
hardware buffering. Or, return an I/O error code, such as IFXEIOERR,
IFXERDONLYM, or another I/O error code, if the operation was attempted but
not successful.

6.3.4 IFXFACANCEL (Asynchronous Cancel)

6-14

IFX does not call the device driver with the IFXFACANCEL function code, if you access
the disk through the Volume Manager or Disk Buffer Cache Manager. The two disk
managers support asynchronous I/O, but not asynchronous cancel.

It is not necessaIY for your driver to implement the IFXFACANCEL opcode for disk
device drivers, because modem disk controllers have a time-out mechanism. They
either complete an I/O operation or return an error code. They do not hang if the disk
is omine or if there is no media in the drive.

For most applications, we recommend that the disk device driver return error code
IFXENOTIMP for this opcode.

If you access the disk directly by opening the raw sector-oriented device for
asynchronous sector transfers, then you may want to implement asynchronous cancel in
the driver.

IFXFACANCEL uses the same parameter list as that used to initiate the I/O for
IFXFREADS, IFXFWRITES, or IFXFIOCTL (Sections 6.3.1, 6.3.2, and 6.3.3).

The device driver should:

1. Check if there is currently a IFXFREADS, IFXFWRITES, or IFXFIOCTL
operation in progress'. ~f no 110 is in progress, then go to the last step.

2. Compare the parameter list address to that of the current I/O operation. If it
does not match, then go to the last step.

3. Attempt to cancel the I/O operation. If the I/O cannot be canceled because it
has progressed too far, then go to the last step.

4. Arrange for the IFXFREADS, IFXFWRITES, or IFXFIOCTL to return error code
IFXEASCANCEL (asynchronous I/O ca~celed), and for the actual transfer count
to be less than the desired transfer count.

May 26, 1989

IFX Device Driver Developer's Guide Function Codes

6.4 Supporting Serial Function Codes

The function codes below must be supported by serial device drivers.

6.4.1 IFXFINSTALL (Install Device)

The parameter list points to the sixth parameter of ifx_install. For example, the device
is installed like this:

status - ifx_install("serial:", "CIRCULAR",
device_driver, 64, 64, 12345, "hello");

Then the parameter list is:

struct {
int pI;
char *p2;

} ;

/* 12345 */
/* "hello" */

This allows any driver-specific parameters to be put at the end of t~e ifx_install call.
These extra parameters are not used by ifx_install itself, but can be used by the device
driver.

The device driver should:

1. Initialize the device (reset the USART, set up baud rate generator, initialize
USART features, set up interrupt vectors, and so forth).

2. Save the contents of the IFXDCB dt field in a global variable, for later use by
interrupt service routines. This is a pointer to the IFXSCB. Do not change the
value in the dt field. Also, do not set the device_type field. It has already been
set to IFXDSERIAL.

6.4.2 IFXFIOCTL (1/0 Control)

IFX uses the IFXFIOCTL operation to call the device's transmitter driver routine. In
addition, the driver can implement other device-specific control operations.

For calls to the transmitter driver, the parameter list is:

May 26, 1989

struct {

} ;

int control_opcode;
int character;

6-15

Function Codes IFX Device Driver Developer's Guide

The control operation code for the transmit driver is IFXOTXRDY. The device driver
should transmit the supplied character to the device (by calling an assembly language
routine), then return RET_OK. This is how IFX calls your driver to transmit the very
first character, or to transmit the first character after a period of not transmitting
characters. It is not intended to be used by an application program.

For other control operations, the parameter list is:

struct {
int control_opcode;

} ;

The number and type of parameters following contro,-opcode vary according to the
control operation.

IFX does not define any standard control operations that the serial driver has to
implement. However, typical operations might get and set the baud rate, number of
data bits, number of stop bits, parity, control a modem, and so forth.

The device driver should return IFXENOTIMP if a control opcode is not implemented.

NOTE I
You should define new control operation codes in the
range of FFOOH to FFFFH to distinguish them from future
IFX opcodes.

6.4.3 IFXFACANCEL (Asynchronous Cancel)

6-16

IFX never calls the device driver with the IFXACANCEL function code. Asynchronous
cancel is handled entirely by the Circular Buffer Manager without any assistance from
the device driver.

May 26, 1989

IFX Device Driver Developer's Guide Function Codes

6.5 Supporting Clock Function Codes

The function codes below must be supported by clock device drivers.

6.5.1 IFXFGTIME (Get System Time)

The parameter list is:

struct {
IFXTlME *time;

} ;

The device driver should:

1. Determine the current date and time by reading from the hardware clock.

2. ~ill in the fields of the structure pointed to by the IFXTIME parameter.

3. Return RET_OK.

6.5.2 IFXFSTIME (Set System Time)

The parameter list is:

struct {
IFXTlME *time;

} ;

The device driver should:

1. Use the values from the IFXTIME parameter to reset the hardware clock.

2. Return RET_OK.

6.6 Supporting Pathname Function Codes

The function codes below may be supported by pathname device drivers. All function
codes are optional except for IFXFOPEN, which is required.

6.6.1 IFXFCREATE (Create File)

The parameter list is:

struct {
char *pathname;

} ;

The device driver should create the specified file and return a status code.

May 26, 1989 6-17

Function Codes IFX Device Driver Developer's Guide

6.6.2 IFXFDELETE (Delete File)

The parameter list is:

struct {
char *pathname;
int options;

} ;

The possible option bits are:

IFXRMARKBAD Mark file as bad
IFXRRDONLY Delete read-only files

The device driver should delete the specified file and.return a status code.

6.6.3 IFXFMKDIR (Make Directory)

The parameter list is:

struct {
char ·pathname;

} ;

The device driver should create the specified directory and return a status code.

6.6.4 IFXF.RMDIR (Remove Directory)

6-18

The parameter list is:

struct {
char *pathname;
int options:

}:

The possible option bits are:

IFXRRECURS
IFXRMARKBAD
IFXRRDONLY

Remove subdirectories recursively
Mark file as bad
Delete read-only files

The device driver should remove the specified directory, and, possibly, any
subdirectories and files within that directory, then return a status code.

May 26, 1989

IFX Device Driver Developer's Guide

6.6.5 IFXFRENAME (Rename File)

The parameter list is:

struct {

} ;

char *old-pathname;
char *new_pathname;

Function Codes

The device driver should rename the specified file to the new name or directory and
return a status code.

6.6.6 IFXFSWKDIR (Set Working Directory)

The parameter list is:

struct {
char *pathname;

} :

The device driver should check that the specified pathname exists and that it refers to a
directory. It then should set the working directory of the calling task to this directory.
The calling task can be determined by calling sc_tinquiry. After setting the working
directory, the driver should return a status code.

6.6.7 IFXFGWKDIR (Get Working Directory)

The parameter list is:

struct {

} ;

char *empty_string;
char *pathname;

The device driver should check that the first parameter is an empty string. If so, the
driver should copy the current working directory of the calling task to the pathname
buffer. The calling task can be determined by calling sc_tinquiry. After copying the
working directory, the driver should return a status code. If the first parameter is not
an empty string, the driver should return error code IFXECHRAFfNAM.

May 26, 1989 6-19

Function Codes IFX Device Driver Developer's Guide

6.6.8 IFXFSLABEL (Set Volume Label)

The parameter list is:

struct {

} ;

char *empty_string;
char *label;

The device driver should check that the first parameter is an empty string. If so, the
driver should set the new volume label, then return a status code. If the first parameter'
is not an empty string, the driver should return error code IFXECHRAFTNAM.

6.6.9 IFXFG~BEL (Get Volume Label)

The parameter list is:

struct {

} ;

char *empty_string;,
char *label;

The device driver should check that the first parameter is an empty string. If so, the
driver should copy the current volume label to the label buffer, then return a status
code. If the first parameter is not an empty string, the driver should return error code
IFXECHRAFI'NAM.

6.6.10 IFXFMARKBAD (Mark Bad Sectors)

6-20

The parameter list is:

struct {

} ;

char *empty_string;
long start_sector;
long number_of_sectors;

The device driver should check that the first parameter is an empty string. If so, the
driver should mark the specified range of sectors as unusable, then return a status code.
If the first parameter is not an empty string, the driver should return error code
IFXECHRAFI'NAM.

May 26, 1989

IFX Device Driver Developer's Guide Function Codes

6.6.11 IFXFOFFLINE (Mark Device Off-Une)

The parameter list is:

struct {
char *empty_string;
int error_code;

} ;

The device driver should check that the first parameter is an empty string. If so, the
driver should mark the device as off-line, so that future calls to the driver return the
specified error code. If the first parameter is not an empty string, the driver should
return error code IFXECHRAFI'NAM.

6.6.12 IFXFDEVCTL (Device Control)

The parameter list is:

struct {

} ;

char *empty_string;
int control_code;
/* additional parameters here */

The device driver should return error code IFXENOTIMP. Then IFX will call the driver
again with function code IFXFIOCTL and the same parameter list. In this Way, the
driver only needs to implement IFXFIOCTL, but the application can call both ifx_ioctl
and ifx_devctl.

6.6.13 IFXFOPEN (Open)

The parameter list is:

struct {

} ;

char ·pathname;
int access_mode;
int *descriptor;

The device driver should:

May26,1989 6-21

Function Codes IFX Device Driver Developer's Guide

6-22

1. Check that the specified pathname exists and that the access mode is compatible
with this file.

2. Allocate a descriptor by calling ifx_attach.

3. Set the u field in IFXCCB to point to a driver-defined data structure that
identifies this descriptor.

4. Set the ready field in IFXCCB to 1.

s. Return a status code.

May 26, 1989

Chapter'7

Installing IFX Devices

7.1 Introduction

~READY
SYSTEMS

Ready Systems provides a collection of device drivers and device managers that you can
use with IFX. Some of the device drivers and managers are built-in to the IFX
component, while others are samples that are included on your shipping media to be
used as templates in creating your own device drivers.

This chapter explains how to install the device drivers included in the IFX package, as
well as drivers that you may write.

To get started quickly using IFX devices, use the example routine provided in Appendix
D of the IFX User's Guide. This routine installs all the IFX standard devices. Then. for
more details, read thi~ chapter.

For two common device types, there are additional software layers between the
application and the device driver. These are called device managers. A device manager
looks like a device driver to IFX. However, when a device manager is called by IFX to
perform a low-level operation, the manager examines the parameters and calls another
device driver or manager to a~ally do the data transfer.

IFX includes the following device managers:

MS-DOS File Manager Maintains disks in MS-DOS-compatible format.

Disk Buffer Cache Reduces the number of disk I/O operations by keeping
copies of frequently used disk sectors in memory. It also
converts byte-oriented data transfers to sector transfers.

line Editor Handles echoing, erase-character, erase-line, and related
features for CRT terminals.

Circular Buffer Manager Performs circular buffering for serial devices, such as
USAR1S, and supports theXONIXOFF flow control
protocol.

May 26, 1989 7-1

Installing IFX Devices IFX Device Driver Developer's Guide

Some of these device managers make use of one another to do their work. The
MS-DOS Volume Manager requires the disk buffer cache or the byte-oriented RAM

. disk. The line editor requires the circular buffer manager or IFX's standard console
device. The disk buffer cache requires a disk driver, and the Circular Buffer Manager
requires a serial driver. Ultimately, all device managers end up calling a device driver.

Before installing a device manager, you must install the device driver. The parameters
for installing a device driver vary depending on the driver. Refer to Section 7.7 for
information on installing the IFX standard device drivers.

The rest of this chapter contains C code that refers to standard IFX device drivers and
managers by name.

7.2 Installing and Removing Device Drivers and Managers

7-2

IFX includes several built-in device drivers and managers, which are listed below:

Driver name

DISKBUF

VOLUME

UNEEDIT

NULL

CONSOLE

PIPE

SOFTCLCK

BYTERAM

SECTORAM

Description

Disk Buffer Cache Manager

MS-DOS Compatible File Manager

Terminal Line Editor

Null device

Console terminal using VRTX32 character 1/0

Pipe (named first-in first-out queue)

Software time-of-day clock using VRTX32 timer interrupts

Byte-oriented RAM disk (used without the disk buffer cache manager)

Sector-oriented RAM disk (can be used with the Disk Buffer Cache
Manager)

These standard device drivers and managers are automatically installed by the ifx_init
call. If you only use these drivers and managers, then you can skip the remainder of
this section.

If you have written your own device driver or manager, you must install it before you
can install the device that uses this driver. This is done with the ifx_driver call. You
normally install device drivers during system initialization. However, you can also
install device drivers dynamically, during application run-time. This allows you to have
device driver code that is loaded into memory only when it is needed.

May26,1989

IFX Device Driver Developer's Guide Installing IFX Devices

To complement the ability to dynamically install a device driver, IFX also provides the
function ifx_rmdriver to take the device driver out of the system.

This section deals only with the installation and removal of device drivers in your
system, and assumes that the device driver is already written.

7.2.1 lix_drlver

The ifx_driver call installs either a device driver or a manager. Call ifx_driver as follows:

status K ifx_driver(name, driver, parameters ...);

The ifx_driver has two required parameters:

• The name parameter is the name your program uses to refer to the device
driver.

• The driver parameter is the address of the device driver.

The ifx_driver call accepts additional parameters, which ifx_driver ignores and passes on
to the device driver. .

IFX uses a far call when it calls a device driver. When the driver's address is passed as
a parameter, the compiler pushes its offset only. The descriptor of the driver should be
passed separately, immediately after.

7.2.2 iixJmdriver

The ip_rmdriver call removes either a device driver or a manager. Call ifx_rmdriver as
follows:

status c ifx_rmdriver(name);

The ifx _ rmdriver has one required parameter:

• The name parameter is the name your program uses to refer to the device
driver.

7.3 Installing, Mounting and Removing Devices

IFX needs to know all about the devices in the system. It finds out about devices
through the ifx_install and ifx_mount calls, which you should call during system
initialization. However, you can also install devices dynamically during application
run-time. This allows you to have devices that load into memory only when they are
needed.

May 26, 1989 7-3

Installing IFX Devices IFX Device Driver Developer's Guide

To complement the ability to install a device, IFX also provides the function ifx_,emove
to take the device out of the system.

This section deals only with the installation and removal of devices in your system, and
assumes that the device driver or manager is already written.

7.3.1 Ifx-'nstall

The ifx_insta/l call installs a simple device. (To install a mounted device, use the
ifx_mount call described below.) Call ifx_install as follows:

status - ifx_install(name, driver, parameters ...);

The ifx_insta/l call has two required parameters:

• The name parameter is the name your program uses to refer to the device .

• driver is the parameter name of the device driver.

The ifx_install call accepts additional parameters, which ifx_insta!l ignores and passes on
to the device driver.

7.3.2 Itx_mount

7-4

This section explains how to mount the Disk Buffer Cache Manager and Line Device
Manager. Note that IFX's Circular Buffer Device Manager is installed using ifx_install
rather than ifx_mount. Consult the IFX User's Guide for information on installing the
MS-DOS file manager.

The ifx_mount call mounts an IFX device manager on top of an installed device. Use
ifx_mount with the following device managers:

DISKBUF Disk Buffer Cache Manager

VOLUME MS-DOS-compatible file manager, which is usually mounted on top of
DISKBUF. Consult the IFX User's Guide for details on mounting
parameters and options.

LINEEDIT Terminal Line Editor Manager (mount on top of CIRCULAR)

Call ifx_mount as follows:

status - ifx_mount(name. devname, manager, parameters ...);

The ifx_mount call has three required parameters:

May 26, 1989

•

IFX Device Driver Developer's Guide Installing IFX DeVices

• The name parameter is the name your program uses to refer to the mounted
virtual device (for the MS-DOS File Manager, this device is called a volume).

• The devname parameter is the name you have assigned to a device in a previous
ifx_install or ifx_mount call.

• The manager parameter is the name of an IFX standard device manager.

The ifx_mount call accepts additional parameters, which ifx_mount ignores and passes
on to the installed device or manager. Note that you can mount a device manager on
top of another device manager, as well as on top of a device. For example, the
MS-DOS-compatible file manager is usually mounted on top of the Disk Buffer Cache
Manager, which is mounted on top of the disk device driver.

7.3.3 Ifx_remove

The ifx_Temove call removes a simple device or mounted device. It calls·the device
driver to do any necessary cleanup, then removes the device name from the IFX tables.
Call ifx_Temove as follows: .

status K ifx_remove(name);

Parameters

The ifx_Temove call has one required parameter: the device name, which is described in
Section 7.3.1.

7.4 Using the Disk Buffer Cache Manager

The Disk Buffer Cache Manager is designed to be used in conjunction with a disk
device driver to increase disk performance and simplify the implementation of the
driver. The Disk Buffer Cache Manager:

• Reduces the number of disk liD operations by using a modified least-recently
used (LRU) algorithm

May 26, 1989

• Converts the application's byte-oriented liD requests into sector-oriented
operations that the disk driver can understand

• Improves performance by writing data to disk in an order that reduces disk head
motion

7-5

Ihstalling IFX Devices IFX Device Driver Developer's Guide

• Improves reliability by using advanced algorithms to determine when to write
critical information to disk

The existence of the Disk Buffer Cache Manager means that any given application call
mayor may not cause an actual disk access. In some cases, an application read call can
cause a disk write (if a buffer needs to be flushed so that data can be read into it). An
application write call can cause a disk read (if the write does not completely cover a
sector). Also, disk accesses do not necessarily ocCur strictly in LRU order. The Disk
Buffer Cache Manager writes .buffers in a way that improves reliability.

For example, the Disk Buffer Cache Manager writes all data first, followed by directory
and File Allocation 'Thble (FAT) updates. This means that in the w~rst case, data might
be lost, but the disk structure is not corrupted. For the same reason, related directory
and FAT information is written with consecutive write operations to redu<;e the chance
that. for example, a file's allocation is changed without the corresponding FAT entry
being changed to reflect the new allocation.

To improve performance, the disk buffer cache is bypassed for tr3;nsfers of large
quantities of data. The cutoff point is twice the buffer size. Data transfers for less than
this amount go through the buffer cache. Data transfers for more than this amount go .
directly to the disk. There are a few exceptions to this rule. In particular, if the disk
contains bad sectors in the region of the transfer, or if some of the data in the region of
the transfer is dirty (needs to be written to disk), then the cutoff point is .different.

7.4.1 Mounting the Disk Buffer Cache Manager

7-6

To meunt the Disk Buffer Cache Manager on top of an installed disk driver, use the
ifx_mount call. It is mounted on top of the disk device driver. which must already be
installed. Consult the IFX User's Guide for information on mounting the
MS-DOS-compatible file manager on top of the Disk Buffer Cache Manager.

Use this template to mount the Disk Buffer Cache M~nager:

Idefine name "cache:"
Idefine devname "disk:"
Idefine _nager "DISKBUF"
Idefine num_buffers 8
Idefine buffer_size 1

status - ifx_mount (name , devname, manager. num_buffers. buffer_size);

In this example, cache: is the name you assign to the mounted cache manager, disk: is
the name of the previously installed disk device driver. and DISKBUF is the name of
JFX's Disk Buffer Cache Manager.

May26,1989

IFX Device Driver Developer's Guide Installing IFX Devices

The nurn_buffers parameter is the number of buffers in the cache (the default is on~
buffer if this parameter is zero). The buffer_size parameter is the size of each buffer in
sectors (the default is one sector if this parameter is zero). These two parameters have
an important role in the reliability and performance of the buffer cache, so they are
discussed in some detail here.

7.4.2 Determining the Number of Buffers

In general, the more buffers, the better the performance and the better the reliability.
The optimal number of buffers is roughly dependent on:

• The number of open files

• The number of tasks accessing the disk

• The number of directory and file allocation operations in your application

. A good rule-of-thumb to start with is this:

number_of_buffers - 2 * number of open files and directories + 3

Note that for real-time, high-performance applications, it is best to keep the directory
and file allocation operations at a minimum. For example, it is best to pre-cillocate the
space for a file when it is first created. Subsequent write operations can then .fill the file
without having to constantly increase its allocation. This both ensures that the file's
data is contiguous for fast access, and that time is not required for repeated allocation
operations.

As a worst case, imagine two tasks, each extending a different file that had not been
pre-allocated. This would result in space being allocated to the files in an interleaved
fashion, thus fragmenting the disk. The files would take longer to extend, due to
repeated allocation operations and FAT modifjcations. In addition, later sequential
access to the files would take longer, because of their fragmented nature.

You should experiment to arrive at the best number of buffers. One way you can test
whether your number Was correct is to retrieve the disk buffer information by issuing
ifx_devctl with the IFXOGDISKBUF control operation code. This returns disk buffer
information in the IFXDISKBUF structure.

IFXDISKBUF diskbuf;

status -. ifx_devctl ("volume: .. I IFXOGDISKBUF I &diskbuf);

The IFXDISKBUF lock_failures field indicates the number of times the disk cache's
internal buffer lock mechanism failed, which indicates that you should either:

May 26, 1989 7-7

Installing IFX Devices IFX Device Driver Developer's Guide

• Use more buffers

• Mount the volume with a shorter synchronization interval, so the buffer cache is
flushed to disk more often

• Use programming techniques such as file pre-allocation to reduce the number of
directory and file aIIocation operations

IdeaIIy, lock_failures should be zero. If it is not zero, it means your performance and
reliability are probably not as high as they could be. A lock failure means that IFX was
not able to write buffers containing related critical information to the disk
consecutively. A lock failure does not mean that any disk corruption has occurred or
that any data has been lost. However, it does indicate that there is a greate'r potential
for disk corruption or data loss should the disk media be prematurely removed or a
system crash occur.

7.4.3 Determining Size of Buffers

This parameter should take one of these values:

• A value of one sector is appropriate if your application's data access is totally
random or if your memory is extremely limited. Neither of these conditions
apply for most applications.

• A value equal to one track is usually best because the disk hardware can very
quickly access an entire track. If memory is limited or data access is somewhat
random, you can choose a number that divides evenly into the track size (for
example, three sectors for a diskette with nine-sector tracks).

• If you have a multiple-head disk drive and are transferring fairly large amounts
of data, a value that is a multiple of the track size might be appropriate. This is
because once the disk head is at a given cylinder, it can quickly access all the
tracks in that cylinder.

The above guidelines provide a starting point for determining buffer size. The final
value, however, depends on your disk device and application. You may need to
experiment before you arrive at the correct value.

7.5 Using the Line Editor Device Manager

7-8

The line Editor Device Manager is designed to be mounted on top of an IFX terminal
device driver/manager. It adds features such as buffering, echoing, and line-editing. It
also simplifies the implementation of the driver.

May26,1989

IFX Device Driver Developer's Guide Installing IFX Devices

You can install the line Editor Device Manager on top of either IFX's Circular Buffer
Manager or IFX's console device driver.

7.5.1 Mounting the Une Editor Device Manager

Mount a line editor device using the ifx_mount call:

'define name "console:"
'define physicalname "consraw:"
#define manager "LINEEOIT"
#define line_length 80

status - ifx_mount (name , physicalname, manager, line_length);

The name parameter is the name your program uses to refer to the Line Editor Device
Manager. The rawname parameter is the name you used to install IFX's Circular
Buffer Manager or console device.

The manager parameter is the name of IFX's standard line Editor Device Manager
(the string LlNEEDIT). The IineJength parameter is an integer value that gives the
maximum line length in bytes.

7.6 Using the Circular Buffer Device Manager

The Circular Buffer Device Manager handles the circular buffer used by a terminal
device driver. Its installation creates a physical device that can also serve as the
underlying device for the line editor device manager.

The Circular Buffer Device Manager works differently than most device drivers and
managers. Instead of being installed on top of a device driver, it is installed together
with a device driver. The device driver does not need to be previously installed, for the
installation uses the driver address rather than a logical name assigned at installation.

May 26, 1989

I NOTE I
The Circular Buffer Device Manager cannot be installed with
IFX's console device driver. The console driver is a special
device that provides its own circular buffering. Both can
coexist in the same system, but they cannot be installed to
gether as one unit.

7-9

Installing IFX Devices IFX Device Driver Developer's Guide

The Circular Buffer Device Manager cannot be shared with RThcope. If you want to
share a serial port between IFX and RTscope, and you also have several other serial
ports, we recommend that you make the first device a console device and the others
circular buffer devices. Then simply install RThcope in the one channel configuration.
Consult your RThcope user's guide for more information.

7.6.1 Installing the Circular Buffer Device Manager

7-10

Install the Circular Buffer Device Manager with the ifx_install call (not the ifx_mount
caU). Note that ifx_install is used differently in this case than it is for other kinds of
device driver installation.

#define name "serial:"
#define manager "CIRCULAR"
#define drive "MYDRIVER"
#define in_buf_size 64
#define out_buf_size 64

status - ifx_install(physicalname, manager,
driver, in_buf_size, out_buf_size);

The physical name parameter is the name your program uses to refer to the device.
The circular _mgr parameter is the name of IFX's st~ndard Circular Buffer Device
Manager (the string CIRCULAR). The driver parameter is the name of the terminal
device driver (the string MYDRIVER).

The in_but_size parameter is an integer value that gives the size (in bytes) of the type
ahead buffer used for input from the device. The out_butsize parameter is an integer
value that gives the size (in bytes) of the buffer used for output to the device. Both the
input and output buffer sizes must be a power of 2. The buffers can hold one fewer
character than the size specified. The default size is 64 when you specify a zero
parameter.

Once you have successfully called ifx_init, you can issue other IFX calls. You must
install an IFX device before you can make any 1/0 calls on that device. Because
interrupts are disabled before the vrtx..,go call and enabled after the vrtx..,go call, you
must install some devices either before or after vrtx..,go:

• Install devices that can generate unsolicited interrupts before calling vrtx..,go. This
ensures that the device-handling interface is properly set up before vrtx..,go
enables interrupts.

May 26,1989

IFX Device Driver Developer's Guide Installing IFX Devices

• Install (or mount) device drivers and managers that might pend during
installation after vrtx-Bo. In particular, you must mount MS-DOS volumes after
vrtx;. A pend that occurs while interrupts are disabled can result in a system
hang .

• Install devices that meet neither of the above conditions either before or after
vrtx;.

7.6.2 Step-by-Step Summary

A typical program that uses IFX does the following:

1. Initializes VRTX32 with the vrtx_init call

2. Initializes IFX with the ifx_init call

3. Installs devices that generate interrupts that cannot be disabled with the
ifx_install call

4. Sets multitasking in action with VRTX32's vrtx-B0 call

5. Installs remaining devices with the ifx_install call, and mounts device managers
with the ifx_mount call

6. Performs 110 using the installed devices and mounted managers

If there are no devices to be installed at step 3, it is permissible to call ifx_init between
steps 4 and 5, rather than at step 2.

