
HUNTER
•READY

VRTX/1750A

VRTX®/1750
Versatile Real-Time Executive

for the MIL-STD-1750A Computer

User's Guide

Version 3
Document Number 591613001

September 1984

REV. REVISION HISTORY PRINT
DATE

-001 Original Issue 9/84

Hunter & Ready, Inc. makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose. Hunter & Ready, Inc. assumes no responsibility for any er­
rors that may appear in this document. The information in this document is subject
to change without notice.

Hunter & Ready software products are copyrighted by and shall remain the property
of Hunter & Ready, Inc. Use, duplication or disclosure is subject to restrictions
stated in Hunter & Ready's software license. No part of this document may be
copied or reproduced in any form or by any means without the prior written consent
of Hunter & Ready, Inc.

VRTX, VRTX/80, VRTX/86, VRTX/186, VRTX/8002, VRTX/68000, VRTX/1750,
IOX and FMX are trademarks of Hunter & Ready, Inc. and may be used only to
identify Hunter & Ready products.

Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in paragraph (b) (3) (B) of the Rights in Technical Data and Computer Software
clause in DAR 7-104.9(a).

Copyright © 1984
Hunter & Ready, Inc.
445 Sherman Avenue

P.O. Box 60803
Palo Alto, CA 94306-0803

415/326-2950
TELEX: 278835 (HRI UR)

All rights reserved
Printed in U.S.A.

Preface

VRTX is a silicon software component that provides operating system
capabilities for an embedded microprocessor application. VRTX/1750 is
designed for computers based on the MIL-STD-1750 Instruction Set
Architecture.

This manual is intended for use by application programmers who are
using VRTX/1750 to build a product. To fully implement the information
discussed in this manual, the reader should also read Getting Started with
VRTX and How to Write a Board Support Package. It is assumed that the
reader has a complete understanding of the 1750 Instruction Set Architec­
ture.

The first section of the manual presents an overview of the product dis­
cussing various features and defining terminology specific to VR TX and
embedded applications. In the second chapter, descriptions of system
calls begin with the basic system functions, task management, multitask­
ing management, memory, memory allocation, intertask communication
and synchronization and communication and synchronization calls. They
are grouped by function so that all the calls relating to similar functions
are grouped together. Chapter Three is devoted to interrupt support dis­
cussing the support available and the related system calls. Configuration
and initialization are discussed in Chapter Four along with the initializa­
tion calls, VRTX_INIT and VRTX_GO. Chapter Five discusses support
for user-defined extensions.

Table of Contents

Chapter 1 OVERVIEW OF VRTX/1750

HUNTER
~READY

............................. 1-1

1.1 Introduction ... 1-1
1.1.1 Silicon Software Components 1-1
1.1.2 Embedded Applications .. 1-1
1.1.3 Real-Time Executive ... 1-2

1 .2 VRTX Features ... 1-2
1.2.1 Real-Time Features .. 1-2
1.2.2 Silicon Software Component Features 1-2
1.2.3 1750A Support Features .. 1-3

1.3 VRTX Configuration ... 1-4

1.4 VRTX Architecture ... 1-4

Chapter 2 BASIC SYSTEM CALLS 2-1

2.1 Introduction ... 2-1
2.1.1 System Call Format .. 2-1
2.1.2 Executive Call Interrupt .. 2-2

2.2 Tasks ... 2-5
2.2.1 Task Priority and Scheduling 2-6
2.2.2 Task Control Block (TCB) ... 2-6
2.2.3 Task States and State Transitions 2-8
2.2.4 Configuration .. 2-10

2.3 Multitasking Management Calls 2-12
2.3.1 Create a Task (SC_TCREATE) 2-12
2.3.2 Delete a Task (SC_TDELETE) 2-14
2.3.3 Task Suspend (SC_TSUSPEND) 2-15
2.3.4 Task Resume (SC_TRESUME) 2-16
2.3.5 Task Priority Change (SC_TPRIORITY) 2-17
2.3.6 Task Inquiry (SC_TINQUIRY) 2-18
2.3.7 Disable Task Rescheduling (SC_LOCK) 2-20
2.3.8 Enable Task Rescheduling (SC_ UNLOCK) 2-21

2.4 Memory ... 2-22
2.4.1 Memory Allocation ... 2-24
2.4.2 Configuration : ... 2-27

Copyright 1984, Hunter & Ready, Inc.

Table of Contents

2.5 Memory Allocation Calls ... 2-28
2.5.1 Get Memory Block (SC_GBLOCK) 2-29
2.5.2 Release Memory Block (SC_RBLOCK) 2-30
2.5.3 Create Memory Partition (SC_PCREATE) 2-31
2.5.4 Extend Memory Partition (SC_PEXTEND) 2-32

2.6 Intertask Communication and Synchronization 2-33
2.6.1 Mailboxes ... 2-33
2.6.2 Queues ... 2-34

2.7 Communication and Synchronization Calls 2-35
2.7.1 Post a Message (SC_POST) 2-35
2.7.2 Pend for Message (SC_PEND) 2-36
2.7.3 Accept Message (SC_ACCEPT) 2-37
2.7.4 Post Message to Queue (SC_QPOST) 2-38
2.7.5 Pend for Message from Queue (SC_QPEND) 2-39
2.7.6 Accept Message from Queue (SC_QACCEPT) 2-40
2.7.7 Create Message Queue (SC_QCREATE) 2-41
2.7.8 Queue Inquiry (SC_QINQUIRY) 2-42

Chapter 3 INTERRUPT SUPPORT 3-1

3.1 Introduction ... 3-1

3.2 Interrupt Service Routines ... 3-1
3.2.1 Interrupt Service Routines and VRTX 3-2
3.2.2 Format of an Interrupt Service Routine 3-3
3.2.3 Communication from an Interrupt Service Routine 3-4
3.2.4 Interrupt Management Calls 3-5
3.2.5 Enter Interrupt Handler (Ul_EXIT) 3-7
3.2.6 Exit from Interrupt (Ul_EXIT) 3-8
3.2.7 Other System Calls from ISRs 3-10

3.3 Integrated Support for Special Devices 3-11
3.3.1 Real-Time Clock Support .. 3-11
3.3.2 Get Time (SC_GTIME) .. 3-12
3.3.3 Set Time (SC_STIME) ... 3-13
3.3.4 Task Delay (SC_TDELAY) .. 3-14
3.3.5 Enable Round-Robin Scheduling (SC_TSLICE) 3-15
3.3.6 Post Time Increment from Interrupt (Ul_TIMER) 3-16

Chapter 4 CONFIGURATION AND INITIALIZATION 4-1

4.1 Configuration Table4-1

11 Copyright 1984, Hunter & Ready, Inc.

Table of Contents

4.2 Determining VRTX-workspace-size4-2

4.3 Support for System Initialization 4-5
4.3.1 VRTX Initialization4-6
4.3.2 User-Supplied Initialization4-7
4.3.3 Use of System Calls during Initialization4-8

4.4 Initialization Calls .. .4-8
4.4.1 Initialize VRTX (VRTX_INIT)4-9
4.4.2 Start Multitasking (VRTX_GO)4-10

Chapter 5 SUPPORT FOR USER-DEFINED EXTENSIONS 5-1

5.1 Introduction ... 5-1

5.2 User-Defined System Call Handlers 5-2
5.2.1 Overview .. 5-3
5.2.2 Interfacing System Call Handlers to VRTX 5-3

5.3 VRTX Extensions ... 5-3
5.3.1 Mechanisms for Extending VRTX 5-4
5.3.2 Examples of VRTX Extensions 5-5

5.4 Configuration .. 5-5

Appendix A SYSTEM CALL SUMMARY A-1

Appendix B RETURN CODES ... B-1

Appendix C VECTOR TABLE AND TCB FORMATS c-1

C.1 Vector Table .. C-1

C.2 TCB Format ... C-1

Appendix D IMPLEMENTATION NOTES D-1

D.1 Implementing Variable-Sized Stacks D-1

Appendix E TASK RESCHEDULING E-1

Copyright 1984, Hunter & Ready, Inc. l1l

Table of Contents

List of Illustrations
Figure 1-1. VRTX Configuration .. 1-5

Figure 1-2. VRTX Architecture ... 1-6

Figure 2-1. Basic Architecture .. 2-1

Figure 2-2. TCB Chain .. 2-7

Figure 2-3. Task State Transitions ... 2-10

Figure 2-4. Separation of 1750A Address Spaces 2-22

Figure 2-5. Memory Organization ... 2-23

Figure 2-6. VRTX Workspace .. 2-27

Figure 2-7. User Memory Managed by VRTX 2-28

Figure 3-1. Interrupt Architecture .. 3-1

Figure 4-1. Configuration Table4-3

Figure 4-2. Determining VRTX-workspace-size4-4

Figure 5-1. Extensions Architecture .. 5-2

Figure C-1. 1750A Vector Table and VRTX Pointers C-2

Figure C-2. Task Control Block .. C-4

List of Tables
Table 2-1. VRTX System Calls .. 2-3

Table A-1. System Call Summary .. A-1

Table B-1. Return Codes ... B-1

lV Copyright 1984, Hunter & Ready, Inc.

Chapter 1

OVERVUEW OF VRTX/1750

1.1 Introduction

HUNTER
~READY

VR TX, the Versatile Real-Time Executive, is a silicon software component for em­
bedded computers. VRTX/1750 is the implementation of VRTX designed for com­
puters based on the MIL-STD-1750A (Notice 1) Instruction Set Architecture. [1]
The following sections define terms basic to an understanding of VRTX/1750.

1.1.1 Silicon Software Components

A silicon software component is basically an executable version of a computer pro­
gram that can operate within any environment that uses a particular type of com­
puter. Because the source code of a silicon software component never needs to be
modified to make it work with custom designs, a silicon software component can be
delivered in Read-Only Memory (ROM). In fact, a silicon software component is
more like a hardware component than a traditional piece of software.

The critical new concept introduced by silicon software components is the use of
software as a building block, which can be connected to other pieces of software in a
variety of designs, without ever being modified.

1.1.2 Embedded Applications

An embedded computer is a CPU buried inside some larger system, for example,
inside an intelligent terminal, a communications system, an analytical instrument, an
industrial robot, or a peripheral controller. Embedded computers are to be distin­
guished from stand-alone computers, such as small business systems, personal com­
puters, and word processors.

The software that runs on embedded computers must meet a different set of
requirements than software that runs on stand-alone systems. The most important of
these is the need for real-time responsiveness. The system must be able to respond to
unexpected events in the outside world rapidly enough to control some ongoing
process. Another key requirement is multitasking, the ability of the software to
handle a large number of tasks concurrently, since events in the real world usually
overlap rather than occur in strict sequence.

1VRTX and VRTX/1750 are registered trademarks of Hunter & Ready, Inc. and may be used only in reference to
Hunter & Ready products.

Copyright 1984, Hunter & Ready, Inc. 1-1

Overview

1.1.3 Real-Time Executive

Programmers have found that a common set of mechanisms is necessary to support
real-time systems. Moreover, implementors of such systems spend more of their
time on these basic mechanisms than on the application program itself. These mecha­
nisms are usually contained in the operating system, which in embedded applications
is called a real-time operating system or real-time executive. The real-time execu­
tive serves as the foundation upon which the rest of the application software is built.
VRTX is a real-time executive.

1 .2 VRTX Features

The features of VRTX/1750 can be divided into three categories: real-time features,
silicon software component features, and features that specifically support the 1750A
architecture.

1.2.1 Real-Time Features

VRTX provides a full range of real-time features, including:

* Multitasking support

* Interrupt-driven, priority-based scheduling

* Intertask communication and synchronization

* · Dynamic memory allocation

* Real-time clock control, with optional time-slicing

* Real-time responsiveness

With these features, VRTX/1750 provides a strong foundation for real-time, multi­
tasking application systems. It relieves designers and programmers of the problems
of synchronizing multiple real-time tasks, thus allowing them to focus their efforts
on the application itself.

1.2.2 Silicon Software Component Features

1-2

The silicon software component methodology used in the design of VR TX/1750 per­
mits unparalleled flexibility of system design and implementation. The following key
advantages should be noted:

Copyright 1984, Hunter & Ready, Inc.

Overview

* Development environment independence. Consisting entirely of one 2K
word ROM component, VRTX configuration is not dependent on any par­
ticular assemblers, linkers, loaders or host environments.

* Target environment independence. Requiring only a CPU with a small
amount of memory, VRTX provides support for the 1750A in a wide vari­
ety of embedded applications. No other system devices are required.

* Extensibility. Application-specific software is easily integrated with
VRTX and its multitasking controller. This extended software can include
user-defined system calls and device drivers.

* Position independence. VRTX is written entirely in position-independent
code and can be positioned anywhere in the address space of the processor.

1.2.3 1750A Support Features

Several features of VR TX/1750 explicitly support features of the 1750A architecture:

*

*

*

Expanded Memory Addressing. VRTX has been designed for complete
compatibility with 1750A implementations that include the expanded
memory addressing option. VRTX instruction and operand references use
the privileged Address State 0 map; whereas individual tasks can be in­
itiated with other, less privileged maps.

Memory Protection. Integrity and security are further promoted in sys­
tems that include block-protection and/or access-locking features. Again,
VRTX is entirely compatible with implementations that include these par­
ticular 1750A options.

Implementation Independence. VRTX/1750 was designed to work with
all computers based on MIL-STD-1750A, and is not dependent on the spe­
cific hardware details, operating characteristics, or range of options exhib­
ited by any particular implementation.

Copyright 1984, Hunter & Ready, Inc. 1-3

Overview

1.3 VRTX Configuration

VRTX/1750 is specially designed to support 1750A processors in custom designs.
Thus, the usual dependencies on particular environments (e.g., specific peripherals)
have been removed. This support is provided by VRTX object code, which means
that users with special requirements do not have to acquire and modify source code.

The user-supplied Configuration Table--along with simple, device-specific interrupt
handlers--provides the interface between VRTX and its environment. Within this
table, the user can specify all the parameters required by VRTX for a particular sys­
tem environment.

The 1750A architecture reserves several low-address locations as a 'Vector Table,'
providing linkage and service pointers for interrupt servicing. The data structure
referenced by one of the vectors--the Interrupt 5 (Executive Call) service pointer--is
used to route BEX executive calls to the VRTX entry location.

VR TX also reserves two additional low-address locations as pointers to data
structures that it requires. The first of these, at location 0050 hex, points to the base
of the Configuration Table. A second pointer, at location 0051 hex, points to a data
area reserved for VRTX's private operand references.

Fields in the Configuration Table describe system-managed memory, multitasking
controls, and the location of any user-supplied routines to be invoked by significant
events, such as task-switching. Figure 1-1, VRTX Configuration, shows the
relationships between VRTX, the Configuration Table and the reserved memory
locations.

1.4 VRTX Architecture

1-4

A system based on VRTX is designed like a stack of bricks (see Figure 1-2, VRTX
Architecture), with each level making use of the functions provided by the level
below. The system's hardware occupies the bottom level, above which reside the
simplest, most hardware-dependent operating system functions of software. On top
are the user-defined application programs.

In more technical terminology, each level defines a virtual machine for the level
above it. The functions provided by a software level are not distinguishable at higher
levels from those provided by the hardware. Effectively, each software level adds
several 'instructions' to the processor's instruction set. For application programs,
VRTX adds a number of high-level instructions (the system calls) to the architecture
of the 1750A.

Copyright 1984, Hunter & Ready, Inc.

Overview

The cross-hatched area in Figure 1-2, indicates the operating system mechanisms
contained within the VRTX ROM. Notice that there are a few small pieces missing
between VRTX and the hardware. These missing pieces are interrupt service
routines, small hardware-dependent code segments that provide interrupt-handling
for particular peripherals.

