File No. 1130-21
Form C26-5927-4

IBM Systems Reference Library

IBM 1130 Assembler Language

This publication contains the information necessary to write
programs in the IBM 1130 Assembler language. Included are rules
for statement writing, mnemonic codes and descriptions of operands,
and descriptions of the instructions used to control the Assembler
program.

PREFACE

This manual describes the IBM 1130 Assembler
language and defines the programming rules, It is
intended as reference material for the writing of
an assembler source program and the accomplish-
ment of the steps required to produce the resulting
object program. For those without programming
experience or a knowledge of the principles involvec,
the IBM publication, Introduction to IBM Data
Processing Systems (Form F22-6517), is suggested
as preliminary reading.

Within this publication, all references to the
"Monitor System'" apply to Version'l and Version
2. Where the reference only applies to Version 1,

iati i d. Where the reference
the abbreviation DM1 is use

only applies to Version 2, DM2 1g used.

oy

The term 'loader" as it applies to the 1130
programming systems hav> the following
meanings: !

Card/Paper Tape - Relocating Loader
Disk Monitor 1 - Loader
Disk Monitor 2 - Core Load Builder

For those without experience involving different
number systems, i.e., binary and hexadecimal,
the publication IBM Student Text: Number Systems
(Form C20-1618) is recommended,

Fifth Edition

The reader should also be familiar with the
following: IBM 1130 Functional Characteristics
(Form A26-5881) and IBM 1130 Computing System,
Input/Output Units (Form A26-5890).

The assembler language is valid for the 1130
Disk Monitor Programming Systems and the 1130 Card/
Paper Tape Programming System., The operating
procedures for the Monitor Assembler are described
in the publications IBM 1130 Disk Monitor System

:'Reference Manual (Form C26-3750), and IBM 1130
‘Disk Monitor System, Version 2, Programrning and

Operator's Guide (Form (C26-3717).

The operating procedures for the 1130 Card/
Paper Tape Assembler are described in the publication
IBM 1130 Card/Paper Tape Programming System
Operator's Guide (Form C26-3629).

The library subroutines for the 1130 systems
are described in the IBM 1130 Subroutines Library
manual, (Form C26-5929).

MACHINE REQUIREMENTS

The minimum machine configuration for assembling
programs is as follows:

IBM 1131 Central Processing Unit, Model 1,
with 4096 words of core storage

IBM 1442 Card Read Punch, or IBM 1134 Paper
Tape Reader and IBM 1055 Paper Tape Punch.

This editicn is a revision of the previous edition (C26-5927-3) which is now obsolete,

£ ation has been added to distinguigh between Version 1 and{ Version
Informatio s added to distinguis :n ersio x1 riion 2 O

1130 Disk Monitor System.

e

Significant changes or additions to the specifications contained in thie publication will

he reported in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or

to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader’s comments. If the form
has been removed, comments may be addressed to IBM Nordic Laboratory, Technical

Communications Department, Vesslevigen 3, Lidings, Sweden.

@ International Business Machines Corporation 1966, 1968

GENERAL DESCRIPTION ¢ ¢ ¢ s s e s e s s e vecoososse
INtroduCtion « o o oo o e oo s cs v oo esesassnosncocs
Symbolic Language +eo oo oot eovcsssoenses
Assembler Program , ., .. .ec0cecrcececnsns
SUbroutinesecc0000cc0 000 ononon
Features of the Assembler , .., 00 eeeveoncese

SYMBOLIC LANGUAGE ... 'vseeuneoanonsnone
Mnemonic ConCepteovevesecosnncocnas
Format of Statements . ..o ovsovoeossooonsos
Statement Fields . .44 vvvovenoecosoeooans
Statement Writing iveevesveocssosnones
Character Set e+ v s s e 0o s e e oo s evessnsecsas
Symbols + et eocrocarsensitriasonoonns
Location Assignment Counter ¢« eo e e s oo e caoosos
Relative Addressing
Self-Defining Values e+ esesetescsescsasanon
Decimal Values = e s e e 0 e o s essesoscssosas
Hexadecimal Values o scssooecososecensocs
Character Values « s eeeeooosoosossosocsse

P R I I N N R N R

Expressions---------------o-o-----------
Elements R I R
TETINS ¢ o o0 00000t 00s00ssseoo0ssscsssses
Operators ««s e e s oo ot oo escesncnsovsos
Evaluation of Expressions ««ccoeoeeeeseeenn
Types of EXpressions s« eessseecsacoacasas

MACHINE-INSTRUCTION STATEMENTS « ¢ oo s 000
MREemoniCs « s oo oo eeeetscsosscccssoncnca

Condition-Testing Instructions (BSC, BOSC, BSI) . .
Additional Monitor System Mnemonics (DM2 only}. . .

ASSEMBLER INSTRUCTIONS ¢ ¢ e e e v eevveeonsos
Program Control Statements « e es v o s eoseasasas
ABS ~ Assemble Absolute + « ¢ ¢ v o ces e arennns
LIBR - Transfer Vector Subroutine + s e e o s s oo
SPR - Standard Precision, EPR - Extended Precision
ORG -Define Origin » s v e s s s st essosesosse
END - End of Source Programe « « s e s e s 0o 0 vaee

B e

OO © 0 WO NNNWWLwWw

= s
o oo cC

13
13
13
15

17
17
17
18
18
18
19

CONTENTS

Data Definition Statements « « ccceosecoecccsssosasasasl9
DC -Define Constant e e s s e s s s s s s evsoseassasesal9
DEC -Decimal Data s+ eeoos oo vosecosccsssasncaeld
XFLC - Extended Real Constant .. vuseevevevasesaas 2l
EBC - Extended Binary Coded Information + ...« co0u... 21

Storage Allocation Statements «...susvesoeeeeesaasas 22
BSS - Block Started by Symbol .4 v v seeesveoanessa 22
BES - Block Ended by Symbol « v e« e et v v v eneneeasa 22

Symbol Definition Statement « .. eeveeeoeesoocsassas 2
EQU -Equate Symbol 4 v v+ e e e e s s s s esssconoaseeaas2

Linking StatementS. . v o o s o v e oo essseasanoanesssas3
ENT - Define Subroutine Entry Point « . ¢ o cceeeo v 23
ISS - Define Interrupt Service Entry Point « + » s e ¢ e o oo 23
ILS - Define Interrupt Level Subroutine =« +es-e e et eee 24
CALL - Call Direct Reference Subroutine ==+« ++ -+« 24
LIBF - Call TV (Transfer Vector) Reference Subroutine -« -« 25

MONITOR ASSEMBLER STATEMENTS « ++ e+ sessessosss 26
Disk Data Organization Statements s *+*sssss st assse 26
DSA - Define Sector Address » =+« sesssssessocssee 26
FILE - Define Disk File (DM2 only)s e e ¢ e e eesaoess .. 27

DataDezinitionStatements esecescencessssscsssenee 28
DMES - Define Message (DM2 only) .
DN - Define Name only.

Linking Statements « s o s veoooseoavsescsossscecssnss 30
uNK-LeadLinkuogram ceesssvsssssssssssnes 30
EXIT-RemrntoSupervisor escseansmcsnsansesssnsnsee 30
DUMP - Dump and Terminate Executior (DM2 .oply) . @30

PDMP - Dump and Continue Execution (pM?2 only) -

ookitin 4 i B
1 :

Listeongolgfatements PEPP R U SR S S - S |

HDNG -Heading e s s s eesoesooeeocvessscscsssns 31

LIST - List Segments of Program {DM2 only) «c<c..... 31
SPAC - Space Listing (DMéoEIy).. Cieeseesaenaene 32

E_]CT-StartNewPage(DMz_only)................ 32

e

APPENDIX A, CHARACTER CODE SUMMARY ¢ -« cccee-. 33

APPENDIX B. HEXADECIMAL-DECIMAL CONVERSION
CHART ¢+t sococsasvsosssanacssveses 38

INDEX ¢ceeesoosssoscscsoscsasascscnsencsassssn 40

INTRODUCTION

The IBM 1130 Assembler language replaces binary
instruction codes with mnemonic symbols and uses
labels for other fields of an instruction. Other fea-
tures, such as pseudo-operations, expand the pro-
gramming facilities of machine language. Thus,

the programmer has available, through an assem-
bler language, all the flexibility and versatility of
machine language, plus facilities that greatly reduce
machine language programming effort.

Symbolic Language

Symbolic language is the notation used by the pro-
grammer to write (code) the program. A program
written in symbolic language is called a source pro-
gram. It consists of systematically arranged
mnemonic operation codes, special characters,
addresses, and data, which symbolically describe the
problem to be solved by the computer.

The use of symbolic language:

e Makes a program independent of absolute core
locations, thus allowing programs and subroutines
to be relocated and combined as desired.

e Allows subroutines that can be written indepen-
dently and that cause no loss of efficiency in the
final program.

e Permits instructions to be added to or deleted

from a source program without the user having
to reassign storage addresses.

Assembler Program

The assembler program converts (assembles) a
source program into a machine-language program,
The conversion usually is one for one — that is, the
assembler produces one machine-language instruc-
tion for each symbolic-language instruction.

The 1130 Disk Monitor Assembler is a two-pass
assembler. The source program is read into core
from the principal input device and written on the disk
for use in pass 2. During the first pass the symbol
table is generated. During the second pass the object

GENERAL DESCRIPTION

program is created in the system Working Storage
and the listing, if requested, is produced.

The IBM 1130 Card/Paper Tape Assembler is a
two-pass program. It is loaded into the computer
and is followed by the first pass of the source program.
During the first pass, the source statements are
read and a symbol table is generated. During the
second pass, the source program is read again and
the object program and/or error indications are
punched into the first 20 columns of each source card.
If paper tape is used, the second pass results in the
punching of a new tape that contains both source state-
ments and corresponding object information. Both
card and tape object programs must be compressed
(via a Compressor Program supplied with the assem-
bler) into a relocatable binary deck (or tape) before
they can be loaded into'core storage for execution.
The output from the second pass is called the list
deck (or tape) and can be used to obtain a program
listing of source statements and corresponding object
statements.

Subroutines

A library of input/output, arithmetic, and functional
subroutines is available for use with the IBM 1130
Assembler.

The user can incorporate any subroutine into his
program by simply writing a call statement (CALL or
LIBF, whichever is required), referring to the sub-
routine name. The assembler generates the linkage
necessary to provide a path to the subroutine and a
return path to the user's program, The ability to use
subroutines simplifies programming and reduces the
time required to write a program.

A description of available subroutines is con-
tained in the system subroutine library manual,

FEATURES OF THE ASSEMBLER

The significant features of the IBM 1130 Assembler
are summarized below. More detailed explanations
are given later in this manual.

Mnemonic Operation Codes. Mnemonic operation
codes are used for all machine instructions instead

General Description 1

of the more cumbersome internal binary operation
codes of the machine, For example, the Subtract
instruction can be represented by the mnemonic, 3,
instead of the machine operation code, 10010.

Symbolic References to Storage Addresses. Instruc-
tions, data areas, and other program elements can
be referred to by symbolic names or actual machine
addresses and designations.

Renaming Symbols. A symbolic name can be equated
to another symbol, so that both refer to the same
storage location. This makes it possible for the
same program item to be referred to by different
names in different parts of the program.

Automatic Storage Assignment. The assembler
assigns consecutive addresses to program elements
as it encounters them. After processing each ele-
ment, the assembler increments a counter by the
number of words assigned to that element. This
counter indicates the storage location available to
the next element.

Relocatable Programs. The assembler can produce

object programs in a relocatable format; that is, a
format that enables programs to be loaded and exe-
cuted at storage locations different from those
agsigned when the programs were assembled.

Convenient Data Representation., Constants can be
specified as decimal digits, alphabetic characters,
hexadecimal digits, and storage addresses. Conver-
sion of the data into the appropriate machine format
of the 1130 System is perforined by the Assembler.
Data can be in a form suitable for use in decimal
integer, fixed-point, or real arithmetic operations.

Program Listings. For every assembly, the user
can obtain a program listing. This listing can be
produced either off-line (Card/Paper Tape Assem-
bler) or on-line during the assembly process (Disk
Monitor Assembler).

Error Checking. Source programs are examined by
the Assembler for errors arising from incorrect use
of the language. Where an error is detected, a coded
warning message appears in the program listing.

MNEMONIC CONCEPT

Symbolic programming may be defined as a method
whereby names and symbols are used to write a pro-
gram. The symbolic language includes a standard
set of mnemonic operation codes. Mnemonic opera-
tion codes are easier to remember than machine lan-
guage codes because they are usually abbreviations
for actual instruction descriptions. For example:

Description Mnemonic
Add A
Execute I/0 XI0

Each IBM 1130 machine instruction has a cor-
responding mnemonic operation code. In addition,
there are some mnemonic codes that assign storage
and others that allow the user to exercise control
over the assembly process.

FORMAT OF STATEMENTS

A source program congists of a sequence of state-
ments. These statements can be written on a stan-
dard coding form (X26-5994) provided by IBM. The
information on each line of the form (Figure 1) is
punched into one card or paper tape record or en-
tered from the keyboard. The first position on the
form (21) corresponds to card column 21 or to the
first character of the paper tape/keyboard record.
Space is provided at the top of the coding form to
identify the program; however, none of this informa-
tion is punched into the statement cards. The first
20 columns of an assembler source card must be
blank.

NOTE: Keyboard input is acceptable only with the
Monitor 2 Programming System.

Statement Fields

An assembler statement is composed of one to seven
fields: label field, operation field, format field, tag
field, operand field, comments field, and identifica~
tion sequence field.

SYMBOLIC LANGUAGE

Label Field (Columns 21-25)

The label field represents the machine location of
either data or instructions. The field may be left
blank, may contain an asterisk in column 21, or
may be filled with a symbolic address, left-justified
in the field. Only data or instructions that are re-
ferred to elsewhere in the program need a label,
although a label that is not further referred to is
not an error.

A label can consist of up to five alphameric
characters, beginning at the leftmost position of the
label field. A label is always a symbol and must
therefore conform to the rules for symbols (see
Symbols). The example below shows the symbol
ALPHA used as a label.

Label 4 Operation | Operands & Rer
21 25 gl 27 30 B 35 40 45 50

4570 ||| | [An Expression
m

T W N G T Y N TN T SO 00 GRS AT T N TN S

If the label field is left blank, it is ignored by
the Assembler and has no effect on the assembled
program. If column 21 contains an asterisk (*), the
entire statement is treated as comments and appears
only in the listing., If the field contains a symbolic
name (label), and the statement represents a standard
machine language operation (Add, Store, etc.), the
value assigned to the label is the address of the
assembled instruction, which is equal to the value of
the Location Assignment Counter (see Location As-
sighment Counter) at the time the statement is en-
countered by the Assembler. Values assigned to
labels of the various assembler instructions are
specified in the section entitled Assembler
Instructions. _

Operation Field (Columns 27-30)

Each machine instruction and assembler instruction
has a unique mnemonic operation code associated
with it, When a particular operation is to be repre-
sented, its mnemonic code must be punched, left-
justified, in columns 27-30 of the source statement
record,

Symbolic Language 3

IBM 1130 Assembler
Coding Form

Date

Page No.

Form K26-5994
Printed in U.S.A.

of .

40 45

Operands & Remarks

Identification

3

55 60 65 75 80

IS WU W N TR TR W O S N WO

[OO WOV S Y WSV WO SN WU SO N S

JOUSK TR IO NN WO TN T N N N

| RN S NN Y NN VAN NN WS N DU W

O SNURS VRN VRN TN U U JOU T W |

L R F R

Lo 1

Lo L

 F F - F - F R F FOF

1
1
1
1
1
1
1
1
1
1
1
1

- - F F F F F R
L - F + F F F F - F -+ F
L - + L L -k k &« F k
b = = bk b = = e = R
L L F b F F F + + F k-

S O T A N e T i S O O T R O

- - F F F L F

R I T N N O T T O o O O O N O O R N S S
S N T R O T N o o i o o o o o o o o o o o o
A T N T A T T U N N A T ol o o o o
A T T o T e CO R - T T T T T U S R A N o

F L b F R EFEFEREEEEREEEEEREEFR
L - F -+ F F R RFFEFEEREEEREEFEER

L L -+ F F F F B
L - - - - F F F B
F F - F F F &

Figure 1, Coding Form

Format Field (Column 32)

The format field specifies the type of machine in-
struction being represented and, in the use of short
(one-word) instructions, how the displacement field
is to be handled. Any one of four entries is per-
mitted: two for short instructions, one for a direct
long (two-word) instruction, and one for an in-
directly-addressed long instruction. For conven-
ience, these formats are referred to by the charact-
er used to specify them, namely blank format, X
format, L format, and I format,

Blank Format. A blank in the format field (column
32) signifies a short instruction except with some
of the extended mnemonics provided with the Disk
Monitor Assembler, in which case a blank format

field specifies a long instruction. Bit 5 of the
assembled ingtruction is set to zero. A blank also
indicates that any expression in the operand field be
interpreted as the desired effective address for the
statement.

During execution of certain short instructions,
the effective address is the sum of the displacement
(last 8 bits of the instruction word) and the contents
of the Instruction Address Register (IAR). A blank
format for such instructions causes the assembler to
subtract the current value of the Location Assignment
Counter from the expression in the operand field.
Thus, when this result is added to the IAR curing
execution of the instruction, the correct effective
address is obtained. .

The effective address of short Store Index (STX)
instructions is always obtained by adding the dis-
placement to the IAR. The displacement of the Load

Index (LDX), Load Status (LDS), WAIT, all shift
instructions, and all condition testing instructions
is never added to the JAR. The effective address of
all other short instructions is obtained by adding
the displacement to the IAR, if the instructions are
not indexed; that is, if column 33 is blank or zero.
The X format suppresses the automatic subtraction
of the address counter from the displacement operand
value when the instruction is moved. Therefore, the
X format should be used for a short instruction which
will have an effective address obtained by adding the
displacement to the IAR. This requirement is not in
conflict with the relocation process, because the
process shifts the whole program, including instruc-
tions and reference data, to a core storage area
different from that for which it was assembled. The
relative distances between instructions and data re-
main the same, and the displacements remain correct.
In a relocatable assembly, the expression speci~
fying an operand modified by the IAR must be re-
locatable so that the actual displacement is an ab-
solute quantity (see Expressions). If thig rule is not
followed, a relocation error will be indicated. Also,
since displacements must lie in the range -128
to +127_ , the value of the displacement—specifly(;ng
expression must not be more than 127__ greater,
nor more than 128 1 less than the address of the
next location after t?le instruction in which it appears;
otherwise, an addressing error will be indicated.
An example illustrating the blank format is shown
below:

Assume A = location 100010
B = location 105010

The value of the IAR will be 1001, when
instruction A is executed. Therefore, the value
computed by the assembler for the displacement

will be 4910.

Label
45

00

In the case of an instruction whose address is
not modified by the IAR, the Assembler interprets
the expression in the operand field as the desired
contents of the displacement field, without modifica-
tion. In this case, the operand specifying the dis-
placement must be absolute and must be in the range
-128 0 to +12710, or relocation and addressing errors
resu}t.

X Format. An X in the format field indicates to the
Assembler that the related statement is to be assem-
bled as a short instruction. It further indicates that
any expression in the operand field is to be inter-
preted as the desired displacement value.

Consider the example illustrated in Figure 2;
the purpose of this instruction sequence is to change
the flow of a program by inserting a branch ingtruc-
tion in a location that previously contained a "no
operation. " If the branch instruction at BRCON
were specified as MDX GO (i.e., blank format),
the assembler would compute the displacement
on the basis of the IAR value of 1101. (The IAR
would have a value of 1101 if the BRCON instruction
were executed where it was assembled.) However,
the programmer, knowing the instruction will be
executed at location SWTCH, computes the dis-
placement himself and specifies the X format.

L Format, If column 32 contains the character L, it

signifies a long (two-word) instruction with direct
addressing. Bit 5 (F) of the assembled instruction

is set to 1. The operand-field expression, which may
be relocatable or absolute, is used to fill the second
word (bits 16-31) of the assembled instruction., A
second operand may be present, separated from the
first operand by a comma (,). This operand may be
used in one of two ways:

1. To specify symbolic condition codes for use with
BSC, BSI and BOSC instructions.

2. To specify an expression that has a value in the
range of -128 to +127 and is not relocatable.

This second operand yields bits to fill bit positions
8-15 of the assembled instruction.

