'IBM 1130 RPG

Program Number 1130-RG-007

This publication describes the internal logic of the
RPG compiler for the 1130 Computing System. It is
intended for use by persons involved in program
maintenance, and system programmers who are altering
the program design. Program logic information is
not necessary for the use and operation of the
program; therefore, distribution of this publication
is limited to those with the aforementioned require-
ments.

| Restricted “Biétribution

File Number 1130-28
Form Y21-0010-0

Program Logic

PREFACE

This program logic manual (PLM) supplements

the program listing of the 1130 RPG Compiler
(referred to in this publication as RPG) by

describing the program.

The first section of this PLM starts by
discussing the overall structure of the RPG
compiler. Following this, each phase is
described individually and is accompanied
by a flowchart of the logical elements.

The second section of this PLM describes
the main routines of the RPG object program.
The description contains flowcharts and

narrative which serve to illustrate the
cycle of operations within the object
program.

Prerequisites and Related Publications:

Effective use of this publication requires
an understanding of the RPG language

contained in the publication IBM 1130 RPG
Language, Form C21-5002.

First Edition

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader’s comments. If the form

has been removed, comments may be addressed to IBM Corporation, Prograinming
Publications, Department 425, Rochester, Minnesota 55901.

© Copyright International Business Machines Corporation 1969

For information on the 1130 Computing System
beyond the purpose of this publication, refer
to the following publications:

1. 1IBM 1130 Disk Monitor System, Version 2:
Programming and Operator's Guide, Form
C26-3717.

2. 1IBM 1130 Disk Monitor System, Version 2:
Program Logic Manual, Form Y26-3714.

3. IBM 1130 Disk Monitor System, Version 2:
System Introduction, Form C26-3709.

4. IBM 1130 Subroutine Library, Form
C26-5929.

For titles and abstracts of associated
publications, see IBM 1130 Bibliography,
Form A26-5916.

CONTENTS

INTRODUCTION. . &+ « & o o o o o o« o« o o 1 Assemble Calculation 1 Phase (RG44) . . 24
IBM 1130 RPG. . . « & & & o o o « « « o 1 Assemble Calculation 2 Phase (RG 46). . 25
System Environment. 1 Assemble Output Fields (RG52) 25
Machine Requirements 1 Assemble Put Phase (RG54) 25
Additional Machine Features Assemble Linkage Phase (RG58) 25
Supported. 1 Terminate Compilation (RG60). 26
Program Organization. 2 Compiler Flowcharts « « « « . . 27
Method of Operation, 2
Resident Routines and the
Communication Area. . . . « + « « + « . 2
Linkage Between Phases. . . « . « . . . 4 PHASE DIRECTORY . . . « . . . « . . . 55
System Initialization 4 CONTROL BLOCKS AND TABLES 57
Input Processing. « 6 Filename Table + « « « « . 57
Diagnosing, Noting, and Describing . TENT Table (TENT). . . . o« « 57
Errors. . . L L Input/Output Table (IOTAB) 58
Generating ObJeCt Code: v v v v vi .t o T Cogtrél Level Address Table. 58
Final Processing. 8 overflow Table (SEQOF) 58
PROGRAM ORGANIZATION. . v + v o v o o . 9 Filel Table (FILEl). . . « « « . . . 59
Functional Organization 9 DIAGNOSTIC AIDS . + v v o o oo o o . . 67
Resident Phase 9 External Reference Table. 67
Enter Phases 10 Control Block and Table Usage 70
Assign Phases. . « « « + « « .« « » o 10
Diagnostic Phases. 10 COMPRESSION FORMATS 71
I/O Phases .« .« « o o o o o o o o« o o 12
Assemble Phases. 12 PART TWO: 1130 RPG OBJECT PROGRAM. . . 83
The RPG Object Program Cycle. 85
PHASE DESCRIPTIONS. - 15 Tables and Work Areas +« « « 85
Resident Phase (RG0OO) 15 Function Address Table (FAT) « +« . . 85
Common Routines . . s e e e e 16 File Input Tables (FITs) 85
CALPH - Call Phase Routlne . . . 16 Output Tables. « « 87
GETCM - Get Compression Routlne . . 16 Low Field, PS, and Processing
PRTER - Error Note Routine 16 BI1OGKS « v o o o o o 4w v o o v .. 89
PRTSP - Print Listing Routine. . . . 16 Control Level Hold Areas 90
PUTCM - Put Compression Routine. . . 17 Pseudo Registers . . . « « 90
RDSPC - Get Source Routine 17 Object Time Routines. . . . oL 90
PUTOB - Put Object Code. 17 Input/Output Drivers (IODs). 90
OBEND - Complete Object Code 17 Fixed Driver (Overhead). 91
Enter File Specifications (RG02). . . . 18 Output Lines Routines 96
Enter Input Specifications (RG04) . . . 18 Get Input Record Routinés: ; : : : 102
Enter Calculation Specifications 19 Core Storage Allocation104
(RGO6) . + « & « « . & . . ; .
Enter Output Spe01flcat10ns (RGOB). . 19 Tra;;?giggigggigﬁ Program) :igg
Assign Indicators Phase (RG10). P Heading and Detail Lines109
Assign Field Names Phase (RG12) . . . 20 Get Input Record109
Assign Literals Phase (RG14). 20 Determine Record Type. L. . .109
Extended Diagnostics 1 Phase (RG1l6) . . 20 Test for Control Level éreak X . .110
Extended Diagnostics 2 Phase (RG17) . . 21 Total Calculations110
Error Message Phases (RG19, RG20, Move Input Fields.1l10
RG21) s e e 2l Chaining Routinel1l0
Assemble 1 I/0 Phase (RG22) 21 Detail Calculations.1l10
Assemble 2 I/O Phase (RG24) 22 Processing with an RA File.1ll1
Assemble 3 I/O Phase (RG26) 22 Processing By Cl, C2, or C3 Type
Assemble 4 I/0O Phase (RG28) 22 Chaining. . . + + & & ¢« « « & « &+ « . 114
Assemble Tables Phase (RG32). 22 Control Level Processing. 114
Assemble Chain and RA File Phase Processing Multiple Input Flles e e . W117
(RG34). e e e . . .23 Numeric Sequencing.120
Assemble Input Flelds (RG36) e o+« . 23 Object Program Flowchart.123
Assemble Control Levels Phase (RG38). . 23 Library Subroutines e e .128
Assemble Multi~Files Phase (RG40) . . . 24 Move From I/0 Buffer to Core
Assemble Get Phase (RG42) 24 (Chart MA) ¢« ¢« « ¢« « « « . .156

ii

Move From Core to I/O Buffer

(Chart MB) . . « « « « « « « . . .156
MOVE (Chart MC). « « « . . .156
MOVEL (Chart MC)« . .156
Alphameric Compare (Chart MD) . . .156
Test Indicators (Chart ME) . 157

Set Resulting Indicators (Chart ME) .157
Set Indicators On or Off (Chart MF).157
Test for Zero or Blank (Chart MF). .158
Test Zone (Chart MG)158
Record ID Conversion (Chart MH). . .158
Object Time Error (Chart MI)158

Blank After (Chart MJ)158
Add, Subtract and Numeric Compare

(Chart MK) . . . e « o & « « & . 4159
Mutiply (Chart ML) e e e e e 4 . . J160
Divide (Chart MM).161
Move Remainder (Chart MN).163

RPG Conversion (Chart MO).1l63
Sterling Input Conversion
(Chart MP) . . . +« « « « &+ « +» o« +» 2163
Sterling Output Conversion
(Chart MP) +. « « « + . . .164
Edit (Chart MQ).« « 4165
Sequential Access (Chart MR) . « .+ 166
Direct Access (Chart MS)167
ISAM LOAD (Chart MT)1l69
ISAM ADD (Chart MU). . B A §
ISAM Sequential (Chart MV) e o « . 2173
ISAM Random (Chart MW) 175
Core Dump Trace of an Object Program. .177

APPENDIX A: OBJECT TIME FORMAT OF
DATA FIELDS . « &+ « & o« s o » o s« « o« 4183

INDEX « 4 & o o o o« o o o o o o o o« » o185

FIGURES

Figure 1. Program Block Diagram . . .

Figure 2. 1Initialization Functions of
the RPG Compiler

Figure 3. 1Input Processing Functions
of the RPG Compiler

Figure 4. Diagnostic Functions of

the RPG Compiler . . « e e e
Figure 5. Generate Object Code
Functions of the RPG Compiler . . .
Figure 6. Final Processing Functions
of the RPG Compiler
Figure 7. Resident Phase, External
Routine Usage e e e e e
Figure 8. Enter Phases, External
Routine Usage
Figure 9. Assign Phases, External
Routine Usage . « « « v « & « o o .
Figure 10. Diagnostic Phases, External
Routine Usage e e .
Figure 11. Input/Output Phases,
External Routine Usage
Figure 12. Assemble Phases, External
Routine Usage
Figure 13. Object Code for the leed
Driver Routine

TABLES

Table 1. Storage Layout
Table 2. Phase Directory
Table 3. Communications Area

(COMAREA) « v « « ¢ o« o o o o o o
Table 4. External Reference Table . .
Table 5. Control Blocks and Tables

Created by the 1130 RPG Compiler .
Table 6. File Description

Compression . . .+ « « ¢« 4 4 4 W .

Table 7. Extension Compression . . .
Table 8. Input Compression
Table 9. Calculation Compression . .
Table 10. Output-Format

COomMpPression . « « o « « + o .
Table 11. Contents of the Functlon

Address Table . « ¢« ¢ ¢ « « « o« o+

10
11
11
12
12
13

92

ILLUSTRATIONS

Figure 14. Logic of the Central
Output Driver
Figure 15. Object Code of the GET

Routine
Figure 16. Object Code of the
EOFTS Routine
Figure 17. Core Storage Allocatlon
Map o o o ¢ v 4 v h e e e e e
Figure 18. Typical Source Code for
Object Program Generation , . .
Figure 19. Processing With an RA
File v e e e e e e e e e e
Figure 20. Processing Multiple
Input Files
Figure 21. Routines Generated to

Process

Figure 22. Object Code put out for

Numeric Sequencing . .« e e
Figure 23. Location of the lerary

Subroutines in an Object-time

Core Ioad . . v +v v v v & « o .
Figure 24. Object Prcgram Core

Dump Trace « e e
Figure 25. Analysis of a

Core DUMP . &« «¢ v & « 2 o o o o
Table 12. Routines That Call Library

Subroutines PN

Multiple Input Files .

Table 13. DFI Table for the
Sequential Subroutine
Table 14. DFI Table for the Direct
Access Subroutine
Table 15. DFI Table for the ISAM
LOAD Subroutine « « « . o .
Table 16. DFI Table for the ISAM ADD
Subroutine . . ¢ ¢ ¢ ¢ 4 e e . W
Table 17. DFI Table for the ISAM

Sequential Subroutine
Table 18. DFI Table for the
Random Subroutine

IsaM

97
103
104
106
108
112
117
117

120

128

178
179

128
167
168
170
172
174

176

iii

CHARTS

Chart AA. Resident Phase (RGO0O)
Chart BA. Enter File Specifications
Phase (RGO2) « . .
Chart BB. Enter Input Specifications
Phase (RGO4)
Chart BC. Enter Calculations

Specifications Phase (RG06)
Chart BD. Enter Output-Format

Specifications Phase (RGO08)
Chart CA. Assign Indicators

Phase (RG10) . . . « . . .

Chart CB. Assign Field Names

Phase (RG12)
Chart CC. Assign Literals

Phase (RG14) e v s e e e e s
Chart DA. Extended Diagnostics

Phase (RG16)
Chart DB. Extended Calculatlon and

Output Diagnostic Phase (RG1l7)

Chart DC. Error Message Phases
(RG19, RG20, RG21l)

Chart EA. Assemble 11/0 Phase
(RG22)

Chart EB. Assemble 2 I/O Phase
(RG24) v 4« v v v 4 & o o o

Chart EC. Assemble 3 I/O Phase
(RG26)

Chart ED. Assemble 4 I/O Phase
(RG28) .

Chart FA. Assemble Tables
Phase (RG32) e e

Chart FB. Assemble Chaln and RA

File Phase (RG34)

Chart FC. Assemble Input Fleld
Phase (RG36) e e e e .
Chart FD. Assemble Control Levels
Phase (RG38)

Chart FE. Assemble Multl Flles
Phase (RG40) . .

Chart FF. Assemble GET Phase (RG42)

Chart FG. Assemble Calculation 1
Phase (RG44) . . .

Chart FH. Assemble Calculatlon 2
Phase (RG46) . e

Chart FI. Assemble Output Flelds
Phase (RG52)

Chart FJ. Assemble PUT Phase (RG54)

Chart FK. Assemble Linkage

Phase (RG58) . . .«

iv

27
28
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48

49
50

51
52

53

Chart FL. Terminate Compilation

Phase (RG60) e e e e .
Chart GA. RPG Object Program

(Simple Flow) .« v o ¢ « o o o o o =
Chart HA. RAF Routine . . . e .
Chart IA. Logic of the Chalnlng

Routine . . « « + « & ¢ o« o« o & «
Chart JA. COMP Routine
Chart KA. MFTST Routine
Chart LA. RPG Object Program
Chart MA. Move From I/O Buffer

to Core Subroutine« e .
Chart MB. Move From Core to I/O
Buffer Subroutine . . . v e e .

Chart MC. RPG MOVE and MOVEL
Subroutines ¢ ¢« o o .

Chart MD. Alphameric Compare
Subroutines

Chart ME. Test Indicators and Set

Resulting Indicators Subroutines .
Chart MF. Set Indicators On or Off,
and Test for Zero or Blank
Subroutines .« .« .+ . ¢ ¢ . e e e s
Chart MG. Test Zone Subroutine .
Chart MH. Record ID Conversion
Subroutine . . . ¢ ¢ ¢ 4 e . .

Chart MI. Object Time Error
Subroutine . . . P

Chart MJ. Blank After Subroutlne . .

Chart MK. RPG Add, Subtract, Numeric

Compare Subroutine . .

Chart ML. RPG Multiply Subroutlne .
Chart MM. RPG Divide Subroutine . . .
Chart MN. RPG Move Remainder
Subroutine ¢ ¢« o 0 e e
Chart MO. RPG Binary Conversion
Subroutine

Chart MP. RPG Sterllng Input and
Sterling Output Conversion
Subroutines . . . e e e e e e

Chart MQ. RPG Edit Subroutlne . e

Chart MR. Sequential Disk
Subroutine e e .
Chart MS. Direct Access DlSk
Subroutine e
Chart MT. ISAM Load Subroutlne . e
Chart MU. ISAM ADD Subroutine
Chart MV. ISAM Sequential
Subroutine
Chart MW. ISAM Random Subroutlne . .

54

84
113

114
115

118
124
129
130
131
132
133
134
135
136

137
138

139
140
141
142
143
144
145
l4e
148
149
151

153
155

IBM 1130 RPG

The IBM 1130 RPG language provides an effi-
cient technique for writing source programs
that can be translated into object programs
(machine language) by the 1130 RPG
compiler.

1130 RPG consists of a source language and
a compiler. The source language allows
definitions of characteristics of the files
to which the input and output records be-
long, the fields of input data records, the
literals, the operations and calculations
to be performed, and the fields of the out-
put records. The RPG language entries
specified on the RPG coding form make up
the source program. i

The RPG compiler reduces the input/output
operations and the number of data passes
to a minimum. Input/output operations are
reduced by retaining as much source data
as possible in main storage. All blanks,
comments, and unrequired fields are delet-
ed from the source specifications, and the
resulting compressed source specifications
are placed in a reserved area of main stor-
age called a compression buffer. The term
compression (or compression record), as
used in this publication, refers to the
data compressed from one source statement.
Compression blocks refers to a group of
these compressed specifications. Compres-
sion block one is variable in length de-
pending on the amount of core storage
available. All succeeding blocks are of
fixed length (2560 words). Examples of
the compression record formats for each
specification type are included under
"COMPRESSION FORMATS."

The number of iterations through compres-
sion records is reduced by placing unique
field names, literals, and resulting indi-
cators into tables. The areas allotted

for the tables are large enough to contain
all of the entries in most of the programs
to be compiled. As a result, addresses
can be assigned to the entries immediately,
and machine instructions can be generated
with a minimum number of iterations through
compression.

INTRODUCTION

SYSTEM ENVIRONMENT

Machine Requirements

Program Generation

The minimum machine requirements for gener-
ating an RPG object program are as follows:

e 1131 with 8K words of core storage
® One card-reading device
® Single Disk Storage Feature

® One printer (IBM 1132, 1403, or console
printer.)

Object Program Execution

The minimum machine requirements for the
execution of an RPG object program depend
on the I/0 configuration used:

e 1131 with 8K words of core storage and
single disk storage

e Input/Output devices as required by the
object program:

IBM 1403 Printer, Model 6 or 7

IBM 1442-5 Card Punch

IBM 1132 Printer

IBM 2501 Card Reader, Model Al or A2
IBM 1442 Card Read/Punch, Model 6 or 7

Additional Machine Features Supported

The following system features are support-
ed for program generation:

e 1131 with 16K or 32K words of core
storage

® A card-punching device if the object
program is to be punched

® One or more additional IBM 2310 disk
units

Introduction 1

PROGRAM ORGANIZATION

As shown in Figure 1, the 1130 RPG compiler
consists of six major components: the Resi-
dent Phase, Enter Phases, Assign Phases,
Diagnostic Phases, Input/Output, and Assem-
ble Phases.

The Resident Phase is the first phase of
the compiler. Some routines within the
Resident Phase remain in storage through-
out compilation. These routines handle
calling a phase, getting and putting a com-
pression block, printing and reading source
statements, and printing error notes.

The Enter Phases read, list, compress, and
perform diagnostics on the source state-
ments. Also, a table of filenames is
created.

In the Assign Phases, addresses are as-
signed to Resulting Indicators, defined
field names, and Calculation and Output
literals in the compression. Also, a sym-
bol table is printed.

The Diagnostic Phases detect errors not
detected in the Enter Phases, list all
multi-defined, undefined, and unreferenced
field names, and print abbreviated error
messages for all diagnostic errors that
have occurred during the generation.

The I/0 Phases build a table of file des-
cription entries and then used this table
to produce object code for I/O requests
involving certain devices and processing
methods. Object code necessary to inter-
face with ISAM subroutines is also gener-
ated.

The Assemble Phases generate most of the
object program code, set up the tables
used for output linkage, and generate the
necessary linkage. Although included in
the Assemble phases, the Terminate Compil-
ation Phase (RG60) performs a separate
compiler function: this phase terminates
compilation, either naturally or due to
errors in the compilation.

METHOD OF OPERATION

This section presents an overview of the
main functions of the RPG compiler and the
sequence of events that bring about these
functions. The five main functions of the
1130 RPG compiler described in this sec-
tion are:

e System initialization

e Input processing

e Diagnosing, noting, and describing
errors

® Generating object code
® Final processing

To convey the logic and data flow of these
functions, this section includes a series
of diagrams building from the general to
the specific. Supporting text is includ-
ed, where necessary, but, for the most
part, the diagrams are designed to be self-
explanatory. The consecutive progression
of events that occur within individual
phases are not described here; this infor-
mation is included under "PHASE DESCRIP-
TION".

Certain times, in the following flowcharts
and text, abbreviations are used. A par-
tial list of these abbreviations and their
meanings follows:

COMMA - Resident Monitor Communication
Area

COMP - Compression

COMAREA - Communication Area

DSF - Disk System Format

ES - Extension Specification

EXT - Extension

FDS - File Description Specification

NEIT - Neither (Flowchart usage)

PARAM - Parameter

WS - Working storage

RESIDENT ROUTINES AND THE COMMUNICATION
AREA

To save load time in each phase, routines
used by two or more phases (common rout-
ines) are stored in the Resident phase
(RG00) and remain there as long as neces-
sary.

Linkage to the common routines from a pro-
cessing phase is accomplished through a
branch within that phase. The common
routine then performs the operation de-
sired by the requesting phase and returns
control to it.

The common routines originally contained
in RGOO are:

® Get Compression Routine (GETCM)
® Print Error Note Routine (PRTER)
® Print Source Card Routine (PRTSP)
® Read Source Card Routine (RDSPC)
e Put Compression Routine (PUTCM)

® Call Phase Routine (CALPH)

Output Format
Code Sheet

Output
Specifications

Calculation
Code Sheet

Calculation

Specifications

Code Sheet

Input

Extension
Code Sheet

Input
Specifications

Extension
Specifications

File Description

File Description

Specifications

RPG
Control

Card (H Card)

Print Heading
on Listing,

Figure 1.

print H Card

Source Listing
with Error

Notes

Lists of: Re=~
sulting IND;
STMT Number

and Note; un-
referenced
multidefined,
and undefined
fields and

W

' Listing of Di-

Resident Phase
e Reads and diagnoses control card
e Contains routines that are common to
many RPG phases
1
Enter Phases
e Read, list, compress, and diagnose
specifications
e Build table of filenames
2
L Assign Phases
T angfuage o Assign addresses to all resulting
ext for indicators in RPG source program
I/O TAB, e Determine addresses of all defined
DECL. . fieldnames
Arrus, Lit- e Process calculation literals and
erafs, and output literals 3
Resulting
Indicators Diagnostic Phases
o Build tent table
o Determine type of specifications used
e Process and print error messages
4
1/O Phases
e Build IOTAB and use it to produce
object code for 1/O routines
5
Assemble Phases
Relc,:;\:at;:ble ‘ o Generate machine language instructions
ach . and object program linkages
Language . N
e Terminate compilation
6

agnostic Notes
and meaning
of all Error

W

Key Object

Program Block Diagram

Time Routines
Map Compila-
tion Complete

Introduction

Of these, PRTER and PRTSP are replaced by
new routines created by phase RGl0. (These
new routines retain the same names and
perform approximately the same functions
as the original routines.)

Two other routines are moved into RGO0 by
phase RG10:

® Object Code Routine (PUTOB)
e Complete Object Code Routine (OBEND)

The common routines are described in de-
tail in the "PROGRAM ORGANIZATION" section.

In addition to the common routines, a
Communication Area (COMAREA) is estab-
lished in the Resident phase and remains
there throughout processing by the RPG
compiler. The COMAREA is an 80-word com-
munication area that contains information
that must be transferred between phases of
the RPG compiler. It begins at address
'ZRDSP' and includes such information as
the starting address of the compression of
each type of specification, addresses of
routines in the Resident areas, and other
constants and addresses used during com-
pilation. The format and contents of the
COMAREA are described under "CONTROL
BLOCKS AND TABLES".

LINKAGE BETWEEN PHASES

Except for the Resident phase, which re-
mains in storage throughout compilation,
each RPG phase is brought into storage

only when it is needed. When a phase com-
pletes processing, it returns to the CALPH
routine with a request to bring another
phase into storage. The CALPH routine then
substitutes the requested phase for that
just completed, passing control to the re-
quested phase.

SYSTEM INITIALIZATION

Before the RPG Control Card or RPG speci-
fication cards can be read, some common
routines must be read into storage and the
COMAREA must be defined. Both operations
are performed when the Resident phase
(RGO0) is given control. When the Resident
phase is first given control, it contains
six common routines, as well as instruc-
tions designating where these routines

are to be placed. As soon as the Monitor
brings this phase into storage, it relo-
cates the common routines and passes con-
trol to the first instruction. Next, the
COMAREA is defined, and the RPG Control
Card is processed.

Input and output flow for the initializa-
tion function is shown in Figure 2.

COMPILER COMPONENTS

MONITOR

INPUT
TO
COMPILER
COMPONENTS
11 RPG
]
H Card
\b PRTLN
Principal
Input
Routine

; RDSPC z

RPG Resident Phase
(RG00)
INITIALIZE

Load Principal
Print Routine
Load Principal
Input Routine
Clear Buffers
Establish COMAREA

KEY:

—————— Control Flow

\\~ - Read
Routine L - - —

CALPH

READ H CARD

T == PROCESS H CARD

Check Field for Validity
Set Up Options
Put Name in Heading

PRINT HEADING

—— CALL NEXT PHASE

PRINT H CARD+ — == = — =

Forward

------ = Retum Control Flow

sesmmmmmp Data Flow

Figure 2.

Initialization Functions of the RPG Compiler

A

OUTPUT
FROM
COMPILER
COMPONENTS

PRTLN

Principal
Print
Routine

Introduction

5

INPUT PROCESSING

Information on the RPG Control Card and
the specification cards must be recorded
in storage so that it can be easily ac-
cessed by the Diagnostic, I/0, and Assem-
ble phases of the compiler. This oper-
ation is performed by the Enter phases.

In addition to showing the input and out-
put flow for the input processing function,
Figure 3 depicts the data and control flow
for evaluating and compressing information
in the user's RPG source program.

DIAGNOSING, NOTING., AND DESCRIBING ERRORS

Diagnosis of errors is first performed in
the Resident phase, when checks are made
for such things as an invalid Monitor Con-
trol Card and exceeding the limits of
working storage. If an error such as this
is found, exit is made to RG60, where an
error message is printed, and compilation
is terminated.

Diagnosis of another type takes place in
the Enter phases. If invalid statements
are detected, they are noted, and compila-
tion continues. This holds true for the
Assign phases, where invalid indicators,
fields or literals are detected and noted.
If no valid input, output, or file des-
cription compressions are read by RG1l0, it
notes the error and exits immediately to
RG19. RG19, Diagnostic message phase, con-
tains the program that prints error-note
messages. Each time a phase prior to

RG19 notes an error, it causes the Resident
phase to print the note-number identifying
the error. Then, when RG19, RG20, and

RG21 gain control, error notes are printed
corresponding to the error-note numbers.

If a terminal error, such as no valid com-
pression, is processed by RG19, RG20, or
RG21, an exit is taken directly to RG60.

At RG60, an error-note may be printed, as
well as a "compilation ended" note, follow-
ed by an exit to the monitor.

The diagnosing, noting and identifying
functions are illustrated by Figure 4.

INPUT COMPILER COMPONENTS OUTPUT
TO FROM
COMPILER COMPILER
COMPONENTS COMPONENTS

Figure 3.

Calculation
ile Descriptio ' Principal
*Comments I Input EI{QCI(EZR .P::é(s)g)s’
Routine
1 . ———F —— Read Specification PRTSP —
\ L Check Validity [| Pr:ncnpal ﬂ
AN RDSPC Print Specification <«—-~----} [- Prmr.
N Compress Specification Routine
Put Compression PUTCM
Buffer
CALPH = CALL NEXT PHASE = — = — -] DISK Z
& COMPRESSION BUFFER
- f/
\.Norkin.g
torage Print
Specification

Input Processing Functions of the RPG Compiler

INPUT
TO0
COMPILER
COMPONENTS

OUTPUT
FROM

COMPILER COMPONENTS

COMPILER
COMPONENTS

RESIDENT PHASE (RGO0O0)
EXIT
Invalid Monitor Control
To: Card
RG60 (CALPH i Call Next Phase
PRTER [T
N ENTER PHASES PRTSP |
(RG02-RG08) - L |Principal
Check Statement = [*= Prmf.
CALPH Call Next Phase N} Routine
S~
\, k—’ ASSIGN PHASES P @ HEADING
Working GETCM (RG10-RG14) uToB N—" Note XXX
' v Indicators ~ RG10 T
Storage or ! Working
Co‘mpression PUTCM el e Fields - RG12 Storage
- Literals - RG14 [N~ NDICAT
E Call Next Phase = PRTSP Principal orS
N— Print P s Addresses,
CALPH N—" OBJECT CODE BUFFER T Statement
YVorkin.g Routine number,
Storage COMPRESSION BUFFER Note XXX
PPTER
EXTENDED DIAGNOSTICS . \
(RG16-RG17) FIELDS
Call Next Phase \ PRTSP Name,
\ N Addresses,
> COMPRESSION BUFFER Ity etc.
PRTSP —
CALPH DIAGNOSTIC MESSAGE e
:: PHASES (RG19, 20, 21) Statement LITERALS
Terminal Error number, Addresses,
/f Yaum Call Next Phase Note XXX, etc.
Caan) am) LT XNote | | Approprite | |~
;23:60\ Compilation
~——— WRAP-UP Invalid Completed
EXIT Terminal Error ; '3\;0,:_ L./d
niror
To: t | Control
Monitor - ___] Card
Figure 4. Diagnostic Functions of the RPG Compiler

GENERATING OBJECT CODE

One of the primary objectives of phases
RG22~RG54 is to generate object code.

This is accomplished by linking to PUTOB.
Two addresses are passed to PUTOB: the ad-
dress of the code to be generated, and the
address of the table that describes the

code.

Depending on the type of statement pro-
cessed, object code is generated for a

specific function. In addition to generat-
ing code, these phases store the addresses
of some of the generated routines in the
NOTES section of the COMAREA. When RG58
gains control, it takes the addresses from
NOTES, generates them into the proper order
in the fixed driver (see page 160), and
places the object code in the object code

(Refer to PUTOB--Put Object Code.) buffer. At the same time it prints the
Key Addresses of object program map, a list-
ing of routine names and addresses. The

generation of object code is shown in
Figure 5.

Introduction 7

INPUT OUTPUT
10 COMPILER COMPONENTS EROM
COMPILER COMPILER
COMPONENTS COMPONENTS
ASSEMBLE 1/0O and @
ASSEMBLE PHASES Ne—"
GETCM (RG22-RG54) orking
g NOTES ¢
@ RpE—— Generate Object Prm— torage
R— Program PUTCM _ fmmma)
YVorking e - — — — = — — =~ — =
Jforage E Call Next Phase ——= puTOB
ASSEMBLE LINKAGE PHASE
(RG58)
Load Principal Print Routine [T _ 7] PUTOB W
Ry éc)r ing
torage
fes o ot e - - - - PRo—
Call Next Phase
CALPH PRTSP Principal Key Object
— — — 4 l«—4 Print Time Routines
Routine Map
OBJECT CODE BUFFER

W

Figure 5.

FINAL PROCESSING

Final processing takes place when RG60
gains control. Any generated object code
remaining in the Object Code Buffer is
moved to disk working storage. If neces-
sary, the object code is then read into

the Disk I/O Buffer and moved to the begin-
ning of working storage.

INPUT
TO

COMPILER COMPONENTS

COMPILER
COMPONENTS

WRAP-UP (RG60)

Check Object Code
Buffer

Move Object Code
into Upper Working
Storage

1@

—————— e N YY)

Generate Object Code Functions of the RPG Compiler

After the object code is moved, the DUP

and EXEC switches in the Monitor Communi-
cation Area (COMMA) are set, and such
values as block count and relative entry
point are entered in the Disk Communication
Area (DCOM). Then, a "compilation com-
plete" message is printed and exit is made
to the monitor.

Final processing is depicted in Figure 6.

OuTPUT
FROM
COMPILER
COMPONENTS

Set Switches

and COMMA

PRTSP Principal Compilation

orking DISK 1/O BUFFER

e

torage -

OBJECT CODE BUFFER
If any code in Object
Code Buffer, move
it to Working
Storage

Figure 6.

Print —-

Complete
Routine

To:
Monitor

Final Processing Functions of the RPG Compiler

This section describes the design of the
RPG compiler and describes how the program
is packaged.

FUNCTIONAL ORGANIZATION

As mentioned in Section 1, the six major
components of the 1130 RPG Compiler are
the Resident Phase, Enter Phases, Assign
Phases, Diagnostic Phases, I/O Phases, and
Assemble Phases.

Resident Phase

The Resident phase of the RPG Compiler re-
mains resident in the same position through-
out compilation as shown by Table 1. This
phase is composed mainly of code, which
accomplishes the following functions:

PROGRAM ORGANIZATION

® Fetch and store the principal print,
input, and conversion routines.

® Read first source card.

e Initialize compression buffer.

® Process and diagnose header card.

® Print compiler listings, if required.
® Print header card and error notes.

® Read a card to ready the input buffer
for the first Enter phase.

e Call the first Enter phase.

Also included in the Resident phase is a
Communication Area (the COMAREA). This
area provides addresses and constants used
by the compiler. (The COMAREA is described
in detail in "Table 3: Resident Communica-
tions Area".

Also stored in the Resident phase are six
common routines, which are used by more
than one phase. (The first Assign phase
(RG10) replaces two of these routines, and
builds two other common routines, which
are also stored in the Resident phase,
after it is expanded to accommodate them.)
Figure 7 shows the use of routines by the
Resident phase and by the common routines
(which are contained within the Resident
Phase) .

Program Organization 9

RESIDENT PHASE (RG00)

COMPILER N
ROUTINES RDSPC
|
PRTSP*
|
CALPH*
SYSTEM DISK Z*
SUBROQUTINES T
Principal Print Routine

COMMON ROUT

INES ORIGINALLY IN RGOO

RDSPC

PUTCM*

1

Principal Read Routine

CALPH*

$EXIT

T

GETCM

PUTCM*

T

DISK Z

PUTCM

DISK Z

CALPH*

pooes |

PRTER

PRTSP*

PRTSP

Principal Print Routine —I

CALPH

DISK Z

COMMON ROUTINES PLACED IN RG0O BY RG10

T

PUTOB
DISK Z
1
Principal Print Routine
1
$DBSY
1
CALPH*
OBEND PTWS

**The use of the routine is shown in
Figure 7, under Common Routines.

Please note: PRTER and PRTSP are overlaid by RG10 with routines

bearing the sam

Figure 7. Resident Phase,

Usage

10

e addresses.

External Routine

Enter Phases

The Enter Phases, as a whole, perform the
following functions: read, list, diagnose,
and compress File Description, Extension,
Input, Calculation, and Output-Format
Specifications, and build the Filename
Table. The Enter phases (and their module
names) are:

® Enter File Specifications (RG02)
® Enter Input Specifications (RGO04)
e Enter Calculation Specifications (RGO06)

e Enter Output-Format Specifications
(RGO8)

The core storage layout for the Enter
phases is shown in Table 1, while Figure 8
shows the use of routines by these phases.

Assign Phases

The Assign phases of the RPG compiler pri-
marily perform the following functions:
assign addresses to all resulting indica-
tors and defined field names, print out a
symbol table, build a table of indicators,
and process calculation and output liter-
als.

The Assign phases (and their module names)
are:

® Assign Indicators (RG10)

® Assign Field Names (RG12)

e Assign Literals (RG14)

The core storage layout for these phases
is shown in Table 1; Figure 9 shows the

use of routines by each phase.

Diagnostic Phases

The Diagnostic phases of the RPG compiler
perform the following functions: detect
errors not found by the Enter phases; list
all multi-defined, undefined, and unrefer-
enced field names; check for errors in the
specifications; and print error messages
for all errors discovered by these and
earlier phases.

The Diagnostic phases (and their module
names) are:

® Extended Diagnostics 1 Phase (RG16)
® Extended Diagnostics 2 Phase (RG1l7)

® Error Message Phases (RG1l9, RG20, RG21l)

ENTER PHASES

Enter Output
Specifications
RGO8

RDSPC*

1

PUTCM*

|

PRTSP*

1

PRTER*

Figure 9.

Assign Phases, External Routine Usage

Enter File Enter Input Enter Calculation
Specifications Specifications Specifications
RGO02 RGO4 RGO6
RDSPC* RDSPC* PUTCM*
1 1 i
PRTSP* GETCM* PRTSP*
| 1 1
PUTCM* PUTCM* PRTER*
1 [1
PRTER* PRTSP* CALPH*
1 | |
CALPH* PRTER* RDSPC*
1
CALPH*
J
* The use of this routine
is shown in Figure 7.
Figure 8. Enter Phases, External Routine Usage
ASSIGN PHASES
RG10 RG12 RG14
Assign Assign Assign
Indicators Fieldnames Literals
GETCM* GETCM* GETCM*
1 1 1
PRTSP* PRTSP* PRTSP*
1 1 |
PRTER* PUTOB* PUTOB*
1 | 1
PUTOB* CALPH* CALPH*
1
CALPH*
g

* The use of this routine

is shown in Figure 7.

Program Organization

11

The core storage layout for these phases
is the same as for the Assign phases, as
shown by Table 1; Figure 10 shows the use
of routine of the Diagnostic phases.

I/0 Phases

The main function of the I/0 phases is to
build a table of file description entries
(the IOTAB) and use this table to produce
object code. The I/0 phases (and their

The core storage layout for these phases
is shown in Table 1.

Figure 11 shows the use of routines of
these phases.

Assemble Phases

The Assemble phases generate the following:
table loading and dumping routines; object
code for RA and CHAIN files; object code

module names) are: for field type and record type input
specifications; object code needed to
e Assemble 1 I/0 (RG22) process multiple input files; a File Input
Table entry for each record type; table
® Assemble 2 I/0 (RG24) lookup routines; object code for calcula-
tion operations; object code to place out-
e Assemble 3 I/0 (RG26) put fields within their associated output
I/0 areas; object code to produce output
® Assemble 4 I/O (RG28) records, and linkage from the object code
DIAGNOSTIC PHASES
RG16 RG17 RG19 RG20 RG21
Extended E)ftended. Diagnestic Diagnostic Diagnostic
Diagnostics 2 Diagnostics 2 Message 1 Message 2 Message 3
GETCM* GETCM* PRTSP* PRTSP* PRTSP*
I I I I T
PRTSP* PRTSP* CALPH* CALPH* CALPH*
I I
PRTER* PRTER*
CALPH* l PUTOB*
CALPH*
L 1
* The use of this routine
is shown in Figure 7.
Figure 10. Diagnostic Phases, External Routine Usage
I/O PHASES
RG22 RG24 RG26 RG28
Assemble 1 Assemble 2 Assemble 3 Assemble 4
1/0 i/0 /O /O
CALPH* PUTOB* PUTOB* PUTOB*
|
CALPH* CALPH* CALPH*
J | J

* The use of this routine
is shown in Figure 7.

Figure 11.

12

Input/Output Phases, External Routine Usage

to the object program. The Assemble e Assemble Output Fields (RG52)
phases (and their module names) are:

e Assemble Put (RG54)
® Assemble Tables (RG32)

e Assemble Linkage (RG58)
® Assemble Chain and RA Files (RG34)

e Terminate Compilation (RG60)
e Assemble Input Fields (RG36)

(Although not technically an Assemble
e Assemble Control Levels (RG38) phase, RG60 is included with these phases.)

® Assemble Multi-Files (RG40)
The core storage layouts of the Assemble

e Assemble Get (RG42) phases (RG22-RG54), Assemble Linkage
phase (RG58), and Terminate Compilation

e Assemble Calculation 1 (RG44) phase (RG60) are shown in Table 1; Figure
12 shows the use of routines by each of

e Assemble Calculation 2 (RG46) the Assemble phases.

ASSEMBLE PHASES (RG32-RG60)

RG32 RG34 RG36 RG38 RG40 RGA42
Assemble Assemble Assemble Assemble Assemble Assemble
Tables Chain Input Control Multi- GET
RAF Field Level File
PUTOB* f PUTOB* GETCM* | GETCM* | r GETCM* J | GETCM*]
I | I | I
CALPH* CALPH* PUTOB* PUTOB* PUTOB* PUTOB™
1 1 1 1
CALPH* CALPH* CALPH* CALPH*
T]]]
RG44 RG46 RG52 RG54 RG58 RG60
Assemble Assemble Assemble Assemble Assemble Wrap-Up
CALC 1 CALC 2 Output PUT Linkage
Field
GETCM* GETCM* GETCM* GETCM* PUTOB* PRTSP*
| | 1 1 | |
potos* | | [eutosr | | | putosr | [putos: | | | caten | [OBEND* 1
1 1 1 1 1 1
CALPH* CALPH* CALPH* CALPH* Principal Principal
Print Print
Routine Routine
i
DISK Z
|
$EXIT
A
$DBSY
]

* The use of this routine
is shown in Figure 7.

Figure 12. Assemble Phases, External Routine Usage

Program Organization 13

Table 1 shows the contents of the core
storage areas in the 1130 RPG Compiler
through various stages of compilation

(when an 1131 with 8K words of core storage
is used). 1In this table "Location" refers
to the displacement addresses (in words) of
the core storage areas.

To avoid confusion please note that the term
sequence number (or internal sequence nhum-
ber) refers to a number assigned to each
specification. This number beginning with
the first specification (one) is incremented
by one for each successive specification;
record sequence refers to the sequence
assigned to an Input record type, columns
15-16 of the Input specifications.

Phases Enter Assign and 1/0 and Assemble Teminate
+Location Diagnostics Assemble Linkage Compilation
Hex Dec
0 0
Resident Resident Resident Resident Resident
Monitor Monitor Monitor Monitor ‘Monitor
212 530
Principal Print | Principal Print | Tables Principal Print | Principal Print
Routine Routine Routine Routine
3¢o 960
RPG Resident RPG Resident |RPG Resident | RPG Resident RPG Resident
Phase (RG00) Phase (Com- Phase (Com- Phase (Com= Phase (Com-
565 1381 mon Routines) |mon Routines) | mon Routines) mon Routines)
Principal *
73A 1850 Input
Routine
906 2310
Phases Phases Phase Phase
RG10-RG21 RG22-RG54 RG58 RG60
AF0 2800
Disk 1/0
Phases Buffer
D6C 3420 RGO2-RGO8
1086 4230 (Consecutive
phases over=-
lay one Object Code |Object Code | Object Code
another) Buffer Buffer Buffer
1446 5190*
Compression Compression Compression Compression
Buffer 1 Buffer 1 Buffer 1 Buffer 1
15FE 5630**
Compression Compression Compression Compression
Buffer 2 Buffer 2 Buffer 2 Buffer 2
2000 8192
* When an 1131 with 16K or 32K words of core storage is used, this is incremented
to 7470,
** When an 1131 with 16K words of core storage is used, this is incremented to 13,630;
when an 1131 with 32K words of core storage is used, this is incremented to 29,630.
*** RG10 is origined at 1190 for placement of additional common routines.
Note: The Assemble Linkage phase (RG58) and Terminate Compilation phase (RG60) are pictured separately to show the
differences in their core layout as compared to the other assemble phases.

Table 1.

14

Storage Layout

Each of the 29 phases in the compiler (and
each major routine within these phases) is
described by the following entries:

e Chart - Identifies the flowchart
that describes the logic
flow of the phase or rou-
tine. (The flowcharts are
included as a group, begin-
ning with Chart AA.)

® Functions - Describes the purpose and
principal operations of the
phase.

e Entry - Names the label of the
first executable statement
in a phase or routine.

e Input - Describes data to be pro-
cessed by a phase or rou-
tine.

e Output - Describes the data which

has been processed by a
phase or routine.

® External References - Refer to Table 4,
which shows the subroutines,
constants, and addresses
referenced by each phase of
the RPG compiler.

® Exit - Identifies the phase which
will be put in control fol-
lowing the current phase.
The entry is further divid-
ed into normal and error
exits, to cover all possible
results. A normal exit
calls a succeeding phase to
continue compilation; an
error exit calls a phase to
note an error or to print an
error message, and may poss-
ibly terminate compilation.

e Tables/Work Areas - Describes tables
and work areas that are
built or modified by each
phase.

PHASE DESCRIPTIONS

. RESIDENT PHASE (RGO0O)

Chart: AA
Functions:

e Loads the principal input, principal
input conversion, and principal print
routines for use by compiler.

® Loads the interrupt transfer addresses
necessary for these subroutines.

® Provides a communication area which
can contain addresses and constants
(COMAREA), and fills in certain ad-
dresses and constants in this area.

e Provides routines to perform input/out-
put needed by the other phases. (See
"COMMON ROUTINES".)

® Prints compilation headings, if re-
quested.

Entry: RPG - entered from the monitor, to
begin compilation.

Input: Input is via RPG source statements

entered through the principal input de-
vice.

Qutput: A printed listing of the headings
and RPG control card if requested.

External References: Refer to Table 4.

Exits:

e Normal: To RG02, via CALPH (Call Next
Phase routine).

® Error: None. (Refer to COMMON ROUTINES
for error exits within the common rou-
tines.)

Tables/Work Areas: ILS4, Interrupt Branch
Table, is located in RG00. This table is
described in the publication, IBM 1130
Disk Monitor System, Version 2, Program-—
ming and Operator's Guide, (Form C26-
3717) .

Phase Descriptions 15

COMMON ROUTINES

Common routines are used by one or more
phases other than the phase which built
them. The six common routines originally
stored in RGO0O are:

CALPH, which calls a succeeding phase.

PUTCM, which puts a compression block in
working storage.

PRTER, which prints error notes when an
error is encountered during compilation.

GETCM, which reads a compression block
from working storage to compression.

RDSPC, which reads information from cards
into the input/output area.

PRTSP, which builds the I/0 buffer and
prints a listing if requested.

CALPH - Call Phase Routine

Chart: None.
Functions: Reads next phase from disk.

Entry: CALPH, entered when the requested

phase is to be read into main storage and
when control is to be transferred to the

calling routine.

Output: None.

External References: Refer to Table 4.

Exit:
® Normal: To next phase.
® Error: None.

GETCM - Get Compression Routine

Chart: None
Functions:

® Reads a requested compression block in-
to core storage.

® If requested block is already in core,
returns to calling phase immediately.

® If requested block is not in core, the
block presently in core is written out
in working storage before the requested
block is read in from working storage.

Entry: GETCM, entered when a compression
block is to be read from working storage.

Input: A compression block number, as re-
quested by a calling phase.

Output: The requested compression block.

External References: Refer to Table 4.

16

Exit:

® Normal: Return to calling routine or
phase.
® Error: None.

PRTER - Error Note Routine

Chart: None.
Functions:
e Builds I/O Buffer for error notes.

® Posts error number in NOTES (within
COMAREA) for RG19.

Entry: PRTER, entered when an error note
is to be printed.

Input: Error number, from calling phase.

Output: Printed error note within I/O Buf-
fer, and return address.

External References: Refer to Table 4.

Exit:

e Normal: To PRTSP, for actual output
function.

[J Error: None.

PRTSP - Print Listing Routine

Chart: None
Functions:

® Checks if List Option is on.

® Checks for indication of error in source
card, if List Option is off.

® Sequence checks cards.
e Builds Input/Output Buffer.
® Prints Listing.

Entry: PRTSP, entered when a source card
is to be printed.

Input: Source card.
Output: Printed Listing.

External References: Refer to Table 4.

Exit:
® Normal: Return to calling routine.

® Error: None.

PUTCM - Put Compression Routine

Chart: None.

Functions:

® Checks if compression block number
greater than one; block one always re-
mains in core, all others written in
working storage.

® Checks working storage and sets error
code if exceeded.

® Writes block on working storage from
compression huffer.

Entry: PUTCM, entered when a compression
block is to be written in working storage.

Input: Compression buffer.
Output: Compression blocks.

External References: Refer to Table 4.

Exit:
e Normal: Return to calling routine.

® Error: To Monitor (EXIT), if working
storage is exceeded.

RDSPC - Get Source Routine

Chart: None.

Functions:

® Checks if monitor control record (116)
is read, and halts compilation if it is
read.

® Reads source card using two Input/Out-
put areas.

® Converts I/O0 Buffer to unpacked EBCDIC.

Entry: RDSPC, entered when a source card
1s to be read.

Input: Source cards.

Output: Converted source card in the I/O
buffer.

External References: Refer to Table 4.

Exit:

® Normal: To calling phase; to RG1O0,
after last card (/*).

® Error: To Monitor (EXIT) if Monitor
control card read.

Four common routines are built by RG10 and
stored in RGOO: PUTOB, OBEND, PRTER, and
PRTSP. The two latter routines replace
routines of the same names, which were
built by RGO00.

PUTOB - Put Object Code

Chart: None.

Function: Converts object code into DSF
and puts it to disk working storage.

Entry: PUTOB.

Input: Address of the Object Code instruc-
tions to be generated, and the address of
the table describing the Object Code in-
structions.

The table has the following format:

TABLE DC N Number of words fol-
DC M1+Kl lowing in table
DC M2+K2
DC MN+KN

M occupies bits 0-7 and defines the type
of code:

hex 00 for absolute word,
hex 04 for relocatable word,
hex 08 for LIBF,

hex 0C for CALL,

hex 10 for DSA.

K occupies bits 8-15 and defines the num-
ber of words with the attribute M.
OQutput: DSF code on disk working storage.

External References: Refer to Table 4.

Exit:
e Normal: To calling phase.

e Error: To RG60, via CALPH, if disk
overflows.

Tables/Work Areas: INDEX - A table of words
built and used by PUTOB.

OBEND - Complete Object Code

Chart: None

Phase Descriptions 17

Functions:

e Puts out end of program data header for
core load builder.

® Writes last of object code to working
storage.

Computes disk block count of object
program.

Entry: OBEND, called from RG60 via ZBLCT.

Input: None.

Output:

® Disk System Format (DSF) code for last
block to working storage.

® Block count in ZBLCT in COMAREA.

External References: Refer to Table 4.

Exit:
e Normal: Return to RG60 (to GO).

e Error: To RG60, via CALPH.

ENTER FILE SPECIFICATIONS (RG02)
Chart: BA.
Functions:

® Reads, analyzes, lists and compresses
entries on File Description and Exten-
sion specifications.

® Builds the Filename Table.

e Builds the File Description and Exten-
sion compression areas.

® Identifies errors found in a statement.
Entry: BEGIN, from the Resident phase.

Input: File description and Extension
Specifications.

Output: A list of the RPG statements pro-
cessed by this phase, and the error num-
bers that identify errors found on each
statement. These error numbers and their
meanings are described in the publication,
IBM 1130 Disk Monitor System, Version 2:
Programming and Operator's Guide, Form
C26~3717.

Also, compressed versions of the File Des-
cription and Extension Specifications are
contained in the File Description and Ex-
tension compression areas.

18

External References: See Table 4.

Exit:

e Normal: To RG0O4, Enter Input Specifica-
tion.

e Error: None.

Tables/Work Areas:

® Filename Table (see Table 5. CONTROL
BLOCKS AND TABLES).

® Error Note Table (Table 3, Part 6),
which posts any errors connected with
that specification for RG19.

ENTER INPUT SPECIFICATIONS (RGO04)
Chart: BB
Functions:

® Sets pointers in the COMAREA, reads,
analyzes, lists, and processes Input
Specifications, creating compression
records for use by later phases.

® Checks record type specifications (AND,
OR, S, F) and diagnoses terminal errors.

® Checks field type input specifications,
diagnoses errors, and processes entries.

Entry: BEGIN, from RG02 (Enter File Speci-
fications).

Input: Input Specifications.

Output: A printed list of: the RPG state-
ments processed by this phase, error num-
bers identifying the errors found on each
statement, and compressed Input Specifi-
cation records.

External References: See Table 4.

Exit:

e Normal: To RG06, if a Calculation Speci-
fication is encountered. To RG08, if an
Output~Format Specification is en-
countered.

® Error: None.
Tables/Work Areas: FNTAD - Address of File-

name table (FLENM). (See CONTROL BLOCKS
AND TABLES).

ENTER CALCULATION SPECIFICATIONS (RGO06)
Chart: BC
Functions:

® Reads, diagnoses, lists, and compresses
Calculation Specifications.

® Builds table of valid operations.

Entry: BEG, from RG04 (Enter Input Speci-
fications).

Input: Calculation Specifications.

Output: A list of the RPG statements pro-
cessed by this phase, error numbers iden-
tifying errors found on each statement,
and compressed Calculation Specification
records.

External Refererices: See Table 4.

Exit:

e Normal: to RG0O8, after last Calculation
Specification has been processed.

® Error: None.

Tables/Work Areas: Table of valid calcu-
lations and corresponding attributes.

ENTER OUTPUT SPECIFICATIONS (RGO08)
Chart: BD
Functions:

e Reads, diagnoses, lists, and compresses
Output-Format Specifications. These
specifications define the characteris-
tics and fields of the data records
that are to be written on the output
files at object time.

® Determines if the specification defines
a record type or a field of an output
record.

Entxry: RPG, from RG04 or RGO6.

Input: Output-Format Specifications from
source cards.

Qutput: A list of the RPG statements pro-
cessed by this phase, error numbers iden-
tifying errors found on each statement,
and compressed Output-Format Specification
records.

External References: See Table 4.

Exit:

e Normal: To RGl0 (Assign Indicators
phase) after last Output-Format Speci-
fication is processed, via the CALPH
subroutine.

® Error: None.

Tables/Work Areas: GABLE - table of special
characters found in edit words.

ASSIGN INDICATORS PHASE (RG10)
Chart: CA

Functions:

® Scans Compression.

® Builds TABAR, an indicator table.

® Replaces Resulting indicators in com-
pression with assigned addresses.

e Places Put Object Code routine (PUTOB)
in Resident Phase (RGO0O).

® Overlays the Print Error routine (PRTER)
and Print Listing routine (PRTSP) in the
Resident phase with comparable routines
which retain the same addresses (ZPTER
and ZPTSP) and which will remain in
RG0O0 for the rest of the compilation.

e Places OBEND (a wrap-up routine called
by RG60) in Resident phase storage.

Entrx: BEGIN, from RG0O8 (Enter Output
Specifications phase).

Input: Compression built by Enter phases.
Output: A list of the indicators and their

addresses, and error numbers identifying
errors found.

External References: See Table 4.

Exits:
® Normal: To RGl2 (Assign Fields phase).

® Error: To RGl? (Error Message 1 phase),
if unusable compression is found, or
if no input Resulting Indicator is
specified.

Tables/Work Areas: TABAR - table of indi-~
cators.

Phase Descriptions 19

ASSIGN FIELD NAMES PHASE (RG1l2)
Chart: CB
Functions:

® Builds table of field names, ASNFL,
from names in compression.

e Assigns addresses to each field.

® Replaces fields in compression with
appropriate address.

Entry: BEGIN, from RG10.

Input: Compression built by Enter phases.

Output:

® A list of all specified field names
with addresses, types, lengths, and
decimal positions.

® Updated compression.

External References: See Table 4.

Exits:

® Normal: To RGl4, if literals were speci-
fied. To RG1l6, if no literals were
specified.

® Error: None.

Tables/Work Areas: ASNFL - Table of field
names.

ASSIGN LITERALS PHASE (RG14)
Chart: CC.
Functions:

® Assigns object addresses to all liter-
als, constants, and edit words.

® Prints and puts all unique literals as
object code.

® Builds edit words from edit codes.

Entry: BEGIN, from RG1l2 if literals were
specified.

Input: Calculation and Output compression.
Output:

e Literals on the principal print device.
e Literals in Disk System Format for the

object time code.

20

External References: See Table 4.

Exits:

e Normal: To Extended Diagnostics Phase
(RG16) .

e Error: None.

Tables/Work Areas: Table of unique liter-
als.

EXTENDED DIAGNOSTICS 1 PHASE (RG1l6)

Chart: DA

Functions:

e Builds TENT table from contents of File

Description Specification compression
(see COMPRESSION FORMATS).

e Distinguishes File Extension Specifica-
tions as to unreferenced table name for
table file and diagnoses each for va-
lidity.

® Further distinguishes the type of Input
Specifications (record type or field
type) and diagnoses the contents of
either for validity, compatibility to
each other, and compatibility between
record types.

® Passes on the lengths of the chaining
fields, matching fields, and control
levels to the Assemble phases placing
them in resident area storage.

Entry: START, from RG1l4 if literals were
used; from RG1l2 if no literals were used.

Output: Heading line with error notes.

External References: See Table 4.

Exits:

e Normal: To RG1l7 (Extended Diagnostics
2).

® Error: None.

Tables/Work Areas:

e TENT - Built from File Description
Specifications. See COMPRESSION FOR-
MATS.

® ERTAB - Table of Error indicators.

® NOTAB - Table of Error-note numbers.

EXTENDED DIAGNOSTICS 2 PHASE (RG1l7)
Chart: DB
Functions:

e Further diagnoses Calculation and Out-
put Specifications.

® Updates the table address in the Calcu-
lation Specifications to the table ele-
ment hold area.

® Checks Stacker Select, Space, and Skip
entries.

® Prints error-notes for undefined fields.
® Checks page field for numeric field.

® Checks if End Position is within the
record.

® Checks the validity of edit words.

® Checks if edited fields are numeric.

e Puts out control level hold areas.
Entry: BEGIN, from RGl6.

Input: Calculation and Output compression.

Output:

e Error-notes, on the principal print
device.

® Control level hold areas and Control
Level Address Table.

External References: See Table 4.

Exits:
e Normal: To RG1l9, Error Message Phase.
® Error: None.

Tables/Work Areas: This phase references
the TENT table in RG16.

ERROR MESSAGE PHASES (RG19, RG20, RG21)
Chart: DC

Functions: Diagnoses error bits and prints
error messages.

Entry: START, from RG10 (Assign Indicators
phase) or from RGl7 (Extended Diagnostics
2 phase).

Output: Listing of flagged error messages
in Diagnostics 1, 2, and 3.

External References: See Table 4.

Exits:

e Normal: To RG22 (Assemble 1 I/O phase)
if no terminating errors are found.

® Error: To RG60 (Terminate Compilation
phase) if terminating errors are found.

Tables/Work Areas: None.

ASSEMBLE 1 I/O PHASE (RG22)

Chart: EA

Functions: Builds Input/Output Table from
Filename table (FLENM), FILEl Table from
compression, and Overflow Table. (These
tables are explained under "Control Blocks
and Tables".)

Entry: BEG, from RG19, RG20, or RG21.

Input: File Description compression and
Filename Table.

Output:
e A table (IOTAB) entry for each file.
e A FILEl table entry for each file.

e Overflow Table entry for each printer
file.

e ISAM Load table entry for each ISAM
load file.

External References: See Table 4.

Exits:

@ Normal: To RG24 (Assemble 2 I/0) after
the lagt File Description compression
specification is processed, if non-
disk file; to RG26 (Assemble 3 I/0),
if all files are disk files.

® Error: None.

Tables/Work Areas:

® Builds Input/Output Table from entries
in the Filename table.

® Builds FILEl Table from File Descrip~
tion compression (File Description
Specification compression is described
in Section 5).

® Builds Overflow Table.

e Builds ISAM LOAD Table.

Phase Descriptions 21

ASSEMBLE 2 I/0 PHASE (RG24)
Chart: EB

Functions: Uses IOTAB built by RG22 to
produce object code for Input/Output re-
quests of non-disk files.

Entry: BEG, from RG22.

Input: IOTAB built in RG22.

Outgut:

e The output of this operation is assem-
bled routines for each non-disk file
(obtained from IOTAB).

® The address of an I/0 routine is saved
in the first word of an entry corres-
ponding to the IOTAB entry. The output
of this operation is the first word of
the FILEl table, occupied by the rou-
tine address.

External References: See Table 4.

Exit:

e Normal: To RG26, when the last non-disk
I/0 routine has been assembled, or to
RG32.

® Error: None.

Tables/Work Areas: IOTAB and FILEl Table
(poth in RG22) are referenced.

ASSEMBLE 3 I/O PHASE (RG26)

Chart: EC

Functions:

® Uses the IOTAB built by RG22 to produce

object code for I/0 requests of all Se-
quential Disk files.

Provides I/0 areas for each file.

try: BEGIN, from RG24.

=t
=]
lz

Input: None.

Output: Object code in Disk System Format
(DSF) .

External References: See Table 4.

22

Exits:
® Normal: To RG28 (Assemble 4 I/0 Phase).
e Error: None.

Tables/Work Areas: IOTAB and FILEl Table
in RG22.

ASSEMBLE 4 I/0 PHASE (RG28)
Chart: ED

Functions: Puts out object code for all
Indexed-sequential disk files.

Entry: RPG, from RG24, or from RG26.

Ingut: None.

Output: Object code in DSF to perform I/0
for all indexed-sequential disk files.

External References: See Table 4.

