
Systems Reference Library

IBM 1130/1800 Basic FORTRAN IV Language

File No. 1130/1800·25
Order No. GC26·3715·8

Page of GC26-371S-8
Revised February 1974
By TNL GN34-0181

PREFACE

This publication provides the programmer of an 1130
or 1800 system with the specifications required to
write programs in the basic FOR TRAN IV language.
The basic FOR TRAN IV language can be used with
the minimum machine configurations of the following
systems, with the one noted exception:

• IBM 1130 Disk Monitor System, Version 2 (DM2)

• IBM 1130 Disk Monitor System, Version 1 (DM1)

• IBM 1130 Card/Paper Tape (C/PT) Programming
System

• IBM 1800 Multiprogramming Executive (MPX)
Operating System

• IBM 1800 Time-Sharing Executive (TSX) Operating
System

• IBM 1800 Card/Paper Tape (C/PT) Programming
System with an IBM 1053 Printer, an IBM 1443
Printer, or an IBM 1816 Printer-Keyboard

Each of these programming systems includes a
FOR TRAN Compiler that converts a source program
written in the 1130/1800 basic FORTRAN IV language
into an object program for use by that system.

This' publication is a reference source (not a self­
study text) and describes the coding form, compilation
messages, error codes, and the use of constants, vari­
ables, arithmetic operators, FORTRAN statements,
and statement numbers used in writing an 1130/1800
basic FORTRAN IV program.

Ninth Edition (January 1973)

Suggested Reading

IBM 1130 publications:

Subroutine Library, GC26-5929
Disk Monitor System, Version 2, Programmer's

, and Operator's Guide, GC26-3717
Disk Monitor System (Version 1), Reference Manual,

GC26-3750
Card/Paper Tape Programming System
Operator's Guide, GC26-3629

IBM 1800 Multiprogramming Executive Operating
System publications:

Subroutine Library, GC26-3724
Operating Procedures, GC26-3725
Programmer's Guide, GC26-3720

IBM 1800 Time-Sharing Executive Operating
System publications:

Subroutine Library, GC26-3723
Operating Procedures, GC26-3754
Concepts and Techniques, GC26-3703

IBM 1800 Card/Paper Tape Programming System
publications:

Subroutine Library, GC26-5880
Operator's Guide, GC26-3751

This is II reprint of GC26-3715-7 incorporating changes released in the following Technical Newsletters:
GN34-0085 (dated May 1972) and GN34-0111 (dated October 1972).

This edition applies to Version 1, Modification 8, and to Version 2, Modification 12, of IBM 1130
Disk Monitor System; to 1130 Card/Paper Tape System containing either Version 1, Modification 2, of
1130-FO-OOl, or Version 1, Modification 3, of 1130-FO-002; to 1800 Card/Paper Tape System
containing Version 1, Modification 3, of 1800-FO-007/008; to IBM 1800 Time-Sharing Executive
Operating System containing Version 3, Modification 9, of 1800·0S-001; to IBM 1800 Multiprogram­
ming Executive Operating System containing Version 3, Modification 4, of 1800-0S-010; and to all
subsequent modifications of the above systems until otherwise indicated in new editions or Technical
Newsletters. Changes are occasionally made to the specifications herein; before using this publication
in connection with the operation of IBM systems, consult the latest SRL Newsletter, Order No.
GN26-1130 or GN26-1800, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form is provided at the back of this publication for readers' comments. If the form has been
removed, coments may be addressed to IBM Corporation, Systems Publications, Department 27T,
P., O. Box 1328, Boca Raton, Florida 33432. Comments become the property of IBM.

©International Business Machines Corporation 1967,1968, 1969, 1970, 1971

ii

INTRODUCTION
CODING FORM .

How the Columns Are Used

FOR TRAN Statements
Statement Numbers •

Program Identification, Sequencing

Comments

Blank Records

Blank Columns

CONSTANTS, VARIABLES, AND ARRAYS
Constants •

Integer Constants
Real Constants .

Variables

Variable Names

Variable Types

Subscripted Variables
Arrays and Subscripts . .

Arrangement of Arrays in Storage

Subscript Forms

ARITHMETIC EXPRESSIONS
Definition • . • . • • •

The Arithmetic Operation Symbols

Computational Modes, Integer and Real
The Mode of an Expression • . • . •

Integer and Real Mode ExpreSSions

Mixed Expressions
Aritlunetic Operation Symbols •

Use of Parentheses

Order of Operations

STATEMENTS' ..

Arithmetic Statements .
Control Statements • .

Unconditional GO TO Statement

Computed GO TO Statement .

IF Statement

·DO Statement

CONTINUE Statement

PAUSE Statement

STOP Statement

END Statement

CALL Statement

SpeCial CALL Statements

' ..

Machine and Program Indicator Tests'
Input/Output Statements . .

Non-disk I/O Statements
Disk I/O Statements . •

2

2
2
2
2
2
2
2

3

3

3

3

4
4
4

5
5
5
6

7
7

7
7

7
7

7
8

8

8

9

9

9

10

10
10

10

12

• 13
13

'13

'13

• 14
15

• 16

• 17
• 18

iii

Unformatted I/O Statements •

Indexing I/O Lists

Manipulative I/O Statements •

Logical Unit Numbers

FORMA T Statement· • • • •

SpeCification Statements

Type Statements (REAL, INTEGER)

EXTERNAL Statement

DIMENSION Statement •

COMMON Statement· • •

EQUIVALENCE Statement.

DA TA Statement • •

DEFINE FILE Statement
Subprogram Statements •

Subprogrilm Names

Functions

SUBROUTINE Subprogram

END and RETURN Statements in Subprograms

Subprograms Written in Assembler Language •

CONTENTS

20

20

• • 21

• ~ 22
• • 22

• 29

• • 29
••• 30

•••• 30

• 30

32

• • 33
34
35

• • 36

• • 36
• • 39

40

40

COMPILA TION MESSAGES ••••••••••••• 42

APPENDIX A. SYSTEM/STATEMENT CROSS-

REFERENCE TABLE· . • • • • . . • • • 45

APPENDIX B. COMPARISON OF USA STANDARD

FOR TRAN AND IBM 1130/1800 FORTRAN
LANGUAGES • • . • . • • • . • • • • 46

APPENDIX C. 1130/1800 FORTRAN SOURCE

PROGRAM CHARACTER CODES' ••••• 49

APPENDIX D. IMPLEMENTATION RESTRICTIONS' • • • • 50

APPENDIX E. SOURCE PROGRAM STATEMENTS
AND SEQUENCING . • • • • • • • . • • 51

APPENDIX F. ERROR CODES • • • • . . • • • . • • 52

INDEX . • . • . . • • • • • • • • • • • • • • • 55

FOR TRAN (FORmula TRANslation) is a language that
closely resembles the language of mathematics: It
is designed primarily for scientific and engineering
computations. Since the language is problem­
oriented rather than machine-oriented, it provides
scientists and engineers with a method of communi­
cation with a computer that is more familiar, easier
to learn, and easier to use than the system pro­
gramming (Assembler) language.

The elements of the FORTRAN Language are con­
stants, variables, arrays, arithmetic operators,
FORTRAN Statements and statement numbers.
The elementary rules of expression of these
elements in a FORTRAN program of 1130/1800
systems are given in the chapters that follow.

The IBM 1130 and 1800 Programming Systems
provide a FORTRAN Compiler, a program that
translates a FORTRAN program into a form suit-

INTRODUCTION

able for execution under each respective program­
ming system. The translated program is known as
the object program.

The FORTRAN Compiler detects certain errors in
the source program and writes appropriate messages
on the typewriter or printer. At the user's option,
the compiler also produces a listing of the source
program and storage allocations.

Exact results of the calculations should not always
be expected because some computations are subject
to "round-off" errors.

The 1130/1800 FORTRAN language contains all
of the features defined in American Standard Basic
FORTRAN, X3.10-1966, with significant extensions
beyond this standard. These extensions are listed
in Appendix B.

Introduction 1

Page of GC26-3715-7
Revised May 1972
By TNL GN34-0085

CODING FORM

The statements of a FORTRAN source program
are normally written on a standard FORTRAN cod­
ing sheet (Form No. X28-7327). See Figure 1.

HOW THE COLUMNS ARE USED

The 80 columns of the FORTRAN Coding Sheet
are used as follows:

FORTRAN STATEMENTS

FORTRAN statements are written one to a line in
columns 7-72. If a statement is too long for one
line, it may be continued on a maximum of five
successive lines by placing any character other than
a blank or a zero in column 6 of each continuation
line. In the first line of a statement, column 6
;;USt be either blankor zero.

STATEMENT NUMBERS

Some FORTRAN statements are identified with
statement numbers in columns 1-5 inclusive.
A statement number must be one of the digits in

the range 1 to 99999 inclusive. It must be placed
in the statement number field, but may be placed
anywhere in that field; leading blanks or zeros,
and trailing blanks are ignored by the compiler.
Note: Superfluous statement numbers may de­
crease efficiency during compilation and should,

IBM FORTRAN Coding Form

therefore, be avoided. Statement numbers on specifica­
tion statements and continuation lines are ignored.
PROGRAM IDENTIFICATION, SEQUENCING

Columns 73-80 are not used by the FORTRAN
Compiler and may, therefore, be used for program
identification, sequencing, or any other purpose.

COMMENTS

Comments to explain the program may be written
in columns 2-72 if the character C is placed in
column 1. Comment lines may appear anywhere
except before a continuation line or after an END
statement. Comments are not processed by the
FORTRAN Compiler.

BLANK RECORDS

Blank records in a source program are ignored
by the Compiler.

BLANK COLUMNS

Blanks may be used freely to improve the read­
ability of a FORTRAN program listing. For
example, the following statements have a valid
format:

GObTO(1, 2, 3,4), I
GObTObb(1, 2,3,4), bbI

where b represents a blank.

t-:N()GUM-:--_____________ ..--____ ---lI'UNCtlINC CI<\l'HiC I I I I I
... ,"'_. 0'" 1'"''''''''°"' tv"'" I I I I I

su."""'''''
, J

~~
lip ~~

~

~@ ~

7" 10 1I111)1'IS"" 1,19101'

i' ·.··[7

I um ! 1;1\ [11

I Ii··.·.·

I Tl
III

Figure 1. FORTRAN Coding Sheet

2

: •.. kl(

til i I >

FORTRAN STATEMENT

1··'1 l 1
II I I 1<lf

IIi If

.. I
•••

..

••••• I' F i .••• 1·'·1 ..

I
I"

:1
::
..... I I· ..

IO(NllfIC4T10N
UQUfNCE

!I
I···· L k

i I"

I I

CONSTANTS

In FORTRAN, any number which is not a state­
ment number, appearing in a source statement,
is called a constant. For example, in the state­
ment J = 3 + K, the 3 is a constant.
There are both integer and real constants in
FORTRAN.

INTEGER CONSTANTS

Any constant which does not contain a decimal
point is called an integer constant.
The allowed range for integer constants is from
-32768 or - (215) to +32767 or +(215_1).

Explanatory Note: Only the (positive) magnitudes
of integer constants are stored during compilation.
The generation of negative integer constants
occurs during execution of the program, as an
arithmetic operation. Thus, the sign bits (16th
bits) of the words in core are not available for
integer constants; the maximum size of integer
constants, both positive and negative, is given
by fifteen bits being on. That number is 32767.
All arithmetic operations in integer mode are
modular 32767; that is, if the result of an arithmetic
operation falls outside the allowed range, the sign
is reversed. Sign changes during execution time
are not displayed.

Commas are not permitted within any FORTRAN
constants. A preceding plus sign is optional for
positive numbers. Any unsigned constant is assumed
to be positive.

The following' examples are valid integer constants:

o
91

-173
+327

The following are not valid integer constants:

3.2
27.
31459036

5,496

(contains a decimal point)
(contains a decimal point)
(exceeds the magnitude permitted'
by the compiler)
(contains a comma)

CONSTANTS, VARIABLES AND ARRAYS

REAL CONSTANTS

Any constant which contains a decimal point is
called a real constant. Real constants may contain
up to six or up to nine significant digits depending
on the precision specified to the Compiler.

Standard precision provides up to 23 significant
bits of precision (6 plus significant digits) stored in
core storage as shown below:

1st Word 15 most significant bits of Mantissa

o

2nd Word

o

8 least significant bits
of Mantissa

15

Characteristic

7 8 15

Extended precision provides up to 31 significant
bits of precision (9 plus significant digits) stored in
core storage as shown below:

1st Word Reserved Characteristic

0 7 8 15

2nd Word I 5 I Mantissa

0 15

3rd Word ... 1 _____ M_a_n_ti_ss_a ____ --J

o

Note: Normalization can in some cases cause the
loss of one bit of significance.

15

(The precision is specified to the compiler by
optional use of an *EXTENDED PRE CISION control
record. See the section describing FORTRAN con­
trol records in the appropriate corequisite pub­
lication, as listed. in the Preface.)

The magnitude of a real constant must not be
greater than 2127 or less than 2-128 (approximately
1038 and 10-39). It may be zero.

A real constant may be followed by a decimal
exponent written as the letter E followed by a one­
or two-digit integer constant (signed or unsigned)
indicating the power of 10.

Constants, Variables and Arrays 3

Page of GC26-371 5-8
Revised February 1974
By TNL GN34-0181

The following examples are valid real constants:

105.
3.14159
5.E3
5.0E3

-5.0E03
5.0E-3
5.0E1

(5.0 x 103)
(5.0 x 103)

. (-5. 0 x 103)
(5.0 x 10-3)
(5.0 x 10)

The following are not valid real constants:

325

5.0E
5.0E003
5E02

(no decimal point; however, this is
a valid integer constant)
(no exponent)
(exponent contains three digits)
(no decimal point)

VARIABLES

A FORTRAN variable is a symbolic representation of
·a quantity that may assume different values. The
value of a variable may change either for different
executions of a program or at different stages within
the program. For example, in the statement

A == 5.0 + B

both A and B are variables. The value of B is
determined by some previous statement and may
change from time to time. The value of A varies
whenever this computation is performed with a new
value for B.

VARIABLE NAMES

A variable name consists of 1-5 alphameric charac­
ters, excluding special characters, the first of which
must be alphabetic. Blanks in a variable name will
be ignored by the compiler. (See Appendix C.)

Examples:

M
DEV86
12

The rules for naming variables allow for extensive
selectivity. In general, it is easier to follow the

4

flow of a program if meaningful symbols are used
wherever possible. For example, to compute
distance it would be possible to use the statement:

x == y*Z (Asterisk denotes multiplication)

but it would be more meaningful to write:

D == R*T
or:

DIST == RATE*TIME

Similarly, if the computation were to be performed
using integers, it would be possible to write:

I == J*K

but it would be more meaningful to write:

ID == IR*IT
or:

IDIST == IRATE *ITIME
In other words, variables can often be written in a
meaningful manner by using an iIiitial character to
indicate whether the variable represents an integer
or real value and by using succeeding characters as
an aid to the user IS memory.

Note: . The names of FORTRAN-supplied FUNCTION
subprograms, or such names preceded by F or E,
for example, SIN, FCOS, ESQRT, must not be used
as variable names.

VARIABLE TYPES

The type of variable corresponds to the type of data
the variable represents (i. e., integer or real).
Variable type can be specified in two ways:
implicitly or explicitly.

Implicit Specification

Implicit specification of a variable is made as
follows:

1. If the first character of the variable name is
I, J, K, L, M, or N, the variable is an integer
variable. .

2. If the first character of the variable name is not
I, J, K, L, M, or N, the variable is a real
variable.

Explicit Specification

Explicit specification of a variable type
is made by using the Type statement

(see Type Statements). The explicit specification
overrides the implicit specification. For example,
if a variable name is ITEM and a Type specification
statement indicates that this variable is real, the
variable is handled as a real variable, even though
its initial letter is I.

The allowed range for integer variables is from'
-32768 to 32767 inclusive.

SUBSCRIPTED VARIABLES

A subscripted variable consists of a variable name
followed by a pair of parentheses enclosing one, two,
or three subscripts separated by commas.

Examples:

A(I)
K(3)
ALPHA(I, J+2)
BETA(5*J-2, K-2, L+3)

ARRA YS AND SUBSCRIPTS

An array is an ordered set of data that is referred
to by a single name. Each individual element in the
array is referred to by subscripting the name of the
array, the subscript denoting the position of the ele­
ment in the array. For example, assume that the
following is an array named NEXT:

15
12
18
42
19

To refer to the second element in the group in ordi­
nary mathematical notation, the form NEXT 2 might
be used. In FORTRAN the form must be NEXT(2).
Thus, NEXT(2) has the value 12 and NEXT(4) has the
value 42.

Similarly, an ordinary mathematical notation
might use NEXT i to represent any element of the
array NEXT. In FORTRAN, this is written as
NEXT(I) where I equals 1, 2, 3, 4, or 5.,

The array could be two-dimensional; for example,
the array LIST:

COLUMNI COLUMN2 COLUMN3

ROW1 82 4 7
R.QW2 12 13 14
ROW3 91 1 31
~ 24 16 10
ROW5 2 8 2

Page of GC26-3715-7
Revised May 1972
By TNL GN34-0085

To refer to the number in row 2, column 3
LIST 2,3 might be used in ordinary mathematical
notation. In FORTRAN, the form LIST(2,3) would
be used where 2 and 3 are the subscripts. Thus,
LIST (2,3) has the value 14 and LIST (4,1) has the
value 24.

Ordina~y mathematical notation uses LISTi, j to
represent any element of the two-dimensional array
LIST. In FOR TRAN, this is written as LIST(I, J)
where I equals 1, 2, 3, 4, or 5 and J equals 1, 2, or
3.

FORTRAN allows up to three subscripts (i. e. ,
three-dimensional arrays). For example, a three­
dimensional array might be used to store statistical
data on the urban and rural population of each state
for a period of 10 decades.

The use of an array in the source program must
be preceded by either a DIMENSION statement, a
COMMON statement, or a Type statement in order to
specify the size of the array. The first reference to
the array in one of these statements must specify its
size (see Specification Statements).

NOTE FOR DM2 USERS: Be cautious when including
arrays in DO loops. No error message is generated
if the index of a DO loop uses the same variable as the
subscript of an array in the DO loop and the value of the
index exceeds the dimension of the subscript.

ARRANGEMENT OF ARRAYS IN STORAGE

Arrays are stored by column in descending storage
addresses, with the value of the first of their
subscripts increasing most rapidly and the value
of the last increasing least rapidly. In other words,
arrays are stored with element (1,1,1) in a higher
core location than element (2,3,4). In scanning the
array from element (1,1,1), the left indices are
advanced more rapidly than those on the right. A
one-dimensional array, J(5), in address 0508
appears in storage as follows:

Address Element

0500 J(5) ,
0502 J(4)
0504 J(3)
0506 J(2)
0508 J(I)

A two-dimensional array, K(5,3), appears in storage
in single-array form in ascending storage addresses
in the following order reading from left to right:

K(5,3) K(4,3) K(3,3) K(2, 3) K(I,3)
K(5,2) K(4,2) K(3,2) K(2, 2) K(I,2)
K(5,1) K(4,1) K(3,1) K(2,1) K(I,I)

If K(5, 3) is in core address 0200, K(I, 1) will be in
core address 0228 (assuming each element occupies
two words).

Constants, Variables and Arrays 5

The following list is the order of a three­
dimensional array, A(3, 3, 3):

A(3,3,3) A(2,3,3) A(I,3,3) A(3,2,3) A(2,2,3)
A(I, 2, 3) A(3, 1,3) A(2, 1,3) A(I, 1,3) A(3, 3,2)
A(2,3,2) A(I,3,2) A(3,2,2) A(2,2,2) A(I,2,2)
A(3, 1,2) A(2, 1,2) A(I, 1,2) A(3, 3,1) A(2, 3,1)
A(I, 3,1) A(3, 2, 1) A(2, 2,1) A(I, 2, 1) A(3, 1, 1)
A(2,1,1) A(I,I,I)

SUBSCRIPT FORMS

Subscripts may take the following forms:

v
c
v+c
v-c
c*v
c*v+c'
c*v-c'

where:

v represents an unsigned, nonsuqscripted,
integer variable.
c and c' represent unsigned integer constants.

The value of a subscript (including the added or
subtracted constant, if any) must be greater than

6

zero and not greater than the corresponding array
dimension. Each subscripted variable must have the
size of its array (i. e., the maximum values that
its subscripts can attain) specified in a DIMENSION,
COMMON, or Type Statement.