I-Format. If column 32 contains the character I, it
signifies an indirectly addressed long instruction.
Bit 5 and bit 8 are set to 1. In all other respects
an indirect instruction is treated exactly as a long
direct instruction. If a displacement operand is
specified, its high-order bit (bit 8) will always be

a one, causing the displacement to be negative,
because this bit is also the indirect flag bit.

Symbolic Language 5

% Operaads & Remorks Identification
§ SRR T WS TS W NUNON NUUIE SN U U0 [NV UUNY SUNS VWU Y VASUNY UNUN SN WA WO [N Y 0N VRO TN S T N Y N T S W | ST I I S N N 1
SR SR NS T WONSH JON WU WS U WO U A S U (NN S U TN NS NN NN VAU SO WU TSN SR W B S | 111 2 1 % PR . | TR S
PR T W ST WUNR WOW U WUU D SN WY NS S VN0 N NN THNAE UL VUNN AU NN U TN SN N U DU VU UH T SN SR (SN N N 1 PR W N H |
| ST W WY WA VANV JNS NNV G0 WU NN ST NN UNNY WY NN TN SUNR VD N U NN ISR DR T N T WO S T S S S W S T T I T N U ¥
j TS Y O W S | PN DO U W U WS UUN SN WA Y W W Y NN SNUDN SN NN NS WU U S SO N T H T T S S i W B S B | 1
[SIS T YO WY MU S SR W NN TN TN U0 NN WY NN WO VA TR NN TN SN U NN TN SUN T SO GO T AN S S B | [N T T B
% I MRS NN N N UEN WU NN W0 VAV NN SN T S N N YA SO U N T S N A TS T T VT N A S S O | I SR
BnkncnonM |C;"’;A;M6|E; P.ROGRAM FiLOW IA.T. SMTCH , [B
SlMTchHJ YN VO WO N TS U UK SN SN N NN SN UG TN YA U T SR WA U0 Y G SN VNS OO N SN N S S | . L
252 [W T T VN WU ON VAU TN N D T SN N TN T AT S N WY N N A GO U TSN T Y N S Y W S B | T T T O N
L1y 5 I MR R NAT TS YWY VY W W W T ST SN SO S Y SN VAT SN SN NN SN SN NN VAT OV SN WO WO AN T S Y W | T I SO |
M b 5 B WA WA S VAN Y WY VA A W O A Y S S S T YA YW Y T Y SO G N T S S | P O
B,RCONEAM |0.’151MT|C.H."11| NS WTURY WO TS TNN0 W SN 0T VY YA SO S AN WON VO O S A A ST S W WY | Ce
MR - B 8 .]_llllljlllllllIlllLlllllllllllllllJl U TS S W
Figure 2, Use of X Format
Tag Field (Column 33) field for the various instruction formats are de-
scribed under Format Field. Blanks must not appear
Column 33 is used to specify an index register if within the operand(s) except as character values or
one is required. The code in column 33 is the index in the EBC statements.
register number; i. e., 1=Index Register 1, 2=Index Some examples of one- and two-operand state-
Register 2, and 3=Index Register 3. A zero or a ments are shown in Figure 3.
blank indicates that no index register is to be used.
If no tag is specified in an LDX, MDX, or STX Remarks Field
instruction, the IAR is used. The example below
shows an add instruction that addresses the core Remarks are for the convenience of the programmer.
location whose address is zero plus the contents They permit lines or paragraphs of descriptive infor-
of Index Register 2. mation about the program to be inserted in the pro-
gram ligsting, Remarks appear only in the program
p——— listing; they have no effect on the assembled object
“ » program. Any valid characters (including blanks)

\ e laL can be used as remarks.

S P S S U G O S P The Remarks field must appear to the right of
the operand field and must be separated froem it by
at least one blank,

Operands and Remarks Field (Columns 35-71)

Comments Field
The operand field is used to specify subfields in in-

structions and constants. The content of the operand By placing an asterisk in column 21, the combined

AlclclulllJillllllllllllllllllllllllll

) U T A TS T U T TN VAN N W T WY T W SN TN WY N N N N W N W U T T T U R '
A¢ L lul,l’.l,lolol T 0,0 P ERAND, S TATEMENT |
IS Y U WS SN T TN SN TN TS NN T TN NN T WO Y SO WY TN T N TR T N T TR S U WY N Y W 1

c.c.U,’. 1 .0.”:51’10|P|£|e.ﬁ ND Lo, S\7 T.E M EN,

N T T N A N T T T T TSN T TN T T TN TR T T N (N T N TN U T T T R

Figure 3, One- and Two-Operand Statements

statement fields from columng 22-72 may be used
for comments. The identification-sequence field
(columns 73-80) should not be used for comments.

If it is necessary to continue comments on ad-
ditional lines, each line must have an asterisk in
column 21, as illustrated in Figure 4.

Identification-Sequence Field (Columns 73-80)

The identification-sequence field may be used for
program identification and statement-sequence num-
bers. It is limited to columns 73-80. The informa-
tion in this field normally is punched in every state-
ment card. The Assembler, however, does not
check this field.

STATEMENT WRITING

Symbolic language statements are accepted by the
Assembler only if they conform to the rules of syntax
presented in this section. Subsequent sections of this
publication deal with the format and content of the
specific types of assembler statements (machine in-
structions and assembler instructions). Instructions
of both types are formed by using the basic elements
described here. Many of the points introduced in this
section are covered more extensively in subsequent
sections,

Character Set
The following characters may be used in statements:

Monocase Alphabetics A through Z, $, #, @

Numerics 0 through 9

Special Characters [F-=& | T <>
e, ot () %~ ?
(blank)

The codes that the assembler accepts for these
characters are listed in Appendix A. Appendix A
also lists additional codes which may be used in com-
ments statements, as character values, and as '
alphameric constants. The + and & special char-
acters may be used interchangeably as operators.

Symbols

Storage areas, instructions, and other elements may

be given symbolic names for the purpose of referring
to them in the program. The symbolic name is called
a symbol. It can contain up to five characters.

While the first character of a symbol must be alpha-
betic, the remainder may be alphabetic, numeric, or
any combination of the two. No embedded blanks or
special characters may be used. Any violation of
these rules is detected by the Assembler and indi-
cated as an error in the program listing.

The following are valid symbols:

PUNCH START N
A2345 . LOOP2 BC$#@

$, # and @ are monocase alphabetics, not special
characters (see Character Set), and as such can be
used in the label field.

The following symbols are invalid, for the
reasons noted:

256B First character is not

alphabetic
RECORDAREA2 More than 5 characters
END 1 Contains a blank

If a symbol is to be used as an operand, it must
be defined in the program by using it as the label of
a statement. Two types of label assignments are
allowed. In machine-instruction statements and cer-
tain assembler statements, the label is assigned an
address equal to the current value of the Location
Assignment Counter. In the Equate Symbol statement
(see Symbol Definition Statement), the label is
assigned the value specified in the operand of the
statement.

Symbol Table. For every program assembled, a
table of the symbols in that program is created.

This is the symbol table; each entry in the table re-
cords the value and relocation property of a symbol.
All symbols defined in the program are entered

in the symbol table. Symbols that appear in the
label field of agssembler instructions that do not use
labels (for example, ABS, END, ENT) are not placed
in the symbol table.

General Restrictions on the Use of Symbols. The
following restrictions are imposed on the use of
symbols:

e A symbol may appear only once in a program
as the label of a statement. If a symbol is used
as a label more than once, only the first usage
is recognized. Each subsequent usage of the
symbol as a label is ignored and, in the card/
paper tape system, is noted as an error in the
program listing. In addition, any reference to

Symbolic Language 7

40 45

Oporm& & Remorks

35 &0) 70

AI,N, (0,6, ,2,/, MAKES, \TH IS A COMMENTS, L] NE

3 RIE .U,/ IRIE P2 IFIGIRA l[lﬂ (4 ”1 |‘|/|~|El 10 F. £, olMﬁaE|”|r|s|

llllllljllllIllllllllljlllll‘lllllll

Figure 4. Example of Comments Statement

such a symbol is noted as an error.

e The number of symbols that can be defined in a
program is restricted by the amount of core
storage available to the assembler. The number
of symbols allowed is defined in the system
operator 8 manual,

LOCATION ASSIGNMENT COUNTER

The Assembler maintains a counter to assign sequen-
tial storage addresses to program statements. This
counter is called the Location Assignment Counter.

It always indicates the next available address. As
each machine instruction is processed, the counter
is incremented by the number of words assigned to
that instruction. Certain assembler instructions
also cause the Location Assignment Counter to be

set or incremented, whereas others do not affect it
(see Assembler Instructions).

Location Assignment Counter Overflow. The maxi-
mum value of the Location Assignment Counter is
65535, a 16-bit value. If a program being assem-
bled causes the counter to be incremented beyond
65535, the Assembler retains only the rightmost

16 bits in the counter and continues the assembly,
checking for any other source program errors. No
usable object program is produced. The user can,
however, still obtain a listing of the entire source
program,

RELATIVE ADDRESSING

Once an instruction has been named by a symbol in
the label field, it is possible for other instructions
to refer to that instruction by using the same symbol.
Moreover, it is possible to refer to instructions pre-
ceding or following the instruction named by indica-
ting their positions relative to that instruction. This
procedure is referred to as relative addressing. A
relative address is, effectively, a type of expression

(see Expressions).

For example, in the sequence

A .l

14 .L

I |

T |

= = = =

b
-
-
b
b
b
-
b
N

control can be transferred to the second instruction
by either of the following instructions:

40 45
WJTART A
@ % | U S TS TS UUNY N TS N B N N W
@..% L / AS TL I3| W T B T
%. % [T R U U WO N TN DN U W N B W

By using relative addressing, it is also possible
to refer to a particular word within a block of re-
served storage. For example, the instruction

reserves a block of 50 words, in which BETA is the
address assigned to the first word in the block. The
address BETA+1 then refers to the second word,
BETA+2 to the third word, and BETA+n to the (nth+l)
word.

Relative addressing can also be effected by using
the current value of the Location Assignment Counter
in an operand. In symbolic language this value is
denoted by an asterisk (*). (See The Asterisk Used
as an Element.)

SELF-DEFINING VALUES

A self-defining value is a machine value or a bit
configuration.

Self-defining values can be used to specify such
program elements as data, masks, addresses, and
address increments. The type of representation
selected (decimal, hexadecimal, or character) de-
pends on what is being specified.

Decimal Values

A machine decimal value is an absolute number from
0 to 65535. It is assembled as its binary equivalent,
Some examples of decimal, self-defining values are

500 003
17 52324
7230 1

If a number larger than 65535 is specified in address
arithmetic, the value is truncated modulo 65536;
that is, only the low order 16 bits of the binary value
are retained.

Hexadecimal Values

A hexadecimal value is an unsigned hexadecimal
number written as a sequence of digits. The digits
must be preceded by a slash (/). The hexadecimal
digits represent the 16 possible combinations of
four bits.

Each hexadecimal digit is assembled as its four
bit value. The hexadecimal digits and their bit
patterns are as follows:

0 -0000 4 -0100 8 -1000 C - 1100
1-0001 5-0101 9 -1001 D -1101
2~0010 6~0110 A -1010 E - 1110
3 ~0011 7-0111 B-1011 F -1111

The following are examples of hexadecimal,
self-defining values:

/FFFF
/AB12
/379B
/F2

/00F2 } equivalent

If more than four hexadecimal digits are speci-
fied in one sequence, only the four low-order digits
are retained by the assembler. If less than four
hexadecimal digits are specified, they are entered,
right-justified.

A table for converting decimal values to hexa-
decimal values is provided in Appendix B.

Character Values

A character value is a single character, preceded
by a period. A character value may be a blank, any

combination of punches in a single card column, or
a paper tape character that translates into the eight-
bit IBM Extended BCD Interchange Code. Appen-
dix A is a table of these combinations, their inter-
change codes and, where applicable, their printer
graphics. A period used as a character value is
represented as two periods in sequence, (i.e., ..).
Examples of character values are:

LA
.1
.2
D
(blank)

The same value can frequently be represented
by any one of the three types of self-defining values.
For example, the decimal value 196 can be expressed
in hexadecimal as /C4 and as a character, .D. The
selection of a particular type of value is left to the
programmer, Decimal values can be used for actual
addresses and input/output unit numbers, hexadeci-
mal values for masks, and character values for
data.

EXPRESSIONS

The term "expression' refers to symbols or self-
defining values used as operands, either singly or
in arithmetic combinations. Expressions are used
to specify the various fields of machine instructions.
They are also used as the operands of assembler-
instruction statements.

An expression has three components: elements,
terms, and operators.

Elements

The smallest component of an expression is an
element. An element is either a single symbol or
a single self-defining value. The following are
valid elements:

TMP
/1A6
.B
A

*

4
The Asterisk Used As an Element

When used as an element the asterisk is relocatable
and stands for the current value of the Location
Assignment Counter for the instruction in which it
appears (i.e., the rightmost word of the current
instruction + 1), Thus, the asterisk as an element
can have different values for different instructions.

Symbolic Language 9

L bl L
L DATA, |
sJUlMA;|+|

e o b b
= kb =
b L+ =
L -+ -

The last instruction is a conditional branch to
location SUM and can be written

40 45

ll4l-lllllll|lll

Llllllllllllll

N S |

i TV I W i S W |

Be sure the asterisk refers to the proper word when
it is used with a long instruction or in an area where
long instructions are present. In the previous exam-
ple, the BSC instruction will become two machine
language words after assembly. Therefore, during
assembly of the BSC instruction, the Location As-
signment Counter contains a value one greater than
if the BSC were a short instruction.

Terms

A term can consist of a single element, two elements
separated by an asterisk (which denotes multiplica-

tion), or three elements each separated by an asterisk,

etc. A term must begin with an element and end
with an element, but is not permissible to write two
elements in succession. The following are valid
terms:

TMP * FUNC * TAXY
A*4

X*Y*5

6 * 4096

3

Operators

An operator is a character that denotes an arithmetic
function. The recognized operators are + or & (plus
or ampersand), - (minus), and * (asterisk), denoting
addition, subtraction, and multiplication, respec-

tively: An operator must be used between two terms.

Two operators may not be used in succession.
There is no ambiguity between the use of the

asterisk as an element and the use of the asterisk

as an operator to denote multiplication,because the

10

position of the asterisk always makes clear what is
meant. Thus, **10 means "the value of the Location
Assignment Counter multiplied by 10, "

Evaluation of Expressions

From a symbolically written operand, the evaluation
procedure derives an integer value that can be used
as (1) a displacement value in a short instruction,
(2) an address in a long instruction, or (3) an absolute
numeric quantity,

An expression is evaluated as follows:

[
.

Each element is replaced by its numeric value.

2. Each term is evaluated by performing the indi-
cated multiplications from left to right, in the
order in which they occur. In multiplication,
the low-order 16 bits are retained.

3. The terms are combined from left to right, in

the order in which they occur. If the result is

negative, it is replaced by its 2's complement.

Grouping of terms, by parentheses or otherwise,
is not permitted; however, this restriction can often
be circumvented. For example, the product of 25
times the quantity B-C can be expressed as

256 * B-25*C

Types of Expressions

In addition to evaluating expressions, the Assembler
must decide whether the expression is absolute

or relocatable. Without this information the Assem-
bler would be unable to assign the proper relocation
indicator bits for use during loading.

Rules for Determining the Type of Expression

The rules by which the expression type is determined
are:

® A gymbol that is defined by means of the Location
Agsignment Counter is a relocatable element.

® Decimal and hexadecimal integers and character
values are absolute elements.

e A relocatable element alone is a relocatable
expression,

® A relocatable element, plus or minus an absolute
element, is a relocatable expression.

o The difference of two relocatable elements is
an absolute expression.

® A symbol that has been equated to an expression
(by means of the EQU assembler instruction)
assumes the same relocation property as that
expression.

These rules are clarified by the following example:

Assume that a programmer wishes to incorpor-
ate a table into a relocatable program, and he knows
that he may later wish to add or delete items with-
out changing program references to the table, The
first step is to assign symbols to the first (lowest~
addressed) word in the table and to the location
immediately after the last (highest-addressed) word
of the table. These symbols could be BGTBL and
ENTBL, respectively. Regardless of the number
of items in the table or of the number of later
additions or deletions, the number of words in the
table is always equivalent to the value of the ex-
pression ENTBL-BGTBL. This illustrates the rule
that the difference of two relocatable elements is an
absolute expression.

Expanding this example, assume the programmer

wishes to use a second table the same length as the
first, The first (lowest addressed) word of the
second table can be indicated by the symbol STBL,
Then, the location following the last (highest-ad-
dressed) word of the second table can be indicated
by the expression

STBL + ENTBL - BGTBL

This address is subject to relocation; hence, the
expression is relocatable, following the rule that a_
relocatable element plus or minus an absolute
element is a relocatable expression.

Procedure for Determining the Type of Expression

The following paragraphs describe the procedure
for determining expression type (absolute or
relocatable):

e Discard any term that contains only absolute
elements.

e Examine each term of the expression. If any
term contains more than one relocatable ele-
ment, the expression will yield a relocation
error,

e Replace each relocatable element by the symbol
r, and replace each absolute element by its
value. This yields a new expression which in-
volves only numbers and the symbol r.

o Rewrite the expression in simplest form by
evaluating it according to the address arithmetic
rules given above in the section, Evaluation of
Expressions.

If the result is an integer, the operand is absolute.
If the result is r, the expression is relocatable. If
the result contains r to any power other than one,or
contains r with a coefficient other than one, the
operand does not have a well-defined relocation
property and will yield a relocation error. The
following examples illustrate this procedure.
NOTE: When the terms absolute symbol and reloca-
table symbol are used in text, they mean symbols
that refer to addresses.
Example 1: Consider the expression,
7 S c

4+3*TRANS-2* FUNC+COUNT
where TRANS and FUNC are relocatable symbols,
and COUNT is an absolute symbol. Discarding the
terms involving only absolute elements leaves

3*TRANS-2*FUNC

This does not contain any illegal terms. Replacing
each symbol by the letter r results in

3*r-2%r

Evaluating this produces r; therefore, the expression
is relocatable.

Example 2: Consider the expression,
2*3*TRANS-FUNC
This reduces to

v
[2¥3*r-r
or

5r

Symbolic Language 11

This is neither r nor a number; therefore, the
expression will cause a relocation error.

Example 3: Consider the expression,
A*2*¥R-A*A*R+5

where A is an absolute symbol, and R is a relocata -
ble symbol, The expression is absolute if the value
of A is zero or two and relocatable if the value of A
is 1. If the value of A is anything else, a relocation
error will result. ’

In the following examples, A, B, C, and D are
relocatable symbols, and J, K, L, M, and N are
absolute symbols.

Relocatable expressions:
A 1*A
A+J 250*%A-249%B
A+B+C-D-* 100*A+50*B-75*%C-74*D

Absolute expressions:

12345 0*A
A-B+C-Dt+5 500*A-400*B-100*C

12

Relocation Errors

If a source program contains an expression having in
it one or more of the following, that expression is
flagged as a relocation error.

e The negative (complement) of a relocatable
element

® An absolute element minus a relocatable element l
e The sum of two relocatable elements
In the following examples, A, B, C, and D are

relocatable symbols, and J, K, L, M, and N are
absolute symbols.

A+B (+2r) A*B (r?
-A (-1r) 2%A (2r)
15-* (-1r) 5*A-6*A (-1r)

A+J+M+N+B-C+D+L{+2r)

NOTE: In an absolute assembly headed by an ABS
statement (described later), all symbols and asterisk
values are defined as being absolute; therefore, no
relocation errors are possible.

All machine instructions can be represented symbol-
ically as assembler language statements. There are
two basic formats: short and long. However, with-
in each basic format, further variations are possible.

The symbolic format of a machine instruction
parallels, but does not duplicate, its actual format.
A mnemonic operation code is written in the opera-
tion field, and one or more operands are written in
the operand field. Comments can be appended to a
machine-instruction statement as previously ex-
plained.

Any machine-instruction statement can be named
by a symbol, which other assembler statements can
use as an operand. The value of the symbol is the
address of the leftmost word assigned to the assem-
bled instruction.

MNEMONICS

A list of all IBM 1130 machine language instructions
and their associated mnemonies, including those
mnemonics available for the monitor system only, is
given in Table 1.

