A PROGRAMMING LANGUAGE/1130

REVISED: 5/5/69

1130-03. 3. 001

/

N

/

N

/'

y/

y/

v/

N

N

y/

/

N

N

y

y/

/'

N

N

N

N

y/

N

N

N

/

N

N

N

y

100 "€ "€0-0€TI

89/G/¢ *dHESIAHY
OLII/HOHVNONYI ONINN VIOH0OEd ¥

A¥VHEIT WYYI04d GILNGIYLINOD

N

DISCLAIMER

This program and its documentation have been contributed to the Program
Information Department by an IBM employee and are provided by the IBM
Corporation as part of its service to customers. The program and its
documentation are essentially in the author's original form and have not
been subjected to any formal testing. IBM makes no warranty expressed
or implied as to the documentation, function, or performance of this
program and the user of the program is expected to make the final
evaluation as to the usefulness of the program in his own environment.
There is no committed maintenance for the program. :

Questions concerning the use of the program should be directed to the
author or other designated party. Any changes to the program will be
announced in the appropriate Catalog of Programs; however, the changes
will not be distributed automatically to users. When such an announce-
ment occurs, users should order only the material (documentation, machine
readable or both) as indicated in the appropriate Catalog of Programs.

III

IBM Corporation

Z
y N Program Contribution l"'urm Program Information Department (PID)
7 40 Saw Mill River Road
/ Type III (IBM Employee) Hawthorne, New York 10532, US.A.
Attention: Program Control Desk
1 PROGRAM ORDER NUMBER (TO BE FILLED IN BY PID) A 2 SYSTEM TYPE (MACHINE)
1130 03.3.001 LL30 v 4oy
lMlAlTlHlEIMiAITII <AL, AND, BUS T -, I
3| s |
|N|E|S|S| <‘oNVERSATIONAL ,INTZER|-
IA|C|T|11V1E1 ARRAY, -, 1P|R|0|C|E1513111N|GI
IPIRIOIGIRIAJMJMIIINIGI |L|A|N|G|U|A|G|E|(|A|P|L|)|
4 AUTHORS’ NAME(S) (IF DIFFERENT THEN SUBMITTER'S) 5 SUBMITTER'S NAME (DIRECT TECHNICAL INQUIRIES T0)
R.S. Carberry A, G, Nemeth S.M. Raucher
‘ 6 SUBMITTER'S ADDRESS
L.M. Breed C. H, Brenner IBM
11141 Georgia Avenue
S.M. Raucher Wheaton, Maryland 20902
7 TITLE OF PROGRAM l
A Programming Language/1130
8 ESLIQ.SUB. 9 SECONDARY SUBJECT CODES - 10 OPERATING OR MONITOR SYSTEM REQUIRED
0,373 1,310]]1,7%0] 141110] L4510 NIOINIEt 1t 1 4 0 4 4 4 3 4 1
y RESUBMITTAL OF - DATE OF SUBMITTAL
11[VFEQF SUBMITIAL | | INITIALPROGRAM | ; INITIAL SUBMISSION 3 | UNANNOUNGED | 4 |p§8§é‘fﬁ’.&%'.&£%n 12
| | PROG. x11130.03 00 T T N I
13 ABSTRACT (PLEASE LIMIT TO 150 WORDS. DESCRIBE PROGRAM AND PURPOSE. CLEARLY IDENTIFY MACHINE CONFIGURATION AND SOURCE LANGUAGE.)
APL is a conversational implementation of the Iverson notation, an |

Numerical wvalues are accurate to gix decimal digits, and identifiers are up

ko 6 _alphabetic characters Input may come from the console typewriter, card
keader or a typewriter terminal. The program is independent of the IBM monitor

spaces and their functions to cards.

y TOTAL PAGES
PLEASE ATTACH ADDITIONAL PAGES IF Nzcss§r¢v — | TACHED -

e IS P

\ i B) 4 £ V) /
PERMISSION TO PUBLISH: *I HEREBY GIVE IBM PERMISSION TO RE- /C 4
PRINT, REPRODUCE AND DISTRIBUTE THIS |14 u) 6’7
PROGRAM TO ANYONE." PAGE 1 4 SIGNATURE OF SUBMINTER AND DATE

120-1424-3

Minimum configuration is 1131-2B and 1442 or 2560l. A 2741
terminal and requisite RPQ are highly desirable. API /1130

is written in 1130 Assembler Language. TABLE OF CONTENTS
Program Contribution Form 1
Deck and Tape Keys 3
| User Information Key 4
Preface 5
Operating Instructions » 10
GENERATING THE SYSTEM 10
INITIAL PROGRAM LOAD 10
USE OF CONSOLE SWITCHES 11
SYSTEM MAINTENANCE COMMANDS 12
SAMPLE TYPEWRITER OUTPUT 13.1
APL SYSTEM LOAD 13,2
APL/1130: User's Manual 14
Authors: A, D, Falkoff
K. E. Iverson

(Contains its own table of contents)

DECK KEY

For 1442 loading
Load card: APLIPL

privileged user load card: APLIPLPR USER INFORMATION KEY
IPL sector deck: First card unsequenced
Next 8 cards 14421D00-14421D07 .
* Next 5 cards IPL00000-IPL00004 The following items of interest may be found where indicated:
APL system deck: First card unsequenced ' :
Next 8 cards 14421.D00-1442LD07 Purpose: See Preface

Next 438 cards APL00000-APL00437

Fmptv Directories deck: First card unsequenced Advantages: See Preface
Next 8 cards 14421.D00~1442LD07

Next 9 cards DIR00000-DIR00008
Restrictions and range: See page 56

For 2501 loading

Identical to the decks above, except that the first 9 cards of Precision; See page 56
each deck are to be removed and replaced by:)

First card unsequenced Program requirements: See Operating Instructions

Next 14 cards 25011D00-2501LD13

(Three copies of this deck are included for user insertion- see
OPERATTXIC INSTRUCTIONS page 13.2)) System configuration: See page 20

TOTAL NUMBER OF CARDS 526 . .

: Timing: Response to trivial operations is within 2 seconds.
TAPE KEY (OPTIONAL MATERTAL)) Other responses are proportional to the amount of
computation required.

1. The tane supplied as,optional material, contains card images, blocked
20 cards per block. The tape is unlabeled. There is 1 file on the
tape, preceeded by a single tane mark. Two tape marks follow the Program modification aids: None provided.
end of the flle.*

2. Data stored includes a complete 1130 job stream (including all Input and output description: See page 24 and page 45
required control cards necessary to assemble the system under
Monitor II).

Sample problem: See Appendix A, page 93

3, The tave was created by the System 360 DEBE program. It may be
durmped back to cards by the same rrogram or any appropriate
tape to card utility nrogram.

LL BE FORWARDED ONLY WHEN

B

PREFACE

APL\1130 is a single-user implementation on a smaller
machine of the APL\360 conversational terminal system that
has been operating within IBM since the Fall of 1966.
Conceived as an experimental system for exploring certain
aspects of computer science, its purpose required that it
Operate under a realistic load in an environment that was
not artificially constrained. To this end, the members of
the IBM Research staff, and others, were encouraged to learn
the APL language and use the APL system. It was not
anticipated that it would have the impact that it did:

In twenty months of regularly scheduled operation,
clocking well over 100,000 terminal-hours of use, the
availability of APL\360 has materially changed the
computing habits of the Research organization.

Heavy users of batch processing have turned to APL for
on-line development of their algorithms.

Many laboratory data reduction chores formerly done by
batch operation or desk calculator are now executed in
a timely way at local terminals, using locally written,
stored APL programs.

Automatic collection of experimental data has, in many
instances, been put on-line to APL.

Routine correspondence and technical papers are
prepared at terminals, with the help of text-handling
programs written in APL.

Many professional staff members who formerly were
indifferent to, or actively resisted, the use of
computers, have become steady users of the APL system.

In addition to IBM Research personnel, use of the
system was offered to other 1locations within the IBM
Company, and it was also used experimentally in elementary
and secondary schools and in universities. The general
findings may be summarized as follows:

Although APL is easy for a beginner to learn,
non-programmers (as well as programmers) often develop
an interest in sophisticated use of the language,
because of its analytical power and mathematical
structure.

The primitive array operations of APL make it a good
language for scientific problems, text handling, and
general data processing, because arrays are fundamental
to all of these applications.

The use of a powerful, readily accessible computational
facility can materially change the qguality and
orientation of an academic course.

Other things being equal, acceptance of conversational
computing as a general mode of operation is strongly
dependent upon its reliability and availability --
regularly scheduled hours are essential, and the more
the better, including nights and weekends.

APL te;minal systems are characterized by the following:
Simple, uniform rules of syntax

Use of common symbols for the ordinary arithmetic
operations

Free-form decimal input
A large set of primitive operators

Use of defined functions (programs) with the same
facility and syntactic variety as primitive operators

Fast response

A library structure built around workspaces that hold
both programs and data

An immediate-execution mode completely free of
irrelevant keywords

A comprehensive, integrated set of system commands for
managing workspaces and libraries, and for other
essential functions

Three levels of security; account numbers, workspacés,
and programs can be individually locked against use or
display

Visugl fidelity between hard copy and transmitted
entries, which ensures reproducibility of results

Succinct diagnostic reports

New rglease. This is the second release of APL\1130. It
embo§1e§ a number of new features which are described in
detail in the APL\1130 User's Manual. They include:

1. Six-character identifiers.

2. Labels.

3. Extended function editing.

4. Card control commands for reading and punching
cards,) ’

5. Provision for connecting a remote 2741 terminal.

6. A dynamic method of localizing names as described
in the section on Homonyms.

7. A new command)SIV to display the state indicator
together with the list of 1local variables for each
halted function.

8. A system of locks and keys for security of account
numbers and workspaces.

9. The signum function (denoted by x) has been added.

10. The following changes in notation have been made:

New notation Replaces
JERASE F VFV
)ST)A

TAF AF

1l. A set of COPY commands permits the copying of all
or part of one workspace into another.

Instructional use. APL\1130 is well suited for use by
secondary schools for instructional purposes. In immediate
execut@on mode, APL\1130 executes each line as the student
tyPes it and replies before he types the following line.
This give-and-take between student and computer enhances
student involvement and augments the educational process.
Function definition mode enables a student to build and
store functions for later use which become a framework for
the subject matter.

APL\1130 is suitable not only for student
problem-solving in science and mathematics courses, but also
for drill and exercise in a programmed-teaching mode. The
system provides a formal method of function definition and a
method of saving data and programs from session to session.
APL also facilitates individual student experimentation; the
student may draw from his own experience and library of
functions or from a library of commonly used programs
maintained by an instructor.

Under normal circumstances, it is difficult for a
teacher to be able to provide adequate instruction for all
the 1levels of student achievement represented in one
classroom. APL\1130 can help accommodate the individual
differences present in several ways. First, the computer
system can provide drill and exercise for those students who
require more practice in problems than the instructor can
provide. Secondly, APL\1130 provides unlimited opportunity
for individual experimentation and exploration for the
above-average student; a gifted child no longer need be
inhibited by the requirements of his classmates. Finally,
APL\1130 can be used by teachers to prepare numerical
examples which would otherwise require tedious
time-consuming hand calculations.

In addition, the following features of APL\1130 are of
particular significance in instructional use:

1. Since APL is simple and concise and is closely
related to the ordinary notation of algebra, . a
student's attention can be devoted almost entirely to
solving the problem, rather than being diverted by
irrelevant details of a computer.

2. Basic APL operators are single characters. Economy
of symbols is gained by using each symbol as both a
monadic and dyadic operator, just as a minus sign is
used in ordinary arithmetic.

3. APL provides standard operators to perform common
functions which in other languages must be programmed.
For example, polynomial evaluation, random number
generation, summation, matrix multiplication and
permutation may each be done wusing a few APL
characters.

4, APL handles collections of data as easily as
individual items. For example, the volumes of five
different cylinders may be calculated simultaneously by
the same function used to calculate the volume of one.

5. Numbers used in APL are normally in familiar
decimal form. Powers of 10 can be written using
exponential or scientific notation, i.e., 1400000 can
be written 1.4E6 or .14E7. Therefore, representation
of very large or very small numbers is facilitated.

However, operators are provided to facilitate use
of number systems other than base 10. This facility
conforms to the modern mathematics curriculum used in
many schools.

6. APL avoids the use of complex function hierarchy
rules. The order of execution of an expression is
determined first by the placement of parentheses and
otherwise by one simple rule -- each operator works on
everything to its right. For example, in the
expression 17 ¢ 2 + 3, the : has as its denominator
2 + 3. The entire expression may be read as 17 divided
by the sum 2 + 3.

7. Correction of errors discovered before a statement
is entered into the computer is simple. The system
provides "visual fidelity" acting upon exactly what
appears on the printed page, regardless of the order of
entry. The printed record therefore makes clear
exactly what was acted upon by the computer. This is
important for later review and explanation by a
teacher.

8. Error messages are concise and indicate to the
student not only the type of error he has committed,
but also where the error was made. Resumption of work
from the point of error is simple.

9. APIN1130 provides a simple means for function
definition. Special purpose operations needed for a
particular problem may be easily defined by the student
or by the teacher for use by the entire class.

10. APL\1130 provides an extensive library capability;
each user can maintain a personal library where he may
store and later retrieve programs, and also has the
opportunity to use functions defined in other
libraries.

11. APL\1130 incorporates card control commands which
provide for punching APL functions and data on cards
and for reading APL commands and statements from cards
so punched, or from cards prepared on a separate
keypunch.

OPERATING INSTRUCTIONS

This manual contains information required by those who
manage and maintain an APL\1130 system. It is not needed by
those who simply intend to use APL\1130. Part 1 of the
User's Manual should also be consulted.

GENERATING THE SYSTEM

APL\1130 is written in 1130 Assembler Language and runs
on a dedicated disk. It is independent of any other 1130
programming systems. To generate an APL\1130 system on a
disk pack:

1. Initialize the disk, using either the Disk Pack
Initialization Routine (DPIR) distributed with Version
1 of the Disk Monitor System or the Disk Cartridge
Initialization Program (DCIP) - distributed with Version

2, Select the appropriate card decks for loading from
the 1442 or 2501.

3. Place the IPL Sector deck in the card reader.
Press START on the card reader and IMMEDIATE STOP,
RESET and PROGRAM LOAD at the console. After the last
card has left the hopper, press START on the card
reader and PROGRAM START at the console so that the
last card will be processed. Do not follow the deck
with blank cards. Perform the last card procedure

4. Repeat step 3 with the APL System deck.

5. Repeat step 3 with the Empty Directories deck.

. 'The APL system should now be ready for the first
Initial Program Load, as described in the next section.

The APL System deck can be reloaded by itself if the
system is destroyed or when a new release of APL\ 1130 is
made. To do so, just repeat step 4. User enrollments and
saved workspaces will be intact.

10.

INITIAL PROGRAM LOAD

When the 1130 system is first turned on or when an APL
disk has just been placed in the disk drive, an
Initial Program Load procedure is needed to make the APL
system operative. Two Initial Program Load cards are
provided for this, one labeled APLIPL (for general use) and
one labeled APLIPLPR (for ‘"privileged" use - this card
allows the use of the system maintenance commands by the
first person who signs on).

The Initial Program Load Procedure is given in Part 1
of the User's Manual.

When an APL disk has been freshly generated, the first
Initial Program Load should be performed with the privileged
load card and the operator should sign on wusing the number
0. This allows him to assign the first users to the system.
The number 0 need not be used after the first sign-on;
additional users can be assigned at any time by a privileged
user.

USE OF CONSOLE SWITCHES

Console switches 0 and 1 select the input device from
which the next sign-on will be accepted. They may be set at
any time and take effect at the next sign-on attempt, as
follows:

Switch 0 down, switch 1 down: The 1131 is the APL
terminal device. Typed input will be accepted from the
console keyboard.

Switch 0 down, switch 1 up: The 1131 is the APL
terminal device. Card input will be accepted from the
card reader, as if a)CARD command had been obeyed
previously.

Switch 0 up: The 2741 is the APL terminal device.
Typed input will be accepted from the 2741. Switch 1
is ignored, and card input will be accepted only upon
execution of a)CARD command.

11

SYSTEM MAINTENANCE COMMANDS

The system maintenance commands are intended for the
use of those responsible for maintaining the APL\1130
system; they are not for general use. For that reason,
they are available only to a privileged user, i.e., the
first user to sign on after a "privileged" IPL. They allow
for the assigning of workspaces to users, the removal of
users who will no longer use the system, and the printing of
information about the current state of the APL system.

YASSIGN N USERNAME [LOCK]

Assign user N (N is between 1 and 65535) another
workspace (which may be his first) and call him USERNAME.
The lock (a colon followed by a password; see discussion of
locks and keys in the User's Manual) is optional. For
example,)ASSIGN 3141 JSMITH or YASSIGN 3141 JSMITH:LC1

Irouble reports:

SYSTEM FULL - All disk space has been assigned.
INCORRECT COMMAND

JEXPUNGE N

Remove user number N from the system, along with all of
his workspaces, freeing the space to be assigned to other
users.

Irouble reports:

NUMBER NOT IN SYSTEM - An attempt has: been made to
expunge a non-existent account number. .

INCORRECT COMMAND

)PEOPLE

List all the users in the system, giving for each user
his username, his account number, and the number of times he
has signed on. .

