
--. ;or _'.;- .;:.1"7 - - - ,-

HUNTER
• READY

VRTXC

~ - --

VRTX
C Interface Library

User's Guide

Version 3
Document Number 592103001

November 1984

+------+--------------------------------------+-------+
I REV. I REVISION HISTORY I PRINT I
I I I DATE I
+------+--------------------------------------+-------+
I -001 I Original Issue I 9/84 I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
+------+--------------------------------------+-------+

Hunter & Ready, Inc. makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. Hunter & Ready, Inc. assumes no responsibility for any errors
that may appear in this document. The information in this document is subject to
change without notice.

Hunter & Ready software products are copyrighted by and shall remain the property
of Hunter & Ready, Inc. Use, duplication, or disclosure is subject to restrictions
stated in Hunter & Ready's software license. No part of this document may be copied
or reproduced in any form or by any means without the prior written consent of
Hunter & Ready, Inc.

VRTX, VRTXJ80, VRTX/86, VRTXl186, VRTX/8002, VRTX/68000, VRTX/1750,
lOX and FMX are trademarks of Hunter & Ready, Inc. and may be used only to
identify Hunter & Ready products.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in paragraph (b) (3) (B) of the Rights in Technical Data and Computer Software clause
in DAR 7-104.9(a).

Copyright 1984
Hunter & Ready, Inc.
445 Sherman Avenue

P.O. Box 60803
Palo Alto, CA 94306-0803

415/326-2950
TELEX: 278835 (HRI UR)

All righ ts reserved
Printed in U.S.A.

Table of Contents HUNTER
~ READY

Chapter 1 OVERVIEW OF THE VRTX C INTERFACE LIBRARY 1-1

1.1 Introduction ... 1-1

1.2 VRTX Functions .. 1-1

1.3 Program Portabil ity .. 1-6

1.4 Declarations of Functions ... 1-6

1.5 Address Parameters .. 1-6
1.5.1 Task Code Addresses .. 1-7
1 .5.2 Mailboxes .. 1-8
1.5.3 Messages ...•............. 1-8
1 .5.4 TCB and Status Addresses•............. 1-9
1.5.5 Block Addresses•............. 1-9
1.5.6 Partition Addresses .. 1-9
1.5.7 Partition Sizes ... 1-10

Chapter 2 TASK MANAGEMENT 2-1

2 .1 Tasks ... 2-1
2.1.1 Task Priority and Scheduling 2-2
2.1.2 Task Control Block (TCB) ... 2-3
2.1.3 Task States and State Transitions 2-4

2.2 Multitasking Management Call Summary 2-7

Chapter 3 MEMORY MANAGEMENT AN D I NTERT ASK
COMMUNiCATION3-1

3.1 Memory ... 3-1
3.1.1 Memory Allocation .. 3-2

3.2 Memory Allocation Call Summary 3-5

3.3 Intertask Communication And Synchronization 3-7
3.3.1 Mailboxes .. 3-7
3.3.2 Queues .. 3·8

Copyright 1984, Hunter & Ready, Inc.

3.4 Communication and Synchronization Call Summary 3-9

3.5 Communication with Other Components 3-11

Chapter 4 INTERRUPT SUPPORT 4-1

4.1 Real-Time Clock Support .. 4-1

4.2 Real-Time Clock Support Calls 4-1

4.3 Character 1/0 Support ... 4-2

4.4 Character 1/0 Support Calls 4-3

Chapter 5 SYSTEM CAll REFERENCE 5-1

5.1 sc_accept - Accept a Message 5-2

5.2 sc_call - Call a Component .. 5-3

5.3 sc _delay - Task Delay ... 5-4

5.4 sCJblock - Get Memory Block 5-5

5.5 sCJetc - Get Character ... 5-6

5.6 sc_gtime - Get Time ... 5-7

5.7 sc_lock - Disable Task Rescheduling 5-8

5.8 sc_pcreate - Create Memory Partition 5-9

5.9 sc yend - Pend for Message 5-10

5.10 scyextend - Extend Memory Partition 5-11

5.11 sc _post - Post a Message .. 5-12

5.12 sc_putc - Put Character ... 5-13

5.13 sc_qaccept - Accept Message from Queue 5-14

5.14 sc_qcreate - Create Message Queue 5-15

5.15 sc_qinquiry - Queue Inquiry 5-16

5.16 sc_qpend - Pend for Message from Queue 5-17

5.17 sc_qpost - Post Message to Queue 5-18

5.18 sc_rblock - Release Memory Block 5-19

5.19 sc_stime - Set Time ••.•••••..•.•••..•••.••.•.....•.•••.•••. 5-20

11 Copyright 1984, Hunter & Ready, Inc.

5.20 sc_tcreate - Create a Task 5-21

5.21 sc_tdelete - Task Delete ... 5-23

5.22 sc_tinquiry - Task Inquiry 5-24

5.23 sc_tpriority - Task Priority Change 5-26

5.24 sc_tresume - Task Resume 5-27

5.25 sc_tslice - Enable Round-Robin Scheduling 5-28

5.26 sc_tsuspend - Task Suspend5-29

5.27 sc_unlock - Enable Task Rescheduling 5-31

5.28 sc_waitc - Wait for Special Character 5-32

Appendix A SYSTEM CAll SUMMARY A-l

Appendix B RETURN CODES ... 8-1

Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 3-2.
Figure 3-3.

List of Illustrations

TCB Chain ... 2-3

Task State Transitions 2-6

Memory Organization3-2

System Memory Managed by VRTX 3-5

User Memory Managed by VRTX 3-5

Copyright 1984, Hunter & Ready, Inc. III

List of Tables

Table 1-1. VRTX Functions ... 1-3

Table 1-2. VRTX Arguments .. 1-4

Table 2-1. System Call Summary 2-7

Table 3-1. System Call Summary 3-6

Table 3-2. System Call Summary 3-9

Table 3-3. System Call Summary 3-12

Table 4-1. System Call Summary 4-1

Table 4-2. System Call Summary 4-3

IV Copyright 1984, Hunter & Ready, Inc.

Chapter 1

OVERVIEW OF THE
VRTX C INTERFACE LIBRARY

1.1 Introduction

HUNTER
~ READY

The VRTX C Interface Library offers C language users a convenient means of inter­
facing with VRTX, the Versatile Real-Time Executive. With this library, VRTX sys­
tem calls available to the assembly language user are also available to the user imple­
menting in C. (The only exceptions are the calls provided for user-supplied interrupt
handlers and the calls provided for initialization.) The actual operations performed
by VRTX are identical in assembly language and in C. By using the C Interface Li­
brary with VRTX, the C language can be extended to include multitasking without
having to modify the C compiler. Since VRTX is available for use with all widely
used 16-bit microprocessors, a programmer using C and a VRTX C Interface Li­
brary can write multitasking programs that are completely independent of particular
processor architectures.

Hunter & Ready, Inc. provides an interface library for each supported compiler.
Currently supported compilers are listed in the Hunter & Ready, Inc. Product Cata­
log. Since the C language is virtually the same for all compilers, this manual can serve
as a reference for all versions of the C Interface Library. For specific C language ref­
erences, refer to The C Programming Language by Kernighan and Ritchie.

The interface library contains a collection of routines that can be invoked as high­
level language functions or procedures. A routine exists for each VRTX system call,
and making the call is simply a matter of calling the corresponding function or proce­
dure. Although they have the format of high-level language functions or procedures,
these library routines are actually written in assembly language so they can reference
particular registers and execute the software trap instruction (TRAP or INT) that is
used to call VRTX. Their basic function is to transfer parameters from the stack,
where the compiler puts them, to registers, where VRTX expects them; then they
make the assembly language VRTX call described in the VRTX User's Guide. At ex­
ecution time, calls to functions in the library are automatically translated into VR TX
system calls. Documentation provided with the library explains the start-up
procedures in more detail.

1.2 VRTX Functions

Each compiler has a different assembly language format for functions (which can be
studied by examining the compiled version of a function), and all functions in that
compiler's library follow this unique format. Each function in the library is respon-

Copyright 1984, Hunter & Ready, Inc. 1-1

Overview

1-2

sible for one VRTX system call. Thus, each function performs the following opera­
tions:

*

*

*

*

Saves registers.

Takes parameters off the stack (where the compiler puts them) and puts
them in registers (where VRTX expects them).

Makes a VRTX call (thus the function sc_tcreate makes the VRTX call
SC_TCREATE).

Restores registers and exits from the function call.

The functions provided by VRTX can be organized into five categories:

* Task Management

* Memory Allocation

* Communication and Synchronization

* Real-Time Clock

* Character I/O

Along with the function name itself, input parameters are passed to VRTX as func­
tion arguments. This manual describes the specific format and meaning of each argu­
ment. There are no optional arguments in any of the VRTX calls. Therefore, omit­
ting or adding an argument may cause serious problems. The order of the arguments,
shown in Table 1-1, 'VRTX Functions,' must be strictly followed. In some cases, the
argument is actually a pointer, specifying the address of a variable or an array. For
example, the error argument is always passed as an address to VRTX.

VR TX error codes returned to the C user are identical to those returned by VR TX to
the assembly language user. A return code, where applicable, is returned as the con­
tents of an integer variable (err) specified by an input pointer argument (&err). If the
call is successful, err returns a value of zero; otherwise, err returns one of the error
codes. Some additional VRTX functions also return output results. Table 1-2,
'VRTX Arguments,' defines all inpct arguments used with VRTX.

Copyright 1984, Hunter & Ready, Inc.

Overview

VRTX may also call other silicon software components through the use of sc_callO.
For further details, refer to the chapter titled 'Interfacing Software Components' in
the VRTX User's Guide and Section 5.2, 'Call a Component,' in this manual.

Table 1-1. VRTX Functions

Task Management:

sc_tcreate(task,tid,pri,&err)
sc_tdelete(tid/pri,code,&err)
sc_tsuspend(tid/pri,code,&err)
sc_tresume(tid/pri,code,&err)
sc_tpriority(tid,pri,&err)
tcb = sc_tinquiry(info,tid,&err)
sc_Iock()
sc_unlock()

Memory Allocation:

block = sc_gblock(pid,&err)
sc_rblock(pid,block,&err)
sc-pcreate(pid,paddr,psize,bsize,&err)

sc-pextend(pid,paddr,psize,&err)

Communication and Synchronization:

sc-post(&mbox,msg,&err)
msg = sc-pend(&mbox,timeout,&err)
msg = sc_accept(&mbox,&err)
sc_qpost(qid,msg,&err)

msg sc_qpend(qid,timeout,&err)

msg sc_qaccept(qid,&err)

sc_qcreate(qid,qsize,&err)
msg = sc_qinquiry(qid,&count,&err)

Copyright 1984, Hunter & Ready, Inc.

Task Create
Task Delete
Task Suspend
Task Resume
Task Priority Change
Task Inquiry
Disable Rescheduling
Enable Rescheduling

Get Memory Block
Release Memory Block
Create Memory

Parti tion
Extend Memory

Parti tion

Post Message
Pend for Message
Accept a Message
Post Message to

Queue
Pend for Message

from Queue
Accept Message from

Queue
Create Message Queue
Queue Inquiry

1-3

Overview

1-4

Real-Time Clock:

time = sc_gtime()
sc_stime (time)
sc_delay(timeout)
sc_ tslice (ticks)

Get Time
Set Time
Task Delay
Enable Round-Robin

Scheduling

Character 1/0:

char = sc_getc()
sc-putc(char)
sc_waitc(char,&err)

Get Character
Put Character
Wait Character

Component Management:

sc_call(fcode,&pkt,&err) Call a Component

block

bsize

char

code

count

err

fcode

info

Table 1-2. VRTX Arguments

Pointer variable that holds the starting address of a block of
memory.

Integer variable that holds the block size for a partition.

Integer variable that holds a character.

Integer variable to select either tid or pri as the first argument.

Pointer to an integer variable that holds the count of messages in
a queue.

