Ahhhbhh

1130 COBOL
Text — Volume |

Programmed Instruction

First Edition June 1971

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality, Address comments concerning the
contents of this publication to IBM Corporation, DPD Education Development -
Publications Services, Education Center, South Road, Poughkeepsie, New York 12602.

© Copyright International Business Machines Corporation 1971

ACKNOWLEDGMENT

The following information is reprinted from COBOL Edition 1965,
published by the Conference on Data Systems Languages (CODASYL), and
printed by the U.S. Government Printing Office.

"Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this
report as the basis for an instruction manual or for any other
purpose is free to do so. However, all such organizations are
requested to reproduce this section as part of the introduction to
the document. Those using a short passage, as in a book review, are
requested to mention "COBOL" in acknowledgement of the source, but
need not quote this entire section.

"COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of
organizations.

"No warranty, expressed or implied, is made by the contributor or by
the COBOL Committee as to the accuracy and functioning of the
programming system and 1language. Moreover, no responsibility is
assumed by any contributor, or by the committee, in connection
therewith.

"Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures for proposing changes should be
directed to the Executive Committee of the Conference on Data System
Languages.

"The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming
for the UNIVAC (R) I and II, Data Automation Systems copyrighted
1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator
Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-
2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized +the use of this material in whole or in
part, in the COBOL specifications. Such authorization extends to the
reproduction and use of COBOL specifications in programming manuals and
similar publications."

PREFACE

In this programmed course you will learn to code programs using the
1130 subset of the American National Standard COBOL language,
concentrating upon basic programming techniques in typical commercial
card and disk applications. A description of the type of applications
and a list of the specific language features and programming techniques
covered are presented in each 1lesson introduction along with the
approximate study time. '

Problem descriptions in most of the 1lessons include a detailed
flowchart as a coding gquide. A few problems will require that you
construct a flowchart before you begin coding the problem solutions.
This course assumes that you can already construct and interpret
flowcharts. This course also assumes that you have some knowledge of
computing system fundamentals and basic concepts of the IBM-1130. If
you are unfamiliar with any of these areas you should notify your
advisor before beginning this course.

CONTENTS

Lesson
Number

Title

Instructions to the Student

VOLUME I 1
2

P pa
RowoNoUesWw

e
EWwN

VOLUME II 23

35

36
37
38

39

40
41
42
43

Introduction

Basic Input—-Output Statements;
Coding Forrat

Basic Standard Coding Entries
Introduction to Data Files
Introduction to File Processing
Card File Processing and Branching
Use of Record Variables
Horizontal Spacing

Vertical Spacing (1)

Vertical Spacing (2)

Vertical Spacing Control For
Printed Output

Library Entries

Sequential Disk File Output
Sequential Disk File; Arithmetic
Operations

Editing Numeric Data
Conditional Branching

Disk File Updating

Disk File Processing
Conditional Statements (1)
Conditional Statements (2)
Channel-Skipping and Arithmetic
Program Coding Example

Branching Statements (1)
Branching Statements (2)

Data Formats

Edit Characters

Table Definition

Use of Tables

Processing with Indexes -
CALLing Subprogram

Payroll Program Processing (1)
Payroll Program Processing (2)
Sequential Disk Processing
Sequential Disk Updating
Random Files Accessed
Sequentially

Sequential and Random Accessing
Programs

Random Files Accessed Randomly
Random File Updating

1130 COBOL Within the Monitor
System

COBOL Error Messages and
Diagnostic Aids

1130 COBOL Compiler Extensions
CALLable Subprograms

File Accessing Technique
Program Overlays

Lxamination

ndvisor's Guide

Number of
Frames

17
17
24
17
24
24
30
20

38

Estimated Page

Time
(Minutes)

45

45

45
45
45
45

60
45
30
30

75

60
45
45

75

45
60
u4s
60

21
49
67
83
111
133
157
179
207

223
239
251

277
297
315
339
357
385
399
415
437

447
475
497
519
541
557

581
611
621
667
683

695
715
733
759
781
803
821
835
851
875
895

909

LIST OF FIGURES

Figure Page Figure Page T'igure Page Figure Page
do. No. No. No. No. Ho. No. No.
1 3 26 105 51 200 76 335
2 6 27 108 52 201 77 347
3 13 28 113 53 203 78 352
4 17 29 115 54 210 79 353
5 24 30 121 55 213 80 354
6 28 31 122 56 218 81 361
7 32 32 124 57 220 82 367
8 35 33 127 58 226 83 370
9 37 34 129 59 229 84 372
10 39 35 138 60 235 85 373
11 43 36 140 61 243 86 372
12 e 37 153 62 247 87 379
13 57 38 161 63 2514 88 381
14 58 39 163 64 255 89 387
15 59 uo 166 65 256 90 388
16 62 41 168 66 257 91 389
17 73 42 172 67 273 92 390
18 77 43 175 68 287 93 391
19 86 by 183 69 294 94 393
20 88 457 186 70 318 95 396
21 20 ué i87 71 321 96 402
22 92 u7 189 72 324 97 4oy
23 o4 48 191 73 328 98 u09
24 97 4o 193 74 330 99 u2y

25 99 50 195 75 332 100 429

Figure
I‘]o .

101
102
103
104
105

106

Page
No.

433
439
4uo
4u1
4u3
Luy
450
h63

468

48y

512
515
516

521

543
544
551

553

Figure
No.

127
128
129
130
131
132
133
131
131
135
136
137
138
139
140
1141
142
143
101
145
146
147
148
1149
150

151

Page
No.

560
561
564

567

574

574

584
586
587

588

596
598
604
606
608
614
616

618

Figure
No.

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177

Page
No.

623
625
627
628
631
6310
636
638
639
642
643
6ul
645
646
647
6u9
651
660
662
664
665
670
677
678
680

689

Figure
No.

178
179
180

181

=Y

e2
183

184

Page
No.

690

702
706
707
709
719
732
735
742
743
745
747
749
752
755
762
767
769
771
774
776
886

887

INSTRUCTIONS TO THE STUDENT

This course has been especially designed to provide you with a
general orientation to the American National Standard COBOL language as
well as to teach you to use specific language features and the PLM and
it has been designed to do this as efficiently and quickly as possible.
Whether you acquire these skills efficiently and quickly, however, will
be determined by the way you go through the course.

This course has been carefully programmed. It is presented in a
sequence of steps or frames. You will be asked to respond to each
frame. A confirmation will then follow the frame showing a correct
response so that you may verify your response.

It is important that you respond carefully to each frame. Students
who merely "read"™ a programmed text often find they are unable to
perform a task in a subsequent frame, while those who respond to each
frame and then check their responses find they can perform the task
cguickly and easily. The following frames will illustrate the types of
responses you will be asked to make.

1. You may be asked to select a correct answer from several choices
given in the frame. Since the correct response is given
following the frame, you will need a card (an IBM card would be
appropriate) to mask the correct response until you have
formulated your own response. Take a card now, and place it just
below the next set of three asterisks on this page. Now move the
card down the page to the following set of three asterisks.

* * *

This 1is the confirmation portion of the frame where the correct
response is found.

2. Most frames contain new information or present information in a
new context. Every frame will contain an instruction or a
question requiring a response. In this frame you are to choose
or select from two possibilities to complete a statement, and
then move your card down to expose the confirmation and the next
frame.

The language that is taught in this course is:
a. FORTRAN

b. American National Standard CORBOL

* * *

3. The confirmation in the preceeding frame was b. You should have
marked b as your response. If both choices were correct the
confirmation might be "Both"™ or "Either"; if neither a nor b were
correct, the confirmation would be "Neither."

Try the same question again, and remember to move your card after
you have formulated your response.

The language that is taught in this course is:

a. PL/I
b. ALGOL
* * *
Neither

4. Many times you will be asked to select from more than two
choices. If you were given four choices, a, b, ¢, and 4, and you
selected all of them as correct, the confirmation might be:

a. Eoth
b. All of these

c. any of these

b,c

(If none of the choices is correct, the confirmation will be "None of
these. ")

. i . e e . i . . o — —— — T~ ———— — — —— —— ———— — " ——— - - ———————————

5. The confirmations "Either"™ and "Both" mean that choice a and
choice b should have been selected. "All of these" and "Any of
these" mean that every possible choice should have been selected.
Suppose choices a, b, ¢, and d are presented and the confirmation
is "Any of these." You should have selected:

a. any but not all of the choices
b. four choices
C. a, b, ¢, and d

d. at least one choice

* * *

—— o - - -_ ——— ——— — i ——— —— —— — — . - —_— —— " . s Tt o e o e T

6. You are not expected to spend eight hours a day studying this
course. If possible, include other activities between lessons.
Avoid the other extreme of too much time between lessons. Don't
allow time periods of a week to elapse between lessons.

Match the actions below with the points in a lesson at which the
action should be performed.
1) End of lesson a. Get a cup of coffee
2) Middle of frame b. Take a nap
c. Go out to lunch
d. Continue with the
programmed text
* * *

1) a,b,c

2) d

7. In some frames you will be asked to construct a response rather
than select one. A lunch break should be taken at the end of a

* * *

lesson

8. A blank line in a frame does not indicate the length of response
you are asked to construct. A blank line could indicate that you
are to write:

a. one five-letter word.
b. six or eight words.
* * *
Either
9. You will also be asked to write American National Standard COBOL

statements as you progress through the course. The confirmation
to these frames will be shown as American National Standard COBOL
statements on coding forms. In order to respond to a frame in
which you are asked to write statements, you would need:

a. COBOL coding forms.

b. pencils.

Before you begin the sequence of frames for Lesson 1, be sure you
have the following items on hand.

Language Specifications Manual
COBOL coding forms, Form X28-146u4
Pencils

IBM card

Several lessons in this course will require that you code an American
National Standard COBOL solution to a problem incorporating statements
and rules covered in the 1lesson and previous 1lessons. In the
confirmation for these solutions, statements taught in the immediate
lesson are followed by a number in parentheses indicating the initial
frame in the sequence covering that statement. You should go to the
appropriate sequence and review the information whenever you do not
understand the use of a statement in the confirmation solution.

Some of the statements and features taught in this portion of the
course and in the subsequent portion on coding techniques and disk
applications are IBM extensions to the American National Standard COBOL.
The extensions are indicated by shading in the Language Specifications
Manual so that, whenever necessary, you can distinguish between
standards and IBM extensions.

Now begin Lesson 1.

LESSON 1

LESSON 1

INTRODUCT ION

In 1959 a group of computer professionals, representing the U.S.
government, manufacturers, universities and users, formed the conference
On DAta SYstems Language (CODASYL). At the first meeting, the conference
agreed upon the development of a common language for the programming of
commercial problems. The proposed language would be capable of
continuous change and development, it would be problem-oriented and
machine-independent, and it would use a syntax closely resembling
English, avoiding the use of special symbols as much as possible. The
COmmon Business Oriented Language (COBOL) which resulted met most of the
requirements.

As its name implies, COBOL is especially efficient in the processing
of business problems. Such problems involve relatively little algebraic
or logical processing; instead, they usually manipulate large files of
basically similar records in a relatively simple way. This means that
COBOL emphasizes the description and handling of data items and
input/output records.

In the years since 1959, COBOL has undergone considerable refinement
and standardization. WNow, an extensive subset for a standard COBOL has
been approved by ANSI (The American National Standards Institute), an
industry-wide association of computer manufacturers and users; this
standard is called American National Standard COBOL.

Aside from the COBOL language itself, you should know what happens
from the time your program is written until the desired output documents
are completed. This sequence is illustrated on the following page.

After the programmer has written the COBOL program on coding sheets,
the program is punched into cards. This 1is the source program. A
program called the compiler is loaded into the source computer. Then
the source program 1is 1loaded into the computer and the compiler
translates it into a language the computer can understand (machine
language). This version of the original COBOL program is the object
program. The object program is then ready to be loaded into the object
computer to process the data as specified by the programmer. A single
computer may be wused as the source computer and then as the object
computer.

In this lesson you will look at a COBOL program and from it determine
relevant information about the problem and the program.

This lesson will require approximately three-quarters of an hour.

T 2I0b6TJa

Not
punched

IBM

COBOL Coding Form

SYSTEM

PUNCHING INSTRUCTIONS

PAGE OF

PROGRAM

GRAPHIC

CARD

PROGRAMMER

PUNCH

FORM #

IDENTIFICATION
'

| TS S B S A |

73] [E]

SEQUENCE
PAGE) (ISENIAL)

CONT.
>

COBOL STATEMENT

A 3 [IEALY

« “

<
3

—_— e | e e

N| = | = | == = === =—=lOl0lCJO0]O[C|O[OC|O|*

ClO|O|{N|O]|O|a]|[WIN|= (OO |V |D|WIN|—

L

Used to Area A
number -

-

Area B

the lines

of a program

(These numbers are not
required in the source deck.)

Used for program entries

-

Used for
name of
program

Figure 1 shows the special form on which you will write your
COBOL programs. Figure 1 shows that a COBOL program is written
on a:

a. COBOL source program.

b. COBOL Coding Form.

* * *

e e e = = e —— T ———— — ———— T T ————— T = o i ———— - - -——

Columns 1-6 of the coding form are used for sequencing. Figure 1
show that:

a. you can use these columns to number the 1lines of your
program.

b. sequence numbers must always be punched in the source deck.

The text of a COBOL program is made up of statements. Each
statement is a program entry. According to Figure 1, the
statements you use in your COBOL program will be written in:

a. columns 1-6.

b. columns 1-72.

Neither (columns 8-72)

4. There are two areas defined on a COBOL coding form called area A
and area B. Figure 1 shows that area A includes columns
and area B includes columns ...ceceee o
* * *
8-11
12-72
5. Some program entries in a COBOL program must begin in area A and
others must begin in area B. An entry beginning in area A should
begin in the first column in that area. If an entry must begin
in area A, that entry should begin in:
a. column 8.
b. column 12.
* * *
a

Figure 2 contains a problem statement and its related COBOL program.
Although the problem itself has been simplified for use as an exanmple,
the problem statement is probably more detailed than you would generally
receive. (Only the portion of the coding form containing our program is
shown in the example.)

Problem Statement

A program is to be written to process data on an

IBM-1130 computer. The program is also to be] A
compiled on this computer.

The I1/0 devices to be used are a 1442 card]
reader and 2310 disk drives. B
Two input files are to be used. The first file,

an old master file on cards, contains customer 1 C
number, name, address, balance and the maximum

balance ever carried for the customer.

The second input file is a disk file. It 1
contains only the customer number and the D
month's total purchase. 4

For each record in the old master file there is

a record in the transaction file.

A new master file is to be created on disk (the E
output file). This file is to contain customer E

number, name, address, present balance and
maximum balance. 4

The new present balance is to be computed by .
adding the total from the transaction file to F
the balance in the o0ld master file. .

If this new balance is greater than the old 1
maximum balance, the maximum balance is to be G
changed accordingly. 4

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0000.5.00.0000.5.00.0000.5000000005.0..000025000.0....5....0..

100 IDENTIFICATION DIVISION.

101 PROGRAM-ID. LESSON-1-EXAMPLE.

102 ENVIRONMENT DIVISION.

103 CONFIGURATION SECTION.

104 SOURCE~COMPUTER. IBM-1130.

105 OBJECT-COMPUTER. IBM-1130.] A
i06 INPUT-OUTPUT SECTION.

107 FILE-CONTROL.

108 SELECT TRANSACTION-FILE ASSIGN TO DF-1-500-X. :

109 SELECT MASTER-FILE ASSIGN TO RD-1442. B
110 SELECT NEW-MASTER-FILE ASSIGN TO DF-2-600-X.

111 DATA DIVISION.

112 FILE SECTION.

113 FD MASTER-FILE.

114 LABEL RECORDS ARE OMITTED. 1

115 01 CUSTOMER-RECORD.

116 02 CUSTOMER-NUMBER PICTURE X(6).

117 02 NAME PICTURE X(20). C
118 02 HOME-ADDRESS PICTURE X(30).

119 02 OLD-BALANCE PICTURE 9999V99.

120 02 MAXIMUM-BALANCE PICTURE 9999V99. J

121 02 FILLER PICTURE X(12).

122 FD TRANSACTION-FIIE. 1

123 BLOCK CONTAINS 10 RECORDS.

124 LABEL RECORDS ARE STANDARD.

201 01 PURCHASE-RECORD. D
202 02 CUSTOMER-NUMBER-T PICTURE X(6).

203 02 TOTAL-PURCHASE PICTURE 9999V99. J

204 02 FILLER PICTURE X(68).

205 FD NEW-MASTER-FILE 1

206 BLOCK CONTAINS 4 RECORDS

207 LABEL RECORDS ARE STANDARD.

208 01 NEW-CUSTOMER-RECORD.

209 02 CUSTOMER-NUMBER PICTURE X (6). E
210 02 NAME PICTURE X(20).

211 02 HOME-ADDRESS PICTURE X(30).

212 02 PRESENT-BALANCE PICTURE 9999V99.

213 02 MAXIMUM-BALANCE PICTURE 9999V99. J

214 PROCEDURE DIVISION.
215 BEGIN.

216 OPEN INPUT MASTER-FILE, TRANSACTION-FILE
217 OUTPUT NEW-MASTER-FILE.

218 MAIN-ROUTINE.

219 READ MASTER-FILE AT END GO TO EOJ.

220 MOVE CUSTOMER-NUMBER OF CUSTOMER-RECORD TO
2201 CUSTOMER-NUMBER OF NEW-CUSTOMER-RECORD.

2202 MOVE NAME OF CUSTOMER-RECORD TO NAME OF NEW-CUSTOMER-RECORD.
2203 MOVE HOME-ADDRESS OF CUSTOMER-RECORD TO

2204 HOME-ADDRESS OF NEW-CUSTOMER-RECORD.

2205 MOVE OLD-BALANCE OF CUSTOMER-RECORD TO OLD-BALANCE

2206 OF NEW-CUSTOMER-RECORD.

2207 MOVE MAXIMUM-BALANCE OF CUSTOMER-RECORD

2208 TO MAXIMUM-BALANCE OF NEW-CUSTOMER RECORD.

221 ADD TOTAL-PURCHASE TO OLD-BALANCE]
GIVING PRESENT-BALANCE. F

222 IF PRESENT-BALANCE GREATER THAN MAXIMUM-

223 BALANCE OF NEW-CUSTOMER-RECORD COMPUTE MAXIMUM- G

224 BALANCE OF NEW-CUSTOMER-RECORD=PRESENT-BALANCE.

301 WRITE NEW-MASTER-RECORD.

302 GO TO MAIN-ROUTINE.

303 EOCJ.

304 CLOSE MASTER-FILE, TRANSACTION FILE, NEW-MASTER-FILE.

305 STOP RUN.

Figure 2

- —— o —— —— — o — o T . " Tl . 1 7, . T S . . e o i S . T S - — ————— ——— ——— > o ——————————— .

6. Read the problem statement in Figure 2. This will give you an
opportunity to see the relationship between a problem statement
and the COBOL program written to solve it. A COBOL program is
divided into four divisions:

Identification Division,
Environment Division,
Data Division, and
Procedure Division.

The divisions of a COBOL program must always be in the order

shown in the program in Figure 2. The first division in a COBOL
program must be the Division.

Identification

7. The information in the Identification Division is wused for
documentation. Therefore, the purpose of the Identification
Division is to:

a. give the computer instructions for executing the program.

b. describe, or identify, a program and distinguish it from
other programs.

8. The division of a COBOL program used to identify the program is
the Division.

Identification

8. The division of a COBOL program used to identify the program is
the Division.

Identification

———— s —— —————— — ———————— — —— ————— ——— ———— - - — ——

9. The second entry in the program in Figure 2 is the PROGRAM-ID
paragraph. A program must be given a unique name in the PROGRAM-
ID paragraph of the Identification Division. The name given to
the program in Figure 2 is:

a. LESSON-1-EXAMPLE

b. PROGRAM-ID

a
(Although the program name is the only entry required in the
Identification Division, you may also include such things as the date
the program was written, the programmer name, and remarks about the
progran.)

10. The rprogram in Figure 2 shows that the Division
immediately follows the Identification Division.

* * *

Environment

——————————————————————————————————— - e e e ke o e o ————) ——————

11. In the problem statement in Figure 2, the equipment to be used
for the program is described in the statement(s) identified by:

a. bracket A.

b. bracket B.

—— v —— s = e e e = . > = ——— - ——— - -— -

12. Brackets A and B in Figure 2 show that the equipment required by
a program is identified in the:

a. Identification Division.

b. Environment Division.

13.

You would look in the Environment Division of a COBOL program to
identify the:

a. input/output devices required in processing.

b. computer(s) on which the program 1is to be compiled and
executed.

e i e e i s o ——————————————— - - — ——— - — — - —— - ———— — — — —— —— — —~ " ———

Can a COBOL program be executed on an 1130 computer of different
core size than the computer on which the program was compiled?

a. Yes.
b. No.
* * *
Match.
1) Identification a. Names the program
Division
2) Environment b. Describes equipment
Division
c. Identifies input/output devices
required and computer to be used
d. Identifies the program
* * *
a,d
b,c

The portion of the problem statement in Figure 2 identified by:

a. brackets C and D describes the records contained in the input
files to be used.

b. bracket E describes the records contained in the output file
to be created.

10

17. Figure 2 shows that +the records in files that are used in
processing are described in the Division.

18. According to Figure 2 each record in the input file called
MASTER-FILE contains all the information in the record described
under CUSTOMER-RECORD. Variables such as CUSTOMER-NUMBER, NAME
and HOME-ADDRESS describe data:

a. punched into cards.
b. to be used in the program.

* * *

19. If you wanted to know what data is recorded on the records of a
particular file, you would look in the Division.

* * *

20. To identify input/output devices required by a COBOL program, you
would look in the Division.

Environment

21. The Data Division of a COBOL program:
a. identifies the program.

b. describes records to be used in the program.

22. The 1last division of a COBOL program is the Procedure Division.
This division contains instructions that direct the data--
processing activities of the computer. Therefore, the Procedure
Division:

a. contains specific instructions for solving a data-processing
problen.

b. identifies the input/output devices required by the program.

23. Bracket F in Figure 2 shows that:

a. the Procedure Division describes the records to be used in
the program.

b. mathematical calculations can be specified in the Procedure
Division.

24. Bracket G 1in Figure 2 shows that the Procedure Division can
contain conditional instructions. You can see that the
instruction indicated by bracket G will cause:

a. comparison of PRESENT-BALANCE with MAXIMUM-BALANCE OF NEW-
CUSTOMER—-RECORD.

b. the maximum balance to be adjusted only if the present
balance is greater.

25. The Procedure Division also contains instructions to direct the
input and output operations necessary in a program. For example,
a READ instruction causes a record to be read, or accessed, from
an input file. The data in the record is then available for
processing. You can infer that a WRITE instruction would cause:

a. a record to be written, or placed, in an output file.

b. a record to be accessed from an input file.

11

26. The Procedure Division of a COBOL program contains instructions:
a. for solving a data-processing problem.
b. specifying mathematical calculations.

c. to direct input and output operations.

* * *
All of these
27. Match.
1) Identification a. Describes records to be used
Division in the program
2) Environment b. Describes equipment required
Division by the program
3) Data Division c. Contains instructions for solving
the data-processing problem
4) Procedure d. Identifies the program
Division
e. Names the program
* * *
1) d,e
2) b
3) a
4) ¢

12

0
1..

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

Figure. 3 is an example of a COBOL program. The program is a sales
analysis. It was written for a department store to find departmental
totals for the year and the final total for the entire store. Each
employee is to be listed with the total amount he sold.

0 1 1 2 2 3 3 4 4 5 5 6 6 7
e9¢ces00cea50ei0aieabeeea0acee5ieee0ieee5eeae0ieeaS5eaa0eaaaS....0..

IDENTIFICATION DIVISION.
PROGRAM-ID. SALES-ANALYSIS.
ENVIRONMENT DIVISION. '
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT EMPLOYEE-MASTER ASSIGN TO DF-1-400-X.
SELECT PRINTFILE ASSIGN TO PR-1132-C.
DATA DIVISION.
FILE SECTION.
FD EMPLOYEE-MASTER
BLOCK CONTAINS 5 RECORDS
LABEL RECORDS ARE STANDARD.
01 EMPLOYEE-RECORD.
02 DEPARTMENT PICTURE XX.
02 EMPLOYEE-NUMBER PICTURE X (5).
02 NAME PICTURE X(20).
02 SALES PICTURE 9999V99.
02 FILLER PICTURE X(20).
FD PRINTFILE
LABEL RECORDS ARE OMITTED.
01 PRINT-RECORD PICTURE X(120).
WORKING-STORAGE SECTION.
77 DEPARTMENT-1 PICTURE XX VALUE IS 99.
77 DEPARTMENT-TOTAL PICTURE 99999V99 VALUE IS ZEROS.
77 FINAL-TOTAL PICTURE 999999v99 VALUE IS ZEROS.
01 WORK-RECORD.
02 FILLER PICTURE X(15) VAIUE IS SPACES.
02 EMPLOYEE-NUMBER PICTURE X(5).
02 FILLER PICTURE X(15) VAILUE IS SPACES.
02 NAME PICTURE X(20).
02 FILLER PICTURE X(15) VAIUE IS SPACES.
02 SALES PICTURE 9999.99.
02 FILLER PICTURE X(55) VALUE IS SPACES.
01 TOTAL-RECORD.
02 FILLER PICTURE X(100) VALUE IS SPACES.
02 TOTALS PICTURE $$59999.99.
02 FILLER PICTURE X(22) VAILUE IS SPACES.

Continued on next page.

13

0
1..

217
218
219
220
221
222
223
224
301
301

301
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

0 1 1 2 2 3 3 4 4 5 5 6 6 7
«5....0..0.5....000..5....00..2.5.0..000..5.00.000005.22.0....5....0..

PRCCEDURE DIVISION.
BEGIN.
OPEN INPUT EMPLOYEE-MASTER OUTPUT PRINTFILE.
MAIN-SEQUENCE.
READ EMPLOYEE-MASTER AT END GO TO TAKE-TOTAL.
IF DEPARTMENT GREATER THAN DEPARTMENT-1 PERFORM TAKE-TOTAL.
SET-UP.
ADD SALES TO DEPARTMENT-TOTAL.
MOVE DEPARTMENT OF EMPLOYEE-RECORD TO DEPARTMENT OF WORK-RECORD.
1 MOVE EMPLOYEE-NUMBER OF EMPLOYEE-RECORD
TO DEPARTMENT OF WORK-RECORD.
2 MOVE NAME OF EMPLOYEE-RECORD TO DEPARTMENT OF WORK-RECORD.
3 MOVE SALES OF EMPLOYEE-RECORD TO SALES OF WORK-RECORD.
MOVE DEPARTMENT TO DEPARTMENT-1.
WRITE PRINT-RECORD FROM WORK-RECORD
BEFORE ADVANCING 2 LINES.
GO TO MAIN-SEQUENCE.
TAKE-TOTAL.
ADD DEPARTMENT-TOTAL TO FINAL-TOTAL.
MOVE DEPARTMENT-TOTAL TO TOTALS.
MOVE ZEROS TO DEPARTMENT-TOTAL.
WRITE PRINT-RECORD FROM TOTAL-RECORD
BEFORE ADVANCING 2 LINES.
FINISH.
MOVE FINAL-TOTAL TO TOTALS.
WRITE PRINT-RECORD FROM TOTAL-RECORD
BEFORE ADVANCING 2 LINES.
CLOSE EMPLOYEE-MASTER, PRINTFILE.
STOP RUN.

28. To find the name of the program in Figure 3, you would look in
the Division.

Identification

- ——— ———— o ———— —— ——— i — T o . 1. T o o S T —— T ———— T~ ——— . ———— ——

——— s - ———————— e o S T —— ————— — - —— . — - ————— ——— . — — . . o = o o

30. To identify the computer(s) on which the program is to be
compiled and executed, you would lock in the Division.

Environment

31. The names following SOURCE-COMPUTER and OBJECT-COMPUTER identify
the computers on which the program 1is to be compiled and
executed, respectively. The two groups of characters in the
names specify an IBM 1130 computer.

————————————————————————— — T ——— — — o ———— — — . - - ——— " —— — o ——— — —— - -~ ——

32. The inputs/output devices required by the program can be found in
the Division.

Environment

33. The Data Division of the COBOL program in Figure 3 describes:
a. records to be used in the program.

b. data to be used in the program.

34. Which of the follcwing represents information to be used in the
program in Figure 3?

a. NAME
b. LOCAL-ADDRESS

c. SALES

35. The 1last division in the program in Figure 3 is the Procedure
Division. This division:

a. describes the records to be used in the program.

b. contains specific instructions for solving the data-
processing problem.

* * *

36. The READ instruction in Figure 3 1in the Procedure Division
specifies:

a. an input operation.

b. a mathematical operation.

15

37. The statement on line 224 in Figure 3 in the Procedure Division
specifies:

a. an input operation.
b. a conditional instruction.

* * *

Neither
(It specifies the mathematical operation of addition.)

— e e e e e e e e e e e e e e o e e e e e e e s e —— i — — ——— —— —— ————— = ———

38. The statement on line 303 in the Procedure Division specifies:
a. an output operation.

b. an input operation.

e s o s 1 i e o o S i o e . o e e e oy e e o e o S e o e e

16

Read the problem statement in Figure 4. In order to be useful in
this lesson, the statement is more detailed than you probably would
receive.

An installation is equipped with an IBM 1130 computer.]A

A program for billing is to be written. Three input/output
devices will be required: a 1442 card reader, an 1132 printer and
a disk drive.

There are two input files. The master file, on disk , contains—.C
the customer's name, address and number. B
The transaction file contains a card for each purchase which has |
the customer number, stock number of parts purchased, description D
of parts, quantity purchased, unit price, and the total amount of
purchase. |
All purchases for each customer are to be totaled. State tax is |
to be computed at uU%. Then the total amount due 1is to be E
calculated.

The output is to be on a preprinted bill in the following form:

NAM
ADDRESS
PART # DESCRIPTION QUANTITY UNIT PRICE TOTAL
7732 14"LANX CABLE 100 .82 82.00
7743 . 85"BALLESOCKET 50 .20 10.00 F

SUB-TOTAL 92.00
TAX 3.68
TOTAL 95.68

[O S — — o — — —— —— — — ——— —— — —— =}
e . — s — — — — — — — — T p— — — T qt— — —— S—

e ————————— " ————— —— ——— — —————— - ————— — " - —————————— ———— — ———

39. As a programmer given the job of writing a COBOL program to solve
the problem described in Figure 4, you might first decide on a
naive for the program. You would record this name in the
Division of your program.

Identification

17

18

40. You would include the information contained in bracket A of
Figure 4 in the Division of your program.

Environment

41. The information in bracket B of Figure 4 should be included in
the Division of your program.

Environment

42. In the Data Division of your program you should include a
description of the:

a. records described in brackets C and D of Figure 4.

b. output records, as illustrated in bracket F of Figure 4.

. —— i > o - ————————— - — —— — —— ———— " — — — — — ————— — ———— ——_—— o — — > o T o T e i o

43. The calculations indicated by bracket E in Figure 4 should be
specified in the Division.

* * *

Procedure

-~ — — ————————— -———— - o ——— — o —————

44. You should include the instructions to perform the input and
output operations specified in the problem statement in Figqure 4
in the Division.

* * *

Procedure

—————————— - — -~ —— —————————— -~ — _— —————— - —————— —————— - — — — . ——— ————

SUMMARY:

You have now completed Lesson 1 in which you have learned to identify
the divisions of a COBOL program according to their function:

Identification Division—--identifies the program
Environment Division--identifies the input/output devices
required and the computer to be used
Data Division—--describes the records to be used in the
program
Procedure Division--contains instructions for solving the
data-processing problem

You have seen how a COBOL program is written on a standard coding
form. You have learned to relate various information in a problem
statement to corresponding entries in a COBOL source program.

Procedure Division

The Procedure Division contains the instructions needed to solve a
problem. To accomplish this, several types of COBOL statements are
used:

1. Input Operations - Beginning the Program.

The first step in building the Procedure Division is to make the
records contained in the input files available for processing. Use of
the OPEN verb establishes a line of communication with each file-input
and output. A check is made to ascertain that each file is available
for wuse, and the first record of the input file is brought into the
buffer - a special area of internal storage. Other housekeeping tasks
are also performed.

Next, a READ command makes the first record from each file available
for processing. AT END and INVALID KEY phrases may be appended to the
READ statement. These options will be discussed later.

2. Arithmetic Statements

The basic arithmetic operations are all accomplished by verbs
specified to implewent addition, subtraction, multiplication and
division. The verb COMPUTE allows the programmer to incorporate more
than one arithmetic operation in a single statement.

3. Conditional Statements

Some instructions examine data to determine whether a given condition
is present, and depending on what is found, to carry out an appropriate
course of action. The IF verb permits control of the program to ke
switched or branched to various locations within the program depending
on the evaluation of one or more tested conditions. Possible error
conditions pertaining to data being processed or to results emerging
from computation of the data may be detected and handled through
particular usages of the condition statements.

4. Data Manipulation Statements

Data items may be copied from one storage location to another through
the use of the MOVE verb. The data being copied will exist in two
places - the original location and the location to which the data is
mroved.

5. Output Operations
When all arithmetic and data-manipulation statements have Lkeen
executed, the results will be output onto an external medium - printer

listing, punched card, or magnetic disk. The output function is
verformed by means of the WRITE verb.

19

6. Procedure Branching Statements

Normally, COBOL instructions are processed sequentially, one at a
time. The GO TO verb allows the programmer to deviate or branch away
from the sequential processing of instructions. Such deviation permits
the program to switch direction depending on a variety of circumstances,
such as the nature of data being processed or the type of results
derived from arithmetic operations. The PERFORM verb also allows
alteration of program direction.

7. Ending the Program
After all data has been read, manipulated and results written onto an
output device, the program must be ended. The CLOSE verb closes files
that have been 1in use, and the STOP RUN verb initiates COBOL ending
procedures after which the execution of the program is halted.

END OF LESSON 1

20

LESSON 2

21

LESSON 2 - BASIC INPUT-OUTPUT STATEMENTS; CODING FORMAT

INTRODUCT ION

As a computer programmer you will find it useful to be able to
display a message to the computer operator at a particular point during
execution of your program. For example, you may want to provide the
operator with a special instruction should an error be detected in the
data being processed. You may want +to include a provision in your
program for requesting special information when a portion of the program
has been executed and then for accepting a reply from the operator.
Such messages and replies may be displayed and accepted through the
console typewriter. In this lesson you will learn to include provisions
in your program for displaying a message to the operator and accepting
his reply.

Specific COBOL language features you will learn to use in this lesson
are:

ACCEPT statement with the FROM CONSOLE option
DISPLAY statement with the UPON CONSOLE option
Working-Storage Section of the Data Division
Level number 77

PICTURE clause with picture character X
Division headers

Paragraph name in the Procedure Division

This lesson will require approximately three quarters of an hour.

22

1. Subsequent frames will often include card column captions such as
these:

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0..0.5.00.0000.5.00.0000.5.000.0000.500..000005000.0....5....0..

ACCEPT NAME FROM CONSOLE.

The statement shown above allows the computer operator to key a
name into storage through the console typewriter.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0..0.5.00.0000.5.0000000.500..00...5....0....5....0....5....0..
ACCEPT DEPARTMENT FROM CONSOLE.
You might expect that the statement above allows:
a. a department number to be entered into storage through the

console typewriter.

b. a value such as 201 or 516 to be keyed into storage.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

ACCEPT NAME FROM CONSOLE.
The statement above allows the operator to:
a. key in a name such as JOHN SMITH.

b. key in only the word NAME.

- —— ———— > —— —— - — —— e ———————————— i ———— —— " —— v ——— —

23

he

G sanbtyg

This diagram illustrates execution of the statement

112 5 20 24 76 32 36 40

44

AlCICElPT] [Tl0[B-IcloDiE] [FRIOM [cloNSIOlLIE].

1 I

Console Typewriter

Ef—é STAFF1

T

[=SR = i ol S U N
[S < oA T
1B H
o

(1) When JOB-CODE is specified in
an ACCEPT statement, a value
such as STAFF1 can be keyed

Central Processing Unit

S|{TIA|F|F|1
JOB-CODE

—Working Storage

into the variable JOB-CODE
through the console typewriter.

Both

Figure 5 shows how data is keyed into storage using the ACCEPT
statement. Read the explanation and look at the illustration in
Figure 5. The data name JOB-CODE in Figure 5 is the name of a
location in working-storage. This location is resexrved to hold a
value (in this case an actual job code). The location is called
a variable because it may contain various values in the course of
the program. According to Figure 5:

a. STAFF1 is a value that may be keyed into the variable JOB-
CODE through the console keyboard if JOB-CODE is specified in
an ACCEPT statement.

b. the value keyed in through the console keyboard will ke
stored in the working storage location specified 1in the
ACCEPT statement.

* * *

(When an ACCEPT statement with the FROM CONSOLE option is executed, a
system generated nmessage code followed by AWAITING REPLY 1is written

on

the console typewriter. Execution is then suspended until the

same message code followed by a message is keyed in through the
console keyboard. Execution is resumed and the message is stored in
the working-storage location specified in the ACCEPT statement.)

0

0

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

ACCEPT NAME FROM CONSOLE.
The statement above would:

a. allow a value of NAME such as JOHN HANCOCK to be keyed into a
location in working storage.

b. store the word NAME in a location in working storage.

0

0

Using the statement in Frame U4, write a statement that would
cause today's date to be entered into a location in working
storage through the console typewriter.

* * *

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

ACCEPT DATE FROM CONSOLE.

25

C

6. Write statements in Area B of your COBOL coding form to allow the
computer operator to enter a value of the following variakles
through the console typewriter.

1) PAYMENTS-DUE
2) CUSTOMER-NUMBER
* * *

1)

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1,005 0000005000005 0000ebenec0ecebeeei00eeeb50eaa00ecadb....0..

0

ACCEPT PAYMENTS-DUE FROM CONSOLE.

2)

0 1 1 2 2 3 3) 4 5 5 6 6 7

1...5....0.0..5....0..0.500..0000.5.00.0.0..5.0..0....5....0....5....0..

26

ACCEPT CUSTOMER-NUMBER FROM CONSOLE.

(Statements can begin anywhere in Area B.)

—-——— s — —————— ————————— T — ———— — T~ —— ——— - — ———— " — o ————— —— T ~_— —— ———

7.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5...0000.5.0..0000.5..0.0.0..5....0....5.0..00.0.5000.0....5....0..

ACCEPT JOB-CODE FROM CONSOLE.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

DISPLAY JOB-CODE UPON CONSOLE.

The ACCEPT statement above would allow a value of the variable
JOB-CODE to be entered through +the console typewriter. The
DISPLAY statement would cause data to be written on the console
typewriter, as illustrated in Figure 6. Read the explanation and
look at the illustration in Figure 6.

27

82

9 2anbtg

This diagram illustrates execution of the statement

112 16 20

44

218
wn
=)
—
m

Bl-cloplEl [ulPN [clol

=
)
O
[
=
~
)
o

Console Typewriter

@ The value CLERK?2 is transferred !

Central Processing Unit

C/IL|E|R|K|2
JOB-CODE

to (written on) the console

typewriter from the variable

JOB-CODE

—Working Storage

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5.¢ee00ceebeeeelieeedecaclecaedecealencedececl0enaadeacaleca5....0..

DISPLAY NAME UPON CONSOLE.
According to Figure 6 the statement above would be used to:
a. allow a value of NAME to be entered into storage.

b. write a value of NAME on the console typewriter.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....00...5.0..0....5.0..0.00.500.00.0..5.0..00.0..50...0....5....0..

DISPLAY PROGRAM-NAME UPON CONSOLE.
The statement above would be used to:
a. Wwrite the word PROGRAM-NAME on the console typewriter.

b. allow a value of PROGRAM-NAME to be entered into a variable
in working storage through the console keyboard.

* * *

Neither (write a value of PROGRAM-NAME on the console typewriter.)

9. Which statement below would be used to write a value of a
working-storage variable such as 12/21/68, 05/07/68, or 1/12/69
on the console typewriter?

d.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
P IR ¢ I P ¢ PR ROl | [- T PR T T R DRI | RO I |

DISPLAY DATE UPON CONSOLE.
b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0.0..5.20.0.000.5.00.0000.5000.0000.5000.00...5....0..

DISPLAY 12/21/68 UPON CONSOLE.

e e e e o e e e e e e e e e e e e e e e o e~ — - ———— -~ — " —— T — ——_ — -~ —

29

10. Write statements to write a value of the following variables on
the console typewriter.

1) OPERATOR-NAME

2) EXACT-TIME

1)

G 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.0..0.0..5.0..0....5....0....5....0....5....0..

DISPLAY OPERATOR-NAME UPON CONSOLE.
2)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l..o.5.cec0eciebecii0cieebeeeel0eceebeeeeleeeeSeeeelaceabanaalecaade...0.,

DISPLAY EXACT-TIME UPON CONSOLE.

e o . — ——— — ———— —————— -~ —— — — — ——— - ——— — _— — ————— — — T - — - ——— " —— — - > - ———

11. A Working-Storage Section is not the same as the working-storage
on the V2 disk pack. It is instead a data area in core.

Defining a Working-Storage Section in the Data Division does not
refer to working-storage in the disk pack.

a. True.

b. False.

e e = — — — — ——— — — —— —— — ————— > ———— — —— ————— " = — — — " o s = o — -~ = - ——— —

30

i2.

0 0 i 1 2 2 3 3 4 4 5 5 6 6 7
l1...5...0000.500.000005000.000025000.00005000e0000b00ae0caade..0.,

DATA DIVISION.
WORKING-STORAGE SECTION.
77 JOB-CODE PICTURE XXXXXX.

Before a variable such as JOB-CODE can be specified in an ACCEPT
statement (or a DISPLAY statement), a location in working-storage
must be reserved for JOB-CODE. This is done by defining JOB-CODE
in the Working-Storage Section of the Data Division as shown
above.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

DATA DIVISION.
WORKING-STORAGE SECTION.
77 LAST-NAME PICTURE XXXXXXXXXX.

The entries above:

a. reserve a location in working storage for values of LAST-
NAME.

b. define the variable LAST-NAME so that it can be specified in
an ACCEPT statement

* * *

Both

(The number 77 before the data name LAST-NAME indicates that LAST-
NANME will have values that are single data items. The 1level number
77 1is always used for single data items, which are also called
independent data items.)

13. Match each explanation with the correct portion of a COBOL

program.
1) Definition of a a. Allows a value to
variable in the be keyed into a
Working-Storage variable defined
Section of the in working storage
Data Division through the
console typewriter
2) ACCEPT statement b. Reserves a location
in working storage
3) DISPLAY statement c. Writes a value of a
variable in working
storage on the
console typewriter
* * *
1) b
2) a
3) ¢

e e e o e e e e e e e e e e e e o e e e o o e e s ————————————— o ——— —— ——————— ———— —

31

32

14.

COBOL Character Set

(in collating sequence, beginning with the highest value)

~ A %]

or

(numbers)

(letters)

(equal sign)

(quotation mark, apostrophe, or single quotation mark)

(comma)

(slash, virgule, stroke)

(hyphen or minus symbol)

(right parenthesis)

(asterisk)

(currency symbol)

(plus symbol)

(left parenthesis)

(period or decimal point)

(blank) (The notation frequently used to indicate a blank
is B.)

Figure 7

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0000e5.00.0....5....0..

DATA DIVISION.
WORKING-STORAGE SECTION.
77 JOB-CODE PICTURE XXXXXX.

PICTURE clause

In the description of JOB-CODE above, the six X-characters in the
PICTURE clause specifiy that values of JOB-CODE will be six
characters 1long, although values transferred to JOB-CODE may be
less than six characters 1long. Each X specifies that the
character in that position may be any character in Figure 7. A
value that could be transferred to JOB-CODE as it is defined in
the Data Division entry above is:

a. STENO
b. CLERK3
C. LENGR#2

d. TECHBU4

a,b,d
(The word PICTURE 1is a necessary part of the PICTURE clause; c is
wrong because # is not acceptable in an X picture.)

e ———— e o o e o o o S o o — - - i S e e A e e S o Sl e o e i o

15.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0..0.5.0..0....5....0....5....0....500..0....5....0..

DATA DIVISION.

WORKING-STORAGE SECTION.
77 TIME PICTURE XXXXX.

A value that could be transferred to TIME as it is described in
the above Data Division entry:

a. could be made up of any characters in Figure 7.

b. could be a maximum of five characters.

c. could be 12:35.

a,b

(Although it is possible that you will use additional characters from
the EBCDIC character set as a programmer on the Jjob, you will be
using the COBOL character set in this course.)

——— e = - - —— s — - ——— -—

33

16. Match the values with the appropriate variables described below:
1)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.0..0....5....0....5....0....5....0....5....0..

77 PAY-CODE PICTURE XXXX.
2)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0.00.5....0.00.5.0.0.0.00.5....00...5..0.0000.5000.00.0..5....0..

77 PROBLEM PICTURE XXXXX.
3)

0 0 1 1 2 2 3 43 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

77 PERSONNEL-CODE PICTURE XXX.

a. Ars039

b. 620951

c. UPDT1

d. LGA4

e. 9208

* * *

1) d,e
2) a,c,d,e
3) d

e e e e e e e e e - = ——— —— ——— —— — . ——— - —— . = . - - —————— - - ——— — - —

34

GE

g 9xnbta

Format Requirements for Sample Data Division

IBM COBOL Coding Form

SYSTEM PUNCHING INSTRUCTIONS
PROGRAM GRAPHIC CARD
PROGRAMMER IDATE PUNCH FORM #
SEQUENCE |21, B required hyphen COBOL STATEMENT
(PAGE) [(SERIAL} | © /
1 314 617 |8 12 16 29 24 28 2 3t 40 44 48 52
1
[[lof1] ! /
|

Division header,

Division header DATA. D1 VXIS 1[ON]. ____-———————-—-—“'_"'_—‘_‘.——_ section header, and

Section header———— [WIOR K;| NG ISITIOIRAGE! |SIEICIT|HIOIN. 11T /da(tia qi}slcriptiqndentry

Data description entry—|7[7] | 1J|OBl-|CIODE|_P|} [CITIU[RIEL X[XMXPAXIX . -1 end with a perio
T N

Contained in Area B More than one space is allowed
wherever a space is indicated
Division header, section header and

level number 77 begin in Area A

*moTaa

LY

ay3 13e
20 TITM HWYN-WY¥O0Wd JO

£Q<U0 ™
= JE R =T R
o R daQ
SR HER G
LN eR
PQO RO
=00
Qoo
o o
0w g
o] o3
O OcdoOw
H =R =
30 =0
3 >0 £
QzZ0NEN
5" za
>0 D
Mmoo =2
PEmN 0
QS
R
RS 0
[0} <K
p o<
ok = 0
=
gco
o w0
Hh =
o] o)
s Q
o o
ot
= b
o] o)
o) =}
=
'-h =
o] =}
Q
£
e}
al
=
81
3
Q
]
ﬁ
o]
=
o
Q
o
h
o)
R
o+
3
)

e3ed 9yl buT3jTam Ax13 pue g 2Inbrg ur STdwexs a3yl MoTIoJd
UOTSTATJ e3ed buTtitaim I0J 2JeWIOF 3JIOIII0D

woy3 MOoayd “‘SaTIjUus oyl papod aaey nok

UOT FRWITIUOD
jybte

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

DATA DIVISION.

WORKING-STORAGE SECTION.
77 PROGRAM-NAME PICTURE XXXXXXXX.

e e e e e e e e ————— — —— ——————— —— ————————— T ———— —— T ———— .~ — "~ ——

18. Write the Data Division entries to describe the working-storage
variable DEPARTMENT, which will contain values such as X109,A924,
and 2125.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5...000e¢e5000.00000500ee0eeee5eneeleceaedeeaelecaabecaalacaad...0..

DATA DIVISION.

WORKING-STORAGE SECTION.
77 DEPARTMENT PICTURE XXXX.

e e e ———— ——————— " " —————— = e o . 2 " ——— i — o _— . —— o S — o — . _—— - — — s —

19. The note at the lower right in Figure 8 states that wherever a
space is indicated:

a. it may be owitted.

b. more than one space is allowed.

e e ot e - ——— < ——— —-——— e - ——— o — — — — — —————— ————

36

LE

6 @2Inbtyg

Guide for Coding the Data Division with Level 77 Entries in the Working-Storage Section

Necessary hyphen

A :B X COBOL STATEMENT

8 !7 15 20 24 28 32 36 40 44 48 52
Division header DIATIAL Dllv[ils|1]oN. Each entry ends
Section header———[WIORIKI | NIGI*[SITIORAIGEE | [SIEICITIVONL. LA-HTT 1 [[| [With a period. {
Data description entries_ | |/ 'dlal+lal-Inloimel- |41 [Pl1lc/TIURE] gic+ure—o§—da+&—na el-
(as many as necessary) | |77 j:da-.ra—na.me-z P |CTIURE! (pli le[tulrle-|o|f|-|dlalt{al-|njaime|- 2

Data names are contained in Area B

Division header, section header, and level number 77 begin in Area A

More than one space is allowed wherever a space is indicated.

20. Figure 9 1is a general guide for coding the Data Division with
level 77 entries in the Working-Storage Section. Figure 9 shows
that the division header and the section header are written:

a. for each level 77 entry.
b. only once regardless of the number of level 77 entries.

* * *

21. Using Figure 9 as a guide, code the Data Division with entries
to reserve storage for the working-storage variables LOAN-
ACCOUNTS and PROGRAM-NUMBER. LOAN-ACCOUNTS is to have values
such as 123, 486, and 019. PROGRAM-NUMBER is to have values such
as 67, 91, and 02.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0..0.5....000..5....0....5....0....5....0....5....0..

DATA DIVISION.
WORKING-STORAGE SECTION.

77 LOAN-ACCOUNTS PICTURE XXX.
77 PROGRAM-NUMBER PICTURE XX.

38

IBM AMERICAN NATIONAL STANDARD COBOL RESERVED WORDS

No word 1in the following list should appear as a programmer defined

name.

The words below which are preceded by a ® are not reserved words in
1130 COBOL, but should be avoided for compatibility with other American
National Standard CORBROL compilers.

ACCEPT
ACCESS
ACTUAL
ADD

° ADDRESS
ADVANCING
AFTER
ALL
ALPHABETIC
ALTER
ALTERNATE
AND

. APPLY
ARE
AREA
AREAS

. ASCENDING
ASSIGN
AT
AUTHOR

. BASIS
BEFORE

. BEGINNING
BLANK
BLOCK
BY

CALL

CANCEL

CF

CH

CHANGED

CHARACTERS

. CLOCK~UNITS
CLOSE
COBOL

L CODE

L] COLUMN

. COM-REG
COMMA
COMP

] COMP-1

COMP-2

COMP-3

COMP-U4

COMPUTAT IONAL
COMPUTAT IONAL-1
COMPUTAT IONAL-2
COMPUTAT IONAL-3
COMPUTAT IONAL-Y4
COMPUTE
CONFIGURATION
CONSOLE
CONSTANT
CONTAINS
CONTROL
CONTROLS

COPY

CORE- INDEX
CORR
CORRESPONDING
CsP

CURRENCY
CURRENT-DATE
CYL-INDEX
CYL-OVERFLOW
co1l

co02

co3

cou

co05

co06

co7

co8

Cco09

C10

Cc1l1

c12

DATA
DATE-COMP ILED
DATE-WRITTEN
DE

DEBUG
DECIMAL-POINT

DECLARATIVES
DELETE
DEPENDING
DESCENDING
DETAIL
DISP
DISPLAY
DISPLAY-ST
DISPLAY~-n
DIVIDE
DIVISION
DOWN

EJECT

ELSE

END
END-OF-PAGE
ENDING

"ENTER

ENTRY
ENVIRONMENT
EOP

EQUAL
EQUALS
ERROR

EVERY
EXAMINE
EXCEEDS
EXHIBIT
EXIT
EXTENDED-SEARCH

FD

FILE
FILE-CONTROL
FILE-LIMIT
FILE-LIMITS
FILLER
FINAL

FIRST
FOOTING

FOR

FROM

39

GENERATE
GIVING
GO
GOBACK
GREATER
GROUP

HEADING
HIGH-VALUE
HIGH-VALUES
HOLD

I-0
I-O-CONTROL
ID
IDENTIFICATION
IF

IN

INDEX
INDEX-n
INDEXED
INDICATE
INITIATE
INPUT
INPUT-OUTPUT
INSERT
INSTALLATION
INTO

INVALID

IS

JUST
JUSTIFIED

KEY
KEYS

LABEL
LABEL-RETURN
LAST

LEADING
LEAVE

LEFT

LESS

LIBRARY
LIMIT

LIMITS
LINAGE
LINAGE-COUNTER
LINE
LINE-COUNTER
LINES

LINKAGE
LOCK
LOW-VALUE
LOW-VALUES
LOWER-BOUND
LOWER-BOUNDS

MASTER-INDEX
MEMORY

MODE
MODULES
MORE-LABELS
MOVE
MULTIPLE
MULTIPLY

NAMED
NEGATIVE
NEXT

NO
NOMINAL
NOT

NOTE
NSTD-REELS
NUMBER
NUMERIC

OBJECT-COMPUTER
OBJ ECT-PROGRAM
OCCURS

OF

OFF

OH

OMITTED

ON

OPEN

OPTIONAL

OR

OTHERWISE
OUTPUT

ov

OVERFLOW

PAGE
PAGE-COUNTER
PERFORM

PF

PH

PIC

PICTURE

PLUS

POSITION
POSITIONING
POSITIVE
PREPARED
PRINT-SWITCH
PRIORITY
PROCEDURE
PROCEED
PROCESS
PROCESSING
PROGRAM
PROGRAM-ID

QUOTE
QUOTES

RANDOM
RANGE

RD

READ
READY
RECORD
RECORD-OVERFLOW
RECORDING
RECORDS
REDEFINES
REEL
RELEASE
REMAINDER
REMARKS
RENAMES
REORG-CRITERIA
REPLACING
REPORT
REPORTING
REPORTS
REREAD
RERUN
RESERVE
RESET
RETURN
RETURN-CODE
REVERSED
REWIND
REWRITE
RF

RH

RIGHT
ROUNDED
RUN

SA

SAME

SD

SEARCH
SECTION
SECURITY
SEEK
SEGMENT-LIMIT
SELECT
SELECTED
SENTENCE
SEQUENTIAL
SET

SIGN

SIZE

SKIP1

SKIP2

SKIP3

SORT
SORT-CORE-SIZE
SORT-FILE-SIZE
SORT-MODE-SIZE
SORT-RETURN
SOURCE
SCURCE-COMPUTER
SPACE

SPACES
SPECIAL-NAMES
STANDARD
START

STATUS

STOP

SUBTRACT

SUM
SUPERVISOR
SUPPRESS
SUSPEND

SWO

SW1

SW2

SW3

SW4

SW5

SW6

SW7

SW8

SW9

SW10

SW11

SW12

SW13
SWlu
SW15
SYNC
SYNCHRON IZED
SYSIN
SYSIPT
SYSLST
SYSouT
SYSPCH
SYSPUNCH
s01

S02

TALLY
TALLYING
TAPE
TERMINATE
THAN

THEN
THROUGH
THRU
TIME-OF-DAY
TIMES

TO

TOTALED
TOTALING
TRACE

TRACK
TRACK-AREA
TRACK-LIMIT
TRACKS
TRANSFORM
TYPE

UNEQUAL
UNIT

UNTIL

up

UPON
UPPER-BOUND
UPPER~-BOUNDS
UPSI-0
UpsI-1
UPSI-2
Upsi-3
UPSI-U4
UPSI-5
UPSI-6
upsi-7

Figure 10

USAGE
USE
USING

VALUE
VALUES
VARYING

WHEN

WITH

WORDS
WORKING-STORAGE
WRITE
WRITE-ONLY
WRITE-VERIFY

ZERO

ZEROES
ZEROS

41

The words in uppercase letters in the coding guide Figure 10 are
COBOL reserved words. They are reserved for a specific meaning in the
COBOL language, and they may not be used as names in a COBOL program.
Words not on this list may be used to indicate names or specifications
supplied by the programmer using the COBOL language. They are often
called user names or user-supplied words. User names such as JOB-CODE
and DEPARTMENT are called data names. Data names may be any combination
of digits, letters and hyphens with a maximum length of 30. The data
name must contain at least one 1letter, and the initial and final
characters must not be hyphens. In addition to fitting these rules,
data mnames must not be COBOL reserved words. A list of COBOL reserved
words is given in Figure 10. You may refer to this 1list whenever you
are coding to verify that names you are supplying in your program are
not COBOL reserved words.)

The Procedure Division contains instructions that direct the data-
processing activities of the computer. If a programmer wishes to
display a message to the operator during execution of his program, he
will code a DISPLAY statement in the Procedure Division. If he wants to
allow the operator to reply through the console typewriter, he will code
an ACCEPT statement in the Procedure Division. The order in which he
codes the statements in this division will depend on the order of the
data-processing activities or the logic of his problem solution.

—— .~ —— —— ———— —— — — o T " — " ——— — ———— .~ " - > - = - _——— — — = A o . . e e o e o

42

e

TIT 2anbra

IBM

Format Requirements for Sample Procedure Division

COBOL Coding Form

SYSTEM PUNCHING INSTRUCTIONS
PROGRAM GRAPHIC CARD
PROGRAMMER |pate PUNCH FORM #
= T
SEQUENCE Z1A I8 COBOL STATEMENT
(PAGE) [(SERIAL) | © |
1 34 6] 7 |8 }L? 16 20 24 28 32 36 40 44 48 52
ol |
l
-t i
! i Division header,
Division header PR, 'C%ED URIE. D{IN/IS!ION. —— paragraph name,
Paragraph name 0 PlER[ATOR— ROWLITINE. LT T 1 || ang st%;ements_r, 4
(user supplied) || | ICclepT] joj8-oDE| FROM [CONSIOLE].]/ $" " ® Perie
iSToP| (RN | \
Statement to———— 1| . | A\
halt execution L1 | | 1 i

of the object
program

Statements contained in Area B More than one space
is allowed wherever
Division header and paragraph name a space is indicated

begin in Area A

¢

22.

0

Although there 1is no standard order for statements in the
Procedure Division, there are some format requirements. Figure
11 shows a sample Procedure Division containing ACCEPT and
DISPLAY statements. The format requirements for this example are
indicated in the fiqure. Follow the example in Figure 11 and
determine which of the following is written correctly.

da

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0000.5.0..0.00.500000000.5....0..0.500..00...5....0..

0

0

PROCEDURE DIVISION.
ACCEPT JOB-CODE FROM CONSOLE.
DISPLAY JOB-CODE UPON CONSOLE.
STCP RUN.

b.

1 1 2 2 3 3 4 4 5 5 6 6 7

i...5....00...5....0.00.5.0..0000.5.0..0..0.5....0....5....0....5....0..

0

0

PROCEDURE DIVISION.
MAIN-SEQUENCE.

ACCEPT JOB-CODE FROM CONSOLE.
DISPLAY JOB-CODE UPON CONSOLE.
STOP RUN.

C.

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0000.50...0....500..0....5....0....5....0..

44

C

PROCEDURE DIVISION.

MAIN-SEQUENCE.
ACCEPT JOB-CODE FROM CONSOLE.
DISPLAY JOB-CODE UPON CONSOLE.
STOP RUN.

(Example a has no paragraph name. The statements in example b should
begin in Area B.)

23.

In the Procedure Division of a COBOL program, statements that are
logically related are grouped into paragraphs. In a program as
short as that shown in Figure 11 all the statements in the
Procedure Division might be grouped into one paragraph. Every
program must have at least one paragraph in the Procedure
Division, and each paragraph must be identified by a paragraph
name preceding the first statement. In the example in Figure 11:

a. the group of statements in the Procedure Division is
identified by the name OPERATOR-ROUTINE.

b. a paragraph name is not required for a program as short as
this one.

24. A paragraph name is chosen by the programmer. Which is correct?

a. The paragraph in Figure 11 could have a name other than
OPERATOR-ROUTINE.

b. The first paragraph 1in a program is always named OPERATOR-
ROUTINE.

a
(A paragraph name may be any combination of digits, letters and

hyphens with a maximum length of 30. The initial and final characters
must not be hyphens. In addition to fitting these rules, paragraph
names must not be COBOL reserved words.)

e e~ ————————— —— ——————— — —— ————— —— o ——————— — — —— o " o o o o o e e S s e s

45

9

ZT @anbta

Division header
Paragraph name

Statements to
do processing

Statement to
halt execution
of object program

Guide for Coding the Procedure Division

|
A I B COBOL STATEMENT
8 . =|2 16 20 24‘ — 28 — 32 ‘ 36 ; 40 ' 44 . 48 52
PROCEDURIE DitNiIsHlon. | [1 [T[T
_|pburialalrioiphl-maime -4l [T L] |
B !5.‘.“.‘1 enit- — ~—]_Division :11eader,
T ~—J—paragraph name,
- ESh}""e"‘l‘“ T and statements
I R ' ! | end with a period
[] .[i | ! i
l ! | i [i r i ' !
1 ‘] L

Statements are contained in Area B

Division header and paragraph name begin in Area A

25. Figure 12 is a general guide for coding the Procedure Division.
Following the guide, try to write the Procedure Division entries

0 0

for

the paragraph SEQUENCE-1. The statements in this paragraph

are to:

1)

2)

3)

1

allow a value of CODE-DATA to be entered into working storage
through the console typewriter.

write a value of CODE-DATA on the console typewriter.
halt execution of the object program.

* * *

1 2 2 3 3 4 4 5 5 6 6 7

l1...5....0....5....0.00.5.00.0000.500.000005000e000e500e00.0.5....0..
PROCEDURE DIVISION.
SEQUENCE-1.

ACCEPT CODE-DATA FROM CONSOLE.
DISPLAY CODE-DATA UPON CONSOLE.
STOP RUN.

(Although coding in this text will be shown in this format for
readability, statements may be coded as shown below. Statements must
be separated by one or more blanks and they must be contained in Area

B.

Any

statement mway be broken wherever a blank appears and

continued on the next line.)