Irouble reports:
INCORRECT COMMAND

12

)SPACES

List all the workspaces in the system, classified under
the users to whom they belong.

INCORRECT COMMAND
JDROP WSID

This command has the same effect as the non-privileged
)DROP command described in the User's Manual, except that
the WSID may contain any account number, and that using it
during a privileged sign-on decreases by one the number of
workspaces allotted to the account number (unless it has
only one workspace).

13

Sample Typewriter Output

)0

SIGNED ON

APL\1130

YASSIGN 100 TEACHER
JASSIGN 100 TEACHER
YASSIGN 1 STUDENTA
YASSIGN 2 STUDENTB
YOFF

SIGNED OFF

Y100
TEACHER SIGNED ON

g APL\1130

)SAVE WORK
WORK SAVED
JOFF

S‘IGNE’?SOFF‘
NUMBER NOT IN SYSTEM

)1
STUDENTA SIGNED ON

= APL\ 1130
=1

YSAVE SOMEWHERE
SOMEWHERE SAVED
YCLEAR

=

YSAVE THIS
WS RATION EXCEEDED
YLIB
SOMEWHERE
YDROP SOMEWHERE
SOMEWHERE DROPPED
)LIB

YSAVE THIS
THIS SAVED

YLIB
THIS

YOFF

SIGNED OFF

13.1.

Only when new system generated

is user number 0 used

User no. 100 named Teacher assigned
to system with two workspaces.
Users nos. 1 and 2 named Student

A & B assigned to system with one
workspace each.

After every sign off system in
student mode.

User no, 100 named Teacher signs on.

Performs some work
Saves workspace

User named Teacher signs off.
User no. 3 tries to sign on, but
has not been assigned to system.
User no. 1 signs on

Performs work

Saves workspace Somewhere.

Loads clean workspace
Performs more work

Tries to save This, but has already
used the one space he was assigned.
Lists his workspaces.

Drops previously saved Somewhere.

Lists again - there are no more
saved workspaces. Now can save This.

Lists saved workspaces. This is saved.
Signs off. System now waiting
for another student to sign on.

APL Blank Dir.
APL Loader

SEG 4

SEG 3

SEG 2

DPIR oz DCIP
rd Loader

APL SYSTEM LOAD

€ ca
SEG 1 (Supplied by the user and
not part of the distributed

program decks)

Notes:

1. SEG 1=SEG 4 are loaded separately (see operating Instructions).

2, SEG 1 is only required to clear the disk. It may be omitted

in rebuilding a pack.

3. SEG 4 (APL BLANK DIRECTORIES) may be omitted in rebuilding
a pack where:
a. former workspaces and/or functions are to be preserved.

b, former directories are known to be unchanged.

A3.2

©

APL\1130: User's Manual

A. D. Falkoff

K. E. Iverson

International Business Machines Corporation, 1969

14

ACKNOWLEDGEMENTS

The present APL\1130 Manual is based on the APL\360
Manual, just as the APL\1130 system is based on the APL\360
system. For assistance in preparing the necessary
modifications, the authors are indebted +to Messrs. S.#M.
Raucher* , D. J. Hills" , C. A. Weidman® , D. Oldacre” ,
and L. M. Breed.

The origing]l APL\1130 system was implemented by Messrs.
R. S. Carberry , P. S. Abrams ’ L. M. Breed, C. H.
Brenner, and A. G. Nemeth. Specifications for the present
revision were drawn up by Messrs. Raucher, Breed, and
Oldacre; the revisions were implemented by Mr. D. Oldacre
and Mrz E. B. Iverson®, with the assistance of Messrs., R,
Kerley and L. M. Breed.

A special acknowledgement is due to John L. Lawrence,
who provided important support and encouragement during the
early development of APL implementation, and who pioneered
the application of APL in computer-related instruction.

* GEM Region, IBM Corporation, Washington, D. C.
+ Amherst College, Amherst, Massachusetts

1I. P. Sharp Associates, Toronto, Canada

** Hartford GEM Office, IBM Corporation

t+ Stanford University, Stanford, California

IBM Corporation, White Plains, New York

15

TABLE OF CONTENTS

PART 1: GAINING ACCESS

THE APL CHARACTER SET

STARTING THE SYSTEM

STARTING AND ENDING A WORK SESSION
Mistakes

CONNECTING A 2741 TERMINAL
Set up terminal, Dial computer,
Transmission errors

LIMITED USE OF THE SYSTEM

PART 2: SYSTEM COMMANDS

WORKSPACES AND LIBRARIES
Workspaces, Libraries
NAMES
Local and global significance
LOCKS AND KEYS
ATTENTION
USE OF SYSTEM COMMANDS
Classification of commands, Normal responses
and trouble reports, Summary
TERMINAL CONTROL COMMANDS
WORKSPACE CONTROL COMMANDS
ﬁpgllcationkpackages, Information transfer
etween workspaces, Detailed descripti
LIBRARY CONTROL COMMA&DS TpEien
Continuity of work, Workspace identification,
g:?r§ry and aicount numbers, Storage allotment,
ging a workspace, Detailed descripti
INQUIRY COMMANDS ' prion
Detailed description
CARD CONTROL COMMANDS
Prepgring APL statements on cards,
Detailed description

16

20

20
24
24

26

27

28

28
29
30

30
31

34
35

40

43 |
45

PART 3: THE LANGUAGE

FUNDAMENTALS
Statements, Scalar and vector constants,
Names and spaces, Overstriking and erasure,
End of statement, Order of execution,
Error reports, Names of primitive functions
SCALAR FUNCTIONS
Precision of numbers, Monadic and dyadic
functions, Vectors, Index generator
DEFINED FUNCTIONS
Introduction, Branching, Local and global
variables, Explicit argument, Explicit
result, The forms of defined functions,
Use of defined functions, Recursive
function definition, Trace control
MECHANICS OF FUNCTION DEFINITION
Labels, Revision, Display, Line editing,
Reopening function definition, Locked
functions, Deletion of functions and
variables, System command entered during
function definition
SUSPENDED FUNCTION EXECUTION
Suspension, State indicator
HOMONYMS
Variable names, Function names
INPUT AND OUTPUT
Evaluation input, Character input, Normal
output, Heterogeneous output
RECTANGULAR ARRAYS
Introduction, Vectors dimension catena-
tion, Matrices dimension ravel, Reshape,
Uses of empty arrays, Indexing, Indexing
on the left, Array output
FUNCTIONS ON ARRAYS
Scalar functions, Reduction, Inner product,
Outer product
MIXED FUNCTIONS
Introduction, Monadic transpose, Rotate,
Reverse, Compress, Expand, Decode, Encode,
Index of Membership, Take and drop,
Grade up and down, Deal, Comments
MULTIPLE SPECIFICATION

17

52

52

56

60

67

70
72
73

76

82

85

91

APPENDIX A
SAMPLE TERMINAL SESSION

BIBLIOGRAPHY

18

93

107

Figure 1.1

Figure 1.2

Table
Table

Table

Table
Table
Table
Table

Table

Table

Table

Table

3.6

3.7

3.8

LIST OF ILLUSTRATIONS

2741 APL KEYBOARD
1131 APL CONSOLE KEYBOARD

SHIFT CONDITION SIGNALS
FOR 1130 KEYBOARD

TELEPHONE NUMBERS
SYSTEM COMMANDS

MNEMONICS & CARD CODES FOR THE
APL CHARACTER SET

ERROR REPORTS

PRIMITIVE SCALAR FUNCTIONS
FORMS OF DEFINED FUNCTIONS
DIMENSION AND RANK VECTORS

IDENTITY ELEMENTS OF PRIMITIVE
SCALAR DYADIC FUNCTIONS

INNER PRODUCTS FOR PRIMITIVE SCALAR

DYADIC FUNCTIONS f and g

OUTER PRODUCTS FOR PRIMITIVE
SCALAR DYADIC FUNCTION g

PRIMITIVE MIXED FUNCTIONS

19

Page
21

23

26
32
46

55
57
65
77
83

84

85

86

PART 1
GAINING ACCESS

The APL\1130 system employs the APL language described
in Part 3 and the system commands described in - Part 2. It
is operated either from the 1131 console or from an
auxiliary 2741 terminal. This part of the manual describes
the procedures for beginning and ending a work session.

The following physical equipment is required for the
operation of APL\1130:

An 1131 CPU with 8K or more of core storage and a
built-in disk drive.

A 2501 card reader or 1442 card read/punch wired for
Initial Program Load.

An APL typing element #1167988,

Recommended, but not required, is a 2741 terminal and
an IBM 1130 Communications Channel Adapter (RPQ W16427) with
data-phone or IBM 4-wire modem, and 2741 interrupt feature.
With the 2501 reader a 1442 punch is required for the)PCH
and)PCHS commands but is not otherwise needed.

THE APL CHARACTER SET

The APL character set is shown in two arrangements in
Figure 1.1; the first is appropriate to the 2741 terminal,
and the second to the 1131 console. On the 2741 terminal,
the numerals, alphabetic characters, and punctuation marks
appear in their usual places, although the alphabet is used
in only a single case: letters print as upper-case italics,
but are produced only when the keyboard is in lower-case
position (i.e., not shifted).

The special characters, most of which are produced with

the keyboard shifted, generally have some mnemonic
connection with their alphabetic or numeric correspondents.

20

‘\u’

(B .o - < = > 1_ . 4)
el [1 2)3]3 l s)elz)alslo]s ;c] Shice | (AT
==L ERELEER [
{ elw|E|R|lT| Y| lU|T]|O]| P €
\ : : | RETURN
E ARRERHDBAENE
| A|lSs|D G|H|os |K|L|C]|1])
clolnlulalTl i T:1:7T\
HER RN ANNRENREE™

2741 APL KEYBOARD

U b [o[] lomt] (o]

P < 1~>]'~b Il lo [-k >] APL KEYBOARD STICKERS
[0 II[U Ad bl T M V:20

«

|
—alVelBAaloo|"alOg](q1]) -1783-
{AIISZIDBIFA;IG 5JHGIJ7IKBIL gltolltﬂ 2741 X20-1783-0
1131 X20-1784-0

Keyboard Part Number

&[22 [zolaefwe])

1131 APL CONSOLE KEYBOARD

Figure 1l.1

21

This may be appearance (v over W), Greek-Roman equivalence
(p over R), sequence (< < = 2 > = over 3 4 56 7 8), or
some -- possibly farfetched -- relationship between the APL
function represented by the symbol and the letter (*x over P
for power, ' over X for "kwote", and [over S for ceiling).

Because of the smaller number of keys available, the
1131 console uses a three-case system, also shown in Figure
1.1, The currently active case is indicated by the left and
right halves of the ACCUMULATOR and ACCUMULATOR EXTENSION
lights in the manner shown in Figure 1.2,

The two keys at the upper left control the cases, the
arrows on the keys indicating the transitions (from the
active case to the new active case) initiated by striking
them, If the shift is in either upper or middle case but
not locked (as indicated by the lights), it remains in that
case for the next character only, and then returns to lower
case.

If the shift is in either the upper or middle case but
not locked, it may be locked in that state by a further
depression of the shift key which brought it to that state.
If the shift is locked in upper or middle case, it remains
in that state until returned to lower case by the action of
the appropriate shift key or by a carrier return. The 1131
Alpha/Numeric shift must remain in Alpha shift at all times.

For the console printer, the APL character set is
provided by printing element #1167988. A particular 2741
terminal may use either the #1167988 element (for terminals
using PTTC/BCD printing elements) or the #1167987 element
(for terminals using Selectric printing elements).

However, any printing element may be used with the APL
system, since the encoded characters generated by the
keyboard and transmitted to the computer are independent of
the particular element mounted on the terminal. Subject to
programmed intervention, the transmitted information will
always be interpreted according to the APL keyboard
characters.

Non-APL printing elements are frequently useful in
conjunction with special-purpcse APL programs designed to
exploit their character sets. Also, any element that
matches the keyboard encoding (Selectric or PTTC/BCD) of the
terminal can be used for straightforward numerical work,
since letters and digits print properly with such elements.
The visual interpretation of complex APL expressions is, of
course, awkward with any but an APL printing element.

22

[47 4J| AAJ LOWER SHIFT
Iooooooool' l) UPPER SHIFT

l AJ[;oooooogJ MIDDLE SHIFT

looooooooll l LOCKED

00000000 UPPER SHIFT
00000000 LOCKED

I I 00000000 MIDDLE SHIFT

Figure 1.2: SHIFT CONDITION SIGNALS
FOR 1130 KEYBQARD

23

STARTING THE SYSTEM

To start the APL system, turn the 1130 on, load the APL
disk, mount the APL typing element (#1167988), and perform
an Initial Program Load as follows:

1. Set console entry switch 0 down if the first
sign-on is to come from the console keyboard, up if it
is to come from the 2741 keyboard. Set all other
console switches down.

2. Place the APLIPL card (APL initial program load) in
the hopper.

3. Press IMMEDIATE STOP, RESET, and PROGRAM LOAD at
the console.

The system will then be ready for the first sign-on.
STARTING AND ENDING A WORK SESSION

This section describes the procedures for beginning and
ending a work session; more detail is given in Part 2.

The following procedures apply to operations from
either the console keyboard or from a 2741 terminal. 1In the
case of the 2741, a connection must first be established in
the manner described in the succeeding section.

Communication with the computer is carried on by means
of entries from the console keyboard (or auxiliary 2741
terminal), which alternately locks and unlocks as each entry
is made and the computer completes its work. The general
procedure is to type an instruction or command and strike
the carrier return to indicate the end of the message.

Each user is assigned an account number. This number
is used in the sign-on that begins a work session and serves
to partially identify any work that the user may store in

the system.

To begin a session, enter a right parenthesis followed
by the appropriate account number, followed by a carrier
return. For example:

)581

The account number may include a key (i.e., a colon and
a password). For example:

)581:ABC

- 24-

If the foregoing is properly executed and if the
account number has previously been entered into the system
(as described in the operator's manual), the computer will
respond by typing the name associated with the account
number, followed by SIGNED ON and the name of the system,
e.g.:

SMITH SIGNED ON
APL\N1130

If the sign-on is incorrect, one of the following

INCORRECT SIGN-ON means that the form of the command
was faulty.

NUMBER NOT IN SYSTEM means either exactly what iF says
or that the number has a lock associated with it and
the wrong key was used.

INCORRECT COMMAND means that some account number is
already signed on. Sign off, then execute the
foregoing again.

To end a terminal session, enter the command:
)OFF
The computer will respond by typing:
SIGNED OFF

In the remainder of this manual the need for cgrrigr
return will not be explicitly mentioned, since it is
required for every entry.

Mistakes. Before the carrier return that completes an
entry, errors in typing can be corrected as follows:
backspace to the point of error and then depress the
linefeed button (marked ATTN on 2741 terminals and INT REQ
on the 1131 console). This will have the effect of erasing
everything to the right of, and including, the position of
the carrier. The corrected text can be continued from that

point on the new line.

If the keyboard of a 2741 terminal (either
direct-connected or telephone-connected) simply unlocks
after the carrier return in an attempted sign-on, repeat the
sign-on procedure.

25

S

CONNECTING A 2741 TERMINAL

The directions that follow assume the use of a dial-up
Instructions for the use of
acoustic couplers should be obtained from their suppliers.
Where terminals are connected to the computer by leased

connection with a dataset.

lines or private wires, instructions on dialing procedure -

(EC2) are irrelevant, but local sources of information
should be consulted for equivalent procedures.

Insert paper, mount an APL
printing element, connect
terminal to power source,
and set switches as follows:

LCL/COM COM
Power ON

Test to see if the keyboard
is locked by trying the
shift key. If the key is
operable, press the carrier
return and test again.

EC2, Dial computer:

Set the telephone pushbutton
switch to TALK and follow
ordinary dialing procedure.
After two rings, at most,
the telephone will respond
with a steady, high-pitched
tone.

The power switch is at the
right of the keyboard; the
LCL/COM switch is on the
left side of the terminal
stand, toward the rear.

If the keyboard does not
lock after a carrier return,
check the switches and try
once more. If the switches
are set properly and the
keyboard remains wunlocked,
the terminal is faulty.

The telephone number is
given in Table 1.3. If the
line is busy, call the APL
Operator to inquire about

‘the schedule.

123 456-7890
Insert the access
telephone number here.
An assistance number
should be included.

APL Operator: 123 456-7899%

Table 1.3: TELEPHONE NUMBERS

T 26

Promptly set the pushbutton The DATA button should
switch to DATA by holding light, and will remain 1lit
the DATA button down firmly as long as the terminal is
for a moment and then connected to the computer.
releasing. If it does not light, check
the power connection to the
dataset. If it lights, but
quickly goes out, check the
power connection to the
terminal, the cable
connection to the dataset,
and the switch settings on
the terminal. Then retry
from EC1.

Cradle the handset.

Regponge: The keyboard will
unlock, indicating that the
computer is ready to accept
an entry from the terminal.

Transmission errors. There are occasional transient
failures in the communication between a terminal and the
central computer. If the failure occurs during the
transmission from the terminal, the system will respond by
typing RESEND. The last entry from the keyboard should then
be repeated.

Failures in the other direction are usually evidenced
by the appearance of a spurious character, whose presence in
the printed output is obvious in most contexts. However,
there is no absolutely certain way of detecting such a
failure.

