
-- --- -- - :;-

... -..... J'" • .,- ~. . -

~ ~;
Cf.l~

@~ ~READY
~~ . SYSTEMS

VRTX32/68000

~

. _. '

VRTX32/68000
Versatile Real-Time Executive for the M68000 Microprocessor

USER'S GUIDE

Software Release 1

Document Number 541311001

April 1987

REV. MANUAL REVISION HISTORY PRINT
DATE

Beta site edition 2/87
-001 First edition; release 1.04 2/89

Ready Systems makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fimess for a particular purpose. Ready Systems assumes no
responsibility for any errors that may appear in this document. The information in ihis document is subject
to change without notice.

Ready Systems software products are copyrighted by and shall remain the property of Ready Systems. Use,
duplication, or disclosure is subject to restrictions stated in Ready Systems' software license. No part of this
document may be copied or reproduced in any form or by any means without the prior written consent of
Ready Systems.

CARDtools and Taskbuilder are trademarks of Ready Systems. VRTX, lOX, and PMX are registered
trademarks of Ready Systems. TRACER is a trademark licensed to Ready Systems. ARTX, VRTX, VRTX32,
IFX, lOX, PMX, VMX, TRACER, TRACER32, MPV, RTC, Hyperlink, RTscope, ARTscope, and RTAda alone or
followed by a numerical suffix (such as VRTX32/68000) are trademarks of Ready Systems. These trademarks
may be used only to identify Ready Systems products.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b) (3)
(Ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013.

Copyright © 1989
Ready Systems

470 Potrero Avenue
P.O. Box 60217

Sunnyvale, California 94086
4081736-2600

PAX:4081736-3400
TELEX: 711510608 (domestic)

0231510608 (international)

All rights reserved
Printed in U.S.A.

Table of Contents

How to Use This Manual

Chapter 1 Overview

HUNTER
~READY

A Division of Ready Systems

1.1 Introduction... 1-1
1.1.1 Silicon Software Components 1-1
1.1.2 Embedded Applications 1-1
1.1.3 Real-Time Executive. 1-2

1.2 VRTX32 Features . 1-2
1.2.1 Real-Time Executive Features . 1-2
1.2.2 Silicon Software Component Features 1-3
1.2.3 M6sooo Support. 1-3

1.3 VRTX32 Configuration 1-4
1.4 VRTX32 Architecture 1-5

Chapter 2 Basic System Calls

2.1 Introduction... 2-1
2.1.1 Accessing VRTX32 2-2
2.1.2 System Call Format. 2-2

2.2 Tasks. 2-3
2.2.1 Task States and State Transitions. 2-6
2.2.2 Task Scheduling. 2-8
2.2.3 Task Control Block (TCB) .. 2-10
2.2.4 Task Management Support .. 2-11
2.2.5 Multitasking Management Calls .. 2-12

2.3 Memory. .. 2-13
2.3.1 Memory Allocation. .. 2-15
2.3.2 Memory Allocation Support 2-16
2.3.3 Memory Allocation Calls .. 2-19

Table of Contents

2.4 Intertask Communication and Synchronization ,.............. 2-20
2.4.1 Mailboxes 2-20
2.4.2 Queues 2-22
2.4.3 Event Flags 2-23
2.4.4 Semaphores .. 2-25
2.4.5 Communication and Synchronization Calls 2-26

Chapter 3 Interrupt Support

3.1 Introduction... 3-1
3.2 Interrupt Service Routines (ISRs) . 3-1

3.2.1 The Exception Vector Table 3-2
3.2.2 Entering and Exiting an ISR 3-2
3.2.3 Format of an Interrupt Service Routine 3-4
3.2.4 VRTX32 Calls Allowed from ISRs . 3-5
3.2.5 VRTX32 Calls Not Allowed from ISRs 3-7
3.2.6 Interrupt Stack Switching 3-7
3.2.7 M68000 Interrupt Levels and VRTX32 3-9
3.2.8 Interrupt Support Calls .. 3-10

3.3 Integrated Support for Special Devices 3-11
3.3.1 Real-Time Clock Support 3-11
3.3.2 Real-Time Clock Calls. .. 3-13
3.3.3 Character I/O Support 3-14
3.3.4 Character I/O Support Calls 3-15

Chapter 4 Configuration and Initialization

ii

4.1 Introduction.................... 4-1
4.2 VRTX32 Configuration Table 4-1
4.3 Determining VRTX32 Workspace Size. 4-6

4.3.1 Determining Task Stack Requirements 4-6
4.3.2 Determining Interrupt Stack Requirements. 4-6
4.3.3 Determining Control Structure Requirements 4-8

4.4 Support for System Initialization .. 4-10
4.4.1 User-Supplied Initialization. .. 4-10

Table of Contents

4.4.2 VRTX32 Initialization 4-12
4.4.3 Use of System Calls During Initialization 4-13
4.4.4 Initialization Calls .. 4-15

Chapter 5 Support for User-Defined Extensions

5.1 Introduction... 5-1
5.2 User-Defined System Call Handlers. 5-2

5.2.1 Writing a System Call Handler. 5-3
5.2.2 An Example System Call Handler 5-4

5.3 VRTX32 Extensions 5-6
5.3.1 TCREATE Routine. 5-7
5.3.2 TDELETE Routine. .. 5-12
5.3.3 TSWITCH Routine 5-13

Chapter 6 Interfacing Software Components

6.1 Introduction... 6-1
6.2 Component Calling Conventions. 6-1

6.2.1 Component Call Format 6-1
6.2.2 Component Call Trap Vector. 6-2
6.2.3 Parameter Passing 6-2

6.3 Component Vectoring 6-6
6.4 Component Internals . 6-7

6.4.1 Opcode Handling . 6-8
6.4.2 Register Contents . 6-9
6.4.3 Stack Structure .. 6-10
6.4.4 Multitasking Considerations 6-10

Chapter 7 System Call Reference

7.1 Introduction... 7-1
7.2 SC_ACCEPT - Accept Message from Mailbox. 7-2
7.3 SC_FCLEAR - Clear Event. 7-3
7.4 SC_FCREATE - Create Event Flag Group. 7-4

iii

Table of Contents

iv

7.5 SC_FDELETE - Delete Event Flag Group. 7-5
7.6 SC_FINQUIRY - Event Flag Group Inquiry 7-7
7.7 SC_FPEND - Pend on Event Flag Group. 7-8
7.8 SC_FPOST - Post Event to Event Flag Group. 7-10
7.9 SC_GBLOCK - Get Memory Block 7-11
7.10 SC_GETC - Get Character. .. 7-12
7.11 SC_GTIME - Get Time 7-13
7.12 SC_LOCK - Disable Task Rescheduling. 7-14
7.13 SC_PCREATE - Create Memory Partition 7-15
7.14 SC_PEND - Pend for Message from Mailbox. 7-17
7.15 SC_PEXTEND - Extend Memory Partition 7-19
7.16 SC_POST - Post Message to Mailbox .. 7-21
7.17 SC_PUTC - Put Character. .. 7-22
7.18 SC_QACCEPT - Accept Message from Queue 7-23
7.19 SC_QCREATE - Create Message Queue. 7-24
7.20 SC_QECREATE -- Create FIFO Message Queue. 7-26
7.21 SC_QINQUIRY - Queue Status Inquiry 7-28
7.22 SC_QJAM -Jam Message to Queue. .. 7-30
7.23 SC_QPEND - Pend for Message from Queue. 7-32
7.24 SC_QPOST - Post Message to Queue 7-34
7.25 SC_RBLOCK - Release Memory Block. 7-35
7.26 SC_SCREATE - Create Semaphore. .. 7-36
7.27 SC_SDELETE - Delete Semaphore 7-38
7.28 SC_SINQUIRY - Semaphore Inquiry 7-40
7.29 SC_SPEND - Pend on Semaphore. .. 7-41
7.30 SC_SPOST - Post Unit to Semaphore. 7-43
7.31 SC_STIME - Set Time. .. 7-44
7.32 SC_TCREATE - Create Task 7-45
7.33 SC_TDELAY - Delay Task. .. 7-47
7.34 SC_TDELETE - Delete Task 7-49
7.35 SC_TINQUIRY - Task Status Inquiry 7-51
7.36 SC_TPRIORITY - Change Task Priority 7-54

Table of Contents

7.37 SC_TRESUME - Resume Task 7-56
7.38 SC_TSLICE - Enable Round-Robin Scheduling. 7-57
7.39 SC_TSUSPEND - Suspend Task " 7-59
7.40 SC_UNLOCK - Enable Task Rescheduling. 7-61
7.41 SC_ WAITC - Wait for Special Character. 7-62
7.42 UI_ENTER - Enter Interrupt Handler. 7-63
7.43 UCEXIT - Exit Interrupt Handler 7-65
7.44 UCRXCHR - Received-Character Interrupt. 7-66
7.45 UCTIMER - Announce Timer Interrupt. 7-68
7.46 UCTXRDY - Transmit-Ready Interrupt 7-69
7.47 VRTX_GO - Start Application Execution 7-70
7.48 VRTX_INIT - Initialize VRTX32 .. 7-71

Appendix A System Call Summary

Appendix B Return Codes

Appendix C EVT and TCB Formats

C.l Introduction .. C-l
C. 2 Exception Vector Table .. C-l
C.3 Task Control Block Format C-2

Appendix 0 An Example

D.l Example Board Support Package. .. D-4
D.2 Example Application Program D-ll
D.3 VRTX32 Definitions File D-14

v

Table of Contents

Appendix E The Rescheduling Procedure

Index

list of Illustrations

Figure 1-1 VRTX32 Configuration. 1-4
Figure 1-2 VRTX32 Architecture . 1-5
Figure 2-1 Basic Architecture 2-1
Figure 2-2 VRTX32 TRAP Vector 2-2
Figure 2-3 Task State Transitions 2-9
Figure 2-4 Memory Organization 2-14
Figure 2-5 VRTX32 Workspace. .. 2-18
Figure 2-6 User Memory Managed by VRTX32 2-19
Figure 3-1 Interrupt Architecture 3-2
Figure 4-1 VRTX32/68000 Configuration Table 4-3
Figure 4-2 EVT Reset Format 4-11
Figure 5-1 Extensions Architecture . 5-2
Figure 5-2 Environment on Entry to TCREATE Routine 5-9
Figure 5-3 User-Defined Stacks 5-10
Figure 5-4 Environment on Entry to TDELETE Routine 5-12
Figure 5-5 Environment on Entry to TSWITCH Routine , 5-14
Figure 5-6 Complete VRTX32 System 5-15
Figure 6-1 Component Vector Table. 6-6
Figure 6-2 Opcode Vector Table 6-9
Figure 6-3 M68000 Stack Format .. 6-11
Figure C-l Exception Vector Table. C-2
Figure C-2 Task Control Block . C-3
Figure D-l Example Configuration. .. D-2
Figure D-2 Example Memory Organization .. D-3

vi

Table of Contents

List of Tables

Table 2-1 VRTX32 System Calls 2-4
Table 2-2 Task Management Call Summary. 2-13
Table 2-3 Memory Allocation Call Summary. 2-19
Table 2-4 Communication and Synchronization Call Summary 2-27
Table 3-1 VRTX32 Calls Allowed from ISRs . 3-6
Table 3-2 VRTX32 Calls Not Allowed from ISRs 3-8
Table 3-3 Interrupt Support Call Summary 3-11
Table 3-4 VRTX32 Calls for Special Devices 3-12
Table 3-5 Real-Time Clock Call Summary. .. 3-13
Table 3-6 Character I/O Call Summary. .. 3-15
Table 4-1 Determining Task Stack Requirements 4-7
Table 4-2 Determining VRTX32 Workspace Size 4-9
Table 4-3 Calls Permitted between VRTX_INIT and VRTX_GO 4-14
Table 4-4 Initialization Call Summary .. 4-15
Table 6-1 Opcode Handler Options " 6-10
Table 7-1 Status Word Bit Values " 7-53
Table A-I Task Management A-I
Table A-2 Memory Allocation. .. A-2
Table A-3 Communication and Synchronization A-2
Table A-4 Interrupt Support .. A-4
Table A-5 Real-Time Clock A-4
Table A-6 Character I/O " A-5
Table A-7 Initialization. .. A-5
Table B-1 Return Codes. .. B-2
Table B-2 Return Codes Indicating Invalid Component Calls. B-3
Table C-l Status Word Bit Values. C-4
Table E-l Calls that Do Not Initiate the Rescheduling Procedure E-2

vii

Table of Contents

List of Examples

viii

Example 3-1 Format of a Typical Interrupt Service Routine (ISR) 3-4
Example 5-1 BRDCST Initialization Code 5-4
Example 5-2 Making the BRDCST Call 5-5
Example 5-3 The BRDCST Call in Action 5-5
Example 5-4 Pending for BRDCST .. 5-6
Example 5-5 Implementing Variable-Size Stacks with TCREATE 5-11
Example 7-1 The UI_ENTER call 7-63
Example 7-2 The UCRXCHR Call. .. 7-66
Example 7-3 Counter-Timer ISR .. 7-68

How to Use This Manual HUNTER
~READY

A Division of Ready Systems

Purpose of This Manual

This manual describes VRTX32, the high-performance Versatile Real-Time Executive.
VRTX32 is a silicon software component that provides real-time, multitasking
operating system functions for embedded microprocessor applications.

VRTX32/68000 is the implementation of VRTX32 designed for the Motorola MC68000,
MC68008, and Mc68010 microprocessors.

Intended Audience

This manual is for the application programmer who requires VRTX32's real-time
executive functions to build a product. The programmer should be familiar with
standard real-time operating system functions and the Motorola M68000 architecture.

How This Manual is Organized

The rest of this manual is organized as follows.

• Chapter 1 is an overview of the VRTX32 software component and its M68000
microprocessor family support.

• Chapters 2 through 4 describe the basic VRTX32 services.

• Chapters 5 through 6 describe integrating VRTX32 with user-supplied code and
other components.

• Chapter 7 provides an alphabetical reference to the VRTX32 system calls
desCribing each call's operation, input and output values, possible return codes,
and possible environments.

• The appendices contain supporting material in quick reference format.
Appendix D is an example of a VRTX32 application and a board support
package.

ix

HllW to Use This Manual

Where to Start

This manual serves as an introduction and as a reference guide.

For an introduction to VRTX32/68000, read Chapter 1, Overview. Then read
Chapters 2 through 4 for information about VRTX32's system calls.

Read Chapter 5, Support for User-Defined Extensions, and Chapter 6, Interfacing
Software Components, for information about user-defined system call handlers,
VRTX32 extensions, and integrating other components into a VRTX32 system.

To use this manual as a reference guide, look up any given VRTX32 system call in
Chapter 7, System Call Reference. When you need additional information, refer to
the earlier chapters.

Conventions

There are several conventions you should be aware of as you read the
VRTX32168000 User's Guide.

• Numbers preceded by the dollar sign ($) character are hexadecimal numbers;
otherwise, numbers are decimal numbers.

• A notation such as D1[7:0] stands for register D1, bits 7 through 0; bit 0 is the
least significant bit.

• In figures that show memory, low memory is at the top of the figure.

• In some figures, there are fields labeled "Reserved, must = 0". These fields
must be zero.

• All code in this manual is in Motorola assembler format.

Related Documents

x

We recommend the following documents for additional information.

• Getting Started With Silicon Software Components provides details on the real­
time software development process.

• How to Write a Board Support Package for VRTX describes the process of
writing an interface between VRTX32 and your microprocessor board.

How to Use This Manual

• Motorola's M68000 16/32-bit Microprocessor Programmer's Reference Manual
provides specific Motorola M68000 references.

• For a discussion of using VRTX32/68000 with the C language, consult Ready
Systems' VRTX32 C User's Guide.

• Inteifacing a Language to Silicon Software Components provides guidelines for
writing an interface that allows a high-level language to make system calls to
Ready Systems' software components.

Questions/Suggestions

If you have questions about VRTX32/68000 that are not answered by this manual,
contact the Ready Systems Service and Support Group. To give us suggestions about
this manual, use the reader comment card at the back of the manual. If the card is
missing, send the suggestions to Ready Systems Technical Publications. Contact us at
this address:

Ready Systems
449 Sherman Avenue

P.O. Box 61029
Palo Alto, CA 94306-9991

415/326-2950
TELEX: 711510608 (domestic)

0231510608 (international)

xi

Chapter 1

Overview

1.1 Introduction

HUNTER
~READY

A Division of Ready Systems

VRTX32, the high-performance Versatile Real-Time Executive, is a silicon software
component for embedded microprocessors. VRTX32 is designed to take advantage
of the power and features typically available on 32-bit microprocessors.
VRTX32/68000 is the implementation of VRTX32 designed for the Motorola MC68000,
MC68008, and MC68010 microprocessors.

The following sections define terms basic to an understanding of VRTX32. These
terms include silicon software components, embedded applications, and real-time
executive. This chapter also gives an overview of VRTX32's features, configuration,
and architecture.

1.1.1 Silicon Software Components

A silicon software component is an executable version of a microprocessor
program that operates on all board-level microcomputers using the same type of
microprocessor. Because a silicon software component does not have to be modified
to make it work with custom board designs, it can be delivered in Read-Only
Memory (ROM). In fact, a silicon software component is more like a hardware
component than a traditional piece of software.

The critical concept introduced by silicon software components is the use of software
as a building block to connect other pieces of software in a variety of designs,
without modification.

1.1.2 Embedded Applications

An embedded microprocessor is buried inside a larger system, such as an
intelligent terminal, a communications system, an analytical instrument, an industrial
robot, or a peripheral controller. Embedded microprocessors are to be distinguished
from stand-alone microcomputers, such as small business systems or word
processors.

, -,

Overview

The software that runs on embedded microprocessors must meet a different set of
requirements than software that runs on stand-alone systems. The most important
requirement for embedded software systems is real-time responsiveness. The
system must respond to unexpected events in the outside world rapidly enough to
control ongoing processes. Another key requirement is multitasking. Multitasking
is the ability of the software to handle many tasks concurrently, because events in the
real world usually overlap rather than occur in strict sequence.

1 .1.3 Real-Time Executive

A common set of mechanisms is necessary to support real-time systems. These
mechanisms include such things as multitasking support, CPU scheduling,
communication, and memory allocation. Programmers and designers of real-time
systems frequently spend more time on these basic mechanisms than on the
application program itself. In embedded applications, this set of mechanisms is
called a real-time operating system or a real-time executive. Programmers build
the application using the real-time executive as the foundation. VRTX32 is a real­
time executive.

1.2 VRTX32 Features

There are three categories of VRTX32 features: real-time executive features, silicon
software component features, and M68000 support.

1.2.1 Real. Time Executive Features

VRTX32 provides all the features required in a real-time executive:

• Multitasking support

• Event-driven, priority-based scheduling

• Intertask communication and synchronization

• Dynamic memory allocation

• Real-time clock control, with optional time-slicing

• Character I/O support

• Real-time responsiveness

1-2

Overview

With these features, VRTX32 provides a strong foundation for real-time, multitasking
applications. VRTX32 frees designers and programmers from the problems of
synchronizing multiple real-time tasks and allows them to focus their efforts on the
application.

1.2.2 Silicon Software Component Features

VRTX32 provides these advantages:

• Development environment independence. VRTX32 consists entirely of an
indivisible ROM component; its configuration is not dependent on any
assemblers, linkers, loaders, or host environments.

• Target environment independence. VRTX32 requires only a CPU with a
small amount of memory. This allows VRTX32 to provide true chip-level
support for the M6sooo family in a wide variety of embedded applications.

• Extensibility. You can easily integrate application-specific system-level
software with VRTX32. This extended software can include user-defined
system call handlers and user-supplied routines.

• Position independence. VRTX32 is written entirely in position-independent
code. This means it can be positioned anywhere in the address space of the
processor.

You can easily integrate additional silicon software components into the system.
Other Hunter & Ready components include TRACER, a debugger; lOX, an
input/output executive; and FMXs, file management executives. You can also supply
your own component5.

1.2.3 M68000 Support

VRTX32/6S000 fully supports the Supervisor and User modes of the MC6S000,
MC6S00S, and Mc6s010 processors. VRTX32 Cas well as user-defined extensions and
interrupt handlers) executes entirely in Supervisor mode. User application tasks can
execute in Supervisor mode or in User mode. Thus, target applications can support
access-protection, data security, and memory management (through the use of a
memory management unit).

1-3

Overview

1.3 VRTX32 Configuration

1-4

The M68000 architecture uses a data structure called the Exception Vector Table
(EVI) to define the addresses of user-supplied interrupt and trap service routines.
There are two EVf entries that link VRTX32 to its board environment. The first of
these is a vector that points to the VRTX32 entry pOint, which is the starting address
of VRTX32. A second EVf entry is a vector that points to the base of the VRTX32
Configuration Table.

The user-supplied VRTX32 Configuration Table and simple, device-specific interrupt
handlers provide the interface between VRTX32 and its environment. With this
configuration table, you specify all the parameters required by VRTX32 for a
particular system environment.

Values in the configuration table specify the beginning and extent of system-managed
memory, multitasking parameters, interrupt support, and linkage to other silicon
software components. This table also describes the location of any user-supplied
routines invoked by significant events such as task switching. See Figure 1-1,
VRTX32 Configuration.

EVT

Configuration
Table

VRTX32

Figure 1-1 VRTX32 Configuration

Overview

1.4 VRTX32 Architecture

A system based on VRTX32 is layered according to function, with each level making
use of the functions provided by the level below. See Figure 1-2, VRTX32
Architecture. The system hardware occupies the lowest level. The next level contains
the Simplest, most hardware-dependent operating system functions. On top are user­
defined application programs.

In more technical terminology, each level defines a virtual machine for the level
above it. At higher levels, the functions provided by a software level are not
distinguishable from those provided by the hardware. Each software level adds
several instructions to the processor's instruction set. For application programs,
VRTX32 adds high-level instructions (system calls) to the architecture of the M68000
microprocessor.

Basic Calis

II VRTX32

Application Program

Interrupt Support User-Defined
Extensions

Figure 1-2 VRTX32 Architecture

Software

} Hardware

The shaded area in Figure 1-2 shows VRTX32's operating system mechanisms. A few
small pieces are missing between VRTX32 and the hardware. These missing pieces

1-5

Overview

1-6

are interrupt service routines (ISRs), small hardware-dependent code segments that
provide interrupt handling for particular peripherals. These are not supplied with
VRTX32, but Hunter & Ready offers supplementary packages that contain the ISRs for
several widely used peripheral devices such as counter-timers and serial I/O chips.
Consult How to Write a Board Support Package for VRTX for more information.

Other operating system mechanisms that VRTX32 does not provide are shown to the
right of VRTX32 in Figure 1-2. These include user-defined system call handlers and
VRTX32 extensions. These mechanisms can, for example, initialize and save the
state of special devices, such as a Fourier transform chip in a signal-processing
application. Like ISRs, these pieces are connected to VRTX32 with software hooks to
form a unified operating system. Some hooks are defined by entries in the
configuration table. Refer to Chapter 4, Configuration and Initialization, and Chapter
5, Support for User-Defined Extensions.

The three horizontal braces shown at the bottom of Figure 1-2 divide the overall
system architecture into three vertical sections, corresponding to three groups of
VRTX32 mechanisms: mechanisms that support basic system calls, mechanisms that
support interrupts, and mechanisms that support user-defined extensions. The
following chapters discuss these mechanisms.

Chapter 2

Basic System Calls

2.1 Introduction

HUNTER
~READY

A Division of Ready Systems

This chapter describes the process of making a VRTX32 system call and VRTX32's
basic operations. These operations are organized into three categories:

• Multitasking management

• Memory allocation

• Intertask communication and synchronization

Figure 2-1, Basic Architecture, shows these three operations.

Application Program

110 System
Call Handlers

o Functions covered in this chapter

Figure 2-1 Basic Architecture

VRTX32
Extensions

ISR

Other
Peripherals

2-1

Basic System Calls

2.1.1 Accessing VRTX32

The M68000 architecture uses a data structure known as the Exception Vector
Table (EVT) to control access to service routines for hardware-generated interrupts
and software-generated traps. Your application accesses VRTX32 as a trap service
routine through this same data structure.

The EVT is usually based at physical address O. However, the Mc68010 architecture
allows you to locate the EVT at any address by setting the Vector Base Register
(VBR), There are 16 TRAP vectors in the EVT, numbered 0 through 15. See Figure
C-1, Exception Vector Table, for the location of the TRAP vectors.

The application calls VRTX32 by issuing a TRAP instruction. The TRAP #n
instruction generates a trap exception; n is the TRAP vector number. When this trap
exception occurs, the CPU loads a new Program Counter (PC) value from the EVT.
For the trap to VRTX32, this new PC value contains the address of the VRTX32 entry
point.

You can choose any of the 16 TRAP numbers for VRTX32 access. Figure 2-2,
VRTX32 TRAP Vector, shows the format of vector 32, the vector corresponding to
TRAP #0, in the case where VRTX32 resides at physical address $1000. Vector 32 is
located at EVT offset $080.

EVT Offset
r-----------------~

$80 $0000

$82 $1000

Figure 2-2 VRTX32 TRAP Vector

2.1.2 System Call Format

2-2

All VRTX32 system calls are made with the TRAP instruction. When calling VRTX32,
register DO must contain a 32-bit function code that specifies the desired VRTX32
system call. When a call completes, VRTX32 returns a 32-bit return code in register
DO. When the call is successful, VRTX32 returns a value of zero; otherwise VRTX32
returns an error code (refer to Appendix B, Return Codes).

Additional parameters can be passed to VRTX32 in other registers. Nonaddress
parameters are passed in data registers Dl through D4, and address parameters are

Basic System Calls

passed in address register AO. Unless otherwise indicated, VRTX32 system calls leave
all input registers except DO intact. Refer to Appendix A, System Call Summary,
which lists all VRTX32 calls with their input parameters and output results.

Table 2-1, VRTX32 System Calls, lists all VRTX32 system calls and their function
codes.

2.2 Tasks

Real-time systems are designed to perform seemingly unrelated functions in a
nonsequential way, using the processor and I/O devices as effiCiently as possible.
Several common processing situations lend themselves to this control philosophy.
Examples include listening for input from several devices at the same time, reading or
writing a block of data while concurrently performing arithmetic computations, and
implementing communications applications.

VRTX32 supports real-time systems with a set of basic multitasking mechanisms.
The basic unit controlled by VRTX32 is the task, a logically complete path of user
code. The task is a collection of actions that deals with one issue asynchronously and
in real time. Several tasks can operate autonomously from the same piece of code,
or tasks can be located in separate code modules. In a multitasking system, several
tasks appear to execute Simultaneously, although VRTX32 actually allocates CPU
control among tasks in an interleaved fashion.

Tasks are active or inactive. Inactive tasks are dormant tasks, while active tasks
have executing, suspended, and ready task states. There can be as many active
tasks as the application requires. All active tasks have priority levels, and 255 of the
active tasks can have unique identification numbers. VRTX32 moves tasks from one
task state to another based on the task priority level and as the result of system calls.

The task's Task Control Block (TCB) and the task stack maintain task status
ifl.iormation for each active task not in control of the CPU.

Tasks can create other tasks and they can delete, suspend, resume, inquire about the
status, and change the priority of themselves or of other tasks. Tasks can also "lock"
critical sections of their code so that they are not preempted by other tasks. You can
create Supervisor mode tasks or User mode tasks. In Supervisor mode, tasks can use
the full instruction set of the M6sooo microprocessor.

2-3

Basic System Calls

Mnemonic

Task Management

SC3CREATE
SCTDELETE
SCTSUSPEND
SCTRESUME
SCTPRIORITY
SCTINQUIRY
SCLOCK
SCUNLOCK

Memory Allocation

SCGBLOCK
SC_RBLOCK
SC_PCREATE
SCPEXTEND

Table 2-1 VRTX32 System Calls

Function Code

$0000
$0001
$0002
$0003
$0004
$0005
$0020
$0021

$0006
$0007
$0022
$0023

System Call

Create Task
Delete Task
Suspend Task
Resume Task
Change Task Priority
Task Status Inquiry
Disable Task Rescheduling
Enable Task Rescheduling

Get Memory Block
Release Memory Block
Create Memory Partition
Extend Memory Partition

Communication and Synchronization

2-4

SC_POST
SCPEND
SC_ACCEPT
SC_QPOST
SC_QJAM
SC_QPEND
SC_QACCEPT
SCQCREATE
SC_QECREATE
SCQINQUIRY
SC]CREATE
SC]DELETE
SC]POST
SC]PEND
SCFCLEAR
SC]INQUIRY

$0008
$0009
$0025
$0026
$OOlE
$0027
$0028
$0029
$OO1F
$002A
$0017
$0018
$OOlA
$0019
$OOlB
$OO1C

Post Message to Mailbox
Pend for Message from Mailbox
Accept Message from Mailbox
Post Message to Queue
Jam Message to Queue
Pend for Message from Queue
Accept Message from Queue
Create Message Queue
Create FIFO Message Queue
Queue Status Inquiry
Create Event Flag Group
Delete Event Flag Group
Post Event to Event Flag Group
Pend on Event Flag Group
Clear Event
Event Flag Group Inquiry

(continued on next page.)

Basic System Calls

Table 2-1, continued

Mnemonic Function Code System Call

Communication and Synchronization, continued

SCSCREATE
SCSDELETE
SCSPOST
SCSPEND
SC_SINQUIRY

Interrupt Support

UI_ENTER
UCEXIT

Real-Time Clock

SC_GTIME
SC_STIME
SCTDELAY
SC_TSLICE
UCTIMER

Character I/O

SCGETC
SC]UTC
SC_WAITC
UCRXCHR
UCTXRDY

Initialization

$002B
$002C
$002E
$002D
$002F

$0016
$0011

$OOOA
$OOOB
$OOOC
$0015
$0012

$OOOD
$OOOE
$OOOF
$0013
$0014

$0030
$0031

Create Semaphore
Delete Semaphore
Post Unit to Semaphore
Pend on Semaphore
Semaphore Inquiry

Enter Interrupt Handler
Exit Interrupt Handler

Get Time
Set Time
Delay Task
Enable Round-Robin Scheduling
Announce Timer Interrupt

Get Character
Put Character
Wait for Special Character
Received-Character Interrupt
Transmit-Ready Interrupt

Initialize VRTX32
Start Application Execution

2-5

Basic System Calls

The rest of this section talks about these concepts in more detail and discusses
VRTX32's multitasking management calls.

2.2.1 Task States and State Transitions

2-6

In a multitasking environment, tasks exist in and are moved between one of four
states: executing, ready for execution, suspended, or dormant.

This section discusses the VRTX32 system calls that affect a task's state. Refer to the
following sections and chapters for detailed explanations of these calls.

Executing Task State. An executing task has control of the CPU and is executing its
instruction path. Only one task executes at a time.

Suspended Task State. A suspended task is suspended in mid-execution, and is
waiting to be readied by a system call or an event.

A task can suspend for any of these reasons:

• A task suspend call, SC_TSUSPEND, specifies that task either by priority or by
ID number. A task can suspend itself.

• The task issues an SC_ TDELA Y call and suspends for a specified time interval.

• The task issues an SC_PEND or SC_QPEND call, but no message from a task or
an interrupt handler is waiting at the mailbox or queue.

• The task issues an SC_FPEND call, but the correct event flag(s) are not set.

• The task issues an SC_SPEND call, but the resource's semaphore has a zero
value (the resource is not available).

• The task issues an SC_ WAITC call and waits for an I/O device to send a special
character.

• The task issues an SC_GETC call, but the input buffer maintained by VRTX32 is
empty. The task waits for a character to be put into the buffer.

• The task issues an SC]UTC call, but the output buffer is full. The task waits
for a character to be removed from the buffer.

To find out why a task is suspended, you can issue the SC_TINQUIRY call to read
the Status field in the task's TCB.