0 0

1

1 2 2 3 3 4 4 5 5 6 6 7

TeveDeeeaOeneeSeeeeloeaeBeeealeceeBeeeelineabeene0uieeeB5ennaloneeS5euaa0.n

26.

0 0

PROCEDURE DIVISION.
SEQUENCE-1. ACCEPT CODE-DATA FROM

1

CONSOLE. DISPLAY CODE-DATA UPCN
CONSOLE. STOP RUN.

1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0.0..5.0..0....5.0..0....5....0....5....0....5....0..

The

DISPLAY JOB-CODE UPON CONSOLE.
statement above will:

write the job code that is stored in working storage on the
console typewriter.

write a value of the variable JOB-CODE on the console
typewriter.

u7

SUMMARY:

You have now completed Lesson 2 in which you have learned coding for
the Data and Procedure Divisions of 1130 COBOL, and the procedure of

transferring data to and from the computer +through the console
typewriter.

END OF LESSON 2

48

LESSON 3

49

LESSON 3 - BASIC STANDARD CODING ENTRIES

INTRODUCTION

Lesson 3 will teach you certain standard coding entries for the Data,
Identification and Environment Divisions. You will also learn the usage
of both numeric and non-numeric literals, which are often needed for
printed output. The STOP RUN statement is included since it 1is the
statement used to conclude programmed procedures.

Upon the completion of this 1lesson, you will have a
understanding of what elements are needed to comprise
though simple - program.

clearer
a complete -

This lesson will require approximately three quarters of an hour.

50

1.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0..00.5.00.0000.5000.000005000.000005000.00000500..0....5....0..

DISPLAY 'ENTER DATE' UPON CONSOLE.

In a statement such as the one above, the exact message to ke
written is specified in the DISPLAY statement. Since ENTER DATE
is stored with the DISPLAY statement itself as part of the object
coding and is not a variable name, you might expect that:

a. the programmer need not specify an area in working storage
for the message.

b. no Data Division entries must be written for the message to
be displayed.

2. Match the result with the statement that will cause it.
1)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

DISPLAY DATE UPON CONSOLE.
2)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5.0.0.00000500e00ieeebenaelacibinee0a5000.00...5.00.0.0...5....0..

DISPLAY °‘DATE"' UPON CONSOLE.
a. The word DATE will be written on the console typewriter.
b. The word 'DATE' will be written on the console typewriter.

c. A value of the variable DATE will be written on the console
typewriter.

3. Quotation marks in a DISPLAY statement indicate that:
a. the value of the variable is to be written.

b. the message enclosed within quotation marks is to be written.

* * *

51

4.

0 0
1...5..

0 0
1...5..

Both

1 1 2 2 3 3 4 4 5 5 6 6 7
«.0....5....0....5....0....5....0....5....0....5....0....5....0..

DISPLAY 2468 UPON CONSOLE.

1 1 2 2 3 3 4 4 5 5 6 6 7
«-0....5....0....5....0....5....0....5....0....5....0....5....0

DISPLAY '2u468°' UPON CONSOLE.

Any combination of characters in Figure 7, with the exception of
a guotation mark which would be recognized as an end of a
message, may be enclosed in quotation marks and specified in a
DISPLAY statement. Any combination of digits may be specified in
a DISPLAY statement without quotation marks. A combination of
digits without quotation marks will be recognized as a numeric
literal by the COBOL compiler and will be stored in a certain
form as part of the statement itself. A combination of
characters in Figure 7 enclosed in quotation marks will ke
recognized as a nonnumeric literal and will be stored in another
form. Either statement above will result in 2468 being written
on the console typewriter. The compiler would recognize 256 as
a: :

a. numeric literal if it were written as 256.

b. nonnumeric literal if it were written as *256°

* * *

(The form in which a literal is stored determines how it may be used
by the program. In a subsequent lesson you will 1learn to specify
numeric literals in computations as well as DISPLAY statements.)

5. Match each exarple with the correct term.
1) Numeric literal
2) Nonnurweric literal
a. 'ENTER OPERATOR CODE'
b. 8000
c. '8000°"
* * *
1) b
2) a,c

52

6. Write what would be written by each statement.
1

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....000..5.0..0000.5.0..000005....0....5....0....5.0..0....5....0..

DISPLAY 5090 UPON CONSOLE.
2)

0 0 1 1 2 2 3 3 L 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

DISPLAY 'ENTER NUMBER OF ACCOUNTS'
UPON CONSOLE.

* * *

1) 5090
2) ENTER .NUMBER OF ACCOUNTS

—— e e e e e —— e . o e o e s o e e . . . 7 S . o S o o S e . o S

7. In order to write a 1literal on the console typewriter the
programmer must:

a. reserve a locaticn in working storage for the literal.
b. always enclose the literal in quotation marks.

* * *

Neither
(Numeric literals do not require quotation marks.)

e e e e e e e e e e e e e e —— —— -

8. ENTER NUMBER OF PAYMENTS DUE.

Which statement would write the message above on the console
typewriter?

A

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5...0....5....0....5....0....5....0....5....0....5....0....5....0..

DISPLAY
*ENTER NUMBER OF PAYMENTS DUE.'
UPON CONSOLE.
b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....54..0.00.5.00.0000.5.0..0.00.500..0....5....0....5....0..

DISPLAY ENTER NUMBER OF PAYMENTS DUE.
UPON CONSOLE.

* * *

a
(Statement b would result in an error message at compile time.)

—_——————— ——— —— - ——— i — — ———— ——— — o ————— ————— ——— — - ——

53

9. Write a statement to write the following message on the console
typewriter.

ENTER PROGRAM-NAME.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0..0.5..0.000050000000025000000cee50eee0eceedanee0ecadd....0.,

DISPLAY 'ENTER PROGRAM NAME. '
UPON CONSOLE.

- —— —— o — ———————— Y ——— — _— i " ——— — —— — — - - -

10. Write a statement to write whatever value has been stored in the
variable PROGRAM-NAME on the console typewriter.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5.0..000.0.5.0..000005000000005000e00cee500ee00cee50eea00ea5....0.,

DISPLAY PROGRAM-NAME UPON CONSOLE.
1i. The programmer must define a location in working storage for:
a. a literal.
b. a variable.
c. a word or words enclosed in quotation marks.

d. numbers not enclosed in quotation marks.

When a message specified as a literal in a DISPLAY statement is too
long to fit into a single line on a coding form, the programmer may use
a continuation line as explained in the sections titled CONTINUATION OF
NONNUMERIC LITERALS and CONTINUATION OF WORDS AND NUMERIC LITERALS in
the Language Specifications Manual.

The next sequence of frames will provide you with opportunities to
practice coding the Data Division and Procedure Division entries that
you have learned up to this point. Whenever you are asked to code, you
may refer to the general guides in your Language Specifications Manual.

54

12. Write +the Data Division entries for LOAN-ACCOUNTS which will
contain values such as 129, 131, 010 and 063.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....00.0.5. 0000005000205 0..0000.500..0000.5.0..0....5....0..

DATA DIVISION.
WORKING-STORAGE SECTION.
77 LCAN-ACCOUNTS PICTURE XXX.

(The data name and its PICTURE clause may be written anywhere in Area
B. The level number 77 must be in Area A.)

13. The order of the statements in the Procedure Division depends on
the logic of the program. If you wish to display a message to
the operator and to accept his reply, you should code:

a. an ACCEPT statement first.

b. a DISPLAY statement first.

55

14. Now, on the same coding sheet, write the Procedure Division
entries for the paragraph SEQUENCE-1 to perform the following
steps:

a. Write the message
ENTER NUMBER OF LOAN-ACCOUNTS DUE.
cn the console typewriter.

b. Allow the number of loan accounts that are due to be keyed
into LOAN-ACCOUNTS.

c. Write the value of LOAN-ACCOUNTS on the console typewriter.

(Remember to write a STOP RUN statement at the end of the program
to halt execution.)

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5.00.0000050000000005.00000000e500ce00ceebeee00...5....0..

PROCEDURE DIVISION.
SEQUENCE-1.
DISPLAY
' ENTER NUMBER OF LOAN-ACCOUNTS DUE. '
UPON CONSOLE.
ACCEPT LOAN-ACCOUNTS FROM CONSOLE.
DISPLAY LOAN-ACCOUNTS UPON CONSOLE.
STOP RUN.

[The DISPLAY statement above can be coded entirely on one line or as
shown above. Statements can be broken wherever a space occurs
(except within a nonnumeric literal) and continued anywhere in Area
B. With the excepticn of continuing a nonnumeric 1literal, no
continuation character is required in column 7.]

——— e e e o e o e e e e R ———— e e o s e e e . e . o e e S o o S o S o o o " o o o o o

15. Write all the necessary Procedure Division entries for the
paragraph MAIN-SEQUENCE, in which the value of PROGRAM-NAME is to
be entered into storage through the console typewriter.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.0..0....5.2..0....5....0....5....0....5....0..

PROCEDURE DIVISION.

MAIN~-SEQUENCE.
ACCEPT PROGRAM-NAME FROM CONSOLE.
STOP RUN.

16. Figure 13 describes a problem to be solved. As a COBOL
programmer, you probably will never be given such a simple
problem. However, this problem will give you an opportunity to
practice some entries that you have learned and that you might
use 1in a more realistic problem later. Working from the problem
statement in Figure 13, write the Data Division and the Procedure
Division for the solution on a new coding sheet.

56

Problem Statement

1) In the paragraph BEGIN, the following message 1is to be
written on the console typewriter:

KEY IN OPERATION-CODE.

2) A value of OPERATION-CODE 1is to be entered into storage
through the console keyboard. Values of OPERATION-CODE have
a form such as:

106A, 509X, or 2879Q.

3) The value of OPERATION-CODE is to be written on the console
typewriter.

Figure 13

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0.0..5.42..00.0..5....0..

DATA DIVISION.
WORKING-STORAGE SECTION.
77 OPERATION-CODE PICTURE XXXX.
PRCCEDURE DIVISION.
BEGIN.
DISPLAY ‘'KEY IN OPERATION-CODE."*
UPON CONSOLE.
ACCEPT OPERATION-CODE FROM CONSOLE.
DISPLAY OPERATION-CODE UPON CONSOLE.
STOP RUN.

In the remaining sequence of frames you will learn to code the
Identification Division and the Environment Division, and then
you will code a complete COBOL program.

57

0

17.

0 1 1 2 2 3 3 4 4 5 5 6 6 7

l1...5....0....5....0....5....0....5....0....5.0..0....5....0....5....0..

0

IDENTIFICATION DIVISION.
PROGRAN-ID. FILE-UPDATE.

Figure 14

The above figure shows the minimum requirements for an
Identification Division of a COBOL program. As the division
header implies, +this division identifies the program. In the
example above, the name of the program is:

a. FILE-UPDATE

b. PROGRAM-ID. FILE-UPDATE.

* * *

a
(A program name may be any combination of digits, letters, and
hyphens with a maximum length of 30. The initial character must be
alphabetic, and the final character must not be a hyphen. 1In
addition to fitting these rules, program names wmust not be COBOL
reserved words. Although a program name may have a maximum length of
30, only the first five characters are used for identification.
Therefore, the first five characters of a program name should not ke
duplicated in any other program name.)

-—— -— - [p— - -—— o ————— o — " - S — e

18. The IDENTIFICATION DIVISION has 6 entries, only the PROGRAM-ID is
mandatory. The others are optional. The following example shows
all six of them.

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0..¢.5....0....5....0....5....0....54...0....5....0..

58

IDENTIFICATION DIVISION.

PROGRAM-ID. TESTING.

AUTHOR. JOHN PROGRAMMER.

INSTALLATION. MARYLAND USA.

DATE-WRITTEN. MARCH 29,1970.

SECURITY. A-14-1669.

REMARKS, THIS PROGRAM IS A SAMPILE PROGRAM
FOR IEM 1130 COBOL.

——— ———— —— i s e s s i s . o S S e S

66

GT 2anbtd

Guide for Coding the Identification Division

Division header and entries begin in Area A

Necessary hyphens

A ﬁ{e // COBOL STATEMENT

8 =12 [T 20 24 28 32 36 0 44 48 52
Division header | DIENT]EIC/ATh oM iV 1ls] 1]ol]. |
Paragraph name——PROGIRAM-|1D..| [pir|olglviaim-niame|. !

AUTH:O .| |clommlen|H-le/nltirlyl. E lh b ent |

B ot ——-]_| Each comment entry

lNSTIL LATI ONI' clommeintti-jentt v Viot= ~may be any combination]
Optional DATIESMRIVTITIEN].| lcio|mmlen|t|-leni+ir]y|. of characters from the |-
paragraphs I _—EBCDIC set. 1

SERCULRIITYL.] [elo men‘\‘-cn'fr_l.///:// '

REMA:R Sl.| lclommelntt-lemitrlyl. T]

JHIREAN | o

Division header, paragraph names,
and comment entries end with a period.

Every period must be followed by at
least one space.

19. Figure 15 is a general guide for coding the Identification
Division. Use Figure 15 to determine which of the following
examples is written correctly.

Ae

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5.00.0000.5.00.0000.5000.0000.5...000...500..00...5.0..0....5....0..

IDENTIFICATION DIVISION.
PRCGRAM-ID. FILE-UPDATE.
DATE-WRITTEN. 10/16/68.
b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....00...5....000005.0..0000.500..00...5....0.0..5....0....5....0..

IDENTIFICATION DIVISION.
'AUTHOR. SMITH.
DATE WRITTEN. 02/31/68.

C.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....00005....000..5.00.0000.5.00000.00.500..00...5000.0....5....0..

IDENTIFICATION DIVISION.
PROGRAM-ID. SALES-ANALYSIS.

e e e e e e e e e e o — ——— — —— ——————— > = ———— " —————— ———

60

20. Use Figure 15 to determine which of the following examples is
written correctly.

d.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....00.005.0..000..5.00.00...5....0....5....0....5....0..

IDENTIFICATION DIVISION.
PROGRANM-ID.SALES ANALYSIS.

b.

v 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0..0.5....000005.00.0000.5.0..0000.5000.0....500..0....5....0..

IDENTIFICATION DIVISION
PROGRAM-ID. CARD-TO-TAPE

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5...0....5....0....5....0....5....0....5....0....5....0....5....0..

IDENTIFICATION DIVISION.
PROGRAN-ID - PERSONNEL-MASTER.

* * *

None of these

(In a the space following a period is missing. In b the period
following the division header 1is missing. In ¢ the hyphen is
misplaced and a period is missing.)

21. Follow the coding guide in Figure 15 and +try to write the
Identification Division entries for a program called PAYROLL.
Code only the required entries.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

IDENTIFICATION DIVISION.
PROGRANM-ID. PAYROLL.

61

Z9

9T 2Inbta

Format Requirements for Sample Environment Division

IBM

COBOL Coding Form

SYSTEM PUNCHING INSTRUCTIONS
PROGRAM GRAPHIC CARD
PROGRAMMER lDATE PUNCH FORM =
- T
SEQUENCE |5 B Necessary hyphens COBOL STATEMENT
PAGE) [isERtAL) [© | / N\
1 3]a . 6|7 lLu P 20 \g N\ 28 32 36 40 44 52
[[o[1] LY] |
Divigion header EINVI1IRONMENT D)1 [V/1]S NONN | Division header,
Section header ——— |CIONF!|GURINT] /0N ISEEIC TININNN T section header,
SOURCE ;ICOMPUTER\ SIOURCEL/COMPUTERL| [1BM-1[1319 |_L+fand entries end
paragrap ; i with a period
oBJECT -coMPUTER — |OBIEIC T ICIOMPUITIER]. N1 |BMM 11 1301 AT]
paragraph REREEE N ! ! i

Optional section that
may be included for
documentation

Paragraph names must be followed
by a period and at least one space
Begin in Area A

22.

0 0

Figure 16 shows a sample

portion of the Environment Division

called the Configuration Section. It
configuration used to compile the program as well as the one used
SOURCE-COMPUTER
paragraph in Figure 16 indicates that the source program is to be
compiled on an IBM 1130 computer. The OBJECT-COMPUTER paragraph
in Figqure 16 indicates that the object program is also to ke

to execute the program.

executed on an IBM 1130.

1 1 2 2 3 3

For

y

specifies

exampl e,

y

5

the

5

the

6

computer

6 7

l1...5....0....5....0....5....0....5....0....5....0....5.0..0....5....0..

23.

0 0

ENVIRCNMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT~COMPUTER. IBM-1130.

In the example above, the Configuration Section indicates that:

a. the source program is to be compiled on an IBM-1130 computer.

b. the object program is to be executed on an IBM-1130 computer.

* *

A program called PAYROLL

is

to be

-

compiled on an IBM-1130

computer. It is to be executed on an IBM-1130
Figure 16 to determine which
Divisions contains a correct Configuration Section for PAYROLL.

Aa

1 1 2 2 3 3

4

of the

m

5

5

computer. Use
following Environment

6

6 7

l...5....0....5....0....5....0.0..5....0....5....0000.5.0...0....5....0..

0 0

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER IBM-1130.
OBJECT-COMPUTER IBM-1130.

b.
1 1 2 2 3 3

4

4

5

5

6

6 7

1...5....0....5.0..00005.00.0000.500..0.0..5....0.0.0.5..0.00...5....0..

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.

* *

*

(2 is wrong because periods are missing in the SOURCE-COMPUTER

and OBJECT-COMPUTER clauses.)

63

0

24, Write the Identification and Environment Divisions for the
program COMMISSION-CALCULATION, which will be compiled and
executed on an IBM-1130 computer.

* * *

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5.0..000050000000005000e0000e5000000eeebenee0eaaede...0..

0

IDENTIFICATION DIVISION.
PROGRAM-ID. COMMISSION-CALCULATION.
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.

e e e - = — ———————— —————— Y ———— = o > . > o > "t . s s e el e U i . S o e e

25. Write the Identification, Environment, and Data Division for the
program DATA-LIST, in which values such as SALES and TAXES will
be read into and written from the variable PROGRAM-NAME. DATA-
LIST will be compiled and executed on an IBM-1130 computer.

* * *

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0.0..5....0....5..0.000025000e00005000e000eeb0ee0.0..5....0..,

64

IDENTIFICATION DIVISION.
PROGRANM-ID. DATA-LIST.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 PROGRAM-NAME PICTURE XXXXX.

26. Code the Data and Procedure Divisions +to provide for the
following:

1) In paragraph MESSAGE-ROUTINE, the message
ENTER NUMBER OF PAYMENTS DUE.
is to be written on the console typewriter.

2) The number of payments due is to be keyed into the variable
PAYMENTS-DUE.

3) PAYMENTS-DUE will have values such as 106,235, and 084.

4) The message END-JOB 1is to be written on the console
typewriter.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....0..0.5.0..0....5....0....5....0....5....0....5....0....5....0..

DATA DIVISION.
WORKING-STORAGE SECTION.
77 PAYMENTS-DUE PICTURE XXX.
PROCEDURE DIVISION.
MESSAGE-ROUTINE.
DISPLAY
*ENTER NUMBER OF PAYMENTS DUE.'
UPON CONSCLE.
ACCEPT PAYMENTS-DUE FROM CONSOLE.
DISPLAY *END-JOB' UPON CONSOLE.
STOP RUN.

65

27. The solution to the problem described below will include entries
that you will code in many of the programs that you will be
writing as a programmer on the job. Code all divisions for the
program UPDATING to do the following:

1) In paragraph SEQUENCE-1, write the following message on the
console typewriter:
ENTERBTODAYSKDATE.
(Since an embedded quotation mark would be recognized as the
end of a nonnumeric literal, it must be replaced by a blank.)

2) Allow a value of DATE to be entered into storage through the
console keyboard in a form such as:
06/21/68, 12/01/68, or 03/09/69.

3) Write the value of DATE on the console typewriter.

UPDATING will be compiled and executed on an IBM-1130.

* * *
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5.c0000050ce00ceebeceeleceebeeceleee5eec0eeebeeee0..ee5....0..
IDENTIFICATION DIVISION. wy)
PROGRAM-ID. UPDATING.
ENVIRONMENT DIVISION. (49)

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM~-1130.
DATA DIVISION. (12)
WORKING-STORAGE SECTION.
77 DATE PICTURE XXXXXXXX.
PROCEDURE DIVISION. (22)
SEQUENCE-1.
DISPLAY 'ENTER TODAY S DATE.'
UPON CONSOLE.

ACCEPT DATE FROM CONSOLE. (1
DISPLAY DATE UPON CONSOLE.
STOP RUN. (22)

(The number in parentheses at the end of each entry identifies the
frame in which the use of that entry was introduced. Your solution
may appear different but be correct provided you have followed the
rules for placement of entries and for separation and breaking of
statements.)

SUMMARY:

You have now completed Lesson 3 in which you have learned coding for
three divisions in a COBOL program and more about the simple procedure
of transferring data to and from the computer through the console
typewriter. Although the ACCEPT and DISPLAY statements provide one way
to transfer data to and from the computer, they are usually used for
low-volume input and output such as codes or messages.

A larger volume of data would require a more efficient input or
output device such as a card reader, printer, or disk drive. You will
learn +to use COBOL language features to process larger volumes of data
in subsequent lessons.

END OF LESSON 3

66

LESSON 4

67

LESSON 4 - INTRODUCTION TO DATA FILES

INTRODUCTION

In many data-processing activities related data items are grouped
into a record of data. For example, the data items relating to a single
customer may be grouped into a record for that customer. The record may
be punched into a card, printed in a report, or stored on magnetic tape
or disk. Processing a file of such records would involve processing a
large volume of data. Although you will not learn to process a complete
file in this 1lesson, you will learn to code the Data Division entries
for using record variables.

Specific COBOL language features you will learn to use in this lesson
are:

Level numbers 01 and 02.
Repetition factor in the PICTURE clause.
ACCEPT statement

This lesson will require approximately one hour.

68

1.

0 0 1 1 2 2 3 3) L} 5 5 6 6 7
1...5....0....5....0....5.0..0000.5000.0000.5.00.000005000.0000.5....0..

77 DATE PICTURE XXXXXXXX.

The entry above describes a variable in working storage whose
values throughout execution of the program will be single data
items. A single data item, a data item that is not subdivided
further, is called an elementary item. A variable whose values
throughout execution of the program will be elementary items,
then, is an elementary variable.

MONTH DAY YEAR

b e, e ol

In the diagram above, the variable DATE has been subdivided into
the variables MONTH, DAY, and YEAR. The values of MONTH, DAY,
and YEAR will be single data items. In this example, an

elementary variable is:
a. DATE.

b. MONTH,DAY, or YEAR.

* * *
b
2.
r 1
| LOG-RECORD |
| |
| PROGRAM-NUMBER OPERATOR-NAME |
L 1
Several related elementary variables may be grouped together as a
group variable. The variables may be referred to individually or
as a group. The elementary variables PROGRAM-NUMBER and
OPERATOR-NAME in the diagram above have been grouped together as
the variable LOG-RECORD. LOG-RECORD is:
a. an elementary variable.
b. a group variable.
* * *
b

69

r 1
| EMPLOYEE-RECORD |
| I
| NAME HOME-ADDRESS EMPLOYEE-NUMBER |
| (20 characters) (30 characters) (5 characters) |
L J
B.
T 1
| CUSTOMER-RECORD |
| |
| NAME HOME-ADDRESS BALANCE |
| (25 characters) (30 characters) (5 characters) |
L J

A number of related elementary variables may be grouped together
into a group variable. A group variable is usually called a
record variable. For instance, in diagram A, the variables whose
values may refer to one employee are grouped into a record
variable for a single employee. Diagram B shows:

a. a grouping of related variables whose values refer to omne
customer.

b. a grouping of four elementary items.

c. a record variable whose values refer to one customer.

———— o o o o ——— — —— —— > " — —— - ——— -——

r 1
| EMPLOYEE-RECORD |
l ‘ I
| NAME HOME-ADDRESS EMPLOYEE-NUMBER |
| (20 characters) (30 characters) (5 characters) |
L 4

In a program, a reference can be made to the record variable or
to any of the elementary variables within the record variakle.
In the example in the diagram above, a reference could be made
to:

a. all the elementary variables with the record variable name
EMPLOYEE-RECORD.

b. any of the elementary variables, such as NAME, HOME-ADDRESS,
or EMPLOYEE-NUMBER.

* * *

5. Throughout execution of a program, a variable in storage:
a. may have various values.

b. has a constant value.

* * *
a
6.
| 1
| CUSTOMER-RECORD |
I I
| NAME HOME-ADDRESS BALANCE |
| (25 characters) (30 characters) (5 characters) |
— d
The group of data items that are the values of the elementary
variables in a record variable constitute a record.
If a value of each of the elementary variables in the record
variable in the diagram above were punched into a card, the card
would contain:
a. data for one customer.
b. a record.
* * *
Both

7. A record variable:

a. may have various records as values throughout execution of a
program.

b. has a constant record value throughout execution of a
program.

71

r 1
| CUSTOMER-RECORD |
I |
| NAME HOME-ADDRESS BALANCE |
| (25 characters) (30 characters) (5 characters) |
L J

Values of NAME, HOME-ADDRESS, and BALANCE in the record variable
illustrated above have been punched into a separate card for each

customer.
Throughout execution of a program that processes these cards:

a. The record variable CUSTOMER-RECORD will contain various
records of data.

b. the elementary variables in CUSTOMER-RECORD will contain
values from various cards.

72

LT @2anbta

€L

Data Division Entries that Reserve Storage for a Record Variable in Working Storage

Record description TR S— S —— Fa—

entry DIMISION. | i] B

Datam 1L/0G!-|RECORD -]

entry .b - ER _PICT XXX :
|

p=—)

L

Record variable name
and level number 02
begin in column 12

Level number 01
begins in column 8

00123 NORMAN JONES Working Storage
% Variable
I J1 : |
/ // PROGRAle-NUMBER OPERATOR-NAME .
/// L LOG-RECORD - - —Working Storage
d.
— ———— ///
11] 2
cE-- d The record description entry in the Working-Storage Section

of the Data Division reserves working storage for the record
variable LOG-RECORD so that LOG-RECORD can be
specified in an ACCEPT statement and values can be keyed
into LOG-RECORD through the console typewriter.

74

9. Figure 17 shows how storage is reserved for a record variakle.
Read the explanation and look at the illustration in Figure 17.
The variables PROGRAM-NUMBER and OPERATOR-NAME are grouped into
the record variable LOG-RECORD which is:

a. a variable containing a record of data.

b. a location in storage that will contain a record of data.

10. A record that is a value of LOG-RECORD shown in Figure 17 will
consist of:

a. two elementary values.

b. values for both PROGRAM~-NUMBER and OPERATOR-NAME.

11. If values of the variables in LOG-RECORD are to be keyed in
through the console typewriter, storage for these variables would
be reserved with entries in:

a. the Configuration Section of the Environment Division.

b. the Working-Storage Section of the Data Division.

* * *

- — - —— - - ——

12. Figure 17 shows the Data Division entries that reserve storage
for the record variable LOG-RECORD. In these entries:

a. only the elementary variables are described with the PICTURE
clause.

b. an entry with the level number 01 contains no PICTURE clause
if it is further subdivided.

* * *

(Group items do not contain a PICTURE clause; elerentary items do.)

-~ ——— o —— o ———— —— —— -

13. According to Figure 17:

a. an entry for a record variable is indicated by the level
number 01.

b. an entry for an elementary variable is indicated by the level
number 02.

Both

(If a programmer wishes to treat elementary variables as independent
variables he defines them as level 77 in working storage. If he
wishes to treat them as part of a record variable, he defines them as
level 02 (or 03 or lower, depending on the levels of subdivision) in
the record description entry.]

14, In Figure 17, you can see that:
a. a level 01 entry begins in column 8.

b. a level 02 entry begins in column 12.

15. Figure 17 shows that:

a. a record description entry usually consists of both level 01
and level 02 entries.

b. a data description entry consists of an entry for an
elementary variable.

Both

16. Match the bracketed portions of the Data Division entries below
with the correct type of entry.

0 0 1 1 2 2 3 3 u 4 5 5 6 6 7
l...5e0.0.0050000000005.000000ee50cea00eeebenec0eaeabeeea0ieead.ea.0.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 CODE-DATA.
1) 02 DATE PICTURE XXXXXXXX.
2){ C2 JOB-CODE PICTURE XXXXXX.

a. Data description entries
b. Record description entry

* * *

1) b
2) a

75

17.

0 0 1 1 2 2 3 3 L) 4 5 5 6 6 7
1...5....0..0.5%.00.000..5.00.0000.500000000.5000.000005.00..00...5....0..

DATA DIVISION.

WORKING-STORAGE SECTION.

01 CCDE-DATA.
02 DATE PICTURE XXXXXXXX.
02 JOB-CODE PICTURE XXXXXX.

The Data Division entries above:

a. reserve an area in working storage for the record variable
CODE-DATA.

b. reserve 1locations in storage for the elementary variables
DATE and JOB-CODE.

18. In Fiqgure 17 the PICTURE clause for OPERATOR-NAME specifies that
values of the variable will be 25 characters long. The numker
enclosed in parentheses is called a repetition factor. A PICTURE
clause for PROGRAM-NUMBER could also be written with a repetition
factor. Code the data item description entry for the variable
PROGRAM-NUMBER using the repetition factor.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

02 PROGRAM-NUMBER PICTURE X(5).

76

LL

81T 2InbTa

Division header
Section header

Record description
entries

Guide for Coding the Data Division with Level 01 and
Level 02 Entries in the Working-Storage Section

Necessary hyphen

(as many as necessary)

Data deW
entries

(as many as necessary)

Record names and level number 02 begin in Area B

Division header, section header, and level number 01 begin in Area A

A iB \\ | COBOL STATEMENT
DA DVQisaNL L LI T e LT
WORK!I INGI-sITIoRAIGlE| [SEICIT O] FHH-with a period. [
@1 | vielelolvidl-inlalmel-1]. LA TR Lo NN
|| | @2] diaitial-{nialmel-(1 P{1|CITIHRE| Ipli lc|*|u]v|e|-|olf|-|dial+al-nfaimei<]
- ¢2,da+a-namgf2 Pl |C{TIURE pictuxg;gfj¢m+a—na el-[2
HE ALl EERANE
@1 !Yec.ord.—ho.me—z.
@2| |dlol+|al-Inlamel-|2] Pl CTIRE |p|i lc/t{ulrle]-lo|f|-dlal+al-n|almel- [2].] |
82| |dla/tal-[njalmlel-12] |P]IIC|TIURE piile|tu|vlel-oif|-ldlal Hlal-nlalmel-
BE
: ! N i -
ii i _ 1]

"6l

0

EMPLOYEE-RECORD

NAME HOME-ADDRESS EMPLOYEE-NUMBER
(20 characters) (30 characters) (5 characters)

- o o o ey
e s . e e ol

Figure 18 is a guide for coding the Data Division with level 01
and level 02 entries in the Working-Storage Section.

Using the guide in Figure 18, determine which Data Division
entries for the record variable diagramed above are correct.

a.
0 1 1 2 2 3 3 4) 5 5 6 6 7

1...5....0....5.0..0000.5000000000500000000.5000.00.0.5....0....5....0..

0

DATA DIVISION.
WORKING-STORAGE SECTION.
01 EMPLOYEE-RECORD PICTURE X(55).
02 NAME PICTURE X(25).
02 HOME-ADDRESS PICTURE X(30).
02 EMPLOYEE-NUMBER PICTURE XXXXX.

b.

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0.0..5.0..0....5....0....5....0....5....0..

78

DATA DIVISION.

WORKING-STORAGE SECTION.

01 EMPLOYEE-RECORD.
02 NAME PICTURE X(20).
02 HOME-ADDRESS PICTURE X(30).
02 EMPLOYEE-NUMBER PICTURE X(5).

* * *

b
(a 1is incorrect because the level 01 entry contains a PICTURE clause
for a group variable.)

_————— - - — ——— o e - -

20.

r 1
| LOG-RECORD |
| v I
| PROGRAM-NUMBER OPERATOR-NAME |
L 1
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7

1.0.5 0000005 ...000005000.000ee50cee0ceS50eee0ie5eeeloeaade. 0.,
ACCEPT LOG-RECORD FROM CONSOLE.
The statement above will allow values of PROGRAM-NUMBER and

OPERATOR-NAME to be keyed into the working-storage variable LOG-
RECORD through the console typewriter.

r |
| EMPLOYEE-RECORD |
| |
| NAME HOME-ADDRESS EMPLOYEE-NUMBER |
| (20 characters) (30 characters) (5 characters) |
L J
0 0 1 1 2 2 3 3 4) 5 5 6 6 7

1...5....0....5....002..5....0....5....0....5....0....5....0....5....0..
ACCEPT EMPLOYEE-RECORD FROM CONSOLE.
This statement will allow:

a. values of the elementary variables in EMPLOYEE-RECORD to be
entered into working storage through the console typewriter.

b. values of NAME, HOME-ADDRESS, and EMPLOYEE-NUMBER to be keyed
into working storage through the console typewriter.

* * *

79

21.

T 1
| CUSTOMER-RECORD |
[|
| NAME HOME-ADDRESS BALANCE |
| (25 characters) (30 characters) (5 characters) |
L J

Using Figure 18 as a guide, write the Data Division entries for
the working-storage variable CUSTOMER-RECORD illustrated above.
Then write the Procedure Division entries for the paragraph
SEQUENCE-1 to allow values to be keyed into the variable through
the console typewriter and to halt execution.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0000e5....0....5.0..0....5....0000.5.0..0....5....0..

DATA DIVISION.

WORKING—-STORAGE SECTION.

01 CUSTOMER-RECORD.
02 NAME PICTURE X(25).
02 HOME-ADDRESS PICTURE X(30).
02 BALANCE PICTURE X(5).

0 0 1 1 2 2 3 3 L} 4 5 5 6 6 7
(R A | [R - T | P DT | B R T T 1 e DR | [P R | I

PROCEDURE DIVISION.

SEQUENCE-1.
ACCEPT CUSTOMER-RECORD FROM CONSOLE.
STOP RUN.

22. The ACCEPT statement may be used for low-volume input from a card
reader as well as from the console typewriter. If the FROM
option 1is not specified, the card reader is assumed to be the
device.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 -
1...5....0....5....000005....0000.500..0000.500000....5000.0000.5....0..

ACCEPT CUSTOMER-RECORD.
would transmit values to a working-storage variable:
a. from a punched card.
b. through a card reader.

* * *

80

23.

L) h]
| OPERATION-RECORD |
| |
| JOB-CODE OPERATOR-CODE COMMENTS |
| (S char) (5 char) (70 char) |
L J

Write the Data Division entries to reserve working storage for
the record variable OPERATION-RECORD illustrated above. Then
write the Procedure Division entries for the paragraph MAIN-
SEQUENCE to transmit values to OPERATION-RECORD through the card
reader and to halt execution.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....00...5....0000.500..00.0.5....0....5....0....5....0.,

DATA DIVISION.

WORKING-STORAGE SECTION.

01 OPERATION-RECORD.
02 JOB-CODE PICTURE X(5).
02 OPERATOR-CODE PICTURE X(5).
02 COMMENTS PICTURE X(70).

PROCEDURE DIVISION.
MAIN-SEQUENCE.
ACCEPT OPERATION-RECORD.
STOP RUN.

The COBOL language features you have learned to use thus far can ke
used for 1low-volume data such as operator messages and replies.
Processing files of records that involve a large volume of data,
however, requires certain entries in the Environment and Data Divisions
as well as certain statements in the Procedure Division. You will learn
to code these in the following lesson.

END OF LESSON 4

81

82

THIS PAGE INTENTIONALLY LEFT BLANK

LESSON 5

83

LESSON 5 - INTRODUCTION TO FILE PROCESSING

INTRODUCTION

The COBOL 1language features you have learned to use thus far can be
used for low-volume data such as operator messages or replies.
Processing files of records that involve a large volume of data,
however, requires certain entries in the Environment and Data Divisions
as well as certain statements in the Procedure Division. Although the
ACCEPT statement can be used to transmit values in a card record to the
computer, it is not used to process a file of card records.

You have already learned to code the Configuration Section of the
Environment Division in which the programmer specifies the equipment on
which the program is to be compiled and executed. In this lesson you
will learn to code the Input-Output Section of the Environment Division
in which you specify the equipment, such as a printer or a disk drive,
that is to be used for a file during execution of a program.

Specific COBOL language features you will learn to use in this lesson
are:

Input-Output Section of the Environment Division
SELECT Clause

ASSIGN Clause

File Section of the Data Division

FD Entry

LABEL RECORDS Clause

OPEN Statement

CLOSE Statement

MOVE Statement

WRITE Statement

This lesson will require approximately one hour.

8y

1. A collection of records stored on an external medium such as
cards, disk or printer pages is known as a file. Which of these
might be a file?

a. A printed report in which each 1line contains a customer
record

b. & printed report in which each line contains an employee
record

——— —— - -

85

938

6T 2anbtg

Section header
Paragraph name

Environment Division with Sample Input-Output Section

ENVI1IRONMEN m|V|5rog. 1
CONF!/GURIATILOIN;_ISEICT!1ION. |
SOURCIE-IClOMPUTEER.. | [1/BM-1]113]0]. |
0BJECT-ICOMPUTER.| (IIBM- 1138, |
|NPUT-OWTPIT] SECITHON. - ' | : "sie name by stem name
FlIILE-ICONTROWL!.| | { | | 4—tT" . 1

SELEICT PRI\ NTED-REPORT ASS[1IGN PRR[-[1[1[3[2]-|c].

l I | ’

l

SELECT clause ASSIGN clause

2. A programmer uses a file name such as LIST-OF-CUSTOMERS to refer
to a file in his program. He must link this file name to the
equipment +to be used for the file in the Input-Output Section of
the Environment Division. Figqure 19 shows a sample Input-Output
Section. The file name in Figure 19 is:

a. PRINTED-REPORT.
b. specified in the SELECT clause.

* * *

3. The ASSIGN clause in Figure 19 specifies a:
a. 1132 printer.

b. 1442 reader.

e e e e e . e e i . . o . e e e T o . O e i G o Sl s . e e Sl o e s e S o S o —

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

ENVIRCNMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT LIST-OF-CUSTOMERS
ASSIGN TO PR-1132-C.
The entries above:
a. 1link the file named LIST-OF-CUSTOMERS to an output device.
b. specify that LIST-OF-CUSTOMERS will be on an 1132 printer.

c. describe the format of records within the file LIST-OF-
CUSTOMERS.

87

88

0Z 2anbta

Guide for Coding the Environment Division with the Configuration Section
and the Input-Output Section Containing the SELECT and ASSIGN Clauses

A B //Necessary hyphens COBOL STATEMENT
Division header ENVIHRONMENT] [D1IVhIS| 10N . Headers, paragraph names,
Section header CONIF! 1 |6IURIAIT|1IOIN. [SIEICITIIOIN. and entries end with a period
" |SIOURCEXICIOMPIUITER. cloimiplultlelv|- Injome|.
Paragraphs OBJE;CT*COMDUTER- c._omputer—n:mg_... i .
(optional) SPEIC ||AlLI-NAME|S .
Is|yls|teim- nlame| [1IS| imlnlemolnli lc|-[nalme|.
Section header | NPUTHOWITPUT] [SEICIT 10N .
Paragraph name FlIL :" CION[TIROLL].
Statement to link BELIECT] [fi/llel-inlajmel ASISILIGN |TI0| Islyisitielm-nalme).
file name to device |

(as many as necessary) L
ELECT clause is contained in Area B

ivision header, section headers, and
paragraph names begin in Area A

More than one space is allowed whenever a space is indicated.

Figure 20 is a guide for coding the Environment Division with the
Confiquration Section and the Input-Output Section. The input or
output device to be used for a file is specified by the system
name in the ASSIGN clause as shown in Fiqure 20. The ASSIGN
Clause Guide in Figure 21 specifies how the system name is to ke
written for users of the 1130 System. For practice in using the
ASSIGN Clause Guide for a printer file, find the printer device
name used for the 1132 printer.

All files wused in a program must be assigned to an external
medium. That assignment is accomplished by means of the system-
name. For non-disk devices, system-name has the following form:

RD-1442 for 1442-6/7, used in this program for reading
only.

PU-1442 for 1442-6/7, used in this program for punching
only.

RP-1442 for 1442-6/7, used in this program for reading
and punching.

PO-1442 for 1442-5 (a punch-only device).

RD-2501 for 2501 card reader.

PR-1132 for 1132, where no carriage control is to be

used in this program.

PR-1132-C for 1132, where carriage control is to ke used
in this program.

PR-1403 for 1403, where no carriage control is to be
used in this program.

PR-1403-C for 1403, where carriage control is to ke used
in this program.

For a disk file, the form of system—-name is somewhat different.
Three facts must be specified in this name:

1) The file number of the file (to be equated with an actual
file by means of an *FILES supervisor control record at
XEQ time.)

2) The number of record slots (to be) allocated for the file
on disk.

3) Whether the file 1is to use a shared disk buffer during
execution, or its own unique disk buffer.

The form of system—-name for a disk file is:
DF-FILENUMBER-numberofrecords (-X)

where:
filenumber is the number of the file to be equated at XEQ
time; the number must be in the range 1 thru 32767 and be
written without preceding zeros.
numberofrecords is the number of record slots (to be)

allocated for the file; it must be a number in the range 1
thru 32767, written without preceding zeros.

-X specifies that the file is to have its own unique disk
buffer; if -X is not specified, the shared disk buffer will
be utilized.

89

Disk Drives on 1130

Device or

Drive No. Device Location
0 CPU Resident
1 2310 1st Drive
2 2310 2nd Drive
3 2310 3rd Drive
4 2310 4th Drive

Figure 21

6. Using Figures 20 and 21 as gquides, write the Environment Division
entries for a program that will be compiled and executed on an
IBM 1130 corputer. The program will create a file called LIST-
OF-EMPLOYEES on an 1132 printer, using carriage control.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
i...5....0....5....0....5....0....5....0....5....0....5....0....5....0

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CCNTROL.

SELECT LIST-OF-EMPLOYEES

ASSIGN TO PR-1132-C.

When a -C appears next to print-unit number, carriage control is
to be used in this program.

7. The ASSIGN Clause Guide 1in Figure 21 specifies how the system
name is to be written for users of the 1130 System.

Using Fiqures 20 and 21 as guides, write the Input-Output Section
for a printer file called PRINTED~-REPORT.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0.00.5000.0000e5.0.00000.5.00.0....5....0....5....0..

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT PRINTED-REPORT
ASSIGN TO PR-1132-C.

90

8. Write the necessary Environment Division entries, including both
the Configuration Section and Input-Output Section, for a program
that will:

1) be compiled and run on an IBM 1130 computer.

2) create a file called CUSTOMER-FILE on the 1132 printer using
carriage control.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....000..5.00.0.00.5000000005.0..0....5....0..

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CCNTROL.
SELECT CUSTOMER-FILE
ASSIGN TO PR-1132-C.

(The ASSIGN clause is part of the SELECT entry and may be written
below it.)

91

Z6

ZZ @2anbtg

Storage for an output area must be reserved in the File Section of the Data Division in order for
a record (values of the variable PRINT-RECORD) to be transmitted to a line of a printed report.

Storage for
input and

output areas—
00123

Output area

NORMAN JONES

— . —
_—

— —

OPERATOR-NAME

A—J|~Variable name
|

[1T
PROGRAM-NUMBER
(.

PRINT-RECORD

| __Value _

—

00312 SALLY JONES
06200 JOHN JACKSON

? 00123 NORMAN JONES

9. According to Figure 22, records on the printer file are values
transmitted from the:

a. record variable LOG-RECORD.
b. variables in an output area.

c. Vvariables in PRINT-RECORD.

10. Various values of a record variable are +to be written on a
printer. Figure 22 shows values printed on a page from a record
variable. From this you can see that:

a. one record is printed on one line of the printer.

b. different values of the record variable will be printed on
different lines.

93

he

€z 2anbtd

Format Requirements for File Description and Record Description
Entries in the File Section of the Data Division

File description entry

Record description entry.
for the output area
PRINT-RECORD

/.(ile name

3 It . 2 a_| 0w £ Y 0 “
DATAL DIV AN TT T/

FI\LEL SECTION.) | 11/ TIOTL
FID | 'PRIINTED-IREPORT,

L RECOR _OMIITTE
@1 | PRINT-R SRR
0 - q Pl ICTIURE] MXXXX.
OPERATORI-NAME! Pl CITIURE [X/(25))!.
.I FINRRRN) |

File name, record name, and level
number 02 are contained in Area B

Division header, section header, FD and
level number 01 begin in Area A

Form of LABEL RECORDS
clause required for card
and printer files

(LABEL RECORDS clause
required in some form

for every file)

*LI0dII-aaLNIdd
aurf uo Aijud

o13dTIossp OTTJ B UT PaqTIISIP

pasn butaq

“IT

e uayMm

2anbTy uUT €0
ut ST 9TTF

€T
e

n butog oTTJF 92Ul SsSauweu
*UOTSTATA B3led 9yl UT AIjus U

se pas

aylL
93 3snu 3T ‘wexboxd TOHOD

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0....5....000..5.0..00.0.5....000..5....0....5....0....5....0..

FD PRINTED-REPORT
The entry above:
a. designates that the file being used is a printer file.

b. indicates that the name of the file being used is PRINTED-
REPORT.

12. In the FD entry the programmer must specify whether the file
contains records used to 1label the file in addition to the
records of data. He specifies this in a LABEL RECORDS clause.
The LABEL RECORDS clause on line 04 of Figure 23 1indicates that
the file PRINTED-REPORT has no records used to label the file.
This form of the LABEL RECORDS clause is used in the FD entry for
every card and printer file. Following the example in Figure 23,
write the division and section headers and the file description
entry for the printer file PRINT-OUT.

* * *

0 0 1 1 2 2 3 3 0 4 5 5 6 6 7
leee5cceel0iceb00ee00eebeeea0aeeabece0eeedeee00ceebeee0...05....0..,

DATA DIVISION.
FILE SECTION.
FD PRINT-OUT
LABEL RECORDS ARE OMITTED.

(Since the LABEL RECORDS clause is part of the FD entry, a period
follows the clause, not the file name. Card and printer files do not
require label records.)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....000005.0..0000.5002.0000.5.0...0000.5000.0....5....0..

DATA RECORD IS record—-name
RECORD CONTAINS integer CHARACTERS

The clauses shown above may be used in a file description (FD) entry
at any time. These clauses are never required and serve only as
documentation to assist in reading the program. The DATA RECORD
clause is used to name the record associated with the file, while the
RECORD CONTAINS clause is used to specifiy the number of characters
in each record.

———————— e - - - - ———

95

13.

PRINT-OUT-RECORD

CUSTOMER-NUMBER CUSTOMER-NAME
(5 characters (25 charactexrs)

= — . S e, =)
R

Figure 23 shows a record description entry following the file
description entry. This entry describes the output area from
which records will be transmitted to the printer file. The
programmer has associated the output area PRINT-RECORD with the
file PRINTED-REPORT by coding the file description entry followed
by the record description entry in the File Section of the Data
Division. Follow the example in Figure 23 and code the Data
Division entries to specify that the file PRINTER-OUTPUT 1is to
contain records written from the ocutput area illustrated above.

* * *

0 0 1 1 2 2 3 3) 4 5 5 6 6 7
1...5....0....5....0.0005.00.0000.500000000.5....000..5.00.0000.5....0..

DATA DIVISION.

FILE SECTION.

FD PRINTER-OUTPUT
LABEL RECORDS ARE OMITTED.

01 PRINT-OUT-RECORD.
02 CUSTOMER-NUMBER PICTURE X(5).
02 CUSTOMER-NAME PICTURE X(25).

14. Data Division entries in the File Section reserve:
a. locations in working storage.

b. an output area.

15. A record description entry following the FD entry describes
variables from which values can be transmitted to either the
printer or the console typewriter. Values transmitted to a file
(a large volume of data) would be transmitted to:

a. the printer.

b. the console typewriter.

26

16.

You have learned to code the Data Division entries describing a
record variable in the Working-Storage Section and an output area
in the File Section. The statements in the Procedure Division
are used to process data from the record variables described in
the Data Division. Before a file may be used, however, it must
be prepared for processing. This is done at the beginning of the
Procedure Division with an OPEN statement as shown in Figure 24.
Write a statement to prepare the printer file PRINT-FILE for
processing.

Sample Procedure Division with Entries
for Writing a Record into an Output File

Use of file specified File name
in OPEN statement

P2 0 X0 2 n 37 %) “
PRAC [1IWNISTI[ON. i
MNH 7 Q. P} R 4 .
| QUTIP, I NTEID-REPORT
¥ - 0 FIR . |
) ORD [Tl PRIINT-/RECIORDL.| |||
IT ‘ ™ (‘GRDo
ol YNTEID-[REIPORIT].
AT f
L REENE
Output area File name
(record name)
Figure 24

97

* * *

0 0 1 1 2 2 3 3) 4 5 5 6 6 7
1...5....0.0005000.00000540000000e500000eeb000e00eee5000e00...5....0..

OPEN OUTPUT PRINT-FILE.

(With the exception of paragraph names, statements in the Procedure
Division must be contained in Area B.)

17. An OPEN statement rust be executed before the use of:
a. a file on the printer.

b. the console typewriter.

98

66

GZ 2anbtJg

This diagram illustrates execution of the MOVE and WRITE statements. These
statements can be used to write a record in a working storage variable into a printer output file.

Storage for
input and
output areas
WG MORMAN JONES — —
Output area - |
[. Il :) @:::z S
PROGRAM-NUMBER OPERATOR-NAME
L PRINT-RECORD '
Working Storage— @
. N\
Working Storage 00123 NORMAN JONES
Variable : —f—Value
1 I]
PROGRAM'NUMBER OPERATOR-NAME — & Variable name
' LOG-RECORD |
@ Values of the elementary variables in @ Values of the elementary variables in
LOG-RECORD are to be transferred PRINT-RECORD are to be transmitted
to the output area PRINT-RECORD to the printer output file by a WRITE
by a MOVE statement statement specifying PRINT -RECORD

0
1..

18. Figure 25 shows a record in:
a. working stcrage.
b. the output area PRINT-RECORD.

* * *

19. Figure 25 shows that in order for the record in working storage
to be transmitted to the printer file, the record in LOG-RECORD
must be moved +to PRINT-RECORD tky a statement and then
transmitted to the printer by a statement.

MOVE ,WRITE

20. When the MOVE statement in Figure 25 is executed, the value of
the variable LOG-RECORD is copied into the output area PRINT-
RECORD. The value of LOG-RECORD remains the same, but any
previous value of PRINT-RECORD is destroyed.

The value of the variable NAME is to be transmitted to the
variable NAME-FOR-OUTPUT. NAME contains the value SMITH; NAME-
FOR-OUTPUT presently contains the value JONES.

0 1 1 2 2 3 3 4 4 5 5 6 6 7
«5....0....5...0.00.5.00.000005. 0000000500000 0.5.0..0....5....0..

MOVE NAME TO NAME-FOR-OUTPUT.
After the execution of the statement above:
a. NAME and NAME-FOR-OUTPUT will both contain the value JONES.

b. NAME will contain blanks, and NAME-FOR-OUTPUT will contain
the value SMITH.

c. NAME and NAME-FOR-OUTPUT will both contain the wvalue SMITH.

e e e i — o ——————— — ——— ——— - —— — —— T — —————— T — T — — — ——— " . ——————

100

0

21.

DATA-RECORD

NAME IN-ADDRESS

[o o e =
b e s e ol

OUTPUT-RECORD

- o ———
b e = e 0

OUT-NAME OUT ~ADDRESS

The variables specified in a MOVE statement may be either record
variables or elementary variables. Values of one record variable
may be moved to another record variable by a single MOVE
statement, or they may be moved as elementary values by more than
one statement. Which of the coding segments below would transfer
values of the variables in DATA-RECORD, shown above, to the
variables in OUTPUT-RECORD?

A.

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

0

MOVE DATA-RECORD TO OUTPUT-RECORD.
b.

0 1 1 12 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5.0..00...5....0.,

0

MOVE NAME TO OUT-NAME.
MOVE IN-ADDRESS TO OUT-ADDRESS.

—— i e s e e e s e e e e . o —— o ——— v —— - - -

Literals as well as variables can be specified in MOVE statements as
shown in the statements below.

0 1 1 2 2 3 3] 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

MOVE 'GOOD' TO CREDIT-RATING.
MOVE 1000 TO MAXIMUM-CREDIT.

——— e e - — - - -

101

22. Wwhen the file has been opened and data has been moved into an
output area, a record can be written on the file. The WRITE
statement is an instruction +to write a record on a file. The
WRITE statement in Figure 24 will cause the record in the output
area PRINT-RECORD to be written on the printer. The statement

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0000.5.0..000025000.000005.00000000.5.00.0000.5000.0000.5....0..

WRITE DATA-RECORD
would cause:
a. values in the output area called DATA-RECORD to be printed.

b. a record to be written.

e o e e = —— ——— —————— — ——— T ——— ——— " " —__— . — S " — i — - —— " 3> . s " o S e o s

23. When all records have been written into a file, processing must
be terminated by a CLOSE statement for +that €file. The CLOSE
statement in Figure 24 terminates processing for the file called
PRINTED-REPORT. The statement

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1.ce50cee0ccae5eceefeneedeccalececbecceleceedeceeloneedenealecaadea. 0.

CLOSE PRINTED-REPORT
would be:

a. coded so that it would be executed after the last record has
been written into the file called PRINTED-REPORT.

b. wused to prepare the file PRINTED-REPORT for processing.

* * *

24. Figure 24 shows that the word OUTPUT used to specify the use of
the file is coded in the statement to:

a. prepare the file PRINTED-REPORT for processing.

b. terminate processing of the file PRINTED-REPORT.

* * *

102

25. Follow the example in Figure 24 and write the Procedure Division
entries, in a paragraph called SEQUENCE-OF-STEPS, to do the
following:

1) Prepare an output printer file called LIST-OF-CUSTOMERS for
processing.

2) Key values into the record variable CUSTOMER-RECORD.

3) Transfer values from CUSTOMER-RECORD to an output area called
PRINT-RECORD.

4) Write a record from PRINT-RECORD on the printer.
5) Terminate processing of the output file.

6) Halt execution of the object program.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....000005.0000000050000000005000.0000.5000.0000.5000000005....0..

PROCEDURE DIVISION.

SEQUENCE-OF-STEPS.
OPEN OUTPUT LIST-OF-CUSTOMERS.
ACCEPT CUSTOMER-RECORD FROM CONSOLE.
MOVE CUSTOMER-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.
CLOSE LIST-OF-CUSTOMERS.
STOP RUN.

103

104

26.

L[] R}
| CUSTOMER-RECORD |
l I
| CUSTOMER-NUMBER CUSTOMER-NAME CREDIT-CODE |
[(5 characters) (25 characters) (1 character) |
L J

PRINT-RECCRD

CUSTOMER-NUMBER-0 CUSTOMER-NAME~0 CREDIT-CODE-Q
(5 characters) (25 characters) (1 character)

- —— e, o)
Y p——— |

The record variable CUSTOMER-RECORD illustrated above 1is to
contain values transmitted from the card reader. The values will
then be transferred to the variables in PRINT-RECORD, also
illustrated above. Records contained in the output area PRINT-
RECORD will be written into the file LIST-OF-CUSTOMERS.

Figure 26 is a guide for coding the Data Division with the File
Section and the Working-Storage Section. Follow the guide in
Figure 26 and code the Data Division entries for the record
variables described above.

GOT

97 @anbta

Guide for Coding the Data Division with the
File Section and the Working-Storage Section

12 18 £
1

2

© “ “ 52 58

TA DINISION.T 1T NRSRRRERE ?
_FILE sECTON.] [1] | L T
File description entry FD | $lilliel-inia -1;_11 L byt i
LIABELL IRDS ARE REERRERARERANE —Form of LABEL RECORDS
Record description entry 1 %ﬁtuv - LT I I _{_ i 11 clause required for card
| ~niamel-1 P(1 rie-o/f - daltie,-nlajme-1.. and printer files
Data description entries i diatal-Iname|-2 P! Hulrlel-loff - mﬁ:nt -2.
(as many as necessary) L ERIN | I H , !
i - || cilid N L
Entries to define an OR! S| Al M BEIEEE . —Form of LABEL RECORDS
input or output area and— R R | i clause required for disk
lix?k it to a file name ' ulrlei-/olf'-datHol 1
(4 - Q- |4
(as many as necessary) ctuy ‘l‘li;‘@%*'; - nlomel- 2.
Independent data B dibl] | —Must follow the File
description entries——{: e &f ‘:r 'ﬁ%:rn;@s‘c'i- : Section
(as many as necessary) [~ I EEEEAnnn DUt -
Data description entries ‘,'2: gi:*ivg' {‘LQ'E :% Each .er(;try ends with
(as many as necessary) ’ i T, aperio
SEETNEARINGEE
Record description rle|-lo|f:- dalt'al-njame|-/1..
entries rie-/oif ~dialta:-Injamel-2l.
(as many as necessary) | L :"T;'l‘ t_l 1
D ! B

File name, LABEL RECORDS clause, record names,
and level number 02 are contained in Area B

Division header, section headers, FD, and
level number 01 begin in Area A

FILE SECTION must precede WORKING-STORAGE SECTION if both are included in a program. Within
the Working-Storage Section, any level 77 entries must precede any record description entries.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

DATA DIVISION.

FILE SECTION.

FD LIST-OF-CUSTOMERS
LABEL RECORDS ARE OMITTED.

01 PRINT-RECCRD.
02 CUSTOMER-NUMBER-O picture XXXXX.
02 CUSTOMER-NAME-O PICTURE X (25).
02 CREDIT-CODE-O PICTURE X.

WORKING-STORAGE SECTION.

01 CUSTOMER-RECORD.
02 CUSTOMER-NUMBER PICTURE XXXXX.
02 CUSTOMER-NAME PICTURE X(25).
02 CREDIT-CODE PICTURE X.

(The File Section always precedes the Working-Storage Section in the
Data Division.)

——— —— - - e e e ———— — - —— —— —— — — ——

27. Code the Procedure Division entries for the problem in the
preceding frame. Use PRINTING-ROUTINE as a paragraph name. You
may use Figure 16 as a guide.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l.ee5.0ee00eeabecee0eeeebeeee0acee5ee0eee5.0..0000.5.00.00...5....0..

PROCEDURE DIVISION.
PRINTING~ROUTINE.

OPEN OUTPUT LIST-OF-CUSTOMERS.

ACCEPT CUSTOMER-RECORD.

MCVE CUSTOMER-RECORD

TO PRINT-RECORD.

WRITE PRINT-RECORD.

CLOSE LIST-OF-CUSTOMERS.

STOP RUN.

106

28. Match the functional description(s) with the appropriate portiocn
of a COBOL program.

1)

2)

3)

4)

The record description
entry following the FD
entry in the File
Section of the Data
Division

OPEN statemwent in the
Procedure Division

CLOSE statement in the
Procedure Division

SELECT and ASSIGN
clauses in the FILE-
CCNTROL paragraph of
the Input-Output
Section of the
Environment Division

*

Associates the file name
with the equipment to be
used for the file

Defines the output area
from which records will
be transmitted to the
file

Prepares the file for
processing

Terminates processing of
the file

Specifies the use of the
file as OUTPUT

-

107

29. Read the problem statement in Figure 27. Then on a new coding
sheet, write the Identification and Environment Division entries
for the problem.

Problem Stat ement

EMPLOYEE-RECORD

= e S e =y

EMPLOYEE-NUMBER NAME ADDRESS-TI MARITAL-STATUS

4) (20) (30) (D)

b o e, S s od

T 1
| PRINT-RECORD |
[|
| EMPLOYEE-NUMBER-O NAME-O ADDRESS-0 MARITAL-STATUS-O |
| (4) (20) (30) (1) |
L J
1) A program called PRINT-DATA is to be compiled and run on an
IBM-1130 computer.
2) An output file EMPLOYEE-DATA-LIST is to be created with a
printer.
3) Values of the variables in EMPLOYEE-RECORD (described above)
are to be transwmitted from the card reader.
4) Values in EMPLOYEE-RECORD are to be transferred to the
variables in the output area PRINT-RECORD.
5) A record from PRINT-RECORD is to be written on a printer file
called EMPLOYEE-DATA-LIST.
6) The message END-OF-JOB is to be written on the console
typewriter.
7) The output file must be prepared for processing before data
is written and closed before execution is terminated.
8) Statements in the Procedure Division are to be grouped in the

108

paragraph MAIN-SEQUENCE.

Figure 27

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....00...5.00.0.0.0.5....0.00.5....0....5....0..

IDENTIFICATION DIVISION.
PROGRAM-ID. PRINT-DATA.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION. (25)
FILE-CCNTROL.
SELECT EMPLOYEE-DATA-LIST
ASSIGN TO PR-1132-C. (28)

(The numbers in parentheses to the right of the coding indicate the
frames in which the entries were introduced.)

30. Write the Data and Procedure Division entries +to solve the
problem in Figure 27. (Continue on the coding sheet used in the
previous frame.)

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5..0.00000500000000eb5000e00eeabeea00a05....000..5....0....5....0..

DATA DIVISION.
FILE SECTION.

FD EMPLOYEE-DATA-LIST (38)
LABEL RECORDS ARE OMITTED.
01 PRINT-RECORD. (13)

02 EMPLOYEE-NUMBER-O PICTURE X(4).
02 NAME-O PICTURE X(20).
02 ADDRESS-O PICTURE X(30).
02 MARITAL-STATUS-O PICTURE X.
WORKING-STORAGE SECTION.
01 EMPLOYEE-RECORD. (13)
02 EMPLOYEE-NUMBER PICTURE X(4).
02 NAME PICTURE X(20).
02 ADDRESS-I PICTURE X(30).
02 MARITAL-STATUS PICTURE X.
PROCEDURE DIVISION.
MAIN-SEQUENCE.

OPEN OUTPUT EMPLOYEE-DATA-LIST. (39)

ACCEPT EMPLOYEE-RECORD.

MOVE EMPLOYEE-RECORD (42)
TO PRINT-RECORD.

WRITE PRINT-RECORD. 42)

DISPLAY 'END OF JOB' UPON CONSOLE.

CLOSE EMPLOYEE-DATA-LIST. (u46)

STOP RUN.