Exit:

e Normal: To RG32 (Assemble Tables phase)
or RG34 (Assemble Chain and Record Ad-
dress Files phase).

e Error: None.

Tables/Work Areas: Tables built by this
phase are all internal and describe the
object code for the Disk System Format
routine, ZPTOB.

ASSEMBLE TABLES PHASE (RG32)

Chart: FA

Functions:

@ Checks compression for Table files.

e Builds Table file area.

® Generates table loading routine.

® Generates table dump routine.

® Generates linkage routine if more than
one table loading or dumping routine has

been generated.

Entry: A0000, from RG28.

Input: Compression Records built from Ex-
tension Specifications.

Output:

® Area (Save) for table entries.

® Object code for table load routine (at
LD).

® Object code for table dump routine (at
DP).

® Object code for table link routine (at
LK) .

External References: See Table 4

Exit:

® Normal: To RG34, Assemble Chain and RA
File Phase.

® Error: None.

Tables/Work Areas: None.

ASSEMBLE CHAIN AND RA FILE PHASE (RG34)

Chart: FB
Functions:

e Processes Extension Compression.

® Generates object code for record ad-
dress (RA) files, and chaining files.

Entry: BEGCl, from the calling phase.
Input: Extension compression.

Output:

® Object code for processing RA Files.

® Object code for Cl, C2, or C3 Chaining
Files.

External References: See Table 4.

Exits:

® Normal: To RG36 (Assemble Input Fields
Phase).

® Error: None.

Tables/Work Areas: IOTAB and FILEl Table
(both created by RG22) are referenced.

ASSEMBLE INPUT FIELDS (RG36)

Chart: FC

Functions: Assembles Input Specifications

(Field type).

Entry: BEG, from RG34.

Input: Input Specifications compression.

Output:

® Object code to move fields.

® Object code to test Field Record Rela-
tion Indicators and set on Resulting

indicators.

® Linkage to Sterling Input Specifica-
tions.

® Object code for chaining fields.

External References: See Table 4.

Exits:

® Normal: RG38 (Assemble Control Levels:
phase).

® Error: None.

Tables/Work Areas: None.

ASSEMBLE CONTROL LEVELS PHASE (RG38)

Chart: FD

Functions:

® Generates object code for both field
type and record type Input Specifica-
tions.

® Generates sequence check routine
(NUSEQ) , if numeric record type is
present.

® If control levels are present, gener-
ates the object code which processes
them.

Entry: BEG38, from RG36.

Inguti I type and D type Input compression.

Phase Descriptions 23

Output:

® Object code for processing control
levels.

® Object code for determining record type.

® Object code for checking numeric se-
quence.

External References: See Table 4.

Exit:

® Normal: To RG40 (Assemble Multi-Files
Phase).

e Error: None.

Tables/Work Areas: EXSP - Work area for
processing compression.

ASSEMBLE MULTI-FILES PHASE (RG40)
Chart: FE

Functions: Generates routines that move
matching fields from input area to match-
ing field hold areas, and routines that
compare matching fields to determine se-
quence of processing and status of MR in-

dicator.

Entry: BEG49, from RG38.

Input: I type and D type Input compression.

Output: Object code for processing match-
ing fields.

External References: See Table 4.

Exits:
e Normal: RG42 (Assemble Get Phase).
e Error: None.

Tables/Work Areas: FILEl Table (in RG22)
is modified.

ASSEMBLE GET PHASE (RG42)

Chart: FF

Functions: Builds table (FILTA) containing
addresses of input record routine (INPR),
control level routine, move fields routine

(INPF), and resulting indicators.

Entry: BEG40, from RG40.

24

Input: I type and D type Input compression.

Output:

® Object time file processing table for
each file.

e A Get routine for each primary and
secondary file.

External References: See Table 4.

Exits:
e Normal: To RG44, RG66, or RG52,
e Error: None.

Tables/Work Areas:

e FILEl Table is modified.

e FILTA, work area for building object
time file tables is built.

ASSEMBLE CALCULATION 1 PHASE (RG44)
Chart: FG
Functions:

e Assemble the Object Code routine for
each LOKUP operation.

e Assembles a chain subroutine which may
be linked to by any CHAIN operation.

Entry: BETG, from RG42.
Input: Calculation compression.
Output:

® Object code for CHAIN and LOKUP oper-
ations.

® Address of chain subroutine placed in
compression for each chain operation.

® Address of each LOKUP routine placed
in corresponding LOKUP compression.

External References: See Table 4.

Exits:

e Normal: To RG46, when all Calculation
Specifications have been processed.

® Error: None.

Tables/Work Areas: None.

ASSEMBLE CALCULATION 2 PHASE (RG46)

Chart: FH

Functions:

® Generates object code for all Calcula-
tion Specifications except CHAIN and
LOKUP.

® Generates linkage to CHAIN and LOKUP
routines assembled in RG44.

Entry: BEG, from RG44.

Input: Calculation Specification compres-
sion. :

OQutput: Object code for all Calculation
Specifications.

External References: See Table 4.

Exit:

® Normal: To RG52 (Assemble Output
Fields).

® Error: None.

Tables/Work Areas: OPERA - A table of
operation codes is built.

ASSEMBLE OUTPUT FIELDS (RG52)

Chart: FI

Functions: Generates object code that
will place output fields in desired for-
mat and location within the associated
output record.

Entry: RPG, from RG46.

Input: Output Compression.

Output: Object code.

External References: See Table 4.

Exit:
e Normal: RG54 (Assemble Put phase).
® Error: None.

Tables/Work Areas: None.

ASSEMBLE PUT PHASE (RG54)
Chart: FJ
Functions:

® Generates object code that produces
output records on output files.

e Fills in NOTES, WORK1, SQSOF, and
TABL1.

Entry: RPG, from RG52.
Input: Output Compression.

Output: Object code and a table of ad-
dresses.

External References: See Table 4.

Exit:
® Normal: RG58, (Assemble Linkage Phase).
® Error: None.

Tables/Work Areas:

~® NOTES - Work area in COMAREA.

® WORK1l - A 3-word area for building one
table entry.

® SQSOF - Overflow table (see CONTROL
BLOCKS AND TABLES).

e TABL1l - Area where Output tables are
built.

ASSEMBLE LINKAGE PHASE (RG58)
Chart: FK
Functions:

® Generates a fixed driver (at R0O) for
object time execution.

® Generates branches to appropriate rou-
tines if OPENs and CLOSEs are needed.

® Generates a link to table load, if need-
ed.

® Generates link to Heading and Detail
Lines routine.

Entry: BEGIN, from RG54.

Input: None.

Phase Descriptions 25

Outgut:

® A printed listing of key addresses of
object program.

® A printed listing of the number of sec-
tors needed for ISAM LOAD files (pro-
viding list option and ISAM LOAD are
specified).

® Object code as described under "Func-
tion", above.

External References: See Table 4.

Exits:
® Normal: To RG60.

® Error: None.

Tables/Work Areas:

® ISAM Load Table - contains information
concerning sector count.

e Filename Table - contains names of
specified files (see "CONTROL BLOCKS
AND TABLES").

e FILEl Table ~ contains information
about file types (see "CONTROL BLOCKS
AND TABLES").

TERMINATE COMPILATION (RG60)

Chart: FL

26

Functions:

e Updates DCOM (Disk Communications Re-
gion) on the system and working storage
cartridges for the DSF program, and
moves the DSF program to the beginning
of working storage if there are no ter-
minating errors.

® Sets words in system area so DUP and
XEQ cards will be passed if there are
any terminating errors.

® Prints "end of compilation" message and
passes control to the Monitor.

e Calls OBEND (wrap-up routine in RG10).
Entry: BEGIN, from RG58.

Input:

e DCOM from system and working storage
cartridges.

® DSF program (if it does not start at
the beginning of working storage).

OQutput:
e Updated DCOM.

e DSF program moved to the beginning of
working storage.

e If any terminal errors, DUP and XEQ are
disabled.

External References: See Table 4.

Exit:
® Normal: To the Monitor, EXIT.

® Error: To the Monitor (when $NDUP and
&NXEQ are non-zero), via EXIT.

Tables/Work Areas: DISK - Work area for
reading from the disk.

Chart AA.

RPG
Sk | 3 skokkokok dokok ok
*
* ENTRY *
* *
Sk gk gk Aok Rk

BG00O
Hokk B 3 ekt kskok ok K

LOAD PRINCIPAL *
*PRINT ROUTINE «

koo ok ok s oK kol ok Rk

BGZ20
KT 3 Ak ok kK

LOAD PRINCIPAL *
*INPUT ROUTINE -

& ok o sk kofok dokokok kK

ol Kok D 3 Kok kak Kok ok ok K
* *

Aok
* ok
* AL *

Hkokok

Aok R L ko okdokokok oKk

* PRTSP *
=k K K
* PRINT H CARD *

R oRR KRk dR R ok
By w. FERBG R oAk kK koK
o . PRTER
o *. YES R
,ANY ERRORS ? .— —> PRINT ERROR
> s NOTE
*, o
*, Lk L
* NO
<
READC
Fok 1y ook ok ok ok ok
* RDSPC *

e e e W R K K

% INITIALIZE * Ftk Ao AR KRR
* INTERRUPT *
: BRANCH TABLE :
FAAAA A AR AA AR AAAK
CALL
e
%k
BGZ50 * EXIT *
HRKE Aok Rk ARk ok * *
Fo kAR Ak K
* RDSPC *
kK hm K
* READ A CARD * TO: RGO2
HRRAAAKA AR A A KKK
Loop
Aok koK P 3 Aok ok kK Kok
* *
* INITIALIZE *
* COMPRESSTION *
¥ BUFFERS *
FRAR AR ROk K
RESST
FRRRAGI R AR AR
*
* PROCESS AND *
DIAGNOSE HEADER
: CARD *
HAR KA A K KA Ak
ok,
H3 *, 4K 4 ok ok kR ok ok ok
* *,
.+Is IT AN H'*. NO B e ittt SR
* CARD ? . — : PRINT ERROR
. *.* * NOTE
“w. oL FokdoK Rk R KKK
[YES
P
a3 *.)
. . FokAk J Ly AR KKK
Is IT *, YES *
*. NOLIST ? o : EXIT *
R x ok ok kK koK R R ok
. o ¥
*"No Fokokok
* * TO: RGO2
* Ay *
* *
Fohokk
HAOKK AR KRRk ok
P

—kmk KoKk K
PRI“T HEADINGS

A Aok ok dok ok ok Kok ok ok Kok

* *
* AL X
* *

Hok kA

Resident Phase (RG0O0)

Phase Descriptions

27

RS 2]

EELT S

BEGIN

A] D R KR KR KR KK
ENTRY

ot KRk OR R KA KK

* *
*

FROHM:

RGOO

P FsCHe LK
AR B kR R KRR Kk *BZ *.* dok R B3 ok Aok Rk kK x
D . .
x—*—*—*§59*- - * +¥ 1S THIS A *. YES * PRTSP *
READ >% . COMMENT CARD , ¥mmmme D ¥k Ko ¥ e
* SPECIFICATION* *-* ? *.* * PRINT SPEC *
ok kR KR KA K Tx, " PP S
*
l o *kEE
PHV ¥ P2 ¥
c2 *. ct *,
X . ok *,
«* TS FORM_ * ¥ WAS A *, YES
*, TYPE 'F' 2 . e = > PRINARY FILE o ¥
, oF ¥, USED 7 .
*, o ¥ - .
*, % X, X
* YES e >k
* 2
* B.
1 .
*
P10 ¥
D2 *. Aok k) 3 3k ok ok KRR K ok D Kook kKR dORK K
% *, P
*¥DEVICE AND *. NO B T it et it Lot 3 e
. FILENAKE > PRINT PRINT ERROR
*.!ALID ? ¥ * SPECIFICATION* NOTE *
R] ok ok Rk Kok Kk
* YES
Aok ek
* 2 %
>* B3 *
* *
*HkK
P18 ¥
2 *, AR Rk KRR AR Ak kKB Y Kok ko Rk Rk
¥ . P * *
+*IS DEVICE A*. YES ~k—k—K—k—k- K-k * *SET ERROR NOTES*
*, PRINTER 7 o ¥ PRINT_ ERROR >¥ *
*. ¥ NOTE * * *
ARk *, . [_ * *
* * *, % dk kKRR Rk P P LT SR Y
* F1 * * NO Ei L 2
* * Ak K * Akkk K
ok * * * *
l >% B1 * * * Fl4 *—>
ERE L L0 *
*kkk ok
¥ P22 P ¥ P25P
F1 *, F2 *. Aokt P 1Y ook S kok kokokk
o *, . . R * *
YES .* IS DEXICE *, «*¥IS DEVICE A%, T *PROCESS_ OUTPUT *
r———*. READ4Z ? ¥ *, CONSOLE_OR —>% FILE
*. ¥ *.PUNCY ? K * *
*. . ¥ - . * *
¥, L% *, ¥ ek ok ok ok 30Kk K ko ok koK
* NO * NO
[D
v ¥, ¥
ok ok ok Gk H KA KKK G2 *, Gl *,
* * % ok .
* * NO .*IS DEVICE YES .*IS DEVICE A*.
:SET ERROR NOTE : -———*.* DISK ? * ISK
* * “x, . *g E
PR TR TP PR L . k. %
* YES * NO
ok Rokok 2 Rk ok ok Rk H3 *, ko oK]I 3ok ok ok oK ok ok ok KoK
* * X . * *
ES *PROCESS COLUMNS* .* IS IT AN _*, YES *SET ERROR_NOTE,*
e * PERTAINING TO * *,INPUT FILE 7 .%— * ASSUME DISK *
* DISK * *, . * *
* * *, ok * *
FREFEE AR AA A KRR *, . L L
* NO
b >
E
* *
23 * J5 * P35 ¥,
PR PREEE SR RS kAR] DR KRR KK * b *.
* * * * AR Hdokk «*IS IT A*.
*SET ERROR_NOTE, * L_ *DETERMINE FILE * * WO .* TABLE, *.
*ASSUME PRIMARY * >* TYPE * * HY %< *, CHAINED, OR_ .*<{—:
* * * * * * ra FILE 2.%
* * * * EEETY . .
e e o ok ok ok ok ok ROk kR ok K e 2k 3 oje o 3 ke ek Rk oK okok R *, ¥
* YES
P S—
P25 ok, P31A ¥,
Sk kKK R kdoR KRR Rk K2 *, K3 *, dok kKKK U ok ok kR Rk
* * oK *, L E *, * *
* DIAGNOSE AND * «* IS IT AN *. NO .* IS IT A__*. YES * DIAGNOSE AND *
* coM SS * *,0UTPUT FILE ?.%—————-D>%_, COMBINED FILE,*—. con *
*SPECIFICATIONS * *. X *, ? . *SPECIFICATION *
* * *, X *, ok * *
ok Rk ok Rk kR KK kK ok . *, L ek ok ok ok ok ok ok Kok
* YES * NO EE T
* *
l * F1 %
* *
Fokok K kK *kkk *kokk Hokokx
* * * * * * * *
* F5 K * F4 * * G3 * * F5 *
* * * * * * * *
*HkE ST TS *kkk *kkk
. . . .
Chart BA. Enter File Specifications Phase (RG02)

28

ok
*

3%

*

P54P2
HKKFS *

Aok oK Rk Rk K
RTSP

P g o B
PRINT

* SPECIFICATION*

scofe sk e e ok ek ok kR koK koK

>

65" "x.
L *.
NO_.* *.
*.ANY ERRORS 7 1x

v

kK Rk kKR KRRk
— ke K K K Kk K
PRINT ERROR
* NOTE *
st dkoR Aok ok koK
Sk kK
* *
* J5 %
* *
sk Kk
P LR e
* *

*SET ERROR NOTE, *
: ASSUME INPUT :

* *
4ok Jokkok %ok ¥ okRKk Rk

Chart ‘BA.

ok B 2H ok kR Kok

He o K K K
READ

% SPECIFICATION*

Fkakokok Aok kR Rk ok

*

FHOKB 5 ¥k Kok ok ok
ER
L s e e Dl S

————>_ PRINT ERROR
* NOTE *

ek o o 3 ok Kk g Kok Kok

*02 *
83 ¢__1
*
FHkk
o F, X,
B3 *, BY *,
¥ *, *ARE ALL*.
+% TS FORM_ *. YES +¥ EXTENSION *. NO
)*.*T!PE Iv 2 *-* >*%,FILES PROC ?*.*——
*, o “x, Y
*, P
* NO * YES
-~~ IF COMMENT CARD,
PRINT SPEC AND
READ ANOTHER
CKEXT ¥,
*, FoK ARG U HA AR KK AR
Sk *, * *
S FORM_ *. NO * *
*, TYPE 'E' ? *-*-———————>:SET ERROR NOTE :
*. ¥ * *
.ok ok ROk KRR R Kok
* YES

Aokok kD 3 kRl ok Rk
* *

*PROCESS YFROM'! *
:AND *TO' FILES :

* *
ek e ok koK K Kok A oK % kK

okoke ok T 3 ok ok ok ok o ok ok

BYILD *
COMPRESSION FQR
* BLE, OR *
:CHAfNING FiLE X
2ok ok ok o oK o ook koK k ok

HHkF 3 4ok doksk ok ok
PRISP
—dm ke kK ko Kk K
PRINT
* SPECIFICATION*
H otk kKRR Rk

KRG R Aok KKK
%.
PRINT

NOT
ARk KR R OROR R oK

*

Enter File Specifications Phase (RG02)

Phase Descriptions

koK Bk ok ki koo
* *
* EXIT *
* %

e ok o e ok o 3ok o ok o K K ok K

TO: RGOY

29

BEGIWN

Zekok kP kokkokkkokkR
*
> ENTRY *
* *
EE i ok ok Rk kR kR Rk X
* *
* C1 *
* * FRCM: RGO2
EE LR
oE, SKIPA
aEADx'**C1t$***‘***‘* c2 *.‘ *‘*Cji*;**ﬁ***‘*
PRI Sul AP L% IS IT A %, YES Rt hn K K
READ A *.COMNENT CARD .* > PRINT COMNENT
* SPECIFICATION* 1 . * *
Aok Nk Rk ook kok ok .‘. .‘- RIS AL RSS2 L]
*"No
l- *okokk
* *
>% C1 *
*
Rk
o Lx. WIPE
p2" “w. p3~ .
ox *, .* IS TT *. Sk KD dokokok ok ok
.*'IS IT AN _*. NO .* AN OUTBUT *. YES *CALL NEXT PHASE*
LINPUT SPEC ? i— >#1QR CALC SPEC [*———>¥ x
“x. o “x. o AR AR AR B AR
*, ¥ K, Lk
*'YES *"No --IF CALC S
l_ Fokak --IF OUTPUT
>* G2 *
*
oAk
SEQAN o, ke o,
E2° "+, B3" Tx, B4,
. . o *, L% CAN
% IS IT A _*. YES * ARE_THERE_*. YES .*"VALUE BE *. YE
IVALID SPEC ?_. —>*]ANY ERRORS 2 .* ~—>*.. ASSUMED_FOR_.*
*. . *. o* .ERROR ? .
* ¥ -, ¥ *, ok
. . *. . L
*" %o *"NO *"NO
---_AND, OR, == A MAJOR
FILERAME, FIELD
OR_SEQUENCE
TYPES ARE
VALID ERR
kP Rk kR Rk EEEI LR LS L 22 10
PRIS
B ettt St B PRINT SPEC AND *
PRINT ° ERROR NOTE
* SPECIFICATION* * *
E PP EL R LS L L e ok R ok ok ok ok Rk ok ok
Ei 1]
* *
* G2 *-=>
*kokk
Mok * *
* C1 *
SKIP ERRGRERFRF R R KRR * ¢ * AR EGL Rk KRRk
*knk
* PRINT ERROR * * DROP *
NOTE SPECIFICATION
S fokok dekokokok ok ok kg kokok Aok ok ok ok kR Rk kK
<
*ok kK
* *
* C1 *
* *
EERE

Chart BB.

30

Enter Input Specifications Phase (RG04)

PEC RG06 CALLE
al

[D
SPEC RGOS CALLED

S Tl W
2

ERKOR

*Hk PS5k

PUT COMP, PRINT*
SPEC AND ERROR
* NOTE *

LR L EE LS L1

ek ook ek ok ok ko Kok ok

* *
* C1 *

ek

BEG
HokoRok) ROk oK
*

*
* ENTRY *
* *
FoRdk RO KR KRR KK ok
* *
* B2 *
FROM: RGO4 * *
ko
[S
START RDCRD
Fokokokok B K ﬁ**t*#t* HHKP 2 AR R AR KA K
* CHANGE DEC.
*POINT_TQ COHHA, * RDSPC *
IF _INVERTED % === Hm ke
* PRINT * % READ A CARD
kR RO RORA KKK Fok ook ok KRk Kk K
<.
e c1® T, Hokk O 2 Ak kA KRR AR
ok *.
«*% IS IT A *, YES * RTSP *
*,COMYENT BD o ¥ D> kR k%
.H ? Ch‘. * PRINT SPEC
*'#, % L e P
*"NO)
Aok ok
DIAGNOSE:
CALSP ko EMPTY-SUBRQUTINE CALCS
1 *, *****Dz*******t** Hokok oK D 3ok ok Rk ok LDIAG-TOTAL
¥ *. * * ROUT-CONDITIONING INDICATORS
¥ IS %T A YES PUT BLOCK OF * * * NEXT 2-VALID 0 CO E
*.CALC SPEC ? *———)*COMPRESSION IF * >*DIAGNOSE SPEC *<=—-= SUBRT—FACTOR CTOR 2
* ¥ FOLL * * * NEXT 5-RESULT f’IELD LENGTH
*, ok * * * * NEXT A-RESULT FIELD
¥o ¥ AR F Ak NEXT 6-HALF ADJUST
* NO NEXT 7-DECIMAL POSITIONS
NEXT 8-RESULT INDICATORS
EEETEY
. ¥,
E1 *, ok ok B 3k dokodokokodokak
. ok E 2 kokokok ok ok * *
I IT AN *, YES * * COMPRESS THE *
N OUTP'JT SPEC ? Mm% EXIT * : SPEC :
“x, £ Rk o koK ok oK * *
*ooNx sokodok okt ook olok Kok ok
* NO ;
TO0: RGOS

INVAL*t*p1m F KKK
P

bt ot ot S
PRINT_SPEC NOTE
* 201 *

ERE L X EEEE LSS

Chart BC. Enter Calculations

ko F 3 ok ok ook %ok
* PRTSP *
— kR kKo
* PRINT SPEC *
Rk 0k ok ok ok Kok ok Jokok

Specifications bhase (RG06)

Phase Descriptions

31

Adckok | ok dokRoRRok K
* *
* ENTRY *
* *

AR RRKI KKK

FROM:RGO4 OR RGO6

kok ¥k B RRR KRR ARk
*

*
* TINITIALIZE *
: ZOUTA,ZBLOT :
* * R
Ty P e * *
* C2 *
AhkK * *
* * K
* C1 %>
* *
Al NORM EAD
o % o F!
61500 c1 . s **icztt###****i* RERD sk Camdorkhbkbhk
IS IT YES =% ‘*"“‘*'*""* * * RDSPC *
* COHHENT CARD h—-———) PRINT SPECIPI- L S
" ? ' * READ A CARD ¥
R Rk Rk Rk Ao KRR A R KRR Rk
* NO
.*. ¥,
GBEG *. ER16°###D2**4t#t*$**# p3° #.
.* o R X * -u*x
«*I5 THERE AN*, NO = ZX¥=X*—%-X-%-%~ * «* IS IT THE *. NO
, 101 Il_; COL. g. ———» PRIHT ERR 160 x *.%AST CARD 2 . ——)* c1 *
Tx, o Tk, o ook
X kKRR R KRR .
* YES L * YES
A
* *
l >k C2 *
* *
AR
¥,
E1T T *, Rk B2 AR KA KK R KK
* *. * DIAGNOSE AND Fkkk Bk kok kKKK
B IS IT A_ *. YES *COMPRESS FIELD * *
*, FIELD TYPE .¥—————D>*NAME AND FIELD * * EXIT *
« SPEC 7 .* * END POSITION * *
*. o * SRR AR KKK
*, Lk A Ak R AR KRR
* NO
l TO:RG10
SPCED
#***tp1.#**i*#l#* FAk KA QR kR kR
DIAGNOSE AND * * *
*COHPRESS COLS. * *PROCESS SPECIAL*
7-14, COLS. * * EDIT CODES IF =*
* 16-31 ; * SPECIFIED *
kA AR AR R ROk kK k R KR KK Rk
*l*t
* *
* C2 * CSW
* p4 FRK KK G F AR AAK KA K
AR * *

GouT
FAAHAH 2 A RA ARk
* *

* DIAGNQOSE AND *
COMPRESS OUTPUT
* TINDICATORS

3 ook KK ok Aok o o ek ok

Aok J 2ok kR AOkk
EE LT] * PROCESS AND *
* * * MPRESS *
* C2 *< * EDITWORD AND *
* * TER *
P *

Aok Ak R KRRk Rk K

Chart BD.

32

*PROCESS OQUTPUT *

————>% TINDICATORS *
* *

* *
Aok ok ok R OK ok Rokok kK

EEE L

Enter Output-Format Specifications Phase (RGO08)-

Chart CA.

BEGIN
stk) kR Rk kK
* ENTRY ;
ool kR kR KKk K

FROM: RGOS

INSID Lx,
B1. T,
AINDUT, %
L% QUTPUT, & *. NO
*, ipt 1ybr w
%, SPECS 7 _.*%
*, o X
*, ¥
*"YES

FokoR ok C] R Rk dokoRR ok ok
*

PREPARE _FQR DSF
* ROUTINE *

* *
At AR RO ok R kK

HkAD 1 RRAK Rk ook
P

PRINT HEADING .

Ak Ak Ok ok o ok ok ok ok ok

T

CLRLP
*****11******#*#*

CDHPREGSION AND
*PUT IN I ATORS *

a0 sfeog ok o o o ok koK ok ROk ROk k

ok ook B2 ook ok ok dokok

* *
>* EXIT :
Rk KRR Rk KK

T0: RG19

NIS
koo) 3 ok KRR ok Kok

PULL TABLE
TOGETHER

3 3 #
[T

ok kR K Rk ARk Kok

sokokokok B3 deokokdok kokkokok
*

A5SIGN RELATIVE
* ADDRESS :

* *
o340k e ok ok koK Kk KKK AR

JNOER
AR CRR ARk Rk

PRTSP
B g e
PRINT SYMBOL
* TABLE *

¢ 3o sl ook ok ok SR ok ok

PUNCH
FHKD 3k Ak AR KAk

* QUTPUT THE *
INDICATORS

koo ok ok Rk o ook KoK

Kok ok ok E 3 %kk *****ﬁ‘t
*

CAN
COMPRESSION POR
*INDIC TORS AND *
* S *

*

* ADD
ook ok k

ok ok F 3 Ak kKKK

*
* EXIT *
* *
ok dolokok ok kR kKK

TO: RG12

Assign Indicators Phase (RG10)

Phase Descriptions

33

BEGIN

FRRR L 2R RRE KRR
ENTRY

KKK

* *

FROM: RG10

CL

RAA
b - il

FOR _*
COMPUTE*
TABLE *
HEREER R R R

Aok ke
»
*
Ll
*
*
»

EEE LA L L EE LR 2

R I §

CLEAR
bad i IO YERL ELE S L 2)
* *

*

: CLEAR TABLE

IZ T2

*
kR b kkRR kR

CHPSC
FRRRAED #
*

* PIRST SCAN TO *
BUILD FIELDNAME
* TABLE *

S L bl L]
*

*
FEEREEkR Rk

ASSIG
HHrerp2ed

*ASSIGN ADDRESS *
* PRINT SYNBOL *
* TABLE *

ok ok ok
*

LR Rt Ed LR L)

CHPSC
EERRKGD ¥
x

*SECOND SCAN-T0 *
*PUT ADDRESS IN *
: COMPRESSION :

Aok ok ok kR ok kR

JEEL L]
*

EOJ

RREERI2ERE R AR
*

PREPARE FOR

PASS TWO

EE 22X]
L X X3

LRSS RS LT L L 2 0]

Chart CB.

34

.*" ARE
>, LITERAL
7

*

*,
*,
ANY *. NO
S USED.
o *
*

H3"
* P T T T T T
EXIT
LESE RSS2 L L

*

>* *
* *
*

.
* YES

TO: RG16

EETTRETE
-

EXIT *
kRN

ook ko

TO: RG14

Assign Field Names Phase (RG1l2)

BEGIR
AR 2 FRA KA KR
* ENTRY *
* *
Aok odok o ko ook ok

FROM: RG12

At
t##B%#—‘!#*‘***##*

ke kkok k% &
PRINT HEADING
* *
ROk R R
Xk
* *
* C2 *->
*
*hkk
FRRC2ENA AR R AR
* RDSPC *
BL I B =4 o SR
* READ A SPEC *
AR R AR KRRk

A4 ¥

D2 '.*
NO_.* ARE CALC %,
——*-LITER)LS USED.*
[.
*, o
LI
I YES
BACK .*.
. .
<% IS IT A_ *. YES
,CALC SPEC 2?2 . e e i
. o
*, o
o
* NO
l >
cup1 .'. o¥o e Jx,
*, F3 *, FU *, ARRRAFS ARk RRR K
t *, «*% IS A %, ¥ *, * *
NO_.*ARE OUTPUT +*LITERAL IN *. NO +% IS IT THE *. YES * *
r——*. LITERALS USID.‘ *.TABLE_ENTRIES.* >%, END OF THE . >* CLEAR TABLE *
- ? *, ? o* * ., TABLE 2 _.* * *
, , *, o *, oE * *
« o ¥ LI *, % R LRI 2L L L]
* YES “*"YES * NO
P
1 * *
OBACK . %, * C2 *
62" Tx, FEERRGIRRREREL Y BAAAKG Y B RR AR * *
. *, % NEW ADDRESS #* LT
+% IS IT AN *. YES LIST ADDRE. S IN* * ASSIGNED %ND *
,0UTPUT SPEC ?. * COMPRESSI <————————‘LIIERAL QUTPUT *
*, ¥ * * IN DSP *
*, oK * M * *
*, B e T AR AR RNk
* NO
S >
ok hk
* *
* 02 *
* *
Aok H 2 Ak SRk ok Ak
*
* BXIT *
* *
e L e T
TO: RG16

Chart CC. Assign Literals Phase (RG14)

Phase Descriptions 35

Chart DA.

36

START
sk sk } 2 KoK KA KKK
*
* ENTRY *
* *
TSI T T TR P LR T

FROM: RG14
OR RG12

FRKD 2 RAK A AR KA
M

Pt St T T e

GET COMPRESSION

* SPECIFICATIONX*

e e e ok ek R ok o ok okok ok ok

Aok C 2Rk Rk ko
*

* DETERMINE THE *

* TYPE o S

* *
ko ok kR ok ok R ok R ok R

koK D) 2 Fk R A KRR

*

* EXIT *
* *
Fokokok AR KRR KK

TO: RG17

t* * %k ek
* *
* ADDRESS * TYPE * ACTION TAKEN : x
ok Rk 1*$x****
* EY % * AT E2(BUTLD TENT TABLE, BRANCH TO 1
****t*%***************
* ZIMT R OR E* BEANCH TO E1
X Kk ******t**t****************
* - % * CHECK FOR VALID TABLE NAME,
* * * BEANCH TO E1 *
s
* * * CHECK_FOR_'AND!' RECORD AT_E6a;
* B M * ERESDNT, BRANCH TO E6E, IF Not BRANCH *
ok 3k ok ok K ******t***#*******t**t*******
* -- % D % AT CHECK COLUMNS 42-74 FOR
* * * VALIDtTv, BERANCH TO E1
e ok ok Kok K t*******
* - % * TEST VALIDITY OF INPUT INFROMATTON, *
* * * BRANCH TO E *
kKK F4 -
* -- % 0 % BRANCE TO E *
e ook ok ok ok ok ok ok Kok ok KOkoK Kok ok ok Sk ok ok Kok ok

Extended Diagnostics Phase (RG16)

BEGIN
ook | AR KRR ROk
*
* ENTRY *
* *
Rk AROROR RO K

Aodokk FROM: RG16
* *

* Bl #->
* *

sokok B ok okokodokok Kok ok

=k kKK k kK
*GET COMP SPREC .

i e ook ook ok ok ke ok ook
w0 R
c1’ T,
. *,
.%7Is IT A *. WO
*ICALC SPEC 7 . %—
*, . ¥
*. T ok
« o % * *
**yBs * D4 *
* *
oKk
w7 ouTX R E9 R
sokokok R [] R R TR Kok kK D2 *, D4 *.
* * ¥ *, ok s) J o ke ook ke ook ok o ¥ IS *
*F1, F2, RESULT * 0 .*0 OR M TYPE*. NEIT * % FILENAME *. NO
*F1ELD CHECKED * *. OUTPUT 7 % >% EXIT * * USED,OR IS .*——
* * L—_ *, .* * *,SPEE 10RT.*
* * *, . x sorkotoRokaok ko oKk *,TYPE .
AR R Rk KK Rk K *, X *, %
- "y *"YES
* ® T0: RG19
* D4 *
* *
kKX
w10 R €10 £961
E1 *. FARFAE D %R ROoRR KRk Sotokokok B3k Aok KRk FAKAOK Bl KA KA AR
¥ YALID *. * * * * TISAM REQUEST, *
.*% EXSR AND *. YES * ® *CHECK_FOR VALID* * SPACE, SKIp,' *
%, GOTO QPERA—_ .* >*TEST FACTOR 2 * % EDITING * . * sTAckeR SEf *
¥ TIONS 7 . * x x * * "CHECKED *
.*_ .*. e ok ok 3 ok o o ok ok oK kR oK e sk o s o 3K ok oK Kok o KK ok ¢ sk ek ok ok ok R ok ok ko
*" No
1 >1<
W18 *.
F1 *, Sk ook T 2 Aok Rk doRR AR AKKF U $ AR AR KA
o X x*, * *
.*"I3 OPCODE *. YES * TEST RESULT * Lt S et
*. TESTZ ? o >% FLELD FOR *————— e PRINT ERROR
=, o* * ALPHAMERIC * * NOTE IF *
*, ox * EDED
*x, % koo ok ook ok ok ok ok ok oK oK ok ke o ook ok ok ok
*"No
* %Nk
1 * *
w19 ok, * B1 *
G1 *, Aok kG 2 ook ek Rk KRk * *
oK *, * Aok Aok
.* IS OPCQDE *. YES * TEST RBESULT *
* LOKUP 7 o >* PIELD,F1, AND *—— o>
*, X * $2 *
* g o X
*, X e ok ok ok ok ol ok ok ek kR ok K
I NO
w23 R
H1 *, Aok okok H 2 ok koK ok ok ok ok
ok *, * *
.* IS OPCQDE *. YES * *
%] TCOMP ? o >% TEST F1, F2 *— —
*, ok * *
*, . * *
W, oK e e ke o o ok ok o ook okook o ok ek ok
*"No
ok
* *
* 33 *->
* *
v * ko
W27 R
J1 *, #****Jz#********: ***J%*n;********
¥ *, *
<%'I5 QPCODE’*. VES * TEST RESULT * B et i e
* HMOVE ZONE ¥———>% FIELD AND F2 *———> PRINT ERROR
*. ok * * * NOTES *
*, X *
K, oK ok o ok s ok ok ok ok ok ok koK dokok e ok e 2 e 3 e e 3 ¢ o e o ook ok
*"No
1 *kokk
* *
w31 R * B1 *
K1 *, ok aok K 2k Aok Rk Sk ok *
XIS . * * Hokkk
.*QPCODE ADD,*. YES * TEST RESULT *
*. 2-KDD, SUB, . >*FIELD, F1, AND *
*.2-508 7 I+ * F2 *
¥, ¥ * *
*, K koo ok AR kA KRRk K
*"¥o
L >
koK
* *
* J3 %
* *
FTTTY

Chart DB.

Extended Calculation and

Output Diagnostic Phase (RG17)

Phase Descriptions

37

START
FERR R RA KB R AN,
*
* ENTRY *
PR RS L EEEE LS 20

Aok R D kol sk ok e ok ok
*

DIAGNOSTIC *
*
PR PR Tt e
=~ DIAGNOSTIC 1 ¢ 3
REFERS T0 reio,
RG20, RG21
TESTZ ¥, ERRHR
c2 *, HARRRC IR R R
¥ *, * *
«* ARE ERROR *. YES * *
*. BITS ON 7?7 o¥——————_—>% CALL PRINTER *
*, ¥ * *
, o » *
% B T L T T
I NO
ZEROE ok,
D2 *, LR EET I PET LAY
¥ *, El
NO ,* ARE ALL *, ke KR R
L——*, BRROR NOTES .#<{—-—— PRINT ALL ERROR
'.EALLZD ?'.* * NOTES *
A S T T LT
[YES
CONT1 ¥,
E2 L
¥ -, FAOER R ARk K
% ERRORS *, YES »
'-IERHI;ATE JOg.*——-—————): EXIT *
Tx, Ty AR RRE RN
*, .
* NO
TO: RG60
b PR i
* EXIT *
* *
B R
TO: RG22

Chart DC. Error Message Phases (RGl9, RG20, RG21)

38

Chart EA.

BEG
LEEad Wi LT T TR
* *
* ENTRY *
* *
Aok ok oK kKK ok

FROM: RG19

EXTFXN
Frarap2x ErRERa

OVE ENTRIES IN*
*PILBHAHB TABLE *
TO YOTAB

t
0 AOROKOK K o ok ok ok ok

..
COMP_“%. NO
FIL
R? .%
.
YES

TIOTB
bt VAL EL EEEE 2]
*

* STORE DEVICE
:CODB IN IOTAB

%% %

*
HA AR KA K R kR

AR D RN A
+STORE LENGTH OF*
*RECORD, OF KEY

oF RAF'IN Iorn§

t *
kRO KOk ok Ak Rk

HBEFQHAAAK R AR KK
B Dt T e
GET NEXT
* COH;R!SSION *
LI EES T 42 e

E b %

ENDPH
#tt*tc3****l**##t

INDICATE END OF
>‘ FILE1 ‘

*
****ti*#*****tt**

AR Ik Aok

*

* EXIT *
* *
HARARARARA AR

TO: RG24

Assemble 1 I/0 Phase (RG22)

Phase Descriptions

39

Chart EB.

40

BEG
AR 2AAK KA AR
*
* ENTRY *
* *
Aok kokok kR kKK

FROM: RG22

START
*****52**********

* GET ADDRESS
*FIHST EgTﬁY OF *

*****‘*i*it****#*

t*tttcz*u:t**tt:*
t

GET ADDRESS *
*PIRST ENTRY OF *
* FILE1 TABLE

*
#t**tt*i**t

FHRERCTHRRE AR

*

*GET ADDRESS OF *
NEXT FILE1 *

: TABLE ENTRY :

ek ook o ok ek ok ok ok e ook

Loop o ¥,
D

¥ I
*.*NON—DIS

BOMP
AAKARE 2Kk hkokokok
* *

*GET _ADDRESS OF *
* NEXT IOTAB *
* ENTRY *

*
Aok koRoR Rk Kok kKRR

Aok kR E 3k kokkokok ok
*

* MODIFY OBJECT *
* CODE *

* *
ARk Ok KOk dOK Rk R KKK

PUTOB
HOOKR 3 koK ok ROk
— koK k kK
OBJECT_ CODE
* QUTPUT IS DSF*

A AR AOK AR Kk ok oK kKoK

IO

Assemble 2 I/0 Phase (RG24)

FRRAPY Kk H R Rk
*

: EXIT *
ook ek Aok Kk ok ko ok

TO: RG32

* DEVICE IS ONE OF THE *
* FOLLOWING: *
* *
* *
* 1442 READER *
* 2507 READER *
* 1132 ERINIER *
* 1403 PRINTER *
* CONSOLE PRINTER *
% Jguz Bunck *
* 1443 READ/PUNCH QUTPUT _ *
¥ 1442 READ/PUNCH COMBINED *
*

>
*

Kok] 5ok kR K
*

EXIT *

Ak R KKK K

TO: RG26

BEGIN
Aok | 2 dokok Kok kodok ok
* *
* ENTRY *
* *
Aotk kotokok koK ok Kok

FROM: RG24

*****52**#***#***

*

*GET ADDRESS OF *
IRST I0TAB *

* RY *

*

0k 3 ek ok ok ok ok ok ok

*****CZ*#**#*****

*GET ADDRESS OF *
FIRST FILE1
: TABLE ENTRY *

Ed
ko ko ok Rokokok sk okok
ook ok
* *
* D2 *->
* *
Fdokk

*

ok

*.
«* IS FILE *, YES

. SEQUENTIAL .
,UPDATE ? .

*, K
l NO
o X,
B2 k.
¥ *,
IS FPILE « YES
*, SEQUENTIAL .
.QUTPUT ? .
*, o ¥
P
I Yo
¥,
F2 *,
¥
IS IT YES
EN DIREC; ACCBSS H—.
*, .a'
o ok
* NO
BACK
t*tcz******i*
*

*GET ADDRESS OF *
NEXT £0TAB *<

********i********

tﬂz*“********
*GET ADDRESS OF *

SEQUP

koK KoK) 3ok skok ok ok
* SET I/0/U IN *

* DIS ILE *
~—>*INFORMATION TO *.
* U *

* *
ook ook s ok sk okl ek Kok

EQOT
FKAAKE J KAk ARk
: SET_I/0/U0 IN

DIS ILE
):INFORH%TION TO *

0 Ak AOKE § ok kodok Rk ok
*
*COMPUTE RECORD *
>* LENGTH *

* %

* - *
* * *
ohkk

HUP
#*F3******* AKk K KR 4 Kk ARk kK
* SET é * * *
e % * serup Lot
>*INFORHATI N TO * BUF *
* * *
* * *

FAKGY FHoR AR

PUT
—km Rk R E K Xk
PUT IOD IN DSF
* FORMAT *

e kA ok ok gk ¥k ok ok

b il (L L L EEE TR

*
RELOCATE OBJECT
* CODE *

ILE1 *
: g x

*****#1**********

JZ' k. .
o IS IT END
*, OP I0TAB ?
*
S

*. NO
« %
- -*
*o «
#
*YE

HAAOKK 240k K ok ok ok

*

* EXIT *
* *
SRRk K ok

TO: RG28

Chart EC. Assemble 3 I/0O Phase

* *
ke e s ofe o ke S ok K ok e koK
Hokdok
* *
>% D2 ¥
* *
EEL T
(RG26)
Phase

Descriptions

41

PCALL
AR]D TRk AR RKE
*
* EXIT *<.
* *
Aok ARk

TO: RG32

T
* *
* C2 *<
* *
*kkk

Chart ED.

42

BEG
Aok Aok | DAk kKR k Kok
*
* ENTRY *
* *
Aok ok kKR ok Rk

FROM: RG26

ook ok ke ok ok ok
DRESS OF *
IOTAB AND*
T FILE1 *
TRY *

*
ok ok ok okok ook ok ok Kok ROk

*ok ok

* *

* C2 *—>
* *

b
IOTCK ¥
c2

Lk
«* DOES ISA

YES
* %,

*
*

* QO

.

*

*
.l.
D2 *.
*

¥ -
YES _.* _END OF *.
. IOTAB ? ‘.*

*

S

» PROCESSI

*.0CCUR ?
*

*

NO

WXDE1

dodokokok 2 ko kK ok Aok
* *
*GET ADDRESS OF *
* NEXT FILE1 *
; ENRTRY :

ek deokok) 3 e ok ok ok ok ok
* BUILD THE DFI *

* TABLE ARD *
LOGICS_FOR THIS
* FILE *

*
e ok e 3 o ok ok ok ok ok ok ok ok ok ok

SRR R R R AKAE A

I)1 .
OUTPUT THE 1/0
* LOGICS *

*

FARRRFIRRREH AR R
* *

*GET_ADDRESS_OF *
= REXT I0TAB *
* CENTRY *

*
Ak kokk kR Rk Rk Rk kK

Assemble 4 I/O Phase (RG28)

* * *
* TSAH ROUTINE * BRANCH TO *
* * *
* * *
* LOAD * LOAD? *
* * *
* ADD : IADD1 :
* SE%UENTIAL * *
: RETRIEVE : SEQR1 :
* RANDOM * *
: RETRIEVE : RAND1 :

Chart

A0000
Ak | 2 Rk skokkok ok
: ENTRY :
Aok Kok ok Rk ok

FROM: RG28

20010
AARB QAR R ok ok

=R K K Kk
GET_COMPRESSION
* BLOCK 1 *

Aok KRk K koo
*ohkk
* *
* C2 2>
*Aokok
ok,
c2 *.

Lk . *y .
«* IS IT A *., NO
«. TABLE 7?7 o ¥
*, oE

*, ok

o o ¥
* YES

*

HRRD 2 A KRR KA
B
PR et SRR
PUT OUT TABLE
* AREA 1 *
PR ———

TBLGA‘#*PZ#H*#**‘**#*

-*-*-*-*-t-;;; *
PUT OUT TA
* AREA 2 *

PES LRSI R S 2L

ARG 2K AR A A

k=
‘—> PUT QUT TABLE
* LOAD *

ARk oKk ok oKk Kok ok

B000S oE,
H2® T,
“Is 17 110" YES
o .
., FhLET 2 o~

c3 *,
oX *,

«* IS IT AN_ *, NO
——>*.*'I' TYPE 7 &%
.. e
*o %

I YES
¥
D3 *

o* Tx,
KO .* MORE_THAN *,
——**.2“3 TABLE ? *.*

*, o
%
* YES

LINK oK B3 Ak kKK KKKk
-*-*-g-tgt-*-* *
PUT_OUT TABLE

* LOAD DRIVER x*

ook ok ok ok Kok ok ok k ok

S d

EXIT
KT JRok Rk okokk
S EXIT :
AR A A EAA AR

TO: RG34

TDUP
AR Jokk Aok kR kKR

0.
- K Rk K
> PUT _OQUT TAB
* DUMP *

oAk ko kok ok Rk Kok

<

FA.

>

40015
FRRRIIRRO Rk

: INCREMENT TO
% COMPRESSION
ARk kR kokok ok kK

LT X

*kKK
* C2 *
*

*kkk

Assemble Tables Phase (RG32)

Phase Descriptions

43

Chart

44

FB.

HRRKRC] RKAK KA KK
* *
* POINT TO NEXT *
: SPEC :<

* *
LRSS L I RS LR LS £ 2
K
* *
>* B2 *
*
L E L]
HokoRk D)] ARk ARk
*

*
* SAVE CEAINING *
———: COMP ADDRESS :(

* *
F KA ORAKR AR KRR Ak

BEGC1
MR 2Kk R Kok ok ok
*
* ENTRY *
* *
ok kkok R Kok HOk &
*odeokk FRON: RG32
* *
* B2 *->
* *
AR
GNEX
HRKRD QW KRR UK AKAK
B R e S
GET
* SPECIFICATION*
Aok ok KR KR ok K

*cz'
YES ,*is IT P
*. DESCRIP

*. SPEC

*. .

E2 *,
¥ *,
«*IS IT A RAF*, YES
*-EXTENSION 7 %
“x

. .
, L
NO

CHGEN
HRR ARG 2 KRN AN AR AR
% *

* GENERATE C1, *
#*C2, C3 CHAINING*
* RTINS *

ARk ROk ROk

AR D ARRRRAAAK KK
B s ot S
PUT C
* ROUTINES *
ARk Ak K

AT 2 KA KK AR
* *
* EXIT *
* *
FRERAARERIKA AR

TO: RG36

AF
Aok kI RR AR KK
*

*

* SET UP RAF %

>% ROUTINE *
* *

* *

He AR AR ARk Hok oKk

AR RF J R AR AR KK

PUTOB
ok kK kak X
*PUT OUT RA CODE

Aok R OK 3Rk ok Ok kK

Assemble Chain and RA File Phase (RG34)

BEG
RAkK B3 dddkokk KAk
*

* ENTRY *

* *
EEEES T L EL LT
ook FROM: RG34

* *

* C3 *—>

* *
Ak Ak

3TART
EE R JoxELE LRSS 23
G

ittt ittt Lt I

. ¥
D2 *,
ox *o
YES .* IS IT THE *.
. END OF COMP .<
.BLOCK ? _ .

* NO

CALL L

FAOKE 2 kckokok ok ook ok

B .t I I S]
GENERATE BI

* CFLD1 DC 0 *

SRRk ARk kA ok

*ARK 2 Rk Ak Rk K
*

: EXIT *

E e ST

TO: RG38

¥
. G2 *,

ARk oK *.
* * NO .k *,
* BU4 *< *,FIRST TINE ?_ .*<
* * *, o*
ARk *, o¥

*, %
YE

12}

Chart FC.

> GET BLOCK OF
* COMFRESSION *

0 koK ok koK ok ok ok ok

ct oK
D3 *o

I
Stk B 3 dokokotok K ok sk ok
*

GET NEXT
COMPRESSION
RECORD

3 3 ¥
% % X

Atk okl ook sk okok ok kok kR

LX)
* *
* F3 *->
* *

Sokk
upcH1 ok
F3 *.

. ¥ *
*I' .*NEXT RECORD*. 'D!
L%, 9T" OR "DV ? .*

Stk 3 Aok Ak R Bk Kok ok

o ¥ *,
NEIT .*WHICH INPUT*. 'D!
TYPE ? e

Aok

* ¥ *
=]
=

EX Y]

kKK

B15 HRKB Y dedk Rtk ok

B e e N
GENERATE BI
% CFLD1 DC 0 *
ook Aok ROk RRORK AR
AR

* *
* ClY Hed>
* *

FARKC U Fok kKKK K
P

=Kk e KKk K

GENERATE B 1 DC

* 0 *

e ok ok ok ok ok oKk

BB
ok kR D £ ok ok ke kK ook
* *

ROH LHPAQ *
ook ok KRR ROR K F Kk K

Fkkok kok K

*

* -~ AT THEND, OBJECT CODE
FOR FPIELD RECORD

RELATION

* %%

FRKEY KRRk dkk * -~ AT GENMV, LIBF TO HMOVE
P

UTOB * FIELDS FROM I/0
k—k—d—Fkokek kK BUFFER TO HOLD AREA
RATE OBJECT -—=-=
+OENER B * * - AT ATIST, OBJECT CODE
o
PET—— * OR BLANK'FPIELD
* INDICATORS
* - AT STERL, STERLING
* 0BJECT ROUTINE
FEITY *
* * Aok Kok kX
* C3 *
* *
Aeokok K *okaok
* *
>* BY *
* *
dekokk
Aokokk
* *
>* F3 *
* *
Aok kR

Assemble Input Field Phase (RG36)

Phase Descriptions

45

Chart FD.

46

BEG
Sk KK Ak Rk Rk
*
* ENTRY *
A A KRR KA KKK

FROM: RG36

*GENERATE NUSEQ
>: E

AKH AR BS Rk hok kKK
*

ROUTIN.

* 5 % *

* *
ook ok ok ok ook ok kKoK Kok

INT o ¥,
B3 "%, KR [R ok Rk K
3 *, PU
«*ANY CONTROL*. YES it bt ek et
*. LEVELS ? « ¥ ——>_GEN OBJ CODE
*.‘ *.* * FOR PROC *
R kAR KRRk Rk
* NQ
P
* C3 k)l
* <
ARk
BACK ¥
FRKCERK AR ERAEKE c3” “x.
ETC. ¥ *,
Kk kK K YES .* IS5 IT THE *.
GET NEXT BLOCK < ——%. END OF COMP .*
* OF COoNMp * *-ELOCK ? *.*
AR ARk Rk KK R
* NO
Aok
* *
>* C3 %
* *
kR
SD FsSI o ¥
R AR 2 KKk ko ook kK D3 *.
* . *,
* PROCESS 'pt * YES .* IS IT 'D' *,
: TYPE RECORD :‘(*, TYIPE ? ¥
* * *. 2
AR Rk Rk Rk ok *, %
l * KO
R 1
* *
* C3 * ¥ NOFIL ok,
* * E3 *, E4 *,
Aok o* *. |
+*% IS IT 'I' *. YES o ¥ THERE « YES
, TYPE ? . ¥ ¥, NUMERIC o
*, ok *.SE?U NC- .
*, . % *,ING 2.%
— ¥, %
* NO * NO
£
DCHP
HEREKPL R KRR Rk
EETES S PR T * *
* * PROCESS 'I' *
* EXIT * * RECORD *
* * * *
AR ARk A * *
Aok ROk AR oK
TO: RGYUO
P
* *
* C3 *
* *
AR

Assemble Control Levels Phase

(RG38)

ADLEX

LAV3

BEG49

*****D1* okl Rk kKK
* INCREMENT XR2 *

BY ENTRY LENGTH(————————

*
*ﬁ***************

-

KRRk P)R ¥AoRIR kR Kk
* *
* TINCREMENT *

* FILECOUNT *<
* *
* *
2 ok e g ook ok ook ok ok ook ok ok
« ¥
H1 T
% D *
NO_.*"PREV REC
—%. TYPE HAVE _.*<
*, HATCHING .
JFLD 7.%
*, X
Rk * YES
* *
* J2 *
deokok

Chart FE.

HookJ AR Aok kKR

A o Aok ok ok ok ok ok ok

K RFRARARRRAR
P L1 P
PUT OUT BRANCER

* T0 EXTRACTIOR*

okt b ok ok ok ok ok Kok

*ok k] 2 dokok kAR K
*
* ENTRY :
Aok Aok R K
FROM: RG38
STAR1
ook ok B 2 ok doskokksk ok ok
*
:ALLOCATE LOHFLD:
* *
* *
Aekokkokok oKk kK ok
>
LOOPX ¥, ok,
c2 *o c3 *.
o X *,
Is THIS THE YES +*% IS THERE *. NO
_END OF FILE1 T2 >%IMORE_THAN ONE.
*,TAB ? . *, FILE ? _.¥
. . *. o ¥
. K *, Lk
1 NO * YES
ok NORMA v
D2 *, *#***D3*kt*******
-¥EITHER *. CALCULATE *
NO .* A PRIMARY *. * LENGTH, THEN
, OR SECOND- . *FIELD AﬁDRESSES*
.ARY FILE . FOR MFTST OBJ
*. 7 o ¥ CODE *
K, Lk sokskok ok Rk ok koK ok oK
* YES
EFIT
Aorolok B 2 ko dok ok ok ok ok Kk E 3 dokdokokdokkokokok
* *

SET_STATUS_WORD
*T0 INDICATE IF *
*EQF IS NEEDED :

b3 3k S ol 6 ok ok K ok kK

KOTR
Aok 2 okoskookok akokok kok
HODIPY 0BJ CODB
T0_REFLECT
‘ ISCENDING OR *
ESCEND *

ok ok ok ok ook ok ok 2k ok ok ok ok K

ITYP1 o

¥ *,
NO +% EITHER *,
'AND' OR_'OR'.*<
Tx, PE ok

N -

YES
Hokkk

* *

* J2. %>

* *

Fokokk
AR J 2 kR ok gk Kok
*

* POINT TO NEXT
* COMPRESSION
* RECORD

% % %%

ek Rk ok ok koK ok Kk klOK Ok

Aok ok

4 * %
=
w

EX)

kKK

D
KoKk ke kK
PUT OUT OBJ
* CODE FOR MFTS*
ROU
e ok ook o ok ok kokok ok ok

<

ONEFI ¥,
D4 *o

o ¥ *,
+*IS SEQUENCE*, NO
o CHECK o Hoooe
.gPECIFIEg.

*, K
* YES

N
oNE b L A f bt d
PUT_QUT OBJECT
CODE_FOR LOWFLD*
. AND PS HOLD
AR R KRR KKKk

<:

NSEQ1
FEAE G Ak kR Rk &

-*—*—E-*-*—*-* *
PUT OBJ_CODE
* FOR EOF TES *

ROUTINE
A AR AK KKK TR

FHEGI KAk KK ARk

CER
AT SPEC_ *. NEIT

S IT 7 .*
ok

KK 3R kKooK
B ot 2 ot B
PUT OUT
* EXTRACTION *
PEETTE R T T TR TS

Assemble Multi-Files Phase (RG40)

¥ GECA

H4 *, Ak KR H S KA KAk kR
o ¥ *, * *
+% END OF *. YES * *
——>%, BLOCK ? o ¥———>%GET NEXT BLOCK *
*, oE * *
*, ok * *
*, oK Aok ok dokkokR Rk Kk
* NO
l Aok ok
* *
MFGPU o ¥ * H3 *
Jy Tx, *
<% DID_ *, xRk
% PREV REC__*, NO
.HAVE MATCHING. — —
,FIELDS 7 .
*, s
E
*"YES
EOJX
Aok KK b Aok K ok Ak ok
PUT ouT COHPARE Kk 5 Kok ok ok K
*AND BRANCH_TO *
EXTRACTION RTN ——-—————>* EXIT *
* LAST TIME * *
FRAKRAR AR RER K
Sk koK ok ok Kok koK
TO: RGU2

Phase Descriptions

47

BEG50

*o ok] 3 kokkkok KRk K
*
: ENTRY *
Akkk KRR AR KKK K
* *
* B2 *
* * FROM: RGUO
koK
ADLE RESET
Rk Aok P2 Rk Kok Kk ok Hkk P 3Rk ok kKK KKK
* *
* POINT TO_NEXT * e KK m K m K=K K
: COMPRESSION :——‘ *G'E'l‘ COMPBESSIO!‘{
* *
KoK KKKk Rk K R ARa s L]
Rk
* * —_— >
* C2 *
* *
Aok
PUTN BACK ¥ DTYP2 o ¥,
t****cz*****t**tt c3 Tx, Cc4 *,
- ¥ *, «*IS THIS*.
*POINT TO_FILEt * NEIT .*WHICH SPEC *, 'D¢ * FIRST 'D! *. NO
ABLE o G TYPE ? PR >k, PE AFTER . %—,
. B «'I' TYPE .*
* B o* *. 7 ¥
i*tt**¢****tx *. % *, ok
*x 170 * YES
oKk
* *
* D2 > l
* *
KA v
¥ ¥,
EOJX D2 *, ITYP2 p3° “x, ***t*nu‘n#**t****
HRRKD Tk kR Rk KK ok *, ¥ *, OVE MF
YES _.* END OF . X *. YES *EXTRACTION AND *
* EXIT H «_ TABLE ? ok *.YAND' TYPE 7 .*x PUT
* * - ok *, ¥ *ADDR FROH COHP "
Rk ook KRRk *, L% *, ok * TAR *
*, % E ok KRR R KK ek
* 30 * NO *KkK
TO: RGU44 * *
l * B2 * <
* *
*kkk
- ¥, AST12 P
2 *, kA koK B3Rk Kook kKK Bl *,
X *, * oF *,
NO_.% IS THIS A_*. *PUT DUMMY ENTRY* «*IS THERE_A *.
.SHAIN FILE ?.* * IN FILTAB : *.EDNTRgL LEV
“x, y * * x. - ¥
.« X FrkokR kR Kk ok
* YES * YES
FoRAOkK P 2 Kk Ak R K ¥ *k AR AR U KRR
* * * MOVE INPUT * * MOVE CONTROL ¥
*PUT_ADDRESS QF * *RECORD ADDRESS * *LEVEL ADDR FROM*
* FILTAB-4 IN =* * ROM * *COMPRESSION TO *
: FILE1 TABLE : :COHPR i?‘{g“ TO0 : * FILTAB *
L L Ty TP AR R Rk R ORI AR oKk
— >
Skkk
* *
APT G2.1 . : c2 :
. FAKG T Kok kKRN
IS IT %, 3010n e
L A “fiket e
r——%. . PUNCH FILT
,SECONDRY . * FOR PllIVIC)I.Al!:‘.3 *
* FILE .* R R _TYPE
E EEE L ET R T
* YES
Ekkk
* *
* B2 *
R VR TS P T * *
EEEES
—K— ke kmkek k
PONCH GET
* ROUTINE FOR *
ko Rk ok KRRk
e >
PUT1
*****Jzt"tttt*tt*
Fkok
* * POINT _TO_NEXT *
: D2 :(*ENTRY IN FILE1 *
ERAE

C**t******iﬁ*****

Chart FF.