Basic System Calls

It is important to note that suspensions are independent and additive. For example,
when a task is suspended while waiting for a message and it is also explicitly
suspended by another task, both suspending conditions must be removed before the
task is ready for execution.

A final point about the suspended task state is that when a task suspends, VRTX32
notes the current interrupt level. When this task is resumed, interrupts are enabled to
the level they were enabled when the task was suspended.

Ready Task State. A ready task is one that is ready for execution; for example, a
task that has just been created is ready for execution. However, a ready task cannot
gain control of the CPU until all higher-priority tasks in the ready or executing state
either complete, suspend, or become dormant.

A task can move from the suspended state to the ready state for any of these reasons:

• An SC_TRESUME call readies a task suspended by an SC_TSUSPEND call.

• A time delay expires, which can ready a task suspended by an SC_TDELAY call,
or a task that timed out pending for a message.

• An SC_POST or SC_QPOST call posts a message to a task that is waiting on a
mailbox or queue.

• An SC_FPOST call posts an event(s) to an event flag group and a task was
waiting for that event(s).

• An SC_SPOST call indicates that the resource is available and a task was waiting
on that resource's semaphore.

• An interrupt service routine (ISR) sends a special character (with the UCRXCHR
call) to VRTX32. VRTX32 then transfers the character to a task suspended by
an SC_ WAITC call.

• An ISR sends a character to the input buffer Witll the UI_RXCHR call. The tasks
suspended on an empty buffer are readied in the order they were suspended,
one at a time, with each succeeding UCRXCHR call.

• An ISR retrieves a character from the output buffer with the UC TXRDY call.
The tasks suspended on a full buffer are readied in the order they were
suspended, one at a time, with each succeeding UC TXRDY call.

A task moves from the executing state to the ready state when a higher-priority task
becomes ready to execute. CPU control then passes to the higher-priority task.

2-7

8asic System Calls

Because the task that loses control is not suspended, no bits are set in the TBSTAT
field of its TCB. The task remains in the ready state until all higher-priority tasks
complete, suspend, or become dormant, at which point the task moves back to the
executing state.

For example, when a task is executing and a higher-priority task's SC_TDELAY
interval expires, the higher-priority task gains control. This moves the lower-priority
task from the executing state to the ready state.

This transfer of control from one task to another is called a task switch. Refer to
Section 2.2.2, Task Scheduling, for more information about task switching, and
Appendix E, The Rescheduling Procedure, for information about the process that
leads to task switches.

Dormant Task State. A dormant task is a task that is not initialized, or a task whose
execution is terminated Ctask deleted). No TCB is assigned to it.

Tasks are in the dormant state before they are created; they reenter the dormant state
when they are deleted with an SC_TDELETE call. When all user tasks are deleted or
suspended, the system switches to the idle task until an external event occurs.

Figure 2-3, Task State Transitions, shows these task states.

2.2.2 Task Scheduling

2-8

VRTX32 schedules and manipulates tasks based on each task's identification number
and priority.

Each task has a unique identification (ID) number that allows it to be selectively
readied, suspended, or deleted. You specify the task ID number when you create
the task: either a unique ID number from 1 to 255, or an ID of zero, which indicates
that no ID is aSSigned. CAny number of tasks with an ID of zero can exist.)

VRTX32 schedules control of the CPU based on the highest-priority task that is ready
to execute. A task's priority is determined by two things:

• the priority level you assign to the task when it is created

• the order tasks are made ready among equal-priority tasks

Any call
that causes
task
switching

SC3CREATE

Scheduler

Real-time
Event or
SC_TRESUME

Figure 2-3 Task State Transitions

Basic System Calls

SC_TSUSPEND
SC_TDELAY
SC_PEND
SC_QPEND
SCJPEND
SC_SPEND
SC_WAITC
SC_GETC
SC._PUTC

You must specify a priority level for each task when it is created. There are 256
priority levels ranging from zero to 255; zero is the highest-priority level. Any
number of active tasks can exist at each priority level.

In a group of equal-priority tasks, tasks execute in the order that they become ready
(first-in/first-out (FIFO) order). In other words, the "oldest" ready task is the highest­
priority task in its priority group. (Refer to Section 2.2.1, Task States and State
Transitions, for a discussion of ready tasks.) For example, the task that was created
first executes before newer ready tasks of the same priority.

VRTX32 initiates the rescheduling procedure to ensure that the highest-priority task
is executing. (Refer to Appendix E, The Rescheduling Procedure, for more

2-9

Basic System Calls

information about this procedure.) You do not execute special system calls to
accomplish task switching once initialization is complete and system execution is
underway.

The highest-priority task executes until the task terminates its own operation, the task
suspends, or a higher-priority task is ready to execute. When one of these events
occurs, the rescheduling procedure determines the next task to move from the ready
state to the executing state.

The rescheduling procedure can be disabled with the SC_LOCK call, and reenabled
with the SC_UNLOCK call.

The way tasks are scheduled can be altered with the change task priority
(SC_TPRIORITY) call, the delay task (SC_TDELAY) call, and the enable time-slice
(SC_TSLICE) call. The SC_TPRIORITY call changes the priority of a task. A task
switch can occur if the new priority of the affected task is higher than that of the
calling task, or if the task lowers its own priority and there is a ready task with a
higher priority. The current task can also change the execution order of equal­
priority ready tasks by issuing SC_TPRIORITY with the "new" priority equal to the
"old" priority. This makes the affected task ready after the other members of its
priority group. Note that the calling task can voluntarily preempt itself using this
technique if there are equal-priority tasks that are ready to execute.

The SC_TDELAY call delays the calling task's execution for a specified number of
VRTX32 clock ticks. A task can also use this call to voluntarily preempt itself; if the
task specifies a zero delay value, it moves to the end of its priority group. The next
equal-priority ready task executes.

The SC_ TSLICE call enables optional round-robin scheduling among equal-priority
tasks. At the end of a time-slice interval, or when a task in the priority group
suspends, the tasks in the priority group rotate. The next ready task is given a
chance to execute.

2.2.3 Task Control Block (TCB)

2-10

Because microprocessors can execute only one instruction at a time, tasks that
appear to be executing in parallel are really executing in short, interleaved bursts.
VRTX32 must therefore maintain status information about the contents of active
registers for all tasks not in control of the cpu.

Basic System Calls

This information is stored in the task's Task Control Block (TCB) and on the task's
stack. The TCB is a data structure in the VRTX32 Workspace. Each active task has a
TCB, but no TCB is defined for a dormant task. See Figure C-2, Task Control Block,
for a diagram of the TCB.

A task's TCB is frozen while the task is executing and is not altered until the task
moves to the ready, suspended, or dormant state. When the task moves to the ready
or suspended state, the TCB saves the contents of registers DO through D5, AO
through A3, SSP and USP, as well as other status information about the task. The
task's stack saves registers D6, D7, A4 through A6, PC, and the Status Register (SR),
When the task moves to the suspended state, the TBSTAT field in the TCB indicates
the reason for suspension. When the task moves to the dormant state, its TCB is no
longer associated with that task.

2.2.4 Task Management Support

VRTX32 manages tasks with these calls:

SC_TCREATE
SC_TDELETE
SC_TSUSPEND
SC_TRESUME
SC_TPRIORITY
SCTINQUIRY
SC_LOCK
SC_UNLOCK

Task Create
Task Delete
Task Suspend
Task Resume
Task Priority Change
Task Status Inquiry
Disable Task Rescheduling
Enable Task Rescheduling

The SC_ TCREA TE call creates a task with a priority level, an ID number, a mode
(Supervisor or User), and a specified start address. The task begins execution with
interrupts enabled (interrupt level 0). The creator task's environment determines the
new task's TCB and stack values.

It is possible to create a task with an ID of zero. However, it is a special case
because other tasks cannot reference it. The SC_TDELETE, SC_TSUSPEND,
SC_TPRIORITY, and SC_TINQUIRY calls reference the calling task when a zero ID is
specified.

A task can remove one or more tasks, including itself, with the SC_TDELETE call.
You can specify the task to be deleted by priority or ID number. The deleted task
becomes dormant and the TCB is available for reuse.

2-11

Basic System Calls

The SC_TSUSPEND call suspends one or more tasks by priority or ID number. A task
can suspend itself. When a task is suspended, a flag in the TCB's TBSTAT field is set
to indicate the reason for suspension. An explicitly suspended task is not resumed
until an SC_TRESUME call is issued.

The SC_TRESUME call resumes the execution of one or more tasks previously
suspended by an SC_TSUSPEND call. You can specify the tasks to be resumed by
priority or ID number.

A task can change the priority of another task or of itself with the SC_ TPRIORITY
call. You specify the task by ID number. (You can change the priority of an
explicitly suspended task, but it remains explicitly suspended until you issue an
SCTRESUME call.)

The SC_TINQUIRY call obtains the task ID number, priority level, and status
information from the TCB of any task, including itself. We recommend that ISRs use
this call only for general performance or statistical monitoring. When this call is made
before any tasks are created, the data returned is invalid.

You can disable the rescheduling procedure with the SC_LOCK call. This can be
useful when, for example, there is a critical section of code that higher-priority tasks
must not preempt. The task that issues the SC_LOCK call retains processor control,
even though higher-priority tasks may be ready to run. The SC_UNLOCK call
reenables the rescheduling procedure. However, it cancels only the last SC_LOCK
call. (The maximum lock/unlock nest count supported is 65,535.)

CAUTION

Any call that suspends the current task causes unpredictable results
when task rescheduling is disabled with the SC_LOCK call.

2.2.5 Multitasking Management Calls

2-12

Table 2-2 contains a summary of the system calls that control the multitasking
environment. All calls described in this section can lead to the rescheduling
procedure, except for SC_LOCK and SC_TINQUIRY; refer to Appendix E, The
Rescheduling Procedure, for more information. For detailed information on each of
the calls, refer to Chapter 7, System Call Reference.

Basic System Calls

SC3PRIORI1Y

SCTINQUIRY

Table 2-2 Task Management Call Summary

Creates a task with a specified priority, ID number,
mode, and address.

Deletes one or more tasks specified by priority or
ID number.

Suspends one or more tasks specified by priority or
ID number.

Resumes one or more tasks specified by priority or
ID number.

Changes the priority of a task specified by ID number.

Obtains the ID number, priority, TCB address, and
status of a task specified by ID number.

Disables task rescheduling until SC_UNLOCK is issued.

SCUNLOCK Enables task rescheduling.

2.3 Memory

The M68000 microprocessor's 24-bit PC and its 24 address lines define an address
space of 16 megabytes (224 bytes), although the actual amount of memory in the
system is often considerably less. The memory map of a VRTX32-based system
consists of these modules:

• VRTX32 code: the VRTX32 PROM set. Note that VRTX32 can be placed in
random access read/write memory, and can be loaded into memory from disk,
if you wish.

• User load module: the software package you are responsible for developing,
assembling, linking, and placing in the execution environment.

• VRTX32 Workspace: contains system variables, TCBs, and stacks.

• VRTX32-managed user memory: one or more partitions, or pools, of memory
blocks that tasks and ISRs dynamically acquire and release.

2-13

Basic System Calls

2-14

• Optional Hunter & Ready components, such as lOX, FMX, or TRACER.

• Optional user-supplied components.

Figure 2-4, Memory Organization, is an overview of the entire memory organization
of a VRTX32 system. The shading shows what can be burned into ROM; everything
else must be in dynamic read/write memory.

VRTX32I System Variables

lOX
ISR Stack (optional)

Partition 0

FMX· TCBs

Additional
System Partition 1

Variables

Idle Task Stack

Partition 2

CorllpOnerlt(l .•
User Stacks

Optional Components

Partition n

VRTX32 Workspace User Memory

VRTX32-Managed Memory

·StatidVariables Iii Can be put in ROM/PROM

User Load Module

Figure 2-4 Memory Organization

Basic System Calls

The user load module holds your application code and any user-defined, system­
level code, as described in Chapters 3 through 6. In addition, the user load module
contains the EVT, the configuration table, and any static variables associated with
your application or with system code. Refer to Appendix D, An Example, for an
example of a user load module.

The VRTX32 Workspace contains the system variables, the optional interrupt stack,
the TCBs, control structures for queues, event flag groups, and semaphores, control
structures for VRTX32-managed user memory, the idle task stack, and stack areas for
each task in the system. VRTX32 is responsible for setting up and managing the
stacks and for initializing and managing the TCBs.

The VRTX32-managed user memory consists of one or more partitions, or
chunks, of memory. These partitions can be noncontiguous. Each partition is
subdivided into one or more fixed-size blocks of memory that can be allocated
dynamically. The rest of this section describes how VRTX32 manages user memory
and its own workspace.

2.3.1 Memory Allocation

A task's demand for memory varies over the course of its execution, and different
tasks usually have different requirements. The operating system treats memory as a
resource and allocates that resource among competing tasks, just as it allocates
control of the CPU among competing tasks.

Multitasking executives generally use one of two approaches to memory allocation:
static allocation of fixed-size memory blocks or dynamic allocation of variable­
size blocks. In static allocation, each task is assigned a block of memory at system
initialization. This block is dedicated to that one task and cannot be used by any
other task. In dynamiC allocation of variable-size memory blocks, available memory
eventually becomes fragmented and unusable as tasks allocate and release memory
blocks from the available pool.

One technique for allocating variable-size blocks is the buddy system, widely used in
non-real-time systems. In this technique, a single piece of memory is split in half.
Each half is the buddy of the other half. The piece of memory is repeatedly split in
half until a block size appropriate to the request is created. When the memory
request is for a unit larger than any of those currently available, the system attempts
to combine a smaller unit with its buddy into a larger contiguous unit. This scheme
suffers from indeterminacy, a serious flaw for real-time applications.

2-15

Basic System Calls

A problem with the buddy system and other variable-size memory allocation systems
is that as memory grows progressively more fragmented, occasions inevitably arise
when a request cannot be met. Even though there can be enough total free memory,
it can be so fragmented that a large enough contiguous block cannot be found.
These occasions cannot be predicted in advance and compensated for, because the
order of memory requests usually cannot be anticipated in a real-time system. This
design introduces an element of unpredictability into the total system behavior
beyond that of the external environment. This additional unpredictability is
unsatisfactory in real-time systems, because real-time systems cannot tolerate a
memory system that works only some of the time.

2.3.2 Memory Allocation Support

2-16

The designers of VRTX32 felt static allocation was too restrictive, but the memory
compaction resulting from dynamic allocation led to unacceptable indeterminacy and
imposed too much system overhead. Thus, the VRTX32 memory allocation
mechanism is a compromise between the two schemes. The VRTX32 memory
management schemes are determinate, yet they allow flexibility in the sizes of the
stacks allocated to each task and in the sizes of the partitions that divide user
memory.

In the VRTX32 Configuration Table, you specify the starting address and size of
VRTX32 Workspace, the optional interrupt stack's size, the maximum number of tasks
that can exist at anyone time, and each task's stack area size. The VRTX32
Workspace must be large enough to contain VRTX32 system variables, the optional
interrupt stack, one TCB for each task, and stack areas for every task in the system.
In addition, the VRTX32 Workspace must be large enough to accommodate a control
block for each memory partition and extenSion, and a control block for each defined
message queue. Refer to Section 4.3, Determining VRTX32 Workspace Size, for
details.

When a task is created, VRTX32 automatically allocates the task's fixed-size stack (or
stacks) in the VRTX32 Workspace. The stack size is specified by the User-Stack-Size
and Sys-Stack-Size parameters in the configuration table. (Refer to Chapter 4,
Configuration and Initialization.)

You can bypass this allocation when you want to manage stacks with a user-supplied
routine invoked at task create time; for example, when you want every task to have a
different stack size. Refer to Section 5.3, VRTX32 Extensions, for information about
user-supplied routines.

Basic System Calls

A User mode task is given two separate stacks, referenced by the User Stack Pointer
(USP) and Supervisor Stack Pointer (SSP) (the TBUSP and TBSSP fields in the
task's TCB). A Supervisor mode task is given a single stack, referenced by the SSP
(the TBSSP field in the task's TCB).

VRTX32 also dynamically allocates partitions of user memory. You can dynamically
define partitions to match the often noncontiguous chunks of memory that make up
the actual physical organization of memory. Each partition of user memory has
blocks of a fixed size set when that partition is created.

VRTX32 manages its memory allocation system with these system calls:

SCGBLOCK Get Memory Block
SC_RBLOCK Release Memory Block
SC_PCREATE Create Memory Partition
SC_PEXTEND Extend Memory Partition

The SC_PCREATE call defines a contiguous area of user memory as a partition.
Parameters passed with the call specify the partition start address, the partition size,
the partition ID number, and the block size. There cannot be more than 32K blocks
in the partition as first defined by the SC_PCREATE call. However, you can extend
the partition with the SC_PEXTEND call. The block size must not equal zero and
must be less than or equal to the partition size. To avoid wasted space, the partition
size should be an integer multiple of the block size.

The SC_GBLOCK call acquires a block of memory from the partition. You can repeat
this call until all blocks in the partition are allocated.

The SC_RBLOCK call releases a block of memory back to the partition. A task's
blocks are not automatically released when the task is deleted, because blocks can be
passed to other tasks for data exchange. Therefore, you should use the SC_RBLOCK
call to release all blocks before you delete a task.

The SC_PEXTEND call enlarges a previously-defined partition to include an additional
range of memory locations. There cannot be more than 32K blocks in an extension.
However, you can issue multiple SC_PEXTEND calls to define more blocks. The
extension and the original partition do not have to be contiguous with each other.

Since all memory blocks in a partition are the same size, no fragmentation results
from dynamic memory allocation; consequently, no memory compaction is required.

2-17

Basic System Calls

2-18

The VRTX32 partition!block system has several key features. These features give
VRTX32's memory allocation system great flexibility and most of the advantages of a
variable-size block system, without the indeterminacy and excessive system
overhead. First, you can define partitions in other partitions to achieve different
block sizes. For example, one partition can be entirely in a single block of another
partition. This means that blocks can easily be divided into sub-blocks. Second, you
can define two partitions to cover the same area of memory, allowing you to allocate
blocks of two different sizes from the same memory region. The only requirement
here is that you must release all blocks of one size before you allocate any blocks of
the other size.

Figures 2-5, VRTX32 Workspace, and 2-6, User Memory Managed by VRTX32, show
how memory is subdivided.

VRTX-Workspace-Addr ~

System Variables

ISR Stack (if allocated)

TCBs

Additional system variables
(dynamically allocated for

VRTX-Workspace-Size - partition, queue, event flag
group, and semaphore control
structu res).

Idle Task Stack

User-Stack-Size
r-- -- -- -

Sys-Stack-Size

User-Stack-Size -- -- -- -
Sys-Stack-Size

User-Stack-Size -- -- -- -- Sys-Stack-Size

Figure 2-5 VRTX32 Workspace

}
J­
}

2624

ISR-Stack-Size

User-Task-Count X
TCB size (160)

} Idle-Task-Stack-Size

User-Task-Count X
(User-Stack-Size +
Sys-Stack-Size)

(Sizes in bytes)

Basic System Calls

Partitions and Extensions
Defined by SC_PCREATE and SC_PEXTEND

Start address

Size """""""""-'-"""""""""",","""""",,,,",,,,,,",,,,,,"9} Block size

Figure 2-6 User Memory Managed by VRTX32

2.3.3 Memory Allocation Calls

Table 2-3 contains a summary of the system calls that allow programs to obtain and
return blocks of memory from a specified partition. The summary also includes the
VRTX32 calls that create and extend partitions. These calls do not initiate the
rescheduling procedure, and so cannot cause a task switch. For detailed information
on each of the calls, refer to Chapter 7, System Call Reference.

SCRBLOCK

SC]CREATE

SC]EXTEND

Table 2-3 Memory Allocation Call Summary

Gets a memory block from a specified partition.

Releases a memory block back to the specified
partition.

Creates a memory partition of a specified size, ID
number, block size, and address.

Extends a specified partition with a specified
extension size and address.

2-19

Basic System Calls

2.4 Intertask Communication and Synchronization

A real-time multitasking system has several communication and synchronization
needs:

• A task must be able to exchange data with other tasks and ISRs .

• A task must be able to synchronize with other tasks and ISRs, in these ways:

• Unilateral synchronization: a task synchronizes with another task or an
ISR.

• Bilateral synchronization: two tasks synchronize with each other.

• Conjunctive synchronization: a task synchronizes with several events.

• Disjunctive synchronization: a task synchronizes with the first of several
possible events .

• Tasks must occasionally be able to mutually exclude each other so that each is
guaranteed exclusive control of a protected resource.

VRTX32 provides several mechanisms to meet these needs. Tasks and ISRs can pass
long-word C32-bit) messages using mailboxes and queues to meet all the above
needs. Messages can be significant in themselves, or pointers to larger messages.
Tasks and ISRs can also use event flags for synchronization, and semaphores for
mutual exclusion.

2.4.1 Mailboxes

2-20

A mailbox is a user-defined long-word variable in user read/write memory.
Mailboxes allow tasks to pass long-word C32-bit) nonzero messages. VRTX32 does
not create mailboxes; instead, you set up the memory for the mailbox. The
application should initialize the mailbox to the appropriate value: zero when the
mailbox is immediately available; nonzero when the mailbox is used for mutual
exclusion.

These are VRTX32's mailbox system calls:

SC_POST
SCPEND
SCACCEPT

Post Message to Mailbox
Pend for Message from Mailbox
Accept Message from Mailbox

Basic System Calls

A task or an ISR sends a message to a specified mailbox with the SC_POST call. If a
message is already in the mailbox (mailbox value is nonzero), VRTX32 returns an
error code.

To receive the message, another task issues an SC_PEND call. If there is a message
in the mailbox (mailbox value is nonzero), the task receives the message and
continues execution. VRTX32 resets the mailbox to zero when the message is
received.

If there is no message in the mailbox (mailbox value is zero), the task attempting to
receive a message with SC_PEND suspends until the message arrives. You can
specify a nonzero timeout value that allows the task to resume execution if no
message arrives during that time period.

When the task attempts to receive the message with an SC_ACCEPT call and no
message is present, the task does not suspend. Instead, VRTX32 returns an error
code and the task continues execution. To avoid suspension, ISRs must use
SC_ACCEPT rather than SC_PEND to receive messages.

When a task pending at a mailbox is suspended with the SC_ TSUSPEND call, it can
receive a message. However, the task remains suspended until it is resumed with the
SC3RESUME call.

More than one task can wait at the same mailbox if each task issues an SC_PEND call
with the same mailbox address. When a message is sent to that mailbox, the highest­
priority task receives the message and is placed in the ready state. (Tasks receive
messages according to their priority level at the time they pend on the mailbox.
Changing a pended task's priority does not affect the order in which messages are
allocated.)

You can use VRTX32's mailbox calls for data transfer, synchronization, and mutual
exclusion. To synchronize two tasks with each other, Task A posts a message to one
mailbox, then immediately pends at another mailbox. Task B simply does the
reverse: it receives Task A's message, then immediately posts a message to enable
Task A.

To perform mutual exclusion of a protected resource, you "lock" the resource by
initializing a mailbox to any nonzero "key" value. Every task that needs to use that
resource pends at the mailbox for the key. As each task finished with the resource, it
posts the key back to the mailbox to enable the next task.

2-21

Basic System Calls

2.4.2 Queues

2-22

Message queues are fixed-length buffers that you create dynamically. Queues are
not part of your set of variables; they are VRTX32-managed structures referenced by a
queue ID number.

Queues allow tasks to pass long-word (32-bit) messages. (A queue of length 1
behaves logically like a mailbox.)

These are VRTX32's queue system calls:

SC_QCREATE
SC_QECREATE
SC_QPOST
SC_QJAM
SC_QPEND
SC_QACCEPT
SC_QINQUIRY

Create Message Queue
Create FIFO Message Queue
Post Message to Queue
Jam Message to Queue
Pend for Message from Queue
Accept Message from Queue
Queue Status Inquiry

You create a queue in VRTX32's Workspace with the SC_QCREATE or SC_QECREATE
call, specifying the queue ID number and the queue size. Tasks pend on a queue
created with SC_QCREATE in priority order. With the SC_QECREATE call, you
specify whether they pend in priority or FIFO order.

Tasks and ISRs send messages to queues with the SC_QPOST and SC_QJAM calls.
The SC_QPOST call puts the messages at the end of the queue; messages are
handled in flrst-in/flrst-out (FIFO) order. If the queue is full, an error code is
returned.

SC_QJAM puts the message at the beginning of the queue. When a queue is created
with SC_QCREATE or SC_QECREATE, VRTX32 adds one queue entry to the number
you specify. This additional entry is reserved at the beginning of the queue for a
message posted with the SC_ QJAM call when the queue is otherwise full. If the
queue is full and a message has already been "jammed", an error code is returned.
As an alternative to mixing SC_QJAMs and SC_QPOSTs, you can use the SC_QJAM
call to post all messages to the queue. In this case, you can use the full size of the
queue (including the reserved entry), and messages are handled in last-in/first-out
(LIFO) order.

Tasks receive messages with SC_QPEND or SC_QACCEPT. If a task attempts to
receive a message with SC_QPEND and the queue is empty, the task suspends. You
can specify a nonzero timeout value that allows the task to resume execution if no

Basic System Calls

message arrives during that time period. If a task attempts to receive a message from
an empty queue with SC_QACCEPT, it is not suspended. Instead, VRTX32 returns an
error code and the task continues execution. To avoid suspension, ISRs must use
SCQACCEPT.

When two or more tasks pend at an empty priority-order queue, the task with the
highest priority receives the first message sent to the queue. (Tasks receive messages
according to their priority level at the time they pend on the queue. Changing a
pended task's priority does not affect the order in which messages are allocated.)
When two or more tasks pend at an empty FIFO-order queue, the task that pended
first receives the first message sent to the queue.

The SC_QINQUIRY call obtains information about a queue. This call returns the
number of messages in the queue and the message at the head of the queue. This
message is returned to the caller but is not removed from the queue.

You can use queues for mutual exclusion of several resources of the same type.
Assign each type of resource, such as a line printer, a spedfic queue. The length of
this queue should be equal to the number of resources in that resource type, such as
the number of line printers on the system. This length determines how many tasks
can use the resource type at the same time.

For example, suppose there are five line printers in the system. A priority-order line
printer queue of length five locks these printers. This line printer queue is initialized
with printer ID numbers. All tasks attempting to use a line printer pend at the line
printer queue. When a printer becomes available, the highest-priority pended task
receives that printer's ID number and uses the printer. When the task finishes with
the line printer, it posts the printer ID number back to the line printer queue. This
enables another task to use that printer.

2.4.3 Event Flags

An event flag group is a global, long-word (32-biO structure in VRTX32 Workspace.
Each of the 32 bits in the event flag group is an event flag. Event flags have two
states: set (one) and cleared (zero). When a flag is set, the assodated event has
occurred. This means that tasks and ISRs can use event flags to signal the occurrence
of events to other tasks.

Event flags provide these synchronization features:

2-23

Basic System Calls

2-24

• A task can wait for a disjunctive (OR) set of events to occur. In other words,
a task specifies a set of events to wait for. When the first one occurs, the task
is readied.

• A task can wait for a conjunctive (AND) set of events to occur. This means
that a task specifies a set of events to wait for, and is not readied until all the
events have occurred.

• Many tasks can be waiting for the same event. This means that a task or an ISR
"broadcasts" the event to all the tasks waiting for it to occur.

These are VRTX32's event flag system calls:

SC]CREATE Create Event Flag Group
SC]DELETE Delete Event Flag Group
SC_FPEND Pend on Event Flag Group
SC_FPOST Post Event to Event Flag Group
SC]CLEAR Clear Event
SC]INQUIRY Event Flag Group Inquiry

The SC_FCREATE call creates a 32-bit event flag group in VRTX32 Workspace, and
returns the event flag group ID number. Each event flag group and semaphore is
associated with a control block. You specify the maximum number of control
blocks in the VRTX32 Configuration Table (refer to Section 4.2, VRTX32
Configuration Table). If you try to create more event flag groups and/or semaphores
than you've specified in the configuration table, VRTX32 returns an error code.

The SC_FDELETE call deletes an event flag group, making its control block available
for reuse. There may be tasks pending on the event flag group; you can specify
whether to delete only if there are no tasks pending, or to force a delete. In the
latter case, all pending tasks are readied.

Tasks wait for one or more events with the SC_FPEND call. The task specifies
whether it is an AND pend or an OR pend. If the specified event flags are set, the
task continues execution (the SC_FPEND call does not clear the event flags). If the
specified event flags are not set, the task suspends. You can specify a nonzero
timeout value that allows the task to resume execution if the event does not occur
during that time period. If the task is suspended on an event flag group and the
group is deleted, the task is readied and VRTX32 returns an error code.

To satisfy an AND pend, all specified event flags must have a value of one
Simultaneously. For example, suppose a task is waiting for both Flag 1 and Flag 2.
Flag 1 is set, but is immediately cleared. Next, Flag 2 is set. The task continues to
pend, because Flag 1 and Flag 2 have not had a value of one at the same time.

Basic System Calls

Tasks and ISRs signal one or more events with the SC_FPOST call. Tasks suspended
on the event flag group are readied if the SC]POST call satisfies their AND or OR
pend. If an event flag is already set (one), and SC]POST tries to set it again,
VRTX32 returns an error code. However, if SC_FPOST specifies several event flags,
and some of them are already set, VR1X32 returns an error code and sets any event
flags that were not previously set.

The SC_FCLEAR call clears event flags. An event flag should be cleared before an
attempt is made to post to it again.

A task or an ISR can check the status of event flags by issuing the SC_FINQUIRY call.
The entire 32-bit event flag group is returned to the caller.

2.4.4 Semaphores

VRTX32 provides counting semaphores for mutual exclusion. A counting
semaphore is a word (16-bit) variable in VRTX32 Workspace that has an initial value
from 0 to 65,535. An initial value of zero indicates that the resource starts in a locked
state. A nonzero value indicates how many tasks can access the resource at one
time.

These are VR1X32's semaphore system calls:

SCSCREATE
SC_SDELETE
SC_SPEND
SCSPOST
SC_SINQUIRY

Create Semaphore
Delete Semaphore
Pend on Semaphore
Post Unit to Semaphore
Semaphore Inquiry

The SC_SCREATE call creates a semaphore in VRTX32 Workspace, and returns the
semaphore ID number. You specify the initial value of the semaphore and whether
tasks pend on the semaphore in priority order or FIFO order.

Each semaphore and event flag group is associated with a control block. You
specify the maximum number of control blocks in the VR1X32 Configuration Table
(refer to Section 4.2, VRTX32 Configuration Table). If you try to create more
semaphores and/or event flag groups than you've specified in the configuration table,
VRTX32 returns an error code.

The SC_SDELETE call deletes a semaphore, making its control block available for
reuse. There may be tasks pending on the semaphore; you can specify whether to
delete only if there are no tasks pending, or to force a delete. In the latter case, all
pending tasks are readied.

2-25

Basic System Calls

To wait for the restricted resource, a task issues the SC_SPEND call. If the
semaphore has a nonzero value, the semaphore is decremented and the task
continues execution. If the semaphore is zero, the task suspends. You can specify a
nonzero timeout value that allows the task to resume execution if the resource does
not become available during that time period. If the task is suspended on the
semaphore and the semaphore is deleted, the task is readied and VRTX32 returns an
error code.

A task or an ISR signals that the resource is available with the SC_SPOST call. This
call increments the semaphore; however, if a task is waiting, it is readied immediately
and the semaphore is not incremented. If a semaphore receives an SC_SPOST when
its value is already at the maximum of 65,535, an overflow occurs and VRTX32
returns an error code.

