File No. 1130-25
Form C26-5933- 3

IBM Systems Reference Library

IBM 1130 FORTRAN Language

This publication presents the IBM 1130 FORTRAN language
and programming rules, The FORTRAN language closely
resembles the language of mathematics and is designed to
be used for mathematically-oriented computer applications.

PREFACE

FORTRAN (FORmula TRANslation) is a coding
system with a language that closely resembles the
language of mathematics. It is a system designed
primarily for scientific and engineering computa-
tions. Since this system is essentially problem
oriented rather than machine oriented, it provides
scientists and engineers with a method of communi-
cation that is more familiar, easier to learn, and
easier to use than actual computer language.

This publication presents the IBM 1130
FORTRAN language and programming rules; it
should not be used as a FORTRAN primer. For
general information about FORTRAN, refer to the
IBM FORTRAN General Information Manual (Form
F28-8074).

Machine Configuration and Feature Requirements

The minimum machine configuration and feature
requirements needed to compile programs with the
IBM 1130 Card/Paper Tape FORTRAN Program-
ming System are:

e IBM 1130-1A Central Processing Unit.

° IBM 1442 Card Read Punch, or IBM 1134 Paper
Tape Reader and IBM 1055 Paper Tape Punch.

This edition (C26-5933-3) is a minor revision of the previous edition
(C26-5933-2), which is now obsolete,

Copies of this and other IBM publications can be obtained through
IBM Branch Offices. A form has been provided at the back of this
publication for readers' comments, If the form has been detached,
comments may be directed to: IBM, Programming Publications
Dept. 234, San Jose, Calif, 95114

© 1964, 1965 by International Business Machines Corporation

ii

IBM 1130 FORTRAN PROGRAMMING SYSTEM ...
Constants, Variables, and Subscripts0004

Arithmetic Statements
Control Statements . . .
Input/Output Statements
Specification Statements
Subprogram Statements

MONITOR FORTRAN

o

LICIRY

.o

o

..

.

.

.

.

.

e s ec e 0000 0

L A I I

e e o000 00 0

PR A A I)

s c0cs s e e

e s e s 0000000

APPENDIX A, 1130 FORTRAN SOURCE PROGRAM

CHARACTER CODES

R A A]

P A A N I

O OO =

17
20

28

30

iii

CONTENTS

APPENDIX B. NONSTANDARD ITEMS AND
IMPLEMENTATION RESTRICTIONS ..vvvvesncsocoencneaeas 31

APPENDIX C, SOURCE PROGRAM STATEMENTS
ANDSEQUENCING .. .cesevoveecsonoaveoaacsoeass 32

APPENDIX D. IBM SYSTEM/360 RESERVED
WORDS .ovieveerecoscaorsossosonnsnsensnnse 33

INDEX teecesveroesesoorancsoacoscssansecses 34

The IBM 1130 FORTRAN Programming System con-
sists of two parts: the language and the compiler,
The language is a set of statements, composed of
expressions and operators, which are used in writ-
ing the source program. The 1130 FORTRAN Com-
piler, provided by IBM, is a program which trans-
lates the source program statements into a form
suitable for execution on the IBM 1130 System. The
translated statements are known as the object pro-
gram. The compiler detects certain errors in the
source program and writes appropriate messages
on the typewriter or printer., At the user's option,
the compiler also produces a listing of the source
program and storage allocations.

Coding Form

The statements of a FORTRAN source program are
normally written on a standard FORTRAN coding
sheet (Form No., X28-7327). FORTRAN statements
are written one to a line in columns 7-72. If a
statement is too long for one line, it may be con-
tinued on a maximum of five successive lines by
placing any character other than a blank or a zero
in column 6 of each continuation line. For the first
line of a statement, column 6 must be blank or zero.
Columns 1-5 of the first line of a statement may
contain a statement number. This statement number
consists of 1-5 digits of any value; leading zeros are
ignored. However, statement numbers may not con-
tain leading zeros when they appear elsewhere in
FORTRAN statements. Statement numbers may
appear anywhere in the statement number field but
must not contain any non-numeric characters. The
statement numbers may be assigned in any order; the
sequence of operations is always dependent upon the
order of the statements in the program, not on the
value of the statement numbers.

NOTE: Superfluous statement numbers may decrease
efficiency during compilation and should, therefore,
be avoided. Statement numbers on specification .
statements are ignored. '

Columns 73-80 are not used by the FORTRAN
compiler and may, therefore, be usedfor program
identification, sequencing, or any ot er purpose.

Comments to explain the program may be writ-
ten in columns 2-72 of a line if the/character C is
placed in column 1. Comments
except before a continuation line or after an END

-statement. The comments are not processed by

y appear anywhere'

IBM 1130 FORTRAN PROGRAMMING SYSTEM

the FORTRAN compiler. Likewise, blank records
in a source program are ignored by the FORTRAN
compiler.

Statements

The FORTRAN statements are the instructions used
in the FORTRAN language. There are five categories
of FORTRAN statements:

o Arithmetic Statements, which are used to define
calculations to be performed.

e Control Statements, which are used to govern the
sequence of execution of the program statements.

e Input/Output Statements, which are used to trans-
mit information between the computer and input
or output units.

e Specification Statements, which are used to pro-
vide information about the data that the object
program is to process.

e Subprogram Statements, which are used to define
and use subprograms.

Blanks may be used freely to improve the readability
of a FORTRAN program listing. For example, the
following statements have a valid format:

GObTO(1,2,3,4),1
GObTObb(1,2, 3,4),bbI

where b represents a blank.

CONSTANTS, VARIABLES, AND SUBSCRIPTS

FORTRAN provides a means of expressing numeric
constants, variable quantities, and subscripted vari-
ables. The rules for expressing these quantities are
quite similar to the rules of ordinary mathematical
notation, :

Arithmetic calculations are performed with
binary numbers; since decimal fractions cannot be
represented exactly, exact decimal results of
arithmetic calculations should not be expected.

Constants

A constant is any number which is used in a computa~-
tion without change from one execution of the program

to the next, A constant appears in numeric form in
the source statement., For example, in the state-
ment

J=3+K

the 3 is a constant, since it appears in actual numer-
ic form. Two types of constants may be written in
FORTRAN: integer and real.

Integer Constants - ..\’\4' L, M o N

An integer constant is a number written without a
decimal point, The magnitude of an integer constant
must not be greater than 32767 (215—1),

Commas are not permitted within any FORTRAN
constants. A preceding plus sign is optional for
positive numbers. Any unsigned constant is assumed
to be positive.

The following examples are valid integer con-
stants:

0

91
-173
+327

The following are not valid integer constants:

3.2 (contains a decimal point)
27, (contains a decimal point)
31459036 (exceeds the magnitude permitted

by the compiler)
5,496 (contains a comma)

Real Constants

A real constant is a number written with a decimal
point and consisting of 1-7 or 1-10 significant deci-
mal digits (the precision to be selected at compile
time). The magnitude of a real constant must not be
greater than 2127 or less than 27129 (approximately
1038 and 10739) or it may be zero. ‘

A real constant may be followed by a decimal ex-
ponent written as the letter E followed by a one- or
two-digit integer constant (signed or unsigned) indi-
cating the power of 10,

The following examples are valid real constants:

105,
3. 14159
5.E3 (5.0 x 105)
5.0E3 (5.0 x 103)
-5, 0E03 (-5.0 x 103)
5.0E-3 (5.0 x 1073
5.0E1 (5.0 x 10)

The following are not valid real constants:

325 (no decimal point; however, this
is a valid integer constant)

5.0E (no exponent)

5.0E003

(exponent contains three digits)

Variables

A FORTRAN variable is a symbolic representation of
a quantity that may assume different values. The
value of a variable may change either for different
executions of a program or at different stages within
the program. For example, in the statement:

A =50+8B

both A and B are variables, The value of B is deter-
mined by some previous statement and may change
from time to time. The value of A varies whenever
this computation is performed with a new value for B.

Variable Names
A variable name consists of 1-5 alphameric charac-

ters, the first of which must be alphabetic. (See
Appendix A.)

Examples:
M
DEVS86
12

Variable Types

The type of variable corresponds to the type of data
the variable represents (i.e., integer or real).
Variables can be specified in two ways: implicitly or
explicitly.

Implicit Specification. Implicit specification of a
variable is made as follows:)

1, If the first character of the variable name is
1, J, K, L, M, or N, the variable is an
integer variable.

2, If the first character of the variable name is
notI, J, K, L, M, or N, the variable is a
real variable,

Explicit Specification, Explicit specification of a
variable type is made by using the Type statement
(see Type Statements). The explicit specification

overrides the implicit specification. ¥or example,
if a variable name is ITEM and a Type specification
statement indicates that this variable is real, the
variable is handled as a real variable, even though
its initial letter is I.

Naming Variables

The rules for naming variables allow for extensive
selectivity. In general, it is easier to follow the flow
of a program if meaningful symbols are used wher-
ever possible, For example, to compute distance it
would be possible to use the statement:

X = Y*Z (Asterisk denotes multiplication)

but it would be more meaningful to write:
D = R*T
or:
DIST = RATE * TIME
Similarly, if the computation were to be performed
using integers, it would be possible to write:
I =J*K
or:
ID=1IR * IT
or:

IDIST = IRATE * ITIME

In other words, variables can often be written in a
meaningful manner by using an initial character to
indicate whether the variable is an integer or real and
by using succeeding characters as an aid to the user's
memory,

Arrays and Subscripts

An array is a group of quantities arranged in a parti-
cular order. It is often advantageous to be able to
refer to this entire group by one name, and to refer
to each individual quantity in this group in terms of
its position in the group. For example, assume that
the following is an array named NEXT:

15

12

18

42

19

Suppose it is desired to refer to the second quantity
in the group; in ordinary mathematical notation, this
would be NEXT,,. In FORTRAN this would be NEXT(2).
The quantity 2 is called a subscript. Thus, NEXT(2)
has the value 12 and NEXT(4) has the value 42,
Similarly, an ordinary mathematical notation
might use NEXT,, to represent any element of the
array NEXT. In FORTRAN, this is written as NEXT
(I) where I equals 1, 2, 3, 4, or 5.
The array could be two-dimensional; for example,
the array LIST:

COLUMN1 COLUMN2 COLUMN3
ROW1 82 4 7
ROW2 12 13 14
ROW3 91 1 31
ROW4 24 16 10
ROW5 2 8 2

Suppose it is desired to refer to the number in
row 2, column 3; this would be: .

LIST(2, 3)

~where 2 and 3 are the subscripts. Thus, LIST(2, 3)

has the value 14 and LIST(4, 1) has the value 24,
Ordinary mathematical notations might use
LISTi,]' to represent any element of the array LIST.
In FORTRAN, this is written as LIST(I, J) where I

equals 1, 2, 3, 4, or 5 and J equals 1, 2, or 3.

FORTRAN allows up to three subscripts (i.e.,
three-dimensional arrays). For example, a three-
dimensional array might be used to store statistical
data on the urban and rural population of each state
for a period of 10 decades.

The use of an array in the source program must
be preceded by either a DIMENSION statement, a
COMMON statement, or a Type statement in order
to specify the size of the array. The first of these
statements that refers to the array must specify its
size (see Specification Statements).

