IBM Technical Newsletter File Number 1130-30
Re: Form No. €26-5929-1, -2

This Newsletter No. N26-0557
Date August 15, 1966

Previous Newsletter Nos. N26-0551
N26-0553

IBM 1130 Subroutine Library (Form C26-5929-1, -2)

The attached pages bring the above publication up to date. Changes are indicated by a
vertical line at the left of affected text, a bullet (e) at the left of the title of a changed
illustration, and a bullet beside the page number of a page that should be reviewed in

its entirety. Pages that contain changes are coded in the upper outside corner.

REPLACE THE FOLLOWING PAGES:

iii and iv 41 and 42
1 and 2 43 and 44
15 and 16 45 and 46
17 and 18 46.1 and 46. 2
29 and 30 47 and 48
35 and 36 49 and 50
37 and 38 51 and 52
39 and 40 53 and 54
55 and 56

ADD PAGES:

47,1 and 47.2
57 and 58
59 and 60

Note that all references in this publication to floating-point have been changed to real
by this TNL. These changes occur on pages 35 through 46 and are not identified

by a vertical line, although each page number is marked with a bullet.

File this Newsletter at the back of the manual. It will provide a reference to changes,

a method of determining that all amendments have been received, and a check for
determining if the manual contains the proper pages.

IBM Corporation, Programming Publications, Dept. 452, San Jose, Calif. 95114

PRINTED IN U.S.A.

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

CONTENTS

HOLPR ¢ttt ottt vt tneneesosonneanonasnan 33
EBPRT o o0 ot evenonesonussonononsaceosnes 34

INTERRUPT SERVICE SUBROUTINES ¢4 vt ve v v v
ISS Characteristics v v v v v ot o e v s v v oo v s annnosans
Methods of Data Transfer v v e v oo oo n v v nunerens
Interrupt Processing « o v v e s v s v o v o s v ot vnnnenens
Interrupt Level Subroutines + v v v v v v ot s o v v v e ns s
ISSOperation. « v o e v v vt et en s ettt an .,
General-Error-Handling Procedures « v v v v v v v v v v wu

ARITHMETIC AND FUNCTIONAL SUBROUTINES o v e... 35
Real Data FOrmats « « s o o o o o s vt oo oevuseeeeess 35
Real Negative Number Representations +.......4... 35
Fixed PoInt FOrmat « e e o o o e o v oo v o nnnasenens35.l
Real Number Pseudo Accumulator « e vevweeesesss 37
Calling Sequence « v esesrevastrssaneeseeens 37

Arithmetic and Functional Subroutine Error Indicators 40

Functional Subroutine ACCUraCy .. v vvvveweeuwsone.. A4l
Extended Precision Subroutines000.... 41
Standard Precision Subroutinesvo000.... 42

Elementary Function Algorithms . . . v v v v v v e ewese.. 43
Sine-Cosine v v v vt vt vt envenveovecnrenensas. 43

Basic ISS Calling Sequence . v . v v vt vt v v evennnnss
Assignment of Core Storage Locations + « v v v ot v s o veean
Descriptions of Interrupt Service Subroutines . . . v v v oo .

Card Subroutines ..o vvvveiin ettt vsenennen,.

Disk Subroutings « v v v v v v e s vt v e vt veanonns o

W O 00 R NN P P = e

—_
S O

Set Pack Initialization . v o v vv vt v e v e ennronneons

-
w1

Printer Subroutineso ve ot ve v et o ceneaeennn
Console Printer/Input Keyboard .4 vt it vnveveenann
Paper Tape SUbTOUINES « v v v v oo v o s s oo aonennoss
Plotter Subroutinescoveevennonneanneens

_
o o

ArcCtangent « ¢ e s v e v e et v et et n 0ot e e e e 44

—_
o

Square ROOL ¢ v e v ittt et ittt tnieennneneess 45
Natural Algorithm « oo v v vt evi i ieenenes.. 45
SUBROUTINES USED BY FORTRAN .. vvvneenenanans 22 Exponential « ¢ s oottt it tnststennncennass 46
Introduction. . o v v vt v et i e sttt st e e, 22 Hyperbolic Tangent « ¢ + s o v vt v st nsnnncenvenas 46
General Specifications « v v v oo s v vt v vt ernonanne 22 Real Base to Real Exponent «+ s e v e e s s vvesenceees 46
Error Handling v v v v vt vt tn it e nnnnanen 22
Descriptions of I/O Subrouting « v o « s s e v v sevensenee. 22 SELECTIVE DUMP SUBROUTINES ¢ ¢t v v ¢ v vt v v v onwas. 46,1
TYPEZ Keyboard - Console Printer I/O Subroutine ,.... 22 Dump Selected Data on Console Printer