Condition-Testing Instructions (BSC, BOSC, BSI)

The machine instructions Branch or Skip on Condition
(BSC), Branch Out or Skip on Condition (BOSC),

and the long form of Branch and Store Instruction
counter (BSI) use bits 10-15 of the displacement to
test any combination of six conditions associated with
the accumulator. When coding these instructions, the
user does not use an expression to specify the dis~
placement field, but, instead, writes a series of
unique characters, each of which represents one bit
of the condition-testing mask. These character
symbols may be written in any combination; the bits
they represent are combined by the assembler in a
logical OR fashion. The symbols and their repre-
sentations are:

MACHINE-INSTRUCTION STATEMENTS

Unique Bit Position
Character Condition Description Set to 1
O (Alpha) Overflow Skip or do not branch 15
if Overflow indicator off

C Carry Skip or do not branch 14
if Carry indicator off

E Even Skip or do not branch 13
if bit 15 of Acc =0

+or& Plus Skip or do not branch 12
if bit 0 of the Acc =0,
but not all bits of Acc
=0

- Minus Skip or do not branch 11
if bit 0 of Acc =t

Z Zero Skip or do not branch 10
if all bits of Acc =0

Examples:

.. Skip on plus condition

SN W WOy W B B
— B Skip on non-zero (plus or minus)

Skip if Carry indicator off

T
EXI.T.y +, , Branch to EXIT if not plus
(zero or minus)

Branch and Store instruction counter
to SUBR if Overflow is on

Machine~Instmuction Statements 13

Table 1. Machine Instruction Mnemonics

Mnemonic OP Code 1 Instruction
(Hexadecimal Representation)
Lood and Store
LD C00 Lood Accumulator
LDD 80 Load Double
LDX 600 Lood Index
LDS* 200 Load Status
STO DOC Store Accumulator
STD D80 Store Double
STX 680 Store Index
STS 280 Store Status
Arithmetic
A 800 Add
AD 880 Add Double
S 900 Subtract
SD 980 Subtract Double
M A00 Multiply
D A80 Divide
AND E00 And
OR E80 Or
EOR FO0 Exclusive Or
MDM +5 740 Modify Memory
Branch
B t4 700 or 4CO Branch
BSt 400 Branch and Store Instruction Counter
BSC 480 Branch or Skip Conditionally
BP 16 4C30 Branch Accumulator Positive
BNP 16 4C03 Branch Accumulator Not Positive
BN % 4C28 Branch Accumulator Negative
BNN 16 4C10 Branch Accumulator Not Negative
BZ 16 4C18 Branch Accumulator Zero
BNZ 6 4C20 Branch Accumulator Not Zeo
BC 6 4C02 Branch on Carry
8O 16 4C01 Branch on Overflow
80D 1% 4C04 8ranch Accumulator Odd
SKP* t 480 Skip on Condition(s)
BOSC 2 484 Branch Out or Skip Conditicnally
MDX 700 Modify index and Skip
Shift
SLA* 100 Shift Left Accumulator
SLT* 108 Shift Left Accumulator and Extension
SLC* 10C Shift Left and Count Accumulator and Extension
SLCA* 104 Shift Left and Count Accumulator
SRA* 180 : Shift Right Accumulator
SRT* 188 Shift Right Accumulator and Extension
RTE* 18C Rotate Right
XCH* 13 18D Exchange Accumulator and Extension
Input/Output
X10 080 Execute I/O
Miscellaneousa
NOP* 100 No Operation
WAIT* 300 Wait

*Valid in short format only

+Not included in card/paper tape Assembler or DM1 Assembler.

. The hexadecimal representation of the machine operation code is derived from the instruction format in the manner shown below.
Bits 6 and 7 are assumed to be zeros because they do not enter into the makeup of any operation codes.

2. Same os BSC with Bit 9 set to one,
3. An operand should not be specified.
4, When branch is short (Blank or X format), this operation code is assembled o5 an MDX (700). If the branch is long (L or | format),
this operation code is assembled as o BSC with Bt 5 set o one (4C0).
5. This instruction is automatically assembled as a long instruction (L is not required in the format field). Note that an attempt to use
indirect addressing will result in a syntax error, Indexing is not permitted with this extended operation code.
6. Extended conditional branch operation codes are assembled automatically as long instructions. (L is not required in the format field).
Note that the proper condition code bits are preset, and further condition bits may not be specified following the operand.
Hexadecimal Characters
st 2nd 3rd
el teraleegld
0 1 2 3 456 7 8 910111213 14 15
OP Code |)
Format (F)—

Index Tag bits (T)

1A bit, part of
displacement, or extension
of OP code

Part of displacement,
or extension of OP code

Condition indicators,
or part of displ t

14

ADDITIONAL MONITOR SYSTEM MNEMONIFS (DM 2)

Several new mnemonic operation codes which are
equivalent to a Branch or Skip on Condition (BSC) may
be used with the DM2 System. The operation code
to be used for a specific job depends on the format
and condition code required.

A new mnemonic MDM has been 1ntroduced that
may be used in place of an unindexed MDX long.
XCH may be used in place of RTE 16.

Examples of the additional DM2 System
mnemonics are shown in Table 2, The mnemonics
are listed below,

Skip on Condition (SKP). The condition codes (+ -
Z, E, O, and C) are specified as with a short BSC
1nstruct10n. This instruction must not be indexed.

Branch Unconditionally (B). If the Format field con-
tains an L or I, the BSC operation code is used with
bit 5 set to one. Condition codes are not allowed
after the address expression in the Operand field.

If the Format field is left blank or contains an X,

the MDX operation code is used, and the expression
in the Operand field is used to form the displacement.

Branch Accumulator Positive (BP). Condition codes
for accumulator zero (Z) and accumulator negatlve
(-) are set to one.

Branch Accumulator Not Positive (BNP). Condition
code for accumulator positive (+) is set to oné.

Branch Accumulator Negative (BN), Condition codes
for accumulator zero (Z) and accumulator positive
(+) are set to one.

Branch Accumulator Not Negative (BNN). Condition
code for accumulator negative (-) is set to one.

Branch Accumulator Zero (BZ). Condition codes for
accumulator positive (+) and accumulator negative
(-) are set to one.

Branch Accumulator Not Zero (BNZ). Condition code

for accumulator zero (Z) is set to one.

Branch on Carry (BC). Condition code for Carry

indicator off (C) is set to one,

Branch on Overflow (BO). Condition code for Over-

flow indicator off (O) is set to one.

Branch Accumulator Odd (BOD). Condition code for
accumulator even (E) is set to one.

NOTE: Condition codes may not be used with any of
the above instructions, except SKP, since the condi-
tion code is implicit in the extended mnemonic. The
conditional branch instructions (all except SKP and
B) are always assembled as long instructions; thus,
the Format field need not contain an L, although the
instruction is not classed as an error if L is speci-
fied. Indirect addressing may be specified.

Modify Memory (MDM). Contents of the location

specified by the first operand is incremented or
decremented by the value of the second operand. The
second operand must be in the range -128 to +127.

NOTE: This instruction is always assembled as a
long instruction; thus, the Format field need not
contain an L, although the instruction is not classed
as an error if L is specified. Indexing and indirect
addressing must not be specified. If the operand
becomes zero or changes sign, the next word in the
program will be skipped.

Exchange Accumulator and Extension (XCH). Ex-
change is identical to a RTE of 16. No operand is
specified with this instruction.

Machine-Instruction Statements 15

Table 2. Examples of New (Extended) Machine Instruction Mnemonics (DM2 only)

New Instruction Statements Equivalent Statements Operations Performed
33 fii 35 “© 33 i as 40
TR L -h NN DS Skip if accumulator is positive

'b:;_x_,__.__;_l_.__l_ Skip if accumulator is non-zero

| 2 JRTEN BR Skip if accumulator is zero

O, L L Skip if Overflow indicator is off

e e

TR BN Skip if Carry indicator is off

§ TN WS B T N T W W |

Skip if accumulator is non-zero or if Carry indicator is off

E

LA
T

S
}_

| U U WU U N B |

X LT . 1 .. . Branch unconditionally to EXIT, where EXIT must be within normal
displacement range.

E
t

Branch unconditionally to ALPH
| NN WD A WU Wy I S W

EA 4= Branch to BETA if accumulator is zero

3

T

N

B\E, A_,_,Z.-h L Branch to BETA if accumulator is negative

Branch indirectly to BETA (i.e., the address specified by contents of
BETA) if accumulator is non-zero

NA, Bt Branch to RTNA if accumulator is negative

Loy
NS Branch to RTNB if accumulator is non-negative (zero or pesitive)
| N O SO U TN O SO B §
L BED, - Branch to SUB@ if accumulator is positive

Branch indirectly to SUB$ (i .e. , the address specified by the contents of
SUB$) if accumulator is positive

Branch to SUB¥ if accumulator is non-positive (zero or negative)

Branch to ENTR+1 if Carry indicator is on

Branch indirectly to oddress specified by contents of index register 1
if Carry indicator is on

Branch to address specified by contents of index register 2 plus 5 if
Overflow indicator is on

Branch to $AFE if accumulator is odd

Increment contents of core location SAVA by 5

Increment contents of core location /1D6A by 100 decimal

Decrement contents of core location A by 12

Exchange the accumulator and extension (rotate right 16)

16

Just as machine instructions are requests to the
computer to perform a sequence of operations during
program execution, assembler instructions are
requests to the Assembler to perform certain opera-
tions during the assembly. In contrast to machine-
instruction statements, assembler-instruction state-
ments do not always cause machine instructions to
be included in the assembled program. Some, such
as BSS and BES, generate no instructions but do
cause storage areas to be set aside for constants and
other data. Others (e.g., EQU) are effective only
during the assembly; they may or may not generate
something in the assembled program, If nothing is
generated, the Location Assignment Counter is not
affected.

The following is a list of all assembler statements

permitted by the IBM 1130 Card/Paper Tape Assembler.

These statements are also valid for the Monitor
Assembler., Additional statements are provided for
the Monitor Assembler and are listed in the section
Monitor Assembler Statements.

Program Control

ABS = Absolute Assembly
LIBR - Transfer Vector Subroutine
SPR = Standard Precision
EPR - Extended Precision
ORG - Define Origin
END - End of Source Program
Data Definition
DC ~ Define Constant
DEC - Decimal Data
XFLC - Extended Floating Constant
EBC - Extended Binary Coded Information
Storage Allocation
BSS - Block Started by Symbol
BES - Block Ended by Symbol
Symbol Definition
EQU - Equate Symbol
Program Linking
ENT - Define Subroutine Entry Point
1SS ~ Define Interrupt Service Entry Point
ILs - Define Interrupt Level Subroutine
CALL = Call Subroutine (2-word call)
LIBF - Call Subroutine (1-word call)

PROGRAM CONTROL STATEMENTS

Program control statements are used to set the Lo-
cation Assignment Counter to a specific value, to
define the end of a source program, or to specify
whether a particular program is to be assembled as
absolute or relocatable. None of these assembler
statements generate machine-language instructions
or constants in the object program.

ASSEMBLER INSTRUCTIONS

ABS — Assemble Absolute

An ABS statement is used to specify that a main pro-
gram is to be assembled as an absolute program,

An absolute program is one in which the core loca-
tions used at execute time are the same as those
specified by the programmer in the source program.
The ABS statement is punched as shown below and

is then used as the first statement of a source pro-
gram.

40 45

U W W VOO TN Y TR W W W S T

| IR S U SN N N U U W SO W N |

If the first (non-comment) statement of a source pro-
gram is not an ABS statement, the program will be
assembled as relocatable. In an absolute assembly
headed by an ABS statement, all symbols and aster-
isk values are defined as absolute quantities; there-
fore, no relocation errors are possible, The
significance of relocatable and absolute assemblies
is explained in the following paragraphs.

Relocatable Assembly

Some programs assembled by the IBM 1130 Assem-
bler are absolute; that is, the locations of assembled
instructions are known during the assembly and the lo~
cation on the listing is the actual location where a
particular word is loaded. However, subroutines
used by an absolute program must be in such a form
that they may be loaded at various locations; other-
wise, it would be necessary for the user to reassem-
ble the subroutines each time he assembled a main
program that required them, Therefore, all subrou-
tines must be and main programs may be assembled
relocatable.

Every relocatable program or subroutine pro-
duced by the IBM 1130 Assembler is assembled as
though it begins at location zero. Since a job to be
executed may contain several subroutines, it is
obvious that they cannot all be loaded into locations
starting with location zero. In fact, no relocatable
program is ever loaded at location zero; instead,
each program is relocated. The relocatable main
program is loaded into the first available location.
Subroutines are then loaded into successively higher
locations of core storage, each beginning with the

Assembler Instructions 17

next even location after the last core storage
location used by the preceding subroutine, When
a particular program has been loaded, the address
of the first word is called the load address for
that program.

Thus, the address in core storage actually oc-
cupied by an instruction of the program is the address
assigned to that instruction during assembly, plus
the load address of that program. To keep the pro-
gram self-consistent, the load address must be add-
ed to the address of many (but not all) 2-word in-
structions, and those constants whose values are
relocatable.

This process of conditionally adding the load
address is performed by the loading program before
execution and is called relocation. In relocating in-
structions, the loading program is guided by relo-
cation indicator bits which are a part of the object
program.

Absolute Assembly

The programmer uses the ORG assembler statement
in his source program to specify the locations into
which the object program resulting from an
absolute assembly is loaded. Subroutines are
loaded into successively higher even-core locations
following the end of the main program.

Only main programs may be assembled absolute;
subroutines must be assembled relocatable.

LIBR — Transfer Vector Subroutine

An LIBR statement is used as the first statement of

a subroutine to specify that the subroutine is to be
called by LIBF statements only (see Program-
Linking Statements). The absence of an LIBR state-
ment specifies that the subroutine is to be called by
CALL statements only. LIBR statements are for sub-
routines only, as ABS statements are for main pro-
grams only. An LIBR statement needs no operands,

SPR — Standard Precision, EPR — Extended
Precision

The SPR or EPR statement specifies that the pro-
gram (main or subroutine) in which it appears uses
standard precision or extended precision, respec-
tively, for arithmetic operations. If these state-
ments are included in the user's programs, the
loader ensures that main programs and subroutines
always match with regard to precision. Their use
is optional, however.

18

If used, the SPR or EPR statement must follow
the ABS or LIBR statement. If no ABS or LIBR
statement is used, the SPR or EPR statement is the
first statement in the program.

ORG — Define Origin

This assembler instruction is used to set the Location
Assignment Counter (i.e., the next location to be
assigned) to any desired value. In this way the pro-
grammer is able to control the assignment of storage
to instructions, constants, and data. I a Define
Origin statement is not the first entry in an absolute
source program, the processor begins the assign-
ment of storage at a location compatible with the size
of the applicable loader (Card/Paper Tape Assem-
bler) or the version of disk I/0 required (Disk
Monitor Assembler). A typical Define Origin state-
ment is shown below.

The label, if used, is assigned a value equal to the
value of the Location Assignment Counter at the time
the statement is encountered in the source program.
(This assignment is made before the counter is
modified.) If any symbols are used in the expression,
they must have been previously defined. In a relo-
catable assembly, an absolute expression in the oper-
and field is considered a relocation error and the
statement is ignored.

Some examples of Define Origin statements are
given below:

Lobel Operation Ope:

21 35 40 A& 50

xlqlzl VI W | U T T S W |

T T ') N S S S U | T T U Y T |

S, T,ART] |0,R6, L1

I T 'Y P .| T T T W W W]
T,ARTL |0RG +5,9

MU S FE) U W T T N T Y S W N N T A T W |

If the label XYZ has been previously defined as
10001 the first entry directs the assembler to begin
the assignment of succeeding entries at location 1000.
The second entry directs the Assembler to begin the
assignment of succeeding entries 50 core locations
beyond the location that has been assigned to the
symbol XYZ. The third entry directs the Assembler
to begin the assignment of succeeding entries at the

address specified by the current address of the Lo-
cation Assignment Counter plus 50.

END — End of Source Program

An END statement is the last statement of a source
program; it indicates to the assembler that all state-
ments of the source program have been processed.
An END statement is also used to define the execution
address of the main program. To do this, the END
statement requires an operand that represents the
starting address of the program. At the completion
of loading, execution begins at the address specified
by the operand. For subroutines, all entry points
are specified by ENT statements (described later);
therefore, the operand of the END statement for a
subroutine is blank.

The following statements illustrate both types of
END statements.

DATA DEFINITION STATEMENTS

Data Definition statements are used to enter data con-
stants into storage. The statements can be named by
symbols so that other program statements can refer
to the fields generated. Any type of data definition
statement can be used in standard or extended pre-
cision program.

DC — Define Constant

The Define Constant statement is for generating con-
stant data in main storage. Data can be specified as
characters, hexadecimal numbers, decimal numbers,
storage addresses,or any valid expression. One 16-
bit word is generated for each DC statement. The
format of this statement is shown below:

If a label is used, the address assigned to it is the
location of the generated data word and is equal to

the current value of the Location Assignment Counter,
Some examples of DC statements follow:

¢ SN RO Y S O OO RSN DU S U I WUE SO O S o |

DEC — Decimal Data

The Decimal Data statement is used to enter binary
data, expressed in decimal form, into a program.
One DEC statement generates two 16-bit words of
binary information. The format of the DEC statement
is as follows:

op sconds & Rer

&e cllﬁm /, .Dat.g .Ite.'g.u

||||Ill|||lllllllL4L

If a label is used, its value is equal to the current
value of the Location Assignment Counter if the cur-
rent value is even; if the current value is odd, the
label will be equal to the current value plus one. The
label is assigned to the leftmost word of the generated
constant, The types of data permitted in the operand
field are described in the paragraphs entitled Decimal
Data Items. An example of a DEC statement follows:

AR WU S S WO WO WU W WO I W W

Lu;nljllijALl._;__

If the value of the Location Assignment Counter is
1000 when the DEC statement is encountered, the two
words in storage look like this:

Location Contents in Hexadecimal Form
01000 0000
01001 0013

Decimal Data Items
A decimal data item is used to specify, in decimal

form, two or three words of data to be converted into
binary form. Decimal data items are used in the

Assembler Instructions 19

40 45 e
F.F.F, HJ_L__LLCJONSJ Lo
SN Y W Y TS VO NN T NN L OV IO JOOUNT R N OO VO

~13.85, \DEC, MG ER 4 1.

1B, CHAR (COMST 1 s a v,
S T N N N NN SN G SO S S [G S P

AL P H ARE ADDIR CO0N

| SN S T U O YU W NN TN TN SO N B N

operand field of DEC assembler statements. Three
types of decimal~data items are permitted: decimal
integers, real numbers, and fixed-point numbers.
A real decimal-data item can also be used as the
operand of an XFLC statement that generates a
3-word constant.

Decimal Integers. A decimal integer is composed of
a series of numeric digits with or without a preceding
plus or minus sign. The allowable range of decimal
integers is —-(231-1) to 231-1,

Examples
Decimal Integer Stored As
50 000000321 ¢
1535 O00005FF 16
-3729 FFFFFL6F) ¢

(2's complement)

Real Numbers. A real number has two components:
a mantissa and an exponent.

e Mantissa — The mantissa is a signed or unsigned
decimal number, which can be written with or
without a decimal point. The decimal point can
appear at the beginning, at the end, or within
the decimal number. If the exponent (see below)
is present, the decimal point can be omitted,
in which case it is assumed to be located at the
right-hand end of the decimal number.

e Exponent — The exponent consists of the letter
E,followed by a signed or unsigned decimal in-
teger. The exponent part can be omitted if the
mantissa contains a decimal point. If used,
it must follow the mantissa.

A real number is converted to a normalized, real
binary number, The exponent part, if present,
specifies a power of ten by which the mantissa is
multiplied during conversion. For example, all of
the following real numbers are equivalent and will be
converted to the same real binary number.

4.500
45.00E-1
4500E-3
.4500E1

In standard precision, the above real numbers are
converted and stored in two consecutive storage
locations as follows:

20

Word 1 Word 2
4800 0083

The DEC assembler instruction stores real
numbers in the standard precision real number
format described in the system subroutine library
manual.

Fixed Point Numbers. A fixed-point number can
have up to three components: a mantissa, an exponent,
and a binary-point identifier.

[Mantissa — The mantissa is the same as describ-
ed for real numbers.

e Exponent — The exponent is the same as describ-
ed for real numbers.

e Binary-Point Identifier — This identifier consists
of the letter B, followed by a signed or unsigned
decimal integer. The binary-point identifier
must be present in a fixed-point number and
must come after the mantissa. If the number has
an exponent, the binary point identifier may
precede or follow the exponent.

