File No. 1130/1800-25
Form C26-3715-3

Systems Reference Library

IBM 1130/1800 Basic FORTRAN IV Language

This publication presents the specifications and programming rules for

the Basic FORTRAN IV Language used under the following programming

systems:

IBM 1130 Card/Paper Tape Programming System

IBM 1130 Disk Monitor System

IBM 1130 bisk Monitor System, Version 2

IBM 1800 Card/Paper Tape Programming System

IBM 1800 Time-Sharing Executive System

IBM 1800 Multiprogramming Executive System

Appendix A of this publication lists the FORTRAN statements described

and specifies to which of the above programming systems they apply.
This publication should not be used as a FORTRAN primer. For

general information about FORTRAN, refer to IBM FORTRAN II
General Information Manual (Form F28-8074).

Fourth Edition

This publication (Form C-26-3715-3) is a revision of the previous edition (Form
C26-3715~2), which is now obsolete, This edition updates the publication to
include the IBM 1800 Multiprogramming Executive Syvstem, and makes certain
other corrections and clarifications to the manual.

Specifications contained herein are subject to change from time to time, Any
such change will be reported in subsequent revisions or Technical Novsletters.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving vour locality.

A form is provided at the back of this publication for reader's comments, If the

form has heen removed, comments may be addressed to IBM Nordic Laboratory,
Technical Communications Department, Vessleviigen 3, Lidingt, Sweden,

© International Business Machines Corporation 1967, 1968

This publication supports the following programming
systems:

IBM 1130 Card/Paper Tape Programming System
IBM 1130 Disk Monitor System

IBM 1130 Disk Monitor System, Version 2

IBM 1800 Card/Paper Tape Programming System

IBM 1800 Time-Sharing Executive System (TSX)

IBM 1800 Multiprogramming Executive Operating
System (MPX)

Each of these programming systems includes a
FORTRAN Compiler that converts a source program
consisting of statements written in the 1130/1800
Basic FORTRAN IV Language into an object program
executable under that same programming system.
This publication provides the specifications and
programming rules for the writing of source
program statements in the 1130/1800 Basic
FORTRAN IV Language.

COREQUISITE PUBLICATIONS

Assembler Language publications:

IBM 1130 Assembler Language (Form C26-5927)
supports the IBM 1130 Card/Paper Tape
Programming System, Version 1 of the IBM
1130 Disk Monitor System, and the IBM 1130
Disk Monitor System, Version 2.

IBM 1800 Assembler Language (Form C26-5882)
supports the IBM 1800 Card/Paper Tape
Programming System and the IBM 1800 Time-
Sharing Executive System,

Subroutine Library publications:

IBM 1130 Subroutine Library (Form C26-5929)
supports the IBM 1130 Card/Paper Tape
Programming System, Version 1 of the IBM
1130 Disk Monitor System, and the IBM 1130
Disk Monitor System, Version 2.

IBM 1800 Subroutine Library (Form C26-5880)
supports the IBM 1800 Card/Paper Tape
Programming System.

IBM 1800 Time-Sharing Executive System
Subroutine Library (Form C26-3723)

iii

PREFACE

supports the IBM 1800 Time-Sharing
Executive System.

IBM 1800 Multiprogramming Executive Operating °
System: Subroutine Library (Form C26-3754) ’
supports the IBM 1800 Multiprogramming
Executive System.

Operating procedures publications:

IBM 1130 Card/Paper Tape Programming
System Operator's Guide (Form C26-3629)

IBM 1130 Disk Monitor System (Version 1)
Reference Manual (Form C26-3750)

IBM 1130 Disk Monitor System, Version 2,
Programming and Operator's Guide (Form C26-
C26-3717)

IBM 1800 Card/Paper Tape Programming
System Operator's Guide (Form C26-3751)

IBM 1800 Time-Sharing Executive System
Operating Procedures (Form C26-3734)

IBM 1800 Multiprogramming Executive Operating

System Programmer's Guide (Form C26-3720)

Additional publications:

IBM 1800 Time-Sharing Executive System
Concepts and Techniques (C26-3703)

MACHINE CONFIGURATION AND FEATURE
REQUIREMENTS

The minimum machine configuration and feature
requirements needed to compile source programs
written in the Basic FORTRAN IV Language are
specified below.

Under the IBM 1130 Card/Paper Tape Program-
ming System:

IBM 1131 Central Processor Unit, Model 1, with
a minimum of 4096 words of core storage

IBM 1442 Card Read Punch, Model 6 or 7

or
IBM 1134 Paper Tape Reader in combination with
IBM 1055 Paper Tape Punch

Under the IBM 1130 Disk Monitor System, Version 1:

IBM 1131 Central Processor Unit, Model 2, with
a minimum of 4096 words of core storage

IBM 1442 Card Read Punch, Model 6 or 7

or
IBM 1134 Paper Tape Reader in combination with
IBM 1055 Paper Tape Punch

Under the IBM 1130 Disk Monitor System, Version 2:

IBM 1131 Central Processor Unit, Model 2,
with a minimum of 4096 words of core storage

IBM 1442 Card Read Punch, Model 6 or 7
or
IBM 1134 Paper Tape Reader in combination with
IBM 1055 Paper Tape Punch
or
IBM 2501 Card Reader in combination with
IBM 1442 Card Punch, Model 5

Under the IBM 1800 Card/Paper Tape Programming

System:

IBM 1801 or 1802 Processor-Controller with a
minimum of 4096 words of core storage

IBM 1442 Card Read Punch, Model 6 or 7
or

IBM 1054 Paper Tape Reader in combination with
IBM 1055 Paper Tape Punch ‘
IBM 1053 Printer

or
IBM 1443 Printer

or
IBM 1816 Printer-Keyboard

Under the IBM 1800 Time-Sharing Executive (TSX)
System:

IBM 1801 or 1802 Processor-Controller with
a minimum of 8192 words of core storage

IBM 2310 Digk Storage
IBM 1442 Card Read Punch, Model 6 or 7

IBM 1053 Printer
or
IBM 1443 Printer
or
IBM 1816 Printer-Keyboard

Under the IBM 1800 Multiprogramming Executive
(MPX) System:

IBM 1801 or 1802 Processor-Controller with a
minimum of 24596 words of core storage.

IBM 2310 Disk Storage, Model A2 (standard -
two disk drives) or C2 (fast access - two disk
drives)

IBM 1442 Card Read Punch, Model 6 or 7

IBM 1053 Printer
or
IBM 1816/1053 Printer-Keyboard

iv

INTRODUCTION 4 s¢eesocscasosnsoccse
Coding FOTM + e s e v s oo s s eosossencsece

CONSTANTS, VARIABLES, AND SUBSCRIPTS

Constants . o s s s s s s s o s s ssesocsssvsss

Integer Constants + ¢ e e oo o0
Real Constants, « « o e s 000040
VariableSe s oo aoccsonscsosns
Variable Names, ¢« o « « e 0 0 0 ¢ o
Variable Types o e s s e s 00 s oo
Subscripted Variables « o ¢ o o ¢ o
Arrays and Subscripts « e e s e v s 0

.

Arrangement of Arrays in Storage.

Subscript FOIms « s s e s s 6 6 0 0o

EXPRESSIONS ¢ ¢ s s e e s ossosoess

Arithmetic Expressions « « e s o s o o

se e

0 a0 e

o

Rules for Construction of Arithmetic Expressions

STATEMENTS

Arithmetic Statements + e« oo eo oo

Control Statements « o o e o0 0000

Unconditional GO TO Statement .

Computed GO TO Statement . .
IF Statement o+« e o eoeovooe
DO Statement « « s « ¢ s ¢ s 6000
CONTINUE Statement « s e s«
PAUSE Statement « o+ oo 000
STOP Statement «+ e e s 00000
END Statement « o c e e o o v 0 0 o
CALL Statement « « e s e o 00 o0
Input/Output Statements « « o ¢ o o »
Non-disk I/O Statements « + « « «
Disk I/O Statements .+« o 000
Unformatted I/O Statements . .
Indexing I/O Lists o e o e e 0o oo
Manipulative I/O Statements » «

Logical Unit Numbers

FORMAT Statement « o « ¢ o 0 v o

et s e e s e s s s s e e

AT DWW wWw -

N NN

v v e

10
10
10
12
13
13
13
13
16
17
18
20
20
21
22
22

Specification Statements. « « «'e'a v 0 o o
Type Statements (REAL, INTEGER) .
EXTERNAL Statement . eeoeco 000
DIMENSION Statement « « » « «
COMMON Statement « e o oo«
EQUIVALENCE Statement « .« «
DATA Statement « ¢ e eooao
DEFINE FILE Statement

Subprogram Statements s ¢ ¢ ¢ s+ ¢
Subprogram Names ¢+ v+«
Functions e e e oo s e 000000

SUBROUTINE Subprogram e« ssseecoe e
END and RETURN Statements in Subprograms
Subprograms Written in Assembler Language *

DRI

o0

“eoe

LIRS

DRI

ce e e

CONTENTS

e e e

s e s e

DR R R A N Y

APPENDIX A. SYSTEM/STATEMENT CROSS-
REFERENCE TABLE s s ccoeeon
APPENDIX B. COMPARISON OF USA STANDARD
FORTRAN AND IBM 1130/1800 FORTRAN
LANGUAGES s+ s s e cercosesccosescen
APPENDIX C. 113071800 FORTRAN SOURCE
PROGRAM CHARACTER CODES
APPENDIX D, IMPLEMENTATION RESTRICTIONS ...
APPENDIX E. SOURCE PROGRAM STATEMENTS
AND SEQUENCING
INDEX eoesseocsssessscsecsssnsesscsossascanvee

29
29
30
30
30
32
33

35
36
36
39
40
40

43

45

49

51

53

55

FORTRAN (FORmula TRANslation) is a language that
closely resembles the language of mathematics; it

is designed primarily for scientific and engineering
computations. Since the language is problem-oriented
rather than machine-oriented, it provides scientists
and engineers with a method of communication with a
computer that is more familiar, easier to learn, and
easier to use than actual computer language.

The FORTRAN language is a set of statements,
composed of expressions and operators, which are
used in writing the source program. The IBM 1130
and 1800 Programming Systems provide a FORTRAN
Compiler, a program that translates the source pro-
gram statements into a form suitable for execution
under the respective programming system. The
translated statements are known as the object pro-
gram. The compiler detects certain errors in the
source program and writes appropriate messages on
the typewriter or printer. At the user's option, the
compiler also produces a listing of the source pro-
gram and storage allocations.

The basic elements of the FORTRAN language are:
constants, variables, arrays and subscripts, expres-
sions, and statements.

CODING FORM

The statements of a FORTRAN source program are
normally written on a standard FORTRAN coding
sheet (Form No. X28-7327). FORTRAN statements
are written one to a line in columns 7-72. If a
statement is too long for one line, it may be continued
on a maximum of five successive lines by placing any
character other than a blank or a zero in column 6 of
each continuation line. For the first line of a state-
ment, column 6 must be blank or zero.

Columns 1-5 of the first line of a statement may
contain a statement number. This statement number

INTRODUCTION

consists of 1-5 digits of any value; leading zeros are
ignored. However, statement numbers may not be
zero. Statement numbers may appear anywhere in
the statement number field but must not contain any
non-numeric characters. The statement numbers
may be assigned in any order; the sequence of opera-
tions is always dependent upon the order of the state-
ments in the program, not on the value of the state-
ment numbers.

NOTE: Superfluous statement numbers may decrease
efficiency during compilation and should, therefore,
be avoided. Statement numbers on specification
statements are ignored.

Columns 73-80 are not used by the FORTRAN Com-
piler and may, therefore, be used for program
identification, sequencing, or any other purpose.

Comments to explain the program may be written
in columns 2-72 of a line if the character C is
placed in column 1. Comments may appear any-
where except before a continuation line or after an
END statement. The comments are not processed
by the FORTRAN Compiler, Likewise, blank
records in a source program are ignored by the
FORTRAN Compiler,

Blanks may be used freely to improve the read-
ability of a FORTRAN program listing. For example,
the following statements have a valid format:

GObTO(1,2,3,4),1
GObTObb(1, 2, 3, 4), bbl

where b represents a blank,

Introduction 1

FORTRAN provides a means of expressing numeric
constants, variable quantities, and subscripted
variables. The rules for expressing these quantities
are quite similar to the rules of ordinary mathemati-
cal notation.

Arithmetic calculations are performed with binary
numbers; since decimal fractions cannot be re-
presented exactly, exact decimal results of
arithmetic calculations should not be expected.

CONSTANTS

A constant is any number which is used in a com-
putation without change from one execution of the
program to the next; A constant appears in numeric
form in the source statement. For example, in the
statement

d=3+K

the 3 is a constant, since it appears in actual numeric
form. Two types of constants may be written in '
FORTRAN: integer and real.

INTEGER CONSTANTS

An integer constant is a number written without a
decimal point. An integer constant may have any
value in the range -32768 (-215) to 32767 (215-1),
including zero,

Commas are not permitted within any FORTRAN
constants. A preceding plus sign is optional for
positive numbers. Any unsigned constant is assumed
to be positive.

The following examples are valid integer constants:

0

91
-173
+327

The following are not valid integer constants:

3.2 (contains a decimal point)
27, (contains a decimal point)
31459036 (exceeds the magnitude permitted

by the compiler)
5,496 (contains a comma)

CONSTANTS, VARIABLES, AND SUBSCRIPTS

REAL CONSTANTS

A real constant is a number written with a decimal
point and consisting of 1-6 or 1-9 significant decimal
digits.

Standard precision provides up to 23 significant
bits of precision (6 plus significant digits) stored in
core storage as shown below:

Ist Word S 15 most significant bits of Mantissa

0 15

8 least significant bits

2nd Word of Mantissa

Characteristic

0 78 15

Extended precision provides up to 31 significant
bits of precision (9 plus significant digits) stored in
core storage as shown below:

1st Word Reserved Characteristic

0 78 15
2nd Word l S I Mantissa

0 1 15
3rd Word Mantissa

0 15

NOTE: Normalization can in some cases cause the
loss of one bit of significance,

(The precision is specified to the compiler by
optional use of an *EXTENDED PRE CISION control
record. See the section describing FORTRAN con-
trol records in the appropriate corequisite pub-
lication, as listed in the Preface.)

The magnitude of a real constant must not be
greater than 2127 or less than 27128 (approximately
1038 and 10'39). It may be zero.

A real constant may be followed by a decimal
exponent written as the letter E followed by a one-
or two-digit integer constant (signed or unsigned)
indicating the power of 10.

Constants, Variables,and Subscripts 3

The following examples are valid real constants:

105.
3.14159
5.E3 (5.0 x 103)
5.0E3 (5.0 x 103)
-5.0E03 (-5.0 x 103)
5.0E-3 (5.0 x 10-3)
5.0E1 (5.0 x 10)

The following are not valid real constants:

325 (no decimal point; however, this is
a valid integer constant)
5.0E (no exponent)
5,0E003 (exponent contains three digits)
5E02 (no decimal point)
VARIABLES

A FORTRAN variable is a symbolic representation of
a quantity that may assume different values. The
value of a variable may change either for different
executions of a program or at different stages within
the program. For example, in the statement:

A=5.0+B

both A and B are variables. The value of B is
determined by some previous statement and may
change from time to time. The value of A varies
whenever this computation is performed with a new
value for B.

VARIABLE NAMES

A variable name consists of 1-5 alphameric charac-
ters, excluding special characters, the first of which
must be alphabetic. (See Appendix C.)

Examples:

M
DEVS86
12

The rules for naming variables allow for extensive
gelectivity. In general, it is easier to follow the

flow of a program if meaningful symbols are used
wherever possible. For example, to compute
distance it would be possible to use the statement:

X = Y*Z (Asterisk denotes multiplication)
but it would be more meaningful to write:

D =R*T
or:

DIST = RATE*TIME

Similarly, if the computation were to be performed
using integers, it would be possible to write:

I=J*

but it would be more meaningful to write:
ID = IR*¥IT

or:
IDIST = IRATE*ITIME

In other words, variables can often be written in a
meaningful manner by using an initial character to
indicate whether the variable represents an integer
or real value and by using succeeding characters as
an aid to the user's memory.

VARIABLE TYPES

The type of variable corresponds to the type of data
the variable represents (i.e., integer or real).
variables can be specified in two ways: implicitly
or explicitly.

Implicit Specification. Implicit specification of a
variable is made as follows:

1. If the first character of the variable name is
I, J, K, L, M, or N, the variable is an integer
variable.

2. If the first character of the variable name is not
I, J, K, L, M, or N, the variable is a real
variable.

Explicit Specification. Explicit specification of a

variable type is made by using the Type statement

(see Type Statements). The explicit specification
overrides the implicit specification. For example,
if a variable name is ITEM and a Type specification
statement indicates that this variable is real, the
variable is handled as a real variable, even though
its initial letter is I.

SUBSCRIPTED VARIABLES

A subscripted variable consists of a variable name
followed by a pair of parentheses enclosing one, two,
or three subscripts separated by commas.