Arrangement of Arrays in Storage

Arrays are stored in column order in descending stor-
age addresses, with the value of the first of their sub-
scripts increasing most rapidly and the value of the
last increasing least rapidly, In other words, arrays

. are stored with element (1,1,1) in a higher core lo-

cation than element (2, 3,4). In scanning the array
from element (1,1, 1), the left indices are advanced

more rapidly than those on the right, A one-dimen-
sional array, J(5), in address 0508 appears in storage

as follows:

Address Element
0500 J (5)
0502 J 4)
0504 J (3)
0506 J(2)
0508 J (1)

A two-dimensional array, K (5,3), appears in
storage in single-array form in ascending storage
addresses in the following order reading from left
to right:

K (5,3) K (4,3) K (3,3) K (2,3) K (1,3) K (5, 2)
K42 K(@3,2 K(22K(1,2KG,1)K@,1)
K (3,1) K (2,1) K (1,1)

If K (5,3) is in core address 0200, K (1, 1) will be
in core address 0228.

- The following list is the order of a three-

dimensional array, A(3, 3, 3):

A(3,3,3) A(2,3,3) A1, 3,3) A(3, 2,3) A(2, 2,3)
A(1,2,3) A(3,1,3) A2, 1,3) A(1,1,3) A(3,3, 2)
A(2,8,2) AL, 3,2) A(3,2,2) A(2,2,2) A(1, 2, 2)
A(3,1,2) A(2,1,2) A(1,1,2) A(3,3,1) A(2,3, 1)
A(1,3,1) A(3,2,1) A(2,2,1) A(1,2,1) AGS, 1,1)
A(2,1,1) A(L, 1, 1)

Subscript Forms

Subscripts may take the following forms:

v
c

\'ard
v-c
c*v
c*v+ie!
c*v-c'

where: v represents an unsigned, nonsubscripted,

integer variable; ¢ and c' represent unsigned

integer constants.

The value of a subscript must be greater than

Zero.

The following are valid subscripts:

IMAX

19
JOB+2
NEXT-3
8*IQUAN
5*L+7
4*M-3

The following are not valid subscripts:

-1 (the variable may not be signed)

A+2 (A is not an integer variable unless
defined as such by a Type state-
ment)

I+2. (2. is not an integer constant)

-2%J (the constant must be unsigned)

I3) - (a subscript may not be subscripted)

K*2 (for multiplication, the constant

must precede the variable; thus,
2*K is correct)

2+JOB (for addition, the variable must
precede the constant; thus, JOB+2
is correct)

Subscripted Variables

A subscripted variable consists of a variable name
followed by a pair of parentheses enclosing one, two,
or three subscripts separated by commas.

Examples:

A(I)

K(@3)

ALPHA (I, J+2)

BETA (5*%J-2, K-2, L+3)

Expressions

Expressions appear on the right-hand side of arith-
metic statements and in certain control statements.
Expressions are used to specify a computation be-

tween constants and variables.

Arithmetic Expressions

The simplest arithmetic expression consists of a
single constant, variable, or subscripted variable.
If the quantity is an integer quantity, the expression
is said to be in the integer mode. If the quantity is
a real quantity, the expression is said to be in the
real mode.

Examples:

MODE OF
EXPRESSION TYPE OF DATA EXPRESSION

Integer Constant Integer

I Integer Variable Integer
3.0 Real Constant Real
A Real Variable - Real
A(D) Real Variable Real

In the last example, note that the subscript
(which is always an integer quantity) does not affect
the mode of the expression. The mode of the ex-
pression is determined solely by the mode of the
quantity itself.

An arithmetic expression is usually a com-
bination of constants, subscripted or nonsubscripted
variables, function names (see Subprogram State-
ments), and arithmetic operation symbols.

The arithmetic operation symbols +, -, *, /,
and ** denote addition, subtraction, multiplication,
division, and exponentiation, respectiyely.

Examples:

A+3.0

B**2

C-D

E/F
A*(X*%2)+B*X-C

Rules for Construction of Arithmetic Expressions

Rule 1. All constants, variables, and functions
that form an arithmetic expression need not be of
the same mode or type. It should be noted, how-
ever, that a mixed expression is computed in the
real mode. This means that in mixed mode
computations all integer values will be converted
to real values.

Examples: The following are valid expressions:

Expression Mode
F Real
5% JOB+HITEM/(2*ITAX) Integer
5. *AJOB+BITEM/ (2. *TAX) Real
J+1 ' Integer
A**[+B(J)+C(K) Real
Ax*B Real
I**J+K(L) Integer
A+B(I)/ITEM Mixed
DEV+ Mixed
ITA**2,5 Mixed

Rule 2. Any expression may be enclosed in paren-
theses. The use of parentheses does not affect the
mode of the expression. Thus, A, (A), and ((A))
are all valid real expressions.

Parentheses may also be used in arithmetic
expressions, as in algebra, to specify the order in
which the various arithmetic operations are to be
performed. Within parentheses, or where paren-
theses are omitted, the order of operations is as
follows:

1. Evaluation of Functions

2., Exponentiation

3. Multiplication and Division (left to right)

4. Addition and Subtraction (left to right)

For example, the expression:
A*B/(C+D)**I+D

is effectively evaluated in the following order:

1. AxB
2. C+D

3. (c+D)!

4. (AxB)/(C+D)!

5. ((AxB)/(C+D)l)+D

NOTE: Parentheses may not be used to imply
multiplication; the asterisk arithmetic operator must
always be used for this purpose. Therefore, the
algebraic expression:

(AxB) (-cP)
must be written as:
(A*B) * (-C**D)

Rule 3. No two operators may appear in sequence
(e.g., A*-B is invalid).

Rule 4. No operation symbol may be assumed (e. g.,
3A will not be taken as 3. *A).

Rule 5. The expression A**B**C is permitted and
evaluated as A**(B**C),

ARITHMETIC STATEMENTS

The Arithmetic statement is similar to a mathe-
matical equation.

General Form:
A=B
where:

A is any variable (subscripted or nonsub-
scripted), and B is an arithmetic expres-
sion.

In an Arithmetic statement, the equal sign
means: is to be replaced by, rather than, is equal
to. This distinction is important; for example,
suppose the integer variable I has the value 3.
Then, the statement:

I=I+1

would give I the value 4. This technique enables the
programmer to keep counts and perform other re-
quired operations in the solution of a problem.

Examples:

K=X+2,5
ROOT = (-B+(B**2-4, *A*C)**, 5)/(2. *A)
ANS (I) = A(J) + B(K) »

In each of the above Arithmetic statements, the
arithmetic expression to the right of the equal sign
is evaluated, converted to the mode of the variable
to the left of the equal sign (if there is a difference),
and this converted value is stored in the storage
location associated with the variable name to the
left of the equal sign.

In the first example, K=X+2,.5, assume that
the current value of X is 232.18, Upon execution
of this statement, 2.5 is added to 232. 18, giving
234.68. This value is then truncated (because K is
an integer variable) to 234, and this value replaces
the value of K. If K were defined as a real variable
" by a Type statement, truncation would not occur
and the value of K would be 234. 68.

Examples:

A=1 Convert I to real value and store it
in A.

A=B Store the value of B in A,

A =3,*B Multiply 3 by B and store the result
in A.

I=B Truncate B to an integer and store
it in L,

CONTROL STATEMENTS

The second class of FORTRAN statements is com-
posed of control statements that enable the program-
mer to control the course of the program. Normally,
statements are executed sequentially; that is, after
one statement has been executed, the statement
immediately following it is executed. However,

it is often undesirable to proceed in this manner.

The following statements may be used to alter the
sequence of a program.

Unconditional GO TO Statement

This statement interrupts the sequential execution
of statements, and specifies the number of the next
statement to be performed.

General Form:
GOTOn
where:
n is a statement number.
Examples:

GO TO 25
GO TO 63468

The first example causes control to be trans-
ferred to the statement numbered 25; the second
example causes control to be transferred to the
statement numbered 63468.

Computed GO TO

This statement also indicates the statement that is
to be executed next. However, the statement num-
ber that the program is transferred to can be altered
during execution of the program.

General Form:

GO TO (n3, ng, . .., ny), i

where:

nl, N,y « « « 5 Ny, are statement numbers and
i“is an integer variable whose value is
greater than or equal to 1 and less than or
equal to the number of statement numbers
within the parentheses.

This statement causes control to be transferred
to statement nj, ng, . . . , Ny, depending on
whether the current value of i is 1, 2,. .., orm,
respectively.

NOTE: If i>m or i<1, the results are unpredictable.

Example:

GO TO (10, 20, 30, 40), ITEM

In this example, if the value of ITEM is 3 at
the time of execution, a transfer occurs to the
statement whose number is third in the series (30).
If the value of ITEM is 4, a transfer occurs to the
statement whose number is fourth in the series (40),
ete.

IF Statement

This statement permits the programmer to change
the sequence of statement execution, depending upon
the value of an arithmetic expression.

General Form:

. n

IF (a) nl, n2

3

where:

a is an expression and nq, ny, and ng are
statement numbers. The expression, a,
must be enclosed in parentheses; the state-
ment numbers must be separated from one
another by commas.

Control is transferred to statement ny, ng, or ng
depending on whether the value of a is less than,

equal to, or greater than zero, respectively.

Example:

IF ((B+C)/(D**E)-F) 12, 72, 10
10 .

12

72

which means: if the result of the expression is less
than zero, transfer to the statement numbered 12; if
the result is zero, transfer to 72; otherwise, trans-
fer to the statement numbered 10.

DO Statement

The ability of a computer to repeat the same opera-
tions using different data is a powerful tool that
greatly reduces programming effort. There are
several ways to accomplish this when using the
FORTRAN language. For example, assume that a
manufacturer carries 1, 000 different parts in in-
ventory. Periodically, it is necessary to compute
the stock on hand of each item (STOCK) by subtracting
stock withdrawals of that item (OUT) from the pre-
vious stock on hand. These results could be achieved
by the following statements:

5 I=0

10 I=I+1
25 STOCK (I) = STOCK (I) - OUT ()
15 IF (I-1000) 10, 30,30

The three statements (5, 10, and 15) required
to control this loop could be replaced by a single DO
statement.

General Form:

DOni =m1, my
or

DOni= my, mz, mg
where:

n is a statement number, i is a nonsub-
scripted integer variable, and my, mg, mg
are unsigned integer constants or nonsub-
scripted integer variables. If mg is not
stated (it is optional), its value is assumed
to be 1. In this case, the preceding comma
must also be omitted.

Examples:
DO501I=1, 1000

DO10I=J, K, L
DO111I=1, K, 2

The DO statement is a command to repeatedly exe-
cute the statements that follow, up to and including the

statement n. The first time the statements are
executed, i has the value mj, and each succeeding
time, i is increased by the value of mg. After the
statements have been executed with i equal to the
highest value that does not exceed mg, control passes
to the statement following statement number n. This
is called a normal exit from the DO statement.

The range (n) is the series of statements to be
executed repeatedly. It consists of all statements
following the DO, up to and including statement n.
The range can consist of any number of statements.

The index (i) is an integer variable that is incre-
mented for each execution of the range of statements.
Throughout the range of the DO, the index is avail-
able for use either as a subscript or as an ordinary
integer variable. However, the index may not be
changed by a statement within the range of the DO.
Upon the completion of the DO, the index must be
redefined before being used again. When transfer-
ring out of the range of a DO, the index is available
for use and is equal to the last value it attained.

The initial value (m) is the value of the index
for the first execution of the range. The initial value
cannot be equal to zero or negative.

The test value (m,) is the value that the index
must not exceed. After the range has been executed
with the highest value of the index that does not ex-
ceed the test value, the DO is completed and the pro-
gram continues with the first statement following the
range. The test value is compared with the index
value at the end of the range; therefore, a DO loop
will always be executed at least once.

The increment (mg) is the amount by which the
value of the index will be increased after each exe-
cution of the range., The increment may be omitted,
in which case it is assumed to be 1,

Example:

DO 25 I=1, 10
5
10
15
20 ,
25 A=B+C
26 .

