Systems Reference Library

IBM 1130 Subroutine Library

This publication describes the subroutines in the IBM 1130
Subroutine Library. The library consists of Input/Output,
Conversion, Arithmetic and Functional, and Selective Dump
subroutines. Included in the descriptions are calling
sequences for the subroutines and explanations of the
parameters involved. '

The section on Conversion subroutines describes the
codes used to communicate with the 1130 System input/output
devices. An appendix lists the codes, and shows their rela-
tionship to each other.

File No. 1130-30
Form C26-5929-0

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Comments concerning the contents of this publication may be addressed to:
IBM, Product Publications Department, San Jose, Calif. 95114

© 1965 by International Business Machines Corporation

PREFACE e e e e
Machine Conﬁguratlon L

INTRODUCTION. . . . e e e

INPUT/OUTPUT SUBROUTINES . ..
Methods of Data Transfer
Interrupt Servicing Capabilities
I/O Subroutine Operation
General Error Handling Procedures . . .
Basic Calling Sequence

Card Subroutine
Disk Subroutine

Printer Subroutine, , ., ., , .,
Keyboard-Console Printer Subroutines
Paper Tape Subroutine

Plotter Subroutine

Edit Program

CONVERSION SUBROUTINES

DataCodes
Descriptions . .

BINDC . e e e e e
DCBIN . . « « « « « « + + .

= 00Ny V1NN DNN -

iii

BINHX

HXBIN

HOLEB Ce e e e e

SPEED e e e e e

PAPEB e e e

PAPHL e e e e .

PAPPR e e e e

HOLPR e e e e e e e e e
EBPRT . ..

ARITHN[ETIC AND FUNCTIONAL SUBROUT]NES

Floating-Point Data Formats . . .
Floating-Point Pseudo-Accumulator .
Programming Considerations
Calling Sequences . . P
SELECTIVE DUMP SUBROUTINES . . .
Dump Selected Data on Typewriter/Printer
Dump Status Area ., .
ADDING SUBROUTINES .

APPENDIX A - ERRORS DETECTED BY THE I/O

SUBROUTINES
APPENDIX B - CHARACTER CODE CH.ART

CONTENTS

21
22
22

24
24
25
26

30
31
31

.. 34
34
35

37
38

PREFACE

This publication describes the methods by which the
programmer can use the IBM 1130 Subroutine Library
to increase the efficiency of his programs and decrease
the time necessary for writing and testing them. The
Subroutine Library contains input/output, data con-
version, arithmetic and functional, and selective dump
subroutines. These subroutines are available for use
~ with both the 1130 Assembler and the 1130 FORTRAN
Compiler. When using the assembler, the user calls
the subroutines via a calling sequence. When using
the FORTRAN compiler the appropriate subroutines
are called by the compiler whenever a read, write,

or arithmetic statement is encountered. This publi-
cation describes each subroutine and the calling se-
quences to be used.

The reader is provided with sufficient information
about the IBM 1130 subroutines so that plans can be
made to use them when the system becomes available.
It is assumed that the reader is familiar with the
methods of data handling and the functions of instruc-
tions used in the IBM 1130 Computing System.

He must also be familiar with the assembler or com-
piler to be used in conjunction with the subroutines.

The following IBM publications provide this information:

iv

IBM 1130 Computing System Principles of
Operation (A26-5881)

IBM 1130 Computing System Input/Output Units
(A26-5890)

IBM 1130 FORTRAN Language (Form C26-5933)

IBM 1130 Assembler Language (Form C26-5927)

MACHINE CONFIGURATION

The use of the Subroutine Library requires the follow-
ing machine configuration:
IBM 1131 Central Processing Unit, with a minimum
of 4096 words of core storage
IBM 1442 Card Read Punch, or IBM 1054 Paper Tape
Reader with IBM 1055 Paper Tape Punch
In addition, the following input/output units and
features can be controlled by the Input/Output secti~=
of the Subroutine Library:
Console Keyboard
Console Printer
Disk Storage
IBM 1132 Printer
IBM 1627 Plotter

It is very often necessary to repeat the same group
of instructions many times during the execution of a
program, Examples of this are the series of instruc-
tions necessary for decimal-to-binary conversion,
computing square roots, or reading from a card
reader. It is not desirable to write out the necessary
instructions each time a function is needed. Instead,
the instructions needed are written only once and the
main program is then arranged to transfer to this
block of instructions each time they are required.
Such a block of instructions is called a "subroutine. "

These subroutines normally perform such basic
functions that they may be used in the solution of
many types of problems. For example, a subroutine
which computes a square root can be used in a wide
variety of problems. Another example of such a
subroutine would be one which reads data from an
input device and stores it in the computer.

There are two methods of using subroutines with
respect to the main program. One method is to in-
sert the subroutine into the main program at each
point where it is to be used. Subroutines designed
for this type of usage are called "open subroutines."
The open subroutine is '"sandwiched" into a program
as though it were part of the original coding of the
program. This type of subroutine usage is normally
restricted to the cases where the main program uses
the subroutine only once.

When the main program uses a subroutine several
times, which is the common situation, it is apparent

INTRODUCTION

that the open subroutine is not desirable. Here, the
second method of employing subroutines is used. The
subroutine used in these situations is called a "closed
subroutine.' A closed subroutine may be executed
several times within one main program, but the set
of instructions comprising the subroutine need appear
only once. The transfer of control from the main
program to the subroutine takes place from a set of
instructions known as the calling sequence or basic
linkage. The calling sequence transfers control to
the subroutine, and through parameters, gives the
subroutine any control information required.

The parameters of a calling sequence vary with
the type of subroutine being called. For example, an
input/output subroutine requires several parameters
to identify the associated input/output device, storage
area, amount of data to be transferred, etc., where-
as an arithmetic/functional subroutine requires, at
most, one parameter representing an argument. The
calling sequences used with the 1130 System sub-
routines take the form of a CALL statement which
specifies the subroutine, followed by DC statements
which make up the parameter list. The calling se-
quences for the various subroutines are presented
later in this manual.

The subroutines for each class of I/0 equipment
are self-contained, so that only those subroutines re-
quired by the current job are in core storage at pro-
gram execution time.

INPUT/OUTPUT SUBROUTINES

The IBM 1130 input/output subroutines were designed
for one purpose - to reduce the amount of time spent
by the programmer in accomplishing the input and
output of data from and to the various input/output
(I/0) devices attached to the computer. They handle
all of the details peculiar to each device, including
the usually complex interrupt functions, and are
capable of controlling many input/output devices sim-
ultaneously and asynchronously, In assuming the
burden of the details of I/0 operation, the subroutines
will permit user attention to be directed to the problem-
solving aspects of each individual job, rather than ac-
cessory I/0O "housekeeping. "

In order to better understand the subsequent de-
scriptions of the individual I/0 subroutines, the user
should be familiar with certain characteristics which
are common to the I/0 subroutines, namely:

o Methods of data transfer

e Interrupt servicing capabilities

e Subroutine operation

o General error handling procedures

o Basic calling sequence

METHODS OF DATA TRANSFER

IBM 1130 I/O devices and their related subroutines
can be grouped according to their method of trans-
mitting and/or receiving data. There are two basic
groups. The first operates via direct program con-
trol. Direct program control requires a program-
med I/O operation for each word or character trans-
ferred. A character interrupt occurs whenever a
character 1/0 operation is completed. This method
is used for the following low-speed serial devices:
1442 Card Read Punch, 1054/1055 Paper Tape Attach-
ment, Console Printer, Console Keyboard, 1132
Printer, and 1627 Plotter.

The second group operates via a Data Channel.
A Data Channel requires an I/O operation only to
initiate the data transfer. The device is provided with
control information, word-counts, and data from the
user's I/0 area. Once initiated, the transfer takes
place completely asynchronous to program execution.
An operation-complete interrupt signals the end of
the I/O operation when 2all of the data has been trans-
mitted. The Data Channel is used for Disk Storage.

INTERRUPT SERVICING CAPABILITIES

The 1I/0 subroutine package assumes the responsibility
of servicing all input/output interrupts. This is ac-
complished via a set of interrupt identification routines
which are loaded as part of the Subroutine Library.
There is one interrupt identification routine for each
interrupt level being used. This routine determines
which device on that level caused the interrupt, pre-
serves the contents of any registers to be used by the
I/0 subroutines, and transmits identifying information
to the I/O subroutines.

The interrupt identification routines are loaded
following the I/O subroutines. With this arrangement,
the loader can load only those identification routines
that are required. For example, if the user's main
program does not call the card subroutine, there is no
need to load the routine associated with interrupt level
0 since no interrupts will be forthcoming on that level.

When these routines are loaded, the core addres-
ses assigned to them are inserted into the computer
words which were reserved for that purpose (word 8
for interrupt level 0, 9 for 1, etc.). Interrupts oc-
curring during execution of the user's program cause
an automatic "Branch Indirect", via the interrupt
level word, to the correct interrupt identification
routine.

I/0 SUBROUTINE OPERATION

This section briefly describes the internal makeup of
the I/O subroutines. This description, along with
some basic flow charts, will make it easier for the
reader to understand the individual subroutine descrip-
tions presented later in the manual.

Makeup of an I/O Subroutine

Each I/0 subroutine is divided into two routines: a
call routine and an interrupt response routine. The
call routine is entered when a user's calling sequence
is executed; the interrupt response routine is entered
as a result of an I/O interrupt.

Call Routine

The call routine illustrated in Figure 1 has four basic
functions:

1. Determine if any previous operations on the
specified device are still in process

2. Check the calling sequence for legality

3. Save the calling sequence

4. Initiate the requested I/0 operation

The flow diagram (Figure 1) is not exact for any
one I/0 subroutine. It is only a general picture of
the internal operation of a call routine.

Determine Previous Operation. This function can be
performed by simply using a programmed routine
busy indicator to determine if the previous 1/0

Entry

Return to User'
at CALL +2

Set up for

operation is complete. The CARDI subroutine is a
good example. If an operation is started on the 1442,
a subsequent CALL CARD1 for the 1442 will not be
honored until the routine busy indicator is turned off.
Of course, a call to any other I/0O subroutine, such as
TYPE1, will not be affected by the fact that the CARD1
subroutine is busy.

Save Calling Sequence. The call routine saves within
itself all of the calling sequence information needed
to perform an I/O operation. The user may modify a
calling sequence even though an I/O operation is not
yet complete. However, the I/O data area must be

illegal CALL
Error

Return to User
at CALL +3

Set up for
Device Not
Ready Error

Set

Busy

Indicator
Save Calling Determine Initiate 1/Q
Sequence Requested
Parameters Function

Figure 1. Diagram of Call Routine

Exit to

Location 41
Return to
User at CALL

Return
To User

18054

Cees

left intact during an operation because the I/O subrou-
tine is continually accessing and modifying that area.

Check legality of Calling Sequence. Calling sequences
are checked for such items as illegal function charac-
ter, illegal device identification code, etc.

Initiate I/O operation. The call routine only initiates
an I/0 operation. Subsequent character interrupts or
operation complete interrupts are handled by the
interrupt response routine.

Entry

No

Error

: Yes
Indicator

Indicator
Set

Device Yes

Interrupt Response Routine

The 1/0 interrupt response routine, illustrated in Fig-
ure 2, is entered as a result of an I/0 interrupt. The
interrupt causes the user's program to exit to an in-
terrupt identification routine which in turn exits to the
1/0 interrupt response routine. The interrupt response
routine checks for errors, does any necessary data
manipulation, initiates character operations, and in-
itiates retry operations in case of errors. It then
returns control to the interrupt identification routine
which returns control to the user.

Keturn to
Interrupt Ident
oufine

Housekeep

Recovel'07
N

]

Manipulate
Data as Exit to User
Specified Error Routin

\

Counter
Zero

Yes

Exit to User
Error Routine

Restart
Requested

\
Clear - 'Yes S
ear
Character BUSY Re-initiate Busy
Operation Indicator 1/O)
Operation Indicator
|
i
| n?e‘]!lr-sptol dent
Routine

Figure 2. Diagram of Interrupt Response Routine

Character interrupts occur for devices under
direct program control whenever a piece of data may
be read or written; e.g., a card column punched or
a paper tape character read. Operation complete
interrupts occur for the disk storage on the Data
Channel (and the 1442 under direct program control)
whenever the specified block of data has been read
or written, e.g., disk record read.

