
Systems Reference Library

IBM 113D Assembler Language

File No. 1130-21
Form C26-5927-2

This publication contains the information necessary to write
programs in the IBM 1130 Assembler language. Included are rules
for statement writing, mnemonic codes and descriptions of operands,
and descriptions of the instructions used to control the Assembler
program.

PREFACE

This manual describes the IBM 1130 Assembler
language and defines the programming rules. It is
intended as reference material for the writing of
an assembler source program and the accomplish­
ment of the steps required to produce the resulting
object program. For those without programming
experience or a knowledge of the principles involved,
the IBM publication, Introduction to IBM Data
Processing Systems (Form F22-5517), is suggested
as preliminary reading.

For those without experience involving
different number systems, i.e. , binary and hexa­
decimal, the publication IBM Student Text: Number
Systems (Form C20-1618) is recommended.

The reader should also be familiar with the
following: IBM 1130 Functional Characteristics
(Form A26-5918) and IBM 1130 Computing System,
Input/Output Systems (Form A26-5890).

This publication is oriented towards the 1130
Card/Paper Tape Programming System which

Second Edition

This edition is a reprint of C26-5927-l and incorporates changes
released in Technical Newsletter N26-0554, dated March 10, 1966.

includes the basic assembler programs. The
assembler language is also valid for the 1130 Moni­
tor Programming system and a section on special
Monitor statements is included. The Monitor
System is described in the publication, IBM 1130
Monitor System Specifications (Form C26-5940).

The operating procedures for the 1130 Card/
Paper Tape Assembler are described in the publica­
tion, IBM 1130 Card/Paper Tape Programming
System Operator's Guide (Form C26-3629).

MACHINE REQUIREMENTS

The minimum machine configuration for assembling
programs with the IBM 1130 Card/Paper Tape
Assembler is as follows:

IBM 1131 Central Processing Unit, Model 1,
with 4096 words of core storage
IBM 1442 Card Read Punch, or IBM 1134 Paper
Tape Reader and IBM 1055 Paper Tape Punch.

Significant changes or additions to the specifications contained in this publication will

be reported in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or

to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's comments. If the form

has been removed, comments may be addressed to IBM Corporation, Programming

Publications, Department 452, San Jose, California 95114.

© International Business Machines Corporation 1966

GENERAL DESCRIPTION ••••••••••••••••••••••••••••••••••

Introduction ••
Components of the IBM 1130 Assembler ••••••••••••••••••
Features of the Assembler ••••••••••••••••••••••••••••• •

SYMBOLIC LANGUAGE • 3

Mnemonic Concept • 3

Format of Statements • 3

Statement Writing ••••••••••••••••••••••••••• , • • • • • • • • 7

Location Assignment Counter • 7

Relative Addressing • , •••• , ••••••••••••••••• , ••• , • • • • • • 8
Self-Defining Values •• , •• , ••• , , • , , • , ••••• , ••••• , • • • • • • 8
Expressions • , • , , ••••••••••••••••• , • • • • • • • • • • • • • • • • • • • 9

MACHINE-INSTRUCTION STATEMENTS , • , , • • 13

Mnemonics , , , •• , •••• , ••••••• , ••• , , , • , , ••••••••• , , , , • 13

iii

CONTENTS

ASSEMBLER INSTRUCTIONS ••••••• , • 15

Program Control Statements ••••••••••••••••••• • • • • • • • • • 15

Data Definition Statements ••••••••••••••••••••••••••• • 17

Storage Allocation Statements • 20
Symbol Definition Statement • 20

Program Linking Statements • 21

MONITOR ASSEMBLER ST A TEMENTS • 25

APPENDIX A. CHARACTER CODE

SUMMARY ••••••••••••••••••••••••••••••• •••••••••••••• 28

APPENDIX B. HEXADECIMAL-DECIMAL

CONVERSION CHART •••••••••••••••••••••••• •• • •• • •• • • • 33

INDEX ••••••••••••••••••••••••• ,, •••••••••••••••••••••• 35

INTRODUCTION

The IBM 1130 Assembler language, while similar in
structure to machine language, replaces binary in­
struction codes with mnemonic symbols and uses
labels for other fields of an instruction. Other f ea­
tures, such as pseudo-operations, expand the pro­
gramming facilities of machine language. Thus,
the programmer has available, through an assem­
bler language, all of the flexibility and versatility of
machine language, plus facilities that greatly reduce
machine language programming effort.

COMPONENTS OF THE IBM 1130 ASSEMBLER

The IBM 1130 Assembler has two parts: the sym­
bolic language used in writing a program and the
assembler program that converts the symbolic
language into machine language. An additional com­
ponent is a library of relocatable input/output,
arithmetic, and functional subroutines.

Symbolic Language

Symbolic language is the notation used by the pro­
grammer to write (code) the program. A program
written in symbolic language is called a source pro­
gram. It consists of systematically arranged
mnemonic operation codes, special characters,
address, and data, which symbolically describe the
problem to be solved by the computer.

The use of symbolic language:

1. Makes a program independent of actual machine
locations, thus allowing programs and routines
to be relocated and combined as desired.

2. Allows routines within a program that can be
written independently and that cause no loss of
efficiency in the final program.

3. Permits instructions to be added to or deleted
from a source program without the user having
to reassign storage addresses.

Assembler Program

The assembler program (processor), supplied to
the user by IBM in either paper tape or punched
card form, converts (assembles) a symbolic-language
source program into a: machine-language program.

GENERAL DESCRIPTION

The conversion is one for one - that is, the assem­
bler produces one machine-language instruction for
each symbolic-language instruction.

The IBM 1130 Assembler is a two-pass program.
The processor is loaded into the computer and is
followed by the first pass of the source program.
During the first pass, the source statements are
read and a symbol table is generated. During the
second pass, the source program is read again and
the object program and/ or error indications are
punched into the first 20 columns of each source card.
If paper tape is used, the second pass results in the
punching of a new tape that contains both source state­
ments and corresponding object information. Both
card and tape object programs must be compressed
(via a Compressor Program supplied with the assem­
bler) into a relocatable binary deck (or tape) before
they can be loaded into core storage for execution.
The output from the second pass is called the list
deck (or tape) and can be used to obtain a program
listing of source statements and corresponding object
statements.

Subroutines

A library of input/output, arithmetic, and functional
subroutines is available for use with the IBM 1130
Assembler.

The user can incorporate any subroutine into his
program by simply writing a call statement ref erring
to the subroutine name. The assembler generates
the linkage necessary to provide a path to the sub­
routine and a return path to the user's program. The
ability to use subroutines simplifies programming
and reduces the time required to write a program.

A description of available subroutines is con­
tained in the publication IBM 1130 Subroutine Library
(Form C26-5929).

FEATURES OF THE ASSEMBLER

The significant features of the IBM 1130 Assembler
are summarized below. More detailed explanations
are given later in this bulletin.

Mnemonic Operation Codes: Mnemonic operation
codes are used for all machine instructions instead
of the more cumbersome internal binary operation
codes of the machine. For example, the Subtract

General Description 1

instruction can be represented by the mnemonic, S,
instead of the machine operation code, 10010.

Symbolic References to Storage Addresses: Instruc­
tions, data areas, and other program elements can
be referred to by symbolic names or actual machine
addresses and designations.

Automatic Storage Assignment: The assembler
assigns consecutive addresses to program elements
as it encounters them. After processing each ele­
ment, the assembler increments a counter by the
number of words assigned to that element. This
counter indicates the storage location available to
the next element.

Convenient Data Representation: Constants can be
specified as decimal digits, alphabetic characters,
hexadecimal digits, and storage addresses. Conver­
sion of the data into the appropriate machine format
of the 1130 System is performed by the assembler.
Data can be in a form suitable for use in fixed-point
or floating-point arithmetic operations.

Renaming Symbols: A symbolic name can be equated
to another symbol, so that both ref er to the same

2 1130 Assembler Language

storage location. This makes it possible for the
same program item to be referred to by different
names in different parts of the program.

Relocatable Programs: The assembler can produce
object programs in a relocatable format; that is, a
format that enables programs to be loaded and exe­
cuted at storage locations different from those
assigned when the programs were assembled.

Assembler Instructions: A set of special instructions
to the assembler is included in the language. Some
of the features described in this section are imple­
mented by these instructions.

Program Listings: For every assembly, the user
can obtain a program listing. This listing can be
produced either off-line on an IBM 407 or similar
device, or on-line by the use of an IBM-supplied
utility routine.

Error Checking: Source programs are examined by
the assembler for errors arising from incorrect
use of the language. Where an error is detected,
a coded warning message appears in the program
listing.

MNEMONIC CONCEPT

Symbolic programming may be defined as a method
whereby names and symbols are used to write a pro­
gram. The symbolic language includes a standard
set of mnemonic operation codes. Mnemonic opera­
tion codes are easier to rememberthan machine lan­
guage codes because they are usually abbreviations
for actual instruction descriptions. For example:

Description

Add
Execute I/0

Mnemonic

A
XIO

Each IBM 1130 machine instruction has a cor­
responding mnemonic operation code. In addition,
there are some mnemonic codes that assign storage
and others that allow the user to exercise control
over the assembly process.

FORMAT OF STATEMENTS

A source program consists of a sequence of state­
ments punched into cards or paper tape. These
statements can be written on a standard coding form
(X26-5994), provided by IBM. The information on
each line of the form (Figure 1) is punched into one
card or paper tape record. The position numbers
shown on the form correspond to the card columns.
If paper tape is used, the first character of each tape
record corresponds to column 21. Space is provided
at tl;le top of the coding form to identify the program;
however, none of this information is punched into
the statement cards.

Statement Fields

An assembler statement is composed of one to seven
fields: label field, operation field, format field, tag
field, operand field, comments field, and
identification-sequence field.

Label Field (Columns 21-25)

The label field represents the machine location of
either data or instructions. The field may be left
blank, may contain an asterisk in column 21, or

SYMBOLIC LANGUAGE

may be filled with a symbolic address, left-justified
in the field. Only data or instructions that are re­
ferred to elsewhere in the program need a label. A
label that is not further referred to is not an error.

A label can consist of up to five alphameric
characters, beginning at the leftmost position of the
label field. A label is always a symbol and must
therefore conform to the rules for symbols (see
Symbols). The example below shows the symbol
ALPHA used as a label.

Label Operation F T

21 25 27 30 32 33 35 40 •5

AL PJiA STO A.N. _J_~Xi_P. R. E. 5-i~J_J_Q_ N.

...J. .l I I I _l i -~ I _l _1_ _1 _I i

If the label field is left blank, it is ignored by
the assembler and has no effect on the assembled
program. If column 21 contains an asterisk (*), the
entire statement is treated as comments and appears
only in the listing. If the field contains a symbolic
name (label), and the statement represents a standard
machine language operation (Add, Store, etc.), the
value assigned to the label is the address of the
assembled instruction, which is equal to the value
of the Location Assignment Counter (see Location
Assignment Counter) at the time the statement is
encountered by the assembler. Values assigned to
labels of the various assembler instructions are
specified in the section entitled Assembler
Instructions.

The best labels to select are those that are
mnemonically descriptive of the area or instruction
to which they are assigned. Labels that have an
obvious meaning provide easily remembered refer­
ences for the original programmer and assist others
who may assume responsibility for the program.

Operation Field (Columns 27-30)

Each machine instruction and assembler instruction
has a unique mnemonic operation code associated
with it. When a particular operation is to be repre­
sented, its mnemonic code must be punched, left­
justified, in columns 27-30 of the source statement
card.

Symbolic Language 3

IBM
'~

IBM 1130 Assembler
Coding Farm

form X26-5994
Printed in U.S.A.

Program---------------------- Dote-------

Programmed by -------------------- Page No. __ of __

Lobel Operation F T Operands & Remarks Identification

21 25 27 30 32 33 35 40 45 50 55 60 65 70 75 BO

h _l I 1 _]_ I I _l _LI I I I _L _J_ _L _L I _l 1 1

_J _I ..l _I _I I I _J _J _J l _I 1 I ...1 -1 _J _L _I I I _J ...1 _J _J _L I ...1 _l -1 -1 _L I _J _J 1 _J

I _l I I ...1 I I I I _l _l _]_ I I ...1 _]_ ...1 _l I I _l ...1 _ _L I I I _l I I

_l _I _J _J ...1 _]_ _J I _!__Lii I I l_l_l_J__l_l I l_L...1...1...l_L I I _l ...1 ...1 _J _l I _l I _I I I

_L _L _l I I _L 1 I ...1 I I _L -1 ...1 I I I I I _l _L I I I _L _]_ _L

L I I
':

_l I _]_ I I I I ...1 I I _L ,l _L I 1 _L I _L _L _L -1

1 I _J_ -• _l I I I I IL ..l _J_ I _]_ I I I _l I I I I ...1 _1 I I _L I I I 1 . l I I I I -1 1 I I I I

-1 .-1 _L _1 _J _J_ ..l _J _J _J I _J_ _L _l _ 1 I 1 I _J _l _J I l 1...l...l.-1...1LI I 1...l.-1.-1-1 I I _l_!_l 1-1 1 I

_J _J _J_ _J_ _J ...1 _L -1 -1 _L I _J _l_L_l_t 11 l_l_!__L...1-1Il_L_J__j__J_L_L1.1...1...1...1-1...ll _J__l_l_L_l I I

f I IL ...1 ...L I ...1 _J_ _J I I _L I 1 I _l l I _J_ I 1

_J ...L _]_ _J_ ...L _L > _l _]_ _L _l I l_L_L_!__l...1 II l_l...1...L-1.-1 t l_l _J__l _J__j__J _ _j ...1 _l_j__L _L_lL .-1 _l ..1. _J_ I I

>
L _j I I _LI -1 I _l_ _j_ I I _L .J. I_ I I 1 l I ...1 I ...1 I _l_ _l_

: > _JL ...1 I-'L _J _L _l _I I _lL-1-1 I l_l_J...J.__J _l _l _J _J_ -1 _L I

I/'
....L _l_l_L_J I _I

_J _J _J I -1L _J _J _J -• _J_ _J__J__l_L__t-1 l_l_L_J_l_ll l_L_J__J___J_l__t-1-1_l_j__L_l_J_ I
i::c

',, b :
_J_j_l_l_J (_J_

...1 I .-1 I I _l I I I _J__j__J_ll_J___llt I t .L ...1 .J. _J_ I I I L ...1 I I F
I >

_l_J__l_l_J_l_J_

.J. _J_ I _L I _J_ I I l I I \\ ...L _l _J_ I

l 1ii _]_ I .:< _]_ < _J_ _]_ I I I _I_ 1 1 I _J_ _]_ I I I ...L l _I 1 1 _l I I I
hi

-:,:- 1·:',''
_L _L __1_ 1 I I

I 1 .L ...1 _L _l__l_..!.L...ll_l_.J..J.iL.L.-11 l_l__L_L_L.-11 l_L_l_L_L_!_...1.l-1_l.L_l_-1_L_I_
p

_,,,.: 1>
..1. _L_j_ _L ...1 I I

-1 _L _I _l _J_ _J _J_ I _J_ ...1 1 I _J_ I I _J __l I I _J_ _J_ I [T _1_ ...L _J_ _l -1 1 I
,,,,_, l_J I _L ...L ...1 ...1.-1...1-1_1 I l_.l_...L.-1...11-1 I l_l_l_l_U I l_l_l.-1...1-1-1 1-1_l_L.-1-1.-1 l 1:/
/ [;l

_J_J__l__t_J_ J_l

...L _J_ _J _]_ _J_ _J_ _J _J I I _L _L ...1 .I _l I _J _l -1 I _J ...L ...1 _l I -1 _J _l .-1 _J I I> _L _J__j_ I _L I I

] 1 ...1 .-1 _L T I> _J_ I I _1_ 1I1 1 l_LJ_J_.J.l I l_L_L ti I 1 1 I _l _l I I I
I>

I
...1 I _I_ 1 1 1 1

] .L _l__L_L_l_L l_L.J._J__J__l_l_l! 1...1...1...LL...1 I l_J__l_l_j__L_.l_!_l_l_j__l_J__Ll
{

.J. _L ...l _L ...1 I I

lo::
L 1 I I ...1-1-1.i..J._L...l_L_l...L_l_L_l-1 l~_l...1-1..J.lt_L_L_l_l_L_L_!__ll-1 I l_!__l _L _L _l_ ...1 _l_ I _L

1 ...L _J_ -1-1-1-1_1 I L_l_J__J__l_J_1 I 1...1-1.-11-1 I l_J_.l__j__l_ll I _l _J -1 _J _l _l '·'' -1-1-11-1 I I

_J I ...1...L-1-1-1 IJ_l_l_.l__.l__!_-1Il_l__J_.l_.-1.-1_11_J_L_l_l.-1.-1ii...l...1 I _J_ _J r"' _J _J_ ...1 -1 _l I _L

Figure 1. Coding Form

Format Field (Column 32)

The format field specifies the type of machine in­
struction being represented and, in the use of short
(one-word) instructions, how the displacement field
is to be handled. Any one of four entries is per­
mitted: two for short instructions, one for a stand­
ard long (two-word) instruction, and one for an
indirectly-addressed long instruction. For con­
venience, these formats are referred to by the
character used to specify them, namely blank for­
mat, X format, L format, and I format.

also indicates that any expression in the operand
field be interpreted as the desired effective address
for the statement.