48

Assemble GET Phase (RG42)

START***A1*******#***

-*-*_*_EE*_*-* *
— > GET COMPRESSION
* BLOCK *

Aok ok ok Rk oKk
kK

* *

* B1 *->} NXTSP
* * NXTBR
ddokk

FkR B 1 RARRkK kKK
ETCHM
N ot et S S
GET
* SPECIFICATION*

kR R R AR KRR

IDTYP .
I
%" IS IT A_ *. YES
*ICALC SPEC 7 !

*, ok
*, oK
NO

s 3

JLINEN
YES .* IS IT END *.
.0F COMP BLOCK.
*, L X
%, ok
*, %
*"¥o

FRRKE] HRR AR KK
* BXIT :
Aok ARk KRRk K

TO: RGU6

Chart FG.

BEG
ok ok § 2 Kok kKKK
*

* ENTRY *
* *
ek Aok ok kKKK ok

FROM: RGU2

PUT ADDR OF *
N *

* CHAT

* SUBROUTINE IR *
* COMPRESSION *
: *

deofeok i e 3 ok ok ko ek ok oK

*kAk

* % %
o
-

* % *

EreTY

Assemble Calculation 1 Phase (RG44)

PCALY ¥, GENLK
B2 *, Sk kK B3 Kok Aok Ok AR K
oK *, * *
.* IS OPCODE *. YES * *
)*.* LOKUOP ? ¥ >:GET ALPHA WORD :
Tk, o * *
R P *x *
* NO * LOKUP * ARGUMENT TABLE * LOKUP INSTRUCTION *
* * ASCENDING * TYPE IN WHICH *
* TYPE % OR * ADDRESS IS STORED *
* * DESCENDING * hr *
* EQUAL * A OR D * I *
oK, LOK1 e L L
c2 *, Aok A KC 3 kk Rk KAk KK * * A * I *
ok * * * HIGH *
.* IS OPCODE *. NO *DETERMINE LOKUP* * - * D * 111 *
*, CHAIN ? ok * TYPE *< wdokkk Kk k
*, . X l * * * * A * IIL
*, o ¥ * * * LOW EEE 1 #okok ok
*, Lk B L e * * D * I *
* YES HEKAK *k kK
* * * RIGH, * A * II *
* B * * Fokok Kok e
* * * EQUAL * D * Iv *
ok koK
* LOW, * 2 * v *
¥ * ko *
D2 *, Fokok a0k D 3 Aok koo ok kok K * EQUAL * D * IT *
K *, MODIFY LOKUP * Fok ok ok ok Kok
-*IS IT FIRST*. NO * ROUTINE AND *
*, CHAIN ? o ¥m— GENERATE OBJ *
*o ok * CODE *
*, Lk * *
o o ¥ st koK ok kot ok ok R okok ok
* YES
Sk
* *
* Bl *
*kKEQ * *
. PUTOB Fkkk
e o e]
GENERATE_CHAIN
* SUBROUTINES *
scokokdOR kKRR Kk kKoK
<
PUTAD
HKAKKP 2 HHA kAR KA
*

Phase Descriptions

49

HEG
FRAER] AR A KKK
* *
* ENTRY *
* *
ok KRRk K

STA

P
*
* C1 %>
* *
LEETY
FRKC TRk ok kok Fok K
— ek kKK K
GET COMPRESSION
* SPEC *

Aok ok ko Rk ok ok ok

IDTYP ko
D1 *

-k
.*T IS IT A T*. KO
*CALC SPEC 7 _1x——
Tx, o
- -*
I YES
S,
E1T %,
¥ *
.*"IS THIS A *. YES
. SUBROUTINE _.
%0 SPEC 27 _.*
*, ¥
K
I)
RG1A2 =,
F1 .
o ¥
YES .* IS5 TO *.
S cAic SitcH 1x
. SET o
° - -*.
kK * NO
* *
* Al *
* *
TEEE
L
N0 .+°Is THIS A'*.
——%. TOTAL CALC _.*
* EC ?
. .*
« o ¥
EE L L * YES
* *
* Al * l
* *
Rk *FhKk
* *
® B2 *
* *
ko

Chart FH.

50

FROM: RGH4

*PATCH _ROUTINE *
FOR FIRST PARM
RFSI1

ook ok ke ok KoKk koK

FRC D FMOk kkok kR Xk

DETRIL LINES
A AR AR R KOk K

ko ok) 2 o ok ook ko ok
SAVE TOTAL CALC

* lDDRES IN
* g *
: (uorss+) x
Ao ok o ok ook ok ok R okok
ELEL
>* A3 *
RkKHR

2" s,

X *,

. FIRST *,
>%, SUBROUTINB o ¥
*. SPEC ¥
*, . ¥
R

I NO
ok
* *
* Ay %
*, %
kK

LR VAL EE L L LY

*

LR E L]

.
£
w

* - #

ok kok

et b by XKLL LS L P T

SET TOTAL
SWITCH ON

LY E
LE R X R

Aok dok oKk kR Rk ok

:ED .
" IS IT A *. YES
*CALCTSPEC 7 I¢—>
T, L
* o*
*"xo
>

[————>

RRHC T ARk ARk Kk
A

~X KKK fe KK K
PATCH ROUTIHE

S aRp - Reshy t

EEEREETEE LET 472

RARD I R kKRR AR

FHR P RERERAKEK
*

* EXIT -
* *
Aok kR AR R Ak

TO: RG52

* *
* Ab *
* *
Aok
>
IND
AR) 1K iti*****
* GEN
* CONDITIONING *
* INDICATOR *
* TESTIS, IF *
* NEEDED *
Aok AR KRR K
OPER
t:»a tnit***ﬁ#*#
R LINKAGBS Aok ek
A“g/g ?gguTI“ * RGSI2-SETS AN INDICATOR ON
A
*
ttt##gggegigggmt * Tﬁzogo gzsggngg ng
< * RESULT FIELD
: RGSI3-SETS INDICATOR ON
: RGSI4-SETS INDICATOR OFF
26, Hhttcutx*tx*ttttt

IR L)\ S
GEN LINKAGES TO
* RESULTING IND*

ek ko ok kol R ok koK

Assemble Calculation 2 Phase (RG46)

RPG Bn *,
Al *,
LRI REL T2 Py % *,
* «*IS IT FIRST*. NO
: ENTRY : *.*'H' TYPE ? *.*~——
RARRRBARR R T L) “x, s
* * « oK
* B2 * * YES
FROM: RG46 * *
Rk
FRAP PRAAB R R AR AR FRRPRAERKENKBRRA FRK A KD 1) KKK AR R Aok
* *
R LS e O St B B T s Lt et I * SAVE RETURN *
GET FIRST GET NEXT * ADDRESS *
* OﬂggggKCOHP * * COMPRESSION * : :
EETIT T+ E R P TR E b TR R Aok R ok oK Aok
P2
* * < S—
* CT *->
*
BEGG*’*
.%o FIRST
l.‘C1 -, RS KK KK Aok KKk Aok
IS IT AN_"#. YES IR e SR
4."3' SPEC ? _.* GEN RES
- - *
“ - TIDICATOR
LR * * Sk kR KRRk Kok
* NO * D3 *
* *
l kK
%, OTIPE . INDED E. STRL
‘D‘l *.‘ ‘03 *.* *D *.* KRRDS Rk AR KRR KRR
YES .* IS IT AW "*. .*is 1T PIRST*. WO .*IS STERLING*. YES PR 1o - AP
. 107 SPEC ? _. *. TOUTYPE 7 I — * SPECIFIED ? _.*%——> ENERATE
1,‘ . t.* . *e Pl * STERLING_ *
N A R srr D ESt e s Ee
R T *"YES “x"NO
% D3 * l
* *
PRt
!1.0.‘ " V FNSH1 s .*.‘
. * .
o . e HE 3 Aok Ak * .
-% END OF *, NO ot ot B «*IS THERE AR*. NO
.201‘?01‘ conp z.—y" B2 * PUT OUT LINKAGE *.*BDITHORD ? t.'—aq
"5 o P * * Tk, T
*, . Aok Rk K ok KK ok ¥
* YES * YES
~-~IF LINKAGE CODE
is RBgUIRBD PUT <
our 0B LINKAGE
BFD1 0SW1 PN NPAGE - ¥, EDIT
*, Fu *, £
WRRNP TR STEARR Rk -'F%S 1T %, x .. t**fSt!g;t*t**t#
* -* EITHER *, YES +*IS THIS AN *. YES B i it Sl 2 I
* EXIT : -.;Ag%nogpégn;.t—* *.EDIT WORD ? _.#————> " pUT OUT 0BJ
Ak Ao R '*.*? ‘.,' "k, e * CODE FOR EDIT*
.. o o ¥
*"No *"No #*t#t*tt*?tt*t#*
TO: RG54 [
1
¥,
*G3 *.. pLD“1**#Gul*tt*t*t**'
IS IT A %, NO N St br S
*.PRINTER FILE . *~— PUT OQUT OBJ
*.‘ ? *-* * CODE _FOR FLD *
R ARk AR Rk
* YES
PRNTR B
:****Hatuatt*ttn: LP‘Faa*ﬂui-iiittttt*
* SET STERLING % -*-1-*222*-1—1
* SWITCHES o PUT OUT BLANK
: - * AFTER CODE *
H
. l
STEP

Chart PI.

Assemble

ok oh R J 3 Aok Aok Ak okok
* *

* *
*GET NEXT SPEC *.
* *

* *
e ok Ao ok ok ok ok ok ok

Aok
* *
>* C1 *
* *
okokok

Output Fields Phase (RG52)

Phase

Descriptions

51

RPG
Fokokok |] A AAOKRE KK
*
* ENTRY *
* *
ook ook ok kR ARk K

FROM: RG52

FREHRD)RR RRAK KR
*

*SAVE ADDRESSES
* OF OBJECT

* ROUTINES
PEEETTTER TR LES T Y

3%

4
ook C Kk kok ok R Kok R ok
P

ok kk

GENERATE OBJECT
TINE
EE
ook ko ok Rk kR Rk ok * *
* D2 *
EES 23 * *
* * < AR
* D1 *->
* *
EE 2 2
IFETC - v NXTS1
HRRD R RR AR KRR KKK ERRRRD2RRRRRERR L
*
—*—*—*—* Rk * * GET NEXT *
ET FIRST * COMPRESSION *
+ oUFhUT CORP ¥SPECIFICATION *
ok ok ok ok kR kR kR ARk ROR R OR ROk R KR
ook
* *
* E1 *->
*oe ok
RBZ ¥l MTIPE ok,
*E1 *.* E2 *.

.* IS IT AN_ *. YES Is THIS *. Yes
*. THY SPEC ? P O FIRST?H SPEC .
, ,' *, ¥
*, oK « o

* KO * NO
ko
L
>* D2 *
*
AR
¥, .
F1 *, F2 *,
-k *, ¥ *,
+* IS IT AN_ *. NO +* DOBES SPEC *. YES
*, Y0 SPEC ? .% >% ,CONTAIN X'FD'.¥————>
*, g « *, ? oX
* ok *, «®
*, % *, %
1 YES * NO
OTIPE ¥, FFT
Gt T, HRRG 2RI AR AN K
¥ *,
.* IS IT THE *. NO e Bt T T P A
*,PIRST PASS ? . GET NEXT
. -“-‘l * COHPRESSION *
. * kR RO KA R KRR
*"YES ok
* *
* A3 *
*: M
F Rk EL L2
* *
0TIPB v * B1 %
FORKH | # R R AR ARk K * *
kA
e e K R Rk
GENERATE
* INDICATGR *
0 2ok ok ok ok okOROR ok ok
AR
* *
* D2 *
* *
oAk
Chart FJ. Assemble PUT Phase

52

* *
% A3 *
* *
* kK
MUS2 ¥ MUS3 ¥
a3 Tk, RIS PRERERSHERRRRRRRE
- *, *
¥ IS IT *, NO *IS IT THIRD* YES BUILD TOTAL *
.iECCND PASS 3.)*.‘ PASS ? ,_.___)* LINES TABLE :
“x. L% Tx * *
_— PR ****n******m*****
* YES * RO

>* D1 *
* *
ETTTY
ABEX3 -*.
ARk B3 AR ARk *. PRt
* * *,
* BUILD DETAIL * *IS IT EXTRA*. YES BUILD OVERF LOW *
* LINES TABLE * *_,PASS THREE ? . —————-—-)* LINES TABLE
* * *, oX #
* * *, ok *
ke ok o Ok ok kR KOk ROk ok x, ¥ ****************#
*
o P
* *
[>% D1 *
* *
ok K
MUSH .*.
*, *****cs****x***x*
* *,
.*Is IT pass’*. YES BUILD DETAIL *
*, FOUR ? o ¥ >*0VERPLOH LINES *
B TABLE *
“x, %" ARk R oK KK
* NO
*okokk
* *
Muss * D1 *
Fodokok KDY kR kKRR kK * *
* * Sokodkok
* BUILD EXCEPT *
* LINES TABLE *
* *
* *
ek e ok o ook ko ok ok ok ok Rk
MUss
#*#t#a3*x**t*****
* [P
SAVE ADDRESS OF * *
)* MOVE FIELDS ‘ : EXIT :
* ARk R
[
EET 2] TO: RG58
* *
>% D2 *
* *
RRAOR
MUSFD ¥,
F3 *,
] arx
+¥PASS 1, 2, *, YBS *
.3, EXPS .) D1 *
¥ 5% 4
. . ittt
¥
* NO
% *ohok
*) *
* A SWITCH WORD, TAIN1, IS CHECKED FOR EACH PA *
* T0 DETERMINE IF THE ENTRIES FOR A TABLE ARE *
* BE COMPLETED. *
* *
* DPASS * FUNCTION *
Rk HoR
* 1 * PUTS OUT INDICATOR TESTS. *
< *********************
* 2 * BUILDS TABLE FOR DETAIL LINES >
* 3 * BYILDS TQELE FOR TOTAL LINES *
* EXPS3 * BUILDS T%QLE FOR OVERFLOW LINES *
* L] * BUILDS TABLE FOR DETAIL OVERFLOW LINES *
* 5 * BUILDS TABLE FOR EXCEPT LINES *
FR ARk
PHSED
AR, 3 kAR Rk KOk Ok
*
* EXIT *
* *
ke e o R o kK R ROR K
TO: RG58

(RG54)

Chart

BEGIN

ek | JRk Kk K kKK
*
* ENTRY *
ok R 3 3o e Aok ok o ok ok
FROM: RGS6
OMT K,
B3" "%, HAAKK P Aok d kR ok
* *. * *
. ARE 'ANY %, ¥YES * PUT FILTAB-4 ¥
, CHAIN FILES . >% ADDRESSES IN *
.SPECIFIEE. :HASTEH DRIVER :
R Aok oK ROk ok oK
* NO
l(
OMT1 ¥,
c3 *, :****Cﬂ*********:
oK
«* _ARE ANY *. YES * GENERATE ‘
, DISK FILES . > BRANCHES TO
.§PECIFIB£. OPEN AND CLOSE *
R .
* NO
<
OMT2 oK
p3° “x, hanade Tt EEtitasd
o ¥ *.
«* AR NY *. YES *PUT OUT LINK 1‘0"l
*, TABLE FILES . TABLE LOAD
S SPECIFIEQ.* : :
-*‘ A3k kR ok K ok ok ok K ok
"% N0
GOHDL i
FROOREI R

PUT OUT LINK TO
* HEADING_AND
: DETAIL LINE

ok koK ok oK o kK ok kol Kok

FoRRK P Hok ARk Ak Kok
*FILL IN OBJECT *

TIME
*COHHUNICATIONS *
AREA

*
etk ok ook ok ok ok o ok kokok

MLOP1
HKRG 3 RAK KA AAK
PRT

Pt D e Tt Y
PRINT KEY ADDR
* OF OBJ *

PROG%AH
kst ook ok sk ofkok ok ok ok ok ok

PDONE
ok 3 HAORRR KKK KKK

P L
IP_ ISAM_USED,
* PRINT SECTOR *

IN
ek ek ko R kokok dokok

ALng***J3iui****t**
* *
*GENERATE MASTER¥
: DRIVER :

* *
Fotoksiok ok ok kokok kKKK

Aokt K 3 dokokkdokkokok

*
* EXIT *
* *
Fokkok Kok KRR KK

TO: RG6O

FK. Assemble Linkage Phase (RG58)

Phase Descriptions

BEGIN

WSXC
R R Rk ok kAR ok
*

* GET WORKING *
—):STORIGE H!SSAGE:

* *
Aok AORR KRR RN R kKK

ABERR
Sk gk P 3 dokokobok dokok kR
*

* GET ERROR *
-—>: HgSSlGE

* %

* *
Aok Rk KRk Rk Rk Rk

PTERR
ERAKKPLRERE RN KR
* *

* *
>*NO DUP, NO XEQ *
* *

* *
ok ok ok R okoR R ok ok

ARG Aok kAR kR

B ot et o T ot
'PRINT MESSAGE -

ook Bk ok oKk ok Rk

Hokkok R 2Rk K
*
* ENTRY *
HodRR KRRk Rk
FROM: RG10Q
RG19
RG58
LPBLK v
Ly
* *
* TINITIALIZE *
* PRINT BUFFER *
* *
* *
AR AR KR
R
HERC ARk kAR K
DZ000
—k kKR kK
LOAD PRINT
* ROUTINE *
ek kKRR ok R
¥ %
D1 *, D2 *,
x *, ok *,
NO .* NEED TQ *. YES .* NORMAL *,
(——%. HOVE OBJECT .*< * ,CONPILATION 7.%*
*. CODE ¥ *. ¥
*, oK *, ¥
. ¥ *, X
* YES :[XO
FDDSF S*,
FAABRE PR KRR RK E2 *.
* MOVE OBJ CODE * -* IS *
* TO START OF * .* WORKING *. YES
WORKING STORAGE *, STORAGE o ¥
*2 SECTORS AT A * *. EXCEEDED .
* * *, 7 ¥
R e el] *, ¥
[.1
UPDCH « ¥,
FRAAKF TR KRRk F2" x,
* * * *,
*UPDATE DCOM ON * .* ABORTIVE *. YES
* SY N * *, COMPLIATION .*——
: CARTRIDGE : *.EBR .
ARk AR AR R T
* NO
WTDSK ¥,
G1 *. 2
. Is *. * *
.* WORKING *. YES * ASSUME *
*, STORAGE ON . * *DIAGNOSTIC ROUN *
.ERIVB [:. :OPTION (/70004) :
“w, % AR KRR KRRk
* NO
—_—
>(<
H Nk
* H1 x : H2 *
*UPDATE DCOM_ON * * END OF *
*NON-SYSTEM PACK¥ * COMPILATION *
: : : HESSAGE :

LR ANPE S LS L L LSS
P

S
B it par L
*PRINT MESSAGE -

PR L LA L R 2 2 L

KRR 2 Rk ARk RR
*

* EXIT *
* *
B L T e

Chart FL.

54

Terminate Compilation Phase

(RG60)

The Phase Directory lists the 29 phases of
the 1130 RPG Compiler in numeric sequence.
It summarizes the operations of each phase,
and lists the corresponding Module Name

and Point of Entry.

(See Compiler Flowcharts.)

Chart ID identifies
the appropriate flowchart for each phase.

PHASE DIRECTORY

N:dule Generic Name Chart ID Entry Point Synopsis of Functions
ame
RGOO Resident Phase AA RPG Load subroutines, provide a commonly accessed
communication area, read RPG control card, and
print headings.
RG02 Enter File Specifications BA BEGIN List and compress File Specification entries, build
Phase compression areas and Filename Table.
RGO4 Enter Input Specifica~ BB BEGIN Process Input Specifications creating compression
tions Phase records, check | and D specification, and analyze
errors.
RGO06 Enter Calculation BC BEG Read, list, and compress Calculation Specifica-

Specifications ' tions.

RGO08 Enter Output-Format BD RPG Read, list, and compress Output-Format Specifi-

Specifications Phase cations and determine whether it defines a record
type or a field type.

RG10 Assigﬁ Indicators Phase CA BEGIN Build an indicator table, replace the indicators
with addresses, place PUTOB in RGOO, create
OBEND and place it in RG00.

RG12 Assign Field Names CB BEGIN Build table of field names, and replace a field in

Phase compression with its corresponding address.

RG14 Assign Literals Phase cc BEGIN Assign addresses to literals and build edit words
from edit codes.
RG16 Extended Diagnostics DA START Build tables (TENT, ERTAB, and NOTAB), dis-

1 Phase : tinguish record type from field type Input Specifi-
cations, and pass on field lengths to the Assemble
phases.

RG17 Extended Diagnostics DB BEGIN Update table address, check field entries, print

2 Phase error notes, put out control level hold areas.

RG19, Diagnostic Message DC START Diagnose error bits and print error messages.

20, 21 Phases (1, 2, and 3)

RG22 Assemble 1 1/O Phase EA BEGIN Build 1/O Table from Filename Table.
Table 2. Phase Directory (Part 1 of 2)

Phase Directory

55

Modul
I:q;ee Generic Name Chart ID | Entry Point Synopsis of Functions
e ==
RG24 Assemble 2 /O Phase EB BEG Produce object code for |/O requests of non-disk
files.
RG26 Assemble 3 1/O Phase EC BEGIN Produce object code for /O requests of seciuem‘ial
disk files and Direct access disk files.
RG28 Assemble 4 1/O Phase ED RPG Put out object code for indexed-sequential disk
files.
RG32 Assemble Table Phase FA A0000 Put out object code to load and dump tables.
RG34 Assemble Chain and RA FB BEGCI Process compression and generate object code.
File Phase
RG36 Assemble Input Fields FC BEG Assemble field type Input Specifications.
Phase
RG38 Assemble Control Levels FD BEG38 Generate control level object code and sequence
Phase check routine.
RG40 Assemble Multi-Files FE BEG49 Generate Matching Field routines.
Phase
RG42 Assemble Get Phase FF BEG50 Build file table of routine addresses.
RG44 Assemble Calculation FG BEG Assemble LOKUP operations and a chain sub-
1 Phase routine.
RG46 Assemble Calculation FH BEG Generate object code and linkage.
2 Phase
RG52 Assemble Output Fields Fl RPG Generate object code routine placing output
fields in desired format.
RG54 Assemble Put Phase FJ RPG Generate object code to put out records and pro-
duce table of addresses.
RG58 Assemble Linkage Phase FK BEGIN Generate master driver, branches to routines, and
linkage.
RG60 Terminate Compilation FL RPG Update WS cartridges, print end of compilation
Phase message .
Table 2. Phase Directory (Part 2 of 2)

56

This section describes tables and data
areas in the RPG compiler that are used
outside the phase which created them. (See
Table 5, for more information.) Descrip-
tions of the following are included:

o Filename Table

e TENT Table.

® Input-Output Table.

® Control Level Address Table.

® Overflow Table.

e FILEl Table.

e Communication Area.

Filename Table

The Filename Table can contain as many as
ten entries, each of which is four words
long. If the number of entries exceeds
10 (overflows), the Enter File Specifica-
tion phase (RG02), which builds this ta-
ble, treats the additional entries as
comments and prints an error.

Before an entry is placed in the table,
the table is searched to determine if the
entry is already present. If the entry

is not in the table, it is added and the
reference indicator is created as a blank.
If the entry is in the table, the refer-
ence indicator is changed to M to indicate
a multi-defined file and a message is
printed out. Each entry consists of four
words in the following format:

CONTROL BLOCKS AND TABLES

**File Type

Bit 1Value Meaning

0 0 Not Index Sequential File
1 Index Sequential File

1 0 Input or Update File
1 Output File

2 0 ADD not needed on output for file
1 ADD must be specified for file on output

3 0 Not Disk
1 Disk

4 0 Extension Code
1 Extension Code

5 0 Not a Chained File
1 Chained File

6 0 Not an RA File
1 RA File

7 0 Not a Table File
1 Table File

TENT Table (TENT)

The TENT table (built by RG1l6, and used
by RG1l6 and RG1l7) can contain as many as

ten entries.

Each entry is four words

Word 1 2 3 4
Bits {0-15}0-15}0-7]8-15]0-7[8-15
Filename | Ref File Sequence
(in namecode) | Indic* Type** Number
*Reference Indicator
Blank - Unreferenced
E - Referenced in Extension Specifications
R - Referenced in Input Specifications
O - Referenced in Output Specifications
M - Multi-Defined Filename

long, in the following format:
Word | Bits Contents
1 0-15| Intemal Sequence Number
2 0-7 | File Type (I-O-U-C, in EBCDIC)
RG16 changes this entry to:
a) 08, if 1403 printer is used,
b) OA, if 1132 printer is used,
c) OC, if console printer is used.
8-15] File Designation (P-S-C-R-T, in EBCDIC)
3 0-15| Record Length (in binary)
0-15| Key Length (in binary)

Control Blocks and Tables 57

Input/Output Table (IOTAB)

This table is built from file description
entries, and is used in generating I/0O
routines. This table can contain as many
as ten entries. The code entries are
right-justified, in hexadecimal notation.
Each entry is 7 words long, in the follow-
ing format:

WORD CONTENTS
CODE FILE TYPE
1 0010 | 1403 Printer

12 | 1132 Printer

14 | Console Printer

20 | 1442 Punch Output

22 | 1442 Reader/Punch Output
24 | 1442 Reader/Punch Combined
26 | 1442 Reader/Punch Input
28 | 2501 Reader Input

40 | Sequential Update

42 | Random Update

46 | Sequential Output

48 | ISAM LOAD

4A | ISAM ADD

4C | ISAM Sequential Update
4E | ISAM Random Update

2 Record Length (in binary)

3 Key Length (in binary)

4-5 Symbolic Filename (in namecode)

6 Overflow indicator, if printer; or number of

sectors necessary, if ISAM LOAD file.

Mode of processing column 28 for FDS (R,L)
a) File length, if RA File
b) Number of index entries per sector,
if ISAM LOAD file (in binary)

7 (0-7)
7 (8-15)

Note: A 01 is ORed into the Code entry if dual 1/O is
requested.

58

Control Level Address Table

The Control Level Address Table (built by
RG17, for RG38) consists of nine one-word
entries. Each entry contains the address
of one of the nine control level fields.
The format of these entries is:

Word Contents
1 Address of Ist control level field
2 Address of 2nd control level field
3 Address of 3rd control level field
4 Address of 4th control level field
5 Address of 5th control level field
6 Address of 6th control level field
7 Address of 7th control level field
8 Address of 8th control level field
9 Address of 9th control level field

Overflow Table (SEQOF)

The Overflow Table (built by RG22, for
RG54) contains two entries. Each entry
is two words long, in the following for-
mat:

Word Contents
1 Sequence number of the File Description
Specification
2 Address of the Overflow indicator

Filel Table (FILEl)

The Filel Table (built by RG22) may have
from one to ten entries, depending upon
the number of files. Each entry is three
words long, in the following format:

Word | Bit Contents
1 0-15 | Address of 1/0O Routine
2 0-15 | Address of FILTAB-4 for this file
3 0-3 | Must be zero for Primary and Secondary

files; otherwise, bits 0-7 are C, R, T,
orO.

4 1 Primary File
0 Secondary File
5 1 Ascending Matching Fields
0 Descending Matching Fields
6 1 Sequence Check Required
0 Sequence Check Not Required
7 1 EOF for this File does not count in

EOJ
EOF for this File Counts in EOJ

0
8-14 | (Not used)
1

15 Open/Close routine required

0 Open/Close routine not required

Note: Word 1 is filled in by RG24, RG26, or RG28;
word 2 is filled in by RG42; word 3 is filled in
by RG22.

Control Blocks and Tables

59

This area is in the Resident phase, bet-
ween the labels 'ZRDSP' and 'COEND'. It
provides addresses and constants used by
the compiler. Each field is one word
long, except 'NOTES' which is 17 words

CONTENTS

source statements

Address of Get Compression Routine (GETCM)

Address of the Principal Print Buffer .

Address of Principal Read Buffer

e After Enter phases, it is used by DSF routine for the

e s 0 6 00000 0

If it contains a 0, there is no patch; if a non-zero, it

Address of List Source Statements Routine « o v o v 0o v v

e Address of Print Listing Routine (PRTSP)

Address of Put Compression Routine (PUTCM).

D R A R R I

e After Enter Phases it contains the number of sectors per
write of DSF code in working storage.

Address of Error Note Routine (PRTER)

USED BY
Phases

00, 02, 04, 06,
08

32, 36, 38, 40,
42, 46, 52, 58

00, 02, 04, 06,
08
04, 10, 12, 14,
16, 17, 19, 58,
60

10, 12, 14, 16,
17, 36, 38, 40,
42, 44, 46, 52,
54

02, 04, 06, 08

10, 12, 24, 26,
28, 38, 42, 52,
54, 58

14, 32, 34, 38,
40, 42, 44, 46

02, 04, 06, 08,
10, 12, 14, 16,
17, 19, 58, 60
22, 24, 26, 28,
32, 34, 42, 58,
54

00, 02, 04, 06,
08

00, 02, 04, 06,
08, 10, 17, 14,
16, 19, 12

long. The fields and their contents are:
FIELD DISPLACEMENT
Dec. Hex.
ZRDSP +0 00 e Address of read
Patch Address .
contains the patch address.
ZPRSP +1 01 .
ZGTCM +2 02 °
ZPTCM +3 03 °
ZPTOB +4 04 e Address of Put Object Code Routine
o Put out DSF Code
ZPBUF +5 05 °
e Address of the FILE1 Table ..
e Address of Table Area ...
ZRBUF +6 06 °
ZPTER +7 07 .
Table 3. Communications Area (COMAREA)

60

(Part 1 of 6)

FIELD DISPLACEMENT CONTENTS USED BY
Dec. Hex. Phases
ZOBUF +8 08 o Address of Object Code Buffer e PUTOB
ZOEND +9 09 e Address of End of Object Code Buffer +1 PUTOB
ZCBUF +10 0A e Address File Description Compression . v v v v v e v o v vn 22
e Address of Compression Buffer 1 32
e Address of First Block of Compression . . .o oo v v vt .. 34, 38
ZCBF2 +11 0B e Address of Compression Buffer2 36, 42, 58
e Address of Compression Block . . v v oo v e i vn et 38
ZNTCM +12 0C e Address of Next Buffer Word 04, 10, 12, 44
o Address of Compression Aréa « oo v v v v vs v s v osens 02, 06, 08
o Address of Next Compression Word + .o v v v vvevv e 46
e Address of Current Compression Specification 52, 54
ZACNT +13 oD o AddressCounter ... oo v vi et ienerrnnonsens 10, 12, 22, 26,
28, 32, 34, 38,
40, 42, 52, 54,
58
o Object Code Location Counter e v v v v vt v v v svuesns 17, 24, 36, 44,
46, 14
o Last Object Code Address + v v v v vv v nvvsvnnsens 60
ZTBAD +14 OE o Address of RPG Option Word (Column 11 of RPG
Control Card).
ZSEQI +15 OF e Sequence number of first Input Specification 04, 10
ZSEQC +16 10 e Sequence number of first Calculation Specification. . .. 06, 17
ZSEQO +17 11 e Sequence number of first Output Specification....... 08, 17
ZSEQL +18 12 e Sequence number of last Output Specification 04
e Statement Sequence number........... e e eee 02, 06, 08
ZPHCL +19 13 o Address of Get Next Phase Routine (CALPH) RN 02, 04, 06, 10,
12, 16, 17, 19,
22, 24, 26, 28,
32, 34, 36, 38,
40, 42, 44, 46,
52, 54, 58
ZCALS +20 14 e Literal Usage Switch cvvi i 14
e IndicatorWord i NN 06, 08
o Calswitch............ et 04, 12
e Contains Switches set by RG06 and RG08.
ZBLIN +21 15 e Compression block number of first Input Specification . . 04, 10, 34, 36,
38, 40, 42
ZBLCA +22 16 o Compression block number of first Calculation
Specification « v v vt vttt il i i e e 06, 14, 44, 46
Table 3. Communications Area (COMAREA (Part 2 of 6)

Control Blocks

and Tables

61

FIELD DISPLACEMENT CONTENTS USED BY

Dec. Hex. Phases
ZBLOT +23 17 e Compression block number of first Output Specification . 08, 14, 52, 54

(The term "block " usually refers to a buffer which has been written on a disk. Block T, which always remains in
core, is the exception.)

ZIPTR +24 18 e Address of first Input Resulting Indicatoro v v v vt 10
ZLST +25 19 o Address of last indicator.
ZNOIN +26 1A o Number of Input indicators . ..o vvevevivennsss 10, 58
ZINAD +27 1B e Address of First Input Specification in a Compression 04, 10, 36, 38,
block v vviiiii i i i it ittt et e s ser e 40, 42
ZCALA +28 1C e Address of first Calculation Specification 06, 14, 17, 44,
46
ZOUTA +29 1D e Address of first Qutput Specification in a Compression
BIOCK « v v vt e e 08, 14, 17, 52,
54,
ZBLOC +30 1E e Number of current compression block. 04, 06, 08, 10,

12, 14, 17, 36,
38, 42, 44, 46,

52, 54
ZLSTB +31 1F e Number of Last compression block.
ZMILN +32 20 e Lengthof M1 e et et 16, 40, 42
ZM2LN +33 21 o lengthof M2 ittt e 16
ZM3LN +34 22 e Llengthof M3 ittt 16
ZMALN +35 23 o lengthof MA 16
ZM5LN +36 24 o Lengthof M5 0., i e et 16
ZMé6LN +37 25 o lengthof M6...... he e e e Gt e e e 16
ZM7LN +38 26 o lengthof M7 ettt e 16
ZM8LN +39 27 o Llengthof M8iovvivenn. N 16, 54, 58
ZM9LN +40 28 o lengthof M? ... it iiiiii it i 16, 54, 58
ZCILN +41 29 o LengthofCl1 C et e et et et e e 16, 17

Table 3. Communications Area (COMAREA) (Part 3 of 6)

62

FIELD DISPLACEMENT CONTENTS USED BY
Dec. Hex. Phases
ZC2LN +42 2A o Llengthof C2 .. i iiiiiniiiiinennns 16, 17
ZC3LN +43 2B o Lengthof C3 .. iiii it iiieiereneenennss . 16, 17
ZLILN +44 2C o Length of L1 (The addresses of each of the control level
indicator fields are found at address 38D HEX.) 16, 17
ZL2LN +45 2D o lengthof L2ttt nnennrneennnnns 16, 17
ZL3LN +46 2E o Lengthof L3 .o v it ittt tnrienens . o 16, 17
ZL4LN +47 2F o Lengthof L4 et eennnnnn e e e 16, 17
Z15LN +48 30 o lengthof L5 ... vt innennennnenn 16, 17
ZL6LN +49 31 @ lengthof L6 . iv vt iiiiin e ineennnnns o 16, 17
ZL7LN +50 32 o Llengthof L70 iiiinennan. N 16, 17
ZL8LN +51 33 o Lengthof L8 v iiiiiiiinnann et 16, 17
ZL9LN +52 34 e Lengthof L9 T, 16, 17, 38
ZSTR1 +53 35 e Sterling Input Option. e e 04, 36
ASTR2 +54 36 e Sterling Output Option e e . 52
ZINVR +55 37 e RPG Inverted Print Option00, - 06, 14
BEGWS +56 38 e Address of disk working storage chee e e 60
ZFLNM +57 39 o Address of Filename Tableo v v v v v v v v v v v 02, 06, 10, 22
ZALTS +58 3A e RPG Alternate Collating Sequence Option 40
BEGOB +59 3B o Beginning of DSFprogram . . v v v v v vvn v e o s v v 00, 60
e Address of Working storage of first block of DSF code
writtenon disk « v v vttt i e ittt e e 00, 60
ZNEWH +60 3C o Location counterswitch v v iviv i, 24
o New label switch for DSFroutine « v v v v e v evveen.. 10, 40, 52
e Address of New Headingneeded o0t e 32
ZERCD +61 3D e Error codes for Wrap~up phase « .. i v vvvnvvennnn 00, 19
0 - Normal Compilation
1 - Working Storage Exceeded
2 - Serious Compilation Error
4 ~ Diagnostic run error
o CompletionCode +vvvvvvvnenans cet et 60
NOTES: 62-78 (DEC) The contents of this area change after RG22 is given control .
3E-4E (HEX)
Table 3. Communications Area (COMAREA) (Part 4 of 6)

Control Blocks and Tables

63

Each time a phase prior to the Error Mes-
sage Phase (RG 19, 20, 21) detects an error,
it orders the Resident phase to print the
note number identifying the error. At this
time a bit is set in the error note area,
NOTES. This area is a block of 17 words
(272 bits). Each bit in the block is a
switch associated with one of the 272 pos-
sible error notes. Bit 0 of word 0 repre-
sents note 15, Bit 15 of word 0 represents
note 0, etc., as follows:

Bits Position
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
+0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
+1 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
+2 47
+3 63
+4 79
+5 95
+6 111
+7 127
Displace~-
ment from | +8 143 ERROR NOTE IDENTIFIERS INDICATORS
NOTES
+9 159
+10 | 175
+11 | 191
+12 | 207
+13 | 223
+14 | 239
+15 |} 255

Table 3. Communications Area (COMAREA) (Part 5 of 6)

64

If no bits are set, phase RG22 is loaded.
If bits are set in the NOTE area, each
bit set will be tested and appropriate
error messages printed,

Phases RG24-RG 58 use the 17 word NOTES area to save addresses, as follows:

NOTES +0 - address of Table Dump routine

NOTES +1 - address of Detail lines

NOTES +2 - address of Detail Lines Table

NOTES +3 - address of Total Lines

NOTES +4 - address of Total Lines Table

NOTES +5 - (Not Used)

NOTES +6 - address of return address for Except lines

NOTES +7 ~- address of Detail Calcs

NOTES +8 - address of Total Cales

NOTES +9 - address of Chain Routine

NOTES+10 - (Not Used)

NOTES+11 - (Not Used)

NOTES+12 - address of Record Address routine

NOTES+13 - address of Table Load routine

NOTES+14 ~ If a Record Address File, the address of the "To File" name
NOTES+15 - address of Control Field routine

NOTES+16 - address of the Low Fleld Control Block (LFDAD--used by RG40)

control returns to RG60, it contains the Disk Block Count.

COEND e This label identified the end of the COMAREA.

ZBLCT +79 x '4F' o Address of the Wrap-up routine in RG10, which is linked to from RG60; when

Table 3. Communications Area (COMAREA) (Part 6 of 6)

Control Blocks and Tables

65

66

This section contains two tables designed
as serviceability aids for maintaining or
modifying the 1130 RPG.Compiler program:
an External Reference Table and a Table
of Control Block and Table Usage.

EXTERNAL REFERENCE TABLE

This table summarizes external references
for the phases of the 1130 RPG compiler.
In this publication, an external reference
is a linkage from the calling (or linking)
phase to another common. routine, which re-
turns control to the next instruction fol-
lowing the linkage. (Note that the called
phase may have external references of its
own.) A situation in which the called
routine does not return control to the
calling phase is not considered an exter-
nal reference.

DIAGNOSTIC AIDS

The vertical entries are divided into
three categories:

1. Routines Referenced.

2. Constants and addresses defined in the
Monitor Communication area (COMMA).

3. Constants and addresses defined in the
Resident Phase Communication Area
(COMAREA) .

The vertical entries are listed alphabeti-
cally; the horizontal entries (module .and
routine names) are listed numerically.

Diagnostic Aids 67

R g [R[r]r[R R[R[R[R[R TR [R[R[R[R [R [[R [R[R [[R [r TR R [&
MobuLE |© clelclcle clclc|ele|c|c|c|c|c|c|cle|elele|clclclcle
0 ololofo]1 i l2l2|2l2]s 13|33 |a]alala]5 |5 |5 |6
0 2(4]6]8 o 2|ale|7lo|2alelsl2]al6]s|ol2]4]6]2|a]a]o
plcle[rlcl|r olr
k|alulp|e (R Blu
routine | [T]LlTls|T|T ElT
elrlcle|cls N[o
R [H|mlcIm|p D|s
R [caren [x X x|x|x| |x x| x I b b Do D e [Eox I b Ix b I x| x
Olozooo [x] [x[x| [x X X
T [GETCMm X X X x| x[x|x x| x [x[x [x [x [x [x
LIOBEND X
E [PRTER |X x| x [x[x[x x| x
S RN [x x| Ix X x[x
R [PRTSP [X[xX x| x[x[x[x x[x[x[x[x X
E
F
E [putcm X x| x[x[x
? [putos X xIx| |x X x I I P I I I T Tx [P I x
N [rDsPC [x x| x[x]x
¢ [so8sv_|[x X X
D [sExm |x X X
[score [x
Tscrsw [x
C
¢ [sFpap_|x X
mlsimsy |x
MlceTa |x
A
SKCSW | X
SLAST [x
$NDUP | X X
$NEXQ | X X
$PBSY |
$PHSE™ |+ .
SWSDR | X X

* $PHSE is used by every phase

Table 4.

68

External Reference Table (Part 1 of 2)

MODULE

coqQ =
NvNoQ P
rOQ™
coQ=
woQ®
C-Q ™
N -
Ao
o=@ =
N—Q =™
~o—ox
NN Qo
ANQ =
oNQ =
®NQ®
Nwox
rwQ®
O*COOW
®w@ =
orQ=
N#OW
~RQ®
ohQ™
vag ™
ALIIOW
oot.nox
coq®

ROUTINE

Am-—>x 0
ITor>»N
zTN0-HC™
e K X k]
TOAmMQG
tTw»n—-H>0 v
®O-Co

BEGOB X
BEGWS X
LFDAD X
NOTES X X X X
ZACNT X XXX XXX XXX XXX XXX XXX
ZALTS X
ZBLCA X XX
ZBLCT X
ZBLIN X X XIX[X]|X
ZBLOC X X|X X
ZBLOT X
ZCALA X
ZCALS XXX X
ZCBF2 X[X X X
ZCBUF X XX
ZERCD X X
ZFLNM X X X
ZINAD X X XXX X
ZINVR X X
ZIPTR X X
ZLST X
ZL9NL X .
ZMILN XX
ZM8LN X
ZMILN : X X
ZNEWH X X X X
ZNTCM XX X[X]|X X XXX X
ZNOIN X X
ZOUTA X X XX
ZPBUF XXX
ZRBUF
ZRDSP X X X XXX X
ZSEQC
ZSEQI
ZSEQL X
ZSEQO
ZSTR1
ZSTR2 X
ZTBAD X

XIX|[X]|X
x
x

>PmMmm>Z00

x
X
X
x
x
x
x
x
x
x
x
x
x
x

x
x
x

XX XXX
x
X

Table 4. External Reference Table (Part 2 of 2)

Diagnostic Aids 69

CONTROL BLOCK AND TABLE USAGE

This table contains a list of control
blocks and tables created by the 1130 RPG
compiler. It also names the routines that
create and modify them.

CONTROL BLOCK BUIL MODIFIED
OR TABLE BY: BY:
Filename Table (FLENM) RGO02 RG02
RG04
RG0S
RGO8
RG22
RG58
Tent Table (TENT) RG16 RG16
RG17
Input/Output Table (IOTAB) RG22 RG22
RG24
RG26
RG34
Control Level Address Table RG17 RG38
Overflow Table (SOSOF) RG22 RG54
FILET Table (ZPBUF) RG22 RG58
RG24 RG42
RG26 RG40
RG28
Communications Area This area is explained
(COMAREA) in detail in Table 3,
because it is accessed
by every phase.

Table 5. Control Blocks and Tables Created by the 1130 RPG Compiler

70

This section is composed of tables illus-
trating how information from the various
specification sheets used by RPG is put
into compressed format. By eliminating
unnecessary information such as blanks,
RPG can reduce I/0 operations, save stor-
age space, and still retain important in-
formation in main storage via compression.
The presence or absence of certain com-
pression information is indicated in the
K-word. For example, in a calculation
compression, if there is no control level
specified, bit @§ of theK-word will be off
and the position of any information follow-
ing it will be decremented by its length
(in this case 1 word).

The following compression formats are des-
cribed in this section:

® File Description
® Extension
- Record Address Files

-~ Chain Files
- Table Entries

COMPRESSION FORMATS

e Input

- Record Type
- Field Type

e Calculation
® Output-Format

- Record Type
- Field Type

In each of the compression format tables,
a character string is used to illustrate

the grouping of information in that for-
mat. The meaning of the field of informa-
tion represented by each character in the
string is then explained. The length and
location of each field within the compres-
sion is shown by entries in the "Word" and
"Bits" columns to the left of the char-
acter. References to columns identify
which column of the corresponding specifi-
cation sheet would contain the specified
entry. At the end of each compression
description, the minimum and maximum
lengths of the compression are noted by
the "Minimum” and "Maximum" entries.

Compression Formats 71

FCe<NTDBLCRPOI
Word Bits
1 0-7 F Type of Specification (EBCDIC F)
8-15 C Length of compressed specification (in binary)
2 0-15 o< o~ word
Bit Value Description
1 0 No E in column 17
1 E in column 17
2 0 Ascending sequence (column 18) ascending sequence is
1 Descending sequence assumed if no entry is made
3 0 No extension code
1 Extension code
4 0 ISAM add not specified
1 ISAM add specified
5 0 Not ISAM load
1 ISAM load
6 0 0 or 1 entered for bit 2, above
1 No entry for bit 2
3 0-7 (Not used)
8-15 N Sequence Number of this File Description Specification
4 0-7 T File Type (column 15 in EBCDIC)
8-15 D File Designation (column 16 in EBCDIC)
5 0-15 B (Not used)
6 0-15 L Record Length (columns 24-27)
7 0-15 C Device
Hex Code Device
0002 READ 42
04 READ 01
06 PUNCH 42
08 PRINT 03
0A PRINTER
oC CONSOLE
0E DISK
8 0-15 R a) Length of RA File Field (columns 29-30)
b) Length of Key Field (columns 29-30)
c) Overflow Indicator (columns 33-34 in EBCDIC)
9 0-7 P Mode of Processing (column 28 in EBCDIC)
8-15 0 Type of File Organization (column 32 in EBCDIC)
10-12 0-15 | For ISAM load, maximum file size, left-justified in EBCDIC (columns 47-51)
Note: Entries in words 8-12 are optional. If an optional word is required, all prior optional words (required or not) must be

included in the compression specification and unused words must be padded with a fill character. Minimum - 7 words;
maximum - 12 words.

Table 6. File Description Compression

72

RA File Entries

Table Entries

RCFT TCFOQNBELPDA=cUVWXYZ
Word | Bits Word | Bits
1 0-7 R Identification Code (EBCDIC R) 1 0-7 T Identification Code (EBCDIC T)
8-15 | C Length of Compressed Specification 8-15| C Length of Compressed Specification
(in binary) (in binary)
2 0-7 | F From Filename (Sequence Number 2 0-7 | F From Filename (Sequence Number of
of File Description Entry) File Description Entry)
8-15 | T To Filename (Sequence Number of 8-15| O To Filename (Sequence Number of
File Description Entry) File Description Entry), blank if
not specified
Note: _N<2>rd 2:(fm,;s ﬁ:om ’rhszllen:me Table. Minimum 35 0-15 | @ Blanks, fo later confain generated
words; Maximum words. machine address
6-7 0-15| N Table name (columns 30-32)
0-15| B Number of entries per record (col-
umns 33-35)
9 0-15}| E Number of entries per table (col-
umns 36-39)
10 0-151 L Length per entry (columns 40-42)
11 0-7 P Pack indicator (column 43)
8-15] D Numeric indicator (column 44)
12 0-7 | A Sequence indicator (column 45)
8-15| oL Second table indicator; 00 if no
Chain File second table, FO if second table
ECNSF 13-15 | 0-15 | U Blanks; same entry as words 3-5
16-17 1 0-15 | V Table name same éntry as words é
Word | Bits and 7 (columns 49-51)
1 0-7 | E Identification Code (EBCDIC E) 18 0-15 | W Number of entries per record; same
8-15 | C Length of Compressed Specification entry as word 10 (columns 52-54)
: (in binary) 19 0-7 | X Pack Indicator; same entry as word
~ e field b Tormms 11, bits 0~7 (column 55)
2 0-15 | N C!;?'{B)ng feld number (co 8-15| Y Numeric Indicator; same as word 11,
— bits 8=15 (column 56)
- R d S the chainin
3 0-15| s i?&) (cj?r:;:c;_g) ¢ chd ° 20 0-7 Z Sequence Indicator; same as word
12, bits 0-7 (column 57)
4 0-7 | F From Filename (Sequence number of 8-15 (Not used)
File Description Entry)
8-15| T To Filename Note: Words 13-20 are optional. Word 2 (bits 0-15)

Note: Word 3 comes from the Filename Table. Minimum
- 4 words; Maximum ~ 4 words.

Table 7. Extension Compression

comes from Filename Table. Minimum - 12 words,
when o¢. is set at 00; Maximum - 20 words, when
o¢ is set at FO.

Compression Formats 73

Record Type
|ACKFQRSPTCAVWXYZ
Word Bits
1 0-7 I ldentification Code (EBCDIC 1)
8-15 A Length of Compressed Specification (in binary)
2 0-15 ol o<~ word
Bit Value Meaning
0 0 No stacker select
1 Stacker select
1-2 00 OR type record
01 AND type record
10 Alphabetic Sequence
1n Numeric Sequence Check
3 0 Numeric Mandatory Record
1 Numeric Optional Record
4 0 Numeric 1 or more records
1 Numeric 1 only record
5 0 Filename not specified
1 Filename specified
6-7 00 No record codes
01 1 record code
10 2 record codes
1 3 record codes
8-15 (Not used)
3 0-15 F Sequence number of File Description Specification, from Filename Table
4 0-15 Q Sequence of Input Record Type (columns 15-16)
5 0-15 R Resulting Indicator code (columns 19-20)
é 0-15 S Stacker Select (column 42)
7 0-15 P Location of character in record format (columns 21-24)
8 0-7 T Type of test
Bit Value Meaning
0 1 Negative character test, otherwise positive
1 1 Character test, otherwise not
2 1 Zone test, otherwise not
3 1 Digit test, otherwise not
4-7 0
8-15 C Character in test (column 27)
9 0-15 A Location of character in record format (columns 28-31)
10 0-7 V Type of test; same as word 8 (columns 32-33)
8-15 W Character in test (column 34)
Table 8. Input Compression (Part 1 of 3)

74

Word Bits
1 0-15 X Location of character in record format (columns 35-38)
12 0-7 Y Type of test; same as word 8 (columns 39-40)

8-15 Z Character in test (column 41)

Note: Words 6-12 are optional . Minimum - 5 words; maximum - 12 words.

Table 8.

Input Compression (Part 2 of 3)

Compression Formats

75

Field Type

DASFXPANLM/CRPIZS

Word Bits
1 0-7 D, ldentification Code (EBCDIC D)
8-15 A Length of Compressed Specification (in binary)
2 0-15 oK o<~ word
Bit Value Meaning
0 0 No CTL level specified
1 CTL level specified
1 0 No matching field specified
1 Matching field specified
2 0 No field record relation specified
1 Field record relation specified
3 0 Plus not used
1 Plus used
4 0 Minus not used
1 Minus used
5 0 Zero not used
1 Zero used
6 0 No sterling
1 Sterling
7 0 No chaining
1 Chaining
8-15 (Not used)
3 0-15 F From position in binary (columns 44-47)
4 0-15 X Length of field in binary (columns 44-51)
5 0-7 P Packed Indicator (column 43)
8-15 A Decimal position/blank for Alpha fields (column 52)
6-8 0-15 N Field name (columns 53-58)
9 0-7 L Control level (column 60 in EBCDIC)
8-15 M Matching value (column 62, or
C Chaining value (column 62 in EBCDIC)
10 0-15 R Field record relation indicator {columns 63-64)
1 0-15 P Plus field indicator (columns 65~66)
12 0-15 I Minus field indicator (columns 67-68)
13 0-15 Z Zero field indicator (columns 69-70)
14-15 0-15 S Sterling field (columns 71-74)

Note: Words 9-15 are optional. Minimum - 8 words; maximum - 15 words.

Table 8.

76

Input Compression (Part 3 of 3)

CAO(BIIlleOTRLDHSMZ
Word Bits
1 0-7 C Identification Code (EBCDIC C)
8-15 A Length of this compressed specification
2 0-15 oK o<~ word
Bit Value Meaning
0 0 No control level
1 Control level
1 0 No indicators
1 Indicators
2 0 No Factor 1
1 Factor 1
3 0 Factor 1 is a Field Name
1 Factor 1 is a literal (reserve space in Literal Compression format)
4 0 Factor 2 is a Field Name
1 Factor 2 is a literal (reserve space in Literal Compression format)
5 0 No Plus indicator
1 Plus indicator
6 0 No Minus indicator
1 Minus indicator
7 0 No Zero indicator
1 Zero indicator
8-15 (Not used)
3 0-15 B Control level
4-5 0-15 | Indicator (columns 7-8)
6-7 0-15 I] Indicator (columns 9-11)
8-9 0-15 I2 Indicator (columns 12-14)
10-15 0-15 F Factor 1 (columns 18-24) (If Field Name, 3 words long; if literal, 6 words)
16 0-15 O Operation Code* (columns 28-32)
17-22 0-15 T Factor 2 (columns 33-42) (If Field Name, 3 words long; if literal, 6 words)
23-25 0-15 R Result Field
26 0-15 L Length of field in binary format
27 0-7 D Decimal positions
8-15 H Half-adjust-=~blank if none
28 0-15 S Plus-High indicator
29 0-15 M Minus-Low indicator
30 0-15 Zero-Equal indicator

Note: Minimum - 11 words; maximum - 30 words.,

Table 9.

Calculation Compression (Part 1 of 2)

Compression Formats

77

*Qperation Codes

CODE ENTRY (IN HEXADECIMAL)
Bits 0-7 Bits 8-15
ADD F1 FA
BEGSR FO 02
CHAIN FO 00
COMP F4 04
DIv F4 FD
ENDSR FO 03
EXCPT FO 01
EXIT F3 FE
EXSR FO 04
GOTO F3 01
LOKUP F5 01
MHHZO Fé 06
MHLZO Fé 05
MLHZO Fé 04
MLLZO Fé6 03
MOVE Fé 0l
MOVEL Fé 02
MULT F4 FC
MVR F4 03
RLABL F9 FF
SETOF F2 00
SETON F2 FO
sus F1 FB
TAG F7 01
TESTZ F5 02
Z-ADD F1 03
Z-SUB Fl 04
Table 9. Calculation Compression (Part 2 of 2)

78

OAO_LNFSBADK‘IIIl2

1 0-7 O Identification Code (EBCDIC O)
8-15 A Length of this compressed specification
2 0-15 o o<~ word
ﬂ Valve Meaning
1 0 No heading or detail line
1 Heading or detail line
2 0 No except lines
1 Except lines
3 0 No total lines
1 Total lines :
4 0 No conditioned overflow
1 Conditioned overflow
5-6 00 Filename present
o1 OR type*
10 AND type**
7-8 00 No resulting indicators
(1]} 1 resulting indicator
10 2 resulting indicators
n 3 resulting indicators
9 0 No space
1 Space
10 0 No skip before
1 Skip before
n 0 No skip after
1 Skip after
12-15 (qu vsed)
3 0-15 N Intemal Sequence Number (in binary)
4 0-7 F Sequence number from File Description Specifications
8-15 S Stacker Select (blank, 1, or 2)
5 0-7 B Space Before i
8-15 A Space After
] _0-15 D Skip Before
7 ' 0-15 K Skip After
8-9 0-15 I Resulting Indicator
10-11 0-15 h Resulting Indicator
12-13 0-15 Iz Resulting Indicator

Note: Words 5413 are optiona

Table 10.

I. Minimum - 4 words; maximum - 13 words.

Output-Format Compression (Part 1 of 4)

Compression Formats

79

*OR Type

OA«M.NSBADKII]I2

Note that F is omitted

Minimum - 3 words
Maximum = 12 words

**AND Type

(0):%""4 Nll.l |2
Minimum - 3 words
Maximum - 9 words

Table 10. Output-Format Compression (Part 2 of 4)

80

Field Type
MAOCTEFII]I2SNCLXYZBP
Word Bits
1 0-7 M Identification Code (EBCDIC M)
8-15 A Length of this compressed specification (in binary)
2 0-15 o< ot~ word
Bit Value Meaning
0-1 00 No output indicator
01 1 output indicator
10 2 output indicators
11 3 output indicators
2 0 No field name
1 Field name
3 0 Constant
1 Edit word
4 0 No special edit code
1 Special edit code
5 0 No blank after printing
1 Blank after printing
6 0 No packed output
1 Packed output
7 0 No sterling
1 Sterling
8 0 Not PAGE field
1 PAGE field
9-15 (Not used)
3 0-15 T Internal sequence number
4 0-15 E Rightmost position of field (in binary)
5-7 0-15 F Field name
8-9 T 01577 1 Output Indicator
10-11 0-15 l-I Output Indicator
12-13 0-15 ' l, Output Indicator
14-15 S Space allowed for literals and edit words; used by later phases
16 0-15 N Length of literal or edit word
17 0-15 C Fill character, if edit word
18-29 0-15 L Literal* or edit word
30 0-7 X Length of edit word (X word) (in binary)
8-15 Y Description of edit word

Table .10. Output-Format Compression (Part 3 of 4)

Compression Formats

Word Bits
Bit Value Meaning
8 0 No asterisk protection or zero suppression in edit word
1 Asterisk protection or zero suppression in edit word
9-11 (Not used)
12 0 No fixed $
1 Fixed $
13 0 No floating $
1 Floating $
14 0 No minus sign
1 Minus sign
15 0 No CR symbol
1 CR
31 0-7 Z If 0, no CR or Minus sign, otherwise displacement to CR/Minus sign
8-15 B Number of blanks in edit word
32-33 0-15 P Sterling sign position

Note: Minimum « 4 words; maximum = 33 words.

*Literal Format

LDBA
Word Bits
18 0-15 L Length of literal in binary (if negative, bit O set to 1; if positive, bit 0 set to 0)
19 0-15 D Decimal length of literal; if alphameric, leave blank
20-21 0-15 B Blanks
22-29 0-15 A Literal, if alphameric

Note: Minimum-Maximum - 12 words.

Table 10.

82

Output~Format Compression (Part 4 of 4)

This section describes the main routines
of the RPG object program (those functions
that are typical of every RPG object pro-
gram) .

The description begins with a generalized
flowchart and narrative section, which
illustrates the cycle of operations within
the object program.

Next, the tables and work areas'that con-
tain information directly related to the
flow of the object program are examined.
This is followed by a description of each
of the object program routines. Actual
code from the program listings is used

in many places, to clearly describe the.
functions of particular routines.

A core storage allocation map is presented
to show the locations of the object pro-
gram routines during execution of the pro-
gram. To aid in understanding these sepa-
rate routines and their relationships to

PART TWO: 1130 RPG OBJECT PROGRAM

each other, a trace of an object program
is presented next.

Certain functions of the RPG object pro-
gram, e.g., processing with an RA file,

or processing by Cl, C2, or C3 type chain-
ing, need more than a cursory explanation.
These functions are described following
the sample object program trace.