Integer variable that holds the return code.

Integer function code specified for silicon software components.

A three-element integer array declared as int info [3] ; used by
sc_tinquiry to return the task status information.

Copyright 1984, Hunter & Ready, Inc.

mbox

msg

paddr

pid

pkt

pn

pSlze

qid

qSlze

task

tcb

ticks

tid

tid/pri

time

timeout

Overview

Pointer variable to be used as a mailbox.

Pointer variable that receives a message.

Pointer variable that holds the starting address of a partition or"
partition extension.

Integer variable that holds the ID number of a partition.

Pointer to a parameter packet defined for silicon software com­
ponents.

Integer variable that holds the priority of the task.

Pointer variable that holds the size of the partition or partition
extension specified in bytes.

Integer variable that holds the ID of a queue.

Integer variable that holds the size of a queue.

Name of the C function to be run as a task.

Pointer variable, that holds the address of the TCB.

Integer variable that holds the number of ticks required.

Integer variable that holds the ID number for the task.

Either tid or pri (integer variable).

Long integer variable that holds the value of the clock.

Long integer variable that holds the time-out value.

Copyright 1984, Hunter & Ready, Inc. 1-5

Overview

1.3 Program Portability

C language programs written for VR TX can be compiled for the 68000 or 8086 and
run without modification, provided that a few simple rules are followed in the
declaration and use of variables.

The declaration of variables is important, because different implementations of the C
language use different lengths for the integer and pointer variables. For example,
when implemented for the 8086, C uses 16 bits for both integers and pointers.
However, some implementations of C for the 68000 use 32 bits for both integers and
pointers, while others use 16 bits for integers and 32 bits for pointers. Therefore, it is
never assumed that pointers and integers are the same size. Rather, variables used as
pointers are declared pointers (not integers).

The general rule for pointers is that they are guaranteed to be equal in length to the
logical addressing range of the target machine; in practice, this value is then rounded
up to the nearest 16 bits. Unfortunately, the choice between 16 and 32 bits for the
size of integers is more arbitrary, and no general rule can be made.

1.4 Declarations of Functions

Functions can return a variety of data types. Unless indicated otherwise, C assumes
that a function is returning an integer. Therefore, if a function is returning a pointer
it must be explicitly declared:

char *sc-pend();

This declaration states that sc-pend is a function returning a pointer that points to a
character. In the second example,

int *sc-pend();

sc-pend is declared as returning a pointer to an integer. The difference between these
two becomes apparent when the object they point to is referenced.

1.5 Address Parameters

1-6

VRTX uses addresses extensively as input and output parameters for system calls.
However, addresses are usually more difficult to work with in high-level languages
than in assembly language. Consequently, users need to become familiar with the
way address parameters are handled by the compiler.

Copyright 1984, Hunter & Ready, Inc.

Overview

In a call-by-value language like C a copy of the actual value of the parameter is
passed to a function (for single-element parameters, that is; multi-element
parameters, such as arrays and structures, are passed via their starting addresses).
Consequently, address parameters must be explicitly indicated. In the C language,
the pointer data type is used for address parameters.

Five input address parameters are used in VRTX and three addresses are returned as
outputs:

INPUT ADDRESS PARAMETER

task code address
mailbox address

block address
partition address
partition size

OUTPUT ADDRESS PARAMETER

TCB and status address
block address
message

PARAMETER USED IN

sc_tcreate()
sc-post(), sc-pend(),

sc_accept()
sc_rblock()
sc-pcreate(), sc-pextend()
sc-pcreate(), sc-pextend()

RETURNED BY

sc_tinquiry ()
sc_gblock()
sc-pend(), sc_accept(),

sc_qpend(),sc_qaccept(),
sc_qinquiry()

In the following sections, we examine how each of these addresses is handled in C.

1 .5 .1 Task Code Addresses

In C, the address of a function can be passed implicitly. If the name of the function is
used as a parameter, the compiler actually passes the address of the function (this im­
plicit address convention is used with all multi-element structures). For example:

sc_tcreate(task,tid,pri,&err)

where task is the name of the function that is to run as a task.

Copyright 1984, Hunter & Ready, Inc. 1-7

Overview

1.5.2 Mailboxes

The VRTX intertask communication calls, sc-postO, sc-pendO and sc_acceptO em­
ploy the mailbox address parameter. Mailboxes themselves are address-sized
memory locations that are used to hold messages (see Section 1.5.3, 'Messages').

Mailboxes are defined as pointer variables. When making the VRTX call the user
should pass the address of the mailbox; in C this means a pointer to a pointer:

sc-post (&mbox,msg,&err);

where mbox is the pointer-sized mailbox and &mbox is a pointer to the mailbox.

1.5.3 Messages

1-8

Messages are address-length parameters that are passed to the calls sc-postO and
sc_qpostO and are returned from the calls sc-pendO, sc_acceptO, sc_qpendO,
sc_qacceptO and sc_qinquiryO. Of course, messages can actually be the addresses of
larger data structures that contain the information being exchanged. For the purpose
of this discussion, the message is the address of such a structure.

The fundamental problem with messages for high-level languages is type checking.
The parameters of a VRTX system call must be declared as a certain type (integer,
character, pointer to an array, pointer to a structure), and only variables of that type
can be used as parameters. Unfortunately, in a typical application the message pa­
rameter may at various times be a pointer, an integer or a character. Moreover, even
if a message is a pointer, it may be a pointer to an array, or to a structure, or to al­
most anything.

In C, however, messages are easy to work with, since type conversion (casting) can
be performed at any time. Messages may be declared generally as pointer variables,
but at times some messages may be assigned the value of a character or integer,
simply by casting the character as a pointer. Thus, the user can declare the message
parameter in a system call as a pointer, but can use integer or character messages at
any time. For example:

char *msg;

msg = (char *)7;

/* declare msg a char ptr */

/* assign msg the integer */
/* value 7 */

Copyright 1984, Hunter & Ready, Inc.

Overview

1.5.4 leB and Status Addresses

TCB and Status Block addresses are handled exactly like messages, except that the
type is well defined. For example, in C the SC_TINQUIRY call has the following
form:

tcb = sc_tinquiry(info,tid,&err)

After the call returns, the variable tcb holds the address of the task's TCB. The
variable tcb is declared as a pointer to a structure that is organized as a set of fields
corresponding to the TCB entries. The status information is returned in a 3-element
integer array, info [3], pointed to by info. Although this is actually returned data,
the parameter is passed as an input parameter and modified within the system call,
because in C, functions can return only one value.

1.5.5 Block Addresses

Block addresses are easy to handle in C. VRTX calculates the block address and
passes it back to the user when the sc_gblockO call is executed. The user must then
pass this address to VRTX when executing the sc_rblockO call. In C, one simply as­
signs a pointer variable to the output of the function that implements the sc_gblockO
call, for example:

block = sc_gblock(pid,&err);

1.5.6 Partition Addresses

Partitions are regions of memory from which blocks are dynamically allocated to

tasks. Partitions themselves may be dynamically created and extended. In the two
VRTX calls sc_pcreateO and sc_pextendO, one parameter is the absolute starting ad­
dress of the partition.

In C this parameter is easy to set up. Define it as a pointer, then assign it an absolute
address (i.e., an integer), using the built-in type conversion primitives. For example:

Copyright 1984, Hunter & Ready, Inc. 1-9

Overview

/***/

char *paddr; /* declare paddr to be a character */

paddr

/* pointer

(char *) OxAEOO; /* assign paddr the value
/* AEOO (hex), first

*/

*/
*/

/* converting that integer */
/* to a pointer */

sc-pcreate(pid,paddr,psize,bsize,&err); /* make the call */

/***/

1.5.7 Partition Sizes

1-10

The two VRTX calls sc_pcreateO and sc-pextendO each take a parameter that
specifies the size of the partition. In order that C programs can be executed on any
implementation ofVRTX, the interface library requires that the partition size be spe­
cified in byte units. The type of this parameter must span the entire addressing range
of the machine. On virtually all C implementations, the type char * covers the whole
addressing range.

The partition size should be cast type char * before calling the interface library. This
will allow the program to run correctly on any CPU. The C code fragment below
shows how this is done:

Copyright 1984, Hunter & Ready, Inc.

Overview

/***/

/* partition ID number */ #define PARTID 1
typedef struct {

int xxx;
int yyy;

/* type of each element in partition */

} elem;
elem part[lOO]; /* partition contains 100 elements */

crepart()
{

}

int err; /* error code returned by VRTX */
sc-pcreate(PARTID, part, (char *)sizeof(part),

sizeof(elem), &err);

/***/

Copyright 1984, Hunter & Ready, Inc. 1-11

Chapter 2

TASK MANAGEMENT

2.1 Tasks

HUNTER
~ READY

Real-time systems are designed to perform seemingly unrelated functions in a nonse­
quential manner, thereby utilizing the processor and I/O devices more efficiently.
Several common processing situations lend themselves to this control philosophy.
Examples include listening for input from several devices at the same time, reading or
writing a block of data while simultaneously performing arithmetic computations
and implementing sophisticated communications applications.

VRTX is designed to support real-time systems by providing a set of basic mecha­
nisms for implementing multitasking. The basic logical unit controlled by VRTX is
the task, a logically-grouped execution path through user code that demands the use
of system resources. A task can be viewed as a thread or path of code that deals with
one issue or system need. The act of dealing with that issue or need is collected or as­
sembled into one task. In a multitasking system several tasks appear to execute con­
currently, although VRTX actually coordinates execution of the tasks in an inter­
leaved fashion through very rapid reallocation of CPU time.

Under VRTX, ~he program or collection of programs that define the multitasking
environment can have as many as 255 logically distinct active tasks, each tagged with
a unique identification number. Any number of untagged tasks can also exist within
the VRTX framework. Each task performs a specified function asynchronously and
in real time. Each task is assigned a priority level, and VR TX allocates control of the
CPU to the highest priority task that is ready to execute. The kernel supports as
many as 256 levels of priority with any number of active tasks at each level. Several
tasks can operate autonomously from a single piece of code, with each task assigned a
priority and possibly an identification number. Tasks can create other tasks, and they
can delete, suspend and change the priority of themselves or of other tasks.

In multitasking VR TX programs written in C, tasks are implemented as functions.
Therefore, VRTX tasks have access to all the facilities of the C language that apply to

functions, such as separate compilation and the ability to gather functions into libra­
ries. Thus, a VRTX multitasking program written in C consists of a set of functions
that are used as tasks and run concurrently, as well as a set of functions that are used
as subroutines that execute sequentially.

If written reentrantly, a single C function may be run as any number of independent
tasks, all executing from one copy of the C function. Also, if a C function is written

Copyright 1984, Hunter & Ready, Inc. 2-1

Task Management

reentrantly, it can be shared by any number of tasks as a common function (for ex­
ample, a trig function).

2.1.1 Task Priority and Scheduling

2-2

When a task is created, it may be given a unique identification (ID) number from 1 to
255 (an ID number of zero indicates that no ID is assigned) and a priority level from
zero to 255 (a priority level of zero indicates the highest priority). The ID number al­
lows tasks to be readied, suspended or deleted on a selective basis. VRTX uses the
priority level to implement its priority-based scheduling algorithm.

In programs that run under VRTX, the first task is created by the application in­
itialization code. This task can create the other tasks in the system. As subsequent
tasks are created, VRTX is called upon to initiate the rescheduling procedure and to

put the highest priority task into execution. If another task is created that has higher
priority than the initial task, it preempts the creator. For this reason, it is more
straightforward to create all the tasks at initialization time.

VRTX is an event-driven operating system. The user does not need to execute special
system calls to accomplish task switching. VR TX maintains in execution the highest
priority task capable of execution. This task continues to execute until one of the fol­
lowing events occurs:

* The task terminates its own operation.

* The task suspends.

* A higher priority task is ready to execute.