LIMITED USE OF THE SYSTEM

No system commands other than the sign-on and sign-off
described here are required in arder to make use of Part 3,
and the reading of Part 2 may therefore be deferred if only
casual or restricted use is to be made of the system.

PART 2

SYSTEM COMMANDS

APL operations deal with transformations of abstract
objects, such as numbers and symbols, whose practical
significance, as is usual in mathematics, depends upon the
(arbitrary) interpretation placed upon them. System

their subject the structures which comprise the system, and
control functions and information relating to the state of
the system, and therefore have an immediate practical
significance independent of any interpretation by the user.

In this Part the structure of the APL\1130 system is
described, and various notions essential to the
understanding of system commands are introduced. Finally,
the complete set of system commands is described in detail.

WORKSPACES AND LIBRARIES

Workspaces. The common organizational unit in the APL\1130

system is the workspace. When in use, a workspace is said
to be active, and it occupies a block of working storage in
the central computer. The size of the block, which is
preset at a fixed value for a given system, determines the
combined working and storage capacity of each workspace in
that system. Part of each workspace is set aside to serve
the internal workings of the system, and the remainder is
used, as required, for storing items of information and for
containing transient information generated in the course of
a computation,

An active workspace is always present when the system
is signed on. All transactions with the system are mediated
by it. The names of variables (data items) and
defined functions (programs) used in calculations always
refer to objects known by those names in the active
workspace, and information on the progress of program
execution is maintained in the state indicator of the active
workspace. -

28

Libraries. Inactive workspaces are stored in libraries,
where they are identified by arbitrary names. They occupy
space in secondary storage facilities of the central
computer and cannot be worked with directly. When required,
copies of stored workspaces can be made active, or selected
information may be copied from them into an active

workspace.

Libraries are associated with individual users of the
system, and are identified by the user's account number.
Access to them by other users is restricted in that one user
may not store workspaces in another person's library.
However, one user may activate a copy of another wuser's
(unlocked) workspace if he knows the library number and
workspace name.

NAMES

Names of workspaces, functions and variables may be
formed of any sequence of alphabetic (4 to Z) and numeric (0
to 9) characters that starts with an alphabetic and contains

no blank. However, workspace names may not exceed 11
characters in length, and other names may not exceed six.

The environment in which APL operations take place is
bounded by the active workspace. Hence, the same name may
be used to designate different objects (i.e., functions, or
variables) in different workspaces, without interference.
Also, since workspaces themselves are never the subject of
APL operations, but only of system commands, it is possible
for a workspace to have the same name as an object it holds.,
However, the objects within a workspace must have distinct
names, except as explained below.

Local and global significance. In the execution of defined
functions it is often necessary to work with intermediate
results which have no significance either before or after
the function is used. To avoid cluttering the workspace
with a multitude of variables introduced for such transient
purposes, and to allow greater freedom in the choice .of
names, the function definition process (see Part 3) provides
a facility for designating certain variables as local to the
function being defined. Variables not so designated, and

A local variable may have the same name as a global
object, and any number of variables 1local to different
functions may have the same name.

29

During the execution of a defined function, a local
variable will supersede a function or global variable of the
same name, temporarily excluding it from wuse. If the
execution of a function is interrupted (leaving it either
suspended, or pendent, see Part 3), the local variables
retain their dominant position, during the execution of
subsequent APL operations, until such time as the halted
function is completed. System commands, however, continue
to reference the global homonyms of local variables under
these circumstances.

LOCKS AND KEYS

Stored workspaces and the information they hold can be
protected against unauthorized use by associating a lock,
comprising a colon and a pagsword of the user's choice, with
the name of the workspace, when the workspace is stored. 1In
order to activate a locked workspace or copy any information
it contains, a colon and the password must again be used, as
a key, in conjunction with the workspace name. Listings of
workspace names never give the keys, and do not overtly
indicate the existence of a lock.

Account numbers can be similarly protected by locks and
;eys, to avoid their unauthorized use and maintain the
integrity of a user's private library.

Passwords for locks and keys may be formed of any
sequence of alphabetic and numeric characters up to six
characters long, without blanks. In use as either a lock or
key, a password follows the number or name it is protecting,
from which it is set off by a colon.

ATTENTION

Printed output at a terminal can be cut off, or the
execution of an APL operation can be interrupted, and
control returned to the wuser, by means of an attention
signal. Since the keyboard is 1locked during printing or
computing, the signal must be generated by means other than
one of the standard keys.

The attention signal is generated by depressing the
appropriate key once, firmly. On IBM 2741 terminals this
key is usually of a distinctive color, and is marked ATTN;
it is marked INT REQ on the 1131 console keyboard. (The
same key is used for linefeed when the keyboard is not
locked.)

30

Following an attention signal the keyboard will unlock,
and the type carrier will return to the normal position for
input (six spaces from the left margin). In some cases a
line will be printed before the keyboard wunlocks, telling
where a function in progress was interrupted.

Except for card control commands, the execution of
system commands, once entered, cannot be interrupted.

USE OF SYSTEM COMMANDS

System commands and APL operations are distinguished
functionally by the fact that system commands can be called
for only by individual entries from the keyboard, and cannot
be executed dynamically as part of a defined function. They
are distinguished in form by the requirement that system
commands be prefixed by a right parenthesis, which is a
syntactically invalid construction in APL.

All system commands can be executed when the terminal
is in the execution mode, in which APL operations are
executed forthwith upon entry. However, in definition mode,
in which sequences of operations are being composed into
functions for later execution, commands which call for
storing a copy of the workspace, or which might otherwise
interfere with the definition process itself, are forbidden.
(The two terminal modes are treated more fully in Part 3.)

Classification of commands. System commands are
conveniently grouped into five classes with regard to their
effect upon the state of the system:

1. Terminal control commands affect the relation of a

terminal to the system.

2. Workspace control commands affect the state of the
active workspace.

3. Library control commands affect the state of the
libraries. :

4. inguiry commands provide information without
affecting the state of the system.

5. Card control commands allow the reading of APL
statements from cards rather than the keyboard, and
the punching of variables and functions into cards for

later use.

T3

Reference and Purpose

COMMAND FORM 2.3 NORMAL RESPONSE TROUBLE REPORTSS®
TCl Sign on designated user and start a work session.

JNUMBER [KEY] USER SIGNED ON; SYSTEM 1l 8
TC2 End work session.

JOFF [LOCK] SIGNED OFF 11
WCl Activate a clear workspace. :

)CLEAR ‘ 11
WC2 Activate a copy of a stored workspace.

JLOAD WSID [KEY] WSID LOADED 9 11
WC3 Copy global objects from a stored workspace.

)COPY WSID [KEY] NAMES 247 9 10 11
WC3a Copy all global objects from a stored workspace.

)COPY WSID [KEY] 27 910 11
WC4 Copy global objects from a stored workspace, protecting active ws.

JPCOPY WSID [KEY] NAMES 247 910 11
WC4a Copy all global objects from a stored workspace, protecting active ws.

)PCOPY WSID [KEY] ' 27 910 11
WC5 Erase global objects.

JERASE NAME [S] 3 11
LCl Store a copy of the active workspace.

JSAVE WSID [LOCK] WSID SAVED 56 711
LC2 Erase a stored workspace.

JDROP WSID WSID DROPPED : 9 11
IQl List names of defined functions.

JFNS FUNCTION NAMES 11
IQ2 List names of global variables.

YVARS VARIABLE NAMES 11
IQ3 List halted functions (state indicator).

)ST SEQUENCE OF HALTED FUNCTIONS 11
IQ4 List halted functions with local names (augmented state indicator).

)SIV SEQUENCE OF HALTED FUNCTIONS WITH LOCAL NAMES 11
IQ5 Give identification of active workspace.

YWSID WSID 11
IQ6 List names of stored workspaces.

JLIB [NUMBER] NAMES OF STORED WORKSPACES 8 11
CDl1 Initiate reading of cards.*

YJCARD [[NO]EDIT] [I[NO]1DISP] 11
CDla Continue reading cards but set edit and display options.*

YCARD [[NO]EDIT] [I[NO]1DISP] » 11
CD2 Stop reading cards and return control to the keyboard.*

JCARD END 11
CD2a Run cards through to a stop® and return control to the keyboard.*

JCARD END 11
CD3 Punch cards for global objects in the active workspace.

)JPCH NAMES 4 7 11
CD3a Punch cards for all global objects in the active workspace.

)PCH 7 11
CD4 Punch cards for global objects in a stored workspace.

)JPCHS WSID [KEY] NAMES 4 7911
CD4a Punch cards for all global objects in a stored workspace.

)PCHS WSID [KEY] 7 9 11

Notes: 1. Items in brackets are optional.
2. KEY or LOCK: a password preceded by a colon.

3. WSID: library number and workspace name, or workspace name alone,
4, CD1 and CD2a are from the keyboard; CDla and CD2 are from cards.
5. A stop is an attention signal, or a card with)CARD END or)OFF.
6. Trouble report forms:

1 INCORRECT SIGN ON 7 NOT WITH OPEN DEFN

2 NOT COPIED NAMES 8 NUMBER NOT IN SYSTEM

3 NOT ERASED NAMES 9 WS NOT FOUND

4 NOT FOUND NAMES 10 ws FULL

5 NOT SAVED WS IS WSID 11 INCORRECT COMMAND

6 NOT SAVED WS QUOTA USED UP

32
Table 2,1: SYSTEM COMMANDS

The text that follows is based upon this
classification, although it will be seen that one of the
library control commands may sometimes affect the state of
the active workspace.

Normal responses and trouble reports. Any entry starting
with a right parenthesis will be interpreted by the system
as an attempt to execute a system command. When the command
is successfully executed, the normal response, if any, will

be printed. This response is given in the description of
the action for each command.

If, for any reason, a command cannot be completely
executed, an appropriate trouble report will be printed.
The most common report is INCORRECT COMMAND. This means
that the command was incomplete, mis-spelled, used a wrong
modifier, or was otherwise malformed. The corrective action
in every case is to enter a properly composed command. The
meanings and corrective actions for other trouble reports
are given in the notes accompanying the description of each
command.

Summary. The purposes, forms, responses, and trouble
reports for all system commands are summarized in Table 2.1.

In general, the elements of a command form must be
separated by one (or more) spaces. Spaces are not required
immediately following the right parenthesis, or on either
side of the colon used with passwords, but can be wused
without harm.

33

TERMINAL CONTROL COMMANDS

There is one command for

ending, a work session.
described in Part 1.

TCl. Start a work session:

This is the sign-on,

described in Part 1.

TC2. End work session:
Enter)oFF

followed by a colon and a
password, if desired.

1. The currently active
workspace will vanish.

2. The password, if used,
will become a new lock on
the account number.

1. SIGNED OFF

starting, and one command for

The starting command has been

See Part 1, Starting and
Ending A Work Session.

There is no effect on any
stored workspace.

Once applied, a lock stays
in effect until explicitly
changed by an ending command
that contains a colon.

An existing lock is removed
if no password follows the
colon.

If a colon is not used, the
existing lock, if any,
remains in force.

Trouble report:

INCORRECT COMMAND

34

WORKSPACE CONTROL COMMANDS

The commands in this class can replace the active
workspace with a clear one, or with a copy of a stored
workspace; bring together in the active workspace
information from many stored workspaces; and remove unwanted
objects from the active workspace. No command in this class
affects any but the active workspace.

Application packages. The usefulness of a terminal system
is enhanced by the availability of many different
collections of functions and variables, each of which is
organized to satisfy the computational needs of some area of
work; for example, standard statistical calculations,
exercises for teaching a scholastic subject, complex
arithmetic, business accounting, text editing, etc. The
workspace-centered organization of APL\1130 lends itself to
such packaging, because each collection moves as a coherent
unit when the workspace containing it is stored or
activated.

The copy commands provide a convenient way to assemble
packages from components in different workspaces.

Information transfer between workspaces. Information
entered or developed within one workspace can be made
available within another by means of the copy and
protecting-copy commands, which reproduce within the active
workspace objects from a stored workspace. These are two
sets of parallel commands which differ only in their
treatment of an object in the active workspace which has the
same name as an object being reproduced: the copy commands
will replace the existing object, whereas the
protecting-copy commands will not make the replacement.

A copy command of either type can be applied to an
entire workspace, or to a selection of objects (i.e.,
functions or variables) from it. When an entire workspace
is copied, all the functions and global variables within it
are subject to the operation, but its state indicator .and
local variables are left behind.

35

used here to mean either a library number followed by a
workspace name, or a workspace name alone. When a name is
used alone, the reference is to the user's private library.
A key is a colon followed by a password.

Detailed Description. The term workspace identification is

ACTION NOTES
WCl. Activate a clear This command is usa@ to mgke
workspace: a fresh start, dlscard%ng
Enter)CLEAR. whatever 1is in the active
workspace.
Effect:
1. A clear workspace will be A clear workspace has‘ no
activated, replacing the variables or defined
presently active workspace. functions.
Its workspace identification
does not match that of any
stored workspace. (See
section on library control).
Response: None. Trouble report:
INCORRECT COMMAND
WC2, Activate a copy of a This command may be used to
stored workspace: obtain the use of any
Enter)LOAD workspace in the system
followed by a space and a whose identification (and
workspace identification password) is known.

(with the key, if required).

1. A copy of the designated
workspace will be activated,
replacing the presently
active workspace.

N
Response: Trouble reports:
1. The workspace name, WS NOT FOUND :
followed 'Ry LOADED, is means either that there is
printed. no stored workspace with the

given identification, or
.that no key, or the wrong
key, was used when one was
required.

INCORRECT COMMAND

36

WC3. Copy global objects
from a stored workspace:
Enter)copry

followed by a space and a
workspace ‘identification
(with the key, if required),
and the names of objects to
be copied, separated by
spaces,

Effect:

1. A copy of each designated
object will appear in the
active workspace with global
significance, replacing
existing global homonyms.

Response: None.

A global object may be a
function or global variable.

Objects having the same name
as a halted function in the
active workspace cannot be
copied.

Trouble reports:

NOT WITH OPEN DEFN

means that the terminal is
in definition mode. Either
close the definition by
entering vV, or defer the
copy operation.

WS NOT FOUND
See WC2 for meaning.

NOT COPIED

followed by the names of
objects not copied, means
those names were the names
of halted functions in the
active workspace.

NOT FOUND

followed by the names of
objects not found, means
that those names were not
the names of global objects
in the designated workspace.

WS FULL

means that the active

workspace could not contain
all the material requested.

INCORRECT COMMAND

37

WC3a. Copy al
objects from
workspace:

Enter)CoprPy
followed by a space and a
workspace identification
(with the key, if required).

1. A copy of all functions
and global variables in the
source workspace will appear
in the active workspace with
global significance,
replacing existing global
homonyns .

Response: None.

WC4, Copy global objects
from a stored workspace,
protecting the active
workspace:

Enter)PCOPY

followed by a space and a
workspace identification
(with the key, if required),
and the names of objects to
be copied, separated by
spaces.

Effect:

1. A copy of each designated
object will appear in the
active workspace unless
there is an existing global
homonym.

See note at WC3.

Local variables and
state indicator are
copied.

NOT WITH OPEN DEFN
NOT COPIED

WS FULL

See WC3 for meanings.

WS NOT FOUND
See WC2 for meaning.

INCORRECT COMMAND

See note at WC3.

ig .

the
not

1. NOT copPIED, followed by
the names of .objects not
copied, will be printed if
appropriate.

WC4a., Copy all global
objects from a stored
workspace, protecting the
active workspace:

Enter)PCOPY

followed by a space and a
workspace identification
(with the key, if required).

Effect:
1. A copy of all global
objects in the source

workspace which do not have
global homonyms in the
active workspace will appear
in the active workspace.

Response:

1. NOT COPIED, followed by
the names of objects not
copied, will be printed if
appropriate.

NOT WITH OPEN DEFN
NOT FOUND

WS FULL

See WC3 for meanings.

WS NOT FOUND
See WC2 for meaning.

INCORRECT COMMAND

See note at WC3.

See note at WC3a, Effect 1.

Trouble reports:

NOT WITH OPEN DEFN
WS FULL

See WC3 for meanings.

WS NOT FOUND
See WC2 for meaning.

INCORRECT COMMAND

39’

&

WC5: Erase global objects:
Enter)ERASE

followed by a space and the
names of objects to be

deleted, separated by

spaces. :

Effect:

1. Named objects having Names which do not refer to
global significance, other global objects are ignored.

than pendent functions, will
be expunged.

RESPONSE: None. Trouble report:
NOT ERASED
followed by the names of
functions not erased, means

those functions are pendent.

INCORRECT COMMAND

LIBRARY CONTROL COMMANDS

There are two basic operations performed by the
commands in this class. The save command causes a copy of
an active workspace to be stored in a library, and the drop
command causes such a stored copy to be destroyed.

The save command and the load command are symmetric, in
the sense that a load command destroys an active workspace
by replacing it with a copy of a stored workspace, while a
save command may destroy a stored workspace by replacing it
with a copy of the active workspace.