WRTYZ - Console Printer Output + v v v v v v v v 0 v v v uws 23 or 1132 Printer » « = e s v oo v et et et onnoenaeeass 46,1
CARDZ - 1442 Card Read Punch Input/Output Dump Status Area » e s st o s s oot envssosnnosasss d6.1
SUbrOULIne . 4 o v v vt o s et n et aneevrnoanoenon 23

PAPTZ - 11341055 Paper Tape Reader Punch WRITINGISS AND ILS « v ¢ e v v va v vnann e ea.46,2
I/O SUDTOULINE + 4 4 v 0 o s v o oo oo oo oo auenensnnnn 23 Interrupt Service Subroutines « + s ¢ s e v e v e e vt u oo, 46,2
PRNTZ - 1132 Printer Output Subroutine 23 Interrupt Level Subroutines « e+ e e ev et oano. ... 46,2
DISKZ -~ Disk Input/Output Subroutine 23

SPECIAL MONITOR SUBROUTINES « ¢ e v ¢ e v vt e v v uneass 46.4

DATA CODE CONVERSION SUBROUTINES. ¢ v v v v v v v... 24 Overlay Routines (Flippers) « s« e e e v o et ev v ass 46,4
Introduction. o« v o v vt ittt it ottt it raee e 24
Descriptions of Data Codes v v v v v v v v v v o v v vnnennass 24

Hexadecimal Notation o v v v v v v o oo v e v voveowenn 24

IBM Card Codes s s ev e vnvvennoosnnonnnsnnans 25

Perforated Tape and Transmission Code (PTTC/8) 25 APPENDIX A. 1130 SUBROUTINE LIBRARY « « v v v v v v u 47
Console Printer Code v v v v e vt vttt nennconennnsas 26

Extended Binary Coded Decimal Interchange APPENDIX B. ERRORS DETECTED BY THE ISS
Code(EBCDIC)_,,,___,_,.___.,,,,_,,.._,_ 26 SUBROUTINES « ¢ ¢t vt vt ennnneessas 48
Conversion SUbroutines « v u s v v vt venewnnnenoass 26

INtroduction «.vveeennnrennesnntesannseaas 26 APPENDIX C. SUBROUTINE ACTION AFTER RETURN

BINDC 4ot iiivnsnnenonennnrnssnsnenennes 27 FROM A USER’S ERROR ROUTINE 49

DCBIN 4ttt snaetnnnsosnsossoonnssenonsas 28
BINHX vttt ee e vnsenosoennsosensennnnnses 28 APPENDIX D. CHARACTER CODECHART «++vveu... 50

HXBIN + i tettnsseneennneenennsnenennanas 28
HOLEB 4t vt vaetie s seenneensnneennnnenns 29 APPENDIX E. CORE REQUIREMENTS............,,, 54

SPEED L itiisivetnnenienenssnsnnnnnanaes 29
PAPEB &+ v voeeeeee e e ey APPENDIX F. EXECUTION TIMES. s v\ v uusvnn.. ..

S o0 1 31
PAPPR . it vsenvornsnvsnonnsnss 33 INDEX o e vt oot o tansosatoennnasansaneeseas 60

iii

INTRODUCTION

It is often necessary to repeat a group, or block, of
instructions many times during the execution of a
program (examples include conversion of decimal
values to equivalent binary values, computation of
square roots, and reading data from a card reader).
It is not necessary to write the instructions each
time a function is required. Instead, the block of
instructions is written once, and the main program
transfers to that block each time it is required.
Such a block of instructions is called a subroutine.
Subroutines normally perform such basic functions
that they can assist in the solution of many different
kinds of problems.

When a main program uses a subroutine several
times, which is the common situation, the block of
instructions constituting the subroutine need appear
only once. Control is transferred from a main pro-
gram to the subroutine by a set of instructions known
as a calling sequence, or basic linkage. A calling

iv

sequence transfers control to a subroutine and,
through parameters, gives the subroutine any control
information required.