The executing task can explicitly suspend itself or can suspend waiting for an event.
Events for which tasks wait include posting of a message, time elapse or special char­
acters to arrive. The task remains suspended until the required event has occurred, at
which time it is available for continued execution.

Tasks created of lower priority than the executing task are ready to run. Ready tasks
run when all higher priority tasks are complete or when they suspend. Ready tasks
with the same priority level can receive CPU control on a time-sliced, round-robin
basis if time-slicing is explicitly enabled by the SC_TSLICE call. Any number of
tasks can exist at the same priority level.

Copyright 1984, Hunter & Ready, Inc.

Task Management

2.1 .2 Task Control Block (TCB)

Due to the serial nature of a computer, tasks that appear to be executing in parallel
are actually executing in short, interleaved bursts. It is necessary for VRTX to main­
tain status information about the contents of active registers for all tasks not in con­
trol of the CPU. This information is retained in a data structure in system memory
called the Task Control Block (TCB). One TCB is associated with each active task in
the system.

A task is in an active state if it is executing, ready or suspended. If a task is dormant
or inactive, the system has no knowledge of it even though its code may remain in
memory. No TCB is defined for a dormant task.

A task's TCB is frozen while the task is executing and is not altered until the task
completes or suspends, at which time the TCB is used to store status information
about the task. The TCBs of ready and suspended tasks are linked together in order
of decreasing task priority to form an active chain. Each TCB is connected to the
next by a link pointer (see Figure 2-1, 'TCB Chain'). VRTX executes the first ready
task in this chain.

In the case where several tasks have the same priority, a TCB inserted into the chain
is placed ahead of the TCBs of any tasks at that priority level. The task whose TCB
was most recently inserted into the TCB chain is therefore executed before any other
tasks at the same priority level. Equal priority tasks are thus prioritized by the chain
modification history.

TCBs are inserted into the TCB chain as a result of task create calls, task priority
change calls and time-slicing (see Section 5.25, 'Enable Round-Robin Scheduling').
Among equal priority tasks, an optional round-robin scheduling may be enabled. At
the end of a time-slice interval, TCBs of tasks with the same priority level as the ex­
ecuting task are rotated in the TCB chain. The next task in the chain is thus given a
chance to execute.

Head of
Chain - Link

TCB,

Copyright 1984, Hunter & Ready, Inc.

f---+ Link r--- Lmk - 0

TCB2 TCB, TCB.

Figure 2-1. TCB Chain

2-3

Task Management

When a task is deleted, it becomes dormant and its TCB is no longer associated with
that task. Unused TCBs are linked together to form an inactive chain of available
TCBs. When VRTX is initialized, all TCBs are located on the inactive chain. Except
for the links themselves (TBNEXT in the TCB structure) and the initial stack pointer
(TBSTACK), these TCBs are empty.

2.1.3 Task States and State Transitions

2-4

In a multitasking environment, tasks exist in one of four states: executing, ready for
execution, suspended or dormant.

Executing The task has control of the CPU and is executing its assigned in­
struction path. (Only one task is executing at a time.)

Ready The task is ready for execution but cannot gain control of the
CPU until all higher priority tasks existing in the ready or ex­
ecuting state are either completed or suspended.

Suspended The task suspends in mid-execution and is waiting to be readied
by a system call or an event, such as waiting for a certain number
of ticks to expire or a special character to arrive.

Dormant The task is not initialized or its execution is complete (task
deleted) and it is now idle. No TCB is assigned to it.

A task may suspend for any of the following reasons:

*

*

*

*

*

A Task Suspend call, sc_tsuspendO, was issued specifying that task either by
priority, ID number or via a self-suspend.

The task suspends itself for a specified time interval using the sc_delayO
call.

The task is waiting for a message from another task or interrupt handler. It
issues an sc_pendO or sc_qpendO call but no message is posted yet.

The task issues an sc_ waitcO call and is waiting for a special character to be
sent from an I/O device.

The task issues an sc_getcO call, but the input buffer maintained by VRTX
is empty, so it is waiting for input from an I/O device.

Copyright 1984, Hunter & Ready, Inc.

T ask Management

* The task issues an sc_putcO call, but the output buffer is full, so it IS

waiting for output to an 110 device.

The status field in each TCB can be interrogated with the sc_tinquiryO call. If the
word returned is zero, the task is ready; if the word is nonzero, the task is suspended
for reasons indicated by the bit settings (see Section 5.22, 'Task Inquiry'). Suspen­
sions are independent and additive. For example, if a task is suspended while waiting
for a message and it is also explicitly suspended by another task, both suspending
conditions must be removed before the task is readied for execution.

WARNING

Any call issued that leads to the current task's suspension causes unpre­
dictable results if task switching has been disabled via an sc_IockO call.

Just as a number of different events may suspend a task, several events and calls can
place a suspended task back in the ready state.

*

*

*

*

*

*

An sc_tresumeO call can be issued to ready a task that was suspended by an
sc_tsuspendO call.

A time delay can expire, which readies a task that was either suspended by
an sc_delayO call or timed out pending for a message.

A message can be posted, with an sc_postO or sc_qpostO call, to a task that
is waiting for a message.

A special character can be sent from an Interrupt Service Routine (ISR) to a
task that is suspended by an sc_ waitcO call.

Characters can be sent to the input buffer from an ISR. The tasks that
suspend on an empty buffer are readied in the order in which they
suspended.

Characters can be retrieved from the output buffer by an ISR. The tasks
that suspend on a full buffer are readied in the order in which they
suspended.

Copyright 1984, Hunter & Ready, Inc. 2-5

Task Management

2-6

Note: If a task has disabled interrupts and subsequently suspends, VRTX
reenables interrupts for itself and other tasks. As soon as this task
resumes execution, interrupts are again disabled.

Tasks are in the dormant state before they are created; they reenter the dormant state
when they are deleted with an sc_tdeleteO call. If all tasks are deleted or suspended,
the system has no tasks to run and is placed in an idle state, essentially halting its ac­
tivity. Interrupts are enabled for this idle state, so the system remains capable of res­
ponding to interrupts. All task state transitions are diagrammed in Figure 2-2, 'Task
State Transitions.'

SC TDELETE SC_ TSUSPEND

SC_ TDELETE SC _ TSUSPEND

SC TCREATE Real-time
Event or

SC TRESUME

SC TDELETE

Figure 2-2. Task State Transitions

SC_TDELAY
SC_PEND
SC_QPEND
SC_WAITC
SC_GETC
SC_PUTC

Copyright 1984, Hunter & Ready, Inc.

Task Management

2.2 Multitasking Management Call Summary

The table below contains a summary of the system calls that control the multitasking
environment. The set of VR TX calls with their arguments is illustrated. For detailed
information on each of the calls, see Chapter 5, 'System Call Reference.'

The return code is always returned in err. This value is not shown in the table.

TABLE 2-1. SYSTEM CALL SUMMARY

TASK MANAGEMENT:

sc_tcreate(task,tid,pri,&err)
sc_tdelete(tid/pri,code,&err)
sc_tsuspend(tid/pri,code,&err)
sc_tresume(tid/pri,code,&err)
sc_tpriority(tid,pri,&err)
tcb = sc_tinquiry(info,tid,&err)
sc_lock()
sc_unlock()

+----+----+----+----+----+----+
IRet IArgllArg21Arg31Arg41Arg51
+----+----+----+----+----+----+
I Iptr lint lint I&intl I
I lint lint I&intl I I
I lint lint I&intl I I
I lint lint I&intl I I
I lint lint I&intl I I
Iptr Iptr lint I&intl I I
I I I I I I I
I I I I I I I
+----+----+----+----+----+----+

The following example uses all eight of the task management calls:

Copyright 1984, Hunter & Ready, Inc. 2-7

Task Management

2-8

/***/

main() {
int taskl(),err; /* must declare task 1 */

sc_tcreate(taskl,1,2,&err); /* 1D = 1 pri = 2 */
if (err != 0) _error("tcreate",err);

sc_tsuspend(l,O,&err); /* by 1D, 1D 1 */
if (err != 0) _error("tsuspend",err);

sc_tpriority(1,3,&err); /* change pri to 3 */
if (err != 0) _error("tpriority",err);

sc_tresume(3, 'A' ,&err); /* by pri pri 3 */
if (err ! = 0) _error ("tresume" ,err) ;

/* disable rescheduling */

sc_tdelete(O,O,&err);
}

taskl ()
char *tcb;

/* enable rescheduling */

/* delete self

int info[3),err,own_id,own-pri,status;

tcb = sc_tinquiry(info,O,&err); /* inquire about self */
if (err != 0) _error("tinquiry",err);
own_id info[O];
own_pri info[l];
status info[2];

}

/***/

Copyright 1984, Hunter & Ready, Inc.

Chapter 3

MEMORY MANAGEMENT AND
INTERTASK COMMUNICATION

HUNTER
~ READY

3.1 Memory

The memory map of a VRTX-based system consists of the following modules:

*

*

*

*

*

*

VRTX code: the VRTX PROM set. (Note that VRTX may be placed in
dynamic memory, perhaps even loaded into memory from disk.)

The VRTX Workspace: contains system variables, TCBs and stacks.

The user load module: the software package the user is responsible for
developing, assembling, linking and placing in the execution environment.

VRTX-managed user memory: one or more partitions or pools of memory
blocks that can be dynamically acquired and released by the user.

Optional Hunter & Ready components such as lOX, FMX or TRACER.

Optional user-supplied components.

Figure 3-1, 'Memory Organization,' is an overview of the entire memory organization
of a VRTX system.

The user load module holds the user's application code and any user-defined, system­
level code. In addition, the user load module contains the Interrupt or Exception
Vector Table, the Configuration Table, and any static variables associated with the
user application or with system code. See Section 3.3.1, 'Mailboxes'. The shading in
Figure 3-1 indicates what can be burned into ROM; everything else must exist in
dynamic read/write memory.

The VRTX Workspace contains the system variables, the TCBs, a stack for each task
in the system, control structures for message queues and control structures for
VRTX-managed user memory. VRTX is responsible for setting up and managing
the stacks and for initializing and managing the TCB chain. The VRTX-managed
user memory consists of a number of partitions or chunks of memory which may be
noncontiguous. Each partition is subdivided into one or more fixed-sized blocks of
memory that can be allocated dynamically to tasks. The following section describes
how VRTX manages user memory and its own Workspace.

Copyright 1984, Hunter & Ready, Inc. 3-1

Memory Management

3.1.1 Memory Allocation

3-2

A task's demand for memory varies over the course of its execution, and different
tasks usually have different requirements. The operating system treats memory as a
resource and allocates that resource among competing tasks, just as it allocates con­
trol of the CPU among competing tasks.

VRTX

lOX

FMX

User­
Supplied

Component

• • •
Component

n

Optional
Components

Configuration
table

IVT

User,Defined
Application

Code

User· Defined
System Code

Sialic Variables

User Load Module

System Var,abtes

TCBs

Additional
System Variables

User Stacks

I VATX Workspace

I

Partition 0

Partition 1

Partition 2

• • •
Partition n

User Memory

'~----------~v~----------~
VRTX·Managed Memory

D May be put in ROM/PROM

Figure 3-1. Memory Organization

Copyright 1984, Hunter & Ready, Inc.

Memory Management

Two main approaches to memory allocation have been used by multitasking execu­
tives: static allocation of fixed-size memory blocks and dynamic allocation of
variable-sized blocks. In static allocation, each task is assigned a block of memory at
system initialization. This block is dedicated to that one task and cannot be used by
any other task. In dynamic allocation of variable-sized memory blocks, available
memory eventually becomes fragmented as tasks allocate and release memory blocks
from the available pool.

One technique for allocating variable-sized blocks is the buddy system, widely used
in non-real-time systems. In this technique, the system attempts to match the size of
the allocated memory block to the size of the requested unit by starting with one
single chunk of memory and repeatedly splitting existing units in half. When the re­
quest is for a unit larger than any of those currently available, the system attempts to
combine a smaller unit with its buddy into a large compact unit. This scheme suffers
from a serious flaw for real-time applications: indeterminacy.