Other operating system mechanisms not provided within VR TX are shown to the
right of VRTX in Figure 1-2. These include user-defined system call handlers and
mechanisms for initializing and saving the state of special user devices (e.g., a Fourier
transform co-processor in a signal processing application). Like interrupt service
routines, these pieces are connected to VR TX via designed-in 'hooks' to form a
unified operating system. Some of these hooks are made with certain entries in the
Configuration Table (see Chapter 4, Configuration and Initialization, and Chapter
5, Support for User-Defined Extensions).

00

2A
28

50
51

Lr: Linkage

Service

Configuration
Table

.---.

VRTX
L......,.. data

area

VRTX
code

Data Area Siz

Special
Routines

Figure 1-1. VRTX Configuration

Copyright 1984, Hunter & Ready, Inc.

Entry

e

1-5

Overview

1-6

The three horizontal bars shown below Figure 1-2 divide the overall system architec­
ture into three vertical sections. Corresponding to these sections are three groups of
VRTX mechanisms: the basic system call mechanisms, the mechanisms that support
interrupts, and the mechanisms that support user-defined extensions. These groups
are described in the chapters 2, 3 and 5. This document covers the assembly language
format of VRTX/1750 calls. For a discussion of using VRTX/1750 with a high-level
language, consult the jovial Interface Library User's Guide (Document No. 592503).

Memory CPU

Application Program

Interrupt
Handler

I Clock

User-defined
System Call

Handlers

VRTX
Extensions

Interrupt
Handlers

Other
Peripherals

--~~---~~~- ~'-~~""'~~---

Basic Calls

fillVRTX

Interrupt-Support User-Defined
Extensions

Figure 1-2. VRTX Architecture

Copyright 1984, Hunter & Ready, Inc.

Chapter 2

BASIC SYSTEM CALLS HUNTER
~READY

2.1 Introduction

This chapter describes basic operations that can be performed by VRTX (see the
shaded portion of Figure 2-1, Basic Architecture). These functions are organized into
three categories:

* Multitasking management

* Memory allocation

* Intertask communication and synchronization

2.1.1 System Call Format

Requests for VRTX services are made via the BEX instruction (Branch to Executive),
which generates an Executive Call interrupt. Using MIL-STD mnemonics, the for­
mat of a call to VRTX is written as:

Application Program

Memory CPU

User-defined
System Call

Handlers

VRTX
Extensions

Interrupt
Handlers

Other
Peripherals

--~~--...~~~~ '------..-----'--~~.....-~~~

Basic Calls

~VRTX

Interrupt-Support User-Defined
Extensions

Figure 2-1. Basic Architecture

Copyright 1984, Hunter & Ready, Inc. 2-1

Basic System Calls

BEX n

Using IEEE mnemonics, the same call is written as:

BRK #n

In both cases, the value n specifies which of the 16 BEX executive entry points, num­
bered 0 through 15, has been designated for access to VRTX. BEX 0 is usually
chosen. The remaining 15 entry points may be defined by the user (see Chapter 5,
Support for User-Defined Extensions).

Along with the system call itself, a 16-bit function code is passed in register RO; this
code specifies the requested VR TX service. Additional input parameters are passed
to VRTX in registers Rl through R4. Some system calls return output resu~ts in these
same registers; unless otherwise indicated, however, all input registers except RO are
left intact by a VRTX system call. Appendix A, System Call Summary, lists all
VRTX calls along with their input parameters and output results.

When a call is completed, register RO contains a 16-bit return code. If the call was
successful, RO returns a value of zero; otherwise, RO returns one of the error codes
listed in Appendix B, Return Codes.

Table 2.1 lists all VRTX system calls with their associated function codes (in
hexadecimal format).

2.1.2 Executive Call Interrupt

2-2

The 1750A architecture uses a series of linkage and service pointers to control access
to interrupt service routines. Whenever an interrupt is generated--either by external
hardware or by execution of the current program instruction--a new machine state
(consisting of a 'new interrupt mask,' 'new status word' and 'new instruction
counter') is loaded from the status information block referenced by the appropriate
service pointer. The new instruction counter (IC) points to the starting address of the
service routine.

Copyright 1984, Hunter & Ready, Inc.

Basic System Calls

TABLE2.1 VRTX SYSTEM CALLS

Mnemonic

Task Management:
SC_TCREATE
SC_TDELETE
SC_TSUSPEND
SC_TRESUME
SC_TPRIORITY
SC_TINQUIRY
SC_LOCK
SC_UNLOCK

Memory Allocation:
SC_GBLOCK
SC_RBLOCK
SC_PCREATE
SC_PEXTEND

Function Code

OOOOH
OOOlH
0002H
0003H
0004H
0005H
0020H
0021H

0006H
0007H
0022H
0023H

Communication and Synchronization:
SC_POST
SC_PEND
SC_ACCEPT
SC_QPOST
SC_QPEND
SC_QACCEPT
SC_QCREATE
SC_QINQUIRY

Interrupt Support:
UI_ENTER
UI_EXIT

Real-Time Clock:
SC_GTIME
SC_STIME
SC_TDELAY
SC_TSLICE
UI_TIMER

lnitializa ti on:
VRTX_INIT
VRTX_GO

0008H
0009H
0025H
0026H
0027H
0028H
0029H
002AH

0016H
OOllH

OOOAH
OOOBH
OOOCH
0015H
0012H

0031H

Copyright 1984, Hunter & Ready, Inc.

System Call

Task Create
Task Delete
Task Suspend
Task Resume
Task Priority Change
Task Inquiry
Disable Task Rescheduling
Enable Task Rescheduling

Get Memory Block
Release Memory Block
Create Memory Partition
Extend Memory Partition

Post Message
Pend for Message
Accept Message
Post Message to Queue
Pend for Message from Queue
Accept Message from Queue
Create Message Queue
Queue Inquiry

Enter Interrupt Handler
Exit from Interrupt Handler

Get Time
Set Time
Task Delay
Enable Round-Robin Scheduling
Announce Timer Interrupt

Initialize VRTX
Start Multitasking

2-3

Basic System Calls

2-4

The BEX instruction generates an Executive Call interrupt (Interrupt 5), which ref­
erences the pair of linkage and service pointers at hexadecimal addresses 002A and
002B. The status information block referenced by the Executive Call service pointer
has the following format:

+----------------------+
I New Interrupt Mask I
1----------------------1
I New Status Word I
1----------------------1
I New IC for BEX 0 I
1----------------------1
I New IC for BEX 1 I
1----------------------1
I I

I I
1----------------------1
I New IC for BEX 15 I
+----------------------+

In order to direct BEX 0 Executive Call traps to VRTX, the first IC value in the
status block should be set to the beginning of VRTX. (Of course, if an entry point
other than BEX 0 is chosen, then it is the 'New IC' corresponding to the chosen
BEX that must be set; again, the value used to set the vector should be equal to the
VRTX start address.)

The 'New Status Word' should be zero in order to grant VRTX a privileged proces­
sor state (PS=O), as well as to assure that VRTX operates with the appropriate ad­
dress state (AS=O) and access key (AK=O) in implementations where these optional
1750A features are supported.

For example, if VR TX is positioned at physical address 1000 (hexadecimal), then the
service pointer at location 002B points to a status information block of the following
format, assuming that the BEX 0 vector has been chosen for accessing VRTX:

Copyright 1984, Hunter & Ready, Inc.

Basic System Calls

+--------+
New Interrupt Mask: I xx xx I

1--------1
New Status Word: I 0000 I

1--------1
New IC for BEX 0: I 1000 I

1--------1
New IC for BEX 1: I yyyy I

+--------+

2.2 Tasks

Real-time systems are designed to perform seemingly unrelated functions in a nonse­
quential manner, thereby utilizing the processor and 1/0 devices more efficiently.
Several common processing situations lend themselves to this sort of control philoso­
phy. Examples include listening for input from several devices at the same time,
reading or writing a block of data while simultaneously performing arithmetic com­
putations, and implementing sophisticated communications applications.

VRTX is designed to support real-time systems by providing a set of basic mecha­
nisms for implementing multitasking. The basic logical unit controlled by VRTX is
the task, a logically complete execution path through user code that demands the use
of system resources. In a multitask system several tasks appear to execute concur­
rently, although VRTX actually coordinates execution of the tasks in an interleaved
fashion through very rapid reallocation of CPU time.

Under VRTX the program (or collection of programs) that defines the multitask en­
vironment can have as many as 255 logically distinct active tasks, each tagged with a
unique identification number. (In addition, any number of untagged tasks can exist
within the VRTX framework.) Each task performs a specified function
asynchronously and in real time. Each task is assigned a priority level, and VRTX al­
locates control of the CPU to the highest priority task that is ready to execute. The
kernel supports as many as 256 levels of priority with any number of active tasks at
each level. Several tasks can operate asynchronously from a single piece of code, with
each task assigned a priority and possibly an identification number. Tasks can create
other tasks, and they can delete, suspend, and change the priority of themselves or of
other tasks.

Copyright 1984, Hunter & Ready, Inc. 2-5

Basic System Calls

2.2.1 Task Priority and Scheduling

When a task is created, it may be given a unique identification (ID) number (from 1
to 255--ID number 0 indicates that no ID is assigned) and a priority level (from 0 to
255, with 0 being the highest priority). The ID number allows tasks to be readied,
suspended or deleted on a selective basis. VRTX uses the priority level to implement
its priority-based scheduling algorithm.

In multitask programs that run under VRTX, thefirst task is created by the user (see
Chapter 4, Configuration and Initialization). Usually, this task creates other tasks in
the system by issuing VRTX calls. Since this is the only task in the system, it receives
control. As subsequent tasks are created, VR TX is called upon to initiate the
rescheduling procedure and to put the highest priority task into execution. See Ap­
pendix E, Task Rescheduling, which describes rescheduling in detail.

VRTX is an event-driven operating system. This means that the user does not need
to execute special system calls to accomplish task switching. VRTX maintains in ex­
ecution the highest priority task capable of execution. This task continues to execute
until one of the following events occurs:

* The task terminates its own operation.

* The task is suspended.

* A higher priority task is ready to execute.

The executing task can be suspended for a number of reasons, e.g., an explicit delay
or a wait for a message. The task remains suspended until the required operation is
completed, at which time it becomes available for continued execution.

Tasks that have been created, but are of lower priority than the executing task, are
said to be ready to run. These lower priority ready tasks run when all higher priority
tasks are completed or suspended. Ready tasks within the same priority level can
receive CPU control on a time-sliced, round-robin basis if time-slicing has been ex­
plicitly enabled by the SC_TSLICE call. Any number of tasks can exist at the same
priority level.

2.2.2 Task Control Block (TCB)

2-6

Due to the serial nature of a computer, tasks that appear to be executing in parallel
are actually executing in short, interleaved segments. It is therefore necessary for
VRTX to maintain status information (e.g., the contents of active registers) for all
tasks that are not in control of the CPU. This information is retained in a data

Copyright 1984, Hunter & Ready, Inc.

Basic System Calls

structure in system memory called the Task Control Block (TCB). One TCB is asso­
ciated with each active task in the system. See Appendix C, IVT and TCB Formats,
for a diagram of the TCB format.

A task is considered to be in an active state if it is executing, ready or suspended. If a
task is in a dormant state (inactive), the system has no knowledge of its existence,
even though its code remains in memory. (No TCB is defined for a dormant task.)

A task's TCB is frozen while the task is executing and is not altered until the task is
completed or suspended, at which time the TCB is used to store status information
about the task. The TCBs of ready and suspended tasks are linked together in order
of decreasing task priority to form an active chain. Each TCB is connected to the
next by a link word (see Figure 2-2, TCB Chain). VRTX executes the first ready task
in this chain.

In the case where several tasks have the same priority, a TCB that is inserted into the
chain is placed ahead of the TCBs of any task at that priority level. The task whose
TCB was most recently inserted into the TCB chain is executed before any other
tasks at the same priority level. Equal priority tasks are thus prioritized according to
the chain modification history.

TCBs are inserted into the TCB chain as a result of task create calls, task priority
change calls and time-slicing (see Section 3.3.5, Enable Round-Robin Scheduling).
Among equal priority tasks, an optional round-robin scheduling can be enabled. At
the end of a time-slice interval, the TCBs of tasks with the same priority level as the
executing task are rotated. One of the other tasks then gets a chance to execute.

If a task is deleted, it becomes dormant and its TCB is not used. Unused TCBs are
linked together to form an inactive chain of available TCBs. When VRTX is ini­
tialized, all the TCBs are located on the inactive chain. Except for the links them­
selves (TBNEXT in Figure C-2, in Appendix C, IVT and TCB Formats) and the
initial stack pointer (TBSTACK), these TCBs are empty.

__,
Link ~ Link I-- Link 1--+1 0

TCB, TCB2 TC83 TC84

Figure 2-2. TCB Chain

Copyright 1984, Hunter & Ready, Inc. 2-7

Basic System Calls

Whenever a task is created, one of the TCBs is removed from the in,active chain and
the interrupt mask save location is set to all ones (i.e., nothing masked). Parameters
passed with the SC_TCREATE call determine the values for priority, task ID and
Instruction Counter (TBPRI, TBID, TBIC). The location that contains the value for
the new task (TBR14) is set to the TCB address value. The RlS Stack Pointer save lo­
cation (TBSP) is set from TBSTACK. All remaining values in the TCB--including
the saved values for the general registers (TBRO-TBR7, TBR8-TBR13) and for the
SW special register (TBSW)--are copied from the caller's context.

Note: When the first task is created, location TBSW (the stored value for
the task's Status Word (SW) register) is reset. Thus, the first task runs
with privileged processor state (PS=O) and address state (AS=O), unless
these values in the TCB are overridden via the sys-TCREA TE-addr hook
described in Chapter 5, Support for User-Defined Extensions.

2.2.3 Task States and State Transitions

2-8

In a mu!titask environment, tasks exist in one of four states: executing, ready for ex­
ecution, suspended or dormant.

Executing

Ready

Suspended

Dormant

The task has control of the CPU and is executing its assigned in­
struction path.

The task is ready for execution but cannot gain control of the
CPU until (1) all higher priority tasks existing in the ready or ex­
ecuting state are either completed or suspended, and (2) it
reaches the head of the queue of equal priority tasks.

The task has been suspended mid-execution and is waiting to be
readied by a system call or an event (e.g., waiting for a certain
number of ticks to expire).

The task has not been initiated, or its execution has been com­
pleted (i.e., task deleted) and it is now idle. No TCB is assigned
to it.

A task may become suspended for any of the following reasons:

* A Task Suspend call, SC_TSUSPEND, was issued specifying that task
(either by priority or ID number).

Copyright 1984, Hunter & Ready, Inc.

Basic System Calls

* The task suspended itself for a specified time delay using the SC_TDELA Y
call.

* The task is waiting for a message from another task or interrupt handler
(i.e., it issued an SC_PEND or SC_QPEND call but no message is posted
yet).

The status word in each task's Task Control Block can be interrogated with the
SC_TINQUIRY call. If the word returned is zero, the task is ready; if the word is
nonzero, the task has been suspended for reasons indicated by the bit settings (see
Appendix C, IVT and TCB Formats). Suspensions are independent and additive; for
example, if a task is suspended while waiting for a message and it is also explicitly
suspended by another task, both suspending conditions must be removed before the
task is readied for execution.

WARNING

Under no circumstances should a call be issued which can lead to the cur­
rent task's suspension, if task switching has been disabled via an
SC_LOCK call.

Just as a number of different events may suspend a task, several events and calls can
place a suspended task back in the ready state.

* An SC_TRESUME call can be issued to ready a task that was suspended by
an SC_TSUSPEND call.

* A time delay can expire, thus readying a task that was either suspended by
an SC_TDELAY call or timed-out pending for a message.

* A message can be posted (via an SC_POST or SC_QPOST call) to a task
that is waiting for a message.

Tasks are in the dormant state before they are created; they reenter the dormant state
when they are deleted with an SC_TDELETE call. If all tasks are terminated, the
entire system is placed in an idle state, essentially halting its activity, although the
system remains capable of responding to interrupts. All task state transitions are
shown in Figure 2-3, Task State Transitions.