When two or more tasks pend at a priority-order semaphore, the task with the
highest priority is readied with the next SC_SPOST call. (Tasks are readied according
to their priority level at the time they pend on the semaphore. Changing a pended
task's priority does not affect the order in which tasks are readied.) When two or
more tasks pend at a FIFO-order semaphore, the task that pended first is readied
with the next SC_SPOST call.

Tasks and ISRs can check the value of a semaphore with the SC_SINQUIRY call.

2.4.5 Communication and Synchronization Calls

2-26

Table 2-4 contains a summary of the system calls used for message exchange,
synchronization, and mutual exclusion. The pending, posting (including SC_QJAM),
and deleting calls initiate the rescheduling procedure; refer to Appendix E, The
Rescheduling Procedure, for more information. For detailed information on each of
the calls, refer to Chapter 7, System Call Reference.

Basic System Calls

Table 2-4 Communication and Synchronization Call Summary

SC]OST

SC]END

SC_QCREATE

SC]DELETE

Posts a message to a specified mailbox.

Pends for a message from a specified mailbox. You can
specify an optional time limit.

Accepts a message from a specified mailbox, but
does not suspend the caller if no message is present.

Posts a message to a queue specified by ID number.

Jams a message to the beginning of a queue specified
by ID number.

Pends for a message from a queue specified by ID
number. You can specify an optional time limit.

Accepts a message from a queue specified by ID
number, but does not suspend the caIler if no
message is present.

Creates a queue with a specified ID number and a
specified number of queue entries.

Creates a queue with a specified ID number and a
specified number of queue entries. You specify
whether tasks pend in priority or FIFO order.

Obtains the number of messages and the contents
of the first message in a specified queue. The
message is not extracted from the queue.

Creates an event flag group and returns the event flag
group ID number to the caller.

Deletes an event flag group specified by ID number.
You can specify to delete only if there are no tasks
pending on the event flag group, or to force a delete
and ready all pending tasks.

(continued on next page.)

2-27

Basic System Calls

2-28

SCFPOST

SC]PEND

SC]CLEAR

SC]INQUIRY

SC_SCREATE

Table 2-4, continued

Posts one or more events to an event flag group
specified by ID number.

Pends for one or more events (AND or OR) from a
specified event flag group. You can specify an optional
time limit.

Clears one or more event flags in a specified event
flag group.

Obtains the specified event flag group.

Creates a semaphore with an initial value and returns
the semaphore ID number to the caller. You specify
whether tasks pend in priority or FIFO order.

Deletes a semaphore specified by ID number. You can
specify to delete only if there are no tasks pending
on the semaphore, or to force a delete and ready all
pending tasks.

Posts a unit to a semaphore specified by ID number.

Pends for a unit from a specified semaphore. You can
specify an optional time limit.

Obtains the current value of the specified semaphore.

Chapter 3

I nterrupt Support
HUNTER
~READY

A Division of Ready Systems

3.1 Introduction

The only assumption VRTX32/68000 makes about its target environment is that an
M68000 microprocessor with some random access (read/write) memory is present.
You supply any hardware-dependent service routines required to initialize special
devices and to service interrupts.

This chapter discusses interrupt service routines (ISRs) and VRTX32's support of
these routines. In addition, this chapter discusses VRTX32's support for optional
counter-timer and console character I/O devices.

Hunter & Ready offers documentation containing ISRs for many widely used devices.
Consult How to Write a Board Support Package for VRTX for more information.

Figure 3-1, Interrupt Architecture, shows the functions covered in this chapter.

3.2 Interrupt Service Routines (lSRs)

A real-time system must respond quickly to externally generated interrupts to
successfully interact with the external environment. VRTX32 provides the means for
user-supplied ISRs, also called interrupt handlers, to communicate with and
influence the scheduling of critical tasks. In contrast to application tasks, which are
scheduled synchronously by VRTX32, an interrupt handler is executed
asynchronously and is not scheduled by VRTX32. An interrupt handler executes
when its hardware interrupt is generated.

ISRs typically do only the necessary actions required to service the interrupt. Input
data, output data, or control information is passed to task level for further processing.

The following sections describe the Exception Vector Table, entering and exiting
ISRs, ISR format, the system calls allowed from ISRs, stack allocation considerations,
and M68000 interrupt levels.

3-1

Interrupt Support

Basic System
Call Handlers

Task Management,
Communication and

Synchronization, and
Memory Allocation

Application Program

III Functions covered in this chapter

Peripherals

Figure 3-1 Interrupt Architecture

3.2.1 The Exception Vector Table

The M68000 architecture uses the Exception Vector Table (EVT) to control access to
all service routines for hardware-generated interrupts and software-generated traps.

When a device interrupts the microprocessor, the M68000 hardware automatically
pushes the current program status information (the SR and PC registers, as well as the
formatiID word for the Mc68010 microprocessor) onto the Supervisor stack, switches
to the Supervisor stack, and jumps to the appropriate vector in the EVf. You supply
the EVf vectors and the service routines associated with each interrupt and trap that
can occur in the system. See Figure C-l, Exception Vector Table.

3.2.2 Entering and Exiting an ISR

3-2

Interrupt handling is separate from the multitasking environment managed by
VRTX32. ISRs are entered directly without intervention from VRTX32. When the
hardware detects an interrupt, all multitasking activity ceases and control passes to
the designated ISR. This switching of control from tasks to ISRs does not result in
any VRTX32 overhead.

Interrupt Support

Each ISR must include code that saves and restores any registers used during its
execution. This guarantees that the interrupted code, whether VRTX32, the
application, or another ISR, does not have its environment disturbed.

Both ISRs and tasks can make system calls. VRTX32 must distinguish between
system calls made from ISRs and system calls made from application tasks. This is
important because tasks can preempt other tasks, but a task must not preempt an
ISR. Therefore, VRTX32 requires mechanisms to identify user-supplied ISR code and
to defer task rescheduling until completion of all ISR activity. The UCEXIT system
call and hardware interrupt levels provide these mechanisms. Refer to Section
3.2.7, M68000 Interrupt Levels and VRTX32.

The UCEXIT call signals the end of an ISR that makes system calls. UCEXIT
guarantees that any significant event communicated to the tasking environment from
the ISR results in the execution of the highest-priority task on return to the task level.

Hunter & Ready has optimized UCEXIT's performance to minimize ISR execution
time. A system call made from the ISR can ready a higher-priority task than the one
interrupted (for example, by posting a message to a mailbox or a queue where the
higher-priority task is pended). In this case, the UCEXIT call initiates the
rescheduling procedure, which results in a task switch. When a system call from an
ISR does not ready a higher-priority task, VRTX32 immediately returns control to the
interrupted task.

Nested interrupts are interrupts that occur during the execution of an ISR. With
nested interrupts, VRTX32 returns control to the task environment only after all the
ISRs have completed. When one nested ISR readies a higher-priority task with a
system call, a task switch occurs after the last nested UCEXIT call. Sometimes an ISR
that communicates with tasks using VRTX32 calls interrupts another ISR. In this case,
both ISRs must use UCEXIT to ensure correct functiOning of the VRTX32
rescheduling procedure.

As described in Section 3.2.6, Interrupt Stack SWitching, VRTX32 provides an optional
stack-switching feature, allowing the stack memory requirements for interrupt
servicing to be consolidated into a single area. If this option is enabled, every ISR
that concludes with a UCEXIT call must also begin with a corresponding UI_ENTER
call. The UI_ENTER call signals the start of an ISR, just as the UCEXIT call signals its
completion. VRTX32 uses the UCENTER/UCEXIT pair to keep track of interrupt
nesting levels to determine when to switch stacks.

3-3

Interrupt Support

If interrupt stack switching is not enabled, the UI_ENTER call is optional. Like
UCEXIT, the UI_ENTER call is optimized for fast performance. You do not have to
use UCEXIT (or UI_ENTER) if the ISH. does not make component calls and if it is not
interrupted by another ISH. that makes component calls.

3.2.3 Format of an Interrupt Service Routine

3-4

The format of a typical ISH. is shown in Example 3-1.

VH.TX32 is not invoked when an interrupt occurs; therefore, VRTX32 itself cannot
save any registers on an interrupt. This means the ISH. must include code to save and
restore the contents of any registers it modifies.

The example saves registers D1 and D2 on the stack at the beginning of the ISR, and
restores the registers just before returning to the task environment.

Interrupt stack switching is enabled in this example, so the UI_ENTEH. call must be
used to signal the beginning of the ISH.. This means that DO must be saved before
the UI_ENTEH. call is made. (Refer to Section 3.2.6, Interrupt Stack Switching, for
more information.) The UCEXIT call automatically restores the DO register, using the
value on the top of the stack.

CAUTION

If interrupt stack switching is enabled, save only DO on the stack
before issuing the UCENTER call. If additional registers are saved
before the UI_ENTER call, they are saved on the wrong stack and
are not restored properly.

Example 3-1 Format of a Typical Interrupt Service Routine (lSR)

UIFENTER
UIFEXIT
VRTX

EQU $16
EQU $11
EQU $00

* UI ENTER function code
* UI-EXIT function code
* VRTX32 trap number

INTERRUPT NUM:

*
*

MOVE.L- DO,-(SP) * save DO
MOVEQ.L #UIFENTER,DO * call UI ENTER
TRAP #VRTX
MOVEM.L D1-D2,-(SP) * save registers

interrupt servicing

Interrupt Support

*

*
*

MOVEM.L (SP)+,DI-D2
MOVEQ.L #UIFEXIT,DO
TRAP #VRTX

3.2.4 VRTX32 Calls Allowed from ISRs

* restore registers
* call UI EXIT to restore
* DO and return (with

possible rescheduling
if at task level)

ISRs coordinate with tasks by conveying significant events to the multitasking
environment. Usually, ISRs use the post calls to communicate messages or events to
tasks; they use the accept calls to receive messages from tasks. However, an ISR can
make most VRTX32 calls, as Table 3-1 shows.

In general, VRTX32 calls issued from ISRs have the same effect as calls issued from
task level. To illustrate, consider the use of SC_POST from an ISR.

The SC_POST call allows the ISR to ready tasks and transmit messages to them.
SC_POST deposits a double-word C32-bit) message in a specified mailbox. The
contents of the mailbox must be zero at the time SC_POST is invoked, or the system
considers the mailbox already in use. When the task for which the message is
intended has issued an SC_PEND call at the appropriate mailbox, the task state
changes from suspended to ready. In other words, the task status changes as a result
of the SC_POST call and not as a result of the UCEXIT executed at the end of the
ISR. However, if a task switch is to occur, it occurs after the last UCEXIT call in a
series of nested ISRs.

When more than one task is waiting for a message at this mailbox, only the highest­
priority task receives the message and is readied. When no task has issued an
SC]END call for the message, the SC]OST simply posts the message to the mailbox
so it can be retrieved later. The UCEXIT call exits the ISR and a task switch occurs
only when the newly readied task has higher priority than the interrupted task.

3-5

Interrupt Support

3-6

Table 3-1 VRTX32 Calls Allowed from ISRs

Task Management

SC_TSUSPEND
SCTRESUME
SC_TINQUIRY
SC_LOCK
SC_UNLOCK

Memory Management

SCGBLOCK
SCRBLOCK

Communication and Synchronization

SC]OST
SC_ACCEPT
SCQPOST
SC_QJAM
SCQACCEPT
SCQINQUIRY

Interrupt Support

UI_ENTER
UCEXIT

Real-Time Clock

SCGTIME
SCSTIME
UCTIMER

Character I/O

UCRXCHR
UCTXRDY

SC]POST
SC_FCLEAR
SCFINQUIRY
SC_SPOST
SC_SINQUIRY

Interrupt Support

3.2.5 VRTX32 Calls Not Allowed from ISRs

ISRs must not make system calls that affect the integrity of the task, queue, or
partition control block chains. Also, ISRs cannot make calls that can cause
suspension of the currently executing environment. These restrictions include several
VRTX32 calls, as Table 3-2 shows.

CAUTION

ISRs for Level 7 interrupts and ISRs for interrupts greater than
Component-Disable-Level cannot make any system calls, except
for UI_ENTER and UCEXIT calls if ISR stack switching is enabled.
Refer to Section 3.2.7, M68000 Interrupt Levels and VRTX32, for
more information.

3.2.6 Interrupt Stack Switching

When an interrupt occurs with an interrupt level greater than the current level (refer
to Section 3.2.7, M68oo0 Interrupt Levels and VRTX32), the corresponding ISR gains
control of the system. This ISR uses the stack of the interrupted task. When a User
mode task is interrupted, the ISR uses that task's Supervisor mode stack.

This event can present a problem in applications with limited memory, since enough
stack space must be allocated to all tasks to accommodate the Supervisor mode stack
requirements of ISRs. This includes all possible nested ISRs; a common design error
in real-time applications is allowing too little stack space for nested interrupts. To
eliminate this inefficient use of stack memory, VRTX32 allows the dedication of a
single stack for use by ISRs only. However, systems with high performance needs or
a high frequency of interrupts can avoid the stack switching overhead of a dedicated
interrupt stack and run ISRs off the current task's Supervisor mode stack.

The ISR-Stack-Size parameter in the configuration table specifies the size of the
interrupt stack. If a special interrupt stack is desired, this parameter should be set to
the size of the interrupt stack in bytes. If no special interrupt stack is needed, and
ISRs should use the current task's Supervisor mode stack, then this parameter should
be set to zero. See Figure 4-1, VRTX32/68000 Configuration Table.

VRTX32 allocates the interrupt stack at VRTX_INIT time in the VRTX32 Workspace.
If an interrupt stack is specified, ISRs that are to use this stack should be bracketed
with the UI_ENTER and UCEXIT system calls, whether or not they make system calls.

3-7

Interrupt Support

3-8

Table 3-2 VRTX32 Calls Not Allowed from ISRs

Task Management

SC3CREATE
SC_TDELETE
SCTPRIORITY

Memory Management

SCPCREATE
SC]EXTEND

Communication and Synchronization

SC_PEND
SC_QPEND
SC_QCREATE
SCQECREATE
SC]CREATE

Real-Time Clock

SC_TDELAY
SC_TSLICE

Character I/O

SCGETC
SC]UTC
SCWAITC

Initialization

SC]DELETE
SC]PEND
SC_SCREATE
SC_SDELETE
SCSPEND

Interrupt Support

When UCENTER is invoked, it switches to the interrupt stack. UCEXIT restores the
stack pointer of the interrupted task, or of the newly readied task in the case where a
task switch occurs. VRTX32 performs interrupt stack switching only for the first
interrupt in a series of nested ISRs. The rest of the nested ISRs then use the interrupt
stack without any additional switching.

ISRs with interrupt levels greater than Component-Disable-Level and ISRs with
interrupt level 7 do not have to use the interrupt stack, even if interrupt stack
switching is enabled. If these ISRs use the interrupt stack, bracket them with the
UI_ENTER and UCEXIT calls. However, ISRs with interrupt levels less than
Component-Disable-Leve~ must always use the interrupt stack if interrupt stack
switching is enabled. In other words, these ISRs must be bracketed with UI_ENTER
and UCEXIT if interrupt stack switching is enabled. (Refer to Section 3.2.7, M6sooo
Interrupt Levels and VRT.X32, for information about interrupt levels and the
Component-Disable-Level.)

3.2.7 M68000 Interrupt Levels and VRTX32

The M6sooo microprocessor provides seven levels of interrupt priorities numbered
from 1 to 7; 7 is the highest priority. There is also level 0, which indicates that the
code is not an ISR.

The SR contains a three-bit interrupt mask field. This field indicates the current
interrupt level of the processor. Tasks usually run at interrupt level 0, and ISRs
usually run at higher levels.

When an interrupt occurs with an interrupt level greater than the current level, the
M6sooo sets the interrupt mask field in the SR to the level of the acknowledged
interrupt. When the ISR completes execution, the CPU restores the interrupt level to
the level that existed before the interrupt.

While the ISR is executing, interrupts from external devices are disabled for all
interrupt levels less than or equal to the current level. Level 7 interrupts, however,
are nonmaskable interrupts that cannot be disabled. (VRT.X32 calls cannot be made
from level 7.)

Interrupt Disabling. VRTX32 must prevent certain kinds of events from occurring
while it is engaged in executing critical code. In particular, it must prevent ISRs from
executing system calls during these critical intervals. VRTX32 does this by disabling
interrupts during critical regions.

3-9

Interrupt Support

VRTX32 disables interrupts by raising the current interrupt level to the value specified
by the Component-Disable-Level parameter in the configuration table. All
interrupts less than or equal to Component-Disable-Level are disabled. (However, if
Component-Disable-Level is 7, interrupts of level 7 are acknowledged.) Interrupts
greater than Component-Disable-Level are not disabled. Thus, the interrupt latency is
essentially eliminated for high-priority interrupts.

Determine Component-Disable-Level by the interrupt level of the highest-priority ISR
that makes VRTX32/0S system calls, plus one. The default is a Component-Disable­
Level of 7.

ISRs greater than Component-Disable-Level and ISRs with interrupt level 7 must not
issue VRTX32/0S system calls (except the UI_ENTER and UCEXIT calls if interrupt
stack switching is enabled), because they can occur during a critical VRTX32 region.
ISRs that make system calls must run at a level greater than 0 and less than
Component-Disable-Level. ISRs that make no system calls can run at any level greater
than o.

Normally, tasks should run at level o. When a task needs to disable interrupts, it
must raise its level to the Component-Disable-Level by changing the SR (only
Supervisor mode tasks can do this).

Changing the ISR Interrupt Level. The hardware that activates the interrupt, usually a
jumper setting on the processor board, determines the initial interrupt level of an ISR.
Normally, ISRs run at this level to completion.

Because the M6sooo disables all interrupts with a level less than or equal to the
current level, it is sometimes desirable for an ISR to lower its own level. This allows
the CPU to process other interrupts from devices with the same interrupt level. If
you use this tactic, we recommend that the level of the hardware interrupt be at least
2, so that the ISR can lower its level without reducing it all the way to 0 (which leads
to confusion with task code).

3.2.8 Interrupt Support Calls

3-10

Table 3-3 contains a summary of the interrupt management system calls. The
UCEXIT call can initiate the rescheduling procedure, which results in a task switch.
Refer to Appendix E, The Rescheduling Procedure, for more information. For
detailed information on each of the calls, refer to Chapter 7, System Call Reference.

Interrupt Support

VI_ENTER

DCEXIT

Table 3-3 Interrupt Support Call Summary

Enters an ISR if interrupt stack switching is enabled.

Exits an ISR. The rescheduling procedure can be
initiated when rescheduling is called for and when
the ISR is not nested. No return is made to the caller.

3.3 Integrated Support for Special Devices

Although VRTX32 operates without these devices, many VRTX32 applications require
a counter-timer and a single-channel character I/O device. VRTX32 supports
complete integration of these devices; you supply only a short hardware-dependent
ISR for each device. In turn, VRTX32 manages all the logical operations required to
provide application tasks with a repertoire of associated real-time clock management
and character I/O commands.

Two categories of VRTX32 commands support character I/O and real-time clock
management: calls from tasks that use the devices, and calls from ISRs that manage
the devices. Table 3-4 shows these categories.

3.3.1 Real-Time Clock Support

VRTX32 maintains a 32-bit VRTX32 clock. This VRTX32 clock interfaces with the
counter-timer device to provide a real-time clock for your system.

The VRTX32 clock supports the real-time clock calls discussed in this section. It also
supports timeout in the SC]END, SC_QPEND, SC]PEND, SC_SPEND, and
SCTDELAY calls.

The VRTX_INIT call sets the VRTX32 clock to zero. The DC TIMER call, usually
issued by a counter-timer ISR, then increments this clock each time it is issued. The
32-bit VRTX32 clock rolls over from $OFFFFFFFF to O. After VRTX_INIT, only the
DC TIMER and SCSTIME calls modify the VRTX32 clock.

The DCTIMER call integrates the counter-timer device with VRTX32. You define a
short ISR to service the specific device, such as an 8253 Interval Timer or a 9513
Timing Controller. The counter-timer ISR periodically issues the VI_TIMER call to

3-11

Interrupt Support

3-12

Table 3-4 VRTX32 Calls for Special Devices

For real-time clock support, VRTX32 recognizes these calls:

From tasks:

SC_GTIME
SC_STIME
SCTDELAY
VI_TIMER
SC_TSLICE

From interrupt handlers:

SC_GTIME
SC_STIME
VI_TIMER

For character I/O, VRTX32 recognizes these calls:

From tasks:

SC_GETC
SC]UTC
SC_WAITC

From interrupt handlers:

UCRXCHR
UCTXRDY

inform VRTX32 that another time interval, or VRTX32 clock tick, has expired.
(VRTX32 processes the timer tick at the last UCEXIT call in a group of nested
interrupts.) Even in target environments without a counter-timer device, issuing the
UC TIMER from other ISRs or a low-priority task on a regular basis can fulfill task
delay and round-robin scheduling needs.

The SC_GTIME and SC_STIME calls access the VRTX32 clock from task level. The
SC_ TDELA Y call suspends a task's execution for the specified number of VRTX32

Interrupt Support

clock ticks. (A task can also issue an SC_TDELAY call with a zero value to
voluntarily preempt itself.)

The SC_TSLICE call allows equal-priority tasks to take turns executing; each executes
for a specified number of VRTX32 clock ticks. Note that higher-priority tasks can
preempt tasks that undergo time-slicing. When control returns to the preempted
task, it completes its time interval.

3.3.2 Real-Time Clock Calls

Table 3-5 contains a summary of the real-time clock system calls. The SC_TDELAY
call always results in a task switch. The UCTIMER call can initiate the rescheduling
procedure; refer to Appendix E, The Rescheduling Procedure, for more information.
For detailed information on each of the calls, refer to Chapter 7, System Call
Reference.

SCGTIME

SCTDELAY

SCTSLICE

UCTIMER

Table 3-5 Real-Time Clock Call Summary

Gets the current value, in VRTX32 clock ticks, of the
VRTX32 clock.

Sets the current value, in VRTX32 clock ticks, of the
VRTX32 clock.

Delays execution of the calling task for a number of
VRTX32 clock ticks (or preempts the task if a zero
value is specified).

Enables round-robin scheduling of equal-priority tasks,
specifying the amount of time each task can be in
control.

Posts time increment from an ISR or a task to VRTX32.

3-13

Interrupt Support

3.3.3 Character I/O Support

3-14

The system calls in this section allow a task to perform general character I/O.
VRTX32 manages separate 64-character FIFO buffers for reads and writes from an
I/O port. The SC_PUTC call places a single character into the output buffer. When
the buffer is full, calling tasks suspend until there is room in the buffer. The
SC_GETC call retrieves a single character from the input buffer. When buffers are
empty, calling tasks suspend until there is a character in the buffer. An additional
call, SC_ WAITC, suspends a task until a specified character is received. VRTX32
manages only one SC_ WAITC request at a time.

Simple, user-supplied ISRs use the UCTXRDY and UCRXCHR system calls to pass
characters one at a time to and from VRTX32. An ISR uses the UCRXCHR call to
transfer each character to VRTX32's SC_GETC buffer as the character is received from
the input device (such as a USART or a parallel I/O deVice).

When the output device emits a transmit-ready interrupt, the device's ISR is invoked.
This ISR uses UCTXRDY to tell VRTX32 that the device is ready. If there are
characters in the SC_PUTC buffer, UCfXRDY returns the next character to the ISR.
The ISR can output the character directly, or it can call the TXRDY driver routine to
output the character. (The ISR does not have to use the TXRDY driver routine, but it
is recommended for well-structured programs.) The TXRDY driver routine transmits
the character to the output device and returns.

If the SC_PUTC buffer is empty, UI_ TXRDY returns the ER_NCP error code to the ISR.
VRTX32 notes the ready status of the output device. The ISR does not call the
TXRDY routine; it exits.

When SC_PUTC puts a character to an empty buffer and the output device is ready,
VRTX32 calls the TXRDY driver routine directly to transmit the character.

When the TXRDY routine receives control from VRTX32, register D1[7:0] contains the
character, register DO contains the RET_OK ($0000) return code, and interrupts are
disabled to Component-Disable-Level.

Although VRTX32 has only single-port I/O calls, you can create your own system
calls or use lOX for multiport I/O. Refer to Chapter 5, Support for User-Defined
Extensions, for more information on user-defined system calls. Consult the
IOXl68000 User's Guide and the IOXl68000 Installation Guide for information on
expanded I/O support.

Interrupt Support

3.3.4 Character I/O Support Calls

Table 3-6 contains a summary of the cnaracter I/O system calls. The SC_WAITC call
always results in a task switch. The other calls can initiate the rescheduling
procedure; refer to Appendix E, The Rescheduling Procedure, for more information.
For detailed information on each of the calls, refer to Chapter 7, System Call
Reference.

SC]UTC

UCRXCHR

UCTXRDY

Table 3-6 Character I/O Call Summary

Gets the next character from the supported I/O device.

Puts a character to the supported I/O device.

Waits for a special character from the supported I/O
device.

Posts a received character from an ISR to VRTX32.

Posts a transmit ready signal from an ISR to VRTX32,
informing VRTX32 that the ISR is ready to transmit
another character to the supported I/O device. When
a character is present, this call retrieves it for
transmission.

3-15

Chapter 4

Configuration and Initialization
HUNTER
~READY

A Division of Ready Systems

4.1 Introduction

System initialization depends on the overall board environment. It includes all
preliminary activities that place the system in a known state before application
execution. Examples of system initialization are device initialization, initial task
creation, and initialization of general software state variables. In a VRTX32 system,
initialization consists of VRTX32 initialization and user-supplied initialization.

VRTX32 is designed to be as independent as possible from individual development
systems and target configurations. Therefore, VRTX32 is a single, indivisible PROM
product, rather than a collection of individual modules requiring a particular linker
and host for its assembly. Because of this, VRTX32 performs only that part of
initialization dependent on the M68000 microprocessor and system memory.

The board support package completes the rest of the initialization process. One
element of a board support package is the user-supplied VRTX32 Configuration
Table, which is VRTX32's window to its surrounding environment. Consult How to
Write a Board Support Package jar VRTX for more information.

This chapter describes the VRTX32 Configuration Table and the initialization process
in detail.

4.2 VRTX32 Configuration Table

The VRTX32 Configuration Table contains parameters that define a particular
system configuration. A vector in the Exception Vector Table (EV1) points to the
configuration table. You can specify any relative location, but the default is vector
64 of the EVT at address $100. Refer to Section 4.4.1, User-Supplied Initialization, for
information on changing this default.

At system initialization, the parameters in the configuration table provide the
following information to VRTX32:

4-1

Configuration and Initialization

4-2

• The location and size of the VRTX32 Workspace

• The size of each task's stacks

• The size of the optional interrupt stack

• The number of control blocks for event flag groups and semaphores

• The size of the idle task's stack

• The number of tasks that can exist in the system at anyone time

• The address of the optional TXRDY driver routine

• The addresses of optional user extensions

• The address of the optional Component Vector Table (CVI)

Figure 4-1 shows the configuration table's format.

The following describes each parameter of the VRTX32 Configuration Table. The
mnemonic following each parameter name is defined in the vrtxvistinc me. Refer
to Section D.3, VRTX32 Definitions File, for a listing of this me.

• VRTX-Workspace-Address (CFWSADDR) specifies the beginning address of
the VRTX32 Workspace available for VRTX32's data requirements. VRTX32
Workspace includes an area for VRTX32 system variables, a TCB and stacks for
each task in the system, the idle task's stack, an optional interrupt stack, and all
control structures for queues, partitions, event flag groups, and semaphores.

• VRTX-Workspace-Size (CFWSSIZE) specifies the total size of memory
available to VRTX32. The VRTX32 Workspace size is specified in bytes.
Section 4.3, Determining VRTX32 Workspace Size, presents the formula for
determining VRTX32 Workspace size.

• Sys-Stack-Size (CFSSTKSZ), when added to User-Stack-Size, specifies the total
amount of stack space to be given to each VRTX32 task.

VRTX32 automatically sets up an area of memory for the stack of each task.
The sum of Sys-Stack-Size and User-Stack-Size determines the total size of this
area in bytes. When a Supervisor mode task is created, it is given a single stack
(referenced by SSP) whose total size equals the sum of the two parameters.
When a User mode task is created, however, it is given two separate stacks,
one of size User-Stack-Size (referenced by USP) and one of size Sys-Stack-Size
(referenced by SSP).

Configuration and Initialization

$00

$04

$08

$OA

$OC

$OE

$10

$12

$14

$16

$18

$lC

$lE

$20

$24

$28

$2C

$30

CFWSADDR

CFWSSIZE

CFSSTKSZ

CFISTKSZ

CFCBCOUNT

CFRSRVDl

CFIDLE

CFRSRVD2

CFDISLEV

CFUSTKSZ

CFRSRVD3

CFUTSKCT

CFRSRVD4

CFTXRDY

CFTCREATE

CFTDELETE

CFTSWITCH

CFCVTADDR

VRTX-Workspace-Addr

VRTX-Workspace-Size

Sys-Stack-Size'

ISR-Stack-Sizs"

Contro 1- Block-Co u nt"

Reserved, must = 0

Idle-Task-Stack-Size

Reserved, must = 0

Component-Disable-Level

User-Slack-Size'

Reserved, must = 0

User-Task-Count

Reserved, must = 0

TXRDY -Driver-Addr"

Sys-TCREATE-Addr"

Sys-TDELETE-Addr"

Sys-TSWITCH-Addr"

CVT-Addr"

, If stacks are explicitly allocated with the TCREATE routine, set these
parameters to zero.

, , Indicates optional parameter; if omitted or unused, set to zero.

Figure 4-1 VRTX32/68000 Configuration Table

The Sys-Stack-Size parameter spedfies the maximum amount of stack space
required by a VR1X32 task, whether User mode or Supervisor mode, when it
invokes system services. The stack size depends on the stack needs of a task's
system call, user-supplied extension, and user-supplied system call activities.
The stack must also be large enough to accommodate all ISR activity, if
interrupt stack switching is not enabled. Also, tasks that call other components
require additional stack space. (Consult the respective component's user's
guide for information on component stack requirements.) When determining
Sys-Stack-Size, you must allow 100 bytes in each stack for VR1X32
requirements. For more information about each task's stack, refer to the User­
Stack-Size description and Section 4.3.1, Determining Task Stack Requirements.

4-3

Configuration and Initialization

4-4

• ISR-Stack-Size (CFISTKSZ) specifies the size of the optional interrupt stack in
bytes, or zero if this stack is not used. If ISRs use the interrupted task's stack
(interrupt stack switching is not enabled), you must supply a zero value. If all
ISRs use a single dedicated stack separate from task stacks (interrupt stack
switching is enabled), you supply a nonzero value specifying this stack size.
During VRTX_INIT, VRTX32 allocates this stack in VRTX32 Workspace. For
more information on interrupt stack support, refer to Section 3.2.6, Interrupt
Stack Switching, and Section 4.3.2, Determining Interrupt Stack Requirements.

• Control-Block-Count (CFCBCOUNT) is an optional parameter that specifies
the maximum number of event flag groups and semaphores that can exist in
the system at one time. Each event flag group or semaphore is associated with
one control block. If you do not use event flag groups or semaphores in your
application, supply a zero value.

• Idle-Task-Stack-Size (CFIDLE) specifies the size of the idle task's stack, in
bytes. If interrupt stack switching is enabled, the default idle task stack size of
128 bytes is sufficient; supply a value of zero. If interrupt stack switching is not
enabled, 128 bytes may not be enough to cover your system's interrupt stack
switching needs; supply a nonzero value specifying the stack size. (Refer to
Section 4.3.2, Determining Interrupt Stack Requirements.) During VRTX_INIT,
VRTX32 allocates the idle task's stack in VRTX32 Workspace. For more
information on interrupt stack support, refer to Section 3.2.6, Interrupt Stack
Switching.