(The CLOSE statement could have been coded on the same line as the
DISPLAY statement. Your solution may appear different but be correct
provided you have followed the rules for placement of entries and for
separation and breaking of statements.)

109

SUMMARY:

You have now completed Lesson 5 in which you have learned COBOL
statements and entries necessary to write data records into an output
printer file. The function of each of these entries is summarized in
the following illustration.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5.¢0.00ce%0ee00eeeeeec0acnabecealanaadeeee0ceebaeea0a.9....0..

IDENTIFICATION DIVISION.
PROGRAM~-ID. PRINT-DATA.
ENVIRCNMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
(1) SELECT EMPLOYEE-DATA-LIST
ASSIGN TO PR-1132.
DATA DIVISION.
FILE SECTION.
(2) FD EMPLOYEE-DATA-LIST
LABEL RECORDS ARE OMITTED.
01 PRINT-RECORD.
(3) 02 EMPLOYEE-NUMBER-O PICTURE X(4).
02 NAME-O PICTURE X (20).
02 ADDRESS-O PICTURE X(30).
02 MARITAL-STATUS-O PICTURE X.
WORKING-STORAGE SECTION.
01 EMPLOYEE~-RECORD.
02 EMPLOYEE-NUMBER PICTURE X(4).
02 NAME PICTURE X(20).
02 ADDRESS-I PICTURE X(30).
02 MARITAL-STATUS PICTURE X.
PROCEDURE DIVISION.
MAIN-SEQUENCE.
(4) OPEN OUTPUT EMPLOYEE-DATA-LIST.
ACCEPT EMPLOYEE-RECORD.
MOVE EMPLOYEE-RECORD
TO PRINT-RECORD.

(5) WRITE PRINT-RECORD.

DISPLAY 'END OF JOB' UPON CONSOLE.
(6) CLOSE EMPLOYEE-DATA-LIST.

STOP RUN.

(1) Links file name to equipment to be used for the file

(2) Specifies whether file contains records used to label the
file

(3) Defines an output area and associates it with file name

(4) Prepares file for processing and specifies its use as output

(5) Write record into file associated with PRINT-RECORD in the
File Section

(6) Terminates processing of the file

The ACCEPT statement which 1is wused for low-volume data such as
operator messages and replies, has been used in this lesson to transmit
records of data from the card reader to working storage record
variables. It has been used to allow you to practice writing statements
for ocutput on a printer file. In the next lesson you will learn to
code the entries to transmit data from an input file to an input area
which will be defined in the File Section.

END OF LESSON 5

110

LESSON 6

111

LESSON 6 - CARD FILE PROCESSING AND BRANCHING

INTRODUCTION

In previous lessons the input data used in the COBOL programs you
wrote was keyed in through the console typewriter or accepted from the
card reader as a single card. Usually input data will be contained in
records on an external medium called a file. The input file may be on
punched cards, or disk. The punched card is a widely used medium in
cata processing. Processing data that is recorded in a punched card
input file is a more efficient method than accepting single cards or
records from the card reader, which would be used only for low-volume
data.

In this lesson you will learn to process input data from a card file.
You will also learn to branch to another point in a COBOL program and to
repeat a series of steps.

Specific COBOL language features you will learn to use in this lesson
are:

PIC abbreviation

FILLER item in an input area

INPUT option of the OPEN statement
READ statement

GO TO statement

This lesson will require approximately three quarters of an hour.

112

/778932 ABBOTT,JAMES 42

@ The record description
entry describes how
the data in each column
of the card is to be
interpreted. Therefore,
all 80 columns should

be accounted for.

Core Storage

Record
(an employee card)

D

~

778932 ABBOTT,JAMES 42 B
File:
CARD-FILE
FiD Icﬁ =Fade |] LTI
\RREN sl A LTTED.!
gl | -IRECIORD]. L1 |
v lg_qu).
! Pl Wl
g2 e e X(ad)l,
| _[Puel XX.
i 1 L] Pl X(lilf).
1

A{put

BAPLOYEE-
NUMBER

T T
NAME HOURS

EMPLOYEE-RECORD

Area

@ The record description entry

reserves an input area for the
record variable in core storage.
The data from the records in
CARD-FILE will be transmitted
to the record variable
EMPLOYEE-RECORD.

(Storage should be reserved according
to the way the data is recorded on the
cards. Portions of the card that are
blank or unused should be described
as FILLER.)

Figure 28

113

114

1. Figure 28 shows a deck of cards. This deck of cards is a file.
According to Figure 28, the file shown is:

a. CARD-FILE
b. EMPLOYEE-RECORD

* * *

——— e e e e e e -—— e - - -——

2. Each card 1in a card file is a separate record. Figure 28 shows
an illustration of a single card, or record, from the file CARD-
FILE. Each card in the file CARD-FILE is:

a. an employee card.

b. a record.

3. An entire deck of cards is @ «.«<.... . Each card within the
deck iS @ ceeeoace o

* * *

file
record

Read the probler statement in Figure 29. In the following frame
sequence you will code this problem in COBOL. Continue to code on
the same coding form as you build the program.

Problem Statement

As a COBOL programmer, you will probably be required to write
programs to process data that is recorded on punched cards. It
is also a common practice to list on the printer the data, or a
portion of the data, recorded on punched cards.

-

CARD-FILE

Device: 1442 ——> 1BM-1130

PRINT-FILE
Device: 1132

XK

1A D U8 W AN

i
EMPLOYEE-NUMBER-O) (HOURS-WORKED)/

¢

~
PRINT-RECORD

The flowchart above is a system flowchart. It gives you
necessary information about the equipment to be wused during
execution of the program LISTING, described below.

The file CARD-FILE, whose records are illustrated in Figure 28,
is to be processed in the following way:

1) The record is to be read into the input area EMPLOYEE-
RECORD.

2) The erployee-number and the hours worked are to be moved
to an output record.

3) The output record is to be printed in the following form:
X-—-=XXX
(EMPLOY EE-NUMBER-O0) (HOURS-WORKED)

PRINT-RECORD

——— -—— e = o o - o - ——— e —— ————— — — ——— -

4. The program is to be called LISTING. Write the Identification
Division for this program.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

IDENTIFICATION DIVISION.
PROGRAM-ID. LISTING.

115

5. The next division to be coded is the Environment Division. The
computer to be used for compilation and execution is shown in the
system flow chart in Figure 29. Code the Confiquration Section
of the Environment Division. (Remember to include the
appropriate division and section headers.)

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....00.0.5.0..0000.5.00.0000.5000.0000.500..0....5....0....5....0..

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.

e o e et s - ————————— .~ —————_— — = — — —— T - o = . = ——— " V= —— = o ————

6. The program in the previous lesson required only one file, a
printer output file. Consequently, only one SELECT clause and
one ASSIGN clause were required. In the problem statement in
Figure 29 two files are specified. Therefore the program to
solve this problem will contain:

a. two SELECT clauses.
b. one ASSIGN clause.

* * *

a
(An ASSIGN clause is required for each SELECT clause.)

7. The SELECT clause for a card input file is just like the SELECT
clause for a printer output file. The appropriate parts of the
ASSIGN clause for a card input file are shown in Figure 21.
Refer to Figures 20 and 21 and code the Input-Output Section of
the Environment Division for the problem in Figure 29. The file
names and input and output devices are shown in the system flow
chart.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5.¢..0.0...5....0000.5002.0.0202.5.0..0....5....0.00.500..0....5....0..

INPUT-OUTPUT SECTION.
FILE-CCNTROL.
SELECT CARD-FILE ASSIGN TO
RD-1442.
SELECT PRINTFILE ASSIGN TO
PR-1132-C.

116

8. The next division of the program to be coded is the Data
Division. The File Section must contain an FD entry for each
file used in the program. In the program you are writing for the
problem statement in Figure 29, there should be:

a. two FD entries.

b. an FD entry for CARD-FILE.

c. an FD entry for EMPLOYEE-RECORD.
d. an FD entry for PRINTFILE.

* * *

9. Figure 28 shows the FD entry for the file CARD-FILE. The clause
which is shown must always be present. An FD entry always
requires a Clause.

* * *

LABEL RECORDS (Write the Data Division and File Section headers on
your coding form, and then copy the FD entry in Figure 28 into your
program. Label records are always omitted from a card file.)

10. Figure 28 also shows that the record description entry reserves
an area in storage that will contain values from the records in
CARD-FILE. The record variable that will contain values from the
records in CARD-FILE is:

a. EMPLOYEE-RECORD.
b. CARD-FILE.
c. described in a record description entry.
* * *
a,c

(PIC 1is a reserved word and a valid abbreviation for PICTURE; these
two reserved words are equivalent.)

- - - -

117

11.

The record description entry contains data description entries
for elementary variables within the record variable. The
elementary variables will each contain specific data from
specified fields in the records in CARD-FILE. The pictures
associated with the variables determine the size of the field on
the card that is to be transmitted to each variable. The data
description entries in Figure 28 show that:

a. Six characters from each record will be transmitted to the
variable EMPLOYEE-NUMBER.

b. 10 characters from each record will be transmitted to the
variable NAME.

12.

The record description entry indicates the order in which data is
to be transmitted to the record variable. That is, the first
field on a card will be transmitted to the first elementary
variable named in the record description entry, the second field
to the second elementary variable, and so on. Refer to Figure 28
and determine which of the following is true.

a. The data in the field in columns 1-6 will be transmitted to
the variable EMPLOYEE-NUMBER.

b. The data in the field in columns 7-26 will be transmitted to
the variable NAME.

13.

The third data description entry in Figure 28 specifies the COBOL
reserved word FILLER. The field on the sample card that
corresponds to this data description entry:

a. 1s blank.

b. contains characters and digits.

* * *

118

14. some files are used for more than one program and contain data
that may not be needed in every program in which the file is
used. A FILLER item can never be referred to in a program.
Consequently, you would use FILLER in a data description entry
when:

a. the corresponding field in the record contains no data.

b. the data contained in the field is not to be referred to in
the program.

Either

15. In the record description entry in Figure 28, FILLER is used
after NAME because:

a. the data contained in that field is not to be referred to in
the program.

b. there are 10 columns following NAME in the input record that
contain no data.

16. According to the explanation identified by 1 Figqure 28, FILLER is
used after HOURS in the record description entry because:

a. no data is punched into the columns described.

b. all 80 columns on the card should be accounted for in the
record description entry for a card file.

* * *

—— e o = o ———————— ——— ——————— —— —— B - - -

17. The PICTURE clause is used with FILLER just as it is with an
elementary-variable name. The PICTURE clause used with FILLER
should indicate the:

a. number of blanks in the related field.

b. length of the field that is not to be referred to in the
program.

Either

119

0

18. Although values of NAME are punched into the cards, NAME is not
referred to in the program for the problem statement in Figure
29. Therefore FILLER could be used in place of NAME in the
record description entry. Write a record description entry for
the file in Figure 28 using FILLER in place of NAME. (Do not use
the coding form on which you are coding the program for the
problem statement in Figure 29.)

* * *

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0.0..5....0..0.5....0....5....0....5....0....5....0....5....0..

120

01 EMPLOYEE-RECORD.
02 EMPLOYEE~-NUMBER PIC X(6).
02 FILLER PIC X(30).
02 HOURS PIC XX.
02 FILLER PIC X(u42).

19. The explanation identified by 2 in Figure 28 explains that the
record description entry causes:

a. data to be stored in core.
b. storage to be reserved in core for the data from the file.

* * *

- —— —— ——— o T ——— —————— > T — o~ —— -

20. The record description entry associates the record variable with
the file from which data is to be transmitted to the variakle.
Consequently, you might expect that a record description entry
for records from a file in a COBOL program:

a. mwmust be placed immediately following the FD entry for the
file with which it is to be associated.

b. can be placed anywhere in the Data Division.

* * *

- ——— s ——— o —— ————— — .~ — " — — ——— — —— — — — — — —— — —— ——————————

21. When records on punched cards are processed as a file, the record
description entry appears in the Section immediately
following the FD entry for its associated file. When records on
punched cards are to be accepted from the card reader as single
records by an ACCEPT statement, the record description entry
appears in the Section.

* * *

File
Working-Storage

0

22. Complete the
entry and the

Data

record description

Division of your program by writing the FD

described in Figure 29.

2

* *

3 3

entry for the

*

4) 5 5

output

6 6

file

7

1...5....0....5....0....5....0.00.5....0....5....0....5....0....5....0..

LABEL RECORDS ARE OMITTED.

0 1 1 2
FD PRINTFILE
01 PRINT-RECORD.

02 EMPLOYEE-NUMBER-0 PIC X(6).
02 HOURS-WORKED PIC XX.

Although user-supplied words are provided for you in this course, you

will form your own

as

a

programmer .

Figure 30

shows

rules

forming all user-supplied words that are included in the course.

The
Figure 31 defines
Procedure Division

the

entries.
far have ended with periods, since they were

content

treated

symbols

as

for

final division of your COBOL program is the Procedure Division.

and terminating
Al]l statements that you have seen thus
sentences.

of wvalid

Statements will continue to be shown ending with periods, but keep in

mind that the

period is not a required part of a statement.

Rules for Forming User-Supplied Words

I
|User-supplied

1

Use Number of Type of Characters Restrictions]|

| Name Characters| from Figqure 1 |
| |
| file name namwe a 1 to 30 at least one must name must |
| file be alphabetic; be unique |
| no spaces; |
| record name name a cannot begin or name must |
{ record end with hyphen be unique orj
| qualifiable |
| data name name a |
| data item |
| |
| condition name a name must i
| name value of be unique |
| data item |
| |
| paragraph name a 1 to 30 no alphabetic name must |
| name paragraph characters required| be unique |
| no spaces; |
| program name a cannot begin or first five |
| name program end with hyphen characters |
| must be |
| library name a unique |
| name library |
| entry |
L J

Figure 30

121

valid Procedure Division Entries

first one being
preceded by a
paragraph name

r 1
| TERM DEFINITION |
| |
| CONTENT TERMINATING SYMBOL(S) |
| |
| statement| a basic valid a space, |
| combination of words a comma followed by a space, or |
| and symbols used in a period followed by a space (If |
| the Procedure Division| a period is used, the statement |
| is also a sentence.) |
| |
| sentence a sequence of one or a period followed by a space I
| more statements |
| |
| paragraph| a sequence of one or another paragraph name or the end |
| rore sentences, the of the program |
| |
I |
| |
L J

Figure 31
23. You know that an ocutput file must be opened before you can refer
to data in that file. The same is true for an input file. The
name of the input file is preceded by the reserved word INPUT in
the OPEN statement. Which of the following would be a correct
OPEN statement for the input file FILEIN?
a.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5.0..0000.50..0.00.5.002.000005.0000000.5.0..000.05.0..0000.5....0..

OPEN FILEIN.
b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5.0..0000.5.0..0000e50c0u0aeeedeecaleicaebeene0aneab50aea0aaeaeSeead0..

OPEN FILEIN INPUT.
C.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0000.5000.000..500.00000.500..0.00.5....0....5....0..

OPEN INPUT FILEIN.

122

24,

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0..0.5.0..0.0005.00.0000.5.0000000.5000.000005....0....5....0..

OPEN INPUT CARD1 OUTPUT PRINTER CARD2.

A single OPEN statement can open more than one file. For
example, the statement above will cause CARD1 to be opened as an
input file and PRINTER and CARD2 to be opened as output files.
This demonstrates that:

a. the reserved word INPUT and/or OUTPUT needs to be named only
once in an OPEN statement.

b. all the files whose names follow the reserved word INPUT
(without an intervening OUTPUT) in an OPEN statement will Ee
opened as input files.

* * *

Both
(The reserved words INPUT and OUTPUT may be used only once in an OPEN
statement.)

25. Include in your program the appropriate OPEN statement for the
files described in Figure 29. The division header for the
Procedure Division and a paragraph name (use BEGIN) must also ke
included.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....0....5....0....5.0..00..0.5.0..00.05....0000.5....0....5....0..

PROCEDURE DIVISION.
BEGIN.
OPEN INPUT CARD-FILE
OUTPUT PRINTFILE.

—— e e e e e e > = e - -— e e s e e e e il o > e

An ACCEPT statement is used to instruct the computer to accept data
punched into a single card or keyed in from the console. To be able
to use the data from a card file, a READ statement must be executed
for each record in the file. '

123

het

ZE 2anbtyg

This figure illustrates the execution of the statement
READ CARD-FILE.

~

778932 ABBOTT,JAMES 42
CARD-FILE

/ 778932 ABBOTT,JAMES 42

@ When the statement
READ CARD-FILE.
is executed, the data from a card (record)
in the file is transmitted to the record
variable (EMPLOYEE-RECORD) that was
associated with the file in the Data Division.

Input Area/

778932 |ABBOTT,JAMES 42
(EMPLOYEE-
NUMBER) (NAME) (HOURS)
EMPLOYEE-RECORD

26. The text 1identified by 1 in Figure 32 explains that the READ
statement causes:

a. data fror a card in the file to be transmitted to the input
area in core storage set up by the record description entry
for the file.

b. storage to be reserved in core for information from the
cards.

27.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

READ file—-name

The simple form of +the READ statement is shown above. (No
terminating period is shown in the form above, since a period is
not a required part of the statement.)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5...0000.5.0..0.0..5.2..0....5....0....5....0....5....0..

READ CUSTOMER-FILE.

The statement above would cause the next record in the file
CUSTOMER-FILE to be stored in the record variable associated with
the file. Information contained in that record can suksequently
be referred to in the program by references to the appropriate
variables. A READ statement:

a. must be executed before data from a record in a file can be
processed.

b. causes data to be stored as specified in the Working-Storage
Section.

e e e o e o ——————— —— ——— — — o~ ————— ———— e -——

28. Write a statement to cause data from a record in the file CARD-
FILE to be stored in the record variable associated with the
file. (Do not wuse the coding form on which you are coding the
program for the problem statement in Figure 29.)

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0..0..5,...00.0.5....0000.5....0....5....0000.5000.000..5....0.,

READ CARD-FIlE.

125

29. According to the problem statement in Figure 29 the operations
necessary to complete the Procedure Division are:

a. ACCEPT

b. READ
c. NMOVE
d. WRITE

e. DISPLAY

30. On a separate coding form, write the necessary COBOL statements

1) read the data from a card in CARD-FILE.
2) move the necessary data as indicated in Figure 29.

3) print the output record as indicated in Figqure 29.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

READ CARD-FILE.

MOVE EMPLOYEE-NUMBER TO
EMPLOYEE-NUMBER-O.

MOVE HOURS TO HOURS-WORKED.

WRITE PRINT-RECORD.

31. The statements you have just written will cause one record to be
read from CARD-FILE and one record to be printed in PRINTFILE. A
file always contains more than one record. In order to complete
the data-processing task, the entire file wust be processed.
That is, every card in the file must be read and the necessary
steps performed to process it. This could be specified by:

a. repeating the steps you have just written

b. executing a READ statement (and other necessary steps) for
each record in the file.

Either

126

32.

0 0

2nd card

/

007712 GRANT,ALBERT 36
Ist card

007170 BRETT,JIM 45

Figure 33

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....000..5....0....5.00.000005.40.0.00.5....0..

203
204
205
206
207
208
209
210
211
212
213

READ CARD-FILE.

MOVE EMPLOYEE-NUMBER TO
EMPLOYEE-NUMBER-O0.

MOVE HOURS TO HOURS-WORKED.

WRITE PRINT-RECORD.

READ CARD-FILE.

MOVE EMPLOYEE-NUMBER TO
EMPLOYEE-NUMBER-O0.

MOVE HOURS TO HOURS-WORKED.

WRITE PRINT-RECORD.

The first time a READ statement for a card file is executed, the
data from the first card in the file 1is transmitted to the
appropriate input area. Execution of the next READ statement for
that file will cause the data from the second card in the file to
be stored in the same input area, thus destroying the data from
the first record. Using the data descriptions in your program
and the cards shown from the input file, you can see that after
execution of statement 203 above, the variable NAME will contain
eseecease; after execution of statement 208, NAME will contain

BRETT ,JIM
GRANT ,ALBERT

127

33.

0 0

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5.0..0....5.00.0000.5.00..0000.5000.0....5....0..

203 READ CARD-FILE.
204 MOVE EMPLOYEE-NUMBER TO
205 EMPLOYEE-NUMBER-O.
206 MOVE HOURS TO HOURS-WORKED.
207 WRITE PRINT-RECORD.
208 READ CARD-FILE.
209 MOVE EMPLOYEE-NUMBER TO
210 EMPLOYEE-NUMBER-0.
211 MOVE HOURS TO HOURS-WORKED.
212 WRITE PRINT-RECORD.
213
Using the data shown in the previous frame, write the information
that will be printed when:
1) statement 207 is executed
2) statement 212 is executed
* * *
1) 00717045 (Employee-Number and Hours)
2) 00771236
34. It would be impractical to write all the necessary statements for
every card in a file. You might not know how many cards are in
the file. Therefore, it would probably be best to:
a. read only one card in the file
b. reexecute statements that process a single card for every
card in the file
* * *
b
35. Statements in the Procedure Division of a COBOL program are
normally executed in the order in which they occur. You might
assume that this pattern of sequential execution could be altered
by a:
a. branching statement
b. statement causing a transfer of control to another point in
the program
* * *
Either

128

36. A COBOL statement used to transfer control to another point in
the program is the GO TO statement.

This flowchart illustrates
a loop, which is the
repetition of a series of
steps in a program.

Move data

Write
record

Figure 34
Y 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5.00.0000.5.00.000005000000005000000005000.0000500..0000.5.0...0..

GO TO paragraph—name.

The GO TO statement of the form shown above can be used for
looping. When a GO TO statement is executed, control transfers

to the given paragraph name and execution continues from that
point.

129

0 0

1

1 2 2 3 3 4 4 5 5 6 6 7

l1...5....0....5....0.00.50000000250000000005000.000005.00.0....5....0..

130

PROCEDURE DIVISION.
BEGIN.

OPEN OUTPUT LIST-FILE.

PROC1.

ACCEPT NAME FROM CONSOLE.
MOVE NAME TO OUTPUT-NAME.
WRITE OUTPUT-RECORD.

GO TO PROC1.

CLOSE LIST-FIIE.

STCP RUN.

Refer to the Procedure Division above and determine which of the
following statements is true.

A.

When the GO TO statement is executed, control will transfer
to the point where PROC1 appears and all the statements
following PROC1 up to the GO TO statement will be reexecuted.

The statements shown will be executed once and then execution
will stop.

If the GO TO statement were placed immediately following the
ACCEPT statement, nothing would be printed in the output
file.

37.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

PROCEDURE DIVISION.
BEGIN.
CPEN INPUT STUDENT
OUTPUT LISTING.
READ STUDENT.
MOVE STUDENT-NAME TO LIST-NAME.
WRITE LISTING-RECORD.
GO TO BEGIN.
CLOSE STUDENT LISTING.
STOP RUN.

When the Procedure Division above is executed, the OPEN statement
will be executed each time control is transferred by the GO TO

statement. An OPEN statement for a file can be executed only
once in a program (unless the file is to be closed and then
reopened) . You know that a paragraph name can precede any

statement in the Procedure Division. Using the paragraph name
PARA1, rewrite the Procedure Division above specifying that the
OPEN statement will be executed only once.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

PROCEDURE DIVISION.
BEGIN.
OPEN INPUT STUDENT
OUTPUT LISTING.
PARAl.
READ STUDENT.
MCVE STUDENT-NAME TO LIST-NAME.
WRITE LISTING-RECORD.
GO TO PARAl.
CLOSE STUDENT LISTING.
STOP RUN.

Alternate solutions:

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5.00.0000.5.0000000050000000005....000..5.0..0....5....0..

PROCEDURE DIVISION.
BEGIN.
OPEN INPUT STUDENT
OUTPUT LISTING.
PARAL.
READ STUDENT
MOVE STUDENT-NAME TO LIST-NAME
WRITE LISTING-RECORD
GO TO PARAl
CLOSE STUDENT LISTING
STOP RUN.

131

0
1..

132

0 1 1 2 2 3 3 4 4 5 5 6 6 7
«5.0..0000.5.000000005.00.0000.5000000005000.0000.5....0....5....0..

PROCEDURE DIVISION.
BEGIN.
OPEN INPUT STUDENT
OUTPUT LISTING.
PARA1l.
READ STUDENT,
MOVE STUDENT-NAME .TO LIST-NAME,
WRITE LISTING-RECORD,
GO TO PARA1l,
CLOSE STUDENT LISTING,
STOP RUN.

By refering to Figure 31, you can see that either of the Procedure
Divisions above would also be a correct solution to this frame.
Paragraph BEGIN contains only one statement, which must end in a
period since a paragraph must contain at 1least one sentence.
Paragraph PARA1 contains six sentences in the original solution and
one sentence in the additional solutions. Two,three, four or five
sentences in paragraph PARA1 could also be correct.

- — — - -— _———— -——— -

SUMMARY:

In the preceeding portion of this lesson you have learned to:

1) set up an input area 1in storage for data contained in an
input file.

2) read data from punched cards in an input file.

3) specify that a series of steps in a program is to be repeated
so that the entire input file can be processed.

END OF LESSON 6

LESSCN 7

133

LESSON 7 - USE OF RECORD VARIABLES

INTRODUCT ION

This 1lesson will give you increased flexibility in programming
techniques by showing you what to do at the end of a program and how to
use record variables at levels lower than 01 and 02.

Specific COBOL language features you will learn to use in this lesson
are:

AT END option of the READ statement
Level number 03

Level number 04
Qualified names

This lesson will require approximately three quarters of an hour.

134

There 1is another situation you must provide for when you are writing
a program using card input file. You must specify the action to ke
taken when the last card in the file has been read.

B e e e T T I —

1. The 1last card in a card file is a card with a special code on it
which is understood by the computer to mean "this is the end of
the file."™ Therefore, when a program is processing an input card
file, the computer will know that +the 1last card has Lkeen
processed when:

a. there are no more cards.

b. it reads a card with a special end-of-file code.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....00005.0..000.05.00.0....5.0..0....5....0..

READ file-name AT END imperative-sentence

Although the computer knows when it has reached the end of the
file, it doesn't know what to do. You, as a programmer, must use
the AT END option of the READ statement to tell the computer what
to do when all the records in an input file have been processed.
A READ statement with an AT END option has the form shown above.
An irperative sentence is one or more imperative statements,
ended by a period and followed by a blank.

AT END Option

The AT END option must be specified for all files in the
sequential access mode. If, during the execution of a READ
statement, the 1logical end of the file is reached, control is
passed to the imperative-statement specified in the AT END
phrase. After execution of the imperative statement associated
with the AT END phrase, a READ statement for that file must not
be given without a prior execution of a CLOSE statement and an
OPEN statement for the same file.

If, during the processing of a multivolume disk file in the
sequential access mode, end-of-volume is recognized on a READ,
the fcllowing actions are carried out:

1. A volume switch is wmade. If the MULTIPLE UNIT option was
specified for this file, and if, in order to make the volume
switch, it 1is necessary for the operator to make a physical
cartridge change, he is instructed at this time to do so.

2. When the volume switch is complete, the first data record of
the new volume is made available.

135

Determine which of the following could be included in the AT END
option.

A

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0.0..5.00.000..5....0..

MOVE TOTAL TO TOTAL1l STOP RUN.
b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
loce5cceefeecebeceeleceeSbecealfeanedeeecleceedeeeeleceaSeeee0aceade. 0.,

GC TO PARAZ2.

C.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
lece5.00.00eee50ee00eeebieee0aeeebeeee0aeee5.e00ee5.00.0000.5....0..

CLCSE INFILE STOP RUN.
* * *
Any of these

(As shown in ¢ an imperative sentence consisting of a string of
imperative statements may be included in the AT END option.)

3. In order to determine what should be included in the AT END
option, you must decide what is to be done (as specified in the
problem statement) when the entire input file has been processed.
Because all files used in a program should be closed by a CLOSE
statement, it would be logical to include a sStatement in
the AT END option.

—— o ———————————— v — ——— s = o ————— —— ———— -

4. If the program is complete when the entire input file has been
' processed, you might also include:

a. STOP RUN in the AT END option.

b. a MOVE statement in the AT END option.

136

5.

0 0 1 1 2 2 3 3 4 4y 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

CLOSE file-name file-nare...

The CLOSE statement for an input file is just like a CLOSE
statement for an cutput file. Each file in a program may have a
separate CLOSE statement, or a single CLOSE statement may close
several files, both input and output. In this case, the CLOSE
statement has the format shown above. (Do not use the coding

form on which you are coding the prograr for the problem
statement in Figure 29.)

1) Write two sentences to close the files STUDENT and LISTING.

2) Write a single sentence to close the files STUDENT and
LISTING.

1)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....0....5....0....5.0..0....5....0....5....0....5....0....5....0..

CLCSE STUDENT.
CLOSE LISTING.

2)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

CLOSE STUDENT LISTING.

———— . s s o —— o~ —— — o~ —- - —————— —— - ——— —

137

Read a card

END-OF-
FILE card

Close all
files

138

(Necessary STOP RUN
processing)
Write a
record
Figure 35

0

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5.00.000..5.0.00.00.500..0..0.5.0..0....5....0..

0

PROCEDURE DIVISION.
PROC1.
CPEN INPUT STUDENT
OUTPUT LISTING.
PARAl.
READ STUDENT.
MCVE STUDENT-NAME TO LIST-NAME.
WRITE LISTING-RECORD.
GC TO PARAl.
CLOSE STUDENT LISTING.
STOP RUN.

Rewrite the READ statement in the coding above to specify the
action described in the flow chart. The AT END option is used to
specify the decision and subsequent action. (Do not use the
coding form on which you are coding the program for the proklem
statement in Figure 29.)

* * *

0 1 1 2 2 3 3 4y 4 5 5 6 6 7

1e225c02e0ceeeBeeealiaeebenaaleceebececleeeS50eec0ueea50ececlansaBaana0..

0

READ STUDENT AT END
CLOSE STUDENT LISTING
STOP RUN.
Alternate coding:

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5,...0....5....0....5....0....5....0..

READ STUDENT AT END CLOSE STUDENT
LISTING STOP RUN.

(If you had coded a period after LISTING, the STOP RUN statement
would be executed after any execution of the READ statement.)

[— -— —————— . - ———— - — ———— —— —— " —— ———— ——

7. There wmay be more than one READ statement in a program for a
single file. An AT END option must be specified in each READ
statement for every input file. Select the statement(s) below
that specify the correct use of the AT END option.

a. Every READ statement must include the AT END option

b. If a program includes only one READ statement, that statement
must contain an AT END option.

c. If a program contains more than one READ statement for a
single file, only one of the statements may include the AT
END ortion.

b
(An AT END option must be specified in each READ statement unless
another option that you will learn to use later is specified.)

139

140

Start

PARAIL.

Read a
record from
CARD-FILE

END-OF-
FILE card

Move data to
output record

STOP RUN

Write
record into
PRINTFILE

Figure 36

Continue on the coding form on which you have been coding the
problem staterment in Fiqure 29. Using the flow chart above,
complete the Procedure Division for the program. (Remember that
you must read a file and write a record.)

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....00...5.00.0000050000000005000000050000000005000.0000.5....0..

PARAL.
READ CARD-FILE AT END
CLOSE CARD-FILE PRINTFILE
STOP RUN.
MOVE EMPLOYEE-NUMBER
TO EMPLOYEE-NUMBER-O.
MOVE HOURS TO HOURS-WORKED.
WRITE PRINT-RECORD.
GC TO PARAl.

9. oOften, for easier reading, a programmer will place the statements
necessary to complete his program and terminate execution at the
end of the program instead of in the AT END option. In order to
do this, the programmer must:

a. 1include a GO TO statement in the AT END option.

b. precede the completion statements by a paragraph name.

* * *

10. Rewrite the READ statement through the GO TO statement for the
problem statement in Figure 29 to include the completion

statements at the end of the program. Use the paragraph name
FINISH.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5.0..0....5....0....5....0....5....0..

PARAl.
READ CARD-FILE
AT END GO TO FINISH.
MOVE EMPLOYEE-NUMBER TO
EMPLOYEE-NUMBER-O0.
MOVE HOURS TO HOURS—WORKED.
WRITE PRINT-RECORD.
GO TO PARAl.

FINISH.
CLOSE CARD-FILE PRINTFILE.
STOP RUN.

(This coding will produce the same effect as the coding in the AT END
option.)

141

11.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0.0..5....0....5.0..0....5....0..

01 RECORD1.
02 PURCHASE PIC X(u4).
02 ITEM-NUMBER PIC X(6).

You know that level 01 record variables can be broken into level
02 elementary variables. 1In the record description entry above:

a. RECORD1 is the name of a file.

b. a reference +to RECORD1 is a reference to PURCHASE and ITEM-
NUMBER.

- — - [R— o e e e e - e e e e e e = o S - - —— ————— — o ———_— ———— = — — o > B>

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

01 STUDENT-RECORD.
02 MONTH PIC XX.
02 DAY PIC XX.
02 YEAR PIC XX.
02 STUDENT-NUMBER PIC X(8).
02 STREET PIC X(15).
02 CITY PIC X(10).
02 STATE PIC X(4).

According to the record description entry above:

a. any of the seven 1level 02 elementary variables can be
referred to individually.

b. all seven level 02 elementary variables are grouped together
to form STUDENT-RECORD.

142

13.

0 0 1 1 2 2 3 3 4 4 5 S 6 6 7
1...5....0....5....0....5..0.0000.500.00005.000000.0.500..0.0..5....0..

01 SALES.
02 AVERAGE PIC 9999.
02 HIGH PIC 9999.
02 LOW PIC 9999.

(The 9's shown in Level 02 pictures signify numeric characters).

Match each description with the appropriate variable defined in
the record description entry above.

1) SALES a. Elementary variable
2) AVERAGE b. Group variable

c. Variable that is further subdivided

143

14.

STUDENT-RECORD

ENROLLMENT-DATE STUDENT-
NUMBER

MONTH DAY YEAR

- —— ——
e e ey e

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....00...5....0.2..5.0..0.0..5....0.0...5402.000..5c...0..
01 STUDENT-RECORD.
02 ENROLLMENT-DATE.
03 MONTH
03 DAY
03 YEAR
02 STUDENT-NUMBER
If you were using a record like the one described in a preceding
example, it is likely that you would want to refer to MONTH, DAY
and YEAR at the same time, perhaps as DATE, or ENROLLMENT-DATE.
The same is true for STREET, CITY and STATE, which could te
referred to as ADDRESS.
COBOL enables you to group single data items within a record. 1In
the example above, MONTH, DAY, and YEAR have been grouped
together into the group variable ENROLLMENT-DATE. The block akove
shows the logical structuring of the record. ENROLLMENT-DATE is
a level 02 group item. MONTH, DAY and YEAR are level 03
elementary variables and can be referred to separately, or
collectively as ENROLLMENT-DATE, or together with STUDENT-NUMBER
as STUDENT-RECORD.
Select the correct statement(s) for the following example.
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7

1eee5c0ee0icea5.00.000005.00.000005.00.00005000.0002.5.0..00...5....0..

14y

01 STUDENT-RECORD.
02 ENROLLMENT-DATE.

03 MONTH
03 DAY
03 YEAR

02 STUDENT-NUMBER
02 HOME-ADDRESS

03 STREET
03 CITY
03 STATE

a,c

STUDENT-RECORD

NUMBER
MONTH DAY YEAR STREET CITY STATE

(™ e s S e S

1
|
ENROLLMENT-DATE STUDENT- HOME-ADDRESS |
|
|
]

a. STREET, CITY and STATE are level 03 elementary variables.

b. HOME-ADDRESS is a level 02 elementary variable.

c. STREET, CITY and STATE can be referenced individually,
collectively by HOME-ADDRESS, or together with STUDENT-NUMBER
and ENROLLMENT-DATE by STUDENT-RECORD.

* * *

(HOME-ADDRESS is a level 02 group variable.)

15.
0 0

o e . . e

1 1 2 2 3 3 4) 5 5 6 6 7

1...5%...0....5....0.00.5....0....5....0....5....0....5....0....5....0..

1)
2)

01 DEPT-RECORD.

02 DEPT-NUMBER

02 SALES.
03 PERIOD1
03 PERIOD2
03 PERIOD3

02 LISTSALES

02 COMMISSION.
03 PERIOD-1
03 PERIOD-2
03 PERIOD-3

The level nurber of a data description entry never determines
whether the variable is a group or elementary variable. If an
item is broken into smaller items, it is a group variable. If an
item in a record description entry is not broken into smaller
jtems, it 1is an elementary variable. Referring to the record
description entry in the segment of coding shown above, list the
names of the:

1) group variables
2) elementary variables
* * *
DEPT-RECORD (the record itself), SALES, COMMISSION

DEPT-NUMBER, PERIOD1, PERIOD2, PERIOD3, LISTSALES, PERIOD-1,
PERIOD-2, PERIOD-3

145

16.

DEPT-RECORD

DEPT- SALES
NUMBER

PERIOD1 PERIOD2 PERIOD3

(™ o T S e, o
e et e et e e

LISTSALES COMMISSION

PERIOD1 PERIOD2 PERIOD3

P
b ey ey o e

Oonly elementary variables have values. Group variables merely
allow the programmer to refer to a group of values. This implies
that the PICTURE clause will be included in the data description
entry for:

a. group variables.

b. elementary variables.

c. SALES in the record above.

d. LISTSALES in the record above.

- e~ o e e e o o e S T o . . o Y o S S S . T — —— ——— — —— ——— — — S~ —— o —_— oy —

146

17.

0 0

WAGE-RECORD

L] 1

| I

l |

| EMPLOYEE- HOURS WAGES I
| NUMBER - |

| (5 char) REGULAR OVERTIME REG-WAGES OVER-WAGES |

{ (3 char) (3 char) (4 char) (4 char) i

L J

Write a record description entry for the record variable
illustrated above. The record variable WAGE-RECORD is to ke
associated with an input card file.

* * *
1 1 2 2 3 3 4) 5 5 6 6 7

1...5....0....5....0000.5..0.0000.5.00.0....5.00.0000.5....0....5....0..

e e o e e e e e e e e e e = —_———— . —————— = —— . - = ——— ———— —————

01 WAGE-RECORD.
02 EMPLOYEE-NUMBER PIC X(5).

02 HOURS.

03 REGULAR PIC X(3).
03 OVERTIME PIC X(3).

02 WAGES.

03 REG-WAGES PIC X(u4).
03 OVER-WAGES PIC X(4).

18.

)

| DEPARTMENT-RECORD

|

| DEPARTMENT- STOCK

| NUMBER

| SECTION-1 SECTION-2

| .

| ON-HAND-1 | ON-ORDER-1 | ON-HAND-2 | ON-ORDER-2
L

b e e — — — — o o)

A

*

*

*

record variable may contain as many as 49 levels.
above illustrates a record which contains

levels.

The diagram

147

19. The data entries for level 04 variables are written immediately
following the level 03 variable of which they are a part. Write
the record description entry for the record illustrated in the
previous frame. DEPARTMENT-NUMBER contains +two characters and
each of the remaining elementary variables contains six

characters.
* * *
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
leeeb5eeee0eeeebeeee0eneebeeee00naa5.00.00005.02.000ee5eeee0ceeeSee..0..

01 DEPARTMENT-RECORD.
02 DEPARTMENT-NUMBER PIC XX.
02 STOCK.
03 SECTION-1.
04 ON-HAND-1 PIC X(6).
04 ON-ORDER-1 PIC X (6).
03 SECTION-2.
04 ON-HAND-2 PIC X(6).
O4 ON-ORDER-2 PIC X (6).

(Record variables may be subdivided to level 49, Level number 01
must begin in Area A. Level numbers 02 through 49 may begin in
either Area A or Area B. All associated data names and their
descriptions must be contained in Area B. In this text, 1level
numbers will be indented for readability as shown above.)

i e e . e . e i e e . i e S e e e

(5 char) (5 char) (7 char) (7 char) (7 char)

20.

(1
| CUSTCMER-RECORD |
| |
| CUSTOMER- PAYMENTS BALANCE |
| NUMBER - |
| (5 char) HI LOW PRESENT HI LOW |
I |
L) |

Write the record description entry for the record described
above.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0...0.5....0....5....0....5....0....5....0....5....0....5....0..

01 CUSTOMER-RECORD.
02 CUSTOMER-NUMBER PIC X(5).
02 PAYMENTS.
03 HI PIC X(5).
03 LOW PIC X(5).
02 BALANCE.
03 PRESENT PIC X(7).
03 HI PIC X(T7).
03 LOW PIC X(7).

- ——— — o ———— -

148

21.

LOW
(It

The record variable described in the coding for the previous
frame contains two data items called LOW and two called HI.
Consequently, a reference to HI or LOW in a program would ke
ambiguous; the computer would have no way of knowing which
variable was being referred to. A unique quality about each HI,
however, is that:

a. one 1is an elementary variable within the group variable
PAYMENTS and the other 1is an elementary variable within
BALANCE.

b. they appear in different records.

In order to reference the variable HI in a program using the file
associated with the record variable CUSTOMER-RECORD, HI must ke
made unique to avoid ambiguity. HI can ke made unique by giving
the group item of which it is a part: HI OF PAYMENTS and HI OF
BALANCE. Show how the two variables called LOW could be made
unique.

* * *

OF PAYMENTS and LOW OF BALANCE
is also correct to use IN in place of OF.)

149

23.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5%....000ee5000e00ce50e0eeeebeeee0aeeebeeea0ecebee0.ee5....0.,

FD MASTER-FILE
LABEL RECORDS ARE OMITTED.
01 EMPILOYEE.
02 NAME.
03 SUR
03 GIVEN

0 0 1 1 2 2 3 3 L 4 5 5 6 6 7
1...5....0....5....0....5.00.0....5.0.20.0..5.00.0000.5....0....5....0..

FD EMPLOYEE-FILE
LABEL RECORDS ARE OMITTED.
01 EMPLOYEE-RECORD.
02 NAME.
03 SUR
03 GIVEN

Forming a unique name as shown in the previous frame is called
qualification. If a name is not in itself wunique, it must be
qualified by as many group items in which it is contained as are
necessary to make it unique. If the two files described above
were used in a program, SUR would have to be qualified each time
a reference was made to it. SUR, qualified to the fullest
extent, would be

SUR OF NAME OF EMPLOYEE OF MASTER-FILE

and

SUR OF NAME OF EMPLOYEE-RECORD OF EMPLOYEE-FILE.

Because a name must be qualified only to the extent necessary to
make it unique, a correct reference to SUR could be:

a. SUR OF NAME

b. SUR OF NAME OF EMPLOYEE

24,

r 1
| CUSTOMER-RECORD |
| I
| CUSTOMER- PAYMENTS BALANCE |
| NUMBER |
| (5 char) HI LOW PRESENT HY LOW |
| (5 char) (5 char) (7 char) (7 char) (7 char) |
L J

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

FD LISTFILE
LABEL RECORDS ARE OMITTED.
01 STOCK.
02 DEPT.
03 PORTION PIC X(4).
03 MARK PIC X(#).
02 INVOICE NUMBER.

The name following the reserved word OF in a qualified name is
called a qualifier. The qualifiers must appear in hierarchical
orxder. For example, HI in the record above could not ke
qualified as HI OF CUSTOMER-RECORD because OF BALANCE or OF
PAYMENTS must be included. Nor could it be qualified as HI OF
CUSTOMER-RECORD OF PAYMENTS because the qualifiers are out of
order. A correct qualified name for MARK in the above coding
would be:

a. MARK OF STOCK

b. MARK OF PORTICON OF DEPT
c. MARK OF LISTFILE OF DEPT
d. MARK OF DEPT OF LISTFILE

* * *

None of these

(Proper qualified names for MARK would be:
MARK OF DEPT,

MARK OF DEPT OF STOCK, or

MARK CF DEPT OF STOCK OF LISTFILE.)

151

[\
(8]
.

1)

CUSTOMER-FILE.

illustrated above could be qualified.

1)

2)

LOW

LOW

Low
LOW

to the fullest extent

Show how the two variables LOW

in the

only to the extent necessary to make them unique

OF
OF
OF
OF

OF
OF

*

PAYMENTS OF CUSTOMER-RECORD

CUSTOMER-FILE

BALANCE OF CUSTOMER-RECORD

CUSTOMER-FILE

PAYMENTS
BALANCE

r A
| CUSTOMER-RECORD |
| |
| CUSTOMER- PAYMENTS BALANCE |
| NUMBER |
| (5 char) HI LOW PRESENT HI LOW |
| (5 char) (5 char) (7 char) (7 char) (7 char) |
L J
The record variable CUSTOMER-RECORD is associated with the file

record

s e e i e e e e . e . S o o . i S i e o S o o S o " D o . . o o o e S . e o . o s o = o o S . P i o ey o T o S e . e

152

26. Data-processing problems often require that data in the input

file be listed on the printer. Listing the data in the input
file may be a portion of a complex program or may be an entire
program in itself. The problem described in Figure 37 consists
of 1listing the records in the input file. Read the prokblem

statement and code the program ADDRESS-LISTING to produce the
listing.

ADDRESS-LIST
INPUT-FILE Device: 1132
Device: 1442 —pp»{ 1BM-1130

The system flow chart above shows the files and equipment to be used in
this program to produce a listing of the data in the card file INPUT-FILE.
The forms of records in INPUT-FILE and ADDRESS-LIST are illustrated
below.

INPUT-RECORD OUTPUT-RECORD

NAME HOME-ADDRESS LAST-NAME | ADDRESS-O
SUR GIVEN (blank)

(12 characters)| (8 characters) | (40 characters) (20 characters) (12 characters)| (40 characters)

The program flow chart

START
shows the order of
operations for the ggéglrﬁph [_‘
Procedure Division, |

Open
l

ies
L

Paragraph
MAIN-SEQUENCE

Read a
record from
INPUT-FILE

Paragraph
FINISH

End-of-file
card?

Move SUR and
HOME-ADDRESS

to output area |

Write
record from
output area in
ADDRESS-LIST

153

0

0

1 1 2 2 3 3 4

4

5

5

6 6

7

1...5....0000.50000000005000.000005000e00eee50eee0ieeebecee0eeead....0..

IDENTIFICATION DIVISION.
PROGRAM~-ID. ADDRESS-LISTING.
ENVIRCNMENT DIVISION.
CONFIGURATION SECTION.
SOURCE COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INPUT-FILE ASSIGN TO
RD-1442,
SELECT ADDRESS-LIST ASSIGN TO
PR-1132.
DATA DIVISION.
FILE SECTION.
FD INPUT-FILE
LABEL RECORDS ARE OMITTED.
01 INPUT-RECORD.
02 NAME.
03 SUR PIC X(12).
03 GIVEN PIC X(8).
02 HOME-ADDRESS PIC X(40).
02 FILLER PIC X(20).
FD ADDRESS-LIST
LABEL RECORDS ARE OMITTED.
01 OUTPUT-RECORD.
02 LAST NAME PIC X(12).
02 ADDRESS-O PIC X(40).
PROCEDURE DIVISION.
BEGIN.
OPEN INPUT INPUT-FILE
OUTPUT ADDRESS-LIST.
MAIN-SEQUENCE.
READ INPUT-FILE
AT END GO TO FINISH.
MOVE SUR TO LAST-NAME.
MOVE HOME-ADDRESS TO ADDRESS-O.
WRITE OUTPUT-RECORD.
GO TO MAIN-SEQUENCE.

FINISH.
CLOSE INPUT-FILE ADDRESS-LIST.
STOP RUN.
SUMMARY:

154

(10,51)

(13)

(26)

(36)

You have now completed Lesson 7 in which you learned COBOL statements
and entries necessary to read data records from an input card file.
function of each of these entries is described on the following page.

The

0 0 1 1 2 2 3 3) 4 5 5 6 6 7
1...5....0....5....0.0..5.0..0000.5.00.0000.5000.0.00..500..0....5....0..

IDENTIFICATION DIVISION.
PROGRAM-ID. ADDRESS-LISTING.
ENVIRCNMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM 1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
(1) SELECT INPUT-FILE ASSIGN TO
RD-1442,
SELECT ADDRESS-LIST ASSIGN TO
PR-1132.
DATA DIVISION.
FILE SECTION.
(2) FD INPUT-FILE
LABEL RECORDS ARE OMITTED.
01 INPUT-RECORD.
02 NAME.
(3) 03 SUR PIC X(12).
03 GIVEN PIC X(8).
02 HOME-ADDRESS PIC X(40).
02 FILLER PIC X(20).
FD ADDRESS-LIST
LABEL RECORDS ARE OMITTED.
01 OUTPUT-RECORD.
02 LAST-NAME PIC X(12).
02 ADDRESS-0 PIC X(u0).
PROCEDURE DIVISION.
BEGIN.
CY) OPEN INPUT INPUT-FILE
OUTPUT ADDRESS-LIST.
MAIN-SEQUENCE.
(%) READ INPUT-FILE
AT END GO TO FINISH.
MOVE SUR TO LAST-NAME.
MOVE HOME-ADDRESS TO ADDRESS-O.
WRITE OUTPUT-RECORD.
GO TO MAIN-SEQUENCE.

FINISH.
(6) CLOSE INPUT FILE ADDRESS-LIST.
STOP RUN.

(1) Links file name to equipment to be used for the file.

(2) Specifies whether file contains records used to label the
file.

(3) Defines an input area and associates it with a file name.
(4) Prepares file for processing and specifies its use as input.

(5) Reads a record from the file into the input area associated
with the file in the File Section.

(6) Terminates processing of the file.

In this lesson you also learned to group elementary variables into
level 02 and 1level 03 group variables and to qualify names when
necessary. You learned to specify looping or a transfer of control to
another point in the program. These programming techniques will «Eke
expanded in following lessons.

END OF LESSON 7

155

THIS PAGE INTENTIONALLY LEFT BLANK

156

LESSCON 8

157

LESSON 8 - HORIZONTAL SPACING

INTRODUCT ION

As a programmer you will be required to prepare printed rerorts with
specified page titles and headings. You will also be required .to follow
a specified format for titles, headings, and data items. 1In this lesson
you will learn to control horizontal spacing of titles, headings, and
cdata items in records in a printer file.

Specific COBOL language features that you will learn to use are:

FILLER items to insert blanks preceding, between, and following
data items in a record in an output file

VALUE clause

ZEROS figurative constant

Maximum size of output area for printer file

This lesson will require approximately one hour.

158

1. You learned to specify a record variable of 80 characters, the
same size as a card record in an input file. If a record in an
output file is to be a line of 120 or less characters on an 1132
printer, you would expect to specify an output area:

a. the same size as the record in the output file.

b. of 120 characters or less.

* * *

Both (Carriage control: if the maximum of 124 printer positions is
to be used, you must actually specify an output area of 125
characters and provide for the first position to be unused. A
carriage control character for the printer will be generated by the
compiler in the first position of the output area. If no carriage
control is specified in the ASSIGN clause, one must specify only a
120 character output area. No carriage control character is
required.)

o o o —— ——————— .~ — —— ——— - — " ——— o —_—— o o - ————— - ———————— —— o] s e e

2. You used a FILLER item in a record variable for a portion of a
card record that was blank, or that contained no data to ke
transmitted. If a record in an output area is to be transmitted
to a printer line, you would expect to use a FILLER item in the
output area for a portion of the printer line:

a. that is to be blank.

b. to which no data is to be transmitted.

* %* *

- o ——— e - - s e e ——— ———— o —— e " " i . — o

3. You know that the value of a variable is undefined until it is
given a value in the program. If no specific wvalue has been
given, the variable:

a. may contain a value remaining from previous processing.

b. will contain blanks.

* * *

4. Thus far you have learned that a value may be given to a variable
by:

a. moving a value to the variakle from another variable with a
MOVE statement.

b. transmitting a value to the variable frow an input file with
a READ statement.

* % *

159

5. If a value has not been given to a FILLER item in an output area
before a record is transmitted from the output area to a printer
line, the value that will be printed from the FILLER item is:

a. made up of blanks.
b. whatever value remains from previous processing.
* * *
b
6. A FILLER item in an output area:
a. 1is wused for a portion of a printer line that is to be blank.
b. should be given an initial value of blanks.
* * *
Both

160

1971

8¢ 2anbTg

This figure illustrates the execution of the statement
MOVE INPUT-RECORD TO OUTPUT-RECORD

used to move a value of a shorter variable to a longer variable.

=N\,

JOHN WILLIAMS 1221 OAK ST LOS ANGELES CAL 10235

@ Values of INPUT-RECORD are
.moved to NAME , HOME -ADDRESS
and CUSTOMER-NUMBER in
OUTPUT-RECORD. Remainder
of OUTPUT-RECORD (FILLER)
is padded with blanks.

SN
h S Input area
~ \:> JOHN WILLIAMS | 1221 OAK ST LOS ANGELES CAL| 10235
(CUSTOMER-
(NAME) (HOME-ADDRESS) 1] | NUMBER) Output area

INPUT-RECORD g

JOHN WILLIAMS| 1221 OAK ST LOS ANGELES CAL 10235

(CUSTOMER-
(NAME) (HOME-ADDRESS) NUMBER)

OUTPUT-RECORD

-~ JOHN WILLIAMS 1221 OAK ST LOS ANGELES CAL 10235

Working Storage

7. Figure 38 illustrates the execution of a MOVE statement. Read
the explanation and look at the illustration in Figure 38. Arrow
1 indicates that the statement is used to move values from:
a. working storage to an output area.
b. an input area to an output area.

* * *

8. According to the explanation for Arrow 1 in Figure 38, the MOVE
statement moves:

a. values of INPUT-RECORD to NAME, HOME-ADDRESS, and CUSTOMER-
NUMBER in OUTPUT-RECORD.

b. a value of INPUT-RECORD to FILLER in OUTPUT-RECORD.

9. According to the explanation for Arrow 1 in Figure 38, the MOVE
statement:

a. moves a value to FILLER in OUTPUT-RECORD from INPUT-RECORD.

b. causes FILLER in OUTPUT-RECORD to be padded with blanks.

10. Figure 38 shows that when values are moved from a record variable
to a larger output area, FILLER in the output area:

a. 1is unaffected.
b. contains whatever value remains from previous processing.

* * *

Neither (is radded with blanks. When values of a record variable
are moved to a shorter output area, the record is truncated on the
right to the length of the output area.)

11. In Figure 38 the FILLER item is used in OUTPUT-RECORD to fill the
output area to:

a. the size of a record in the output file.

b. the length of a line on a printer.

12.

NAMHSTREErcnvsrATqSYMBOLr$h.
Px...x

20 20 20 2 18
CARD-FILE

NAMEISTREETlCPTYsTATEISYMBOLI“bbn

19 20 20

[

59

PRINT-FILE

Figure 39

Preparation of a listing of records in a card (or disk) file is a
common operation in any data-processing center. The following
problem will give you an opportunity to practice coding the
entries you have learned as you write the Data and Procedure
Divisions for a program to prepare a listing.

The customer records for a department store are card records of
the type shown above. Each record in CARD-FILE is to be printed
on one 1line of PRINT-FILE using an 1132 printer (which has 120
columns per line.) Although the first column in each card record
is blank, this is not a common practice. It has been done for
this problem to provide for the carriage control character that
will be generated as the first character in the output area.
While 19 positions are shown for NAME in PRINT-FILE, you must
specify 20 positions for NAME in the output area for PRINT-FILE.
(The output area is to be 121 positions.) The first position in
the output area will contain a printer carriage control
character; only the characters in positions 2 through 20 will be
printed, in regard to NAME.

163

0

1)

0

Using
areas, respectively, write the:

1)

2)

1

CUSTOMER-RECORD and PRINT-RECORD as the input and output

Data Division entries that would be required in this proktlem
including the necessary headers, the FD entries, and the
record description entries.

Procedure Division entries including the:

division header.

paragraph BEGIN containing a statement to prepare the
files for processing.

paragraph MAINSEQUENCE containing statements to transfer
a record from the card file to the printer file, an
instruction to transfer control to MAINSEQUENCE to
process the next record and to print a record, and an
instruction to transfer control to the paragraph FINISH
when all records in CARD-FILE have been processed.
paragraph FINISH containing statements to close files and
stop execution.

* * *

1 2 2 3 3 4 4 5 5 6 6 7

l1...5....0....5....0..0.5.0..0020.5....0....5....0....5....0....5....0..

164

DATA DIVISION.

FILE SECTION.

CARD-FILE

LABEL RECORDS ARE OMITTED.
CUSTOMER-RECORD.

FD

01

FD

01

02 NAME PIC X(20).

02 STREET PIC X(20).

02 CITY-STATE PIC X(20).
02 SYMBOL PIC X(2).

02 FILLER PIC X(18).
PRINT~FILE

LABEL RECORDS ARE OMITTED.
PRINT-RECORD.

02

NAME PIC X(20).
STREET PIC X (20).
CITY-STATE PIC X(20).
SYMBOL PIC X(2).
FILLER PIC X(59).

2)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0.0..5....0..0.5.00.00005.00.0....5.0..000..500000000.5....0..

PROCEDURE DIVISION.
BEGIN.
OPEN INPUT CARD-FILE
OUTPUT PRINT-FILE.
MAINSECUENCE.
READ CARD-FILE AT END GO TO FINISH.
MOVE CUSTOMER-RECORD
TO PRINT-RECORD.
WRITE PRINT-RECORD.
GO TO MAINSEQUENCE.

FINISH.
CLOSE CARD-FILE PRINT-FILE.
STOP RUN.

o - = o i . " S0 S S - o —————__ T—, " _" S ——— " — ——— — —— — ——— —————— — — T —— ——

13. Figure 38 shows that when a record has been transmitted from the
output area to the output file, the values:

a. of the variables NAME, HOME-ADDRESS, and CUSTOMER-NUMBER will
be printed in a continuous string.

b. of individual variables would be easier to distinguish if
they were separated by blanks.

Both

165

99T

oh 2Inbig

This figure illustrates the execution of the statements
MOVE NAME OF INPUT-RECORD TO NAME OF WORKING-RECORD.

MOVE HOME-ADDRESS OF INPUT-RECORD TO HOME -ADDRESS OF WORKING-RECORD.
MOVE CUSTOMER-NUMBER OF INPUT-RECORD TO CUSTOMER-NUMBER OF WORKING-RECORD.

MOVE WORKING-RECORD TO OUTPUT-RECORD.

used to insert blanks in a record for horizontal spacing on a printer line. — S
%mwn.ums 1221 OAK ST LOS ANGELES CAL t023¢]
JOHN WILLIAMS 1221 OAK ST LOS ANGELES CAL 10235 /';l
]
1l
1
\\
v\ output file PRINT
W\
=\
input file > \--—r
CARDS Input are W\
JOHN WILLIAMS | 1221 OAK ST LOS ANGELES CAL| 10235 v\
Output area 7 | HOME ADDRESS) NUMER)R. I\
@V lue of NAME of { INPUT-RECORD \ \ I’ "
aiue O [o) R
INPUT-RECORD is | | N " /| (® Entire value of
moved to NAME of JOHN WILLIAMS nzln /(str LOS ANGE{ES CAL 10235 [Y WORK[I:I:‘Gt-RECORD
R / is moved to
WORKING-RECORD \\ putPuTRECORD. NN\ OUTPUT -RECORD

@ Value of

HOME-ADDRESS
of INPUT-RECORD
is moved to
HOME -ADDRESS of

‘,__‘0
—
|

Working Storage

WORKING-RECORD JOHN WILLIAMS| ¥¥.5 |1221 OAK ST LOS ANGELES CAL| ¥§..§ 10235 | p¥..
@ Value of)| mave) (r:\mn) (HOME ADDRESS) (mfm) CUSTOMER: (mztml
CUSTOMER-NUMBER \] ;
of INPUT-RECORD WORKING-RECORD

is moved to

CUSTOMER-NUMBER Values (of blanks) that have been assigned to FILLER
of WORKING-RECORD with VALUE IS SPACES clause in data description entries

14.

A programmer nmust provide for the first character in an output
area to be reserved for the printer carriage control character.
In addition, a programmer may WwWish to insert blanks between
individual data items on a printer line to make them easier to
distinguish. Figure 40 illustrates execution of statements that
can be used to reserve the first character in the output area and
to insert blanks in a record to provide horizontal spacing on a
printer line. Read the explanation and look at the illustration
in Figure 40. The arrows in Figure 40 are numbered to correspond
to the MOVE statements. According to the explanation for Arrow
1, the first statement will move:

a. the wvalues of NAME, HOME-ADDRESS, and CUSTOMER-NUMBER in
INPUT-RECORD to NAME, HOME-ADDRESS, and CUSTOMER-NUMBER in
WORKING-RECORD.

b. the value of NAME in INPUT-RECORD to NAME in WORKING-RECORD.

* * *

In Figure 40 values of elementary variables in INPUT-RECORD are
moved to:

a. elementary variables separated by FILLER items in a single
record variable in working storage.

b. separate output areas.

Figure 40 shows that the programmer has provided for horizontal
spacing in a record in the output file. He has included FILLER
items in the record variable in working storage to insert blanks:
a. preceding the first data item.

b. between data items.

c. following the last data item.

Figure 40 shows that the programmer has assigned values of blanks
to the FILLER items in WORKING-RECORD. This figure also shows
that, as a result, spaces will precede, separate, and follow data
items:

a. 1in the output area.

b. on a printer line in the output file PRINT.

167

18. Figure 40 shows that a FILLER item used to insert klanks for
horizontal spacing of data items on a printer line:

a. Will be padded with blanks as a result of a MOVE statement.

b. have been assigned a value of blanks with a VALUE IS SPACES
clause.

* * *

b (If a single statement were used to move the value of INPUT-RECORD
to WORKING-RECORD, the value of INPUT-RECORD would be padded with
blanks to the length of WORKING-RECORD.)

19. The MOVE statements in figure 40:

a. move values from an input area to FILLER items in a working-
storage variable.

b. cause FILLER items in a working-storage variable to be padded
with blanks.

c. would 1leave the value of FILLER items in a working-storage

variable undefined if a value of blanks had not been assigned
to the iters.

——— e e e e - - ——— > . — ———————— —— ———— T — —— o - o o s

This figure shows the Data Division entries for inserting spaces
between data items for an output file.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0000.5.0..0..0.5.00.000025.000000005.000.0.0.0.500000000.5....0..