Refer to Chapter 1 for information on IFX devices and virtual devic~s. Consult your
VRTX32 user's guide for information on the vrtx_init and vrtx-B0 calls.

7.7 Standard Device Drivers

IFX comes packaged with several standard device drivers that you can install using
if.x_install. Ready Systems also provides sample device drivers on your shipping media
to use as templates in developing your own device drivers.

Each standard device driver is reentrant and position-independent, and uses no
read/write memory other than IFX workspace. Standard device drivers are also
available in source code format.

Below is a list of the standard device drivers currently available. The list gives the
standard device name, followed by the device description . .

May 26, 1989 7-11

Installing IFX Devices IFX Device Driver Developer's Guide

NULL Null device

CONSOLE Console terminal using VRTX32 character 1/0

PIPE Pipe (named first-in-first-out queue)

SOFTCLCK Software time-of-day clock using VRTX32 timer interrupts

BYfERAM Byte-oriented RAM disk (used without the disk buffer cache
manager)

SECI'ORAM Sector-oriented RAM disk (can be used with the disk buffer
cache manager)

Many of these device drivers can be installed several times using different device names
and installation parameters. The following sections describe each of these devices and
how to install them.

IFX/86 is delivered in several files. The main file includes the IFX dispatcher and
managers. Each of the drivers above is delivered separately. In order to provide
position independence, their actual address should be passed to IFX in RUN-TIME.
Therefore, for all drivers you should give the logical name by using the ifx_driver call.

7.7.1 NULL

7-12

Description

The null device is useful as a sink or empty source for data during testing. Writes to the
null device are ignored, and reads return an immediate IFXEEOF error code.

Installation

Install the null device this way:

#define name "null:"
#define driver "NULL"

status - ifx_install(name, driver);

The name parameter is the name your program uses to refer to the device. The
null_driver parameter is the name of IFX's standard null device driver (the string
NULL).

The null device can be installed more than once under different names.

May26,1989

IFX Device Driver Developer's Guide Installing IFX Devices

7.7.2 CONSOLE

Description

The console terminal device translates ifx_read and ifx_write calls into VRTX32 sCJJutc
and sCJetc calls. You must provide the VRTX32 interrupt handlers that issue the
uCrxchr and uCtxrdy calls. This device is handy for bringing up IFX on a system that
. previously used VRTX32 alone.

This device does not implement any line-editing functions. For that, you' must mount
IFX's line editor manager on top of this device (refer to Section 7.5).

The console terminal device uses a server task that handles XON/XOFF protocol. The
server task has task ID zero and the same priority as the task that installs the console
device with ifx_install.

Installation

Install the console device as follows:

'define name "consraw:"
'define driver "CONSOLE"

status c ifx_install(name. driver);

The name parameter is the name your program uses to refer to the device. The
console_driver parameter is the name of IFX's standard console device driver (the
string CONSOLE).

You should install the console terminal device only under one name.

The console terminal device can be shared with RTscope, if desired, since it actually
uses VRTX32 to do the work. To share the console device with RTscope, simply install
RThcope in the one channel configuration. Consult your RTscope user's guide for more
information.

7.7.3 PIPE

Description

This device is a first-in-first-out queue, similar to the UNIX pipe except that it has a
name. One task can open the pipe for writing, and another task for reading. If more
than one task opens it for writing (or reading), then the tasks intersperse data.
However, each read or write operation is atomic; that is, all the data from a given
operation is transferred before the data from another operation is transferred.

May 26, 1989 7-13

Installing IFX Devices IFX Device Driver Developer's Guide

Associated with each pipe is a buffer containing data that has been written by one task,
but has not yet been read. The larger this buffer, the fewer the number of task switches
that occur.

When you open a descriptor to a pipe device for writing, then write some data and
close the descriptor, a special end-of-file mark is placed into the stream. The task
reading from the pipe receives the error code IFXEEOF when it tries to read the last
data from the buffer before the end-of-file mark. Further reads succeed and return
more data.

Installation

This example installs a pipe device with a buffer of 1024 bytes and up to eight
end-of-file marks. The buffer is allocated from IFX workspace.

'define name "pipe:"
'define driver "PIPE"
'define bufsize 1024
'define eofmarks 8

status - ifx_install(name. driver. bufsize. eofmarks);

The name parameter is the name your program uses to refer to the device .. The driver
parameter is the name of IFX's standard pipe device driver (the string PIPE).

The bufsize parameter is an integer value that gives the pipe buffer size in bytes. The
defa~lt size is 512 when you give a zero parameter. The eofmarks parameter is an
integer value that specifies the number of end-of-file marks allowed. A default value of
16 end-of-file marks is used when you give a zero parameter. Both the pipe and the
end-of-file buffer size must be a power of 2.

The pipe device can be installed more than once, under different names, to create
several pipes.

7.7.4 SOFTCLCK

7-14

Description

IFX files have a time stamp that records the date and time a file was created or last
modified. Many systems have a hardware time-of-day clock that can be used to obtain
the date and time for this purpose.

May26,1989

IFX Device Driver Developer's Guide Installing IFX Devices

If your system does not have a hardware time-of-day clock, but does have a repeating
interrupt that invokes the VRTX32 uCtimer call, then this device driver can maintain
the date and time in software. All you have to do is tell it how many clock ticks there
are per second.

Using the software time-of-day clock requires that you call ifx_stime during system
startup, or else the date and time are initialized to 01/01180 00:00:00.

The software time-of-day clock depends upon the VRTX32 system call SC-Elime, which
returns a count of clock ticks since vrtx-Ko. Every time an application or the volume
manager calls ifx-Elime, the driver calls sC-Elime. It then subtracts the previous time
from the current time. This shows how many clock ticks have passed since the last time
ifx-Elime was called. This difference is converted to seconds, minutes, hours, etc., and it
is added to the clock. There is no server task involved.

Installation

Install the software clock device as follows:

'define name "clock:"
'define driver "SOFTCLCK"
'define ticks 100

status - ifx_install(name. driver. ticks);

The name parameter is the name your program uses to refer to the device. The driver
parameter is the name of IFX's standard software clock device driver (the string
SOFI'CLCK).

The ticks parameter is an integer value that specifies the number of ui_timer interrupts
per second.

The software clock device should be installed only once. Once it is installed, it cannot
be removed.

7.7.5 BYTERAM - SECTORAM

Description

IFX includes two RAM disk drivers:

May 26, 1989

• The BYTERAM driver performs byte-oriented 110 operations, where data
transfers occur as byte strings of any length that do not have to start on a sector
boundary. You must not use the disk buffer cache manager with this RAM disk.

7-15

Installing IFX Devices IFX Device Driver Developer's Guide

7-16

• The SECfORAM driver performs sector-oriented 110 operations, where data
transfer starts at sector boundaries and occurs in blocks that must be a multiple
of the disk sector size. You must mount the disk buffer cache manager on top of
this RAM disk (although you will not realize a performance improvement, since
the RAM disk exists in memol)', as do the disk buffers).

These device drivers emulate a disk drive with 1 cylinder, 1 track, and a specified
number of sectors of fixed size. The data is kept in read/write memol)' rather than on a
real disk. A RAM disk is useful in the initial stages of developing and debugging an
application before the physical disk driver has been written.

Installation

This example installs the byte-oriented RAM disk within the IFX workspace. The RAM
disk has 100 512-byte sectors.

#define sector_size 512
#define total_sectors 100
#define name "ram:"
#define driver "BYTERAM"
#define address (char *) 0

status - if x_install (name, driver, sector_size,
total_sectors, address);

The name parameter is the name your program uses to refer to the device. The driver
parameter is the name of one of IFX's standard RAM disk device drivers. The
sector_size parameter is an integer value that gives the size of each sector in bytes (512
is recommended). The totaLsectors parameter is an integer value that gives the
number of sectors desired.

The address parameter is a pointer value that specifies the starting address of the
RAM disk. A zero address causes the driver to allocate the storage from IFX
workspace. Because IFX workspace is initialized to zero, you cannot keep data on a
RAM disk between installations if you select a zero address. Therefore, always format
a RAM disk when you mount a volume on top of it (or on top of the disk buffer cache,
if you are using a sector RAM disk).

Each RAM disk device can be installed more than once, under different names, to
create several RAM disks.

May 26, 1989

IFX Device Driver Developer's Guide Installing IFX Devices

7.8 MVME320 Disk

Description

The MVME320 disk device driver supports the Motorola MVME320, MVME320A.
MVME320A-l, and MVME320B, and MVME320B-l disk controllers.

Installation

The MVME320 disk device driver should be installed as follows:

'define nameO "diskO:"
'define namel "diskl:"
'define driver "MVME320"
'define unitO 0
'define unit! 1
'define eca (char *) 0
'define cylinders 0

extern int MVME320DeviceDriver();

status - ifx_driver(driver, MVME320DeviceDriver);
status - ifx_install(nameO, driver, unitO, .eca, cylinders);
status - ifx_install(namel, driver, unitl, eca, cylinders);

The name parameter is the name your program uses to refer to the device. The driver
parameter is the name of the device driver (the string MVME320). The unit parameter
consists of two bits. Bits 0 and 1 are the disk drive number and are determined by a
jumper on the disk drive itself.

The eca parameter should either be zero, or the address of an ECA data structure. If
the eca is zero, then the driver will assume an ECAfor a 40-cylinder, 2-head, 9-sector,
5J(-inch floppy disk. Please see your MVME320 hardware manual for information about
the ECA data structure.

The cylinders parameter should be the number of cylinders on the disk. If this
parameter is zero, then a default value of 40 cylinders is used.

If the driver returns status code IFXENOMEMORY when it is installed, the malloe
function can't allocate memory space for the ECA data structure. You should check
your C run-time library malloc_table and make sure you have declared enough memory
blocks.

May 26, 1989 7-17

Appendix A

Example Device Drivers
~READY
SYSTEMS

A.1 Introduction

This appendix contains code fragments that are used to illustrate IFX interaction with
applications, device drivers, and Interrupt Service Routines (ISRs). Although these
examples are accurate for the point they attempt to illustrate, they are not complete
device drivers and should be regarded as such. These examples are not included on
your shipping media.

A.2 Advanced Request Ordering

1* This device driver shows how to process 1/0 requests in any order *1

#include <compiler.h>
#include <vrtxvisi.h>
#include <ifxvisi.h>

#define MAX_REQUESTS 10 1* max. waiting 1/0 requests *1
#define TOO_MANY_REQUESTS OxFF01

1* State of each 1/0 request in queue *1

#define EMPTY 0
#define READY 1
#define ACTIVE 2
#define DONE 3

1* slot is available for use *1
1* 1/0 is ready to be started *1
1* 1/0 is currently in progress *1
1* 1/0 is done *1

1* Parameter list passed to driver for IFXFREADS or IFXFWRITES *1

typedef struct {
long starting_sector;
char *buffer;
long number_of_sectors;
long actual_sectors;

} PLIST;

1* starting sector number *1
1* application data buffer *1
1* desired transfer count *1
1* actual transfer count *1

1* Information about one 1/0 request in queue *1

typedef struct {
int state;
int opcode;

May26,1989

1* see 1/0 states defined above *1
1* IFXFREADS or IFXFWRlTES *1

A-1

Example Device Drivers IFX Device Driver Developer's Guide

A-2

1* parameter list pOinter *1
1* 1/0 error code *1
1* posted to when done *1
1* priority of requesting task *1

PLIST *plist;
int status;
char *mailbox;
int priority;
long count; 1* unique count assigned to request *1

} REQUEST;

1* Device driver entry point *1

int device_driver (opcode, dcb-ptr, plist)
int opcode;
IFXDCB *dcb-ptr;
PLIST *plist;
{

extern REQUEST *insert_request(), *pick-priority();
static REQUEST requests [MAX_REQUESTS] ;
static int sema; 1* used to ensure mutual exclusion *1
static int active-O; 1* whether an 1/0 request is active *1
static long count-OL; 1* number of requests made so far *1
REQUEST *r; 1* current 1/0 request *1
int err, status, info[3]; 1* error codes *1
REQUEST *(*pick)() = pick_priority;
switch (opcode) {
case IFXFINSTALL:

sema - sc_screate(O, O. &err);
for (r = requests; r < &requests [MAX_REQUESTS] ; ++r)

r->state - EMPTY;
1* do other initialization here *1
status = RET_OK;
break;

case IFXFREADS:
case IFXFWRlTES:

sc_spend(sema, OL, &err);
if (active) {

sc_spost(sema, &err);
sc-pend(&r->mailbox, OL, &err);
status - r->status;
r->state - EMPTY;
break;

} else {
r-insert_request(opcode, plist)

for (r = requests; r < &requests[MAX_REQUESTS]; ++r)
if (r->state == EMPTY)

break;
if (r >- &requests[MAX_REQUESTS]) {

sc_spost(sema, &err);
status - TOO_MANY_REQUESTS;
break;

May 26, 1989

IFX Device Driver Developer's Guide

}

}

}
sc_tinquiry(info, 0, &err);
r->count = ++count;
r->priority - info[2];
r->state ... READY;
r->opcode e opcode;
r->plist - plist;
r->mailbox ... 0;
active ... 1;
sc_spost(sema, &err);
status - do io(opcode, plist);
for (;;) { -

}

sc_spend(sema, OL, &err);
r ... (*pick) (requests, MAX_REQUESTS);
r->state - ACTIVE;
sc_spost(sema, &err);
if (!r) {

}

active ... 0;
break;

r->status ... do_io(r->opcode, r->plist);
r->state - DONE;
SC-post(&r->mailbox. (char *) 1, &err);

break;
case IFXFREMOVE:

sc_sdelete(sema, &err);
status e RET_OK;
break;

}
return status;

Example Device Drivers

1* This function does the real 1/0 and returns a status code *1

int do_io(opcode, plist)
int opcode;
PLIST *plist;
{

return RET_OK;
}

1* Pick request which has the highest task priority *1

REQUEST *pick-priority(requests, max_request)
REQUEST *requests;
int max_request;
{

May 26, 1989 A-3

Example Device Drivers IFX Device Driver Developer's Guide

A-4

}

REQUEST *r, *best_request = 0;
int highest-priority = -I, highest_count = 0;
for (r = requests; r < &requests[max_request]; ++r)

if (r->state -= READY && r->priority >- highest_priority &&

}

r->count > highest_count) {
highest-priority = r->priority;
highest_count = r->count;
best_request = r;

return best_request;

/* Pick request which has been waiting the longest time */

REQUEST *pick_iiio(requests, max_request)
REQUEST *requests;
int max_request;
{

}

REQUEST *r, *best_request = 0;
long highest_count = OL;
for (r - requests; r < &requests [max_request] ; ++r)

if (r->state -= READY && r->count > highest_count), {
highest_count = r->count;
best_request = r;

}
return best_request;

/* Pick request which has the shortest seek time */

REQUEST *pick_shortest_seek(requests, max_request)
REQUEST *requests;
int max_request;
{

static long current_sector = OL;
REQUEST -r, *best_request = 0;
long distance, shortest_distance = Ox7FFFFFFFL;
for (r - requests; r < &requests[max~requestl; ++r)

if (r->state -= READY) {
distance - labs(r->plist->starting_sector - current_sector);
if (distance < shortest_distance) {

shortest_distance = distance;
best_request = r;

}
}

if (best_request)
current_sector = best_request->plist->starting_sector +

best_request->plist->actual_sectors;

May 26, 1989

IFX Device Driver Developer's Guide Example Device Drivers

return best_request;
}

/* Pick request which has the smallest transfer count */

REQUEST *pick_smallest_transfer(requests, max_request)
REQUEST *requests;
int max_request;
{

REQUEST *r, *best_request = 0;
long smallest_transfer = -lL;
for (r c requests; r < &requests[max_request]; ++r)

if (r->state -- READY && r->plist->actual_sectors < smallest_transfer)
{

}

}

smallest_transfer - r->plist->actual_sectors;
best_request c r;

return best_request;

/* Pick request according to the elevator algorithm */

typedef enum {up, DOWN} DIRECTION;

REQUEST ·pick_elevator(requests, max_request)
REQUEST .requests;
int max_request;
{ .

static long current_sector - OL;
static DIRECTION current_direction = UP;
REQUEST *r, .best_up - 0, *best_down - 0, *best_request 0;
long shortest_up - Ox7FFFFFFFL, largest_down - -lL;
for (r - requests; r < &requests [max_request] ; ++r)

if (r->state -- READY) {

}

if (r->plist->starting_sector >= current_sector) {
if (r->plist->starting_sector < shortest_up) {

shortest_up = r->plist->starting_sector;
best_up - r;

}
} else {

}

if (r->plist->starting_sector > largest_down) {
largest_down = r->plist->starting_sector;
best_down = r;

}

best_request - 0;
switch (current_direction) {
case UP:

May26,l989 A-5

Example Device Drivers IFX Device Driver Developer's Guide

}

A-6

if (best_up)
best_request - best_up;

else if (best_down) {
current_direction = DOWN;
best_request a best_down;

}
break;

case DOWN:

}

if (best_down)
best_request - best_down;

else if (best_up) {
current_direction = UP;
best_request - best_up;

}
break;

if (best_request)
current_sector = best_request->plist->starting_sector;

return best_request;

May 26, 1989

Appendix B ~READY
SYSTEMS Sample 68000 Device Drivers

B.1 Introduction

This appendix contains source code for 68000 sample device drivers that are included
on your IFX shipping media. You can use these sample device drivers as a template for
writing a custom driver for your device. These drivers have been tested and are fully
functional.

The following files, which are written in C, are included:

• sectoram.c and ifxsram.h together make up the sector-oriented RAM disk driver.
They illustrate how a disk device driver should interact with IFX.

• mm58274.c is a device driver for the MM58274 clock device.

• mvme133.c includes the device driver for the MVME133 board serial lID chip.
This driver handles installation, ifx_ioctl operations, and device removal.

• mvme133i.a68 is a 68000 assembly language file that contains the ISRs and
device-initialization code. It illustrates ISR and device-initialization format, so
you can use it as a template even if you are using a processor other than the

. 68000.

• mvme320.c, mvme320i.a68, and ifxmv320.h files make up a device driver for the
MVME320 disk controller. They illustrate how to write a driver for a 5u-inch
floppy disk.

• rj3500.c and rj3500i.a68 files together make up a device driver for the Ciprico
Rim-Fire 3500 and 3510 SCSI disk controllers. They illustrate how to write a
driver for a SCSI controller.

IFX also includes additional files for external routines, such as LockSemaphore,
UnlockSemaphore, AllocateMemory2, and FreeMemory2.

May 26, 1989 8-1

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

B.2 sectoram.c

8-2

/* IFX device driver for sector-oriented RAM disk */

Ninclude <compiler.h>
Ninclude <vrtxvisi.h>
#include <ifxvisi.h>
#include <ifxsram.h>

/* Define some helpful macros */

Ndefine Nil 0
Ndefine CB char

Nifdef 1386
Ndefine FAR far -
Ndefine FILl short int fillerl;
Nelse
Ndefine FAR
Ndefine FILl
Nendif

/* Parameter list */

typedef union {
struct {

unsigned int sector_size;
long total_sectors;
char *RAM_address;

} ul;
struct {

long starting_sector;
char *buffer;
FILl
long number_oi_sectors;
long *actual_count;

} u2;
struct {

int opcode;
int cylinder;
int track;

} u3;
struct {

int opcode;
IFXGEOMETRY *geometry;

} u4;
} PL;

/* Externals */

extern CB *AllocateMemory2();
extern void bcopy(), FreeMemory2();

May26,1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

/*+ SectorRamDiskDriver

Description:

This sector-oriented RAM disk driver is at the same logical level as a real
disk driver. as opposed to the byte-oriented RAM disk driver. which is at
the same level as the Disk buffer Cache. The difference is that this driver
accepts IFXFREADS and IFXFWRITES operations while the byte-oriented RAM
disk driver accepts IFXFREADP and IFXFWRITEP operations.

Input

-*/

opcode I FXFREADS
IFXFWRITES
IFXFINSTALL
I FXFREMOVE

dcb - Pointer to the IFXDCB structure
pI - Pointer to a parameter list containing:

starting_sector
buffer

number_of_sectors
actual_count

First sector where operation begins
Pointer to a buffer (input buffer for
Read. output buffer for Write)
Number of sectors ·to read or write
Actual number of sectors transferred

FAR int SectorRamDiskDriver(opcode. deb. pI)
int opcode;
IFXDCB *dcb;
PL *pl;

{
int err;
SectorRamDiskDCB *r;
long total_bytes;
long num_bytes;
long offset;
IFXGEOMETRY *dc;

/* Perform operation according to opcode */

r - (SectorRamDiskDCB *) dcb->dt;
switch (opcode) {

May 26, 1989 B-3

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

8-4

/* Install device */

case IFXFINSTALL:
r - (SectorRamDiskDCB *) AllocateMemory2(

sizeof(SectorRamDiskDCB»;
if (r Nil)

return IFXENOMEMORY;
r->sector_size .. pl->ul.sector_size;
r->total_sectors c pl->ul.total_sectors;
r->in_workspace .. pl->ul.RAM_address -= Nil;
if (r->in_workspace) {

total_bytes = r->sector_size * r->total_sectors;
r->RAM_address .. (char *) AllocateMemory2(

(unsigned int) total_bytes);
if (r->RAM_address == Nil) {

}
} else

FreeMemory2«CB *) r, sizeof(SectorRamDiskDCB»;
return IFXENOMEMORY;

r->RAM_address = pl->ul.RAM_address;
dcb->device_type .. IFXDDISK;
dcb->dt - (CB *) r;
err ... RET_OK;
break;

/* Read sectors */

case IFXFREADS:
if (pl->u2.starting_sector < OL I I

pl->u2.starting_sector > r->total_sectors)
err .. IFXEBADPOSN;

else if (pl->u2.starting_sector + pl->u2.number_of_sectors >
r->total_sectors)

err .. IFXEBADXFERCT:
else {

}

offset - r->sector_size * pl~>u2.starting_sector;
num_bytes ... r->sector_size * pl->u2.number_of_sectors;
bcopy(&r->RAM_address[offsetl, pl->u2.buffer,

(unsigned int) num_bytes);
*pl->u2.actual_count .. pl->u2.number_of_sectors;
err ... RET_OK;

break;

May 26, 1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

1* write sectors *1

case IFXFWRlTES:
if (pl->u2.starting_sector < OL I I

pl->u2.starting_sector > r->total_sectors)
err - I FXEBADPOSN ;

else if (pl->u2.starting_sector + pl->u2.number_of_sectors >
r->total_sectors)

err - IFXEBADXFERCT;
else {

}

offset c r->sector_size * pl->u2.starting_sector;
num_bytes - r->sector_size * pl->u2.number_of_sectors;
bcopy(pl->u2.buffer, &r->RAM_address[offsetJ,

(unsigned int) num_bytes);
*pl->u2.actual_count = pl->u2.number_of_sectors;
err - RET_OK;

break;

1* Remove device *1

case IFXFREMOVE:
if (r->in_workspace)

FreeMemory2«CB *) r->RAM_address,
(unsigned int) (r->sector_size * r->total_sectors»;

FreeMemory2«CB *) r, sizeof(SectorRamDiskDCB»;
err - RET_OK;
break;

1* I/O control operation *1

case IFXFIOCTL:

May 26, 1989

switch (pl->u3.opcode) {

1* Get disk geometry *1

case IFXOCGEOM:
dc - pl->u4.geometry;
dc->sector_size - r->sector_size;
dc->sectors-per_track - r->total_sectors;
dc->tracks-per_cylinder - 1;
dc->total_cylinders = 1;
dc->total_sectors c r->total_sectors;
err - RET_OK;
break;

8-5

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

}

/* Format track */

case IFXOFMTTRK:
/* ignore pl->u3.cylinder and pl->u3.track */
err - RET_OK;
break;

/* Unimplemented control operation */

default:

}

err ~ IFXENOTIMP;
break;

break;

/* Unimplemented function code */

default:

}

err - IFXENOTIMP;
break;

/* Return status code to IFX */

return err;

B.3 ifxsram.h

8-6

/* Sector-oriented RAM disk device control block */

typedef struct {
char *RAM_address; /* pointer to data */
long total_sectors; /* total number of sectors on disk */
unsigned short sector_size; /* sector size in bytes */
unsigned short in_workspace;/* whether dat~ is located in workspace */
long reserved;

} SectorRamDiskDCB;

May26,1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

8.4 mmS8274.c

/* IFX device driver for MM58274 time-of-day clock */

#include <compiler.h>
#include <vrtxvisi.h>
#include <ifxvisi.h>

/* Define some helpful macros */

#define Nil 0
char #define CB

#define B(x) base[(x) «shift] /* Access all or every other odd byte */

/* Parameter list */

typedef union {
struct {

IFXTlME * time ;
} ul;
struct {

unsigned char *base;
} u2;

} PL;

/* MM58274 device control block */

typedef struct {
/* used to ensure mutual exclusion */
/* base address of M58274 device */

IFXSEMA sema;
unsigned char *base;
unsigned char shift;
char reserved[3);

/* shift count needed to access each byte */

} MM58274DCB;

/* Externals */

extern void LockSemaphore(), UnlockSemaphore(), FreeMemory2();
extern CB *AllocateMemory2(); .

/*+ MM58274DeviceDriver

Description:

This is the clock device driver for the MM58274 time-oi-day
clock. This driver was especially written for the MM58274
on the MVMEl17 and MVME133 boards, but it should be easy to
make it work 'in other systems.