As memory grows progressively more fragmented, occasions inevitably arise when a
request cannot be met. Even though there is enough total free memory, it is so frag­
mented that a large enough contiguous block cannot be found. These occasions can­
not be predicted in advance and compensated for, since they do not depend on the
number of memory requests which can be anticipated, but on the order of the re­
quests. This usually cannot be anticipated in a real-time system. This design intro­
duces an element of unpredictability into the total system behavior beyond that of
the external environment. This additional unpredictability is unsatisfactory in real­
time systems. Real-time systems cannot tolerate a memory system that works only
some of the time.

The designers of VRTX felt static allocation was too restrictive, but memory com­
paction led to unacceptable indeterminacy and imposed too much system overhead.
Thus, the VRTX memory allocation mechanism is a compromise between the two
memory allocation schemes. VRTX gives every task a fixed-sized stack in system
memory and dynamically allocates partitions of user memory in blocks. Users are
able to dynamically create memory partitions to mirror the often noncontiguous
chunks that make up the actual physical organization of memory. Each partition of
user memory has blocks of a fixed size set when that partition is created. The user­
stack-size is set via a parameter in the Configuration Table.

Dynamic memory allocation for user memory uses the following process:

1. At system initialization, parameters in the Configuration Table indicate
the starting address and the size of the VRTX Workspace, how many tasks

Copyright 1984, Hunter & Ready, Inc. 3-3

Memory Management

3-4

can exist at anyone time, and how large each task's stack should be. The
VRTX Workspace must be large enough to contain VRTX system
variables, one TCB for each active task and a stack for every task in the
system. In addition, the VRTX Workspace must be large enough to ac­
commodate a control block for each memory partition and a control block
for each defined message queue.

2. Whenever a task is created, VRTX automatically allocates a stack to the task.
This stack can store local variables and is allocated in the VR TX Workspace.
This allocation may be bypassed if the user wants to manage stacks via a
hook invoked at task switch time.

3. The call sc_pcreateO is used to define a contiguous partItIon of user
memory. Parameters passed with the call specify the starting address, size
and standard block size of the partition. The sc_gblockO call can then be
used to acquire blocks of memory from the new partition. This call can be
repeated until all blocks in this partition are allocated. The sc_rblockO call
is executed in order to release a block of memory back to the partition. A
task's blocks are not automatically released when the task is deleted,
therefore an sc_rblockO call should be made to release all blocks before the
task is deleted.

4. The call sc_pextendO is used to enlarge a previously defined partition to
include an additional range of memory locations. The extension need not
be contiguous with the originally defined partition.

Since all memory blocks are the same size within a partition, no fragmentation results
from dynamic memory allocation; consequently, no memory compaction is re­
quired. Figures 3-2, 'System Memory Managed by VRTX' and 3-3, 'User Memory
Managed by VR TX,' show how memory is subdivided.

The VRTX partition/block system has several key features that give it great flexibility
and most of the advantages of a variable-sized block system, without the indeter­
minacy and excessive system overhead. First, partitions can be defined within other
partitions. For example, one partition may be entirely within a single block of an­
other partition. Blocks can easily be divided into sub-blocks. Second, two partitions
with differently sized blocks can be defined to cover the same area of memory, thus
allocating blocks of different sizes from the same memory region. The only require­
ment is that all blocks of one size are released before any blocks of the other size are
allocated.

Copyright 1984, Hunter & Ready, Inc.

Memory Management

3.2 Memory Allocation Call Summary

The table below contains a summary of the system calls that allow applications to ob­
tain and return blocks of memory from a specified partition. The summary also in­
cludes the VR TX calls that create and extend partitions. These calls do not go
through the rescheduling procedure. The set of VRTX calls with their arguments is
illustrated. For detailed information on each of the calls, see Chapter 5, 'System Call
Reference.'

VRTX-workspace-addr

System Variables

TCBs

VRTX-workspace-size
Additional

System Variables
(dynamically expanding
for partition and queue

control structures)

)
(user-task-count)
X (TCBsize)

}
= I User-stack-slze

(User-task-count)
X (User-stack-slze)

Figure 3-2. System Memory Managed by VRTX

Partitions and Extensions
Defined by SC PCREATE and SC PEXTEND

Start address ---,,...------_

S;" 1----------
-) Block size

Figure 3-3. User Memory Managed by VRTX

Copyright 1984, Hunter & Ready, Inc. 3-5

Memory Management

The return code is always returned in err. This value is not shown in the table.

TABLE 3-1. SYSTEM CALL SUMMARY

MEMORY ALLOCATION: +----+----+----+----+----+----+
IRet IArgllArg21Arg31Arg41Arg51
+----+----+----+----+----+----+

block = sc_gblock(pid,&err) Iptr lint I&intl I I I
sc_rblock(pid,block,&err) I lint Iptr I&intl I I
sc-pcreate(pid,paddr,psize,bsize,&err) I lint Iptr Iptr lint I&intl
sc-pextend(pid,paddr,psize,&err) I lint Iptr Iptr I&intl I

+----+----+----+----+----+----+

The following example uses the four memory allocation calls:

/***/

main () {
char *sc_gblock(),*block,*paddr,*psize;
int pid,err,bsize;

pid
psize
bsize

l' ,
(char*)OxlOOO;
64;

paddr (char*)Ox30000;
sc-pcreate (pid,paddr,psize,bsize,&err);
paddr = (char*)Ox50000;
sc-pextend(pid,paddr,psize,&err);

block = sc_gblock(pid,&err);
if(err != 0) error(IIgblock",err);

block[2] = '8';

sc_rblock(pid,block,&err);
if(err != 0) error("rblock",err);

}

/***/

3-6 Copyright 1984, Hunter & Ready, Inc.

Memory Management

3.3 Intertask Communication And Synchronization

Even though tasks operate asynchronously, it is often desirable for one task to talk to
another task. In VR TX, tasks communicate with one another by sending and receiv­
ing pointer-sized, nonzero messages via VRTX-controlled structures known as
mailboxes and queues. These messages can be pointers to larger messages if the com­
municating tasks are so designed.

3.3.1 Mailboxes

A mailbox is a user-defined location residing in user read/write memory that allows
tasks to pass pointer-sized, nonzero messages. A mailbox is simply a pointer-sized
variable that the user should allocate in memory. VRTX does not create mailboxes.

Synchronization and communication between tasks in a VR TX system can be ac­
complished with three simple, yet powerful commands:

scyost()
scyend()
sc_accept ()

Post a Message
Pend for a Message
Accept a Message

A transmitting task deposits the message in a specified mailbox using the sc_postO
call. To receive the message, another task issues an sc_pendO call. If the message has
already been sent, the receiving task receives the message and remains in the ready
state. The message location is reset to zero by VR TX when the message is received.
The application should empty the mailbox at initialization time by initializing it to

zero when allocated by the user. If the mailbox value is zero (holds no message), a
task attempting to receive a message with an sc_pendO call suspends until a message
arrives. Additionally, a nonzero time-out value may be specified that allows the task
to resume execution if no message arrives during that time period. Conversely, if the
mailbox value is nonzero (message is present), a task attempting to send a message
with sc_postO continues execution, but an error code is returned. A task using
sc_acceptO does not suspend if there is no message present; instead an error code is
returned.

More than one task can wait at the same mailbox by issuing sc_pendO calls with the
same mailbox address. The highest priority task receives the message and is placed in
the ready state when a message is sent to that mailbox. If a task pending at a mailbox
is explicitly suspended it may still receive a message, although it does not resume ex­
ecution until it is explicitly resumed.

With these calls, the user can easily implement mutual exclusion and resource lock­
ing, as well as standard intertask communication. Resource locking is implemented

Copyright 1984, Hunter & Ready, Inc. 3-7

Memory Management

when all the tasks attempting to use a resource pend at the same mailbox. As each
task finishes with the resource, it sends a message to that mailbox to enable the next
task.

Synchronization between tasks can also be implemented with two basic calls. Task A
posts a message to one mailbox, then immediately pends at another mailbox. Task B
simply does the reverse: it receives the message, then immediately posts a message
back to enable Task A. The two tasks are then synchronized.

3.3.2 Queues

3-8

VR TX provides five additional calls to implement message queueing. Message
queues are fixed-length buffers, and enqueued messages are managed in a first­
in/first-out (FIFO) manner. Unlike mailboxes, queues are not part of the user's set of
variables. Queues are system-managed structures referenced by a queue ID (qid) as­
signed by the user with the sc_qcreateO call and are created dynamically by VRTX.
Tasks can post messages to, pend at, or accept messages from these queues. If the
queue is full, a task or interrupt handler attempting to post a message receives an er­
ror return. On the other hand, if the queue is empty, a pending task suspends. As
with mailboxes, tasks attempting to accept messages from an empty queue are not
suspended; an error code is returned instead. Tasks pended at a queue are readied by
incoming messages in priority order, not in the order they were pended. A high­
priority task that pends at an empty queue after a low priority task has pended,
receives the first message sent to that queue in accordance with VRTX's priority
management philosophy. Information about the queues can be obtained by issuing
the sc_qinquiryO call which returns the number of messages in the queue and, with­
out removing it from the queue, the message at the head of the queue. Note that a
queue of length 1 behaves in a similar manner to a mailbox.

The following VRTX caBs manipulate queues:

sc_qcreate()
sc_qpost()
sc_qpend()
sc_qaccept()
sc_qinquiry()

Create a Message Queue
Post a Message to a Queue
Pend for a Message from a Queue
Accept a Message from a Queue
Queue Status Inquiry

Queues can implement a generalized version of the Dijkstra primitives SIGNAL and
WAIT, which are useful in establishing resource-locking mechanisms for multiple
resources of the same type. Each type of resource (such as a line printer) is assigned a
specific queue, the length of which is determined by the number of resources in-

Copyright 1984, Hunter & Ready, Inc.

Memory Management

eluded in that type (such as the number of printers on the system). All tasks attempt­
ing to use a resource of a given type pend at the resource's queue in a procedure
similar to that described for mailboxes. The length of the queue governs how many
tasks can use the resource at the same time. VRTX's readying of tasks ensures that
several tasks waiting to use a resource receive the resource in order of priority.

3.4 Communication and Synchronization Call Summary

The table below contains a summary of the system calls used to exchange pointer­
sized, nonzero messages via mailboxes, and the calls used for more elaborate ex­
changes via message queues. Only the posting and pending calls go through the re­
scheduling procedure and may result in a task switch. The set of VRTX calls with
their arguments is illustrated. For detailed information on each of the calls, see Chap­
ter 5, 'System Call Reference.'

The return code is always returned in err. This value is not shown in the table.

TABLE 3-2. SYSTEM CALL SUMMARY

COMMUNICATION AND SYNCHRONIZATION:

sc-post (&mbox,msg,&err)
msg = sc-pend(&mbox,timeout,&err)
msg = sc_accept(&mbox,&err)
sc_qpost(qid,msg,&err)
msg = sc_qpend(qid,timeout,&err)
msg = sc_qaccept(qid,&err)
sc_qcreate(qid,qsize,&err)
msg = sc_qinquiry(qid,&count,&err)

+----+----+----+----+----+----+
IRet IArgllArg21Arg31Arg41Arg51
+----+----+----+----+----+----+
I I&ptrlptr I&intl I I
Iptr I&ptrllongl&intl I I
Iptr I&ptrl&intl I I I
I lint Iptr I&intl I I
Iptr lint Ilongl&intl I I
Iptr lint I&intl I I I
I lint lint I&intl I I
Iptr lint I&intl&intl I I
+----+----+----+----+----+----+

The following example uses all three of the intertask communication calls:

Copyright 1984, Hunter & Ready, Inc. 3-9

Memory Management

3-10

/***/

char *mbox[IO] = 0; /* note that mbox is declared */
/* external and as a pointer */

task6() {
char *sc-pend(),*sc_accept(),*msg;
long timeout; int err;
timeout = (long) 0;
msg sc_accept(&mbox[2],&err);

msg sc-pend(&mbox[2],timeout,&err);

}

task7() {
char *msg;
int err;

msg = (char *)'A';
sc-pos t (&mbox[2],msg,&err);
if(err != 0) error("post",err);

}

/***/

Note: Use of sc-post(&mbox[2] ,'A',&err) is not portable. Because msg
must be the size of a pointer, 'A' may not necessarily be of pointer size.