01 DATA DIVISION.

02 FILE SECTION.

03 FD CARDsS

o4 LABEL RECORDS ARE OMITTED.

05 01 INPUT-RECORD.

06 02 NAME PIC X(35).

07 02 HOME-ADDRESS PIC X(40).

08 02 CUSTOMER-NUMBER PIC X(5).

09 FD PRINT

10 LABEL RECORDS ARE OMITTED.

11 01 OUTPUT-RECORD PIC X(121).

12 WORKING-STORAGE SECTION.

13 01 WORKING-RECORD.

14 02 FILLER PIC X(10) VALUE IS SPACES.
15 02 NAME PIC X(35).

16 02 FILLER PIC X(10) VALUE IS SPACES.
17 02 HOME-ADDRESS PIC X(u40).

18 02 FILLER PIC X(10) VALUE IS SPACES.
19 02 CUSTOMER-NUMBER PIC X(5).

20 02 FILLER PIC X(11) VALUE IS SPACES.

Figure 41

168

20.

Figure 41 shows the Data Division entries for the variables in
Figure 40. The clause VALUE IS SPACES specifies that the FILLER
item preceding NAME will be assigned an initial value of 10
blanks. The same clause in the data description entry on:

a. line 18 specifies that the FILLER item preceding CUSTOMER-
NUMBER will be assigned an initial value of 10 blanks.

b. 1line 20 specifies that the FILLER item following CUSTOMER-
NUMBER will be assigned an initial value of 11 blanks.
Recall that the print output area must be specified or 121
positions to accomodate a character (one more than the number
of print positions).

21.

a

In Figure 40 the FILLER item to the left of NAME in WORKING-
RECORD is used to insert blanks:

a. at the beginning of a printing line.
b. between data items on a printing line.
c. at the end of a printing line.

* * *

Only nine blanks would be inserted at the beginning of a printing

line; the first position in the output area would be used for a
printer carriage control character.)

The VALUE clause may be specified only in the Working-Storage
Section. A programmer may use a VALUE clause in a data
description entry to assign a value of blanks to a FILLER item
in:

a. an output area.

b. a working-storage variable.

* * *

A programmer may specify a VALUE clause in a data description
entry for a FILLER item in the:

a. Working-Storage Section.

b. File Section.

-— - ——— o ——— o - —

169

24.

When the data items in an input area are to be printed with
horizontal spacing, blanks can be inserted by:

a. moving the data items to elementary variables in a working-
storage record variable containing FILLER items with values
of blanks assigned in a VALUE clause and then moving the
value of the entire record variable to an output area.

b. moving the data items to elementary variables in an output
area containing FILLER items with values of blanks assigned
in a VALUE clause.

Figure 40 shows that in moving values from WORKING-RECORD to
OUTPUT-RECORD:

a. OUTPUT-RECORD has been subdivided to receive elementary
values from WORKING-RECORD.

b. the wvalue of WORKING-RECORD is moved as an entire record to
OUTPUT-RECORD.

Figure 40 shows that the record in working storage:

a. 1s written on a printer 1line directly from the working-
storage variable.

b. must be moved to an output area before it is written on a
printer.

In Figure 41 the record description entry for the output area
OUTPUT-RECORD:

a. defines a level 01 variable of 121 characters.

b. shows that when a record is not subdivided, the PICTURE
clause is specified in the level 01 entry.

—— e ———— ——— - . " —————————— - ———— — — ——— o ——

170

28. Data items in an input record are to be printed on a line of a
printer page on an 1132 printer with blanks preceding,
separating, and following the data items. To provide for the
blanks to be inserted into the record in the output file, a
programmer would include a record description entry in the Data
Division for:

a. a working-storage variable containing FILLER items assigned
values of blanks with a VALUE clause.

b. an input area subdivided into elementary variables.

c. an output area that need not be subdivided.

29, To provide for blanks to precede, separate and follow data items
in a record in an output file, a programmer must include a
statement in the Procedure Division to:

a. move each data item individually to an elementary variable in
a working-storage variable containing FILLER items.

b. move the values of the entire working-storage record variable
to an output area.

171

172

30.

The following problem incorporates all the features that you
have learned to use to provide horizontal spacing in a printed
report. Coding the solution is optional. If you do not code the
solution, read it carefully to make sure you understand it.

FAMEISTREET|ﬂTYSTATqSYMBOLr$&.

20 29 29 2 18

CARD-FILE
(CUSTOMER--RECORD)

10 BLANKS

| INAMEI ISTREETI ICITY --STATEI ISYMBOLI Be..

20 20 20

2

oS
An— A

ann

18

PRINT-FILE
(PRINT-RECORD)

Figure 42

Coding the problem described below is a typical COBOL programming
task and the problem is a type that you will probably encounter
frequently. Each record in CARD-FILE is to be printed on one
line of PRINT-FILE using an 1132 printer. Blanks are to ke
inserted as shown above. (Remember to provide an extra position
at the beginning of your output record for the printer carriage
control character.) Using WORKING-RECORD as the working-storage
variable, code the Data Division and the Procedure Division for

this problem. (Remember that the Working-Storage Section must
follow the File Section.)

* * *

0 0 1

1 2 2 3 3

[}

4

5

5

6

6

7

1...5....0....5....0....5000.00...5.0.00000.5....0....5....0....5....0..

DATA DIVISION.
FILE SECTION.
FD CARD-FILE
LABEL RECORDS ARE OMITTED.
01 CUSTOMER-RECORD.

02
02
02
02
02

NAME PIC X(20).
STREET PIC X(20).
CITY-STATE PIC X(20).
SYMBOL PIC X(2).
FILLER PIC X(18).

FD PRINT-FILE

LABEL RECORDS ARE OMITTED.
01 PRINT-RECORD PIC X(121).
WORKING-STORAGE SECTION.
01 WORKING-RECORD.

02
02
02

02

FILLER PIC X(11) VALUE
NAME PIC X(20).

FILLER PIC X(10) VALUE
STREET PIC X(20).
FILLER PIC X(10) VALUE
CITY-STATE PIC X(20).
FILLER PIC X(10) VALUE
SYMBOL PIC X(2).
FILLER PIC X(18) VALUE

PROCEDURE DIVISION.

BEGIN.

OPEN INPUT CARD-FILE

OUTPUT PRINT-FILE.

MAINSECUENCE.
READ CARD-FILE AT END GO TO FINISH.
MOVE NAME OF CUSTOMER-RECORD

MOVE SYMBOL OF CUSTOMER-RECORD

FINISH.

CLOSE CARD-FILE PRINT-FILE.

TO NAME OF WORKING-RECORD.
MOVE STREET OF CUSTOMER-RECORD

Is

Is

Is

IS

Is

SPACES.

SPACES.

SPACES.

SPACES.

SPACES.

TO STREET OF WORKING-RECORD.
MOVE CITY-STATE OF CUSTOMER-RECORD
TO CITY-STATE OF WORKING-RECORD.

TO SYMBOL OF WORKING-RECORD.

MOVE WORKING-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.
GO TO MAINSEQUENCE.

STOP RUN.

173

174

31. The FILLER item at the end of an output area could be omitted.
Whenever a record 1is moved from one variable to a 1longer
variable, the record is padded with blanks on the right to the
length of the longer variable. A record in an input file 1is to
be printed on a line of a 1132 printer. The record in the input
file, however, is less than 120 characters. To provide for the
record to be filled with blanks to 120 characters, a programrmer:

a. can mnmove data items 1in the record to a working-storage
variable containing a FILLER item with a wvalue of blanks
assigned in a VALUE clause.

b. can move the record to an output area containing a FILLER
item that will be padded with blanks as a result of the move.

c. can move the record to a longer output area that will ke
padded with blanks as a result of the move.

* * *

All of these

(Whenever a record is moved from one variable to a shorter variable,
the record in the sending variable will be truncated on the right to
the 1length of the shorter receiving variable. The truncated data is
lost. Remember: 1if carriage control is used, the print output area
in core must be one position greater than the number of characters
printed.)

m
I

i Py o i S
J — - -4 —] —
>3 ' 1=+
SO VTN 1) S DI S O - o y
T # B0 U0 I 0 St 0 A ;
e . e
TTT I T11 ,.ﬁ R e s
N i J U 0 A e

—1 1

1
T
"HOME-ADDRESS

.A.J... .x;.l. 1.-
17 (X S A B A A IH;.'] -
T JD N8 B I

. 1%
- SRARS
S N Wm <
£S . -
RIS e s :
[. Cm.m. B
Ease — & § B]

This figure shows how the format of data items is represented on a Printer Spacing Chart.

|

iww |
Wm B
] 1]
Eian wm BE 1
l o

first printing position

T
h2
13
a4
15
16
17
s
19
20
21
‘22
123
{24

Figure 43

175

176

32. Figure 43 shows a Printer Spacing Chart that can be used to plan
the format of printed records. According to Figure 43 the first
printing position is:

a. position 0.

b. position 1.

b

(Position 0 represents the carriage control character that you must
reserve in the output area.)

33. Figure 43 shows that for a 1132 printer used in an American
National Standard COBOL program:

a. the line limit follows position 120.

b. a line consists of 120 columns.

34. As shown in Figure 43, the position of a data item may be
indicated on a Printer Spacing Chart by two x's connected by a
horizontal 1line. According to Figure 43, the first
positions in the line will be blank. The value of CUSTOMER-
NUMBER will be printed in the next rositions. Cata
items will be separated by blanks. The value of HOME-
ADDRESS will be followed by blanks.

* * *

9,5,10,11

-———— — - — - - e o e e e e s . e e e s e o e e

35. If you wished to print values of variables described in Figure 41
in the order shown in Figure 43, it would be necessary to
rearrange the data description entries in:

a. the File Section.
b. the Working-Storage Section.

% * *

36. Rewrite the Working-Storage Section in Figure 41 so that values
from the input area described in Figure 41 can be printed in the
format shown in Figure 43.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5.0..0....5....0....5....0....5....0..

WORKING-STORAGE SECTION.

01 WORKING-RECORD.
02 FILLER PIC X(10) VALUE IS SPACES.
02 CUSTOMER-NUMBER PIC X(5).
02 FILLER PIC X(10) VALUE IS SPACES.
02 NAME PIC X(35).
02 FILLER PIC X(10) VALUE IS SPACES.
02 HOME-ADDRESS PIC X(u40).
02 FILLER PIC X(11) VALUE IS SPACES.

SUMMARY :
You have just learned how to prepare the horizontal spacing format of
printed output. In the next lesson you will learn other aspects of

printed data - vertical printing control, and title and heading
printing.

END OF LESSON 8

177

THIS PAGE INTENTIONALLY LEFT BLANK

178

LESSON 9

179

LESSON 9 - VERTICAL SPACING (1)

INTRODUCTION

This lesson will continue to prepare you to program written reports.
You will learn to write titles and headings and to provide for vertical
printing control characters. You will also study picture representation
for numeric and alphabetic data.

Specific COBOL language features that you will learn to use are:

Picture characters 9 and A

SPACES figurative constant

Provision for printer carriage control
character in first position of output area

Title records

Heading records in working storage

If carriage control 1is specified in the device named in the ASSIGN
clause, a blank position must be left in the first position of the print
output area, so that a carriage control character may be filled in Ly
the 1130 Monitor Program. This means that the second core position
prints in the first printer position. Also, whenever carriage control
is used, the PICTURE clause associated with the output area must specify
one character more than the number of characters to be printed, to
accomodate the carriage control character.

This lesson will require approximately one hour, with an additional
half hour requirement if you do the optional problem.

180

The nonnumeric literals consisting of one or more blanks have
been given the names SPACES. The reserved word SPACES is called
a figurative constant. The numeric literals consisting of one or

more zeros have been given the name ZEROS. The reserved word
ZEROS 1is a:
a. figurative constant.
b. nonnumeric literal.
* * *

0 0

s = - o ——————— T —————— — = — - —— — " ——

The figurative constant SPACES was specified in a VALUE clause
following a PICTURE clause with an X specification, 1indicating
that SPACES is specified for data made up of:

a. numeric digits.

b. alphanumeric characters (one of the characters in Figure 7).

You would
for:

expect the figurative constant ZEROS to be specified

a. numeric data.

b. data made up of any one of the characters in Figure 7.

* * *

—— e s v o o i o i - e o > o i S - ooy o "

1 1 2 2 3 3 4 4 5 5 6 6 7

l...50cce0ceeebeeeeleeeebenealeceabenae0ecendeecaleceedecaelenaadeeea0.n

02 MAXIMUM-BALANCE PIC 9(4).

A PICTURE clause with a 9 specification is used to descrike
numeric data that wmay be made up of the digits 0 through 9. The
PICTURE clause in the entry above specifies that MAXIMUM-BALANCE
could have the value:

a. 10.4
b. 0104
c. 100B

- - -

‘ 181

0

5.

0

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5...0....5....0....5....0....5....0....5....0....5....0..

o = S ———— — — . ——— i . " " o o o e o . o Sl . o S e o e i S o —

182

02 PART-DESCRIPTION PICTURE A(30).

A PICTURE clause with an A specification is used to descrike
alphabetic data that may be made up of the 1letters of the
alphabet and spaces. The PICTURE clause in the entry akove
specifies that PART-DESCRIPTION could have the value:

a. 5 OHM RESISTOR

b. FIVE-OHM RESISTOR

c. FIVE OHM RESISTOR

* * *

c (a is wrong because numbers cannot be accommodated in an A picture.

b is wrong because special characters cannot be accommodated in an A
picture.)

Picture and Edit Characters

Picture Data type Specification Additional explanation
character

X alphanumeric The associated position

in the value will contain
any character from the
COBOL character set.
A alphabetic The associated position
in the value will contain
an alphabetic character
or a space.
9 numeric or The associated position
numeric edited in the value will contain
any digit.
v numeric The decimal point in the
value will be assumed to be
at the location of the V.
The V does not represent
a character position.
numeric edited The associated position A space will occur if the entire data item
in the value will contain is suppressed.
a point or a space.

3 numeric edited a. (simple insertion) The leftmost $ in a floating string does not
The associated posi- represent a digit position.
if:t;?nt:iiz?:::s;vﬁl If the string of $ is specified only to the left

gn. of a decimal point, the rightmost $ in the
b. (floating insertion) picture corresponding to a position that
The associated posi- precedes the leading nonzero digit in the
tion in the value will value will be printed.
;(:jr}tzia:n:rdosllz;rczlgn, A string of $ that extends to the right of a
git, or a space. decimal point will have the same effect as
a string to the left of the point unless the
value is zero; in this case blanks will appear.
All positions corresponding to $ positions to
the right of the printed $ will contain digits;
all to the left will contain blanks.

, numeric edited The associated position A comma included in a floating string is

in the value will contain considered part of the floating string. A

a comma, space, or dollar space or dollar sign could appear in the

sign. position in the value corresponding to the
comma.

S numeric A sign (+ or —) will be part

of the value of the data
item. The S does not repre-
sent a character position.

Fiqgure 44

183

6. Figure 44 is a chart of picture characters. Use Figure 44 to
match types of data with the appropriate variable(s).

1) NAME a. Alphabetic

2) HOME-ADDRESS b. Numeric

3) QUANTITY, with c. Data made up of
values such as 200 any characters
and 999 in Figure 7

4) QUANTITY, with
values such as
1 DOZ and 25 PKG

* * *

1) a,c

2) c

3) b,c (Choice c is correct with respect to COBOL but
such data is usually treated as numeric.)

—— " — ———— —— —— . Y —— —— — Y —— —— — S - — — ————— - e o o — — ————

7. Use Figure U4 to match the picture specification character with
the variable(s) for which it could be specified.

1) NAME a. X
2) HOME-ADDRESS b. A
3) QUANTITY with c. 9
values such as 200
and 999

4) QUANTITY with
values such as
1 DOZ and 25 PKG

% * *
1) a,b
2) a
3) a,c
4) a

e e - i i e = ——————— —— - —— - ——— el o s s o ———

184

r 1
| INPUT-RECORD |
| |
| NAME ID-CODE BALANCE |
| (NOVELTYWDISTRIBUTORS) (2901) (1299.u43) |
L 3

Write the record description entries for the input area INPUT-
RECORD so that it could have the values shown. Remember that the
decimal point precludes BALANCE being defined as numeric.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....000..5.00.00002500..0..0.500..0000.5000.000..500..0....5....0..

01 INPUT-RECORD.
02 NAME PIC A(20).
02 ID-CODE PIC 9(4).
02 BALANCE PIC X(7).

(The picture character X could be specified for ID-CODE and NAME.
Values such as those in BALANCE normally do not contain decimal
points in an input record and are described with the picture
character 9. The decimal position is 1indicated by the picture
character V, which you will learn to use in a subsequent lesson.)

- - . e et ——— ——— - - -

185

This figure illustrates how the format of headings and data
items for output is planned on a Printer Spacing Chart.

INTERNATIONAL BUSINESS MACHINES CORPORATION

PRINTER SPACING CHART

Value of the Value of the Value of the
variable variable variable
HEADING-1 HEADING-2 HEADING-3
T o 2 = 4 T 5 | 6 | 7
. __ﬂlL"" 4 s['s 7] 2[3[4[s]6[7]819]01 12137475767 87910 7 374’5 67 8/9l0[T 1‘[:‘4’5{6(7Iﬂv 01'234'sT6T7/879|0T1]2]374's76]7 8 9]0 1]2[374'5 6] 718'9|0/112'314'5[8]7:8]9
Headings —Hi— USTOMEALNNBER. . N e M- ADDRESS, | 1
Data items 2 = FFT ;]44'* X et LI S S
J T A !“ ——
B . Value of the T Value of the T T . Value of the e
6 . variable i variable variable B
: J ; CUSTOMER-NUMBER NAME et HOME-ADDRESS _ .|
Vi SO SO O O 00 O UV SN D S PR L e} Il SO } :
) [EBEIR IR AR N FRRUETETIN B g ! ; | SRS R DN IR

Figure 45

9. when several records are to be printed, a programmer may print
headings at the top of each page. Figure 45 shows how the format
for headings and data items 1is planned on a Printer Spacing
Chart. The sare chart is also used for the 1132 Printer. In
Figure 46 the headings CUSTOMER-NUMBER, NAME, and HOME-ADDRESS
are themselves values of the variableS .ce.cecee y eceeeess o and
eecssees o Yespectively.

186

L8T

94 2anbtg

This figure shows how headings are set up in working storage.

Input area———mmm— (CUSTOMER-
(NAME) (HOME-ADDRESS) NUMBER) /# CUSTOMERNUMBER NAME HOME-ADDRESS
INPUT-RECORD /1 T —
I - — —
I
Output area————¢— J/ //
OUTPU'RECORD IL/
Working Storage — \\
Values (CUSTOMER. } ' MEJ
CUSTOMER-NUMBER, (FILLER) NUMEER) (FILLER) | (NAME) | (FILLER) |(HOME ADDI (m.mk)h
NAME, and éj output file PRINT
HOME-ADDRESS
assigned to VW¥..¥ |CUSTOMERNUMEER |¥¥¥W¥ |NAME_ [W¥p..¥ |HOMEADDRESS |yuuvv Values of blanks assigned to
HEADING-1; (FILLER)| (}m,wcfn() (FILLER) (HEAD;IG-Z) (FILLER)|MEADING%) KFILLER) FILLER items with VALUE
HEADING-2 W — clanses
and HEADING-3; ,

respectively N—///
VALUE clauses

I X . E) £ n B
t

= ufl
e Tl
A1 Pl |]
HZ - (a5 1L
1 11§ MeuisT Y,
1L [INORAED Al
| - Hel IXC4H) B
H s 1]
1 [l 15 Al
| - |)
$ L M = I' 44—
‘ 1 il {3 1 Pﬁlfﬁiﬂ._
T T I !

Data Division entries to set up
headings in HEADING-RECORD.

(D) The Value of HEADING-RECORD
is moved to the output area
OUTPUT-RECORD

HEADING-1
HEADING-2
HEADING-3
(These are user-supplied names and not reserved words.)

- e e —— - - - o ——— —————

10.

Figure U6 shows that the headings planned in Figure 45 have been
set up as values of:

a. an output area.

b. a working-storage variable.

* * *
b
11. By setting up HEADING-RECORD in working storage a programmer can
use a VALUE clause to assign:
a. a value of blanks to FILLER items to provide for horizontal
spacing of headings.
b. the values CUSTOMER-NUMBER, NAME, and HOME-ADDRESS to
HEADING-1, HEADING-2, and HEADING-3, respectively.
* * *
Both
12. In a record description entry for a heading record, a VALUE
clause is used to specify:
a. the headings that will be printed on a printer page.
b. blanks to provide for horizontal spacing of headings.
* * *
Both
13. In Figure 46, the quotation marks enclosing CUSTOMER-NUMBER in
the VALUE clause for HEADING-1 are:
a. part of the value being assigned to HEADING-1.
b. not counted in the PICTURE repetition factor which specifies
the length of the variable.
* * *
b (The quotation mwarks indicate a constant that is a nonnumeric

literal. They are not part of the value.)

188

This figure shows a format for headings on the Printer Spacing Chart.

- — T T T
T ‘PIVT"IT IRRRRARARRRAARAR RAARRARARARARARRARANEARRRRRRN x'| T |1 d:
tz1zl2la|2i2i212° t3tylsis | I 3|sisisiala’s s{e.6'6:6 6.86:6sl7]7|77(r 7ir|7|217lelnlelarelalelelninty |
1|2]3]a|s]e 1Ia ot :l;‘;:ﬂ‘r ﬂé!é&lﬂiﬁ,iiﬁiiy% e :i:l’-:!ﬂo 1]2[314s|6!7!8:9:0] |1z,)1n!sis‘7'o_vo 1:2,34:3 s,r:o!no |!z|m|s|s|v=| 2l0M[2i31al5i8) (sivio}1j2(3:alsls;
T T I EASESY RARERRE T T T T
! L + * 4 T N T ot
2 . iy N : b, . i i i ey
R EAE IR N 1 g i T H
3 T ' : i
1 M " et i ISR RER } 1
3 i i Ly : P EO SO
r B - : ; T+
7 IR RS
L] et . e : [PO
L) i Valueof the |1 Y B R RO {-- Valueofthe TR RGeS SanEsy
10 ‘ variable . ; et i
l_lf 111! HEADING-!], ‘ _ HEADING-2 _ .. :_.|: ;
12 SRR — : i - ——— }
[EEAREAEERE DES — [P I N P S S
al [T J IS Samp e
vl tl : Ll i —
el |1 : - I
[0 ! e T NN ,
1 1 ! ,
19 Lo 38 i
20} | — -~ |l'
M MR 1 1
2 -, : : .
S22 . . ‘
".’.!,,'-4___‘“.-,‘\._. EOnE I Rt AR ORNt SRR SRS St M.‘.--.- - .
23 i e PR Y - Lo -t e
124 ; .
133 - i
i8] | :
1
e

Figure 47

14. The Printer Spacing Chart in Figure 47 shows another set of
headings and headings variables. Select the PICTURE clause that
would be specified for each variable. (You may refer to Figure

44.)

1) HEADING-1 a. PICTURE A(13)

2) HEADING-2 b. PICTURE X(16)
c. PICTURE X(13)
d. PICTURE A(16)

* * *

1) c
2) b

- . . e e e = . . o o -

189

15. Write the Working—-Storage Section entries for HEARDING-RECORD to
set up headings to be printed as shown in Figure 47.

% * *

0 0 1 1 2 2 3 3 4 L} 5 5 6 6 7
l1.ee5.2..000005.00.00005.000000..5.2..0....5....0....5....0....5....0..

WORKING-STORAGE SECTION.
01 HEADING-RECORD.
02 FILLER PIC X(10) VALUE IS SPACES.
02 HEADING-1 PIC X(13)
VALUE IS ‘CUSTOMER-NAME'.
02 FILLER PIC X(27) VALUE IS SPACES.
02 HEADING-2 PIC X(16)
VALUE IS 'CUSTOMER-ADDRESS'.
02 FILLER PIC X(55) VALUE IS SPACES.

16. Figure U6 shows that the output file PRINT will contain a heading
record and several data records. In Figure 46 the heading record
and the data record are set up:

a. 1in separate working-storage variables.

b. alternately in the same working-storage variable.

* % *

17. Values of variables in working storage:

a. can be transmitted directly to an output file with the simple
form of the WRITE statement.

b. must be moved to an output area before they can ke
transmitted to an output file with the simple form of the
WRITE statement.

* * *

18. Figure 46 shows that values of both the heading variable and the
data variable will be transmitted to the output file PRINT. In
Figure 46:

a. a separate output area has been set up for each of the record
variables.

b. a single output area is to be used for the record variables.

190

19. You will frequently be asked to provide a listi i
: as ng of records in a
format outlined on a Printer Spacing Chart. A problem of this

type 1is described in Figure 48 Read the probl
. m
code the Data Division. P o statement and

NUMBER NAME AGE
SYMBOL | NAME | AGE — _
4 digits 20 letters | 2 digits —_—
EMPLOYEE-RECORD PRINT-RECORD
J
CARD-FILE PRINT-FILE

The data in each record in CARD-FILE is to be
printed on one line of PRINT-FILE. Headings
and data are to be printed in the format shown
on the Printer Spacing Chart.

0 1 2 3 4 5 6
AlTT2[3[4]s[6[7[8[2 [0[1[2]3[4[5]6]7[8]5 [011]213[4T5]6]7 819 [0 11213 4[5 617 18]9]0[1]2]31a]5] 671890 112]3]4]5]6 78[5 |01 [2]3[4]5 617

(1]] UMBE NAME; i GlE|

2 X X X F XX

3 |

4 :

5 |

6 i

Figure 48

191

0

0 1

1

2 2 3

*

3 L 4

5 5 6 6

7

1...5....00000500..0000.5.00.00000500000000.50...0000.5.0..0....5....0..

192

DATA DIVISION.
FILE SECTION.

FD

CARD-FILE

LABEL RECORDS ARE OMITTED.

01

EMPLOYEE-RECORD.

02 SYMBOL PIC 9(4).

02

NAME PIC A(20).

02 AGE PIC 9(2).

02 FILLER PIC X(54).
PRINT-FILE

FD

LABEL RECORDS ARE OMITTED.

01

WORKING-STORAGE SECTION.

01
02
02

01
02
02
02
02
02
02
02

20. The

first variable

HEADING-RECORD.

FILLER PIC X(10)

PRINT-RECORD PIC X(120).

VALUE IS SPACES.

HEADING-1 PIC A(6)

VALUE IS
FILLER PIC X(12)

HEADING-2 PIC A(4) VALUE IS

FILLER PIC X(26)

HEADING-3 PIC A(3) VALUE IS

FILLER PIC X(60)

WORKING-RECORD.

FILLER PIC X(10)
SYMBOL PIC 9(4).
FILLER PIC X(14)
NAME PIC A(20).
FILLER PIC X(10)
AGE PIC 9(2).
FILLER PIC X(61)

*‘NUMBER".

VALUE IS SPACES.
VALUE IS SPACES.
'AGE"
VALUE IS SPACES.
VALUE IS SPACES.
VALUE IS SPACES.
VALUE IS SPACES.

VALUE IS SPACES.

'NAME'.

containing values that must be moved to

output are first in order to print the line shown at the top

the printer page in Figure 46 is

*

HEADING-RECORD

* *

-

——

the
of

Move
headings to
output area

Write
headings
from
output area

ADDITIONAL PROCESSING

'

Move
data from
Working Storage
to output area

Write
data record
from
output area

Figure 49

21. Figure 49 shows a segment of a flow chart for writing headings
and data on a printer page. According to Figure 49 writing a
heading record and a data record:

a. requires two WRITE statements.
b. 1is done with the same WRITE statement.

* * *

——— —— ——— o —— o —— ——- - _— ——-

193

22.

In order to write a heading record and a data
Figure 46, you would use the statements:

a. WRITE HEADING-RECORD.
WRITE WORKING-RECORD.

b. WRITE OUTPUT-RECORD.
WRITE OUTPUT-RECORD.

* * *

194

record shown in

(START ’

Paragraph
PREPARATION-ROUTINE Open
files

Paragraph M

ove
HEADING-ROUTINE heading record

to

output area

Write
heading

record from
output area

R

Paragraph
MAIN-SEQUENCE Read
a

card record

Paragraph
FINISH

=<
(43
v

Last

card record
9

Move data in
record in input
area to working
storage variable

&

Move
record from
working storage

to output area

|

Write
record from
output area

Figure 50

195

23. Figure 50 is a flow chart for the Procedure Division for problems
like the one described in Figure 48. The flow chart shows that
headings are written before:

a. a record is transmitted from the input file.

b. the input file is opened.

* * *

——————— —————— —_———— - e = e = e o e e e ke e e e

24. A heading record is written before a data record is transmitted
from the input file because:

a. the data record will be transmitted to the heading varijiable,
destroying the heading values.

b. headings will be written only once on a page while several
data records will be read and written on that page.

e e e e e e e e e e . = e = = e — — —————— — — —— ——— — ———— — — = —— " o . " . s o S S W . s

196

0

25.

0

1 1 2 2 3 3 by 4 5 5 6 6 7

l1...5....0....5....0....5....0.00.5....0.00.500..0000.5.00.000..5....0..

DATA DIVISION.
FILE SECTION.
FD CARD-FILE
LABEL RECOKDS ARE OMITTED.
01 EMPLOYEE-RECORD.
02 SYMBOL PIC 9(4).
02 NAME PIC A(20).
02 AGE PIC 9(2).
02 FILLER PIC X(54).
FD PRINT-FILE
LABEL RECORDS ARE OMITTED.
01 PRINT-RECORD PIC X(120).
WORKING-STORAGE SECTION.
01 HEADING-RECORD.
02 FILLER PIC X(10)
VALUE IS SPACES.
02 HEADING-1 PIC A(6)
VALUE IS °NUMBER®'.
02 FILLER PIC X(12)
VALUE IS SPACES.
02 HEADING-2 PIC A(4)
VALUE IS °*NAME'.
02 FILLER PIC X(26)
VALUE IS SPACES.
02 HEADING-3 PIC A(3)
VALUE IS 'AGE'.
02 FILLER PIC X(60)
VALUE IS SPACES.
01 WCRKING-RECORD.
02 FILLER PIC X(10)
VALUE IS SPACES.
02 SYMBOL PIC 9(4).
02 FILLER PIC X(14)
VALUE IS SPACES.
02 NAME PIC A(20).
02 FILLER PIC X(10)
VALUE IS SPACES.
02 AGE PIC 9(2).
02 FILLER PIC X(61)
VALUE IS SPACES.

Follow the flow chart in Figure 50 and code the Procedure
Division for the problem described in Figure Uu8. The Data
Division for this problem, which you wrote in a preceding frame,
is reproduced above.

* * *

197

0

0

1 1 2 2 3 3 4 4 5 5 6 6 7

l1.o.5ceae0ieeebieae0icaebeeacleaeedeeeeleceadeneelecncebeeeelancadee.0..

PROCEDURE DIVISION.
PREPARATION-ROUTINE.
OPEN INPUT CARD-FILE
OUTPUT PRINT-FILE.
HEADING-ROUTINE.
MOVE HEADING-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.
MAIN-SEQUENCE.
READ CARD-FILE AT END GO TO FINISH.
MOVE SYMBOL OF EMPLOYEE-RECORD
TO SYMBOL OF WORKING-RECORD.
NCVE NAME OF EMPLOYEE-RECORD
TO NAME OF WORKING-RECORD.
MCVE AGE OF EMPLOYEE-RECORD
TO AGE OF WORKING-RECORD.
MOVE WORKING-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.
GO TO MAIN-SEQUENCE.

FINISH.
CLOSE CARD-FILE PRINT-FILE.
STOP RUN.

- o o e . — — — ——— — —— ——— — ———— — — ———— i o " — - - —————

26. A programmer sets up variables in working storage in order to:

a. use a VALUE clause to assign an initial value to a variakle.
b. rearrange data items from another record.

c. provide for horizontal spacing by inserting blanks before,
between, and after data items.

* * *

. — = ——— ———— S e o o - - ——— -—

198

Moving elementary data items from one variable to another is
necessary if:

a. FILLER iterms are to be inserted for horizontal spacing.

b. data items in one record are to be arranged in a different
order.

Either

The following two frames present independent topics.

28.

1)
2)

HIGH-VALUE

HIGH-VALUES represent the highest value in a computer's collating
sequence. The character for HIGH-VALUE is HEX O0OOFF.

LOW-VALUE

LOW-VALUES represent the lowest value in a computer's collating
sequence. The character for LOW-VALUE is HEX 0000.

It is possible to move and process these characters.

MOVE HIGH-VALUES TO EMPLOYEE-NUMBER.

The above exarple will move HEX OOFF into the EMPLOYEE-NUMBER.
MOVE LOW-VALUES TO PRICE.

The above exarple will move HEX 0000 into the PRICE.

(HIGH-VALUE and LOW-VALUE are used, among other techniques, to
define the beginnings and ends of data streams.)

- ——— ——————— -—— - -

The BLANK WHEN ZERO clause specifies that an item is to be set to
blanks whenever its value is zero. The BLANK WHEN ZERO clause
may be specified only at the elementary level for numeric edited
or numeric iters.

MOVE AMOUNT TO PRINT BLANK WHEN ZERO.

If AMOUNT ccntains 1234 PRINT will contain 1234.
If AMOUNT contains 0000 PRINT will contain bbbb.

* * *

MOVE PRICE-1 TO PRINT-1 BLANK WHEN ZERO.

Match the following contents of variable PRICE-1 with the correct
answers:

1) PRICE-1 contains 5673. a. PRINT-1 will contain blanks

2) PRICE-1 contains 0000 b. PRINT-1 will contain 5673.
* * *

b

a

— e e e e ——— s ————— " — — ———— —— k. ——— — o —

The problems in the next two frames incorporate what you have learned
in printing a report with a two-line title. Coding the solutions is
optional. If you do not code the solutions, read them carefully to
make sure you understand them.

199

0

30.
0

1 1 2 2 3 3 4 4 5 5 6 6 7

l...5....0000.5.00.000005000000005000e00c0ebeece0enaebeeec00.0.5....0..

200

i CUSTOMER REPORT
NAME ADDRESS

Figure 51

Printing a report title preceding the headings for columns of
data is a common practice. Figure 52 shows how the flow chart in
Figure 50 could be expanded to provide for a report title. The
variable HEADING-RECORD-1 could be set up for the report title,
and HEADING-RECORD-2 for the column headings. Code the Working-
Storage Section of the Data Division to provide for the title and
headings shown in the chart akove. (Remember that data items
consisting of letters and spaces may be described with either the
picture character A or X.)

Paragraph

HEADING-ROUTINE

| Move record

from
HEADING-RECORD-1
to
output area

Write
record from
output area

Y

Move record

from
HEADING-RECORD-2
to
output area

Write
record from
output arca

|
|
|
|
|
|
|
|
|
i
L

Figure 52

201

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.2..00...5....0....5....0....5....0....5....0..

WORKING-STORAGE SECTION.
01 HEADING-RECORD-1.
02 FILLER PIC X(39) VALUE IS SPACES.
02 TITLE PIC X(15)
VALUE IS °‘CUSTOMER REPORT'.
02 FILLER PIC X(67) VALUE IS SPACES.
01 HEADING-RECORD-2.
02 FILLER PIC X(20) VALUE IS SPACES.
02 HEADING-1 PIC X(u4)
VALUE IS "NAME'.
02 FILLER PIC X(36) VALUE IS SPACES.
02 HEADING-2 PIC X(7)
VALUE IS ‘'ADDRESS'.
02 FILLER PIC X(54) VALUE IS SPACES.

e e e e e e e e e e e v e e s e = ———— o~ —————— ——— —— — ———— — — —— — _— . — —— —t—— — " —

31. Write the paragraph HEADING-ROUTINE to print the title and
headings shown in the preceding frame from the output area
OUTPUT-RECORD.

* * *

0 0 1 1 2 2 3 3 4 4y 5 5 6 6 7
1...5....0....5....0..0.5.00.000..5....000005.0..0000.5....0....5....0..

HEADING-ROUTINE.
MOVE HEADING-RECORD-1
TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD.
MOVE HEADING-RECORD-2
TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD.

—— - = e e —

202

32. Figure 53 describes a problem that will give you an opportunity
to practice using all the features you have 1learned in this
lesson. The problem involves printing a report title, column
headings, and data. Read the problem and code the Data Division
and Procedure Division. (You may refer to Figures 50 and 52.)

Problem Statement

B | PRINTED-REPORT
?)ARD-H::‘E1 Device: 1132
cvice: = p—————eee——————»{ [BM 1130

The system flow chart above shows the files and equipment to be
used in this program. The forms of records in CARD-FILE and
PRINTED-REPORT are illustrated below.

CARD-RECORD

MARKER | DEPARTMENT | NAME DEPENDENTS | FILLER
(5 digits) | (3 characters) | (25 letters) | (2 digits) @5 blanks)
1 T T TTTIT IERAEENE T T T

|ﬂ?4°on V3] |u7u Inulmﬂhoﬁﬁisuuolzu‘sc'ﬁvouuss?nunzubsunoln']sn nuaslu'
0 AR RIAAE SN SRR ARR R AR RARTN NN DR N AN RN SRAE
2 i i IARE | | 11 T
: L ‘ : Pl l 11 [
st T M = m RENFS ;
I j _ _
: | | | ! [I
10 m I

The file PRINTED-REPORT is to consist of a title and headings
followed by a listing of the records in CARD-FILE with the data
items rearranged as shown in the Printer Spacing Chart. Use the
variables CARD-RECORD, PRINT-RECORD, and WORK-RECORD.

Figure 53

203

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5¢2¢.0000e5.00000025000e0000e5000e00005.00.00...5....0..

DATA DIVISION.
FILE SECTION.
FD CARD-FILE
LABEL RECORDS ARE OMITTED.
01 CARD-RECCRD.

02 MARKER PIC 9(5). (40)
02 DEPARTMENT PIC X(3).
02 NAME PIC A(25). (41)

02 DEPENDENTS PIC 9(2).
02 FILLER PIC X(45).

FD PRINTED-REPORT
LABEL RECORDS ARE OMITTED.

01 PRINT-RECORD PIC X(120). (12)
WORKING-STORAGE SECTION.
01 HEADING-RECORD-1. 45)

02 FILLER PIC X(38) VALUE IS SPACES.
02 TITLE PIC X(15)
VALUE IS ‘EMPLOYEE ROSTER'.

02 FILLER PIC X(68) VALUE IS SPACES. aws)
01 HEADING-RECORD-2. 45)
02 FILLER PIC X(10) VALUE IS SPACES. 1s)

02 HEADING-1 PIC A(6)

VALUE IS °‘NUMBER'.
02 FILLER PIC X(9) VALUE IS SPACES. (14)
02 HEADING-2 PIC A(4)

VALUE IS °"NAME"‘.
02 FILLER PIC X(31) VALUE IS SPACES. as)
02 HEADING-3 PIC A(10)

VALUE IS 'DEPARTMENT'.
02 FILLER PIC X(3) VALUE IS SPACES. (14)
02 HEADING-4 PIC A(10)

VALUE IS 'DEPENDENTS'.

02 FILLER PIC X(38) VALUE IS SPACES. (14)
0l WORK-RECORD.

02 FILLER PIC X(10) VALUE IS SPACES. (14)

02 MARKER PIC 9(5).

02 FILLER PIC X(10) VALUE IS SPACES. (14)

02 NAME PIC A(25).

02 FILLER PIC X(10) VALUE IS SPACES. (14)

02 DEPARTMENT PIC X(3).

02 FILLER PIC X(10) VALUE IS SPACES. (14)

02 DEPENDENTS PIC 9(2).

02 FILLER PIC X(46) VALUE IS SPACES. (14)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5¢..0ceee9ccea0eceebeneefeceebeeaealeeadeee0enaa50ea0.c.5,...0..

PROCEDURE DIVISION.
PREPARATION-ROUTINE.
OPEN INPUT CARD-FILE
OUTPUT PRINTED-REPORT.
HEADING-ROUTINE. u45)
MOVE HEADING-RECORD-1
TO PRINT-RECORD.
WRITE PRINT-RECORD.
MOVE HEADING-RECORD-2
TO PRINT-RECORD.
WRITE PRINT-RECORD.
MAIN-SEQUENCE.
READ CARD-FILE AT END GO TO FINISH.
MOVE MARKER OF CARD-RECORD
TO MARKER OF WORK-RECORD. (65)
MOVE DEPARTMENT OF CARD-RECORD
TO DEPARTMENT OF WORK-RECORD.
MCOVE NAME OF CARD-RECORD
TO NAME OF WORK-RECORD.
MOVE DEPENDENTS OF CARD-RECORD
TO DEPENDENTS OF WORK-RECCRD.
MOVE WORK~-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.
GO TO MAIN-SEQUENCE.

FINISH.
CLOSE CARD-FILE PRINTED REPORT.
STOP RUN.
SUMMARY:

You have now completed Lesson 9 in which you have learned to print
report titles and headings as well as data records. You have learned to
reserve the first position in an output area for the printer carriage
control character and to work from a Printer Spacing Chart to produce a
report in a specified format. You have learned to use the picture
characters 9 and A to specify that a variable will have numeric or
alphabetic values, respectively, and to use the figurative constant
SPACES with the VALUE clause to assign an initial value to a variable.

END OF LESSON 9

205

THIS PAGE INTENTIONALLY LEFT BLANK

206

LESSON 10

207

LESSON 10 - VERTICAL SPACING (2)

INTRODUCT ION

In the previous 1lesson you 1learned to set up record variables to
provide for a title, column headings, and data records in a printed
report. You also learned to provide horizontal spacing for each of the
records in the report. The Procedure Division entries that you wused,
however, provide only for single-spaced records within a single page
report. You will often be required to produce a report with one or more
blank 1lines between various records, and the reports will usually be
several pages in length.

In this 1lesson you will learn to specify vertical spacing in a
printed report, including advancing to subsequent pages when a page has
been filled.

Specific COBOL language features you will learn to use are:

BEFORE ADVANCING option of the WRITE statement
AFTER ADVANCING option of the WRITE statement
AT END-OF-PAGE option of the WRITE statement
RESERVE clause

This lesson will require approximately three quarters of an hour.

208

In a previous 1lesson you provided for horizontal spacing by moving
data items to a record in working storage containing FILLER items to
which values of blanks had been assigned. You specified no vertical
spacing, so single spacing, which is automatic for the 1132 printer, was
provided. You can, however, specify whatever spacing you wish for a
printed report. Unlike horizontal spacing, vertical spacing is
specified in options of the WRITE statement.

209

0TC

G 2anbtg

This diagram illustrates execution of the statement

40 44 48 52 56

w
(a
&

20 24 28

RINTEREIIRD] BEEFFORIET TADIVIANCTIINIG] 2] [LINES.

Output area ——

WR[LTIE[[P
Option
PRINT-FILE

JAMES PERRY 1286 OAK ... 28006
S S Pt FTio0rs > JOHN SMITH 12991ST... 10015
| L L

L L R
(NAME) | @ome-apDRESS) |E| @ipy

PRINT-RECORD

Working storage—

ine on which
next record will
be written

@ The record is written from the
output area PRINT-RECORD.

@ The printer advances two lines
(resulting in double spacing).

1.

0 0

1 1 2 2 3 3 u 4 5 5 6 6 7

1...5.c..0000e5.00e00cee5.00e0eceebeeee0eneebeeee0ieeebeeeeleieead....0..

WRITE record—name
BEFORE ADVANCING integer LINES.

Option
The BEFORE ADVANCING option of the WRITE statement shown in the
general format above can be used to specify vertical spacing.
Figure 54 shows the result when integer 1is 2. Read the
explanation and 1look at the illustration in the fiqure.
Execution of the statement in Figure 54 causes:
a. a record to be written after the printer advances two lines.

b. the printer to advance two lines after the record is written.

* * *
b
2. Figure 54 shows that the result when 1integer in the BEFORE
ADVANCING option is 2 is:
a. one blank line between two printed lines.
b. double-spaced records.
* * *
Both
3. Which of the following integers would be specified in thé BEFORE
ADVANCING option to produce three blank lines between records?
a. &4
b. 3
* * *
a

-—— e -— —— s e e e e o o o -— -—

211

4.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....0....5.0.40.000.5.00.000..500..0000.5.0..000005000.0....5....0.,

MOVE HEADING-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.

MOVE DATA-RECCRD TO PRINT-RECORD.
WRITE PRINT-RECORD.

WRITE record-name
BEFORE ADVANCING integer LINES.

Instructions to write headings and data records are shown in the
program segment above. Using the general form of the WRITE
statement with +the BEFORE ADVANCING option shown above as a
guide, rewrite the WRITE statements in the program segment to:

1) triple space (insert two blank 1lines) after writing the
headings.

2) double space (insert one blank line) after writing a data
record.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....000..5.0..0.0..5....00...5....0....5....0.,

WRITE PRINT-RECORD
BEFORE ADVANCING 3 LINES.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....00...5....0....5....0....5....0....5....0....5....0..

WRITE PRINT-RECORD
BEFORE ADVANCING 2 LINES.

. o e e e e . T ~ — —— —— —— —— ————— s ——— — ——— — ——— — " — — — — - —— " — ————— - —

5. Write a statement that will cause records from OUTPUT-RECORD to

be printed with two blank lines between records.
* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0.0025.0000000e500ee0ecee5eeee0accebeee0eceebceee0eaad....0..

WRITE OUTPUT-RECORD
BEFORE ADVANCING 3 LINES.

s > ——— —————— . — —— ————— ——_——————— ———— — —— — " o o o " o

212

Options of the WRITE Statement

Option Action Taken Restrictions on
user-supplied
portion

BEFORE ADVANCING integer Printer advances the May be any

LINES specified number of lines positive

after record is written. integer less
(Pecords are separated by than 100
integer-1 blank lines.)

MFTEP ADVANCING integer Printer advances the May be any

LINES specified number of lines positive

hefore record is written. integer less
than 100.

AFTER ADVANCING Must fit rules

mnemonic-name for data names

when mnemonic name

has been defined in
SPECIAL-NAMES paragraph
in the Configuration
Section of Fnvironment
Division as:

CSP Spacing is suppressed.

C01 thru C09 for 1403 Printer skips to channels
C01 thru C06; 1 throuch 9, respectively
C09 for 1132

C10 thru C12 for 1403 Printer skips to 10, 11,

C12 for 1132 12, respectively
AT END=-OF-PAGE When FND-OF-PACF condition
imperative-~sentence exists (channel 12 punch on

carriage control tape is
sensed by an on-line printer)
the imperative statement is
executed after writina and
spacing operations have been
completed. An error messaae
will result if RESERVE NO
ALTERNATE AREA has not been
specified for the associated
file in the Fnvironment
Division.

1. When an ADVANCING option is specified in a WRITE statement for
a record file, a for of that option must be specified in everv
WRITE statement for records in the same file.

2. The first character in each logical record for a printer file
must be reserved by the user for the camriage control character.

Figure 55

213

6.

0 0 1 1 2 2 3 3 4 4 5 S 6 6 7
l.ce5.0ee0euee5.0ce0eeeeSbeaceleeeadcea0ee5000.000..5....0....5....0..

WRITE record-name
AFTER ADVANCING integer LINES.

Option

Another option for specifying vertical spacing is shown above.
Figure 55 is a chart of options that may be specified in the
WRITE statement £for printer files. The first column shows
general forms of the options. The second column describes the
action taken when a WRITE statement specifying the option is
executed. Figure 55 shows that a WRITE statement containing the
above option causes the records to be written:

a. before the printer advances.

b. after the printer has advanced.

e e e e o e . — o — - - e —— -

7. Write a statement to print data records from OUTPUT-RECORD with
triple spacing. Use an ADVANCING option to cause spacing before
the records are written.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5...0....5....0..0.5....0000.5....0....5....0....5....0....5....0..

WRITE OUTPUT~RECORD
AFTER ALVANCING 3 LINES.

8. The third colurn in Figure 55 specifies restrictions on the user-
supplied portion of each option. Figure 55 shows that integer in
the BEFORE ADVANCING option may be any «c.ccceee =«

* * *

positive integer less than 100

——— e ————— -—— — ——— e o o . o o o e . e o . .

214

9. To write records from PRINT-RECORD with three blank lines between
records you would use the statement:

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5.+..0.0..5.0..0....5....0....5.0..0....5....0....5....0..

WRITE PRINT-RECORD
BEFORE ADVANCING 3 LINES.

* * *
Wrong:

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5 c2e000ee50eee0iceebeceelaceabeaeel0ecebeee0eceedS5eeea0aeee5....0..

WRITE PRINT-RECORD
BEFORE ADVANCING 4 LINES.

—— = o . e e e e e e s o -—— -——— -

10. Refer to Figqure 55 if necessary, and match each effect with the
statement (s) that would cause it.

1) Advance three lines after a record is written.
2) Double spacing.

3) Triple spacing.

a.

0 0 1 1 2 2 3 3 u 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

WRITE PRINT-RECORD
BEFORE ADVANCING 2 LINES.

b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5...0.0.0.5.0..0000.5.0000000.5000.00002.500..0.0..5....0..

WRITE PRINT-RECORD
BEFORE ADVANCING 3 LINES

* * *
1) b
2) a
3) b

215

0

11.
0

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0...-.5.+..0.2..5....0.-..5....0....5....0....5....0....5....0..

216

WRITE record-name

AT END-OF-PAGE imperative-sentence.
Option
The action to be taken when the end of a page is reached is
specified in the AT END-OF-PAGE option of the WRITE statement,
shown in the general format above. The imperative sentence in

the AT END-OF-PAGE option is similar in use to the AT END option
of the READ statement. The imperative sentence:

a. gives an instruction to be executed at the end of a page.

b. may be one or more imperative statements.

* * *

Both
(END-OF-PAGE may be abbreviated EOP. The ... represents an ADVANCING
option that must be present.)

- - - —— - -

If headings are to be printed at the top of each page, the
imperative sentence in the AT END-OF-PAGE option might be a
statement that will cause a branch:

a. back to the instructions to write headings.

b. to the instruction to read a card.

* * *

The statement that is used to cause a branch is:
a. MOVE

b. GO TO

—— —————— - - - -

In the GO TO statement you must specify:
a. a specific statement that is to be executed.

b. the paragraph name that precedes the statements to which the
program will branch.

15. The statements +to move headings and then write them into an
ocutput file are preceded by the paragraph name HEADING-ROUTINE.
Write a statement to write a record from PRINT-RECORD, after
skipping 7 lines on the report, including an instruction to
branch to the heading routine when the end of a page is reached.

* * *

0 0 1 1 2 2 3 3) 4 5 5 6 6 7
1...5....0000500000000e5000e00eee5.0000.00.5....0....5....0....5....0..

WRITE PRINT-RECORD
AFTER ADVANCING 7 LINES
AT END-OF-PAGE
GO TO HEADING-ROUTINE.

217

START

Paragraph

PREPARATION-ROUTINE

Open
files

Paragraph
HEADING-ROUTINE Move
heading
record to
output area

Write heading
record from
output area

I

Paragraph

MAIN-SEQUENCE
Read a
record

FINISH
Last

record
?

Close
files

3

Paragraph l—_
l

No

Move data from
input area to
working-storage
variable

|

|

] STOP
L

/

Move data
record from
working-storage
variable to
output area

Advance to
next line and
write data
record from
output area

-

218

0 0

1 1 2 2 3 3 4

4 5 5 6

6 7

l1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

16.

PROCEDURE DIVISION.
PREPARATION-ROUTINE.
OPEN INPUT CARDFILE
OUTPUT PRINTED-REPORT.
HEADING-ROUTINE.
MOVE HEADING-RECORD
TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD.
MAIN-SEQUENCE.
READ CARDFILE
AT END GO TO FINISH.

WRITE OUTPUT-RECORD
AFTER ADVANCING 2 LINES
AT END-OF-PAGE
GO TO HEADING-ROUTINE.
GO TO MAIN-SEQUENCE.

FINISH.
CLCSE CARDFILE PRINTED-REPORT.
STOP RUN.

Figure 56

Figure 56 shows a program flow chart and corresponding coding for
skipping to a new page and printing headings when the
page has been reached. The flow chart and the coding indicate

that:

end of a

a. a test for the end of the page and a branch to HEADING-
statement to write a data

ROUTINE can be specified in the
record.

b. a skip to a new page can be
write a heading record.

* *

specified in the statement to

The AT END-OF-PAGE option in Figure

a. skip to a new page

56 specifies a:

b. branch to the paragraph HEADING-ROUTINE which

WRITE statement

s e . e i . . o e . > . T — ————————— ——————— —— ——— ——— — - —

contains a

219

18. Using the record variables
Procedure Division entries
chart in Figure 56.

shown in

Figure
for the first three steps in the

57,

write the

flow

CARDFILE I

Device: 1442

IBM-1130

L

STUDENT -RECORD (input area for CARDFILE)

PRINTED-REPORT
Device: 1132

ID-CARD NAME STREET CITY STATE 2Ip
(S characters)] (20 characters) (20 characters) (20 characters) (10 characters) | (5 characters)
PRINT-RECORD (output area for PRINTED-REPORT)
11T T T T TT7 IRES TTT TTTTT TT T7 iaa isd il RN
}Muuuauﬂuu g 4za o7 aﬁsn (0E0 :a‘unnna NE(QEUALABOEL) ’”Ia "
;‘] T ki i 7y e A ’—-r’-" DE3 s'an lm
1 i bt ol : [SREE 1! TH L i I
2 : r o T e
n 1 smmi i St + R ay, o :
T - naneRE NIRRT R MR jilitisimaiim e
r'L t T) { T e
LN SuE . [NEEEONERRERSRIREERE vie bl H [Iy Bt i
DETAIL-RECORD
HEADING-RECORD-2
HEADING-RECORD-1
Figure 57
* * *
0 0 1 1 2 2 3 3) 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

PROCEDURE DIVISION.
PREPARATION-ROUTINE.
OPEN INPUT CARDFILE
OUTPUT PRINTED-REPORT.
HEADING-ROUTINE.
MOVE HEADING-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.

220

19. Write the Procedure Division entries for the last three steps in
the paragraph MAIN-SEQUENCE in the flow chart in Figure 56, using
the record variables illustrated in Figure 57. 1Include options
to provide double spacing and branching at the end of a page.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0000.50..0000.500000000050000000005000.0000.5..0.0....5....0..

MOVE DETAIL-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD
AFTER ADVANCING 2 LINES
AT END-OF-PAGE
GO TO HEADING-ROUTINE.

Alternate solution:

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0.005000.0000.5.0..0000.5.0..00000500..0....5....0..

MOVE DETAIL-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD
BEFORE ADVANCING 2 LINES
AT END-OF-PAGE
GO TO HEADING-ROUTINE.

20.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....000..5.0..0000.5.0..0000.5.0..0000.5000.00...5....0..

RESERVE NO ALTERNATE AREA
The wuse of the AT END-OF-PAGE option requires the form of the
RESERVE clause shown above in the FILE-CONTROL paragraph of the
program. This form of the RESERVE clause specifies that the file
is not to be double buffered, which is the standard condition for

a file. In which division of a program would the RESERVE clause
be specified?

Environment Division

e s i S —— ——————————— — — —— —— —" — — — ———— —— T —— A — - " ————— o ——— o —— — ——

221

21. Which of the following would permit the use of the AT END-OF-PAGE
option in a WRITE statement referring to PRINT-FILE?

de.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....0....5....0....5....0....5.0..0..0.500..0.0..5.0..000.0.5.0...0..

FILE SECTION.

FD PRINT-FILE
LABEL RECORDS ARE OMITTED
RESERVE NO ALTERNATE AREA.

b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....0....5.0..0....5.0..0.00.5....0....5....0....5....0....5....0..

FILE-CONTROL.
SELECT PRINT-FILE
ASSIGN TO PR-1132-C.

C.

0 0 1 1 2 2 3 3) 4 5 5 6 6 7
l...5.00.000ce500ee00ceebeee0ieacbcea00edb500..0000.5....0....5....0..

FILE-CCNTROL.
SELECT PRINT-FILE
ASSIGN TO PR-1132-C
RESERVE NO ALTERNATE AREA.

* * *

c
(a is in the wrong division; b does not contain the required clause.)

——— —_— —_— — e o e e e v~ — —— — —— ——— . —— ———— Y —— — —— o ———

22. Write a paragraph that will permit WRITE statements referring to
the printer file PRINTED-REPORT to use the AT END-OF-PAGE option.
Include the division and section headers.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT PRINTED-REPORT
ASSIGN TO PR-1132-C
RESERVE NO ALTERNATE AREA.

SUMMARY:

You have now mastered one of the most intricate aspects of COBOL
coding - the programming of horizontal and vertical controls for printed
output. The next 1lesson will show you how you may assign special
mnemonic names to be used in vertical forms of skipping or spacing,
instead of using the less meaningful numeric carriage tape designations.
You will also put intc coding practice some of the new concepts you just
learned.

END OF LESSON 10

222

LESSON 11

223

LESSON 11 - VERTICAL SPACING CONTROL FOR PRINTER OUTPUT

INTRODUCTICN

In this lesson you will learn to substitute convenient mnemonic names
for printing control characters used to control vertical spacing of
printed output forms. You will also study usage of the OBJECT-COMPUTER
paragraph in the Environment Division.

Specific COBOL language features you will study are:

SPECIAL-NAMES paragrarh
OBJECT-COMPUTER paragraph

This lesson will require approximately three quarters of an hour.

224

1. You have now 1learned to code all the entries for producing a

listing of the records in an input file in any specified format.
you an opportunity to
practice coding the entire program for producing a listing.

Th

e

problem described below will give

A listing of all the students enrolled in a community college for
the first semester of 1972 is to be produced from the

records

in a card file. The system flow

chart

illustration of the student record are shown in Figure

format for

student

and
58.

an
The

the listing is shown in the Printer Spacing Chart in

the figure along with the Data Division for the program LISTING
produce this 1listing. Code the other three divisions for
LISTING. Use the elementary variable names from STUDENT-RECORD in
DETAIL-RECORD.

to

0 0

1

1

2 2 3 3 4 4

5

5

6

6

7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

DATA DIVISION.

FILE SECTION.

CARDFILE

LABEL RECORDS ARE OMITTED.
STUDENT-RECORD.

FD

01

FD

01

01

02

02

ID-CARD PIC X (5).
NAME PIC X(20).
STREET PIC X(20).
CITY PIC X(20).
STATE PIC X(10).
ZIP PIC X(5).

PRINTED-REPORT

LABEL RECORDS ARE OMITTED.
PRINT-RECORD PIC X(120).
WORKING-STORAGE SECTION.

01 HEADING-RECORD=1.

02

FILLER PIC X(37) VALUE IS SPACES.

02 TITLE PIC X(25) VALUE IS

*STUDENT LISTING SEM1 1972°'.

02 FILLER PIC X(59) VALUE IS SPACES.
HEADING-RECORD-2.

02
02

02
02

02
02

02
02

02
02

02
02

02

FILLER PIC X VALUE IS SPACES.
HEADING-1 PIC X(6)

VALUE IS °*NUMBER'.
FILLER PIC X(11) VALUE IS SPACES.
HEADING-2 PIC X(4)

VALUE IS °*NAME'.
FILLER PIC X(20) VALUE IS SPACES.
HEADING-3 PIC X (6)

VALUE IS "STREET'.
FILLER PIC X(20) VALUE IS SPACES.
HEADING-4 PIC X (4)

VALUE IS °'CITY'.
FILLER PIC X(11) VALUE IS SPACES.
HEADING-5 PIC X (5)

VALUE IS °'STATE'.
FILLER PIC X(5) VALUE IS SPACES.
HEADING-6 PIC X (3)

VALUE IS 'ZIP°‘.
FILLER PIC X(25) VALUE IS SPACES.

225

01 DETAIL-RECORD.
02 FILLER PIC X VALUE IS SPACES.
02 1ID-CARD PIC X(5).
02 FILLER PIC X(4) VALUE IS SPACES.
02 NAME PIC X(20).
02 FILLER PIC X(5) VALUE IS SPACES.
02 STREET PIC X(20).
02 FILLER PIC X(5) VALUE IS SPACES.
02 CITY PIC X(20).
02 FILLER PIC X(5) VALUE IS SPACES.
02 STATE PIC X(10).
02 FILLER PIC X VALUE IS SPACES.
02 ZIP PIC X(5).
02 FILLER PIC X(21) VALUE IS SPACES.
[e rTED trons
. CUSTOMER-RECORD (input area for CARDFILE)
ﬁl‘l STREET CITY-STATE FILLER
(20 characters) (15 characters) (25 characters) (18 characters)
YEAR-OPENED
(2 characters)
PRINT-RECORD (output area for PRINTED-REPORT)
II'I'lollLlIIIP-TlH[lIT'H"V'l' T I BERESEEEENEE 1T

| 2 + .
1[2[3[4[5]617189[0°1'213'4:5 (617 891071 2 3415 6]

T
3 4 | 5 6 7
778'9(0[1]21374"s1617'8'9]0 127304516 7[8 79101 [2]314'5'6[7'8 (9]0 1]2[3 4 5'6]7]89
T Tt j

ERNENERNESRSNANE
8 9

226

I 02160500 1'2'3[4'5 617]8[9{01112/3]4]5"6]7
1 [1 T lADDRESS I ITY-STATH . N ra ’
10| ; BEDEN : ; NSNS B
&l Bammas g NSREN - A SN . R
N B RS i DR i 1 B
O} BUEEREERY R ERERER] BRE] L G T
DETAIL-RECORD in working storage
HEADING-RECORD in working storage
Figure 58

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l.ce5ceee0ceeebeeaal0ecaabiie0ieebeeneleeabenealieeadenee0aaa5....0..