Examples:

A(D)

K(3)

ALPHA(I, J+2)
BETA(5*J-2, K-2, L+3)

ARRAYS AND SUBSCRIPTS

An array is an ordered set of data that is referred
to by a single name. Each individual element in the
set is referred to in terms of its position in the set.
For example, assume that the following is an array
named NEXT:

15
12
18
42
19

To refer to the second element in the group in ordin-
ary mathematical notation, the form NEXTq would be
used. In FORTRAN the form would be NEXT(2). The
quantity 2 is called a subscript. Thus, NEXT(2) has
the value 12 and NEXT(4) has the value 42,

Similarly, an ordinary mathematical notation
might use NEXT; to represent any element of the
array NEXT. In FORTRAN, this is written as
NEXT(I) where I equals 1, 2, 3, 4, or 5.

The array could be two-dimensional; for example,
the array LIST:

COLUMN1 COLUMN2 COLUMNS3
ROW1 82 4 7
ROW2 12 13 14
ROWS3 91 1 31
ROW4 24 16 10
ROWS 2 8 2

To refer to the number in row 2, column 3,
LIST2, 3 would be used in ordinary mathematical
notation. In FORTRAN, the form LIST(2,3) would
be used where 2 and 3 are the subscripts. Thus,
LIST(2,3) has the value 14 and LIST(4, 1) has the
value 24,

Ordinary mathematical notation uses LIST; j to
represent any element of the two-dimensional array
LIST. In FORTRAN, this is written as LIST(I, J)
where I equals 1, 2, 3, 4, or 5 and J equals 1, 2, or
3.

FORTRAN allows up to three subscripts (i.e.,
three-dimensional arrays). For example, a three-
dimensional array might be used to store statistical
data on the urban and rural population of each state
for a period of 10 decades.

The use of an array in the source program must
be preceded by either a DIMENSION statement, a
COMMON statement, or a Type statement in order to
specify the size of the array. The first reference to
the array in one of these statements must specify its
size (see Specification Statements).

ARRANGEMENT OF ARRAYS IN STORAGE

Arrays are stored by column in descending storage
addresses, with the value of the first of their
subscripts increasing most rapidly and the value

of the last increasing least rapidly. In other words,
arrays are stored with element (1,1, 1) in a higher
core location than element (2,3,4). In scanning the
array from element (1,1, 1), the left indices are
advanced more rapidly than those on the right. A
one-dimensional array, J(5), in address 0508
appears in storage as follows:

Address Element
0500 J(5)
0502 J(4)
0504 J(3)
0506 J(2)
0508 J(1)

.A two-dimensional array, K(5,3), appears in storage

in single-array form in ascending storage addresses
in the following order reading from left to right:

K(5, 3) K(4, 3) K(3, 3) K(2, 3) K(1, 3) K(5, 2)
K(4,2) K(3,2) K(2, 2) K(1, 2) K(5, 1) K(4, 1)
K(3,1) K(2,1) K(1, 1)

If K(5,3) is in core address 0200, K(1,1) will be in
core address 0228 (assuming each element occupies
two words).

Constants, Variables, and Subscripts 5

The following list is the order of a three- zero and not greater than the corresponding array

dimensional array, A(3,3,3): dimension. Each subscripted variable must have the
size of its array (i.e., the maximum valucs that
A(3,3,3) A(2,3,3) A(1,3,3) A(3,2,3) A(2,2,3) its subscripts can attain) specified in a DIMENSION,
A(1,2,3) A(3,1,3) A(2,1,3) A(1,1,3) A(8,3,2) COMMON, or Type Statement.
A(2,3,2) A(1,3,2) A(3,2,2) A(2,2,2) A(L,2,2)
A(3,1,2) A(2,1,2) A(1,1,2) A(3,3,1) A(2,8,1) Examples:
A(1,3,1) A(3,2,1) A(2,2,1) A(1,2,1) A(3,1,1)
A(2,1,1) A(1,1,1) The following are valid subscripts:
IMAX
SUBSCRIPT FORMS 19
JOB+2
Subscripts may take the following forms: gﬁgg A?;\I
5*L+7
v 4*M-3
c
v+e
v;c The following are not valid subscripts:
c*v
c*v+te! -1 (the variable may not be signed)

c*v-c' A+2 (A is not an integer variable unless
defined as such by a Type statement)

where: , 1+2. (2. is not an integer constant)
-2*J (the constant must be unsigned)
v represents an unsigned, nonsubscripted, 1(3) (a subscript may not be subscripted)
integer variable. K*2 (for multiplication, the constant must

c and c' represent unsigned integer constants. precede the variable; thus, 2*K is

L correct)
The value of a subscript (including the added or 2+JOB (for addition, the variable must precede
subtracted constant, if any) must be greater than the constant; thus, JOB+2 is correct)

Expressions appear on the right-hand side of
arithmetic statements and in certain control state-
ments. Expressions are used to specify a com-
putation between constants and variables.

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a
single constant, variable, or subscripted variable.
If the quantity is an integer quantity, the expression
is said to be in the integer mode. If the quantity is
a real quantity, the expression is said to be in the
real mode.

Examples:

Mode of
Expression Type of Data Expression
3 Integer Constant Integer
I Integer Variable Integer
3.0 Real Constant Real
A Real Variable Real
A Real Variable Real

In the last example, note that the subscript, which
is always an integer quantity, does not affect the mode

of the expression. The mode of the subscripted
expression is determined solely by the mode of the
variable.

An arithmetic expression is a combination of
constants, subscripted or nonsulﬁscripted variables,
function names (see Subprogram Statements), and
arithmetic operation symbols.

The arithmetic operation symbols +, -, *, /, and
** denote addition, subtraction, multiplication,
division, and exponentiation, respectively. The
minus symbol (-) is also used to denote unary minus.

Examples:

A+3.0
B**2

C-D

E/F
AX(X**2)+B*X-C

EXPRESSIONS

RULES FOR CONSTRUCTION OF ARITHMETIC
EXPRESSIONS

Rule 1, All constants, variables, and functions that
form an arithmetic expression need not be of the
same mode or type.
parts of the expression involving purely integer
operations are computed in the integer mode. Then
these integer results are converted to real values
and the entire expression is computed in the real
mode.

For example, in the expression:

A+({I*J)+(A/J)+1¥*2
I*J and I**2 are computed in the integer mode and
these results are then converted to real values.
However, the J in A/J will be converted to real

before A/J is computed.

Examples: The following are valid expressions.

Expression Mode
F Real
5*JOB+ITEM/(2*ITAX) Integer
5. *AJOB+BITEM/ (2. *TAX) Real
J+1 Integer
A**[+B(J)+C(K) Real
A**B Real
R*J+K(L) Integer
A+B()/ITEM Mixed
DEV-+ Mixed
ITA**2,5 Mixed

Rule 2. Any expression may be enclosed in
parentheses.
the mode of the expression.
are all valid real expressions.

Parentheses may also be used in arithmetic ex-
pressions, as in algebra, to specify the order in
which the various arithmetic operations are to be
performed. Within parentheses, or where
parentheses are omitted, the order of operations is
as follows:

Expressions

However, in a mixed expression,

The use of parentheses does not affect
Thus, A, (A), and ((A))

7

Evaluation of Functions

Exponentiation

Unary minus

Multiplication and Division (left to right)
Addition and Subtraction (left to right)

G LD DN
DA

For example, the expression:

A*B/(C+D)**I+D

is effectively evaluated in the following order:

1. AxB

2. C+D

3. (c+D)l

4, (AxB)/(C+D)]

5. ((AxB)/(C+D)D+D

NOTE: Parentheses may not be used to imply
multiplication; the asterisk arithmetic operator
must always be used for this purpose, Therefore,
the algebraic expression:

(AxB) (-CD)
must be written as:
(A*B) * (-C**D)

Rule 3. No two operators may appear in sequence
(e.g., A*-B is invalid).

Rule 4. No operation symbol may be assumed (e.g.,
3A will not be taken as 3. *A),

Rule 5. The expression A**B**C is permitted and
evaluated as A*¥(B**C).

The FORTRAN statements are the instructions used
in the FORTRAN language. There are five cate-
gories of FORTRAN statements:

Arithmetic Statements, which are used to define
calculations to be performed.

Control Statements, which are used to goVern the
sequence of execution of the program statements.

Input/Output Statements, which are used to trans-
mit information between the computer and input
or output units.

Specification Statements, which are used to
provide information about the data that the object
program is to process.

Subprogram Statements, which are used to define
and provide linkage to and from subprograms.

ARITHMETIC STATEMENTS

The Arithmetic statement is similar to a mathemati-
cal equation. ’

General Form:
A =8B
where:

A is any variable (subscripted or nonsubscripted),
and B is an arithmetic expression. '

In an Arithmetic statement the equal sign means
is to be replaced by rather than is equal to, This
distinction is important; for example, suppose the
integer variable I has the value 3. Then, the state-
ment

I=1I+1

would give I the value 4, This technique enables the
programmer to keep counts and perform other re-
quired operations in the solution of a problem.

STATEMENTS

Examples:

K=X+2.5
ROOT = (-B+(B**2-4, *A*C)**,5)/(2. *A)
ANS (I) = A(J) + B(K)

In each of the above Arithmetic statements, the
arithmetic expression to the right of the equal sign
is evaluated, converted to the mode of the variable
to the left of the equal sign (if there is a difference),
and this converted value is stored in the storage
location associated with the variable name to the left
of the equal sign.

In the first example, K=X+2,5, assume that the
current value of X is 232,18, Upon execution of this
statement, 2.5 is added to 232, 18, giving 234. 68.
This value is then truncated (because K is an integer
variable) to 234, and this value replaces the value of
K. If K were defined as a real variable by a Type
statement, truncation would not occur and the value
of K would be 234, 68.

Examples:
A=1 Convert I to real value and
store it in A.
A=B Store the value of B in A.
A =3, *B Multiply 3 by B and store the

result in A.
I=B Truncate B to an integer and
store it in 1.

CONTROL STATEMENTS

The second class of FORTRAN statements is com-
posed of control statements that enable the program-
mer to control the course of the program. Normally,
statements are executed sequentially; that is, after
one statement has been executed, the statement
immediately following it is executed. However, it

is often undesirable to proceed in this manner. The
following statements may be used to alter the
sequence of a program,

Statements 9

UNCONDITIONAL GO TO STATEMENT

This statement interrupts the sequential execution of
statements, and specifies the number of the next
statement to be performed.

General Form:

GO TOn
where

n is a statement number.
Examples:

GO TO 25
GO TO 63468

The first example causes control to be transferred
to the statement numbered 25; the second example
causes control to be transferred to the statement
numbered 63468,

COMPUTED GO TO STATEMENT

This statement also indicates the statement that is

to be executed next. However, the statement number
that the program is transferred to can be altered
during execution of the program.

GO TO (nl, n2, ceey nm), i
where:

Ny, By, ee ,nn are statement numbers and
iisa non-su’bscripted integer variable whose
value is greater than or equal to 1 and less than
or equal to the number of statement numbers
within the parentheses.

This statement causes control to be transferred
to statement nj, ny,...,ny, depending on whether
the current value of i is 1, 2,..., or m, respectively.

NOTE: If i>m or i<, the results are unpredictable,

Under the 1800 TSX and MPX Systems an execution
error results and the program is aborted.

10

Example:
GO TO (10, 20, 30, 40), ITEM

In this example, if the value of ITEM is 3 at the
time of execution, a transfer occurs to the statement
whose number is third in the series (30). If the
value of ITEM is 4, a transfer occurs to the statement
whose number is fourth in the series (40), etc.

IF STATEMENT

This statement permits the programmer to change the
sequence of statement execution, depending upon the
value of an arithmetic expression.

General Form;:

IF (a) n,, n2, n3

where:

a is an expression and ny, ny, and ng are state-
ment numbers. The expression, a, must be
enclosed in parentheses; the statement numbers

must be separated from one another by commas.

Control is transferred to statement n1, ng, or n3g
depending on whether the value of a is less than,
equal to, or greater than zero, respectively.

Example:
IF ((B+C)/(D**E)-F) 12, 72, 10
10 .
12 .
72 .

which means: if the result of the expression is less
than zero, transfer to the statement numbered 12;
if the result is zero, transfer to 72; otherwise,
transfer to the statement numbered 10.

DO STATEMENT

The ability of a computer to repeat the same opera-
tions using different data is -a powerful tool that
greatly reduces programming effort. There are
several ways to accomplish this when using the

FORTRAN language. For example, assume that a
manufacturer carries 1, 000 different parts in i
inventory. Periodically, it is necessary to compute
the stock on hand of each item (STOCK) by sub-~
tracting stock withdrawals of that item (OUT) from
the previous stock on hand. These results could be
achieved by the following statements:

5 =0

10 =1 +1

25 STOCK (I) = STOCK (1) - OUT ()
15 IF (I-1000) 10, 30, 30

30

The three statements (5, 10, 15) required to
control this loop could be replaced by a single DO
statement.

DO 251 =1, 1000, 1
25 STOCK(I) = STOCK(]) - OU'T(])

General Form:

DOn1=m1, m2

or

DOn1=m1, mz, m3

where:

n is a statement number,

i is a nonsubscripted integer variable.

mjy, mg, m3 are unsigned integer constants or
nonsubscripted integer variables. If mg is
not stated (it is optional), its value is assumed
to be 1. In this case, the preceding comma
must also be omitted.

Examples:
DO 501I=1, 1000

DO10I=Jd, K, L
DO1l11=1, K, 2

The DO statement is a command to repeatedly
execute the statements that follow, up to and including
the statement n. The first time the statements are
executed, i has the value mj, and each succeeding
time, i is increased by the value of mg. After the
statements have been executed with i equal to the
highest value that does not exceed mg, control passes
to the statement following statement number n. This
is called a normal exit from the DO statement.

The range limit (n) defines the range of the DO.
The range is the series of statements to be executed
repeatedly. It consists of all statements following
the DO, up to and including statement n. The range
can consist of any number of statements.

The index (i) is an integer variable that is incre-
mented for each execution of the range of statements.
Throughout the range of the DO, the index is available
for use either as a subscript or as an ordinary integer -
variable. However, the index may not be changed by
a statement within the range of the DO. When trans-
ferring out of the range of a DO, the index is available
for use and is equal to the last value it attained.

The initial value (m1) is the value of the index for
the first execution of the range. The initial value
cannot be equal to zero or negative.

The test value (my) is the value that the index
must not exceed. After the range has been executed
with the highest value of the index that does not
exceed the test value, the DO is completed and the
program continues with the first statement following
the range limit. The test value is compared with
the index value at the end of the range; therefore,

a DO loop will always be executed at least once.

The increment (mg) is the amount by which the
value of the index will be increased after each
execution of the range. The increment may be omit-
ted, in which case it is assumed to be 1.

Example:

DO 25 1=1, 10
5
10
15
20 .
25 A=B+C
26 .

This example shows a DO statement that will
execute statements 5, 10, 15, 20, and 25 ten times.
Upon each execution, the value of I will be increment-
ed by 1 (1 is assumed when no increment is specified).
After completion of the DO, statement 26 is executed.

Statements 11

In some cases, the DO is completed before the
test value is reached. Consider the following:

DO 5 K=1,9,3

In this example, the range is executed three times
(i.e., Kequal to 1, 4, and 7). The next value of K
would be 10. Since this exceeds the test value, the
DO is completed after three iterations.

Restrictions. The restrictions on statements in the
range of a DO are:

1, Within the range of a DO may be other DOs.
When this is so, all statements in the range of
the inner DO must be in the range of the outer
DO. A set of DOs satisfying this rule is called
a nest of DOs. The maximum depth of a single
nest of DOs is 25. For example, the following
configuration is permitted (brackets are used to
indicate the range of the DOs):

DO
DO

I—DO

but, the following configuration is not permitted:

——-— DO
DO

2. A transfer out of the range of any DO loop is
permissible at any time. A transfer into a DO
range is permissible only as described in item 3.

3. When a transfer is made out of the range of the
innermost DO loop, a transfer back into the
range of that loop is allowed if, and only if,
neither the index nor any of the indexing param-
eters (i.e., my, mg, m3) are changed outside
the range of the DO loop. This transfer back
into a DO loop is permitted only to the innermost
DO loop. A transfer back into the range of any
other DO in the nest of DOs is not permitted.
The following illustrations show those transfers
that are valid and those that are invalid.

12

VALID INVALID
— = —
D e nr——

s e

=

——

“Return (opgosite of arrow direction) is also permitted
if no indexing parameters are changed.

4, The last statement in the range of a DO loop
must not be a GO TO, IF, STOP, PAUSE,
FORMAT, RETURN, or another DO statement.

5. Any statement that redefines the value of the
index or any of the indexing parameters (i.e.,
mjp, mg, m3) is not permitted in the range of a
DO.

CONTINUE STATEMENT

The CONTINUE statement is a dummy statement that
does not produce any executable instructions. It can
be inserted anywhere into a program; it simply in-
dicates that the normal execution sequence continues
with the statement following.

General Form:
CONTINUE

The CONTINUE statement is principally used as
the range limit of DO loops in which the last state-
ment would otherwise be a GO TO, IF, PAUSE,

STOP, or RETURN statement. It also serves as a
transfer point for IF and GO TO statements within

the DO loop that are intended to begin another
repetition of the loop. An example of these two
functions follows:

DO301=1,20

D=D+5.0
7 IF (A - B) 10,30,30
10 A=A+1.0
B=B-2.0
GO TO 7
30 CONTINUE
40 C=A+B

PAUSE STATEMENT
General Form:

PAUSE
or
PAUSE n

where:

n is an unsigned decimal integer constant whose
value is equal to or less than 9999.