Copyright 1984, Hunter & Ready, Inc. 2-9

Basic System Calls

SC_ TDELETE ...-------1 SC_ TSUSPEND
SC_TDELAY
sc_PEND
SC_QPEND

2-10

Any
call that
forces

rescheduling
Scheduler

SC_ TCREATE Realtime
Event or

SC_TRESUME

SC_TDELETE

Figure 2-3. Task State Transitions

Copyright 1984, Hunter & Ready, Inc.

Basic System Calls

2.2.4 Configuration

The following entries in the Configuration Table are used to control multitasking op­
eration.

user-stack-size specifies the amount of stack allocated to each task.

sys-TCREATE-addr, sys-TDELETE-addr, sys-TSWITCH-addr are
extensions the user may utilize to control critical multitasking operations.

user-task-count specifies the maximum number of tasks allowed in the
system.

Refer to Chapter 4, Configuration and Initialization, for a diagram of the Configura­
tion Table and the location of these entries.

Copyright 1984, Hunter & Ready, Inc. 2-11

sc_TCREATE Create a Task

2.3 Multitasking Management Calls

The following calls allow the user to control the multitasking environment. All calls
described in this section can lead to rescheduling which may result in a task switch,
except SC_LOCK and SC_TINQUIRY.

2.3.1 SC_TCREATE-Create a Task

2-12

This call dynamically creates a task with a specified priority and ID number. Up to
256 priority levels may be specified; up to 255 unique ID numbers may be assigned.
(Number 0 indicates that no ID is assigned.) The TCB of the newly created task is
placed on the active chain immediately in front of the TCBs of all other tasks with the
same priority.

The newly created task inherits all registers' contents, except R14 and R15, from the
creator task's context. (R15 is the stack pointer for the task; R14 contains the new
task's TCB address.) The newly created task also inherits the TCB extension pointer
from the creating task. These values are stored in the newly created task's TCB and
are available for the sys-TCREATE-addr user extension. This call results in a task
switch if the new task's priority is higher than or equal to that of the calling task.

Note: A task ID of 0, while legal, is a special case. A task with ID of 0
can be created but cannot be referenced by other tasks. The function calls
SC_TDELETE, SC_TSUSPEND, SC_TRESUME, SC_TPRIORITY,
and SC_TINQUIRY cannot reference a task with an ID of 0 if issued by
a different task. These calls can be made for a task with ID of 0 only by
the task itself. This anonymity is sometimes useful in systems for security
applications.

+--------------------------~------------------------------+

INPUT: RO = SC_TCREATE (OOOOH)

Rl[0:7] priority for new task

Rl[8:15] =ID number for new task

R2 address of new task

OUTPUT: RO = return code

+------~------~---------------------------------~------+

Copyright 1984, Hunter & Ready, Inc.

Create a Task SC_TCREATE

priority for new task is between 0 and 255, inclusive.

ID number for new task is between 1 and 255, inclusive, or 0 if no ID is to be as­
signed.

address of new task is the starting address of the user code for the new task.

RETURN CODES

OOOOH
OOOlH
0002H

RET_OK
ER_TID
ER_TCB

Successful return.
Task ID error (ID number already assigned).
No TCBs available.

Copyright 1984, Hunter & Ready, Inc. 2-13

sc_TDELETE Delete a Task

2.3.2 SC_IDELETE - Delete a Task

2-14

This call removes one or more tasks from the active chain (including, possibly, the
calling task itself). The affected task becomes dormant and its TCB is put on the in­
active chain. This call results in a task switch if the current task is deleted.

+---+
I I
I INPUT: RO = SC_TDELETE (OOOlH) I
I I
I Rl = priori ty_or_ID I
I I
I I
I OUTPUT: RO = return code I
I I
+------------------------------~-------------------------+

priority_or_ID parameter in Rt can be formatted in any of three ways:

FORMAT 1:

FORMAT 2:

FORMAT 3:

Delete all tasks of a specified priority.
Rl[O: 7] = 'A' (ASCII character 'A')
Rl[8:15] =priority

The return code will have the value RET_OK even
if there are no tasks with the specified priority.

Delete a task with a specified ID number.
Rl [O: 7] 0
Rl[8:15] =task ID

Delete self (i.e., delete calling task).
Rl = 0

RETURN CODES

OOOOH
OOOlH

RET_OK
ER_TID

Successful return.
Task ID error (no task with specified

ID number, Format 2 only).

Copyright 1984, Hunter & Ready, Inc.

Task Suspend SC_ TS USP END

2.3.3 SC_TSUSPEND - Task Suspend

This call suspends one or more tasks. The TCB of each affected task remains on the
active chain, but bit 15 of the status word is set. A task suspended in this manner
does not resume execution until an SC_TRESUME call is issued. This call results in a
task switch if the current task is suspended.

Note: If a task has disabled interrupts and subsequently becomes
suspended, VRTX reenables interrupts for itself and other tasks.
However, as soon as this task resumes execution, interrupts are again dis­
abled.

+---+
I I
I INPUT: RO SC_TSUSPEND (0002H) I
I I
I Rl priority_or_ID I
I I
I I
I OUTPUT: RO = return code I
I I
+---+

priority_or_ID parameter in Rl can be formatted in any of three ways:

FORMAT 1:

FORMAT 2:

FORMAT 3:

Suspend all tasks of a specified priority.
Rl[O: 7] = 'A' (ASCII character 'A')
Rl[8:15] =priority

The return code will have the value RET_OK even
if there are no tasks with the specified priority.

Suspend a task with a specified ID number.
Rl[O: 7] 0
Rl[8:15] = task ID

Suspend self (i.e., suspend calling task).
Rl = 0

RETURN CODES

OOOOH
OOOlH

RET_OK
ER_TID

Successful return.
Task ID error (no task with specified

ID number, Format 2 only).

Copyright 1984, Hunter & Ready, Inc. 2-15

sc_TRESUME Task Resume

2.3.4 SC_TRESUME-Task Resume

2-16

This call resumes the execution of one or more tasks previously suspended by an
SC_TSUSPEND call. This call results in a task switch if the resumed task has a
higher priority, or if its priority is equal to that of the calling task but its TCB is
ahead of the others on the active chain.

Note: A task with ID equal to 0 cannot be explicitly resumed as an ID of
0 cannot be specified in this call.

+---+
I I
I INPUT: RO SC_TRESUME (0003H) I
I I
I Rl priori ty_or_ID I
I I
I I
I OUTPUT: RO = return code I
I I
+--------------------------------·-------------------------+

priority_or_ID parameter in Rt can be formatted in two ways:

FORMAT 1:

FORMAT 2:

Resume all tasks of a specified priority.
Rl[O: 7) = 'A' (ASCII character 'A')
Rl[8:15] =priority

The return code will have the value RET_OK even
if there are no tasks with the specified priority.

Resume a task with a specified ID number.
Rl[O: 7) 0
Rl[8:15] =task ID

RETURN CODES

OOOOH
OOOlH

RET_OK
ER_TID

Successful return.
Task ID error (no task with specified

ID number, Format 2 only).

Copyright 1984, Hunter & Ready, Inc.

Task Priority Change SC_TPRIORITY

2.3.5 SC_TPRIORITY -Task Priority Change

This call changes the priority of a task. The TCB of the affected task is placed on the
active chain immediately in front of the TCBs of all other tasks with its new priority.
This call results in a task switch if the new priority of the affected task is higher than
or equal to that of the calling task.

+---+

INPUT: RO SC_TPRIORITY (0004H)

Rl task ID

R2 priority

OUTPUT: RO = return code

+---+

task ID parameter in Rl and priority parameter in R2 can be formatted in two ways:

FORMAT 1:

FORMAT 2:

Change the priority of a task with a specified
ID number.

Rl[O: 7] 0
Rl[8:15] task ID

R2[0: 7]
R2[8:15]

0
new priority

Change the priority of the calling task.
Rl = 0

R2[0: 7]
R2[8:15]

0
new priority

RETURN CODES

OOOOH
OOOlH

RET_OK
ER_TID

Successful return.
Task ID error (no task with specified

ID number, Format 1 only).

Copyright 1984, Hunter & Ready, Inc. 2-17

sc_TINQUIRY Task Inquiry

2.3.6 SC_TINQUIRY -Task Inquiry

2-18

This system call is used to obtain priority and status information about a particular
task (specified by ID number along with a pointer to the task's TCB. Alternatively,
the SC_TINQUIRY call can be used by a task to determine its own task ID number
and priority level, and the TCB's address. This call never goes through the reschedul­
ing procedure and thus never results in a task switch.

This call can be made from a task or an interrupt service routine (ISR). If the call is
made from an ISR, and no task ID is specified (i.e., task ID=O), the information
describes the current interrupted task.

+-----------------~--------------------------------------+

INPUT: RO SC_TINQUIRY (0005H)

Rl task ID

OUTPUT: RO return code

Rl = task ID

R2 priority

R3 = status word

R4 TCB address

+-------------------~------------------------------------+

task ID parameter in Rt can be formatted in two ways:

FORMAT 1:

FORMAT 2:

Get information about a task with a specified
ID number.

Rl [O: 7] 0
Rl[8:15] task ID

Get information about one's self (i.e.,
the calling task).

Rl[O: 7] = 0
Rl[8:15] = 0

Copyright 1984, Hunter & Ready, Inc.

Task Inquiry sc_TINQUIRY

RETURN CODES

OOOOH
OOOlH

RET_OK
ER_TID

Successful return.
Task ID error (no task with specified

ID number, Format 1 only).

Note that if the return code is nonzero, all registers other than RO remain un­
modified. The status word returned by register R3 is the same as that at TCB offset
05. If the value of this word is zero, the associated task is ready to run. If the status
word is nonzero, the task has been suspended for one or more of the following
reasons, as indicated by the bit settings:

bit: 0 8 9 10 11 12 13 14 15
+---+

R3 = I 0 I status I
+· ---+

Bit

15
14
10

9

Reason for Suspension

Explicitly suspended
Suspended for message
Suspended for task delay
Suspended on message queue

Suspending
Call

SC_TSUSPEND
SC_PEND
SC_TDELAY*
SC_QPEND

*Also set for SC_PEND and SC_QPEND when a
time-out is in effect.

For further information on TCBs refer to Appendix C, IVT and TCB Formats.

Copyright 1984, Hunter & Ready, Inc. 2-19

sc_LOCK Disable Task Rescheduling

2.3.7 SC_LOCK - Disable Task Rescheduling

2-20

This call prevents task rescheduling until an explicit SC_UNLOCK call is issued.
The task that issues SC_LOCK retains processor control, even though other higher
priority tasks may become ready to run.

SC_LOCK and SC_UNLOCK are used in pairs. A count of locks and unlocks is
kept so that nested instances of these calls do not prematurely end a scheduling lock.
For example, nested subroutines and procedures may need to run locked for short
periods of time. When they issue an SC_UNLOCK, it cancels the effect of the previ­
ous SC_LOCK only. This nesting count supports up to 255 levels of SC_LOCKs
and SC_UNLOCKs.

This call should be used with caution, since it disrupts the ordinary management of
the multitask environment. Interrupt-handling, however, is unaffected by disabled
rescheduling.

WARNING
After this call has been issued, care should be taken not to issue any of the
VRTX calls that can lead to the current task becoming suspended. This
event is treated abnormally and causes unpredictable results.

+---+
I I
I INPUT: RO = SC_LOCK (0020H) I
I I
I I
I OUTPUT: RO = return code I
I I
+---+

RETURN CODES

OOOOH RET_OK Successful return.

Copyright 1984, Hunter & Ready, Inc.

Enable Task Rescheduling SC_ UNLOCK

2.3.8 SC_ UNLOCK - Enable Task Rescheduling

This call reenables normal VR TX task rescheduling, cancelling the effect of a single
previously issued SC_LOCK call. If rescheduling is already enabled, this call has no
effect. This call always goes through the rescheduling procedure which may result in
a task switch.

A count of lock/unlock nesting is maintained by VRTX; refer to the SC_LOCK
function for more information.

+---+
I I
I INPUT: RO = SC_UNLOCK (0021H) I
I I
I I
I OUTPUT: RO = return code I
I I
+---+

RETURN CODES

OOOOH RET_OK Successful return.

Copyright 1984, Hunter & Ready, Inc. 2-21

Basic System Calls

2.4 Memory

2-22

The 1750A's 16-bit Instruction Counter defines an address space of 64K words. With
the expanded memory addressing option, however, physical memory can be ex­
panded up to a maximum of 2M words, organized as 16 pairs of separate 64K in­
struction and operand spaces. VRTX is entirely compatible with implementations
that include the memory mapping feature, but this feature is not required.

In a system that makes use of the mapping option, memory is organized in the fas­
hion shown in Figure 2-4, Separation of 1750A Address Spaces.

Conceptually, the memory of a VRTX-based system consists of the following
modules:

Address State O
Instruction Space

USER
_.LOAD MODULE

11111 May be put in ROM/PROM

VRTX Variables

System Stack and
Default User Stacks

TCBs

Address State O
Operand Space

Static User
Variables

User Supplied Stacks

Memory
Partitions

Address State N
Operand Space

Figure 2-4. Separation of 1750A Address Spaces

Copyright 1984, Hunter & Ready, Inc.

*

*

*

Basic System Calls

VRTX code, i.e., the VRTX PROM set.

The user load module, i.e., the software package that the user is respon­
sible for developing, assembling, linking and placing in the execution envi­
ronment.

The VRTX Workspace, which contains system variables, TCBs and
stacks.

* VRTX-managed user memory, comprising one or more partitions, that
is, pools of memory blocks that can be dynamically acquired and released
by the user.

Figure 2-5, Memory Organization, is a schematic view of the overall memory or­
ganization of a VR TX system.

VRTX Component

User Load Module

VRTX Variables

TCBs

Additional
VRTX Variables

User Stacks

Sy stem
Data Area

Partition O

Partition 1

Partition 2

• • •
Partition n

User Memory

VRTX-Managed Memory

IBI May be put in ROM/PROM

Figure 2-5. Memory Organization

Copyright 1984, Hunter & Ready, Inc. 2-23

Basic System Calls

The user load module holds the user's application code and any user-defined system­
level code (see Chapter 3, Interrupt Support, and Chapter 5, Support for
User-Defined Extensions). In addition, the load module contains the interrupt vec­
toring data (i.e., linkage and service pointers, as well as the status information
blocks referenced by these pointers), the Configuration Table, and any status variables
associated with the user application or with system code (see Section 2 .6.1,
Mailboxes). The shading in Figure 2-4 indicates what can be burned into ROM;
everything else must exist in dynamic read/write memory.

The VRTX Workspace contains the VRTX variables, the TCBs, a system stack, a
stack for each task in the system, and message queues. VRTX is responsible for set­
ting up and managing the stacks and for initializing and managing the TCB chain.
The user memory managed by VRTX consists of a number of partitions (i.e., chunks
of memory which may be discontiguous). Each partition is subdivided into several
fixed-size blocks of memory that can be allocated dynamically to tasks. The follow­
ing section describes how VR TX manages user memory and its own VR TX
Workspace.

2.4.1 Memory Allocation

2-24

A task's demand for memory varies over the course of its execution, and different
tasks usually have different requirements. Consequently, a memory allocation policy
must be established, and mechanisms in the operating system must exist to imple­
ment that policy. The operating system treats memory as a resource and allocates
that resource among competing tasks, just as it allocates control of the CPU among
competing tasks.

Two main approaches to memory allocation have been used by multitasking execu­
tives in the past: static allocation of fixed-size memory blocks and dynamic allocation
of variable-sized blocks. In static allocation, each task is assigned a block of memory
at system initialization. This block is dedicated to that one task and cannot be used
by any other task. In dynamic allocation of variable-sized memory blocks, available
memory eventually becomes fragmented as tasks allocate and release memory blocks
from the available pool.