This example shows a DO statement that will
execute statements 5, 10, 15, 20, and 25 ten times
Upon each execution, the value of I will be incre-
mented by 1 (1 is assumed when no increment is

specified), After completion of the DO, statement
26 is executed.

In some cases, the DO is completed before the
test value is reached. Consider the following:

DO 5 K=1,9,3

In this example, the range is executed three
times (i.e., K equal to 1, 4, and 7). The next
value of K would be 10. Since this exceeds the test
value, the DO is completed after three iterations.

Restrictions. The restrictions on statements in the
range of a DO are:

1, Within the range of a DO may be other DOs,
When this is so, all statements in the
range of the inner DO must be in the range
of the outer DO. A set of DOs satisfying
this rule is called a nest of DOs. The
maximum depth of a single nest of DOs is
25. For example, the following configura-
tion is permitted (brackets are used to
indicate the range of the DOs):

DO

DO

bo

but, the following configuration is not
permitted:

DO

DO

2. Transfer of control from inside the range of
a DO to outside its range is permitted at any
time. I, and only if, a'transfer is made
from the range of an innermost DO loop,
transfer back into the range of that innermost
DO loop is allowed provided none of the in-
dexing parameters (i, mj;, mgp, mg) are
changed outside the range of the DO. A
transfer back into the range of any other DO
in the nest of DOs is not permitted. The
fdllowing illustrations show those transfers
that are valid and those that are invalid.

VALID: INVALID:

DO

Do<> DOD

| 190088]

3. The last statement in the range of a DO loop
must be an executable statement; however,
it must not be a GO TO, IF, STOP, PAUSE,
RETURN, or another DO statement.

4. Any statement that redefines the value of
the index or any of the indexing parameters
(i.e., mj, mg, mg) is not permitted in the
range of a DO,

CONTINUE Statement

CONTINUE is a dummy statement that does not pro-
duce any executable instructions. It may be used as
the last statement of a DO loop to provide a transfer
point (statement number) for GO TO or IF state-
ments that are intended to begin another repetition
of the DO range. ‘ ’

. General Form:
CONTINUE

In the following example, the DO loop is executed
20 times. The CONTINUE statement provides the
transfer point to begin the DO loop again when I<20.
When 1=20, the DO loop is executed once more and
the CONTINUE statement then provides the transfer
point for the next sequential statement outside the
DO loop, that is, statement 40.

DO30I=1,20

D=D +5.0
7 IF (A - B) 10,30,30
10 A=A+1.0 -
B=B-20
GO TO 7
30 CONTINUE
40 C=A+B

PAUSE Statement
‘General Form:
PAUSE or PAUSE n

where:

n is an unsigned integer constant whose value
is equal to or less than 9999,

The PAUSE statement causes the program to
stop on a Wait instruction. Ifn is specified, it is
treated as a hexadecimal number and displayed on
the console by the accumulator lights. Pressing the
Start key on the console causes the program to
resume execution, starting with the next executable
statement following the PAUSE statement.’

STOP Statement
General Form:
STOP or STOP n
where:

n is an unsigned integer constant whose value
is equal to or less than 9999.

The STOP statement terminates the program.
If n is specified, it is treated as a hexadecimal
number and displayed on the console by the accumu-
lator lights.

END Statement

General Form:
END

The END statement defines the end of a program
or subprogram for the compiler. Physically, it
must be the last statement of each program or sub-
program. The END statement is not executable.
Any source program cards following the END card
will not be compiled.

INPUT/OUTPUT STATEMENTS

The Input/Output (I/O) statements control the trans-
mission of information between the computer and the
following I/O units such as the card reader punch,
printer, paper tape reader, paper tape punch, type-
writer and keyboard. 1/0 statements are classified
as follows:

1. General I/O Statements. These statements

~ cause transmission of information between
the computer and I/O units. They are READ
and WRITE.

2, FORMAT Statements, These are non-
executable statements that specify the
arrangement of the data to be transferred,
and the editing transformation required
between internal and external forms of the
data. The FORMAT statements are used
in conjunction with the general I/O state-
ments, ‘

General I/0 Statements

READ Statement

The READ statement is used to transfer information
from any input unit to the computer. Two forms of
the READ statement may be used, as follows:

READ (a,b) List
READ (a,b)
where:
a is an unsigned intéger constant or integer
variable that specifies the logical unit

number to be used for input data. The
logical input unit numbers for the 1130

System are:
2 1442 Card Reader
4 1134 Paper-Tape Reader
6 Console Keyboard

b is the statement number of the FORMAT
statement describing the type of data con-
version.

List is a list of variable names, separated by
commas, for the input data.) :

The READ (a, b) List form is used to read a
number of items (corresponding to the variable
names in the list) from the file on unit a, using
FORMAT statement b to specify the externalrepre-

- sentation of these data (see FORMAT Statement),

The List specifies the number of items to be
read and the locations into which the items are to be
placed. For example, assume that a card is punched
as follows:

10

Card Columns Contents
1-2 - ’ 25

5-7 102
61-64 ' <101
70-71 -) 10

80)

If the following statemeht appears in the source
program:

READ (2,25) 1, J, K, L, M

the card is read (assuming that 25 is the number of
an appropriate FORMAT statement), and the pro-
gram operates as though the following statements
had been written:

I =25
S d =102
K = -101
L. =10
M-=5

After the next execution of the READ statement,
L, J,K,L, and M will have new values, depending upon
what is punched inthe next card read.

Any number of quantities may appear in a single
list, Integer and real quantities may be transmitted
by the same statement. ‘

If there are more quantities in an input record
than there are items in the list, only the number of
quantities equal to the number of items in the list are
transmitted; remaining quantities are ignored.

Thus, if a card contains three quantities and a
list contains two, the third quantity is lost. Con-
versely, if a list contains more quantities than the
input record, succeeding input records are read
until all the items specified in the list have been
transmitted. .

When an array name appears in an I/O list in
nonsubscripted form, all of the quantities inthe array
are transmitted in the order in which they are stored
(see Arrangements of Arrays in Storage). For ex-
ample, assume that A is defined as an array of 25
quantities. Then, the statement:

READ (2,15) A
causes all of the quantities A(1), . . . , A(25) to be
read into storage (in that order) from the 1442 Card
Reader with an appropriate FORMAT statement.
Indexing I/0 Lists

Variables within an I/O list may be indexed and in-
cremented in the same manner as with a DO statement.

For example, suppose it is desired to read data
into the first five positions of the array A. This
may be accomplished by using an indexed list, as
follows:

READ (2, 15) (A(I), I=1,5)
15 FORMAT (F10.3)

This is equivalent to:

DO 12 I=1,5
12 READ (2, 15) A(D)
15 FORMAT (F10.3)
As with DO statements, a third indexing parameter
may be used to specify the amount by which the index
is to be incremented at each iteration. Thus,

READ (2, 15) (A(D), I=1, 10, 2)

causes transmission of values for A(1), A(3), A(5),
A(7), and A(9). Furthermore, this notation may be
nested. For example, the list: :

«ca, J), bd, J), J%l, 5), I=1, 4)

would transmit data in the following order, reading
from left to right:

C(1,1), D(1, 1), C(1,2), . . ., C(1,5), D(1,5)
C(2,1), D(2,1), C(2,2), . . ., C(2,5), D(2,5)
C(3, 1), D(,1), CB3,2), . . ., C@3,5), D@3,5)
C{4,1), D4,1), C(4¢,2), . . ., C(4,5), D(4,5)

The READ (a,b) form may be used in conjunc-
tion with a FORMAT statement to read H-type alpha-
meric data into an existing H-type field in core
storage (see Conversion of Alphameric Data). The
size of the data field determines the amount of data
to be read, For example, the statements:

10 FORMAT (23HTHIS.IS ALPHAMERIC DATA)

READ (INPUT, 10)

cause the next 23 characters to be read from the
- file on the unit named INPUT and placed into the
H-type alphameric field whose contents were:

THIS IS ALPHAMERIC DATA

WRITE Statement

The WRITE statement is used to transfer information
from the computer to any of the output units (tape,

printer, card punch, etc.). Two forms of the WRITE
statement may be used as follows:

WRITE (a,b) List
WRITE (&,b)

where:

a is an unsigned integer constant or integer
variable that specifies the logical unit num-
ber to be used for output data,” The logical
output unit numbers for the 1130 System
are:

Console Printer

1442 Card Punch

1132 Printer

1055 Paper-Tape Punch

B> WD

b is the statement number of the FORMAT
statement describing the type of data
conversion, -

List is a list of variable names separated by
commas for the output data.

The WRITE (a,b) List form of the WRITE state-
ment is used to write the data specified in the list on
the file on unit a, using FORMAT statement b to
specify the external representation of the data (see
FORMAT Statement).

NOTE 1: The 1442 Card Read Punch has one input
hopper. Therefore, if a READ or WRITE statement
references a 1442, care should be taken to avoid
punching a card that was only meant to be read or
reading a card that was only meant to be punched.

NOTE 2: K the first I/O instruction is a WRITE to
the 1442, no cards should be stacked behind the
subroutine library deck. The library deck should
be run out (NPRO) before placing blank cards in the
hopper. '

The WRITE (a,b) form is used to write alpha-
meric data (see Conversion of Alphameric Data).
The actual data to be written is specified within the
FORMAT statement; therefore, an I/0 list is not
required. The following statements illustrate the
use of this form:

25 FORMAT (24HWRITE ANY DATA IN H TYPE)
WRITE (2, 25)

11

Specifying Format

In order for quantities to be transmitted from an
external storage medium (e. g., cards or paper
tape) to the computer or from the computer to an
external medium (cards, paper tape, or printed
line), it is necessary that the computer know the
form in which the data exists. This is accomplished
by data conversion specifications within a FORMAT
statement (see Conversion of Numeric Data).

FORMAT Statement

The I/0 statements require, in addition to a list of
quantities to be transmitted, reference to a FOR-
MAT statement. The FORMAT statement describes
the type of conversion to be performed between the
internal and the external representation of each
quantity in the list by the use of data conversion
specifications (see Conversion of Numeric Data).
FORMAT statements may appear any place within the
source program after all specification statements.

General Form:
m FORMAT (kg Kgs « s K /tytos eevst /o) |
where: k

kl’kz’ eves kn and tl, tz. ...,tprepresent data
conversion specifications.
/ vepresents the beginning of a new record,

and m represents a statement number.

Examples:

5 FORMAT (I5, F8.4)
18 FORMAT (14/F6. 2, F8.4)
20 FORMAT (E11 .4/ 18)

FORMAT statements are not executed but they
must be given a statement number. ’

Slashes are used in a FORMAT statement to
delimit unit records, which must be one of the follow-
ing.

1. A punched card or paper tape record with
a maximum of 80 characters.

2. A printed line with a maximum of 120
print characters and 1 carriage control
character.

3. A typewritten line with a maximum of 120
characters,

Thus, the statement:

-5 FORMAT (F9. 2/E14.5)

12

specifies the data conversion specification F9..2 for

. the first unit record, and the data conversion speci-

fication E14.5 for the second unit record.

Successive items in the I/0 list are transmitted
according to successive specifications in the FOR-
MAT statement, until all items in the list are trans-
mitted, If there are more items in the list than there
are specifications in the FORMAT statement, control
transfers to the preceding left parenthesis (inclu-
ding any preceding repeat constant) of the FORMAT
statement and the same specifications are used
again with the next unit record. For example,
suppose a program contains the following statements:

10 FORMAT (F10.3,E12.4,F12.2)

WRITE (3, 10) A, B, C,D,E, F, G

The following table shows the data transmitted
in the column on the left and the specification by
which it is converted in the center column., The
column on the right shows the number of the record
which contains the data.