The following example uses all five of the message queuing calls:

Copyright 1984, Hunter & Ready, Inc.

Memory Management

/***/

main() {
int qid,qsize,err;
qid = 1;
qsize = 10;
sc_qcreate(qid,qsize,&err);
if(err != 0) error("Qcreate",err);

}

task 1 ()
char *msg,*sc_qaccept(),*sc_qpend();
long timeout; int qid, count, err;
timeout = (long) 0;
qid 1;
msg sc_qinquiry(qid,&count,&err)
msg sc_qaccept(qid,&err);

msg sc_qpend(qid,timeout,&err)

task 2 ()
char *msg;
int qid,err;
qid = 1;
msg = (char *) 64;
sc_qpost(qid,msg,&err);

}

/***/

3.5 Communication with Other Components

A special system call, known as sc_callO, provides a general mechanism for commu­
nicating service requests to components other than VRTX. See Section 5.2, 'Call a
Component,' for further details on this particular call.

Copyright 1984, Hunter & Ready, Inc. 3-11

Memory Management

TABLE 3-3. SYSTEM CALL SUMMARY

COMPONENT MANAGEMENT: +----+----+----+----+----+----+
IRet IArgllArg21Arg31Arg41Arg51
1----1----1----1----1----1----1
I lint I&pktl&intl I I
+----+----+----+----+----+----+

sc_call(fcode,&pkt,&err)

/***/

task_IO(){
int fcode, *err;
IODEFPK disk; /* structure defined in lOX */

fcode = IOFRMDEV; /* function code for remove */
/* device - 0022H */

disk. IODOPTS 0; /* reserved, must = 0 */
disk. IODRMBZ 0;
disk. IODDVID 10; /* specify device ID */

sc_call(fcode,&disk,&err);
}

/***/

3-12 Copyright 1984, Hunter & Ready, Inc.

Chapter 4

INTERRUPT SUPPORT HUNTER
~ READY

4.1 Real-Time Clock Support

VRTX operates quite satisfactorily without a real-time clock. Nevertheless, support
for a real-time clock is fully integrated into VRTX, adding to user application code
the following collection of system calls:

sc_gtime()
sc_stime ()
sc_delay()
sc_tslice ()

Get Time
Set Time
Task Delay
Enable Round-Robin Scheduling

At the interrupt level, the user must define a minimal clock service routine, which
merely handles the mechanics of dealing with a particular clock device (such as an
8253 Interval Timer or a 9513 Timing Controller) and, on a periodic basis, issues a
UCTIMER system call to VRTX. This command informs VRTX that a time interval
(or tick) has occurred. Even in target environments without a real-time clock device,
a timer of sorts (basic, but sufficient for task delay and round-robin scheduling) may
be implemented by issuing the UI_TIMER command on a somewhat regular basis
from other interrupt handlers.

4.2 Real-Time Clock Support Calls

The table below is a summary of the system calls used to support a real-time clock.
The set of VRTX functions with their arguments is illustrated in the following table.
For detailed information on each of the calls, see Chapter 5, 'System Call Reference.'

TABLE 4-1. SYSTEM CALL SUMMARY

REAL-TIME CLOCK:

time = sc_gtime()
sc_stime (time)
sc_deIay(timeout)
sc_tslice (ticks)

Copyright 1984, Hunter & Ready, Inc.

+----+----+----+----+----+----+
IRet IArgIlArg21Arg31Arg41Arg51
1----1----1----1----1----1----1
Ilongl I I I I I
I Ilongl I I I I
I Ilongi I I I I
I I int I I I I I
+----+----+----+----+----+----+

4-1

Interrupt Support

The following example uses all four of the real-time clock support functions:

/***/

main() {
long int sc_gtime().time;

sc_stime((long) 0);
time = sc_gtime();
/* 'time' should now have the value zero */

time = (long) 100;
sc_stime (time) ;
sc_delay(time) ;

time = sc_gtime();
/* 'time' should now have the value 200 */

sc_tslice(lO); /* enable time slicing. slice size=lO ticks */

/* disable time slicing */

/***/

4.3 Character 1/0 Support

4-2

VRTX also provides fully integrated support for a single character-oriented in­
put/output device. The following calls allow a task to read a character from a single
character-oriented I/O device, to write a character to that device and to suspend itself
until a particular character is received.

sc_getc ()
sCJ)utc()
sc_waitc()

Get Character
Put Character
Wait for Special Character

At the interrupt level, the user must define interrupt service routines to handle the
mechanics of communicating with a particular device (such as a USART or parallel
I/O device).

Copyright 1984, Hunter & Ready, Inc.

Interrupt Support

4.4 Character 1/0 Support Calls

The table below is a summary of the system calls used to provide character I/O sup­
port. The set of VR TX functions with their arguments is illustrated in the following
table. For detailed information on each of the calls, see Chapter 5, 'System Call Ref­
erence.'

TABLE 4-2. SYSTEM CALL SUMMARY

CHARACTER I/O:

char = sc_getc ()
sCJ)utc(char)
sc_waitc(char,&err)

+----+----+----+----+----+----+
IRet IArgllArg21Arg31Arg41Arg51
1----1----1----1----1----1----1
1 char 1 1 1 1 1 1
1 1 char 1 1 1 1 1
1 Icharl&intl 1 1 1
+----+----+----+----+----+----+

The following example uses all three of the character I/O functions:

/***/

main()
int err,c;

sc_waitc(Ox03,&err); /* wait for control C */

if(err != 0) error(" waitc",err);

c = getchar();

}

getchar () {
int c;
c = sc_getc () ;
sCJ)utc(c); /* echo the character */
return(c) ;
}

/***/

Copyright 1984, Hunter & Ready, Inc. 4-3

Chapter 5

SYSTEM CALL REFERENCE HUNTER
~ READY

This chapter contains a complete description of all the system calls used in VRTX.
They are given in alphabetical order for easy reference. for each call, the following
items are listed:

* Mnemonic name of the call,

* A brief Description of the call's function and operation,

* The Calling Sequence of the system call,

* An Example,

* A description of the Arguments,

* A list of the possible Return Codes returned in integer variable err.

Copyright 1984, Hunter & Ready, Inc. 5-1

Accept a Message

5.1 sc_accept - Accept a Message

5-2

This call obtains a pointer-sized, nonzero message from a specified mailbox. Unlike
sc-pendO, this call does not suspend the caller if no message is present; the error
code ER_NMP is returned immediately. This call does not go through the resched­
uling procedure.

CALLING
SEQUENCE:

EXAMPLE:

msg

msg

sc_accept(&mbox,&err)

sc_accept(&mbox[3],&err)

+---+
I I
I INPUT: mbox Pointer variable to be used as a I
I mailbox. I
I I
I I
I OUTPUT: err Integer variable that holds the I
I return code. I
I I
I msg Pointer variable that receives a I
I message. I
I I
+---+

RETURN CODES

OOOOH
OOOBH

Successful return.
No message present.

Copyright 1984, Hunter & Ready, Inc.

Call a Component

5.2 sc_call - Call a Component

This call allows a silicon software component to be called via VRTX. The parameter
fcode specifies the component ID in its upper byte and a command code in its lower
byte. The parameter pkt is defined for a specific call by the specified software silicon
component. For further details consult the chapter titled 'Interfacing Software Com­
ponents' in the VRTX User's Guide.

CALLING
SEQUENCE:

EXAMPLE:

sc_call(fcode,&pkt,&err)

sc_call(IOXXXX,&iopkt,&err)

+---+
I I
I INPUT: fcode Integer function code specified for I
I silicon software components. I
I I
I pkt Pointer to a parameter packet I
I defined for silicon software I
I components. I
I I
I I
I OUTPUT: err Integer variable that holds the I
I return code. I
I I
+---+

RETURN CODES

OOOOH
0020H

002lH
0022H

Successful return.
Component Vector Table not defined in

Configuration Table.
Undefined component.
Undefined opcode for this component.

Copyright 1984, Hunter & Ready, Inc. 5-3

Task Delay

5.3 sc_delay - Task Delay

5-4

This call suspends execution of the calling task for a specified number of clock ticks.
The delay value stored in the TCB is not an absolute delay, but a relative increment
from the delay value of tasks already delayed. This call results in a task switch.

Note: Many compilers do not carry more than six characters of signifi­
cance in their labels. Therefore, the VRTX function name SC_TDELAY
has been renamed at the C level to sc_delay in order to avoid possible
conflicts with sc_tdelete.

CALLING
SEQUENCE:

EXAMPLE:

sc_delay(timeout)

+---+
I I
I INPUT: timeout Long integer variable that holds I
I the number of ticks required. I
I I
I I
I OUTPUT: None. I
I I
+---+

Copyright 1984, Hunter & Ready, Inc.

Get Memory Block

5.4 sCJblock - Get Memory Block

This call obtains a memory block from one of the partitions of memory blocks
managed by VRTX.

CALLING
SEQUENCE:

EXAMPLE:

block = sc_gblock(pid,&err)

+---+
I
I INPUT:
I
I
I

pid

I OUTPUT: block
I
I
I
I
I
I

err

Integer variable that holds the
10 number of a partition.

Pointer variable that holds the
starting address of a block of
memory.

Integer variable that holds the
return code.

+---+

RETURN CODES

OOOOH
0003H
OOOEH

RET_OK
ER_MEM
ER_PIO

Successful return.
No memory blocks available.
Partition 10 error (no such partition).

Copyright 1984, Hunter & Ready, Inc. 5-5

sc~etc Get Character

5.5 sc~etc - Get Character

5-6

With this call, a task obtains the next sequential character from the supported 1/0
device. If the 64-byte buffer of received characters is empty, the calling task suspends
until a character is received. It does not echo the character onto the output device.
This call initiates the rescheduling procedure if no character is present.

CALLING
SEQUENCE:

EXAMPLE:

char = sc_getc ()

lnbuf[i] = sc_getc()

+---+
I I
I INPUT: None. I
I I
I I
I OUTPUT: char Integer variable that holds a I
I character. I
I I
+---+

Copyright 1984, Hunter & Ready, Inc.

Get Time

5.6 sc~time - Get Time

This call obtains the current value, as a count of ticks, of the system clock counter. It
does not go through the rescheduling procedure.

CALLING
SEQUENCE:

EXAMPLE:

time = sc_gtime()

+---+
I I
I INPUT: None. I
I I
I I
I OUTPUT: time Long integer variable that holds the I
I value of the clock. I
I I
+---+

Copyright 1984, Hunter & Ready, Inc. 5-7

Disable Task Rescheduling

5.7 sc_lock ~ Disable Task Rescheduling

5-8

This call prevents task rescheduling until an explicit sc_unlockO call is issued. The
task that issues the sc_lockO function call retains processor control even though
other higher priority tasks may be ready to run.

The calls sc_lockO and sc_unlockO are used in pairs. An internal count of locks and
unlocks is kept so that nested instances of these calls do not prematurely end a
scheduling lock. For example, nested subroutines and procedures may need to run
locked for short periods of time. When they issue an sc_unlockO, it cancels the effect
of the previous sc_IockO only.

The maximum nest count supported is 255 minus the maximum number of nested
ISRs. For example, if a system has prioritized interrupts with a maximum depth of
three ISRs, the maximum lock/unlock nesting is 255-3=252.

This call should be used with caution, since it disrupts the ordinary management of
the multitasking environment. Interrupt handling, however, is unaffected by dis­
abled rescheduling.

