File No. 1130-21
Form C26-5927-4

IBM Sysfems Retference Library

IBM 1130 Assembler Language

This publication contains the information necessary to write
programs in the IBM 1130 Assembler language. Included are rules
for statement writing, mnemonic codes and descriptions of operands,
and descriptions of the instructions used to control the Assembler

program,

PREFACE

This manual describes the IBM 1130 Assembler
language and defines the programming rules. It is
intended as reference material for the writing of
an assembler source program and the accomplish-
ment of the steps required to produce the resulting
object program. For those without programming
experience or a knowledge of the principles involved,
the IBM publication, Introduction to IBM Data
Processing Systems (Form F22-6517), is suggested
as preliminary reading.

Within this publication, all references to the
"Monitor System" apply to Version 1 and Version
2. Where the reference only applies to Version 1,
the abbreviation DM1 is used. Where the reference
only applies to Version 2, DM2 is used.

The term 'loader' as it applies to the 1130
programming systems hav 2 the following
meanings:

Card/Paper Tape - Relocating Loader
Disk Monitor 1 - Loader
Disk Monitor 2 - Core Load Builder

For those without experience involving different
number systems, i.e., binary and hexadecimal,
the publication IBM Student Text: Number Systems
(Form C20-1618) is recommended.

Fifth Edition

The reader should also be familiar with the

following: IBM 1130 Functional Characteristics
(Form A26-5881) and IBM 1130 Computing System,

Input/Output Units (Form A26-5890),

The assembler language is valid for the 1130
Disk Monitor Programming Systems and the 1130 Card/

Paper Tape Programming System. The operating

procedures for the Monitor Assembler are described

in the publications IBM 1130 Disk Monitor System
Reference Manual (Form C26-3750), and IBM 1130

Disk Monitor System, Version 2, Programming and

Operator's Guide (Form (C26-3717).

The operating procedures for the 1130 Card/
Paper Tape Assembler are described in the publication

IBM 1130 Card/Paper Tape Programming System
Operator's Guide (Form C26-3629).

The library subroutines for the 1130 systems

are described in the IBM 1130 Subroutines Library
manual, (Form C26-5929),

MACHINE REQUIREMENTS

The minimum machine configuration for assembling
programs is as follows:

IBM 1131 Central Processing Unit, Model 1,
with 4096 words of core storage

IBM 1442 Card Read Punch, or IBM 1134 Paper
Tape Reader and IBM 1055 Paper Tape Punch,

This edition is a revision of the previous edition (C26-5927-3) which is now obsolete.
Information has been added to distinguish between Version 1 and Version 2 of the

1130 Disk Monitor System.

Significant changes or additions to the specifications contained in this publication will

be reported in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or

to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader ‘s comments.

If the form

has been removed, comments may be addressed to IBM Nordic Laboratory, Technical

Communications Department, Vesslevigen 3, Lidings, Sweden.

(© International Business Machines Corporation 1966, 1968

GENERAL DESCRIPTION
Introduction « ¢« ¢ o s s
Symbolic Language .
Assembler Program
Subroutines ,,.,...

Features of the Assembler

SYMBOLIC LANGUAGE
Mnemonic Concept , ,

Format of Statements . , .,

Statement Fields , .,
Statement Writing
Character Set » « + « »
Symbols ++ s e

.

Location Assignment Counter
Relative Addressing « « »
Self-Defining Values « « « « «

Decimal Values « « »
Hexadecimal Values
Character Values ..
Expressions e ¢ o ¢ ¢ o s 0
Elements ««¢ oo
Terms soeeeoese
Operators o« « oo oo

Evaluation of Expressions

Types of Expressions

MACHINE-INSTRUCTION STATEMENTS

.

Mnemonics « « s s o vo ot evoeeessnsoasosoas
Condition-Testing Instructions (BSC, BOSC, BSI)
Additional Monitor System Mnemonics .(DM2 only) .

ASSEMBLER INSTRUCTIONS

Program Control Statements veuseessesseeeensenssoscnsans

D I TN Y I P PP S

e

W WY O YW WwMWNTNINY W www

o s
© O OO

13
13
13
15

17
17

ABS - Assemble AbSOIULE cuvursrernrrensseanesssassanes 17
LIBR - Transfer Vector SUbIOULINe 4 veveseseseesscssoaeses 18
SPR - Standard Precision, EPR - Extended Precision 18
ORG - Define OMZiN uuueresnsesussesnssseenronnnsssnas 18
END - End of Source Program seusseseseeseessssceonsssss 10

iii

Form C26-5927 -4
Page Revised 6/5/68

By TNL N33-801

5

CONTENTS

Data Definition Statements «+sseee s s e oo ssattaans
DC -Define Constant s » « s e s 6 s s 6 s 0 00e0oessaass
DEC -Decimal Data + s s o cos 1000 0ceeesoesssses
XFLC - Extended Real Constanteeveeeoeeoeosos
EBC - Extended Binary Coded Information « v v v v v v v s

Storage Allocation StatementS + .4 eeeeeosseosesoes
BSS - Block Started by Symbol « v et o v vt eeenoenen
BES - Block Ended by Symbol 4« v s v e e eevevesnees

Symbol Definition Statement « v v v v v vevsssvoeoeoean
EQU -Equate Symbol 4+ v « e s v e s s s sevssonensens

Linking StatementS. « v v s o o s s v v essooossssannaas
ENT - Define Subroutine Entry Point « e v s s o s s v a v o
ISS - Define Interrupt Service Entry Point <« ¢ e ¢ o v 0o
ILS - Define Interrupt Level Subroutine + s s« s o s
CALL - Call Direct Reference Subroutine * « « « « e« ¢«
LIBF - Call TV (Transfer Vector) Reference Subroutine -

MONITOR ASSEMBLER STATEMENTS + ¢+ ¢ s o veesoens
Disk Data Organization Statements < «® s+ s oo oo o e sse
DSA - Define Sector Address + ++csseceeoeveeens
FILE - Define Disk File (DM2 only)e e v s s e s e v e s 0 u
Data Definition Statements « » e s s s 0o s s s s e et s v e
DMES - Define Message (DM2 only) 000
DN - Define Name (DM2 only) + s+ eeoconcossnsee
Linking Statements « s + s s oo ov ot oot svocsososonn
LINK—LOadLinkProgra_m c e e s s st e s e c a0 s e
EXIT - Return to Supervisor o« e s ee oo cosnososson
DUMP - Dump and Terminate Execution (DM2 only) .
PDMP - Dump and Continue Execution (DM2 only) ...
List Control Statements o+« e oo seovesooovassoosos
HDNG - Heading+ s e s veoseosrossosoannnnans
LIST - List Segments of Program (DM2 only), ¢ s s oo«
SPAC - Space Listing (DM2only)s s eseveesaccesn
EJCT - Start New Page (DM2 only) « s oo s s oo e s o s

APPENDIX A. CHARACTER CODE SUMMARY + s s o s 0

APPENDIX B. HEXADECIMAL-DECIMAL CONVERSION
CHART e s s e e s ossosossscannssssasn

APPENDIX C, ASSEMBLER MNEMONICS AND ERROR
CODES FOR 2250 ORDERS. s vvvvevrseseses

INDEX ¢ o eoeeoestssonssssosonsascnonsncaans

.. 19
.. 21
o 21
.. 22
.. 22
.. 22
.. 22
.. 22
.23
.. 23
.. 23
.o 24
v 24
.. 25

. 26

.. 26
v 26
ce 27
s 28
<. 28
<. 20

e 30

<+ 30

«o 30
.. 30

.o 31
. 31
.0 31

. 31
e 32
.o 32

¢ 33

..39.1

<+ 40

INTRODUCTION

The IBM 1130 Assembler language replaces binary
instruction codes with mnemonic symbols and uses
labels for other fields of an instruction. Other fea-
tures, such as pseudo-operations, expand the pro-
gramming facilities of machine language. Thus,

the programmer has available, through an assem-
bler language, all the flexibility and versatility of
machine language, plus facilities that greatly reduce
machine language programming effort.

Symbolic Language

Symbolic language is the notation used by the pro-
grammer to write (code) the program. A program
written in symbolic language is called a source pro-
gram,. It congists of systematically arranged
mnemonic operation codes, special characters,
addresses, and data, which symbolically describe the
problem to be solved by the computer.

The use of symbolic language:

e Makes a program independent of absolute core
locations, thus allowing programs and subroutines
to be relocated and combined as desired.

e Allows subroutines that can be written indepen-
dently and that cause no loss of efficiency in the
final program.

e Permits instructions to be added to or deleted

from a source program without the user having
to reassign storage addresses.

Assembler Program

The assembler program converts (assembles) a
source program into a machine-language program.
The conversion usually is one for one — that is, the
assembler produces one machine-language instruc-
tion for each symbolic-language instruction,

The 1130 Disk Monitor Assembler is a two-pass
assembler. The source program is read into core
from the principal input device and written on the disk
for use in pass 2. During the first pass the symbol
table is generated. During the second pass the object

GENERAL DESCRIPTION

program is created in the system Working Storage
and the listing, if requested, is produced.

The IBM 1130 Card/Paper Tape Assembler is a
two-pass program. It is loaded into the computer
and is followed by the first pass of the source program.
During the first pass, the source statements are
read and a symbol table is generated. During the
second pass, the source program is read again and
the object program and/or error indications are
punched into the first 20 columns of each source card.
If paper tape is used, the second pass results in the
punching of a new tape that contains both source state-
ments and corresponding object information. Both
card and tape object programs must be compressed
(via a Compressor Program supplied with the assem-
bler) into a relocatable binary deck (or tape) before
they can be loaded into core storage for execution.
The output from the second pass is called the list
deck (or tape) and can be used to obtain a program
listing of source statements and corresponding object
statements.

Subroutines

A library of input/output, arithmetic, and functional
subroutines is available for use with the IBM 1130
Assembler.

The user can incorporate any subroutine into his
program by simply writing a call statement (CALL or
LIBF, whichever is required), referring to the sub-
routine name. The assembler generates the linkage
necessary to provide a path to the subroutine and a
return path to the user's program. The ability to use
subroutines simplifies programming and reduces the
time required to write a program.

A description of available subroutines is con-
tained in the system subroutine library manual.

FEATURES OF THE ASSEMBLER

The significant features of the IBM 1130 Assembler
are summarized below. More detailed explanations
are given later in this manual.

Mnemonic Operation Codes. Mnemonic operation
codes are used for all machine instructions instead

General Description 1

of the more cumbersome internal binary operation
codes of the machine. For example, the Subtract
instruction can be represented by the mnemonic, S,
instead of the machine operation code, 10010.

Symbolic References to Storage Addresses. Instruc-
tions, data areas, and other program elements can
be referred to by symbolic names or actual machine
addresses and designations.

Renaming Symbols. A symbolic name can be equated
to another symbol, so that both refer to the same
storage location. This makes it possible for the
same program item to be referred to by different
names in different parts of the program.

Automatic Storage Assignment. The assembler
assigns consecutive addresses to program elements
as it encounters them. After processing each ele-
ment, the assembler increments a counter by the
number of words assigned to that element. This
counter indicates the storage location available to
the next element.

Relocatable Programs. The assembler can produce

object programs in a relocatable format; that is, a
format that enables programs to be loaded and exe-
cuted at storage locations different from those
assigned when the programs were assembled.

Convenient Data Representation. Constants can be
specified as decimal digits, alphabetic characters,
hexadecimal digits, and storage addresses. Conver-
sion of the data into the appropriate machine format
of the 1130 System is performed by the Assembler.
Data can be in a form suitable for use in decimal
integer, fixed-point, or real arithmetic operations.

Program Listings. For every assembly, the user
can obtain a program listing, This listing can be
produced either off-line (Card/Paper Tape Assem-
bler) or on-line during the assembly process (Disk
Monitor Assembler).

Error Checking. Source programs are examined by
the Assembler for errors arising from incorrect use
of the language. Where an error is detected, a coded
warning message appears in the program listing.

MNEMONIC CONCEPT

Symbolic programming may be defined as a method
whereby names and symbols are used to write a pro-
gram. The symbolic language includes a standard
set of mnemonic operation codes. Mnemonic opera-
tion codes are easier to remember than machine lan-
guage codes because they are usually abbreviations
for actual instruction descriptions. For example:

Description Mnemonic
Add A
Execute I/0 XIO

Each IBM 1130 machine instruction has a cor-
responding mnemonic operation code. In addition,
there are some mnemonic codes that assign storage
and others that allow the user to exercise control
over the assembly process.

FORMAT OF STATEMENTS

A source program consists of a sequence of state-
ments. These statements can be written on a stan-
dard coding form (X26-5994) provided by IBM. The
information on each line of the form (Figure 1) is
punched into one card or paper tape record or en-
tered from the keyboard. The first position on the
form (21) corresponds to card column 21 or to the
first character of the paper tape/keyboard record.
Space is provided at the top of the coding form to
identify the program; however, none of this informa-
tion is punched into the statement cards. The first
20 columns of an assembler source card must be
blank.

NOTE: Keyboard input is acceptable only with the
Monitor 2 Programming System.

Statement Fields

An assembler statement is composed of one to seven
fields: label field, operation field, format field, tag
field, operand field, comments field, and identifica-
tion sequence field.

SYMBOLIC LANGUAGE

Label Field (Columns 21-25)

The label field represents the machine location of
either data or instructions. The field may be left
blank, may contain an asterisk in column 21, or
may be filled with a symbolic address, left-justified
in the field. Only data or instructions that are re-
ferred to elsewhere in the program need a label,
although a label that is not further referred to is
not an error.

A label can consist of up to five alphameric
characters, beginning at the leftmost position of the
label field. A label is always a symbol and must
therefore conform to the rules for symbols (see
Symbols). The example below shows the symbol
ALPHA used as a label.

Label . Operands & Rer

40 45 50

= 'es,L-ELI:IQL,’L.L O

.l § SRS TN W U S WO WSS DU U VRO VOO S TR S SR S N W
2 £

ALPHA

If the label field is left blank, it is ignored by
the Assembler and has no effect on the assembled
program. If column 21 contains an asterisk (*), the
entire statement is treated as comments and appears
only in the listing. If the field contains a symbolic
name (label), and the statement represents a standard
machire language operation (Add, Store, etc.), the
value assigned to the label is the address of the
assembled instruction, which is equal to the value of
the Location Assignment Counter (see Location As-
signment Counter) at the time the statement is en-
countered by the Assembler. Values assigned to
labels of the various assembler instructions are
specified in the section entitled Assembler
Instructions.

Operation Field (Columns 27-30)

Each machine instruction and assembler instruction
has a unique mnemonic operation code associated
with it. When a particular operation is to be repre-
sented, its mnemonic code must be punched, left-
justified, in columns 27-30 of the source statement
record.

Symbolic Language 3

IBM 1130 Assembler
Coding Form

Form X26-5994
Printed in U.S.A_

of ..

Operands & Remarks Identification
43 50 55 60 45 75 80

f W SN U W NN TR TSN TN U T U N N N U T T N TN SR TR T S | O O G Y |
| NN W N S N SN N TN T S T N N NN T U N NN Y SN T S S | U T W N T
| NN S N Y TN TN TN TN TN T TN U (N SO TN TN T (N Y TR N T W | T T S Y
Y WA Y S TN TSN TN N U TN S N Y YW OO T N VRN S YO0 W S § O N W . |
{ NN W W TSN [N TR Y [N TR Y T U Y T N TN N T N W W W | TR S W S 1
[NN S TR TN S TN TN NN WO TU U N N T N T SO N S U | 1 W S D - |
IS NS SO N NN WA T VNN U N [N Y [T N TN T TR SN T N Y T U | PR S W N 'l
TR TS Y S T NN TN TN W N TN TN TN T NN U WO U WD TS TN SO S S | N TS U S e |
Y TN WY W NS U U W T SN TN WO N TN SN T N Y U O T Y T G | I TR T D
TR VRS WY WA NN NN SO SN T NN OO SN T VU U SV VY WA T [N TN ST OO0 G | I T W S
U SN TN N N N T TN SN Y T TN N Y T VN T N WS W W W | T T W T
TR SN WA WS N NN W TN T S50 UUUON U N NN (NN WO SN NN N Y SN N T O | Y N T T |
U S WY N N (N T N N ST NN N T N TN DR T S U TR S W | T O U N W
U YK N N Y TN TR TN T VMY RN VAN S NN Y N U WS S W NN VA T W § T W W S S
N TN TN TR T T (RN TN TN N T T U WY S YO N N ISR TR W T W | U T D
T N S T A TSNS N OO U T TN S U O AU TN S U S U TR N R B | U N R N T |
IR SN TR U I SN TN TS NN WA T WU WU U (N NN TNV N N A Y Y Y W | T TS T O B |
{ NS TN SN N NN JUNENS TSNS UL U U N W N TR N [N TR U S W SN VA T W | S T W N . |
I TN TN TR Y TR TSOURY Y N E TR S TN WY SO TN Y WO S [TN N N W | T U N W A |
N S T T SN T T S T N T T S TN T O T W I I Y N T | U D N U S |
VIV TN IO VO WSO TN SN TS TR IS W S U N S T VA W N T U W T o | U I VR N T

RN SN (N U WS T T TN T 0 WO U (N I TN TN T T N T T Y | O T U |
IS W SR VO OO TUNOS Y T O NN VS U S WO [N TN WO T A T I T T | I N U N B |
SN N I N TN N S TN N Y T N Y W W W O U Y TN N T S | I T O B B |
TN TR SRS O TS N TN NN S U O O SO TN OUNY WA W NN W (N WA NN T G | N N N I S |
TN VRN S WY D TN TN U WY N O W W0 NN (NN TN SN T T WO N OO0 S S | TR T S T |

Figure 1. Coding Form
Format Field (Column 32) field specifies a long instruction. Bit 5 of the

The format field specifies the type of machine in-
struction being represented and, in the use of short
(one-word) instructions, how the displacement field
is to be handled. Any one of four entries is per-
mitted: two for short instructions, one for a direct
long (two-word) instruction, and one for an in-
directly-addressed long instruction. For conven-
ience, these formats are referred to by the charact-
er used to specify them, namely blank format, X
format, L format, and I format.

Blank Format. A blank in the format field (column
32) signifies a short instruction except with some
of the extended mnemonics provided with the Disk
Monitor Assembler, in which case a blank format

agsembled instruction is set to zero. A blank also

indicates that any expression in the operand field be
interpreted as the desired effective address for the

statement.

During execution of certain short instructions,
the effective address is the sum of the displacement
(last 8 bits of the instruction word) and the contents
of the Instruction Address Register (IAR). A blank
format for such instructions causes the assembler to
subtract the current value of the Location Assignment
Counter from the expression in the operand field.
Thus, when this result is added to the IAR during
execution of the instruction, the correct effective
address is obtained. .

The effective address of short Store Index (STX)
instructions is always obtained by adding the dis-
placement to the IAR. The displacement of the Load

Index (LDX), Load Status (LDS), WAIT, all shift
instructions, and all condition testing instructions
is never added to the IAR. The effective address of
all other short instructions is obtained by adding
the displacement to the IAR, if the instructions are
not indexed; that is, if column 33 is blank or zero.
The X format suppresses the automatic subtraction
of the address counter from the displacement operand
value when the instruction is moved. Therefore, the
X format should be used for a short instruction which
will have an effective address obtained by adding the
displacement to the JAR. This requirement is not in
conflict with the relocation process, because the
process shifts the whole program, including instruc-
tions and reference data, to a core storage area
different fromrthat for which it was assembled. The
relative distances between instructions and data re-
main the same, and the displacements remain correct.
In a relocatable assembly, the expression speci-
fying an operand modified by the IAR must be re-
locatable so that the actual displacement is an ab-
solute quantity (see Expressions). If this rule is not
followed, a relocation error will be indicated. Also,
since displacements must lie in the range -128
to +127_ , the value of the displacement—specitly({ng
expression must not be more than 127_ greater,
nor more than 128 1 less than the address of the
next location after t?le ingtruction in which it appears;
otherwise, an addressing error will be indicated.
An example illustrating the blank format is shown
below:

Assume A = location 1()0010
B = location 105010

The value of the IAR will be 1001, when

instruction A is executed. Therefore, the value
computed by the assembler for the displacement

will be 4910.

Label

.
L O RO
F F F F O

- + F F F

SR~ S S

2 | I W DU S |
lcoms T,

FrrFrrrr

F F F O

| W T W <% I G W |

In the case of an instruction whose address is
not modified by the IAR, the Assembler interprets
the cxpression in the operand field as the desired
contents of the displacement field, without modifica-
tion. In this case, the operand specifying the dis-
placement must be absolute and must be in the range

~-128 0 to +12710, or relocation and addressing errors
resu}t.

X Format. An X in the format field indicates to the
Assembler that the related statement is to be assem-
bled as a short instruction. It further indicates that
any expression in the operand field is to be inter-
preted as the desired displacement value.

Consider the example illustrated in Figure 2;
the purpose of this instruction sequence is to change
the flow of a program by inserting a branch instruc-
tion in a location that previously contained a "no
operation. ' If the branch instruction at BRCON
were specified as MDX GO (i.e., blank format),
the assembler would compute the displacement
on the basis of the IAR value of 1101. (The IAR
would have a value of 1101 if the BRCON instruction
were executed where it was assembled.) However,
the programmer, knowing the instruction will be
executed at location SWTCH, computes the dis-
placement himself and specifies the X format.