Data Transmitted Specification Record Number
F10.3 1

El12.4
F12,2
F10.3
E12.4
F12.2
F10.3

QEEDOWE >
W N NN -

A specification may be repeated as many times
as desired (within the limits of the output unit) by
preceding the specification with an unsigned integer
constant. Thus, ‘

(2F 10. 4)
is equivalent to:

(F10.4, F10.4)

A limited, one-level, parenthetical expression
is permitted to enable repetition of data fields ac-
cording to certain format specifications within a
longer FORMAT statement. For example, the state-
ment:

10 FORMAT (2(F10.6, E10.2), I4)
is equivalent to:

10 FORMAT (F10.6, E10. 2, F10. 6, E10, 2, I4)

If there had been 8 items in the list, the above
FORMAT statement would have been equivalent to:

10 FORMAT (F10.6,E10. 2,F10.6,E10. 2, 14/
F10.6,E10, 2, F10. 6)

The specifications in 2 FORMAT statement need
not correspond in mode with the list items in the
1/O statement; automatic input conversion will
convert external values (I-type, E-type, and F-type)
to the correct internal representation depending on
the type of the variable in the READ statement list.
The same type of conversion will be handled for
variables in the WRITE statement list.

Conversion of Numeric Data

Three types of specifications (or conversion codes)
are available for the conversion of numeric data.
These types of conversions are specified in the
following form:

Iw
Fw.d
Ew.d

where:

I, F, and E specify the type of conversion.

w is an unsigned integer constant specifying
the total field length of the data. (This
specification may be greater than that re-
quired for the actual digits in order to pro-
vide spacing between numbers.)

d is an unsigned integer constant specifying the
number of decimal places to the right of
the decimal point.

NOTE: The decimal poinf between the w and d por-
tions of the specification is required.

For purposes of simplification, the following
discussion of conversion codes deals with the printed
line. The concepts developed apply to all permissible
input/output media.

I-Conversion (Iw)

The specification I5 may be used to print a number
in integer form; 5 print positions are reserved for
the number. I is printed in this 5-position field
right-justified (that is, the units position is at the
extreme right). I the number to be converted is
greater than 4 positions, an error ‘condition will
exist if the number is negative. A print position

must be reserved for the sign if negative values are
printed, but positive values do not require a position
for the sign. If the number has less than 4 digits, the
leftmost print positions are filled with blanks. If
the quantity is negative, the position preceding the
leftmost digit contains a minus sigh.

The following examples show how each of the
quantities on the left is printed, accordmg to the
specification I3:

Internal Value - Printed
721 721
-721 *kok
-12 -12
8114 *kk
0 . - 0
-5 -5
9 9
1.7 1

NOTE: All error fields are filled in with asterisks.
F-Conversion (Fw.d)

For F-type conversion, w is the total field length
reserved and d is the number of places to the right
of the decimal point (the fractional portion). For
output, the total field length reserved must include
sufficient positions for a sign, if any, a digit to the
left of the decimal point, and a decimal point. The
sign, if negative, is printed. In general, w should
be at least equal to d +3 for output.

If insufficient positions are reserved by d, the
fractional portion is truncated from the right. If
excessive positions are reserved by d, zeros are
filled in from the right. The integer portion of the
number is handled in the same fashion as numbers
converted by I-type conversion on input and output.

The following examples show how each of the
quantities on the left is printed according to the
specification F5.2: '

Internal Value Printed
12.17 12.17
-41.16 Heokok ok
-2 -0.20
7.3542 7.35%

-1.) -1.00
9.03 9.03
187. 64 sedokokok
5 5.00
0 0.00

1 Last two digits of accuracy lost due to insufficient
specification. '

13

NOTES: . '
1. Al error fields are filled in with asterisks.

2. Numbers for F-conversion input need not
have their decimal points appearing in the input field.
If no decimal point appears, space need not be allo-
cated for it. The decimal point will be supplied when
the number is converted to an internal equivalent; the
position of the decimal point will be determined by the
format specification. However, if the decimal point
does appear within the field and it is different from
the format specification, this position overrides the
position indicated in the format specification.

3. - Fractional numbers for which F-type out-
put conversion is specified are normally printed with
a leading zero. If F-conversion is used and zero
decimal width is specified (for example, F5.0), afrac-
. tional value is printed as a sign, a zero, and adecimal
point. A zero value is printed with a zero preceding
the decimal point.

E-Conversion (Ew.d)

For E-conversion, the fractional portion is again in-
dicated by d. For output, the w includes the field d,
a space for a sign, space for a digit preceding the
decimal point, a decimal point, and four spaces for
the exponent. Space must be reserved for each of
these on output. An output error condition will result
if w<d+5. For input, it is not necessary to reserve
all of these positions. In general, w should be at

- least equal to d+7. ,

- The exponent is a signed or unsigned one- or
two-digit integer constant not greater than 38 and
preceded by the letter E. Ten (10) raised to the
power of the exponent is multiplied by the number to
* obtain its true internal value. ,

The following examples show how each of the
quantities on the left is printed, according to the
specification E9. 3: '

Internal Value Printed

238.) 0. 238Eb03
-.002 skokak ok ok ok
. 00000000004 0.400E~10
-21. 0057 koK kA

If the last example above had been printed with a
specification of E10. 3, it would appear as:

~-. 210Eb02t
TLast three digits of accuracy lost due to insufficient

specification.
b represents a blank.

NOTES:
1. All error fields are filled in with asterisks.
2. For input, the start of the exponent field
must be marked by an E, or, if that is omitted, by

14

a +or - sign (not blank). Thus, E2, E+2, +2, +02,
E02, and E+02 are all permissible exponent fields
for input.

3. For input, the exponent field may be
omitted entirely (i.e., E-conversion will accept in-
put data in F-type format). -

4. Numbers for E-conversion input need not -
have their decimal points appearing in the input field.
I no decimal point appears, space need not be allo-
cated for it. The decimal point will be supplied
when the number is converted to an internal equiva-
lent; the position of the decimal point will be deter-
mined by the format specification. However, if the
decimal point does appear within the field and it is
different from the format specification, this position
overrides the position indicated in the format
specification.

5. A leading zero is always printed to the left
of the decimal point.

Conversion of Alphameric Data

There are two specifications available for input/
output of alphameric data: H-conversion or literal
data enclosed in apostrophes, and A-conversion,
H-conversion is used for alphameric data that is not
goingto be changed by the object program (e.g.,
printed headings); A-conversion is used for alpha-
meric data in storage which is to be operated on by
the program (e.g., modifying a line to be printed).
The characters that can be handled are listed in
Appendix A.

H-Conversion

The specification nH is followed in the FORMAT
statement by n alphameric characters. For example:

24H THIS IS ALPHAMERIC DATA

Blanks are considered alphameric data and must be
included as part of the count n.” A comma following
the last alphameric character is optional. »

The effect of nH depends on whether it is used
with an input or output statement.

Input: n characters are extracted from the input
record and replace the n characters included in the
specification. For example,

Read (4, 5)
5 FORMAT (SHHEADINGS)

would cause the next 8 data characters to be read
from the input file on the Paper-Tape Reader; these
characters would replace the data HEADINGS in
storage. ‘

Output: The n characters following the specification
are written as part of the output record, Thus, the
statements: :

WRITE (1, 6)
6 TFORMAT (15H CUST. NO. NAME)

would cause the folloWing record to be written on the
Console Printer:

CUST. NO. NAME
Literal Data Enclosed in Apostrophes

Literal data can consist of a string of alphameric and
special characters written within the FORMAT state-
ment and enclosed in apostrophes (a comma following
the last apostrophe is optional unless followed by
another string of literal data). For example:

25 TFORMAT (' 1966 INVENTORY REPORT’)

An apostrophe character within literal data is
represented by two successive apostrophes. For
example, the characters DON'T are represented as:

" DON'"T

The effect of the literal format code depends on
whether it is used with an input or output statement.

Tnput: A number of characters, equal to the number
of characters specified between the apostrophes, are
read from the designated I/O unit. These characters
replace, in storage, the characters within the apos-
trophes. For example, the statements:

5 FORMAT (' HEADINGS')

READ (4, 5)

would cause the next 9 characters to be read from the
Paper Tape Reader. These characters wouldreplace
the blank and the 8 characters H,E, A,D,I,N,G, and

S in storage. '

Output: All characters (including blanks) within the
apostrophes are written as part of the output data.
Thus the statements: ’

5 FORMAT (' THIS IS ALPHAMERIC DATA')

WRITE (1, 5)

.

would cause the following record to be written on the
Console Printer:

’ THIS IS ALPHAMERIC DATA
A-Conversion

The specification Aw is used to transmit alphameric
data to/from variables in storage. It causes the
first w characters to be read into, or written from,
the area of storage specified in the I/0 list. For ex-
ample, the statements:

10 FORMAT (A4)
READ (4, 10) ERROR

would cause four alphameric characters to be read

from the Paper Tape Reader and placed (left-

justified) into the field in storage named ERROR.
The following statements:

INTEGER OUT
15 FORMAT (3HXY=, F9.3, A4)

WRITE (OUT, 15)A, ERROR, B, ERROR

may produce the following lines: .

XY= 5976.214-~--
XY= 6173, 928~~~

where —--= represents the contents of the field
ERROR.

Thus, A-conversion provides the facility for
reading alphameric data into a field in storage,
manipulating the data as required, and printing it
out.

I the number of alphameric characters is less
than the capacity of the field in storage into whichthey
are to be read, then the remaining rightmost charac-
ters in the field are loaded with blanks. However, if
the number of characters is greater than the capacity
of the field in storage, only the rightmost characters
are read in and the excessive leftmost characters
are lost. It is important, therefore, to allocate -
enough area in storage to handle the alphameric.
characters being read in. . Each real variable has

15

sufficient space for 4 or 6 characters (the preci-
sion of real variables is specified at compile time);
each integer variable has space for 2 characters,
For example, 10 characters could be read into, or
written from, the first five positions of the array

I (T is an integer variable)., Thus, two characters
are contained in each of the five consecutive posi-
tions: I(1), I(2), K3), I(4), K5). On output the left-
most character is written first.

Arithmetic operations involving variables con-
taining alphameric characters should be performed
in integer mode. Alphameric characters are repre-
sented internally in eight-bit EBCDIC code (refer to
the IBM 1130 Subroutine Library, Form C26-5929,
for a description of the EBCDIC code used for internal
representation of alphameric characters).

Blank Fields

Blank characters may be provided in an output rec-
ord, or characters of an input record may be skipped,
by means of the specification, nX; n is the number
of blanks desired or the number of characters to be
skipped.

When the nX specification is used with an input
record, n characters are skipped over before the
transmission of data begins.

For example, if a card has six 10-column fields
of integers, the statement:

5 FORMAT (110, 10X, 4I10)
would be used, along with the appropriate READ
statement, to avoid reading the second quantity,
When this specification is used-with an output
record, n positions are left blank. Thus, the facility
for spacing within a printed line is available, For

example, the statement:

10 FORMAT (3 (F6. 2, 5X))

may be used with the appropriate WRITE statement
to print a line as follows:.

-23. 45bbbbbb17. 32bbbbbb24. 67bbbbb

where b represents a blank,

Multiplé Field Format

Blank lines may be introduced between output
records, or input records may be skipped, by using

16

consecutive slashes (/) in a FORMAT statement.
The number of input records skipped, or blank
lines inserted between output records, depends upon
the number and placement of the slashes within the
statement.