Error detection and recovery procedures are an
important part of an I/O subroutine. However, little
or nothing can be done about reinitiating an operation
until a character interrupt or operation complete
interrupt occurs. Therefore, the error indicators
are not examined until one of these interrupts occurs.

A recoverable device is one which can be easily
repositioned by the subroutine or operator and the
I/0 operation reinitiated. If the device is not recover-
able or if the error cannot be corrected after a speci-
fied number of retries, the user is informed of the
error condition. If the device is recoverable, the
user may request, via his error routine, that the
operation be reinitiated.

GENERAL ERROR HANDLING PROCEDURES

Each 1/0 subroutine has its own error detecting rou-
tines. (In this context, the term "error" includes
such conditions as last card, channel 9, etc.). These
routines categorize the error and choose an error
procedure. Errors can be divided into two categories:
those that are detected before an I/O operation is
initiated, and those that detected after an I/O opera-
tion has been initiated. Appendix A contains a list of
the errors detected by the I/0 subroutines.

Pre-operation Checks

Before an I/0O subroutine initiates an I/O operation,
it checks the status of the device and the legality of
the calling sequence parameters. If the device is not
ready or a parameter is in error, the I/O subroutine
stores the address of the CALL statement in core lo-
cation 40 and exits to core location 41. The A-
Register is loaded with an error code which defines
one of the errors (see Appendix A).

The loader stores a WAIT instruction in core
location 41 and an indirect branch instruction (BSC I
40) in locations 42 and 43. The user may replace
these two instructions with an exit to his own error
routine.

Post-Operation Checks

After an I/O operation has been started, certain con-
ditions may be detected, about which the user should
be informed. These conditions may be card jams for
which manual intervention is needed to continue, read
checks which have not been corrected after a specified
number of retries, or indications of equipment readi-
ness, such as a channel 12 indicator.

All of these conditions are detected during execu-
tion of the I/0 interrupt response routine. (See Sub-
routine Operation.) The error procedure here is to
execute a Branch and Store Instruction Counter instruc-
tion (BSI) to the error routine address specified in the
related calling sequence. Identifying information will
be placed in the A-Register (see Appendix A). When
the error routine at that address returns control to
the 1/O subroutine (using the return link), the I/O sub-
routine examines the A-Register. If the user clears
the A-Register before returning to the I/O subroutine,
he is requesting that the error condition be ignored
and that the operation be terminated. If the user does
not clear the A-Register, he is requesting that the
entire operation be restarted, in which case the I/0O
subroutine reinitiates the operation before returning
to the user's main program.

NOTE: The user's error routine must return to the
1/0 subroutine, and must do so via the return link.

BASIC CALLING SEQUENCE

Each of the I/0 subroutines described in this manual is
entered via a calling sequence. These calling sequences
follow a basic pattern; in fact, some look identical ex-
cept for the name of the subroutine being called. In
order not to burden the reader with redundant descrip-
tions, this section presents the basic calling sequence
and describes those parameters which are common to
most of the subroutines.

BASIC CALLING SEQUENCE

CALL Name

DC Control parameter
DC I/O area

DC Error routine

This calling sequence, with the parameters shown,
is basic to most of the input/output subroutines. De-
tailed descriptions of the above four parameters are

omitted when the subroutines are described later in
the manual. Unless otherwise specified, the sub-
routine returns control to the instruction immediately
following the last parameter,

Name Parameter

Each subroutine has a symbolic name. That name
must be written in the CALL statement exactly as
listed in Table 1. The name is recognized by the ob-
ject program loader and the proper linkage is
generated.

Control Parameter

This parameter, in the form of four hexadecimal
digits, conveys necessary control data to the particu-
lar input/output subroutine.

It specifies the desired function (read, write,
etc.), and other similar control information. Most
subroutines do not have use for all four digits.

A typical control parameter is illustrated below:

Hexadecimal Digits
Ist 2nd 3rd 4th

I/O Function .—._.T

Not Used

Zero

NOTE: With the exception of the test function on
paper tape, the 4th digit must be zero.

Table 1, I/O Subroutine Names

Subroutine Name
Card CARD1
Disk DISK1
Printer PRNT1
Keyboard/Console Printer TYPE]
Console Printer WRTY1
Paper Tape PAPT
Plotter PLOT

19024

Since the I/0 function item is used in all subrou-
tines, a description of its purpose is given here.

1/0 Function

Each device has a set of functions which it is capable
of performing. The function digit in the calling se-
quence specifies which I/0 operation the user is re-
questing. Three of these functions, Read, Write and
Test are used in most of the subroutines.

Read. The Read function causes a specified amount
of data to be read from an input device and placed in
a specified input area. Depending upon the device, an
interrupt signals the subroutine either when the next
character is ready or when all requested data has
been read. When the specified number of characters
has been read, the subroutine becomes available for
another call to that device.

Write. The Write function causes a specified amount
of data from the user's output area to be written (or
punched) on an output device. As with the Read func-
tion, an interrupt signals the subroutine when the de-
vice can accept another character, or when all charac-
ters have been written. When the specified number of
characters has been written, the subroutine becomes
available for another call to that device.

Test. The Test function causes a check to be made as
to the status of a previous operation in that subroutine.
If the previous operation has been completed the sub-
routine branches to the CALL +3 core location; if the
previous operation has not been completed, the sub-
routine branches to the CALL +2 core location. The
Test function is illustrated below:

CALL Name
CALL+1 DC
CALL +2 OP Code xxxx....
CALL+3 OP Code xxxx....

Control Parameter (specifying Test function)

NOTE: Specifying the Test function always requires
two statements (one CALL and one DC).

This function is useful in those situations where
input data has been requested, and no processing can
be done until that data is available.

1/0 Area Parameter

The I/0 area for a particular operation consists of
one or more tables of control information and data.
Each table is composed of a data area preceded by a
control word (two control words for disk operations)
which specifies how much data is to be transferred.
The area parameter in the calling sequence is the
address (symbolic or actual) of the control word(s)
which precedes the data area.

The format of the control word used for all sub-
routines is shown below. The disk subroutine re-
quires a second control word which is described along
with that subroutine.

012 15
1 1 1 1 1 1 1 1 1 1 1 A
N J
‘U
Not Used
Word Count

The word-count refers to the number of data
words in the table. It is important to remember that
the number of words in the table is not always the
number of characters to be read or written because
some codes pack several characters per word.

Error Parameter

The error parameter is the means by which an I/0
subroutine can temporarily give control to the user
in the event of certain error conditions. The param-
eter specifies the address to which the I/O subroutine
will branch. The instruction sequence for setting up
the error routine is shown below:

CALL NAME
DC ERROR (error parameter)
ERROR BSS 1 (return link)

. (error routine)
BSC I ERROR (branch to return link)

The return link is the address in the related I/0 sub-
routine to which control must be returned upon com-
pletion of the error routine. The link will be inserted
in location ERROR by a BSI instruction in the I/0O sub-
routine when the subroutine branches to the error
routine.

CARD SUBROUTINE

The card subroutine performs all I/0 functions rela-
tive to the IBM 1442 Card Read Punch, namely, read,
punch, feed, and select stacker.

Calling Sequence

CALL CARD1

DC $xxx (Control)

DC AREA (I/O area)

DC ERROR (Error routine)
ERROR Return Link

Error Routine

BSC I ERROR

AREA Word Count
I/0 Area

The calling sequence parameters are described
in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown below:

1 2 3 4
_ 1 t
I/O Function
Not Used
Zero

1/0 Function. The I/0 function digit specifies a par-

ticular operation to be performed on a 1442 Card Read
Punch. The allowable digits and the functions they
represent are listed below and then described in detail.

Digit Function
0 Test
1 Read
2 Punch
3 Feed
4 Select Stacker

e Test - Branches to CALL +2 if the previous opera-
tion has not been completed or to CALL +3 if the
previous operation has been completed.

o Read - Reads one card and transfers a specified
number of columns of data to the user's input area.
The number of columns to be read (1-80) is specified
by the user in the core location immediately pre-
ceding the input area. After initiating the card oper-
ation, the subroutine immediately clears the 1/0

area and stores a 1 in bit position 15 of each word
in the I/O area, and returns control to the user's
program. When each column is ready to be read,
a column interrupt occurs. This permits the card
subroutine to read the data from that column into
the users input area (clearing bit 15), after which
the user's program is again resumed. This se-
quence of events is repeated until the requested
number of columns has been read. The data in the
user's input area will be in card code format; that
is, each 12-bit column image will be left-justified
in one 16-bit word.

e Punch - Punches into one card the number of col-
umns of data specified by the word-count found at
the beginning of the user's output area. The punch
operation is similar to the read operation., As
each column comes under the punch dies, a column
interrupt occurs; the card subroutine transfers a
word from the user's output area to the punch, and
then returns control to the user's program. This
sequence is repeated until the requested number of
columns has been punched. The character punched
is the image of the leftmost 12 bits in the word.

o Feed - Initiates a card feed cycle. This advances
all cards in the machine to the next station; i.e.,
a card at the punch station advances to the stacker;
a card at the read station advances to the punch
station; and a card in the hopper advances to the
read station. No data is read or punched as a re-
sult of a feed operation and no column interrupts
occur.

e Select Stacker - Selects stacker 2 for the card
which is currently at the punch station. After the
card passes the punch station it is directed to
stacker 2.

Each card function described above requires a par-
ticular configuration of parameters.

Function Parameters Required
Test Control

Read Control, I/O area, Error
Punch Control, 1/O area, Error
Feed Control, Error

Select Stacker Control

Any parameter not required for a particular function
must be omitted.

1/0 Area Parameter

The 1I/0 area parameter is the label of the control
word which precedes the user's I/0 area. The con-
trol word consists of a word-count, which specifies
the number of columns of data to be read or punched,
always starting with column 1,

Error Parameter

The error parameter is the label of an error routine
to be branched to in the event of certain errors (or
last card condition). The types of errors that cause
a branch to this routine are listed in Appendix A.

DISK SUBROUTINE

The purpose of the disk subroutine is to perform all
reading and writing of data relative to Disk Storage.
This includes the major functions: seek, read, and
write, in conjunction with bit-count check and file-
protection capabilities.

Sector Numbering and File Protection

In the interest of providing disk manipulation features
which would permit versatile and orderly control of
disk operations, two important conventions have been
adopted. They are concerned with a sector-numbering
scheme and a file-protection mechanism, and success-
ful use of the disk subroutine can be expected only if
user programs are built within the framework of these
conventions,

The primary concern behind the conventions has
been the safety of data recorded on the disk. Toward
this end, the file-protection scheme plays a major
role, but does so in a manner that is dependent upon
the sector-numbering technique. The latter contributes
to data safety by allowing the disk subroutine to verify
the correct positioning of the access arm before it
actually performs any writing operation. This requires
that sector identifications be pre-recorded on each
sector and that subsequent writing to the disk be done
in a manner that preserves the existing identification.
The disk subroutine has been organized to comply with
this requirement.

The details of the numbering scheme are as fol-
lows: each disk sector is assigned an address from
the sequence 0, 1,, 1599 corresponding to the
sector's position in the ascending sequence of cylinder

and sector numbers from logical cylinder 0 (inner-
most) sector 0, through logical cylinder 199 (outer-
most) sector 7. (The disk subroutine can address
200 cylinders, each cylinder containing eight sectors,
each sector containing 320 words.)

The sector address is recorded by the user in the

sector's first word, and occupies the rightmost eleven

bit positions. Of these eleven positions, the three
low-order positions identify the sector number (0-7)
within the cylinder. Utilization of this first word for
identification purposes diminishes the per sector
availability of data words to 319; therefore, trans-
mission of full sectors of data is performed in units
of this amount.