During execution of certain short instructions
the effective address is the sum of the displaceme~t
and the contents of the Instruction Address Register
(!AR). A blank format for such instructions causes
the assembler to subtract the current value of the
Location Assignment counter from the expression in
the operand field. Thus, when this result is added
to the IAR during execution of the instruction, the
correct effective address is obtained.

~lank Format. A blank in the format field (column
32) signifies a one-word instruction. Bit 5 of the
assembled instruction is set to zero. A blank

4 1130 Assembler Language

The effective address of one-word store Index
(STX) instructions is always obtained by adding the
displacement to the IAR.

The displacement of Load Index (LDX), Load
Status (LDS), WAIT, all shift instructions, and all
condition testing instructions is never added to the
!AR.

The effective address of all other one-word in­
structions is obtained by adding the displacement to
the !AR, if the instructions are not indexed; that is,
if column 33 is blank or zero.

A short instruction assembled with a blank for­
mat field must not be relocated at execution time by
an amount differing from the relocation increment
of the data referred to by that instruction.

If a short instruction of the kind relatively ad­
dressed to the !AR is to be moved, under program con­
trol, to a location different from the location at which the
instruction was assembled, the automatic subtraction
of the address counter from the displacement operand
value should be suppressed by use of the X format.

This requirement is not in conflict with the load­
time relocation process because the process shifts
the whole program, including instructions and refer­
ence data, to a memory area different from that for
which it was assembled. The relative distances
between instructions and data remain the same, and
the displacements remain correct.

In a relocatable assembly, the expression speci­
fying an operand relatively addressed to the !AR must
be relocatable so that the actual displacement is an
absolute 'quantity (see Expressions). If this rule is
not followed, a relocation error will be indicated.
Also, since displacements must lie in the range
-12810 to +12710, the value of the displacement­
specifying expression must not be more than 12710
greater, nor more than 12810 less than the address
of the next location after the instruction in which it
appears; otherwise, an addressing error will be in­
dicated. An example illustrating the blank format is
shown below:

Assume A= location 100010
B =location 105010

The value of the machine instruction counter
will be 100110 when instruction A is executed.
Therefore, the value computed by the assembler
for the displacement will be 4910•

In the case of an instruction which is not rela­
tively addressed to the !AR, the assembler interprets
the expression in the operand field as the desired
contents of the displacement field, without modifica­
tion. In this case, the operand specifying the dis­
placement must be absolute and must be in the range
-12810 to +12710, or relocation and addressing errors
result.

X Format. An X in the format field indicates to the
assembler that the related statement is to be assem­
bled as a short instruction. It further indicates that
any expression in the operand field is to be inter­
preted as the desired displacement value.

Consider the example illustrated in Figure 2;
the purpose of this instruction sequence is to change
the flow of a program by inserting a branch instruc­
tion in a location that previously contained an effec­
tive "no operation. " If the branch instruction at
BRCON were specified as MDX GO (i.e. , blank for­
mat), the assembler would compute the displacement
on the basis of the !AR value of 1101. (The !AR
would have a value of 1101 if the BRCON instruction
were executed where it was assembled.) However,
the programmer, knowing the instruction will be
executed at location SWTCH, computes the dis­
placement himself and specifies the X format.

L Format. If column 3 2 contains the character L, it
signifies a long (two-word) instruction. Bit 5 (F) of
the assembled instruction is set to 1. The operand
field expression, which may be relocatable or abso­
lute, is used to fill the second word (bits 16-31) of
the assembled instruction. A second operand may
be present, separated from the first operand by a
comma (,). This operand may be used in one of two
ways:

1. To specify symbolic condition codes for use with
BSC, BS! and BOSC instructions.

2. To specify an expression that has a value in the
range of -128 to +127 that is not relocatable.

This second operand yields bits to fill bit positions
8-15 of the assembled instruction.

I-Format. If column 32 contains the character I, it
signifies an indirectly addressed two-word instruc­
tion. Bit 5 and bit 8 are set to 1. In all other
respects an indirect instruction is treated exactly
as a long direct instruction. If a displacement
operand is specified, its high-order bit (bit 8) will
always be a one because this bit is also the indirect
flag bit.

Symbolic Language 5

label r ...
2s I<

Operation ... F

:31 I JS

Operands & Remarks

21 27 30 32 40 4S so SS 60 6S 70

l _l_ . . I/ I __l _l_ _1_ _l_ _l_ _j_ _j_ _i _j_ _i _i _J_ I ' I
· ..

I> I J._ __l __l _l_ _l _J._ __l _j_ __l _l _j_ _i __l __l __l _i _J_ I I I . . I _j_ _i _J_

I
I _l _l_ _l _J_ .l. _J __l _i _i ...1....1. I I I I I I I I I

__l . I I I I l_ _I _J_ __l __l _l ..L _j_ _J_ _l_ I _j__j__l__J_

ls.w,r,c 1-1 SL T__l 0_1_ E__lF F_1E_J_c_._r_l1_l_v_j_E_J_ _j_AJ_lo_l _._o....l.P_lE_t_T?i.AiT--11_lo__lA1_t_ i _J_ , , , , • , , , I

__l •_t_ I I I I I __l_j_L_l__l__L_J_t_L_l_t__l__i_I I I l

.
1 __l . __lL __l _l_ _I ...l _L_l__j__J__j__l__l__j__J__l__i..L..J..J..l...J..l..l.__l I I I I I I I I I

_L_l__l_I ._j_
r-- .···. I

..J. .l I __l _l_ .l. I l_J__l__l__i_L..l.l..l.~_Lll_L_i__i__l___LJ I 1--1

I l,D. I i~R1C O,N, aCifl A N G1E PR o.G~A_l_" _,F.J.L.J.o~w.J. _iA_t_-r_L __ls .w.T,c..i.H_i_ __l _._

IS,T,O ... S,W T,C Hi_. __l IJ_L_L_l_j__t

I I .
~ ._L

l_L_L_L _.l __l __l __I __I _J _l __l __I __l _l_ __I

I _J _j__j__j__.l _L _j__L_l___I _j__IL..l...L__t

_L _L __l . I _L ...I.. I ..J..-1. ..1

IR.RC ON MDX x IG.o - s w r.c H -_Lt I J

I I I I I I I I _I _i _L _i I l _i _I_ -1 _I_ _t_ _I_

Assume SWTCH =location 100010
GO =location 105010
BRCON =location 110010

Figure 2. Use of X Format

Tag Field (Column 33)

Column 33 is used to specify an index register if
one is required. The code in column 33 is the index
register number; i.e., 1= Index Register 1, 2= Index
Register 2, and 3 = Index Register 3. A zero or a
blank indicates that no index register is to be used.

If no tag is specified in an LDX, MDX, or STX
instruction, the IAR is used. The example below
shows an add instruction in its long form addressing
the core location whose address is zero plus the
contents of Index Register 2.

label

21

SUM

Operands and Remarks Field (Columns 35-71)

The operand field is used to specify subfields in in­
structions and constants. The content of the operand

L

L

Figure 3. One- and Two-Operand Statements

6 1130 Assembler Language

__I _l ..1 I I I

__l_l_J__l_l _.l I I I I I

__I _l_ __I _l __I _l_ I I I I I I I I

_I ..J. ..J. ..J. --• __I _L I _l_ _L _l_ _.l

_L_l _f __l__l_ l _L_J_ _L I I _l_ _L I

_l _I ..1 _l_ l _.l _j_ _j_ I I I _I_ _I _i_.l

field for the various instruction formats are de­
scribed under Format Field. Blanks must not appear
within the operand(s) except as character values or
in the EBC statements.

Some examples of one- and two-operand state­
ments are shown in Figure 3.

Remarks Field

Remarks are for the convenience of the programmer.
They permit lines or paragraphs of descriptive infor­
mation about the program to be inserted in the pro­
gram listing. Remarks appear only in the program
listing; they have no effect on the assembled object
program. Any valid characters (including blanks)
can be used as remarks.

The Remarks field must appear to the right of
the operand field and must be separated from it by
at least one blank.

Comments Field

The entire statement field can be used for comments
by placing an asterisk in column 21; the entire

statement is then treated as comments. The identifi­
cation-sequence field (columns 73-80) should not be
used for comments.

If it is necessary to continue comments on ad­
ditional lines, each line must have an asterisk in
column 21, as illustrated in Figure 4.

Identification-Sequence Field (Columns 73-80)

The identification-sequence field may be used for
program identification and statement-sequence num­
bers. It is limited to columns 73-80. The informa­
tion in this field normally is punched in every state­
ment card. The assembler, however, does not
check this field.

STATEMENT WRITING

Symbolic language statements are accepted by the
assembler only if they conform to the rules of syntax
presented in this section. Subsequent sections of this
publication deal with the format and content of the
specific types of assembler statements (machine in­
structions and assembler instructions). Instructions
of both types are formed by using the basic elements
described here. Many of the points introduced in this
section are covered more extensively in subsequent
sections.

Chara ct er Set

The following characters can be used in statements:

Monocase Alphabetics
Numerics
Special Characters

A through Z, $, #, @,
0 through 9
I*+ - = &1 1 < >
'.,:;()%-?
(blank)

The codes that the assembler accepts for these
characters are listed in Appendix A which also con­
tains additional codes which may be used in com­
ments statements, as character values, and as
alphameric constants. The+ and & special char­
acters may be used interchangeably as operators.

Symbols

storage areas, instructions, and other elements may
be given symbolic names for the purpose of referring
to them in the program. The symbolic name is called
a symbol. It can contain up to five characters.
While the first character of a symbol must be alpha­
betic, the remainder may be alphabetic, numeric, or
any combination of the two. No blanks or specfal
characters may be used. Any violation of these rules
is detected by the assembler and indicated as an
error in the program listing.

The following are valid symbols:
PUNCH START N

BC$#@ A2345 LOOP2
The following symbols are invalid, for the

reasons noted:

256B

RECORDAREA2
END 1

First character is not
alphabetic
More than 5 characters
Contains a blank

If a symbol is to be used as an operand, it must
be defined in the program by using it as the label of
a statement. Two types of label assignments are
allowed. In machine-instruction statements and cer­
tain assembler statements, the label is assigned an
address equal to the current value of the location
assignment counter. In the Equate Symbol statement
(see Symbol Definition statement), the label is
assigned the value specified in the operand of the
statement.

Symbol Table: For every program assembled, a
table of the symbols in that program is created.
This is the symbol table; each entry in the table
records the value and relocation property of a symbol.

All symbols defined in the program are entered
in the symbol table. Symbols that appear in the
label field of assembler instructions which do not use
labels (for example, ABS, END, ENT) are not placed
in the symbol table.

General Restrictions on the Use of Symbols: The
following restrictions are imposed on the use of
symbols:

1. A symbol may appear only once in a program
as the label of a statement. If a symbol is used
as a label more than once, only the first usage
is recognized. Each subsequent usage of the
symbol as a label is ignored and is noted as an
error in the program listing. In addition, any
reference to such a symbol is noted as an error.

2. The number of symbols that can be defined in a
program is restricted by the amount of core
storage available to the assembler (see 1130
Card/Paper Tape Programming System Opera­
tor's Guide (C26-3629).

LOCATION ASSIGNMENT COUNTER

The assembler maintains a counter to assign sequen­
tial storage addresses to program statements. This
counter is called the Location Assignment Counter.
It always indicates the next available address. As
each machine instruction is processed, the counter

Symbolic Language 7

Label Operands & Rernorb

Figure 4. Example of Comments Statement

is incremented by the number of words assigned to
that instruction. Certain assembler instructions
also cause the Location Assignment Counter to be
set or incremented, whereas others do not affect it
(see Assembler Instructions).

Location Assignment Counter Overflow: The maxi­
mum value of the Location Assignment Counter is
65535, a 16-bit value. If a program being assem­
bled causes the counter to be incremented beyond
65535, the assembler retains only the rightmost
16 bits in the counter and continues the assembly,
checking for any other source program errors. No
usable object program is produced. The user can,
however, still obtain a listing of the entire source
program.

RELATIVE ADDRESSING

Once an instruction has been named by a symbol in
the label field, it is possible for other instructions
to ref er to that instruction by using the same symbol.
Moreover, it is possible to refer to instructions pre­
ceding or following the instruction named by indica­
ting their positions relative to that instruction. This
procedure is referred to as relative addressing. A
relative address is, effectively, a type of expression
(see Expressions).

For example, in the sequence

control can be transferred to the second instruction
by either of the following instructions:

8 1130 Assembler Language

Label

21

By using relative addressing, it is also possible
to refer to a particular word within a block of re­
served storage. For example, the instruction

reserves a block of 50 words, in which BETA is
assigned to the first word in the block. The address
BETA +1 then refers to the second word, BETA +2
to the third word, and BETA +n to the (n+l)th word.

Relative addressing can also be effected by using
the current value of the Location Assignment Counter
in an operand. In symbolic language this value is
denoted by an asterisk (*). (See The Asterisk Used
as an Element.)

SELF-DEFINING VALUES

A self-defining value is an actual machine value or
a bit configuration.

Self-defining values can be used to specify such
program elements as data, masks, addresses, and
address increments. The type of representation
selected (decimal, hexadecimal, or character) de­
pends on what is being specified.

Decimal Values

A machine decimal value is an absolute number from
0 to 65535. It is assembled as its binary equivalent.
Some examples of decimal self-defining values are

500
17
7230

003
52324
1

If a number larger than 65535 is specified in address
arithmetic, the value is truncated modulo 65536;
that is, only the low order 16 bits of the binary value
are retained.

Hexadecimal Values

A hexadecimal value is an unsigned hexadecimal
number written as a sequence of digits. The digits
must be preceded by a slash (/). The hexadecimal
digits represent the 16 possible combinations of
four bits.

Each hexadecimal digit is assembled as its four
bit value. The hexadecimal digits and their bit
patterns are as follows:

0 - 0000 4 - 0100 8 - 1000 c - 1100
1 - 0001 5 - 0101 9 - 1001 D - 1101
2 - 0010 6 - 0110 A - 1010 E - 1110
3 - 0011 7 - 0111 B - 1011 F - 1111

The following are examples of hexadecimal,
self-defining values:

/FFFF (highest value)
/AB12
/F2
/379B

If more than four hexadecimal digits are speci­
fied in one sequence, only the four low-order digits
are retained by the assembler. If less than four
hexadecimal digits are specified, they are entered,
right-justified.

A table for converting decimal values to hexa­
decimal values is provided in Appendix B.

Character Values

A character value is a single character, preceded
by a period. A character value may be a blank, any
combination of punches in a single card column, or
a paper tape character that translates into the eight­
bit IBM Extended BCD Interchange Code. Appen­
dix A is a table of these combinations, their inter­
change codes and, where applicable, their printer
graphics. A period used as a character value is
represented as two periods in sequence, (i.e., .•).

Examples of character values are:

.A

. 1
• 2
.D
. (blank)

The same value can frequently be represented
by any one of the three types of self-defining values.
For example, the decimal value 196 can be expressed
in hexadecimal as /C4 and as a character, . D. The
selection of a particular type of value is left to the
programmer. Decimal values can be used for actual
addresses and input/output unit numbers, hexadeci­
mal values for masks, and character values for
data.

EXPRESSIONS

The term "expression" refers to symbols or self­
defining values used as operands, either singly or
in arithmetic combinations. Expressions are used
to specify the various fields of machine instructions.
They are also used as the operands of assembler­
instruction statements.

An expression has three components: elements,
terms, and operators.

Elements

The smallest component of an expression is an
element. An element is either a single symbol or
a single self-defining value. The following are
valid elements:

TMP
/1A6
.B
A

*
4

The Asterisk Used As an Element

When used as an element the asterisk is relocatable
and stands for the current value of the Location
Assignment Counter for the instruction in which it
appears (i.e. , the rightmost word of the current
instruction+ 1). Thus, the asterisk as an element
can have different values for different instructions.

Symbolic Language 9

The last instruction is a conditional tr an sf er to -·
location SUM and can be written

Label

21 2S 40 4S

+

Be sure the asterisk refers to the proper word when
it is used with a long instruction or in an area where
long instructions are present. In the previous exam­
ple, the BSC instruction will become two machine
language words after assembly. _Therefore, during
assembly of the BSC instruction, the Location As­
signment Counter cor~.tains a value one greater ~han
if the BSC were a shor,~ instruction.

Terms

A term can consist of a single element, two elements
separated by an asterisk (which denotes multiplica­
tion), or three elements separated by two asterisks,
etc. A term must begin with an element and end
with an element. It is not permissible to write two
elements in succession. The following are valid
terms:

TMP * FUNC * TAXY
A*4
X*Y*5
6 * 4096
3

Operators

An operator is a character that denotes an arithmetic
function. The recognized operators are + or & (plus
or ampersand), - (minus), and* (asterisk), denoting
addition, subtraction, and multiplication, respec­
tively. An operator must be used between two terms.
Two operators may not be used in succession.