One technique for allocating variable-sized blocks is the 'buddy' system, which is
widely used in non-real-time systems. In this technique, the system attempts to

match the size of the allocated memory block to the size of the requested unit by
repeatedly splitting existing units in half (starting with one single chunk of memory).
When the request is for a unit larger than any of those currently available, the system
attempts to combine a smaller unit with its twin (or 'buddy') into a large compact

Copyright 1984, Hunter & Ready, Inc.

Basic System Calls

unit. This scheme suffers from a serious flaw for real-time applications: indeter­
mmacy.

As memory grows progressively more fragmented, occasions inevitably arise when a
request cannot be met. Even though there is enough total free memory, it may be so
fragmented that a large enough contiguous block cannot be found. These occasions
cannot be predicted in advance and compensated for, since they do not depend on
the number of memory requests (which can be anticipated), but rather on the order
of the requests (which usually cannot be anticipated). The design of this kind of
operating system introduces an element of unpredictability into the total system be­
havior, above and beyond the unpredictability of the environment. This sort of addi­
tional unpredictability is usually unsatisfactory in real-time systems. Real-time
systems cannot tolerate a memory system that usually works.

The designers of VRTX felt that static allocation was too restrictive, but that
variable-sized blocks imposed too high a system overhead. Thus, the VRTX memory
allocation mechanism is a compromise between these two memory allocation
schemes. VRTX gives every task a fixed-size stack in system memory and dynami­
cally allocates partitions of user memory in blocks. Users are able to dynamically
create memory partitions to mirror the often discontiguous chunks that make up the
actual physical organization of memory. Each partition of user memory has blocks
of a fixed size, which is set when that partition is created. The user-stack-size is set
by the user via a parameter in the Configuration Table.

VR TX dynamic memory allocation memory uses the following process:

1. At system initialization, parameters in the Configuration Table indicate
the starting address and the size of the VR TX Workspace, how many tasks
can exist at any one time, and how large each task's user stack should be.
The VR TX Workspace must be large enough to contain the VR TX system
stack, the VRTX system variables, one TCB for each active task, a stack
for every task in the system, and additional memory for every allocatable
block of user memory. In addition, the VR TX Workspace must be large
enough to accommodate a control block for each memory partition and a
control block for each defined message queue. For details on the calcula­
tion of the VRTX Workspace requirements, consult Chapter 4, Configu­
ration and Initialization.

2. Whenever a task is created, VRTX automatically allocates a stack to the
task. This stack can be used to store local variables and is allocated in the
VRTX Workspace. In mapped systems, this default stack allocation should

Copyright 1984, Hunter & Ready, Inc. 2-25

Basic System Calls

2-26

be overridden, so as to provide each task with a stack in the operand space
of its own Address State. (See Appendix D, Implementation Notes, for
details.)

3. A task can execute the SC_PCREATE call to create a partition of user
memory. Parameters passed with this call specify the starting address, size
and standard block size of the partition. The calls SC_ GBLOCK and
SC_RBLOCK can then be used to acquire and release blocks of memory
from the new partition.

4. The call SC_PEXTEND can be used to enlarge a previously defined parti­
tion to include an additional range of memory locations. The extension
need not be contiguous with the originally defined partition.

5. A task can execute the call SC_GBLOCK to obtain a memory block from
the pool of unallocated partition blocks of a partition previously created by
the user. A task can execute this call repeatedly until all blocks in this parti­
tion are allocated.

6. A task can execute the SC_RBLOCK call to release a block of memory
back to the partition previously created by the user. If a task is deleted, its
blocks are not automatically released, so its blocks should be released
before deleting the task.

Since all memory blocks within a partition are the same size, no fragmentation results
from dynamic memory allocation; consequently, no memory compaction is re­
quired. Figure 2-6, VRTX Workspace and Figure 2-7, User Memory Managed by·
VRTX, show how memory is subdivided.

The VRTX partition/block system has several key features that give it extraordinary
flexibility and most of the advantages of a variable-sized block scheme, without the
indeterminacy and system overhead. First, partitions can be defined within other
partitions. For example, one partition may be entirely within a single block of an­
other partition; thus, blocks can easily be broken down into sub-blocks. Second,
two partitions with differently sized blocks can be defined to cover the same area of
memory; thus, blocks of different sizes can be allocated from the same memory
region (the only requirement is that all blocks of one size be released before any
blocks of the other size are allocated).

Copyright 1984, Hunter & Ready, Inc.

Basic System Calls

2.4.2 Configuration

The following parameters in the Configuration Table are used to set up memory al­
location. Refer to Chapter 4, Configuration and Initialization, for more information.

VRTX-workspace-addr and VRTX-workspace-size assist m overall
VRTX memory allocation.

user-stack-size and user-task-count are used to allocate application­
related control structures.

Data Area Pointer----------­
(at 0051 hex)

data-area-size
(from Config.)

System Variables

TCBs

Additional
System Variables

(dynamically expanding
for partition and queue

control structures)

(User-task-count)
X (TCBslze)

= }= l User-stack-si;ze
(User-task-count)

---------~- X (User-stack-si:ze)

Figure 2-6. VRTX Workspace

Copyright 1984, Hunter & Ready, Inc. 2-27

Basic System Calls

2.5 Memory Allocation Calls

2-28

Two memory allocation calls (Get Memory Block and Release Memory Block) allow
user tasks to obtain froin a specified partition--and subsequently to release back to
that partition--individual blocks of memory. All the blocks that comprise a partition
are of fixed size, as determined by the SC_PCREATE call. None of the memory al­
location calls go through the rescheduling procedure, therefore none of them result
in a task switch.

Partitions and Extensions
Defined by SC_PCREATE and SC_PEXTEND

Start address--..-------..

Size
= } Block size

Figure 2-7. User Memory Managed by VRTX

Copyright 1984, Hunter & Ready, Inc.

Get Memory Block SC_GBLOCK

2.5.1 SC_GBLOCK - Get Memory Block

This call obtains a memory block from one of the pools (or 'partitions') of memory
blocks managed by VRTX.

+---+

INPUT: RO SC_GBLOCK (0006H)

R2 partition ID number

OUTPUT: RO return code

Rl address of memory block

+---+

partition ID number is 16 bits

RETURN CODES

Successful return.
No memory blocks available.

OOOOH
0003H
OOOEH

RET_OK
ER_MEM
ER_PID Partition ID error (no such partition).

Copyright 1984, Hunter & Ready, Inc. 2-29

sc_RBLOCK Release Memory Block

2.5.2 SC_RBLOCK - Release Memory Block

2-30

This call returns a previously allocated memory block to the partition from which it
was originally allocated. Blocks are not automatically released when the task is
deleted.

+---+

INPUT: RO SC_RBLOCK (0007H)

Rl address of memory block

R2 = partition ID number

OUTPUT: RO = return code

+---+

partition ID number is 16 bits.

RETURN CODES

OOOOH
0004H

OOOEH

RET_OK
ER_NMB

ER_PID

Successful return.
Not a memory block (specified address

does not reference a block previously
allocated from the specified partition).

Partition ID error (no such partition).

Copyright 1984, Hunter & Ready, Inc.

Create Memory Partition sc_PCREATE

2.5.3 SC_PCREATE - Create Memory Partition

This call is used to define the characteristics of a memory partition that is to be
managed by the VRTX kernel. Associated with each such partition is an ID number
and a default block size; successive SC_GBLOCK requests use this ID number to
obtain blocks of memory of default size from the memory partition.

+---+
I

INPUT: RO SC_PCREATE (0022H)

Rl partition ID number

R2 partition start address

R3 partition size

R4 block size

OUTPUT: RO = return code

+---+

partition ID number is 16 bits.

partition size is the total size of the partition specified in words.

block size is specified in words.

RETURN CODES

OOOOH
0003H

OOOEH

RET_OK
ER_MEM

ER_PID

Successful return.
No memory available (insufficient system

memory for VRTX control structures).
Partition ID error (ID number already

assigned).

Copyright 1984, Hunter & Ready, Inc. 2-31

sc_pEXTEND Extend Memory Partition

2.5.4 SC_PEXTEND - Extend Memory Partition

2-32

This command extends a previously defined memory partition to encompass an addi­
tional range of memory locations. In conjunction with SC_PCREA TE, this com­
mand defines memory partitions that span multiple discontiguous ranges within an
address space.

The block size for a partition extension is identical to that originally defined by
SC_PCREATE.

+---+

INPUT: RO = SC_PEXTEND (0023H)

Rl partition ID number

R2 extension start address

R3 extension size

OUTPUT: RO = return code

+---+

partition ID number is 16 bits.

extension size is the total size of the extension specified in words.

RETURN CODES

OOOOH
0003H

OOOEH

RET_OK
ER_MEM

ER_PID

Successful return.
No memory available (insufficient system

memory for VRTX control structures).
Partition ID error (no such partition).

Copyright 1984, Hunter & Ready, Inc.

Basic System Calls

2.6 Intertask Communication and Synchronization

Even though tasks operate asynchronously, it is often desirable for one task to talk to
another task. In VR TX, tasks communicate with one another by sending and receiv­
ing two-word (32-bit), nonzero messages via VRTX-controlled structures known as
mailboxes and queues. These messages can, of course, be pointers to larger messages
if the communicating tasks are designed to use such a technique.

2.6.1 Mailboxes

Synchronization and communication between multiple tasks in a VR TX system can
be accomplished with three simple, yet powerful, commands:

SC_POST
SC_PEND
SC_ACCEPT

Post a Message
Pend for Message
Accept a Message

A transmitting task deposits the message in an agreed-upon location using the
SC_POST call. To receive the message, another task issues an SC_PEND call. If the
message has already been sent, the receiving task accepts it and is placed in the ready
state. The message location is reset to zero when the message is received. If a location
is empty (holds no message), a task attempting to receive a message with an
SC_PEND call suspends execution until a message arrives. Conversely, if a location
is full (message is present), a task attempting to send a message with SC_POST con­
tinues execution, but an error code is returned. A task using SC_ACCEPT to receive
does not suspend if no message is present; instead an error return is taken. (A
message location must be initialized to zero when it is first declared by the user.)

More than one task can wait for the same message by issuing SC_PEND calls with
the same message address. The highest priority task is placed in the ready state when
another task sends a message to that location. If a task pended at a mailbox is ex­
plicitly suspended, it continues to pick up messages, although it does not resume ex­
ecution until it is explicitly readied.

Using these calls, it is easy to implement mutual exclusion and resource locking, as
well as standard intertask communication. Resource locking is implemented simply
when all the tasks attempting to use the resource pend at the same location; as each
task finishes with the resource, it sends a message to that location, enabling the next
task.

Synchronization between tasks can also be implemented with the two basic calls.
Task A posts a message to one location, then immediately pends at another location.

Copyright 1984, Hunter & Ready, Inc. 2-33

Basic System Calls

Task B simply does the reverse: it receives the message, then immediately posts a
message back to enable Task A. The two tasks are then synchronized.

2.6.2 Queues

2-34

VRTX also provides five additional calls, which implement message queueing.
Message queues are fixed-length buffers, and enqueued messages are managed in a
first-in/first-out (FIFO) manner. Unlike mailboxes, queues are not part of the user's
set of variables, instead they are system-managed structures. Queues can be created
dynamically by VRTX. Tasks can post messages to, pend at, or accept messages from
these queues. If the queue is full, a task or interrupt handler attempting to post a
message receives an error return. On the other hand, if the queue is empty, a pending
task is suspended, but a task attempting to accept messages from an empty queue is
not suspended. Tasks pended at a queue are readied by incoming messages in priority
order, not in the order they were pended. Thus, a low priority task that arrived early
at a queue cannot be activated in preference to a higher priority task.

The following VRTX calls manipulate queues:

SC_QCREATE
SC_QPOST
SC_QPEND
SC_QACCEPT
SC_QINQUIRY

Create a Message Queue
Post a Message to a Queue
Pend for a Message from a Queue
Accept a Message from a Queue
Queue Inquiry

Queues can be used to implement a generalized version of the Dijkstra primitives
SIGNAL and WAIT, which are useful in establishing resource-locking mechanisms
for multiple resources of the same type. Each type of resource (e.g., line printers) is
assigned a specific queue, the length of which is determined by the number of re­
sources included in that type (i.e., the number of printers on the system.) All tasks
attempting to use a resource of a specified type pend at the resource's queue in a pro­
cedure similar to that described for mailboxes. The length of the queue governs how
many tasks can use the resource at the same time. VRTX's priority-ordered readying
of tasks ensures that several tasks waiting to use a resource receive that resource in
order of their priority.

Copyright 1984, Hunter & Ready, Inc.

Post a Message sc_POST

2.7 Communication and Synchronization Calls

Three of these system calls are used for the exchange of two-word (32-bit) messages
via simple mailboxes. The remaining five calls in this section are used for more elabo­
rate exchanges via message queues. Only the posting and pending calls (SC_POST,
SC_PEND, SC_QPOST, and SC_QPEND) go through the rescheduling procedure
which may result in a task switch.

2.7.1 SC_POST - Post a Message

This call is used by a task to post a two-word (32-bit), nonzero message to a specified
message location (mailbox). Mailbox addresses must be logical addresses relative to
the Address State 0 operand space if extended memory addressing is used. This call
results in a task switch if a task whose priority is higher than that of the calling task
was pended on that mailbox.

+---+

INPUT: RO SC_POST (0008H)

Rl mailbox address

R2/R3 message

OUTPUT: RO = return code

+---+

RETURN CODES

OOOOH
0005H
0006H

RET_OK
ER_MIU
ER_ZMW

Successful return.
Mailbox already in use.
Zero message.

Copyright 1984, Hunter & Ready, Inc. 2-35

sc_p£ND Pend for Message

2.7.2 SC_PEND - Pend for Message

2-36

This call is used to obtain a two-word message from a specified message location
(mailbox). If no message has yet been posted to the specified mailbox, the calling task
is suspended until such posting does occur.

An optional time-out value can be specified with this call. In this case, the error code
ER_TMO is returned to the calling task if no message is received within the specified
number of clock ticks (See Section 3.3.1, Real-Time Clock Support). A task switch
occurs if the mailbox is empty.

+---+

INPUT: RO SC_PEND (0009H)

Rl mailbox value

R2/R3 time-out value

OUTPUT: RO return code

R2/R3 message

+---+

time-out value is a 31-bit value, with the high-order bit of R2 ignored. A zero value
indicates no time-out.

RETURN CODES

OOOOH
OOOAH

RET_OK
ER_TMO

Successful return.
Time-out.

Copyright 1984, Hunter & Ready, Inc.

Accept a Message sc_ACCEPT

2.7.3 SC_ACCEPT - Accept A Message

This call is used to obtain a two-word message from a specified message location
(mailbox). Unlike SC_PEND; however, this call does not suspend the calling task
when no message is present; instead, the error code ER_NMP is returned immedi­
ately. This call does not go through the rescheduling procedure.

+---+

INPUT: RO SC_ACCEPT (0025H)

Rl mailbox address

OUTPUT: RO return code

R2/R3 message

+---+

RETURN CODES

OOOOH
OOOBH

RET_OK
ER_NMP

Successful return.
No message present.

Copyright 1984, Hunter & Ready, Inc. 2-37

SC_QPOST Post Message to Queue

2.7.4 SC_QPOST- Post Message to Queue

2-38

This call is used by a task to post a two-word, nonzero message to a specified queue.
This call results in a task switch if a task whose priority is higher than that of the call­
ing task was pended on that queue.

+---+

INPUT: RO SC_QPOST (0026H)

Rl queue ID number

R2/R3 = message

OUTPUT: RO = return code

+---+

queue ID number is 16 bits.

RETURN CODES

OOOOH
0006H
OOOCH
OOODH

RET_OK
ER_ZMW
ER_QID
ER_QFL

Successful return.
Zero message.
Queue ID error (no such queue).
Queue full.

Copyright 1984, Hunter & Ready, Inc.

Pend for Message from Queue SC_QPEND

2.7.5 SC_QPEND - Pend for Message from Queue

This call is used to obtain a two-word message from a specified queue. If the speci­
fied queue is currently empty, the calling task is suspended until a message is posted
at that queue.