May 26, 1989
•
•

B-7

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

8-8

Installation:

To install this driver on a MVMEl17 system:

status - ifx_install("CLOCK:", "MM58274" , OxF4COOIL);

To install this driver on a MVME133 system:

status - ifx_install("CLOCK:", "MM58274", ·OxFBOOOOL);

-*/

int MM58274DeviceDriver(opcode, dcb-ptr, pI)
int opcode;
IFXDCB *dcb-ptr;
PL *pl;

{
MM58274DCB *xs;
IFXTlME *dt;
into dummy, err;
unsigned char *base, shift;

/.* If opcode is IFXFINSTALL, then get base address .. and shift count */

if (opcode -- IFXFINSTALL) {

}

xs - (MM58274DCB *) AllocateMemory2(sizeof(MM58274DCB»;
if (xs -- Nil)

return IFXENOMEMORY;
xs->base - pl->u2.base;
xs->shift - (unsigned char) pl->u2.base & 1;
dcb-ptr->dt - (CB *) xs;
dcb-ptr->device_type - IFXDCLOCK;

/* Get a Quick copy of values in the device control block */

xs - (MM58274DCB *) dcb-ptr->dt;
base - xs->base; .
shift - xs->shift;

/* Dispatch based on opcode */

switch (opcode) {

/* Install device */

case IFXFINSTALL:
B(O) - 3;
B(15) - 0;
B(O) - 1;
err - RET_OK;
break;

May26,1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

May26,1989

/* Remove device */

case IFXFREMOVE:
FreeMemory2«CB *) XS, sizeot(MM58274DCB»;
err = RET_OK;
break;

/* Get current time-ot-day */

case IFXFGTlME:
dt .. pl->ul.time;
LockSemaphore(&xs->sema);
dummy - B(O);
do {

dt->second .. (B(3) & 7)*10 + (B(2) & 15);
dt->minute - (B(5) & 7)*10 + (B(4) & 15);
dt->hour - (B(7) & 3)*10 + (B(6) & 15);
dt->day = (B(9) & 3)*10 + (B(8) & 15);
dt->month - (B(ll) & 1)*10 + (B(10) & 15);
dt->year - (B(13) & 15)*10 + (B(12) & 15);
it (dt->year < 80)

dt->year +- 100;.
dummy .. B (0) ;

} while (dummy & 8);
UnlockSemaphore(&Xs->sema);
err .. RET_OK;
break;

/* Get current time-ot-day */

case IFXFSTlME:
dt .. pl->u1.time;
LockSemaphore(&xs->sema);
B(O) .. 5;
B(15) .. 1;
B(2) .. dt->second ~ 10;
B(3) - dt->second / 10;
B(4) - dt->minute ~ 10;
B(5) .. dt->minute / 10;
B(6) - dt->hour ~ 10;
B(7) .. dt->hour / 10;
B(8) .. dt->day ~ 10;
B(9) .. dt->day / 10;
B(10) - dt->month ~ 10;
B(ll) .. dt->month / 10;
B(12) - dt->year ~ 10;
B(13) - (dt->year / 10) ~ 10;
B(14) .. 1;
B(15) - «dt->year & 3) « 2) + 1:

8-9

Sample 68000 Device Drivers

}

8-10

B(O) - 1;
UnlockSemaphore(&xs->sema);
err = RET_OK;
break;

/* Unimplemented function code */

default:

}

err - IFXENOTIMP;
break;

return err;

IFX Device Driver Developer's Guide

May26,1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

8.5 mvme133.c

/* Serial device driver for AmZ8530 on the MVME133 board */

'include <compiler.h>
'include <vrtxvisi.h>
'include <ifxvisi.h>

/* Externals */

extern void AmZ8530InitializeA(), AmZ8530TransmitDriverA();
extern char **GetVBR();

'define TBCB_PTRA Ox54

/* Parameter list */

typedef union {
struct {

int pl;
int p2;

} u35;
} PL;

/* Device driver for channel A */

int AmZ8530DeviceDriverA(opcode, dcb_ptr, pI)
int opcode;
IFXDCB *dcb-ptr;
PL *pl;

{

}

May26,1989

int err;

switch (opcode) {
case IFXFINSTALL:

(GetVBR(»[TBCB_PTRA] - dcb-ptr->dt;
AmZ8530InitializeA();
err - RET_OK;
break;

case IFXFIOCTL:
if (pl->u35.pl -- IFXOTXRDY) {

AmZ8530TransmitDriverA(pl->u35.p2);
err - RET_OK;
break;

}
default:

}

err - IFXENOTIMP;
break;

return err;

8-11

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

B.6 mvme133/.a68

8-12

* Serial device driver for AmZ8530 on MVME133 board

SID

INCLUDE 'vrtxvisi.inc'
INCLUDE 'ifxvisi.inc'

XDEF AmZ8530InitializeA
XDEF AmZ8530TransmitDriverA
XDEF AmZ8530InterruptServiceRoutine
XREF AmZ8530DeviceDriverA

EQU $FAOOOO * Base address of Z8530
SIOA_CNTRL EQU SIO * Address of channel A control byte
SIOA_DATA EQU SIO+1 * Address of channel A data byte
SIOB_CNTRL EQU SID+2 * Address of channel B control byte
SlOB_DATA EQU SIO+3 * Address of channel B
SIO_EXC EQU $50 * Exception vector for
SIO_VEC EQU $140
TBCB_PTRA EQU $54*4

SECTION 0

AmZ8530:
BRA AmZ8530DeviceDriverA

* Zilog 8530 Serial I/O Controller Initialization
* Motorola MVME 133

* Initialize channel A

AmZ8530InitializeA:

OC.W $4E7A,$8801 * MOVEC.L VBR,AO
LEA AmZ8530InterruptServiceRoutine(PC),A1

data byte
SIO Z8530

MOVE.L A1,SIO_VEC(AO) * Set up interrupt vectors

MOVE.B #$OO,SIOB_CNTRL * Reset pointe.r to WRO

MOVE.B #$09,SIOB_CNTRL * Master Interrupt Control Register
MOVE.B
NOP
NOP
NOP
NOP
NOP

MOVE.S
MOVE.B

MOVE.B

#$C8,SIOB_CNTRL

#$02 , SIOS_CNTRL
#SIO_EXC,SIOB_CNTRL

* Force hardware reset; Select vis
*-Delay #4 to process reset
* Delay #3 to process reset
* Delay #2 to process reset
* Delay #1 to process reset
* Delay #0 to process reset

* Interrupt Vector Register
* SIO Interrupt Vector Number/Digit

* Reset pointer to WRO

May 26, 1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

MOVE.B IS09,SIOA_CNTRL • Master Interrupt Control Register
MOVE.B I$C8, SIOA_CNTRL • Force hardware reset; Select vis
NOP ·-Delay 14 to process reset
NOP • Delay #3 to process reset
NOP • Delay #2 to process reset
NOP • Delay #1 to process reset
NOP • Delay #0 to process reset

• Interrupt Vector Register MOVE.B
MOVE.B

#S02,SIOA_CNTRL
#SIO_EXC,SIOA_CNTRL • SIO Interrupt Vector Number/Digit

MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B

RTS

1S0B,SIOA_CNTRL
1$50, SIOA_CNTRL
1S0C,SIOA_CNTRL
#$02,SIOA_CNTRL
#$OD, SIOA_CNTRL
#SOO,SIOA_CNTRL
#$OE,SIOA_CNTRL
I$Ol,SIOA_CNTRL
#S04,SIOA_CNTRL
#S44,SIOA_CNTRL
#$03,SIOA_CNTRL
#$Cl,SIOA_CNTRL
#SOF,SIOA_CNTRL
#SOO,SIOA_CNTRL
#$05,SIOA_CNTRL
#SEA, SIOA_CNTRL
#SOl,SIOA_CNTRL
#$12, SIOA_CNTRL

• Clock Mode Control Register
• Use Baud Rate for Rx/Tx clocks
• Lower byte Baud Rate Time Constant
• LSB for baud 9600
• Upper byte Baud Rate Time Constant
* MSB for baud 9600
• Digital Phase-Locked Loop Command
• Enable baud,rate generator
* Tx/Rx Misc. Parameters and modes
* Clock x16; 1 stop bit; no parity
• Receiver parameters and control
• 8 bits per character; Rx enable
* External/Status Interrupt Control
* Disable all External/Status ints
• Transmitter parameters and control
• 8 bit/char; Tx Enable; DTR, RTS
• Tx/Rx Interrupt and Data Transfer,
* Poll or Int mode; enable Rx, Tx

• Zilog 8530 Interrupt Service Routine for MVME133

• First the interrupt must be identified as a Rx or a Tx.
• If neither is found, the spurious interrupt is ignored.
• The Transmitter buffer will be checked follwing a Rx interrupt.

AmZ8530InterruptServiceRoutine:

MOVE.L
MOVEM.L
MOVE.B
MOVE.B

• Check for

BTST
BNE.S
BTST
BNE.S

May 26, 1989

DO,-(SP)
DI-D2/AO-Al,-(SP)
#3,SIOB_CNTRL
SIOB_CNTRL,D2

a Rx character

112,D2
SIO_RX
I1,D2
SIO_TX

and

• Preserve DO; Restored by UI_EXIT
* Preserve 01 and 02
• Reset Port Pointer to status reg
* Load the SIO status register into

then for an empty Tx Buffer

• Check Rx character available bit
* If set, Rx Character
• Check Tx Buffer empty bit
* If set, Tx Character

02

8-13

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

8-14

* Assume spurious interrupt and hope for the best

MOVEM.L (SP)+,AO-AI/DI-D2 * Restore registers
MOVE.L (SP)+,DO
RTE * Return from interrupt

$4E7A,$880I * MOVEC.L VBR,AO
MOVEA.L TBCB_PTRA(AO),AO * AO should contain the TBCS address
MOVEA.L IFXSCBtransmit_ready(AO) ,AI
JSR (AI)
TST.L DO
BEQ.S SIO_TXCHAR
MOVE.B #$28, SIOA_CNTRL
BRA.S SIO_RTN

SIO_TXCHAR:
MOVE.B DI,SIOA_DATA
BRA.S SIO_RTN

SIO_RX:
MOVEQ.L #$7F,DI

*Check if lOS discovered a character
* Transmit character if present
* Clear Tx Interrupt for channel

* If char is present, output it
* Return from SIO Routine

* Mask out msb to get Ascii ~ange
AND.B SIOA_DATA,DI * Read the character from port
DC.W $4E7A,$880I * MOVEC.L VBR,AO
MOVEA.L TBCB_PTRA(AO),AO * AO should contain the TBCB address
MOVEA.L IFXSCBreceive_character(AO),AI
JSR (AI)

SIO_RTN
MOVE.B #$38,SIOB_CNTRL
MOVEM.L (SP)+,DI/D2/AO/AI
.MOVE.L #UIFEXIT,DO
TRAP #0

* Transmitter driver routine

AmZ8530TransmitDriverA:
MOVE.B 7(SP),SIOA_DATA
RTS

END

* Signal End of Interrupt for channel
* Restore registers
* Load the UI_EXIT function code
* Announce end of interrupt

* output character to port

May26,1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

B.7 mvme320.c

/* $Header: mvme320.c,v 1.4 89/0~/19 16:49:05 glenn Exp $ */

/* IFX device driver for MVME320 disk controller */

'include <compiler.h>
'include <vrtxvisi.h>
'include <ifxvisi.h>
#include <ifxmv320.h>

/* Define some helpful macros */

#define Nil 0
#define CB char

/* Parameter list */

typedef union {
struct {

int drive;
ECA *eca;
int totalCylinders;

} ul;
struct {

long starting_sector;
char *buffer;
long number_of_sectors;
long *actual_count;

} u2;
struct {

int opcode;
int cylinder;
int track;

} u3;
struct {

int opcode;
IFXGEOMETRY *geometry;

} u4;
} PL;

/* Externals */

extern void MVME320_InterruptServiceRoutine(), FreeMemory2(),
LockSemaphore(), UnlockSemaphore();

extern unsigned long MVME320_0ffset;
extern unsigned char *MVME320_CSR;
extern unsigned short MVME320_InterruptVector;
extern CB ·*GetVBR(), *AllocateMemory2();

/. Default ECA for floppy disks */

May 26, 1989 8-15

Sample 68000 Device Drivers

ECA MVME320_DefaultECA - {

} ;

0, /* co~and_code */
0, /* main_status */
0, /* extended_status */
10, /* maximum_retries */
0, /* actual_retries */
0, /* dma_type */
0, /* command_option */
0, /* buffer_address */
0, /* buffer_length */
0,
0,
0,
0,

/* actual_count */
/* cylinder */
/* surface */
/* sector */

0, /*
{O,O,O,O,O}./*

current-position */
reservedl */
pre_index_gap */
post_index_gap */
sync_byte_count */

Ox50, /*
Ox32 , /*
OxOC, /*
Ox16,
Ox36 ,
Ox03,
Ox02,
OxE5,
{O,O,O},
Ox05,
Ox02,
Ox09,
OxlS,
Ox46 ,
Ox46 ,
0,
0,
Ox2S,
Ox2S,
{O,O,O},
{O,O,O},
0,
{O,O,O},
0,
0,
o

/* post_id_gap */
/* post_data_gap */
/* address_mark_count */
/* sector_length_code */
/* fill_byte * /
/* reserved2 */
/* drive_type */
/* number_of_surfaces */
/* sectors_per_track */
/* stepping_rate */
/* head_settling_time */
/* head_load_time */
/* seek_type */
/* phase_count */
/* low_WTite_current_track */
/* precompensation_track */
/* ecc_remainder */
/* append_ecc_remainder */
/* reserved3 */
/* working_area */
/* reserved4 */
/* mailbox * /
/* reserved5 */

IFX Device Driver Developer's Guide

/* Initialize the ECA table and controller for all drives (call once only) */

int MVME320_Initialize()

8-16 May26,1989

IFX Device Driv~r Developer's Guide Sample 68000 Device Drivers

{

•

}

•
ECATable *ecat;.
unsigned long eca_ul;
unsigned char *csr;
int err;

/* Allocate memory for ECA table and clear it out */

ecat - (ECATable *) AllocateMemory2(sizeof(ECATable»;
if (ecat -- Nil)

return IFXENOMEMORY;

/* Put the ECA table pointer into controller */

eca_ul - «unsigned long) ecat + MVME320_0ffset) » 1;
csr - MVME320_CSR;
csr[l] - eca_ul;
csr[3] - eca_ul » 8;
csr[5] - eca_ul » 16;
csr[7] - eca_ul » 24;

/* Set up interrupt vector register */

csr[9] - MVME320_InterruptVector;

/* Make entry in exception vector table for interrupt handler */

(GetVBR(»[MVME320_InterruptVector] =
(CB *) MVME320_InterruptServiceRoutine;

/* Compute address of ECA table and return pointer tD it */

ECATable *MVME320_GetECATable()

{

}

May 26, 1989

unsigned long eca_ul;
unsigned char *csr;

csr - MVME320_CSR;
eca_ul - (unsigned long) csr[l] « 1;
eca_ul 1- (unsigned long) csr[3] « 9;
eca_ul 1- (unsigned long) csr[5] « 17;
eca_ul 1- (unsigned long) csr[7] « 25;
eca_ul -- MVME320_0ffset;

return (ECATable *) eca_ul;

8-17

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

..
int MVME320_InstallDevice(ddcb, eca, initial_eca, totalCylinders)
MVME320DiskDCB *ddcb;
ECA *eca, *initial_eca;
int totalCylinders;

{

}

int drive;

drive m ddcb->drive;
if (initial_eca _c Nil)

initial_eca ~ &MVME320_DefaultECA;
if (totalCylinders -- 0)

totalCylinders = 40;

/* Set up ECA */

*eca c *initial_eca;

/* Set up MVME320DiskDCB */

ddcb->sectorSize - 128 « eca->sector_length_code;
ddcb->sectorsPerTrack = eca->sectors_per_track;
ddcb->tracksPerCylinder = eca->number_of_surfaces;
ddcb->totalCylinders ~ totalCylinders;
ddcb->totalSectors - ddcb->totalCylinders * ddcb->tracksPerCylinder *

ddcb->sectorsPerTrack;

/* all done * /

int MVME320_0peration(ddcb .. eca)
MVME320DiskDCB *ddcb;
ECA *eca;

{
int err, mask;
unsigned char *csr;

mask - OxlO « ddcb->drive;
eca->main_status = OxFF;
eca->extended_status = 0;
eca->phase_count - 0;
eca->mailbox - Nil;
csr = MVME320_CSR;
csr[13] 1= mask;
(void) sc-pend(&eca->mailbox, SOOL, &err);
if (err !- 0) {

csr[13] &- -mask;

8-18 May 26, 1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

}

(void) sc-pend(&eca->mailbox, OL, &err);
}
if (eca->main_status -- 0)

err .. RET_OK;
else if (eca->main_status == 2)

err = IFXEDVNTREADY;
else if (eca->extended_status & Ox0040)

err .. IFXERDONLYM;
else

err ... IFXEIOERR;
return err;

int MVME320_FormatTrack(ddcb, eca, cylinder, track)
MVME320DiskDCB *ddcb;
ECA *eca;
int cylinder, track;

{
unsigned char format_table[5*16];
int sector, drive_type;
unsigned char *p;

drive_type .. eca->drive_type & Ox7F;
eca->command_code .. 7;
eca->buffer_address = (unsigned long) format_table + MVME320_9ffset;
eca->cylinder - cylinder;
eca->surface .. track;
for (sector - 1, P - format_table; sector <= ddcb->sectorsPerTrack;

++sector) {

}

/* drive types 2 and 3 are for hard disk

}

if (drive_type =- 2
*p++ .. cylinder

*p++ ... cylinder;
*p++ - track;
*p++ .. sector;

II drive_type
» 8;

*p++ ... eca->sector_length_code;

return MVME320_Operation(ddcb, eca);

== 3)
*/

int MVME320_ReadWriteSectors(ddcb, eca, functionCode, sectorPosition,
bufferAddress, numberSectors, actualCount)

MVME320DiskDCB *ddcb;
ECA *eca;
int functionCode;
long sectorPosition;
char *bufferAddress;

May 26, 1989 8-19

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

8-20

long numberSectors;
long *actuaICount;

{
int err;
long thisTime, maxSectors;

if (sectorPosition < OL I I sectorPosition > ddcb->totalSectors)
return IFXEBADPOSN;

if (sectorPosition + numberSectors > ddcb->totalSectors)
return IFXEBADXFERCT;

maxSectors = (65536L / ddcb->sectorSize) - lL;
for (*actualCount = OL; *actualCount < numberSectors;

*actualCount += thisTime) {
eca->command_code = functionCode == IFXFWRITES ? 6 : 5;
eca->buffer_address = (unsigned long) bufferAddress + MVME320_0ffset;
eca->cylinder = sectorPosition / (ddeb->seetorsPerTrack *

ddcb->traeksPerCylinder);
eea->surfaee - (seetorPosition / ddeb->seetorsPerTraek) %

}

ddeb->traeksPerCyIinder;
eea->seetor - (seetorPosition % ddeb->seetorsPerTraek) + 1;
thisTime - numberSectors - *aetuaICount;
if (thisTime > maxSeetors)

thisTime = maxSectors;
eca->buffer_Iength = thisTime * ddeb->seetorSize;
err - MVME320_0perationcddeb, eca);
if (err) break;

return err;
}

int MVME320_DeviceDriver(funetionCode, deb, pI)
int functionCode;
IFXDCB *dcb;
PL *pl;

{
MVME320DiskDCB *ddcb;
ECATable *ecat;
ECA *eca;
int drive, err, err2;
IFXGEOMETRY *dc;

/* Handle IFXFDRlVER specially by initializing ECA table */

if (functionCode -= IFXFDRlVER)
return MVME320_Initialize();

/* Get pointer to ECA table */

May 26,1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

May 26, 1989

ecat = MVME320_GetECATable();

/* Handle IFXFRMDRlVER specially by releasing ECA table */

if (functionCode == IFXFRMDRlVER) {

}

FreeMemory2«CB *) ecat, sizeof(ECATable»;
return RET_OK;

/* Don't let any other task use the disk controller */

LockSemaphore(&ecat->mutex);

if (functionCode == IFXFINSTALL) {
drive = pl->ul.drive & 3;
if (drive < ° I I drive> 3)

err .. IFXEBADDRlVE;
else if (ecat->eca_table[drive] != Nil)

err = IFXEDVEXISTS;
else {

}

ddcb - (MVME320DiskDCB *)
AllocateMemory2(sizeof(MVME320DiskDCB»;

if (ddcb -= Nil)
err .. IFXE..;OMEMORY;

else {

}

eca .. (ECA *) AllocateMemory2(sizeof(ECA»;
if (eca == Nil) {

FreeMemory2«CB *) ddcb, sizeof(MVME320DiskDCB»;
err = IFXENOMEMORY;

} else {

}

ecat->eca_table[drive] (ECA *)

«unsigned long) eca + MVME320_0ffset);
ddcb->drive = drive;
dcb->device_type = IFXDDISK;
dcb->dt = (CB *) ddcb;
err - RET_OK;

} else {

}

ddcb .. (MVME320DiskDCB *) dcb->dt;
drive = ddcb->drive;
eca = (ECA *) «unsigned long) ecat->eca_table[drive] -

MVME320_0ffset) ;

if (!err)
switch (functionCode) {

8-21

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

}

8-22

case IFXFINSTALL:
err - MVME320_InstallDevice(ddcb, eca, pl->ul.eca,

pl->ul.totalCylinders);
break;

case IFXFREMOVE:
FreeMemory2«CB *) eca, sizeof(ECA»;
ecat->eca_table[drive] = Nil;
FreeMemory2«CB *) ddcb, sizeof(MVME32QDiskDCB»;
err - RET_OK;
break;

case IFXFREADS:'
case IFXFWRlTES:

err - MVME320_ReadWriteSectors(ddcb, eca, functionCode,
pl->u2.starting_sector, pl->u2.buffer,
pl->u2.number_of_sectors, pl->u2.actual_count>;

break;
case IrxFIOCTL:

switch (pl->u4.opcode) {
case IFXOOGEOM:

dc = pl->u4.geometry;
dc->sector_size - ddcb->sectorSize;
dc->sectors-per_track - ddcb->sectorsPerTrack;
dc->tracks-per_cylinder - ddcb->tracksPerCylinder;
dc->total_cylinders - ddcb->totalCylinders;
dc->total_sectors - ddcb->totalSectors;
err - RET_OK;
break;

case IFXOFMTTRK:
err - MVME320_FormatTrack(ddcb, eca,

pl->u3.cylinder, pl->u3.track);
break; .

default:

}

err - IFXENOTIMP;
break;

break;
default:

}

err - IFXENOTIMP;
break;

/* Allow other users to access the disk controller */

UnlockSemaphore(&ecat->mutex);

return err;

May26,1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

B.8 nnvnne320La68

* Assembly language portion of MVME320 disk device driver

ECALEN EQU $58

INCLUDE vrtxvisi.inc

SECTION 0

XDEF .MVME320
XDEF .MVME320_CSRj .MVME320_0ffset,.MVME320_InterruptVector
XDEF .MVME320_InterruptServiceRoutine
XREF .MVME320_DeviceDriver

.MVME320:
BRA .MVME320_DeviceDriver

.MVME320_CSR:
DC.L $FFFFBOOO * default MVME320 CSR address

.MVME320_0ffset:
DC.L 0

.MVME320_InterruptVector:
* default VME bus address offset

DC.W $0060 * default interrupt vector number

.MVME320_InterruptServiceRoutine:

notO:

May26,1989

MOVE.L DO,-(SP) * save registers
MOVEM.L Dl/AO-Al,-(SP)
MOVEA.L .MVME320_CSR(PC),Al
MOVE.B 7(Al),Dl * find address of ECA table and put in AO
LSL.L '8,Dl
MOVE.B 5 (Al) ,Dl
LSL.L '8,Dl
MOVE.B 3 (Al) ,Dl
LSL.L '8,Dl
MOVE.B 1 (Al) ,Dl
LSL.L #l,Dl
SUB.L .MVME320_0ffset(PC),Dl
MOVEA.L Dl,AO
BTST.B '4,ll(Al)
BEQ.S notO
BCLR.B '4,l3(Al)
MOVE.L O(AO),AO
BRA.S common

BTST.B '5,ll(Al)
BEQ.S not!
BCLR.B '5,l3(Al)
MOVE.L 4(AO),AO
BRA.S common

* check whether interrupt is from drive 0

* acknowledge the interrupt
* put address of ECA for drive 0 into AO

* check whether interrupt is from drive 1

* acknowledge the interrupt
* put address of ECA for drive 1 into AO

8-23

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

notl:
BTST.B 16,11(Al) * check whether interrupt is from drive 2
BEQ.S not2
BCLR.B 16,13(Al) * acknowledge the interrupt
MOVE.L 8 (AO) ,AO * put address of ECA for drive 2 into AO
BRA.S common

not2:
BTST.B #7,11 (Al) * check whether interrupt is from drive 3
BEQ.S not3
BCLR.B #7,13(Al) * acknowledge the interrupt
MOVE.L l2(AO) ,AO * put address of ECA for drive 3 into AO

common:
SUBA.L .MVME320_0ffset(PC),AO
ADDA.W IECALEN,AO * compute mailbox address
MOVEQ.L ISCFPOST,DO * wake up task waiting for this interrupt
TRAP IVRTX

not3:
MOVEM.L (SP)+,Dl/AO-Al * restore registers
MOVEQ.L IUIFEXIT,DO * return from interrupt via VRTX
TRAP IVRTX

END

8-24 May 26, 1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

B.9 ifxmv320.h

/* Event control area */

typedef struct {
unsigned char command_code;
unsigned char main_status;
unsigned short extended_status;
unsigned char maximum_retries;
unsigned char actual_retries;
unsigned char dma_type;
unsigned char command_option;
unsigned long buffer_address;
unsigned short buffer_length;
unsigned short actual_count;
unsigned short cylinder;
unsigned char surface;
unsigned char sector;
unsigned short current-position;
unsigned short reservedl[5] ;
unsigned char pre_index_gap;
unsigned char post_index_gap;
unsigned char sync_byte_90unt ;
unsigned char post_id_gap;
unsigned char post_data_gap;
unsigned char address_mark_count;
unsigned char sector_length_code;
unsigned char fill_byte;
unsigned short reserved2[3];
unsigned char drive_type;
unsigned char number_of_surfaces;
unsigned char sectors-per_track;
unsigned char stepping_rate;
unsigned char head_settling_time;
unsigned char head_load_time;
unsigned char seek_type;
unsigned char phase_count;
unsigned short low_WTite_current_track;
unsigned short precompensation_track;
unsigned short ecc_remainder[3];
unsigned short append_ecc_remainder[3] ;
unsigned long reserved3;
unsigned long working_area [3] ;
unsigned short reserved4;

May 26, 1989 B-25

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

8-26

/* used by device driver only */

char
unsigned long

} ECA;

typedef struct {
ECA
I FXSEMA
long

} ECATable;

*mailbox;
reserved5;

*eca_table[4];
mutex;
reserved [2] ;

/* MVME320 disk device control block */

typedef struct {
/* sector size in bytes *1 unsigned short sectorSize;

unsigned short sectorsPerTrack;
unsigned short tracksPerCylinder;
unsigned short totalCylinders;
unsigned long totalSectors;
unsigned char drive;

1* number of sectors per track *1
1* number of tracks per cylinder *1
1* total number of cylinaers on disk *1
1* total number of sectors on disk *1
1* drive number (0 to 3) *1

char reserved1[3];
long reserved2[4];

} MVME320DiskDCB;

From glennoreadyO Mon Apr 24 11:41:32 1989
Return-Path: <glennoreadya>
Received: from harvax.RDYNET by hollywood.sun.com (3.2/SMI-3.2)

id AA01807; Mon, 24 Apr 89 11:41:30 PDT
Received: by harvax.RDYNET (5.51/)

id AA00687; Mon, 24 Apr 89 11:37:17 PST
Received: by ready.RDYNE! (3.2/)

id AA07365; Mon, 24 Apr 89 11:41:38 PDT
Date: Mon, 24 Apr 89 11:41:38 PDT
From: glennoreadyO (Glenn Kasten)
Message-Id: <8904241841.AA07365.ready.RDYNET>
To: cindyO
Subject: ifxmv320.h
Status: R

1* SHeader: ifxmv320.h,v 1.3 89/04/19 16:55:17 glenn Exp S */
/* Event control area */

typedef struct {
unsigned char
unsigned char
unsigned short
unsigned char
unsigned char

command_code;
main_status;
extended_status;
maximum_retries;
actual_retries;

May 26, 1989

IFX Device Driver Developer's Guide

unsigned char
unsigned char
uns igned long
unsigned short
unsigned short
unsigned short
unsigned char
unsigned char
unsigned short
unsigned short
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned short
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned short
unsigned short
unsigned short
unsigned short
unsigned long
unsigned long
unsigned short

dma_type;
command_option;
buffer_address;
buffer_length;
actual_count;
cylinder;
surface;
sector;
current_position;
reservedl[5] ;
pre_index_gap;
post_index_gap;
sync_byte_count;
post_id_gap;
post_data_gap;
address_mark_count;
sector_length_code;
fill_byte;
reserved2[3] ;
drive_type;
number_of_surfaces;
sectors_per_track;
stepping_rate;
head_settling_time;
head_load_time;
seek_type;
phase_count;
low_WTite_current_track;
precompensation_track;
ecc_remainder[3] ;
append_ecc_remainder[3] ;
reserved3;
working_area [3] ;
reserved4;

/* used by device driver only */

char
uns igned long

} ECA;

typedef struct {
ECA
I FXSEMA
long

} ECATable;

*mailbox;
reserved5;

*eca_table[4];
mutex;
reserved [2] ;

/* MVME320 disk device control block */

May26,1989

Sample 68000 Device Drivers

8-27

Sample 68000 Device Drivers

typedef struct {
unsigned short sectorSize;
unsigned short sectorsPerTrack;
unsigned short tracksPerCylinder;
unsigned short totalCylinders;
unsigned long totalSectors;
unsigned char drive;
char reservedl[3];
long reserved2[4];

} MVME320DiskDCB;

8-28

/* sector
/* number
/* number
/* total
/* total
/* drive

IFX Device Driver Developer's Guide

size in bytes */

of sectors per track */
of tracks per cylinder */

number of cylinders on disk */
number of sectors on disk */
number (0 to 3) */

May 26, 1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

B.10 rf3500.c

1* IFX disk driver for Ciprico Rimfire 3500/3510 VMEbus SCSI host adapter */

1* Installation instructions:

Compilation:

This driver consists of two source files

rf3500.c
rf3500i.a68

Main driver code
Interrupt handler

A makefile is included which will build the driver. The driver
uses a few external functions which must be supplied by the
user: malloc, free, and bzero. In addition, the printf
function is called if you define the macro DEBUG (see rf3500_printf
below). These functions are all standard functions available
in any C run-time library, including the Ready Systems RTL.
product.