The PAUSE statement causes the program to stop
on a Wait instruction. To resume execution the
START key must be pressed. Execution starts with
the next executable statement following the PAUSE
statement. If n is specified, it is treated as a
hexadecimal number and displayed on the console in
the accumulator (A-register in the IBM 1800) lights.

STOP STATEMENT

General Form:

STOP
or
STOP n

where:

n is an unsigned decimal integer constant whose
value is equal to or less than 9999,

The STOP statement terminates program execu-
tion. If n is specified it is treated as a hexadecimal
number and displayed on the console in the accumula-
tor (A-register in the IBM 1800) lights,

In FORTRAN under the IBM 1130 Disk Monitor
Systems, the IBM 1800 TSX and MPX Systems,
the STOP statement is equivalent to a PAUSE state-
ment followed by a CALL EXIT statement. Under
the IBM 1800 TSX and MPX Systems, the STOP
statement is valid only in nonprocess programs.

END STATEMENT

General Form:
END

The END statement defines the end of a program
or subprogram for the compiler, Physically, it
must be the last statement of each program or sub-
program, The END statement is not executable.
Any source program statements following the END
statement will not be compiled.

CALL STATEMENT

The CALL statement is used only to call a
SUBROUTINE subprogram.

General Form:

CALL name (al,az,ag, . an)

where:

name is the symbolic name of a SUBROUTINE
subprogram.

ag,ag, as,...ay are the actual arguments that are
being supplied to the SUBROUTINE subprogram.

Examples:

CALL MATMP (X,5,40,Y,7,2)
CALL QDRTI (X,Y,Z,RO0T1, ROOT2)

The CALL statement transfers control to the
SUBROUTINE subprogram and replaces the dummy
variables with the values of the actual arguments
that appear in the CALL statement. The arguments
in a CALL statement may be any of the following:
any type of constant, any type of subscripted or
nonsubscripted variable, any other kind of arithmetic
expression, or a subprogram name (except that they
may not be statement function names).

The arguments in a CALL statement must agree
in number, order, and type with the corresponding
arguments in the SUBROUTINE subprogram.

Statements 13

Note that the constants should not be used as
parameters in a CALL statement if the subroutine is
returning a value through that parameter. For
example:

Calling SUBROUTINE
Program Subprogram

SUBROUTINE JOE (A, B)
. A=B+10
CALL JOE (5,6) RETURN
) END

100 C =5

In this case the congtant 5 in the calling program
is replaced by the value of A as computed in the
subroutine (A = B + 10). Subsequent execution
of statement 100 in the calling program results
in the variable C being assigned a value other
than 5.

For descriptions of the SUBROUTINE sub-
programs that can be called in FORTRAN under
the IBM 1130 and 1800 Programming Systems,
see the appropriate Subroutine Library publica-
tion as listed in the Preface, above.

Specilal CALLs

CALL EXIT Statement

In FORTRAN under the IBM 1130 Disk Monitor
Systems, the CALL EXIT statement is used
when control is to be returned to the Supervisor
portion of the system,

In FORTRAN under the IBM 1800 TSX System, the
CALL EXIT statement is used when control is to be
returned to the Supervisor portion of the Nonprocess
Monitor, The CALL EXIT statement is therefore
valid only in nonprocess programs.

For use of CALL EXIT in the MPX System see
IBM 1800 Multiprogramming Executive Qperating
System Programmer's Guide. The CALL EXIT
statement is not valid in FORTRAN under the IBM
1130 and 1800 Card/Paper Tape Programming
Systems.

14

CALL LINK Statement

The CALL LINK statement is used when control is
to be transferred from one program (link) to the next.

General Form:

CALL LINK (Name)

where:

Name is the name of the program to be loaded
into core storage and given control. The pro-
gram name consists of 1-5 alphameric charac-
ters (excluding special characters) the first of
which must be alphabetic.

The link program that is called is loaded with all
subprograms and library subroutines that it refer-
ences. Any link called by this statement must
already be in disk storage. If the logic of the pro-
gram allows any one of several links to be called,
it is necessary that all of the link programs be in
disk storage prior to execution,

NOTE: Link programs called under the IBM 1800
TSX and MPX Systems must be in disk storage in
core image format.

The COMMON area of the program relinquishing
control is not destroyed during the loading of the link
program. If the size of COMMON differs between
programs, the COMMON area size that remains
undisturbed is determined by the link program called.

In FORTRAN under the IBM 1800 Time-Sharing
Executive System, the CALL LINK statement is
valid only in nonprocess programs. Also, the name
specified in the CALL LINK statement may be the
name of a nonprocess program only.

The CALL LINK statement is not valid in the IBM
1130 and 1800 Card/Paper Tape Programming
Systems., For use of CALL LINK in the 1800 MPX
System see IBM 1800 Multiprogramming Executive
Operating System Programmer's Guide.

CALL LOAD Statement

The CALL LOAD statement, which is valid only in
FORTRAN for the card forms of the IBM 1130 and
1800 Card/Paper Tape Programming Systems, is used
to link to another program without requiring the core
image loader to precede the link program. CALL
LOAD causes the next program in the card reader to
be read in and executed.

For example:

CALL LOAD
STOP
END

The CALL LOAD statement may only be used in a
core image program and may only call a core image
program, (See the description of the *SAVE

LOADER control record in the appropriate corequisite
publication, as listed in the Preface, above.)

CALL PDUMP Statement

In FORTRAN for the IBM 1130 Disk Monitor System,
Version 2, the dump program PDUMP can be called
to print the contents of all of or one or more parts
of core storage.

General Form:
CALL PDUMP (aq, by, f1,...,ap, by,)
where:

aj and b; are variable data names, subscripted
or non-subscripted, indicating the inclusive
limits of a block of core storage to be dumped.
Either aj or bj can indicate the upper or lower
limit of the block to be dumped.

fi is an integer constant indicating. the format
in which the associated block of core storage
is to be dumped. The dump formats are

specified as follows:

Format Value of f;
Hexadecimal 0
Integer . 4
Real 5

Machine and Program Indicator Tests

The FORTRAN lahguage provides machine and pro-
gram indicator tests even though some of the machine
components referred to by the tests do not physically

exist. The machine indicators that do not exist are
simulated by subroutines provided in the system
library.

To use any of the following machine and program
indicator tests, the user supplies the proper argu-
ments and writes a CALL statement. In the following
listing, i is an integer expression; j and k are integer
variables.

General Form and Function:

CALL SLITE (i) If i = 0, all sense lights are
turned off. Ifi=1,2,3, or 4, the correspond-

ing sense light is turned on.

CALL SLITET (i,j) Sense lighti (equal to 1,2,3,
or 4) is tested, Ifiison, jissettol;ifiis
off, j is set to 2. After the test, sense light
i is turned off,

CALL OVERFL (j) This indicator is on if an
arithmetic operation with real variables and/or
constants results in an overflow or underflow
condition; that is, j is set to 1 if the absolute
value of the result of an arithmetic operation
is greater than 2127 (1038); j is set to 2 if no
overflow condition exists; j is set to 3 if the
result of an arithmetic operation is not zero
but less than 27129 (10739), The machine is
left in a no overflow condition.

CALL SSWTCH (i, j) Sense switch i is tested.
If i is on, j is set to 1; if i is off, j is set to
2.

This CALL is valid only in FORTRAN
under the IBM 1800 Card/Paper Tape Pro-
gramming System, and the IBM 1800 TSX
and MPX Systems.

CALL DVCHK (j) This indicator is set on if an
arithmetic operation with real constants and/or
variables results in the attempt to divide by
zero. If the indicator is on, j is set to 1; if
off, j is set to 2. The indicator is set off after
the test is made.

CALL DATSW (i, j) Data entry switch i is tested.
If data entry switch i is on, j is set to 1; if
data entry switch i is off, j is set to 2.

CALL TSTOP The TSTOP subroutine may be
used to stop the tracing mode if trace control
has been specified to the compiler.

Statements 15

CALL TSTRT The TSTRT subroutine may be
used to re-establish the trace mode if trace
control has been specified to the compiler.

CALL FCTST (j, k) The FCTST subroutine
checks an indicator word that is set on if a
FORTRAN-supplied FUNCTION subprogram
detects an error or an end-of-file condition
is detected during an unformatted 1/0 opera-
tion. k is set to the value of the indicator
word. If the indicator word is zero, j is set
to 2; otherwise, jis set to 1. The indicator
word is set to 0 after the test.

NOTE: SSWTCH, SLITET and OVERFL contain six
characters in order to be compatible with other IBM

FORTRANs; SSWTCH, SLITET, and OVERFL are
changed by the FORTRAN compiler to SSWTC,
SLITT, and OVERF, respectively.

Examples:

CALL SLITE (3)
CALL SLITET (K*J,L)
CALL OVERFL (J)
CALL DVCHK (J)
CALL SSWTCH (I,J)
CALL DATSW (15,N)
CALL TSTOP

CALL TSTRT

CALL FCTST (IM, JM)

As an example of how the sense lights can be used
in a program, assume that it is desired to continue
with the program if sense light 3 is on and to write
results if sense light 3 is off. This can be accom-
plished by using the IF statement or a Computed GO
TO statement, as follows:

CALL SLITE (3)

CALL SLITET (3, KEN)
5 IF (KEN-2) 10,9,10
9 WRITE (3, 36)(ANS(K), K=1,10)
10 .

CALL SLITET (3,KEN)
24 GO TO (26, 25), KEN
25 WRITE (3, 36)(ANS(K), K=1, 10)
26 .

16

In statement 5, if KEN is not equal to 2, statement
9 is not executed. In statement 24, if KEN equals 2,
statement 25 is executed.

INPUT/OUTPUT STATEMENTS

The input/output (I/0) statements control the trans-
mission of information between the computer and the
1/0 units. On the IBM 1130 Computing System these
units are: 2310 Disk Storage; 1442 Card Read Punch,
Models 6 and 7; 1442 Card Punch, Model 5; 2501
Card Reader; 1132 Printer; 1403 Printer; 1134 Paper
Tape Reader; 1055 Paper Tape Punch; Conscle
Printer; Keyboard; and 1627 Plotter. On the IBM
1800 Data Acquisition and Control System these units
are: 2310 Disk Storage; 2401 and 2402 Magnetic Tape
Units; 1442 Card Read Punch, Models 6 and 7; 1053
Printer; 1443 Printer; 1054 Paper Tape Reader;
1055 Paper Tape Punch; 1816 Printer Keyboard;

and 1627 Plotter.
1/0 statements are classified as follows:

1. Non-disk I/O Statements. These statements
cause transmission of formatted information
between the computer and I/O units other than
the disk. They are READ and WRITE.

2. Disk I/O Statements. These statements cause
transmission of information between the com-
puter and the disk. They are READ, WRITE,
and FIND.

3. Unformatted I/0O Statements. These statements
cause transmission of unformatted information
as follows:

a) under the IBM 1800 Card/Paper Tape Pro-
gramming and TSX Systems: between the
computer and magnetic tape units in FORTRAN;
b) under the IBM 1800 MPX System: between the
computer and magnetic tape units or disk storage
units;

c) under the IBM 1130 Disk Monitor System, Ver-
sion 2: between the computer and a special disk
area for the simulation of magnetic tape I/0 in

FORTRAN.
These statements are READ and WRITE,

4, Manipulative I/O Statements. These statements
manipulate magnetic tape units in FORTRAN
under the IBM 1800 Card/Paper Tape Program-
ming System, the IBM 1800 TSX and MFX
Systems; they manipulate the unformatted I/0
area on disk in FORTRAN under the IBM 1130
Disk Monitor System, Version 2. These state-
ments are BACKSPACE, REWIND, and END FILE,

5. FORMAT Statements, These are nonexecutable

statements that specify the arrangement of the

data to be transferred, and the editing trans-
formation required between internal and external
forms of the data. The FORMAT statements are
used in conjunction with the non-disk 1/0 state-
ments.

NON-DISK I/0 STATEMENTS

READ Statement

The READ statement is used to transfer information
from any input unit to the computer. Two forms of
the READ statement may be used, as follows:

READ (a,b) List
or
READ (a,b)

where:

a is an unsigned integer constant or integer
variable that specifies the logical unit number

to be used for input data (see Logical Unit
Numbers).

b is the statement number of the FORMAT state-
ment describing the type of data conversion.

List is a list of variable names, separated by
commas, for the input data,

The READ (a,b) List form is used to read a
number of items (corresponding to the variable
names in the list) from the file on unit a, using
FORMAT statement b to specify the external re-
presentation of these data (see FORMAT Statement).

The List specifies the number of items to be
read and the locations into which the items are to
be placed. For example, assume that a card is
punched as follows:

Card Columns Contents
1-2 25
5-7 102

61-64 -101
70-71 10
80 5

If the following statements appear in the source
program:

READ (2,25) I,J,K,L,M
25 FORMAT(12, 2x,13, 53x, 14, 5x,12, 8x,11)
the card is read (assuming that 2 is the unit number
associated with the card reader), and the program

operates as though the following statements had
been written:

I =25
Jd =102
K = -101
L =10
M=25

After the next execution of the READ statement,
I,4,K,L, and M will have new values, depending
upon what is punched in the next card read.

Any number of quantities may appear in a single
list. Integer and real quantities may be transmitted
by the same statement,

If there are more quantities in an input record
than there are items in the list, only the number of
quantities equal to the number of items in the list
are transmitted; remaining quantities are ignored.
Thus, if a card contains three quantities and a list
contains two, the third quantity is lost. Conversely,
if a list contains more quantities than the number of
input records, succceding input records are read
until all the items specified in the list have been
transmitted.

When an array name appears in an I/0 list in non-
subscripted form, all of the quantities in the array
are transmitted in column order (see Arrangements
of Arrays in Storage). For example, assume that A
is defined as an array of 25 quantities. Then, the
statement:

READ (2,15) A

causes all of the quantities A(1),..., A(25) to be read
into storage (in that order) with an appropriate
FORMAT statement.

The READ (a,b) form may be used in conjunction
with a FORMAT statement to read H-type alphameric
data into an existing H-type field in core storage (see
Conversion of Alphameric Data). The size of the
data field determines the amount of data to be read.
For example, the statements:

Statements 17

10 FORMAT (23HTHIS IS ALPHAMERIC DATA)

READ (INPUT, 10)

cause the next 23 characters to be read from the file
on the unit named INPUT and placed into the H-type
alphameric field whose contents were:

THIS IS ALPHAMERIC DATA
WRITE Statement

The WRITE statement is used to transfer information
from the computer to any of the output units. Two
forms of the WRITE statement may be used, as
follows:

WRITE (a,b) List
or
WRITE- (a, b)

where:

a is an unsigned integer constant or integer vari-
able that specifies the logical unit number to
be used for output data (see Logical Unit
Numbers).

b is the statement number of the FORMAT state-
ment describing the type of data conversion,

List is a list of variable names separated by
commas for the output data.

The WRITE (a,b) List form of the WRITE state-
ment is used to write the data specified in the list on
the file on unit a, using FORMAT statement b to
specify the data format (see FORMAT Statement).

NOTE 1: The 1442 Card Read Punch, Model 6 or 7,
has one input hopper. Therefore, if a READ or
WRITE statement references a 1442-6 or -7, care
should be taken to avoid punching a card that was
only meant to be read or reading a card that was
only meant to be punched.

NOTE 2: If the first 1/O operation is a WRITE to
the 1442 Card Read Punch, Model 6 or 7, and the
1442 contains cards that are not to be punched, one
of the following two options may be used to avoid
punching the cards remaining in the 1442:

Option 1. Stack no cards behind the last card to

18

be read. This causes an interrupt to occur when
the WRITE is encountered. The cards remaining
in the 1442 can then be run out (NPRO) and blank
cards placed in the hopper before the WRITE

is executed.

Option 2. Place blank cards behind the last card
to be read; in addition, include in the program, as
the first I/O operation, a dummy READ such as

READ (a,b)

where a is the logical unit number of the 1442
and b is any FORMAT statement number. The
dummy READ causes the last cards read fo be
fed through the 1442 and the first blank card to
be positioned for punching. The WRITE to the
1442 can then be executed.

Option 2 is preferable since it allows uninterrupted
execution and requires no operator intervention,

The WRITE (a,b) form is used to write alphameric
data (see Conversion of Alphameric Data). The
actual data to be written is specified within the
FORMAT statement; therefore, an I/O list is not
required, The following statements illustrate the
use of this form:

25 FORMAT (24HWRITE ANY DATA IN H TYPE)
WRITE (2,25)

DISK 1/0 STATEMENTS

The generalized READ and WRITE statements and the
FIND statement for disk I/O appear as:

READ (a'b) List
WRITE (a'b) List
FIND (a'b)

where:

a (an unsigned integer constant or integer variable)
is the symbolic file number,

b (an integer expression) is the record number
where transmittal will start, and

List is a list of variable names, separated by
commas, for the input or output data,

Note that the symbolic file number and record number
(a and b) must be separated by an apostrophe.

An example is:
READ (IFILE'200) OUTX, OUTY, OUTZ

NOTE: Only information that requires no data
conversion can be transmitted to and from disk
storage.