L Format, If column 32 contains the character L, it

signifies a long (two-word) instruction with direct
addressing. Bit 5 (F) of the assembled instruction

is set to 1. The operand-field expression, which may
be relocatable or absolute, is used to fill the second
word (bits 16-31) of the assembled instruction. A
second operand may be present, separated from the
first operand by a comma (,). This operand may be
used in one of two ways:

1. To specify symbolic condition codes for use with
BSC, BSI and BOSC instructions.

2. To specify an expression that has a value in the
range of -128 to +127 and is not relocatable.

This second operand yields bits to fill bit positions
8-15 of the assembled instruction.

I-Format. If column 32 contains the character I, it
signifies an indirectly addressed long instruction.
Bit 5 and bit 8 are set to 1. In all other respects
an indirect instruction is treated exactly as a long
direct instruction. If a displacement operand is
specified, its high-order bit (bit 8) will always be

a one, causing the displacement to be negative,
because this bit is also the indirect flag bit.

Symbolic Language S

“© . %0

Operonds & Remarks

35

Identification
75 0

Lt
|
1
S |
L
I |
11
T |

1
L
L
L
L
1
1
1

F F F FFFFOF
[S N S
F F F F R B

F F F F B

6.0~ SWT.CH-1,

T T T T IO N N Y S |

S N
- F F F R OF

Figure 2, Use of X Format

Tag Field (Column 33)

Column 33 is used to specify an index register if
one is required. The code in column 33 is the index
register number; i. e., 1=Index Register 1, 2=Index
Register 2, and 3=Index Register 3. A zeroor a
blank indicates that no index register is to be used.
If no tag is specified in an LDX, MDX, or STX
instruction, the IAR is used. The example below
shows an add instruction that addresses the core
location whose address is zero plus the contents
of Index Register 2,

Operonds & Rer
“ a3 %

o T U SN VA WA A VAN WS S TN N T WA Y S S U |

W T U VRO TN Y WO VAN SN0 SN0 W SO W S S Y T Y 1

Operands and Remarks Field (Columns 35-71)

The operand field is used to specify subfields in in-
The content of the operand

structions and constants.

field for the various instruction formats are de-
scribed under Format Field. Blanks must not appear
within the operand(s) except as character values or
in the EBC statements.

Some examples of one- and two-operand state-
ments are shown in Figure 3.

Remarks Field

Remarks are for the convenience of the programmer.
They permit lines or paragraphs of descriptive infor-
mation about the program to be inserted in the pro-
gram listing. Remarks appear only in the program
listing; they have no effect on the assembled object
program. Any valid characters (including blanks)
can be used as remarks.

The Remarks field must appear to-the right of
the operand field and must be separated from it by
at least one blank,

Comments Field

By placing an asterisk in column 21, the combined

) T N TS W TR WY WO WY W TN TS Y T S IO WO W N [N VO W U WU W S U S S S R
AIC.CAU.’I i Aol”lel-|0lpl£leiﬁl~101 lLloleel lslrlﬂlTl€IMElNATl 1
Y W W NS U WIS W WO T D W T TS TS T U U U N N (N T N TR U NN SN AU TNV SN N S

Figure 3,

One- and Two-Operand Statements

statement fields from columns 22-72 may be used
for comments. The identification-sequence field
(columns 73-80) should not be used for comments.

If it is necessary to continue comments on ad-
ditional lines, each line must have an asterisk in
column 21, as illustrated in Figure 4.

Identification-Sequence Field (Columns 73-80)

The identification-sequence field may be used for
program identification and statement-sequence num-
bers. It is limited to columns 73-80. The informa-
tion in this field normally is punched in every state-
ment card. The Assembler, however, does not
check this field.

STATEMENT WRITING

Symbolic language statements are accepted by the
Agsembler only if they conform to the rules of syntax
presented in this section. Subsequent sections of this
publication deal with the format and content of the
specific types of assembler statements (machine in-
structions and assembler instructions). Instructions
of both types are formed by using the basic elements
described here. Many of the points introduced in this
section are covered more extensively in subsequent
sections,

Character Set
The following characters may be used in statements:

Monocase Alphabetics A through Z, $, #, @

Numerics 0 through 9

Special Characters [*¥+-=& |71 <>
e, ()% -7
(blank)

The codes that the assembler accepts for these
characters are listed in Appendix A. Appendix A
also lists additional codes which may be used in com-
ments statements, as character values, and as
alphameric constants. The + and & special char-
acters may be used interchangeably as operators.

Symbols

Storage areas, instructions, and other elements may

be given symbolic names for the purpose of referring
to them in the program. The symbolic name is called
a symbol. It can contain up to five characters.

While the first character of a symbol must be alpha-
betic, the remainder may be alphabetic, numeric, or
any combination of the two. No embedded blanks or
special characters may be used. Any violation of
these rules is detected by the Assembler and 4indi-
cated as an error in the program listing.

The following are valid symbols:

PUNCH
A2345 LOOP2

START N
BC$#@

$, # and @ are monocase alphabetics, not special
characters (see Character Set), and as such can be
used in the label field.

The following symbols are invalid, for the
reasons noted:

256B First character is not

alphabetic
RECORDAREA2 More than 5 characters
END 1 Contains a blank

If a symbol is to be used as an operand, it must
be defined in the program by using it as the label of
a statement. Two types of label assignments are
allowed. In machine-instruction statements and cer-
tain assembler statements, the label is assigned an
address equal to the current value of the Location
Assignment Counter. In the Equate Symbol statement
(see Symbol Definition Statement), the label is
assigned the value specified in the operand of the
statement,

Symbol Table. For every program assembled, a
table of the symbols in that program is created.

This is the symbol table; each entry in the table re-
cords the value and relocation property of a symbol.
All symbols defined in the program are entered

in the symbol table. Symbols that appear in the

label field of assembler instructions that do not use
labels (for example, ABS, END, ENT) are not placed
in the symbol table.

General Restrictions on the Use of Symbols. The
following restrictions are imposed on the use of
symbols:

e A symbol may appear only once in a program
as the label of a statement. If a symbol is used
as a label more than once, only the first usage
is recognized. Each subsequent usage of the
symbol as a label is ignored and, in the card/
paper tape system, is noted as an error in the
program listing. In addition, any reference to

Symbolic Language 7

EACH LI NME O0F, COM

LaNES

ENT,S,

Figure 4. Example of Comments Statement

such a symbol is noted as an error,

e The number of symbols that can be defined in a
program is restricted by the amount of core
storage available to the assembler. The number
of symbols allowed is defined in the system
operator 8 manual,

LOCATION ASSIGNMENT COUNTER

The Assembler maintains a counter to assign sequen-
tial storage addresses to program statements. This
counter is called the Location Assignment Counter.

It always indicates the next available address. As
each machine instruction is processed, the counter
is incremented by the number of words assigned to
that instruction. Certain assembler instructions
also cause the Location Assignment Counter to be

set or incremented, whereas others do not affect it
(see Assembler Instructions).

Location Assignment Counter Overflow. The maxi-
mum value of the Location Assignment Counter is
65535, a 16-bit value. If a program being assem-
bled causes the counter to be incremented beyond
65535, the Assembler retains only the rightmost

16 bits in the counter and continues the assembly,
checking for any other source program errors. No
usable object program is produced. The user can,
however, still obtain a listing of the entire source
program,

RELATIVE ADDRESSING

Once an instruction has been named by a symbol in
the label field, it is possible for other instructions
to refer to that instruction by using the same symbol.
Moreover, it is possible to refer to instructions pre-
ceding or following the instruction named by indica-
ting their positions relative to that instruction. This
procedure is referred to as relative addressing. A
relative address is, effectively, a type of expression

(see Expressions).

For example, in the sequence

U S U W S

TV W U W S |

U G T W -

control can be transferred to the second instruction
by either of the following instructions:

[RN S W W GUUY VNS U U GO0 W N S W |

By using relative addressing, it is also possible
to refer to a particular word within a block of re-
served storage. For example, the instruction

Label

40 A5

& LI/ B A R AU U R

\
%1..|111111111l

reserves a block of 50 words, in which BETA is the
address assigned to the first word in the block. The
address BETA+1 then refers to the second word,
BETA+2 to the third word, and BETA+n to the (nth+1)
word.

Relative addressing can also be effected by using
the current value of the Location Assignment Counter
in an operand. In symbolic language this value is
denoted by an asterisk (*). (See The Asterisk Used
as an Element.)

SELF-DEFINING VALUES

A self-defining value is a machine value or a bit
configuration.

Self-defining values can be used to specify such
program elements as data, masks, addresses, and
address increments. The type of representation
selected (decimal, hexadecimal, or character) de-
pends on what is being specified.

Decimal Values

A machine decimal value is an absolute number from
0 to 65535. It is assembled as its binary equivalent,
Some examples of decimal, self-defining values are

500 003
17 52324
7230 1

If a number larger than 65535 is specified in address
arithmetic, the value is truncated modulo 65536;
that is, only the low order 16 bits of the binary value
aré retained.

Hexadecimal Values

A hexadecimal value is an unsigned hexadecimal
number written as a sequence of digits. The digits
must be preceded by a slash (/). The hexadecimal
digits represent the 16 possible combinations of
four bits.

Each hexadecimal digit is assembled as its four
bit value. The hexadecimal digits and their bit
patterns are as follows:

0-0000 4 -0100 8 -1000 C - 1100
1-0001 5-0101 9 -1001 D -1101
2 -0010 6 -0110 A -1010 E -1110
3-0011 7-0111 B-1011 F - 1111

The following are examples of hexadecimal,
self-defining values:

/FFFF
/AB12
/379B
/F2

/00F2 } equivalent

If more than four hexadecimal digits are speci-
fied in one sequence, only the four low-order digits
are retained by the assembler, If less than four
hexadecimal digits are specified, they are entered,
right-justified.

A table for converting decimal values to hexa-
decimal values is provided in Appendix B,

Character Values

A character value is a single character, preceded
by a period. A character value may be a blank, any

combination of punches in a single card column, or
a paper tape character that translates into the eight-
bit IBM Extended BCD Interchange Code. Appen-
dix A is a table of these combinations, their inter-
change codes and, where applicable, their printer
graphics. A period used as a character value is
represented as two periods in sequence, (i.e., ..).
Examples of character values are:

A

.1

.2

.D
(blank)

The same value can frequently be represented
by any one of the three types of self-defining values.
For example, the decimal value 196 can be expressed
in hexadecimal as /C4 and as a character, .D. The
selection of a particular type of value is left to the
programmer. Decimal values can be used for actual
addresses and input/output unit numbers, hexadeci-
mal values for masks, and character values for
data.

EXPRESSIONS

The term "expression' refers to symbols or self-
defining values used as operands, either singly or
in arithmetic combinations, Expressions are used
to specify the various fields of machine instructions.
They are also used as the operands of assembler-
instruction statements.

An expression has three components: elements,
terms, and operators.

Elements

The smallest component of an expression is an
element. An element is either a single symbol or
a single self-defining value. The following are
valid elements:

TMP
/1A6
.B

A

*

4
The Asterisk Used As an Element

When used as an element the asterisk is relocatable
and stands for the current value of the Location
Assignment Counter for the instruction in which it
appears (i.e., the rightmost word of the current
instruction + 1). Thus, the asterisk as an element
can have different values for different instructions.

Symbolic Language 9

Label r-l Operotion F|T i3
21 25 27 2 32| 33ffas 0 4“4
R TN L,D, 1 [‘AIBICI WD T N T WU N T SN N W 1
$1U1’“A 1 ! An M DI€AF| J U T S W T W U S
Lo 4 » S, .. - DlA.T|A| PG T W W N U W W T
VI R 83.¢, L - 31U1M1;1+A UV WY W U W S W
" i BT T T WSS W T NN T S S Y T N W W

The last instruction is a conditional branch to
location SUM and can be written

Lobel | Operation FlT
21 si{w 2]} Jas 40 45

anncx L *l_|41;|+1 | Y T W T T S W W |

) W S 't P | ST TS WY U (VD WO VAU W U N N N 1

TR S |

Be sure the asterisk refers to the proper word when
it is used with a long instruction or in an area where
long instructions are present. In the previous exam-
ple, the BSC instruction will become two machine
language words after assembly. Therefore, during
assembly of the BSC instruction, the Location As-
signment Counter contains a value one greater than
if the BSC were a short instruction.

Terms

A term can consist of a single element, two elements
separated by an asterisk (which denotes multiplica-
tion), or three elements each separated by an asterisk,
etc. A term must begin with an element and end

with an element, but is not permissible to write two
elements in succession. The following are valid
terms:

TMP * FUNC * TAXY
A*4

X*Y*5

6 * 4096

3

Operators

An operator is a character that denotes an arithmetic
function. The recognized operators are + or & (plus
or ampersand), - (minus), and * (asterisk), denoting
addition, subtraction, and multiplication, respec-
tively: An operator must be used between two terms.
Two operators may not be used in succession.

There is no ambiguity between the use of the
asterisk as an element and the use of the asterisk
as an operator to denote multiplication,because the

10

position of the asterisk always makes clear what is
meant. Thus, **10 means "the value of the Location
Assignment Counter multiplied by 10. "

Evaluation of Expressions

From a symbolically written operand, the evaluation
procedure derives an integer value that can be used
as (1) a displacement value in a short instruction,
(2) an address in a long instruction, or (3) an absolute
numeric quantity,

An expression is evaluated as follows:

=
.

Each element is replaced by its numeric value.

2. Each term is evaluated by performing the indi-
cated multiplications from left to right, in the
order in which they occur. In multiplication,
the low-order 16 bits are retained.

3. The terms are combined from left to right, in

the order in which they occur. If the result is

negative, it is replaced by its 2's complement.

Grouping of terms, by parentheses or otherwise,
is not permitted; however, this restriction can often
be circumvented. For example, the product of 25
times the quantity B~C can be expressed as

25 *B-~-25*C

Types of Expressions

In addition to evaluating expressions, the Assembler
must decide whether the expression is absolute

or relocatable. Without this information the Assem-
bler would be unable to assign the proper relocation
indicator bits for use during loading.

Rules for Determining the Type of Expression

The rules by which the expression type is determined
are:

e A symbol that is defined by means of the Location
Assignment Counter is a relocatable element,

e Decimal and hexadecimal integers and character
values are absolute elements.

e A relocatable element alone is a relocatable
expression,

® A relocatable element, plus or minus an absolute
element, is a relocatable expression,

e The difference of two relocatable elements is
an absolute expression.

e A symbol that has been equated to an expression -
(by means of the EQU assembler instruction)
assumes the same relocation property as that
expression.

These rules are clarified by the following example:

Assume that a programmer wishes to incorpor-
ate a table into a relocatable program, and he knows
that he may later wish to add or delete items with-
out changing program references to the table. The
first step is to assign symbols to the first (lowest-~
addressed) word in the table and to the location
immediately after the last (highest-addressed) word
of the table. These symbols could be BGTBL and
ENTBL, respectively. Regardless of the number
of items in the table or of the number of later
additions or deletions, the number of words in the
table is always equivalent to the value of the ex-
pression ENTBL-BGTBL. This illustrates the rule
that the difference of two relocatable elements is an
absolute expression.

Expanding this example, assume the programmer
wishes to use a second table the same length as the
first, The first (lowest addressed) word of the
second table can be indicated by the symbol STBL.
Then, the location following the last (highest-ad-
dressed) word of the second table can be indicated
by the expression

STBL + ENTBL - BGTBL

This address is subject to relocation; hence, the
expression is relocatable, following the rule that a_
relocatable element plus or minus an absolute
element is a relocatable expr=zssion.

Procedure for Determining the Type of Expression

The following paragraphs describe the procedure
for determining expression type (absolute or
relocatable):

e Discard any term that contains only absolute
elements.

e Examine each term of the expression. If any
term contains more than one relocatable ele-
ment, the expression will yield a relocation
error.

e Replace each relocatable element by the symbol
r, and replace each absolute element by its
value. This yields a new expression which in-
volves only numbers and the symbol r.

o Rewrite the expression in simplest form by
evaluating it according to the address arithmetic
rules given above in the section, Evaluation of
Expressions.

K the result is an integer, the operand is absolute.
If the result is r, the expression is relocatable. If
the result contains r to any power other than one,or
contains r with a coefficient other than one, the
operand does not have a well-defined relocation
property and will yield a relocation error. The
following examples illustrate this procedure.

NOTE: When the terms absolute symbol and reloca-
table symbol are used in text, they mean symbols
that refer to addresses.

Example 1: Consider the expression,

4+3*TRANS-2*FUNC+COUNT
where TRANS and FUNC are relocatable symbols,
and COUNT is an absolute symbol. Discarding the
terms involving only absolute elements leaves

3*TRANS-2*FUNC

This does not contain any illegal terms. Replacing
each symbol by the letter r results in

3*r-2*p

Evaluating this produces r; therefore, the expression

_is relocatable,

Example 2: Consider the expression,

2*3*TRANS-FUNC

This reduces to

2*3*p-p

or

5r

Symbolic Language 11

This is neither r nor a number; therefore, the
expression will cause a relocation error.

Example 3: Consider the expression,
A*2*¥R-A¥A*R+5

where A is an absolute symbol, and R is a relocata-
ble symbol. The expression is absolute if the value
of A is zero or two and relocatable if the value of A
is 1, If the value of A is anything else, a relocation
error will result.
In the following examples, A, B, C, and D are

relocatable.symbols, and J, K, L, M, and N are
absolute symbols.

Relocatable expressions:

A 1*A
At+J 250*A-249*B
A+B+C-D-* 100*A+50*B-75*%C~74*D

Absolute expressions:

12345 0*A
A-B+C-D+5 500*A-400*B-100*C

12

Relocation Errors

¥ a source program contains an expression having in
it one or more of the following, that expression is
flagged as a relocation error.

e The negative (complement) of a relocatable
element

e An absolute element minus a relocatable element
o The sum of two relocatable elements
In the following exarples, A, B, C, and D are

relocatable symbols, and J, K, L, M, and N are
absolute symbols.

A+B (+2r) A*B (r?)

-A (-1r) 2%A (2r)

15-% (-1r) 5*A-6*A (-1r)
A+J+M+N+B-C+D+L(+2r)

NOTE: In an absolute assembly headed by an ABS
statement (described later), all symbols and asterisk
values are defined as being absolute; therefore, no
relocation errors are possible. -

All machine instructions can be represented symbol-
ically as assembler language statements. There are
two basic formats: short and long. However, with-
in each basic format, further variations are possible.

The symbolic format of a machine instruction
parallels, but does not duplicate, its actual format.
A mnemonic operation code is written in the opera-
tion field, and one or more operands are written in
the operand field. Comments can be appended to a
machine-instruction statement as previously ex-
plained.

Any machine-instruction statement can be named
by a symbol, which other assembler statements can
use as an operand. The value of the symbol is the
address of the leftmost word assigned to the assem-
bled instruction.

MNEMONICS

A list of all IBM 1130 machine language instructions
and their associated mnemonics, including those
mnemonics available for the monitor system only, is
given in Table 1.

Condition-Testing Instructions (BSC, BOSC, BSI)

The machine instructions Branch or Skip on Condition
(BSC), Branch Out or Skip on Condition (BOSC),

and the long form of Branch and Store Instruction
counter (BSI) use bits 10-15 of the displacement to
test any combination of six conditions associated with
the accumulator. When coding these instructions, the
user does not use an expression to specify the dis-
placement field, but, instead, writes a series of
unique characters, each of which represents one bit
of the condition-testing mask. These character
symbols may be written in any combination; the bits
they represent are combined by the assembler in a
logical OR fashion., The symbols and their repre-
sentations are:

MACHINE-INSTRUCTION STATEMENTS

Unique Bit Position
Character Condition Description Set to 1
O (Alpha) Overflow Skip or do not branch 15
if Overflow indicator off

C Carry Skip or do not branch 14
if Carry indicator off

E Even Skip or do not branch 13
if bit 15 of Acc =0

+or& Plus Skip or do not branch 12
if bit 0 of the Acc =0,
but not all bits of Acc
=0

- Minus Skip or do not branch 11
if bit 0 of Acc =1

z Zero Skip or do not branch 10

if all bits of Acc =0

Skip on plus condition
_ Skip on non-zero (plus or minus)
Skip on non-plus (zero or minus)
_ Skip if Carry indicator off

Branch to EXIT if not plus
(zero or minus)

<+, = Branch to EXIT if zero
(not plus or minus)

Branch to the contents of XR1 if minus
(not zero or plus)

0 Branch and Store instruction counter
to SUBR if Overflow is on

Machine-Instruction Statements 13

Table 1. Machine Instruction Mnemonics

Mnemonic OP Code | Instruction
(Hexodecimal Representation)
Load and Store
Lo C00 Lood Accumulator
LDD C80 Lood Double
LDX 600 Load Index
LDS* 200 Lood Status
STO 000 Store Accumulator
STD 080 Store Double
STX 680 Store Index
STS 280 Store Status
Arithmetic
A 800 Add
AD 880 Add Double
S 900 Subtract
sD 980 Subtract Double
M A0 Multiply
D A80 Divide
AND EQO And
OR EB0 Or
EOR FOO Exclusive Or
MDM t5 740 Modify Memory
Branch
B t4 700 or 4CO Branch
BSI 400 Branch and Store Instruction Counter
BsSC 480 Branch or Skip Conditionally
8P t6 4C30 Branch Accumulator Positive
BNP 16 4C03 Branch Accumulator Not Positive
BN 6 4C28 8ranch Accumulator Negative
BNN 16 4C10 Branch Accumulator Not Negative
BZ 6 4C18 8ranch Accumulator Zero
BNZ t6 4C20 Branch Accumulator Not Zero
8C 16 4C02 Branch on Carry
BO 6 4CO1 Branch on Overflow
BOD 16 4C04 8ranch Accumulator Odd
SKP* t 480 Skip on Condition(s)
BOSC 2 484 Branch Out or Skip Conditionally
MDX 700 Modify Index and Skip
Shift
SLA* 100 Shift Left Accumulator
SLT* 108 Shift Left Accumulator and Extension
SLC* 10C Shift Left and Count Accumulator and Extension
SLCA* 104 Shift Left and Count Accumulator
SRA* 180 Shift Right Accumulator
SRT* 188 Shift Right Accumulator and Extension
RTE* 18C Rotote Right
XCH* 13 18D Exchange Accumulator and Extension
Input/Qutput
XI0 080 Execute 1/0
Miscelluneous3
NOP* 100 No Operation
WAIT* 300 Wait

*Valid in short format only
+Not included in card/paper tape Assembler or DM1 Assembler.