IDENTIFICATION DIVISION.
PROGRAM-ID. LISTING.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE CONTROL.
SELECT CARDFILE
ASSIGN TO RD-1442.
SELECT PRINTED-REPORT
ASSIGN TO PR-1132-C.
RESERVE NO ALTERNATE AREA. (20)
PROCEDURE DIVISTION.
PREPARATION-ROUTINE.
OPEN INPUT CARDFILE
OUTPUT PRINTED-REPORT.
HEADING-ROUTINE.
MOVE HEADING-RECORD-1
TO PRINT-RECORD.
WRITE PRINT-RECORD
AFTER ADVANCING 1 LINES.
MOVE HEADING-RECORD-2
TO PRINT-RECORD.
WRITE PRINT-RECORD
AFTER ADVANCING 2 LINES.
MAIN-SEQUENCE.
READ CARDFILE
AT END GO TO FINISH.
MOVE ID-CARD OF STUDENT-RECORD
TO ID-CARD OF DETAIL-RECORD.
MOVE NAME OF STUDENT-RECORD
TO NAME OF DETAIL-RECORD.
MOVE STREET OF STUDENT-RECORD
TO STREET OF DETAIL-RECORD.
MOVE CITY OF STUDENT-RECORD
TO CITY OF DETAIL-RECORD.
MOVE STATE OF STUDENT-RECORD
TO STATE OF DETAIL-RECORD.
MOVE ZIP OF STUDENT-RECORD
TO ZIP OF DETAIL-RECORD.
MOVE DETAIL-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD
AFTER ADVANCING 2 LINES.
AT END-OF-PAGE (11
GO TO HEADING-ROUTINE.
GO TO MAIN-SEQUENCE.

FINISH.
CLOSE CARDFILE PRINTED-REPORT.
STOP RUN.

e e e e e e e et e e . —— - ——

227

2.

0 0

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0.00.5.0..0..0.5.2..0....5.00.0.0..5....0..,..5....0..

WRITE record—-name
AFTER ADVANCING mnemonic-name.

Option

The option of the WRITE statement shown akove may also be used to
skip to the top of a page. Figure 55 shows that this option may
be used to skip to a new page when mnemonic-name has been defined
in the paragraph of the Configuration Section of the
Environment Division as ...eceeee o

* * *

SPECIAL-NAMES

co1

228

The system name (C01l, for example) cannot be used in a statement,
so it must be given a mnemonic name by the programmer. This is
done in the:

a. File Section of the Data Division.

b. SPECIAL-NAMES paragraph of the Environment Division.

677

6G 2InbTa

system

IBM

COBOL Coding Form

SYSTEM PUNCHING INSTRUCTIONS PAGE OF
PROGRAM GRAPHIC CARD lDENT.IFICf\TION
PROGRAMMER [oate PUNCH FORM # T
'i‘?“i":fu zla Ea COBOL STATEMENT
i) 3ja 6j7]s 112 18 2 24 2 32 3% 0 “ 52 64 [] 12
T LT
02! | ENMI! J&ENF D{LV[1IS 1 ON.
0/3} | ICONF1EIURATIION [SEICIT]IION .
04 § * NN
05 R i i
o6] iRENE
{7 | ISIPEICAL-NAMES, . |
0.8 3 [1S! [T]0]-NIEIXTI-PIAGE..
oj9 ' 7 \\r i
name—i 7| 1 i CTHE
1 Y T Tr—mnemonic name
12 ROCEDURE IDit[V]1S[1/ON ine
3] | IBEGIN.|
14 DPEN [INAUT_ClusiTOMER-IFITLE l00TPT N
15 v LI PRIINTIERI-IPAGE]. L
6] |) . Ll N
U HEAD! ING{-[REICIORD (1ol IARTINITI-IRECORDL| [| | | |][\
18 BRI TE LINT|-RIEICOIRD AFIT DVIANC - TP
1.9 1 EEN
20 |
!
] Attt - 4o 111
; | A | L

A sundard card form. 1 Elacre CB1887, is oveitabis 107 punching source Saterrents from this form.
reburence menust.

1279 Avenus of the Amarices, New York. New Yerk 10020,

Form Neo_ X78-1444-4 U/M 025
Primtediny S A,

4. The nmnemonic namwe is a name chosen by the programmer that is
defined in the SPECIAL-NAMES paragraph in the Configuration
Section of the Environment Division. Figure 59 shows a mnemonic
name defined in the SPECIAL-NAMES paragraph. In Figure 59:

a. the mnemonic name is TO-NEXT-PAGE.
b. the system name by which the mnemonic name is defined is CO1.

* * *

- ——— — e ——— - - - - - -

5. Match, using Figure 59.
1) Mnemonic name a. Co01
2) System name b. AT END-OF-PAGE

c. TO-NEXT-PAGE

* * *

—— e o e - —— - e - — ——— o —— — T — - " e — —— — ——

6. In Figure 59 the system name COl specifies a skip to the first
printing line. Its related mnemonic name TO-NEXT-PAGE, then,
when used in a WRITE statement:

a. specifies a skip to the first printing line.
b. 1s used in place of C01 to cause a skip to a new page.

* * *

Both
(Remember that the system name C01 cannot be specified in a
statement.)

———— [—— o e = - e > = -~ — —— — = — - ———— - " —— — ——

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0000.5000.000..5.0..00000500..0000.5....0..

WRITE record-name
AFTER ADVANCING mnemonic-name.

Using the AFTER ADVANCING option, write a statement to write a
record from OUTPUT-RECORD after a skip to the first printing
line. Use the mnemonic name from Figure 59.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5...000..5...0.0005.00.0000500..0.000.5....0....5....0....5....0..

WRITE OUTPUT-RECORD
AFTER ADVANCING TO-NEXT-PAGE.

— —— v o — — ——— —— ——— s - -

230

8. The mnemonic name specified for C01 in the AFTER ADVANCING opticn
of the WRITE statement:

a. could be any name of the programmer's choice.

b. must always be TO-NEXT-PAGE.

9. Using Figure 20 as a guide, write the Environment Division
entries to define the mnemonic name TO-FIRST-LINE as the system
name CO1. -

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.2..0....5....0....5....0....5....0....5....0..

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
SPECIAL-NAMES.

C01 IS TO-FIRST-LINE.

(If wused, the SPECIAL-NAMES paragraph always follows the OBJECT-
COMPUTER paragraph.)

10. The OBJECT-COMPUTER paragraph describes the computer on which the
program is to be executed. This paragraph is entered into the
CONFIGURATION SECTION of the ENVIRONMENT DIVISION.

OBJECT-COMPUTER, computer—name

WORDS
EMEMORY SIZE integer CHARACTERS .
MODULES
The following example demonstrates the complete Configuration
Section.
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5..2.000ce5000.0000e5000e00ue5.0..0000.5.0..0.00.5000.0....5....0..

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130 MEMORY SIZE 8192 WORDS.
SPECIAL-NAMES.
C01 IS TO-FIRST-LINE.

—-——— e ——— - ———he e e -— - -

231

11. Write a statement . to write a record from OUTPUT-RECORD after a
skip to the first printing line. Use the AFTER ADVANCING option
and the name defined in the previous frame.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l..05.c0e00ccebecce0aceebineeleceebeeeeleceadeeeelenecdeeaelecadaa. 0.,

WRITE OUTPUT-RECORD
AFTER ADVANCING TO-FIRST-LINE.

12. A skip to the first printing 1line may be specified with the
statement:

A.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....0....5....0.000.5.0..0000.5.0.000..05....00000500000000.5....0..

WRITE PRINT-RECORD
AFTER ADVANCING TO-NEXT-PAGE.

b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0..0.5.00.0..0.5.0..0.00.5.0..0..0.5....0....5....0..

WRITE PRINT-RECORD
AFTER ADVANCING CO1l.

13. so far you have learned that a skip to the first printing line
may be specified in the statement:

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
b IR RPN ¢ [TR ¢ DS PO ¢ PO TR o I TARA | PR DU | P TR

WRITE PRINT-RECORD
AFTER ADVANCING TO-NEXT-PAGE.

-—— e ———— —— — > . e e o e e P s . . S . e . i i S s e e e et

14. A mnemonic name must be specified in the SPECIAL-NAMES paragraph
if you are using the:

a. AFTER ADVANCING option with integer

b. AFTER ADVANCING option with mnemonic name

* * *

232

.15. If +the ADVANCING option is used in a WRITE statement for a file,
every other WRITE statement for that file must contain some form
of the same option. To produce the single-spaced output file
PRINTED-REPORT, you could use the statement:

Ade

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.0..0.0..5....0....5....0....5....0....5....0..

WRITE PRINT-RECORD
AFTER ADVANCING O.

to write headings, and the statement

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1.ee5....0000.5....0....5.0..0....5....0.00..5....0..0.5..0..0....5....0..

WRITE PRINT-RECORD
AFTER ADVANCING 2 LINES.

to write data records.

b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

WRITE PRINT-RECORD
AFTER ADVANCING TO-NEXT-PAGE.

to write headings, and the statement

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0..0.5....0.0..5.0..0000.5.0..0....5....0....5....0....5....0..

WRITE PRINT-RECORD
AFTER ADVANCING 1 LINES.

to write data records.

* * *

b

AFTER ADVANCING 1 LINES is necessary even though norwal single
spacing is desired. All WRITE statements referring to PRINT-RECORD
must contain AFTER ADVANCING clauses once the option is used.

o = o —————— —— — " —— s -

233

0

16.

0 1 1 2 2 3 3) 4 5 5 6 6 7

leee5eeee0eeeebeeeeleeeebenealeceedeeeeleneadeeeeleeeedeeeeleceadeee 0.

0

WRITE PRINTED-REPORT
AFTER ADVANCING TO-TOP-OF-PAGE

Single spacing is used in a printed report for all records except
the heading record, which is on a new page. Paragraph PRINT-
HEADINGS contains the statement above. The statement you would
use to cause a branch to PRINT-HEADINGS at the appropriate time
would be:

A.

0 1 1 2 2 3 3 4 4 5 5 6 6 7

l1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

0

WRITE PRINT-REPORT
AT END-OF-PAGE
GO TO PRINT-HEADINGS.
b.

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5.2..0....5....0....5....0....5....0..

234

WRITE PRINTED-REPORT
AFTER ADVANCING 1 LINE
AT END-OF-PAGE
GO TO PRINT-HEADINGS.

17. Rewrite the Configuration Section of the Environment Division and
the Procedure Division of the program in Figure 60 to produce the
listing in Figure 58 using the AFTER ADVANCING option. Use NEW-
PAGE as the mnemonic name for C01.

0

0

1 1 2 2 3 3 4 4

5

5

6

6

7

1...5....0..¢.5....0000.5.00.0000.50000000ee5.000000ee50ee0.00a5....0..

IDENTIFICATION DIVISION.
PROGRAM-ID. LISTING.
ENVIRCNMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE CONTROL.
SELECT CARDFILE
ASSIGN TO RD-1442.
SELECT PRINTED-REPORT
ASSIGN TO PR-1132-C
RESERVE NO ALTERNATE AREA.

DATA DIVISION.
FILE SECTION.
FD CARDFILE
LABEL RECORDS ARE OMITTED.
01 STUDENT-RECORD.
02 ID-CARD PIC X(5).
02 NAME PIC X(20).
02 STREET PIC X(20).
02 CITY PIC X(20).
02 STATE PIC X(10).
02 ZIP PIC X(5).
FD PRINTED-REPORT.
LABEL RECORDS ARE OMITTED.
01 PRINT-RECORD PIC X(121).
WORKING-STORAGE SECTION.
01 HEADING-RECORD-1.
02 FILLER PIC X(37) VALUE IS SPACES.
02 TITLE PIC X(25) VALUE IS
'STUDENT LISTING SEM1 1972°'.
02 FILLER PIC X(59) VALUE IS SPACES.
01 HEADING-RECORD-2.
02 FILLER PIC X VALUE IS SPACES.
02 HEADING-1 PIC X(6)
VALUE IS *NUMBER'.
02 FILLER PIC X(11) VALUE IS SPACES.
02 HEADING-2 PIC X(4)
VALUE IS °*NAME'.
02 FILLER PIC X(20) VALUE IS SPACES.
02 HEADING-3 PIC X(6)
VALUE IS 'STREET'.
02 FILLER PIC X(20) VALUE IS SPACES.
02 HEADING-4 PIC X(4)
VALUE IS °*CITY'.
02 FILLER PIC X(11) VALUE IS SPACES.
02 HEADING-5 PIC X(5)
VALUE IS 'STATE'.
02 FILLER PIC X(5) VALUE IS SPACES.
02 HEADING-6 PIC X(3)
VALUE IS ‘ZIP'.
02 FILLER PIC X(25) VALUE IS SPACES.

235

236

01 DETAIL-RECORD.
02 FILLER PIC X VALUE IS SPACES.
02 ID-CARD PIC X(5).
02 FILLER PIC X(4) VALUE IS SPACES.
02 NAME PIC X(20).
02 FILLER PIC X(5) VALUE IS SPACES.
02 CITY PIC X(20).
02 FILLER PIC X VALUE IS SPACES.
02 STATE PIC X(10).
02 FILLER PIC X VALUE IS SPACES.
02 ZIP PIC X(5).
02 FILLER PIC X(49) VALUE IS SPACES.
PROCEDURE DIVISION.
PREPARATION-ROUTINE.
OPEN INPUT CARDFILE
OUTPUT PRINTED-REPORT.
HEADING-ROUTINE.
MOVE HEADING-RECORD-1 TO PRINT-RECORD.
MOVE PRINT-RECORD.
MOVE HEADING-RECORD-2 TO PRINT-RECORD.
WRITE PRINT-RECORD AFTER ADVANCING 3 LINES.
MAIN-SEQUENCE.
READ CARDFILE AT END GO TO FINISH.
MOVE ID-CARD OF STUDENT-RECORD TO ID-CARD OF DETAIL-RECORD.
MOVE STREET OF STUDENT-RECORD TO STREET OF DETAIL-RECORD.
MOVE CITY OF STUDENT-RECORD TO CITY OF DETAIL-RECORD.
MOVE STATE OF STUDENT-RECORD TO STATE OF DETAIL-RECCRD.
MOVE ZIP OF STUDENT-RECORD TO ZIP OF DETAIL-RECORD.
MOVE DETAIL-RECORD TO PRINT-RECORD.
WRITE PRINT=RECORD AFTER ADVANCING 3 LINES.
AT END-OF-PAGE GO TO HEADING-ROUTINE.
GO TO MAIN-SEQUENCE.

FINISH.
CLOSE CARD-FILE PRINTED-REPORT.
STOP RUN.

Figure 60

* * *

0 0 1 1 2 2 3 3 4 4

5 5 6 6 7

1...5...0.00.5.00.0000e500ee00eee50cec0eeee5ceee0eneabeee0une5....0..

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBEM-1130.
OBJECT-COMPUTER. IBM-1130.
SPECIAL-NAMES.

C01 IS NEW-PAGE.

PROCEDURE DIVISION.
PREPARATION-ROUTINE.
OPEN INPUT CARDFILE
OUTPUT PRINTED-REPORT.
HEADING-ROUTINE.
MOVE HEADING-RECORD-1
TO PRINT-RECCRD.
WRITE PRINT-RECORD
AFTER ADVANCING NEW-PAGE.
MOVE HEADING-RECORD-2
TO PRINT-RECORD.
WRITE PRINT-RECORD
AFTER ADVANCING 2 LINES.
MAIN-SEQUENCE.
READ CARDFILE
AT END GO TO FINISH.
MCVE ID-CARD OF STUDENT-RECORD
TO ID-CARD OF DETAIL-RECORD.
MOVE NAME OF STUDENT-RECORD
TO NAME OF DETAIL-RECORD.
MOVE STREET OF STUDENT-RECORD
TO STREET OF DETAIL-RECORD.
MOVE CITY OF STUDENT-RECORD
TO CITY OF DETAIL-RECORD.
MOVE STATE OF STUDENT-RECORD
TO STATE OF DETAIL-RECORD.
MOVE ZIP OF STUDENT-RECORD
TO ZIP OF DETAIL-RECORD.
MOVE DETAIL-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD
AFTER ADVANCING 2 LINES
AT END-OF-PAGE
GO TO HEADING-ROUTINE.
GC TO MAIN-SECQUENCE.

FINISH.
CLOSE CARDFILE PRINTED-REPORT.
STOP RUN.
SUMMARY <

You have Jjust completed Lesson 11 in which
SPECIAL-NAMES paragraph option of the WRITE
vertical spacing for printed reports.

END OF LESSON 11

you learned to use the
statement to provide

237

THIS PAGE INTENTIONALLY LEFT BLANK

238

LESSON 12

239

LESSON 12 - LIBRARY ENTRIES

INTRODUCT ION

In this lesson you will learn how you may avoid recording programming
routines used more than one time. The COPY statement will allow you to
include entries in your source program from a library of source program
entries. You will also apply new concepts from the last few lessons in
practice problem coding.

Specific COBOL language features you will learn to use are:

COPY statement

This lesson will require approximately three quarters of an hour.

240

Now that vyou have learned to use the options of the WRITE statement
to control vertical spacing, you can produce a listing of a card file in
any format that may be requested. Another feature of the COBOL language
can reduce the coding required to produce the 1listing, however. The
card records illustrated in Figure 58 might be processed in several ways
by several programs. The record description entries in the Data
Division would be coded in each of the programs. Entries such as these
that are used in many programs may be stored 1in a 1library of source
coding. The coding segments are called books and are given distinct
names by which they can be referred to in a COBOL program. Although you
will not learn to create such a library in this course, you will learn
to include source coding that is already part of a 1library in your
program.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5..0.0000050000000e05000e00ceebeeealoeeebDeeeelacaabeceeleineaS....0.,

COPY library-name

The COPY statement is used to include entries in a source program
from a library of source coding. Locate the section titled COPY
Statement under SOURCE PROGRAM LIBRARY FACILITY in the Language
Specifications. The General Format chart shows the entries in
which the COPY statement may be specified. Option 1 in the chart
indicates that a valid use of the COPY statement could be:

a.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5.0..0....5....0....5..400000.5.0..00000500..0.0..5....0..

CONFIGURATION SECTION. COPY COMPUTERS.
b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5 0000005000000 500ce00e050eee00cedeee0eeab....0..

OBJECT-COMPUTER. COPY INSTALLATION.

* * *

b
(2 is incorrect because it 1is not possible to copy an entire
section.)

- ——— - . - ——— > - -

A 1library name, 1like a program name, may be any combination of
digits, letters, and hyphens with a maximum length of 30. The
initial and final characters must not be hyphens. In addition to
fitting these rules, library names must not be COBOL reserved words
and the first five characters must not be duplicated in any other
library name.

241

2. Refer to the portion of the General Format chart for the
specified option for each entry below to determine whether the
entry is a valid use of the COPY statement.

a. Option 2

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
;AP Y ¢ JE . T | PO P o PP ZU R DU D o PO DI RU PO PR ¢ R

INPUT-OUTPUT SECTION.
COPY IN-OUT-SECT.

b. Option 3

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....00...5.00.000..500..0....5....0..0.5.00.0....5....0..

SELECT COPY FILES.
c. Option 4

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5.00.000.500.00005.0..0000.5.00.0000.5..0.000..5.0.0.0.0..5....0..

FD CARD-FILE
COPY FILE-DESCRIPTION-ENTRY.

d. Option 5

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l.ee5ceee0eece5ecne0ienebieealaceedeceelecebeeee0cee500e.0000e50...0.,

01 CCPY CARD-RECORD.
e. Option 6

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5..0.0000.50000000005000.0000.5000.00...5....0000.5000.000005.00000.

77 SAVE-NUMBER COPY LIBRARY-1.
f. Option 7

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
P JA ¢ DN~ PP | PO TP« PP T « PR T | . TR | P TR

BEGIN. COPY OPEN-PARAGRAPH.

* * *

c,e,f

(a is incorrect because it is not possible to copy an entire section.
In b the file name must be specified preceding the COPY statement.
In d the data name must be specified preceding the COPY statement.
The library name is used only in the COPY statement. The data name
or file name is used in all other entries.)

3. The 1library texts shown in Fiqure 61 are to be incorporated into
the program in Figure 60. Write the statements that would
include the library texts.

242

1. Library nawe: TITLE-LINE

Text:
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0.00.5.00.0....5000.0....5....0..

02 FILLER PIC X(37) VALUE IS SPACES.

02 TITLE PIC X(25) VALUE IS

*STUDENT LISTING SEM1 1972°.
02 FILLER PIC X(59) VALUE IS SPACES.
2. Library nare: COLUMN-HEADINGS

Text:
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5.00.0....5....0..

02 FILLER PIC X VALUE IS SPACES.

02 HEADING-1 PIC X(6) VALUE IS "NUMBER'.

02 FILLER PIC X(11) VALUE IS SPACES.

02 HEADING-2 PIC X(4) VALUE IS °'NAME'.

02 FILLER PIC X(20) VALUE IS SPACES.

02 HEADING-3 PIC X(6) VALUE IS 'STREET'.

02 FILLER PIC X(20) VALUE IS SPACES.

02 HEADING-4 PIC X(4) VALUE IS °'CITY'.

02 FILLER PIC X(11) VALUE IS SPACES.

02 HEADING-5 PIC X(5) VALUE IS 'STATE'.

02 FILLER PIC X(5) VALUE IS SPACES.

02 HEADING-6 PIC X(3) VALUE is 'ZIP'.

02 FILLER PIC X(25) VALUE IS SPACES.

3. Library name: INFORMATION-LINE

Text:
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....000..5....0....5....0.2..5.20.0....5.0..0....5000.0....5....0..

02 FILLER PIC X VALUE IS SPACES.

02 ID-CARD PIC X(5).

02 FILLER PIC X(3) VALUE IS SPACES.

02 NAME PIC X(20).

02 FILLER PIC X(5) VALUE IS SPACES.

02 STREET PIC X(20).

02 FILLER PIC X(5) VALUE IS SPACES.

02 CITY PIC X(20).

02 FILLER PIC X VALUE IS SPACES.

02 STATE PIC X(10).

02 FILLER PIC X(2) VALUE IS SPACES.

02 ZIP PIC X(95).

02 FILLER PIC X(24) VALUE IS SPACES.

243

4., Library name: STANDARD-PARAGRAPH
Text:

0 0 1 1 2 2 3 3 q 4 5 5 6 6 7
1.005.02.00005000000eeebeeee00ceb000e5000e00ceeb0ee0aeee5....0..
MOVE HEADING-RECORD-1
TO PRINT-RECORD.
WRITE PRINT-RECORD.
MOVE HEADING-RECORD-2
TO PRINT-RECORD.
WRITE PRINT-RECORD AFTER ADVANCING 3 LINES.

Fiqure 61

1)

0 0 1 1 2 2 3 3) 4 5 5 6 6 7
1...5....0....5....0000.5.0..0000.500020.0...5000.0000.5040.0.0...5....0..

01 HEADING-RECORD-1 COPY TITLE-LINE.
2)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0000.5.0..0000.5.00e00acebeeee0ecebeeeelace5000000005....0..

01 HEADING-RECORD-2
COPY COLUMN-HEADINGS.

3)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
R P IS JAP Y o I R | [P PP o [RO o F s P | P RTI ¢« I

01 DETAIL-RECORD COPY INFORMATION-LINE.
4)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5.0..0000.5.00.000005.000000eD00ea00cea50eca00ce50e00ee5....0..

HEADING-ROUTINE. COPY STANDARD-PARAGRAPH.

(These four COPY statements eliminate the necessity of writing 33
lines of coding.)

- e - — e —— - — - -—— -

Use the IBM 1130 Disk Monitor System, Version 2 manual for the
operating system in your computer installation. If you do not work
in a computer installation, you may use the Language Specifications.

Consult the Language Specifications Manual which has excellent
indexes and contains all the rules for coding the American National
Standard COBOL. As a COBOL programmer you will use this as your
primary reference source. Quickly review the manual now to
familiarize yourself with its structure and content. Then continue
by coding a solution for the problem described in the following
frame.

244

0

0

In preparation for an advertising campaign, a major manufacturing
firm has requested a listing of customer master records in the
form shown in the Printer Spacing Chart in Figure 62. The master
records are on cards in a form shown by the diagram of the input
area. Since these master records and detail records are
processed by several different programs, their record description
entries are common to all of the programs. The record
description entry for the master records exists as a library text
called MASTER. The record description entry for the detail
records exists as library text called DETAIL-LINE. The heading
entries exist as library text called HEADINGS. The library texts
are shown in Figure 62. The title, however, is unique and must
be defined 1in this program. Code the program called LISTING to
produce the listing of customer master records.

Library name: MASTER
Text:

1 1 2 2 3 3 4 4 5 5 6 6 7

l.ee5.0..000025.00.000025000200005.0.00000.5000.000005000.0.0.0.5....0..

02 CHARGE-CARD PIC X(5).
02 NAME PIC X(20).

02 STREET PIC X(20).

02 CITY PIC X(20).

02 STATE PIC X(10).

02 2ZIP PIC X(5).

245

Library name: DETAIL-LINE
Text:

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1..¢5....0....5....000.05.00.000..5.0..0..0.5....00...5....0....5....0..

02 FILLER PIC X.

02 C-NUMBER PIC X(5).

02 FILLER PIC XXXX VALUE IS SPACES.
02 NAME PIC X(20).

02 FILLER PIC X(5) VALUE IS SPACES.
02 STREET PIC X(20).

02 FILLER PIC X(5) VALUE IS SPACES.
02 CITY PIC X(20).

02 FILLER PIC X VALUE IS SPACE.

02 STATE PIC X(10).

02 FILLER PIC XX VALUE IS SPACES.
02 ZIP PIC X(5).

02 FILLER PIC X(23) VALUE IS SPACES.

Library name: HEADINGS
Text

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....00...5.00.0....5....0..0.5....0....5....0....5....0..

02 FILLER PIC X.
02 HEADING-1 PIC X(17) VALUE IS
‘ *NUMBER '

02 HEADING-2 PIC X(24) VAILIUE IS
*NAME ‘.
02 HEADING-3 PIC X(26) VAIUE IS
*STREET ‘.
02 HEADING-4 PIC X(15) VALUE IS
‘CITY .
02 HEADING-5 PIC X(11) VALUE IS
L

*STATE -
02 HEADING-6 PIC X(3) VALUE IS 'ZIP'.
02 FILLER PIC X(24) VALUE IS SPACES.

246

Z9 21unbtg

Lht

MASTER-FILE I

Device:

|———————&>{ IBM-1130

PRINTED-REPORT
Device: 1132

CUSTOMER-RECORD (input area for MASTER-FILE)

CHARGE-CART]

(5 characters)

STREET

(20 characters)

STATE ZIp

OUTPUT-RECORD (output area for PRINTED-REPORT)

)]
QR8N0 T

(10 characters) |{(5 characters)

DETAIL-RECORD
HEADING-RECORD-2
HEADING-RECORD-1

3 4 5 [} 8 '
_ BN X (000 N R R 200 (U TEIN060 (IR E000 UL S DEOB0H0L o
! STOMER WAS NE-iMARRZ T . 1R IEY il
2 1[0 ! ek :) S RN P 1
|2
£l [[STREET : : AE 2 N
4 T H T H | . 1L
- -, X gt vttt e + 4 -+ v -
,_AFF_ hE3 TR T) sppeap st h
! B! ; ; ;

7 F}:— Ff ¥ H:X_-..x

I — {tt St =l
! L .;IlL B - . v] ,r i P '

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5.0..0....5....0....5....0..

IDENTIFICATION DIVISION.
PROGRAM-ID. LISTING.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE CCNTROL.
SELECT MASTER-FILE
ASSIGN TO RD-1442.
SELECT PRINTED-REPORT
ASSIGN TO PR-1132-C.
RESERVE NO ALTERNATE AREAS. (20)
DATA DIVISION.
FILE SECTION.
FD MASTER-FILE
LABEL RECORDS ARE OMITTED.
01 CUSTOMER-RECORD COPY MASTER. (40)
FD PRINTED-REPORT
LABEL RECORDS ARE OMITTED.
01 OUTPUT-RECORD.
02 OUT-AREA PIC X(121).
WORKING-STORAGE SECTION.
01 HEADING-RECORD-1.
02 FILLER PIC X(34) VALUE IS SPACES.
02 HEADING-1 PIC X(29)
VALUE IS 'CUSTOMER MASTER FILE MAR 72°'.
02 FILLER PIC X(58) VALUE IS SPACES.
01 HEADING-RECORD-2 COPY HEADINGS. (40)
01 DETAIL-RECORD COPY DETAIL-LINE. (40)
PROCEDURE DIVISION.
PREPARATION-ROUTINE.
OPEN INPUT MASTER-FILE
OUTPUT PRINTED-REPORT.
HEADING-ROUTINE.
MOVE HEADING-RECORD-1
TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD.
MOVE HEADING-RECORD-2
TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD
AFTER ADVANCING 2.
MAIN-SEQUENCE.
READ MASTER~FILE
AT END GO TO FINISH.
MOVE CHARGE-CARD OF CUSTOMER-RECORD
TO C-NUMBER OF DETAIL-RECORD.
MOVE NAME OF CUSTOMER-RECORD
TO NAME OF DETAIL-RECORD.
MOVE STREET OF CUSTOMER-RECORD
TO STREET OF DETAIL-RECORD.
MOVE CITY OF CUSTOMER-RECORD
TO CITY OF DETAIL-RECORD.
MOVE STATE OF CUSTOMER-RECORD
TO STATE OF DETAIL-RECORD.
MOVE ZIP OF CUSTOMER-RECORD
TO ZIP OF DETAIL-RECORD.
MOVE DETAIL-RECORD TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD
AFTER ADVANCING 2
AT END-OF-PAGE (11)
GO TO HEADING-ROUTINE.
GO TO MAIN-SEQUENCE.

248

FINISH.
CLOSE MASTER-FILE
PRINTED-REPORT.
STOP RUN.

SUMMARY:
You have now completed Lesson 12 in which you have learned to include
text from a library of source coding in your source program.

END OF LESSON 12

249

THIS PAGE INTENTIONALLY LEFT BLANK

250

LESSON 13

251

LESSON 13 - SEQUENTIAL DISK FILE OUTPUT

INTRODUCT ION

In the problems you have coded in previous lessons you have used only
card files and printer files. In this lesson you will use disk files
which have the advantages of higher input and output speeds and more
compact storage of data. You will learn how records in a disk file can
be blocked to provide even more compact storage. In addition to
learning to create a master file on disk you will 1learn to specify a
single statement to read and move a record as well as to specify
arithmetic operations. To begin, you will review some of the basic
physical concepts concerning disk storage, and principles pertaining to
file organization.

Specific COBOL language features you will learn to use in this lesson
are:

ASSIGN clause for disk files

STANDARD option of the LABEL RECORDS clause
BLOCK CONTAINS clause with CHARACTER option
INTO option of the READ statement

FILE LIMIT clause

This lesson will require approximately one hour.

252

DISK STORAGE

Disk storage provides the 1130 system with low-cost random or
sequential access data storage. Disk storage for the 1130 is
divided 1into two separate entities, each dependent upon the
other. The disk storage drive provides the access mechanism, the
magnetic read/write heads, and the mechanical and electronic
components necessary to record and retrieve data. The disk
cartridge provides a storage medium.

The disk 1is the storage medium that is mounted in the
disk ceeeveee cencaeaa .

* * *

cartridge
storage drive

—_———— e — - ——————— -———— i S e — — — ————— o —— = - T —— — ———— — — — - = -

The storage capacity provided +to the 1130 system by the disk
storage is 512,000 words per storage drive. A total on-line
capacity up to 2,560,000 words is provided. Off-line capacity is
virtually unlimited because the interchangeable disk cartridge is

easily removed and replaced with another.

The storage capacity 1limit of the 1130 disk storage is
approximately 2 and a half million words.

Ae True
b. False

* * *

b. Only on-line capacity is limited. Disk cartridges are removable.

W N

[oTR iR}

The disk cartridge (Figure 63) 1is a single disk completely
enclosed in protective housing. The recording medium is an
oxide-coated disk that provides two surfaces for the magnetic
recording of data. When mounted on a storage drive, the disk
rotates at 1,500 revolutions per minute.

Match the most closely related items in these two columns:

1. Disk cartridge a. Magnetically recorded
2. Data b. Contains 2 surfaces
3. Disk rotation c. Can be read off-line

d. 1,500 revolutions per minute.

* * *

253

254

Figure 63

o ———— o — o —— —— . = ot e 2 -—— ——— —— s -

4. The disk storage access mechanism has two horizontal arms. Each
arm has a magnetic read/write head, and each head is positioned
to read or write on the corresponding disk surface as the access
arms straddle the disk in the manner of a large tuning fork. The
entire assembly moves horizontally forward and backward so that
the heads have access to the entire recording area.

The magnetic head can Or «ec..... oOn the disk. Access
to all data is possible because the horizontal arms

e e e o eeee -

* * *
read

write
move

1.
2.
3.

The disk access mechanism is moved back and forth by programmed
commands and can be placed in any one of 203 positions, fron a
point near the periphery of the disk to a point near the center
of the disk. At each position, the heads can read or write in a
circular pattern on both surfaces of the disk, as it revolves.
The circular patterns of data are called tracks. The track on
the wupper surface of the disk and the corresponding track on the
lower surface, both of which can be read or written while the
access mechanism is in the same posistion, are called a cylinder.
Figure 64 shows the innermost and outermost cylinders of two
tracks each. To complete the picture, the 201 intermediate
cylinders, or pairs of tracks, should be visualized; they were
omitted for the sake of clarity of the diagram.

Match the items that correspond best:
1. Programmed command a. Control access mechanism
motion
2. Tracks
b. Corresponding tracks, upper
3. Cylinder and lower surface
c. Circular pattern of data
d. Round-shaped disk housing

% * *

a
c
b

Innermost Cylinder
Upper Surface Track

Lower Surface Track

203 Two-Track
Cylinders

Outcrmost Cylinder

Upper Surface Track

Lower Surface Track

NOTE: The thickness of the disk has been greatly exaggerated to show the
relative positions of the upper and lower surface tracks.

Figure 64

—— - - - —— > —— o e o o

255

256

For convenience in transferring data between the CPU core storage
and disk storage, each track is divided into four equal segments
called sectors. Sectors are numbered by the cylinder, from 0
through 7, as shown in Figure 65. Sectors 0 - 3 divide the upper
surface track, and sectors 4 - 7, the lower. A sector contains
321 data words and is the largest segment of data that can te
read or written with a single instruction. The first word of the
sector cannot be used by the programmer if the assembler program
or other components of the monitor system are to be used.

How many words can be read or written with a single instruction?

* * *

321, of which 320 are available to the programmer.

Sectors 0- 3
(Upper Disk Surface)

Sectors 4 - 7
(Lower Disk Surface)

7. A disk storage word comprises 16 data bits and four check and
space bits. Figure 66 shows the organizational components of
disk storage. Note that capacities are based on the 320 word
sector; also the number of cylinders is 200 rather than 203.
Three cylinders (24 sectors) are provided as alternates to ke
used if a surface is defective.

Match the columns:

1. Number of effective data bits a. 203
per disk storage word b. 16
c. 20
2. Number of effective words per d. 320
sector e. 321
£. 200
3. Number of effective cylinders
* * *
1. b
2. 4
3. £

Word Sector Track Cylinder Disk
Bits 16 5,120 20,480 40,960 8,192,000
Data Words 320 1.280 2,560 512,000
Sectors 4 3 1,600
Tracks 2 400
Cylinders 200

Figure 66

8. Timing considerations of disk storage operations involve three
elements: access time, reading and writing data, and the time
during which the c¢cpu is tied up. Once a seek, read, or write
instruction is initiated, disk storage operation is virtually
independent of the CPU (Central Processing Unit).

What are +the three elements involved in timing disk write
operation?

access time
writing data
time during which the CPU is tied up

257

FILE ORGANIZATION

There are two types of disk-file organization in 1130 COBOL:
sequential and random.

In a sequential disk-file, the records are written and read one after
the other. Record four, for example, can not be read or written unless
record three is read or written first, and so on.

In a random disk-file records are written or read without respect to
their location. For example, record seven can be read first, then
record one, and so on.

The disk storage devices will be discussed extensively later. In
earlier lessons the disk devices will be used in a sequential mode.

— ——— e > i e o o et e e ——— — — ———— ——— —— ——————— —— . > —— —————

Records in a file must be logically organized so that they can be
retrieved efficiently for processing. Sore factors to ke
considered in selecting a method of organization are file
volatility, activity and size. Name three factors influencing
the choice of a method of file organization.

* * *

File volatility, activity and size.

- — ———— -—— e ———— " ———— ——— o ——— ——— — = ——] oo, o i o .

10. Volatility. A static file is one that has a low percentage of

additions and deletions, while a volatile file is one that has a
high rate of additions and deletions.

Activity. If a low percentage of the records are to be processed
on a run, the file should probably be organized in such a way
that any record can be quickly located without having to look at
all the records in the file. The distribution of the activity is
also a consideration. The records processed most frequently
should certainly be the ones that can be located most quickly.
An active file must be organized very carefully, since the time
involved in locating the records may amount to an appreciakble
period of time. At the other extreme, an inactive file may be
referred to so infrequently that the time required to locate the
records is irmaterial.

Size. A file so large that it cannot be all online (availakle to
the system) at one time must be organized and processed in
certain ways. A file may be so small that the method of
organization makes little difference, since the time required to
process it is very short no matter how it is organized. Usually,
files are planned on the basis of their anticipated growth over a
period of time.

A file has a high rate of changes. Active records must
be accessed Files are planned on the basis of future

volatile
quickly
growth

258

11. The distinction between the organization of a master file and the

order of the input detail records processed against the file is
important. In sequential processing, the input transactions are
grouped together, sorted into the same sequence as the master
file, and the resulting batch 1is then processed against the
master file. When cards are used to store the master files,
sequential processing is the most efficient means of processing.
Direct access storage devices are very efficient sequential
processors, especially when the percentage of activity against
the master file is high.

In ..eea... eeses=s. input transactions are grouped together
(batched) and sorted into the same sequence as the

D] -

sequential processing
master file

12.

1.

3.
4.

[T\ R ene]

Random processing is the processing of detail transactions
against a master file in whatever order they occur. With direct
access devices, random processing can be very efficient, since a
file can be organized in such a way that any record can be
quickly located.

It is possible, on a run, to process the input transactions
against more than one file. This saves setup and sorting time.
It is mnot necessary to wait until a batch of transactions has
been accumulated to make processing worthwhile. The transactions
can be processed inline - that is, as soon as they are availakle.

Match these columns:

1. Random processing a. Arranging data in a
given sequence.
2. Direct access
b. Retrieval of a given
3. Sorting record without sequential
search
4. Batching
c. Transactions processed
without regard to sequence

d. Accumulation of
transactions into a group

——— - e e e o et e > S o e s S S . S T P S O i T i T e . e e e . e

IBM 1130 COBOL directly supports a sequential and a random method of
disk data organization. The indexed sequential method may be used,
but the programmer must develop techniques for file creation and
accessing. Further explanation will ke given later in this course.

259

13. Sequential organization. In a sequential file, records are

organized solely on the basis of their successive physical
location in the file. The records are usually read or updated in
the same order in which they appear. For example, the hundredth
record is usually read only after the first 99 have been read.

Individual records cannot be located quickly. Records usually
cannot be deleted or added unless the entire file 1is rewritten.
This organization 1is generally used when wost records are
processed each tire the file is used.

Sequential file organization would be recommended to accomodate a
reservation system, where a relatively few requests are processed
against a large file.

a. True
b. False
* * *
b. Sequential file organization 1is not practical unless an

appreciable number of records are active each time the file is used.

o e o e e e e e e i — ———— ———— — —————— ——————— — ————— — ——— T — — T ———— — ——— —— =

14. Indexed Sequential Organization. An indexed sequential file is

similar to a sequential file in that rapid sequential processing
is possible. Indexed sequential organization, however, by
reference to indexes associated with the file, makes it also
possible to quickly 1locate individual records fcr random
processing. Moreover, a separate area of the file is set aside
for additions; this obviates a rewrite of the entire file, a
process that would usually be necessary when adding records to a
sequential file. Although the added records are not physically
in key sequence, the indexes are referred to in order to retrieve

the added records in key sequence, thus making rapid sequential

processing possible.

Name three advantages of the indexed sequential file organization

method.

* * *

Rapid sequential processing is possible.
Random processing is also possible.
The entire file does not have to be rewritten to make additions.

e e e e e > i . e T — — ——— — ———— — —— ——— . Yo 0o . " = T — " T o " S o . o o S e S o e i o

260

15. Randor Organization. A file organized in a random manner is
characterized by some predictable relationship between a key of a
record and the 1location of that record on a DASD. This
relationship is established by the user. This organization
method 1is generally used for files whose characteristics do not
permit the use of sequential or indexed sequential organizations,
or for files where the time required to locate individual records
must be kept to an absolute minimum. This method has
considerable flexibility. The accompanying disadvantage is that
the programmer is largely responsible for the logic and
programming required to locate the records, since he establishes
the relative addresses of records on the DASD.

When 1is the random organization sometimes used in preference to
sequential or indexed sequential?

* * *

It 1is used when the time required to locate individual records must
be kept to a minimum.

16. The programmer, in computing the space needed to contain his
program and data, must first determine the number of words per
logical record. A logical record, as distinguished from a
physical record, is a given amount of data associated with one
particular transaction in a computer application e.g; the
information pertaining to an item in 1inventory. A physical
record is always 320 words, since this is the length of a disk
sector.

A record is related data being processed in a computer
application. A record is determined by sector size.

* * *

logical
physical

e o e e e e e e e e e e e = ——— — — ——————— — - ——— - — — — T — — ——— —— ——— T ——— -

201

17.

262

Disk files can be blocked, but because the size of a disk sector
is fixed at 320 words, the compiler and the execution-time input-
output routines assume that the number of records contained in a
disk block is exactly 320 divided by the length of the 1logical
record, with any remainder discarded.

Oonce the blocking factor is known, the number of sectors,
cylinders and disk cartridges needed may each be determined in
succession as is shown here:

5000 RECORDS & 32 WORDS/RECORD

320/32 = 10 = BLOCKING FACTOR

500 SECTORS
500 SECTORS

10 RECORDS/SECTOR) 5000 RECORDS

62.5 CYLINDERS

8 SECTORS/CYLINDER) 500 SECTORS

SINCE DATA FILES ALWAYS REQUIRE AN INTEGER NUMBER OF
SECTORS, THIS FILE WILL REQUIRE 62.5 CYLINDERS.

SINCE A DISK CARTRIDGE CONTAINS 200 CYLINDERS, THIS
FILE REQUIRES

62.5/7200 OR 31.3% OF A CARTRIDGE

1. What would be the blocking factor of records 20 words each in
length?

2. How many sectors would be needed to hold 3,000 records? How
many cylinders?

* * *

Blocking factor: 16
320720 = 16

Number of sectors needed: 188
3000s16 = 187, with a remainder of 8,or,
in effect, 188.

Number of cylinders needed: 23.5
188/8 = 23.5

- -— - ——— o e e s e e O e e i e b e e i i

18. Spanned records are permitted. A spanned record is a logical
record whose length exceeds the fixed 1length of a physical
record. Such records are permitted only on disk - where the
physical record size 1is 320 words - and wmay be processed
sequentially or randomly. Any record whose size is greater than
320 is considered a spanned record. Such records always occupy
an integral number of physical disk sectors; each such record
always begins in a new sector, and no special length indicator is
imbedded in the recorad. :

Why should spanned records be avoided if possible?

* * *

Since each record must start in a new sector, those sectors
containing the ends of records will usually not be fully utilized.

19. The 1130 COBOL compiler will allocate a record area in main
storage the size of the largest (or only) record, as specified by
the record description entries. On the external medium, all
records are carried as fixed length logical records; each recorxd
is the size defined for the largest record in the file. For a
disk file, the maximum size which may be defined for a 1logical
record 1is 4095. If any record defined for a disk file is
specified as greater than 320 words in size, the file is
considered to consist of spanned records.

1130 COBOL records are€ in length. Each record is the
size defined for the record in the file.

* * *

fixed
largest

263

20.

When a disk file is to be used in a COBOL program, the file must
be named in a SELECT clause and assigned to an input/output
device in an ASSIGN clause. For a disk file, the form of system-
name is something different. Three facts must be specified in
the name. (See Figure 20.)

1) The file number of the file (to be equated with an actual
file by means of an *FILES supervisor control record at XEQ
time).

2) The number of record slots (to be) allocated for the file on
disk.

3) Whether the file 1is to use a shared disk buffer during
execution, or its own unique disk buffer.

The form of system—name for a disk file is:
DF-fi lenurber—-numberofrecords [-X]

where
filenumber is the number of the file to be equated at XEQ
time; the number must be in the range 1 through 32767 and be
written without preceding zeros
numberofrecords is the number of record slots (to be)

allocated for the file; it must be a number in the range 1
through 32767, written without preceding zeros

—-X specifies that the file is to have its own unique disk
buffer; if -X is not specified, the shared disk buffer will
be utilized

0

21.

0

Write a SELECT and ASSIGN clause for the disk file. Use 600 as
the number of records, specifying that the file is to have its
own puffer area. Use Figure 21 as a guide.

* * *

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....00...5.0..0.0..5....0.0..5....00.0.500..0....5....0..

264

SELECT DISKFILE ASSIGN TO DF-1-600-X.

22. The elements of a system name are as follows:

The DF stands for disk file and it is standard in all disk system
names.

The next element 1is the symbolic file number which is a number
from 1 to 32767. The programmer may choose any of these numbers.
The number must be unique for each disk file. The third elerment
is the length. That is the number of records the programmer
wishes to have on the file. If the file consists of 500 records
write 500. If the file consists of 900 records write 900, etc.

The last element is a -X. This indicates that the file will have
its own buffer. When the -X is not specified, only one buffer is
created for all disk files. When a READ or WRITE statement is
issued, a whole disk sector is read or written. A sector may
contain more than one record. When a READ 1is issued from disk
number 1 and later another READ is issued from disk nuwmber 2 and
the -X has not been specified in the system name, reading will be
done into one buffer from both disks. The second READ statement
will destroy what was read by the first. When another record is
required later from the first disk, the sector has to be brought
back into core, whereas if the file has its own buffer all
records of each sector will be processed before another sector
reading or writing is initiated. Each buffer is 320 words. 1In a
large program these words may not be spared. Therefore, the
programmer may have to generate only one buffer.

symbolic file
DF - number - Length [-X]

The symbolic file number must be the same in the system name and
*FILES control card.

EXAMPLE:
DF-10-700-X

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
I...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

*FILES(10,PAYRL)

Control Card

23. A disk file must have an FD entry in the Data Division. The
requirements for an FD entry for a disk file are the same as for
a card file. An FD entry for a disk file must:
a. contain the LABEL RECORDS clause.

b. be preceded by a level number.

e e e e . e e e e e o . o, S e S S " o — —— —— — ——— " — —————— ———— -~

265

0

Because card and printer files cannot contain records to label the
file, the OMITTED option of the LABEL RECORDS clause was required for
the files used in programs in previous lessons. Since it is possible
to write on disk on which data has already been recorded, thus
destroying the original data, standard records are often included to
label the file and protect the data. If standard records are
included, they are checked automatically at the time the file is
opened. Usually, it is not important for the programmer to know the
details of label format.

In order to prevent data on a disk from being accidentally
destroyed, standard records used to label the file may «Lke
included in the disk file. Inclusion of standard records is
specified in the LABEL RECORDS clause. You might expect that the
LABEL RECORDS clause for a disk file with standard records would
be:

a. LABEL RECORDS ARE OMITTED.
b. LABEL RECORDS ARE STANDARD.

* * *

(Standard labels are IBM-supplied labels)

0

e e e e . . s~ ——f— T ——————— ——— — v — —— o~ — T~ T~ " T ——————

Write an FD entry for the file MASTERDISK, which has standard
records used to label the file that are +to be checked by the
computer.

* * *

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....00005.0..0....5....0..

FD MASTERDISK
LABEL RECORDS ARE STANDARD.

The data records in a disk file can be blocked, thus conserving space
on the disk. When an input file contains blocked records, the first

execution of a READ statement for that £file causes physical
transmission of a block from the file and the first record in the
block 1is available for processing. Each subsequent execution of a

READ statement causes each subsequent record to become available

until all the records in the block have been processed. Then the

next READ statement executed will cause physical transmission of
another block and the processing described previously will be
repeated. Similarly, if the records of an output disk are to ke

blocked, the records are transmitted to the output file as a block.

266

26.

1 1 2 2 3 3 u 4 5 5 6 6 7

0 0
1...5....0000059.00.0000.5.00.0000.5.00.0000.5.00.0000.500..0....5....0..
FD MASTERDISK
BLOCK CONTAINS 5 RECORDS
LABEL RECORDS ARE STANDARD.
Because records are transmitted as a block, the computer must
know how many records are in a block. The BLOCK CONTAINS clause
in the FD entry is used to specify the number of records in a
block. The FD entry above specifies that records are to ke
transmitted in a block of records.
* * *
five

(The record description entry that follows an FD entry specifies a
size of a record. The block size, in turn, can be determined by
multiplying the size of a record by the number of records in a
block.)

27.

0 0

1...5..
(The
the
28.
a

Write the FD entry for the disk file CUSTOMER-FILE. The records
are blocked into groups of four. Standard records are included
to label the file.

* * *

1 1 2 2 3 3 4 4 5 5 6 6 7
««0....5...0....5....0....5....0....5.0..0.00.500..0.0...5....0..

FD CUSTOMER-FILE
BLOCK CONTAINS 4 RECORDS
LABEL RECORDS ARE STANDARD.

order of the BLOCK and LABEL clauses is not important, but only
last clause is followed by a period.)

e e o S e e . . . e e > s i o i S S > . o — - — T~ o - o — - -

Unlike records in a card file, records in a disk file do not have
to be a set length such as 80 characters. The records can be any
length you desire. If each record in a disk file contains two
data items, and each data item is 10 characters long:

a. each record will be 20 characters long.

b. you should account for another 60 characters in the record
description entry.

* * *

267

29.

PART-RECORD

PART-NUMBER STOCK-~INDEX UNITS-ON-HAND UNIT-PRICE TOTAL VALUE
(6 char) (5 char) (4 digits) (4 digits) (6 digits)

o — e ot e
o Sy ot S o

Write the FD and record description entries for the disk file
PART-FILE. The records, which are illustrated above, are to be

blocked into groups of eight. Standard 1labels are to be
included.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5.0..00.0.5....0..0.5....0....5....0....5....0....5....0..

FD PART-FILE
BLOCK CONTAINS 8 RECORDS
LABEL RECORDS ARE STANDARD.
01 PART-RECORD.
02 PART-NUMBER PIC X(6).
02 STOCK-INDEX PIC X(5).
02 UNITS-ON-HAND PIC 9(4).
02 UNIT-PRICE PIC 9(4).
02 TOTAL-VALUE PIC 9(6).

In the previous lessons you have used only card files and printer
files. Now that you have learned to describe disk files in your

COBOL program, you can use them as you have used card and printer
files.

= s - o a1 = - — e o . . 4 . T . S > —

30. Write two COBOL statements to cause a record in PART-FILE to hbe
read into the associated input area described in +the preceding
frame and the entire record to be made available in the working-
storage variable PART-RECORD-2.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0000.5.0000.00.5, 0000005000200 00.5....0..

READ PART-FILE.
MOVE PART-RECORD TO PART-RECORD-2.

——— o e . e . o ey e e e e e

268

31.

0 0
1...5..
Both

1 1 2 2 3 3 4 4 5 5 6 6 7
PP PP > TP | DD PP | P DU | DU, RSN | P - RAAPOP | PR R | B

READ PART-FILE INTO PART-RECORD-2.

The INTO option can be used in the READ statement to replace the
two statements you wrote in frame 11, thus reducing the number of
statements in the source program. The statement above has the
same effect as the READ and MOVE statements.

a. a READ statement with the INTO option has the same effect as
a READ statement followed by a simple MOVE statement.

b. after the READ statement above is executed, the record from
PART-FILE will be available in both the 1input area and in
working storage.

269

0

32.

0

1

1 2 2 3 3 4 4 5

5

6 6

7

l1...5....0.0..5.00.0000.5.0000000e5000e000ee5encelueeabecee0eceediaa0.

0

0

DATA DIVISION.
FILE SECTION.

FD

01

FD

01
FD

01

INPUT-FILE
LABEL RECORDS ARE OMITTED.
ITEM-RECORD.
02 ITEM-NUMBER PIC X(10).
02 ITEM-NAME PIC X(20).
02 ITEM-DESCRIPTION PIC X(50).
OUTPUT-FILE
BLOCK CONTAINS 5 RECORDS
LABEL RECORDS ARE STANDARD.
ITEM-RECORD-O PIC X(80).
COMPLETE~-FILE
BLOCK CONTAINS 4 RECORDS
LABEL RECORDS ARE STANDARD.
ITENM-1.
02 ITEM.
03 ITEMNUMBER PIC X(10).
03 ITEMNAME PIC X(20).
03 ITEMDESCRIPTION PIC X (50).
02 ITEM-INDEX PIC 9(5).

WORKING—-STORAGE SECTION.

77
01

The

1

ITEM-2 PIC X(80).

ITEM-3.

02 DESCRIPTION PIC X(80).
02 ITEM-VALUE PIC 9(5).

READ statement with the INTO option has

1 2 2 3 3 4 4 5

the form:

5

6 6

7

leee5.cee0ccee5ieee0ieeebeeeelacaab50ece0aceebeeeelieeebaeee0acaa5....0..

270

The
an

READ

READ file-name INTO variable-name.

variable name specified in the INTO option can be a name in
the data description entry in the Working-Storage Section or

in

output record description entry in the File Section (if the
associated output file has been opened prior to execution of the

statement.) Refer to the preceding Data

Division

determine which of the following statements is wvalid:

and

Aa

0 0 1 1 2 2 3 3 i 4 5 5 6 6 7
l.ce5ceee0eecabeceeleenebaaee0ancebeeeeleceedeeeel0eceebeeac0ecca5...0..

READ INPUT-FILE INTO ITEM-RECORD-O.
b.
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..
READ INPUT-FILE INTO ITEM-1.

Ce.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....95....0..

READ INPUT-FILE INTO ITEM.
d.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....00...5....000..500..0000.500..000..500..0.0...5....0..

READ INPUT-FILE INTO ITEM-2.
e.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....00...5....0000.5.00.0000.5.00.0000.5000.00005000.0.00.5....0..

READ INPUT-FILE INTO ITEM-3.
£.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....0....5....0....5....0....5.0..0.00.5....0.0..5....0....5....0..

READ INPUT-FILE INTO DESCRIPTION.

* * *

All of these (When statement b and e are executed, the leftmost 80
positions of the receiving field will be filled with characters anc
the remaining positions will be padded with blanks, according to the
rules for a simple MOVE statement specifying group variables.)

271

33.

0 0 1 1 2 2 3 3 L} 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

FD INDEXFILE

LABEL RECORDS ARE OMITTED.
01 INDEX-RECORD.

02 ID-NUMBER PIC X(6).

02 OTHER-DATA PIC 9(15).
WORKING-STORAGE SECTION.
01 WORK-AREA.

02 1I-D PIC X(6).

02 INDEX-FACTOR PIC 9(5).

02 MULTIPLES PIC 9(5).

02 VALUE-INDEX PIC X(5).

Refer to the portion of the Data Division shown above and code
one statement that would produce +the same result as the two
statements below.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0.0..5....0....5....0....5....0..

READ INDEXFILE AT END GO TO REPEAT.
MOVE INDEX~-RECORD TO WORK-AREA.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.40.000025.2..0.00.5.0..00000500..0....5....0..

READ INDEXFILE INTO WORK-AREA
AT END GO TO REPEAT.

272

EMPLOYEE-RECORD-FILE
Associated input arca:
IN-RECORD

=

- 1BM-1130

EMPLOYEE-MASTER-FILE
Six records per block
Standard records to

label the file

| Associated output arca:
OUT-RECORD

Library text CARD-DATA

PLY]

=TT

" | PREPARATION-
I ROUTINE [—-

MAIN-
SEQUENCE

N~
T«)

Open
files

Read record from
EMPLOYEE-
RECORD-FILE
and store in
output area

|
|
| FINISH f_
Library text DISK-DATA | End of
7] . ® J2¢ F 7 Y w_ " T file card?
T S P X350 [[] |
o s e Xl
S RN RN SRR RS N |
|
Write record Int
| EMPLOYEE. (stoe >
MASTER-FILE
| L
|
l
L
Figure 67

273

34. The program EMPLOYEE-MASTER-PROGRAM is to be used to transfer a
master file from cards to disk. The system flow chart and a
program flow chart are shown 1in Figure 67 along with the two
library texts CARD-DATA and DISK-DATA which are to be
incorporated 1into the source program for the record description
entries for IN-RECORD and OUT-RECORD, respectively. Use Figure
67 as a guide for coding the missing portions of the program
shown below.

C 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5.0..0.00.5000.0000.5....0..

IDENTIFICATION DIVISION.

PROGRAM-ID. EMPLOYEE-MASTER-PROGRAM.
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.

FILE CONTROL.

1)

DATA DIVISION.

FILE SECTION.

FD EMPLOYEE-RECORD-FILE

LABEL RECORDS ARE OMITTED.

2)

FD EMPLOYEE-MASTER-FILE
3)

PROCEDURE DIVISION.
4)

* * *
1)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
i...5....0....5.0..0....5....0....504..0..0.5.0..00005000e0000.5....0..

SELECT EMPLOYEE-RECORD-FILE
ASSIGN TO RD-1442.
SELECT EMPLOYEE~MASTER-FILE
ASSIGN TO DF-1-800-X. (1

(Recall: the figure ©"800" in the ASSIGN clause is a figure
denoting the number of records in EMPLOYEE-MASTER-FILE.)

2)

C 0 1 1 2 2 3 3) 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5.0..0..0.5....0....5....0..

01 IN-RECORD COPY CARD-DATA.

3)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0.00..5.00.00...5.0.00.0..5....0000.5....0....5....0..

LABEL RECORDS ARE STANDARD)
BLOCK CONTAINS 6 RECORDS. (6)
01 OUT-RECORD COPY DISK-DATA.

4)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

PREPARATION ROUTINE.
OPEN INPUT EMPLOYEE-RECORD-FILE
OUTPUT EMPLOYEE-MASTER-FILE.
MAIN-SECUENCE.
READ EMPLOYEE-RECORD-FILE (11)
INTO OUT-RECORD
AT END GO TO FINISH.
WRITE OUT-RECORD.
GO TO MAIN-SEQUENCE.
FINISH.
CLOSE EMPLOYEE-RECORD-FILE
EMPLOYEE-MASTER-FILE.
STCP RUN.

(Moving a record from the input file to the shorter output area
resulted in truncation of the rightmost 24 characters in the input
record. This caused no problem since the truncated characters were
not to be included in the output record.)

———— e o e e e e i i e s e e s o -

You have now learned to code the entries to write records into a file
on disk as well as to read records from a card file and to write
records into a printer file in any specified format.

275

35. The FILE-LIMIT clause serves only as documentation. This clause
need not be specified in the FILE-CONTROL Section and if
specified it will be treated as comments. If the clause is used
it specifies the beginning and the end of a logical file on a
mass—-storage device.

FILE-LIMIT IS
integer-1 thru integer-2
FILE-LIMITS ARE

The PROCESSING MODE clause also serves only as documentation and

indicates the order in which records are processed. The
following example demonstrates the FILE-LIMIT and PROCESSING MODE
clauses.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....00c0.5.00.0000.5000.00...5.00.0000.5.00.0000.500000.000.5....0..

FILE CONTROL.
SELECT DISK-FILE
ASSIGN TO DF-1-600-X
ACCESS IS SEQUENTIAL
FILE-LIMITS ARE 100 THRU 600
PROCESSING MODE IS SEQUENTIAL.

—_——— - ——— —_— ———— ————— - ———— - ———— T ——— T ——

36. BLOCK CONTAINS clause is used to specify the size of a physical
record. If the CHARACTER option is wused, +the number of
CHARACTERS is the same as the number of words.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5.00.0000e50000000eb0cea0ecceb0cee0eeeS50eea0eceb0ce0eeea5....00,

FD NEW-MASTER.
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 100 CHARACTERS.

The VALUE OF clause uniquely specifies the description of an item
in the label records associated with a file and serves only as
documentation.

The DATA RECORDS clause serves only as documentation and
identifies the records in the file by name.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0.-..5....0....5....00.00500.:0000.5....0..

FD NEW-MASTER.
BLOCK CONTAINS 15 RECORDS
LABEL RECORDS ARE STANDARD
VALUE OF DISK-FILE IS PAYROLL
DATA RECORD IS PAY-MASTER.

SUMMARY:

You have now completed lesson 13 in which you have learned to code
the necessary entries to create a disk file with standard records to
label the file and blocked data records to provide compact storage. You
have also learned to specify a single statement to read and move a
record.

END OF LESSON 13

276

LESSON 14

277

LESSON 14 - SEQUENTIAL DISK FILE; ARITHMETIC OPERATIONS

INTRODUCT ION

In this lesson you will learn to use the MULTIPLY and ADD statements
with GIVING, ROUNDED, and SIZE ERROR options in both cases. You will
2also learn how to use the PICTURE character V to represent the implied
decimal point in data manipulation.

This lesson will require approximately one hour.

278

1. As a programmer you might be required to write a program using
the file created in the preceding frame to compute payroll data.
Assumring that the base pay rate is an hourly rate, earnings would
be computed by:

a. multiplying the number of hours worked by the base pay rate.

b. &dding the hourly rate to the hours worked.

* * *
a
2.
variable-name-1
MULTIBLY BY variable-name-2
numeric-literal-1
The MULTIPLY statewment of the form shown above is used to specify
multiplication. Use the form of the MULTIPLY statement shown
above to select the valid MULTIPLY statements from those shown
below:
a.
0 0 1 1 2 2 3 3 u 4) 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..
MULTIPLY AMOUNT BY 5.
b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

MULTIPLY 5 BY AMOUNT.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....500..0.0..5....0....5.0..00...5....0....5....0..

MULTIPLY 5 BY 5.
d.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0..0.5....0....5....0....5....0....5....0....5....0..

MULTIPLY FACTOR BY AMOUNT.
€.

0 0 1 1 2 2 3 3 q 4 5 5 6 6 7
leee50ce00eeeb.ee0eeeebeeeeleaeebeeee0aeee5.ce00eeebeaec0ieea5....0..

MULTIPLY ‘FACTOR' BY AMOUNT.