File-protection is provided to guard against the
inadvertent destruction of previously recorded data.
By having the normal writing function, Write, uni-
formly test for the file-protection status of sectors it
is about to write, this control can to a large degree
be achieved. Implementation takes the form of having
each sector carry in the sign position of its sector
identification word the file-protect status for that
sector. The file-protect status can be set or modi-
fied by the Write with File-Protect option function.

Calling Sequence

CAILL DISK1

DC $XXXX (Control)

DC AREA (I/O area)
DC ERROR (Error routine)

ERROR Return Link

Error Routine

BSC 1 ERROR

AREA Word Count
Sector Address

1/O Area

The calling sequence parameters are described in the
following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown:

1 2 3

J 4
I/0 Function ———I

File~Protect Option

Ll

Not Used

Zero

I/0O Function. The I/0 function digit specifies a par-
ticular operation to be performed on Disk Stor-

age. The allowable digits and the functions they
represent are listed below and then described in
detail.

Digit Function

Test

Read

Write

Write with file-protect option
Write Immediate

Seek

[S =)

e Test - Branches to CALL +2 if the previous opera-
tion has not been completed or to CALL +3 if the
previous operation has been completed.

® Read - Positions the access arm and reads data
into the user's I/0O area until the specified number
of words has been transmitted. Although sector
identification words are read and checked for agree-
ment with expected values, they are neither trans-
mitted to the I/0 data area nor are they counted in
the tally of words conveyed. The file-protect status
of the initial sector read is placed in the sign posi-
tion of the sector address word. (See I/O Area
Parameter.) In the next bit to the right, the sub-
routine places a 0 if all sectors read had the same
file-protect status, or a 1 if a mixture of file-
protect status was encountered.

If, during the reading of a sector, a read check
occurs, up to ten retries are attempted. I the
error persists after this time, the function is
temporarily discontinued, an error code is placed
in the accumulator, the address of the faulty sector
is placed in the Q-Register, and an exit is made to
the error routine specified by the ERROR parameter.

Upon return from this routine, the function is
either reinitiated or terminated depending on
whether the accumulator is non-zero or zero,
respectively.

Write - Positions the access arm, reads the sector
identification word(s) of the designated (and a suf-
ficient number of subsequent) sector(s), ascertains
the file -protect status of each, and writes the con-
tents of the indicated I/O data area into consecu-
tive disk sectors. Writing begins at the designated
sector and continues until the specified number of
words has been transmitted, provided that no sec-
tor was found to have been file-protected. If no
sectors were found to be file-protected, the sub-
routine executes a bit-count check of the sectors
written.

If any errors are detected, the operation is re-
tried up to ten times. If the function cannot be
accomplished by this time, an appropriate error
code is placed in the A-Register, the address of
the faulty sector is placed in the Q-Register, and
exit is made to the error routine designated by the
ERROR parameter. Upon return from this error
routine, the function is either reinitiated or termi-
nated depending upon whether the A-Register is
non-zero or zero respectively.

If a sector was found to have been file-protected,
the subroutine discontinues the function, places an
appropriate error code in the accumulator, places
the address of the file-protected sector in the Q-
Register, and exits to the error routine designated
by the ERROR parameter. Upon return from this
error routine, the disk subroutine either reinitiates
or terminates the function depending on whether the
accumulator is non-zero or zero, respectively.

NOTE: As each sector is written, the subroutine
supplies the sector identification word. This word
is neither obtained from the I/0 area nor is it
counted in the tally of words conveyed.

Write with File-Protect Option - Positions the
access arm and reads the sector identification
word from each sector that is to be written in order
to verify the proper positioning of the arm. Then,
without regard for the file-protect status of the
sectors that are encountered, the subroutine writes
the contents of the indicated I/0 data area into con-
secutive disk sectors, beginning at the designated
sector, until the specified number of words has
been transmitted. As each sector is written, the

subroutine places the requested file-protect status
in the sign position of the corresponding sector
identification word. (This word is supplied by the
subroutine, but is not counted in the tally of the
words transmitted.)

If any errors occur, the subroutine attempts up
to ten retries of the function for the sector in which
the error occurred. If the function cannot be ac-
complished by this time, an appropriate error code
is placed in the A-Register, the address of the
faulty sector is placed in the Q-Register, and an
exit to the error routine designated by the ERROR
parameter is effected. Upon return from this rou-
tine the subroutine either reinitiates or terminates
the function depending upon whether the A-Register
is non-zero or zero, respectively.

e Write Immediate - Writes data with no attempt to
position the access arm, check for file-protect
status or check for errors. Writing begins at the
sector number specified by the rightmost three bits
of the sector address. This function is provided to
fulfill the need for more rapid writing to the disk
than is provided in the previously described Write
functions.

e Seek - Moves the indicated device's access arm to
the cylinder bearing the sector address designated
in the disk I/O area control word.

Each disk function described above requires a
particular configuration of parameters.

Function Parameters Required
Test Control

Read Control, I/O area, Error
Write Control, I/O area, Error
Write with File-Protect option Control, I/O area, Error
Write immediate Control, I/O area

Seek Control, 1/O area, Error

Any parameter not required for a particular
function must be omitted.

File-Protect option. This digit specifies the file-

protect status that is to be imparted to sectors
written by means of the Write with File-Protect
Option function. The digit must be a 0 for no file
protection or a 1 for file protection. For any other
function this digit has no meaning and is therefore
ignored.

1/0 Area Parameter

The I/0 area parameter is the label of the first of two
control words which precede the user's I/0O area.

The first word contains a count of the number of words
that are to be transmitted during the disk operation.
This count need not be limited by sector or cylinder
size, since the disk subroutine crosses sector and
cylinder boundaries, if necessary, in order to pro-
cess the specified number of words. The second
word contains the sector address where reading or
writing is to begin. After a read operation the two
high-order positions of the sector address word will
contain file-protect information. (See description of
Read operation.) Following the two control words is
the user's data area.

Error Parameter

The error parameter is the label of an error routine
to be branched to in the event of certain errors. The
types of errors that cause a branch to this routine are
listed in Appendix A.

PRINTER SUBROUTINE

The printer subroutine handles all print and carriage
control functions relative to the IBM 1132 Printer.
Only one line of data can be printed with one call to

a printer subroutine. The data in the output area

must be in EBCDIC form, packed two characters per
computer word. (See Data Codes.) Besides its

print function, the printer subroutine performs spacing
and skipping operations.

Calling Sequence

CALL PRNT1

DC $XXXX (Control)

DC AREA (I/O area)

DC ERROR (Error routine
ERROR Return Link

Error Routine

BSC 1 ERROR

AREA Word Count
I/O Area

The calling sequence parameters are described in the
following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown below.

1 2 3 4

1/0O Function —_T T I

Carriage Control
I/0 Function. The I/0 function digit specifies a par-
ticular operation to be performed on a 1132 printer.
The allowable digits and the functions they represent
are listed below and then described in detail.

Zero

Digit Function
0 Test
1 Print/no checks
2 Print/with checks
3 Control Carriage

e Test - Branches to CALL +2 if the previous opera-
tion has not been completed or to CALL +3 if the
previous operation has been completed.

e Print/no checks - Prints characters from the user's
1/0 area, ignoring channel 9 and 12 indications.

o Print/with checks - Prints characters from the
user's 1/0 area, checking for channel 9 and 12
indications. If either of these conditions is de-
tected, the subroutine branches to the user's error

- routine. This branch occurs after the line of data
has been printed.

Carriage Control. Digits 2 and 3 specify the carriage

control functions listed in Table 2. An "immediate"
request is executed before the next print operation; an
"after print" request is executed after the next print
operation, and replaces the normal space operation.

Each print function described above requires a
particular configuration of parameters.

Parameters Required

Function

Test Control

Print/no checks Control, I/O area
Print/with checks Control, I/O area, Error
Control Carriage Control

11

Any parameter not required for a particular
function must be omitted.

1/0 Area Parameter

The 1I/0 area parameter is the label of the control
word which precedes the user's I/O area. The con-
trol word consists of a word-count which specifies
the number of computer words of data to be printed.
The data must be in EBCDIC format, packed two
characters per computer word.

Error Parameter
The error parameter is the label of an error routine
to be branched to in the event of certain conditions.

The types of conditions that cause a branch to this
routine are listed in Appendix A.

Table 2, Carriage Control Operations

Character #2: Immediate Carriage Operations

Print Functions
Not Used

Control Function

1 = Immediate Skip To Chamnel 1
2 ~ Immediate Skip To Channel 2
3 ~ Immediate Skip To Channel 3
4 ~ Immediate Skip To Channel 4
5 = Immediate Skip To Channel 5
. 6 = Immediate Skip To Channel 6
9 = Immediate Skip To Channel ¢
C - Immediate Skip To Channel 12
D - Immediate Space Of 1
E ~ Immediate Space Of 2
F = Immediate Space Of 3

Character #3: After=Print Carrioge Operations

Print Functions

0 - Space One Line After Printing
1 = Suppress Space After Printing

Control Function

1 = Skip After Print To Channel 1
2 - Skip After Print To Channel 2
3 - Skip After Print To Channel 3
4 - Skip After Print To Channel 4
5 = Skip After Print To Channel 5
6 = Skip After Print To Channel 6
9 = Skip After Print To Channel 9
C - Skip After Print To Channel 12
D = Space 1 After Print

E - Space 2 After Print

F = Space 3 After Print

KEYBOARD—CONSOLE PRINTER SUBROUTINES

There are two I/0O subroutines for the transfer of data
to and from the Console Printer and the Console Key-
board. The subroutine TYPE1 handles input and out-
put; WRTY1 handles output only. If a particular pro-
gram does not require keyboard input, it is advantag-
eous to use the WRTY1 subroutine because it occupies
less core storage than the TYPE1 subroutine.

Only the TYPE1 subroutine is described; the
WRTY1 subroutine is identical except that it does not
contain the Read-Print function.

Calling Sequence

CALL TYPEL or WRTY1
DC $xxxx (Control)
DC AREA @/0 area)
AREA Word Count
I1/0O Area

The parameters used in the above calling sequence
are described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown below:

1
1/O Function : T

Not Used

Zeros

o Test - Branches to CALL +2 if the previous opera-
tion has not been completed or to CALL +3 if the
previous operation has been completed.

o Read-Print - Reads from the keyboard and prints
on the console printer the requested number of
characters. The operation sequence is as follows:
1. The calling sequence is analyzed by the call

routine which then unlocks the keyboard.

2. When a key is pressed, a character interrupt
signals the interrupt response routine that a
character is ready to be read into core storage.

3. The interrupt response routine converts the
keyboard data to the Typewriter code (see Data

Codes), printing each character on the console
printer as the character is read and unlocking
the keyboard for entry of the next character,
if any.

4. Printer interrupts occur whenever the console
printer has completed its print operation.
When the interrupt has been received, the rou-
tine checks whether the final character has
been read and printed. If so, the operation is
considered complete.

5. Items 2 to 4 are repeated until the specified
number of characters has been read and
printed. The characters read into the I/0
area are in card code format; that is, each
12-bit image is left-justified in one 16-bit
word.

Three control characters are recognized by the
typewriter subroutine:

Backspace. The operator presses the backspace
key whenever the previous character is in error.
The interrupt response routine, sensing the con-
trol character, backspaces the console printer
and prints a slash (/) through the previous charac-
ter. In addition, the subroutine prepares to re-
place the previous character in the I/O area with
the next character.

Re-entry. When the interrupt response routine
recognizes the re-entry control character, it
assumes that the entire message is in error and
is to be re-entered. The routine prints two
slashes on the console printer and restores the
carrier to a new line. In addition, the routine
prepares to replace the old message in the I/0
area with the new message.

End-of-Message. When the interrupt response
routine recognizes the end-of-message control
character, it assumes the message has been
completed, stores the character in the I/0 area,
and terminates the operation.

e Print - Print the specified number of characters
on the console printer. Printer interrupts occur
whenever the console printer has completed a
print operation. When the interrupt has been re-
ceived, the character count is checked. If the
specified number of characters has not been
written, printing is initiated for the next character.

This sequence continues until the specified number
of characters has been printed. Data to be printed
must be in Typewriter code, packed two charac-
ters per 16-bit word.

Each typewriter function described above requires
a particular configuration of parameters.