The READ (a'b) List form is used to read infor-
mation from the disk. The List specifies the number
of items to be read and the locations into which the
items are to be placed. It functions the same as the
List in the non-disk I/0 READ/WRITE statements.
For example, assume a file defined as:

DEFINE FILE 3 (400, 2, U, K)

contains the following information:

RECORD NUMBER CONTENTS
Word 1 Word 2
253 4800 0084
254 5000 0084
255 6800 0084

Then, if X, Y, and Z are two-word standard
precision real variables,

READ (3'253) X, Y, Z

would result in the following values being read into
X, Y, and Z:

X = 48000084
Y = 50000084
Z = 68000084

or, converting from binary to decimal:

X =9.0
Y = 10.0
Z =13.0

As is the case in the non-disk I/0 statements, if
there are more quantities in an input file than there
are items in the list, only the number of items in the
list are transmitted. Thus, in the above example,
only records 253, 254, and 255 were transmitted;
the rest were ignored. If a list contains more
quantities than the input file, an error results.

Variables within an I/0 list may be indexed and
incremented in the same manner as with a DO state-
ment. For example, if we have:

DIMENSION X(400)
DEFINE FILE 3(400, 2, U, K)

READ (3'1) (X(I), I=1,5)

records 1 through 5 of file 3 will be read into the
first 5 elements of the array X (see Indexing I/0
Lists).

The WRITE (a'b) List form operates in the same
way as the READ (a'b) List statement and is used to
transmit data to the disk.

The purpose of the FIND statement is to move the
disk read/write mechanism to the specified record.
The use of the FIND statement is optional,

The user should be aware that disk operations
such as calls to LOCAL subprograms on the same
disk drive may move the access mechanism and
nullify the effect of the FIND statement. Therefore
in certain cases there may be no advantage to a
FIND statement preceding a READ or WRITE state-
ment.

There are several ways of using the disk facility
in FORTRAN programs. There may be an already
created file in the disk Fixed Area that the FORTRAN
program may read data from or write data into, or
the program may create a temporary file in the
Working Storage area of the disk. The following
example shows the use of the disk in both ways.

Example. Assuming (1) an already existing data
file on the disk occupying one sector and having the
symbolic file number 4 and (2), a card reader having
the logical unit number 2, a FORTRAN program to
read in, in standard precision, real values from 10
cards and write these values on the file may look
as follows., Note however that the FORTRAN
defined file must be associated with the existing
data file on disk, in order that the first program
shares a file with the second program.

DIMENSION A(10)
DEFINE FILE 4 (10,20,U,J)
J=1
DO 51=1,10
READ (2,100)A
100 FORMAT (10F8.0)
WRITE (4'J)A
5 CONTINUE
CALL EXIT
END

Statements 19

where a typical data card may be:

FREE] 38, EXH 16 2141 2.0 i, 123.01 236,11 125,42 T\

] 1 [| 1 1 1 1
000000060000000000000000000000CJO000000F0000000CFOO000OO0JOOCO00000O00OAFO0000000300
L Z23 456700V NRUUBBUBBNNADADIRNAAINNRIUNBBINHQAQOQUEKETENDNNNVANRIAARUROUBKITURNTT 2NN SRR

IERERRR R R R R R R R R RN R RN AREY IRRNAS! T IRENT IRERSRRRRRRERY IXNRE ERRRRET [IRE ISRRE!
222222122222220222222222222222222220222222220J22222220§2222200222222022222222042222
3333 3NR3333330503398333233333392333333332333330333333333333 933333 303323333030
TR R RN NNy RN NN N NNy NN RN RN RN YR RN R RANRRRNRR LR] [
5555555H55555555655555555555655555556555555555555555555556555555555535535555350553
666666566666 666666666666666666666666GG66666666666666666666666666566666656666666
R RR] RRRRR AR RN R R R R AR R RN A R R AR R AR R R RN R R AR R R R AR RN R AR R R R RN R R RN RN RR AR RRREARY
8o86afs802058 0600800086080 000808880000080fesasotsaessasfecassosfezcasaages

99!939919!999999!!!!999!9999989939!!9999!999!999399999‘)!99999999999999999999399‘3

12345618 90V RUMERITBNENRDUBADNANNRBIBE R I MR QUQNUC LTSRN IVUSSYBANHRDABCET Y J
\ s 508

Assuming (1) the data file on disk written in the
above program and (2) a printer having the logical
unit humber 3, a program that reads this file from
disk and prints the results on the printer may be:

The READ (a) List form is used to read a core-
image record, without data converéion, into core
storage from unit a. No FORMAT statement is
required; the amount of data that is read corresponds
to the number of list items. The total length of the
list of variable names must not be longer than the
logical record length, If the length of the list is
equal to the logical record length, the entire record
is read. If the length of the list is shorter than the
logical record length, the unread items in the record
are skipped.

The READ (a) form is used to skip an unedited
record on unit a.

The WRITE (a) List form is used to write a core-
image record, without data conversion,on unit a.

For detailed information concerning the creation
and use of the unformatted 1/O area under the IBM
1130 Disk Monitor System, Version 2, see the
corequisite publication for that system as listed
in the Preface.

For the specific use of unformatted 1/0 for MPX,
see IBM 1800 Multiprogramming Executive Operat-
ing System Programmer's Guide.

DIMENSION A(10)
DEFINE FILE 4(100,2,U,K)
K=1
DO 5 I=1,10
READ (2'K)A
WRITE (3,100)A

100 FORMAT (6F20. 8)

5 CONTINUE

CALL EXIT
END

UNFORMATTED I/O STATEMENTS

The READ and WRITE statements for unformatted
1/0, i.e., I/O without data conversion, appear as:

READ (a) List
READ (a)
WRITE (a) List

INDEXING I/0 LISTS

Variables within an I/O list may be indexed and

where:

a is an unsigned integer constant or integer
variable that specifies a logical unit number to
be used for 1/0 data (see Logical Unit
Numbers). P %9 .

List is a list of variable names, separated by
commas, for the I/O data.

20

incremented in the same manner as with a DO state-
ment., For example, suppose it is desired to read
data into the first five positions of the array A, This
may be accomplished by using an indexed list, as
follows:
READ (2,15) (A(D), I=1,5)
15 FORMAT (F10. 3)

This is equivalent to:

DO 12 I=1,5
12 READ (2,15) A(])
15 FORMAT (F10. 3)

As with DO statements, a third indexing parameter
may be used to specify the amount by which the
index is to be incremented at each iteration. Thus,

READ (2,15) (A(D), I=1,10, 2)

causes transmission of values for A(1), A(3), A(5),
A(T7), and A(9). Furthermore, this notation may
be nested. For example, the list:

((c(1,J), D,J), J=1,5), I=1, 4)

would transmit data in the following order, reading
from left to right:

c(1,1), D(1,1), C(1,2),...,C(1,5), D(1,5)
C(2,1), D(2,1), C(2,2),...,C(2,5), D(2,5)
C@3,1), DE3,1), €(3,2),...,C(3,5), D(3,5)
C(4,1), D(4,1), €(4,2),...,C(4,5), D(4,5)

MANIPULATIVE I/0O STATEMENTS

The statements BACKSPACE, REWIND, and END
FILE are used in FORTRAN under the IBM 1800
Card/Paper Tape Programming System and the IBM
1800 TSX System to manipulate magnetic tape units,
In the IBM 1800 MPX System, manipulative I/0
statements are used to manipulate both disk units
and magnetic tape units in unformatted mode. In
FORTRAN under the IBM 1130 Digsk Monitor System,
Version 2, these statements are used to manipulate
the unformatted I/0 area on disk,

BACKSPACE Statement

General Form:
BACKSPACE n

where:

n is an unsigned integer constant or integer variable
specifying the logical unit number (see Logical Unit
Numbers).

In FORTRAN under the IBM 1130 Disk Monitor
System, Version 2, the BACKSPACE statement
causes a pointer to the next available logical
record in the unformatted I/O area to be decre-
mented by one. The statement has no effect if
this pointer indicates the first logical record
in the area.

In FORTRAN under the IBM 1800 MPX System,
the BACKSPACE statement causes the following
actions to occur.

Unformatted Disk I/O. A backspace over one logical
record is accomplished by decrementing a pointer in
the device table, This pointer always points to the
sector address of the next available logical record
in process or batch process Working Storage., A
BACKSPACE statement has no effect if the unfor-
matted disk pointer is set at the beginning of
Working Storage.

Magnetic Tape., Tape unit n is backspaced one logi-
cal record., If the tape unit is at load point, the
BACKSPACE statement has no effect.

REWIND Statement

General Form:
REWIND n

where:
n is an unsigned integer constant or integer vari-
able specifying the logical unit number (see

Logical Unit Numbers).

In FORTRAN under the IBM 1130 Disk Monitor
System, Version 2, the REWIND statement causes
a pointer to the next available logical record in the
unformatted I/O area to be reset to one. The state-
ment has no effect if this pointer already indicates
the first logical record in the area.

In FORTRAN under the IBM 1800 Card/Paper
Tape Programming System and the IBM 1800 TSX
System, the REWIND statement causes the tape on
unit n to be rewound to its load point, The statement
has no effect if the tape is positioned at its load point.
The statement does not cause the tape on unit n to
be unloaded.

In FORTRAN under the IBM 1800 MPX System the
REWIND statement causes either a pointer to the
next logical record to be set to one for unformatted
disk, or the tape on unit n to be rewound to its load
point for unformatted tape., If the logical record
pointer in the unformatted disk area is already one
or if the tape on unit n is already at its load point,
the statement has no effect,

END FILE Statement

General Form:
END FILE n

where:
n is an unsigned integer constant or integer
variable specifying the logical unit number
(see Logical Unit Numbers).
In FORTRAN under the IBM 1130 Disk Monitor
System, Version 2, the END FILE statement causes

Statements 21

an end-of-file record to be written in the unformatted
1/0 area.

In FORTRAN under IBM 1800 Card/Paper Tape
Programming System and the IBM 1800 TSX, the END
FILE statement causes an end-of-file mark to be
written on the tape on unit n,

In backspacing and in skipping forward over
records, the end-of-file record or mark is equivalent
to one logical record,

In FORTRAN under the IBM 1800 MPX System the
END FILE statement causes either an end-of-file
record to be written in the unformatted I/O area for
unformatted disk operations or an end-of-file record
to be written on the tape on tape unit n,

LOGICAL UNIT NUMBERS

The logical unit numbers used in FORTRAN I/O
statements under the IBM 1130 Card/Paper Tape
Programming System and the IBM 1130 Disk
Monitor System are:

Console Printer

1442 Card Read Punch, Model 6 or 7
1132 Printer

1134 Paper Tape Reader/1055

Paper Tape Punch

6 Keyboard

7 1627 Plotter

B W N

The logical unit numbers used in FORTRAN
1/0 statements under the IBM 1130 Disk Monitor
System, Version 2, are:

Console Printer

1442 Card Read Punch, Model 6 or 7
1132 Printer

1134 Paper Tape Reader/1055

Paper Tape Punch

1403 Printer

Keyboard

5
6
7 1627 Plotter
8 2501 Card Reader
9
10

= W oo

1442 Card Punch, Model 5
0 Unformatted I/0 area on disj”liwg

The logical unit numbers used in FORTRAN
I/0 statements under the IBM 1800 Card/Paper
Tape Programming System are assigned by
each installation during system edit.

The logical unit numbers used in FORTRAN

22

I/0 statements under the 1800 TSX and MPX Systems
are assigned by each installation during system
generation,

FORMAT STATEMENT

In order for data to be transmitted from an external
storage medium (e.g., cards or paper tape) to the
computer or from the computer to an external
medium (cards, paper tape, or printed line), it is
necessary that the computer know the form in which
the data exists. This is accomplished by a FORMAT
statement, The FORMAT statement describes the
type of conversion to be performed between the in-
ternal and the external representation of each quantity
in an I/0O list by the use of data conversion specifica-
tions (see Conversion of Numeric Data). FORMAT
statements may appear any place within the socurce
program after all Specification statements.

General Form:

m FORMAT (kl,kz, .,kn/tl,t ,...,tn/...)

2

where:

m represents a statement number,

k1, ko,...,ky and t1, to,..., 1t represent data
conversion specifications, and

/ represents the beginning of a new record (see
Multiple Field Format).

Examples:

5 FORMAT (I5, F8.4)
18 FORMAT (I4/F6.2, F8.4)
20 FORMAT (E11,4/18)

FORMAT statements are not executed but they
must be given a statement number.

Successive items in the I/0 list are transmitted
according to successive specifications in the
FORMAT statement, until all items in the list are
transmitted. If there are more items in the list
than there are specifications in the FORMAT state-
ment, control transfers to the preceding left
parenthesis (including any preceding repeat constant)
of the FORMAT statement and the same specifica-
tions are used again with the next unit record, For
example, suppose a program contains the following
statements:

10 FORMAT (F10.3, E12.4, F12,2)

WRITE (3,10) A, B,C,D,E,F,G

The following table shows the data transmitted in
the column on the left and the specification by which
it is converted in the center column. The column
on the right shows the number of the record that
contains the data.

Data Transmitted Specification Record Number

F10.3
E12.4
F12,2
F10,3
E12.4
F12.2
F10.3

OmHEDOw >
LW IO NN

A specification may be repeated as many times as
desired (within the limits of the unit record
size) by preceding the specification with an unsigned
integer constant. Thus,
(2F10. 4)
is equivalent to:
(F10.4, F10.4)
A limited, one-level, parenthetical expression is
permitted to enable repetition of data fields according

to certain format specifications within a longer
FORMAT statement. For example, the statement:

10 FORMAT (2(F10.6, E10.2), I4)
is equivalent to:
10 FORMAT (F10.6, E10,2, F10.6, E10.2,14)

If there had been 8 items in the list, the above
FORMAT statement would have been equivalent to:

10 FORMAT (F10.6,E10.2,F10.6,E10. 2,14/
F10.6, E10.2, F10.6)

The specifications in a FORMAT statement must
correspond in mode with the list items in the I/0
statement. Numeric data read into integer variables

require an I-type format specification, and numeric
data read into real variables require an F-type or an
E-type specification. Alphameric data may be read
into either integer or real variables by using the
A-type format specification. This requirement holds
for variables in both the READ and the WRITE state-
ment list, For a more detailed description of I-,
E-, F-, and A-type formats see Conversion of
Numeric Data and Conversion of Alphameric Data.

Conversion of Numeric Data

Three types of specifications (or conversion codes)
are available for the conversion of numeric data,
These types of conversions are specified in the
following form:

Iw
Fw.d
Ew.d

where:

I, F, and E specify the type of conversion.

w is an unsigned integer constant specifying the
total field length of the data. (This specifica-
tion may be greater than that required for the
actual digits in order to provide spacing
between numbers.)

d is an unsigned integer constant specifying the
number of decimal places to the right of the
decimal point.

NOTE: The decimal point between the w and d
portions of the specification is required.

For purposes of simplification, the following
discussion of conversion codes deals with the printed
line. The concepts developed apply to all permis-
sible input/output media.

I-Conversion (Iw)

The specification Iw may be used to print a number
in integer form; w print positions are reserved for
the number. It is printed in this w-position field
right-justified (that is, the units position is at the
extreme right). If the number to be converted is
greater thanw-1 positions, an error condition will
exist if the number is negative. A print position
must be reserved for the sign if negative values

Statements 23

are printed, but positive values do not require a
position for the sign., If the number has less than
w digits, the leftmost print positions are filled with
blanks. If the quantity is negative, the position
preceding the leftmost digit contains a minus sign.

The following examples show how each of the
quantities on the left is printed, according to the
specification I3:

Internal Value Printed
721 721
=721 % % %
-12 -12
8114 *Ax
0 0
-5 -5
9 9

NOTE: All error fields are filled in with asterisks.

F-Conversion (Fw.d)

For F-type conversion, w is the total field length
reserved and d is the number of places to the right
of the decimal point (the fractional portion)‘. For
output, the total field length reserved must include
sufficient positions for a sign, if any, a digit to the
left of the decimal point, and a decimal point. The
sign, if negative, is printed. In general w should
be at least equal to d + 3 for output.

If insufficient positions are reserved by d, the
fractional portion is truncated from the right. If
excessive positions are reserved by d, zeros are
filled in from the right to the extent of the specified
precision. The integer portion of the number is
handled in the same fashion as numbers converted
by I-type conversion on input and output.

The following examples show how each of the
quantities on the left is printed according to the
specification F5,2:

Internal Value Printed
12.17 12.17
4].]_6 % ok % X ¥
-.2 -0.20

7.3542 7.35%
-1. -1.00
9.03 9.03
187.64 *kokok ok

TLast two digits of accuracy lost due to insufficient
specification,

24

NOTES:

1. All error fields are filled with asterisks.

2. Numbers for F-conversion input need not have
their decimal points appearing in the input field.
If no decimal point appears, space need not be
allocated for it. The decimal point will be sup-
plied when the number is converted to an internal
equivalent; the position of the decimal point will
be determined by the format specification, How-
ever, if the decimal point does appear within the
field and it is different from the format specifica-
tion, this position overrides the position indicat-
ed in the format specification.

3. Fractional numbers for which F-type output con-
version is specified are normally printed with a
leading zero. If F-conversion is used and zero
decimal width is specified (for example, F5.0),
a fractional value is printed as a sigh, a zero,
and a decimal point. A zero value is printed
with a zero preceding the decimal point.