1. The hexadecimal representation of the machine operation code is derived from the instruction format in the manner shown below.

Bits 6 and 7 are assumed to be zeros because they do not enter into the makeup of any operation codes.

Same as BSC with Bit 9 set to one.

An operand should not be specified.

When branch is short (Blank or X format), this operation code is assembled as an MDX (700). if the branch is long (L or | format),
this operation code is assembled as o BSC with Bit 5 set to one (4C0).

This instruction is outomatically assembled as o long instruction (L is not required in the format field). Note that an attempt to use
indirect addressing will result in a syntax error. Indexing is not permitted with this extended operation code.

Extended conditional branch operation codes are assembled automatically as long instructions. (L is not required in the format field).
Note that the proper condition code bits are preset, ond further condition bits may not be specified following the operand.

o o &N

Hexadecimal Characters

st 2nd 3rd

Leagcber et e be

0 1 23 456 7 8 900111213 14 15
OP Code 4

Format (F)

Index Tag bits (T)

1A bit, part of
displacement, or extension

of OP code

Part of displocement,
or extension of OP code

Condition indicators,
or part of displacement

14

ADDITIONAL MONITOR SYSTEM MNEMONICS (DM 2)

Several new mnemonic operation codes which are
equivalent to a Branch or Skip on Condition (BSC) may
be used with the DM2 System. The operation code
to be used for a specific job depends on the format
and condition code required.

A new mnemonic MDM has been introduced that
may be used in place of an unindexed MDX long.
XCH may be used in place of RTE 16.

Examples of the additional DM2 System
mnemonics are shown in Table 2, The mnemonics
are listed below,

Skip on Condition (SKP). The condition codes (+, -,
Z, E, O, and C) are specified as with a short BSC
instruction. This ingstruction must not be indexed.

Branch Unconditionally (B). If the Format field con-
tains an L or I, the BSC operation code is used with
bit 5 set to one. Condition codes are not allowed
after the address expression in the Operand field.

If the Format field is left blank or contains an X,

the MDX operation code is used, and the expression
in the Operand field is used to form the displacement.

Branch Accumulator Positive (BP). Condition codes
for accumulator zero (Z) and accumulator negative
(-) are set to one.

Branch Accumulator Not Positive (BNP). Condition
code for accumulator positive (+) is set to one.

Branch Accumulator Negative (BN), Condition codes
for accumulator zero (Z) and accumulator positive
(+) are set to one.

Branch Accumulator Not Negative (BNN). Condition
code for accumulator negative (-) is set to one.

Branch Accumulator Zero (BZ). Condition codes for
accumulator positive (+) and accumulator negative
(-) are set to one.

Branch Accumulator Not Zero (BNZ). Condition code

for accumulator zero (Z) is set to one.

Branch on Carry (BC). Condition code for Carry

indicator off (C) is set to one.

Branch on Overflow (BO). Condition code for Over-

flow indicator off (O) is set to one.

Branch Accumulator Odd (BOD). Condition code for
accumulator even (E) is set to one.

NOTE: Condition codes may not be used with any of
the above instructions, except SKP, since the condi-
tion code is implicit in the extended mnemonic. The
conditional branch instructions (all except SKP and
B) are always assembled as long instructions; thus,
the Format field need not contain an L, although the
instruction is not classed as an error if L is speci-
fied. Indirect addressing may be specified.

Modify Memory (MDM). Contents of the location

specified by the first operand is incremented or
decremented by the value of the second operand. The
second operand must be in the range -128 to +127.

NOTE: This instruction is always assembled as a
long instruction; thus, the Format field need not
contain an L, although the instruction is not classed
as an error if L is specified. Indexing and indirect
addressing must not be specified. If the operand
becomes zero or changes sign, the next word in the
program will be skipped.

Exchange Accumulator and Extension (XCH). Ex-

change is identical to a RTE of 16. No operand is
specified with this instruction.

Machine-Instruction Statements 15

Table 2. Examples of New (Extended) Machine Instruction Mnemonics (DM2 only)

New Instruction Stotements

Equivalent Statements

i 35 0
A
SO0 RS U ED WS S B S

TS W S WO VY U SO B

Z

dd b L
j DU G WS A S N S |

O i

N R S TS T S T S |
S U N S S
TN G S S T S S
vl TeeY - ITO STRT!
| T S N S U W |
F S ST T U S N R R
I W S N U U A U
4 ”
A L BT B S S

B& -
B#-

A | s
[o)

AF.E
2, A 0).
-12

A e

Operations Performed

Skip if accumulator is positive

Skip if accumulator is non-zero

Skip if accumulator is zero

Skip if Overflow indicator is off

Skip if Carry indicator is off

Skip if accumulator is non-zero or if Carry indicator is off

Branch unconditionally to EXIT, where EXIT must be within nomal
displacement range.

Branch unconditionally to ALPH
Branch to BETA if accumulator is zero
Branch to BETA if accumulator is negative

Branch indirectly to BETA (i.e., the oddress specified by contents of
BETA) if accumulator is non-zero

Branch to RTNA if accumulator is negative

Branch to RTNB if accumulator is non-negative (zero or positive)
Branch to SUB@.if accumulator is positive

Branch indirectly to SUB$ (i.e., the oddress specified by the contents of
SUB$) if accumulator is positive

Branch to SUB# if accumulator is non-positive (zero or negative)

Branch to ENTR+1 if Carry indicator is on

Branch indirectly to address specified by contents of index register 1
if Carry indicator is on

Bronch to address specified by contents of index register 2 plus 5 if
Overflow indicator is on

Branch to $AFE if accumulator is odd

Increment contents of core location SAVA by 5

Increment contents of core location /1D6A by 100 decimal
Decrement contents of core location A by 12

Exchange the accumulator and extension (rotate right 16)

16

Just as machine instructions are requests to the
computer to perform a sequence of operations during
program execution, assembler instructions are
requests to the Assembler to perform certain opera-
tions during the assembly. In contrast to machine-
instruction statements, assembler-instruction state-
ments do not always cause machine instructions to
be included in the assembled program. Some, such
as BSS and BES, generate no instructions but do
cause storage areas to be set aside for constants and
other data. Others (e.g., EQU) are effective only
during the assembly; they may or may not generate
something in the assembled program. If nothing is
generated, the Location Assignment Counter is not
affected.

The following is a list of all assembler statements
permitted by the IBM 1130 Card/Paper Tape Assembler,
These statements are also valid for the Monitor
Assembler. Additional statements are provided for
the Monitor Assembler and are listed in the section
Monitor Assembler Statements.

Program Control
ABS - Absolute Assembly

LIBR = Transfer Vector Subroutine
SPR = Standard Precision
EPR - Extended Precision
ORG - Define Origin
END = End of Source Program
Data Definition
DC = Define Constant
DEC - Decimal Data
XFLC - Extended Floating Constant
EBC ~ Extended Binary Coded Information
Storage Allocation
BSS - Block Started by Symbol
BES - Block Ended by Symbol
Symbol Definition
EQU - Equate Symbol
Program Linking
ENT - Define Subroutine Entry Point
Iss - Define Interrupt Service Entry Point
LS - Define Interrupt Level Subroutine
CALL - Call Subroutine (2-word call)
LIBF = Call Subroutine (1-word call)

PROGRAM CONTROL STATEMENTS

Program control statements are used to set the Lo~
cation Assignment Counter to a specific value, to
define the end of a source program, or to specify
whether a particular program is to be assembled as
absolute or relocatable. None of these assembler
statements generate machine-language instructions
or constants in the object program.

ASSEMBLER INSTRUCTIONS

ABS — Assemble Absolute

An ABS statement is used to specify that a main pro-
gram is to be assembled as an absolute program.

An absolute program is one in which the core loca-
tions used at execute time are the same as those
specified by the programmer in the source program.
The ABS statement is punched as shown below and

is then used as the first statement of a source pro-

gram.

Label

If the first (non-comment) statement of a source pro-
gram is not an ABS statement, the program will be
assembled as relocatable. In an absolute assembly
headed by an ABS statement, all symbols and aster-
isk values are defined as absolute quantities; there-
fore, no relocation errors are possible. The
significance of relocatable and absolute assemblies
is explained in the following paragraphs.

Relocatable Assembly

Some programs assembled by the IBM 1130 Assem-
bler are absolute; that is, the locations of assembled
instructions are known during the assembly and the lo-
cation on the listing is the actual location where a
particular word is loaded. However, subroutines
used by an absolute program must be in such a form
that they may be loaded at various locations; other-
wise, it would be necessary for the user to reassem-
ble the subroutines each time he assembled a main
program that required them. Therefore, all subrou-
tines must be and main programs may be assembled
relocatable,

Every relocatable program or subroutine pro-
duced by the IBM 1130 Assembler is assembled as
though it begins at location zero. Since a job to be
executed may contain several subroutines, it is
obvious that they cannot all be loaded into locations
starting with location zero. In fact, no relocatable
program is ever loaded at location zero; instead,
each program is relocated. The relocatable main
program is loaded into the first available location.
Subroutines are then loaded into successively higher
locations of core storage, each beginning with the

Assembler Instructions 17

Form C26-5927-4
Page Revised 6/5/68
By TNL N33-8015

next even location after the last core storage
location used by the preceding subroutine. When
a particular program has been loaded, the address
of the first word is called the load address for
that program.

Thus, the address in core storage actually oc-
cupied by an instruction of the program is the address
assigned to that instruction during assembly, plus
the load address of that program. To keep the pro-
gram self-consistent, the load address must be add-
ed to the address of many (but not all) 2-word in-
structions, and those constants whose values are
relocatable.

This process of conditionally adding the load
address is performed by the loading program before
execution and is called relocation. In relocating in-
structions, the loading program is guided by relo-
cation indicator bits which are a part of the object
program,

Absolute Assembly

The programmer uses the ORG assembler statement
in his source program to specify the locations into
which the object program resulting from an
absolute assembly is loaded. Subroutines are
loaded into successively higher even-core locations
following the end of the main program.

Only main programs may be assembled absolute;
subroutines must be assembled relocatable.

LIBR — Transfer Vector Subroutine

An LIBR statement is used as the first statement of

a subroutine to specify that the subroutine is to be
called by LIBF statements only (see Program-

Linking Statements). The absence of an LIBR state-
ment specifies that the subroutine is to be called by
CALL statements only. LIBR statements are for sub-
routines only, as ABS statements are for main pro-
grams only. An LIBR statement needs no operands.

SPR — Standard Precision, EPR — Extended
Precision

The SPR or EPR statement specifies that the pro-
gram (main or subroutine) in which it appears uses
standard precision or extended precision, respec-
tively, for arithmetic operations. If these state-
ments are included in the user's programs, the
loader ensures that main programs and subroutines
always match with regard to precision. Their use
is optional, however.

18

If used, the SPR or EPR statement must follow
the ABS or LIBR statement. If no ABS or LIBR
statement is used, the SPR or EPR statement is the
first statement in the program.

ORG — Define Origin

This assembler instruction is used to set the Location
Assignment Counter (i.e., the next location to be
assigned) to any desired value. In this way the pro-
grammer is able to control the assignment of storage
to instructions, constants, and data. I a Define
Origin statement is not the first entry in an absolute
source program, the processor begins the assign-
ment of storage at a location compatible with the size
of the applicable loader (Card/Paper Tape Assem-
bler) or the size of the resident monitor plus DISKN
(Disk Monitor Assembler). A typical Define Origin
statement is shown below,

| SV U S S N Y N WS T

The label, if used, is assigned a value equal to the
value of the Location Assignment Counter at the time
the statement is encountered in the source program.
(This assignment is made before the counter is
modified.) I any symbols are used in the expression,
they must have been previously defined. In a relo-
catable assembly, an absolute expression in the oper-
and field is considered a relocation error and the
statement is ignored.

Some examples of Define Origin statements are
given below:

Label Ope:

21 5 0 43 50
L1 qu|ZA TSN TS WY W W U U U G T S .

W - | U W TS W N WA VOO IO Y U U T S S 5
s, T.ART| [0.RG, 5,0 L s
I T T § e F T S T N T (N WA SN TS NS TN O S N o
S\ 7,A,RT | #5850, 0,06 CTIR+59,
Lo K TS YUY VY SN N N WA NN G W U S G N S |

If the label XYZ has been previously defined as
10004 the first entry directs the assembler to begin
the assignment of succeeding entries at location 1000.
The second entry directs the Assembler to begin the
assignment of succeeding entries 50 core locations
beyond the location that has been assigned to the
symbol XYZ. The third entry directs the Assembler
to begin the assignment of succeeding entries at the

address specified by the current address of the Lo- T) -

Label) Operation po{F| Tl Operands

cation Assignment Counter plus 50. 2 e sl 1o af s © 45 :
E DC : /1F|F|F|F1 IHIEIXI lclollelTl Loy
END — End of Source Program PP b I £ I I ST A A N
DEC, | pC, L1 1-3.85 DEC ([INT6ER 4+ 5_

An END statement is the last statement of a source

I T N Y | | N O O N BN S S

program; it indicates to the assembler that all state- ALBHA D, {18 CHAR LCOMET It

ments of the source program have been processed. EPUP S e Papa e T
: , . DDORS| p.C, : A,

An END statement is also used to define the execution R ABLLAADE ADDR (C.0M,

I S O T 0 N S ' | N TS N T T T OO N Y T U S Y B N 1

address of the main program. To do this, the END
statement requires an operand that represents the
starting address of the program. At the completion
of loading, execution begins at the address specified
by the operand. For subroutines, all entry points
are specified by ENT statements (described later);
therefore, the operand of the END statement for a
subroutine is blank.

The following statements illustrate both types of
END statements.

Lobe! Operation F
2 25 7 % 32
i1 1 1 ElNlpl
htd b fod 4 LLLIIllllllllll‘l
N END, 8,RANCH, T

PR .nl"i 551 1NN VT YUV VAN U T SR AT W U U VAN U S U |

DATA DEFINITION STATEMENTS

Data Definition statements are used to enter data con-
stants into storage. The statements can be named by
symbols so that other program statements can refer
to the fields generated. Any type of data definition
statement can be used in standard or extended pre-
cision program.

DC — Define Constant

The Define Constant statement is for generating con-
stant data in main storage. Data can be specified as
characters, hexadecimal numbers, decimal numbers,
storage addresses,or any valid expression. One 16-
bit word is generated for each DC statement. The
format of this statement is shown below:

If a label is used, the address assigned to it is the
location of the generated data word and is equal to

the current value of the Location Assignment Counter.
Some examples of DC statements follow:

DEC — Decimal Data

The Decimal Data statement is used to enter binary
data, expressed in decimal form, into a program.
One DEC statement generates two 16-bit words of
binary information. The format of the DEC statement
is as follows:

%

s £
T
[z | i ss “© 45

i1 | tiDec/mal Date Item ,
llll‘LIIIIl‘JIAlLJAL

Operands & Rei

S
Label Operation
2t 25 27 30

L.A.B.E.LD.EC.

If a label is used, its value is equal to the current
value of the Location Assignment Counter if the cur-
rent value is even; if the current value is odd, the
label will be equal to the current value plus one. The
label is assigned to the leftmost word of the generated
constant. The types of data permitted in the operand
field are described in the paragraphs entitled Decimal
Data Items. An example of a DEC statement follows:

‘{92]af s 40 4

31_-:+n/.91 TN SRR SR

) S T U WY WY U0 U A TR SN S U W

If the value of the Location Assignment Counter is
1000 when the DEC statement is encountered, the two
words in storage look like this:

Location Contents in Hexadecimal Form
01000 0000
01001 0013

Decimal Data Items
A decimal data item is used to specify, in decimal

form, two or three words of data to be converted into
binary form. Decimal data items are used in the

Assembler Instructions 19

operand field of DEC assembler statements. Three
types of decimal-data items are permitted: decimal
integers, real numbers, and fixed-point numbers.
A real decimal-data item can also be used as the
operand of an XFLC statement that generates a
3-word constant.

Decimal Integers. A decimal integer is composed of
a series of numeric digits with or without a preceding
plus or minus sign. The allowable range of decimal
integers is -(231-1) to 231-1,

Examples
Decimal Integer Stored As
50 000000321 ¢
1535 OOOOOSFF1 6
-3729 FFFFF16F g

(2's complement)

Real Numbers. A real number has two components:
a mantissa and an exponent.

e Mantissa — The mantissa is a signed or unsigned
decimal number, which can be written with or
without a decimal point. The decimal point can
appear at the beginning, at the end, or within
the decimal number. If the exponent (see below)
is present, the decimal point can be omitted,
in which case it is assumed to be located at the
right-hand end of the decimal number.

e Exponent — The exponent consists of the letter
E,followed by a signed or unsigned decimal in-
teger. The exponent part can be omitted if the
mantissa contains a decimal point. If used,
it must follow the mantissa,

A real number is converted to a normalized, real
binary number. The exponent part, if present,
specifies a power of ten by which the mantissa is
multiplied during conversion. For example, all of
the following real numbers are equivalent and will be
converted to the same real binary number.

4.500
45.00E-1
4500E-3
.4500E1

In standard precision, the above real numbers are

converted and stored in two consecutive storage
locations as follows:

20

Word 1 Word 2
4800 0083

The DEC assembler instruction stores real
numbers in the standard precision real number
format described in the system subroutine library
manual.

Fixed Point Numbers. A fixed-point number can
have up to three components: a mantissa, an exponent,
and a binary-point identifier.

® Mantissa — The mantissa is the same as describ-
ed for real numbers.

e Exponent — The exponent is the same as describ-
ed for real numbers,

e Binary-Point Identifier — This identifier consists
of the letter B, followed by a signed or unsigned
decimal integer., The binary-point identifier
must be present in a fixed-point number and
must come after the mantissa. I the number has
an exponent, the binary point identifier may
precede or follow the exponent.

A fixed-point number is converted to a fixed-
point binary number that contains an understood binary
point. The purpose of the binary-point identifier of
the number is to specify the location of this under-
stood binary point within the word. The number that
follows the letter B specifies the number of binary
places in the word to the left of the binary point (that
is, the number of integral places in the word). The
sign bit is not counted. Thus, a binary-point identi-
fier of zero specifies a 31-bit binary fraction. B2
specifies two integral places and 29 fractional places.
B31 specifies a binary integer. B-2 specifies a binary
point located two places to the left of the leftmost bit
of the word; that is, the word would contain the low-
order 31 bits of binary fraction, As with real
numbers, the exponent, if present, specifies a
power of ten by which the mantissa is multiplied during
conversion.

A fixed-point number preceded by a minus sign
is stored in 2's complement form.

The following fixed-point numbers all specify the
same configuration of bits, but not all of them specify
the same location for the understood binary point:

22.5B5
11.25B4
1125B4E-2

1125E-2B4
9B7E1

All of the above fixed-point numbers are con-
verted to the same binary configuration, whose
hexadecimal representation is:

Word 1 Word 2
5A00 0000

XFLC — Extended Real Constant

The XFLC assembler instruction is used to introduce
into a program an extended precision real constant,
expressed in three consecutive data words. When
assembled, this instruction produces a format
identical to the extended range real format describ-
ed in the system subroutine library manual,

The format of the XFLC instruction is shown

below:

Operands & Rer

The label is optional; if it is used, it is assigned to
the location of the leftmost word generated.
Some examples of the X¥FLC instruction are

shown below:

Operands & Rer
45 50

.. 531,25 ,

?7 F W S W O W B B |
L —4..53125

1
1
2 I W T U U R R
1
i

|'IIIZJ£IZI Ly

S T W S S S
2o

bk R

1 1 I 11
I I
1 11 1
J I |
+ 1 1 11
L& |

F F - F F K

The data (in hexadecimal form) generated by each of
these examples is

1. Word 1 Word 2 Word 3
0080 4400 0000

2. Word 1 Word 2 Word 3
0080 BC00 0000

3. Word 1 Word 2 Word 3
008A 4000 0000

EBC — Extended Binary Coded Information

The EBC statement is used to generate data words,
each consisting of two 8-bit characters in the Extend-
ed BCD Interchange Code (see Appendix A). Up to 18
sixteen-bit words can be generated with one EBC
statement. The format of the statement is shown
below:

If a label is present, it is assigned to the location of
the leftmost word generated. The operand field con-
tains the alphameric data to be represented in stor-
age. This data must begin and end with a period.
The data can be any valid character in the Extended
BCD Interchange Code, including the period.

Examples

40 45

I£IRIQAOIRI'| o

L
| T T T T IS S T W S B |
1
1

L

11

.|C.O|Ms|T|A|MT|. 1

| TN W TN T W WO U W W |

1.1

B W

The first example generates three words of data, with
the location of the label CONST assigned to the left-
most location of the first word generated.

