$

File Number 1130/1800-21
Order Number GC26-3733-0

Systems Reference Library

IBM 1130/1800 Macro Assembler Programming

This manual describes how to use the Macro Assembler
of the 1130 Disk Monitor System, Version 2, and the
1800 Multiprogramming Executive Operating System,
Versions 2 and 3. It should be used by programmers
who have a basic knowledge of the assembler language
and use this language to write programs for these

systems.

This publication is supplemental to the 1130 and 1800
Assembler Language manuals and should be used in
conjunction with them. This manual describes the
1130/1800 Macro Assembler: the definition and usage
of the macro instruction, features of macro and
assembler-language programming, and creation of a
language for a specific need; the Macro Update
Program; and the error messages, error flags, and
warning flags of the Macro Assembler and Macro Update
Program.

R

First Edition (June, 1970)

This edition applies to the IBM 1130 Disk Monitor System, Version 2, and
the IBM 1800 Multiprogramming Executive Operating System, Versions 2 and
3, and to all subsequent versions and modifications until otherwise
indicated in new editions or Technical Newsletters. Significant changes
and/or additions to the specifications contained in this publication are
being made from time to time; therefore, before using this publication
in connnection with IBM systems, consult the latest SRL Newsletter,
Order Number GN20-1130 or Order Number GN20-1800, for editions that are
applicable and current.

Requests for copies of IBM publications should be made to the IBM Branch

Office serving your locality. .

Forms are provided at the back of this publication for the reader's
comments. If the forms have been removed, comments may be addressed to

IBM Corporation, Programming Publications, Department D78, Monterey and
Cottle Roads, San Jose, California 95114.

© Copyright International Business Machines Corporation 1970

o7

Page of GC26-3733-0
Revised July 20, 1970
By TNL GN26-0610

Pretface

This publication is a guide for assembler-language programmers of the
1130 Disk Monitor System, Version 2, or the 1800 Multiprogramming
Executive Operating System, Version 3. It is supplemental to, and
should be used in conjunction with, the 1130 and 1800 Assembler-
Language manuals.

The first chapter, "Introduction,"” discusses the fundamentals of the
Macro Assembler: what it is, how it operates, how much main storage it
requires, how fast it performs, what types of macros there are, how to
incorporate macros into your system; and, briefly, the Macro Update
Program and error detection. ’

The second chapter, "The Macro Instruction,® discusses how to define and
use a macro instruction.

The third chapter, "Macro Assembler Features," discusses conditional
assembly pseudo-operations, the ANOP, SET, and PURG pseudo-operations,
automatic name generation, concatenation, optional remarks, indirect
parameter substitution, the division operator, and the symbolic tag
field. At the end of this chapter is a section on programming
techniques. This section includes a sample program and programming
tips. The sample program is for 1800 MPX but is also valid for the 1130
(an 1130 DM2 sample program is in Appendix A).

The fourth chapter, "Macro Assembler Language,® describes how the Macro
Assembler can be used to create a language for a specific purpose. The
example is for the 1800 MPX system but is a general illustration that is
also valid for 1130 users.

The fifth chapter, "The Macro Update Program,” describes how you can set
up and maintain your macro libraries through various statements. These
statements may refer to whole libraries, macros within the libraries, or
statements within the macros.

The sixth chapter, "Errors and Warnings," discusses the various error
messages, error flags, and warning flags you may receive when using the
Macro Assembler and the error messages you may receive when using the
Macro Update Program.

Marginal notes have been included in this publication to allow easy
reference to matter within the text.

The coding forms used in this manual are: for Macro Assembler
statements, the 1130/1800 Assembler Coding Form, Order Number GX33~-8000;
for other statements, the General Purpose Card Punching Form, Order
Number GX20-8030.

iii

Required Reading

1130 publications:

Assembler Language manual, Order Number GC26-5927
1800 publications:

Assembler Language manual, Order Number GC26-5882

System Introduction, Order Number GC26-3718

Suggested Reading

1130 publications:

Disk Monitor System, Version 2, Programming and Operator's Guide,
Order Number GC26-3717, for information on the Disk Utility Program
and Macro Assembler control statements and error messages.

1800 publications:

Programmer's Guide, Order Number GC26-3720, for information on the
Disk Management Program and Macro Assembler control statements.

Error Messages and Recovery Procedures manual, Order Number

GC26-3727, for information on the warning flags, error codes, and
error messages.

iv

‘“%

Contents

INTRODUCTION O §
The 1130/1800 Macro Assembler. e |
The Macro INStruction. . . . o v ¢« & o & « & & s o o o o o s o o« o« o 1
Pseudo-Operations« « « « o ¢ ¢ ¢+ o s e e e e a4 e e e . . . 3

. Nested Macro Definitions and Calls ¢« ¢« « « « o « o « « o« = o« 3
Main-Storage Requirements« « « ¢« ¢ o o ¢ o 0 e 0 e 4. . . 3
Macro Assembler PerfOYMANCE . . . « « « o« o o o « o o o « o o « + o . 4
Macro Update PrOgram « « o « o o « o« o o o o + o+ o o « o« » o . 4
- Error Messages, Error Flags, and Warning Flag. 4
THE MACRO INSTRUCTION . &+ v « 2 o « o o o o o o « s o o o o o o o o« « « 5
Defining a Macro Instruction « « ¢ v v « ¢ 4 v o 0 o e e . D
The Definition Prototype Statement ¢« ¢ « « & « & & o o« o o 2
An Example of Macro Definition+ . . .« 6
Using a Macro Instruction. . . e e e e e e e e e e e e e e e e 7
Substituting a Character String for a Parameter10
Continuing Calls to Additional Records « « « & « « .« . 12
MACRQO ASSEMBLER FEATURES + + ¢ o ¢ ¢ o & o o o s o o o o o o = 15
Conditional Assembly Pseudo-Operations15
AIF, AIFB PseudO-0pPS .« .+ « « & o o s+ o s s o « o o o o o o o s o o 15
AGO, AGOB PSeudo=0PS . « « « &+ o o o o o o o o + o o o o o 0 o« o 17
Unspecified Parameter Checking « . . . « « ¢« o o o o o . .17

Special Considerations Using AIFB and AGOB18
ANOP Pseudo-Operation. . . . « v « « ¢ v & o o« & o o o o « o o o« o+ . 19

SET Pseudo-Operation « « & « « & « o« & « o o o« o o« o « « « 20

PURG Pseudo-Operation. . . . ¢ ¢ v o « ¢ o« o o o o o o o o o o o o« o« 22

@ Automatic Name Generation . . . « v ¢ v « o « « o 4 4 e e e e e e 4 . .22
(MR CONCatenation . . &+« +v « & o 4 & o & 4 4 4 4 e s 4 e 4 e e e s e s+ 4 . 223
Optional REMArKS . « « « & &« & & « o o o o o o o o o s o & o o o o+ +25

Indirect Parameter Substitution. « . . . ¢26

Division Operator . . . « « « & « ¢ o o o o 4 e 4 e e e e e e e e .. 2]

Symbolic Tag Field . . ¢ & + v ¢ v o v v v o v o v o v v e e e e e . w27

Programming Technigques « & « &« &+ &+ &« o+ « + & & & « « + « . .28

Checking for Blank Parameters . . « « « « + + o o « o« &+ + o « « « . . 28

Restrictions on AIF, AIFB, and SET Pseudo-Operations , .,29
Label and Blank Parameter Checking Using 2GO . .,30
Macro Parameter Substitution o . . .32
Sample Program . . . « + o« o o o o o o o + o 4 & o s+« s e o« . . «33

MACRO ASSEMBLER LANGUAGE & ¢ « « & « o o & o o o o o o o o o 37

THE MACRO UPDATE PROGRAM . . . v v v v v o o o o o o o o o o o « o« « 47

Initializing Disk Space & & « v ¢« 4 4 e e e e e e e 4T

Specifying the Macro Library ¢ ¢ « ¢ v ¢ v o o ¢« o « « « o« . .48

Joining Macro Libraries Physically « . + « v . « « « . . .48

Joining Macro Libraries Logically. « « ¢ ¢« ¢ & & « o« « « « . . 49

Updating a Macro in a Library. . . « + « ¢ ¢« « « ¢ + « + « « «50

i Renaming a Macro in a Library. e & 4 & & ¢ s e s 4 s e o & «51
Defining a Macro During a Macro Update Run e e e s e e s 4 s e e+ 4 . 51

ADD Statement« . + v ¢« « 4 4 e e s e 4 4 s e e s+ e 4 & 4 . . .52

Deleting a Macro From a Library. . . « « « « « ¢ ¢ ¢ « ¢« ¢ « ¢« « « « +53

. Punching Source Statements . . . «. « = ¢ « « <« + = « 4 + & & + .+ - « .54
Inserting a Statement in a Macro « « « « ¢« « < + « «54

Deleting a Statement from a Macro. . . . e e 4 4 a455

Obtaining a Listing of Macro Libraries by Statements or Macros 56
Special Requirements on the Use of Automatic Name Generation

@ﬂnm in Nested Definitions ¢« & & ¢ v ¢ ¢ & ¢ 4« ¢« ¢ o « « o« « « & 57

' Lesignating CommentsS . . . « & « & &« & « & o s o « 2 o o o o o « « « 58

Terminating a Macro Update RUn . . . + + ¢ ¢ ¢ & « &« & o o o« o « » » o D08

Sequencing MUP Control StatementS. . . « . « ¢ « e « « o o o « « +» o« 59

Making Efficient Use of the Macro Update Program

A Sample Macro Update Program , , . .

ERRORS AND WARNINGS ., . . . v + . . .
Macro Assembler Sign-Off Message . .
Macro Assembler Warning Flag ., . . .

Macro Assembler Error Detection Codes
Macro Update Program Error Messages .

APPENDIX A: GENERAL EXAMPLES OF MACROS

ASSEMBLER FEATURES

GLOSSARY-INDEX . .,

Tables

Table 1. Error Flags « .

Table 2. Macro Assembler Error Codes and Messages. . . .
Table 3. Macro Update Program Error Messages - « - + =« -«

vi

.59
. 60

.63
.63
.63
.63
.63

.69

.83

Introduction

The 1130/1800 Macro Assembler

condensing
sequences

general-
izing
sequences

creating
a language

defining
a macro

types

use of

temporary
macros

N2

The 1130/1800 Macro Assembler allows you to condense a
sequence of assembler-language coding that you use over and
over again into one instruction, a macro instruction.

If you use the Macro Assembler, you can generalize a
sequence of coding and then modify it slightly each time it
is used. You code the sequence only once, defining macro
parameters that cause the appropriate code to be generated
for a particular use. The exact code generated when the
macro instruction is used is based on the conditional
assembly, automatic name generation, and/or parameter
substitution facilities of the Macro Assembler.

The Macro Assembler also allows you to define a language
that is unique to your application; such a language may be
simple and/or meaningful enough to be used by a person other
than a professional programmer.

THE MACRO INSTRUCTION

A macro instruction, or macro, is a source program
statement. When the Macro Assembler encounters a macro, it
expands the macro by processing a sequence of
assembler-language statements. This sequence must have been
defined in a macro definition before it can be used.

When you define a macro, you specify its operation code
(macro name), its parameters, and the sequence of
assembler-language statements to be processed when the Macro
Assembler encounters the macro name in a source program.

Using the Macro Assembler, you can define two kinds of
macros, temporary macros and stored macros. You should
define every macro as a temporary macro until you are sure
that it will execute properly. If it does execute properly,
and you want to store it, you can include it in a macro
library.

TEMPORARY MACROS

A temporary macro can be used only during the assembly of
the program in which it is defined. This kind of macro
isn't saved by the system; if you want to use it in another
program, you have to define it again during assembly of that
program. You do not have to define stored macros in order
to use temporary macros.

If temporary macros are to be defined, you will need an
*OVERFLOW SECTORS control statement. Two new parameters, N2
and N3, have been added to this statement. The N1 parameter
remains the same. N2 is the number of sectors you allocated
for the overflow of macro parameters from main storage to

Introduction 1

estimating

N3

estimating

use of
stored
macros

macro
libraries

use an
*MACLIB
statement

disk. This parameter can be zero, and space will not be

required if the overflow from a macro that is defined or ‘*%%
called with another macro definition never exceeds 100 s
words. The required size of N2 may be estimated by using
the following formula:

N
Number of words =3+N+z 172 (mj+1) -
i=1)

N is the number of parameters and m; is the number of
characters per parameter. For example, the call

EXPND ALPHA,BETA,C would be computed as
34341/72(541)+1/2(4+1) +1/2(1+¢1)=12 words; the remainders of
individual terms are ignored. N3 is the number of sectors you
allocated for temporary macro definitions. You can estimate
the number of sectors needed by dividing the total number of
statements in all macro definitions within the assembly by
40. If you want to retain remarks, you may have to increase
N3 to accommodate them. For further information on the
*OVERFLOW SECTORS statement, see the 1130 Programming and
Operator's Guide, Order Number GC26-3717, or the 1800
Programmer's Guide, Order Number GC26-3720.

STORED MACROS

A stored macro, on the other hand, resides on disk in a
macro library and can be used by any program. When you
assemble a program that uses or defines stored macros, you
must specify which macro library you wish to use during the
assembly with the *MACLIB Macro Assembler control statement.

The macro library specified on the *#MACLIB statement must be
defined and initialized before it can be used by the Macro
Assembler. For details on how to initialize a macro
library, refer to the discussion on initializing disk space
in the chapter "The Macro Update Program.” The *MACLIB
statement enables you to access one library selectively
without having to access all of the stored macros. Multiple
macro libraries may be accessed in one assembly if you
logically concatenate the libraries before the assembly.
Additional information on macro libraries may be found in
the chapter on the Macro Update Program.

You cannot define a stored macro within an assembly unless
you have used an *MACLIB statement. If your program
attempts to call a stored macro which cannot be found in the
specified library, the macro call will be flagged as an
illegal operation. The format of the #MACLIB is as follows:

1-10 11-20 21-30 31-40
112[3]als]el7]eloJo] I [2[3]a]5I6[7I8I9lo] 1 [2[3[4a[5]6[7[8]olo] 1]2]3[4[5le[7]8[9]0] i {2]3]4
1 tM.Anqul:B. 1LAIV5A.M1£1 U NS ST | ! P T T S S W N | ! L1203 f o« toa g ! i 1 ‘W
2LL4JJA11147111111141!111:11111{L|A|]1111!|11)

2 113071800 Macro Assembler Programming

definition

uses

The 1130

LNAME is the name of the macro library to be used in the
current assembly. For further information on the *MACLIB
statement, see the 1130 Programming and Operator's Guide,
Order Number GC26-3717, or the 1800 Programmer's Guide,
Order Number GC26-3720.

PSEUDO-OPERATIONS

Pseudo-operations, or pseudo-ops, extend the capabilities of
the assembly process. Pseudo-ops are written like
assembler-language statements, but they are used to provide
information to the Macro Assembler rather than to generate
executable code for the program. They can appear anywhere
within an assembler-language program, providing you follow
the other rules for their use.

Several new pseudo-ops have been included for use in
programs that use the Macro Assembler. These are described
in detail under "“Features of the Macro Assembler®™ and
perform the following functions:

e Defining the beginning and the end of a macro definition.

¢ Determining during an assembly whether certain statements
are to be processed, based on a specific condition.

e Permitting a program label to be set to two or more
different values at different points in a program without
a multiple-definition error condition.

* Logically removing a macro from a library.

NESTED MACRC DEFINITIONS AND CALLS

A macro can be defined or called within another macro
definition. This process is called nesting. The nesting of
macro definitions is limited only by the physical size of
your system. You may want to nest definitions to allow the
dynamic definition (with decisions) of an inner macro when
you are expanding the outer macro. This can also be used to
advantage to conserve library space if the same code is
being used in both macros (the inner one can be called only
by the outer one).

The nesting of macro calls is limited to 20 calls per nest.

You may wish to nest calls to macros so that values from one
macro can be passed to the other macro.

MAIN-STORAGE REQUIREMENTS

THE 1130

In the 1130 Disk Monitor System, Version 2, the Macro
Assembler functions as and is fully compatible with the 1130
Disk Monitor System, Version 2, Assembler. However, the
Macro Assembler requires 8K words of main storage for the
macro capability. The symbol table in main storage has been
reduced in size to accommodate approximately 750 words for
the resident macro processor. Assemblies that almost

Introduction 3

The 1800

exhaust the symbol table area of the Assembler will probably
require symbol table overflow sectors for successful
assembly using the Macro Assembler (see the 1130 DM2
Programming and Operator's Guide, Order Number GC26-3717).
The pseudo-operations SET, ANOP, AIF, and AGO (discussed
later) are also available to the 4K 1130 user.

THE 1800

The 1800 MPX Macro Assembler requires a VCORE of 5140 words.
It occupies no more main storage than, and is fully
compatible with, the 1800 MPX Version 1 Assembler.

MACRO ASSEMBLER PERFORMANCE

1f you have a program that has been assembled successfully
under the 1130 Disk Monitor Version 2 Assembler or the 1800
MPX Version 1 Assembler, the performance of the Macro
Assembler will be approximately equal to that of the earlier
Assemblers. Assembly time will be greater for new programs
if the Macro Assembler encounters either a macro definition,
a macro call, or an invalid op code. 1In the case of an
invalid op code, the Macro Processor of the Macro Assembler
will search the temporary macros and/or the specified macro
library to determine whether the unrecognized op code is the
name of a macro.

Macro Update Program

The Macro Update Program assists you in initializing and
maintaining macro libraries. Using this program, you can
add or delete macros from your library, alter those that are
already in your library, physically or logically join two
libraries, and perform other functions necessary to
maintaining macro libraries.

Error Messages, Error Flags, and Warning Flag

During the assembly process, the Macro Assembler checks for
source program errors. If an error is detected, an error
flag or an error code and message are printed. If a
questionable instruction is encountered, it is flagged with
the warning flag (Q). At the end of each assembly, the
Macro Assembler prints a message to indicate the number of
errors and warnings it encountered during that assembly.
Any errors in the Macro Update Program are detected by the
Disk Utility Program (DUP) for the 1130 or the Disk
Management Program (DMP) for the 1800.

4 113071800 Macro Assembler Programming

The Macro Instruction

Defining a Macro Instruction

MAC, SMAC
and MEND

macro name

parameter
name

A macro definition can appear any time after the Macro
Assembler has completed processing the control statements.
The definition must appear before the first call to the
Macro.

The first statement in a macro definition in an assembly
must be the MAC (for a temporary macro) or the SMAC (for a
stored macro) statement. The last statement of a macro
definition must be the MEND statement. The pseudo-op names
MAC, SMAC, and MEND must appear in the op code fields of the
statements.

No label and no operand are required on these statements.
Column 35 of the MAC and SMAC statements can be used to
specify that remarks are retained so that they can be
printed on listings (see "Optional Remarks"). Note that if
you exercise this option, you will need additional disk
space to accommodate these remarks. Comment statements (*
in column 21) within the definition are always retained and
listed within the expansion.

THE DEFINITION PROTOTYPE STATEMENT

The statement immediately following the MAC or SMAC
statement is called the definition prototype statement.

This statement contains the macro name in its op code field.
The macro name may be from one to five characters long. You
cannot use a period, a comma, and a left or right
parenthesis in macro names. A macro name can contain
embedded blanks or can consist of all blanks. An invalid
macro name is flagged as an illegal op code.

If you define a stored macro with a name that is already in
the library named in the *MACLIB statement, it will be
flagged as an invalid macro name. A temporary macro of the
same name will not be flagged; it will be expanded when the
macro is called since the temporary macros are searched
before the stored macros. An apostrophe should not be used
in the name of a stored macro because once this macro has
been stored, it cannot be modified or removed from your
library.

The label and operand fields of the definition prototype
statement contain the names of parameters which are supplied
when the macro is used. A parameter name can be any valid
assembler-language symbol; an invalid parameter name is
flagged as an op code error. You may use an op code as a
parameter, but it must be done carefully because
substitution will occur for all uses of the op code.
Parameter names in the operand field are separated by
commas. Do not include a blank within a parameter name or
between parameters, as a blank terminates the parameter
list. If the label field is blank, it is ignored when the
macro is used. The definition prototype statement must

The Macro Instruction 5

definition

obtaining
a listing

parameter
sub-
stitution

special
characters

consist of one source statement; no continuation is allowed.
A maximum of 20 parameter names is allowed. ”@&

The text of the macro follows the definition prototype

statement and is a sequence of assembler-language

instructions, calls to other macros, and/or pseudo-ops. The

statements in the text may contain the parameter names

specified in the definition prototype statement. During -
assembly, the parameters specified in the call to the macro

are substituted positionally for the corresponding parameter

names in the text statements (see "An Example of Macro

Definition®™). Whenever the Macro Assembler prints macro °
definition prototype statements, five-digit decimal sequence

numbers are printed to the left of each statement.

The list control pseudo-operations (see the 1130 Assembler
Language manual, Order Number GC26-5927, or the 1800
Assembler Language manual, Order Number GC26-5882) can be
used within a macro definition to control the listing of a
macro call. If you use an 1800, you may inhibit printing by
turning sense switch 2 to the ON position.

You can substitute a parameter into any field or subfield of
a text statement in the macro definition. A parameter
substituted into the operand field of a text statement may
be any wvalid assembler-language expression. The number of
characters in the parameter name has no relationship to the
number of characters actually substituted, except in the
case of format and tag fields. Both the parameter name and "%%
the parameter substituted must be exactly one character long
in order for the parameter to be substituted correctly into
the format or tag field. Note that the number of characters
in a parameter on a call may also be significant. For
example, an increase in the number of characters caused by
the substitution of longer parameters during the expansion
may cause the operand field (columns 35-71) to be exceeded.
Any information beyond column 71 will be ignored.

The slash, comma, period, plus sign, minus sign, and
asterisk retain their usual meaning. When a blank occurs in
an operand field (except where permitted by the assembler
language), the rest of the operand field is ignored.

Special characters used in Macro Assembler statements must
conform to the character code summaries as listed in the
1130 Assembler Language manual, Order Number GC26-5927, or
the 1800 Assembler Language manual, Order Number GC26-5882.

AN EXAMPLE OF MACRO DEFINITION

The temporary macro SUM is completely defined by the
following sequence. A definition of the macro SUM is shown
below and the call and statements generated by the call are
shown in the next section.

6 11301800 Macro Assembler Programming

macro
definition

Using a Macro Instruction

calling
a macro

macro call

code
generated

Labet Operation FIT Operands & Remarks
21 25 |27 30| (32]33] |35 40 45 50 55
[MIAI cl S W U S Y Y (N U OO WY U N TN NS W (N NN N S A |
d AIMIE] SIUIMI Xl’ lclolUlNlrl’ 1L1Ilsl r« ? 151 rxolﬁl) I N
P LIDIXI X —lC|0|U|N|rl T TN Y TN N N S SN B Y S N N 8
111 SILIAI 1161 S W T N N SN SN TN N ORI N NN Y N N BN |
NIAIMIEI An 1 L X LlInS:r|+chO|U|N|r| | I T A S N Y T N B
' N Slrlol Slrlolﬂl | NS T S W N [T T RS A N W T T O
1+ MIDIXI X 11 S N VU N S T TS TN I SO TN S W (NN SN U N N |
L1 1 MIDIXI NlAlel TN S S WO TS W NN S T O T SRR N
114 1 MEINxD | IS RS D SO N NS TN TN T N T N TN (N N NS N N A |
VI T | Pt) T IS ISR NS T N TN T TS T T T R R AN RO A |
After a macro has been defined, you call it by using its
name as an op code and specifying in the label and/or
operand field the parameters to be substituted for the
parameter names in the definition prototype statement. The

parameter names must follow the order outlined under “The
Definition Prototype Statement."
omitted (two commas in a row or a trailing comma), it is
ignored when the macro is used.

If a parameter name is

When the Macro Assembler encounters a macro instruction, it
processes the statements in the macro definition text with
the parameters you have specified for substitution.

The assembled instructions are listed along with the macro

call in the assembly listing.

Any statement within a

program that is a result of a macro expansion is flagged
with a plus sign to the left of the label field of the Macro
Assembler listing.

A sample definition of the macro SUM was illustrated in the
Below is an example of a call to that

previous section.

macro, and the code generated by that call.

Labet Operation FIT Operands & Remarks

21 25 27 30 32133 35 40 45 50 55
P T T L1] B OO T T N N T N N W N T W S G (S A I I |
L|0|0JPJ siULMl 2!’ 11£L’ IFIRIOIM' ITIEIMIPI I D M I S A |
[| L101X1 2 -11101 IS W N S U NN U (N T N TN N N SUS SONE W A |
11) 51L14| 1161 | S T W S [N YN T O NN S NGNS M B T |
Llololpl Al 11 L 2 FIR|0|M+11la| F I S T U T S S U B S B |
g1 Slrlol rIElMlPI P W ST WU SN S NN SUOS SN S M NN N N U W 1

P D T MIDIXI 2| 4 I IS YRGS VOO S SN TN TN WO N (N TN TS SN SN NN NN S N N |
11yt MIDIXI Llolol F I I S T VAN W T W SN SN SO N N R T T |
B Y | 11 1 S W S N TN S T T N N S T N . | PR B T |

The

Macro Instruction 7

label
field
parameters

omitting
parameters

Parameters specified in the call to SUM are substituted for
the dummy parameters of the SUM definition prototype
statement. LOOP is substituted for NAME, 2 for X, 10 for
COUNT, FROM for LIST, and TEMP for STOR. ?here's nothing
special about the parameter in the label field of the callg
it's substituted just like any other parameter. 1In fact, it
need not even be used as a label in a macro definition; it
can be used as an op code or an operand. For example, the
macro DIVBY could be defined as follows (note that a while A
appears in the label field of the definition prototype
statement, it is used as an operand in the text of the
macro) :

Label Oparation F Tl Operands & Remarks

21 251 J27 30} [32]}33] |as 40 45 50 55
* TN | Y R SR SR U WG WO TN A TS NS VAN TR TN S S W U WA N N S |
‘| P | l.D.I.VI DIE 8IY| lL IMlAlclﬁlol U N T S UNS TN JUW NS N N S N I T Y
W 11 41 lIlS ory IIDLEIDI IBIYI 181 A S TS NS S0 M NN (N N S U U S A W
!1 11 1 A 1 lALN 0 8 AIR1£| ISIIINI GIL 1E| IWIO|R|D| IV;A JRIIIA lBILlEJ§l
‘1 11 3 111 | MR T S W TS WU NN NN SN S NN N (D TN A [N S T N N N A S|
PR B W B MAAIC| W WUR N N S WA S S SN U0 N S W DA U S N NS 0 N S N A |
An 11 1 DIIIV.IB Y Bl PSS TS N Y T NN SN S S TN VNN S T N TS U SN N [S N
PR L IDl 1 Al 'S W WS S5 N ST S DU VA SN NN TN IO N [N T N N S SN N N
I W | $1R1 r: Insu PR T N WO S TS U T [N U WS NN JN TURN TN (N G N N S S N
111 D £ 11 Bn PURES N NS N (NS WS SN NN U N NN SN S W A U N SN S N |
L1 M‘E .N ID YRR NN S UUS TN YOI SN T N N B N MU NN N T N N S
i1 1t | | N WS NS WO TN W TS W S U (NS AN NN TS N U TS N N SO IS T T W

When you call a macro, you may want to leave out one or more
of the parameters. If the parameter to be left out would
ordinarily be in the label field of the call, just leave it
out. If the parameter would ordinarily appear followed by a
comma in the operand field, leave out the character string
to be substituted, but include the comma that would
ordinarily follow the parameter. If the parameter
ordinarily comes at the end of the operand field, you may
leave it out. If you leave out one or more parameters that
ordinarily come at the end, you may leave out all the commas
that immediately precede them. If you anticipate omitting
parameters that will be parts of AIF or AIFB expressions,
refer to the section "Unspecified Parameter Checking®™ for
restrictions on this operation.

The following examples illustrate the omission of
parameters.

8 1130/1800 Macro Assembler Programming

macro
definition

macro call

code
generated

macro call

code
generated

Label Operation FiT Operands & Remarks

21 25/ 27 30 32]33 35 40 45 50 58
PR N B | MIAICI A1 1 1 32 & ¢ 130913 L1l 1l1iL
PE B | chlsl An 1Ba 2 101 | I T D N W SRR N N N S N U |
11 chl 1 Al ST S S B T I TN O T |

L1 1 chl 2 Bl 11 1t p @ 1 18 3 ¢t 400 3313

1 1 1 chn 1 cl WS W N N N T T N S N S T U Y IS TN N 1
P U B M,E‘NID | WS IO T Y T TS THOE SN W S N N O NS N N NN NN NN NN

The macro DCS generates DC statements. For example:

i &1 .) ¢ B 0 1 1 1 & 1 5 % 3R 1 i 112

11 1 chlsl 1!:121113111111111:1]11-!l

would generate

1 L1 1 1 1 1 1t 1 1 1 1 Lt 1 1 1 1 1 1 1 1 L1 1) |

L1 1 o 101 1 1 DG S S [N T N N T T T U WA NN SN VN S O AN O |
11 1 01 Cn 1 21 S W TS S U IO TN T N N N N N U NS NN NN NN A |
111 Dl Cl s 31 IS B S B B AT T AR |

Omitting parameter B in a call

1t 1 1 111 | TS W WO N T NN TS SN N NS WS U SN NS GNS NNNE NN S N A |

1 a1 chlsl €|' L? 11 10.01a. O SR N S N S SO IS N N S I |
would cause

I3 1) 1t 1) W NS WS N NS T W SN B S SN NN N N T SN T N A

111 chl 1 61 i1 2t 4 3+ ¢+ 1 3 & 5t 1 p K .3 s] B

i1 11 chl 1 S W W W SN N NN TR WU N [SN W N G G N R B |

11 1 DICI 1 11¢1¢1¢| I Y N N S N S B U Y U N I S

to be generated. Note that the operand of the second DC
statement is blank because its associated parameter was
omitted.

You should be extremely careful when omitting parameters
because nothing is substituted for the parameter that is
missing. Consider the following example; in the first call,
the parameter is not missing and the code is generated
properly. In the second call, the second parameter is
missing and the generated code is in error.

The Macro Instruction 9

macro
definition

macro call

code

generated

macro call

code
generated

Label Operation FlT Operands & Remarks
21 25} |27 30} 32|33 |35 40 45 50 55

P11 M:A:cn P TSR VTN N T SN U S TN T S N T W S I .
L:L PO BIAIDIEX AIAI’ |Ban lclcl R T VO U T W WY TN WA N S N U
PR T T | chl | AIAI PR TN N S TNV NN U TN S WS W N U W S | R
I B | chl 1 AlAl+lBlBl*lclcl TR U TS S B U (S W D I U
i1 1 1 chn 1 clcn NI TS S N NN SN U TN T N G N S N | -
P W W | MLEINID [P TEN NN AN T NN VAN VA SN NN TS JA TN (U VO BN WS |
L1 1t 1t 3 FUPEET N S U U TS SN SN U A T S TN S VS S U L
11 111 [S T U NN U VRS VAN VAN WG T S S T IS S U A1
O W | B|A10|EX 1-:|2|:131 PUTUT YT SIS WA T NN N N T N N T B
P W N | chl 1 11 AT T T W ST TN VS S NS GHN S NN N U N T N
L1 oc, ., 1,+2+3, 3 o1 4111
P T W | Dncq s 31 TN NN TN TN A A AN TN TN S N S SO WS T HEE L B
13 1) 113 [P NS (UE 0T T U T DA S T S U I B S L1
L1 [T RSN ST U VAR VAU TN TN H NN T N J D TN N W N
S T T | B|A|0|EX 1-’1’ 131 PR YO T N N VS W N TS NN W S AN TS S S EN I
111 chl 1 1| P SET TET U N A NN VS G NN TN N NN N N U N T D T
11t chn 1 11*1.'.31 P T T M S NS NS Y TN S W [DN TN N W R
[I I W | chl 1 3! SIS T U N TR SO TN S G N N SN N T S N S A
I W I | 1 RTINS TEE NN T WO S N U TN NS N (N I T N W U I

Substituting a Character String for a Parameter

character
string
substitution

You can substitute a character string containing embedded
blanks and special characters (such as commas, periods, or
slashes) for a macro parameter name by enclosing the string
in parentheses. This makes it easy to pass a set of
parameters to a nested macro call. However, you must be
careful in passing character strings to ensure that
parameters do not exceed the record length, as any
information beyond column 71 will be ignored.