4, F-conversion will accept input data in E-type
format.

E-Conversion (Ew. d)

For E-conversion, the fractional portion is again
indicated by d. For output, the w includes the field
d, a space for a sign, space for a digit preceding
the decimal point, a decimal point, and four spaces
for the exponent. Space must be reserved for each
of these on output, An output error condition will
result if w<d+5, For input, it is not necessary to
reserve all of these positions. In general, w should
be at least equal to d+7.

The exponent is a sighed or unsigned one- or two-
digit integer constant not greater than 38 and preceded
by the letter E. Ten (10) raised to the power of the
exponent is multiplied by the number to obtain its
true internal value.

The following examples show how each of the
quantities on the left is printed, according to the
specification E9. 3:

Internal Value Printed

238 0.238Eh03
-, 002 o ok ok ok ok ook ok ok
. 00000000004 0.400E-10
_21. 0057 ok 3k 3 3k %k ok 3k k k

If the last example above had been printed with a
specification of E10. 3, it would appear as:

-0, 210Ebo2t

NOTES:

1. All error fields are filled with asterisks.

2, For input, the start of the exponent field must
be marked by an E, or, if that is omitted, by a
+ or - sign (not blank), Thus, E2, E+2, +2,
+02, E02, and E+02 are all permissible exponent
fields for input.

3. For input, the exponent field may be omitted
entirely (i.e., E-conversion will accept input
data in F-type format).

4, Numbers for E-conversion input need not have
their decimal points appearing in the input field.
If no decimal point appears, space need not be
allocated for it, The decimal point will be
supplied when the number is converted to an
internal equivalent; the position of the decimal
point will be determined by the format specifica-
tion. However, if the decimal point does appear
within the field and it is different from the
format specification, this position overrides
the position indicated in the format specification,

5. A leading zero is always printed to the left
of the decimal point.

Conversion of Alphameric Data

There are two specifications available for input/
output of alphameric data: H-conversion (including
literal data enclosed in apostrophes), and A-con-
version. H-conversion is used for alphameric data
that is not going to be changed by the object program
(e.g., printed headings); A-conversion is used for
alphameric data in storage that is to be operated

on by the program (e.g., modifying a line to be
printed). The characters that can be handled are
listed in Appendix C.

H-Conversion

The specification nH is followed in the FORMAT
statement by n alphameric characters. For example:

24H THIS IS ALPHAMERIC DATA

TLast three digits of accuracy lost due to insufficient
specification. b represents a blank.

Blanks are considered alphameric data and must be
included as part of the count n. A comma following
the last alphameric character is optional,

The effect of nH depends on whether it is used
with an input or output statement.

Input. n characters are extracted from the input
record and replace the n characters included in the
specification. For example,

READ (4, 5)
5 FORMAT (SHHEADINGS)

would cause the next 8 data characters to be read
from the input file on the I/O unit associated with the
logical unit number 4 (Paper Tape Reader on the
1130); these characters would replace the data
HEADINGS in storage.

Output. The n characters following the specification
are written as part of the output record. Thus, the
statements:

WRITE (1, 6)
6 FORMAT (15H CUST. NO. NAME)

would cause the following record to be written on the
I/0 unit associated with the logical unit number 1
(Console Printer on the 1130):

CUST. NO. NAME

A-Conversion

The specification Aw is used to transmit alphameric
data to/from variables in storage. It causes the
first w characters to be read into, or written from,
the area of storage specified in the I/0 list. For
example, the statements:

10 FORMAT (A4)

READ (4,10) ERROR

would cause four alphameric characters to be read
from the I/0 unit associated with the logical unit
number 4 (Paper Tape Reader on the 1130) and
placed (left-justified) into the variable named
ERROR.

The following statements:

Statements 25

INTEGER OUT
15 FORMAT (4HbXY=, F9.3,A4)

.

WRITE (OUT, 15)A, ERROR, B, ERROR

may produce the following lines:

XY=b5976,214----
XY=b6173.928-—--

where ---- represents the contents of the field
ERROR.

Thus, A-conversion provides the facility for
reading alphameric data into a field in storage,
manipulating the data as required and printing it out.

If the number of alphameric characters is less
than the capacity of the field in storage into which
they are to be read, the remaining rightmost
characters in the field are loaded with blanks. How-
ever, if the number of characters is greater than
the capacity of the field in storage, only the right-
most characters are read in and the excessive left-
most characters are lost. It is important, therefore,
to allocate enough area in storage to handle the
alphameric characters being read in, Each real
variable has sufficient space for 4 or 6 characters
(the precision of real variables is specified at
compile time -- see Real Constants); each integer
variable has space for 2 characters. For example,
10 characters could be read into, or!written from,
the first five variables of the array I if the following
format is used:

101 FORMAT (5A2)

READ (IN, 101) I

WRITE(IOUT,101) I

Thus, two characters are contained in each of the
five consecutive positions: I(1), 1(2), I(3), I(4), I(5).
On output the leftmost character is written first,
Note that the format

101 FORMAT (A10)
‘would not work since 10 characters would be read

from an array element of two words, causing the
last 8 alphameric characters to be ignored.

26

Arithmetic operations involving variables con-
taiming alphameric characters should be performed
in integer mode. Alphameric characters are
represented internally in eight-bit EBCDIC
(refer to the appropriate Subroutine Library
publication, as listed in the Preface, above,
for a description of the EBCDIC used for
internal representation of alphameric characters).

Literal Data Enclosed in Apostrophes

Literal data can consist of a string of alphameric
and special characters written within the FORMAT
statement and enclosed in apostrophes. For example:

25 FORMAT ('1966 INVENTORY REPORT')

A comma following the last apostrophe is optional.
An apostrophe character within literal data is

represented by two successive apostrophes. For

example, the characters DON'T are represented as:

DON"'T

The effect of the literal format code depends on
whether it is used with an input or output statement.

Input. A number of characters, equal to the number
of characters specified between the apostrophes, are
read from the designated I/O unit. These characters
replace, in storage, the characters within the
apostrophes. For example, the statements:

5 FORMAT (' HEADINGS')

READ (4, 5)

would cause the next 9 characters to be read from the
I/0 unit associated with the logical unit number 4
(Paper Tape Reader on the 1130). These char-
acters would replace the blank and the 8 char-

acters H,E,A,D,I,N,G, and S in storage.

Ouput. All characters (including blanks) within
the apostrophes are written as part of the output
data. Thus the statements:

5 FORMAT ('THIS IS ALPHAMERIC DATA")

WRITE (1, 5)

.

would cause the following record to be written on the
I/0 unit associated with the logical unit number 1
(Console Printer on the 1130):

THIS IS ALPHAMERIC DATA

X-Type Format

Blank characters may be provided in an output
record, or characters of an input record may be
skipped, by means of the specification, nX; n is
the numher of hlanks desired or the number of
characters to be skipped.

When the nX specification is used with an input
record, n characters are skipped over before the
transmission of data begins.

For example, if a card has six 10-column fields
of integers, the statement:

5 FORMAT (I10,10X,4I10)

would be used, along with the appropriate READ
statement, to avoid reading the second quantity.

When this specification is used with an output
record, n positions are left blank, Thus, the facility
for spacing within a printed line is available. For
example, the statement:

10 FORMAT (3(F6. 2, 5X))

may be used with the appropriate WRITE statement
to print a line as follows:

-23., 45bbbbbb17. 32bbbbbb24. 67bbbbb

where b represents a blank.

T-Format Code

Input and output may begin at any position by using
the format code Tw where w is an unsigned integer
constant specifying the position in a FORTRAN
record where the transfer of data is to begin. Only
when the output is printed on an 1132, 1403, or 1443
Printer does the correspondence between w and the
actual print position differ. In this case, because of
the carriage control character, the print position
corresponds to w-1, as may be seen in the following
example:

5 FORMAT (T40, '1964 INVENTORY REPORT'
T80, 'DECEMBER' T2, 'PART NO. 10095")

The preceding FORMAT statement would result
in a printed line as follows:

Print Print Print
Position 1 Position 39 Position 79

| | |

PART NO. 10095 1964 INVENTORY REPORT DECEMBER

The following statements:

5 FORMAT (T40, 'bHEADINGS')

READ (2,5) or READ (I, 5)

would cause the first 39 characters of the input data
to be skipped, and the next 9 characters would then
replace the blank and the characters H, E, A, D, I,
N, G and S in storage.

The T-format code may be used in a FORMAT
statement with any type of format code. For example,
the following statement is valid:

5 TFORMAT (T100, F10.3, T50, E9.3, T1,
'bANSWER 18")

where b represents a blank.
NOTE: If the T-format code is being used with a
FORTRAN record that is being punched on paper tape

or printed on the typewriter, the integer constant (w)
must point to the last character to be punched or

Statements 27

printed. This is necessary since blanks or additional
characters are not output to save time. For example,
the following statement:

FORMAT (4HABCD, T3)

would cause only AB to be punched or printed. To
output ABCD, a T-format code of T5 would be
required.

Multiple Field Format

Slashes are used in a FORMAT statement to delimit
unit records, which must be one of the following:

1. A punched paper tape record with a maximum
of 80 characters (1054 Paper Tape Reader, 1055
Paper Tape Punch, or 1134 Paper Tape Reader).

2. A punched card record with a maximum of 80
characters (1442 Card Read -Punch, Model 6 or 7,
or 1442 Card Punch, Model 5).

3. A printed line with a maximum of 120 print
characters and 1 carriage control character
(1132 Printer or 1403 Printer).

4. A printed line with a maximum of 144 print

characters and 1 carriage control character

(1443 Printer).

An output typewritten line with a maximum of

120 characters (Console Printer, 1053 Printer,

or 1816 Printer-Keyboard).

6. An input record from the keybhoard with a maxi-
mum of 80 characters (Console Keyboard or
1816 Printer-Keyboard).

7. A plotted output record with a maximum
of 120 characters (1627 Plotter).

8. A magnetic tape record with a maximum length
of 145 characters (2401 and 2402 Magnetic Tape
Units).

(9]

Thus, the statement:
5 FORMAT (F9.2/E14.5)

specifies the data conversion specification F9. 2 for
the first unit record, and the data conversion
specification E14. 5 for the second unit record.

Blank lines may be introduced between output
records, or input records may be skipped, by using
consecutive slashes (/) in a FORMAT statement. The
number of input records skipped, or blank lines

28

inserted between output records, depends upon the
number and placement of the slashes within the
statement,

If there are n consecutive slashes at the beginning
or end of a format specification, n records are
skipped or n blank lines are inserted between printed
output records. If n consecutive slashes appear any-
where else in a format specification, the numbher of
records skipped or blank lines inserted is n-1. For
example, the statements:

10 FORMAT (///16)
READ (INPUT, 10) MULT

cause 3 records to be skipped on the input file before
data is read into MULT.
The statements:

15 FORMAT (15////F5.2,12//)
WRITE (IOUT, 15) K,A,J

result in the following output:

Integer
(blank line)
(blank line)
(blank line)
Real Number
(blank line)
(blank line)

Integer

To obtain a multiline listing in which the first two
lines are to be printed according to a special format
and all remaining lines according to another fcrmat,
the last-line specification should be enclosed in a
second pair of parentheses. For example, in the
statement:

FORMAT (12,3E12.4/2F10.3,3F9.4/(3F12, 4))

when data items remain to be transmitted after the
format specification has been completely used, the
format repeats from the last left parenthesis. Thus,
the listing would take the following form:

12,E12,4,E12.4,E12.4
F10.3,F10.3, F9.4,F9.4, F9. 4
F12.4,F12.4,F12.4
F12.4,F12.4,F12.4

Carriage Control

If a unit record is to be printed on an 1132, 1403, or
1443 Printer, the first character in that unit record
is used for carriage control. Normally the character
is specified at the beginning of the format specifi-
cation for the unit record as 1Hx, where x is a blank,
0, 1, or +. This character is not printed; it only
controls carriage spacing as follows:

blank causes a single space before the unit record
is printed

0 causes a double space before the unit record
is printed

1 causes a skip to channel 1 before the unit
record is printed

+ causes all spacing or skipping to be sup-

pressed before the unit record is printed

Data Input to the Object Program

Data Input to the object program is contained in unit
records, as described under Multiple Field Format,
above. The following information should be consider-
ed when preparing input data on punched cards:

1. The input data record must correspond to the
field width specifications defined in the FORMAT
statement.

2. Leading blanks are ignored. All other blanks
are treated as zeros.

3. A plus sign may be implied by no sign or in-
dicated by a plus sign; a negative number, how-
ever, must be preceded by a minus sign.

SPECIFICATION STATEMENTS

The Specification statements provide the compiler
with information about:

1. The nature of the variables used in the program.

2. The allocation in storage for certain variables
and/or arrays.

3. The names of subprograms to be used at object
time.

The Specification statements are non-executable
because they do not cause the generation of instruc-
tions in the object program.

All Specification statements must precede any
statement function definition statement and the first
executable statement of the source program. They
should appear in the following order:

Type Statements (REAL, INTEGER)
EXTERNAL Statements

DIMENSION Statements

COMMON Statements

EQUIVALENCE Statements

DATA Statements

DEFINE FILE Statements

Statement Function Definition Statements
First Executable Statement

TYPE STATEMENTS (REAL, INTEGER)
General Form:

INTEGER a,b,c,...
REAL a,b,c,..

where:

a,b,c,...are variable, array, FUNCTION sub-
program or statement function names appear-
ing in a program or subprogram, Arrays
named in this statement must also be dimen-
sioned in this statement. Array dimensions
specified in this statement should not be in-
cluded in references to the array in
DIMENSION or COMMON statements.
Repetition or respecification of the array
dimensions results in an error,

Examples:

INTEGER DEV,JOB,XYZ12, ARRAY(5, 2, 6)
REAL ITA,SMALL,ANS,NUMB(3, 14)

The REAL and INTEGER statements explicitly
define the type of variable, array, or function, In
the first example, the variable DEV (implicitly
defined as a real variable, because its initial letter
is not I,J,K,L,M, or N) is explicitly defined as an
integer variable and is, therefore, handled as an
integer variable in the program. The appearance
of a variable name in either of these statements

Statements 29

overrides any implicit type specification determined
by the initial letter of the variable. Type statements
must precede any other Specification statements.

EXTERNAL STATEMENT

General Form:
EXTERNAL a,b,c,....

where:
a,b,c,...are the names of subprograms that

appear in any other subprogram argument list,
Only the subprogram name is used with the
EXTERNAL statement. Other subprogram para-
meters must not be included, Subprograms
declared external may be FUNCTION subpro-
grams, SUBROUTINE subprograms, FORTRAN
supplied FUNCTION subprograms, or subpro-
grams written in Assembler Language.

Example:
EXTERNAL SIN, MATRX, INVRT

Any subprogram named in the EXTERNAL state-
ment may be used as an argument for other sub-
programs (see Subprogram Statements), Subprograms
named in an EXTERNAL statement are loaded when
the executable core load is tuilt, not during compi-
lation,

DIMENSION STATEMENT

General Form:

DIMENSION a(k,), b(k,), c(k,),...x(k)

where:

a,b,c,...x are names of arrays.

ky,k9,ks,...kn are each composed of 1, 2, or 3
unsigned integer constants that specify the
maximum value for 1, 2, or 3 subscripts,
respectively.

_I-Zx_ample:

DIMENSION A(10), B(5,15), C(9,9,9)

The DIMENSION statement provides information
to allocate storage for arrays in an object program

30

(unless the information appears in a Type or
COMMON statement). It defines the maximum size
of each array listed.

Each variable that appears in subscripted form in
a source program must appear in a Type,
DIMENSION, or COMMON statement contained within
the source program. The first of these statements
that refers to the array must give dimension in-
formation. (See COMMON Statement With Dimen-

sions,)

COMMON STATEMENT

Blank COMMON

General Form:
COMMON a,b,c,...n
where:
a,b,c,...n are variable or array names.

Variables or arrays that appear in the main pro-
gram or a subprogram may he made to share the
same storage locations with variables or arrays of
the same type and size in other subprograms, by use
of the COMMON statement. For example, if one
program contains the statement:

COMMON TABLE
and a second program contains the statement:
COMMON LIST

the variable names TABLE and LIST refer to the
same storage locations (assuming the data associated
with the names TABLE and LIST are equal in length
and type).

If the main program contains the statement:

COMMON A,B,C,
and a _subprogram contains the statement:

COMMON X, Y, Z
and A, B, and C are equal in length to X, Y, and Z,
respectively, then A and X refer to the same storage

locations, as do B and Y, and C and Z.
Within a specific program or subprogram, vari-

ables and arrays are assighed storage locations in the
sequence in which their names appear in a COMMON
statement, Subsequent sequential storage assign-

: ments within the same program or subprogram are
made with additional COMMON statements.

A dummy variable can be used in a COMMON
statement to establish shared locations for variables
that would otherwise occupy different locations., For
example, the variable S can be assigned to the same
location as the variable Z of the previous example
with the following statement:

COMMON Q, R, S

where Q and R are dummy names that are not used
elsewhere in the program.