The next section, Library Subroutines,

describes each of the subroutines that may
be called by an RPG object program. In
each case, the narrative is accompanied by
a flowchart which illustrates the logic of
the routine.

The last section contains a core storage
dump of an RPG object program and instruc-
tions which enable the reader to find
where the RPG indicators, fields, literals,
key routines, etc., are located.

Part Two: 1130 RPG Object Program 83

kR T ERRRRER R
*x
* START *
* *
RERREEERRERKEE

FokokokkB 1 ddkkkk Kok ¥ kK
* *

* *
*INITIALIZATION *
* *

* *
Aok kKRR Rk KRRk

Ee il

B3
kK

—_—

Kok B3Rk Erokkokk Rk
*PROCESS TOTAL *
RECORDS .

* o H
* % x

Rk kR ok kkk Rk
2 12 L 13
*axHRC kR Rk kdOk c3 *.
b * o . SRRECY FRFRAEEEEE
* * . . YES * TERMINATE THE *
* LOAD TABLES * *, IS LR OF _.* >* ~PROGRAN *
* * Tx, S B e s T T L]
Aok kR Rk KR ERk « ¥
* NO
< l
. 14 ., 15
HkkD TRk Rk hkk Rk D3 *, oAk DS KA KRR
ke Hkk]) 2 * ARk ok kK ok
PROCESS_HEADING* * TERMINATE * ¥ HAS *., YES * PROCESS *
AND DETAIL * PROGRAN * *, OVERFLOW ¥ > OVERFLOW
* 0 *,0CCURRED . * RECORDS *
ok ok ook 36 ok kR R ok *, ¥
Aok kKRR Rk Rokckkkok X, ¥ Aok Rk ook R Rk ok Rk
* NO
| <
i
4 ¥, 5 ¥ 16
E1 *, B2 * Faokokok E J Rorkkok ok kokE
ok «% WHAT *, * *
¥ . YES +* QPERATOR - * B DATRA *
. H1-H9 ON - .————D>%, ACTIOK IS .* * FIELDS FROM *
*, - * TAKEN 7 _.* * T AREA *
*, X *, o ¥ * *
*, ¥ *, . ¥ AokokkokdokoR R Rk AOKROK R CHAIVNING ROUTINE
* NO * CONT -
*HRE
* *
l * F3 #->
< * *
7 kokEk v
1 oK.
6 SRR F ARk Rk ERP 2%AR KRk F3 *, A KPRk ok ko Rk R AR S AR KRR R Rokk
* L * . *
ZH.H}(TEOFPUT * EQF #SET ON LR AND* .* CHAINING *. YES * GET CHAINED * * DETERMINE *
ECORD —=-=—-—- > *L05,H) 0>GH 19 * * FIELDS * >, FILE RECORD >% RECORD TYPE b
* * Tx, e * *
ek Yok AR KR R KA kR kAR x, k% FTIII I e E s r T T e T TIITIT TS TR T
* NO
Hokokd
L * *
8 18 * P3 *
HREKRG 1 REEERERREK EET LR R ES L2 L 2SS * *
* * * * Ei L2l
* DETERMINE * *PREFORM DETAIL *
* RECORD TYPE * * CALCULATIONS *
* * * *
* * * *
e ko kok ek ok Rk kR R K ERE LR LR L LS
9
EEEE LS REL I L]
* *
#CHECK_FOR LEVEL
* BREAK *
* *
* *
* Aok ¥Rk tokkkkkkkokkok
<
10

Jokokok ¥ J P okkk Rk xR KE
* *

* PERFORM TOQTAL *
:CALCULATIONS :

* *
ke ok ok K o Rk kK kR Rk ok

Chart GA.

84

RPG Object Program (Simple Flow)

THE RPG OBJECT PROGRAM CYCLE

Each program generated by RPG uses the
same general logic, and for each record to
be processed, the program goes through the
same general cycle of operations. To il-
lustrate this concept, a generalized flow-
chart of an RPG object program is shown in
Chart GA.

The following numbers correspond to the
numbers on Figure 1. A program cycle be-
gins with item 3 and continues through
item 18.

1. Initialization (opening files, etc.)
is performed.

2, Tables, if any are present, are loaded
into core storage.

3. Before the first record is read, the
program prepares and writes any heading
information to be put out on the first
page. After the first record has been
read, the program prepares and writes
heading and detail records which are
not conditioned on overflow.

4§5. The halt indicators are tested. If
any are on, the operator is notified
and he may terminate or continue the
job.

6. An input record is read into core stor-
age. .

7. If end-of-file occurs, the last recor
indicator (LR) is set on and all con-
trol-level indicators (L1-L9) are set
on. The program branches to step 10.

8. Starting with line 1 of the Input
Specifications sheets, and with the
record just read, the program uses the
record identification code to identify
the record. When the identification
code matches an entry on the Input
Specifications sheet, the program turns
on the resulting indicator that has
been specified for the record.

9. If a control-field break has occurred,
all appropriate control-level indicat-
ors are turned on.

10. Next, all total calculations are per-
formed.]

11. All total output records which are not
conditioned on overflow are prepared
and put out.

12.813. The program tests for the last re-
cord indicator (LR). If it is on, the
program is terminated.

14.&15. The program tests for an overflow
condition. If overflow has occurred,
total lines, heading lines, and detail
lines (in that order) conditioned by
overflow are printed.

16.&17. Data fields are extracted from the
input record I/O area and moved into
the assigned field areas. If any field
is designated as a Cl, C2, or C3 chain-
ing field, the internal Cl, C2, or C3

indicator is turned on and the chain-
ing routine is given control. This
routine retrieves the chained record.
18. Any detail calculations are performed
and processing continues with item 3.

TABLES AND WORK AREAS

Before beginning a discussion of the ob-
ject program routines, it may be helpful
if certain object program tables and work
areas are explained. The tables contain
information which is directly related to
the flow of the object program and will be
examined in detail.

Function Address Table (FAT)

This 28 word table is generated for every
RPG object program and contains the ad-
dresses of various RPG routines (Table 11).
These addresses are compiled relative to
location 0 and are relocated by the Core
Load Builder.

File Input Tables (FITs)

These tables, one for each input file, are
generated by RG42. Each table consists of
four words of information for each record
type within that file, plus a two word
dummy entry at the end of the table. The
four word entry contains identifying in-
formation associated with the record type
that caused it to be generated and the

two word dummy entry contains the address
of the error routine (first word) for
undetermined record types and asterisks
(last word) to signify the end of the
table.

Each record type would cause the following
entry to be built (dummy entry is excluded)

Word: 1 2 3 4

Address of: INPR MFEXT CLEV INPF

Wordl: This word contains the address of
the INPR routine for the associated record
type. The INPR routine performs a test on
the characters of the input record to de-
termine that the record is of the record
type associated with this table entry. One
INPR routine is generated for each input
recoxd type.

Word2: This word contains the address of
the matching fields extraction routine
(MFEXT) for this record type. MFEXT ex-
tracts the matching fields and holds them
for comparisons and further processing.

Part Two: 1130 RPG Object Program 85

Word | Label Contents
1 ADSRT | Starting address of the RPG object
program.
2 TABOT | Address of the Table Output routine.
3 HDAD Address of Heading and Detail lines
routine.
4 HDTAB | Address of Heading and Detail lines
table (DTAB).
5 TAD Address of Total lines routine.
6 TTAB Address of Total lines table (TOTAB).
7 DCALC | Address of Detail Calculations.
8 TCALC | Address of Total Calculations.
9 CHANT1 | Address of Chaining routine (for C1,
C2, C3)
10 Not used.
n Not used.
12 Not used.
13 RAFAD | Address of Record Address File
routine.
14 Not used.
15 Not used.
16 TABLD | Address of Table Load routine.
17 CTLFD | Address of Control Field Compare
routine.
18 LOWFD | Address of Low Field.
19 CHSAV | Save area for Chaining routine
address.
20 EAD Address of EXCPT lines routine.
21 RTE Return address in calculations after
EXCPT lines are executed.
22 ETAB Address of EXCPT lines table
(EXTAB).
23 ENDAD | Address of Close Files routine.
24 Not used.
25 Not used.
26 Not used,
27 ,Nofuwd.‘
28 Not used.
Table 1l. Contents of the Function Address

86

Table

Word3: This word contains the address of
The control-level extraction routine (CLEV)
for this record type if this record type
has control-level fields specified. This
routine extracts control-level fields from

the I/0 area and moves them to the control-
level hold area so that they may be tested

‘for a control-level break.

If the associated record type has no con-
trol levels, word3 contains the address
of TCLNK, an entry point to the Fixed
Driver (see Fixed Driver for further in-
formation).

Word4: This word contains the address of
the move input fields routine (INPF) for
this record type.

To illustrate the File Input Table, assume
the Input Specifications of a source pro-
gram to be as follows:

Form X21-8094

Busines Machi

Printed in U.S.A,

The resulting File Input Table for record
types 01 and 02 would contain the follow-
ing:

Word1 Word2 Word3 Word4

Entryl | Address of | Address of | Address of | Address of

INPR rou= | MFEXT CLEV rou~| INPF rou-

tine for 01| routine for| tine for 01| tine for 01

record 01 record | record record

type type type type
Entry2 | Address of | Address of | Address of | Address of

INPR rou- | MFEXT TCLNK in | INPF rou~

tine for 02 | routine for | the Fixed | tine for 02

record 02 record | Driver record

type type type
Dummy | Address of | /5C5C

error rou-

tine for

undeter-

mined

record

type

Entrxyl: These four words contain informa-
tion associated with the record type iden-
tified by resulting indicator 01.

Wordl contains the address of the routine
that tests the first position of an input
record to see if it is an A (column 27).

RPG INPUT SPECIFICATIONS
12 76 76 77 78 79 80
Oate —_— Program
Punchi Graphic Page P 1 .
Program |I'|l(ﬂlc'1?0ﬂ Pun:h
§ Record Identification Codes Fleld Location Field
k]) 2 & 5 Indicators
£ ; H i el
Line Filename Z _ g § g Field Name | & i % b 2w gwl ing
E 21 2 | ostion || |&] postion | positon || [BI2[E] From To 3 P § Plus ;| oo
s B | el T el b [T
i &l & 2 3 5 g 8 @
3 4 56|77 8 9 1011 12 93 14118 1617|1819 20 |21 22 23 24|25]26{27}28 29 30 31 “39373‘“40"‘743““48474849505'525354555657585“006‘6263“85”07“”707\72737’
T T TR N T 1A | Wiel [[Tal e }{‘
o|2|g|1 1 [FILDIL) | Ll |1
Tl L] | 2 IFLD2) NERNAN [
olepflt P 1 CF‘ A aREN)
o[slgs 8 | [15] [FlLD[3] | | HHHTH
alal T+ 1 T { 1

Word2 points to the matching fields ex-
traction routine for this record type.
Since there are no fields designated by
M1-M9 indicators, this routine will con-
sist only of a branch instruction to con-
tinue processing.

Word3 points to the control-level extrac-
tion routine that will move FLDl1 from the
I/0 area to the control-level hold area.

Word
that
area
ing.

4 contains the address of the routine
will move FLD1 and FLD2 from the I/0
to the field areas used for process-

Entry2: These four words contain informa-
tion similar to Entryl, but applicable to
the record type associated with resulting
indicator 02. Note that word3 for this
record type contains the address of TCLNK
because no control-level fields are speci-
fied.

Dummy: This two-word entry contains the
address of the error routine (wordl) for
undetermined record types and always fol-
lows the last record type entry in the
table. Word2 consists of asterisks sig-
nifying the end of this table.

Output Tables

The output tables used by the object pro-
gram are generated by RG54. A maximum of

four tables will be generated; one (DTAB)
for heading and detail lines, one (TOTAB)
for total lines, one (OTAB) for overflow
lines, and one (EXTAB) for EXCPT lines.

Part Two: 1130 RPG Object Program 87

DTAB

This table consists of one table entry for
each heading and/or detail line specified
on the Output-Format Specifications sheet.
Each table entry consists of three words.

Wordl: This word contains the address of
the test output indicators routine. This
routine tests the status of the indicators
which condition the output line associated
with this entry.

Word2: This word contains the address of
the move output fields routine for this
output line. This routine moves fields to
be put out from the assigned fields area
to the output buffer.

Word3: This word contains the address of
the Input/Output Driver (IOD) routine asso-
ciated with the file of which this line
will be put out.

Note: Further information on IODs is con-
tained under Object Time Routines.

The last entry in DTAB is a dummy three-
word entry. The first word of this entry
contains the address of the heading and
detail lines wrap-up routine; a routine
that sets up linkage to get the next re-
cord. Words 2 and 3 are not used.

TOTAB

This table consists of one table entry for
each total line specified in the Output-
Format Specifications sheet. Each table
entry consists of three words containing
the same information as the DTAB table en-
tries. A dummy three-word entry is the
last entry in TOTAB. Wordl of the dummy
entry contains the address of the total
lines wrap-up routine (a test for the oc-
currence of overflow).

OTAB

This table consists of one table entry for
each total overflow line followed by one
table entry for each detail overflow line.
Each table entry consists of three words
containing the same information as DTAB
and TOTAB table entries. Again, the last
table entry in OTAB is a three-word dummy
entry. Wordl of this dummy entry contains
the address of the overflow lines wrap-up
routine (provides linkage to move fields
from the I/0 area to the fields area).

88

EXTAB

This table consists of one table entry for
each EXCPT line specified on the Output-
Format Specifications sheet. Each table
entry consists of three words containing
the same information as the DTAB, TOTAB,
and OTAB table entries. Again, the last
table entry in EXTAB is a three-word dum-
my entry. Wordl of this dummy entry con-
tains the address of the EXCPT lines wrap-
up routine (obtains return address and
branches to calculations).

To illustrate these tables, the following
diagrams contain one entry each.

DTAB
Word1 Word2 Word 3

Heading or Address of Address of Address of
Detail Line | the Test the Move the Input/
entry Output In- Output Output

dicators Fields rou- | Driver

routine tine (10D)
Dummy Address of Not used Not used
entry B0020 in the

Central Out-

put Driver

(COD)
TOTAB

Word1 Word2 Word3

Total Line Address of Address of Address of
entry the Test the Move the Input/

Output In- Output Output

dicators Fields rou- | Driver

routine tine (I0OD)
Dummy Address of Not used Not used
entry B0025 in the

Central Out-

put Driver

(COD)

OTAB

Total or
Detail
Overflow
Line entry

Dummy
entry

EXTAB

EXCPT Line
entry

Dummy
entry

Word1 Word2 Word3
Address of Address of Address of
the Test the Move the Input/
Output In- Output Output
dicators Fields rou= | . Driver
routine tine (10D)
Address of Not used Not used
BO030 in the
Central Out-
put Driver
(COD)

Word1 Word2 Word3
Address of Address of Address of
the Test the Move the Input/
Output In- Output Ovutput
dicators Fields Driver
routine routine (10D)
Address of Not used Not used
BOO33 in the
Central Out-
put

Low Field, PS, and Processing Blocks

The Low Field four-word control block is
generated in every object program and is
modified throughout the execution of that

object program.

Each time a primary or

secondary record is selected for process-
ing, Low Field is filled with the follow-
ing information about that record:

Word1 Word2 Word3 Word4
Low Address of | Address of | Address of | Address of
Field | the GET the CLEV | the INPF | the resul-
routine routine routine ting indi=-
cator

Wordl: When a primary or secondary record
is selected for processing, the address
of the GET routine for the file that con-
tained that record is placed in the first
word of Low Field. This address will be
used on the next cycle of the object pro-
gram at get next record time.

Word2: After a record has been selected

for processing, the address of the control-
level extraction routine for that record
type is entered in Word2 of Low Field.

Word3: This word contains the addresg of
the move input fields routine for the asso-
ciated record type.

Word4: This word contains the address of
the resulting indicator associated with
this record type.

When matching fields are specified in the
RPG source program, Low Field may be ex-
tended to include two hold areas to aid

in processing the matching fields. Low
Field plus the first hold area now becomes
the Low Field Block, and the second hold
area is named the PS hold area which con-
tains the previous primary record.

. N
K Low Field Block .

Word1} Word2 | Word3 | Word4 Hold Area

PS Hold Area

If no secondary files are present in the
program and the primary file contains no
M1-M9 fields, only Low Field will be gen-
erated. If no secondary files are present
but the primary file does contain M1-M9
fields, the Low Field Block and the PS
hold area are generated.

If both primary and secondary files are
present, the Low Field Block and the PS
hold area are joined by a Processing Block
for each file. These Processing Blocks
are generated as follows:

Part Two: 1130 RPG Object Program 89

Low Field Block

<+——— hold areq —»

fp———— hold CArQQ) s

<~—— hold areq ——

st hold areq =————

PS hold area e holdl
Primary Processing Block (PPB) Word1

First Secondary Processing Block (S1PB) Word]

(S2pPB) Word1

(SnPB)

Wordl of each Processing Block contains

the address of the GET routine for the
associated file. Words 2-4 are dynamically
filled with the information described for
Words 2-4 of Low Field. Further informa-
tion on the functions of Low Field, PS,

and the Processing Blocks is contained in
the Processing Multiple Input Files sec-
tion of this publication.)

Control Level Hold Areas

When fields are specified with control-
level indicators in the RPG source pro-
gram, two contiguous hold areas are gen-
erated. These hold areas are named Old
Hold and New Hold. Each of them is pre-
ceded by an attribute (A) word containing
the length of the particular hold area.
These hold areas appear as follows:

A Hold area length= | A Hold area length =
Word | sum of L1-L9 lengths.|{Word | sum of L1-L? lengths.

T 7 \)

CNJﬁOH Nm)how

Further discussion of the use of these hold
areas by the control-level compare and ex-
traction routines may be found under Con-
trol Level Processing.

Pseudo Registers

The first 16 words of the RPG object pro-
gram are set aside for use as pseudo regis-
ters. They are used by many of the object
time routines for passing addresses and
other information. These registers serve
the following functions:

90 -

Pseudo registers 0-1 - volatile

Pseudo register 2 - contains the ad-
dress of the I/0
buffer for the re-
cord being pro-

cessed.

Pseudo registers 3~7 - volatile

Pseudo register 8 - contains parameters
during the GET
function.

Pseudo registers 9-13 - volatile

Pseudo register 14 - used to pass return
addresses.

Pseudo register 15 - contains the ad-

dress of the IOD
being used.

OBJECT TIME ROUTINES

Since the object time tables and work
areas have now been examined, a detailed
description of the executable object pro-

gram routines may now be presented.

Input/Output Drivers (IODs)

One IOD is generated for every file speci-
fied in the RPG source program. This IOD
is a routine which provides linkage to a
library subroutine that will perform the
actual input or output operation for the
file,

There are six card and printer IODs; they
will precede disk IODs in the generated
object program.

Called

by IOD Device

PRNT3 IBM 1403 Printer

PRNT1 IBM 1132 Printer

WRTYQ Console Printer

PNCHO IBM 1442-5 Card Punch
CARDO IBM 1442 Card Read Punch
READO IBM 2501 Card Reader

The logic of these IODs varies from device
to device, but the card and printer IODs
do have the first five words in common,

and they contain the following information:

Wordl address of the Write entry point.
Word2 address of the Read entry point.
Word3 - address of the Control entry point.
Word4 - address of the IZO area.

Word5 - address of the Wait entry point.

If any of these addresses do not apply to
a particular IOD (e.g., Word2 does not
apply to a printer), the word will contain
zeroes before being relocated by the Core
Load Builder at load time.

As previously mentioned, disk IODs are
generated immediately following the card
and printer IODs. They provide linkage to
library subroutines that perform actual
I/0 operations for disk files. The 1li~
brary subroutines which may be called by
disk IODs are:

Type of File Su?\ll'z;feme Function
l. Sequential DAOPN | Open the file
Files Pro= DAIO Read-write operations
cessed Ran= DACLS | Close the file
domly
Il. Sequential SEQOP | Open the file
Files Pro= SEQIO | Read-write operations
cessed Se~ SEQCL | Close the file
quentially
111, Indexed-
Sequential
Files
A. Load ISLDO Open the file
ISLD Load records
ISLDC Close the file
B. Add ISADO | Open the file
1SAD Add records
ISADC Close the file
C. Sequential | ISEQO | Open the file
(Input or ISEQ Read-write operations
Output) ISEQC Close the file
D. Random ISRDO | Open the file
ISRD Retrieve or update
ISRDC Close the file

Again, the logic of the disk IODs varies
from one type of processing to another,

but the first six words of any disk IOD

contain the following information:

Wordl - address of the PUT entry to the

I0D.

Word2 - address of the GET entry to the
I0D.

Word3 - address of the OPEN entry to the
I0D.

Word4 - address of the I/0 area.

Word5 - address of the WAIT entry to the
I0D.

Wordé - address of the CLOSE entry to the
IOD.)

Also, if any of these words do not apply
to a particular IOD, the word will con-
tain zeroes before being relocated by the
Core Load Builder at load time.

Fixed Driver (Overhead)

The fixed driver routine functions as the
main linkage driver for every RPG object
program. It is always the same length and
performs the same functions. Since this
section of the object code does not lend
itself to flowcharting, the actual code is
shown here (Figure 13). Following the
code, the functions of the more important
labels (circled) will be examined in de-

‘tail.

Part Two: 1130 RPG Object Program 91

073E 0 0000
073F 0 0000
0740 0 0000
0741 C 0000
0742 0 0000
0743 0 0000
0744 0 0000
0745 C 0000
0746 G0 0000
0747 0 0000
0748 0 0000
0749 G 0000
074A 0 (€000
074B 0 0000
074C C 0000
074C C 0000
N074E 00 4C0000CO
0750 C 0000
0751 0 0000
0752 C 0©CO00
0753 0 0000
0754 ¢ 0000
0755 ¢ 0000
0756 0 0000
0757 0 0000
0758 0 0000
0759 0 0000
075A 0 0000
0758 0 00600
075C 0 0000
075D 0 0000
075 0 0000
075F G 0000
0760 0 0000
0761 0 0000
0762 0 0000
0763 0 0000
Q764 0 0000
0765 C 0000
0766 C 0000
0767 0005
076C 00 7401000C
076E 00 7403000C
0770 00 C480000C
0772 0 ©oOCC
0773 00 4C802002
0775 0

0775 00 65800010
0777 0 cCooOC
0778 0 D101
0779 00 C4000128
0778 00 4CA00010
0770 0 COO7
077E O D107
DO77F 30 191C5659
0781 0 1111
0782 00 4C0C0049
0784 G 0000
0785 0 7009
Figure 13,

92

0162
0163
0l64
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
C178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
c193
0194
0165
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226

%%k
ok RPG
%k
FAe
RO DC
R1 DC
R2 DC
R3 DC
R4 DC
RS DC
R6 DC
R7 DC
R8 DC
RO DC
R10 DC
R11 OC
R12 DOC
R13 DC
R14 OC
R15 OC
k3 Ak e
CNTRL BSC
ool sk e
ADSRT DC
TABOT DC
HDAD DC
HDTAB DC
TAD OC
TTAB DC
DCALC OC
TCALC OC
CHAN1 DC
CHAN2 DC
CHAN3 DC
STERI DC
RAFAD DC
STERO OC
RAFIO DC
TABLD DC
CTLFD DC
LOWFD DC
CHSAV DC
EAD OC
RTE DC
ETAB DC
ENDAD DC
BSS
(NP SE) MDM
(ALPSE) MDM
TSTRC LD
STO
B
LDX
LD
STo
LD
BNZ
LD
STO
CALL
DC
B
X0000 DC
X7009 DC

NBJECT TIME COMMUNICATICN REGION

-3

i 3%
[T I
¥* 3 ¥

-}%********
[I |
% 3% 3 3¢ 3 3 3¢ 3¢

**"X'*
36 3¢ 3 3t

#*
]
3

1 [|
36 3F 3% 3% 3 36 3F 3 3 b 36 5F 3 3 3¢

6 36 3 3F 3% 6 % 3 3 S 3 St
|

3
P

|
s
3

‘X-**v;%**
|
3*

v
3 3 3 3¢ 5 3¢

13 3¢
i

PSEUDO REGISTER
PSEUDO REGISTER
PSEUDO REGISTER
PSEUDO REGISTER
PSEUDO REGISTER
PSEUDC REGISTER
PSEUDO REGISTER
PSEUDO REGISTER
PSEUDO REGISTER
PSEUDC REGISTER
PSEUDO REGISTER 10
PSEUDO REGISTER 11
PSEUDO REGISTER 12
PSEUDC REGISTER 13
PSEUDO REGISTER 14
PSEUDO REGISTER 15

DO ~NOCNPWN—O

CONTROL PASSER

Y5801620
Y¥5801630
¥5801640
Y5801650
Y5801660
Y5801670
Y5801680
Y5801690
Y5801700
Y5801710
Y5801720
Y5801730
Y5801740
Y5801750
Y58C01760
Y5801770
Y58C1780
Y5801790
¥5801800
¥Y5801810
Y5801820
¥5801830
Y5801840

STARTING ADDRESS OF OBJECT PY5801850

ADDR OF TABLE QUTPUT ROUT

Y58G1860

HEADING AND DETAIL LINE ADDRYS5801870
HEADING AND DETAIL LINE TABLYS5801880

TOTAL LINE ACCR

TOTAL LINE TABLE

DETAIL CALC ADDR

TOTAL CALC ACDR

ADDR OF CHAIN ROUT 1
ADDR OF CHAIN ROUT 2
ADDR CF CHAIN ROUT 3
ADDR OF STERLING INPUT
ADDR OF RAF FILE ROUR
ADCR 'OF STERLING OUTPUT

1/0 ADDR GOF TGO FILE FOR RAF

ADDR CF TABLE LOAD ROUTINE
ADDR OF CONTROL FIELD ROUT
ADDR CF LOWFIELD

BACKUP FOR CHAIN1 ROUT ADDR

EXCPT LINE ACDR

Y58C1890
Y5801900
Y58C1910
Y58C1920
¥Y5801930
Y5801940
Y5801950
Y5801960
Y5801970
Y5801980
Y58C1990
¥5802000
Y5802010
Y5802020
¥5802030
Y5802040

RETURN ADDR AFTER EXCPT LINEYS5802050

EXCPT LINE TABLE
ADDR CF CLCSE FILES
FOR FUTURE EXPANSION

R11-AF,0ONEE BUMP R1l BY 1
R11-AF,THREE BUMP R11 BY 3

R11-AF
R1

R1-AF

sk

R15-AF
X0C0C
ONEE
ACCST-AF
R15-AF
X7009
SEVEN
RGERR
/1111
GETRC-AF
/0000
/7009

GET FIRST WD OF FILE TAB
SAVE 1IN R1

GO TO ADDR IN R1

PUT RCD CUT OF SEQUENCE
SET XR1 TO R15

GET A O

SET SWITCH IN NUM SEQ RTN
SEE IF R15+1 WAS /FO

YES TA ADDR IN R15

BRANCH TC =*+9

SET SWITCH IN NUM SEQ RT
GET CRJECT TIME ERROR ROUT
NOTE C111

GO READ A RECCRD

THESE TWO DC'S SET SWITCH
IN THE NUM SEQ RTN

Object Code for the Fixed Driver Routine (Part 1 of 4)

Y5802060
Y5802070
Y5802080
Y5802090
Y5802100
Y5802110
¥Y5802120
¥5802130
Y5802140
Y5802150
Y5802160
¥Y5802170
Y5802180
¥Y5802190
¥5802200
¥5802210
Y5802220
Y5802230
¥Y58C2240
Y5802250
Y5802260

1130 RPG RG58

ADCR

0786
0786
o788
078A
078C
0780
078E
078F
0791
0792

0794

0795

0765

0797
0798
0799
0794A
0798
079C
079E
079F
07A0
07A1
07A3
07A4
07A5
0 7A7
07A9S
07AA
07AB
07AC
N7AD

O7AE.

0780
0781
0783
0785
0787
o788
078RA
o7es
078C
C7BF
07Co0

07C2.

07C4
07Cs5
07CT
07C9o
07CA
n7CC
o7Ce
C7CF

Figure 13. Object Code for the Fixed

REL OBJECT

00 C400015F
CO 4C2000F4
00 65000160
0 coic
0 DOlC
0 €100
00 4C2000C4
0 7101

00 T4FF006D

C T70F9

(o]
o

65000154

€013
D013
1010
D100
7101
0 74FFO06F
70F8
cocl
DOA7
0 C4800008
DOA2
€008
D4000155
4800009
0009
0000
0000
0000
0001
0 C400015F
90FC
00 4C180103
00 65800024
00 6D000002

OOOOOOﬁgo [oNeoNoNoRoNaloRoNoRoRoRe]
(@]

60 Cl02
00 D4000COS
0 C1l00

C0 D4000003
00 €5800003
0 C106

00 D4000003
00 65800003
0 C1l03

00 D4000003
0C C400014F

0 180F
00 D4000150
0 1810

00.0400014F.

0 . 70D7

ASSEMBLE FIXED DRIVER PAGE 6

ST.NO.

0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
C256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269

SOURCE DATE-02/25/69

LABEL OPCD FT OPERANDS 1D/SEQND
GETRO) EQU * Y5802270
HC LD L H1-1-AF GET LR INDICATOR Y5802280
BNZ EOJRO-AF IF ON GO TO EOJ Y5802290
LDX L1 H1-AF POINT TO START OF HALT IND Y5802300
LD NHIND HOW MANY ARE THERE TO CHK Y5802310
STO LHIND STORE FGR LCOP CONTROL Y5802320
LOOP LD 1 ZEROE GET A HALT INDICATOR Y5802330
BNZ HLTMS-AF IF ON GO PUT CUT MESSAGE Y5802340
MDX 1 ONEE POINT TO NEXT HALT IND Y5802350
MDM LHIND-AF,-1 DECREMENT LOOP COUNTER Y5802360
B LooP IF ALL NCT CHECKED RETRY ¥5802370
* Y5802380
RESRT EQU * Y5802390
* ALL CONTROL LEVEL,HALT,AND INPUT RECORD INDICATOR Y5802400
* SWITCHES ARE NOW TURNED OFF ¥5802410
LDX L1 FP-AF POINT TO START OF INDICATOR Y5802420
* TO SHUT NFF Y5802430
LD NUMIN HOW MANY TG SHUT OFF Y5802440
sTO NUMLP STCRE FCR LCCP CONTROL ¥5802450
SLA SIXTE CLEAR THE ACCUMULATOR Y5802460
LOOP1 STO 1 ZEROE SHUT OFF AN INDICATOR Y5802470
MDX 1 ONEE POINT TO NEXT INDICATOR Y5802480
MDM NUMLP-AF,-1 DECREMENT LOOP COUNTER Y5802490
B LOoOP1 IF ALL NOT OFF CONTINUE Y5802500
LD LOWFD GET ADDRESS CF LOW FIELD ¥5802510
STO R10 PUT IN REG 10 Y5802520
LD T RI1C-AF GET ADDR OF GET Y5802530
STO R8 PUT IN REG 8 Y5802540
LD INDON GET INDICATOR CN Y5802550
STO L LO-AF TURN LEVEL ZERQ ON Y5802560
LABEO B 1 R8-AF GO TO CONTENTS OF REG 8 Y5802570
NHIND DC 9 NUMBER OF HALT INDICATORS Y5802580
LHIND DC 0 LOCP COUNTER Y5802590
NUMIN DC 0 FILLED IN AT COMPILE TIME Y5802600
NUMLP DC 0 LOOP COUNTER ¥5802610
INDON DC /0C01 INDICATOR ON Y5802620
LD L LR-AF GET LR INDICATOR Y5802630
S INDON IS IT ON Y5802640
BZ CLOSE-AF YES END OF FILE Y5802650
LDX 11 LOWFD-AF GET ADDR OF LOW FIELD Y5802660
STX L1 R1-AF SAVE IN REG 1 Y5802670
LD 1 TWOE ADDR CF MOVE FIELDS RTN Y5802680
STO L RB-AF SAVE IN REG 8 Y5802690
LDTOA LD 1 ZEROE GET LCW FIELD Y5802700
STO L R2-AF SAVE IN REG 2 Y5802710
LDX 11 R2-AF PICK UP ADDR OF GET Y5802720
LD 1 SIXE GET 10D ADDRESS Y5802730
STO L R2-AF SAVE IN REG 2 Y5802740
LDX Il R2-AF PUT IT IN XR1 Y5802750
LD 1 THREE GET ADDR THE 1/0 AREA Y5802760
STO L R2-AF PUT IN REG 2 Y5802770
LD L INTMR-AF TURN CON MR SWITCH IF NECC Y5802780
SRA 15 MAKE EQUAL TO /0001 Y5802790
STO L MR-AF ESSARY Y5802800
SRA SIXTE CLEAR ACCUMULATOR Y5802810
STO L INTMR-AF SHUT OFF INTERNAL MR SWITC Y5802820
B LABEO GO TO MOVE INPUT FIELDS Y5802830
* Y5802840
* Y5802850

Driver Routine (Part 2 of 4)

Part Two: 1130 RPG Object Program 93

1130 RPG RGH8

ADCR

n700
07DC
0702
n7D3
0704
0705
0707
07CS
07CB
07CD
O7CF
07EQ
07E2

O07E3
O7E3
N7ES
07E6
D7E8
O7EA
07EB
07€ED
07€EF
07FO
07F2
07F3
07F5
07F6
07F8
DTFA

07F8
D7F8
O7FD
O7FE
o8aco

0801
0801
08c2
08C4
0805
0807
08cC9
oscCs
080N
080F
0811
0812
0814
0815
0817
0818
0814a
0818
081C
0810
081lE

Figure 13.

94

REL OBJECT

0

65800008
cio3
boo2
cco8
D40000090
C4000004
94000010
4C1890119
€5800008
C101
04000009
7CC4

65800009
C101
D400000C
6D00DOOF
c100
D400C0010
65800010
c103
04000003
Cl01
D4000010
Co04
D400000R
4C800010
002F

€580000C
clo1l
D4000009
TCA6

Co1D
D40000QCF
Cco15
D4000010
7401000F
74010010
C480000F
94000070
4C2000CA
coocC
ECO00010
Doo2
191C5¢6€59
1120
4C000058
0000
0000
0000
0000
1120

ASSEMBLE FIXED

ST.NO.

n286
c287
0288
c289
0290
0291
0262
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344

DRIVER

LABEL OPCD FT OPERANDS

LDX
LD
STO
SETIN LD
STO
LD
S
BZ
LDX
LD
STO
B
*THIS ROUT
FQU
LDX
LD
STO
STX
GETFL LD
STO
LDX
LD
STO
LD
STO
Lo
STO
B
AINPS DC

]
11 R1C-AF
1 THREE
SETIN+2
INDON
L ZFRQOE
L R3-AF
L R15-AF
TOTSW-AF
11 R1C-AF
1 ONEE
L R8-—-AF
LABEC
INF IS TO GET
*
11 RB8-—-AF
1 ONEE
L R11-AF
L1 R1l4-AF
1 ZEROE
L R15-AF
I1 R15-~AF
1 THREE
L R2-AF
1 ONEE
L R15-AF
AINPS
L R10-AF
I R15-AF
INPSE-AF

PAGE 7

SOURCE DATE-C2/25/69

GET CONTENTS OF REG 10
CET INPUT INDICATOR ADDR

GET INDICATQOR CN

THIS TURNS ON INPUT IND
GET REG 3

IS 1T EQUAL TO REG 15

YES TC TCTAL TIME ROUTINE
POINT TO LCW FIELD

ADDR OF LEVEL EXTRACTICN
PUT IT IN REG 8

GO TC LABEL

A FILE

GET REG 8

GET FILTAB-4 ADODR

PUT IT IN REG 11

PUT REG 8 IN REG 14
GET ICD ADDRESS

STCRE IN REG 15

GET ACDR IN REG 15

GET 1/0 AREA ADDRESS
SAVE IN REG 2

GET READ ENTRY ADDRESS
SAVE IN REG 15

GET ADDR OF INPSE

SAVE IN REG 10

GO TC READ ENTRY IN 10D
ADDR CF INPSE

*INPUT ROUTINE LINKAGE TO ALPHA SEQUENCE

*MULTIFIEL

MFLNK EQU
LDX
LD
STO
B

* ROUTINE

~ LD
STO
LD

STO
ITERA MDM

NCTMS DC

ZERO DC
SEEKA DC

NOTM1 DC

D LINKAGE ROUT
*

I1 R11-AF
1 ONEE
L R8-AF
LABEQ
TO PRINT HALT
*
AH1M1
L R14-AF
ZEROD
L R15-AF
R14-AF,0ONE
R15-AF 4ONE
I R14-AF
INDON-AF
ITERA-AF
NOTM1
L R15-AF
NOTMS
RGERR
/1120
L RESRT-AF
0
LT
K=
A K
/112¢

INE

RTN TO HANDLE MULTI-FILE
POINT TO FILE INPUT TABL
GET MFEXT RTN ADDR

SAVE IN REG 8

GO TO LAREL

MESSAGE INDICATOR

GET ACDR OF Hl-1

PUT IN REG 14

GET CCMPARAND

SAVE IN REG 15

E BUMP REG 14 RY 1}

E BUMP REG 15 8Y 1
GET A HALT INDRICATOR
IS IT ON

NGO TRY NEXT CNE

GET MESSAGE TC PUT OUT
OR IN HALT NUMBER
UPCATE MESSACE

GET OBJECT TIME ERROR ROUT
C12N MESSAGEy N = HALT NUMB

CONTINUE PROCESSING
CONSTANT OF ZERO
GENERAL WORK AREA
GENERAL WORK AREA
GENERAL WORK AREA

USED TO BUILC C12N NOTE

Object Code for the Fixed Driver Routine (Part 3 of 4)

1D/SEQNOD

Y5802860
¥5802870
Y5802880
¥5802890
Y5802900
¥5802910
¥5802920
¥5802930
¥5802940
¥5802950
¥5802960
Y5802970
¥5802980
v5802990
¥5803000
¥5802010
¥5803020
Y5802030
¥5803040
¥5803050
¥5803060
¥5803070
¥5803080
¥5803090
¥5803100
¥5803110
Y5803120
¥5803130
¥5803140
Y5803150
Y5803160
¥5803170
¥5803180
¥5803150
¥5803200
Y5803210
¥5803220
¥5803230
¥5803240
¥5803250
¥5803260
¥5803270
¥5803280
¥5803290
¥5803300
¥5803310 -
¥5803320
Y5803330
Y5803340
Y5803350
¥5803360
v5803370
¥5803380
¥5803390
Y5803400
¥58034 10
¥5803420
¥5802430
Y5803440

1130 RPG RGSS ASSEMALE FIXED DRIVER PAGE 8

SOURCE DATE-02/25/69

AJCR REL OBJECT ST.NO. LAREL OPCD FT OPERANDS . ID/SFEQNO
0RALF 0 O0O15F 0345 DC H1-1-AF ADDRESS OF H1-1 Y5803450
0820 0 0346 %Eou * TOTAL TIME ROUTINE Y5803460
0820 0 COCF 0347 T CON HAS CCN BEEN FILLED IN Y5802470
0R21 00 4(C1R0O0ED 0348 R7 TOTRO=-AF NO TO TOTAL TIME Y5803480
0923 00 65800010 0349 LOX 11 R15-AF GET ACDR IN REG 15 Y5803490
0R25 0 C(Cl04 0350 Ln 1 FOURE GET R15+4 Y5803500
N826 0 EO009 0351 AND CON FIRST TIME SWITCH Y58C3510
9827 0 9008 0352 : S CON Y58C3520
0828 00 4C190071 0353 Rz GETIF-AF IF COK TO GETIF ¥Y5803530
N82A CO C400001A 0354 TOTRO LD L TCALC-AF GET ADDR QOF TOTAL CALCS Y58C3540
QR2C 00 D400ONO00S 0385 STO L RB8-AF PUT IN REG 8 Y58C3550C
082E CO 4CB800009 03866 8 I R8-AF GO TC TOTAL CALCS Y5803%560
0830 0 0000 0357 CON DC de= FILLED IN EXTERNALLY Y580357C
0358 *kEND CF JOB ROUTINE Y58C3580C

9831 0 C359 (EQJRD) EQU * END JCB ENTRY 'Y5803590
nA21 0 0360 EDJBK EQU * END JOB ENTRY Y5803600
0831 00 65000155 0361 LDX L1 LO-AF POINT TO START OF LEVEL Y5803610
0362 * INDICATURS TO MAKE FINAL CONTRCL BREAK . ¥5803620

0233 0 cClo¢ 0363 LD 1 ZEROF "PICK UP LO {(CN) Y5803630
nN834 0 0101 N364 Lnop2 STO 1 ONEE TURN CN AN INDICATOQOR Y58C3640
0835 0 7101 0365 MD X 1 ONEE POINT TO NEXT INDICATOR Y5803650
0836 00 T74FFQl02 0366 MD#M NLIND-AF,~1 LECREMENT LOP COUNTER Y5803660
0838 0 70FB 0367) LOOP2 IF NCT DONE SET NEXT ONE Y5803670
0839 00 C4000014A 0368 LD L TCALC-AF GFT TOTAL CALCULATICN ADDR YS5803680
0838 00 D4000009 7349 STO L RB-AF SAVE IN REG 8 Y58C3690
083C 00 4C800009 0370 R I RB=-AF GO THERE Y58C3700
N83F € 000A 0371 NLIND DC 10 L1-L9,LR ¥5803710
0372 wxCLOSE THE FILES Y5803720

0840 00 C400N014 n373 LD L TABOT-AF GET ADDR OF TABLE OUTPUT Y5803730
N842 00 D40ON00S €374 STO L R4-AF PUT IN R4 Y5803740
0844 0 1010 0375 SLA 16 CLEAR THE ACCUMULATOR Y5803750
0845 CO D4000007 0376 §TO L R6-AF CLEAR R6 Y5803760
NR4T N0 D4000N0B 0377 STO L R7-AF R7 Y5803770
0849 00 65000112 0378 LDX L1 *+4-AF SET UP RETURN AODRESS Y5803780C
N348 00 6000000A 0379 STX L1 RG-AF SAVE IN REG 9 Y5803790
0840 N0 4C8CON05 03280 8 I R4-AF GN CLEAN UP : Y&8C3800
084F 00 4C800029 0381 cLl B I ENDAD-AF GC CLCSE FILES Y58C3810
' c382 ook ¥Y5803820C

0851 0 6038 0383 <:;;§) EXIT ALL CCNE V5803830
0384 % Y5803840

0RS2 0 0000 0385 FC1 OC ok CHAINING TNDICATOR 1 ¥58C3850
0853 0 0000 0386 FC2 DC femk CHAINING INDICATOR 2 Y5803860
nAasge 0 CCOO 0387 FC3 DC k=% CHAINING INDICATOR 3 Y580387¢C
78%% 0 0009 0388 ClFTB DC 0 ADNR OF CHAIN1 FILE TABLE Y5803880
0856 0 7001 0389 TOTSW B *+1 FIRST TIME DCNT GO TO TOTR YS5803890
nas? 0 7002 c390 R TOTRO AFTER 1ST TIME GO TO TOTRO VY5803900
nNR58 0 CO03 0391 LD NOQP SET AFTER 1ST TIME BRANCH ¥5803910
0859 0 DOFC 0392 STO TOTSW TO GC TO TOTRC Y5803920
9R5A N0 4C0N2071 0393 R L GETIF-AF 1ST TIME QONLY GO TQ GETIF Y5803930
085C 0 1000 0394 NOOP NOP CONSTANT FOR NOP Y5803940
€385 * . Y5803950

Figure 13, Object Code for the Fixed Driver Routine (Part 4 of 4)

Part Two: 1130 RPG Object Program 95

INPSE: This code is entered from the GET
routine for a particular file after a re-
cord has been read from that file. PR11
(pseudo register 11) contains the address
of the File Input Table -4 for the file
just read. (See File Input Tables for fur-
ther information.) PR11 is then increment-
ed by 4 to point at the first word of the
table entry. This word (address of the
INPR routine) is then placed in PR1 and

the Fixed Driver branches to the INPR rou-
tine.

ALPSE: This code is entered from the out-
put lines routine. PR11l contains the ad-
dress of the Output Table -3. The Output
Table in question may be DTAB, TOTAB, OTAB,
or EXTAB. PR11l is then incremented by 3
to point at Wordl of the table entry.

Wordl (address of the Test Output Indica-
tors routine) is then placed in PRl and

the branch is taken to the Test Output In-
dicators routine.

ERR: If a numeric sequencing error occurs,
this routine is entered to put out the
error indication.

GETRC: This routine first checks the LR
indicator; if on, a branch is taken to
total calculations. If off, the halt in-
dicators are checked next. If any of the
halt indicators are on, a branch is taken
to HLTMS, the routine which indicates the
error. Next, beginning at RESRT, all con-
trol-level, halt, and input record indica-
tors are turned off. The address of the
GET routine for the file about to be read
is taken from Wordl of Low Field and
placed in PR8. A branch to the GET rou-
tine is then taken via PRS8.

GETIF: This routine first checks the LR
indicator; if on, a branch is taken to the
CLOSE routine. If off, the address of the
move input fields routine is taken from
Word3 of Low Field and placed in PR8. The
IOD address is obtained and from the IOD
the I/0 area address (Word4) is taken and
placed in PR2. The MR indicator is set
on/off and a branch is taken to LABEO in
the Fixed Driver. At LABEO a branch via
PR8 is taken to the move input fields
(INPF) routine for the record type being
processed.

PRORC: This code takes the record identi-
fying indicator address from Word4 of Low
Field and turns that indicator on. 1If
there are control levels in the program,

a branch is taken to the control-level ex-
traction routine pointed at by Word2 of

26

Low Field. If no control levels exists in
the program, a branch is taken to total
calculations, providing this is not the
first cycle of the object program.

ADDGT: Upon entering this code, PR8 is
pointing at two words in the GET routine
for the particular file from which a record
is about to be retrieved. The first word
contains the address of the IOD for the
file; the second word contains the address
of the File Input Table entry -4. The
File Input Table -4 address is placed in
PR11. PR14 is loaded with the contents of
PR8. At GETFL, the I/O area address is
taken from the IOD and placed in PR2 and
the read entry address is taken from the
IOD and placed in PR15. The address of
INPSE in the Fixed Driver is placed in
PR10 and a branch is taken to the read en-
try point in the IOD to read a record.

MFLNK: This code provides linkage to han-
dle matching fields extraction and multi-
file logic. It is entered from a GET rou-
tine with PR11l pointing to the File Input
Table entry which corresponds to the re-
cord type just read. Word2 of the entry
(address of the matching fields extraction
routine for this record type) is taken
from the table and a branch is taken to
this address (MFEXT).

HLTMS: This code checks the halt indica-
tors and provides linkage to issue any
necessary error indication.

TCLNK: This code tests a first-time switch
to determine whether total calculations
and lines should be bypassed. If this is
the first cycle of the object program, a
branch is taken to GETIF in the Fixed
Driver. If not, a branch is taken to to-
tal calculations.

EOJRO: This code turns LR and L1-L9 on
and links to total calculations.

CLOSE: This code obtains the address of
the table output routine, places it in
PR4 and links to the Close Files routine.
EOJ: Exit.

Output Lines Routines

The object code routines for putting out
lines consist of four major sections, not
including the IODs which are essential to
the operation of these routines. These
routines appear in core storage in the
following order:

This routine is
generated by RG52,

Low Move Output Fields
Core Routine

Central Output
Driver (COD)

Test Indicator
Routine

Output Tables - DTAB
- TOTAB
- OTAB
- EXTAB

These routines are
> generated by RG54.

See Figure 17 for the core storage loca-
tions of all object routines.

Each of these routines will be discussed
separately, after which their combined
function will be explained.

Move Output Fields Routine

For each output line specified in the RPG
source program, a move output fields rou-
tine will be generated. This routine

moves the fields which make up its partic-
ular line into the output buffer (I/0

area). If field output is conditioned by
an indicator, the routine ensures that the

indicator is on/off before the move is per-

formed.

Central Output Driver (COD)

The COD first receives control whenever
output is to be performed. The accompany-
ing figure describes the logic of the COD.
Note that this routine has several entry
points and several exits. The COD is a
pre-coded routine in RG54 and is generated
for every RPG object program.

Entered from B000O <+———Pointed at by HDAD in
the Fixed the Function Address
Driver to put Table (FAT)
out heading
and detail
lines. PR8 -—@B0001
PR10~—@ALPSE
In the Fixed Driver
PR11<-—@DTAB-3 FIXED DRIVER
ALPSE
Entered from B0006 <+——~Pointed at by TAD in
the Fixed FAT
Driver to put
out total lines.,
PR8-+—@B0001
PR10~—@ALPSE
PR11<—@TOTAB-3 FIXED DRIVER
ALPSE

Entered from B0032 <————Pointed at by EAD in
calculations EAT
to put out
EXCPT lines.
PR8 <—@B0001
PR10-+—@ALPSE
PR11~—@EXTAB-3 FIXED DRIVER
ALPSE

Figure 14. Logic of the Central Output
Driver (Part 1 of 3)

Part Two: 1130 RPG Object Program 97

Get Addr
of Wait
Entry in
the 10D

10D

Wait Until
/O Device

is Free

Get 1/O Area
Addr From
10D and Place
in PR2

Get Move
Qutput Fields
Addr From
Qutput Table
Entry Pointed

Entry in
Qutput Table
Associated

With 'OR'

Inc PR11 by
3 to Bypass

Figure 14.

98

at by PR11
MOVE OQUTPUT
FIELDS
Fill 1/O
Area With
Fields
1
Get 10D
Addr From
Table Entry
Pointed At
By PR11
10D
Put the
Record

Logic of the Central Output

'OR' Table Entry
Since Line was
Just Put Out

B0O010

U

Link to 1OD

to Perform
Skip and Space
Operations

B00O1

) [

BOO15

Link to 10D
to Select
Punch
Stacker

BOOO1

!

Driver (Part 2 of 3)

FIXED DRIVER

ALPSE

Process Next
Output Line
(Next Table Entry)

80018

~«———Pointed at by word 1 of

80030 dummy entry in OTAB
Set Off
Overflow
Indicators FIXED DRIVER
GETIF
Ready to
Move Input
Fields
80033 ~——Pointed at by word 1 of

dummy entry in EXTAB

Set Overflow
Indicators

On/Off

Link to IOD
to Perform
(S:';:P fol : FIXED DRIVER
anne
ALPSE
«— Pointed at by word 1 of
80020 dummy entry in DTAB
Set On/OFff
Overflow
Indicators
Set Off 1P FIXED DRIVER
Indicator GETRC
80025 ~+——— Pointed at by word 1 of

Set Overflow
Indicators
On/Off

Overflow

YES

dummy entry in TOTAB

FIXED DRIVER

ALPSE

NO

Start

Processing
OTAB

FIXED DRIVER

GETIF

Ready to
Move Input
Fields

CALCULATIONS

Figure 14. Logic of the Central Output Driver (Part 3 of 3)

Part Two:

1130 RPG Object Program 99

Test Indicators Routines

For every output line specified in the

source program,
is generated.

a test indicators routine
For most output line speci-

fications the following routine will be

generated.

C

START ’

FIXED DRIVER
ALPSE

Point to
Next Table
Entry

Are
Indicator
Conditions Met
For This
Line?

If the output line is directed to a printer
and space before or skip before is speci-
fied, the following routine will be gener-

ated.

C

START

)

FIXED DRIVER
ALPSE

Point to
Next Table
Entry

Conditions Met

Are
Indicator

For This
Line?

YES

If the output line is directed to a punch
and stacker select is specified, the fol-
lowing test indicators routine will be

generated.

C

START)

FIXED DRIVER
ALPSE

Point to
Next Table
Entry

100

Conditions Met

Are
Indicator

For This
Line?

YES

CcOD

B00OI1

Determine if
1/O Device
is Free

COD

B0O10

Perform
Control
Operations

cob

BOO15

Link to 10D
to Perform
Stacker Select

Output Tables

A description of these tables is contained

under Tables and Work Areas.

These tables

A detail lines output table
generated with these entries:

(DTAB) will

be

follow the Test Indicators routines in
(iorg storgge and are contiguous in the fol- DTAB | Address of Address of Address of
owing order. the routine the routine the 10D that
that tests that moves performs the
Low indicator 01 | FLD1 to the 1/0O operation
Core DTAB output buffer :
TOTAB Address of Address of Address of
the routine the routine the 10D that
OTAB that tests that moves performs this
indicator 02 | FLD2 to the I/O operation
EXTAB output buffer
Address of Not used Not used
B0020 in the
Starting with this basic information about coOD
the functions and logic of the output lines
routines, the following section shall at-
tempt to show the dependencies and inter-
relationships of these routines within an
actual object program. Steps 1 through 9 trace the sequence of
steps that will be executed at detail lines
time.

To illustrate these relationships, the out-
put specifications of an RPG source program
are provided so that a trace of the code
may be made.

m" Internationa! Business Machines Corporation Form X21-8090
Printed in U.S.A,
RPG OUTPUT - FORMAT SPECIFICATIONS
12 7576 77 78 79 80
Program Instruction [pynopy 5
1 lspm Skip Output Indicators Edit Codes
Zero Balances =
I Commas | 1o print | N Sion | CR | - | X = Jemee Sterting
N . - . = Sign
Line Filename Gl ,, Field Name ol End g Y Y 1 A [J |Y = Dawe s
! INF] And And el Nam 2l positon 3 ves No 2 B | K Field Edit Position
; 9 3 e k4 § in I No Yes 3 [L |2 = Zero
= Zlsiolsl S| B |y % 5 A oup |3 No No 1 D|m Suppress
E & é Bf<| 8] < |2 2 2 £ E Record 3
w I w @ Constant or Edit Word
34587B9|0|||2|3|4|5|6|7|8|92021212324252527@29303!32333435363738 940‘1QZ“““46474849505_'_2&;_3_54_5_5-56575859506'61635465565768@973;‘727374
o[+ Jolo DI TSIK D| | |t /1 | LT
of2lglo F|ILID|4 10 VL L l 1
0|3 [} i
a I
olaglo FLD|2 1/5 ‘
06| {0 [4
alal ln ITITrTrT
Part Two: 1130 RPG Object Program 101

1. The Central Output Driver (COD) re-
ceives control from the Fixed Driver
at B0000. The address of B000l is
placed in PR8, and the address of ALPSE
in the Fixed Driver is placed in PRI10.
The address of DTAB-3 is placed in PR11
and a branch is taken to ALPSE via PRI1O.

2. At ALPSE (this label is discussed in
further detail under Fixed Driver),
PR11l is incremented by 3 to point at
Wordl of the first entry in DTAB. The
address of the test indicators routine
for the line associated with the first
entry is taken from DTAB and placed in
PRl1. A branch is then taken to the
test indicators routine.

3. The test indicators routine determines
whether indicator 01 is on. If 01
were not on, a branch would be taken
via PR10 to ALPSE which would incre-
ment PR11 and load PRl to process the
output line. Assuming though, that 01
is on, a branch is taken to the address
contained in PRS8. (PR8 was loaded with
the address of B0O00l in the COD.)

4. At BO00l the IOD address is taken from
the table entry associated with the
line being processed and a branch is
taken to the WAIT entry point in the
IOD. The IOD returns directly to the
COD when the I/0 device is free.

5. The COD then takes the address of the
move output fields routine from the
DTAB entry for the line being pro-
cessed and branches to that routine.

6. The move output fields routine moves
FLD1 to its proper place in the output
buffer and links back to the COD.

7. The COD links to the PUT entry point of
the IOD to put out the output line just
built. Control is then given back to
the COD.

8. Next, the move output fields routine
addresses of the first and second en-
tries in DTAB are compared. If equal,
the COD would determine that entry2 is
an 'OR' table entry. The 'OR' entry
would not be processed since the line
has already been put out. In the case
of these lines however, the addresses
are not equal and a branch is taken to
ALPSE in the Fixed Driver.

9. At ALPSE, PR1ll, which still points to
entryl in DTAB, is incremented by 3
to point to entry2. The address of the
test indicators routine for the second
output line is taken and a branch is
made to the test indicators routine.

Steps 3-9 are then repeated in order to
put out the second output line. When step
9 is again reached and PR1ll is incremented
by 3, it will be pointing at the dummy
table entry. Wordl of this entry will
contain the address of B0020 in the COD
and a branch will be taken to that point.

102

Next, if overflow occurred while printing
the previous two lines, the appropriate
overflow indicator is turned on. The 1P
indicator is then turned off and- a branch
is taken to GETRC in the Fixed Driver.
GETRC will begin the steps necessary to
get the next record and repeat the cycle.

Get Input Record Routines

Certain tables and work areas essential to
the task of getting an input record, name-
ly, File Input Tables, IODs, Low Field,
and the Low Field Block, PS, and Primary
and Secondary Processing Blocks have been
discussed previously under Tables and Work
Areas. The reader should refer to that
section of the publication for any infor-
mation needed to understand the Get Input
Record Routines.

These routines: GET routines,

MFTST routine,

EOFTS routine, and

MFEXT routines
will be explained individually and then a
trace of a simple program will be made to
illustrate how these routines function to-
gether to perform the entire "get record"
task.

The GET Routines

One GET routine is generated for each pri-
mary or secondary input file specified in
the source program. Following is the ac-
tual object code of each GET routine.

This routine is entered at the instruction
labeled GET. The address of DTFA is then
placed in PRS. (DTFA is a two-word area.
The first word contains the address of the
IOD for the input file associated with
this GET routine, and the second word con-
tains the address of the File Input Table
-4 for this file.) A branch is then taken
to ADDGT in the Fixed Driver (to GET the
input record).

The GET routine is again entered at the in-
struction labeled RETUR. The address of
the instruction LADD is placed in PR8 and

a branch is taken via PR10 to INPSE in the
Fixed Driver (to identify the record type
just read).