• Component-Disable-Level (CFDISLEV) is a word value ranging from 0 to 7,
inclusive. This value specifies the interrupt level that is loaded into the SR
when VRTX32 disables interrupts. The Component-Disable-Level is determined
by the interrupt level of the highest-priority ISR that makes VRTX32/0S system
calls, plus one. A value of zero for this parameter indicates the default interrupt
level of 7, the highest level.

You can assign interrupt levels greater than Component-Disable-Level to critical
devices as long as their associated ISRs do not make VRTX32 or component
system calls. Any ISR with an interrupt level greater than or equal to
Component-Disable-Level (or with interrupt level 7) that makes VRTX32 or
component system calls causes indeterminate behavior. For more information
about this parameter, refer to Section 3.2.7, M68000 Interrupt Levels and
VRTX32.

• User-Stack-Size (CFUSTKSZ), when added with Sys-Stack-Size, specifies the
total amount of stack space to be given to each VRTX32 task.

VRTX32 automatically sets up an area of memory for the stack of each task.
The sum of User-Stack-Size and Sys-Stack-Size determines the total size of this

Configuration and Initialization

area in bytes. When a Supervisor mode task is created, it is given a single stack
(referenced by SSP) whose total size equals the sum of the two parameters.
When a User mode task is created, however, it is given two separate stacks,
one of size User-Stack-Size (referenced by USP) and one of size Sys-Stack-Size
(referenced by SSP).

The User-Stack-Size parameter specifies the size, in bytes, of the area that
handles a task's subroutine calls and that is used for temporary variable storage.
For User mode tasks, this area is the stack pointed to by USP. For Supervisor
mode tasks, this area is a portion of the total stack pointed to by SSP.

You may also bypass VRTX32 and explicitly allocate stacks with the TCREATE
routine. Refer to Section 5.3.1, TCREATE Routine, for information about this
user-supplied extension. In this case, supply a value of zero in both the User­
Stack-Size and Sys-Stack-Size parameters.

• User-Task-Count (CFUTSKCT) specifies the maximum number of tasks that
can be Simultaneously active in the system. VRTX32 uses this value to allocate
TCBs and stack space.

• TXRDY-Driver-Address (CFTXRDY) is an optional parameter that specifies
the address of the TXRDY driver routine called by VRTX32. VRTX32 calls this
routine when the output device is ready and SC_PUTC places a character in the
output buffer. Refer to Section 7.46, UCTXRDY-Transrnit-Ready Interrupt. If
your application does not use VRTX32 I/O, you do not have to provide the
TXRDY driver routine. In this case, supply a null pointer (zero).

• Sys-TCREATE-Address (CFTCREATE) and Sys-IDELETE-Address
(CFTDELETE) are optional parameters that specify the address of user-defined
routines that perform special processing when tasks are created or deleted. If
you do not use these routines, supply a null pointer (zero). For additional
information, refer to Sections 5.3.1, TCREATE Routine, and 5.3.2, IDELETE
Routine.

• Sys-TSWITCH-Address (CFTSWITCH) is an optional parameter that specifies
the address of the user-defined routine that is given control when a task switch
occurs. When no special handling is required when making a context switch,
supply a null pointer (zero). For more information, refer to Section 5.3.3,
TSWITCH Routine.

• CVf-Address (CFCvrADDR) is an optional parameter that specifies the address
of a Component Vector Table (CVT). The cvr routes execution control to
components other than VRTX32. If you are not using any other components,
supply a null pointer (zero). For more information, refer to Section 6.3,
Component Vectoring.

4-5

Configuration and Initialization

• Reserved (CFRSRVD) represents a parameter reserved for future versions of
VRTX32. You must always supply a value of zero.

4.3 Determining VRTX32 Workspace Size

The configuration table parameter VRTX-Workspace-Size specifies the total size of
memory available to VRTX32. The required workspace size is determined by stack
requirements, control structure requirements, and internal variable requirements.

This section provides guidelines for determining task and interrupt stack
requirements. It also presents the VRTX32 Workspace size formula that combines the
control structure and internal variable requirements with the stack requirements.

4.3.1 Determining Task Stack Requirements

The task stack requirements of a system affect the User-Stack-Size and
Sys-Stack-Size parameters of the VRTX32 Configuration Table. (They also affect the
sizes of stacks allocated with the TCREA TE routine.) These parameters in tum affect
the VRTX-Workspace-Size parameter.

If you allocate task stacks explicitly with the TCREATE routine, set the User-Stack-Size
and Sys-Stack-Size parameters to zero. However, if VRTX32 allocates task stacks,
User-Stack-Size and Sys-Stack-Size must contain specific values.

Two factors determine User-Stack-Size: the number of subroutine calls made, and
the amount of variable storage needed by each task.

To determine Sys-Stack-Size, you must examine the following factors: VRTX32 stack
requirements, the existence of user-defined VRTX32 extensions, the existence of user­
defined system call handlers, the amount of space needed for ISR activity if interrupt
stack switching is not enabled, and the existence of other components. The formula
shown in Table 4-1 combines these factors.

4.3.2 Determining Interrupt Stack Requirements

4-6

The interrupt stack requirements of a system affect the ISR-Stack-Size parameter of
the VRTX32 Configuration Table if interrupt stack switching is enabled. If interrupt
stack switching is not enabled, the interrupt stack requirements affect the
Idle-Task-Stack-Size parameter and the Sys-Stack-Size parameter formula. These
parameters in tum affect the VRTX-Workspace-Size parameter.

Configuration and Initialization

Table 4-1 Determining Task Stack Requirements

Formula

Sys-Stack-Size = 100 + UX + USC + ISW + ISR + C

Symbols

100 bytes needed for VRTX32 stack requirements

UX User-supplied VRTX32 extensions requirements

Usc User-defined system call handler requirements

ISW Interrupt stack switch requirements before switch: if
interrupt stack switching enabled, ISW = 32; else ISW = O.

ISR Total interrupt stack requirements if interrupt stack switching not
enabled; if interrupt stack switching enabled = 0 (refer to Section
4.3.2)

C Total component call stack requirements, specified in
bytes (consult component's user's guide)

The M68000 architecture supports different levels of interrupts and nesting of
interrupts across levels. When all ISRs enable interrupts to allow nesting, then all six
levels must be taken into consideration when determining stack requirements.

This is the formula for an individual interrupt level:

n = interrupt level 1 through 6
in = (number of ISR invocations responding to level n) *

(maximum interrupt stack requirements at level n)

The worst case is when each ISR enables interrupts. For example, a system has the
following ISR activity:

Two ISRs responding to interrupt level 2 with maximum stack
requirements = 32 bytes

One ISR responding to interrupt level 4 with maximum stack
requirements = 64 bytes

4-7

Configuration and Initialization

Three ISRs responding to interrupt levelS with maximum stack
requirements = 100 bytes

This is the formula to determine the example system's interrupt stack requirements:

ISR = il + iz + ... i6

i l = 0
iz = (2 * 32)
i3 = 0
i4 = (1 • 64)
is = (3 • 100)
i6 = 0

ISR =

ISR =

= 64

= 64
= 300

o + 64 + 0 + 64 + 300 + 0
428 bytes (decimal)

4.3.3 Determining Control Structure Requirements

4-8

VRTX32 uses control structures and internal variables during multitasking
management. Table 4-2 combines the control structure and internal variable
requirements with the stack requirements to determine the total amount of
workspace required by VRTX32 to support an application. Numbers are shown in
decimal.

For example, a system has the following user-supplied configuration:

10 tasks
1 partition of size 2048 bytes with 64-byte blocks

= 32 blocks
1 partition of size 4096 bytes with 512-byte blocks

= 8 blocks
1 extension to this partition, also of size 4096 bytes

= 8 blocks
8 queues each of size 10

= 80 queue elements
2 queues each of size 20

= 40 queue elements
1 event flag group
1 semaphore

no user-defined extensions
no user-supplied system calls
no interrupt stack (interrupt stack switching not enabled)
VRTX32 is the only component in the system

Configuration and Initialization

Table 4-2 Determining VRTX32 Workspace Size

Formula

VRTX-Workspace-Size 2624 + ((160+s+us)*O + 64p + 2b + 32e + 36q +
4qe + 36cb + idle + istk

Symbols

s

us

VRTX32 system variables need 2624 bytes.

Sys-Stack-Size. See Table 4-1.

User-Stack-Size, determined by subroutines and variable storage.

Maximum number of tasks. VRTX32 allocates 160 bytes for the
TCB frame and other overhead for each task.

p Maximum number of memory partitions. Each partition needs
a 64-byte control block.

b Maximum number of memory blocks. Determine this for each
partition (or extension) by dividing the partition's size by the
partition's block size. Each block needs 2 bytes.

e Maximum number of partition extensions, determined by the
number of SC_PEXTEND calls. Each extension needs 32 bytes.

q Maximum number of queues in system. Each queue needs a
36-byte control block.

qe Maximum number of queue elements. Each queue element
needs 4 bytes.

cb Maximum number of control blocks for event flag groups and
semaphores. Each control block needs 36 bytes.

idle Idle-Task-Stack-Size. If interrupt-stack-switching not enabled,
determine idle with the formula in Section 4.3.2. If enabled,
idle = 128.

istk ISR-Stack-Size. If interrupt stack switching not enabled, istk = O.
If enabled, determine istk with the formula in Section 4.3.2.

4-9

Configuration and Initialization

The first step is to determine the stack requirements us, s, idle, and istk. Assuming
no task in the system requires more than 128 bytes for its own subroutine calling and
local variables, us = 128.

The following is the calculation for s (see Table 4-1, Determining Task Stack
Requirements). Because interrupt stack switching is not enabled, the ISW term is zero
and the ISR term is nonzero. Using the interrupt requirements calculated in Section
4.3.2, Determining Interrupt Stack Requirements, ISR = 428.

s = 100 + UX + USC + ISW + ISR + C
= 100 + 0 + 0 + 0 + 428 + 0
= 528 bytes (decimal)

Because interrupt stack switching is not enabled, idle is calculated using the formula
in Section 4.3.2, and istk = O. Here is the calculation for the example system's VRTX­
Workspace-Size parameter:

=2624 + ((160 + s + us) * t) + 64p + 2b + 32e + 36q + 4qe +
36cb + idle + istk

=2624 + ((160 + 528 + 128) * 10) + 64*2 + 2*(32 + 8 + 8) + 32*1 +
36*10 + 4*(80 + 40) + 36*2 + 428 + 0

=2624 + 8160 + 128 + 96 + 32 + 360 + 480 + 72 + 428 + 0
=12380 bytes (decimal)

4.4 Support for System Initialization

System initialization includes user-supplied initialization and VRTX32 initialization.
User-supplied code performs user initialization and initializes VRTX32 pointers. This
code also issues the VRTX_INIT call to initialize VRTX32 and the VRTX_GO call to
start multitasking.

4.4.1 User-Supplied Initialization

4-10

User-supplied initialization consists of initialization specific to the hardware
devices and the application program. Initialization usually begins when the system is
reset. In a VRTX32 system, you must initialize the VRTX32 pointers before VRTX32
initialization begins. All user initialization code must execute in Supervisor mode.
Interrupt activity should not occur before VRTX_INIT.

Configuration and Initialization

System Reset. The M68000 architecture provides a special signal for system reset,
and the CPU performs a specified set of actions when this signal is asserted.

On any M68000 system, the first eight bytes of the EVf (in other words, the first two
entries in the EVI) must have the organization shown in Figure 4-2, EVf Reset
Format.

EVT Byte Offset
$00 I~-------R-es-e-t-SS-P------~

$04. Reset PC

Figure 4-2 EVT Reset Format

In Figure 4-2, Reset PC is a pointer to a reset routine that is executed when the
system reset signal is sent. Reset SSP is the value of the Supervisor Stack Pointer that
is appropriate for the reset routine.

When the system reset line is activated, the M68000 hardware automatically stops
current execution, loads the new value of SSP from offset $00 and the new value of
PC from offset $04, and begins execution at the new PC location.

The pointer at offset $04 addresses user-supplied code that performs user
initialization and initializes VRTX32 pointers. This initialization code must set up a
small (lOO-byte) stack before issuing the VRTX_INIT call. The VRTX_INIT call
initializes VRTX32, and the VRTX_GO call starts multitasking.

If the reset hardware is not used to start up the VRTX32 initialization code, SSP must
be set to provide the initial stack for VRTX32's use during the VRTX_INIT call.

Device Initialization. Device initialization depends on the board-level environment.
Usually the counter-timer device, character I/O device, and any special user devices
(for example, a memory management unit) are initialized at system initialization time.

User-supplied device initialization can occur in code that precedes the VRTX_INIT
call, or in code after the VRTX_INIT call and before the VRTX_GO call. You should
initialize some devices before VRTX32, because their successful operation is a
prerequisite for VRTX32 initialization. For example, when a memory management
unit (MMU) exists in the system, initialize it before VRTX32, because system memory
allocation depends on the MMU. You can initialize devices without system-wide
ramification after VRTX32 initialization.

4-11

Configuration and Initialization

Application Initialization. Initialization specific to the application program usually
consists of setting up software control structures and variables related to the
application code, such as mailboxes, queues, and boolean variables. Also, the
application initialization code usually creates the task or tasks that the system starts
executing after VRTX_GO.

You must initialize constructs that require VRTX32 services, such as queues and
memory partitions, after VRTX_INIT.

User Initialization of VRTX32 Pointers. To connect VRTX32 to the user-supplied
VRTX32 Configuration Table and to the application, you must initialize two pointers.
It is important that you initialize them before the application issues the VRTX_INIT
call. These pointers are the configuration table pointer and the VRTX32 entry
pointer.

The initialization of the configuration table pointer connects the configuration table
to VRTX32. VRTX32 assumes this pointer resides at vector 64, offset $100 from the
base of the EVT. However, you can choose any location.

If you use a location other than the default, you must change VRTX32's internal
pointer value. Offset $22 from the base of VRTX32 contains this value's default, the
32-bit address $100. If you define a new vector, you must load it with the base of the
configuration table.

The base of VRTX32 is known as the VRTX32 entry point. You must initialize the
TRAP vector used by the application to make VRTX32 calls with the VRTX32 entry
point. This manual uses TRAP #0 as an example. However, you can use any of the
16 TRAP vectors.

4.4.2 VRTX32 Initialization

4-12

Two VRTX32 system calls initialize VRTX32 and start application processing. All user
initialization code, including the code that issues these calls, must execute in
Supervisor mode.

Initialize VRTX32
Start Application Execution

The VRTX_INIT system call performs these functions:

1. Delimits and zeros the VRTX32 Workspace.

2. Sets up and reserves TCBs for SC_TCREATE calls.

Configuration and Initialization

3. Sets up the user-specified stacks for each task (optional).

4. Sets up the interrupt stack (optional).

5. Inirializes other internal VRTX32 variables.

6. Returns control to the caller.

The return code indicates whether the VRTX_INIT operation encountered any errors.

The VRTX_INIT call requires the use of a temporary stack. Set up a small (IOO-byte)
stack before calling VRTX_INIT.

VRTX_GO is called after VRTX_INIT. This call begins executing the highest-priority
task created in the user initialization code and does not return to initialization code.
Multitasking is now underway.

4.4.3 Use of System Calls During Initialization

Use of VRTX32 system calls (by user initialization code or by ISRs) before VRTX_INIT
causes unpredictable results. User initialization code can use the system calls in
Table 4-3 after the VRTX_INIT call and before the VRTX_GO call.

You must prevent interrupt activity before VRTX_INIT; we recommend that interrupts
remain disabled until VRTX_GO. However, ISRs can use many of the calls in Table
4-3 during initialization (see Table 3-2, VRTX32 Calls Not Allowed from ISRs, for
restrictions). When an ISR makes these calls, UI_ENTER and UCEXIT must bracket
the ISR. In addition, if interrupt stack switching is enabled, the ISR must begin with a
UI_ENTER call.

User initialization code typically uses the SCTCREATE, SC]CREATE, SCSCREATE,
SC]CREATE, and SC_QCREATE calls.

Use the SC_PUTC call with caution during initialization. The call can be useful for
displaying a sign-on message and the starting prompt character on system consoles.
However, an attempt to put more than 64 characters in the buffer before VRTX_GO
causes unpredictable results.

4-13

Configuration and Initialization

Table 4-3 Calls Permitted between VRTX_INIT and VRTX_GO

4-14

Task Management

SCTCREATE
SC_TDELETE
SC_ TSUSPEND
SC_TRESUME
SC_TPRIORITY
SC_TINQUIRY

Memory Mangement

SC_GBLOCK
SCRBLOCK
SC]CREATE
SC]EXTEND

Communication and Synchronization

SCPOST
SC_ACCEPT
SC_QPOST
SC_QJAM
SC_QACCEPT
SC_QCREATE

Real-Time Clock

SC_GTIME
SCSTIME
SCTSLICE
UCTIMER

SC_QECREATE
SC_QINQUIRY
SC_FCREATE
SC]DELETE
SC]POST
SC]CLEAR

SC]INQUIRY
SC_SCREATE
SCSDELETE
SC_SPOST
SC_SINQUIRY

Configuration and Initialization

Initialization of other Hunter & Ready components that use VRTX32 component
routing should occur only after VRTX_INIT.

4.4.4 Initialization Calls

Table 4-4 contains a summary of the initialization system calls. For detailed
information on each of the calls, refer to Chapter 7, System Call Reference.

Table 4-4 Initialization Call Summary

Initializes VRTX32.

Starts application execution after VRTX_INIT. No
return is made to the caller.

4-15

Chapter 5

Support for User-Defined Extensions
HUNTER
~READY

A Division of Ready Systems

5.1 Introduction

VRTX32 supplies much of the system software requirements for embedded
microprocessor applications. However, as a component designed for use in different
applications with different hardware configurations, VRTX32 is generalized and does
not contain all the functions that might be found in an operating system tailored to a
specific microcomputer board or to a specific application.

Hunter & Ready has designed VRTX32 and its other silicon software components as
elements for building a larger computer system. This design is similar to that of
stereo components that you connect with one another to build a complete audio
system. Like the audio plugs and cables, linkage mechanisms in the silicon software
components permit you to interface the components with other software and
hardware.

There are four types of interfaces defined between VRTX32 and user-supplied code.

• The interface between VRTX32 and user-supplied application code (tasks) is
defined by the basic VRTX32 system calls (refer to Chapter 2, Basic System
Calls). This interface is also defined by entries in the configuration table (refer
to Chapter 4, Configuration and Initialization).

• The interface between VRTX32 and user-supplied ISRs is defined in Chapter 3,
Interrupt Support.

• The interface between VRTX32 and any additional system call handlers you
supply is defined in this chapter. These handlers are designed to support
special hardware devices or functions.

• The interface between VRTX32 and user-supplied VRTX32 extensions is defined
in this chapter. A VRTX32 extension is code that adds additional functions to
the basic VRTX32 mechanisms at specific times during VRTX32 processing.

Most packaged operating systems fail to provide an adequate definition of the last
two interfaces; they do not provide enough hooks to link the operating system to the
application code. Unless the application is exactly what the operating system's
designers envisioned, the source code of the operating system must be modified.
This can be an expensive and risky job.

5-1

Support for User-Defined Extensions

This chapter discusses the interface between VRTX32 and user-defined system call
handlers, and the interface between VRTX32 and user-supplied VRTX32 extensions.
Figure 5-1, Extensions Architecture, shows the functions involved.

Application Program

Basic System I I/O System
Call Handlers Call Handlers

Task Management,
Communication and

Synchronization, and

II
Memory Allocation ISR I ISR

1/ .1 Functions covered in this chapter

IlJSElr-Oefined
SysCallHdlrs

n ..
.•.. IJRTX32
Extensions
.

ISR

Other
Peripherals

Figure 5-1 Extensions Architecture

5.2 User-Defined System Call Handlers

5-2

User-defined system call handlers perform system services, just as VRTX32 system
calls do. Both are invoked in the same way, using a software-generated interrupt
(TRAP) instruction. The difference is that user-defined system call handlers perform
functions specific to the application.

In fact, user-defined system call handlers are similar to subroutines, as the following
section shows. However, a call handler has the advantage of being independent
from all linkers or loaders because it is accessed through the software-generated
interrupt instruction.

To implement a user-defined call, reserve a software interrupt vector not already used
by VRTX32 or by interrupt or error handlers. The TRAP instruction specifies the
vector used. The entry point of the user-supplied system call is loaded into the
vector table in the same way that the VRTX32 entry point is loaded into the vector

Support for User-Defined Extensions

table. Refer to Section 2.1.1, Accessing VRTX32, for information about the VRTX32
entry point.

5.2.1 Writing a System Call Handler

In effect, a user-defined call handler routine is not much different from an ordinary
subroutine; as far as VRTX32 is concerned, the rules for coding both types of routines
are nearly identical. Subroutines and call handlers have these similarities:

• Parameters for both types of routines can be communicated to and from the
caller according to any convention. For example, parameters can be passed in
registers or on a stack.

• Both types of routines must ordinarily save and restore registers.

• Both call handlers and ordinary subroutines, like any user-supplied code, can
use the SC_LOCK and SC_UNLOCK calls to prevent VRTX32 rescheduling.
Code that is bracketed in this way is not preempted by a task.

• Both call handlers and subroutines are sometimes subject to restrictions
imposed on them by their callers. Thus, if ISRs as well as tasks might call a
routine, the routine must limit itself to the VRTX32 calls permissible from ISR
level; refer to Section 3.2.4, VRTX32 Calls Allowed from ISRs. Conversely, a
routine called only from task level can use the full range of VRTX32 services.

However, there are a few noteworthy differences between system call handlers and
ordinary subroutines. A subroutine ends with a return-from-subroutine instruction
(RTS). But a system call handler, because it is entered by a program-generated
exception, ends with the return-from-exception instruction (RTE). The TRAP
instruction that invokes a system call handler causes an exception frame of
additional information (the SR and PC registers, as well as the format/ID word for the
Mc68010 microprocessor) to be placed on the stack. Thus, the call handler must
conclude with the RTE instruction to remove this frame and return correctly to the
caller.

Because system call handlers are accessed by a TRAP instruction, system
interdependencies are reduced. Relocating a call handler to a new address requires
only that a single location in the vector table be changed. Relocating a subroutine,
however, can mean that all modules that make use of the routine must be relinked.

The most significant difference between call handlers and ordinary subroutines
concerns their interaction with the M68000 execution modes. Because it gains

5-3

Support for User-Defined Extensions

control with a TRAP instruction, a system call handler always executes in Supervisor
mode. A subroutine, on the other hand, inherits its caller's mode. Thus, when a
User mode task invokes a system call handler, that handler routine can perform
services for the caller (such as disabling interrupts or executing privileged I/O
instructions) that the caller could not ordinarily perform.

Changing from a User mode caller to a Supervisor mode handler routine can pose
special problems, though, if parameters are passed on stacks. In this case, the system
call handler must use the MOVE USP to access parameters that are on a User mode
stack. If a call handler is invoked by both User mode tasks and by Supervisor mode
code (ISRs and/or Supervisor mode tasks), it can locate its stacked parameters only
by first checking the saved SR word in the exception frame to determine the caller's
mode.

5.2.2 An Example System Call Handler

5-4

As an example of a user-defined system call handler, consider a routine that extends
the functions of SC]POST and SC]CLEAR. The Broadcast (BRDCST) call posts
the time of day to all tasks currently waiting at the specified event flag group, then
clears the flags. This means that none of the readied tasks have to issue the
SC_FCLEAR call.

You must initialize an unused interrupt vector with the address of the BRDCST
routine. When TRAP #1 is chosen, the initialization code looks like Example 5-l.
For MC68010, this example assumes that the VBR is set to zero. The BRDCST
initialization code would be included in the board support initialization code and
executed before the VRTX_GO call.

Example 5-1 BROCST Initialization Code

MOVE.L #BRDCST,$84 * point trap #1 to BRDCST code

Before a task calls BRDCST, an event flag group must be created with SC_FCREATE.
The event flag group ID number is passed to BRDCST in variable EFID, with register
Dl. The SC_GTIME call is issued to get the time of day, which is passed to BRDCST
in register D2. The task then makes the BRDCST call using the TRAP instruction, as
Example 5-2 shows. When the call completes, the return code is in register DO.

Support for User-Defined Extensions

Example 5-2 Making the BRDCST Call

SCFGTIME
VRTX
BROADCST

EQU $OA
EQU $00
EQU $01

XDEF EFID
EFID:

DS.L 1

BRDCST TIME:
MOVE.L
TRAP
MOVE.L
BEQ.S
MOVE.L
TRAP
TST.L
BNE.S
RTS

#SCFGTIME,DO
#VRTX
D1,D2
BRDCST TIME
EFID,Dl
#BROADCST
DO
ERROR

* SC GTIME function code
* VRTX32 trap number
* BRDCST trap number

* event flag group ID number

* DO = function code
* VRTX32 SC GTIME call
* move time-from D1 to D2
* don't post a zero time
* event flag group ID number
* call BRDCST
* error during BRDCST?
* if so, branch to error handler

Example 5-3 contains the code for the BRDCST call itself. The BRDCST call sends
the time of day, with SC_FPOST, to all tasks pended on the event flag group. After
the message is sent, BRDCST uses the SC_FCLEAR call to clear the event flags it set
with the SC]POST call.

Note that the body of the BRDCST routine is bracketed by the SC_LOCK and
SC_UNLOCK calls. This ensures that event flags are cleared before BRDCST is called
again on the same event flag group.

SCFLOCK
SCFUNLOCK
SCFFPOST
SCFFCLEAR
VRTX

BRDCST:
CLR.L
MOVE.L
TRAP
MOVE.L
BNE.S

MOVE.L
TRAP
MOVE.L

Example 5-3 The BRDCST Call in Action

EQU $20
EQU $21
EQU $lA
EQU $lB
EQU $00

-(SP)
#SCFLOCK,DO
#VRTX
DO, (SP)
BEXIT

#SCFFPOST,DO
#VRTX
DO, (SP)

* SC LOCK function code
* SC-UNLOCK function code
* SC-FPOST function code
* SC-FCLEAR function code
* VRTX32 trap number

* reset our return code
* DO = function code
* VRTX32 SC LOCK call
* error during lock?
* if so, exit

* DO = function code
* VRTX32 SC FPOST call
* error during post?

5-5

Support for User-Defined Extensions

BNE.S BROX
MOVE.L #SCFCLEAR,OO

*
*

TRAP #VRTX
MOVE.L 00, (SP)

BROX:
MOVE.L #SCFUNLOCK,OO
TRAP #VRTX
TST.L 00
BEQ.S BEX1T
MOVE.L 00, (SP)

BEX1T:
MOVE.L (SP)+,OO
RTE

* if so, exit
* 00 = function code; 01 and

have same values as they
for SC FPOST call

* VRTX32 SC FCLEAR call
* save return code

* 00 = function code
* VRTX32 SC UNLOCK call
* error durIng unlock?
* if no, don't change return
* return unlock error

* caller's 00 return code
* return from call handler

02
did

code

To pend for a BRDCST message, tasks issue SC_FPEND on the same event flag
group. These tasks should pend for all event flags with an OR pend. See Example
5-4.

SCFFPENO
VRTX

FPENO:
MOVE.L
MOVE.L
MOVE.L
MOVE.L
MOVE.L
TRAP
TST.L
BNE.S

Example 5-4 Pending for BRDCST

EQU $19
EQU $00

EF10,01
#0,02
#$FFFFFFFF,03
#0,04
#SCFFPENO,OO
#VRTX
00
ERROR

* SC FPENO function code
* VRTX32 trap number

* event flag group 10
* no timeout
* pend on all bits in group
* use OR option
* SC FPENO function code
* call VRTX32
* error during pend?
* if so, branch to error handler

5.3 VRTX32 Extensions

5-6

VRTX32 extensions are user-supplied routines that extend the basic VRTX32
mechanisms. These extensions are activated by VRTX32 system events (task creation,
task deletion, task switching), rather than by TRAP instructions.

For example, when the system contains a memory management unit (MMU), user­
defined system software must handle the MMU registers. As each task is created, the
system must create values for the map registers. When a task switch occurs, the
system must also switch the contents of the MMU registers.

Support for User-Defined Extensions

For MMU support, create an extension to the VRTX32-managed TCB to store the
values of each task's MMU register values. The application code sets the TCB
extension pointer (TEEX'D, which points to additional storage space. The VRTX32
extension routines use this user-supplied TCB extension at every task switch to
update the MMU registers.

Three optional parameters in the VRTX32 Configuration Table provide hooks that
interface such general system-level software to VRTX32. The Sys-TCREATE-Address
and Sys-IDELETE-Address parameters point to the addresses of the routines that
perform special processing when tasks are created or deleted. Sys-TSWITCH-Address
points to a user-supplied routine that is called when a task switch is made.

When these three parameters are not null in the configuration table, VRTX32 gives
these user-supplied routines control when the appropriate events occur. At that time,
information regarding the state of the current task is passed to these routines.

The TCREATE, IDELETE, and TSWITCH routines are called in Supervisor mode and
use the current Supervisor mode stack. These routines must save and restore any
registers used during their execution and must end with the RTS instruction. In
addition, the same VRTX32 calls that are allowed from ISRs are allowed from these
routines. Refer to Section 3.2.4, VRTX32 Calls Allowed from ISRs, for details.

5.3.1 TCREATE Routine

The optional VRTX32 Configuration Table parameter Sys-TCREATE-Address points
to a user-supplied routine that is given control when VRTX32 creates a new task.

When the TCREATE routine receives control, register Al contains a pointer to the
TCB of the newly created task. Register A2 contains a pointer to the TCB of the
calling task. This pointer is not valid before the execution of the VRTX_GO call; nor
is it valid for tasks created during system initialization.

The TCREA TE routine is not called when the idle task is created. This means that if
you use the TCREA TE routine to allocate an additional data area to TCBs, or to alter
TCBs in any way, the idle task's TCB is not affected.

The register values in the newly created task's TCB are derived from the values of the
creating task's registers at the moment the SC_TCREATE call is executed. The TCB of
a task does not, however, contain all the task's state information. For performance
reasons, VRTX32 stores some register values on the task's stack instead of its TCB.

5-7

Support for User-Defined Extensions

5-8

For the newly created task's stack, these values are copied from the current stack just
before entry to the TCREATE routine.

Figure 5-2, Environment on Entry to TCREATE Routine, shows the layout of the
newly created task's TCB and stacks on entry to the TCREATE routine. Note that
when the SC_TCREATE call executes, VRTX32 copies the contents of registers DO
through D5 and AO through A3 directly into the appropriate locations of the new
task's TCB. Register Al contains a pointer to this TCB. VRTX32 copies registers D6,
D7 and A4 through A6 from the calling task's stack onto the new task's stack, and
sets up the SR and PC registers on this stack from the SC_TCREATE call's values.
VRTX32 stores the new task's USP and SSP registers in the TCB; these registers are set
up to point as shown in the figure. Notice that only User mode tasks are created
with a starting value for both SSP and USP; Supervisor mode tasks set up only SSP.

Example 5-5 uses a TCREATE hook to set up variable-size stacks, and Figure 5-3
shows the process. Using this hook, you can replace VRTX32's fixed-size allocations
and allocate stacks of sizes dependent on each task's requirements (refer to Section
4.3.1, Determining Task Stack Requirements).

To use the code in Example 5-5, the configuration table must have the address of the
TCREATE routine, and the User-Stack-Size and Sys-Stack-Size parameters must be
zero. This signals VRTX32 to bypass allocation of task stacks in the VRTX32
Workspace. VRTX32 then builds the initial stack frame in a temporary storage area in
the VRTX32 Workspace. The TCREATE routine must copy this stack frame to the
newly allocated stack. This is shown in Figure 5-3. Note that the example is for the
Mc6sooo only. An implementation for the Mc68oI0 processor would have to save
the format word, as shown in the commented code.