WARNING

After this call has been issued, the user should not issue any VR TX calls
that could lead to suspending the current task. This event causes unpre­
dictable results.

CALLING
SEQUENCE:

+---+
I I
I INPUT: None. I
I I
I I
I OUTPUT: None. I
I I
+---+

Copyright 1984, Hunter & Ready, Inc.

Create Memory Partition

5.8 sc_pcreate - Create Memory Partition

This call defines the characteristics of a partition of contiguous memory that is
managed by the VR TX kernel. Associated with each such partition is an ID number
and a default block size. Successive sc_gblockO requests then use this ID number to

obtain blocks of memory of default size from this partition.

CALLING
SEQUENCE: sc-pcreate(pid,paddr,psize,bsize,&err)

EXAMPLE:

+---+
I
I INPUT:
I
I
I
I
I
I
I

pid

paddr

psize

bsize

OUTPUT: err

Integer variable that holds the
10 number of a partition.

Pointer variable that holds the
starting address of a partition
or partition extension.

Pointer variable that holds the
size of the partition or partition
extension specified in bytes. psize
must be greater than or equal to
block size.

Integer variable that holds the
block size for a partition. bsize
cannot equal zero.

Integer variable that holds the
return code.

+---+
RETURN CODES

OOOOH
0003H

OOOEH

Successful return.
No memory available; insufficient system

memory for VRTX control structures.
Partition 10 error; 10 number already

assigned.

Copyright 1984, Hunter & Ready, Inc. 5-9

Pend for Message

5.9 sc_pend - Pend for Message

5-10

This call obtains a pointer-sized, nonzero message from a specified mailbox. If no
message is posted at the specified mailbox, the calling task suspends until a message
becomes available to the calling task. When several tasks are waiting on the same mail­
box, the task highest (in priority on the active TCB chain) will receive the message.

An optional time-out value can be specified with this call. In this case, the error code
ER_TMO is returned to the calling task if no message is received within the specified
number of clock ticks. (See Section 4.1, 'Real-Time Clock Support.') A task switch
occurs if the mailbox is empty.

CALLING
SEQUENCE:

EXAMPLE:

msg sc-pend(&mbox,timeout,&err)

msg s c-pend (&mbox[3],lOOL,&err)

+---+
I I
I INPUT: mbox Pointer variable to be used as a I
I mailbox. I
I I
I timeout Long integer variable that holds I
I the time-out value. I
I I
I I
I OUTPUT: err Integer variable that holds the I
I return code. I
I I
I msg Pointer variable that receives a I
I message. I
I I
+---+

RETURN CODES

OOOOH
OOOAH

Successful return.
Time-out.

Copyright 1984, Hunter & Ready, Inc.

Extend Memory Partition

5.10 sc _pextend - Extend Memory Partition

This call extends a previously defined memory partition to encompass an additional
range of memory locations. In conjunction with sc_pcreateO, this call defines
memory partitions that span noncontiguous chunks of memory within an address
space.

The block size used for a partition extension is identical to that originally defined by
sc _pc rea teO.

CALLING
SEQUENCE:

EXAMPLE:

sc-pextend(pid,paddr,psize,&err)

sc-pextend(part_id,xpart_adr,xpart_size,&err)

+---+
I
I INPUT:
I
I
I
I
r

I
I
I
I
I
I
I
I

pid

paddr

psize

I OUTPUT: err
I
I

Integer variable that holds the
ID number for the partition.

Pointer variable that holds the
starting address of a partition
or partition extension.

Pointer variable that holds the
size of the partition or partition
extension specified in bytes. psize
must be greater than or equal to
block size.

Integer variable that holds the
return code.

+---+

RETURN CODES

OOOOH
0003H

OOOEH

Successful return.
No memory available; insufficient system

memory for VRTX control structures.
Partition ID error; no such partition.

Copyright 1984, Hunter & Ready, Inc. 5-11

sc-post Post a Message

5.11 sc -post - Post a Message

5-12

This call is used to post a pointer-sized, nonzero message to a specified mailbox.
Since zero is used to indicate the mailbox is empty, messages of zero are not allowed.
This call results in a task switch when a task with a priority higher than the calling
task was pended on that mailbox.

If a task is pended on a mailbox the next message posted to that mailbox is immedi­
ately allocated to the task, bypassing being saved in the mailbox itself.

CALLING
SEQUENCE:

EXAMPLE:

sc-post(&mbox,msg,&err)

sc-post(&mbox[3],msg,&err)

+---+

INPUT: mbox

msg

OUTPUT: err

Pointer variable to be used as
a mailbox.

Pointer variable that receives a
message.

Integer variable that holds the
return code.

I
I
I
I
I
I
I
I
I
I
I

+--------------------------------:.....------------------------+

RETURN CODES

OOOOH
0005H
0006H

RET_OK
ER_MIU
ER_ZMW

Successful return.
Mailbox already in use.
Zero message.

Copyright 1984, Hunter & Ready, Inc.

Put Character

5.12 sc_putc - Put Character

With this call, a task specifies the next character to transmit to the supported 110
device. If the 64-byte buffer of characters to transmit is full, the calling task suspends
until the buffer is available (i.e., one character is transmitted). This call initiates the
rescheduling procedure if the transmit buffer is full.

CALLING
SEQUENCE:

EXAMPLE:

SCJ>utc(char)

sCJ>utc('V')

+---+
I I
I INPUT: char Integer variable that holds a I
I character. I
I I
I I
I OUTPUT: None. I
I I
+---+

Copyright 1984, Hunter & Ready, Inc. 5-13

Accept Message from Queue

5.13 sc_qaccept - Accept Message from Queue

5-14

This call obtains a pointer-sized, nonzero message from a specified queue. Unlike
sc_qpendO, this call does not suspend the caller if no message is present, but returns
the error code ER_NMP immediately. No message is returned if the call is un­
successful. This call does not go through the rescheduling procedure.

CALLING
SEQUENCE:

EXAMPLE:

msg sc_qaccept(qid,&err)

msg

+---+
I I
I INPUT: qid Integer variable that holds the I
I ID 0 f a queue. I
I I
I I
I OUTPUT: err Integer variable that holds the I
I return code. I
I I
I msg Pointer variable that receives a I
I message. I
I I
+---+

RETURN CODES

OOOOH
OOOBH
OOOCH

RET_OK
ER_NMP
ER_QID

Successful return.
No message present.
Queue ID error; no such queue.

Copyright 1984, Hunter & Ready, Inc.

Create Message Queue

5.14 sc_qcreate - Create Message Queue

This call creates a message queue whose size cannot exceed available VRTX
Workspace. There is an upper limit on the number of messages that can be enqueued
at any given time, as specified by the size count. The queue is managed by VR TX in a
'first-in/first-out' (FIFO) manner. This call does not initiate the rescheduling proce­
dure.

CALLING
SEQUENCE:

EXAMPLE:

sc_qcreate(qid,qsize,&err)

sc_qcreate(que_id,24,&err)

+---+
I I
I INPUT: qid Integer variable that holds the I
I ID 0 f a queue. I
I I
I qsize Integer variable that holds the I
I size of a queue (1 to 255 I
I inclusive). I
I I
I I
I OUTPUT: err Integer variable that holds the I
I return code. I
I I
+---+

RETURN CODES

OOOOH
0003H

OOOCH

Successful return.
No memory available; insufficient VRTX

Workspace.
Queue ID error; ID number already

assigned.

Copyright 1984, Hunter & Ready, Inc. 5-15

Queue Inquiry

5.15 sc_qinquiry - Queue Inquiry

5-16

This call obtains a count of messages waiting in a queue. If the count is nonzero, the
actual contents of the head-of-queue message (the message to be given to the next
sc_qpendO or sc_qacceptO request) is returned to the caller, without being extracted
from the queue.

Although the caller is given a copy of the first message, the message remains queued.
The calling program still needs to make the sc_qpendO or sc_qacceptO call to remove
the message.

This function can be used at both task and ISR levels. This call does not go through
the rescheduling procedure.

Note: If the return code is nonzero, the message returned is invalid.

CALLING
SEQUENCE:

EXAMPLE:

msg

msg

sc_qinquiry(qid,&count,&err)

sc_qinquiry(que_id,&cnt,&err)

+---+
I I
I INPUT:
I
I
I

qid

I OUTPUT: err
I
I
I
I
I
I
I
I
I

msg

count

Integer variable that holds the
ID of a queue.

Integer variable that holds the
return code.

Pointer variable that receives a
message.

Pointer to an integer variable
that holds the count of messages
in a queue.

+---+

RETURN CODES

OOOOH
OOOCH

Successful return.
Queue ID error; no such queue.

Copyright 1984, Hunter & Ready, Inc.

Pend for Message from Queue

5.16 sc_qpend - Pend for Message from Queue

This call obtains a pointer-sized, nonzero message from a specified queue. If the
specified queue is currently empty, the calling task suspends until a message is posted
at that queue. Care should be taken to have fewer than 256 tasks pended on a single
queue simultaneously; this will cause unpredictable results.

This call can specify an optional time-out value. In this case, the error code ER_ TMO
is returned to the calling task if no message is received within the specified number of
clock ticks. See Section 4.1, 'Real-Time Clock Support.' No message is returned if the
call is unsuccessful. A task switch occurs if the queue is empty.

CALLING
SEQUENCE:

EXAMPLE:

msg sc_qpend(qid,timeout,&err)

msg sc_qpend(que_id,lOOL,&err)

+---+
I I
I INPUT: qid Integer variable that holds the I
I ID 0 f a queue. I
I I
I timeout Long integer variable that holds I
I the time-out value. I
I I
I I
I OUTPUT: err Integer variable that holds the I
I return code. I
I I
I msg Pointer variable that receives a I
I message. I
I I
+---+

RETURN CODES

OOOOH
OOOAH
OOOCH

RET_OK
ER_TMO
ER_QID

Successful return.
Time-out.
Queue ID error; no such queue.

Copyright 1984, Hunter & Ready, Inc. 5-17

sc_qpost Post Message to Queue

5.17 sc_qpost - Post Message to Queue

5-18

This call posts a pointer-sized, nonzero message to a specified queue. This call results
in a task switch when a task with a priority higher than the calling task was pended
on that queue.

If a task is pended on the queue, the message is immediately posted to that task,
bypassing being saved in the queue.

CALLING
SEQUENCE: sc_qpost(qid,msg,&err)

EXAMPLE:

+---+
I I
I INPUT: qid Integer variable that holds the I
I 10 0 f a queue. I
I I
I msg Pointer variable that receives a I
I message. I
I I
I I
I OUTPUT: err Integer variable that holds the I
I return code. I
I I
+---+

RETURN CODES

OOOOH
0006H
OOOCH
OOOOH

RET_OK
ER_ZMW
ER_QIO
ER_QFL

Successful return.
Zero message.
Queue 10 error; no such queue.
Queue full.

Copyright 1984, Hunter & Ready, Inc.

Release Memory Block

5.18 sc_rblock - Release Memory Block

This call returns a previously allocated memory block to the partition from which it
was originally allocated. Blocks are not automatically released when a task is deleted.

CALLING
SEQUENCE: sc_rblock(pid,block,&err)

EXAMPLE:

+---+
I I
I INPUT: pid Integer variable that holds the I
I 1D number of a partition. I
I I
I block Pointer variable that holds the I
I starting address of a block of I
I memory. I
I I
I I
I OUTPUT: err Integer variable that holds the I
I return code. I
I I
+---+

RETURN CODES

OOOOH
0004H

OOOEH

Successful return.
Not a memory block; specified address

does not reference a block previously
allocated from the specified
parti tion.

Partition 1D error; no such partition.

Copyright 1984, Hunter & Ready, Inc. 5-19

Set Time

5.19 sc_stime - Set Time

5-20

This call sets the current value, as a count of ticks, of the system clock. The system
resets this value to zero at initialization. This call does not go through the reschedul­
ing procedure.