The following are valid subscripts:

IMAX
19
JOB+2
NEXT-3
8*IQUAN
5*L+7
4*M-3

The following are not valid subscripts:

-I
A+2

1+2.
-2*J
1(3)
K*2

2+JOB

(the variable may not be signed)
(A is not an integer variable unless
defined as such by a Type statement)
(2. is not an integer constant)
(the constant must be unsigned)
(a subscript may not be subscripted)
(for multiplication, the constant must
precede the variable; thus, 2*K is
correct)
(for addition, the variable must precede
the constant; thus, JOB+2 is correct)

Arithmetic Expressions appear on the right­
hand side of Arithmetic Statements and in
certain Control Statements. They are used to
specify arithmetic computation.

DEFINITION

An Arithmetic Expression is a sequence of con­
stants, variables, function names (see Sub­
program Statements), and arithmetic operation
symbols which obeys the rules set out below.

COMPUTA TIONAL MODES, INTEGER AND REAL

Arithmetic computations are done in either of two
modes, integer or real, depending on the type of the
quantities, integer or real, involved in the compu­
tation. All constants, variables, and functions that
form an arithmetic expression need not be of the
same type.

THE MODE OF AN EXPRESSION

The mode of an expression is integer, real, or
mixed depending on whether its constants are of
type integer, real, or are .. Plixed.

INTEGER AND REAL MODE EXPRESSIONS

Examples: Mode of
Expression Type of Data Expression

3 Integer Constant Integer
I+J Integer Variables Integer

3.0 Real Constant Real
A Real Variable Real

BILL+3.6 Real Variable, Real
Real Constant

A(I) Real Variable Real

In the last example, note that the subscript, which
is always an integer quantity, does not affect the
mode of the expression. The mode of the subscripted
expression is determined solely by the mode of the
variable.

Page of GC26-371S-8
Revised February 1974
By TNLGN34-0181

ARITHMETIC EXPRESSIONS

MIXED EXPRESSIONS

In a mixed expression, the parts of the expression
involving purely integer operations are computed
in the integer mode. Then these integer results are
converted to real values and the entire expression is
computed in the real mode. Note that arithmetic
operations involving variables that contain alphameric
characters should be performed in the integer mode.

For example, in the expression:
A + (I * j) + (A / J) + 1** 2

I*J and 1**2 are computed in the integer mode and
these results are then_converted to real values.
However, the J in A/J 'will be converted to real
before A/J is computed.

Examples: The following are valid expressions.

Expression
F
5*JOB+ITEM/(2*ITAX)
5. *AJOB+BITEM/(2. *TAX)
J+l
A **1+ B(J)+C (K)
A**B
I**J+K(L)
A+B(I)/ITEM

Expression

DEV+I
ITA**2.5

Mode
Real
Integer
Real
Integer
Reai
Real
Integer
Mixed

Mode

Mixed
Mixed

I
Rule: If a variable contains alphameric characters,
arithmetic operations involving the variable must be
done in integer mode.

Note: The computed value of an integer expression,
or the integer part of a mixed expression, cannot
lie outside the range -32768 through 32767.
Overflow occurs if the value would otherwise
exceed this range, that is, if the mathematical
value of the expression exceeds the stated range.

Expressions 7'

Page of GC26-371S-8
Revised February 1974
By TNL GN34-0181

ARITHMETIC OPERATION SYMBOLS

FORTRAN

Symbol

+

*
I
**

Means

plus
minus, unary minus
multiplication
division
exponentiation

Example

A+B
A-B, -A
A*B
AlB
A**B

1. Operators must not be adjacent to each other.
They must be separated by quantities or paren­
theses in the expression. For example, A+-B
is invalid, while - B +A or A +(- B) are valid.

2. No operation symbol is assumed. For example,
3A will not be taken to mean 3 * A.

3. No quanitity is assumed. For example, an isolate
minus sign (-) is never taken to mean minus one.

4. The expression A **B**C is permitted and
evaluated as A**(B**C). If exponentiation to a
real power involves a negative base, the absolute
value of the base will be used when performing
the computation, and the result will be left in the
absolute form. To preserve the base sign, an
integer exponent must be used.

USE OF PARENTHESES

Parentheses may be used in arithmetic ex­
pressions, as in algebra, to specify the order in
which various arithmetic operations are to be per­
formed. Expressions enclosed in parentheses
are effectively isolated from other parts (if any)
of the containing expression until their values are
computed. Then they enter the larger computation
with the status of a variable or constant.

Redundant parentheses are allowed. Thus, A, (A),
«A» are all valid expressions.
The mode of an expression.is not changed by the
use of parentheses. Within parentheses, or where
parentheses are omitted, the order of operations
is as follows: '

Note: Parentheses may not be used to imply
multiplication; the asterisk ,arithmetic operator
must always be used for this purpose. Therefore,
the algebraic expression:

(AxB) (-CD)

must be written as:

(A*B)*(-C**D)

8

ORDER OF OPERATIONS

Code a FORTRAN arithmetic expression so that if
you evaluate it in the following order of operations,
you get the desired result.

1130 Order of Operations. Perform all operations
on level 1, then go to level 2, etc.

1. Evaluation of expressions enclosed in
parentheses

2. Evaluation of functions
3. Exponentiation (right to left)
4. Multiplication and division
5. Addition, subtraction, and unary minus

1800 Order of Operations. Perform all operations
on level 1, then go to level 2, etc.

1. Evaluation of expressions enclosed in
parentheses

2. Evaluation of functions
3. Exponentiation (right to left)
4. Unary minus
5. Multiplication and division
6. Addition and subtraction

Coding Examples:

3A2 + 4eC

27C

(3*A **2 + 4*EXP (C»I (27*C)

-4C

(-4*c)/sQRT«B**2 + c**2)/2)

B +A2
(A - B)C

BI «A-B)*C)+A **2

Note: Coding redundant parentheses often helps to
clarify your thinking and reduce errors.

There are five classes of FORTRAN statements:

1. Arithmetic Statements
2. Control Statements
3. Input/Output Statements
4. Specification Statements
5. Subprogram Statements

Arithmetic Statements cause the values of Ari~hme­
tic Expressions to be assigned to program variables
during program execution. The major arithmetic
calculations to be done by a program must be written
as a series of Arithmetic Statements.

Control Statements allow programmed control of the
sequence of execution of program statements. The
IF, DO, and Computed GO TO statements direct the
sequence of execution of program statements accord­
ing to current values of specified expressions.

Input/Output Statements are used to transmit infor­
mation between the computer and input or output
units.

Specification Statements provide the Compiler with
information about program variables, some storage
requirements, and the names of sub-programs used
by the program.

Subprogram Statements define linkage to and from
subprograms.

ARITHMETIC STATEMENTS

Arithmetic Statements have the following form:

A = B where A is a variable and B
is an Arithmetic Expression.

The variable A may be either subscripted (e. g. A (I) ,
I an index variable) or single-valued. Arithmetic
Statements are substitution statements, they cause
a new value to be assigned to a variable during exe­
cution.

The above statement would cause the value of the
expression B to be computed and assigned to the
variable A.

We may have the statement 1=1 +1. This statement
would cause the value of the variable I to be incre­
mented by 1.

STATEMENTS

Examples:

K = X + 2.5
ROOT = (-B+(B**2-4. *A*C)**. 5)/(2. *A)
ANS(I) = A(J) + B(K)

In each of the above Arithmetic statements, the
arithmetic expression to the right of the equal sign
is evaluated, converted to the mode of the variable
to the left of the equal sign (if there is a difference),
and this converted value is stored in the storage
location associated with the variable name to the left
of the equal sign.

In the first example, K=X+2.5, assume that the
current value of X is 232.18. Upon execution of this
statement, 2.5 is added to 232.18, giving 234.68.
This value is then truncated (because K is an integer
variable) to 234, and this value replaces the value of
K. If K were defined as a real variable by a Type
statement, truncation would not occur and the value
of K would be 234.68.

Examples:

A = I

A=B
A = 3. *B

1= B

Convert I to real value and
store it in A.
Store the value of B in A.
Multiply 3 by B and store the
result in A.
Truncate B to an integer and
store it in I.

CONTROL STATEMENTS

The second class of FORTRAN statements is com­
posed of control statem ents that enable the program­
mer to control the course of the program. Normally,
statements are executed sequentially; that is, after
one statement has been executed, the statement
immediately follOWing it is, executed. However, it
is often undesirable to proceed in this manner. The
following statements may be used to alter the
sequence of a program.

Statements 9

UNCONDITIONAL GO TO STATEMENT

This statement interrupts the sequential execution of
statements, and specifies the number of the next
statement to be performed.

General Form:

GO TOn

where

n is a statement number.

Examples:

GO TO 25
GO TO 63468

The first example causes control to be transferred
to the statement numbered 25; the second example
causes control to be transferred to the statement
numbered 63468.

COMPUTED GO TO STATEMENT

This statement also indicates the statement that is
to be executed next. However, the statement number
that the program is transferred to can be altered
during execution of the program.

General Form:

••• , n),
m

where:

n1, n
2

, •.• , n are statement numbers and
i is a non-s!Jbscripted integer variable whose
value is greater than or equal to 1 and less than
or equal to the number of statement number s
within the parentheses.

This statement causes control to be transferred
to statement n1, n2, ••• ,nm , depending on whether
the current value of i is 1, 2, ••. , or m, respectively.

NOTE: If i >m or i < 1, the results are unpredictable.
Under the 1800 TSX and MPX Systems an execution
error results and the program is aborted.

10

Example:

GO TO (10, 20, 30, 40), ITEM

In this example, if the value of ITEM is 3 at the
time of execution, a transfer occurs to the statement
whose number is third in the series (30). If the
value of ITEM is 4, a transfer occurs to the statement
whose number is fourth in the series (40), etc.

IF STATEMENT

This statement permits the programmer to change the
sequence of statement execution, depending upon the
value of an arithmetic expression.

General Form:

where:

a is an expression and n1, n2' and n3 are state­
ment numbers. The expression, a, must be
enclosed in parentheses; the statement numbers
must be separated from one another by commas.

Control is transferred to statement n1, n2, or n3
depending on whether the value of a is less than,
equal to, or greater than zero, respectively.

Example:

10
12
72

IF ((B+C)/(D**E)-F) 12, 72, 10

which means: if the result of the expression is less
than zero, transfer to the statement numbered 12;
if the result is zero, transfer to 72; otherwise,
transfer to the statement numbered 10.

DO STATEMENT

The ability of a computer to repeat the same opera­
tions using different data is a powerful tool that
greatly reduces programming effort. There are
several ways to accomplish this when using the

FORTRAN language. For example, assume that a
manufacturer carries 1, 000 different parts in
inventory. Periodically, it is necessary to compute
the stock on hand of each item (STOCK) by sub­
tracting stock withdrawals of that item (OUT) from
the previous stock on hand. These results could be
achieved by the following statements:

5
.10
25
15
30

1=0
1=1 + 1
STOCK (1) = STOCK (1) - OUT (1)
IF (1-1000) 10, 30, 30

The three statements (5, 10, 15) required to
control this loop could be replaced by a single DO
statement.

DO 25 I = 1, 1000, 1
25 STOCK(1) = STOCK(1) - OUT(I)

General Form:

or

where:

n is a statement number.
i is a nonsubscripted integer variable.
m1, m2, m3 are unsigned integer constants or

nonsubscripted integer variables. If m3 is
not stated (it is optional), its value is assumed
to be 1. In this case, the preceding comma
must also be omitted.

Examples:

DO 50 1=1, 1000
DO 10 1= J, K, L
DO 11 1= 1, K, 2

Page of GC26-371S-8
Revised February 1974
By TNL GN34-0181

time, i is increased by the value of m3. After the
statements have been executed with i equal to the
highest value that does not exceed m2, control passes
to the statement-following statement number n. This
is called a normal exit from the DO statement.

The range limit (n) defines the range of the DO.
The range is the series of statements to be executed
repeatedly. It consists of all statements following
the DO, up to and including statement n. The range
can consist of any number of statements.

The index (i) is an integer variable that is incre­
mented for each execution of the range of statements.
Throughout the range of the DO, the index is available
for use either as a subscript or as an ordinary integer
variable. When transferring out of the range of the
DO, the value of the index is equal to the last value
it attained.

The initial value (ml) is the value of the index
for the first execution of the range. The initial
value cannot be equal to zero or negative when
specified as an integer constant.

The test value (m2) is the value against which
the index is tested. The index is incremented and
compared with the test value at the end of the range;
therefore, a DO loop will always be executed at
least once. If the index is less than or equal to the
test value,. the loop will be executed again. If the
index exceeds the test value, the next sequential
instruction following the DO loop will be executed.

The increment (m3) is the amount by which the
value of the index will be increased after each
execution of the range. The increment may be omit­
ted, in which case it is assumed to be 1.

Example:

5
10
15
20
25
26

DO 251=1, 10

A=B+C

This example shows a DO statement that will
execute statements 5, 10, 15, 20, and 25 ten times.
Upon each execution, the value of I will be increment­
ed by 1 (1 is assumed when no increment is specified).
After completion of the DO, statement 26 is executed.

On exit from the DO loop, the value of the index
variable I exceeds the test value (In the above
example it then has the value 11).

dl
-, Variable I may be used elsewhere in the program.

The DO statement is a command to repeate Y However, if variable I has been used as both the
execute the statements that follow, up to and including
the statement n. The first time the statements are
executed, i has the value m1, and each succeeding

Statements 11

Page of GC26-371S-8
Revised February 1974
By TNL GN34-0181

index of the DO loop and as an array subscript
within the DO loop, and if the DO loop ends with a
CONTINUE statement, the value of I as a subscript
to an array outside the loop will equal the last
value it reached within the loop before the index
exceeded the test value. On the other hand, if the
DO loop does not end with a CONTINUE statement,
the value of I ;;-an array subscript outside the loop
will be unpredictable.

In some cases, the DO is completed before the
test value is reached. Consider the following:

D05K=I,9,3

In this example, the range is executed three times
(i. e., K equal to 1, 4, and 7). The next value of K
would be 10. Since this exceeds the test value, the
DO is completed after three iterations.

Restrictions. The restrictions on statements in the
range of a DO are:
1. Within the range of a DO may be other DOs.

When this is so, all statements in the range of
the inner DO must be in the range of the outer
DO. A set of DOs satisfying this rule is called
a nest of DOs. The maximum depth of a single
nest of DOs is 25. For example, the following
configuration is permitted (brackets are used to
indicate the range of the DOs):

but, the following configuration is not permitted:

2. A transfer out of the range of any DO loop is
permissible at any time. A transfer into a DO
range is permissible only as described in item 3.

3. When a transfer is made out of the range of the
innermost DO loop, a transfer back into the
range of that loop is allowed if, and only if,
neither the index nor any of the indexing param­
eters (i. e., m1' m2, m3) are changed outside
the range of the DO loop. This transfer back
into a DO loop is permitted only to the innermost
DO loop. A transfer back into the range of any
other DO in the nest of DOs is not permitted.

12

The following illustrations show those transfers
that are valid and those that are invalid.

4.

5.

VALID INVALID

~
*Return (opposite of arrow direction) is also permitted

if no indexing paraneters are changed.

The last statement in the range of a DO loop
must not be a GO TO, IF, STOP, PAUSE,
FORMAT, RETURN, or another DO statement.
Any statement that redefines the value of the
index or any of the indexing parameters (i. e~ ,
ml' m2, m3) is liable to alter the logic of the
execution of the DO loop. This logic is
governed by the index and parameters. These
variables are used throughout the execution of
the DO loop to control the number of times the
loop is executed.

CONTINUE STATEMENT

The CONTINUE statement is a dummy statement that
does not produce any executable instructions. It can
be inserted anywhere into a program; it simply in­
dicates that the normal execution sequence continues
with the statement following.

General Form:

CONTINUE

The CONTINUE statement is principally used as
the range limit of DO loops in which the last state­
ment would otherwise be a GO TO, IF, PAUSE,
STOP, or RETURN statement. It also serves as a
transfer point for IF and GO TO statements within
the DO loop that are intended to begin another
repetition of the loop. An example of these two
functions follows:

DO 30 I = 1,20
D = D + 5.0

7 IF (A - B) 10,30,30
10 A = A + 1. 0

B = B-2. 0
GO TO 7

30 CONTINUE
40 C=A+B

A CONTINUE statement used as the range limit
of any number of DO loops is compiled as an exe­
cutable instruction, as in the example that follows:

D030 1=1,10

DO 30 J = 2,19

DO 30 K = 1 f 10, 3

30 CONTINUE

The above statements will be replaced by object
code equivalent to:

Xl

X2

X3

30

X4

X5

X6

1=1

J=2

K = 1

K =K +3
IF (K - 10) X3, X3, X4
J = J + 1
IF (J - 19) X2, X2, X5
I = I + 1
IF (I - 10) Xl, Xl, X6

If a CONTINUE statement serves as the range
limit of a DO loop, it must not be used as the
transfer point for IF or GO TO statements which
are outside the DO loop. If it serves as the range
limit of several DO loops, as above, it must not
be used as the transfer point for IF or GO TO
statements which are outside the innermost loop.

PAUSE STATEMENT

General Form:

PAUSE
or

PAUSE n
where:

n is an unsigned decimal integer constant whose
value is equal to or less than 9999.
The PAUSE statement causes the program to stop

on a Wait instruction. To resume execution the
START key must be pressed. Execution starts with
the next executable statement following the PAUSE
statement. If n is specified, it is treated as a
hexadecimal number and displayed on the console in
the accumulator (A-register in the IBM 1800) lights.

STOP STATEMENT

General Form:

STOP
or

STOP n

where:
n is an unsigned decimal integer constant whose

value is equal 'to or less than 9999.
The STOP statement terminates program execu­

tion. If n is specified it is treated as a hexadecimal
number and displayed on the console in the accumula­
tor (A-register in the IBM 1800) lights.

In FORTRAN under the IBM 1130 Disk Monitor
Systems, the IBM 1800 TSX and MPX Systems,
the STOP statement is equivalent to a PAUSE state­
ment followed by a CALL EXIT statement. Under
the IBM 1800 TSX and MPX Systems, the STOP
statement is valid only in nonprocess programs.

END STATEMENT

General Form:

END

The END statement defines the end of a program
or subprogram for the compiler. Physically, it
must be the last statement of each program or sub­
program. The END statement is not executable.
Any soUrC~ program statements following the END
statement will not be compiled.

CALL STATEMENT

The CALL statement is used only to call a
SUBROUTINE subprogram.

General Form:

where:

name is the symbolic name of a SUBROUTINE
subprogram.

a1' a2, a3, •.• an are the actual arguments that are
being supplied to the SUBROUTINE subprogram.

Examples:

CALL MA TMP (X, 5,40, Y, 7,2)
CALL QDRTI (X, Y,Z,ROOT1, ROOT2)

The CALL statement transfers control to the
SUBROUTINE subprogram and replaces the dummy
variables with the values of the actual arguments
that appear in the CALL statement. The arguments
in a CALL statement may be any of the following:
any type of constant, any type of subscripted or

Statements 13

nonsubscripted variable, any other kind of arithmetic
expression, or a subprogram name (except that they
may not be statement function names).

A subprogram named as an argument in a CALL
statement must also be named in an EXTERNAL state­
ment in the calling program. Such a subprogram
must be a CALL-type, rather than an LIBF-type,
subprogram.

The arguments in a CALL statement must agree
in number, order, and type with the corresponding
arguments in the SUBROUTINE subprogram.

Note that a constant should be specified as an
actual argument only when the programmer is cer­
tain that the corresponding dummy argument is not
assigned a value in the subprogram. For example:

Calling SUBROUTINE
Program Subprogram

SUBROUTINE JOE (K, M)
K=M + 10

CALL JOE (5,6) RETURN
END

100 N=5

In this case the constant 5 in the calling program
is replaced by the value of K as computed in the
subroutine (K=M + 10). Subsequent execution
of statement 100 in the calling program results
in the variable N being assigned a value other
than 5.

For descriptions of the SUBROUTINE sub­
programs that can be called in FORTRAN under
the IBM 1130 and 1800 Programming Systems,
see the appropriate Subroutine Library publica­
tion as listed in the Preface, above.

SPECIAL CALL STATEMENTS

CALL EXIT Statement

In FORTRAN under the IBM 1130 Disk Monitor
Systems, the CALL EXIT statement is used
when control is to be returned to the Supervisor
portion of the system.

In FORTRAN under the IBM 1800 TSX System, the
CALL EXIT statement is used when control is to be
returned to the Supervisor portion of the Nonprocess
Monitor. The CALL EXIT statement is therefore
valid only in nonprocess programs.