Support for User-Defined Extensions

Calling Task's Stack Growth
TCB I t I

/ Return Addr
Current
Register AI
Contents A2

A2 (Reserved)

06
Pointers A7 (SSP)

07

AI A4 -
Target Task's

TCB A5

I A6

Current Stack
DO TBOO (SSP)
01 TBO! ,Stack .rowth l
02 Copied TB02

03
by

TB03 ~ 06 VRTX32
Calling
Task's
Values

04

05

AO

AI

A2

A3

I-~
TB04

TB05

TBM

TBAI

TBA2

TBA3

TBSSP

TBUSP"

MC6S010 architecture only.
If new task is in User mode;
otherwise, contents are irrelevant.

r--
r--,

I

07

A4 ..
A5

A6

SR

PC

FormatllO'

,
Target Task s Stack

(SSP)

Stack Growth

I i I I I

-LJ
Target Task's Stack

(USP)

Figure 5-2 Environment on Entry to TCREA TE Routine

Copied
by
VRTX32

5-9

Support for User-Defined Extensions

Defined
Size

Newly
Created TCB

TBSSP

TBUSP**

Stack
I Growth

Old SSP

r- - - I
I

I I
I
I

User- { w. - _I

User-Defined
Stack (USP)

MC68010 architecture only.

New
USP

If new task is in User mode;
otherwise, contents are irrelevant.

~
I
I
I
I
I
I

1-+
New SSP

I

Stack Growth

t
06

07

A4

A5

AS

SR

PC

Format/lO*

Temporary
Frame Data

Stack Growth

t
06

07

A4

A5

A6

SR

PC

FormatllO*

User-Defined
Stack (SSP)

Figure 5-3 User-Defined Stacks

5-10

-

-

I

-

-

....

Copied
by User
Routine

Support for User-Defined Extensions

Example 5-5 Implementing Variable-Size Stacks with TCREA TE

* Offsets
TBSSP
TBUSP

* Offsets
STKFI
STKPC
STKSR
STKA6
STKAS
STKA4
STKD7
STKD6

TCR HOOK:
MOVEM.L
MOVEQ.L
MOVEA.L
MOVE.W
ADDQ.W
MOVE.W
ADDA.L
MOVE.L
MOVE.W
ADDA.L
MOVE.L

MOVE.L

into new task's TCB --
EQU $38
EQU $3C

into initial VRTX32
EQU $lA
EQU $16
EQU $14
EQU $10
EQU SOC
EQU $08
EQU $04
EQU $00

A3-A4/DO-Dl,-(SP)
to,DO
STKPOS,A4
STKNDX,Dl
#2, STKNDX
USIZE(PC,Dl.W),DO
DO,A4
M , TBUSP (Al)
SSIZE(PC,Dl.W),DO
DO,A4
A4,STKPOS

TBSSP(Al),A3

* SSP for task
* USP for task

stack frame --
* fmt/ID word-680l0 only
* PC value for new task
* SR value for new task
* A6 value for new task
* AS value for new task
* A4 value for new task
* D7 value for new task
* D6 value for new task

* save all registers used

* get current alloc position
* get index into size tables
* update index for next time
* get USP size for this task
* allocate stack space
* set USP stack ptr for task
* get SSP size for this task
* allocate stack space
* save position for next alloc

* point to old VRTX32 stack

* Copy values to new SSP stack.
** MOVE.W STKFI(A3),-(M) * fmt/ID word-680l0 only

MOVE.L STKPC(A3),-(M) * PC from old to new stack
MOVE.W STKSR(A3),-(M) * SR from old to new stack
MOVE.L STKA6(A3),-(M) * A6 from old to new stack
MOVE.L STKAS(A3),-(M) * AS from old to new stack
MOVE.L STKA4(A3),-(M) * A4 from old to new stack
MOVE.L STKD7(A3),-(M) * D7 from old to new stack
MOVE.L STKD6(A3),-(M) * D6 from old to new stack
MOVE.L M, TBSSP (Al) * set SSP stack ptr for task

MOVEM.L (SP)+,A3-A4/DO-Dl * restore registers
RTS * return to VRTX32

USIZE:
DC.W
DC.W

SSIZE:
DC.W
DC.W

$100,$OEO,$OCO,$OAO,$080,$100,$OEO,$OCO,$OAO,$080
$100,$OEO,$OCO,$OAO,$080

$300,$2EO,$2CO,$2AO,$280,$300,$2EO,$2CO,$2AO,$280
$300,$2EO,$2CO,$2AO,$280

SECTION 14
STK:

5-11

Support for User-Defined Extensions

DS.B $4600

STKPOS:
DC.L STK

STKNDX:
DC.W 0
END

5.3.2 TDELETE Routine

5-12

The optional VRTX32 Configuration Table parameter Sys-TDELETE-Address points
to a user-supplied routine that is given control when VRTX32 deletes a task. For
example, you might use this routine in a program that tracks tasks according to their
creation and deletion times. If the task deletes itself, the TSW1TCH routine is called
after the TDELETE routine.

When the TDELETE routine receives control, register A2 contains a pointer to the
TCB of the deletor's task. This pointer is not valid before the execution of the
VRTX_GO call; it is not valid for tasks deleted during system initialization. Register
Al contains a pointer to the TCB of the task that is being deleted; see Figure 5-4,
Environment on Entry to TDELETE Routine.

Pointers

Current

Calling Task's
TCB

Stack Growth

A1

A2

Figure 5-4 Environment on Entry to TDElETE Routine

Support for User-Defined Extensions

5.3.3 TSWITCH Routine

The optional VRTX32 Configuration Table parameter Sys-TSWITCH-Address points
to a user-supplied routine that is given control when VRTX32 switches to another
task. Since interrupts can restart the rescheduling procedure, this routine can be
called several times before the next task is started.

The TSWITCH routine is called with a pointer to the old task's TCB in register AI;
register A2 contains a pointer to the new task's TCB. For the first task that executes,
register Al contains a pointer to the idle task, and register A2 contains a pointer to
the new task's TCB.

The TCREATE routine is not called when the idle task is created. This means that if
you use the TCREATE routine to allocate an additional data area to TCBs, or to alter
TCBs in any way, the idle task's TCB is not affected. For example, if additional
memory is allocated to the TCBs to save special registers, the idle task's TCB will not
have this area. If the TSWITCH routine is called to use memory or other items set up
during the TCREATE routine, it must check for the idle task. Alternatively, you can
create your own low-priority idle task to ensure that the TCREATE sets up all TCBs
identically, and that the TSWITCH routine does not need special processing for the
VRTX32-created idle task.

Figure 5-5, Environment on Entry to TSWITCH Routine, shows the state of the TCBs
and the user stacks at the time the TSWITCH routine gets control.

Note that VRTX32 does not save all registers in the TCB. VRTX32 improves
performance by leaving the values of some registers saved on the task stack. Figure
5-5 shows this organization. The registers for both tasks are stored at identical offsets
from TBSSP.

Figure 5-6, Complete VRTX32 System, shows how user-defined extensions fit into a
VRTX32-based system.

5-13

Support for User-Defined Extensions

~

Ai: I

5-14

Old Task

Stack

06

07

A4

A5

A6

SR

PC

FormatllO"

TCB

TBOO

TB05

TBAO ,
,

TBA3

TBSSP

TBUSP""

I

$00

$04

$08

SOC

$10

$14

$16

$1A

$1C

MC68010 architecture only.

..

A2:

New Task

Stack (SSP)

06

07

A4

A5

A6

SR

PC

Format/IO"

TCB
I

TBOO

,

TB05

TBAO

,

TBA3

TBSSP

TBUSp··

I

I--

$00

$04

$08

SOC

$10

$14

$16

$1A

$1C

If new task is in User mode; otherwise, contents are irrelevant.

Figure 5-5 Environment on Entry to TSWITCH Routine

Stack (USP)

Iii User-Supplied

~ User-Supplied, Optional

Counter
Timer

ISR

Interrupt
Service
Routines

Support for User-Defined Extensions

VRTX32
Work­
space

Figure 5-6 Complete VRTX32 System

5-15

Chapter 6

Interfacing Software Components
HUNTER
~READY

A Division of Ready Systems

6.1 Introduction

Silicon software components are well-designed pieces of software that are used as
building blocks. Software components can connect with other software components
in a variety of designs, without change to the components themselves. Silicon
software components developed by Hunter & Ready include VRTX32, the high­
performance versatile real-time executive, lOX, the input/output executive, and FMX,
the file management executive.

This chapter discusses integrating VRTX32 with other silicon software components. It
includes sections on the component calling conventions of all Hunter & Ready silicon
software components, the Component Vector Table (CVf), and the internal structure
of software components.

6.2 Component Calling Conventions

This section describes the Hunter & Ready conventions that apply when calling a
silicon software component. These conventions include the component call format
convention, the component call trap vector convention, and the parameter passing
conventions. Using calling conventions ensures a consistent and easy-ta-use interface
to all silicon software components.

6.2.1 Component Call Format

All requests for silicon software component services are made with a single
architecture-dependent instruction. In the instruction set of each architecture
supported by Hunter & Ready, there is at least one instruction that causes what is
variously known as a software-generated interrupt, an exception, or a trap. The
M6800o architecture defines a series of TRAP instructions for this purpose.

These instructions make possible a type of run-time linkage. Ordinary subroutine
calls require a calling program with built-in knowledge of the address of its called
subroutine. However, a software interrupt depends only on the contents of a
hardware-defined software interrupt vector to reach its intended destination. Thus,

6-1

Interfacing Software Components

the calling program does not have to be compiled, assembled, linked, or otherwise
bound up with the called routine.

By using software interrupt instructions in this way, Hunter & Ready provides
software components that are entirely independent from your development system:
since a software component need not be bound up with your application code, there
is no special reliance on individual linkers, loaders, or assemblers.

6.2.2 Component Call Trap Vector

Corresponding to each software interrupt instruction is an interrupt vector location
defined by the computer architecture. Executing a software interrupt instruction
causes the hardware to save its current program address and to fetch its new program
address from the appropriate vector location. This new program address is the
address of the interrupt service routine (ISR).

The M68000 architecture defines 16 distinct TRAP vectors, anyone of which can be
used to access VRTX32 system calls. Execution of the TRAP instruction causes the
new program address to be loaded from a vector at address $OBO+4*n offset from the
base of the EVT.

In VRTX32, a routing mechanism directs all requests for system services to the
appropriate silicon software component. The entry point for this service is the start
of VRTX32 code. After the TRAP instruction for component access is selected, be
sure the corresponding TRAP vector points to the VRTX32's starting address. All
components are then accessed through a single software interrupt instruction.

6.2.3 Parameter Passing

6-2

All calls to silicon software components are routed to a single entry point. Therefore,
a component call must specify the component being called and the desired
operation.

In addition, a component must always return a return code to the caller. The return
code indicates the success or failure of the operation.

The rest of this section describes these three parameters, as well as additional input
and output parameters. These parameters are passed using registers.

Interfacing Software Components

Function Code. All silicon software component calls designate their target with a
function code passed in register DO. This code is a 32-bit number, divided into
three fields. The lower two bytes of the function code are sign extended.

Sign Extension I Component ID I Opcode

31 16 15 8 7 0

The Component ID field (bits 15-8) specifies a component identification number.
Each Hunter & Ready component has a unique component number that is the same
for all releases of the component. This identification number does not conflict with
other component number aSSignments. For example, VRTX32 is designated as
component number 0, lOX is component number 2, and FMX/DOS is component
number 3.

Hunter & Ready reserves the full range of nonnegative component numbers from 0 to
127 for its current and future silicon software components. Negative numbers
ranging from -1 to -128 are unreserved and available for integrating user-supplied
components. This procedure is described in Section 6.3, Component Vectoring, and
Section 6.4, Component Internals.

The Operation Code field (bits 7-0) of the function code specifies an operation
code, or Opcode. The Opcode selects the operation to be invoked in the selected
component. Opcode values are defined locally for each component; they do not
necessarily have consistent meanings across different components.

Return Code. All silicon software components return an output value known as the
return code in register DO. (DO specifies the function code on input and the return
code on output.)

The 32-bit return code indicates the success or failure of the requested operation. A
return code of $0000 (mnemonic RET_OK) indicates a successful completion for all
components. Nonzero return codes indicate unsuccessful completion of an
operation.

All nonzero return codes have the Component ID in bits 8 through 15 and an Error
Code in bits 0 through 7. Hunter & Ready uses only positive values in the error code
to indicate error conditions. This 8-bit error code is specific to the component ID,
except for the RET_OK return code. The component lD ensures unique return

6-3

Interfacing Software Components

6-4

codes. Hunter & Ready guarantees that its own return codes are unique across all
components.

The 32-bit return code has this format:

Sign Extension Component 10 Error Code

31 16 15 8 7 o

The following are descriptions of error conditions and return codes made by
VRTX32/68000 in response to errors with either the Component Vector Table (CVT)
or the Opcode Vector Table (OVT) of a specific component.

$0020

$0021

$0022

CVT pointer in the configuration table is null; no CVT is defined.

Illegal Component ID. Component ID in DO is either beyond the
range of the maximum component number in the CVT, or it
references a CVT entry that is a null pointer (in other words,
undefined in the CVT).

Illegal Opcode ID. Opcode in DO is either beyond the range of
the maximum opcode number in the OVT, or it references an OVT
entry that is a null pointer (in other words, undefined in the OVT).

Appendix B, Return Codes, lists the mnemonics, values, and meanings of all VRTX32
return codes assigned by Hunter & Ready.

Other Parameters. Besides the function code and return code parameters, almost all
operations performed by silicon software components require additional input and
output parameters. By convention, operations accept and return all necessary
parameters using machine registers. VRTX32 operations follow this convention.

Other components frequently define a data structure known as a parameter packet
for particular operations. This structure contains all additional parameters required
by a specified operation. Only the packet's address must be passed, typically in
register AO.

When values other than the error code must be returned, or when input values
cannot be determined at compile time, locate the packet in read/write memory.
(However, you can locate packets used only for reference in PROM.) In a
multitasking environment, you must ensure that the packet is allocated on a per-task
basis. You can accomplish this by allocating a task's packet on the stack or in an
area of memory dedicated to that task.

The parameter packet typically has this format:

Options

Call-dependent
input and output

parameters

Interfaci ng Software Components

The first field in Hunter & Ready parameter packets is a 16-bit Options word. The
format of the rest of the packet can vary from one function to another. The
parameters in the packet can be 8-, 16-, or 32-bit integers, pointers, or arbitrary bit
fields. We recommend that user-supplied components use the same structure.

Parameter packets can contain input values and output values. Hunter & Ready
components do not overwrite input values. For example, a Set File Position call
might accept an input parameter that specifies the desired file position and return the
actual file position. Do not overwrite the original input value; supply a separate
parameter in the parameter packet for the returned file position. This allows packets
to be used again with minimum change.

Generally, some parameters in a parameter packet are filled during program
execution. For example, file channels, stack addresses, and task-dependent states are
not known until the program runs. Thus, for efficiency reasons, parameter packets
should be kept small. Large parameters (greater than 32 bits), structures, and varying
length parameters (byte strings) should be passed by reference (pointer).

Variable-length character strings are passed by reference. One parameter points to
the string, and another parameter specifies the maximum length of the string. When
the string is terminated with a null (zero) byte, the string length parameter is not
required. Although technically unnecessary, this method of passing strings conforms
to the C language convention.

All pointer values should be capable of holding the largest address accessible by the
target microprocessor. A special value, all zeros, is reserved to indicate a null
pointer. The null pointer indicates the absence of the parameter referenced by the
pointer value.

6-5

Interfacing software Components

6.3 Component Vectoring

6-6

Section 6.2, Component Calling Conventions, describes how a single software
interrupt instruction accesses all Hunter & Ready silicon software components. The
VRTX32 component intercepts each software-generated interrupt, analyzes the
function code passed by the caller, and routes the call to the appropriate component.

To accomplish component vectoring, you must tell VRTX32 which components are
present in the system and where they are located. The Component Vector Table
(CVT) supplies this information.

The optional CVT-Address parameter in the VRTX32 Configuration Table points to
the CVT. When there are no components other than VRTX32 in the system, the CVT
is not required, and zero is supplied in the CVT-Address parameter. Figure 6-1,
Component Vector Table, shows the CVT's format.

VRTX32 Configuration
Table

CVT-Addr

$FFFO Component (-2) Codespace

$FFF4 Component (-2) Workspace

$FFF8 Component (-1) Codespace

$FFFC Component (-1) Workspace

--+ $0000 H&R-Max

$0001 User-Max

$0002 Reserved, must = 0

I
$0008

Reserved, must = 0

lOX {
$0010

$0014

Component (2) Codespace

Component (2) Workspace

FMX{
$0018

$001C

Component (3) Codespace

Component (3) Workspace

Figure 6-1 Component Vector Table

}

User-Supplied
Component
Entries

Hunter & Ready
Component
Entries

Interfacing Software Components

The first byte in the CVT, H&R-Max, specifies the component number of the highest­
numbered Hunter & Ready component present in the system.

The second byte in the CVT, User-Max, should be set to zero unless there are user­
supplied components in the system. These other components must be written
according to the guidelines presented in Section 6.4, Component Intemals. When
such components are present, whether supplied by third-party vendors or by
yourself, you must assign them negative component numbers. The value of User­
Max must reflect the absolute value of the greatest extent component number. For
example, when components numbered -1, -2, and -7 are present in the system, User­
Max is specified as 7.

Corresponding to each possible component number, within the limits described by
H&R-Max and User-Max, is an 8-byte entry. Entries for Hunter & Ready components
are at positive displacements from the start of the CVT. Entries for user-supplied
components are at negative displacements. There can be gaps in the enumeration of
components present in the system (for instance, components 4 and 5 are present, but
not components 2 or 3). You must set all entries corresponding to absent
components to zero.

For components present in the system, the corresponding entry contains two
pointers. The first specifies the Codes pace Entry Point Address. The entry point
of all Hunter & Ready components is offset zero of the component; thus, the value of
this field is equal to the starting address of the component.

The second pointer in a component entry specifies the Workspace Address, the
address of the primary data area for that component. Ordinarily a silicon software
component requires some amount of private memory for its own purposes; the
workspace vectors in the CVT are generally used to point to such areas. VRTX32
passes a workspace pointer to a component every time that component is called.

You must initialize the entire CVT before any attempt is made to access components
other than VRTX32.

6.4 Component Internals

A user-defined system call handler is intended to be an extension of VRTX32. It

increases the repertoire of VRTX32 system calls available to your application. In fact,
user-defined system call handlers frequently combine several VRTX32 system calls
into one routine. Refer to Section 5.2, User-Defined System Call Handlers.

6-7

Interfacing Software Components

On the other hand, a user-supplied component usually performs functions outside
the scope of VRTX32's executive functions. One example of a user-supplied
component might be a database management component. A component that
performed data base management would have system calls independent from
VRTX32's system calls.

This section describes the rules that must be followed when writing a software
component. These rules ensure correct operation with VRTX32 and consistency with
the Hunter & Ready calling conventions. Each component referenced in the CVT,
including user-supplied components indicated by negative component numbers, must
obey the structural constraints outlined here.

These rules include opcode handling rules, register contents rules, stack structure
rules, and multitasking considerations. If you do not intend to write your own
software components, you can skip the remainder of this chapter.

6.4.1 Opcode Handling

6-8

Just as the CVT specifies the location of components in the system, an Opcode
Vector Table (OVO specifies the location of opcode handler routines (component
calls) in a specific component. Figure 6-2, Opcode Vector Table, shows this data
structure's format.

Each software component contains an OVT starting at offset zero of the component.
The table's address is entered in the cvr as the component's codes pace vector.

The first 64 bytes ($40) of the OVT are reserved for use by Hunter & Ready.

At location $40, Opcode-Max specifies the highest-numbered operation code valid
for the specific component. The designer of the component assigns the opcodes;
they are unsigned numbers ranging from 0 through 255.

Corresponding to each possible opcode value, from 0 to the specified maximum, is a
long-word entry. These entries start at $50. There can be gaps in the enumeration of
valid opcodes (for instance, when 13 is a valid opcode but 11 and 12 are not). The
entries corresponding to invalid opcades should be set to zero.

Each opcode entry contains a 16-bit Offset value that specifies the address of the
opcode handler routine. This value is the offset from the start of the component.

$0
$3F

$40

$41

$42

$4C

$50

$52

$54

$56

$58

$5A

$5C

$5E

Interfacing Software Components

Reserved must - 0 , - I
Opcode-Max

Reserved, must = 0

Reserved, must = 0

Reserved, must = 0

Offset
Opcode 0

Options

Offset
Opcode 1

Options

Offset
Opcode2

Options

Offset
Opcode3

Options

Figure 6-2 Opcode Vector Table

The Options value for each entry in the table allows you to specify the mode of
operation for an opcode handler. Only the least significant two bits are currently
defined; the remaining bits of each Options word are reserved and should always be
set to zero. Bit positions are defined as used in the M68oo0 bit-manipulation
instructions (modulo-32).

Table 6-1, Opcode Handler Options, shows the options supported by VRTX32/68000
for use by opcode handler routines.

6.4.2 Register Contents

When entering an opcode handler routine, the six data registers (DO through DS) and
four address registers (AO through A3) are left intact. This means that the contents of
these registers are exactly as they were when the component call was made. For
many operations, register AO specifies the address of a parameter packet. When the
call is routed to the component, register DO contains the caller's 32-bit function code.

6-9

Interfacing Software Components

Table 6-1 Opcode Handler Options

Bit Value Meaning

00 0 Handler is effectively a subroutine, executing with the
same preemptibility as the caller.

1 Handler is nonpreemptible.

01 0 Handler is effectively a system service, executing in
Supervisor mode.

1 Reserved

When returning to the caller, the handler routine should set DO to indicate a return
code value.

The remaining registers (SR, PC, D6, D7, and address registers A4 through A7) are not
left intact. Their original values at the time of the call are saved on the stack. An
exception is A7, the stack pointer, whose original value is Simply its current value
adjusted by the size of the registers pushed onto the stack. Address register A 7 is set
up to point to the top of the stack. Address register A5 points to the component's
workspace, as determined by the entry in the cvr.

6.4.3 Stack Structure

The format of the stack on entry to an opcode handler routine is shown in Figure
6-3, M68000 Stack Format.

The handler routine returns with an RTS instruction. The return address at the top of
the stack is set up for a return into VRTX32, which in turn restores registers from the
stack and returns to the caller.

6.4.4 Multitasking Considerations

6-10

In an embedded system with some degree of concurrency, a resident multitasking
executive must coordinate all operations. Therefore, VRTX32 is the focal point for
Hunter & Ready component interface mechanisms.

Interfacing Software Components

SP .$00 Retum Address

$04 Reserved I
$06 Saved D6

$OA Saved D7

$OE Saved A4

$12 Saved A5

$16 Saved A6

$lA Caller's SR I
$lC Caller's PC

$20 FormatliD* I

MC68010 architecture only.

Figure 6-3 M68000 Stack Format

Every opcode handler routine must be aware of its interaction with the surrounding
multitasking environment. When a component is called from the task level, unlike
calls from ISRs, the handler routine is presumed reschedulable and preemptible, just
like the calling task. The handler can use SC_LOCK and SC_UNLOCK, just as tasks
do, to override this assumption and bracket nonpreemptible, critical regions of code.
When the nonpreemptible flag is set in the OVT, the nonpreemptibility holds for the
entire component call.

When a component handler routine is first invoked, interrupts are enabled to the
level they were enabled by the caller. The handler can also disable interrupts for
brief sections of critical code, as an alternative to SC_LOCK and SC_UNLOCK.

6-11

Chapter 7

System Call Reference
HUNTER
~READY

A Division of Ready Systems

7.1 Introduction

This chapter lists all VRTX32 system calls in alphabetic order. The following
information is provided for each call:

• The mnemonic name of the call.

• A brief statement of the call's function and operation, including input and
output values. The function code is always an input value in register DO and is
shown as a mnemonic followed by the hexadecimal value.

• A list of the call's possible return codes in register DO.

• A list of the environments from which the call can be made:

• User initialization code is system code that precedes the VRTX_GO call.

• Interrupt handler code includes device ISRs, user-supplied system call
handlers, and extensions .

• Task code is any task level code.

Conventions followed in this chapter include:

• Numbers preceded by the dollar sign ($) character are hexadecimal numbers;
otherwise, numbers are decimal numbers.

• A notation such as D1[7:01 stands for register Dl, bits 7 through 0; bit 0 is the
least significant bit.

• Unless otherwise noted, all parameters use the full 32 bits of the register.
When the parameters use less than the full 32 bits of the register, they use the
least significant bits of the register.

• A given parameter's range is restricted only by the register size, unless
otherwise noted.

7-1

SCACCEPT - Accept Message from Mailbox System Call Reference

7.2 SC_ACCEPT - Accept Message from Mailbox

7-2

This call obtains a long-word (32-bit) nonzero message from a specified mailbox.
Unlike SC_PEND, this call does not suspend the caller if no message is present.
Instead, VRTX32 returns the error code ER_NMP immediately and the calling task
continues execution.

To avoid suspension, ISRs must use SC_ACCEPT rather than SC_PEND to receive
messages.

The SC_ACCEPT call does not initiate the rescheduling procedure.

INPUT: DO - SC_ACCEPT ($0025)

AO mailbox address

OUTPUT: DO return code

Dl message

mailbox address is a 32-bit pointer to the mailbox.

message is a nonzero 32-bit data value. Register Dl remains unchanged if VRTX32
returns ER_NMP.

RETURN CODES

$0000
$OOOB

ENVIRONMENTS

Successful return
No message present

This call can be made from task, interrupt handler, and user initialization code.

System Call Reference Clear Event - SCJCLEAR

7.3 SC_FCLEAR - Clear Event

This call clears one or more event flags in the specified event flag group, and returns
the event flag group before the flags were cleared. An event flag should be cleared
with SC_FCLEAR before an attempt is made to post to it again.

This call does not initiate the rescheduling procedure.

INPUT: DO SC_FCLEAR ($OOlB)

D1 - event flag group ID number

D2 event flags

OUTPUT: DO return code

D2 event flag group

event flag group ID number is a 32-bit value that references the event flag group.
VRTX32 returns this number in the SC]CREA TE call.

event flags is a 32-bit mask. Each bit corresponds to one event flag in the event flag
group.

event flag group is the state of the 32-bit event flag group before the flags were
cleared.

RETURN CODES

$0000
$0031

ENVIRONMENTS

Successful return
Event flag group ID error

This call can be made from task, interrupt handler, and user initialization code.

7-3

SCJCREATE - Create Event Flag Group System Call Reference

7.4 SC_FCREATE - Create Event Flag Group

7-4

This call creates a long-word (32-biO event flag group in VRTX32 Workspace, and
returns the event flag group ID number.

Each event flag group and semaphore is assodated with a control block. You spedfy
the maximum number of control blocks in the VRTX32 Configuration Table (refer to
Section 4.2, VRTX32 Configuration Table). If you try to create more event flag
groups and/or semaphores than you've spedfied in the configuration table, VRTX32
returns the ER_NOCB error code.

The SC_FCREATE call does not initiate the rescheduling procedure.

INPUT: DO SC]CREATE ($0017)

OUTPUT: DO return code

Dl event flag group ID number

event flag group ID number is a 32-bit value that references the event flag group.

RETURN CODES

$0000
$0030

ENVIRONMENTS

Successful return
No control blocks available

This call can be made from task and user initialization code.

System Call Reference Delete Event Flag Group - SC]DElETE

7.5 SC_FDELETE - Delete Event Flag Group

This call deletes the specified event flag group, making the event flag group's control
block available for reuse.

The SC_FDELETE call initiates the rescheduling procedure if the forced delete option
is specified and there are tasks pending on the event flag group. In this case, all
pending tasks are readied.

If this option is not specified, VRTX32 returns the ER_PND error code if you try to
delete an event flag group with pending tasks.

INPUT: DO SC]DELETE ($0018)

D1 - event flag group ID number

D2 force delete option

OUTPUT: DO return code

event flag group ID number is a 32-bit value that references the event flag group.
VRTX32 returns this number in the SC]CREA TE call.

force delete option is a 32-bit value that can be formatted in two ways:

FORMAT 1:

FORMAT 2:

RETURN CODES

$0000
$0031
$0032

RET_OK
ER_ID
ER]ND

Delete event flag group only if no tasks are pending.
D2 = 0

Delete event flag group and ready all pending tasks.
D2 = 1

Successful return
Event flag group ID error
Tasks pending on event flag group; Format 1 only

7-5

SCJDELETE - Delete Event Flag Group System Call Reference

ENVIRONMENTS

This call can be made from task and user initialization code.

7-6

System Call Reference Event Flag Group Inquiry - SCJINQUIRY

7.6 SC_FINQUIRY - Event Flag Group Inquiry

This call obtains the specified event flag group. The SC]INQUIRY call does not
initiate the rescheduling procedure.

INPUT: DO = SC]INQUIRY ($OOlC)

D1 = event flag group ID number

OUTPUT: DO return code

D2 event flag group

event flag group ID number is a 32-bit value that references the event flag group.
VRTX32 returns this number in the SC]CREA TE call.

event flag group is the current 32-bit event flag group.

RETURN CODES

$0000
$0031

ENVIRONMENTS

Successful return
Event flag group ID error

This call can be made from task, interrupt handler, and user initialization code.

7-7

SCJPEND - Pend on Event Flag Group System Call Reference

7.7 SC_FPEND - Pend on Event Flag Group

7-8

This call pends for one or more events on the specified event flag group, and returns
the event flag group that readied the caller. You specify whether it is an AND pend
or an OR pend. If the specified event flags are not set, the task suspends and a task
switch occurs. The task is not readied until the appropriate flag(s) are set.

To satisfy an AND pend, all specified event flags must have a value of one
simultaneously. For example, suppose a task is waiting for both Flag 1 and Flag 2.
Flag 1 is set, but is immediately cleared. Next, Flag 2 is set. The task continues to
pend, because Flag 1 and Flag 2 have not had a value of one at the same time.

You can issue SC_FPEND with a nonzero timeout value. In this case, VRTX32 returns
the ER_TMO error code to the calling task if the event flag(s) are not set in the
specified number of VRTX32 clock ticks; refer to Section 3.3.1, Real-Time Clock
Support. (To pend without a timeout, set the timeout parameter to zero.) The
timeout is not synchronized with the VRTX32 clock. Thus, a timeout value of one
VRTX32 clock tick results in the task's timeout period ending on the next occurrence
of any VRTX32 clock tick. The actual elapsed time the task times out could be less
than one VRTX32 clock tick in this example.

If the task is suspended on an event flag group and the group is deleted, the task is
readied and VRTX32 returns the ER_DEL error code.

A pending task that has been explicitly suspended with SC_ TSUSPEND can be
notified of an event. However, it remains suspended until it is explicitly resumed
with SC_ TRESUME.

INPUT: DO SC]PEND ($0019)

D1 event flag group ID number

D2 timeout value

D3 event flags

D4 mask option

OUTPUT: DO return code

D2 event flag group

System Call Reference Pend on Event Flag Group - SCJPEND

event flag group ID number is a 32-bit value that references the event flag group.
VRTX32 returns this number in the SC]CREA TE call.

timeout value is a 32-bit number of VRTX32 clock ticks. A value of zero indicates
no timeout is requested.

event flags is a 32-bit mask. Each bit corresponds to one event flag in the event flag
group.

mask option is a 32-bit value that can be formatted in two ways:

FORMAT 1: Pend on an OR mask; any of the specified event flags
ready the task.

FORMAT 2:

D4 = 0

Pend on an AND mask; all specified event flags must
be set to ready the task.

D4 - 1

event flag group is the 32-bit event flag group when the task is readied. Register
D2 is invalid if VRTX32 returns ER_ID or ER_ TMO.