A fixed-point number is converted to a fixed-
point binary number that contains an understood binary
point. The purpose of the binary-point identifier of
the number is to specify the location of this under-
stood binary point within the word. The nuraber that
follows the letter B specifies the number of binary
places in the word to the left of the binary point (that
is, the number of integral places in the word). The
sign bit is not counted. Thus, a binary-point identi-
fier of zero specifies a 31-bit binary fracticn, B2
specifies two integral places and 29 fractional places.
B31 specifies a binary integer. B-2 specifies a binary
point located two places to the left of the leftmost bit
of the word; that is, the word would contain the low-
order 31 bits of binary fraction. As with real
numbers, the exponent, if present, specifies a
power of ten by which the mantissa is multiplied during
conversion.

A fixed-point number preceded by a minus sign
is stored in 2's complement form.,

The following fixed-point numbers all specify the
same configuration of bits, but not all of them specify
the same location for the understood binary point:

22.5B5
11.25B4
1125B4E-2

1125E-2B4
9B7E1

All of the above fixed-point numbers are con-
verted to the same binary configuration, whose
hexadecimal representation is:

Word 1 Word 2
5A00 0000

XFLC — Extended Real Constant

The XFLC assembler instruction is used to introduce
into a program an extended precision real constant,
expressed in three consecutive data words. When
assembled, this instruction produces a format
identical to the extended range real format describ~
ed in the system subroutine library manual,
The format of the XFLC instruction is shown
below:

Operands & Rer

The label is optional; if it is used, it is assigned to
the location of the leftmost word generated.

Some examples of the XFLC instruction are
shown below:

Opesrands & Res
45 50

T
33§ as

10,..531,25

I R T U T

¢|'|5|3|1|2|51

1
 G.1262 ...

[T
| I 11
i1
i1 1
3 1 11
L0

The data (in hexadecimal form) generated by each of
these examples is

1. Word 1 Word 2 Word 3
0080 4400 0000

2, Word 1 Word 2 Word 3
0080 BC00 0000

3. Word 1 Word 2 Word 3
008A 4000 0000

EBC — Extended Binary Coded Information

The EBC statement is used to generate data words,
each consisting of two 8-bit characters in the Extend-
ed BCD Interchange Code (see Appendix A). Up to 18
sixteen-bit words can be generated with one EBC
statement. The format of the statement is shown
below:

40 A5

DAT ALy 1 4

& S TN TN AU NN U N NN NN WO NN O N U

If a label is present, it is assigned to the location of
the leftmost word generated. The operand field con-
tains the alphameric data to be represented in stor-
age. This data must begin and end with a period.
The data can be any valid character in the Extended
BCD Interchange Code, including the period.

Examples

| I TN S S OO O N T U T T S I

IclolMSITIAIMTl'I I N I |

) N W S T W Y N TS T VR N I D

The first example generates three words of data, with
the location of the label CONST assigned to the left-
most location of the first word generated.

Word 1 Word 2 Word 3
C5D9 D9D6 D940

CONST

Note that if the constant has an odd number of char-
acters, as in the above example, the last word of
data ends with the 8-bit equivalent of blank.

The second example generates four words of
data:

Word 1 Word 2 Word 3 Word 4
C3D6 D5E2 E3C1 D5E3

NOTE: A period may not appear in the remarks
field of an EBC instruction.

Assembler Instructions 21

STORAGE ALLOCATION STATEMENTS

Storage allocation statements are used to reserve
blocks of storage for data or work areas. Two such
statements are available with the IBM 1130 Assem-
bler: Block Started by Symbol and Block Ended by
Symbol. ‘

BSS — Block Started by Symbol

The BSS assembler instruction is used to reserve an
area of core storage, within a program, for data
storage or for working space. The format of the
BSS instruction follows:

Operards & Rer
40 3 50

S TN TS W IS OO WA U U SO SN TN U T B N T O

The expression specifies the number of words to be
reserved; the label, if specified, refers to the left-
most word reserved. The location of the block of
storage within the object program is determined by
the location of the BSS statement within the source
program.

If the character E is punched in column 32, the
assembler assigns the leftmost word of the reserved
location to the next available even location. I a
blank or any character other than E appears in
column 32, the assembler assigns the leftmost word
of the reserved area to the next available location
regardless of whether that location is even or odd.
This feature is useful when defining areas for use
with double precision instructions.

A BSS statement with an E format and an oper-
and value of zero causes the Location Assignment
Counter to be made even (if necessary) before the
next instruction is assembled.

A BSS instruction causes an area to be reserved,
not cleared; therefore, it should not be assumed
that an area reserved by a BSS instruction contains
zeros,

Any symbols in the operand field of a BSS assem-
bler instruction must have been previously defined.
The expression in the operand field must be an
absolute expression.,

In the following example, the symbol AREA is
equivalent to 3000; the next location assignedis
3028.

22

135 A0 45
-’f‘i_3|o‘010A PEED B S R R S|

208, a4 a

3211

4 1N TS WO TN WA YT WS W WY N MO W'Y

BES — Block Ended by Symbol

The BES instruction is identical to the BSS instruc-
tion except that the address assigned to the label is
the rightmost word in the area plus 1, i.e., the
next location available for assignment.

In the previous example, the symbol AREA is
equivalent to 3028.

SYMBOL DEFINITION STATEMENT

One symbol definition statement (EQU) is available in
the IBM 1130 Assembler language.

EQU — Equate Symbol

The EQU statement is used to assign to a syrbol a
value other than the value of the Location Assignment
Counter at the time the symbol is encountered. The
format of the EQU statement is

Operands & Re:
40 45 30

| An Expression,

TINOUN N T W W T T T N W W T Y S M 1

The symbol in the label field is made equivalent to
the value of the expression. The expression may be
absolute or relocatable, All symbols appearing in
this expression must have appeared as a label in a
previous statement. If an asterisk (*) is used as the
expression, the value assigned to it is the next loca-
tion to be assigned by the assembler.

Examples
Lobel
21 23 40 4
J F IS W N T W VRN T U W I W1
:;:'. S O VY T U W WO T W U N G N 1
tooe | lequ [T Imamers, 0\,
e . E.. U ST S U T ST S ST S N S S

In the first example, the symbol NAME is assigned a
value of 26. In the second example, the symbol
LOOP is assigned a value of 27.

LINKING STATEMENTS
Linking statements are used to establish communi-

cation between a main program and its subroutines
or between a program and the ‘Monitor system.

ENT - Define Subroutine Entry Point

The ENT statement should be used to define the
entry point(s) in all subroutines except ISS and ILS.
Up to fourteen entry points (ten with the Card/Paper
Tape Assembler) may be defined for each subroutine
(this would require an equal amount of ENT state~
ments). The format of the ENT statement is shown
below.

NAME is a symbol that identifies an entry point for
the associated subroutine. This symbol must be
relocatable. All ENT statements for a given sub-
routine must be together and must precede all state-
ments except LIBR, SPR, EPR, and comments
statements. ENT, ISS, or ILS statements (see
below) may not be used in the same subroutine.

ISS — Define Interrupt Service Entry Point

IBM provides interrupt service subroutines (ISS) for
all devices; however, the user is given the option of

replacing or adding to these subroutines with his own.

The ISS statement is used to define an entry point in
an interrupt service subroutine and to establish
interrupt linkages to the subroutine during loading,.
Only one entry point may be defined for each sub-
routine. The format of the ISS statement is shown
below.

Label

lElllllllLlll
l.|||||||||||

Word 30 of the header record can be set for
identification purposes as shown below., Word 30 is
not used by any of the 1130 programs.

Label ISS Header Word 30
blank blank

1130 1 '

1800 2

NAME is as described for the ENT statement and
NN (the ISS number) is a decimal number from 01 to
20 used during loading to establish the linkage from
the appropriate point in the corresponding IL.S. The
numbers and associated devices used in the sub-
routines provided by IBM are listed below.

* Card/Paper Tape System and DM1 System

Number* Device or Function
01 1442 Card Read Punch
02 Input Keyboard/Console Printer
~083 1134 Paper Tape Reader;.
1055 Paper Tape Punch
05 Single Disk Storage
06 1132 Printer
07 1627 Plotter
08 Synchronous Communications Adapter

*Numbers 09 through 20 are assignable by the user.

DM2 System
@ Device or Function
01 1442 Card Read Punch;
1442 Ca
02 Input Keyboard/Console Printer
=03 " 1134 Paper Tape Reader;
1055 -Paper.Tape Punch
04 . . 2501 Card Reader
05 Single Disk Storage
2310 Disk Storage
06 1132 Printer
07 1627 Plotter
08 Synchronous Communications
Adaptor
09 1403 Printer
10 1231 Optical Mark Page Reader

*Numbers 11 through 20 are assignable by the user.

NOTE: User-assigned ISS numbers should start at
twenty and proceed backwards in order to avoid con-
flict with IBM-assigned ISS numbers.

Assembler Instructions 23

L is a one-digit number required by the Card/Paper
Tape Assembler to indicate the interrupt level(s)
associated with the subroutine. The level numbers
(0-5) can be listed in any order in columns 45, 50,
55, 60, 65, and 70 with the first appearing in 45,
the second in 50, etc.

L is not used with the monitor system. Instead,
LEVEL control cards are used with the subroutine
being assembled, one card per interrupt level re-
quired (see the monitor system operator ‘s manual),

An ISS statement must pr_ecede all statements
except LIBR, SPR, EPR and comments statements.

Procedures for writing 1SSs are provided in the
subroutine library manual for the Card/Paper Tape
and DM2 sys tems and in the operators manual for
the DM 2 system.

ILS — Define Interrupt Level Subroutine

IBM provides interrupt level subroutines for the
various I/O devices and their associated interrupt
levels; however, the user may replace or add to
these subroutines with his own. The ILS statement
is used to define an interrupt level subroutine and to
associate the subroutine with a specific interrupt
level. The format of the ILS statement is shown
below.

Label

NN is the interrupt level number (00-05) associated
with the interrupt level subroutine and is used during
loading. The devices associated with each interrupt
level are shown below:

Interrupt Level Device(s)
00 1442 Card Read Punch
(1442 Card Punch)
01 1132 Printer, Synchronous
Communications Adaptor
02 Single Disk Storage (2310

Disk Storage)

24

Interrupt Level Device(s)
03 1627 Plotter
04 Keyboard/Console Printer,

1442 Card Read Punch,
1134 Paper Tape Reader,
1055 Paper Tape Punch
(2501 Card Reader,
1403 Printer, 1231 Optical
Mark Page Reader)

05 PROGRAM STOP Key or
Interrupt Run Mode.

NOTES: 1. The devices listed in parentheses are
used with the DM2 system only.
2. An ILS statement must precede all statements
except SPR, EPR, and comments statements.
Procedures for writing interrupt level sub-
routines are provided in the subroutine library
manual for the Card/Paper Tape and DM1 systems
and in the operator s manual for the DM2 gystem.

CALL - Call Direct Reference Subroutine

A CALL statement is used to call some of the sub-
routines in the IBM Subroutine Library or any user-
written subroutine written for the CALL statement.
During execution, this type of call takes the form
of a long (two-word) BSI (direct for card/paper
tape system, indirect for Monitor system), to the
entry point named in the CALL and the correspond-
ing ENT or ISS statement.

When BSI is executed, the location of the first
word following it is placed in the entry point loca-
tion, and control is transferred to the first word
following the entry point. The format of the CALL
statement is:

Label

If used, the label is assigned to the current
value of the Location Assignment Counter, which
is the same as the leftmost word of the generated

BSI instruction. The name of the called subroutine
is assembled into the object program, together with
a unique code identifying the CALL. This code is
used during loading to generate the BSI to this sub-
routine,

LIBF — Call TV (Transfer Vector) Reference
Subroutine

An LIBF statement is used to call any of the sub-
routines in the Subroutine Library (or any user-
written subroutine) written to utilize the Transfer
Vector (see the following section). The format
of the LIBF statement is:

Label
21 25

LABEL

i Bl i

If used, the label is assigned to the current value of
the Location Assignment Counter when the LIBF
statement is encountered. The name of the called
subroutine is assembled into the object program,
together with a unique code identifying the call as an
LIBF call. This code is used during loading to
generate the linkage to the subroutine. During exe-
cution, the TV subroutine uses Index Register 3.
Therefore, if Index Register 3 is used by any other
instruction in the user's program, it must be saved
and restored before it is needed by any TV subroutine
calls.

LIBF Subroutine Transfer Vector

To fully understand the use of the LIBF statement,
the user should be familiar with the makeup of the
transfer vector, which allows main programs to
communicate with relocatable subroutines (and re-
locatable subroutines to communicate with each
other) without knowing where in core storage the
subroutines are loaded. The Transfer Vector con-
sists of three 16-bit words for each subroutine entry

point referred to by an LIBF statement. The contents
of the three words vary as the subroutine goes through

the three phases of being called, loaded, and execut-
ed. The following paragraphs describe these three
phases, and illustrate the contents of the transfer
vector for each phase,

Recognizing the Subroutine Call. All subroutines

that utilize the Transfer Vector are called via
LIBF statements. These statements take the fol-
lowing general form:

LIBF NAME

DC Parameter
DC Parameter
etc.

When an LIBF call is recognized during the loading
of an object program, the loader begins to build the
transfer vector by saving the name of the called
subroutine,

T
Name of Subroutine Zeros
]
1

Subsequént LIBF statements produce additional
records for the Transfer Vector, each containing a
unique subroutine name. Calls to a subroutine pre-
viously listed in the transfer vector do not produce
a new record. Ultimately each causes a short,
indexed BSI instruction pointing to the first word of
the associated Transfer Vector entry. This in-
struction, generated during loading, uses Index
Register 3 and a computed displacement to refer to
the proper Transfer Vector entry.

Original Statement

40 45
IAIMIELIIIIII.[IJ

T T N WO Y WS U W T W N N G

s

When this BSI instruction is encountered during ex~
ecution of the main program, it causes a branch to
the associated Transfer Vector entry and from
there to the entry point of the subroutine. A BSI
statement is generated for each LIBT statement
encountered,

NOTE: Index Register 3 is reserved for LIBF sub-
routine calls. Therefore, if any instructions are to
use Index Register 3, it should be restored prior

to any LIBF subroutine call.

Assembler Instructions 25

MONITOR ASSEMBLER STATEMENTS

In addition to the basic assembler statements, the
IBM 1130 Monitor Assembler is provided with the
following capabilities.

Disk Data Organization
DSA -~ Define Sector Address
FILE - Define Disk File (DM2 only)

Data Definition
DMES - Define Mesgsage (DM 2 onl

DN - Define Name (DM2 only) .

Linking
LINK - Load and Execute Another Program
EXIT - Return Control to Supervisor

«DUMP - Dump and Terminate (DM 2 only)
PDMP - Dump ana Continue (DM2 only)

S

List Control
HDNG - Print Headmg on Each Page
LIST -

DISK DATA ORGANIZATION STATEMENTS

DSA - Define Sector Address

The DSA statement allows the programmer to refer
symbolically to a disk-stored data file or program
stored in Disk Core Image format (DCI) without
knowing the specific disk location of the data or
program. The disk location of data files and pro-
grams can vary on disk because of deletions, but the
DSA statement allows easy reference through the
use of the symbolic name of the data file or prograra.
The format of the DSA statement is:

Lobel Operonds & Ret

21 40 5 50
.A.ME, IS N TV W VA U U SR W VU S I S N
T - | W WU SR NS U WY THDY WY S NS S T WU WU N S S

26

The label is defined as the current value of the Loca-
tion Assignment Counter when the DSA statement is
encountered. The symbol in the operand field must
be the name of a data file or DCI program that is on
disk both when the assembly is made and during
execution,

The following statements illustrate the use of
the DSA statement to read one sector of data. For
a description of the disk calling sequences, see the
system subroutines library manual,

Operands & Ren

50
| TN TS S R S S B |
O WO T S T N S S
WY DU W T B OO Y T
N TN O S W S S
TR O U SR R B W S
T T W O N Y W S
| I T T I B |
VR S W T B I N WY
U T T S WY W W W |
| T TN T S WS O | 1
R O WO D N W T §
) U T T WY B N T T

The Assembler reserves three words in the object
program for each DSA statement. These words are
filled in by the Core Load Builder. For a data file
they will contain;:

Word 1 — Length (in words)
Word 2 — Sector Address, including the drive code
Word 3 — Sector count of the file

For a program they will contain:

Word 1 — Length (in words)
Word 2 — Sector Address, including the drive code
Word 3 — Execution Address of the Program

If the area corresponding to the DSA statement
is used as the I/O area for a disk read operation,
the execution address of the program must be saved
prior to the disk call to bring in the program. (The
contents of the third word are destroyed by the
incoming data).

The following statements illustrate the use of
the DSA statement to supply the disk address of a
one-sector program,

Operands & Rer
40 45 50

| SRR N W |

[1.0AR+.2,
C BRNCH 1
L D15k
/1888

ERROR,
lI|S|K,1|
/0004,

L
| S S T B
1
'

1
L
L
1
L
L
L
L
L
L
1
i
L
[
1
i
L
1
1
1

S R R N i = R S " o T A FUO W S S S SR

]
1
P4
|
|
|
Lot
11
T |
FE |
|
i |
L1
Ll
[
Lt
L1
|
L1
|
1

L L
I 1
L i
2 1
L L
L 1
1 1
It 1
! i
L L
L L
1 L
I I
L 1
I L
1 I
1 1
1 1
) 1
i 1
L 1

F R F R B RERE R REREEEREEERERFEERELR
R B EREERE R RLELELL R EREREEEERE

L
L
1
I

1
1
i
L
L
L
L
L
(
1
L
L
L

The following statements can be added to the
previously shown program call to call a second pro-
gram and have it loaded to the same area as the
first.

Operands & Rer
40 45 50

- 1,04R+4, ,
L4 0R2+.2,
L IBRNCH+ L,

READ | ,
p.G,R,MZ, |

Lt
T
.l
[
L
L
L
Lt
1 1
Lo
L1

F F F R R E OB

L
i
1
1
1
1
1
1
1
1
t

F F F F KR E R LEL
-+ F F EE R E R KRR
e U T "l T T

The execution address of the second program can be
different from the first, but the programs must be
executable from the same locations. This requires
a certain amount of planning before assembling the
"overlay' programs.

Programming Considerations

The following considerations must be observed by
the user who wishes to use the DSA statement to
supply the disk address for programs.

e The called programs must be in DCI format.

e If the calling program is converted to DCI format,
the data for the DSA statement is filled in during
the core image conversion and will be fixed for all
subsequent executions. Thus, if the referenced
program or data files are subsequently moved,
incorrect results will occur., Data files refer-
enced by a Core Image program should be stored
in the Fixed area.

e Any loading functions, such as the setting of Index
Register 3, will have to be supplied by the calling
program,

FILE - Define Disk Filf (DM 2)

The FILE statement specifies to the Assembler the
file identification, the number of file records in a
file, and the size of each record in a disk data file
that will be used with a particular mainline and its
associated subprograms. The Assembler FILE
statement allows the Assembler language user to
defile files so that they are similar to FORTRAN
defined files.

As a core load is constructed by the Core Load
Builder, the defined files are equated to data files
already assigned in the User/Fixed Area or to files
in Working Storage.

The FILE statement must not appear in a sub-
program; it is permitted only in a relocatable main-
line program., Therefore, all subprograms used
by the mainline must use the defined files of the
mainline. The format of the FILE statement is as
follows:

Label Operands & Rer

40 45 50

Ysyv UV T S S S S I S

S AR NN NS S S N WA G Y R Y S

where
1 is any valid label (optional),

a is the file identification number, a decimal
integer in the range 1-32767,

m is a decimal integer that defines the number
of records in the file,

n is a decimal integer in the range 1-320 that de-

fines the length (in words) of the longest record
in the file,

Monitor Assembler Statements 27

U is a required constant, specifying that the file
must be read/written with no data conversion,

v is the associated variable, the label of a core
location (variable) defined elsewhere in the pro-
gram,.

FILE statements must precede all other state-
ments except HDNG, EPR, SPR, EJCT, SPAC, and
LIST in the source program. The label, if used, is
assigned the location of the first word of the seven
words generated (see list below). The Format and
Tag fields are not used and should be left blank,

Each FILE statement causes the Location Assign-
ment Counter to be incremented by seven. The data
stored in these seven words, which constitute a
DEFINE FILE Table entry in the object program is
as follows:

Word Contents
1 a, the file identification number
2 m, the number of records per file
3 n, the record length (in words)
4 The address of the associated variable, v.
5 Zero. This word is filled by the Core

Load Builder with the sector address of the
data file. This address is relative to the
address of Working Storage (with bit zero

set to one) for Working Storage files and is
absolute, including the drive code, for User/
Fixed area files.