Word 1 Word 2 Word 3
C5D9 D9D6 D940

CONST

Note that if the constant has an odd number of char-
acters, as in the above example, the last word of
data ends with the 8-bit equivalent of blank.,

The second example generates four words of
data:

Word 1 Word 2 Word 3 Word 4
C3D6 D5E2 E3C1 D5E3

NOTE: A.period may not appear in the remarks
field of an EBC instruction.

Assembler Instructions 21

STORAGE ALLOCATION STATEMENTS

Storage allocation statements are used to reserve
blocks of storage for data or work areas, Two such
statements are available with the IBM 1130 Assem-
bler: Block Started by Symbol and Block Ended by
Symbol.

BSS — Block Started by Symbol

The BSS assembler instruction is used to reserve an
area of core storage, within a program, for data
storage or for working space. The format of the
BSS instruction *follows:

Label

T B Operands & Rer
3 g as 4 15 50

| Wbsolute Fxrress, ron,

lellllllllllllllll

The expression specifies the number of words to be
reserved; the label, if specified, refers to the left-
most word reserved. The location of the block of
storage within the object program is determined by
the location of the BSS statement within the source
program.

If the character E is punched in column 32, the
assembler assigns the leftmost word of the reserved
location to the next available even location. If a
blank or any character other than E appears in
column 32, the assembler assigns the leftmost word
of the reserved area to the next available location
regardless of whether that location is even or odd.
This feature is useful when defining areas for use
with double precision instructions.

A BSS statement with an E format and an oper-
and value of zero causes the Location Assignment
Counter to be made even (if necessary) before the
next instruction is assembled.

A BSS instruction causes an area to be reserved,
not cleared; therefore, it should not be assumed
that an area reserved by a BSS instruction contains
Zeros.,

Any symbols in the operand field of a BSS assem-
bler instruction must have been previously defined.
The expression in the operand field must be an
absolute expression.

In the following example, the symbol AREA is
equivalent to 3000; the next location assigned is
3028.

22

Label Operation FlT

21 25 27 30 32| 23 15 40 45
T At O.R.G,
AR E A, 85,5,

Ad 4 L T

3!010l01Al1lll1A14L
208, a4 uua g ay

) TS Y SO SR WY Y VU SN W WU WS T W't

BES — Block Ended by Symbol

The BES instruction is identical to the BSS instruc-
tion except that the address assigned to the label is
the rightmost word in the area plus 1, i.e., the
next location available for assignment.

In the previous example, the symbol AREA is
equivalent to 3028.

SYMBOL DEFINITION STATEMENT

One symbol definition statement (EQU) is available in
the IBM 1130 Assembler language.

EQU — Equate Symbol

The EQU statement is used to assign to a symbol a
value other than the value of the Location Assignment
Counter at the time the symbol is encountered. The
format of the EQU statement is

Operands & Re¢

The symbol in the label field is made equivalent to
the value of the expression. The expression may be
absolute or relocatable, All symbols appearing in
this expression must have appeared as a label in a
previous statement. If an asterisk (*) is used as the
expression, the value assigned to it is the next loca-
tion to be assigned by the assembler.

Examples
tobal | | Operation | f¢|T}]
2) 23 7 2 32| af o fas 0 45
NlA/“AEA E.Q.U. "zén U DAY Y WD N W W U U R B
T S Mt) WV U N T W Y U T W W T I W't
L,00,/P, £].U e
SR S T P T S Y S S W WA R S N W U T §

In the first example, the symbol NAME is assigned a
value of 26. In the second example, the symbol
LOOP is assigned a value of 27.

LINKING STATEMENTS
Linking statements are used to establish communi-

cation between a main program and its subroutines
or between a program and the ‘Monitor system.

ENT - Define Subroutine Entry Point

The ENT statement should be used to define the

entry point(s) in all subroutines except ISS and ILS.
Up to fourteen entry points (ten with the Card/Paper
Tape Assembler) may be defined for each subroutine
(this would require an equal amount of ENT state-~
ments).
below.

The format of the ENT statement is shown

NAME is a symbol that identifies an entry point for
the associated subroutine, This symbol must be
relocatable. All ENT statements for a given sub-
routine must be together and must precede all state-
ments except LIBR, SPR, EPR, and comments
statements., ENT, ISS, or ILS statements (see
below) may not be used in the same subroutine,

ISS — Define Interrupt Service Entry Point

IBM provides interrupt service subroutines (ISS) for
all devices; however, the user is given the option of
replacing or adding to these subroutines with his own.
The ISS statement is used to define an entry point in
an interrupt service subroutine and to establish
interrupt linkages to the subroutine during loading.
Only one entry point may be defined for each sub-
routine., The format of the ISS statement is shown
below.

40 45

Form C26-5927-4
Page Revised 6/5/68
By TNL N33-8015

Word 30 of the header record can be set for
identification purposes as shown below. Word 30 is
not used by any of the 1130 programs.

Label ISS Header Word 30
blank blank

1130 1

1800 2

NAME is as described for the ENT statement and
NN (the ISS number) is a decimal number from 01 to
20 used during loading to establish the linkage from
the appropriate point in the corresponding ILS. The
numbers and associated devices used in the sub-
routines provided by IBM are listed below.

Card/Paper Tape System and DM1 System

Number* Device or Function
01 1442 Card Read Punch
02 Input Keyboard/Console Printer
03 1134 Paper Tape Reader;
1055 Paper Tape Punch
05 Single Disk Storage
06 1132 Printer
07 1627 Plotter
08 Synchronous Communications Adapter

*Numbers 09 through 20 are assignable by the user.

DM2 System

Number* Device or Function
01 1442 Card Read Punch;
1442 Card Punch
02 Input Keyboard/Console Printer
03 1134 Paper Tape Reader;
1055 Paper Tape Punch
04 2501 Card Reader
05 Single Disk Storage;
2310 Disk Storage
06 1132 Printer
07 1627 Plotter
08 Synchronous Communications
Adaptor
09 1403 Printer
10 1231 Optical Mark Page Reader
11 2250 Display Unit, Model 4

* Numbers 12 through 20 are assighable by the user.

NOTE: User-assigned ISS numbers should start at
twenty and proceed backwards in order to avoid con-
flict with IBM-assigned ISS numbers.

Assembler Instructions 23

Form C26-5927-4
Page Revised 6/5/68
By TNL N33-8015

L is a one-digit number required by the Card/Paper
Tape Assembler to indicate the interrupt level(s)
associated with the subroutine. The level numbers
(0-5) can be listed in any order in columns 45, 50,
55, 60, 65, and 70 with the first appearing in 45,
the second in 50, etc,

L is not used with the monitor system. Instead,
LEVEL control cards are used with the subroutine
being assembled, one card per interrupt level re-

| quired (see the monitor system operator 8 manual).

An ISS statement must precede all statements

except LIBR, SPR, EPR and comments statements.

Procedures for writing I18Ss are provided in the
subroutine library manual for the Card/ Paper Tape
and DM2 sys tems and in the operator 8 manual for
the DM 2 system.

ILS — Define Interrupt Level Subroutine

IBM provides interrupt level subroutines for the
various I/0 devices and their associated interrupt
levels; however, the user may replace or add to
these subroutines with his own. The ILS statement
is used to define an interrupt level subroutine and to
associate the subroutine with a specific interrupt
level, The format of the ILS statement is shown
below.

NN is the interrupt level number (00-05) associated
with the interrupt level subroutine and is used during
loading. The devices associated with each interrupt
level are shown below:

Interrupt Level Device(s)
00 1442 Card Read Punch
(1442 Card Punch)
01 1132 Printer, Synchronous
Communications Adaptor
02 Single Disk Storage (2310

Disk Storage)

24

Interrupt Level Device(s)
03 1627 Plotter
04 Keyboard/Console Printer,

1442 Card Read Punch,
1134 Paper Tape Reader,
1055 Paper Tape Punch
(2501 Card Reader,
1403 Printer, 1231 Optical
Mark Page Reader)

05 PROGRAM STOP Key or
Interrupt Run Mode.

NOTES: 1. The devices listed in parentheses are
used with the DM2 system only.
2. An ILS statement must precede all statements
except SPR, EPR, and comments statements.
Procedures for writing interrupt level sub-
routines are provided in the subroutine library
manual for the Card/Paper Tape and DM1 systems
and in the operator s manual for the DM2 system.

CALL or LIBF Subroutines

The user may reasonably ask when to write a LIBF
subroutine and when a CALL subroutine. Two factors
influence the decision. First, the maximum limita-
tion on the size of the LIBF Transfer Vector limits
the number of unique LIBF subroutine entry points
referenced by any core load. There is no such limi-
tation on the CALL subroutine, However, the CALL
subroutine references may require more core stor-
age. The number of words of core required by
CALL or LIBTF references varies with the type of
call as follows:

LIBF linkage =
(number of references to a LIBF name) + 3

CALL linkage =
(number of references to a CALL name * 3) (Monitor)
{(number of references to a CALL name * 2) (Card/Paper
Tape System)

Thus, in the Monitor System any subroutine entry
name referenced four or more times in a given core
load will be more economically written as a LIBF
subroutine,

CALL - Call Direct Reference Subroutine

A CALL statement is used to call any of the sub-
routines in the IBM Subroutine Library that are
written not to utilize the LIBF Transfer Vector,
whether user- or IBM-supplied. The format of the
CALL statement is:

Label

2}

The name of the called subroutine is assembled into
the object program, together with a unique code
identifying the CALL. This name occupies two
words.

As a Monitor core load is being built, the first word
of the called subroutine name is replaced with an
indirect BSI instruction and the second word with

the address of the one-word entry for that subrou-
tine entry point in the CALL Transfer Vector, which
will contain the address of the subroutine entry point,

As a Card/Paper Tape System core load is being
built, the first word of the called subroutine name
is replaced with a long BSI instruction and the
second word of the called subroutine name with
the address of the subroutine entry point. Thus,
a Transfer Vector is unnecessary in this case,

LIBF - Call TV (Transfer Vector) Reference
Subroutine

A LIBF statement is used to call any of the subrour-
tines in the IBM Subroutine Library that are written
to utilize the LIBF Transfer Vector, whether user-
or IBM-supplied. The format of the LIBF state-
ment is:

The name of the called subroutine is assembled
into the object program, together with a unique
code identifying the call as a LIBF call, This is
replaced during loading as follows:

P ‘ T 4
27 30 S 33 E

185,71, [|3
i p L L

35 “© 45
D ,ASJPILIAICAEAMAEANITA A)

W T W S TN WY U W W T S W

TForm C26-5927-4
Page Revised 6/5,68
By TNL N33-8015

As indicated, Index Register 3 is required for the
Transfer Vector and may be used by the user”s
program only if the following requirements are met:

o Index Register 3 must be saved and restored
before the execution of the next LIBF statement.

eThere must be no overlapping of 1/0.

eThere must be no possibility of interrupts
from the SCA.

LIBF Subroutine Transfer Vector

To fully understand the use of the LIBF statement,
the user should be familiar with the makeup of the
Transfer Vector, which allows mainlines to commu-~
nicate with relocatable subroutines (and relocatable
subroutines to communicate with each other) with-

! out knowing where in core storage the subroutines

are loaded. The Transfer Vector consists of three
words for each entry point referred to by a LIBF
statement.

To build the Transfer Vector the Monitor constructs
a Load Table of four words for each unique sub-
routine entry point referred to by a LIBF statement.
The name of the subroutine entry point is stored in
the first two words. The last two words of the
entry are initially zero.

word 1 word 2 word 3 word 4

|

Name of Subroutine zero zero

As shown above, Index Register 3 will be used
during execution to point to the first word of the
LIBF Transfer Vector entry. The displacement

of the indexed BSI instruction replacing the LIBF
statement in the object code is the displacement
from the middle of a maximum size Transfer Vec-
tor (255 words) to the first word of the referenced
Transfer Vector entry.

After the mainline has been processed, each sub-
routine named in the Load Table is processed, and
the address of the entry point is stored in the third
word of the Load Table entry, The fourth word of
the entry is used for several purposes during pro-
cessing.

Assembler Instructions 25

Form C26-5927-4
Page Added 6/5/68
By TNL N33-8015

word 1 word 2 word 3 word 4

Name of Subroutine

Entry address

of Subroutine undefined

Any subroutines referenced by LIBF gtatements

as the subroutines are being loaded are added to

the Load Table (if they are not already there) and
processed in the same manner, After the core

load has been built, the Transfer Vector is created.
The first word of each entry is set to zero, a long
BSC instruction is placed in the second word, and

the subroutine entry point address (from the corres-
‘ponding Load Table entry) is stored in the third word.

word 1 word 2 word 3

zero BSC L Entry addrgss
of Subroutine

In the Card/Paper Tape System, the Load Table,
which consists of three-word entries, becomes the
Transfer Vector. As the LIBF statements are en-
countered during loading, the subroutine entry point
name is stored to the first two words of the Transfer
Vector entry. The third word of the Transfer Vector
entry is initially zero,

word 1 word 2 word 3

Name of Subroutine zero

The displacement of the indexed BSI instruction re-
placing the LIBF statement in the object code is the
displacement from the middle of a maximum size
Transfer Vector to the first word of the Transfer
Vector entry.

As the subroutines are loaded, the third word of
each Transfer Vector entry is replaced with the
address of the subroutine entry point. The first
word is cleared to zero, and a long BSC instruction
is stored in the second word.

word 1 word 2 word 3

L Entry address

zero BSC of Subroutine

25,1

LIBF Subroutine Execution

As the mainline is executed, the subroutine calls are
encountered one by one. Each LIBF statement is
now in the form of a BSI instruction. The BSI in-
struction stores the contents of the IAR into the

first word of the Transfer Vector entry associated
with the subroutine being called and then branches to
the second word of the same Transfer Vector entry.
As a result, the first word of the Transfer Vector
entry contains the address of LIBF + 1.

word 1 word 2 word 3

Entry Address
of Subroutine

LIBF +1

Address BSC L

Following execution of the BSI instruction, the BSC
instruction in word 2 of the Transfer Vector entry
is executed, transferring control to the subroutine.
In order to access parameters and to return from a
subroutine to the calling program, the subroutine
must know the address of the Transfer Vector entry
associated with the subroutine. This address was
placed into the subroutine entry point + 2 as the
core load was built, With this information the
return address and the parameters associated with
the LIBF statement may be determined by the sub-
routine itself, See Figure 5.

Size and Location of the Transfer Vector

The maximum size of the Monitor Transfer Vector

is 85 three-word entries, including an entry for the

Floating Accumulator (FAC) and the function indica-
tors.

L 1 | |

=T T | 1
Low FAdC High
an Core
C?re Indr, R -,
LIBF TV CALL TV COMMON

The Card/Paper Tape System Transfer Vector
consists of a maximum of 256 words.

JH| 1 |
L] T 1 1
Low FAC High
Core and Core
. Indr ,
LIBF TV COMMON

Figure 5,

Sample LIBF Coding Sequence

T
35 40

Operands & Remarks

s.ue& i1 MAIN PROGRAM QAN oy i
ADD K.C S O F A K |U|M|E|N‘T| N W A S DO I J
T I S TN Y N T Y T T N T O O | : U T | : L : SR Y W : 1 i
. END_OF, MALN, PROGRAM .,\ ||,
TN TR Y S T Y NN YT U T W N T U Y A N WO SO NS U S5 W0 TN N SO S SNV N | |
TS N T N T Y O Y U I 5 Y N T Y O O T T T T W T T WS Y Y s B | j
TR T U TN T G N I NN (NN [N T TN OO SOt Y Y NN N SN NN SN N0 S TN WO TN | 1 1
T T AT S U|B IRD UlTlI:N E |HIEIA D Elkl STIAIT EM E:NIT 1
R SANE + 4N\DEX K JISTER lzl TR A | |
2 % TAIS. LOCATION WIlL BE BLANK |
% a le 3K .I..S Abﬁ.EMB knElDuln [| 1
. BUT WLLL BE FLALLED WITH TV ||,
& R.Y, ADDRESS _BY, THE (LOADER] |
2] o N ARGUMENT, INTO ACC. . .. | |,
| : TR | :J}I |MAILN |BD:D:Y: 1°IF| :51U|B|‘R~:°1QTIII“E-1 1 : 1 :
I N S | T S S SN N T Y S Y N U N Y W T T T N Y S | l]
20t NCREMENT, IND, R.EGLS .
L.EA.VE*-. . *FOR, .me .
1 I&Ejsl.ro[&gl 1LNDIE.XA IRIEIG'lItSI‘rIEIRL 1& VI | 1
2 R‘E‘TIUIKINI ﬂ'D. IMIA|I|N -IPIRDIGIRIAIM) I | 1
TN T I W T T T N T T O Y T T T A A O | i
N S S Y Y N S T T N T T S IS N O WO S 1
TN NS K VOO O TN SN SN WA N TOR SV T N OO AN IOV TR M OO U 00 Y N W | J

Form C26-5927-4
Page Added 6/5/68
By TNL N33-8015

®Assembler Instructions 25,2

MONITOR ASSEMBLER STATEMENTS

In addition to the basic assembler statements, the
IBM 1130 Monitor Assembler is provided with the
following capabilities.

Disk Data Organization
DSA - Define Sector Address
FILE - Define Disk File (DM2 only)

Data Definition
DMES - Define Message (DM2 only)

DN - Define Name (DM2 only)
Linking
LINK - Load and Execute Another Program

EXIT - Return Control to Supervisor
DUMP - Dump and Terminate (DM2 only)
PDMP - Dump and Continue (DM2 only)

List Control
HDNG - Print Heading on Each Page
LIST - List Segments of Programs {DM2 only)
SPAC - Space Listing (DM2 only)
EJCT - Start New Page (DM2 only)

DISK DATA ORGANIZATION STATEMENTS

DSA - Define Sector Address

The DSA statement allows the programmer to refer
symbolically to a disk-stored data file or program
stored in Disk Core Image format (DCI) without
knowing the specific disk location of the data or
program. The disk location of data files and pro-
grams can vary on disk because of deletions, but the
DSA statement allows easy reference through the
use of the symbolic name of the data file or program.
The format of the DSA statement is:

Operands & Rer

0 45 50

|A|ME|11||A.J||||I.|A

[T W SN TN VAN WSS WS T WU SO N BN SN N U Y VO Y

26

The label is defined as the current value of the Loca-
tion Assignment Counter when the DSA statement is
encountered. The symbol in the operand field must
be the name of a data file or DCI program that is on
disk both when the assembly is made and during
execution,

The following statements illustrate the use of
the DSA statement to read one sector of data. For
a description of the disk calling sequences, see the
system subroutines library manual.

Operands & Ren
50

E F FFFEFPREFFFERE

R |
Lhod
L4 1
L1 L
L4)
111
Lo 1
J Rt
L1
I
|
LAt

L LR R EEFREELEREER
.

The Assembler reserves three words in the object
program for each DSA statement. These words are
filled in by the Core Load Builder. For a data file
they will contain:

Word 1 — Length (in words)
Word 2 — Sector Address, including the drive code
Word 3 — Sector count of the file

For a program they will contain:

Word 1 — Length (in words)
Word 2 — Sector Address, including the drive code
Word 3 — Execution Address of the Program

If the area corresponding to the DSA statement
is used as the I/O area for a disk read operation,
the execution address of the program must be saved
prior to the disk call to bring in the program. (The
contents of the third word are destroyed by the
incoming data).

The following statements illustrate the use of
the DSA statement to supply the disk address of a
one-sector program.

Operands & Rer

4c 4 5C

I T B B B G Y

| I S W G

22
e~
o
>
X
+
(]

/1008
L0AR

1
A
1
"
1
:
1
i
|

BRNCH:B A

F R F FFREE R FER R

L
L
L
L
L
1
It
L
1
L
L
1
L
I
1
1
‘
L
'
L

R T T T S S S S SR ST S S S S S N o o
E - F F F F F F F B R R EEREEFRFEE R K

1
1
L
t
t
i
i
1
1
1
Il
1
Il
i
L
I
1
1
1
1
Il

L L LR EERELEEEEREEREEREEEEEREEF
F L L bF FREEFRFEEREELEEEREEERELEEEF
L+ FEFELEEEREEREELEEEREELEEEREL
LR EFEEREEEREEEREEREREEEERLELERE

E R R REFRFEREEREEREREEREEREERFERFRF

L

1

e
i
1
i
1
L
L
L
1
L

The following statements can be added to the
previously shown program call to call a second pro-
gram and have it loaded to the same area as the
first.

Operands & Rer

1
i
Il
1
]
L
i
4
1
1
1

| T e
- R F R R OREOFOE
b b F R R FE B R OE
F - F F FFEFFEE R OF

The execution address of the second program can be
different from the first, but the programs must be
executable from the same locations. This requires
a certain amount of planning before assembling the
"overlay' programs.

Programming Considerations
The following considerations must be observed by

the user who wishes to use the DSA statement to
supply the disk address for programs.

e The called programs must be in DCI format.

o If the calling program is converted to DCI format,
the data for the DSA statement is filled in during
the core image conversion and will be fixed for all
subsequent executions. Thus, if the referenced
program or data files are subsequently moved,
incorrect results will occur, Data files refer-
enced by a Core Image program should be stored
in the Fixed area.

e Any loading functions, such as the setting of Index

Register 3, will have to be supplied by the calling
program,

FILE - Define Disk File (DM2)

The FILE statement specifies to the Assembler the
file identification, the number of file records in a
file, and the size of each record in a disk data file
that will be used with a particular mainline and its
associated subprograms. The Assembler FILE
statement allows the Assembler language user to
defile files so that they are similar to FORTRAN
defined files.

As a core load is constructed by the Core Load
Builder, the defined files are equated to data files
already assigned in the User/Fixed Area or to files
in Working Storage.