Assume in the example given below that SEE is a previously
defined macro with a maximum of three parameters specified
in the operand field. 1If another macro SCAN calls SEE,
parameters may be passed to SEE as shown:

10 1130/1800 Macro Assembler Programming

e

macro
definition

macro call

code
generated

limits

in message
generation

Label Operation FIT Operands & Remarks

21 25| |27 30| [32{33] (35 40 45 50 55
* 111 ! 43101‘4 N ’ MAlclﬁxon lDlE]F.JIINIII rlIIOINl 11 1) § 1
1 MAncn | S N NS N S N S A TS T I A BV N B
11 SICIAIN Dl LSM/INEE T I I I AN I AT
Ly L 101 1 Dl I B NN I A N I A e N
1 1 S‘El El HI SR NS N U N TN T Y TN NN TN N S T N N N NN T
11 MIEINID | I I N N TR N I N SR I
x 111 L) S I I AU IR AR R A SN NN AR B
L1 S|C|A|N rlAnanLl I" 1(?‘:‘41L.Inuv ;V'IA]L|3,)1 11 1
x 121 | S S I ST AN N S AN AR IR A T B
11) LIDl 1 rn‘dnanLlfn L1131 3] I I S I B
11t SIEIEI v‘IAILIII' 1? IV':AlLl.;' | S T S S T W O S A I O
1.1 1 11 | N T T N T T S AN T N T N B U N I

Without this facility the same SCAN macro would have to be
defined as follows in order to generate: the above statement
Sequence. Notice that this second method may be restrictive
in passing parameters, because a definition prototype
statement may have no more than 20 parameters.

Label Operation FlT Operands & Remarks

21 25 27 30 32|33 35 40 45 50 55
*n 11 1 0 1‘9101‘4 N ’ MAlclﬁlol IDIEIFI IINIII TIIIOINI 1 1 1 5 1 3 3
L1 MIAICI | WS S W S T W Y TR Y BN B RN N B
1 S|0141~ Dl'tﬁlnln' l‘jl RS I D WS N T T T N R SN A
11 LIDI I Dl) S I I S B S S N IR N BT S A I
L1 1 SIEIEI Hl)uInln‘jl | I TS T N U G N T S N N AR NS G B
s3] M|£1N|D | HUES W N T S WS N TN T T T N N U BN SN SN TS Y BN
[| 11l SN I BN IS I AR ST A IS S ST I

You can also use character-string substitution to generate
messages. An example of this is given below.

The Macro Instruction 11

macro definition

macro call

code
generated

Labsl Operation FIT Operands & Remarks R

21 26| |27 30| [32]33] |35 40 45 50 55 50 ‘)
*- P ' :stna ! MESISIAIGIEI IMAICARIOI- PSS TN TS N U N NN S D SO TS TORN TS NN S T W -
* T IS| [TIHIE| CHARACTER, WCODE JTYPE 4 oy v 0110
*1 111 7.IEIXIT IS TIHIEI |MlElSlslAlGl£l |rlExx| rl S SIS T N (N U TR WY N G [N S

111 $1MA|C PN NN U TN UG S U W U TN GHN T T M AN S N W N WS NN S W AR

| T Msxan rlnrnflxlrl [T TN S NS U U S0 U T SN NN T S AN VU T N S N WS S S

PR T T | DlMlEls T llsl'l (SRS Y WA U S S T TN VN SN SN TN SN DU S AU TS VHN TN VO IS NS IS -

11 1) D:ans T rlElxl rx ’ IEI SRS TS TN N TN NS NN U TN U U T U N U S S U A

[| ME”:D PO W S5 N U WA UH T U U U (N T M [N D TS TS S I N W) I T N T
*u 1t 1 1 3 [T TIE U T N N MY N U 0 VAT U0 SN TN N SN S S VS N I TS S T e R

PR S B | M‘g'Gn Iln(\IlNl*‘lAanrlpl lcloerlﬁlalLl 1$| rlAlrl |M£-IN1T|)1)

S | DIMEIS 1 'lsxl U TS NN S T AT S S N U S U SRS N TR S TS T W W 1t 1

T OMES 1| I N¥ALID COMNMTROL, \STATE MENT.\E | |

[S| 1t 8 PP Y WS S WA S WO U T WA S TS N S A T WS TS DS D NS S | ST S

s 111 L SR TR ST TS ST SEUS TS N S VR S N A S W S STE S

L1t 1 111 TS NI N T N N WU ST U U TN U R S U T N W (N W AN T EE e

Continuing Calls to Additional Records

place a
character
in col. 32

replacing
consecutive
fields

A call to a macro may be too long to fit on one record, so

the Macro Assembler allows calls to be continued onto one or

more additional records. When you call a macro, you -5
jndicate that there is another record in the call by placing %
any character other than a blank in the format field (column

32). You can then continue the macro call beginning in

column 35 of the next record. The first 31 columns of the

next record are ignored; column 32, if used, specifies

continuation of the call onto still another record.

Note that on continued calls, you must be careful in
substituting parameters that have more characters than those
in the original definition, because you may cause the
operand field to be exceeded on either the CALL record or
any subsequent continuation records. Therefore, some of
your values may be lost (see "Macro Parameter Substitution®
in the section on programming techniques).

When a macro call is continued onto an additional record,
the Macro Assembler will stop its parameter scan of the
first record when either there is a blank (not within
parentheses) in the operand field or the operand extends to
and includes column 71. The next character in your
parameter list is assumed to be in column 35 of the next
record.

to

Using parentheses and continuation records, you can replace
any number of consecutive fields in a macro definition
statement. Look at this example:

12 1130/1800 Macro Assembler Programming

macro
definition

macro call

code
generated

Label Operation FlT Operands & Remarks
21 25 27 30| 32|33 35 40 45 50 55
N '”1‘4. cn 1§ 1 1 W T S O T T T B U N |
PE | 0|N1I10~ Al' 181’ |c | IS AN T AR A I A SN N |
A: 111 L 'DI 1 X,] le 11 ! T S S T T S S S N N NN Y S N O |
T W Bn L1 A1 1 | | I T T S TS R S |
L 1 1 3 Sn T 1 01 cl b W TN N N S SN N A B B TR R R U
| Ma El”la 2 1 IR BN B O N S Y |
111 Lt 9 B BT AN BN AR AT S I T
Here's a call to the ONION macro:
Labs! Operation Flr Operands & Remarks
21 25| 27 30 132} 33 L 40 45 850 i 60 3
111 OINIIIONS 11”141M51 1 |L101 1 11 1] l‘lalolﬁl L l’ulllsaﬁlrn 131 1 0 Ial)l
13 11 11 1 ’ l(|L|0|c| 11 lcloIMlMlEINArl)l NI I SIS NN NN ST
111 11 1 MIETESEEEN IS SEVEN S IS AT AT IR AT IR AT I AT IR I I 1.0 2§ 4 3 3
1 1 _3 11 1 IS SN I S AN ITET S NN IR NS I A | L2 4 3 1 1 & &3 2 3 39
1.1 3 A1 3) SV S TS T B DTN SIS SN AN A WA BN U RN W I S IS W WS SN TV SN N N TR TS N T TN R O |
11 1 1 1 A Lt 1 & 3 903 3 b3 P B I S R | 1t 1 i 1.1 1 1 32 1 1 3
A punch other than a blank (the S in the above example) in

the format field means that the
second record.

The following code is generated

macro call is continued on a

from the above macro call.

Labe! Operation F1T Operands & Remarks

21 25| |27 30] [32/33] |35 40 45 50 58
NAIMIEI Lx”: 1 A.DIDIR, 11 |L101 [nxnylzn 11 1 1
1 1 1 snﬁnrn 8! IS USRS I NN NI Y N NN |

TI | S 1 rl 01 L lol cl 11 1 cl onMMEINIr [I U WS IS IS I I |

PR W 111 | D TS T S T N SN T TN B RN G R N I)

In the macro call, the instruction N

the label. The remaining fields,

the right. The Macro Assembler treats the

AME LD ADDR replaces

LD XYZ, are displaced to

se fields as

remarks because in this example there are two blanks after

ADDR.

The Macro Instruction 13

This page intentionally left blank.

14 1130/1800 Macro Assembler Programming

Macro Assembler Features

Conditional Assembly Pseudo-Operations

definition

format

conditions

AlIF
function

You may want different calls to the same macro to produce
different lines of assembled code, depending on some
condition to be examined during the assembly. Conditional
assembly pseudo-ops allow you to do this. These
pseudo-operations do not generate any executable code and do
not modify the address counter.

Applications which require slight code modifications to a
general technigue need be coded only once using conditional
assembly pseudo-ops within macro calls. This saves time for
the programmer.

AIF, AIFB PSEUDO-OPS

Two conditional-assembly pseudo-ops, the "assemble if" and
"assemble if back" pseudo-ops AIF and AIFB, have the
following format:

e An optional label.
e The op code (AIF, AIFB).

¢ In the operand field, a left parenthesis, an expression,
one or more blanks, a condition, one or more blanks,
another expression, a right parenthesis, a comma, and a
name.

The two expressions can be any valid assembly expressions.
The name should be a valid assembler-language symbol or may
be left blank. It may also be any combination of from one
to five characters if this combination is used in the label
field of one of these pseudo-ops: AIF, AIFB, AGO, AGOB,
ANOP, PURG, LIST, EJCT, HDNG, MEND, END, or SPAC. All
symbols used within AIF or AIFB statement expressions must
have been predefined or the statement will be flagged with a
U (undefined symbol). If the name is left blank, the
statement will be flagged with a warning flag (Q).

The condition must be one of the following:

EQ-Equal to

GT-Greater than

LT-Less than

NE-Not equal to

GE-Greater than or equal to
LE-Less than or equal to

¢

During assembly, the condition statement between the
parentheses is evaluated. If it is true, the AIF statement
causes all the following statements to be skipped (and not
processed) until the Macro Assembler finds a statement with
a label corresponding to the symbol specified in the AIF
statement. If the statement between the parentheses is
false, the assembly continues with the statement immediately

Macro Assembler Features 15

AlIFB
function

if symbol
subfield
is blank

AlF
example

results

following the AIF statement.

anywhere in a assembler-language program.

The AIFB (AIF back) statement functions as the AIF
statement, except that the Macro Assembler returns to the
beginning of the current (innermost within a nest) macro
definition being expanded (called) before searching for a

label.

Unlike the AIF statement, the AIFB statement may

occur within a macro definition only; it is flagged as an
illegal op code if it appears outside of a macro definition.

If the search is unsuccessful, the MEND statement will
terminate the search and the expansion of that macro.

If the name subfield of the AIF or AIFB operand is left
blank and the label search is to be performed, statements

are skipped until the first statement with no label is
encountered, at which time assembly continues.

will be processed and flagged with a Q.

The AIF statement may be used

In any case,
when a label search is performed, the search can continue
until an END statement is encountered; the END statement

If the AIF

statement is in a definition, a MEND statement will
terminate the search.

Let's look at an example of the use of AIF.

Label Operation FlT Operands & Remarks
21 25 27 30 32| 33 35 40 45 50 55
P T Y | Allel (I'Yl+11| IElal IYI}M lslPlololKl L1t 8
L1 1 LIDI 1 L PILIAICIEI | TN WS S WO W N T T T T | Joa 11
11 slrlol L stnonrl T N T U W N S N S B T | 1.1
SlPlololK L104 1 Glﬂnonslrn | TS A T W W S S T B | . |
111 slrlol WIIITICIHI " W N N N T S U | 111 3
L1 11 AnI1F1 (AX|+|1| lElol IYI}I | I S T | 1+ 11
HIOIPIEI Mnauxn 1 11 PRSI N NS UG S T S S BT T T |) T T |
WH|£|£1 MlDle 2 Il TS TN SN D (N WS S NS TS O RN S S S | 1111
111 MIDIXI SIPIOIOIKI) N S T T N VN TN N T W | 111 1
111 [| TS T N S N T W T SN U S T A A | 111 1

The assembly of this code depends on the values of X+1 and Y

when the Macro Assembler evaluates them.
equal, all the instructions shown above are processed.

If they are not
If

they are equal, only the following three instructions are

assembled.

32

33

35 40

Operands & Remaearks
55

50

GlHlolsl rl

d 1

W I, T.CH,

SP00K,

Labet Operation
21 25/ 27 30
S POOK LD |,

L | IS.T0,
L1 1) MIDIXI

1 1 1 1 i

16 1130/1800 Macro Assembler Programming

format

AGO
function

AGOB
function

if symbol
subfield
left blank

Notice that the second AIF has a blank name field. As a
result, the first instruction following this statement with
a blank label field is assembled.

AGO, AGOB PSEUDO-0OPS

Two other instructions are used along with AIF and AIFB to
effect conditional assembly. These pseudo-ops, AGO and
AGOB, cause unconditional branching and have the following
format:

¢ An optional label.

¢ The op code (AGO, AGOB).

e A valid assembler-language symbol or five blanks in the
operand field. If the name field is left blank, the
statement will be flagged with a warning flag (Q).

The name should be a valid assembler-language symbol, or may
be left blank. It may also be any combination of from one
to five characters if this combination is used in the label
field of one of these pseudo-ops: AIF, AIFB, AGO, AGOB,
ANOP, PURG, LIST, EJCT, HDNG, MEND, END, or SPAC.

The AGO statement causes the Macro Assembler to skip (and
not process) statements following the AGO statement until it
encounters a statement with a label corresponding to the
symbol specified in the AGO statement. See the ANOP section
of this manual for an example of the use of the AGO
instruction. The AGO statement may be used anywhere in an
assembler-language program.

The AGOB (AGO back) statement functions as the AGO

statement, except that the Macro Assembler returns to the
beginning of the current (innermost within a nest) macro
definition being expanded before performing the label
search. If the search is unsuccessful, the MEND statement
will terminate the search. Unlike the AGO statement, the
AGOB statement may occur within a macro definition only; it
is flagged as an illegal op code if it appears outside of a
macro definition.

If the operand of the AGO or AGOB statement is left blank
and the label search is to be performed, statements are
skipped until the first statement with no label is
encountered. In any case, when a label search is performed,
the search can continue until an END statement is
encountered. Like the AGOB statement, if the AGO statement
is in a definition, a MEND statement will terminate the
search.

UNSPECIFIED PARAMETER CHECKING

The name searching technique used by the AIF and AGO
pseudo~ops may be utilized in checking for unspecified
parameters.

Assume that the COUNT parameter on the following prototype

statement is a count of how many data words are to be moved
from one area to another.

Macro Assembler Features 17

18

Label Operation FIT Operands & Remarks
21 25| |27 30] |32]33] J3s 40 45 50 55
I T T | ﬁh4£\ [S S I W U [U TOU N THS SNN T N U (N S O W |
I I | Mlol‘y;_b_ FIRLOM_‘J_MMTI 151113 1
T U T | Alelal lotUlNl rn (| 11 | I VD WO S T T T T |
| N R A4MK0J’ T N WS T N N Y T T T N TN TS T O T N T |
X:l [Sﬁirl 1L1 | I N S T O SN A NN N S (N T N NS S T |
I | AK?ML EhEY?-EAh | I T W D D IO TN S T N T T |
CROIAAAT ‘AJ“Chf’ 1191 U NN W A A T N T U OO O T I |
)ﬂ 111 éhE]T. CHOLIAnrll § N S I TN N SN TS WS VO [UE N I S T |
lifkilm/ AJMOJ: I R N T N N N T NN A 1O TS (N U T SN T A A O |
2111 ® | I I S T N N N N W A NN N T S W T N T A |
111 1 ® 1 " I S U W N D T O A S N NI N N N |
L ®La U ST U U T S 0 W T S S T T T T O I O
T U U I ﬂﬁéMLP I TS W SN DO I T N WA S N N NN N AU T
L1 11 11 I N N T N TS NS U N SN T TR U SIS N S N B A

If COUNT is not specified in a call to MOVE, the name search
prompted by the AGO COUNT statement will be terminated on
the ANOP statement that follows immediately, because a blank
was substituted for COUNT and the ANOP has a blank label
field.

If COUNT is specified, the COUNT that is a label on an ANOP
statement will be replaced with the COUNT specified in the
call. Thus, the name search prompted by the AGO COUNT
statement will terminate on the ANOP statement that has
COUNT as a label.

SPECIAL CONSIDERATIONS USING AIFB_AND AGOB

Note that if the AIFB or the AGOB causes a second assembly
of the same code, multiple label definition errors may
occur. It is your responsibility to ensure that the label
to be skipped to is either unique or not entered in the
symbol table, that is, a label on an AIF, AIFB, AGO, AGOB,
SPAC, EJCT, HDNG, LIST, MEND, END, PURG, or ANOP statement.
Also note that with the capability of the AIFB and AGOB, you
can put the Macro Assembler into a loop. This will occur if
the conditions never get changed, thus causing the Macro
Assembler to loop between the AIFB and AGOB statements. The
call below will cause the AIFB expression to be evaluated
always as true (8 LE 20) because the AIFB to A will cause a
branch to the first statement labeled A within the macro.
Thus, the Macro Assembler will loop interminably between

a SET X and the AIFB statement.

1130/1800 Macro Assembler Programming

Label Operation FIT Operands & Remarks

21 25| (27 30] (32]33] |35 40 45 50 55
111 /M:A .cx y I N W W N T Y WY T A NN SR NS N NN Y O 1

0 .yl 1 ‘/40151 Xn IYI’ |z| | U T N T YR W S A 2N BN I I |
A 11 S|E|r| Xl T W I SN N B N B G A |
PR | chl 1 Al J N D W N W I NN A B I T B Y A A
A It 1 $|€r| Al+l Y. I N T T N T U T T RN IR G T N
M A.'IanB (IAI 1L |En lzxju’ nAn | N T S N B NS S TR N |
L1011 MnEnNuo L1 1 1 8 4 1 3 ¢ 4o 1ot R} o33 oL1
* 1 1 11 | ST I N BN A AN I I A AT S A A R |
11 1 ‘/10151 6.,,2,,,2,0. S TS NS N S T T N I |

L1 11 1 ALt | 3 0) 3 1 ¢ %) oot o311 0

ANOP Pseudo-Operation

The purpose of the ANOP pseudo-op is to provide a label
which an AIF, AGO, AIFB, or AGOB can reference to resume
assembling. Assembling an ANOP label has the same effect as
assembling the instruction immediately following it. The

purpose label on an ANOP is not placed in the symbol table, so
statements other than AIF, AGO, AIFB, and AGOB can't use it
as a reference. This is also true of other labels as
discussed previously under "Special Considerations Using
AIFB and AGOB."

The format of the ANOP statement is:

format e A label.
¢ The op code ANOP.

The ANOP pseudo-operation allows you to associate temporary
and permanent labels with the same instruction. Thus, the
temporary label can be used to clarify a conditional
assembly sequence while the permanent label can be used to
clarify the instruction sequence.

The following is an example of a way in which ANOP might be
used. In this example, A is assumed to have been defined
prior to the AIF statement.

Macro Assembler Features 19

Label Operation FlT Operands & Remarks
21 25 27 30 32133 35 40 45 50 55
L1 A:Ian {1'41 |L1r1 |0|}1’|$1K111P111 ' |
ANOP SlEnrlali L101 1 IlNlrlglll 1 PEEE N W (Y S N S A N | [
example ;111 A|G|01 SIK|I|P121 [T TN T B TN B B | '
SIKIIIPII A1N10|P £ 1 1.t 19 RS S0 TN S OO T N T | 111
lelrlal'z L|D| i IIN|r|a|21 1 [T 1O U B N N S | 1.3 1
SIKIIIPIZ A!NIOIP N T T B T | SRR I N N T A N | [
g1 31 snrnan slwlrlclHl 1 L1 101452 8t [
I T | 11 [T NN T U U TN M NN SHN SN B B B 111
When A is less than 0, the generated code is:
PR B [[T T SIS W TS TN T S U TR NS TN N N T S
51517-1011 Lnon 1 I1N1r|0121 [W U T TS N R TR S N NN DA S S e N
PR S | Slrlol Sl”’lrxclﬁn [S EEE TS TS N T T T T A B T T T
when A is greater than or equal to 0, the generated code is:
31 1 1 111 YR S0 U NS U AN VAN U VHN A TN NN DU NS S S N N O S
SlElrlal LIDl 1 Il”nrnarzl S NS TS T T M U S A N T S S N N &
P N T slrlol Slwlrlclﬁl [N U US T NS U N N N N N S S B I
L1 11 111 PEETEET N S U (N N NN TN N S SN N NS N (N S B B B
ANOP is useful when you're using the SET pseudo-op. An
example of this usage is given in the "SET Pseudo-Operation”
section.
SET Pseudo-Operation
SET allows you to assign a value to a symbol and, later in
the assembly, assign another value to the same symbol
without a multiple label definition error resulting. The
symbol retains the value of the last SET statement
purpose associated with it from the first pass of the Macro
Assembler until the Macro Assembler encounters an associated
SET in the second pass. You can't use the EQU statement
this way because the EQU statement is not processed on the
second pass of the Macro Assembler and, consequently, cannot
be used to change the value of a symbol during the assembly.
The format of the SET statement is:
e A label.
format

¢ The op code SET.

e A valid assembler-language expression in the operand
field.

The label is set equal to the value of the expression in the
operand field. Any symbols used within the expression on a
SET statement must have been predefined, or the statement
will be flagged with a U (undefined symbol).

20 1130/1800 Macro Assembler Programming

SET
example

Here's an example of the use of SET. Suppose A is the
starting address of some data to be sent to disk, and B is
the address of the end of the data. Assume we know the data
will take up no more than two sectors and we want to set
SECT equal to the number of sectors. The Macro Assembler
automatically calculates the value of SECT in the following
statement sequence.

Label Operation FIT Operands & Remarks

21 25 127 30| |32[33] |35 40 45 50 55
N; 1 EIOIUI Bl- IAI | T D S T S T TN N Y SN U NN N N A N
Kn P Snb_n rn Nn- 1312101 | N T T T TR RIS T N N N IR T |
111 AlllFl (.K, |LnE| Iol}n IOINIEI [T T N T O |
SEICITI lelTl 21 S NS T T [N S T N Y NN S TN (N R SN N O |
11 1 1 '41610: oll(u T T I BT T B B T NS Y R T Y
olNlEl 1 AlNlolP | S T T T T TS TN N B BN NN TN NN B A A NN O
SEICITI SIEITI 11 AN IR NN N BN A AN BTN S B |
01,(1 11 (n.ex;t i’JSt ruc ﬁON). MR i 3 3 PR N T T S [O A TS Y |
I N B | t 1. 3 l I A1 1 ¢ B ¢ 1 1 3 B 1 3 1} % 3 2111

In the above example, N, the difference between B and A, is
compared to 320 by the AIF instruction. If the difference
is greater than 320, the first SET following the AIF
statement sets SECT to 2. The AGO then causes the assembly
to continue around the next SET and the assembly proceeds.

If the difference (N) is less than or equal to 320, AIF
causes the assembly to continue at ONE. This is equivalent
to a continuation at the second SET following the AIF
statement, since ONE is an ANOP instruction. Notice that it
is impossible to branch directly to the correct SET
instruction, since two SET instructions in the sequence
contain the label SECT. If the AIF statement specified a
branch to SECT, the Macro Assembler would continue
processing with the next statement having SECT in its label
field--in this case, the wrong instruction.

Here's another example of a macro that uses SET.

Label : Operation FiT Opéerands & Remarks

21 25 27 30 32133 35 40 45 50 56

L1 MnAncl I T T T O T TS TS NN S TN WY TN W NN AU N N NN A |

PR I | 7-14131 AQHBU 101) IS TS0 S TS N NS T R SN S N NN U N A |

Xl 11 snf;rn Al T R TS TN N N SN Y NN N (NN U NN W W TUN MK VNG U W 1

NnA |ME| Anlen /le lGlEl 161}11 101Nl) I T N T0S HE N A |

11 1 chl 1 '\,l N T T N N N N T SN SN N T N N N A

X L1y SIEI rn Xl ’131 I S Y T T T W N Y TN W N NS AN T M I |

L1 1t AIGIOIB NIA -'w.El O NS TN OO S B [SN N W NS N N TG N
oN MEND

11 1 11 A1))) R 3 o3 s 1 % 1 % 2) % 33 3 1 B

Macro Assembler Features 21

Given variables A and B, the TAB macro defines a constant
equal to A times B. It next defines a constant equal to
this product times B. It continues this way until the
result reaches a specified value, C. Note that if A and B
are equal, TAB builds a table of powers of B.

PURG Pseudo-Operation

The PURG pseudo-operation removes the specified macro name
from the macro library associated with the assembly by the
#MACLIB control statement. PURG causes operations to occur

purpose only on the library associated with the *MACLIB control
statement; it does not affect any other library even if it
has been concatenated to the associated library (see MUP
section on "Joining Macro Libraries Logically™).

You can then define another macro with the same name, but

the space occupied by the purged macro isn't available for
reuse until the next DMP/DUP macro update job is performed
on the library (see "Macro Update Program"). The space is
reclaimed by any macro update function run on that library.

The format of the PURG statement is:

e Optional label (can be used as a target for pseudo-ops).
format ¢ Op code PURG.
s Macro name in the operand field.

The macro name must be enclosed in apostrophes (the first
apostrophe must be in column 35). If the macro name is not
properly formatted, is missing, or cannot be found, the PURG
statement will be flagged with a warning flag (Q) and the
PURG operation will not be performed.

Automatic Name Generation

If your macro definition contains a label that isn't a
parameter of the macro, and if you call the macro more than
once in a given assembly, you'll get a multiple-definition

purpose error for that label. You can get around this problem by
making all labels used in macros parameters of the macros,
but then you have to supply all the labels every time you
call a macro. An easier method to use is automatic name
generation.

Instead of writing out a complete label in the macro
definition, you write from one to four alphameric
use an characters, the first of which must be alphabetic, followed
apostrophe by an apostrophe. Each time a macro is called in a given
assembly, the Macro Assembler replaces the apostrophe with a
number--a different number each time.

generates The number of digits added to your label always causes a

a five five character label to be generated. For example, repeated

character uses of the label P' result in the labels P0001, P0002,

label P0003, and so on. Repeated uses of the label PAM' result in
PAMO1, PAM02, PAMO3, and so on.

problems The digits inserted into your label by the above method are

in nested determined by a counter maintained by the Macro Assembler.

macros When the Macro Assembler encounters a macro that utilizes

the automatic name generation feature, the counter is

22 113071800 Macro Assembler Programming

!

MAC 1 . .
incremented by one and remains at that value until the

MAC2 ___ expansion of that macro is complete. This causes a problem
MAC3 When other macro calls are included in the first macro (that
is, the nesting of macros) and one of them is called twice.
MAC3 in the diagram at the left is called twice within the
nest. If MAC3 contains labels in the form of letters
followed by an apostrophe, the same set of labels will be
MAC 3 generated twice because the counter is not incremented until
MAC1 is completed.

The way around this problem is to place an apostrophe before
the characters in the label. The Macro Assembler replaces
this apostrophe with a different alphabetic character

use an (beginning with A) each time a macro is called within
apostrophe a given nest. Thus, if the label *RAB is used in a macro
before and the macro is called four times in the same nest, the

labels generated are ARAB, BRAB, CRAB, and DRAB.

You can use apostrophes at both the beginning and the end of
a label; in fact, this is the simplest way of ensuring that

begin and you don't get multiply-defined labels. The label 'C' can
end with result in labels from AC001 through TC999 (T rather than 2%
apostrophe because only 20 levels of macro nesting are allowed). The

label °*SPY’ can result in labels from ASPY1 through TSPY9.

Note that if you alternately call macros with automatic name
generation, the numbers of the generated labels will also
alternate. For example, if you call two macros alternately
and the first has a label C' and the second has a label D',
the resulting labels would be C0001, D0002, C0003, DOOO4,
and so on.

The Macro Assembler also automatically generates labels in
the remarks field (not on comment records) of
assembler-language statements. For this reason, you must be
careful when using apostrophes within a remark.

Concatenation

By concatenating two parts of a field, you can join a
parameter to a character string, two parameters, or two
character strings. You can use either a period or an
ampersand as a concatenator. The ampersand functions as a

period or concatenator only if it appears as the first character in a

ampersand parameter of a definition prototype statement. Otherwise,
it functions as a plus operator. 1If you use the ampersand
as a concatenator, you may use six characters, including the
ampersand, for the parameter name.

period The following example shows several uses of period
example concatenation.