The parameters of a calling sequence vary with
the type of subroutine called. An input/output sub-
routine requires several parameters to identify an
input/output device, storage area, amount of data to
be transferred, etc.; whereas an arithmetic/func-
tional subroutine usually requires one parameter
representing an argument. Each calling sequence
used with the 1130 System subroutines consists of a
CALL or LIBF statement (whichever is required to
call the specific subroutine), followed by DC state-
ments that make up the parameter list, The calling
sequences for the various subroutines in the sub-
routine library are presented later in the manual.
Lach subroutine is self-contained, so that only those
routines required by the current job are in core
storage at program execution time.

The interrupt service subroutines (ISS) transfer data
from and to the various input/output devices attached
to the computer. The subroutines handle all of the
details peculiar to each device, including the usually
complex interrupt functions, and can control input/
output devices simultaneously and asynchronously.

ISS CHARACTERISTICS

To fully comprehend subsequent descriptions of each
ISS, the user should be familiar with the following
characteristics, which are common to all ISS:

® Methods of data transfer

o Interrupt processing

e ILS (interrupt level subroutine)

° ISS operation

® General error handling procedures

® Basic calling sequence

METHODS OF DATA TRANSFER

IBM 1130 I/0 devices and their related subroutines can

be differentiated according to their methods of trans-
mitting and/or receiving data.

Direct Program Control

The serial I1/0 devices operate via direct program
control, which requires a programmed I/O operation
for each word or character transferred. A char-
acter interrupt occurs whenever a character I/0
operation is completed. Direct program control of
data transfer is used for the serial devices including
the card read punch, paper tape reader and punch,
console printer, input keyboard, 1132 Printer, and
plotter.

Data Channel

Disk storage operates via a data channel, which re-
quires an I/O operation only to initiate data transfer.

INTERRUPT SERVICE SUBROUTINES

A device is provided with control information, word-
counts, and data from the user's I/O area. Once ini-
tiated, data transfer proceeds asynchronously to pro-
gram execution. An operation-complete interrupt
signals the end of an I/O operation when all data has
been transferred.

INTERRUPT PROCESSING

Interrupt processing is divided into two parts, level
processing and device processing. The flow of logic
in response to an interrupt is: user program inter-
rupted, level processing begun, device processing
begun and completed, level processing completed,
and user program continued.

Level Processing

Level processing consists of selecting the correct
device processing routine, performing certain house-
keeping functions, and clearing the level by a BOSC
instruction when interrupt processing is complete.

Level processing is done by the ILS (interrupt
level subroutines). Entered by interrupts, ILS give
temporary control to a device processing subroutine
(ISS) and eventually return control to the user pro-
gram. The interrupt entrance address is stored, at
load time, in the appropriate interrupt branch ad-
dress; location 8 for interrupt level zero (ILS 00),
location 9 for interrupt level one (ILS 01),..., loca-
tion 12 for interrupt level four (I1.S 04). The device
processing entrance address is computed at load
time from identifying information, stored in the ILS,
in the compressed ISS header card, and in the loader
interrupt transfer vector,

Device Processing

Device processing consists of operating an I/0 de-
vice, processing the interrupts, and clearing the
device by an XIO (sense DSW) instruction when
interrupt processing is complete.

Device processing is done by the ISS (interrupt
service subroutines). They can be entered by a
calling instruction (LIBF or CALL), which either
requests certain initialization to be done or requests
an I/0 device operation. They can also be entered
by the ILS as part of the interrupt processing. The
calling entry point is specified by an ISS statement.

Interrupt Service Subroutines 1

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

The interrupt entry point(s) is set up in the ISS and
identified in the ILS. It is entered indirectly through
a branch address table within the ILS,

INTERRUPT LEVEL SUBROUTINES

The ISS package services all input/output interrupts
with a set of ILS (interrupt level subroutines), loaded
as part of the subroutine library.

Description

There is one ILS for each interrupt level used. Each
routine determines which device on its level caused
a particular interrupt; preserves the contents of the
accumulator, the accumulator extension, index reg-
ister one (XR1), and the Carry and Overflow indica-
tors; and transmits identifying information to the ISS.

Interrupt service subroutines are loaded first so
that the loader loads only the ILS that are required.
For example, if a main program does not call the
1132 printer subroutine, the routine for interrupt
level 1 need not be loaded because no interrupts will
occur on that level. An ILS cannot be called.