RETURN CODES

$0000
$OOOA
$0031
$0033

RET_OK
ER_TMO
ER_ID
ER_DEL

ENVIRONMENTS

Successful return
Timeout
Event flag group ID error
Event flag group is deleted

This call can be made from task code only.

7-9

SCJPOST - Post Event to Event Flag Group System Call Reference

7.8 SCJPOST - Post Event to Event Flag Group

7-10

This call posts one or more events to the specified event flag group. Every task that
is pending for this event (and has its OR or AND mask satisfied) is readied, and the
rescheduling procedure occurs.

If an event flag is already set (one), and SC_FPOST tries to set it again, VRTX32
returns the ER_OVF error code. However, if SC_FPOST specifies several event flags,
and some of them are already set, VRTX32 returns ER_OVF and sets any event flags
that were not previously set.

INPUT:

OUTPUT:

DO = SC]POST ($OOlA)

D1 = event flag group ID number

D2 = event flags

DO return code

event flag group ID number is a 32-bit value that references the event flag group.
VRTX32 returns this number in the SC]CREA TE call.

event flags is a 32-bit mask. Each bit corresponds to one event flag in the event flag
group.

RETURN CODES

$0000
$0031
$0034

RET_OK
ER_ID
ER_OVF

ENVIRONMENTS

Successful return
Event flag group ID error
Event flag already set

This call can be made from task, interrupt handler, and user initialization code.

System Call Reference Get Memory Block - SC_GBLOCK

7.9 SC_GBLOCK - Get Memory Block

This call obtains a memory block from a partition of memory blocks managed by
VRTX32. The SC]CREA TE call, which creates memory partitions, specifies the block
size. You can repeat SC_GBLOCK until all blocks in a partition are allocated.

This call does not initiate the rescheduling procedure.

INPUT: DO = SCGBLOCK ($0006)

Dl[15:0] partition ID number

OUTPUT: DO - return code

AO - memory block address

partition ID number is a 16-bit value that references the partition. A value of zero
is allowed.

memory block address is a 32-bit pointer to the start of a memory block.

RETURN CODES

$0000
$0003
$OOOE

RET_OK
ER_MEM
ER_PID

ENVIRONMENTS

Successful return
No memory blocks available
Partition ID error; no such partition

This call can be made from task, interrupt handler, and user initialization code.

7-11

SCGETC - Get Character System Call Reference

7.10 SC GETC - Get Character

7-12

This call obtains the next character from the supported I/O device. When the 64-
byte buffer of received characters is empty, the calling task suspends until a
character is received. This call does not echo the character onto the output device.
However, the ISR that supports the device can echo each character it receives.

The SC_GETC call initiates the rescheduling procedure if no character is present.

INPUT:

OUTPUT:

DO

DO

D1[7:0]

SC_GETC ($OOOD)

return code

next received character

next received character is an 8-bit value.

RETURN CODES

$0000 Successful return

ENVIRONMENTS

This call can be made from task code only.

System Call Reference Get Time - SC_GTIME

7.11 SC_GTIME - Get Time

This call obtains the current value of the VRTX32 clock, specified as a number of
VRTX32 clock ticks. The SC_GTIME call does not initiate the rescheduling
procedure.

INPUT: DO SCGTIME ($OOOA)

OUTPUT: DO return code

Dl = VRTX32 clock value

VRTX32 clock value is a 32-bit value. This is the current value of the VRTX32
clock, specified as a number of VRTX32 clock ticks.

RETURN CODES

$0000 Successful return

ENVIRONMENTS

This call can be made from task, interrupt handler, and user initialization code.

7-13

SCLOCK - Disable Task Rescheduling System Call Reference

7.12 SC_lOCK - Disable Task Rescheduling

7-14

This call disables the VRTX32 rescheduling procedure until an explicit SC_UNLOCK
call is issued. The task that issues the SC_LOCK call retains processor control, even
when higher-priority tasks are ready to run.

The SC_LOCK and SC_UNLOCK calls are used in pairs. VRTX32 keeps an internal
count of locks and unlocks so that nested instances of these calls do not prematurely
end a scheduling lock. (The maximum lock/unlock nest count supported is 65,535.)
For example, nested subroutines and procedures can contain critical code that other
tasks cannot interrupt. When a nested routine issues an SC_UNLOCK, the
SC_UNLOCK cancels the last SC_LOCK call only.

Use the SC_LOCK call with caution, since it disrupts VRTX32's normal scheduling of
the multitasking environment. However, SC_LOCK does not affect interrupt
handling.

CAUTION

After issuing SC_LOCK, the program should not make any system
calls that could lead to the suspension of the current task. This
event causes unpredictable results.

INPUT: DO SCLOCK ($0020)

OUTPUT: DO = return code

RETURN CODES

$0000 Successful return

ENVIRONMENTS

This call can be made from task and interrupt handler code.

System Call Reference Create Memory Partition - SC_PCREATE

7.13 SC_PCREATE - Create Memory Partition

This call creates a partition of contiguous memory managed by VRTX32. The
SC_PCREATE call specifies the partition ID number and the block size that successive
SC_GBLOCK calls use to obtain memory blocks.

This call does not initiate the rescheduling procedure.

INPUT: DO = SC]CREA TE ($0022)

Dl[lS:01 - partition ID number

D2 - partition size

D3 - block size

AO = partition address

OUTPUT: DO - return code

partition ID number is a 16-bit value that references the partition. A value of zero
is allowed.

partition size is a 32-bit value that specifies the total size of the partition, specified
as a count of bytes. This size must be greater than or equal to block size. In
addition, the partition cannot contain more than 32K blocks, although the partition
can be extended with the SC_PEXTEND call. To avoid wasted space, the partition
size should be an integer multiple of the block size.

block size is a 32-bit count of bytes. This value must not equal zero.

partition address is a 32-bit pointer to the partition.

7-15

SCPCREATE - Create Memory Partition

RETURN CODES

$0000
$0003

$OOOE
$0012

ENVIRONMENTS

System Call Reference

Successful return
No memory available; insufficient system memory for

VRTX32 control structures
Partition ID error; ID number already assigned
Invalid input parameter; returned in these cases:

• When the block size is specified as zero
• When the partition size is less than the block size
• When the partition contains more than 32K blocks

This call can be made from task and user initialization code.

7-16

System Call Reference Pend for Message from Mailbox - SCPEND

7.14 SC_PEND - Pend for Message from Mailbox

This call obtains a long-word (32-bit) nonzero message from a specified mailbox. If
a message is present, the task receives it and continues execution. VRTX32 resets the
mailbox to zero.

If the mailbox is empty, the task suspends and a task switch occurs. The task is not
readied until it receives a message.

You can issue SC_PEND with a nonzero timeout value. In this case, VRTX32 returns
the ER_TMO error code to the calling task if it does not receive a message in the
specified number of VRTX32 clock ticks; refer to Section 3.3.1, Real-Time Clock
Support. (To pend without a timeout, set the timeout parameter to zero.) The
timeout is not synchronized with the VRTX32 clock. Thus, a timeout value of one
VRTX32 clock tick results in the task's timeout period ending on the next occurrence
of any VRTX32 clock tick. The actual elapsed time the task times out could be less
than one VRTX32 clock tick in this example.

A pending task that has been explicitly suspended with SC_ TSUSPEND can receive a
message. However, it remains suspended until it is explicitly resumed with
SC_ TRESUME.

When several tasks are pending on the same mailbox, the highest-priority task
receives the message.

To avoid suspension, ISRs must use SC_ACCEPT rather than SC_PEND to receive
messages.

INPUT: DO SC]END ($0009)

Dl timeout value

AO mailbox address

OUTPUT: DO return code

D1 message

7-17

SC_PEND - Pend for Message from Mailbox System Call Reference

7-18

timeout value is a 32-bit number of VRTX32 clock ticks. A value of zero indicates
no timeout is requested.

mailbox address is a 32-bit pointer to the mailbox.

message is a nonzero 32-bit data value. Register Dl remains unchanged if VRTX32
returns ER_TMO.

RETURN CODES

$0000
$OOOA

ENVIRONMENTS

Successful return
Timeout

This call can be made from task code only.

System Call Reference Extend Memory Partition - SC_PEXTEND

7.15 SC_PEXTEND - Extend Memory Partition

This call extends a memory partition previously defined by SC_PCREA TE. The
extension encompasses an additional range of memory locations. This extension
does not have to be contiguous with the memory location of the original partition.
However, the block size in the extension is the same as defined in the original
partition.

The SC_PEXTEND call does not initiate the rescheduling procedure.

INPUT: DO SC]EXTEND ($0023)

D1[15:0] partition ID number

D2 extension size

AO extension address

OUTPUT: DO return code

partition ID number is a 16-bit value that references the partition. A value of zero
is allowed.

extension size is a 32-bit value that specifies the total size of the extension in bytes.
The extension size must be greater than or equal to block size. An extension cannot
contain more than 32K blocks, although multiple extensions can be used to define
more blocks. To avoid wasted space, the extension size should be an integer
multiple of the block size.

extension address is a 32-bit pointer to the extension.

7-19

SC]EXTEND - Extend Memory Partition

RETURN CODES

$0000
$0003

$OOOE
$0012

ENVIRONMENTS

System Call Reference

Successful return
No memory available; insufficient system memory for

VRTX32 control structures
Partition ID error; no such partition
Invalid input parameter; returned in these cases:

• When the extension size is less than the block size

• When the extension contains more than 32K blocks

This call can be made from task and user initialization code.

7-20

System Call Reference Post Message to Mailbox - SC_POST

7.16 SC_POST - Post Message to Mailbox

This call posts a long-word (32-bit) nonzero message to a specified mailbox. Do not
specify a zero message; zero indicates an empty mailbox.

When there is already a message in the mailbox (mailbox value is nonzero), VRTX32
returns the error code ER_MIU to the posting task. The posting task continues
execution.

A message posted to a mailbox with SC_POST is immediately allocated to any task
pending for the message; the message is not saved in the mailbox itself in this case.

When a higher-priority task is pending on the mailbox, a task switch occurs.

INPUT: DO SC]OST ($0008)

Dl message

AO mailbox address

OUTPUT: DO return code

message is a nonzero 32-bit data value.

mailbox address is a 32-bit pointer to the mailbox.

RETURN CODES

$0000
$0005
$0006

RET_OK
ER_MIU
ER_ZMW

ENVIRONMENTS

Successful return
Mailbox in use
Zero message

This call can be made from task, interrupt handler, and user initialization code.

7-21

SC]UTC - Put Character System Call Reference

7.17 SC_PUTC - Put Character

7-22

This call specifies the next character to transmit to the supported I/O device. When
the 64-byte buffer of characters to transmit is full, the calling task suspends until the
buffer is available (that is, one character is transmitted).

The SC_PUTC call must be used with caution during initialization. An attempt to put
more than 64 characters in the buffer before VRTX_GO causes unpredictable results.

The SC_PUTC call initiates the rescheduling procedure when the transmit buffer is
full.

INPUT:

OUTPUT:

DO - SC]UTC ($OOOE)

D1[7:01 - character

DO return code

character is an 8-bit value.

RETURN CODES

$0000 Successful return

ENVIRONMENTS

This call can be made from task code only.

System Call Reference Accept Message from Queue - SC_QACCEPT

7.18 SC_QACCEPT - Accept Message from Queue

This call obtains a long-word (32-bit) message from a specified queue. Unlike
SC_QPEND, this call does not suspend the caller if no message is present. Instead,
VRTX32 returns the error code ER_NMP immediately and the calling task continues
execution. VRTX32 does not return a message when the call is unsuccessful.

To avoid suspension, ISRs must use SC_QACCEPT rather than SC_QPEND to receive
messages.

The SC_QACCEPT call does not initiate the rescheduling procedure.

INPUT: DO

Dl[lS:0]

OUTPUT: DO

SC_QACCEPT ($0028)

queue ID number

return code

D2 message

queue ID number is a 16-bit value that references the queue. A value of zero is
allowed.

message is a 32-bit data value. A value of zero is allowed.

RETURN CODES

$0000
$OOOB
$OOOC

RET_OK
ER_NMP
ER_QID

ENVIRONMENTS

Successful return
No message present
Queue ID error; no such queue

This call can be made from task, interrupt handler, and user initialization code.

7-23

SCQCREATE - Create Message Queue System Call Reference

7.19 SC_ QCREATE - Create Message Queue

7-24

This call creates a message queue from available VRTX32 Workspace (refer to Section
4.3, Determining VRTX32 Workspace Size). You specify a queue ID number and the
number of queue entries (the queue size). Tasks pend on the queue in priority
order.

When the queue is created, VRTX32 adds one queue entry to the number you
specify. This additional entry is reserved at the beginning of the queue for a message
posted with the SC_QJAM call when the queue is otherwise full (refer to Section 7.22,
SC_QJAM-Jam Message to Queue).

The SC_QCREATE call does not initiate the rescheduling procedure.

INPUT:

OUTPUT:

DO

D1[15:0]

D2[15:0]

DO

SC_QCREATE ($0029)

queue ID number

number of queue entries

return code

queue ID number is a 16-bit value that references the queue. A value of zero is
allowed.

number of queue entries is a 16-bit value representing the maximum number of
32-bit messages supported by this queue.

RETURN CODES

$0000
$0003

$OOOC

Successful return
No memory available; insufficient system memory for

VRTX32 control structures
Queue ID error; ID number already assigned

System Call Reference Create Message Queue - SC_QCREATE

ENVIRONMENTS

This call can be made from task and user initialization code.

7-25

SC_ QECREATE - Create FIFO Message Queue System Call Reference

7.20 SC_QECREATE - Create FIFO Message Queue

7-26

This call creates a message queue from available VRTX32 Workspace (refer to Section
4.3, Determining VRTX32 Workspace Size). You specify a queue ID number, the
number of queue entries (the queue size), and whether tasks should pend in priority
order or FIFO order.

When the queue is created, VRTX32 adds one queue entry to the number you
specify. This additional entry is reserved at the beginning of the queue for a message
posted with the SC_QJAM call when the queue is otherwise full (refer to Section 7.22,
SC_QJAM-Jam Message to Queue).

The SC_QECREATE call does not initiate the rescheduling procedure.

INPUT: DO - SC_QECREATE ($OOlF)

D1[15:0] - queue ID number

D2[15:0] - number of queue entries

D3 = task pend order option

OUTPUT: DO = return code

queue ID number is a 16-bit value that references the queue. A value of zero is
allowed.

number of queue entries is a 16-bit value representing the maximum number of
32-bit messages supported by this queue. (VRTX32 adds one to this number for a
message posted with SC_QJAM.)

task pend order option is a 32-bit value that can be formatted in two ways:

FORMAT 1: Pend tasks in priority order.
D3 = 0

FORMAT 2: Pend tasks in FIFO order.
D3 = 1

System Call Reference

RETURN CODES

$0000
$0003

$OOOC

ENVIRONMENTS

Create FIFO Message Queue - SC_QECREATE

Successful rebJrn
No memory available; insufficient system memory for

VRTX32 control strucbJres
Queue ID error; ID number already assigned

This call can be made from task and user initialization code.

7-27

SCQINQUIRY - Queue Status Inquiry System Call Reference

7.21 SC_QINQUIRY - Queue Status Inquiry

7-28

This call obtains the current count of messages waiting in a queue. When the count
is nonzero, the actual contents of the head-of-queue message is returned to the
caller. Although the caller is given a copy of the first message, the message remains
queued. The calling program must make the SC_QPEND or SC_QACCEPT call to
remove the message.

If the queue is full and messages have been posted with the SC_QJAM call, the count
is one higher than that specified in the SC_QCREATE or SC_QECREATE call.

The SC_QINQUIRY call does not initiate the rescheduling procedure.

INPUT: DO SCQINQUIRY ($002A)

Dl[lS:0] queue ID number

OUTPUT: DO return code

D2 message

D3 count of messages in queue

queue ID number is a 16-bit value that references the queue. A value of zero is
allowed.

message is a 32-bit data value. A value of zero is allowed. Register D2 remains
unchanged if there are no messages in the queue (count is zero).

count of messages in queue is a 32-bit value representing the current number of
messages in the queue. Register D3 remains unchanged if VRTX32 returns ER_QID.

RETURN CODES

$0000
$OOOC

Successful return
Queue ID error; no such queue

System Call Reference Queue Status Inquiry - SCQINQUIRY

ENVIRONMENTS

This call can be made from task, interrupt handler, and user initialization code.

7-29

SC_QJAM - Jam Message to Queue System Call Reference

7.22 SC_QJAM - Jam Message to Queue

7-30

This call posts a long-word (32-bit) message to the beginning of a specified queue.
The next task to pend for a message receives the most recently "jammed" message
before any messages posted with the SC_QPOST call. If a task is pending on the
queue when the message is posted, the message is immediately allocated to the task
and is not first saved in the queue.

When a queue is created with SC_QCREATE or SC_QECREATE, VRTX32 adds one
queue entry to the number you specify. This additional entry is reserved at the
beginning of the queue for a message posted with the SC_QJAM call when the queue
is otherwise full. This ensures that at least one SC_QJAM call is successful. If the
queue is full and a message has already been "jammed", VRTX32 returns the ER_QFL
return code.

As an alternative to mixing SC_QJAMs and SC_QPOSTs, you can use the SC_QJAM
call to post all messages to the queue. In this case, you can use the full size of the
queue (including the reserved entry), and messages are handled in last-in/first-out
(LIFO) order.

When a higher-priority task is pending on the queue, a task switch occurs.

INPUT: DO - SC_QJAM ($OOlE)

Dl[15:0] queue ID number

D2 message

OUTPUT: DO = return code

queue ID number is a 16-bit value that references the queue. A value of zero is
allowed.

message is a 32-bit data value. A value of zero is allowed.

System Call Reference

RETURN CODES

$0000
$oooe
$OOOD

RET_OK
ER_QID
ER_QFL

ENVIRONMENTS

Jam Message to Queue - SCQJAM

Successful return
Queue JD error; no such queue
Queue full

This call can be made from task, interrupt handler, and user initialization code.

7-31

SCQPEND - Pend for Message from Queue System Call Reference

7.23 SC_QPEND - Pend for Message from Queue

7-32

This call obtains a long-word (32-bit) message from a specified queue. If a message
is present, the task receives it and continues execution. If the queue is empty, the
task suspends and a task switch occurs. The task is not readied until it receives a
message.

You can issue SC_QPEND with a nonzero timeout value. In this case, VRTX32
returns the ER_TMO error code to the calling task if no message is received in the
specified number of VRTX32 clock ticks; refer to Section 3.3.1, Real-Time Clock
Support. (To pend without a timeout, set the timeout parameter to zero.) The
timeout is not synchronized with the VRTX32 clock. Thus, a timeout value of one
VRTX32 clock tick results in the task's timeout period ending on the next occurrence
of any VRTX32 clock tick. The actual elapsed time the task times out could be less
than one VRTX32 clock tick in this example.

When several tasks pend on the same queue, the tasks receive the message in either
priority or FIFO order. The order is determined by the queue create call used; refer
to Section 7.19, SC_QCREATE-Create Message Queue, and Section 7.20,
SC_QECREATE-Create FIFO Message Queue.

A pending task that has been explicitly suspended with SC_TSUSPEND can receive a
message. However, it remains suspended until it is explicitly resumed with
SCTRESUME.

To avoid suspension, ISRs must use SC_QACCEPT rather than SC_QPEND to receive
messages.

INPUT: DO SC_QPEND ($0027)

Dl[lS:0] queue ID number

D2 = timeout value

OUTPUT: DO = return code

D2 = message

queue ID number is a 16-bit value that references the queue. A value of zero is
allowed.

System Call Reference Pend for Message from Queue - SC_QPEND

timeout value is a 32-bit number of VRTX32 clock ticks. A value of zero indicates
no timeout is requested.

message is a 32-bit data value. A value of zero is allowed. Register D2 remains
unchanged if VRTX32 returns ER_TMO.

RETURN CODES

$0000
$OOOA
$OOOC

RET_OK
ER_TMO
ER_QID

ENVIRONMENTS

Successful return
Timeout
Queue ID error; no such queue

This call can be made from task code only.

7-33

SCQPOST - Post Message to Queue System Call Reference

7.24 SC_QPOST - Post Message to Queue

7-34

This call posts a long-word (32-biO message to the end of a specified queue. (To
post the message to the beginning of the queue, refer to Section 7.22,
SC_QJAM-Jam Message to Queue.) A message posted to a queue with SC_QPOST
is immediately allocated to any task pending for the message; the message is not
saved in the queue itself in this case.

When a higher-priority task is pending on the queue, a task switch occurs.

INPUT:

OUTPUT:

DO = SC_QPOST ($0026)

Dl[15:01 - queue ID number

D2 - message

DO return code

queue ID number is a 16-bit value that references the queue. A value of zero is
allowed.

message is a 32-bit data value. A value of zero is allowed.

RETURN CODES

$0000
$OOOC
$OOOD

RET_OK
ER_QID
ER_QFL

ENVIRONMENTS

Successful return
Queue ID error; no such queue
Queue full

This call can be made from task, interrupt handler, and user initialization code.

System Call Reference Release Memory Block - SC]BLOCK

7.25 SC_RBLOCK - Release Memory Block

This call releases a memory block back to the partition it came from. The
SC_RBLOCK call should be used to release all blocks back to the partition before
SC_IDELETE is issued, because blocks are not automatically released when a task is
deleted.

The SC_RBLOCK call does not initiate the rescheduling procedure.

INPUT:

OUTPUT:

DO

D1[15:0]

SC_RBLOCK ($0007)

partition ID number

AO = memory block address

DO return code

partition ID number is a 16-bit value that references the partition. A value of zero
is allowed.

memory block address is a 32-bit pointer to the memory block.

RETURN CODES

$0000
$0004

$OOOE ER]ID

ENVIRONMENTS

Successful return
Not a memory block; specified address does not

reference a block previously allocated from the
specified partition

Partition ID error; no such partition

This call can be made from task, interrupt handler, and user initialization code.

7-35

SC_SCREATE - Create Semaphore System Call Reference

7.26 SC_SCREATE - Create Semaphore

7-36

This call creates a word (16-biO counting semaphore in VRTX32 Workspace, and
returns the semaphore ID number. You specify the initial value of the semaphore
and whether tasks pend on the semaphore in priority order or FIFO order.

An initial value of zero indicates that the resource the semaphore is "locking" starts in
a locked state. A nonzero value indicates how many tasks can access the resource at
one time.

Each semaphore and event flag group is associated with a control block. You specify
the maximum number of control blocks in the VRTX32 Configuration Table (refer to
Section 4.2, VRTX32 Configuration Table). If you try to create more semaphores
and/or event flag groups than you've specified in the configuration table, VRTX32
returns the ER_NOCB error code.

This call does not initiate the rescheduling procedure.

INPUT: DO SC_SCREATE ($002B)

Dl = initial value

D2 task pend order option

OUTPUT: DO return code

Dl semaphore ID number

initial value is a 32-bit value that specifies the initial value of the semaphore from 0
to 65,535. A zero value indicates that the resource starts in a locked state.

task pend order option is a 32-bit value that can be formatted in two ways:

FORMAT 1: Pend tasks in priority order.
D2 = 0

FORMAT 2: Pend tasks in FIFO order.
D2=1

System Call Reference Create Semaphore - SC_SCREATE

semaphore ID number is a 32-bit value that references the semaphore.

RETURN CODES

$0000
$0030

ENVIRONMENTS

Successful return
No control blocks available

This call can be made from task and user initialization code.

7-37

SCSDELETE - Delete Semaphore System Call Reference

7.27 SC_SDElETE - Delete Semaphore

7-38

This call deletes the specified semaphore, making the semaphore's control block
available for reuse.

The SC_SDELETE call initiates the rescheduling procedure if the forced delete option
is specified and there are tasks pending on the semaphore. In this case, all pending
tasks are readied.

If this option is not specified, VRTX32 returns the ER_PND error code if you try to
delete a semaphore with pending tasks.

INPUT: DO SC_SDELETE ($002C)

Dl = semaphore ID number

D2 force delete option

OUTPUT: DO return code

semaphore ID number is a 32-bit value that references the semaphore. VRTX32
returns this number in the SC_SCREA. TE call.

force delete option is a 32-bit value that can be formatted in two ways:

FORMAT 1: Delete semaphore only if no tasks are pending.

FORMAT 2:

RETURN CODES

$0000
$0031
$0032

RET_OK
ER_ID
ER_PND

D2 = 0

Delete semaphore and ready all pending tasks.
D2 = 1

Successful return
Semaphore ID error
Tasks pending on semaphore; Format 1 only

System Call Reference Delete Semaphore - SC_SDELETE

ENVIRONMENTS

This call can be made from task and user initialization code.

7-39

SC_SINQUIRY - Semaphore Inquiry System Call Reference

7.28 SC_SINQUIRY - Semaphore Inquiry

7-40

This call obtains the specified semaphore's value. The SC_SINQUIRY call does not
initiate the rescheduling procedure.

INPUT: DO SC_SINQUIRY ($002F)

D1 semaphore ID number

OUTPUT: DO return code

D2 semaphore value

semaphore ID number is a 32-bit value that references the semaphore. VRTX32
returns this number in the SC_SCREA TE call.

semaphore value is the current 16-bit semaphore value.

RETURN CODES

$0000
$0031

ENVIRONMENTS

Successful return
Semaphore ID error

This call can be made from task, interrupt handler, and user initialization code.

System Call Reference Pend on Semaphore - SC_SPEND

7.29 SC_SPEND - Pend on Semaphore

This call pends on a restricted resource's semaphore. If the semaphore has a
nonzero value, the semaphore is decremented and the task continues execution.

If the specified semaphore has a zero value, the task suspends and a task switch
occurs. The task is not readied until the resource becomes available and the
SC_SPOST call increments the semaphore.

You can issue SC_SPEND with a nonzero timeout value. In this case, VRTX32 returns
the ER_TMO error code to the calling task if the resource does not become available
in the specified number of VRTX32 clock ticks; refer to Section 3.3.1 , Real-Time Clock
Support. (To pend without a timeout, set the timeout parameter to zero.) The
timeout is not synchronized with the VRTX32 clock. Thus, a timeout value of one
VRTX32 clock tick results in the task's timeout period ending on the next occurrence
of any VRTX32 clock tick. The actual elapsed time the task times out could be less
than one VRTX32 clock tick in this example.

When several tasks pend on the same semaphore, the tasks are readied in either
priority or FIFO order. The order is determined by the SC_SCREA TE call; refer to
Section 7.26, SC_SCREATE-Create Semaphore.

If the task is suspended on a semaphore and the semaphore is deleted, the task is
readied and VRTX32 returns the ER_DEL error code.

A pending task that has been explicitly suspended with SC_ TSUSPEND can receive
access to a resource. However, it remains suspended until it is explicitly resumed
with SCTRESUME.

INPUT: DO SC_SPEND ($002D)

Dl semaphore ID number

D2 timeout value

OUTPUT: DO return code

7-41

SCSPEND - Pend on Semaphore System Call Reference

7-42

semaphore ID number is a 32-bit value that references the semaphore. VRTX32
returns this number in the SC_SCREATE call.

timeout value is a 32-bit number of VRTX32 clock ticks. A value of zero indicates
no timeout is requested.

RETURN CODES

$0000
$OOOA
$0031
$0033

RET_OK
ER_TMO
ER_ID
ER_DEL

ENVIRONMENTS

Successful return
Timeout
Semaphore ID error
Semaphore is deleted

This call can be made from task code only.

System Call Reference Enter Interrupt Handler - UI_ENTER

7.42 UI_ENTER - Enter Interrupt Handler

This call starts an ISR if interrupt stack switching is enabled; the ISR must use
UCEXIT for termination. If interrupt stack switching is enabled, UI_ENTER switches
from the stack of the interrupted task to the interrupt stack.

UI_ENTER can also be used if interrupt stack switching is not enabled. However, this
is effectively a null operation. UI_ENTER and UCEXIT are optimized for fast
performance.

NOTE: If interrupt stack switching is enabled, save only register
DO on the stack before issuing UI_ENTER. Other registers must be
saved after UI_ENTER. Otherwise, the registers are saved on the
wrong stack and are not restored properly. See Example 7-1.

U1FENTER
VRTX

*
*
*

MOVE.L
MOVEQ.L
TRAP
MOVE.L

INPUT:

OUTPUT:

RETURN CODES

$0000

Example 7-1 The UI_ENTER call

EQU
EQU

$16
$00

DO,-(SP)
#U1FENTER,DO
#VRTX
D1,-(SP)

* U1 ENTER function code
* VRTX32 trap number

* save DO
* U1 ENTER function code
* trap into VRTX32
* save additional registers

interrupt servicing

DO - UCENTER ($0016)

DO - return code

Successful return

7-63

UI_ENTER - Enter Interrupt Handler System Call Reference

ENVIRONMENTS

This call can be made from device ISRs only.

7-64

System Call Reference Exit Interrupt Handler - UI_EXIT

7.43 UI_EXIT - Exit Interrupt Handler

This call exits an ISR. Unlike the RTE instruction, the UCEXIT call interfaces with
VRTX32. This means that task rescheduling can occur in response to ISR activity,
such as VRTX32 clock updates, posted messages, or character I/O. When any
VRTX32 call is made from the ISR, this call must be used.

When ISRs are nested, rescheduling occurs only after the last UCEXIT. Refer to
Chapter 3, Interrupt Support, for more information.

Because the UCEXIT call is made with register DO, the ISR must save the original
value of DO at the top of the stack. The stack must have this format when calling
UCEXIT:

SSP~ DO I
SA I

PC I
FormatllD* I

• MC68010 architecture only.

In addition, VI_ENTER and UCEXIT must be used if interrupt stack switching is
enabled. When VI_ENTER starts the ISR, UCEXIT must end the ISR. VI_ENTER and
UCEXIT are optimized for fast performance.

INPUT: DO = UCEXIT ($0011)

OUTPUT: No return is possible

ENVIRONMENTS

This call can be made from device ISRs only.

7-65

UI_RXCHR - Received-Character Interrupt System Call Reference

7.44 UI_RXCHR - Received-Character Interrupt

7-66

This call is used by an ISR to transfer each character to VRTX32 as it is received from
the supported input device. VRTX32 manages the buffering of such characters and
their transfer to tasks that issue SC_GETC and SC_ WAITC calls. This buffer is 64
bytes in length. After the ISR that calls UCRXCHR exits (with UI_EXI1J, the
rescheduling procedure can occur.

INPUT:

OUTPUT:

DO

D1[7:0]

DO

UCRXCHR ($0013)

character

return code

character is an 8-bit value.

RETURN CODES

$0000
$0007

ENVIRONMENTS

Successful return
Buffer full

This call can be made from interrupt handler code only.

Example 7-2 is an example of the UCRXCHR call. Note that this example shows only
the relevant VRTX32 calls; the ISR may require additional instructions to support
proper device operation.

U DATA

UIFRXCHR
UIFEXIT
VRTX

INT RXCHR:

EQU

EQU
EQU
EQU

Example 7-2 The UI_RXCHR Call

$D8

$13
$11
$00

* 8251A USART data port

* UI RXCHR function code
* UI-EXIT function code
* VRTX32 trap number

MOVE.L DO,-(SP) * save DO

System Call Reference

MOVE.L Dl,-(SP)
MOVE.B U DATA,Dl
MOVEQ.L #UIFRXCHR,DO
TRAP #VRTX

*
MOVE.L (SP)+,Dl
MOVEQ.L #UIFEXIT,DO
TRAP #VRTX

Received-Character Interrupt - UI_RXCHR

* save Dl
* input character from USART
* call UI RXCHR to give
* character to VRTX32

should check return code here
* restore Dl
* call UI EXIT to restore DO
* with possible rescheduling

7-67

UI_TIMER - Announce Timer Interrupt System Call Reference

7.45 UI_TIMER - Announce Timer Interrupt

7-68

This call is used by an 1SR to inform VRTX32 that a time interval, or VRTX32 clock
tick, has occurred. (VRTX32 processes the timer tick at the last UCEXIT call in a
group of nested interrupts.)