An optional time-out value can be specified with this call. In this case, the error code
ER_TMO is returned to the calling task if no message is received within the specified
number of clock ticks (see Section 3.3.1, Real-Time Clock Support). A task switch
occurs if the queue is empty.

+---+

INPUT: RO SC_QPEND (0027H)

Rl queue ID number

R2/R3 time-out value

OUTPUT: RO return code

R2/R3 message (if call successful)

+---+

queue ID number is 16 bits.

time-out value of 0 indicates that no time-out is requested.

RETURN CODES

OOOOH
OOOAH
OOOCH

RET_OK
ER_TMO
ER_QID

Successful return.
Time-out.
Queue ID error (no such queue).

Copyright 1984, Hunter & Ready, Inc. 2-39

SC_QACCEPT Accept Message from Queue

2.7.6 SC_QACCEPT-Accept Message from Queue

2-40

This call is used to obtain a two-word message from a specified queue. Unlike
SC_QPEND, however, this call does not suspend the calling task when no message
is present; instead, the error code ER_NMP is returned immediately. This call does
not go through the rescheduling procedure.

+---+
INPUT: RO = SC_QACCEPT (0028H)

Rl = queue ID number

OUTPUT: RO return code

R2/R3 =message (if call successful).

+---+
RETURN CODES

OOOOH
OOOBH
OOOCH

RET_OK
ER_NMP
ER_QID

Successful return.
No message present.
Queue ID error (no such queue).

Copyright 1984, Hunter & Ready, Inc.

Create Message Queue SC_QCREATE

2.7.7 SC_QCREATE - Create Message Queue

This call is used to create a message queue. This queue is of a fixed size; there is an
upper limit on the number of messages that can be enqueued at any given time. The
queue is managed by VRTX in a 'first-in/first-out' (FIFO) manner. This call does not
go through the rescheduling procedure.

+---+

INPUT: RO SC_QCREATE (0029H)

Rl queue ID number

R2 number of entries in queue

OUTPUT: RO = return code

+---+

queue ID number of 0 is allowed.

number of entries in queue cannot exceed 4095 (12 bits of significance).

RETURN CODES

Successful return. OOOOH
0003H

RET_OK
ER_MEM No memory available (insufficient system

memory).
OOOCH ER_QID Queue ID error (ID number already

assigned).

Copyright 1984, Hunter & Ready, Inc. 2-41

SC_QINQUIRY Queue Inquiry

2.7.8 SC_QINQUIRY - Queue Inquiry

2-42

This call is used to obtain a count of the number of messages waiting in a queue. If
the count is nonzero, the actual contents of the head-of-queue message (i.e., that
message which will be given to the next SC_QPEND or SC_QACCEPT request) is
also returned to the caller, without being extracted from the queue. This call does not
go through the rescheduling procedure.

It should be noted that although the caller is given a copy of the first message, the
message remains queued. The calling program will still need to QPEND or QAC­
CEPT the message to remove it from the queue.

This function can be used at both task and interrupt service routine levels.

Note: If the return code is nonzero, all registers other than RO remain
unmodified.

+---+

INPUT: RO SC_QINQUIRY (002AH)

Rl queue ID number

OUTPUT: RO return code

R2/R3 = message

R4 count of messages in queue

+---+

count of messages in queue is invalid if ER_QID returned.

message is returned as zero if there are no messages in the queue (i.e., count is zero.)

RETURN CODES

OOOOH
OOOCH

RET_OK
ER_QID

Successful return.
Queue ID error (no such queue).

Copyright 1984, Hunter & Ready, Inc.

Chapter 3

INTERRUPT SUPPORT

3.1 Introduction

HUNTER
~READY

VRTX/1750 makes no assumptions about its target environment, other than the exis­
tence of a 1750A computer with some random access (read/write) memory. Instead,
it is the responsibility of the user to supply such hardware-dependent service
routines as may be required to initialize devices and to handle interrupts. The inte­
gration of these routines into a VRTX system is the subject of this chapter. The
shaded portion of Figure 3-1, Interrupt Architecture, indicates the functions that are
covered.

3.2 Interrupt Service Routines

A real-time system must be able to respond quickly to externally generated inter­
rupts. VRTX provides the means by which user-supplied interrupt service routines
(also called interrupt handlers) can influence the scheduling of critical tasks. In con­
trast to application tasks, which are scheduled synchronously by VRTX, an interrupt
handler routine is executed asynchronously to the rest of the system software
whenever its hardware interrupt is generated.

Application Program

Memory CPU

User-defined
System Call

Handlers

VRTX
Extensions

----....--- '----...-----' ---~----
Basic Calls

l'7J?2)VRTX

Interrupt-Support User-Defined
Extensions

Figure 3-1. Interrupt Architecture

Copyright 1984, Hunter & Ready, Inc. 3-1

Interrupt Support

Upon detection of an interrupt request, the 1750A hardware automatically saves the
current program status information in a linkage block and executes a jump through a
vector in the corresponding service block. The user supplies the linkage and service
blocks, as well as the reserved-address pointers to these blocks, for each interrupt
and trap that may occur.

Because interrupt handler routines are entered directly, without intervention by
VRTX, it is the responsibility of each such routine to save and restore registers as re­
quired. Moreover, since interrupt-handling is entirely distinct from the multitask en­
vironment, a simple Load Status ('LST' in MIL-STD mnemonics) instruction can be
used to exit such a routine.

In most cases a close coordination is required between interrupt servicing and its ef­
fect on the multitask environment. Two special calls, UI_ENTER and UI_EXIT, al­
low interrupt handlers to interface with VRTX. A typical interrupt handler is begun
with the UI_ENTER system call and is ended with the UI_EXIT call (rather than an
LST instruction). So long as the handler is 'bracketed' in this manner, it can make use
of a variety of VRTX services. In particular, an interrupt handler can issue
SC_ACCEPT and SC_QACCEPT calls to obtain messages from tasks; and, con­
versely, it can use SC_POST and SC_QPOST to send messages to tasks.

In fact, an interrupt handler can issue all VRTX calls except the following:

SC_LOCK
SC_PCREATE
SC_PEND
SC_TCREATE
SC_TDELETE

SC_QPEND
SC_QCREATE
SC_TDELAY

SC_TSUSPEND (when time-slicing enabled)
SC_TPRIORITY

The user should always take care when issuing, from an interrupt service routine,
any SC-prefix call that could suspend the interrupted task, since unexpected conse­
quences could result.

3.2.1 Interrupt Service Routines and VRTX

3-2

All multitask activity ceases the moment an interrupt is detected, and control passes
to the designated interrupt service routine. All tasks resume their former states when
control returns, unless the interrupt service routine signals the occurrence of a signif­
icant event with a VRTX call (such as UI_TIMER, SC_POST or SC_QPOST). Re-

Copyright 1984, Hunter & Ready, Inc.

Interrupt Support

scheduling is initiated if the UI_EXIT (and matching UI_ENTER) call is used
instead of LST to return from the interrupt service routine. Rescheduling occurs after
control returns to the task environment (i.e., after all nested interrupts have been
handled and any system calls in progress are completed). See Appendix E, Task Re­
scheduling, for more details.

As mentioned earlier, most interrupt service routines begin with UI_ENTER and
end with UI_EXIT. This pair of calls guarantees that VRTX performs the reschedul­
ing procedure upon exit from the interrupt handler. Both calls must always be used
together. If task switching is not needed and the slight amount of CPU time that
UI_ENTER and UI_EXIT consume must be saved, then the LST instruction may
be used instead of Ul_EXIT (in this case, UI_ENTER is not to be coded either).
When using LST, the user must guarantee that no nested interrupt whose handler
uses UI_ENTER/UI_EXIT occurs. Were such a nested interrupt handler to run,
VRTX would not perform the rescheduling procedure upon exit from the handler
ending with LST.

It should be noted that VRTX, in its internal processing of system calls, makes exten­
sive use of the 'disable interrupts' and 'enable interrupts' XIO instructions. Thus, al­
though an interrupt service routine is always entered with interrupts automatically
disabled, a call to VRTX may result in interrupts being reenabled. For this reason,
interrupt service routines should use the Interrupt Mask Register--rather than the
DSBL and ENBL signals--as the primary mechanisms for controlling their own in­
terruptibility.

In other words, if an interrupt service routine that uses VR TX services wishes not to
be interrupted, it should ensure that the interrupt mask register (MK) is set to all
zeroes. In order to accomplish this, a value of zero for New Interrupt Mask can be
specified within the service block that initially gives control to the routine; or al­
ternatively, the routine itself can reset the mask by means of the 1/0 set mask instruc­
tion (SMK).

3.2.2 Format of an Interrupt Service Routine

The interrupt service routine is responsible for saving and restoring the contents of
the registers it modifies in the course of its execution, including register RO used for
the VRTX function code and Rl used for the linkage pointer parameter to
UI_EXIT. Note also that the contents of register RO and Rl remain in the saved area
where they are restored by VRTX during the course of the UI_EXIT call. VRTX
performs no register saves on an interrupt (in fact, VRTX doesn't handle interrupts

Copyright 1984, Hunter & Ready, Inc. 3-3

Interrupt Support

3.2.3

3-4

at all). Thus, an interrupt service routine usually has the following format (using
MIL-STD assembler format):

Interrupt Handler for Clock

int
ST RO,save+3 save registers used
ST Rl,save+4
LIM R0,16H load function code
BEX 4 make ui enter call -

LIM RO,OFFFFH
XIO RO.OD put ack line lo
LIM RO,O
XIO RO.OD put ack line hi
LIM RO,OFH
XIO RO.RPI reset pending int

LIM R0, 12H load function code
BEX 4 make ui timer call -

LIM RO, llH load function code
LIM Rl,save set up save area
BEX 4 make ui exit call -

save DATA 0,0,0,0,0 save area
npsa DATA 0,0,int new program status area

END

Communication from an Interrupt Service Routine

Besides the standard VRTX system calls, the following special calls are used to inter­
face an interrupt service routine to VRTX.

UI_ENTER
UI_EXIT
UI_TIMER

Enter an Interrupt Handler
Exit from Interrupt Handler
Announce Timer Interrupt

Copyright 1984, Hunter & Ready, Inc.

Interrupt Support

In conjunction with UI_ENTER and UI_EXIT, an interrupt service routine may
use standard VRTX services--such as SC_POST and SC_QPOST--to activate user
tasks and transmit messages to them. SC_POST deposits a two-word message in a
specified location. The contents of the location must be zero at the time SC_POST is
invoked; otherwise, the location is deemed already in use. If the task for which the
message is intended has issued an SC_PEND call at the appropriate location, its task
state is changed from suspended to ready, even though the task is currently not active
due to the interrupt.

If more than one task is awaiting a message at this location, only the highest priority
task receives the message and is readied. If a task does not issue an SC_PEND call for
the message, the SC_POST simply posts the message so that it can be retrieved when
a task issues the SC_PEND call. The UI_EXIT call can be used to exit the interrupt
service routine and initiate the rescheduling procedure. Thus, the newly readied task
receives control if it has highest priority. The SC_QPOST call has much the same
effect as the SC_POST call, except the message is directed to a queue instead of to a
mailbox. Again, the UI_EXIT call can be used to exit the interrupt service routine
and initiate the rescheduling procedure.

Interrupt service routines that do not end with UI_EXIT should disable (or mask
out) interrupts; otherwise, all interrupt handlers that are nested deeper are unable to
initiate the rescheduling procedure. Remember, in VRTX/1750, the UI_EXIT call
must be matched with a UI_ENTER call.

The UI_TIMER call is used to integrate a real-time clock into VRTX. The user must
define a minimal clock service routine, which merely handles the mechanics of
dealing with a specific clock device (such as the optional Timer A or Timer B, if these
features are implemented). On a periodic basis, the clock handler issues the
UI_TIMER call, informing VRTX that another time interval (or 'tick') has expired.
Even in target environments without a real-time clock device, a timer of sorts (basic,
but sufficient for task delay and round-robin scheduling) can be implemented by
issuing the UI_TIMER command on a regular basis from other interrupt handlers.

3.2.4 Interrupt Management Calls

The following interrupt management calls, Enter Interrupt and Exit Interrupt, pro­
vide an interface from interrupt handlers to the VRTX multitasking environment.
The Exit Interrupt call (Ul_EXIT), when paired with a corresponding UI_ENTER
~all, allows the rescheduling procedure to occur upon completion of interrupt servic­
mg.

Copyright 1984, Hunter & Ready, Inc. 3-5

Interrupt Support

3-6

It is recommended that Interrupt Service Routines use UI_ENTER and UI_EXIT,
rather than LST instructions. These VRTX function calls perform a number of activi­
ties beneficial to the application that are not available with LSTs. If mailboxes and/or
queues are used to communicate with tasks, a task switch may be needed. This need
is checked in UI_EXIT by initiating the rescheduling procedure. If an ISR can be in­
terrupted by higher priority interrupts that cause POSTing or QPOSTing, then all
nestable ISRs must use UI_ENTER and UI_EXIT to take advantage of the resched­
uling procedure.

These function calls are optimized for fast performance to assist in short interrupt
service routine durations.

Copyright 1984, Hunter & Ready, Inc.

Enter Interrupt Handler ULENTER

3.2.5 UI_ENTER - Enter Interrupt Handler

This call is used to enter an interrupt handler that uses UI_EXIT for termination.
UI_ENTER and UI_EXIT form a matched pair; whenever one is used, the other
must also be used.

Note that register RO must have been saved prior to invoking UI_ENTER, since this
register is used to pass a function code to VRTX. Thus, the call to UI_ENTER
should not be the very first instruction in the interrupt service routine.

Instead, since the 1750A architecture disables interrupts automatically prior to trans­
ferring control to an interrupt service routine, it is sufficient for an interrupt handler
to defer calling UI_ENTER until reaching the point where it wishes to reenable in­
terrupts.

+---+
I

INPUT: RO = UI_ENTER (0016H) I
I
I

OUTPUT: RO = return code I
I

+---+

RETURN CODES

OOOOH RET_OK Successful return.

Copyright 1984, Hunter & Ready, Inc. 3-7

ULEXIT Exit from Interrupt Handler

3.2.6 UI_EXIT - Exit from Interrupt Handler

3-8

This call is used to exit an interrupt handler. Unlike the LST instruction, the
UI_EXIT call interfaces with the VRTX kernel, thereby allowing the rescheduling
procedure to occur upon return to the multitask environment.

The UI_EXIT call should be used in preference to the LST instruction whenever a
previous posting call--either from the current handler or from the handler of an in­
tervening nested interrupt -- may have readied a pended task. In general, always use
UI_EXIT if the interrupt handler itself can be interrupted; use LST only if interrupts
have been disabled or masked. Unless this is done, an intervening nested interrupt
cannot use Ul_EXIT to initiate the rescheduling procedure.

Always pair UI_EXIT with a matching UI_ENTER at the beginning of the inter­
rupt.

UI_ENTER and UI_EXIT are optimized for fast performance to assist in short ISR
durations.

+---+
I I
I INPUT: RO UI_EXIT (00 l lH) I
I I
I Rl linkage pointer I
I I
I I
I OUTPUT: No return is possible I
I I
+---+

linkage pointer in register R 1 is similar in function to the address operand ordinarily
supplied to the LST instruction. Thus, it must point to a block of data from which
the previous Interrupt Mask, Status Word, and Instruction Counter values can be
restored. In addition, however, the saved values of registers RO and Rl--which are
used in making the UI_EXIT call--must also be restored in order to fully return to
the interrupted program's context.

Copyright 1984, Hunter & Ready, Inc.