There is no ambiguity between the use of the
asterisk as an element and the use of the asterisk
as an operator to denote multiplication because the

10 1130 Assembler Language

posit:lon of the asterisk always makes clear what is
meant. Thus, **10 means "the value of the Location
Assignment Counter multiplied by 10."

Evaluation of Expressions

From a symbolically written operand, the evaluation
procedure derives an integer value which can be used
as (1) a displacement value in a short instruction,
(2) an address in a long instruction, or (3) an absolute
numeric quantity.

An expression is evaluated as follows:

1. Each element is replaced by its numeric value.
2. Each term is evaluated by performhig the indi­

cated multiplications from left to right, in the
order in which they occur. In multiplication,
the low-order 16 bits are retained.

3. The terms are combined from left to right, in
the order in which they occur. If the result is
negative, it is replaced by its 2's complement.

Grouping of terms, by parentheses or otherwise,
is not permitted; however, this restriction can often
be circumvented. For example, the product of 25
times the quantity B-C can be expressed as

25 * B - 25 * C

Types of Expressions

In addition to evaluating expressions, the assembler
program must decide whether the expression is
absolute or relocatable. Without this information
the assembler would be unable to assign the proper
relocation indicator bits for use by the loading routine.

Rules for Determining the Type of Expression

The rules ~y which the expression type is determined
are:

• A symbol that is defined by means of the Location
Assignment Counter is a relocatable element.

• Decimal and hexadecimal integers and character
values are absolute elements.

• A relocatable element alone is a relocatable
expression.

• A relocatable element, plus or minus an absolute
element, is a relocatable expression.

• The difference of two relocatable elements is
an absolute expressiono

• A symbol that has been equated to an expression
(by means of the EQU assembler instruction)
assumes the same relocation property as that
expression.

These rules are clarified by the following example:
Assume that a programmer wishes to incorpor­

ate a table into a relocatable program, -and he knows
that he may later wish to add or delete items with­
out changing program references to the table. The
first step is to assign symbols to the first (lowest
addressed) word in,the table and to the location
immediately after the last (highest addressed) word
of the table. These symbols could be BGTBL and
ENTBL, respectively. Regardless of the number
of items in the table or of the number of later
additions or deletions, the number of words in the
table is always equivalent to the value of the ex­
pression ENTBL-BGTBL. This illustrates the rule
that the difference of two relocatable elements is an
absolute expression.

Expanding this example, assume the programmer
wishes to use a second table the same length as the
first. The first (lowest addressed) word of the
second table can be indicated by the symbol STBL.
Then, the location following the last (highest ad­
dressed) word of the second table can be indicated
by the expression

STBL + ENTBL - BGTBL

This address is subject to relocation; hence, the
expression is relocatable, following the rule that~
relocatable element plus or minus an absolute
element is a relocatable expression.

Procedure for Determining the Type of Expression

The following paragraphs describe the procedure
for determining expression type (absolute or
relocatable):

1. Discard any term that contains only absolute
elements.

2. Examine each term of the expression. If any
term contains more than one relocatable ele­
ment, the expression will yield a relocation
error.

3. Replace each relocatable element by the symbol
r, and replace each absolute element by its
valueo This yields a new expression which in"".'
volves only numbers and the symbol r.

4. Rewrite the expression in simplest form by
evaluating it. according to the address arithmetic
rules given above in the section, Evaluation of
Expressions.

If the result is an integer, the operand is absolute.
If the result is r, the expression is relocatable. If
the result contains r to any power other than one or
contains r with a coefficient other than one, the
operand does not have a well-defined relocation
property and will yield a relocation error. The
following examples illustrate this procedure.

NOTE: When the terms absolute symbol and reloca­
table symbol are used in text, they mean symbols
that refer to addresses.

Example 1: Consider the expression

4+3*TRANS-2*FUNC+COUNT

where TRANS and FUNC are relocatable symbols,
and COUNT is an absolute symbol. Discarding the
terms involving only absolute ele.ments leaves

3*TRANS-2*FUNC

This does not contain any illegal terms. Replacing
each symbol by the letter r results in

3*r-2*r

Evaluating this produces r·; therefore, the expression
is relocatable.

Example 2: Consider the expression,

2*3*TRANS-FUNC

This reduces to

2*3*r-r

or

5r

Symbolic Language 11

This is neither r nor a number; therefore, the
expression will cause a relocation error.

Example 3: Consider the expression,

A*2*R-A*A*R+5

where A is an absolute symbol, and R is a relocata­
ble symbol. The expression is absolute if the value
of A is zero or two and relocatable if the value of A
is 1. If the value of A is anything else, a relocation
error will result.

In the following examples, A, B, C, and D are
relocatable symbols, and J, K, L, M, and N are
absolute symbols.

Relocatable expressions:

A
A+J
A+B+C-D-*

l*A
250*A-249*B
lOO*A+50*B-75*C-74*D

Absolute expressions:

12345
A-B+C-D+5

O*A
500*A-400*B-lOO*C

12 1130 Assembler Language

Relocation Errors

If a source program contains an expression having in
it one or more of the following, that expression is
flagged as a relocation error.

o The negative (complement) of a relocatable
element

• An absolute element minus a relocatable element

o The sum of two relocatable elements

In the following examples, A, B, C, and Dare
relocatable symbols, and J, K, L, M, and N are
absolute symbols.

A+B
-A
15-*

(+2r)
(-lr)
(-lr)

A*B (r2)
2*A (2r)
5*A-6*A (-lr)

A+J+ M+ N+ B-C+ D+ L(+2r)

NOTE: In an absolute assembly headed by an ABS
statement (described later), all symbols and asterisk
values are defined as being absolute; therefore, no
relocation errors are possible.

All machine instructions can be represented symbol­
ically as assembler language statements. There are
two basic formats: short and long. However, with­
in each basic format, further variations are possible.

The symbolic format of a machine instruction
parallels, but does not duplicate, its actual format.
A mnemonic operation code is written in the opera­
tion field, and one or more operands are written in
the operand field. Comments can be appended to a
machine-instruction statement as previously ex­
plained.

Any machine-instruction statement can be named
by a symbol, which other assembler statements can
use as an operand. The value of the symbol is the
address of the leftmost word assigned to the assem­
bled instruction.

MNEMONICS

A list of all IBM 1130 machine language instructions
and their associated mnemonics is given in Table 1.

Condition-Testing Instructions (BSC, BOSC, BSI)

The machine instructions Branch or Skip on Condi­
tion (BSC), Branch Out or Skip on Condition (BOSC),
and the long form of Branch and Store Instruction
counter (BSI) use bits 10-15 of the displacement to
test any combination of six conditions associated with
the accumulator. When coding these instructions, the
user does not use an expression to specify the dis­
placement field, but, instead, writes a series of
unique characters, each of which represents one bit
of the condition-testing mask. These character
symbols may be written in any combination; the bits
they represent are combined by the assembler in a
logical OR fashion. The symbols and their repre­
sentations are:

Unique
Character

0 (Alpha)

c

E

+or&

z

Examples:

BSC

BSC

BSC

BSC

BSC L

BSC L

BSC L

BSC L1

BSI L

MACHINE-INSTRUCTION STATEMENTS

Bit Position

Condition Description Set to 1

Overflow Skip or do not_ branch 15
if Overflow indicator off

Carry Skip or do not branch 14
if Carry indicator off

Even Skip or do not branch 13
if bit 15 of acc. =O

Plus Skip or do not branch 12
if bit 0 of the acc. =O,

but not all bits of acc.
=O

Minus Skip or do not branch 11
if bit 0 of acc. =1

Zero Skip or do not branch 10
if all bits of acc. =O

+ Skip on plus condition

+- Skip on non-zero (plus or minus)

z- Skip on non-plus (zero or minus)

c Skip if Carry indicator off

EXIT,+ Branch to EXIT if not plus
(zero or minus)

EXIT,+ - Branch to EXIT if zero (not plus or
minus)

EXIT Unconditional Branch to EXIT

o, z+ Branch to the contents of XR 1 on
minus (not zero or plus)

SUER, 0 Branch and Store instruction counter
to SUER if Overflow is .Qll.

Machine-Instruction Statements 13

Table 1. Machine Inst:mction Mnemonics

Mnemonic

Load and Store

LD
LDD
LOX
LOS*
STO
STD
STX
STS

Arithmetic

A
AD
s
SD
M
D
AND
OR
EOR

Branch

BSI
BSC
Bosc 2
MDX

Shift

SLA*
SLT*
SLC*
SLCA*
SRA*
SRT*
RTE*

Input/Output

XIO

Miscellaneous 3
NOP*
WAIT*

*Valid in short format only.

OP Code
(Hexadecimal Representation) 1

coo
CBO

--600
200
DOO
DBO
6BO
2BO

800
BBO
900
9BO
AOO
ABO
EOO
EBO
FOO

400
4BO
4B4
700

100
108
lOC
104
lBO
188
lBC

OBO

100
300

lnstr~ction

Load ·Accumu later
Load Double
Load Index
Load Status
Store Accumulator
Store Double
Store Index
Store Status

Add
Add Double
Subtract
Subtract Double
Multiply
Divide
And
Or
Exclusive Or

Branch and Store Instruction Counter
Branch or Skip Conditionally
Branch Out or Skip Conditionally
Modify Index and Skip

Shift Left Accumulator
Shift Left Accumulator and Q Reg.
Shift Left and Count Accumulator and Q Reg.
Shift Left and Count Accumulator
Shift Right Accumulator
Shift Right Accumulator and Q Reg.
Rotate Right

Execute _l/O

No Operation
Wait·

1. The hexadecimal representation of the machine·operation code is derived from the instruction format in the manner shown below.
Bits 5, 6, 7, .10, and 11 are assumed to be zeros because they do not enter into the makeup of any operation codes.

2. Same as BSC with Bit 9 set to one.
3. An operand should not be specified.

Hexadecimal Characters

1st

I
0 1 2 3 4 5 6 . 7 8 9 10 11 12 13 14 15

OPCode __ ____,~lJ
Format (F) __________________ __,_

Index Tag bits (T) _________________ __,

IA bit, part of
displacement, or extension
of OP code ______________________ _,

Part of displacement,
or extension of OP code __________________ __.

Condition indicators,
or part of displacement ________________________ __.

14 1130 Assembler Language

Just as machine instructions are requests to the
computer to perform a sequence of operations during
program execution time, assembler instructions are
requests to the assembler to perform certain opera­
tions during the assembly. In contrast to machine­
iristruction statements, assembler-instruction state­
ments do not always cause machine instructions to
be included in the assembled program. Some, such
as BSS and BES, generate no instruction~ but do _
cause storage areas to be set aside for constants and
other data. Others (e.g., EQU) are effective only at
assembly time; they may or may not generate some­
thing in the assembled program. If nothing is gener~
ated, the Location Assignment 'Counter is not affected.

The following is a list of all assembler instruc­
tions permitted by the IBM 1130 Assembler.

Program Control

ABS - Absolute Assembly
UBR - Transfer Vector Subroutine
SPR - Standard Precision
EPR - Extended Precision
ORG - Define Origin
END - End of Source Program

Data Definition

DC - Define Constant
DEC - Decimal Data
XFLC - Extended Floating Constant
EBC - Extended Binary Coded Information

Storage Allocation
BSS - Block Started by Symbol
BES - Block Ended by Symbol

Symbol Definition

EQU - :Equate Symbol
Program Linking

ENT - Define Subroutine Entry Point
ISS - Define Interrupt Service Entry Point
ILS - Define Interrupt ;r..evel Subroutine
CALL ·- Call Subroutine (2-word call)
LIBF - Call Subroutine (1-word call)

PROGRAM CONTROL STATEMENTS

Program control statements are used to set the Lo­
cation Assignment Count~r to a specific value, to
define the end of a source prqgram, or to specify
whether a particular program is to be assembled as
absolute or relocatable. None of these assembler

_statements generate machine-language instructions
or constants in the object program.

ASSEMBLER INSTRUCTIONS

ABS - Assemble Absolute

An ABS statement is used to specify that a main pro­
gram is to be assembled as an absolute program.
An absolute program is o:r'ie in which the core loca­
tions used at execute time are the same as those
specified by the programmer in the source program.
The ABS statement is punched as shown below and
is then used as the first statement of a source pro­
gram.

21

. If the first (non-comment) statement of a source pro­
gram is not an ABS statement, the program will be
assembled as relocatable. In an absolute assembly
headed by an ABS statement, all symbols and aster­
isk values arE1. defined as absolute quantities; there­
iore; no relocation errors ~re possible. The
significance of relocatable and absolute assemblies
is explained in the following paragraphs.

Relocatable Assembly

Some programs assembled by the IBM 1130 Ass em -
bier are absolute; that is, the locations of assembled
instructions are known at assembly time and the lo­
cation on the listing is the actual location where a
particular word is loaded. However, subroutines
used by an absolute program must be in such a form
that they may be loaded at various locations; other­
wise, it would be necessary for the user to reassem­
ble the subroutines each time he assembled a main
program that req_uired them .. Therefore, all subrou­
tines and certain main programs should be assembled
relocatable.

Every relocatable program or subroutine pro­
duced by the IBM 1130 Assembler is assembled as
though it be gins at location zero. Since a job to be

· executed may contain several subroutines, it· is
obvious that they cannot all be loaded into locations
starting with location zero. In fact, no relocatable
program is ever loaded at location z.ero; instead,
each program is. relocated. The relocatable main
program is loaded into the first available location.
Subroutines are then loaded into successively higher
locations of core storage, each beginning with the

. Assembler Instructions 15

next even location after the last core storage loca­
tion used by the preceding subroutine, as indicated
on the end-of-program card. When a particular
program has been loaded, the address of the first
word is called the load address for that program.

Thus, the address in core storage actually oc­
cupied by an instruction of the program is the address
assigned to that instruction during assembly, plus
the load address of that program. To keep the pro­
gram self-consistent, the load address must be add­
ed to the address of many (but not all) 2-word in­
structions, and those constants whose values are
relocatable.

This process of conditionally adding the load
address is performed by the loading program before
execution and is called relocation. In relocating in­
structions, the loading program is guided by relo­
cation indicator bits that are inserted into the binary
object program cards when the program is com­
pressed following assembly.

Absolute Assembly

The programmer uses the ORG assembler statement
in his source program to specify the locations into
which the binary object program resulting from an
absolute assembly is loaded. The loader makes no
adjustment to any field during loading. Subroutines
are loaded into successively higher even-core loca­
tions following the end of the main program.

Remember that only main programs may be
assembled absolute; subroutines must be assembled
relocatable.

LIBR - Transfer Vector Subroutine

An LIBR statement is used as the first statement of
a subroutine to specify that the subroutine is to be
called by LIBF statements only (see Program­
Linking Statements). The absence of an LIBR state­
ment specifies that the subroutine is to be called by
CALL statements only. LIBR statements are for sub­
routines only, as ABS statements are for main pro­
grams only. An LIBR statement needs no operands.

SPR - Standard Precision and EPR - Extended
Precision

The SPR or EPR statement specifies that the pro­
gram (main or subroutine) in which it appears uses
standard precision or extended precision, respec­
tively, for arithmetic operations. If these state­
ments are included in the user's programs, the
loader ensures that main programs and subroutines
always match with regard to precision. Their use
is optional, however.

16 1130 Assembler Language

If used, the SPR or EPR statement must follow
the ABS or LIBR statement. If no ABS or LIBR
statement is used, the SPR or EPR statement is the
first statement in the program.

ORG - Define Origin

This assembler instruction is used to set the Location
Assignment Counter (i.e., the next location to be
assigned) to any desired value. In this way the pro­
grammer is able to control the assignment of storage
to instructions, constants, and data. If a Define
Origin statement is not the first entry in an absolute
source program, the processor begins the assign­
ment of storage at a location compatible with the size
of the applicable loader. A typical Define Origin
statement is shown below.

Lebel Operation F T

21 23 27 JO'''' 32 33 33 40 '3

O,R.G i 3.J_O 0 O_L _.1_ ..L _L _.1_ _L _L -1.. _L _.1_ _J_

I I _J_ _L _J_ _l__ _J_ _J_ _J_ _L _l__ _J_ _l_ _J_

The label, if used, is assigned a value equal to the
value of the Location Assignment Counter at the time
the statement is encountered in the source program.
(This assignment is made before the counter is
modified.) If any symbols are used in the expression,
they must have been previously defined. In a relo­
catable assembly, an absolute expression in the oper­
and field is considered a relocation error and the
statement is ignored.

Some examples of Define Origin statements are
given below:

If the label XYZ has been previously defined as
100010 the first entry directs the assembler to begin
the assignment of succeeding entries at location 1000.
The second entry directs the assembler to begin the
assignment of succeeding entries 50 core locations
beyond the location that has been assigned to the
symbol XYZ. The third entry directs the assembler
to begin the assignment of succeeding entries at the

address specified by the current address of the Lo­
cation Assignment Counter plus 50.

END - End of Source Program

An END statement is the last statement of a source
program; it indicates to the assembler that all state­
ments of the source program have been processed.
An END statement is also used to cause execution of
a main program to begin immediately after loading.
To do this, the END statement requires an operand
that represents the starting address of the program.
At the completion of loading, execution begins at the
address specified by the operand. For subroutines,
all entry points are specified by ENT statements
(described later); therefore, the operand of the END
statement for a subroutine is blank.