For use of CALL EXIT in the MPX System see
IBM 1800 Multiprogramming Executive Operating
System Programmer's Guide. The CALL EXIT
statement is not valid in FORTRAN under the IBM
1130 and 1800 Card/Paper Tape Programming
Systems.

14

CALL LINK Statement

The CALL LINK statement is used when control is
to be transferred from one program (link) to the next.

General Form:

CALL LINK (Name)

where:

Name is the name of the program to be loaded
into core storage and given control. The pro­
gram name consists of 1-5 alphameric charac­
ters (excluding special characters) the first of
which must be alphabetic.

The link program that is .called is loaded with all
subprograms· and library subroutines that it refer­
ences. Any link called by this statement must
already be in disk storage. If the logic of the pro­
gram allows anyone of several links to be called,
it is necessary that all of the link programs be in
disk storage prior to execution.

Note: Link programs called under the IBM 1800
TSX and MPX Systems must be in disk storage in
core image format.

The COMMON area of the program relinquishing
control is not destroyed during the loading of the link
program. If the size of COMMON differs between
programs, the COMMON area size that remains
undisturbed is determined by the link program called.

In FORTRAN under the IBM 1800 Time-Sharing
Executive System, the CALL LINK statement is
valid only in nonprocess programs. Also, the name
specified in the CA LL LINK statement may be the
name of a nonprocess program only.

The CALL LINK statement is not valid in the IBM
1130 and 1800 Card/Paper Tape Programming
Systems. For use of CALL LINK in the 1800 MPX
System see IBM 1800 Multiprogramming Executive
Operating System Programmer's Guide.

CALL LOAD Statement

The CALL LOAD statement, which is valid only in
FORTRAN for the card forms of the IBM 1130 and
1800 Card/Paper Tape Programming Systems, is used
to link to another program without requiring the core
image loader to precede the link program. CALL
LOAD causes the next program in the card reader to
be read in and executed.

For example:

Page of GC26-371S-8
Added Febr~ry 1974
By TNL GN34-0181

Tips and Techniques for PDUMP Usage:

1. To dump a single value, specify the variable or
constant name as both ai and bi.

CALL LOAD Example:
STOP
END

The CALL LOAD statement may only be used in a
core image program and may only call a core image
program. (See the description of the *SAVE
LOADER control record in the appropriate corequisite
publication, as listed in the Preface, above.)

CALL PDUMP Statement

In FORTRAN for the IBM 1130 Disk Monitor System,
Version 2, the dump program PDUMP can be called
to print the contents of one or more parts of core
storage.

General Form:

CALL PDUMP (a., b , f., , a , b , f)
1 i 1 n n n

where:

ai and bi are variable data names, subscripted
or non-subscripted, indicating the inclusive
limits of a block of core storage to be dumped.
Even though either ai or b. can indicate the upper
or lower limit of the blocK to be dumped, they do not
affect how the block is dumped (just the limits). How
the block is dumped depends on f .•

1

f. is an integer constant indicating the format and
lhow the block is dumped (high-core address to low­
core address or vice versa). ~ is specified as
follows:

f. Format How dumped
1

0- Hexadecimal low to high
4 Integer high to low
5 Real high to low

Note: If any of the variables a., b. appear in
CALL PDUMP beforeappeariri"g eTsewhere in the
program, their relative locations in storage are
affected by the call to P DUMP. -

CALL PDUMP (I, 1,4) Dump the value of I in
integer format.

2. To dump a subscripted array, specify the first
element in the array as ai and the last element
in the array as bi.

3.

Example:

CALL PDUMP (A(1, 1),
A(10, 10), 5)

Dump the array
A(10, 10) in real
format.

To obtain a dump from the beginning of your
program to the end of core, assign a variable
to COMMON (example: COMMON IN). This
variable should be the first (or only) variable
in your COMMON list. Specify the first
variable or constant name that appears in your
program as ai, and specify the value in
COMMON as bi.

Example:

CALL PDUMP (I, IN, 0) Dump the contents of
core storage from the
beginning of your
program to the end of
core.

Statements 14.1

Page of GC26-37IS-8
Added February 1974
By TNL GN34-0 181

14.2

This page intentionally left blank

MACHINE AND PROGRAM INDICATOR TESTS

The FORTRAN language provides machine and pro­
gram indicator tests even though some of the machine
components referred to by the tests do not physically
exist. The machine indicators that do not exist are
simulated by subroutines provided in the system
library.

To use any of the following machine and program
indicator tests, the user supplies the proper argu.:­
ments and writes a CALL statement. In the following
listing, i is an integer expression; j and k are integer
variables.

General Form and Function

CALL SLITE (i) If i = 0, all sense lights are
turned off. If i = 1, 2,3, or 4, the correspond­
ing sense light is turned on.

CALL SLITET (i, j) Sense light i (equal to 1,2,3,
or 4) is tested. If i is on, j is set to 1; if i is
off, j is set to 2. After the test, sense light
i is turned off.

CALL OVER FL (j) This indicator is on if an
arithmetic operation with real variables and/or
constants results in an overflow or underflow
condition; that is, j is set to 1 if the absolute
value of the r.esult of an arithmetic operation
is greater than 2127 (1038); j is set to 2 if no
overflow condition exists; j is set to 3 if the
result of an arithmetic operation is not zero
but less than 2-129 (10-39). The machine is
left in a no overflow condition.

Page of GC26-371S-8
Revised February 1974
By TNL GN34-0181

CALL SSWTCH (i, j) Sense switch i is tested.
If i is on, j is set to 1; if i is off, j is set to
2.

This CALL is valid only in FORTRAN
under the IBM 1800 Card/Paper Tape Pro­
gramming System, and the IBM 1800 TSX
and MPX Systems.

CALL DVCHK (j) This indicator is set on if an
arithmetic operation with real constants and/or
variables results in the attempt to divide by
zero. If the indicator is on, j is set to 1; if
off, j is set to 2. The indicator is set off after
the test is made.

CALL DATSW (i, j) Data entry switch i is tested.
If data entry switch i is on, j is set to 1; if
data entry switch i i~ off, j is set to 2.

Note: For the 1130, the Data Entry switches are
the same as the Console Entry switches. This is
not true of the 1800.

CALL TSTOP The TSTOP subroutine may be
used to stop the tracing mode if trace control
has been specified to the compiler by the use of
a trace FORTRAN Control Card.

Statements 15

CALL TSTRT The TSTRT subroutine may be
used to re-establish the trace mode if trace
control has been specified to the compiler.

Tracing occurs only if

1.

2.

3.

A trace control card was compiled with the
source program, see the appropriate Opera­
ting Procedures manual.
Data Entry switch 15 is on (it can be turned
off at any time).
A CALL TSTOP has not been executed, or a
CALL TSTRT has been executed since the last
CALL TSTOP.

CALL FCTST 0, k) The FCTST subroutine
checks an indicator word that is set on if a
FORTRAN-supplied FUNCTION subprogram
detects an error or an end-of-file condition
is detected during an unformatted I/O opera­
tion. k is set to the value of the indicator
word. If the indicator word is zero, j is set
to 2; otherwise, j is set to 1. The indicator
word is set to 0 after the test.

NOTE: SSWTCH, SLITET, and OVERFL contain six
characters in order to be compatible with other IBM
FORTRANs; SSWTCH, SLiTET, and OVERFL are
changed by the FORTRAN compiler to SSWTC,
SLITT, and OVERF, respectively.

Examples:

CALL SLITE (3)
CALL SLITET (K*J, L)
CALL OVERFL (J)
CALL DVCHK (1)
CALL SSWTCH (I, J)
CALL DATSW (15,N)
CALL TSTOP
CALL TSTRT
CALL FCTST (IM,JM)

As an example of how the sense lights can be
used in a program, assume that it is desired to
continue with the program, without writing results,
if sense light 3 is ON, and to write results, before
continuing, if sense light 3 is OFF. This can be
accomplished by using the IF statement or a Com­
puted GO TO statement, as follows:

16

CALL SLITET (3,KEN)
5 IF (KEN-2) 10,9,10
9 WRITE (3,36)(ANS(K),K=1,10)

10

CALL SLITET (3', KEN)
24 GO TO (26,25), KEN
25 WRITE (3,3 6)(ANS(K), K=l, 10)
26

In statement 5, if KEN is not equal to 2, statement
9 is not executed. In statement 24, if KEN equals 2,
statement 25 is executed.

INPUT/OUTPUT STATEMENTS

The input/output (I/O) statements control the trans­
mission of information between the computer and the
I/O units. On the IBM 1130 Computing System these
units are: 2310 Disk Storage; 1442 Card Read Punch,
Models 6 and 7; 1442 Card Punch, Model 5; 2501
Card Reader; 1132 Printer; 1403 Printer; 1134 Paper
Tape Reader; 1055 Paper Tape Punch; Console
Printer; Keyboard; and 1627 Plotter. On the IBM
1800 Data Acquisition and Control System these units
are: 1810 Disk Storage; 2401 and 2402 Magnetic Tape
Units; 1442 Card Read Punch, Models 6 and 7; 1053
Printer; 1443 Printer; 1054 Paper Tape Reader;
1055 Paper Tape Punch; 1816 Printer Keyboard;
and 1627 Plotter.

I/O statements are classified as follows:

1. Non-disk I/O Statements. These statements
cause transmission of formatted information
between the computer and I/O units other than
the disk. They are READ and WRITE.

2. Disk I/O Statements. These statements cause
transmission of information between the com­
puter and the disk. They are READ, WRITE,
and FIND.

3. Unformatted I/O Statements. These statements
cause transmission of unformatted information
as follows:
a) under the IBM 1800 Card/Paper Tape Pro­
gramming and TSX Systems: between the
computer and magnetic tape units in FORTRAN;
b) under the IBM 1800 MPX System: between the
computer and magnetic tape units or disk storage
units;
c) under the IBM 1130 Disk Monitor System, Ver­
sion 2: between the computer and a special disk
area for the simulation of magnetic tape I/O in
FORTRAN.

These statements are READ and WRITE.

4. Manipulative I/O Statements. These statements
manipulate magnetic tape units in FORTRAN
under the IBM 1800 Card/Paper Tape Program-

ming System, the IBM 1800 TSX and MPX Sys­
tems; they manipulate the unformatted I/O area
on disk in FORTRAN under the IBM 1130 Disk
Monitor System, Version 2. These statements
are BACKSPACE, REWIND, and END FILE.

5. FORMA T Statements. These are nonexecutable
statements that specify the arrangement of the
data to be transferred, and the editing transfor­
mation required between internal and external
forms of the data. The FORMAT statements are
used in conjunction with the non-disk I/O state­
ments.

NON-DISK I/O STATEMENTS

READ Statement

The READ statement is used to transfer information
from any input unit to the computer. Two forms of
the READ statement may be used, as follows:

READ (a, b) List
or

READ (a, b)

where:
a is an unsigned integer constant or integer

variable that specifies the logical unit number
to be used for input data (see Logical Unit
Numbers).

b is the statement number of the FORMAT state­
ment describing the type of data conversion.

List is a list of variable names, separated by
commas, for the input data.

The READ (a, b) List form is used to read a
number of items (corresponding to the variable
names in the list) from the file on unit a, using
FORMAT statement b to specify the external re­
presentation of these data (see FORMAT Statement).

The List specifies the number of items to be
read and the locations into which the items are to
be placed. For example, assume that a card is
punched as follows:

Card Columns Contents

1-2
5-7

61-64
70-71

80

25
102

-101
10

5

If the following statements appear in the source
program:

READ (2,25) I,J,K,L,M

25 FORMAT(I2, 2X, 13, 53X, 14, 5X, 12, 8X, 11)

the card is read (assuming that 2 is the unit number.
associated with the card reader), and the program
operates as though the following statements had
been written:

I = 25
J = 102
K = -101
L = 10
M = 5

After the next execution of the READ statement,
I, J, K, L, and M will have new values, depending
upon what is punched in the next card .read.

Any number of quantities may appear in a single
list. Integer and real quantities may be transmitted
by the same statement.

If there are more quantities in an input record
than there are items in the list, only the number of
quantities equal to the number of items in the list
are transmitted; remaining quantities are ignored.
Thus, if a card contains three quantities and a list
contains two, the third quantity is lost. Conversely,
if a list contains more quantities than the number of
input records, succeeding input records are read
until all the items specified in the list have been
transmitted.

When an array name appears in an I/O list in non­
subscripted form, all of the quantities in the array
are transmitted in column order (see Arrangements
of Arrays in Storage). For example, assume that A
is defined as an array of 25 quantities. Then, the
statement:

READ (2,15) A

causes all of the quantities A(l) , ••• , A(25) to be read
into storage (in that order) with an appropriate
FORMAT statement.

The READ (a, b) form may be used in conjunction
with a FORMAT statement to read H -type alphameric
data into an existing H -type field in core storage (see
Conversion of Alphameric Data). The size of the
data field determines the amount of data to be read.
For example, the statements:

Statements 17

10 FORMAT (23HTHIS IS ALPHAMERIC DATA)

READ (INPUT, 10)

cause the next 23 characters to be read from the file
on the unit named INPUT and placed into the H -type
alphameric field whose contents were:

THIS IS ALPHAMERIC DATA

WRITE Statement

The WRITE statement is used to transfer information
from the computer to any of the output units. Two
forms of the WRITE statement may be used, as
follows:

WRITE (a, b) List
or

WRITE (a, b)

where:

a is an unsigned integer constant or integer vari­
able that specifies' the logical unit number to
be used for output data (see Logical Unit
Numbers).

b is the statement number of the FORMAT state­
ment describing the type of data conversion.

List is a list of variable names separated by
commas for the output data.

The WRITE (a, b) List form of the WRITE state­
ment is used to write the data specified in the list on
the file on unit a, using FORMAT statement b to
specify the data format (see FORMAT Statement).

NOTE 1: The 1442 Card Read Punch, Model 6 or 7,
has one input hopper. Therefore, if a READ or
WRITE statement references a 1442-6 or -7, care
should be taken to avoid punching a card that was
only meant to be read or reading a card that was
only meant to be punched.

NOTE 2: If the first I/O operation is a WRITE to
the 1442 Card Read Punch, Model 6 or 7, and the
1442 contains cards that are not to be punched, one
of the following two options may be used to avoid
punching the cards remaining in the 1442:

Option 1. Stack no cards behind the last card to

18

be read. This causes an interrupt to occur when
the WRITE is encountered. The cards remaining
in the 1442 can then be run out (NPRO) and blank
cards placed in the hopper before the WRITE
is executed.

Option 2. Place blank cards behind the last card
to be read; in addition, include in the program, as
the first I/O operation, a dummy READ such as

READ (a, b)

where a is the logical unit number of the 1442
and b is the statement number of any FORMAT
statement in the program that does not contain
an H or apostrophe type of specification. The
dummy READ causes the last cards read to be
fed through the 1442 and the first blank card to
be positioned for punching. The WRITE to the
1442 can then be executed.

Option 2 is preferable since it allows uninterrupted
execution and requires no operator intervention.

The WRITE (a, b) form is used to write alphameric
data (see Conversion of Alphameric Data). The
actual data to be written is specified within the
FORMAT statement; therefore, an I/O list is not
required. The following statements illustrate the
use of this form:

25 FORMAT (24HWRITE ANY DATA IN H TYPE)

WRITE (2,25)

DISK I/O STATEMENTS

The generalized READ and WRITE statements and the
FIND statement for disk I/O appear as:

READ (alb) List
WRITE (alb) List
FIND (alb)

where:

a (an unsigned integer constant or integer variable)
is the symbolic file number,

b (an integer expression) is the record number
where transmittal will start, and

List is a list of variable names, separated by
commas, for the input or output data.

Note that the symbolic file number and record number
(a and b) must be separated by an apostrophe.

An example is:

READ (IFILE '200) OUTX, OUTY, OUTZ

~: Only information that requires no data
conversion can be transmitted to and from disk
storage.

The READ (a'b) List form is used to read infor­
mation from the disk. The List specifies the number
of items to be read and the locations into which the
items are to be placed. It functions the same as the
List in the non-disk I/O READ/WRITE statements.
For example, assume a file defined as:

DEFINE FILE 3 (400, 2, U, K)

contains the following information:

RECORD NUMBER CONTENTS

253
254
255

Word 1

4800
5000
6800

Word 2

0084
0084
0084

Then, if X, Y, and Z are two-word standard
precision real variables,

READ (3'253) X, Y, Z

would result in the following values being read into
X, Y, and Z:

X = 48000084
Y = 50000084
Z = 68000084

or, converting from binary to decimal:

X = 9.0
Y = 10.0
Z = 13.0

As is the case in the non -disk I/O statements, if
there are more quantities in an input file than there
are items in the list, only the number of items in the
list are transmitted. Thus, in the above example,
only records 253, 254, and 255 were transmitted;
the rest were ignored. If a list contains more
quantities than the input file, an error results.

Variables within an I/O list may be indexed and
incremented in the same manner as with a DO state­
ment. For example, if we have:

DIMENSION X(400)
DEFINE FILE 3(400, 2, U, K)

READ (3 '1) (X(I) , I "- 1,5)

records 1 through 5 of file 3 will be read into the
first 5 elements of the array X (see Indexing I/O
Lists) .

The WRITE (a'b) List form operates in the same
way as the READ (a'b) List statement and is used to
transmit data to the disk.

The purpose of the FIND statement is to move the
disk read/write mechanism to the specified record.
The use of the FIND statement is optional.

The user should be aware that disk operations,
such as calls to LOCAL subprograms on the same
disk drive, may move the access mechanism and
nullify the effect of the FIND statement. Therefore,
in certain cases there may be no advantage to a
FIND statement preceding a READ or WRITE state­
ment. The following examples illustrate the use of
disk I/O statements.

For the IBM 1800 MPX, the FIND will function
for the 1810 drives whether the drive is a physical
1810 drive or mapped to a 2311 disk drive. If the
symbolic file number refers to a 2311 data set, the •
FIND statement will have no effect.

Example: The following program reads real
values, in standard precision, from 10 cards and
writes them on a predefined disk file that
occupies one sector. In this example, the logical
unit number of the card reader is 2.

DIMENSION A(10)
DEFINE FILE 4 (10,20, U, J)
J=l
DO 5 1=1, 10 - - - - - -
READ (2, 100)A

100 FORMAT (10F8. 0)
WRITE (4'J)A

5 CONTINUE
CALL EXIT
END

~ For the FORMAT statement see F-Conversion
on page 24.

The following program will read the disk file
written by the program above and print the results

Statements 19

where a typical data card may be:

7.35 632. 10 2101 12.0
I

20. 123.01 230.11 125.43
I I I I I I

000000000000000000000000000000010000001000000001000000100000001000001000000000Do
'2J.5'J'I~II»~""KI7Kl'~~nn~aB"nn.3Inn~n~V.H~~~~M.~"q"~$1~»~"M~~U~'IUU~D"VW"nhnnUn~11nn"

111111 1111111111111 I """""111 I "'1'1' 1"111 I II 1 I 11 I 1 I 1111111111111111 111111 I

22222222222222122222222122222222222212222222212222222122222122222212222222212222

33333113333331313333333333333333333333333333331333333331333311333331313333333.31

44444444444444444444414444444444444444444444444~44444444444444444444444444444414

55555551555555555555551555555555555555555555555555555 5 5 5 5 55555555555555555 5 SIS 5 j

666666666666166666666666666666666666666 6 6 6 6 6 6 666666666666666666 G 6 S G G 6 6 6 6 6 6 6 6 6 6 6 6

7777177 11 7 11 77 11 77 17 7 1111 7 11117 77 11177 7 7 171177 7 7 77 7 7 7 7 717 7 17 7 7 77 71 7 7 7 1 i 17 7 7 7171 1

88 8 8 818 88 III B 8 818 II 8 • 8 II 8 8 8 I 8 8 I • 8 B BIB B • 88 8 B 8 B 81 B B B B 8 B 8 818 8 8 8 818 8 8 8 8 8 818 3 S 8 a 8 818 8

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 99 ~ 9 5 9 9 9
1 2 1 • S , ~.! :O~~ 11 U 1) U 1$ I' 11 II l' dl 21 n 23 24 n :l\ 2J 11 11 30 II :It 3.1 :M JS It l? ")9 to 41 42 4J .. 4S 41 U 50 51 ~ D !14 '5!1 "Ii n 51 H 10 '111 U 6-4 is " " 51 fj'! !, II i2 13 U 75 11 H 711 " ,..

on the printer (logical unit number 3). Note that
since the same data file is used by both programs,
the file numbers in the two DEFINE FILE statements
'must both refer to this file.