The FILE statement must not appear in a sub-
program; it-is permitted only in a relocatable main-
line program. Therefore, all subprograms used
by the mainline must use the defined files of the
mainline. The format of the FILE statement is as
follows:

Operands & Rer

0 45 50

A’]J;_Aal’JUL}JVl U I WY S W S SRS S G §

S SED WY U SO W WO T G U W S N Y W A S S W

where
1 is any valid label (optional),

a is the file identification number, a decimal
integer in the range 1-32767,

m is a decimal integer that defines the number
of records in the file,

n is a decimal integer in the range 1-320 that de-

fines the length (in words) of the longest record
in the file,

Monitor Assembler Statements 27

U is a required constant, specifying that the file
must be read/written with no data conversion,

v is the associated variable, the label of a core
location (variable) defined elsewhere in the pro-
gram,

FILE statements must precede all other state-
ments except HDNG, EPR, SPR, EJCT, SPAC, and
LIST in the source program. The label, if used, is
assigned the location of the first word of the seven
words generated (see list below). The Format and
Tag fields are not used and should be left blank.

Each FILE statement causes the Location Assign-
ment Counter to be incremented by seven., The data
stored in these seven words, which constitute a
DEFINE FILE Table entry in the object program is
as follows:

Word Contents

a, the file identification number

m, the number of records per file

n, the record length (in words)

The address of the associated variable, v.

Zero. This word is filled by the Core
Load Builder with the sector address of the
data file. This address is relative to the
address of Working Storage (with bit zero
set to one) for Working Storage files and is
absolute, including the drive code, for User/
Fixed area files.

G WD

6 r, the number of records per sector. The
number, computed by the Assembler, is
the quotient of

32

n

(remainder ignored)

7 b, the number of disk blocks per file.
This number, computed by the Assembler,
is the quotient of

16(m
r

28

DATA DEFINITION STATEMENTS

DMES - Define Message (DM2)

The DMES statement is used to store a message with-
in a program in a form that is acceptable to the
printer output subroutines. The format of the DMES
statement follows:

Operands & Rer
0 45 56

F U RN SRS S SN W [N W S SN SN N T . |

T S)

where
1 is any valid label (optional),
p is the printer type code,

m is any string of valid message and control
characters.

If a label is present, it is assigned to the location
of the first word generated. The Tag field (column
33) is used to specify the printer type code:

Tag Printer

bor 0 Console Printer
1 1403 Printer
2 1132 Printer

If the Tag field (printer type code) contains a char-
acter other than blank, zero, one, or two, an error
results and the message is stored two EBCDIC char-
acters per word.

The Operand field contains the control and mess -
age characters. Remarks are permitted only after
an 'E or 'b control character.

The output generated by one DMES statement can-
not exceed 60 words (120 characters). If an odd
number of characters is generated, the last word is
filled in with a blank, except when the statement
ends with 'b, In this case, the first character of the
next DMES statement is used to fill out the word.

Control characters are used to specify certain
printer operations and to define message parameters.
Each control character is actually two characters,
the first of which is always an apostrophe. The apos-
trophe (5-8 punch in IBM Card Code) is a control

delimiter and therefore is not included in the char-
acter count, The control characters and their func-
tions or meanings are as follows:

Control

Character Function or Meaning
'X Blank (or space)
'T Tabulate
'D Backspace
'B Print black
‘A Print red
'S Space (or blank)
'R Carriage return
'L Line feed
'F Repeat following character
'E End of message
b (b=blank) continues text with next DMES

statement

All the above characters can be used when the printer
is the Congole Printer. Only 'E, 'F, 'S, 'X and 'b
are valid control characters when the 1132 or 1403
Printer is specified; any other control characters
are considered as errors.

The characters 'X and 'S are interchangeable. A
blank character is generated for either 'X or 'S if the
1132 or 1403 Printer is specified; a space is gener-
ated for either 'X or 'S if the Console Printer is
specified.

The character 'F (repeat following character)
refers only to message characters. The control
characters themselves, except 'A, 'B, 'E, and 'b,
can be repeated up to 99 times by inserting a number
(1-99) between the apostrophe and unique control
definition character. For example, '32S results in
32 space characters being inserted in the generated
message.

The character 'E is used to designate the end of
the message line. The character 'b is used to desig-
nate that the message is continued on the following
DMES statement, If neither 'E nor 'b is included, '
is assumed to follow column 71, DMES statements
that end with 'b must be followed by another DMES
statement.

Text apostrophes are generated by writing two
successive apostrophes.

The message characters can be any valid charac-
ter for the printer being used. Invalid characters
are replaced with blanks,

The following example illustrates the DMES
statement.

Assembler input:

Operands & Remarks

' RSAMPL.E PROGRAM''S'
.ou.rpa.r...... b i
%% 2R '981°’952/' ,953./.9.54.'.5. C
1/ R1234.567898123456789 . ..
012325676901 234567890 £ .

: ’.ze' 7% 7;_,/.4,0,/—'(,\/)._,_‘_‘ -
/ LRI @) P .E. -

S5 SN TN N W Y DN SV Y Y A WO T U WY S S B R B T

Printed output:

SAMPLE PROGRAM'S OUTPUT

1 2 3 4
1234567890123456789012345678901234567890

F(X) £ (X)

Note that the device code specified in the preceding
example is blank in order to generate a message for
the Console Printer.

DN — Define Name

The Define Name statement is used to convert a
name specified in the Operand field of the state-
ment to a name in Name Code in the object pro-
gram. The format of this statement is shown
below:

Operands & Rer
40 45 50

2 4 % W I TN N W TN TN WO N WY N TN TR N T RO T S |

S5 W U NN [Y SR T R I

where

I is any valid label (optional),

n is any valid label or name.

Name Code is truncated packed EBCDIC., The two
high order bits of each character in the name are
removed and the five characters are packed into the
right thirty bits of two words.

00 c H At R S
XX|XX XXXX | XXXX XX|XX XXIXX|XXXX XX|XX XXXX|

Monitor Assembler Statements 29

Form C26-5927 -4
Page Revised 6/5/68
By TNL N33-8015

If a label is used, the address assigned to it is the
location of the first word of the two words generated
and is equal to the current value of the Location
Assignment Counter. Columns 32 and 33 must be
blank. The operand can have up to five characters
that comply with the rules for writing symbols., The
name to be converted must be left-justified in the
Operand field. If remarks are used, one blank must
be left between the operand and the remarks. The
Location Assignment Counter is incremented by two
for this statement.

LINKING STATEMENTS

LINK — Load Link Program

In the assembler language, the LINK statement is
used to cause another core load to be loaded and
executed. Only COMMON of the current core load
is saved. The program loaded and executed must
be specified by name. The format of the LINK
statement is:

1. A symbol or blanks in the label field
2. The mnemonic, LINK, in columns 27-30
3. A valid program name in the operand field

The label of the LINK pseudo-operation is de-
fined as the current value of the Location Assignment
Counter when the LINK statement is encountered;
this value is the address of the first word generated
by the LINK statement.

The operand field contains a valid program name
(one to five alphameric characters), left-justified in
the field. The name - must be present in LET/FLET
at execution time. The LINK statement causes four
words to be generated in the object program. The
first two words contain a long BSI instruction, which
branches to a specified location within the Skeleton
Supervisor. The next two words contain the program
name in Name Code (see DN - Define Name)., The
Core Image Loader uses the core load name and be-
gins the process required to load the new core load.

EXIT — Return to Supervisor

In the assembler language, the EXIT statement is
used to return control to the Supervisor. The format
of the EXIT statement is:

30

1. A symbol or blanks in the label field
2. The mnemonic, EXIT, in columns 27-30

The label of the EXIT statement is defined as
the current value of the Location Assighment Counter
when the EXIT statement is encountered; this value
is the address of the instruction generated by an
EXIT statement. The operand field is ignored and
can therefore be used for remarks.

The EXIT statement causes a short branch in-
struction to be generated in the object program.
The instruction branches to a fixed location in the
Skeleton Supervisor. During execution, the branch
is executed and control is returned to the Supervisor.
The EXIT statement should be the last logical state-
ment in a program,

DUMP — Dump and Terminate Execution

The DUMP statement provides an entry to the System
DUMP program, which prints the contents of core
storage on the principal print device in hexadecimal
format.

The DUMP statement allows for flexible specifica-
tion of the upper and lower limits to be dumped with-
out altering core storage. After core has been
dumped between the limits specified, the System
Dump returns control to the calling program, at
which point a CALL EXIT is executed. The DUMP
statement is written as follows:

Operands & Ren

40 45 50

ML,.L_J_Jnllnuunn.nl
‘ljlllllllllll]lllll
i
S8

where
1 is any valid label (optional),

a is any valid expression specifying the lowest-
addressed core location to be dumped,

b is any valid expression specifying the highest-
addressed core location to be dumped,

f is the dump format code (either blank or zero).
The dump is always in hexadecimal format. '

The label, if used, is assigned the location of the
first of the six words generated (see list below).
The Tag and Format fields must be left blank.

A DUMP statement causes the Location Assign~
ment Counter to be incremented by six. The data
stored in these six words is as follows:

Word Contents
1} A long (two-word) BSI to the DUMP entry
2 point in the Skeleton Supervisor

3 The format indicator (always zero)

4 The starting address of the core dump
5 The ending location of the core dump

6 A short branch to the EXIT entry point

in the Skeleton Supervisor

If no address is specified for word 3, the dump
starts in location zero. If no address is specified
for word 4, the dump continues to the end of core.

A DUMP statement can be used at any point in a
program; however, the user is reminded that DUMP
causes a terminal DUMP to be printed. At the com-
pletion of the dump printout, the branch to EXIT is
executed, thus transferring control to the Skeleton
Supervisor for processing of the next job or subjob.

The format of the DUMP program output is as
follows:

AAAA XXXX XXXX XXXX)] XXXX XXXX XXXX
The contents (xxxx) of 16 core storage locations are

printed per line, At the left is the address (AAAA)
of the first location printed on that line.

PDMP — Dump and Continue Execution

The PDMP statement provides the ability to dump
core storage between specified limits and to continue
execution. The core dump is printed on the principal
print device without altering core. The PDMP state-
ment is specified in the same way as DUMP, except
that PDMP appears in columns 27-30 instead of
DUMP.

The PDMP statement is translated by the Assem-~
bler into a long BSI to the DUMP entry point in the
Skeleton Supervisor. The parameters (operands) are
converted as described in the DUMP statement (see
above) except that the exit to the Supervisor is not
generated for PDMP.

Upon completion of the printout of the core dump,
control is returned to the next instruction following
the PDMP statement to continue execution.

Form C26-5927-4
Page Revised 6/5/68
By TNL N33-8015

LIST CONTROL STATEMENTS
The list control statements — HDNG, LIST, SPAC,

and EJCT — provide the user with the means to
control and identify the assembler output listing.

HDNG — Heading

The HDNG statement is used to specify a one line
page heading for a printed listing. The heading
line consists of the data in the Operand-Remarks
field.

The format of the HDNG statement is as follows.

Label Operands & Rer

40 45 st

Multiple HDNG statements may be used thus
allowing different sections of a listing to have
different page headings.

When the 1132 or 1403 is the principal printer,
the HDNG statement causes the listing to be ejected
to a new page and the heading is printed. The same
heading is repeated at the top of each succeeding
page until a new HDNG statement is encountered.

When the Console Printer is the principal printer,
the heading line is preceded by five line feeds and
followed by a single line feed, and otherwise functions
as a comments statement.

LIST — List Segments of Program

The LIST statement allows the user to list certain
segments of a program on the principal printer and
avoid listing other segments. The three variations
of the LIST statement are shown below:

Operands & Rer
40 45 50

Label

TSR NN WA U TR TN SN SO U WS TOUNY TN SN WA N S S U
oM SETURER WO D TN N NN N WU NN UG W WY N N S S
0|F‘/:1 TINNS TN NN YOO O WY T T SN N NS W W
Y PR TR TN GOS0 VOO WO NS N VA A S A N RO S O

The Label, Tag, and Format fields are not used

with the LIST statement and should be left blank, The
Operand field may be left blank or may contain the
operand ON or OFF.

Monitor Assembler Statements 31

The LIST statement does not cause the Location
Assignment Counter to be incremented.

If a LIST statement with the operand ON is en-
countered, the following statements, up to the next
LIST statement, are listed by the Assembler.

If a LIST statement with no operand is encountered,

the Assembler assumes an operand depending on the
use of the LIST control record. If the LIST control
record preceded the assembly, the ON operand is
assumed and the Assembler acts accordingly. If

the LIST control record did not precede the assembly,
the OFF operand is agssumed and the Assembler acts
accordingly.

SPAC — Space Listing

The SPAC statement is used to insert one or more
blank lines in the listing immediately following the
SPAC statement. The format of the SPAC state-
ment is as follows:

Operands & Re:
40 43 50

where e is any valid positive expression,

The Label, Format, and Tag fields are not used
and should be left blank.

The number of blank lines inserted in the listing
is determined by the operand in the statement. The

32

operand can be any valid expression. The operand
(expression) value must be positive; otherwise, the
Agsembler ignores the statement.

When the number of blank lines specified exceeds
the number of lines left on the page, the page is
spaced to the bottom, a restore occurs, a new
heading is printed, and spacing is resumed until the
number of blank lines specified has been exhausted,

The SPAC statement does not cause the Location
Assignment Counter to be incremented.

EJCT — Start New Page

The EJCT statement causes the next line of the list-
ing to appear at the top of a new page following the
page heading. The format of the EJCT statement is
as follows:

Operands & Res
© 45 50

£ W W YO WY TN W U WOT SR VAN W VN S U0 WO S O S W |

% IS WA WO WY TN U WO SR VU S WO N DO WA TN U S B |
fae4

The Label, Tag, Format, and Operand fields are not
used and should be left blank.

A page overflow occurs immediately following the
EJCT statement. EJCT statements may be used in
succession to obtain blank pages (except for the
headings printed).

The EJCT statement does not cause the Location
Agsignment Counter to be incremented.

Hexadecimal Notation

In hexadecimal notation, each digit represents a
four -bit binary value. This means that a 16-bit

word in the Processor-Controller can be expressed

as four hexadecimal digits. The binary — hexa-~

decimal — decimal correspondence is defined as

follows:

Binary Hexadecimal Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

Extended Binary Coded Decimal Interchange Code

(EBCDIC)

In the EBCDIC code, each character is represented

by a unique configuration of eight binary bits.

In

APPENDIX A. CHARACTER CODE SUMMARY

the table that follows, each EBCDIC character is
expressed as two hexadecimal digits.

IBM Card Code

In the IBM Card Code, each character represents a
12-bit card-column image. In the table that follows,
each card code character is expressed as four hexa-
decimal digits and as the card-column image.

Paper Tape Transmission Code, 8 Channel (PTTC/8)

In the PTTC/8 code, each character is represented
by a unique configuration of a case shift, plus an
eight-bit code. The case shift can be common to
more than one character and need be inserted only
when a case shift change is necessary. In the table
that follows, each character is expressed as two
hexadecimal digits, followed by the case shift in
parentheses.

1132 Printer EBCDIC Subset Hex Code

In the 1132 Printer EBCDIC subset hex code, each
character is represented by a unique configuration of
eight bits, In the table that follows, each 1132
Printer character is expressed as two hexadecimal
digits.

Console Printer Hex Code

In the Console Printer hexadecimal code each charac-
ter is represented as two hexadecimal digits.

1403 Printer Hex Code

In the 1403 Printer hexadecimal code each character
is represented as two hexadecimal digits.

Appendix A. Character Code Summary 33

EBCDIC IBM Card Code 132 PTHTC/B Console 1403
Ref X Graphics and Control Printer ex Printer .
No. Binary Hex Rows Hex P Naries EBCDIC U-Upper Case Hex Printer
0123 4567 12 11 09 8 7-1 Subset Hex |- 7Fo"er e Notes Hex
0 0000 0000 00 12 098 1 B0O30 | NUL
1 0001 01 12 9 1 9010
2 0010 02 12 9 2 8810
3 0011 03 12 9 3 8410
4 0100 04 12 9 4 8210 | PF Punch Off
5* 0101 05 12 9 5 8110 | HT Horiz.Tab 6D (U/L) 41 (D
6* 0110 06 12 9 6 8090 | LC Lower Case 6E (U/L)
7* ol 07 12 9 7 8050 | DEL Delete 7F (U/L)
8 1000 08 12 9 8 8030
Q 1001 09 12 9 8 1 9030
10 1010 0A 12 9 8 2 8830
11 1011 0B 12 9 8 3 8430
12 1100 0C 12 9 8 4 8230
13 1101 oD 12 ? 8 5 8130
14 1o | oE | 12 98 & | goBo
15 1111 ofF | 12 98 7 |so70
16 0001 €000 10 12 11 9 8 1 D030
17 0001 1 no9 1| 5010
18 0010 12 n 9 2 4810
19 oon 13 11 9 3 4410
20* 0100 14 11 9 4 4210 | RES Restore 4C (U/L) 05 @
21* 0101 15 8] 9 5 4110 | NL New Line DD(U/L) 81 @
22* 0110 16 11 9 6 4090 BS Backspace 5E (U/L) 11
23 0111 17 1Bl 9 7 4050 | IDL Idle
24 1000 18 11 ? 8 4030
25 1001 19 11 9 8 1 5030
26 1010 1A 1 9 8 2 4830
27 1011 1B 11 9 8 3 4430
28 1100 1C n 9 8 4 4230
29 1101 1D 11 9 8 5 4130
30 1110 1E 11 9 8 6 40B0
31 [RRA 1F 11 9 8 7 4070
32 0010 0000 20 It 0 9 8 1 7030
33 0001 21 09 1 3010
34 0010 22 09 2 2810
35 00t 23 0 9 3 2410
36 0100 24 09 4 2210 | BYP Bypass
37* 0101 25 09 5 2110 | LF Line Feed 3D (U/L) 03
38* ol10 26 09 6 2090 | EOB End of Block 3E (U/L)
39 [VIRN 27 09 7 2050 | PRE Prefix
40 1000 28 09 8 2030
41 1001 29 09 8 1 3030
42 1010 2A 09 8 2 2830
43 1011 28 09 8 3 2430
44 1100 2C 09 8 4 2230
45 1101 2D 098 5 2130
46 1110 2E 09 8 6 2080
47 ! 111 % 098 7 |20
48 0011 0000 30 12 11 0 9 8 1 F030
49 0001 31 9 1 1010
50 0010 32 9 2 0810
51 0011 33 9 3 0410
52 0100 34 9 4 0210 | PN Punch On
53* 0101 35 9 5 0110 | RS Reader Stop 0D(U/L) 09 @
54* 0110 36 9 6 0090 | UC Upper Case 0E (U/L)
55 o1 37 9 7 0050 | EOT End of Trans.
56 1000 38 9 8 0030
57 1001 39 9 8 1 1030
58 1010 3A 9 8 2 0830
59 on 3B 9 8 3 0430
60 1100 3C 9 8 4 0230
61 1101 3D 9 8 5 0130
62 1110 3E 9 8 6 00BO
63 [RRRI 3F 9 8 7 0070
NOTES: Typewriter Output
@ Tabulate (3 Carrier Return * Recognized by all Conversion subroutines
@ Shift to black (4 Shift to red Codes that are not asterisked are recognized only by the SPEED subroutine

34

EBCDIC IBM Card Code 1132 PTTC/8 Console 1403
Ref Binary Hex Rows Hex | Craphics and Control Printer Hex Printer Printer
No. Names EBCDIC | u-Upper Case H H
0123 4567 12 11 0 9 8 7-1 Subset Hex | L-Lower Case ex ex
64* 0100 0000 40 no punches 0000 | blank 40 10 (U/L) 21 7F
65 0001 41 12 09 1 |B010
66 0010 42 12 09 2 | As10
67 0011 43 12 09 3 |a410
68 0100 44 12 09 4 |A210
69 0101 45 12 09 5 |lAano
70 0110 46 12 09 6 | A0%0
71 0111 47 12 09 7 | A050
72 1000 48 12 098 A030
73 1001 49 12 8 1 |9020
74% 1010 4A | 12 8 2 |8820 |¢ 20 (U) 02
75* 1011 48 12 8 3 |8420 (period) 4B 6B (L) 00 6E
76* 1100 4aC | 12 8 4 |8220 | < 02 (U) DE
77+ 1101 4D | 12 8 5 |8120 | (4D 19 (V) FE 57
78* 110 4E 12 8 6 |8oA0 | + 4 70 (U) DA 6D
79* (RRE] 4F 12 8 7 18060 | I (logical OR) 3B (V) Cé
80* 0101 0000 50 12 8000 | & 50 70 (L) 44 15
81 0001 51 12 11 9 1 DO10
82 0010 52 12 N 9 2 C810
83 0011 53 12 1 9 3 |c410
84 0100 54 12 11 9 4 | c210
85 0101 55 12 N 9 5 {clo
86 0110 56 12 N 9 6 | covo
87 0111 57 12 1 9 7 C050
88 1000 58 12 1 9 8 C030
89 1001 59 B 8 1 | 5020
90* 1010 5A 1" 8 2 |a4820]! 5B (U) 42
91* 1011 58 1 8 3 4420 | § 5B 5B (L) 40 62
92% 1100 5C N 8 4 |4220 | » 5C 08(V) Dé 23
93* 1101 5D 1 8 5 4120 |) 5D 1A (V) Fé 2F
94* 1110 5E " 8 6 |40a0] ; 13 (V) D2
95% 1M 5F n 8 7 | 4060 |—t (logical NOT) 6B (U) F2
96* 0110 0000 60 11 4000 | - (dash) 60 40 (L) 84 61
97+ 0001 61 0 1 3000 | / 61 31 (L BC 4C
98 0010 62 11 09 2 | 6810
99 0011 63 1nm o9 3 | 4410
100 0100 64 "N o9 4 | 6210
101 0101 65 11 09 5 | 6110
102 0110 66 n o9 6 | 609
103 om 67 11 09 7 | 6050
104 1000 68 11 0 9 8 6030
105 1001 69 0 8 1 3020
106 1010 6A | 12 11 €000
107* 1011 6B 0 8 3 |2420 | , (comma) 6B 38 (L) 80 16
108* 1100 6C 0 8 4 2220 | % 15 (U) 06
109* 1101 6D 0 8 5 2120 | _ (underscore) 40 (U) BE
110* 1110 6E 0 8 6 |2080]> 07 (U) 46
1N 111 & 0 8 7]2060 | ? 31 (V) 86
112 0111 0000 70 12 110 E000
113 0001} 71 12 1 o9 1 F010
114 0010 72 12 11 0 9 2 | esi0
115 0011 73 12 11 09 3 E410
116 0100 74 12 11 09 4]E210
17 0101 75 12 1 09 5 |ENNO
18 o110 76 12 11 0 9 6 1 E090
119 o 77 112 11 09 7 | E050
120 1000 78 12 11 0 9 8 E030
121 1001 79 8 1 1020
122+ 1010 7A 8 2 |os20 |: 04 (U) 82
123*% 1011 78 8 3 |o420 |? 0B (L) Co
124* 1100 7C 8 4 |o0220 |@ 20 (L) 04
125% 1101 7D 8 5 0120 | ' (apostrophe) 7D 16 iu) E6 0B
126* 1110 7E 8 6 [ooa0] = 7E 01 (V) C2 4A
127+ nn 7F 8 7 |ooso | 0B (U) E2