Therefore, an ILS is loaded only if requested by
a loaded ISS (see "'ISS-Define Interrupt Service
Entry Point' in IBM 1130 Assembler Language,
Form C26-5927).

When the ILS are loaded, the core addresses
assigned to them are inserted into the computer
words, reserved for that purpose, starting at word 8.
Interrupts occurring during execution of a user pro-
gram cause an automatic Branch Indirect, via the
interrupt level word, to the correct ILS.

Recurrent Subroutine Entries

Recurrent entries to a subroutine can result from sub-
sequent interrupts. TFor example, during execution of
the console printer subroutine, a disk interrupt can
start execution of a subroutine to handle the condition
that caused the disk interrupt. If this handling in-
cludes calling the console printer subroutine, certain
information is destroyed, the most important of which
is the return address of the program that originally
called the console printer.

To prevent the loss of data resulting from a re-
current entry, the user must provide the programming
required to save the return address and any other
data needed to continue an interrupted subroutine after

| an interrupt has been serviced.
NOTE: All IS8 were written with the assumption that
all LIBF's would be executed from the mainline level
of interrupt priority. There are no provisions in any
1SS to handle recurrent entries.

ISS OPERATION

This section briefly describes the operation of the ISS
(interrupt service subroutines)., This description,
along with some basic flowcharts, should make it
easier for the reader to understand the descriptions
of individual subroutines presented later.

ISS Subdivision l

Each ISS is divided into a call routine and an inter-
rupt response routine. The call routine is entered
when a user's calling sequence is executed; the
interrupt response routine is entered as a result of
an I/0 interrupt.

Call Routine

Each ISS saves and restores the contents of the accu-
mulator and extension, index registers, and the Carry
and Overflow indicators. The call routine, illustrated
in Figure 1, has four basic functions:

1. Determine if any previous operations on the
specified device are still in progress.
Check the calling sequence for legality.

2. Save the calling sequence.

4, Initiate the requested 1/0 operation.

Do
.

V]

The flow diagram (Figure 1) is not exact for any
one ISS. It is only a general picture of the internal
operation of a call routine.

Determine Status of Previous Operation. This func-
tion can be performed by using a programmed
routine~busy indicator to determine if a previous
operation is complete. The CARDI1 subroutine is a
good example. When an operation is started on the
1442, a subsequent LIBF CARD1 for the 1442 is not
honored until the routine-busy indicator is turned off.
A call to any other ISS subroutine, such as TYPEO,
is not affected by the fact that the CARD1 subroutine
is busy.

Each ISS, except PAPTN, can use one pro-
grammed routine~busy indicator to determine if a
previous operation is complete. The PAPTN sub-
routine uses two busy indicators, one for the paper
tape reader and one for the punch, If an operation is
started on the reader, a subsequent LIBF PAPTN
for the reader is not honored until the Reader Busy
indicator is turned off, However, an LIBF PAPTN
for the paper tape punch is treated in the same
manner as a call to any other ISS and is not affected
by the fact that the reader is busy.

The information was stored on the disk by the
DPIR.

PRINTER SUBROUTINES

The printer subroutine PRNT1 handles all print and
carriage control functions relative to the IBM 1132
Printer. Only one line of data can be printed, or
one carriage operation executed, with each call to
the printer subroutine. The data in the output area
must be in EBCDIC form, packed two characters per
computer word. (See Data Codes.,)

Calling Sequence

LIBF PRNT1

DC /xxxx (control)

DC AREA (I/O area)

DC ERROR (Error routine)
ERROR Return Link

Error Routine

BSCI ERROR

AREA Word Count
I/O Area

The calling sequence parameters are described in
the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown below,

1

2
1/0O Function —j !

S —————]

Carriage Control

Not Used

I/0 Function

The I/0 function digit specifies the operation to be
performed on an 1132 Printer, The functions, their

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

associated digital values, and the required parameters
are listed and described below,

Function Digital Value Required Parame ters®
Test 0 Control

Print 2 Control, 1/O Area, Error
Control Carmiage 3 Control

Print Numerical 4 Control, I/O Area, Error

*Any parameter not required for a particular function must be
omitted.