If there are n consecutive slashes at the be-
ginning or end of a format specification, n input
records are skipped or n blank lines are inserted
between output records. If n consecutive slashes
appear anywhere else in a format specification, the
number of records skipped or blank lines inserted
is n-1. For example, the statements:

10 FORMAT (///16)
READ (INPUT, 10) MULT

cause 3 records to be skipped on the input file before
data is read into MULT.

The statements:

15 FORMAT (15,////,F5.2,12//)
WRITE (IOUT, 15) K, A,J

result in the following output:

Integer
(blank line)
(blank line)
{blank line)
Real Number
(blank line)
(blank line)

Integer

NOTE: The comma before or after the / is optional.

To obtain a multiline listing in which the first two
lines are to be printed according to a special
format and all remaining lines according to another

format, the last-line specification should be en-

closed in a second pair of parentheses. For
example, in the statement: i

FORMAT (12, 3E12.4/2F10. 3, 3F9. 4/(3F12. 4))

when data items remain to be transmitted after the
format specification has been completely used, the
format repeats from the last left parenthesis. Thus,
the listing would take the following form:

12, E12.4, E12.4, E12.4

F10.3, F10.3, F9.4, F9.4, F9.4
F12.4, F12.4, F12.4

Fl12.4, F12.4, F12.4

Carriage Control

If a printed line is being edited, the first character of
the line will be used for controlling the printer car-
riage. Under program control, this character will
control spacing of the printer and will not be printed.
The control characters and their effects are:

blank - Single space before printing

0 - Double space before printing

1 - Sheet eject before printing

+ - Suppress space before printing

‘Program control is usually obtained by beginning
a FORMAT specification with 1H followed by the
desired control character.

Data Input to the Object Program

Data input to the object program is contained in unit
records, as described in the section FORMAT State-
ment. The following information should be consid-
ered when preparing input data on punched cards:

1. The input data record must correspond to
the field width specifications defined in the
FORMAT statement. :

2. Blanks within a number are not allowed;
however, blanks may precede the number
in the field. Thus, all numbers must be
right-justified in a field. :

3, A plus sign may be implied by no sign or
indicated by a plus sign; a negative number,
however, must be preceded by a minus

sign.

SPECIFICATION STATEMENTS

The Specification statements are nonexecutable
because they do not cause the generation of instruc-
tions in the object program. Instead, they provide
the compiler with information about the nature of the
constants and variables used in the program. In ad-
dition they supply the information required to allocate
locations in storage for certain variables and/or
arrays.

All Specification statements must precede the
first executable statement of the source program.
The Specification statements must appear in the
following order: ‘

Type Statements (REAL, INTEGER)
EXTERNAL Statements
DIMENSION Statements

COMMON Statements
EQUIVALENCE Statements

Type Statements (REAL, INTEGER)
General Form:

INTEGER a, b, cs...
REAL a, b, c,...

where:

a, b, c, ... are variable, array, FUNCTION
subprogram or statement function
names appearing in a program or sub-
program. Arrays named in this statement
must also be dimensioned in this statement.

Exampleés:

INTEGER DEV,JOB,XYZ12, ARRAY(5,2,6)
REAL ITA, SMALL, ANS, NUMB(3, 14)

The REAL and INTEGER statements explicitly
define the type of variable, array, or function. In
the first example, the variable DEV (implicitly de-
fined as a real variable, because its initial letter
isnot I, J, K, L, M, or N) is explicitly defined
as an integer variable and is, therefore, handled as
an integer variable in the program. The appearance
of a variable name in either of these statements
overrides any implicit type specification determined
by the initial letter of the variable.

Type statements must precede any other Speci-
fication statements.

EXTERNAL Statement
General Form:

EXTERNAL a,b,c, ..
where: ,

a,b,c, ... are the names of FUNCTION subpro-
grams, SUBROUTINE subprograms,
FORTRAN-supplied subprograms or assem-
bler language written subprograms that
appear in any argument list.

17

Example:
EXTERNAL SIN, MATRX, INVRT

Any subprogram named in the EXTERNAL
statement may be used as an argument for other
subprograms (see SUBPROGRAM STATEMENTS).
Subprograms named in an EXTERNAL statement are
loaded at execution time.

DIMENSION Statement
General F‘orm:‘
DIMENSION a(ky), bky), cks),...x(kp)
where: |
a,b,c,...x are names of arrays.

kl,k‘z, k3, .o .kn are each composed of 1,2, or 3
unsigned integer constants that specify the
maximum value for 1, 2, or 3 subscripts,
respectively.

Example:

DIMENSION A(10), B(5,15), C(9,9,9)

The DIMENSION statement provides information
to allocate storage for arrays in an object program
(unless the information appears in a Type or COM-
MON statement), It defines the maximum size of
each array listed. :

Each variable that appears in subscripted form
in a source program must appear in a Type, DIMEN-
SION, or COMMON statement contained within the
source program. The first of these statements that
refers to the array must give dimension information.
(See COMMON Statement - With Dimensions.)

- COMMON Statement
General Form:
COMMON a,b,c,...n
where:

a,b,c,...n are variable or array names.

18

Variables or arrays that appear in the main
program or a subprogram may be made to share the
same storage locations with variables or arrays of
the same type and size in other subprograms, by use
of the COMMON statement. For example, if one
program contains the statement:

COMMON TABLE
and a second program contains the statement:
COMMON LIST

the variable names TABLE and LIST refer to the same
storage locations (assuming the data associated with
the names TABLE and LIST are equal length and type).

If the main program contains the statement:

COMMON A, B, C

and a subprogram contains the statement:
COMMONX, Y, Z

and A, B, and C are equal in length to X, Y, and Z,
respectively, then A and X refer to the same storage
locations, as do B and Y, and C and Z. _

Within a specific program or subprogram, vari-
ables and arrays are assigned storage locations in
the sequence in which their names appear in a COM-
MON statement. Subsequent sequential storage
assignments within the same program or subprogram
are made with additional COMMON statements.

A dummy variable can be used in a COMMON

-statement to establish shared locations for variables

that would otherwise occupy differéent locations. For

‘example, the variable S can be assigned to the same

location as the variable ‘Z of the previous example
with the following statement:

COMMON Q, R, S

where Q and R are dummy names that are not used
elsewhere in the program, S

Redundant COMMON entries are not allowed.
For example, the following is invalid:

COMMON A, B, C, A

COMMON Statement—With Dimensions
General Form:
COMMON a(kl),b(kz), c(k3), ...n(ky)
where:
a,b,c,...n are array names and

kl’kz’k3’ .o .kn are each composed of 1, 2, or 3
Unsigned integer constants that specify the
dimensions of the array.

Example:
COMMON A(10), B(5,5,5), C(5,5,5)

This form of the COMMON statement, besides
performing the functions discussed previously for
the COMMON statement, performs the additional
function of specifying the size of arrays.

NOTES: _ .
1. Dummy arguments for SUBROUTINE
or FUNCTION statements cannot appear in COMMON

statements.
2. A single COMMON statement may con-

tain variable names, array names, .and dimensioned

array names. For example, the following are valid:

DIMENSION B(5,15)
COMMON A, B, C(9,9,9)

3. All dimensioned arrays in a main pro-
gram or subprogram and all items in COMMON are
stored in descending storage locations.,

EQUIVALENCE Statement

Different variables and arrays are usually assigned
unique storage locations. However, it may be de-
sirable to have two or more variables of the same

type and size share the same storage locations. This

facility is provided by the EQUIVALENCE statement.

General Form:

EQUIVALENCE (a,b,...), (d;€ ...),...

where:

a,b,d,e,... are simple variables or subscripted

variables. Subscripted variables may have

either multiple subscripts (which must agree

with the dimensional information) or single
subscripts. The subscripts must be integer
constants,

Each pair of parentheses in the EQUIVALENCE
statement encloses a list of two or more variable
names that refer to the same location during the
execution of the object program.

Any number of variables may be listed in a single
EQUIVALENCE statement.

EQUIVALENCE (X, Y, SAVE, AREA),
(E(1), F(1)), (G(1), H(5))
EQUIVALENCE (A(4), C(2); D(1))

In the second example, making A(4), C(2),
and D(1) equivalent to one another sets up an
equivalence among the elements of each array as
follows:

A1)

A(2)

A3) C(1)

A4) C(2) D(1)
A(5) C@3) D(2)

The combination of all equivalence lists in a pro-
gram must not:

1. Equate two variables or array elements in
COMMON. '

2., Assign the relative locations of two variables
or array elements more than once (directly
or indirectly).

Example 1: Violating Rule 1
DIMENSION A(10), B(5)

COMMON A, B
EQUIVALENCE (A(1), B(1))

Example 2: Violating Rule 2
EQUIVALENCE A(10), B(1)
EQUIVALENCE B(10), C(1)
EQUIVALENCE A(10), C(1)

Example 3: Violating Rule 2

EQUIVALENCE (X, Y), (Y, Z), (Z, X)"

19

However, EQUIVALENCE statements may extend
the size of the COMMON area. For example, the
following is valid:

DIMENSION C(4)
COMMON A, B
EQUIVALENCE (B, C(2))

for it would produce the following relationship in
the COMMON area:

A C(1)
B C(2)
C(3)
C4)

Since arrays must be stored in descending storage
locations, a variable may not be made equivalent to
an element of an array in such a manner as to cause
the array to extend beyond the beginning of the COM~
MON area. For example, the following coding is
invalid:

DIMENSION C(4)
COMMON A, B
EQUIVALENCE (A, C(2))

for it would force C(1) to'precede A in the COMMON
area, as follows:

C(1) (outside the COMMON area)
A C(2)
B C(3)
C(4)

20

Conversion to Single Subscripts

Two- and three-dimensional arrays actually ap-
pear in storage in a one- d1mens1onal sequence of
core storage words.

In an EQUIVALENCE statement it is pos51b1e
to refer to elements of multi-dimensioned arrays
by single-subscripted variables. For example,
in an array dimensioned A (3, 3, 3), the fourth
element of the array can be referenced as A(1, 2, 1)
or as A(4).

The rules for converting multiple subscrlpts to

single subscripts are as follows:

1. For a two-dimensional array, dimensioned
as A(I,J): the element A(i, j) can also be
referenced as A(n), where n = i+ 1(j-1).

2, For a three-dimensional array, dimensioned
as A(l, J,K): the element A(i, j, k) can also
be referenced as A(n), where
n =i+ I{G-1) +I* Jk-1).

SUBPROGRAM STATEMENTS

Suppose that a program is being written which, at
various points, requires the same computation to be
performed with different data for each calculation.

It would simplify the writing of that program if the
statements required to perform the desired computa-
tion could be written only once and then could be re-
ferred to freely., Each reference to the statements

"~ would have the same effect as if the statements were

written at the point in the program where the refer-
ence was made., For example, if a general program
were written to take the square root of any number,
it would be desirable to be able to incorporate that

program (or subprogram) into other programs
where square root calculations are required,

The FORTRAN language provides for the pre-
ceding situation through the use of subprograms.
There are three classes of subprograms: statement
functions, FUNC TION Subprograms, and SUBROU-
TINE Subprograms, In addition, there is a group
of FORTRAN supplied subprograms.

- The first two classes of subprograms are called
functions., Functions differ from the SUBROUTINE
subprograms in that functions always return a single
value to the calling program, whereas, a SUB-
ROUTINE subprogram can return any number of
values to the calling program. A function is em-
ployed (or called) by writing the name of the function
(see Subprogram Names) and an argument list in a
standard arithmetic expression. A SUBROUTINE
subprogram must be called by a special FORTRAN
statement, namely, the CALL statement.