DIMENSION A(10)
DEFINE FILE 4(100,2,U,K)
K=1
DO 51=1,10
READ (4'K)A
WRITE (3,100)A

100 FORMAT (6F20. 8)
5 CONTINUE

CALL EXIT
END

In this case, every time the WRITE statement is
executed one line with six numbers and one line
with four numbers will be printed.

UNFORMATTED I/O STATEMENTS

The READ and WRITE statements for unformatted
I/O, i. e., I/O without data conversion, appear as:

READ (a) List
READ (a)
WRITE (a) List

where:

20

a is an unsigned integer constant or integer
variable that specifies a logical unit number to
be used for I/O data (see Logical Unit
Numbers).

List is a list of variable names, separated by
commas, for the I/O data.

The READ (a) List form is used to read a core­
image record, without data conversion, into core
storage from unit a. No FORMAT statement is
required; the amount of data that is read corresponds
to the number of list items. The total length of the
list of variable names must not be longer than the
logical record length. If the length of the list is
equal to the logical record length, the entire record
is read. If the length of the list is shorter than the
logical record length, the unread items in the record
are skipped.

The READ (a) form is used to skip an unedited
record on unit a.

The WRITE (a) List form is used to write a core­
image record, without data conversion, on unit a.

For detailed information concerning the creation
and use of the unformatted I/O area under the IBM
1130 Disk Monitor System, Version 2, see the
corequisite publication for that system as listed
in the Preface.

For the specific use of unformatted I/O for MPX,
see IBM Multiprogramming Executive Operat-
ing System Programmer's Guide.

INDEXING I/O LISTS

Variables within an I/O list may be indexed and
incremented in the same manner as with a DO state­
ment. For example, suppose it is desired to read
data into the first five positions of the array A. This
may be accomplished by using an indexed list, as
follows:

READ (2,15) {A(I), J=1,5)
15 FORMAT (FlO. 3)

As with DO statements, a third indexing parameter
may be used to specify the amount by which the
index is to be incremented at each iteration. Thus,

READ (2,15) (A(I), 1=1,10,2)

causes transmission of values for A(l), A(3), A(5),
A(7), and A(9). Furthermore, this notation may
be nested. For example, the list:

«C(I, J), D(I, J), J=l, 5), 1=1, 4)

would transmit data in the following order, reading
from left to right:

C(l,l), D(l,I), C(l, 2), ••• ,C(l, 5), D(1,5)
C(2, 1), D(2, 1), C(2, 2), ••• , C(2, 5), D(2, 5)
C(3,1), D(3,1), C(3, 2), ••• , C(3, 5), D(3,5)
C(4,1), D(4,1), C(4, 2), ••. ,C('!, 5), D(4, 5)

The maximum depth of implied DO loops in an I/O list
is three. The results of four or more nested loops are
unpredictable.

MANIPULATIVE I/O STATEMENTS

The statements BACKSPACE, REWIND, and END
FILE are used in FORTRAN under the IBM 1800
Card/Paper Tape Programming System and'the IBM
1800 TSX System to manipulate magnetic tape units.
In the IBM 1800 MPX System, manipulative I/O
statements are used to manipulate both disk units
and magnetic tape units in unformatted mode. In
FORTRAN under the IBM 1130 Disk Monitor System,
Version 2, these statements are used to manipulate
the unformatted I/O area on disk.

BACKSPACE Statement

General Form:

BACKSPACE n

where:
n is an unsigned integer constant or integer variable
specifying the logical unit number (see Logical Unit
Numbers).

In FORTRAN under the IBM 1130 Disk Monitor
System, Version 2, the BACKSPACE statement
causes a pointer to the next available logical
record in the unformatted I/O area to be decre­
mented by one. The statement has no effect if
this pointer indicates the first logical record
in the area.

In FORTRAN under the IBM 1800 MPX System,
the BACKSPACE statement causes the following
actions to occur.

Unformatted Disk 110

Page of GC26-3715-7
Revised May 1972
By TNL GN34-0085

A backspace over one logical record is
accomplished by decrementing a pointer in the
device table. This pointer always points to the
sector address of the next available logical record
in process or batch process Working Storage. A
BACKSPACE statement has no effect if the
unformatted disk pointer is set at the beginning of
Working Storage.

Magnetic Tape

Tape unit n is backspaced one logical record. If
the tape unit is at load point, the BACKSPACE
statement has no effect.

REWIND Statement

General Form:

REWIND n

where:
n is an unsigned integer constant or integer vari­
able specifying the logical unit number (see
Logical Unit Numbers).

In FORTRAN under the IBM 1130 Disk Monitor
System, Version 2, the REWIND statement causes
a pointer to the next available logical record in the
unformatted I/O area to be reset to one. The state­
ment has no effect if this pointer already indicates
the first logical record in the area.

In FORTRAN under the IBM 1800 Card/Paper
Tape Programming System and the IBM 1800 TSX
System, the REWIND statement causes the tape on
unit n to be rewound to its load point. The statement
has no effect if the tape is positioned at its load point.
The statement does not cause the tape on unit n to
be unloaded.

In FORTRAN under the IBM 1800 MPX System the
REWIND statement causes either a pointer to the
next logical record to be set to one for unformatted
disk, or the tape on unit n to be rewound to its load
point for unformatted tape. If the logical record
pointer in the unformatted disk area is already one
or if the tape on unit n is already at its load point,
the statement has no effect.

END FILE Statement

General Form:

END FILE n

where:

n is an unsigned integer constant or integer
variable specifying the logical unit number
(see Logical Unit Numbers).

In FORTRAN under the IBM 1130 Disk Monitor
System, Version 2, the END FILE statement causes

Statements 21

an end-of-file record to be written in the unformatted
I/o area.

In FORTRAN under IBM 1800 Card/Paper Tape
Programming System and the IBM 1800 TSX, the END
FILE statemertt causes an end-of-file mark to be
written on the tape on unit n.

In backspacing and in skipping forward over
records, the end-of-file record or mark is equivalent
to one logical record.

In FORTRAN under the IBM 1800 MPX System the
END FILE statement causes either an end-of-file
record to be written in the unformatted I/O area for
unformatted disk operations or an end-of-file record
to be written on the tape on tape unit n.

LOGICAL UNIT NUMBERS

The logical unit numbers used in FORTRAN I/O
statements under the IBM 1130 Card/Paper Tape
Programming System and the IBM 1130 Disk
Monitor System are:

1 Console Printer
2 1442 Card Read Punch, Model 6 or 7
3 1132 Printer
4 1134 }>aper Tape Reader/1055

Paper Tape Punch
6 Keyboard ,
7 1627 Plotter

The logical unit numbers used in FORTRAN
I/O statements under the IBM 1130 Disk Monitor
System, Version 2, are:

771pe w r I f e-r..,
1 Console Printer ./ ;
2 1442 Card Read Punch, Model 6 or 7
3 1132 Printer
4 1134 Paper Tape Reader/1055

Paper Tape Punch
5 1403 Printer-
6 Keyboard
7 1627 Plotter
8 2501 Card Reader
9 1442 Card Punch, Model 5
10 Unformatted I/O area on disk

The logical unit numbers used in FORTRAN
I/O statements under the IBM 1800 Card/Paper
Tape Programming' System are assigned by
each installation during system edit.

The logical unit numbers used in FORTRAN

22

I/O statements under the 1800 TSX and MPX Systems
are assigned by each installation during system
generation.

FORMAT STATEMENT

In order for data to be transmitted from an external
storage medium (e. g., cards or paper tape) to the
computer or from the computer to an external
medium (cards, paper tape, or printed line), it is
necessary that the computer know the form in which
the data exists. This is accomplished by a FORMAT
statement. The FORMA T statement describes the
type of conversion to be performed between the in­
ternal and the external representation of each quantity
in an I/O list by the use of data conversion specifica­
tions (see Conversion of Numeric Data). FORMAT
statements may appear any place within the source
program after all Specification statements.

General Form:

where:

m represents a statement number,
kl, k2"." kn and tl, t2"'" tn represent data
conversion specifications, and
/ represents the beginning of a new record (see
Multiple Field Format).

Examples:

5 FORMAT (15, F8.4)
18 FORMAT (I4/F6.2, F8.4)
20 FORMA T (E 11. 4/18)

FORMA T statements are not executed but they
must be given a statement number.

Successive items in the I/O list are transmitted
according to successive specifications in the
FORMA T statement, until all items in the list are
transmitted. If ther.e are more items in the list
than there are specifications in the FORMAT state­
ment, control transfers to the preceding left
parenthesis (including any preceding repeat constant)
of the FORMAT statement and the same specifica­
tions are used again with the next unit record. For
example, suppose a program contains the following
statements:

10 FORMAT (F10.3, E12.4, F12.2)

WRITE (3,10) A, B, C,D,E, F, G

The following table shows the data transmitted in
the column on the left and the specification by which
it is converted in the center column. The column
on the right shows the number of the record that
contains the data.

Data Transmitted Specification Record Number

A F10.3 1
B E12.4 1
C F12.2 1
D F10.3 2

E E12.4 2

F F12.2 2

G F10.3 3

A specification may be repeated as many times as
desired (within the limits of the unit record
size) by preceding the specification with an unsigned
integer constant. Thus,

(2F10.4)

is equivalent to:

(F10.4, F10.4)

A l,imited, one-level, parenthetical expression is
permitted to enable repetition of data fields according
to certain format specifications within a longer
FORMA T statement. For example, the statement:

10 FORMAT (14, 2 (lX, F4.1, 5X, ES.1»

is equivalent to:

10 FORMAT (14, (lX, F4.1, 5X, ES.1, 1X
F4.1, 5X, ES.1»

If there had been 12 items in the list, the above
FORMAT statement would have been equivalent to:

10 FORMAT (14, lX, F4.1, 5X, ES.1, lX,
F4.1, 5X, ES.1/1X, F4.1, 5X,
ES.1, lX, F4.1, 5X, ES.1/1X,
F4.1, 5X, ES.1, lX, F4.1)

The following two-level parenthetical expression is
not permitted because it is two-level:

10 FORMAT (2(F10.6, 3 (E10.2, 14»)

The specifications in a FORMAT statement must
correspond in mode with th~ list items in the I/O
statement. Numeric data read into integer variables

require an I -type format specification, and numeric
data read into real variables require an F-type or an
E -type specification. Alphameric data may be read
into either integer or real variables by using the
A-type format specification. This requirement holds
for variables in both the READ and the WRITE state­
ment list. For a more detailed description of 1-,
E-, F-, and A-type formats see Conversion of
Numeric Data and ,Conversion of Alphameric Data.

Conversion of Numeric Data

Three types of specifications (or conversion codes)
are available for the conversion of numeric data.
These types of conversions are specified in the
following form:

Iw
Fw.d
Ew.d

where:
I, F, and E specify the type of conversion.
w is an unsigned integer constant specifying the

total field length of the data. (This specifica­
tion may be greater than that required for the
actual digits in order to provide spacing
between numbers.)

d is an unsigned integer constant specifying the
number of decimal places to the right of the
decimal point.

Note: The decimal point between the wand d
portions of the specification is required.

With all numeric input conversions, leading blanks
are not significant and other blanks are zero. Plus
signs may be omitted. A field of all blanks is con­
sidered to be zero.

For purposes of simplification, the following
discussion of conversion codes deals with the printed
line. The concepts developed apply to all permis­
sible input/output media.

I -Conversion (Iw)

The specification Iw may be used to print a number
in integer form; w print positions are reserved for
the number. It is printed in this w-position field
right-justified (that is, the units position is at the
extreme right). If the number to be converted is
greater than w-1 positions, an error condition will
exist if the number is negative. A print position
must be reserved for the sign if negative values
are printed, but positive values do not require a
position for the sign. If the number has less than

Statements 23

w digits, the leftmost print positions are filled with
blanks. If the quantity is negative, the position
preceding the leftmost digit contains a minus sign.

The following examples show how each of the
quantities on the left is printed, according to the
specification 13:

Internal Value Printed

Notes:

721
-721
-12

8114
o

-5
9

721

-12

o
-5
9

1. All error fields are filled with asterisks.
2. A number for I-conversion input may have an

exponent field, starting with an E or a plus or
minus sign, indicating that the number is to be
multiplied by ten raised to the power of the
exponent. Thus~ 1200, 12000-01, 120+1, 12E+2,
and 12E2 are all valid input for I-conversion,
each representing the value 1200.

F-Conversion (Fw. d)

For F-type conversion, w is the total field length
reserved and d is the number of places to the right
of the decimal point (the fractional portion). For
output, the total field length reserved must include
sufficient positions for a sign, if any, a digit to the
left of the decimal point, and a decimal point. The
sign, if negative, is printed. In general w should
be at least equal to d + 3 for output.

If insufficient positions are reserved by d, the
fractional portion is truncated from the right. If
excessive positions are reser'¢ed by d, zeros are
filled in from the right to the extent of the specified
precision. The integer portion of the number is
handled in the same fashion as numbers converted
by I -type conversion on input and output.

The following examples show how each of the
quantities on the left is printed according to the
specification F5. 2:

Internal Value Printed

12.17 12.17
-41.16 *****

-.2 -0.20
7.3542 7.35t

-1. -1. 00
9.03 9.03

187.64 *****
tLast two digits of accuracy lost due to insufficient
specific ation.

24

~:

1. All error fields are filled with asterisks.
2. Numbers for F-conversion input need not have

their decimal points appearing in the input field.
If no decimal point appears, space need not be
allocated for it. The decimal point will be sup­
plied when the number is converted to an internal
equivalent; the position of the decimal point will
be determined by the format specification. How­
ever, if 'the decimal point does appear within the
field and it is different from the format specifica­
tion, this position overrides the position indicat­
ed in the format specification.

3. Fractional numbers for which F-type output con­
version is specified are normally printed with a
leading zero. If F-conversion is used and zero
decimal width is specified (for example, F5.0),
a fractional value is printed as a sign, a zero,
and a decimal point. A zero value is printed
with a zero preceding the decimal point.

4. F-conversion will accept input data in E-type
format.

E -Conversion (Ew. d)

For E-conversion, the fractional portion is again.
indicated by d. For output, the w includes the field
d, a space for a sign, space for a digit preceding
the decimal point, a decimal point, and four spaces
for the exponent. Space must be reserved for each
of these on output. An output error condition will
result if w~ d+5. For input, it is not necessary to
reserve all of these positions. In general, w should
be at least equal to d+7.

The exponent is a signed or unsigned one- or two­
digit integer constant not greater than 38 and preceded
by the letter E. Ten (10) raised to the power of the
exponent is multiplied by the number to obtain its
true internal value.

The follOWing examples show how each of the
quantities on the left is printed, according to the
specification E-9. 3:

Internal Value

238
-.002
.00000000004
-21. 0057

Printed

0.238Eb03

·0.400E-10

If the last example above had been printed with a
specification of E10. 3, it would appear as:

-0. 210Eb02t

NOTES:

1. All error fields are filled with asterisks.
2. For input, the start of the exponent field must

be marked by an E, or, if that is omitted, by a
+ or - sign (not blank). Thus, E2, E+2, +2,
+02, E02, and E+02 are all permissible exponent
fields for input.

3. For input, the exponent field may be omitted
entirely (i. e., E-conversion will accept input
data in F-type format).

4. Numbers for E-conversion input need not have
their decimal points appearing in the input field.
If no decimal point appears, space need not be
allocated for it. The decimal point will be
supplied when the number is converted to an
internal equivalent; the position of the decimal
point will be determined by the format specifica­
tion. However, if the decimal. point does appear
within the field and it is different from the
format specification, this position overrides
the position indicated in the format specification.

5. A leading zero is always printed to the left
of the decimal point.

Conversion of Alphameric Data

There are two specifications available for input/
output of alphameric data: H -conversion (including
literal data enclosed in apostrophes), and A-con­
version. H-conversion is used for alphameric data
that is not going to be changed by the object program
(e. g., printed headings); A-conyersion is used for
alphameric data in storage that is to be operated
on by the program (e. g., modifying a line to be
printed). The characters that can be handled are
listed in Appendix C.

H -Conversion

The specification nH is followed in the FORMA T
statement by n alphameric characters. For example:

24H THIS IS ALPHAMERIC DATA

tLast three digits of accuracy lost due to insufficient
specification. b represents a blank.

Blanks are considered alphameric data and must be
included as part of the count n. A comma following
the last alphameric character is optional.

The effect of nH depends on whether it is used
with an input or output statement.

Input. n characters are extracted from the input
record and replace the n characters included in the
specification. For example,

READ (4,5)
5 FORMAT (SHHEADINGS)

would cause the next S data characters to be read
from the input file on the I/O unit associated with the
logical unit number 4 (Paper Tape Reader on the
1130); these characters would replace the data
HEADINGS in storage.

Output. The n characters following the specification
are written as part of the output record. Thus, the
statements:

WRITE (1,6)
6 FORMAT (15H CUST. NO. NAME)

would cause the following record to be written on the
I/O unit associated with the logical unit number 1
(Console Printer on the 1130):

CUST. NO. NAME

A -Conversion

The specification Aw is used to transmit alphameric
data to/from variables in storage. It causes the
first w characters to be read into, or written from,
the area of storage specified in the I/O list. For
example, the statements:

10 FORMAT (A3)

READ (4,10) ERROR

would cause three alphameric characters to be read
from the I/O unit associated with the logical unit
number 4 (Paper Tape Reader on the 1130) and
placed (left-justified) into the variable named
ERROR.

The following statements:

Statements 2S

INTEGER OUT
15 FORMAT (4HbXY=, F9.3,A4)

WRITE (OUT, 15)A, ERROR, B, ERROR

may produce the following lines:
XY=b5976.214---­
XY=b61 73.928----

where ---- represents the contents of the field
ERROR.

Thus, A-conversion provides the facility for
reading alphameric data into a field in storage,
manipulating the data as required and printing it out.

If the number of alphameric characters is less
than the 9apacity of a field in storage into which
the characters are to be read, the remaining
characters in the field are loaded with blanks. How­
ever, if the number of characters is greater than
the capacity of the field in storage, the excessive
characters are lost. It is important, therefore,
to allocate enough area in storage to handle the
alphameric characters being read in. The output
case is very similar, unused areas in an output
medium are loaded with "blanks" while excessive
characters are lost.

Each real variable has sufficient space for 4 or
6 characters (the precision of real variables is spe­
cified at compile time--see REAL Constants); each
integer variable has space for 2 characters. For
example, 10 characters could be read into, or
written from, the first five variables of the array
I if the following format is used:

101 FORMAT (5A2)

READ (IN, 101) I

WRITE (lOUT ,101) I

Thus, two characters are contained in each of the
five consecutive positions: 1(1), 1(2), 1(3), 1(4), 1(5).
On output the leftmost character is written first.
Note that the format

101 FORMAT (A10)

would not work since 10 characters would be read
from an array element of two characters, causing the
last 8 alphameric characters to be ignored.

26

Arithmetic operations involving variables con­
taining alphameric characters should be performed
in integer mode. Alphameric characters are
represented internally in eight-bit EBCDIC
(refer to the appropriate Subroutine Library
publication, as listed in the Preface, above,
for a description of the EBCDIC used for
internal representation of alphameric characters).

Literal Data Enclosed in Apostrophes

Literal data can consist of a string of alphameric
and special characters written within the FORMAT
statement and enclosed in apostrophes. For example:

25 FORMAT (' 1966 INVENTORY REPORT')

A comma following the last apostrophe is optional.
An apostrophe character within literal data is

represented by two successive apostrophes. For
example, the characters DON'T are represented as:

DON"T

The effect of the literal format code depends on
whether it is used with an input or output statement.

Input. A number of characters, equal to the number
of characters specified between the apostrophes, are
read from the designated I/o unit. These characters
replace, in storage, the characters within the
apostrophes. For example, the statements:

5 FORMAT (' HEADINGS')

READ (4,5)

would cause the next 9 characters to be read from the
I/O unit associated with the logical unit number 4
(Paper Tape Reader on the 1130). These char­
acters would replace the blank and the 8 char-
acters H,E,A,D,I,N,G, and S in storage.

Output. All characters (including blanks) within
the apostrophes are written as part of the output
data. Thus the statements:

5 FORMAT ('THIS IS ALPHAMERIC DATA')

WRITE (1,5)

would cause the following record to be written on the
I/O unit associated with the logical unit number 1
(Console Printer on the 1130):

THIS IS ALPHAMERIC DATA

If it is required that literal data be repeated a
number of times, it must be enclosed in parentheses.
For example, if the above record is to be printed
five times, the FORMAT statement should read:
5 FORMAT (5('THIS IS ALPHAMERIC DATA'»

X-Type Format

Blank characters may be provided in an output
record, or characters of an input record may be
skipped, by means of the specification, nX; n is
the number of blanks desired or the number of
characters to be skipped.