Continuity of work. When a workspace is stored, an exact
copy of the active workspace is made, including the state
indicator and intermediate .results from the partial
execution of halted functions. These functions can be
restarted without loss of continuity (see Part 3), which
permits considerable flexibility in planning use of the
system. For example, lengthy calculations do not have to be
completed at one terminal session; student work can be
conducted over a-series of short work periods, to suit class
schedules; and mathematical experimentation or the
exploration of system models can be done over long periods
of time, at the investigator's convenience.

40

Workspace identification. A library number and a name,
together, ‘uniquely identify each stored workspace in the
system. An active workspace is also identified by a library
number and a name, and as copies of stored workspaces are
activated, or copies of the active workspace are stored, the
identification of the active workspace may change according

to the following rules:

1. A workspace activated from a library assumes the
identification of its source.

2. When a copy of the active workspace is stored, the
active workspace assumes the identification assigned to
the stored copy.

3. A clear workspace activated by a clear command or a
sign-on, is called CLEAR WS, which cannot be the name
of a stored workspace.

The identification of active workspaces is used as a
safeguard against the inadvertent replacement of a stored
workspace by an unrelated one: an attempt to replace, by a
copy of the active workspace, any stored workspace other
than the one with the same identification, will be stopped.

Library and account numbers. A user's account number is
also the number of his private library.

Each stored workspace has implicitly associated with it
the account number signed on at the terminal from which the
save command was entered, and may not be either replaced or
erased, except from a terminal signed on with the same
account number. Thus, a user is prevented from affecting
the state of another wuser's private library. He may, of
course, activate a copy of any workspace stored in the
system, if he knows the library number and name (and
password, if required).

Storage allotment. A user of APL\1130 is assigned library
space in terms of the maximum number of stored workspaces he
may have at one ‘ time. The allotment for each user is
determined by those responsible for the general management
of a particular system, within the bounds of the physical
resources of the system.

Purging a workspace. The sequence of commands ,
)SAVE ABC123,)CLEAR,)COPY ABC123, will purge the active
workspace, clearing it of all but its functions and global
variables. This often results in more usable space than can
otherwise be realized.

Detailed Description. The term workspace identification

will be used with the same significance as for the workspace
control commands.

.41

ACTION

LCl, Store a copy of the
active workspace:

Enter)SAVE

followed by a space and a
workspace identification,
with a colon and password,
if desired.

1. A copy of the active
workspace will be stored
with the designated
identification, and with the
assigned lock, if a password
was used.

2. The active workspace
will assume the workspace
identification used in the
command.

Response:

1. The workspace name,
followed by SAVED, will be
printed.

A stored workspace with the
same identification will be
replaced.

A lock on a stored workspace
will not be retained if the
command does not include a
lock explicitly.

To this extent only, this
command may affect the state
of the active workspace.

Trouble reports:

NOT WITH OPEN DEFN

means that the terminal is
in function definition mode.
Either close the definition
by entering v, or defer the
save operation.

NOT SAVED WS QUOTA USED UP
means that the allotted
number of stored workspaces
has previously been reached.
Unless this is increased,
the workspace can be stored
only by first dropping a
workspace already stored.

NOT SAVED WS IS .
followed by identification
of the active workspace,
means a stored workspace
with the identification used
in- the command exists, but
this identification does not
match that of the active
workspace,

INCORRECT COMMAND

a2

LC2. Erase a stored work
space:

Enter)DROP

followed by a space and a

workspace identification.

Effect:

1. The designated stored
workspace will be expunged.

1. The workspace name,
followed by DROPPED, will be
printed.

INQUIRY COMMANDS

Since a key is not used, a
locked workspace whose key
has been lost can always be
removed from the system.

This command has no effect
on the active workspace,
regardless of its
identification.

WS NOT FOUND

means that there is no
stored workspace with the
identification wused in the
command.

INCORRECT COMMAND

Most of the commands in this class refer to the state

of the active workspace.

One command lists the names of

workspaces stored in libraries.

Detailed Description.

ACTION

¢

IQl. List names of defined

1. The names of defined
functions in the active
workspace will be printed.

INCORRECT COMMAND

43

Effect: None.

Response:

1. The names of global
variables in the active
workspace will be printed.

IQ3, List bhalted functions:
Enter)SI

Effect: None.

Response:

1. The names of halted
functions will be 1listed,
most recent ones first.
With each name will be given
the 1line number on which
execution stopped. Suspend-
ed functions will be
distinguished from pendent
functions by an asterisk.

IQ04. List halted functions
with names of local

variables:

Enter)SIV

Effect: None.

Response:

1. The response will be the
same as for IQ3, except that
with each function listed
there will appear a listing
of its local variables.

IQ5. Give identification of
active workspace:
Enter)WSID

Effect: None.

Responses:

1. The identification of the
active workspace will be
printed.

Trouble report

INCORRECT COMMAND

This display is the
state indicator; its

significance and use is
explained in Part 3.

Trouble report
INCORRECT COMMAND

Labels (see Part 3) are
included among the 1local
variables.

‘Trouble report

INCORRECT COMMAND

INCORRECT COMMAND

106, List names of stored A library number is not
workspaces: . required for listings of the
Enter)LIB user's private library.
followed, if necessary, by a

library number.

Effect: None.

Regponsge: Irouble report

l. The names of workspaces NUMBER NOT IN SYSTEM
in the designated 1library means exactly that.
will be printed, If no

number was used, the account INCORRECT COMMAND
number associated with the
terminal will be taken as

the library number. ‘

CARD CONTROL COMMANDS

The commands in this class provide for the use of
punched cards. They allow the user to:

1. Prepare APL statements and system commands on an
029 keypunch for future entry to APL\1130, wusing the
)CARD and)CARD END commands.

2. Have the APL system punch copies of variables and
functions into cards for later use, using the)PCH and
)JPCHS commands. '

Ereparing APL statements on cards. Statements for input to
the APL\1130 system may be punched into cards in free format
in columns 1-71. If a statement is too long to fit onto one
card, any non-blank character can be punched in column 72 to
indicate that the statement continues on the next card.
Columns 73-80 are ignored when the cards are being read, and
can be used for identification or sequence numbers., They
are so used by the punch commands, which place the name of
the variable or function in columns 73-78, and the sequence
numbers for that name in columns 79 and 80.

A list of APL characters and their keypunch equivalents
is given in Table 2.2, All the letters and digits and many

of the APL operators (e.g., +, /, ?, =) are available as
single characters on the keypunch. The symbols «, [, 1, =,
x, and - are represented on the keypunch by substitute

characters, e.g., < is represented by #.

45

029 Card Codel

APL 029 Card Code'| APL
A-Z A-Z v @OR
' ' 8-5 A @AND
0-9 0-9 ~ @NoT
- - (Note 2) L @BASE
. . T @REP
((12-8-5 € QEPS
)) 11-8-5 1 @I0TA
C $ P @RHO
1 ¢ 12-8-2 , ,
H ; 11-8-6 / /
< # 8-3 # @ccMmp
> @GO \ @QREXP
> @GOTO X @QCEXP
+ + 12-8-6 + QTAKE
- - 11-8-7 12 ‘@DROP
x & 12 ¢ @RROT
3 % 0-8-14 $ @QRREV
* * 11-8-4 [} @CROT
Qo @LoOG) @CREV
? ? 0-8-7] @QTRAN
! ! 11-8-2 A @DELTA
L @MIN ° @NULL
L @FLOOR 0 @QUAD
I @MAX [} @Q
r @CEIL v @DEFN
| | 12-8-7 » @Lock
o @TRIG : H 8-2
< < 12-8-4 _ _ 0-8-5
< QLEQ c @QLH
= = 8-6 > @RH
> @GEQ n @CAP
> > 0-8-6 U @acup
z @NEQ
Note 1. APL\1130 accepts 029 keypunch codes.
Card codes are given here only for those
which are not directly available on 026
keypunches, or for which some keypunches
use different codes.
Note 2. This is the negative sign, used in
numeric constants.

Table 2.2: Mnemonics and card codes for the
APL character set.

46

For other non-alphanumeric characters a system of
mnemonic names is used. These mnemonics always consist of
an at-sign (@) followed by a string of letters designed to
suggest the name or use of the symbol. Thus the mnemonic
for p is @RHO, the mnemonic for [can be either @MAX or
@CEIL, and so on. Mnemonics may be used in APL statements
in exactly the way the corresponding symbols would be used,
except that a blank must be left at the end of the mnemonic.
For instance, the statement WN+pQ could be punched in a card
as N+@RHO Q.

Detailed description, The term stop is used here to mean
the occurrence of a card punched with)CARD END or)OFF, or
an attention signal, while cards are being read.

(
ACTION NOTES
CDl. Initiate reading of This command enables the
cards. system to accept APL
Enter)CARD statements and system
followed, if desired, by one commands from the card
of each of the pairs: EDIT reader, rather than from the
or NOEDIT, DISP or NODISP. keyboard. All statements

and commands except)PCH and
)PCHS may be executed from
both sources.

Effect:

1. The keyboard will lock. If EDIT has been specified,
the keyboard unlocks

2, The system will accept immediately when an error

instructions from the card occurs or an attention

reader until a stop occurs signal is given. If NOEDIT

or an error is encountered. is specified, the cards are
flushed up to a stop before
the keyboard is unlocked.
(This 1is the same as the

effect of CD2a.)

If pIsp 1is specified, the
card input will be displayed

on the typewriter; if
NODISP is specified, it will
not.

If the options are not
explicitly chosen in the
command, EDIT or DISP is
assumed.

Trouble report

INCORRECT COMMAND

.47

' cDla, Continue card reading

with specified edit and
display options.

Include in the card deck a
card punched with

)CARD

followed, if desired, by one
of each of the pairs: EDIT
or NOEDIT, DISP or NODISP.

Effect:

1. The edit or display
options will be set
appropriately.

Response: None.

CcD2. Stop <reading cards and
return control to the
keyboard:

Include in the card deck a
card punched with

)CARD END.

1. Card reading stops.

2. The keyboard unlocks.

Response: None.

CcD2a. Run cards through to
stop and return control to
the keyboard:

Enter)CARD END

Effect:
1. Cards are read but
instructions are not
executed until a stop
occurs.

2. The keyboard unlocks.

Response: None.

48

INCORRECT COMMAND

INCORRECT COMMAND

If cards run out before a
stop’ card occurs the
keyboard remains locked. An
attention signal can be used
to return control to the
keyboard.

Trouble report

INCORRECT COMMAND

CD3. Punch cards for global
objects in the active
workspage: :

Enter)PCH

followed by a space and one
or more names of objects,
separated by spaces.

Effect:

l. A copy of each named
object is punched into
cards.

Response: None.

Locked functions (see Part
3) cannot be punched.

The cards produced by a
punch command can be read
into the system at a later
time with a card command.
The effect will be to
restore the functions and
variables (in the active
workspace) as they were when
the cards were punched.

Punch commands encountered
when the system is reading
cards result in an INCORRECT
COMMAND report.

Trouble reports
NOT WITH OPEN DEFN

means that the terminal is
in definition mode. Either
end the definition mode by
entering V, or defer the
punching operation.

NOT FOUND

followed by a 1list of names
means those names did not
refer to global objects in
the workspace.

INCORRECT COMMAND

49

CD3a. Punch cards
all global objects in
active workspace:

Enter)PCH

. Effect:

l. A copy of each function
and global variable in the
active workspace is punched
into cards.

Response: None.

CD4. Punch cards for global

objects in a stored work-
space.

Enter)PCHS

followed by a space and the
workspace identification
(with the key, if required),
and one or more names of
objects, separated by
spaces.

l. A copy of each named
object is punched into
cards.

Response: None.

N

See note at CD3.

NOT WITH OPEN DEFN
See CD3 for meaning.

INCORRECT COMMAND

See note at CD3.

Trouble reports

NOT WITH OPEN DEFN
NOT FOUND

See CD3 for meanings.

WS NOT FOUND

means either there is no
stored workspace with the
given identification, or the
wrong key (or no key) was
used when one was required.

INCORRECT COMMAND

50

CD4a. Punch cards for
all global objects in a
stored workspace:

Enter)PCHS

followed by a space and the
_workspace identification
(with the key, if required).

1. A copy of each function
and global variable in the
designated workspace is
punched into cards.

Response: None.

51

See note at CD3.

NOT WITH OPEN DEFN
See CD3 for meaning.

WS NOT FOUND
See CD4 for meaning.

INCORRECT COMMAND

PART 3
THE LANGUAGE

The APL\1130 Terminal System executes system commands
or mathematical statements entered on a terminal typewriter.
The system commands were treated in Part 2; the mathematical
statements will be treated here.

Acceptable statements may emplby either primitive

functions (e.g. + - x :) which are provided by the system,

or defined functions, which the user provides by entering
their definitions on the terminal.

If system commands are not used, the worst that can
possibly result from erroneous use of the keyboard is the
printing of an error report. It is therefore advantageous
to experiment freely and to use the system itself for
settling any doubts about its behavior. For example, to
find what happens in an attempted division by zero, simply
enter the expression u4:0. If ever the system seems
unusually slow to respond, execute an attention signal to
interrupt execution and unlock the keyboard.

The Sample Terminal Session of Appendix A shows actual
intercourse with the system which may be used as a model in
gaining facility with the terminal. The examples follow the
text and may well be studied concurrently. C

The primitive functions and the defined functions
available in libraries can be used without knowledge of the
means of defining functions. These means are treated in the
four contiguous sections beginning with Defined Functions
and ending with Homonyms. These sections may be skipped
without loss of continuity.

FUNDAMENTALS

(denoted by -+ and treated in the section on Defined
Functions), and the specification. A typical specification
statement is of the form

Statements. Statements are of two main types, the branch

X<3xy

This statement assigns to the yvariable ¥ the value resulting

from the expression to the right of the specification arrow.

"52°

If the variable name and arrow are omitted, the resulting
value is printed. For example:

3x4
12

Results typed by the system begin at the 1left margin
whereas entries from the keyboard are automatically
indented. The keyboard arrangement is shown in Figure 1.2,

Scalar and vector constants. All numbers entered via the
keyboard or typed out by the system are in decimal, either
in conventional form (including a decimal point if
appropriate) or in exponential form. The exponential form
consists of an integer or decimal fraction followed
immediately by the symbol £ followed immediately by an
integer. The integer following the 7 specifies the power of
ten by which the part preceding the F is to be multiplied.
Thus 1.44F2 is equivalent to 1uu.

Negative numbers are represented by a negative sign
immediately preceding the number, e.g., ~1.u44 and "1u44E 2
are equivalent negative numbers. The negative sign can be
used only as part of a constant and is to be distinguished
from the negation function which is denoted, as usual, by
the minus sign -.

A constant vector is entered by typing the constant
components in order, separated by one or more spaces. A
character constant is entered by typing the character
between gquotation marks, and a sequence of characters
entered in gquotes represents a vector whose successive
components are the characters themselves. Such a vector is
printed by the system as the sequence of characters, with no
enclosing quotes and with no separation of the successive
elements. The quote character itself must be typed in as a
pair of quotes. Thus, the abbreviation of CANNOT is
entered as 'C4N''T' and prints as CAN'T.

Names and Spaces. As noted in Part 2, the name of a
variable or defined function may be any sequence of six or
fewer letters or digits beginning with a letter and not

containing a space.

Spaces are not required between primitive functions and
constants or variables, or between a succession of primitive
functions, but they may be used if desired. Spaces are
needed to separate names of adjacent defined functions,
constants, and variables. For example, the expression 34y
may be entered with no spaces, but if F is a defined

53

function, then the expression 3 F 4 must be entered with the
indicated spaces. The exact number of spaces used in
succession is of no importance and extra spaces may be used
freely.

Qverstriking and erasure. Backspacing serves only to
position the carriage and does not cause erasure or deletion
of characters. It can be used:

1. to insert missing characters (such as parentheses)
if space has previously been left for them,

2. to form compound characters by overstriking (e.g.
and ¢), and

3. to position the carriage for erasure, which is
effected by striking the linefeed (marked ATTN on IBM
2741 terminals and INT REQ on the 1131 console
keyboard). The linefeed has the effect of erasing the
character at the position of the carriage, and all

characters to the right.

End of Statement. The end of a statement is indicated by

‘striking the carriage return. The typed entry is then

interpreted exactly as it appears on the page, regardless of

the time sequence in which the characters were typed.

Order of execution. In a compound expression such as
3x4+6+2, the - functions are executed (evaluated) from
rightmost to leftmost, regardless of the particular
functions appearing in the expression. (The foregoing
expression evaluates to 21.) When parentheses are used, as
in the expression W<«(3[Q)+XxY-Z, the same rule applies, but,
as usual, an enclosed expression must be completely
evaluated before its results can be used. Thus, the
foregoing expression is equivalent to W<«(3[Q):(Xx(Y-Z)).

In general, the rule can be expressed as follows: every
function takes as its righthand argument the entire
expression to its right, up to the right parenthesis of the
pair that encloses it.

Error reports. The attempt to execute an invalid statement
will cause one of the error reports of Table 3.1 to be typed
out. The error report will be followed by the offending
statement with a caret typed under the point in the
statement where the error was detected. If the caret lies
to the right of a specification arrow, the specification has
not yet been performed.

54

TYPE

Cause; CORRECTIVE ACTION

CHARACTER

DEFN

FN SPACE
FULL

DOMAIN

FUNCTION
T00 LARGE

ID
INDEX

LABEL

LENGTH

LINE TOO
LONG

\RANK

ISYNTAX

SYSTEM

VALUE

WS FULL

Illegitimate overstrike.