Macro Assembler Features 23

Labet Operation FIT Operands & Remarks
21 25| |27 30f [32]33{ |35 40 45 50 55
L1 1 1 MJAICI | VS W S U D N TS T W | ' U D S T T |
NnA.M 1 MIOIVIE Al’l I’ICI’INI'IMI’IUI 1 [I T T
PR I N | LIDIXI N A’l IR U N N W SN T N A | PUR W NS I W O |
macro X-' ,NA,M L101 . IA LN AIBI' |cl TS U G T S A | y o111
definition L1 ST,.B LW 18B,..€C 1.1, .1 L1111
P W | MJDIXI N -IUI L1 1 &1 PR | T S T T S B
11 11 annxn Xn'.N.AIMI | I S O | PO I N U I 2
11)t M|E|N|D | W T N WO NN N S T B B | S I N T W I |
O N | 11 i P YR S T N T NN N SN N B | [N N T B U B
Using the above definition with the macro calls below, the
code following the calls would be generated.
Labail Operation FiT Operands & Remarks
21 25| |27 30| J32i33] I35 40 45 50 55
‘n 11 a1 [N W NS S N N B S B N | ' T
*l L1 1 ’1M0|VE, MAICIRIOI 1clA|L|L| [[1 N S W A |
*1 11 1 [| N TS WO T NS T N VU W B | TEE T S T I i
macro call FlIlﬁlsl MIOIVIE ? lol' 12151' lIl' 151 ’ 1'tl 1 'EE I I T I T I
111 1 LIDIXI 1 51 IR T N N U T N T SO S| TN [T U T A B
code XIFIIIRIS LlDl 1 L|L AIB|2|S| JEE W T T NS U 1 411 11 &
generated I . . § Slrlol L1 81812151 [T T U I y 21131 1
PR W | MIDIXI L -III U B U S N I B I I T W T I
I T | Moxxu 'YnFnInﬁlsl 1 1+ ¢ 1 11 I S O T U S |
macro cali AIBILIEI MIOIVIE D,,.0, |L11u13n|1181n [I B
1151 Lnonxn 3 1|8| [E N S N W S U B I | TE S N T I T
code XIAIBILIE LIDIDA L3 AIBIL 111 PEE TS TS T A B A | [T S I
generated N | sn 7'10 1 L3 BlB]L 111 PO Y T N N S I R N T T I
111 Mann 3 —12| [EEE U TN N BON S AT B ' B B |
[T S | MIDIXI XIAIBILIEI | M S U U N N | i 0.1 1 1 1 8
S T N | P I | | YT T IS S S N S S N N | [HE D U U U B |
Notice that in the above examples, parameter substitution
does not occur for A and B in the names A2.C and BB.C. You
need to be careful when you are using any op code as a
parameter, because substitution will occur for all uses of
that op code.
The following examples show several ways in which the
ampersand ampersand can be used as a concatenator. Notice in the
example second example that the B in the macro definition is not
preceded by an ampersand and, therefore, the B is a
parameter, but the &B is not.
24 1130/1800 Macro Assembler Programming

example 1
macro

definition

macro cail

code generated

example 2

macro

definition

macro call

code generated

Label Operation FIT Operands & Remarks

21 25 27 30 32| 33| 35 40 45 50 55
P T T | MIAICI) I TN A TN T NN TN T N T TN TN TN WO MY W N N G NN |

PR | MO?‘;E! aan I O T U T T N N S SRS B S IS I |

[S | L 101 1 Alan N TS S S T W T Y NN N T TN N T NN AN O |
L1 1 Slrlol Blanac L1 81 ¢ 1 & 8 ¢ g3 1§ 3 1113

L1 3 MIEINID S T IR0 S U SN O T TN W N T N MYV N NS NN TN A

x 11 11) I TN U U T TN T TN T N T TN N W (N T T A |
| 1017151 lelzl S N N T I I N N T S B B |
111 LIDI 1 Alxlylzl I S TS T T (S TN O S O SO N T T |

11 11 31 rlou annynzl N W I T U SN N N T B N T S B A |
*1 [L4 | IS T W DS W N S U N NN BN S B N GO S BT |
1t 1) MIAICI WS [N T U U NS TN N U T (N T N SN N N Y A A |
1111 MIOI.V’]E 2 Bl S TS T T NS N TR TN NS T O T T S N Y |
11 1) LIDI L Alalel IS S S T T TN T A T N N N N A I |
1t) Snrnon Blalal I T T SN IS T N SO T S S N S N O A |
111 Mné-nmna S Y U S R N0 TN TS TR SIS WY U S NOT A N Y |
*1 11 1 1 1 { N TN N NS TN U TN NN N T N U N SN TN N N R A |
[T | MIOIVIEZ lelzl) NS S WU N U R T T TN N T SN S TR S A 1

| S T N | LIDI 2 Alalxlylzl | I TS T ST N TS TS NN N N S ST S S |
L1 1 sn 7-101 XI ynz|a|'\:l ylzl | DU S IS I T U BT N T S S |
L1 L1 1 | WS T U T T (N TR T S N I T T T N B SR I |

Because a period is used frequently as a decimal point when
writing DEC and XFIC statements, the Macro Assembler
inhibits period concatenation when writing these statements.
The ampersand concatenation feature may still be used.

Optional Remarks

retaining
remarks

parameters
in remarks

When you define a macro, you specify whether or not you want
remarks on the macro definition statements to be reproduced
each time the macro is expanded. 1If you want to keep the
remarks, place any nonblank character in column 35 of the
MAC or SMAC statement. The disk space required for the
macro is increased according to the amount of space required
for your remarks. Comment statements within the definition
are always retained and listed within the expansion.

If parameters occur in remarks, parameter substitution is
performed for the remarks also. This substitution includes
automatically-generated names. The Macro Assembler also
substitutes parameters into comments statements (asterisk in
column 21), but it does not substitute
automatically-generated names into comments statements. On
such statements, the apostrophe is treated like any other
character.

All records are truncated following column 71 of the record,
and no error indication is given.

Macro Assembler Features 25

Indirect Parameter Substitution

use a
semicolon

deter-
mining
position

syntax
errors

examples

macro
definition

macro call

code generated

macro call

code
generated

The indirect parameter substitution feature allows you to
substitute one parameter for another when a macro is
expanded. You do this by specifying a semicolon followed by
any valid assembler-language expression, instead of the
parameter you wish to replace, in the macro call.

The value of this expression is evaluated by the Macro
Assembler and is considered to be the position of the
replacement parameter in this macro call. For example, if
the expression is evaluated as 3, the parameter in the third
position is the replacement parameter. Remember, in
determining the position of the replacement parameter, the
label field of the call is the first parameter.

The position number and semicolon are counted as one
parameter. If the replacement parameter position referenced
is not specified in the macro call, an empty parameter is
substituted. An indirectly-specified parameter may select
as many as 19 other indirectly-specified parameters. If
this 1limit is exceeded, an empty parameter is substituted,
and the macro call is flagged with a syntax error indicator.
Processing continues with the next statement.

If a symbol within a parameter substitution specification is
not defined before its use, the substituted expression is
evaluated as zero, the referenced parameter is evaluated as
a blank parameter, and processing continues.

The following examples demonstrate the use of indirect
parameter substitution.

Label Operation FlT Operands & Remarks

21 25 |27 30| |32/33] |35 40 45 50 55
PR W T | MIAICI U S TR NS WS NN NN TN VU T N TR AN T S SN OO N T W | L1
Lnoxcn i Bnﬁnrna ALJ_ S WS S N T WO TN N U NS NS SN B N T Y N S | 11
Llolcl 1 Blslcl L Al U WO NS TS TN Y SN S NS SN S TS WY TN (N U B W | Pl
i1 1. Mn£|~10 [N RS T WS A U (S NN N NN N TN WS BN N S T A S N | L1
*l 11 1 11 [MR T N N TN SN T SN SN NS NN SN SO S [N N W | L1
Dy BRTE ;4,L0C01,L0C2,L0€63 | 4,
O W | Blslcl L Llolclzl U (N S N N N JUUK TS NN T A T S A T T | 1
* P11 [W SR NS NS NN NN NN TN TR WA NN NN NN SN Vi Y S TS T S TN S
‘1 1 1 L i PURETIRE VN T T WS SN S T TS WU N N JUN N NS T TN N N | L1
An L1 1 Sn£¢ rl 1: 'S W T SN WA Y VHN SN TS GO NN S RO G N NG N T S | L1
NAME, B8RT B ;. A+ 3, L0012, ;,A+,5, L,0C2,,L,0C3
NIA 1ME| Blslct L Llonc|3n PR W O T N N S NN N S S TSN N S T |
[I | 111 PSRN RN NEE N U (S NG TS N S NN NN N (A SN NS VOO B DO N | [

In a nested macro call, if the symbol following the
semicolon is a parameter of the outer macro, the parameter
must be concatenated to the semicolon for recognition by the
Macro Assembler. (Concatenation was described previously
under "Concatenation.”)

26 113071800 Macro Assembler Programming

Division Operator

a slash

preceded
by a term

The Macro Assembler interprets any slash in the operand
field as a division operator, unless it can be interpreted
as a hexadecimal number indicator. A hexadecimal constant
is indicated by a slash in column 35. A slash preceded by
an operator is interpeted as the hexadecimal indicator. A
slash preceded by a term is interpreted as a division
operator. A division operator may be immediately followed
by a + or - to indicate whether the divisor is positive or
negative. If no + or - follows the division operator, the
divisor is assumed to be positive. A division operator
followed immediately by a multiplication operator is flagged
as a syntax error (S). Division by the internal address
register (IAR) is allowed in an absolute assembly; in a
relocatable assembly, it is flagged as a relocation error
(R).

Each division operation within each term is performed from
left to right. The 16-bit quotient is the result of a
division operation; the remainder is lost.

The Macro Assembler performs all operations in an expression
algebraically. For example:

(1) 3+42%4/2 = 7 (2) 5%2/349/-3 = 0

In example 1 the entire term 2*4/2 is evaluated from left to
right before it is combined with 3. 1In example 2 the term
5%2/3 is evaluated (left to right) first. Then the term
9/-3 is evaluated and combined with the first term. Note
that since the result of a division is always an integer
with the remainder ignored, the first term in example 2 if
written as 2/3%5 would be evaluated as 0 but 3 would result
when the term is written as 5%2/3.

Note that division by zero results in a zero quotient and a
warning flag. A relocation error flag (R) will be issued if
either the dividend or divisor is relocatable. If two
consecutive division operators are found in a single term,
the term will be replaced by zero. For example, 27/9/3 will
not be correctly evaluated and will be replaced by zero; the
statement in which it occurred will be flagged as a syntax
error (S).

Symbolic Tag Field

purpose

inSET
pseudo-ops

If you wish to change an index register designation once you
have coded that portion of your program, you can do this by
using the symbolic tag field feature. You specify the tag
field with a one-character symbol which is defined in the
assembly by means of an EQU or SET statement (see the 1130
Assembler Language manual, Order Number GC26-5927 or the
1800 Assembler Language manual, Order Number GC26-5882).

You may change the value of the tag symbol dynamically when
using the SET pseudo-operation to define the tag field. The
tag symbol retains the value of the last SET statement
associated with it from the first pass of the Macro
Assembler until the Macro Assembler encounters an associated
SET statement in the second pass. The EQU statement is not
read on the second pass of the Macro Assembler and,

Macro Assembler Features 27

example

source
statements
{as on listing)

code listed as
if these were
the source
statements

consequently, cannot be used to change the value of the tag

symbol during assembly.

The following example illustrates use of the symbolic tag
field in instructions and the code generated by those

instructions.
Label Operation F|T Operands & Remarks
21 25 27 30 32|33 35 40 45 50 55
Au [| SIE-lrl by SER YU EIT I NI U U0 S TN A G A U S T SN T W
P11 8 LlDle Al 15 3 o vt s 1 e byt b
L|0|01P11 LIDI ! LA TlAnlelln 'O U N W Y WA S SN NN S TN N U I
[| slrlol LA rlAlBllel S R T UL U A U AN T WS O S I AN
P11 DX, Al -2, . b v e vy e
L1 1 1 Mlolxl LIOIOIPIII A S U N N NN T NN N NG NN IO T T O
A SlElri 21 'SR VR U U UG TN T G N N SN TS W S T S A S
X 41 11 'UEETER T N U NN Y TN TN MY TN SN N N T O N T I W
A LIDI 1 LA 0: P NN T UK TS N U T A VRN WA A TN T U W S I I N
IS T $|E|T1 -zl [T TR T NS W NN U TN N THN VU M T T S S I B
1111 L«D|X1 b S~ T NP U N TN S T U S T W 1 B
1-10|0|P11 L|Dl 1 L1 rlAlBlLl'zl PR R N (NS TS U N T T T T U N A
[| Slrlol L1 TlAlBllel "I S W TN N WS DO S S N U T O
P T MO X, ¥4 S P SNS R UNS T WO YN U U T T T U G A I
o111 Mlolxl L|0|0|P111 PR WS U T A VO N A N M B A IS S I
Al L1l $|E| T, 21 FEYEN TN N U SN N SN T S N U SO A I N S B
Voo 1 L]D,) L 2 ol I EETIEE N T TN N VA N S NN S N S S S | 11
1111 I PRV TR W U U N TN T NS YU N SN TN A S T A

Programming Techniques

28

The following items should help you in using the Macro

Assembler.

CHECKING FOR BLANK PARAMETERS

It is generally desirabl
defining macros so that

parameter in the call)
blank parameter to the macro can
code or no code to be generated.
the call causes no substitution to occur for the parameter

when the macro is expanded.

examples:

e to simplify macro calls by
parameters (preferably the last

may be optionally omitted.

113071800 Macro Assembler Programming

Passing a
cause a special sequence of
This blank parameter in

consider the following

// J0OB 0l JAN 70 00.504 HRS

// *= EXAMPLE 1 SHOWS HOW A BLANK MACRO PARAMETER SUBSTITUTES
// * WHEN USED IN A MACRD CALL

// ASM SAMPL 01 JAN 70 00.505 HRS

®LIST

*OVERFLOW SECTURS 441

MAC o BEGIN MACRU DEFINITION
APPLE GOOD
00001 DC GOOD*5 CONSTANT DEFINED
MEND END OF MACRO DEFINITION
0000 START EQU ®
*x
* THE FOLLOWING CALL TU APPLE
% CAUSES A SYNTAX ERRUR
X
APPLE MACRO CALL
0000 0 0000 S + ne =5 CONSTANT DEFINED
0001 30 059C98CO EXIT
0004 0000 END START

001 ERROR(S) AND 000 WARNINGI(S) IN ABROVE ASSEMRLY,

D46 'NOLD ON

DMP FUNCTION ABORTED

// * EXAMPLE 2 SHOWS HOW A SET INSTRUCTION CAN BE USED
// * TO BYPASS THE PROBLEM OF SYNTAX ERRORS GENERATED BY
// * BLANK PARAMETRS IN A MACRO CALL

// ASM SAMPL 01 JAN 70 00.511 HRS

*LIST

#UVERFLUW SECTURS 4,1

MAC C BEGIN MACRU DEFINIT JON
APPLE GOnp
00001 $SAPPL SET GOOoD BLANK OPERAND SET Tu 0O
00002 DC $SAPPL*5 CONSTANT DEFINED
MEND END OF MACRO DEFINITION
%
% PASSING A BLANK PARAMETER TO APPLE
x* WILL CAUSE THE VALUE UF ZERO T0 BE
* SUBSTITUTED ~ SEE CALL BELOW
®
0000 0 1000 BEGIN NOP
APPLE MACRU CALL
0000 +$APPL SET BLANK OPERAND SET TU 0O
0001 0 0000 + bC $SAPPL=5 CONSTANT DEFINED
0002 30 059C98CO EXIT
0004 0000 END BEGIN

000 ERROR(S) AND 000 WARNING(S) IN ABUOVE ASSEMBLY.

The SET statement is used in Example 2 to avoid Macro
Assembler errors that can result from passing blank
parameters. Note the use of $ in the label field. Use of
$, @, and # in macro labels may help prevent conflict with
other labels used in the program. These characters may also
be used in conjunction with the automatic name generation
feature.

RESTRICTIONS ON AIF, AIFB, AND SET PSEUDO~OPERATIONS

We have said that symbols used either in the SET operand
field or in the AIF or AIFB expression must have been
defined before the referencing SET, AIF, or AIFB statement
is processed. Since symbols used as above in AIF, AIFB, and
SET are evaluated at the time they are first encountered,
they are flagged with the U error even if the symbols are
defined later in the program. This error flagging has been
implemented to help ensure that code generated by SET, AIF,

Macro Assembler Features 29

or AIFB statements is the code intended by the user. See

Example 3.

// JOB 01 JAN 70 00.517 HRS
// % EXAMPLE 3 ILLUSTRATES THE RESTRICTION ON THE ATIF OPERATION
// % THAT A SYMBOL MUST BE DEFINED PRIOR TO ITS USE IN

// %= THE SET, AIF, DR AIFB DPERATIONS
01 JAN 70 00.517 HRS

// ASM SAMPL
*LIST

*0OVERFLOW SECTORS

0000 O 1000

0001 30 059C
0004 0000

00001
00002
00003
00004
00005

98C0

172

CONT
A
X1T

E
%
#
%
%
B

EGIN

MAC
TABLE
AIF
ANCP
e
SET

C

BEGIN MACRO DEFINITION

(A LE 0)4EXIT EXIT MACRD IF A LE O

/00FO+A
A+1

CONSTANT DEFINEV
INCR A

ATFB (A LE /F)sCONT END TABLE IF A GT 15

MEND

END MACRO DEFINITION

IF A IS NOT DEFINED PRIOR TO THE CALL
TD TABLE, NO TABLE WILL BE GENERATED
SINCE A 1S EVALUATED AS ZERO

NOP
TABLE
AIF
EXIT
END

MACRO CALL

(A LE 0)4EXIT EXIT MACRD IF A LE O

BEGIN

001 ERROR{S) AND 000 WARNING(S} IN ABOVE ASSEMBLY.

LABEL AND BLANK PARAMETER CHECKING USING AGO

The Macro Assembler does not have an explicit method for
However, the AGO and ANOP

character string comparison.
pseudo-operations provide a mean
within and outside of a macro.

// J08B 01 JAN 70 00.525 HRS

//
//
//

3¢ 3 3F

*DELET D

MACRO

DMP FUNCTION COMPLETED

*DFILE

MACRD
WILL RESERVE AT SCTR ADDR

DMP FUNCTION COMPLETED
*MACRO UPDATE
BUILD 'MACRO!

ENDUP

// ASM SAMPL

#*MACLIB MACRO

*LIST

30 11301800 Macro Assembler Programming

00001
00002
00003
00004
00005
00006
00007
00008
00009

s of label checking both
Cconsider Example 4.

EXAMPLE &4 ILLUSTRATES THE USE OF THE AGO AND ANOP OPERATIONS
T0 HANDLE BLANK MACRO PARAMETERS WITHOUT CAUSING ASSEMBLER
ERRORS TO OCCUR

// DUP 01 JAN 70 00.525

038D 0005 #% LIBRARY END ==

0000

LABEL
LABEL

3t

READ

UPDATE COMPLETED

SMAC
DISK
LIBF
AlIF
AIF
ALF
LIST

01 JAN 70 00.531 HRS

C

BEGIN MACRO DEFINITION

FUN1 4ARE14ERR1

DISKN

CALL TO DISKN SUBR

{FUN1 EQ 1),READ TEST FOR READ FUNC
(FUN1 EQ 3),WRITE TEST FOR WRITE FUN
{FUN1 EQ 0),TEST TEST FOR TEST FUNC

ON

ILLEGAL REQUEST

LIST
AGO
ANOP

EXIT

EXIT MACRO

)

)

0000

0001

0002

0003
0004
0005
0006

0008

0009

000A
ooon
000C
000D

000F

00lo0

0011

0012
0013
0014
0015

0017
0019
O01A
0018
015C

00010
00011

00012
00013
00014
00015
0o0lé6
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034

00035
00036

20 04262495

—

OO O -

o]

20

1000

0019

0005
7003
0000
4C80

0426

0000

000D
TOFC
7002
0002

0426

3000

0019

0014
7003
0000
4C80

059C
0140
0100
0140
0000

000 ERRORI{S}

0005

2495

2495

0014

98C0

AND 003 WARNING({S)

+5START

+
+
+
+
+
+

+ 4+ 4+ 4+ o+ 4+

R R RIS

+
+
+
+
+

+

+
>
o)
m
>

+ 4+ 4+ o+

WRITE

TEST

ARE1L

AREA

ERR1

EXIT
START

READ

AREA

TEST

WRITE

BUFFR

ATF
AIF
AlF
ANOP
(5]

AGO
DC

MD X
MDX
BSS
AGO
DISK
LIBF
ATF
AlF

ANUP
DC

AGU
ANOP
DC

AGU

AGO
EXIT
DC
DC
BSS
END

4 1
w43

#-3
EXIT

ERR1

14BUFFR
DISKN

READ FUNC CODE
GU ASSEMBLE I/0 AREA ADDR

WRITE FUNC CODE
GO ASSEMBLE 1/U AREA ADDK

TEST FUNC CODE

IF BLANK,ASM NEXT STMNT
AUTOMATIC TEST 1/0 ALDR
CONT TO TEST BUSY
BYPASS DISK HEADER
AUTOMATIC DISK HEADER
EXIT MACRO

USER SPECIFIED 1/0 ADDR
CONT TO TEST BUSY
EXIT MACRO

I1/0 AREA ADDR

IF BLANK,ASM NEXT STMNT
ERRUOR ENTRY ADDR

BYPASS ERROR SUBR

ENTER HERE ON ERROR
RETURN TO RETRY ODPERATION
EXIT MACRO

ERROR SUBR ADDR

END MACRO DEFINITION
READ SCTR OFF DISK
CALL TO DISKN SUBR

(1 EQ 1},READ TEST FUR READ FUNC

/1000
AREA

BUFFR~1

READ FUNC CODE
GO ASSEMBLE 1/0 AREA ADDR

I/0 AREA ADDR

IF BLANK ASM NEXT STHMNT

x4+ 1
*+3
PR
H#-3
EXIT
0
DISKN

ERROR ENTRY ADDR

BYPASS ERROR SUBR

ENTER HERE ON ERROR
RETURN TO RETRY OPERATION
EXIT MACRO

TEST BUSY

CALL TO DISKN SUBR

(0 EQ 1),READ TEST FUR READ FUNC
(0 EQO 3),WRITE TEST FOR WRITE FUN
{0 EW 0),TEST TEST FUR TEST FUNC

/0000

TEST FUNC CODE

IF BLANK,ASM NEXT STMNT

24D

Sl

%42

2

EXIT
34BUFFR
DISKN

AUTOMATIC TEST 1/0 ADDR
CONT TO TEST BUSY
BYPASS DISK HEADER
AUTOMATIC DISK HEADER
EXIT MACRO

WRITE SCTR TN DISK

CALL TO DISKN SUBR

(3 EO 1),READ TEST FOR READ FUNC
(3 EQ 3),WRITE TEST FOR WRITE FUN

/3000
AREA

BUFFR-1

WRITE FUNC CODE
GO ASSEMBLE 1/0 AREA ADDR

1/0 AREA ADDR

IF BLANKsASM NEXT STMNT

%41
#+3
=3
EXIT

320
/0100
320
START

ERROR ENTRY ADDR

BYPASS ERROR SUBR

ENTER HERE ON ERROR
RETURN TO RETRY OPERATION
EXIT MACRO

WORD COUNT
SCTR 100
ALLOCATE DATA AREA

IN ABOVE ASSEMBLY.

Macro Assembler Features 31

—

Note that if a macro parameter, which may be a character p
string greater than one character, is used in an AIF /ﬁﬁg
statement to check for character values, a syntax flag will :
be generated by such a statement and the value of the

substituted expression will be zero. See Example 5.

// JOB 01 JAN 70 00.552 HRS

// % EXAMPLE 5 ILLUSTRATES PROBLEMS WHICH CAN BE 3
// % ENCOUNTERED WITH CHARACTER STRING COMPARISON

// ASM SAMPL 01 JAN 70 00.552 HRS

®LIST

*QVERFLOW SECTORS 445

MAC C BEGIN MACRC DEFINITION
TEST FUNC
00001 AIF {.FUNC EQ «R)yREAD TEST FOR R
00002 AIF {.FUNC EQ W) WRITE TEST FOR W
00003 LIST ON
00004 * ILLEGAL REQUEST
00005 LIST
00006 AGO EXIT EXIT MACRO
00007 READ DC /1000 READ FUNCTION
00008 AGO EXIT EXIT MACRO
00009 WRITE DC /3000 WRITE FUNCTION
EXIT MEND END MACRO DEFINITION
TEST R GENERATE FUNCTION CODE
+ AIF {.R EQ «R),READ TEST FOR R
0000 O 1000 +READ DC /1000 READ FUNCTION
+ AGO EXIT EXIT MACRO
TEST READ GENERATE ILLFGAL REQUEST
S+ AlF {.READ EQ .R)READ TEST FUR R
S+ AlF {.READ EQ W) WRITE TEST FOR W
+% ILLEGAL REQUEST
. + AGO EXIT EXIT MACRO
0001 30 059C98CO EXIT

0004 0000 END READ fqﬁ%

002 ERROR(S) AND 000 WARNING{S) IN ABOVE ASSEMBLY.

MACRC PARAMETER SUBSTITUTION

——

When special features such as call continuation and indirect
parameter substitution are used in nested macro calls you
must account for such special instances as you code your
macro. 1If, for example, you anticipate that a nested macro
call may be a continued call, you must pass the continuation
indicator and ensure that any parameter string from the
first call is completed on each nested continuation record.
See Example 6. If you wish to pass a symbolic value to a
nested macro call and an indirect substitution expression
and that symbol appears next to the semicolon, you must
concatenate the symbol to the semicolon. See Example 7.

32 113071800 Macro Assembler Programming

// JOB 01 JAN 70 00.561 HRS

// % EXAMPLE 6 ILLUSTRATES THE METHOD FOR HANDL ING CONT INUATIGON OF
// % NESTED MACRO CALLS

// ASM SAMPL 0l JAN 70 00.562 HRS

*LIST

*OVERFLOW SECTORS 4,5

MAC C BEGIN MACRU DEFINIT IUN
ABLE Ay X
00001 AIF (A GT 0),GEN TEST TO GENERATE MSG
00002 AGD END EXIT MACRO
00003 GEN ANOP
00004 MSG X
END MEND END MACRO DEFINITION
MAC BEGIN MACRU DEFINITION
MSG A
00001 EBC A GENERATE EBC MESSAGE
MEND END MACRO DEFINITION
0000 0 1000 BEGIN NOP
0001 30 059C98CO EXIT
ABLE X 1,((.THIS IS MACRO GENERATED MSG NO.
10.))
+ AIF {1 GT 0)yGEN TEST TO GENERATE MSG
+GEN ANOP
+ MSG {+THIS IS MACRO GENERATED MSG NO. 10.)
0003 0022 + EBC «THIS IS MACRO GEMERATED MSG NO. 10.
0014 0000 END BEGIN

000 ERROR{S} AND 000 WARNING({S) IN ABDNVE ASSEMBLY.

// JOB 01 JAN 70 00.571 HRS

// % EXAMPLE 7 ILLUSTRATES A METHOD OF SPECIFYING INDIRECT
// * PARAMETER SUBSTITUTIUN IN NESTED MACRO CALLS

// ASM SAMPL 01 JAN 70 00.571 HRS

*LIST

*0OVERFLOW SECTORS 4,45

MAC C BEGIN MACRO DEFINITION
BEAN A
00001 AIF {A GT 2),B8RANC GENERATE BR IF A GT 2
00002 AGO END EXIT MACRO
00003 BRANC ANOP
00004 BR +AyBR1,yBR248R3 GENERATE BRANCH
END MEND END MACRO DEFINITION
MAC BEGIN MACRO DEFINITION
BR LOCN
00001 BSC L LOCN GENERATE LUNG BRRANCH
;incol. 35 MEND
not listed %
by printer, 0000 0 1000 BEGIN NOP
but present BEAN 3
A + AlF (3 GT 2),BRANC GENERATE BR IF 3 GT 2
in source code +BRANC ANOP
+ BR 3,BR14BR2,4BR3 GENERATE BRANCH
0001 01 4C000003 + ASC L BRI GENERATE LONG HRANCH
0003 30 059C98C0 BR1 EXIT
0006 0000 END BEGIN

000 ERROR(S) AND 000 WARNING{S) IN AHOVE ASSEMHLY.

SAMPLE PROGRAM

The following sample program illustrates three macros:
their definitions, calls to them, and the code generated.

Macro Assembler Features 33

// JOB 01 JAN 70 00.310 HRS

//*®

// % WMACRU ASSEMBLER SAMPLE PROGRAM e
/] *®

// ASK SAMPL 01 JAk 70 00.310 HRS

#LIST

#UVERFLOW SECTUORS 040,41

e e s e 3 o sk ek s s e e s 3 s e e
e 3 3 3 N o 2k e Rk ok R R R

DEFINE A MACRO, 'mOVE'!, DESIGHEDR TU muVE

-2‘: 3 3%

UNSPECIFIED PARAMETER IN A MACRO CALL.
#VKUS IS SET TO O IF THE PARAMETER WAS
UNSPECIFIED. #VKUS IS SET TO 1 IF THE
PARAMETER WAS SPECIFIED

e o o e e e s s
OPPST sk e g A e R Aok e ok R

a move DATA FRUM ONE AREA TO ANUTHEK. *
macro B R T P sk R R 32 52 8 :
MAC .
LABEL MOVE EROM s TO, CNT
01 LIST OFF
00002 AIF (CNT LE 0) nosveEe(2)
00003 LIST
00004 LABEL LDX L1 =CNT INITIALIZE LNOP CAUNTER
macro 00005 LOOP' LD L1 FROM#CNT GET WD TO BE MOVED
definition 00006 STD L1 TO+CNT MOVE IT
00007 MDX 1 1 BUMP MOVE {LNOP) COUNTER
00008 MDX LoOP? LLOP UNTIL MOVE COMPLTED
00009 NOMVE LIST
MEND
s 9 e e e e s e s st st o o e e e e s e otk el e e st sk e R R R
DEFINE A WACRO, 'KSG!, DESIGNED TO SET UP *
a message THE PRINTING OF A WESSAGE VIA A DHES STRNT. *
macro st e Re ek N ek okok s e ek ks ek
MAC
MSG TEXT
00001 DMES 'S TEXT 'E
MEND
e 308 3% 30 sk ol sle 3 sie o ofe e e s sje sfe sfe e e ol sfe e s vl ek ' 3ie 332 she 3je ol sie e sl e e sl s e sie v Aese e e e e g i
DEFINE A MACRO 'VKUS' TO CHECK FOR AN 9
a parameter

checking macro

© g s A 3
R

MAC
VKUS PARAM
00001 AGO PARAM
macro definition 00002 ANOP
00003 #VKUS SET 0
00004 AGO QUIT
00005 PARAM ANOP
00006 #VKUS SET 1
QUIT MEND

ES

3

st e g e e 3 e e o 3 e o i e s ool s sk e e ol ool S e sk g kR R MR
DEFINE TWO MACRDOS, 'DCS?' AND *DCB'y TO

DC--generating GENERATE DC STATEMENTS. ONLY 'DCS' IS

EOEE R R U
L L A

macros REFERENCED BY THE USER, 'DCB' IS CALLED
INTERNALLY BY 'DCS?'.
St s e e ol s sk ool s o 20 e o ol ok sk o el e e e e R e el sk R
MAC
LABEL DCS CNTyAyBsCyDIEsFsGaeHsToJs KoL sMoN,0,4P4Q .
00001 L1sT¢(8) OFF
VKUS 00002 VKUS LABEL
macro call 00003 O3 (#VKUS ED 0) yBLANK
00004 LIST
00005 LABEL EQU * -
00006 BLANK L1ST(8)OFF
) 00007 2 SET CNT
;incol. 35 00008 X SET 3
not listed 00009 RETRN AIF 12 EO D) ,0UIT
by printer, 00010 Des $XsAyBeCyDyEsFeGyHyI 3 JsK gL aMyiNyOsP
00011 X SET X+l ;
but present 00012 I SET z-1 %
in source code 00013 AGOB RETRN
00014 OQUIT LIST
MEND

34 113071800 Macro Assembler Programming

MAC

DCB Y
00001 LIST
00002 DC Y
00003 LIST OFF
MEND

s e e e s s s 3
< e e 3 oy

ABLE LENGTH TABL

1040419293+4+4596,748,9

0000 +TABLE EOQU) DCS macro
0000 0 0000 + DC 0] call
0001 0 0001 + DC 1
0002 0 0002 + DC 2
0003 0 0003 (F)»+ oC 3
0004 0 0004 + DC 4 code
0005 0 0005 + DC 5 generated
0006 0 0006 + DC 6
0007 O 0007 + DC 7
0008 0 0008 + DC 8
0009 0 0009 + DC g J
@o»ocs 5,/1000,/20004/3000,/4000,/5000
Q + AGO DCS macro

000A 0 1000 + DC /1000 call
000B 0 2000 + DC /2000
000C 0 3000 + DC /3000 code
oo0b 0 4000 + DC /4000 ted
000E 0 5000 + DC /5000 genera

: NOW MOVE TABLE TO ANOTHER AREA move macro

START MOVE TABLE,NEW,15 call
OO0OF 00 65C0FFF1 +START LDX L1 ~15
0011 01 C500000F +L00P1 LD L1l TABLE+15
0013 01 D5000028 + STO L1 NEW+15 code
0015 0 7101 + MD X 11 generated
0016 0 TOFA + MDX LOOP1
0017 30 059C98CO EXIT
0019 00OF NEW BSS 15

MSG (:{(THE DATA HAS BEEN MOVED)
0028 001C + DMES 'S THE DATA HAS BEEN MOVEUL 1t
0036 000F END START message code
generated
000 ERROR{S) AND 001 WARNING(S) IN ABOVE ASSEMBLY.
@ The 1 indicates the overflow sector @ All statements resulting from a
necessary to house temporary macro macro expansion are flagged with a
definitions in this assembly. plus in column 20.
¢ . . N .
If CNT is less than or equal to 0, This is a call to DCS with the label NOTES

the definition is not expanded.