Function Parameters Required
Test Control
Read~Print Control, 1/O area

Print Control, I/O area

Any parameter not required for a particular function
must be omitted.

I/0 Area Parameter

The I/0 area parameter is the label of the control word
which precedes the user's I/0O area. The control word
consists of a word-count which specifies the number

of words to be read into or printed from. This word-
count is equal to the number of characters if the Read-
Print function is requested but not if the Print function
is requested.

Operator Request Function

By pressing the Operator Request key on the keyboard,
the operator can inform the program that he wants to
enter some data from the keyboard. The interrupt
that results from such a request causes the typewriter
routine to execute an indirect BSI instruction to core
location 44. The user must have in core location 44
the address of an operator request routine.

PAPER TAPE SUBROUTINE

The paper tape subroutine handles the transfer of data
from IBM 1054 Paper Tape Reader to core storage
and from core storage to the IBM 1055 Paper Tape
Punch. Any number of characters may be transferred
via one calling sequence. If desired, both the reader
and the punch may be operated simultaneously.

When called, the paper tape subroutine starts the
reader or punch and then, as interrupts occur, trans-
fers data to or from the user's I/O area. The data is
packed two characters per computer word by the sub-
routine when reading, and must be in that form when
the subroutine is called for a punch function.

Calling Sequence

CALL PAPT
DC $xXXX (Control)
DC AREA (I/O area)
DC $xXXX (Character)
AREA Word Count
I/O Area

The parameters used in the above calling sequence
are described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown below:

1 2 3 4
1/O Function __J

Not Used

Device Identification

1/0 Function. The I/0 function digit specifies a par-
ticular operation to be performed on a 1054/1055
Paper Tape attachment. The allowable digits and the
functions they represent are listed below and then
described in detail.

Digit Function
0 Test
1 Read/No Check
2 Punch
3 Read/Check

e Test - Branches to CALL +2 if previous opera-
tion has not been completed or to CALL +3 if the
previous operation has been completed.

e Read/No Check - Reads paper tape characters

into the specified number of words in the I/0O area.

Initiating reader motion causes an interrupt to
occur when a character can be read into core. If
the specified number of words has not been filled,
reader motion is again initiated. If the specified
number has been filled, the reader is halted. No
check is made to determine if any of the input
characters are Stop or Delete characters. (See
Character Parameter.) An even number of
characters is always read.

14

Punch - Punches paper tape characters into the
tape from the words in the I/O area. Each char-
acter punched causes an interrupt which indicates
that the next character can be accepted. When
the specified number of words in the 1/0O area has
been punched the operation is terminated. An
even number of characters is always punched.

Read/Check - Reads paper tape characters into
the I/0 area, checking each character to see if it
is a Delete or Stop character. When the specified
number of words has been filled (two characters
per word) the operation is terminated. A Delete
character is not placed in the 1/0 area and there-
fore does not enter into the count of the total num-
ber of words to be filled. A Stop character is
transferred into the I/O area and causes the oper-
ation to be terminated even if the specified number

of words has not been filled.

Each Paper Tape function described above requires
a particular configuration of parameters.

Function Parameters Required

Test Control

Read/No Check Control, I/O area

Punch Control, I/O area
Read/Check Control, I/O area, Character

Any parameter not required for a particular function
must be omitted.

Device Identification. When the Test function is speci-
fied, the subroutine must be told which device (reader
or punch) is to be tested for an "operation complete"
indication. (Remember that both the reader and the
punch can operate simultaneously.) If the device
identification is a 0, the subroutine tests for a

"reader complete" indication; if it is a 1, the subrou-
tine tests for a "punch complete' indication.

1/0 Area Parameter

The I/O area parameter is the label of the control word
which precedes the user's I/O area. The control word
consists of a word-count which specifies the number of
words to be read into or punched from. Since charac-
ters are packed two per word in the I/O area, this

count is one-half the number of characters transferred.
Because an entire 8-bit channel image is transferred by
the subroutine, any combination of channel punches is
acceptable. The data may be a binary value or a

character code. The code most often used is the Paper
Tape BCD code. (See Data Codes.)

Character Parameter

This parameter is used to specify which 8-bit images
are to be recognized as Stop and Delete characters.
Bits 0-7 specify the Stop character; bits 8-15 specify
the Delete character. If either character is all zeros,
no checking for that character is done by the Read/
Check function.

PLOTTER SUBROUTINE

The plotter subroutine converts hexadecimal digits
found in the user's output area into actuating signals
which control the movement of the 1627 recording pen.
Each hexadecimal digit in the output area is translated
into plotter operations: either the drawing of a line
segment, or the raising or lowering of the recording
pen. The amount of data that can be recorded with
one calling sequence is limited only by the size of the
corresponding output area.

Calling Sequence

CALL PLOT
DC $XXXX (Control)
DC AREA (I/O area)
AREA Word Count
1/O Area

The calling sequence parameters are described in the
following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown below:

1 2 3 4
1/O Function _—__j

Not Used

I/0 Function. The I/O function digit specifies a par-
ticular operation to be performed on the 1627 Plotter.
The allowable digits and the functions they represent

are listed below and then described in detail,

Digit Function
0 Test
1 Write

o Test - Branches to CALL +2 if the previous oper-
ation has not been completed or to CALL +3 if the
previous operation has been completed.

e Write - Transforms hexadecimal digits found in
the output area into signals which actuate the
plotter. Table 3 lists the hexadecimal digits and
the plotting actions they represent. Figure 3
shows the binary and hexadecimal configurations
for drawing the letter E.

Table 3, Plotter Control Digits

Hexadecimal Digit Plotter Action (See Diagram Below)

Pen Down

Line Segment ~ West

Line Segment = Northwest

Line Segment = North

Line Segment = Northeast

Line Segment - East

Line Segment = Southeast

Line Segment - South

Line Segment ~ Southwest

Pen Up

Repeat the previous digit the number
of times specified by the next digit
(Maximum - 15 times)

B Repeat the previous digit the number
of times specified by the next two
digits (Maximum-255 times)

Repeat the previous digit the number

c of times specified by the next three

digits (Maximum-4095 times)

POONOTOOAEWN—O

D Not Used

E Not Used

F Not Used
N

18071

Binary Hexadecimal Figure
0000011100010001 0711 :__l\S‘Finish
0011101000100101 3A25 :_
1001000100000011 2103 \

- s
1010001001010101 A255 tart
0111100111111 11 79FF
Figure 3. Plotter Example

Each plot function described above requires a par-
ticular configuration of parameters.

Function Parameters Required
Test Control
Write Control, 1/O area

Any parameter not required for a particular func-
tion must be omitted.

1/0 Area Parameter

The I/0 area parameter is the label of the control wo
which precedes the user's I/0 area. The control worz
consists of a word-count which specifies the number of
computer words of data to be used.

EDIT PROGRAM

In its form as supplied by IBM, the I/O subroutine
deck is not initialized for direct use by a customer in-
stallation, for missing from the deck are the particu-
lars which define and differentiate the user's system
from others of its kind. The IBM 1130 EDIT program
accepts as input a statement of the system configura-
tion (including assigned interrupt levels, area codes,
and device numbers), and the subroutine deck provided
by IBM. Data from the system configuration cards is
integrated with the master deck and a systems deck is
produced incorporating this data. Subroutines of the
master deck which are not applicable to the current
system are not punched into the systems deck, and
are, in effect, edited out. The newly produced sys-
tems deck has all of the subroutines necessary to
handle the input-output equipment attached, along with
the necessary interrupt processing routines.

The basic unit of information within the 1130 Sys-
tem is the 16-bit binary word. This information may
be interpreted in a variety of ways, depending on the
circumstances. For example, in purely internal
computer operations, computer words may be inter-
preted as instructions, as addresses, as binary inte-
gers, or as floating-point numbers (see Arithmetic
and Functional Subroutines).

This section is concerned with interpretations of
the bit configurations which relate computer informa-
tion with the outside world. These interpretations are
made necessary by the following considerations:

1. A compact notation is needed by the program-
mer to externally represent the bit configu-
ration within each computer word. This is
provided in the "hexadecimal' notation.

2. A code is required for representing alpha-
meric (mixed alphabetic and numeric) data
within the computer. This is provided by the
Extended Binary Coded Decimal Interchange
Code (EBCDIC).

3. The design and operation of the various input/
output devices is such that many of them im-
pose a unique correspondence between charac-
ter representations in the external medium
and the associated bit configurations within
the computer. Conversion subroutines are
needed to convert inputs from these devices
into a form on which the computer can operate,
and to prepare computed results for output on
the devices.

This section of the manual describes the subrou-
tines for converting data representations between these
various codes.

DATA CODES

In addition to the 16-bit binary internal representation,
the conversion subroutines handle the following five
codes:

1. Hexadecimal Notation

2. Extended Binary Coded Decimal Interchange

Code (EBCDIC)

3. IBM Card Code

4. Paper Tape Code

5. Output Typewriter Code

A list of these codes can be found in Appendix B.

CONVERSION SUBROUTINES

Hexadecimal Notation

Although binary numbers facilitate the operations of
computers, they are bulky and awkward to handle by
the programmer. A long string of 1's and 0's cannot
be effectively transmitted from one individual to
another. The hexadecimal number system is often
used as a shorthand method of communicating binary
numbers. Because of the simple relationship of hexa-
decimal to binary, numbers can easily be converted
from one system to another.

In hexadecimal notation a single digit is used to
represent a four-bit binary value as shown in Figure 4.
Thus, a 16-bit word in the 1130 System can be
expressed as four hexadecimal digits. For example,
the binary value

1101001110111011
can be separated into four sections as follows:

Binary 1101/0011/1011/1011
Hexadecimal D 3 B B

Another advantage of hexadecimal notation is that
fewer positions are required when output data is
printed, or punched in cards or paper tape. In the
example above, only four card columns would be re-
quired to contain the data from a 16-bit binary word.

BINARY HEXADECIMAL
0000 0
0001 1
0010 2
oom 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1mn F

Figure 4, Hexadecimal Notation

Extended Binary Coded Decimal Interchange Code
(EBCDIC)

EBCDIC is the standard code for internal representa-
tion of alphameric and special characters. The code
occupies eight binary bits per character, making it
possible to store either one or two characters per
computer word. The eight bits allow 256 different
possible codes. (At present, not all of these combi-
nations have been assigned to represent characters.)
The complete EBCDIC code is shown in Appendix B.
The user should note that the codes for paper tape,
and typewriter are given in hexadecimal notation.

To make the conversion subroutines more efficient,

most of them will not recognize all 256 codes. The
asterisked codes in Appendix B constitute the subset
which is recognized by most of the conversion sub-

routines.

IBM Card Code

The IBM Card Code is used by the 1442 Card Read
Punch and in the input from the Console Keyboard.

This code defines a character by a combination
of punches in a card column. Card-code data is taken
from, or placed into, the leftmost twelve bits of a
computer word as shown below:

Card Row 121101234567 8 9 = = ~ -
ComputerWord 0 1234567891011 12 13 14 15

For example, a plus sign with a card code of 12,
6, 8 punches is placed into core storage in the binary
configuration illustrated in the following diagram.

Binary Word
Card Cod
are et 1000000010100000

] 1 [

00000000
123145678
11t n
22222222
333333133
44444440

§5555555

6666666

IRRRRRER]

99999999
12345871
o

18

Paper Tape Code (8-bit)

The paper tape code is a 6-bit subset of the Extended
BCD Interchange code. It may be used with the 1054/
1055 Paper Tape attachment. This code represents a
character with a stop position, a check position, and
six positions representing the 6-bit code BA8421.
Paper tape characters can be packed two per computer
word as shown below.

Ist 2nd
Paper Tape CharactersS B A C 8 4 2 I''s B AC8 42 1

Computer Word 0123 45%6 7;8 210111213 l4'|5]

The binary configuration of paper tape code for the
characters ? R is shown in Figure 5.

Typewriter Code

The Typewriter code is the 8-bit Console Printer code.
Typewriter characters can be packed two per computer
word.