The GET routine receives control again at
LADD. The address of Low Field is placed
in PR10 and, at NEWI, index register 2 is
loaded with:

1. The address of Low Field if there are
no secondary files in the program, or

2, The address of the primary processing
block (PPB) if there are secondary files

0753 * Y4207530

NDABF 00 66000ACS 0754 GET LDX L2 DTFA PUT RETURN Y4207540
OAC1l 00 6EO000009: 0755 STX L2 RS8 ADDRESS IN RS Y4207550
0AC3 CO 4CO000A6 0756 B L ADGET LINK TO OVERFEAD Y4207560
0AC5 0 0000 0757 DTFA DC 0 FILLED IN WITH DTF ADDR Y4207570
0OAC6 O 0000 0758 DC 0 FILLED IN WITH FILTAB-4 ADDRY 4207580
0AC7 00 66000ACD 0759 LDX L2 LADD PUT RETURN Y4207590
0AC9 0C 6E000009 0760 STX L2 R8 ADDRESS IN RS Y4207600
OACB 00 4C800008 0761 B I R10 RETURN Y4207610
OACC CO 66800024 0762 LADD LDX 12 DBLOW GET LCWFLD ACDR Y4207620
OACF 0C 6E000COB 0763 STX L2 R10 ‘ Y4207630
0AD1l 00 66000000 0764 NEWT LDX L2 *-% LOWFLD CR BUFFER ADDRESS Y4207640
0AD3 00 6580000C 0765 Lox 11 R11 GET ADDR FILTAB Y4207650
QAC5 0 C102 0766 LD 1 2 PICK UP CCNTROL LEV ADDR Y4207660
OADS O D201 0767 STO 21 STCRE IN 2ND LOWFLOD SLOT Y4207670
OAC7 0 C103 Q768 LD 13 PICK UP INPF ADDR Y4207680
0AD8 0O D202 0769 STO 2 2 STORE IN 3RD LOWFLD SLQT Y4207690
JAD9 0O C48000C9 0770 LD I RSB PICK UP RI ACDR Y 4207700
OACB C D203 0771 STO 2 3 PUT IN 4TH SLCT CF LOWFLD Y4207710
OACC 0 CO00s6 0772 LECF LD EOQOFWD Y4207720
OACC O EAO03 0773 OR 2 3 OR WITH RI ADDR Y4207730
CADE O D203 0774 STO 2 3 REPLACE Y4207740
OADF 00 4C280000 0775 134 BN 0 BRANCH IF EOF Y4207750
OAEl CO 4COO00BE 0776 B L MFLNK GO TO OVERHEAD Y4207760
0AE3 O 0000 o777 EOFWD DC /0000 EOF MASK Y4207770

0778 * Y4207780

Figure 15. Object Code of the GET Routine

and this is the GET routine for the MFTST routine. If EOF did not occur, a

primary file, or branch is taken to MFLNK in the Fixed
3. The address of the first secondary pro- Driver.

cessing block (S1PB) if this is the GET

routine for the lst secondary file, or, The MFTST Routine

the address of S2PB if this is the GET

routine for the 2nd secondary file, etc. The matching fields test (MFTST) routine

is generated only when secondary files
At this time, PR1l1l is pointing to the File exist in the source program. The function
Input Table entry associated with the re- of MFTST is to compare the matching fields
cord type just identified. Word3 of the of the primary and secondary files in or-
table entry (address of the control level der to select the proper record for pro-
extraction routine) is placed in the se- cessing and to determine the status of
cond word of the processing block or Low the matching record (MR) indicator.
Field, whichever is pointed at by index)
register 2. Word4 (address of INPF) of Another function is to handle all EOF
the table entry is placed in Word3 of the conditions on primary and secondary files.
processing block or Low Field. Next, the
address of the record identifying indicat- This routine is pre-coded and may be
or is placed in Word4 of the processing found in RG40. The actual code will not
block (or Low Field) pointed to by index be shown here but the logic of the MFTST
register 2. routine is described under Processing
Multiple Input Files. The reader should

At this time, if EOF had been encountered be aware that Chart KA is a logical chart
when the IOD had attempted to read the only and does not directly correspond to
record, the high order bit of EOFWD would the sequence of instructions found in
have been set to one. If EOF had not RG40.
occurred, the bit would still be zero.
EOFWD is then ORed with the record identi- The EOFTS Routine
fying indicator address (Word4 of the
block pointed to by index register 2). If The end of file test (EOFTS) routine is
EOF did occur, a branch is taken to the generated in place of MFTST if there are
EOFTS routine unless there are secondary no secondary files specified in the source
files in the program. If secondary files program. For reference, the following is
are present, the branch is taken to the the actual code of this routine.

Part Two: 1130 RPG Object Program 103

0AQC - COCB c722 EOQFTS LD STATU EOF REQUESTED ON PRIMARY Y4007220
NACE 00 4C2800B6 0723 INT20 BN PRTIEQ-MFTST VYES Y4007230
CAQF ¢ 1004 0724 INT53 SLA 4 WAS EQF SENSED ON SECONDARY Y4007240
0A10 00 4C1NIQCA 0725 INT21 BNN PROCF-MFTST NO, GC PROCESS Y4007250
0A12 00 C400014F 0726 INTRS5 LD L MRDIS TS INTERNAL MR 0N Y40C07260
OAl4 00 4C1CO0F4 c727 INTR6 BNN OREQJ NO GO TO EQJ IN OVER HEAD Y4007270
2A16 O 701A 0728 INTR7 B PROCF GO PROCESS Y4007280
nAl7 2 COCC 6729 SECTS LD STATU HAS Y4007290
N0Al8 0 EOC1 Q730 AND X1800 EOF Y4007300
N0Al9 ¢ 90CHO 0731 S X1800 OCCURRED GON BOTH Y4007310
JA1A 70 4C1800A8B 0732 INTR8 BZ INTR5-MFTST YES Y4007320
0Al1C O 7014 0733 INTRG B PROCF GO PROCESS Y4007330C
OALD O COBA Q0734 PRIEO LD STATU FOF REQUESTED Y4007340
DAlE 0 1001 0735 SLA 1 ON SECONDARY Y4007350
OAlF 00 4C2800BC 0736 INT22 RN SECTS-MFTST YES, CHECK BOTH Y4007360
0A21 O 1002 0737 INT23 SLA 2 WAS EOF SENSED ON PRIMARY Y4007370
0A22 N0 4C1000CA 0738 INT24 BNN PRCCE-MFTST NO, GO PROCESS Y4007380
0A24 00 C400014F 0739 LD L MRDIS MATCHING Y4007390
0A26 0O 10C4 0740 SLA & RECORDS USED Y4007400
0A27 00 4C2800F4 0741 RN ORFOJ NO, GO TC ECJ IN OVERHEAD Y4007410
0A29 CO0 C400014c 0742 LD L MRDIS IS THERE A MATCH Y4007420
NA2B 00 4C1000F4 0743 RNN OREQJ NO, GO 70 EOJ Y4007430
0A2D 0O COAA 0744 INT48 LD STATU WAS EOF SENSED Y4007440
0A2E 0 1004 0745 SLa 4 ON SECONDARY Y4007450
0A2F 00 4C2800F4 0746 BN CBEOJ YES, END OF JOB Y4007460
0A31 O C100 0747 PROCE LD G GET ADDR OF CGET ROUTINE Y4007470
0A32 00 D400N0O01 0748 sSTn L 1 PUT IN XR1 Y4007480
0A34 0 C106 0749 LD DSDTF GET DTF ADDRESS Y4007490
0A35 00 D4000001 C750 sTo L 1 PUT IN XR1 Y4907500
0A37 0 C1l03 0751 LD 3 GET 10 AREA ADDRESS Y4907510
0A38 00 D400N0OC3 0752 STO L R2 PUT IN STM REG Y 4007520
0A3A 00 C4000023 0753 LDLF LD L CTLFD Y4007530
0A3C 0C D4000019 0754 STO L R15 PUT IN SIM REG Y4007540
OA3E 00 C4000000 0755 RI1 LD L ADDRI GET RT ADDR FROM LOWFLD Y4007550
0A40 O EO9F 0756 AND 73FFF ZERO EQF BITS : Y4007560
7441 €O D4000O0D 0757 R12 STN L ADDRI REPLACE IT Y40067570
0A43 00 4C000093 0758 B L PRORC GC TO OVERHEAD Y4007580

0759 %k Y4007590
Figure 16. Object Code of the EOFTS Routine

When this routine receives control,

it

area in the Low Field Block.

If a collat-

tests the high-order bit of the record
identifying indicator address contained in
Low Field (Word4). If the bit is on, EOF
has occurred and a branch is taken to the
instruction labeled EOJBK in the Fixed
Driver. If the bit is off, the address of
the control level compare routine (Word2)
is taken from the Function Address Table
and placed in PR15. A branch is then
taken to PRORC in the Fixed Driver.

The MFEXT Routines

A matching fields extraction (MFEXT) rou-
tine is generated for each record type
specified on the input specifications of
the source program. Each routine extracts
the matching fields for its record type
and places them in the hold area of the
proper processing block (PPB, S1PB, etc).
The hold area is then compared to the hold

104

ing sequence error occurred, a branch is
taken to ERR+10 in the Fixed Driver.

After extracting the fields, the routine
branches into the MFTST routine. If the
record type has no M1-M9 fields, the rou-
tine consists solely of a branch to the
MFTST routine.

If there are no secondary files present,
but M1-M9 fields are specified for the
primary file, the MFEXT routine(s) places
the fields in the PS hold area, and
branches to the EOFTS routine.

CORE STORAGE ALLOCATION
Now that tables, work areas, and some of

the main routines of RPG object programs
have been discussed, it should be helpful

to see where all these items appear in

core storage when an object program is in
residence. Some of the routines shown on
the Core Storage Allocation Map (Figure 17)
have not as yet been discussed, and, before
tracing an object program through a full
cycle, each section of the core map will

be reviewed briefly. The numbers in the
narrative correspond with the numbers in
Figure 17.

1. Pseudo registers PRO-PR15: These 16
words are present in every RPG object
program and are used for passing ad-
dresses and other parameters between
the various object program routines.

2. CNTRL B L START: This long branch in-
struction is the entry point into the
object program. START is a label in
the OPEN/CLOSE routine.

3. Function Address Table (FAT): This ta-
ble is present in every RPG object pro-
gram and contains the address of var-
ious RPG routines (see Table 11).

4, Fixed Driver: This routine is gener-
ated in every RPG object program and
functions as the main linkage driver
for the entire object program.

5. Assigned indicators: Indicators MR,
00, OF, OV, 1P, L0-L9, LR, and H1-H9
are always generated in this area and
in this order. These indicators are
followed by any other indicators de-
fined in the source program. Each in-
dicator uses one word of core storage.
If on, the indicator will be set to
0001. If off, the indicator setting
will be 0000.

6. Assigned fields: Space is allocated
here for any fields defined in the
source program. One word is allocated
for each character position in the
field; in addition, an attribute word
is generated for each field. (Refer
to Appendix A: Object Time Data For-
mat for a complete description of ob-
ject time data fields.)

7. Assigned literals: Space is allocated
here for any literals defined in the
source program.

8. Control level hold areas (0ld Hold and
New Hold): If control levels were
specified in the source program, the
hold areas for control level process-
ing are generated here.

9. Card and printer IODs: One input/out-
put driver (IOD) is generated for
every input or output file specified
in the source program. The IOD for a
given file is the routine which pro-
vides linkage to a library subroutine
which will perform the actual I/O
operation.

10, Disk IODs: If disk files are specified
in the source program, their IODs are
generated immediately following any
card and/or printer IODs.

11. Tables, table load and dump routines:
For every table file specified in the
source program the following storage
areas will be allocated.

Table
Area

Table
Load
Routine

Table
Dump
Routine

}The area where the table will be loaded.
The routine that reads the table into core.

The routine that puts out the table
(generated only if needed).

12. Record Address File (RAF) routine: If
the primary or one of the secondary
files is to be processed by means of
a record address file, the RAF routine
will be generated here. Further in-
formation on RAF processing is con-
tained in Processing With an RA File.

13. Chaining routines: If any files speci-
fied in the source program are to be
retrieved by Cl, C2, or C3 chaining,
the chaining routine for each of these
(a routine for Cl, if used; another
routine for C2, if used; etc.) will be
generated here. A description of
chaining routine logic may be found in
the section Processing a File by Cl1,
C2, or C3 Type Chaining. If no Cl,

C2, or C3 type chalining is specified,
a branch to detail calculations is
generated.

14. Move input fields (INPF) routines: A
move input fields routine is generated
for every input record type specified
in the source program. Each routine
extracts the defined fields from the
input record and moves them to the
field areas allocated.

15. Control level compare (COMP) routine:
If control levels are specified in the
source program, the routine that de-
termines whether a level break has oc-
curred and then sets the appropriate
indicators is generated immediately
following the INPF routines.

16. Numeric Sequencing routine: Space is
allocated here for the numeric se-
quencing routine if input record types
have numeric sequencing specified in
the source program. A separate routine
is generated for each file which has
this specification. This routine en-
sures that the proper record type has
been read at the proper time. More
information is contained in the "NU-
MERIC SEQUENCING" section of this
publication.

Part Two: 1130 RPG Object Program 105

Generated by:

RG58
RG58
RG58
RG58
RG10
RG12
RG14
RG17
RG24
RG28 ISAM
RG26 Sequential
RG32
RG34
RG34
RG36
RG38
RG38
RG38
RG40
RG40
RG40
RG42
RG42
RG44
RG46
RG52
RG54
RG54
RG54

RG58

Figure 17.

106

NV @O N0 bW N = O

10.

1.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25,
26,
27.
28,

29.
Open/
Close

Routines

30.
31.
32.

One word unused

Pseudo registers PRO-PR15

CNTRL B L START

Function Address Table (FAT)

Fixed Driver

Assigned indicators

Assigned Fields

Assigned Literals

Old Hold and New Hold for Control Levels

Card and printer |ODs

Disk 10Ds

Tables, table load and dump routines

RAF routine

Chaining routines

Move input fields (INPF) routines

Control level compare routine

Numeric Sequencing routine

Determine record type (INPR) and control level extraction routines

Low Field and processing blocks

EOFTS or MFTST routine

MFEXT routines

File Input Tables

GET routines

LOKUP and CHAIN routines

Detail, then Total calculations

Move output fields routines

Central Output Driver (COD)

Test indicators routines

Output Tables (DTAB, TOTAB, OTAB and EXTAB)

OPEN branch table

Linkage fo load table routines

Linkage to heading and detail lines

CLOSE branch table

Linkage to EQJ

Library subroutines

Core Storage left over

Transfer Vector

Core Storage Allocation MAP

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

INPR routines: An INPR (determine re-
cord type) routine is generated for
each record type specified in the
source program. These routines check
the record ID characters in the asso-
ciated input record to determine if

the record type is being processed.

If so, the address of the resulting
indicator is passed ‘back to the GET
routine.

If a record type has control level
fields, the control level extraction
routine for that record type is gen-
erated immediately following the INPR
routine for that same record type.

The control level extraction routine
takes the level fields from the input
record, places them into the New Hold
area, and branches to the control level
compare routine.

Low Field and processing blocks: Space
is allocated here for the generation

of Low Field and the file processing
blocks (see Tables and Work Areas for
further information).

EOFTS or MFTST routine: If no second-
ary files are present, Low Field is
followed by the EOFTS routine. If
secondary files are present, the pro-
cessing blocks allocated for them are
followed by the matching fields test
(MFTST) routine which carries its own
EOF code.

MFEXT routines: A matching fields
traction routine is generated for each
input record type. If the record type
has no matching fields specified, a
branch instruction is generated to the
MFTST routine.

File Input Tables: An FIT is generated
for each input file specified in the
source program (refer to Tables and
Work Areas for further information).
GET routines: A GET routine is gener-
ated here for each primary and second-
ary file specified in the source pro-
gram. :

LOKUP and CHAIN routines: If LOKUP is
specified in the source program, the
LOKUP routine is generated here. 1If
CHAIN is specified, its corresponding
routine would also be generated here.
Detail calculations: All detail calcu-
lations specified in the source pro-
gram are generated here.

Total calculations: All total calcu-
lations specified in the source pro-
gram are generated immediately follow-
ing the detail calculations.

Move output fields routines: A move
output fields routine is generated for
each output line specified in the
source program. Each routine moves
the fields for its associated line in-
to the output buffer.

Central Output Driver: The COD is the
routine that receives control each

ex-

27.

28,

29.

30.

time a line is to be put out. Further
information is contained in the sec-
tion Output Lines Routines.

Test indicators routines: A test indi-
cators routine is generated for each
output line specified in the source
program. Each of these routines tests
the indicators conditioning its asso-
ciated output line and, if the indi-
cators are on, provides linkage to per-
form services such as stacker select,
or carriage control functions, if
necessary, directly to the COD to put
out the line.

If the indicators are off, the Fixed
Driver is given control.

Output Tables: Space is allocated here
for the generation of the output ta-
bles, DTAB, TOTAB, OTAB, and EXTAB
(see Tables and Work Areas).
OPEN/CLOSE Routine: This routine re-
ceives control from the CNTRL instruc-
tion. If disk files are present in
the program, the routine links to the
OPEN entry point of each disk IOD. Af-
ter all files are opened, this routine
links to the table load routines, if
present, to load the tables. After
the tables are loaded, a branch is
made to the heading and detail lines
entry in the COD. The OPEN/CLOSE rou-
tine also contains code which links to
the CLOSE entry points of each disk
IOD which culminate in EOJ.

Library Subroutines: All library sub-
routines used by the mainline program
follow the OPEN/CLOSE routine. These
routines are all described in the sec-
tion Library Subroutines.

31.&32. Any unused core storage will fall

TRACING

In this

between the library subroutines and
the Transfer Vector (high core) used
for linking to the subroutines.

AN OBJECT PROGRAM

section the operation of an object

program will be traced through its full

cycle.

The source code that generated

this object program is shown in Figure 18.

In following the step by step object pro-

gram description,

it may be helpful to re-

fer to the preceding sections of this

publication whenever clarification or

additional information is necessary.

Part Two: 1130 RPG Object Program 107

Figure 18. Typical Source Code for Object Program Generation

108

IBM Business Machines Form X21-9002-
| Printed in US.A.
RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS
1 2 76 76 77 78 79 80
Date Punching Graphic Page []j Prwan'u
Program Instruction Punch
P
\ ——
R
—
‘-/-*—.—‘-‘-’—— . . . Th a
File Description Specifications
Fite Type Mode of Processing Fite Addition
- . Length of Key Field or Number of Tracks
File Designation of Record Address Field for Cylinder Overflow
End of File Record Address Type Number of Extents
Type of File . Symbolic Name of Extent Exit Taps
Line Filename Sequence Organization H Device =
. m) Rewind
Fie Forrmat or Additions! Ares g Device x Label Exit for DAM
%] . 2 |overtlow Indicator] Z
= Qg 5 E]
e 3|s Block Record = Key Field £
H 312,192 venan Length | sle Starting | % § « 2
Location
3 4 5l6l7 8 9 1011 12 13 14 1sl16]17]18]19]20 21 22 23|24 25 26 27 n|2930|31|J2L33343536’2L_3_8h9940" 42 43 44 45 46147 48 49 50 51 62 aaHsa__s_is_Fsaassom 52 63 64 65166]e7]68 6a70]71 72 73 74
oTlp|+ [elalRID] (N [|1 |Ple g6 RIEADI4]] L
o[s i@+ [P[R1s WIT]] 124 pIR|t INTIEIR
olal Tel 11 | i
IBM International Business Machines Corporation Form X21-8094
! Printed in US.A,
RPG INPUT SPECIFICATIONS
12 75 76 77 78 79 80
Date
Punching | Graphic pe[] frowe
Program Instruction Punch
3 Record Identification Codes) A Field
3 Field Location)
b 1 2 3 & s Indicators
- k1
2 P s | 8
. - < 8 . ENFE] 3 Sterling
Line Filename z £ 8 %| Field Name 3 @'g v Sign
& Zlc g - 5 - x - 3| 4 5 wi § _ |Zero | position
- = = ki g inus|or
& bt Position s Fosition 5 H Pasition z g 4 b From To 22| & |Plus M
€ é.g ¥ :g‘i Elafl lo)3l3|2 £ 2 l5g] Blank
h 2|8 & 3|518 3[5(6 3|5(a|3|8 8 §|25| &
3 4 516[7 8 9 1011 12 13 14115 16121815 20 |21 22 23 24]25(26{27| 28 29 30 31{3233|34]36 38 37 38|30 40|e1[42]43|44 45 48 47|48 49 50 8152|53 54 65 56 67 5859 6061 62{62 64]65 6667 e8}60 70|71 72 73 74
oBlreARDIN | AR | 1]1] | 58] [ow] |
ol2[A 1 llﬂ FILDA
alal Tr [
m International Business Machines Carporation Form X21-6080
. Printed in U.S.A.
RPG OUTPUT - FORMAT SPECIFICATIONS
12 7576 77 78 79 B0
Date — Punching Graphic P”'D:} onorlu.n -
Program Instruction Punch
Space| Skip Output Indicators T Edit Codes
Zero Balances " -
I Commas to Print No Sign | CR X ;:T;‘:;‘ Sterting
. -~ . = Sign
Line Filename i Field Name & End [Y Y 1 A|J|Y= Dae
£ § And _ And 2l Positon 3 ver No 2 |8 |k Field Edit Pasition
g] ¢ g & o ¥ No Yes 3 c|L |Z= 2o
% HEHH g3 3 5 < output No No] D |m Suppress
§ & 'g ® |< 3 < |Z 2 z £ g Record 3
| bi] -
u w jo Constant or Edit Word
3 46lel? 8 9 10111213 14hishief17|1a]19 20}21 22[23]24|25]26 |27/ 28|20 (3031 32 33 34 38 36 37f38 b a0 41 42 43 48 47 48 49 B0 51 52 53 54 55 56 67 58 59 60 61 62 63 64 66 66 67 68 69 70|71 72 73 74
T EaiC A
o[1@lolPIR 1|MT] D | |1 @
) zb o FiLIDIA 59
ols] To 1

Initialization

The monitor passes control to the in-
struction labeled CNTRL.

CNTRL branches to START, which is the
beginning of the OPEN/CLOSE routine.
Since there are no disk files and no
table files, this routine immediately
links to the heading and detail lines
entry point of the COD. This entry
point is B000O.

Heading and Detail Lines

(STEP3)

At BO00O, PR8 is loaded with the ad-
dress of B0001l. PR10 is loaded with
the address of ALPSE in the Fixed
Driver. PR1ll is loaded with the ad-
dress of DTAB-3. A branch is then tak-
en to ALPSE in the Fixed Driver.

At ALPSE, PRll is incremented by 3 to
point at the first entry of DTAB. The
address of the test indicators routine
for the output line specified in the
source program is taken from Wordl of
the table entry and a branch is made
to the routine.

The output line in this program is con-
ditioned by indicator 01, so the test
indicators routine determines whether
0L is on. Since, at this time, an in-
put record has not yet been read, 01
will be off. The test indicators rou-
tine will then return to ALPSE in the
Fixed Driver.

At ALPSE, PR1ll is again incremented by
3, and now points at the dummy entry

in DTAB since only one detail line is
specified in the source program.

Wordl of this dummy entry (address of
B0020 in the COD) is taken and a branch
is made to that address.

B0020 is the entry point in the COD
that is used for wrapping up heading
and detail lines. The 1P indicator

is turned off and a branch is taken to
GETRC in the Fixed Driver.

Get Input Record

At GETRC the LR and halt indicators are
tested. None are on as yet, so all
level indicators are set off and re-
cord identifying indicator 01 is set
off. The address of the GET routine
for the input file is then taken from
Wordl of Low Field (LOWFD), placed in
PR8, and a branch is taken to the GET
routine.

The GET routine then loads PR8 with the
address of a two-word area. Wordl of
that area contains the address of the
input/output driver (IOD) for the in-
put file, and Word2 contains the ad-
dress of the File Input Table -4 for
this input file. A branch is then
made to ADDGT in the Fixed Driver.

STEP10)

At ADDGT the File Input Table -4 ad-
dress is placed in PR1l, the IOD ad-
dress is placed in PR15, and the con-
tents of PR8 are placed in PR1l4. The
address of the I/0 area for the input
file is taken from the IOD (Word4) and
placed in PR2. The read entry point of
the IOD is taken from wordz of the IOD,
the address of INPSE in the Fixed
Driver is placed in PR10, and a branch
to the read entry point of the IOD is
executed. Note that PR8 and PR14 still
contain the address of the two-word
storage area (which contains the ad-
dress of the IOD and the File Input
Table -4 for this file).

For this object program, the IOD links
to the library subroutine CARDO and
the first card is read into the I/O
area pointed at by PR2. The IOD then
checks to determine whether EOF oc-
curred. If not, a branch is taken to
the contents of PR14+42. If EOF did
occur, a branch is taken to the con-
tents of PR14+8. Assuming that EOF
did not occur, the resulting branch
takes us into the GET routine at
DTFA+2 (RETUR).

Determine Record Type

At RETUR the address of LADD is placed
in PR8 and a branch is taken to INPSE
in the Fixed Driver. Note that PRI11l
still points at the File Input Table
-4,

At INPSE, PR11l is incremented by 4 to
point at the first entry of the File
Input Table. The address of the input
record routine (INPR) is taken from
the table and a branch is made to

that address.

The INPR routine starts by checking
the 50th character of the record now
in the input I/0 area. If it is not a
W, the routine will return to the Fixed
Driver at INPSE. Assuming that the
record read in does have a W as the
50th character, INPR loads PR8 with
the address of record identifying in-
dicator 0l1. INPR then branches back
to the GET routine at the instruction
labeled LADD.

Part Two: 1130 RPG Object Program 109

(STEP15)

At LADD the address of LOWFD is placed
in PR10. Word3 of the File Input
Table entry pointed to by PR11l is then
placed in Word2 of LOWFD, and Word4 of
the FIT entry is placed in Word3 of
LOWFD. The record identifying indi-
cator address (still in PR8) is placed
in Word4 of LOWFD. (Note that if
multiple input files were being pro-
cessed, the preceding information
would not be put in LOWFD at this
time; it would be placed in the pro-
cessing block associated with the GET
routine that has control.)

The routine then ORs the EOFWD with the
record identifying indicator address
and places the result back in Word4 of

LOWFD. EOFWD initially contains /0000
if EOF is required for this file; /4000
if not required. When EOF actually
does occur, the IOD which processes the
input file sets the high-order bit of
EOFWD to 1.

If the high-order bit of EOFWD is on, a
branch to the EOFTS routine is taken.
In this case, EOF did not occur and

the bit is still on so a branch will be
taken to MFLNK in the Fixed Driver.

Note that PR11l still points to the File
Input Table entry for the record type
being processed.

At MFLNK, Word2 of the File Input Table
(address of the MFEXT routine for this
record- type) is taken and a branch is
executed to that address.

Since there are no M1-M9 fields in this
record type, the MFEXT routine for this
file consists of a branch to EOFTS.

Test for Control Level Break

110

At EOFTS the high-order bit of Word4 of
LOWFD is tested (note that this bit was
set by stepl5 above). If the bit is
on, EOF has occurred and a branch is
taken to EOJBK in the Fixed Driver.

In this case, EOF did not occur and the
two high-order bits of Word4 in LOWFD
are zeroed out. Then the address of
the control level compare (COMP) rou-
tine is taken from CTLFD in the Func-
tion Address Table and placed in PR1S.
A branch is then taken to PRORC in the
Fixed Driver. Note that PR10 still
contains the address of LOWFD.

At PRORC the address of the record
identifying indicator (01 for this re-
cord) is taken from LOWFD and the indi-
cator is set on (/0001). A check is
then made to determine if there is a
COMP routine in this program. There is
none since no control levels were
specified in the source program, so a
branch is taken to TOTSW in the Fixed
Driver.

Total Calculations

® At TOTSW a check is made to determine

if this is the first cycle of the ob-
ject program. This time it is, so in-
stead of branching to total calcula-
tions, a branch is executed to GETIF
in the Fixed Driver,

At GETIF the LR indicator is ‘tested.
It is not on at this point so Word3
(address of move input fields routine
filled by stepl5) is taken from LOWFD
and placed in PR8. The I/O area ad-
dress is taken from the reader IOD and
placed in PR2. The internal matching
records indicator (0 at this time) is
stored in the MR indicator and a
branch is then taken to LABEO in the
Fixed Driver.

Move Input Fields

At LABEO a branch is executed via PRS8
to the move input fields routine for
the record type now in the I/0 area.

The move input fields routine then ex-
tracts FLDA from the I/O area and puts
it in its assigned field area. This
routine then obtains the address of
the chaining routine from CHAN1 in the
Function Address Table and branches to
that routine.

Chaining Routine

Chaining was not specified in this
source program so only a B I DCALC
instruction was generated. This branch
goes to the detail calculations routine.

Detail Calculations

No calculations were specified in the
source program so only a B I HDAD was
generated. This branch goes to B0000
which is the heading and detail lines
entry point to the COD.

The object program has now completed a
full cycle and is back at step3 above.
Upon entering step3 this time, however,
output indicator 01 is on, so the line
will be put out.

PROCESSING WITH AN RA FILE

In the object program just described there
was only one input file., Suppose that the
file resided on disk and it was decided to
retrieve it randomly by using a record ad-
dress file. In this instance, the source
program might appear as follows (Figure
19).

Again referring to the previous object
program, processing with an RA file would
cause these changes:

1. The RAF routine would be included in
the object program.

2. A card IOD would be generated for RAFIN
followed by a disk IOD for DISKIN.

3. The constant labeled DTFA in the GET
routine for the primary file would no
longer point to the IOD for that file.
Whenever a file is being processed via

an RA file, this constant points at
RAFAD-1 in the Function Address Table.

The program logic for this object program
would be very similar to the logic of the
previous program. Note, however, that at
stepl0 a branch is not taken to the read
entry point of the primary file IOD.

Since DTFA now points to RAFAD-1, a branch
is taken to the RAF routine.

The RAF routine will get a record address
field and then link to the read entry
point of the primary file IOD. This .means,
in effect, that any request for the pri-
mary file would be intercepted by the RAF
routine.

The flowchart provided (Chart HA) illus-
trates the logic used by the RAF routine
to process a sequential file randomly.
The RAF routine is a pre-coded routine
found in RG34.

Part Two: 1130 RPG Object Program 111

File Description Specifications

File Type Made of Processing File Addition
- — Length of Key Field or Number of Tracks
File Designation of Record Address Field for Cylinder Overflow
End of File Record Address Type Number of Extents
Type of File 2 . Symbolic Name of Extent Exit Taps
Line Filename Sequence Organization S Device - Rewi
H w R ewind
File Format or Additional Area § Device 3| LabetExit | for DAM
b4 < 2 Overflow Indicator| 5 z
> 9l 5 2
: 3lg| ||| s Record M Key Field | B %
|5 g g mER Length Length g 5 g Sunipg 5 « g
Location
3 4 5]|6§7 8 o 1011 12 13 14 |15}16]17]18 wzoil_’gzau 2 26 27mnac'svg{asyssmnasnmn 42 43 44 45 46147 40 49 50 51 52153054 55 66 57 58 6960 61 62 63 64 65|66fer]es e fr0lr 72 73 74
°|lg|- IRAF]I IR IF 58 | 4 E[READ4]
o[s\= 1Dl [slkl /M | [r]P] | |F | 2R i Dirls|K |
olglelpRIMT O] (A | gL PIRlIIMTIER
ST T
. . Form X21-8091
IBM Internationsl Busines: Machines Corporation Printed in US.A.
b
RPG EXTENSION AND LINE COUNTER SPECIFICATIONS
12 7 76 77 78 19 80
Date Punching Graphic Page I:D Progr?rr !
Program Instruction | punch
P Extension Specifications
Record Sequence of the Chaining File — —
H] 3
Number of the Chaining Field :"‘"“b" Length g 3| Table é
Line |g To Filename Entries of 13 Name Comments
2 Per Table Table [2-]2 (Alternating 3
£ From Filename Enwy |B|E[S| Tablel 2
H KHE S
3 4 slef? 819 10l11 12 13 14 15 16 17 18119 20 21 22 23 24 25 28]27 28 20 30 31 32|33 34 3536 37 38 39]40 41 42}u3|aalas Jac 47 48 a9 50 51 5758 69 60 61 62 63 64 65 66 67 68 69 70 7172 73 74
o[gfe] [| T IRIAF N T T IPlrIsTin [T] []
T T LIS A R A B S e | LSO L A 1 11 Tt 1t T T
1BM Businwss Machines C Form X21-9094
. Printed in U.S.A.
RPG INPUT SPECIFICATIONS
12 76 76 77 78 79 80
Date Program
Pum:hin? Graphic Puge [D Identification
Program Instruction Punch
] Record Identification Codes i
3 Field Location r‘:‘,d
£ Y 2 3 5 s ndicators
£ 2 s | &
. . < - 8 . = g 3 Sterling
Line Filename z H] 3| Field Name | g |7 % Sign
g =|S § y ® . x . 3z & § W E ~ |Zero | position
> el 3 Position |~ Pesition | Pasition [4 bes From To = by g'g' & | Plus Minuslo
§ 818 g %SE %sg sie 'EE % § s 3 Blank
2 3|5 & 5|58 5[5 5(5)a|3(2 H 23| 2
3 4 6[6]7 8 9 1011 1213 1415 16]17|18]10 20 |21 22 23 24|25] 26|27} 28 29 30 31[32|33|3435 36 37 33[39|40[a1[42]a3|44 a5 45 47[48 49 50 51|52]53 54 55 66 57 58]69 6061 62|63 6466 cs[67 68)e0 70|71 72 73 74
o[ig:lps I[N | oAl | 1ALl T 5% e |
o[- [1 | [11¢| |FlL DA
alal 1y I [1
m Internationsl Busines Machines Corporetion Form X21-9000
Frinted in US.A.
RPG OUTPUT - FORMAT SPECIFICATIONS
12 7576 77 78 79 80
Date Punching | Graphic Page ED Program
Program Insteuction [o o
Skip Output Indicators r Edit Codes
Zero Balances -
I Commas | <470 ornt | NoSign [CR | - | X :I:T;‘I’;‘ :nr!ino
Line Filename I Field Name [&} - [y Y Y 1 A lJ|Y= Date an
3 i And A eld 2l Positon 3 ves No. 2 |8 [k Field Edit Position
| S|3]s g g n 2 No Yes 3 c L [Z= 2o
£ M § ! § Els ; 8 Output _No No 4 DM Suppress
E §§ N < |2 z £ § Record
w = Constant or Edit Word
3 4asfel7 8 8 10111213 145 u#lh_vﬂu:oﬂ 22{23]24/26]26 (27 28] 293031 |32 33 34 35 36 37[38)0 140 41 42 48 47 48 49 B0 51 52 53 54 56 56 57 59 59 60 61 62 63 64 65 68 67 68 &0 70[71 72 73 74
_+ 2 B182 L. et 02 00 S e ST 8
o[BlolPlRINT T Il [|1 o)L [] L]
el I Flclola 59
Tt t -t 1

Figure 19.

112

Processing With an RA File

Chart HA.

HRRRL T ERRRRRR N
* Bng} %lr *
: ROUTIN *

ARRRRRRRRARRRRR
:*ti#51#n*##.#“t AR SRR K R
- »
* SAVE RBTURI * ke e o MmN
*ADDRESS § GET * *GET RECORD FROMN*
. ROUTIN ‘: * ST0' FILE *
ARRRRARRRAANARR RN PITTr T T T T
AHERHCERRRARERER l*#ttdj!#.#'i*ta:
* *
GET RA PI%B 10D * SAVE RETURN *
IN XR * * ADDRESS *
: * * »
* * * *
PITTE T T T TEAR Y P R AR
kD P RRR KRR RN
» RRHAD JERRAEARAR
*PLACE 1/0 Aagi » * BXIT TO GET *
:IDDBBSS IN P : * ROUTINE :
» * AR R Aok K
PETTLI I T PR R T
31' *x, :»tnxgz.an:ttat::
I I%HB *, YES * *
3 -———————>:SET UP LINKAGE :
“», o - ' *
AARARAREREARARERR
I IO
.*.
Pt , ARREAF2REABRNERER
oE UN= k. »
o pnocgsssn *, Pt e A
'-zI!LD N X 0 .'
-‘DU!PE *GBT RA RECORD :
“a, P T e
** !BS

HREARG) AR RBNAR D

* GET *T0' PILE *
#* 10D ADDRESS :

*

*
EEEE IR LR 22 S0 2

SRR REARARER RS
*

*PLACE 1/0 ARBA *
'IDDRBSS/II PR

* ¥

.*““‘l*##“ili‘

tt"ta1‘#tlttt*‘!

* COl'g %}
'PIILD 0 B ll!
*RECORD NUMBER '
*i‘.“.’!'.“'il.

RAF Routine

Part Two:

1130 RPG Object Program 113

PROCESSING BY Cl, C2, OR C3 TYPE CHAINING

It has been stated before that a move in-
put fields routine is generated for every
input record type. These routines extract
defined input fields from the I/O area and
move them to their assigned areas. When a
move input fields routine has completed
its function, a branch is always taken to
the chaining routine address, which is
CHAN1 in the Function Address Table,
whether chaining has been specified or
not. If one of the extracted fields is a
chaining field, the move input fields rou-
tine sets on its corresponding internal
indicator (Cl, C2, or C3).

Then, when the chaining routine receives
control, it accomplishes the following:

® gets the chained record
® determines the record type
® moves the chained record's input fields.

The move input fields routine will then re-
turn to the beginning of the chaining rou-
tine and the process will be repeated if
any of the indicators Cl, C2, or C3 are

on. If none of the three indicators are
on, the chaining routine links to detail
calculations.

Refer to Figure IA for the logic of the
chaining routine.

114

CONTROL LEVEL PROCESSING

A short control level extraction (CLEV)
routine is generated for any record type
that is specified with L1-L9 fields. A
CLEV routine simply extracts the level
fields from the I/0 area and places them
in their proper location in New Hold.

If, for example, an RPG source program had
control levels L1, L2, and L4 specified,
0ld Hold and New Hold would appear as
follows:

Old Hold New Hold

L4] L2 | L1 L4] L2 | L1

Word Word

Once a control level extraction routine

is finished placing the level fields, it
branches to the control level compare
(COMP) routine. Chart JA shows how COMP
would be generated for a program which had
control levels L1, L2, and L4 specified.

Chart IA.

AR L 2KAK ARk

* ENTER CHAING *
* ROUTINE :
P T PR L]
Todkokk
* *
* B2 *=>
* *
Aohokk
¥,
B2 .
*,
c———————— —mmm———¥, .C1 ON o*
Tk, ok
* YES
b4 PETT TR AR R JRA AR ARk
* . *
CHAINING ROUTINE POR C2, * SET UP IOD * e R
IF NEEDED, %S IDENTICAL * LINKAGE e >*GET C1 CHAINED *
T0 C : : * RECORD *
PO R L LT L SRR KRR K
L SRR 2 KA ROk
* *
CHAINING ROUTINE POR C3, * GET ADDR OF *
IF NEEDED, IS IDENTICAL *PIT-4_FOR THIS *
TO C1 * FILE *
* *
Sorkokk B2 dokk ARk
FRRKE | R Rk AR AR *
* *PUT ADDR%SS IR *
* B I DCALC * : : PR1 :
PrET TR R 2t E L * *
Stk AR AR K
THE CHAINING ROUTINE
BRANCHES TO DETAIL
CALCULATIONS
CHAIRING IS COMPLETED
IX%D DRIVE
AR 2 KRRk Aok koK Aotk K P 3 Rk KRRk
* * *INPSE - *
% PUT INPSE__ * T Triovii
ADDRESS IN PR10——m—D% DETERMINE *
: : : RECORD TYPE :
kAR OB AR R R KR Skl
:#*ttcz*tl***!ali
* SET_ON *
* RESULTING *
: INDICATOR :
T ST T TR T
:tt#*"zt#tt**#*l: ottis Ehbd it
* GET INPF * b R S B]
* ADDRESS FILE * >*
: FIT ENTRY : : MOVE FIELDS :
Aok R AR R e T L L Lt]
B2t
* *
* B2 *
* *
ok

Logic of the Chaining Routine

Part Two:

1130 RPG Object Program 115

ok) AR
= -
* RODTINE *

ARERRRERERAA RN

Aok Btk dkorkokkok
* *

* LOAD ADDR OF *
*TOTAL ClBCS IN *
* PR1 *

EL S22 EL 222 2T]
.%o
(o} *,
i *,
«*FIRST TIME *. NO
*, ENTERED o ¥
*. o
LT, o
*.
*" YES
KRR] T REE R RN
* *
*LOAD PR15 WITH *
* ADDR OF GETIF *
:IN FPIXED DRIV :
EERREERRER AR AR
<
.,
*31 *, ‘ugztnun
.*0LD HOLD Li*. N0 * SET ON Lb
*= HEW HOLD L4+ > Lg, 1.'2', 4] W
“x, " * *
LR ERERARR A
I YES
%,
1 *, HRPRRARERNR
o ¥ *, * »
«*0LD HOLD L2*. NO * *
‘-: NEW HOLD L2.*. >‘§ET ON 12, L1 "———
", S * =
LR BRRRERRRR R
I YES
-
G1 *, L LT TT TS
.* * * *
.*0LD HOLD Li*. WO * *
‘-: HEW HOLD L2.‘————————)*. SET ON L1t *—
‘s, 4T * o
* .® AR
* YES
LETITY P E e
» *

* HMOVE NEW HOLD *
:IITO OLD HOLD :

* *
b LA S LAl EL2 2L]

PRI AER LTI EL]

*EXIT VIA PR15 *
ARRBERR MR RN RN

Chart JA COMP Routine

116

IBM ford!Busioes ach) ' ity
RPG INPUT SPECIFICATIONS
12 75 76 77 .78 79 80
Ozte Punching | Graphic Page D] Proseam
Program Instruction Punch
g Record ldentification Codes Field Location Fial.d
3 \ 2 3) 3 § Indicators
g s |3 !
Ling Filename H £ 1§ Field Name H H H g:-lw
% ¢ 21| 2 | posin |, poston (| | B rostion |- § &l From To : L “'“é E Plus o' | Positon
HHE zeg Zlo g g‘v } E § Sl
£ 5 5g] 8 HE 3[5)3 3|S(alsls HE
3 4 66|77 8 9 1011 12131415 16[17]18119 20 |21 22 23 24262627} 28 20 30 31{32|33]|34 36 36 37 38]30)40|41][42]43 45«414049501“525:«usssesvuweoslezaaussoeepuurorl72731-
o[l |PIRTI Al | el [T 1] lelp) [11 'J [T
o[z)1 [U [0 IFlpla] |]| M1 L]
A 5lEe BB [lgl2l 11 11l lels l L T
0L 11| | 24 |riLiol2 | H
ols! Iy |] I |
Figure 20. Processing Multiple Input Files
PROCESSING MULTIPLE INPUT FILES B. The MFTST routine would be generated

Previous sections of this publication have
described how the object program performs
output operations, input operations for a
single file, determines record type, and
handles control level, chained and RA file
processing. At this time it should be
helpful to describe how the object program
processes multiple input files with match-
ing records. '

The input- specifications in Figure 20 des-
cribe a source. program that contains a
primary file and one secondary file.

Figure 21 shows the routines that would
be generated to process these files.

A. The Low Field Block, PS, primary pro-
cessing block (PPB), and one secondary
processing block (S1PB) are generated.
They would appear in core storage as

follows:

addr
LFB of METST €—M]1 Hold—>
PS €—— M1 Hold—>

addr of ¢ 3
PPB GET routine M1 Hold

addr of
S1PB GET routine <€— M1 Hold—>

immediately following S1PB.

A matching field extraction (MFEXT)
routine for record type 01 and another
for record type 02 would be generated
after the MFTST routine.

Two File Input Tables, one for each in-
put file, are generated and follow the
MFEXT routines.

Two GET routines are generated. Wordl
of PPB points to the GET routine for
the primary file; Wordl of S1PB points
to the GET routine for the secondary
file.

Low Field Block, PS,
PPB and S1PB

MFTST Routine

MFEXT Routine

FILE INPUT TABLES

GET routine for
primary file

GET routine for
secondary file

Figure 21. Routines Generated to Process
Multiple Input Files
Part Two: 1130 RPG Object Program 117

Steps 1 through 13 shall attempt to des-
cribe the logic involved in getting an
input record and selecting it for process-
ing. In following this description, it
again may be helpful to refer to preceding
sections of this publication whenever
clarification or additional information is
necessary.

1. The instruction labeled GETRC in the
Fixed Driver receives control from the
COD after heading and detail lines are
completed.

2. Wordl of the Low Field Block is ob-
tained and placed in PR8. (Initially,
this word contains the address of
MFTST.)

3. A branch is made via PR8 to the MFTST
routine (see Chart KA for a better
understanding of the MFTST routine).

4. At MFTST, since this is the first
time through the routine, the entire
PPB is moved into the Low Field Block
and a branch is made back to GETRC in
the Fixed Driver.

5. At GETRC, Wordl of Low Field (which
now contains the address of the pri-
mary file GET routine) is taken and
placed in PR8, and a branch to the
GET routine is then executed.

6. PR8 is then loaded with the address of
DTFA (refer to The GET Routines) and
a branch is made to ADDGT in the Fixed
Driver.

7. At ADDGT the address of the File Input
Table -4 is placed in PR1l. Linkage
to the IOD is initialized and the ad-
dress of INPSE is placed in PR10. A
branch is then taken to the read entry
point of the IOD for the primary file.

8. The GET routine is again entered, this
time at RETUR, which loads PR8 with
the address of LADD and then branches
via PR10 to INPSE in the Fixed Driver.

9. At INPSE, PR1l is incremented by 4 to
point at the first entry of the pri-
mary File Input Table. The address
of the INPR routine is obtained and a
branch is made to the INPR routine
which will check column 1 of the input
record for a P. If a P is present
(for this example, assume that it is),
PR8 is loaded with the address of re-
cord identifying indicator 01 and a
branch is made back to the GET routine
at the instruction labeled LADD.

10. At LADD the address of Low Field is
placed in PR10 and Word3 of the File

118

Input Table entry is placed in Word2
of the PPB. Word4 of the FIT entry

is then placed in Word3 of the PPB.

The address of record identifying in-
dicator 01 is placed in Word4 of the
PPB. Then, since EOF has not occurred,
a branch is taken to MFNK in the

Fixed Driver.

11. At MFLNK the address of the MFEXT rou-
tine for the record type identified
with indicator 01 is taken from Word2
of the File Input Table entry still
pointed to by PR1l, and a branch is
made to that extraction routine.

12. The MFEXT routine then takes F1Dl from
the I/0O area and puts it in the PPB
hold area. Next, MFEXT compares the
PPB hold area with the Low Field hold
area in order to check for collating
sequence errors. In this case there
are none, so a branch is taken to the
MFTST routine.

13. When the decision "Has a record been
read from all the files?" has been
made, the decision will be "no", there-
fore S1PB is moved into the Low Field
Block and a branch is made to GETRC in
the Fixed Driver.

The program is now back at Step5 of the
cycle, but now the address of the GET rou-
tine for the secondary file is in Wordl of
Low Field.

At this point a primary record has been
read into core storage, its record type has
been determined, and the addresses of the
control level extraction routine, the move
input fields routine, and the resulting
indicator have been placed in the PPB.
Also, the M1 field has been extracted and
placed in the PPB hold area.

Now, steps 5 through 12 will be executed
again in order to read a record from the
secondary file, determine its record type,
and f£ill S1PB with the proper information.
This leads back to the MFTST routine that
will decide which record should be pro-
cessed. The information contained in the
processing block for the chosen record
will be moved to the Low Field Block, and
a branch will be taken to PRORC in the
Fixed Driver where normal processing will
continue as it would for a single input
file.

Chart KA.

RAAK] R RARAARRNR
* ENTER MFTST *
* ROUTINE *

4 ek ok ok ke o ko ok Ak ok ok ok

*****51*"*****#**

SBT INTERVAL HB
* TINDICATOR
' i
*
RO
INS40 « ¥,
LI TRRRRCZERRRR AR
-*iIRST TIME *. YES *MOVE_PPB_TO LOW
- ENTERED .)* FIELD BLOCK
. e
* WK ***ttt***lt**t***
[NO
o %,
D1 *,
¥ AR ARAAAARR
ok *, YES *
*, EOJ ¥ *EXIT TO GETRC *
, o I * *
AT Rk AR AR AR
“x"No sokokk
* *
1 * F3 *
* *
Aok
ok, ¥y
*21 *, E2 *.*

.* MATCHING ~*. NO .*EOF ON PILE*. YES
. FIELDS . ¥ >*.*JUST READ ok
R R “x, o
X, . ¥ *ooo*

j YES * KO
o ¥,
F1 *,
¥ T, RRRRPDRARRERE AR
«* READ FROM *. NO *
*.*ILL FILES ..* *EXIT TO PRORC *
'*.* o4t .
‘x"YES e e
oAk
* * B3 *
* Gl *=>
* Rk
P
ARARKG TRARRARRAAK
* *
* FIND SEC PB *
* WITH LOWEST *
: HOLD ARE :
F KRR R kAR
TRRCRRZRR R AR
*

H1
*lR!l < PPB *. YES

*, HOL: o
* *
*, ok

*

HERKKT | RREAEARRE KK
HOLD AREA IN PS
* *

* *
Aok koK A ok ok oKk ok ok ko ok ok

MFTST

* MOVE THIS SEC *
)*PB INTO LOWFD :

*
#***t#*#tﬁ**##*#*

%
J2 *,
ok

*,
‘ps HOLD *

*.ARBA OP THI
«SEC FILE

Routine

Ak kk
* *
* B3 *
* *
AKX

b EA b

* MOVE_PB FOR
*NEXT FILE INTO *
LOW FIELD *

Aeaokok dofoROk ok ok Kok ok

FRRAC JRNA AR A K
*EXIT T0 GETRC :

#l#****#***#*
.*-
E3" Tx.
o "%, NO
S%. EOJ i
. .
.,*
ok YES
* F3 *->l
EE L 1]
o,
F3° Cx,
o *,
J*ANY SEC PB *. NO
*. HOLD AREA = %
*. . PS o
*, ¥
* *
*"YES

#*tt*GB*"*#******
*

*HOVE SEC PB TO *
LOWED *

*
‘*i**#**##******t

KK AR R

*
:EXIT TO PRORC :
Aok ARk Kk ok K

Aok ok J 3ok koK Rk
*
SET ON INTERKAL

S‘Z*———» HR INDICATOR

*
‘*"*t#**#l

ERRREK I ER KRR

*
*EXIT TO PRORC :
Aok kR ROk o Rk K

Part Two:

*EAK kK
* * * *
* BY * * BS *
* * * *
Ak Aok
baiit Lob i did b AR ARG R ARk
* * *
* SET OFF * * SET OFF *
* INTERNAL MR * * IRTERNAL MR *
: INDICATOR : : INDICATOR :
AR AR KRR K KK LR R T T
tt‘*c“t**}**#t#* FRRKCS R A ARk
. * *
:EXrT TO PRORC : :EXIT TO PRORC :
Aok AR RO R ARk K R R KAk
ok,
EU4 . HERKKES *RARRRER AR
-t *, * *
*, YES * SET PPB HOLD *
>, PRIHARY IILE *———«————)* AREA TO FFFF :
T, o *
*, ok O
* NO
£
Aokokok
* G1 %
* *
ok
AR ARG I RRkR KRR

*
*BXIT TO EOJBK *
* *

AR kAR R kKR ok ok

1130 RPG Object

Program 119

NUMERIC SEQUENCING

If a numeric record type is present, NUSEQ
routine supplies object code for a se-
quence-check of the various record-types

{(columns 15-16 of the input specification

sheet) .

If all records have an alpha en-

try in columns 15-16 of the input specifi-
cation, this routine is not generated.

The address of routine NUSEQ is placed in
Q (sequence) position of the compressed

record (Table 8).

The following object

code is put out for NUSEQ.

1003 *

OABC 00 C4000000 1004 NUSEQ LD L R1l1

OA8E 00 D400000A 1005 STO L R9

0A9C 00 6C000010 1006 STX L R15,0 BALR 15, 0

0A92 00 C4000C00 1007 NOPX LD L *k USED AS A SWITCH

0A94 00 6580000A 1008 LDX 11 R9

0A96 0 0101 1009 LD 1 1 GET 2ND ENTRY

0A97 00 D400000C 1010 STO L R11 PUT IN R1l

OA99 0 7000 1011 SW B * BRANCH-NCP

0A9A 00 668000CC 1012 PASS LDX I2 R11

0A9C 0 Cc201 1013 LD 2 1 IS IT

0A9D 0 9205 1014 S 2 5 AN OR,QQ

0A9E 0 7204 1015 MDX 2 4 BUMP POINTER

OA9F 00 6E00000C 1016 STX L2 R11

0AAl 00 4C180A9A 1017 A BZ PASS ITS AN OR

0AA3 0 C014 1018 SWOFF LD BCO SET

0AA4 0 DOF4 1019 STO SW TO NCP

0AAS 00 c400000C 1020 P4 LD L R11

0AA7 0 D101 1021 STO 1 1

0AAS8 00 66000120 1022 LDX L2 ERR1

OAAA 00 6E00000F 1023 STX L2 R14

0AAC 00 6680000C 1024 LDX I2 R1l1l

OAAE 0 c201 1025 LD 2 1

OAAF 0 900A 1026) X5C5¢C END OF FILTABS

0ABO 00 4C200033 1027 BN2Z ALPSE+2 NO, GO TO
OVERHEAD

0AB2 00 6680000A 1028 LDX I2 R9

0AB4 0 c202 1029 LD 2 2

OABS 00 D400000C 1030 STO L R1l1

0AB7 0 70ED 1031 B P4 GO BACK

OABS 0 7000 1032 BCO B * OBJECT TIME
SWITCH

0AB9 0 7009 1033 BCF B *+9 OBJECT TIME
SWITCH

OABA 0 5C5C 1034 X5C5C DC /5C5C CHECK END OF
FILTABS

0396 0 1035 HOLD9Y EQU /38E+8

015E 0 1036 L9AD EQU INTMR+15

1037 *
Figure 22. Object Code Put Out for Numeric Sequencing (Part 1 of 3)

120

If a numeric code is assigned under Se-
gquence (columns 15-16), an entry of I or
N must be made in Number (column 17), and
the following object code is put out.

1 Mandator
{Column 17 is 1, and column 18 is blank)

followed by 'OR! CLIT LD L * ek IS FRR IND. ON
* BZ ok
BZ o NO, DONT EXTRACT
RICR (record identifying code routine)
BALR LDX 12 R8 GET BRANCH ADDRESS
LDX Ll RI GET ADDR OF INDR ADDR
STX Ll R8 SAVE IN PRS
B L2 0 RETURN
RI DC 0 RESULTING INDR ADDR
not followed by 'OR' CLI LD L * IS FRR IND. ON
* BZ L .
BZ ek NO, DONT EXTRACT
RICR
BALR LDX I2 R8 GET BRANCH ADDRESS
LDX Ll RI GET ADDR OF INDR ADDR
STX Ll R8 SAVE IN PRS8
B L2 0 RETURN
RI DC 0 RESULTING INDR ADDR
1 Optional
ZCoEumn 17 1, and column 18 0)
followed by 'OR' CLI LD L *k IS FRR IND. ON
* BZ * %
BZ ok NO, DONT EXTRACT
RICR
BALR LDX 12 R8 GET BRANCH ADDRESS
LDX Ll RI GET ADDR OF INDR ADDR
sSTX L1 R8 SAVE IN PRS8
B L2 0 RETURN
RI DC 0 RESULTING INDR ADDR
not followed by 'OR' CLC DN RGCMP LIBF TO RGCMP
DC *k OLD HOLD - FACTOR 1
DC % NEW HOLD - FACTOR 2
LD 3 123 GET RETURN CODE
BNE BNZ ok BRANCH IF NOT EQUAL TO
RICR
BALR LDX I2 R8 GET BRANCH ADDRESS
LDX Ll RI GET ADDR OF INDR ADDR
STX Ll R8 SAVE IN PR8
B L2 0 RETURN
RI DC 0 RESULTING INDR ADDR

Figure 22. Object Code Put Out for Numeric Sequencing (Part 2 of 3)

Part Two: 1130 RPG Object Program 121

N Mandator
(Column 17 N, and column 18

followed by 'OR' CLI
*

RICR
MVI

oI

BALR

RI

not followed by 'OR' CLI
*

RICR
oI

BALR

RI

N Optional
{Column 17 N, and column 18

followed by 'OR' o1

CLI

RICR
BALR

RI
not followed by 'OR' NI

CLI
*

RICR
(0K

BALR

RI

blank)
LD

BZ

LDX
STX
LD

STO
LDX
LDX
STX

DC
LD

BZ

LD

STO
LDX
LDX
STX

DC

0)

LD
STO

LD

BZ

LDX
LDX
STX
B
DC

LD
STO
LD

BZ

LD
STO
LDX
LDX .
STX
B
DC

[l

[l ol o

* %
*_k
R8
RI
R8

IS FRR IND. ON
BZ *ak
NO, DONT EXTRACT

SET INSTRUCTION IN
NUSEQ TO FO

LD BCF IN NUSEQ

STO INTO SW IN NUSEQ
GET BRANCH ADDRESS
GET ADDR OF INDR ADDR
SAVE IN PRS8

RETURN

RESULTING INDR ADDR

IS FRR IND. ON
BZ *ok
NO, DONT EXTRACT

LD BCF IN NUSEQ

STO INTO SW IN NUSEQ
GET BRANCH ADDRESS
GET ADDR OF INDR ADDR
SAVE IN PRS8

RETURN

RESULTING INDR ADDR

LD BCF IN NUSEQ
STO INTO SW IN NUSEQ

IS FRR IND. ON
BZ *ek
NO, DONT EXTRACT

GET BRANCH ADDRESS
GET ADDR OF INDR ADDR
SAVE IN PR8

RETURN

RESULTING INDR ADDR

CHANGE SW

TO B *

IS FRR IND. ON
BZ * ok

NO, DONT EXTRACT

LD BCF IN NUSEQ

STO INTO SW IN NUSEQ
GET BRANCH ADDRESS
GET ADDR OF INDR ADDR
SAVE IN PRS8

RETURN

RESULTING INDR ADDR

Figure 22. Object Code Put Out for Numeric Sequencing (Part 3 of 3)

122

OBJECT PROGRAM FLOWCHART

The following expanded flowchart (Chart LA)
shows the logic of the RPG Object Program.

Part Two: 1130 RPG Object Program 123

AROR]L [ERRRERARE
* ERTER OBJECT *
» PROGRAN *

ARERIRRRRERRRRE

AEBFRRPRARRRRE KN
- *

* =
*OPEN ALL FPILES *
- *

* *
BREERIERRRTRNEE R

RG632
LREEL TR ER SR E LT LS
*

%IF TABLES, LOAD*
: IN TABLES :

x
t#“*"l'*".'ﬁ‘*

RG58
BRERAD T ERRRRRRERA
* *

LINK TO HEADING
AND DETAIL LINE
* ROUTINR *
AARERARERRRR R RR
L nd

*01 ¥

* E1 %>
PR

AARERE] RESXRABRRE
» *

*SET REG 8 WITH *
* PUT ROUTINE *
* ADDRESS >

LR E L ELZ R At LS]

" we *
e CRU
:DBP ED 1IN BGSB:
* .

Ott‘tjjtkttlitttt
: LOADTA OF

mmmro

Bk kR

»
BRREERARERE

b AR RARN
XT_E R!:
XCH T0 TEST

: THIS ENTRY
BRREERERAERRERR

[z]
Ed!u

*
r—>*BR,
*

RG54 ¥,
D3 *,

<% END OF
.HEADING LINE .
*, 5
*, .
»

Chart LA.

124

ARREPIRRRARREERE
gt W

F *

HBCB SARY *

LIRS PSR S R Rl Ll

*
po e
*
IBCESSAR! :
ARBAARBRRRERRRR R

222
ARRREEIRAREREAN R

*
*
* SET 1,0 AREA *
' INTO REG :
*
-

‘li.l*'*'#-*“*‘

i"'lJ3‘"‘ﬁ“'i‘-

*LOAD PUT = *

' BN!RE POggT *
* INTO REG

t-.t:ttt'v$t-tttt

*
*, YES

»
*
*

%ﬁtu#tt*itt#
URN OR

RFLOW SWITCH*
FILES WITH *
RFLOW S!VS!D:

BRI LR 2L et]

OO #OE
<O
0

* % % % % #Tn

Eadd B3 L EL LR L L L L]
*

*
: GO TO GETRC

L2 2 2 %)

*
PET TP LETT
A
* 2 *
>* A1 ¥
P

RPG Object Program (Part 1 of 4)

ttil#pst#ttlt**t:
l AD REG 9 WITH

DDR OF OUTPUT *
'II!LD ROUTINE :

"#*#‘l“***"*'i

RG52
* > *
* SE!BL{ LINE *
* IN 170 ARE *
* *
E] *
BRAERRERERRA RS AN

l###tﬂSth.‘!"‘t
*

*LOAD REG 7 HITH'
: LIEB“R!CORD *

* t
Bk R Rk

Razg;zgtast"ﬂlvttut

* PUT THE LINE
$ITH 10D
GENERATION
FRRAARR R KKK

* % *

*
*
*
*
*
*
*®

04, H) RGS8
34
W] Rk kAo
OPERATOR ACTION*
* *
PRI TR R 22 2212

<

AR RN
*

et Zhid b

‘ SES RG“O FOR
ORMAT OF
LOVPIBLD

R R

#
*
*

T
ARAARP] Ak R okok
*

»
*

zk&*#n1*n#*tt*t#t
LINK TO LOGICAL

* GET OR RAF
: ROUTINES *
AokAAoR ko Kk ok kR

tl*’ta1l"t###lt‘*
IF THIS PILE 1S
tLIHKED BY A RA *
FILE,
*BOU INE
HE
ta-ttt#t

THE *
APPEARS*
4 :
HRRAKKRA

RG24-28
b St

>
:READ A RECORD

L2 22 X3

*
AR RO Rk

Aok

Chart LA.