Test. Branches to LIBF+2 if the previous operation
has not been completed or to LIBF+3 if the previous
operation has been completed,

Print, Prints characters from the user's I/0 area,
checking for channel 9 and 12 indications., If either

of these conditions is detected, the subroutine branches
to the user's error routine after the line of data has
been printed. Upon return from this error routine, a
skip to channel 1 is initiated or the function is termi-
nated, depending upon whether the Accumulator is
Nnon-zero or zZero.

Control Carriage. Controls the carriage as speci-
fied by the carriage control digits listed in Table 2.

Print Numerical, Prints only numerals and special
characters from the user's I/O area and checks for
channel 9 and channel 12 indications. See Print
above.

Carriage Control

Digits 2 and 3 specify the carriage control functions
listed in Table 2. An immediate request is executed
before the next print operation; an after-print
request is executed after the next print operation
and replaces the normal space operation,

If the I/0 function is print, only digit 3 is exam-
ined; if the I/O function is control, and digits 2 and 3
both specify carriage operations, only digit 2 is used.

NOTE: An after-print request will be lost if it is
followed by an immediate request or by a print with
spacing suppressed. If a series of after-print re-
quests is given, only the last one will be executed.

Interrupt Service Subroutines 15

Table 2. Carriage Control Operations

Digit #2: Immediate Carriage Operations

Print Functions
Not Used

Control Function

1 = Immediate Skip To Channel 1
2 = Immediate Skip To Channel 2
3 = Immediate Skip To Channe! 3
4 - Immediate Skip To Channel 4
5 - Immediate Skip To Channel 5
6 - Immediate Skip To Channel 6
9 = Immediate Skip To Channel 9
C - Immediate Skip To Channel 12
D = Immediate Space Of 1

E - Immediate Space Of 2

F = Immediate Space Of 3

Digit #3: After~Print Carriage Operations

Print Functions

0 - Space One Line After Printing
| = Suppress Space After Printing

Control Function

1 - Skip After Print To Channel 1
2 - Skip After Print To Channel 2
3 - Skip After Print To Channel 3
4 - Skip After Print To Channel 4
5 = Skip After Print To Channel 5
6 = Skip After Print To Channel 6
9 - Skip After Print To Channel 9
C - Skip After Print To Channel 12
D - Space 1 After Print

E - Space 2 After Print

F = Space 3 After Print

1/O Area Parameter

The I/O area parameter is the label of the control
word that precedes the user's I/O area. The control
word consists of a word count that specifies the num-~
ber of computer words of data to be printed. The
data must be in EBCDIC format, packed two charac-
ters per computer word.

Error Parameter

See Basic Calling Sequence.

CONSOLE PRINTER/INPUT KEYBOARD

There are two ISS for the transfer of data to and from
the Console Printer and the Input Keyboard.

16

TYPEO. The TYPEO subroutine handles input and

output.

WRTYO0. The WRTYO subroutine handles output
only. If a program does not require keyboard input,
it is advantageous to use the WRTYO subroutine
because it occupies less core storage than the TYPEOQ
subroutine.

Only the TYPEO subroutine is described below;
the WRTYO0 subroutine is identical, except that it
does not allow the Read-Print function.

Calling Sequence

LIBF TYPEO or WRTYO
DC /xxxx (Control)
DC AREA (I/O area
AREA Word Count
I/0 Area

The parameters used in the above calling sequence
are described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits,
as shown below:

1 2 3 4
I/O Function - !

Not Used

Device Identification

I/O Function

The I/O function digit specifies the operation to be

performed on the input keyboard and/or console print-

er. The functions, their associated digital values,
and the required parameters are listed and then
described below.

_F_ug_c_:_t_i&n Digital Value Required Parameters®
Test 0 Control

Read-Print 1 Control, I/O Area
Print 2 Control, 1/O Area

*Any parameter not required for a particular function must
be omitted.

Test. Branches to LIBF+2 if the previous operation
has not been completed or to LIBF+3 if the previous
operation has been completed.

Read-Print. Reads from the keyboard and prints
the requested number of characters on the console
printer. The operation sequence is as follows:

1. The calling sequence is analyzed by the Call
routine, which then unlocks the keyboard.

2. When a key is pressed, a character interrupt
signals the Interrupt Response Routine that a
character is ready to be read into core storage.

3. The Interrupt Response Routine converts the
keyboard data to console printer output code
(see Data Codes). Each character is printed as
it is read; the keyboard is then unlocked for
entry of the next character.