Exit from Interrupt Handler ULEXIT

Thus, the linkage pointer in Rl points to a five-word context block, formatted as fol­
lows:

+--------------------------+
I Old Interrupt Mask I
1--------------------------1
I Old Status Word I
1--------------------------1
I Old Instruction Counter I
1--------------------------1
I Saved RO Contents I
1--------------------------1
I Saved Rl Contents I
+--------------------------+

Copyright 1984, Hunter & Ready, Inc. 3-9

Interrupt Support

3.2.7 Other System Calls from ISRs

The previous function calls are used only by interrupt service routines, but are not
the only functions available at ISR level. Generally, a system call is available for use
at ISR level if it meets the following criteria:

1. the system call does not cause suspension of the caller; or

2. the system call does not cause a rearrangement of the task, queue, or parti­
tion control block chains.

The following system calls are useful for communication between ISRs and tasks,
and also support ISR control over multitasking priorities and scheduling.

Task status: SC_TINQUIRY and
SC_TSUSPEND (when time-slicing not invoked)

Scheduling management: SC_POST, SC_ACCEPT, SC_QPOST and
SC_QACCEPT

Timer management: SC_GTIME, SC_STIME and UI_TIMER

3-10 Copyright 1984, Hunter & Ready, Inc.

Interrupt Support

3.3 Integrated Support for Special Devices

Many VRTX applications require a real-time clock device. Support for such a device
is fully integrated into VRTX. The user need only supply a short hardware­
dependent interrupt service routine for the clock device. VRTX, in turn, manages all
the logical operations needed to provide user application tasks with a full repertoire
of associated clock management commands. It is important to realize, however, that
VRTX has been designed to operate quite satisfactorily without the existence of these
devices; even the clock is not required.

The VRTX commands that support a clock fall into two categories: calls from user
tasks and calls from interrupt handlers. VRTX recognizes four user calls for timer
services (SC_GTIME, SC_STIME, SC_TDELAY and SC_TSLICE) and one call
from the clock service routine (Ul_TIMER). The first two calls permit user tasks to
obtain the value from the clock counter and to set a new value for the counter. The
remaining user calls implement task delays and round-robin scheduling. The
Ul_TIMER call, issued from an interrupt handler, simply notifies VRTX that an­
other clock interval (or 'tick') has expired.

3.3.1 Real-Time Clock Support

The system calls in this section allow tasks to obtain the value of a YR TX-maintained
31-bit timer, to set that timer to a selected value, to delay a task for a specified
period, and to enable time-slicing. The UI_ prefix call Ul_TIMER is used by the
clock handler to inform VRTX that a clock 'tick' has occurred. Only the task delay
call results in a task switch.

The timer maintained by VRTX is a 31-bit value. It is set to zero at VRTX_INIT
time. This timer is incremented by 1 for each Ul_TIMER call, which is used to signal
1 clock tick. Since this timer is 31 bits wide, it rolls over from 07FFFFFFF
Hexadecimal to 0. Once past VRTX_INIT, this timer is only modified by
Ul_TIMER and SC_STIME function calls.

Copyright 1984, Hunter & Ready, Inc. 3-11

SC_GTIME Get Time

3.3.2 SC_GTIME- Get Time

3-12

This call is used to obtain the current value, in 'ticks' of the clock counter; it does not
go through the rescheduling procedure.

+---+
I I
I INPUT: RO = SC_GTIME (OOOAH) I
I I
I I
I OUTPUT: RO return code I
I I
I R2/R3 clock counter value I
I I
+---+

RETURN CODES

OOOOH RET_OK Successful return.

Copyright 1984, Hunter & Ready, Inc.

Set Time SC_STIME

3.3.3 SC_STIME - Set Time

This call sets the current value, in number of 'ticks,' of the system clock counter; the
system defaults this value to zero at initialization. This call does not go through the
rescheduling procedure.

+---+
I I
I INPUT: RO SC_STIME (OOOBH) I
I I
I R2 /R3 new value I
I I
I I
I OUTPUT: RO = return code I
I I
+---+

new value is a 31-bit value.

RETURN CODES

OOOOH RET_OK Successful return.

Copyright 1984, Hunter & Ready, Inc. 3-13

SC_TDELAY Task Delay

3.3.4 SC_TDELAY -Task Delay

3-14

This call suspends execution of the calling task for a specified number of clock 'ticks.'
VRTX maintains the TCBs of delayed tasks in a queue that is arranged in order of the
expiration of their delay periods. For example, if task 1 was delayed for 10 ticks at
time 5, and task 2 was delayed for 5 ticks at time 7, then in the delay chain task 2 will
be ahead of task 1. This scheme reduces the overhead in processing clock ticks. The
delay value stored in the TCB is not an absolute delay, but a relative increment from
the delay value of its predecessor. The rescheduling procedure is always initiated and
generally results in a task switch.

+---+
I I
I INPUT: RO SC_TDELAY (OOOCH) I
I I
I R2/R3 delay interval I
I I
I I
I OUTPUT: RO = return code I
I I
+--+

delay interval is the number of clock 'ticks' for which the calling task is to be
suspended

RETURN CODES

OOOOH RET_OK Successful return.

Copyright 1984, Hunter & Ready, Inc.

Enable Round-Robin Scheduling sc_TSLICE

3.3.5 SC_TSLICE - Enable Round-Robin Scheduling

This call is used to enable and disable time-sliced, round-robin scheduling of equal­
priority tasks under VRTX. Every time VRTX is notified of a clock 'tick' (i.e., it
receives a UI_TIMER call--see Section, 3.3.6, UI_TIMER call), it records which
task is in control. If the same task is continuously in control during the time-slicing
interval, the task is suspended when the interval elapses, and its TCB is put at the end
of its priority group on the ready chain.

The rescheduling procedure is not initiated by this call. All groups of equal priority
tasks are subject to time-slicing (e.g., three tasks at priority 5 and six tasks at priority
10 will all undergo time-slicing).

If time-slicing is in effect and a task suspends for any reason, it is put at the end of its
priority group on the active chain. Round-robin scheduling is disabled when the
SC_TSLICE call has a 0 interval specified.

+---------------------------~----------------------~----+

I I
I INPUT: RO SC_TSLICE (0015H) I
I I
I R3 time-slicing interval I
I I
I I
I OUTPUT: RO = return code I
I I
+-----------------------------~--------------------------+

time-slicing interval is the number of clock 'ticks' which are to comprise the time­
slice interval for round-robin scheduling. A value of 0 disables time-slicing.

RETURN CODES

OOOOH RET_OK Successful return.

Copyright 1984, Hunter & Ready, Inc. 3-15

ULTIMER Post Time Increment from Interrupt

3.3.6 UI_TIMER - Post Time Increment from Interrupt

3-16

This call is used by an interrupt handler to inform VRTX that a time interval (or
'tick' has expired. A task switch may occur after a subsequent UI_EXIT call if a
delayed task is readied by the UI_TIMER call and its priority is higher than the in­
terrupted task.

+--------------------~---------------------------~------+

I I
I INPUT: RO = UI_TIMER (0012H) I
I I
I I
I OUTPUT: RO = return code I
I I
+---+
RETURN CODES

OOOOH RET_OK Successful return.

Copyright 1984, Hunter & Ready, Inc.

Chapter 4

CONFIGURATION
AND INITIALIZATION

HUNTER
~READY

This chapter describes the VRTX/1750 data structure in a user-supplied Configura­
tion Table, and the two different actions that make up system initialization: VRTX
initialization and user-supplied initialization.

4.1 Configuration Table

VRTX/1750 is a single, indivisible PROM product, rather than a collection of indi­
vidual modules requiring a particular linker and host for its assembly. VR TX is de­
signed to be as independent as possible from individual development systems and
target configurations.

VRTX does not exist in isolation and must be connected to its surrounding environ­
ment. The Configuration Table supplies this vital link, and is VRTX's window to its
environment. Within this table, the user specifies the parameters VR TX needs to
define a particular configuration. The word at location 0050 hex is reserved by
VRTX to point to the Configuration Table. Also, VRTX reserves the word at loca­
tion 0051 hex to point to a data area reserved for VRTX's private operand references.

At system initialization, these two pointers at the reserved locations point to the
Configuration Table and to the VRTX Workspace (i.e., to the area of system
memory reserved for VRTX). Parameters in the Configuration Table indicate the
size of the VRTX Workspace, how many tasks can exist at any one time, and how
large each task's user stack should be. The VRTX Workspace must be large enough
to contain the VRTX system stack (with a minimum size of 64 words), a 48-word
area for VRTX system variables, a 29-word TCB for each active task, a stack for
every task in the system, and a two-word area for every allocatable block of user
memory. In addition, the VRTX Workspace must be large enough to accommodate a
5-word control block for each memory partition and a control block of length 2n+7
(where n is the number of queue elements) for each defined message queue.

The following describes in detail each parameter in the Configuration Table.

reserved represents a parameter reserved for future use of VRTX. The user
should always supply a value of zero (0) here.

VRTX-workspace-size specifies the total size, in words, of memory area
available to the kernel. See Section 4.2, Determining VRTX-workspace-size,
for more information.

Copyright 1984, Hunter & Ready, Inc. 4-1

Configuration and Initialization

VRTX-stack-size specifies, in words, the amount of memory from VRTX­
workspace-size to be dedicated to the VRTX stack (minimum= 64 words).

user-stack-size specifies the length, in words, of stacks assigned to user tasks.
During system initialization, VRTX automatically allocates stacks of this size.
There is another option. To bypass VRTX and explicitly allocate stack size by
using the TCREATE extension, the user supplies a value of zero (0) here. See
Appendix D, Implementation Notes, for more information on user-allocated
stacks.

user-task-count specifies the maximum number of tasks that can be simultane­
ously active in the system. VRTX uses this value to allocate Task Control
Blocks (TCBs) and stack space.

VRTX-codespace-addr specifies the starting address of the VRTX code.

sys-TCREATE-addr and sys-TDELETE-addr are optional parameters that al­
low the user to perform special processing whenever tasks are created or
deleted. If these parameters are not used, a value of zero (0) is supplied here.
For additional information, see Chapter 5, Support for User-Defined Exten­
sions.

sys-TSWITCH-addr is another optional parameter that allows a user-defined
routine to be given control whenever a context-switch is made from one task to

another. If no special context switching code is required, the user supplies a
value of zero (0) here. For more information, see Chapter 5, Support for User­
Defined Extensions.

4.2 Determining VRTX-workspace-size

4-2

VRTX-workspace-size specifies the total size of memory available to the VRTX ker­
nel. The amount of memory required by VR TX to operate an application is
determined by a calculation formula using the following elements.

Copyright 1984, Hunter & Ready, Inc.

Configuration and Initialization

0

1

2

3

4

5

6

7

8

9

A

B

c
D

E

F

VRTX/1750

(reserved, must= 0)

VRTX-workspace-size

VRTX-stack-size

(reserved, must= 0)

(reserved, must= 0)

(reserved, must= 0)

(reserved, must= 0)

user-stack-size

(reserved, must= 0)

user-task-count

VRTX-workspace-addr

(reserved, must= 0)

*sys-TCREATE-addr

*sys-TDELETE-addr

* sys-TSWITCH-addr

(reserved, must= 0)

* indicates optional parameter; if omitted or unused, must be set to 0.

Figure 4-1. VRTX Configuration Table

Copyright 1984, Hunter & Ready, Inc. 4-3

Configuration and Initialization

+------+--------------------+--------------+-------------------+
!Symbol! Meaning !Workspace size! Notes I
I I I formula I I
+------+--------------------+--------------+-------------------+
I
I
I
I
I t
I
I
I us
I
I
I P
I
I
I
I b
I
I
I
I
I
I
I q
I
I
I
I qe
I
I

I
IVRTX system
I variables
I
!Max. number of tasks
I in system
I
!user stack size
I
I
!Memory partitions in
I system

Memory blocks in
system

Queues in system

queue elements in
system

48

29*t

us*t

5*p

b=Plsize/
Pblksize +
P2size/
P2blksize

7*q

qe=Qlsize +
Q2size

allocated by system!
I
I

each task allocated!
a 29-word TCB I

total stack size
area.

I
I
I
I

5 words allocated I
for each partition!
control block I

Total blocks in
system determined
by each partition
size divided by
each partition's
block size

7 words allocated
for each queue
control block

Size of each queue

I
I
I
I

I s system stack s Minimum size is 64
I words
+------+--------------------+--------------+-------------------+

Figure 4-2. Determining VRTX-workspace-size

4-4 Copyright 1984, Hunter & Ready, Inc.

Configuration and Initialization

VRTX-workspace-size is expressed in words. The formula for determining
VRTX-workspace-size is presented below and its result expressed in words.

VRTX-workspace-size:
= 48 + 29t + (us*t) + 5p + 2b + 7q + 2qe + s

For example, a system using VRTX/1750 has the following user-specified configura­
tion:

10 tasks
user stack size of 64 words
l partition of size 128 words with 4 word blocks = 32 blocks
l partition of size 256 words with 32 word blocks = 8 blocks
8 queues each of size 10 80 queue elements
2 queues each of size 20 = 40 queue elements

This formula determines its VRTX-workspace-size:

48 + 29t + (us*t) + 5p + 2b + 7q + 2qe + s
48 + (29*10) + (64*10) + (5*2) + (2*(32+8)) + (7*10) +

(2*(80+40)) + 64
1442 words

4.3 Support for System Initialization

System initialization comprises those preliminary activities necessary to have the sys­
tem in a predicted state prior to application execution. Examples of system initializa­
tion include timer initialization, initial task priorities, device states, and general
software state variables.

System initialization depends on the overall board environment. Because VR TX
makes only minimal assumptions about its environment, it performs only that part of
initialization dependent upon the microcomputer and memory. The user defines the
rest of initialization.

Overall system initialization is defined in two different groups of actions: VRTX
initialization and user-supplied initialization.

Copyright 1984, Hunter & Ready, Inc. 4-5

Configuration and Initialization

4.3.1 VRTX Initialization

Two separate calls, VRTX_INIT and VRTX_GO, initialize VRTX and start appli­
cation processing.

The VRTX_INIT function call performs the following:

*

*

*

*

*

*

Sizes and clears the VRTX Workspace.

Saves in the VR TX Workspace the addresses to user-provided extensions in
the Configuration Table, including the Task Create, Task Delete, and Task
Switch hooks.

Sets up and reserves Task Control Blocks for SC_TCREATE calls.

Sets up the user-specified stacks for each task.

Initializes other internal VRTX variables.

Returns control to the caller.

The return code indicates whether the VRTX_INIT operation encountered any er­
rors.

A subsequent VRTX_GO call, from which there is no return, begins executing the
highest priority task created in the user's initialization code. Multitasking is now un­
derway.

When Reset is activated on the 1750A, the processor aborts its current operation, sets
a variety of system registers to a known state, and fetches the instruction located at
address 0. This instruction, typically encoded in PROM or ROM, should be a
branch or jump to a user-supplied pre-initialization routine. The pre-initialization
routine must:

1. Load addresses 0050 and 0051 (hexadecimal) with pointers to the VR TX
Configuration Table and the VRTX Workspace, respectively.

2. Load addresses 002A and 002B (hexadecimal) with pointers to the
Executive Call linkage and service blocks.

3. Initialize the Executive Call service block, as described in Section 2.1.2,
Executive Call Interrupt, and Appendix C, IVT and TCB Formats.

4-6 Copyright 1984, Hunter & Ready, Inc.

Configuration and Initialization

4. Perform a VRTX_INIT call.

5. Perform any user required initialization.

6. Perform a VRTX_GO call.

Even if Reset is not used to activate VRTX, the above steps must be performed in or­
der to initialize VRTX properly.

4.3.2 User-Supplied Initialization

User-supplied initialization consists of initialization specific to hardware devices
within the system, and initialization specific to the function that the application per­
forms.

Device initialization depends on the board-level environment. Usually the real-time
clock, and any special user devices (e.g., a memory management unit) are initialized
at overall system initialization time. Initialization of these devices is provided by
user-supplied code external to VRTX.

Initialization specific to the application's function usually consists of setting up
software control structures and variables related to the application code, such as
mailboxes, queues, and boolean variables as well as creating the initial set of tasks
with which the system begins.

User-supplied device initialization can be performed in either of two different places:

1. in code that precedes the VRTX_INIT call; or

2. in code immediately after the VRTX_INIT call and before the first task
begins with the VRTX_GO call.