The following statements illustrate both types of
END statements.

Label

21

DATA DEFINITION STATEMENTS

Data Definition statements are used to enter data con­
stants into storage. The statements can be named by
symbols so that other program statements can refer
to the fields generated. Any type of data definition
statement can be used in standard or extended pre­
cision program.

DC - Define Constant

The Define Constant statement is for generating con­
stant data in main storage. Data can be specified as
characters, hexadecimal numbers, decimal numbers,
storage addresses or any valid expression. One 16-
bit word is generated for each DC statement. The
format of this statement is shown below:

Label

If a label is used, the address assigned to it is the
location of the generated data word and is equal to
the current value of the Location Assignment Counter.
Some examples of DC statements follow:

DEC - Decimal Data

The Decimal Data statement is used to enter binary
data, expressed in decimal form, into a program.
One DEC statement generates two 16-bit words of
binary information. The format of the DEC statement
is as follows:

Label

21 25

LA BEL EM

If a label is used, its value is equal to the current
value of the Location Assignment Counter if the cur­
rent value is even; if the current value is odd, the
label will be equal to the current value plus one. The
label is assigned to the leftmost word of the generated
constant. The types of data permitted in the operand
field are described in the paragraphs entitled Decimal
Data Items. An example of a DEC statement follows:

If the value of the Location Assignment Counter is
1000 when the DEC statement is encountered, the two
words in storage look like this:

01000
01001

Decimal Data Items

Contents in Hexadecimal Form

0000
0013

A decimal data item is used to specify, in decimal
form, two or three words of data to be converted into
binary form. Decimal data items are used in the

Assembler Instructions 17

operand field of DEC assembler statements. Three
types of decimal-data items are permitted: decimal
integers, floating-point numbers, and fixed-point
numbers. A floating-point decimal-data item can
also be used as the operand of an XFLC statement
that generates a 3-word constant. ·

Decimal Integers. A decimal integer is composed of
a series of numeric digits with or without a preceding
plus or minus sign. The allowable range of decimal
integers is -(23L1) to 23Li.

Examples

Decimal Integer
50

1535
'-3729

Stored As

0000003216
OOOOOSFF16
FFFFF16F16
{21s complemen_t)

Floating-Point Numbers. A floating-point number
has two components: a mantissa arid an exponent.

• Mantissa - The mantissa is a signed or unsigned
decimal number, which can be written with or
without a decimal point. The decimal point can
appear at the beginning, at the end, or wHhin
the decimal number. ·If the exponent (see below)
is present, the decimal point can be omitted,
in which case it is assumed to be located at the
right-hand end of the decimal number.

• Exponent - The exponent consists of the letter
E followed by a signed or unsigned decimal in­
teger. The exponent part can be omitted if the
mantissa contains a decimal point. If used,
it must follow the mantissa.

A floating-point number is converted to a nor­
malized, floating-point, bi_nary number. The ex-.
ponent part, if present, specifies a power of ten by
which the mantissa is multiplied during conversion.
For example, all of the following_ floating-point
numbers are equivalent and will be conve:i;-ted to the
same floating-point binary numbe·r.

4.500
45. OOE-1
4500E-3
. 4500El

In standard precision, the above flo~ting-point
numbers are converted and stored in two consecutive
storage locations as follows~

18 1130 Assembler Language

Word 1
4800

Word 2
0083

The DEC asseml?ler instruction stores floating­
point numbers in the standard precision floating­
point format described in the manual, IBM 1130
Subroutine Library (Form C26-5929).

Fixed Point Numbers. A fixed-point number can
have up to three components: a mantissa, an exponent,
and a binary-point identifier.

• Mantissa - The mantissa is the same as describ­
ed for floating-point numbers.

• Exponent - Th,e exponent is tJie same as describ­
ed for floating-point numbers.

• Binary-Point Identifier - This identifier consists
of the letter B, followed by a signed or unsigned
decimal integer. The binary-point identifier
must be present in a fixed-point number and
must come after the mantissa. If the number has
an exponent, the binary point identifier may
precede or follow the exponent.

A fixed-point number is converted to a fixed-
point binary number that contains an understood binary
point. The purpose of the binary-point identifier of
the number is to specify the location of this under­
stood binary point within the word. The number that
follows the letter B spe~ifies the number of binary
places in the word to the left of the binary point (that
is, the number of integral places in the word). The
sign bit is not counted. Thus, a binary-point identi­
fier of zero specifies a 31-bit binary fraction. B2
specifies two integral places and 29 fractional places.
B31 specifies a binary integer. B-2 specifies a binary
point located two places to the left of the leftmost bit
of the word; that is, the word would contain the low­
order 31 bits of binary fraction. As with floating­
point numbers, the exponent, if present, specifies a
power of ten by which the mantissa is multiplied during
conversion.

A fixed-point number preceded by a minus sign
is stored in 2's complement form.

The following fixed-point numbers all specify the
same configuration of bits, but not all of them specify
the same location for the understood binary point:

22.5B5
11.25B4
1125B4E-2

1125E-2B4
9B7El

All of the above fixed-point numbers are con­
verted to the same binary configuration, whose
hexadecimal representation is:

Word 1
5AOO

Word 2
0000

XFLC - Extended Floating Constant

The XFLC assembler instruction is used to introduce
into a program an extended precision floating-point
constant, expressed in three consecutive data words.
When assembled, this instruction produces a format
identical to the extended range floating-point format
described in the manual, IBM 1130 Subroutine
Library (Form C26-5929).

The format of the XFLC instruction is shown
below:

label I Operation [> F T
I

21 25 77 JO 32 33 35 .co 45

Opeo

so

LA 8.l.E..J..L [X..J..F L.l.C
£ F

F.J..L.l.O.l.A.l.T..J.. _.P O..J..1.l.N.l.T.l. .l.~U M _1

J _l I _J_ .l. _l_ _l_ _l .J.

The label is optional; if it is used, it is assigned to
the location of the leftmost word generated.

Some examples of the XF LC instruction are
shown below:

label • ·: Operation F T ·:

21 25 27 JO 32 33 . 35 .co 45

_.l. XFLC 0_1_. 5 3 I 2_1_5 _l_ .1 ..J..

.J. ...L
..

J .J. _J_ _J_

l=J.._O...LP_.1_T X/:LC -·- -_._o__J_. s 3 l_i_2 s .J._l_ ..J.. ...L

..J.. ...L ...L .J. _l_ :..L-1.. _J_ _J_ _l__..L _l_

l _l_
-,- X Fl C

5.i._.l.1..J..2_._~2_1_ .l. ...L _l_ ..J.. _J_ .J. ...L _L

l .l. _l_ _.l. _._ _l_ _J_ _L _l_ .J. _l _l_

The data (in hexadecimal form) generated by each of
thes~ examples is

1. Word 1 Word 2 Word 3
0080 4400 0000

2. Word 1 Word 2 Word 3
0080 BCOO 0000

3. Word 1 . Word 2 Word 3
008A 4000 0000

l

EBC - Extended Binary Coded Information

The EBC statement is used =to generate data words,
each consisting of two 8~bit characters in the Extend­
ed BCD Interchange Code (see, Appendix A). Up to 18
sixteen-bit words can be 'gener~ted with one EBC
statement. The format of the statement is shown
below:

~bel Operation F T

21 25 77 JO 32 33 35 .co 45

l 4.1..B..J _l_ E.l.BC .__1_A l_if>...Lllr.Ai. _J.D_1_A.J.T...L4i.•...1.. _._ ...L

..J.. .J. .l. _L .l. _l_ _l_ _J_ ...L ..J.. _l_ ..J.. _l .l. _L ..J..

If a label is present, it i~ assigned to the location of
the leftmost word generated. The operand field con­
tains the alphameric data to be represented in stor­
age. This data must qegin and end with a period.
The data can be any valid' character in the Extended
BCD Interchange Code, including the period.

Examples

label Operation F T

21 25 77 JO 32 33 ,'IS .co 45

c_._0_1_M S_1_T E_.l.B_J_C_l_ •.J..£it<J?&&. ...1. _l_

_L _l_ _J_ __J_ _l_ ...L _l_ _l_ _L _L _l_ .l.
Al P...LH.J.A EBC.l. H t--

·..LC O N.i.S.J.T1A N. T_1_.1 _1_ _1_

.l. .J. .J. ...L _L _J_ _L _l_ _l_ _J_ .l. _L

The first exaniple gener_ates three words of data, with
the location of the label CONST assigned to the left-

. most location of-the first word generated.

Word 1
·C5D9,

CONST~

Word 2
D9D6

Word 3
D940

Note that if the constant has an-odd number of char­
acters, as in the above example, the last word of
data ends with the 8-bit equivalent of blank.

The second" example generates four words of
data:

Word 1
C3D6

Word 2
D5E2

·Word 3
E3Cl

Word 4
D5E3

NOTE: A period may not appear in the comments
field of an EBC instruction.

Assembler Instructions 19

STORAGE ALLOCATION STATEMENTS

Storage allocation statements are used to reserve
blocks of storage for data or work areas. Two such
statements are available with the IBM 1130 Assem­
bler: Block Started by Symbol and Block Ended by
Symbol.

BSS - Block Started by Symbol

The BSS assembler instruction is used to reserve an
area of core storage, within a program, for data
storage or for working space~ The format of the
BSS instruction follows:

The expression specifies the number of words to be
reserved; the label, if specified, refers to the left­
most word reserved. The location of the block of
storage within the object program is determined by
the location of the BSS statement within the source
program.

If the character E is punched in column 32, the
assembler assigns the .leftmost word of the reserved
location to the next available ~ location. If a
blank or any character other than E appears in
column 32, the assembler assigns the leftmost word
of the reserved area to the next available location
regardless of whether that location is even or odd.
This feature is useful when defining areas for use
with double precision instructions.

A BSS statement with an E format and an oper­
and value of zero causes the Location Assignment
Counter to be made even (if necessary) before the
next instruction is assembled.

A BSS instruction causes an area to be skipped,
not cleared; therefore, it should not be assumed
that an area reserved by a BSS instruction contains
zeros.

Any symbols in the operand field of a BSS assem­
bler instruction must have been previously defined.
The expression in the operand field must be an
absolute expression.

In the following example, the symbol AREA is
equivalent to 3000; the next location assigned is
3028.

20 1130 Assembler Language

BES - Block Ended by Symbol

The BES instruction is identical to the BSS instruc­
tion except that the address assigned to the label is
the rightmost word in the area plus 1, i. e. , the
next location available for assignment.

In the previous example, the symbol AREA is
equivalent to 3028.

SYMBOL DEFINITION STATEMENT

One symbol definition statement (EQU) is available in
the IBM 1130 Assembler language.

EQU - Equate Symbol

The EQU statement is used to assign to a symbol a
value other than the value of the Location Assignment
Counter at the time the symbol is encountered. The
format of the EQU statement is

label Operation F T

21 25 27 30 32 33 35 4-0 45

S,Y,M./l.L E,Q,(6 A_J_N ,E,X "1_R,E.5-iS 1-10 N. I

...1. L _J_ I I I I I _I I _J I I

The symbol in the label field is made equivalent to
the value of the expression. The expression may be
absolute or relocatable. All symbols appearing in
this expression must have appeared as a label in a
previous statement. If an asterisk (*) is used as the
expression, the value assigned to it is the next loca­
tion to be aesigned by the assembler.

Examples

In the first example, the symbol NAME is assigned a
value of 26. In the second example, the symbol
LOOP is assigned a value of 27.

PROGRAM-LINKING STATEMENTS

Program -linking statements are used to establish
communication between a main program and its
subroutines. Five statements are provided: three
for entry point definition and two for subroutine
calls.

ENT - Define Subroutine Entry Point

The ENT statement should be used to define the
entry point(s) in all subroutines except ISS and ILS.
Up to ten entry points may be defined for each sub­
routine (this would require ten ENT statements).
The format of the ENT statement is sho\vn below.

Label Operation F T

21 25 77 30 n JJ 35 "°
__L ENT N_1_AME _J_

J ..L

_l _J_

NAME is a symbol which identifies an entry point
for the associated subroutine. This symbol must be
relocatable. All ENT statements for a given sub­
routine must be together and must precede all state­
ments except LIBR, SPR, EPR, and comments
statements. ENT, ISS, or ILS statements (see
below) may not be used in the same subroutine.

ISS - Define Interrupt Service Entry Point

IBlVI provides interrupt service subroutines (ISS) for
all devices; however, the user is given the option of
replacing these subroutines with his own or adding a
subroutine for interrupt run mode. The ISS state­
ment is used to define an entry point in an interrupt
service subroutine and to establish interrupt link­
ages to the subroutine at load time. Only one entry
point may be defined for each Eubroutine. The
format of the ISS statement is shown below.

-
Label Operation F T

21 25 27 30 32 33 35 "° 45

..1. .l. __L ISS NN 4Al4_£ _J_..1_ _J_ L..l.

..1. _J_ -1 ..1. ..L • ..1. ..1. ..L _L ..1

Word 30 of the header record can be set for
identification purposes as shown below. Word 30
is not used by any of the 1130 programs.

Label ISS Header Word 30

blank
1130
1800

blank
1
2

NAME is as described for the ENT statement and
NN (the ISS number) is a number from-01 to 20 used
by the Relocating or core image loader to establish
the linkage from the appropriate point in the corre­
sponding ILS. The numbers and associated devices
used in the routines provided by IBM are listed
below:

Number* Device or Function

01 1442 Card Read Punch
02 Input Keyboard; Console Printer
03 1134 Paper Tape Reader;

1055 Paper Tape Punch
04 2310 Disk
06 1132 Printer
07 1627 Plotter

·.- Ifombers 08 through 20 are assignabie by the user.

L is a one-digit nu.."'!lber used to indicate the interrupt
level(s) associated with the subroutine. The level
numbers (0-5) can be listed in any order in columns
45, 50, 55, 60, ·65, and 70 and they must be left­
justified in these columns (first in 45, second in 50
etc.).

An ISS statement must precede all statements
except LIBR, SPR, E PR and comments statements.

Procedures for writing interrupt-service sub­
routines are provided in the publication IBM 1130
Subroutine Library (C26-5929).

ILS - Define Interrupt Level Subroutine

IBM provides interrupt level subroutines for the
various I/O devices and their associated interrupt
levels; however, the user may replace these subrou­
tines with his own. The ILS statement is used to
define an interrupt level subroutine and to associate

Assembler Instructions 21

the subroutine with a specific interrupt level. The
format of the ILS statement is shown below:

Label Operation F T

21 25 v 30 32 33 35

.J. 1.J.LS NN _J_ _.._

_l .J. _l_ _.._

NN is the interrupt level number (00-05) as­
sociated with the interrupt level subroutine and is
used by the relocating loader or core image con­
verter. The devices associated with each interrupt
level are shown below:

Interrupt Level

00
01
02
03
04

05

Device(s)

1442 Card Read Punch
1132 Printer
Disk Storage
1627 Plotter
Console Keyboard, Console
Printer, 1442 Card Read
Punch, 1134 Paper Tape
Reader, 1055 Paper Tape
Punch
PROGRAM STOP Key or
Interrupt Run Mode.

An ILS statement must precede all statements
except LIBR, SPR, EPR, and comments statements.

Procedures for writing interrupt level subrou­
tines are provided in the publication, IBM 1130
Subroutine Library (Form C26-5929).

CALL - Call Direct Reference Subroutine

A CALL statement is used to call some of the sub­
routines in the IBM Subroutine Library or any user­
written subroutine written for the CALL statement.
At execution time, this type of call takes the form
of a long (two-word) BSI, to the entry point named in
the CALL and the corresponding ENT or ISS state­
ment.

When BSI is executed, the location of the first
word following it is placed in the entry point location,
and control is transferred to the first word following
the entry point. The format of the CALL statement is:

Label Operation F T

21 25 27 30 32 33 35 "°
LABEL CALL N1A,M,E I

.J. .J. _l_ _l_

I .J. I I I

22 1130 Assembler Language

If used, the label is assigned to the current
value of the Location Assignment Counter, which is
the same as the leftmost word of the generated BSI
instruction. The name of the called subroutine is
assembled into the object deck, together with a
unique code identifying the CALL. This code is
recognized by the loader, which generates the BSI
to the called subroutine.

LIBF - Ctll TV (Transfer Vector) Reference
Subroutine

An LIBF statement is used to call any of the sub­
routines in the Subroutine Library (or any user­
written subroutine) written to utilize the transfer
vector (see the following section, Subroutine Trans­
fer Vector). The format of the LIBF statement is:

Label Operation F T

21 25 27 30 32 33 35 "°
L

1
A_._8 E_i_L L}.1.8 F N

1
AM

1
E_. -•

l _l__l_ _L_ _l_

.J. _l_ _I_ _.._ _l_

If used, the label is assigned to the current value of
the Location Assignment Counter when the LIBF
statement is encountered. The name of the called
subroutine is assembled into the object deck, to­
gether with a unique code identifying the call as an
LIBF call. This code is recognized by the loader,
which generates a TV linkag;e to the called sub­
routine. During execution, the TV subroutine calls
Index Register 3. Therefore, if Index Register 3
is used by any other instruction in the user's pro­
gram, it must be saved and restored before it is
needed by any TV subroutine calls. An LIBF Call
is sometimes referred to as a One Word Call.