Redundant COMMON entries are not allowed, For
example, the following is invalid:

COMMON A, B, C, A

Named COMMON

Named COMMON is valid only in FORTRAN under
the IBM 1800 TSX and MPX Systems, where the
name INSKEL specifies Skeleton COMMON, The
Skeleton COMMON is located in the low core
addressed Skeleton Area. It is not altered hy the
IBM System and provides the capability for com-
plete communications hetween process core loads,
non-process core loads, INSKEL interrupt sub-
routines, in-core-with-mainline interrupt subhroutines
(TSX only), interrupt core loads, and special core
loads. Process and non-process programs (either
as part of mainline or interrupt core loads) can
refer to the Skeleton COMMON area by the following
statement:

COMMON/INSKEL/a, b, ¢,...n
where:

INSKEL is the name of Skeleton COMMON.
INSKEL must be enclosed in slashes.

a, b, ¢,...n are variable or array names as
described for the blank COMMON statement.

NOTE: Non-process core loads should reference
INSKEL COMMON only for process-oriented functions
such as updating conversion factors after time-
shared instrument calibration.

The assighment of variables or constants to the
COMMON areas can be mixed in the same COMMON
statement by preceding the Skeleton COMMON items
with /INSKEL/ and by preceding the blank COMMON
items with //. For example, in the statement

COMMON/INSKEL/ A, B, C//D, E, T

the variables A, B, and C will be assigned locations
in the Skeleton COMMON area and D, E, and F will
be assigned locations in the blank COMMON area.
The same assignment could be made with the fol-
lowing statement.

COMMON D, E, F/INSKEL/A, B, C
In this case, the double slashes are not necessary
because the blank COMMON items were not pre-
ceded by a Skeleton COMMON assignment.
NOTE: INSKEL COMMON may be used in one word

integer programs only.

COMMON Statement With Dimensions

General Form:
COMMON A(k,), B(k,), C(k,),...N(k)
where:

A, B, C,...N are array names and
k1,kg,Kg,...ky are each composed of 1, 2, or 3
unsigned integer constants that specify the

dimensions of the array.

Example:
COMMON A(1), B(5,5,5), C(5,5,5)

This form of the COMMON statement, besides
performing the functions discussed previously for
the COMMON statement, performs the additional
function of specifying the size of arrays. Array
dimensions may be specified for both blank COMMON
and named COMMON variables.

NOTES:

1, Dummy arguments for SUBROUTINE or
FUNCTION statements cannot appear in
COMMON statements, if they appear on
the SUBROUTINE or FUNCTION state-
ment,

Statements 31

2. A single COMMON statement may contain

variable names, array names, and dimensioned

array names. For example, the following are
valid:

DIMENSION B(5,15)
COMMON A, B, C(9,9,9)

3. All dimensioned arrays in a main program or
subprogram and all items in COMMON are
stored in descending storage locations.

EQUIVALENCE STATEMENT

Different variables and arrays are usually assigned

unique storage locations. However, it may be desir-

able to have two or more variables: share the same
storage location. This facility is provided by the
EQUIVALENCE statement.

General Form:

EQUIVALENCE (a,b,...), (d,€,...),...

where:

a,b,d,e,...are simple variables or subscripted
variables. Subscripted variables may have
either multiple subscripts (which must agree
with the dimension information) or single
subscripts. The subscripts must be integer
constants.

Each pair of parentheses in the EQUIVALENCE
statement encloses a list of two or more.variable
names that refer to the same location during the
execution of the object program.,

Any number of variables may be listed in a
single EQUIVALENCE statement,

Examples:
EQUIVALENCE (X,Y,SAVE,AREA),
(EQ1), F(1)), (G(1), H(5))
EQUIVALENCE (A(4), C(2), D(1))

In the second example, making A(4), C(2), and

D(1) equivalent to one another sets up an equivalence

among the elements of each array as follows:

32

A1)

A(2)

A@3) C(1)

A(4) C(2) D(1)
A(5) C(3) D(2)

NOTE: Any EQUIVALENCE statement that lists
an array must reference elements of that array.
That is, if A and B are both 30 element arrays to
be equated,

EQUIVALENCE (A, B)

is not allowed. The arrays may be equated by a
statement of the form:

EQUIVALENCE (A(1), B(1))

The combination of all equivalence lists in a program

must not:

1. Equate two variables or arrayv elements that
are already assigned to COMMON.

2. Contradict any previously established equival-
ences.

3. Extend an array beyond the dimensions defined

in a DIMENSION, TYPE, or COMMON state-
ment.

Example 1: Violating Rule 1

DIMENSION A(10), B(5)
COMMON A, B
EQUIVALENCE (A(1), B(1))

Example 2: Violating Rule 2

EQUIVALENCE (A(10), B(1))
EQUIVALENCE (B(10), C(1))
EQUIVALENCE (A(10), C(1))

Example 3: Violating Rule 3

DIMENSION A(3), B(3)
EQUIVALENCE (A(4), B(1))

However, EQUIVALENCE statements may extend the
size of the COMMON area. For example, the follow-
ing is valid:

DIMENSION C(4)
COMMON A, B
EQUIVALENCE (B, C(2))

for it would produce the following relationship in the
COMMON area:

A CQ)
B C(2)
C(3)
C(4)

Since arrays must be stored in descending storage
locations, a variable may not be made equivalent

to an element of an array in such a manner as to
cause the array to extend beyond the beginning of the
COMMON area. For example, the following coding
is invalid:

DIMENSION C(4)
COMMON A, B
EQUIVALENCE (A, C(2))

for it would force C(1) to precede A in the COMMON
area, as follows:

C(1) (outside the COMMON area)
A C(2)
B C(3)

C(4)

Conversion to Single Subscripts

Two- and three-dimensional arrays actually appear
in storage in a one-dimensional sequence of core
storage words.

In an EQUIVALENCE statement it is possible to
refer to elements of multi-dimensioned arrays by
single-subscripted variables, For example, in an
array dimensioned A(3, 3, 3), the fourth element of
the array can be referenced as A(1,2,1) or as A(4).

The rules for converting multiple subscripts to
single subscripts are as follows:

1. For a two-dimensional array, dimensioned as
A(1,J): the element A(i, j) can also be referenced
as A(n), where n =i + I(j-1).

2. For a three-dimensional array, dimensioned as
A(I,J,K): the element A(i, j, k) can also be
referenced as A(n), where n =1 + I(j-1) +
I*J(k-1).

NOTE: Conversion to single subscripts is permitted
only in EQUIVALENCE statements.

DATA STATEMENT

The DATA statement is used to define initial values
of variables and array elements assigned to areas
-dther than COMMON. Values assigned to variables
or array elements during execution override values
assigned via the DATA statement.

General Form:

DATA Vy, Vg,...,Vy/ig*d,ig*d, ..., i;m*dm/,
Vn#lse oo s Vr/imig *dm+1s - - - ig*dg/s e e /el /

where:

Vi,...,Vy are variables or subscripted variables
(subscripts must be integer constants).

dy,...,dg are data constants. They may be
integer, real, hexadecimal, or literal data
constants. Integer and real constants may be
specified as negative. See Data-Variable
Combinations for the valid name and constant
combinations.

i1,.++,1g are optional unsigned integer constants
that indicate the number of variables and/or
array elements that are to be assigned the
value of the data constant. They are separated
from the data constants by asterisks. Each
data constant must be of the same type (integer
or real) as its corresponding variable. The
value assigned to i must not be >4095.

The slash is used to separate and enclose data con-
stants,
When an unsubscripted array name is specified,
constants are assigned from the first element toward
the end of the array.

Example 1.
DATA A/5%1.0, 2.0, 3%3.0/

If A is a nine-element array for real variables, the
first five elements are initialized to 1.0, the sixth
to 2.0, and the remaining three to 3.0.

If a given constant is not exhausted by assignment
to a given variable or array, the remainder will be
assigned to succeeding variables or arrays.

Example 2:
DATA A, B/12*1,0/

Statements 33

If A is a nine-element array for real variables and B
is an array containing positions for at least three
real variable elements, all nine elements of A and
the first three elements of B will be initialized to 1. 0.

An error condition occurs if all constants are not
exhausted when the last variable or array has been
satisfied. Similarly, an error occurs when a variable
or array is specified for which no constants are
available.

When an array name is specified with a subscript,
only the element specified may be assigned a value,

Example 3:
DATA A(@3)/5.0/

If A is an array for real variables of at least 3
elements, the third element will be initialized to 5. 0.

Hexadecimal Constants

Hexadecimal constants are written as the letter Z
followed by one to four hexadecimal digits (0 through
F). Each constant is assigned one word and the
constant is right-justified if three or less hexa-
decimal digits are used. Each constant must be
separated by a comma,

Any variable, array, or array element to which
a hexadecimal constant value is assigned by the
DATA statement must be an integer variable,
integer array, or an element of an integer array.

Example 4:
DATA 1/6* Z24, ZAB19/

The first 6 elements of array I will be initialized to
the following configuration:

ODoEDDnDDBRnoanEn

The seventh element will be initialized to:

I1|0|1l 0 1|o|1]| o|o|o|1 ||o]o 1]
A B 3 3

Literal Data

Literal data must be enclosed in single quotes. A
quote mark within a literal field is represented by
two consecutive quote marks. A literal constant may

not exceed the element length of the variable or
array to which it is assigned. Where necessary,
blanks are included, with the constant left-justified.
Literal data is written in 8-bit EBCDIC, packed two
characters per word,

Example 5:

DATA A/3*'ABCD',2*'AB','A"'"BC','A.BC'/

If the array A contains at least seven elements, and
is of standard (two word) precision, the first three
elements will be assigned the value ABCD, the fourth
and fifth the value ABbb, where the b's are blanks,
the sixth element the value A'BC, and the seventh
A.BC.

Example 6:
DATA KEYWD/2*'AB', 'A'"!'B, !, 'AB', 'X!/

If literal data is assigned to an integer array, a
maximum of two characters per element may be
specified, regardless of the precision of the program,
In the array KEYWD, which consists of at least 6
elements, the first two elements are assigned the
value AB, the third element A', the fourth element
B., the fifth element AB, and the sixth element Xb
where b is a blank.

Data-Variable Combinations

data
real integer hexadecimal literal
variable
real yes no no yes
integer no yes yes yes

DEFINE FILE STATEMENT

The DEFINE FILE statement specifies to the
FORTRAN Compiler the size and quantity of disk
data records within files that will be used with a
particular program and its associated subprograms.
This statement must not appear in a subprogram;
it may appear only in a main program. Therefore,
all subprograms used by the main program must use
the defined files of the main program.

The purpose of the DEFINE FILE statement is to
divide the disk into files to be used in the disk
READ, WRITE, and FIND statements.

General Form:

DEFINE FILE ay (my, l1, U, vq),
ag (my, lg, U, vy),...

where:

a is an integer constant < 32767 that is the sym-
bolic designation for this file.

m is an integer constant that defines the number
of file records in this symbolic file.

I is an integer constant that defines the length
(in words) of each file record in this symbolic
file. The value of 1; must be less than or
equal to 320.

U is a fixed letter. It is used to designate that
the file must be read/written with the disk
READ/WRITE statements and will handle no
data conversion,

v is a non-subscripted integer variable name.
This variable, called the associated variable,
is set at the conclusion of each disk
READ, WRITE, and FIND statement referenc-
ing this symbolic file., After a READ or
WRITE statement, it is set to the value of the
next available file record. After a FIND
statement, it is set to the value of the indicated
record.

This variable must be set initially by the
uger if it is to be used in disk I/0 statements
as a symbolic record number. This variable
must appear in COMMON if it is to be
referenced by more than one program during
execution,

NOTE: The associated variable for a defined
file cannot appear in the I/0 list of a disk
READ or WRITE statement referencing that
file.

An example of defining a data file is:

DEFINE FILE 3 (400, 60, U, K)

The DEFINE FILE statement furnishes execution
time FORTRAN I/O subroutines with the necessary
parameters to manipulate data files that are user-
generated or system-generated. The user-generated
data files are a result of Disk Utility Program
functions requested by the user (refer to the sections
describing the *FILES control record and the
STOREDATA function of the Disk Utility Program
or MPX Disk Management Program, in the
appropriate operating procedures publication
as listed in the Preface, above). The *FILES
control records supply at the time the executable
core load is built those parameters not supplied
by DEFINE FILE statements. That is they
provide a correlation between the file
numbers found on the DEFINE FILE

statements and data file names on the disk. System-
generated data files are temporary disk storage
areas allocated by the Core Load Builder. They are
a result of DEFINE FILE statements for which no
matching file numbers exist on *FILES control
records.

NOTE: Since records that require no data con-
version are transmitted, care must be exercised to
ensure that the programs using a data file have the
same precision (standard or extended).

SUBPROGRAM STATEMENTS

Suppose that a program is being written that, at
various points, requires the same computation to be
performed with different data for each calculation.

It would simplify the writing of that program if the
statements required to perform the desired com-
putation could be written only once and then could be
referred to freely. Each reference to the statements
would have the same effect as if the statements were
written at the point in the program where the
reference was made. For example, if a general
program were written to take the square root of any
number, it would be desirable to be able to in-
corporate that program (or subprogram) into other
programs where square root calculations are required.

The FORTRAN language provides for the preceding’
situation through the use of subprograms. There are °
three classes of subprograms: statement functions,
FUNCTION subprograms, and SUBROUTINE sub-
programs. In addition, there is a group of
FORTRAN-supplied FUNCTION subprograms.

The first two classes of subprograms are called
functions. Functions differ from the SUBROUTINE
subprograms in that functions always return a single
value to the calling program, whereas, a SUB-
ROUTINE subprogram can return any number of
values to the calling program. A function is
employed (or called) by writing the name of the
function (see Subprogram Names) and an argument
list in a standard arithmetic expression. A
SUBROUTINE subprogram must be called by a
special FORTRAN statement, namely, the CALL
statement.

The statement function is written and compiled as
part of the program in which it appears. The other
subprograms are written and compiled separately
and linked to the main program at the time they are
loaded for execution,

Statements 35

SUBPROGRAM NAMES

A subprogram name consists of 1-5 alphameric
characters, excluding special characters, the first
of which must be alphabetic. The type (real or
integer) of a subprogram (except SUBROUTINE)
can be indicated in the same manner as variables.

The type of statement function may be indicated
implicitly by the initial character of the name or
explicitly by the REAL or INTEGER type statement.

The type of a FORTRAN-supplied FUNCTION sub-
program is indicated implicitly by the initial char-
acter of its name.

The type of a FUNCTION subprogram may be
indicated implicitly by the initial character of the
name or explicitly by a Type specification (see
Type Specification of the FUNCTION Subprogram).
In the latter case, the implicit type is overriden by
the explicit specification.

The type of a SUBROUTINE subprogram is not
defined, because the result returned to the main pro-
gram is dependent only on the type of the variable
names in the argument list.

FUNCTIONS

In mathematics, a function is a statement of the
relationship between a number of variables. The
value of the function depends upon the values assigned
to the variables (or arguments) of the function. The
same definition of a function is true in FORTRAN.,

To use a function in FORTRAN, it is necessary to:

1. Define the function. That is:

a, Assign a unique name by which it may be
called

b. State the arguments of the function

c. State the procedure for evaluating the
function

2. Call the function, where required, in the
program.

When the name of a function appears in any FORTRAN

arithmetic expression, program control is transferred

to the function subroutine. Thus, the appearance of
the function with its arguments causes the computa-
tions indicated by the function definition to be per-
formed. The resulting quantity replaces the function
reference in the expression and assumes the mode

36

of the function. The mode of a function, as with
variables, is determined either implicitly by the
initial character of its name, or explicitly by a Type
statement.

Statement Function Definition Statement

General Form:
a=bh
where:

a is a function name followed by parentlLeses
enclosing its arguments, which must be distinct,
nonsubscripted variables separated by commas.,

b is an expression that does not involve sub-
scripted variables.

Examples:

FIRST(X) = A*X+B
OTHER(D) = FIRST (E)+D

If the statement Y = OTHER(Z) appears in a program
in which the above functions are defined, the current
values of A, B,E, and Z will be used in a calculation
which is equivalent to:

Y = A*E+B+Z

Since the arguments of a are dummy arguments,
their names may be the same as names appearing
elsewhere in the program. Those variables in b
that are not included in the dummy argument list are
the parameters of the function and are defined as the
ordinary variables appearing elsewhere in the source
program. The type of each dummy argument is
defined implicitly. A maximum of fifteen variables
appearing in the expression may be used as argu-
ments of the function.

Any statement function appearing in b must have
been previously defined. All definitions of statement
functions must follow the Specification statements
and precede the first executable statement of the
gource program.

Statement functions are compiled as internal
subprograms; therefore, they will appear only once
in the object program.

NOTE: .The same dummy arguments may be used in
more than one statement function definition and may
also be used as variables outside statement function
definitions.

FUNCTION Subprogram

The FUNCTION subprogram is a FORTRAN sub-
program consisting of any number of statements.

It is like a FORTRAN-supplied FUNCTION sub-
program in that it is an independently written pro-
gram that is executed whenever its name appears in
another program,. In other words, if a user needs a
function that is not available in the library, he can
write it with FORTRAN statements.

General Form:

FUNCTION name (a1,a9,23,...2p)
(FORTRAN statements)

RETURN
END

where:

name is a subprogram name.

ai,az,as,...an are dummy arguments to be re-
placed at execution time by nonsubscripted
variable names, array names, or other sub-
program names (except that they cannot be
statement function names). None of the dummy
arguments may appear in an EQUIVALENCE
statement in a FUNCTION subprogram.