6 r, the number of records per sector. The
number, computed by the Assembler, is
the quotient of

320

n

(remainder ignored)

7 b, the number of disk blocks per file.
This number, computed by the Assembler,
is the quotient of

16(m
T

28

DATA DEFINITION STATEMENTS

DMES - Define Message (DM2) \/’LCM/(j

The DMES statement is used to store a message with-
in a program in a form that is acceptable tc the
printer output subroutines. The format of the DMES
statement follows:

Operands & Rer
4 4 50

where
1 is any valid label (optional),
p is the printer type code,

m is any string of valid message and control
characters.

If a label is present, it is assigned to the location
of the first word generated, The Tag field (column
33) is used to specify the printer type code:

Tag , Printer
Jboro Console Printer
1 1403 Printer
2 1132 Printer

If the Tag field (printer type code) contains a char-
acter other than blank, zero, one, or two, an error
results and the message is stored two EBCDIC char-
acters per word.

The Operand field contains the control and mess -
age characters. Remarks are permitted only after
an 'E or 'b control character.

The output generated by one DMES statement can-
not exceed 60 words (120 characters). If an odd
number of characters is generated, the last word is
filled in with a blank, except when the statement
ends with 'b. In this case, the first character of the
next DMES statement is used to fill out the word.

Control characters are used to specify certain
printer operations and to define message parameters.
Each control character is actually two characters,
the first of which is always an apostrophe. The apos-
trophe (5-8 punch in IBM Card Code) is a control

delimiter and therefore is not included in the char-
acter count. The control characters and their func-
tions or meanings are as follows:

Control

Character Function or Meaning
'X Blank (or space)
'T Tabulate
'D Backspace
'B Print black
‘A Print red
'S Space (or blank)
'R Carriage return
'L Line feed
'F Repeat following character
'E End of message
b (b=blank) continues text with next DMES

statement

All the above characters can be used when the printer
is the Console Printer. Only 'E, 'F, 'S, 'X and 'b
are valid control characters when the 1132 or 1403
Printer is specified; any other control characters
are considered as errors,

The characters 'X and 'S are interchangeable. A
blank character is generated for either 'X or 'S if the
1132 or 1403 Printer is specified; a space is gener-
ated for either 'X or 'S if the Console Prmter is
specified.

The character 'F (repeat following character)
refers only to message characters. The control
charact“rthemseives, except 'A, 'B, 'E, and 'b,
can be repeated up to 99 times by inserting a number
(1-99) between the apostrophe and unique control
definition character. For example, '32S results in
32 space characters being inserted in the generated
message.

The character 'E is used to designate the end of
the message line. The character 'b is used to desig-
nate that the message is continued on the following
DMES statement. If neither 'E nor 'b is included, '
is assumed to follow column 71. DMES statements
that end with 'b must be followed by another DMES
statement,

Text apostrophes are generated by writing two
successive apostrophes.

The message characters can be any valid charac-
ter for the printer being used. Invalid characters
are replaced with blanks,

The following example illustrates the DMES
statement.

Assembler input;
; A Oper a ronds & Remrks

45 55

IOUTPUJ7-IIIA|LIIA‘ll_‘lJILl
i 12 RJ II9LS II,JQJSLJ L91_uil ,42% TE=T S S
| | B R1234.56.7898123456789" ..

,;Lzzsst.fé.zw@f 2.34.5, @.739@ £
Ji 12(1 17XL,|7F—J A4 DF(-Xl)j-J b Rl | J [.
v IZXJ Agl&—x JipJ_Fl /l/LchL‘)JP’J_Lﬂlng i}

j I R

T S A WY Y O S WU SO O O O |

Printed output:

SAMPLE PROGRAM'S OUTPUT

1 2 3 4
1234567890123456789012345678901234567890

F(X) ' (X)

Note that the device code specified in the preceding
example is blank in order to generate a message for
the Console Printer,

V2. oty

DN — Define Name

The Define Name statement is used to convert a
name specified in the Operand field of the state-
ment to a name in Name Code in the object pro-
gram. The format of this statement is shown
below:

Operands & Rer

4 45 30

U S S SN T VU WU WU TN WO VRO NN IO S N S N W S |

S SO WY YR U TN Y WY WO WY O N U N N

1 is any valid label (optional),

n is any valid label or name.

Name Code is truncated packed EBCDIC. The two
high order bits of each character in the name are
removed and the five characters are packed into the
right thirty bits of two words.

00 c H A R 3
XX|[XX XXXX|XXXX XX|XX XX|XX]|XXXX XX|XX XXXX|

Monitor Assembler Statements 29

If a label is used, the address assigned to it is the
location of the first word of the two words generated
and is equal to the current value of the Location
Agsignment Counter. Columns 32 and 33 must be
blank, The operand can have up to five characters
that comply with the rules for writing symbols. The
name to be converted must be left-justified in the
Operand field. If remarks are used, one blank must
be left between the operand and the remarks. The
Location Assignment Counter is incremented by two
for this statement.

LINKING STATEMENTS

LINK — Load Link Program

In the assembler language, the LINK statement is
used to cause another core load to be loaded and
executed. Only COMMON of the current core load
is saved. The program loaded and executed must
be specified by name. The format of the LINK
statement is:

1. A symbol or blanks in the label field
2. The mnemonic, LINK, in columns 27-30
3. A valid program name in the operand field

The label of the LINK pseudo-operation is de~
fined as the current value of the Location Assignment
Counter when the LINK statement is encountered;
this value is the address of the first word generated
by the LINK statement.

The operand field contains a valid program name
(one to five alphameric characters), left-justified in
the field. The name must be present in LET/FLET
at execution time. The LINK statement causes four
words to be generated in the object program. The
first two words contain a long ‘BSI instruction, which
branches to a specified location within the Skeleton
Supervisor. The next two words contain the program
name, left-justified in bits 2-32, with blanks inserted
in unused rightmost positions (bits 0 and 1 are always
zero). The Core Image Loader uses the core load
name and begins the process required to load the new
core load.

EXIT -— Return to Supervisor

In the assembler language, the EXIT statement is
used to return control to the Supervisor. The format
of the EXIT statement is:

30

1, A symbol or blanks in the label field
2. The mnemonic, EXIT, in columns 27-30

The label of the EXIT statement is defined as
the current value of the Location Assignment Counter
when the EXIT statement is encountered; this value
is the address of the instruction generated by an
EXIT statement. The operand field is ignored and
can therefore be used for remarks.

The EXIT statement causes a short branch in-
struction to be generated in the object program.,
The instruction branches to a fixed location in the
Skeleton Supervisor. During execution, the branch
is executed and control is returned to the Supervisor,
The EXIT statement should be the last logical state-

ment in a program.
V2 awé:j

DUMP — Dump and Terminate Execution

The DUMP statement provides an entry to the System
DUMP program, which prints the contents of core
storage on the principal print device in hexadecimal
format.

The DUMP statement allows for flexible specifica-
tion of the upper and lower limits to be dumped with-
out altering core storage. After core has been
dumped between the limits specified, the System
Dump returns control to the calling program, at
which point a CALL EXIT is executed., The DUMP
statement is written ag follows:

Operands & Ren
40 43 50

l’lbl,IAIIllllllIIIAJAL

| U WO SO Y VNN RUURN TRY N NN VSN IS IV W S W T S |

where

1 is any valid label (optional),

a is any valid expression specifying the lowest-
addressed core location to be dumped,

b is any valid expression specifying the highest-
addressed core location to be dumped,

f is the dump format code (either blank or zero).
The dump is always in hexadecimal format.

The label, if used, is assigned the location of the
first of the six words generated (see list below).
The Tag and Format fields must be left blank,

A DUMP statement causes the Location Assign-
ment Counter to be incremented by six. The data
stored in these six words is as follows:

Word Contents
1 A long (two-word) BSI to the DUMP entry
2 } point in the Skeleton Supervisor
3 The starting address of the core dump
4 The ending location of the core dump
5 The format indicator (always zero)
6 A short branch to the EXIT entry point

in the Skeleton Supervisor

If no address is specified for word 3, the dump
starts in location zero. If no address is specified
for word 4, the dump continues to the end of core.

A DUMP statement can be used at any point in a
program; however, the user is reminded that DUMP
causes a terminal DUMP to be printed. At the com-
pletion of the dump printout, the branch to EXIT is
executed, thus transferring control to the Skeleton
Supervisor for processing of the next job or subjob.

The format of the DUMP program output is as
follows:

AAAA XXXX XXXX XXXX)] XXXX XXXX XXXX
The contents (xxxx) of 16 core storage locations are

printed per line. At the left is the address (AAAA)
of the first location printed on that line.

PDMP — Dump and Continue Execution

The PDMP statement provides the ability to dump
core storage between specified limits and to continue
execution, The core dump is printed on the principal
print device without altering core. The PDMP state-
ment is specified in the same way as DUMP, except
that PDMP appears in columns 27-30 instead of
DUMP.

The PDMP statement is translated by the Assem-
bler into a long BSI to the DUMP entry point in the
Skeleton Supervisor. The parameters (operands) are
converted as described in the DUMP statement (see
above) except that the exit to the Supervisor is not
generated for PDMP.

Upon completion of the printout of the core dump,
control is returned to the next instruction following
the PDMP statement to continue execution.

LIST CONTROL STATEMENTS
The list control statements — HDNG, LIST, SPAC,

and EJCT — provide the user with the means to
control and identify the assembler output listing.

HDNG — Heading

The HDNG statement is used to specify a one line
page heading for a printed listing, The heading
line consists of the data in the Operand-Remarks
field.

The format of the HDNG statement is as follows.

Operonds & Rer

500

Multiple HDNG statements may be used thus
allowing different sections of a listing to have
different page headings.

When the 1132 or 1403 is the principal printer,
the HDNG statement causes the listing to be ejected
to a new page and the heading is printed. The same
heading is repeated at the top of each succeeding
page until a new HDNG statement is encountered.

When the Console Printer is the principal printer,
the heading line is preceded by five line feeds and
followed by a single line feed, and otherwise functions
as a comments statement,

LIST — List Segments of Program \‘\{ 2 dv'/ }

The LIST statement allows the user to list certain
segments of a program on the principal printer and
avoid listing other segments. The three variations
of the LIST statement are shown below:

Operands & Ren
4 45 50

T T T T T Y TN T T N

olMllllll

R B N

Lo a1 | S S

Y S W T |
PO Y RN W U U N DY W T U
L B VN T |
[W S R O I O

The Label, Tag, and Format fields are not used

with the LIST statement and should be left blank. The
Operand field may be left blank or may contain the
operand ON or OFF,

Monitor Assembler Statements 31

The LIST statement does not cause the Location
Assignment Counter to be incremented.

If a LIST statement with the operand ON is en-
countered, the following statements, up to the next
LIST statement, are listed by the Assembler.

If a LIST statement with no operand is encountered,
the Assembler assumes an operand depending on the
use of the LIST control record. If the LIST control
record preceded the assembly, the ON operand is
assumed and the Assembler acts accordingly. If
the LIST control record did not precede the assembly,
the OFF operand is assumed and the Assembler acts

accordingly.
VZ oty

The SPAC statement is used to insert one or more
blank lines in the listing immediately following the
SPAC statement. The format of the SPAC state-
ment is as follows:

SPAC — Space Listing

Fi 3 Operands & Rer
; B 40 45 50

;f.:é. Cn TR S SR B S U N ST
§< PR TR SR WU TS YN WY SN W NN WO SO SN HO S H

where e is any valid positive expression.

The Label, Format, and Tag fields are not used
and should be left blank.

The number of blank lines inserted in the listing
is determined by the operand in the statement, The

32

operand can be any valid expression. The operand
(expression) value must be positive; otherwise, the
Assembler ignores the statement.

When the number of blank lines specified exceeds
the number of lines left on the page, the page is
spaced to the bottom, a restore occurs, a new
heading is printed, and spacing is resumed until the
number of blank lines specified has been exhausted.

The SPAC statement does not cause the Location
Agsignment Counter to be incremented.

\(Z2 o

The EJCT statement causes the next line of the list-
ing to appear at the top of a new page following the
page heading. The format of the EJCT statement is
as follows:

EJCT — Start New Page

Operands & Re:

40 45 50

SN N TN N N T TOUU T WY Y S T U WO [S B |

ORI SRS A NN WAUSN TN WA HU SO TN WA SN VA S Y N T

The Label, Tag, Format, and Operand fields are not
used and should be left blank,

A page overflow occurs immediately following the
EJCT statement. EJCT statements may be used in
succession to obtain blank pages (except for the
headings printed).

The EJCT statement does not cause the Location
Assignment Counter to be incremented.

Hexadecimal Notation

In hexadecimal notation, each digit represents a
four-bit binary value. This means that a 16-bit
word in the Processor-Controller can be expressed
as four hexadecimal digits. The binary — hexa-
decimal — decimal correspondence is defined as
follows:

Binary Hexadecimal Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

Extended Binary Coded Decimal Interchange Code
(EBCDIC) '

In the EBCDIC code, each character is represented
by a unique configuration of eight binary bits. In

APPENDIX A, CHARACTER CODE SUMMARY

the table that follows, each EBCDIC character is
expressed as two hexadecimal digits.

IBM Card Code

In the IBM Card Code, each character represents a

12-bit card-column image. In the table that follows,
each card code character is expressed as four hexa-
decimal digits and as the card-column image.

Paper Tape Transmission Code, 8 Channel (PTTC/8)

In the PTTC/8 code, each character is represented
by a unique configuration of a case shift, plus an
eight-bit code. The case shift can be common to
more than one character and need be inserted only
when a case shift change is necessary, In the table
that follows, each character is expressed as two
hexadecimal digits, followed by the case shift in
parentheses.

1132 Printer EBCDIC Subset Hex Code

In the 1132 Printer EBCDIC subset hex code, each
character is represented by a unique configuration of
eight bits. In the table that follows, each 1132
Printer character is expressed as two hexadecimal
digits.,

Console Printer Hex Code

In the Console Printer hexadecimal code each charac-
ter is represented as two hexadecimal digits.

1403 Printer Hex Code

In the 1403 Printer hexadecimal code each character
is represented as two hexadecimal digits.

Appendix A, Character Code Summary 33

f EBCDIC IBM Card Code P‘ 132 PTJC/B Console 1403
Rel . Graphics and Control rinter ex Printer .
No. Binary Hex Rows Hex P Nomes EBCDIC |U-Upper Case L'ex Printer
0123 4567 12 11 09 8 71 Subset Hax | FLoer S Notes| Hex
0 0000 0000 00 12 092 8 1 B030 | NUL
1 0001 01 12 9 1 9010
2 oot0 | 02 | 12 9 2 | ss10
3 0011 03 12 9 3 8410
4 0100 04 12 9 4 8210 | PF Punch Off
5% 0101 05 | 12 9 5 [8110f HT Horiz.Tab 6D (U/L) 41 ®
&* o110 06 12 9 6 8090 | LT Lower Case 6E (U/L)
7% 0111 07 12 9 7 8050 | DEL Delete 7F (U/L)
8 1000 08 12 9 8 8030
9 1001 09 12 9 8 1 9030
10 1010 0A 12 9 8 2 8830
11 1011 0B 12 9 8 3 8430
12 1100 oC 12 9 8 4 8230
13 1101 oo | 12 98 5 |si130
14 1110 OE 12 9 8 6 80BO
15 1111 OF 12 9 8 7 8070
16 0001 0000 10 12 11 9 8 1 D030
17 0001 11 11 9 1 5010
18 0010 12 11 9 2 4810
19 0011 13 11 9 3 4410
20* 0100 14 11 9 4 4210 | RES Restore 4C (U/L) 05
21 0101 15 11 9 5 4110 | NL New Line DD(U/L) 81
22% 0110 16 1 9 6 4090 | BS Backspace 5E §U/L) 1
23 01t 17 1 9 7 4050 | IDL Idle
24 1000 18 1 9 8 4030
25 1001 19 1 9 8 1 5030
26 1010 1A 1 9 8 2 4830
27 1011 1B 11 9 8 3 4430
28 1100 1C 11 9 8 4 4230
29 1101 1D 11 9 8 5 4130
30 1110 1E 11 9 8 6 40B0
31 I IF n 9 8 7 |4070
32 0010 0000 20 11 0 9 8 1 7030
33 0001 21 09 1 3010
34 0010 22 09 2 2810
35 0011 23 09 3 2410
36 0100 | 24 09 4 | 2210 | BYP Bypass
37 0101 25 09 5 2110 | LF Line Feed 3D (U/L) 03
38* o110 26 09 -] 2000 | EOB End of Block 3E (U/L)
39 0111 27 09 7 2050 | PRE Prefix
40 1000 28 098 2030
41 1001 25 09 8 1 3030
42 1010 2A 098 2 2830
43 1011 2B 09 8 3 2430
44 1100 2C 098 4 2230
45 1101 2D 098 5 2130
46 1110 2E 098 6 20B0
47 111 2F 098 7 2070
48 0011 0000 30 12 11 0 92 8 1 F030
49 0001 31 9 1 1010
50 0010 32 9 2 0810
51 0011 33 9 3 0410
52 0100 34 9 4 0210 | PN Punch On
53 0101 | 35 9 5 ot rs Reader Stop 0D(U/L) 0 @
544 o110 | 36 9 6 | 0090 | UC Upper Case 0E (U/L)
55 011t 37 9 7 0050 | EOT End of Trans.
56 1000 38 9 8 0030
57 1001 39 9 8 1 1030
58 1010 3A 9 8 2 0830
5% 1011 38 9 8 3 0430
60 1100 3C 9 8 4 0230
61 1101 30 9 8 5 0130
62 1110 3E 9 8 6 0080
63 1111 3F 9 8 7 0070
NOTES: Typewriter Qutput
@ Tabulate @ Carrier Return * Recognized by all Conversion subroutines)
@ Shift to black (4) Shift to red Codes that are not asterisked are recognized only by the SPEED subroutine

34

et EBCDIC IBM Card Code raoh 4 Control P‘_‘3t2 PTTC/8 Console 1403

©f i raphics and Contro rinter Hex . Printer

No. Binary Hex Rows Hex Names EBCDIC | U-uppes Case P:;\;er He:(e
0123 4567 12 11 0 9 8 7-1 Subset Hex | L-Lower Case

64* 0100 0000 40 no punches 0000 | blank 40 10 (U/L) 21 7F

65 0001 41 12 09 1 |Bo10

66 0010 42 | 12 0.9 2 | aAsio

67 0011 43 | 12 09 3 |Aa410

68 0100 4 | 12 09 4 | A210

69 0101 45 | 12 09 5 |An0

70 0110 46 | 12 09 6 | AG%0

71 o1 47 | 12 09 7 | A050

72 1000 48 | 12 09 8 A030

73 1001 49 |12 8 1 |9020

74* 1010 4A | 12 8 2 |8820 |¢ 20 (U) 02

75% 1011 48 | 12 8 3 |8420 (period) 48 B (L) 00 6E

76* 1100 4ac | 12 8 4 |822 |< 02 (U) DE

77 1101 40 | 12 8 5 |8120 | ¢ 4D 19 (U) FE 57

78* 1110 4E 12 8 6 |80A0 | + 4E 70 ug DA 6D

79* 111 4F 12 8 7 [8060 | I (logical OR) 38 (U Cé

80* 0101 0000 50 | 12 8000 | & 50 70 (L) 44 15

81 0001 51 12 11 9 1t | polo

82 0010 52 |12 N 9 2 | csio

83 0011 53 112 1 9 3 | c410

84 0100 54 |12 1 9 4 {cai0

85 0101 55 | 12 11 9 5 | cio

86 0110 56 |12 1 9 6 | coso

87 om 57 | 12 n 9 7 | coso

88 1000 58 |12 1 9 8 C030

89 1001 59 n 8 1 | 5020

90* 1010 5A 1 8 2 4820 | ! 5B (U) 42

91* 1011 58 11 8 3 |a420 |8 58 58 (L) 40 62

92* 1100 5C n 8 4 14220 | * 5C 08(U) Dé 23

93* 1101 5D] 8 5 lsa20}) 5D 1A (V) Fé 2F

94* 1110 5€ 11 8 6 §40A0 | ; 13 (U D2

95% 1 1h 5F n 8 7 14060 | (logical NOT) 6B (U F2

96* 0110 0000 60 1 4000 | - (dash) 60 40 (L) 84 61

o7+ 0001 61 0 1] 3000 |/ 61 31 (L) BC 4C

98 0010 62 11 09 2 | 810

99 0011 63 1M 09 3 | 6410

100 0100 64 n o9 4 6210

101 0101 65 109 5 |e110

102 0110 66 1M 09 6 | 6090

103 om 67 noe9 7 | 6050

104 1000 68 1M 09 8 6030

105 1001 69 o 8 1 |302

106 1010 6A | 12 T €000

107* 1011 6B 0 8 3 | 2420 |, (comma) 68 38 (L) 80 16

108* 1100 6C 0 8 4 2220 | % 15 (U) 06

109* 1101 6D 0 8 5 2120 | _ (underscore) 40 (V) BE

110* 1110 6E 0 8 6 |20a0]> 07 (U) 46

me mn oF 0 8 7 |2060 | ? 31 (V) 86

112 0111 0000 720 |12 110 E000

13 0001 71 12 11 09 1 | Folo

114 0010 72 12 1109 2 | E8I0

115 0011 73 112 11 09 3 | Eear0

116 0100 74 112 11 09 4]E210

17 0101 75 112 11 09 5 |Eno

118 0110 76 112 11 09 6 | €090

119 om 77 2 11 09 7 | E050

120 1000 78 112 11 09 8 E030

121 1001 7 8 1 1020

122* 1010 7A 8 2 |o0820 |: o4§u) 82

123* on 78 8 3 Jo420 |# 0B (L) Co

124* 1100 7C 8 4 0220 |@ 20 (L) 04 !