Binary Word
|00]0]11101001001J

4\ A 4

S

B

AlX

C

8 | X

4 1 X

2| X

1] X

S

B | X

A

C

8 | X

4

2

11X

Figure 5. 8-Bit Paper Tape Code for ? R

DESCRIPTIONS

Eleven data conversion subroutines are provided.

BINDC Binary value to IBM card-coded decimal
value.

DCBIN IBM card-coded decimal value to binary
value.

BINHX Binary value to IBM card-~coded hexa-
decimal value.

HXBIN IBM card-coded hexadecimal value to a

binary value.

HOLEB IBM card code characters to EBCDIC
subset; EBCDIC subset to IBM card code
characters.

IBM card code characters to EBCDIC
(256 character code).

SPEED

PAPEB Paper tape code to EBCDIC subset;
EBCDIC subset to paper tape code.

PAPHL Paper tape code to IBM card code charac-
ters: IBM card code characters to

paper tape code.

PAPPR Paper tape code to typewriter code.

HOLPR IBM card code to typewriter code.
EBPRT EBCDIC subset to typewriter code.

NOTE: In addition to the subroutines listed above,
there are three conversion tables used by some of the
conversion subroutines.

PRTY—Typewriter code.
EBPA—EBCDIC and paper tape codes.
HOLL—Card code.

The first four of these subroutines change numeric
data from its input form to a binary form, or from a
binary form to an appropriate output data code. The
last seven convert entire messages, one character at
a time, from one input/output code to another. The
different types of conversions offered by these sub-
routines are illustrated in Figure 6.

Error checking

All of the subroutines except SPEED will accept only
the codes asterisked in Appendix B. It is considered
an error if any input character does not belong to the
specified input code or cannot be converted to the
specified output code. A space character, in the out-
put code, is stored in the output area for the input
character in error.

Converted To

Converted IBM IBM Printer Printer
From Binary Card Code - Card Code Paper Tape [EBCDIC Subset| EBCDIC Typewriter
Hexadecimal (80 Char) (256 Char)

Binary BINHX

BINDC

IBM
Card Code —
Hexadecimal

IBM
Card Code

Paper Tape

PAPPR

EBCDIC
(Subset)

EBPRT

Figure 6. Types of Conversions

If any such error occurs, the Carry indicator is
turned off and the Overflow indicator is turned on
when the conversion subroutine returns control to the
user. Otherwise, the settings of the Carry and Over-
flow indicators are not altered by the subroutine.

BINDC

This subroutine converts a 16-bit binary value to its
decimal equivalent in five IBM card-coded characters
and one sign character. The five characters and the
sign are placed into six computer words as illustrated
in Figure 7.

Calling Sequence

CALL BINDC
DC OUTPT
OUTPT BSS 6

Input
Input is a 16-bit binary value in the A-Register.
Output

Output is a 12-bit IBM card-coded sign character
(plus or minus) in location OUTPT, and five 12-bit
IBM card-coded numerical characters in OUTPT +1
through OUTPT +5.

DCBIN

This subroutine converts a decimal value in five
IBM card-coded characters and a sign character to
a 16-bit binary word. The conversion is the reverse
of the BINDC subroutine conversion illustrated in
Figure 7.

20

valveof | 0] 1] 2134|567 |8]9 |ofn ji213|14]15
+1538 ol ojolofjoji1 |1]jofojofo|o}ofo |1]o0
Sard oyt
Sign + [12f nfo] 3 516|718
110 0 0 oli1]o
OUTPT +1
o p12fmnjol1l2]3 516 8
ojof1floflo]o ojoflo]o
OUTPT +2
: {njol 1l 2}3]4|5]6|7]s
ofjojoji1]ofoflo]o]o|lo]o
OQUTPT +3
5 2{1nnf.o]l 1| 2]|3fj4|5]6|7]|s8
oloJoloJofloflo]1]o|lo]o
OUTPT +4
3 12[nnjol 1] 213 516 8
olojJofo]ofn ofo 0
OUTPT +5
g p12lmjolif2]s3 516|718
o] o 0 0 ofo]1
Figure 7. BINDC Conversion

Calling Sequence

CALL DCBIN
DC INPUT
INPUT BSS 6

Input

Input is a 12-bit IBM card-coded sign character in
location INPUT and five 12-bit IBM card-coded deci-
mal characters in INPUT +1 through INPUT +5.
Output

Output is a 16-bit binary word in the A-Register,
containing the converted value.

Error Conditions Detected

Any character other than an IBM card-coded plus,
ampersand, space, or minus as the sign, or 0 through

converted value greater than +32767 or less than
-32768 is considered an error.

BINHX
This subroutine converts a 16-bit binary word into
hexadecimal notation in four IBM card-coded charac-

ters as illustrated in Figure 8.

Calling Sequence

CALL BINHX
DC OUTPT
INPUT BSS 4

Input
Input is a 16-bit binary word in the A-Register.
Output

Output is four 12-bit IBM card-coded hexadecimal

9 as a decimal digit is considered an error. Any digits in location OUTPT through OUTPT +3.
Binary 011123 4]5]¢6 71819]1w0fj1nj12113(14]15
Valve IyToltfol o[o[1fofof 1|1] 1]o0
A |
Hexadecimal 3 | 7 | E
Representation
IBM
Card OUTPT
Code
A 12111 1 0 1 3 5 8
1{0}O0 1 0 010 0
OUTPT +1
5 12111] 0 1 2 13|4]151]6¢6 8
ojojojJojoflo}|o 1 0 0
OUTPT + 2
9 12(11 {0 1 2 3 4 6 8
ojoJoOo|oO ojojojol]o
QUTPT +3
E 12|11 10 1 2 1314|576 7181¢9
iTfjojfoflojojolo 1 oOjojJo|]oO
18062
Figure 8, BINHX Conversion

21

HXBIN Only the character codes asterisked in Appendix
B are available in this subroutine.
This subroutine converts four 12-bit IBM card-coded

hexadecimal characters into one 16-bit binary word. Calling Sequence
’_[.‘he convers%on %s the rever:se (?f the BINHX subrou-~ CALL HOLEB
tine conversion illustrated in Figure 8. bC $xxxx (Control)
DC INPUT
- Calling Sequence DC OUTPT
DC nnnnn (Character count)
CALL HXBIN : :
be INPUT INPUT |- ---z-zozc]
INPUT BSS 4 CUTFT [ZZZf=zz:o:]
Input
Control Parameter
Input is four 12-bit IBM card-coded hexadecimal
digits in INPUT through INPUT +3. Four hexadecimal digits. Digits 1-3 are not used.
The fourth digit specifies the direction of conversion:
Output 0 - IBM card code to EBCDIC

1 - EBCDIC to IBM card code,

Output is a 16~bit binary word in the A-Register.

Input
Error Conditions Detected

Input is either IBM card coded or EBCDIC characters,
Any character other than an IBM card-coded 0 (as specified by the control parameter) starting in
through 9 or A through F is considered an error. location INPUT. EBCDIC characters must be packed

two characters per one binary word. IBM card

coded characters are stored one character to each

HOLEB binary word.
This subroutine converts IBM card code to the Output
EBCDIC subset or converts the EBCDIC subset to
IBM card code. This code conversion is illustrated Output is either IBM card coded or EBCDIC charac-
in Figure 9. ters starting in location OUTPT. Characters are
seoic QY] S |GG 1S91G9(19]192 (%] Q192(9]%
Code tlafo]ofoflofola] vl alololol1]
Character A \ T
I
IBM
Card
Code
12injof1|2]|3 516|7]8
A 1fofJol 7 Tofolofolofo]o
. 2]1njoji1r|2]3|4|5]e 8
ojofj1fofof1]o]o]o 0

18063

Figure 9, HOLEB Conversion

22

packed as described above.

If the direction of the conversion is IBM card
code input to EBCDIC output, the input area may
overlap the output area if the address INPUT is equal
to or greater than the address OUTPT. If the direc-
tion of the conversion is EBCDIC input to IBM card
code output, the input area may overlap the output
area if the address INPUT + (n/2) - 1 is equal to or
greater than the address OUTPT +n-1, where n is
the character-count specified. The subroutine starts
processing at location INPUT.

Character Count

This number specifies the number of characters to be
converted; it is not equal to the number of binary
words used for the EBCDIC characters because those
characters are packed two per binary word. If an
odd count is specified, bits 8 through 15 of the last
word in the output area are not altered.

Error Conditions Detected

Any input character which has no equivalent among
the IBM card code or EBCDIC characters asterisked
in Appendix B is considered an error.

SPEED

This subroutine converts IBM card-coded characters
to EBCDIC characters, accepting all 256 character
codes as defined in Appendix B. The conversion time
is much faster than the conversion time of the pre-
vious subroutine because the conversion can take
place while the CARD subroutine is reading in a card
and because a different conversion method is possible
when all 256 EBCDIC characters are used.

If the SPEED subroutine is called before a card
reading operation is completed, the SPEED subrou--
tine synchronizes with the CARD subroutine by check-
ing bit 15 of the word to be processed before convert-
ing the word.

I that bit is a one, the SPEED subroutine waits
in a loop until the CARD subroutine sets the bit to a
ZETO,

Calling Sequence

CALL SPEED

DC $XXXX (Control)

DC INPUT

DC OUTPT

DC nnnnn (Character count)

IPUT | -

OUTPT ‘ -------- '_-

Control Parameter

Four hexadecimal digits. Digits 1-3 are not used.
The fourth digit indicates whether the output is to be
packed one or two characters per binary word.
0 — Packed, two EBCDIC characters per
binary word .
1 — Unpacked, one EBCDIC character per
binary word (left-justified).

Input

Input is IBM card-coded characters starting in loca-
tion INPUT.

Output

Output is EBCDIC characters starting in location

OUTPT. Characters may be packed or unpacked.
The input area should not overlap the output area

because of restart problems resulting from card feed

errors.

Character Count

This number specifies the number of IBM card coded
characters to be converted.

Error Conditions Detected

Any input character not defined among the IBM card
code characters in Appendix B is considered an error.

23

Note that all IBM card code punch combinations, ex-
cept multiple punches in rows 1-7 are legal.

PAPEB

This subroutine converts paper tape code to EBCDIC
or converts EBCDIC to paper tape code. The re-
lationship of codes for converting paper tape codes
to EBCDIC is illustrated in Figure 10.

Calling Sequence

CALL PAPEB

DC $xXXX {Control)

DC INPUT

DC OUTPT

DC nnnnn (Character count)
INPUT [-----ozoof]

Control Parameter

Four hexadecimal digits. Digits 1-3 are not used.
The fourth digit indicates the direction of conversion.
0 — Paper tape to EBCDIC
1 — EBCDIC to paper tape

Input

Input is either paper tape or EBCDIC characters, as
specified by the control parameter, starting in loca-
tion INPUT. Both character codes are packed two
per computer word.

Output

Output is either EBCDIC or paper tape characters
starting in OUTPT. Both character codes are in

packed format. The address INPUT must be equal to
or greater than the address OUTPT if overlap of the
input and output areas is desired. The subroutine
starts processing at location INPUT.

Character Count

This number specifies the number of paper tape or

EBCDIC characters to be converted. (This count is not

equal to the number of binary words used in the input
area.) I an odd-count is specified, bits 8-15 of the
last word in the output area are not altered.

Error Conditions Detected

Any input character which has no equivalent among
the asterisked codes in Appendix B is considered an
error.

PAPHL

This subroutine converts paper tape code to IBM card
code, or IBM card code to paper tape. Figure 11
illustrates the relationship of the two codes for con-

verting paper tape codes to IBM card code.

Calling Sequence

CALL PAPHL

DC $XXXX (Control)

DC INPUT

DC OUTPT

DC nnnnn (Character count)
INPUT [--oz--zozt]
OUTPT fzz:zzzzzzzz|

Paper siejAalclsjal2]1]s|B|lAa]lc]|s 1
Tape ol1 {1 Jolo]ojo]1]ojo]j1 | o]o]o 1
Code

A 1 T

|

eoic S |S[S 1SS 1919499299999 S
Code 1{1]oflojojofofjr|rv{1]1]o0o}o0]oO 1

A T

Figure 10, PAPEB Conversion

24

18064

Paper S B| A C| 8 4 2]11]s|B|A 2|1
Tape
Code 0 111 0 0 0 oj1jojo |1 0 1 1
A | T
A 12(11}0 112] 3 516|178
IBM 1 0|0 110 ojojof{ojJjojo
Card
Code
T 1211110 112 3|4]|516]|7]|8
o] o0 1 01]o0 TjojJjojoj]o}o

Figure 11. PAPHL Conversion

Control Parameter

Four hexadecimal digits. Digits 1-3 are not used.
The fourth digit indicates the type of conversion.