The FUNCTION subprogram may contain any
FORTRAN statement except a SUBROUTINE state-
ment, a DEFINE FILE statement,or another
FUNCTION statement and must return control to the
calling program with a RETURN statement. Because
the FUNCTION is a separate subprogram, the
variables and statement numbers do not relate to
any other program (except the dummy argument

variables).
The arguments of the FUNCTION subprogram may

be considered to be dummy variable names. These
are replaced at the time of execution by the actual
arguments supplied in the function reference in the
main program. The actual arguments must cor-
respond in number, order, and type to the dummy
arguments. They may be any of the following: any
type of constant, any type of subscripted or non-
subscripted variable, any other kind of arithmetic
expression, or a subprogram name (they may not be
statement function names).

The relationship between variable names in the
calling program and the dummy names in the
FUNCTION subprogram is illustrated in the follow-
ing example:

Calling FUNCTION
Program Subprogram
FUNCTION SOMEF (X,Y)
. SOMEF = X/Y
A = SOMEF (B, C) RETURN
. END

In the preceding example, the value of the variable
B of the calling program is used in the subprogram as
the value of the dummy variable X; the value of C is
used in place of the dummy variable Y. Thus, if
B =10.0and C =5.0, then A =2,0, that is, B/C.

When a dummy argument is an array name, a
DIMENSION statement must appear in the FUNCTION
subprogram. The DIMENSION statement in the
FUNCTION subprogram permits the dummy argument
to be subscripted. Thus, if B is a 40-element array
defined in a calling program, a method of passing
elements of the array to a FUNCTION subprogram
would be:

Calling FUNCTION
Program Subprogram
. FUNCTION SOMEF (X,ITER)
. DIMENSION X(40)
DIMENSION B(40) SOMEF = 0

. DO51=1,ITER

‘ 5 SOMEF =SOMEF +X (ITER)
RETURN
END

D = SOMEF (B, J)

When an argument is a subprogram name, it must
be declared in an EXTERNAL statement in the calling
program. The following example illustrates the use
of the EXTERNAL and DIMENSION statements with
subprograms.

Statements 37

Calling Program:

EXTERNAL ABS
DIMENSION A(4)
I=3

B = COMP(A,I,ABS)

Called Subprogram:

FUNCTION COMP(X,J, FUNCT)
DIMENSION X(4)
TEMP = 0
DO10K=1,J
10 TEMP = TEMP + X(K)
COMP = FUNCT (TEMP)
RETURN
END

In this example, the resulting value of B returned to
the calling program is equivalent to:

B = ABS(A(1) + A(2) + A(3))

The value of the dummy arguments of a FUNCTION
subprogram must not be redefined in the subprogram.
That is, they must not appear on the left side of an
arithmetic statement, in the I/0 list of a READ
statement, or as the index in a DO statement.
Variables that appear in COMMON may not be re-
defined either. For example, the following violates
this rule:

FUNCTION SAM (A, B,K)
COMMON J

J=J+1

K=Jd

The name of the function must appear at least
once as the variable name on the left side of an
arithmetic statement, in the I/O list of a READ state-
ment, or in the argument list of a CALL statement,

‘For example:

Calling Program:

ANS = ROOT1*CALC (X,Y,])

38

Function Subprogram:

FUNCTION CALC (A, B,J)
I=J*2
CALC = A**I/B

RETURN
END

In this example, the values of X,Y, and I are used
in the FUNCTION subprogram as the values of A, B,
and J, respectively. The value of CALC is computed
and this value is returned to the calling program
where the value of ANS is computed.

Type Specification of the FUNCTION Subprogram

The type of function may be explicitly stated by the
inclusion of the word REAL or INTEGER before the
word FUNCTION. For example:

REAL FUNCTION SOMEF (A, B)

RETURN
END

INTEGER FUNCTION CALC (X,Y,Z)

RETURN
END

NOTE: The function type, if explicitly stated, must
be defined in the calling program by use of the
INTEGER or REAL Type statement.

FORTRAN-supplied FUNCTION Subprograms

FORTRAN-gsupplied FUNCTION subprograms are
predefined FUNCTION subprograms that are part of
the system library. A list of all the FORTRAN-

supplied FUNCTION subprograms is given in Table 1.

Note that the type (real or integer) of each FUNCTION

subprogram and its arguments are predefined and
cannot be changed by the user.

To use a FORTRAN-supplied FUNCTION sub-
program, simply use the function name with the
appropriate arguments in an arithmetic statement.
The arguments may be subscripted or simple
variables, constants, other types of arithmetic
expressions,or other FORTRAN-supplied FUNCTION
subprograms.

Examples:

DISCR = SQRT(B**2-4. 0¥A*C)
A = ABS(COS(B))

The use of the SQRT function in the first example
causes the calculation of the square root of the
expression (B**2-4. 0*A*C), This value replaces
the current value of DISCR.

In the second example, cosine B is evaluated and
its absolute value replaces the current value of A.

The FORTRAN compiler adds an E or an F in
front of the names of FORTRAN-supplied FUNCTION
subprograms to specify required precision, The

Table 1. FORTRAN-supplied FUNCTION Subprograms

No. of Type of Type of
Argu- Argu- Func-
Name Function Performed ments ment(s) tion

SIN Trigonometric sine (argument 1 Real Real

in radians)
CcOs Trigonometric cosine (argu- 1 Real Real

ment in radians)
ALOG Natural logarithm 1 Real Real
EXP Argument power of e

(i.e..eX) 1 Real Real
SQRT Square root 1 Real Real
ATAN Arctangent 1 Real Real
ABS Absolute value 1 Real Real
IABS Absolute value 1 Integer Integer
FLOAT Convert integer argument

to real ' 1 Integer Real
IFIX Convert real argument to

integer 1 Real Integer
SIGN Transfer of sign (Arg] given

sign of Argz) 2 Real Real
ISIGN Transfer of sign (Argl given

sign of Argz) 2 Integer Integer
TANH Hyperbolic tongent 1 Real Real

prefix is added to any variable name that is the same
as the FORTRAN-supplied FUNCTION subprogram
names.

For detailed descriptions of the FORTRAN-
supplied FUNCTION subprograms, refer to the
appropriate Subroutine Library publication as
listed in the Preface).

SUBROUTINE SUBPROGRAM

The SUBROUTINE subprogram is similar to the
FUNCTION subprogram in many respects: the
naming rules are the same, they both require a
RETURN statement and an END statement, and they
both contain the same sort of dummy arguments.
Like the FUNCTION subprogram, the SUBROUTINE
subprogram is a set of commonly used operations;
but the SUBROUTINE subprogram is not restricted
to a single result, as is the FUNCTION subprogram.
A SUBROUTINE subprogram can be used for almost
any operation with as many results as desired.

The SUBROUTINE subprogram is called by the
special FORTRAN statement, the CALL statement
(see CALL Statement).

General Form;:

SUBROUTINE name (al, az, a3, .o an)

RETURN
END

where:

name is the subprogram name (see Subprogram
Names).

ag,ag, a3, ...a, are the arguments (arguments are
not necessary or may be located in COMMON),
Each argument used must be a nonsubscripted
variable name, array name, or other sub-
program name (except that it may not be a
statement function name).

The SUBROUTINE subprogram may contain any

FORTRAN statement except a FUNCTION statement,
another SUBROUTINE statement, a DEFINE FILE

Statements 39

statement, or any other statement in which the
SUBROUTINE mame is used as a variable in an
expression or list,

Because the SUBROUTINE is a separate sub-
program, the variables and statement numbers do
not relate to any other program (except the dummy
argument variables). The SUBROUTINE subprogram
may use one or more of its arguments to return
values to the calling program. Any arguments so
used must appear on the left side of an arithmetic
statement or in the I/0 list of a READ statement
within the subprogram.

The arguments may be considered dummy variable
names that are replaced at the time of execution
by the actual arguments supplied in the CALL state-
ment, The actual arguments must correspond in
number, order, and type to the dummy arguments.
None of the dummy arguments may appear in an
EQUIVALENCE statement in a SUBROUTINE sub-
program. When the argument is an array name, a
DIMENSION statement must appear in the
SUBROUTINE subprogram.

END AND RETURN STATEMENTS IN SUBPROGRAMS

Note that all of the preceding examples of sub-
programs contain both an END and at least one
RETURN statement. The END statement specifies
the end of the subprogram for the compiler; the
RETURN statement signifies the conclusion of a
computation and returns any computed value and
control to the calling program. There may, in fact,
be more than one RETURN statement in a FUNCTION
or SUBROUTINE subprogram. For example:

FUNCTION DAV (D, E, F)
IF(D-.1)2,3,2

DAV =....

no

RETURN
3 DAV =....

RETURN
END

40

SUBPROGRAMS WRITTEN IN ASSEMBLER
LANGUAGE

Subprograms can be written in the 1130 or 1800

Assembler Language to be called by a FORTRAN
program. In order to write such subprograms, the

user must know the linkage generated by the
FORTRAN Compiler and the location of the arguments.
The linkage to all three types of subprograms
(SUBROUTINE subprograms, FUNCTION subpro-
grams, FORTRAN-supplied FUNCTION subprograms)
is assembled and executed in the same way as the
Assémbler Language CALL statement (see the
appropriate Assembler Language publication
as listed in the Preface).

The arguments in the linkage are located zs
follows: At execution time, the Branch instruction
corresponding to the CALL is followed in storage
by a list of the addresses of the arguments.

Examples:
SUBROUTINE subprogram CALL:

CALL JOE (A, B, C)

Contents of core storage at execution:

BSI L (Address of Transfer Vector, which
contains address of Entry Point of JOE)

ADDRESS OF A

ADDRESS OF B

ADDRESS OF C

(First Word of Next Instruction.

Subprogram should return here.

When a SUBROUTINE subprogram CALL is used,
results of the computations within the subprogram
will be returned by means of the arguments. The
Assembler coded SUBROUTINE subprogram must
return control to the calling program at the next
location following the last argument in the list.

FUNCTION Subprogram reference or
FORTRAN-supplied FUNCTION
subprogram reference:

X =Y + JOE(A, B, C)

The underlined section of the above statement
produces the same result in core storage as the
SUBROUTINE subprogram example. It must be noted,
however, that the Assembler coded FUNCTION sub-
program must return a single result to the calling
program by means of the real number pseudo-
accumulator, referred to as FAC, or the machine
accumulator (A-register in the 1800), depending on
whether the function type is real or integer. That

is, assuming JOE is a real function in the above
example, the computed result of JOE(A, B, C) must
be placed in FAC by the Assembler coded subpro-
gram, since the contents of FAC will be added to

Y to yield X. (For a description of FAC, refer to
the Real Number Pseudo-Accumulator in the
applicable Subroutine Library manual.) The
argument list must not be used to return a result of
the subprogram computation.

Statements

41

In the table below, the FORTRAN statements
described in this publication are listed alphabetically
at the left. There is one column at the right for each

APPENDIX A, SYSTEM/STATEMENT CROSS-REFERENCE TABLE

of the IBM 1130 and 1800 programming systems
supported. An 'x'in a column indicates that the
statement on the left applies to the programming
system named at the top of that column.

1130

Card/Paper Tape

Systems

1130
Disk Monitor

Systems
(Version 1}

1130
Disk Monitor

Systems
(Version 2)

1800

Card/Paper Tape

Systems

1800

TSX/MPX
Systems

Arithmetic Statement
BACKSPACE

CALL EXIT

CALL LINK

CALL LOAD

CALL name

CALL PDUMP

CALL SSWTCH
Comments statement
COMMON
COMMON/INSKEL/
CONTINUE

DATA

DEFINE FILE
DIMENSION

DO

END

END FILE
EQUIVALENCE
EXTERNAL

FIND

FORMAT

FUNCTION

GO TO, computed
GO TO, unconditional
IF

INTEGER

INTEGER FUNCTION
PAUSE

READ, disk 1/O
READ, non-disk /O
READ, unformatted |/O
REAL

REAL FUNCTION
RETURN

REWIND

Statement Function Statement
STOP

SUBROUTINE

WRITE, disk 1/O
WRITE, non-disk 1/O
WRITE, unformatted /0O

x

x

X X X X X X X X

x

xX X X X

X X X X X X X X X X X X X

x

x

X X X X X

X X X X X X x x X X X X

X,

X X X X X X X X X X X X X X X X X

x

X X X X X X

x

X X X X X Xx

X X X X X X X X

X X X X X X X X X

x

xX X X X

X x

x
ES

x

x3
X=

. Cord version only.

Bw N —

. Simulated for unformatted disk in 1800 MPX
Both unformatted disk and magnetic tape operations are supported under 1800 MPX.

. Simulated in the 1130 Disk Monitor System, Version 2.

Appendix A. System/Statement Cross-Reference Table 43

APPENDIX B. COMPARISON OF USA STANDARD FORTRAN AND IBM 1130/1800 FORTRAN LANGUAGES

This appendix compares the USA Standard FORTRAN ,
as found in the following documents:

BASIC FORTRAN X 3.10-1966

with the FORTRAN language for the IBM 1130 Card/
Paper Tape Programming System, the IBM 1130 Disk
Monitor System, Version 1, the IBM Disk Monitor
System, Version 2, the IBM1800 Card/Paper Tape

FORTRAN X 3.9-1966 Programming System, and the IBM 1800 TSX and
MPX Systems,
1130 1800
UsA UsAa Card” 1130 1130 Card *
Standard, Standard, Paper Monitor, Monitor, Paper 1800
Full Basic Tope Version 1 Version 2 Tape TSX/MPX
Character Set
A-Z Yes Yes Yes Yes Yes Yes Yes
0-9 Yes Yes Yes Yes Yes Yes Yes
blank=--*/(}, . Yes Yes Yes Yes Yes Yes Yes
3 Yes No Yes Yes Yes Yes Yes
i1anostroohe) No No Yes Yes Yes Yes Yes
Statement Continuation
Lines 19 5 5 5 5 5 5
Numeric Statement
Label 115 1to4 Tto5 lto5 V1tob Tto5 Ttoh
Variable Name 1toé Tto5 lTto5 1tob l1to5 Tto 5 Tto5
Data Tyoes
Integer Yes Yes Yes Yes Yes Yes Yes
Real ™ Yes Yes Yes Yes Yes Yes Yes
Double Precision Yes No No No No No No
Comolex Yes No No No No No No
Logical Yes No No No No No No
Hollerith Yes No No No No No No
Real Constant
Basic Real Constant Yes Yes Yes Yes Yes Yes Yes
Integer Constant
followed by o
decimal exponent Yes No No No No No No
Double Precision Constant
Real Constant with
"D “inolace of " E Yes No No No No No No
Number of Array
Dimensions 3 2 3 3 3 3 3
Relational Exoressions Yes No No No No No No
Logical Ooerators Yes No No No No No No
Assigned GO TO Yes No No No No No No
Logical IF Yes No No No No No No
DO - Extended Ronge Yes No Yes Yes Yes Yes Yes
READ and WRITE
READ "WRITE (Formatted) Yes Yes Yes Yes Yes Yes Yes
READ "WRITE (Unformatted) Yes Yes No No Yes Yes Yes
Auxiliary 1 O Statements
REWIND Yes Yes N.A. N.A. Yes Yes Yes
BACKSPACE Yes Yes N.A. N.A, Yes Yes Yes
ENDFILE Yes Yes N.A. N.A. Yes Yes Yes
Formatted Records
Ist character not printed Yes Yes Yes Yes Yes Yes Yes
Soace before orinting
blank 1 fine Yes No Yes Yes Yes Yes Yes
0 2lines Yes No Yes Yes Yes Yes Yes
1 st line, new page Yes No Yes Yes Yes Yes Yes
* no advance Yes No Yes Yes Yes Yes Yes
Adjustable Dimension Yes No No No No No No

* Precision specified at compile time.