@ Sequence numbers of definition
statements are printed for easier visual
perception.

@ The move loop is generated with
your program’s parameters.

This AIF checks the call to the
DCS macro to determine if you want
a label to be associated with the first
DC.

@ You can significantly alter a printed
listing when a macro is called through use
of the LIST pseudo-op.

specified.

@ Note how use of the LIST
pseudo-op caused this expansion to be
printed.

This is a call to DCS without the
label specified.

@ LOOP1 illustrates the automatic
name generation feature of the Macro
Assembler. LOOP1 was named as
LOOP’ in the macro definition.

By using parentheses, the parameter
TEXT (see the MSG definition) is
replaced by a string of characters into
a DMES statement.

Macro Assembler Features

35

This page intentionally left blank.

36 1130/1800 Macro Assembler Programming

Macro Assembler Language

The features of the Macro Assembler permit you to create a
language that can help programmers who are new to your
installation or who don't understand the more detailed
aspects of certain operations. This specialized language
may also be used by programmers who know the operation and
want to simplify their job or who need to interact with
persons other than programmers. Such a specialized language
may also be used to help others learn to write simple
programs for your system.

Consider the following 1800 MPX example.

Mr. Jones is a programmer who works for a sports information
service center and is in charge of all baseball statistics.
He has been assigned the following project in response to a
customer requisition.

SPORTS INFORMATION SERVICE CENTER

programmer: A.B. Jones date submitted: September 7, 1972
date needed: September 10, 1972 customer: 126—-3381-07
Problem:

1. Read a batch of data cards having the following format:
columns 1-20 Player's name
25-28 Number of at-bats
30—-33 Number of singles
35-38 Number of doubles
40—-43 Number of triples
45-48 Number of home-runs

2. Compute the player’s batting average, slugging percentage, and home-run ratio.
3. Print all the information mentioned in 1 and 2.

4. Terminate execution of the program when a data card containing an asterisk {*} in column 1 is read.

Mr. Jones knows that in order to answer this request, he
will have to use some macros from the general purpose
library, use some macros from his own library, and use the
following computations in his solution.

Batting average=number of hits number of times at bat.
For example, if hits=13 and at-bats=64, 13 &+ 64=.203
The batting average would be .203.

Slugging percentage=(number of singles + 2 x number
of doubles + 3 x number of triples + 4 x number
of home runs) <+ number of at-bats.
For example, if at-bats=64, singles=8, doubles=3,
triples=1, and home runs=1, the slugging percentage
would be [8+2(3)+3(1)+4(1)] + 64 or 21 + 64 or .328

Macro Assembler lLanguage 37

Home run ratio=number of at-bats + home runs.
For example, if at-bats=64 and home runs=4, the home
run ratio would be 64 + 4 or 16.

Mr. Jones then looks in the guide to general purpose macros

and determines which ones he wants to use. The guide lists

the macros in a library that have been built by all the

programmers who work with Mr. Jones. These macros are ones :
that are used frequently by the programmers, such as, read a

card and print a line.

The following listing demonstrates how this library of -
macros was created. In this case the library has been named
SYSTM.

/4 JoB 00 JAN 00 00.235 HRS

// DMP 00 JAN 00 00.235 HRS
#DFILE [+ SYSTM 10
WILL RESERVE AT SCTR ADODR 04C0
OMP FUNCTION COMPLETED

=MACRO UPDATE

BUILD 'SYSTM?

NAME LABEL,INPUT,OUTPT

ADD 'DCBIN* 21 27 35
04C0 0005 DCBIN Format: LABEL DCBIN INPUT,OUTPUT
: 80001 LABEL g:“' Dﬁg’;‘ This macro calls the DCBIN subroutine which converts
X ogggg oC tlJu*rl;T a decimal value in § 1BM card-coded characters and 1
00004 #% MACRD END %% sign character to a 16-bit binary word.

ADO *BINDC?

04C0 0019 BINDC

: 2883§ LABEL géLL ?:‘:35 This macro calls the BINDC subroutine which converts
X 0606003 114 OUTPT a 16-bit binary number to its 1BM card-coded decimal =
00004 % MACRO END %= equivalent. R
NAME LABEL yCNTRLyAREAWDCNT

21 27 35
Format: LABEL BINDC INPUT,OUTPUT

ADD 'LLIST® 21 27 35
04L0 002D LL1ST Format: LABEL LLIST CNTRLAREAWDCNT
i ggggé LABEL BE 8 CNTRL = contro! parameter
X 00003 BSS 4 AREA = address of the area to be worked upon
X 00004 DC 0 WDCNT = word count of the 1/0 area .
X 00005 oC CNTRL This macro {"long list’’} generates a nine word 1/0 list
X 0°°°$ e DE AREA which may be used with the various MPX 1/0
X 00007 AREA D WDCNT i
X 00008 BSS WDCNT subroutines.
00009 %= MACRD END »x
NAME LABEL,LIST
ADD *ROCRD! 21 27 35
04C0 0054 RDCRO Format: LABEL RDCRD LIST
X 00001 LABEL CALL CARON LIST = address of the associated 9-word 1/0 list
X 00002 oC LIST This macro, used in conjunction with the LLIST macro
: g%ggz 'i-’[;c t ';IiTz or the SLIST macro which is shown below, catls the
4, .
00005 *+ MACRD END *% CARDN subroutine and also performs a busy test.
ADD PPRINT! 21 27 35
04C0 006F PRINT Format: LABEL PRINT LIST
X 00002 LA et E?QIN LIST = address of thé associated 8-word 1/0 list
X 00003 LD L LIST This macro, used in conjunction with the LLIST or
X 00004 BSC L #-4,2 SLIST macro, calls the PRNTN subroutine and
00005 3 MACRO END #* performs a “"busy’’ test.

NAME LABEL,CNTRL,INPUT,0UTPT,CHRCT

ADD *HOLPR®

04C0 ODBA HOLPR

21 27 35
Format: LABEL HOLPR CNTRL,INPUT,OUTPT,CHRCT

X 00001 LABEL CALL HOLPR
; ggggg z‘é ';;P T CNTRL = 0 if 1053 code is desired; 1 if 1442 is desired
v INPUT = address of the area to be converted

; ggggg g‘é 21.]1:1 OUTPT = address of the area which will contain the

X 00006 MDX 542 converted data

X 00007 A* DC CNTRL CHRCT = number of characters to be converted

X 00008 DC CHRCT This macro calls the HOLPR subroutine which converts
00009 #= MACRO END #= an area from |BM card code {Hollerith) to either

NAME LABELsCNTRL,AREA,LABL1,LABL2

ADD *SLIST?

04CO 00B& SLIST

1443 or 1053 code.

21 27 35
Format: LABEL SLIST CNTRL,AREA,LABL1,LABL2

X 00001 LABEL DC 0 CNTRL = control parameter

x 00002 oc 0 AREA = address of the area to be worked upon

X 00003 Bss 4 LABL1 = label {optional) of the control parameter DC

i ?,%33‘; LABL1 ?,2 gNTRL LABL? = tabe! {optional) of the area parameter DC

X 00006 LABL2 DC AREA This macro ("sho.rt l_ist") is simitar to the LLIST in that
00007 =% MACRO END *»= anine word 1/O list is generated. It is different in that

04CO 00D5 2% LIBRARY END »=»

0000
ENDUP

38 1130/1800 Macro Assembler Programming

UPDATE COMPLETED

the word count and 1/O area are not allocated and, also,
that labels, if desired, may be placed on the control and
area parameter DC statements. The SLIST macro would
probably be used when it is desired at various points in

a program to modify the control and/or area parameters.

He then determines which macros from his library, which he
has named JONES, are required. This library contains macros
that he has written because he finds them useful in his job
of providing baseball statistics.

The following listing demonstrates how his library was

created.

*OFILE o JONES 10
WILL RESERVE AT SCTR ADDR 04CA
DMP FUNCTION COMPLETEO

*MACRD UPDATE

BUILD *JONES®

NAME LABELyFROM,T0,COUNT

AOD 'MDVE?
04CA 0005 MOVE

X 00001 LDX L1 FROM
X 00002 LOX L2 TO

X 00003 LOX 3 COUNT
X 00004 'aA? Lo 10

X 00005 S$T0 20

X 00006 MOX 11

X 00007 MOX 21

X 00008 MDX 3 -1

X 00009 MOX 1A

00010 == MACRO ENO »=
NAME LABEL+X,COUNT,LIST,STORE
ADO tSUM?®

04CA 0034 SUM

X 00001 LABEL LOX X -CDUNT

X 00002 SLA 16

X 00003 B¢ A LX LIST+COUNT
X 00004 STDO L STORE

X 00005 MOX X 1

X 00006 MOX B*

00007 =% MACRD ENO =%
NAME LABEL,AByHITS,BAVG
ADO *BaAt

04CA 0056 BA

X 00001 Lo L HITS
X 00002 M 0!
X 00003 0 L AB
X 00004 STO L BAVG
X 00005 MOX =+1
X o00o0cs6 O oc 1000
00007 *= MACRD END ==
A0D 'COEQU?
04CA 0076 CDEQU
X 00001 CC1 EQuU LABEL+1
X 00002 cCC5 EQU LABEL+5
X 00003 CClO EOQU LABEL+10
X 00004 CCl5 EOQU LABEL+15
X 00005 C(CC20 EQU LABEL+20
X 00006 (CC25 EOQU LABEL+25
X 00007 CC30 EQU LABEL+30
X 00008 CC35 EQU LABEL+35
X 00009 CC40 EQU LABEL+40
X 00010 CC45 EQU LABEL+453
X 00011 CC50 EOQU LABEL+50
X 00012 CC55 EQU LABEL+55
X 00013 CC60 EQU LABEL+60
X 00014 CC65 EQU LABEL465
X 00015 cCC?70 EQU LABEL+70
X 00016 CC75 EQU LABEL+75

00017 =22 MACRD ENO %=
NAME LABEL ¢yNUMBR4BY4PRDO
ADD 'MPY!

04CA OOF9 MPY

X 00001 LABEL LD L NUMBR
X 00002 M ce

X 00003 SLT 16

X 00004 STD L PROD
X 00005 MO X w+]

X 00006 C* ocC BY

00007 =2 MACRD ENO %%
NAME LABEL,AB,HR4RSULT
AQD 'HRATE®

04CA Ol1A HRATE

X 00001 LABEL LD L AB
X 00002 RTE 16
X 00003 SLA 16
X 00004 D L HR
X 00005 STO L RSULT

00006 =+ MACRD END #x

NAME LABEL,TEXT,X

ADD 'MSG1?
04CA 0135 MSGl
X 00001 LABEL DC $Zr-tyy
X 00002 1‘'Y? DMES X TEXT
X 00003 *2? BES 0

00004 == MACRD ENO =%
NAME LABELsTEXT1,TEXT2,X

ADD 'MSG2¢
04CB QOOE MSG2 :
X 00001 LABEL DC 11—y
X 00002 ‘'Y' DMES X TEXT1
X 00003 OMES X TEXT2
X 00004 *2* BES 0

00005 % MACRD ENO %%

21 27 35
Format: LABEL MOVE FROM,TO,COUNT
FROM = address of the data to be transferred
TO = address at which the data will be transferred
COUNT = number of words to be transferred
The MOVE macro transfers a block of data from one
area to another.

21 27 35
Format: LABEL SUM X,COUNT,LIST,STORE
X = index register to be used
COUNT = number of words to add
LIST = address of the first word to be added
STORE = address where the sum shall be placed
The SUM macro calculates the sum of a block of
contiguous words and places the resuit into a word
designated by a STORE parameter.

21 27 35
Format: LABEL BA AB,HITS,BAVG
AB = address of the word which contains the number of
at-bats
HITS = address of the word which contains the number
of hits

BAVG = address where the batting average shall be placed
The BA macro calculates a batting average and places it
into a word designated by the BAVG parameter.

21 27
Format: LABEL CDEQU
The CDEQU macro generates a series of EQU state-
ments tailored for the processing of data cards.
LABEL = address of the word count word which
precedes the buffer into which a data
card will be read
Since EQU statements do not increase the size
{in words)} of a program, it is not wasteful if all of
the labels generated by CDEQU are not used.

21 27 35

Format: LABEL MPY NUMBR,BY,PROD
NUMBR = address of one number to be multiplied
BY = second number {not an address) to be multipliad
PROD = address of the word where the product wili

be stored
The MPY macro multiplies two given numbers and
stores the result into a word designated by the PROD
parameter.

21 T 27 3
Format: LABEL HRATE AB,HR,RSULT
AB = address of the word which contains the number
of at-bats
HR = address of the word which contains the number
of home-runs
RSULT = address where the home-run ratio will be
stored
The HRATE macro calculates a home-run ratio and
places the resuit into a word designated by the RSULT
parameter.

21 Tz B
Format: LABEL MSG1 TEXT,X
TEXT = text, using DMES syntax, of the message
X=0if 1053 mm 1if 1443
The MSG1 macro facilitates the printing of a message.
A word count and DMES statement are generated.

21 27 35
Format: LABEL MSG2 TEXT1,TEXT2,X
The MSG2 macro is the same as the MSG1 macro
except that two DMES statements {for longer mes-
sages) are generated.

Macro Assembler Language 39

NAME LABELCHKsYSTCH,LOC 2 27 35

ADD *CHECK! Format: LABEL CHECK CHK,TSTCH,LOC
« go‘gglwfxsgtff; - CHK = address of the word to be checked
X 00002 EOR A, TSTCH = value of the word against which the check G
X 00003 BSC L LOC,+- is made
X 00004 MDX s+l LOC = “branch to’* address for when the check shows
X 00005 At oC TSTCH the words are equal.

00006 #* MACRO END »* The CHECK macro compares a word against a test

character and branches to LOC if the two words sre

identical.
NAME LABEL,CHARsWITH,START,COUNT
ADD *SPRSS* 21 27 35
04CB 0049 SF“ES OUNT Format: LABEL SPRSS CHARWITH,START,COUNT
; gggg; LABEL Lg: L; ETHM CHAR = the value {character) to be suppressed .
X 00003 A? LD 20 WITH = the value (character) to replace the suppressed
X 00004 EOR B! charecter
’; googgz Egc L g: o2 START = address where supprassion shall begin
X 00007 ST 2 0O COUNT = number of contiguous words to check for
X 00008 Mox 21 suppression
: ggg‘l’g :g: 1 ;} The SPRSS macro is used primarily to suppress leading -
X 00011 MDX ot zeros in a numeric field about to be printad. For
X 00012 B! oc CHAR example, it would fecilitate printing 63 instead of
X 00013 C! oc WITH 000063.
X 00014 O' EQU .
CONCAT PSYSTM® 00015 *4 MACRO ENO =% {This allows Mr. Jones to have all the macros in his
04CB D091 *» LIBRARY END »#%]ﬁbrary available along with the system library, SYSTM.
04C0
ENDUP
UPDATE COMPLETED
Mr. Jones has now selected all the macros he 1s going to
use, and the next step is for him to write the coding. The
following is a list of the source coding Mr. Jones decided
to use. Note that he could have further reduced the coding
by using more complex macros. (In order to aid
understanding, the macros in this sample are not complex;
therefore, the coding required by Mr. Jones is far more
extensive than would be needed in actual applications.)
START PRINT PRLST PRINT FIRST LINE (MES1)
LOX L1 MES2 GET ADORESS OF MES2
STX L1 PRODO SET UP 1/0 AREA PARAMETER
PRINT PRLST PRINT OUTPUT HEADINGS

READ LDX 1 80
STX L1 CDBUF
RDCRO CDLST READ A OATA CARO
CHECK CC1,/4220+END
MOVE CC254WKBUF+244
DCBIN WKBUF,ATBAT
MOVE CC30,WKBUF+2,4
DCBIN WKBUF, SNGLS
MDVE CC35,WKBUF+2+4
DCBIN WKBUF , OBLES
MOVE CC40,WKBUF+244
OCBIN WKBUF 4 TRPLS
MOVE CC45,WKBUF+2+4
DCBIN WKBUF s HOMRS

SuM 1949SNGLS,HITS

BA ATBAT.HITS,BTAVG
HRATE ATBAT,HOMRS +RATI0
MPY DBLESy2,DBLES

MPY TRPLS+3, TRPLS

MPY HOMRS 4y HOMRS

SUM 1449 SNGLSyHITS

BA ATBATHITS,SPCT

BINDC BTAVG WKBUF
MOVE WKBUF+2,CC504+4
8INDC SPCT,WKBUF
MOVE WKBUF+2,CC55 14
8INDC RAT 10, WKBUF
MOVE WKBUF+2,CC60+4
SPRSS /200040+4CC25,3
SPRSS /2000,0,CC30,3
SPRSS /2000¢05CC35,3
SPRSS /2000,0,CC40+3
SPRSS /200040+CC4543
SPRSS /7200040+CC50+1
SPRSS /2000404CC5541
SPRSS /2000,0,CC60+3
HOLPR 14,COBUF+14COBUF+1,80

LOX L1 CDBUF GET ADDRESS OF CDBUF -
STX L1 PROOO SET UP 1/0 AREA PARAMETER
LDX 1 40 PRINT WORO COUNT
STX 1 CDBUF STORE PRINT WDRD COUNT
PRINT PRLST PRINT DATA
BSC L READ BR TO PROCESS NEXT CARD
CDLST LLIST /1000,CDBUF 80 GENERATE CARD I/0 LIST
CDBUF CDEOU GENERAL CARO EQUATES
WKBUF 0C /ADOD

oC /2000 0
BSS 4 WORK AREA FOR DCBIN SUBR b

40 1130/1800 Macro Assembler Programming

ATBAT OC Ll NUMBER OF AT-BATS

SNGLS DC hhnd NUMBER OF SINGLES
DBLES DC LEtd NUMBER OF DOUBLES
TRPLS OC L NUMBER OF TRIPLES
HOMRS DC Lt NUMBER OF HOME RUNS
HITS DOC Lt d NUMBER OF H1TS

BTAVG OC v-2 BATTING AVERAGE

SPCT DC Lt SLUGGING PERCENTAGE
RATIO OC L HUME RUN RATIO

PRLST SLIST /2100, MES1 44 PROOO PRINT 1/0 LI1ST
MESL1 MSGL {9EXECUTE SAMPLE PROGRAM®®'E),1

MES2 MSGZ X (NAME'21SAB*351873S52B'353B'3SHR*)
{*2SBAVG'SSPCT!SHRRTE)+ 1

MES3 MSGL {#s%END OF JOB®9%*'El,1
END LDOX L1 MES3 GET ADDRESS OF MES3
. STX L1 PROOO SET UP 1/0 AREA PARAMETER
PRINT PRLST PRINT END OF JUB MESSAGE
caLL EXIT END EXECUT ION
END START END DF ASSEMBLY

Mr. Jones then submitted the coding punched on cards to his
system operator and requested that the job be performed and
a listing of the operation supplied. The following listing
shows the assembly and execution of his program. (The
explanation of the coding is given to the side of the
listing; the macro instructions are enclosed in rectangles.)

7/ ASM SAMPL 00 JAN 00 00.267 HRS I_
aLIST ros in SY' nd JONE e used in this
*HACLTB JONES) i All macros in SYSTM and JONES may b d
TART PRINT __ PRLST PRINT FIRST LINE ({MES1} 1_38867"b|v-
0000 30 17655805 +START CALL PRNTN
+

0002 1 01D6 o PRLST Print the line **EXECUTE SAMPLE PROGRAM®*,

0003 01 C4000106 + LD L PRLST

0005 01 4C20D003 + BSC L #=4y7 . .

0007 01 650001ED LDX L1 MES? GET ADDRESS OF MES2 Change the print |/0 area parameter to point to the

0009 01 6DOOOLOE STX L1 PROOO. ET UP 1/0 AREA PARAMETER |word count of the next line to be printed.
[_—_F[ﬁmqggg PRINT QUTPUT HEADINGS])

0008 30 17655803 + T NIN Print the second line: NAME AB,18B, etc.

000D 1 0106 + oc PRLST ["Assure that the word count preceding the card input
gg% gi %ggzéﬁ: : Iﬁgc 'I: :E;L.SI buffer is 80. This is not necessary for the first card to
0012 0 6150 READ LDX 1 8O ' be reaq, but is necessary for the reading of all ensuing
0013 01 6DOGUL76 STX L1 CDBUF cards since a 40 will ba stored at CDBUF before
w REAC A OATA CARD rinting a data card.
0015 30 03059115 + ALL CARDN 1P 9
D017 1 0l6L + nC COLST Read a data card into CDBUF.
0018 01 C4000160 + LO L CDLST
0014 01 4200018 + BSC L w-4,1
K 4T20,EN eh R -
eck the card just read for an asterisk in column 1
001C 01 C4000177 + 10 C -l . B
oo}cs o1 F003 + EOR A0001 (*= /42203n IBM card code} and branch to END if
001F 01 4Cls02l6 + BSC L ENOy+- an asterisk is found.
0021 0 7001 + MDX 4] -
0022 0 422V +A0001 DC 14220
0023 01 6500018F L HONE L CC25.WKBUF+2:4 WKBUF and WKBUF+1 contain an 1BM card code
0025 01 660001C9 + LDX L2 WKBUF+2 {Hollerith) plus and zero rexpectively. The four
gg% g 804 + LDX 3 4 columns {25 through 28) for at-bats are moved into
00 +AAQ02 LO 10 he four- i
0025 5 5209 ezt 28 the four-word buffer following WKBUF.
0024 0 7101 + MDX 11 —=
0028 0 7201 + MDX 2 1 Converts the number of at-bats to a 16-bit binary value
gggg g ;3":: : :g: 3 ;:002 J and stores the result into location ATBAT. (See the
[——OCBIN —WKBUFLATBAT] 1800 MPX Subroutine Library manual, Order Number
002E 30 04pC2255 + CALL DCBIN |GC26-3724,for further information on DCBIN.}
0030 1 o01C7 + oc WKBUF
0031 1 olCD + oC ATBAT B
C MOVE CC30,WKBUF+2 44
0032 01 65000194 DX 1.1 CC30
0034 01 660001C9 + LDX L2 WKBUF+2
0036 0 6304 . LOX 3 4
0037 ¢ €100 +AADO3 LD 10
0038 0 0200 + STo 20
0039 0 7101 + MDX :
0038 0 7201 . nox 3 i [Move and convert the four cotumns for singles (30
003B 0 T73FF + MDX 3 -1 uhrouw 33) and store the result into location SNGLS,
003C 0 70FA + MDX AADO3
[OCBIN __ WKBUF,SNGLS]
003D 30 040C2255 '+ TALL BEEIN
003F 1 01C7 + [WKBUF
. 0040 1 DICE + De SNGLS =
[MOVE CC35, WKBUF+ 2 4]
0041 01 65000199 + LDX L1 CC33
0043 01 660001C9 + LOX L2 WKBUF+2
0045 0 6304 + LOX 3 4
0046 0 C100 +AADO4 LD 10
0047 0 0200 + STO 20
- Soes o T M el _[Move and convert the four columns for doubles (36
004A 0 73FF . MDX 3 -1 |through 38) and store the result into location DBI.ES.
004B 0 7OFA + MDX AAQDS
[DCBIN___WKBUF,DBLES]
004C 30 040C2255 + CAIL DCBIN
004E 1 01C7 + DC WKBUF _J
004F 1 OLCF + oc DBLES

Macro Assembler Language #1

_[Move and convert the four columns for triples (40

l_t_hrough 43) and store the result into location TRPLS.

move and convert the four columns for homers {45 -

Lthrough 48) and store the result into location HOMRS.

Compute SNGLE+DBLS+TRPLS+HOMRS and store

|the result into location HITS.

_[Compute the batting average and store the result into

"[location BTAVG.

mpute the home-run ratio and store the result
into location RATIO.

l—l;n preparing for the slugging percentage calculation,
multiply DBLES by 2 and store the result in location

DBLES.

Muitiply TRPLS by 3 and store the result in TRPLS.

Multiply HOMRS by 4 and store the result in HOMRS.

[Compute SNGLS+DBLES+TRPLS+HOMRS and store

[the result into location HITS.

[Compute the slugging percentage and store the result

linto location SPCT.

[Convert the 16-bit binary value for BTAVG {batting
average) to its 1BM card-coded equivalent. Store the

6-word result into location WKBUF. (See 1800 MPX
|Subroutine Library manual, Order Number GC26-3724).

"Move 4 words beginning at WKBUF+2 to words 50-53
of the card buffer. This puts the batting average into

the card buffer which will soon be converted to 1443
|code and printed.

rEOnvan and move the stugging percentage to columns

{ MOVE CC404 WKBUF+2,4]
0050 01 6500019 ¥ TOX L1 CCaa
0052 01 660001C9 + LOX L2 WKBUF+2
0054 0 6304 + LDX 3 4
0055 0 C100 +AAQOS LO 10
0056 0 0200 + STO 20
0057 0 7101 + MOX 11
0058 0 7201 + MDX 2 1
0059 O T73FF + MOX 3 -1
005A O TUFA + MOX AAQDS
C OCBIN _ WKBUF,TRPLS]
005B 30 040C2255 + CALL OCBIN
0050 1 01C7 + oC WKBUF
005E 1 0100 + DC TRPLS —
[———WOVE — CC45,WKBUF+2,4]]
005F 01 650001A3 + T6X LT CCas
0061 01 660001C9 + LOX L2 WKBUF+2
0063 0 6304 + Lox 3 4
0064 0 Cl00 +AAO06 LD 10
0065 0 0200 + STO 20
0066 0 7101 + MDX 11
0067 0 7201 + MOX 21
0068 0 T3FF + MOX 3 -1
0069 0 TOFA + MOX AADO6
006A 30 040C2255 + ALL DCBIN
006C 1 01C7 + oC WKBUF
006D 1 0101 + DC HOMRS
U 1,44 SNGLS,H
006E O 61FC ¥ DX 1 -4
006F 0 1010 + LA 16
0070 01 85000102 +B0O0O7 A L1 SNGLS+4
0072 01 D4000102 + STO L HITS
0074 0 7101 + MDX 11
0075 0 TOFA + MDX B0CO7 -
[BA ATBAT,HITS,BTAVG
0076 01 C4000102 + LD L HIIS
0078 0 A0OS5 + " 00008
0079 01 ACO001CD + D L ATBAT
0078 01 D40001D3 + STO L BTAVG
0070 0 7001 + MDX o+l
007E 0 03E8 +D0008 DC 1000 -
H s HOMRS,RATTD
007F 01 C40001CD + LD L ATBAT
00Bl 0 1800 + RTE 16
0082 0 1010 + SLA 16
0083 01 ACO001D1 + D L HOMRS
0085 01 D40001D5 + STO L RATIO
0087 01 C40001CF ¥ L0 L DBLE
0089 0 A0O4 + M €0009
00BA 0 1090 + SLY 16
0088 01 D40DOLCF + STO L DBLES
008D 0 7001 + MDX s+]
00BE 0 0002 +C0009 DC 2 —
PY R 23, 1R
00BF 01 C4000100 + L0 L TRPLS
0091 0 A004 +] coo10
0092 0 1090 + SLT 16
0093 01 D4000100 + STO L TRPLS
0095 0 7001 + MDX a4]
0096 0 0003 +C0010 DC 3 __
MPY HOMRS 4 HOMR S
0097 01 C4000101 + LD L HOMRS
0099 O A004 + M €0011
009A 0 1090 + SLT 16
0098 Ol D40001D1l + STO L HOMRS
0090 0 7001 + MDX 4]
009E 0 0004 +C0011 DC 4 —J
SUM 1,4, SNGLS,HITS |
009F 0 61FC 3 LDX —
00A0 D 1010 + SLA 16
DOALl 01 850001D2 +B0OO12 A L1 SNGLS+4
00A3 Ol 040001D2 + STO L KITS
00A5 0 7101 + MOX 11
00A6 O TOFA + MDX 80012
[BX ATBAT,HITS,8PCT]]
00A7 01 C4000102 + th t HITS
00A9 O A0O05 + N 00013
00AA 01 ACO001CD + D L ATBAT
00AC Ol L40001D4 + STO L SPCT
O0AE 0 7001 + MDX w4l
OOAF O U3E8 +D0013 DC 1000
[BINOC BTAVG,WKBUF
00BO 30 02255103 + CALL BINDC
00B2 1 01D3 + oC BTAVG
0083 1 01C7 + oc WKBUF I
[MOVE ___ WKBUF+2,CC50+%]
00B4 01 650001C9 + LDX L1 WKBUF+2
00B6 Ol 660001A8 + LDX L2 CC50
00BB O 6304 + LDX 3 4
00B9 0 C100 +AAOL4 LD 10
00BA O 0200 + sToO 20
00BB O 7101 + MOX 11
008C O 7201 + MDX 21
008D 0 73FF + MDX 3 -1
O0BE 0 T7OFA + MDX AAD1S
[__BINDC__SPCT,WKBUF] |
O0BF 30 02255103 + CALL BINDC
00C1 1 01D4& + oC SPCT
00C2 1 01C7 + [+ WKBUF
[MOVE WKBUF+2,CC55,4]
00C3 01 650001C9 + TDX L1 WKBUF+2
00C5 O1 660001AD + LDX L2 CC55
00C7T 0 6304 + LDX 3 4
00CB 0 C100 +AAO15 LD 10
00C9 0 D200 + STO 20
00CA 0 7101 + MDX 11
00CB 0 7201 + MDX 21
00CC 0 T73FF + MDX 3 -1
00CD O TDFA + MDX AAOLS5

42 113071800 Macro Assembler Programming

l§5—58 of the card buffer.