A task switch can occur after a UCEXIT call when UCT1MER readies a delayed or
pended task whose priority is higher than the interrupted task.

INPUT: DO UCTIMER ($0012)

OUTPUT: DO return code

RETURN CODES

$0000 Successful return

ENVIRONMENTS

This call can be made from task (to simulate VRTX32 clock ticks) and interrupt
handIer code only.

Example 7-3 is a counter-timer 1SR. It ends with UCEXIT instead of an RTE
instruction; this allows VRTX32 to reschedule priorities when the call results in the
expiration of a time-slicing interval, a delay interval, or a pend timeout. Note that
this example shows only the relevant VRTX32 calls; the 1SR may require additional
instructions to support proper device operation.

Example 7 -3 Counter-Timer ISR

UIFTIMER
UIFEXIT
VRTX

EQU $12
EQU $11
EQU $00

INTERRUPT eLK:
MOVE.L- DO,-(SP)
MOVEQ.L #UIFTIMER,DO
TRAP #VRTX
MOVEQ.L #UIFEXIT,DO
TRAP #VRTX

* UI TIMER function code
* UI-EXIT function code
* VRTX32 trap number

* save DO
* call UI TIMER to inform
* VRTX32 that a tick has expired
* call UI EXIT, restoring DO,
* with possible rescheduling

System Call Reference Transmit-Ready Interrupt - UI3XRDY

7.46 UI_TXRDY - Transmit-Ready Interrupt

This call is used by an ISR to inform VRTX32 that it is ready to transmit another
character to the supported character output device. VRTX32 returns the next
character from its accumulated buffer of SC_PUTC requests to the ISR.

The ISR and VRTX32 use the TXRDY driver routine to transmit characters. Refer to
Section 3.3.3, Character I/O Support, for more information about this user-supplied
routine.

When there are no outstanding SC_PUTC requests (the output buffer is empty),
UC TXRDY returns with the ER_NCP error code.

When the output buffer is full and one or more tasks have suspended on an
SC_PUTC, the rescheduling procedure is initiated at the UCEXIT call.

INPUT:

OUTPUT:

DO

DO

D1[7:0]

UCTXRDY ($0014)

return code

character

character is an 8-bit value. Register D1 rerrulins unchanged if VRTX32 returns
ER_NCP.

RETURN CODES

$0000
$0010

ENVIRONMENTS

Successful return
No character present

This call can be made from interrupt handler code only.

7-69

VRTX_GO - Start Application Execution System Call Reference

7.47 VRTX_GO - Start Application Execution

7-70

VRTX_GO causes VRTX32 to gain control; VRTX32 then begins multitasking by
starting the highest-priority task. This call should be issued only after VRTX_INIT.
No return is made to the caller.

NOTE: All user initialization code, including the VRTX_GO call,
must execute in Supervisor mode.

INPUT: DO = VRTX_GO ($0031)

OUTPUT: No output values

ENVIRONMENTS

This call can be made from user initialization code only.

System Call Reference Initialize VRTX32 - VRTX-,NIT

7.48 VRTX_INIT - Initialize VRTX32

This call, issued from user-supplied code executed by system reset, causes VRTX32 to
perform its initialization activities. User initialization code must execute in Supervisor
mode.

VRTX_INIT requires the use of a temporary stack. You must set up a small (100-byte)
stack before calling VRTX_INIT. Refer to Chapter 4, Configuration and Initialization,
for more information.

INPUT: DO VRTX_INIT ($0030)

OUTPUT: DO = return code

RETURN CODES

$0000
$OOOF
$0011

RET_OK
ER_INI
ER_ICP

ENVIRONMENTS

Successful return
Insufficient VRTX32 Workspace
Invalid configuration table parameter

This call can be made from user initialization code only.

7-71

Appendix A

System Call Summary
HUNTER
~READY

A Division of Ready Systems

This appendix contains the set of VRTX32 system calls and the input data, including the
hexadecimal value of the function code supplied in DO. The return data is shown in square
brackets [J.

The error code is always returned in DO except for the UCEXIT and VRTX_GO calls. In these
cases, no return is possible. This error code value is not shown in this appendix.

Table A-1 Task Management

input/[returned] data

Mnemonic DO Dl D2 D3 AO

SC_TCREATE $0000 priority task ID mode address

SCTDELETE $0001 priority
or ID

SC_TSUSPEND $0002 priority
or ID

SC_TRESUME $0003 priority
or ID

SC_TPRIORITY $0004 ID new
priority

SCTINQUIRY $0005 ID/fID] [priority] [status] [TCB addrl

SC_LOCK $0020

SC_UNLOCK $0021

A-l

System Call Summary

Table A-2 Memory Allocation

input/[returned] data

Mnemonic DO D1 D2 D3 AO

SC_GBLOCK $0006 partition [address]
ID

SC_RBLOCK $0007 partition address
ID

SC]CREATE $0022 partition partition block address
ID size size

SC]EXTEND $0023 partition extension address
ID size

Table A-3 Communication and Synchronization

input/[returned] data

Mnemonic DO D1 D2 D3 D4/AO

SC]OST $0008 message AO: address

SC]END $0009 timeout! AO: address
[message]

SCACCEPT $0025 [message] AO: address

SCQPOST $0026 queue ID message

SCQ]AM $OOIE queue ID message

SC_QPEND $0027 queue ID timeout/
[message]

SCQACCEPT $0028 queue ID [message]

SCQCREATE $0029 queue ID count

(continued on next page.)

A-2

System Call Summary

Table A-3, continued

input/[returned] data

I11nemonic DO Dl D2 D3 D4/AO

SCQECREATE $OOlF queue ID count pend option

SCQINQUIRY $002A queue ID [message] [count]

SC_FCREATE $0017 [event flag
group ID]

SC]DELETE $0018 event flag force option
group ID

SC_FPOST $OOlA event flag event flags
group ID

SC]PEND $0019 event flag timeout! event flags D4: mask
group ID [event flag option

group]

SCFCLEAR $OOlB event flag event flags/
group ID [event flag

group]

SC]INQUIRY $OOlC event flag [event flag
group ID group]

SC_SCREATE $002B initial value/ pend option
[semaphore
ID]

SCSDELETE $OO2C semaphore force option
ID

SC_SPOST $002E semaphore

I ID

SCSPEND $002D semaphore timeout
ID

SCSINQUIRY $002F semaphore [semaphore
ID value]

A-3

System Call Summary

Table A-4 Interrupt Support

input/[returned] data

Mnemonic DO Dl D2 D3 AO

UI_ENTER $0016

UCEXIT $0011

Table A-5 Real-Time Clock

input/[returned] data

Mnemonic DO Dl D2 D3 AO

SC_GTIME $OOOA [VRTX32
clock value]

SCSTIME $OOOB VRTX32
clock value

SC_IDELAY $OOOC ticks

SCTSLICE $0015 ticks

UI_TIMER $0012

A-4

System Call Summary

Table A-6 Character I/O

input/[returned] data

Mnemonic DO Dl D2 D3 AO

SC_GETC $OOOD [character]

SC_PUTC $OOOE character

SCWAITC $OOOF character

UCRXCHR $0013 character

UCTXRDY $0014 [character]

Table A-7 Initialization

input/[returned] data

Mnemonic DO Dl D2 D3 AO

VRTX_INIT $0030

VRTX_GO $0031

A-5

Appendix B

Return Codes
HUNTER
~READY

A Division of Ready Systems

Other components can return completion status codes that are specific to the
individual components. Consult the appropriate user's guide for information about
lOX and FMX completion status codes. All Hunter & Ready components return the
same RET_OK value for successful completions:

00 = 00 00

31 16 15 o

All error returns from Hunter & Ready components have this format:

Sign Extension Component 10 Error Code

31 16 15 8 7 o

After a VRTX32 system call executes, a 32-bit return code is returned in register DO.
Table B-1, Return Codes, lists the values, mnemonics, meanings, and affected
commands of all possible return codes (specified in hexadecimal).

When using VRTX32 to access other components, VRTX32 can reject invalid
component calls with the return codes shown in Table B-2.

B-1

Return Codes

Table B-1 Return Codes

DO Mnemonic Meaning Affected Commands

$0000 RET_OK Successful return [All valid commands]

$0001 ER_TID Task ID error SC_TCREATE, SC_IDELETE,
SCTINQUIRY, SC_TPRIORITY
SC_TRESUME, SCTSUSPEND

$0002 ER_TCB No TCBs available SC_TCREATE

$0003 ER_MEM No memory available SC_GBLOCK, SCPCREATE,
SCPEXTEND, SC_QCREATE,
SC_QECREATE

$0004 ER_NMB Not a memory block SCRBLOCK

$0005 ER_MIU Mailbox in use SC]OST

$0006 ER_ZMW Zero message SCPOST

$0007 ER_BUF Buffer full UI]XCHR

$0008 ER_WTC Previous SC_ WAITC already SC_WAITC
in progress

$OOOA ER_TMO Timeout SC]PEND, SC]END,
SCQPEND, SCSPEND

$OOOB ER_NMP No message present SC_ACCEPT,SC_QACCEPT

$OOOC ER_QID Queue ID error SC_QACCEPT, SC_QCREATE,
SC_QECREATE, SC_QJAM,
SCQINQUIRY, SCQPEND,
SCQPOST

$OOOD ER_QFL Queue full SCQJAM, SC_QPOST

$OOOE ER_PID Partition ID error SCGBLOCK, SCPCREATE,
SC_PEXTEND,SC_RBLOCK

$OOOF ER_INI Insufficient VRTX32 VRTX_INIT
Workspace

$0010 ER_NCP No character present UCTXRDY

$0011 ER_ICP Invalid configuration VRTX_INIT
table parameter

(continued on next page.)

B-2

Return Codes

Table B-1, continued

DO Mnemonic Meaning Mfected Commands

$0012 ER_IIP Invalid input parameter SC_PCREATE, SC_PEXTEND,
SC_TDELETE, SC_TRESUME,
SC_ TSUSPEND

$0030 ER_NOCB No control blocks available SC_FCREATE, SC_SCREATE

$0031 ER_ID Event flag group or SC_FCLEAR, SC_FDELETE,
semaphore ID error SC]INQUIRY, SC_FPEND,

SC]POST, SCSDELETE,
SCSINQUIRY, SC_SPEND,
SCSPOST

$0032 ER_PND Tasks pending on event SC_FDELETE, SC_SDELETE
flag group or semaphore

$0033 ER_DEL Event flag group or SC_FPEND, SC_SPEND
semaphore is deleted

$0034 ER_OVF Event flag already set or SC_FPOST,SC_SPOST
semaphore overflow

Table B-2 Return Codes Indicating Invalid Component Calls

DO Mnemonic Meaning

$0009 ER_ISC Invalid system call (VRTX32 opcode
invalid)

$0020 ER_Cvr Component Vector Table not present

$0021 ER_COM Undefined component

$0022 ER_OPC Undefined opcode for component

B-3

Appendix C

EVT and TeB Formats

C.1 Introduction

HUNTER
~READY

A Division of Ready Systems

VRTX32 uses several standard data structures for run-time information storage. This
appendix describes the EVf and the TCB. Another standard data structure VRTX32
uses is the configuration table, which is described in Chapter 4, Configuration and
Initialization.

C.2 Exception Vector Table

The M68000 architecture defines a Exception Vector Table (EVT) to control access
to service routines for hardware-generated interrupts and software-generated traps.
You specify your own interrupt and trap handlers.

Figure C-1, Exception Vector Table, is a simplified example of an EVf. Motorola
technical publications supply complete details.

In this figure, the TRAP #0 instruction accesses VRTX32. However, any software
interrupt vector can be used. The PC value specifies the base address of VRTX32.
Also shown in this figure is the pointer to the VRTX32 Configuration Table at vector
64 (offset $100).

C-l

EVT and TCB Formats

$000 Reset SSP

$004 Reset PC

$008 Bus Error PC

$OOC Address Error PC

$080 TRAP #0 PC VRTX32 PC

$084 TRAP #1 PC Vector to VRTX32
entry point

$100 Vector 64 I Config Table Address I
Pointer to Configuration

$3F8 Vector 254 PC Table

$3FC Vector 255 PC

Figure C-1 Exception Vector Table

C.3 Task Control Block Format

C-2

For each task created, VRTX32 maintains in its workspace a Task Control Block
(TCB). Each TCB records the contents of registers DO through D5, AO through A3,
SSP, USP, and other status information for its task. The format of the TCB is shown
in Figure C-2, Task Control Block.

$00

$08

SOC

$00

$OE

$10

$14

$18

$lC

$20

$24

$28

$2C

$30

$34

$38

$3C

$40

$44

$46

TBRSV1

TBEXT

TBPRI
r---
TBIO

TBSTAT I
TBOO

TB01

TB02

TB03

TB04

TB05

TBAO

TBA1

TBA2

TBA3

TBSSP

TBUSP

TBSTACK

TBFLAGS I
TBRSV2

I

EVT and TCB Formats

Reserved for VRTX32

Pointer to user's TCB extension

Priority

10 number

Status word

00

01

02

03

04

05

AO

A1

A2

A3

Saved SSP

Saved USP

Original stack pointer

Register Save Area

Reserved for VRTX32

Figure C-2 Task Control Block

C-3

EVf and TCB Formats

C-4

The SC_TINQUIRY call returns the TBSTAT (status word) value from the TCB.
When the status word is zero, the associated task is ready to run. When the status
word is nonzero, the idle task is running or the task is suspended for one or more
reasons. The bit settings of the status word indicate the reasons for suspension; see
Table C-l.

Table C-1 Status Word Bit Values

Mnemonic Bit Reason for Suspension Suspending
Value Call

TBSSUSP $01 Explicitly suspended SC_ TSUSPEND

TBSMBOX $02 Suspended for mailbox message SC]END

TBSGETC $04 Suspended for character input SC_GETC

TBSPUTC $08 Suspended for character output SC]UTC

TBSWAITC $10 Suspended for special character SCWAITC

TBSDELAY $20 Suspended for task delay* SCTDELAY

TBSQUEUE $40 Suspended for queue message SC_QPEND

$80 Reserved -not applicable-

TBSIDLE $100 Idle task -not applicable-

TBSFLAG $200 Suspended on event flag group SC]PEND

TBSSEMA $400 Suspended on semaphore SC_SPEND

* Also set for pend calls when a timeout is in effect.

Appendix D

An Example
HUNTER
~READY

A Division of Ready Systems

This appendix provides an introduction to running an application program with
VRTX32. This example is written specifically for the Microbar DBC68K2 68000 board
with the Microbar DBUG68K monitor.

The board support package included in this appendix initializes VRTX32, creates a
single task, initializes the EVf vectors, the interrupt controller device, the counter­
timer device, and the USART device. It then starts multitasking.

The interactive example included in this appendix contains two tasks. The first task
repeatedly reads characters from the I/O port and posts them to a mailbox. The
second task is created by the first task and pends at the mailbox waiting for
messages. As each character is received, the second task outputs the character to the
I/O port and pends again at the mailbox. In other words, this example echoes
characters.

Also included in this appendix is the vrtxvisi.inc file. This file contains the standard
equates used to define VRTX32 function codes, error codes, and the TCB and
configuration table structures.

Figure D-l, Example Configuration, shows the configuration of the example.

Figure D-2, Example Memory Organization, shows the memory organization of the
example. Both VRTX32 and the optional monitor are in PROM, and the remaining
code is in read/write memory. The mailbox is included in the area labeled Variables.

0-1

An Example

/ VRTX32

EVT
VRTX32 Workspace

,.-- Configuration
Table

I· 41 ISR I Task 2 Task 1

Figure D-1 Example Configuration

D-2

$0

$80

$100

$208

$220

$3FF

$400

$9FF

$1000 Initialization Code
Task Code

An Example

Exception Vector
Table

Timer and USART ISR Code
VRTX32 Configuration Table

Variables
Board Support Package

$COOO

$EE4000

$EECOOO

Initialization Stack

Monitor }
r---------------------~ PROM

VRTX32 Code

lei Unused Memory (Note that this figure is not to scale)

Figure D-2 Example Memory Organization

0-3

An Example

D.1 Example Board Support Package

*
*
*
* FILE: bsp.asm
* VERSION: 1.04
*

VRTX32 BOARD SUPPORT PACKAGE

DATE: APRIL 1987

* COPYRIGHT 1987, HUNTER & READY, INC.
*

*
*
*
*
*
*
*
*

* * This is an example board support package for the Microbar
* DBC68K2 68000 CPU board.
*

*
*
*
*

* Include VRTX32 definitions

NOLIST
INCLUDE 'vrtxvisi.inc'
LIST

* VRTX32 equates

* Codes put in register D7 at breakpoints

MONITOR
VXINERR
TCRTERR
RXCHERR
BREAKPT

EQU
EQU
EQU
EQU
EQU

$OFFOO
$OFF01
$OFF04
$OFF06
3

* Memory allocation

VRTXCODE EQU $OEECOOO

* Interrupt vectors

VRTX VCT
CFTBL VCT
INT53-VCT
INT74-VCT

EQU
EQU
EQU
EQU

$80
$100
$208
$220

* External references

XREF MAIN

SECTION 13

* VRTX32 Configuration Table

XDEF CFTBL
CFTBL:

DC.L $COOO

D-4

* monitor return code
* VRTX INIT error
* SC TCREATE error
* UI-RXCHR error
* breakpoint TRAP value

* VRTX32 codespace address

* VRTX32 vector (trap 0)
* configuration table vector
* Intel 8253 vector
* Intel 8274 vector

* application program

* VRTX32 configuration table

* VRTX32 workspace start address

An Example

DC.L
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.L
DC.W
DC.W
DC.L
DC.L
DC.L
DC.L
DC.L

3988
126
o
o
o
o
o
7
126
o
3
o
VTXRDY
o
o
o
o

SECTION 14

* Initialization stack

XDEF STACKBAS
STACKBAS:

DS.B 100

XDEF STACKTOP
STACKTOP:

SECTION 0

* VRTX32 workspace size
* system stack size
* no interrupt stack
* no control blocks
* reserved, must be 0
* use default idle stack size (128)
* reserved, must be 0
* component-disable-level
* user stack size
* reserved, must be 0
* user task count
* reserved, must be 0
* VRTX32 TXRDY driver address
* no TCREATE routine
* no TDELETE routine
* no TSWITCH routine
* component vector table

*
*
*

ENTRY: Start actual execution here
*
*
*

* Initialize VRTX32 and stack

XDEF ENTRY
ENTRY:

MOVE.W
MOVE.L
MOVE.L
MOVE.L
MOVE.L
TRAP
TST.L
BEQ

MOVE.L
TRAP

#$2700,SR
#CFTBL,CFTBL VCT
#VRTXCODE,VRTX VCT
#STACKTOP,SP -
#VRTXFINIT,DO
#VRTX
DO
INITASK

#VXINERR,D7
#BREAKPT

* status register; interrupts disabled
* VRTX32 Configuration Table vector
* load VRTX32 vector
* set up init stack
* VRTX INIT function code
* call-VRTX32
* any errors?
* no, continue

* VRTX INIT error code
* back-to monitor

D-5

An Example

* Create application task

INITASK:

MOVEQ.L
MOVEQ.L
MOVEQ.L
MOVE.L
MOVE.L
TRAP
TST.L
BEQ

MOVE.L
TRAP

#O,Dl
#0,D2
#0,D3
#MAIN,AO
#SCFTCREATE,DO
#VRTX
DO
INITCHIP

#TCRTERR,D7
#BREAKPT

* priority = 0
* ID = 0
* user mode
* load task address
* SC TCREATE function code
* call VRTX32
* any errors?
* no, continue

* SC TCREATE error code
* back to monitor

* Initialize chips and start VRTX32

INITCHIP:

JSR S8259 * initialize the 8259
JSR S8253 * initialize the 8253
JSR S8274 * initialize the 8274

MOVE.L #VRTXFGO,DO * VRTX GO function code
TRAP #VRTX * call-VRTX32

*
*
*

Intel 8259A Interrupt Controller Initialization Routine
*
*
*

D8259
D59CNTRL
D59DATA

EQU
EQU
EQU

$EFFF80
D8259+1
D8259+3

XDEF S8259
S8259:

* Initial steps

MOVE.B
MOVE.B
MOVE.B
MOVE.B

#$00,D59DATA
#$00,D59DATA
#$00,D59DATA
#$00,D59DATA

* 8259 device address
* 8259 control port
* 8259 data port

* initialization routine entry point

* sync up
* sync up
* sync up
* sync up

* Set Initialization Command Word 1 (ICWl) to edge-triggered mode,
* single 8259 (ICW3 not needed), ICW4 needed

MOVE.B #$13,D59CNTRL * ICWI (ICW4, no ICW3)

* Set ICW2 to EVT addresses $200 to $21C

MOVE.B #$80,D59DATA * ICW2 (vector)

D-6

An Example

* Set ICW4 to not special fully nested mode, buffered mode/master,
* auto EOI, 8086/8088 mode. Then return to caller.

MOVE.B
RTS

#$OF,D59DATA * ICW4
* return to caller

*
*
*

Intel 8253 Counter-Timer
*
*
*

D8253
D53CNTO
D53CNT1
D53CNT2
D53CNTRL

EQU
EQU
EQU
EQU
EQU

$EFFF40
D8253+1
D8253+3
D8253+5
D8253+7

* Initialization routine

XDEF S8253
S8253:

* 8253 device address
* 8253 counter 0
* 8253 counter 1
* 8253 counter 2
* 8253 control port

* initialization routine entry point

* Initialize counter 2 (baud rate) 9600 baud

MOVE.B
MOVE.B
MOVE.B

#$B6,D53CNTRL
#$08,D53CNT2
#$00,D53CNT2

* set control word (mode 3)
* set least sig byte (lsb) of count
* set most sig byte (msb) of count

* Initialize counter 0 (clock) 6.66ms;
* set delay to $2000 (6.66ms with 1.25MHz clock)

MOVE.B
MOVE.B
MOVE.B

#$36,D53CNTRL
#$00,D53CNTO
#$20,D53CNTO

* set control word (mode 3)
* set Isb of count
* set msb of count

* Load the Exception Vector Table (EVT) and return

MOVE.L
RTS

* vector 130 (decimal)
* return to caller

* Interrupt service routine (ISR)

XDEF 18253
18253:

MOVE.L
MOVE.L
TRAP
MOVE.L
TRAP

DO,-(SP)
#UIFTIMER,DO
#VRTX
#UIFEXIT,DO
#VRTX

* ISR entry point

* save DO
* UI TIMER function code
* call VRTX32
* UI EXIT function code
* call VRTX32

0-7

An Example

* *
*
*

Intel 8274 USART *
*

D8274
ADATA74
BDATA74
ACNTRL74
BCNTRL74
RXMASK
EOI

EQU
EQU
EQU
EQU
EQU
EQU
EQU

$EFFF20
D8274+l
D8274+3
D8274+5
D8274+7
$7F
$38

* Initialization routine

XDEF S8274
S8274:

* Initialize channel A

MOVE.B
MOVE.B
MOVE.B
NOP
NOP
NOP
NOP
MOVE.B
MOVE.B
MOVE.B
MOVE.B

#$10,ACNTRL74
#$10,ACNTRL74
#$18,ACNTRL74

#$14, ACNTRL74
#$44,ACNTRL74
#$11, ACNTRL74
#$02,ACNTRL74

* Intel 8274 USART address
* 8274 data channel A
* 8274 data channel B
* 8274 control/status channel A
* 8274 control/status channel B
* received character mask
* 8274 end-of-interrupt

* initialization routine entry point

* reset pointer to WROA
* point to command register WROA
* channel A reset
* delay #3 to process reset channel A
* delay #2 to process reset channel A
* delay #1 to process reset channel A
* delay #0 to process reset channel A
* point to command register WR4A
* clock rate x16; 1 stop bit; no parity
* point to command register WR1A
* interrupt on all Rx & ignore parity

* Fixed vector; Tx interrupt enable

MOVE.B
MOVE.B
MOVE.B
MOVE.B

#$13,ACNTRL74
#$Cl,ACNTRL74
#$15, ACNTRL74
#$68,ACNTRL74

* Initialize channel B

MOVE.B
MOVE.B
MOVE.B
NOP
NOP
NOP
NOP
MOVE.B
MOVE.B
MOVE.B
MOVE.B

#$10, BCNTRL 74
#$10, BCNTRL74
#$18, BCNTRL74

#$14, BCNTRL74
#$44, BCNTRL74
#$11, BCNTRL74
#$lA,BCNTRL74

* point to command register WR3A
* Rx 8 bits/char; Rx enable
* point to command register WR5A
* Tx 8 bits/char; Tx enable

* reset pointer to WROB
* point to command register WROB
* channel B reset
* delay #3 to process reset channel B
* delay #2 to process reset channel B
* delay #1 to process reset channel B
* delay #0 to process reset channel B
* point to command register WR4B
* clock rate x16; 1 stop bit; no parity
* point to command register WR1B
* interrupt on all Rx & ignore parity

* Fixed vector; Tx interrupt enable

D-8

MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B
MOVE.B

#$13,BCNTRL74
#$C1,BCNTRL74
#$15, BCNTRL74
#$68,BCNTRL74
#$12, BCNTRL74
#$88, BCNTRL74

* point to command register WR3B
* Rx 8 bits/char; Rx enable
* point to command register WR5B
* Tx 8 bits/char; Tx enable
* point to command register WR2B
* vector for interrupt acknowledge

* Initialize channel B to interrupt vector mode

* point to command register WR2A

An Example

MOVE.B
MOVE.B

#$12,ACNTRL74
#$30, ACNTRL74 * nonvectored interrupt mode for ch B

* Put ISR vector in Exception Vector Table (EVT) and return

MOVE.L
RTS

#I8274,INT74_VCT * vector 136 (decimal)
* return to caller

* Interrupt service routine (ISR)

XDEF 18274
18274:

MOVE.L
MOVE.L

DO,-(SP)
D1,-(SP)

* ISR entry point

* save DO
* save 01

* USART only provides one interrupt output, so ISR must
* decide if it's a transmitter or receiver interrupt

BTST
BEQ

#0, BCNTRL74
XMIT

* Tx interrupt?
* yes, handle it

* Receiver interrupt handled here

MOVE.B
ANDI.B
MOVE.L
TRAP
TST.L
BEQ

MOVE.L
TRAP

BDATA74,D1
#RXMASK,D1
#UIFRXCHR,DO
#VRTX
DO
RTN

#RXCHERR,D7
#BREAKPT

* get the character
* strip off high bit
* UI RXCHR function code
* call VRTX32
* any errors?
* exit if none

* UI RXCHR error code
* back to monitor

* Transmitter interrupt handled here

XMIT:

MOVE.B #$28,ACNTRL74 * set disable channel A
MOVE.B #$28, BCNTRL74 * set disable channel B

MOVE.L #UIFTXRDY,DO * UI TXRDY function code
TRAP #VRTX * call VRTX32
TST.L DO * character available?
BNE RTN * exit if no character
JSR VTXRDY * call TXRDY driver routine

D-9

An Example

* Common return for transmit and receive. Call UI EXIT
* and return.

RTN:

MOVE.L
MOVE.B
MOVE.B
MOVE.L
TRAP

(SP)+,D1
#EOI,BCNTRL74
ltEOI,ACNTRL74
ltUIFEXIT,DO
ltVRTX

* restore 01
* send EOI command chB
* send EOI command chA
* UI EXIT function code
* call VRTX32

*
*
*

VRTX32 TXRDY Driver Routine
*
*
*

XDEF VTXRDY
VTXRDY:

D-10

ANDI.W
MOVE.B
RTS

END

lt$F8FF,SR
01, BDATA74

* enable interrupts
* output the character
* return to VRTX32

An Example

D.2 Example Application Program

*
*
* * FILE: demo.asm
* VERSION: 1.04
*

THE APPLICATION PROGRAM

DATE: APRIL 1987

* COPYRIGHT 1987, HUNTER & READY, INC.

*

*
*
*
*
*
*
*
*

* * * Task MAIN clears the mailbox, lowers its own priority, creates *
* TASK2, outputs a prompt character, then enters a loop to get a *
* character from the terminal and post it to the mailbox. *
* *

BREAKPT EQU 3

* Include VRTX32 definitions

NOLIST
INCLUDE 'vrtxvisi.inc'
LIST

SECTION 9

XDEF MAIN
MAIN:

CLR BOX

* trap vector for return to monitor

* VRTX32 equates

* clear the mailbox

* Task MAIN lowers its own priority to 2

MOVE.L
MOVE.L
MOVE.L
TRAP
CMPI.L
BEQ.S
MOVE.L
JMP

#0,D1
#2,D2
#SCFTPRIORITY,DO
#VRTX
#RET OK,DO
TCREATE
#SCFTPRIORITY,D7
ERRORX

* Task MAIN creates TASK2

TCREATE:

MOVE.L
MOVE.L
MOVE.L
MOVEA.L
MOVE.L
TRAP

#1,D1
#2,D2
#0,D3
#TASK2,AO
#SCFTCREATE,DO
#VRTX

* self
* pri = 2
* SC TPRIORITY function code
* call VRTX32
* check return code
* branch if no error
* indicate which VRTX32 call
* jump to error handler

* pri = 1
* ID = 2
* user mode task
* address of task
* SC TCREATE function code
* call VRTX32

D-11

An Example

CMPI.L
BEQ.S
MOVE.L
JMP

#RET OK,DO
PROMPT
#SCFTCREATE,D7
ERRORX

* check return code
* branch if no error
* indicate which VRTX32 call
* jump to error handler

* Task MAIN outputs the '>' prompt

PROMPT:

MOVE.L #$3E,Dl * char = , >,
MOVE.L #SCFPUTC,DO * SC PUTC function code
TRAP #VRTX * call VRTX32
CMPI.L #RET OK,DO * check return code
BEQ.S GETC- * branch if no error
MOVE.L #SCFPUTC,D7 * indicate which VRTX32 call
JMP ERRORX * jump to error handler

* Task MAIN gets a character from the CRT

GETC:

MOVE.L
TRAP
CMPI.L
BEQ.S
MOVE.L
JMP

#SCFGETC,DO
#VRTX
#RET OK,DO
POST­
#SCFGETC,D7
ERRORX

* SC GETC function code
* call VRTX32
* check return code
* branch if no error
* indicate which VRTX32 call
* jump to error handler

* Character is now in register Dl; post the character to the
* mailbox

POST:

MOVEA.L
MOVE.L
TRAP
CMPI.L
BEQ.S
MOVE.L
JMP

#BOX,AO
#SCFPOST,DO
#VRTX
#RET OK,DO
GETC­
#SCFPOST,D7
ERRORX

* address of mailbox
* SC POST function code
* call VRTX32
* check return code
* loop if no error, get next char
* indicate which VRTX32 call
* jump to error handler

* * Task2 picks up the character from the mailbox, then outputs
* the character to the terminal.