The statement function is written and compiled
as part of the program in which it appears. The
other subprograms are written and compiled separ-
ately and linked to the main program at the time
they are loaded for execution.

Subprogram Names

A subprogram name consists of 1-5 alphameric
characters, the first of which must be alphabetic.
The type (real or integer) of a subprogram can be
indicated in the same manner as variables.

The type of a statement function may be indicated
implicitly by the initial character of the name or
explicitly by the REAL or INTEGER Type statement,

The type of a FORTRAN supplied subprogram is

indicated implicitly by the initial character of its
name.

" The type of a FUNCTION subprogram may be
indicated implicitly by the initial character of the
name or explicitly by a Type specification (see Type
Specification of the FUNCTION Subprogram). In the
latter case, the implicit type is overridden by the
explicit specification.

The type of a SUBROUTINE subprogram is not
defined, because the result returned to the main
program is dependent only on the type of the vari-
able nameés in the argument list.

A list of the presently used names for subpro-
grams is contained in the publication, IBM 1130
Subroutine Library (Form C26-5929).

Functions

In mathematics, a function is a statement of the re-
lationship between a number of variables; the value
of the function depends upon the values assigned to
the variables (or arguments) of the function. The
same definition of function is true in FORTRAN. To
use a function in FORTRAN, it is necessary to:
1. Define the function; that is: '
a. Assign a unique name by which it may
be called .]
. b. State the arguments of the function
‘¢c. State the procedure for evaluating the
function
2. Call the function, where required, in the
program, -

When the name of a function appears in any
FORTRAN arithmetic expression, program control

‘is transferred to the function routine. Thus, the

appearance of ‘the function with its arguments causes
the computations indicated by the function definition
to be performed. The resulting quantity replaces
the function reference in the expression and assumes
the mode of the function. The mode of a function, as
with variables, is determined either implicitly by
the initial character of its name, or explicitly by a
Type statement. :

Statement Function
General Form:
a=bh
where:
a is a function name followed by parentheses
enclosing its arguments, which must be
distinct, non-subscripted variables separ-

ated by commas.

b is an expression that does not involve sub-
scripted variables.

21

Examples:

FIRST(X) = A*X+B
OTHER(D) = FIRST (E)+D

If the statement Y = OTHER(Z) appears in a program
in which the above functions are defined, the cur-
rent values of A, B, E, and Z will be used in a cal-
culation which is equivalent to:

Y = A*E+B+Z

Since the arguments of a are dummy argu-
ments, their names may be the same as names
appearing elsewhere in the program, Those
variables in b that are not included in the dummy
argument list are the parameters of the function
and are defined as the ordinary variables appearing
elsewhere in the source program. The type of each
dummy argument is defined implicitly. A maximum
-of fifteen variables appearing in the expression may
be used as arguments of the function. '

Any statement function appearing in b must have
been previously defined. All definitions of statement
functions must follow the Specification statements
and precede the first executable statement of the
source program.

, Statement functions are compiled as internal
subprograms; therefore, they will appear only once
in the object program.

NOTE: The same dummy arguments may be used
in more than one statement function definition and
may also be used as variables outside statement
function definitions. '

FORTRAN Supplied Subprograms

FORTRAN supplied subprograms are predefined sub-
programs that are part of the system library. A

list of all the FORTRAN supplied subprograms is
given in Table 1. Note that the type (real or integer)
of each subprogram and its arguments are prede-

~ fined and cannot be changed by the user.

To use a FORTRAN supplied subprogram, simply
use the function name with the appropriate arguments
in an arithmetic statement. The arguments may be
subscripted or simple variables, constants, other
types of arithmetic expressions or other FORTRAN
supplied subprograms.

‘Examples:

DISCR = SQRT(B**2-4. 0*A*C)
A = ABS (COS(B))

22

Table 1. FORTRAN Supplied Subprograms

No. of | Type of | Type of
Argu- | Argu-- | Func~

Name | Function Performed ments | ment(s) { tion
SIN. | Trigonometric sine 1 Real Real
COsS Trigonometric cosine 1 Real Real
ALOG | Natural logarithm 1 Real Real
EXP Argument power of e :

(i.e., ex) 1 Real Real
SQRT | Square root ‘ 1 Real Real
ATAN | Arctangent 1 Real Real
ABS Absolute value 1 Real Real
1ABS Absolute value 1 Integer { Integer
FLOAT| Convert integer argument .

to real 1 Integer | Real
IFIX Convert real argument to

- | integer 1 Real Integer

SIGN | Transfer of sién (Sign of

Arg, times Arg;) 2 Real Real
ISIGN | Transfer of sign (Sign of

Arg, times Arg]) 2 Integer | Integer
TANH | Hyperbolic tangent . 1 Real Real

The use of the SQRT function in the first example
causes the calculation of the value for the square
root of the expression (B**2-4, 0*A*C), - This value
replaces the current value of DISCR. k

In the second example, cosine B is evaluated
and its absolute value replaces the current value
of A, '

The FORTRAN Compiler adds an E or an F in
front of the names of real FORTRAN supplied pro-
grams to specify required precision. Refer to IBM
1130 Subroutine Library (Form C26-5929) for de-
scriptions of FORTRAN supplied subprograms and
subprogram error detection routines, (Also see
FORTRAN Machine and Program Indicator Tests
section.)

FUNCTION Subprogram

The FUNCTION subprogram is a FORTRAN subpro-
gram consisting of any number of statements. Itis
like a FORTRAN supplied subprogram in that it is

an independently written program that is executed
whenever its name appears in another program. In
other words, if a user needs a function that is not
available in the library, he can write it with FORTRAN
statements.

General Form:

FUNCTION name (al, Bgr83, ..o ay)
(FORTRAN statements)

RETURN
END

where:

name is a subprogram name, and
aj,a9,a3, ... 8y are nonsubscripted
variable names, array names, or other
subprogram names (except that they may
not be Statement function names).

The FUNCTION subprogram may contain any
FORTRAN statement except a SUBROUTINE state-
ment of another FUNCTION statement and must re-
turn control to the calling program with a RETURN
statement. Because the FUNCTION is a separate
subprogram, the variables and statement numbers
do not relate to any other program (except the
dummy argument variables).

The arguments of the FORTRAN subprogram
may be considered to be dummy variable names.
These are replaced at the time of execution by the
actual arguments supplied in the function reference
in the main program. The actual arguments must
correspond in number, order, and type to the dummy
arguments. They may be any of the following: any
type of constant, any type of subscripted or nonsub-
scripted variable, an arithmetic expression, or a
subprogram name (except that they may not be
Statement function names).

The relationship between variable names in the
calling program and the dummy names in the FUNC-
TION subprogram is illustrated in the following
example:

Calling FUNCTION
Program Subprogram

FUNCTION SOMEF (X, Y)

. : SOMEF = X/Y
A = SOMEF (B, C)- RETURN
. END

In the preceding example, the value of the
variable B of the calling program is used in the
subprogram as the value of the dummy variable X;
the value of C is used in place of the dummy variable
Y. Thus, if B = 10.0 and C =5.0, then A = 2,0,
that is, B/C.

When a dummy argument is an array name, an
appropriate DIMENSION statement must appear in
the FUNCTION subprogram.

When an argument is a subprogram name, ‘it
‘must be declared in an EXTERNAL statement in the
calling program. The following example illustrates
the use of the EXTERNAL and DIMENSION state-
ments with subprograms.

Calling Program:

EXTERNAL ABS
DIMENSION A(4)

°

1=3
B = COMP(A, 1, ABS)

.

Called Subprogram:

FUNCTION COMP(X, J, FUNCT)
DIMENSION X(4)
"TEMP = 0
DO 10K =1,J

10 TEMP = TEMP + X(K)
COMP = FUNCT (TEMP)
RETURN
END

In this example, the resulting value of B returned
to the calling program is equivalent to:

B = ABS(A(1) + A(2) + A(3))

The value of the dummy arguments of a FUNC-

~ TION subprogram must not be redefined in the sub-

program. That is, they must not appear on the left
side of an arithmetic statement, or in an input list,
or as the index in a DO statement. Variables that
appear in common storage may not be redefined
either. For example, the following violates this
rule:

FUNCTION SAM (A, B, K)

COMMON J
Jd=Jd+1

K=4Jd

The name of the function must appear at least
once as the variable name on the left side of an

23

arithmetic statement, in a READ statement, or in

the argument list of a CALL statement. ' For example:

Calling Program:

ANS = ROOT1*CALC (X,Y,])

FUNCTION Subprogram:

FUNCTION CALC (A, B, J)

CALC = A**x]/B

'RETURN
END

In this example, the values of X, Y, and I are
used in the FUNCTION subprogram as the values of
A, B, and J, respectively. The value of CALC is
computed and this value is returned to the calling
program where the value of ANS is computed.

Type Specification of the FUNCTION Subprogram

The type of function may be explicitly stated by the
inclusion of the word REAL or INTEGER before the
word FUNCTION. For example:

REAL FUNCTION SOMEF (A, B)

RETURN
END

INTEGER FUNCTION CALC (X,Y, Z)

°

RETURN
END

NOTE: The function type, if explicitly stated, must

be defined in the calling program by use of the
INTEGER or REAL type statement.

END and RETURN Statements

Note that all of the preceding examples of FUNCTION

subprograms contain both an END and at least one

24

RETURN statement. The END statement specifies
the end of the subprogram for the compiler; the
RETURN statement signifies the conclusion of a
computation and returns any computed value and
control to the calling program. There may, in fact,
be more than one RETURN statement in a FUNCTION
or SUBROUTINE subprogram. For example:

FUNCTION DAV (D, E, F)
IF(D-.1)2,3, 2

RETURN
3 DAV=,.,.,

°

RETURN
END

SUBROUTINE Subprogram

The SUBROUTINE subprogram is similar to the
FUNCTION subprogram in many respects: the
naming rules are the same, they both require a
RETURN statement and an END statement, and they
both contain the sanie sort of dummy arguments.
Like the FUNCTION subprogram, the SUBROUTINE
subprogram is a set of commonly used operations;

~ but the SUBROUTINE subprogram does not restrict

itself to a single value for the result, as does the
FUNCTION subprogram. A SUBROUTINE sub-
program can be used for almost any operation with
as many results as desired. o

The SUBROUTINE subprogram is called by a
special FORTRAN statement, the CALL statement.
It consists of the word CALL followed by the name
of the subprogram and its parenthesized arguments.

General Form:

SUBROUTINE name (al, 29,89, +.. an)

RETURN
END

where:

name is the subprogram name (see Subprogram
Names).

aj,a9,83, ... 4, are the arguments (arguments
are not necessary). Each argument used
must be a nonsabscripted variable name,
array name, or other subprogram name
(except that it may not be a statement function
name).

Because the SUBROUTINE is a separate sub-
program, the variables and statement numbers do
not relate to any other program (except the dummy
argument variables). The SUBROUTINE subprogram
may use one or more of its arguments to return
values to the calling program. Any arguments so
- used must appear on the left side of an arithmetic
statement or in an input list within the subprogram.

The arguments may be considered dummy
variable names that are replaced at the time of exe-
cution by the actual arguments supplied in the CALL
statement. The actual arguments must correspond
in number, order and type to the dummy arguments.
None of the dummy arguments may appear in an
EQUIVALENCE statement in a SUBROUTINE sub-
program. When the argument is an array name, an
appropriate DIMENSION statement must appear in
the SUBROUTINE subprogram.

CALL Statement

The CALL statement is used only to call a SUB-
ROUTINE subprogram.