125* 1101 7D 8 5 |0120 | ' (apostrophe) 7D 16 (U) E6 0B

126% 1110 7E 8 6 Jooao] = 7E 01 (V) c2 4A

127+ 1mn 7F 8 7 Jooso | 0B (U) E2

Appendix A." Character Code Summary 35

IBM Card Code

1132

EBCDIC PTTC/8 Console 1403

Ref - Graphics and Control Printer . :
No. Binary Rows Hex P Names EBCDIC U-U‘;‘)pe»é'Case Printer P::fer

0123 4567 12 098 7-1 Subset Hex | L-Lower Case Hex x
128 1000 0000 12 0 8 1 B020
129 0001 12 0 1 | Booo | o
130 0010 12 0 2 A800 | b
131 0o 12 0 3 A400 | ¢
132 0100 12 0 4 | az00 | d
133 0101 12 0 5 A100 | e
134 0110 12 0 6 | aoso | f
135 om 12 0 7 A040 | 9
136 1000 12 0 8 2020 | h
137 1001 12 09 a0t0 | i
138 1010 12 0 8 2 |as20
139 101 12 0 8 3 A420
140 1100 12 0 8 4 | a20
141 1101 12 0 8 5 A120
142 1110 12 0 8 6 AOAO
143 } 1 12 0 8 7 A060
144 1001 0000 12 8 1 D020
145 0001 12 1 D000 |
146 0010 12 2 C800 | k
147 0011 12 3 C400 | |
148 0100 12 4 C200 | m
149 0101 12 5 Cil00 § n
150 0110 12 6 C080 | o
151 0111 12 7 C040 | p
152 1000 12 8 C020 | q
153 1001 12 9 CO10 | r
154 1010 12 8 2 C820
155 1011 12 8 3 C420
156 1100 12 8 4 C220
157 1101 12 8 5 C120
158 1110 12 8 6 COAQ
159 ! 1 12 8 7 | cos0
160 1010 0000 0 8 1 7020
161 0001 0 1 7000
162 0010 0 2 6800 | s
163 0011 0 3 6400 t
164 0100 0 4 6200 | u
165 0101 0 5 6100 | v
166 0110 0 [6080 | w
167 0111 0 7 6040 | x
168 1000 0 8 6020 | y
169 1001 [V 6010 | z
170 1010 0 8 2 6820
171 [[20] 0 8 3 6420
172 1100 0 8 4 6220
173 1101 0 8 5 6120
174 1110 0 8 6 60A0
175 I 0 8 7 | 6060
176 1011 0000 12 0 8 1 F0O20
177 0001 12 0] FOO0
178 0010 12 0 2 E800
179 0011 12 0 3 E400
180 0100 12 0 4 E200
181 0101 12 0 5 E100
182 0110 12 0 6 EC80
183 o1 12 0 7 E040
184 1000 12 0 8 E020
185 1001 12 09 EC10
186 1010 12 0 8 2 E820
187 1011 12 0 8 3 E420
188 1100 12 0 8 4 E220
189 1101 12 0 8 5 E120
190 1110 12 0 8 6 EOAOQ
191 [RRR 12 0 8 7 E060

ot EBCDIC IBM Card Code oo Y Contal P‘.‘C:2 PTJC/B Console 1403

e H ra ics an oniro rinrer ex . .

No. Binary Hex Rows Hex P Names EBCDIC | U-Upper Case P:::er P;.;::(er
0123 4567 12 11 0 9 8 7-1 Subset Hex | L-Lewer Case

192 1100 0000 co | 12 0 A000 | (+zero)

193* 0001 ct | 12 1 {9000 | A C1 61 (U) 3C or 3E 64

194* 0010 C2 12 2 8800 B Cc2 62 (U) 18 or 1A 25

195*% 0011 C3 12 3 8400 | C c3 73 (V) 1C or 1E 26

196* 0100 C4 12 4 8200 D C4 64 (V) 30 or 32 67

197* 0101 Cc5 12 5 8100 E c5 75 (U) 34 or 36 68

198* 0110 Cé 12 é 8080 | F c6 76 (U) 10 or 12 29

199* o1 Cc7 12 7 8040 | G c7 67 (U) 14 or 16 2A

200* 1000 Cc8 12 8 8020 | H Cc8 68 (U) 24 or 26 6B

201* 1001 c9 12 9 8010 | C9 79 (U) 20 or 22 2C

202 1010 CA 12 09 8 2 A830

203 1011 CB 12 0 9 8 3 A430

204 1100 CcC 12 09 8 4 A230

205 1101 CcD 12 09 8 5 A130

206 1110 CE 12 09 8 6 AO0BO

207 L 1111 CF 12 098 7 A070

208 1101 0000 DO 11 0 6000 | (- zero)

209* 0001 D1 1 1 5000 | J D1 51 (U) 7Cor 7E 58

210* 0010 D2 11 2 4800 K D2 52 (V) 58 or 5A 19

211* 0011 D3 11 3 4400 | L D3 43 (V) 5C or 5E 1A

212* 0100 D4 11 4 4200 | M D4 54 (U) 70 or 72 5B

213* 0101 D5 n 5 4100 | N D5 45 (U) 74 or 76 1C

214* 0110 D6 11) 4080 | O Dé 46 (V) 50 or 52 5D

215* 0111 D7 11 7 4040 | P D7 57 (U) 54 or 56 5E

216* 1000 D8 1 8 4020 | Q D8 58 (U) 64 or 66 1F

217% 1001 D9 11 9 4010 | R D9 49 (V) 60 or 62 20

218 1010 DA 12 1 9 8 2 C830

219 1011 DB 12 11 9 8 3 C430

220 1100 DC 12 11 9 8 4 C230

221 1101 DD 12 11 9 8 5 C130

222 1110 DE 12 1 9 8 6 COBO

223 | 111 DF 12 11 9 8 7 C070

224 1110 0000 EO 0 8 2 2820

225 0001 El 11 0 9 1 7010

226* 0010 E2 0 2 2800 | S E2 32 (V) 98 or %A oD

227* 0011 E3 0 3 2400 | T E3 23 (U) 9C or 9E OE

228* 0100 E4 0 4 22001 U E4 34 (U) BO or B2 4F

229* 0101 E5 0 5 2100 | Vv E5 25 (U) B4 or B6 10

230* 0110 E6 0 6 2080 | W Eé 26 (U) 20 or 92 51

231% 0111 E7 0 7 | 2040 | X E7 37 (U) 94 or 96 52

232* 1000 | E8 0 8 2020 | Y E8 38 (U) A4 or Ab 13

233* 1001 E9 09 2010 | 2 3% 29 (V) A0 or A2 54

234 1010 EA 1M1 0 9 8 2 6830

235 1011 EB 11 0 9 8 3 6430

236 1100 EC 11 0 9 8 4 6230

237 1101 ED 11 0 9 8 5 6130

238 1110 EE 11 0 9 8 ¢ 60BO

239 v 1111 EF 1 0 98 7 6070

240* 1111 0000 FO 0 2000 | O FO 1A (L) C4 49

241* 0001 F1 1 1000 | 1 F1 01 (L) FC 40

242* 0010 F2 2 os8o0 | 2 F2 02 (L) D8 01

243* 0011 F3 3 0400 | 3 F3 13 (L) DC 02

244* 0100 F4 4 0200 | 4 F4 04 (L) FO 43

245* 0101 F5 5 0100 | 5 F5 15 (L) F4 04

246* 0110 Fé b 0080 | 6 Fé 16 (L) Do 45

247* o1t F7 7 0040 | 7 F7 07 (L) D4 46

248* 1000 F8 8 0020 { 8 F8 08 (L) E4 07

249+ 1001 F9 9 0010 | ¢) F9 19 (1) £0 08

250 1000 | FA |12 11 0 9 8 2 | E830

251 1011 FB 12 11 0 9 8 3 E430

252 1100 FC 12 11 0 9 8 4 E230

253 1101 FD |12 11 098 5 |E30

254 1110 FE 12 11 0 9 8 6 ‘EOBO

255 1 N FF (12 1 098 7 |Eo70

Appendix A. Character Code Summary 37

APPENDIX B.HEXADECIMAL-DECIMAL CONVERSION CHART

LK0G OY0T S¥OZ ¥ROT EWOC OHOG TWOT OHO3 6E0C SE0G LEOD SE0T ¥00G €208 oe0c | 4L €001 5301 1501 0Tel SI0K LIOT 9101 STo1 ®IOT €101 2101 TI0T 0101 6001 8001 { —Je
1€08 000Z 6308 830G LoUG 9306 SG0G FGUG €60 GGG 1308 6105 8106 L10c 910 | ~3L L00T 900 SOOT #001 €001 1001 000T G660 8660 1660 9660 S660 V660 €660 T660 | ~AC
SI0 Y103 €103 G102 1102 0105 600 SUUG L00G 9005 SO0T €003 00T 1008 0005 | —qL 1660 0660 6860 8860 L8960 <860 960 €960 860 IS60 0860 660 8160 LL60 960 | ~Qe
6661 8661 L661 9661 S661 F661 €661 661 1661 066L 6861 1861 9861 <861 861 | ~OL SI60 FL60 €160 TLE0 1160 6960 8Y60 1960 9960 S960 FHE0 €960 G960 1960 0960 | ~OE
€861 2861 1861 0861 6161 8L61 LIAT 9QLBI GIRT FIRT EIRT TIAT O0LRT AGRT RIRT ~d|L 6560 8960 L1960 9560 o860 €960 TS6O 1S60 0S60 6¥60 8¥6O LFSD 9FR0 SPR0 PEE0 g1 4
1961 9961 G961 ¥961 €961 2961 10961 0961 6961 86T LS6T o961 61 ©961 2961 | —vL €60 TH60 1¥60 OFGO 6060 LE60 9860 SE60 FE60 €060 TEGD 1660 060 6360 8260 | ~vE
IS6T 0961 6F61 SHEI L¥6T OF6I SKGI ¥IGI €F61 GFGI [FGI 6661 861 LO6I 9661 | ~ 6L 1360 8G6L STE0 FTE0 €660 1o60 0G0 6160 8160 LI60 9160 S160 ¥160 €160 3TI60 | ~ 6
SO6l FO6I €061 TO61 I¢61 OC6I 6361 8261 Lo61 9061 ST6L €261 5e61 1360 0%61 | ~ 8L 1160 0160 6UGO 8U60 060 S060 F060 €060 GUG0 1060 0060 6680 9680 1680 9680 s
6161 8I6I LI6I OI6I SISl ¥I6I €161 3ZI6I LI61 OI61 606L 061 9061 SO6T ¥061 | = LL G680 F680 €680 T6%0 1680 6880 8880 /880 9880 G880 ¥SR0 €880 TSSO 1880 0880 | ~ ¢
€061 2061 T0GI 0061 6681 8681 1681 9681 S681 681 €681 1681 0681 6881 8881 | ~ 9L 6180 8IR0 LS80 980 SIS0 CL80 T80 [L80 OLS0 6980 8950 980 9980 S9B0 ¥80 | < 6E
1881 9881 9881 ¥881 €981 2881 1881 OBBI 681 8BI8T LI8T SI8T bL8T €181 T8I | ~SL €980 GO0 1980 V9RO 6580 LS80 9580 SSB0 FSB0 £980 oS80 ISBO 0SB0 6FBO SVBO | ~SE
[.8F 081 6981 8981 .981 9981 <981 ¥B8T €981 3981 1981 6981 8981 1981 9981 | " bL L¥80 OF80 SKSO VESO €480 [-80 0P80 6£80 8CBO LCS0 9£80 SEB0 80 €EBO TESO | " ¥E
SS81 ¥SBI €S8 2S81 1981 0S8T 6K S¥BL LPBT OF8I S¥SI er8l TH81 I¥8I 0BT | ~ €L I€80 0F80 6G80 8280 LGB0 SG80 FC80 €080 GG80 IG80 0G80 6180 180 LIS 9180 | - €€
6C8T 9E8T LOBT 9C81 SEBI BT €681 oE8I 1681 0681 6381 1381 9281 So81 W8I | — 3L <180 180 €180 IS0 1180 6080 8080 L080 90BO SUSU FUSO £UBO T0S0 1080 0080 | —3Z¢
€281 2381 1281 0281 6I8T 8IST L(BF 9181 SIBI ¥IST €181 TIBT OIST 6081 8081 | — I 6610 86L0 L6L0 960 60 €60 G6.0 160 060 680 88L0 8.0 980 S8 ¥8L | ~ 1€
081 9081 S081 081 €081 2081 1081 0081 ©6LI 86LT L6LI S6LT ¥6LL ©6L1 6Ll | ~OL €80 8L 180 0810 6L L0 BLL0 SLO FLLO €L TLO ILO OLLO 600 89,0 | ~0€
6.1 OGLT 68L1 88LT L8LT OBLT SBLL ¥SLT €8L1 TBLI 18LI 6LLT 8LLT LLLT QLI | —J9 1910 9920 €90 ¥9.0 €9L0 1920 0920 650 8SL0 IS0 9SL0 SSIO PSLO . €S0 23S0 | ~ 4T
SLL bLLU €A1 BLLU IALT OLLT 69L1 89LI LOL1 99LI SLL €9Ll 2Z9L1 1Ll o9Ll | —39 1620 0SL0 G6V0 SFL0 LPI0 SP0 FPLO CPL0 THL0 TP OPL0 6EL0 BEL0 L£L0 860 | "
OGLT 8SLI ISLT 9SL1 SSLT ¥SL1 ©SLl BSLT ISLT OSLI 6hLl v eyl syl wbul | —as SCLO FELO EEL0 TEW 1EL0 6GL0 ST L0 930 SoW VG €30 TR 130 03 | ~az
€PLT SRLL TvLl OWLT 6€LL SCLT LEL1 9ELL SELl ¥ELL €ELI 1641 OELl 6Ll 8BLl | =09 610 810 LI0 910 SIW €10 3L0 110 010 6020 800 200 900 SO0 ¥0L0 | ~OT
LT 9ZLL SELL WBLT €BLI ZBLL 13T OBLT 6LLT SIAl LILI STl PILT €1LL Il | —de €00 20L0 100 00L0 6680 L690 9650 S680 F600 €680 GGU0 1680 0600 6880 8890 | ~ €S
TILU OLLT 60LT 8OLT ZOLU SOLT SOLT POLT €OLI 2OLT 1OLT 6601 8591 1601 9601 | ~ V9 1800 9890 SH90 890 €890 1890 0890 6190 890 L1190 990 SL90 P90 €L90 GL9O | ~VT
9601 ¥69T ©691 2601 1601 0691 6891 8891 /891 9891 S891 €891 3891 1891 0891 | ~ 69 190 090 6990 8990 1980 €990 F990 €950 TY90 1[990 09U 6590 8BS0 IS90 9980 | ~ 63
6LO1 801 .90 991 SIO1 W91 €91 391 UIOT 091 6891 1991 9901 <901 ¥991 | ~89 <890 FS90 €590 TEO0 1S90 6H90 8K90 IS0 9F00 SH90 PGS0 €¥90 GO0 T#90 O¥S0 | <63
€991 32991 1991 0991 6991 899I .S91 9991 SOOT PS9T €591 1991 0591 6F91 8vol | — 18 6990 8E90 l£90 9€90 S£90 €090 TEW 1990 (090 6G0 STH0 LU0 6590 ST90 $T90 | < LB
LPST 99T SEST ¥¥OI €FO1 THOL I¥B1 OpOL 6691 8EOT LE91 SE91 #E9L €691 Geol | — 99 €390 32390 1590 0G0 61 L190 9190 190 FI90 €190 TI9%0 1180 0190 6080 8090 | ~ 6%
1691 0691 6301 8GO1 L1391 9091 SooT Fo9l €691 Ga9l 1291 6191 SIBT LI9T 9191 | — 99 1000 9000 S090 $090 ©090 1090 0090 6650 8650 LGS0 9GS0 $650 FES0 ©6S0 360 | TST
SIOT ¥191 €IO 3191 [IST O191 6091 8091 L0BT 9091 S091 €091 3081 1091 0091 | "9 1650 0650 6850 8550 L8S0 SBSU P890 £SS0 THS0 ISSU 0SS0 6150 8IS0 LSO 8IS0 | T WG
6681 96SI 1651 9651 9651 ¥6ST €651 26S1 16ST 06ST 68SI 18ST 98ST S8ST ¥8S1 | — €9 SIS0 LSV €S0 TS0 1150 6950 €950 1950 9950 S9SU ¥950 €950 3G9SO 1950 0950 | ~€3
€851 28ST 18ST 08ST 6IST 8IST LLST 9IST SISU bISI €LS1 181 0ISI 6951 89SI | — 329 6950 8SS0 LSS0 9SS0 S9%0 €550 G450 ISS0 0SSU 6FSU SPSU LPSO O¥SO SYSO HS0 | <%
1991 96ST SOSI ¥9ST €961 28ST 19ST 0@ST 6SST 89S LSSI S9ST . ¥eST €981 oSt | — 19 €550 GFSO TS0 OFSO 650 1690 9690 SES0 FESO €0S0 TESU 1950 060 6290 850 | T 18
19ST 0SST 6FST S¥ST LPST OWST SPST WPST €FST o¥ST TFST 6esT 8est lesT 96T | —09 130 9380 ST G €550 Ta50 OGS0 6IS0 8IS0 LISO OIS0 SISO IS0 €IS0 IS0 | T 03
QOST ¥OST €691 2091 T8ST 0BT 68ST 83ST L3ST 98ST Sest €281 TSI Te61 08T | —dS 1150 0TS0 6050 8050 L0S0 £0S0 F0S0 £0S0 T0SO T0SO 00S0 66KO BEKO L6YO 66KO | "I
61ST SIST LIST BIST SIST ¥IST €1ST IS TIST OIST 60SI L0ST 90SI. SOST JOSI | —dg S6K0 ¥6FO €60 T6KO 16%0 68Y0 88Y0 LSKYO 9GK0 SYO ¥BKO €8¥Y0 Z8K0 ISK0 08Y0 | —dI
€0ST 20SL 10ST 00ST 66Vl 8SPT L6PT O6VL SGFI ¥EPI E6HI T6¥1 06¥T 68¥1 881 | —as 6LI0 8LV LK 0L SLVO CLVWO ZLVO TIYO OLYO 60%0 SBK0 LOV0 9950 SOKO BOFO | —al
LSYL 981 SSFT ¥BPL €8F1 280 ISKT OBPI 6T SLHT LIFD Sl ¥LVL €41 TLWL | 08 OF0 TOK0 10K0 09K0 65%0 L1590 9SK0 SSYO ¥SY0 €SV 3SHO ISKO OSKC 6W0 B0 | TOI
TLPT OLPT 6OFI SOFI 1901 SOFPT SOFT ¥OFT €OV TOPT 19¥l 6SPT BSYT LSPT 9SKT | —dS L¥0 OVF0 SYIO RO CVH0 W0 OVW0 6CYO SEVO LEFO OCYO SEFO BEVO €650 TCKO | ~dL
SSYE vopl CSPL TSPl ISPT OSKT 6FFI SVPI LPPT OFPT SYPI EPPL CHFT TFPL OPFI | VS IEY0 0€v0 63%0 82H0 1Z0 K0 ¥OY0 €3¥0 TTHO IGK0 OSKO 610 8IV0 LIFO BIFO | TVI
6E¥T SEPT LEPT 9EPT SCRI BEPDL EEFT TEPT YT OGFT 63H Loyl ookl Sohl vorl | ~—es SIY0 ¥1%0 €IFO 3TIK0 TLHO 60V0 SOKO LOVWO ©OYO SOVO VOKO €0KO TOKO T0MO OOKO | ~ 61
€SVl Tebl 1ZPL OGPl 6IPL BIFL LI¥T 9IPT SI¥T ¥IVD €IFQ TIFT OI¥YI 6081 SOFT | =85 6660 86€0 60 960 SBEO €600 2600 1660 0680 6880 88E0 LSE0 9BE0 S8E0 ¥BEO | 8L
LOVT 9OVT SOFPT YORT €OPI GOPL TOPI OOPI 6661 9661 1680 S6E1 FOEI ©6E1 T6EI | — 1S €800 780 18€0 08E0 6LE0 L0 9LE0 SL60 ¥00 €L00 L0 140 OL0 6960 890 | ~ LI
1681 06CI 68CI 88E1 ISE[98CI SBCT #8CI €861 2BEI ISET 661 861 L1 91 | ~98 L0 990 SBEC FHEO €90 190 00C0 6560 8SC0 IS00 9SE0 SSE0 VSE0 €S0 TSEO | o1
SIET BT €LE1 JLE1 LLET 081 68C1 89CT L9ET 98E1 SSEL €061 28EI I9ET OSEl | — s 1960 0SC0 6PCO SVEO L¥EO SHE0 WK €YE0 TKEO Y0 OFE0 66E0 SEE0 LEE0 9660 | — ST
6SE0 SSCL ISSI 9SET SSEl FSEl €SE1 TSEl ISEl OSEl 6FEl LVET OFET SPET BPET | ~ S SEE0 FELO €860 2EE0 1600 6300 STL0 LTE0 BGED SO FIL0 €TE0 TZE0 13E0 (ZL0 | ML
EVEL THEL TFEL OFET 6661 SCED LEET OEEI SCEl ¥#EEl €EEl 166l 0eel 6ZEl 82l | ~es 6150 BIE0 LIL0 9180 SIE0 €100 ZI0 TIE0 OIE0 6060 80C0 LOED ©OE0 SO0C0 #0€0 | ~ ¢l
ioei wobi Wbl Peti €ebl gGoel lokl webl BIEL wiEl LIEl SIEL PIED €181 BIE | =38 €020 0O 1080 00E0 6620 L630 9630 S630 Y630 €630 3T630 1630 0650 6820 8820 | ~ 3Tl
TIEL OICT 6061 80CT Z060 9UET SUS1 #UEL EUET GOET 1€l 6631 9631 631 9631 | IS 1860 €830 S830 PH30 €820 1830 0870 630 8.0 L0 .30 SLZ0 ¥.Z0 €L30 T | ~ 1
G631 ¥631 €651 T6Gl 1631 0631 6831 868Gl 28G1 9831 SK3I €931 281 1821 0831 | ~0S 120 030 €930 8930 1930 SOT0 V950 £9R0 T30 I0%0 0930 650 8SE0 LST0 9530 | ToO1
621 SL31 LBU BT SL3T WGl €51 B0 UGT 0Ll 6630 L1931 881 SeBl ¥O]1 | —d¥ 9530 ¥S00 €550 IS0 1530 630 S¥Z0 LYG0 O30 SYZ0 VGO €VZ0 T¥0 1830 0830 | — 0
€931 2931 19G1 0961 655l ®SGI LSGI 9SGl SSGT VSTl £901 IS31 0sgl 6val 8Kzl | —av 6€30 830 €30 9L30 SET0 €600 2630 1030 OCG0 6330 8030 L3O 9GT0 SGE0 WEGO | IO
LYZL 9YOL SKGT PRGL CFCI TXCL IEG1 OFGl 6CCl 8E0l LEDD SC31 PEST €E21 T€31 | ~ar €330 3050 13 0330 6130 LIZ0 9130 S130 #I30 €30 3I30 1130 OI0 6020 8030 | —Q0
I€30 065l 6351 8231 .30l 9Gol Sool ¥ool €631 B3l 163l 6131 8ITL LIZL 121 { ~OF L0T0 8030 SO30 HOT0 €030 1030 0030 6610 9610 810 9610 S6I0 ¥#610 €610 2610 | —D0
SIZI ¥IZL €31 ZI31 1131 OIG1 603 8OGI LOJT 9031 SOTI €031 30T 1081 00F1 | ~aF 1610 0610 6810 8810 .BIO S810 ¥8I0 €910 3TBIO T1BI0 08I0 6LI0 8LIO 10 OL10 | ~d0
66I1 8611 611 96I1 SBIL ¥611 €611 G6IT 1611 O6I1 6811 81T 98T SBII 3811 | VK SL10 PLIO €LI0 3TLI0 ILIO 6010 8910 910 9610 <SBI0 POI0O €910 3IBIO 1910 0010 | ~vO
€811 Z8IT 1811 O0SIY 6LIT 81T LLIT OLIT SLIE LT €LIT TLIL OLIT 6911 8911 | ~e6r 6510 6S10 ISI0 8S10 SSIO0 €510 ZSI0 ISI0 0SI0 6FI0 SYI0 LYIO OFIO SYIO ¥PI0 | —60
911 99KL SOIL ¥OIT €OIl 2911 1911 0911 6ST1 8STI LSTI SSIT ¥SIT €STT 2611 | —8r €10 Z¥I0 1FI0 OFI0 6EIO0 610 9EI0 SEI0 ¥ETO €E10 3ZE10 1EI0 OET0 6310 6310 | ~90
TSIT OSIT 6bYD SPIT ZPIT 9P SPIL BPII SPIL GHLT IFIL 6S1l 8EIT LEII €11 | =L 310 610 S3I0 #310 €TI0 1310 0CI0 6110 8110 LIIO OI10 SIT0O PITO €110 3Iio | ~20
SEIT PEIT €EIl TCIl ICIL OCIl 66I1 8aIl - L3I1 9301 SBII €3Il 33U 1GIT 0311 | ~oF 1110 0110 6010 S0I0 010 SO10 4010 €010 3010 1010 0010 6600 B600 1600 9600 | ~ 80
6LEE SIH ZIW OHIE SEEL #I0 €H1 31 Uil 01T 801T 010 9011 SOIT O | — ¥ 600 ¥600 €600 600 1600 6800 8§B00 1800 9800 SB00 ¥BUO €500 2800 Y800 0800 | ~S0
€OIL 20II TOIl 0OTT 6601 8601 LGOI 9601 S60I K601 €601 1600 0601 6801 8801 | ~ ¥ 600 800 LL00 900 SL00 €00 T.00 00 O0L00 6900 8900 2900 9900 SBOO 900 | ~ w0
801 9801 <SSOI FBOL €801 THOL 1801 0SOT 600 SLOT LI SL0U ¥L0U €01 3ot | —er €900 2900 1900 0900 6500 1900 9S00 9S00 ¥S00 €500 3IS00 1S00 000 600 BY0O | ~ €0
100 01 6901 8901 1901 9901 SOOI 190l €901 G901 1901 6500 8SOl 2501 esof | — ¥ L¥00 %00 SY00 KOO £%00 100 0K00 6200 SE00 LEO0 9C00 SE00 C PEOO €200 €00 | <30
SSOI PSOE €501 3S0T TS01 0SOI 60UL SHOI LKOT O¥OL SHOT crOL Z¥OL k0L OvOL | — 1 1600 0P00 6306 8200 L300 S300 F300 €300 3TT00 1T00 0T00 6100 SI00 100 9100 | ~ 10
6501 BE01 LOOT 9001 SEOT ¥EOl €801 GEOI IS0l OEOI 6GOI L301 9301 STO1 3301 | TOF S100 ¥100 €100 3100 1100 6000 8000 1000 9000 S000 ¥000 €000 3000 1000 0000 | T 00
E] q a o] 4 v 6 8 L [g € 3z 1 eL d 3 a o [] 8 8 L 9 S 14 € T 4 eL
“doquunu fewrospe