0 — paper tape to IBM card code

1 — IBM card code to paper tape

Input

Input is either paper tape or IBM card code charac-
ters, as specified by the control parameter, starting
in location INPUT. Paper Tape characters are
packed two per binary word; IBM card code charac-
ters are not packed.

Qutput

Output is either IBM card code or paper tape code
characters starting in location QOUTPT. Paper tape
codes are packed two per binary word; IBM card
codes are not packed.

If the direction of the conversion is IBM card
code input to paper tape output, the input area may
overlap the output area if the address INPUT is equal
to or greater than the address OUTPT. If the direc-
tion of the conversion is paper tape input to IBM card
code output, the input area may overlap the output
area if the address INPUT + (n/2) - 1 is equal to or
greater than the address OUTPT + n - 1, where n is
the character count specified in the parameter list.
The subroutine starts processing at location INPUT.

Character Count

This number specifies the number of paper tape or
IBM card code characters to be converted. (This
count is not equal to the number of binary words for
the paper tape characters because those characters
are packed two per binary word. If an odd count is
specified, bits 8-15 of the last word in the output area
are not altered.)

Error Conditions Detected

Any input character which has no equivalent among the
asterisked codes in Appendix B is considered an error.

PAPPR

This subroutine converts paper tape code to typewriter
code. The conversion is illustrated in Figure 12.

Calling Sequence

CALL PAPPR

DC $XXXX (Control)

DC INPUT

DC OUTPT

DC nnnnn (Character count)
INPUT l ---------- l

25

Paper Tape Code

S|IBJA|C |8 211]S|BJAJC]|S8 2 1
0]l 1 0 1 0|1 0 1 1
Character A T
S B|lA|JC |8 |4 2 1
01lo0 1 1 oj0]1
Character 9 |
Typewriter Code
GGG S G S CrfCafCa]Ca]Ca[Ca|Co]|C2[C2[C2
0|01 1 1 1 0Jol1 oo |1 1 1 0|0
Character A | T
S S S G]S]%[%
1l1]1]o]ofo]o oo
9
Figure 12, PAPPR Conversion
Control Parameter HOLPR

Four hexadecimal digits. Digits 1-3 are not used.
The fourth digit must be a zero.

Input

Input is paper tape-coded characters starting in lo-
cation INPUT. Paper tape-coded characters are
packed two per binary word.

Output

Output is typewriter coded characters starting in lo-
cation OUTPT. The characters are packed two per
binary word.

The address INPUT must be equal to or greater
than the address OUTPT if overlap of the input and
output areas is desired. The subroutine starts pro-
cessing at location INPUT.

Character Count

This number represents the number of paper tape
coded characters to be converted. I an odd count is
specified, bits 8-15 of the last word in the output area
are not altered.

Error Conditions Detected

Any input character which has no equivalent among the

asterisked characters listed in Appendix B is con-
sidered an error.

26

This subroutine converts IBM card-coded characters
to typewriter-coded characters. The relationship of
the coded characters for the conversion typewriter
coded characters is illustrated in Figure 13.

Calling Sequence

CALL HOLPR

DC $xXXX (Control)

DC INPUT

DC OUTPT

DC nnnnn (Character count)
INPUT |- ---zzzzcz]

Control Parameter

Four hexadecimal digits. Digits 1-3 are not used.
The fourth digit must be a zero.

Input

Input is IBM card coded-characters starting in loca-
tion INPUT. The characters are not packed.

IBM

Card
Code i
A 12| nfofr1 |2 456 819
1{fofojirfofofo]ololo]ojotofojol]o
T 12{11fo |1 3f41s 8 |9
ojof1}]o 1o 0 ofo
9 12|njoji1|2f314 71819
ofoJoJofofof]o 0 1
Typewriter | C1 [C1 S S [G [Ca]Ci] € i Ca] <o Ca]Ca[Ca C2]Ca] <2
Code fO]oJ1Jrir|[vjofofr]ofjo]1j1]1]o]oO
A i T
|
SGlaiG G S SfalS] b
111 folofolofo}: 0f0l0f0}0.
9 E 19023
Figure 13, HOLPR Conversion
Output EBPRT

Output is typewriter-coded characters starting in lo-
cation OUTPT. The characters are packed two per
binary word.

The input area may overlap the output area if
the address INPUT is equal to or greater than the
address OUTPT. The subroutine starts processing
at location INPUT.

Character Count

This number specifies the number of IBM card-coded
characters to be converted. This count is equal to
the number of words in the input area. If an odd-
count is specified, bits 8-15 of the last word in the
output area are not altered.

Error Conditions Detected
Any input character which has no equivalent among

the asterisked characters listed in Appendix B is
considered an error.

This subroutine converts EBCDIC-coded characters
to typewriter-coded characters. The relationship of
the coded characters for the conversion to typewriter
characters is shown in Figure 14.

Calling Sequence

CALL EBPRT

DC $xxxx (Control)

DC INPUT

DC OUTPT

DC nnnnn (Character count)
INPUT e ccccecm=-
OUTPT - = = - e = = = = =

27

Bcoic |GG (S (GG |GG]|9]19]19(9219]%

Code

o

Typewriter C] C] C] CI Cl Cl Cl Cl <:2 c2 C2 C2 c2

Code

o
o

Figure 14, EBPRT Conversion

Control Parameter

Four hexadecimal digits. Digits 1-3 are not used.
The fourth digit must be a zero.

Input

Input is EBCDIC-coded characters starting in loca-
tion INPUT. EBCDIC characters are packed two per
word.

Output

Output is typewriter-coded characters starting in
location OUTPT. The characters are packed two per

binary word.
The address INPUT must be equal to or greater

28

than the address OUTPT if overlap of the input and
output areas is desired. The subroutine starts pro-
cessing at location INPUT.

Character Count

This number specifies the number of EBCDIC charac-
ters to be converted. This count is not equal to the
number of binary words in the input area. If an odd
count is specified, bits 8-15 of the last word in the
output area are not altered.

Error Conditions Detected
Any input character which has no equivalent among

the asterisked characters listed in Appendix B is con-
sidered an error.

The IBM 1130 Subroutine Library includes a selection

of arithmetic and functional subroutines which are

most frequently required because of their general ap-
plicability. There are 28 basic subroutines, some of
The various addi-

which have several entry points.

tional entry points allow indexed linkage, and/or a
choice of format when working with floating-point

numbers.

Table 4 lists the arithmetic and functional sub-
routines that are included in the Subroutine Library.
After a brief description of floating-point data

Table 4, Arithmetic and Functional Subroutines

ARITHMETIC AND FUNCTIONAL SUBROUTINES

formats, the particulars of each subroutine are
presented.

FLOATING POINT DATA FORMATS

Many of the IBM 1130 arithmetic and functional sub-
routines offer two ranges of precision. These ranges
are called standard range and extended range. The
standard range provides 23 bits of precision, while
the extended range provides up to 31 bits of precision.

DESCRIPTION

NAME

Floating Point

Add/Subtract

Multiply

Divide

Load /Store Pseudo-Accumulator
Trigonometric Sine/Cosine
Trigonometric Arctangent

Square Root

Natural Logarithm

Exponential (eX)

Floating-Point Base to a Fixed Exponent

Integer Float/Unfloat
Fixed Point

Fixed Base to a Fixed Exponent
Fixed-Point Square Root

Fixed-Point Double Precision Multiply
Fixed-Point Double Precision Divide

Special Function

Floating-Point Reverse Subtract
Floating-Point Reverse Divide
Floating-Point Reverse Sign
Floating-Point Absolute Value
Fixed-Point Reverse Subract
Fixed-Point Reverse Divide
Fixed-Point Reverse Sign
Fixed-Point Absolute Value

Floating-Point Base to a Floating Exponent

Standard Range

*FADD/*FSUB
*FMPY
*FDIV
*FLD/*FSTO
FSIN/FCOS
FATN
FSQR
FLN
FEXP
*FAXI
*FAXB
FLT/FIX

*FIXI
XSQR
XMD
XDD

*FSBR
*FDVR
FSNR
FABS
*XSBR
*XDVR
XSNR
XABS

Extended Range

*EADD/*ESUB
*EMPY
*EDIV
*ELD/*ESTO
ESIN/ECOS
EATN
ESQR
ELN
EEXP
*EAX|
*EAXB
EFLT/EFIX

*ESBR

*EDVR
ESNR
EABS

become FADDX.

NOTE: By adding an X to those names prefixed with an asterisk, the user can cause the
contents of Index Register 1 to be added to the argument address specified by the subroutine
calling sequence to form the effective argument address. For example, FADD would

29

To achieve correct results from a particular sub-
routine, the input arguments must be in the proper

format
o) L.

Standard-Range Format

Standard-range floating-point numbers are stored in
the core storage as shown below:

Characteristic 7 Bits of Mantissa
A A

4 N\ 7
Ist Word | S
0 1 8 9 15
16 Least Significant Bits of Mantissa
C A D
2nd Word
0 15

Numbers can consist of up to 23 significant bits with
a binary exponent ranging from -128 to +127. Two
adjacent storage locations are required for each
number. The first (lowest) location must be even-
numbered. The sign of the mantissa is contained in
bit zero of the first word. Bits one through 8 repre-
sent the characteristic and the remaining 23 bits
represent the mantissa (absolute value).

The characteristic is formed by adding +128 to
the exponent. For example, an exponent of -32 would
be represented by a characteristic of 128-32 or 96.
An exponent of +100 would be represented by a charac-
teristic of 100 + 128 or 228, Since 128 = 200g (801¢)
the characteristic of a non-negative exponent always
has a 1-bit in position 1, while the characteristic of
a negative exponent always produces a 0-bit in posi-
tion 1. A normal zero consists of all zero bits in
both the characteristic and the mantissa.

Extended Range Format

Extended range floating-point numbers are stored in
three adjacent core locations as shown in the follow-
ing illustration. Numbers can consist of up to 31
significant bits with a binary exponent ranging from

30

1st Word Unused Characteristic

0 7 8 15
2nd Word | S Mantissa

0 1 15
3rd Word Mantissa

0 15

-128 to +127. Bits zero through seven of the first
word are unused; bits eight through 15 of the first
word represent the characteristic of the exponent
(formed in the same manner as in the standard-range
format); bit zero of the second word contains the sign
of the mantissa; and the remaining 31 bits represent
the mantissa (absolute value).

FLOATING-POINT PSEUDO-ACCUMULATOR

IBM 1130 floating-point subroutines sometimes re-
quire a register or accumulator which can accommo-
date numbers in floating-point format. Since all of
the hardware registers are only 16 bits in length, a
pseudo-accumulator must be set up to contain two-
and three-word floating-point numbers. The IBM 1130
pseudo-accumulator (designated F AC for Floating
Accumulator) is a three-word register occupying the
three highest locations of the transfer vector (see
IBM 1130 Assembler Language, C26-5927). The user
can refer to it by using Index Register 3 plus a fixed
displacement. The format of the pseudo-accumulator
is shown below.

Characteristic Mantissa

Mantissa

3

FAC
(IX3 + 126)

NOTE: The effective address of the mantissa will
always be even.

PROGRAMMING CONSIDERATIONS

The IBM 1130 subroutines save the condition of the
Overflow indicator upon entry and restore that con-
dition before returning to the main program. If an
error condition occurs during the execution of the
subroutine, the Overflow indicator is forced ON re-
gardless of the condition saved on entry.

Subroutines which use the hardware accumula-
tor (Registers A and Q) do not save and restore its
contents. Therefore, a main program should save
the contents of the accumulator, if the accumulator
is to be used.