* * *

279

3.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
leeabeeeeleceebeeeeleneebeaneleceedeccefeceadeeeelecaadeceelecaadena 0.,

MULTIPLY FACTOR BY AMOUNT.
When the statement above is executed, the product of the value
stored in AMOUNT and the value stored in FACTOR is computed and
then stored in AMOUNT.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5. 000000050 eee00iee5ieealiceeb5eeeelecebeeceleceaS5eeafeee5....0.,

MULTIPLY AMOUNT BY FACTOR.
When the statement above is executed:

a. the product of the value stored in AMOUNT and the value
stored in FACTOR is computed.

b. the product is stored in AMOUNT.

* * *

a
(The product is stored in FACTOR.)

o . e . . e e s s o o S — ——— ——— " ————~ . —— — ——— o — o Y "~ o o e ——————— — ——— — —— — ——— > ——

4. Write a statement to compute the product of SALARY and 1.04 and
to store the product in SALARY.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0.00.5.0..0....5.0..0....5....0..

MULTIPLY 1.04 BY SALARY.

[- —— -—— - ———— -

280

5.

0 0 1 1 2 2 3 3 i 4 5 5 6 6 7
1...5....0.00.5.0..000025000.0000050002000ee500ee00cee50ca0....5....0.,

MULTIPLY X BY Y GIVING Z.

Often you may want to compute the product of two values and store
the product in a third variable. 1In this case, the GIVING optior
can be included in the MULTIPLY statement. When the statement
above is executed, the product of the wvalues in X and Y is
computed and stored in 2Z. (The values in X and Y remain
unchanged.)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0000.5.0000.00.500000.0005000.0....5....0..,

MULTIPLY RATE BY HOURS GIVING PAY.

When the statement above is executed, the product of the values
in cceeeeee and .c.ee.... is computed and stored in

* * *

RATE
HOURS
PAY

6. Write a statement +to compute the product of the values in COST
and TAX-RATE and to store the product in TAX.

* * *

0 0 1 1 2 2 3 3) 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5.0..0.0005.0..0.0..5....0..

MULTIPLY COST BY TAX—RATE
GIVING TAX.

————— e o = — —— e . e . e . . e e o ——— — ———— — o

7. Write a statement to compute the product of 2 and the value in
TOTAL and to store it in TOTAL.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.0..0.00.5.0.20000.5.0..0000.500..0....5....0..

MULTIPLY 2 BY TOTAL.

281

8. All variables used in arithmetic computations must be elementary
numeric variables. If a variable is to be specified in a
MULTIPLY statement it must be defined with a picture of:

a. X's
b. 9's
c. A's
* * *
b
9.
0 0 1 1 2 2 3 3 4 b 5 5 6 6 7

leee5eeee0iceebeceeleneabeeec0ceeb5.ee00eeebeneel0eceabieee0aeaab....0..

MULTIPLY QUANTITY BY AMOUNT
GIVING TOTAL.

Write the data description entries for 1level 77 variables
QUANTITY and AMOUNT necessary for execution of the statement
above. Both variables will contain values up to five digits.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....00.0.5. 0000002500000 00.5.0000000.5.00.00...50...0....5....0..

77 QUANTITY PIC 9(5).
77 AMOUNT PIC 9(5).

10. When a numeric value is recorded without a decimal point, it may
be necessary to specify the number of decimal places by inserting
a V into the picture for the variable that is to have that value.
The picture 9999vV99 for a variable specifies that values of the
variable will have two decimal places. The value of the variable
is said to have an assumed decimal point. Code the picture for a
variable whose values are eight digit numbers with two decimal
places and an assuwmed decimal point. The actual decimal point in
a value is aligned with the implied decimal point in a receiving
core area governed by a picture clause containing an implied
point. As a result of moving such a value, the value will ke
truncated left or right, or padded with zeros to exactly f£fill the
receiving core area.

999999Vv99

282

11. Any value or picture that contains no other assumed (or actual)
decimal point is assumed to have a decimal point following the
rightmost digit or digit position. Numeric data is automatically
aligned in a variable beginning at the decimal point; padding
with zeros or truncation of excess digits can occur at either or
both ends of the value. The table below illustrates padding and
truncation that occurs when certain values are assigned to
variables with certain pictures. (The symbol / is used here and
in future frames to represent an implied decimal position.)

VALUE ASSIGNED PICTURE RESULT
271 9v9 21 (no padding or truncation)
271 99v99 0210 (padding on right and left)
271 999 002 (padding on left:

truncation on right)

2/1 V999 100 (padding on right;
truncation on left)

21 99v99 2100 (padding on right)

[o s o o St s S T e =)
e o e e — — —— —————a—— o]

If the value 9/876 were read into a variable with the picture
999v999, the resulting value would be:

a. 987600 (padded on the right with =zeros with an assumed
decimal point preceding the 6).

b. bb9876 (padded on the 1left with blanks with the assumed
decimal point preceding the 8).

* * *

Neither (009876 padded on the 1left with zeros with the assumed
decimal point preceding the 8.)

283

12.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0000.5.00.0000.50000000005000e00eee5eeee0eicnedecedleeasd....0.,

WORKING-STORAGE SECTION.
77 PRICE PIC 999V99.

77 DISCOUNT PIC 9V99.
77 PROFIT PIC 99V9.

77 TOTAL PIC 9999V9I9.

MULTIPLY DISCOUNT BY PRICE.

The values 20/98 and 5/63 have been read into the variables PRICE
and DISCOUNT, which are defined in the Working-Storage Section
shown above. When the MULTIPLY statement 1is executed, the
product of the values of DISCOUNT and PRICE 1is computed as
118/1174. The picture for PRICE, in which the product will be
stored, specifies that the value of PRICE is to have two decimal
places to the right of an assumed decimal point. Consequently,
the last two decimal places in the product are truncated and the
value stored in PRICE is 118/11.

0 0 1 1 2 2 3 3. 4 4 5 5 6 6 7
1...5....0....5....0.00.500..0000.5.0..0000.5000.000005....0....5....0..

MULTIPLY PROFIT BY TOTAL.
If PROFIT and TOTAL have the values 11/1 and 11/11 respectively,
the value stored in TOTAL after execution of +the MULTIPLY
statement above is:
a. 1237321
b. 1233721

% * *

Neither (The product is 1237321, the rightmost decimal digit is
truncated or lost, and the value stored in TOTAL is 0123/32.)

13.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

MULTIPLY DISCOUNT BY PRICE ROUNDED.

A product can be rounded rather than merely truncated by
specifying the ROUNDED option in the MULTIPLY statement as shown
above. When this statement 1is executed, the product will ke
rounded to the position corresponding to the rightmost position
specified in the picture for PRICE. If the digit to the right of
this position is five or greater, the digit in this position is
increased by one. If the picture specified for PRICE is 999V99
and the values of DISCOUNT and PRICE are 080 and 11111

respectively, the value of PRICE after execution of the statement
above will be

14.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0.0..5....0....5....0....5....00...5....0....5....0..

DATA DIVISION.
WORKING-STORAGE SECTION.

77 PERCENT PIC 99V9.

77 FIRST-TOTAL PIC 9999Vv99.

Write a statement to compute the product of the values of PERCENT
and FIRST-TOTAL, round the product to the nearest cent
(hundredth), and store it in FIRST-TOTAL.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5...000050000000005.00.0000.500000000.500000000500000...5....0..

MULTIPLY PERCENT BY FIRST~TOTAL ROUNDED.

285

15.

0 0 1 1 2 2 3 3 4 4 5 S 6 6 7
1...5....0....5....0....5....0....5....0....5....0.0.005000.0000.5....0..

WORKING-STORAGE SECTION.

77 WIDTH PIC 99V99.

77 HEIGHT PIC 99V99.

77 SQUARE-FEET PIC 999Vv999.

The GIVING option and the ROUNDED option may be specified in the
same MULTIPLY statement; the reserved word ROUNDED follows the
name of the variable in which the result is stored. Write a
statement to compute the product of the values of WIDTH and
HEIGHT and store the value in SQUARE-FEET with the value rounded.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.0..0..0.5.0000000.5.0..0000.50...0....5....0..

MULTIPLY WIDTH BY HEIGHT
GIVING SQUARE-FEET ROUNDED.

- ——— -—— - - ——— — ——— -

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....00c..5.0.00000.5.0..0.0..5....00.0..5....0000500..0....5....0..

IDENTIFICATION DIVISION.
PROGRAM-ID. DIMENSION-CALCULATION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE

ASSIGN TO RD-1442,
SELECT AREA-DISK
ASSIGN TO DF-1-999-X.

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE

LABEL RECORDS ARE OMITTED.
01 DIMENSION-RECORD.

02 ITEM-NUMBER PIC X(6).

02 DIMENSION1 PIC 99V9.

02 DIMENSION2 PIC 99V9.

02 FILLER PIC X(68).
FD AREA-DISK

01 AREA-RECORD.
02 ITEMNUMBER PIC X(6).
02 AREA-2 PIC 999V9.
WORKING-STORAGE SECTION.
77 AREA-1 PIC 999VI.
01 WORK-RECORD.
02 ITEM-ID PIC X(6).
02 DIMENSION-1 PIC 99V9.
02 DIMENSION-2 PIC 99V9.
PROCEDURE DIVISION.
BEGIN.
OPEN INPUT-FILE
OUTPUT AREA-DISK.
CALCULATE.

286

IBM-1130

>

AREA-DISK

Label records:
STANDARD

Block size:

10 records

Associated output area:
AREA-RECORD

INPUT-FILE
Associated input area: B
DIMENSION-RECORD

START

BEGIN r‘
l

l
L

CALCULATE ‘_

|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
L

Open
files

A

Read record
from INPUT-
FILE into
WORK-RECORD

End of file
record
?

No

FINISH

Compute product of
DIMENSION-1 and
DIMENSION-2 and
store rounded pro-
duct in AREA-1

Yes I
|
|
|
I
L

Move appropriate
values from
working-storage
to output area

Write record
from output
area into

disk file

~

Figure 68

287

16.

1)

0

0

World-wide Floor Coverings, Ltd. has requested a program to
compute areas for floor coverings to be announced in their annual
catalog. Fror dimension records in a card file area records are
to be created and stored in a file on disk. A system flow chart
and a program flow chart are shown 1in Figure 68 along with
portions of the source program. Complete the program DIMENSION-
CALCULATION by coding the:

1) missing portion of the FD entry for AREA-DISK.
2) remainder of the Procedure Division.

* * *

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....000..5....0....5....0....5....0....5....0..

0

2)

0

BLOCK CONTAINS 10 RECORDS
LABEL RECORDS ARE STANDARD.

1 1 2 2 3 3 4 4 5 5 6 6 7

l...5.¢.0ccee5.00.00ceebeeee0aecabanceleeeebeec0eceadeeealeeeed....0..

288

KREAD INPUT-FILE INTO WORK-RECORD
AT END GO TO FINISH.

MULTIPLY DIMENSION-1 BY DIMENSION-2
GIVING AREA-1 ROUNDED.

MOVE AREA-1 TO AREA-2.

MOVE ITEM-ID TO ITEMNUMBER.

WRITE AREA-RECORD.

GO TO CALCULATE.

FINISH.
CLOSE INPUT-FILE AREA-DISK.
STOP RUN.

17.

0

0

1 1. 2 2 3 3 o 4 5 5 6 6 7

1...5....0....5....0.00.5.0..0....5....0....5....0....5....0....5....0..

WORKING-STORAGE SECTION.

77 HOURS-WORKED PIC 99V9.
77 HOURLY-RATE PIC 99V99.
77 GROSS-PAY PIC 999V99.

MULTIPLY HOURS-WORKED BY HOURLY-RATE
GIVING GROSS-PAY ROUNDED.

-
-

If the result of an arithmetic operation will not f£it into the
designated variable after any specified rounding has been
performed, a size error condition exists. If the values of
HOURS-WORKED and HOURLY-RATE were 95/5 and 11/25 respectively,
the result of the mltiplication operation would be 1074/375.
After the specified rounding the value would be 1074/38. Since
this is still 1larger than the variable GROSS-PAY, a size error
condition would exist. For which of the following products of
HOURS-WORKED and HOURLY-RATE would a size error condition exist?

a. 327926
b. 401/025

c. 1002705

* * *

c
(The size error condition exists whenever truncation on the left is
necessary for storing the result of a calculation.)

289

0

18.

0 1 1 2 2 3 3 4 4 5 5 6 6 7

l...5....0000.05.000.00000500000000.5000000005.00.00005000.00...5....0..

0

MULTIPLY A BY B.

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

0
1..

290

MULTIPLY A BY B
ON SIZE ERROR
GO TO ERROR-ROUTINE.

If a size error condition occurred during execution of the first
statement above, the value of B would be unpredictable. To
preclude an unpredictable value, the SIZE ERROR option may ke
specified as shown in the second statement above. If a size
error condition occurred during execution of this statement, the
value of B would not be altered. Instead, the statement
specified in the SIZE ERROR option would be executed. The
statement in the SIZE ERROR option specifies that the:

a. statements following the paragraph name ERROR-ROUTINE will be
executed only when a size error condition exists.

b. statement following
ON SIZE ERROR
will be executed each time the MULTIPLY statement is
executed.

19. To specify action to be taken when the size of the result of an
arithmetic operation exceeds the size of the variable in which it
is to be stored, the option is included in the statement
specifying the operation.

* * *

SIZE ERROR (The action specified should either correct the error or
indicate to the operator that an error has occurred and terminate
execution.)

20. Write a statement to specify that the values of UNIT-PRICE and
QUANTITY are to be multiplied and the rounded product stored in
TOTAL-PRICE which has the PICTURE clause 999V99. If the product
is equal to or greater than 100000, the statements following the
paragraph name SPECIAL-RATE are to be executed.

* * *

0 1 1 2 2 3 3 4 4 5 5 6 6 7
«5....0....5....0....5....0....5,0..0....5....0....5.0..0....5....0..

MULTIPLY UNIT-PRICE BY QUANTITY
GIVING TOTAL-PRICE ROUNDED
ON SIZE ERROR GO TO SPECIAL-RATE.

21.

variable-name-1 [variable—name—z

ADD .+ .TO variable-name-m.

literal-1 i literal-2
You can now specify multiplication in a COBOL program by using
the MULTIPLY statement. The statement used to specify addition
is the ADD statement of the form shown above. All the values of
the variables (or literals) appearing before the reserved word TO
are added to the value of variable-m.

0 0 1 1 2 2 3 3 L) 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0..0.5....0....5....0....5....0..

ADD SUBTOTAL TO TOTAL.
When the statement above is executed, the:
a. value of SUBTOTAL will be added to the value of TOTAL.

b. sum of SUBTOTAL and TOTAL will be stored in TOTAL.

Both

—— e o .

22.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

ADD TOTAL1l TOTAL2 100 TO TOTAL.

When the statement above is executed, the values of TOTAL1l and
TOTAL2 and the value 100 will be added to the value of TOTAL; the
sum of the four will be stored in TOTAL. Write a statement to
compute the sur of the values of DEPT1, DEPT2, DEPT3, and YEARLY
and to store this sum in YEARLY.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0.0...5....0..0.5.0..0.0..5....0....5....0....5....0....5....0..

ADD DEPT1 DEPT2 DEPT3 TO YEARLY.

291

23. The GIVING option can be included in the ADD statement. The
effect is the same as for the MULTIPLY statement. When the
GIVING option is used in an ADD statement, the reserved word TO
is omitted. Which of the following statements correctly
specifies that +the sum of FICA, STATETAX, FEDTAX, and INSURANCE
is to be computed and stored in DEDUCTIONS?

Ad.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0.0..5.00.0000.50000000005.0000.0..5.0..0.0..500..0....5....0..

ADD FICA STATETAX FEDTAX INSURANCE
TO DEDUCTIONS.

b.

o 0o 1 1 2 2 3 3 4 4 5 5 6 & 7
DU P S-S S-SR S-S, SN SR S-S S S S

ADD FICA STATETAX FEDTAX TO INSURANCE
GIVING DEDUCTIONS.

C.

0 o 1 1 2 2 3 3 4 4 5 5 6 6 7
1eee5eeeeleeeebeceeleeeaBeeeeOeucaabeaeal0oneaSecaulevaaSenaalonacbennalans

ADD FICA STATETAX FEDTAX INSURANCE
GIVING DEDUCTIONS.

24. The ROUNDED and SIZE ERROR options may also be included in an ADD
statement. You might assume that the:

a. ROUNDED option would cause the sum to be rounded to the
number of decimal places specified for the variable in which
it is to be stored.

b. SIZE ERROR option would specify the action to be taken if the
sum exceeds the size specified for the variable in which it
is to be stored.

* * *

292

25.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

WORKING-STORAGE SECTION.
77 TOTAL PIC 999V99.

77 TOTAL-1 PIC 999v99.

77 TOTAL-2 PIC 999V99.

Write a statement specifying that the wvalues of TOTAL-1 and
TOTAL-2 are to be added and their sum is to be rounded to the
nearest hundredth and stored in TOTAL. If the sum is equal to or
greater than 1000, the value of STORE-NUMBER is to be displayed
on the console typewriter.

* * *

0 0 1 1 2 2 3 3) 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

ADD TOTAL-1 TOTAL-2 GIVING TOTAL
ROUNDED ON SIZE ERROR
DISPLAY STORE-NUMBER
UPON CONSOLE.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5.00000000500000000.5.00.0000.5.00.0000.5000.00.0..5....0..

IDENTIFICATION DIVISION.
PROGRAM-ID. MASTER-CUSTOMER-DISK.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CCNTROL.
SELECT CUSTOMER-FILE
ASSIGN TO RD-1442.
SELECT CUSTOMER-DISK
ASSIGN TO DF-2-100.
DATA DIVISION.
FILE SECTION.
FD CUSTOMER-FILE
LABEL RECORDS ARE OMITTED.
01 CUSTOMER-RECORD.
02 CUSTOMER-NUMBER PIC X(6).
02 NAME PIC X(20).
02 HOME-ADDRESS PIC X(30).
02 YEAR-OPENED PIC XX.
02 MAXIMUM-BILL PIC X(6).
02 FILLER PIC X(16).

FD CUSTOMER-DISK
01 MASTER-RECORD.
02 NAME PIC X(20).
02 CUSTOMER-NUMBER PIC X(6).
02 HOME-ADDRESS PIC (X30).
02 YEAR-OPENED PIC XX.
02 MAXIMUM-CREDIT PIC 9(6).
02 MAXIMUM-BILL PIC 9(6).
02 PRESENT-BILL PIC 9(6).
02 PAYCODE PIC X.
WORKING-STORAGE SECTION.
77 COUNTER PIC 9(6) VALUE ZEROS.

293

CUSTOMER-FILE
Associated input area:
CUSTOMER-RECORD

BEGIN

PROCESSING

IBM-1130

Move ZEROS to
MAXIMUM-CREDIT
PRESENT-BILL, and

PAYCODE

Read record
from
CUSTOMER-
FILE

End of file
record?

Add 1 to
COUNTER

1

Move appropriate
values to
output area

Write record
from output
area into

disk file

<>

CUSTOMER-DISK
Associated output area:
MASTER-RECORD
Label records:
STANDARD

Block size:

6 records

FINISH

,__

Display
COUNTER
on console
typewriter

|
|
|
|
|
|
|
|

(T

Figure 69

26. As a result of recent expansion of +the line of products at
Universal Enterprises, the number of customers has greatly
increased. Since customer master records are stored in punched
cards, the increase in the number of customers has created a
problem for the firm's data processing center, in terms of both
storage and processing time. To .alleviate the situation the
master records are to be stored on disk. The program MASTER-
CUSTOMER-DISK is to transfer the records from cards to disk. A
syster flow chart and a program flow chart are included in Figure
69. A portion of the program that has already been coded is also
included. You are to complete this program to create a master
file on disk by coding the:

1) missing portion of the FD entry for CUSTOMER-DISK.
2) Procedure Division.

(The variable COUNTER is used to count the number of customer
records.)

1)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0.0..500e00ceebeeeelecaedeccelencabeceeleccebeneelacee5ee..0..

BLOCK CONTAINS 6 RECORDS
LABEL RECORDS ARE STANDARD.

295

2)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5.00e0000.5.000000005000e0000050000000e50eee000eebeeee00a..5....0.,

PROCEDURE DIVISION.
BEGIN.
OPEN INPUT CUSTOMER-FILE
OUTPUT CUSTOMER-DISK.
MOVE ZEROS TO MAXIMUM-CREDIT.
MOVE ZEROS TO PRESENT-BILL.
MOVE ZERO TO PAYCODE.
PROCESSING.
READ CUSTOMER-FILE AT END
GO TO FINISH.
ADD 1 TO COUNTER. (35)
MOVE NAME OF CUSTOMER-RECORD
TO NAME OF MASTER-RECORD.
MOVE CUSTOMER-NUMBER OF CUSTOMER-RECORD
TO CUSTOMER-NUMBER OF MASTER-RECORD.
MOVE HOME-ADDRESS OF CUSTOMER-RECORD
TO HOME-ADDRESS OF MASTER-RECORD.
MOVE' YEAR-OPENED OF CUSTOMER-RECORD
TO YEAR-OPENED OF MASTER~RECORD.
MOVE MAXIMUM-BILL OF CUSTOMER-RECORD
TO MAXIMUM-BILL OF MASTER-RECORD.
WRITE MASTER-RECORD.
GO TO PROCESSING.
FINISH.
CLOSE CUSTOMER-FILE
CUSTOMER-DISK.
DISPLAY COUNTER UPON CONSOLE.
STOP RUN.

(Moving zeros, spaces, or any other constant to certain variables at
the beginning of a program is referred to as 1initializing the
variables. If your solution appears different and you are not sure
of its correctness, consult your advisor.)

SUMMARY:

You have 3just learned to code MULTIPLY and ADD statements including
the:

GIVING option to specify the variable in which the computed
result will be stored.

ROUNDED option to specify that +the computed result will ke
rounded to the nearest digit in the position corresponding to the
rightmost position in the picture for the variable in which the
result is to be stored.

SIZE ERROR option to specify the action to be taken when the
computed result exceeds the size of the variable in which the
result is to be stored.

END OF LESSON 14

296

LESSON 15

297

LESSON 15 - EDITING NUMERIC DATA

INTRODUCT ION

Specification of arrangement of data in a printed report is an
important aspect of COBOL programming. In previous lessons you have
learned to specify vertical and horizontal spacing in a printed report.
In this lesson you will learn several ways to specify how individual
data items are to appear. You will learn to specify that a decimal
point, dollar sign, or comma is to be printed in the appropriate place
in a data item. This is commonly called editing variables for reports.

Specific language features you will learn in this lesson are:
Picture character .(decimal point)
Picture character $(dollar sign)

Picture character , (comma)

This lesson will require approximately three quarters of an hour.

298

You know that a V appearing in a picture specifies that the value
of the associated variable will have an assumed decimal point. A
point appearing in the picture specifies that the value of the
associated variable will have an actual decimal point. You would
expect that a point appearing in a picture would cause a:

a. decimal point to be printed with the data item.

b. separate character position to be reserved in the value.

* * *

2.

0 0
1...5..

Any variable whose picture contains 9's and a V or just 9's may
be used in calculations. To print numeric values, however, vyou
would want an actual decimal point to be placed in the
appropriate position in the value. A variable PRICE has the
picture 99V99. In order to print the value of PRICE, you would
move it to an edited variable with a picture 99.99. Another
variable DOZENS has the picture 999V9. You would move DOZENS to
an edited variable with the picture 999.9 if you wished to:

a. have calculations performed on the value.

b. 1include the value of DOZENS in a printed report.

——— e ———— e s o - -—— - ——

1 1 2 2 3 3 4 4 5 5 6 6 7
eef0cceebeieelecaebennelaceabeenelinecdeeeelecaedeaeelacaeden.0.

MOVE numeric-variable
TC edited-variable

numeric variable 9Vv9

edited variable 99.99

A value moved from a numeric variable (9's or 9's and a V) to an
edited variable containing a . 1is aligned with the assumed
decimal point being placed in the actual decimal point position.
Any extra 9 positions on either end of the edited variable are
filled, or padded, with zeros. Assume the numeric variable above
is RATE with a value of 52 and the edited variable is PAY-SCALE.
The value of PAY-SCALE after the MOVE statement would be:

a. 5.2

b. 05.2

c. 05.20

d. 5.20

- - -

299

4.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....00.0.5....000005..0.0000.5000000005000.0000.50.0.0000.5....0..

02 PAYMENT PIC 999V9999.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0.2..5....0....5....0....5....0....5....0..

02 AMOUNT PIC 999.99.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0c00e5000000cu500e000eeS5neee0ieeed.e..0..

MOVE PAYMENT TO AMOUNT.

The actual point (.) is used to edit numeric data for printed
reports while the assumed point (V) 1is used in data for
calculations. Sometimes it is not necessary to print as many
digit positions as are used in calculations. Assume that the
value of PAYMENT is 2734201. When the MOVE statement is
executed, the V is aligned with the . and the three digit
positions preceding the point are moved intact, but only the
first two digits following the point are moved since AMOUNT has
only room for two digits. The last two digits are truncated, or
lost, and the value of AMOUNT is:

a. 273.4201

b. 273.42

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....0....5....0000.5....0....5....0..0.5.00.000025000.0....5....0..

02 RATE PIC 999.99.
02 AVERAGE PIC 999.9.

A point is assumed to the right of the rightmost digit of any
numeric literal or data item that contains no actual point or no
assumed point specified by a V in a picture. Every numeric
literal or numeric data item, thefore, contains either an assumed
or an actual point. The point, whether assuwmed or actual, is
always aligned with any actual point specified in the picture for
a receiving variable. If the value 24 were moved to RATE and the
value of RATE were then printed, the value would be printed. If
the value 73 was moved to AVERAGE and the value of AVERAGE was
then printed, the value would be printed.

* * *

———— —— o —— e -_— - —— o - -

300

6.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0.0..5....0.0..5....0....5....0..

02 RATE PIC 99.99.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5..4.0....5....0....5....0.00..5....0....5....0..

02 PER-CENT PIC XXXX.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.2..0....5..0.0.000.5000.000005.0..0.0..5....0..

MOVE RATE TO PER-CENT.

No decimal point alignment takes place when an edited variable is
moved to an alphanumeric (X) variable. The MOVE is accomplished
from 1left to right, one character at a time. After the value
5025 is moved to RATE and the MOVE statement above is executed,
the value of PER-CENT is:

a. 50.25
b. 5025

c. 0.25 (The 1leftmost character is truncated because RATE has
five positions and PER-CENT has only four)

* * *

None of these
(The rightmost character is truncated giving 50.2 as shown below.

sending variable
RATE 50.25

12314
receiving variable
PER-CENT XXXX

The rightmost digit of the sending variable is truncated since there
is no room in the receiving variable. The decimal point is moved the
same as any other character and must be counted in the length of the
receiving field).

301

0

7.

The

JUSTIFIED clause

JUSTIFIED clause can be specified in +the definition of an

alphanumeric elementary variable to cause values of the variable to

be

aligned on the right end of the variable rather than on the left.
JUSTIFIED

RIGHT
JUST

Normally, the rule for positioning data within a receiving
alphanumeric or alphabetic data item is:

The data 1is aligned in the receiving field beginning at the
leftmost character position within the receiving field. Unus ed
character positions to the right are filled with spaces. 1If
truncation occurs, it will be at the right.

The JUSTIFIED clause affects the positioning of data in the
receiving field as follows:

When the receiving data item 1is described with the JUSTIFIED
clause and the data item sent is larger than the receiving data
item, the leftwost characters are truncated.

When the receiving data item is described with the JUSTIFIED
clause and is larger than the data item sent, the data is aligned
at the rightrmost character position in the data item. Unused
character positions to the left are filled with spaces.

The JUSTIFIED clause may only be specified for elementary items.

This clause must not be specified for level-88 data items.

0

1 1 2 2 3 3) b 5 5 6 6 7

1...5....0....5....0....5....0....5....0.0..5....00...5....0....5....0..

02 LAST-NAME PICTURE X(30) JUSTIFIED RIGHT.

e e e e e . . S —— ———————————— _—— ————— "~ — — —— - — i = — —————— - ——— — T — —_ — —— ——— —

0

8.

0

The SYNCHRONIZED clause specifies the alignment of an elementary
item on one of the proper boundaries in core storage.

The SYNCHRONIZED clause is used to ensure efficiency when
performing arithmetic operations on an item.

SYNCHRONI ZED LEFT
SYNC RIGHT

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5..44000025¢0¢.000.05.0..0.00.5....0.0...5....0....5....0..

01 DISK-FILE.
02 DISK-ID PIC X(5).
02 DISK-NAME PIC X(29).
02 ON-HAND PIC S9(6) USAGE COMP SYNC LEFT.
02 ON-ORDER PIC S9(6) USAGE COMP SYNC LEFT.

The structure of 1130 COBOL is such that boundary alignment is
inconsequential; thus the clause is of no functional value and
is, in effect, treated as comments.

—— - - ———— o e o o > —— —— o~ -_ -

302

9.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5..0.00...5....0....5.00..0.00.5.0...0....5....0..

77 FACTOR1 PIC 9V99.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0.0..5.0..00...5.0..0.00.5.0..0.00.500..0....5....0..

77 FACTOR2 PIC 9.99.

Which of the following is a correct interpretation of the data
description entries above?

a. If 123 were moved to FACTOR1l, the value of FACTOR1l would be
1.23.

b. If 123 were moved to FACTOR2, the value of FACTOR2 would ke
123.

c. The value of FACTOR1 could be moved to a variable with the
picture XXX without truncation occurring.

d. The value of FACTOR2 could be moved to a variable with the
picture XXXX without the data item's being padded.

* * *
c,d
10.
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....00...5.20.0....5....0....5....0....5....0....5....0..
77 MULTIPLICAND PIC 9V9.
62 MULTIPLIER PIC 99.99.
MOVE MULTIPLICAND TO MULTIPLIER.

When an item with an assumed decimal point is moved to a variable
with a picture that specifies an actual decimal point, the item
is placed in the variable with the assumed and actual points
aligned. Padding with zeros or truncation occurs to the left and
right as necessary. The value of MULTIPLICAND is 75. After
execution of the MOVE statement the value of MULTIPLIER will ke

303

11.

r 1
| OUTPUT-RECORD |
| |
| ITEM-NUMBER COST PERCENT-SECURED |
| (6-digit integer) (6-digit number with (5-digit number with |
| two decimal places three decimal places |
| and an actual point) and an assumed point) |
L J

0
1..

0
1..

304

Write the record description entry for the record variable
OUTPUT-RECORD illustrated above.

* * *

0 1 1 2 2 3 3 4 4 5 5 6 6 7
«5....0....5....0....5....0....5....0....5....0....5....0....5....0..

01 OUTPUT-RECORD.
02 ITEM-NUMBER PIC 9(6).
02 COST PIC 9999.99.
02 PERCENT-SECURED PIC 99V999.

12.

0 1 i 2 2 3 3 4 4 5 5 6 6 7
«5....0..0.500..0000.50004000..5.00.0000:5000.000005000.000.050...0..

02 AMOUNT PIC $999.99.

An actual decimal point is usually specified for monetary values
that are to be printed. A dollar sign may also be specified. As
a result, a dollar sign will be inserted into the printed value
in the position corresponding to its position in the picture. If
77.25 is moved to AMOUNT, the value printed will be $§077.25. If
550 is moved to AMOUNT, the value printed will be

13. Write the picture for the variable TOTAL to specify that values
of TOTAL are to be printed as six-digit numbers with two decimal
places and an actual decimal point and that the values are to be
preceded by a dollar sign.

* * *

$9999.99
(This could also be written $9(4).99.)

14.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5.0..0.00.5.0..0.00.5....00...5....0..

02 AMOUNT PIC $999.99.

Like the actual decimal point, the § becomes a part of the value
of the variable and therefore must be counted in the 1length of
the wvalue. To which of the following variables could the value
of AMOUNT be moved without truncation occurring?

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5 .¢.0000.5%0..000005.00.000005.0000000.5.00.0000.5000.00.0..5....0..

01 PERMANENT-RECORD.
02 VARIABLE-1 PIC X(5).
02 VARIABLE-2 PIC X(6).
02 VARIABLE-3 PIC X(7).

* * *
VARIABLE-3

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5%....0....5....0....5....0....5....0....5....0....5.0..0....5....0..

02 AMOUNT PIC $999.99.

When AMOUNT 1is specified as shown above and the value of AMOUNT has
fewer than three digits to the left of the point, you know that the
value will be padded with zeros to the left and the dollar sign will
be inserted to the left of the zeros. It is possible to specify that
the dollar sign will be inserted immediately to the left of the first
nonzero digit to the left of the point.

305

0

15.

0 1

1 2 2 3 3 4 4 5 S 6 6 7

1...5....0....5....00..05.00.0000.500.000000.50000000005000.000..5....0..

02 AMOUNT PIC $$5$.99.

r 1

| Value moved to AMOUNT Printed value of AMOUNT |

| I

| 7721 $7.21 |

i 012/3 $12.30 |

| 100/ $100.00 f

| 2319/ $319.00 |

| /825 $.82 |

| 00705 $.05 |

L J
The PICTURE clause above specifies that a dollar sign will be
inserted immediately to the 1left of the first nonzero digit

preceding the decimal point. The table akove shows the effect of
moving values to AMOUNT. Refer to the table to decide which of

the following statements apply to the use of a string of dollar
signs.
a. The position of the printed dollar sign "floats"™ through the

a,b,c
(Seven
AMOUNT.

positions represented by the dollar sign in the picture.
Leading zeros to the left of the point are suppressed.
The leftmostdollar sign does not represent a digit position.

Printing the value of AMOUNT would require reserving six
character positions on the printer.

* * *

character positions would be required for printing the value
The maximum required space must be reserved.)

-——— - - - - -——— ——— e o - e s o o o o e O o

306

16.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5.0..0....5....00...500..0....5....0..

02 UNIT-PRICE PIC $$$.99.

Give the printed value when each of the following values is moved
to UNIT-PRICE and then printed.

1) /25
2) 29/95
3) 1719
4) /05
5) 119/50
6) 00/00
* * *
1) $.25
2) $29.95
3) $1.19
W) $.05
5) $19.50
6) $.00
17.
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7

1eee52eee0eeeeBeeeal0eeaeSeaealeaaabeaealenaabeeceleuaabeaeu00naa5....0..
02 COST PIC $59.99.
02 PRICE PIC $$99.99.

The floating dollar sign need not be placed in every position to
the left of the point. It must, however, begin in the 1leftmost
position and occur in consecutive digit positions. Moving 05 to
COST which is defined above will result in $0.05, since the 9 in
the picture indicates that the position will contain a digit.
Give the printed value after each of the following values has
been moved to PRICE and then printed.

1) 725
2) /0
3) 119/
4) 1/98
* * *
1) $00.25
2) $00.00

3) $119.00
4) $01.98

307

18.

0 0

1 1 2 2 3 3 4 4 5 5 6 6 7

i...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

1)

3)
u)
5)

02 BALANCE PIC $5$$.99.
02 BALANCE PIC $$$5.%5.
02 AMOUNT-DUE PIC $$$.55.

The dollar sign may be specified in all positions of the picture
of a variable. If dollar signs are present to the right of the
point, the value of the data item is not printed if it is equal
to zero. Any other value is printed just as if no dollar sign
were present +to the right of the point. Give the printed value
of AMOUNT-DUE if the value moved to is:

1) zero

2) 79r/28

3) /03

nothing
$79.28
$.03

- ——— -

Match the data item with the picture(s) that would cause it to be
printed in the form shown.

1) $§5.99 a. $01.23

2) $99.99 b. 00.5

3) $$9.99 c. $10.25

4) 99.9 d. 35.25

5) $5%.3%% e. $0.70
f. 123.25
g. nothing

* * *

c,d

a,c

c,e

b

c,d,g

308

20.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0.0005.00.00000500000000e5000e00eee50eee00eeebenee0....5....0..

02 FUND PIC 999,999.

Large numbers are easier to read if commas are used in the
appropriate positions. It is possible to specify that a comma is
to be 1inserted in a value by placing a comma in the agpropriate
position in the picture. The picture of FUND above specifies
that a comma 1is to appear in the printed value in the position
corresponding to the position of the comma in the picture. It
the value of FUND is 876003, the printed value will appear as

0 0 1 1 2 2 3 3) 4 5 5 6 6 7
1...5....00...5....0....5....0....5.0..0.0..5.0..0.0...5....0....5....0..

01 PRINT-RECORD.
02 ITEMNUMBER PIC 9(5).
02 QUANTITY PIC 99,999.
02 GROSS PIC $5$9,999.99.
02 COMMISSION PIC 99.99

Show how the printed values of the variables in the record
description entry above would appear if the following values had
been moved to the variables.

Value moved Printed value

Variable to variable of variable
ITEMNUMBER 77342
QUANTITY 8995
GROSS 55624793
COMMISSION 10700
* * *

Printed value
of variable

77342
08,995
$55,624.93
10.00

309

0

22.

0 1 1 2 2 3 3 4) 5 5 6 6 7

l...5....0....5....0.00.5.0..0..0.5.0000000.5000.00005000.000..5....0..,

0

02 TOTAL-PRICE PIC $$$,$5%.99.

A comma may be included in a string of dollar signs. The comma
will be printed only if at least one digit is printed preceding
the comma position. If the value 1772/20 were moved to TOTAL-
PRICE and printed, it would appear @S ..cececees = If the value
204/ were moved to TOTAL-PRICE and printed, it would be printed

AS ceencaeca .
* * *
$1,772.20
$204.00
23.
L] 1
| STATISTICS-RECORD |
| |
| SOCIAL- PERCENTAGE GROSS CONTRIBUTION |
| SECURITY- |
| NUMBER Value Range: Value Range: Value Range: |
| (9 char) 00.00-85.00 $.00-5900,000.00 $0.00-$50.00 |
L J
Write the record description entry for STATISTICS-RECORD. Account
for the editing of all variables as illustrated in the diagram of
the record above.
* * *
0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0.00.5.00.000005000000eb500e00eceb0ee0eceebeeee0aa..5....0..

310

-

01 STATISTICS-RECORD.
02 SOCIAL-SECURITY-NUMBER PIC X(9).
02 PERCENTAGE PIC 99.99.
02 GROSS PIC $5$5%,54$5.99.
02 CONTRIBUTION PIC $39.99.

(The picture for CONTRIBUTION has a permanent digit position
preceding the decimral point to allow for printing as shown in the
diagram.) ’

24. The contents of a variable whose picture consists of either all
9's or 9's and a V is considered numeric data. The contents of a
variable whose picture consists of 9's and a decimal point, a
cormma, and/or one or more dollar signs 1is numeric-edited data.
Match the kind of data that the variable will contain with each
data description entry.

1)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....00005....0....5....0..

02 QUOTA PIC 999.99.
2)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0..0.5..0.0....5....0..

02 CUSTOMER-NUMBER PIC 9(6).
3)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.0..0.0..5.0..0....5.000.0000025000.0....5....0..

02 TOTAL PIC 999v99.
1)

0 0 1 1 2 2 3 3 L 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....9....0....5....0....5....0..

02 AMOUNT PIC $$99.99.
5)

0 0 1 1 2 2 3 3 4 u 5 5 6 6 7
1...5....000..5.0..0000e5.0..0....5.00.000..5.000.0000.5.0...0....5....0..

02 QUANTITY PIC 999,999.
a. numeric data

b. numeric-edited data

* * *

311

25. Match each picture character with the description of the picture
in which it can appear.

1) Picture for variable a. 9
containing numeric
data b. $
2) Picture for variable c. comma
containing numeric-
edited data d. decimal point
e. V
* * *

1) a,e
2) a,b,c,d

312

26.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5c0.00c0c50cee0eceebieeelfeacabeeecleceedeecelecea5.ea000e5....0..

02 TOTAL 999.99.

02 PERCENT 99V99.

02 OQUANTITY 9(5).

02 AMOUNT PIC $$999.
Variables containing numeric-edited data cannot be specified in
calculations, although they may be specified in the GIVING
option. According to the data description entries above, which
of the following statements is correct?

a.

0 0 1 1 2 2 3 3 u 4 5 5 6 6 7
1...5....0....5%. 0000005000050 ee00eeebeeee0eceebeeea0acaa5....0..

ADD QUANTITY TO TOTAL.
b.

0 0 1 1 2 2 3 3 4 u 5 5 6 6 7
1...5....0....5....0000.5000000000500000.00.5.0..00005000.000.05....0..

MULTIPLY PERCENT BY QUANTITY
GIVING TOTAL.

C.

¢ 0 1 1 2 2 3 3 4 s 5 5 6 6 7
U SO SO SO, SO S, SO SUN) DU SN, SIS | ST S |

MULTIPLY PERCENT BY AMOUNT.
d.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0000.5.00.000005.0..0000.5.00.000005000.0....5....0..

ADD 10 QUANTITY GIVING AMOUNT.

* * *

SUMMARY:

You have just 1learned how to incorporate the decimal point, dollar
sign, and comma into printed variable output. By means of the editing
process just presented, these symbols are printed in the appropriate
places in data items, according to your specifications.

END OF LESSON 15

313

THIS PAGE INTENTIONALLY LEFT BLANK

314

LESSON 16

315

LESSON 16 - CONDITIONAL BRANCHING

INTRODUCT ION

Tests and branching decisions based on the results of these tests are
a necessary part of any data-processing procedures. The AT END option
of the READ statement and the AT-END-OF-PAGE option of the WRITE
statement are two ways of specifying branching on the basis of a test,
or conditional branching, in a COBOL program. Another important feature
cf COBOL used to specify conditional branching is the IF statement,
which you will learn to code in this lesson.

Specific lanquage features you will learn in this lesson are:

IF statement
EXAMINE statement

This lesson will require approximately three quarters of an hour.

316

1.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0....5....0..0.5.0..0..0.5.0..0.00.5.0..0.0.0.5....0....5....0..

IF CARD-NUNBER
LESS THAN MASTER-NUMBER
ADD 1 TO COUNTER.

The statement above is an example of a COBOL IF statement. An IF
statement causes a condition to be evaluated, or tested, and an
action to be taken based on whether the result of the test is
true or false. You might expect that the condition in the IF
statement above is:

a. CARD-NUMBER LESS THAN MASTER-NUMBER

b. ADD 1 TO COUNTER

0 0 i 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

IF TOTAL ECUAL TO 100 GO TO MATCH.
The condition in the statement above iS ..cece.. .«

* * *
TOTAL EQUAL TO 100
3. The examples in the previous frames show that a condition can be:

a. a statement of a relationship between two variables or
between a variable and a numeric literal.

b. an instruction to the computer.

317

4. The phrases LESS THAN, EQUAL TO, and GREATER THAN are used in
conditions in a COBOL statement to express a relationship between
two variables or between a variable and a numeric literal. Write
conditions to express the following relationships:

a. the value of TEST-1 is greater than 10.

b. the value of EMPLOYEE-NUMBER is equal to the value of WORK-
RECORD-NUMBER.

* * *

a. TEST-1 GREATER THAN 10
b. EMPLOYEE-NUMBER EQUAL TO
WORK-RECORD-NUMBER

(The optional word IS may precede any of the three phrases given
above.)

5. The appearance of a condition in an IF statement causes the
condition to be evaluated. The result will be either true or
false. Give the result (true or false) of the evaluation of the
conditions in the following IF statements when CARD-NUMBER and
MASTER-NUMBER have the values 250 and 500, respectively.

1)

C 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....000..5.0..000..5....0000.5....0....5....0....5....0.0..5....0..

IF CARD-NUMBER
LESS THAN MASTER-NUMBER
ADD 1 TO COUNTER.
2)

C 0 1 1 2 2 3 3 4 4 5) 6 6 7
1...5.00.0000.5000.000025.0000000.5.00.000005000.0000.5....0....5....0..

IF MASTER-NUMBER EQUAL TO 1000
GO TO SECOND-ROUTINE.

* * *

1) true
2) false

6. Nested IF statements are not permitted in 1130 COBOL.

0 0 1 1 2 2 3 3 b 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

IF SERVICE CODE EQUAL TO 27
ADD 5.00 TO AMOUNT,

IF CALL TIME LESS THAN MINIMUM
MOVE °'BASE RATE' TO LEGEND.

Figure 70

318

Figure 70 above illustrates the IF statement. BAs a result of the
above coding:

a. if SERVICE CODE is equal to 27,5.00 will be added to AMOUNT
b. a compile time error will occur
% * *

b (Nested IF statements are invalid).

- —— - s —— - — ————— — i T o e it " it e i At e o e o —

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5.02.0....5.0..0....5.2..0....5....0..

IF condition statement-1.

A general form of the IF statement is shown above. If the result
of the evaluation of the condition is true, statement-1 is
executed. Then the sentence immediately following the IF
statement is executed (unless statement-1 is a GO TO statement.)
If the result is false, the sentence immediately following the IF
statement is executed.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

IF SALES GREATER THAN 100
MOVE 'ABOVE' TO MEMO.
ADD SALES TO YEAR-TO-DATE SALES.

When the IF statement above is executed, if SALES is equal to:

a. 50, "ABOVE' will be moved to MEMO and the value of SALES will
be added to the value of YEAR-TO-DATE SALES

b. 150, *ABOVE' will be moved to MEMO and the ADD statement will
not be executed.

* * *

Neither (If SALES is greater than 100, 'ABOVE®' will be moved to MEMO
and then the ADD statement will be executed. If SALES 1is 100 or
less, the MOVE statement will not be executed; the ADD statement will
be the next statement executed.)

319

8. Write a statement to specify that if SCORE is greater than 89, u4
will be added to GRADE-POINT.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5.0..0....5....00...5....0..

IF SCORE GREATER THAN 89
ADD 4 TO GRADE-POINT.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....000..5....0....5....0....5....0....5....0....5....0..

IF SALES GREATER THAN 100
MOVE *ABOVE' TO MEMO
ADD SALES TO YEAR-TO-DATE SALES.

More than one statement may be included in an IF statement. When the
condition in the statement above is true, the MOVE and ADD statements
will be executed. When the condition is false, neither the MOVE nor
the ADD statement will be executed, and control will be transferred
to the next sentence; that is, to the statement following the next
period.

The IF statement of the form you have been using can ke used to
specify an additional step, an action to be taken, when a certain
condition exists. Another situation can also be provided for by an
IF statement.

320

9.

0 0 1

1 2 2 3 3 4 4 5 5 6 6 7

le..5....0....59....0....5....0....5.2.00.0..5....0.0.05.0..0.0..5....0..

IF TOTAL1 EQUAL TO TOTAL2

ADD 1 TO NEW
ELSE ADD 1 TO COUNTER.

READ NEW-FILE.

Add 1 to
COUNTER

Add 1to
NEW

TOTAL1=TOTAL2

You

Read
NEW-FILE

Figure 71

may wish to specify two different actions to be taken based

on the two results of a test as illustrated above. The flow chart shows

the action

specified by the IF statement in which the ELSE option has

been specified. The flow chart and the statement show that:

d.

if the values of TOTAL1l and TOTAL2 are equal, 1 will be added
to the value of NEW and the sentence following the IF
statement will be executed.

if the values of TOTALl and TOTAL2 are not equal, 1 will ke
added to the value of COUNTER and the sentence following the
IF statement will be executed.

the statement specified in the ELSE option will be executed
only when the condition is false.

* * *

these

321

10. Identify the IF statement(s) below that specifies the following:
If the value of SCORE is less than 50, *'FAIL' is to be moved to
GRADE. If the value of SCORE is equal to or greater than 50,
'PASS' is to be moved to GRADE. In either case, the next step is
to transfer contrcl to the paragraph MAIN-ROUTINE.

de

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5.0..0.00.5.2..0.0..5....0....5....0....5....0....5....0..

IF SCORE GREATER THAN 50

MOVE ‘FAIL' TO GRADE

ELSE MOVE 'PASS' TO GRADE.
GO TO MAIN-ROUTINE.

b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....000c25.00.00005.00.0000.5000.0000.5000.000005.0..0....5....0..

IF SCORE LESS THAN 50

MOVE 'FAIL®' TO GRADE

ELSE MOVE 'PASS' TO GRADE.
GO TO MAIN-ROUTINE.

C.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0002.5.0..0.0...5....0....5....0....5....0....5....0..

IF SCORE LESS THAN 50
MOVE 'FAIL®' TO GRADE.
MOVE 'PASS' TO GRADE.
GO TO MAIN-ROUTINE.

11. The ELSE option of an IF statement is:
a. executed only if the condition is false.
b. not executed if the condition is true.

* * *

322

12. QUANTITY, MINIMUM, and DISCOUNT are numeric variables. Write a
statement to specify that if QUANTITY is equal to MINIMUM, 10 is
to be moved to DISCOUNT and that if QUANTITY is not equal to
MINIMUM, 10 is to be added to DISCOUNT.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5..4.0000e5.0000000e500000ceebeeea0ee50eea00e0.5.00.0....5....0..

IF QUANTITY EQUAL TO MINIMUM
MOVE 10 TO DISCOUNT
ELSE ADD 10 TO DISCOUNT.

- e —— —— i ——————— ——— — o —— — —— o — — T — Y — —— —— - - —

13.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5.0..00.0.5....0000.50...0....5....0..

IF ACCOUNT-NUMBER LESS THAN 1000
ADD 1 TO COUNTER
ELSE GO TO EXCESS.

READ MASTER FILE.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.0..0....5....0....5....0....5....0....5....0..

IF PROFIT EQUAL TO 1 GO TO FIRST-RUN
ELSE GO TO SECONDARY.
TOTAL-ROUTINE.
MOVE ZEROS TO TOTAL-1.

If a GO TO statement is included in an IF statement either
following the condition (as statement-1) or in the ELSE option,
or in both places, the sentence immediately following the IF
statement may not be executed after the IF statement. When the
first IF statement above is executed, execution of the READ
statement will follow execution of the ADD statement if ACCOUNT-
NUMBER 1is less than 1000. If ACCOUNT-NUMBER is not less than
1000, control will transfer to a routine called EXCESS and the
READ statement will not be executed. The second IF statement
above specifies that execution of the MOVE statement will
immediately follow execution of the IF statement if PROFIT is:

a. not equal to 1.
b. equal to 1.

* * *

Neither (Execution of the MOVE statement can never immediately
follow execution of this IF statement because both the statement
following the condition and the statement in the ELSE option
transfer control to another point in the program.)

—— - - -———— ———— ———— -

323

i4.

324

TEST

l

Initialize
COUNTER
to zeros

False

1

Multiply TOTAL
by PERCENT
and store in
EARNINGS

!

Add EARNINGS
to TOTAL

!

Add 1 to
COUNTER

True
PRINT-ROUTINE

COUNTER =20

Figure 72

An IF statement can be used to control the number of times a
portion of a program is to be executed. The flow chart above
shows a portion of a program that is to be executed twenty times
to compute the total on deposit after five years when interest is
compounded quarterly. Code the sequence shown in the flow chart,
using an IF statement to control the number of times the portion
will be repeated.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

MOVE ZEROS TO COUNTER.
TEST.

MULTIPLY TOTAL BY PERCENT
GIVING EARNINGS.

ADD EARNINGS TO TOTAL.

ADD 1 TO COUNTER.

IF COUNTER EQUAL TO 20
GO TO PRINT-ROUTINE
ELSE GO TO TEST.

(The last two lines could also be

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....000025400.0000.5.00.0000.5000.0000.5000.00...5....0..,

GO TO PRINT-ROUTINE.
GO TO TEST.

In any IF sentence that does not contain an ELSE option, a false
condition will cause a control to be transferred to the next
sentence.

—_——————— —— ——— e e e o o > . i o e s e e e e B

15. A condition causes the object program to select between alternate
paths of control depending on the truth value of a test.
Conditions are used in IF statements. See CONDITIONS chapter in
your Language Specifications Manual.

NUMERIC
IF identifier-1 IS [NOT] GO TO identifier-2.
ALPHABETIC

A test condition is an expression that, taken as a whole, may be
either true or false, depending on the circumstances existing
when the expression is evaluated.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....00.0.5.0..0000.5.00.0.00.5.0.00....5....0....5....0....5....0..

IF ITEM-NO IS NOT NUMERIC GO TO ALPHA.
ADD 1 TO COUNT.

In the above example, if the contents of ITEM-NO are not numeric
the program will branch to a paragraph named ALPHA. If the
contents of ITEM-NO are numeric, the next sequential instruction
will be executed. In this case, a 1 will be added to COUNT.

e e i e = e . e e S e e T i o i i S - - - —— ——

325

0

16.

0 1 1 2 2 3 3 4 4 5 5 6 6

7

1...5....0....5....0....5.0..0....5....0....5.0..0..005....0....5....0..

0

IF LAST-NAME IS ALPHABETIC GO TO PRINT-NAME.

The above sentence will branch to PRINT-NAME paragraph if the

contents of all characters in the LAST-NAME are:

a. All numeric. Consisting of digits 0 through 9.

b. all1 alphabetic. Consisting of 1letters A through Z and/or

spaces.
c. Alphanumeric. Consisting of digits and letters.

* * *

17. The sign condition determines whether or not the algebraic
of a numeric operand (i.e. an item described as numeric) is

than, greater than or equal to zero.

identifier POSITIVE
IF Is ([NOT] NEGATIVE
Larithmetic-expression ZERO

18. An operand is POSITIVE if its value 1is greater than
NEGATIVE if it is less than ZERO and ZERO if it is equal to

0 1 1 2 2 3 3 4 4 5 5 6 6

value
less

ZERO,
ZERO.

7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

326

IF AMOUNT IS NEGATIVE MOVE ZEROS TO AMOUNT
ELSE COMPUTE TOTAL = AMOUNT * QTY.

In the segment above, which of the following is true:

a. If the AMOUNT is 1less than zero, ZEROS will be moved

AMOUNT.

into

b. If the AMOUNT is less than zero, the COMPUTE statement will

be executed.

19.

0 0

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

IF PRICE IS POSITIVE GO TO CALCULATE.
GO TO ERROR-RCUTINE.

CALCULATE.
COMPUTE TOTAL = QTY * PRICE.

In the segment above control of the execution will be given to
the CALCULATE paragraph if the contents of PRICE are:

a. greater than zero.
b. equal to zero.

C. Zero.

-—— -

327

20. Read Figure 73.

Adolphe Manufacturing Company wants a program to analyze the
marketability of its products. The input card file ITEM-FILE
contains a record for each purchase for each item. The file is
organized according to ITEM-NUMBER. The plan for the output
listing that is to be produced is shown below.

0 1 2 3 4 5]
%112345678901234567890123!4'567,89012345678901234567}890!23456789
D AXXDAIX XXX [X1X]

(TEM-NUMBER) | (UNIT-PRICE) X XXX,

‘ (COMPANY-NAME, (AMOUNT)
XIXIX[X[X] BIXIXIX, [XX X X |
(TOTAL-AMOUNT) (TOTAL-PURCHASE) j
|
! (single space between detail lme:s; doubl‘e space before and after total.)
] OV T T e e e e L i

ITEM-NUMBER and UNIT-PRICE will appear once, followed by the
listing of purchases and the number of items purchased by each.

The illustration to

the right is a sample

of the cards from the

file ITEM-FILE. Control
The first card shows 1 break
a sample of the data 77543...]
that appears in each 77543 00.92 BECK & CO. 100)
record.

Control

field

S

Figure 73

There may be any number of cards for each item in the problem described
in Figure 73. In order to meet the specifications stated in the proklem
statement, all of the cards that represent orders for a particular item
must be grouped together. Consequently, the programmer must be able to
identify a field appearing in each card that can be used to identify the
group to which it belongs. The best field to use in this case would be:

a. UNIT-PRICE

b. ITEM-NUMBER

b

(More than one item might have the same unit price. Although ITEM-
NUMBER is actually the variable that will contain +the values from
this field, in the context of this problem the field itself will be
referred to as ITEM-NUMBER.)

21. Figure 73 shows that ITEM-NUMBER identifies a control field. You
might expect that a control field is:

a. the field used to identify specific groups of records within
a file.

b. the name of a variable whose value is the same in every
record in the file.

* * *

22. All the records with the same ITEM-NUMBER have been grouped
together and the groups are in ascending order. To process the
records as specified in Figure 73, the computer must identify the
point where one group ends and the next begins, or where the data
in the control field changes. Figure 73 shows that this point is
called a:

a. control field.

b. control break.

23. After each group of records has been processed, totals for that
group are to be printed. At this point, control is to transfer
to another portion of the program. A control break:

a. occurs when the data in the control field changes.

b. identifies the point at which control 1is to transfer to
another portion of the program.

329

24,

In order to detect a control break, the control field of each
record is compared to the control field of the previously read
record. You might expect that this step would be performed by
a(n) statement.

Each time a record is read, the data in the input area from the
previously read record is destroyed. Therefore, 1in order to
compare control fields, data in the control field from the
previously read card must be:

a. moved to a working-storage variable.

b. saved in the input area.

TOTAL-ROUTINE

ITEM-
NUMBER >STORED-
ITEM-NUMBER

(Print
totals)

(Process record)

Fiqgqure 74

The flow chart segment above shows the sequencing for checking
for a control break. Which of the following is true?

a. Because the records are 1in ascending sequence, a control
break will occur when the ITEM-NUMBER read is greater than
the ITEM-NUMBER previously read.

b. When a control break occurs, the record read is processed
immediately.

330

27. Write the statement necessary to test for a control break
according to the flow chart in the previous frame.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5.4..0....5.0..00...5....0....5....0....5....0....5....0..

IF ITEM-NUMBER GREATER THAN
STORED-ITEM-NUMBER
GO TO TOTAL-ROUTINE.

28. Records containing the total amount of sales for each salesman
have keen grouped by territory. The groups have been arranged in
ascending sequence by territory number. When this file is
processed, a control break will occur when the:

a. salesman changes.

b. territory number changes.

29. A condition that might be tested for a control break in the
problem described in the preceding frame would be:

de.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0..0.5....0....5....0....5....0....5.00.000..5....0....5....0..

SALESMAN-NUMBER GREATER THAN
STORED-SALESMAN.

b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....00...5....0....5....0....5....0....5.0..000..5....0....5....0..

TERRITORY GREATER THAN
STORED-TERRITORY.

331

Zee

System flow chart for SALES-ANALYSIS

<> Input record
[SALES-RECORD
EMPLOYEE- TERRITORY E{:JIK}EBSIIE\{RAN- NAME SALES
MASTER- |——®] 1BM 1130 PRINTED-REPORT
FILE
N——
Output format
Tg'in l237}?57!90\!7’3%’7’54i67ﬁ45‘725&b7.’0!.2:55[?7!’0!23:5 7Ts [0} 1%%’7719 n‘uaun ofiii?’i??n’ ')n:?nn na%}%?
—» l ‘ ‘ Sis | :
| i ! |
— i ST i
| N BN : T
['h—lt ﬁ_ - I a - — ‘ ;
H - : + t : o ;
%’- A T B iT H M i [' 1 v i |
. ‘-_L_‘ i
a| g=s EEC T TR I TTNABEAREIN
> = i&_'i H ; \ T
T [; N I - ! ' J_‘_l
| BEEEE S P G ' L]
N SRR HINE AN HE | } HHHH
! MR A ERE RN RN i1 [RE 1])
TOTAL-RECORD (triple spaced after last WORK-RECORD)
WORK-RECORD (double spaced)
HEADINGS (triple spaced)
TITLE-RECORD (at top of page)

0 0

1 2 2 3 3 4

4

5

5

6

6

7

1...5....0....5....0....5....0....5....0.0..5....0....5....0....5....0..

IDENTIFICATION DIVISION.
PROGRAM-ID. SALES-ANALYSIS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOQURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT EMPLOYEE-MASTER-FILE
ASSIGN TO DF-1-600.
SELECT PRINTED-REPORT
ASSIGN TO PR-1132-C
RESERVE NO ALTERNATE AREA

DATA DIVISION.
FILE SECTION.

FD

01

FD

01

EMPLOYEE-MASTER-FILE

BLOCK CONTAINS 8 RECORDS
LABEL RECORDS ARE STANDARD.
SALES-RECORD.

02 TERRITORY PIC 99.

02 SALESMAN-NUMBER PIC X(5).
02 NAME PIC X(20).

02 SALES PIC 9(4)V99.
PRINTED-REPORT

LABEL RECORDS ARE OMITTED.
PRINT-RECORD PIC X(121).

WORKING-STORAGE SECTION.

77
77

717

77
01

01

01

01

TERRITORY-STORED PIC 99 VALUE
TERRITORY-TOTAL PIC 9(5)V99
VALUE IS ZEROS.
FINAL-TOTAL PIC 9(7)V99
VALUE IS ZERCS.
TEST PIC 9 VALUE IS ZERO.
TOTAL-RECORD.
02 FILLER PIC X(85) VALUE IS
02 TOTALS PIC $4$$$999.99.
02 FILLER PIC X(11) VALUE IS
02 ID-WORD PIC X(6) VALUE IS

TITLE-RECORD.

02 FILLER PIC X(60) VALUE IS

02 TITLE PIC X(14) VALUE IS
*SALES ANALYSIS'.

02 FILLER PIC X(47) VALUE IS

HEADINGS.

02 FILLER PIC X(15) VALUE IS

02 HEAD-1 PIC X(8) VALUE IS

02 FILLER PIC X(12) VALUE IS

02 HEAD-2 PIC X(4) VALUE IS

02 FILLER PIC X(31) VALUE IS

02 HEAD-3 PIC X(5) VALUE IS

02 FILLER PIC X(46) VALUE IS

WORK-RECORD .

02 FILLER PIC X(15) VALUE IS

02 SALESMAN-NUMBER PIC X(5).

02 FILLER PIC X(15) VALUE IS

02 NAME PIC X(20).

02 FILLER PIC X(15) VALUE IS

02 SALES PIC 9(4)V99.

02 FILLER PIC X(54) VALUE IS

Figure 75

IS 99.

SPACES.

SPACES.

*TOTALS'.
02 FILLER PIC X(9) VALUE IS SPACES.

SPACES.

SPACES.

SPACES.

*SALESMAN".

SPACES.
'NAME'.
SPACES.
*SALES'.
SPACES.
SPACES.
SPACES.
SPACES.

SPACES.

333

334

30.