Installing driver with IFX:

May 26, 1989

The general method looks like this:

int status;
static IFXGEOMETRY disk_geometry = {

SECTOR_SIZE, SECTORS_PER_TRACK, TRACKS_PER_CYLI NDER,
TOTAL_CYLINDERS, TOTAL_SECTORS

} ;
extern int driver();

status - ifx_driver("RF3500", driver);
status - ifx_install ("device: ", "RF3500", UNIT, &disk_geometry);

where UNIT is a combination of several things.

I I
I FLOPPY' ID 2
I I

,
, ID 1

I

,
, ID 0 ,

IN IT should be 1 when installing the first disk,
and 0 for all other disks.

FLOPPY should be 1 when installing a floppy disk,
or 0 for installing a SCSI disk.

ID 0, 1, and 2 should be the SCSI device ID number
for installing a SCSI disk. ID 0 and 1 should be

8-29

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

8-30

the floppy ID number when installing a floppy disk,
and ID 2 should always be 0 in this case.

Example of installing two 5-1/4" 360 Kbyte floppies with ID 0 and 1,
and one SCSI disk with ID 6.

static IFXGEOMETRY floppy_geometry - {512,9,2,40,720L};
static IFXGEOMETRY maxtor_geometry - {512,36,7,1224,308448L};
status - ifx_driver("RF3500", driver);
status - ifx_instal1("floppyO:", "RF3500", OxOS, &floppy_geometry);
status - ifx_install("floppyl:", "RF3500", OX09, &floppy_geometry);
status - ifx_install("scsi:", "RF3500", OX06, &maxtor_geometry);

For further information:

*1

Please consult your IFX Device Driver Developer's Guide and the
Ciprico Rimfire 3500 User's Manual.

'include <compiler.h>
'include <vrtxvisi.h>
'include <ifxvisi.h>

1* Define some helpful macros *1

'define Nil 0
'define CB char

1* Constants *1

,defineRF3500_ADDRESS OxFFFFEFOO 1* Rimfire 3500 board address *1
'define INT_VECTOR OxFE 1*
'define INT_LEVEL 2 1*
'define VME_ADDRESS 0 1*
'define INT_TIMEOUT 60000L 1*
'define RESET_TIMEOUT 1000000L 1*
'define ENTER_TIMEOUT 1000L 1*
'define printf rf3500-printf

1* Type declarations *1

typedef unsigned short word;
typedef unsigned char byte;

1* Ciprico Header Block

VME bus interrupt
VME bus interrupt
offset of VME bus
10 minutes at 100
max time to reset
max time to enter

vector *1
level *1
addresses *1
ticks/sec *1
Rimfire *1
a command *1

+--+
command identifier

+----------------------------+---------------+---------------+
Reserved Addr mod I Target ID

May 26, 1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

+----------------------------+---------------+---------------+
VME MEMORY ADDRESS

+--+
Transfer Count

+------------+---------------+---------------+---------------+
*/

struct stdJ>armblk { /. STANDARD PARAMETER BLOCK
long id; /* unique command identifier
byte reserved; /* reserved
byte flags; /* flags
byte addrmod; /* address modifier used to access VME
byte targetid; /* SCSI target ID
long vmememaddr; /* VME address to read from or write to
long tcount; /* transfer count

} ;

/* SCSI Command Block

General layout:

+----+-------+-------+-------+-------+-------+-------+-------+
COMMAND CODE

+----+-------+-------+-------+-------+-------+-------+-------+
LUN REST OF BYTE 1

+------------+---------------+---------------+---------------+
BYTES 2 TO 11

+------------+---------------+---------------+---------------+
Read layout:

+----+-------+-------+-------+-------+-------+-------+-------+
COMMAND CODE = $08

+----+-_._----+-------+-------+-------+-------+-------+-------+
LUN LOGICAL BLOCK ADDRESS (MSB)

+------------+---------------+---------------+---------------+
LOGICAL BLOCK ADDRESS

-+--+
LOGICAL BLOCK ADDRESS (LSB)

+--+
NUMBER OF BLOCKS

+--+
UNUSED (7 BYTES)

+--+
Write layout: .

+----+-------+-------+-------+-------+-------+-------+-------+
COMMAND CODE - $OA

May 26, 1989

*/
*/
*/
*/

memory*/
*/
*/
*/

8-31

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

8-32

+----+-------+-------+-------+-------+-------+-------+-------+
LUN LOGICAL BLOCK ADDRESS (MSB)

+------------+---------------+---------------+---------------+
LOGICAL BLOCK ADDRESS

+--+
LOGICAL BLOCK ADDRESS (LSB)

+--+
NUMBER OF BLOCKS

+--+
UNUSED (7 BYTES)

+--+
*/

struct scsicmdblk { /* SCSI COMMAND DESCRIPTOR BLOCK
byte cmd; /* byte 0 is the cmd code for operation
byte lun; /* logical unit number
byte lba; /* logical block address
byte Ibalsb; /* logical block address (LSB)
byte numblocks; /* number of blocks
byte vu;
byte byte6;
byte byte7;
byte byte8;
byte byte9;
byte bytelO;
byte by tell;

} ;

/* Ciprico Trailer Block */

struct intrblk {

} ;

/*

*/

word
word
long

Ciprico Status Block

resvO;
intr;
resvl;

/* reserved */
/* interrupt vector/level */
/* reserved, must be 0 */

+------------+---------------+---------------+---------------+
Command Identifier

+------------+---------------+---------------+---------------+
o SCSI status Error Flags

+------------+---------------+---------------+---------------+
Extra Information

+------------+---------------+---------------+---------------+

struct stdstatusblk { /* STANDARD STATUS BLOCK
long id; /* command identifier generating status

*/
*/
*/
*/
*/
*/

*/
*/

May 26, 1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

byte reserved; 1* reserved
byte scsistatus; 1* SCSI status, device specific
byte error; 1* rf3S00 specific error
byte flag; 1* indicates type of status
byte cc; 1* class/code
byte segment; 1* segment
byte scsiflags; 1* SCSI flags
byte infobyte3; 1* information byte3
byte infobyte4; 1* information byte4
byte infobyteS; 1* information byteS
byte infobyte6; 1* information byte6
byte exlen; 1* extra length

} ;

1* Complete Command + Status Block *1

struct typeO {
struct stdyarmblk
struct scsicmdblk
struct intrblk
struct stdstatusblk

} ;

/* SCSI Basic Mode Select Block

struct mode_select {
byte by teO;
byte medium_type;
byte bufmod_spd;

byte
byte
byte

byte
byte

blk_des_Ien;
density_code;"
nblk[3] ;

byteS;
blen[3] ;

typeOpblk;
typeOcmdblk;
typeOintrblk;
typeOstatusblk;

/* typeO parameter block*1
1* typeO command block *1
1* typeO interrupt block *1
1* typeO status blk *1

*1

1* reserved *1
1* medium type *1
1* buffered mode & speed*/
1* (tape exclusive) *1
I*block descriptorlength*1
1* Density code *1
1* number of blocks *1
1* (msb) - (lsb) *1
1* reserved
1* block length
1* (msb) -(Isb) "

*1
*1
*1

/* vendor unique parameter *1
} ;

/* SCSI Page 5 Mode Select Block *1

struct page_5 {
byte pagecode; 1* must be 5 *1
byte page_length;
word xfer_rate; 1* transfer rate *1
byte nheads; 1* number of heads *1
byte spt; 1* sector per track *1
word nbps; I*number of bytes/sector*1

May26,1989

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

8-33

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

8-34

word ncyls; 1* number of cylinders *1
word s_wpre; 1* starting cylinder *1

1* writ~ pre camp *1
word s rwc' - . 1* starting cylinder *1

1* reduced write current*1
word dsr; 1* drive step rate *1
byte dspw; 1* drive step pulsewidth*/
byte hd_st_delay; 1* head settle delay */
byte on_delay; 1* motor on delay *1
byte off_delay; 1* motor off delay *1
byte trdy; 1* drive provides a true*1

1* ready signal *1
byte hd_ld_delay; 1* head load delay *1
byte ssn_sO; I*starting sector #, *1

1* side 0 */
byte ssn_sl; 1* starting sector #, *1

1* side 1 *1
} ;

/* SCSI Page 20 Mode Select Block (Ciprico floppy disk configuration) */

struct page_20 {
byte page_code;
byte page_length;
byte post_index; 1* post index gap *1
byte inter_sector; 1* inter sector gap *1
byte tverify; 1* seek verification */
byte tsteps; 1* steps per track *1
byte resvO; 1* reserved set to OH *1
byte resvl; 1* reserved set to OH *1

} ;

1* SCSI Complete Mode Select Block *1

struct init_mode_select {
struct mode_select
struct page_5
struct page_20

} ;

init_mode;
page_5;
page_20;

1* Parameter list passed to driver by IFX *1

typedef union {

1* IFXFREADS or IFXFWRITES */

struct {
long
byte
long

sec tor .J)osi ti on;
*buffer_address;
number_sectors;

1* starting disk sector number */
1* address of the read/write ,uffer */
1* # of sectors to be transferred */

May 26, 1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

long
} u1;

actual_count; / # of sectors successfully xfrd */

/* IFXFIOCTL with IFXOGGEOM */

struct {
/* control opcode = IFXOGGEOM */ int control_opcode;

IFXGEOMETRY *disk_geometry;
} u2;

/* pointer to disk geometry block */

/* IFXFINSTALL */

struct {
int unit;
IFXGEOMETRY *disk_geometry;

} u3;

/* 0 to 7-8C8I, 8 to 11 = flo~py */
/* pointer to disk geometry block */

} PL;

/* Structure specific for each device installed */

typedef struct {
int target_ID;
int LUN;
IFXGEOMETRY disk_geometry;

} RF3500DCB;

/* Global variables */

IFXSEMA sem;
int mbox;

/* semaphore for mutual exclusion */
/* mailbox posted to by interrupt service routine */

/* External function declarations */

extern void LockSemaphore(), Unlock8emaphore(), FreeMemory2(),
bzero(), printf(), isr();

extern CB *AllocateMemory2();

/* Function declarations */

/*

*/

The function mode_select_floppy() initilizes the mode
select buffer, assigns values to it and the vendor unique
structures page_5 and page_20 appropriate for a floppy disk,
and then calls mode_select to actually set it up.

int mode_select_floppy(dt)
RF3500DCB *dt;

May26,1989 8-35

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

8-36

{

}

/*

*/

struct init_mode_select mb;

/* Initialize mode select buffer */

bzero«char *) &mb, sizeof(struct init_mode_select»;

/* Assign values to the mode select buffer */

mb.init_mode.medium_type = Ox12;/* medium type 48 tpi */
mb.init_mode.blk_des_len = 8; /* block length */
mb.init_mode.blen[lJ = 2; /* block length =512 */

mb.page_5.pagecode = 5; /* page 5 */
mb.page_5.page_Iength 22; /* page length */
mb.page_5.xfer_rate = OxFA; /* transfer rate 250K */
mb.page_5.nheads = 2; /* number of heads */
mb.page_5.spt - 9; /* sectors per track */
mb.page_5.nbps - 512; /* bytes per sector */
mb.page_5.ncyls = 40; /* number of cylinders '*/
mb.page_5.s_wpre = 255; /* write precomp */
mb.page_5.s_TWC = 255; /* reduced write current*/
mb.page_5.dsr - 4096; /* drive step rate. */
mb.page_5.dspw = 0; /* drive step pulsewidth*/
mb.page_5.hd_st_delay = 40; /* head settle delay */
mb.page_5.on_delay = 40; /'* motor on delay */
mb.page_5.off_delay - 40; /* motor off delay */
mb.page_5.hd_Id_delay = 10; /* head load delay */ ..

mb.page_5.ssn_sO - I; /* starting sector # */
mb.page_5.ssn_s1 - I; /* starting sector # */

mb.page_20.page_code = Ox20; /* page 20 */
mb. page_20. page_length = 6; /* page length */
mb.page_20.tsteps = 1; /* steps per track */

return mode_select(cstruct mode_select *) &mb, sizeof(mb) ,dt);

The mode_select function takes as a parameter a pre-initialized
mode select parameter block, and then calls the do_command.
This is an optional command in the common command set, but is
mandatory for the operation of the floppy disk option.

int mode_selectcmode_buff, mode_size,dt)
struct mode_select *mode_buff;
int mode_size;
RF3500DCB *dt;
{

May 26,1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

struct typeO pb;

bzero«char *) &pb,sizeof(struct typeO»;

pb.typeOpblk.targetid - dt->target_10; /* floppy 10 */
pb.typeOpblk.addrmod = Ox39; /* vme address modifier */
pb.typeOpblk.vmememaddr =(long)mode_buff + VME_ADORESS;
pb.typeOpblk.tcount = mode_size; /* transfer count */
pb.typeOcmdblk.cmd - Ox15; /* mode select command */
pb.typeOcmdblk.numblocks - mode_size; /* number of bytes reQuested*/

}

/*

*/

return docommand(dt, &pb);

The function rezero initializes the parameter and command blocks
for the rezero command and then calls the docommand to execute
the command. This command causes a seek to track zero on the
specified disk unit.

int rezero(dt)
RF3500DCB *dt;

{

}

/*

*/

struct typeO pb_rezero;

bzero«char *) &pb_rezero.sizeof(struct typeO»;
pb_rezero.typeOpblk.targetid =dt->target_IO;
pb_rezero.typeOpblk.addrmod -Ox39;
pb_rezero.typeOcmdblk.cmd = 1; /* rezero unit command

return docommand(dt. &pb_rezero);

The function format_unit initializes the parameter and command
blocks for the format command and then calls docommand to
execute the command. This command erases the entire disk and
puts new timing information on the tracks.

int format_unit(dt)
RF3500DCB *dt;

{
struct typeO pb_format;

May 26, 1989

*/

8-37

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

8-38

}

/*

*/

bzero«char *) &pb_format,sizeof(struct typeO»;
pb_format.typeOpblk.targetid -dt->target_ID;
pb_format.typeOpblk.addrmod - Ox39; /* VME address modifier */
pb_format.typeOcmdblk.cmd - 4; /* format unit command */

return docommand(dt, &pb_format);

The function driver_reads(dt,rdwr) initializes the parameter
block & the command block for the read command and then calls
docommand to execute the command.

int driver_reads(dt, rdwr)
RF3500DCB *dt;
PL *rdwr;

{

*/

struct typeO pb_read;
long high,middle,l_unit_num;
int err;

/* special check for zero sectors */

if (rdwr->u1.number_sectors == 0) {
*rdwr->u1.actual_count - 0;
return RET_OK;

}

/* work-around bug in IFX 1.04; reads and writes last sector in mount

if (rdwr->u1.sector-position -- dt->disk_geometry.total_sectors - lL &&
rdwr->ul.number_sectors -- lL) {
*rdwr->u1.actual_count - 1L;
return RET_OK;

}

1* special check for transferring more than 256 sectors at a time */

if (rdwr->u1.number_sectors > 256) {
*rdwr->ul.actual_count - 0;
return IFXEBADLEN;

}

bzero«char *) &pb_read,sizeof(struct typeO»;

pb_read.typeOpblk.targetid -dt->target_ID;I* floppy ID
pb_read.typeOpblk.addrmod-Ox39; 1* VME address modifier

*/
*/

May26,1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

}

1*

*1

pb_read.typeOpblk.vmememaddr-
(long) (rdwr->ul.buffer_address + VME_ADDRESS);

pb_read.typeOpblk.tcount = rdwr->ul.number_sectors *
dt->disk_geometry.sector_size; 1* transfer count

pb_read.typeOcmdblk.cmd = 8; 1* read command

high - <rdwr->ul.sector_position» 16) & OxlF;
l_unit_num - (dt->LUN« 5);
pb_read.typeOcmdblk.lun -<l_unit_num I high);

middle - «rdwr->ul.sector~osition» 8) & OxFF);
pb_read.typeOcmdblk.lba = middle;l* logical block address*1

pb_read.typeOcmdblk.lbalsb= rdwr->ul.sector_position;
I*logical block addres~(lsb)*1

pb_read.typeOcmdblk.numblocks -Cbyte)rdwr->ul.number_sectors;
• number of sectors*1

err - docommand(dt, &pb_read);
*rdwr->ul.actual_count = err? 0
return err;

rdwr->ul.number_sectors;

The function driver_writes(dt, rdwr) initializes the parameter
block and the command block for the write command. It then
calls the docommand to execute write command.

*1
*1

int driver_writes (dt. rdwr)
RF3500DCB *dt;
PL *rdwr;

{

*1

May26,1989

struct typeO pb_write;
long high,middle" l_uni t_num;
int err;

1* special check for zero sectors *1

if (rdwr->ul.number_sectors == 0) {
*rdwr->ul.actual_count = 0;
return RET_OK;

}

1* work-around bug in IFX 1.04; reads and writes last sector in mount

if (rdwr->ul.sector~osition -- dt->disk_geometry.total_sectors - lL &&
rdwr->ul.number_sectors -= lL) {

8-39

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

8-40

}

1*

*1

*rdwr->u1.actual_count - 1L;
return RET_OK;

}

1* special check for transferring more than 256 sectors at a time */

if (rdwr->u1.number_sectors > 256) {
*rdwr->u1.actual_count = 0;
return IFXEBADLEN;

}

bzero«char *) &pb_write,sizeof(struct typeO»;

pb_write.typeOpblk.targetid = dt->target_ID; /* floppy ID */
pb_write.typeOpblk.addrmod-Ox39; /* VME address modifier */
pb_write.typeOpblk.vmememaddr=

(long) (rdwr->u1.buffer_address+VME_ADDRESS) ;
pb_write.typeOpblk.tcount = rdwr->u1.number_sectors *

dt->disk_geometry.sector_size; 1* transfer count */
pb_write.typeOcmdblk.cmd =OxOA; I*write command */

high - (rdwr->u1.sector-position » 16) & Ox1F;
l_unit_num - (dt->LUN « 5);
pb_write.typeOcmdblk.lun =(l_unit_num I high);

middle - «rdwr->u1.sector-position» 8) & OxFF);
pb_write.typeOcmdblk.lba - middle;l* logical block address*/

pb_write.typeOcmdblk.lbalsb= rdwr->u1.sector_position;
I*logical block address(lsb)*/

pb_write.typeOcmdblk.numblocks=(byte)rdwr->u1.number_sectors;
I*number of sectors*/

err - docommand(dt, &pb_write);
*rdwr->u1.actual_count = err? 0
return err;

rdwr->u1.number_sectors;

The function request_sense initializes the parameter block and
the command block for the request sense command and then calls
the docommand to execute the command. This command returns the
sense data to the indicated area in memory.

int request_sense(dt)
RF3500DCB *dt~

{
struct typeO

May 26,1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

}

/*

May 26, 1989

int err;
byte sense_buffer[8];

bzero«char *) &pb_request_sense,sizeof(struct typeO»);

pb_request_sense,typeOpblk,targetid -dt->target_ID; /* floppy ID */
pb_request_sense,typeOpblk,addrmod -Ox39;/* VME address modifier*/
pb_request_sense,typeOpblk,vmememaddr =

(long) (&sense_buffer[O] + VME_ADDRESS);
pb_request_sense,typeOpblk,tcount - 4;

pb_request_sense,typeOcmdblk,cmd ~ 3;

err = docommand(dt, &pb_request_sense);
if (err)

return err;
switch (sense_buffer[O]) {
case OxOO:

err - RET_OK;
break;

case Ox02:
err - IFXESEEKFAIL;
break;

case Ox25:
err - IFXEBADUNIT;
break;

case Ox27:
err = IFXERDONLYM;
break;

case Ox28:
err - IFXEMEDCHANGE;
break;

case Ox29:
printf("RF3500: power restored\n");
err - RET_OK;
break;

default:

/* transfer count */
/* request sense command*/

printf("RF3500: sense "02X\n", sense_buffer[O]);
err - IFXEIOERR;
break;

}
return err;

This function sets up the Address buffer port (EFOO), Channel
Attention Port (EF09) ,and checks the Board Status Port (EFll)

8-41

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

8-42

*/

and executes the command. It then returns an error message in
error.

int docommand(dt, pb_command)
RF3500DCB *dt;
struct typeO

{
byte *channel_atten, *board_status,dO;
word *address_buffer;
int zero - 0;
int error;
long address, i;

retry:

/* initilize the flag in the status block */
pb_command -> typeOstatusblk.flag -zero;

/* set up the interrupt field in the typeO parameter bl.ock * /
pb_command -> typeOintrblk.intr - INT_VECTOR I (INT_LEVEL« 8);

/* Check the Status Port */

/*

board_status - (byte*) (RF3500_ADDRESS + Ox11);
if (!(*board_status & 2» {

printf ("RF3500: not ready\n It) ;
return IFXEIOERR;

}
dO - *board_status & 1;

set up the address buffer port

address_buffer - (word*) RF3500_ADDRESS;
address_buffer - Ox8039; / control and AM bits for
address - VME_ADDRESS + (long)pb_command;
address_buffer - address » 16; / send PB address
address_buffer - address; / send PB address

*/

PB */

MSW */
LSW */

/* Issue command by writing zero into the channel attention port */

channel_atten - (byte *) (RF3500_ADDRESS + Ox09);
mbox- 0;
* channel_at ten - zero; /* execute the typel command */

/* wait for command to be entered */

for (i - OL; (*board_status & 1) -- dO; ++i)
if (i > ENTER_TIMEOUT) {

printf("RF3500: command not entered\n");

May 26, 1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

return IFXEIOERR;
}

/* wait for interrupt */

sc-pend(&mbox, I NT_TIMEOUT , &error);
if (error) {

}

printf("RF3500: no interrupt\n");
r~turn IFXEIOERR;

if (!(pb_command->typeOstatusblk.flag & 128» {
printf(tlRF3500: interrupt before done\n");
return IFXEIOERR;

}

/* Convert error code to IFX numbering system */

May 26, 1989

if \ (pb_command->typeOstatusblk.flag & 64) ~= 0)
error .. RET_OK;

else {
switch (pb_command->typeOstatusblk.error) {
case Ox1E:

error - IFXEBADUNIT;
break;

case Ox23:
switch(pb_command->typeOstatusblk.scsistatus){
case Ox02: /* check condition */

if (pb_command->typeOpblk.targetid != OxFE) {
if (pb_command->typeOcmdblk.cmd !- 3)

error .. request_sense(dt);
else

error - IFXEIOERR;
} else

switch (pb_command->typeOstatusblk.scsiflags) {
case Ox21:

error .. IFXEBADPOSN;
break;

case Ox25:
error = IFXEBADUNIT;
break;

case Ox41:
error .. IFXEIOTIMOUT;
break;

case Ox43:
error = IFXESEEKFAIL;
break;

case Ox44:
case Ox46:

8-43

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

}

/*

8-44

}

error == IFXECRCERR;
break;

case Ox45:
error - IFXERDONLYM;
break;

case Ox47:
error == IFXESECNTFND;
break;

case Ox42:
case ox20:
case Ox26:
case Ox29:
case Ox40:
case Ox48:
case Ox49:
default:

error == IFXEIOERR;
break;

}
break;

case Ox08: /* busy */
printf("RF3500 busy, retrying ... \n");
sc_delay(lOOL) ;
goto retry;

default:

}

printf(tlRF3500 SCSI status fl02X\n",
pb_command->typeOs~atusblk.scsistatus);

error - IFXEIOERR;
break;

break;
default:

}

printf ("RF3500 error fl02X\n",
pb_command->typeOstatusblk.error);

error - IFXEIOERR;
break;

return error;

The function reset does a write to the Reset Port(EF19) This
causes a reset of the adapter. This action is similar to a

May 26,1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

*/

hardware reset. The function also checks the status port for
the ROY bit to be set.

int reset()
{

}

byte *reset-port;
byte *board_status;
int zero - 0;
long i;

/* Initialize interrupt vector to point to isr routine */

* (void (**)(» (INT_VECTOR * 4) - isr;

/* Reset the board */

reset-port - (byte*) (RF3500_ADDRESS + Ox19);
*reset-port - zero;

/* Wait for board to finish initialization sequence *f

board_status - (byte*) (RF3500_ADDRESS + Oxll);
for (i - OL; !(*board_status & 2); ++i)

if (i > RESET_TIMEOUT)
return IFXEIOERR;

return RET_OK;

/* Handle IFX device installation */

int driver_install (dcb-ptr. plist)
IFXDCB *dcb-ptr;
PL *plist;

{

May26,1989

int status:
RF3500DCB *dt;

dt - (RF3500DCB 0*) AllocateMemory2(sizeof(RF3500DCB»;
if (dt -- Nil)

return IFXENOMEMORY;
dt->target_ID - plist->u3.unit & 8 ? OxFE : plist->u3.unit & 7;
dt->LUN - plist->u3.unit & 8 ? plist->u3.unit & 3 : 0;
dt->disk-Beometry - *plist->u3. disk-Beometry;
dcb-ptr->device_type - IFXDDISK;
dcb-ptr->dt - (char *) dt;

/* Discard the first error code. if any */

8-45

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

8-46

}

(void) request_sense(dt);

/* Perform mode select for floppy disk drives only */

if (plist->u3.unit & 8) {

}

status - mode_select_floppy(dt);
if (status !- RET_OK)

return status;

/* Recalibrate the heads */

status - rezero(dt);
return status;

/* Handle IFX I/O control operation requests */

int driver_ioctl(dt, plist)
RF3500DCB *dt;
PL *plist;

{

}

int status;

switch (plist->u2.control_opcode) {
case IFXOGGEOM:

*plist->u2.disk_geometry - dt->disk~geometry;

status - RET_OK;
break;

case IFXOFMTDSK:
status - format_unit(dt);
break;

default:

}

status - IFXENOTIMP;
break;

return status;

/* This function is called when the device is removed */

int driver_remove(dt)
RF3500DCB *dt;

{

}

FreeMemory2«CB *) dt. sizeof(RF3500DCB»;
return RET_OK;

May 26, 1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

/*

*/

The function driver is the main function that IFX calls. The
three parameters are the function code that tells the driver
what to do, a pointer to its Device control block defined as
the IFXDCB structure, and finally a pointer to a Parameter list
containing any other parameters needed for the specified
function.

int driver (func_code , dcb~tr, plist)
int func_code;
IFXDCB *dcb~tr;
PL *plist;

{

May26,1989

int status;
RF3500DCB *dt - (RF3500DCB *) dcb_ptr->dt;

switch (func_code) {
case IFXFDRIVER:

bzero«char *) &sem, sizeof(sem»;
status - reset();
break;

case IFXFRMDRIVER:
status = IFXENOTIMP;
break;

case IFXFINSTALL:
status - driver_install (dcb_ptr , plist);
break;

case IFXFREMOVE:
status - driver_remove(dt);
break;

default:
LockSemaphore(&sem);
switch <func_code) {
case IFXFREADS:

status = driver_reads(dt, plist);
break;

case IFXFWRITES:
status = driver_writes(dt, plist);

, break;
case IFXFIOCTL:

status = driver_ioctl(dt, plist);
break;

default:

}

status - IFXENOTIMP;
break;

8-47

Sample 68000 Device Drivers IFX Device Driver Developer's Guide

UnlockSemaphore(&sem);
}

return status;
}

/* Define DEBUG if you want debugging messages printed on console terminal */

8-48

void rf3500_printf(fmt, args)
char *fmt;
int args;
{
Nifdef DEBUG

Nendif
}

char buf[80];
int i;
xprintf(buf,fmt,&args,O);
for (i-O;buf[i] ;++i)
{
if (buf[i]-='\n')

sc-putc('\r');
sc-putc(buf[i]);
}.