LIBF Subroutine Transfer Vector

To understand fully the use of the LIBF statement,
the user should be familiar with the makeup of the
subroutine tr an sf er vector. A transfer vector allows
main programs to communicate with relocatable sub­
routines (and relocatable subroutines to communicate
with each other) without knowing where in core storage
the subroutines are loaded. The transfer vector
consists of three 16-bit words for each subroutine
entry point referred to by an LIBF statement. The
contents of the three words vary as the subroutine
goes ~hrough the three phases of being called, loaded,
and executed. The following paragraphs describe
these three phases, and illustrate the contents of the
transfer vector for each phase.

Recognizing the Subroutine Call. All subroutines
that utilize the transfer vector are called via LIBF
statements. These statements take the following
general form:

LIBF
DC
DC
etc.

NAME
Parameter
Parameter

When an LIBF call is recognized during the loading
of an object program, the loader begins to build the
transfer vector by setting aside a three-word record
and placing in it the. name of the called subroutine.

Name off ubroutine Zeros

Subsequent LIBF statements produce additional
records in the transfer vector, each containing a
unique subroutine name. Calls to a subroutine pre­
viously listed in the transfer vector do not produce a
new record. Each time an LIBF call is recognized,
the loader replaces the associated LIBF NAME state­
ment in the user's program with a one-word, indexed
BSI instruction pointing to the first word of the asso­
ciated transfer vector record. This instruction,
generated by the loader, uses Index Register 3 and
a computed displacement to refer to the proper trans­
fer vector record.

Original Statement

Label jj Operation F T

21

Modified Statement

Label Operation F,: F T

21 2S 71 JO 32 33 JS 40 4S

_L ..L ..1 85I 3 Di I S P L Ai C £ M £ N 1 T

_L _l l> __I_ _1 I I

When this BSI instruction is encountered during ex­
ecution of the main program, it causes a branch to
the associated transfer vector record and from
there to the entry address of the subroutine (see the
following section, Loading the Subroutine). A BSI
statement is generated for each LIBF statement
encountered.

NOTE: Index Register 3 is reserved for LIBF sub­
routine calls. Therefore, if any instructions are to
be tagged for register 3, register 3 should be re­
stored prior to any LIBF subroutine call.

Loading the Subroutine. After the main program has
been read and aj.l the called subroutine names are in
the transfer vector, the loader loads the subroutines.
As the header card of each subroutine in the library
deck is read, the subroutine name is compared with
the list of names previously placed in the transfer
vector. When a match is found, the subroutine is
loaded in an available core location, determined by
the loader, and the subroutine entry address is
placed in the third word of the asso.ciated transfer
vector record. Jn addition, the address of the trans­
fer vector record is inserted in the subroutine at
entry point +2.

:
Name of Subroutine

l
Entry address
of Subroutine

After the loader has read all of the subroutines in
th~ subroutine deck and loaded those that were
called, it modifies the transfer vector record of
each subroutine that was loaded. This modification
consists of deleting the subroutine names and placing,
in the second word of each record, the first half of
a long BSC instruction.

Undefined BSC L
Entry address
of Sull1ourint:

Note that word 3 of the record is not affected and thus
becomes the effective address of the long BSC instruc­
tion. This instruction is used to branch to a particu­
lar subroutine when that subroutine is called during
execution of the main program.

NOTE : The preceding description of the subroutine
loading process applies only to the card and paper
tape systems and not to the Monitor system.

Executing the Subroutine. As the main program is
executed, the subroutine calls are encountered one
by one. Remember that each call is now in the form
of a BSI instruction. The BSI instruction loads the
contents of the IAR into the first word of the transfer
vector record as.sociated with the subroutine being
called and then branches to the second word of the
transfer vector record. As a result, the first word

. of the transfer vector record contains the address
LIBF +1.

LIBF + 1
BSC L

Entry address
address of Subroutine

Assembler Instructions 23

Following execution of the BSI instruction, the BSC
instruction in word 2 of the transfer vector record is
executed, transferring control to the subroutine. In
order to collect parameters and to return from a sub­
routine to the calling program, the programmer must
know the address of the transfer vector record asso­
ciated with the subroutine. This address was placed
into the subroutine location, entry point +2, by the
loader. Having this information, the programmer
can find the address, LIBF +1. If parameters fol­
low the bLdtement, the address LIBF + 1 (stored in,
the first word of the transfer vector record) is the
address of the first parameter, otherwise it is the
return address. A suggested method of computing
the return address for a subroutine with one param­
eter is illustrated in Figure 5.

Size and Location of the Tran sf er Vector

The transfer vector consists of a maximum of 256
core locations and is located in the uppermost part
of core storage (highest-numbered locations). If a

COMMON area is used for FORTRAN programs, the
transfer vector is located below the COM MON area.

The location of the transfer vect0r in the Mon­
itor system is different. The size of the transfer
vector (256 locations) is sufficient to contain 85
three-word records. All but the first two of these
records are available for use as subroutine commun­
ication areas. These two res~rved records are used
by certain arithmetic subroutines as a floating-
point pseudo-accumulator, and as program error
indicators.

Restrictions on the Use of the TV Reference
Subroutines

1. No more than 83 unique entry point names re­
ferred to by LIBF statements can be loaded at
one time.

2. In the card and paper tape systems, a subroutine
called by an LIBF call must not contain any CALL
(direct reference call) statements.

Label Operation F T Operands & Remarks

21 25 27

_L I

I I __]_ _L _l_ _l_ __]_ I I

I I I I I I _l__J__l_ I I I I I I I I I I

_I I . __]_ __]_ I I _l__l_ _l_ _l__l__LI I J_l_i_J__l_J__J__l_J__J__]_ll_J_ __]_ __]_ __]_ _l_ _l_ _J_ _l_ _._,

I I I _l I I I I _L __]__I I I I I I l_J__J__J__J__l_I I I I

--' __]_ I I

I I ..I.

I I __]_ __]_ I I I _J__l I I I I I l_li_l_l __]_I I I I I l_J__J__J__li_J_J__J_ I I __]_

__]_ _J__l _, I _I _l_l_J_ _l__ll ll_l_i_l _l_l__l_J__l I I Ii iiiii_l_ll _l_

•••-·••ENT

_l _]_

_L l I I

_l

l • I• p ';' I __]_ _l I I ..l __]_ I I I I __]_ I I I

__]_ r •.i. ..J. .i.)
1

__(_ _, _, _J_ .i. ..t _J_ __]_ __]_ __]_ _i , 1 __]_ _J_ ...L __]_ __]_ __]_ __]_ _i _l_ _l 1 , • .i. _l_ __]_ _J_ i __]_ 1 __]_ , •

] __]_ _l_ •.i. _J_

I I 1.u.o_J_x

__]_ 1£.i r_J_x..J.
S,A V,E, L f) X,

__]_ B_J_S_J_C_J_

I I I E_J_N.iD I I ..J.ll_l_J__L_l_i_J__J__J_ I l_j_..J._J__J__l__]_..J. i.li.lil _J_

Figure 5. Example of a User-Written TV Reference Subroutine

24 1130 Assembler Language

The following assembler statements apply only to the
IBM 1130 Monitor System. These statements are
not valid for use with the card or paper tape
assembler.

LINK - Load Link Program

In the assembler language, the LINK statement is
used to load and execute another complete program.
The program loaded and executed must be specified
by name. The format of the LINK statement is:

1. A symbol or blanks in the label field
2. The mnemonic, LINK, in columns 27-30
3. A valid program name in the operand field

The label of the LINK pseudo-operation is de­
fined as the current value of the Location Assignment
Counter when the LINK statement is encountered;
this value is the address of the first word generated
by the LINK statement.

The operand field contains a valid program name
(one to five alphameric characters), left-justified in
the field. The !'...a.me must be present in the. Location
Equivalence Table at execution time. The LINK
statement causes four words to be generated in the
object program. The first two words contain a
two-word BS! instruction, which branches to a
specified location within the Skeleton Supervisor
program. The next two words contain the program
name, left-justified, with blanks inserted in unused
rightmost positions. The Supervisor Program uses
the program name and begins the process required
to load the new program.

EXIT - Return to Supervisor

In the assembler language, the EXIT statement is
used to return control to the Supervisor. The for­
mat of the EXIT statement is:

1. A symbol or blanks in the label field
2. The mnemonic, EXIT, in columns 27-30

The label of the EXIT statement is defined as
the current value of the Location Assignment Counter
when the EXIT statement is encountered; this value
is the address of the first word generated by an EXIT
statement.

The operand field is ignored and can, therefore,
be used for comments. The EXIT statement causes

MONITOR ASSEMBLER STATEMENTS

a one-word branch instruction to be generated in the
object program. The instruction branches to a fixed
location in the Skeleton Supervisor program. At ob­
ject time the branch is executed and control is re­
turned to the Supervisor. The EXIT statement should
be the last logical statement in a program.

DSA - Define Sector Address

The DSA statement allows the programmer to refer
symbolically to a disk-stored data file or core-image
program without knowing the specific disk location
of the data or program. The disk location of data
files and programs can vary on disk because of de­
letions, but the DSA statement allows easy reference
through the use of the symbolic name of the data
file or program.

The format of the DSA statement is:

label Operation / F T
21 25 27 JO J2 JJ J5 40 45

L_/J_J_B_J_f.J..L IQJS 4 < S_J_Y MB O l_J_l_j_C_J_ A<ll.i~E_J_ .J..

>:
_L .1 .J.. .1 .l. .1 .1 _J_ _J_ ..l. ..l. ..l.

The label is defined as the current value of the Loca­
tion Assignment Counter when the DSA statement is
encountered. The symbol in the operand field must
be the name of a data file or core-image program
that is on disk at execution time.

The following statements illustrate the use of
the DSA statement to read one sector of data. For
a description of the disk calling sequences, see the
publication IBM 1130 Subroutine Library, Form
C26-5929.

label

21 25

_L _J_

.J.. . I

_L _J_ .J..

J ..l. ...1 .J..

J ...1 _J_ .J..

Operation F T
_v __ JO t¥ .;;.;.Js ____ .o ____ -45 __ _

• _J_ _J_

• _J_

l I Br

D C.J. J.

ID C· _J_

"' .1 _J_

l-+-

1-+­

r-+-

t-+-

1-+­

l-+-

1-+­

I-+-

-

..l. _J_ .J.. .l. .1 .J.. _l_ _J_

.1 J..1..l....1 _J__L_L

ID,/ s K J_J_ _l_ .1 .J.. .l. .1 ..l. ..l.

I/ ..J.L o o_J_o ..l. .J.. ...1 ..l. ..l. .l. _J_

l~IJ R _._ _L _J_ _i_ .i ...1 .l. .l.

£.J.RRO.J.RJ...l..1.J. _J_ _i_

l _J_ ..l. ...1 .l. .l. ..l. _L

D.illi.GIJ.J.. .l. .1 .J.. _l_ _L _L _L

3.i1 9 .J.. .J.. _.L .l. _J_ .J..

.l. _J_ _J_ _L ...1 _J_ .l. ...1 ..l. .J..

.1. .J.. .J.. ..l. I .l. _J_ J. _L

Monitor Assembler Statements 25

The Assembler reserves three words in the object
program for each DSA statement. These words are
filled in by the loader. For a data file they will
contain:

Word 1 - Length (in words)
Word 2 - Sector Address
Word 3 - Not used

For a program they will contain:

Word 1 - Length (in words)
Word 2 - Sector Address
Word 3 - Execution Address of the Program

If the area corresponding to the DSA statement
is used as the I/0 area for a disk read operation,
the execution address of the program must be saved
prior to the disk call to bring in the program. (The
contents of the third word are destroyed by the
operation of the Disk I/0 routine.)

The following statements illustrate the use of
the DSA statement to supply the disk address of a
one-sector program.

.........--
Label Operation F T

21 25 'O 30 32 33 35 .co 45

J .
.J. _l_J__J__l__l__l__J__l__j__l_

l _l_ . _l_1__1__1__L_L_l__l__J__l__J__l_ I

l _l_ LD
t-t---1

I.i.~ IJ_.R,+,2_1 _L _l_ _J_ _L _L _L _J_ _J_

l _J_ _J_ Is r_J_o_._
t-t-

8.l.R_._tliCj-l+_J_J _l__J__L_J__J_ I

I I LI BJ_ D.l.I s /(, 1 I -1 _J_ _J_ ...I. _L

l _J_ _J_ _l_ ID_1_C...1_ _J_
t---1 t--

/.J.J.O_l_O_l_O_J_ _J_ _l_ _l_ .J. _J_ ...I. I

J _l_ ID,C
t-t- [.t~.4_J_R_l_ _J_ _J_ _._ _._ ...t ...l ...l

J _J_ _J_ ID_l_C_l__J_ J-t-
1£...lR R01R I I _L_J_ _J__J_ _l_ ...l

C_._ll_1_l_1_l_l l l...1_8.E_
t-,...__ ID.I Sj:_.t...1_ ...t -'- ...l I I I ·

...l ...l DC _J_ t-t- l6QOIOO I I I I

J _J_ _J_ _l_ flC I...1.0AiR. I I I _J_ _l _J_ ...l --'-

I I M.i_~X_J_ C...tt!.il_ll_. _l _t_ _J_ _._ ...1_ ...1_ .1 ...t ...l i

8_1_Ri_l{_._C H IB,SC L Q,_ I I I I I _I_!__!_ . --'- .J --'- -1 _J_ _l_l_l_l_J_..J.

•...1. ...l ...l. _l --'- -1 _J_ --'- --'- _l_l_l_l_l...l

_l _l _l _l •_1_ _J_ _l_L_J__l_J__j__J__J__J__l_l_l _l_J_

I.(J // 12 DSA P_J_RG RM I I I

IB.S S 3_l_J 9 I I I

...I. _J_ _L •_._ _J_ ...I. t-t- .J. -1 I I I I - _l_ _L _L _l_ _J_

J I L • .J. _J_ 1--4-- _J__j_ _J_ _l_ _l__j_ _J_ _l_ ...l _J_ .J. _l_ _l__J_

The following statements can be added to the
previously shown program call to call a second pro-

26 1130 .Assembler Language

gram and have it loaded to the same area as the
first.

Label Operation F T

21 25 27 30 32 33 35 .co 45

...l ...1. ...l ...l L D _L A.._~R_._2...l. ...l. ...1 ...l. ...l. _J_ ...l. .l ...I. ...I.

J _J_ STO l_t_O 111?.i_ _J_ _. _l ...1. ...l. ...l. i ...l. ...1_

J ...I. ...l. _J_ L D_J_ _J_ A_.D_1_R._2...l.+...l.1.i ...1 ...l. _l ...l. i ...l.

...l. _J_ ...l. ...l. s rio_l 1_.lll!_ R.+_)...1. ...l ...l. ...l. ...l. _l

_l L_J_~ _l Ai/) 1?.i 2. + 2_1 _l_j__l_l

...l. ...I. ...l. ...l. ST,01 8_.ll._N, Cjl..J.+_J_1_1_ _l ...l. ...l. ...1. ~ ...l.

W.D_._X B1R N.C H_l_ -_i8 _J_ ...I. ..L _J_ _L

A O_._Ri 2_._ DS1A P_1_G_i_R.M 2_._ _._ ...I. ...I. ..L _L _L

...I. •_i_ I _J_ _l_ _l _L _L

•_1_ _J_ _l_ _j _J_ _J _L _l _L _L

...I. ...I. ...I. ...1 _J_ _l_ .l. _l _J_ ...l. .l. .l ...l

The execution address of the second program can be
different from the first, but the programs must be
executable from the same locations. This requires
a certain amount of planning before assembling the
"overlay" programs.

Programming Considerations

The following considerations must be observed by the
user who wishes to use the DSA statement to supply
the disk address for programs.

1. The called programs must be in core-image
format.

2. If the calling program is converted to core
image format, the data for the DSA statement
is filled in during the core image conversion
and will be fixed for all subsequent executions.
Thus, if the referenced program or data files
are subsequently moved, incorrect results will
occur.

lIDNG - Heading

The HDNG statement is used to specify a one line
page heading for a printed listing. The heading
line consists of the data in the Operand-Remarks
field (card columns 35-71, or the corresponding
frames of an HDNG statement in paper tape
format).

Multiple HDNG statements may be used thus
allowing different sections of a listing to have
different page headings.

When the 1132 is the principal printer, the HDNG
statement causes the listing to be ejected to a new
page and the heading is printed. The same heading

is repeated at the top of each succeeding page until
a new HDNG statement is encountered.

When the typewriter is the principal printer,
the heading line is preceded and followed by a single
line feed, and otherwise functions as a comments
statement.