-Xoq 9y} Jo JuaTeANDD 93 ST UWN[OD [BOTLISA Y1
pue aur| [ejUOZLIOY 93 Jo uonoun{ ay3 ye Pazeoo]
(68%0) 1aquinu TeWIosp 9L "(6) MBI I9pI0-MO]
ay3 Aq papeay uwnjod a9y} 0} oSed 9y} 8S0IOB SAIN
-81] Jo 9UI[3Y) MO[[0 ‘UUWIN[OO PBT Y3 UI (6FT)
Ioqumu [EWI09PEXaY oY) Jo (JT) SUSIP oM} 38a1]
973 9J8007] ‘UOISIDAUO)) [BWIOd(0 [BUWNIO9PEXIY

‘6870 IoquInu [BWIOdP 93 03 [enbo 51

6T d8qUNU TEUN00PEXSY oY} ‘SNYL “UWN[OO dY}
Jo doy ay3 7e ST () JBIP IopIO-MO] Y} PuUE ‘sul]
JWEs 9Yj UO TUWN[OD 3JO oY} Ul &Ik IaquInu (W
-100pEX9Y 94} Jo (FT) SHSIP JopIo-ySTy oM} oYL,
"o[qe? a3 Jo Apoq oY} Ul (68¥0) Iequnu [EWIOAP
9y} 918007 °"UOISISAUOY [BWITOS9PBXSY 0} [BWI0a(

*sosoyuaxed ur ojdurexa ue Aq pamor[oy

s1 do3s yore Jo uonjeuR|dxe 943 ‘MOT[0} FBY}
SUOTIALIOSap 9y} U] °[BWIOSP 0 SISQUWNU [BW
-109pexay PUB [BWIOOPEXAY 0} SIFqWNU [BUWIIOSP
3I9AU0O 03 Pasn aIe Mofeq pejurid se[qe) oy,

38

8922€ | 0008 91qe] ured o ut o3 Ut UNoYs S8 BIP 10pIo-GBIY oYy 10} ey

o¥¥19| 0004 | 2298z | 0002 uoT)oRIINS 2A0QE Y3 Jo jonpoad ayj Surroa an[eA 9y} ppe pue ‘aqe3 urew ayj ur s381p a ottt [s1] o MWM M
¥peLS| 0002 | 94992 | 0009 -u0d £q s3181p [EWIOOpEXY SUMTEWaL 934Y) TBWIOOPEX3Y ISP.I0-MO] 331U} oY} JO anfea alvotr et e |tot0] ¢
8¥2g¢| 000a | 0830z | 000g oy} suiwiIajeg “JBIP [BWIOSPEBXAY I9pI0 TBWIOSP 9Y) SUTWLISISP ‘[BWIDSP 0} I9quunu o loott [zt] % [oot0| %
2ST6%(000D | #8€9T | 000¥ -ySty 8y} st N81p pejelal oYL °INSAI SAINS [EWI08PEXAY JFIP-IN0J B LISAUOD O, g [I10T [T1)] € [1100 | €
950S¥| 0004 | 88231 | 000€ -od e prat4 4 fey3 JS1a oY} T8 S1qR] 9y} UI -Olgy pue 919 v |otot |o1] z |oto0| 2
0960%| 000V | 2618 | 0002 JIaquinu jsa8Ie] oY} j1onpep ‘9[qe} UTBUWL oY3 y8noay) 010z Wy ‘s3q A1BUIQINOY Jo aSurI 6 |T100T | 6 | T |TO00| T
¥989€| 0006 | 960% | 000T @GO%OD SON[BA [BWIOOP JO UOTSISAUOD IO 117 9y} X0y M.ﬂ._”@OU [BWIO9PEXaY pue ,bdﬂwﬂ 8 000T 8 0 | 0000 0
29 X9 09 .