May 26, 1989

IFX Device Driver Developer's Guide Sample 68000 Device Drivers

8.11 rf3500;.868

* Ciprico Rimfire 3500 IFX disk driver interrupt service routine

XREF
XDEF

. dri ver , . mbox
start, . isr

SCFPOST EQU
UIFEXIT EQU

S08
S11

start:

.isr:

May26,1989

SECTION 0

BRA . driver

MOVE.L DO,-(SP)
MOVEM.L DI/AO,-(SP)
LEA .mbox(PC) ,AO
MOVEQ.L #l,DI
MOVEQ.L ISCFPOST,DO
TRAP 10
MOVEM.L (SP)+,DI/AO
MOVEQ.L IUIFEXIT,DO
TRAP 10

END

* first instruction of driver.

* save DO for UI_EXIT
* save other registers used QY ISR
* wake up task waiting for interrupt

* restore registers
* reschedule and restore DO

8-49

Appendix C

Sample 386 Device Driver
'~READY
SYSTEMS

C.1 Introduction

This appendix contains source code for a 386 sample device driver. This device driver
is for a CIPRICO RimFire 2500 SCSI disk controller, which implements the diskette
driver in polling mode. You can use this sample device driver as a template for
writing a custom driver for your device. This driver has been tested and is fully
functional.

C.2 IFX Device Driver

This section contains an IFX driver for the RimFire 2500 disk controller. This driver
is composed of an interface assembly routine, main C routine, specific operations .
routines, and message passing high-level services (such as preparing the message in
the final structure, or checking the operation results). The lower-level services for
transmit/receive messages or data are provided in Section C.3.

C.2.1 descrp.lnc

t • t , ••••• " • t'" " •• ,t' •• t •••••• , •• t ., •• , •• , t " • , t,. f. I , •• t I • I •• , I I • I • , • t

I I

filename: descrp.inc
I I

description:
I I

I I

I I

This file defines the structures needed for accessing II

the decriptors in the GOT. It also contains several
descriptors for the driver. I I

•• I ,t., •• ,"" t , t • t. t ,. t t •• It" •••• ,t t ttl' t t t ,. "" '" ., •• t t , •• f " , • I , t , t

DESC STRUC
lim_0_1S
bas_0_1S
bas_16_23
access
gran
bas_24_31

DESC ENDS

GOT_ALIAS_DES
APPLIC_AS_DATA

May 26, 1989

DW 0
DW 0
DB 0
DB 0
DB 0
DB 0

equ OSh
equ OBSh

imit bits (0 .. 15)
base bits (0 .. 15)
base bits (16 .. 23)
access byte
granularity byte
base bits (24 .. 31)

GOT alias
application code as data desc

C-1

Sample 386 Device Driver . IFX Device Driver Developer's Guide

C.2.2 rlmsln.ssm

C-2

#include "descrp.inc"

... ,t", ••••• t.",., t •• ,.,."."" ••• ", •• , •• " ••• ",.,., •• "" ••••• ,. t, •• , t

, ,
" This is an interface routine, which stores IFX DS + restores the DS
" of the driver - on enterance, and restores IFX DS on exit.
, , , ,
.. ,. "" ••••• t' •• t t., •• , ••• , t'., ,." ••••• ,""""',.,.,.,"", •• ,', ••••• "., •

. 386P ;Directive to Phar Lap assembler
;to give access to 386 protected commands

cseg segment use32 'code' para public
extrn Rimfire2500Driver:near
assume cs:cseg
public rfmain

rfmain PROC far
push ebp
mov ebp,esp
push es
push ds
mov ax,APPLIC_AS_DATA
mov ds,ax
les eax, [ebp+018h]
push es
push eax
les eax, [ebp+01Oh]
push es
push eax
mov eax, [ebp+OCh]
push eax
call Rimfire2500Driver
add esp,014h
pop ds
pop es
pop ebp
DB OCBH

rfmain ENDP

cseg ends

end

RETF - far return to the caller.

May26,1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

C.2.3 Ifxr2500.h

1**1
1* *1
1* Rimfire 2S00 disk device control block *1
1* *1
1**1

typedef struct {
I FXGEOMETRY
unsigned char drive;
char reservedl[3];
long reserved2[4];

} Rimfire2S00DiskDCB;

C.2.4 rf2500.h

1* drive number (0 to 3) *1

1***1
1* Description: Include file for Rimfire 2S00 Driver. *1
1*
1*

Adaptor specific and MultiBus II contents, defines, *1
and some general miscellaneous stuff. *1

1***/
1* Some basic constants ... *1
#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif

1* Some basic types ... *1
typedef unsigned char u_char;
typedef unsigned char byte;
typedef unsigned short word;
typedef unsigned long dword;

1* The HOST ID : PORT ID at which the cpu board communicates. *1
1* -- They are exist also in MPC.INC, for the MB2 library. -- */
#define CPU_HOST_ID OxOl
#define CPU_PORT_ID OxOlOO

1* The HOST ID : PORT ID at which we communicate with our board. *1
1* --- They are exist also in MPC.INC, for the MB2 library. ---- */
#define SLOT_NO S
#define RF2S00_HOST_ID
#define RF2S00_PORT_ID

1* Record types to be used
#define UNIT_DEF_RECORD
#define HOST_ID_RECORD
#define FIRMWARE_RECORD

May26,1989

OxOS
Ox2S00

with ics_find_rec(). *1
OxFE
OxlO
OxOF

C-3

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-4

/* Offsets within the Header Record for various registers. */
Idefine HD_GEN_STATUS 24 /* General Status */
Idefine HD_SUP_LEVEL 26 /* BIST Support Level */
Idefine HD_SLV_STATUS
Idefine HD_MSTR_STATUS
Idefine HD_TEST_ID
/* What the master status
Idefine HD_MS_REBOOT

29 /* BIST Slave Status */
30 /* BIST Master Status */
31 /* BIST Test ID */

should be after power-up. */
Ox20

/* BIST Slave Status Register defines */
Idefine SS_DO_VALID Ox01 /* BIST Data Out Valid for reading
Idefine SS_RD_DI Ox02 /* Slave had read Data In value */
Idefine 88_TST_RUNNING Ox04 /* Slave is running a test */
Idefine S8_MORE OxOS /* Slave has more bytes to send *1
Idefine SS_IN_PROGRESS Ox10 /* BIST Test In Progress */
Idefine SS_ABORT_LAST_TEST Ox40 /* Aborted Last Test */
Idefine SS_FAIL_LAST_TEST OxSO /* Failed Last Test */

/* Offset wi thin the Unit Definition Record for various registers·. * /
Idefine UD_REC 32
Idefine UD_PCI_COMPAT 2 /* PCI Compatibility */
Idefine UD_GEN_STATUS 10 /* General Status register ~/
Idefine UD_PORTID 11 /* The Port ID */

*/

Idefine UD_CTLR_INIT 13 /* The Controller Initialize register */
/* What the general status should be after power-up. */
Idefine UDGS_POR_COMPLETE OxEO
/* What the general status should be after successful controller init */
Idefine UDGS_INIT_COMPLETE OxE1

/* Offset within the Host ID Record for various registers. */
Idefine HID_REC 50
Idefine HID_HOSTID 2 /* The Host ID */

56

/* These are the board types that this driver can drive. */
Idefine RF2500_TYPE 0

/* Internal driver structure for keeping specific board information. */
typedef struct {

word port_id; /* Port ID for the board */
word host_id; /* Host ID for the board */
u_char bd_udf_rec; /* The Unit Definition Record offset */
u_char bd_hostid_rec; /* The Host ID Record offset */
u_char bd_tid; /* A Transaction ID for Commands */

} BDINFO;

Idefine send 0
Idefine recv 1
Idefine UNS_STD_LEN 32 /* The length of a standard unsolicited msg */

May 26, 1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

Ndefine UNS_TYPE 0 /* Unsolicited message type */
Ndefine BRQ_TYPE 36 /* Buffer request message type */
Ndefine MEMSIZE Ox200

/* The Peripheral Command Messages */
typedef struct { /* rf2500 adaptor specific command */

byte targetid;
byte flags;
byte cmd;
byte tbd[l2];

} ADPCM;

typedef struct { /* rf2500 SCSI command */
byte targetid;
byte flags;
byte
byte

} SCPCM;

resvl;
scb[l2] ;

typedef union {
ADPCM adpcm;
SCPCM scpcm;

} PCM;

typedef struct {
byte dst_addr;
byte src_addr;
byte msg_type;
byte resrvl;
byte
byte
short
short
byte
byte
byte
PCM
long

prot_id;
tx_ct1;
dstyort;
src_port;
trnsc_id;
trnsc_ctl;
protoid;
cmd_buf;
buffer_len;

} UNS_MSG;

typedef struct {

May 26, 1989

byte dst_addr;
byte src_addr;
byte msg_type;
byte
long
byte
byte
short

liaison;
buffer_len;
prot_id;
tx_ct1;
dstyort;

/* will be set by the asm routine */

/* will be set by the asm routine */

C-5

Sample 386 Device Driver IFX Device Driver Developer's Guide

short
byte
byte
byte
PCM

src.J)ort;
trnsc_id;
trnsc_ctl;
protoid;
cmd_buf;

} BRQ_MSG;

/* RF2500 Adaptor specific
Idefine AD_INITP OxOl
Idefine AD_UNITP Ox02
Idefine AD_RES_DEV Ox03
Idefine AD_REL_DEV Ox04
Idefine AD_R_INITP Ox05
Idefine AD_R_UNITP Ox06
Idefine AD_R_ERTXT Ox07

commands using ADPCM */
/* initialize parameters */
/* unit parameters */
/* reserve device */
/* release device */
/* return (read) initialize parameters
/* return unit parameters */
/* return error text */

Idefine AD_R_BSTAT Ox08 /* return board statistics */
Idefine AD_BBCOFY Ox09 /* board to board copy */
Idefine AD_TUNEP OxOa /* set tuning parameters */
Ide fine AD_R_TUNEP OxOb /* return tuning parameters */
Idefine AD_RWBFTST OxOc /* read/write buffer test */

/* The value that pcm.J)rotoid always gets set to ... */
Idefine RF2500_PROTOID Ox22

/* The Status Message returned with a buffer request */
typedef struct {

byte dst_addr;
byte src_addr;
byte msg_type;
byte liaison;
long buffer_len;
bIte prot_id;
byte tx_ctl;
short dst.J)ort;
short src.J)ort;
byte trnsc_id;
byte trnsc_ctl;
byte protoid;
byte error;
byte resvl;
byte resv2;
byte retries;
byte resv3;
byte scsi_status;
byte status_type;
byte class_code;
byte segment;
byte scsi_flags;
byte infob3;

*/

C-6 May 26, 1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

byte infob4;
byte infob5;
byte infob6;
byte exlen;

} RCV_BRQ;

f* The Peripheral Status Message *f
typedef struct {

long hw_overhead[3] ;
byte protoid;
byte error;
byte resv1;
byte resv2;
byte retries;
byte resv3;
byte scsi_status;
byte status_type;
byte class_code;
byte segment;
byte scsi_flags;
byte infob3;
byte infob4;
byte infob5;
byte infob6;
byte exlen;
byte extra[4];

} PSM;

f* Defines for status_type, these tell what the device specific status is. *f
'define ST_NU OxOO f* remaining bytes Not Used *f
'define ST_MULTERR Ox01 f* Multiple errors *f
#define ST_RQSENS Ox80 f* status from Request Sense command *f
#define ST_INITP Ox81 f* Adaptor Initialization Parameters *f
#define ST_UNITP Ox82 f* Unit Initialization Parameters *f

f* Some interesting defines for the device specific status .. *f
f* For byte 1: *f
#define ST_BOT Ox01 f* at Beginning Of Tape *f
#define ST_WPT Ox02 f* Write Protected *f
'define ST_RWD Ox04 f* tape is Rewinding *f
#define ST_ONL Ox08 f* drive is Online *f
'define ST_RDY Ox1O f* drive is Ready */
'define ST_SPD Ox20 f* tape speed - 1 is high *f
#define ST_DEN Ox40 f* tape denisty - 1 is high *f
#define ST_BSY Ox80 f* formatter is Busy *f
f* For byte 2: *f
#define ST_FMK Ox02 f* File Mark *f
#define ST_EOT Ox04 f* at End Of Tape */

May 26, 1989 C-7

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-8

Idefine INITTING OxOl 1* Some process is initializing the drive .. *1

struct xFMT_INFO {
byte cmd;
byte filll;
word alt_cyl;
byte alt_head;
byte

} ;
Idefine
Ide fine
Idefine
Idefine

alt_sect;

FMC_MTRACK
FMC_TRACK
FMC _MAPl'RK
FMC_MAP SECT

OxOO
Ox40
OxSO
OxOS

1* Multiple track format *1
1* One track format *1
1* Map a track *1
1* Map a sector *1

the pcm_count field when formatting/mapping. *1
OxO 1* Save the data. ignore data errors *1
Oxl 1* Save the data, abort on errors *1

1* Possible values for
Idefine SV_DATA_IGNE
Idefine SV_DATA_ABT
Idefine USE_FMT_FILL Ox2 1* Discard the data, use format fill character *1

/* ________________ ca====================================_==_= __ = __ = __ = */

1* Unordered additions. *1

/* ---=--------=--=------ */

1* You should not have any other devices on the SCSI bus set to this target
id. *1
Idefine RF2500_ID OxFF 1* Adaptor command Target ID *1
Idefine OWN_ID OxOO 1* SCSI Target ID for RF3500 -> o *1
#define DSC_PAR Ox03
Idefine THROTTLE S 1* Bus throttle *1

/* ----------------------================-=-=============--=-==-===---= */

1* Floppy diskette parameters. *1

/* --= .~========================= */

Idefine FLP_DEV
Idefine FLP_TARGET
Idefine FLP_TYPE
Idefine FLP_BLKSIZE

/* These two defines
Idefine LOGDSK S
Idefine FLPFMT 8

Idefine BYTEO(n)
Idefine BYTEl(n)
Idefine BYTE2(n)
Idefine BYTE3(n)

Ide fine LFLP 3

Ox60
OxFE.
Ox16

512

should be the same *1
1* Partitions on physical disk *1
1* Number of different floppy formats

«byte)(n) & Oxff)
BYTEO«dword) (n»>S)
BYTEO«dword) (n»>16)
BYTEO«dword) (n»>24)

1* Local floppy (On RF3500) *1

*1

May26,1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

'define DSWAB(x) ««x»> 24) & OxFF) I «(x) » 8) & OxFFOO) I «(x) «
8) & OxOOFFOOOOL) «(x)« 24) & OxFFOOOOOOL»
'define SWAB(x) « « (x) » 8) & Oxff) I « (x) « 8) & OxffOO»)

/* Bits in flags field */
#define SOO OxOl /* Scatter/gather operation */
'define DAT Ox02 /* Data transmitted in this operation */
'define DIR Ox04 /* Direction of data transfer l .. to the target */
'define IRS Ox08 /* Inhibit request sense */
'define VALID Ox80 /* Valid */

/* Status Block Flags Field bit masks */
'define ST_RTY Ox20 /* Retry required */
'define ST_ERR Ox40 /* Error, check error code */
'define ST_CC Ox80 /* Command complete, last status block */

/* Status Block Class bit masks */
'define ADVALID Ox80 /* Address field information valid */

/* Retry control bit fields */
'define SCINT OxOl /* Issue "error" interrupt for-each retry */
'define RCISB Ox02 /* Issue status block for each retry */

/* Retry parity error */
/* Retry command errors (SCSI errors) */

'define RCRPE Ox04
'define RCRCE Ox08
'define RCRBE OxlO /* Retry bus errors (selection timeouts, etc) */

/* SCSI commands */
'define SC_READY
'define SC_REZERO
'define SC_REWIND
'define SC_SENSE

OxOO
OxOl
OxOl
Ox03

'define SC_FORMAT Ox04
'define SC_RDBLKLIM Ox05
'define SC_REASSIGN Ox07
'define SC_READ Ox08
'define SC_WRlTE
'define SC_SEEK

OxOA
OxOB

'define SC_WFM OxlO
'define SC_SPACE Oxll
'define SC_INQUIRY Ox12
'define SC_SELMODE Ox15
'define SC_RESERVE Ox16
'define SC_RELEASE Ox17
'define SC_ERASE Ox19
'define SC_SENMODE OxlA
'define SC_LOAD OxlB
'define SC_RDCAP Ox25
'define SC_VERIFY Ox2F

May 26, 1989

/* Test unit ready */
/* Rezero unit */
/* Rewind */
/* Request sense */
/* Format unit */
/* Read Block Limits - SEQ devices only */
/* Reassign blocks - Map Sector(s) */
/* Read */
/* Write */
/* Seek */
/* Write filemark */
/* Space blocks, filemarks, EOT */
/* Inquiry */
/* Mode select */
/* Reserve */
/* Release */
/* Erase */
/* Mode sense */
/* Load/Unload & Start/Stop Device */
/* Read capacity */
/* Verify the disk surface */

C-9

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-10

/. Put these into byte4 of scdb for the SC_SPACE command to tell it what ./
/. to search for .• /
Idefine BLOCK OxO
Idefine SFM Oxl
Idefine SQFM Ox2
Idefine PEOM Ox3

/. Put these into byte4 of scdb for the SC_LOAD command to tell it what ./
/. to do. These are bit masks ... to not put them in is to do the opposite .• /
Idefine LOAD Oxl
Idefine RETEN Ox2

/
• SCSI structures
••• ***/

/. MODE SELECT parameter list */
typedef struct {

byte by teO;
byte medium_type;
byte byte2;
byte blk_des_len;
byte density_code;
byte nblk[3];
byte byteS;
byte blklen[3];
byte vend_uniq[50];

typedef struct {
byte page_code;
byte page_length;
word xfer_rate; /.
byte nheads; /.
byte spt; /.
word nbps; /.
word ncyls; /.
word s_wpre; /.
word s_rwc; /*
word dsr; /*
byte dspw; /*
byte hd_st_dly; /.
byte on_dly; /.
byte off __ dly; /.
byte trdy; /.
byte hd_ld_dly; /.
byte ssn_sO; /.

/* Reserved */
/* Medium type ./
/* Reserved */
/* Block descriptor length */
/* Density code */
/. Number of blocks (MSB) - (LSB) */
/* Reserved ./
/* Block length (MSB) - (LSB) */
/* Vendor Unique parameter bytes */

Transfer rate ./
Number of heads */
Sectors per Track */
Number of bytes per sector */
Number of cylinders */
Starting cylinder - write precomp ./
Starting cylinder - reduced write current
Drive Step Rate */

Drive Step Pulse Width */
Head Settle Delay */
Motor On Delay */

Motor Off Delay ./
Drive Provides a True Ready Signal ./
Head Load Delay ./
Starting Sector It Side Zero ./

*/

May 26, 1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

1* Starting Sector " Side One *1

byte
byte
byte
byte
byte

} page_20;

page_code;
page_length;
post_index;
inter_sector;
tverify;
tsteps;
resvO;
resvl;

1*
1*
1*
1*
1*
1*

1* Reassign blocks
typedef struct {

defect list *1

byte resvO;
byte resvl;

Inter Sector Gap *1
Seek Verification *1
Steps Per Track *1
Reserved set to OH *1
Reserved set to OH *1

word dll; 1* Defect List Length *1
dword lba; 1* Defect Logical Block Address *1

} defect_list;

1* READ CAPACITY data
typedef struct {

list *1

byte nblk[4] ;
byte blklen[4];

} read_cap;

1* INQUIRY Data *1
typedef struct {

byte dtype;
byte rmb_dtq;
byte version;
byte byte3;
byte add_len;

1* Logical block address *1
1* Block length *1

byte vend_uniq[41]; 1* This could be a MAX of 507 *1
} in~data;

1* Read Block Limits Data *1
typedef struct {

byte .byteO;
byte mxblklen[3];
byte mnblklen[2];

} blk_lim;

May26,1989 C-11

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-12

/**
* Structures used internally by the driver
*************-*************************~**********************/

typedef struct {
byte id; /* SCSI target ID */
byte unit; /* Target unit number for this device */

} target;

/* This structure holds the size and offset in blocks
* for each logical disk on a hard disk
*/

typedef struct {
dword nblocks; /* Number of blocks */
dword blkoff; /* Block offset */

} sizes;

/* Device parameters */
typedef struct {

dword blklen; /* Block length */
dword nblk; /* Number of blocks */

} devJ)aram;

/***
* Adaptor command parameter structures
*/

typedef struct {
word
word
word
word
word
word
dword
dword
byte
byte
byte
byte
dword
dword
dword
ciword
dword
ciword
dword
dword
dword

max_scsi_buf_size;
scsiJ)ad;
acti ve_cmds;
max_qblocks;
min_qblocks;
buf_threshold;
prealloc_threshold;
bytesJ)er_req;
dutycycle;
sortlimit;
retryalg;
nack_count;
num_nxt_frag;
num_mint;
wrtsJ)refetched;
wrts_notJ)refetched;
mb_queue_empty;
dtr_sorted;
dtr_combined;
sort_reached;
prealloc_buf_in_use;

May 26, 1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

word
word

nO_Qblocks_for_cmd;
no_buffer;

} set_tuning_tab;

/* Set Board Parameter flag bits */
#define DIS OxOl /* set c Report parity errors on SCSI bus */
#define PAR Ox02 /* set Allow disconnect/reselect in SCSI

operation */

/* Set Unit Parameter flag bits */
#define SYN OxOl /* enable synchronous transfers to SCSI device */
#define INH Ox02 /* inhibit disconnect */
#define ATN Ox04
#define SRT Ox08
#define CMB OxlO
#define RAH Ox20

/* inhibit attention during select */
/* enable command sorting */

/* enable command combining */
/* enable read ahead */

/* Command codes for ioctl() calls */
#define RFIOC ('r'«8)
#define RFIOCODEBUG (RFIOCIOxOl)
#define RFIOCSDEBUG (RFIOCIOx02)
#define RFIOCSFM (RFIOCIOx04)
#define RFIOCWFM (RFIOCIOx05)
#define RFIOCREWIND (RFIOCIOx06)
#define RFIOCFMT (RFIOCIOx07)
#define RFIOCGSTAT (RFIOCIOx08)
#define RFIOCIDENT (RFIOCIOx09)
#define RFIOCANY (RFIOCI OxOA)
#define RFIOCRDCAP (RFIOCI OxOB)
#define RFIOCMAP (RFIOCI OxOC)
#define RFIOCVFY (RFIOCIOxOD)
#define RFIOCGPART (RFIOCIOxOE)
#define RFIOCSPART (RFIOCIOxOF)
#define RFIOCGTARGET(RFIOCIOxlO)
#define RFIOCERASE (RFIOCIOxll)
#define RFIOCRETEN (RFIOCIOxl2)
#define RFIOCLOAD (RFIOCIOxl3)
#define RFIOCUNLOAD (RFIOCIOxl4)

struct dk_mapr {
dword dkm_blkno;
dword dkm_nblk;