When the nX specification is used with an input
record, n characters are skipped over before the
transmission of data begins.

For example, if a card has six 10-column fields
of integers, the statement:

5 FORMAT (IlO, 10X,4I10)

would be used, along with the appropriate READ
statement, to avoid reading the second quantity.

When this specification is used with an output
record, n positions are left blank. Thus, the facility
for spacing within a printed line is available. For
example, the statement:

10 FORMAT (3(F6. 2, 5X»

may be used with the appropriate WRITE statement
to print a line as follows:

-23. 45bbbbbb17. 32bbbbbb24. 67bbbbb

where b represents a blank.

T - Format Code

Input and output may begin at any position by using
the format code Tw where w is an unsigned integer
constant specifying the position in a FORTRAN
record where the transfer of data is to begin. Only
when the output is printed on an 1132, 1403, or 1443
Printer does the correspondence between w and the
actual print position differ. In this case, because of
the carriage control character, the print position
corresponds to w-1, as may be seen in the following
example:

5 FORMAT (T40, '1964 INVENTORY REPORT'
T80, 'DECEMBER'T2, 'PART NO. 10095')

The preceding FORMAT statement would result
in a printed line as follows:

Print

Position 1

I
PART NO. 10095

Print

Position 39 ,
1964 INVENTORY REPORT

The following statements:

5 FORMAT (T40, 'bHEADINGS')

READ (2,5) or READ (1,5)

Print

Position 79 ,
DECEMBER

would cause the first 39 characters of the input data
to be skipped, and the next 9 characters would then
replace the blank and the characters H, E, A, D, I,
N, G and S in storage.

The T -format code may be used in a FORMA T
statement with any type of format code. For example,
the following statement is valid:

5 FORMAT (TIOO, F10.3, T50, E9.3, Tl,
'bANSWER IS ')

where b represents a blank.

Statements 27

Multiple Field Format

Slashes are used in a FORMA T statement to delimit
unit records, which must be one of the following:

1. A punched paper tape record with a maximum
of 80 characters (1054 Paper Tape Reader, 1055
Paper Tape Punch, or 1134 Paper Tape Reader).

2. A punched card record with a maximum of 80
characters (1442 Card Read Punch, Model 6 or 7,
or 1442 Card Punch, Model 5).

3. A printed line with a maximum of 120 print
characters and 1 carriage control character
(1132 Printer or 1403 Printer).

4. A printed line with a maximum of 144 print
characters and 1 carriage control character
(1443 Printer).

5. An output typewritten line with a maximum of
156 characters for 1800 systems, 120
characters for 1130 systems (Console Printer,
1053 Printer, or 1816 Printer-Keyboard.)

6. An input record from the keyboard with a maxi-
mum of 80 characters (Console Keyboard or
1816 Printer-Keyboard).

7. A plotted output record with a maximum
of 120 characters (1627 Plotter).

8. A magnetic tape record with a maximum length
of 145 characters (2401 and 2402 Magnetic Tape
Units).

Thus, the statement:

5 FORMAT (F9. 2/E14. 5)

specifies the data conversion specification F9.2 for
the first unit record, and the data conversion
specification E14. 5 for the second unit record.

Blank lines may be introduced between output
records, or input records may be skipped, by using
consecutive slashes (I) in a FORMAT statement. The
number of input records skipped, or blank lines
inserted between output records, depends upon the
number and placement of the slashes within the
statement.

28

If there are n consecutive slashes at the beginning
or end of a format specification, n records are
skipped or n blank lines are inserted between printed
output records. If n consecutive slashes appear any­
where else in a format specification, the number of
records skipped or blank lines inserted is n-l. For
example, the statements:

10 FORMAT (1/116)
READ (INPUT, 10) MULT

cause 3 records to be skipped on the input file before
data is read into MULT.

The statements:

15 FORMAT (I5111IF5.2,I211)
WRITE (lOUT, 15) K, A, J

result in the following output:

Integer
(blank line)
(blank line)
(blank line)
Real Number
(blank line)
(blank line)

Integer

To obtain a multiline listing in which the first two
lines are to be printed according to a special format
and all remaining lines according to another format,
the last-line specification should be enclosed in a
second pair of parentheses. For example, in the
statement:

FORMAT (12, 3E12. 4/2FI0. 3, 3F9. 4/(3FI2. 4»

when data items remain to be transmitted after the
format specification has been completely used, the
format repeats from the last left parenthesis. Thus,
the listing would take the following form:

12, E12. 4, E12. 4, E12. 4
FI0.3,FI0.3,F9.4,F9.4,F9.4
FI2.4,FI2.4,F12.4
FI2.4,FI2.4,F12.4

Carriage Control

If a unit record is to be printed on an 1132, 1403, or
1443 Printer, the first character in tl~at unit record
is used for carriage control. Normally the character
is specified at the beginning of the format specifi­
cation for the unit record as 1Hx, where x is a blank,
0, 1, or +. This character is n~t printed; it only
controls carriage spacing as follows:

blank

o

I 1

+

causes a single space before the unit record
is printed

causes a double space before the unit record
is printed

causes a skip to the next channel 1 before the
unit record is printed

causes all spacing or skipping to be sup­
pressed before the unit record is printed

Data Input to the Object Program

Data input to the object program is contained in unit
records, as described under Multiple Field Format,
above. The following information should be consider­
ed when preparing input data on punched cards:

1. The input data record must correspond to the
field width specifications defined in the FORMAT
statement.

2. Leading blanks are ignored. All other blanks
are treated as zeros.

3. A plus sign may be implied by no sign or in­
dicated by a plus sign; a negative number, how­
ever, must be preceded by a minus sign.

I 4. Data within each field must be right-justified.

SPECIFICATION STATEMENTS

The Specification statements provide the compiler
with information about:

1. The nature of the variables used in the program.
2. The allocation in storage for certain variables

and/or arrays.
3. The names of subprograms to be used at object

time.

The Specification statements are non-executable
because they do not cause the generation of instruc"­
tions in the object program.

Page of GC26-371S-8
Revised Feburary 1974
By TNL GN34-0181

All Specification statements must precede any
statement function definition statement and the first
executable statement of the source program. They
should appear in the following order:

Type Statements (REAL, IJ.~TEGER)
EXTERNAL Statements
DIMENSION Statements
COMMON Statements
EQUIVALENCE Statements
Statement Function Definition Statements
First Executable Statement

DATA and DEFINE FILE statements must appear
wi thin the Specification group and must not be intermixed
with EQUIVALENCE statements. Placement of these
two statements is optional. But, for most efficient use
of core storage, they should be placed between the
EQUIVALENCE statements and the statement function
definition statements.

TYPE STATEMENTS (REAL, INTEGER)

General Form:

INTEGER a, b, c, ••.
REAL a, b, c, •••

where:

a, b, c, •.• are variable, array, FUNCTION sub­
program or statement function names appear­
ing in a program or subprogram. Arrays
named in this statement must also be dimen­
sioned in this statement. Array dimensions
specified in this statement should not be in­
cluded in references to the array in
DIMENSION or COMMON statements.
Repetition or respecification of the array
dimensions results in an error.

Examples:

INTEGER DEV, JOB,XYZ12, ARRAY(5, 2, 6)
REAL ITA, SMALL, ANS, NUMB(3, 14)

The REAL and INTEGER statements explicitly
define the type of variable, array, or function. In
the first example, the variable DEV (implicitly
defined as a real variable, because its initial letter
is not I,J,K,L,M, or N) is explicitly defined as an
integer variable and is, therefore, handled as an
integer variable in the program. The appearance
of a variable name ip either of these statements

Statements 29

overrides any implicit type specification determined
by the initial letter of the variable. Type statements
must precede any other Specification statements.

EXTERNAL STATEMENT

General Form:

EXTERNAL a, b, c, ••••

where:
a, b, c , ••• are the names of subprograms that

appear in any other subprogram argument list.
Only the subprogram name is used with the
EXTERNAL statement. Other subprogram para­
meters must not be included. Subprograms
declared external may be FUNCTION subpro­
grams, SUBROUTINE subprograms, FORTRAN
supplied FUNCTION subprograms, or subpro­
grams written inAssembler language (must be
CALL-type subprograms).

Example:

EXTERNAL SIN, MA TRX , INVRT

CALL SIMUL (A, SIN, INVRT)

CALL SIMUL (X, SIN, MATRX)

END

Any subprogram named in the EXTERNAL state­
ment may be used as an argument for other sub­
programs (see Subprogram Statements). Subprograms
named in an EXTERNAL statement are loaded when
the executable core load is built, not during compi­
lation.

DIMENSION STATEMENT

General Form:

DIMENSION a(k
1

), b(k
2

) , c(k
3

), ••• x(k
n

)

where:

a, b, c, ••• x are names of arrays.
kl, k2, k3, ••. kn are each composed of 1, 2, or 3

unsigned integer constants that specify the
maximum value for 1, 2, or 3 subscripts,
respectively.

Example:

DIMENSION A(lO), B(5,15), C(9,9,9)

The DIMENSION statement provides information
to allocate storage for arrays in an object program

30

(unless the information appears in a Type or
COMMON statement). It defines the maximum size
of each array listed.

Each variable that appears in subscripted form in
a source program must appear in a Type,
DIME NSION, or COMMON statement contained within
the source program. The first of these statements
that refers to the array must give dimension in­
formation. (See COMMON Statement with Dimen­
sions.)

The dimension information for an array argu­
ment in a FUNCTION subprogram or a SUBROUTINE
subprogram must generally be identic'al to the
corresponding dimension information in the calling
program. (See Subprogram statements.)

COMMON STATEMENT

Blank COMMON

General Form:

COMMON a,b,c, ••. n

where:

a, b, c, ••• n are variable or array names.

Note: All arrays whose names are specified in a
COMMON statement must be dimensioned, either
in the COMMON statement itself (COMMON state­
ment with dimensions), or in a preceding
DIMENSION statement in the same program.

Variables or arrays that appear in the main pro­
gram or.a subprogram may be made to share the
same storage locations with variables or arrays of
the same type and size in other subprograms, by use
of the COMMON statement. For example, if one
program contains the statement:

COMMON TABLE

and a second program contains the statement:

COMMON LIST
the variable names TABLE and LIST refer to the
same storage locations (assuming the data associated
with the names TABLE and LIST are equal in length
and type).

If the main program contains the statement:

COMMON A,B,C
and a subprogram contains the statement:

COMMON X, Y, Z
and A, B, and C are equal in length to X, Y, and Z,
respectively, then A and X refer to the same storage
locations, as do Band Y, and C and Z.

Within :t specific program or subprogram, vari­
ables and arrays are assigned storage locations in the

sequence in which their names appear in a COMMON
statement. Subsequent sequential storage assign­
ments within the same program or subprogram are
made with additional COMMON statements.

A dummy variable can be used in a COMMON
statement to establish shared locations for variables
that would otherwise occupy different .locations. For
example, the variable S can be assigned to the same
location as the variable Z of the previous example
with the following statement:

COMMON Q, R, S

where Q and R are dummy name s that are not used
elsewhere in the program.

Redundant COMMON entries are not allowed. For
example, the following is invalid:

COMMON A, B, C, A

Named COMMON

Named COMMON is valid only in FORTRAN under
the IBM 1800 TSX and MPX Systems, where the
name INSKEL specifies Skeleton COMMON. The
Skeleton COMMON is located in the low core
addresse,d Skeleton Area. It is not altered by the
IBM System and provides the capability for com­
plete communications between process core loads,
non-process core loads, INSKEL interrupt sub­
routines, in-core-with-mainline interrupt subroutines
(TSX only), interrupt core loads, and special core
loads. Process and non-process programs (either
as part of mainline or interrupt core loads) can
refer to the Skeleton COMMON area by the following
statement:

COMMON/INSKEL/a, b, c, •.• n

where:

INSKE L is the name of Skeleton COMMON.
INSKEL must be enclosed in slashes.

a, b, c, ••. n are variable or array names as
described for the blank COMMON statement.

NOTE: Non-process core loads should reference
INSKE L COMMON only for process.oriented functions
such as updating conversion factors after time­
shared instrument calibration.

The assignment of variables or constants to the
COMMON areas can be mixed in the same COMMON
statement by preceding the Skeleton COMMON items
with IINSKELI and by preceding the blank COMMON
items with I I. For example, in the statement

COMMON/INSKEL/A, B, cIID, E, F

the variables A, B, and C will be assigned locations
in the Skeleton COMMON area and D, E, and F will
be assigned locations in the blank COMMON area.
The same assignment could be made with the fol­
lowing statement.

COMMON D, E, F/INSKEL/A, B, C

In this case, the double slashes are not necessary
because the blank COMMON items were not pre­
ceded by a Skeleton COMMON assignment.

NOTE: INSKEL COMMON may be used in one word
integer programs only.

COMMON Statement with Dimensions

General Form:

where:

A, B, C, ... N are array names and
kl' k2' k3 , ..• kn are each composed of 1, 2, or 3

unsigned integer constants that specify the
dimensions of the array.

Example:

COMMON A(I), B(5, 5, 5), C(5, 5, 5)

This form of the COMMON statement, besIdes
performing the functions discussed previously for
the COMMON statement, performs the additional
function of specifying the size of arrays. Array
dimensions may be specified for both blank COMMON
and named COMMON variables.

NOTES:

1. Dummy arguments for SUBROUTINE or
FUNCTION statements cannot appear in
COMMON statements, if they appear on
the SUBROUTINE or FUNCTION state­
ment.

Statements 31

2. A single COMMON statement may contain
variable names, array names, and dimensioned
array names. For example, the following are
valid:

DIMENSION B(5, 15)
COMMON A, B, C(9, 9, 9)

3. All dimensioned arrays in a main program or
subprogram and all items in COMMON are
stored in descending storage locations.

4. All two-word variables, i. e. two word integers
and standard precision real variables, are
allocated to even addresses. Thus the common
area might contain several unused words if
variables of different length are mixed in the
COMMON statement.

EQUIVALENCE STATEMENT

Different variables and arrays are usually assigned
unique storage locations. However, it may be desir­
able to have two or more variables share the same
storage location. This facility is prOVided by the
EQUIVALENCE statement.

General Form:

EQUIVALENCE (a, b, •••), (d, e, •••), •••
where:

a, b, d, e, ••• are simple variables or subscripted
variables. Subscripted variables may have
either multiple subscripts (which must agree
with the dimension information) or single
subscripts. The subscripts must be integer
constants. In a subprogram, dummy vari­
ables must not be present in an EQUIVALENCE
statement. Standard precision real var·iables
must be equivalenced to an even address.

Each pair of parentheses in the EQUIVALENCE
statement encloses a list of two or more variable
names that refer to the same location during the
execution of the object program.

Any number of variables may be listed in a
single EQUIVALENCE statement.

Examples:

EQUIVALENCE (X, Y, SAVE, AREA) ,
(E(l), F(l», (G(l), H(5»

EQUIVALENCE (A(4), C(2), D(l»

In the second example, making A(4), C(2), and
D(l) eqUivalent to one another sets up an equivalence
among the elements of each array as follows:

32

A(l)
A(2)
A(3)
A(4)
A(5)

C(l)
C(2)
C(3)

D(l)
D(2)

NOTE: Any EQUIVALENCE statement that lists
an array must reference elements of that array.
That is, if A and B are both 30 element arrays to
be equated,

. EQUIVALENCE (A, B)

is not allowed. The arrays may be equated by a
statement of the form:

EQUIVALENCE (A(l), B(l»

Note: None of the dummy arguments in a
SUBROUTINE subprogram can be specified in
an EQUIVALENCE statement.

The combination of all equivalence lists in a program
must not:

1. Equate two variables or array elements that
are already assigned to COMMON.

2. Contradict any previously established equival­
ences.

3. Extend an array beyond the dimensions defined
in a DIMENSION, TYPE, or COMMON state­
ment.

Example 1: Violating Rule 1

DIMENSION A(lO), B(5)
COMMON A, B
EQUIVALENCE (A(l), B(l»

Example 2: Violating Rule 2

EQUIVALENCE (A(lO), B(l»
EQUIVALENCE (B(lO), C(l»
EQUIVALENCE (A(lO), C(l»

Example 3: Violating Rule 3

DIMENSION A(3), B(3)
EQUIVALENCE (A(4), B(l»

However , EQUIVALENCE statements may extend the
size of the COMMON area. For example, the follow­
ing is valid:

DIMENSION C(4)
COMMON A, B
EQUIVALENCE (B, C(2»

for it would produce the following relationship in the
COMMON area:

A C(I)
B C(2)

C(3)
C(4)

Since arrays must be stored in descending storage
locations, a variable may not be made equivalent
to an element of an array in such a manner as to

,cause the array to extend beyond the beginning of the
. COMMON area. For example, the following coding
is invalid:

DIMENSION C(4)
COMMON A,B
EQUIVALENCE (A, C(2»

for it would force C(l) to precede A in the COMMON
area, as follows:

C(I)
A C(2)
B C(3)

C(4)

(outside the COMMON area)

Conversion to Single Subscripts

Two- and three-dimensional arrays actually appear
in storage in a one-dimensional sequence of core
storage words.

In an EQUIVALENCE statement it is possible to
refer to elements of multi-dimensioned arrays by
single-subscripted variables. For example, in an
array dimensioned A(3, 3, 3), the fourth element of
the array can be referenced as A(I, 2, 1) or as A(4).

The rules for converting multiple subscripts to
single subscripts are as follows:

1. For a two-dimensional array, dimensioned as
A(I, J): the element A(i, j) can also be referenced
as A(n), where n = i + I(j-l).

2. For a three-dimensional array, dimensioned as
A(I, J, K): the element A(i, j, k) can also be
referenced as A(n), where n = i + 10 -1) +
I * J(k-l).

NOTE: Converl3ion to single subscripts is permitted
only in EQUIVALENCE statements.

DATA STATEMENT

The DATA statement is used to define initial values
of variables and array elements assigned to areas
other than COMMON. Values assigned to variables

Page of GC26-3715-7
Revised May 1972
By TNL GN34-0085

or array elements during execution override values
assigned via the DATA statement.

General Form:

DATA VI' V2,"" Vn/il *dl' i2*d , ••• , i *dm/,
Vn+l,··· ,Vr/im+l *dm+l"" ,is*~s/'" .ry ... 1

where:

Vl, ..• , Vr are variables or subscripted variables
(subscripts must be integer constants).

dl , ..• ,ds are data constants. They may be
integer, real, hexadecimal, or literal data
constants. Integer and real constants may be
specified as negative. See Data-Var:iable
Combinations for the valid name and constant
combinations.

iI' ... , is are optional unsigned integer constants
that indicate the number of variables and/or
array elements that are to be assigned the
value of the data constant. These constants
must be less than 4096, that is 1 ::;; i ::;;4095.
They are separated from the data constants
by asterisks. Each data constant must be of
the same type (integer or real) as its corre­
sponding variable.

The slash is used to separate and enclose data con­
stants.

When an unsubscripted array name is specified,
constants are assigned from the first element toward
the end of the array. Only a single data constant is
assigned when an array element is specified.

There is an upper limit for the number of assigned
different values in one data statement. This limit
is 50 for subscripted extended precision variables,
60 for subscripted standard precision variables, and
75 if only subscripted integer variables are used.

If a variable is given more than one value by DATA
statements, the last specified value is the one available
at execution time.

If a given constant is not exhausted by assignment
to a given variable or array, the remainder will be
assigned to succeeding variables or arrays.

An error condition occurs if all constants are not
exhausted when the last variable or array has been
satisfied. Similarly, an error occurs when a variable
or array is specified for which no constants are
available.

Example 1:

DATA A/5*1. 0, 2. 0, 3*3. 0/

If A is a nine-element array for real variables, the
first five elements are initialized to 1.0, the sixth
to 2.0, and the remaining three to 3. O.

Statements 33

Example 2:

DATA A, B/12*1. 0/

If A is a nine-element array for real variables and B
is an array containing positions for at least three
real variable elements, all nine elements of A and
the first three elements of B will be initialized to 1. o.

Example 3:

DATA A(3)/5. 01

If A is an array for real variables of at least 3
elements, the third element will be initialized to 5. O.

Hexadecimal Constants

Hexadecimal constants are written as the letter Z
followed by one to four hexadecimal digits (0 through
F). Each constant is assigned one word and the
constant is right-justified if three or less hexa­
decimal digits are used. Each constant must be
separated by a comma.