Appendix A." Character Code Summary 35

1132

EBCDIC IBM Card Code A e PTTC/8 Console 1403
. i rinfer . .
:E‘Zf' Binary Hex Rows Hex Gruphlc;l:;cisConfro EBCDIC oI e Printer Punter
0123 4567 12 11 09 8 7-1 Subset Hex | L-Lower Case Hex ex
128 1000 0000 80 12 0 8 1 B020
129 0001 81 | 12 0 1 | Booo | o
130 0010 82 12 0 2 A800 | b
131 oo 83 12 0 3 A400 | c
132 0100 | 84 | 12 0 4 | a20] ¢
133 0101 85 12 0 5 A100 | e
134 om0 | 86 | 12 0 6 | aoso ¢
135 o111 87 | 12 0 7 | acs0 | g
136 1000 | 88 | 12 0 8 A020 | h
137 1001 89 | 12 09 A010 | i
138 1010 | 8a | 12 0 8 2 |as820
139 on 8B 12 0 8 3 A420
140 1100 8C | 12 0 8 4 | a220
141 1101 8D 12 0 B 5 A120
142 no | s | 12 0 8 6 | A0AD
143 11 gF | 12 0 8 7 | A0
144 1001 0000 90 12 11 8 1 D020
145 0001 21 12 1 1 D000 | |
146 0010 92 12 1 2 c800 | k
147 0ot 93 12 11 3 C400 | |
148 0100 94 12 N 4 C200 | m
149 0101 95 12 11 5 C100 | n
150 0110 96 12 11 6 €080 | o
151 011 97 12 11 7 C040 | p
152 1000 98 12 1 8 C020 | q
153 1001 99 127 11 9 Co10 | r
154 1010 9A 12 11 8 2 €820
155 ion 98 12 11 8 3 C420
156 1100 9C 12 1 8 4 C220
157 1101 9D 12 11 8 5 C120
158 1110 9E 12 11 8 6 COAO
159 \ 1 9F 12 N 8 7 |coso |.
160 1010 0000 AO 11 0 8 1 7020
161 0001 Al 1 0 1 7000
162 0010 A2 1 0 2 6800 | s
163 0011 A3 11 0 3 6400 | t
164 0100 A4 1 0 4 6200 | v
165 0101 A5 1o 5 6100 | v
166 0110 Ab 1m0 6 6080 | w
167 o1 A7 11 0 7 6040 | x
168 1000 A8 1m0 8 6020 |y
169 1001 A9 11 09 6010 | z
170 1010 AA 1m0 8 2 6820
171 on AB 10 8 3 6420
172 1100 AC 1m0 8 4 6220
173 1101 AD n o 8 5 6120
174 1110 AE n o 8 6 60A0
175 nmn AF 1o 8 7 6060
176 1011 0000 [0} 12 11 0 8 1 F020
177 0001 B1 12 11 0 1 FO00
178 0010 B2 12 11 0 2 E800
179 0011 B3 12 11 0 3 E400
180 0100 B4 12 11 0 4 E200
181 0101 B5 i2 11 0 5 E100
182 0110 Bé6 12 11 0 6 E080
183 [ARR B7 i2 11 0 7 E040
184 1000 B8 12 11 0 8 E020
185 1001 B9 12 11 0 9 EO10
186 1010 BA 12 1 0 8 2 E820
187 1011 BB 12 11 0 8 3 E420
188 1100 BC 12 11 0 8 4 E220
189 1101 BD 12 11 0 8 5 E120
190 1110 BE 12 11 0 8 6 EOAQ
191 1 BF 12 110 8 7 E060

36

EBCDIC IBM Card Code P”32 PTJC/B Console 1403

Ref N Graphics and Control rinter ex . .
No. Binary Hex Rows Hex P Names EBCDIC | U-Upper Case P';-l'::(e" P:ZLer

0123 4567 12 1M o9 8 7-1 Subsef Hex L-Lower Case
192 1100 0000 co | 12 0 A000 | (+zero)
193+ 0001 cr | 12 1 | 9000 | A l 61 (V) 3C or 3E 64
194 0010 c2 |2 2 |8so0 | B c2 62 (U) 18 or 1A 25
195% 0011 C3 12 3 8400 | C C3 73 (U) 1C or 1E 26
196* 0100 c4 | 12 4 |[8200 | D C4 64 (U) 30 or 32 67
197+ 0101 cs |12 5 | 8100} E cs 75 (U) 34 or 36 68
198* 0110 cé | 12 6 | 8080 | F Cé 76 (U) 10 or 12 29
199* 0111 c7 | 12 7 [8040 | G Cc7 67 (U) 14 or 16 2A
200% 1000 cs | 12 8 8020 | H cs 68 (U) 24 or 26 6B
201* 1001 co | 12 9 8010 | 1 c9 79 (U) 20 or 22 2C
202 1010 ca | 12 09 8 2 | A830
203 1011 cB | 12 0 98 3 | A430
204 1100 cc | 12 098 4 | A230
205 1101 co | 12 098 5 |AI30
206 1110 CE | 12 098 6 | A0BO
207 { 111 cF | 12 098 7 | A07
208 1101 0000 DO 11 0 6000 | (- zero)
209* 0001 D1 1] 5000 | J D1 51 (U) 7Cor 7E 58
210* 0010 D2 11 2 | 4800 | K D2 52 (U) 58 or 5A 19
211% 0011 D3 1 3 14400 | L D3 43 (U) 5C or 5E 1A
212% 0100 D4 n 4 | 4200 | M D4 54 (U) 70 or 72 5B
213* 0101 D5 11 5 4100 | N D5 45 (V) 74 or 76 1C
214* 0110 D6 1 6 | 4080 | O D6 46 (U) 20 or 52 5D
215* 0111 D7 11 7 | 4040 | P D7 57 (U) 54 or 56 5E
216% 1000 D8 11 8 4020 | Q D8 58 (U) 64 or 66 1F
217+ 1001 D9 11 9 4010 | R D9 49 (V) 60 or 62 20
218 1010 DA | 12 1 9 8 2 | 830
219 1011 DB | 12 1 9 8 3 | C430
220 1100 pc | 12 11 9 8 4 |C230
221 1101 DD | 12 11 9 8 5 |cCi130
222 1110 DE {12 11 9 8 6 |coso
223 \ 11 DF | 12 N 98 7 |com
224 1110 0000 EO 0 8 2 2820
225 0001 El 1M 09 1 7010
226* 0010 E2 0 2 2800 | S E2 32 (V) 98 or 9A oD
227* 0011 E3 0 3 2400 | T E3 23 (U) 9C or 9E OE
228* 0100 E4 0 4 2200 | U E4 34 (U) BO or B2 4F
229% 0101 E5 0 5 2100 | Vv E5 25 (U) B4 or B6 10
230% 0110 E6 0 6 2080 | W E6 26 (U) 90 or 92 51
231* ol E7 0 7 2040 | X E7 37 (V) 94 or 96 52
232% 1000 ES 0 8 2020 | Y E8 38 (U) Ad or A6 13
233* 1001 E9 09 2010 | z E9 29 (U) A0 or A2 54
234 1010 EA 1M 098 2 6830
235 o1 EB it 098 3 6430
236 1100 EC 11 098 4 6230
237 1101 ED 11 098 5 6130
238 {L 1110 EE 11 098 6 6080
239 1 EF 11098 7 6070
240 1111 0000 FO 0 2000 | O FO 1A (L) c4 49
241% 0001 F1 1 1000 | 1 Fl 01 (L) FC 40
242* 0010 F2 2 0800 | 2 F2 02 (L) D8 o1
243* 00M F3 3 0400 | 3 F3 13 (L) DC 62
244% 0100 F4 4 0200 | 4 F4 04 (L) FO 43
245+ 0101 F5 5 0100 | 5 F5 15 (L) F4 G4
246* 0110 Fé6 6 0080 | 6 Fé 16 (L) DO 45
247 0111 F7 7 o040 | 7 F7 07 (L) D4 46
248* 1000 F8 8 0020 | 8 F8 08 (L) E4 07
249* 1001 F9 9 0010 | ¢ F9 19 (L) EO 08
250 1010 FA |12 11 098 2 £830
251 1011 FB 12 11 098 3 E430
252 1100 FC |12 11 098 4 E230
253 1101 FO |12 11 098 5 E130
254 1110 FE 12 11 098 6 EOBO
255 1 111 FF 12 11 098 7 |Eon

Appendix A. Character Code Summary 37

APPENDIX B.HEXADECIMAL-DECIMAL CONVERSION CHART

SI0C PI0Z €105 TI0Z 1105 Ol0Z 600 80U L0O3 9UUT SO0
6661 8661 L661 9661 S661 ¥661 €661 T661 1661 0661 6861

€861 TE6I I86! 06T 6L6T BL6T 61 9L61 SI61 BI6T EL6I

1961 0561 6¥61 8¥6I LK61 9F6I SHG1 PPEL E€¥61 Gr6l 1§61
Se6l VeI £L61 Te61 1C61 QBT 6861 8361 Lg61 9G61 ST6L
6161 8I6Y L1601 9161 . SI6l #1601 €I6I TI61 1161 OI61 6061
€061 TO61 1061 0061 6681 8681 1681 0681 S681 v681 €681

18t OL8I 6681 8981 1981 9981 <081 Po8l €981 37981 1981
SSBI ¥SBT €981 ¢S8I IS8T OSB8I 6¥81 818I L¥YS8T 6¥81 SIS
6€8T 8EBI Le81 9£81 SE81 PEBT €081 GEBI 1E€81 0€81 6381
€381 2z81 181 (@81 6181 SISl LIgF 9181 SIST ¥#IBL €ISl
1081 9081 SOBI POBI ©08BY TOST 1081 0081 66L1 B6LL L6LI

I6L1 0621 68LF B8L1 [8L1 OBLT SBLI ¥8LI ©€8LT ZBLI 18LI
SLLT pLLL €LLl TLL ILLL OLLT 69L1 89L1 LOLI 99LT SOLl
BSLI 8SLU ISLT OSL1 SSLT ¥SLI €SLT TSLI ISl 0SLl 6bLl
CPLT TRLL TPLEL OFLT 6CL1 SCLY LELl 9ELT SELl ¥ELlL €ELl
LOLU OBLL STLT WOLU €BL1 ToLl Toll 0oLl 61l SILT LlLl
TILT OILT 6021 SOLI LOLl QOLL SoLl #OLI €0LU 0Ll TOLI

691 801 L1181 981 SI8T W91 €81 TLO1 101 OLST 6961
€991 2090 1991 0991 6SO1 8991 .991 9991 9991 ¥S9I £991
LPOL 9VO1 SEOL #PO1 €FO1 ZPOT 1491 OFOL 6091 ST91 LEB1
1691 0€91 6201 8BGOl LZ91 9CBU ST91 #291 €291 T291 Ieot
SIOT VIOT €191 3191 TI81 0181 6081 09T 1091 9091 SUdl
66SI 86ST 26ST 9651 S6ST PEST €6ST B6ST 1651 06ST 6851
€851 38ST I8ST 08ST 6LSI 8.S1 LIST OLSL SIST ¥IST €SI

TSST O0SST 6PST BPST LPST OFST SKST PS1 EFST ZKST I9SI
SeST vESI €651 QEST 1£S1 0£ST 63SI 8381 2281 9381 STsl
61ST QISI LIST OIST SIST PIST €IS GIST 1IST OIST 60SI
€0ST TOST TOST O00ST B6PI 96PT 26P1 96F1 SEFT F6PT C6HI
L8Pl 98FI SRPL ¥BPL €BPI TBPL I8PL UBPT 6LPT BLVL LKL
TLPT OLPT 6O¥L ROYI LO¥1 9BP1 SOPT ¥OPI COVL TOVL 1OFL

6CyL syl lE¥l 9E¥D STPI BEPD CEFT TEFL 6P 0EPT 63¥1
€TPl Zobl ToPl OGPL 61¥I BIPI LIPT SWPT SIPT FIPT €IFI

LO¥L OOFL SOVWI WOFD ©OFI GOFPD 10KWT OOFI 6GET 86ET LGET

SLEr vLEL €lE1 Tl IZ61 O0€1 69ET B9EI [BE1 O8El SBEl
6SC1 8SE1 LSE1 9SET S9E1 FSEI €SE1 TEET ISEI 0SEl 6bCl
€T TYEL TRET OFEL 6CET 8CEL LeC1 9CE1 SEEI #EEl €ECl
LOCL 9TEl STEl POCl €36l Gotl IGEl OGEl BIEl BIEU LIEU

96Z1 P61 €651 c6GI 1661 0631 6861 8851 18G1 9831 S8TI

6L31 8L3L LLTl 9Ll SL3l WL €6l Tiol 1.31 0LZ1 6831
€921 2931 19G1 08%1 65T 8STI ISTI BSGl STl #STI €ST1
LKL BPTT S¥G1 PRGL CFGL T¥GI 1¥GI oFGl 6CG1 8ETI LETT
1621 0€Gr 6361 8581 L3Gl 96Tt ST3l ¥oGl €331 3Bl 1t

Sizr yIzZl €121 g3l TI3T OIGl 6031 S80S 03T 9031 S0T1

€811 ZBIT I8I1 0811 6LIT BLIL LLIT 9LIT SAIT #LIT €L11
811 9911 Soll #9IL €911 TOII 1911 0911 6SI1 8SIT 2811
ISTI OSIT 6FI1 SFPUI LPIT OFUL SPIL ®PLIT €PIL GPIT [PIL
SCIT vEII EIl SEIl IEIl OEIl 6Gll B3I 311 9GIl STII
6Lt sEIL LI1D B1TL SITL #111 €OIT ZIIT TIID OLID 60Tl
€01 GOIT 10LF OOl 6601 8601 1601 0601 S601 PGUT €601

£801 680U S8OU #801 €80 TBOI 1801 0801 6201 SBLOI LL01

SSOI ¥S01 €501 2Sul 1SOT oSOl 6¥OL BYOI LPOT 9FWOL SHOL
6601 8EOL €01 9EOT SEOT ¥EU1 €01 GEUT I[EOI OE0T 6301

SE0T ¥E0T €0 TE0T | TJL €201 Gool [gol wcul 610l
cus 610 8108 LIUG 9102 | ~dL L00T 9001 SOOI FVOL 2001
€003 3003 1008 0wg | AL 1660 0660 GBGU 8KGO L8GU

1861 9861 S861 ¥861 | ~OL SL6O FL60 E€L60 S0 160
161 061 6961 886 | ~dL 6560 8960 LS60 9560 SSGO
€S61 ¥S61 €961 TS61 | ~ VL €60 CHOO 1460 OFGL 6060

6€61 8€61 LE61 O€6I | ~ 6L L1360 9060 ST KTBU €060 ol
€261 GT6I 1361 061 | ~ 8L 1160 0160 GUGD 8UBL LUGO
LO6T 9061 SO6T PO61 | ~ LL S680 1680 €680 TGRO 1680

1681 0681 6881 8881 | ~ 6L 680 8180 LIB0 980 SL80
SL81 P81 <TIRl Ti81 § " SL €980 TO80 1980 U980 6580

6981 8981 LSBT 9981 | ~ ¥L L¥80 9FS0 SPBU PEBO €FBO
€¥81 TPEI Y81 O¥81 | ~ €L 1€80 OF80 6380 8380 Lo80
Lo8T 9C81 ST8L PG8I | ~ 3L <180 PIS0 €180 GIso (180

TI8T 0OI81 608T 808T | ~ IL 66L0 8GL0 60 960 S6LO
S6LT V6Ll ©6L1 o6LI | —OL £8L0 T8 1820 USL0 6L

6LLT BLLT LLLL OLLI | — 48 180 9910 €S9L0 F9L0 €90 ©

€9LI TOLL 19L1 09LY | ~39 1SL0 0SL0 GPLO 8FYLO LPLO
hLU 9VLL SKLL WRLL | Q9 St $EL0 €EL0 ot IEW
TELT OELT 63Ll 8GLE | ~D9 610 8IL0 LIl0 QI SIW

6S¥I 8SP1 LS¥YI OSPL | TdS L0 940 SHO VRO €30
CFFL THPT IBPD OFFI | TVS 1E¥0 0CY0 62¥0 83V0 LZ¥O
L3yl OT¥1 STPI BTPL | T 6S S1Y0 FI¥0O EIVO SO ITHO

0TI 0Z1 1021 0031 | —&y 1610 0610 6810 8810 1810
81T 981U SBIL #8101 | V¥ SLI0 ¥lL10 E€LIO 3LI0 ILI0
ILIT 0Ll 6911 8811 | ~6¥ 6510 8S10 ISI0 9S10 SSIO

SL01 %01 €0 31 | ~¢r €900 TBOC 1800 0600 6500
6501 8S0T 2901 o0%01 | — ¥ L¥00 9¥00 SKOO FFOO E¥00
€01 TrOL 1YL OFOL | — 1I¥ 1600 O£00 6300 8300 L300

S860 tHGL €860 TG 1960 0860 6160 BL6O LISy 960 | —AC

1560 UG6Y m_oc 8160 L6 9160 SIG0 PI60 €160 3160 | ~6C

080 FC80 ECBO GG80 IG80 OGS0 6180 8IB0 LIB0 9IB0 | ~€E
610 T6L0 T6L0 060 680 880 LS80 98L0 SBLO ¥8LO | TIE

S050 ¥0S0 €050 3T0SO 1050 00SO 660 G6Y0 LGWD 96KO | —dI
6SY0 §8Y0 LSYO O8¥0 SSKO KSKO €8P0 Z8K0 I8¥0 OG0 | —ar
€00 TLO 1LY0 OLY0 6OK0 8SK0 LOVWD 99Y0 SBM0 ¥b0 | QI
LSYO 9SYO SSYO VSKO £SO ISYO ISYD OSKO 6990 8¥0 | ~OI
W0 OVPO 6EY0 SEYO LEVWO 6CKO SCYO ¥EYO EKO ZERO | WL
SZTYO ¥TYO ETHO TTWO IZK0 OCKO 61V BTHO LIKO 81¥0 | “VI
60V0 SOM0 LOFO BOKO SOV OKO €OMO OV TOKO OOKO | — 6l
€660 T6E0 [60 OSE0 68E0 SBE0 LSEO 98L0 800 hWE0 | 8L
160 BLL0 SIE0 BIE0 €LE0 TLEO [LE0 OLE0 69€0 89€0 | - LI
160 0GE0 6560 BSEO ISTO OSE0 SSED PSEO €SLO0 OSE0 | eI
SVEO VPO EVE0 ZVED IVEO OVEO GCEQ BECO LEEO 0660 | ~ ST
6260 $TE0 200 OT00 STLO KTEO €TE0 GILO ITCO UEO | " MY
€160 TIU 1160 OIE0 G6OEO S0CO LOEG HOCO S0E0 ¥oeo | ~ &t
160 B6T0 S630 W60 €630 60 [630 0630 6870 8830 | <3l
1830 0830 6L30 8130 L3O OLI0 SL0 W30 €20 330 | 1L
S920 V930 €920 TG0 (830 O0GZ0 6530 WST0 IS30 9530 | ~Ol
6V30 8¥Z0 L¥YZ0 OKZ0 SYS0 MHI0)30 THEO 1930 OFGO | 40
€600 €30 1€30 O0€Z0 6330 8TI0 LZTO 9TTO STTO Y330 | —30
L130 BIZ0 S1Z0 #1300 €I%0 3130 1130 010 6020 8020 | —GO
1030 00Z0 6610 8610 (610 9610 S6I0 »610 ©610 2610 | ~D0
SBI0 W8I0 €910 3TSI0 1810 0810 6LI0 SLIO LLI0 9LI0 | —go
6010 B9I0 910 9010 SOI0 ¥9I0 E9I0 ZWIO 1910 0810 | “vO
£S10 ZSI0 ISIO OSI0 6VI0 SYIO LPIO OFI0 SYIO PYIO | ~60
L610 910 SE10 PE10 €10 3JEl0 TEI0 OEI0 6210 8zio | ~ 90
1210 0310 6110 BII0 LIIO OII0 SI10 ¥II0 cli0 zio | ~0
<010 Y010 €OI0 301G [0I0 0010 6600 8600 L600 9600 | =00
6800 8800 1800 §S00 SS00 ¥BOO €SO0 3BO0 1800 0800 | " SO
€00 3TL00 1.0 000 6800 8900 1800 9900 $900 ¥900 | ~ 0
1500 9S00 SS00 ¥S00 €500 3TLO0 1S00 0500 6800 @#00 | — €0
I¥00 OF00 600 BEV0 LEUO 9EC0 SEO0 ¥E00 €C00 TE0O | ~ 20
SZ00 $300 €200 TT00 1Z00 0T00 6100 100 LI0O 9100 | <10
6000 8000 1000 000 S000 P000 €000 Z00O 1000 0000 | T 00
8 L] S v € 3 1 ..L