*

*
*
*
*

TASK2:

* Task2 pends on mailbox for a character

PENDC:

MOVE.L #O,Dl * no timeout

D-12

An Example

MOVEA.L
MOVE.L
TRAP
CMPI.L
BEQ.S
MOVE.L
JMP

ltBOX,AO
ltSCFPEND,DO
ltVRTX
ltRET OK,DO
PUTC­
ltSCFPEND,D7
ERRORX

* address of mailbox
* SC PEND function code
* call VRTX32
* check return code
* branch if no error
* indicate which VRTX32 call
* jump to error handler

* Character is now in Dl; put the character to the CRT

PUTC:

MOVE.L
TRAP
CMPI.L
BEQ.S
MOVE.L
JMP

ltSCFPUTC,DO
ltVRTX
ltRET OK,DO
PENDC
ltSCFPUTC,D7
ERRORX

* SC PUTC function code
* call VRTX32
* check return code
* loop if no error, get next char
* indicate which VRTX32 call
* jump to error handler

*
*
*

Error Handler
*
*
*

ERRORX:

TRAP ltBREAKPT * back to monitor

SECTION 14

*
*
*

The Mailbox
*
*
*

BOX:

DS.L 1
END

D-13

An Example

D.3 VRTX32 Definitions File

VRTX EQU $00 * VRTX32 trap number

* VRTX32 task-level function codes

SCFTCREATE
SCFTDELETE
SCFTSUSPEND
SCFTRESUME
SCFTPRIORITY
SCFTINQUIRY
SCFGBLOCK
SCFRBLOCK
SCFPOST
SCFPEND
SCFGTIME
SCFSTIME
SCFTDELAY
SCFGETC
SCFPUTC
SCFWAITC
SCFTSLICE
SCFFCREATE
SCFFDELETE
SCFFPEND
SCFFPOST
SCFFCLEAR
SCFFINQUIRY
SCFQJAM
SCFQECREATE
SCFLOCK
SCFUNLOCK
SCFPCREATE
SCFPEXTEND
SCFACCEPT
SCFQPOST
SCFQPEND
SCFQACCEPT
SCFQCREATE
SCFQINQUIRY
SCFSCREATE
SCFSDELETE
SCFSPEND
SCFSPOST
SCFSINQUIRY

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$0000
$0001
$0002
$0003
$0004
$0005
$0006
$0007
$0008
$0009
$OOOA
$OOOB
$OOOC
$OOOD
$OOOE
$OOOF
$0015
$0017
$0018
$0019
$OOlA
$OOlB
$OOlC
$OOlE
$OOlF
$0020
$0021
$0022
$0023
$0025
$0026
$0027
$0028
$0029
$002A
$002B
$002C
$002D
$002E
$002F

* create task
* delete task
* suspend task
* resume task
* change task priority
* task status inquiry
* get memory block
* release memory block
* post message to mailbox
* pend for message from mailbox
* get time
* set time
* task delay
* get character
* put character
* wait for special character
* enable round-robin scheduling
* create event flag group
* delete event flag group
* pend on event flag group
* post event to event flag group
* clear event
* event flag group inquiry
* jam message to queue
* create FIFO message queue
* disable task rescheduling
* enable task rescheduling
* create memory partition
* extend memory partition
* accept message from mailbox
* post message to queue
* pend for message from queue
* accept message from queue
* create message queue
* queue status inquiry
* create semaphore
* delete semaphore
* pend on semaphore
* post unit to semaphore
* semaphore inquiry

* VRTX32 interrupt-level function codes

UIFEXIT
UIFTIMER
UIFRXCHR
UIFTXRDY
UIFENTER

D-14

EQU $0011
EQU $0012
EQU $0013
EQU $0014
EQU $0016

* exit interrupt handler
* announce timer interrupt
* received-character interrupt
* transmit-ready interrupt
* enter interrupt handler

* VRTX32 initialization function codes

VRTXFINIT EQU $0030
VRTXFGO EQU $0031

* initialize VRTX32
* start application execution

* System-wide error codes

RET OK EQU $0000

* VRTX32 error codes

* successful return

* task ID error
* no TCBs available
* no memory available
* not a memory block
* mailbox in use
* zero message
* buffer full
* WAITC in progress
* invalid system call
* timeout
* no message present
* queue ID error
* queue full
* partition ID error
* fatal initialization error
* no character present
* invalid config parameter during INIT
* invalid input parameter, PCREATE/PEXTEND
* component vector table not present
* undefined component
* undefined opcode for component
* no control blocks available
* event flag group or semaphore ID error
* tasks pending on ev flag group/semaphore
* event flag group or semaphore is deleted

An Example

ER TID
ER TCB
ER MEM
ER NMB
ER MIU
ER-ZMW
ER BUF
ER-WTC
ER ISC
ER-TMO
ER-NMP
ER-QID
ER=QFL
ER PID
ER INI
ER-NCP
ER ICP
ER-IIP
ER CVT
ER-COM
ER-OPC
ER-NOCB
ER-ID
ER PND
ER DEL
ER OVF

EQU $0001
EQU $0002
EQU $0003
EQU $0004
EQU $0005
EQU $0006
EQU $0007
EQU $0008
EQU $0009
EQU $OOOA
EQU $OOOB
EQU $OOOC
EQU $OOOD
EQU $OOOE
EQU $OOOF
EQU $0010
EQU $0011
EQU $0012
EQU $0020
EQU $0021
EQU $0022
EQU $0030
EQU $0031
EQU $0032
EQU $0033
EQU $0034 * event flag already set or semaphore overflow

* TCB -- Task Control Block

OFFSET 0
TBRSVI DS.L 2 * $00 reserved
TBEXT DS.L 1 * $08 pointer to user's TCB extension
TBPRI DS.B 1 * SOC priority
TBID DS.B 1 * SOD task ID number
TBSTAT DS.W 1 * $OE status
TBDO DS.L 1 * $10 saved DO
TBDI DS.L 1 * $14 saved Dl
TBD2 DS.L 1 * $18 saved D2
TBD3 DS.L 1 * $IC saved D3
TBD4 DS.L 1 * $20 saved D4
TBD5 DS.L 1 * $24 saved D5
TBAO DS.L 1 * $28 saved AO
TBAI DS.L 1 * $2C saved Al
TBA2 DS.L 1 * $30 saved A2

D-15

An Example

TBA3 DS.L 1 * $34 saved A3
TBSSP DS.L 1 * $38 supervisor-mode stack pointer
TBUSP DS.L 1 * $3C user-mode stack pointer
TBSTACK DS.L 1 * $40 reserved (original stack pointer)
TBFLAGS DS.W 1 * $44 reserved
TBRSV2 DS.W 5 * $46 reserved
TCBB EQU $50 * total size in bytes

* TBSTAT task status flags

TBSSUSP EQU $0001 * explicitly suspended
TBSSUSPT EQU 0
TBSMBOX EQU $0002 * suspended for mailbox message
TBSMBOXT EQU 1
TBSGETC EQU $0004 * suspended for character input
TBSGETCT EQU 2
TBSPUTC EQU $0008 * suspended for character output
TBSPUTCT EQU 3
TBSWAITC EQU $0010 * suspended for special character
TBSWAITCT EQU 4
TBSDELAY EQU $0020 * suspended for task delay/timeout
TBSDELAYT EQU 5
TBSQUEUE EQU $0040 * suspended for queue message
TBSQUEUET EQU 6
TBSRSV1 EQU $0080 * reserved
TBSRSV1T EQU 7
TBSIDLE EQU $0100 * idle task
TBSIDLET EQU 8
TBSFLAG EQU $0200 * suspended for event
TBSFLAGT EQU 9
TBSSEMA EQU $0400 * suspended for semaphore unit
TBSSEMAT EQU 10

* CFTBL -- Configuration Table

OFFSET 0
CFWSADDR DS.L 1 * $00 VRTX32 workspace pointer
CFWSSIZE DS.L 1 * $04 VRTX32 workspace size
CFSSTKSZ DS.W 1 * $08 supervisor-mode stack size per task
CFISTKSZ DS.W 1 * $OA ISR stack size, if enabled
CFCBCOUNT DS.W 1 * $OC ev flag & semaphore control block count
CFRSRVD1 DS.W 1 * $OE reserved, must be zero
CFIDLE DS.W 1 * $10 idle task stack size
CFRSRVD2 DS.W 1 * $12 reserved, must be zero
CFDISLEV DS.W 1 * $14 component disable level
CFUSTKSZ DS.W 1 * $16 user-mode stack size per task
CFRSRVD3 DS.L 1 * $18 reserved, must be zero
CFUTSKCT DS.W 1 * $lC user task count
CFRSRVD4 DS.W 1 * $lE reserved, must be zero
CFTXRDY DS.L 1 * $20 TXRDY driver routine pointer
CFTCREATE DS.L 1 * $24 TCREATE routine pointer
CFTDELETE DS.L 1 * $28 TDELETE routine pointer
CFTSWITCH DS.L 1 * $2C TSWITCH routine pointer
CFCVTADDR DS.L 1 * $30 component vector table pointer
CFTBLB EQU $34 * total size in bytes

D-16

Appendix E

The Rescheduling Procedure
HUNTER
~READY

A Division of Ready Systems

This manual uses the term rescheduling procedure to describe the process that
evaluates task priorities and execution states. A task switch occurs when a ready
task is found that has a higher priority than the currently executing task. A task
switch entails saving the current task's state in its TCB and loading the registers with
the context of the higher-priority ready task.

The rescheduling procedure occurs after some VRTX32 system calls immediately
before they return to the task level. However, the rescheduling procedure does not
always result in a task switch.

ISRs can interrupt the rescheduling procedure. VRTX32 restarts the rescheduling
procedure every time it is interrupted and a VRTX32 call has been made; this ensures
that the correct task gets control.

The optional Sys-TSWITCH-Address parameter in the configuration table points to the
TSWITCH routine. When the rescheduling procedure results in a task switch,
VRTX32 calls this routine. (Occasionally the rescheduling procedure does not result
in a task switch; in this case, VRTX32 does not call the TSWITCH routine.) Because
the rescheduling procedure is interruptible, VRTX32 can call the TSWITCH routine
more than once before the next task is run.

Table E-l lists VRTX32 calls that do not initiate the rescheduling procedure and so do
not result in a task switch.

The SC_IDELA Y and SC_ WAITC calls always initiate the rescheduling procedure,
which usually results in a task switch. If there are no ready user tasks, VRTX32
switches to the idle task.

The remaining calls initiate the rescheduling procedure under certain circumstances,
usually when the call suspends or deletes the current task or readies another task.

E-l

The Rescheduling Procedure

For example, when you create a task with a higher priority than the current task, the
rescheduling procedure results in a task switch. A suspension of the current task also
results in a task switch. The following task management calls cause a task switch
when they affect the current task or a task with a higher priority:

SCTCREATE
SCTDELETE
SC_TSUSPEND
SCTRESUME
SC TPRIORITY
SC_UNLOCK

These intertask communication and synchronization calls cause a task switch when
the current task suspends on a mailbox, queue, event flag group, or semaphore;
when a post call readies a higher-priority task; or when a delete call readies a higher­
priority task.

SC_POST
SC]END
SC_QPOST
SC_QJAM
SCQPEND
SC]DELETE

SC]POST
SC]PEND
SCSDELETE
SCSPOST
SCSPEND

Two of the character I/O calls cause a task switch when they try to put a character to
a full buffer or try to get a character from an empty buffer:

SC_GETC
SC]UTC

ISRs that make VRTX32 system calls must end with the UCEXIT call. If the ISR
readies a higher-priority task than the interrupted task, a task switch occurs after the
UCEXIT call. For nested interrupts, the task switch occurs only when the initial
interrupt handler completes and executes its UCEXIT call.

The system calls below, when made from an ISR, can cause a task switch:

SC]OST
SC_QPOST
SC_QJAM
SC]POST
SCSPOST
UCTIMER
UI]XCHR
UCTXRDY

E-3

The Rescheduling Procedure

E-4

When considering rescheduling and possible task switches, you must understand the
operation of system calls. Some calls, such as the post calls, complete their action
and do not necessarily return immediately to the caller. This can happen when a
higher-priority task pends on the target queue, mailbox, event flag group, or
semaphore. The higher-priority task unpends and gains control, and VRTX32 does
not return to the original caller until all higher-priority tasks complete, suspend, or
become dormant.

The Rescheduling Procedure

F-2

Table E-1 Calls that Do Not Initiate the Rescheduling Procedure

Task Management

SCTINQUIRY
SC_LOCK

Memory Allocation

SCGBLOCK
SC]BLOCK
SC_PCREATE
SC_PEXTEND

Communication and Synchronization

SCACCEPT
SCQACCEPT
SCQCREATE
SC_QECREATE
sC_QINQUIRY
SC_FCREATE
SC]CLEAR
SCFINQUIRY
SC_SCREATE
SCSINQUIRY

Interrupt Support

UI_ENTER

Real-Time Clock

SC_GTIME
SC_STIME
SC_TSLICE

Initialization

Index

Accept Message from Mailbox
(SCACCEPT) call 2-21, 7-2

Accept Message from Queue
(SCQACCEPT) call 2-23, 7-23

AND pend 2-24,7-8
Announce Timer Interrupt CUI_TIMER) call

3-11, 7-57, 7-68
Application initialization 4-12
Application program D-l
Architecture 1-1

See also VRTX32 architecture,
Motorola M68000 architecture

Block, control 2-24, 2-25, 7-4, 7-5, 7-36
Block, memory 2-15,2-17,2-18,7-11,

7-15, 7-35
See also Memory

Broadcast 2-24, 5-4, 5-5
Buddy system 2-15
Buffers, VRTX32 3-14, 4-13, 7-12, 7-22,

7-62, 7-66, 7-69

Calls, See System calls
Change Task Priority (SC_TPRlORlTY) call

2-12, 7-54
Character I/O calls 3-11, 3-14, 3-15, 7-12,

7-22, 7-62, 7-66, 7-69, E-3
Character strings 6-5
Clear Event (SC]CLEAR) call 2-25, 7-3
Clock

VRTX32 3-11,7-8,7-13,7-17,7-32,
7-41, 7-44, 7-47

calls 3-13
real-time 3-11
ticks 3-11,7-8,7-13,7-17,7-32,7-41,

7-44, 7-47, 7-57, 7-68
See also Counter-timer device

Code
error 2-2, 6-3, B-1
function 2-2, 6-3
return 2-2, 6-3, 6-4, B-1

Communication 2-20
and synchronization calls 2-26, E-3

Component 1-1,6-8
calling conventions 6-1

HUNTER
~READY

A Division of Ready Systems

calls 6-2, 6-8, B-1
features 1-3
ID number 6-3
user-supplied 6-7
Vector Table (CVT) 4-5, 6-4, 6-6, 6-7,

6-8
vectoring 6-6

Component-Disable-Level parameter 3-7,
3-9, 3-10, 4-4

Configuration, See VRTX32 Configuration
Table

Control block 2-24, 2-25, 4-4, 7-4, 7-5,
7-36

Control-Block-Count parameter 4-4
Counter-timer device 3-11
Counting semaphore, See Semaphore
Create Event Flag Group (SC]CREATE) call

2-24, 4-13, 7-4
Create FIFO Message Queue

(SCQECREATE) call 2-22, 7-26
Create Memory Partition (SC]CREATE) call

2-17,4-13,7-15
Create Message Queue (SC_QCREATE) call

2-22, 4-13, 7-24
Create Semaphore (SC_SCREATE) call

2-25, 4-13, 7-36
Create Task (SC_TCREATE) call 2-11, 4-13,

7-45
CVT, See Component Vector Table
CVT-Address parameter 4-5, 6-6

Delay Task (SCTDELAy) call 3-12,7-47
Delete Event Flag Group eSC_FDELETE) call

2-24, 7-5
Delete Semaphore (SC_SDELETE) call

2-25, 7-38
Delete Task (SC_TDELETE) call 2-11, 7-35,

7-49
Device 3-2

character I/O 3-11,7-12,7-22,7-62,
7-66,7-69

counter-timer 3-11
initialization 4-11

Disable Task Rescheduling eSC_LOCK) call
2-12, 7-14, 7-61

1-1

Index

1-2

Disabling interrupts 3-9
Dormant task 2-8, 2-11, 7-49

Embedded microprocessor 1-1
Enable Round-Robin Scheduling

(SC_TSLICE) call 3-13, 7-57
Enable Task Rescheduling (SC_UNLOCK)

call 2-12, 7-14, 7-61
Enter Interrupt Handler CUCENTER) call

3-3, 3-4, 3-7, 4-13, 7-63
Entry point, VRTX32 1-4, 2-2, 4-12, 6-2
Error code 2-2, 6-3, B-1
Event flag 2-23, 7-3, 7-8
Event flag group 2-23, 4-4, 4-13, 7-3, 7-4,

7-5, 7-7, 7-8, 7-10
Event Flag Group Inquiry (SC]INQUIRy)

call 2-25, 7-7
Exception Vector Table (EVT) 1-4, 2-2,

3-2, 4-1, 4-11, C-l
Executing task 2-6
Executive, real-time 1-2, 1-6,6-10
Exit Interrupt Handler CUCEXID call 3-3,

3-4, 3-7, 4-13, 7-63, 7-65
Extend Memory Partition (SC]EXTEND)

call 2-17,7-19
Extensions, See Partition, Routines

Format/ID word 3-2, 5-3, 5-8
Function code 2-2, 6-3

Get Character (SC_GETC) call 3-14, 7-12
Get Memory Block (SCGBLOCK) call

2-17,7-11
Get Time (SC_GTIME) call 3-12, 7-13

Highest-priority task 2-8
Hooks, See Routines

I/O, See Character I/O calls
Identification CID) number

component 6-3
task 2-8, 7-45, 7-51

Idle task 4-4, 5-7, 5-13, 7-51
Idle-Task-Stack-Size parameter 4-4, 4-6
Initialization

VRTX32 4-11,4-13,7-71
application 4-12
calls 4-15
device 4-11
system 4-1, 4-10
user-supplied 4-10,7-70

Initialize VRTX32 CVRTX_INID call 4-13,
7-71

Inquiry, Status
event flag group 2-25, 7-7
queue 2-23, 7-28
semaphore 2-26, 7-40
task 2-12, 7-51, C-4

Interrupt 2-7,3-2,3-7,3-9
calls 3-10
disabling 3-9
handler, See Interrupt service routine

1-5
level 7 (NMI) 3-7, 3-9, 3-10
levels 3-3, 3-9, 4-4, 4-6
nested ISRs 3-3, 3-9, 7-65, E-3
service routine (ISR) 1-5, 3-1, 3-3, 3-4,

3-7, 3-9, 3-10, 3-11, 3-14, 4-7, 4-13,
6-2,7-2,7-17,7-23,7-32,7-51,
7-57, 7-63, 7-65, 7-66, 7-68, 7-69,
E-l, E-3

software 6-2
stack 3-3, 3-7, 3-10, 4-4, 4-6, 7-63, 7-65
stack switching, See Interrupt stack 3-7
vector location 2-2, 6-2

ISR, See Interrupt service routine
ISR format 3-4
ISR-Stack-Size parameter 4-3, 4-6

Jam Message to Queue CSC_QJAM) call
2-22, 7-30

Level 7 interrupt (NMI) 3-7, 3-9, 3-10
Levels, interrupt 3-3, 3-9, 4-4, 4-6

Mailbox 2-20, 2-21, 7-2, 7-17, 7-21
Memory 2-13, 7-15

allocation 2-15, 2-16, 2-17
allocation calls 2-19
block 2-15,2-17,2-18,7-11,7-15,7-35
partition, See Partition 2-15

Message 2-20, 2-22, 7-2, 7-17, 7-21, 7-23,
7-28, 7-30, 7-32, 7-34

Message queue, See Queue
Mode

Supervisor 1-3,2-3,2-17,4-10,5-4, 5-7,
7-45, 7-70, 7-71

User 1-3, 2-3, 2-16, 3-7, 7-45
Motorola M68000 architecture 1-1, 1-3,

2-2, 2-13, 3-2, 3-9, 4-11, 5-3,6-2
Motorola Mc68olO architecture 1-3, 2-2,

3-2, 5-3, 5-8
Multitasking 1-2, 7-70

environment 6-11, 7-14
management calls 2-12, E-l

Mutual exclusion 2-21, 2-23, 2-25

Nested ISRs 3-3, 3-9, 7-65, E-3
Nonmaskable interrupt (NMD 3-7, 3-9,

3-10
Null pointer 6-5

Opcode 6-3
handler routine 6-8, 6-9, 6-10
Vector Table (OV1) 6-4, 6-8

Operating system, See Real-time
OR pend 2-24, 7-8

Parameter packet 6-4,6-5
Partition 2-15, 2-17, 2-18, 4-13, 7-11, 7-15,

7-19, 7-35
PC, See Program Counter
Pend for Message from Mailbox (SC_PEND)

call 2-21, 7-17
Pend for Message from Queue

(SC_QPEND) call 2-22, 7-32
Pend on Event Flag Group (SC]PEND) call

2-24,7-8
Pend on Semaphore (SC_SPEND) call

2-26,7-41
Pointers 4-12, 6-5
Post Event to Event Flag Group

(SC]POSn call 2-25,7-10
Post Message to Mailbox (SC_POSn call

2-20,7-21
Post Message to Queue (Sc_QPosn call

2-22,7-34
See also SC_QJAM

Post Unit to Semaphore (SC_SPOsn call
2-26,7-43

Preemption 7-47, 7-54
Priority level, task 2-8, 2-12, 7-45, 7-51,

7-54
Program Counter (PC) 2-2, 2-11
Put Character (SC_PUTC) call 3-14, 4-13,

7-22,7-69

Queue 2-22,4-13, 7-23, 7-24, 7-26, 7-28,
7-30, 7-32, 7-34

Queue entry, reserved 7-24, 7-26, 7-30
Queue Status Inquiry (SC_QINQUIRY) call

2-23,7-28

Ready task 2-7, 7-52, C-4
Real-time 1-2

clock 3-11
clock calls 3-13

executive 1-2, 1-6, 6-10
See also VRTX32 Clock

Received-Character Interrupt (UCRXCHR)
call 3-14, 7-62, 7-66

Release Memory Block (SC_RBLOCK) call
2-17, 7-35

Rescheduling procedure 2-9, 3-3, 7-14,
7-61, 7-65, E-1

Reserved queue entry 7-24, 7-26, 7-30
Reset, system 4-11
Resume Task (SC_TRESUME) call 2-12,

7-56, 7-59
RET_OK return code 6-3, B-1
Return code 2-2,6-3, 6-4, B-1
Routines 1-6, 4-5, 5-6

interrupt service routine aSR) 1-5, 3-1,
3-3,3-4, 3-7, 3-9, 3-10, 3-11, 3-14,
4-7 4-13 6-2 7-2 7-17 7-23 7-32
7-5i, 7-57, 7-63, 7-65, 7-66, 7-68, '
7-69, E-1, E-3

opcode handler routine 6-8,6-9,6-10
TCREATE routine 5-7,5-13
TDELETE routine 5-7, 5-12
TSWITCH routine 5-7, 5-13, E-l
TXRDY driver routine 3-14, 4-5, 7-69

SC_ACCEPT call 2-21,7-2
SC]CLEAR call 2-25, 7-3
SC]CREATE call 2-24,4-13,7-4
SC_FDELETE call 2-24, 7-5
SC]INQUIRY call 2-25, 7-7
SC_FPEND call 2-24,7-8
SC_FPOST call 2-25, 7-10
SC_GBWCK call 2-17,7-11
SC_GETC call 3-14, 7-12
SC_GTIME call 3-12, 7-13
SCWCK call 2-12, 7-14, 7-61
SCPCREATE call 2-17,4-13, 7-15
SC]END call 2-21, 7-17
SC_PEXTEND call 2-17, 7-19
SC]OST call 2-21, 7-21
SC_PUTC call 3-14, 4-13, 7-22, 7-69
SCQACCEPT call 2-23, 7-23
SC_QCREATE call 2-22, 4-13, 7-24
SC_QECREATE call 2-22,7-26
SCQINQUIRY call 2-23, 7-28
SC_QJAM call 2-22, 7-30
SCQPEND call 2-22, 7-32
SC_QPOST call 2-22, 7-34
SCRBLOCK call 2-17,7-35
SC_SCREATE call 2-25, 4-13, 7-36
SC_SDELETE call 2-25, 7-38

Index

1-3

Index

1-4

SC_SINQUIRY call 2-26, 7-40
SCSPEND call 2-26, 7-41
SC_SPOST call 2-26, 7-43
SC_STIME call 3-12, 7-44
SC_TCREATE call 2-11, 4-13, 7-45
SCTDELAY call 3-12, 7-47
SCTDELETE call 2-11, 7-35, 7-49
SC_TINQUIRY call 2-12, 7-51, C-4
SC_TPRIORITY call 2-12, 7-54
SC_TRESUME call 2-12,7-56, 7-59
SC_TSLICE call 3-13, 7-57
SCTSUSPEND call 2-12, 7-56, 7-59
SC_UNLOCK call 2-12, 7-14, 7-61
SC_WAITC call 3-14,7-62
Semaphore 2-25, 4-4, 4-13, 7-36, 7-38,

7-40, 7-41, 7-43
Semaphore Inquiry (SC_SINQUIRy) call

2-26, 7-40
Set Time (SC_STIME) call 3-12, 7-44
Silicon software component, See

Component
Software interrupt 6-2
SR, See Status Register
SSP, See Supervisor Stack Pointer
Stack

idle task 4-4, 4-6
interrupt 3-3, 3-7, 3-10, 4-4, 4-6, 7-63,

7-65
Supervisor mode 2-17, 3-7, 4-2, 4-4, 5-7
task 2-11, 2-16, 5-7, 5-13,6-10
temporary 4-13, 5-8, 7-71
User mode 2-16, 4-2, 4-5

Stack Pointer
Supervisor (SSP) 2-17, 4-5
User CUSP) 2-17,4-5

Start Application Execution (VRTICGO) call
4-13, 7-70

Status Register (SR) 2-11, 3-9
Status word (TBSTA1) 7-45, 7-52, C-4
Supervisor mode 1-3,2-3,2-17,4-10,5-4,

5-7, 7-45, 7-70, 7-71
stack 2-17, 3-7, 4-2, 4-4, 5-7

Supervisor Stack Pointer (SSP) 2-17,4-5
Suspend Task (SC_TSUSPEND) call 2-11,

7-56,7-59
Switch, task 2-8, 3-3, 4-5, 5-7, E-l
Synchronization 2-20, 2-21, 2-23

and communication calls 2-26, E-3
Sys-Stack-Size parameter 4-2, 4-6
Sys-TCREATE-Address parameter 4-5, 5-7
Sys-TDELETE-Address parameter 4-5, 5-7,

5-12

Sys-TSWITCH-Address parameter 4-5, 5-7,
5-13, E-l

System
initialization 4-1, 4-10
reset 4-11

System calls 2-2, 3-3, 3-7, 3-10, 4-13, 7-1,
A-I, B-1

character I/O support calls 3-15, E-3
communication and synchronization

calls 2-26, E-3
component calls 6-2, 6-8, B-1
initialization calls 4-15
interrupt support calls 3-10
memory allocation calls 2-19
real-time clock calls 3-13
task management calls 2-12, E-1
user-defined 1-6, 5-2, 5-3, 5-4

System clock, See VRTX32 Clock

Task 2-3, 7-45, C-2
calls 2-12, E-l
create 2-11, 4-5, 4-13, 7-45
delay 3-12, 7-47
delete 2-11, 4-5, 7-35, 7-49
dormant 2-8, 2-11, 7-49
executing 2-6
highest-priority 2-8
ID number 2-8, 7-45, 7-51
idle 4-4, 5-7, 5-13, 7-51
preemption 7-47, 7-54
priority level 2-8, 2-12, 7-45, 7-51, 7-54
ready 2-7, 7-52, C-4
rescheduling 2-9, 3-3, 7-14, 7-61, 7-65,

E-l
resume 2-12, 7-56, 7-59
stack 2-11, 2-16, 5-7, 5-13, 6-10
states 2-6
status inquiry 2-12, 7-51, C-4
suspend 2-6, 7-52, 7-56, 7-59, C-4
switch 2-8, 3-3, 4-5, 5-7, E-1
synchronization 2-20, 2-21

Task Control Block (TCB) 2-10, 5-7, 7-49,
7-57, C-2

address 7-51
extension (TBEXI) 5-7, 7-45

Task Status Inquiry (SC_TINQUIRY) call
2-12, 7-51, C-4

TBEXT field 5-7, 7-45
TBSTAT field 7-45, 7-52, C-4
TCB, See Task Control Block
TCREATE routine 5-7, 5-13
TDELETE routine 5-7, 5-12

Temporary stack 4-13, 5-8,7-71
Ticks, VRTX32 clock 3-11, 7-8, 7-13, 7-17,

7-32, 7-41, 7-44, 7-47, 7-57, 7-68
Time-slicing 3-13, 7-57
Timeout 3-11, 7-8, 7-17, 7-32, 7-41, 7-47
Transmit-Ready Interrupt CUCTXRDy) call

3-14, 7-69
Trap handler routine 1-6, 5-2, 5-3, 5-4
TRAP instruction 2-2, 6-1, 6-2
TRAP vectors 2-2, 6-2
TSWITCH routine 5-7, 5-13, E-l
TXRDY driver routine 3-14, 4-5, 7-69
TXRDY-Driver-Address parameter 4-5

UI_ENTER call 3-3, 3-4, 3-7, 4-13, 7-63
UCEXIT call 3-3,3-4,3-7,4-13,7-63, 7-65
UCRXCHR call 3-14, 7-62, 7-66
UI3IMER call 3-11, 7-57, 7-68
UCTXRDY call 3-14, 7-69
User

load module 2-14
mode 1-3, 2-3, 2-16, 3-7, 7-45
mode stacks 2-16, 4-2, 4-5
Stack Pointer CUSP) 2-17,4-5

User-defined system call handler 1-6, 5-2,
5-3, 5-4

User-Stack-Size parameter 4-4, 4-6
User-supplied

component 6-7
extensions 1-6, 5-6
initialization 4-10, 7-70

User-Task-Count parameter 4-5
USP, See User Stack Pointer

Vector Base Register evBR) 2-2
VRTX-Workspace-Address parameter 4-2
VRTX-Workspace-Size parameter 4-2, 4-6,

4-8
VRTX32 1-1

architecture 1-5
buffers 3-14,4-13, 7-12, 7-22, 7-62,

7-66,7-69
clock 3-11, 7-8, 7-13, 7-17, 7-32, 7-41,

7-44, 7-47
clock ticks 3-11, 7-8, 7-13, 7-17, 7-32,

7-41, 7-44, 7-47, 7-57, 7-68
Configuration Table 1-4, 4-1, 4-2, 4-6
Configuration Table parameters 4-2
Configuration Table pointer 1-4, 4-12
entry point 1-4, 2-2, 4-12, 6-2
extensions 1-6, 5-6
features 1-2

initialization 4-11, 4-13, 7-71
memory allocation 2-15, 2-16, 2-17
pointers 4-12
Workspace 2-15, 2-16, 4-2, 4-8

VRTX_GO call 4-13, 7-70
VRTX_INIT call 4-13, 7-71

Wait for Special Character CSC_ W AlTC) call
3-14, 7-62

Workspace, See VRTX32 Workspace

Index

1-5

We'd like your COlllll1ents

~READY
SYSTEMS

Ready Systems attempts to provide documents that meet
the needs of all our customers. We can improve our
documentation if you help us by commenting on the
usability, accuracy, readability, and organization of this
manual. All comments and suggestions become the
property of Ready Systems.

VRTX32/68000 User's Guide #541311001

1. Please specify by page any errors you found in this
manual.

2. Is this document comprehensive enough? Please
suggest any missing topics or information that is not
covered

3. Did you have any difficulty understanding this
document? Please identify the unclear sections.

4. Please rate this document on a scale from 1 to 10,
with 10 the best rating. ___________ _

~urName __________________________________ ___

Title ______________________________________ _

Company Name ________________________________ _

Address ____________________________________ ___

•

•

I I I I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1854 SUNNYVALE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

READY SYSTEMS
p.o. Box 60217
Sunnyvale, CA 94088-0217

NO POSTAC
NECESSAR

IF MAILEC
IN THE

UNITED STAl

~READY
SYSTEMS

	0000
	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-63
	7-64
	7-65
	7-66
	7-67
	7-68
	7-69
	7-70
	7-71
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	E-01
	E-03
	E-04
	F-02
	I-01
	I-02
	I-03
	I-04
	I-05
	replyA
	replyB
	xBack