CALLING
SEQUENCE:

EXAMPLE:

+---+
I I
I INPUT: time Long integer variable that holds I
I the value of the clock. I
I I
I I
I OUTPUT: None. I
I I
+---+

Copyright 1984, Hunter & Ready, Inc.

Create a Task

5.20 sc tcreate - Create a Task

This call dynamically creates a task with a specified priority and ID number. Up to

256 priority levels may be specified; up to 255 unique ID numbers may be assigned.
A value of zero indicates that no ID is assigned. The TCB of the newly created task is
placed on the active chain immediately in front of the TCBs of all other tasks with the
same priority.

This call results in a task switch if the new task's priority is higher than or equal to
that of the calling task.

CALLING
SEQUENCE:

EXAMPLE:

sc_tcreate(task,tid,pri,&err)

sc_tcreate(task4,23,7,&err)

+---+

INPUT: task Name of the C function to be run
as a task.

tid Integer variable that holds the ID
number for the task (1 to 255
inclusive, or 0 if no ID is to be
assigned) .

pri Integer variable that holds the
priority of the task (0 to 255
inclusive, with 0 being highest
priority) .

OUTPUT: err Integer variable that holds the
return code.

+---+

Note: A task ID of zero, while legal, is a special case. A task with ID of
zero can be created but cannot be referenced by other tasks. The function
calls sc_tdeleteO, sc_tsuspendO, sc_tresumeO, sc_tpriorityO and
sc_tinquiryO cannot reference a task with an ID of zero when issued by a
different task. These calls can be made for a task with an ID of zero only
by the task itself. This anonymity is sometimes useful in systems for se­
curity applications.

Copyright 1984, Hunter & Ready, Inc. 5-21

5-22

RETURN CODES

OOOOH
OOOlH

0002H

Create a Task

Successful return.
Task 1D error; 1D number already

assigned.
No TeBs available.

Copyright 1984, Hunter & Ready, Inc.

Task Delete sc_tdelete

5.21 sc_tdelete - Task Delete

This call removes one or more tasks from the active chain, including possibly the
calling task itself. The affected task becomes dormant and its TCB becomes available
for reuse. This call results in a task switch if the current task is deleted.

CALLING
SEQUENCE:

FORMAT l:

FORMAT 2:

FORMAT 3:

sc_tdelete(tid/pri,code,&err)

Delete all tasks of a specified priority.
sc_tdelete(pri_l, 'A' ,&err)

The return code has the value RET_OK even
if there are no tasks with the specified
priority.

Delete a task with a specified 10 number.
sc_tdelete(your_tid,O,&err)

Delete self (i.e., delete calling task).
sc_tdelete(O,O,&err)

+---+

INPUT: tid/pri

code

OUTPUT: err

Either tid or pri (integer
variable) .

Integer variable used to select
either tid or pri as the first
argument. ° indicates tid; 'A'
indicates pri.

Integer variable that holds the
return code.

I
I
I
I
I
I
I
I
I
I
I
I
I

+---+

RETURN CODES

OOOOH
OOOlH

Successful return.
Task 10 error. For Format 2 only, no

task with specified 10 number.

Copyright 1984, Hunter & Ready, Inc. 5-23

sc~tinquiry Task Inquiry

5.22 sc_tinquiry - Task Inquiry

5-24

This system call obtains priority and status information about a particular task, spe­
cified by ID number, along with a pointer to the task's TCB. A task can use the
sc_tinquiryO call to determine its own task ID number, priority level and TCB ad­
dress. This call never goes through the rescheduling procedure and therefore never
results in a task switch.

CALLING
SEQUENCE:

FORMAT 1:

FORMAT 2:

tcb = sc_tinquiry(info,tid,&err)

Get information about a task with a given
IO number.

tcb = sc_tinquiry(info,your_tid,&err)

Get information about one's self (i.e.,
the calling task).

tcb = sc_tinquiry(info,O,&err)

+---+
I
I INPUT:
I

tid Integer variable that holds the IO
number for the task (1 to 255
inclusive, or 0 if no IO is to be
assigned) .

OUTPUT: tcb Pointer variable that holds the
address of the TCB.

info A three-element integer array
declared as int info[3]; used to
return the task status information.

info[O] IO number
info[l] priority
info[2] = status variable of TCB

err Integer variable that holds the
return code.

+---+

Copyright 1984, Hunter & Ready, Inc.

~

I

I

I

I

I

Task Inquiry

This call can be made from a task or an ISR level. If the call is made from an ISR, and
no task ID is specified (task ID of zero), the information returned describes the cur­
rent interrupted task. If the sc_tinquiryO is made during user-initialization before
any tasks are created, the data returned is invalid.

RETURN CODES

OOOOH
OOOlH

Successful return.
Task ID error. For Format 1 only, no

task with specified ID number.

If the return code is nonzero, the values in info are not valid.

If the value of the status variable is zero, the associated task is ready to run. If the
status variable is nonzero, the task has been suspended for one or more of the follow­
ing reasons, as indicated by the bit setting:

bit: 15 6 5 432 1 0

info[2] = I o status

Bit

o
1
2
3
4
5
6

Reason for Suspension

Explicitly suspended
Suspended for message
Suspended for input
Suspended for output
Awaiting special character
Suspended for task delay
Suspended on message queue

Suspending
Call

sc_ tsuspend ()
sc-pend()
sc_getc ()
sc-putc()
sc_wai tc ()
sc_delay()*
sc_qpend()

*Also set for sc-pend() and sc_qpend() when a
time-out is in effect.

Copyright 1984, Hunter & Ready, Inc. 5-25

Task Priority Change

5.23 sc_tpriority - Task Priority Change

5-26

This call changes the priority of a task. The TCB of the affected task is placed on the
active chain immediately in front of the TCBs of all other tasks with the same
priority. This call results in a task switch when the new priority of the affected task is
higher than or equal to that of the calling task. Note that the sc_tpriorityO call does
not affect the status of a task; in other words, a suspended task remains suspended
even if its priority is changed.

CALLING
SEQUENCE:

FORMAT 1:

FORMAT 2:

sc_tpriority(tid,pri,&err)

Change the priority of a task with a specified
ID number.

sc_tpriority(your_tid,new-pri,&err)

Change the priority of the calling task.
sc_tpriority(O,new_pri,&err)

+---+

INPUT: tid Integer variable that holds the
ID number for the task (1 to 255
inclusive, or 0 if no ID is to be
assigned) .

pri Integer variable that holds the
priority of the task (0 to 255
inclusive, with 0 being highest
priority) .

OUTPUT: err Integer variable that holds the
return code.

+---+

RETURN CODES

OOOOH
OOOlH

Successful return.
Task ID error. For Format 1 only, no

task with specified ID number.

Copyright 1984, Hunter & Ready, Inc.

I

I

I

I

Task Resume

5.24 sc tresume - Task Resume

This call resumes the execution of one or more tasks previously suspended by an
sc_tsuspendO call. This call initiates the rescheduling procedure.

Note: A task with ID equal to zero cannot be explicitly resumed. (An ID
of zero cannot be specified in this call.)

CALLING
SEQUENCE:

FORMAT 1:

FORMAT 2:

sc_tresume(tid/pri,code,&err)

Resume all tasks of a specified priority.
sc_tresume(pri_l, 'A' ,&err)

The return code has the value RET_OK even
if there are no tasks with the specified
priority.

Resume a task with a specified 10 number.
sc_tresume(your_tid,O,&err)

+---+
I I
I INPUT: tid/pri Either tid or pri (integer I
I variable) . I
I I
I code Integer variable used to select I
I either tid or pri as the first I
I argument. 0 indicates tid; 'A' I
I indicates pri. I
I I
I I
I OUTPUT: err Integer variable that holds the I
I return code. I
I I
+---+

RETURN CODES

OOOOH
OOOlH

Successful return.
Task 10 error. For Format 2 only, no

task with specified 10 number.

Copyright 1984, Hunter & Ready, Inc. 5-27

sc_tslice Enable Round-Robin Scheduling

5.25 sc_tslice - Enable Round-Robin Scheduling

5-28

This call enables round-robin scheduling of equal priority tasks under VRTX. When
time-slicing is in effect and VR TX is notified of a clock tick via receipt of a
VCTIMER call, VRTX records which task is in control. If the same task is in con­
trol when the time-slicing interval elapses, then the task suspends. Its TCB is put at
the end of its priority group on the ready chain. Round-robin scheduling becomes
disabled if the sc_tsliceO call specifies a zero interval.

All groups of equal-priority tasks are subject to time-slicing. For example, three tasks
at priority 5 and six tasks at priority 10 all undergo time-slicing.

When time-slicing is in effect, a task which suspends for any reason is put at the end
of its priority group on the active chain.

CALLING
SEQUENCE:

EXAMPLE:

sc_tslice (ticks)

+------------------------------------.-------~-------------+

I I
I INPUT: ticks Integer variable that holds the I
I number of ticks to comprise the I
I time-slicing interval for I
I round-robin scheduling. Use 0 as I
I the time-slicing interval to disable I
I round-robin scheduling. I
I I
I I
I OUTPUT: None. I
I I
+---+

Copyright 1984, Hunter & Ready, Inc.

Task Suspend

5.26 sc_tsuspend - Task Suspend

This call suspends one or more tasks. The TCB of each affected task remains on the
active chain, but the explicitly-suspended flag in the TCB is set. A task that suspends
in this manner will not resume execution until an sc_tresumeO call is issued. This call
initiates the rescheduling procedure if the current task suspends.

Note: If a task has disabled interrupts and subsequently suspends, VRTX
reenables interrupts for itself and other tasks. As soon as this task
resumes execution, interrupts are again disabled.

CALLING
SEQUENCE:

FORMAT 1:

FORMAT 2:

FORMAT 3:

sc_tsuspend(tid/pri,code,&err)

Suspend all tasks of a specified priority.
sc_tsuspend(pri_l, 'A' ,&err)

The return code has the value RET_OK even
if there are no tasks with the specified
priority.

Suspend a task with a specified 10 number.
sc_tsuspend(your_tid,O,&err)

Suspend self (i.e., suspend calling task).
sc_tsuspend(O,O,&err)

-~---+

INPUT: tid/pri Either tid or pri (integer
variable) .

code Integer variable used to select
either tid or pri as the first
argument. ° indicates tid; 'A'
indicates pri.

OUTPUT: err Integer variable that holds the
return code.

+---+

Copyright 1984, Hunter & Ready, Inc. 5-29

5-30

RETURN CODES

OOOOH
OOOlH

Task Suspend

Successful return.
Task ID error. For Format 2 only, no

task with specified ID number.

Copyright 1984, Hunter & Ready, Inc.

Enable Task Rescheduling

5.27 sc_unlock - Enable Task Rescheduling

This call reenables normal VRTX task rescheduling, cancelling the effect of a single
previously issued sc_lockO call. If scheduling is already enabled, this call has no ef­
fect. The calls sc_lockO and sc_unlockO are used in pairs. An internal count of locks
and unlocks is kept so that nested instances of these calls do not prematurely end a
scheduling lock. For example, nested subroutines and procedures may need to run
locked for short periods of time. When they issue an sc_unlockO, it cancels the effect
of the previous sc_lockO only. This call goes through the rescheduling procedure
when the nesting count becomes zero.

The maximum nest count supported is 255 minus the maximum number of nested
ISRs. For example, if a system has prioritized interrupts with a maximum depth of
three ISRs, the maximum lock/unlock nesting is 255-3=252.

CALLING
SEQUENCE:

+---+
I I
I INPUT: None. I
I I
I I
I OUTPUT: None. I
I I
+---+

Copyright 1984, Hunter & Ready, Inc. 5-31

Wait for Special Character

5.28 sc_waitc - Wait for Special Character

5-32

With this call, a user task can act as a watchdog for a particular character, such as a
break or a CONTROL-C, that might need special processing. The calling task
suspends until the specified character is received from the supported I/O device. The
character does not get placed in the VRTX input buffer. VRTX permits only one
sc_ waitcO request to be active in the system. The rescheduling procedure is always
initiated.