Any variable, array, or array element to which
a hexadecimal constant value is assigned by the
DATA statement must be an integer variable,
integer array, or an element of an integer array.

Example 4:

DATA 1/6* Z24, ZAB19/

The first 6 elements of array I will be initialized to
the following configuration:

o o 2 4

The seventh element will be initialized to:

9

Literal Data

Literal data must be enclosed in single quotes. A
quote mark within a literal field is represented by
two consecutive quote marks. A literal constant may

34

not exceed the length of the·variable or array
element to which it is assigned. Where necessary,
blanks are included, with the constant left-justified.
Literal data is written in 8-bit EBCDIC, packed two
characters per word.

Example 5:

DATA A/3*'ABCD',2*'AB', 'A"BC', 'A.BC'/

If the array A contains at least seven elements, and
is of standard (two word) precision, the first three
elements will be assigned the value ABCD, the fourth
and fifth the value ABbb, where the b's are blanks,
the sixth element the value A 'BC, and the seventh
A.BC.

Example 6:

DATA KEYWD/2*'AB', 'A"','B.', 'AB', 'xII

If literal data is assigned to an integer array, a
maximum of two characters per element may be
specified, regardless of the precision of the program.
In the array KEYWD, which consists of at least 6
elements, the first two elements are assigned the
value AB, the third element A', the fourth element
B., the fifth element AB, and the sixth element Xb
where b is a blank.

Data - Var iable Combinations

~ variable
real integer hexadecimal literal

real yes no no yes

integer no yes yes yes

DEFINE FILE STATEMENT

The DE FINE FILE statement specifies to the
FORTRAN Compiler the size and quantity of disk
data records within files that will be used with a
particular program and its associated subprograms.
This statement must not appear in a subprogram j -

it may appear only in a main program. Therefore,
all subprograms used by the main program must use
the defined files of the main program.

The purpose of the DE FINE FILE statement is to
divide the disk into files to be used in the disk
READ, WRITE, and FIND statements.

General Form:

DEFINE FILE al (ml, 11, V, VI)'
a2 (m2' 12, V, v2), •••

where:

a is an integer constant (1 through 32767) that is the
symbolic designation for this file.

m is an integer constant that defines the number
of file records in this symbolic file.

NOTE: The sector count of a defined file must not
exceed 1600 except under 1800 MPX using mapped
1810 drives. In this case the sector count of the
defined file must not exceed 4096. The sector
count of a file is the number of file records divided
by the number of records that can be contained in
one sector of 320 words.

1 is an integer constant that defines the length
(in words) of each file record in this symbolic
file. The value of Ii must be less than or
equal to 320.

U is a fixed letter. It is used to designate that
the file must be read/written with the disk
READ/WRITE statements and will handle no
data conversion.

v is a non-subscripted integer variable name.
This variable, called the associated variable,
is set at the conclusion of each disk
READ, WRITE, and FlND statement referenc­
ing this symbolic file. After a READ or
WRITE statement, it is set to the number of the
next available file record. After a FIND
statement, it is set to the number of the indicated
record.

This variable must be set initially by the
user if it is to be used in disk I/O statements
as a symbolic record number. This variable
must appear in COMMON if it is to be
referenced by more than one program during
execution.
Note: The associated variable for a defined
file should not appear in the I/O list of a disk
READ or WRITE statement referencing that
file.

An example of defining a data file is:

DEFINE FILE 3 (400, 60, U, K)

The DEFINE FILE statement furnishes execution
time FORTRAN I/O subroutines with the necessary
parameters to manipulate data files that are user­
generated or system-generated.

The user-generated data files are a result of Disk
Utility Program functions requested by the user
(refer to the sections describing the *FILES control
record and the STOREDATA function of the Disk
Utility Program or MPX Disk Management Program,
in the appropriate operating procedures publication
as listed in the Preface, above). The *FILES
control records supply at the time the executable

Page of GC26-3715-8
Revised February 1974
By TNL GN34-0181

core load is built those parameters not supplied
by DEFINE FILE statements. That is they
provide a correlation between the file
numbers found on the DEFINE FILE
statements and data file names on the disk.

System-generated data files are temporary
disk storage areas allocated by the Core Load
Builder. They are a result of DEFINE FILE
statements for which no matching file numbers
exist on *FILES control records.

NOTE: Since records that require no data con­
version are transmitted, care must be exercised to
ensure that the programs using a data file have the
same precision (standard or extended).

SUBPROGRAM STATEMENTS

Suppose that a program is being written that, at
various points, requires the same computation to be
performed with different data for each calculation.
It would simplify the writing of that program if the
statements required to perform the desired com­
putation could be written only once and then could be
referred to freely. Each reference to the statements
would have the same effect as if the statements were
written at the.. point in the program where the
reference was made. For example, if a general
program were written to take the square root of any
number, it would be desirable to be able to in­
corporate that program (or subprogram) into other
programs where square root calculations are required.

The FORTRAN language provides for the preceding
situation through the use of subprograms. There are
three classes of subprograms: statement functions,
FUNCTION subprograms, and SUBROUTINE sub­
programs. In addition, there is a group of
FORTRAN-supplied FUNCTION subprograms.

The first two classes of subprograms are called
functions. Functions differ from the SUBROUTINE
subprograms in that functions always return a single
value to the calling program, whereas, a SUB­
ROUTINE subprogram can return any number of
values to the calling program. A function is
employed (or called) by writing the name of the
function (see Subprogram Names) and an argument
list in a standard arithmetic expression. A
SUBROUTINE subprogram must be called by a
special FORTRAN statement, namely, the CALL
statement.

The statement function is written and compiled as
part of the program in which it appears. The other
subprograms are written and compiled separately
and linked to the main program at the time they are
loaded for execution.

Statements 35

SUBPROGRAM NAMES

A subprogram name consists of 1-5 alphameric
characters, excluding special characters, the first
of which must be alphabetic. The type (real or
integer) of a subprogram (except SUBROUTINE)
can be indicated in the same manner as variables.
The first four characters of a SUBROUTINE name
must not be either LINK or EXIT. A CALL to a so
named subprogram will result in a compilation
error.

The type of statement function may be indicated
implicitly by the initial character of the name or
explicitly by the REAL or INTEGER type statement.

The type of a FORTRAN-supplied FUNCTION sub­
program is indicated implicitly by the initial char­
acter of its name.

The type of a FUNCTION subprogram may be
indicated implicitly by the initial character of the
name or explicitly by a Type specification (see
Type Specification of the FUNCTION Subprogram).
In the latter case, the implicit type is overriden by
the explicit specification.

The type of a SUBROUTINE subprogram is not
defined, because the result returned to the main pro­
gram is dependent only on the type of the variable
names in the argument list.

FUNCTIONS

In mathematics, a function is a statement of the
relationship between a number of variables. The
value of the function depends upon the values assigned
to the variables (or arguments) of the function. The
same definition of a function is true in FORTRAN.
To use a function in FORTRAN, it is necessary to:

1. Define the function. That is:

a. Assign a unique name by which it may be
called

h. State the arguments of the function
c. State the procedure for evaluating the

function

2. Call the function, where required, in the
program.

When the name of a function appears in any FORTRAN
arithmetic expression, program control is transferred
to the function subroutine. Thus, the appearance of
the function with its arguments causes the computa­
tions indicated by the function definition to be per­
formed. The resulting quantity replaces the function
reference in the expression and assumes the mode

36

of the function. The mode of a function, as with
variables, is determined either implicitly by the
initial character of its name, or explicit,1y by a Type
statement.

Statement Function Definition Statement

General Form:

where:

a is a function name followed by parentheses
- enclosing its arguments, which must be distinct,

nonsubscripted variables separated by commas.
Q is an expression that does not involve sub­

scripted variables.
Examples:

FIRST(X) = A *X+B
OTHER(D) = FIRST (E)+D

If the statement Y = OTHER(Z) appears in a program
in which the above functions are defined, the current
values of A, B, E, and Z will be used in a calculation
which is equivalent to:

Y = A*E+B+Z
Since the arguments of ~ are dummy arguments,

their names may be the same as names appearing
elsewhere in the program. Those variables in Q
that are not included in the dummy argument list are
the parameters of the function and are defined as the
ordinary variables appearing elsewhere in the source
program. The type of each dummy argument is
defined implicitly.

A maximum of fifteen variables appearing in
the expression may be used as arguments of the
function. Since the variables used in references
to the statement function will replace the dummy
arguments, they must correspond in number
and type to the dummy arguments.

Any statement function appearing in Q must have
been previously defined. All definitions of statement
functions must follow the Specification statements
and precede the first executable statement of the
source program.

Statement functions are compiled as internal
subprograms; therefore, they will appear only once
in the object program.

NOTE: The same dummy arguments may be used in
more than one statement function definition and may
also be used as variables outside statement function
definitions.

FUNCTION Subprogram

The FUNCTION subprogram is a FORTRAN sub­
program consisting of any number of statements.
It is like a FORTRAN-supplied FUNCTION sub­
program in that it is an independently written pro­
gram that is executed whenever its name appears in
another program. In other words, if a user needs a
function that is not available in the library, he can
write it with FORTRAN statements.

General Form:

FUNCTION name (ab a2, a3,'" an)
(FORTRAN statements)

RETURN
END

where:

name is a subprogram name.
a1, a2, a3, •.. an are dummy arguments to be re­

placed at execution time. Each argument used
must be either a nonsubscripted variable name,
an array name, or some other subprogram
name (but it cannot be a statement function
name). None of the dummy arguments may
appear in an EQUIVALENCE statement in a
FUNCTION subprogram. A FUNCTION sub­
program must have at least one argument.

The FUNC TION subprogram may contain any
FORTRAN statement except a SUBROUTINE state­
ment, a DEFINE FILE statement, or another
FUNCTION statement and must return control to the
calling program with a RETURN statement. Because
the FUNCTION is a separate subprogram, the
variables and statement numbers do not relate to
any other program (except the dummy argument
variables) •

The arguments of the FUNCTION subprogram may
be considered to be dummy variable names. These
are replaced at the time of execution by the actual
arguments supplied in the function reference in the
main program. The actual arguments must cor­
respond in number, order, and type to the dummy
arguments. They may be any of the following: any
type of constant, any type of subscripted or non­
subscripted variable, any other kind of arithmetic
expression, or a subprogram name (they may not be
statement function names).

The relationship between variable names in the
calling program and the dummy names in the
FUNCTION subprogram is illustrated in the follow­
ing example:

Calling
Program

A = SOMEF (B, C)

FUNCTION
Subprogram

FUNCTION SOMEF (X, Y)

SOMEF = X/y

RETURN
END

In the preceding example, the value of the variable
B of the calling program is used in the subprogram as
the value of the dummy variable X; the value of C is
used in place of the dummy variable Y. Thus, if
B = 10.0 and C = 5.0, then A = 2.0, that is, B/c.

When a dummy argument is an array name, a
DIMENSION statement must appear in the FUNCTION
subprogram. The dimension information must
generally be identical to the corresponding informa­
tion in the calling program. For one-dimensional
arrays it is sufficient if the dimension specified is
equal to the highest constant subscript used in the
subprogram. The DIMENSION statement in the
FUNCTION subprogram permits the dummy argu­
ment to be subscripted. Thus, if B is a 40-element
array defined in a calling program, a method of
passing elements of the array to a FUNC TION sub­
program would be:

Calling
Program

DIMENSION B(40)

D = SOMEF (B,J)

FUNCTION
Subprogram

FUNCTION SOMEF (X, ITER)
DIMENSION X(40)
SOMEF = 0
DO 5 1= 1, ITER

5 SOMEF=SOMEF+X(I)
RETURN
END

When an argument is a subprogram name, it must
be declared in an EXTERNAL statement in the calling
program. The following example illustrates the use
of the EXTERNAL and DIMENSION statements with
subprograms.

Statements 37

Page of GC26-371 5-7
Revised May 1972
By TNL GN34-0085

Calling Program:

EXTERNAL
DIMENSION

1=3
B = COMP(A,I,ABS)

Called Subprogram:

ABS
A(4)

FUNCTION COMP(X, J, FUNCT)
DIMENSION X(4)
TEMP = 0
D010K=1,J

10 TEMP = TEMP + X(K)
COMP = FUNCT (TEMP)
RETURN
END

In this example, the resulting value of B returned to
the calling program is equivalent to:

B = ABS(A(!) + A(2) + A(3»

. The value of the dummy arguments of a FUNCTION
subprogram must not be redefined in the subprogram.
That is, they must not appear on the left side of an
arithmetic statement, in the Ilo list of a READ
statement, or as the index in a DO statement.
Neither may variables that appear in COMMON be
redefined within the FUNCTION subprogram. For
example, the following violates this rule:

FUNCTION SAM (A,B,K)
COMMON J
J=J+!
K=J

'

Within the called program, the name of a function
may be defined by using it as

1. a variable name on the left side of an arithmetic
statement,

2. in the Ilo list of a read statement,
3. in the argument list of a CALL statement, or
4. as the index of a DO loop.

38

For example:

Calling Program:

ANS = ROOT! *CALC (X, Y,I)

Function Subprogram:

FUNCTION CALC (A,B,J)

1= J*2

CALC = A**I/B

RETURN
END

In this example, the values of X, Y, and I are used
in the FUNCTION subprogram as the values of A, B,
and J, respectively. The value of CALC is computed
and this value is returned to the calling program
where the value of ANS is computed.

Type Specification of the FUNCTION Subprogram

The type of function may be explicitly stated by the
inclusion of the word REAL or INTEGER before the
word FUNCTION. For example:

REAL FUNCTION SOMEF (A, B)

RETURN
END
INTEGER FUNCTION CALC (X, Y, Z)

RETURN
END

NOTE: The function type, if explicitly stated, must
be defined in the calling program by use of the
INTEGER or REAL Type statement.

FORTRAN-supplied FUNCTION Subprograms

FORTRAN-supplied FUNCTION subprograms are
predefined FUNCTION subprograms that are part of
the system library. A list of all the FORTRAN-

Page of GC26-371S-8
Revised February 1974
By TNL GN34-0181

supplied FUNCTION subprograms is given in Table 1.
Note that the type (real or integer) of each FUNCTION
subprogram and its arguments are predefined and
cannot be changed by the user.

To use a FORTRAN-supplied FUNCTION sub­
program, simply use the function name with the
appropriate arguments in an arithmetic statement.
The arguments may be non-subscripted variables,
constants, other types of arithmetic expressions,
or other FORTRAN-supplied FUNCTION sub­
programs.

Examples:

DISCR = SQRT(B**2-4. O*A*C)
A = ABS(COS(B»

The use of the SQRT function in the first example
causes the calculation of the square root of the
expression (B**2-4. O*A*C). This value replaces
the current value of DISCR.

In the second example, cosine B is evaluated and
its absolute value replaces the current value of A.

The FORTRAN compiler adds an E or an F in
front of the names of FORTRAN-supplied FUNCTION
subprograms to specify required precision. The

Table 1. FORTRAN-supplied FUNCTION Subprograms

No. of Type of Type of
Argu- Argu- Func-

Name Function Performed ments ment(s) tian

SIN Trigonometric sine (argument 1 Real Real
in radians)

COS Trigonometric cosine (argu- 1 Real Real
ment in radians)

ALOG Natural logarithm 1 Real Real

EXP Argument power of ~
(i.e.,e X) 1 Real Real

SQRT Square root 1 Real Real

ATAN Arctangent 1 Real Real

ABS Absolute value 1 Real Real

lABS Absolute value 1 Integer Integer

FLOAT Convert integer argument
to real 1 Integer Real

IFIX Convert real argument to
integer 1 Real Integer

SIGN Transfer of sign (Arg 1 given
sign of Arg

2
) 2 Real Real

ISIGN Transfer of sign (Arg
1

given
sign of Arg2) 2 Integer Integer

TANH Hyperbolic tangent 1 Real Real

prefix is added to any variable name that is the same
as the FORTRAN-supplied FUNCTION subprogram
names.

For detailed descriptions of the FORTRAN­
supplied FUNCTION subprograms, refer to the
,appropriate Subroutine Library publication as
listed in the Preface).

SUBROUTINE SUBPROGRAM

The SUBROUTINE subprogram is similar to the
FUNCTION subprogram in many respects: the
naming rules are the same, they both require a
RETURN statement and an END statement, and they
both contain the same sort of dummy arguments.
Like the FUNCTION subprogram, the SUBROUTINE
subprogram is a set of commonly used operations;
but the SUBROUTINE subprogram is not restricted
to a single result, as is the FUNCTION subprogram.
A SUBROUTINE subprogram can be used for almost
any operation with as many results as desired.

The SUBROUTINE subprogram is called by the
special FORTRAN statement, the CALL statement
(see CALL Statement).

General Form:

RETURN
END

where:

name is the subprogram name (see Subprogram

~).
al' a2' a3, .•. an are the arguments (arguments are

not necessary or may be located in COMMON).
Each argument used must be a nonsubscripted
variable name, array name, or other sub­
program name (except that it may not be a
statement function name).

The SUBROUTINE subprogram may contain any
FORTRAN statement except a FUNCTION statement,
another SUBROUTINE statement, a DEFINE FILE

Statements 39

statement, or any other statement in which the
SUBROUTINE mme is used as a variable in an
expression or list.

Because the SUBROUTINE is a separate sub­
program, the variables and statement numbers do
not relate to any other program (except the dummy
argument variables). The SUBROUTINE subprogram
may use one or more of its arguments to return
values to the calling program. Any arguments so
used must appear on the left side of an arithmetic
statement or in the I/O list of a READ statement
within the subprogram.

The arguments may be considered dummy variable
names that are replaced at the time of execution
by the actual arguments supplied in the CALL state­
ment. The actual arguments must correspond in
number, order, and type to the dummy arguments.
None of the dummy arguments may appear in an
EQUIVALENCE statement in a SUBROUTINE sub­
program. When the argument is an array name, a
DIMENSION statement must appear in the
SUBROUTINE subprogram. The dimension informa­
tion must generally be identical to the corresponding
information in the calling program. For one­
dimensional arrays it is sufficient if the dimension
specified is equal to the highest constant subscript
used in the subprogram.

40

END AND RETURN STATEMENTS IN SUBPROGRAMS

Note that all of the preceding examples of sub­
programs contain both an END and at least one
RETURN statement. The END statement specifies
the end of the subprogram for the compiler; the
RETURN statement sigIJifies the conclusion of a
computation and returns any computed value and
control to the calling program. There may, in fact,
be more than one RETURN statement in a FUNCTION
or SUBROUTINE subprogram. For example:

FUNCTION DAV (D,E,F)
IF(D-.l)2;3,2

2 DAV = .•••

RETURN
3 DAV = ...•

RETURN
END

SUBPROGRAMS WRITTEN IN ASSEMBLER
LANGUAGE

Subprograms can be written in the 1130 or 1800
Assembler Language to be called by a FORTRAN
program. In order to write such subprograms, the
user must know the linkage generated by the
FOR TRAN Compiler and the location of the arguments.

The linkage to all three types of subprograms
(SUBROUTINE subprograms, FUNCTION subpro­
grams, FORTRAN-supplied FUNCTION subprograms)
is assembled and executed in the same way as the
Assembler Language CALL statement (see the
appropriate Assembler Language publication
as listed in the Preface).

The arguments in the linkage are located as
follows: At execution time, the Branch instruction
corresponding to the CALL is followed in storage
by a list of the addresses of the arguments.

Examples:
SUBROUTINE subprogram CALL:
CALL JOE (A, B, C)
Contents of core storage at execution:

BSI L (Address of entry point of JOE),
for 1800 systems,

BSI (Address of CALL TV entry for JOE),
for 11 30 systems.

ADDRESS OF A

ADDRESS OF B

ADDRESS OF C

C F"" Wo,d of Next In_ctioo

Sub ro am sh ul r r p gr 0 d etu n here.

If any of the parameters is another subroutine,
the generated entry for the parameter is a branch
instruction. This is a short BSI 3 to a three word
Transfer Vector entry for Library Subroutines, or
a long BSI I(through a table of branch addresses) or
BSI L (directly to the subroutine) if the parameter is
a CALL-type subroutine. The BSI L instruction ap­
pears only in 1800 systems and only when the sub­
routine is in the same part of core as the call.

When a SUBROUTINE subprogram CALL is used,
results of the computations within the subprogram
will be returned by means of the arguments. The
Assembler coded SUBROUTINE subprogram must
return control to the calling program at the next
location following the last argument in the list.