GET

A,
o -,

> *. YES

.END OF PILE _.

*, *

b ad e TRk Lt
SAV.

RG3

RG3

RG38 o,
E4

A kR kR

Aok ok okl ok kR Rk

gtttapu.u#ttttl#$
* INPUT RECORD *

ES'
CODES IH*
* THIS RECORD

#‘##ti‘*t*tl'l‘

o L

NO % *.
*.EODES EQUAL '.‘

:g#ttp,

*
*IP NUMBRIC éng *
'HIRDlTOR¥ (] 0%
: ERR *

:‘#t*aa‘ﬁ‘l*‘*”‘
*

* *
:INDICATE ERROR :
* *

RG40O

BERREGY KERARR KA
* RBTURH TO GET *

POINT TS’;%%B, :
*INDR WITH REG 8:
AERRERRREENRARRRR

<&

EXEERPSHESAE SRR SN
G
* GENERATED) "

RRERERRRRAERARRES

Sertenrtooanas

RECORD IN *<
*LOH!IBLD OK PB *

"!‘t*ttt*lt"*ﬁ‘

J4 RRRBRRE A
AVE ADDR OF *

D AN *
CONTROL %IgLD *<
EXTRACTION :

A

RPG Object Program (Part 2 of 4)

Part Two:

-

bkl d

[_ .
>%* A1 *
»* *

Rt L]

:tltlnsttll.!tﬁtt
-
*LOH!IBLD IF Oll'

‘HU{TIELE !1L§s '
tt*#tttt.tlttt.tt

et FL L TP T

SAVE IN
LOWFIELD OR
HOLD AREA

ARRARRERRNRRRRE BN

(XXX X2
HEHER

1130 RPG Object Program

125

* *
* A4 %
*kk * *
*03 * EET
* A1 %
* >
kK
%,
a1 *, HRAKHR L RARR Aok
K3 *, * *
*BOF SENSED *. YES * PERFORM TOTAL *
*: YOB THIS FILE, *. : CALCULATIONS :
S, y * *
*, Lk kAR R
* ¥O
Ll
G
58338
P LT At T T e P e TR R R :tt#tasttt;tttt*t
* * * -ADDR_Q
* DO MULTIFILE * *LOAD_REG _8, .10,* 80! RTE R
* PBYXTRACTION * * AND 11 *< } ~ALPSE REG
:ROUTI!B IF ANY : : : 1-TOTAL LIN :
P TS R 1 Rk
TR
<
* CY *->
*
G5 BR%
MFTST PSE
tﬂ**tc1#"#*$#*‘tt AR ARC 2 AR AR AR t*t*‘cnittt#t*###
* * ROUTINE FOR_1 * *
"DETERHIHE FILE * OR 2 PILES IS * *TBST NBXT EN'I‘R!*
* 0 PROCESS *nzscn:ogn IN Re* : ABLE '
* * t -
ARFCERREREEERER AR #**titt*tt'tl*at! ttt*ttt#*#t*it#t#
¥, RG54 ¥
p1 *, DH -
¥ *, ok *,
«* I3 IT END *. YES YES .* END *.
*. OF FILE . * TOTA!. LINES ‘.*
*, ox *, o
L *, %
*"NO * HO
RGS8
PROCR ¥,
ok kkRE 1Kk ttxt*ttt R J kR B4 *,
* SET RESULT * * .
* INDICATOR_ON t TUBN ON * «* END OF *, YES
*POR THIS RBCORD' OVERFLOW * *, OVERFLOW ¥
* » t SWITCHES * *, LINES ¥
* * * * . . Aok
P L L e AokdokkoR ok Kok *, ¥ * *
* NO P r] * PS5 %
L * 4 % * *
*03 * * A3% rkk
* F2 *-> * X
* % *
kK 3
oE EOJRO o, X,
F1 *, HAP2RARRNEE 73 %, FU4 *, HREREPS RRRR AR AR
¥ * * * o ¥ *, ¥ *, * B *
«* ARE THERE *. YES *TURN CONTROL * YES .* ARE THERE *. +*CONDITIONS *, NO *LOAD REG 9 WITH*
. ROL « ¥y LEVELS AND LR * *.ANY OVERFLOW .* *,MET FOR_THIS .* *ADD{ OF OUTPUT *
‘.‘LEVEI.S ‘.' . ON *-*LIHBS ‘.*‘ *.* LINE *.* * PFIELD RTN *
*, .x RERREEREEHE I *, Lk *, 1 PR TP T TR L
= NO *Akk E T * YES LTy
* * * *
——l il % * CU *
* * * *
KK EET
54
TOTSW o % SPAS RGS2
Gl *. RkkcAokG 2 Rk ARk G3* G4 % G
. * MOVE ADDR QF ¥ * TP OVFLO HAS * * * * *
NO OTSW * CONTROL LEVEL * *BEEN SENSED FOR#* *D0 SPACING AND * * ASSEMBLE LINE #*
. INITIALI.! OPP. * RTN_FROM * *THIS LINE SKIP * * SKIPPING IP * # IN I/0 AREA *
* LOWFIELD & BR ¥ * TO CHAN 1 * * NECESSARY * * *
K 0 IT * * * * * - *
Rk AR KRR R
ET “»"YES
* * i
* Ay * * 4 %
* * >k A3 *
T
hkk RG54
G38 STK
Sk ARk kok FETTES PR LR A FRARK P F AR Rk ERARRHG H
* * i * IF_NO CONTROL * * * *
* * * MOVE CONTROL * * LEVELS EXIST * * DO STACKER * *LOAD REG 7 WITH*
* SET TOTSW OF _* *LEVELS_TO HOLD *< * 1s * * SELECT IF * * LINE BECORD *
:t‘ ‘* * AREA * : BXECUTED : : NECESSARY : : LENGTH :
Aok ok ko EELIZI S EE L LT 2 2] Ak kKRR ek R koK
ko
§ %
DX A3 *
* Tk
Rk RG58
PUT FG24-28
ook] 2 kkk kR ARRR PRI AL LR S L PR L e
* * * * * *
* DO CONTROL * * SET I/0 AREA * * *
*LEVEL TESTING * * "INTO' REG 2 * * PUT THE LINE *
* * * * * *
* * * * * *
P T e e R Rk PLEITT R TR R T b
SRR
* *
-, * Cch *
K2 *, FRARKKY SRR I DA * *
o *, EET * * AREE
<*IS IT FIRST*. NO * * * SBT PUT ENTRY *
,CONTROL LEVEL.%———D>% A4 * *POINT IgTO REG *
*, BREAK ¥ * 1 *
*, o *RER * *
*, ¥ T R L e
I YES
*REKE P
* 4 * * *
* A3% * F5 *
* * * *
* EEE]

Chart LA.
126

RPG Object Program (Part 3 of 4)

. Chart LA.

¥ *.
ok *, YES
*. IS LR ON . ¥
, o
. o
*, %
* NO

AARAK B AR ARk KAk
* LOAD ADDR OF *
* 1/0 AREA

*RECORD
:BE PROCESSED IN:

Aeekok ok RoKOR KoK KKK Kk

R J kA ok
TURN 0“405?
* MR SWITC *
* TURN INTERNAL *
gn SNITCH Fg

Aokl ok ok ok

RG58 N

Ak kDI RNk K
GET INPUT FIELD
* ROUIINE FOR *
*THIS FILE FRON *
* LOWFIELD :
AR AR ARk Kk

RG36 .
Fokkok ok B 3 Aok Ak kR ok

* PERFORM_ INPUT *
* *

FIELD
*EXTRACTION POR *
* THIS RECORD *

ok ook o ok s ok ok ok ok ok ok
*okokok
* P3 %>
Aokdok
ox,
F3° T,
J¥ CANY C*,
YES .*CHAIN FILE *.
*. "FOR THIS .
. RECORD _.
* TYPE_.*
*, ¥
*"No
RG34 l
:****Gz*“**#*#ﬁ*: :#***Ga“***#***:
* DO CHAINING * * DETAIL *
* ROUTINB FOR * * CALCULATIONS *
+ THIS'FILE X * x
Aol o ok e ok o oK ko Rk ok 3o o R R Ok Rk
KK
* *
>% E1 %
* *
34 oRkk
RG‘#*#*HZ!H*#*!***‘
* IDENTIFY AND
* SET RESU *
* INDICATOR FOR *
% THIS RECORD %
A3 ok o e 3 o o o Kok Rk ok ko
RG36
Ak kkJ2
*EXTRACT FIELDS *
OM_INPUT AREM*
#FOR RECORD TYPE}
* *
30 3 el o o o ok R K ok koK oK
*Rkk
* *
* FP3 *
* *
EEK

RPG Object Program (Part 4 of 4)

Part Two:

CLOSE RR
BY Tl
.*ANY TABLES *. NO
*.70 BE DUKPED l+—

*, ok
*, Lk
* YES

puNp

LA 22

RG32
FARRAECY RRATAKEN R
*
*
*
*
*
*

A A Aok ko koo

<

AR AR L AR AR AR R
* *
* *
* CLOSE FILES *
* *

*

%

*
ok R koK ok koK

FdeokokB Y dokdokkokokokk

*

* EXIT *
Ak Rk ok kR Kok ok ok ok

1130 RPG Object Program 127

LIBRARY SUBROUTINES

This section contains flowcharts of the
library subroutines which can be linked to
by the object program generated by the 1130
RPG compiler. The library subroutines,
which are assembled by the system in its
library, are put in core storage by the
core load builder, after it puts the

mainline object code into storage, as
shown in Figure 23.

Supervisor

Mainline
Object Code

Library
Subroutines

Figure 23. Location of the Library Sub-
routines in an Object-Time Core
Load

The library subroutines are placed in
storage in the order in which they are
called by the object code routines. A
subroutine will be stored only once, how-
ever, regardless of how many times it is
to be called. Table 12 shows which sub-
routines are called by each object code
routine.

128

Routines

Subroutines

FIXED DRIVER

RGERR

MOVE INPUT FIELDS

RGMVI
RGMVS
RGSI2
RGSI3
RGSI4
RGSI5
RGSTI

MOVE OUTPUT FIELDS

RGMV2
RGSTO
RGEDT
RGADD
RGBLK

RAF routine

RGMV1
RGCVSE
ISET1

CHAINING routine

RGCvVB

CONTROL LEVEL COMPARE

RGCMP
RGMV3

Control Level Extraction

RGMV5

Matching Field Extraction

RGMV5
RGCMP

MFTST routine

RGMV3
RGCMP

10Ds

See discus-
sion of
10Ds

CHAIN (calculation)

RGCVB

LOKUP (calculation)

RGCMP
RGMV3
RGNCP
RGSI3
RGS14

CALCULATIONS

RGADD
RGCMP
RGDIV
RGMLT
RGMVR
RGMV3
RGMV4
RGNCP
RGSIT
RGSI2
RGSI3
RGSI4
RGSUB
RGTSZ

Table Load and Dump

RGMV1
RGMV2

Table 12.

Subroutines

Routines that Call Library

Sofok 4 2 dokok ok ok
*ENTRY VIA LIBF *
* RGHV1 *

did X Rt s LT
*ENTRY VIA LIBF *
* RGHV5 *

#*GM#**‘**:
*
* BYPASS FIRST *

* *
>‘ CHARACTERS :

* *
Ao ok kot ok ok ok ok kR k kKoK N

AAAAAAAR AR A RN AR AR A
<£-
¥,
B2 “*, FAk AR 3 Aok ok ook ok
o, *, * ¥
. Is IT *, YES * *
,PACKED DATA 3.): SET SW2 ON :
R Y * *
Lk R AR A AR
* NO
l(
¥,
c2” Tx ARARRC S A AR A Ao
. *, * *
<% IS THE *, NO * *
.QBNGTH EVEN 3-————————}: SET SW1 ON :
“u, a7 * *
*, A FAROR AR KK Rk kA
* YES
l(
<%,
D2 >, Aok kD3 Aokdokk kKoK
o IS *, * *
«*FIRST DIGIT*, NO * *
, OF PACKED . >* SET SW3 ON *
*. DATA % * x
.XALID. * *
N FRRAA AR A&
* YES
Rk
*
* E2 *->
* <
ook
:****32*"****#**:
*LOAD A WORD OF *
* I/0 AREA *
* *
* *
T T T
F2' "%, AR AR 3 AR KK
o *, * *
o ¥ *, YES * SET TO SECOND *
,IS SW1 ON 2 _. >* CHARACTER *
N o* * *
*. ok * *
*, ok ARk Rk KR ok KRR KoK
* NO
1(
o ¥, ok
G2 *. G3 .
" *I C* -
¥ *, YES ok *o
.{S SW2 ON ? ‘.————————>*.£S SW3 ON ? *.*————————
S o Tk, o
K ook
* NO * NO
. |
ARH AR 2 WK A A A A
* *

* MOVE THE *
*CHARACTER INTO *
* THE FIELD :
FRR KRR KRR KK

:twt*aztt**a#**xw

*
ADJUST POINTERS
: AND SWITCHES :

* *
ek ok Kok ok ok akok ok ok ok

Chart MaA.

HHKHER 3 HK KRR KKK

*
* RETURN *
* *
Ak KR ARKK KKK

Part Two:

ok sk
* *
>* E2 *
*

kA

Move From I/0 Buffer to Core Subroutine

1130 RPG Object Program

129

b ¥ bbb
*ENTRY VIA LIBF *
* RGHYV2 *

Ao o ook ok ok ok ok

:ti‘inz#uttttlti:
*DETERMINE TYPE *
*OF FIELD TO BE *
* MOVED *

* *
o ok ok ok Kok ok ok ok R

>

AR RC 2 RNk bk kR ok
* *

* LOAD A WORD *
:!ROH THE FIELD :

* *
Fokokdok R AoR Kok R Rk R

ook ok) 2 ok ook ok ok okok ok
*

*
* PERPORM ANY =*
* HEEZDED *
* ADJUSTMENTS :
ook o ook ok Kok

LR LRSS YEL AL EL AL 2 S
*

*
*
* MOVE THE *
* CHARACTER :
*
*

* %

Aok ok ook ok ok ok Rk

" e,
o *,

tl!_s ¥ HMOVE *,
,CHARACTERS TQ.

*, BOVE 7 .»
*
*
N

* .
*

o

LI ELlePe S22 L EL 2L

*
* RETURN *
LT R e Tl Ll

Chart MB. Move From Core to I/O0 Buffer Subroutine

130

Chart MC.

bt YR E st bl
*ENTRY VI% LIBF *
* RGHY *

Aok oK ek ok ook ok ok k

sokaokok B okokkokok ok ok
* *

* *
:I“ITIALIZ!TION :

* L%
Ao R RN o K ok ok ok

:**#*C1tut***tit:
COMPUTE LENGTIHS
* OF 'TO! AND *
*'FROM' FIELDS *

Aok ok ok ok ok ok ok ok ok ok Kok & ok

<

bt ALt
*GET RIGHT MOST *
* FRON

W *
: *FPROM' FIELD :
sekok ook ook ook ok ok sk ook ok ok ok

Sokokk B] Rk Rk kK

*
* MOVE WORD TO *
* 170! FIELD *
* *
* *
HAA AR AR KRR KR

P17 *.
. *.* nO
1 LAST WORD 'Z-—J
. o

o X
* YES

K AkEG 1 RKRIORRKKK

*
* RETURN, *
* *
Aokt ok ok R KR Kok ok

FkAK] 2 KRRk
*ENTER VIA LIBF *
* RGNVY :
P e

HAERKE 2 KRR AR
* *
> *
:INITIALIZATION :

& *
0 3o o de i ok o ok ok o R ok

t*tt*cziu##*tt#l:
COMPUTE . LENGTHS

oF TTO! Aﬂg *
*'PROM' FIELD :

kR Rk Rk Rk KK

<

FERRAD2HRER AR NN
* GET LEFT MOST *
* WORD FROM *
: *FRONM®' FIELD :
AR AR AR AR AR

FRAORKE 2 ARk
*

*
* MOVE WORD TO *
* 170' FIELD *
* *
* *
FOR AR AR KRRk kR ko

2" Tk,
o -
.

ok *
*, LAST WORD o
* *

. .

*, o
o o ¥
*"YES

HAk kG 2R kR k RNk

*

* RETURN *
* *
FRAAK AR AAKKN A

Part Two:

RO

RPG MOVE and MOVEL Subroutines

1130 RPG Object Program 131

s d VAL L e T e
*ENTRY VIA LIBF *
* RGCMP *

kR R Rk AR KR
RGCHP A0 ¥,
FR KRR 2 R AA A E *,
* * «* DOES_ *.
* SET REG_TO * «% FACTOR2 = *., YES
*LENGTH ADDRESS * *, FACTOR1 ? o He e
* * *, .
* * *, o*
PRI P PR TR *, Lk
* NO
ok
* *
* Clh *=>
* *
ERAK
% R3
c2 . Aok ORC L Kok ok Rk ok
kIS &, * *
«* LENGTH OF *. YES * RESTORE REG3, *
. ACTOR2 < o %— * SET SW OFF *
, THAT OF .x * *
.FACTO. * *
e % SRR AR AR AR AOK
* NO
R1
ARk kD2 Hkokokok dkkokok Ak kR D Aok ok ok ok ok
* * * *
* SET SW * * *
*EXCHANGE COUNT * * RESTORE REG1 *
: WITH THREE : : :
AR R A KKK Aok kKRR Rk kR K
*Hk
* E I -
* E2 *->
* *
R
R2
Ak RKED Rk kA RAAE AR EY Rk kA Kok
* * * *
* INCREMENT * * *
*LENGTHS BY OKE ¥ * RESTORE REG2 ¥
* * * *
* * * *
L T e S Sk kR ROk dok
F2 *,
oK *, EET S e TR TN
«*DOES COUNT *. YES *
*. =0 ok * RETURN *
*, x *
*. . Aok kAR Rk K
*, ok
* NO
Sk
* *
® GY
* * |<
R
P a1 o,
G2 63~ Tk, ok ARG [ok ok ok Aok
K *, * . * *
- *. YES DOES *. YES *SUBTRACT 1 FROM*
*, IS SW ON 7 e PACTOR1 ¥ > * COUNT *
*, B BLANK ? * *
*, o *, . * *
. ok *, Lk Rk RR Rk Aok
* NO * RO
I«
Rk
* *
%, * C4 %
H2 T, * * FRKEEL HRE AR KKK AK
ox *, Ak kA *
.*"_ DOES *, YES * * *SUBTRACT 1 FROM¥
. FACTOR2 = .% > G4 * * REG3 *
*,BLANK ? . * * *
*, ox Hokkk * *
*, L e R P e T
T NO
B
a4 *.
oK
+*DOES REG3
*, 07
*, -
*, ok
*, %
I NoO
*kKK
* *
* B2 *
* *
kK
. .
Chart MD. Alphameric Compare Subroutines

132

Chart ME.

FAORK B ok kok ok
*ENTRY VIA LIBF *
* RGSI1 *

ook koK ko ok Kok Rk

Ak ok C TRk KRk Kok
Ed *

* . *
’:INI‘I‘IAI.IZATION :

* *
Aok e ok o ok R ok ok ok ok ok ok sk ok

>

ARAAK] T RFR AR AKK Ak
* *

GET NEXT
PARAMETER

ErxR
* R

ek ok dok ook kokkokdok Kok

E1T %,

¥ *,
«*CONDITIONS *., NO
. HET ox
*, ¥

*

KRG | HAEAAK KK

*
: RETURN :
Ak AR oKk ok

dok Aok A3 %k gk ok dokok
*ENTRY VIA LIBF *
* RGSI2 *

k3K oK o ok e e ok o ok ok
HoR KR B 3 o Aok Ao Kok Hok
* *
* *
* LOAD FAC *
* *
* *
e o e 3k g ok ol K ok ok Kk R0k
oK K,
Cc3 *, (o} *,
¥ *, ¥ *,
ok *, YES «*FIRST PARAM*. NO
.PLUS OR HIGH . —%, =0 o —
*. - ¥ *. o
*, o X *, ¥
¥, WX ¥ WX
* NO * YES
Fokkok
L* x
1 >% F3 *
* *
L L LS
¥, - ¥
D3 *, DU *
¥ . P *
¥ *. YES - «%_ SECOND *, NO
.MINUS OR LOW .. ——>%, PARAM = 0 B S ——
*, ¥ *, X
*, ¥ *, o X
*, Lk *. ok
* NO * YES
%Ak k
[277
>* F3 %
* *
kK
ok, ¥
E3 *, EY4 *.
FoARKED Rk koK Kok kK N o X *,
*RETURN TO NEXT * «* ZBERO OR *. YES +*THIRD PARAM*. NO
>* CALC SPEC * ., EQUAL ——%, =0 —_—>
T "k, o S R
*, Lk *, %
NO * YES
Fkdok
* F3 %>
Ak kK
KK KNP S kkkokkRkk Rk
Holok kP 3 okokokokokok * *
* * SET RESULTING *
* RETURN * * INDICATOR *
* * * *
ok AR KR Ok K * *
Aok Aok ok ok Kok
kK kKGE ok kdkok kR kk %
* *
* RETURN *
* *

dkokkkk ok kK kR

Test Indicators and Set Resulting Indicators Subroutines

Part Two:

1130 RPG Object Program 133

AR AREARRRRRK AR 2HREARAR A
*ENTER Vig LIBF * *ENTER VIA LIBF *
» RGS. * ’: RGSIY *

PP T P PR AARBARERARRBRE
p——————>
B * ARRAEB2ARR MR ARA N
* . *
* INIT TO SET * *INIT TO 888 IND*
* IIDICSSOR TO * * TO0 /0 *
P : :
*
P e T e P T
<
FrersCITbRERIALS
*SET INDICATORS *
M ON/OFF *
* *
* *
P T P
p1" s,
o RRAED2HAAREEREA
LAST *, YES *
, PARAMETER ‘.‘———-—-> RETURN :
‘x, ..," T T Y
*, .
* NO
HEREREDRRORR TN
AUPDATE_POINTER *
* T0 PARAMETER *
* *
* *
P T e T

Chart MF.

134

AR R I RERRRRRER
*ENTER VIg LIBF *
* RGSI *

RN
pAreanInERLEERENL
* GRET_ADDR OF *
* FIELD *
* .
* *
EEREREAAESRRORRRE
¥ ¥
3" s, cu” T, FERERCS BARERRRRRR
o *, . - .. »
¥ FIELD *. YES ¥ *. YES * SET s C = TO *
*, NUMERIC o >"..SIGN MINDS '.’——————>: /8000 :
“x, o Tx, o - »
. x . & L
* NO * NO
FerrRDIERRERRRERE AR RADG AR AREARE
* *
* READY TO TEST * * SET ?lg = T0 *
* FOR BLAKRK * * /0001 *
* * * *
» * M *
BN AR AR B T T
<
bt L bkt
E]
* READY TO TEST *
* FOR ZERO *
M M
* *
T T
> RS
¥
¥, o ¥
P4 *, F5 *,
L * . N
+*TEST_WORD 6'- YES ¥ *, NO
*, OR BLANK ‘.L——>'-*LAST WORD ‘.‘
T .. o
*, * ®, %
* NO * YRS
TrERRGS IR AR RLRRD
*
:SBT FAC = /0000:
* »
* M
T T T
<
PR T P

Set Indicators On or Off, and Test

*
* RETURN *
* *
AR EAIR R

for Zero or Blank Subroutines

Chart MG.

Lbdund S RESE S 2SS 1]
*ENTRY VIA CALL *
* RGTSZ *

Aok ok ok koK Kok

LA L2 SRS S 222 T
GET FIELD AND
CHECK PIRST
POSITION
Akl ok ok ok ok ok ok ok

XN
N

:*tt*31*"i#*l****
SET WORD IN FAC
: TO ZERO :

* *
LR LS TR R TR L 2
hk

* F1 %>
: F

#tt#tcz**#ttt*t#:
SET WORD_IN PAC
>* T0 POSITIVE *
: NON-ZERO :
B T P
ok
* *
>* P1 *

*
AR
HRAARD 2 AN

SET WORD IN FAC
>: TO NEGATIVE- :

b *
oo ek ok ok o ok e 2 kR

BREd

ERRKP | R RR RN

*

* RETURN *
* *
P e

Test Zone Subroutine

Part Two:

1130 RPG Object Program 135

Chart MH.

136

e Ve L e]
*ENTER VIA LIBF *
: RGCYB *

*
Ak KRRk Rk

AR ARKD 2 KKK KKK
Rk KKK ke K
* *
:INITIALIZATIOH :
FdoRR sk ROk

>

GTDDG
FRARKC D RIORA R KK K
*

*
* GET A DECTMAL *
: TO CONVERT :

* *
ok ok ook Rk ok ok Kok

MLTBA
ERE L e ELEEEE L EE 2
*
*
*
*
*
*

CONVERT THE
DIGIT

LR T2

kol ok kR ok kK

2" T,
ok *.
|¥Es,.*" 15 THE %, nc_)_‘
Zxl DIGIT e

*,CONVERTED. *

*, ¥

*, %
*

SVBNOQ
Fok kKR 3 Rk kR kK
*

*
STORE CONVERTED
—>% RUJBER :

* *
AR KA K

Ak AR JokR Aok kK
* *
* RETURN *
* *
ARk RORAOROK AR

Record ID Conversion Subroutine

Chart MI.

g SE R T LT e
*ENTRY VIA CALL *
* RGERR »

ko Kok ook Rk oKkk ok ok

*, ¥
*"No
oA ARG] AR A KRR A AR
* *
* LOAD ACC WITH *
* " RPG ERROR *
* NOUMBER *
0 o e e ok o ok kK kR KRR
<
E1T %
*

¥ .
.* OPERATOR *. NO
*. REPLY .

AHRRKEF | REAK
*

* GET C
:BNTR! S

*
ook ok ok ok ok ok ok ok ok Kok

. ¥
G1 *, G2 *,
X *, oK *,
ox
>*.REPLY = ZERO .¥
*, o
*, ¥ *, o
* L
* YES

!

*. NO

ok
o > ¥ REPLY =
*,

ONE _.*
ok
*. ok

EEERGERRE AR AAK

*

Y=1 - e D % RETURN :
*, ok FRR AR RA R AR

YES

EELL U REEE L 2L]
*
* E0J *
* *
Aok ok ok ok ko ok ok ok R ok

Object Time Error Subroutine

Part Two:

1130 RPG Object Program 137

Chart MJ.

138

RGBLK

R ROK B kAR kR kR
*ENTRY VIA LIBF *
* RGBLK *

*
FRRAKRRARA KRR

AR C R R
* *
» *
* GET FIELD *
* *
bd *
ERL LA DETE TP
*RAR
*
* Dt 2>
* *
Rk
D1’ "%, AAARR]) 2 ARAR AR
o *, * *
¥ *. RO * *
*. WORD ALPHA .¥——w._>% ZERO WORD *
*, * * *
*, ¥ * *
*, % AR KRR AR KRk
*"YBS
HEARRE PR AR AR AR
* *
*STORE /0040 IN *
* WORD *
* *
* *
L T T T
£.
F1° e, ERRRKP 2R RK B AR AR
¥ *, *
«% PENTIRE *. KO * MOVE TO NEXT *
*.:IELD TESTED_, *-): WORD :
S, o * M
L) L LT P e
* YES
LT
* *
* D] *
*
ARG | AR AR LY
L]
* RETURN *
HRRRAR AR R AR A

Blank After Subroutine

fhid R E bbbl
*ENTER VIA LIBF *
* RGADD *

EELZ 22 EE2 2 Lt ssd

Chart MK.

Aeoke e ok 3 5ok ok ok ok ok ok ok
*

EXCHANGE FACTOR
*7 AND FACTOR 2 :

* *
Aok ko Rk ok

LI VL EE T 2 e LI T T
*ENTER VIA LIBF * *ENTER VIA LIBF *
* RGSUB : * RGNCP *
P e F AR AR K
> <
EEIEE DT PR TS P
* *
*INITIALIZE AND *
ARAMETERS :
*
P T PR
¥,
Cc2 *, l#***c3#t***#**tt
< IS *, *
+% OPERATION *. YES *CHANGE SIG!I OF *
*.*SUBTRACT ? *."——>* PACTOR 2 *
.. -
WX n#uunnt*u**
* NO
l(
BN ¥,
D2 *, D3 *,
ok *, +* IS *, Hokok K
-¥ARE SIGHS =%, NO .* OPERATION *. YES
- o ¥ >%, COMPARE ? o ¥ DX G3 K
*, o *] o
, o * o R
, X . o
* YES * NO
Py
* *
* E2 ‘—)i
ITADD ¥, CHMPR
B2 ¥ oAk 3Rk
% IS .
«* OPERATION *. YES *CONPARE FACTOR *
.‘COHPARB ? ‘.-————>:1 A¥D FACTOR :
“x. . * *
*, B R e
* NO
AnSug . k.
FRARRPLRRKEKARIRY LER I pu *,
. ¥ B
*PERFORN ADD OF * ¥ Is *, NO K !ESULT 0? *- NEG
* SUBTRACT * *, OPBRATION _.*. >*, COMPARE
* *,CCMPARE . *. KN
* . * *, .* *, o
T L P T *, % o
* YES * POS
tt##‘
* G3 %>
* <
felt]
SETNC
T ##ttt63#t*ti*i*tt AR ARG Y R KRR
*
‘HA%E—IDJUST Ir ‘ SIVB RESULTIKG * *SBT SWITCH FOR *
* EQUESTED ——>#% INDICATOR INTERNAL *
: : : : ' SUBTRACT :
LTI E R T TR TR B P e P FEERRERRR AR R
Pt
* E2 *
] PRI D
H : EAREIRRRE ok
: SAVE RESULT : * RETURN :
* * AR AR
P T R P T

RPG Add, Subtract, Numeric Compare Subroutine

Part Two:

1130 RPG Object Program 139

Kk) JRAKIAA KK
*ENTER VIA LIBF *
* RGMLT *

*
ek ok ok Rk ko kR ok koK

Aokokokok B 3ok kkok koK ok Kok
* *

*GET PARAMETERS *
:AND INITIALIZE :

* *
e A LR L LSS LTS

FhEHRCT R KK AKA KK
*RGDTB *
e Tt
CONVERT FACTORS
* 1 AND 2 TO *

* BINARY *
ok Rk kKK Rk kR

Rk J Rk AR Rk
*

MULTIPLY BINARY
: FACTORS :

* *
ok ok ok kR Rk okok

FHAKKE S FAAAA A A AK

*
e e e]
*CONVERT RESULT *
* TO DECIMAL :

Aok ook ook ook Kok ok kok

Aok ok 3 ARk ok gk ko

* DETERMINE *
* NUMBER OF *
* DECIMAL *
: POSITIONS :
AR KRR kR Ak K o
P
63~ T, HEEARG KRR ARER KK
oK *, *
+*HALF ADJUST*. YES * HALF-ADJUST *
.SPECIFIED ? ¥%—u—D RESULT *
*, ¥ * *
*, K * *
L * AR IR AR AR AR A
* NO
<.
SRR 3Aok KRR AR
% *

*MOVE RESULT TO *
* RESULT FIELD *
: FORCING SIGN :

Sk kAR Rk kAR Aok

ok 3R RkR kKA Ak
*

*SAVE RESULTING
: INDICATOR

XY 2]

* *
AR ROk ook ok ok Rokok ok

V
ERREK 3K AR KKK
*
* RETURN *
* *
KRR IR K

Chart ML. RPG Multiply Subroutine

140

Kok k

A2
Ak K

EX 2]
* %%

<

AR R D Ak KK ARk
* DIV LEFT

seokokok)] ok okok ok dokok

*ENTER VIA LIBF * WORDS OF
* RGDIV * * DIVIDEND BY *
* LEFT WORDS OF *
P i i L DIVIS *
sk kg o i o o ok A ke skotok ok
Sk AKE TAokkg AR RAK Aok koK B2 ok ook okt ok
* * *

* GET PARAMETER *
FOR_DIVISOR AND
* DIVIDEND *

*SAVE RESULT IN *
:TEHP QUOTIENT :

* *
Aokkok kR ARk K ARk ok KRRk
oA RN AR AR K seokok Ak C 2 KA AR Kk
* ELIM THE ZONE * * MPY 3 RIGHT *
* POSITION OF * * _WORDS OF *
* DIGITS FROM * * DIVISOR BY 4 *
* DIVISOR AND * *RIGHT WORDS OF *
* DIVIDEND *TEMP QUOTIENT *
Ftg kR RRRR KRRk Aok KRRk R H K

Aok D 1 ARk R koK
* *

* ALIGN DIVISOR *
AND DIVIDEND TO
*DECIMAL POINT

ook k) 2 skokak ok ok ok ok
* *
SAVE_PRODUCT IN
: WORK AREA :

* *
ok AkoR kR ROk kK Aok AR KRR ARk
tt***g1tut*t***** ARk Ak E 2 Hedk Aok Rk KKk Aok doKKE 3Rk KRRk ok ok
*RGDTB * * * *
P e bt * _ SUBTRACT * * ADJUST TEMP *
CONVERT DIVISOR * DIVIDEND FROM * >* UOTIENT *
:AND gIVIDEND TO* * PRODUCT : * OLNTER :
tw*t*»xt*:*tt*t*t ook kAR KRR KK sk dok ok KR KRR Kk
F1 *, ti*t*rz***t*:tm** Aok AR E S ARk ok
¥ IS *, AP JREAR AR * %
+* DIVISOR *. YES RE THE * ADD 1 TO *
*. LARGER THAN ¥ >*DIVIDBND AS THB* >¥ RETURN * >* O0TIENT IF *
.DIVIDERD . REMAINDER * * * ECESSARY *
*, ok t Aok KRRk AR Rk KK *
. Lk FdR kR KRRk Kk ook kAR AR Rk Rk kK
* NO
<
61 *, HAK AR G2 A AR A KK Gl
% *, * *RGERR * * *
+*IS DIVISOR *. YES *SET QUQTIENT TO* kK e K * CONVERT *
. ZERO ? o > % ZERO >* * * QUOTIENT TO *
*, * * * * ERROR C400 * * DECIMAL *
o oE * * * * * *
*, ok SRk KRR AOK Rk
I No
o ¥
n1 *, Aok 2 Aok Aok ko Rk H3 *oh HY *k
* * * OPERATOR * * *
IS DIVIDBND YES * SET QUOTIENT * * ACTION: * *ADD_F ZONES TO *
*, ZERO ? ¥ >% AND REMAINDER *———y * TERMINATE OR * * ALL DIGITS *
. . * TO ZERO * * CONTINUE * * *
*, . * * * *
*, ok Aok Ak RN K
I NO
-*- .
J1 AR 2 Aok A KRRk K e e
L*Is TRMb* *SET QUOTIENT TO* Jokkok g Jaokok ko kokok *INSERT NBGITIVE*
.*guonnw pi*. 1ES * * SIGN IF
%, %0 LEPT OF _.*—————>*REMAINDER BEUAL*———N‘ RETURN * x QUOTIENT IS :
* RANGE 7 .* * TO DIVIDEN * * * * “NEGITIVE *
*, ok SRR KRR KK * *
Lk ok ok ok ok kK kKoK kK kR Rk Rk KRRk
* NO
¥,
K1 *, deokok ok K 2 KAk Rk KKK #t*itkqtﬁt*****#t
«*IS: TEMP* * * AR 3 RARRR AR K KRS ok ok Aok K
-‘ggOTIBRT pi*. YES * SET QUOTIENT * * * STORE RESOLT *
, RIGHT OF .) AND EMAINDER *— >* RETURN * * INDICATOR *———~————>* RETURN *
,RANGE ? _. ZERO * * * * *
*, ok * kbR KRR R kKK * ARk R R
*, ok SRk kAR A ARk Kk KK *tttt*it**#***t*#
* NO
SRR
*
* A2 *
£ 3
K

Chart MM. RPG Divide Subroutine

Part Two: 1130 RPG Object Program 141

Chart MN. RPG Move Remainder Subroutine

142

RGHVR
fbdd LSttt il
*ENTRY VIA LIBF *
* RGHVE *

Ak ok kR R kR

AAKAKD] RN R
*

INITIALIZE

LI T Y YN
* R

AR IOR 30k AR ROk KR

fbnad R AL LS L EL T
*

*
W OR kR okok

ARk
*

B
A
* REMA
*

EEL SIS L EL LT 21

AP RRk IRk
* *

*MOVE REMAINDER *
:TO RESULT FIHLD:

* *
Wk ok ok ok Rk

H1 *,
o* *,
«*REMAINDER =*, YES
EN 0 *

* *
AR AR

-

BRREEG2HRRRRA AR
®

*
SRR R
*

TRk kgok ok sk R Rk

AR SRS L]
: RETURN *
LRI SRR L I]

Chart MO.

ok R PRRRR AR AR
*ENTER VIA LIBF *
* RGDTE *

EEEEEE RS2 L2 L 2)

Ak odok B Aok ok Aok Rk
*INTL *
BT R e
*

*INTIALIZATION *
* *

ook ok Ok Rk Kk ok kR ok ok

>

GTDDG1
t##C1»~t#it*#*:

* GET_A_DECIMAL *
* DIGIT TO *

* CONVERT :
ARk R Ak KK
¥ SYBNO1
D1 *, Aok)2 ko kR Ak
. «*ARE_ALL*. * *
DIGITS *, YES *STORE CONVERTED*
,CONVERTED ? .———————->: NUMBER :
Ta, 'y * M
*, % Aok AR Aok ROk K Aok
* ¥O
<
HLTBY
T Rk B ARk kR ok
* * RS VERTET LI
* CO!VE%* THE *
: DIG : : RETURK *
* * HRERRRREE AR
HRAREAARRKRA KRR
KN
Pl
*IS_THE *.
YBS % “DIGIT _"*. NO
L——#*,CONVERTED ? _.*%—-
, o
*, ok
B e

RPG Binary Conversion Subroutine

Part Two:

ARARLLY BKRAK AR
*ENTER VIA LIBF *
* RGBTD *

LIRSS SR L L]

ERAKRD Y RRRERAAA R
*INT
P S

* *
*INITIALIZATION :
WA AR KAk

> <

DVDEC
:#ll*cu#"“#$$$‘#

*
CONVERT ONE *
DIGIT :

L2 22

*
Aok dokoR ok Rk ok

b4 °
*

*,
IT "
D

*
*, NO

R =
»

.*" IS DIG
*.CONVERTE
“a. R

*, %
*'yES

IRORRBUAT RS

=
STORE_CORVERTED
: DIGIT :

* *
AR A R Rk ok

ARRAGY KRRRAR AN K
» RETURN :
P P e

1130 RPG Object Program 143

Chart MP.

144

ERREL] AR EFRAA KR
*ENTER VIA LIBF *
: RGSTI *

ELELE L ES RS S L2 L]

o akok B kR okR ok
* *
INITIALIZE WORK
* AREAS AND *
: POINTERS :
RE L e P

Fokk kR C] kAok Rk Rokk
CAL

* *
* *
* POUNDS *
: POSITIONS :
Aok ok ROKR AR ROk KK

it S ELEEL LS
*

* RETRIEVE THE
: SIGN

* 3% * ¥

*
LR R Rt S 2l

RRARKE] R RRR Rk
*

*
*
*MOVE THE FIELD *
*IRTO WORK AREA *
* *

*

*

*
EEL I ET2 E2 22 2 1]

PR TES TP PR
*

* REMOVE THE
* ZORES OF THE
: POUNDS FIELD
*

.

faiab P L L LS LS
* *
* ADD CONVERTED *
SHILLINGS FIFLD
*TO PENCE PIELD *

*
ok ok ok ok ok R kK ok

s R R LLEE T L L
* *
*CONVERT POUNDS *
:FIELD TO PENCE :

* *
Aok R R Rk

AREERD 2 ERKARA AR
* ADD CONVgRTED *
*POUEDS FI ‘
*SHILLING PENCE '

##ti#iﬁ*‘*"#

***‘*32'"*“*““

* E THE %
:BINIR! PERCE TO*
e ek ok Aokok AOR ROk Kok ok ok ok

bkt ZE ELETEE TN
* *

*STORE THE SIGN *
*AND F_20NES IN *
* FIELD :

ttt:ts1auaat#$#¢t
*CONVEET POUNDS *
TO BINARY *

Aok ko ok ok Kok ok

*ARERH |
*

*SAVB CONVERTED *
POUNDS

*

%

*
Ao ok Aok Rk Kk ok ok

Aok T] Rk ok Rk ARk

* CONVERT *
* SEILLINGS TO :
LEE L EF T ELL LS

AEEEEK] RRR TR RN R

CONVERT
SHILLINGS TO
PERCE

LET Y]
N

WA AR ek Kk kR ok

BRRRG2RRR R KRR RE

*

* RETURN *
* *
FARKARRKRFKRE R

e VR e T
*ENTBg VIA LIBF *

*
*
ok ok R Rk ok

i***#But#tt!***#*

*

INITIALIZE HORK
45 AND

: OINTERS :

sk koK ok ROk Kok

AR AR R KRR K
* *
* MOVE DECINAL =*
* PENCE FIELD *
:INTO WORK AREA *

Fdek ok koo kR ok ko

:tsitpq*ntx*ttt**

*
*RBHOVE F_ZO0NES *
: FOOM FIELD

* *
Ak Aok ek A kR ok ok ok kok

AR Rk Rk Aok
DTB

*

*ERAKPY *

*
*DIVIDE NUMBERS *
* BY 12 *
* *
*
£ 3

*
ek ok dokok ko Rk Kok Kok k%

***!*Gut *odokdokk Rk
CONY
T0O
SPECIFIED PBNCE
FORMAT

ok dokok ok koK dok ok ok

tttttﬂu*ntt*t*##*
DIVIDE UOTIENT
* OF PREVIOUS
* DIVIDE BY 20

*t**"*t***t**t**

tt*au##tt*t**
CONVERT
*REHAINDER INTO *

SPECIFIED *
*SHILLING PORHAT;

ﬁ*****t**#*##i##t

t**t*ll***#***l*#

* ERT THE *
* QUJﬂIENT TO *

SPECIFIED *
*POUND. FORMAT ;
:u-attattxtt*:mnx

EDIT_ *. NO
x, REQUBSTED ? ‘.‘——~

T, A
*, %
*"yES

*

FRANHC 5 kAR Kook
*MOVE_CONVERTED *
* PIELD INTO *
*ASSIGNED FIELD *
* ARE2 *

Aok kR Aok ROk ek ok ok ok

Fok A 5 Kok AR A AR A
* *
* RETURN *
* *

P T T

bl SE L TR
* *

* *
*INSERT F ZONES *
* *

* *
Aok ok ok ook ok okok kokok Aok ok ok

KA G 5 KA AA KA R K

* *
* *
* PREFORM ZERO *
* SUPPRESSION X
* *
* *
* *

Kok koK kK fok ok ok

<

bt Ch bbb b

MOVE FIELDS *
*IRTO I/0 ARER *

*
*t**********t*l**

AR 5ok ARk KK
*

*
* INSERT_SIGN *
* INTO FIELD *
* *
* *
Rk KRR KRk Rk

AR AKK S A K Kok

*
* RETORN :
AR AER AR AR KKKK

RPG Sterling Input and Sterling Output Conversion Subroutines

Aakok | 2% Kok Aok Kk K
*ENTER VIA LIBF *
* RGEDT 1

Aok ok ok ok ok Kok ok

:tt**sz**********

*
*INITIALIZE AND *
:GET PARAMETERS :

* *
ok ko ek ok ok ok ok ok Rk ok

CKSizZ
ok 3ok A C D AR AR KK

ADJUST POINTERS
* TO BRIGHT *
*JUSTIFY EDITED *
* FIELD :

koo Kok Aok ok KAAOK K
Hdkk
*
* D2 *->
* *
RIDGT ok, ok,
D2 *, D3 *, ok 3 KDL Hok ok KRR K oK
* *, Sk . * *
<*SIGNIFICANT*. NO X *., YES * GET FILL *
. CHAR FOUND _ . >*,DIGIT = 0 2 . >* CHARACTER *
, YES ? o *, ok * *
- ¥ *, . * *
e o X *, Lk ok kR ok ok ok kR
* YES * NO
¥
E2 *, Fok kKK E 3%k dodokoloksk ok
ok *, * *
R *, YES * MOVE % TO *
,PLOATING $? . >% QUTPUT AREA *
*, oK * *
*, ox * *
*, .k Aok RAORA SRR KRR K
* NO
Ak
* *
* F2 *=>
* *
oKk
SVCHR
ARRAKE 24 AR Rk k
* *
SET SIGNIFICANT
* CHAR FOUND *
* *
* *
Skokspok ok ARk kR Rk
<
¥ ¥, ok, CHFLT ¥
G1 *, G2 *, G3 *, ROk K G I Aok dok oKk Kk G5 *
o ¥ *, K *, ok *, * * . *.
YES *SIGNIFICANT*. OTHE .* NEXT CHAR *.. /21 <*SIGNIFICANT*., NO *SET SIGNIFICANT* X *. NO
———%, CHAR PQUND _.*<—————%,0F EDIT WORD .¥ >%, CHAR FQUND .* ——>%CHARACTER FOUND¥——o >* FLOATING § 7 .*——
- * *, ? ok *, YET 7 ¥ H * *. oK
. . *, ok *, ok * * *. o
. o ¥ *, .k . o X ok kol R Rk ook Kok ok ok -
* NO * /20 * YES * YES
<
1OAD v
Aok ok kK H] KRRk kK AR 2 Rk KA koK Aok kKRS R AR AR
* * * * * *
% GET FILL * * BUMP FIELD * * x
* CHARACTER * * POINTER * * STORE $ *
* * * * * *
* * * * * *
e o e e e o o o oo ok o ROK o R ok a0k koK ok ok ok ok dokkok ok e Rk ok ook o ook KoK KoK ok Kok
> <
> | <
STCH
:tt#*a2*1i****$*:
*%AVE CHARACTER *
: N OUTPUT AREA :
* *
e eokook ok kR Kok ok oK ok ok
ok, ¥
K1 *, K2 *, kKK 3ok koK Kok K K Aok KK 4 KooK KKK KK
* *, oK *, * *RGMV2 * *ERKKS *ARHE KRR
YES .% _END OF *. NO .* IS _IT END *. YES *PROCESS CR OR -* B et svbubrtd
—#, FIELD ? X< *,0F EDIT WORD .* > oo >*MOVE FIELD INTO*——— >* RETURN *
g_ *, o ¥ 7 e * * % '1/0 ARER * * *
*, o *, o ¥ * * e Aok ok ook o oK ok oK K K
L I *, .k skcok ok ok ok K ok 3R Kok 0K ok o sk ofe ok ok ek ke okok ok ok Kok
P] *" §o *
* *
* P2k l
* *
2L 2] Aokkk
* *
* D2 *
* *
*kkK

Chart MQ. RPG Edit Subroutine

Part Two:

1130 RPG Ojbect Program

bl Y e]
*ENTER_VIA LIBF *
* SEQIO *

AR S A
¥, « ¥
B1 %, B2 *. ok dok B 3ROk ok K
ok *, * *, * * Ak kKB [SRR RAAA K
«*% IS PILE *. NC «*IS THERE_A *. YES * POST 'ERROR' *
, OPEN ? o ¥ >%_, TERMINATING .——-——-—>% RETURN CODE * >* RETURN *
o* * ERROR 2 _.* - Tx * *
*, ox . Lk * * kAR KRR K
. * *, * AR AR AR A KKK
* YES * NO
l< ;
P . ."0
c1 *, c2 *.
Is *, K IS *,
«*¥PIRST-TIME *. YES .*READéVRITE *,
.SWITCH ON 2?2 . >%. INDICATOR A .*
*, ok *,READ CODE.*
*, ¥ ¥, ? ¥
. o ¥ *, W%
* NO * YES
e N W%,
D1 *. D2 *, D3 *,
¥ *, * *, 3 ", Hokkk
IS FILE *. NO * IS FILE *. NO +*IS FILE AN_*. YES * *
. UPDATE WITH .%— >%, UPDATE WITH ,*— >*,IKPUT TYPE 7 % >* G1 *
« READ 7 .»* «WRI 7?7 _.* *, ¥ *
*, o E *, o *, . Hokkk
*e ook .« X . ¥
1" YES * YES * NO
o ¥y
E1 *, Hok Kk B2 Kok ko Aok ok
«*WAS REC*. * SET SWITCH TO *
NO_.* UPDATE IN *. * INDICATE R
=%, PRESENT o * * UPDATE IN *
-gUPFER 7.* :PRESBNT BUFFER :
“a, x" Ak Rk k kAR KK
R * YES
* G1 %
B R <
FkKF] kAo KRRk FRARKE 2 HARR AR Ak
* *
*WRITE THE REC * * INCREMENT TO *
. FROM BUFFER : NEXT RECORD ’:
* *
LR e T T T] P P P T
EETTS
* *
* G1 *->
* *
XAk
¥,
FAAKRG AR AAKR R 62" “x, EHEG J AR KK kK
* . *, Hok Kk KG L ok R AR K
* INCREMENT TO «*END-OF~BLOC*. YES WRITE THE BLOCK* *
—>* NEXT RECORD *< *, o* > > RETURN *
* * *, ox * * - *
* * | . . Rk Aok KKK Rk AR K
kKRR AOK KRk KRk *, % LR LR TR PR
Rk *" No
* *
* G1 * L
* *
*ookk
1T T, AR KR 2 Kk ok kR
% *, * AOROR R 3 kR AR koK
«*IS THIS END*., YES * POST * *
*, OF FILE ? ok >% END~OFP-FILE #——— _>% RETURN *
*, ¥ * RETURN CODE * * *
*, ok * * Ao Aok KR KKK Kk
*, % L T T T P E T
I NO
- ¥,
J1 *.
o ¥ . R ER T DR kAR KRRK
«*IS THIS END*. NO *
*.*OF BLOCK ? . * >: RETURN *
't_‘ o AR KRRk kK Rk
. e X
* YES
Ll SEEE PP
*
— DO A READ
AR AR AR AR KK AR

Chart MR.

146

Sequential Disk Subroutine (Part 1 of

2)

Aok | | KRRk KK
*ENTER_VIA LIBF *
* SEQOB *

Fok AR R KRR KRR Ok
¥,
B1 %, sekokokok B 2 Hookok ok Kok ok
ok *, * * FokAok B IR KRR KA K
+% IS BUFFER *. NO * POST 'YERROR' * *
,ADDR EVENWORD.¥— —~> RETURN CODE *. >* RETURN *
*. 7 o -~ % * * *
*, ¥ * * B
*, % Aotk R Rk ok ook ok
I YES
¥,
C1_ %,
.¥ARE REC*, HoRAKC JHAAAAKE KK
+*SIZE & ¥ OF*., NO *ENTER_VIA LIBF *
.iECTOgS VALIQ- * SEQCL :
*, oK Aok KRR OR RO K fokokk
* . * *
* YES * D4 *
* *
ARk ok
ok,
03" "%, HAA K KD [Aok Rk ok KK
. *, % POST 'FILE _ * koo ek ok kokk
+* IS FILE _*. YES *CLOSED! CODE IN* *
,INPUT TYPE ? +—————>% RETURN CODE * —D% RETURN *
*, s * WORD * * *
*. L% * * ok kKR ok
*, % ook Aok KRR JOk
‘[NO -
-*-
Aok E 1 R Rk IR KK 3" %, Aokokok KB U Aok ok Aok koK
SET RECORD ADDR¥ . *, * *
* POINTER TO * <% IS FILE *. YES * SUFFIY EOF *
BUFFER LOC; SET¥ *,0UTPUT TYPE 2.% >*RECORD TO DATA *
* REC#=1 * *, K * *
*, L% * *
AorakoleoR Rk KRRk *, Lk Sokokok ook kKRR ok
* NO
L l
¥,
ARRKE 1 KRR AA KKK AR ¥3" %, FAK K K Ly HRA AR KK
* * oK *, * * FokdK TS ok ok kK
* POST 'FILE * «* IS FILE *. NO * POST 'ERROR! * *
* OPEN' RETURN * *,UPDATE TYPE ?,.%————>% RETURN CODE *. > RETURN *
* CODE * *, oK * * *
* *, ok * * Aok AR AR R Rk
AR AR AR KRR K *, X Skdok Rkl kKR 3ok
I YES
¥,
g3~ ", ARG AR A A K
ARk G kAR ok kK +*IS DISK¥.
. * ¥ WRITE *, YES * PERFQRM DISK *
* RETURN * *, NEEDED FOR _ o¥———wmD> WRITE
* *, DATA . * *
P *,BUFFE. ¥
*, ok EEE PR R E T
* NO
| >
Aokdok
* *
* Dt *x
* *
okkk

Chart MR. Sequential Disk Subroutine (Part 2 of 2)

Part Two: 1130 RPG Object Program 147

Chart MS.

148

FokAok |] Rk bk

*ENTRY VIA LIBF *
* DAOPN *

EEE L ES S 2L L Ll]

B1 *.
«*¥ IS *.
«~*BUFFER ADDR*
*.ON_EVEN WORD
*.BOUNDARY .
*, 7 *

*

.
*

C1 . %,
*

+*I5 REC SI
=, # OF RECS .
¥ VALID 7 _.»*

* *

- .

X, o
* YES

Faaa i FET LR T
*

*PILE
RETRUN
DE

* POS?
* OPEN
* co.

ook kR Rk koo Kok

Fk AR T dokR Rk kIR

*
* RETURN *
* *

Ak kK gkokokdok ok

HHAKG T RRE AR
*ENTRY VIA LIBP *
* DACLS *

REEE ARk R K

Ak | | dokdok kkkkk
* *
* DOST YFILE *
*CLOSED' RETRON *
* CODE *
Aok ok KRR ok ROk

HRERT] RERRRRRE
. *

: RETURN *

R TR T

KRNk G D Kok ok ok okkok
* y

*
): RETURN CODE

LE X 22

*
kol ok ook ok kKoK ok ok ok

*, EEE T Tep Bt £ E ST T
ZE*. NO *

Aot ko Rk Rk ok ok

LR R 2

Direct

g EE LT T
*ENTRY VIA LIBF *
* DAIO *

0k e o o ok o ok ok 3k ok R koK
.-
B3 .
X .
' IS PILE *. NO
% OPEN s
“x, o
*x, %
* YES
.l.
€3 Tx,
¥ *,
.*"IS RETURN *. YES
.CODE TERMINAL.—>
1 o
* o ¥
*, ok
*"§o

I .
IVE *. YES
EG, OR.*
TSIDE .*
LE . *

ox
* RO

FRKAHET kAR
* *

* CALCULATE *
*SECTOR_ADDR OF *
* REC *

*
Aok ok ok ok kR Rk

LENIRE

.* *.
.* DOES REC *. NO
*. ADDR = ADDR . *

*. READ *

EEE T T BT

WRITE RECORD ON
- DISK

e ok ko Ok ok ok ok

Hdokok J3 Kok ko Aok

*
: RETURN *
LRI I L LR P IL ST T

Access Subroutine

ok sk ok B4 e ok sk ok ok kolok
*

* POST 'ERROR!
>: RETURN CODE

LR R R X

*
el e Ok Ok o K OROR ok K koK

HRRKCH XK K E KK KK

*
* RETURN *
* *
ERR AR KKK

.*1
4w,
¥
* s . YES
>#%. OPERATION A .%—
* WRITE 7 _.
*, ok
*, ¥
*"No
¥ us
NO
[TREREN
* *

PSR £ Tx,
>*. OPERATION A .*
*. READ 7 _.%

. W%
* YES

ok R Aok Ak oRoK oK
* *
* UPDATE RECORD *
:ADDRESS POINTER:(

* *
A ek ko ok ok ok koK Rk

HRA AT KEKRREKEK

*
* RETURN *
* *
AR RARK K

FRRAKPE Kok ok kKA
*

* POST 'ERROR!' *
>*% RETRUN CODE *
* *
* *
AR ok

HARKGE R RK AR RAKK
*

: RETURN :
3 o e o ok o ok oK ok ok
Fkokk -

*

* H5

*
EEE L]

kAR R 5 ok ook ok Kok K
* PERFORM DISK *
- READ .

A Aok ok koK ok Rk K

Aok) 2 Hokk kb ook
*ENTRY_VIA LIBF *
* ISLD *

*
ook okl Kok K ROk ok

B2 *.
¥ *.
«*IS THE PILE*. NO
OPEN ?

. . -

KRG 2 AR KRR
* *

SET KEY IN NEXT
: INDEX ENTRY :

* *
FrRoRR KRR KoKk

ok J 2 RAKRKAR K AK
WRITE_BUFFER ON*
DISK «

e ok okok Kok ok ok ok ok ok ko

Chart MT.

ok ok ok ok B 3 Kok kKoK ok ok ok
* *

* POST ERROR *
>: RETURN CODE *

* *

*
ook skokokok ek dokok ok ok ko

Rk B 3 okok ok ok ok ok skok
* UPDATE REC *
* COUNT & PD *
>¥ ADDRESS *.
: POINTERS *
Fok kKRR KRk Kk

*kkk

* *

* F3 *

*

Fkokk

KK JAok Aok kR Ak RR K

WRITE PD BUFFER¥
ON DISK .

ki

% % %
o
=

* ¥ *

ELEL]

FkkkBY
*

BETURN :

ook ook koo K

—

*Aokk
*
>% Bl *
* *
kKK

ook kP Y] ok ok ook Kok ok
* *

*ADD 1_TO SECTOR¥
): ADDRESS :

* *
Fokdok kR ok ook ok Sopokokk ok KoKk ok ok
Aok ok H 3 Kok ok ok Aok
* * kK
* UPDATE INDEX * * *
>* POINTERS & ¥ D% F3 ¥
* COUNTER * *
kKK
sokokokok ok OKokRORR K ok
sdekoonok 33 sk ok okdokk
* *
* RESET INDEX ¥
>* POINTER & *
* COUNTER :
kR sk Rk ok sk Kok ok
ok kok
* *
* BY *
* *
Rk

Part Two:

ISAM Load Subroutine (Part 1 of 2)

1130 RPG Object

ook R PG Kok ok Aok
*

RESET_PD RECORD
>k & *
:RECORD COUNTER :
FA AR KA AR Ak

Aokokk

* %k
-]
=

* %%

EEE L]

Program 149

Chart MT.