4, Printer interrupts occur whenever the console
printer has completed a print operation. When
the interrupt is received, the routine checks to
determine if the final character has been read
and printed. If so, the operation is considered
complete. If the console printer becomes not
ready during printing, the subroutines loop in-
ternally, waiting for the console printer to
become ready.

5. Steps 2 to 4 are repeated until the specified

number of characters have been read and printed.

The characters read into the I/O area are in
IBM card code; that is, each 12-bit image is
left-justified in one 16-bit word.

Print. Prints the specified number of characters on
the console printer. A printer interrupt occurs
when the console printer has completed a print
operation. When an interrupt is received, the
character count is checked, If the specified num-
ber of characters has not been written, printing is
initiated for the next character. This sequence
continues until the specified number of characters
has been printed. Data to be printed must be in con -
gole printer code, (see Data Codes) packed two char-
acters per 16-bit word. Control characters can be
embedded in the message where desired.

In Read-Print and Print operations, printing
begins where the printing element is positioned; that
is, carrier return to a new line is not automatic when
the subroutine is called.

Device Identification

Device identification digits can be 00 or 01; either
value specifies the console printer,

Keyboard Functions

Keyboard functions provide for control by the TYPEO
subroutine and by the operator.

TYPEO Subroutine Control

Three keyboard functions are recognized by the
TYPEO subroutine.

Backspace. The operator presses the backspace key
whenever the previous character is in error. The
interrupt response routine senses the control char-
acter, backspaces the console printer, and prints a
slash (/) through the character in error. In addition,
the subroutine prepares to replace the incorrect
character in the I/O area with the next character.

If the backspace is depressed twice, the character
address is decremented by +2, but only the last
graphic character is slashed. For example, if
ABCDE was entered and then the backspace key de-
pressed three times, the next graphic character
replaces the C but only the E is slashed each time.

If XYZ is the new entry, the print-out shows
ABCD‘,EfXYZ, but the buffer contains ABXYZ.

Erase Field. When the interrupt response routine
recognizes the erase field control character, it
assumes that the entire message is in error and is
to be entered again. The routine prints two slashes
on the console printer, restores the carrier to a new
line, and prepares to replace the old message in the
1/0 area with the new message.

The old message in the I/O area is not cleared.
Instead, the new message overlays the old, character
by character. If the old message is longer than the
new, the remainder of the old message follows the
NL character terminating the new message.

End-of-Message. When the interrupt response routine
recognizes the end-of-message control character, it
assumes the message has been completed, stores an
NL character in the I/O area, and terminates the
operation.

Interrupt Service Subroutines 17

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

Operator Request Function

By pressing the operator request key (INT REQ) on
the keyboard, the operator can inform the program
that he wishes to enter data from the keyboard or the
Console Entry switches. The interrupt that results
causes the TYPEO or WRTYO routine to execute an
indirect BSI instruction to core location 44, where
the user must have the address of an operator request
routine stored. Bit 1 of the accumulator contains

the keyboard/console identification bit; that is, the
device status word, shifted left two bits.

The user's operator request routine must return
to the ISS subroutine via the return link., The user's
routine is executed as a part of the interrupt handling.
The interrupt level remains ON until control is
returned to the ISS subroutine (see General Error
Handling Procedures, Post-operation Checks).

/O Area Parameter

The I/O area parameter is the label of the control
word that precedes the user's I/O area. The control
word consists of a word count that specifies the num-
ber of words to be read or printed. This word count is
equal to the number of characters if the Read-Print
function is requested, but to one-half the number of
characters if the Print function is requested.

PAPER TAPE SUBROUTINES

The paper tape subroutines handle the transfer of
data from a Paper Tape Reader to core storage and
from core storage to a Paper Tape Punch. Any number
of characters can be transferred via one calling
sequence,

The PAPTN subroutine must be used if simul-
taneous reading and punching are desired.

The PAPT1 operates both devices, but only one
at a time.

When called, the paper tape subroutine starts
the reader or punch and then, as interrupts occur,
transfers data to or from the user's I/O area. Input
data is packed two characters per computer word by
the subroutine; output data must be in that form when
the subroutine is called for a punch function.