-

OOOOOOOOSOOOO

-

—

3 0000000000000

OO0 COO =i
——

30

[
(3
D1

o~00 ©O0

co

-0 0 (-1 [-N-E-N-R-N-X-N-¥-)

6101
660001 AD
c200
F008
4C200146
coo6
D200
7201
T1FF
T0F7
7002
2000
0000

6103
66000182
cz00
F00B
4C200155
Co06
D200
7201
T1FF
T0F7
7002
2000
0000

08593509
015C
0177
0177
015D
7002
0001
0050

65000176
60D0001DE
6128
6912

17655805
0106

C40D01D6
4C200167
4C000012

0000
0000
0004
0000
1000
o176
0050
0050

A00O
2000
0004
0000
0000
D000
0000
oDoo
0D0o
0D00
0000
D000

00D0
D000
0004
0000
2100
01DF

000D
001A
0000

001F
DO2ZF
000F
0000

| SPRSS__ /2000,0,CC55,]]
+ LoX 11
+ LDX L2 CC55
+40023 LD 20
+ EOR B0023
+ BSC L D0023,Z) . A
+ Lo 0023]_S\Jppress the first character in the slugging percentage
+ sTa 20 Eield if it is & zero.
+ MOX 21
+ MDX 1 -1
+ MOX 40023
+ MOX 00023
+B0023 DC /2000
+€0023 DC o
+D0023 EQU = e
I SPRSS 7200040, CC60,3]
¥ L6X 1 3
+ LDX L2 CC60
+A0024 LD zo
+ EQR BOOZ4
+ D0024,2
+ Egc t cgogb' Suppress the first character in the home-run ratio field.
+ STO 20
+ MDX 21
+ MDX 1 -1
+ MDX A0024
+ MDX 00024
+80024 DC /2000
+C0024 DC 0
+D0024 EQU s —
I HOLPR __1,CDBUF+1,CDBUF+1,80]
¥ TALL HOLPR
+ DC A0025
+ oC CDBUF+1 nvert the 80-word buffer COBUF to 1443 printer
+ ocC CDBUF+1 code.
+ DC A0025+1
+ HOX *+2
+A0025 DC 1
+ oc 80 —J
LDX L1 CDBUF GET ADORESS OF CDBUF Set the print 1/0 area parameter to point to CDBUF
Eg; l-} 23000 35{#"».&33 égﬁ:T““"ETE“ which is from where the next line will be printed.
STX 1 CDBUF STORE PRINT WORD COUNT Also set CDBUF to 40 {print word count).
[PRINT __PRLST] PRINT DATA]
+ CALL PRNTN
+ oc PRLST Print a line of data.
+ LD L PRLST
+ BSC L #—4,1
BSC L _READ BR 10 PROCESS NEXT uﬁ— Branch to process next card.
[CBIST LLIST 71000,CORUF,BO[IGENERATE CARD 1/0 L1sT
+COLST DC 0
+ oc 0
: ggs '6 Generate an 1/0 list designed to read a card. Also,
. bC 71000 create a word count and an aree into which the card
+ oc COBUF llnaybe read.
+CDBUF DC 80
+ BSS 80
[CoBUF CDEOU] l__—1 GENERAL CARD EQUATES
+CC1 EQU CDBUF+1
+CC5 EQU CDBUF+5
+CC10 EQU COBUF+10
+CC15 EQU COBUF+15
+CC20 EQU CDBUF+20
+CC25 EQU COBUF+25
+CC30 EQU CDBUF+30
+CC35 EQU CDBUF+35 [Generate a list of equates designed for data card
+CC40 EQU CLBUF+40 Thandting.
+CC45 EQU CDBUF+45
+CC50 EQU CLBUF+5D
+CC55 EQU CDBUF+55
+CC60 EQU CDBUF+60
+CC65 EQU CDBUF+65
+CC70 EQU CDBUF+70
+CCT5 EQU COBUF+75 |
WKBUF 32 ;gggg — Word area for DCBIN and BINDC manipulations.
BSS 4 WORK AREA FOR DCBIN SUBR
ATBAT DC =3 NUMBER OF AT~BATS
SNGLS DC L] NUMBER OF SINGLES
DBLES DC £ NUMBER OF DOUBLES
TRPLS DC sk NUMBER OF TRIPLES
HOMRS DC g NUMBER OF HOME RUNS
HITS DC st NUMBER OF HITS General work area.
BTAVG DC et BATTING AVERAGE
SPCT OUC L SLUGGING PERCENTAGE
RATIO DC =% HOME RUN RATIO —
’:gls; o 1 5 00, NES1,,PROO PRINT 1/0 LIST] Generate an 1/0 iist for printing which contains the
. oc o desired control parameter and an area parameter
+ BSS 4 pointing to the first printed line. Place a label on the
+ DC 1} area parameter word as it will be changed during
+ oc /2100 execution,
+PRO0OD DC MES1 —
|3 M 3 EXECU [ROGRAM¥% ¢
,,.E’Zi D(S;Gl ‘mzé_"f,ibs“ LE PROGRA vy G the word count and message of the first line
+AY026 OMES 1 #%EXECUTE SAMPLE PROGRAM®=iE 10 be printed.
+AZ026 BES 0 -)
| MES2 MSGZ X (NAME'21SAR'3S1B'352B° 3538 3SHRY i}l
(12SBAVG?SSPCTISHRR1E},)
+MES2 DC AZ027-AY¥027 Generate the word count and message of the second
+AY027 DMES 1 NAME?21SAB'3S51B'352B*353B735HR' line to be printed.
+ DMES 1 "2SBAVG?SSPCT*SHRR'E
+A7027 BES 0 _

Macro Assembler Language

43

O00CE
oovo
0001

0002
0004
0006
oov7
0008
0009
00DA
000B
oodC

000D
000E
OCED
00E1
OOE2
OOE4
0DES5
O0E 6
OOE?
OOE8
00E9
00EA
OOEB
00EC

00EC
QOED
OOEF
00FO
0O0F1)
00F3
00F4
OOF5
00F6
00F7
OOF8
00F 9
O0FA
OOFB

OOFB
00FC
OOFE
OOFF

0100
0102

0103
0104
0105
0106
0107
V108

0109
0104

0loa
010R
0100
010E
010F
0l11
o112
0113
0l14
0115
0116
0117
0118
0119

0119
0114
011C
0110
Ol1E
0120
ol21
0122
oi23
0124
0125
0126
o127
o128

0128
0129
0128
o12C
0120
012F
0130
0131
0132
0133
0134
0135
0136
0137

44

—

01
01

coococooQ

1

cccccocceoceccecC

—

-

CooP9cCocoocco0Q

-

-

cOCo0COoOQCOCOCOoOOoO

-

-

CoococoocoOOoCoOQ

-

-

OCO0DCOOOCOCOOORO

—-

—-

o0oO0cococoooOOC @

Eonvert and move the home-run ratio to columns

~ |60-63 of the card buffer.

Suppress leading zeros to facilitate an easy-to-read
printout by replacing all ieading zeros {/2000 in card

code) with blanks (0 in card code}). Do this for the
at-bat field.

Suppress leading zeros in the singles field.

Suppress leading zeros in the doubles field.

Suppress leading zeros in the triples field.

Suppress leading zeros in the home-runs field.

BINDC RATI0, WKBUF]
02255103 + CALT RINDC
01bs + ve RATI0
01C7 + oc WKBUF
— MOVE WKBUF+2,CC60,4 |
650001C9 + LOX LI WKBUF+2
66000182 + LLUX L2 €C60
6304 + LOX 3 4
c100 +AAOL6 LD 10
0200 + sTo 20
7101 + MDX 11
7201 + MOX 2 1
T3FF + MDX 3 -]
T0FA + MDX AAQD16 —
SPRSS 72000,0,CC25,3]
6103 ¥ DX 1 3
6600018F + LOX L2 cC25
c2o00 +A0017 LO [
FOO8 + EOR B0OO17
4C20V0EC + BSC L 00017,2
coo6 + LO coo17
0200 + ST0O 20
7201 + MDX 21
T1FF + MDX 1 -]
70F7 + MOX AQOO17
7002 + MO X Doo017
2000 +B0017 OC /2000
0000 +C0017 OC 0
+D0017 EQU ® —
SPRSS ~ /2000,+0,CC30,3
6103 - x 13
66000194 + LOX t2 CcC30
€200 +A0018 LO 0
Fo08 + EOR BOO18
4C2000FB + 8SC L DOO018,2Z
€006 + LD coo018
0200 + ST 20
7201 + MDX 21
T1FF + MOX 1 ~]
T0F7 + MO X A0018
7002 + MOX 00018
2000 +B0018 OC /2000
0000 +C0018 OC o J
+00018 EQU =
SPRSS 72000,0,CC35,3
6103 ¥ I0X 1 3
66000199 + LDX L2 CC35
c200 +AD019 LD 20
Fous + EOR BOO19
4C20010A + BSC L 00019,
co06 + LD c0019
0200 + STO 20
7201 + MDX 21
T1FF . MOX 1 -1
T0F7 + MO X A0019
7002 + MOX 00019
2000 +B0019 OC /2000
0000 +C0019 DC 0
+D0019 EQU = —
C SPRSS /2000,0,CC4Q,3]
6103 * DX 1
6600019 + LOX L2 CC40
€200 +A0020 LD 20
FOO0B + EOR B0020
4C200119 + BSC L D00D20,2
€006 + LD coo20
D200 + STO 2 0
7201 + MOX 21
T1FF + MOX 1 -1
70F7 + MO X A0020
7002 + MDX 00020
2000 +B0020 0OC /2000
0000 +C0020 OC 0
+D0020 _EQU ® —
[SPRSS /2000,0,CC45,3]
6103 ¥ LOX 3
660001A3 + LDX L2 CC45
€200 +A0D21 LD 20
FOO08 + EOR 30021
4C200128 + BSC L 00021,2
€006 + LD €0021
0200 + STO 20
7201 + MOX 21
T1FF + MOX 1 -1
70F7 + MDX A0D21
7002 + MDX 00021
2000 +B0021 OC /2000
0000 +C0021 DC 0
+D002} EQU = —
SPRSS _ /2000,0,CC50,1
6101 ¥ oX 1
660001AB + LDX L2 CC50
€200 +A0022 LD 20
FOOB + EOR B0022
4C200137 + BSC L D0022,1
Co06 + LD coo22
D200 + STO 20
7201 + MDX 2 1
T1FF + MO X 1 -1
T0F7 + MD X A0022
7002 + MOX 00022
2000 +B0022 OC /2000
0000 +C0022 DC 0
+D0022 EQU = —

uppress the first character in the batting average field
since batting averages are always written with 3 digits ,

{The first character will always be zero.) -

113071800 Macro Assembler Programming

[MES3 MSG1 (e%END OF JOB==%1Els1])
020n 0 0008 +MES3 DC AL028~AY078 Generate the word count and message of the last line
020E 0010 +AY028 OMES 1 =¢xEND OF JOBx#3'E 10 be printed.

0216 0000 +A2028 BES 0 SE1 ADDRESS GF HESS
65000200 [ENO _LOX L1 MES3] J R R i
8§}§ g} sgooome STX L1 PROOO SET UP 1/0 AREA PARAMETER | _|Change the print 1/0 area parameter to point to the
PRINT PRLST PRINT END OF JOB MESSAGE™] _|word count of the next line to be printed.
021A 30 17655805 + CALL PRNTN
021c¢ 1 0106 + oc PRLST])
021D 01 C40001D6 + L0 L PRLST Print the last line.
021F 01 4C200210 + BSC L %-4y1 X .
0221 30 059C9%8CO CALL EXIT END ExEcunoN_-}______—Termlnate execution.
0224 0000 ENO START ENO OF ASSEMBLY
~ 000 ERROR(S) AND 000 WARNING(S) IN ABOVE ASSEMBLY.

SAMPL

DMP FUNCTION COMPLETEDB

/1 XEQ SAMPL L 00 JAN 00 D0.387 HRS
=CCEND

MPXy BUILD SAMPL

CORE LOAD MAP
TYPE NAME ARGl ARG2

#COW TABLE 8002 0012
*F 10 TABLE 8014 O0OlE
=CNT TABLE 8032 0004
MAIN SAMPL 8036
CLNT SAMPL B034
CALL CARDN 825A
CALL DCBIN 83E4
CALL BINDC 8446
CALL HOLPR 849A
CALL PRT 8570

CORE 85BC 7A44
MPX, SAMPL LD XQ
/7 XEQ SAMPL —‘
=CCENO
TOM BAIRO 0642 0048 0OD0O3 00D9 0026
ED BATTLES 0132 0027 0017 0000 0002
MAMIE BEARD 0614 0113 0006 D007 0004
AL RERGLUND 0599 0173 0021 0003 0009
EU CAMPBELL 0032 0011 0000 00Ol 0000
JIM CROSSLEY 0535 0156 0009 0000 0002
KEVE GABBERT 0587 0169 0003 0001 0010
STEVE GRAHAM 0602 0183 0011 0003 0017
MORRIS GROVE 0649 0233 0025 0001 0032
DUN HADERLE 0492 0138 0006 0002 0007
BURT HANNAY 0545 0176 0007 0002 0005 e ~These are the data cards that Mr. Jones was given.
WILLIE HATHORN 0584 0178 0008 0007 0009
BILL HO 0614 0111 0013 0000 0000
RUN HOLMES 0476 0138 0008 0000 0014
MILT KHOOBYARIAN 0623 0178 0012 0004 0006
GENE LESTER 0369 0003 0001 0000 0000
MARILYN MARPLES 0062 0017 0004 0000 0001
BOB MAY 0542 0155 0006 0001 0002
TOM PIERCE 0207 0054 0002 0001 DOOO
RALPH PIPITONE 0613 0169 0011 0004 0003
MARILYN TAGHON 0612 0193 0009 0005 0006
ROBERT TARBUTTON 0575 0169 0002 0000 0012
#END OF UATA CARLS -
%E XECUTE SAMPLE PROGRAM%
NAME AB 1B 28 38 HR BAVG SPCT HRR
TOM BAIRO 642 48 3 9 26 133 288 24
ED BATTLES 132 27 17 0 2 348 522 66
MAMIE BEARD 614 113 6 7 4« 211 263 153
AL BERGLUND 569 173 21 3 9 343 434 66
ED CAMPBELL 32 11 0 1 0 375 437 0
JIM CROSSLEY 535 156 9 0 2 312 340 267
KEVE GABBERT 587 169 3 1 10 311 371 58
STEVE GRAHAM 602 183 11 3 17 355 468 35
MORRIS GROVE 649 233 25 1 32 448 637 20
DON HAUERLE 492 138 6 2 7 310 373 70
BURT HANNAY 545 176 7 2 5 348 1396 109
WILLIE HATHORN 584 178 8 7 9 345 429 64
BILL HO 614 111 13 0 0 201 223 0
RON HOLMES 476 138 8 0 14 336 441 34
MILT KHODBYARIAN 623 178 12 4 6 321 382 103
GENE LESTER 369 3 1 0 0 010 013 o
MAR ILYN MARPLES 62 17 4 0 1 354 467 62
BOB MAY 542 155 6 1 2 302 328 271
TOM PIERCE 207 54 2 1 0 275 294 0
RALPH PIPITUNE 613 169 11 4 3 305 350 204
MARILYN TAGHON 612 193 9 5 & 348 408 102
ROBERT TARBUTTON 575 169 2 0 12 318 384 47

#%%ENO OF JUB*%*

From this example you should realize how the use of macros
with meaningful names helped Mr. Jones and his fellow
workers make efficient use of their system. Similarly, you

c can design your macros and libraries to aid your programmers
and others who must work with the programmers.

Macro Assembler Language U5

This page intentionally left blank.

J

46 1130/1800 Macro Assembler Programming

calling
MUP

field
speci-
fications

The Macro Update Program

The Macro Update Program (MUP) assists you in maigtaining
macro libraries. It performs the following functions:

e Initializes disk space for macro libraries.
e 2dds macros to libraries.

¢ Deletes macros from libraries and reclaims the space they
occupied.

¢ Joins macro libraries, physically or logically.
e Renames macrosS.

e Obtains a listing of the contents of macro libraries by
macro name or by macro name and statement.

¢ Inserts or deletes statement(s) within a macro.

¢ Provides macro definition source statements on cards.

To call the Macro Update Program, you must first load the
Disk Utility Program (for DM2) or the Disk Management
Program (for MPX) into main storage. After it has been
loaded, you use an *MACRO UPDATE control statement to call
MUP. Following this statement, you should use MUP control
statements to indicate the functions you want to perform.
The function field must begin in column one, and at least
one blank is required to separate it from the operand field.
If you leave the first column blank, the statement will be
ignored. If you want to specify more than one operand, you
must separate the operands by commas and leave no blanks
within or between them. Any unused columns in MUP control
statements are reserved for system use. With the exception
of the NAME function (described later in this chapter),
control statement continuation is not allowed in MUP.

Note that once a Macro Update function has been started, it
should not be aborted, because an incompleted modification
may cause the library to be unusable.

All special characters used in the Macro Update Program must
conform to the character code summaries as listed in the
1130 Assembler Language manual, Order Number GC26-5927, or
the 1800 Assembler Language manual, Order Number GC26-5882.

Initializing Disk Space

reserve

@ : space

Before initializing disk space, you must reserve a data file
to serve as your macro library. This can be accomplished by
means of an *DFILE statement or an *STOREDATA statement.

For a detailed description of *DFILE and *STOREDATA, see the
Programming and Operator's Guide (for DM2), Order Number
GC26~3717, or the Programmer's Guide (for MPX), Order Number
GC26-3720.

The Macro Update Program 47

To initialize disk space for a macro library, you must use a
BUILD statement. The library name in the BUILD statement
must be the same as the one defined in the *DFILE or
*STOREDATA statement. After you have named a library, you
must use that library's name in all LIB, BUILD, JOIN, or
CONCAT statements (described later) that refer to that
library. You must initialize disk space before requesting
the Macro Assembler or the Macro Update Program to operate
on a specific library. The format of a BUILD statement is
as follows:

1-10 11-20 21-30 31-40
2]3}4]5]e[7]8[olo[1 [2[3[aI5I6[7 T8l [0 T[2T3[4T56 7 T8 3[0] 213 AIS[6 [7IBe ol 23 [a

BUILD WBUILD | ' LNAME®

format

llllxl!ll|l]|lll!ll|llllll]l||

2 ‘lnl‘x;:!l:11!1111!.1111111.%11.4]1111!11:

LNAME is the name of the macro library that was reserved by
the *DFILE or *STOREDATA statement (discussed above). LNAME
is a 1-5 character name for the macro library. The
apostrophes are delimiters and, as such, are required by MUP
for the names of all macros and libraries. You can use
alphabetic characters A-Z and the characters 0-9, #, @, and
$ within your library name. The digits 0-9 may not be used
as the first character. A library name is considered a
symbol, and therefore, it must conform to the rules for
symbols as stated in the Assembler Language manual, Order
Number GC26~5927 (for the 1130) or Order Number GC26-5882
(for the 1800). If LNAME applies to a previously
initialized library containing macros, the function purges
the library and reinitializes it.

Specifying the Macro Library

To specify the macro library to be operated on, you use the
LIB statement. The format of a LIB statement is as follows:

1-10 11-20 21-30 31-40
1[213]4[5]e]7]s[olo] 1 T2]314I5]6]7I8]S[0] i [PI3[35]6 7 [B[SI0] 1 [2[3[al5]6]718[el0] 1]2]3]4

v 4
LiB 1 LIAB 1 1 s ‘LAN;AgMn

fl SR IS W S T P S (S WA N N S ST S WA SN S S Y AT UNE SN T ST U AT
T ¥ N

format

2L41|J:‘11£114111-11!.1..11||.=11.1|411|!|.|

LNAME (discussed above) is the name for the macro library.

Joining Macro Libraries Physically

If you want to physically join a macro library to the end of
the library specified in the last BUILD or LIB statement,

48 1130/1800 Macro Assembler Programming

use JOIN you use a JOIN statement. For example, if you wanted to

physically join LIB06 to LIB05, you would use the following
statements.

1-10 11-20 - 21-30 31-40
1AE2EEEERARNIEREEEHEENNAEREEHEEC 1T213[a]5[6]7[8[e]ol 1121314
1} ’
format]L.I.B. ;1 .Lx]|B|¢!5| P EE T B S S R | ! PG W S W S S D U ! 12 2 31 3134 ! [ETE
anon‘Ian lliL.Ian¢!61'| g L3 411 ! P TS S U N N N N = PRV IS O A S S W B N T S W
3|llllnl;l!llll]Alll!lllllllLl!lllllIlll!lLJ;
These statements cause the contents of LIB06 to be added
contents (physically copied) to the end of the contents of LIBOS.
unchanged This does not change the contents of library LIBO06.

If the first library cannot accommodate the library being
joined to it, the JOIN operation is suppressed. Neither

notes library is changed and processing continues with the next
LIB or BUILD statement. If you specify a new library name
in a BUILD and then join an existing library to it, you
physically copy the existing library.

Joining Macro Libraries Logically

use CONCAT If you want to logically join a macro library to the library
specified in the last BUILD or LIB statement, you use a
CONCAT statement. This statement allows you to maintain

purpose individual libraries, and then unite them for assembly
purposes without using additional disk space.

For example, if you wanted to logically join LIB22 to LIB15,
you would use the following statements.

1-10 11-20 21-30 31-40
IARZEGHERRIAREBEEHEERNENESEHEENIREREEHEECRA
format 1 L.‘I B. N ‘IL]IIB!II5I ’. I P T U WA 1 3 1 11 ! FOIR SR NS T T A ! 1

~>

CONCAT_'LIB22’

.1]1.11!.111111.1}1:11]1.11!1.1
+

3.-.;l..;.!xn.,l‘111!11||111||1111111111!

These statements cause both libraries to be available for

muitiple assembly purposes when LIB15 is referenced by the Macro
concaten- Assembler. However, in any Macro Update Program operation,
ation only the library named on the last LIB or BUILD statement is

operated upon.
It is possible to concatenate a multiplicity of libraries,

so that several libraries may be available to the Macro
Assembler even though the assembly references only one. You

The Macro Update Program 49

disconnect

format

would perform this multiple concatenation by concatenating
library B to library A, library C to B, library D to C,
library E to D, and so on until all the libraries that you
wanted were linked together. You can concatenate only one
library to any other library, but you can concatenate up to
a total of 16 libraries, making a total of up to 17
available for assembly purposes. If the Macro Assembler
does not find a macro and has searched through 17 libraries,
the statement containing the name of the macro will be

flagged as an op code violation and the assembly will
continue,

If you want to disconnnect a library that has been

concatenated to another library, you can use the following
statements.

1-10 11-20 21-30 31-40
11213]4]5]6l7]e]slo[1T2I3]aI5T6l7[8[3lo] 1 [2[3]al5]6] 7 [8[S0 11213]a]5[6]7[8[8[0] 1T2]3]a

LI.Bn 1 l‘;L.Insllnsnll 11

—

llill]lllllllllllllllll;l!tll
T ¥

CONCAT, 'g”

.gnln:lnnlnl.an.ln1:.}11.11111131.1

~>

31llllnlnnlldnnlnllllillllllllilllllllllllll
f + + t

The CONCAT statement would cause the library (LIB22) that
has been concatenated to library LIB15 to be disconnected.
The physical contents of the libraries remain unchanged.

Updating a Macro in a Library

use
UPDATE

If you want to alter a macro that has been stored in the
library specified in the last BUILD or LIB statement, you
specify that macro with the UPDATE function. An example of
specifying the macro TAXES might be as follows.

1-10 11-20 21-30 31-40
112]3]a]s]e[7]8[olo] 12[3]aT5]6[78I 9]0l 1]2 [3[a5]6]7 B[S0l 1 2 [B[a[5l6] 7810 112314
1|LI8 |, 1 CosTS’

U T T S T WP T T ST S BN U U U B T R U BN AR G
t + +

UPDATE 'TAXES'

llllllll:lllelnl{llll‘l‘ll!llt

~

3....l....!.1..1..1-!_.111]111:!1:.1]1111!:11

The UPDATE statement is normally followed by an INSERT or
DELETE statement. Descriptions of these two statements are
discussed under "Inserting Statements in a Macro® and
"Deleting Statements From a Macro."

50 1130/1800 Macro Assembler Programming

;Mg

Renaming a Macro in a Library

use
RENAME

format

If you want to rename a macro in a library, you use the
RENAME statement. Once you have renamed a macro, the
original name is lost, and the macro can be referenced only
by its new name. The format for the RENAME statement is as
follows:

=10 11-20 21-30 31-40
|2 [31a[5]el7I8IS[o] T T2[3]a]5]6l 78] olo] 1 2 [3a]5]6]7 I8! T2 3[al5[6]7 8[o]0 1 [2]3]4

RENAME | "BOLTS , 'RIVET’

p—

L RTINS EFTE S T U 0 N S NS WA TS A WS B TP

4 S N B S § S T T TS W Y T YUY T S U W U U S WA Y T S S S S | NI
T

This statement would cause the macro BOLTS to be renamed
RIVET. BOLTS represents the name of the current macro; it
must be enclosed in apostrophes and separated from the new
name by a comma. RIVET represents the new name for the
macro. The macro must now be referenced by this new name.
BOLTS can now be used as a name for another macro. The
RENAME statement may be followed by INSERT or DELETE
statements.

Detining a Macro During a Macro Update Run

NAME
format

You can define a macro during a macro update run by using
essentially the same method you use during an assembly. The
differences are that you don't use MAC or SMAC and MEND
statements, and you don't use a definition prototype
statement. Instead, you use a NAME statement to name the
parameters to be used in a subsequent definition and an ADD
statement to name the macro (discussed below). The format
of the NAME statement is as follows:

1-10 11-20 2i-30 31-40
1 T2I31al5]e[7]8[o]o] i T2[3[4l5]6]7I8[9[o] [2[3]a516]7 [8]S]0l 112 [3]a]5]6]7]8[s[ol 1 [2[3]4

1[NAME | P1,P2,P3,....,Fn

5.5 RTAPRICE Ul oo TN E U S U N 0 A S S NS ST S AT S B S

2|lll]lAllllllllIllIlnllllJlll#lllllllllllll
+ +

Pl is the symbol for parameter 1, P2 is the symbol for
parameter 2, and so on.

Note that parameter 1 is the parameter used in the label
field of the macro call. Parameter 2 would be the first
parameter in the operand field. If you need more than one
record for all your parameters (limited to 20 possible), use
as many NAME records as needed immediately following the
first, and continue the parameters on these records. 1In

The Macro Update Program 51

then ADD
statement

format

such a case, a comma must not follow the last parameter on

each record. ' J%

If your NAME statement does not have sufficient parameter
names for the parameters in the macro being processed, one
of the following will occur.

¢ On input, the additional parameters will be assumed to be
standard Macro Assembler variables instecad of macro
parameters.

e On output, the operation will be aborted and a D117 error
message printed. This also occurs if a parameter that is
used in the format or tag fields is given a name that is
greater than one character.

¢ On listing, extra parameters will be replaced by // N
where N is the number (1-20) of the parameter. A D117
error message will be printed. Note that the parameter
number may be truncated if it exceeds the field length.

The names specified in the NAME statement are used in all
subsequent operations until the next LIB or BUILD statement
is encountered or another NAME statement is read.

ADD STATEMENT

After the NAME statement, you use the ADD statement. The
ADD statement adds the macro to the library specified in the
last LIB or BUILD. The ADD statement in conjunction with
the NAME statement performs the same function as the
definition prototype statement of the Macro Assembler
definition. The format of the ADD statement is as follows:

1-10 11-20 21-30 31-40
12]3]als]e[7Ielolof 1[213]a15]e]7I8[olo] 1T2]3]4]5]e[7[8]9]o] 112]3]4]5]6]7]8[9]0] 1 [2[3]4

ADD . ' PARTS'

(U T A ‘#lllll|lnl!lllllllll‘llJJLlLLll!lll

—

2hll4i||Al]llll]llllllllllllll%llll]llll!lll
$ +

This statement causes the macro PARTS to be added to the end
of the macro library specified in the last BUILD or LIB
statement.

Following the ADD statement, you place the

assembler-language source statements that you want to

include in the definition. The macro being thus defined by ﬁm%
the ADD function is terminated by the occurrence of a MUP)
control statement. An example of how to define a macro

during a macro update run is as follows:

52 1130/1800 Macro Assembler Programming

lack of
room

i-10 11-20 21-30 31-40
1ARAEEREENNEEEEEHEEQIEEEEEUEERIABREEUECIEEL

*UACRO UFDATE |

5311 o Macro Update Program

—

11 HE WS O WSS TN N N T T (N T S T
L T

2|t .8 .‘lonu.A.L.I;'....l..SPe‘Emfs.m?'afV.l....}...111.1.!.,.1
SWAME LABLE, T, T2 e o e o e
W08 TESTS, 1 e e
5.1.11..1.4..‘.1l...g....11...4..;.7-11..;.5..L#
6 .1..1....4-1..11-115.:.1115.7.0.!lnnlrl.lnl!, L
WENDUA | oy i MOPI L s
L} SPTEPUNPIS DPUNPUPII S T SN T SAS TN 06 VOU U IO S S TS T U VA0 U0 T N VS T VA W S S W S S

If there is not sufficient space in the library to
accommodate the macro you want to store, the macro is not
added. Processing continues with the next LIB or BUILD
statement; the library is not changed by this occurrence.

If you define another macro within a macro definition, then
the MAC or SMAC and MEND statements of the nested macro are
included in the definition of the outer macro. Thus, if a
macro is defined with an ADD statement and its source
statements include a MAC or SMAC and MEND statement, then
every time it is called in an assembly, a macro definition
is generated.

The definition prototype statement cannot be used in a macro
defined by the ADD function except in conjunction with a MAC
or SMAC statement. If one is present, no error is
diagnosed. Note also that macro source statements stored
during a MUP run are not diagnosed for errors.

Deleting a Macro From a Library

use PURGE

format

If you want to delete a macro from the library named in the
last LIB or BUILD statement, you use a PURGE statement.

This function deletes the macro that is specified, and
automatically reclaims the space it occupied. The format of
a PURGE statement is as follows:

1-10 11-20 21-30 31-40
112]1314[51sl7i8]ol0] ! [2]3]415]6]7{8I9]0] 1]2]3[4]5]6[7]8]oI0 1]2]3]4[5[6]7[8Iolo] I {2]3]4

PURGE | 'WAGES'

—

lllxl!lllllnllLJllAlllelll1!
+ -+

21lllllllllLiLllJl_ll!lllAllIllllllllllllllLJ
+ T 1

The Macro Update Program 53

PURGE
vs. PURG

T@is statement-causes the macro WAGES to be deleted from the
library named in the last LIB or BUILD statement and
reclaims the space WAGES occupied.

The Macro Update Program PURGE statement should not be
confused with the Macro Assembler PURG statement. The Macro
Assembler PURG statement does not automatically reclaim the
space occupied by the macro named in that statement.
Instead, the space is reclaimed by running the Macro Update
Program. Any macro update run affecting a particular
library will reclaim the space occupied by a macro deleted
from that library with the Macro Assembler PURG statement.
The PURG and PURGE statements cause operations to occur in
regard to the specific library named in the last LIB, BUILD,
or *MACLIB statement. They do not affect any other library.

Punching Source Statements

use QUTPUT

format

If you want to punch the source statements of a specified
macro definition, you can use the OUTPUT statement. This
statement must have been preceded by a NAME statement.
Blank cards must be available for punching as soon as the
OUTPUT statement is read.

Care should be taken in preparing the NAME statement since

the OUTPUT function will be aborted if a parameter is
defined incorrectly or is left undefined (see NAME statement

described previously). The definition to be punched must be
part of the library specified in the last LIB or BUILD
statement. The format of the OUTPUT statement is as

follows:

1-10 11-20 21-30 31-40
1[2]3]4]5]el718Ioi0] | [2]3]4I5]6]7I8[S[o] [2[3]4]5[6]7 [8]S[0]]2]3]4l5]6]7[8[8]0l 1 2]3]4
1011j.r|P1‘/Ir. 2 1\15!41‘-&- 1'1 [T ST | ! [A T T N T SR T X 'l S S ST S W U O N T ! 11
2lllllllll!lllletll!LlLlJllll#lLLLlllll!lLl

SALES is the name of the macro definition to be punched.