Appendix B. Comparison of USA Standard FORTRAN and IBM 1130/1800 FORTRAN Languages 45

EQUIVALENCE

1130 1800
USA USA Card/ 130 1130 Card/ 1800
Standard, Standard, Paper Monitor, Monitor, Paoer TSX/MPX
Full Basic Tape Version 1 Version 2 Tope
Common
Blonk Yes Yes Yes Yes Yes Yes Yes
Nomed Yes No No No No No Yes'
Array Size Declared Yes No Yes Yes Yes Yes Yes
External Statement Yes No Yes Yes Yes Yes Yes
Type Statement Yes No Yes Yes Yes Yes Yes
Dimension Infarmotion Yes No Yes Yes Yes Yes Yes
Daota Statement Yes No No No Yes No Yes
Format Types
A Yes No Yes Yes Yes Yes Yes
D Yes No No No No No No
£ Yes Yes Yes Yes Yes Yes Yes
F Yes Yes Yes Yes Yes Yes Yes
G Yes No No No No No No
H Yes Yes Yes Yes Yes Yes Yes
| Yes Yes Yes Yes Yes Yes Yes
L Yes No No No No No No
X Yes Yes Yes Yes Yes Yes Yes
Format
(Parenthesis Levels) 2 1 1 1 1 1 1
Scale Factor Yes No No, No No No No
Blanks in Numeric Conversions
High-Order Zero Zero Zero Zero Zero Zero Zero
Within the field Zero Error Zero Zero Zero Zero Zero
Real Conversions
Integer plus Exponent
E Type Exponent Yes Yes. Yes Yes Yes Yes Yes
D Type Exponent Yes No No No No No No
Format During Execution Yes No No No No No No
Statement Function must
precede the first
execurable statement and
fotlow the specification
statements Yes Yes Yes Yes Yes Yes Yes
Type Specification in a
Function Statement Yes No Yes Yes Yes Yes Yes
Function May Define or
Redefine its Arguments Yes No No No No No No
Transmit in a Call
Hollerith Arguments Yes Na No No No No No
External Subprogram
Names Yes Na Yes Yes Yes Yes Yes
Block Data Subprogram Yes Na No No No No No
Specification Statements
Precede first executable
Statement Yes Yes Yes Yes Yes Yes Yes
Must be ordered No Yes Yes Yes Yes Yes Yes
DIMENSION
COMMON

** Only the name INSKEL, specifying the Skeleton COMMON area, is allowed.

46

1130 1800
USA USA Card, 1130 1130 Cord
Stondord, Standard, Paper Monitor, Monitor, Paper 1800
Full Basic Tape Version | Version 2 Tape TSX/MPX
External Function may alter
variables in COMMON Yes No No No No No No
LANGUAGE FEATURES NOT IN USA STANDARD FORTRAN
1130 1800
Card/ 1130 1130 Cord
Paper Monitor, Monitor, Paper 1800
Feature Tooe Version | Version 2 Tape TSX/MPX
Mixed mode Arithmetic Yes Yes Yes Yes Yes
Disk Statements No Yes Yes No Yes
T format No No Yes No Yes
Literal Format code Yes Yes Yes Yes Yes
Expression of the
form AseB ««C Yes Yes Yes Yes Yes
Machine indicator tests Yes Yes Yes Yes Yes
Source characters
@ & %, <, % Yes Yes Yes Yes Yes

Appendix B. Comparison of USA Standard FORTRAN and IBM 1130/1800 FORTRAN Languages

47

APPENDIX C, 1130/1800 FORTRAN SOURCE PROGRAM CHARACTER CODES

PTTC/8 Hex PTTC/8 Hex
(U = Upper Case) ' (U = Upper Case)

Character IBM Card Code (L = Lower Case) Character IBM Card Code (L = Lower Case)
Numeric Characters* Alphabetic Characters*

0 0 1A (L) S 0-2 32 (U)
1 1 01 (L) T 0-3 23 (U)
2 2 02 (L) U 0-4 34 (U)
3 3 13 (L) v 0-5 25 (U)
4 4 04 (L) w 0-6 26 (U)
5 5 15 (L) X 0-7 37 (U)
6 6 16 (L) Y 0-8 38 (U)
7 7 07 (L) V/ 0-9 29 (U)
8 8 08 (L)

9 9 19 (L)

Alphabetic Characters* Special Characters*

A 12-1 61 (U) . 12-8-3 6B (L)
B 12-2 62 (U) < 12-8-4 02 (U)
C 12-3 73 (U) (12-8-5 19 (U)
D 12-4 64 (U) + 12-8-6 70 (U)
E 12-5 75 (U) & 12 70 (L)
F 12-6 76 (U) $ 11-8-3 5B (L)
G 12-7 67 (U) * 11-8-4 08 (U)
H 12-8 68 (U)) 11-8-5 1A (U)
1 12-9 79 (U) - 11 40 (L)
J 11-1 51 (U) / 0-1 31 (L)
K 11-2 52 (U) , 0-8-3 3B (L)
L 11-3 43 (U) % 0-8-4 15 (U)
M 11-4 54 (U) # 8-3 0B (L)
N 11-5 45 (U) @ 8-4 20 (L)
(0] 11-6 46 (U) ! 8-5 16 (U)
P 11-7 57 (U) = 8-6 01 (U)
Q 11-8 58 (1) Space Blank 10 ()
R 11-9 49 (U)

NOTES:

1. At compilation time, the following character 2. Only the 53 characters shown above can be
punches are treated as being equal, and the handled at execution time through A or H type
characters to the left of the "and" are printed. formatting in the FORTRAN Input/Output
Any invalid character is printed as an amper- routines. Any other character is replaced with
sand on all systems except 1800 TSX and MPX, a blank (space).

If the FORTRAN compiler in the TSX system uses 3. No transformations, such as & converted to +,
the card routine in the skeleton, a blank will be etc., are made through A or H conversion;
printed out. If the TSX FORTRAN compiler uses however, the & is converted to + when read
its own card routine, an ampersand is printed out. with I, E, or F conversion.

'and @) and <

+and & (‘and % * The term, alphameric characters, as used in this publication,

= and # includes Special Characters.

Appendix C. 1130/1800 FORTRAN Source Program Character Codes 49

APPENDIX D,

IMPLEMENTATION RESTRICTIONS

No FORTRAN statement can be compiled that 7.
contains more than 15 different subscript

expressions.

Certain very long FORTRAN statements cannot be 8.
compiled since they expand to a size that is too

long to be scanned. This expansion by the com- 9.

piler occurs in handling subscript expressions and
in generating temporary storage locations for
arithmetic expressions.

FORTRAN supplied subprograms, FLOAT, and
IFIX may not be used in EXTERNAL statements.
Within A, H, I, T, and X specifications in
FORMAT statements, the field width '"w'' may

not be greater than 145, 10.
Within E and F specifications the field width

"w'' may not be greater than 127 and the number
of decimal places specified for "d" may not be
greater than 31,

The repetition specification for groups and fields 11.

and the total width specification for a record may
not be greater than 145.

The size of COMMON specified in a mainline
program must be at least as large as the largest
COMMON specified in any subprogram,

A maximum of 75 files can be specified in
DEFINE FILE statements per program.

When standard precision is used, it is possible
for two quantities representing the same value to
yield a non-zero result when subtracted from one
another due to the extra eight bits of precision in
FAC not used by standard precision. The non-
zero result, although not reflected in the first
seven significant digits, will effect an IF state-
ment test.

Variables used in subscript expressions should
not be equivalenced to other variables which

may change their value. If they are equivalenced,
the new value assumed by the equivalenced
variable may be disregarded by the variable

in the subscript expression.
In a DATA statement, the maximum value of the

constant repeat index is 4095, i.e.
DATA V/i*d/< i<,

Appendix D. Nonstandard Items and Implementation Restrictions 51

APPENDIX E. SOURCE PROGRAM STATEMENTS AND SEQUENCING

Every executable statement in a source program

(except the first) must have some programmed path

of control leading to it. Control originates at the
first executable statement in the program and is

passed as follows.

Statement
a=>b

CALL

COMMON

CONTINUE

DATA

DEFINE FILE
DIMENSION

DO

EQUIVALENCE

EXTERNAL

FORMAT

Normal Sequence

Next executable statement

First executable statement of
called subprogram

Nonexecutable

Next executable statement or
first statement of a DO loop

Nonexecutable

Nonexecutable
Nonexecutable

DO sequencing, then the next
executable statement

Nonexecutable

Nonexecutable

Nonexecutable

Statement
FUNCTION
GO TO n

GO TO (ny,
nz,-..nm), i

IF(a)Sy, S2, S3

INTEGER
PAUSE
READ
REAL

RETURN

STOP
SUBROUTINE

WRITE

Normal Sequence

Nonexecutable

Statement n

Statement nj

Statement Sy if arithmetic a < 0
Statement 8, if arithmetic a =0
Statement Sg if arithmetic a >0
Nonexecutable

Next executable statement

Next executable statement
Nonexecutable

The first statement, or part of
a statement, following the
reference to this program.
Terminate execution

Nonexecutable

Next executable statement

Appendix E. Source Program Statements and Sequencing 53

ABS subprogram (see FORTRAN-supplied FUNCTION subprograms)
ALOG subprogram (see FORTRAN-supplied FUNCTION subprograms)
Alphabetic characters (Appendix C) 49
Alphameric data conversion 17
Arithmetic expressions 7
Ar ithmetic operation symbols (see arithmetic expressions)
Arithmetic statements 9
Arrays 5

arrangement in storage S

dimensioning (see DIMENSION statement)

element equivalence (see EQUIVALENCE statement)
ATAN subprogram (see FORTRAN-supplied FUNCTION subprograms)
A-conversion 25

BACKSPACE statement 21
Blank character
in formatted data (see X-type format)
in coded statements (see coding form)
Blank COMMON 30
Blank I/O records (see multiple field format)

CALL DATSW 15
CALL DVCHK 15
CALL EXIT 14
CALL FCTST 16
CALL LINK 14
CALL LOAD 14
CALL OVERFL 15
CALL PDUMP 15
CALL SLITE 15
CALL SLITET 15
CALL SSWTCH 15
CALL statement 13
CALL TSTOP 15
CALL TSTRT 16
Card character code s (Appendix C) 49
Carriage control 29
Coding form 1
Comments (see coding form)
COMMON statement 30
blank COMMON 31
named COMMON 30
with dimensions 31
Computed GO TO statement 10
Constants 3
integer 3
real 3
Continuation line (see coding form)
CONTINUE statement 12
Control statements 9
CALL 13
computed GO TO 10
CONTINUE 12
DO 10

INDEX

END 13
IF 10
PAUSE 13
STOP 13
unconditional GO TO 10
Conversion of alphameric data 25
A-conversion 25
H-coaversion 25
literal data enclosed in apostrophies 26
Conversion of numeric data 23
E-conversion 24
F-conversion 24
I-conversion 23
Coanversion of multiple subscripts to single subscripts 33
COS subprogram (see FORTRAN -supplied FUNCTION subprograms)

Data conversion
alphameric 25
numeric 23
(see also FORMAT statement)
Data input to the object program 29
DATA statement 33
DATSW subprogram (see machine and program indicator tests)
DEFINE FILE statement 34
DIMENSION statement 30
Disk 1/O statements 18

FIND 19
READ 19
WRITE 19

DO statement 10
increment 11
index 11
initial value of the index 11
nesting 12
range limit 11
restrictions 12
test value 11
Dummy arguments (see subprogram statements)
DVCHK subprogram (see machine and program indicator tests)

END FILE statement 21
END statement 13
END statement in subprograms 40
EQUIVALENCE statement 32
(see also conversion of multiple subscripts to single subscripts)
EXP subprogram (see FOR TRAN-supplied FUNCTION subprograms)
Explicit specification of type
type statement 29
variable types 4
Expressions 7
evaluation 7
mode 7
operators 7
rules for construction 7

Index S5

EXTERNAL statement 30
E-conversion 24

FCTST subprogram (see machine and program indicator tests)
Feature requirements for compiling machine iii |
FIND statement 20

FLOAT subprogram (see FORTRAN -supplied FUNCTION subprograms)

FORMAT statement 22
carriage control 29
conversion of alphameric data 25
conversion of numeric data 23
data input to the object program 29
multiple field format 28
T-format code 27
X-type format 27
FORTRAN -supplied FUNCTION subprograms 38
FUNCTION subprogram 37
Functions 36
F-conversion 24

GO TO statement 10
computed 10
unconditional 10

Hierarchy of arithmetic operations (see arithmetic expressions)
H-conversion 25

IABS subprogram (see FORTRAN -supplied FUNCTION subprograms)
Identification/sequence number field (see coding form)
IF statement 10
IFIX subprogram (see FORTRAN-supplied FUN CTION subprograms)
Implementation restrictions (Appendix D) 51
Implicit specification of type
type statement 29
variable types 4
Implied DO loops in 1/O lists (see indexing 1/O lists)
Increment of a DO statement 11
Index of a DO statement 11
Indexing 1/O lists 20
Initial value of the index of a DO statement 11
Input datu to the object program 29
Input data conversion (see FORMAT statement)
Input/Output devices 16
Input/output statements 16
disk 1/0 19
FORMAT 22
manipulative 1/0 21
non-disk I/O 17
unformatted I/O 20
INSKEL COMMON (see named COMMON)
Integer constants 3
Integer mode (see arithmetic expressions)
INTEGER statement 29
Integer variables (see variable types)
ISIGN subprogram (see FORTRAN -supplied FUNCTION subprograms)
1/0 lists (see input/output statements)

56

Literal data conversion 26
Logical unit numbers 22

Machine and program indicator tests 15
CALL DATSW 15
CALL DVCHK 15
CALL FCTST 16
CALL OVERFL 15
CALL SITE 15
CALL SLITET 15
CALL SSWTCH 15
CALL TSTOP 15
CALL TSTRT 16
Machine configuration of compiling machine
Manipulative I/O statements 21
BACKSPACE 21
END FILE 21
REWIND 21
Mixed mode (see arithmetic expressions)
Mode of expressions 7

integer 7
mixed 7
real 7

Multiple field format 28

Named COMMON 31
Names

subprogram 36

variable 4
Nesting of DO statements (see DO statement)
Nonstandard items (Appendix D) 51
Non-disk 1/0 statements 17

READ 17

WRITE 18
Numeric characters (Appendix C) 49
Numeric data conversion 23

Object program input 29
Order of arithmetic operations 7
Order of specification statements 29

iii

Output data conversion (see FORMAT statement)

OVERFL subprogram (see machine and program indicator tests)

Paper tape character codes (Appendix C) 49
PAUSE statement 13

Range of a DO statement 11
READ statement
disk I/O 19
non-disk 1/0 17
unformatted I/O 20
Real constants 3
Real mode (see arithmetic expressions)
REAL statement 29
Real variables (see variable types)
Restrictions on DO statements 12

RETURN statement 40
REWIND statement 21

Sequence number/identification field (see coding form)
Sequence of source statements (Appendix E) 53
Sequence of specification statements 29
SIGN subprogram (see FORTRAN ~-supplied FUNCTION subprograms)
Simulated machine indicators (see machine and program indicator
tests)
SIN subprogram (see FORTRAN-supplied FUNCTION subprograms)
Skeleton COMMON (see named COMMON)
SLITE subprogram (see machine and program indicator tests)
SLITET subprogram (see machine and program indicator tests)
Source program character codes (Appendix C) 49
Source program statements (Appendix E) 53
Special CALLs 14
CALL LINK 14
CALL LOAD 14
CALL PDUMP 15
machine and program indicator tests 15
Special characters (Appendix C) 49
Specification statements 29
COMMON 30
DATA 33
DEFINE FILE 34
DIMENSION 30
EQUIVALENCE 32
EXTERNAL 30
type (REAL, INTEGER) 29
SQRT subprogram (see FORTRAN -supplied FUNCTION subprograms)
SSWTCH subprogram (see machine and program indicator tests)
Statement number (see coding form)
Statements 9
arithmetic 9
control 9
input/output 16
specification 29
subprogram 35
(see also coding form)
Statement/system cross-reference table (Appendix A) 43
STOP statement 13
Subprogram names 36

Subprogram statements 35
END 40
FUNCTION 37
RETURN 40
statement function definition 36
SUBROUTINE 39
Subprograms
FORTRAN -supplied FUNCTION 38
FUNCTION 37
statement function 36
SUBROUTINE 39
SUBROUTINE subprograms 39
Subscript forms 6
Subscripts 5
Subscripted variables 5
System/statement cross-reference table (Appendix A) 43

TANH subprogram (see FORTRAN-supplied FUNCTION subprograms)
Test value of a DO statement 11

TSTOP subprogram (see machine and program indicator tests)
TSTRT subprogram (see machine and program indicator tests)

Type statements (REAL, INTEGER) 29

T-format code 27

Unconditioned GO TO statement 7
Unformatted I/O statements 20

READ 20

WRITE 21
Unit record sizes (see multiple field format)

Variables
names 4
subscripted S

types 4
WRITE statement
disk-1/0 20

non-disk I/0O 18
unformatted I/O 21

X-type format ' 27

Index 57

C26-3715-3

TSI

L3

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

*Y*STN W payund QO8I/0£TT WAI

€-G1.€-920

READER'S COMMENT FORM

IBM 1130/1800 Basic FORTRAN IV Language Form C26-3715-3

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes No
® Does this publication meet vour needs? J O
¢ Did vou find the material:
Easy to read and understand? OJ [
Organized for convenient use? O] O
Complete? OJ]
Well illustrated? | O
Written for your technical level?] O
® What is your occupation?
® How do you use this publication?
As an introduction to the subject? O As an instructor in a class? []
For advanced knowledge of the subject? | As a student in a class?]
For information about operating procedures? [] As a reference manual? O

Other
® Please give specific page and line references with your comments when appropriate.

COMMENTS

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C26-3715-3

YOUR COMMENTS PLEASE. ..

This SRL bulletin is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys-
tem should be directed to your IBM representative or to the IBM sales office serving your

locality.

FIRST CLASS
PERMIT NO. 1359

WHITE PLAINS, N.Y.
]
]
]
BUSINESS REPLY MAIL
I
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

IR
|
]

POSTAGE WILL BE PAID BY...
L]
]
IBM Corporation —
112 East Post Road R
. . L]

White Plains, N. Y. 10601
I
I
Attention: Department 813 —
]
Fold Fold!

BV

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International]

sessessasssce

seesssccsansasnas

eseee

cevesnens

sessevscstensnenes

eesevesesee

‘V'STN Ul palulld 008T/0€T1 WAl

€-974€-920

	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	replyA
	replyB