18

Calling Sequence

LIBF PAPT1 or PAPTN

DC /xxxx (Control)

DC AREA (1/O area)

| DC ERROR (Error Routine)
ERROR Return Link
Error Routine
BSC 1 ERROR
AREA Word Count
1/O Area

The parameters used in the above calling sequence
are described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits,
as shown below:

1

1/O Function: —————T

]
w
kS

Check

Not Used

Device Identification

I/0 Function

The I/O function digit specifies the operation to be
performed on a Paper Tape Attachment. The
functions, their associated digital value, and the
required parameters are listed and described below.

Function Digital Value Required Parameterk
Test Control

Read 1 Control, I/O area, Error
Punch 2 Control, I/O area, Error

*Any parameter not required for a particular function must be
omitted.

Input

Input is four IBM card code hexadecimal digits in
INPUT through INPUT +3.

Output
Output is a 16-bit binary word in the accumulator.

Errors Detected

Any input character other than an IBM card code 0
through 9 or A through F is an error.

HOLEB

Description

This subroutine converts IBM card code subset to
the EBCDIC subset or converts the EBCDIC subset
to IBM card code subset. Code conversion is illus~

trated in Figure 10.

Calling Sequence

LIBF HOLEB

DC {xxxx (Control)

DC INPUT

Dc OUTPT

DC nnnn (Character count)

Control Parameter

The control parameter consists of four hexadecimal
digits. Digits 1-3 are not used. The fourth digit
specifies the direction of conversion:

0 -~ IBM card code to EBCDIC
1 - EBCDIC to IBM card code

Input

Input is either IBM card code or EBCDIC characters,
(as specified by the control parameter) starting in
location INPUT. EBCDIC characters must be packed
two characters per binary word. IBM card code
characters are stored one character to each binary
word.

Bits in Core Storage

1/Q Locations | Conversion Data 0 — - 15

INPUT JS 1101 0001 1110 0010

OUTPT J 0101 0000 0000
QUTPT +1 S 0010 1000 0000

Figure 10. HOLEB Conversion (EBCDIC to IBM Card Code)

Output

Output is either IBM card code or EBCDIC characters
starting in location OUTPT. Characters are packed
as described above.

If the direction of the conversion is IBM card
code input to EBCDIC output, the input area can
overlap the output area if the address INPUT isequal
to or greater than the address OUTPT. If the direc-
tion of the conversion is EBCDIC input to IBM card
code output, the input area can overlap the output area
if the address INPUT + n/2 is equal to or greater

than the address OUTPT + n, where n is the char-
acter count specified. The subroutine starts proc-
essing at location INPUT.

Character Count

This number specifies the number of characters to be
converted; it is not equal to the number of binary
words used for the EBCDIC characters because those
characters are packed two per binary word. If an odd
count is specified for EBCDIC output, bits 8 through
15 of the last word in the output area are not altered.

Errors Detected

Any input character not asterisked in Appendix D is
an error.

SPEED

This subroutine converts IBM card code to EBCDIC
or EBCDIC to IBM card code. SPEED accepts all
256 characters defined in Appendix D.

If the input is IBM card code, the conversion
time is much faster than that of HOLEB because a
different conversion method is used when all 256

Data Code Conversion Subroutines 29

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

EBCDIC characters are accepted. If the SPEED
subroutine is called before a card reading operation
is completed, the SPEED subroutine synchronizes
with a CARD subroutine read operation by checking
bit 15 of the word to be processed before converting
the word. If bit 15 is a one, the SPEED subroutine
waits in a loop until the CARD subroutine sets the
bit to a zero.

Calling Sequence

LIBF SPEED
DC /xxxx (Control)
DC INPUT
DC OUTPT
(Character count)

DC nnnnn

Control Parameter

This parameter consists of four hexadecimal digits.
Digits 1 and 2 arée not used. The third digit indicates
whether the EBCDIC code is packed or unpacked.

0 — Packed, two EBCDIC characters per binary
word

1 ~ Unpacked, one EBCDIC character per binary
word (left-justified)

The fourth digit indicates the direction of con-
version:

0 — IBM card code to EBCDIC
1 — EBCDIC to IBM card code

Input

Input is either IBM card code or EBCDIC characters
(as specified by the control parameter) starting in
location INPUT. EBCDIC characters can be packed
or unpacked. IBM card code characters are stored
one character to each binary word.

Output
Output is EBCDIC or IBM card code characters
starting in location OUTPT. EBCDIC characters can

be packed or unpacked; IBM card code characters are
not packed.