CALLING
SEQUENCE:

EXAMPLE:

sc_waitc(char,&err)

sc_waitc(Ox03,&err)

(03 is the Hex code for CONTROL-C)

+---+
I I
, INPUT: char Integer variable that holds a I
I character. I
I I
I I
I OUTPUT: err Integer variable that holds the I
I return code. I
I I
+---+

RETURN CODES

OOOOH
0008H

Successful return.
Previous sc_waitc() request already in

progress.

Copyright 1984, Hunter & Ready, Inc.

Appendix A

SYSTEM CALL SUMMARY HUNTER
~ READY

The set of VRTX functions with their arguments is illustrated in the following table.

TASK MANAGEMENT:

sc_tcreate(task,tid,pri,&err)
sc_tdelete(tid/pri,code,&err)
sc_tsuspend(tid/pri,code,&err)
sc_tresume(tid/pri,code,&err)
sc_tpriority(tid,pri,&err)
tcb = sc_tinquiry(info,tid,&err)
sc_lock()
sc_unlock()

MEMORY ALLOCATION:

+----+----+----+----+----+----+
IRet IArgllArg21Arg31Arg41Arg51
+----+----+----+----+----+----+
I Iptr lint lint I&intl I
I lint lint I&intl I I
I lint lint I&intl I I
I I int I int I &int I I I
I lint lint I&intl I I
Iptr Iptr lint I&intl I I
I I I I I I I
I I I I I I I
+----+----+----+----+----+----+

+----+----+----+----+----+----+
IRet IArgllArg21Arg31Arg41Arg51
+----+----+----+----+----+----+

block = sc_gblock(pid,&err) Iptr lint I&intl I I I
sc_rblock(pid,block,&err) I lint Iptr I&intl I I
sc-pcreate(pid,paddr,psize,bsize,&err) I lint Iptr Iptr lint I&intl
sc-pextend(pid,paddr,psize,&err) I lint Iptr Iptr I&intl I

COMMUNICATION AND SYNCHRONIZATION:

sc-pos t (&mbox,msg,&err)
msg = sc-pend(&mbox,timeout,&err)
msg = sc_accept(&mbox,&err)
sc_qpost(qid,msg,&err)
msg = sc_qpend(qid,timeout,&err)
msg = sc_qaccept(qid,&err)
sc_qcreate(qid,qsize,&err)
msg = sc_qinquiry(qid,&count,&err)

Copyright 1984, Hunter & Ready, Inc.

+----+----+----+----+----+----+

+----+----+----+----+----+----+
IRet IArgllArg21Arg31Arg41Arg51
+----+----+----+----+----+----+
I I&ptrlptr I&intl I I
Iptr I&ptrllongl&intl I I
Iptr I&ptrl&intl I I I
I I int I ptr I &int I I I
Iptr lint Ilongl&intl I I
Iptr lint I&intl I I I
I lint lint I&intl I I
Iptr lint I&intl&intl I I
+----+----+----+----+----+----+

A-I

System Call Summary

REAL-TIME CLOCK:

time = sc_gtime()
sc_stime(time)
sc_delay(timeout)
sc_tslice(ticks)

CHARACTER 1/0:

char = sc_getc()
scyutc(char)
sc_waitc(char,&err)

COMPONENT MANAGEMENT:

sc_call(fcode,&pkt,&err)

A-2

+----+----+----+----+----+----+
IRet IArgllArg21Arg31Arg41Arg51
1----1----1----1----1----1----1
Ilongl I I I I I
I Ilongl I I I I
I Ilongl I I I I
I I int I I I I I
+----+----+----+----+----+----+

+----+----+----+----+----+----+
IRet IArgllArg21Arg31Arg41Arg51
1----1----1----1----1----1----1
I char I I I I I I
I I char I I I I I
I I char I &int I I I I
+----+----+----+----+----+----+

+----+----+----+----+----+----+
IRet IArgllArg21Arg31Arg41Arg51
1----1----1----1----1----1----1
I lint I&pktl&intl I I
+----+----+----+----+----+----+

Copyright 1984, Hunter & Ready, Inc.

Appendix B

RETURN CODES HUNTER
~ READY

Upon return from a VRTX function, integer variable err contains the return code. The follow­
ing table lists the mnemonics, values and meanings of all possible return codes.

err Mnemonic

OOOOH

OOOlH

0002H

0003H

0004H

0005H

0006H

0007H

0008H

0009H

OOOAH

OOOBH

OOOCH

Meaning Affected Commands

Successful return [All valid commands]

Task ID error tcreate, tdelete,
tsuspend, tresume,
tpriority, tinquiry

No TCBs available tcreate

No memory available gblock, pcreate,
pextend, qcreate

Not a memory block rblock

Mailbox in use post

Zero message post, qpost

Buffer full rxchr

WAITC in progress waitc

Invalid system call [Invalid commands]

Time-out pend, qpend

No message present accept, qaccept

Queue ID error qpost,qpend,qaccept
qcreate,qinquiry

Copyright 1984, Hunter & Ready, Inc. B-1

Return Codes

OOOOH ER_QFL Queue full qpost

OOOEH ER_PIO Parti tion IO error gblock, rblock,
pcreate, pextend

0020H ER_CVT Component Vector call
Table not defined
in Configuration
Table

002lH ER_COM Undefined component call

0022H ER_OPC Undefined opcode call
for this component

B-2 Copyright 1984, Hunter & Ready, Inc.

INDEX HUNTER
~ READY

The following list does not contain references to specific system calls. To find these,
refer to Chapter 5, Appendix A or the Table of Contents.

accept messages, 1-3, 1-7, 1-8,3-8
active chain, 2-3, 5-23, 5-26, 5-29
active task, 2-3, 2-4
arguments, 1-2, 1-4,4-1,4-3,5-1

bit settings, 2-5, 5-25
block size, 1-4,5-9,5-11
blocks, memory, 1-4, 1-9

character 110, 4-2, 4-3
clock counter, 4-1, 4-2
clock service routine, 4-1
communication, intertask, 1-8,3-1,3-7
component, 1-3, 1-4, 1-5,3-11,3-12,5-3
Configuration Table, 3-1, 3-5, 5-3
create task, 1-3, 5-21

delay, 1-4,2-5,4-1,5-4,5-25
delete task, 1-3,2-1,2-8,5-23
dormant task, 2-4, 2-6
dynamic memory allocation, 1-9

error codes, (see return codes)
event-driven operating system, 2-2
executing task, 2-2, 2-4, 2-6

function code, 1-4, 3-12, 5-3
functions, 1-1, 1-2, 1-3, 1-9,2-1,4-1,4-2,4-3, A-I

identification number (ID), 1-5, 1-11,2-2,2-4,2-8,3-8,3-12
inactive chain, 2-4
input buffer, 2-4, 2-5, 5-32
input parameters, 1-2

Copyright 1984, Hunter & Ready, Inc. I-I

Index

1-2

mqUiry
queue inquiry, 1-3, 1-7, 1-8,5-16
task inquiry, 1-3, 1-4, 1-7, 1-9, 5-24

integers, 1-6
intertask communication, 1-8

kernel, 2-1, 5-9

link pointer, 2-3

mailboxes, 1-8,3-1,3-7,3-8,3-9
memory, 1-4, 1-8,2-3,3-1,3-2,3-3,5-5,5-9,5-11,5-19
memory allocation, 3-2, 3-5, 3-6
memory blocks, 1-4,3-1,3-3,3-4,5-5,5-19
memory partition, 1-9,3-4,5-9,5-11
memory

system, 2-3, 3-3, 3-4, 5-11
user, 3-1, 3-3, 3-4

messages, 1-8,3-7,3-8,3-9,5-12,5-15,5-16
message queues, 1-4,3-8,3-9
multitasking, 1-1,2-1,2-4,2-7,2-8,3-2,5-8

output buffer, 2-5

partition address, 1-9, 1-10
partition size, 1-10, 1-11
partitions, 3-1, 3-3, 3-4, 3-5,5-5,5-11
pend, 3-7, 3-8, 3-9, 5-10,5-17
pointers, 1-6,3-7
post, 1-3, 1-7, 1-8,3-7,3-8,3-10,5-12,5-18
priority, 1-3, 1-5,2-1,2-2,2-3,2-4,2-8,3-7,3-8,3-9,5-8,5-10, 5-12,5-18,5-21,5-
23,5-24,5-26,5-27,5-28,5-29

queue inquiry, 5-16

ready task, 2-3, 2-4, 2-6
real-time, 2-1, 3-3, 4-1, 4-3, 5-10, 5-22
real-time clock, 4-1, 5-10, 5-22
real-time systems, 3-3
release a block of memory, 3-4, 5-19
rescheduling procedure, 2-2, 3-9, 5-2, 5-6, 5-13, 5-14, 5-15, 5-16, 5-24, 5-31, 5-32

Copyright 1984, Hunter & Ready, Inc.

resource locking mechanisms, 3-8
resume task, 2-5, 2-6, 5-27
return codes, 1-2,5-1, B-1
ROM,3-1
round-robin scheduling, 2-3, 4-1, 5-28

scheduling, 2-2, 2-3, 2-8, 4-1, 5-8, 5-31
special character, 2-4, 2-5, 4-2, 5-25, 5-32
stack size, 3-3
stacks, 3-1, 3-4
state transitions, 2-4, 2-7, 2-8
static memory allocation, 3-3
status, 1-4, 1-7, 1-9,2-3,2-4,2-5,2-8,3-8,5-24,5-25,5-26
status word, 5-25
suspended task, 2-4, 2-5, 2-6, 5-26
synchronization, 3-7, 3-8, 3-9, 3-10
system calls, 1-1, 1-3, 1-6,2-2,2-7,3-5,3-6,3-9,3-12,4-1,4-3,5-1, A-1
system memory, 2-3,3-3,3-4,5-11

task delay, 4-1, 5-4, 5-25
Task Control Block (TCB), 2-3, 2-8
tasks, 1-9,2-1,2-2,2-3,2-4,2-5,2-6,2-8,3-1,3-2,3-3,3-7, 3-8, 3-9
task inquiry, 5-24
task states, 2-4, 2-8
task state transitions, 2-6, 2-7
task switch, 3-4
TCB chain, 2-3, 3-1, 5-10
tick, 1-4, 1-5,4-1,5-28
time delay, 2-5
time-slicing, 2-2, 2-3, 5-28

user load module, 3-1
user memory, 3-1, 3-3, 3-4

variables, 1-6, 1-8,3-1,3-4,3-8
vector table, 5-3

Index

VRTX, 1-1,2-1,2-2,2-3,2-4,2-5,2-6,3-1,3-3,3-4,3-5,3-7, 3-8, 3-9, 3-11,4-1,4-
2,4-3
VRTX code, 3-1
VRTX Workspace, 3-1

Copyright 1984, Hunter & Ready, Inc. 1-3

-We'd like your comments

HUNTER
~ READY

Hunter & Ready, Inc. attempts to provide documents
that meet the needs of all VRTX users. We can
improve our documentation if you help us by
commenting on the usability, accuracy, readability, and
organization of this manual. All comments and
suggestions become the property of Hunter & Ready,
Inc.

VRTX C User's Guide #592103001

1. Please specify by page any errors you found in this
manual.

2. Is this document comprehensive enough? Please
suggest any missing topics or information that is not
covered.

3. Did you have any difficulty understanding this
document? Please identify the unclear sections.

4. Please rate this document on a scale from 1 to 10,

with 10 the best rating.

Your Name

Title

Company Name

Address

City Phone

State Zip

•

•
IIIII

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO.265 PALO ALTO,CA

POSTAGE WILL BE PAID BY ADDRESSEE

HUNTER & READY, Inc.
p.o. Box 60803
445 Sherman Avenue
Palo Alto, CA 94306-0803

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