General Form:

CALL name (aj, A9y 8gs +ee an)

where:

name is the symbolic name of a SUBROUTINE
subprogram.

aj,ag,8q, ... a, are the actual arguments that
are being supplied to the SUBROUTINE
subprogram.

Examples:

CALL MATMP (X, 5,40, Y,7, 2)
CALL QDRTI (X,Y,Z, ROOT1,ROOT2)

The CALL statement transfers control to the
SUBROUTINE subprogram and replaces the dummy
variables with the value of the actual arguments that
appear in the CALL statement. The arguments in a

CALL statement may be any of the following: any
type of constant, any type of subscripted or nonsub-
scripted variable, any other kind of arithmetic ex-
pression, or a subprogram name (except that they
may not be statement function names).

The arguments in a CALL statement must agree
in number, order, type, and array size with the
corresponding arguments in the SUBROUTINE sub-
program.

Subprograms Written in Assembler Language

Subprograms can be written in the 1130 Assembler
language to be called by a FORTRAN program. In
order to write such subprograms, the user must
know the linkage generated by the FORTRAN Com-~
piler and the location of the arguments,

The linkage to all three types of routines (SUB-
ROUTINE Subprograms, FUNCTION Subprograms,
FORTRAN supplied subprograms) is assembled and
executed in the same way as the Assembler language
CALL statement (see Program Linking Statements
in the publication, IBM 1130 Assembler Language,
Form C26-5927),

The arguments in the linkage are located as
follows: At execution time, the Branch instruction
corresponding to the CALL is followed in memory
by a list of the addresses of the arguments.

Examples:v
SUBROUTINE Subprogram CALL:
CALL JOE (A, B, C)

Result in memory at execution:

2 word CALL
BSI L (Address of Entry Point of JOE)
ADDRESS OF A
ADDRESS OF B
ADDRESS OF C
C_ First Word of Next Instruction.

Subprogram should return here,

When a SUBROUTINE subprogram CALL is
used, results of the computations within the sub-
program will be returned by means of the arguments.
The Assembler coded SUBROUTINE subprogram
must return control to the calling program at the
next location following the last argument in the list.

25

FUNCTION Subprogram call or Fortran
supplied subprogram call;

X =Y + JOE(A, B, C)
The underlined section of the above statement

produces the same result in core storage as the
SUBROUTINE subprogram example. It must be

noted, however, that the Assembler coded FUNCTION
or FORTRAN supplied subprogram must return a single

result to the calling program by means of the pseudo
floating accumulator or the machine accumulator,
depending on whether the FUNCTION type is real or
integer. (The floating accumulator is the last three
words of the Transfer Vector area. See Program
Linking Statements in the publication, IBM 1130
Assembler Language, Form C26-5927.) The argu-
ment list must not be used to return a result of the
subprogram computation.

'FORTRAN Machine and Program Indicator Tests

The FORTRAN language provides machine and pro-
gram indicator tests even though some of the ma-"
chine components referred to by the tests do not
physically exist. The machine indicators that do
not exist are simulated by subroutines provided in
the system library.

To use any of the following machine and pro-
gram indicator tests, the user supplies the proper
arguments and writes a CALL statement. In the
following listing, i is an integer expression; j is
an integer variable,

General Form Function
SLITE (i) If i=0, all sense lights are

turned off. K i=1, 2,3, or 4,
the corresponding sense light
is turned on,

SLITET (i, j) Sense light i (equal to 1, 2, 3,
or 4) is tested. I i is on, j
is set to 1; if i is off, j is
set to 2. After the test,
sense light i is turned off.

OVERFL (j) This indicator is on if an

arithmetic operation with
real variables and constants
results in an overflow or
underflow condition; that is,
j is set to 1 if the absolute
value of the result of an
arithmetic operation is
greater than 2127 (1038);

j is set to 2 if no overflow
condition exists; j is set to

26

3 if ‘the result of an arithmetic
operation is not zero but less
than 27129 (10739), The
‘machine is left in a no over-
flow condition.

DVCHK (j) This indicator is set on if an
arithmetic operation with
real constants and variables
results in the attempt to divide
by zero. If the indicator is
on, j is set to 1; if off, j is
set to 2, The indicator is
set off after the test is made,

DATSW (i, j) Data entry switch i is tested.

If i is on, j is setto 1; if i is
off, j is'set to 2. ‘

TSTOP The TSTOP subroutine may be
used to stop the tracing mode
if trace control has been speci-
fied at compile time,

TSTRT The TSTRT subroutine may be
used to re-establish the trace
mode if trace control has been
specified at compile time,

FCTST (i,)) The FCTST subroutine checks an

: indicator word that is set on if
a FORTRAN supplied sub-
program detects an error, If
the indicator is off, i is set to
2 and j is set to 0; if the indi~
cator is on, iis set to 1 and
j is set equal to the contents
of the indicator, The indicator
is set to 0 after the test,

Refer to IBM 1130 Subroutine
Library (Form C26-5929) for
descriptions of errors detected

by FORTRAN supplied subroutines
and the contents of resulting
indicator words,

NOTE: SLITET and OVERFL contain six charac-
ters in order to be compatible with other IBM
FORTRANSs; SLITET and OVERFL are changed by

the FORTRAN Compiler to SLITT and OVERF,
respectively,

Examples:

CALL SLITE (3)
CALL SLITET (K*J, L)
CALL OVERFL (J)
CALL DVCHK (J)

CALL DATSW (15, N)
CALL TSTOP
CALL TSTRT
CALL FCTST (IM, JM)

As an example of how the sense lights can be
used in a program, assume that it is desired to con-
tinue with the program if sense light 3 is on and to
write results if sense light 3 is off. This can be
accomplished by using the IF statement or a Com-
puted GO TO statement, as follows:

CALL SLITE (3)

CALL SLITET (3, KEN)
5 IF (KEN-2) 10,9, 10 ,
9 WRITE (3, 36)(ANS(K), K=1, 10)
10 .

' CALL SLITET (3, KEN)
24 GO TO (26, 25), KEN
25 WRITE (3, 36)(ANS(K), K=1, 10)
26 .

In statement 5, if KEN is not equal to 2,
statement 9 is not executed, In statement
24, if KEN equals 2, statement 25 is
executed,

FORTRAN CALL LOAD Statement

This statement, which is not valid in Monitor
FORTRAN, is used to link to another program with~
out requiring the Core Image Loader to precede the
link program., CALL LOAD causes the next pro-
gram in the Paper Tape or Card Reader to be read
in and executed. :

For example:

CALL LOAD
STOP
END

CALL LOAD may only be used in a Core Image pro-
gram and may only call a Core Image program.

27

MONITOR FORTRAN

The following FORTRAN statements and features
apply only to the IBM 1130 Monitor System. These
statements and features are not valid for use with -
the card/paper tape FORTRAN Compiler, The IBM
1130 Monitor System is described in the publication,
IBM 1130 Monitor System (Form C26-3750).

CALL EXIT Statement

This statement is used in a FORTRAN program
when control is to be returned to the Supervisor
portion of the Monitor System; that is, the CALL
EXIT statement must be used as the last logical
statement of a FORTRAN program. (The END
statement must still be used as the last physical
statement of each program or subprogram.)

DEFINE FILE Statement

The DEFINE FILE statement specifies to the FOR -~
TRAN Compiler the size and quantity of disk data
records within files that will be used with a particular
program and its associated subprograms. This
statement must not appear in a subprogram, and it
may appear only in a main program. Therefore, all
subprograms used by the main program must use the
defined files of the main program.

The purpose of the DEFINE FILE statement is to
divide the disk unit into files to be used in the disk
READ, WRITE, and FIND statements,

General Form:

DEFINE FILE a, (m , 1, U, v,),

az (mz,lz,U,Vz),...

where:

a is an integer constant < 32,767 that is the
symbolic designation for this file,

m is an integer constant that defines the number
of file records in this symbolic file,

1 is an integer constant that defines the length
(in words) of each file record.in this symbolic
file, The value of 1 must be less than or
equal to 320.

U is a fixed letter used to designate that the file
must be read/written with the disk READ/
WRITE statements which will handle no
data conversion,

28

v is a nonsubscripted integer variable name
which is set at the conclusion of each disk
READ/WRITE statement referencing this
symbolic file, It is set to the value of
the next available file record, This variable
must also appear in COMMON if it is to be
referenced by more than one program at
execution time,

The DEFINE FILE statement is a specification state-
ment and, as such, must precede all statement func-
tion definition statements and the first executable
statement in the source program.

NOTE: Since records which require no data conver-
sion are transmitted, care must be exercised to en-
sure that the programs using this file have the same"
precision. A disk READ/WRITE statement always
starts transmittal at the beginning of a file record.

Disk READ, WRITE, and FIND Statements

The generalized READ and WRITE statements and
the FIND statement for disk I/0 appear as:

READ (a'b) List
WRITE (a'b) List
FIND (a'b)

where:

a (an unsigned integer constant or integer vari-
able) is the symbolic file number,

b (an integer expression) is the record number
where transmittal will start, and

List is a list of variable names, separated by
commas, for the input or output data,

NOTE: Only information which requires no data
conversion can be transmitted to and from disk
storage,

» The purpose of the FIND statement is to move
the disk read/write mechanism to the a'b record.
The use of the FIND statement is optional.

The FIND statement is not executed when sys-
tem overlays or LOCAL subprograms occur.

CALL LINK Statement

The CALL LINK statement calls a new main pro-
gram from disk storage into core storage and trans-
fers control to the first executable statement in that
program,

General Form:
CALL LINK (Name)
where:

Name is the name of a FORTRAN main program
as contained in the Location Equivalence
Table (LET). The program name consists
of 1-5 alphameric characters of which the
first must be alphabetic.

Examples:

CALL LINK (JOE)
CALL LINK (PROGS3)

The program that is called is loaded with all
subprograms and library subroutines that it refer-
ences, Any program called by this statement must
already be in disk storage. I the logic of the pro-
gram allows any one of several Links to be called,
it is necessary that all of the Link programs be on
disk storage prior to execution.

-The COMMON area is not destroyed during the
loading of the Link programs, I the size of COM-
MON differs between programs, the COMMON area
size that remains undestroyed is determined by the
newest Link program,

STOP Statement

In Monitor FORTRAN the STOP statement is equiva-
lent to a PAUSE statement followed by a CALL EXIT
statement,

29

APPENDIX A: 1130 FORTRAN SOURCE PROGRAM CHARACTER CODES

Character

IBM Card Code

- PTTC/8

» (U = Upper Case)

Hex

Character IBM Card Code

PTTC/8
Hex
(U = Upper Case)
(L = Lower Case)

Numeric Characters*

OO TDURWN RO

Alphabetic Characters*

HOWOZZ2rRE-mOoOHEHYD QW >

NOTES:

30

WO IO U W KO

12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9

(L = Lower Case)

1A (L)

01 (L)

- 02 (L)

13 (L)
04 (L)
15 (L)
16 (L)
07 (L)
08 (L)
19 (L)

61 (U)
62 (U)
73 (U)
64 (U)
75 (U)
76 (U)
67 (U)
68 (U)
79 (U)
51 (U)
52 (U)
43 (U)
54 (U)
45 (U)
46 (U)
57 (U)
58 (U)
49 (U)

At compilation time, the following
character punches are treated as
being equal; however, the charac-
ters to the left of the "and' must be
used if compatibility with IBM
System/360 FORTRAN is desired.