This statement alsoc causes an ADD 'SALES' statement to be
punched prior to the source statement to facilitate loading

of the definition at a later time. The source statements will
contain an identification (first three characters of the macro
name) and a sequence number in columns 73-80.

Inserting a Statement in a Macro

use INSERT

If you want to insert additional macro definition source
statements into a macro, you can use the INSERT statement.
This statement must be preceded by a RENAME or UPDATE
statement and a NAME statement (discussed previously) that
specifies the macro to be modified and its parameters, and
it must be followed by the source statements to be inserted.
The format of an INSERT statement is as follows:

54 113071800 Macro Assembler Programming

format

notes

1-10 11-20 21-30 31-40
T2 31alsle7I8lolol 1 [2I3[al5el 7800l [2 [3[4]5]6[78Iolo] H2[3[a[5i6[7[8[olo] t [2]3]4

INSERT NNNNN

—

x:l.xll!.l;;L:;nli,lcxllnl;-!lxl

2nalnln:.uirlnn'nllnlns.tnnllluu=111le‘113111

NNNNN is a decimal integer (maximum of 32767) up to five
digits long. It references a macro definition source
statement sequence number. The source statements are
inserted after NNNNN; so, if you want the statements
inserted before any other statements in that macro, you must
specify NNNNN as zero.

Whenever MUP or the Macro Assembler prints macro definition
source statements, five-digit decimal sequence numbers are
printed to the left of each statement. These sequence
numbers are referenced by INSERT and DELETE statements. Any
statements inserted into a library by the ADD, INSERT, or
DELETE (described in the next section) function are flagged
with an X when the definition is printed. Macro definition
source statements are automatically sequenced when the ADD
function is used, and resequenced when the INSERT or DELETE
functions are used.

You can insert only as many statements as the library has
room for. In other words, if you have 25 statements to add
to a macro, and there is enough space to accommodate only 15
of those statements, those fifteen statements will be added.
A D103 LIBRARY OVERFLOW message will be printed; processing
will continue with the next LIB or BUILD statement. If you
want to include the ten statements left out of your macro
after regaining enough space to accommodate them, you will
have to alter your INSERT control statement because of the
resequencing of the statements in the macro library that has
occurred.

Deleting a Statement From a Macro

format

If you want to delete one or more statements from a macro,
you can use the DELETE statement. The DELETE statement must
be preceded by a RENAME or UPDATE statement that specifies
the macro to be altered and a NAME statement (discussed
previously) that specifies parameter names used for
alteration. The format of a DELETE statement is as follows:

1-10 11-20 21-30 31-40
112131al5le]718] ool 1 [2[3]a]5]617[8]ol0] 1 [2[3]4]516[718[9]0] 1 [2[3]4]5l6718Isl0] i [2]3]4

DELETE , MMMMM> NNANN |

—

P SO I U S S S S WA VY T B S T S S A S

2xxlnll..nllnxl]11114L1||l|14111||1Inxnlll11
4 t

The Macro Update Program 55

MMMMM is the sequence number of the first source statement
to be deleted and NNNNN is the sequence number of the last
source statement to be deleted. This statement would cause
the statements from MMMMM through NNNNN inclusive to be
deleted. If you want to delete a single source statement,
you can leave the comma and second parameter off or specify
the first sequence number again.

A DELETE statement may be followed by source statements to
be inserted in place of the deleted statements. You do not
need to use an INSERT statement to perform this function.
You may insert more or fewer statements than you deleted.
If you insert statement(s), you can insert only as many as
the library has room for. The Macro Update Program will
insert as many as will fit, print an error message, and
continue processing with the next LIB or BUILD statement.

Obtaining a Listing of Macro Libraries by Statements or Macros

The SELECT control statement is used to control the Macro
Update Program printed output and remark inclusion. The
output is always printed on the list (principal) printer,
and MUP control statements are always printed. You can also
specify in a SELECT statement that remarks are to be
included with any macro text statement being placed on disk.
An example of the print format may be seen in the sample
program that is at the end of this chapter.

The format of the SELECT statement is as follows:

1-10 11-20 21-30 31-40
1213]a[56]7]8[9l0] I [2]314]5]6[7]e[9[o] 1 [2]3]a[S]el 78 oo 12I3]a[s[e[7]8[olo] 1 [2[3]a

SELECT M. A 1.6 N

-

RN N0 B0 ST SHUUNE S N T S S S NS U ST SN S N0 TS AV O S B BT
+ + +

2llllJlAlleLlllllllljlllJllll}llll]llllLLll
+ +

no parameters--suppresses printing of macro headers and
macro text.

M--causes headers to be printed.

P--causes text and headers to be printed. If you select
this option, it should have been preceded by a NAME
statement (discussed previously). On an OUTPUT operation
with this option, the 1800 will not list the macro text.
Note that if a LIB, BUILD, or ENDUP statement is
encountered and no name statement is available, SELECT P
will be reset and the text will not be printed. on the
1800, if sense switch 2 is ON, printing will be suppressed.

I--causes headers to be printed except during an ADD, INSERT,
or DELETE operation, in which case, the macro headers and
text are printed. If you do not specify a SELECT statement,
I is assumed.

56 113071800 Macro Assembler Programming

SELECT N

On the 1800, if sense switch 2 is ON, printing will be
suppressed.

C--indicates that remarks are to be included with any macro
text statement being placed on disk.

N--indicates that both of the following conditions are true
(see also the section following):

. You want to update a nested definition.

] The statement(s) inserted uses the automatic name
generation feature.

You may use any combination of parameters in a SELECT
statement; however, I will override M and P will override
either I or M, or both. Each two consecutive parameters
must be separated by a comma, with no embedded blanks. If
you use more than one SELECT statement, the latest is
assumed, and the prior SELECT statements are overridden.

SPECIAL REQUIREMENTS ON THE USE OF AUTOMATIC NAME GENERATION
IN NESTED DEFINITIONS

Wwhen automatic name generation is used with nested
definitions, the indicators for automatic name generation
(leading and/or trailing apostrophes) must be suppressed
until the call (expansion) of the outer macro occurs.
Otherwise, the automatic name generation feature will not
function properly. To suppress this feature, the statements
in a nested definition must be stored as data. In a nested
definition, the MAC statement(s) of the inner nested
definitions indicates that the Macro Update Program (on an
ADD statement) or the Macro Assembler {(on an SMAC statement)
should store the statements between the MAC and its
associated MEND.

when inserting statements that use automatic name generation
in a nested definition, you must precede the INSERT or
DELETE statements with a SELECT statement that includes N as
one of its parameters. This should be done to indicate the
Macro Update Program should store these inserted statements
as data. The SELECT N option should be followed by another
SELECT option (without N as a parameter) when all inserts to
the nested definition are completed. If suppressing the
automatic name generation feature by SELECT N is not done
properly, the consequences will not be observed until an
assembly with the call (expansion) of the nested macro is
attempted.

The Macro Update Program 57

Consider the following example:

LIB 'LIBO1°'
SELECT P
NAME LABEL,A,B,C

14BO 0005 MACO09
00001 LABEL LD L A

00002 STO L B

00003 MAC

00004 MOVE CNT, FROM, TO
00005 LDX ~CNT

00006 a* LD L1 FROM+CNT
00007 STO L1 TO+CNT
00008 MDX 11

00009 MDX A'

00010 MEND

00011 BSC L cC

00012 #*MACRO END#*#
14BO 0049 #**LIBRARY END#*
0000
ENDUP
UPDATE COMPLETED

The macro MOVE is a nested definition and uses the automatic
name generation feature. Hence, a SELECT N statement must
precede any updates (statements for insertion into the macro
MOVE) that use the automatic name generation feature.
Failure to do so will result in the symbol actually being
expanded at this time, which is not desired.

Note that any updates using automatic name generation
outside the macro MOVE should not be preceded by a SELECT N
statement, since the automatic name generation will be
suppressed. In the above example, an insert that uses
automatic name generation made between statement number
00003 and statement number 00010 should be preceded by a
SELECT N statement. An insert made elsewhere in the macro
MOVE that does not use automatic name generation should not
be preceded by a SELECT N.

Designating Comments

use a
period

A period in column one of any record designates that record
as a MUP comment and it is printed on the list (principal)
printer. If, however, an error has occurred, and MUP is
ignoring all statements until the next LIB or BUILD
statement, comments will also be ignored and not printed.
Note also that MUP comment records are never included in
your macro library.

Terminating a Macro Update Run

use ENDUP

To terminate a Macro Update Program run properly, you must
use an ENDUP statement. This statement must be the last MUP
control statement used, or else none of the statements that
follow it will be processed. You don't specify any
parameters in an ENDUP statement; the format is as follows:

58 1130/1800 Macro Assembler Programming

format

1-10 11-20 21-30 31-40
z3lafs]el7Ielolol 1 12l3[alslel7Ielelol I2T3Tal5]6[718 S0 1[2]3]4[5[6]7]8]910] 1 12]3[4
1£.N.D.U.P1....!....ll..ngl..;ln.”!.“nl:.a.;..L
) SEPSEERT TN VA S ER U S 150V YON S T T VY O N T Y S T T 0 0 T T AT S S5 Y
] PRI NPT S AU T YA VA 00 O S 0 VO S WS 0 S VU0 S T N T VO T

The UPDATE COMPLETED message (see the following sample
program, note 9) indicates that the Macro Update run has
been properly terminated. This does not imply that all the
operations requested were successful.

Sequencing MUP Control Statements

The following table illustrates the required order of MUP
control statements. Each x in the matrix indicates that the
function at the top of the column must precede the statement
to the left side of the x. MUP statements not included in
this table have no precedence requirements.

BUILD RENAME
or or
LiB UPDATE NAME
LIBRARY FUNCTIONS
JOIN X
CONCAT X
NAME STATEMENT X
MACRO FUNCTIONS
UPDATE X
ADD X X
PURGE X
RENAME X
OUTPUT X X
STATEMENT FUNCTIONS
INSERT X X
DELETE X X
PRINT FUNCTIONS
ANY SELECTP X

Note that a new LIB or BUILD function removes the previous
NAME statement and a new one must be used. On any function
where you use a SELECT P option, you must have a NAME
statement available to SELECT P or else the print or punch
operation will not be as you wanted it.

Making Efficient Use of the Macro Update Program

The Macro Update Program searches sequentially through the
library it is operating on for the macro specified in a
RENAME, OUTPUT, UPDATE, or PURGE statement. It joins

The Macro Update Program 59

request
functions
in order

libraries and adds macros to the end of each library.

Consequently, the printing may be voluminous while the Macro f‘ﬁ%
Update Program is positioning for the requested function. /
Therefore, to make the most efficient use of the program,

you should request the macro functions in the order in which

the macros appear in the library, and the JOIN and ADD

functions after all other functions for that library have

been performed.

For example, suppose LIB01 contains four macros: MAC1,
MAC2, MAC3, and MACH, respectively and you want to perform
an OUTPUT function on MAC1 and MAC4, a PURGE function on
MAC2, a RENAME function on MAC3, and a JOIN function on
LIB02. The following statement sequence is the most
efficient to perform these functions.

1-10 11-20 21-30 31-40 4
11213]a]5]e[7]slo]o] 1 [eI3]al5]6]7 18] o[o] 1 [2[3[4]5]6[7 I8[S[0] 1 12134567 (][00 1 [213]4]
L:'[anlllLlIanolll’nnlnl1111111111]:111!1111|1111!1|11

OUTPYT. ' MACL

—y

L4 P T T TN U N SN U S SN W T I I A A
3’?4@@52..'ﬁﬁﬂqzr..n I AT I AT I AU AT AN I IS W U W AN T A |
JRENAME " MACS \ BET i
SOU TR A
N R
7£7Kquyil RN EEE WS NS R I A AT I S A A A fa%%
| I IS WS ST RN SN N N RN N

The concatenate function does not cause library positioning,
and thus, its position within a MUP run is not important.

A Sample Macro Update Program

The following sample program illustrates a sample Macro
Update Program run.

60 1130/1800 Macro Assembler Programming

/7 JOB X 00 JAN 00 00.012 HRS
/" SAMPLE USAGE OF MACRO UPDATE PROGRAM {MUP}
/71 OMP 00 JAN 00 00.012 HRS

*MACRO UPOATE

o BUILD A MACRO LIBRARY CALLEOD 'LIBO1’
BUILD *LIAOL*
. ADD A MACRD TO PLACE THE SPECIFIED INDEX REGISTER'S CONTENTS IN THE ACC
o« CALLING FORMAT IS
. LABEL NXACC X
. WHERE 'LABEL' 1S ANY VALID LABEL AND *X' 15 THE INDEX REGISTER WHOSE
« CONTENTS ARE TO BE PLACED IN THE ACCUMHLATOR
INAME LABEL ¢X
ADD *NXACC?
(:)1480 0005 NXACC

X,00001 LABEL STX X %42
X$00002 LD w41
X 00003 MOX =+1
X 00004 [»]o Ll

The library named in a BUILD statement
must have been defined previously with
an *DFILE control statement.

The NAME statement is required and may
specify parameter names to be used in a
subsequent definition.

**LIBRARY END™* is printed each
time the Macro Update Program en-
counters the end of the library. The
two numbers indicate (1) the logical
drive number and sector address of the
last sector of the library currently used,

®

. ADD A MACRD TO SPACE LISTING 1 LINE WHEN BLANK DP CDDE APPEARS
(7)00005 3% MACRD END ®¢

(41480 001F
oe) ,D0001 SPAC 1
. BUILO A MACRD LIBRARY CALLED *L1B02?
s 00002 #% MACRD END #»
14B0 0029 ## LIBRARY END *2
(QLLLY
.
. ADD A MACRO TO SPACE LISTING 1 LINE WHEN BLANK OP CODE APPEARS
NAME
(4)1481 0005
oonm SPAC i

ADD ¥ A
ADD A MACRO TO FILL CORE STORAGE WITHIN THE LIMITS SPECIFIED WITH THE
WDRD AT THE LDCATION SUPPLIED USING INDEX REGISTER 1

ADD * t

(euiLo Lisozr

CALLING FDRMAT IS

LABEL FILL FROM, TD4WORD
WHERE *FROM?! IS5 THE STARTING ADDRESS, *T0' IS THE ENDING ADDRESS, AN
1WORD!' 1S THE ADDRESS OF THE FILL WORD. !'FROM? MUST BE LESS THAN OR

o e e e e s e

EQUAL TO *TD?',

Qcoooz
ZNAME LABEL ,FROM, TOTWORD
AOD 'FILLS

ag MACRO ENO =%

(®1481 000F FILL

(E)x{00001 LABEL STx 1 XAl

ooooz» Lo aD2!
X 00003 s ap1"
X 00004 STD 41
X 00005 LDX L1 #-x
X 00006 MDX 11
X 00007 LD L WORD
X 0000B LP' STO L1 FROM-1
X 00009 MOX 1 -1
X 00010 MDX LP!
X 00011 LOX L1 s-=
X 00012 XAl EQU ®-l
X DDOL3 MDX w2
X DOD14 AD1* DC FROM
X 00015 AD2 DC 10

» BUILD A MACRD LIBRARY CALLFD 'LIBO3!

OD16 %% MACRO END #=%

14B1 0066 *# LIBRARY ENN #=
0000

(DeurLo rL1so3t

. ADD A GENERAL CORE MOVE MACRO USING INDEX REGISTER 1
. CALLING FORMAT IS
. LABEL MOVE FROM,TO,COUNT
» WHERE 'FROM' IS THE SENDING FIELD STARTING ADDRESS,
o FIELD STARTING ADDRESS, AND fCOUNT!
(DNAME LABEL ,FROK,T0 ,COUNT
ADD 'HDVE"

15 THE NUMBER OF WORDS TO MOVE.

@1487 0005 MOVE

(®¥{00001 LABEL LDX L1 COUNT
@_xfooooz LD L1 FROM-1
X 0D003 STO L1 TO-1
X 0DDD4 MOX 1 -1
X D0005 MDX -6

.
. ADD A MACRO TO PLACE THE ACC CONTENTS IN THE INDEX REGISTER SPECIFIED
. CALLING FORMAT 1S
. LABEL ACCNX X
.\ WHERE *X' IS THE_]NDEX REGISTER TO BE LDADED WITH THE ACC CONTENTS.
@00006 %3 MACRO ENO =¥
(@namME LABEL 4x
ADD VACCNX?
(1487 0024 ACCNX
00001 LABEL STO

@_xfonooz LDX

w4}
LX #-%

®
®

*T0' 1S THE RECEIVING

and {2) the relative address of the last
word on that sector which is used.

By inspecting these two words, you
can determine how much of your
library file has been filled.

The name of the macro being operated
upon is printed. The two numbers
preceding the macro name indicate
where on the disk the subject macro

was built. Word one indicates the
logical drive number and sector address
of the definition and word two indicates
the relative location of where that defi-
nition begins on that sector.

An X is printed with each statement
that is added to a library or macro.

Sequence numbers are printed when-
ever a macro text is printed.

MACRO END is printed whenever
the Macro Update Program is through
processing a definition.

If the library being worked upon is
concatenated to another library, this
number indicates the logical drive
number and sector address of the
concatenated library. 1f no concatena-
tion exists, this number is zero.

The Macro Update Program prints the
macro names it encounters when scan-
ning through a library. The two numbers
in front of the macro name indicate
information as described in

The library named in a LiB, JOIN, or
CONCAT statement must have been
defined previously with an "DF!ILE
control statement and initialized with
a BUILD statement.

This message is printed when the Macro
Update run has been completed. It
does not imply successful completion;
messages prior to this one may indicate
error conditions.

The Macro Update Program 61

2

(@name LaBEL, X, Y

CALLING FORMAT IS

S v 0 s e

INDEX REGISTER *TOX'.

ADD 'LOADX®

(P)oooo3

LABEL LDADX
WHERE *FROMX* IS THE INDEX REGISTER WHNSE CONTENTS ARE MNVEN TO THE

(41487 0034 LOADX
(5% 00001

ooooz

« PHYSICALLY JOIN L]BRARY
(7)o0003

(G 1487

0000

LIB *LIBOL
1450
1480

(01N tL1BO3*
1480
(@)= 1480
(@480

62

o« UPDATE THE 'MOVE* MACRD TD SAVE AND RESTORF INDEX REGISTER 1

UPDATE *MOVE?®

=
©)

0000

1480

(8)% 1480

u.ao

NAME LABEL ,FROM,TOCOUNT

DELETE 1
@X 00001
X$00002
INSERT 5 @

00003
00004
00005
00006
00007

@ To

« RENAME THE fMOVEL MACRO
0008

RENAME *MOVE*', 'MDV
14B0
1480
1480
0000
1480

1480

506,00

1480

FORMERLY NAMED 'MOVE'.

O ¢ oo

UTPUT *MOVEL!
1480

@*1430

(31480

(e)¥0000

148D

1480
1480

(1480

1480

14B0

0000

QOSKKS

ENDOP

LABFL STX
LOX

ADD A MACRDO TO MOVE THE CONTENTS OF A SPECIFIED INDEX REGISTER TO
ANOTHER SPECIFIED INDEX REGISTER

FROMX, TOX

23 MACRD END *#=

X *+1
LY #»-3%

‘L1IB03' TO LIBRARY 'LIBO1?
=% MACRO END =x
0044 =*x LIBRARY END %%

0005 NXACC

001F

0029
0048
0058

0005
001F
0029

MOVE
ACCNX
LOADX

NXACC

MOVE

LABEL STX

AS
3

0053
0063
0073

0005

1480 001F

0029

LDX

LD

STO
MDX
MDX
LDx

tMOVEL?

.®1480 0068 =x LIBRARY END =»x*

1 %49

L1
L1
1

L1

COUNT

FROM-1
T0-1
-1

=6
L

MACRO END %%

ACCNX
LOADX

#%x L1BRARY END #%

NXACC

MOVE

ABOVE MACRO RENAMED AS

0029

0053
0063
0073

0005
001F
0029
0053
0063

0073

MOVEL

PUNCH THE MACRO NOW CALLEO 'MOVELP!

ACCNX
LOADX

ONLY THE NAME 'MDVE}' CAN NOW BE USED TU REFERENCE THE MACRO

=% LIBRARY END =%

NXACC

MOVE1
ACCNX
LDAOX

*% LIBRARY END =x

(DuPDATE COMPLETED

113071800 Macro Assembler Programming

The library named in a BUILD statement
must have been defined previously with
an "DFILE control statement.

The NAME statement is required and may
specify parameter names to be used in a
subsequent definition.

@ **LIBRARY END** is printed each
time the Macro Update Program en-
counters the end of the library. The
two numbers indicate {1} the logical
drive number and sector address of the
last sector of the library currently used,
and {2} the relative address of the last
word on that sector which is used.

By inspecting these two words, you
can determine how much of your
library file has been filled.

@ The name of the macro being operated
upon is printed. The two numbers
preceding the macro name indicate
where on the disk the subject macro
was built. Word one indicates the
logical drive number and sector address
of the definition and word two indicates
the relative location of where that defi-
nition begins on that sector.

An X is printed with each statement
that is added to a library or macro.

Sequence numbers are printed when-
ever a macro text is printed.

@ **MACRO END** is printed whenever
the Macro Update Program is through
processing a definition.

If the library being worked upon is
concatenated to another library, this
number indicates the logical drive
number and sector address of the
concatenated library. If no concatena-
tion exists, this number is zero.

@ The Macro Update Program prints the
macro names it encounters when scan-
ning through a library. The two numbers
in front of the macro name indicate
information as described in

The library named in a LIB, JOIN, or
CONCAT statement must have been
defined previously with an *DFILE
control statement and initialized with
a BUILD statement.

@ This message is printed when the Macro
Update run has been completed. It
does not imply successful completion;
messages prior to this one may indicate
error conditions.

Errors and Warnings

During the assembly process, the Macro Assembler checks for
source program errors. If an error is detected, an error
flag or an error code and message will be printed. If a
questionable instruction is encountered, it is flagged with
a warning flag, Q. Errors in the Macro Update Program are
detected by the DM2 Disk Utility Program or the MPX Disk
Management Program.

Macro Assembler Sign-Off Message

At the end of each assembly, the Macro Assembler indicates
the number of errors and warnings it encountered during that
assembly. The message reads:

XXX ERROR(S) AND XXX WARNING(S) IN ABOVE ASSEMBLY.

XXX represents a three-digit decimal number.

Macro Assembler Warning Flag

If the source program contains certain questionable
instructions, the Macro Assembler will interpret and process
them and flag them with a Q. For example, the statement
MDX L PLACE is assembled as-MDX L PLACE,O0 and is flagged
with the warning indicator. Warning flags are not counted
as errors and will not prevent the execution of the object
program. It is suggested that you check to make sure that
the Macro Assembler has performed the task that you really
wanted it to do on each statement flagged with a Q.

Macro Assembler Error Detection Codes

During the assembly process, the Macro Assembler checks the
source program for errors. Error and warning flags are
printed to the left of the label field of each source
statement that is in error or is questionable. For a
complete description of the listing format of an assembly,
see the 1130 DM2 Programming and Operator's Guide, Order
Number GC26-3717, or the 1800 Error Messages manual, Order
Number GC26-3727.

See Table 1 for an explanation of the error flags and Table
2 for a listing of the Macro Assembler error messages and
their meanings.

Macro Update Program Error Messages

When the DM2 Disk Utility Program or the MPX Disk Management
Program encounters an error in the Macro Update Program, one
of the error messages in Table 3 is printed.

Errors and Warnings 63

Page of GC26-37330

Revised July 20, 1970
By TNL GN26-0610
Table 1. Error Flags
Flag Cause and Macro Assembler Action
A ® Address Error. Attempt made to specify, directly or indirectly, a displacement field outside range of —128 to +127.
Displacement is set to zero.
® Invalid reference to CE Core in a fong form instruction. Address field is set to zero. {1800 only)

[o} Condition Code Error. Character other than +, ~, Z, E, C, or O detected in first operand of short branch or
second operand of long BSC, BOSC, or 83l statement. Displacement is set to zero.

F Format Code Error. Character other than L, I, X, or blank detected in column 32,0r L or | format specified for
an instruction valid only in short form, or 1 format specified when not allowed. Instruction processed as if L format
were specified, unless that instruction is valid only in short form, in which case it is processed as if the X format
were specified.

L Label Error. Invalid symbol detected in label field. Label is ignored.

M Multiply Defined Label Error. Same symbol encountered in label fields of two or more statements. First occurrence
of symbol in label field defines its value; subsequent occurrences of symbol in label field are ignored and cause an
M error flag to be printed.

(o} Op Code Error.
® Invalid op code. Statement is ignored and address counter is incremented by 2.
® ABS used when *COMMON is used to define FORTRAN common table. Statement is ignored. {1800 only}
® ISS, ILS, ENT, LIBR, SPR, EPR, or ABS incorrectly placed. Statement is ignored.

Q Warning. A statement whose syntax is questionable was encountered.

Relocation Error.

® Expression does not have a valid relocation. Expression is set to zero.

® Non-absolute displacement specified. Displacement is set to zero.

® Absolute origin specified in relocatable program. Origin is ignored.

® Non-relocatable operand in END statement of relocatable mainline program. Columns 9-12 are left blank;
entry is assumed to be relative zero.

® Non-absolute operand specified in 8SS or BES. Operand is assumed to be zero.

® ENT operand is non-relocatable. Statement is ignored.

® Invalid reference to CE Core. Address field is set to zero. {1800 only)

® 1invalid reference to a symbol defined in a COMMON area. Address field is set to zero. {1800 only)
S Syntax Error.
® [nvalid expression, for example, invalid symbol, adjacent operators, or illegal constant. Expression is set to zero.
® lllegal character in record. if illegal character appears in expression, label, op code, format, or tag field,
additional errors may be caused.

® Main program entry point not specified in END operand. Columns 9-12 are left blank; entry is assumed to be
relative zero.

® Incorrect syntax in EBC statement {such as no delimiter in column 35, or zero character count). Columns 9-12
are not punched; address counter is incremented by 17.

® [nvalid label in ENT or ISS operand. Statement is ignored.

T Tag Error. Column 33 contains character other than blank, 0, 1, 2, or 3 in instruction statement. Tag of zero
is assumed.

U Undefined symboi. Undefined symbol in expression. Expression is set to absolute zero.

1130 ONLY

w X or Y coordinate, or both, not within the specified range, or invalid operand. Operand set to zero.

X Character other than R or | in column 32, or character other than D or N in column 33. Field set to zero.

z Invalid condition in a conditional branch or interrupt order. Condition bits in first word set to zero.

64 1130/1800 Macro Assembler Programming

el

Page of GC26-3733-0
Revised July 20, 1970

Macro Assembler Error Codes and Messages

Cause

By TNL GN26-0610
® Table 2.
Error Code and Message
A01 MINIMUM W.S. NOT AVAILABLE
{1130} ASSEMBLY TERMINATED
A01 MINIMUM W.S. NOT AVAILABLE...
(1800) ASM TERM.
A02 SYMBOL TABLE OVERFLOW
{1130} ASSEMBLY TERMINATED
A02 SYMBOL TABLE OVERFLOW...
{1800} ASM TERM.
A03 DISK OUTPUT EXCEEDS WS.
AD4 SAVE SYMBOL TABLE INHIBITED
AO5 XXX ERRONEOUS ORG, BSS, OR
{1130} EQU STATEMENTS IN ABOVE
ASSEMBLY
AO5 ERRONEOUS STMNT ON
{1800) PASS ONE.
A06 LOAD BLANK CARDS
AO7 ABOVE CONTROL STATEMENT
{1130} INVALID
A07 INVALID CTRL STATEMENT
{1800)
AO8 MACLIB UNDEFINED
A09 PARAMETER LIST OVERFLOW
(1130} ASSEMBLY TERMINATED
A0S PARAM LIST OVFLO
{1800)
A10 MACRO AREA OVERFLOW
{1130) ASSEMBLY TERMINATED
A10 MACRO LIBR OVFLO
(1800)
A12 NEST LEVEL EXCEEDS 20
ASSEMBLY TERMINATED
A21 *LEVEL CONTROL STATEMENT
MISSING
A22 INVALID LIST DECK OPTION
ASSEMBLY TERMINATED
A40 MAIN PROG NO NAME
A41 ~ //CARDREAD
A42 ABSOLUTE REENTRANT PROG
A43 INVALID SFRLE FILE
A44 LIT TBL OVFLO
A46 XREF DATA OVFLO

Working Storage {for DM2) or Batch Processing Working Storage {for MPX)
available is less than the number of overflow sectors specified plus one.

Number of sectors of symbol table overflow is greater than the number of overflow
sectors specified.

Intermediate output inpass 1 or final disk system format output in pass 2 is larger
than Working Storage {for DM2} or Batch Processing Working Storage {for MPX)
minus the number of overflow sectors specified.

With *SAVE SYMBOL TABLE option specified:

® Program in relocatable assembly.

® Program contains an assembly error.

® Source program causes more than 100 symbols to be present in the System
Symbol Table.

XXX is the number of ORG, BSS, BES, and/or EQU statements that were undefined
in pass 1. At the end of pass 1, these erroneous statements are printed on the list
printer. If the error was due to forward referencing, it will not be detected during
pass 2.

Errors were detected during pass one. This warning message is printed at the end of
pass one.

A card containing a nonblank column in columns 1-71 has been read while punching
the symbol table {as a result of an *PUNCH SYMBOL TABLE controf statement}.

An invalid control statement has been read by the Macro Assembler. The control
statement is ignored and the assembly is continued.

The Macro Assemblier has been asked to process a SMAC statement and either no
*MACLIB control statement was previously read, or the name on the *MACLIB

statement is not found in a disk area search. The library named in the *MACLIB

statement has a library concatenated to it and this library could not be found.

A call to a macro exceeds the space specified in the N2 field of the *OVERFLOW
SECTORS control statement used with this assembly. 1f the *OVERFLOW
SECTORS control statement was not used or if the N2 field was not specified, the
Macro Assembler assumes the value of the N2 field to be zero.

An attempt was made to define a temporary macro and either the N3 field of the
*OVERFLOW SECTORS controf statement was not specified, or the the space
specified by N3 was not large enough, or the macro library was exceeded.

A macro call exceeded the allowable nest level limit of 20.

The program listed above was assembled as an 1SS subroutine without the required
*LEVEL control card. {1130 only)

An attempt was made to punch macro statements in two pass mode. {1130 only}

Mainline program being assembled has no name specified on a // ASM statement.
{1800 only)

A Supervisor control statement has been read by the Macro Assembler. The Macro
Assembler has passed this statement along to the Supervisor before terminating the
assembly. Loading and DMP operations are inhibited. {1800 only}

A non-relocatable program has been specified as reentrant. {1800 only)

When loading the source deck via *SF RLE, the file was truncated due to insufficient
sector allocation. {1800 only)

The size of the literal table as specified on the fourth parameter of the *OVERFLOW
SECTORS control statement was too small. {1800 only}

VCORE was too small to sort and merge the data for building the cross-reference
table. {1800 only)

Errors and Warnings.

65

Table 3.

Macro Update Program Error Messages

Error Code and Message

Cause and Corrective Action

D100

D101

D102

D103

D104

D105

D106

D107

D108

D109

LIBRARY NOT FOUND

INVALID SUBFIELD COL XX

ILLEGAL REQUEST

LIBRARY OVERFLOW

MACRO NOT FOUND

SEQUENCE NUMBER NOT
FOUND

LIBRARY NOT SPECIFIED

SPiLL OVERFLOW

CONTROL STATEMENT
READ

NAME STATEMENT NOT
FOUND

Librery named on a LIB, BUILD, JOIN, or CONCAT statement could not be found on
drives currently in use. If LIB, BUILD, or JOIN statement, all statements are ignored
until the next L1B, BUILD, or ENDUP statement is encountered. If CONCAT statement,
processing continues with the next control statement.