Misuse of V or [0 symbols:

1. V is in some position other than the first.
2. The function is pendent. DISPLAY THE STATE
INDICATOR AND CLEAR AS REQUIRED.

3. Use of more of the header than VF to reopen
the definition of F.

4, Improper request for a line edit or display.
5. The function is locked.

Function portion of workspace cannot hold more
functions. ERASE FUNCTIONS NO LONGER REQUIRED.

Arguments not in the domain of the function.

Too many lines, labels, or local variables in a
function. REVISE OR SEGMENT THE FUNCTION.

Identifier with more than six characters.

Index value out of range.

Definition of a label that is already an
argument, explicit result, or label for the
function.

Shapes not conformable.

Statement with more than 160 characters.
SEGMENT THE STATEMENT.

Ranks not conformable.

Invalid syntax; e.g., two variables juxtaposed;
function used without appropriate arguments as
dictated by its header; mismatched parentheses.

Fault in internal operation of APL\1130.

Use of a name that has not been assigned a
value. ASSIGN A VALUE TO THE VARIABLE OR
DEFINE THE FUNCTION.

The portion of the workspace for variables is
filled (perhaps by temporary values produced in
evaluating a compound expression). CLEAR THE
STATE INDICATOR, ERASE NEEDLESS OBJECTS, OR

REVISE CALCULATIONS TO USE LESS SPACE.

Table 3.1 ERROR REPORTS

55

If an invalid statement is encountered during execution
of a defined function, the error report includes the
function name and the line number of the invalid statement.
The recommended procedure at this point is to enter a right
arrow followed by a zero (+0), and then retry with an
amended statement. The matter is treated more fully in the
section on Suspended Function Execution.

Names of primitive functions. The primitive functions of

the language are summarized in Tables 3,2 and 3.8, and will

be discussed individually in subsequent sections. The tables

show one suggested name for each function. This is not

intended to discourage the common mathematical practice of

vocalizing a function in a variety of ways (for example,
X:Y may be expressed as "X divided by Y", or "X over Y").

but the terms size or shape may be preferred both for their

brevity and for the fact that they avoid potential confusion

with the dimensionality or rank of the array.

The importance of such names and synonyms diminishes
with familiarity. The usual tendency is toward the wuse of
the name of the symbol itself (e.g., "rho" (p) for "size",
and "iota" (1) for "index generator"), probably to avoid
unwanted connotations of any of the chosen names.

SCALAR FUNCTIONS

Each of the primitive functions is classified as either
scalar or mixed. Scalar functions are defined on scalar
(i.e., individual) arguments and are extended to arrays in
four ways: element-by-element, reduction, inner product, and
outer product, as described in the section on Functions on
Arrays. Mixed functions are discussed in a later section.

The scalar functions are summarized in Table 3.2, Each
is defined on real numbers or, as in the case of the logical
functions and and or, on some subset of them. No functional
distinction is made between "fixed point" and "floating
point" numbers, this being primarily a matter of the
representation in a particular medium, and the user of the
terminal system need have no concern with such questions
unless his work strains the capacity of the machine with
respect to either space or accuracy.

Precision of numbers. Integers less than 2 to the power 23
are carried with full precision; larger numbers and
non-integers are carried to a precision of 6 to 7 decimal
digits.

56

Monadic form f£B f Dyadic form AfB
Definition Name Name Definition
or example or example
+B <> 0+B Plus + | Plus 2+3,2 <> 5,2
-B <> 0-B Negative - |Minus 2-3,2 «» 1.2
xB <> (B>0)-(B<0) Signum x | Times 2x3,2 +> 6.4
+B <> 1B Reciprocal + |Divide 2¢+3.2 <+ 0.625
B | FB| LB Ceiling [|Maximum 3[7 «» 7
3.14' L | 3
T3.14 173 |74 Floor L |Minimum 3L7 <> 3
*B «-> (2.71828..)*B|Exponential| x |Power 2%3 <> 8
@*xN +> N <> »@N Natural @ Logarithmt AeB <~ Log B base 4
logarithm A®B <+ (@B):@4
| 73.14 <> 3.14 Magnitude | | Residue Case | A|B
’ Az0 B-(|A)xLB+|A
A=0,B20|B
A=0,B<0 |Domain error
'0 «»> 1 Factorial ! |Binomial A'B <> (!B)s(!4A)x!B-4A
'B <> Bx!B-1 coefficient|2!'5 «+ 10 3'5 «» 10
?B <~ Random choice|Roll ? |Dealt A Mixed Function (See
from 1B Table 3.8)
OB <> Bx3.,14159... |Pi timest o |Circular! See Table at left
~1 «+> 0 ~0 <«>1 Not ~
A | And A B AANB AVB A~B A~B
(-A)oOB A AOB v |Or o[o] o 0 1 1
(1-B*2)%.5 |0 | (1-B*2)*.5 ~ |Nana! olt]o | 1] 12| o
Arcsin B | 1 | Sine B » [Nort 110 0 1 1 0
Arccos B | 2 | Cosine B 11111 1 0 0
Arctan B | 3 | Tangent B
(T14B*x2)*.5 | 4 | (1+B*2)*.5 < | Less Relations
Arcsinh B | 5 | Sinh B < |Not greater Result is 1 if the
Arccosh B | 6 | Cosh B = | Equal relation holds, 0
Arctanh B | 7 | Tanh B > | Not less if it does not:
> | Greater 357 > 1
Table of Dyadic o Functions z | Not Equal 73 > 0

tThis function not available on APL\1130

Table 3.2:

57

PRIMITIVE SCALAR FUNCTIONS

For functions such as floor and ceiling, and in
comparisons, a "fuzz" of about 177 is applied in order to
avoid anomalous results that might otherwise be engendered
by doing decimal arithmetic on a binary machine.

Two of the functions of Table 3.2, the relations x and
=, are defined on characters as well as on numbers.

Monadic and dyadic functions. Each of the functions defined
in Table 3.2 may be used in the same manner as the familiar
arithmetic functions + - x and s. Most of the symbols
employed may denote either a monadic function (which takes

one argument) or a dyadic function (which takes two

arguments). For example, [y denotes the monadic function
ceiling applied to the single argument y, and xfy denotes

the dyadic function maximum applied to the two arguments x
and Y. BAny such symbol always denotes a dyadic function if
possible, i.e., it will take a left argument if one is

present,

At this point it may be helpful to scrutinize each of
the functions of Table 3.2 and to work out some examples of
each, either by hand or on a terminal. However, it is not
essential to grasp all of the more advanced mathematical
functions in order to proceed. Treatments of these
functions are readily available in standard texts.

Certain of the scalar functions deserve brief comment.
used in number theory. For positive integer arguments this
is equivalent to the remainder obtained on dividing B by 4,
and may be stated more generally as the smallest
non-negative member of the set B-¥x4, where ~¥ is any
integer. ,

This formulation covers the case of a zero left
argument as shown in Table 3.2. The conventional definition
is extended in two further respects:

1. The left argument A need not be positiwve; however,
the value of the result depends only on the magnitude
of 4.

2, The arguments need not be integral. For example,
1]/2.6 is 0.6 and 1.5|8 is 0.5.

In APL\1130, the domain of the ? function is limited to
positive integer arguments less than 32768.

58

The factorial function !N is defined in the usual way
as the product of the first ¥ positive integers. The
function A!B (pronounced A4 out of B) is defined as
(1B):(14)x'B-4 and is the number of combinations of B things
taken 4 at a time.

The symbols < < = > > and = denote the relations
less than, less than or egual, etc., in the usual manner.
However, an expression of the form A<B is treated not as an
assertion, but as a function which yields a 1 if the
proposition is true, and 0 if it is false. For example:

When applied to logical arguments (i.e., arguments
whose values are limited to 0 and 1), the six relations are
equivalent to six of the logical functions of two arguments.
For example, < is equivalent to material implication, and =
is equivalent to exclusive-or. These six functions together
with the and, or, nand, and nor shown in Table 3.2 exhaust

the nontrivial logical functions of two logical arguments.

Vectors. Each of the monadic functions of Table 3.2 applies
to a vector, element by element. Each of the dyadic
functions applies element by element to a pair of vectors of
equal dimension or to one scalar (or a single element vector
or matrix) and a vector of any dimension, the scalar being

used with each component of the vector. For example:

1 2 3 4x4 3 2 1

4 6 6 4
241 2 3 4
3 4 5 6
12 3 4l2
2 2 3 u

Index generator. If ¥ is a non-negative integer, then ¥
denotes a vector of the first F§ integers. The dimension of
the vector 1N is therefore FN; in particular, 11 is a vector
of length one which has the value 1, and 10 1is a vector of

59

length zero, also called an empty vector. The empty vector .

prints as a blank. For example:

14
1 2 3 -4
15
1 2 3 4 5
10
Empty vector prints as a blank
6-16 .
5 4 3 2 1 0
2x10 Scalar applies to all (i.e., 0) elements
of 10, resulting in an empty vector
2x16
2 4 6 8 10 12

The index generator is one of the class of mixed
functions to be treated in detail later; it is included here
because it is useful in examples.

DEFINED FUNCTIONS

Introduction. It would be impracticable and confusing to
attempt to include as primitives in a language all of the
functions which might prove useful in diverse areas of
application. On the other hand, in any particular
application there are many functions of general utility
whose use should be made as convenient as possible. This
need is met by the ability to define and name new functions,
which can then be used with the convenience of primitives.

This section introduces the basic notions of function
definition and illustrates the use of defined functions.
Most of the detailed mechanics of function definition,
revision, and display, are deferred to the succeeding
section,

The sequence

VSPHERE
[11 SURF+«U4x3,14159%xRxR
[21] VOL«SURFxR+3
[3] v

is called a function definition; the first Vv (pronounced
del) marks the beginning of the definition and the second v
marks the conclusion: the name following the first v (in
this case SPHERE) 1is the name of the function defined, the
numbers in brackets are statement numbers, and the
accompanying statements form the body of the function
definition. In APL\1130, the number of statements in a
function body may not exceed 50.

60

The act of defining a function neither executes nor
checks for validity the statements in the body. After the
definition of a function is completed, entering the name of
the function causes the execution of the statements in the
body. For example:

VSPHERE Definition of the
[11] SURF<u4x3,14159xExR function SPHERE
[2] VOL«SURFxR+3

[3] v
R<2 Specification and display
R of the argument R
2
SURF SURF has not been
VALUE ERROR assigned a value
SURF
A
SPHERE Execution of SPHERE
SURF SURF and VOL now have
50.2654 values assigned by the
VoL execution of SPHERE
33.5103
R<1 Use of SPHERE for
SPHERE a new value of the
SURF argument R
12.5664
VoL
4.,18879

Branching. Statements in a function are normally executed
in the order indicated by the statement numbers, and
execution terminates at the end of the last statement in the
sequence. This normal order can be modified by branches.

Branches make possible the construction of iterative
procedures.

The expression -4 denotes a branch to statement 4 and
causes statement 4 of the function to be executed next. 1In
general, the arrow may be followed by any expression which,
to be effective, must evaluate to an integer. This value is
the number of the statement to be executed next. If the
integer lies outside the range of statement numbers of the
body of the function, the branch ends the execution of the

function.

If the value of the expression to the right of a branch
arrow is a non-empty vector, the branch is determined by its
first component. If the vector is empty (i.e., of zero
dimension) the branch is vacuous and the normal sequence is
followed.

61

The following examples illustrate various methods of
branching used in three equivalent functions (suM, SUM1, and
SUM2) for determining S as the sum of the first y integers:

vVsSUM
[1] S5+«0
[2] I<1
[3] >uxT<N Branch to 4x1 (i.e., u4) or to yxo (out)

[4] S<S+I
[5] T<«I+1

[61] +3 Unconditional branch to 3
[71 v
N«1
SUM
S
1
N<2
SUM
S
3
N<5
SUM
S
15
VSUM1 Equivalent to sum
[1] 8<0
[2] I+«1
[31] +0x1I>N Branch to 0(out) or continue to next
[4] S+S+T line since 0x10 is an empty vector
[51] I«I+1
[61] +3 Unconditional branch to 3
[71 v
N<«5
SUM1
S
15
VSUM2 Equivalent to suM
[1] 5«0
[2] I<0
[3] S«S+I
(4] I<«I+1
[51 >3x1I<N Branch to 3 or fall through(and out)
[6] v

From the 1last two functions in the foregoing example,
it should be clear that the expression x:i occurring .in a
branch may often be read as "if". For example, »3x1I<l§ may
be read as "Branch to 3 if I is less than or equal to n."

62

Local and global variables. A variable is normally global
in the sense that its name has the same significance no
matter what function or functions it may be used in.
However, the iteration counter I occurring in the foregoing
function SUM is of interest only - during execution of the
function; it is frequently convenient to make such a
variable local to a function in the sense that it has
meaning only during the execution of the function and bears
no relation to any object referred to by the same name at
other times. Any number of variables can be made- local to a
function by appending each (preceded by a semicolon) to .the
function header. Compare the following behavior of the
function SUM3, which has a local variable T, with the
behavior of the function SUM2 in which I is global:

VSUM3;I VSUM?2
[1] 5«0 [11] S5+<0
[21] I+<0 [21 I+«0
[3] S«S+I [3] S+S+1
[41] I+I+1 [4] I«I+1
[51] +3x1I<N [51 +>3x1I<N
[6] v [6] v
I<20 I+«20
N<5 N<«5
SUM3 SUM2
S S
15 15
I I
20 6

Since I is local to the function SUM3, execution of SUM3 has
no effect on the variable I referred to before and after the
use of SUM3.

However, if the variable ¥ is local to a function F
then any function ¢ wused within F may refer to the same
variable ¥, unless the name K is further localized by being
made local to G. For further treatment of this matter, see
the section on Homonyms.

63

Explicit argqument. A function definition of the form

VSPH X
[1] SUR«4x3.,14159xXxX
[21 v

defines SPH as a function with an explicit argument;
whenever such a function is used it must be provided with an
argument. For example:

SPH 2

SUR
50.2654

SPH 1

SUR
12.5664

Any explicit argument of a function is automatically
made local to the function; if 7 is any expression, then the
effect of SPH F is to assign to the local variable x the
value of the expression F and then execute the body of the
function SPH. Except for having a value assigned initially,
the argument variable is treated as any other local variable
and, in particular, may be respecified within the function.

Explicit xesult. Each of the primitive functions produces a
result and may therefore appear within compound expressions.
For example, the expression :Z produces an explicit result
and may therefore appear in a compound expression such as
X++Zz, A function definition of the form

VZ+SP X
[1] Z+Ux3.14159xXxX
[21] v i

defines SP as a function with an explicit result; the
variable Z is local, and the value it assumes at the
completion of execution of the body of the function is the
explicit result of the function. For example:

@«3xSP 1

Q
37.6991

R<2

(SP R)xR=:3
33.5103

64

The forms of defined functions. Functions may be defined
with 2,1, or 0 explicit arguments and either with or without
an explicit result. The form of header used to define each
of these six types is shown in Table 3.3. Each of the six
forms permits the appending of semicolons and names to
introduce local variables. The names appearing in any one
header must all be distinct; e.g., the header z<F 2z is
invalid.

Number of|Number of Results
Arguments 0 1

0 vF VZ<F

1 VF Y VZ«F Y

2 VX F Y VZ«X F Y

Table 3.3: FORMS OF DEFINED
FUNCTIONS

It 1is not obligatory either for the arguments of a
defined function to be used within the body, or for the
result variable to be specified. A function definition
which does not assign a value to the result variable will
engender a value error report when it is wused within a
compound expression. This behavior permits a function to be
defined with a restricted domain, by testing the argument (s)
and branching out in certain cases without specifying a
result. For example:

VZ«SQRT X
[11] +0x1X<0
[2] Z«X%,5V

Q<SQRT 16
Q
n
Q<«SQRT "16
VALUE ERROR
Q<+SQRT ~16

A

Use of defined functions. A defined function may be used in
the same ways that a primitive function may. In particular,
it may be used within the definition of another function.
For example, the function HYP determines the hypotenuse of a
right triangle of sides 4 and B by using the square root
function SQRT:

VZ+S@QRT X
[11] Z+X* .5V

VH<A HYP B
[1] H<SQRT (A*2)+B*2V

5 HYP 12
13

A defined function must be used with the same number of
arguments as appear in its header.

Recursive function definition. A function F may be used in
the body of its own definition, in which case the function
is said to be recursively defined. The following program
FAC shows a recursive definition of the factorial function.
The heart of the definition is statement 2, which determines
factorial ¥ as the product of ¥ and FAC N-1, except for the
case N=0 when it is determined (by statement 4) as 1:

VZ<FAC N
[1] >4x1N=0
[2] Z«NxFAC N-1

3] >0
[u] <1V
Trace control. A trace is an automatic type-out of

information generated by the execution of a function as it
progresses. In a complete trace of a function P, the number
of each statement executed is typed out in brackets,
preceded by the function name P and followed by the final

value produced by the statement. The trace is useful in.

analyzing the behavior of a defined function, particularly
during its design.

The tracing of P is controlled by the trace vector for
P, denoted by TAP. If one types 7TAP«2 3 5 then statements
2,3,and 5 will be traced in any subsequent execution of P.
More generally, the value assigned to the trace vector may
be any vector of integers. Typing TAP+<0 will discontinue
tracing of P. A complete trace of P is set up by entering
TAP<+1N, where N is the number of statements in P.