Users can perform initialization in either, both, or neither of these places. Some
devices should be initialized before VRTX, because their successful operation is a
prerequisite for VRTX initialization. For example, if the extended memory address­
ing option exists in the system, the map registers should be initialized before VR TX,
because system memory allocation depends on these registers. Another example is
the stack; VRTX_INIT needs a stack, so the stack pointer must be set up prior to
that call. Devices without system-wide ramification can be initialized after VRTX.

Copyright 1984, Hunter & Ready, Inc. 4-7

Configuration and Initialization

Initialization of constructs that require VRTX services, such as queues and memory
partitions, must be performed after the call to VRTX_INIT.

4.3.3 Use of System Calls during Initialization

Using any VRTX system calls prior to the call to VRTX_INIT causes unpredictable
results.

The following system calls can be used after the call to VRTX_INIT:

SC_TCREATE
SC_PCREATE
SC_STIME
SC_QCREATE

SC_TDELETE
SC_PEXTEND
SC_GTIME
SC_POST

SC_TPRIORITY
SC_GBLOCK
UI_TIMER
SC_QPOST

SC_TINQUIRY
SC_RBLOCK
SC_TSLICE
SC_QINQUIRY

The three construct-creation calls, SC_TCREATE, SC_PCREATE, and
SC_QCREATE, are typically used at this location.

4.4 Initialization Calls

4-8

Two special calls (VRTX_INIT and VRTX_GO) are used during initialization. The
many activities in VRTX_INIT are illustrated in Section 4.3.1, VRTX Initialization.
VRTX_GO forces the scheduling of the highest priority task.

Copyright 1984, Hunter & Ready, Inc.

Initialize VR TX VRTX_INIT

4.4.1 VRTX_INIT- Initialize VRTX

This call, issued from user-supplied code executed upon system reset, causes VR TX
to perform its initialization activities.

Unlike other VRTX calls, this call is not issued by means of a BEX instruction. In­
stead, the call is made as follows (using MIL-STD syntax):

SJS Rl5,vrtx

where vrtx specifies the starting location plus 2 (offset 2) of VRTX itself. (In IEEE
mnemonics, the same instruction is written as 'CALL @-Rl5, vrtx'.)

+---+
I I
I INPUT: Rl5 stack-pointer I
I I
I vrtx VRTX-address I
I I
I I
I OUTPUT: RO = return code I
I I
+-------------~--------------------~--------------------+

RETURN CODES

OOOOH
OOOFH

RET_OK
ER_ I NI

Successful return.
Fatal initialization error.

Copyright 1984, Hunter & Ready, Inc. 4-9

VRTX_GO Start Multitasking

4.4.2 VRTX_GO - Start Multitasking

4-10

This call, issued only after VRTX_INIT, causes VRTX to gain control. VRTX
begins multitasking by starting the highest priority task. No return is made to the
caller.

+---+
I I
I INPUT: RO = VRTX_GO (003 lH) I
I I
I I
I OUTPUT: No output values I
I I
+---+

Copyright 1984, Hunter & Ready, Inc.

Chapter 5

SUPPORT FOR
USER-DEFINED !EXTENSIONS

HUNTER
~READY

5.1 Introduction

VRTX/1750 can supply much of the system software requirements for most em­
bedded applications. However, as a component designed for use in many different
applications with many different hardware configurations, it does not contain all the
code that might be found in an operating system tailored to a specific environment.

VRTX and other Hunter & Ready silicon software components are designed to be
connected to build a large complete system, just as stereo components are hooked up
to build a complete audio system. As with stereo components, silicon software com­
ponents must provide the 'plugs' and 'cables' that allow them to be hooked up. There
must exist mechanisms in the components that make it easy to interface them to ex­
ternal software and other components.

There are four kinds of interfaces that must be defined between the VRTX compo­
nent and user-supplied code:

*

*

*

*

The interface between VRTX and user-supplied application code (i.e., user
tasks). This interface is defined by the basic VR TX system calls and key
entries in the Configuration Table (see Chapter 2, Basic System Calls).

The interface between VRTX and user-supplied interrupt service routines
and initialization code. This interface is defined in Chapter 3, Interrupt
Support.

The interface between VRTX and additional system call handlers. These
handlers are supplied by the user and designed to support special hardware
devices--for example, file-handling calls (open, close, etc.) for supporting a
disk.

The interface between VRTX and user-supplied VRTX extensions, that is,
code that extends the basic VR TX mechanisms so that each task can sup­
port additional information. (For example, if a floating-point unit exists in
the system, the values of the FPU registers must be saved and restored with
every task switch. User code must be used to perform this operation, since
not all systems have an FPU; but the user code must be activated by VR TX
on every task switch.)

Copyright 1984, Hunter & Ready, Inc. 5-1

User-Defined Extensions

Most packaged operating systems fail to provide an adequate definition of the last
three interfaces (i.e., they do not provide enough 'hooks' for the user to interface
non-application code to the package). Therefore, unless the user's application is ex­
actly that envisioned by the package designers, the source code of the operating sys­
tem requires modification--an expensive and risky job.

This chapter describes the last two interfaces. (The interrupt service routine and
initialization code interface is covered in Chapter 3, Interrupt Support and in Chap­
ter 4, Configuration and Initialization.) Figure 5-1, Extensions Architecture, shows
the functions involved.

5.2 User-Defined System Call Handlers

5-2

User-defined system call handlers serve the same basic purpose as the system call
handlers provided by VRTX itself; they provide system services that can be accessed
with a program-generated interrupt instruction. They are used to implement func­
tions that are not appropriate for VRTX itself to provide. For example, if the system
includes a local area network (e.g., Ethernet), certain communications primitives
(e.g., Send and Receive) could be implemented with user-defined system calls.

Application Program

Memory CPU 1
Interrupt
Handler

I Clock I Other
Peripherals ___ _,... _____ ~ ---..----

Basic Calls

-VRTX

Interrupt-Support User-Defined
Extensions

Figure 5-1. Extensions Architecture

Copyright 1984, Hunter & Ready, Inc.

User-Defined Extemions

5.2.1 Overview

The ~ranch to Executive (BEX) instruction of the 1750A CPU allows program­
generated traps to access as many as 16 individual system call handlers, identified as
'BEX 0' through 'BEX 15'. One of these, ordinarily 'BEX O', must be reserved as the
entry point for making VRTX system calls. The remaining 15 entry points, however,
may be serviced by user-defined system call handlers.

Unlike application programs, these system call handlers are not part of the multitask
environment (i.e., they have no priority and do not undergo scheduling; instead,
they execute when BEX instructions are encountered). Because they execute with
privileged status (PS=O in the Executive Call 'New Status Word'), they have com­
plete access to all the resources of the 1750A architecture (e.g., they can execute 1/0
instructions). Most VRTX calls can be made from a user-supplied system call handler
(all code outside the multitask environment can execute the calls an interrupt service
routine can execute; see Section 3.2, Interrupt Service Routines).

5.2.2 Interfacing System Call Handlers to VRTX

User-defined system call handlers are interfaced to VRTX in a manner that is identi­
cal to the way interrupt service routines are interfaced to VRTX. As many as 16
'New IC' vectors can be included in the status block referenced by the Executive Call
(Interrupt 5) service pointer, just as 'New IC' vectors are included in the status
blocks for normal interrupt servicing. When the BEX n instruction is executed, the
processor transfers control to the address specified in the (n+l) st location past the
'New Status Word' in the EXEC new status block. (See Figure C-1 in Appendix C,
IVT and TCB Formats.)

As with interrupt handlers, a user-defined system call handler is responsible for
saving and restoring registers; it can exit with a simple Load Status (LST) instruc­
tion. If bracketed with UI_ENTER and UI_EXIT, however, a user-defined system
call handler can employ such VRTX services as SC_POST, SC_ACCEPT,
SC_QPOST and SC_QACCEPT; in fact, it can issue all calls that are permitted
from interrupt handlers.

5.3 VRTX Extensions

Occasionally, it is critical for users to be able to attach general system-mode software
to VRTX, software that is not necessarily activated by an BEX instruction. For ex­
ample, if the system includes the extended memory addressing option, the mapping
registers have to be handled by user-defined system software. When each task is
created, an array of values for the map registers must also be created; and when a task

Copyright 1984, Hunter & Ready, Inc. 5-3

User-Defined Extensions

switch occurs, the contents of the registers may be switched as well (e.g., if there are
more than t6 tasks and thus more tasks than maps).

To do this, the user needs to create an extension to the VRTX-managed Task Con­
trol Block (TCB) where the values of each task's instruction page registers and
operand page registers can be stored. User-supplied code must also get control from
VRTX on every task switch, so that the map registers can be updated.

5.3.1 Mechanisms for Extending VRTX

5-4

Three optional vectors in the Configuration Table provide the hooks that allow users
to interface general system software to VRTX. The vectors sys-TCREATE-addr and
sys-TDELETE-addr point to user-supplied routines that are given control whenever
a task is created or deleted by VRTX. When the routine receives control, register Rt
contains a pointer to the TCB of the newly created (or deleted) task. Register R2
contains a pointer to the TCB of the creator's (or deletor's) task. The optional vector
sys-TSWITCH-addr points to a routine that is given control whenever a task switch
occurs. (In this case, register Rt contains a pointer to the old TCB; register R2 con­
tains a pointer to the new TCB.)

Thus, the user-supplied code has immediate access to all the data stored in the TCB
(see Appendix C, IVT and TCB Formats) of the affected task. Moreover, each task's
TCB contains a location (offset 02) that can hold a pointer to a TCB extension in
user-defined space. This extension can be used to store additional information about
the task (e.g., the values of map registers or floating point registers).

As with system call handlers, VRTX extensions can execute all system calls that can
be issued from interrupt service routines. Such extension routines are responsible, of
course, for saving and restoring all affected registers. Unlike system calls handlers,
however, they should not use the UI_ENTER/UI_EXIT pair. Instead, an extension
routine returns to VRTX by means of an unconditional branch to the address con­
tained in register Rt4. In MIL-STD mnemonics, the instruction that returns to
VR TX is coded as:

JC 7,0,Rl4

The same instruction, in IEEE format, is:

BR O(Rl4)

To reiterate: any registers modified by the extension must be saved or VRTX may be
seriously affected.

Copyright t984, Hunter & Ready, Inc.

User-Defined Extensions

5.3.2 Examples of VRTX Extensions

Two examples of VRTX extensions have already been mentioned: routines to control
a floating-point unit (FPU), or routines to manage page registers for extended
memory addressing. These are both examples that require extended state informa­
tion for each task in the system. Another example is a Fast Fourier Transform (FFT)
device for signal-processing applications. In every case, the extended state can be
saved in a TCB extension and manipulated by user code that is activated on task
create, delete or switch instructions.

Another example of a user-defined VR TX extension is special code run at task create
time to set up the run-time environment of a high-level language (e.g., to allocate
stack frames of a specified size). Tracing and debugging can also be implemented by
means of VRTX extensions. User-supplied code can be activated at every task switch
to record the ID of each task as it runs and thus generate a usage profile.

5.4 Configuration

The final entries in the Configuration Table are used to support user-defined system
calls and VRTX extensions. Refer to Chapter 4, Configuration and Initialization, for
a diagram.

sys-TCREATE-addr and sys-TDELETE-addr are optional parameters that al­
low the user to perform special processing whenever tasks are created or
deleted. If not required, supply a value of 0 for these parameters. Whenever
such a routine is invoked, Rl contains a pointer to the TCB of the created (or
deleted) task.

sys-TSWITCH-addr similarly, is an optional parameter that gives a user­
supplied routine control whenever a context-switch is made from one task to
another. If no special context-switching code is required, supply a value of 0. If
a routine is specified, whenever it is invoked, Rl contains a pointer to the TCB
of the old task and R2 contains a pointer to the TCB of the new task.

Copyright 1984, Hunter & Ready, Inc. 5-5

Appendix A

SYSTEM CALL SUMMARY HUNTER
~READY

The set of VRTX system calls, the input data (including the hexadecimal value of the function
code to be supplied in RO), and the return data (shown in brackets) are illustrated in the follow­
ing table.

Because the error code is always returned in RO (except for the UI_EXIT and VRTX_GO calls
where nothing is returned), this value is not shown in the table.

Task Management:

+-------------input/[returned] data----------------+
Mnemonic I RO I Rl I R2 R3

+--+

SC_TCREATE OOOOH priority_&_ID address

SC_TDELETE OOOlH priority_or_ID

SC_TSUSPEND 0002H priority_or_ID

SC_TRESUME 0003H priority_or_ID

SC_TPRIORITY 0004H ID priority

SC_TINQUIRY 0005H ID I [ID] [priority] R3: [status]
R4: [TCB addr]

SC_LOCK 0020H

SC_UNLOCK 0021H

Copyright 1984, Hunter & Ready, Inc. A-1

System Call Summary

Memory Allocation:

+-------------input/[returned] data----------------+
Mnemonic I RO I Rl I R2 R3

+--+

I I
SC_GBLOCK I0006H [address] I partition IOI

I I I
SC_RBLOCK I0007H address I partition IOI

I I I
SC_PCREATE I0022H partition ID I address IR3:size

I I IR4:blocksize
I I I

SC_PEXTEND I0023H par ti ti on ID I address I size
I I I

Communi::ation and Synchronization:

Mnemonic

SC_POST

SC_PEND

SC_ACCEPT

SC_QPOST

SC_QPEND

SC_QACCEPT

SC_QCREATE

SC_QINQUIRY

A-2

+-------------input/[returned] data----------------+
I RO I Rl I R2 R3
+--+

0008H address

0009H address

0025H address.

0026H queue ID

0027H queue ID

0028H queue ID

0029H queue ID

002AH queue ID

message
I

time-out/
[message]

I
[message]

I .
message

I
time-out/
[message]

I
[message]

I
count I

I
[message]

I R4: [count]
I

Copyright 1984, Hunter & Ready, Inc.

System Call Summary

Interrupt Support:

Mnemonic

UI_ENTER

UI_EXIT

+-------------input/[returned] data----------------+
I RO I Rl I R2 R3
+----~---+

I
I0016H
I
I OOllH
I

!linkage pointer!
I I

Real-Time Clock:

Mnemonic

SC_GTIME

SC_STIME

SC_TDELAY

SC_TSLICE

UI_TIMER

Initialization:

Mnemonic

VRTX_INIT

VRTX_GO

+-------------input/[returned] data----------------+
I RO I Rl I R2 R3
+--+

I
IOOOAH [clock counter]
I I
IOOO_BH clock counter
I I
IOOOCH delay interval
I I
I0015H I slice interval I
I I I
I0012H I I
I I I

+-------------input/[returned] data----------------+
I RO I Rl I R2 I R3 I
+--~-----~-+

I
I
I
I0031H
I

Copyright 1984, Hunter & Ready, Inc. A-3

Appendix 8

RETURN CODES HUNTER
~READY

Upon return from a VRTX system call, a return code is generally returned in register RO. The
following table lists the mnemonics, values (in hexadecimal notation), and meanings of all possi­
ble return codes.

RO Mnemonic

OOOOH RET_OK

OOOlH ER_TID

0002H ER_TCB

0003H ER_MEM

0004H ER_NMB

0005H ER_MIU

0006H ER_ZMW

0009H ER_ISC

OOOAH ER_TMO

OOOBH ER_NMP

OOOCH ER_QID

OOODH ER_QFL

OOOEH ER_PID

OOOFH ER_INI

0021H ER_COM

Meaning

Successful return

Task ID error

No TCBS available

No memory available

Not a memory block

Mailbox in use

Zero message

Invalid system call

Time-out

No message present

Queue ID error

Queue full

Partition ID error

Fatal init error

Invalid component
call

Copyright 1984, Hunter & Ready, Inc.