As a programmer you may often be asked to prepare sales analysis
reports. Figure 75 shows the system flow chart for a program
named SALES-ANALYSIS. The forms of the input and output records
are shown, along with the first three divisions of the program.
Records containing the total amount of sales for each salesman
have been grouped by territory. The groups have been arranged in
ascending sequence by territory number. Each record will ke
listed on the 1132 printer. Totals will be printed for each
territory, as well as a total for all sales, triple spaced after
the total for the last territory. Follow the problem flow chart
in Figure 76 and code the Procedure Division of SALES-ANALYSIS.

GEe

9, 2InbTa

BEGIN

HEADING-
ROUTINE

MAIN-
SEQUENCE

START

Move
TITLE-RECORD
to
output area

Write
title record
at top of page

Move
HEADINGS
to
output area

Write
heading record

TERRITORY >

SET-UP

Move 0
to
TEST

TERRITORY-

Add SALES
to
TERRITORY-
TOTAL

i

Move corresponding
values of
SALES-RECORD
to
WORK-RECORD

!

Move
TERRITORY
to
TERRITORY-
STORED

1

Move
WORK-RECORD
to
output area

TAKE-
TOTAL

* The MOVE and GO TO statements must
both be part of the IF sentence to transfer
control on the basis of the true result.

Add
TERRITORY-
TOTAL
to
FINAL-TOTAL

—

Move
TERRITORY-
TOTAL
to
TOTALS

B!

Move
ZEROS
to
TERRITORY-
TOTAL

R

Move
TOTAL-RECORD
to
output area

Write
territory
total
record

End of page

Move 1
to
TEST

FINISH

Move
TERRITORY-
TOTAL
to
TOTALS

!

Move
TOTAL-RECORD
to
output area

Write
territory
total
record

Add
TERRITORY-
TOTAL
to FINAL-TOTAL
and store in TOTALS

1

Move
TOTAL-RECORD
to
output area

Write
final total
record

STOP

0 0

1 1 2 2 3 3 4 4 5

5 6 6

7

1...5....0000.5.00000000500ce0000e50nea0000a5000000000500..0000.5..4.0..

If

PROCEDURE DIVISION.
BEGIN.
OPEN INPUT EMPLOYEE~MASTER-FILE
OUTPUT PRINTED-REPORT.
INITIALIZE.
MOVE ZEROS TO TERRITORY-TOTAL.
HEADING-ROUTINE.
MOVE TITLE~RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.
MOVE HEADINGS TO PRINT-RECORD.
WRITE PRINT-RECORD
AFTER ADVANCING 4.
IF TEST EQUAL TO 1
MOVE ZERO TO TEST GO TO SET-UP.
MAIN-SEQUENCE.
READ EMPLOYEE-MASTER-FILE
AT END GO TO FINISH.
IF TERRITORY GREATER THAN
TERRITORY-STORED
GO TO TAKE-TOTAL.
SET-UP.
ADD SALES OF SALES-RECORD
TO TERRITORY-TOTAL.
MOVE TERRITORY OF SALES-RECORD
TO TERRITOEY OF WORK-RECORD.
MOVE SALESMAN OF SALES-RECORD
TO SALESMAN OF WORK-RECORD.
MOVE NAME OF SALES-RECORD
TO NAME OF WORK-RECORD.
MOVE SALES OF SALES-RECORD
TO SALES OF WORK-RECORD.
MOVE TERRITORY TO TERRITORY-STORED.
MOVE WORK-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD
AFTER ADVANCING 3 LINES.
AT EOP GO TO HEADING-ROUTINE.
GO TO MAIN-SEQUENCE.
TAKE-TOTAL.
ADD TERRITORY-TOTAL TO FINAL-TOTAL.
MOVE TERRITORY-TOTAL TO TOTALS.
MOVE ZEROS TO TERRITORY-TOTAL.
MOVE TOTAL-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD
AFTER ADVANCING 4 LINES.
AT EOP MOVE 1 TO TEST
GO TO HEADING-ROUTINE.
GO TO SET-UP.
FINISH.
MCVE TERRITORY-TOTAL TO TOTALS.
MOVE TOTAL-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD
AFTER ADVANCING 4 LINES.
ADD TERRITORY-TOTAL
TO FINAL-TOTAL GIVING TOTALS.
MOVE TOTAL-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD
AFTER ADVANCING 4 LINES.
CLOSE EMPLOYEE-MASTER-FILE
PRINTED-REPORT.
STOP RUN.

your solution appears different and you

correctness, consult your advisor.

(30)

are not sure of

its

31. EXAMINE Statement. The EXAMINE statement is used to count the
number of times a specified character appears in a data item
and/or to replace a character with another character.

UNTIL FIRST
EXAMINE identifier TALLYING ALL literal-1
LEADING

[REPLACING BY literal-2]}
When the ALL is used an integral count is created which replaces
the value of a special register TALLY. (See Language
Cconsiderations)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0..0.5.0..0.0..5....0....5.0..00.02.540..0....5....0..

EXAMINE AREA-1 TALLYING ALL O.
If AREA-1 contains the number 101010 after the EXAMINE statement
is executed, the special register TALLY will contain the integer
3. (There are 3 zeros in the AREA-1.)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

EXAMINE AREA-1 TALLYING ALL 1.

AREA-1 contains the number 110101. After the execution of the
above statement the special register TALLY will contain:

a. 2
b. 4
* * *
b
r 1
| Resulting |
| EXAMINE statement ITEM-1 Data Value of |
| (Before) (After) TALLY |
| |
| EXAMINE ITEM-1 TALLYING ALL O 111010 111010 2 |
| |
| EXAMINE ITEM-1 TALLYING ALL 1 111010 000000 4 l
| REPLACING BY 0 |
I |
| EXAMINE ITENM-1 REPILACING LEADING **7000 7000 + |
| "*" BY SPACE |
| |
| EXAMINE ITEM-1 REPLACING FIRST "*" **1.94 $*1.94 + |
| BY "g" |
[|
I |
L 1

+ unchanged

337

SUMMAKY:

You have 1learned to code and use the IF statement, in the simple
form. In addition you have learned to identify control breaks in a file
and to specify a certain action to be taken at the point where a control
break occurs. The REPORT-WRITER feature of the COBOL language, which is
not being taught in this course, greatly simplifies the problem of
dealing with contrcl breaks. If your installation is equipped for
REPORT-WRITER, you may find it useful to read the section on REPORT-

WRITER in your Language Specifications Manual after you have completed
this course.

END OF LESSON 16

338

LESSON 17

339

LESSON 17 - DISK FILE UPDATING

INTRODUCT ION

In this 1lesson you will write programs that require matching of
records from two separate input files. You will learn to compare
control fields, such as student number, from the two files in order to
determine whether or not the records refer to the same student.

The technique of matching records is used frequently since changes
are seldom required for every record in a master file. Some students
will change majors in a particular year, for example, while many will
not. Every customer does not buy something each month and every
employee may not move or change his name before a file is updated.

The specific COBOL language feature that you will learn in this
lesson is:

FROM option of the WRITE statement

This lesson will require apprcximately one half hour.

340

1.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

READ EMPLOYEE-FILE

AT END GO TO FINISH.
MOVE EMPLOYEE-RECORD

TO WORK-RECORD.

The first statement above would cause the input record EMPLOYEE-
RECORD to be accessed from the file EMPLOYEE-FILE. The second
statement would move the data in the input record to a working-
storage variable called WORK-RECORD. You 1learned to write a
single statement that would have the same effect as a READ
statement and a MOVE statement. To review what you have already

learned, write the single statement to produce the effect of the
two statements shown above.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

READ EMPLOYEE-FILE
INTO WORK-RECORD
AT END GO TO FINISH.

- o - et s o o o s e e e S s . o —————————— —— —— T ———— . —— . —~——— — o — e e e e o > —

2.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

READ INPUT-FILE INTO WORK-RECORD
AT END GO TO STOP-ROUTINE.

The following statement is equivalent to the statement above.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

READ INPUT-FILE

AT END GO TO STOP-ROUTINE.
MOVE INPUT-RECORD
TO WORK-RECORD.

3. A READ statement with the INTO option is used to transmit a
record from an input file to:

a. an input area associated with a previously opened file.

b. a working-storage variable.

c. an output area associated with a previously opened file.

o o "> " ——— o — i " < i~ S ——————— T _— T — " — — —— T — — o = i T 2 o —— . o

341

4.

0 0 1 1 2 2 3 3 4 4 5 5. 6 6 7
1...5....0....5....00...5.0..0....5....0....5....00...5....0....5....0..

READ EMPLOYEE-FILE

AT END GO TO FINISH.
MOVE EMPLOYEE-RECORD

TO PAYROLL-RECORD.
WRITE PAYROLL-RECORD.

Just as the INTO option of the READ statement is used to transmit
a record from an input file to a working-storage variable or an
output area associated with a previously opened file, the FROM
option of the WRITE statement is used to transmit a record from a
working-storage variable or an input area associated with a
previously opened file to an output file. The statements above
would transmit a record from the input file to the associated
input area EMPLOYEE-RECORD, move the record from the input area
to the output area PAYROLL-RECORD associated with the output
file, and transmit the record from the output area to the output
file. The WRITE statement below would have the same effect as
the MOVE and WRITE statements above.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

WRITE PAYROLL-RECORD .
FROM EMPLOYEE-RECORD.

Select the set of statements that would have the effect of
transmitting a record from INPUT-FILE (associated with the input
area INPUT-RECORD) to OUTPUT-FILE (associated with OUTPUT-AREA).

Ae

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0..0.5....0....5....0....5....0..

READ INPUT-FILE INTO OUTPUT-AREA
AT END GO TO END-ROUTINE.
WRITE OUTPUT-AREA.

b.

0 0 1 1 2 2 3 3 L 4 5 S 6 6 7
1...5....0.00.5....0....5....0....5....0.0..500..0000520..0....5....0..

READ INPUT-FILE

AT END GO TO END-ROUTINE.
WRITE OUTPUT-AREA

FROM INPUT-RECORD.

Either

- a0 o s . S . e e o o T i e e -—— - -

342

5.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0.0..5.0000000.5.00.0000.5.00.0....5....0..

WRITE OUTPUT-RECORD
FROM WORK-RECORD.

The above statement would:

a. access a record and then move it to an output file.
b. move a record to an output area and then write it.
c. write a record and then move it to an output area.

* * *

——— = o i - -

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0....5....0.0..5.00.00...500..0....5.0..00.0.5....0....5....0..

WRITE OUTPUT-RECORD
FROM WORK-RECORD.

In the statement above:

a. OUTPUT-RECORD 1is the output area associated with the output
file.

b. WORK-RECORD may be an input area associated with a previously
opened file or a working-storage variable.

* * *
Both
7.
0 0 1 1 2 2 3 3 4 1] 5) 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..
WRITE record-name [FROM identifier]
A general form of the WRITE statement is shown above. You know
that record-name must be the output area associated with the
output file. In the FROM option, identifier may be:
a. an input area associated with a previously opened file.
b. a working-storage variable.
* * *
Either

(Identifier must be a level 01 variable whether it is an input area
or a working-storage variable.)

343

8. Write a statement to move data from the working-storage variable
COMPUTATION-RECORD to the output area RESULT-PRINT and place the
record in the output file PRINT-OUT.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

WRITE RESULT-PRINT
FROM COMPUTATION-RECORD.

9. When data is moved into an output area using the FROM option, the
move is made according to the rules for alphanumeric, or group
moves. Which of the following rules apply to movement of data
with the FROM option?

a. Unused character positions in the receiving field are filled
with spaces on the right.

b. Excess character positions in the sending field are truncated
on the right.

Cc. Only corresponding elements are moved.
d. The entire sending group is moved to the receiving group.

* * *

344

10.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

01 PRINTOUT.
02 FILLER PIC X(5).
02 PART-NUMBER PIC X(7).
02 FILLER PIC X(13).
02 ON-HAND PIC X(3).

The output record PRINTOUT, shown above, is defined with FILLER
items to provide for horizontal spacing.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0....5....000005000.00000500000000.500..0.00.5000.000..5....0..

WRITE PRINTOUT FROM PARTS-RECORD.

In order for the WRITE statement above to provide the spacing
indicated by the entry for PRINTOUT, PARTS-RECORD would «te
specified as:

da

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0....5....0000.5.00.00000500000000500..0000.5.00.000005....0..

01 PARTS-RECORD.
02 PART-NUMBER PIC X(7).
02 ON-HAND PIC X(3).

b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

01 PARTS-RECORD.
02 FILLER PIC X(20).
02 PART-NUMBER PIC X(7).
02 FILLER PIC X(20).
02 ON-HAND PIC X(3).

C.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0000.5..4.0.0..5....0....5....0....5....0....5....0..

01 PARTS-RECORD.
02 FILLER PIC X(5).
02 CODE-ITEM PIC X(7).
02 FILLER PIC X(13).
02 QUANTITY PIC X(3).
02 FILLER PIC X(25)
VALUE IS SPACES.

e - s o . o . e s — —— — — T ———— — i " o —— o o o — - — . —— - - — o~ -

345

11.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....00.0.5.0..0000.5000.0000.5.0..0....5,...0.0..5....0....5....0..

IDENTIFICATION DIVISION.
PROGRAM-ID. LOADTAPE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT~-OUTPUT SECTION.
FILE-CONTROL.
SELECT FREIGHT-CARD-FILE
ASSIGN TO RD-1u442.
SELECT FREIGHT-CARD-OUT
ASSIGN TO PU-1442.
DATA DIVISION.
FILE SECTION.
FD FREIGHT-CARD-FILE
LABEL RECORDS ARE OMITTED.
01 FREIGHT-LINE-RECORD.
02 FREIGHT-LINE-NUMBER PIC X(6).
02 FREIGHT-LINE-NAME PIC X(20).
02 WEIGHT-RESTRICTIONS PIC X(12).
02 FILLER PIC X(u42).
FD FREIGHT-CARD-OUT
LABEL RECORDS ARE OMITTED.
01 FREIGHT-RECORD.
02 TLINE-NUMBER PIC X(6).
02 LINE-NAME PIC X(20).
02 RESTRICTION PIC X(12).
02 RATING PIC X(2).

The first three divisions of a card-in-card-out program are shown
above. The FILLER item on each input card contains spaces. The
last two characters in the output area are to be spaces since the
rating will be added later by another program. Write a Procedure
Division that will read the data on the cards and punch them out
again. Use the FROM option whenever possible.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.00.000025.0..0....5....0.000.500..000..5....0..

PROCEDURE DIVISION.
BEGIN.
OPEN INPUT FEIGHT-CARD-FILE
OUTPUT FREIGHT-CARD-OUT.
CARD-TO-DISK.
READ FREIGHT-CARD-FILE
AT END GO TO FINISH.
WRITE FREIGHT-RECORD
FROM FREIGHT-LINE-RECORD.
GO TO CARD-TO-DISK.
FINISH.
CLOSE FREIGHT-CARD-FILE
FREIGHT-DISK-FILE.
STOP RUN.

346

The following probler incorporates many of the COBOL features
have learned up to this point. Since you are not asked to
anything new in this problem, it is optional for you to code it.
you choose not to code the problem, be sure to read it carefully
make certain you understand it.

you
do
If
to

12. As a prograrmer for a university data-processing division, you

have been asked to write a program to make a 1listing of the
master disk entries for certain students. You have been given a
deck of cards. The number of each student for whom a disk record
is to be 1listed has been punched into a card. The last card,
like the last record, is a dummy containing the number 999999999.
Figure 77 gives a program flow chart, a system flow chart, and
the first three divisions of a program to create the output file.
Write the Procedure Divsion, using the FROM option. Remember to
include OPEN and CLOSE statements when necessary.
BEGIN

Prepare files

Set
output record
to spaces

>l

GET-CARD

Read
a card
record

EOF
record
?

STUDENT-INPUT- |
CARD

GET-DISK

RECORDS

Read
a disk record

IBM-1130 >

STUDENT-
INPUT-DISK

System flow chart

Is
card number
larger than
disk nvumbex

card number
‘Record not found’
on console
typewriter

Read
a card record

EOF

record
?

FINISH

End program

347

LISTING-OF-

—

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5..¢.0000e5.0..0000500020000b0000eebeee0ieeeb5eee000.5....0.,

IDENTIFICATION DIVISION.
PROGRAM-ID. LIST-RECORDS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT STUDENT-INPUT-CARD
ASSIGN TO RD-1442.
SELECT STUDENT-INPUT-DISK
ASSIGN TO DF-2-100-X.
SELECT LISTING-OF-RECORDS
ASSIGN TO PR-1132-C-PUTOUT
RESERVE NO ALTERNATE AREA.
DATA DIVISION.
FILE SECTION.
FD STUDENT-INPUT-CARD
LABEL RECORDS ARE OMITTED.
01 CARD-STUDENT-DATA.
02 CARD-NUMBRER PIC X(9).
02 FILLER PIC X(71).
FD STUDENT-INPUT-DISK
BLOCK CONTAINS 7 RECORDS
LABEL RECORDS ARE STANDARD.
01 DISK-DATA.
02 FILLER PIC X.
02 DISK-NUMBER PIC X(9).
02 NAME PIC X(20).
02 FILLER PIC X (90).
FD LISTING-OF-RECORDS
LABEL RECORDS ARE OMITTED.
01 PRINT-LINE PIC X(121).

Figure 77

348

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

PROCEDURE DIVISION.
BEGIN.
OPEN INPUT STUDENT-INPUT-CARD
STUDENT-INPUT-DISK
OUTPUT LISTING-OF-RECORDS.
MOVE SPACES TO PRINT-LINE.
GET-CARD.
READ STUDENT-INPUT-CARD
AT END GO TO FINISH.
GET-DISK.
READ STUDENT-INPUT-DISK
AT END GO TO FINISH.
TEST.
IF CARD-NUMBER IS GREATER THAN
DISK-NUMBER
GO TO GET-DISK.
IF CARD-NUMBER IS EQUAL TO
DISK-NUMBER
GO TO PRINT.
DISPLAY CARD-NUMBER
*RECORD NOT FOUND' UPON CONSOLE.
READ STUDENT-INPUT-CARD
AT END GO TO FINISH.
GO TO TEST.
PRINT.
WRITE PRINT-LINE
FROM DISK-DATA.
GO TO GET-CARD.
FINISH.
CLOSE STUDENT-INPUT-CARD
STUDENT-INPUT-DISK
LISTING OF RECORDS.
STOP RUN.

(The reserved word IS is used here in the IF statements. It is an
optional word and may be omitted.)

13. The procedure in the previous frame is an example of a problem
that requires matching records from two input files. Look at the
program flow chart in Figure 77 again. What would be the three
possible results of comparison of CARD-NUMBER and DISK-NUMBER?

* * *

CARD-NUMBER greater than DISK-NUMBER
CARD—-NUMBER equal to DISK-NUMBER
CARD-NUMBER smaller than DISK-NUMBER

- - e — ——— - ——— e e o wam —— e o ——————

349

14.

350

The appropriate action must be taken for each possible result of
a comrparison. Referring to Figure 77, match the following
courses of action with the result of comparisons.

1) CARD-NUMBER a. Read another disk record
greater than and then compare again.
DISK-NUMBER

b. Print an error message,

2) CARD-NUMBER read another card, and
egqual to then compare again.
DISK-NUMBER

c. Write the output record,

3) CARD-NUMBER read a record from each
smaller than input file, and then
DISK-NUMBER compare again.

d. Close the files and stop
execution of the program.

* * *

The program illustrated in Figqure 77 is really a simplified
version of matching records, since no new master file is being
created. This program is merely accessing specific records from
the old master file, leaving it intact for further use. If the
card file contained only records of students to be added to the
old master disk while creating a new disk, the new master disk
would contain:

a. the records on the o0ld disk only.
b. the records from the card file only.

c. the records from both the o0ld disk and the card file.

In order to match records from two input files, the records in

both files must be in the same sequence by the control field. If

a card file contains records to be added to a disk file, you
would compare a card number to a disk number on each pass through
the main routine of your program. If both files are in ascending
sequence and the card number is larger than the disk number, the
program should:

a. read another disk record immediately.
b. read another card record immediately.

c. write the disk record on a new disk and then read another
disk record.

17. Assume for +the moment that you have the two input files used in

Figure 77. The card file contains the numbers of the students
for whom records are to be removed from a master disk file. The
last card record and the last disk record are dummy records of
999999999 to ensure that both files will be completely processed.
You are to decide on the logic required to create a new master
disk that will not include the records of the students for whom
cards are present. Which flow chart describes such a problem?

351

352

BEGIN.

Prepare files

READ-CARD.

Read a
card record

No

READ-DISK.

Read a
disk record

Card
number > disk
number

Write disk
record from
old disk

Card

number = disk
number

EXTRANEOUS-CARD.

Display an
error message

-

Read a
card record

No

EOQF record

| Yes

Y

FINISH. |

‘ End program ,

Figure 78

BEGIN.

Prepare files

4 READ-BOTH.
Read a
card record
Yes
EOF record 1
1 No
READ-DISK.
Write disk
record from READ a
old disk disk record
EOF record
WRITE-DISK- COMPARE.
FROM-DISK g \

Write disk
record from
old disk

number > disk
number

Card
number = disk
number

Display an
€Iror message

Write new
disk record
from card

READ-A-CARD.

Read a
card record

EOF ry No >
Q_. s
SHUT.
End program
Fiqure 79
* * *

a
(Flow chart b would be used to add records from the card file to the
new master disk file rather than remove them.)

- ———— . i - e - ——

353.

Prepare for
processing

READ-CARD

Read
a card record

READ-TAPE

Read
a disk record

card number
more than

disk-number
?

Write
output disk
from input area

Write
output disk
from input area

Is
card number
less than
disk number
2

Move card
address and phone
to input area

EXTRANEOUS-CARD

Display
IDCARD
‘NOT IN FILE®

Read
a card record

FINISH

Terminate
execution

354

0 0

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

18.

IDENTIFICATION DIVISION.
PROGRANM-ID. REMOVALS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SQURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT STUDENT-INPUT-CARD
ASSIGN TO RD-1442,
SELECT STUDENT-INPUT-DISK
ASSIGN TO DF-3-500.
SELECT NEW-MASTER-DISK
ASSIGN TO DF-1-400.
DATA DIVISION.
FILE SECTION.
FD STUDENT-INPUT-CARD
LABEL RECORDS ARE OMITTED.
01 CARD-RECORD.
02 IDCARD PIC X(9).
02 HANGOUT PIC X(30).
02 PHONE PIC X(8).
02 FILLER PIC X(33).
FD STUDENT-INPUT-DISK
BLOCK CONTAINS 7 RECORDS
LABEL RECORDS ARE STANDARD.
01 DISK-RECORD-IN.
02 STUDENT-NUMBER PIC X(9).
02 STUDENT-NAME PIC X(25).
02 STUDENT-ADDRESS.
03 STREET PIC X(15).
03 CITY PIC X(10).
03 STATE PIC X(5).
02 STUDENT-PHONE PIC X(8).
02 SCHOLASTIC-DATA PIC X(51).
FD NEW-MASTER-DISK
BLOCK CONTAINS 7 RECORDS
LABEL RECORDS ARE STANDARD.
01 DISK-RECORD-OUT.
02 STUDENT-NUMBER-O PIC X(9).
02 STUDENT-NAME-O PIC X(25).
02 STUDENT-ADDRESS-O PIC X(30).
02 STUDENT-PHONE-O PIC X(8).
02 SCHOLASTIC-DATA-O PIC X(51).

Figure 80

Figure 80 shows the first three divisions of a program and the
program flow chart for a program to update a disk file Ly
inserting new addresses and phone numbers for students who have
moved. A new disk will be created that will incorporate the data
from the card file into the records from the existing disk file.
Follow the program flow chart and write the Procedure Division to
update the disk file, using file and variable names from the
program segment in Figure 80.

* * *

355

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5.0..0....5....0....5....0....5....0..

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT STUDENT-INPUT-CARD
STUDENT-INPUT-DISK
OUTPUT NEW-MASTER-DISK.

READ-CARD.

READ STUDENT-INPUT-CARD

AT END GO TO FINISH.
READ-DISK.

READ STUDENT-INPUT-DISK

AT END GO TO FINISH.
COMPARE.

IF IDCARD IS GREATER THAN
STUDENT-NUMBER
WRITE DISK-RECORD-OUT
FROM DISK-RECORD-IN
GO TO READ-DISK.

IF IDCARD IS LESS THAN
STUDENT-NUMBER
GO TO EXTRANEOUS-CARD.

MOVE HANGOUT TO STUDENT-ADDRESS.

MOVE PHONE TO STUDENT-PHONE.

WRITE DISK-RECORD-OUT
FROM DISK-RECORD-IN.

GO TO READ-CARD.

EXTRANEOUS-CARD.

DISPLAY IDCARD 'NOT IN FILE'
UPON CONSOLE.

READ STUDENT-INPUT-CARD
AT END GO TO FINISH.

GO TO COMPARE.

FINISH.

CLOSE STUDENT-INPUT-CARD
STUDENT-INPUT-DISK
NEW-MASTER-DISK.

STOP RUN.

SUMMARY:

In addition to wmatching recorxds, you have learned to use the FRCM
option of the WRITE statement as a substitute for writing a MOVE
statement. You have also seen a few of the many reasons for matching
records from two input files.

END OF LESSON 17

356

LESSON 18

357

LESSON 18 - DISK FILE PROCESSING

INTRODUCTION

At the end of this 1lesson you will write a program to insert
additional records into the proper places in a master disk file and
another to remove specific records from the disk file. In these same
programs you will be processing records for students transferring to and
from a college but as you will observe, the same technique would be used
for customer, stock items, or employees.

The COBOL lanquage features you will learn in this lesscn are not
limited to matching-record problems. They are, rather, useful features
that can save you time, result in more efficient programs, or accomplish
an arithmetic operation.

The specific COBOL language features that you will learn in this
lesson are:

PERFORM statement
SUBTRACT statement

This lesson will require approximately three quarters of an hour.
The optional problems will require one additional hour.

358

1.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0.-..5....0....5.0..00.0.5000.0000.5000.0000.5....00...5....0..

PERFORM GET-CARD.

The statement shown above 1is <called a PERFORM statement. It
causes control to transfer to the specified step in a program
just as the GO TO statement does. The PERFORM statement,
however, will cause control +to be returned to the statemwent
following it after the specified paragraph is executed.
Execution of the above statement will cause:

a. execution of the GET-CARD paragraph and return of control to
the statement following the PERFORM statement.

b. execution of the GET-CARD paragraph and transfer of control
to the statement following the GET-CARD naragraph.

* * *

a
(b would be the effect of execution of

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....0....5....000..5.00.000.0.5....0....5....0....5....0....5....0..

GO TO GET-CARD.

359

2.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
lo.e5.0ee0eeeb50eeeleceeb5iee0eacebeneefeeedenci0eee5.0c.000.09....0..

COMPARE.

IF IDCARD IS GREATER THAN
STUDENT-NUMBER
WRITE DISK-RECORD-OUT
FROM DISK-RECORD-IN
GO TO READ-DISK.

1IF IDCARD IS LESS THAN
STUDENT-NUVMBER
GO TO EXTRANEOUS-CARD.

MOVE HANGOUT TO STUDENT-ADDRESS.

MOVE PHONE TO STUDENT-PHONE.

WRITE DISK-RECORD-OUT
FROM DISK-RECORD-IN.

GO TO READ-CARD.

EXTRANEOUS-CARD.

DISPLAY IDCARD *NOT IN FILE®
UPON CONSOLE .

READ STUDENT-INPUT-CARD
AT END GO TO FINISH.

GO TO COMPARE.

FINISH.

CLOSE STUDENT-INPUT-CARD
STUDENT-INPUT-DISK
NEW-MASTER-DISK

STOP RUN.

In the Procedure Division segment above, which you wrote in a
preceding frame, the same WRITE statament 1is written twice in
paragraph COMPARE.

0 0] 1 1 2 2 3 3 u 4 5 5 6 6 7
1...%+...0.0..5....0....5....0....5....0.00.5....0....5....0....5....0..

WRITE~-DISK.
WRITE DISK-RECORD-OQOUT
FROM DISK-RECORD-IN.
If paragraph WRITE-DISK were added to the segment above just
prior to paragraph FINISH, each WRITE statement in paragraph
COMPARE could be replaced by:

d.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0000.5000.00000500000000.500000000.5.0..0....5....0..

GO TO WRITE-DISK.
b.

0 0 1 1 2 2 3 3 4 L) 5 5 6 6 7
1...5....0....5....0.00.5.0..0..0.5.000000005.0..0000.5.00..0....5....0..

PERFORM WRITE-DISK.

* * *

b
(If statement a were used to replace the WRITE statement, control
would pass from WRITE-DISK to FINISH, terminating the procedure.)

360

3. Fiqure 81 shows a Procedure Division that prints headings on each
page and then displays a message to the operator before 1listing
the records. Rewrite the WRITE statement in paragraph LISTING-
ROUTINE so that the headings will be printed on each overflow
page. An initialization message will be displayed only at the
beginning of the program because of coding contained in the
paragraph SIGNAL-OPERATOR shown in Figure 81.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....00.0.5.00.000050000000005.000000e5.0000000.5000.0....5....0..

PROCEDURE DIVISION.
BEGIN-ROUTINE.
OPEN INPUT CUSTOMER-FILE
OUTPUT PRINT-FILE.
HEADING-LINE.
MOVE HEADINGS TO PRINT-RECORD.
WRITE PRINT-RECORD.
SIGNAL-OPERATOR.
DISPLAY 'PRINTOUT HAS BEGUN'.
LISTING-ROUTINE.
READ CUSTOMER-FILE
AT END GO TO FINISH.
MOVE CUST-NO TO CUSTOMER-NO.
MOVE CUST-AMT TO CUSTOMER-AMT.
WRITE PRINT-RECORD
FROM LIST-RECORD
AFTER ADVANCING 2.
AT EOP GO TO HEADING-LINE.
GO TO LISTING-ROUTINE.

FINISH.
CLOSE CUSTOMER-FILE
PRINT-FILE.
STOP RUN.
Fiqure 81
* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0....5....0....5....0....5....0....5....0.0..5....0....5....0..

WRITE PRINT-RECORD FROM LIST-RECORD
AFTER ADVANCING 2
AT EOP PERFORM HEADING-LINE.

361

362

1)
2)

Match the effects with the statement types.

1) PERFORM Q.
2) GO TO
b.
C.
* *
a
b

transfers control to
the specified para-
graph, executes it,
then returns control
to the statement
following the cause
of the transfer.

transfers control to
the specified para-
graph, executes it,
then continues with
the next paragraph.

transfers control to
the specified para-
graph, executes the
first statement, then
returns control to

the statement following
the cause of the
transfer.

*

5.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0.0..5....0....5....0..

PERFORM paragraph-name.

A paragraph that is specified in this form of a PERFORM statement
may not include a GO TO statement but may 1include a PERFORM
statement. Select the paragraph that could be specified by the
statement below.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5.2..0002.5%....000..5.2220002.5.02.00002500..0.00..5....0..

PERFORM PARAGRAPH.
Ae

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....000.05%.0..0000e5.00000e5000000e0e5.00000eeeb5eeee0aaac5....0..

PARAGRAPH.
READ CARD-FILE
AT END GO TO HALT.
IF CODE-SYMBOL IS EQUAL TO
CODE-RECORD
PERFORM ADD-RCUTINE.

b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5.¢2.0000.5400e00eeebeeea0aceebcnecleeabeeee0eee50e0e000..5....0..

PARAGRAPH.
READ CARD-FILE
AT END PERFORM HALT.
IF CODE-SYSTEM IS EQUAL TO
CODE-RECORD
PERFORM ADD-ROUTINE.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

PARAGRAPH.
ADD NUMBER-DELIVERED TO

‘NUMBER-ON-HAND.
GC TO PRINTOUT.

e o e o e . — — ————————————— — ————— ———————————— ——— _— — — ————— — " —— ————— —

363

6. Write a statement to transfer control to a paragraph named ERROR-
HANDLING, and then return control to the statement following the
statement you write.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5.c..000..5¢00.00000500ne0eaeebecee0aeeeb0..000005....0....5....0..

PERFORM ERROR-HANDLING.

o e e - —_————— - ——— —— — — —_—— " —_——— — — ——— — — — — — — — —— ———— T — —— — — — — ——— — — ——— —

b e e e e

ONE.
r 1
I I
1 :
[TWO. |
L J
r 1
| |
| |
| THREE. |
L 1
{ 1
i |
'| I
| FOUR. I
L |

As a programmer you wish to execute the paragraphs represented
above in a different sequence, such as ONE, TWO, ONE, THREE,
FOUR. To produce this sequence the statement

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

PERFORM ONE.
could be:
a. the last statement in TWO.

b. a statemént in a separate paragraph between TWO and THREE.

Either

364

8.

0 0 1 1 2 2 3 3

4 4 5 5 6 6

7

- S, SRR SR WS S DU S D: SR’ DRPE- SN’ DUPIE AR\ B

WRITE PRINT
AT EOP GO TO PAGES.
AFTER-PAGES.

PAGES.
ADD 1 TO PAGE-NUMBER.

-

GO TO AFTER-PAGES.

Write the segment above to use the PERFORM statement

option.

* *

0 0 1 1 2 2 3 3

*

4 4 5 5 6 6

in the EOP

7

Teeebeece0ennebnec0uinnabinca0ac05000000005.00.0000.500..00...5....0..

WRITE PRINT
AT EOP PERFORM PAGES.
AFTER-PAGES.

PAGES.
ADD 1 TO PAGE-NUMBER.

(The GO TO statement must be

removed from paragraph PAGES.)

365

0

9.

0

1 1 2 2 3 3 4 4 5 5 6 6 7

P PO T PN TR ¢ DU RUPPO | R SR | A PURI | T DI e

366

PERFORM TAKE-TOTAL.

The PERFORM statement is useful when control must be transferred
to a group of statements from several points in a program. Iif
the statement above appears in two different paragraphs in a
program, the point to which control is returned after execution
of the PERFORM statement will:

a. be the same in each case.

b. depend on the location of the PERFORM statement.

c. be the statement following the PERFORM that was executed.

1 1 2 2 3 3 4

IDENTIFICATION DIVISION.
PROGRAM-ID. BILLING.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
SPECIAL-NAMES. C01 IS TO-NEXT-PAGE.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT TRANSACTION-FILE
ASSIGN TO RD-1442.
SELECT CUSTOMER-FILE
ASSIGN TO DF-1-700-X.
SELECT BILL-FILE
ASSIGN TO PR-1132-C.
DATA DIVISION.
FILE SECTION.
FD TRANSACTION-FILE
LABEL RECORDS ARE OMITTED.
01 ITEM-RECORD.
02 CUSTOMER-NUMBER PIC X (5).
02 ITEM-NUMBER PIC X(5).
02 UNIT-PRICE PIC 999V99.
02 ITEM-DESCRIPTION PIC X(20).
02 QUANTITY PIC 999.
02 FILLER PIC X(42).
FD CUSTOMER-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 6 RECORDS.
01 CUSTOMER-RECORD.
02 FILLER PIC X.
02 CHARGE-ID PIC X(5).
02 NAME PIC X(30).
02 STREET PIC X(20).
02 MAILING
03 CITY PIC X(15).
03 STATE PIC X(15).
03 ZIP PIC X(5).
02 FILLER PIC X(20).
FD BILL-FILE
LABEL RECORDS ARE OMITTED.
01 BILL-PRINT PIC X(63).
WORKING-STORAGE SECTION.
77 SAVE-NUMBER PIC X(5).
77 SUB-AMOUNT PIC 9999Vv99.
77 TOTAL-AMOUNT PIC 99999V99
VALUE IS ZEROS.
77 SPACING PIC X.
77 STATE-CODE PIC X.
01 ITEM-LINE.

n

02 FILLER PIC X(4) VALUE IS SPACES.

02 NUMBER-O PIC X(5).

02 FILLER PIC X(4) VALUE IS SPACES.

02 ITEM PIC X(20).

02 FILLER PIC X(4) VALUE IS SPACES.

02 PRICE-O PIC $999.99.

02 FILLER PIC X(4) VALUE IS SPACES.

02 QUANTITY-O PIC 999.

02 FILLER PIC X(4) VALUE IS SPACES.

02 AMOUNT PIC $9999.99.

5

5

6

6

7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

367

368

01 PRINT-TOTAL.
02 FILLER PIC X(52) VALUE IS SPACES.
02 TOTAL PIC $99999.99.
01 DISCOUNT-TOTAL.
02 FILLER PIC X(18) VALUE IS SPACES.
02 COMMENT-1 PIC X(18)
VALUE "MINUS .05 DISCOUNT'.
02 FILLER PIC X(18) VALUE IS SPACES.
02 DISCOUNT-AMOUNT PIC $999.99.
01 TAX-TOTAL.
02 FILLER PIC X(18) VALUE IS SPACES.
02 COMMENT-2 PIC X(12)
VALUE °'PLUS .04 TAX'.
02 FILLER PIC X(24) VALUE IS SPACES.
02 TAX-AMOUNT PIC $999.99.
01 NAME-LINE.
02 FILLER PIC X(10) VALUE IS SPACES.
02 NAME-OUT PIC X(30).
01 STREET-LINE.
02 FILLER PIC X(10) VALUE IS SPACES.
02 STREET-OUT PIC X(20).
01 ADDRESS-LINE.
02 FILLER PIC X(10) VALUE IS SPACES.
02 ADDRESS-OUT PIC X(35).
01 END-LINE.
02 FILLER PIC X(10) VALUE IS SPACES.
02 COMMENT-3 PIC X(25)
VALUE IS ‘PLEASE PAY WITHIN 30
PROCEDURE DIVISION.
BEGIN.
OPEN INPUT TRANSACTION-FILE
CUSTOMER-FILE
OUTPUT BILL-FILE.
INPUT-ROUTINE.
READ TRANSACTION-FILE
AT END GO TO HALT.
MOVE CUSTOMER-NUMBER TO SAVE-NUMBER.
MATCH.
READ CUSTOMER-FILE
AT END GO TO HALT.
IF CUSTOMER-NUMBER GREATER THAN
CHARGE-ID GO TO MATCH.
IF CUSTOMER-NUMBER LESS THAN
CHARGE-ID GO TO MESSAGE-HALT.
WRITE-MAILING-DATA.
MOVE NAME TO NAME-OQOUT.
WRITE BILL-PRINT FROM NAME-LINE
AFTER ADVANCING TO-NEXT-PAGE.
MOVE STREET TO STREET-OUT.
WRITE BILL-PRINT FROM STREET-LINE
AFTER ADVANCING 2 LINES.
IF STATE EQUAL TO 'MICHIGAN'
MOVE 1 TO STATE-CODE
ELSE MOVE 0 TO STATE-CODE.
MOVE MAILING TO ADDRESS-OUT.
WRITE BILL-PRINT FROM ADDRESS-LINE
AFTER ADVANCING 2 LINES.
MOVE 6 TO SPACING.

DAYS'.

WRITE-ITEM-LINE.
MULTIPLY UNIT-PRICE BY QUANTITY
GIVING SUB-AMOUNT.
MOVE SUB-AMOUNT TO AMOUNT.
ADD SUB-AMOUNT TO TOTAL-AMOUNT.
MOVE ITEM-NUMBER TO NUMBER-0.
MOVE ITEM-DESCRIPTION TO ITEM-O.
MOVE UNIT-PRICE TO PRICE-O.
MOVE QUANTITY TO QUANTITY-O.
WRITE BILL-PRINT FROM ITEM-LINE
AFTER ADVANCING SPACING LINES.
CHECK-NEXT-CARD.
READ TRANSACTION-FILE
AT END GO TO END-ROUTINE.
IF CUSTOMER-NUMBER EQUAL TO
SAVE-NUMBER MOVE 1 TO SPACING
GO TO WRITE-ITEM-LINE.
MOVE CUSTOMER~-NUMBER TO SAVE-NUMBER.
PERFORM CALCULATIONS.
PERFORM ADVANCE.
GO TO MATCH.
MESSAGE-HALT.
DISPLAY CUSTOMER-NUMBER
*NOT FOUND IN FILE.'
UPON CONSOLE.
GO TO HALT.
END-ROUTINE.
PERFORM CAILCULATIONS.
WRITE BILI-PRINT FROM END-LINE
AFTER ADVANCING 3 LINES.
HALT.
CLOSE TRANSACTION-FILE BILL-FILE
CUSTOMER-FILE.
STOP RUN.
ADVANCE.
WRITE BILL-PRINT FROM END-LINE
AFTER ADVANCING 3 LINES.
MOVE ZEROS TO TOTAL-AMOUNT.

Figure 82

369

BEGIN

INPUT-ROUTINE

Read
a disk record

WRITE-MAILING-DATA § ¥

Prim
name and
address

Set STATE-CODE
Set SPACING

. |
WRITE-ITEM-LINE™Y

Calculate
amount from card.
Add it to
TOTAL-AMOUNT

Write
line of data

CHECK-NEXT-CARD

END-ROUTINE

MESSAGE-HALT

Display
number

‘Not found
in file’

Same

PERFORM
number as CALCULATIONS

./ Write
END-LINE f*@

Set SPACING

previo;u card

PERFORM
CALCULATIONS
PERFORM

ADVANCE

370

Figure 83

10.

Figure 82 shows a portion of a program used by a Michigan dealer
to calculate and print monthly bills for customers. Figure 83 is
a flow chart that is included to help you follow the program in
Figure 82. The master disk contains the numbers and mailing
information for all customers. The input cards each contain data
for one purchase by one customer with the cards in ascending
sequence by customer. More than one card may be present for each
customer, or there may be no cards for some customers since not
every customer makes a purchase each month.

The PERFORM statement is used in paragraphs CHECK-NEXT-CARD and
END-ROUTINE in this program to execute paragraph CALCULATIONS,
which you will write in the next frame. A statement that could
be used in paragraph CALCULATIONS is the:

a. GO TO statement.

b. PERFORM statement.

C. IF statement.

Figure 84 shows a detailed flow chart for paragraph CALCULATIONS.
Write paragraph CALCULATIONS, after checking the Data Division of
program BILLING (Figure 78) for the variable names.

* * *

371

CALCULATIONS

Move
TOTAL-AMOUNT

to
PRINT-TOTAL
record

Write
PRINT-TOTAL
record after
skipping a line

PERFORM
DISCOUNT
PERFORM
TAX
y
Return
control to
main program
Figure 84
0 0 1 1 2 2 3 3 4 q 5 5 6 6

7

1.¢.5¢cee0ieee5eeee0eenab0ealaeebecee0oee500e00cea5000.0000.5....0..

CALCULATIONS.

MOVE TOTAL-AMOUNT TO TOTAL.

WRITE BILL-PRINT
FROM PRINT-TOTAL
AFTER ADVANCING 2 LINES.

IF TOTAL-AMOUNT IS GREATER THAN 300
PERFORM DISCOUNT.

IF STATE-CODE IS EQUAL TO 1
PERFORM TAX.

372

12.

for paragraphs TAX and DISCOUNT.

Figure 85 gives flow charts
First write paragraph TAX to calculate and print the tax.
* * *
TAX DISCOUNT
Calculate Calculate
4% tax as 5% discount as
SUB-AMOUNT SUB-AMOUNT
and move it to and move it to
TAX-AMOUNT DISCOUNT-AMOUNT
y y
. Write
Write
TAX-TOTAL DISCQUNT-
on next line on next line
A
Calculate Calculate
new total new total
and move to and move to
TOTAL TOTAL

Write
PRINT-TOTAL
2 lines below
TAX-TOTAL

Y

Return
control to
statement following
PERFORM

Write
PRINT-TOTAL
2 lines below
DISCOUNT-
TOTAL

Return
control to
statement following
PERFORM

Figure 85

373

0 0 1 i 2 2 3 3 L} 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

TAX.

MULTIPLY .04 BY TOTAL-AMOUNT
GIVING SUB-AMOUNT.

MOVE SUB-AMOUNT TO TAX-AMOUNT.

WRITE BILL-PRINT FROM TAX-TOTAL
AFTER ADVANCING 1 LINE.

ADD SUB-AMOUNT TO TOTAL-AMOUNT.

MOVE TOTAL-AMOUNT TO TOTAL.

WRITE BILL-PRINT FROM PRINT-TOTAL
AFTER ADVANCING 2 LINES.

(In the MULTIPLY statement, you cannot specify "GIVING TAX-
AMOUNT"™ because the value of SUB-AMOUNT is needed for use in the
ADD statement. You cannot specify "GIVING TOTAL" in the ADD
statement because the value of TOTAL-AMOUNT is used in the main
program.)

0 0 1 1 2 2 3 3 4 4y 5 5 6 6 7
1...5....0....5....0....5.0..0....5....0....5....000..5....0....5....0..

SUBTRACT CHECK FROM ACCOUNT.
The flow chart for paragraph DISCOUNT is very similar to the one
you used in writing TAX. One crucial difference, however, is
that the amount of discount is to be subtracted from the total
bill, while the amount of tax was to be added. The effect of
execution of the statement above if the value of CHECX were 1000
and the value of ACCOUNT were 20700 would be that the value of:

a. CHECK changes to 19700

b. ACCOUNT changes to 19700

374

14.
identifier-1 identifier-2
SUBTRACT cese
literal-1 literal-2

FROM identifier-m
The format of the SUBTRACT statement is shown above. The rules

for usage of identifiers and literals are the same as for the ADD
statement. Which SUBTRACT statements are of the correct format?

de

0 0 1 1 2 2 3 3 b 4 5 5 6 6 7
1...5....0....5....0000.9..0.0000.500000000.5000.0000.50000000005....0..

SUBTRACT 10, CHECK FROM ACCOUNT.
b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0..0..5....000..5.0..00000500000.00.5.00.0000.5....0....5....0..

SUBTRACT CHECK FROM 10, ACCOUNT.
C.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0.-..5....00.2.5.0..00c0ce.50eee0ceeeDececl0aceedaceelanacdeca.0.s

SUBTRACT CHECK FROM 10.
* * *
a

(b specifies two items after FROM; c specifies a literal after FROM.
The commas are optional.)

o e e ot o e e 2ot S i e S e o - - e - - -

15. The options that you 1learned to use with other arithmetic
statements can also be used in the SUBTRACT statement. Write a
statement to subtract the value of PAYMENTS from the value of
BALANCE. The result of the subtraction is to be stored in NEW-
BALANCE.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....000..5.0..0000.500000000.5000.0.0..5....0.00..504..0.0005....0..

SUBTRACT PAYMENTS FROM BALANCE
GIVING NEW-BALANCE.

375

16. Now write paragraph DISCOUNT to complete program BILLING. Figure
85 gives the flow chart for this procedure.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l..e5....0000eb50eee00ieeSecee0aeee50eee0eee5.00.00.0.5.0..000..50...0..

DISCOUNT.
MULTIPLY .05 BY TOTAL-AMOUNT
GIVING SUB-AMOUNT.
MOVE SUB-AMOUNT TO DISCOUNT-AMOUNT.
WRITE BILL-PRINT
FROM DISCOUNT-TOTAL
AFTER ADVANCING 1 LINE.
SUBTRACT SUB-AMOUNT
FROM TOTAL-AMOUNT.
MOVE TOTAL-AMOUNT TO TOTAL.
WRITE BILL-PRINT FROM PRINT-TOTAL
AFTER ADVANCING 2 LINES.

(In the MULTIPLY statement, you cannot specify "GIVING DISCOUNT-
AMOUNT" because the value of SUB-AMOUNT is needed for use in the
ADD statement. You cannot specify "GIVING TOTAL" in the SUBTRACT

statement because the value of TOTAL-AMOUNT is used in the main
prograr.)

——————— —— e e e

376

17. As a programmer you will not be given a flow chart in most cases.
You will normally develop your own flow charts for programming
tasks. Your next task is to draw a flow chart for a program that
involves adding records to a disk file. Later you will be asked
to write a program, so be sure to include all of the steps in
your flow chart.

A community college that has many transfer students keeps a
record of the residence and scholastic history of each student,
along with the year he entered the college and his unique number,
on a master disk. A card file contains data on the incoming
transfer students. The data for each student is arranged on a
single card. If an input card contains a number which is already
in the file, a message containing the card number and the literal
‘IS IN FILE.NOT ADDED."' is to be displayed, and a new card is to
be read. The last record in each input file is a dummy record
with the number 999999999. A new disk file is to be created
containing all old disk records and all card records. When an
end-of-file record is encountered in either file the program is
to be terminated. Both input files are in ascending sequence,
and the output file is to be produced in this sequence. Draw a
flow chart for the problem.

* * *

377

. BEGIN.
Prepare files

READ-BOTH.

Read a
card record

EOF record

READ-DISK.

Write disk
record from
old disk

Read a
disk record

WRITE-DISK-

FROM-DISK COMPARE.

Write disk
record from
old disk

number disk
number

Display card-
number ‘IS IN
FILE. NOT

ADDED’:

Card
number = disk
number

Write new
disk record
from card

Read a
card record

EOF record
1 :
y
End program
Figure 86

378

0

(If you are not familiar with flowcharting techniques, review the
prerequisite course Fundamentals of Programming. The paragraph names
are included only for yocur use in the next frame.)

The following problem incorporates the matching record techniques you
have been studying in this lesson. Since you are not asked to be
anything new in this problem, it is optional for you to code it. 1If
you choose not to code the solution, be certain to read it carefully
to understand how the matching records problem is solved.

- . s T o o o o ————— ——— _—~ ——————— " — - — — T — — —— - ——— — — ———————

18. Figure 87 shows the first three divisions for the program
represented by the flow chart created in the preceding frame.
Write a Procedure Division for the program using the flow chart
that you drew or the solution given to the preceding problem.

* * *

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0.00..5....00...5....0....5....0....5....0..

IDENTIFICATION DIVISION.
PROGRAM-ID. MATCH.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT STUDENT-MASTER
ASSIGN TO DF-1-600-X.
SELECT NEW-STUDENT-MASTER
ASSIGN TO DF-2-800-X.
SELECT UPDATE-DATA
ASSIGN TO RD-1442.
DATA DIVISION.
FILE SECTION.
FD STUDENT-MASTER
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS S5 RECORDS.
01 STUDENT-DATA.
02 PERSONAL.
03 YEAR-IN PIC XX.
03 STUDENT-NUM PIC X(9).
03 FILLER PIC X(35).
02 SCHOLASTIC PIC X(1u).
FD NEW-STUDENT-MASTER
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 5 RECORDS.
01 STUDENT-DATA-NEW.
02 YEAR PIC XX.
02 S-NUMBER PIC X(9).
02 FILLER PIC X(74).
FD UPDATE-DATA
LABEL RECORDS ARE OMITTED.
01 TRANSFER.
02 IN-OR-OUT PIC XX.
02 CARD-NUMBER PIC X(9).
02 FILLER PIC X(69).

Figure 87

379

0
1..

380

0 1 1 2 2 3 3 4 4 5 5 6 -6 7
e5....00...5....0.00.5.00.0.0..5.00.00005000.00005000.00...5....0..

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT STUDENT-MASTER
UPDATE-DATA
OUTPUT NEW-STUDENT-MASTER.

READ-BOTH.

READ UPDATE-DATA

AT END GO TO SHUT.
READ-DISK

READ STUDENT-MASTER

AT END GO TO SHUT.
COMPARE.
IF CARD-NUMBER IS GREATER THAN
STUDENT-NUM
GO TO WRITE-DISK-FROM-DISK.
IF CARD-NUMBER IS EQUAL TO
STUDENT-NUM
DISPLAY CARD-NUMBER
'IS IN FILE. NOT ADDED.'
UPON CONSOLE

WRITE STUDENT-DATA-NEW
FROM STUDENT-DATA

GO TO READ-BOTH

ELSE WRITE STUDENT-DATA-NEW
FROM TRANSFER.
READ-A-CARD.

READ UPDATE-DATA
AT END GO TO SHUT.

GO TO COMPARE.

WRITE-DISK~FRONM-DISK.

WRITE STUDENT-DATA-NEW
FROM STUDENT-DATA.

GO TO READ-DISK.

SHUT.

CLOSE STUDENT-MASTER
NEW-STUDENT-MASTER
UPDATE-DATA.

STOP RUN.

(There are many possible solutions to this problem as there are to
most programming assignments. If your solution appears different and
you are not sure of its correctness, check with your advisor.)

The following program incorporates the matching record techniques you
have been studying in this lesson. Since you are not asked to do
anything new in this problem, it is optional for you to code it. If
you choose not to code the solution, be certain to read it carefully
to understand how the matching records problem is solved.

e e e = e o " o~ ——— T —— ————————— - —— - —— — — — " — ——— . —— — — — e - - - —

19. As a programmer you may be required to update a disk by removing
records from it. The three divisions in Figure 87 could also bke
used in a program to remove records. Assume now that each input
card contains the number of a student who has transferred out of
the community college; again, the last record in each input file
is a dummy record with the number 999999999. Draw a flow chart
and then write a Procedure Division to create a new disk
containing only those records on the old disk for which there are
no matching cards.

BEGIN.

Prepare files

Read a
card record

EOF record

Write disk

old disk

record from

Reada
disk record

EOF record

y

Card
number >disk
number

Card
number = disk

number

Display card
number ‘NOT
IN MASTER-
FILE'.

Read a
card record

EOF record

End program

Figure 88

381

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0.000.50...0000.50000000ee500ca0eeeebeeealeeeedeeeeleeeed....0..

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT STUDENT-MASTER
UPDATE-DATA
OCUTPUT NEW-STUDENT-MASTER.

READ-CARD.

READ UPDATE-DATA

AT END GO TO SHUT.
READ-DISK

READ STUDENT-MASTER

AT END GO TO SHUT.
CCMPARE.

IF CARD-NUMBER IS EQUAL TO
STUDENT-NUM
GO TO READ-CARD.

IF CARD-NUMBER IS GREATER THAN
STUDENT-NUM
WRITE STUDENT-DATA-NEW
FROM STUDENT-DATA (4)
GO TO READ-TAPE.

DISPLAY CARD-NUMBER
*NOT IN MASTER FILE.'
UPON CONSOLE.

READ UPDATE-DATA
AT END GO TO SHUT.

GO TO COMPARE.

SHUT.

CLOSE STUDENT-MASTER
NEW-STUDENT-MASTER
UPDATE-DATA.

STOP RUN.

382

SUMMARY :

The two procedures that you have just written could easily have
been combined into a single, more complex, programw. It is frequently
desirable to add some records to a disk file, delete other records,
and update or change still other records. This can be done by using
a field in the transaction file to hold a code such as 1 for add, 2
for delete, and 3 for change. A different procedure would then ke
followed for each code. Branching to different procedures would ke
accomplished after testing the code field each time a transaction
card is read. The logic in this lesson was kept simple so that you
could concentrate on one specific reason for matching records at a
time.

In addition to matching records you have learned to use the FROM
option of the WRITE statement as a substitute for writing a MOVE
statement, the PERFORM statement to transfer control temporarily, and
the SUBTRACT statement.

END OF LESSON 18

383

THIS PAGE INTENTIONALLY LEFT BLANK

384

LESSON 19

385

LESSON 19 - CONDITIONAL STATEMENTS (1)

INTRODUCTICN

In preceding 1lessons you have 1learned to specify mutually
exclusive paths of control based on such circumstances as the number
in the record in the card file being greater than the number in the
record in the disk file. This circumstance 1is represented by the
following expression:

CARD-NUMBER GREATER THAN DISK-NUMBER

This expression is tested in an IF statement at some point in the
program and the appropriate path of control will be selected
depending on whether the expression is true or false. Expressions
such as the one shown above are called test conditions because they
are tested to determine whether they are true or false.

In this lesson you will learn to specify various kinds of test
conditions. Specific COBOL language features that you will learn in
this lesson are:

Relational operators
Relational conditions
Valid comparisons
Picture character S
NOT logical operator

This lesson will require approximately one half hour.

386

1.

0 0 1

1

2 2 3

3 4

4 5 5 6 6 7

1...5....0....5....0....5....0....5....0..0.5000.000005000.0....5....0..

IF STUDENT-NUMBER EQUAL TO ID-NUMBER

The

COBOL

GO TO READ-CARD.

condition is:

staterent above specifies a test condition. The test

a. STUDENT-NUMBER EQUAL TO ID-NUMBER

b. IF STUDENT-NUMBER EQUAL TO ID-NUMBER

c. GO TO READ-CARD

a

*

(b is the reserved word IF plus the condition.)

. o — —— ~——— — . ————— ————— —— — . s T —— T — — . ——— — ————— "~ ——— " - — ——_— — — o <~ - o ——

Relational and Logical Operators

T 1
i Type of Operator Operation |
| Operation (operation symbol) |
| |
| IS GREATER THAN Is greater than |
| |
| Relatiomnal IS LESS THAN Is less than |
| l
| IS EQUAL TO Is equal to |
] |
| OR Logical inclusive OR |
| (either or both are true) |
| |
| Logical AND Logical conjunction |
| (both are true) |
| |
i NOT Logical negation {
L 4
Figure 89
2. The test condition STUDENT-NUMBER EQUAL TO ID-NUMBER contains a

relational operator.
operator in the test condition above is

EQUAL TO

Figqure 89

*

shows that the relational

*

————— e —— ——— — — o — > ——

387

0

identifier-1 [identifier—2
literal-1 relational-operator literal-2
arithmetic- arithmetic-
expression-1 expression-2

TOTAL GREATER THAN 1000

Figure 90
A test condition containing a single relational operator is
called a relational condition. The form of a relational
condition and an example of a test condition are shown above.
The test condition is:

a. a relational condition.

b. used to compare the value of a variable with the value of a
literal.

c. used to specify a relationship between two items.

* * *

TOTAL GREATER THAN 1000

The result of a relational condition is either true or false. If
the value of TOTAL were 2000, the result of +the relational
condition above would be ...ccceas .

* * *
true
5.
0 1 1 2 2 3 3 4) 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....00.0.5....0.0...5....0..

388

IF COUNTER LESS THAN 1000
GO TO READ1
ELSE GO TO READ2.

The appearance of a test condition in an IF statement causes the
test condition to be evaluated. When the IF statement above is
executed:

a. control will transfer to READ1 if COUNTER is equal to 2000.

b. the specified relational condition will be evaluated.

c. if COUNTER is equal to 500, the result of the relational
condition will be false.

0

6. AMOUNT GREATER THAN
MAXIMUM-BALANCE

Write a statement to cause evaluation of the test condition
above. Specify that, if the result is true, the paragraph with
the name REJECT 1is to be performed and that, if the result is
false, the next sentence 1is to be executed. The PERFORM

statement is wused to depart from the normal sequence

of

procedures to execute a statement(s) a specified number of times

until a predetermined condition is satisfied.

* * *

0 1 1 2 2 3 3 4 4 5 5 6 6

7

1...5....0..0.5....0.0..5....0....5....0....5....0....5.00.0....5....0..

IF AMOUNT GREATER THAN MAXIMUM-BALANCE
PERFORM REJECT.

—— - ————————— ————— o ———

first-operand relational-operator second-operand
t J

relational-condition

Figure 91

According to the diagram above, in the relational condition

SALARY-CODE EQUAL TO 0

the first operand iS and the second operand iS «c.cee.c..

SALARY-CODE

389

8. Figure 92 shows the operands that can be used in valid relational
conditions. Operands in a relational condition can be:

Types of Valid Comparisons
Second Operand Group Elementary
First Operand Alphanumeric | Alphabetic | Numeric | Literal
Group C C C C C
Alphanumeric C C C C C
Alphabetic C C C I C
Elementary
Numeric C C I N C
Literal C C C C I

c-compared logically (one character at a time, according
to collating sequence shown earlier)

N-Compared algebraically (numeric values are compared)

I-Invalid comparison

Example:
IF TOTAL GREATER THAN MAXIMUM GO TO MESSAGE

first operand, operator second, operand
[y p—

~

condition
Explanation:

To use this chart find the data type (determined by the
picture) of the first operand in the column headed First Operand.
Then find the data type of the second operand across the top of
the figure opposite Second Operand. Extend imaginary lines into
the figure from the data types of the first and second operands.
In the block where these two lines intersect is a letter that
tells you how the values are compared.

Figure 92

a. group variables.

b. 1literals.

Either
(A more comprehensive table of permissible comparisons can be found
in the lLanguage Specifications Manual.

————— o - > — e —— e o o o —— i —— — ——— — ——— — —_ — o " . " -

390

0

9. Figure 92 indicates that a valid relatiocnal condition can
contain:

a. two literals as operands.

b. an alphanumeric operand and an alphabetic operand.

10.

0 1 1 2 2 3 3 4 4 5 5 6 6 7

l1...5....0....5....0000.5.0..0..0.5....0.0025000.000005.0..0.0...5....0..

WORKING-STORAGE SECTION.
01 WORK-RECORD.
02 SHOP-NAME PIC A(10).
02 WORK-NUMBER PIC XXXXX.
02 EMPLOYEE-TIME PIC 999V99.
02 WORK-RATE PIC 999V99.
01 SECOND-RECCRD.
02 NAME PIC A(10).
02 WORKNUMBER PIC XXXXX.
02 TIME-EMPLOYEE PIC 999V99.
02 RATE-WORK PIC 999V99.

According to the Data Division entries above and Figure 92, which
of the following is a valid comparison?

a. WORK-NUMBER GREATER THAN
WORKNUMBER

b. NAME LESS THAN WORK-RATE

c. WORK-NUMBER EQUAL TO NAME

* * *
a, c
1
identifier-1 identifier-2
literal-1 relational-operator literal-2
arithmetic- arithmetic-
expression-1 expression-2
Figure 93

The form of the relational condition above indicates that either
operand can be an arithmetic expression. In this context, arithmetic
expression refers to a combination of numeric variables, numeric
literals, and arithmetic operators. This type of relational
condition will not be covered here because it is generally best to
have arithmetic operations performed before the relational conditicn
is to be evaluated.

391

0

11.

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

WORKING-STORAGE SECTION.
01 WORK-RECORD.
02 SHOP-NAME PIC A(10).
02 WORK-NUMBER PIC XXXXX.
02 EMPLOYEE-TIME PIC 999V99.
02 WORK-RATE PIC 999V99.
01 SECOND-RECORD.
02 NAME PIC A(10).
02 WORKNUMBER PIC XXXXX.
02 TIME-EMPLOYEE PIC 999V99.
02 RATE-WORK PIC 999V99.