} ;

struct dk_vfy {
dword dkv_blkno;
word dkv_nblk;
dword dkv_error;

May 26, 1989

/* Get driver debug level */

/* Set driver debug level */
/* Search tile mark * /
/* Write file mark */
/* Rewind */
/* Format drive */

/* Get RF3500 statistics */
/* Identify */
/* Any SCSI command */
/* Read capacity */
/* Map sectors */
/* Verify sectors */

/* Get the partition information */
/* Set the partition information */

/* Get the target id & lun for dev */
/* Erase the tape */
/* Retension the tape */

/* Load the media */

/* Unload the media */

/* The starting block to map */
/* How many blocks to map */

/* The starting block to verify */
/* How many blocks to verify */
/* The error code returned by verify */

C-13

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-14

dword dkv_badblock;
} ;

#define EE_SCSIERR Ox23
#define ERR_MULTIPLE OxOE
#define EE_RECSMAL Ox3D
#define EE_FRMERR Ox80

1* SCSI status (only relevent
#define CHECK_COND Ox02
#define RESV_CONF Ox18
#define STATMASK OxlE

#define FM Ox80
#define ILl Ox20
#define EOM Ox40

#define NOSENSE OxOO
#define RECOVERED OxOl
#define UNIT_ATTEN Ox06
#define PROTECTED Ox07
#define BLANK Ox08
#define MISCOMPARE OxOE
#define SENSEMASK OxOF

#define AV Ox80 1*

#define SEL_TIMEOUT 10 1*

1* Where the verify failed. *1

1* SCSI returned bad status *1
1* multiple errors *1
1* actual read smaller than count field *1
1* 80H and above are firmware errors *1

bits are defined) *1
1* Check condition *1
1* Reservation conflict *1
1* Status mask *1

1* file mark *1
1* illegal length indicator *1
1* end of media *1

1* No sense? *1
1* Recovered error *1
1* Unit attention *1
1* Data Protected *1
1* Blank check *1
1* Data Verify failed *1
1* Sense mask *1

Valid information *1

SCSI selection timeout *1

1* Defines for operations that this driver can do. *1
1* These may apply across device types or be device type specific. *1
1* These defines appear in the various *ops[] arrays. *1
#define NOOPN_RDCAP OxOOOOOl 1* Do Not issue Read Capacity at open() */
#define NOOPN_MDSEL Ox000002 1* Do Not issue Mode Select at open() call. */
#define ONEFILEMARK Ox000004
time *1
#define GEN_MODE Ox000008

#define NORESERVE Ox000010

1* Tape drive can only write 1 filemark at a

1* Tape drive has "modes" of operations: */
1* Add this if you can only do certain */
1* commands (i.e., MODE SELECT) when the */
1* drive is in "general" mode *1
1* (in contrast to "read" or "write" mode*1
1* Don't do Reserve & Release commands */

May26,1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

C.2.S rfdrlver.c

/ •••••••••••••••••• ~ ••••• *****.* •• * •• ~* ••• * ••• ** •••••••• * •• **/
/. */
/* IFX device driver for RIMFIRE 2500 disk/diskette adapter */
/* ./
/ •••••••••• *** ••• * ••••••• ** ••• ** ••• *** ••• ** ••• ** •••• * •• *** ••• /

#include "compiler.h"
#include "vrtxvisi.h"
#include "ifxvisi.old"
#include "ifxr2500.h"
#include "rf2500.h"
#define FAR _far
#define FILl short int fillerl

extern int rfInit ();
extern int rFloppyInit();
extern int rfWrite();
extern int rfRead();

Rimfire2500DiskDCB rfdcb;
BDINFO board_info;
UNS_MSG uns_buf;
BRQ_MSG brQ_buf;
dev-param flpdiskparm;
char iobuf[MEMSIZE);
char .driver_mbox;

/. Parameter list ./
typedef union
{ struct {unsigned int sector_size;

unsigned int sectors_per_track;
unsigned int tracks-per_cylinder;
unsigned int total_cylinders;
long total_sectors;

} ul;
struct { long starting_sector;

char ·buffer;
FILl;
long number_of_sectors;
long ·act_count;

} u2;
struct { int opcode;

int cylinder;
int track;

} u3;
struct { int opcode;

I FXGEOMETRY *geometry;

May26,1989

/. sectors per track */
/. tracks per cylinder */
/* total cylinders */

C-1S

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-16

} u4;
} PL;
/*+ Rimfire2500Driver ___________________________________ a= __ ~ __ ==~_==

Description: This is a driver for a floppy diskette controlled by a
a RIMFIRE 2500 adapter.

Input: opcode
dcb
pl

- Pointer to the IFXDCB structure.
- Pointer to a parameter list containing

opcode specific parameters.
__ aa _____ ac _____ = -*/

int Rimfire2500Driver(opcode, dcb, pl)
int opcode;
IFXDCB *dcb;
PL *pl;
{

int err, err2, strt_sect, sect_size, sect_num;
long num_bytes, offset;
IFXGEOMETRY *dc;
Rimfire2500DiskDCB *r;
long actual;

sc-pend(&driver_mbox, OL, &err2);
if (err2) return err2;

1* Perform operation according to opcode */
if (opcode !- IFXFINSTALL)

r - (Rimfire2500DiskDCB *) dcb->dt;
err - RET_OK;
switch (opcode)
{

case IFXFINSTALL: /* Install device */
rfdcb.flp_struc.sector_size - pl->ul.sector_size;
rfdcb.flp_struc.sectors-per_track = pl->ul.sectors-per_track;
rfdcb.flp_struc.traeks-per_cylinder - pl->ul.tracks_per_cylinder;
rfdcb.flp_struc.total_cylinders = pl->ul.total_cylinders;
rfdcb.flp_struc.total_sectors = pl->ul.total_sectors;
dcb->device_type - IFXDDISK;
dcb->dt - (char *)&rfdcb;
err - RET_OK;
err - rflni t () ;
if (err -- RET_OK)

err - rfFloppyInit();
if (err !- RET_OK)

err - I FXEIOERR ;
break;

May26,1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

case IFXFREADS: 1* Read sectors *1
case IFXFWRITES: 1* Write sectors *1

strt_sect m pl->u2.starting_sector;
sect_size - r->flp_struc.sector_size;
sect_num - pl->u2.number_of_sectors;
if (strt_sect < OL II strt_sect > r->flp_struc.total_sectors)
{ err - IFXEBADPOSN;

break;
}
if «sect_num <= 0) I I

(strt_sect + sect_num > r->flp_struc.total~sectors»
{ err - IFXEBADXFERCT;

break;
}
offset - (sect_size * strt_sect) I flpdiskparm.blklen;
num_bytes - sect_size * sect_num;
if (opcode -= IFXFREADS)

err - rfRead (offset, num_bytes, pl->u2. buffer , &actual);
else

err - rfWrite (offset, num_bytes, pl->u2.buffer, &actual);
*pl->u2.act_count - actual/sect_size;
break;

case IFXFREMOVE:
err - RET_OK;
break;

1* Remove device *1

case IFXFIOCTL: 1* I/O control operation *1
switch (pl->u3.opcode)
{

case IFXOOOEOM: 1* Get disk geometry *1
dc - ~l->u4.geometry;

dc->sector_size = r->flp_struc.sector_size;
dc->sectors-per_track = r->flp_struc.sectors_per_track;
dc->tracks_per_cylinder -

r->flp_struc.tracks-per_cylinder;

May 26, 1989

dc->total_cylinders - r->flp_struc.total_cylinders;
dc->total_sectors - r->flp_struc.total_sectors;
err - RET_OK;
break;

case IFXOFMTTRK: 1* Format track *1
if (pl->u3.cylinder -- 0 && pl->u3.track -= 0)

err - rfCntl(pl->u3.opcode,pl);
break;

case IFXODISCIN:
case IFXODISCOUT:
case IFXOFLUSHOUT:

1* Discard input buffers *1
1* Discard output buffers *1
1* Flush "dirty" buffers *1

C-17

Sample 386 Device Driver IFX Device Driver Developer's Guide

}

}

case IFXFACANCEL:
err - RET_OK;
break;

/* Cancel asynchronous operation */

default: /* Unimplemented control operation */
err - IFXENOTIMP;
break;

}
break;

default:
err - IFXENOTIMP;
break;

/* Unimplemented function code */

SC-post(&driver_mbox, (char *)1, &err2);
if (err2)

err - err2;
return err; /* Return status code to IFX */

C.2.6 rferror.c

C-18

/**/
/* rferror(): Reads the RIMFIRE status message, */
/* and generates the error code. */
1**/

#include "compiler.h"
#include "vrtxvisi.h"
#include "rf2500.hlt
extern void mpc_recv_uns();

int rferror()
{

int err;
PSM status_msg, *psmp;

psmp - &status_msg;
mpc_recv_uns (pSmp,UNS_STD_LEN);
err - psmp->error & Ox3F;

if (err !- RET_OK)
{ printf(ItPeripheral Status Message:\n");

printf(ItProtoId %x\t Error %x\n lt , psmp->protoid, psmp->error);
printf(ItRetries %x\t SCSI St %x\n", psmp->retries, psmp->scsi_status);
printf("Status %x\t ClassCd %x\n", psmp->status_type,

psmp->class_code);
printf(ItSegment %x\t SCSI FI
printf(ltinfob3 %x\t infob4

%x\n lt , psmp->segment, psmp->scsi_flags);
%x\n", psmp->infob3, psmp->infob4);

May 26, 1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

}

printf(lIinfob5 'l.x\t infob6 'l.x\n" , psmp->infob5, psmp->infob6);
printf("exlen 'l.x\t extra 'l.x\n", psmp->exlen, psmp->extra[O);

}
if (err .- EE_SCSIERR.)

if «psmp->scsi_status & STATMASK) -- CHECK_CONO)
err = psmp->class_code;

return err;

C.2.7 rtbrqerr.c

/ .. /
/. rfbrqerr(): Checks the status accompanied to the ./
/. accepted buffer request message. ./
/ .. /

#include "compiler.h tl

#include "vrtxvisi.h"
#include "rf2500.h"

int rfbrqerr(brqp)
RCV_BRQ· ·brqp;
{

int err;

err ... brqp->error & Ox3F;

if (err !- RET_OK)
{ printf("Buffer ReQuest Status Message:\n");

printf("ProtoId 'l.x\t Error 'l.x\n", brqp->protoid, brqp->error);
printf("Retries 'l.x\t SCSI St 'l.x\n", brqp->retries, brqp->scsi_status);
printf("Status 'l.x\t ClassCd 'l.x\n", brqp->status_type,

brqp->class_code);

}

}

printf("Segment 'l.x\t SCSI Fl 'l.x\n", brqp->segment, brqp->scsi_flags);
printf("infob3 'l.x\t infob4 'l.x\n", brqp->infob3, brqp->infob4);
printf(lIinfob5 'l.x\t infob6 'l.x\n" , brqp->infob5, brqp->infob6);
printf (llexlen 'l.x\n", brqp->exlen);

if (err -- EE_SCSIERR)
if «brqp->scsi_status & STATMASK) -- CHECK_CONO)

err ... brqp->class_code;
return err;

May 26, 1989 C-19

Sample 386 Device Driver IFX Device Driver Developer's Guide

C.2.8 rfin/t.e

/**/
/* */
/* rfinit() - Rimfire 2500 initialization routine */
/* */
/**/

#include "compiler.h"
#include "vrtxvisi.h"
#include "ifxvisi.old"
#include "rf2500.h"

extern int ics_read();
extern void ics_write();
extern void mpc_init();
extern void adma_init();
extern int mpc_send_uns () ;
extern void rfmkuns();
extern int rferror();
extern BDINFO board_info;
extern UNS_MSG uns_buf;
static int disco .. 0;

/* how long (looping) until controller reset should complete */
#define MAXWAIT (16000) /* wait few seconds */

int rfInit ()
{

unsigned int
int
char
unsigned char

slot .. SLOT_NO;
mpc_ini t () ;
adma_ini t () ;

slot, reg;
tmp, i, rec, timer, err;
hwver[5] , fwver[6] , fwasm[lO];
fwdate[9] ;

/* Now let's see if it passed BIST. */
if (ics_read(slot, HD_SUP_LEVEL) <= 0)

return (IFXEDVNTFOUND);
/* What support level? */

C-20

/* Get the slave status register. */
timer .. MAXWAIT;
do
{ tmp .. ics_~ead(slot, HD_SLV_STATUS);

if «tmp & SS_IN_PROGRESS) !- SS_IN_PROGRESS)
break;

} while (--timer); /* wait for BIST to complete */

May 26, 1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

if (tmp)
return (IFXEDVNTREADY);

/* Check the master status. */
tmp .. ics_read(slot, HD_MSTR_STATUS);
if «tmp & Ox3F) !E HD_MS_REBOOT)

return (IFXEDVNTREADY);

/* Check the general status. */
board_info.bd_udf_ree = UD_REC;
rec .. board_info.bd_udf_ree;
if (ics_read(slot,ree) != UNIT_DEF_RECORD)

return (IFXEDVNTREADY);
if (ies_read(slot, ree + UD_GEN_STATUS) != UDGS_POR_COMPLETE)

return (IFXEDVNTREADY);

/* Then, print out the revision levels. */
/* First, the Hardware Version. */
for (i - 0; i < 4; i++)

hwver[i] ~ ies_read(slot, ree + i + 14);
hwv"er[4] ... '\0';
/* Secondly the Firmware Version. */
ree .. FIRM_REC;
if (ics_read(slot,ree) != FIRMWARE_RECORD)

return (IFXEDVNTREADY);
for (i .. 0; i < 5; i++)

fwver[i] .. ics_read(slot, ree + i + 9);
fwver[5] .. '\0';
/* Read the Firmware Assembly # */
for (i = 0; i < 8; i += 2)
{ tmp .. ics_read(slot, ree + (i»l) + 2);

fwasm[i] .. «(tmp >~ 4) & OxF) + '0');
fwasm[i+1] .. «tmp & OxF) + '0');

}
fwasm[8] .. '\0';
/* Read the Firmware Date */

for (i - 0; i < 9; i += 3)
{ tmp .. ics_read(slot, ree + (i/3) + 6);

fwdate[i] .. «(tmp» 4) & OxF) + '0');
fwdate[i+1] ... «tmp & OxF) + '0');

}
fwdate[2] ... fwdate[5] .. 'I';
fwdate[8] .. '\0';

/* Now, initialize the board. */
reg - board_info.bd_udf_rec + UD_CTLR_INIT;
tmp - ics_read(slot. reg};
board_info.bd_hostid_ree = HID_REC;
rec - board_info.bd_hostid_ree;

May26,1989 C-21

Sample 386 Device Driver ; IFX Device Driver Developer's Guide

}

C-22

if (ics_read(slot,rec) !- HOST_ID_RECORD)
return (IFXED~ADY);

if (tmp -- 0) /* ID's are Initialized ... */
{

}
else

reg - board_info.bd_udf_rec + UD_PORTID;
board_info.port_id - ics_read(slot, reg+l) « 8;
board_info.port_id 1= ics_read(slot, reg);
reg - board_info.bd_hostid_rec + HID_HOSTID;
board_info.host_id = ~cs_read(slot, reg+l) « 8;
board_info.host_id 1- ics_read(slot, reg);

{ reg - board_info.bd_hostid_rec + HID_HOSTID;
ics_write(slot, reg, RF2500_HOST_ID & OxFF);
ics_write(slot, reg+l, (RF2500_HOST_ID» 8) & OxFF);
board_info.host_id - RF2500_HOST_ID;

}

reg - board_info.bd_udf_rec + UD_PORTID;
ics_write(slot, reg, RF2500_PORT_ID & OxFF);
ics_write(slot, reg+l, (RF2500_PORT_ID» 8) & OxFF);
board_info.port_id - RF2500_PORT_ID;

/* initialize the adaptor itself */
bzero«char *)&uns_buf, sizeof(UNS_MSG»;
uns_buf.cmd_buf.adpcm.targetid = RF2500_ID;
uns_buf.cmd_buf.adpcm.tbd[l] - OWN_ID;
uns_buf.cmd_buf.adpcm.tbd[2] - DSC_PAR;
uns_buf.cmd_buf.adpcm.cmd - AD_INITP;
rfmkuns (UNS_TYPE);
err - mpc_send_uns(&uns_buf,UNS_STD_LEN);
if (err -- RET_OK)

err - rferror();
if (err !- RET_OK)

return (err);

/* Check the general status register. */
tmp - ics_read(slot, board_info.bd_udf_rec + UD_GEN_STATUS);
if (tmp !- UDGS_INIT_COMPLETE)

return (IFXEDVNTREADY);

timer - 1000000L;
while (timer--); /* Give the devices some time to reset themselves. */
return (RET_OK);

May 26, 1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

C.2.9 rtlpln/t.e

/*************************************~************/

/* */
/* rfFloppyInit(): Initializes the floppy device. */
/* */
/**/

'include "compiler. h"
'include "vrtxvisi.h"
'include "ifxvisi.old"
'include "rf2S00.h"

extern UNS_MSG uns_buf;
extern BRQ_MSG brCLbuf;
extern dev-param flpdiskparm;
extern char iobuf[MEMSIZE];
extern void rfmkuns();
extern int rferror();
extern int rfbrQerr () ;
extern int mpc_send_uns () ;
extern int send_dataO;
extern int recv_dataO;

int rfFloppyInit ()
{

register char *bp;
register int datalen, bsize, nblk, err;
register int write-prot;
mode_sel *ms;
page_5 *p5;
page_20 *p20;
read_cap *rc;
inCLdata *inQdat;

bp - &iobuf [0] ;
write-prot - 0; /* Assume not write protected. */

/* Issue a 'test unit ready' cmd to check if the eevibO is present */
bzero«char *)&uns_buf, sizeof(UNS_MSG»;
uns_buf.cmd_buf.scpcm.scb[O] = Se_READY;
uns_buf.cmd_buf.scpcm.targetid ... FLP_TARGET;
uns_buf.cmd_buf.scpcm.scb[l] ... FLP_DEV«5;
rfmkuns (UNS_TYPE);
err - mpc_send_uns(&uns_buf,UNS_STD_LEN);
if (err 0)

err - rferror();
if (err !- RET_OK)

return (err);

May 26, 1989 C-23

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-24

/* Issue an 'Inquiry' command. */
bzero«char *)&uns_buf, sizeofCUNS_MSG»;
datalen - sizeof (in~data);
uns_buf.cmd_buf.scpcm.targetid ~ FLP_TARGET;
uns_buf.cmd_buf.scpcm.scb[O] - SC_INQUIRY;
uns_buf.cmd_buf.scpcm.scb[1] - FLP_DEV«S;
uns_buf.cmd_buf.scpcm.scb[4] ~ datalen;
inqdat - Cin~data *) bp;
bzero«char *) inqdat, datalen);
rfmkuns (UNS_TYPE);
err - recv_datac&uns_buf,UNS_STD_LEN,bp,datalen);
if (err -- 0)

err - rfbrqerr(&uns_buf);
if (err !- RET_OK)

return (err);

/* Issue 'mode select' command */
bzero«char *)&br~buf, sizeofCBRQ_MSG»;
br~buf.cmd_buf.scpcm.targetid - FLP_TARGET;
br~buf.cmd_buf.scpcm.scb[O] - SC_SELMODE;
br~buf.cmd_buf.scpcm.scb[1] = FLP_DEV«S;
brq_buf.cmd_buf.scpcm.scb[4] = 44;
ms - (mode_sel *)bp;
bzero«char *)ms, sizeofcmode_sel»;
ms->medium_type - FLP_TYPE;
ms->blk_des_len - 8;
ms->density_code - 0;
ms->nblk[O] - 0; /* zero - all the blocks */
ms->nblk[1] - 0;
ms->nblk[2] - 0;
ms->blklen[O] - BYTE2(FLP_BLKSIZE);
ms->blklen[1] - BYTE1(FLP_BLKSlZE);
ms->blklen[2] - BYTEO(FLP_BLKSIZE);

/* Page 5H - floppy disk configuration */
pS - (page_5 *)ms->vend_uniq;
bzero«char *)pS, sizeof(~age_S»;
p5->page_code - S;
pS->page_length - 22; /* Don't count length or code. */
p5->dsr - SWAB(3000);
p5->hd_st_dly - 1;
p5->on_dly - 10;
p5->off_dly - 40;
p5->hd_ld_dly - 1;
p5->xfer_rate - SWAB(Ox1F4); /* 500 Kbit/s */
p5->nheads - 2;
p5->nbps - SWAB(FLP_BLKSIZE);

May 26, 1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

pS->spt - 1S; /* AT compatible. */
pS->ncyls c SWAB (80) ;
pS->s_wpre ~ SWAB(2SS);
pS->s_rwc c SWAB(2SS);
pS->ssn_sO 1;
pS->ssn_s1 = 1;

/* Page 20H - Vendor unique */
/* Start page 20 at the end of the page S. */
p20 - (page_20 *)&pS[11;
bzero«char *)p20, sizeof(page_20»;
p20->page_code - Ox20; /* Fixed Value */
p20->page_Iength - 6; /* Fixed Value */
p20->post_index - 0; /* If default is 0, length is 32 bytes

(single density) or 62 bytes (double density) */
p20->inter_sector = 0; /* If default is 0, length is 33 bytes

(single density) or 63 bytes (double density) */
p20->tverify c 0; /* Setting 0 to 1 causes adapter to verify. seeks */
p20->tsteps - 1; /* Setting 1 causes adapter to read 96 TPI drive.

The tsteps value mutiplied by the number of cylinders

(set in page_S) must be less than' 2S4 */
rfmkuns (BRQ_TYPE);
err - send_data(&brq_buf,UNS_STD_LEN,bp, 44) ;
if (err ;... 0)

err - rferror();
if (err != RET_OK)

return (err);

/* First, let's get the mode sense information. */
bzero«char *)&uns_buf, sizeof(UNS_MSG»;
datalen = sizeof(mode_sel);
ms - (mode_sel *)bp;
uns_buf.cmd_buf.scpcm.targetid = FLP_TARGET;
uns_buf.cmd_buf.scpcm.scb[O] c SC_SENMODE;
uns_buf.cmd_buf.scpcm.scb[11 = FLP_DEV«S;
uns_buf.cmd_buf.scpcm.scb[41 datalen;
bzero«char *)ms, datalen);
rfmkuns (UNS_TYPE);
err - recv_data(&uns_buf,UNS_STD_LEN,bp,datalen);
if (err -- 0)

err - rfbrqerr(&uns_buf);
if (err != RET_OK)

return (err);

write-prot = (ms->byte2 & Ox80);
/* Get the block size in case there is one */

bsize - 0;

May26,1989 C-2S

Sample 386 Device Driver IFX Device Driver Developer's Guide

}

C-26

bsize - (ms->blklen[O] «16) (ms->blklen[l]« 8)(ms->blklen[2]);
nblk - 0;
nblk - (ms->nblk[O] « 16) (ms->nblk[l]« 8) I (ms->nblk[2]);
if (bsize -- 0)

return IFXEBADBFSIZE;
flpdiskparm.nblk - nblk;
flpdiskparm.blklen - bsize;

/* Issue 'read capacity' command */
bzero«char *)&uns_buf, sizeof(UNS_MSG»;
datalen - sizeof (read_cap);
uns_buf.cmd_buf.scpcm.targetid - FLP_TARGET;
uns_buf.cmd_buf.scpcm.scb[O] - SC_RDCAP;
uns_buf.cmd_buf.scpcm.scb[l] - FLP_DEV«5;
rc - (read_cap *)bp;
bzero«char *)rc, datalen);
rfmkuns (UNS_TYPE);
err - recv_data(&uns_buf,UNS_STD_LEN,bp,datalen);
if (err -- 0)

err - rfbrqerr(&uns_buf);
if (err !- RET_OK)

return (err);

flpdiskparm.nblk - (rc->nblk[O] « 24)
(rc->nblk[l] « 16)
(rc->nblk[2] « 8)
(rc->nblk[3]);

flpdiskparm.nblk++;
flpdiskparm.blklen -

(rc->blklen[O] «24) I (rc->blklen[l] « 16)
I (rc->blklen[2]« 8) I (rc->blklen[3]);

if (bsize -- 0)
return IFXEBADBFSIZE;

/* NOW ... test for floppy existence by doing a rezero. */
bzero«char *)&uns_buf, sizeof(UNS_MSG»;
uns_buf . cmd_buf . scpcm. targetid - FLP _TARGET-;
uns_buf.cmd_buf.scpcm.scb[O] - SC_REZERO;
uns_buf.cmd_buf.scpcm.scb[l] - FLP_DEV«5;
rfmkuns (UNS_TYPE);
err - mpc_send_uns(&uns_buf,UNS_STD_LEN);
if (err -- 0)

err - rferror();
if (err !- RET_OK)

return (err);

/* Open is successful */
return (RET_OK);

May26,1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

C.2.10 rlread.c

/***/
/* rfread(): Reads sectors from the floppy device. */
/***/

#include "compiler.h"
#include "vrtxvi~i.h"
#include "ifxvisLold"
#include "rf2500.h"
extern void rfmkuns();
extern int rferror();
extern int recv_data();
extern UNS_MSG uns_buf;
extern dev-param flpdiskparm;

int rfRead(strt_sect,count_bytes,iobuf,actual)
int strt_sect, count_bytes;
char *iobuf;
int *actual;
{

dword blklen;
int err;

*actual - 0;
blklen - flpdiskparm.blklen;
bzero«char *)&Uns_buf, sizeof(UNS_MSG»;
uns_buf.cmd_buf.scpcm.targetid m FLP_TARGET;
uns_buf.cmd_buf.scpcm.scb(O] = Se_READ;
uns_buf.cmd_buf.scpcm.scb(l] - (FLP_DEV«5 I (BYTE2(strt_sect) & OxlF»;
uns_buf.cmd_buf.scpcm.scb[2] = BYTE1(strt_sect);
uns_buf.cmd_buf.scpcm.scb(3) - BYTEO(strt_sect);
uns_buf.cmd_buf.scpcm.scb(4) - count_bytes / blklen;

}

rfmkuns (UNS_TYPE);
err - recv_data(&uns_buf,UNS_STD_LEN,iobuf,count_bytes);
if (err -- RET_OK)

err - rfbrqerr(&uns_buf);
if (err -- RET_OK)

-actual - count_bytes; .
else err - IFXEIOERR;

return (err);