66

MECHANICS OF FUNCTION DEFINITION

When a function definition is opened (by typing a v
followed by a header), the system automatically types
successive statement numbers enclosed in brackets and
accepts = successive entries as the statements forming the
body of the definition. The system is therefore said to be
in definition mode, as opposed to the execution mode which

. prevails outside of function definition.

There are several devices which may be used during
function definition to revise and display the function being
defined. After function definition has been closed, there
are convenient ways to re-open the definition so that these
same devices may be used for further revision or display.

Labels. If a statement occurring in the body of a function
definition is prefaced by a name and a colon, then at the
end of the definition the name is assigned a value equal to
the statement number. A name ' specified in this way is
called a label. Labels are used to advantage in branches
when it is expected that a function definition may be
changed for one reason or another, since a label
automatically assumes the new value of the statement number
of its associated statement as statements are inserted or
deleted. A label is a local name as if it had occurred in
the header; unlike a local variable it cannot be
respecified.

Revision. Any statement number (including one typed by the
system) can be overridden by typing [N], where N is any
positive number 1less than 100, with or without a decimal
point and with at most two digits to the right of the
decimal point. If N is zero, it refers to the header line
of the function,

If a statement number is used again, the new text
associated with it replaces the old statement. If any
statement is empty -- that is, the bracketed statement
number was immediately followed by both a linefeed and a
carriage return (a carriage return alone is vacuous) -- it
is deleted.

When the function definition mode 1is ended, the
statements are reordered according to their statement
numbers and the statement numbers are replaced by the
integers 1,2,3, and so on. Labels are assigned appropriate
values.

67

The particular statement on which the closing v appears
is not significant, since it marks only the end of the
definition mode, not necessarily the last 1line of the
function, Moreover, the closing v may be entered either
alone or at the end of a statement.

Display. During function definition, statement N can be
displayed by overriding the line number with [N{O]. After
the display, the system awaits replacement of statement N.
Typing [[0] displays the entire function, including the
header and the opening and closing v, and awaits entry of
the next statement; typing [(N] displays all statements from
N onward and awaits replacement of the last statement.
Executing an attention signal will stop any display.

Line editing. During function definition, statement N can
be modified by the following mechanism:

1. Type [NOM] where M is an integer.

2, Statement N is automatically displayed and the
carriage stops under position M.

3. A letter or decimal digit or the symbol / may be
typed under any of the positions in the displayed
statement, Any other characters typed in this mode
are ignored. The ordinary rules for backspace and
linefeed apply.

4. When the carriage 1is returned, statement N is
re-displayed without the line number. Each character
understruck by a / 1is deleted, each character
understruck by a digit K is preceded by K added
spaces, and each character understruck by a letter is
preceded by 5xR spaces, where R is the position of the
letter in the alphabet. Finally, the carriage moves
to the first injected space and awaits the typing of
modifications to the statement in the wusual manner.
The final effect is to define the statement exactly as
if the entry had been made entirely from the keyboard;
in particular, a completely blank sequence leaves the
statement unchanged.

A new statement number (in brackets) can be entered in
the space 1left for it during the editing procedure. The
statement affected is determined by the new statement
number; hence statement N remains unchanged. This permits
statements to be moved, with or without modification.

68

Reopening function definition. If a function R is already
defined, the definition mode’ for that function can be
re-established by entering VR alone; the rest of the
function header must not be entered. The system responds by
typing [#+1], where ¥ is the number of statements in R.
Function definition then proceeds in the normal manner.

Function definition may also be established with
editing or display requested on the same line. For example,
VR[3]X«X+1 initiates editing by entering a new line 3
immediately. The system responds by typing [4] and awaiting
continuation. The entire process may be accomplished on a
single line. Thus, VR[31X«X+1V opens the definition of R,
enters a new line 3, and terminates the definition mode.
Also, VR[0]lv causes the entire definition of & to be
displayed, after which the system returns to execution mode.

Similar expressions involving display are also
permissible, for example, VR[[31v or VR[[] or vr{20101].

Locked functions. If the symbol % (formed by a vV overstruck
with a ~ and called del-tilde) is used instead of V to open
or close a function definition, the function becomes locked.
A locked function cannot be revised or displayed in any way.
Moreover, an error stop within the function will print only
the function name and the type of error, not the statement.
Finally, the trace control vector for a function cannot be
changed after the function is locked.

Function locks are used to keep a function definition
proprietary. For example, in an exercise in which a student
is required to determine the behavior of a function by using
it for a variety of arguments, locking a function prevents
him from displaying its definition.

Deletion of functions and variables. A function F (whether

locked or not) is deleted by the command)ERASE F (see Table
2.1). A variable also may be deleted by the erase command.

System command entered during function definition. A system
command entered during function definition will not be
accepted as a statement in the definition. Some commands,
such as)cory, will be rejected with the message
NOT WITH OPEN DEFN (see Table 2.1); most will be executed
immediately.

69

SUSPENDED FUNCTION EXECUTION

Suspension. The execution of a function F may be stopped
before completion in two ways: by an error report, or by an
attention signal. In either case, the function is still
active and its ‘execution can later be resumed. In this
state the function is said to be suspended. Typing »K will
cause execution of the suspended function to be resumed,
beginning with statement K.

Whatever the reason for suspension, the statement or
statement npumber displayed is the next one to have been
executed. A branch to that statement number will cause
normal continuation of the function execution, and a branch
out (+0) will terminate execution of the function.

In the suspended state all normal activities are
possible. 1In particular, the system is in a condition to:

1. execute statements or system commands.

2, resume execution of the function at an arbitrary
point ¥ (by entering -¥).

3. reopen the definition of any function which is not
pendent. The term pendent is defined in the

discussion of the state indicator below.

State indicator. Typing)SI causes a display of the gtate

)SI
HL71] *
¢L2] :
F[3]

The foregoing display indicates that execution was
halted at statement 7 of the function H, that the current
use of function # was invoked in statement 2 of function @G,
and that the use of function G was in turn invoked in
statement 3 of F. (No line number is printed for locked
functions). The * appearing to the right of F[7] indicates
that the function # is suspended; the functions ¢ and F are
said to be pendent.

70

Further functions can be invoked when in the suspended

‘state. Thus if ¢ were now invoked and a further suspension

occurred in statement 5 of @, itself invoked in statement 8
of G, a subseguent display of the state indicator would
appear as follows:

)sI
Q5] *
¢l8]
207] *
GL2]

FL31]

It is recommended that the state indicator be cleared
before modifying a program that uses statement labels.
Changing the values of statement labels (by adding or
removing statements) in the function will not affect the
label values for a suspended execution, and if execution of
the suspended function is continued, branch instructions may
result in branches to the wrong statements.

The state indicator can often be cleared by repeated
entry of »0. If this does not work, it can be cleared by a
sequence of commands of the following form:
)SAVE A)CLEAR)COPY 4

Trace control vectors may be set within functions. In
particular, they may be set by expressions which initiate or
discontinue tracing according to the values of certain
variables.

71

HOMONYMS

Variable names. The use of local variables introduces the
possibility of having more than one object in a workspace
with the same name. Confusion is avoided by the following
rule: when a function is executed, its local variables
supersede, for the duration of the execution, other objects
of the same names. A name may, therefore, be said to have
one active referent and (possibly) several latent referents.

The complete set of referents of a name can be
determined with the aid of the SIV list (state indicator
with local variables), whose display is initiated by the
command)SIV. The SIV 1list contains the information
provided by the command)s7, augmented by the names of the
variables 1local to each function (including 1labels). A
sample display follows:

)SIV
GL7] x Z XTI
Flu] pd
QL31] *x CXT
R[21] P
GL3] ZXI

If the SIV list is scanned downward, from the top, the
first occurrence of a variable is the point at which its
active referent was introduced; lower occurrences are the
points at which currently latent referents were introduced;
and if the name is not found at all, its referent is global,
and should be sought for with the commands)FNS or)VARS.

As the .state indicator is cleared by the continuation
to completion of halted functions, latent referents become
active in the sequence summarized, for the preceding SIV
list, by the following diagram:

Z X P

- e ——— N
- ———-
- —— —— 3

CTAB
| |1
| |
v (.
| |
| |
Vb

- e —— <

|
N
|
v
I
‘v

- - ———

The currently active referent of a name holds down to
and including the execution of the function listed at the
point of the first arrow, becau;e of localization of the

72

name withiy that function. The first latent referent
becomes active when that function is completed, and holds
down to the next arrow; and so forth until the state

.indicator is completely cleared, at which point there are no

longer any 1latent referents, and all active referents are
global objects,

Eggg;;gg names. All function names are global. In the
foregoing example, therefore, a function named - p cannot be
used within the function R or within any of the functions
employed by R, since the local variable name P makes the

fynction P inaccessible. However, even in such
c1rcu@stance§, the opening of function definition for such a
function P is possible. (Moreover, as stated in Part 2,

system commands concern global objects only, regardless of
the current environment.)

This scheme of homonyms is easy to use and relatively
free from pitfalls., It can, however, 1lead to seeming
anomalies as indicated by the following example (shown to
the authors by J.C.Shaw) of two pairs of functions which
differ only in the name used for the argument:

VZI<F X VZ<F X
[1] Z+X+YV [11] Z+X+YV
VZ<G Y VZ<G R
[11] Z«F YV [11 Z<F RV
Y<3 Y<«3
G 4 G 4
8 7

INPUT AND OUTPUT

The following function determines the value of an
amount 4 invested at interest B[1] for a period of B[2]
years: :

VZ<«A CPI B
[1] Z+Ax(1+.01xB[1]1)*B[2]V

For example:

1000 CPT 5 4
1215,51

73

The casual user of such a function might, however, find
it onerous to remember the positions of the various
arguments and whether the interest rate is to be entered as
the actual rate (e.g., .05) or in percent (e.g., 5). An
exchange of the following form might be more palatable:

CcI
ENTER CAPITAL AMOUNT IN DOLLARS
0O

1000
ENTER INTEREST IN PERCENT
0: :

5
ENTER PERIOD IN YEARS
0:

n
RESULT IS 1215.51

It is necessary that each of the keyboard entries
(1000, 5, and 4) occurring in such an exchange be accepted
not as an ordinary entry (which would only evoke the
response 1000, etc.), but as data to be used within the
function ¢I. Facilities for this are provided in two ways,

The definition of the function (I is shown at the end
of this section.

Evaluated input. The quad symbol [J appearing anywhere other
than immediately to the 1left of a specification arrow
accepts keyboard input as follows: the two symbols [: are
printed to alert the user to the type of input expected, the
paper is spaced up one line, and the keyboard unlocks. Any
valid expression entered at this point is evaluated and the

result is substituted for the quad. For example:

VZ<F
[11] Z«ux[Jw2
[2] v
F .
0
3
36
F
0:
332

74

An invalid entry in response to request for a quad
input induces an appropriate error report, after which input
is again awaited at the same point. A system command
entered will be executed, after which (except in the case of
‘one which replaces the active workspace) a valid expression
will again be awaited. An empty input (i.e., a carriage
return alone or spaces and a carriage return) is rejected
and the system again prints the symbols [: and awaits input.

Character input, The quote-quad symbol M (i.e., a quad
overstruck with a quote) accepts character input: the
keyboard unlocks at the left margin and data entered are
accepted as characters. For example:

X<

CAN'T (Quote-quad input, not indented)
X

CAN'T

Noxmal output. The quad symbol appearing immediately to the
left of a specification arrow indicates that the value of
the expression to the right of the arrow is to be printed.
Hence, [O«X is equivalent to the statement x. The longer
form O«X is useful when employing multiple specification.
For example, [«Q«X*2 assigns to @ the value xx2 and then
prints the value of xx2.

75

Heterogeneous output. A sequence of expressions separated
by semi-colons will cause the values of the expressions to
be printed, with no intervening carriage returns or spaces
except thoge implicit in the display of the values.

The primary use of this form is for output in which
some of the expressions yield numbers and some yield
characters. For example, if X<«2 14 , then:

'THE VALUE OF X IS ';X
THE VALUE OF X IS 2 14

A further example of mixed output is furnished by the
definition of the function CI which introduced the present
section:

VCI;A;;1;Y
[1] '"ENTER CAPITAL AMOUNT IN DOLLARS'
[2] A<D
[3] '"ENTER INTEREST IN PERCENT'
[u] I<0
[51] 'ENTER PERIOD IN YEARS'
[6] y<0

[71 "RESULT IS '3Ax(1+.01xI)*Y¥
RECTANGULAR ARRAYS

Introduction. A single element of a rectangular array can
be selected by specifying its indices; the number of indices
required is called the dimensionality or rank of the array.
Thus a vector is of rank 1, a matrix (in which the first
index selects a row and the second a column) is of rank 2,
and a scalar (since it permits no selection by indices) is
an array of rank O. In APL\1130, arrays of rank greater
than rank 2 cannot be used and no dimension of an array may
exceed 256; thus, a vector may have no more than 255
elements and a matrix may have no more than 255 rows or
columns.

This section treats the reshaping and indexing of
arrays, and the form of array output. The following section
treats the four ways in which the basic scalar functions are
extended to arrays, and the next section thereafter treats
the definition of certain mixed functions on arrays.

76

Vectors, dimension, catenation. If X is a vector, then px
denotes its dimension. For example, if X«2 3 5 7 11, then
oX is 5, and if Y«'4BC' , then pY is 3. A single character
entered in quotes or in response to a f] input is a scalar,
not a vector of dimension 1; this parallels the case of a
single number, which is also a scalar.

Catenation chains two vectors (or scalars) together to
form a vector; it is denoted by a comma. For example:

X+<2 3 5 7 11
X, X
2 3 5 7 11 2 3 5 7 11
In general, the dimension of X,Y is equal to the total
number of elements in X and Y.

Matrices, dimensjon, ravel. The monadic function p applied
to an array 4 yields the size of 4, that is, a vector whose
components are the dimensions of 4. For example, if 4 is

the matrix

1 2 3 4
5 6 7 8
9 10 11 12

of three rows and four columns, then p4 is the vector 3 u.

Since pA contains one component for each coordinate of

A, the expression pp4 1is the rank of A. Table 3.4
illustrates the values of p4 and pp4d for arrays of rank 0
(scalars) up to rank 2. In particular, the function o

applied to a scalar yields an empty vector.

Type of Array | p4 ppAlpppA

Scalar 0 1
Vector N| 1 1
Matrix M N| 2 1

Table 3.4: DIMENSION AND
RANK VECTORS

77

_The monadic function ravel is denoted by a comma; when
applied to any array 4 it produces a vector whose elements
are the elements of 4 in row order. For example, if 4 is

the matrix

2 4 6 8
10 12 14 16
18 20 22 24

and if V«<,4 then V is a vector of dimension 12 whose
elements are the integers 2 4 6 8 10 12 e.. 24, If 4
is a vec?or, then ,4 is equivalent to 4; if 4 is a scalar,
then ,4 is a vector of dimension 1.

Bgshggg.' The'dyadic function o reshapes its right argument
to the d}mens1on specified by its left argument. If M<DoV,
then ¥ is an array of dimension D whose elements are the

elements of vV, For example, 2 3p1 2 3 4 5 6 is the matrix

1 2 3 L
4 5 &

If N, the total number of elements required in the
array DpV, is equal to the dimension of the vector V, then
the ravel of DpV is equal to V. If ¥ is less than pV, then
only the first N elements of V are wused; if ¥ is greater
than oV, then the elements of V are repeated cyclically.
For example, 2 3p1 2 is the matrix

1 2 1
2 1 2

and 3 3p1 0 0 0 is the identity matrix

1 0 0
o 1 o0
o 0 1

78

More generally, if 4 is any array, then DpA is
equivalent to Dp,A. For example, if A is the matrix

1 2 3
4 5 8B

then 3 5p4 is the matrix

1 2 3 4 5
6 1 2 3 4
5 6 1 2 3

The expressions 0pX and 0 3pX and 3 0pX and 0 0pX are
all valid; any one or more of the dimensions of an array may
be zero.

Uses of empty arrays. A vector of dimension zero contains
no components and is called an empty vector. Three
expressions which yield empty vectors are 10 and '' and p
applied to any scalar. An empty vector prints as a blank
line. :

One important use of the empty vector has already been
illustrated: when one occurs as the argument of a branch,
the effect is to continue the normal sequence.

The following function for determining the
representation of any positive integer ¥ in a base B number
system shows a typical use of the empty vector in
initializing a vector Z which is to be built up by
successive catenations:

VZ<B BASE N
[1] 2«10
[2] Z<(B|N),2
[3] N<|LN:B
[u] +2xN>0V

10 BASE 1776

17 7 6
8 BASE 1776
3 3 6 0

Empty arrays of higher rank can be useful in analogous
ways in conjunction with the expansion function described in

the section on Mixed Functions.

79

Indexing. If X is a vector and I is a scalar, then X[I]
denotes the Ith element of X. For example, if X<«2 3 5 7 11
then Xx[2] is 3.