Affected Commands

[All valid commands]

TCREATE, TDELETE,
TSUSPEND, TRESUME,
TPRIORITY, TINQUIRY

TCREATE

GBLOCK, PCREATE,
PEXTEND, QCREATE

RBLOCK

POST

POST, QPOST

[Invalid commands]

PEND, QPEND

ACCEPT, QACCEPT

QPOST, QPEND, QACCEPT
QCREATE, QINQUIRY

QPOST

GBLOCK, RBLOCK,
PCREATE, PEXTEND

VRTX_INIT

[Invalid commands]
High byte does not
equal zero

B-1

Appendix C

VECTOR TABLE AND TCB FORMATS HUNTER
~READY

VRTX uses two standard data structures for run-time information storage: the
Vector Table defined by the 1750A architecture and the Task Control Blocks (TCBs)
assigned to each task in the system. These data structures can be accessed by users, so
for convenient reference, their formats are collected into this appendix.

C.1 Vector Table

The 1750A architecture defines a mechanism known as an 'interrupt vector table,' at
reserved addresses 0020 through 003F (hexadecimal), that controls access to interrupt
and trap handler routines. To avoid complicated system generation and configura­
tion procedures, VRTX gives the user full control of this well-defined structure.
Thus, the specification of user-defined interrupt and trap handlers is accomplished in
an easy and straightforward manner.

Figure C-1, 1750A Vector Table and VR TX Pointers, is a simplified rendition of the
1750A vector table. Complete details are given in the MIL-STD-1750A (Notice 1)
document.

Note that one of the BEX system call traps must be routed into VRTX by the user­
defined vector table. The Instruction Counter for this purpose is at an offset of ex­
actly 4 words into the kernel. Thus, if BEX 0 is chosen and the VR TX kernel is
positioned at physical address 1000, the VRTX IC is specified as hex 1004 in the third
word of the block referenced by the Executive Call service pointer.

Note also that the two words at addresses 0050 and 0051 are pointers, respectively,
to the user-defined Configuration Table and to the area of data memory reserved for
VRTX's storage requirements.

C.2 TCB Format

For each task in an ongoing VRTX environment, the system maintains a data
structure known as a Task Control Block (TCB). Each TCB records all relevant con­
text and state information for its associated task. The format of the 29-word
(001DH) TCB block is shown in Figure C-2, Task Control Block.

Copyright 1984, Hunter & Ready, Inc. C-1

Vector Table and TCB Formats

20

21

22

23

2A

28

3E

3F

40

4F

50

51

lnterruptO

Interrupt 1

•
•
•

Interrupt 5
(Executive

Call).

•
•
•

~ Interrupt 15 -I

[Unreserved
memory]

Config. Pointer

Workspace Pointer

Old Mask

Old SW

Old IC

New Mask

New SW VRTX

BEXOIC code

BEX 1 IC
space

• •
• •
I BEX151C I VRTX

l-- Config.
Table

VRTX

Work

space

Figure C-1. 1750A Vector Table and VRTX Pointers

C-2 Copyright 1984, Hunter & Ready, Inc.

Vector Table and TCB Formats

The status word at TCB offset 05 is the value returned by a Task Inquiry
(SC_TINQUIRY) call. If the value of this word is zero, the associated task is ready
to run. If the value is nonzero, the task has been suspended for one or more of the
following reasons, as indicated by the bit settings:

bit: 0 8 9 10 11 12 13 14 15
+------------~--------------------~-----+

R3 = I 0 I status I
+---+

Bit

15
14
10

9

Reason for Suspension

Explicitly suspended
Suspended for message
Suspended for task delay
Suspended on message queue

Suspending
Call

SC_TSUSPEND
SC_PEND
SC_TDELAY*
SC_QPEND

*Also set for SC_PEND and SC_QPEND when a
time-out is in effect.

Copyright 1984, Hunter & Ready, Inc. C-3

Vector Table and TCB Formats

00

01

02

03

04

05

06

07

OD

OE

OF

10

11

12

18

19

1A

18

1C

• • •

• • •

TB NEXT

TBLINK

TB EXT

TBPRI

TBID

TB STAT

TBRO

TBR1

TBR7

TBMSK

TBSW

TBIC

TBSP

TBR8

TBR14

TB STACK

TB FLAGS

~ TBDELAY

•

- - -} (reserved
for

system) ---
Pointer to user's TCB extension

Priority

ID number

Task status word

RO

R1

• R2-R6

Register
save
area •

•

R7

Interrupt mask

Machine status word (SW)

Instruction Counter (IC)

Stack Pointer (R15)

RB

• R9-R13
•

-

R14

Original Stack Pointer

Special Flags

Delay/Timeout Interval

Figure C-2. Task Control Block

C-4 Copyright 1984, Hunter & Ready, Inc.

Appendix D

IMPLEMENTATION NOTES

D.1 Implementing Variable-Sized Stacks

HUNTER
~READY

Under some circumstances, users may wish to circumvent the usual allocation of
fixed-size stacks to tasks, choosing instead to assign stacks of different sizes to differ­
ent tasks. This can be accomplished when the task is created using the
sys-TCREATE-addr vector described in Chapter 5, Support for User-Defined Ex­
tensions. This Configuration Table vector is set up to point to a short piece of
user-supplied code that runs whenever a task is created. The code simply overwrites
the two stack pointer values in the task's TCB (TBSP, TBSTACK) with new values
that point to the top of an arbitrarily sized area of user-managed memory. VRTX
manages the stack pointers in exactly the same way it normally handles them.

The Configuration Table parameter user-stack-size can be set to zero if user stacks
are to be handled in this manner.

Copyright 1984, Hunter & Ready, Inc. D-1

Appendix E

TASK RESCHEDULING HUNTER
~READY

The rescheduling procedure involves traversing the active TCB chain to find the
highest priority ready task. A task switch occurs if the task found has higher priority
than the currently executing task. A task switch entails saving the current task's state
in its TCB and loading the registers with the state of the new task. Rescheduling does
not always result in a task switch. Checking the active TCB chain for the highest
priority task occurs after some VRTX system calls just before they return to the task
level.

Since VRTX code is interruptible, the rescheduling procedure can be interrupted.
Because interrupt service routines often affect the states of tasks, checking for the
highest priority task may have to be restarted when interrupted to insure the highest
priority task gets control.

If a task switch occurs, the sys-TSWITCH-hook is used to activate the TSWITCH
routine. Occasionally the rescheduling procedure does not result in a task switch, in
which case the TSWITCH routine is not used. Because the rescheduling procedure is
interruptible, the TSWITCH routine may be activated more than once.

The VRTX calls listed below do not activate the rescheduling procedure, therefore
none of them result in a task switch:

SC_TINQUIRY,
SC_GBLOCK,
SC_ACCEPT,
SC_GTIME,
UI_ENTER

SC_LOCK,
SC_RBLOCK,
SC_QACCEPT,
SC_STIME,

SC_PCREATE, SC_PEXTEND,
SC_QCREATE, SC_QINQUIRY,
SC_TSLICE,

One call always causes a task switch to occur:

SC_TDELAY

The remaining calls go through the rescheduling procedure under certain circum­
stances (usually when the call suspends or deletes the current task, or readies a
higher-priority task or an equal priority task that appears on the TCB chain before
the current task).

Additionally, the following task management calls cause a task switch if the current
task is affected or if any task with a higher priority is affected. For example, if a task

Copyright ~984, Hunter & Ready, Inc. E-1

Task Rescheduling

E-2

switch with the same priority as the current task is created or resumed, the reschedul­
ing procedure results in a task switch. Similarly, a suspend of the current task results
in a task switch.

SC_TCREATE, SC_TDELETE, SC_TRESUME, SC_TSUSPEND,
SC_TPRIORITY, SC_UNLOCK

The four communication calls cause a task switch if the current task suspends on an
empty mailbox or queue, or if the posted message readies a higher priority task:

SC_POST, SC_PEND, SC_QPOST, SC_QPEND

Calls made from interrupt service routines (system level code) are special cases. The
calls below cause VRTX to go through the rescheduling procedure but only if the in­
terrupt service routine ends with the UI_EXIT call. In the case of nested interrupts,
rescheduling occurs only when the outer nest interrupt handler completes and ex­
ecutes its UI_EXIT call.

The calls below cause a task switch if they ready a suspended i:ask with higher
priority than the task that was interrupted. This also applies to tasks of equal priority
but whose TCB is on the TCB chain ahead of the TCB of the interrupted task.

UI_TIMER, SC_POST, SC_QPOST

Copyright 1984, Hunter & Ready, Inc.

INDEX HUNTER
~READY

The following list contains only the most important references to each item. System
calls are not listed specifically; consult pages 2-3, Appendix A, or the Table of Con­
tents for these calls.

accept messages, 2-37
access key, 2-4
active chain, 2-7
active task, 2-7, 4-1
address space, 1-3

blocks, memory, 2-23, 2-24, 2-25, 2-26, 2-28

Communication from an ISR, 3-4
communication intertask, 2-33
Configuration Table, 1-4, 2-11, 2-24, 2-25, 2-27, 4-1, D-1
create tasks, 2-6, 2-7, 2-8, 2-9, 2-12, 2-25, 2-26, 2-31, 2-41

delay, 2-6, 2-9, 3-5
delete, 2-5, 2-7, 2-8, 2-9, 2-14, 2-26
development environment independence, 1-3
device initialization, 4-7
dormant task, 2-7
dynamic memory allocation, 2-25

embedded computers, 1-1
error code, 2-2, 2-33
event-driven operating system, 2-6
executing task, 2-6, 2-7
Executive call, 2-1, 2-2, 2-4
exit, 3-2, 3-8
expanded memory addressing, 1-3
extend memory, 2-32
extended memory addressing, 2-35, 4-7, 5-3
extended state, 5-5
extensions, 5-1, 5-3

function code, 2-2, 3-3, A-1

Copyright 1984, Hunter & Ready, Inc. 1-1

Index

I-2

hooks, 1-5, 5-2, 5-4

identification (ID) number, 2-6
implementation independence, 1-3
inactive chain, 2-7, 2-8
initialization, 2-25. 4-1

device initialization, 4-7
VRTX initialization, 4-1, 4-6

input parameters, 2-2
inquiry, 2-8, 2-42

task inquiry, 2-18
queue inquiry, 2-42

interrupt, 3-1
interrupt management, 3-5
interrupt service routines (ISRs), 1-5, 3-1
Intertask communication, 2-33

linkage pointer, 2-24, 3-8

mailboxes, 2-33, 2-35
memory, 2-22
memory allocation, 2-24, 2-25, 2-28
memory blocks, 2-23, 2-24, 2-25, 2-26, 2-28
memory partition, 2-25
memory protection, 1-3
message queues, 2-24, 2-34
messages, 2-33, 2-34
multitasking, 1-1, 2-5, 2-11, 2-24

new instruction counter, 2-2, 3-8, 5-3
new interrupt mask, 2-2, 3-3, 3-8
new status word, 2-4, 3-8, 5-3

object code, 1-4

partitions, 2-23, 2-24, 2-26
pend, 2-33, 2-36, 2-39, 3-5, 3-5, E-2
position independence, 1-3
post, 2-33, 2-35, 2-38, 3-5, 3-10, 5-3, E-2
priority, 2-5, 2-17

Copyright 1984, Hunter & Ready, Inc.

queues, 2-34, 2-35, 2-41

ready task, 2-8
real-time, 1-1
real-time clock, 3-5, 3-11
real-time executive, 1-2
real-time operating system, 1-2
registers, saving, 3-2, 3-3, 3-7, 3-8, 5-1, 5-3, 5-4
release a block of memory, 2-26, 2-28, 2-30
rescheduling procedure, 2-6, 2-20, 2-21, 3-3, 3-6, E-1
reserved, 4-1
reset, 2-8, 2-33, 3-3
Reset, system, 4-6, 4-7, 4-9
resource-locking mechanisms, 2-34
resume task, 2-9, 2-15, 2-16
return code, 2-2, B-1
ROM, 1-1, 2-24
round-robin scheduling, 2-7, 3-5, 3-15

SC_prefix calls, 3-2
scheduling, 2-6
service pointer, 1-4, 2-2, 2-24, 5-3, C-1
silicon software component, 1-1
stacks, 2-23, 2-24, 4-2, D-1
stand-alone computers, 1-1
static allocation, 2-24, 2-25
status information block, 2-2, 2-4, 2-24
status word, 2-2, 2-9, 5-3
suspend task, 2-5, 2-6, 2-7, 2-8, 2-9, 2-15, 2-33, 2-34
synchronization, 2-33
System Call, 2-1, 2-2, A-1
system call format, 2-1
system calls, 1-4, 2-2, 2-3, A-1
system Reset, 4-6, 4-7, 4-9
system variables, 2-23, 2-24, 4-1
sys-TCREATE-addr, 2-11, 2-12, 4-2, 5-4, 5-5, D-1
sys-TDELETE-addr, 2-11, 4-2, 5-4, 5-5
sys-TSWITCH-addr, 2-11, 4-2, 5-4, 5-5, E-1

target environment independence, 1-3
Tasks, 2-5

Copyright 1984, Hunter & Ready, Inc.

Index

1-3

Index

1-4

Task Control Block (TCB), 2-6, 2-19, 2-24, 4-2, 5-4, C-1, C-3, D-1, E-1
task states, 2-9, 3-4, E-1
task state transitions, 2-9
task switch, 2-6, 2-9, 3-3, 3-6, 5-4, E-1
TCB Chain, 2-7
TCREA TE extension, 4-2
tick, 2-36, 2-39, 3-5, 3-11, 3-14, 3-15, 3-16
time delay, 2-9, 3-14
time-slicing, 2-6, 2-7, 3-11, 3-15
TSWITCH routine, E-1

user-defined system call handlers, 5-3
user load module, 2-24
user memory, 2-24, 4-1
user-task-count, 2-11, 2-27, 4-2
user-stack-size, 2-11, 2-25, 2-27, 4-2

variables, systeJll, 2-23, 2-24, 4-1
virtual machine, 1-1
VRTX, 1-1
VRTX architecture, 1-4
VRTX-codespace-addr, 4-2
VR TX configuration, 1-4
VRTX initialization, 4-1, 4-6
VRTX Workspace, 2-23, 2-24, 2-27, 4-1
VRTX-workspace-addr, 2-27, 4-2
VRTX-workspace-size, 2-27, 4-1, 4-2, 4-4
VRTX extensions, 5-1, 5-3
VRTX-managed user memory, 2-23, 2-24, 2-26, 2-28
VRTX-stack-size, 4-2

Copyright 1984, Hunter & Ready, Inc.

-We'd like your comments

HUNTER
~ READY

Hunter & Ready, Inc. attempts to provide documents
that meet the needs of all VR TX users. We can
improve our documentation if you help us by
commenting on the usability, accuracy, readability, and
organization of this manual. All comments and
suggestions become the property of Hunter & Ready,
Inc.

VRTX/1750 User's Guide #591613001

1. Please specify by page any errors you found in this
manual.

2. Is this document comprehensive enough? Please
suggest any missing topics or information that is not
covered.

3. Did you have any difficulty understanding this
document? Please identify the unclear sections.

4. Please rate this document on a scale from 1 to 10,

with 10 the best rating.

Your Name

Tide

Company Name

Address

Cicy Phone

State Zip

II I

BUSINESS REPLY CARD
FIRST CLASS PERMIT N0.265 PALO ALTO.CA

POSTAGE WILL BE PAID BY ADDRESSEE

HUNTER & READY. Inc.
P.O. Box 60803
445 Sherman Avenue
Palo Alto, CA 94306-0803

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

HUNTER
•READY

~

~

~

~

~-

r.:: •

	Table of Contents
	Chapter 1 Overview of VRTX/1750
	Chapter 2 Basic System Calls
	Chapter 3 Interrupt Support
	Chapter 4 Configuration and Initialization
	Chapter 5 Support for User-Defined Extensions
	Appendix A System Call Summary
	Appendix B Return Codes
	Appendix C Vector Table and TCB Formats
	Appendix D Implementation Notes
	Appendix E Task Rescheduling
	Index