CALLING SEQUENCES

The arithmetic and functional subroutines are called
via a CALL statement, in some cases followed by a
DC statement containing the actual or symbolic
address of an argument. In the descriptions which
follow, the notations (ARG) and (F AC) refer to the
contents of the operand rather than its address.

The name FAC refers to the floating-point pseudo-
accumulator.

Floating Add

CALL FADD, FADDX, EADD or EADDX
DC ARG
Input Floating augend in FAC

Floating addend in location ARG
Result (FAC)+(ARG) replaces (FAC)

Floating Subtract

CALL FSUB, FSUBX, ESUB or ESUBX
DC ARG
Input Floating minuend in FAC

Floating subtrahend in location ARG
Result (FAC)-(ARG) replaces (FAC)

Floating Multiply

CALL FMPY or EMPY

DC ARG

Input Floating multiplicand in FAC
Floating multiplier in location ARG

Result (FAC) times (ARG) replaces (FAC)

Floating Divide

CALL FDIV, FDIVX, EDIV or EDIVX
DC ARG
Input Floating dividend in FAC

Floating dividend in location ARG
Result (FAC)/(ARG) replaces (FAC)

Load Pseudo-Accumulator

CALL FLD, FLDX, ELD or ELDX
DC ARG

Input Floating-point number in location ARG

Result (ARG) replaces (FAC)

Store Pseudo-Accumulator

CALL FSTO, FSTOX, ESTO or ESTOX
Input Floating-point number in FAC
Result (FAC) replaces (ARG)

Floating Trigonometric Sine

CALL FSIN or ESIN

Input Floating-point argument (in radians)
in FAC

Result Sine of (FAC) replaces (FAC)

Floating Trigonometric Cosine

CALL FCOS or ECOS

Input Floating-point argument (in radians)
in FAC

Result Cosine of (FAC) replaces (FAC)

Floating Trigonometric Arctangent

CALL FATN or EATN

Input Floating-point argument in FAC

Result Arctangent of (FAC) replaces (FAC);
the result is within 90 degrees (in
radians)

Floating Square Root

CALL FSQR or ESQR
Input Floating-point argument in FAC
Result Square root of (FAC) replaces (FAC)

Floating Natural Logarithm

CALL FLNor ELN
Input Floating-point argument in F AC
Result Loge (FAC) replaces (FAC)

31

Floating Exponential

CALL
Input

Result

FEXP or EEXP
Floating-point argument in
FAC=n

el replaces (FAC)

Floating Base to a Fixed Exponent

CALL
DC
Input

Result

FAXI, FAXIX, EAXI or EAXIX

ARG

Floating-point base in FAC
Fixed-point exponent in location ARG
(FAC), raised to the exponent con-
tained in ARG, replaces (FAC)

Floating Base to a Floating Exponent

CALL
DC
Input

Result

FAXB, FAXBX, EAXB or EAXBX
ARG

Floating-point base in FAC
Floating-point exponent in location
ARC

(FAC) raised to the exponent contained
in ARG replaces (FAC)

Fix a Floating-Point Number

CALL
Input
Result

FIX or EFIX
Floating-point number in FAC
Fixed-point integer in the A-register

Float a Fixed-Point Number

CALL
Input
Result

FLT or EFLT
Fixed-point integer in the A-Register
Floating-point number in FAC

Fixed Base to a Fixed Exponent

CALL
DC
Input

Result

FIXI or FIXIX

ARG

Fixed-point base in the A-Register
Fixed-point exponent in location ARG
(A-Register) raised to the exponent
contained in ARG replaces (A-
Register)

Fixed-Point Square Root

32

CALL
Input
Result

XSQR

Fixed-point argument in the A-Register
Square root of (A-Register) replaces
(A-Register)

Fixed-Point Double-Precision Multiply

CALL
DC
Input

Result

XMD

ARG

Double-word multiplicand in the A- and
Q-Registers

Double-word multiplier in location ARG
(even address)

Double-word product in the A- and Q-
Registers

Fixed-Point Double-Precision Divide

CALL
DC
Input

Result

XDD

ARG

Double-word dividend in the A and Q-
Registers

Double-word divisor in location ARG
Double-word quotient in the A and Q-
Registers

Floating-Point Reverse Subtract

CALL
DC
Input

Result

FSBR, FSBRX, ESBR or ESBRX
ARG

Floating minuend in location ARG
Floating subtrahend in FAC
(ARG) - (FAC) replaces (FAC)

Floating-Point Reverse Divide

CALL
DC
Input

Result

FDVR, FDVRX, EDVR or EDVRX
ARG

Floating dividend in location ARG
Floating divisor in F AC
(ARG)/(FAC) replaces (FAC)

Floating-Point Reverse Sign

CALL
Input
Result

FSNR or ESNR
Floating-point number, X, in FAC
-X replaces X in FAC

Floating-Point Absolute Value

CALL
Input
Result

FABS or EABS
Floating-Point Number, X, in FAC
Absolute value of X replaces X in FAC

Fixed-Point Reverse Subtract

CALL
DC
Input

XSBR or XSBRX
ARG
Fixed-point minuend in location ARG

Result

Fixed-point subtrahend in the A-
Register

(ARG) - (A-Register) replaces (A-
Register)

Fixed-Point Reverse Divide

CALL
DC
Input

Result

XDVR or XDVRX

ARG

Fixed-point dividend in location
ARG

Fixed-point divisor in the A-
Register

(ARG)/(A-Register) replaces
(A-Register)

Fixed-Point Reverse Sign

CALIL XSNR

Input Fixed-point number, X, in the A- and
Q-Registers

Result -X replaces X in the A- and Q-
Registers

Fixed-Point Absolute Value

CALL XABS

Input Fixed-point number, X, in the A and Q
Registers

Result Absolute value of X replaces X in the
A- and Q-Registers

33

SELECTIVE DUMP SUBROUTINES

The IBM 1130 Subroutine Library includes three dump
subroutines: Dump Selected Data on Typewriter
(Console Printer); Dump Selected Data on Printer;
and Dump Status Area. These subroutines allow the
user to dump selected portions of core storage during
the execution of an object program.

DUMP SELECTED DATA ON TYPEWRITER/
PRINTER

There are two subroutines available for the purpose
of selecting an area of core storage and having it
dumped out on either the typewriter or the printer.
Each of these subroutines has two entry points: one
for hexadecimal output, and one for decimal output.
The entry points for the various configurations are
shown below:

Entry Point Function of Subroutine

DMTYX Dump on typewriter in hexadecimal form
DMTYD Dump on typewriter in decimal form
DMPRX Dump on printer in hexadecimal form
DMPRD Dump on printer in decimal form

Calling Sequence

The calling sequence for any of the above functions
is as follows:

CALL ENTRY POINT
DC START
DC END

START and END represent the starting and ending
addresses of the portion of core storage to be
dumped.

Format

Before the actual dump appears on the selected out-
put device, the user is given one line of status
information. This line indicates the status of the
Overflow and Carry triggers (ON or OFF), and

the contents of the A- and Q-Registers and the three

34

index registers. The register contents are given in
both hexadecimal and decimal form regardless of
which type of output was requested. The format of
the status information is shown below:

OFF ON HHHH + DDDDD HHHH i DDDDD
[—_—1 — \ ~ AR ~ J
Overflow Carry A Register Q Register

E—]HHH + DDDDD HHHH + DDDDD HHHH # DDDDD
J

~
Index Registers 1, 2, and 3

All other data are dumped eight words to a line,
with the address of the first word in each line printed
to the left of the line. Hexadecimal data is printed
four characters per word; decimal data is printed
five digits per word with a preceding plus or minus
sign.

Page numbers will not be printed for either
subroutine. However, the printer subroutine does
provide for automatic page overflow upon sensing a
channel-12 punch in the carriage tape.

DUMP STATUS AREA

This subroutine provides a relatively easy and ef-
ficient means of dumping the first 80 words of core
storage. These words contain status information
relating to index registers, interrupt addresses,
interval timers, etc. This information may fre-
quently be required when testing a program. It may
also be desirable to dump these words before load-
ing, because pressing the Load key destroys the
data in the first 80 words of core storage.

This subroutine is called via the following
statement:

CALL DMP80

The first 80 words of core storage are dumped on
the typewriter in hexadecimal form with a space
between each word. After typing the last word, the
subroutine halts. Pressing the Start key returns
control to the main program.

ADDING SUBROUTINES

The user may write subroutines in symbolic language
and add them to the Subroutine Library.

The user-added subroutine can be called from
either a Symbolic or FORTRAN program by using the
appropriate CALL statement (see the publications:
IBM 1130 Assembler Language, Form C26-5927, and
IBM 1130 FORTRAN Language, Form C26-5933).

Briefly, to add a subroutine, it is necessary to:

1. Write the subroutine in symbolic language.

2. Precede the subroutine source deck (or
tape) with one ENT statement for each
subroutine entry point (10 maximum).

3. Assemble the subroutine in relocatable
form, and add the assembled program to
the subroutine library deck.

35

APPENDIX A, ERRORS DETECTED BY THE I/0 SUBROUTINES

NOTE: The errors marked with an asterisk are those that are detected after an 1/O operation has been initiated.

ERROR CONTENTS OF A-REGISTER
Binary Hexadecimal

Card

*Last card 0000000000000000 0000

*Lost data

*Feed check r

*Read check } 1.0000000000000001 0001

*Punch check

1442 not ready 0001000000000000 1000

Itlegal CALL requested 0001000000000001 1001
Keyboard-Console Printer

Device not ready 0010000000000000 2000

Illegal CALL requested 001000000000000 1 2001
Paper Tape

Device not ready 0011000000000000 3000

Illegal CALL requested 001100000000000°1 3001
Disk

*Attempt to write in file protected area 00000000000000T11 0003

*Read check remaining after ten attempts 000000000000000 1 0001

*Write check remaining after ten attempts 0000000000000010 0002

Device not ready 0101000000000000 5000

Illegal CALL requested 010100000000000 1 5001
Printer

*Device not ready 0000000000000010 0002

*Channel 9 detected 00000000000000 11 0003

*Channel 12 detected 0000000000000100 0004

End of forms 0110000000000000 6000

Itlegal CALL requested 0110000000000001 6001
Plotter

Plotter not ready 0111000000000000 7000

Illegal CALL requested 0111000000000001 7001

19016

37

APPENDIX B. CHARACTER CODE CHART

* Recognized by all Conversion subroutines

NOTE: Codes that are not asterisked are recognized only by the SPEED subroutine.
EBCDIC IBM Card Code
Ref Binary Hex Rows Hex | Craphic and Control Paper Tape Typewriter
No. Name Hex Hex
0123 4567 12 11 0 9 8 7-1
0 0000 0000 00 12 098 1 BO3 | NUL
1 0001 01 12 9 1 901
2 0010 02 12 9 2 881
3 0011 03 12 9 3 841
4 0100 04 12 9 4 821 | PF Punch Off
5* 0101 05 12 9 5 811 HT Horiz.Tab 4]
6 0110 06 12 9 [809 LC Lower Case
Vad oi1l 07 12 9 7 805 DEL Delete FF
8 1000 08 12 9 8 803
9 1001 09 12 9 8 1 903
10 1010 OA 12 9 8 2 883
1 1011 0B 12 9 8 3 843
12 1100 0C 12 9 8 4 823
13 1101 oD 12 9 8 5 813
14 } 1110 OE 12 9 8 6 80B
15 1 OF 12 9 8 7 807
16 0001 0000 10 12 11 9 8 1 D03
17 0001 11 n 9 1 501
18 0010 12 1 9 2 481
19 0011 13 n 9 3 441
20* 0100 14 n 9 4 421 RES Restore 05
21 0101 15 n 9 5 411 NL New Line 81
22* 0110 16 n 9 6 409 BS Backspace 11
23 om 17 1 9 7 405 | IDL Idle
24 1000 18 1 9 8 403
25 1001 19 1 9 8 1 503
26 1010 1A 11 9 8 2 483
27 101 1B 1 9 8 3 443
28 1100 1C 1 9 8 4 423
29 1101 1D 11 9 8 5 413
30 1110 1E 11 9 8 6 408
31 nn 1F n 9 8 7 407
32 0010 0000 20 1m0 98 1 703
33 0001 21 09 1 301
34 0010 22 09 2 281
35 0011 23 09 3 241
36 0100 24 09 4 22} BYP Bypass
37* 0101 25 09 5 211 | LF Line Feed 03
38* 0110 26 09 6 209 EOB End of Block 80
39 o111 27 09 7 205 PRE Prefix
40 1000 28 09 8 203
41 1001 29 098 1 303
42 1010 2A 098 2 283
43 1011 2B 098 3 243
44 1100 2C 09 8 4 223
45 1101 20 092 8 5 213
46 1110 2E 098 6 208
47 1 2F 098 7 207
48 0011 0000 30 12 11 0 9 8 1 FO3
49 0001 31 9 1 101
50 0010 32 9 2 081
51 0011 33 9 3 041
52 0100 34 9 4 021 | PN Punch On
53* 0101 35 9 5 011 RS Ribbon Shift 09
54 0110 36 9 6 009 | UC Upper Case
55 o 37 9 7 005 EOT End of Trans.
56 1000 38 9 8 003
57 1001 39 98 1 103
58 1010 3A 9 8 2 083
59 1011 38 9 8 3 043
60 1100 3C 98 4 023
61 1101 3D 98 5 013
62 1110 3E 9 8 6 008
63 1 nn 3F 9 8 7 007