May 26, 1989 C-27

Sample 386 Device Driver IFX Device Driver Deve/oper's Guide

C.2.11 rfwrite.c

C-28

1***1
1* rfwrite(): Writes sectors to the floppy device. *1
1***1

#include "compiler.h"
#include "vrtxvisi.h"
#include "ifxvisi.old"
#include "rf2500.h"
extern void rfmkuns();
extern int rferror();
extern int send_data();
extern BRQ_MSG br~buf;

extern dev-param flpdiskparm;

int rfWrite(strt_sect,count_bytes,iobuf,actual)
int strt_sect, count_bytes;
char *iobuf;
int *actual;
{

dword blklen;
int err;

*actual - 0;
blklen - flpdiskparm.blklen;
bzero«char *)&br~buf, sizeof(BRQ_MSG»;
br~buf.cmd_buf.scpcm.targetid = FLP_TARGET;
br~buf.cmd_buf.scpcm.scb[Ol = SC_WRlTE;
br~buf.cmd_buf.scpcm.scb[ll = (FLP_DEV«5 I (BYTE2(strt_sect) & OxlF»);
br~buf.cmd_buf.scpcm.scb[2] = BYTE1(strt_sect);
brq_buf.cmd_buf.scpcm.scb[3] - BYTEO(strt_sect);
br~buf.cmd_buf.scpcm.scb[41 = count_bytes I blklen;
rfmkuns (BRQ_TYPE);
err - send_data(&br~buf,UNS_STD_LEN,iobuf,count_bytes);

if (err - RET_OK) .
err - rferror();

if (err - RET_OK)
*actual - count_bytes;
else err. IFXEIOERR;

return (err);
}

May 26, 1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

C.2.12 rfcntl.c

/*************************************~************************/

/* rfcntl(): Several control operations on the floppy device. */
/**/

#include "compiler.h"
#include "vrtxvisi.h"
#include "ifxvisi.old"
#include "rf2500.h"
extern void rfmkuns();
extern int rferror();
extern int rfbrqerr();
extern int mpc_send_uns();
extern UNS_MSG uns_buf;

int rfCntl(opcode,pl)
int opcode;
char *pl;
{

}

int err;
switch (opcode)
{

}

case IFXOFMTTRK: /* Format track */
bzero«char *)&uns_buf, sizeof(UNS_MSG»;
uns_buf.cmd_buf.scpcm.scb[O] ~ SC_FORMAT;
uns_buf.cmd_buf.scpcm.targetid ~ FLP_TARGET;
uns_buf.cmd_buf.scpcm.scb[l] = FLP_DEV«5;
rfmkuns (UNS_TYPE);
err ~ mpc_send_uns(&uns_buf,UNS_STD_LEN);
if (err == RET_OK)

err = rferror();
if (err != RET_OK)

err ~ IFXEIOERR;
break;

default:
err - IFXENOTIMP;
break;

return err; /* Return status code to IFX */

May26,1989 C-29

Sample 386 Device Driver IFX Device Driver Developer's Guide

C.2.13 rfmkuns.c

C-30

1···············*········*·*·········***··*··***····**I
I· rfmkuns(type): *1 I· Construct one of the 2 unsolicited message types, *1
1* according to the 'type' parameter. *1
1* *1
1·······*····*··_·*·*·**·*··*·_····********·**··*· __ ·*I
#include "rf2500.h"
extern UNS_MSG uns_buf;
extern BRQ_MSG brq_buf;
extern BOINFO board_info;
int trnsc_no ~ 0;

void rfmkuns (type)
char type;
{

trnsc_no + ... 1;
if (trnsc_no -= 256)

trnsc_no ... 1;
if (type -= OxOO)
{ uns_buf.dst_addr - RF2500_HOST_IO;

uns_buf.src_addr CPU_HOST_IO;
uns_buf.msg_type ... type;
uns_buf.prot_id ... Ox02;
uns_buf.tx_ctl = 0;
uns_buf.dst-port ... (board_info.host_id « 8) + board_info.port_id;
uns_buf.src-port - CPU_PORT_IO;

}

uns_buf.trnsc_id = trnsc_no;
uns_buf.trnsc_ctl ... OxOl;
uns_buf.protoid ... RF2500_PROTOIO;

}
else

... RF2500_HOST_IO;

.. CPU_HOST_ID;

... type;
- 0;
== Ox02;
... 0;

{ brq_buf.dst_addr
br~buf.src_addr

brq_buf.msg_type
br~buf.liaison

brq_buf.prot_id
br~buf.tx_ct'l

brq_buf.dst-port
brq_buf.src-port
brq_buf.trnsc_id
br~buf.trnsc_ctl

br~buf.protoid

(board_info.host id « 8) + board_info.port_id;
= CPU_PORT_ID;
.. trnsc_no;
.. OxOl;
... RF2500_PROTOIO;

}

May 26,1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

C.3 MBII Level Services

This section contains MBII low-level service routines. In order to provide simple
services that can be tested easily, these services work in a polling mode.

C.3.1 mpc.lnc

; contents: mpc addresses, commands and specific message structures

;---
; MPC ports offsets:
MPC_MDATA EQU lOh
MPC_MCMD EQU lCh
MPC_MSTAT EQU OOh
MPC_MRST EQU OOh
MPC_MCTL EQU OCh
MPC_MERR EQU 14h
MPC_MSOCMP EQU 20h
MPC_MSICMP EQU 24h
MPC_MSOCAN EQU 20h
MPC_MS I CAN EQU 24h
MPC_MCON EQU 08h
MPC_MID EQU 04h
MPC_ICADRL EQU 30h
MPC_ICADRH EQU 34h
MPC_ICDATA EQU 3Ch

; identity of the participating agents
CPU_HOST_ID EQU Olh"
RF2S00_HOST_ID EQU OSh

; mpc commands
MPC_RESET EQU OOh MPC RESET-VALUE
MPC_TX_START EQU OOh MPC Start command
MPC_RET_OK EQU OOh
MPC_ERROR_RETRIEVER EQU OOh
MPC_RET_ERROR EQU Olh
MPC_RECV_DATA EQU 02h test value

; bit masks for the message status register MPC_MSTAT
MPC_INITDONE EQU 80h
MPC_SICMP EQU lOh
MPC_SOCMP EQU 08h
MPC_XMTERR EQU 04h
MPC_RCVNE EQU 02h
MPC_XMTNF EQU Olh

May 26, 1989 C-31

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-32

; bit definitions for the message control register MPC_MCTL
MPC_XMTIE EQU Olh
MPC_RCVIE EQU 02h
MPC_ERRIE EQU 04h
MPC_SOCIE EQU OSh
MPC_SICIE EQU lOh

; message types definitions
MPC_BROADCAST EQU Olh
MPC_UNSOLIClTED EQU OOh
MPC_BUFF_REQUEST EQU 24h
MPC_BUFF_GRANT EQU 3Sh

; Unsolicited message structure
unsol_msg STRUC

dst_id
src_id
msg_type
request_id
data
length_O_u
length_l_u
length_2_u
res_data_u

unsol_msg ENDS

DB
DB
DB
DB
DB
DB
DB
DB
DB

7
7
7
7
24 DUP (7)

7
7
7
7

; Sent Buffer Request message structure
buff_request_msg STRUC

dst_id_r DB 7
src_id_r DB 7
msg_type_r DB 7
request_id_r DB 7
res_data_r DB 7
length_O_r DB 7
length_l_r DB ?
length_2_r DB 7
data_r DB 24 DUP (7)

buff_request_msg ENDS

; Accepted Buffer Request message structure
buff_request_sts STRUC

dst_id_rs DB 7
src_id_rs DB 7
msg_type_rs DB 7
request_id_rs DB 7
res_data_rs DB 7
length_O_rs DB ?
length_l_rs DB ?
length_2_rs DB ?

May 26, 1989

IFX Device Driver Developer's Guide

prot_id_rs DB ?
tx_ctl_rs DB ?
dst.J)ort_rs DW ?

src.J)ort_rs DW ?
trnsc_id_rs DB ?
trnsc_ctl_rs DB ?
protoid_rs DB ?
error_rs DB ?
resvl_rs DB ?
resv2_rs DB ?
retries_rs DB ?
resv3_rs DB ?
scsi_status_rs DB ?
status_type_rs DB ?
class_code_rs DB ?
segment_rs DB ?
scsi_flags_rs DB ?
infob3_rs DB ?
infob4_rs DB ?
infob5_rs DB ?
infob6_rs DB ?
exlen_rs DB ?

buff_request_sts ENDS

; Buffer Grant message structure
buff_grant_msg STRUC

dst_idJ DB ?
src_idJ DB ?
msg_type_g DB ?

request_idJ DB ?
no t_used_g DB ?
liaison_idJ DB ?
duty_cycleJ DB ?
length_OJ DB ?

buffJrant_msg ENDS

; definitions of mpc_tx_status codes
MPC_TX_FREE EQU OOh; no transmission was active

Sample 386 Device Driver

MPC_TX_UNS EQU Olh; unsolicited message has been transmitted

May 26, 1989 C-33

Sample 386 Device Driver IFX Device Driver Developer's Guide

C.3.2 adma.lnc

;--

File: adma. inc

82258 - Advanced Direct Memory Access Coprocessor

Related Board iSBC 386/116

The channel assignement is the following:
Channel 2 solicited message input (MPC-IDREQ)
Channel 3 -- solicited message output (MPC-ODREQ)

Symbols for the adma_handler

;---

ADMA_IN_CHANNEL EQU 2
ADMA_OUT_CHANNEL EQU 3

; General Registers:
ADMA_GCR equ 0200h; General Command Register
ADMA_GSR equ 0204h; General Status Register
ADMA_GMR equ 0208h; General Mode Register
ADMA_GBR equ 020Ah; General Burst Register
ADMA_GDR equ 020Ch; General Delay Register

; Channel Registers:
ADMA_IN_CPRL equ 02AOh; Command Pointer Register Low for channel 2
ADMA_IN_CPRH equ 02A2h; Command Pointer Register.High for channel 2
ADMA_OUT_CPRL equ 02EOh; Command Pointer Register Low for channel 3
ADMA_OUT_CPRH equ 02E2h; Command Pointer Register High for channel 3
ADMA_IN_CSR equ 0290h;
ADMA_OUT_CSR equ 02DOh;

; Command Block Structure
adma_cmd_block struc

cmd dw ? ; type 1 command
src_addr dd ?
dest_addr dd ?
byte_count dd ?
status dw ?
stop dw ? type 2 command
stop_data_l ow ';

stop_data_2 dw ?
adma_cmd_block ends

C-34 May 26, 1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

C.3.3 mb2l1b.asm

· .. .
I •• t •• t • , ,t I , • t , t ••••• , " , I , , , , t I , t I • I I • ,t I ••• I , t , It' I •• " • t , t r

; This module contains basic multibus II operations.

,t t t • t t ••• I I • t. 1 , ••• I , t • , •• t I , t I , ••• t t • I ",. t , ,t , t •••• t , , , I , I I ,

.xlist
INCLUDE mpc.inc
INCLUDE vrtxvisi.inc
INCLUDE adma.inc
INCLUDE descrp.inc
.list

dseg segment para use32 public 'data'
assume ds:dseg

adma in_cmd adma cmd_block <>
adma_out_cmd adma_cmd_block <>
grant buff_grant_msg <>
endoftrns DD ?

dseg ends

cseg segment para use32 public 'code'
assume cs:cseg

public
public
public
public

ics_read, ics_write
mpc_init, mpc_send_uns, mpc_recv_uns
adma_init, adma_handler
send_data, recv_data

· ... '"
• • '" ""'" " •• ,"',. t t ., ••• " •• ,t t " ••••• t 't •• , , •• , , , t" t I Itt t • tIt' , I I •• ,

call from C: val K ics_read (slot, reg);
description: procedure which reads a target register through the

interconnect space.
input: slot = The target slot number.

reg - The target register number.
output: The required register content in register eax.

·
• ••••• , •• ""'" •• , • "" "" , , t t· "t t""" • " '" '" I "t •••• t • I I • I t I , I I • t ,

ics_read proc near

push ebp
mov ebp,esp
push ebx
mov eax, [ebp+08h]
shl eax, 11

May 26, 1989 C-35

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-36

mov ebx, [ebp+OCh]
shl ebx,2
add eax,ebx
pushfd
cli
out 030h,al
mov al,ah
out 034h,al
sub eax,eax
in al.03Ch
popfd
pop ebx
pop ebp
ret

·
• , , • , • t , • , t , • , , • , • • • • • • , • , , • • t • • • • , • , I • • • , • " , • , , , • , , • • , , • • , • • , t t t • t t t t • Itt ,

call from C: ics_write (slot, reg, val);
description: procedure which writes a value into a target register

through the interconnect space.
input: slot The target slot number.

reg K The target register number.
val - The value to be written.

·
• , , , , , , , • , , , •• , , , , , , , • , , , •••• t t , • , • t t ••• , , , • , • , , • , • , , • , , , , •• , ••• , t • , tIt f t t ,

ics_write proc near

push ebp
mov ebp,esp
push ebx
mov eax. [ebp+08h]
shl eax,ll
mov ebx, [ebp+OCh]
shl ebx.2
add eax,ebx
pushfd
cli
out 030h,al
mov al,ah
out 034h,al
mov eax, [ebp+014h]
out 03Ch,al
popfd
pop ebx
pop ebp
ret

May 26,1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

... , ", •• ,.,'" t.,." t".,', •• ,",." •••• t" •• ,. t ••••• ,., t. t ••••• , t •• " • It ••• ,.

; call from C: mpc_init ();
; description: procedure which initializes MPC registers .
..
•• t" •• ""."", t""'" t •• I."., t ••• ". t." ••• ", t"""'" • t. t"""""

mpc_init proc near

reset MPC
mov al.MPC_RESET
out MPC_MRST,al

poll until init done
mpc_initl:

in al,MPC_MSTAT
and al.MPC_INITDONE
jnz SHORT mpc_init1

Configure MPC to: full message support:
32 bit CPU. 16 bit DMA

mov al,89h
out MPC_MCON,al

set message id for this host

mov al.CPU_HOST_ID
out MPC_MID.al

wait for INITDONE to become 1
mpc_init2:

in al,MPC_MSTAT
and al,MPC_INITDONE
jz SHORT mpc_init2

ret

... I'

t"""""" t., t.", t.",.".""" t""" t'""", •• "., •• ", •• " •• , " t"

; call from C: adma_init ();
; description: procedure which initializes the DMA coprocessor registers .
...
"",.,"",.,""""', ••• ,."., •••• , •••• ,", •••••• ,"", •• ,., ••• , •••• I I.

adma_init proc near

program GMR with:

May 26, 1989

16 bit. local mode.
two cycle transfer,
interrupt disabled

normal channel 3,
all rotating priority

C-37

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-38

push ax
push dx
mov aX,7F03h
mov dx, ADMA_GMR
out dX,ax

program burst
mov aX,OOh
mov dx, ADMA_GBR
out dX,ax

program delay
mov aX,OOh
mov dx,ADMA_GDR
out dX,ax
pop dx
pop ax
ret

adma_init endp

..
• , • , , , • , , , , , • , , , , , • , • t , • , , t • , , •• , 1 , t.' •• , ••• , , , , , •• , , , , • , •• , , • , t , t • , , , t t , t I ,

call from C:
description:
input:

output:

err - mpc_send_uns (msg,len);
procedure which sends an unsolicited message.
message pointer (48 bits)
message length
eax: OK ~ RET_OK, error!~ RET_OK;
If error, the message is retrieved from message error port
and written over the original message. The upper 4 bits of
byte 3 contain the error information .

.
, , ••• , , ••• t • t , , , , t , , • , • , • , • t , , • , , , , • , , , , , , , • , , , , , • , •• , • , I , , t ••• , • t , , tit , , • ,

mpc_send_uns proc near

push ebp
mov ebp,esp
push es
push esi
push ecx

poll for TX FIFO Empty
send_unsl:

in al,MPC_MSTAT
and al,MPC_XMTNF
jz SHORT send_unsl

load the message to MDATA port
mov ecx, [ebp+OlOh]
shr ecx,2 ; len/4 moves

May26,1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

push ecx
cld
les esi, (ebp+Bh]

send_uns2:
lods dword ptr es: (esi]
out MPC_MDATA,eax
loop send_uns2
pop ecx

start transmission
mov al,MPC_TX_START
out MPC_MCMD,al

clear direction flag
the message address from the stack

eax <-- next 4 bytes of the message

poll for transmission status
send_uns3:

in al,MPC_MSTAT
mov ah,al
and ah,02h
jnz send_read
and al,MPC_XMTNF OR MPC_XMTERR
jz SHORT send_uns3
and al,MPC_XMTNF
jz SHORT send_uns_error

Success Exit
pop ecx
pop esi
pop es
pop ebp
mov al,MPC_RET_OK
ret

send_read:
mov eax, (ebp+OlOh]
push eax
les eax, (ebp+OBhl
push es
push eax
call mpc_recv_uns
add eSP,OCh

send_uns error:
push edi

retrieve the failed message from the error port
first, dummy read to perpare the failed message

in al,MPC_MERR

ecx - length in dwords from the receive loop
les edi, [ebp+Bh] ; the message address from the stack

May26,1989 C-39

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-40

send_uns4:

,

in eax,MPC_MERR ; read 4 bytes of the message
stos dword ptr es: [edi] ; original message <-- eax
loop send_uns4

inform the MPC that the software has retrieved the messge in error
mov al,MPC_ERROR_RETRIEVED
out MPC_MERR,al

exit
pop edi
pop ecx
pop esi
pop es
pop ebp
mov aI, MPC_RET_ERROR
"ret

, , • , , , t • , , , •• , , , , , , , ••• , ••• , tit t •• t I • It. , • t t , , , , , •• , , t , ••• , • t , t •• I , I , t ttl t I

call from C:
description:
input:

output:

mpc_recv_uns (msg,len);
procedure which reads an unsolicited message.
buffer pointer (48 bits)
message length
message, in the buffer provided by the caller.

•• °0 ' ••••• , , '" t" • t 't'" ••• , •• , , • , ".,"" •• ,' ",. " t. t , , ttl I ••• t t • , t • , • , , I • t • t I , t ••

proc near

push ebp
mov ebp,esp
push es
push edi
push ecx
push eax

poll for Receive FIFO Not Empty
recv_unsl:

in al,MPC_MSTAT
and al,MPC_RCVNE
jz SHORT recv_unsl

retrieve the received message from the data port
first, read the length of the received message

in al.MPC_MDATA

make a read loop into the message buffer space
mov ecx,[ebp+010h]

May 26, 1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

shr ecx,2
push ecx
les edi, [ebp+8h]

recv_uns2:

len/4 moves

the message address from the stack

in eax,MPC_MDATA read 4 bytes of the message
stos dword ptr es: Cedi] ; message buffer <-- eax
loop recv_uns2
pop ecx

inform the MPC that the software has retrieved the received message
in al,MPC_MCMD

exit
pop eax
pop ecx
pop edi
pop es
pop ebp
ret

mpc_recv_uns endp

· . ~ , , . - . ~
• f t t. t."", •• t , ., ,t • t t t t •• , ••••• t •• t 1 ,. ,. ,. t, •• t' , 1 •• I I tit t ttl Itt' Itt tit I ,

call from C: int ~ realaddr (addr)
description: procedure to compute the physical address from logical

selector:offset address. Logical addresses are supposed
GDT based.

input:
output:

addr - the address to be cinverted.
EAX the physical address

·
• .," t •• , • , • ,t , •• t ••• t • , • t ••• t • I t I " I • , ••• t. , . t. I • , •• ,' I •• I •• , •• It' I I I • I , • I

realaddr proc near

push ebp
mov ebp,esp
push es
push edx
les eax, [ebp+08h]
push eax
mov eax,O
mov aX,es
mov dx,GDT_ALIAS_DES set es:O to point to GDT
mov es,dx

get the ba.se address from the descriptor indexed by dx

May 26, 1989

mov
shr
shl

dX,ax
eax,3
eax,3

get rid of unsignificant bits

C-41

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-42

mov dh,es: [eax).bas_24_31
mov dl,es: [eax).bas_16_23
shl edx,16
mov dX,es: [eax) .bas_O_15

base address is in edx, add the
pop eax
add eax,edx
pop edx
pop es
pop ebp
ret

realaddr endp

given offset
restore offset

; address in eax

t • ,t '" , .,"""" , •••• ,. " •• t" • t t. " •• '" , '" '" , •• t t , ••••• , " ••••• , t I , 't
call:
description:
input:

output:

adma_setup_output
procedure to setup ADMA output channel.
EAX - the physical address of a source buffer.
EDX - byte count.
none

...
•• , •• ,"'" t, , I • ,., , , • " • t ••• t ••• , t"" I ••• , " ., • , •••• , ,t, , t , t •• t t •• I I • , • , •

save input twice for different pops
push eax
push edx
push eax
push edx

stop any
mov
mov
out

channel 3 operation
al,BCh
dx, ADMA_GCR
dX,al

restore the buffer address and count
pop edx
pop eax

the ADMA channel is set up with the following command:
Destination (MPC) Sync.
Source memory
Source increment
Source width 16 bits
Destination I/O
Destination noinc
Destination width 16 bits

May 26,1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

mov adma_out_cmd.cmd,808Dh
mov adma_out_cmd.src_addr,eax
mov adma_out_cmd.dest_addr,O
mov adma_out_cmd.byte_count,edx
mov adma_out_cmd.status,O

source address of output buffer

mov adma_out_cmd.stop,O
mov adma_out_cmd.stop_data_l,O
mov adma_out_cmd.stop_data_2,O

load command block pointer in ADMA
first, get physical add~ess of command block

push ds
mov
push
call
add

eax,offset adma_out_cmd
eax
realaddr
esp,08h

physical address in now in eax, load pointer here
mov dx,ADMA_OUT_CPRL
out dX,ax
mov dx, ADMA_OUT_CPRH
shr eax,16
out dX,ax

start the adma channel 3 operation
mov al,8Ah
mov dx,ADMA_GCR
out dX,al
pop edx
pop eax
ret

... , •• ".,' • ". " .,' t, t, '" " • , , • t • t • t. ,. , t""" ., , .,' ••••••••• I • I I I tit Itt' , •

call: adma_setup_input
description: procedure to setup ADMA input channel.
input: EAX - the physical address of the destination buffer.

EDX = byte count.
output: none

." " "
t , •••••• t , • , • , t , , • , t , , , , • , , t •• , , , , t , t , ••• , f I , , Itt , t , • , • , , , t , • t , • t , I , t , , t I , •

adma_setup_input proc near

save input twice for different pops
push eax
push edx
push eax
push edx

May 26, 1989 C-43

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-44

stop any channel 2 operation
mov al,4Ch
mov dx, ADMA_OCR
out dX,al

prepare the command block
pop edx
pop eax

the ADMA channel is set up with the following command:
Source (MPC) Sync.
Destination memory
Destination increment
Destination width 16 bits
Source I/O
Source noinc
Source width 16 bits

mov adma_in_cmd.cmd,40D8h
mov adma_in_cmd.src_addr,O
mov adma_in_cmd.dest_addr,eax
mov adma_in_cmd.byte_count,edx
mov adma_in_cmd.status,O

dest. address of input buffer

mov adma_in_cmd.stop,O
mov adma_in_cmd.stop_data_1,O
mov adma_in_cmd.stop_data_2,O

load command block pointer in ADMA
first, get physical address of command block

push ds
mov eax,offset adma_in_cmd
push eax
call realaddr
add esp,08h

physical address in now in eax, load pointer here
mov dx,ADMA_IN_CPRL
out dX,ax
mov dx,ADMA_IN_CPRH
shr eax,16
out dX,ax

start the adma channel 2 operation
mov al,4Ah
mov dx,ADMA_OCR
out dX,al
pop edx
pop eax
ret

May26,1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

•••••••••••••••••• I ••••••••• " ••••••••••••••••••• , ••••••••••••••••••••••• I • " ., ••• f., ". " t,. ,t ••• , •• , , t •• f t. t • t"" •• t ••• , •• , ., , I • , •• , I • It. t t ••• t •• t t

call: adma_handler
description: set up the ADMA channel for the operation.
input: DX:EAX data address

ECX data count
EBX data channel

output: none
••••••••••• I •••

, •• ,""',. , • " t • It. , ••• t ,t • I , , I ••• ttl t t •• t ••• , ••• " • , • I •••• , • t , , , , , , •• , , , •

proc near

push edx
push eax

first, get the physical address of the output buffer
call realaddr

prepare the byte count for the set up routine which expects it in EDX
mov edx,ecx

find on which channel to set up
cmp ebx,ADMA_IN_CHANNEL
je SHORT set_in

set_out:
call
pop
pop
ret

set_in:
call
pop
pop
ret

adma_setup_output
edx
eax

adma_setup_input
edx
eax

adma_handler endp

t t • t I • , • , , , • , , , • , • , • , , , , • t , • , • , t , , t • , t • , t I It •• ttl I ••• , t t , • , t , t I • , , • I • It. I I I

call from C: err c send_data (uns,len,msg,length);
description: procedure which sends an unsolicited message + transfering

a large data buffer through the DMA.
input: unsolicited buffer prepared by the caller (48 bits)

the unsilicited message length
message pointer (48 bits)
message length

May26,1989 C-4S

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-46

output: eax: OK = RET_OK, error!- RET_OK;
If error, the message is retrieved from message error port
and written over the original message. The upper 4 bits of
byte 3 contain the error information.