Correct the name field in the statement in error, or change the // JOB statement to include
the drive on which the named library resides, or define the macro library using an *DFILE
or *STOREDATA control statement.

if on an INSERT or DELETE statement, the sequence number was incorrectly specified,
that is, it was negative, or non-numeric, or sequence numbers were reversed. |f ona
SELECT statement, an incorrect parameter was specified. Processing continues with the
next contro! statement.

if on a NAME statement, an invelid parameter was detected. Processing continues with
next LIB, BUILD, or ENDUP statement.

XX indicates the column in which the error was found. Correct the error and rerun the
portion of the job affected.

An invalid control statement was detected, an INSERT or DELETE statement was not
preceded by an UPDATE or RENAME statement, or on an 1130, request was made for
output to paper tape or to a pack configured for paper tape. Processing continues with
the next control statement.

Correct the error and rerun the portion of the job affected.

The library last specified by a LIB or BUILD statement does not have enough room to
perform the operation. If on a JOIN or an ADD statement, the operation is suppressed
and the library is restored to its previous state. 1f on en INSERT statement, the stete-
ments listed prior to the message were the only ones that could be included. Processing
continues with the next LIB, BUILD, or ENDUP statement.

Additional space can be obtained in the current library by purging unneeded macros or
deleting unneeded statements. If this is not possible, define a larger library using an
*DFILE or *STOREDATA control statement, join the old library to a new one, and
delete the old library. Once the edditional space has been obtained, rerun the portion
of the job affected. If on an INSERT, it may be necessary to alter your INSERT control
statement as the statements in the macro library may have been resequenced.

The macro name specified on an OUTPUT, PURGE, RENAME, or UPDATE statement
could not be found in the library being processed. Processing continues with the next
control statement.

Correct the macro neme on the statement in error, or specify the correct macro library
and rerun the portion of the job affected.

The sequence number on an INSERT or DE LETE statement was out of the range of the
macro and could not be found or the sequence numbers on multipte INSERT and/or
DELETE statements for the same macro were out of order. Processing continues with
the next control statement.

Place a correct sequence number on the stetement in error and rerun the portion of the
job affected.

An attempt was made to operete on a macro without specifying a macro library.
Processing continues with the next LIB, BUILD, or ENDUP statement.

Place a L1B or BUILD statement before the statement in error and rerun the portion of
the job affected.

Macro text insertions have caused the capecity of Working Storage spill to be exceeded.
Processing continues with the next LI1B, BUILD, or ENDUP statement,

Correct the sequence numbers in the unprocessed INSERT statements, if necessary, and
rerun these statements. It may be necessary to define additional disk drives to provide
adequete Working Storage.

An * or /] statement has been read and the MUP run is termineted. On the 1800, contro}
is passed to the Supervisor which will begin processing with the next // JOB statement.
On the 1130 control is returned to the Supervisor for a // statement or to DUP for an *
statement.

The operation attempted requires a NAME statement and one has not been processed
following the last LIB or BUILD statement. Processing continues with the next LI1B,
BUILD, or ENDUP statement.

Insert a NAME statement and rerun the part of the job that was affected.

66 1130/1800 Macro Assembler Programming

Table 3. Macro Update Program Error Messages (Continued)

Error Code and Message Cause and Corrective Action

D110 INVALID NAME The name field on a L1B, BUILD, JOIN, CONCAT, UPDATE, ADD, PURGE, RENAME, or
OUTPUT statement was left blank, the namae specified was invalid, or the apostrophes are
improperly placed. |f on a LIB, BUILD, or JOIN statement, processing continues with the

. next L1B, BUILD, or ENDUP statement. If on a CONCAT, UPDATE, ADD, PURGE,

RENAME, or OUTPUT statement, processing continues with the next controi statement.

D112 NONBLANK CARD READ. A nonblank card has been read by a 1442-6 or -7 during a punch operation.

ENTER BLANK CARDS Remove stacked input from hopper, NPRO nonblank cards, place blank cards followed by

NPRO cards end stacked input in the hopper, and press reader START and for the 1130
press program START.

D116 LIBRARY NOT INITIALIZED Library named on a LIB, JOIN, or CONCAT statement has not been initialized previously.
If on a LIB, or JOIN statement, processing continues with the next LIB, BUILD, or
ENDUP statement. If on a CONCAT statement, processing continues with the next
control statement.

Initialize the library with a BUILD statement, and rerun the portion of the job affected.
1f on a8 BUILD statement, the library specified was not a data file.
Correct the BUILD statement and rerun the portion of the job affected.

D117 INVALID PARAMETER On a NAME statement, more than 20 parameters were specified. {f during the processing
of a macro, a paremeter has been detected which was not defined in the NAME statement
or a parameter greater than one character was used in the format or tag field. If during an
OUTPUT operation, the operation is aborted and processing continues with the next control
statement. If during a listing operation, this is a warning message and the invalid parameter
is printed as //N where N is 1-20. {Note: N may be truncated if the field size is exceeded.)

1f on OUTPUT, correct the NAME statement and rerun the portion of the job affected.

Errors and Warnings 67

This page intentionally left blank.

68

113071800 Macro Assembler Programming

Appendix A: General Examples of Macros and 1130 DM2

Macro Assembler Features

The following group of macros and the examples of their use
are intended to demonstrate how macro instructions can be
used to simplify assembler-language programming. If all
these macros were defined in your system, then you could use
two new statements--the READ statement and the WRITE
statement--to accomplish all the programming normally
required to effect input and output on an 1130 system having
a disk, a 1442 card read punch, and a 1403 printer. When
you issue a READ or WRITE macro, you need specify only the
name (DISK, CARD, or PRINT) of the device you want to use,
the name of the I/0O area, and, if you want, the name of your
error-handling program. This system of macros then issues
calls to the appropriate I/O control subroutines, handles
data conversion and blocking, and, at your option, handles
error checking and retries.

You could, of course, expand this set of macros to include
all I/0 devices supported by the 1130 system; you could also
write a similar set of macros to simplify I/0 programming on
the 1800 system.

Refer to the 1130 Subroutine Library manual, Order Number
GC26-5929, for a complete description of the 1130 I/0
control subroutines (DISKN, CARD1, and PRNT3) referred to in
these macros.

The first part of this sample program (until the *MACRO
UPDATE statement) is a FORTRAN program that builds a one
sector file of one-word integers having the value 1 through
320. This is necessary to handle the data file in the
sample program that follows it.

// J0B SMACOO010
LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
0000 0578 0578 0000
V2 MO6 ACTUAL 32K CONFIG 32K
J/ % % % x & & % % % ¥ £ & % & & & ¥ & &k &« € ¢ &k & * & x & &k *x & & &« & SMAC0020
// * CREATE A DISK DATA FILE NAMED *FILE1* AND FILL IT WITH & SMAC0030
// * 320 INTEGER VALUES 1 TO 320 VIA FORTRAN. * SMACO0040
. J/ % % £ % ¥ % % £ ¥ ¥ & % % & % & & & % % & % %x & & &« ¥ x & & & % *x % SMAC0050
// DUP SMAC0060
. *DELETE FILEL SMACOOT70
D 26 NAME NOT FOUND IN LET/FLET
#*STOREDATA WS UA FILEL 1 SMACOO080
CART ID 0578 DB ADDR 3220 DB CNT 0010
@) // FOR SMAC0090
\ *]0CS{DISK) SMACO100
®LIST ALL SMACO110

Appendix A:

General Examples of Macros and Macro Assembler Features 69

*ONE WORD INTEGERS
DEFINE FILE 1(320414U,K)
K =1
IVAL = 1
0O 100 I = 1,320
WRITE (1'K) IVAL
IVAL = IVAL + 1

100 CONTINUE

CALL EXIT
END

VARIABLE ALLOCATIONS

K(I)=0008 IVAL(I)=0009 I{1)=000A

STATEMENT ALLOCATIONS
100 =0028

FEATURES SUPPORTED
ONE WORD INTEGERS
10CS

CALLED SUBPROGRAMS
SDFIO0 SDWRT SDCOM SDI

INTEGER CONSTANTS
1=000C 320=000D

CORE REQUIREMENTS FOR
COMMON 0 VARIABLES 12 PROGRAM 38

END OF COMPILATION
// XEQ L 1

*FILES(1,FILE])
FILES ALLOCATION
1 0322 0001 0578 FILEL
STORAGE ALLOCATION
R 41 7AFC {HEX) WDS UNUSED BY CORE LOAD
LIBF TRANSFER VECTOR

PAUSE 04D8

SDCOM 02A5

SDI 025E

SDWRT 02DA

SDFIO O02DF
SYSTEM SUBROUTINES
ILSO4 00C4

ILS02 o0o0B3

020C (HEX) IS THE EXECUTION ADDR

// J0OB

LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
0000 1111 1111 0002

V2 MO7 ACTUAL 32K CONFIG 32K

/7 % & % &% % & ¥ Kk & & & & % % & & & & & & ¥ & ¥ &k & ¥ & ¥ %x & ¥ ¥ %k %

// * DEFINE A DISK FILE AND INITIALIZE IT FOR A MACRO LIBRARY.

[/ % % % % & & & & &k % & % & %k & % x kK & ¥ & & ¥ & ¥ & &k & ¥ & ¥ ¥ ¥ %

// DUP

*DELETE PURGE
CART ID 1111 DB ADDR 2620 DB CNT 0050

“DFILE UA PURGE 0005
CART ID 1111 DB ADDR 2620 DB CNT 0050

*MACRO UPDATE

70 1130/1800 Macro Assembler Programming

SMACO120
SMACO130
SMACO0140
SMACO150
SMACO160
SMACO170
SMACO180
SMACO190
SMAC0200
SMACO210

SMAC0220

SMACO230

SMAC0260

SMAC0270
SMAC0280
SMAC0290
SMAC0300

SMACO310

SMACO0320

SMACO0330

BUILD 'PURGE?

ENDUP

0262 0005 *#% LIBRARY END

0000

UPDATE COMPLETED

*%

//######t#t###################t#####

// * DEFINE 11 MACROS FOR THE MACROD LIBRARY NAMED *PURGE’ *

//t#t##tt#t#########################

// ASM
*MACLIB PURGE
®LIST

00001
00002
00003

00001
00002
00003
00004

00001

x % & & % & & & % % % &% ¥ & ¥ & & ¥ ¥ % & & & &k &

*

ILLRQ MACRD

#*

* PRINTS ILLEGAL REQUEST MESSAGE WHEN CALLED *
SMAC
ILLRQ LLEGAL REQUEST GENERATOR
LIST ON FORCE LISTING
* ILLEGAL REQUEST PRINT MESSAGE
LIST RESTORE LIST CONDITION
MEND
® &k & & &k & % % &k & & & & & ¥ & &k & & & & ¥ & & X%
* AUTO ERROR *
% GENERATES A DEFAULT ERROR ROUTINE WHEN ERROR #
* PARAMETER WAS O OR NOT PASSED. *
& & % ¥k ¥k ¥ & & & % & & &% &% % & & &k & % & ¥ ¥k ¥ %
SMAC
AUTOE AUTOMATIC ERROR GENERATOR
DC *+] CALL SEQ~ERROR ENTRY ADDR
MDX *+3 SKIP ARODUND ERROR SUBR
DC #ek ENTER HERE ON ERROR
BSC I #-3 RETURN TO RETRY OPERATION
MEND
% % ¥ % & & & ¥ &% & ¥ ¥ &k ¥ & & & & & & & & & & %
READ MACRO *
% SETS FUNCTION CODE AND CALLS SPECIFIC DEVICE *
% MACRO. *
* LABEL = LABEL *
* DEVC = DISK,CARD, OR PRINT *
* AREA = I/0 AREA ADDRESS OR LABEL *
* ERROR = ADDRESS OF USERS ERROR ROUTINE *
* THIS PARAMETER 1S OPTIDNAL *
* IF 0 OR BLANK,THE MACRD GENERATES #
* AN ERROR ROUTINE *
¥ & & % ¥ £ & &k % & % ¥ & % ¥ & & ¥ % ¥k % & ¥ ¥ ¥
SMAC GENERAL READ MACRO
LABEL READ DEVC,AREA, ERROR
LABEL DEVC 1y AREA, ERRDR
MEND
% % % £ ¥ ¥ & & & ¥k ¥ & & ¥ ¥k & &k & ¥k & £ & &k ¥
* WRITE MACROD *
* LABEL = LABEL
* DEVC = DISK,CARD, OR PRINT *
* AREA = I/0 AREA ADDRESS OR LABEL *
* ERROR = ADDRESS OF USERS ERROR ROUTINE *
* THIS PARAMETER IS OPTIONAL *
* IF 0 OR BLANK,THE MACRD GENERATES #
* AN ERROR ROUTINE *
&k %k &k % % ¥ ¥ & x & ¥ ¥ ¥ ¥ & &k £ ¥k &k ¥ &k ¥ ¥ %

SMACO0340

SMACO0350

SMACO0360
SMACO0370
SMACO0O380

SMACO0390
SMACO0400
SMACO0410
SMAC0420
SMACO0430
SMACO0440
SMACO0450
SMAC0460
SMACO0470
SMACO0480
SMACO0490
SMACO0500

SMACO0520
SMACO0530
SMACO0540
SMACO0550
SMAC0560
SMACO0570
SMAC0580
SMACO0590
SMAC0600
SMACO0610
SMAC0620
SMAC0630

SMACO0650
SMAC0660
SMACO0670
SMACO0680
SMACO0690
SMACO700
SMACO710
SMACO720
SMACO730
SMACO740
SMACO750
SMACO760

SMACO770
SMACO780
SMACO7?90
SMACOBOO

SMACO0820
SMAC0830
SMAC0840
SMACO0850
SMAC0860
SMACO870
SMACO880
SMAC0890
SMAC0900
SMACO0910

Appendix A: General Examples of Macros and Macro Assembler Features 71

SMAC GENERAL WRITE MACRO SMACO0920

LABEL WRITE DEVC,AREA,ERROR SMAC0930

00001 LABEL DEVC 3,AREA, ERROR SMAC0940
MEND SMAC0950

] * ok x & k& & & Xk ¥ & & ¥ ¥ & &k & &k & & & & & ¥ % SMACO9T0

* DISK MACRO * SMACO0980

% GENERATES A LIBF CALL TO DISKN. * SMAC0990

* TO TEST FOR DISKN BUSY YOU MUST CALL THE DISK * SMACl000

% MACRO DIRECTLY WITH A FUNC CODE OF 0. % SMAC1010

* LABEL = LABEL * SMACl020

* FUNC = 1 FOR READy3 FOR WRITE AND O FOR TEST SMAC1030

* AREA = I/0 AREA ADDRESS OR LABEL SMAC1040

* ERROR = OPTIONAL USERS ERROR ROUTINE * SMAC10S50

* * %k %k & ¥ % ¥k ¥ % ¥ x *x x ¥ ¥ ¥ ¥ % &k X % % ¥ % SMAC1060

SMAC DISK CALL GENERATOR SMAC1070

LABEL DISK FUNC,AREA, ERROR SMAC1080

00001 LABEL LIBF DISKN CALL DISK SUBR SMAC1090
00002 AIF (FUNC EQ 1),READ TEST FOR READ FUNC SMAC1100
00003 AIF (FUNC EQ 3),WRITE TEST FOUR WRITE FUNC SMAC1110
00004 AlF {FUNC EQ O),TEST TEST FOR TEST FUNC SMAC1120
00005 ILLRQ ILLEGAL REQUEST,ABORT CALL SMAC1130
00006 AGO END TERMINATE MACRO SMAC1140
00007 READ ANOP SMAC1150
00008 DC /1000 READ FUNC CODE SMAC1160
00009 AGO AREA GO ASSEMBLE I/0 AREA ADDR SMAC1170
00010 WRITE ANOP SMAC1180
00011 DC /3000 WRITE FUNC CODE SMAC1190
00012 AGO AREA GO ASSEM /0 AREA ADDR SMAC1200
00013 TEST ANOP SMAC1210
00014 DC /0000 TEST FUNC CODE SMAC1220
00015 o]0 *+2 1/0 AREA ADDR SMAC1230
00016 MDX -4 BRANCH TO CONTINUE BUSY TES SMAC1240
00017 MDX *+2 BRANCH AROUND 1/0 AREA SMAC1250
ooo1l8 BSS 2 DUMMY 1/0 AREA SMAC1260
00019 AGO END EXIT MACRO SMAC1270
00020 AREA ANOP SMAC1280
00021 DC AREA-1 I1/0 AREA ADDRESS SMAC1290
00022 QERR SET ERROR CK FOR DEFAULT ERROR SMAC1300
00023 AIF (QERR EQ 0)4,AUTOE SMAC1310
00024 o] ERROR USER SPECIFIED ERROR PARAM SMAC1320
00025 AGOD END EXIT MACROD SMAC1330
00026 AUTOE ANOP SMAC1340
00027 AUTOE GENERATE ERROR SUBR SMAC1350
00028 END ANOP SMAC1360
MEND SMAC1370

* x % ¥ x x % %x % Xx & ¥ % &k ¥ ¥ ¥x ¥ Xx Xx Xx %X %X x X SMAC1390

* CARD MACRO * SMAC1400

* GENERATES A LIBF CALL TO CARDl SUBROUTINE, * SMACl410

* TO TEST FOR CARD1 BUSY YDU MUST CALL THE CARD #* SMAC1420

* MACRO DIRECTLY WITH A FUNC CODE OF O. * SMAC1430

* LABEL = LABEL * SMAC1440

* FUNC = 1 FOUR READ;3 FOR WRITE AND O FOR TEST SMAC1450

* AREA = [/0 AREA ADDRESS OR LABEL SMAC1460

* ERROR = OPTIONAL USERS ERROR ROUTINE * SMAC1470

* ¥ % % % ¥x ¥x ¥x ¥ Xx % %x x x ¥ ¥x ¥ ¥x % ¥ ¥ ¥x ¥ ¥ % SMAC1480

SMAC CARD CALL GENERATOR SMAC1490

LABEL CARD FUNC, AREA, ERROR SMAC1500

00001 LABEL LIBF CARD1 CALL CARD SUBR SMAC1510
00002 AIF (FUNC EG 1),READ TEST FOR READ FUNC SMAC1520
00003 AlIF {FUNC EQ 3),WRITE TEST FOR WRITE FUNC SMAC1530
00004 AlF (FUNC EQ O),TEST TEST FOR TEST FUNC SMAC1540
00005 ILLRQ ILLEGAL REQUEST,ABORT CALL SMAC1550
00006 AGO END TERMINATE MACRO SMAC1560
00007 READ ANOP SMACL1570
00008 oc /1000 READ FUNC CODE SMAC1580
00009 AGO AREA GO ASSEMBLE I/0 AREA ADDR SMAC1590
00010 WRITE ANOP SMAC1600

72 1130/1800 Macro Assembler Programming

ﬁ

Appendix A:

00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
ooo1l7
00018
00019
00020
00021

00001
00002
00003
00004
00005

TEST

DC
AGO
ANOP
DC
MDX
AGOD

AREA ANOP

Dc

QERR SET

AUTO

END

#* 3 3% 4 % % # * # &

LABE
LABE

WRIT

TEST

AREA

QERR

AUTG

END

WH

O 3 4 R 3 # o R

LABE
LABE

HOLP

AlF
DC
AGO

E ANOP
AUTOE
ANOP
MEND

LABEL
FUNC
AREA
ERROR

SMAC
L PRINT
L LIBF
AlF
AlIF
ILLRQ

E ANOP

E ANOP

ERE
AREA
RT
+PRNTR

OuUTPT
CHCT

SMAC
L CNVRT
L LIBF

AGO
R ANOP

DC

Dc

¥ k% & ok &k ¥ K% % & ¥ & & & ¥ & ¥ & %k ¥ ¥ ¥ ¥ X
PRINT MACRD
GENERATES A LIBF CALL TO PRNT3 SUBROUTINE
TO TEST FOR PRNT3 BUSY YOU MUST CALL THE PRINT
MACRO DIRECTLY WITH A FUNC CODE OF O.

* & & % ¥ ¥ & ¥ ¥ & % % ¥ ¥ ¥ ¥ ¥ ¥ ¥ &k & ¥ ¥

* % ¥ % Kk %k % & ¥ % ¥ % & %k % ¥ ¥ % ¥k &% ¥ %k %

/2000 WRITE FUNC CODE

AREA GO ASSEM 1/0 AREA ADDR
/0000 TEST FUNC CODE

*-3 BRANCH TO CONTINUE BUSY TES
END EXIT MACRO

AREA-1 1/0 AREA ADDRESS

ERROR CK FOR DEFAULT ERRDR

(QERR EQ 0),AUTOE

ERROR USER SPECIFIED ERROR PARAM
END EXIT MACRO

GENERATE ERROR SUBR

LABEL

3 FOR PRINT AND O FOR TEST
I1/0 AREA ADDRESS OR LABEL
OPTIONAL USERS ERROR ROUTINE

4 4t 4t 3 4 & 4 I 4

PRINT CALL GENERATOR
FUNC, AREA, ERROR
PRNT3 CALL PRINT SUBR
{FUNC EQ 3)4WRITE TEST FOR WRITE FUNC
(FUNC EQ O),TEST TEST FOR TEST FUNC
ILLEGAL REQUEST,ABORT CALL

END TERMINATE MACRO

/2000 WRITE FUNC CODE

AREA GO ASSEM 1/0 AREA ADDR
/0000 TEST FUNC CODE

*-3 BRANCH TO CONTINUE BUSY TES
END EXIT MACRO

AREA-1 I/0 AREA ADDRESS

ERROR CK FOR DEFAULT ERROR
(QERR EQ 0),AUTOE

ERROR USER SPECIFIED ERROR PARAM
END EXIT MACRO

GENERATE ERROR SUBR

¥ ¥ ¥ & & k ¥ ¥ & % x ¥ ¥ ¥ & ¥ & ¥k & & & & % ¥
CONVERT MACRO
THIS MACRO HANDLES
HOLLERITH TO PRINTER CODE VIA 'HOLPR!
1 BINARY TO 6 HOLLERITH CHARS VIA *BINDC®
6 HOLLERITH TO 1 BINARY CHAR VIA *'DCBIN®

INPUT AREA {OUTPUT FOR BINDC)
CONVERSION RT. HOLPR,BINDC OR DCBIN
OUTPUT CODE FOR HOLPR

0 FOR CONSOLEs 1 FOR 1403 PRINTER
OUTPUT AREA FOR HOLPR

CHARACTER COUNT FOR HOLPR

LR BECBEBE R BEC AR B E

CODE CONVERSION CALL
g?EA.RT,+PRNTR,OUTPT.CHCT
RT GEN APPROPRIATE CODE
STOP HERE FOR HOLPR
/+PRNTR CONVERSION CODE
AREA INPUT

SMAC1610
SMAC1620
SMAC1630
SMAC1640
SMAC1650
SMAC1660
SMAC1670
SMAC1680
SMAC1690
SMAC1700
SMACL710
SMAC1720
SMAC1730
SMAC1740
SMAC1750
SMAC1760

SMAC1780
SMAC1790
SMAC1800
SMAC1810
SMAC1820
SMAC1830
SMAC1840
SMAC1850
SMAC1860
SMAC1870
SMAC1880
SMAC1890
SMAC1900
SMAC1910
SMAC1920
SMAC1930
SMAC1940
SMAC1950
SMAC1960
SMAC1970
SMAC1980
SMAC1990
SMAC2000
SMAC2010
SMAC2020
SMAC2030
SMAC2040
SMAC2050
SMAC2060
SMAC2070
SMAC2080
SMAC2090
SMAC2100
SMAC2110

SMAC2130
SMAC2140
SMAC2150
SMAC2160
SMAC2170
SMAC2180
SMAC2190
SMAC2200
SMAC2210
SMAC2220
SMAC2230
SMAC2240
SMAC2250
SMAC2260
SMAC2270
SMAC2280
SMAC2290
SMAC2300
SMAC2310
SMAC2320
SMAC2330

General Examples of Macros and Macro Assembler Features 73

74

00006 bC
00007 DC
00008 AGO
00009 RT ANOP
00010 DC
END MEND
* % % % % % %
* BLOCK MACRO
* GENERATE A B
* A =
* B =
% % % % % % %
SMAC
LABEL BLOCK
ocoo1 LIST

00002 COUNT SET
00003 DATA ANOP

00004 LIST
00005 DC
00006 LIST
00007 COUNT SET
00008 AIFB
00009 LIST
MEND
x % % ¥ Xx ¥ X
* INREG MACRO
* LOAR AN INDE
* A = THE
X

ouTeT OuUTPUT

CHCT CHAR COUNT

END

STOP HERE FOR BINDC AND DCBIN
AREA 1/0 AREA

* % % % % % ¥ % ¥ % k %X ¥ ¥k Kk X X

LOCK OF CONSTANTS.
CONSTANT TO FILL BLOCK WITH
NUMBER OF CONSTANTS TO GENERATE

* %k X & % % K % % X X &k % ¥ ¥ % %
CONSTANT DATA BLOCK

AyB GENERATOR

OFF

B

A

OFF

COUNT-1

{COUNT GT 0),DATA

* % % % &% ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥x ¥ ¥ ¥ X

X REGISTER WITH A VALUE
VALUE, B = THE REGISTER NUMBER

% % % % % % & % % ¥ ¥k ® ¥ & ¥ &k ¥ ¥k ¥x k k ¥ ¥

SMAC SET REGISTER B TO VALUE A
A INREG 8
00001 AIF (A GT 127),LONG
00002 AIF (A LT -128).LONG
00003 LDX B A
00004 AGO END
00005 LONG ANOP
00006 LDX LB A
00007 END ANOP
MEND
X % %k & % X% % x % ¥ & & ¥ % ¥ % Kk % ¥ ¥k ¥ % & X
% DECR MACRO
* DECREMENT A COUNTER FOR LOOP CONTROL.
* A = STORAGE ADDRESS OF COUNTER, IF ANY
& 8 = REGISTER NUMBER
* c = THE DECREMENT VALUE
% % %k % &% ¥x x & x % & % &£ % ¥ % ¥ %x ¥ ® & ¥ ¥ ¥
SMAC DECREMENT COUNTER
A DECR BeC
00001 AIF {B EQ O)4yLONG TEST FOR INDEXING
00002 MDX B -C INDEXED COUNTER
00003 AGO END
00004 LONG ANOP
00005 MDX L A,-C NON-INDEXED COUNTER
00006 END ANOP
MEND

1130/1800 Macro Assembler Programming

% 5% & % % %

*

*
*
%

*
%=
*
*

*
*

SMAC2340
SMAC2350
SMAC2360
SMAC2370
SMAC2380
SMAC2390

SMAC2410
SMAC2420
SMAC2430
SMAC2440
SMAC2450
SMAC2460
SMAC2470
SMAC2480
SMAC2490
SMAC2500
SMAC2510
SMAC2520
SMAC2530
SMAC2540
SMAC2550
SMAC2560
SMAC2570
SMAC2580

SMAC2600
SMAC2610
SMAC2620
SMAC2630
SMAC2640
SMAC2650
SMAC2660
SMAC2670
SMAC2680
SMAC2690
SMAC2700
SMAC2710
SMAC2720
SMAC2730
SMAC2740

SMAC2760

SMAC2770
SMAC2780
SMAC2790
SMAC2800
SMAC2810
SMAC2820
SMAC2830
SMAC2840
SMAC2850
SMAC2860
SMAC2870
SMAC2880
SMAC2890
SMAC2900
SMAC2910

0000 20

0001 0

0002 1
0000

0003
0004
0005
0006

OO~

0008 00

000A 20
0008 0

000C 1
0000

000D 1
000E O
000F O
0010 0O

0012 20

Appendix As

04262495

-1000

0061

0005
7003
0000
4C800005

6600013C

03059131

1000

0lA4

000F

7003

0000
4CB80000F

03059131

General Examples of Macros and Macro Assembler Features

+
+
+
+
+
+
+
+
+
+

+

+

% & & & ¥k %k % & & &k & & ¥ & & & % &k Kk & & & Kk & &

4 3 8 B 35N NN

*®
*
*
%
STEPA
STEPA
STEPA

READ

FILE
QERR

AUTOE

STEPB

+STEPB
+STEPB

+

+READ

+
+

+DATA

+

+QERR

+

+AUTOE

et e+

+ +

END

PROG
A-

B-
C~
D-

E-

READ
DISK
LIBF
AlF
ANOP
DC
AGO
ANOP
DC
SET
AIF
ANOP
AUTO
DC
MDX
DC
B8sC
ANOP
INRE
AIF
ANQP
LDX
ANOP

SAMPLE PROGRAM
RAM WHICH

READS ONE SECTOR DATA FILE WHICH CONTAINS

INTEGER DATA FROM DISK
READS EVERY 5TH ENTRY FROM CARD
PUNCHES EVERY 3RD ENTRY TO CARD

ADDS ONE TO EVERY OTHER ENTRY BEGINNING

WITH SECOND ENTRY

WRITES MODIFIED FILE TO PRINTER,5 ENTRIES

PER LINE

A - READ THE DISK DATA FILE

DISKyFILE+O READ FILE
1+FILE,O

DISKN

(1 EQ 1),READ

/1000
FILE

FILE-1
0
{QERR EQ 0),AUTOE

E
*+]
%43
-2
1 %=3

G 2 SET LOOP CONTROL
{316 GT 127),LONG

L2 316

& & & & & ¥ ¥k & & X % K £ 2 £ & & % &k & Kk K ¥ ¥

L]

- READ DATA CARDS AND STO IN EVERY STH ENTRY

READ CARDyDATA READ DATA FROM CARD
CARD 19 DATA,

LIBF CARD1

AIF (1 EQ 1)4READ
ANOP

DC /1000

AGO DATA

ANOP

]9 DATA-1

SET

AIF (QERR EQ 0),AUTOE
ANOP

AUTOE

DC ¢+l

MDX %43

DC L 2%

BSC I #*-3

ANOP

CARD 0 BUSY TEST
LIBF CARD1

AlF (0 EQ 1)+READ

AlF (0 EQ 3)WRITE

SMAC2930

SMAC2950
SMAC2960
SMAC2970
SMAC2980
SMAC2990
SMAC3000
SMAC3010
SMAC3020
SMAC3030
SMAC3040
SMAC3050

SMAC3070
SMAC3090

"SMAC3100

SMAC3110
SMAC3120

SMAC3130

SMAC3150
SMAC3160
SMAC3170
SMAC3180

SMAC3190

75

0013
0014

0015

0016
0017

0019

001A

oois

oolcC

001D
0000

OO01E
001F
0020
0021

0023

0025

0027

0028
0029

002A

0028

002C

002D

002E
0000

20

0

01

00

01

20

20

20

0000
70FD

040C2255

01A5
D6000062

T2FB

T0EF

03059131

1000

OlA4

0020

7003

0000
4CB00020

6600013F

C6000061

03059131

0000
70FD

02255103

01AS

03059131

2000

0l1A4

+DCHIN
+

TEST

LR R I I i GO

FND

+HINCC

WRITE

+ e+

+DATA

+0QERR

AIF (0 EQ O)4TEST

ANOP

cc /0000
MDX *-3
AGOD END
ANOP

CNVRT DATA,DCBIN CONVERT 1ST 5 CARD COLUM
LIBF DCBIN

AGO DCBIN

ANOP STOP

DC DATA

STO L2 FILE SAVE AS 5TH CHARACTER

DECR 245 DECREMENT LOOP CONTROL

AIF (2 EQ 0)yLONG

MDX 2 -5

AGO END

ANOP

B STEPB CONTINUE STEP B
PRIME 1442 FUR PUNCHING

READ CARD,DATA READ ONE BLANK CARD

CARD 1,DATA,

LIBF CARD1

AIF {1 EQ 1),READ

ANOP

DC /1000

AGO DATA

ANOP

DC DATA-1

SET

AlF {(QERR EQ 0),AUTOE

ANOP

AUTOE

DC ¥+

MDX *+43

DC L

BSC I #*-3

ANOP

INREG 2 SET LOOP CONTROL

AIF {319 GT 127),LONG

ANOP

LDX L2 319

ANOP

— CONVERT AND PUNCH EVERY 3RD ENTRY

LD L2 FILE-1 CONVERT INTEGER YO
CARD 0 BUSY TEST
LIBF CARD]