If the index I is a vector, then X[I] is the vector
obtained by selecting from X the elements indicated by
successive components of I. For example, X[1 3 5] |is
2 511 and X[5 4 3 2 1] is 11 7 5 3 2 and X[13] 1is 2 3 5.
If the elements of I do not belong to the set of indices of

In general, pX[I] is equal to opI. In particular, if T

is a scalar, then X[I] is a scalar, and if I is a matrix,
then X[I] is a matrix. For example:

A<'ABCDEFG'
Melh 3p3 1 4 2 1 4 4 12 4 14
M

3 1 4

2 1 4

o1 2

4 1 4
AlM]

CAD

BAD

DAB

DAD

If ¥ is a matrix, then ¥ is indexed by a two-part list
of the form I;J where I selects the row (or rows) and J
selects the column (or columns). For example, if ¥ is the
matrix

w ;e
o
~
@

then M[2;3] is the element 7 and M[1 3; 2 3 4] is the matrix

In general, oM[I;J] is equal to (pI),pJ. Hence if T
and J are both vectors, then M[I;J] is a matrix; if both T
and J are scalars, M[I;J] is a 'scalar; if I is a vector and
J is a scalar (or vice versa), M[I;J] is a vector, and if 7T
is a matrix and J is a scalar (or vice versa), M[I;J] is a
matrix.

80

The form M[I;] indicates that all columns are selected,
and the form M[;J] indicates that all rows are selected.
For example, M[2;] is 5 6 7 8 and M[;2 1] is

2 1
6 5
10 9

Permutations are an interesting use of indexing. A
vector P whose elements are some permutation 'of its own
indices is called a permutation of order pP. For example,
31 4 2 is a permutation of order 4. If X is any vector of
the same dimension as P, then X[P] produces a permutation of
X. Moreover, if pP is equal to (pM)[1], then M[P;] permutes
the column vectors of ¥ (i.e., interchanges the rows of ¥)
and is called a column permutation. Similarly, if pP equals

Indexing on the left. An array appearing to the left of a
gpecification arrow may be indexed, in which case only the
selected positions are affected by the specification. For
example:

X<2 3 5 7 11
X[1 31«6 8
X

6 3 8 7 11

The normal restrictions on indexing apply: in
particular, a variable which has not already been assigned a
value cannot be indexed, and an out-of-range index value
cannot be used.

Array output. Character arrays print with no spaces between
components in each row; other arrays print with at least one
space. If a vector or a row of a matrix requires more than
one line, succeeding lines are indented.

A matrix prints with all columns aligned and with a

blank line before the first row. A matrix of dimension W,1
prints as a single column.

81

FUNCTIONS ON ARRAYS

There are four ways in which the scalar functions of
Table 3.2 extend to arrays: element-by-element, reduction,
inner product,: and outer product. Reduction and outer
product are defined on any arrays, but the other two
extensions are defined only on arrays whose sizes satisfy a
certain relationship called conformabjlity. For the
element-by-element extension, conformability requires that
the shapes of the arrays agree, unless one of them comprises
only a single element. The requirements for inner product
are shown in Table 3.6.

Scalar functions. All of the scalar functions of Table 3.2
are extended to arrays element by element. Thus if ¥ and ¥
are matrices of the same size, f is a scalar function, and
P+«MfN, then P[I;J] equals M[I;J1EN[I;J], and if @<«fN, then
QLI;J] is equal to fN[I;J].

If M and N are not of the same size, then MfN is
one or other of ¥ and N is a scalar or one-element array, in
which case the single element is applied to each element of
the other argument. 1In particular, a scalar versus an empty
array produces an empty array.

An expression or function definition which employs only
scalar functions and scalar constants extends to arrays like
a scalar function.

Reduction. The sum-reduction of a vector X is denoted by
+/X and defined as the sum of all components of X. More
generally, for any scalar dyadic function f, the expression
£/X is equivalent to Xx[11fx[2]1f...fX[pX], where evaluation
is from rightmost to leftmost as usual. A user-defined

function cannot be used in reduction.

If X is a vector of dimension zero, then f/X yields the
identity element of the function f (listed in Table 3.5) if
it exists; if X is a scalar or a vector of dimension 1, then
£/x y}elds the value of the single element of X.

The result of reducing any vector or scalar is a
scalar.

82

Dyadic Identity Left-
Function Element Right
Times x11 L R
Plus +|0 L R
Divide 1 R
Minus -l0 R
Power * 1 R
Maximum r{"1.7014£38 (L R
Minimum L]l 1.7014E38 L R
Residue {jo L

Out of t1 L

Or vio L R
And Al L R
Equal =11Y Apply L R
Not equal =10 | for L R
Greater >10 4 logical R
Not less 211 | arguments R
Less <|o | only L

Not greater <|1 L

Table 3.5: IDENTITY ELEMENTS OF
PRIMITIVE SCALAR
DYADIC FUNCTIONS

For a matrix M, reduction can proceed along the first
coordinate (denoted by f/M) or along the second coordinate
(£/M). The result in either case is a vector; in general,
reduction applied to any non-scalar array A produces a
result of rank one less than the rank of A (hence the term

reduction).

Since +#M scans over the row index of M it sums each
column vector of M, and +/M sums the row vectors of M. For
example, if M is the matrix

then +#M is 5 7 9 and +/M is 6 15.

83

Inner product. The familiar matrix product is denoted by
C+A+.xB. If A and B are matrices, then C is a matrix such
that C[I;J] is equal to +/A[I;1xB[;J]. A similar definition
applies to Af.gB where f and g are any of the standard
scalar dyadic functions.

If 4 is a vector and B is a matrix, then C is a vector
such that C[J] is equal to +/4xB[;J]. If B is a vector and
A is a matrix, then C is a vector such that C[I] is equal to
+/A[T;1xB. If both 4 and B are vectors, then A4+.xB is the
scalar +/AxB.

The last dimension of the pre-multiplier 4 must equal
the first dimension of the post-multiplier B, except that if
either argument is a scalar, it is extended in the usual
way. For non-scalar arguments, the dimension of the result
is equal to (" 1+p4),1+4pB. (see the function drgp in the
section on Mixed Functions.) In other words, the dimension
of the result is equal to (p4),pB except for the two inner
dimensions (714p4 and 1+tpB), which must agree and which are
eliminated by the reduction over them.

Definitions for various cases are shown in Table 3.6.

Conformability Definition
pA |pB |pAf.gB| requirements Z<Af .gB

z«f/AgB

z+£/AgB

z«£/AgB

Z«£/AgB
Z[I]«£/AgB[;I]
Z[I1«f/A[I;]1gB
4 ZLI1«£/AgBL;I]
14 Z[LI)«£f/ALI;]1gB
v Z[I;J1«€£/A[T;1gBL;J]

=)
(SRS}
NS == 0w
<
"
<

SRS SRS

W

NN
RIS S
oz
wonon

W W

Table 3.6: INNER PRODUCTS FOR PRIMITIVE SCALAR
DYADIC FUNCTIONS £ AND g

Quter product. The outer product of two vectors ¥ and Y
with respect to a standard scalar dyadic function g is
denoted by Xo.gY and yields an array of dimension (pX),07,
formed by applying g to every pair of components of ¥ and Y.

84

If X and Y are vectors and Z<Xo.gY, then 2[I;J] is
equal to X[Ilg¥[J]l. For example:

X<13
Yer
Xo.xY
2
2 L 6 8
6
o

Xeo.2Y

(ST
=)
= oo
coo

Definitions for various cases are shown in Table 3.7.

¥

Definition
pA |[pB |pAo.gB Z«Ao .gB

Z+AgB
zZ[IT1<«AgBLI]
Z[I1<«A[IlgB

Z[I;J1+«ALI1gBLJ]
Z[I;J1<AgBLI;J]
Z[I;J1«ALI;J]1gB

U
U

|| o<

TU

N<oax
tE<

Table 3.7: OUTER PRODUCTS FOR PRIMITIVE
SCALAR DYADIC FUNCTION g

MIXED FUNCTIONS

Introduction. The gcalar functions listed in Table 3.2 each
take a scalar argument (or arguments) and yield a scalar
result; each is also extended element by element to arrays.
The mixed functions of Table 3.8, on the other hand, may be
defined on vector arguments to yield a scalar result or a
vector result, or may be defined on scalar arguments - to
yield a vector result.

Monadic transpose. The expression &4 yields the array 4
with the coordinates interchanged. For a vector V and a
matrix M, the following relations hold:

&V is equivalent to V

&4 is the ordinary matrix transpose, that is, the
rows of M are the columns of &M, and vice versa.

85

Name SignI Definition or example2
Size oA PP +«> 4 pE «+ 3 4 p5 +»> 10
Reshape VoA Reshape 4 to dimension v 3 L4p112 <+ F
12pE <> 112 OpF <= 10 ’
Ravel LA JA <> (x/pA)pA JE «»112 0,5 > 1
Catenate v,V P,12 «» 2 3 5 7 12 'TY,'HIS' <«» 'THIS!
P[2] <=3 P4 3 2 1] «+7 5 3 2
VLAl E[1 3;3 2 1] = 3 2 1
Index 11 10 9 .
M[A;A] Ef1;] <> 1 2 3 4 ABCD
E[;1] «» 1 5 9 "ABCDEFGHIJKL'[E] <> EFGH
IJKL
Index 1S First S integers 14 <> 1 2 3 4
generator 10 «»> an empty vector
Index of V14 Least index of 4 P13 «»2 5125
in vV, or 1+pV P1E <+ 3 5 4 5
b 44 <> 1 5 5 5 5
Take! V+A Take or drop |V[I] first 2 34X <> ABC
(v[r]=0) or last (V[IJ]<0) EFG
Drop'r VYA elements of coordinate I 24P +»> 5 7
Grade up t | A4 The permutation which A3 53 2 «> 4 1 32
, would order A4 (ascend-
Grade downf V4 ing or descending) 3 5 3 2 <> 2 1 3 4
' 1 3
Compress V/A 101 0/P «+ 2 5 101 0/E «+ 5 7
g9 11
1 2 3 4 <> 1 0 14F
9 10 11 12 :
v A BCD
Expand V\A 1 0 1\12 <> 1 0 2 1 01 1 I\X «»> E FGH
‘ I JKL
DCBA IJKL
Reverse dA X «-> HGFE X <+ EFGH
LKJI P «> 7 5 3 2 ABCD
BCDA
Rotate AdA 3P «+ 7 2 3 5 «> T1¢P 1 0 T16X <> EFGH
: LIJK
AET
oy Coordinate I of 4 2 18X <> BFJ
becomes coordinate CGK
Transpose V[I] of result - 1 19E «> 1 6 11 DHL
QA Transpose last two coordinates RE «»> 2 1QF
0110
“> >
Membership | 4e4 %Zfﬁ ++Y2W1 0 0 EeP % 8 % 8
Decode ViV 1011 7 7 6 +> 1776 24 60 6011 2 3 «+ 3723
Encode VTS 24 60 6073723 +»> 1 2 3 60 6073723 +» 2 3
Deal t S?8 W?Y <+ Random deal of ¥ elements from 1Y

Table 3.8: PRIMITIVE MIXED FUNCTIONS (see adjacent notes)

86

t. This function not available on APL\1130

1. Restrictions on argument ranks are indicated by: S for
scalar, V¥ for vector, M for matrix, A for Any. Except as
the first argument of S14 or S[4], a scalar may be used
ins;ead of a vector. A one-element array may replace any
scalar.

2. Arrays used - 1 2 3 4y ABCD
in examples: P «+ 2 357 E «+5 6 7 8 X <> EFGH
- 9 10 11 12 IJKL

Notes to Table 3.8

Rotate. If ¥ is a scalar or one-element vector and X is a
vector, then X¢Xx is a cyclic rotation of X defined as
follows: Kéx is equal to X[1+(pX)| 1+K+1pX]. For example,
if X«2 3 5 7 11, then 2¢X is equal to 5 7 11 2 3, and 26X
is equal to 7 11 2 3 5,

. If X is a matrix, rotation of each row may be specified
in the form Z<X¢X, rotation of each column in the form
Z«KeX. For example, for row rotation, if pX is 3 4 , then X
must be a scalar or a vector of dimension 3 and 2z[I;] is
equal to X[71¢x[I;]. For column rotation, oK must be a
scalar or a vector of dimension 4, and zZ[;I] is equal to
K[IJox(;11. For example:

M 0 1 2 3eM 12 3¢M
1 2 3 4 1 6 11 4 2 3 4 1
5 6 7 8 5 10 3 8 7 8 5 6
9 10 11 12 9 2 7 12 12 9 10 11

Reverse. 'If X is a vector and R«$X, then R is equal to X
except that the elements appear in reverse order. Formally,
R is equal to X[1+(pX)-1pX].

If A is a matrix, ©4 is like A except that the order of
elements is reversed along the columns; in ¢4, the order is
reversed along the rows. For example:

A o4 oA
1 2 3 4 5 6 3 2 1
4 5 6 1 2 3 6 5 4
87

Compress. The expression U/X denotes compression of X by U.
If U is a logical vector (comprising elements having only
the values 0 or 1) and X is a vector of the same dimension,
then U/X produces a vector result of +/U elements chosen
‘from those elements of X corresponding to non-zero elements
of U. For example, if X«2 3 5 7 11 and U«1 0 1 1 0 then
U/X is 2 5 7 and (~U)/X is 3 11.

To be conformable, the dimensions of the arguments must
agree, except that a scalar (or one-element vector) left
argument is extended to apply to all elements ' of the right
argument. Hence 1/X is equal to X and 0/X is an empty
vector. A scalar right argument is not extended. The
result in every case is a vector. :

If ¥ is a matrix, then U#M denotes compression along
the first coordinate, that is, the compression operates on
each column vector and therefore deletes certain rows. It
is called gcolumn compression. Similarly, U/M denotes row
compression. The result in every case is a matrix.

Expand. Expansion is the converse of compression and is
denoted by U\X. If Y<«U\X, then U/Y is equal to X and (if X
is a vector of numbers) (~U)/Y is an array of zeros. In
other words, U\X expands X to the form indicated by U, the
elements of X assuming the positions of the gneg in U, and
zeros filling in elsewhere. To be conformable, +/U must
equal pX.

If X is a vector of characters, then spaces are
supplied rather than zeros, i.e., if Y«U\X then (~U)/Y is an
array of the space character ' '. Again, for matrices,U\M
denotes expansion along the last coordinate, and UM denotes
expansion along the first. See Table 3.8 for examples of
expansion.

A scalar left argument is not extended.

Decode. The expression RiX denotes the value of the vector
X evaluated in a number system with radices
R[1]1,RL2],...,R[pR]. For example, if R<24 60 60 and
X+<1 2 3 is a vector of elapsed time in hours, minutes, and
seconds, then Ri1X has the value 3723, and is - the
corresponding elapsed time in seconds. Similarly,
10 10 10 10 + 1 7 7 6 is equal to 1776, and 2 2 2 L 1 0 1 is
equal to 5. Formally, RLX is equal to +/WxX, where ¥ is the
weighting vector determined as follows: W[pW] is equal to
1, and W[I-1] 1is equal to R[I1IxW[I]. For example, if R is
24-60 60, then W is 3600 60 1.

The result is a scalar.

88

The arguments R and X must be of the same dimension,
except that either may be a scalar (or one-element vector).
For example, 10 L 1 7 7 6 is equal to 1776. The arguments
are not restricted to integer values. If X is a scalar,
then XiC is the value of a polynomial in X with coefficients
C, arranged in order of descending powers of X.

The decode function is commonly applied in work with
fixed-base number systems and is often called the base
value function.

Encode. The encode function RTN denotes the representation
of the scalar ¥ in the base-F number system. Thus, if
Z<RTN, then (x/R)|N-RiZ is equal to zero. For example,
22227154is 01 01and2 2 2 T54is 1 01 and 2 2 T 5 is
0 1, The dimension of RTN is the dimension of R. The
encode function is also called representation.

Index of. If V is a vector and S is a scalar, then J<Vi§
yields the position of the earliest occurrence of § in V.
If 5 does not equal any element of V, then J has the value
1+p V. :

If S is a vector, then J is a vector such that J[I] is
the index in V of S[I]. For example:

'"ABCDEFGH'1'GAFFE"
7 1 6 6 5

If ¥ is a numerical vector, then the expression X:i[/X
yields the index of the (first) maximum element in x. For
example, if ¥ is the vector 8 3 5 13 2 7 9, then [/x is 13
and X1[/X is 4.

The result in every case has the same dimensions as the
righthand argument of 1. For example, if 2z«V:1S, and S is a
matrix, then Z[7;J] is equal to ViS[I;J].

Membership. The function Xe¢Y yields a logical array of the
same dimension as X. Any particular element of XeY has the
value 1 if the corresponding element of X belongs to Y, that
is, if it occurs as some element of Y. For example,
(17)e3 5 is equal to 0 0 1 0 1 0 0 and 'ABCDEFGH'e¢'COFFEE"
equals 0 0 1 0 1 1 0 O,

If the vector U represents the universal set in some
finite universe of discourse, then Ue¢4 is the characteristic
of the set 4, and the membership function is therefore also
called the characteristic function.

89

~

The size of the result of the function € is determined
by the size of the left argument, whereas the size of the
result of the dyadic function 1 is determined by the size of
the right argument. However, the 1left arguments of both

- frequently play the role of specifying the universe of

discourse.

Take and g;gg.* If V is a vector and S is a scalar between 0
and pV, then 54V takes the first S components of V. For
example, if V<17, then 34V is 1 2 3 and 04V is 10, and 84V
yields a domain error.