910l SToT FIOT €101 3IOI 1100 OI0l 6001 8001 | ~d€

| 4 a e a4 \ 6 8 L] S

*IaquInu TEWIOape

-Xay oY} Jo Wareamnbe 9Y} ST UWN[OO [BOTLIAA oY)
pue aulf [BJUOZLIOY 8y} Jo uonpun(8y} J8 pazedo]
(68%0) Toquinu Tewroap &Y °(6) B3P I9pI0-mo]
a4} £q papeay uwmjod 9y} o3 a8ed ayj 880I0€ SAIN
~3Y jo oulf ay) MO[[04 "UWN[OD o[a4y UI (6HT)
JIsquinu [BWIOSPEXAY dY} Jo (F1) SPIP oM} 181
9y} 932007 ‘UOISISAUO)) [EWTOd(O} [EUIOOPEXIH

"68%0 IaqUINU [EWIOSP 3Y3 03 [enbd 81

64T Isquinu [BWIOIPEXIY 9y} ‘SnyJ, ‘UWN[od ayj
jo doj a3 18 81 (6) MBIp I16pI0-MO[3Y) PuB ‘duy|
QWES 9y} UO UWN[OO }JI] 9y} UT aIe JaquInu [ewt
~109pEX3Y 943 Jo (AT) SHBIP I9pI0o-Y3ry amj ay,
"a[qe3 a3 Jo Apoq 8y} Ut (68%0) I9qUINU [EWIOSP
543} 97800 °UOTSIAAUOY) [BWIOSPEXSH 03 [BWIda(]

*sasayjuared ur ajdurexs ue Aq pemorioy

s1 dajs yoBa Jo uonewedxa ay3 ‘mofo} By
suondiI0sop oy} Ul ‘[BWIOSP 03 SISqUNU [BUX
-109pBXaY puUe [BWIO9PEXIY 03 SISqUINU [BWOdP
H2AU0D 0} Pasn aI® mo[aq pajurrd so[qe} ey

38

s9L2e | 0008 ‘9lqe) urew sy} ut 9y} ur umoys se ‘}I31p I9pI0-y31y 8y} 10§ RS W

ovv19| 000d | 22997 | o00r | UOTOBLIINS SA0qE 943 Jo jonpoad oy Buryroa onea oy ppe pue ‘oiqerurm o u AW | o | oo | o] o | oo e
vveLe| 000d | ozevz | 0009 -u0d £q sHSIp [ewroopexsy SUUTEWOI 99143} [BWIOSPEXaY I8PI0-MO[991y} 8Y3 JO an[eA altotr |et]| ¢ |tot0l ¢
svzes| 00oa | 080z | 000S oY} SUTULIdIS(Q ‘JI8IP [RWIOSPEBXAY I9pIO0 [BWIOSP 9Y) SUIULISIEP ‘[BWIO8P 03 I9qUnU oloott |zt | % |ooto!| %
2516%| 0000 | ¥8¢€91 | 000% -y31y 9y} ST J131p PJE[al OYJ “JNSOI SAIYS [eWI0apEXaY JBIP-IN0] B LIS9AUOD O, g | T10T | 1T | € [T100| €
950S¥| 000 | 88221 | 000 -od & pIol4 (14 Jey} JS1X oY) e J[qe} oY} ul +0lgy pue 9T g v |otor {01 | 2 |oto0| 2
0960%| 000V | 2618 | 0002 Joquinu }s9S8IeB] oY) JoNpPap ‘S[qe} Urew oy} y3noayj oxaz wroay ‘syq Areurqanoj jo aSuex 6 | T00T { 6 | T |T000 | T
¥989€| 0006 | 960¥% | 0001 puokeq SON[BA [BWIOSP JO UOTSISAUOD 104 1InJ 83 10] SuIPoo [ewWIOSpEXaYy pue ‘ArEulq 8 | 0001 | 8 | 0 |0000]| 0
o2 X9 e’ .

°a | X°H | 9°d | *°H 1431154} 03 IEYD PIPUSKD ‘Tewt1oop o7} SeAIS 3391 943 03 9[qE) SYL wd [o°d)*eH| wd
S60v ¥60¥y £60F TEOY 060v 680F 880v L80F 880V SB0F P8OV €80F T80F 180% 08O 1L0€ OL0E 6906 890C L90€ 990€ S90E ¥9C €90 T90T 090t 6S0€ 850t LSUE 990€
6.0 8LOFV LLOV 9LOF VLOv €L0v TLOP TLOF OLOY 690V §90F L0V 990F S90F H90Y SS0E PSOE £S0€ TSUE ISOE 0S0€ 6RO 8RO LFOC 90T PROC EFOC TROE THOE OFOE
€90F T9OF 190V 090V 8S0v LS0F 9SOV SSOF ¥SOF £S0F 3SOF 1S0F 0S0F 6¥0F 8hOv 6C0C 8CUT LEUE 9L0C SEOE PEOE €EUE GEUE IT0E OPUE 8oUE L30€ 9TUE STUE FoUE
Wov 9voy SKob VROV THOF 1¥OF OFWOF 6C0F SEOF LEOP 9E0F SEOF PEOF £E0F 2EOF €00 ©oUE 10 0TuE 6I0E BTOE LIoE 9tLE Sl ¥IoE TWE TI0E 010 GUUE SOUE
180F 0E0P 630v 830V 920r STOF F20¥ €30 G30F 1%0F 0%OF 610F RIOF LIO¥ 9T0F LO0E 900E SO0E FO0E €00E BOVE 100E OOOE 666G 8662 9660 9663 66T €668 ¢66C
stor ¥iovy €10 TIOY 010y 600 800y LOOF 900F S0OF ¥OOF €00F T00F 100F 000F 1663 066 686 886 L86T 986% S86C ¥BEZ €86 T86T 0868 6L6C 8163 LL6C YL6T
666€ 866C L66E 966€ P66 €66€ TEBC 166C 066C 686L 886 L8GE 986E S8VEL ¥BEE SL6C ¥L6C €L6C OL6C IL6C 0L6C 696C 8965 196G 9960 F96G €96C TY6T 1963 0963
€86€ 386E 196€ 086E 8L6€ LL6E 9L6E SL6E ¥L6T €L6E TL6T 1L6€ OL6E 696E 896€ 6967 8967 L96C 996C SS6C bS6C £S6C TS6T 1965 0S63 8F6G L¥6Z 9¥6T SH6T FFGT
L96E 996€ SY6E ¥96C 396€ 196€ 096¢ 696€ 8S6L LS6L 996T SS6C ¥S6L £96E TS6T €V6C V63 1365 06T 6¢68 8L6C LE6C 9€6C SL6T FL6T €60 1663 0L6c 636C 8o6T
166 0S6E 6F6E 8¥6E 9¥6C SPEE PVEC E€V6C TVE6E IVEE OP6E 606C 8E6C LE6C 9L6C Lo66 906 ST ¥o66 €860 Gobc 106G 0T 616 816T 9163 $163 F16G €165 GlGT
SE6E FE6L €E6C TE6T 0C6€ 636¢ 836T L36E 906 ST6E BTEC €36€ TI6E 136 0B6L 1162 0168 6068 806T L06T 906G <063 FUGT €063 GU6T VU6G 668G BGST L6ST Y6KT
6I6€ 8I6E L16E 9I6E pI6e €16¢ TI6€ 1168 016 606E 806T LOBE 906€ S06C 06T S68 ¥68C £68c TO8T 168% 068G 688G 8887 L88C 988C P88 €880 T88C 1883 088C
£06€ TO6E 106€ 006E 868C L6BC 968 S68C PE8E €68E TEST 168€ 068C 688¢ 888C 618 QL8G LL8T 9.8C SL8G FL8G €L8GC CL8G 1.8C 0L8T 898C 1980 9987 SI9RT FYSCT
188C 988T S88C V88T 388C I88C (088C 6L8€ 8I8C LIS 9LSE SI8E ¥l8C €L8E TLSE €982 T98C 198C (983 6S8C BG8G LSKG YSHT SS8G FS8T TSHT 1S8C 0S83 6F8C 8FSG
I18C 0LSC 698c 898C 998C G98C ¥98C €98C Z98C 198 (098C 6S8C 898C 198C 998T LY8C 9¥8c SHRT FF8C €F8C GF8C 188G OF8G 6E8C 8LST 9L8G SE8GC FEBC CE8T GENT
SG8C ¥S8T €98C GSST 0S8¢ 68T SPBC LVBE OVST SKBC FIST €8 T¥BE TPSL OPSE 1683 (€8C 638G 8T8T Lo8C 908C ST8G Fo8C £08G 338G 038C 6182 8IBT LIST 9143
6£8€ BEBE LEBEC OESE VEBEC £C8C TCBE 1€BE (0CSC 638C 83BC LZBE 9TBT STBE PTBE SI18c VIS €18 TI8C [I8T OI8C 608 808G LOBT 908G Y086 €08C 3T0U8C 108C 008G
£38C To8t 138t 0T8T 818 LISE 918E SISE FISC <CISE 3IST 118 OTRC 60SC 808C 66L2 86L3 L6l 96.c 96L3 VBLE C6LT THLG I6Lc 06.C 88LG L8LC 98LT SBLT +BLD
LOSC 908C S08C VOST T08E 108C 008C 66LC 86LE L6LE O96LE 96L& ¥BLE ©6LE TBLE €8L3 TBLE I8LT O8LG 6LLE 8LLE LLLGC 9LLG SLLG VLIS BLLE ILLE OLLZ 69LZ 89.C
6.8 06LE 68LE 88LE 98LE SBLE FBLE E€8LE TBLE I8LS 0BLE 6LLE 8LLE LLLE 9L | oA 1912 9912 S9Lc ¥9LC €9LT TILT 19L 09LT 6GL3 8SLT 9618 SSL3 ¥SLT ESLT TSlo
SLLE PLLE ELLE TLLE OLLE 69LE 89LE 19.8 99LE S9LE FILE €9L€ TILE T9LE 09LE 1922 0SLZ 6VlT 8Vl1e LPlLZ 9FLE SPLT ¥HLD €PL3 THLT 0FL8 6ELC SLLZ lEL3 YELS
6SLE 8SLE LSLE 9SLE PSLE €SLE TSLE ISLE 0SLE 6PLE BPLE LWL 9VLE SPIE PRLE SCLE VELZ €ELE OELE ICLG UEL3 6GLC BGLG LOLE 93L% ¥OLG €3LC TOLe 1GLT 0TLT
VL TPLE TRLE OFLE 8ELE LELE 9TL SELE PELE €ELE TELE 1€Le 0ELE 63LE 83LE 61L2 8IL2 L1LZ 912 SILZ ¥ils €8 TlLc 112 013 80L5 L0L3 90Le SOLG YOLT
3L BTl SOLE VOLE TgLe 1TLE 0TLE 6IL€ 8ILE LILE OILE SILE FPILE €ILE TILE €0L3 TOLZ 0L OOLG 669C 8690 L69C 9696 S69G Y69T ©69c 169G 069 689T 88YC
TILE 0T 60LE 80LE 90LE SOLE POLE €OLE TOLE 10LE OOLE 669€ 869C L69E 969¢ L89C 989C S89T ¥B8YT ©89C T89S 189G 0R9T 6L9% 89T 9196 SL193 ¥L9T €LY9C TL9G
969 ¥69E €69 T69E 069€ 689€ S89C L89C 989C SBIE ¥RIC €99C TYIC T89C 089C 1192 0197 699t 899C 1990 999c S99 F99C €993 TY9T 099 699¢ 8S9C ' LS9C 959G
6L8€ 8l9¢ LL9€ 9L9E VL19¢ ' €L9¢ 3BLIE 129¢ 0.9t 699t 899¢ L99€ 999 S99 ¥99E SL9T ¥S9G €S9T TS9T 1S9Z 0593 6¥9GC 8P9T LT 993 FHY% €F9% 9T 1495 0F9o
€99 T99E 199¢ 099¢ 899 LS9 999 SG9E VS9E €S9E TS9E 1998 059t 6F9C S¥OT 6€9C 8E9C LEYC 9L9C S€9T BE9T €E9T . TEYT 1€9C 0£93 09T L39C 909 STYc ¥EYo
L¥9e 9b9C SPIE FYOT THIC T¥9C OF9E 6TIC 8LIE LEIC 9€9C SLOE PEOE €E9E TE9E €89C 3c9¢ 1a9c 0G9c 6192 8I19c LI9c 9195 S193 1938 CI9c 1198 0192 609 8093
120 009t 639€ 8T9E 929¢ ST9C ¥TIT €298 T39C 139¢ 029C 619¢ 8ISC LI9E 919E L09C 909G S09C F09C €U9T TUYG 109G V09T 669G BESG 965C 965 F6ST €6ST G6ST
SI9€ ¥19€ €I9€ 3I19C O19€ 609¢ 809€ 09 909¢ SO9¢ P09t €09 309 109€ 009t 1650 06SC 68SC 88SC L8ST OBST S8SC FHST €8BS GBST 08SC 6.9 8LGT LLST 9.ST
66SC S6SE L6SE 965t P6SE €6SE T6SE 165 O06SE 68SC 88SE 18GE 988 G8SE PBSE QLS VLS €LSG TLST TL8G OLSG 6953 8950 LIS 9953 ¥9SC €99 TYST 1990 09T
€89€ TBSE T18SC 085 8LSE LISE OLSE SISE ELSE €LSE BLSE 1LSC OLSE 69SC 89St 660C 8950 1997 9998 9996 ¥OST €998 239G 1998 0953 8FST LVST 9¥ST SPOT FRGT
L9S€ 99SC G9SC T9SE T9SC 19S€ 09SC 68SC 8SGE LGSE 9SS SSSE POSE £OCE BGLE tVSZ 2PSE 1¥SC OPST 6€SC BEST LEST 9EST SEST VEST TEST 185 0£S8 635% 83Se
165 0SSE 6¥SE 8FSE 9PSE SFSE PPSE €PSE OFSE T¥SE OFSE 6£SC 8EST LEST 9€SE 135 933 SeSe ¥oSE €8S Gose 13ST 03ST 6IST 81ST 91S$c SIST ¥ISE €IS GlSE
SESE PESE CESE TEST 0£SE 63SC 8BS LISE 90SE SOSE YGSE €BSE §3SE IBLE 03SE 1162 01SE 6056 80SG L0ST 90S3 SOSC ¥0Se €0SC G0So 00sT 66v3 86Y3 L6YG 96T
6ISE 8ISE LISE QISE Yise €ISt 3ISE 115¢ 0ISE 60SE 80SE LOSE 90SE S0SE PUSE S6¥Z VEPT €6¥C TEYT 16¥c 06¥C 68¥C 88¥C L8YT 98YT ¥8¥T €8¥C T8YC I8YT OBFG
€0SE Z0SE 10SE 00SE 86FC L6VE 96FC S6FC ¥6FC €6V T6IE I6¥€ 06FC 68FC S8FE 6LV 8L¥E LL¥G 9LYG SLVG WLVG EL¥T BLYT 163 0L¥T 89VT lOVG 99¥C S9¥C ¥9FC
L8¥YE 98PC SSIT TSKC TEYEC I8FC OSFE 6LFC SLFE LLFE OLFE SLFE WLVE CLFE TLFE €9¥2 TI¥Z 19¥3 (09¥C 6SPC 8SKC ISKC 9SFC SS¥T BSYT oshT 1S¥3 0SbT 6b¥G 84T
iL¥E OLVE 69FE 89FE 99FC SOFE FOFE €9FE 29FC 19FE 09FE 6SHE 8SFE LSFC 9SKE LYvS OY¥E SYPE YRVG €FVG CFPT 1BYT OVEG 6EKT 8EFT 9c¥C ST ¥E¥T €LV TERT
SSPE ¥SKE €SPE TSEE 0SFe 6FFE ST L¥ve 9FFE SEPE PEEC €VYE THFE TIFEC 0BT €% O0EcbC 63¥3 SB¥G LOVE 9TPG STYG ¥oVE €2¥% GThT 0%¥Z 61¥3 81¥2 LIVE 9132
BCYE SCPE LEVE 9CFT ¥kt cere oot 1e¥€ 0E¥C 6GHe 83HT LOFE 9TFE COFC VOFE SI¥e PIPE €1FC TIIT 11¥¢ 01¥C 60FC S0YT L0V 90FT vO¥Ys €OVG GO¥C 10V 00FC
£2he TIPE IGhE OTHE 8IFE LIFC OI¥E SIFPE FPIPE E€IFE TIPE ITPE OIFE 60FC SUKE 66£C 86EC L6EC 9680 S6LC FOEG €6EC 06EG 16ET 06£T 86T L8CT O8EC SBET VLT
L0¥E 90%E SOFPE FOVE TOFE 10¥E OOFE 66EE B6LC L6EE 96LT S6EC ¥EEE E6EC TEEC €862 T9LZ 18€3 OBEZ 6LET 8LEG LLET 9LET SLET PLET TLET 1163 0LET 69€3 89LT
16€€ 06€E 68EE 8SEE 98€C S8EC FREEC €8EC TBLC IBCE O0BEE 6LEE 8LEE LLEC 9lLEE 1962 99€Z S9ET ¥9EG €96T TIET T96C 09EG 6SET 8SET 99€% SSEC PSET €9ET TSET
SLEE PLEE €LEE OLEE OLEE 69¢C 8NIEE L96€ 99€C 99eT P9EE €9t 29 19€€ 09eL 1963 0SE 6FEC 8VEZ LVEG 9¥YET SHET FFET €r€3 2HET O¥EG 6EE€3 8ELT LE€C 9EET
6SEC 8SEC LSET 9SEE PSEE €LLC TSEE 1SE€ 0SEE GFEE 8FPEC LPEE 9PEC SPEC FPEC SeET ¥ELT £00% TELT 1662 0€€3 6T€C 8GLT L3€C 93€C Y76 €ICT BeLe 1GET UTET
£HEC TVET I¥EE OFEE 8ELE LEEC 9ELE GEEE PEEE LLEE TEBE IEEC (LEC 6BEL 8TEC 61€% 813 L1€3 91¢c SI€E VILE €ILc Gies 11€6 01€3 80€C L0EZ 90ET SUET WOLT
L3¢€ 92eC ST BTEE eTEC 15€C 0cLt 6IEE 8ILE LICE 9IEC GIeL ¥Ige €IEE 2IEe €0EC ZTOET T0EZ 00CEZ 663C 863 L6GC 960 S63C FET0 3633 1636 063% 68%¢ $8CC
1IEE 0IEC 60EC 80EC 90€E SUEE FUEE €OEE TOEC T0EC OOEL 663C 863 L6ZE 963C 1838 983C S83% ¥8Gc €8¢ @8GC I8GG 08CG 6L3C 8LLT 93¢ SLTT WLIGC €LGG GLGT
S63C P6ZC £6CC T6TE 063E 68cE R8GE L8CE 983€ S8TE FRCE €8GC T8GC I8TC 08TE 1236 0.L3% 69CC 89¢c 1938 995% S9cc ¥96c €900 G9CO 0967 6S%C 8SGT LSTE 95CC
6LTE 8L3E LLTE 9LE bLot €Lot Glet L€ o0L2€ 6968 §9cC L9T€ 99CC G9EC PYCE 9S%8 PSTZ €STT ©STT 193¢ 053¢ 6¥cc 8FCo ¥ 9¥GT Lird €¥e8 obod 1¥oc UFGT
€80€ 09%C 193¢ 09T 8STE LSTE 94CE SSCE PSGC €S6E TSGE 183¢ 0SZ€ 6+CC 8FTC 6£06 8€3¢ LEGG 9£06 SE€TT FEGE €€GC ©LTo €28 0£38 833C 1337 98TC STCo wumm
LbTC ObZE SPTE HHTE 4 S | Yy B6ETE B8LTE LE3C 9EGE SEGE PETE £E€GE TETE €388 T6Es 163 0Toe 61cc 81¢c LIcc 916c Slee +1Td oleg 1188 0138 60T mcow
1€3¢ 0£3C 602€ 83GE 9T6E Soot koot €3%€ TTgE 13cE 03cE 613E SITE LIGE 913E 1032 90%¢ S0%3 ¥0%6 €038 GUGE [0cG 0OUGE 6613 8613 9617 S613 ¥6IT €613 T6IT
S1sE FIZC €lee 3I3E 0IcE BUTE BOGE LO%E€ 908 SOTE PUTE £0TE BUTE 10BE OUTE 1612 061 6812 8813 L81¢ 98Ic SBIc F8IC mf.m c81¢% 0815 BLI3 8LIG LLIT 9LIZ
661¢ B6IC L6IE 961 PBIE £BIC T6IC I61C O06IE 68IE $BIE I8IE 98IC S8IE IBIE SLIZ kLI €% B3 ILIZ OLIZ 691 8916 1913 991 Y915 €913 2913 1913 0912
€8I€ 38IL IRIC 08I 8LIE LLIE 9L1€ SLIC FLIE €LIE 3BLIE TLIE OLIE 691€ 89I€ 6S12 8S1Z LSIT 9SI3 SSIG ¥Slg €SIc 2Sic 1S18 0512 8b1c L¥IT 9FIT mm_m vw_m
L91€ 99IE S9IE 91T T9IE I191E 0916 6SIT 8SIE LSIE 941E SSIE PEIE €51€ TSIE P12 TPIZ IVIZ OFIG 6C13 8tic LEIT 9EIT SEIT PEIT oe1e 1€13 0€IE 6¢lc 8olo
1SIE 0SIE 6FIE S8tIE grIE SrIE thIE €FIC TPIE TRIE OFIE 6EIC §CIC LEIE 9LlIE L2313 921% Se1T ¥olg €313 T3ld IGIT UGle 6112 8113 911G SI13 *[13 ¢€I1 GTlIg
SLIE PEIE €EIC GEIE 0€1€ 6CIC 8TIT g1€ 9g1e SgIt +ale €¢1e ¢ole 1G1¢ 0TlE 111 OI12 6013 80IT L0015 01T S0IT FUIT €012 3013 001 660% 8603 L60CT 960T
6I1€ 8IIE LIIE OIIE vIIC €llE olle g Qe 601€ 801¢ L01E 91T sult tule S60% V603 £60C TBUT 1603 080 680C 880G 1803 9803 ¥80T €808 2808 180T 080T
€01E Z0IE 101 001E 860€ LBUE 9GUE S6UE FBUE EBUE GHUE 160C 060E 68UC SHUE 6L03 8L0% LL0T 9.0c SL03 PLOG €LUG GLUT 1202 008 890 [B0T BT ST TG
180E 980€ SBUT PRUEL B0 [80€ 080 6L0€ SBLOE LLOE 9LUE SLUE FLUE ELOE TLOC £90c 9903 1907 090 6903 8S07 LSOT 9LUT SS0T ¥S0T% TS0T 1803 080T 6FOC 8F0T

d a a o v 6 8 L 9 S 14 € [T 4] L ks a a o q Y 6 8 L 9 4 3 1 0 L

Appendix B. Hexadecimal-Decimal Conversion Chart 39

Form C26-5927-4
Page Added 6/5/68
By TNL N33-8015

APPENDIX C: ASSEMBLER MNEMONICS AND ERROR CODES FOR 2250 ORDERS

This appendix provides information about the 2250
orders: their names, mnemonics, and the corre-
sponding 2250 model 4 orders; coding formats; and
notes pertaining to using the orders. The information
about each order is presented as follows:

Assembler Order (2250 Order)

Coding format and Assembler
mnemonic

Notes: Operand limitations, restrictions, signifi-
cance of format and tag fields, etc.