'and @
+-and &
=and #

) and <
(and %

Alphabetic Characters*
S 0-2
T 0-3
U 0-4
\% 0-5
w 0-6
X 0-7
Y 0-8
Z 0-9

ecial Charac *

. 12-8-3
< 12-8-4
(12-8-5
+ 12-8-6
& 12

$ 11-8-3
* 11-8-4
) 11-8-5
- 11

/ 0-1

’ 0-8-3
% 0-8-4
8-3
@ 8-4

' 8-5
= 8-6
Space Blank

32 (U)
23 (U)
34 (U)
25 (U)
26 (U)
37 (U)
38 (U)
29 (U)

6B (L)
02 (U)
19 (U)
70 (U)
70 (L)
5B (L)
08 (U)
1A (U)
40 (L)
31 (L)
3B (L)
15 (U)
0B (L)
20 (L)
16 (U)

01 (U)
10 ()

*The term, alphameric characters, as used in this
publication, does not include Special Characters.

2.

Only the 53 characters shown above
can be handled at execution time
through A or H type formatting in the
FORTRAN Input/Output routines. Any
other character is replaced with a

blank (space).

No transformations, such as & converted
to +, etc., are made through A or H
conversion; however, the & is converted
to + when read with I, E, or F con~-

version.

Nonstandard Items

The items listed below, which are a part of the

language described in this publication, are not con-
tained in the standards defined by the ASA committee,

X 38.4.3 - FORTRAN.

Expression of the form A**B**C
Machine Indicator Tests
Mixed mode expressions
Monitor Disk Statements
Automatic input/output conversion
(e.g. Itype to a real variable)
Literal data enclosed in Apostrophes
Source characters <, &, %, #, @, and '.

Imglerhenta;ion Restrictions

1. No FORTRAN statement can be compiled that
contains more than 15 different subscript ex-
pressions since the compiler can only generate

A

A

ITEMS AND IMPLEMENTATION RESTRIC TION

3.

15 subscript registers.

Certain very long FORTRAN statements can-
not be compiled since they expand to a size
that is too long to be scanned. This expansion
by the compiler occurs in handling subscript
expressions and in generating temporary
storage locations for arithmetic expressions.
FORTRAN supplied subprograms, FLOAT
and IFIX may not be used in EXTERNAL
statements.

Within A, H, I, and X specifications in
FORMAT statements, the field width "w"
may not be greater than 145.

Within E and F specifications the field width
"w'' may.not be greater than 127 and the
number of decimal places specified for "d"
may not be greater than 31.

The repetition specification for groups and
fields and the total width specification

for a record may not be greater than 145.

The size of COMMON specified in a mainline
program must be at least as large as the
largest COMMON specified in any subprogram.

31

APPENDIX C: SOURCE PROGRAM STATEMENTS AND SEQUENCING

Every executable statement in a source program Statement Normal Sequence
(except the first) must have some programmed path ‘ ’
of control leading to it. Control originates at the GO TOn Statement n
first executable statement in the program and is GO TO (ng,
passed as follows: ng,...ny),i Statement n;
Statement Normal Sequence . IF(a)84,82,83 Statement Sy if arithmetic a < 0
R ' Statement Sy if arithmetic a =0

a=b Next executable statement : Statement Sy if arithmetic a >0

CALL First executable statement of INTEGER Nonexecutable
called subprogram

COMMON Nonexecutable : PAUSE Next executable statement

CONTINUE Next executable statement '
: _ READ Next executable. statement

DEFINE FILE Nonexecutable REAL Nonexecutable

DIMENSION Nonexecutable . RETURN The first statement, or part of a
bo DO sequencing, then the next statement, following the refer-

executable statement ence to this program,

EQUIVALENCE = Nonexecutable STOP Terminate execution
EXTERNAL Nonexecutable SUBROUTINE Nonexecutable

FORMAT Nonexecutable

FUNCTION Nonexecutable WRITE Next executable statement ‘

32

The IBM 1130 FORTRAN compiler does not require
reserved words; however, the words listed below
are reserved by two IBM System/360 FORTRAN
compilers (Basic Programming Support and "E"
Level). These words should be used in a FORTRAN
source program only as specified in the publications
describing those compilers if compatibility with
those compilers is desired. Also, in that case,
these words should not be used as names.
addition, the same two compilers require signifi-
cant blanks around certain identifiers, and no em-

bedded blanks within the identifiers. This restriction

should also be observed if compatibility is desired.
In other words, if these restrictions are observed,
the source program could be compiled for either the
1130 or System/360.

APPENDIX D: IBM SYSTEM/360 RESERVED WORDS

ABS CALL
AINT COMMON
ALOG CONTINUE
AMAXO CcOos
AMAX1
AMINO DEFINE
AMIN1 DIM
AMOD DIMENSION
ATAN DFLOAT
DO
BACKSPACE DOUBLE

DSIGN
DVCHK

END

EQ
EQUIVALENCE
EXP
EXTERNAL

FILE
FLOAT
FORMAT

“FUNCTION

GE
GO
GT

IABS
IDIM

IF

IFIX

INT
INTEGER
ISIGN

LE
LT

MAXO0
MAX1
MINO
MIN1
MOD

NE
OVERFL
PAUSE

READ
REAL
RETURN
REWIND

SIGN
SIN

SLITE
SLITET
SQRT

STOP
SUBROUTINE

TANH
TO

WRITE

33

INDEX

A-conversion, 15

ABS subprogram (Table 1), 22
ALOG subprogram (Table 1), 22
Alphameric data conversion, 14

Arguments,
dummy, 22, 23
function, 23

Arithmetic,

expressions, 5
operation symbols, 5
statements, 6
Arrays, 3, 4
arrangement, 3
dimensioning, 18
element equivalence, 19
ATAN subprogram (Table 1), 22

Blanks, 1
Blank fields, 16
Blank lines, 16

CALL DATSW statement, 26
CALL DVCHK statement, 26
CALL EXIT statement, 28
CALL FCTST statement, 26
CALL LINK statement, 29
CALL OVERFL statement, 26
CALL SLITE statement, 26
CALL SLITET statement, 26
CALL statement, 25
CALL TSTOP statement, 26
CALL TSTRT statement, 26
- Card punches for source program, 30

Carriage control, 17
Comments, 1
COMMON statement, 18, 29
Computed GO TO statement, 6
Constants, 1

Integer, 2

Real, 2
Continnation line, 1
CONTINUE statement, 9
Control statements, 6

GO TO, 6,7

IF, 7

Do, 7 -

CONTINUE, 9

END, 9

PAUSE, 9

STOP, 9
Conversion of alphameric data, 14
Conversion of numeric data, 13
Conversion to Single Subscripts, 20

Data conversion,

alphameric, 14
numeric, 13

34

Data input to object program, 17
DATSW subprogram, 26

DEFINE FILE statement, 28
DIMENSION statement, 18

Disk READ, WRITE, and FIND state ments,

DO statement, 7
DVCHK subprogram, 26

E-conversion, 14
END statement, 9, 24
EQUIVALENCE statement, 19
EXTERNAL statement, 17
EXP subprogram (Table 1), 22
Explicit specification, 2

(see Type Statements), 17

- Expressions, 4

rules for construction, 5, 6

F-conversion, 13
FCTST subprogram, 26

Feature requirements (of compiling machine),

FIND statement, 28
FLOAT subprogram (Table 1), 22
FORMAT statement, 12
FORTRAN Supplied Subprograms,
FUNCTION subprogram, 22
Functions,

definition, 21

Statement functions, 21

General I/O statements, 10

GO TO statement,
computed, 6
unconditional, 6

Heconversion, 14

I-conversion, 13
IABS subprogram (Table 1), 22
IF statement, 7
IFIX subprogram (Table 1), 22
Implicit specification, 2
Increment of a DO statement, 8
Index of a DO statement, 8)
Indexing I/O lists, 10
Initial value of a DO statement, 8
Input data, 17

conversion, 13, 14
Input/Output statements,

disk, 28

general, 10
Integer constants, 2
INTEGER statement (type), 17
ISIGN subprogram (Table 1), 22

List, 10
Literal data, 15
Location Equivalence Table (LET),

22

29

Machine configuration and feature
requirements, ii

Machine indicator tests, 26

Monitor statements, 28

Multiple field format, 16

Nesting of a DO statement, 8, 9
Nonstandard Items (Appendix B), 31
Numeric data conversion, 13

Object program input, 17

Operation symbols, 5

Order of arithmetic operations, . 5
Onder of specification statements, 17
OVERFL subprogram, 26

Parentheses, 5
PAUSE statement, 9
Printer Carriage Control, 17

Range of a DO statement, 8
READ statement, 10
(see also Disk Read and Write statements), 28
Reading alphameric data, 14
Real Constants, 2
REAL statement (Type), 17
Reserved words (IBM System/360), 33
Restrictions of a DO statement, 8
RETURN statement, 23

Sequence of source statements, 32
Sequence of specification statements, . 17
Simulated machine indicators, 26
SIN subprogram (Table 1), 22
SIGN subprogram (Table 1), 22
SLITE subprogram, 26
SLITET subprogram, 26
Source program code characters (Appendix A), 30
Specification statements, 17
COMMON, 18
DIMENSION, 18
EQUIVALENCE, 19
Type (REAL, INTECGER), 17
SQRT subprogram (Table 1), 22
State ment,

comments, 1

continuation, 1

format, 1

numbers, 1

Function, 21
Statements,

arithmetic, 6

control, 6

format, 12

input/output, 9

specification, 17

subprogram, 20
STOP statement, 9
Subprograms,

functions, . 21

definition, 21

END statement, 9, 24

FUNCTION, 22

naming, 21

RETURN statement, 23

SUBROUTINE, 24

writing in assembler language, 25
SUBROUTINE subprogram, 24
Subscripted variables, 4
Subscripts, 3, 4
System/360 Reserved Words, 33

TANH subprogram (Table 1), 22

Test value of a DO statement, 8
TSTOP subprogram, 26

TSTRT subprogram, 26

Type statements (REAL, INTEGER), 17

Variables, 2
explicit specification, 2, 17
implicit specification, 2
names, 2
rules for naming, 3

types, 2

WRITE statement, 11
(see also Disk Read and Write statements),

X-conversion (blank fields), 16

28

35

C26~-5933-3

BV

®
International Business Machines Corporation

Data Processing Division
112 East Post Road, White Plains, New York

°Y °S 0 ur pajunig O0ETT NG

€-€€69-92D

READER'S COMMENT FORM

IBM 1130 FORTRAN Language Form C26-5933-3

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. All comments will be handled on a non-confiden-

tial basis.
Yes No

® Does this publication meet your needs? O O

® Did you find the material:
Easy to read and understand? O O
Organized for convenient use?] OJ
Complete? O O
Well illustrated? O O
Written for your technical level? O O

® What is your occupation?

® How do you use this publication?
As an introduction to the subject? O As an instructor in a class? []
For advanced knowledge of the subject? O As a student in a class? N
For information about operating procedures? [] As a reference manual? O

Other
® Please give specific page and line references with your comments when appropriate.
If you wish a reply, be sure to include your name and address.

COMMENTS

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

. G e e — — —— —— —— — — — . GSf W S S S S E—— — — — — S — — — ¢ f—— — ity S ——— — ———— S S— —— — — t—— T— - oo Y " S ——

C26-5933-3

FIRST CLASS
PERMIT NO. 2078

 SAN JOSE, CALIF.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY

IBM CORPORATION
MONTEREY & COTTLE RDS.
SAN JOSE, CALIFORNIA
95114

Attention: Programming Publications, Dept. 234

B

lnternatiunﬁl Business Machines Cnrpnrat’ion
Data Processing Division :
112 East Post Road, White Plains, N. Y. 10601

o -

0€TT dI

€-€€6S-9CQ__ V. &’ N1 Ul pajuLy

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38