150

Aok) 2 30k Rk Rk %
*ENTRY VIA LIBF *
* ISLDO *

Aok e e ok okok ok

o* *,
'.' ARE REC *,

YES

*
ERERKF2HFFFRAAA AR
* *

* INITIALIZE *
:NEEDBD POINTERS*

oﬂ
* *
Faokkkokkokokk Kok dokk ok

:ttk!Gzttttttlt#t
*
POST 'PILE

HEARRP IR AR KR
* ARF KD KA ko dok K

*
): RETURN CODE

* %

* Wk ook ok ok ROk K ok
ko ok KR ok kR Rk

. SIZ o
.RECS/SECTI.
*, ok

*
* OPEN' RETURN
* CODE

EE XX)

RS E R I E LI Y

ISAM Load Subroutine (Part 2 of 2)

HAAOKR Sk ok ok dOk
*ENTRY VIA LIBF *
* ISLDC *

Ao ok ok ok ok ok ko ok

WKk KBS Rk ok Rk
*

LA R 2 X

BUILD
END=QF-FILE
RECORD

LA E X

AR R K oo o ok o ok kK

AR AKCSHR A AR K
*

BUILD LAST
INDEX ENTRY

%
LT XXX

Ak ook ok Ok ok ok ok kK

3k DG kK Rk Rk
* WRITE LAST *
INDEX & DATA
* BUFFERS *
HAANAR AR A K

FRA AR ES dokk Rk kokdokk
*

*
*BUILD LABEL FOR¥
: ISAM FILE :

* *
Ak kR koK R ok ok

R LY TR
WRITE LABEL ON *
FIRST SECTOR OF

* FILE *

Ak ok Rk ok ok ok ok

HEREHGE R kR Ak
* *
* POST 'FILE *
*CLOSED' RETURN *
* CODE *

*
Aok kR R KRk okoR kK

kUG kR dokk

: RETURN *
AR RNk R Rk

AR] 2R RA AN KK
*ENTRY_VIA LIBF *
* ISAD *

ke sokok ook ok ok okok ok ok

ARk KRR R RRA AR
* *

* _POST ERROR
________>: RETURN CODE
-

s>k
*

LR 2 X

*
KK OR ook ok ok ok Kk ok ok

c2 *,
X *,
«* IS RETURN *, YES
,CODE TEMINAL .
*. ?
*.
*

o ¥
o o ¥
* NO

HAAAKD 2 R AR KAk
*

* LOCATE_INDEX
* ENTRY FOR NEW
* RECORD

*
*

%

K Aok ok A e ook ok Kok ok kK

Aok kR E 3Rk ok Kok
*

PLACE ADDED
RECORD

*
>k
*
*

* *
*

* *
o>

HEEKBY ARk Kok

RETURN
ARk KRR K kR KoK K

*

AR KE Y R kAokok A kR R RHKESRAK AR KRR KK
* *
*UPDATE_INDEXED *

>* NK *
:COHTROL FIELDS :

WRITE IT

b3 i AL E L EL]
LOCATE WHERE TO
* PLACE NEW = *
* RECORD, THER *
* PLACE IT *
20 2 e e o e ook o e ok ok o ok

K G 2 ek kR Ak Rk K

WRITE IT .

AR AR K oK ok kK

tt#t#ﬂ2*"tt#tt#t:
*

RELOCATE RECORD
FOLLOWING ADDED
* ONE *

* *
Aok o o ok ok ok ok o ok ok ok ok

AR J 2 AR AR AR AR
* *

* *

* UPDATE INDEX *

* *

* *

AR AR AR DR KR
<

ok e o ok K ke kR sk ok ok

FRAKK 2 HRA AR KRRR

RETURN
Aok A Rk ok ok ok ok

*
* *
* »

Chart MU. ISAM Add Subroutine (Part 1 of 2)

Part Two:

1130 RPG Object Program 151

ok § ARk KRRk
*ENTRY VIA LIBF *
* ISADO *

*
ook ok Ok o Rk kR Rk

. ¥
B1 *.
o ¥ *,
-*IS THIS AN *. RO
*.*ADD FILE ?

kR D 1 kR ok Kok kokok

READ FILE LABEL*
* *
Rk okkokkkkkkk

E *,
«*DO_KEY *.
.* & REC_LNG *. NO
. OF LABEL = .
*.D
*. .
* YES

HEERRP] RRKEEETR KK
* *
* MOVE LABEL *
*INFORMATION TO *
* DFI *

*
ok o e ok e ok ok ok KRR

KRG RAEE AR AAK
% READ FIRST *
INDEX SECTOR .

*

4 e ok ok K HOR Kok kKR Rk ok

LR QR EELEEL LTS
* *

* SET INDEX *
* POINTERS *
* *
* *
ke e 3 e ok ok ook Ok kKR ok k

ook ko J] RRAk R R KK
* *
* POST 'FILE *
* OPEN! RETURN *
* CODE *

*

%

R EE RS SR LS

FRE VA ELL LR S 2
* *
* ST 'ERROR' *

PO
o ¥ooe>% RETURN CODE Koo
* - * *

* *
ok ke e dokook ok Kok kR K

-

—_—
*

Chart MuU.

152

*kkok B3 kok ok kk ok ok

RETURN
R R ROk Xk k ok

ISAM Add Subroutine (Part 2 of 2)

*

ARAOK A L) Rk Rk oKk
*ENTRY VIA LIBF *
* ISADC *

ook ok ok ok R oK Kok ok

koK B ok K ARk KK
*

*BUILD NEW ISAH *
: FILE LABEL :

* *
kAR Rk K

HokRC U Fk kRN

WRITE LABEL ON *
FIRST SECTOR .

ook kokok ook Kok ok Kok Kok %k

*kkKKDY *
*

* POST
*CLOSED!
* cop

*
ok ok ok Aok A0k R KR KKK Rk

*RXKEY R KERE KKK
: RETURN *
T T

Aok) AR ARk
*ENTRY VIA LIBF *
* ISEQO *

ook ook e ok Aok ook ok shakok

-,

B1 *,
¥ *.
<% ARE DFI _*, RO
, ENTRIES VALID.
. ? o
*, ¥
*, .k
I YES
o ¥
c1 *.
¥ *,
«*LABEL KEY &*. KO
.REC LNG = DFI.
. ? .
*, ok
*, K
* YES

AdAAok D | Rk ARk
*

*
SET UP DFI RITH
* NEEDED LABEL *
* DATA *

* *
Aok okok ok ok kokak ok ok kokok ok ok

HRAE] RRRAK KRR AR

* READ FIRST *
- INDEX SECTOR «

ok koK ok ok ek ok ok ok

AREAKP | RRKRAAE KK
* SET UP INDEX *

ok

*01 *

* B2 *

* Uk

KoKk

Fokkokk B2 Ak ARk
x*

*
*POST 'INVALID' *

—————>%RETURN_CODE IN *
- * DFI *

*
ok o ke e ok Kok skok dkokokokok

* PR TA

: NUMBER TO 0 ;
ko o o oK ok ok ok ko ok K kok
:##$*61*****t***:
* POST 'PILE *
* QPEN' RETURN *
: CODE IN DFI :
e s 3 ok ok oK ok o ok ek ok ok

Chart mMV.

KKK R U ok Kk KK
*ENTRY VIA LIBF *
* ISETL *

*Rokk
* *
>% B2 *
* *
ook

HHEAKD S Rk R KKK
* *

*SET SWITCH FOR *
>% LOW RECORD ON *
* OVERFLOW *

stk gk sk KRRk ok ok

ek ook ok ok ok %
ook
*01 *
* B3 *
* *
*dodok
¥,
B4 %,
¥ ¥ kP J ko kkkkkckk - ¥ *,
* * .*" IS FILE *. NO
>t RETURN - *, OPEN { o
. o*
e efoteofoRok K ok K oRokok ¥ *, ¥
K, ok
= YES
Stk C Y H Rk KRRk kK
* *
* SEARCH INDEX *
* FOR LOW LIHIT *
* KEY ¥
3 3 e o e e e o o ok ok ok ok Kok
Dy" Tkl
.x *,
.* IS RECORD *. YES
*.ON OVERFLOW 7.%
*, < ¥
*, Lk
x, X
*"§o
<
Aok A OKE 1 o % K o ook ok ok kK
% TURN ON SETL *
*SWITCH, SET BD *
* REC, fl0. & PT *
¥ To foUND RECT *
ok ke 3 ek o o o ok ok o ok ok ok
ok g KT L kokokokokokokok Kok
*SET_INDEX NO. &%
* POINTER; TURN *
* UPDATE-WRITE *
* SWITCH ON *
300k e ol koo ol ok ok oK Kok
kKRG I KRk KRk K
*ENTRY VIA LIBF *
* ISEQC *
ek o e e ok ok e ok ok okok ok
N
H3 *. kR Feodokkok kK kKK
. *,
.*IS UPDATE- *. YES WRITE LAST DATA*
* YRITE SWITCH .*
*,OON 2 ¥ * *
*'*_ T Fokdeok koK kKRR koK
* NO 4
<
Akok ok 3 ok ok gokok kK
* *
* POST 'FILE _ *
*CLOSED' IN DFI *
* *
* *
3ok o3k b 3 ok Aok ok ok ok kK
FokRRK 3 KAk kKR AOk
*
* RETURN *
e s ek o ok o o Kk ok K Kok ok

ISAM Sequential Subroutine (Part

Part Two:

1l of 2)

1130 RPG Object Program 153

Chart MV,

154

Ak) 2 R AR
*ENTRY_VIA LIBF *
* ISEQ *

LR LIRS L L L)

o ¥
B2 *,
*

. *.
«% IS FILE *. NO
'.‘ OPEN 7 o

*, ok
*, %
=" YES Fre
* 1
1 * B2
* %
*
o,
c2” Tx.,
%" IS SETL_ *. YES
*ISWITCH ON 7 _+%-
*, .
, o
*, Wk
I NO
S
D2 e
.#1S UPDATE- *. YES
.WRITE SWITCH .
0N 7 e
*, ok
, o
l NO
..
2" Tx,
DOES RECORD*. VES
*DOES .
* NONBER 5 0 3 o
x*, ¥
.. .
*, ¥
I NO
.,
F2° s,
o «,
.»1S QVERFLOW. YES
.SWITCH OF 2 _.
x, ¥
*, %
*, ¥

Aok k(Y Rpokdokkokkokk
*

* TURR SETL
>: SWITCH OFF

LT

*
R T
Rk
*x 1 %
>% B3 *
* &
P
HAKD JR R ARk AK
* WRITE THE *
>4 RECORD
* *
P T
rokE
* 1 %
>% B3 *
* *
*okk
RRARIRERRR AR
* READ FIRST *
PRINE DATA .
SECTOR *

kbR RRRRRE

R VAL ERS LA L L]

* READ NEXT *
ECORD -

WAk ROOR RN
*okkk
* *
* H2 D
* *
wENE

2" s,
* *,
+END OF PILE*. X0
* ? *

*, o
*, o
.
» YE3 L il

AR ACEAL i
*
:POST EOR IN DPI:
* *
> »*
P P e T
P L)
>%* B3 *
*
AR

Ak ok B Aok ok ok Kok
* *

* SET RECORD
>% NOBBER AND
* ADDRESS

L2 X X3

P T TR T
EEETS

* *

>* H2 *

* *
PP

SRR FRR AR
READ NEXT INDEX*
>, ENTRY N

e g ok Rk Kok Rk

ARG Y Rk Rk Aok
READ PRIME DATA*
. SECTOR -

sk ok kokokokok ok ok ok

ISAM Sequential Subroutine (Part 2 of 2)

bt N gt ot
#zNTR; VIA LIBF *

*
ERIIE LI LSS L L

Rk R RD KRR KRR A
x *
*READ ISAM FILE *
* LABEL INIQ = *
: INDEX BUFFER :

PRI R EL LRl L)

t#*tt!]lutt‘t***:
*MOVE INFO FROM *
*ISAM FILE LABEL#
* 70 DFI T

#
sl ok Ak kKR ok ok koK

:*ttls1tutttt*#t:
* PLACE WORD _ *
COURTS gﬂ INDEX
:& DATA BUFPERS :

sokokokRoR ok ok kokokok g

'ttﬂ1*t*ttt#tt#*
READ FIRST
*INDEX SECTOR *
INDEX
* BUFFER *
AR AROR R KRR R ROk

IS PERREILE L L LY
*

SET PO%H%IBS TO
‘ !IRS 8E NDRX :

Aok ok ROk RROR R R R R

t#t‘tk1#"t*¢**tt:

*SET r ST-TIHB '
’ SWITCH OR

*
ﬁ*"*lt‘t#‘**‘ll*

Chart MW.

:‘**‘52‘*‘**“"*

* POST 'ERROR'
): RETURN CODE

* %% R ®

*
Aok Ok ARk oKk

Aok ARG 2 ookl ok ok

*
* RETURN :
ok o ok e ook ok

lt'##az##****‘i'*

>+°8 §§§“§§s§°°"

*
*#t'#**#*'**‘***#

EFRRR2HRRARRARE
» RETURN :
AR AR K

AR | Gk KA
*ENTRY_VIA LIBF *
* ISRD *
ARk KRRk
¥
B3 *, AR L AR AR AR
o *, * *
+*DOES RETURN*. YES #* POST 'ERROR' *
,CODE_CONTAIN .. >*% RETURN CODE *.
<ERROR ? _.* * *
*, X * *
*o WX Aok kRO AOKOk R Rk
1 NO
o,
c3’ T, FARCY R IR ARHRAK K
+¥1S KHIS'.
+*_ UPDATE *, YES *
, PILE, WITH o H———> PERPORH WRITE
t.gnzh ? ‘.* *
T ##****tt*#‘tt*l*
1 NO
o ¥
D3__ *. Aok D1 KRR AR KK
o¥ IS *, *
.*PIRST-TIH% *, YES * SEARCH INDEX *
*,SWITCH ON o >% FROM THE *
*.‘ *.* * BEGENNING :
“x, % o R AR K K
1 XoO
o,
B3 *,
+*IS_REC *.
* KEY < *, YES
*, PRESENT INDEX.
*, ENTRY ¥
*, ok
*, K
* NO
mta*-p,
CONTIBUE SE. RCH
BHOH THIS P! INT
#****i###*##**tl‘
<.
:tw:#ca*m*t:t**tt
*IF INDEX ENTRY *
* PO HD SEARCH *
*F feCorD ™ *
AR AR AR AR AR
o
53 *, :*tt*ﬂb#**t****##
*HAS RECORD "%, NO *POST 'NO_RECORD*
*. FOUND ? *—————-——)* FOUHg' gETURN *
. .*.
* ARk
* YES
Aok ook J 3Rk doRaR ok
* * Aoaon] ok R
*SET ADDRESS OF * *
: RECORD : * RETURN :
* * ol ARk
Aok ok koK Kk kK
SRAKK JRRARR R R Ak
*
* RETURN :
Rk Rk

ISAM Random Subroutine

Part Two:

1130 RPG Object Program 155

HERKB SRR RN R
*
>* RETURN :
FAAR AR R ARR K

R RHCS R AR K

% RETURN *
ook ok ROk ok kok

bt T b
*ENTRY VIA LIBF *
* ISRDC *

kR kR ok Rk

:tttt!stt!#tt!ttl

*
* POST 'FILE = *
*CLOSED' RETURK *
* CODE *

AceooRokok Ok R R Rk Rk

KRG 5kRA Rk Kok
: RETURN :
Aok Rk Rk RO Rk

Move From I/0 Buffer to Core (Chart MA)

Description of Operation

This subroutine has two entry points
(RGMV1, RGMV5) and is used to move fields
from the input I/O area to the fields as-
signed core storage area during execution
of the RPG object program.

RGMV1: This routine begins by testing the
first parameter for packed or unpacked
format. If the format is packed, then

it is necessary to determine from the I/0
displacement (relative to.the first char-
acter of the I/O area) whether the field
starts on the first half of a word or

the second half of a word. The address
of the first position of the I/O area is
in PR2. The routine then moves the field
to the assigned fields area in an unpacked
format.

RGMV5: This is another entry point into
the routine at RGMV1 which will initialize
RGMV1 with the field control word from the
calling sequence rather than the TO field
location. If the field is numeric, the
sign position will be forced to /F by
RGMV5 in the matching records hold area.

Calling Sequences

LIBF RGMV1

DC ZxxX where Z=0 if unpacked
=1 if packed
xxx=displacement of the
I/0 area
DC address of the I/0 field
LIBF RGMV5
DC Zxxx (same values as above)
DC address of the TO field location in
the matching fields hold area
DC field control word where

bits 0-7 = length - 1
bits 8-15= /00 if numeric
= /FF if alphameric

Move From Core to I/O Buffer (Chart MB)

Description of Operation

This subroutine has a single entry point
(RGMV2) and is used to move fields from

their assigned core locations into an out-
put I/O area.

The routine begins by testing the first
parameter for packed or unpacked output
format. If the format is packed, it then
determines from the I/O displacement
(relative to the first character of the
output I/0 area) whether the field starts
on the first half of a word or the second
half of a word.

156

If bit 0 of the first parameter contains a
2, positive signs will be removed from the
field as it is moved into the I/0 area.

If the bit is 3, zero suppression and sign
removal is done on the field as it is
moved.

Calling Sequence

LIBF RGMV2

DC Zxxx where 2 0 for unpacked

1 for packed

2 for X edit code

3 for Z edit code
displacement of the
I/0 area

DC address of the From field

XXX

MOVE (Chart MC)

Description of Operation

This subroutine has a single entry point
(RGMV3) and is used to perform the RPG
MOVE operation for all fields. The field
pointed at by the second parameter of the
calling sequence is moved into the field
pointed at by the first parameter and is
right-justified within the field.

Calling Sequence

LIBF RGMV3

DC address of the TO field
DC address of the From field

MOVEL (Chart MC)

Description of Operation

This subroutine has a single entry point
RGMV4) and is used to perform RPG MOVEL
operations for all fields. The field
pointed at by the second parameter in the
calling sequence is moved into the field
pointed at by the first parameter and is
left-justified within the field.

Calling Sequence

LIBF RGMV4

DC address of the To field
DC address of the From field

Alphameric Compare (Chart MD)

Description of Operation

The alphameric compare subroutine has a
single entry point (RGCMP) and is used to
perform the compare operation for alpha-
meric fields. The fields in Factor 1 and
Factor 2 are compared for length first:
the shorter will be extended with blanks.
Then, the values are compared with Word
123 + XR3 in the FAC being set as follows:

Condition Setting

Factor 1 > Factor 2 Positive non-zero
Factor 1 < Factor 2 Negative

Factor 1 = Factor 2 Zero

Calling Sequence

LIBF RGCMP

DC address of Factor 1

DC address of Factor 2

Test Indicators (Chart ME)

Description of Function

The test indicators subroutine has one en-
try point (RGSI1l) and is used to test the
condition of the control-level indicator
and up to three more indicators on a calcu-
lation operation.

Description of Operation

The control-level and up to three addition-
al indicators are tested on a calculation
operation. Bit 0 of each indicator will

be set to 1 if the test is for a not condi-
tion. If conditions are met, return will
be to the word following the last paramet-
er in the calling sequence. If conditions
are not met, return will be to the next
calculation specification.

Calling Sequence

LIBF RGSI1
DC Bits 0-2 = the number of parameters,
including this parameter.
Bits 3-15 = displacement from this
DC to next calculation operation.
DC address of control-
level indicator from 1 to 4
DC address of indicator X) indicator
DC address of indicator Y\ addresses.
DC address of indicator 2

Set Resulting Indicators (Chart ME)

Description of Function

The set resulting indicators subroutine
has one entry point (RGSI2) and sets re-
sulting indicators dependent upon the re-
sult of an arithmetic or compare or TESTZ
operation.

Description of Operation

If the designated operation results in a

+ or high condition and the first paramet-
er contains an address, the indicator is
set on (/0001). If the result is - or low
and the second parameter contains an ad-
dress, indicator Y is set on. If the re-
sult is 0 or equal, and the third paramet-
er contains an address, indicator Z is

set on. If there is no indicator speci-
fied, the associated parameter will con-
tain /0000.

Calling Sequence

LIBF RGSI2
DC address of indicator X

(+, high, 12-zone, or X'CO0')
DC address of indicator Y

(-, low, ll-zone, or X'DO')
DC address of indicator 2

(0, =, all other zones)

Set Indicators On or Off (Chart MF)

Description of Operation

The set indicators on (SETON) entry point
(RGSI3) may be used to set on (/0001) as
many as three indicators. The last pa-
rameter present will have bit 0=1 to stop
the operation and return to the next in-
struction after the last parameter in the
calling sequence. '

Calling Sequence

LIBF RGSI3 One to three
DC address of indicator X [of these pa-
DC address of indicator Y) rameters may
DC address of indicator Z \ be present.

Last one will
have bit 0=1.

The set indicators off entry point (RGSI4)
is used for SETOFF and TESTZ operations,
and for clearing indicators before arith-
metic or compare operations. Up to three
indicators may be cleared and the last pa-
rameter in the calling sequence will have
bit 0=1 to stop the operation and return
will be made to the instruction following
the last parameter.

Calling Sequence

LIBF RGSI4

DC address of One to three of these
indicator X parameters may be

DC address of present. Last one
indicator Y will have bit 0=1.

DC address of
indicator Z

Part Two: 1130 RPG Object Program 157

Test for Zero or Blank (Chart MF)

Description of Operation

The test for +, -, 0 or blank subroutine
(entry point RGSI5) tests a field for
these conditions and sets a word (XR3+123)
in the FAC as follows:

e Numeric field

plus /0001
minus /8000
Zero /0000

e Alphameric field

blank /0000
non-blank /00OF

The +, -, 0 or blank indicator will be set
by linking to RGSI2 using the FAC.

Calling Sequence

LIBF RGSIS
DC address of the field

Test Zone (Chart MG)

Description of Function

The test zone subroutine has a single en-
try point (RGTSZ) and is used to test the
zone of an alphameric field.

Description of Operation

The zone of the leftmost position of the
field supplied is tested and a word in
the FAC (Index register 3+123) is set as
follows: '

e If zone is a l1l2-zone or the same zone
as a letter A or an ampersand (&), set
word to non-zero position.

e If zone is an ll-zone or the same zone
as a letter J or a minus (-), set word
to negative.

e If zone is any other zone, set word to
zZero.

Calling Segquence

CALL RGTSZ
DC address of the field to be tested

158

Record ID Conversion (Chart MH)

Description of Operation

The record ID conversion subroutine has a
single entry point (RGCVB) and is used to
convert the record ID supplied by the RAF
field or chaining field into a two-word
binary number for direct access processing.

Calling Sequence

LIBF RGCVB

DC address of the field to be converted

DC address of the two-word hold area
for the converted result

Object Time Error (Chart MI)

Description of Function

The object time error subroutine has a
single entry point (RGERR) and is used to
give the operator an opportunity to ter-
minate or continue if an error occurs.

Description of Operation

An error number is loaded into the accum-
ulator and a wait state is entered at
$PRET. The operator must reply with /0000
to terminate or /0001 to bypass record and
continue. If the decision is terminate,
the EOJ address is calculated in the

Fixed Driver and a branch is made to that
address. The bypass and continue option
returns to the word following the calling
sequence.

Calling Sequence

CALL RGERR
DC YXXX where Y=0 if error is termin-
al, or 1 if error may be by-
passed to continue the job.
XXX = a three digit error
number.

Blank After (Chart MJ)

Description of Function

The blank after subroutine has one entry
point (RGBLK) and is used to set output
fields to blank if the field is alphameric,
or zero if the field is numeric.

Description of Operation

The length of the field and its status
(numeric or alphameric) is determined. If
the field is numeric, all words are set to
/0000. If the field is alphameric, all
words are set to /0040.

Calling Sequence

LIBF RGBLK

DC address of the field to be zeroed
or blanked

Add, Subtract and Numeric Compare (Chart
MK)

Description of Functions

This subroutine has three entry points,
RGADD, RGSUB, and RGNCP.

RGADD: This entry point is for the add
function. Add will take the input data

from factor 1 and factor 2, remove the
zones, and align the two fields to their
decimal points. If the signs of factor 1
and factor 2 are the same, the two factors
will be added to form the result, with the
sign of the result being the same as the
factors.

If the signs are not the same, the two
factors are compared to see which factor
is larger. If factor 1 is larger, factor
2 will be subtracted from factor 1 and the
result will have the sign of factor 1. If
the factor 2 is larger, factor 1 will be
subtracted from factor 2 and the result
will have the sign of factor 2.

Upon completion of the operation, the re-
sult will be moved to the output field
specified by the calling sequence. A

zone of 'F' will be attached to all digits
unless the result is negative, in which
case a sign of 'D' will be inserted.

RGSUB: This entry point is for the sub-
tract function. For subtract, the sign of
factor 2 is changed and processing con-
tinues as in the add function.

RGNCP: This entry point is for the numeric
compare function. Numeric compare takes
the input data from factor 1 and factor 2,
removes the zones, and aligns the two
fields to their decimal points. The two
fields are then compared. Upon completion
of the compare, an indicator is set to in-
dicate the result of the compare and a
return is made to the calling routine.

Description of Operation

When the subroutine is entered, a switch
is set to indicate what type of operation
is to be performed (add, sub or numeric
compare) after which an initialization
routine is entered to retrieve the calling
sequence and set up work areas within the
program to correspond with the entries in
the calling sequence. The work areas for
factor 1 and factor 2 are set to zero in
the initialization. (If the operation is
numeric compare, the result field is not
initialized.) After initialization, the
contents of factor 1 and factor 2 are
moved to the work area. The zone bits
are removed at this time, leaving one
digit per word right justified.

The signs are then compared to decide how
calculations are to be performed (if the
operation is subtract, the sign of factor
2 has been changed). If the signs are
the same and the operation is add or sub-
tract, an add operation is performed. 1If
the signs are the same and the operation
is compare, a compare operation is per-
formed to determine which value is larger.
If the signs are different and the oper-
ation is add or subtract, a subtract
operation is performed. If the signs are
different and the operation is compare,
the signs are again checked and the one
with the positive sign is determined to
be larger. The resulting indicator is
stored and a return is made to the calling
routine.

To perform a compare operation, decimal
points must first be aligned. The decimal
points are aligned by adjusting the index
pointers to the data fields (factor 1 and
factor 2). The compare is performed by
subtracting factor 2 from factor 1, If
the result is not zero, there is an un-
equal compare. If zero, the compare is
equal,

Upon completion of the compare routine,
the operation type is checked again. If
the operation is compare, the correct re-
sulting indicator is stored and a return
is made to the calling routine. If the
operation is add or subtract and factor 1
is equal to or larger than factor 2, the
subtraction routine is entered. 1If fac-
tor 1 is less than factor 2, the two
fields are switched and the subtract rou-
tine is entered.

If the add or subtract routine is to be
performed, decimal points must first be

Part Two: 1130 RPG Object Program 159

aligned as they were for numeric compare.
The add routine is performed by adding
factor 1 to factor 2. If the result is
greater than ten, add six to the result,

strip the 12 high-order bits and store as
the result, and add one to the next digit.
This loop is continued until the result
field is satisfied.

The subtract routine is performed by sub-
tracting factor 2 from factor 1. If the
result is less than zero, add ten to the
result and subtract one from the next high-
est digit of factor 1. This loop is also
continued until the result field is satis-
fied.

If half-adjust is specified, it is per-
formed by adding the low-order digit plus
one or the result to itself. If the re-
sult is greater than nine, add one to the
low-order digit of the result. The result
data is then moved to the result field
specified by the calling sequence. A

zone of 'F' will be attached to all digits
unless the result is negative, in which
case a sign of 'D' will be inserted.

The final step before returning to the
calling routine is to store an indicator
in word XR3+123 as follows, to indicate
the sign of the result:

plus - /@g@g1
minus -~ /8000
zero - /@90

Work Areas Used:

FACT1 - This 24 word work area is used to
contain factor 1 data in the for-
mat 000D where D is any decimal
digit. This work area can also
contain the result of an add or
subtract operation.

FACT2 - This 23 word work area is used to
contain factor 2 data in the for-
mat 000D where D is any decimal
digit. This work area can also
contain the result of an add or
subtract operation.

Calling Sequences

LIBF RGADD

DC Address of Factor 1

DC Address of Factor 2

DC Address of Result Field
DC Half-Adjust Indicator
LIBF RGSUB

DC Address of Factor 1

DC Address of Factor 2

DC Address of Result Field
DC Half-Adjust Indicator

160

LIBF RGNCP
DC Address of Factor 1
DC Address of Factor 2

Multiply (Chart ML)

Description of Function

The multiply subroutine has a single entry
point (RGMLT). Multiply takes two fields
with a maximum length of fourteen decimal
digits and converts each word to an un-
signed three word binary number using the
RGDTB subroutine. These two binary fields
are then multiplied together to form a
three word product which is converted to

a fourteen digit decimal number. This
decimal field is then aligned to the deci-
mal places specified in the result field
and the field is stored at the assigned
address.

Description of Operation

Initialization of working storage and
saving of the index registers is performed
on entry to the routine. The calling se-
quence of the caller is retrieved and
stored for future information. Both fact-
or 1 and factor 2 are then stored in the
work areas in arithmetic format (without
zones) and are converted to binary by
RGDTB.

A loop to perform the multiplication of
factor 1 by factor 2 in binary is then
executed. Since the result field is a
maximum of 14 digits, the product is
formed in three binary words and then con-
verted to a 14 digit decimal number through
RGBTD. The resulting product has a number
of decimal places equal to the sum of the
decimal places of factor 1 and factor 2.
This product is then aligned according to
the number of decimal positions in the re-
sult field.

If half-adjust was specified, it is per-
formed on the aligned result. This final
number has zones placed with each of its
digits so that it is in RPG object time
data format and the field is stored in the
assigned result field. The sign of the
result is stored for the purpose of setting
the resulting indicator as in ADD, and the
index registers are restored to their
original value. Control is then returned
to the next sequential instruction in the
calling routine.

External Routines Used

RGBTD, RGDTB

Work Areas:

MULT Used to contain the word currently

being used as multiplier.
SVWRK Contains word of partial product

during formation of the final result.

ODWRK Contains word currently being used
as the multiplicand.

OVFLW Contains word of overflow in the
Accumulator following each partial

multiplication.

MLTPR Contains three word binary multi-
plier.

MLTPC Contains three word binary multi-
plicand.

WORK Binary product is formed in this
three word area.

FACT1 Contains the fourteen digit decimal
factor 1.

FACT2 Contains the fourteen digit decimal

factor 2.

The decimal result field is compil-

ed within the area occupied by

FACT1 and FACT2.

Note:

Calling Sequence

LIBF RGMLT

DC Address of Factor 1

DC Address of Factor 2

DC Address of Result Field
DC Half-Adjust Indicator

Divide (Chart MM)

Description of Function

This subroutine has one entry point
(RGDIV). The divide function causes the
contents of the field in factor 1 (divi-
dend) to be divided by the contents of
the field in factor 2 (divisor). The re-
sult of this operation (quotient) is
placed in the specified result field.

If factor 2 is zero, no processing is
done and the error routine (RGERR) is
called to give the operator the option of
cancel or continue with the result field
being set to zero. If factor 1 is zero,
the quotient is zero and the remainder is
zero.

Any remainder that results from this op-

eration is lost unless the move remainder
operation is specified as the next oper-

ation after divide. 1If a move remainder

operation follows a divide operation, the
result in the divide operation cannot be

half-adjusted.

Description of Operation

When the subroutine is entered, initial-
ization is performed to retrieve the call-
ing sequence and the precision and scaling
factors of factor 1, factor 2 and the re-
sult field. The input data (factor 1 and
2) is then converted from zoned decimal
formal to decimal format without zones,
and put into a 14 word field right justi-
fied with high~order zeros.

The decimal input fields are then convert-
ed to 6 word binary fields, one for the
divisor (factor 2) and one for the divi-
dend (factor 1). However, before the con-
version to binary is performed, adjustment
is performed if necessary.

The divisor and dividend are adjusted by
adding zeros to the right of the units
position of that field. The following
formula determines whether or not field
adjustment is necessary.

A = (Number decimal positions of result
field) +
(Number decimal positions of Factor
2) -
(number decimal positions of Factor 1).
If A = 0, no adjustment takes place.
If A > 0, the dividend will be adjusted.
If A € 0, the divisor will be adjusted.

The amount of adjustment is determined by
the absolute value of A in the preceding
formula. The conversion to binary is
accomplished by successive cumulative
multiplications of each digit of the deci-
mal number by A (base 16) from left to
right.

Next the high-order three words of the
divisor are checked; if non-zero, the
divisor is assumed to be larger than the
dividend. The dividend is then stored
as the remainder and a return is made to
the calling routine.

If the three high-order words of the di-
visor are zero, the three low-order words
are checked next. At this time a pointer
is adjusted to the high-order end of the
temporary quotient (4 words long). Each
time a word of zero is found in the di-
visor, the temporary quotient pointer is
moved one word to the left. If the di-
visor is found to be completely zero, no
processing is done, the result field is
set to zero, and the subroutine RGERR is
called. But, if a non-zero value was
found, then the dividend is checked next
for leading zero words. Each time a word
of zeros is found, the temporary gquotient
pointer is moved one to the right. If

Part Two: 1130 RPG Object Program 161

the dividend is found to be zero, the quo-
tient is zero and the remainder is zero,
and a return is made to the calling rou-
tine.

At this time, the position of the tempor-
ary quotient pointer is tested. If the
pointer is to the left of the 4 word
field, the gquotient is zero and the divi-
dend is the remainder. If the pointer is
to the right of the 4 word field, the quo-
tient is zero and the remainder is zero.
In both cases a return is made to the
calling routine at this point.

If the pointer was within the range of the
4 word field the operation is continued by
dividing the two high-order non-zero words
of the dividend by the high-order non-zero
word of the divisor. Load the result of
the divide into the temporary quotient at
the position pointed to by the temporary
quotient pointer. (Temporary gquotient is
initially zero.)

Then the three low-order words of the di-
visor are multiplied by the four words of
the temporary quotient. The product of
the multiply is contained in a 7 word area.
The 6 word dividend is then subtracted
from the 7 word product of the last multi-
ply. The result of this subtract is con-
tained in a 6 word area.

This 6 word area is checked for leading
zeros. For each leading zero, the tem-
porary quotient pointer is moved one word
to the right. When the first non-zero
word is found, the position of the tem-
porary quotient pointer is checked and if
it is out of the temporary quotient area,
the divide operation is complete. If not,
a return is made to the divide routine to
continue the loop.

There is only one variation to the loop:
after the first store of the temporary
gquotient, the rest of the calculations
made to the temporary quotient will be
added to it or subtracted from it. This
is determined by the subtract function.
If the result of the subtract was nega-
tive, the alteration to the temporary
quotient is added to it. If the result
was positive, it will be subtracted.

Upon completion of the loop, the result
of the last subtract becomes the re-
mainder, and the temporary quotient is
the final quotient. If half-adjust is
specified, it will be performed at this
time. Half-adjust is performed by com-
paring the remainder to the divisor. If
the remainder is more than half as large
as the divisor, the quotient will be in-
creased by one. The quotient is then

162

converted from a 3 word binary number to
a 14 word decimal number, one decimal
digit per word. The conversion is per-
formed by dividing the binary number by
A (base 16) and storing the remainder as
a decimal digit. The decimal number is
formed from right to left.

The decimal quotient is then moved to the
result field specified by the calling se-
quence. A zone of 'F' will be attached
to all digits unless the result is nega-
tive, in which case a sign of 'D' will be
inserted. The sign of the result is
determined by this rule: if the signs of
factor 1 and factor 2 are equal the result
is positive, if the signs of factor 1 and
factor 2 are not equal, the result is
negative.

The final step before returning to the
calling routine is to store an indicator,

as in ADD, which indicates the sign of
the result.

External Routines Used
RGERR

Work Areas Used

DIVDN: A 6 word area used for the binary
dividend. (Factor 1)

DIVSR: A 6 word area used for the binary
divisor. (Factor 2)

QUOTN: A 5 word area used for the tem-
porary quotient in binary.

FACT1l: A 15 word area used by factor 1,

factor 2 and the result field in
decimal form.

The following are used by the multiply
routine.

MULT: Used to contain the word currently
being used as the multiplier.

SVWRK: Contains word of partial product
for formation of final result.

ODWRK: Contains the word currently being
used as multiplicand.

OVFLW: Contains word of overflow in the
accumulator following each partial
multiplication.

WORK: Contains the 6 word result of the
multiplication.

The following is used by the subtraction
routine.

Contains the 6 word result of the
subtract operation, and also con-
tains the remainder at the end of
the divide operation.

REDIV:

Calling Sequence

LIBF RGDIV

DC Address of Factor 1

DC Address of Factor 2

DC Address of Result Field
DC Half-Adjust Indicator

Move Remainder (Chart MN)

Description of Function

The move remainder subroutine has one en-
try point (RGMVR) and is used to move the
remainder from a divide operation to a
separate field. If move remainder is
used, it must immediately follow the di-
vide operation. The result of a move re-
mainder operation cannot be half adjusted.

Description of Operation

When the subroutine is entered, initializa-
tion is performed to retrieve the calling
sequence and setup linkage with the divide
routine. The remainder is retrieved for
the divide routine in binary format, and
converted (using RGBTD) to decimal. The
decimal remainder is then adjusted to the
specifications of the result field preci-
sion and scale. At completion of the ad-
justment the result is moved to the result
field specified by the calling sequence.

A zone of 'F' will be attached to all di-
gits unless the result is negative, in
which case a sign of 'D' will be inserted.
The sign of the result of the move re-
mainder operation is the same as the result
of the divide operation.

External Routine Used

RGBTD

Work Areas Used: The move remainder routine
has no work area of its own. A work area

called Factl in the divide routine is used
to hold the decimal remainder.

Calling Sequence:

LIBF RGMVR
DC Address of Result Field

RPG Conversion (Chart MO)

Description of Function

This subroutine has two entry points,

RGBTD and RGDTB. RGDTB (decimal to binary)
converts a 14 digit decimal number in
arithmetic format (without zones or sign)
to a positive 3 word binary number. This
conversion is performed by successive
cumulative multiplication of each digit of
the decimal number by A (base 16) from left

to right. RGBTD (binary to decimal) con-
verts a 3 word unsigned binary number to

a 14 digit decimal number. The conversion
is performed by dividing the binary number
by A (base 16) and storing the remainder
as a decimal digit. The decimal number is
formed from right to left.

Description of Operation

A common initialization routine is used for
both RGDTB and RGBTD. This routine re-
trieves the parameter list and zeros the
area in which the binary number is held.
Entry point RGDTB retrieves a decimal num-
ber in arithmetic format and stores it in
the save area. The binary portion already
formed is multiplied by A (base 16) and
the save area is added to the low order
binary word. This procedure is continued
until all the decimal digits have been
converted.

Entry point RGBTD retrieves the unsigned
three word binary number and divides it by
ten. The remainder of the division is
stored in the next low order position of
the 14 word area in which the decimal num-
ber is being formed. This process is con-
tinued until the complete 14 word area has
been filled with decimal digits.

Work Areas:
OVFW The area which contains the portion
of the product contained in the
accumulator following the multipli-
cation. It is added to the low or-
der word of the next product.

The area used to hold the binary
value of the number.

WORK

Calling Sequences:

LIBF RGDTB

DC Address of decimal number
DC Address of binary number

LIBF RGBTD

DC Address of decimal number
DC Address of binary number

Sterling Input Conversion (Chart MP)

Description of Function

The sterling input conversion subroutine
has a single entry point (RGSTI). This
subroutine takes a sterling field from

the I/0 area in a format consisting of
pounds, shilling, pence, and decimal pence
fields and converts it to pence and binary
pence. The converted field is then stored
in the area assigned to the field by the
compiler in the RPG object time data
format.

Part Two: 1130 RPG Object Program 163

This routine properly converts IBM pence
format and BSI pence and shilling formats
to decimal form. It also supports both
standard and non-standard sign positions.
The zone of hexadecimal D is regarded as a
negative zone while any other zone is re-
garded as positive. The zone representing
the sign is undisturbed by the subroutine
and is placed, in the format given in the
data record, into the assigned field.

Description of Operation

" The subroutine first retrieves the calling
sequence and sets work areas within the
program to correspond with the entries in

the calling sequence. This is also done
with the length and number of decimal
places that are taken from the indicator
word preceding the assigned field. From
the specifications the number of pounds
positions in the unconverted field is
calculated.

The sign of the field is then retrieved by
calculating the location of the word hold-
ing the sign in core storage. If a non-
standard sign location is specified the
column indicated in the calling sequence
is used. If the sign is at the standard
location, the number of pounds positions
is added to the beginning field locations.
If there are decimal pence places, the
length to the low order decimal pence
position is then added to this previous
total. The column of the field in which
the sign is located is now available and
the routine at STAND determines the actual
core storage location. The sign is then
retrieved and stored.

The work area, BPENC, BINNO, and WORK are
then initialized to binary zero and the
field is placed into WORK. The pounds
positions of the field are then put into
arithmetic format by removing the zones
in the field and then are converted to
binary and stored at BINNO.

The value of the shilling field is deter-
mined in binary and then is multiplied by
twelve to convert it into pence. This
value is added to the value of the pence
field in binary and is stored at BINNO.
The pounds field is converted to binary
by multiplying by 240. The total non-
decimal pence is then formed and convert-
ed back to decimal and stored in WORK in
arithmetic format. The zones and sign
are inserted in the field and the field
is stored in the assigned field position.

164

External Routines Used: RGMV1l, RGBTD,

RGDTB
Work Areas:

SIND Set to 0 if IBM shilling format is
used.
Set to 1 if BSI shilling format is
used. ’

PIND Set to 0 if IBM pence format is
used.
Set to 1 if BSI pence format is
used.

BPENC Used to hold binary pence value of
shilling and pence fields.

BINNO Used to hold the binary value of
the field.

WORK Contains the decimal field both
before and after conversion.

Calling Sequence

LIBF RGSTI

DC /xxxz where xxx = Column 1 of field
in I/0 area
z = aabc where a = 0,

0 for IBM 0 for IBM
_ /shilling, _ Jpence
b =97 for sz (3 € =91 for BsI
shilling, pence
DC Address of assigned field
DC /00E2 is standard, column-1 of sign

position if non-standard.

Sterling Output Conversion (Chart MP)

Description of Function

The sterling output conversion subroutine
has a single entry point (RGSTO). This
subroutine takes a decimal field from an
assigned field area and converts it to a
format containing pounds, shillings, pence,
and decimal pence fields. The converted
field is then stored in the I/O area using
subroutine RGMV2. This routine will con-
vert to the format required for a printer
file, for a field using IBM or BSI shill-
ing format, or for a field using IBM or
BSI pence format. If the field is to be
edited, the output of the routine is stored
back in the field location and the EDIT
routine is called. This routine supports
both the standard and non-standard sterl-
ing sign locations.

Description of Operation

The calling sequence is retrieved and the
entries are placed in work areas within
the routine. The scale and precision are
taken from the word preceding the field
to be converted. The address of the I/O
area is taken from the RPG overhead area.

The field is moved from the assigned field
location and placed in arithmetic format
(without zones) in the work area WORK.
The non-decimal pence positions are then
converted to binary and stored in BINNO.
This field is then divided by 12 and the
remainder is converted into the specified
pence format (print, IBM, or BSI). The
converted pence field is placed in the
work area WORK contiguous with the deci-
mal pence.

The quotient of the above division is then
divided by 20 and the remainder is con-
verted into the proper shilling format.
This field is then put into WORK. Both
the pence and shilling fields for printed
files have the tens position zero sup-
pressed if zero suppress is not specified.

The quotient of the last division is then
converted to decimal and stored in WORK.
The converted field is moved from WORK to
the assigned field, if EDIT must be used,
inserting zones for RPG object time data
format, and the routine returns to the
caller. If EDIT is not used, zones are
inserted in the pounds position and the
decimal positions and zero suppression, if
specified, is performed. The external
routine RGMV2 is called to place the field
in the I/O area. For a non-zero suppress-
ed field, the location of the sign is
calculated and the sign is inserted. Re-
turn to the calling sequence is then per-
formed. ’

External Routines Used
RGMV2, RGBTD, RGDTB
Work Areas

SIND Set to 0 if IBM shilling format is
used.
Set to 1 if BSI shilling format is
used.

DIND Set to 0 if IBM pence format is
used.
Set to -1 if BSI pence format is
used.
Set to +1 for printer fields. This
field will be modified by +1 during
execution of the program.

ZPIND Set to 0 if zero suppress. is used.

EDIND Set to 0 if edit is used.

LPCNR Used to control looping.

BINNO Contains the field in binary.

WORK Used to hold both the converted and
unconverted fields in decimal.

Calling Sequence

LIBF RGSTO

DC /xxxz where xxx = column-1 of field
in I/0 area
z = aabc where a = 0

0 for IBM, 0 for IBM
printed printed
b = (shilling and ¢ = (pence
1 for BSI 1 for BSI
shilling pence
DC Address of assigned field
DC /xxyy where xx = column-l of sign

position if non-standard and /E2
if standard.
00 - Field not to be printed
FO - Field to be printed but
not edited
Yy =4 F5 - Field to be printed with
zZero-suppress
FF - Field to be printed with
edit

Edit (Chart QX)

Description of Function

This subroutine has one entry point
(RGEDT). The edit routine takes a decimal
field held in RPG object time format and

a specified edit word and performs editing
on the decimal field. The resulting edit-
ed field is then stored in the specified
location in the I/0 area. The routine
performs either zero-suppression or aster-
isk protection. Either fixed or floating
dollar sign may be used.

All characters other than the digit select
characters, the significant start charac-
ter, and an ampersand (which causes a
blank) will be printed if to the right of
the first significant digit, and will be
replaced by a blank if to the left. The
letters CR or a minus sign in the status
portion of the edit word will be undis-
turbed if the field is negative and will
be replaced by blanks if positive.

Description of Operation

The calling sequence is retrieved and the
information therein is stored. The ad-
dress of the I/0 area is taken from the
RPG overhead area and the length of the
field is taken from the indicator word
preceding the assigned field. If a fixed
dollar sign is specified, a dollar sign

is placed as the first character in the
edited area. A digit from the field is
then retrieved. If the digit is non-zero,
SWITC is turned on. If the digit is zero
and SWITC is off, the fill character re-
places the digit. The digit is stored and
a character from the edit word is retriev-
ed.

Part Two: 1130 RPG Object Program 165

If the character is a digit select char-
acter it is replaced in the edited result
by the digit or fill character. If it is
a significant start character, SWITC is
turned on and the digit is selected. If
it is any other character, it is placed

in the edited field if SWITC is on. If
SWITCH if off, it is replaced in the edit-
ed field by the £fill character. This pro-
cess is continued until all the characters
in the edit word have been used.

The sign of the field is then interrogated.
If it is positive, CR or - is blanked out.
The edited result is then placed in the
I/0 area by routine RGMV2.

If floating dollar sign was specified it
is placed in the character immediately to
the left (of either the significant start
character or) of the first significant
digit.

External Routines Used

RGMV2

Work Areas:

SWITC Used to indicate whether or not a
significant digit or significant
start character has been encounter-
ed.

RESLT Used to hold the edited field.

Calling Sequence

LIBF RGEDT

DC /XXX7 where XXX = column-1l of field
in I/0 area
Z = yayb where y = 0, a = 1 if CR,
0 if minus; b = 1 if sterling,
0 if decimal

DC Address of assigned field

DC Address of edit word

DC /XXYY where XX - length of edit
word, YY = number of replacement
characters

DC /XXYY where XX = column-l1l of CR/MIN

in edit word,
00 if no dollar sign
YY = (F0 if fixed dollar sign
FF if floating dollar sign

Sequential Access (Chart MR)

Description of Function

The sequential access subroutine has three
entry points:

SEQOP Entry point for the open function

SEQIO Entry point for the I/0 function,
and

SEQCL Entry point for the close function,

166

and is used to sequentially input,’output/
update records of a sequentially organized
disk file.

Description of Operation

SEQOP: The open entry point begins by per-
forming a check on the buffer address to
ensure that it is on an even word boundary
and issues a diagnostic if the address is
incorrect. Next, the record size and num-
ber of records per sector are checked to
ensure their accuracy; they are diagnosed
if incorrect.

If the DFI indicator has an output file
indicator code, the routine sets the re-
cord address pointer to the buffer loca-
tion for the placement of the first record,
sets the record number to one, and blanks
out the data buffer. Processing continues
for all file types by setting the return
code to indicate the file is open and re-
turning to the next object program in-
struction.

SEQIO: The I/O function entry point be-
gins by testing the return code in the
DFI table to determine if the file has
been opened. If the file is not open, a
check is made to determine if a terminat-
ing error had been issued and if one had,
a diagnostic is issued. Otherwise, pro-
cessing continues as though the file was
successfully opened without a previous
error. The first time the routine is en-
tered a check is performed to ensure the
read/write indicator is a read code and a
diagnostic is issued if it is not a read
code.

If the file is an update file and a read
is indicated by the read/write indicator,
the routine follows the path of an input
file. However, if a write is indicated
for the update file, the routine sets a
switch to indicate a record has been up-
dated in the present buffer. This switch
is later tested when the buffer has been
processed and a read is indicated. If
the switch is on, the routine performs a
disk write before the disk read.

If the write indication for the update
file is on when the buffer is completely
processed, then the disk write is per-
formed by the routine immediately. When
the file is an input file, the routine
reads a sector of data into the buffer and
sets a pointer and record counter to the
first record in the buffer. The pointer
and record counter are updated during suc-
cessive reads until the buffer is pro-
cessed, at which point another sector of
data is read.

End of file is tested on each read and an
indicator returned when encountered. If
the file is an output file, the routine
initially sets the pointer to the buffer
location where the first record is to be
placed and increments the pointer by the
record size for each successive write un-
til the buffer is full, at which time the
buffer is written on disk. The pointer

is reset to the beginning of the buffer
and the data buffer is blanked out. The
routine returns to the next object program
instruction after retrieval of each record.

SEQCL: The close entry point is entered
when processing for the file is complete.
The routine begins by determining file
type. If the file is an input type, it
is closed by entering a code (.I) in the
return code word of the DFI table and re-
turns to the calling sequence.

If the file is an output type, the EOF
record is suffixed to the data and written
on the file, and the file is closed by
entering a code.(.0) in the return code
word of the DFI table and a return is made
to the calling sequence.

If the file is an update file, the update-
write switch is checked to determine if a
disk-write for the data buffer is neces-
sary. If it is, the write is performed.
Then the file is closed by entering a code
(.U) in the return code word of the DFI
table and a return is made to the calling
sequence.

Calling Sequences

LIBF SEQOP
DC Address of the DFI table
LIBF SEQIO
DC Address of the DFI table
LIBF SEQCL
DC Address of the DFI table

Direct Access (Chart MS)

Description of Function

The direct access subroutine has three
entry points:

DAOPN Entry point for the open function,

DAIO Entry point for the random re-
trieve/update function,

DACLS Entry point for the close function,

and is used to randomly retrieve and/or
update records on a sequentially organized
disk file.

Word Contents
0,1,2 DSA
3 The number of records per sector.
The maximum entry is /0140 (320 one-
word records).
4 The length of each record in words.
The maximum entry is /0140 (one 320-
word record).
5 /0000 for a read operation,
/0001 for a write operation.
6 The address of the data buffer. This ad-
dress must be on an even-word boundary.
7 .1 for an input function,
.O for an output function,
.U for an update function.
8 The record number of the record being
processed .
9 The return code * for this operation.
10 The address of the record being processed.

*Return codes for sequential access are as follows:

Return Code Meaning

/5555 File open

/8010 Disk file is full

/8011 Write indicator with input file

/8012 Read indicator with output file

/8013 Record size exceeds sector size

/8014 Number of records per sector not
maximum

/8015 File accessed when not open

/8016 Buffer not on even-word boundary

/8017 Write before read

/FFFF End of File

/OFFF File closed

Table 13. DFI Table for the Sequential

Access Subroutine
Part Two: 1130 RPG Object Program 167

Description of Operation

DAOPN: The open entry point begins by
checking the buffer address to ensure it

is on.an even-word boundary. A diagnostic

is issued if the address is incorrect.

Next the record size and number of records
per sector are checked to ensure they are
correct. Again, diagnostics are issued if
the items are incorrect. The return code

is set to indicate the file is opened and
the routine returns to the calling sequence.

DAIO: To randomly retrieve/update records,
the routine at this entry point begins by
checking the DFI table to ensure that the
file has been opened. A diagnostic is is-
sued if the file is not opened or if the
return code contains a terminating error
type code. The relative record number is
checked to determine if it is negative or
if it is outside the bounds of the file
and diagnosed if either error is found.

A calculation is performed with the rela-
tive record number to determine the sector
address of the record. If the determined
sector address is the same as the one pre-
viously read and the operation is a write,
the routine performs a disk write and re-
turns to the calling sequence. If the de-
termined sector address is the same as the
one previously read and the operation is

a read, the routine updates the record
address pointer and returns to the main-
line. If the determined sector address is
not the same as the one previously read,
the operation must be a read (a diagnostic
is issued if a write is indicated). The
routine then performs a disk read, updates
the record address pointer and returns to
the calling sequence.

DACLS: This entry point is entered after
the records have been retrieved/updated.
It sets the return code in the DFI table
to indicate the file is closed and returns
to the calling sequence.

Calling Sequences

LIFB DAOPN

DC Address of the DFI Table
LIBF DAIO
DC Address of the DFI Table
LIBF DACLS
DC Address of the DFI Table

168 -

Word Contents
0,1,2 DSA
3 The number of records per sector.

This entry must be the same as the number
of records per sector on the file being
accessed.

4 The length of the record in words.

This entry must be the same as the length
of the records on the file being
accessed.

5 /0000 for a read operation,

/0001 for a write operation .

6 The address of the data buffer.

This address must be on an even-word
boundary .

7 &8 The record number of the record being
processed. Position 6 will be all zeros
for record numbers of less than 65,536.

9 The return code * for this operation.

10 The address of the record being processed.

*Return codes for direct access are as follows:

Retumn Code Meaning

/5555 File open

/8000 Record number not in file

/8001 Record size not within limits
/8002 Records per sector not maximum
/8003 Record number not positive
/8004 Write before read

/8005 File accessed when not open
/8006 Buffer not on even-word boundary
/OFFF File closed

Table 14. DFI Table for the Direct Access

Subroutine

ISAM LOAD (CHART MT)
Description of Function

The ISAM LOAD subroutine has three entry
points:

ISLDO Entry point for the open function,

ISLD Entry point for the loading func-
tion, ,

ISLDC Entry point for the close function,

and is used to load records onto an indexed
sequentially organized disk file.

Description of Operation

ISLDO: The open function is the first to
be executed when loading an ISAM file.
Execution of the open function begins by
checking the type code (/1111) in the DFI
table to ensure it is a load file. A di-
agnostic is issued if the type code is in-
correct. The record size, number of re-
records per sector, and key length are
checked next to guarantee they are within
the accepted limits. Diagnostics are is-
sued if any of these are incorrect.

Next, the index size, number of index en-
tries per sector, index buffer address and
data buffer address are checked. The buf-
fer addresses must be on even word boun-
daries, and the index size and number must
be within the accepted limit or a diagnos-
tic is issued. The diagnostics are codes
returned in the return code word of the
DFI table.

If all of the above tests are satisfied,
the routine continues by setting up the
index entry pointer, beginning index sec-
tor address, beginning Prime Data sector
address, Prime Data record pointer, zero-
ing out the key hold area, and blanking
out the data buffer. (The sector address-
es in the index and label are the relative
sector addresses from the beginning of the
file.)

The routine then sets the return code
word in the DFI table to indicate the file

is open and returns to the calling sequence.

ISLD: This entry point is used each time
a record is to be loaded onto the ISAM
file. When entered, the routine begins
by checking the return code in the DFI
table to ensure the file is opened and
that there are no terminal type errors in
the return code. The key of the present
record is then checked against the key in
the hold area to ensure the records are
in sequence. The control field of the
last record is set to binary zeros.

Then a test is performed to determine if
the P.D. buffer is full and if it is not
full, the routine adds 1 to a record
counter, increments the P.D. record ad-
dress pointer to the location where the
next record is to be located, and returns
to the calling sequence. If the buffer is
full, the routine performs another test
which determines if the sector address of
the next disk write is an end of cylinder
sector or not. If it is not the end of a
cylinder, the routine writes the P.D. buf-
fer on disk, adds 1 to the sector address,
sets the P.D. record address pointer to
the beginning of the buffer, sets the re-
cord counter back to one, and returns to
the user.

If the sector address was an end of cylin-
der sector, the routine moves the key from
the last record in the buffer to the key
portions of the next index entry. A check
is made on the index buffer to determine
if it is full and if it is, writes the buf-
fer on disk, and resets the index pointer
and counter. Otherwise, the index point-
er and counter are incremented, the data
buffer is written on disk, the data buf-
fer is then blanked out, the P.D. pointer
and counter is reset, the sector address
is incremented by one and the routine re-
turns to the calling sequence.

ISLDC: This entry point is entered when
all records have been loaded and the ISAM
is to be closed. After all the records
have been loaded, the ISAM file must be
closed by entering the Load Routine at the
ISLDC entry point. The close function

generates the end of file record (all 1
bits), builds the last index entry (the

key portions of which are all 1 bits),
writes the last sector of index and data
buffer, builds the ISAM file label in the
index buffer, writes the label on the first
sector of the file, sets the return code
word in the DFI table to indicate the file
is closed and returns to the calling se-
quence.

Calling Sequences

LIBF ISLDO
DC Address of the DFI table
LIBF ISLD
DC Address of the DFI table
LIBF ISLDC
DC Address of the DFI table
Part Two: 1130 RPG Object Program 169

*Return codes for ISAM LOAD are as follows:

Return Code Meaning

/5555 File is open

/8020 Not a load function

/8021 Record size or number of records per
sector incorrect

/8022 Key length greater than maximum

/8023 Index entry length not same as length
computed from key length

/8024 Number of index entries per sector
incorrect

/8025 Prime data area is full

/8026 Index area is full

/8027 File is not open

/8028 Index buffer not on even-word boundary

/8029 Data buffer not on even-word boundary

/802A Input record out of sequence '

/OFFF File is closed

Word Contents

0,1,2 DSA

3 The key length in characters.

Maximum is /0032,

4 The length of the record in words.

The maximum entry is /0140 (one 320-
word record).

5 The address of the index buffer. This
address must be on an even-word
boundary .

6 The address of the data buffer. This ad-
dress must be on an even-word boundary.

7 /1111 to identify the ISAM load routine.

8 The number of sectors required for the
index.

9 The return code * for this operation.

10 The address of the record being processed.

11 The address of the index entry.

12 The number of index entries per sector.
This value must be the maximum number
of index entries that will fit on a sector.

13 The index entry length in words.

14 The number of records per sector.

This value must indicate the maximum
number of records that will fit on a
sector.

15 The prime data record number.

16 The index entry number.

17 The address of the key hold area.

After the close routine has been executed
this location contains the sector address
of the last prime data sector.

18 The sector address of the last index sector.

19 The sector address of the next overflow
sector.

20 The record number of the next overflow
record.

Table 15. DFI Table for the ISAM LOAD Subroutine

170

ISAM ADD (CHART MU)
Description of Function

The ISAM ADD subroutine has three entry
points:

ISADO Entry point for the open function,
ISAD Entry point for the ADD function,
ISADC Entry point for the close function,

and is used to add records to an indexed-
sequentially organized disk file.

Description of Operation

ISADO: This entry point begins by checking
tye type code in the DFI table to ensure
the file is an ADD type (/000). A diag-
nostic is issued if the type code is in-
correct. The index buffer address is
checked to ensure it is on an even word
boundary and diagnosted if it is incorrect.

Next the ISAM file label is read into the
index buffer. The key length and record
size from the label is compared with the
key length and record size in the DFI
table; if they are not equal a diagnostic
is issued. Otherwise, the information
contained in the ISAM file label is moved
to the DFI table.

The first sector of index is then read in-
to the index buffers, the index entry
pointer is set, the index entry number is
set to 1, the add record area is blanked
out and the return code is set to indicate
the file is opened. The routine then re-
turns to the calling sequence.