FUNCTION Subprogram reference or
FORTRAN-supplied FUNCTION
subprogram reference:

X = Y + JOE(A,B,C)

The underlined section of the above statement
produces the same result in core storage as the
SUBROUTINE subprogram example. It must be noted,
however, that the Assembler coded FUNCTION sub­
program must return a single result to the calling
program by means of the real number pseudo­
accumulator, referred to as FAC, or the machine
accumulator (A-register in the 1800), depending on
whether the function type is real or integer. That
is, assuming JOE is a real function in the above
example, the computed result of JOE(A, B, C) must
be placed in F AC by the Assembler coded subpro­
gram, since the contents of F AC will be added to
y to yield X. (For a description of FAC, refer to
the Real Number Pseudo-Accumulator in the
applicable Subroutine Library manual.) The
argument list must not be used to return a result
of the subprogram computation.

Statements 41

COMPILATION MESSAGES

This section lists the FORTRAN messages and
error codes that apply to the 1130 Disk Monitor
System, Version 2, the 1800 Multiprogramming
Executive Operating System, and the 1800 Time­
Sharing Executive Operating System.
A t the end of the compilation, information about
main- storage usage and the features supported is
printed.

Table 2. 1130 D.isk Monitor System, Version 2, Special Error

Error Number and Message Cause of Error

C85 ORIGIN IN An ORIGIN control record was
SUBPROGRAM detected in a subprogram

compilation.

C86 INVALID ORIGIN An attempt has been made to
relocate a word at an address
exceeding 7FFF (hexadecimal).

C96 WORKING STORAGE The working storage area on disk
EXCEEDED is too small to accommodate the

compiled program in disk system
format.

C97 PROGRAM LENGTH The program in internal compiler
EXCEEDS CAPACITY format is too large to be contained

in core working storage, and the
program must be reduced in size in
order to compile.

C98 SUBROUTINE During compilation of subprograms
INITIALIZE TOO a subroutine initialize statement
LARGE (CALL SUBIN) is generated.

The CALL SUBIN statement
initializes all references to dummy
variables contained within the
subprogram to the appropriate main
storage location in the calling
program.

The nature of the FORTRAN
Compiler limits the size of any
statement in internal compiler
format to 511 words. In the case
of CALL SUBIN, the size is
calculated by the following formula:

S = 5 +ARG + N
where ARG is the number of
arguments in the subroutine
parameter list and N is the total
number of times the dummy
arguments are used within the
subprogram. S is the total size of
the CALL SUBIN statement; if S
ever exceeds 511, the above error
message is printed.

C99 CORE REQUIREMENTS The total main-storage requirements
EXCESSIVE exceed 32,767 words.

42

1130 Disk Monitor System, Version 2

The following information is printed.

FEATURES SUPPORTED
EXTENDED PRECISION
ONE WORD INTEGERS
TRANSFER TRACE
ARITHMETIC TRACE
ORIGIN
IOCS

CORE REQUIREMENTS FOR XXXXX
COMMON YYYYY VARIABLES YYYYY

PROGRAM YYYYY

where XXXXX is the name of the program
designated in the *NAME control statement or in
the SUBROUTINE or FUNC TION statement, and
YYYYY is the number of words allocated for the
specified parts of the program.

The following messages are printed in the case
of successful and unsuccessful compilations
respectively.

END OF COMPILATION
COMPILATION DISCONTINUED

1800 Multiprogramming and Time-Sharing Executive
Operating Systems

The following information is printed.

FEATURES SUPPORTED
NONPROCESS
EXTENDED PRECISION
ONE WORD INTEGERS
TRANSFER TRACE
ARITHMETIC TRACE
IOCS

CORE REQUIREMENTS FOR XXXXX
COMMON YYYYY INSKEL COMMON YYYYY

VARIABLES YYYYY PROGRAM YYYYY

where XXXXX is the name of the program
designated by a / / FOR control statement or by
a SUBROUTINE or FUNCTION statement, and
YYYYY is the number of words allocated for the
specified parts of the program. Unreferenced
statement numbers are also listed.

Table 3. 1800 MPX Special Messages

Message Cause of Message

INVALID The statements containing errors are
STATEMENTS about to be printed.

PROGRAM LENGTH String/Symbol Table overlap has occurred
EXCEEDS CAPACITY during compilation, that is, VCORE is

too small to compile the program.
Compilation is terminated.

UNDEFINED The following variables do not appear in
VARIABLES a DATA statement, as a subprogram

argument, or to the left of an equals sign.
Compilation is terminated.

UTAPE/UDISK Both unformatted tape and unformatted
BOTH SPECIFIED disk I/O were requested. Compilation is

terminated.

OUTPUT HAS BEEN This message follows all the above error
SUPPRESSED messages. No object code is stored to

working storage.

UNREFERENCED The following statement numbers are not
STATEMENTS referenced. They may be deleted.

Compilation continues.

COO NO PROGRAM No name was specified for the program by
NAME SPECIFIED the // FOR statement or a SUBROUTINE

or FUNCTION statement. C;;ompilation
is terminated.

CARD READER The card reader was found to be off line.
OFF LINE Compilation is terminated.

CORE The sum of all main storage necessary for
REQUIREMENTS the compiled object program exceeds 32K.
EXCEED 32K

INVALID *SRFLE The disk file containing the source
FILE program is in error, the file protect

characters of the / / FO R statement do not
match the file protect characters of the
*SRFLE statement that stored the
program, or the file does not contain an
END statement.

SUBROUTINE The SUBROUTINE INITIALIZE
INITIALIZE statement used for dummy arguments is
TOO LARGE too long for the string area available.

Compilation is terminated.

WORKING STORAGE The working storage area on disk is too
EXCEEDED small to accommodate the object code of

the program being compiled. Compilation
is terminated.

COMPI LATION Compilation was unsuccessful. The object
DISCONTINUED program is not stored to working storage

and may not be executed.

ENDOF Compilation was successful. The object
COMPI LATION program has been stored to working

storage and may be executed or stored
elsewhere.

COMPILA TION ERROR MESSAGES

Page of GC26-371 5-7
Revised October 1972
By TNL GN34-0085

During compilation, a check is made to determine
whether certain errors have occurred. If one or
more of these errors have been detected, the error
indications are printed at the conclusion of
compilation, and no obj ect program is stored on
disk. Only one error is detected for each
statement. In addition, because of the interaction
of error conditions, the occurrence of some errors
may prevent the detection of others until those which
have been detected are corrected.

With the exception of the messages listed in Tables
2-4, the error messages appear, for both specification
and executable statements, in the following format:

C NN ERROR IN STATEMENT NUMBER XXXXX+YYY

C NN is the error code number in Appendix F.
XXXXX is all zeros until the first numbered state­
ment is encountered in your program. When a valid
statement number is encountered, XXXXX is re­
placed by that statement number. Statement numbers
on specification statements and statement functions
are ignored.

When XXXXX is all zeros, YYY is the statement
line in error (excluding comments and continuation
lines). When XXXXX is a valid statement number,
YYY is a count of statements from that numbered
statement (counted as 0) to the statement in error.
If the erroneous statement has a statement number,
YYY is not printed.

Compilation Messages 43

Page of GC26-371S-7
Revised October 1972
By TNLGN34-008S

Table 4. 1800 TSX 00 and Special EtTor Messages

Message Cause of Error

COO NO PROG NAME No name for the program being compiled
SPECIFIED was specified. Compilation is terminated

and control is returned to the Supervisor.

COO WORKING The working storage area on disk was too
STORAGE small to accommodate the source string
EXCEEDED and symbol table for the program being

compiled. Compilation is terminated.

COO COMMON COMMON or COMMON/INSKEL/
EXCEEDS 32K was defined larger than

32K in the program being compiled.

SUBROUTINE During compilation of subprograms a
INITIALIZE subroutine initialize statement (CALL
TOO LARGE SUBIN) is generated.

The CALL SUBIN statement initializes all
references to dummy variables contained
within the subprogram to the appropriate
main-storage location in the calling
program.

The nature of the FORTRAN Compiler
limits the size of any statement in internal
compiler format to 511 words. In the case
of CALL SUBIN, the size is calculated by
the following formula:

S = 5 +ARG + N
where ARG is the number of arguments
in the subroutine parameter list and N is
the total number of times the dummy
arguments are used within the subprogram.
S is the total size of the CALL SUBIN
statement; if S ever exceeds 511, the above
error message is printed.

PROGRAM An overlap error has occurred during
LENGTH EXCEEDS compilation, that is, VCORE is too small
CAPACITY to compile the program. Compilation

is terminated.

ENDOF Compilation has ended, with or without
COMPILATION errors.

OUTPUT HAS BEEN Output to disk by the outputting phases
SUPPRESSED has been suppressed because of

compilation syntax errors.

44

For example:

DIMENSION E (I, 6, 6)
DIMENSION 'F(4, 4), G(2, 7),

IH(34, 21), I(5, 8)

DIMENSION J(3, 2, 6))
FORMAT (I50, F5. 2))

10 WRITE (lIC)ARRAY
WRITE (11 C)ARRA YS

(error C 08)

(recall that the 1
in column 6 indi­
cates a continua­
tion line)
(error C 16)
(error C 27)

(error C 07)

This sequence of statements will cause the
following error messages to be printed.

C 08 ERROR AT STA'I'EMENT 00000+001
C 16 ERROR AT STATEMENT 00000+003
C 27 ERROR AT STATEMENT 00000+004
C 07 ERROR AT STATEMENT 10 +001

Note that a FORTRAN er:vor message can be
caused by an illegal character in the source
statement. In that case, the character in question
is replaced by an ampersand in the listing.

APPENDIX A.

In the table below, the FOR TRAN statements
described in this pUblication are listed alphabetically
at the left. There is one column at the right for each

Arithmetic Statement

BACKSPACE

CALL EXIT

CALL LINK

CALL LOAD

CALL name

CALL PDUMP

CALL SSWTCH

Comments stotement

COMMON

COMMON/INSKEL/

CONTINUE

DATA

DEFINE FILE

DIMENSION

DO

END

END FILE

EQUIVALENCE

EXTERNAL

FIND

FORMAT

FUNCTION

GO TO, comouted

GO TO, unconditional

IF

INTEGER

INTEGER FUi'JCTlON

PAUSE

READ, disk I/O

READ, non-disk I/O

READ, unformatted I/O

REAL

REAL FUNCTION

RETURN

REWIND

Statement Function Statement

STOP

SUBROUTiNE

WRITE, disk I/O

WRITE, non-disk I/O

WRITE, unformatted I/o

x

x
x

x

x

x
x

x

x

x
x

x
x

x
x

x

x

x

x

x

x

x

x

x

x

1. Simulated in the 1130 Disk Monitar System, Version 2.
2. Cord version only.
3. Simulated for unformatted disk in 1800 MPX.

x

x

X

x

x

x

x

x

x
x
X

X

x

x

x
x

x
x

x

x
x
x
x

x

X

X

X

x

x

X

x

x

x
x

x

x

x

x

x
x

x

x

x

X

Xl

X

x

x

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Xl

X

X

X

X

X

X

4. Both unformatted disk and magnetic tape operations are supported under 1800 MPX.

" 0..
o

8~~

~{l
u

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

SYSTEM/STATEMENT CROSS-REFERENCE TABLE

x

x

x

x

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X4

X

X

X

X3

X

X

X

X

X

X4

of the IBM 1130 and 1800 programming systems
supported. An 'x' in a column indicates that the
statement on the left applies to the programming
system named at the top of that column.

Appendix A. System/Statement Cross-Reference Table 4S

APPENDIX B. COMPARISON OF USA STANDARD FORTRAN AND IBM 1130/1800 FORTRAN LANGUAGES

This appendix compares the USA Standard FORTRAN,
as found in the following documents:

BASIC FORTRAN
FORTRAN

Charocter Set

A-Z
0-9

blank=+ - */0, .
S

(apostrophe)

Statement Continuation

Lines

Numeric Statement

Label

Variable Name

Data Types

Integer

Real*

Double Precision

Complex

Logical

Hollerith

Real Constant

Basic Real Constant

Integer Constant

fallowed by a

decimal exponent

Double Precision Constant

Real Constant with

• D • in olace of • E •

Number of Array

Dimensions

Relational Exoressions

Logical Ooerators

Assigned GO TO

Logical IF

DO - Extended Range

READ and WRITE

READ/WRITE (Formatted)

READ/WRITE (Unformatted)

Auxiliary liO Statements

REWIND

BACKSPACE

ENDFILE

Formatted Records

1st character not printed

Space before printing

blank 1 line

0 2 lines

1 1st line, new page

+ no advance

Adjustable Dimension

* Precision soecified at compile time.

46

X 3.10-1966
X 3.9-1966

USA USA
Standard, Standard,

Full Bosic

Yes Yes

Yes Yes

Yes Yes

Yes No

No No

19 5

1 to 5 1 to 4

1 to 6 1 to 5

Yes Yes

Yes Yes

Yes No

Yes No

Yes No

Yes No

Yes Yes

Yes No

Yes No

3 2

Yes No

Yes No

Yes No

Yes No

Yes No

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes No

Yes No

Yes No

Yes No

Yes No
-

1130
Card/ 1130
Paper Monitor,
Tape Version 1

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

5 5

1 to 5 1 to 5

1 to 5 1 to 5

Yes Yes

Yes Yes

No No

No No

No No

No No

Yes Yes

No No

No No

3 3

No No

No No

No No

No No

Yes Yes

Yes Yes

No No

N.A. N.A.

N.A. N.A.

N.A. N.A.

Yes Yes

Yes Yet

Yes Yes

Yes Yes

Yes Yes

No No

with the FORTRAN language for the IBM 1130 Card/
Paper Tape Programming System, the IBM 1130 Disk
Monitor System, Version 1, the IBM Disk Monitor
System, Version 2, the IBM 1800 Card/Paper Tape
Programming System, and the IBM 1800 TSX and
MPX Systems.

1800
1130 Cordi

Monitor, Paper 1800
Version 2 Tape TSX/MPX

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

5 5 5

1 to 5 1 to 5 1 to 5

1 to 5 1 to 5 1 to 5

Yes Yes Yes

Yes Yes Yes

No No No

No No No

No No No

No No No

Yes Yes Yes

No No No

No No No

3 3 3

No No No

No Na No

No No No

No No No

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

No No No

1130 1800
USA USA Card/ 1130 1130 Card/ 1800

Standard, Standard, Paper Monitor, Monitor, Paper TSX/MPX
Full Basic Tape Version 1 Version 2 Tape

Common

Blank Yes Yes Yes Yes Yes Yes Yes
Named Yes No No No No No Y *. es
Array Size Declared Yes No Yes Yes Yes Yes Yes

External Statement Yes No Yes Yes Yes Yes Yes

Type Statement Yes No Yes Yes Yes Yes Yes

Dimension Information Yes No Yes Yes Yes Yes Yes

Data Statement Yes No No No Yes No Yes

Format Types

A Yes No Yes Yes Yes Yes Yes
D Yes No No No No No No

E Yes Yes Yes Yes Yes Yes Yes
F Yes Yes Yes Yes I Yes Yes Yes
G Yes No No No

I
No No No

H Yes Yes Yes Yes

I
Yes Yes Yes

" •••• II (Literal) No No Yes Yes Yes Yes Yes
I Yes Yes Yes Yes Yes Yes Yes
L Yes No No No No "'0 No
T No No No No Yes No Yes

X Yes Yes Yes Yes Yes Yes Yes

Format

(Parenthesis Levels) 2 1 1 1 1 1 1

Scale Factor Yes No No No No No No

Blanks in Numeric Conversions

High-Order Zero Zero Zero Zero Zero Zero Zero

Within the field Zero Error Zero Zero Zero Zero Zero

Real Conversions

Integer plus Exponent

E Type Exponent Yes Yes Yes Yes Yes Yes Yes

D Type Exponent Yes No No No No No No

Format During Execution Yes No No No No No No

Statement Function must

'precede the first

executable statement and

follow the specification

statements Yes Yes Yes Yes Yes Yes Yes

Type Specification in a

Function Statement Yes No Yes Yes Yes Yes Yes

Function May Define or

Redefine its Arguments Yes No No No No No No

Transmit in a Call

Hollerith Arguments Yes No No No No No No

External Subprogram

Names Yes No Yes Yes Yes Yes Yes

Block Data Subprogram Yes No No No No No No

Specification Statements

Precede first executable

Statement Yes Yes Yes Yes Yes Yes Yes

Must be ordered No Yes Yes Yes Yes Yes Yes

DIMENSION

COMMON

EQUIVALENCE

.. Only the name INSKEL, specifying the Skeleton COMMON area, is allowed.

Appendix B. Comparison of USA Standard FORTRAN and IBM 1130/1800 FORTRAN Languages 47

1130 1800
USA USA Card/ 1130 1130 Card/

Standard, Standard, Paper Monitor, Monitor, Paper 1800
Full Basic Tope Versian 1 Version 2 Tope TSX/MPX

External Function may alter

variables in COMMON Yes No No No Na No No

LANGUAGE FEATURES NOT IN USA STANDARD FORTRAN

1130 1800
Card/ 1130- 1130 Card/
Paper Monitar, Monitor, Paper 1800

Feature Taoe Version 1 Version 2 Tope TSX/MPX

Mixed mode Arithmetic Yes Yes Yes Yes Yes

Disk Statements Na Yes Yes No Yes

T format Na No Yes No Yes

Literal Format code Yes Yes Yes Yes Yes

Expression of the

form A** B **C Yes Yes Yes Yes Yes

Machine indicator tests Yes Yes Yes Yes Yes

Saurce characters

CO>, &,-IF, <, % Yes Yes Yes Yes Yes

48

Page of GC26-371S-8
Revised February 1974
By TNL GN34-0181

APPENDIX C. 1130/1800 FORTRAN SOURCE PROGRAM CHARACTER CODES

PTTC/8 Hex
(U = Upper Case)

Character IBM Card Code (L = Lower Case)

Numeric Characters*

0 0 1A(L)
1 1 01 (L)
2 2 02 (L)
3 3 13 (L)
4 4 04 (L)
5 5 15 (L)
6 6 16 (L)
7 7 07 (L)
8 8 08 (L)
9 9 19 (L)

Alphabetic Characters*

A 12-1 61 (U)
B 12-2 62 (U)
C 12-3 73 (U)
D 12-4 64 (U)
E 12-5 75 (U)
F 12-6 76 (U)
G 12-7 67 (U)
H 12-8 68 (U)
I 12-9 79 (U)
J 11-1 51 (U)
K 11-2 52 (U)
L 11-3 43 (U)
M 11-4 54 (U)
N 11-5 45 (U)
0 11-6 46 (U)
P 11-7 57 (U)
Q 11-8 58 (U)
R 11-9 49 (U)

NOTES:

1. At compilation time, the following character
punches are treated as equal, and the characters
to the left of the "and" are printed:

I and @) and <
+ and & (and %
= and #

Any invalid character is printed as an ampersand
on all systems except 1800 TSX and MPX. If the
FOR TRAN compiler in the TSX system uses the
card routine in the skeleton, a blank will be
printed out. If the TSX FORTRAN compiler uses
its own card routine, an ampersand is printed out.
1800 MPX prints a blank for an invalid character.

2. Only the 53 characters shown above can be
handled at execution time through A or H type
formatting in the FORTRAN Input/Output
routines. Any other character is replaced

Character IBM Card Code

Alphabetic Characters*

S 0-2
T 0-3
U 0-4
V 0-5
W 0-6
X 0-7
Y 0-8
Z 0-9

Special Characters*

12-8-3
< 12-8-4

12-8-5
+ 12-8-6
& 12
$ 11-8-3
* 11-8-4

11-8-5
11

'I 0-1
, 0-8-3
% 0-8-4
8-3
@ 8-4

8-5
8-6

Space Blank

PTTC/8 Hex
(U Upper Case)
(L = Lower Case)

32 (U)
23 (U)
34 (U)
25 (U)
26 (U)
37 (U)
38 (U)
29 (U)

6B (L)
02 (U)
19 (U)
70 (U)
70 (L)
5B(L)
08 (U)
1A (U)
40 (L)
31 (L)
3B (L)
15 (U)
OB (L)
20 (L)
16 (U)
01 (U)
10 ()

with an asterisk by the 1130 DM2 system or
with a blank (space) by all other systems.

3. At execution time no transformations, such as
& converted to +, etc., are made through A
or H conversion; however, the & is converted
to + when read with I, E, or F conversions at
execution time, and when read with A or H
conversions at compilation time. For example,
the statement:

FORMAT (1H , '&#')
is listed as:

FORMAT (IH , '+=')
at compilation time, and as:

+=
at execution time.

* The term, alphameric characters, as used in this publication,
includes Special Characters.