AlF {0 EQ 1),READ

AlF {0 EQ 3),WRITE

AIF {0 EQ O},TEST

ANOP

DC /0000

MDX ¥-3

AGO END

ANOP

CNVRT DATA,BINDC CARD CODE
LIBF BINDC

AGO BINDC

ANOP STOP

oC DATA

WRITE CARD,DATA PUNCH DATA WORD
CARD 3,DATA,

LIBF CARD1

AIF (3 EQ 1),READ

AIF (3 EQ 3)4WRITE
ANOP

DC /2000

AGO DATA

ANOP

DC DATA-1

SET

AlF {QERR EQ 0),AUTOE

16 1130/1800 Macro Assembler Programming

SMAC3200

SMAC3210
SMAC3220

SMAC3230
SMAC3240
SMAC3250

SMAC3260

SMAC3280
SMAC3290
SMAC3300
SMAC3310
SMAC3320

SMAC3330

SMAC3340

002F
0030
0031
0032

[oNo NN

0034 0

0035 0

0036 00

0038 01
003A 0
0038 01

003D O

003E O

003F 00

0041 O

0042 01

0044 20

0045 1

0046 20

0047
0048
0049
004A

O rr-=0

0049
0048 01

004D 0

004E 0O

Appendix A:

0031
T003
0000
4C800031

T2FD

70EF

6600013F

C6000062
8025
D6000062

T2FE

TOF9

6500FECO

6205

C50001A3

02255103

01AC

08593509

0001
0lAC
0lF6
0006

74040049

T2FF

700E

+AUTOE

+ 4+

+END

+END
319
+LONG

+END

+END

-320

+LONG

ouTPT

STEPF

+END
OUTPT

+LONG

ANOP

AUTOE

DC *+1

MDX *+3

DC EEg

BSC I *-3

ANOP

DECR 2+3 DECR LOOP CONTROL
AlIF {2 EQ 0),LONG

MDX 2 -3

AGO END

ANOP

B STEPC CONTINUE STEP C
INREG 2 SET LOOP CONTROL

AlF (319 GT 1271),LONG

ANOP

LDX L2 319

ANOP

- ADD ONE TO EVERY OTHER ENTRY *
LD L2 FILE ADD 1 TO EVERY OTHER
A ONE DATA ENTRY STARTING WITH
STO L2 FILE THE 2ND ENTRY

DECR 242

AIF {2 EQ 0},LONG

MDX 2 -2

AGO END

ANOP

8 STEPD CONTINUE STEP D
INREG 1 SET OUTER LOOP COUNT
AlIF (=320 GT 127),LONG

AIF (=320 LT -128),LONG

ANOP

LDX L1 -320

ANOP

INREG 2 SET A TO 5

AIF (5 GT 127),LONG

AIF (5 LT ~-128)yLONG

LDX 25

AGO END

ANOP

- WRITE FILE TO 1403 *
LD L1 FILE+321 FETCH DATA WORD
CNVRT DATA+7,BINDC CONVERT DATA TO 1403
LIBF BINDC

AGOD BINDC

ANOP STOP

DC DATA+7T

CNVYRT DATA+7,HOLPR,y1,PRINT,6 CODE
LIBF HOL PR

AGO HOLPRR

ANOP

bC /1

DC DATA+7

DC PRINT

DC 6

AGO END

EQU *-2

MDX L OUTPT,4 ADJUST BUFFER ADDR
DECR 2y1 DECR LINE COUNT

AlF (2 EQ 0}),LONG

MDX 2 -1

AGO END

ANOP

B8 STEPG CONTINUE TO FILL BUFFER
DECR 0,20 RESET BUFFER ADDRyNEW LINE
AIF (0 EQ 0),LONG

ANOP

SMAC3350

SMAC3360
SMAC3370

SMAC3390
SMAC3400
SMAC3410
SMAC3420
SMAC3430
SMAC3440
SMAC3450

SMAC3460
SMAC3470

SMAC3480

SMAC3500
SMAC3510
SMAC3520
SMAC3530
SMAC3540

SMAC3550

SMAC3560
SMAC3570
SMAC3580

SMAC3590
SMAC3600

General Examples of Macros and Macro Assembler Features 77

78

004F 01

0051 20

0052 0
0053 ©

0054 20

0055 ©

0056 1
0000

0057
0058
0059
0054

ccCcor

005C ©

005D
005E
00S5F

[eNeoNel

0060 O
0062
0061 31
0064
0lA4 ©
O1AS
01F5 ©
OlFé6

Ol1Fé6
OlF7
OlF8
O1F9
O1FA
O1lFB
O1FC
OlFD
O1FE
O1lFF
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
020A

[ocjoajoBoNoNoNoRoNoNoNoNoNoNoNeoNoNeNoNeol

000
000

T4EC0049

176558F3

0000
TOFD

176558F3

2000

OlF5

0059
7003
oooo
4LB000S9

6205

7101
T0E3
6038

0001

06253171
0140
0050
0050
0014

TFTF
TFTF
TF7F
TFTF
TFTF
TFTF
TFTF
TFTF
7F7F
TFTF
TFTF
7F7F
TFTF
TFTF
TFTF
TFTF
TFTF
TFTF
TFTF
TFTF
0000

OVERFLOW SECTORS SPECIFIED
OVERFLOW SECTORS REQUIRED

+WRITE
+

+
+PRINT
+
+QERR
+
+AUTCE
+

+

+END
STEPG

EX1T

% &k & % %k %k & & % %k &k ¥ k ¥ & & ¥x ¥ & & & & ¥ &

*
*

ONE
FILE

DATA

PRINT

D A I T R R I I S S S

ANCP
MDX
MDX
EXIT

bDC
EQU

QUTPT,-20

o] BUSY TEST
PRNT3

(0 EQ 3),WRITE

{0 EQ Q),TEST

/0000
®-3
END

PRINT,PRINT PRINT LINE
3,PRINT,

PRNT3

{3 EQ 3),WRITE

/2000
PRINT

PRINT-1

(QERR EQ 0),AUTOE

¥+]
*43
x-%x
*-3

2 RESET LINE COUNT
{5 GT 127),LONG
{5 LT -128)4yLONG

5

END

1 INCR DATA POINTER
STEP2 CONTINUE TO PRINT

EXIT-END OF J0OB
CONSTANTS AND BUFFERS

1 CONSTANT 1
*41 DATA FILE SECTOR ADDRESS
FILE1

320 DATA AREA

80

80 CARD BUFFER
20

*

/TFTF,20 BLANK PRINT BUFFER
/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

/TFTF

STEPA

1130/1800 Macro Assembler Programming

SMAC3s610

SMAC3620

SMAC3630

SMAC3640
SMAC3650
SMAC3660
SMAC3670
SMAC3680
SMAC3690
SMAC3700
SMAC3710
SMAL3720
SMAC3730
SMAC3740
SMAC3750
SMAC3760
SMAL3770
SMAC3780

SMAC3790

ff%%

014 SYMBOLS DEFINED

NO
// XEQ

*FILESI

ERROR(S)
L

1, FILEL)

R 41 T761E (HEX)
LIBF TRANSFER VECTOR

AND

1N

NO WARNING{(S) FLAGGED IN ABOVE ASSEMBLY

WDS UNUSED BY CORE LOAD

PRTY 095C
HOLL 090C
PRNT3 0708
HOLPR 0774
BINDC 072C
DCBIN 06D4
CARD1 05CA
DISKN 0OF9
SYSTEM SUBROUTINES
1LS04 00C4
1LS02 00B3
1LSO0 09AD
03CO0 (HEX) IS TH
~-00319 +00319 +00319
-00315 +00315 +00313
-00309 +00309 +00309
-00305 +00305 +00303
-00299 +00299 +00299
-00295 +00295 +00293
-00289 +00289 +00289
-00285 +00285 +00283
-00279 +00279 +00279
-00275 +00275 +00273
-00269 +00269 +00269
-00265 +00265 +00263
-00259 +00259 +00259
-00255 +00255 +00253
-00249 +00249 +00249
-00245 +00245 +00243
-00239 +00239 +00239
-00235 +00235 +00233
-00229 +00229 +00229
-00225 +00225 +00223
-00219 +00219 +00219
-00215 +00215 +00213
-00209 +00209 +00209
-00205 +00205 +00203
-00199 +00199 +00199
-00195 +00195 +00193
-00189 +00189 +00189
-00185 +00185 +00183
-00179 +00179 +00179
-00175 +00175 +00173
-00169 +00169 +00169
-00165 +00165 +00163
-00159 +00159 +00159
-00155 +00155 400153
-00149 +00149 +00149
-00145 +00145 +00143
-00139 +00139 +00139
-00135 +00135 +00133
-00129 +00129 +00129
-00125 +00125 +00123
~-00119 +00119 +00119
-00115 +00115 +00113
-00109 +00109 +00109
~-00105 +00105 +00103
-00099 +00099 +00099
-00095 +00095 +00093
-00089 +00089 +00089
-0008% +00085 +00083
~-00079 +00079 +00079
-00075 +00075 +00073
-00069 +00069 +00069

Appendix A:

E EXECUTION ADDR

+00317
+00313
+00307
+00303
+00297
+00293
+00287
+00283
+00277
+00273
+00267
+00263
+00257
+00253
+00247
+00243
+00237
+00233
+00227
+00223
+00217
+00213
+00207
+00203
+00197
+00193
+00187
+00183
+00177
+00173
+00167
+00163
+00157
+00153
+00147
+00143
+00137
+00133
+00127
+00123
+00117
+00113
+00107
+00103
+00097
+00093
+00087

+00083
+00077

+00073
+00067

+00317
+00311
+00307
+00301
+00297
+00291
+00287
+00281
+00277
+00271
+00267
+00261
+00257
+00251
+00247
+00241
+00237
+00231
+00227
+00221
+00217
+00211
+00207
+00201
+00197
+00191
+00187
+00181
+00177
+00171
+00167
+00161
+00157
+00151
+00147
+00141
+00137
+00131
+00127
+00121
+00117
+00111
+00107
+00101
+00097
+00091
+00087

+00081
+00077

+00071
+00067

SMAC3800

SMAC3810

General Examples of Macros and Macro Assembler Features 79

-00065
-00059
-00055
-00049
-00045
-00039
-00035
-00029
-00025
-00019
-00015
-00009
-00005

+00065
+00059
+00055
+00049
+00045
+00039
+00035
+00029
+00025
+00019
+00015
+00009
+00005

+00063
+00059
+00053
+00049
+00043
+00039
+00033
+00029
+00023
+00019
+00013
+00009
+00003

INPUT DATA CARDS

- 5
- 10
- 15

[T R I |
Pt et et gt Pt
WWNN -
ownowm

- 170
- 175
- 180
- 185
- 190
- 195
- 200
- 205
- 210
- 215

225
230
235
240
245
250
255
260
265

LI Y N O Y O I A |

275

- 285

80 1130/1800 Macro Assembler Programming

+00063
+00057
+00053
+00047
+00043
+00037
+00033
+00027
+00023
+00017
+00013
+00007
+00003

+00061
+00057
+000S51
+00047
+00041
+00037
+00031
+00027
+00021
+00017
+00011
+00007
+00001

SMAC3820
SMAC3830
SMAC3840
SMAC3850
SMAC3860
SMAC3870
SMAC3880
SMAC3890
SMAC3900
SMAC3910
SMAC3920
SMAC3930
SMAC3940
SMAC3950
SMAC3960
SMAC3970
SMAC3980
SMAC3990
SMAC4000
SMAC4010
SMAC4020
SMAC4030
SMAC4040
SMAC4050
SMAC4060
SMAC4070
SMAC4080
SMAC4090
SMAC4100
SMAC4110
SMAC4120
SMAC4130
SMAC4140
SMAC4150
SMAC4160
SMAC4170
SMAC4180
SMAC4190
SMAC4200
SMAC4210
SMAC4220
SMAC4230
SMAC4240
SMAC4250
SMAC4260
SMAC4270
SMAC4280
SMAC4290
SMAC4300
SMAC4310
SMAC4320
SMAC4330
SMAC4340
SMAC4350
SMAC4360
SMAC4370
SMAC4380

- 290
- 295
- 300
- 305
- 310
- 315
- 320

SMAC4390
SMAC4400
SMAC4410
SMAC4420
SMAC4430
SMAC4440
SMAC4450

PUNCHED OUTPUT

+00003
+00006
+00009
+00012
-00015
+00018
+00021
+00024
+00027
-00030
+00033
+00036
+00039
+00042
-00045
+00048
+00051
+00054
+00057
-00060
+00063
+00066
+00069
+00072
-00075%
+00078
+00081
+00084
+00087
-00090
+00093
+00096
+00099
+00102
-00105
+00108
+Q0111
+00114
+00117
-00120
+00123
+00126
+00129
+00132
-00135
+00138
+00141
+00144
+00147
-00150
+00153
+00156
+00159
+00162
-00165
+00168
+00171
+00174
+00177
-00180
+00183
+00186
+00189

Appendix A:

General Examples of Macros and Macro Assembler Features 81

82

+00192
-00195
+00198
+00201
+00204
+00207
-00210
+00213
+00216
+00219
+0022?2
-00225
+00228
+00231
+00234
+00237
-00240
+00243
+00246
+00249
+00252
-00255
+00258
+00261
+00264
+00267
-00270
+00273
+00276
+00279
+00282
-00285
+00288
+00291
+00294
+00297
-00300
+00303
+00306
+00309
+00312
-00315
+00318
+00602 +00307

1130/1800 Macro Assembler Programming

@ﬂ‘\

*DFILE Statement 47-48,61-62

*MACLIB Control Statement 2,22

*MACRO UPDATE Control Statement 47
*OVERFLOW SECTORS Control Statement 1-2
*STOREDATA Statement 47-48

* Used to Designate Comment Statements 5

],JBRARY END 61-62
MACRO END 61-62

@ sign 48

$ Sign 48

+ Sign

used as a macro expansion indicator, 7
used to indicate a positive number, 27
4 Sign 48

ADD Statement 51,52-53
Additional Records, Continuing
Calls to 12-13
AGO Pseudo-0Op
use in label and blank parameter
checking, 30
AGOB Pseudo-Op 17-18

special considerations in use, 18-19
AIF Pseudo-Op 15-16,17

restriction of use, 29-30
AIFB Pseudo-Op 15-16

restriction of use, 29-30

special considerations in use, 18-19

Ampersand, Used as a Concatenator 23

example, 24-25
ANOP Pseudo-Op 19-20
Apostrophe

restriction of use in the name of a
stored macro, 5
used in automatic name
generation, 22-23
Assemble if Back Pseudo-Op
See AIFB Pseudo-Op.
Assemble if Pseudo-Op
See AIF Pseudo-Op.

Assembler Language, A symbolic

programming language.

Assembler-Language Statement, An

assembler-language instruction or a
pseudo-operation.

Assembler-Language Instruction, An
instruction that the Macro Assembler
can translate into exactly one
machine-language instruction.

Automatic Label Generation

See Automatic Name Generation.

Automatic Name Generation 1,22-23.

The method by which different labels
can be generated during each
expansion of a macro instruction in
the same assembly.

Glossary—Index

special requirements on its use in
nested definitions, 57-58

Blank and Label Parameter Checking
Using AGO 30
BUILD Statement 48

Calling
macros, 7
Macro Update Program, 47

Calls
continuation of to additional
records, 12-23

macro, 7,12
Character String
in message generation, 11-12
substitution for a parameter,
Characters, Special 6,10,47
Checking
for blank parameters, 28-29
for label and blank parameters
using AGO, 30-31
for unspecified parameters,
for unspecified parameters, a
macro, 34
Comma
lack of use in continuation of NAME
statement, 52
use in a macro instruction, 7-8
Comments
designating, 5,58
listed within the expansion, 25
See also Remarks.
CONCAT Statement 49-50
Concatenation 2. The process by which
two things (such as two parts of an
instruction, or two macro libraries)
are logically joined together.
of macro instructions, 23-25
of macro libraries, 49-50
Concatenating a Multiplicity of
Libraries, 49-50
Concatenators
ampersand, 23
CONCAT statement,
period, 23
Conditional Assembly Pseudo-Ops
Continuing Calls to Additional
Records 12-13
Control Statement 47. A statement that
provides instructions to some part of
the Disk Management Program or Disk
Utility Program.
continuation of, 47
Copying an Existing Library 49
Core Storage
See Main Storage.

10-11

17-18

49-50

15-18

Glossary-Index 83

Creating a Language 1,37-45

DC-Generating Macro 34-35
Defining
a language, 1
a macro, 1,6
a macro during a Macro Update
Run, 51-53
a macro instruction, 5

Definition Prototype Statement 5-6,53.
The statement in a macro
definition that specifies the
op code and parameters of the
macro.

printing of, 6
DELETE Statement 55-56
in automatic name generation in nested
definitions, 57-58
in renaming a library, 51
in updating a library, 50

Deleting a Macro from a Library 53

Deleting Statements from a Macro 55-56

Designating Comments 5,58

Disconnecting Concatenated Libraries 50

Disk Management Program (DMP) 47. A group
of 1800 MPX disk utility and
maintenance programs that operate
under control of the Batch-Processing
Monitor Supervisor.

Disk Monitor System, Version 2 (DM2), The
second version of an operating and
programming system that provides for
the continuous batch-processing
operation of the 1130.

estimating size required, 1-2
initializing, 2,47-48

Disk Utility Program (DUP) 47. A group of
1130 disk utility and maintenance
programs that operate under control of
the Supervisor.

Division Operator 27

DMP

See Disk Management Program.
DM2

See Disk Monitor System, Version 2.
DUP

See Disk Utility Program.

EJCT Pseudo-Op 15,17,18
END Statement 15,17,18
ENDUP Statement 58-59
EQU Statement 20
symbolic tag field in, 27
Error Flags 4,63-64
Error Messages 4,63,65-67
Estimating
size of N2, 2
size of N3, 2
Expansion 7. The coding generated when
the Macro Assembler encounters a macro
instruction; also, the process of
generating this coding.

Field Specifications on Macro Update
Control Statements 47

84 1130/1800 Macro Assembler Programming

Flags
error, 4,63-64
warning, 4,63

HDNG Pseudo-Op 15,17,18

Indirect Parameter Substitution 26,32-33.
The feature of the Macro Assembler
that allows different parameters on
the macro call statement to be
substituted for a specific
parameter in the macro expansion,
depending on some condition to be
inspected during assembly.

Initializing Disk Space 2,47-48

INSERT Statement 54,55

in automatic name generation in nested
definitions, 57-58
in renaming a library, 51
in updating a library, 50
Inserting Statements in a Macro
restrictions on, 55,56
Insufficient Parameter Names 52

54-55,56

JOIN Statement 49-50

Joining Macro Libraries
logically, 2,22,49-50
physically, 49-50

Label Field Parameters 8
Label and Blank Parameter Checking
Using AGO 30
Label Generation
See Automatic Name Generation.
Language Creation 1,37-45
Library
See Macro Library.
LIB Statement 48
List Control Pseudo-Ops 6
LIST Pseudo-Op 15,17,18
Listing of
comment statements, 6
macro calls, 25
macro libraries,
LNAME 3,48
Logically Joining Macro
Libraries 2,22,49-50

56-57

MAC Statement 5,25,51,53
Macro Assembler, The translating program
that accepts as input
assembler-language instructions,
pseudo-operations, and macro
instructions.
error flags, 63-64
error messages, 63-65
language, 37-45
main-storage requirements, 3,4
performance, 4
purpose, 1
sample programs, 33-35,69-84
sign-off message, 63
warning flag, 63

Macro Calls 7,12
continuation to additional records, 12
listing of, 6
nested, 3,10,23,26,32
Macro Definition 1,2. A sequence of
instructions that define the op code
and parameters of a macro instruction
and the coding to be generated when
the macro is assembled.
during a macro update run, 51-53
nested, 3
Macro Expansion 7
Macro instruction 1. A source program
statement that, when encountered by
the Macro Assembler, causes a
predefined sequence of statements to
be assembled.
defining, 5
using, 7
Macro Library 3. A collection of macro
definitions, saved on disk, that can
be used by any program that references
that library.
copying, 49
disconnecting, 50
initializing, 3
joining logically, 49-50
joining physically, 48-49
maintaining, 3
naming, 47-48
specifying, 48
Macro Name 1,5,22
Macro Parameter Substitution 32-33
Macro Update Program 4,47-62. A DMP or
DM2 program that allows you to
initialize and maintain macro
libraries.
calling, 47
control statement sequencing, 59
error messages, 65-67
making efficient use of, 59-60
sample program, 61-62
Macros
stored, 1,2-3
temporary, 1-2
Main Storage Requirements
1130, 3-4
1800, 4
Making Efficient Use of the Macro
Update Program 59-60
MEND Statement 5,51,53
termination of AGO and AGOB
search, 17
termination of AIFB search, 16
Message Generation 11-12
Message Macro 34
Messages, Error 4,63,65-67
Move Macro 34
MPX
See Multiprogramming Executive
Operating System.
Multiple Concatenation 49-50
Multiprogramming Executive Operating
System (MPX), An operating system
for the 1800 that can control

processes and provide
multiprogramming and background
processing.
MUP
See Macro Update Program.

of a library, 47-48

of a macro, 1,5,22

of a parameter, 5-6,7,52
Name Generation, Automatic 1,22-23,57-58
NAME Statement 47,51-52

continuation of, 51-52

used in the sample program, 61-62
Name Subfield Left Blank on AIF and
AIFB Statements 16
Nested Macro Calls 3

in automatic name generation, 23

in continued calls, 32

in definitions defined during a macro

update run, 53

in indirect parameter

substitution, 26,32

passing a set of parameters, 10

restrictions on, 3
Nested Macro Definitions 3. Macro

definitions that are defined
so that a call to one occurs
within the expansion of the other.
SELECT N considerations, 57-58

Obtaining a Listing of Macro
Libraries 56-57
Omitting
name subfields on AIF and AIFB
statements, 16
operand on AGO and AGOB statements, 17
parameters, 8-9
Op Code 5. That field of an
assembler-language statement that
specifies the operation to be carried
out by the CPU.
Operand Field 6
Operand Left Blank on AGO and AGOB
Statements 17
Optional Remarks 25
OUTPUT Statement 54

Parameters
blank, checking for, 28-29
in a macro instruction, 1
indirect substitution, 26,32-33
insufficient names, 52
label field, 8
macro to check for unspecified
parameters, 34
name, 5-6,7
omitting, 8-9
substituting a character string
for, 10-11
substitution, 6,32-33
unspecified, checking for, 17-18
Performance of the Macro Assembler 4

Glossary-Index B85

Period
example of use as a concatenator, 24
in DEC and XFLC statements and
concatenation, 25
used as a concatenator, 23
used to designate comments, 58
Physically Joining Macro
Libraries 48-49
Plus Sign,
used as a macro expansion indicator, 7
used to indicate a positive number, 27
Printing
definition prototype statements, 6
inhibition of, 6,56-57
sequence numbers, 6,55,61-62
Pseudo-Operation 3. An assembler-language
statement that provides information
for the Macro Assembler rather than
generating executable code.
AGO, 17-18
AGOB, 17-18
AIF, 15-16,17
AIFB, 15-16
ANOP, 19-20
conditional assembly, 15-17
EJCcT, 15,17,18
END, 15,17,18
HDNG, 15,17,18
Lisr, 15,17,18
MEND, 15,17,18
PURG, 15,17,18
SET, 20-22
SPAC, 15,17,18
Pseudo-0Ops
See Pseudo-Operation.
Punching Source Statements 54
PURG Statement 22
PURG vs. PURGE 54
PURGE Statement 53-54

Reclaiming Library Space 53-54
Records, Continuing Calls to
Additional 12-13
Remarks
optional, 25
retaining, 5
RENAME Statement 51
Renaming a Macro in a Library 51
Restrictions
on AIF, AIFB, and SET pseudo-ops, 29-30
on inserting statements, 55,56
on nested macro calls, 3
on nested macro definitions, 3
on parameter names, 6,11,51
Retaining Remarks 5

Sample Programs
creating a language, 37-45
Macro Assembler, 33-35
Macro Update Program, 61-62

86 1130/1800 Macro Assembler Programming

1130 Macro Assembler, 69-84

SELECT Statement 56-57
SELECT N as Used with Automatic Name
Generation in a Nested

Definition 57-58
SELECT P as Used with NAME

Statement 59
Semicolon, Used in Indirect Parameter
Substitution 26,32
Sense Switch 2 6,56-57
Sequencing MUP Control Statements 59
Sequence Numbers, Printing of 6,55,61-62
SET Pseudo-Op 20-~22

restriction of use, 29-30

symbolic tag field in, 27
Sign-0Off Message 63

Signs,
a, 48
$, 48
+, 7,27
¥, 48

SMAC Statement 5,25,51,53
Source Statements, Punching
of 54
Space, Reclaiming 53-54
SPAC Pseudo-Op 15,17,18
Special Characters 6,10,47
Special Requirements on the Use of
Automatic Name Generation in
Nested Definitions 57-58
Specifying the Macro Library 48
Statements
deleting from a macro, 55-56
inserting into a macro, 54-55,56
See also the name of a particular
statement or the function it performs.
Stored Macro 1,2-3,5. A macro
instruction that is saved on disk
and can be used by any program.
Substituting a Character String for a
Parameter 10-11
in message generation, 1-12
Substitution
indirect parameters, 26,32-33
parameter, 6,32-33
Symbol Table, for 1130 DM2 3-4
Symbolic Tag Field 27-28

Tag Field, Symbolic 27-28

Temporary Macro 1-2,5. A macro
instruction that is defined for use
only during one specific assembly.

Terminating a Macro Update Run 58-59

Text 6,7. A list of assembler-language
instructions, calls to other macros,
and/or pseudo-ops to be generated
when a macro call is encountered.

Truncation of Information Following

Column 71 6,10,25

Unspecified Parameter Checking 17-18
UPDATE COMPLETED 59,62
UPDATE Statement 50
Updating & Macro in a Library 50
See also DELETE Statement and
INSERT Statement.
Using a Macro Instruction 7

Warning Flag 4,63

X, Used to Designate an Addition of a
Statement to a Macro or

Library b55,61-62

Glossary-Index 87

GC26-3733-0

BV

International Busingss Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10801
[USA Only]

1BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International]

V'STN ul paiulid 008L/OELL WAl

0€§LE9ZID

&

- -—-_—-——-_—“-—'-——-————-————_——————__.—_—————_——_—_—-——_—_——-——_——

READER'S COMMENT FORM

IBM 1130/18N0 Macro Assembler Programming Order Number GC26-3733-0

@ Please comment on the usefulness and readability of this book, suggest additions and deletions,
and list specific errors and omissions (give page numbers). All comments and suggestions become
the property of IBM. If you want a reply, be sure to give your name and address.

Name Occupation

Address

@ Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC26-3733-0

YOUR COMMENTS, PLEASE...

This publication is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems, Your answers to the questions on the back of
this form together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and pub-
lishing this material, All comments and suggestions become the property of IBM,

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality,

——_———————————————————————————.—_——-—————————————u———-—-————p—.——-

BUSINESS REPLY MAIJL

NO POSTAGE STAMP NECESSARY IF MAILED IN U. 8. A,

POSTAGE WILL BE PAID BY . . .

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. D78

JISIM

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 106801
[USA Dnly]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International}

fold
FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.
L
]
]
T
]
I
N
]
L]
I
]
]
]
fold

1
1
1
1
1
1
!
1
1
|
1
1
1
1
i
1
1
i
1
1
1
1
1
1
1
1
1
|
t
!
i
1
1
|
i
1
1
i
i
i
i
i

J

VSNwpRnuld HOBL/OELL A

READER'S COMMENT FORM

IBM 1130/1800 Macro Assembler Programming Order Number GC26-3733-0

® Please comment on the usefulness and readability of this book, suggest additions and deletions,
and list specific errors and omissions (give page numbers). All comments and suggestions become
the property of IBM. If you want a reply, be sure to give your name and address.

Name Occupation

Address

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC26-3733-0

YOUR COMMENTS, PLEASE,.,

This publication is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of
this form together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for wi'iting and pub-
lishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

BUSINESS REPLY MAIL

NGO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY .. .

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. D78

TIBIML

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Dnly]

IBM World Trade Corporation
821 United Nations Plaza, Naw York, New York 10017
[International]

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

008L/0ELL NAI \‘;

0-€ELE-QZID "V'S'N Wi pajulid

ta

Xs

READER'S COMMENT FORM

IBM 1130/1800 Macro Assembler Programming Order Number GC26-3733-0

® Please comment on the usefulness and readability of this book, suggest additions and deletions,
and list specific errors and omissions (give page numbers). All comments and suggestions become
the property of IBM. If you want a reply, be sure to give your name and address.

Name Occupation

Address

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC26-3733-0

YOUR COMMENTS, PLEASE...

This publication is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of
this form together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and pub-
lishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the 1BM sales office serving
your locality.

BUSINESS REPLY MAIL

NG POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY .. .

IBM Corporation
Monterey & Cottle Rds.
San Jose, Cdlifornia
95114

Attention: Programming Publications, Dept. D78

BBV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International]

fold
FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF,
.
]
I
]
]
|
]
T
]
|]
]
]
]
]
L
]
|]
fold

J

J

008L/0tL L WAl

0-EELE-9Z0D "V'S'N Ul PauLIg

J

Technical Newsletter File Number 1130/1800-21 (MPX Version 3)

Re: Order Number

This Newsletter Number

Date July 20,

Previous Newsletter Numbers

IBM 1130/1800 MACRO ASSEMBLER PROGRAMMING
© IBM Corporation 1970

This technical newsletter provides pages for IBM 1130/1800 Macro
Assembler Programming (Order Number GC26-3733-0). Pages to be
replaced are listed below:

iii-iv
63-66
A change to the text is indicated by a vertical line in the left

margin. A revised illustration is indicated by a bullet to the
left of the caption.

Summary of Amendments

The Macro Assembler Error Flags table and Error Codes and
Messages table have been updated to reflect the changes made in

Version 3 of the 1800 Multiprogramming Executive Operating
System.

Please put this cover letter at the back of the manual to provide
a record of changes.

£ IBM Corporation, Programming Publications, Dept. D78, San Jose, Calif. 95114

\

PRINTED IN US.A.

GC26-3733-0
GN26-0610

1970

None

TR