d | X°H | °°d | *°H 4811943 01 JIBYO PSPUSIXD ‘TeW10ap oY} S9ALS Yol oY) 03 B1qE] BYL XoH| i [o°djxen| wd |%°d
S60v ¥EOF €60V TEOP 160 060V 680F 880V LSOV 9807 SSOF VSOF €80 Q8OF [8OF OSOF | - dd 106 0L0C 690 §90C L90C 990 S90E FOUE £00C G90T 190€ OD0F 690 8SOE LSUC 9S0E | - 48
610V 8L0v LLOV 9Q/0F SLOb BLOF €00 TL0P 100 OLOF 690y 890v [90F 990F S90F 90K | —3d SSUE ¥SOE £SUE GSUE IS0 OS0E GFUE BFUE LWOE OFUE SKOE BRUE ERUE TROE [FOE OFUC | ~ 39
€90V 390 130 090v 6SOF 8SOP LSOF 9SO SSOP FSOF ©£S0v SOV ISOP 0S0F 6WOF b0 | ~Qd 6E0C 8CUC LEUE 9E0C SEOC PEOE EEUE GEUE IE0E OEUE 6GUE 30 LZUE 930E Scuoe koue | —aa
LYO¥ OFOF SPOY BHOF evo¥ THOF 1¥O¥Y OOF 6€0F BEOP LEOV 9EOF SE0¥ PEOF €EOF TEOF | ~ D4 €o0€ GoUE 1ot 03UE 610€ 8I0E LIOE 9Ive SIOE PI0E €10 3lug 1108 010 6o0E swL | =04
180y OP0v 630v 830V LZ0v 9T0F STOP VIOV €ZOF TZ0b 130F OGO 61OV QI0F LIOb OIOF | - @i LO0E 900 SOOL FOOE €OUE BOOE TOOE OQUE 6665 S663 L66T 9663 S667 660 €663 2663 | —ed
SIov ¥i0o¥ €I0¥ 3BIOF 1100 010F 600P 800F L0OV 900F SOOF POOF €00¥ 3T00F 100F 000F | VA 1662 0663 6863 8867 L86C 9863 S86C F86T €863 T8GG 186G U86T 6L6C 863 LL6C 960 | —vd
666C 866C L66C 966 S66C PEOC C66E IG6E I66C O66C 686C BYEE LSGE O86C SUEE KGE | — 6d SL6G VL6 CL6T TL6C 160 OL6T 6965 896 1965 996T SY6C F96T €960 2960 1963 096 | ~ 64
€86C TB6L 186 O086E 6L6C 8L6C LL6E 9I6€ SLEEC VI6E €L6E TLEC TIL6E 0L6C 696 896€ | = 84 696C 896G LSBT 9968 SS68 VS6T €960 G630 186 0S6T 616G 8F6T LY6T 9¥6T SK6T FHGS | T ed
L96C 096€ S96C ¥96C CY6C T96E 196C 096 6S6C BS6E LSEE 96C GS6C KSGE €96E oS6E | ~ Ld €V68 363 V6T OK6G 6C6F BL6C LE6GT 96T SO6C FO6T €06C 2068 1660 OEGT 6367 8063 | ~ .4
1S6¢ 0S6€ 6¥6€ 8P6E LY6E OV6E SYEE BPEC EPEE TPEE IPEC OF6E 6E6€ 8C6E L£6E 9E6E | ~ 94 Lo6C 936% ST6C ¥O6C €368 G366 1668 0T6T 616G 8I6C LI6T 9163 SI6Z FI6E £i60 36T ~ot
SE6E PE6EL €E6E TO6E 1€6€ 0€6C 636C 8T6E LZ6C 9%6L STEC PTEL €T6C 36T 136€ 0T6E | ~ SA 1163 OI68 6062 806G 06T 906G S06C FUBG €U6C GUBE 1UBC VUGS 668C 868G L68C 968G | T sd
616E BI6E LIGE 916 SI6C PI6E €166 GI6E 1168 OI6E 606E BO6E LOBE 906 S0BE P0G | — bd S68C VESC 68T GGYC 1685 068G 688G 888G LSYG O8YS YT FSST U88C O88C IS§C 0SS | - rd
€06C 306C 106C 006C 668C 868E L6BE O6SC SESC V6T ©68C 68T I68C 068C 68SC 888E | — £d 6183 819 LL8C L83 SI8C PLSG ©£L8C GI8G 1180 OL8C 699G $98C 1980 998 S98T FOWG | ~ed
L88C 088 SS8C FSSC ©€88C 288C ISSE (USSE 6I8C B.ST LLSC OLSC SIST bISC €LSE BSE | - ad €985 T 1985 (985 698G B8GBT IS8T USHG SS¥C FSSG €S¥C ©WYS IS8 0SBE 6KST SbeC | -~ od
186 0L8C 698C 898 198 998C S9BE FO9BE £USC 9P 198C 098C 68T 998C L98C 968€ | ~ Id LVYSE O¥ST S8G FFST EFST OYBC IFGG OUFSG 668G SEWGC LOSC 968G SE8G BERS £rSS cove | - 1d
SS8E PSS €SBC Z9BE ISBC 0SSC 6VBE SYBE LPBE OFSC CKSE FISC CPST OEST IPSE OFSE | —0d 1683 0F83 60SC $38% L38G 908G SG8T FGHC €08 G0SC IG8C 0Z8S 618 818G LIS 918 | —of
6€8C SESC LEBC OCSC GEEC BEST €ESC 2E8E 1€9C OESC 609C B08C LOSE 9%9C So8C kase | —4d SISS VISC C€I83 3186 118G OIST 608G 80SG L0BE 908G SUST HOSG €083 QUSE 108Z OUSG | —dV
€28€ TT8L 138 (0T8E 618 QISC LI8E O9ISE SISE PBISL €I8C 3IsE 118€ OISE 608¢ 08¢ | —33 66L 86LC L6l 96LC SBL3 VHLE C6LC TBLG 6LC 06LC OGRLC $8.C I8LC 98L3 S8LT ¥8LS | T3V
L08C 908 SOSE FPOSE €0BC T0SC 108 008 66 86L L6LE 96LE S6LE ¥6LE ©6LE 26L£ | ~AA €8LT OT8LE 1I8LC OBLE 6LLZ 8LLEZ LLLT 9LLC SLLT YLLG €LL3 BLLG TLLZ OLLE 693 892 | ~dv
16L€ 06LE 68LE 88.€ l8LC OBLC SBLE ¥BLE €8LE OTSLE I8LE O08LE 6LLE 8LLE LLLE 9L | —Dd L9LT 99l S9Lc VOLT €9L3 Q9L 19L8 09LT 6SLT 8SLC LS. 95LT SSLT ¥SLT €SLE OSLS | TOV
SLIE VLIE €L BLLE ILIE OLLE 69L6 89LE 9L 9OLE SOLE WOLE EOLE BOLE 9.6 09 | —dd ISLC O0SLZ 6FL3 8VLG LPLZ 9bLG SVLE PPLG €bLG OPLT WL ORLE 6CLG SELE LELD 9.3 | —av
6SLE 8SLE LSLE 9SLE SSLE ¥SLE €Sl TSLE 158 0SLE 6FiE 8PLE LbLE 9FLE SPLE FEL v SELT VELT €CL3 GEL3 16L8 OCLE 6GLe Bolc L3LZ 93LT SBLT F¥3LC €BLG TOLS (88 033 | ~vvY
SbLE ThLC IBLE OPLE 6ELE SELE LELE OELE SELE PELC CELE OELE IELE OGLE 6BLE SGLE | ~ 63 6148 8118 LIL3 91L3 SILB VUG €L GILG 113 OILE 60L3 SOLG L0 Q0LG SULG HOLG | 6V
L3Le OTLE STLE FOLE €BLE BBLE IBLE 0TLE 61 BILE LILE 9LLE SIIE, PIlE €ILe 2ILE | ~8F €0LG TOLZ T0L3 00L3 669G 8698 69T 969T 69t V693 €693 G69C 1695 0692 6893 8895 | ~ &Y
[IL6 OIL6 6026 SOLE L0LC 90LC SOLE VOLE €0L8 GOLC 10LC OOLC 669C 8698 1698 9698 | =13 1892 9897 99T 89T €893 ©89F 1895 O0R9G 6198 $L9T LI9G 9L9G SL9B FIST €L9F GBL9G | LV
S69E V69T €69 TE9E 169 069E 689E 8S9E LS9 OR9L SROT FROL ©89C TR9E 189E 0B9E | ~ 03 193 0L93 699C €995 L99G 999G Y9G K99 €99 ©YT 99T 099C 699G 8S9G LS9G 9YG | T 9V
6192 8L9T LI9C 9.9 SL9C PI9E €L9E OTLOE 1L9C 09 G699E B99E L99C 999E S99E P99t | — 3 959 VL9C €Y9T 3S9C 1998 0998 6F9G SVOT LVOG OFOC SHOG BE9G K95 OPOG [F9G OFOT | TSV
€99E T99E 199 O099C 6S9C BS9E IS9E 9S9E QS9F BO9L €99F OTG9E 1S9C O0S9E 6K9E 8beE | ~ ba 6695 8E9C L[PG 9EYG SU9T HE9G €L9C . GE9G LG UE9F 60YS 598 L29C 9598 ST9E Kous | - bV
L¥9E OV9T SPOE PIOE €KL CHOL IKOC OF9E 6E9C BE9C LE9E OEYE SE9E WEYE €69C oe9e | —ed €398 009 1095 0696 619 8195 L19G OI9 SI98 FI9% €198 <98 1198 0198 6095 8095 | ~ev
1698 OC9E 609C 39C L39E OT9E SB9E HOIE €096 GA9E IT9E 009 GI9E BI9E LIOE 9I9E | - 33 1093 909 SU9C TUSC 09T CUYG T09C 09T B6SC 96ST L6SE 96ST S65G F6SG B6SG G65G | T oV
SI19€ ¥I9E €19t 3TI9E 119 0I19¢ 609 809t L09€ 909€ S09€ ¥09E €09€ 3T09C 109 009C | —1F 1650 06ST 6858 885G L8ST 9BST S8ST ¥UST €853 T8SG I8SC URST 65T 8LST LI1SG 958 | Tiv
665E ®6SE I6SE 96ST 69 PESE €6SE O6SE I6SE 06ST 68SC 88SC L8SE 9BSE 98Se bese | ~od SIS bIST IS QLG 11SC OLSG 6995 895G 9SG 9953 S9OC FYST £9SG G9S¢ 193 09K | ~ OV
€89E 28GC 18GE 08SE 6LSE BLSE LIS 9LSE SLSE FISE €.S€ TLSE LSS 056 695 s9se | —da 6997 8990 1090 O9CT 9007 VOST €UST 3SST 1S90 0SS 6KSC 8PS LST OVSE ShOZ bHSo |~ d6
L9SE 999 S9CE F9SE €95 Z9SC I9SC 09SE 6SSE 8SSE LSCE 9956 SSGE besE gece gece | —ad €vSC oveT 1PST OPST 6EST 8EGC LEST 9ESC SEST VESE €USC QST 1690 OESE 6253 83%E | " 36
ISSC QSSC 6FSE SKSC LPSC OVSE SKSE bYGE €3S ORSE IPSE OFSE 6ESE §OSE le<e 9gee | -ad L3S 9398 oS0 ¥3SE €056 G0Se 18SC 03SG 6ISC SISE LIS 9I1SG SIS FISE €ISZ GISE | —a6
SESE PESE €ESE COPSE IESE OESE 60SE HOSE L3GE 9GSE SOSE YOSE €398 BaSe I3SE 0%Se | ~DA 1156 0IST 60SC 80S% L0SG 90SC 909 ¥0SC €0SC G0Sc 103 O0SE 66V3 86T L6VE 96H3 | ~06
61SE BISE LISL OISE SIS #ISE €ISE OISE IISE OISE 60SC 80SE L0SE 90SE S0SE bose | —ga SOYC ¥OKT ©6VT GOYG I6VG O0BYG 68T SBEG LS¥G OSYG SSPG bSKG ©BKG 38KG ISKG OSKG | @6
£0SE T0SE [0SE 00SC 66PE BBFC LBYE 96FC S6FC POFE €6FC 36HE I6¥C 06FC 68FC 88FC | ~vQ BLPC 8LVC LLVE 9LYG SLVG WLPT €LVG QLFD 1LBC OLYC 69%3 89VZ L9¥E 99¥3 S9¥C FOVG | T VG
L8V 98T SBYE PEFC CBKC TSP ISKC OSFE GLEC SLFC LLFE OLPE GLEE PIbE £LF€ aLke | —6Q €9vC T9¥Z 19VG 09T 6SbZ BSYC LSPT OCKG SSKG bGYG €SbG QSPT ISKS OSPG 6KG SHHE | 66
IL+€ OLYE 69FC S9FE LOFC 99VE SOME POPE €OFE GOFE I9FE (09FC 6SHE QQEE LSHE 9ske | ~ea L¥¥C OV¥E SYFC VEPET €VVT TPYE I¥VG OBbG 6EPT BEYT LEVT OCYT SEVG VEPE €EKE BEYT | T 86
SS¥E ¥SPE £S¥E TSHE TIS¥E 0SPE 6FFE SFHE LWV OFFC SHPE PEFE €PPC ZHEE IFFC OFET | Tl 1€ve OCPT 60PC 8T¥C LOPT 9GVE SovE bo¥E €OWE ok 13kC O0%FC 61¥C 81¥T LIFC 91KT | ~ L6
6EVE SEVE LEVE OCKE SOIC VERC CEKE GEHE ISKE OEFC 6GFE SGKC LGYE 90bC SOFE boRE | —oa SWWE VIV CI¥G GI¥C L1bG OTFG 60K 80VG LOVG 90V SOFG POPG €0YG GOPG [OFG OOKG | = 96
€3vE TTYE IGPE OTFC BIFE SIFE LIFE OUFE SIvE VIVE EIFC TIvE II¥e OT¥E 60FE 8OFE | ~ca 6663 866 L16CT 96EC S6EG V6L ©6ET B6ET 166G 068 68€C 88CC L8CT 98EC SBET ¥8ET | ~ 96
LOvE 90VE SOVE FOPE EOBE TOKE I0FE OOFE G6EC 960C L6EC 96EC G6EC PEE £6EE 6ee | —FQ €863 38ST 183 O08EC 6LET 8LEG LLEC OLEC SLES PLEC C€L00 GBLEC 1LEE ULEG 69E3 89EE | ~ 6
16EC 066C 6BCC SBEE LGEC OBCC SGEC FBEC ESEC GBEE ISEC OBEC 6LEC BLEE LLEE 9LEE | —€d 953 99ET SOEG POEC €9ET COEG I9CC O9EC 69T B9CC LSEG OSET SSCT BSES €SER OSEG | €6
SLEE PLEC €LEE GLEE 1L6E (LEE 69EC 89EE L9EE 99T S96C F9EE £96€ 329ee 19ec oeee | —z2a 1SE3 0S€3 6VET SVEC LVEG 9OFEG SHEE YHET €FCC OFET 1¥EC OPEC 6£€8 BEET LEEC 9EET lmm
69E€ 8STCE LSEE 9SEE SSEE - PSEE €LEC TSEe 1S€€ 0SEC GFEC 8PET LvEC 9ree spee bree | T1a SEET PECT ELET TLET 1663 O0LET 63ET 8TET L3€e 93€% SoCc FICc €€ GeeT 1668 UGET l—m
SEE GHEE TMEC OMEE 6ECC SOEE LCEC 9ECE SPEE BEEE CESC GE6C IEC OSEC 63EE 8oeE | —o0d 6163 8IS LIEZ 9I€3 SIEC PIEG €I€ GIEE I[1€6 OI€3 606G B80S LOEG 90E8 SUee +0es | ~06
L3€C 936 STEE YIEC €OCE TEEC o6 OE BISC SIEC LIEC 9IEC SIEC BIGE E€Ige ZIEE | —40 €055 T0EC 106G 00EZ 6630 9630 L6GC 96GG S63C F63C ©636 0633 1633 0633 683 89G3 | ~d8
IIEE OICE 60CC - SOFL LOEC 90CE GUCE FOCE €0PE GUEE TOEC OUEE 663€ 863E L62C 9636 | —daD 1833 9803 S8GC Y8CG €83C 385 1956 O08GG 6.0 BLGE LGS 9L0G SLG3 BLCG €L68 oles | ~a¢
63 +63C €63 T6TT 162 (06CC 68GC H8GE L83€ 983€ S8cC F8GC €8CE 283C I85C 083¢ | —AD 1.3 0L 6922 8925 1922 99T8 <€Ytc ¥95C €957 G9c8 193¢ 0963 6538 853G LSGT 94T Hn._w
6L38 BLIE LLBC 9LEE SLIE HLGE ELGE GLEE TLBE OLGC 69GC $9GC L9ZC 99%€ S9TE b9ge | —D0 SS3% V563 €S53 GS66 1S6C 093G 6KGC SYGE LbGG 9¥GG ShGs bhos ©¥3C Ghoe 1boe OFGE | TO8
€03€ 70T 193C 09TE 6SCC BSGC LSTE YSTE SSBE PSEE €SGC BSGC [SB€ OSZE 6KGE 8¥EL | €D 660 8C3C LC0C OCS SEEC YEGG €605 otoo 1600 O0E% 623 8088 L3GS 9338 S0°8 Kees | T e
LVYOE O¥ZE SKOE BEOC CRGE ZKGC IFCE OFCE 6ECC SEGE L0C 9CEC SEE BEGE €L3E Teoe | ~vo €30% 2gg 1%6c UGes 6lad 8188 Llac 9lcc SIeg FI%C €138 Glss 1163 O1G8 6033 9uze | ~ve
1626 OF3E 633 BISC LBGC O5CE SGGE FUgt €08 Gose 1606 0BSC 61aC BIGE L1gE 9I%E | ~6D LOST 90%3 SUBT FUTE £0GC TUBS UGG WUGZ 6615 861 L6l 961C S6IC ¥GIZ ©6I1Z G6IS | T 68
SIS FIZE CIGE 3IE 1136 OIGE 6UTE WHUGE L0BE 903€ SOZE YOGE 03¢ 03¢ 103 003E | =80 1613 061 6813 813 813 9815 <8Ic F$IC €8I 813 IRIG 081G 6LIT 8LIG LLIG OLIC | ~s8
661€ 861E L61C 96IE S6IE ¥6IE €6IC THIE 161€ 061 681¢ 88IE L8IE€ 981 S8IC ¥8IC | —L0 SL1Z ¥L1Z €L13 3LIG 1LIZ OLIZ 691 8913 L1917 9913 <91 ¥9IZ €91T 13918 1918 cﬁm <8
€8IC 3Z8IC IRIE O08IC 6LIE 8LIE LLIE 1€ SLIE FLIC €LIE GLIE ILIE OL1E 691€ s9(¢ 90 6S1% 8S1T LSI3 9SI8 SSIB ¥SIg €SIT ©SIe 1SIT 0SIc 6vIT 8PIC LPIT SFIT mmﬁm vw_e T 98
L91E 991€ S9IC POIE ©YIC TOIE 19IE (Q9IE 6SIE SSIE LSIE 9I€ SSIE $SIE €5IE TSIg el €v1% 2P1Z TFPIZ OF(Z 6L13 QL1 LEIZ 9EIT SE1Z ¥E1Z €L18 TEIT 1€18 0€1T 6clec 8GIT Hmm
ISIE 0SIE 6FIE SFIE L¥YIE€ OFIC SFIE FPIE €BIE TPIC IPIE OFIE 6CIC SLIE LEIE 9€1E | ~#D L01% 9%1% STl ¥6ls €318 %ol 1GIg 0313 6118 8118 LI1g 9I1c SII1Z ¥I1G €I13 31Ig 121
SeIe #CIE €21E eIt 1€1€ 0fIE 6TIE 8GIE L31€ 931€ SGIE PIE €GI€ 21 1TIE 021t | —€D 1113 Or1Z 6018 8013 013 9013 S0I5 #0IT €013 320IZ 10Ic O00IZ 6603 860 L60C 960G Hm.m
611€ 811 LIIE 9IIe SIIE ¥PIIE €liE &lIE THE OIIE 60IE 80IC LOIE 901 <OIE FulE atse] S60C ¥60Z €603 3603 1602 0603 680t 880T 1802 9803 S80% $80C €803 3I80T 180 080T lem
E0I€ BOIE 101€ 0OIE 660¢ 860C LBUE 9GUE S60E F6UE CBOC GTBUE 160 O6OT 680E 808 | —1D 6L05 8L03 LT 9.0 SL0Z P0G EL0G TLG 1.08 OLT 690G BUG 90T 90T ST F90T 18
LBUE 080 SBOE FBUE PSOC TBOC [B0E US0E BLOE BLOE LLOE 9LUE SLOE PLUE €06 TLOE | <0D €907 290 190 090 680 8903 LSOG 9SUT SSOC PSUT ESUT BSUS TS0 0S0G 6FUZ BFOZ | TO8
.._moonf.omhwmva—oL munon<mwhmmvnu~eL

Appendix B. Hexadecimal-Decimal Conversion Chart 39

INDEX

ABS Statement 17
Absolute Assembly 18
Absolute Expressions 10
Arithmetic Instructions 14
Assemble Absolute Statement 17
Assembler Features 1
Assembler Instructions 17, 26
ABS - Assemble Absolute 17
BES - Block Ended by Symbol 22
BSS - Block Started by Symbol 22
CALL - Call Subroutine 24
DC - Define Constant 19
DEC - Decimal Data 19
EBC - Extended BCD Imformation 21
END - End of Source Program 19
ENT - Define Subroutine Entry Point 23
EQU - Equate Symbol 22
ORG - Define Origin 18
XFLC - Extended Floating Constant 21
Assembler Program 1
Asterisk as an Element 9
Asterisk as an Operator 10
Asterisk in Column 21 3
Automatic Storage Assignment 2

BES Statement 22

Binary-Point Identifier 20

Blank Format 4

Block Ended by Symbol Statement 22
Block Started by Symbol Statement 22
Branch Instructions 14, 16

BSC Equivalents (Monitor) 15

BSS Statement 22

CALL Statement 24

Character Code Chart 34
Character Codes 33

Character Set 7, 34

Character Values 9

Coding Form 4

Comments Field 6

Condition Testing Instructions 13
Console Printer Hex Code 33

Data Definition Statements 19, 28

Data Representation 2

DC Statement 19

DEC Statement 19

Decimal Data Items 19

Disk Data Organization Statements 26
Decimal Data Statement 19
Decimal/Hexadecimal Conversion Chart 38
Decimal Integers 20

Define Constant Statement 19

40

Define Disk File (Monitor) 27
Define Interrupt Level Subroutine Statement

Define Interrupt Service Entry Point Statement 23

Define Message (Monitor) 28
Define Name Statement (Monitor) 29
Define Origin Statement 18

24

Define Sector Address Statement (Monitor) 26

Define Subroutine Entry Point Statement 23
Displacement 4, 5

DMES Statement (Monitor) 28

DN Statement (Monitor) 29

DSA Statement (Monitor) 26

Dump and Continue Execution (Monitor) 31
Dump and Terminate Execution (Monitor) 30
DUMP Statement (Monitor) 30

EBC Statement 21

EBCDIC Code 33

Effective Address 4

EJCT Statement (Monitor) 32
Elements 9

End of Source Program Statement 19
END Statement 19

ENT Statement 23
EPR-Extended Precision 18
EQU Statement 22

Equate Symbol Statement 22
Error Checking 2

EXIT Statement (Monitor) 30
Exponent 20

Expressions 9

Extended Binary Coded Information Statement 21
Extended Binary Coded Decimal Interchange Code

Extended Real Constant Statement 21

Features of the Assembler 1
Fields
Comments 6
Format 4
Identification-Sequence 7
Index Register 6
Label 3
Operand 6
Operation 3
Remarks 6
Tag 6
FILE Statement (Monitor) 27
Fixed Point Numbers 20
Format Field 4
Format of Assembler Statements 3

HDNG Statement (Monitor) 31
Heading Statement (Monitor) 31
Hexadecimal/Decimal Conversion Chart 38

33

Hexadecimal Notation 33
Hexadecimal Values 9

I Format S

IAR 4

IBM Card Code 33
Identification Field 7

ILS Statement 24

Index Registers, Specifying 6
Index Registers 6, 25

Index Register Field 6
Indirect Addressing 6
Input/Output Instructions 14
Instruction Address Register 4
1SS Number 23

ISS Statement 23

L Format 5

Label Field 3

LIBF - Call TV Reference Subroutine 25
LIBF Subroutine Transfer Vector 25
LIBR - Transfer Vector Subroutine 18
LINK Statement (Monitor) 30

Linking Statements 23, 30

LIST Statement (Monitor) 31

List Control Statements (Monitor) 31
List Segments of Program (Moritor) 31
Location Assignment Counter 7
Location Assignment Counter Overflow 8
Load Instructions 14

Load Link Program (Monitor) 30

Machine-Instruction Statements 13
Machine-~Instruction Mnemonics 13
Mantissa 20
Miscellaneous Instructions 14
Mnemonics 13, 15
Mnemonic Concept 3
Mnemonic Operation Codes 1
Modify Memory (Monitor Mnemonic) 15
Monitor Assembler Statements

DMES - Define Message 28

DN - Define Name 29

DSA - Define Sector Address 26

DUMP --Dump and Terminate Execution 30

EJCT - Start New Page 32

EXIT - Return to Supervisor 30
FILE - Define Disk File 27

HDNG - Heading 31

LINK - Load Link Program 30

LIST - List Segments of Program 31

PDMP - Dump and Continue Execution 31

SPAC - Space Listing 32
Name Code 29
Operand Field 6

Operators 10
Operation Field 3

ORG Statement 18

Overflow, Location Assignment Counter

Paper Tape Transmission Code
PDMP Statement (Monitor) 31

Program Control Statements 17
Program-Linking Statements 23, 30

Program Listings 2

Programming Considerations for DSA Statement 27

PTTC/8 33

Real Numbers 20
Relative Addressing 8

Relocatable Assembly 17

Relocatable Expressions
Relocatable Programs
Remarks Field 6
Renaming Symbols 2

10

17

33

Return to Supervisor (Monitor) 30

Self-Defining Values
Decimal 9
Hexadecimal 9
Character 9

Sequence Field 7

Shift Instructions 14, 16

Slash (/), Use of 9
Source Program 3

SPAC Statement (Monitor) 32
Space Listing (Monitor) 32

SPR-Standard Precision

18

Start New Page (Monitor) 32

Statement Field 3
Statement Writing 7

Storage Allocation Statements 22

Store Instructions 14

Subroutine Transfer Vector

Subroutines 1

25

Symbol Definition Statement 22

Symbol Table 7

Symbolic Language 1, 3

Symbolic Reference to Storage Addresses

Symbols 7
Symbols, Restrictions

Tag Field 6
Terms 10

7

Transfer Vector (LIBF) 25
Types of Expressions 10

Writing
Statements 7
Subroutines 23

X Format 5
XFLC Statement 21

7

2

1132 Printer EBCDIC Subset Hex Code 33
33

1403 Printer Hex Code

Index 41

C26-5927-4

TIBIM

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

‘V'S*n ur pajutid O¢TT WAl

¥-L265-920

READER'S COMMENT FORM

IBM 1130 Assembler Language Form C26-592744

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,

e ¢ s R

please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes No
® Does this publication meet your needs? O O
® Did you find the material:
Easy to read and understand?]]
Organized for convenient use?]]
Complete? []]
Well illustrated? |]
Written for your technical level?]]
® What is your occupation?
¢ How do you use this publication? 7
As an introduction to the subject? J As an instructor in a class? [] i
For advanced knowledge of the subject?] As a student in a class?P [!
For information about operating procedures? [As a reference manual? I i

Other

Please give specific page and line references with your comments when appropriate. i

COMMENTS

¢ Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C26-5927-4

YOUR COMMENTS PLEASE. ..

This SRL bulletin is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys-
tem should be directed to your IBM representative or to the IBM sales office serving your

locality.

FIRST CLASS

PERMIT NO. 1359
WHITE PLAINS, N.Y.

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID: BY . ..

IBM Corporation
112 East Post Road
White Plains, N. Y. 10601

Attention: Department 813

TIBIM

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International)

ssesescesssssssssssasesacecssvnosens

esbeescsecsssncescece

essessssssevsssevses

ssesessus

eescone

eecovesssssssesessscassse

*V*S°N U poImidd | Q¢ TT INAI

¥ ~L26S9-92D

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	replyA
	replyB