Appendix C. 1130/1800 FORTRAN Source Program Character Codes 49

Page of GC26-371S-8
Revised February 1974
By TNL GN34-0181

. 1. No FORTRAN statement can be compiled that
contains more than 15 different subscript
expressions.

2. Certain very long FORTRAN statements cannot be
compiled since they expand to a size that is too
long to be scanned. This expansion by the com­
piler occurs in handling subscript expressions and
in generating temporary storage locations for
arithmetic expressions.

3. FORTRAN supplied subprograms, FLOAT, and
IFIX may not be used in EXTERNAL statements.

4. Within A, H, I, T, and X specifications in
FORMA T statements, the· field width "w" may
not be greater than 156.

5. Within E ~d F specifications the field width
"w" may not be greater than 127 and the number
of decimal places specified for "d" may not be
greater than 31. Within F specifications, if a
field width "w" greater than 24 is specified for
card input, the number of punched digits in the
integer part plus the decimal part of the input
field must not exceed 24. Leading zeros are
not counted.

6. The repetition specification for groups and fields
and the total width specification for a record may
not be greater than 156.

7. The size of COMMON specified in a mainline
program must be at least as large as the largest
COMMON specified in any subprogram.

8. A maximum of 75 files can be specified in
DEFINE FILE statements per program.

so

APPENDIX D. IMPLEMENTATION RESTRICTIONS

9. When standard precision is used, it is possible
for two quantities representing the same value to
yield a non-zero result when subtracted from one
another due to the extra eight bits of precision in
FAC not used by standard precision. The non­
zero result, although not reflected in the first
seven significant digits, will affect an IF state­
ment test.

10. Variables used in subscript expressions should
not be equivalenced to other variables which
may change their value. If they are equivalenced,
the new value assumed by the equivalenced
variable may be disregarded by the variable
in the subscript expression.

11.. In a DATA 'statement, the maximum value of the
constant repeat index is 4095, for example,
in DATA V /i*d/ , 1~ i ~ 4095.

12. The sequence of data card placement in the
1442 Card Read Punch hopper must correspond
to the sequence of I/o operations. A card
will be read if it is the next card in the
hopper when a READ operation is executed. The
same card will also be punched if the next I/O
operation in the FORTRAN program is a WRITE
on the 1442 and the FORMAT specification for
this output operation does not· start by indicating
a new record.

13. In the definition of an array, the integer constant
specifying a subscript must be a minimum of 2;
for example, the statement: DIMENSION A(l, 4)
would not be acceptable.

APPENDIX E. SOURCE PROGRAM STATEMENTS AND SEQUENCING

Every executable statement in a source program Statement Normal Sequence
(except the first) must have some programmed path
of control leading to it. Control originates at the FUNCTION Nonexecutable
first executable statement in the program and is
passed as follows. GO TO n Statement n

GO TO (nl' Statement ni
Statement Normal Sequence n2, .•• nm),

a=b Next executable statement IF(a)Sl' S2, S3 Statement Sl if arithmetic a c: 0

CALL First executable statement of Statement S2 if arithmetic a = 0
called subprogram

Statement S3 if arithmetic a ..> 0
COMMON Nonexecutable

INTEGER Nonexecutable
CONTINUE N ext executable statement or

first statement of a DO loop PAUSE N ext executable statement

DATA N onexe cutable READ Next executable statement

REAL Nonexecutable
DEFINE FILE Nonexecutable

RETURN The first statement following the
DIMENSION Nonexecutable reference to this subprogram un-

less computation has not been
DO DO sequencing, then the next completed for the statement con-

executable statement taining the reference.

EQUIVALENCE Nonexecutable STOP Terminate execution

EXTERNAL Nonexecutable SUBROUTINE Nonexecutable

FORMAT Nonexecutable WRITE Next executable statement

Appendix E. Source Program Statements and Sequencing 51

Page of GC26-3715-7
Revised October 1972
By TNL GN34-0085

APPENDIX F. ERROR CODES

The error codes listed below are for the 1130
Disk Monitor System, Version 2, the 1800
Multiprogramming Executive Operating System
(MPX) , and the 1800 Time-Sharing Executive
Operating System (TSX). Most of the error codes
are the same for all three systems; where they
differ in meaning, a separate definition is supplied
for the system that is different from the others.
In the table below, DM2 stands for the

Error
Code Cause of Error

COl Non-numeric character in statement number.

CO2 More than five continuation cards, or continuation card out of
sequence.

C03 Syntax error in CALL LINK or CALL EXIT statement, or, in
TSX, CALL LINK or CALL EXIT in process program.

C04 Undeterminable, misspelled, or incorrectly formed statement.

C05 Statement out of sequence.

C06 First executable statement following STOP, RETURN, CALL
LINK, CALL EXIT, GO TO, or IF statement does not have
a statement number, or, in MPX or TSX, a CALL statement
does not have a statement number.

C07 Name longer than five characters, or name not starting with
an alphabetic character.

C08 Incorrect or missing subscript within dimension information
(DIMENSION, COMMON, REAL, or INTEGER).

C09 DupJicate statement number.

Cl0 Syntax error in COMMON statement.

Cll Duplicate name in COMMON statement.

C12 Syntax error in FUNCTION or SUBROUTINE statement.

C13 Parameter (dummy argument) appears in COMMON statement.

C14 Name appears twice as a parameter in SUBROUTINE or
FUNCTION statement.

C15 DM2 and TSX: * IOCS control statement in a subprogram.

C16 Syntax error in DIMENSION statement.

C17 Subprogram name in DIMENSION statement.

C18 Name dimensioned more than once, or not dimensioned on
first appearance of name.

C19 Syntax error in REAL, INTEGER, or EXTERNAL statement.

C20 Subprogram name in REAL or INTEGER statement, or, in
DM2, a FUNCTION subprogram containing its own name in
an EXTERNAL statement.

C21 Name in EXTERNAL that is also in a COMMON or
DIMENSION statement.

52

1130 Disk Monitor System, MPX for the 1800
Multiprogramming Executive system, and TSX
for the 1800 Time-Sharing Executive system.
Some of the errors are caused by errors in control
statements. For an explanation of these
statements, refer to the appropriate manual: for
DM2 -- Programming and Operator's Guide, Form
C26-3717; for MPX -- Programmer's Guide, Form
C26-3720; for TSX-Concepts and Techniques, Form
C26-3703.

Error
Code Cause of Error

C22 IFIX or FLOAT in EXTERNAL statement.

C23 Invalid real constant.

C24 Invalid integer constant.

C25 More than 15 dummy arguments, or duplicate dummy
argument in statement function argument I.ist.

C26 Right parenthesis missing from a subscript expression.

C27 Syntax error in FORMAT statement.

C28 FORMAT statement without statement number.

C29 DM2 and TSX: Field width specification greater than 145
columns. MPX: Field width specification greater than 156
columns.

C30 In a FORMAT statement specifying E or F conversion, w
greater than 127, d greater than 31, or d greater than w, where
w is an unsigned integer constant specifying the total field
length of the data, and d is an unsigned integer constant
specifying the number of decimal places to the right of the
decimal point.

C31 Subscript error in EQUIVALENCE statement.

C32 Subscripted variable in a statement function.

C33 Incorrectly formed subscript expression.

C35 DM2: Number of subscripts in a subscript expression, and/or
the range of the subscript(s) doe.s not ,agree with the dimension
information. MPX and TSX: Number of subscripts in a
subscript expression does not agree with the dimension
information.

C36 Invalid arithmetic statement or variable; or, in a FUNCTION
subprogram, the left side of an arithmetic statement is a
dummy argument, or, in DM2, TSX, and MPX, is in COMMON.

C37 Syntax error in I F statement.

C38 Invalid expression in IF statement.

C39 Syntax error or invalid simple argument in CALL statement.

C40 Invalid expression in CALL statement.

Error
Code Cause of Error

C41 Invalid expression to the left of an equals sign in a statement
function.

C42 Invalid expression to the right of an equals sign in a statement
function.

C43 In an IF, GO TO, or DO statement, a statement number is
missing, invalid, or incorrectly placed, or is the number of a
FORMAT statement.

C44 Syntax error in READ, WRITE, or FIND statement.

C45 *IOCS record missing with a READ or WRITE statement
(in DM2 and TSX mainline programs only).

C46 FORMAT statement number missing or incorrect in a READ
or WRITE statement.

C47 Syntax error in input/output list; or an invalid list element; or,
in a FUNCTION subprogram, the input list element is a dummy
argument or is in COMMON.

C48 Syntax error in GO TO statement.

C49 Index of a computed GO TO is missing, invalid, or not preceded
by a comma.

C50 *TRANSFER TRACE or *ARITHMETIC TRACE control
record present, with no *IOCS control record in a mainline
program.

C51 DO statements are incorrectly nested; or the terminal statement
of the associated DO statement is a GO TO, IF, RETURN,
FORMAT, STOP, PAUSE, or DO statement, or, in MPX or
TSX, an MPX or TSX CALL statement.

C52 More than 25 nested DO statements.

C53 Syntax error in DO statement.

C54 Initial value in DO statement is zero.

C55 In a FUNCTION subprogram the index of DO is a dummy
argument or is in COMMON.

C56 Syntax error in BACKSPACE statement.

C57 Syntax error in REWIND statement.

C58 Syntax error in EN 0 FILE statement.

C59 DM2: Syntax error in STOP statement. MPX and TSX:
Syntax error in STOP statement or STOP statement in process
program.

C60 Syntax error in PAUSE statement.

C61 Integer constant in STOP or PAUSE statement is greater than
9999.

C62 Last executable statement before END statement is not a STOP,
GO TO, IF, CALL LINK, CALL EXIT, or RETURN statem"ent,
or, in MPX or TSX, an MPX or TSX CALL statement.

Error
Code Cause of Error

C63 Statement contains more than 15 different subscript
expressions.

C64 Statement too long to be scanned, because of Compiler
expansion of subscript expressions or Compiler addition of
generated temporary storage locations.

C65* All variables in an EQUIVALENCE list are undefined.

C66* Variable made equivalent to an element of an array in such a
manner as to cause the array to extend beyond the origin of
the COMMON area.

C67* Two variables or array elements in COMMON are equated, or
the relative locations of two variables or array elements are
assigned more than once (directly or indirectly). This error
is also indicated if an attempt is made to allocate a standard
precision real variable at an odd address by means of an
EQUIVALENCE list.

C68 Syntax error in an EQUIVALENCE statement; or an illegal
variable name in an EQUIVALENCE list.

C69 Subprogram does not contain a RETURN statement, or, in
TSX, a TSX CALL statement, or a mainline program contains
a RETURN statement.

C70 No DEFINE FILE statement in a mainline program that has
disk READ, WRITE, or FIND statements.

C71 Syntax error in DEFINE FI LE statement.

C72 Duplicate DEFINE FI LE statement, more than 75 DEFINE
FILEs, or DEFINE FILE statement in subprogram.

C73 Syntax error in record number of disk READ, WRITE, or
FIND statement.

C74 DM2: Defined file exceeds disk storage size. MPX and TSX:
INSKEL COMMON referenced with two-word integer.

C75 Syntax error in DATA statement.

C76 Names and constants in a DATA statement not in a one to one
correspondence.

C77 Mixed mode in DATA statement.

C78 Invalid Hollerith constant in a DATA statement.

C79 Invalid hexadecimal specification in a DATA statement.

C80 Variable in a DATA statement not used elsewhere in the
program, or, in DM2, a dummy variable in DATA statement.

C81 COMMON variable loaded with a DATA specification.

C82 DATA statement too long to compile, because of internal
buffering.

C83 TSX: TSX CALL statement appearing illegally.

*The detection of a code 65, 66, or 67 error prevents any subsequent
detection of any of these three errors.

Appendix F. Error Codes 53

ABS subprogram 39

ALOG subpro~am 39
Alphabetic characters (Appendix C) 49

Alphameric data conversion 17
Arithmetic expressions 7
Arithmetic operation symbols 7

Arithmetic statements 9

Arrays 5
arrangement in storage 5

dimensioning (see DIMENSION statement) 30
element equivalence (see EQUIVALENCE statement) 32

ATAN subprogram 39

A-conversion 25

BACKSPACE statement 21

Blank character
in formatted data (see X-type format) 27
in coded statements (see coding form) 2

Blank COMMON 30
Blank I/O records (see multiple field format) 28, 2

CALL DA TSW 15
CALL DVCHK 15
CALL EXIT 14

CALL FCTST 16

CALL UNK 14

CALL LOAD 14

CALL OVERFL 15
CALL PDUMP 15
CALL SUTE 15
CALL SLITET 15
CALL SSWTCH 15
CALL statement 13
CALL statements, special 14

CALL TSTOP 15
CALL TSTR T 16
Card character code s (Appendix C) 49

Card Read Punch, loading Data Cards into hopper of 18
Carriage control 29

Coding form 2

Comments (see coding form) 2

COMMON statement 30

blank COMMON 31

named COMMON 30
with dimensions 31

Compilation

messages 42-44

Computed GO TO statement 10
Constants 3

integer 3

real 3

Continuation line (see coding form) 2

CONTINUE statement 12
Control statements 9

CALL 13

computed GO TO 10
CONTINUE 12
DO 10

END 13

IF 10

PAUSE 13

STOP 13

unconditional GO TO 10

Conversion of alphameric data 25

A -conversion 25

H -conversion 25

literal data enclosed in apostrophies 26

Conversion of numeric data 23

E-conversion 24
F -conversion 24

I-conversion 23

Conversion of multiple subscripts to single subscripts 33

COS subprogram 39

Data conversion
alphameric 25

numeric 23

(see also FORMAT statement)

Data input to the object program 29

DATA statement 33

INDEX

DATSW subprogram (see machine and program indicator tests) 15

DEFINE FILE statement 34

DIMENSION statement 30

Disk I/O statements 18
FIND 19
READ 19
WRITE 19

DO statement 10

increment 11
index 11
initial value of the index 11

nesting 12
range limit 11
restrictions 12
test value 11

Dummy arguments (see subprogram statements) 35
DVCHK subprogram (see machine and program indicator tests) 15

END FILE statement 21
END statement 13

END statement in subprograms 40
EQUIVALENCE statement 32

(see also conversion of multiple subscripts to single subSCripts)

Error codes
Appendix F 52

Error messages 42-44
EXP subprogram 39
Explicit specification of type

type statement 29

variable types 4

Expressions 7
evaluation 7
mode 7
operators 7
rules for construction 7

Index 55

EXTERNAL statement 30
E-conversion 24

FCTST subprogram (see machine and program indicator tests) 16
FIND statement 18,19
FLOAT subprogram 39
FORMAT statement 22

carriage control 29
conversion of alphameric data 25
conversion of numeric data 23
data input to the object program 29
multiple field format 28
T-format code 27
X-type format 27

FORTRAN-supplied FUNCTION subprograms 38
FUNCTION subprogram 37
Functions 36
F -conversion 24

GO TO statement 10
computed 10
unconditional 10

Hierarchy of arithmetic operations 7
H -conversion 25

lABS subprogram 39

Identification/sequence number field (see coding form) 2

IF statement 10

IFIX subprogram 39

Implementation restrictions (Appendix D) 50
Implicit specification of type

type statement 29
variable types 4

Implied DO loops in I/O lists (see indeXing I/O lists) 20
Increment of a DO statement 11
Index of a DO statement 11
Indexing I/O lists 20
Initial value of the index of a DO statement 11
Input data to the object program 29
Input data conversion (see FORMAT .statement)
Input/Output devices 16

Input/output statements 16
disk I/O 19
FORMAT 22

manipulative I/O 21
non-disk I/o 17
unformatted I/O 20

INSKEL COMMOM (see named COMMON) 30
Integer constants 3

Integer mode (see arithmetic expressions) 7
INTEGER statement 29

Integer variables (see variable types) 4
ISIGN subprogram 39
I/O lists (see input/output statements)
I/O unit numbers (see logical unit numbers) 22
Literal data conversion 26

56

Loading 1442 Card Read Punch hopper 18
Logical unit numbers 22

Machine and program indicator tests 15

CALL DA TSW 15
CALL DVCHK 15
CALL FCTST 16
CALL OVERFL 15
CALL SUTE 15
CALL SUTET 15
CALL SSWTCH 15
CALL TSTOP 15
CALL TSTRT 16

Manipulative I/O statements 21
BACKSPACE 21
END FILE 21
REWIND 21

Messages
compilation 42 -44
error 42-44

Mixed mode (see arithmetic expressions) 7
Mode, computational 7

Mode of expressions 7
integer 7
mixed 7

real 7
Multiple field format 28
Named COMMON 31
Names

subprogram 36
variable 4

Nesting of DO statements 12
Nonstandard items (Appendix D) 50
Non-disk I/O statements 17

READ 17
WRITE 18

Numeric characters (Appendix C) 49
Numeric data conversion 23
Object program input 29

Operation symbols, Arithmetic 7
Order of arithmetic operations 7
Order of specification statements 29
Output data conversion (see FORMAT statement)
OVERFL subprogram (see machine and program indicator tests) 15

Paper tape character codes (Appendix C) 49

Parentheses, use of 8
PAUSE statement 13

Range of a DO statement 11
READ statement

disk I/O 19
non-disk 1/0 17
unformatted I/O 20

Real constants 3
Real mode (see arithmetic expressions) 7

REAL statement 29
Real variables (see variable types) 4

Restrictions on DO statements 12

RETURN statement 40

REWIND statement 21

Sequence number/identification field. 2
Sequence of source statements (Appendix E) 51

Sequence of specification statements 29

Sign subprogram 39

Simulated machine indicators (see machine and program indicator

tests) 15

SIN subprogram 39

Skeleton COMMON (see named COMMON) 30

SLITE subprogram (see machine and program indicator tests) 15

SLITET subprogram (see machine and program indicator tests) 15

Source program chara cter codes (Appendix C) 49

Source program statements (Appendix E) 51

Special CALls 14

CALL LINK 14

CALL LOAD 14

CALL PDUMP J.8' '/./
machine and program indicator tests 15

Special characters (Appendix C) 49

Specification statements 29

COMMON 30

DATA 33

DEFINE FILE 34

DIMENSION 30

EQUIVALENCE 32
EXTERNAL 30

type (REAL, INTEGER) 29

SQRT subprogram 39

SSWTCH subprogram (see machine and program indicator tests) 15

Statement number (see coding form) 2

Statements 9
arithmetic 9

control 9

function definition 36

input/ output 16

specification 29
subprogram 35

(see also coding form) 2
Statement/system cross reference table (Appendix A) 45

STOP statement 13

Subprogram names 36

Subprogram statements 35

END 40

FUNCTION 37

RETURN 40

statement function definition 36
SUBROUTINE 39

Subprograms

FORTRAN-supplied FUNCTION 38

FUNCTION 37

statement function 36

SUBROUTINE 39

SUBROUTINE subprograms 39

SUBSCRIPT forms 6

Subscripts 5

Symbols, Arithmetic operation 7

System/statement cross-reference table (Appendix A) 45

TANH subprogram 39

Test value of a DO statement 11

TSTOP subprogram (see machine and program indicator tests) 15

TSTRT subprogram (see machine and program indicator tests) 16

Type statements (REAL, INTEGER) 29

T-format code 27

Unconditioned GO TO statement 7

Unformatted I/O statements 20

READ 20

WRITE 21
Unit record sizes (see multiple field format) 28

Variables

names 4

subscripted 5
types 4

WRITE statement

disk I/O 20

non-disk I/O 18
unformatted I/O 21

X-type format 27

Index S7

READER'S COMMENT FORM

IBM 1130/1800 Basic FORTRAN IV Language

• How did you use this publication?

As a reference source D
As a classroom text D
As a self-study text D

• Based on your own experience, rate this publication

As a reference source:

As a text:

Very
Good

Very
Good

Good

Good

Fair

Fair

Poor

Poor

Order No. GC26-3715-7

Very
Poor

Very
Poor

• What is your occupation?

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address .

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC26-3715-7

YOUR COMMENTS, PLEASE •.•

Your answers to the questions on the back of this form, together with your comments, will
help us produce better publications for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material. All comments and sug­
gestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Fold

BUSINESS REPLY MAil
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

I BM Corporation

General Systems Division

Boca Raton, Florida 33432

Attention: Systems Publications, Department 707

Fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

FIRST CLASS

PERMIT NO. 110

BOCA RATON, F LA

33432

Fold

n
S
l>
'0
:I
co
r-
5·
CD

tv
o -->
co
o
o

GC26-3715-7

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10804
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

I
~.

w
o ::;
00
o
o

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14.0
	14.1
	14.2
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	replyA
	replyB
	xBack