38

19017

EBCDIC IBM Card Code
. H I .
rl:zf. Binary Hex Rows Hex Grophnch;r::eContro Papie_'relupe Typ:;v;(lten
0123 4567 12 11 0 9 8 7-1

64* 0100 0000 40 no punches 000 | (space) 10 21
65 0001 41 12 09 1 BO1

66 0010 42 12 09 2 A81

67 0011 43 i2 09 3 A4]

68 0100 44 12 09 4 A21

69 0101 45 12 09 5 All

70 0110 46 12 09 6 AQ9

71 0111 47 12 09 7 AQ5

72 1000 48 12 0 9 8 AO3

73 1001 49 12 8 1 902

74* 1010 4A 12 8 2 882 ¢ 7A 02
75* 1011 4B 12 8 3 842 . (period) 6B 00
76* 1100 4C 12 8 4 822 | < 7C DE
77* 1101 4D 12 8 5 812 (6D FE
78* { 1110 4E 12 8 6 80A + 6E DA
79* 1 4F 12 8 7 806 I (logical OR) 7F Cé
80* 0101 0000 50 12 800 & 70 44
81 0001 51 12 1N 9 1 DO1

82 0010 52 12 11 9 2 [&:]]

83 0011 53 12 11 9 3 C41

84 0100 54 12 11 9 4 Cc21

85 0101 55 12 N 9 5 cl

86 0110 56 12 1N 9 6 co9

87 o1 57 12 1N 9 7 Co5

88 1000 58 12 N 9 8 Cco3

89 1001 59 " 8 1 502

90* 1010 5A 1 8 2 482 ! 4A 42
91* 101 58 1 8 3 442 $ 58 40
92* 1100 5C 11 8 4 422 * 4C D6
93* 1101 5D 1 8 5 412) 5D Fé
94* 1110 5E 1 8 6 40A ; 5E D2
95*% [RRR! 5F 11 8 7 406 | — (logical NOT) 4F F2
96* 0110 0000 60 11 400 - (dash) 40 84
97* 0001 61 0 1 300 / 31 BC
98 0010 62 1 0 9 2 681

99 oon 63 1 0 9 3 641

100 0100 64 11 0 ¢ 4 621

101 0101 65 11 0 9 5 611

102 0110 66 11 0 9 6 609

103 0111 67 11 09 7 605

104 1000 68 11 0 9 8 603

105 1001 69 0 8 1 302

106 1010 6A 12 1N coo

107* 1011 6B 0 8 3 242 , (comma) 38 80
108* 1100 6C 0 8 4 222 % 2C 06
109* 1101 6D 0 8 5 212 __{underscore) 3D BE
110* 1110 6E 0 8 6 20A > 3E 46
111* nn 6F 0 8 7 206 ? 2F 86
112 0111 0000 70 12 11 o0 EQO

113 0001 71 12 11 0 9 1 FO1

114 0010 72 12 11 0 9 2 E81

115 0011 73 12 11 0 9 3 E41

116 0100 74 12 11 0 9 4 E21

117 0101 75 12 11 0 9 5 ETl

118 0110 76 12 11 0 9 6 E09

119 o 77 12 11 0 9 7 EO5

120 1000 78 12 11 0 9 8 EO3
121 1001 79 8 1 102

122* 1010 7A 8 2 082 : 20 82
123* 1011 7B 8 3 042 # 0B Cco
124* 1100 7C s 4 022 |@ 1C 04
125* 1101 7D 8 5 012 ' (apostrophe) ob Eé
126* 1110 7E 00A N OE C2
127+ nmn | F 8 6 1006 [1F E2
8 7
19017

39

EBCDIC

IBM Card Code

’lzlef Binary Hex Rows Hex Graphic and Control Paper Tape Typewriter

o. Name Hex Hex
0123 4567 12 1t 09y 8 7-i

128 1000 0000 80 12 0 8 1 BO2

129 0001 81 12 0 1 BOO a

130 0010 82 12 0 2 A80 | b

131 0011 83 12 0 3 A40 | ¢

132 0100 84 12 0 4 A20 | d

133 0101 85 12 0 5 A0 | e

134 0110 86 12 0 6 AO8 | f

135 o 87 12 0 7 AO4 | g

136 1000 88 12 0 8 A02 | h

137 1001 89 12 09 A0l i

138 1010 8A 12 0 8 2 A82

139 1011 8B 12 0 8 3 A42

140 1100 8C 12 0 8 4 A22

141 1101 8D 12 0 8 5§ Al12

142 1110 8E 12 0 8 6 AOA

143 1mn 8F 12 0 8 7 A06

144 1001 0000 90 12 11 8 1 D02

145 0001 Fal 12 N 1 D00 i

146 0010 92 12 1 2 C80 k

147 0011 93 12 1 3 C40 |

148 0100 94 12 1 4 C20 |m

149 0101 95 12 1N 5 Cl0 | »n

150 0110 96 12 1 6 Co8 | o

151 o111 97 12 1 7 C04 | p

152 1000 98 12 11 8 C02 | q

153 1001 99 12 1N 9 Co1 r

154 1010 9A 12 1) 8 2 €82

155 mon 98 12 11 8 3 C42

156 1100 9C 12 N 8 4 c22

157 1101 9D 12 11 8 5 ci12

158 1110 9E 12 11 8 6 COA

159 v oum | iz g 7 | cos

160 1010 0000 A0 1 0 8 1 702

161 0001 Al 1 0 1 700

162 0010 A2 1 0 2 680 s

163 0011 A3 1M 0 3 640 |t

164 0100 A4 10 4 620 u

165 0101 A5 1 0 5 610 v

166 0110 A6 1m0 6 608 w

167 0111 A7 1 0 7 604 x

168 1000 A8 10 8 602 y

169 1001 A9 1 09 601 z

170 1010 AA 10 8 2 682

171 101 AB 1 0 8 3 642

172 1100 AC 1 0 8 4 622

173 1101 AD 1m0 8 5 612

174 1110 AE 1 0 8 6 60A

175 [RRR AF 1 0 8 7 606

176 1011 0000 BO 12 11 0 8 1 FO02

177 0001 B1 12 11 0 1 F0O

178 0010 B2 12 11 0 2 E80

179 0011 B3 12 11 0 3 E40

180 0100 B4 12 11 0 4 E20

181 0101 B5 12 11 0 5 E10

182 0110 B6 12 11 0 6 EO8

183 o111 B7 12 11 0 7 EO04

184 1000 B8 12 11 0 8 EO2

185 1001 B9 12 11 09 EO1

186 1010 BA 12 11 0 8 2 E82

187 1011 BB 12 11 0 8 3 E42

188 1100 BC 12 11 0 8 4 E22

189 1101 BD 12 11 0 8 5 E12

190 1110 BE 12 11 0 8 6 EOA

191 1111 BF 12 11 0 8 7 E06

EBCDIC

IBM Card Code

'!Elef Binary Hex Rows Hex | CGraphic and Control Paper Tape Typewriter
o. Name Hex Hex

0123 4567 12 11 0 9 8 7-1
192 1100 0000 | CoO | 12 0 A00 | (+zero)
193* 0001 C1 12 1 900 A 61 3C or 3E
194* 0010 C2 12 2 880 | B 62 18 or 1A
195* 0011 C3 12 3 840 | C 73 1Cor 1E
196* 0100 C4 12 4 820 | D 64 30 or 32
197* 0101 Cc5 12 5 810 | E 75 34 or 36
198* 0110 Cé 12 é 808 | F 76 10 or 12
199* 0111 Cc7 12 7 804 | G 67 14 0or 16
200* 1000 cs 12 8 802 H 68 24 or 26
201* 1001 c9 12 9 801 | 79 20 or 22
202 1010 CA | 12 098 2 A83
203 1011 CB 12 098 3 A43
204 1100 CcC | 12 098 4 A23
205 1101 CD | 12 098 5 A13
206 1110 CE 12 098 6 AOB
207 [m CF 12 098 7 A07
208 1101 0000 DO 1 0 600 | (- zero)
209* 0001 D1 n 1 500 | J 51 7Cor7E
210* 0010 D2 11 2 480 | K 52 58 or 5A
211+ oon D3 1 3 440 | L 43 5C or 5E
212 0100 D4 1 4 420 | M 54 70 or 72
213* 0101 D5 n 5 410 | N 45 74 or 76
214* o110 Dé n [} 408 (o] 46 50 or 52
215*% o D7 11 7 404 | P 57 54 or 56
216* 1000 D8 1 8 402 | Q 58 64 or 66
217 1001 D9 1 9 401 | R 49 60 or 62
218 1010 DA | 12 N 9 8 2 c83
219 011 DB 12 N 9 8 3 C43
220 1100 DC | 12 11 9 8 4 (o x]
221 1101 DD 12 11 9 8 5 ci13
222 1110 DE 12 11 98 6 CoB
223 { 1mm DF 12 1N 98 7 coz7
224 1110 0000 EO 0 8 2 282
225 0001 El 1 0 9 1 701
226* 0010 E2 0 2 280 | S 32 98 or 9A
227* 0011 E3 0 3 240 | T 23 9C or 9E
228* 0100 E4 0 4 220 U 34 BO or B2
229* 0101 E5 0 5 210 | Vv 25 B4 or B
230* 0110 E6 0 é 208 | W 26 90 or 92
231* 0111 E7 0 7 204 | X 37 94 or 96
232* 1000 E8 0 8 202 |vY 38 A4 or A6
233* 1001 E9 09 201 V4 29 AO or A2
234 1010 EA 1M1 09 8 2 683
235 1011 EB 11 0 9 8 3 643
236 1100 EC 1 0 9 8 4 623
237 1101 ED 11 09 8 5 613
238 1110 EE 11 09 8 6 60B
239 v ooumn EF 11098 7 |67
240* 1111 0000 FO 0 200 {0 1A C4
241* 0001 F1 1 100 1 01 FC
242* 0010 F2 2 080 2 02 D8
243* 0011 F3 3 040 3 13 DC
244* 0100 F4 4 020 | 4 04 FO
245* 0101 F5 5 010 | 5 15 F4
246* o110 Fé 6 008 -] 16 DO
247* 0111 F7 7 004 | 7 07 D4
248* 1000 F8 8 002 8 08 E4
249* 1001 F9 9 001 9 19 EO
250 1010 FA 12 11 0 9 8 2 E83
251 on FB 12 11 0 9 8 3 E43
252 1100 FC 12 11 098 4 E23
253 1101 FD 12 11 098 5 E13
254 1o FE 12 11 0 9 8 6 EOB
255 f m FF 12 11 098 7 E07

19017

41

C26-5929-0

EN

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

0°6265-92D V'STNuUlpAuNd 0El wal

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42