• • • • f • ~ • • • • • • • • • • • • • • •

• • 'J , "t""" , , ."", t ••• t t, t ,., I • t I •• , " , "" , '" ., t t. t • t t • t t • , , I I • , t I • ,.

public send_data
send_data proc near

push ebp
mov ebp,esp
push es
push ebx
push ecx
push edx

les eax, [ebp+014h]
mov dX,es
mov ecx, [ebp+01Ch] ;data
mov ebx,ADMA_OUT_CHANNEL
call adma_handler

get the data length and put it in
les eax, [ebp+OSh]
mov es:[eax].length_O_r,cl
mov es: [eax].length_l_r,ch
shr ecx,S
mov es:[eax].length_2_r,ch

count in

message

send the message, push its address
mov ecx, [ebp+01Oh]
push ecx
push es
push eax
call mpc_send_uns
add esp,OCh
cmp al,MPC_RET_OK
jnz SHORT send_error

bytes

Buffer Request sent succesfully, wait now for completion
send_wait_comp:

in al,MPC_MSTAT
and al,MPC_SOCMP
jz SHORT send_wait_comp

transfer completed, read completion status
in al,MPC_MSOCMP
and al,OfOh ; mask request id

May 26, 1989

IFX Device Driver Developer's Guide Sample 386 Device Driver

jnz SHORT send_error
mov eax,O
jmp SHORT send_exit

send_error:
mov eax,l

send_exit:
pop edx
pop ecx
pop ebx
pop es
pop ebp
ret

send_data endp

...................... , , t"" t, , ., • , It" t •• , t I • " tit , t t t t •• , I tit. t I • I I , ., t , •• , ,. , , •• I , It. Itt t t , t • I

call from C: err = recv_data (uns,len,msg,length);
description: procedure which sends an unsolicited message which opens

a solicited message for receiving data through the DMA.
input: unsolicited buffer prepared by the caller (48 bits)

the unsilicited message length
message pointer (48 bits)
message length

output: eax: OK = RET_OK, error!= RET_OK;
... , , .". ,t""'" , ",. '" .," ". , t •• ,' t , , , , , ,. , , •• , • , , I I tit. I , •• , t , , , t I , , t t , I I

public recv_data
recv_data proc near

push ebp
mov ebp,esp
push es
push fs
push ebx
push ecx
push edx
push edi
push esi
!fs esi, [ebp+014h]

send the opening message, push its address.
first, get the data length and put it in message

mov eax, [ebp+010h]

May 26, 1989

push eax
mov
les
push

ecx, [ebp+01Ch]
eax, [ebp+08h]
es

;data count

C-47

Sample 386 Device Driver IFX Device Driver Developer's Guide

C-48

push eax
moves: [eax].length_O_u,cl
mov es:[eax).length_l_u,ch
shr ecx,8
moves: [eax).length_2_u,ch
call mpc_send_uns
add esp,OCh

receive the buffer request message, and check its status.
push its address (the same buffer of the opening message).

next_brqt:
mov eax, [ebp+OlOh)
push eax
les eax, [ebp+08h)
push es
push eax
call mpc_recv_uns
add esp,OCh
cmp es:[eax).msg_type_rs,MPC_BUFF_REQUEST
jne recv_error
mov cl,es: [eax).trnsc_ctl_rs
mov. endoftrns , ecx
cmp cl,02h
jz SHORT dma_grant
mov cl,es: [eax).error_rs
and cl,03Fh
cmp cl,O
jne recv_error

; set up adma input channel, data address
; length is calculated from the received request
dma_grant:

mov ecx,O
mov cl,es: [eax).request id rs
mov edi,ecx
mov cl,es: [eax).lerigth_l_rs
mov ch,es:[eax).length_2_rs
shl ecx,8
mov cl,es:[eax).length_O_rs
mov dX,fs
mov eax,esi
mov ebx,ADMA_IN_CHANNEL
call adma_handler
add esi,ecx

prepare a Buffer Grant message to send to the requesting MPC
mov [grant).dst_id_g,RF2500_HOST_ID
mov [grant).src_id_g,CPU_HOST_ID

May 26,1989

IFX Device Driver Developer's Guide

mov [grant].msg_type_g,MPC_BUFF_GRANT
mov [grant].request_id_g,O
mov ebx,edi
mov [grant].liaison_id_g,bl

Sample 386 Device Driver

mov [grant] .duty_cycle_g,OCAh 2 cycle, 25% bw
mov [grant].length_O_g,cl
mov [grant] . not_used_g , 0

send the buffer grant
push 8 buffer grant length
push ds
mov eax,OFFSET grant
push eax
call mpc_send_uns
add esp,OCh
cmp al,MPC_RET_OK
jnz SHORT recv_error

Buffer Grant sent succesfully, wait now for completion
recv_wait_comp:

in al,MPC_MSTAT
and al,MPC_SICMP
jz SHORT recv_wait_comp

transfer completed, read completion status
in al,MPC_MSICMP
and al,OfOh ; mask request id
jnz SHORT recv_error
mov eax,O
mov ecx,endoftrns
cmp cl,OOh
jz SHORT recv_exit
jmp next_brqt

recv_error:
mov eax,l

recv_exit:
pop esi
pop edi
pop edx
pop ecx
pop ebx
pop fs
pop es
pop ebp
ret

recv_data endp

cseg ends
end

May 26, 1989 C-49

Glossary

absolute pathname.
absolute.

See pathname,

address, external. The address used by a
Direct Memory Access (DMA) device in a
dual-ported memory system.

address, internal. The address used by the
processor in a dual-ported memory system.

advisory lock. See lock, advisory.

application buffer. A user-supplied buffer
that holds application data. IFX transfers this
data between the device and the application
buffer.

asynchronous I/O. An 1/0 operation that
executes in parallel with the calling task.

attribute byte. A byte located in the directory
entry for a file that defines certain file
characteristics, such as readlwrite permission,
volume label, subdirectory, and archive bits.

beginning-ot-file. The zero position. See
end-ot-tile.

BIOS Parameter Block (BPB). An MS-DOS
structure that describes the disk format. It
specifies the sector size, -number of sectors per
cluster, root directory size, starting sector
number (for a partition), and other disk format

May26,1989

~READY
SYSTEMS

information. BIOS is an abbreviation for basic
input/output system.

Board Support Package (BSP). An
interface program between Ready Systems'
components (VRTX32 , RTscope, IFX, TPX,
TNX, etc.) and the target microprocessor
board.

boot sector. The first sector on a volume that
contains the aIOS Parameter Block (BPB) and
signature bytes. It is read from the disk by the
ROM bootstrap program in systems that load
from disk. See volume and BIOS Parameter
Block.

buffering. A method for speeding up or
reducing the number of 1/0 operations, using
an area of memory to hold data temporarily.
See circular buffering and disk buffering.

byte-oriented RAM disk. See RAM disk,
byte-oriented.

Cache Manager. See Disk Buffer Cache
Manager.

Circular Buffer Device Manager. Handles
the circular buffer of stream 1/0. As a
lower-level manager, it serves as the
underlying device for the Line Editor Device
Manager.

Glossary-1

Glossary

circular buffering. A method of speeding up
serial 1/0 operations using two queues. The
input queue holds characters that have been
received by the device but not yet read by the
application. The output queue holds
characters that have been written by the
application but not yet transmitted by the
device.

client task. A task that requests an 1/0
operation to be performed by a server task.
See server task.

cluster. A fixed number of sectors grouped
together to form a unit (the smallest unit of
allocation) for storing data. The number of
sectors per cluster is determined by the disk
type and is established when the disk is'
formatted. Clusters are managed by the File
Allocation Thble (FAT). See File Allocation
Table (FAT).

codespace. The memory area that contains a
componenfs starting address.

Component Vector Table (CVT). Astructure
that integrates Ready Systems software
components into a single operating system.
The cvr tells VRTX32 which components are
present in the system and where they are
located.

current position. A descriptor's file location.
Reads and writes take place beginning at this
point in the file. After the read or write
operation the current position is updated to
the previous position plus the length of data
that was transferred.

Glossary-2

IFX Device Driver Developer's Guide

cylinder. A conceptual object consisting of all
tracks within a disk pack (multiple surfaces)
that have the same track number. If each
surface contains n tracks, there are n cylinders.

descriptor. A data structure that defines the
characteristics of a connection between a task
and an 1/0 object. See 1/0 object.

descriptor, private.' A descriptor that is only
accessible by the task that opened it.

descriptor, public. A special type of
descriptor used with the Ada run-time system.
Public descriptors are accessible by all tasks.

Descriptor Control Block (iFXCCB). A data
structure associated with each descriptor. It is
used by pathname device drivers.

descriptor 10. A small nonnegative integer
that references a descriptor. It. is returned
when a file is opened.

Device Control Block (IFXDCB). A data
structure associated with each IFX device that
is used to maintain device specific information.
A pointer to the device control block is passed
to the device driver when it is called.

Device Driver Control Block (IFXDDCB). A
data structure associated with each IFX device
driver. It is used for activating a device driver.

device driver. A function IFX calls to handle
device installation, device removal, read,
write, and 110 control operations.

device manager. A type of device driver that
translates high-level 1/0 requests to simpler
operations.

May26,1989

IFX Device Driver Developer's Guide

device name. A user-assigned name that
specifies a mounted volume or installed
device.

device-specific function code. See
function code, device-specific.

Direct Memory Access (DMA). A technique
of transferring data directly between memory
and a peripheral without CPU involvement.
The CPU is only used to set up the transfer.

directory. A list of files, their attributes, and
their locations on the storage media. A system
for organizing files into a hierarchical
structure. It may contain subdirectories.

directory, root.
hierarchy of
subdirectory.

The top-level directory in a
directories. See also

directory, tree-structured. A directory
hierarchy that begins with the root directory.
All directories, with the exception of root, have
a parent.

directory, working. A designated directory
IFX uses as the starting point in determining
all relative pathnames. Each task may have a
different working directory.

Disk Buffer Cache Manager. A component
of the Disk 1/0 System that maintains a cache
of recently used data to reduce 110 operations
to disk.

disk buffering. A method of speeding up disk
110 operations by reading more sectors of data
into a memory buffer than what is requested by
the current 110 operation. The next request

May 26, 1989

Glossary

for a sector of data can be retrieved from the
buffer.

dismounting a volume. The process of
informing IFX that a volume is no longer
available for disk management or file 1/0
operations. It removes the association
between the disk drive and the media residing
in the drive. See mounting a volume.

dual-ported memory. Memory that can be
accessed by both a processor and DMA.

elevator algorithm. A specific algorithm
design that alternately selects liD requests in
increasing order by starting. sector number.
then in decreasing order by ending sector
number.

end-of-file. The position immediately
following the last byte in the file.

event flag. A bit within an event flag group
that changes to reflect the occurrence of a
specified event. See event flag group.

event flag group. A global, long-word
(32-bit) structure in VRTX32 Workspace.
Each of the 32 bits in the event flag group is an
event flag. See event flag.

exclusive lock. See lock, exclusive.

extent. A collection of contiguous clusters.
The number of clusters in an extent depends on
the physical volume and the user's request for
space allocation. Associated records are not
necessarily stored contiguously. See cluster.

external address. See address, external.

file. A collection of related data sets that are
used as a unit.

G/ossary-3

Glossary

File Allocation Table (FAT). A section of the
disk that stores information on disk-file space
usage." It contains an entry for each cluster that
specifies whether the cluster is assigned,
unassigned, or marked as bad. See Media
Format Byte.

file lock. See lock, file.

filename. A string used to uniquely identify a
file. It consist of a main part of up to eight
characters, optionally followed by a period and
an extension of up to three characters. The
filename is the last component of a file's
pathname. See pathname.

file, working. A temporary collection of data
sets that is destroyed once the data is utilized
or transferred to another form.

File Manager. A Disk 1/0 System component
that reads and writes media compatible with
MS-DOS version 4.0.

format. The physical separation between
sectors.

formatting. The process of writing the format
pattern and initial data to each sector of the

" disk.

formatting, logical. Imposes a logical
structure of files and directories that prevents
data from being accessed by name. The
MS-DOS volume manager is responsible for
doing logical formatting.

formatting, physical. Writes the timing
information for each sector onto the disk. It
destroys any old data by overwriting it with a

Glossary-4

IFX Device Driver Developer's Guide

meaningless pattern. The disk driver is
responsible for doing physical formatting.

function code. A code that specifies a
particular IFX operation to be performed.

function code, device-specific. Function
codes that are unique to one device type.

function code, generic. Function codes that
are applicable to all device types. "

function code, optional. Function codes that
mayor may not be implemented by the driver.

function code, pathname. Function codes
whose first parameter is a pathname string.
Ordinary device drivers do not need to
impl~ment pathname function codes.

function code, required. Function codes
that must be implemented by the driver.

interleave factor. A number that controls the
sectors numbering within a track. For
performance reasons, the sectors order is not
their physical order. The interleave factor-l is
the number of physical sectors that separates
two consecutive sector numbers. See sector
interleaving.

interna"1 address. See address, internal.

Interrupt Service Routine (ISR).
User-supplied code that is activated by a
hardware device internlpt.

1/0 object. A file, device, or volume.

ISR, receiver. An interrupt service routine
that handles interrupts for incoming
characters.

May26,1989

IFX Device Driver Developer's Guide

ISR, transmitter. An interrupt service routine
that handles interrupts when the transmitter is
ready to accept another character.

line buffer. A memory area used in
line-editing mode only to build an input line
based on the special characters received.

line-editing mode. An IFX feature used for
high-speed binary communication between
terminals. Une-editing mode functions
include echoing, erase character, erase word,
erase line, conversion of newline to
carriage-return linefeed, and simulation of tab
stops.

Line Editor Manager. A component of the
Stream 110 System that handles echoing and
editing of characters by an operator.

lock, advisory. Using ifx_lockf and
ifx_unlockfto implement a locking policy that
works only if all tasks follow a consistent lock
protocol. Ad\jsory locks do not prevent other
tasks from reading or writing a file, only from
obtaining the lock.

lock, exclusive. Prevents all other tasks from
using a file until it is unlocked. See lock,
shared.

lock, file. The use of semaphores or system
calls to prevent two or more tasks from
accessing the same file at the same time for liD
operations.

lock, nested. Embedding multiple locks on a
file. Nested locks must all be made by the same

May 26, 1989

Glossary

task and specified for the same use (exclusive
or shared).

lock, shared. Used to prevent other tasks
from applying an exclusive file lock; however,
it does not prevent other tasks from using the
file. See lock, exclusive.

logical formatting. See formatting, logical.

mailbox. A user-defined pointer-size location
in user read/write memory used to coordinate
data transfer between IFX and a device driver.

master boot sector. A reserved area, usually
the first section on the disk, that describes the
disk's configuration. See partition and
partition table.

Media Format Byte. The first byte of the FAT,
used in early versions of MS-DOS to identify
volume format. See File Allocation Table
(FAT).

mounting a volume. Establishing a disk or
partition as an available IFX volume by
assigning it a logical name. See dismounting
a volume.

named pipe. A first-in-first-out queue that is
similar to the UNIX pipe.

nested lock. See lock, nested.

optional function code. See function code,
optional.

parameter. A variable or constant that is
passed to a function.

parameter list. A list that defines parameters
required for a specified function.

Glossary-5

Glossary

partition. MS-DOS allows a hard disk to be
divided into any number of logical disk drives
that are called partitions. Each partition may
be formatted to use different parameters. See
master boot sector.

partition table. A part of the master boot
sector that contains four 16-byte entries that
describe a particular partition. See partition.

pathname. A string that identifies a file
relative to the root directory or the current
directory.

pathname, absolute. A string that begins
with the root directory and explicitly specifies
each subdirectory leading up to the final file.

path name driver. A device driver or manager
that implements a pathname function code.

pathname function code. See function
code, pathname.

pathname, relative. A string that begins at
the working directory and specifies. files or
subdirectories in terms of their relative
location to that directory, leading to the final
file.

physical formatting.
physical.

See formatting,

physical mode. Used for high-speed binary
communication between computers. It does
not give special treatment to any characters,
but merely passes them through to the
application.

private descriptor. See descriptor,private.

G/ossary-6

IFX Device Driver Developer's Guide

property function. A function that inquires
or explicitly changes file properties.

public descriptor. See descriptor, public.

RAM disk. A pseudo-device implemented
entirely by software, wh~ch emulates a real
disk. The disk data is stored in random access
memory (RAM) instead of magnetic media.

RAM disk, byte-oriented. A RAM disk that
is addressable in byte units. A volume can be
mounted directly on top of a byte-oriented
RAM disk.

RAM disk, sector-oriented. A RAM disk
that is addressable in sector units. A disk
buffer cache must be mounted on top of a
sector-oriented RAM disk. The volume is then
mounted on top of the disk buffer cache.

receiver ISR. See ISR, receiver.

receiver serial device. See serial device,
receiver.

reentrant device driver. A device driver that
can service more than one device attached to a
single controller board and several controller
boards, if they are the same kind.

reentrant function. A function that can be
used by more than one task at the same time.

relative pathname. See pathname, relative.

required function code. See function code,
required.

reserved bytes. The ten extra bytes in a
directory entry that are reserved for future
MS-DOS use.

May26,1989

IFX Device Driver Developer's Guide

return code. An integer value that indicates
the status of a completed operation, and that
specifies the reason for any failure.

root directory. See directory, root.

RTscope. A real-time debugger and VRTX32
System Monitor for use with VRTX32-based
software systems.

sector. Evenly divided subsections on a track
that hold stored data. A sector is the smallest
addressable space on a disk's media.

sector interleaving. A method of assigning
physical sector numbers in an order that skips
alternating sectors. See interleave factor.

sector number. An integer from zero to the
total number of sectors minus one. Sector

. numbers are used to address a particular
sector.

sector-oriented RAM disk. See RAM disk,
sector-oriented.

Serial Control Block (IFXSCB). An internal
IFX data structure. However, in order to
improve performance of the serial devices, two
of the structure's fields are used to pass service
routine addresses from IFX to the driver.

serial device, receiver/transmitter. The
receiver accepts an incoming bytestream over
the communication medium, such as an
RS-232 link or Centronics parallel interface.
The transmitter sends a bytestream over the
communication medium.

May 26, 1989

Glossary

seriaIJeceive_character. The receiver ISR
calls this routine to transfer each character to
the' input buffer as the character is received
from the USART.

serial_transmit_ready. The transmit ISR
calls this routine to tell IFX the device is ready.
The next character in the output buffer (if any)
is returned to the ISR.

server task. A task that performs an 1/0
operation on behalf of a client task. See client
task.

shared lock. See lock, shared.

signature byte. The last two bytes of the boot
sector, which contain the value Ox5SAA. See
boot sector.

software trap. A special processor
instruction used to enter the operating system
(for example, VRTX32, or IFX).

status code. An integer value returned by
each IFX function that indicates the
disposition of the requested operation. This
term is used interchangeably with return code.
See return code.

subdirectory. All directories below the root
directory.

synchronous I/O. An event or operation that
does not return control to the caller until the
physical 110 is complete.

timeout. The maximum period of time that a
driver waits for an 1/0 operation to complete.

G/ossary-7

Index

A
Assembly Language

68000 conversion routine. 2-5
80386 conversion routine, 2-6
examples for supported processors, 4-6

B
Buffers

determining buffer need, 7-7
detel'Jllining buffer size. 7-8

Byte-Swapping
big-endian,5-5 .
disk device driver byte-swapping, 5-S
little-endian, 5-S

c
C Compilers

68000 conversion routine, 2-5
80386 conversion routine, 2-6
assembly language examples, 4-6
compatibility, 2-4

Calling Conventions
68000 C compilers, 2-4
Device Control Block, 2-6
Device Driver Control Block, 2-8
general, 2-1
parameters, 2-2
registers, 2-3
status codes, 2-4

Circular Buffer Device Manager, 7-4
installing, 7-10
using, 7-9

D
Data Structures

IFXCCB, 5-17

May26,1989

~READY
SYSTEMS

IFXDCB, 2-2. 2-6
IFXDDCB, 2-8
IFXSCB, 5-10
IFXSEMA, 3-1

Descriptor Control Block (IFXCCB), 5-17

Device Control Block (lFXDCB), 2-2, 2-6, 6-1
documented fields, 2-7

Device Driver Control Block (lFXDDCB). 2-8

Device Drivers
IFX built-in drivers. 1-1
installing and removing, 7-2
MVME320 Disk. 7-17
standard device drivers, 7-11
writing device drivers. 5-1 .

clock device driver, 5-12
disk device driver. 5-1
pathname driver, 5-15
serial device driver. 5-8

Device Managers
calling the underlying driver, 5-13
converting application write calls. 5-14
IFX built-in managers, 1-1,7-1
installation, 5-13
installing and removing, 7-2

Device Scheduling, preemptive. 3-5

Devices, dependent devices. 3-7

Direct Memory Access (DMA), 3-7
dual-ported memory, 3-7
external address. 3-7
internal address, 3-7

Disk
formatting, 5-4

logical formatting, 5-4
physical formatting, 5-4

logical format, 5-4
physical format, 5-1

cylinders, 5-1
sector number, 5-1
sectors, 5-1
tracks, 5-1

Disk Buffer Cache Manager
mounting, 7-4, 7-6

Index-1

Index

using, 7-5

E
Event Flags, event flag group, 4-4

F
Function Codes

clock function codes
getting system time, 6-17
setting system time, 6-17

device-specific function codes, 6-1
disk function codes, 6-9

1/0 control operations, 6-11, 6-12, 6-13
reading sectors, 6-9
writing sectors, 6-10

generic function codes, 6-1, 6-2
asynchronous cancel, 6-8
control codes, 6-5
device control, 6-6
1/0 control operations table, 6-7

optional function codes, 6-1
pathname function codes

creating a file, 6-17
deleting a file, 6-18
device control, 6-21
getting volume label, 6-20
getting working directory, 6-19
making a directory, 6-18
marking bad sectors, 6-20
marking device off-line, 6-21
open, 6-21
removing a directory, 6-18
renaming a file, 6-19
setting volume label, 6-20
setting working directory, 6-19

required function codes, 6-1
serial function codes

1/0 control operations, 6-15
installing a device, 6-15

G
Global Variables, 3-5

Index-2

IFX Device Driver Developer's Guide

I
I/O Control Operations

asynchronous cancel, 6-14
discard input buffer, 6-13
discard output buffer, 6-13
flush output buffer, 6-13
formatting a disk, 6-11
formatting a track, 6-12
getting disk geometry, 6-11

I/O Handler, calling the descriptor 110 handler, 5-16

Installation
circular buffer device manager, 7-4
installing a device, 6-3, 7-3
installing a device driver, 7-2
installing a device manager, 7-2
installing a driver, 6-2
removing a device, 6-5, 7-3
removing a device driver, 7-2
removing a device manager, 7-2
removing a driver, 6-2

Interrupt S~rvice Routine (lSR)
installing an ISR, 4-8
ISR operation, 5-11
receiver ISR, 5-8, 5-11
transmitter ISR, 5-8, 5-11
using UI _ENTER and UI _EXIT, 4-4.
writing an ISR in C, 4-5

Interrupts, interrupt handling, 4-1
event flags, 4-4

L
Line Device Manager, mounting, 7-4

Line Editor Device Manager
. installing, 7-9
uSing, 7-8

Locking Mechanisms
general, 3-1
locking by high-level device managers, 3-5
simple locking, 3-2
using two semaphores, 3-3

M
Mailboxes, using mailboxes, 4-1

Mounting, disk buffer cache manager, 7-6

Mounting Device Managers
disk buffer cache manager, 7-4

May 26, 1989

IFX Device Driver Developer's Guide

line device manager, 7-4
MS-DOS file manager, 7-4
tenninalline editor manager, 7-4

MS-DOS· File Manager, mounting, 7-4

p
Parameters

call by reference, 2-2
Device Control Block, 2-2
function code, 2-2
parameter list, 2-2, 6-1
stack format, 2-3
standard parameter sizes, 2-3

Processing Requests
elevator algorithm, 3-4
shortest seek time fU'St, 3-4
shortest transfer count fU'St, 3-4

R
Reentrancy,3-6

reentrant device driver, 3-6
reentrant function, 3-6

Registers, register conventions, 2-3

RlScope
circular buffer device manager, 7-10
console device, 7-13

s
Sector Interleaving, 5-6

buffering, 5-7
interleave factor, 5-6

. multiple sector transfers, S-8

Sector Number, 5-1
logical sector number, 5-3

May 26, 1989

physical sector number, 5-3
sector number conversion table, 5-3

Semaphores
controlling concurrent reads & writes, 3-3
fast semaphore, 3-1
simple semaphore, 3-2

Serial Control Block (lFXSCB), 5-10

Serial Device Driver
receiver ISR, 5-8
serial 1/0, 5-9
transmitter driver, S-8
transmitter ISR, S-8

Serial 1/0
serial_receive_character,5-9
seriaUransmit_ready, 5-9

Standard Device Drivers
byteram, 7-15
console, 7-13
null, 7-12
pipe,7-13
sectoram, 7-15
softclck, 7-14

Status Code, 2-4

T
'Dlsks

critical, 3-5
non-critical, 3-5

Tenninal Line Editor Manager, mounting, 7-4

Tuneouts, using timeouts, 4-10

v
Virtual Devices, 1-1

virtual device layers, 1-2

Index

Index-3

Chapter· 2 ~READY
SYSTEMS Calling Conventions

2.1 Introduction

All device drivers use a particular set of calling conventions to interact with a device.
This chapter explains the guidelines for interfacing IFX device drivers and managers
with your device. More detailed information for each device type, and how to install
devices can be found in the remaining chapters of this manual.

IFX and the device driver follow the conventions described below.

• The device driver should only be called by IFX. Do not call the device driver
directly from an application task or other user code.

• The device driver runs in the context of a task, as opposed to an interrupt
handler. However, serial device drivers are devided into two parts: one part
runs in a context of a task, and the other part is an ISR.

• IFX calls the device driver with interrupts enabled. If the device driver needs to
disable interrupts, it should restore the interrupt status before returning.

• For the M68000 processor family, the device driver executes in supervisor mode.
In particular, on the 68020 and 68030, the device driver uses the regular
supervisor stack, as opposed to the interrupt stack.

• For the 80386, the device driver executes at privilege level O.

• The device driver is allowed to call VRIX32 .services, such as scyend, that
suspend the caller.

• We do not recommend that the device driver call any IFX services. In particular,
be aware of the potential for deadlock if the device driver calls an IFX service
that involves another device.

• The device driver should return when it completes its operation or detects an
error.

There are also rules that govern the use of parameters, registers, and status codes.
These conventions are described in the following sections.

May26,1989 2-1

Glossary

track. The path along which information is
recorded on a magnetic disk. 1racks are
organized in concentric rings and each track is
divided into sectors. Any location on a track
can be accessed directly without a sequential
search.

transmitter driver. A routine that IFX calls to
transmit the first character of a given output
stream.

transmitter ISR. See ISR, transmitter.

transmitter aerial device. See aerial
device, transmitter.

tree-structured directory. See directory,
tree:'structured.

update. To read and modify a record with
current transaction information, then rewrite
the same fixed-length record. Updates also set
the current position back to access the same
record twice. See current position.

virtual device. A conceptual device that
possesses the characteristics of a real hardware
device.

Glossary-8

IFX Device Driver Developer's Guide

volume. A disk or partition in MS-DOS
format. It consists of the boot sector, FAT, root
directory, and data storage space.

volume label. A string of up to 11 characters
used to identify the media. It is not necessarily
the same as the volume name.

volume synchronization. Writing all data in
the buffer cache to the disk.

VRTX32. A high-per,formance Versatile
Real-Time Executive, silicon-software
component for embedded microprocessors.

VRTX32 Workspace. A memory area that
contains the system variables, task and int
stacks, T<;;Bs, control- structures for queues
and VRTX32-managed user memory, event.
flag groups, and semaphores. _

working directory. See directory, working.

working file. See file, working.

workspace. The read/write memory a
component uses during execution.

May 26, 1989