If S is chosen from the set -1pV, then StV takes the
last |S elements of V. For example, 34V is 5 6 7.

If 4 is an array, then wW+4 is valid only if ¥ has one
element for each dimension of 4, and W[I] determines what is
to be taken along thg Ith coordinate of A. For example, if
A « 3 4p112, then 2 344 is the matrix
2 3 4
6 7 8

The function drop (+) is defined analogously, except
that the indicated number of elements are dropped rather

than taken. For example, ~1 1+4 is the same matrix as the
one displayed in the preceding paragraph.

The rank of the result of the take and drop functions
is the same as the rank of the right argument. The take and
drop functions are similar to the transpose in that the left
argument concerns the dimension vector of the right
argument.

which would order V, that is V[4V] is in ascending order.
For example, if V is the vector 7 1 16 5 3 9, then AV is the
vector 2 5 4 1 6 3, since 2 1is the index of the first in
rank, 5 is the index of the second in rank, and so on. The
symbol 4 is formed by overstriking | and A.

If P is a permutation vector, then AP is the
permutation inverse to P. If a vector D contains duplicate
elements, then the ranking among any set of equal elements
is determined by their positions in D. For example,
A5 3 7 3 9 2 is the vector 6 2 4 1 3 5, -

These functions not available on APL\1130

90

The right argument of) may be any array 4 of rank
greater than zero, and the coordinate J along which the
grading is to be applied may be indicated by the usual
notation A[JJ4.. The form A4 applies as usual to the last
coordinate. The result of 4 is of the same dimension as 4.

The grade down function V is the same as the function A
except that the grading is determined in descending order.
Because of the treatment of duplicate items, the expression
A/(hV)=¢¥V has the value 1 if and only if the elements of
the vector V are all distinct.

Qggl.# The function M?N produces a vector of dimension ¥
obtained by making ¥ random selections, without replacement,
from the population 1W. In particular, N?N yields a random
permutation of order . Both arguments are limited to
scalars or one-element arrays.

ggmmggggﬁ The lamp symbol na, formed by overstriking n and
o, signifies that what follows it is a comment, for
illumination only and not to be executed; it may occur only
as the first character in a statement, but may be used in

defined functions.

MULTIPLE SPECIFICATION

Specification («) may (like any other function) occur
repeatedly in a single statement. For example, the
execution of the statement Z<XxA+3 will assign to 4 the
value 3, then multiply this assigned value of 4 by X and
assign the resulting value to Z.

Multiple specification is useful for initializing
variables. For example:

X«Y¥+1+2+«0
sets X and Y to 1 and Z to 0.

A branch may occur in a statement together with one or
more specifications, provided that the branch is the last
operation to be executed (i.e., the leftmost). For example,
the statement »Sxi1N>I<«I+1 first augments I, and then
branches to statement S if N exceeds the new value of I.

This function not available on API\1130

91

In the expression Z<(A+B)x(C+D) it 1is immaterial
whether the left or the right argument of the x is evaluated
first, and hence no order is specified. The principle of no
specified order in such cases is also applied when the
expressions include specification. Since the order here is
sometimes material, there is no guarantee which of two or
more possible results will be produced.

Suppose, for example, that 4 is assigned ‘the value 5
and the expression Z<(4«3)x4 is then executed. If the left
argument of x is executed first, then 4 is assigned the
value 3, the right argument then has the new value 3 and 2
is finally assigned the value 9. If, on the other hand, the
right argument is evaluated first it has the value 5
initially assigned to 4, the value 3 is then assigned to 4
and multiplied by the 5 to yield a value of 15 to be
assigned to Z.

92

XY Entry of invalid exbression
SYNTAX ERROR Shows type of error committed

Xy Retypes invalid statement with
Appendix A A caret where execution stopped
Xy Multi-character name (not XxY)
SAMPLE TERMINAL SESSION VALUE ERROR
XY XY had not been assigned a value

)682 A

HILLS SIGNED ON SCALAR FUNCTIONS

APL\113o0 4x3[5,1 Dyadic maximum
: 20,4
T ' (4x3)rs5.1
FUNDAMENTALS 12
4x[5,1 Monadic ceiling
3xu Entry automatically indented 24
12 Response not indented X<15 Index generator function
X«3xy X is assigned value of X
the expression 1 2 3 4 5
X 10 Empty vector
12 _ Value of X typed out prints as a blank line
Y<'5 Negative sign for negative Y«5-X All scalar functions extend
. constants Y to vectors
X+Y 4 3 2 1 0
7 Xry
144F"2 Exponential form of constant 4 3 3 4 5
1,44 X<y Relations produce
P«1 2 3 4 Four-element vector 1 1 0 0 0 logical (0 1) results
PxP Functions apply element by element : .
1 4% 9 16 ’
PxY Scalar applies to all elements
5 710 T15 T20
Q<'CATS! Character constant (4-element
vector)
CATS
YZ+«5 Multi-character names
YZ1<5
YZ+YZ1
10
3+4x5+6 Correction by backspace
v and linefeed
+5+6
18
X<3
Y<u
(XxY)+4
16) :
XxY+u Executed from right to left
2y

‘94
93

VZ«X F Y
[1] Z«((X*x2)+Y*2)%,5
[2] v
3 F 4
5
P+7
@+ (P+1)F P-1
Q
10
4x3 F 4
20
VB<«G A
[1] B«(A>0)-4<0
[2] v
G 4
1
G 76
T1
X<"6
G X
!
VH A
[1] P<(A>0)-A<0
[2] v
H™6
P
1
Y<H™6
VALUEERROR
Y<H "6
A .
VZ<FAC N;I
[1] Z+«1
[2] I+<0
[3] L1:T+«I+1
[4] +>0x1I>N
[5] Z+ZxT
[6] +>L1
[7] v
FAC 3
6
FAC 5
120
TAFAC«3 5
: X«FAC 3
FACL3] 1
FAC[5] 1
FACL3] 2
FACL5] 2
FAC[3] 3
FACL5] 6
FAC[3] u
TAFAC+0

DEFINED FUNCTIONS

Header (2 args and result)
Function body

Close of definition

Execution of dyadic function F

Use of F with expressions
as arguments

G is the signum function
A and B are local variables

Like G but has no explicit result
P is a global variable

H has no explicit result
and hence produces a value
error when used to right
of assignment

FAC .is the factorial function

L1l becomes 3 at close of defn
Branch to 0 (out) or to next

Branch to L1 (that is, 3)

Set trace on lines 3 and 5 of FAC

Trace of FAC

Reset trace control

[u.1]
[5]

VG«M GCD N
G+N

M<M|N
>U4xMz0
[11G6«M
[4IN<G
[1017

G+M

ol

G«M GCD N
G<M

M<M|N
>UxMz0
N<G

-1
v
36 GCD 4uu

VGCD
[4.11M,0
[0l

G<M GCD N
G+M

M<M|N
>UxM=z0
N<G

M,N

-1

v
36 GCD 4u

veeprgiv
G«M GCD N
G+M

M<M|N
>UxM=z0
N<G

M,N

-1

VGCD
[5]

A
v

MECHANICS OF
FUNCTION DEFINITION

Greatest common divisor
function based on the
Euclidean algorithm

Correction of line 1
Resume with line 4
Display line 1

Display entire GCD Function

Part of display. Does not close
Enter line 5

Close of definition

Use of GCD

4 is GCD of 36 and 44

Reopen def (Use V and name only)
Insert between 4 and 5

Display entire function

Line number not changed until
close of defn

End of display

Close of definition

Iterations printed by

line 5 (was line 4.1)
Final result
Reopen, display, and close GCD

Line numbers have been
reassigned as integers

Part of display

Reopen definition of GCD

Delete line 5 by linefeed

Close definition

96

[1]

VZ<ABC X
Z+(33%xQ+(Rx5)-6

[2] [1091
[1] Z+(33xQ+(Rx5)-6
/ 1 /1
Z«(3xQ)+(Tx5)-6
[2] v
FAC 5
120
YERASE FAC
FAC 5
SYNTAX ERROR
FAC 5
A
VZ<BIN N
[1] LA:2+(2,0)+0,2
[2] >LAxN2pZV
BIN 3
VALUE ERROR
BIN[1] LA:2+(Z,0)+0,2
A
Z<1
+>1 -
1 3 3 1
BIN 4
VALUE ERROR
BIN[1] LA:2+(2,0)+0,2
. A
)SI
BIN[1] *
>0
VBINL.11Z<1V
BIN u
1 4 6 4 1
VBIN[OIV
V Z«BIN N
[1] Z+1
[2] LA:2«(Z,0)+0,2
[3] +>LAXN2pZ ‘

A function to show line editing
A line to be corrected
Initiate edit of line 1
Types line, stops ball under 9
Slash deletes, digit inserts spaces
Ball stops at first new
space. Then enter) T
FAC still defined

Erase function FAC .
Function FAC no longer exists

An (erroneous) function for
binomial coefficients

Suspended execution

Assign value to Z
Resume execution
Binomial coefficients of order 3

Same error (local variable 2
does not retain its value)

Display state indicator
Suspended on line 1 of BIN
Clear state indicator
Insert line to initialize 2
Execute revised function

Display revised function
and close definition

97

VMULT N;Y; X
[1] Ye?¥
[21 v
[31 x<0

[4] »0x1X='S"
[s] »1X=x/Y
[61] 'WRONG, TRY AGAIN'

[71 +>3V
MULT 12 12
2 10
0O
37
WRONG, TRY AGAIN
O:
20
6 7
0:
'S'
VZ<«ENTER
[1] Z«1!
[2] D<p2
[31] z«z,0
[4] »>2xD2pZ
[5] v
Q<ENTER
THIS IS ALL

CHARACTER INPUT

Q
THIS IS ALL CHARACTER INPUT
N<«5
"NOTE: 1';N;' IS ';N
NOTE:15 IS 1 2 3 4 5

P«2 3 5 7
pP

T«'0H MY'
T

5
P,P

2 3 5 7 2 3 5 17
T,T

OH MYOH MY

INPUT AND OUTPUT

A multiplication drill

p/VN random integers

Print the random factors

Keyboard input

Stop if entry is the letter S
Repeat if entry is correct product
Prints if preceding branch fails
Branch to 3 for retry

Drill for pairs in range 1 to 12

Indicates that keyboard entry
is awaited

Entry of letter S stops drill

Example of character ([0) input

Make Z an empty vector

D is the length of 2

Append character keyboard entry

Branch to 2 if length increased
(i.e., entry was not empty)

Keyboard

entries
Empty input to terminate
Display Q

Mixed output statement
RECTANGULAR ARRAYS

Dimension of P

Character vector

Catenation

98

Q«3 1 5 2 4 6 A permutation vector

M<2 3p2 3 5 7 11 13 Rgshape to produce a 2x3 matrix PLQI Permutation of P
M ' Dlsplgy of an array of rank >1 ! 5 2 11 3 7 13
is preceded by a blank line elql A new permutation
238 5 3 4 1 2 6 .
7 11 13
2 UpT A 2x4 matrix of characters
OH M
YOH i
6pM A matrix reshaped to a vector
2 3 5 7 11 13
M Elements in row-major order
2 3 5 7 11 13
P«,M
PL3] Indexing (third element of P)
5 .
P[1 3 5] A vector index
2 5 11
P[13] The first three elements of P
2 3 5 : \
PloP] Last element of P
13 FUNCTIONS ON ARRAYS
M[1;2] Element in row 1, column 2 of M
8 V«?3p9 Vector of 3 random integers (1-9)
M[1;] Row 1 of M M<?3 3p9 Random 3 by 3 matrix
2 38 5 N<?3 3p9 Random 3 by 3 matrix
M[1 1;3 2] Rows 1 and 1, columns 3 2 14
2 1 7
5 3 M
5 3 .
A<«'"ABCDEFGHIJKLMNOPQ"' ~» The alphabet to Q 7 9 4
ALM] A matrix index produces 5 8 1
a matrix result 1 5 7
BCE N
GKM 104 1
ACML[1 1;3 211 4 7 6
9 8 5
EC ' M+N Sum (element-by-element)
EC
M[1;]«15 3 12 Respecifying the first row of M 8 13 5
M 9 15 7
10 13 12
15 3 12
7 11 13

99 " 100

MIN
7 9 4
5 8 6
9 8 7
M<N .
000
001
110
+/V
10
x/V
1y
. M
13 22 12
+/M
20 14 13
T/M
9 8 7
M+.xﬁ

79 123 81

84 95 66

M+ . <N

1 1 1

1 1 1

2 3 2
M+.xV

51 25 56

101

Maximum

Comparison

Sum-reduction of V.

Product-reduction

Sum over first coordinate of M
(down columns)

Sum over second coordinate of M
(over rows)

Maximum over last coordinate

Ordinary matrix (+.x inner)
product

An inner product

+.x inner product with vector
right argument -

Ve.x15
4 6 8 10

14 21 28 35

Ve.<19
1 1 1 1 1
1 1 1 1 1
0 0 0 0 0
Q+?10p5
Q
3 4 5 4 2 1 4 2
+#Q@e.=15
1 4 1
&M
5 1
8 5
1 7

Outer product (times)

Outer product

[
[y

1
1 1 1
1

MIXED FUNCTICNS

A random 10 element vector
(range 1 to 5)

Ith element of result is number
of occurences of the
value I in Q

Ordinary transpose of M

102

b0

(S e e Vo)

ESG N

eM

oM

o

(SN0« (o)

« = FE

e

R

Rotate to left by 3 places
Rotate to right by 3 places

Rotate columns by
different amounts

Rotation of rows all
by 2 to right

Rotation of rows

Reversal of Q

Reversal of M along
first coordinate

Reversal along last coordinate

0o o0
5
1 4
5
7
1
7
5
1
7 9
1 0
7
5
1
A B
1776
1022
1 7
7 7
7 6
6
3805
1 3
22

U«Q>u
U

o 0 1 0 O
u/Q

(~U)/Q

3 o4 oy 2 1

+/U/Q
1 0 14M

(,M>5)/,M

8 7

V«1 0 1 0 1
V\13

V\M

1011 7 7 6

811 7 7 6

(4p10)T1776
7 6
(3p10)T1776
6

10 10T1776

1071776
24 60 6011 3 25

24 60 6073805
25

211 0110

104

Compression of Q by logical
vector U
Compression by not U

Compression along first
coordinate of M

Compression along last
coordinate

Mis 794581157

All elements of M which exceed 5

Expansion of iota 3

Expansion of rows of M

Expansion of literal vector
inserts spaces
Base 10 value of vector 1 7 7 6

Base 8 value of 1 7 7 6

4 digit base 10 representation
of number 1776

3 digit base 10 representation
of 1776

Mixed base value of 1 3 25
(time radix)

Representation of number 3805
in time radix

Base 2 value

)4

5 7 11 13
P17

P16

Pi4 5 6 7

7 4

Q«5 1 3 2 4
R«Qu11p@Q

R

3 5 1
QLR]

3 4 5

A«'"ABCDEFGHIJKLMNOPQ'
A<A,'RSTUVWXYZ"'

A
ABCDEFGHIJKLMNOPQRSTUVWXYZ

3

CAT

Av'c!

J<A1'CAT!
J

20

AlJ]

105

Index of 7 in vector P

7 is 4th element of P

6 does not occur in P, hence
result is 1+pP

A permutation vector

R is the permutation inverse to Q

A is the alphabet

Rank of letter C in alphabet is 3

M<3 S5p'THREESHORTWORDS' A matrix of characters
M

THREE
SHORT
WORDS) :
J<A M Ranking of M produces a matrix
J .

20 8 18 5 5

19 8 15 18 20

23 15 18 4 19

Ald] - Indexing by a matrix produces
a matrix

THREE
SHORT
WORDS

" U<Ae'"NOW IS THE TIME' Membership
'01'[1+U]
00001001100011100011001000
U/A
EHIMNOSTW
(18)e3 7 5 .
o 0 1 o0 1 0 1 o0

106

BIBLIOGRAPHY

Berry, P.C., APL\1130 Primer, IBM Corporation, 1968, Form
No. C20-1697-0,

Breed, L.M., and R.ﬁ. Lathwell, "The Implementation of
APL\360", ACM Symposium on Experimental Systems for

Applied Mathematics, Academic Press, 1968,

Falkoff, A.D., and K.E. Iverson, "The APL\360 Terminal

System", ACM Symposium on Experimental Systems for
Applied Mathematics, Academic Press, 1968.

Falkoff, A.D., K.E. Iverson, and E.H. Sussenguth, "A Formal
Description of System/360", IBM Systems Journal, Volume
3, Number 3, 1964.

Iverson, K.E., A Programming Language, Wiley, 1962.

Iverson, K.E., Elementary Functiong: an algorithmic
treatment, Science Research Associates, 1966.

Iverson, K.E., "The Role of Computers in Teaching", Queen's
FPapers in Pure and Applied Mathematics, Volume 13,

Queen's University, Kingston, Canada, 1968.

Pakin, s., APL\ 360 Reference ‘Manual, Science Research
Associates, 1967.

Publication "No. 9, Department of Computing Science,
University of Alberta,,Edmonton, Canada, 1968.

’ Helleiman, H., Digital Computer System Principles, -

McGraw-Hill, 1967,

107