Monitor Assembler Statements 27

APPENDIX A. CHARACTER CODE SUMMARY

Hexadecimal Notation

fu hexadecimal notation, each digit represents a
four-bit binary value. This means that a 16-bit
word in the Processor-Controller can be expressed
as four hexadecimal digits. The binary - hexa­
decimal - decimal correspondence is defined as
follows:

Binary Hexadecimal Decimal

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 c 12
1101 D 13
1110 E 14
1111 F 15

Extended Binary Coded Decimal Interchange Code
(EBCDIC)

fu the EBCDIC code, each character is represented
by a unique configuration of eight binary bits. fu

28 1130 Assembler Language

the table that follows, each EBCDIC character is
expressed as two hexadecimal digits.

IBM Card Code

fu the IBM card code, each character represents a
12-bit card-column image. In the table that follows,
each card code character is expressed as three hexa­
decimal digits and as the card-column image.

Paper Tape Transmission Code, 8 Channel (PTTC/8)

In the PTTC/8 code, each character is represented
by a unique configuration of a case shift, plus an
eight-bit code. The case shift can be common to
more than one character and need be inserted only
when a case shift change is necessary. fu the table
that follows, each character is expressed as two
hexadecimal digits, followed by the case shift in
parentheses.

1132 Printer EBCDIC Subset Hex Code

In the 1132 Printer EBCDIC subset hex code, each
character is represented by a unique configuration of
eight bits. In the table that follows, each 1132
Printer character is expressed as two hexadecimal
digits.

Console Printer Hex Code

In the Console Printer hexadecimal code each charac­
ter is represented as two hexadecimal digits.

* Recognized by all Conversion subroutines

NOTE: Codes that are not asterisked are recognized only by the SPEED subroutine.

EBCDIC
Ref

Binary No.
0123 4567

0 0000 0000
l 0001
2 0010
3 0011
4 0100
5* 0101
6* 0110
7* 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

16 0001 0000
17 0001.
18 0010
19 0011
20* 0100
21* 0101
22* 0110
23 0111
24 1000
25 1001
26 1010
27 1011
28 1100
29 1101
30 1110
31 ' 1111

32 0010 0000
33 0001
34 0010
35 0011
36 0100
37* 0101
38* 0110
39 01 ll
40 1000
41 1001
42 1010
43 1011
44 1100
45 1101
46 , 1110
47 1111

48 0011 0000
49 0001
50 0010
51 0011
52 0100
53* 0101
54* 0110
55 01 ll
56 1000
57 1001
58 1010
59 1011
60 1100
61 1101
62 1110
63 ' 1111

NOTES: Typewriter Output
© Tabulate
@ Shift to black

Hex

00
01
02
03
04
05
06
07
08
09
OA
OB
oc
OD
OE
OF

10
11
12
13
14
15
16
17
18
19
lA
lB
lC
lD
lE
lF

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12

12

IBM Card Code

Rows

11 0 9 8 7-1

0 9 8 l
9 l
9 2
9 3
9 4
9 5
9 6
9 7
9 8
9 8 l
9 8 2
9 8 3
9 8 4
9 8 5
9 8 6
9 8 7

11 9 8 l
11 9 l
ll 9 2
ll 9 3
ll 9 4
11 9 5
11 9 6
11 9 7
11 9 8
11 9 8 l
ll 9 8 2
ll 9 8 3
11 9 8 4
11 9 8 5
11 9 8 6
11 9 8 7

11 0 9 8 l
0 9 l
0 9 2
0 9 3
0 9 4
0 9 5
0 9 6
0 9 7
0 9 8
0 9 8 1
0 9 8 2
0 9 8 3
0 9 8 4
0 9 8 5
0 9 8 6
0 9 8 7

11 0 9 8 l
9 l
9 2
9 3
9 4
9 5
9 6
9 7
9 8
9 8 1
9 8 2
9 8 3
9 8 4
9 8 5
9 8 6
9 8 7

@
4

Carrier Return
© Shift to red.

1132 PTTC/8

Hex Graphics and Control Printer Hex
Names EBCDIC U -Upper Case

Subset Hex
L-Lower Case

B030 NUL
9010
8810
8410
8210 PF Punch Off
8110 HT Horiz. Tab 60~ 8090 LC Lower Case 6E 5
8050 DEL Delete 7F 5
8030
9030
8830
8430
8230
8130
80BO
8070

D030
5010
4810
4410
4210 RES Restore

4C $ 4110 NL New Line DD 5
4090 BS Backspace 5E 5
4050 IDL Idle
4030
5030
4830
4430
4230
4130
40BO
4070

7030
3010
2810
2410
2210 BYP Bypass
2110 LF Line Feed 3D ~
2090 EOB End of Block 3E 5
2050 PRE Prefix
2030
3030
2830
2430
2230
2130
20BO
2070

F030
1010
0810
0410
0210 PN Punch On
0110 RS Reader Stop OD~
0090 UC Upper Case OE 5
0050 EOT End of Trans.
0030
1030
0830
0430
0230
0130
OOBO
0070

@) The Same in Either Case

Console
Printer

Hex
Notes

41 <D

05 Q)
81 @
ll

03

09 ©

Character Code Summary ~9

EBCDIC I BM Card Code 1132
PTTC/8 Console

Ref Binary Hex Rows Hex Graphics and Control Printer Hex Printer
No. Names EBCDIC U -Upper Case

Hex 0123 4567 12 11 0 9 8 7-1 Subset Hex L-Lower Case

64* 0100 0000 40 no punches 0000 (space} * 10® 21
65 0001 41 12 0 9 1 BOlO
66 0010 42 12 0 9 2 A810
67 0011 43 12 0 9 3 A410
68 0100 44 12 0 9 4 A210
69 0101 45 12 0 9 5 AllO
70 0110 46 12 0 9 6 A090
71 0111 47 12 0 9 7 A050
72 1000 48 12 0 9 8 A030
73 1001 49 12 8 l 9020
74* 1010 4A 12 8 2 8820 ~ 20 (U) 02
75* 1011 4B 12 8 3 8420 . (period) 4B 6B (L) 00
76* 1100 4C 12 8 4 8220 "' 02 (U) DE
Tl* 1101 4D 12 8 5 8120 (4D 19 (U) FE
78* 1110 4E 12 8 6 80AO + 4E 70 (U) DA
79* • 1111 4F 12 8 '7 8060 I (logical OR) 3B (U) C6

80* 0101 0000 50 12 8000 & 50 70 (L) 44
81 0001 51 12 11 9 1 0010
82 0010 52 12 11 9 2 C810
83 0011 53 12 11 9 3 C410
84 0100 54 12 11 9 4 C210
85 0101 55 12 11 9 5 Cl 10
86 0110 56 12 11 9 6 C090
87 0111 57 12 11 9 7 C050
88 1000 58 12 11 9 8 C030
89 1001 59 11 8 1 5020
90* 1010 5A 11 8 2 4820 ! 5B (U) 42
91* 1011 5B 11 8 3 4420 $ 5B 5B (L) 40
92* 1100 5C 11 8 4 4220 * 5C 08 (U) D6
93* 1101 5D 11 8 5 4120) 50 lA (U) F6
94*

-
1110 5E 11 8 6 40AO i 13 (U) 02

95* 1111 5F 11 8 7 4060 .., (logical NOT) 6B (U) F2

96* 0110 0000 60 11 4000 - (dash) 60 40 (L) 84
97* 0001 61 0 1 3000 I 61 31 (L) BC
98 0010 62 11 0 9 2 6810
99 0011 63 11 0 9 3 6410

100 0100 64 11 0 9 4 6210
101 0101 65 11 0 9 5 6110
102 0110 66 11 0 9 6 6090
103 0111 67 11 0 9 7 6050
104 1000 68 11 0 9 8 6030
105 1001 69 0 8 l 3020
106 1010 6A 12 11 cooo
107* 1011 6B 0 8 3 2420 , (comma) 6B 3B (L) 80
108* 1100 6C 0 8 4 2220 % 15 (U) 06
109* 1101 6D 0 8 5 2120 _(underscore) 40 (U) BE
110* • 1110 6E 0 8 6 20AO > 07 (U) 46
111* 1111 6F 0 8 7 2060 ? 31 (U) 86

112 0111 0000 70 12 11 0 EOOO
113 0001 71 12 11 0 9 1 FOlO
114 0010 72 12 11 0 9 2 E810
115 0011 73 12 11 0 9 3 E410
116 0100 74 12 11 0 9 4 E210
117 0101 75 12 11 0 9 5 El 10
118 0110 76 12 11 0 9 6 E090
119 0111 77 12 11 0 9 7 E050
120 1000 78 12 11 0 9 8 E030
121 1001 79 8 l 1020
122* 1010 7A 8 2 0820 04 (U) 82
123* 1011 7B 8 3 0420 # OB (L) co
124* 1100 7C 8 4 0220 @ 20 (L) 04
125* 1101 70 8 5 0120 ' (apostrophe) 7D 16 (U) E6
126* 1110 7E 8 6 OOAO = 7E 01 (U) C2
127* • 1111 7F 8 7 0060 II OB (U) E2

*Any code other than those defined wi II be interpreted by PRNTl as a space.

30 1130 Assembler Language

EBCDIC I BM Card Code 1132
PTTC/8 Console

Ref Graphics and Control Printer
Binary Hex Rows Hex Hex Printer No. Names EBCDIC U-Upper Case

0123 4567 12 11 0 9 B 7-1 Subset Hex L-Lower Case Hex

12B 1000 0000 BO 12 0 8 1 B020
129 0001 Bl 12 0 1 BOOO a
130 0010 B2 12 0 2 ABOO b
131 0011 B3 12 0 3 A400 c
132 0100 B4 12 0 4 A200 d
133 0101 B5 12 0 5 AlOO e
134 0110 B6 12 0 6 AOBO f
135 0111 B7 12 0 7 A040 g
136 1000 BB 12 0 B A020 h
137 1001 B9 12 0 9 AOlO i
13B 1010 BA 12 0 B 2 AB20
139 1011 BB 12 0 B 3 A420
140 1100 BC 12 0 B 4 A220
141 1101 BD 12 0 B 5 A120
142 1110 BE 12 0 B 6 AOAO
143 fr 1111 BF 12 0 B 7 A060

144 1001 0000 90 12 11 B 1 D020
145 0001 91 12 11 1 DOOO i
146 0010 92 12 11 2 CBOO k
147 0011 93 12 11 3 C400 I
14B 0100 94 12 11 4 C200 m
149 0101 95 12 11 5 ClOO n
150 0110 96 12 11 6 COBO 0
151 0111 97 12 11 7 C040 p
152 1000 9B 12 11 B C020 q
153 1001 99 12 11 9 COlO r
154 1010 9A 12 11 B 2 CB20
155 1011 9B 12 11 B 3 C420
156 1100 9C 12 11 B 4 C220
157 1101 9D 12 11 B 5 Cl20
158

9
1110 9E 12 11 8 6 CCAO

159 1111 9F 12 11 B 7 C060

160 1010 0000 AO 11 0 B l 7020
161 0001 Al 11 0 l 7000
162 0010 A2 11 0 2 6BOO s
163 0011 A3 11 0 3 6400 t
164 0100 A4 11 0 4 6200 u
165 0101 A5 11 0 5 6100 v
166 0110 A6 11 0 6 60BO w
167 0111 A7 11 0 7 6040 x
168 1000 AB 11 0 B 6020 y
169 1001 A9 11 0 9 6010 z
170 1010 AA 11 0 B 2 6B20
171 1011 AB 11 0 B 3 6420
172 1100 AC 11 0 B 4 6220
173 1101 AD 11 0 B 5 6120
174

~
1110 AE 11 0 B 6 60AO

175 1111 AF 11 0 B 7 6060

176 1011 0000 BO 12 11 0 B 1 F020
177 0001 Bl 12 11 0 1 FOOO
17B 0010 B2 12 11 0 2 EBOO
179 0011 B3 12 11 0 3 E400
lBO 0100 B4 12 11 0 4 E200
lBl 0101 B5 12 11 0 5 ElOO
1B2 0110 B6 12 11 0 6 EOBO
1B3 0111 B7 12 11 0 7 E040
184 1000 BB 12 11 0 B E020
1B5 1001 B9 12 11 0 9 EOlO
1B6 1010 BA 12 11 0 B 2 EB20
187 1011 BB 12 11 0 B 3 E420
lBB 1100 BC 12 11 0 B 4 E220
189 1101 BD 12 11 0 B 5 El20
190 1110 BE 12 11 0 B 6 EOAO
191 1111 BF 12 11 0 B 7 E060

-

Character Code Summary 31

I
I

EBCDIC IBM Card Code 1132 PTTC/8 Console
Ref Binary Hex Rows Hex Graphics and Control Printer Hex

Printer
No. Names EBCDIC U-Upper Case

0123 4567 12 11 0 9 8 7-1 Subset Hex L-Lower Case Hex

192 1100 0000 co 12 0 AOOO (+zero)
193* 0001 Cl 12 l 9000 A Cl 61 {U) 3C or 3E
194* 0010 C2 12 2 8800 B C2 62 {U) 18 or lA
195* 0011 C3 12 3 8400 c C3 73 {U) lC or lE
196* 0100 C4 12 4 8200 D C4 64 {U) 30 or 32
197* 0101 C5 12 5 8100 E C5 75 {U) 34 or 36
198* 0110 C6 12 6 8080 F C6 76 {U) 10 or 12
199* 0111 Cl 12 7 8040 G C7 67 {U) 14 or 16
200* 1000 ca 12 8 8020 H ca 68 {U) 24 or 26
201* 1001 C9 12 9 8010 I C9 79 {U) 20 or 22
202 1010 CA 12 0 9 8 2 A830
203 1011 CB 12 0 9 8 3 A430
204 1100 cc 12 0 9 8 4 A230
205 1101 CD 12 0 9 8 5 Al30
206 1110 CE 12 0 9 8 6 AOBO
207 ~ 1111 CF 12 0 9 8 7 A070

208 1101 0000 DO 11 0 6000 (-zero)
209* 0001 Dl 11 1 5000 J Dl 51 {U) 7C or 7 E
210* 0010 D2 11 2 4800 K D2 52 {U) 58 or 5A
211* 0011 D3 11 3 4400 L D3 43 {U) 5C or 5E
212* 0100 D4 11 4 4200 M D4 54 {U) 70 or 72
213* 0101 D5 11 5 4100 N D5 45 {U) 74 or 76
214* 0110 D6 11 6 4080 0 D6 46 {U) 50 or 52
215* 0111 D7 11 7 4040 p D7 57 {U) 54 or 56
216* 1000 DB 11 8 4020 Q DB 58 {U) 64 or 66
217* 1001 D9 11 9 4010 R D9 49 (U) 60 or 62
218 1010 DA 12 11 9 8 2 C830
219 1011 DB 12 11 9 8 3 C430
220 1100 DC 12 11 9 8 4 C230
221 1101 DD 12 11 9 8 5 Cl30
222 1110 DE 12 11 9 8 6 COBO
223 ~ 1111 DF 12 11 9 8 7 C070

224 1110 0000 EO 0 8 2 2820
225 0001 El 11 0 9 1 7010
226* 0010 E2 0 2 2800 s E2 32 {U) 98 or 9A
227* 0011 E3 0 3 2400 T E3 23 (U) 9C or 9E
228* 0100 E4 0 4 2200 u E4 34 (U) BO or B2
229* 0101 E5 0 5 2100 v E5 25 (U) B4 or B6
230* 0110 E6 0 6 2080 w E6 26 (U) 90 or 92
231* 0111 E7 0 7 2040 x E7 37 {U) 94 or 96
232* 1000 ES 0 8 2020 y ES 38 (U) A4 or A6
233* 1001 E9 0 9 2010 z E9 29 (U) AO or A2
234 1010 EA 11 0 9 8 2 6830
235 1011 EB 11 0 9 8 3 6430
236 1100 EC 11 0 9 8 4 6230
237 1101 ED 11 0 9 8 5 6130
238 1110 EE 11 0 9 8 6 60BO
239 • 1111 EF 11 0 9 8 7 6070

240* 1111 0000 FO 0 2000 0 FO lA (L) C4
241* 0001 Fl 1 1000 1 Fl 01 (L) FC
242* 0010 F2 2 0800 2 F2 02 (L) DB
243* 0011 F3 3 0400 3 F3 13 (L) DC
244* 0100 F4 4 0200 4 F4 04 (L) FO
245* 0101 F5 5 0100 5 F5 15 (L) F4
246* 0110 F6 6 0080 6 F6 16 (L) DO
247* 0111 F7 7 0040 7 F7 07 (L) D4
248* 1000 F8 8 0020 8 F8 08 (L) E4
249* 1001 F9 9 0010 9 F9 19 (L) EO
250 1010 FA 12 11 0 9 8 2 E830
251 1011 FB 12 11 0 9 8 3 E430
252 1100 FC 12 11 0 9 8 4 E230
253 1101 FD 12 11 0 9 8 5 El30
254 1110 FE 12 11 0 9 8 6 EOBO
255 , 1111 FF 12 11 0 9 8 7 E070

32 1130 Assembler Language

The tables printed below are used to convert
decimal numbers to hexadecimal and hexadeci­
mal numbers to decimal. In the descriptions
that follow, the explanation of each step is
followed by an example in parentheses.