Functional descriptions of the 2250, model 4
orders are contained in the publication IBM 1130
Component Description: IBM 2250 Display Unit
Model 4, Form A27-2723. This appendix is to be
used in conjunction with that publication,

Table 2 lists the codes used to identify errors en-
countered during assembly of the orders, the causes
of the errors, and the actions taken by the Assembler.

Set Character Mode Basic (Set Character Mode)

21 27

[1abel] SCMB

Notes: A character mode must be established hefore
executing a character stroke or entering a character
stroke subroutine.

Set Character Mode Large (Set Character Mode)

21 27

[1abel] SCML

Notes: The notes for SCMB also apply for SCML.

Set Pen Mode (Set Pen Mode)

Set Graphic Mode Vector (Set Graphic Mode) 21 27 35

[1abel] SPM /hex digit or
21 27 equivalent
[1abel] SGMV

Notes: The graphic mode vector must be established
before generating lines. Vector mode is set automat-
ically if no graphic mode has been previously set

(see the 2250 model 4 Component Description publi-
cation).

Set Graphic Mode Point (Set Graphic Mode)

21 27

[labell SGMP

Notes: The graphic mode point must be established
before generating points,

Notes: The operand may be any hex digit or any valid
absolute Assembler expression in the range 0 to F.
The bit pattern of a hex digit and the efiect of a 1 in

a bit position are as follows:

8 4 2 1

I'—‘édefer light pen interrupts

enable light pen interrupts

disable light pen detects

enable light pen detects
For example, /9 (1001) defers interrupts and enables

detects. Hex values 0, 3, C, and F result in no-
operation,

39,1

Form C26-5927-4
Page Added 6/5/68
By TNL N33-8015

Start Regeneration Timer (Start Timer)

Move* Beam Incremental (Incremental XY)

21 27

21 27 35

[1abel] STMR

[1abel] MBI X, Y

Notes: The STMR order should be the first order in
an order program. Its use is required for accepting
keyboard attentions and setting the status of the light
pen switch.

Store Revert Register (Store Revert Register)

21 27

Notes; The x- and y-coordinates may be any valid
absolute Assembler expressions, but must be in the
range +63 to -64,

*The word "move" here and in the following orders
relates to blanked beam movement,

Draw® Beam Incremental (Incremental XY)

(1abel] SRVT

Notes: The SRVT order is used for return linkage
when multiple levels of subroutines are used. A
graphic branch indirect through the second word of the
SRVT order returns control to the calling program,
The SRVT order should appear in the subroutine pre-

ceding any graphic branch orders within the subroutine.

Revert (Revert)

21 27 35

(1abel] DBI X,Y

21

27

[1abel]

RVT

Notes: In vector mode, beam movement is unblanked;
in point mode, only the end point is unblanked. The
notes for MBI also apply.

*The word "draw'" here and in following orders
relates to unblanked beam movement.

Move Beam Absolute (Absolute XY)

Notes: If an order subroutine does not contain any
graphic branch orders, the RVT order can be used to
return control to the main order program at the
order following the branch to the subroutine, If the
subroutine is two or more levels from the main order
program, the RVT order does not pass control to the
main order program.

Graphic No-operation (Set Pen Mode)

21 27

[1abel] GNOP

Notes: GNOP is assembled as an SPM order with an
operand of hexadecimal 00. It can be used to reserve
a single word in an order stream for later modifica-
tion.

® Appendix C 39.2

21

27

35

[1abel]

MBA

X, Y

Notes: The x- and y-coordinates may be any valid
absolute Assembler expressions, but must be in the
range 0 to 1023.

Draw Beam Absolute (Absolute XY)

21

27

35

[1abel]

DBA

X,Y

Notes: In vector mode, beam movement is unblanked;
in point mode, only the end point is unblanked, The
notes for MBA also apply.

Move Beam Absolute X (Absolute X/Y)

21 27 35

[1abel] MBAX X

Notes: The operand may be any valid absolute As-
sembler expression, but must be in the range 0 to
1023.

Form C26-5927-4
Page Added 6/5/68
By TNL N33-8015

the range 0 to 6, and Y must be in the range 0 to 7.
The x- and y-coordinates occupy a half-word. For
consecutive orders, the coordinates for two orders
are placed in one word, The revert function is exe-
cuted if an R is placed in column 32, Character
stroke orders must be executed out of line by means
of a graphic branch following a set character mode
order.

Draw Beam Stroke (Character Stroke Word)

Move Beam Absolute Y (Absolute X/Y)

21

27

35

21

27

32

33

35

[1abel]

DBS

[R]

[D]

X, Y

[1abell

MBAY

Notes: The notes for MBAX also apply here.

Draw Beam Absolute X (Absolute X/Y)

21

27

35

[1abel]

DBAX

Notes: A D in column 33 indicates that less than
normal (decreased) intensity is desired (recom-
mended for character strokes less than 2 character
units long; see the 2250 model 4 Component De-
scription publication for details about character
units)., Programmed intensity provides a means of
generating characters that have nearly uniform
intensity for all the strokes of the character regard-
less of the stroke lengths. The programmer should
experiment with this facility to achieve desired
results. The notes for MBS also apply.

Control Stroke (Character Stroke Word)

Notes: In vector mode, beam movement is unblankeds

in point mode, only the end point is unblanked. The
notes for MBAX also apply. 21 27 32 35
Draw Beam Absolute Y (Absolute X/Y) [1abel] CS (R] 1,[data]
[1abel] CS 2, [data]
[1abel] Ccs R 2, [data]
21 27 35 [1abel | cS (R] 4,[data]
[1abel] Ccs R 7,[data]
[1abel] DBAY Y

Notes: In vector mode, beam movement is unblanked;

in point mode, only the end point is unblanked. The
notes for MBAX also apply.

Move Beam Stroke (Character Stroke Word)

21 27 32 35

[1abel] MBS (R] X,Y

Notes: The x- and y-coordinates may be any valid
absolute Assembler expressions, but X must be in

Notes: The first operand, which may be any valid
absolute Assembler expression, has the following
meanings:

1 = subscripting - the character grid is offset
downward 3 vertical charac-
ter units,

- the order performs no opera-

tion if R is not specified.

- the order performs a null func-
tion if R is specified.

- the character grid is offset
upward 3 vertical character
units,

- the beam is positioned at the
next line (R must be specified).

2 = no operation
2 = null function

4 = guperscripting

7 = new line

@39, 3

Form C26-5927 -4
Page Added 6/5/68
By TNL N33-8015

The '"data' operand may be any data the program-
mer wants, but must not exceed 7 bits. Data exceed-
ing the limit is truncated to the 7 low-order bits.

If revert (R) is not specified for the superscript
control order, execution continues with the second
word after the superscript control order. Placing a
subscript control after the superscript control order
gives a character stroke subroutine the capability of
being executed in superscript, subscript, or normal
mode if different enfry points to the subroutine are
defined.

Graphic Short Branch (Short Branch)

21 27 35

[1abel] GSB address

Notes: The address may be either symbolic or an
absolute Assembler expression, but must have a value
less than 8192. Use of the symbolic operand is re-
stricted to referring to graphic orders that are within
the same Assembler-language program.

Graphic Branch (Long Branch/interrupt)

21 27 32 33 35

address

[1abel] GB [1] (N]

Notes: An I in column 32 specifies an indirect branch.
An N in column 33 specifies a two-word no-operation,
The notes for GSB also apply, except that the address
is not restricted to a value of less than 8192,

Graphic Branch Conditional (Long Branch/Interrupt)

21 27 32 33 35
[1abel] GBC (1] (] address,
condition

Notes: The condition for the branch may be one of
the following:
D = branch if light pen detect
S = branch if light pen switch closed
DS or SD = branch if light pen detect and
switch closed

The notes for GB also apply.

® Appendix C 39, 4

Graphic Branch External (Long Branch/Interrupt)

21 27 33 35

[1abel] GBE (N] name

Notes; Name is the name of an external order pro-
gram (subroutine). An N in column 33 specifies a two-
word no operation,

Graphic Branch Conditional External (Long Branch/
Interrupt

21 27 33 35
[1abell GBCE [~] name,
condition

Notes: The conditions for the branch are the same as
those described for GBC. The notes for GBE also

apply.

Graphic Interrupt (Long Branch/Interrupt)

21 27 33 35

[1abel] GI [n] [data]

Notes: An N in column 33 specifies a two-word no-
operation, Data may be a symbolic address, number,
or expression, The range of numerical data or an
expression, when resolved, must be +32767 to -32768.
The data word may be used for any purpose.

Graphic Interrupt Conditional (Long Branch/Interrupt)

J

21 27 33 35
[1abel] GIC [N] [data],
condition

Notes: The condition for the interrupt may be one of
the following:
D = interrupt if light pen detect
S = interrupt if light pen switch closed
DS or SD = inferrupt if light pen detect and switch
switch closed

The notes for GI also apply.

Form C26-5927-4
Page Added 6/5/68
By TNL N33-8015

Table 2, Assembler Error Codes for 2250 Errors

Error Action Taken by
Code Cause Assembler
w x- or y-coordinate, or both, not within the spec- Operand set to zero.

ified range; or invalid operand

X Character other than R or I in column 32; or Field set to zero.
character other than D or N in column 33,

Y Unnecessary operand specified; or unnecessary Operand ignored, Tag or Format field
Tag or Format field entry. ignored.
Z Invalid condition in a conditional branch or Condition bits in first word set to zero.

or interrupt order.

®39,5

Form C26-5927-4
Page Revised 6/5/68
By TNL N33-8015

INDEX

ABS Statement 17
Absolute Assembly 18
Absolute Expressions 10
Arithmetic Instructions 14
Assemble Absolute Statement 17
Assembler Features 1
Assembler Instructions 17, 26
ABS - Assemble Absolute 17
BES - Block Ended by Symbol 22
BSS - Block Started by Symbol 22
CALL - Call Subroutine 24
DC - Define Constant 19
DEC - Decimal Data 19
EBC - Extended BCD Information 21
END - End of Source Program 19
ENT - Define Subroutine Entry Point 23
EQU - Equate Symbol 22
ORG - Define Origin 18
XFLC - Extended Floating Constant 21
Assembler Program 1
Asterisk as an Element 9
Asterisk as an Operator 10
Asterisk in Column 21 3
Automatic Storage Assignment 2

BES Statemnent 22

Binary-Point Identifier 20

Blank Format 4

Block Ended by Symbol Statement 22
Block Started by Symbol Statement 22
Branch Instructions 14, 16

BSC Equivalents (Monitor) 15

BSS Statement 22

CALL Statement 24

Character Code Chart 34
Character Codes 33

Character Set 7, 34

Character Values 9

Coding Form 4

Comments Field 6

Condition Testing Instructions 13
Console Printer Hex Code 33

Data Definition Statements 19, 28

Data Representation 2

DC Statement 19

DEC Statement 19

Decimal Data Items 19

Disk Data Organization Statements 26
Decimal Data Statement 19
Decimal/Hexadecimal Conversion Chart 38
Decimal Integers 20

Define Constant Statement 19

40

Define Disk File (Monitor) 27

Define Interrupt Level Subroutine Statement 24
Define Interrupt Service Entry Point Statement 23

Define Message (Monitor) 28
Define Name Statement (Monitor) 29
Define Origin Statement 18

Define Sector Address Statement (Monitor) 26

Define Subroutine Entry Point Statement 23
Displacement 4, 5

DMES Statement (Monitor) 23

DN Statement (Monitor) 29

DSA Statement (Monitor) 26

Dump and Continue Execution (Monitor) 31
Dump and Terminate Execution (Monitor) 30
DUMP Statement (Monitor) 30

EBC Statement 21

EBCDIC Code 33

Effective Address 4

EJCT Statement (Monitor) 32
Elements 9

End of Source Program Statement 19
END Statement 19

ENT Statement 23
EPR-Extended Precision 18
EQU Statement 22

Equate Symbol Statement 22
Error Checking 2)
EXIT Statement (Monitor) 30
Exponent 20

Expressions 9

Extended Binary Coded Information Statement 21
Extended Binary Coded Decimal Interchange Code

Extended Real Constant Statement 21

Features of the Assembler 1
Fields
Comments 6
Format 4
Identification-Sequence 7
Index Register 6
Label 3
Operand 6
Operation 3
Remarks 6
Tag 6
FILE Statement (Monitor) 27
Fixed Point Numbers 20
Format Field 4
Format of Assembler Statements 3

|Graphic Orders 39,1

HDNG Statement (Monitor) 31
Heading Statement (Monitor) 31
Hexadecimal/Decimal Conversion Chart 38

33

Hexadecimal Notation 33
Hexadecimal Values 9

I Format 5

IAR 4

IBM Card Code 33
Identification Field 7

ILS Statement 24

Index Registers, Specifying 6
Index Registers 6, 25

Index Register Field 6
Indirect Addressing 6
Input/Output Instructions 14
Instruction Address Register 4
1SS Number 23

ISS Statement 23

L Format 5

Label Field 3

LIBF - Call TV Reference Subroutine 25
LIBF Subroutine Transfer Vector 25
LIBR - Transfer Vector Subroutine 18
LINK Statement (Monitor) 30

Linking Statements 23, 30

LIST Statement (Monitor) 31

List Control Statements (Monitor) 31
List Segments of Program (Monitor) 31
Location Assignment Counter 7
Location Assignment Counter Overflow 8
Load Instructions 14

Load Link Program (Monitor) 30

Machine-Instruction Statements 13
Machine-Instruction Mnemonics 13
Mantissa 20
Miscellaneous Instructions 14
Mnemonics 13, 15
Mnemonic Concept 3
Mnemonic Operation Codes 1
Modify Memory (Monitor Mnemonic) 15
Monitor Assembler Statements

DMES - Define Message 28

DN - Define Name 29

DSA - Define Sector Address 26

DUMP ~ Dump and Terminate Execution 30

EJCT - Start New Page 32

EXIT - Return to Supervisor 30
FILE - Define Disk File 27

HDNG - Heading 31

LINK - Load Link Program 30

LIST - List Segments of Program 31

PDMP - Dump and Continue Execution 31

SPAC - Space Listing 32
Name Code 29
Operand Field 6

Operators 10
Operation Field 3

ORG Statement 18
Overflow, Location Assignment Counter

Paper Tape Transmission Code 33
PDMP Statement (Monitor) 31
Program Control Statements 17
Program-Linking Statements 23, 30
Program Listings 2

7

Form C26-5927 -4

Page Revised 6/5/68

By TNL N33-8015

Programming Considerations for DSA Statement 27

PTTC/8 33

Real Numbers 20

Relative Addressing 8
Relocatable Assembly 17
Relocatable Expressions 10
Relocatable Programs 17
Remarks Field 6

Renaming Symbols 2

Return to Supervisor (Monitor) 30

Self-Defining Values

Decimal 9

Hexadecimal 9

Character 9
Sequence Field 7
Shift Instructions 14, 16
Slash (/), Use of 9
Source Program 3
SPAC Statement (Monitor) 32
Space Listing (Monitor) 32
SPR-Standard Precision 18
Start New Page (Monitor) 32
Statement Field 3
Statement Writing 7
Storage Allocation Statements 22
Store Instructions 14
Subroutine Transfer Vector 25
Subroutines 1
Symbol Definition Statement 22
Symbol Table 7
Symbolic Language 1, 3
Symbolic Reference to Storage Addresses
Symbols 7
Symbols, Restrictions 7

Tag Field 6

Terms 10

Transfer Vector (LIBF) 25
Types of Expressions 10

Writing
Statements 7
Subroutines 23

X Format 35
XFLC Statement 21

2

1132 Printer EBCDIC Subset Hex Code 33

1403 Printer Hex Code 33

{2250 Display Unit, Model 4 39,1

Index

41

IBM Technical Newsletter File Number 1130-21

Re: Form No. C26-5927-4
This Newsletter No. N33-8015
Date June 5, 1968

Previous Newsletter Nos. None

IBM 1130 Assembler Language

This Technical Newsletter provides replacement pages for IBM 1130 Assembler Language,
Form No, C26-5927-4, Pages to be inserted and/or removed are listed below.

Remove Pages Insert Pages
iii,iv . iii, iv
17,18 17,18
23-26 23,24

25,25, 1
25,2,26
29-32 29-32
3942 39
39.1,39.2
39.3,39.4
39. 5,40
41,42

A change to the text or a small change to an illustration is indicated by a vertical line to
the left of the change; a changed or added illustration is noted by the symbol @ to the left
of the caption., Completely new or substantially changed pages are indicated by the
symbol @ to the left of the page number,

Summary of Amendments

This TNL supplies the following amendments to the manuals

+ New information on the 2250 Display Unit, Model 4, ISS (DSPYN).
+ Revision of the discussion on CALL and LIBF statements.
+ Various corrections to previous information in the manual.

File this cover letter at the back of the manual to provide a record of changes.

IBM Nordic Laboratory, Technical Communications, Box 962, Lidingé 9, Sweden

PRINTED IN U.S.A.

e e et e . —— — — —— — —— — — ——— — — ——— — ————— —— —— —— — — — — —— ——— — —————— — — —— o o— — o —— — o —— — — — i o s s s s | et .

READER’'S COMMENT FORM

IBM 1130 Assembler Language Form C26-5927-4

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of
IBM.

el

® Does this publication meet your needs?
® Did you find the material:
Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for vour technical level?

ooooo 0%
Oooo0o00 0%

® What is your occupation?

® How do you use this publication?
As an introduction to the subject? O As an instructor in a class? []
For advanced knowledge of the subject? O As a student in a class?]
For information about operating procedures? [] As a reference manual?]

Other

® Please give specific page and line references with your comments when appropriate.

COMMENTS

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C26-5927-4

YOUR COMMENTS PLEASE. ..

This SRL bulletin is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys-
tem should be directed to your IBM representative or to the IBM sales office serving your

locality.

-------------------------------- D R R N R N R N R N N N R R I N R R N R R A AL

FIRST CLASS
PERMIT NO. 1359

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WiILL BE PAID BY. ..

1BM Corporation
112 East Post Road
White Plains, N. Y. 10601

Attention: Department 813

£
4
=
”
]
-
2>
4
»
z
=<

TIBIML

Intsrnational Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[Intarnational)

steerssncscecrcsssnnnnss

P N A A R N N X N E NN

xx

secceco@ssssevsssrecrrsesee

‘VeS'n m palunid 0g1T WAL

¥ -126§-92D,

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25.00
	25.01
	25.02
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39.00
	39.01
	39.02
	39.03
	39.04
	39.05
	40
	41
	42
	replyA
	replyB