ISAD: This entry point is entered each
time a new record is to be added to the
ISAM file. Upon entering the routine, the

return code in the DFI table is checked to
determine if the file is open, or if there
are any terminal type errors in the return
code. If the file is not open or if there
are terminal errors, a diagnostic is is-
sued. Next the index entry to govern the
new record is located, and from that entry
it is determined where the new record is
to be placed. This new record can be
placed in either of the following:

l. P.D. area, or
2. Overflow area.

When the new record is to be placed in the
Prime Data area, the routine searches the
cylinder, sector by sector, until the se-
quential location of the record is found.
The last record on this cylinder is then
moved to the next available overflow sec-
tor and the index is updated.

The records are then shifted one record
location at a time to the right until the
location of the add record is vacated.
The add record is then moved into this
location and return is made to the calling
sequence. The addition of add records to
the Prime Data area is done in this fash-
ion so that records will not be lost in
case of a CPU or disk error during an add
function. Duplicate records can occur
with this method.

When the new record is to be placed on the
overflow area, the routine searches through
the chain of overflow records until the se-
quential location of the new record is
found. The new record is placed on the
next available overflow sector and either
the index is updated or the sequence-link
control fields of the records are updated
to keep the chain of overflow records in
sequence. The sector addresses in the in-
dex or sequence-link control field are
relative sector addresses from the begin-
ning of the file. The routine then re-
turns to the calling sequence.

Before each non-error return, the add re-
cord area is blanked out.

ISADC: This routine builds an updated ISAM
file label in the index buffer and writes
it on the first sector of the file. The
routine sets the return code word in the
DFI table to indicate the file is closed
and returns to the calling sequence.

Calling Sequences

LIBF ISADO

DC Address of the DFI table
LIBF ISAD
DC Address of the DFI table
LIBF ISADC
DC Address of the DFI table
Part Two: 1130 RPG Object Program 171

*Return codes for ISAM ADD are as follows:

Return Code

/5555
/8030
/8031
/8032

/8033

/8034
/8035
/8036
/OFFF

Word Contents
0,1,2 DSA
3 The key length in characters.
Maximum length is /0032.
4 The length of the record in words.
The maximum entry is /0140 (one 320~
word record).
5 The address of the index buffer.
This address must be on an even-word
boundary.
6 The address of the record being added to
the file.
7 /0000 to identify the ISAM add routine.
§ The index entry number in process.
9 The return code * for this operation.
10 The prime data record number in process.
" The address of the index entry.
12 The number of index entries per sector.
13 The index entry length in words.
14 The number of records per sector
15 The record number of the last prime data
record processed.
16 The number of the last index entry for the
file.
17 The sector address of the last prime data
sector.
18 The sector address of the last index sector,
19 The sector address of the next overflow
sector.,
20 The record number of the next overflow
record .
Table 16. DFI Table for the ISAM ADD Subroutine

172"

Meaning

File is open
Not an add function
File is not open

Key length in DFI table not same as
key length in label

Record length in DF| table not same as
record length in label

Key is presently on file
Overflow area is full
Index buffer not on even-word boundary

File is closed

ISAM Sequential (Chart MV)

Description of Function

The ISAM Sequential subroutine has four
entry points:

ISEQO Entry point for the open function,

ISETL Entry point for the set lower limit
function,

ISEQ Entry point for the retrieve/update
function,

ISEQC Entry point for the close function,

and is used to sequentially retrieve/update
records on an ISAM file.

Description of Operation

ISEQO: The open entry point begins by
checking the type code word in the DFI
table to ensure it is a sequential process-
ing type file. A diagnostic is issued if
the type code is incorrect. Next the in-
dex buffer address and data buffer address
are checked to ensure they are on even-
word boundaries and a diagnostic is issued
if they are incorrect.

The ISAM file label is read into the index
buffer next. The key length and record
size from the label are compared with the
key length and record length from the DFI
table to ensure they are equal. Again, a
diagnostic is issued if either is incor-
rect. The needed information is moved
from the label to the DFI table, and the
first sector of index is read into the
index buffer.

The index address pointer is set to the
first entry and the index entry number is
set to one. The prime data number is then
set to zero, the return code is set to
5555 to indicate that the file is open and
the routine returns to the calling se-
guence.

ISETL: ISEQ is entered next if the file is
to be processed from the beginning. If
the processing is to begin at a lower lim-
it, the ISETL entry point is entered. 1In
this routine, after a check to see if the
file is open, a search of the index is
performed until the entry governing the
low limit key is found. A test is per-
formed to determine if the low limit re-
cord is located on the prime data or the
overflow area. The determined area is
searched until the record or the next
higher record (if low limit is not on

file) is found, and if the record is in the
overflow area, a switch is set to indicate
the record is in that area. The SETL
switch is set on, the PD record number and
pointer are set to the found record, the
index pointer and number are set, the
update-write switch is set off, and the
routine returns to the calling sequence.

ISEQ: This entry point is entered to se-
quentially retrieve/update records on an
ISAM file. This routine starts by making
sure that there are no terminal type errors
in the return code. If the SETL switch is
on, it is turned off and the routine re-
turns to the user because the record is
presently available from the ISETL routine.

Next, an update with a write is checked

and if this condition exists, the record

is written and the return is to.the call-
ing sequence. Next, the record number is
checked; if zero, which indicates the first
time, the first prime data sector is read
and the record address and number are set.
If the record number is not zero, the over-
flow switch is checked and if it is off,
the next record is retrieved from the prime
data area except when end of cylinder, in
which case the record is retrieved from the
overflow chain or from the next prime data
cylinder.

If the overflow switch is on, the next re-
cord is retrieved from the overflow chain.
If the present record is the end of over-
flow chain, the next index entry is re-
trieved, the prime data sector is read in,
and the record address and number are set.
After any record is retrieved, end of file
is checked and if found, the return code
is set to hex FFFF.

ISEQC: The routine at this entry point
causes the file to be closed by writing a
sector if an update has been requested

but no write has been performed yet. The
return code is then set to OFFF to indicate
the file is closed and a return is made to
the calling sequence.

Calling Sequences

LIBF ISEQO
DC Address of the DFI table
LIBF ISETL
DC Address of the DFI table
LIBF ISEQ
DC Address of the DFI table
LIBF ISEQC
DC Address of the DFI table
Part Two: 1130 RPG Object Program 173

Word Contents

0,1,2 DSA

3 The key length in characters.

Maximum length is /0032.

4 The length of the record in words.

The maximum entry is /0140 (one 320-
word record). The record length must
be the same as the record length in the
file label .

5 The address of the index buffer.

This address must be on an even-word
boundary .

6 The address of the data buffer.

This address must be on an even-word
boundary .

7 /0001 to identify the ISAM sequential re-
trieve routine.

/0010 to identify the ISAM sequential up-
date routine.

8 The address of the key hold area if proces-
sing starts at a point other than the first
record in the file.

If the entire file is being processed, the
value is /0000.

9 The return code * for this operation.

10 The address of the record in process.

11 The address of the index entry used to
locate the record.

12 The number of index entries per sector.

13 The index entry length in words.

14 The number of records per sector.

15 The update-write indicator.

16 The number of the index entry in process.

17 ISETL switch to indicate low limit record
found.

18 The internal switch used to indicate that
the last record in the overflow area has
been found.

Table 17.

174

Word

Contents

The read/write indicator. If the routine
type (position 6) is retrieve, this entry
should be /0000. If routine type is up-
date, this entry is /0000 for retrieve
and /0001 for update.

20

The prime data record number in- process.

*Return codes for ISAM sequential are as follows:

Return Code Meaning

/5555 File is open

/8040 Not a sequential retrieve or update
function

/8041 Index buffer not on even-word boundary

/8042 Data buffer not on even-word boundary

/8043 Key length in DFI table not same as
key length in label

/8044 Record length in DFI table not same as
record length in label

/8045 File not open

/8046 Write before read on update

/FFFF End of file

/OFFF File is closed

DFI Table for the ISAM Sequential Subroutine

ISAM Random (Chart MwW)

Description of Function

The ISAM random subroutine has three entry
points:

ISRDO Entry point for the open function,

ISRD Entry point for the retrieve/update
function,

ISRDC Entry point for the close function,

and is used to randomly retrieve/update an
IsAM file.

Description of Operation

ISRDO: The routine at this entry point be-
gins by checking the type code to ensure
the file is random retrieve/update. If
incorrect, a diagnostic is issued.

Next the addresses of the two buffers are
checked to ensure they are on even-word
boundaries. If either is incorrect, a
diagnostic is issued. The ISAM file label
is read into the index buffer and the key
length and the record length are checked
against the entries in the DFI. If they
are not the same, diagnostics are passed
back to the user. Information from the
label is then moved to the DFI and the cor-
rect word counts are placed in the index
and data buffers.

The first index sector is read and the
pointers are set to the first index entry.
The first-time switch is set on, hex 5555
is placed in the return code to indicate
the file is open, and the routine returns
to the calling sequence.

ISRD: The routine at this entry point
starts by checking the return code for any
error that would hinder processing. If
none is found, a check is made for an up-
date file with a write. If found, the
write is performed after which the routine
returns to the calling sequence.

If the condition is not update with write,
a check is made of the first-time switch.
If this switch is on, a search is made of
the index from the beginning. If the
switch is off, the requested record key is
checked against the present index entry.

If the key is less than the present index,
the search begins again from the first in-
dex entry. If the key is equal to or
greater than the present index, the search
continues from this point. When the cor-
rect index entry is found, the key of the
requested record is compared against the
prime data key in the index entry to deter-
mine if the record is on the prime data
area or in the overflow chain.

When this has been determined, a search is
made of the area. When the record is found,
the address of the record is set and the
routine returns to the calling sequence.

If the record is not found, the return

code is set to indicate no record found
and the routine returns to the calling

sequence,

ISRDC: The routine at this entry point sets
the return code to indicate that the file
is closed and returns to the calling se-
quence.

Calling Sequences

LIBF ISRDO
DC Address of the DFI table
LIBF ISRD
DC Address of the DFI table
LIBF ISRDC
DC Address of the DFI table
Part Two: 1130 RPG Cbject Program 175

Word Contents

19 A read/write indicator. If the routine
type (position &) is retrieve, this entry
should be /0000. If routine type is up-
date, this entry is /0000 for retrieve and
/0001 for update.

*Return codes for ISAM random are as follows:

Return Code Meaning

/5555 File is open

/8050 Not a random retrieve or update
function

/8051 Index buffer not on even-word boundary

/8052 Data buffer not on even-word boundary

/8053 Key length in DFI table not same as
key length in label

/8054 Record length in DFI table not same as
record length in label

/8055 File is not open

/8056 Write before read on update

/8057 Record not on file ‘

/OFFF File is closed

Word Contents
0,1,2 DSA
3 The key length in characters.

The maximum length is /0032,

The key length must be the same as the
key length in the file being accessed.

4 The length of the record in words.

The maximum entry is /0140 (one 320-
word record). The record length must be
the same as the record length of the file
being accessed.

5 The address of the index buffer.

This address must be on an even-word
boundary .

6 The address of the data buffer. This ad-
dress must be on an even-word boundary.

7 /0100 identifies the ISAM random retrieve
routine.

/1000 identifies the ISAM random update
routine.

8 The address of the key hold area contain-
ing the key of the record to be processed.

9 The return code * for this operation.

10 The address of the record in process.

1 The address of the index entry used to
locate the record.

12 The number of index entries per sector.

13 The index entry length in words.

14 The number of records per sector.

15 The prime data record number.

16 The number of the index entry in process.

17 A first-time switch. This switch is set off
after one record has been processed.

18 An internal switch used to indicate the
record found is in the overflow area.

Table 18. DFI Table for the ISAM Random Subroutine

176

CORE DUMP TRACE OF AN OBJECT PROGRAM

This section is presented as an aid to
those persons who have occasion to examine
areas of a core storage dump of an RPG ob-
ject program.

Figure 24 shows the source statements for
a disk to printer program and four maps
which are produced by the compiler. These
maps show the hexadecimal address of indi~
cators, field, -literals, and key routines
relative to the beginning of the generated
mainline program. These maps are identi-
fied by ,@.,Q@, and @ in Figure 24.

The Core Load Builder, if requested, will
produce a core map showing the actual

core locations for the core load, the sys-
tem subroutines address and the mainline
program execution address. These ad-
dresses are identified by and ® in
Figure 24.

To find the beginning of the RPG generated
mainline program, subtract hexadecimal 11
from the execution address. The actual
core load addresses for the RPG indicators,
fields, literals and key routines are
calculated as follows:

® Subtract hexadecimal 11 from the execu-
tion address and then add the address
of the desired indicator, field, liter-
al, or key routine.

For example, the actual address of the To-
tal Lines routine (Figure 25) is calcu-
lated:

® O020F (execution address)
- 111
01FE
047D (total lines address)

057B (actual core address)

The RPG Core Image Header is located at the
execution address minus hexadecimal 002F.
(Further information on the Core Image
Header is contained in IBM 1130 Disk Mon-
itor System, Version 2, Programming and
Operator's Guide, Form C26-3717.)

The pseudo register area is located at the
execution address minus hexadecimal 0010.

The 28 word Key Routine address (FAT) table
is located at the execution address plus
hexadecimal 0002.

The fixed length routines (Fixed Driver)
of the mainline program are located start-
ing at the execution address plus hexa-
decimal O01E.

The variable length routines of the main-
line program start at the execution ad-
dress plus hexadecimal 013F.

To calculate the address of the current
I/0 area for a file, PRINT, defined in
Figure 24 will be used as an example.
Since this is the second file defined in
the program, the IOD address for this file
is given in the key addresses map as File
Seq 2. (File Seqg and IOD are interchange-
able in meaning and usage.) The address
of File Seq in this case is hexadecimal
0224.

To this address must be added the execution
address minus hexadecimal 11:

® 0224 (address of File Seq 2)
+ 020F (execution address)
0433
- 11

0422 (address of the PRINT IOD)

Finally, the address of the current I/0
area is found in word4 of the IOD, so a

3 is added to the IOD address and location
0425 contains the address of the current
I/0 area for the PRINT file (03E6).

The address of the DFI table for a disk
file may be found by obtaining the IOD ad-
dress for the file and adding hexadecimal
6 to that address. Again referring to
Figures 24 and 25 INDISK is the first file
defined in the program and its address
(0324) is listed for File Seq 1 under Key
Addresses. To this address is added the
execution address minus hexadecimal 11 to
obtain the IOD address for this disk file.
To the IOD address a 6 is added to obtain
the location that contains the address of
the DFI Table. The following steps sum-
marize this calculation:

) 03AE (address of File Seq 1)
+020F (execution address)
058D
- 11
05AC (address of I0D for INDISK)
+ 6
05B2 (address of DFI table for

INDISK FILE)

Further information on the format and con-
tent of DFI tables is contained under Li-
brary Subroutines.

Part Two: 1130 RPG Object Program 177

PAGE 2

| Vi-0 1130 RPG RPGOBJ
SEQ@ NO PG LIN SPECIFICATIONS COL 6 -~ 74 ERRORS
H
ool FINDISK IPE F 120 DISK
0002 FPRINT 1] F 120 PRINTER
0003 TINDISK AA 01
0004 1 1 120 RECORD
0005 OPRINT 0o 1 01
0006 o RECORD 120
00Q7 (4] 20 'RPG*
PAGE 3
INDICATURSCD
IND DISP IND DISP IND DISP IND DISP IND DISP IND DISP
MR 0150 [+]+] 0151 OF 0182 Qv 0153 1P 0154 Lo 015S
[0156 L2 0157 L3 0158 () [33 LS 015A L6 0158
L? ¢15C L8 01SD L9 015€& LR 01SF H1 0160 H2 0161
H3 0162 H4 0163 HS 0164 H6 016€5 H?7 0166 H8 0167
H9 0168 o1 0169
FIELD NAMES@
FIELD DISP L T O FIELD DISP L TOD FIELD oIsP L T D FIELD DISP L T D
RECCRD 016A 120 A
LITERALS@
LITERAL LENGTH TYPE DISP LITERAL LENGTH TYPE DISP
RPC 3 A 01E3
KEY ADDRESSES OF OBJECT FRUGRAM@

NAME CF ROUTINE HEX CISP NAME OF ROUTINE HEX DISP
H + D LINES 046F TCTAL LINES 047D
CETAIL CALCS 04 6F TCTAL CALCS 047D
CHAIN ROUT 1 oa10 LCW FIELD 0426
EXCPT LINES o4¢€B CLOSE FILES 0S8F
FILE SEQ 1 03AE FILE SEQ 2 0224

END CF COMPILATICN

7/ XEQ L R

R 41 11F0 (HEX) wLS UNUSEC EBY CORE LOAD@
CALL TRANSFER VECTOR

RGERR 0C04

EBFT3 09BR4

LIBF TRANSFER VECTOR

RGMV2 OCDE

RGMV1 0C4aA

SEGIC OAEO

SEQCL OBGS

SECOP OA34

ZIPCGC 0914

FRATI1 0792

SYSTEM SUBROUTINES

ILSX4 oD9s

ILSX2 ODBD

ILSX1 0DDé6

020F (HEX) IS THE EXECUTION ADCR.
Figure 24. Object Program Core Dump Trace

178

PsEVDO

REGISTERS
CORE 1MAGE

01E0 020F 0000 FFFF 0000 001E 0000 01E0 0000 001D OC2F 1F7E 0091 - 0DD6 obep 0091 OD9B HEADER
01F0 0091 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 2000 0000 0000 [72FF | 0000
0200 | 0000 O3E6___01FE 0000 0000 0000 0000 0667 076 ©022F 0773 0000 0000 0Q6A8 0427 A4CQQ w+—EXECUTION
0210 0785| 0788 0310 066D 0770 0678 0776 O0€E6D 0678 G060E O1FE O1FE O1FE F [C1F ADDRESS
0220 OlFE__O1FE 0624 O060E 06839 OIFE C77F 078D 0638 6EFE 063B 259F 736E | 7401 020A 7403\
0230 0zZ0A C480 020A DOCC 4C80 0200 6580 O020E c€oo0C D101 C400 0329 4CAO 020E (€007 D107 FAT
0240 4480 1FFE 1111 4C00 0247 0000 7009 Ca00 035D 4C20 02F2 6500 035E COl1C DO1lC C100
0250 4C2¢ 02C2 7101 74FF ca26r 70F9 €600 0352 c013 r£o013 1010 D100 7101 74FF 026D 70FB
0260 CcoC1 DOA7 C480 0208 DOA2 C008 D400 0383 4CEQ 0207 0009 0000 0016 0000 0001 c400
0270 035D 90FC 4acC18 0301 6580 0222 6D00 0200 Cc102 D400 0207 C100 D400 0201 6580 0201
0280 Cc106 D400 0201 €580 0201 C103 ©400 0201 c400 034D 180F D400 034E 1810 D400 0340 FIXED DRIVER
0290 70D7 €580 0209 c103 D002 CODE D400 0367 C400 0202 9400 O020E 4C18 0317 6580 0209 —
02A0 C101 D400 0207 70C4 6580 0207 C101 D400 020A 6000 o020C C100 D400 020£ 6580 020E (ﬂAINL/NE)
0280 C103 ©400 0201 c101 D400 O0O20FE C004 D400 0209 4C80 O020F 0220 65860 020A C101 D400
02ca 0207 70A6 CO01D D4a0O 020Cc CO15 C400 020E 7401 0200 7401 020E C480 020D 9400 O026E
o2co 4C20 o2Ce co0C ECO00 020 DOO2 4480 1FFE 1120 4C00 0256 0000 0000 0000 0000 1120
02EQ 035D COOF 4C18 OZEB 6580 020E C104 €009 9008 4C1B 026F C400 o218 D400 0207 4cCs8o0
02F0 0207 0000 6500 0383 €100 D101 7101 74FF O'GOO 70FB C400 0218 D400 0207 4C80 0207
0300 000A C400 0212 D400 0203 1010 D400 0205 D400 0206 6500 0310 6D00 0208 4C80 0203
0310 4Cg0 0227 6038 0000 0000 0000 Q1FE 1000 7002 C003 DOFC 4C00 026F 1000 6580 020E
0320 c101 C007 4C00 0236 0000 0O0F1 O1FE OILFE 0000 0000 DOO1 4400 0000 0000 6804 CO003 .
0330 804C CoOO01 4400 0000 c052 4804 0000 7014 C055 8042 DO0S3 6804 C003 4C00 088D 0000 IND/CﬂTDRS
0340 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 [0000 0001
0350 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 EIELDS
0360 0000 0000 0000 0000 0000 0000 0000 0901 | 77FF 0000 0040 0000 00CS 0000 Q040 000E 4~
0370 OOFF 0000 COD9 0000 0000 0000 0040 0000 00C8 0000 0040 0000 00C7 0000 0040 0000
03€0 00C9 0000 0040 0000 Qoiz2 0000 €000 0090 €040 0060 00E3 0000 0040 0000 00CS 0000
0390 0040 0000 0009 0007 OOFF 0000 00C3 0000 0000 0000 OOF4 0000 00E2 0000 OOE3 0000
03A0 0006 0000 ooc4 0000 00CS 0000 o00Dg 0015 QOFF 0000 0000 0000 ooc3 0000 00D6 0000
03R0 00C3 0000 o©0C1 0000 @0E3 0000 60C9 0000 ocCcé 0000 00D5 0000 0000 0000 0040 0000
03Co 0040 0000 0040 0000 Q040 0000 C040 0000 0040 0000 0040 0000 00C9 0000 0000 0000
03C0 00DS 0000 OOES 0000 00D6 0000 00C9 0000 00C3 0000 00CS 0016 QO0FF 0000 00CY9 0000 '/0 AREA
03E0 0000 O2FF 0ocg _ooC7 Q0C7 003C rGOFO QOFO0 0000 C0F0 O0O0F0 OOFO0 00FO 17FF 00D9 p7CT =+
03F0 0040 0000 0040 0040 0040 0O0OC1 0040 00C3 0040 00C3 0000 0040 00D6 0040 00E4 0040
04C0 00DS5 0040 O00OE3 0000 0040 OOE2 0040 0040 0o0oD9 17FF 0040 00CS 0000 0040 00C3 0040
0410 00CS 0040 _00C9 0040 00iES_ 0000 0040 00C1 0040 00C2 0040 00D3 0040 00C5 0000 0040 FILE SEQZ
0420 0040 0009 | 0446 0000 0475 O03E6 0427 COdygrigble B0 0445 DOlA 6918 6931 7101 69F6 6919’/00
0430 6919 6DO0OC 0201 7000 4377 0000 70FD CAESeCﬁOn 5 D003 71FF C007 DS00 0000 74FF 043D
0440 70FB 4C80 020D 4040 03ES O03ES 7007 Mainli 30 03E6 03E6 0078 4480 1FFF C480 0208
0450 4C18 0462 D008 CO12 Doog C480 0208 90((tn me)lB 7002 4377 30DO0 4377 2000 O03ES 0468
04€0 4C80 020D (€002 COF9 70F7 2010 2000 30DO CC00 9012 4C20 046E 4CEO 0468 1€01 4C20 / AREA
0470 046C 6101 6D0Q0 0348B 70F7 €480 0208 D001 I 4377 0000 4C80 020D 0003 70C4 012C 02D7<'—/o
0480 0000 0000 0200 0686 0coQ 0003 0000 @COO 0000 0000 0000 0011 0150 0168 0000 0000
04S0 0001 0000 0000 0001 0001 0000 €000 ©000 0000 0000 0000 0000 0000 0000 0000 0000
04A0 0000 0000 0000 0000 000C 0000 c000 00060 0000 0000 0000 0000 15FF 0040 0040 0040
04E0 0040 0040 0000 0040 0040 0040 0040 0040 €040 0040 0040 0000 0040 0040 0040 0040
04CO 0040 0040 0040 0040 0000 0040 0100 OOFO 00FO 0100 00F0 O0O0OFO0 0400 0000 00FO0 OOFO0
04D0 QOFO 00FO O0O0F0 0400 O0FO0 O00FO 0000 CO©OFO COFQ 00F0 0100 OOFO COFO 0200 O0OFO0 0000
04E0Q Q0FO0 00FC 0602 00FO0 00F0 O0OFO COFQ OOFO 0000 00F 0 Q0F0 0702 OOFO0 O0O0FO0 O00F0 OOFO
04F0Q COFO0 0GCO 00FO Q00FO0 00F0 0702 00F0 OOFO 0OF0Q Q0FO0 0000 O00FO O0FO OOFO0 00FO 17FF
0500 0040 0040 0040 €000 0040 0040 0040 00C1 0040 C€0C3 0040 00C3 0000 0040 00D6 0040
0510 00QE4 004¢ 00ODS 0040 00E3 0000 C040 00E2 0040 0040 0O0D9 17FF 0040 00CS 0000 0040
0520 00C3 0040 00CS 0040 C0C9 0040 00:5 0000 0040 00C1 0040 00C2 0040 00D3 0040 00CS
0530 0000 0040 0040 coCc9 0040 QO0CS 0040 OEFF 00oD9 0000 0040 00CS 0040 00C7 0040 00€9
Figure 25. Analysis of a Core Dump (Part 1 of 4)

Part Two:

1130 RPG Object Program 179

0840 0040 O00E2 0000 0040 0CE3 0040 00CS 0040 0009 O7FF 00C3 0000 00E4 O0O0E2 O00E3 00D6
0550 00D4 00C5 00D9 15FF 0000 00D3 00D 00C3 00C1 O00E3 00C9 00D6 00DS 0000 0040 0040
0560 0040 0040 0040 0040 0040 00C9 0000 00DS 00ES 00D6 00C9 00C3 00CS 16FF 00C9 0000
0s70 00D5 O00ES 00D6 00CY 00C3 00CS 0040 00C4 0000 00C1 O00E3 00CS 0040 0040 0040 0040
0580 00CS 0000 0005 OOES 00D6 00C9 €OC3 00CS 17FF 00DS 0000 O0OE4 00D4 00C2 00CS 00DS
0590 0040 0040 0040 0000 0040 0040 0040 0040 0040 0040 00C3 00F4 0000 O00E2 00E3 0006 FILE SEQ.L
0540 00D4 00C5 00D9 0040 C3FF 0000 _00D5__ 00C1 00D4 _00CS__17FF__ 00E2 050D 0SE0 _ 0SBD 0534)/’100
0SE0 0sp? __osca [0000 0207 0209 0005 003G 0000 047E 0CE4 0004 5555 0634 0787 4371 0582
05C0 COFA FO1A 4C98 O0SEBC FO17 EO14 [002 4480 1IFFE 0000 0000 436E 0582 COED FOOC 4C98
05D0 0SCA F009 EO007 D002 4480 1FFE 0000 4C80 020D €001 T7FRFF OFFF 5555 COFB DOD8 7004
0SEO 1010 DODS 7402° 0200 436E 05B2 COC4 4CI0 0602 FOIF 4C20 OSF?7 6908 6580 0207 Cl1E
0SFO EB19 DI11E 7406 020D 6500 0000 7008 FO11 ECE1l 9011 4C20 OSFOD EBOF 800D D002 4480
0600 IFFE 0000 C089 DOAB D400 0201 4C80 020D 4040 FFFF 8000 0017 1006 06D6 4cso 0217
0610 7001 0000 4368 0000 0368 C400 0219 D400 0208 4C80 0219 6680 0207 6500 0623 6000
0620 0207 4E00 0000 0367 063F 02E1 0&10 0387 C400 0627 4c28 02F2 E009 D400 0627 (€400
0&30 0221 D400 O020E 4C00 0291 0000 3FFF 4C00 0628 0618 0637 02E1 0610 0240 SCS5C 6600
0640 0645 6E00 0207 4C00 02A4 O05AC 0836 6600 064D 6E00 0207 4C80 0209 6680 0222 6E00
0650 0209 6600 0624 6580 020A C102 D201 €103 D202 €480 0207 D203 €006 EAO3 D203 4cC28
0€60 0628 4C00 02BC 0000 O6BE 4366 0000 0388 4366 0011 O03El 4C80 0664 6C00 0207 7428
0670 0207 6500 022F 6D0O 0209 6580 0214 6DOC, ! nenA acso 0209 6C00 0207 741A 0207 6500
0680 022F 6D00 0209 6580 0216 6D00 020A Ace\/‘"“_’l"e 19 6CO0 0207 740C 0207 6S00 022F 6000
0690 0209 6580 0226 6D0O 020A 4CB0 0209 65e5ection o Cc102 D400 0206 7404 O020E C480 020E
0640 D400 020E 6500 06A8 ecoe o200 4ceo oz20(Mainlineho 020A c102 Da0o 020E 7403 020E C480
0680 020E D400 0201 C101 904E 4C18 08BB C101 D001 4400 0664 6580 020A C102 D400 020E
06Co C480 020 D400 020E 6500 06CA 6000 0200 4C80 O020E 6580 020A €101 DO31 C104 902F
0600 4CA0 0209 7403 020A 70F5 6102 €DOO 0200 6580 030A C102 D400 020E 7402 020E C480
06EC 020E D400 O020FE C4EC €208 4C18 O06ED 6600 06ED 6E00 020D 4CB0 020E 7401 0208 74FF
06F0 0200 70E6 €480 0208 4C20 06FD 6680 0208 C201 4C98 0207 7401 0208 4C80 0207 0664
0700 OLFE 6580 020A €102 C400 020 7402 020E C480 020E D400 O020E 6600 0712 6E00 0200
0710 4CB0 O020E 4C80 0207 6580 020A C102 DA0O 020E 7402 O020E C480 020E D400 020E 6600
0720 072A €E00 020D €6CO 0729 6E00 0208 4C80 020E 3100 4CB0 0209 C400 0348 D400 0350
0730 €400 034C D400 0351 1010 D400 0352 4C00 0247 62FE C600 0352 EE00 034D D600 0352
0740 7201 70FE 62FE C600 0352 4CA0 0209 7201 70FA 4C00 026F 62FE 1010 D600 034D 7201
0750 70FB 4CO0 026F (€400 0343 Daoéd 0350 caoo 034C D400 0351 7402 0225 4C80 0225 €400
0760 0367 4C9e 0209 6600 0769 6E00 0208 4C00 08DE 0000 0000 0000 3000 C400 034B 4C98
0770 0209 4C00 0714 O07SF 0664 0422 072C OIFE OBE7 0739 OIFF OBE? 0760 OLFE 0422 0748
o7eo 01FF OBE7 0753 OIFE OBE7?7 4480 O0SAE _CA0Q0 0213 D400 0207 _4C80 0207 4480 05B1 __4C00 NT
0790 0312 0000 [697F 6580 1°FS 7067 ODE3 aco00 088C 7E7E 03ES 0000 6001 1082 74FC 07co-+—"RINT L
0740 7033 108 7420 07CO 7408 O7FA D400 0020 7401 07A7 7029 7401 0027 7018 €045 7001
o7eo COEE 6500 0435 71FF 6000 0028 €129 7058 0799 3200 FFOO 0002 0016 0001 FFFF F100
07co 0020 08F6 COFB 4C08 07CC COF6 C034 coOD1 FOFE 4C20 08BC DOF2 COCC 1808 EEBCA DOCY
o7co 4400 090A 6680 O07F9 €600 0422 FOC2 8OE2 4C02 O07DB 88DF 1008 4818 B8BDE 7201 708D
07E0 €012 DODE 8017 8016 D001 6600 0018 1810 12C0 D480 O07A7 COOF 90D0 DOOD C004 DOB7
07F0 €008 D008 70B8 0020 €000 3480 0030 000C FFC4a FFC4 FFCa 0000 2000 69B4 6A15 281S
o8co D899 0874 1005 4C28 07AE Cc480 07B2 1eslibraryes20 700E 0868 1808 4818 7101 7101 C88A
0810 6906 6500 O03E6 6600 0768 2001 4CO00 043Subroutines4 DOE2 188C 90A1 4C08 O7B0 909C 4818
0820 702E D066 10A0 0852 1808 4C20 0823 C060 D095 7101 6S0B 7101 6000 O0BFC COCD D046
0830 188C 9059 1802 4C20 07B0 9480 04SE 4C10 07€0 DOBF DOBF 90BC 4C28 0780 (€480 0836
0840 864a 90R7 D092 C8B2 DOBE D82E 4400 060A 7401 0027 O08A9 7401 0032 1000 708F Co024
08s0 4830 70FD 0823 180C 4C20 0852 COAC DOGE 1810 1084 DO2C 4C20 0860 1084 4C18 0780
08€C 9096 4C30 0878 6200 4c10 o0e78 €010 €201 4C18 0878 8019 7201 4C18 0878 801C 7201
0870 74FF 08C6 70F9 70BF 0000 0000 2000 3700 €012 1240 EB48 DOOE CO0A 4C18 0BOE COOA
oss0 4C10 0885 0805 70C7 0003 083E 70C4 0001 FFFF 3404 0000 0001 6A30 0878 DO74 1001
0890 4C10 08SF 1007 1808 EB2E FOF4 4820 7013 D070 DOFO 0828 74FF 0032 1000 700C 1001
Figure 25. Analysis of a Core Dump (Part 2 of 4)

180

08A0 4810 7009 C060 E865 C064 COE4 90EA DOE2 4C08 0898 0819 COS7 ESSC DOSPE 4C10 08BC

08B0 €057 4C20 08CO COAF 1004 4C10 0€C8 CO4E DOAF 4050 7401 0027 6600 0768 4C80 0796

osceo 90CA D046 70F9 8000 8080 3401 0000 3402 C400 O07FB 4C20 07C1 4030 7401 0027 COA4

0800 4C20 08DB D036 74FA 0875 70E6 082D 74EF 0032 70E2 70E1 74FD 0874 700E COAB 4C20

08EO 08E7 C400 0876 1008 180F FOAS C[COA3 DO9F €020 4C04 0BF8 1801 ACO04 OBFA CO098 4818

08F0 70CB 4C28 0901 08DC 7401 0032 1000 70C4 €008 7001 C089 4480 045F 4C18 OBEE COC4

0900 D089 0886 70F1 2000 0004 3440 002 3701 0000 2000 08CD__ 10A0 62F8 DEOO 0028 7202

0910 70FC _4C80 C90A 62FE [€960 6580 1FF2 EAS8 10A0 DO2F C100 18D0 1664 D037 1084 D0z6-<+—21PCO
0920 1010 1084 0024 1084 0023 C101 CNOB €102 D040 €103 DO7E C580 0006 DO11 7106 6944

0930 10A0 C400 0000 1800 1081 D076 1010 7400 0946 7045 1087 DOGE 6580 O09AA CS00 0000

0940 7400 09AC 7007 1008 7006 0000 0000 0000 0000 €000 EO062 DOSE CO61 7400 0949 1010

0950 DOF8 COSE 7400 0948 7010 7400 0049 7001 700A DOS1 T74FF 09A9 7018 C480 0969 EO0S52

0960 EE4A 7006 7009 1808 €846 7400 0047 7028 D400 0000 7401 0969 7AFF 09A9 7006 6600

0970 0000 6500 0000 4C00 0000 1010 7400 0046 7003 7400 0949 7088 7401 0932 7081 1082

09€0 1005 ©O20 1010 1087 4C18 098D €20F 1240 72F9 1000 6A1F 1010 901D 1082 ES20 7O0AB

0990 1800 DOIF 1010 1083 100C D019 1083 4acCae 00A2 9016 DQOF 1010 900D DOOC €680 09AA

09A0 CO0D 1200 EBOC 1806 1086 1800 COOA 18DO 708BF___ 0000 0000 0000 0000 FFOO 0001 0000 cgors
0980 0000 0000 OQOFF__07CEB [7F7F 7FTF T7F7F TFIF FF7F 7€7F 7TF7F 7F7F IF7F F7F TFTF TF7F 4

09¢0 7F7F 7F7F 7F7F 7F7F 7F7F 7F7F IF7F IF7F IFIF IFIF IFIF TFTF 7F7F TFTF 7FTF 7F7F

09F0 7F7F 7F7F TFIF 7F7F 7F7F G647F 257F 267F 677F 687F 297F 2A7F 6B7F 2C7F TF7F 7F6E

0A0C 7F7F 7F57 T7F6D T7F7F 7F15 SB7F 197F 1A7F SB7F 1C7F SO7F SE7F 1F7F 207F 7F7F 7F62

0A10 7F23 7F2F 7FTF TF7F 7F€L 7F4C OD7F OE7F AF7F 107F S17F S27F 137F SA7F TF7F 7F16

0A20 7F7F TF7F 7F7F 7F7F 497€ _407F __O17F 027F A37F __0A7F_AB7F _ 467F 077F _O87F___7F7F__ 7F1F SEQOP
0A30 7F7F__7F9R _ 7F4A 7F7F | 6979 6580 1FEF 4400 0A97 CO74 DAa00 0B37 C500 0006 4CO04 OBD9 “

0A40 C500 0004 4C08 OBCA 9062 4C30 OECA C€S00 0004 AS00 0003 1090 0480 0B38 9058 4C30

0AS50 OBCF 8104 4CO8 OBCF €500 0007 FAOO 0B37. =~ 4Cl8 O0A67 CA00 0B35S D10A C107 F400 0830

0AEQ 4C20 0AE2 C105 4C20 oBco 4coo oasz c10bibM@Y:a00 o834 4c20 oBCS C400 0838 €400 O0B2F

0A70 D500 O00GA C400 OB2E psoo0 ooos esg0 o@3Subroutines) paoo o083A caoo OAAA D202 7201 T7AFF

0Ag0 0B3A 70FR €400 0B3S D500 0000 €500 0001 7401 0B38 D480 0838 74FF 0B38 8500 0002

0A9C 0S00 0002 €015 D500 0009 4C00 GCEE2 OABS 6A13 6B13 6910 7101 6912 CA480 OAAB DACGO

0AAQ 0001 €500 0006 D400 0B3& 4C60__0A97 0140 5656 8017 4040 OSES 0645 1IF7E__OSAC OSEG SEQIO
0ABO 69FD 6380 1FEY 4400 0A97 COF8 0400 0©B37 C500 0009 FOED 4cC18 OACS €500 0009 FoEe 4~ SEQ
0ACO 4C20 0BCA COES C500 0009 7401 GB38 CAEO 0£38 74FF 0838 9102 4C10 OBEE C10A &C20

0ADO 0AD7 (€300 0005 4c1e 0820 ACO0 GBDE C500 0008 9500 0003 4C10 O0AFE CS500 0007 FO052

0AEO 4C18 OAF4 CS00 0004 8500 O000A DGOO 000A C500 0008 8043 DSO0 0008 CS00 0007 FO0A41

OAFO 4C20 0858 4CC0 0BE2 €500 0005 FO3D 4C20 OAE2 €034 DSOQ 0000 4C00 0BE2 CS00 000S

0800 F032 4Cl& OEO07 CO031 £CS00 0000 7019 C€S00 €000 F024 4C20 0B17 co28 1890 C025 4400

0B10 00F2 7400 OOEE 70FC €020 D500 ©€000 7401 0B38 CA80 0838 8012 D480 0B38 74FF 0838

0820 4400 0892 CS00 000§ FOOF 4C20 0BSB C€S00 0007 FO0O7 4C18 O0B44 4C00 0BE2 0001 0002

0830 00C9 00C6 OOE4 0000 0001 0000 €1SC OSAC 047€ €000 0000 €010 8011 8012 8013 8014

0840 8015 8016 FFFF OFFF 6680 0B38 C200 CA400 0B3A C400 OAAA D202 7201 T74FF 08B3A 70F8

0850 7401 0B3€ C480 0B3E 80D9 D480 0838 74FF 0B38 _4CC0 OBE2 €580 000A FODS 4C20 0BE2

0860 COE1l D500 0009 _4C00 ore2 [6901 €580 IFEC 4400 OA97 C109 SOCF acie oBSE €500 ooo7 <+ SEQCL
0B70 FOCO 4C12 OE7E €500 0007 FOBRC AC20 OBSBE €500 0000 FOB3 4&cia oBEA 7010 COB7 DS80

0BEC 000A C500 0008 90AA AS00 0004 1090 B8OA6 D480 0B38 COAS DS00 0006 4004 C0Ba 0S00

0BSO 0009 7050 OB22 7401 CB38 CA80 OB38 74FF 0838 9500 0002 4C10 0BBE CO9A 1890 CS500

0BAO 0005 4400 OOF2 C500 0007 FO8C 4C18 OBE4 COEF €085 D500 000A C081 DS00 0008 7400

OBEO 0CEE 70FD 4C80 0892 €500 000S F400 OE34 4C18 OBAF 70ED €400 0838 DS00 0009 7022

0BCO C400 0R3C D500 0009 701D C400 083D D500 0009 7018 C400 OB3E D500 0009 7013 C400

0BCO 0B3F D500 0009 700€ €400 O0B40 D600 0009 7009 C400 0841 DSO00 0009 7004 CA00 O0AA9

OBEQ DS00 €009 €580 0B37 €680 OAAC €780 OAAC 4C80 OAAF 7F22 TF2F 7F7F 7F7F 7F61 TFAC

OEFO OD7F OE?7F 4F7F 107F 517F _S527F 137F _SATF 7F7F__7F16 __7FIF__7FTF 7F7F__7FTF__497F _407F

0coo 017F _ 027F __427F 00¢C [0000 6935 6A35 €680 0C04 6906 4400 0C27 7500 6632 70F0 caco+—HGERR

Figure 25. Analysis of a Core Dump (Part 3 of 4)

Part Two: 1130 RPG Object Program 181

oc10
ocz20
0C30
0C40
0Cs0
0Cé&0
0c70
ocso
0CS0
0CAQ
ocseo
occo
occo
0CEOC
OCFO
oDoo
oD10
opzo
oD30
0040
opso
oceo
oc7¢
oDeo
op9o
OCAO
ODEQ
opco
opco
ODEO
0DFO
OEQOQ
0E10

OF20
OF30
OF 40
OFE0
OF €0
0F70
OoF&o
0Fg0
OF AC
OFEOQ
OFCO
OFCO
OFEOC
OFFO
10c0
1010
1020
1030
1040
1050

0000 DOZE 1004 1804 F829 440b 0028 cC025 188C 4C18 0C20 6600 0C39 6A22 0C00 0C40
co18 4c1e 0C2c FO1E 4C1€ 0C33 70EE 0C00 7101 6D00 0C3A 4C80 0C27 6500 0130 7580
007B 4DGO 0000 658C 0C3B 66€0 0CT3C 4C80 0C3A 0000 0000 0000 0000 0000 €000 4C00 REMV.L
0000 3A00 0001 O0B34 4C20 OBCS €400 oOBR38 0000 0B2F [686B 6780 1IFE6 400E €200 72014
7302 7027 6F€E3 6780 0000 4006 €302 4C04 0CSA 6873 7303 701D OC4E 6954 6ASS C300
1003 4C10 0C6S 7401 0CCB 1001 1804 4C04 0C76 1801 6580 007B 7121 8500 0000 D400
0001 €301 D400 0002 4C80 0CSC 7401 OCCA 70F0 6B3E 1808 804C 4C04 0C80 7401 0CCC
D400 0003 C100 7400 0CCA 7001 1888 1008 1£08 7400 0CCB 7010 7400 0CCD 7033 D200
73FF 7001 7019 7201 7400 OCCA 7028 7401 CCCA 1808 1088 7OEC 7400 O0CCC 7025 1884
€828 D200 73FF 701E 100C 1800 180C 1084 7400 0CCD 700E D200 1010 DO1C DO1C DO1IC
DO1C 6S00 OSAC 6600 0000 6700 1F7E 4&C meryoeas EBOF 70F0 7101 1010 DOOC 70C3 1804
1084 7201 EB806 70CE 74FF 0CCC 1000 70 0001 0OFO0 0000 C©O00 0000 0000 _CS00 000S REMY2
FO30 4C20 OAE2 €034 D500 0000 acoo osSubroutines,s o005 Fo3z acis 0000 €031 [6950 65804
1FE3 6A4F 6B50 C10C 4C04 OCE7 7002 7401 0D36 188C 4C18 OCFB 904F 4C18 OCF9 904C
4C18 OCF6 7401 O0OD3A 7401 OC3B 7401 0C39 7002 7401 OD37 1804 1088 6680 007B 7221
8600 0000 0[400 0002 C101 7102 €S2F D4aeo 000l €100 1808 8030 4C04 0D10 7401 0D38
D400 0003 7101 7400 oc37 7001 7007 C101 1884 C100 7400 OD3A 7024 7028 1010 DO16
€200 180& 10€8 D200 7201 1010 DO11 7300 7059 D0OOC DOOC DOOD D0OD DOOD 6500 0773
6600 0768 6700 1F7¢ 4C00 0668 0000 0000 0000 €000 0000 0000 0001 0040 00FO0 O0OOF
000D 100C 4C18 OD4g 1010 DOF4 C100 7001 CCF4 73FF T701E 7400 0D37 7015 7400 0D29
7001 701C 7400 OD3FE 7009 1884 FO0T% 4C20 0CSB COE6 7001 COE3 1084 7010 7400 OD3A
700D €8CC 7008 1884 100C 1800 180C 1084 70E5 7400 O0D37 7004 7001 EOD1 1888 7007
7400 OD3& 70FA 1884 7101 73FF_ 1000 7400 OD3& 70A4 1888 C2C0 1008 18C8 7401 0D36
0200 _70A3 7101 [708&F DS00 000A COf1 DEOO 0008 7400 OOEE 70FD 4C80 0B92 CS500 0005
0000 0B34 0091 00S1 0091 0091 0091 0091 0091 0091 0091 0000 D819 280E 690F 6ALO
6B11 6780 O0O0E4 0816 1002 44A8 002C 6109 080F 1140 4580 0D91 2000 6500 0000 6600
0000 €700 0000 <CB802 4CCO ODSB €009 7004 0600 0300 0000 OF00 00F7 0816 De13 2807
6908 6A0Y 6BOA 6780 0141 01BB CDBC 2000 6500 O03E6 6600 0768 6700 0141 C803 4cCcCoO
ODBD 407F 0001 9404 0091 0796 €093 DE16 280A 6908 6AOC 6BOD 6780 GOE4 6102 0810
1140 4580 oOCC3 2001 6500 O03E6 6600 0768 €700 1F7E C803 4CCO obp6 1804 03ES 0000
00600 030C 00C0 4C00 OCDE 0000 4CO0 OCAA 0C00 4C00 OABC 0000 4C00 0B65 0000 4C00
0A34 0000 4C00 0914 0000 4C00 0792 0000 C000 0000 0000 0000 0000 0C04 0984 0000
0000 0000 0000 0000 0000 0000 0000 0000 c000 0000 0000 0000 0000 0000 0000 0000
0000 0000 €000 0000 00CC 0000 0000 CCOO 0C00 0000 0000 0000 0000 FFFF 0000 0000
0000 0000 €000 FFFF 0064 0001 0000 0CO0 60CO0 0000 0000 0000 003F 0000 0203 0000
0000 0000 4003 0000 0000 0000 0011 0001 G000 0000 0000 0000 0000 0000 0000 0001
0001 010A 2000 0000 0000 0000 0001 00OC 0000 2090 0000 0000 0000 0000 - 2C90 0000
0000 000C 00CO0 0209 0000 0000 0000 0000 0000 0000 1219 0000 0000 1219 0000 0000
000C 0000 O1E0 0000 0000 0000 0000 C1A8 1000 2000 0000 0000 0000 9000 0000 0000
0000 000C 0000 0000 0000 0000 01CO 0000 0000 0000 0000 OO3F 0000 0000 0000 0000
00605 0000 0000 0000 0000 0000 0000 0600 €000 G000 0064 00CO 73FF 7012 0000 0000
0011 0000 0001 0006 0000 0000 0000 0001 0001 00SC 0000 0002 0000 0008 0000 0028
6161 40E7 CS5DE 4040 4340 4040 -40D3 4040 4040 4040 4040 4040 4040 40D9 4040 4040
4040 4040 4040 4040 4040 4040 4040 4040 4040 4040 4040 4040 4040 4040 4040 4040
4040 4040 4040 4040 4040 4040 4040 4040 0040 0040 0040 0040 0040 0040 0040 0040
0040 0040 0040 0040 0040 0040 0040 0040 0040 0040 0040 0040 0040 0040 0040 0040
0040 0040 0040 0040 0V40 0040 0040 0040 0040 0040 0040 0040 0040 0048 03CO O01BD
DOAE 4C28 OF86 C400 03C5 D400 0001 1£€10 4480 03C1 4480 03C1 D100 7101 €680 OFA6
6316 C600 102F D100 7101 7201 73IFF 70F9 4480 03C1 4480 03C1 4C00 OF86 000C §&CSC
SCE4 C5C3 C6D9 D940 CS5DS D940 D1D6 C240 E3C6 D9D4 0004 DSCE E3C5 4040 F710 4040
4040 4040 4040 4040 4040 C4C9 C1C7 DBD6E E2E3 C9C3 40C4 CSE2 E2C1 C7C5 40CS E7D7
D3C1 DSC1 E3C9 D6CS E240 4C00 109E 4C00 107E 4C00 10FA 74FE 10C2 1000 6580 10C2
4DO0 103E 6580 03C6 7120 6D00 093A 1010 D%CO 0938 COSD D066 CO5C DO6S C480 10C3

"__,—-——‘____———h_____‘__"____#/,______'”,_n_————~———~‘“‘~—___———————~—_ﬂ_________”/————~—-———————_—_—“

Figure 25.

182

Analysis of a Core Dump (Part 4 of 4)

All data at object time will appear in core

storage in the following format:

APPENDIX A: OBJECT TIME FORMAT OF DATA FIELDS

LLdd | 00Z.D, | 00Z,D, | 00Z.D,{...... } 00Z D
1 272 nn

1 373

where LL eight bits representing n-1 in

binary

dd = /FF for alphameric fields, or
eight bits representing the
number of digits to the right
of the decimal point for numer-
ic fields.

n = maximum of 14 words for numeric
fields, or maximum of 256 words
for alphameric fields.

Z = any hexadecimal quantity from
/0 to /F.

D = any hexadecimal quantity from
/0 to /F.

e Operations on numeric fields recognize
only the D's and consider Z, as the
sign of the number. Zp = /D is recog-
nized as negative. 2, = any other
hexadecimal number is considered posi-
tive. The result of an arithmetic
operation (ZADD, ZSUB, ADD, SUB, MULT,
or DIV) forces /F for all Z's except
Zn = /D for negative results.

e Numeric literals in the source program
are stored with Z's = /F.

Appendix A:

) Fields in an I/O area have the follow-
ing format:

121 22D2 ceee ZnDn

The Z1D] may occupy either the first
half of a word or the second half of
a word.

An exception occurs to this format when P
(packed) is specified for a disk file.
The following is the "packed" format of a
numeric field in the I/O area:

D]D2 D3D4 ceens DnZ

72 is the sign of the packed number. The
quantity D,Z may occupy either the first
half of a word or the second ‘half of a
word. This format requires a leading /0
for padding for fields whose length is
even. When this format is "unpacked" to
the form previously shown, Z's=/F will be
inserted.

Object Time Format of Data Fields 183

184

Add, Subtract, Numeric Compare 159
Flowchart 139
Allocation of Core Storage 104
Alphameric Compare 156
Flowchart 132
Analysis of a Core Dump 179
Assemble Phases 12
Calculation 1 13, 24
Flowchart 49
Calculation 2 13, 25
Flowchart 50
Chain and RA Files 13, 23
Flowchart 44
Control Levels 13, 23
Flowchart 46
Get 13, 24
Flowchart 48
Input Fields 13, 23
Flowchart 45
Linkage 13, 25
Flowchart 53
Multi-Files 13, 24
Flowchart 47
Output Fields 13, 25
Flowchart 51
Put 13, 25
Flowchart 52
Tables 13, 22
Flowchart 43
1z1I/0 12, 21
Flowchart 39
2 1/0 12, 22
Flowchart 40
31/0 12, 22
Flowchart 41
4 1I/0 12, 23
Flowchart 42
Assign Phases 10
Field Names 10, 20
Flowchart 34
Indicators 10, 19
Flowchart 33
Literals 10, 20
Flowchart 35

Blank After 158
Flowchart 138
Block Diagram 3
Break, Control Level 110

Calculation Compression Format 77
Calculations, Detail 110
Calculations, Total 110
Call Phase Routine 2, 16
Central Output Driver 97
Chaining Routine 110
Flowchart 114
Common Routines 16
Communication Area 4, 60
Compare, Alphameric 156
Flowchart 132
Complete Object Code Routine 4, 17

INDEX

Compression Formats 71
Calculation 77
Extension 73
File Description 72
Input 74
Output-Format 79

Control Block Usage 70

Control Blocks 57

Control Level
Address Table 58
Break 110
Hold Areas 90
Processing 114

Conversion, Record ID 158
Flowchart 136

Conversion, RPG 163
Flowchart 143

Core Dump Trace 177

Core Layout 14

Core Storage Allocation 104

Cl, C2, C3 Type Chaining 114

DTAB Table 88
Data Format 183
Detail Calculations 110
Detail Lines 109
Determine Record Type 109
Diagnosing Errors 5
Diagnostic Aids 67
Diagnostic Phases 10
Diagram, Program 3
Direct Access 167
Flowchart 148
Directory, Phase 55
Disk Subroutines
Direct Access 167
Sequential Access 166
ISAM Add 171
ISAM Load 169
ISAM Random 175
ISAM Sequential 173

Divide 161
Flowchart 141
Driver
Central Output 97
Fixed 91

Input/Output 90

EXTAB Table 88
Edit 165
Flowchart 145
End of File (EOFTS) Routine 103
Enter Phases 10

Enter Specifications

Calculation 10, 19
Flowchart 31

File 10, 18
Flowchart 28

Input 10, 18
Flowchart 30

Output Format 10, 19
Flowchart 32

Index

185

Exrror 5

Error Message Phases
Flowchart 38

Error Note Routine 16

Error, Object Time 158
Flowchart 137

Extended Diagnostics 1 Phase 10, 20
Flowchart 36

Extended Diagnostics 2 Phase
Flowchart 36

Extension Compression Format 73

External Reference Table 67

10, 21

10, 21

File Description Compression Format 71
File Input Tables 85

Filel Table 59

Filename Table 57

Final Processing 8

Fixed Driver 91

Flowchart of the Object Program 123
Function Address Table 85

Functional Organization 9

Generating Object Code 7

Get Compression Routine 2, 16
Get Input Record 102, 109

Get Source Routine 17

Heading Lines 109

I/0 Phases 12
ISAM Add 171
Flowchart 151
ISAM Load 169
Flowchart 149
ISAM Random 175
Flowchart 155
ISAM Sequential 173
Flowchart 153
Indicators
On or Off 157
Flowchart 134
Set Resulting 157
Flowchart 133
Test 100, 157
Flowchart 133
Initialization 4
Input Compression Format 74
Input/Output Driver 90
Input/Output Table 58
Input Processing 6

Library Subroutines 128
Lines, Heading and Detail 109
Linkage 4, 67

Low Field Block 89

MOVE 156

Flowchart 131
MOVEL 156

Flowchart 131
Machine Features Supported 1
Machine Requirements 1
Map of Core Storage Allocation 106
Matching Fields Extraction (MFEXT)

Routine 104

186

Matching Fields (MFTST) Routine
Flowchart 118
Method of Operation 2

103

Move From Core to I/0 Buffer 156

Flowchart 130

Move From I/0 Buffer to Core 156

Flowchart 129
Move Input Fields 110
Move Output Fields Routine 97
Move Remainder 163

Flowchart 142
Multiple Input File Processing
Multiply 160

Flowchart 140

Numeric Compare, Add, Subtract
Flowchart 139
Numeric Sequencing 120

OTAB Table 88
Object Code Routine 4
Object Code Generation 7
Object Program 83
Core Dump Trace 178
Cyle 85
Flowchart 123
Trace 107
Object Time
Error 158
Flowchart 137
Data Format 183
Routines 90
Operation 2
Organization 2, 9

Output-Format Compression Format

Output Lines Routines 96

117

159

79

Output Tables, Object Program 87,

Overflow Table 58
Overhead 91

PS Block 89
Phase Directory 55
Print Error Note Routine 2
Print Listing Routine 16
Print Source Card Routine 2
Processing 6, 8
Blocks 89
By Cl, C2, C3 Type Chaining
Multiple Input Files 117
With an RA File 111
Program
Block Diagram 3
Cycle, Object 85
Execution 1
Generation 1
Organization 2, 9
Trace, Object 107
Pseudo Registers 90
Put Compression Routine 2, 17
Put Object Code 17

RA File Processing 111
Flowchart 113

RPG Conversion 163
Flowchart 143

Read Source Card Routine 2

114

Record ID Conversion 158
Flowchart 136

Record Type 109

Remainder, Move 163
Flowchart 142

Requirements, Machine 1

Resident Phase 9, 15
Flowchart 27

Resident Routines 2

Routines, Object Time 90

Secondary Processing Blocks 89

Sequencing, Numeric 120

Sequential Access 166
Flowchart 146

Set Indicators On or Off 157
Flowchart 134

Set Resulting Indicators 157
Flowchart 133

Sterling Input Conversion 163
Flowchart 144

Sterling Output Conversion 164
Flowchart 144

Storage Allocation 104

Storage Layout 14

Subroutines, Library 128

Add, Subtract, Numeric Compare 159

Alphameric Compare 156
Blank After 158
Direct Access 167
Divide 16l

Edit 165

ISAM Add 171

ISAM Load 169

ISAM Random 175
ISAM Sequential 173
MOVE 156

MOVEL_ 156

Move From I/0 Buffer to Core 156
Move From Core to I/O Buffer 156

Move Remainder 163
Multiply 160.
Object Time Error 158
RPG Conversion 163
Record ID Conversion 158
Set Indicators On or Off 157
Set Resulting Indicators 157
Sequential Access 166
Sterling Input Conversion 163
Sterling Output Conversion 164
Test for Zero or Blank 158
Test Indicators 157
Test Zone 158

Subtract, Add, Numeric Compare 159
Flowchart 139

System Environment 1

System Initialization 4

TENT Table 57
TOTAB Table 88
Tables 57
Object Program 85
Output 101
Table Usage 70
Terminate Compilation Phase 13, 26
Flowchart 54
Test for Control Level Break 110
Test for Zero or Blank 158
Flowchart 134
Test Indicators 157
Flowchart 133
Test Indicators Routines 100
Test Zone 158
Flowchart 135
Total Calculations 110
Trace of a Core Dump 177
Tracing an Object Program 107

Workareas, Object Program 85

Zero or Blank, Test for 158
Flowchart 134

Index

187

188

READER'S COMMENT FORM

IBM 1130 RPG Form Y21-0010-0
Program Logic Manual

@ Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. Comments and suggestions become the property
of 1BM. ~

No

w

0

® Does this publication meet your needs?
o Did you find the material:
Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

Ooooo Oy
Ooogo

o What is your occupation?
@ How do you use this publication?
As an introduction to the subject? O] As an instructor in a class? []
For advanced knowledge of the subject? O As a student in a class?]
For information about operating procedures? [] As a reference manual?]

Other
@ Please give specific page and line references with your comments when appropriate.

COMMENTS:

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

YOUR COMMENTS, PLEASE ...

This PLM manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of

this form, together with your comments, will help us produce better publications for your

use. Each reply will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

FIRST CLASS
PERMIT NO. 387
ROCHESTER, MINN,

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . . .

IBM Corporation

Systems Development Division
Development Laboratory
Rochester, Minnesota 55901

Attention: Programming Publications, Dept. 425

...

Y21-0010-0

BBV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017

[haicsndtional]

0-0T00-TTA.X 'S ReFT PAIULY OCTT WAI

	00001
	00002
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	replyA
	replyB
	xBack