oofr~
1 2 3 4 5 6 7 8 9

0001 0002 0003 0004 0005 0006 0007 0008 0009
01 _ 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025
02 - 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041
03- 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057

04 - 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073
05_ 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089
06- 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105
07 - 0112 0113 OII4 OII5 0116 0117 0118 OII9 0120 0121
08 _ 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137
09_ 0114 0145 0146 0147 0148 0149 0150 0151 0152 0153
OA- 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169
OB- 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185
oc_ 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201
OD- 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217
OE- 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233
OF- 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249

10_ 0256 02S7 0258 OZ.59 0260 0261 0262 0263 0264 0265
11- 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281
12 - 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297
13 - 0304 0305 0306 0307 0308 0309 0310 0311 Cl312 0313

14 - 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329
15 - 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345
16 _ 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361
17 - 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377

18 - 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393
19 - 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409
IA- 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425
JB_ 0432 0433 0434 043S 0436 0437 0438 0439 0440 0441
IC- 0448 0449 0450 0451 0452 0453 04S4 0455 0456 0457
ID- 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473
IE_ 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489
IF - 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505
20 _ 0512 0513 o.514 0515 0516 0517 05111 0519 o.520 0521
21- 0528 0529 0530 0531 0532 0.533 0534 0535 0536 0537
22- 0544 0545 0546 0547 0.5411 0549 OSSO 0551 0.5.52 0.5.5.1
23- 0560 0561 0562 0563 0564 056.5 0566 0567 0.5611 0569

24 - 0S76 0577 0578 0579 0.580 0581 0582 0583 0584 0.58.5
25- 0592 0593 0594 0595 0.51)6 0.5\Ji 0598 0599 OCiOO 0601
26 - 0608 0609 0610 0611 0612 0613 0614 061.5 061!l 0617
27 - 0624 0625 0626 0627 0628 0629 0630 0631 0632 063.1

28 - 0640 0641 0642 0643 0644 0645 0646 0647 0648 OIWJ
29 - 06S6 06S7 0658 0659 0/160 0601 0662 0663 0664 066.5
2A- 0672 0673 0674 067S 0676 0677 0678 0679 0680 0681
2B- 0688 0689 0690 0691 0692 0693 0694 0695 0696 06'l7
2C- 0704 070S 0706 0707 0708 070'l 0710 0711 0712 0713
2D- 0720 0721 0722 0723 0724 072.5 0726 0727 0728 0729
2E- 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745
2F - 0752 07S3 0754 075S 0756 0757 0758 0759 0760 0761

30 - 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777
31 - 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793
32 - 0800 0801 0802 0803 0804 080.5 0806 0807 0808 0809
33 - 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825

34 - 0832 0833 0834 083S 0836 0837 0838 0839 0840 0841
35 - 0848 0849 0850 0851 0852 0853 0854 085.5 08.56 08.57
36- 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873
37 - 0880 0881 0882 0883 0884 0885 0886 0887 088R 088!)

38- 0896 0897 0898 0899 0900 0901 0902 0903 0904 090.5
39 - 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921
3A- 0928 0929 0930 0931 0932 0933 0934 0935 0\)36 0937
3B- 0944 0945 0946 0947 0948 0949 0950 0951 0952 O\J.53

3C- 0960 0961 0962 0963 0964 0965 0960 0967 0968 096')
3D- 0976 0977 0978 0979 0980 0981 0982 0983 0984 098.i
3E- 0992 0993 0994 0995 0996 0997 0998 0999 lO!Kl 1001
3F- 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

A

0010
0026
0042
0058
0074
0090
0106
0122
0138
0154
0170
0186

0202
0218
0234
0250

0266
0282
0298
0314

0330
0346
0362
0378
0394
0410
0426
0442

0458
0474
0490
0506
05!?2
0538
0.5.54
0570

0586
0602
0618
0634
06.';o
0666
0682
0698
0714
0730
0746
0762

0778
0794
0810
0826

0842
08.58
0874
0890
090()
0922
0938
0954
0970
0986
1002
1018

Decimal to Hexadecimal Conversion. Locate the
decimal number (0489) in tte body of the table.
The two high-order digits (lE) of the hexadeci­
mal number are in the left column on the same
line, and the low-order digit (9) is at the top of
the column. Thus, the hexadecimal number 1E9
is equal to the decimal number 0489.

B c D E F

0011 0012 0013 0014 0015 40~:24
1 2 3

1025 1026 1027
0027 0028 0029 0030 0031 41 - 1040 1041 1042 1043
0043 0044 0045 0046 0047 42- IOS6 10S7 1058 1059
0059 0060 0061 0062 0063 43 _ 1072 1073 1074 1075
0075 0076 0077 0078 0079 44 - 1088 1089 1090 1091
0091 0092 0093 0094 0095 45 - 1104 110S 1106 1107
0107 0108 0109 0110 Olli 46 _ 1120 1121 1122 1123
0123 0124 0125 0126 0127 47 - 1136 1137 1138 1139
0139 0140 0141 0142 0143 48 - 1152 11S3 1154 1155
0155 0156 0157 0158 0159 49 _ 1168 1169 1170 1171
0171 0172 0173 0174 0175 4A_ 1184 1185 1186 1187
0187 0188 0189 0190 0191 4B- 1200 1201 1202 1203
0203 0204 0205 0206 0207 4C- 1216 1217 1218 1219
0219 0220 0221 0222 0223 40_ 1232 1233 1234 1235
0235 0236 0237 0238 0239 4E_ 1248 1249 1250 12Sl
0251 0252 0253 0254 02S5 4F - 1264 1265 1266 1267

0267 0268 0269 0270 0271 50 - 1280 1281 1282 1283
0283 0284 0285 0286 0287 51 - 1296 1297 1298 1299
0299 0300 0301 0302 0303 52 - 1312 1313 1314 131S
0315 0316 0317 0318 0319 53 - 1328 1329 1330 1331
0331 0332 0333 0334 0335 S4 - 1344 1345 1346 1347
0347 0348 0349 0350 0351 55 - 1360 1361 1362 1363
0363 0364 0365 0366 0367 S6 - 1376 1377 1378 1379
0379 0380 0381 0382 0383 S7 - 1392 1393 1394 1395
0395 0396 0397 0398 0399 58 - 1408 1409 1410 1411
0411 0412 0413 0414 0415 S9 - 1424 142S 1426 1427
0427 0428 0429 0430 0431 SA- 1440 1441 1442 1443
0443 0444 0445 0446 0447 SB- 1456 14S7 1458 1459
04S9 0460 0461 0462 0463 SC- 1472 1473 1474 147S
0475 0476 0477 0478 0479 so_ 1488 1489 1490 1491
0491 0492 0493 0494 0495 SE- 1504 lSOS 'IS06 1507
0507 0508 0509 0510 0511 5F_ 1520 1521 IS22 1523
0523 0524 052.5 0.526 0527 60 _ 1536 1537 1538 1539
0539 0540 0.541 0542 0543 61- IS.52 IS53 1554 1555
0.5.5.5 0.5.5(; 0.5.57 0558 05S9 62- 1568 1569 1570 1571
0571 0572 0573 0574 0575 63 -· 1584 1585 1586 1587
0.587 0588 0.589 0.590 0591 64 - 1600 1601 1602 1603
0603 0604 060.5 0606 0607 6.5 - 1616 1617 1618 1619
06l!J 0620 0621 0622 0623 66 - 1632 1633 1634 1635
063.5 0636 0637 0638 063!) 67 - 1648 1649 1650 16Sl

06.51 06.52 06.5.1 0654 065.5 68 - 1604 1665 1666 1667
0667 06611 0669 0670 0671 69 - 1680 1681 1682 1683
0683 0684 068.5 0686 0687 6A- 1696 1697 1698 1699
0699 0700 0701 0702 0703 6B - 1712 1713 1714 171S
071.5 0716 Oi17 0718 0719 6C- 1728 1729 1730 1731
0731 0732 073:.l 0734 0735 6D- 1744 1745 1746 1747
0747 0748 0749 0750 0751 6E- 1760 1761 1762 1763
0763 0764 0765 0760 0767 6F - 1776 1777 1778 1779

0779 0780 0781 0782 0783 70 - 1792 1793 1794 179S
0795 0796 0797 0798 0799 71 - 1808 1809 1810 1811
0811 0812 0813 0814 0815 72 - 1824 1825 1826 1827
0827 0828 0829 0830 0831 73 - 1840 1841 1842 1843

0843 0844 084.5 0846 0847 74 - 18.56 1857 1858 1859
08S9 0860 0861 0862 0863 75 - 1872 1873 1874 1875
OR7S 0876 0877 0878 0879 76 - 1888 1889 1890 1891
0891 0892 0893 08\)4 089.5 77 - 1904 1905 1906 1907

0007 0908 090!) 0910 0911 78 - 1920 1921 1922 1923
0923 0924 092.5 0926 0927 79 - 1936 1937 1938 1039
0939 0940 0941 0942 0943 7A- 1952 1953 1954 1955
0955 0956 0957 0958 0959 7B - 1968 1969 1970 1971

0971 0972 0973 0974 0975 1C- 1984 1985 1986 1987
0987 0988 0989 Of)90 0991 70_ 2000 2001 2002 2003
1003 1004 1005 1006 1007 7E- 2016 2017 2018 2019
1019 1020 1021 1022 1023 7F- 2032 2033 2034 2035

4

1028
1044
1060
1076

1092
1108
1124
1140

1156
1172
1188
1204
1220
1236
1252
1268

1284
1300
1316
1332
1348
1364
1380
1396
1412
1428
1444
1460

1476
1492
1508
1S24
1540
15S6
1572
1588

1604
1620
1636
1652
1668
1684
1700
1716
1732
1748
1764
1780

1796
1812
1828
1844
1860
1876
1892
1908
1924
1940
1956
1972

1988
2004
2020
2036

Hexadecimal to Decimal Conversion. Locate the
first two digits (lE) of the hexadecimal number
(1E9) in the left column. Follow the line of fig­
ures across the page to the column headed by the
low-order digit (9). The decimal number (0489)
located at the junction of the horizontal line and
the vertical column is the equivalent of the hex­
adecimal number.

5 6 7 8 9 A ii c D E F

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
1045 1046 1047 1048 1049 1050 1051 1052 10S3 10S4 10S5
1061 1062 1063 1061 106.5 1066 1067 1068 1069 1070 1071
1077 1078 1079 1080 1081 1082 1083 1084 108.5 1086 1087
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
1109 1110 1111 1112 1113 1114 lll5 1116 1117 1118 lll9
1125 1126 1127 1128 1129 1130 1131 1132 1133 ll34 II35
1141 1142 ll43 ll44 1145 1146 ll47 1148 1149 1150 1151
1157 11S8 11S9 1160 1161 1162 1163 1164 1165 1166 1167
1173 1174 117S 1176 1177 1178 1179 1180 1181 1182 1183
1189 1190 1191 1192 ll93 1194 ll95 1196 ll97 1198 1199
1205 1206 1207 1208 1209 12·10 1211 1212 1213 1214 1215
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
12.53 1254 1255 1256 1257 12S8 1259 1260 1261 1262 1263
1269 1270 1271 1272 1273 1274 127S 1276 1277 1278 1279

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
1317 1318 1319 1320 1321 1322 1323 1324 132.5 1326 1327
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
1349 1350 1351 13S2 1353 1354 1355 1356 1357 1358 1359
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
1461 1462 1463 1454 1465 1466 1467 1468 1469 1470 1471
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
1509 1510 1511 1512 1513 1514 ISIS J.516 IS17 1518 1519
1525 1526 1S27 1528 1529 1530 1S31 1S32 !S33 IS34 153S
1541 1542 1543 1544 1545 1546 IS47 1548 1549 1550 1551
15.57 1558 15S9 1560 1561 1562 1563 1564 1565 IS66 1567
1573 1574 157S 1576 1577 1578 1579 1580 IS81 1582 1583
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
160.'j 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
1653 16S4 165S 1656 1657 1658 1659 1660 1661 1662 1663
1669 1670 1071 1672 1673 1674 1675 1676 1677 1678 1679
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 169S
1701 1702 1703 1704 170S 1706 1707 1708 1709 1710 1711
1717 1718 1719 1720 1721 1722 1723 1724 172S 1726 1727
1733 1734 173S 1736 1737 1738 1739 1740 1741 1742 1743
1749 1750 1751 1752 1753 1754 17S5 1756 1757 1758 17S9
176S 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

1797 1798 1799 1800 1801 1802 1803 1804 180S 1806 1807
1813 1814 1815 1816 ~817 1818 1819 1820 1821 1822 1823
IR29 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
1845 1846 1847 1848 1849 1850 1851 18S2 1853 18S4 18S5
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
19S7 19.58 1959 1960 1961 1962 1963 1964 1965 1966 1967
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
200.5 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
2021 2022 2023 2024 202.5 2026 2027 2028 2029 2030 2031
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

BO~~B
1 2 3 4 5

2049 2050 2051 2052 2053
Bl- 2064 2065 2066 2067 206S 2069
B2- 20BO 20Bl 20B2 2083 2084 2085
83_ 2096 2097 209B 2099 2100 2101

B4 - 2112 2113 2114 2115 2116 2117
85- 212B 2129 2130 2131 2132 2133
86- 2144 2145 2146 2147 214B 2149
B7 - 2160 2161 2162 2163 2164 2165
88 _ 2176 2177 217B 2179 2180 21Bl
89_ 2192 2193 2194 2195 2196 2197
BA_ 220B 2209 2210 2211 2212 2213
BB- 2224 222S 2226 2227 222B 2229
BC_ 2240 2241 2242 2243 2244 2245
RD- 22.56 2257 225B 2259 2260 2261
BE- 2272 2273 2274 2275 2276 2277
SF- 2288 22B9 2290 2291 2292 2293

90_ 2304 2305 2306 2307 230B 2309
91 _ 2320 2321 2322 2323 2324 2325
92_ 2336 2337 233B 2339 2340 2341
93_ 2352 2353 2354 2355 2356 2357

94 - 236S 2369 2370 2371 2372 2373
95_ 2384 23S5 2386 23S7 23SS 23S9
96_ 2400 2401 2402 2403 2404 2405
97 - 2416 2417 241S 2419 2420 2421

9S - 2432 2433 2434 2435 2436 2437
99 - 244B 2449 2450 2451 2452 2453
9A- 2464 2465 2466 2467 246S 2469
9B- 2480 24Sl 24S2 2483 24S4 24S5
9c_ 2496 2497 249S 2499 2.500 2501
9D- 2.512 2513 2514 25i5 2516 2517
9E- 252S 2529 2530 2531 2532 2533
9F- 2544 2545 2546 2547 254S 2549

AO- 2.560 2561 2562 2563 2.564 2565
Al- 2576 2577 2.578 2579 2580 2581
A2_ 2592 2593 2594 2595 2596 2.597
A3- 2608 2609 2610 2611 2612 2613
A4- 2624 262.5 2626 2627 2628 2629
AS_ 2640 2641 2642 2643 2644 264.5
A6_ 26.51! 2657 265B 2659 2660 2661
A7 - 2672 2673 2674 2675 2676 2677
A8 _ 2688 2689 2690 2691 2692 2693
A9_ 2704 2705 2706 2707 2708 2709
AA_ 2720 2721 2722 2723 2724 272.5
AB_ 2736 2737 2738 2739 2740 2741
AC_ 2752 2753 2754 2755 2756 2757
AD- 276S 2769 2770 2771 2772 2773
AE_ 2784 278.5 2786 27S7 2788 2789
AF- 2800 2801 2802 2803 2804 2805

BO - 2Sl6 2817 2818 2Bl9 2820 2821
Bl - 2832 2833 2834 2835 2836 2837
B2 _ 2848 2849 2850 2851 28.52 28.53
83 - 2864 2865 2866 2867 286:J 2S69
B4 - 2880 28Sl 2882 2883 2884 288.5
R.5 - 2896 2897 289S 2899 2900 2901
B6 _ 2912 2913 2914 291S 2916 2917
B7 - 2928 2929 29.30 2931 2932 2933
B8 - 2944 2945 2946 2947 2948 2949
B9 - 2960 2961 2962 2963 2964 2!Jfl.5
BA- 29i6 2977 2978 2979 2980 2981
BB_ 2992 2993 2994 2995 2996 2997
BC- 3008 3009 3010 30ll 3012 3013
BD_ 3024 3025 3026 3027 3028 3029
BE_ 3040 3041 3042 3043 3044 3045
BF_ 3056 3057 305S 3059 3060 3061

Dec Bin Hex Dec Bin Hex
0 0000 0 8 1000 8
1 0001 1 9 1001 9
2 0010 2 10 1010 A
3 0011 3 11 1011 B
4 0100 4 12 1100 c
5 0101 5 13 1101 D
6 0110 6 14 1110 E
7 0111 7 15 1111 F