There are two types of relational conditions: comparison of
numeric operands and cumparison of nonnumeric operands. Numeric
operands are compared algebraically. For example, the value 02
would be greater than -10, and -10 would be greater than -11.
According to the Data Division entries above, which of the
following will be compared algebraically?

a. EMPLOYEE-TIME GREATER THAN
WORK-RATE

b. WORK-NUMBER EQUAL TO
WORKNUMBER

Cc. RATE-WORK LESS THAN NAME

* * *

a
(If a relational condition contains a numeric operand and a
nonnumeric operand, it is treated as a nonnumeric comparison.)

—— - e~ — v ——— —— — ———— —— " o T o ————— —— ————— —— Y " Y — . = — — e = " - ———

12. In order for the value of a numeric variable to include a sign,
the letter S must be specified preceding the first 9 in the
picture for that variable. The S, like the V, does not represent
a character position. Write a PICTURE clause that would permit a
variable to have integer values from -12 to +12.

* * *

PIC S99.

(When a relational condition is evaluated, any unsigned value other
than zero is considered positive. Zero is a unique value, and any
preceding sign is ignored.)

392

13.

0 0 1 1 2 2 3 3) 4 5 5 6 6 7
1...5....0.0...5.04.00005000.000005000000005.000000eeb0ees00...5....0..

WORKING-STORAGE SECTION.

77 COMP-NUMBER PIC S999V99.

77 REGIONAL-TOTAL PIC S999V99.

01 RECORD-1.
02 RECORD-NUMBER PIC XXXXX.
02 RECORD-TOTAL PIC S999V99.
02 RECORD-BALANCE PIC S999Vv99.
02 BALANCE-LIMIT PIC S999V99.

r 1
| Variables Values |
| |
| COMP-NUMBER -997/01 |
| REGIONAL~-TOTAL +903/65 |
| RECORD-NUMBER 77321 |
| RECORD-TOTAL +336/70 |
| RECORD-BALANCE +000/00 |
| BALANCE-LIMIT -000/00 |
L J
Figure 94

Refer +to the pictures and values above and determine whether the
result of each relational condition below is true or false.

1) RECORD-TOTAL LESS THAN
COMP-NUMBER

2) REGIONAL-TOTAL GREATER THAN
COMP~-NUMBER

3) RECORD-BALANCE GREATER THAN
BALANCE-LIMIT

* * *
1) false

2) true

3) false

—— o ——— o ———— ——— o ———— " ——— o —— —— T —— — - —— . —— —— . — —— = —— — ————

393

0

14.

0 1 1 2 2 3 3 4 1) 5 5 6 6 7

1...5....0....5....0....5....0....5.0.00000.5.0..0000.5.0..0....5....0..

394

WORKING-STORAGE SECTION.
77 COMP-NUMBER PIC S999V99.
77 REGIONAL-TOTAL PIC S999V99.
01 RECORD-1.
02 RECORD-NUMBER PIC XXXXX.
02 RECORD-TOTAL PIC 999.
02 RECORD-IDENT PIC A(4).

The second type of relational condition is the comparison of
nonnumeric operands. Any comparison which includes a nonnumeric
operand 1is a nonnumeric comparison. Nonnumeric comparisons are
made with respect to the EBCDIC collating sequence. According to
the data description entries above, which of the following
comparisons will be made with respect to the collating sequence?

a. REGIONAL-TOTAL EQUAL TO
COMP-NUMBER

b. RECORD-TOTAL GREATER THAN
RECORD-NUMBER

C. RECORD-IDENT LESS THAN
RECORD-NUMBER

* * *

b, c

(Any character 1in the picture of a variable other than a 9, a VvV, or
an S indicates that the variable is nonnumeric. 2ny edited variable
with a § or . in its picture is nonnumeric, as are variables with X's
or A's.)

e o e . e e . e e e o — T T — o o S ——— - — = _—— — " —_— o ——— —

15. Figure 7 shows the collating sequence of the COBOL character set
in descending order. The first character in the 1list is
considered to have the highest value; +the last character is
considered to have the lowest value. If the value of MARK were
5, the result of the relational condition

MARK LESS THAN ‘A"

would be ceeeceee «

- P e — ——— e~ e e e v — — ————— — —— —— — o o — —— = — . = v ho s o e o o

16. If the nonnumeric operands of a relational condition are the same

C

length, the characters in corresponding positions are compared
from 1left +to right. If an wunequal pair of characters is
encountered, the operand containing the character higher in the
collating sequence is considered to be the greater operand.

NAME1 EQUAL TO NAME2

When the relational condition above is evaluated, NAME1l has the
value BACKER and NAME2 has the value BARKER. According to Figure
1, the result will be:

da. true

b. false because the value of NAMEl1l is greater than the value of
NAME?2.

c. false because the value of NAME2 is greater than the value of
NAME1.

* * *

(Figure 7 shows that the letter Z has the highest value of the

letters of the alphabet and that A has the lowest.)

0

17.

18.
0

NAME1 GREATER THAN NAME2

When a relational condition with nonnumeric operands of unequal
size is evaluated, the shorter operand is padded with blanks on
the right to make it equal in length to the longer operand. Then
the operands are compared in the normal way beginning with the
leftmost characters. When the relational condition above is
evaluated, the value of NAME1l is CARR and the value of NAME2 is
CARVER. Figure 7 indicates that the result of this relational
condition will be

* * *

1 1 2 2 3 3 b 4 5 5 6 6 7

1...5....0....5....00...5....0....5....0....5....0....5....0....5....0..

01 TRANSACT-RECORD.

02 CLIENT-NUMBER PIC X(5).

02 ITEM-ID PIC A(S5).

02 UNIT-PRICE PIC 999V99.

02 QUANTITY PIC 999.

02 TITEM-DESCRIPTION PIC X(62).
01 TRANSACTIONS.

02 CLIENT-ID PIC X(5).

02 PART-ID PIC A(5).

02 AMOUNT-EACH PIC 999V99.

02 NUMBER-ORDERED PIC 999.

02 PART-DESCRIPTION PIC X(62).

395

r 1
| Variables vValues Variables Values |
| i
| CLIENT-NUMBER 55471 CLIENT-ID 47762 |
| ITEN-ID AACFG PART-ID XAACN |
| UNIT-PRICE 077725 AMOUNT-EACH 172750 |
{ QUANTITY 500 NUMBER-ORDERED azs |
L J
Figure 95

Refer to the pictures and values above and match the word or
words below with the correct relational condition. (You may also
refer to Figures 7 and 92 if necessary.)

1) CLIENT-NUMBER GREATER THAN
CLIENT-ID

2) PART-ID LESS THAN QUANTITY

3) UNIT-PRICE GREATER THAN
AMOUNT-EACH

4) NUMBER-ORDERED LESS THAN
QUANTITY
a. Invalid
b. Compared algebraically
c. Compared with respect to the collating sequence
d. True

e. False

* * *
1) ¢, d
2) a (An alphabetic item cannot be compared with a numeric item.)
3) b, e
4) b, d

19. Write an IF statement to specify that if ACCOUNT is greater than
BASE, control is to be transferred to a routine called CALCULATE.
If ACCOUNT is equal to or less than BASE, another record is to ke
read from INFILE. When the last card has been read from INFILE,
control is to transfer to FINISH.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5...0000.5.0..000..5.2..0.0..5.00.0020.5.02.0....5....0..

IF ACCOUNT GREATER THAN BASE
GO TO CALCULATE
ELSE READ INFILE

AT END GO TO FINISH.

396

20.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....0..0.5.0..0.00.5....000.05.0.00....5.0..0....5....0....5....0..

IF ACCOUNT NOT GREATER THAN BASE

READ INFILE AT END GO TO FINISH

ELSE GO TO CALCULATE.
The IF statement you wrote in the previous frame could also ke
written as shown above. NOT is a logical operator that causes
logical negation. In the IF statement above, the relational
condition will be true if ACCOUNT is not greater than BASE.
PRICE NOT EQUAL TO LIST-PRICE
The relational condition above will be true if PRICE 1is:
a. equal to LIST-PRICE.
b. greater than LIST-PRICE.
c. less than LIST-PRICE.

* * *

-——— e ——— -—— ——— e e e > e e s e o - -

21. The logical operator NOT can be used with any relational
operator. It must always be preceded by and followed by a space.
Write a statement using the NOT logical operator to specify that
if PART-NUMBER is equal to or greater than ORDER-NUMBER, the
record STATEMENT is to be written.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....00...5.0..00000500000000e50cee00ceebeeee0eeaedeeea0eeea5....0.,

IF PART-NUMBER NOT LESS THAN
ORDER-NUMBER WRITE STATEMENT.

You know that an IF statement causes a relational condition to be
evaluated and the appropriate path of control to be selected based on
whether the relational condition is true or false. As a programmer
you might be required to write a program in which the basis for the
selection of the appropriate path of control will depend on a set of
circumstances instead of a single relational condition. A possible
solution is to use a compound condition in a single IF statement.

SUMMARY:

You have now completed Lesson 19 in which you have learned to specify
various types of conditicns in IF statements. You have learned to use a
relational condition to specify a relationship between two variables or
a variable and a literal. You have learned to use the logical operator
NOT to specify negation. The class condition, which tests whether a
variable is alphabetic or numeric, and the sign condition, which tests
whether a numeric variable is positive, negative, or zero, will not ke
taught in this course. For information on the uses of these conditions,
refer to the Language Specifications Manual after completing this
course.

END OF LESSON 19

397

THIS PAGE INTENTIONALLY LEFT BLANK

398

LESSON 20

399

LESSON 20 - CONDITIONAL STATEMENTS (2)

INTRODUCT ION

In this lesson you will learn to use the logical operators AND and OR
to specify compound conditions. You will also learn to use condition-
name conditions to test a variable that has one of a specific set of
variables.

Specific COBOL language features you will learn in this lesson are:
AND and OR logical operators
Compound conditions
Condition-name conditions
Level 88

This lesson will require approximately one half hour.

400

1. A compound condition is formed by using the logical operators
other than NOT. Figure 89 1includes a 1list of the 1logical
operators. The logical operators that can be used to form a
compound condition are

OR and AND

o —— . —— . o —— ——— —— —— —— ——— T ——— T ——

0 0 1

1

2 2 3 3) 4 5 5 6 6 7

l1...5....0....5.0..00.0.5....0....5.00.0..0.5....0....5....0....5....0..

IF COST GREATER THAN 100 AND

SYMBOL EQUAL TO IDENTIFICATION
GO TO FINISH.

A compound condition can be two relational conditions connected

by OR or AND. The IF statement above contains the compound
condition

COST GREATER THAN 100 AND SYMBOL
ECUAL TO IDENTIFICATION

which, when evaluated, will give one result.

0 0 1

1

2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

IF NAME1l EQUAL TO NAME2 AND
ITEM EQUAL TO 10 PERFORM READ1.

The compound condition in the IF statement above:

a. 1s NAME1l EQUAL TO NAME2.

b. will give two results when evaluated.

* * *

Neither (The compound condition is NAME1l EQUAL TO NAME2 AND ITEM
EQUAL TO 10, which will give one result when evaluated.)

401

0

3.

0

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5%....0....5....0....5....0....5....0....5....0....5....0....5....0..

402

IF NAME1l ECUAL TO NAME2 AND
ITEM EQUAL TO 10 PERFORM READ1.

PERFORM READ1

Figure 96

The logical operator AND can connect two relational conditions to
form one compound condition that will give one result when
evaluated. The flow chart above diagrams the action specified by
the IF statement. As the word AND implies, the flow chart shows
that in order for a compound condition specifying AND to be true:

a. both relational conditions must be true.

b. either the first or the second relational condition must ke
true.

— s e e e . T o o — " . e

4.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0.0..5.00.000005.00.0000.5.0..00...5.00.0000.5.00.0..0.59....0..

IF NAME1 EQUAL TO NAME2 AND
ITEM EQUAL TO 10 PERFORM READ1.

When a compound condition consists of two relational conditions
connected by the logical operator AND, the relational conditions
are evaluated first. If both relational conditions are true, the
compound condition is true; otherwise it is false. When the
statement above 1is executed NAME1l is equal to NAME2 and ITEM is
equal to 5. The next statement executed will be:

a. the first statement in paragraph READ1.

b. the first statement in the sentence sequentially following
the IF statement.

5. Write a single IF statement to specify that if GROSS is greater
than 200 and if DEPENDENTS is not equal to zero, the value 1 is
to be moved to INDICATOR, otherwise the value 0 is to be moved to
INDICATOR.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5.0..0....5....0..

IF GROSS GREATER THAN 200 AND
DEPENDENTS NOT EQUAL TO O

MOVE 1 TO INDICATOR
ELSE MOVE 0 TO INDICATOR.

(The figurative constant ZERO could be used instead of the symbol 0.)

e - -—

-6. The logical operator OR can be used in the same way as AND to
form a compound condition. An example of a compound condition
using OR is:

a. NUMBER-1 OR GREATER THAN
NUMBER-2

b. OR NUMBER-1 GREATER THAN
NUMBER-2

c. NUMBER-1 GREATER THAN
NUMBER-2 OR SWITCH EQUAL TO 1

* * *

e s ——————— . —— —— — ——

403

0

7.
0

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....00.0.5.0..00.0.5.2..0....5....0.00.500..0....5....0..

IF NUMBER-1 GREATER THAN NUMBER-2
OR SWITCH EQUAL TO 1
ADD 1 TO NEW-COUNT.

NUMBERI1
>NUMBER?2

True

SWITCH = |

True

Add 1 to
NEW-COUNT

Figure 97
The flow chart above diagrams the action specified by the
statement. As the word OR implies, a compound condition
specifying OR will be true:

a. 1f either the first relational condition or +the second
relational condition is true.

b. only if both relational conditions are true.

404

8. A compound condition containing the logical operator OR will be
true if either the first or second or both relational conditions
are true. Which of the following statements specifies that the
value 1 will be moved to SWITCH-A if A-NUMBER or B-NUMBER or both
equal 27?

Ad.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0.0025.0..000005000.000005....0.0...5....0....5....0..

IF A-NUMBER EQUAL TO 2 AND
B-NUMBER EQUAL TO 2
MOVE 1 TO SWITCH-A.

b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....000¢.50000000005000e000ceb0cee00ieeebieee0iceebecee0aeaeb....0.,

IF A-NUMBER EQUAL TO 2 OR
B-NUMBER EQUAL TO 2
MOVE 1 TO SWITCH-A.

* * *

- - ——— - —-—— - -—— -

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.2..00...5.0..0.0..5....000..5....0....5....0..

IF GROSS LESS THAN 500 OR
PAYCODE EQUAL TO 1 PERFORM PAY-2
ELSE PERFORM PAY-1.

When the statement above is executed and GROSS has the value:

1) 250 and PAYCODE has the value 1, the routine called
will be performed.

2) 250 and PAYCODE has the value 0, the routine called
will be performed.

3) 600 and PAYCODE has the value 1, the routine called
will be performed.

4) 600 and PAYCODE has the value 2, the routine called
will be performed.

* * *
1) PAY-2
2) PAY-2
3) PAY-2
4) PAY-1

405

0

10. Write a statement to specify that if TOTAL-SALES exceeds 5000 or
CUSTOMER-CODE is equal to 1, or both, control will transfer to
PREFERRED. Otherwise, 1 is to be added to REJECTS.

* * *

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5.¢¢.0000250000000050000000e0900ca0iee5e0ea0000.5....00...5....0..

0

IF TOTAL-SALES GREATER THAN 5000 OR
CUSTOMER-CODE EQUAL TO 1
GO TO PREFERRED
ELSE ADD 1 TO REJECTS.

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....000..5.0..000005.00.0000.5.0020000.5.0..0.000.5....0..0..5....0..

406

IF (A EQUAL TO B OR C EQUAL TO D)
AND (W EQUAL TO X OR Y EQUAL TO 2)
GO TO EQUATE
ELSE GO TO BEGIN.

A compound condition can be two or more compound conditions
connected by AND or OR. An example of an IF statement containing
this type of compound condition is shown above. When the
statement above is executed the simplest compound conditions will
be evaluated first, then the results will be used to arrive at
the final result based on whether AND or OR is used. When the IF
statement above is executed, A is equal to B and C is equal to D.
W is not equal to X and Y is not equal to 2. After the IF
statement 1is executed, control will be transferred to a routine
called ..ccieus «

BEGIN

(An important consideration in writing complex test conditions 1is the
order in which the conditions involved are evaluated. Information on
the order of evaluation 1is given 1in the Language Specifications
Manual under Compound Conditions.)

The relational condition is a type of test condition. Another type
of test condition that you will find useful in programming is the
condition-name condition. In general, the condition-name condition
is used in an IF statement that tests whether a variable has a
specific value or one of a specific set of values.

12.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.00.000..5.0..0....5.00.0000.50...00...5....0..

01 EMPLOYEE-RECORD.
02 EMPLOYEE-NUMBER
02 EMPLOYEE-NAME
02 MARITAL-STATUS
02 DEPENDENTS
02 PAY-RATE
02 PAY-CODE

In the partial record description above, PAY-CODE will always
contain one of the values 1, 2, or 3. These values indicate
whether the employee is paid by the hour, week, or month,
respectively. The relational condition

PAY-CODE EQUAL TO 1

could be used in an IF statement to determine whether an employee
is paid by the hour. A variation of the IF statement that might
also be used for this purpose is shown below.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

IF HOURLY GO TO HOUR-RATE.
In this example HOURLY is:
a. equivalent to PAY-CODE EQUAL TO 1.

b. another way of expressing a relational condition.

407

0

13.

0 1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5.0..0.00.5000.0000.5000.000..5....0..

0

IF HOURLY GO TO HOUR-RATE.

As used in the statement above, HOURLY is the name of a condition
that expresses the relational condition PAY-CODE EQUAL TO 1. If
PAY-CODE contains the value 2, the employee is paid by the week.
The condition in either of the following statements could be used
to determine whether the employee is paid by the week.

0 1 1 2 2 3 3 4 4 5 5 6 6 7

l...5%...0..0.5.0..0000.500..0000.5.00.0000.5.00.0000.5....0....5....0..

0
1..

408

IF PAY-CODE EQUAL TO 2
GO TO WEEK-RATE.

IF WEEKLY GO TO WEEK-RATE.
In the statements above:
a. WEEKLY is a relational condition.
b. PAY-CODE is a condition name.
c. PAY-CODE is equivalent to WEEKLY.

* * *

None of these (WEEKLY 1is a condition-name condition that is
equivalent to the relational condition PAY-CODE EQUAL TO 2.)

14.

0 1 1 2 2 3 3 4 4 5 5 6 6 7
«5....0....5....0....5....0....5.0..0....5....0.00.5000.0.0..5....0..

02 PAY-CODE PIC 9.
88 HOURLY VALUE IS 1.
88 WEEKLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

When a condition-name condition 1is to be used in place of a
relational condition, the condition names must be described in
the Data Division, assigned specific values, and associated with
their related variable. The data description entries above show
how PAY-CODE is associated with the condition names to be used to
represent its values. This example shows that:

a. condition names have the level number 88.

b. the VALUE clause is used to assign to the condition name the
value the name is to represent.

Both

(Each 1level 88 entry must contain a VALUE clause, even if it is
written in the File Section. The conditional variable 1is an
elementary item, and as such must be defined with a PICTURE clause.)

You have now learned all of the level numbers that are included in
this course. Figure 98 in your Programmed Instruction -
Illustrations is a summary of level numbers for your use at any time.

Level Numbers

r -
| Number In Area Purpose |
| |
{ 01 A Record description entries. i
| |
| 02 thru 49 A or B Subdivision of level 01 entries. |
| May be group or elementary items. |
| |
| 77 A Independent data item |
| (Not a subdivision; not subdivided) |
| |
| 88 A or B Condition name (must use the VALUE clause) |
L J

For additional information on level numbers and their uses,
consult the Language Specifications Manual.

Figure 98

15.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

02 PAY-CODE PIC 9.
88 HOURLY VALUE IS 1.
88 WEEKLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

The entry above defines PAY-CODE as a conditional variable that

will contain the values represented by the associated condition

names. This example shows that:

a. the conditional variable is defined with a PICTURE clause.

b. the conditional variable will contain one of the values
assigned to its associated condition names by the VALUE
clause.

c. PAY-CODE is a condition nane.

* * *

409

16. The 1input area in a program contains the conditional variable

MARITAL-STATUS.

The column in a card that corresponds to this

variable will contain M, S, or D indicating that the employee is

married, single, or divorced,
wherever non-numeric constants are used,
enclosed in quotation marks when used in VALUE clauses.

respectively. As is the case

such constants should be
Example:

M. Which of the following correctly shows how MARITAL-STATUS
could be associated with appropriate condition names?

A

0 0 1 1 2 2 3 3 4

5 5 6 6 7

1...5....0....5.0..0.00.5.0..0000.5.0..0....5.0..0.0..5.0..00...5....0..

02

b.

0 0 1 1 2 2 3 3 4

MARITAL-STATUS PIC A.

88 'M' VALUE IS MARRIED.

88 'S*' VALUE IS SINGLE.

88 'D' VALUE IS DIVORCED.

5 5 6 6 7

1...5.00.00005000.00000500000000e500ee00005.00.0000005.00.0....5....0..

02

0 0 1 1 2 2 3 3 4

MARITAL-STATUS PIC A.

03 MARRIED VALUE IS 'M'.
03 SINGLE VALUE IS 'S'.
03 DIVORCED VALUE IS 'D’

5 5 6 6 7

l...5¢eca00ceebecee0eeeebeeealaceabeeee0eceeSeecaleceebeneelacee5....0..

02

d.

o 0 1 1

MARITAL-STATUS PIC A.

88 MARRIED VALUE IS ‘'M'.
88 SINGLE VALUE IS 'sS'.
88 DIVORCED VALUE IS 'D*

2 2 3 3 4

5 5 6 6 7

l1...5....0....5....0000.5..0.000.00500000000.5.0040000.50...0....5....0..

02 MARITAL-STATUS.

410

88 MARRIED PIC A.
88 SINGLE PIC A.
88 DIVORCED PIC A.

* *

17. JOB-TYPE 1is a level 02 elementary variable that will contain one
of the values 1, 2, or 3, specifying a workshop worker, an office
worker, or a factory worker, respectively. Write the data
description entry for JOB-TYPE and associate with it appropriate
condition names that can be used to represent its values.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0000.500.0000050000000005.00..000..5....00...5....0....5....0..

02 JOB-TYPE PIC 9.
88 WORKSHOP-WORKER VAIUE IS 1.
88 OFFICE-WORKER VALUE IS 2.
88 FACTORY-WORKER VALUE IS 3.

18. Using the data description entries you wrote in the preceding
frame, write the statement(s) necessary to specify that if the
employee is a workshop worker, control will transfer to a routine
called WORKSHOP; if he is an office worker, control will transfer
to a routine called OFFICE; if he is a factory worker, control is
to go to the next statement in sequence.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0.-...5....0....5....0....5....0....5....0.0..5000.0....5....0..

IF WORKSHOP-WORKER GO TO WORKSHOP.
IF OFFICE-WORKER GO TO OFFICE.

411

19.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.0..000..5.00.0..0.5....0....5....0....5....0..

02 PART-NUMBER PIC 9999.
88 SMALL VALUES ARE 0000 THRU 0299.
88 MED VALUES ARE 0300 THRU 0699.
88 LARGE VALUES ARE 0700 THRU 1000.

IF SMALL GO TO SMALL-SCALE.

In a preceding frame you wrote data description entries to cause
single values to be represented by condition names. It 1is also
possible to represent a range of values with a condition name Ly
using the THRU option of the VALUE clause. The data description
entries above show that the conditional variable PART-NUMBER can
contain any value from 0000 to 1000. Within this range of
values, three ranges are defined and represented by condition
names. According to the data description entries for PART-
NUMBER, when the IF statement above is executed, control will
transfer to a routine called SMALL-SCALE if PART-NUMBER contains
any of the values 0000 through 0299.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

IF LARGE ADD 2 TO FACTOR.
According to the data description entries for PART-NUMBER, when

the statement above is executed the value of FACTOR will be
increased by 2 if PART-NUMBER contains the value:

a. 0500.
b. 0700.
c. 0800.
d. 1000.

* * *

b, ¢, d (VALUES ARE 1is equivalent to VALUE IS; the phrases are
interchangeable when they are used with the THRU option. The words
IS and ARE are optional and may be omitted from any VALUE clause.)

412

20. GRADE is a level 02 variable that will contain values from 000 to
100. The values from 000 to 059 are failing grades, the values
060 through 069 are poor, the values 070 through 079 are passing,
the values 080 through 089 are good, and the values 090 through
100 are excellent. Write the data description entry for GRADE
and associate with it appropriate condition names that can be
used to represent its values.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

02 GRADE PIC 999.
88 FAILING VALUES ARE 000 THRU 059.
88 POOR VALUES ARE 060 THRU 069.
88 PASSING VALUES ARE 070 THRU 079.
88 GOOD VALUES ARE 080 THRU 089.
88 EXCELLENT VALUES ARE 090 THRU 100.

e s e i e e e o e e e s . e e i -

21. Refer to the data description entries you wrote for the last
frame and write a statement to specify that if the value of GRADE
is less than 060, a routine called ACTION is to be performed.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
lo..5 4202000025 00.0.0..5....0....5....0....5....0....5....0....5....0..

IF FAILING PERFORM ACTION.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

(IF GRADE 1ESS THAN 60 PERFORM ACTION

would also be correct.)

SUMMARY:

You have expanded your flexibility in testing capabilities by
learning how to specify compound conditions. You have also learned how
to test a variable that has one of a specific set of values.

END OF LESSON 20

413

THIS PAGE INTENTIONALLY LEFT BLANK

4iy

LESSON 21

415

416

LESSON 21 - CHANNEL SKIPPING AND ARITHMETIC

INTRODUCT ION

As a COBOL programmer you may Write programs for business data-
processing problems that specify precise arrangement of output data.
In previous lessons you learned to specify vertical and horizontal
spacing to meet output requirements. When output data 1is to be
recorded on preprinted forms, such as checks or invoices, it is often
necessary to use the technique called channel skipping. In this
lesson you will 1learn to specify channel skipping in the AFTER
ADVANCING option of the WRITE statement.

Business data-processing problems usually require arithmetic
calculations. You have already 1learned to specify addition,
multiplication, and subtraction. In this lesson you will learn to
specify division. You will also learn to specify combinations of the
four basic operations in a single statement.

Specific COBOL 1language features that you will learn to use in
this lesson are:

DIVIDE statement
CCMPUTE statement
Channel skipping

This lesson will require approximately three quarters of an
hour.

1. The COBOL statement used to specify division is the DIVIDE
statement. The simplest form of the DIVIDE statement is:

identifier-1

DIVIDE INTO identifier-2
numeric-literal-1

The result of a DIVIDE statement, the quotient, 1is stored
according to the rules for a MULTIPLY, SUBTRACT, or ADD
statement. The quotient is stored in:

a. identifier-1i

b. numeric-literal-1i

c. identifier-2

- e = S e . e . S —— " ————— — ———— —— ———— —— " —_— ——— - — ——— . —— —— ——— —

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0..0.5.0..00...5.00.000025.00.000..500..0.0..5....0..

DIVIDE 5 INTO TOTAL.
The DIVIDE statement above specifies the same operation as
TOTAL/5. The COBOL statement used to express the operation X/Y
is:
a.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0..0.5....0....5.00.0..0.5.0..0000.5.00.000..5,...0..

DIVIDE X INTO Y.
b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5..,.0....5....0..

DIVIDE X BY Y.
C.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0.0..5....0....5....0.00.5....0....5....0..

DIVIDE Y INTO X.

417

3. Write a DIVIDE statement to specify that the value of RESULT is
to be divided by the value of FACTOR.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

DIVIDE FACTOR INTO RESULT.

e . e e e . S e S ——— ——— —— ——— s - s - ——— — —— v ——

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....00...5.2..0....5.0..0....5....0.00.5.00.0....5....0..

77 FACTOR PIC 99.
77 RESULT PIC 999V99.

DIVIDE FACTOR INTO RESULT.

The result of a DIVIDE statement is padded or truncated as
necessary when it is stored in the appropriate variable. If the
values of FACTOR and RESULT are 02 and 12500, respectively, after
execution of the DIVIDE statement above, the value stored in:

a. FACTOR will be 06250.

b. RESULT will be 62500.

c. FACTOR will be 62500.

d. RESULT will be 06250.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0.0..5.0..000..5....0000.5....0....5....0..

77 DIVISOR PIC 99.
77 DIVIDEND PIC 99V99.

DIVIDE DIVISOR INTO DIVIDEND.
The values of DIVISOR and DIVIDEND are 03 and 0200, respectively.
After execution of the DIVIDE statement above, the value stored
in DIVIDEND will be R

* * *

418

6.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
i...5....0....5....0000.5.0..000..5....0..0.50.0.00005..0.00...5....0.,

77 BALANCE PIC 9999V99.
77 MONTHS PIC 9VI.

The ROUNDED option is used in a DIVIDE statement to specify that
the quotient is to be rounded. Write a statement to divide
BALANCE by MONTHS and round the quotient to the nearest cent.
(The ROUNDED option follows the name of the variable in which the
result is to be stored.)

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0000.5.00.0000.5.0040000.5.0..0.0..5....0....5....0..

DIVIDE MONTHS INTO BALANCE ROUNDED.

—————— - ———— ———— - — o —— — — —————_— ————— ——— —— ————

7.
identifier-1 identifier-2
DIVIDE INTO
nureric-literal-1 numeric-literal-2
GIVING identifier-3
The GIVING option can also be used in a DIVIDE statement as shown
above. You would expect that when the form of the DIVIDE
statement shown above is used, the value of:
a. identifier-2 is unchanged upon exection of the statement.
b. the quotient is stored in the variable indicated Ly
identifier-3.
* * *
Both

8. Write a statement to divide BALANCE by MONTHS and store the
rounded result in PAYMENTS (the ROUNDED option always follows the
name of the variable in which the result is to be stored).

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
i...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

DIVIDE MONTHS INTO BALANCE
GIVING PAYMENTS ROUNDED.

419

0
1..

420

9. Write a statement to divide PROFIT by 500. The rounded quotient
is to be stored in PORTION.

* * *

0 1 1 2 2 3 3 4 4 5 5 6 6 7
«5-.e..000005.00000000500000eee5.00e000e500e 000500 00...5....0.,

DIVIDE 500 INTO PROFIT GIVING
PORTION ROUNDED.

10. Any time an attempt is made to divide by zero, the size error
condition will occur. In order to avoid invalid data resulting
from this condition:

a. appropriate instructions should be included in the SIZE ERROR
option in the DIVIDE statement.

b. the ROUNDED option should be specified.

It is often necessary to perform several operations in order to
obtain a single result. For example, the area of a circle is r2,
Calculating the area would require two MULTIPLY statements. But the
same result can be obtained by a single COMPUTE statement.

11. Several arithmetic operations can be combined in one COMPUTE
statement. A COMPUTE statement can: :

a. reduce the number of statements in the source program.

b. combine two or more arithmetic operations into a single
statement.

Both
(The COMPUTE statement produces a more efficient object program than
other arithmetic statements.)

12.
identifier-2

COMPUTE identifier-1 = ({numeric-literal
arithmetic expression

According to the form of the COMPUTE statement shown above, which
of the following could be correct?
a.

0 o0 1 1 2 2 3 3 n 4 5 5 6 6 7
1eee52eee0eeeeSeeee0eneeSeeeeleceebevealoeeeSeuealeveabecealececSennalan

COVMPUTE 5 = TOTAL.
b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5.0..0000.5.0..0.00.5040.000..5000.00...5....0..

COMPUTE TOTAL = 5.
C.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0....5....0....5....0.00.5....0....5....0....5....0....5....0..

COMPUTE TOTAL = *'TOTALBl'.
d.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....0....5.0..00005¢0020000e5000e0000b.00.000005....0....5....0..

COMPUTE TOTAL = TOTALBl.

* * *

b, 4
(The symbol = must have at least one space preceding and one space
following it.)

——— —— e o > s i . . st e e e e s S e Sl . s e e - -

421

13.
identifier-2
COMPUTE identifier-1 =
numeric literal
identifier-2

MOVE TO identifier-1
numeric-literal

A COMPUTE statement and a MOVE statement of the forms shown above
are equivalent.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5.0¢.0000.5000.0000.500000000e500ee00ceeb0eee0aieadeeeeleeeade.0..

COMPUTE TOTAL = BALANCE.

If the value of BALANCE is 3742 and the value of TOTAL is 2005,
when the statement above is executed, the value of:

a. BALANCE will be changed to 2005.
b. TOTAL will be changed to 3742.
c. BALANCE will be changed to the value of TOTAL.

d. TOTAL will be changed to the value of BALANCE.

14.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0..0.5.00.0....5....0..

COMPUTE SWITCH = 1.

When the statement 1is executed, the value of SWITCH will ke
changed to ccceeec.

. s e = ——— ——— — —— —— — ——— - — ——— — — —— ——— " - ———— ——— —————— —— o —— - ——— ————

422

15.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0..0.5000.0000.5.0.0.000..5....0..0.5....0....5....0..

DATA DIVISION.
FILE SECTION.
FD OUTPUT-DISK-FILE

LABEL RECORDS ARE STANDARD.
01 DETAIL-RECORD.

02 ITEM-ID PIC X(6).

02 RATES PIC $5%.99.

02 AMOUNT PIC $$$.99.

02 PRIORITY PIC 99.
WORKING-STORAGE SECTION.
77 CLASS PIC 99.
77 QUANTITY PIC 999V99.
77 ASSESS PIC 999V99.

The picture for identifier-1 in a COMPUTE statement (the
identifier to the left of the equal sign) may contain edit
characters. The picture for any identifier to the right of the
equal sign may contain no edit characters but may contain a V or
S; that is, an identifier to the right of the equal sign must be
a numeric variable. According to the data description entries
above, which of the following statements is correct?

a.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....95....0....5....0..

COMPUTE AMOUNT = QUANTITY.
b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0.~..5....0....5....0..

COMPUTE QUANTITY = AMOUNT.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5..0.00.0.5.00.000005.0000000.500..0....5....0..

COMPUTE RATES = ASSESS.
d.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l1...5....0....5....0....5....0.0..5....0....5.0..0.000.5.4..0....5....0..

COMPUTE ASSESS = PRIORITY.
€.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5.4020000.5...0000005000.000.05....0..

COMPUTE RATES = 00000.

¥* * *

423

0

16.

Write

a statement to cause the value of INDICATOR to be changed

to 3.

0

1

* *

1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5.0..0....5.2..0.00.5....0.0...5....0....5....0..

0

0

1

COMPUTE INDICATOR 3.

or

1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

MOVE 3 TO INDICATOR.

e = = e e = ——— ———— o —— e S ———— ——— = ——— . —— - - —— T —————

424

17. An

equal sign in a COMPUTE statement.
valid
arithmetic operators.

1)

2)

3)

arithmetic expression may also appear to the right of the
An arithmetic expression is a
combination of numeric 1literals, numeric variables, and

Figure 99 shows the arithmetic operators.

Arithmetic Operators

Hierarchy Operator Meaning Example
of Arithmetic Cobol
Evaluation Expression Expression
1 + unary plus sign +2 ; [RET]
- unary minus sign -2 1121
2 ok exponentiation 3? | 35 a2 |
3 * multiplication 3X2 gy%{
/ division 3+2 v
4 + addition 3+2 H
- subtraction 3-2 Bl
Parentheses modify the order of evaluation; operations

enclosed in parentheses are performed first,
the innermost pair of parentheses.

beginning with

When 2 operators of same level of hierarchy appear in the
same expression, the operations are performed from left to
right.

Every operator must be preceded by and followed by a space,
except for unary signs.

Figure 99

The arithmetic expression NUMBER1 * NUMBER2 specifies that:
a. NUMBER1 and NUMBER2 are to be added.
b. NUMBER2 is to be divided by NUMBERL.

* * *

Neither (NUMBER1 and NUMBER2 are to be multiplied.)

18. Figure 99 shows that the signs + and - can be unary plus and
unary minus signs, respectively, or they can specify addition and
subtraction. A unary plus or minus sign precedes a single
numeric literal or identifier and specifies that the value of the
literal or identifier it precedes is to be multigplied by +1 or -
1, respectively.

The wvalue of FACTOR is -2. The value of the arithmetic
expression — FACTOR 1S eececcees .

* * *

——— e e - e e P e s i ot . e e e e e S i

19. The COBOL arithmetic expression

0 o0 1 1 2 2 3 3 4 4 5 5 6 6 7
1eee5ceea0eeaabeuncleeec5eeaaOeacaabecea0aaeaSecaa0enacSaaeaenaa5.0.0..

D/ B ** 2 +C

is equivalent to the algebraic expression D/B2 + C. Refer to
Figure 99 and show the algebraic equivalent of

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

FACTOR * .5 — TOTAL #** 3.

* * *

.5 X FACTCOR - TOTAL3

20. Refer to Figure 99 if necessary and write the COBOL expression
that is equivalent to X¥2,

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0.00.5.0..0.00.5.0..0....5.0..0000.5....0....5....0..

X * Y %% 2,

- —— e e e s —— - - -

425

21. Figure 99 shows the hierarchy of evaluation, which specifies the

0

0

order in which operations are performed when more than one
operator appears in an expression.

List the operations in the order in which they will be performed
in the expression

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0000.5000000005000.0000.50000000005.0000000e5000.0....5....0..

FACTOR * 5 - TOTAL ** 3.

* * *

** (exponentiation; TOTAL is cubed.)
* (multiplication; 5 and FACTOR are multiplied.)

(subtraction; TOTAL is subtracted from the product of 5
and FACTOR.)

_————— —— - o . . i e e e . S o e — v -~ — ——— -

22. Multiplication and division are on the same 1level in the

0

0

hierarchy. When these operators appear in the same expression,
the operations will be performed from left to right. The same is
true for addition and subtraction. Refer to Figure 99 and list
the operations in the order in which they will be performed in
the expression

1 1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

TOTAL -~ FRACTION / 2 *# 3 + 1.

* * *

(division)
(multiplication)
(subtraction)
(addition)

e o e e o e e e e e . . e S " ———————— ———————— " - — - ——— T —— —— ——— —————— - - —

426

23. When parentheses are included in an expression, the operation
specified within the innermost parentheses is performed first.
For example, in the expression

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0..0.5....0.0005.00.000ee5000e0.0005....0..

((A + B) * C) ** 2

A and B will be added, their sum multiplied by C, and the product
then squared.

List the operations in the order in which they will be performed
in the expression

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
l...5....0....5.0..00.0.5.0..0....5.02.00.0.5.00000002500..0....5....0..

(X 7 (2 * Y)) *%* 3,
* * *
* (multiplication)

/7 (division)
** (exponentiation)

24, Write a COBOL expression to add TOTAL1l and TOTAL2 and multiply
the sum by the product of 2 and TOTAL3.

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0.0025.0..0.00.5.0000000500000000e5000.00...5....0..

(TOTAL1 + TOTAL2) #* 2 * TOTAL3

—— o . e . i o . o o T . o o o o ——— — — o —— i —— — —— ——— — — - ——— — —— —— ————————

25.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....00.0.5....0....5....0..

COMPUTE TOTAL = COST - YEARS #* RATE.

When a COMPUTE statement containing an arithmetic expression is
executed, the variable specified by the identifier to the left of
the equal sign 1is set equal to the value of the result of the
evaluation of the arithmetic expression. If the values of COST,
YEAR, and RATE are 10000, 10, and 50 respectively, the value of
TOTAL after execution of the statement above will be

427

26. Which of the following statements would be used to find the
product of the value of RATE and the value of DEPOSIT and store
this product in BALANCE?

a.

] 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

MULTIPLY RATE BY DEPOSIT
GIVING BALANCE.

b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0000.5000.000..9....0..

CALCUILATE BALANCE = RATE #* DEPOSIT.

* * *

a (b contains the word CALCULATE instead of COMPUTE.)

——— - —— ——— ———— e e > — ——— ————— — —— ——— — = . s o = g

27. Write a statement to set STANDARD equal to +the result of
COMMISSION subtracted from the product of MONTHS and AMOUNT.

* * *

0 0 1 1 - 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....000.05.0..0000.500..0....5....0..

COMPUTE STANDARD = MONTHS * AMOUNT
- COMMISSION.

0 0 1 1 2 2 3 3) 4 5 5 6 6 7
1...5....0....5.¢..0....5.0..0000.5.000000005000e0000e500ee00ccadeee.0..

77 TAG PIC 99vI99.
77 PERCENT PIC V99.
77 BILL PIC $99.99.

Figure 100 shows the options that can be used in each arithmetic
statement. Write a COMPUTE statement to round the value of the
product of TAG and PERCENT to the nearest cent and store it in
the edited variable BILL.

428

Summary of Arithmetic Statements and Their Options

[0}
Allowable Options o E
@ | g | E
o) o o
E | z £)
o 2] -8
b @) s o
s & “ >
8 () 24 [+4
=) g @) m
> g =4 %
0 & & &
Z,] w <
">" o) =
. . z = N m
Arithmetic Statements 5] g 17} o
identifier-1 identifier-2
numeric- numeric- ... TO identifier-m X*1 X X
literal-1 literal-2
identifier-1 identifier-2
SUBTRACT { numeric- numeric- ... FROM identifier-m X X X
literal-1 literal-2
identifier-1
MULTIPLY < numeric- BY identifier-2 X X X
literal-1
identifier-1
numeric- INTO identifier-2 X X X X
literal-1
identifier-2
COMPUTE identifier-1 = < numeric-literal-1 X X
arithmetic-expression

* The reserved word TO is omitted when the GIVING option is specified.

Figure 100

429

* * *

0 0 1 1 2 2 3 3 0 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

COMPUTE BILL ROUNDED = TAG * PERCENT.

You now know how to specify addition, multiplication, division, and
subtraction in a COBOL program. You also know how to use a COMPUTE
statement to specify any combination of arithmetic operations. A
summary of arithmetic statements and the options that may be used in
them is given in Figure 100. You may refer to Figure 100 whenever
you are coding arithmetic statements.

In the next sequence you will learn to specify channel skipping, a
technique for providing vertical spacing in a printed report.
Channel skipping requires the use of a carriage control tape, which
is looped and mounted in a special compartment on the carriage of the
printer. The printing 1line to be wused is determined by an
instruction in the program that directs the carriage to move to a
punch in the appropriate channel of the carriage control tape; the
corresponding line is the printing line.

29.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0..0.5.52.0000.5.0020000e5000e000cebeeec0ecca5....0..

WRITE OUTPUT-RECORD
AFTER ADVANCING TO-FIRST-LINE.

When you wused the AFTER ADVANCING option of the WRITE statement
to advance to the first printing line of the next page, you used
channel skipping. The mnemonic name specified in the ADVANCING
option represented a specific channel on the carriage control
tape.

In the statement above a specific channel is specified by:

a. OUTPUT-RECORD.

b. AFTER ADVANCING.

c. TO-FIRST-LINE.

430

30. You will recall that the use of a mnemonic name in the AFTER
ADVANCING option required that the name be associated with a
system name. Which of the following would associate the mnemonic
name TO-NEXT-PAGE with a system name?

Aa

0 0 1 1 2 2 3 3 u 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5.:..0....5....0..

WORKING-STORAGE SECTION.
77 TO-NEXT-PAGE PIC X(13).

b.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

CONFIGURATION-SECTION.
SPECIAL-NAMES.
C01 IS TO-NEXT-PAGE.

e e e e e e e e e e e e e e e e e o o o i e o ————— i —— — " _— — —— ——————— — S _— v _———

31.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...9%....0.00005.0..000005.00.0000050000000005.000.00000500..0000.5....0.

WRITE OUTPUT-RECORD
AFTER ADVANCING TO-NEXT-PAGE.

In the preceding frame, the mnemonic name TO-NEXT-PAGE is
associated with the system name €01 in the SPECIAL-NAMES
paragraph. The system name CO01 represents channel 1 on the
carriage control tape. The statement above will cause the
printer to advance to the 1line corresponding to the punch in
channel 1 of the carriage control tape. If the punch in channel
1 corresponds to the third line on the page, the statement akove
will cause the record to be written on:

a. 1line 1 of a new page.
b. 1line 3 of a new page.
* * *

b
(Line 3 would be the first printing line of the page.)

431

o

32. The

system name COl represents channel 1 on the carriage control

tape. A carriage control tape has 12 channels. You might expect
that a mnemonic name could be associated with:

Ada

b.

Either

C02 to specify channel 2 on the carriage control tape.

any system name in the sequence C0l1 through C12.

* * *

33. Write the section of a COBOL program necessary to associate the
mnemonic name TO-TOTAL-LINES with the system name representing
channel 3 of the carriage control tape.

0 1

* * *

1 2 2 3 3 4 4 5 5 6 6 7

1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

CONFIGURATION SECTION.
SPECIAL-NAMES.

C03 IS TO-TOTAL-LINES.

0

34. Refer to the preceding frame, and write a statement that would
cause the contents of BILLING-RECORD to be written on the 1line
corresponding to the punch in channel 3 of the carriage control
tape.

0 1

* * *

1 2 2 3 3 4 4 5 5 6 6 7

1...5...0000.5.00.000ee500000eebeee00ce500e00005.00.0....5....0..

432

35. The

WRITE BILLING-RECORD
AFTER ADVANCING TO-TOTAL-LINES.

diagram in Fiqure 101 shows the carriage control tape in

position with a printed page. The punches 1in the tape for
channels 1 and 2 are shown and related to the information on the
corresponding lines of the page. The diagram also shows where
specific records are to be printed on the page. The form has
been designed so the heading should appear four 1lines from the

top

of the page and the totals on the 32nd line. The working-

storage variables and the output area used to produce this report

are

defined in the Data Division shown in Fiqure 101. Use the

diagram and Data Division and code the following entries.

1)

2)

3)

)

The section that would associate the mnemonic names TO-NAME-
LINE and TO-TOTAL-LINE with the system names representing the
channels containing punches

A statement that would cause the values in NAME-LINE to ke
printed on the fourth line of the page

A statement that would cause the first detail line (record in
DETAIL-LINE) to be printed with the spacing indicated in the
illustration

A statement that would cause the total line (record in TOTAL-
LINE) to be printed on line 32

54.70
14.90
$69.60

TOTAL

707721

DOUBLE BLOCK HOIST
50 FOOT ROPE HOIST

81753
81624

[
o
—s— ALBRITE CHEMICALS

GLUE

4= F TAPE HERE

Lo

- -
-0 e~

3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 2t 22 23 24 25 26 27 28 - 29 30 31 32 33 34 35 36 37 38

433’

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

DATA DIVISION.
FILE-SECTION.
FD OUTPUT-FILE
LABEL RECORDS ARE OMITTED.
01 INVOICE-RECORD PIC X({(121).
WORKING-STORAGE SECTION.
01 NAME-LINE.
02 NAME PIC X(20).
02 FILLER PIC X(6).
02 FIRM-ID PIC X(6).
02 FILLER PIC X(89).
01 DETAIL-LINE.
02 ITEM-NUMBER PIC X(5).
02 FILLER PIC X(10).
02 DESCRIPTION PIC X(25).
02 FILLER PIC X(5).
02 PRICE PIC 999.99.
02 FILLER PIC X(70).
01 TOTAL-LINE.
02 FILLER PIC X(30).
02 TITLE PIC X(5) VALUE 'TOTAL'.
02 FILLER PIC X(8).
02 TOTAL PIC $$5$5.99.
02 FILLER PIC X(70).

Figure 101

434

1)

0 0 1 1 2 2 3 3 4 y 5 5 6 6 7
l1...5....0....5....0.00.5.00.000005.00.0....5.0..000..500..0....5....0..

CONFIGURATION SECTION.
SPECIAL-NAMES.
C01 IS TO-NAME-LINE.
C02 IS TO-TOTAL-LINE.

2)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0..

WRITE INVOICE-RECORD
FROM NAME-LINE
AFTER ADVANCING TO-NAME-LINE.

3)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5.0..0.0..5.00.0000.5.0000.0.0.5.2..000025000.00...5....0..

WRITE INVOICE-RECORD
FROM DETAIL-LINE
AFTER ADVANCING 2 LINES.

4)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0....5.0..0....5....0..

WRITE INVOICE-RECORD
FROM TOTAL-LINE
AFTFR ADVANCING TO-TOTAL-LINE.

SUMMARY

In this 1lesson you have Jlearned to use +the DIVIDE and COMPUTE
arithmetic statements. At this point you are able to specify, in COBOL,
any computation that might be required in a program. You have also
learned to use channel skipping for vertical placement of printed data.

END OF LESSON 21

THIS PAGE INTENTIONALLY LEFT BLANK

436

LESSON 22

437

LESSON 22 - PROGRAM CODING EXAMPLE

INTRODUCT ION

This lesson consists of coding a program called MONTHLY-BILLING. You
will find that many of the precepts you learned in the previous lessons
are applied here.

This lesson will require approximately three quarters of an hour.

438

1. Figure 102 gives channel numbers and mnemonic names for use in a
billing procedure. Write a SPECIAL-NAMES paragraph to associate
the system name for each channel given in Figure 102 with the
appropriate mnemonic name.

Vertical Spacing Guide for PRINT-FILE

r 1
| Channel Mnemonic name Data to be printed following |
| skip to channel |
| |
| 1 TO-NMAME-LINE NAME-LINE |
| STREET-LINE single spaced |
| "CITY-STATE-LINE |
| |
| 2 TO-DETAIL-LINE DETAIL-LINE |
| DETAIL-LINE |
i . single spaced |
.
3 TO-SUBTOTAL-LINE SUBTOTAL-LINE
TAX-LINE single spaced
TOTAL-LINE
L d
Figure 102
* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0000.5.0..000..5.00.0000.5....00.0.5....0.00.0.5000.0000.5....0.,

SPECIAL-NAMES. (29)
C01 IS TO-NAME-LINE.
C02 IS TO-DETAIL-LINE.
C03 IS TO-SUBTOTAL-LINE.

- e = o = e - o ——————— — — —————— T —— . - — — — — o - ———— —————— -

439

440

;FL[};’NSACTION. I TOTAL-FILE

(total by
cust)

IBM-1130

PRINT-FILE
(page tobe used as a
bill)

MASTER-
FILE

Fiqure 103

The system flow chart above shows the files used in a program
called MONTHLY-BILLING. In this program a record from the master
file is to be accessed for each customer in the transaction file.
The address from the master file is to be printed on the bill,
and then the data from each transaction card for that customer is
to be processed (unit price * quantity = VOLUME-PRICE-WORK) and
printed. The value of a variable SUBTOTAL-WORK will be increased
each time a card record is processed, and when all data cards for
one customer have been processed, the value of this variable will
be printed as a subtotal. Tax will be calculated and printed,
and then added to the subtotal. The total will be printed to
complete the bill. Following this, the customer's number, his
subtotal and his tax will be placed in the output disk file for
subsequent use by another program. A bill is then printed for
the next customer, and the sequence is repeated until the
transaction file is completed.

Figure 102 gives a guide to vertical spacing for the bill, which
is written in PRINT-FILE. Figure 102 indicates that, except for
channel skipping, single spacing is to be used throughout.

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5....0....5....0....5....0....5....0....5....0..0.5....0....5....0..

IDENTIFICATION DIVISION.
PROGRAM-ID. MONTHLY-BILLING.
ENVIRONMENT DIVISION.
CCNFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
SPECIAL-NAMES.

C01 IS TO-NAME-LINE.

C02 IS TO-DETAIL-LINE.

C03 IS TO-SUBTOTAL-LINE.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTER-FILE

ASSIGN TO DF-1-600-X.

SELECT TRANSACTION-FILE

ASSIGN TO RD-1u442.
SELECT PRINT-FILE
ASSIGN TO PR-1132-C.
SELECT TOTAL-FILE
ASSIGN TO DF-2-800-X.
DATA DIVISION.
FILE SECTION.
FD MASTER-FILE

BLOCK CONTAINS 8 RECORDS

LABEL RECORDS ARE STANDARD.
01 CUSTOMER-MASTER.

02 PERSONAL-DATA.

03 NAME PIC X(20).
03 CUSTOMER-NUMBER PIC X(6).
03 STREET PIC X(15).
02 FILLER PIC X(2u4).
FD TRANSACTION-FILE

LABEL RECORDS ARE OMITTED.
01 PURCHASE-RECORD.

02 CUSTOMER-NUMBER PIC X(6).

02 ITEM-NUMBER PIC X(6).

02 DESCRIPTION PIC X(15).

02 UNIT-PRICE PIC 999V99.

02 QUANTITY PIC 99.

02 FILLER PIC X(u46).

FD PRINT-FILE

LABEL RECORDS ARE OMITTED.
01 BILL PIC X(121).

FD TCTAL-FILE

BLOCK CONTAINS 10 RECORDS

LABEL RECORDS ARE STANDARD.
01 TOTAL-RECORD.

02 CUSTOMER-NUMBER PIC X(6).

02 SUBTOTAL-T PIC 99999V99.

02 TAX-T PIC 999V99.

441

4y2

WORKING-STORAGE SECTION.
77 VOLUME-PRICE-WORK PIC 9999V99.
77 SUBTOTAL-WORK PIC 99999V99.
77 TAX-WORK PIC 999V99.
01 NAME-LINE.
02 FILLER PIC X(9) VALUE SPACES.
02 NAME PIC X(20).
02 CUSTOMER-NUMBER PIC X (6).
02 FILLER PIC X(86) VALUE SPACES.
01 STREET-LINE.
02 FILLER PIC X(9) VALUE SPACES.
02 STREET-O PIC X(15).
02 FILLER PIC X(97) VALUE SPACES.
01 DETAIL-LINE.
02 FILLER PIC X(5) VALUE SPACES.
02 ITEM-NUMBER PIC X(6).
02 FILLER PIC X(5) VALUE SPACES.
02 DESCRIPTION PIC X(15).
02 FILLER PIC X(5) VALUE SPACES.
02 UNIT-PRICE PIC 999.99.
02 FILLER PIC X(5) VALUE SPACES.
02 QUANTITY PIC 99.
02 FILLER PIC X(5) VALUE SPACES.
02 VOLUME-PRICE PIC 9,999.99.
02 FILLER PIC X(59) VALUE SPACES.
01 SUBTOTAL-LINE.
02 FILLER PIC X(52) VALUE SPACES.
02 SUBTOTAL PIC $5%,$99.99.
02 FILLER PIC X(59) VALUE SPACES.
01 TAX-LINE.
02 FILLER PIC X(48) VALUE SPACES.
02 CONSTANT1 PIC XXX VALUE °*TAX'.
02 FILLER PIC X(5) VALUE SPACES.
02 TAX PIC 999.99.
02 FILLER PIC X(59) VALUE SPACES.
01 TOTAL-LINE.
02 FILLER PIC X(42) VALUE SPACES.
02 CONSTANT-2 PIC X(5) VALUE 'TOTAL'.
02 FILLER PIC X(S5) VALUE SPACES.
02 TOTAL PIC $5%,$99.99.
02 FILLER PIC X(59) VALUE SPACES.

(The optional word IS has been omitted from the VALUE clause)

Figure 104

Figure 104 contains the complete coding for the first three
divisions of the program. The SPECIAL-NAMES paragraph is the one
that you wrote in the preceding frame. Because numeric-edited
variables cannot be used in calculations, it was necessary to
include several working-storage numeric variables along with
input variables that can be used in the required calculations.
Elementary variables in records that will be printed contain some
editing symbols. These variables may be used to store values.

Figure 105 is a program flow chart for the Procedure Division of
MONTHLY-BILLING. Follow the flow chart and write the Procedure
Division to complete MONTHLY-BILLING.

BEGIN

a record
from disk

Is
number
on card> number
f) mm,disk

Is
number
on card <number
fl’Oﬂ"'I disk

PRINT-ADDRESS
Move appropnate
values to -LINE
STREET-LINE and
CITYSTATE.LINE

PRINT-DETAIL
[ER0) 0)T -
[WORK = UNIT-PRICE
* QUANTITY (of
PURCHASE-RECORD

SUBTOTAL-WORK +
VOLUME-PRICE-
WORK

Y

Move VOLUME-
PRICE-WORK
to VOLUME-PRICE

Y

Move identical
names from

PURCHASE-RECORD

to DETAIL-LINE

[2

READ-TRANSACTION-
ROUTINE
Read
another
card record

1

Move
DETAIL-LINE
to output record

FIRST-DETAIL-
LINE

Write first line

Perform

TOTAL-
CALCULATION

Is
number
on card > number
fromodisk

TOTAL-
CALCULATION

Is
number
on card < number
fron}, disk

Move
SUBTOTAL-WORK
to SUBTOTAL

Perform
PRINT-DETAIL

Y

wnte
UBTOTAL-LINE
with correct
spacing

Write line

TAX-WORK =.04 *
SUBTOTAL-WORK,
then move result
to TAX

Write TAX-LINE

TOTAL = TAX-WORK

+ SUBTOTAL-WORK

Write TOTAL-
LINE

Movedappropriate

ata to
TOTAL-RECORD

RETURN-1

ERROR-ROUTINE

Write
“Error in card file”
on console

End program

Figure 105

443

* * *

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1...5000.000..5.00.00002500000000050000000005000000e50eee00eeede.s.0.

PROCEDURE DIVISION.
BEGIN.
OPEN INPUT MASTER-FILE
TRANSACTION-FILE
OUTPUT PRINT-FILE
TOTAL-FILE.
READ TRANSACTION-FILE
AT END GO TO ERROR-ROUTINE.
INITIALIZE.
MOVE ZEROS TO SUBTOTAL-WORK.
READ-MASTER.
READ MASTER-FILE
AT END GO TO FINISH.
IF CUSTOMERNUMBER GREATER THAN
CUSTOMER-NUMBER OF PERSONAL-DATA
GO TO READ-MASTER.
IF CUSTOMERNUMBER LESS THAN
CUSTOMER-NUMBER OF PERSONAL-DATA
GO TO ERROR-ROUTINE.
PRINT-ADDRESS.
MCVE NAME OF PERSONAL-DATA
TO NAME OF NAME-LINE.
MOVE CUSTOMER-NUMBER OF PERSONAL-DATA
TO CUSTOMER-NUMBER OF NAME-LINE.
MOVE STREET OF PERSONAL-DATA
TO STREET OF NAME-LINE.
MCVE CITY-STATE OF PERSONAL-DATA
TO CITY-STATE OF NAME-LINE.
MOVE STREET TO STREET-O.
MOVE CITY-STATE TO CITY-STATE-O.
WRITE BILL FROM NAME-LINE
AFTER ADVANCING TO-NAME-LINE. (31D
WRITE BILL FROM STREET-LINE
AFTER ADVANCING 1 LINE.
WRITE BILL FROM CITYSTATE-LINE
AFTER ADVANCING 1 LINE.
PRINT-DETAIL.
CCMPUTE VOLUME-PRICE-WORK = (11
UNIT-PRICE OF PURCHASE-RECORD
* QUANTITY OF PURCHASE-RECORD.
ADD VOLUME-PRICE-WORK
TO SUETOTAL-WORK.
NMOVE VOLUME-PRICE-WORK
TO VOLUME-PRICE.
MCOVE CUSTOMER-NUMBER OF PURCHASE-~RECORD
TO CUSTOMER-NUMBER OF DETAIL-LINE.
MOVE ITEM-NUMBER OF PURCHASE-RECORD
TO ITEM-NUMBER OF DETAIL-LINE.
MOVE DESCRIPTION OF PURCHASE-RECORD
TO DESCRIPTION OF DETAIL-LINE.
MOVE UNIT-PRICE OF PURCHASE-RECORD
TO UNIT-PRICE OF DETAIL-LINE.
MOVE QUANTITY OF PURCHASE~RECCRD
TO QUANTITY OF DETAIL-LINE.
MOVE DETAIL-LINE TO BILL.
FIRST-DETAIL-LINE.
WRITE BILL
AFTER ADVANCING TO-DETAIL~LINE. (31)
READ-TRANSACT ION-ROUTINE.
READ TRANSACTION-FILE
AT END PERFORM TOTAL-CALCULATION
GO TO FINISH.
IF CUSTOMERNUMBER GREATER THAN

4uyy

CUSTOMER-NUMBER OF PERSONAL-DATA
GO TO TOTAL-CALCULATION.
IF CUSTOMERNUMBER LESS THAN
CUSTOMER-NUMBER OF PERSONAL-DATA
GO TO ERROR-ROUTINE.
PERFORM PRINT-DETAIL.
WRITE BILL
AFTER ADVANCING 1 LINE.
GO TO READ-TRANSACTION-ROUTINE.
TOTAL-CALCULATION.
MOVE SUBTOTAL-WORK TO SUBTOTAL.
WRITE BILL FROM SUBTOTAL-LINE (31)
AFTER ADVANCING TO-SUBTOTAL-LINE.
COMPUTE TAX-WORK = .04 *
SUBTOTAL-WORK.
MOVE TAX-WORK TO TAX.
WRITE BILL FROM TAX-LINE
AFTER ADVANCING 1 LINE.
COMPUTE TOTAL = TAX-WORK +
SUBTOTAL-WORK.
WRITE BILL FROM TOTAL-LINE
AFTER ADVANCING 1 LINE.
MOVE CUSTOMER-NUMBER
OF PERSONAL-DATA
TC CUSTOMER-NUMBER
OF TOTAL-RECORD.
MOVE SUBTOTAL-WORK TO SUBTOTAL-T.
MOVE TAX-WORK TO TAX-T.
WRITE TOTAL-RECORD.
RETURN-1.
GO TO INITIALIZE.
ERROR-ROUTINE.
DISPLAY 'ERROR IN CARD FILE'
UPON CONSOLE.
FINISH.
CLOSE MASTER-FILE
TRANSACTION-FILE
PRINT-FILE TOTAL-FILE.
STOP RUN.

Figure 106

SUMMARY

The problem you Jjust completed is a fair summation of many of
major COBOL precepts you have studied up to this point. Perhaps you
now see more clearly the progress that you have made.

END OF LESSON 22

the
can

uus5

THIS PAGE INTENTIONALLY LEFT BLANK

446

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

=
W
S
0
@]
@
]
| g
_‘
o
x
%
<
o
3
®
=
3
=
@
Q
=
c
%
>
%
i
N
@
=)
@
W
Q@
o