6 7 B 9 A B c D E F

2054 2055 20.56 2057 205B 2059 2060 2061 2062 2063
2070 2071 20;2 2073 2074 2075 2076 2077 207B 2079
2086 20B7 2088 2089 2090 2091 2092 2093 2094 2095
2102 2103 2104 2105 2106 2107 210B 2109 2110 2111
211B 2119 2120 2121 2122 2123 2124 2125 2126 2127
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
2150 2151 21.52 2153 2154 2155 2156 2157 2158 2159
2166 2167 216B 2169 2170 2171 2172 2173 2174 2175
21B2 21B3 2Hl4 2185 2186 21B7 21BB 21B9 2190 2191
219B 2199 2200 2201 2202 2203 2204 2205 2206 2207
2214 2215 2216 2217 221B 2219 2220 2221 2222 2223
2230 2231 2232 2233 2234 2235 2236 2237 223B 2239
2246 2247 224B 2249 2250 2251 2252 2253 2254 2255
2262 2263 2264 2265 2266 2267 226B 2269 2270 2271
227B 2279 2280 2281 2282 22B3 2284 22B5 22B6 22B7
2294 2295 2296 2297 229B 2299 2300 2301 2302 2303

2310 2311 2312 2313 2314 2315 2316 2317 231B 2319
2326 2327 232B 2329 2330 2331 2332 2333 2334 2335
2342 2343 2344 2345 2346 2347 234B 2349 2350 2351
235B 2359 2360 2361 2362 2363 2364 2365 2366 2367
2374 2375 2376 2377 237B 2379 23SO 23Sl 23S2 2383
2390 2391 2392 2393 2394 2395 2396 2397 239B 2399
2406 2407 240B 2409 2410 2411 2412 2413 2414 2415
2422 2423 2424 2425 2426 2427 242B 2429 2430 2431
243S 2439 2440 2441 2442 2443 2444 2445 2446 2447
2454 2455 2456 2457 245S 2459 2460 2461 2462 2463
2470 2471 2472 2473 2474 2475 2476 2477 247B 2479
24S6 24S7 24SB 24S9 2490 2491 2492 2493 2494 2495
2502 2503 2504 2505 2506 2507 250S 2509 2510 2511
251S 2519 2520 2521 2522 2523 2524 2.525 2526 2527
2534 2535 2536 2537 253B 2539 2540 2541 2542 2543
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

2.566 2567 2.568 2569 2.570 2571 2572 2.573 2574 2S75
2582 2.5S3 2.584 25B5 2586 2587 2.588 2.589 2590 2.591
2S98 2599 2600 2601 2602 2603 2604 260.5 2600 2607
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
2646 2647 2648 2649 26.50 26.51 26.52 26.53 26.54 2655
2662 2663 2664 266.5 2666 2667 2668 2669 2670 2671
2678 2679 2680 26/H 2682 2683 2684 2685 2686 2687
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
2710 2711 2712 2713 2714 271S 2716 2717 2718 2719
2726 2727 27211 2729 2730 2731 2732 2733 2734 2735
2742 2743 2744 274.5 2746 2747 274B 2749 2750 2751
275B 2759 2760 2761 2762 2763 2764 276.5 2766 2767
2774 277S 2776 2777 2778 2779 2780 2781 2782 2783
2790 2791 2792 2793 27!H 2795 2796 2i97 2798 2799
2806 2807 2808 2809 2810 2811 2Sl2 2813 2814 2815

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
2838 2839 2840 2841 2842 2843 2S44 2845 2846 2847
2854 28.5.5 28.56 2857 28.5S 2859 2860 2861 2862 2863
2870 2871 21172 2873 2874 2875 2876 2877 2878 2879
2886 2887 288S 2889 2890 2891 2892 2893 2894 2895
2902 2903 2904 290.5 2906 2907 2908 2909 2910 2911
291S 2919 2920 2921 2922 2923 2924 292.5 2!J26 2927
2934 2935 2936 2937 293S 2939 2940 2941 2942 2943
2950 2951 2!J52 29.53 29.54 2955 29.56 2957 295B 2959
2!J66 2967 2968 2969 2970 2971 2972 2973 2974 2975
2982 2983 2984 2985 2986 2987 298S 2989 2990 2991
299S 2999 3000 3001 3002 3003 3004 3005 3006 3007
3014 3015 3016 3017 301S 3019 3020 3021 3022 3023
3030 3031 303? 3033 3034 3035 3036 3037 303S 3039
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
3062 3063 3064 3065 3066 3067 306S 3069 3070 3071

The table to the left gives the decimal,
binary, and hexadecimal coding for the full
range of four binary bits, from zero through
Fi6 and 1510.

To convert a four-digit hexadecimal
number to decimal, determine the decimal
value of the three low-order hexadecimal
digits in the main table, and add the value
for the high-order digit, as shown in the

co~~72
1 2 3 4 5 6 7 8 9

3073 3074 3075 3076 3077 307B 3079 3080 3081
Cl- 3088 3089 3090 3091. 3092 3093 3094 3095 30!)6 3097
C2- 3104 310.5 3106 3107 3108 3109 3110 3lll 3112 3113
C3- 3120 3121 3122 3123 3124 3125 3126 3127 312B 3129
C4_ 3136 3137 313S 3139 3140 3141 3142 3143 3144 3145
cs_ 3152 3153 3154 3155 31.56 3157 315B 3159 3160 3161 ca_ 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
C7_ 31S4 3185 3186 3187 318S 31S9 3190 3191 3192 3193
CB- 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
cg_ 3216 3217 321B 3219 3220 3221 3222 3223 3224 322.5
CA_ 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
CB- 324S 3249 3250 3251 32.52 32S3 3254 3255 3256 3257
CC- 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
CD- 3280 3281 32B2 3283 3284 3285 3286 32B7 3288 3289
CE- 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
CF- 3312 3313 3314 3315 3316 3317 3318 3319 3.320 3321

DO- 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
DI- 3344 3345 3346 3347 334S 3349 3350 3351 3352 33.53
D2- 3360 3361 3362 3363 3364 3365 3366 3367 336S 3369
D3- 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
D4- 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
D5- 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
D6- 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
07_ 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
DB- 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
D9- 3472 3473 3474 3475 3476 3477 347B 3479 3480 34Sl
DA- 34BS 3489 3490 3491 3492 3493 3494 3495 3496 3497
DB- 3.504 3505 3506 3507 350B 3509 3510 3511 3512 3513
DC- 3.520 3.521 3522 3523 3524 3S25 3526 3527 3528 3529
DD- 3536 3.537 353S 3539 3,540 3541 3542 3543 3544 3545
DE- 3552 3553 3554 3555 3556 3557 355B 3559 3560 3561
DF- 356B 3569 3570 3571 3572 3573 3574 3575 3576 3577

EO- 35S4 3585 3586 3587 3583 3589 3590 3591 3592 3593
El- 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
E2- 3616 3617 361B 3619 3620 3621 3622 3623 3624 3625
E3- 3632 3633 3634 3635 3636 3637 363B 3639 3640 3641

E4 - 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
E5- 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
E6 - 36SO 3681 3682 3683 36S4 36S5 3686 36B7 36BB 36S9
E7 - 3696 3697 369S 3699 3700 3701 3702 3703 3704 3705
ES- 3712 3713 3714 3i15 3716 3717 3718 3719 3720 3721
E9- 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
EA- 3744 3745 3746 3747 374S 3749 3750 3751 3752 3753
EB- 3760 3761 3762 3763 3764 3765 3766 3767 376S 3769
EC- 3776 3777 377B 3779 3780 37Sl 37B2 3783 37S4 3785
ED- 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
EE- 3SOS 3809 3810 3Sll 3Bl2 3Bl3 3Bl4 3Bl5 3Bl6 3Sl7
EF- 3S24 3S25 3826 3827 3S2B 3S29 3S30 3831 3B32 3S33

FO - 3S40 3841 3842 3843 3S44 3845 3S46 3S47 384S 3B49
Fl - 3856 3857 3S5S 3859 3S60 3S61 3862 3863 3864 3865
F2 - 3S72 3873 3S74 3S75 3S76 3S77 3S7B 3879 38SO 3SS1
F3 - 3888 3889 3S90 3S91 3S92 3S93 3B94 3S95 3896 3897

F4 - 3904 3905 3906 3907 390S 3909 3910 3911 3912 3913
F5 - 3920 3921 3922 3923 3924 3925 3926 3927 392S 3929
F6 - 3936 3937 393S 3939 3940 3941 3942 3943 3944 3945
Fi - 3952 3953 3954 3955 3956 3957 :;95B 3959 3960 3961

FB - 396B 3969 3970 3971 3972 3973 3974 3975 3976 3977
F9 - 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
FA- 4000 4001 4002 4003 4004 4005 4006 4007 400S 4009
FB- 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
FC- 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
FD- 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
FE- 4064 4065 4066 4067 406S 4069 4070 4071 4072 4073
FF - 4080 40Bl 4082 4083 4084 40S5 4086 40S7 4088 4089

extended chart to the right.
For conversion of decimal values beyond

the main table, deduct the largest number
in the table at the right that will yield a po­
sitive result. The related digit is the high­
order hexadecimal digit. Determine the
three remaining hexadecimal digits by con­
verting the product of the above subtraction
in the main table.

A B c D E F

3082 3083 30S4 3085 3086 3087
309S 3099 3100 3101 3102 3103
3114 3115 3116 3117 311S 3119
3130 3131 3132 3133 3134 3135
3146 3147 3148 3149 3150 3151
3162 3163 3164 3165 3166 3167
317S 3179 3180 3181 3182 3183
3194 3195 3196 3197 319S 3199
3210 3211 3212 3213 3214 3215
3226 3227 3228 3229 3230 3231
3242 3243 3244 3245 3246 3247
3258 3259 3260 3261 3262 3263
3274 3275 3276 3277 327S 3279
3290 3291 3292 3293 3294 3295
3306 3307 330S 3309 3310 3311
3322 3323 3324 3325 3326 3327

3338 3339 3340 3341 3342 3343
3354 3355 3356 3357 3358 3359
3370 3371 3372 3373 3374 3375
3386 33S7 3388 33S9 3390 3391
3402 3403 3404 3405 3406 3407
341S 3419 3420 3421 3422 3423
3434 3435 3436 3437 343S 3439
3450 3451 3452 3453 3454 3455

3466 3467 346B 3469 3470 3471
34S2 3483 34S4 3485 3486 3487
349B 3499 3500 3501 3502 3503
3514 3515 3516 3517 3518 3519
3530 3531 3532 3533 3534 3535
3546 3547 3548 3549 3550 3551
3562 3563 3564 3565 3566 3567
357S 3579 3580 35Sl 35S2 3583

3594 3595 3596 3597 3598 3599
3610 3611 3612 3613 3614 3615
3626 3627 362S 3629 3630 3631
3642 3643 3644 3645 3646 3647
3658 3659 3660 3661 3662 3663
3674 3675 3676 3677 367S 3679
3690 3691 3692 3693 3694 3695
3706 3707 3708 3709 3710 3711
3722 3723 3724 3725 3726 3727
3738 3739 3740 3741 3742 3743
3754 3755 3756 3757 375S 3759
3770 3771 3772 3773 3774 3775
3786 37S7 378S 3789 3790 3791
3802 3803 3804 3805 3806 3807
3S1B 3B19 3B20 3S21 3S22 3S23
3S34 3835 3S36 3837 383S 3839

3850 3851 3852 3853 3854 3S55
3866 3867 386S 3869 3S70 3871
3882 3S83 3B84 38S5 3886 3887
389S 3899 3900 3901 3902 3903
3914 3915 3916 3917 391B 3919
3930 3931 3932 3933 3934 3935
3946 3947 394S 3949 3950 3951
3962 3963 3964 3965 3966 3967
3978 3979 39SO 3981 3982 3983
3994 3995 3996 3997 399S 3999
4010 4011 4012 4013 4014 4015
4026 4027 4028 4029 4030 4031
4042 4043 4044 4045 4046 4047
405S 4059 4060 4061 4062 4063
4074 4075 4076 4077 407S 4079
4090 4091 4092 4093 4094 4095

Hex Dec Hex Dec

1000 4096 9000 36864
2000 8192 AOOO 40960
3000 12288 BOOO 45056
4000 16384 cooo 49152
5000 20480 DOOO 53248
6000 24576 EOOO 57344
7000 28672 FOOO 61440
8000 32768

ABS Statement 15

Absolute Assembly 16

Arithmetic Instructions 14

Assemble Absolute Statement 15

Assembler Instructions 15, 25

ABS - Assemble Absolute 15
BES - Block Ended by Symbol 20

BSS - Block Started by Symbol 20

CALL - Call Subroutine 22

DC - Define Constant 17

DEC - Decimal Data 17

EEC - Extended BCD Information 19

END - End of Source Program 1 7
ENT - Define Subroutine Entry Point 21

EQU - Equate Symbol 20

ORG - Define Origin 16

XFLC - Extended Floating Constant 19

Assembler Program 1

Monitor System 25

Asterisk, use of 9, 13

BES Statement 20

Binary-Point Identifier 18

Blank format 4

Block Ended by Symbol Statement 20

Block Started by Symbol Statement 20

Branch and Store Instruction Counter (BSI} 13, 14

Branch instmctions 14

Branch or Skip on Condition (BSC} 13, 14

Branch Out or Skip on Condition (BOSC} 13, 14

BSS Statement 20

CALL Statement 22

Card Code 28

Character Code Chart 29

Character Set 7, 29

Character Values 9

Coding form 4

Condition-Testing instructions 13

Data Definition Statements 1 7

DC Statement 17

DEC Statement 17

Decimal Data Items 17

Decimal Data Statement 17

Define Constant Statement 1 7

Define Entry Subroutine Point Statement 21

Define Interrupt Level Subroutine Statement 21

Define Interrupt Service Entry Point Statement 21

Define Origin Statement 16

Displacement 4, 5

DSA Statement (Monitor}

EBCD Interchange Code 19, 28

EBC Statement 19

Effective Address 4

END Statement 17

End of Source Program Statement 1 7

ENT Statement 21

EPR-Extended Precision 16

EQU Statement 20

Equate Symbol Statement 20

Exit Statement (Monitor} 25

Expressions

Elements 9

Terms 10

Absolute and Relocatable 10

Extended BCD Interchange Code 28, 29

Extended BCD Statement 19

Extended Floating Constant Statement 19

Fields

Comments 6

Format 4

Identification-Sequence 7

Index Register 6

Label 3

Operand 6

Operation 3

Remarks 6

T:::.g 6

Format field 4

Format, statement 3, 4, 5

Heading Statement 26

Hexadecimal

Notation 28

Values 9

I Format 5

Index Registers, specifying 6

Index Register 3 23

Index Register field 6

Indirect addressing 6

Input/Output instruction 14

ILS Statement 21

ISS Statement 21

L Format 5

Label field 3

LIER-Transfer Vector Subroutine 16

LINK Statement (Monitor} 25

Linking statements, program 21

Load instructions 14

Location Assignment Counter 7

Overflow 8

INDEX

35

Machine Instruction
Statements 13

Mnemonics 13, 14

Mantissa 18

Miscellaneous instructions 14

Mnemonics 13, 14

Monitor Assembler Statements

UNK - Load Link Program 25

EXIT - Return to Supervisor 25
DSA - Define Sector Address 25

HDNG - Heading 26

Operand field 6

Operation field 3

ORG Statement 16

Overflow

Location Assignment Counter 7

Program Control Statements 15

Program-Linking Statements 21

Relative Addressing 8

Relocatable Assembly 15

Relocatable Programs 2, 15

Self-defining Values 8

36

Decimal 8

Hexadecimal 9

Character 9

Shift instructions 14

Slash(/), use of 9

SPR - Standard Precision 16

Statement Writing 7

Storage Allocation Statements 20

Store Inst tctions 14

Subroutin

loadint 23

executii s 23

calling 22

Subroutine Transfer Vector 22

Symbolic language 1, 3

Symbol Definition Statement 20

Symbols 7

Transfer Vector (LIEF) 22
size and location 24

Writing

Statements 7

subroutines 21

X Format 5
XFLC Statement 19

C26-5927-2

International Business Machines Corporation
Data Processing Division
112 East Past Raad, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New Yark, New Yark 10017
[International]

n
[\)

O'\
I
en
\.0
[\)

""I
I
[\)

READER'S COMMENT FORM

IBM 1130 Assembler Language Form C26-5927-2

o Your comments, accompanied by answers to the following questions, help us produce better

publications for your use. If your answer to a question is "No" or requires qualification,

please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes No

• Does this publication meet your needs? D D
o Did you find the material:

Easy to read and understand? D D
Organized for convenient use? D D
Complete? D D
Well illustrated? D D
\Vritten for your technical level? D D

• \Vhat is your occupation? ___ _

o How do you use this publication?

As an introduction to the subject? D As an instructor in a class? D
For advanced knowledge of the subject? D As a student in a class? D
For information about operating procedures? D As a reference manual? D

Other ____________ _

o Please give specific page and line references with your comments when appropriate.

If you wish a -reply, be sure to include your name and address.

COMMENTS

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C26-5927-2

fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY ...

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. 452

FIRST CLASS

PERMIT NO. 2078

SAN JOSE, CALIF.

••

fold

I --1
fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
(USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International]

fold

~
......
......
w
0

I

ii.:'
[\J
0\
I

(J1
\.()
[\J
-....]
I

[\J