30

The input area should not overlap the output area
because of restart problems that can result from
card feed errors.

Character Count

This parameter specifies the number of EBCDIC or
IBM card code characters to be converted. I the
character count is odd and the output code is EBCDIC,
bits 8 through 15 of the last word are unaltered.

Errors Detected

Any input character code not listed in Appendix D is
an error. All IBM card code punch combinations,
except multiple punches in rows 1-7, are legal.

PAPEB

This subroutine converts PTTC/8 subset to EBCDIC
subset or EBCDIC subset to PTTC/8 subset. PAPEB
conversion of EBCDIC to PTTC/8 with the initialize

case option selected is illustrated in Figure 11.

Calling Sequence

LIBF PAPEB

DC /xxxx (Control)

DC INPUT

DC OUTPT

DC nnnnn (Character count)

INPUT ‘ __________ 1
OUTPT l ---------- l
1/O Locations | Conversion Data 0~ Bits in Core Storagi 15
INPUT Js 1101 0001 1110 0010
QUTPT +0 uc J 0000 1110 0101 0001
+1 S DEL 0011 0010 01N mn
Figure 11. PAPEB Conversion (EBCDIC to PTTC/8)

The IBM 1130 Subroutine Library includes the arith-
metic and functional subroutines that are the most
frequently required because of their general applica-
bility. There are 44 subroutines, some of which
have several entry points,

Table 4 lists the arithmetic and functional sub-
routines that are included in the Subroutine Library.

REAL DATA FORMATS

Many of the IBM 1130 arithmetic and functional sub-
routines offer two ranges of precision: standard
and extended. The standard precision provides 23
significant bits, and the extended precision provides
up to 31 significant bits.

To achieve correct results from a particular
subroutine, the input arguments must be in the
proper format.

Standard Precision Format

Standard precision real numbers are stored in core
storage as shown below:

Ist Word |S| 15 Most Significant Bifs of Mantissa

01 15
2nd Word gi:sezfs’fi\i;ir;;izom Characteristic

0 7 8 15

Numbers can consist of up to 23 significant bits
{mantissa) with a binary exponent ranging from -128
to +127. Two adjacent storage locations are re-
quired for each number. The first (lowest) location
must be even-numbered. The sign of the mantissa is
in bit zero of the first word. The next 23 bits
represent the mantissa (2's complement) and the
remaining 8 bits represent the characteristic. The
muantissa is normalized to fractional form, i.e., the
implied binary point is between bits zero and one.

The characteristic is formed by adding +128 te
the exponent. For example, an exponent of -32 is
represented by a characteristic of 128-32, or 96. An
exponent of +100 is represented by a characteristic
of 100 + 128, or 228. Since 1281 = 8014 the char-
acteristic of a nonnegative exponent always has a
1-bit in position 1, while the characteristic of a
negative exponent always produces a 0-bit in position
1. A normal zero consists of all zero bits in both the
characteristic and the mantissa.

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

ARITHMETIC AND FUNCTIONAL SUBROUTINES

Extended Precision Format

Extended precision real numbers are stored in
three adjacent core locations as shown below:

1st Word Unused Characteristic

0 7 8 15
2nd Word S Mantissa

0 | 15
3rd Word Mantissa

0 15

Numbers can consist of up to 31 significant bits with
a binary exponent ranging from ~128 to +127.

Bits zero through seven of the first word are
unused; bits eight through 15 of the first word repre-
sent the characteristic of the exponent (formed in the
same manner as in the standard range format); bit
zero of the second word contains the sign of the man-
tissa; and the remaining 31 bits represent the man-
tissa (2's complement).

Real Negative Number Representation

Real negative numbers differ from real positive
numbers in only one respect; the mantissa is always
the 25 complement of the equivalent positive value.

Example:

+.53125 is represented in core as 44000080
-. 53125 is represented in core as BC000080
+4.0 is represented in core as 40000083
-4.0 is represented in core as C0000083

Note that a real negative number is never represent-
ed by a value of 800000xx, where xx is any character-
istic between 00 and FF. The mantissa value of
800000 is its own 2s complement and therefore lies
outside the definition of a real negative number, i.e.,
the 25 complement of its absolute value.

Fixed Point Format

Fractional numbers, as applied to the fixed-point sub-
routines, XSQR, XMDS, XMD, and XDD, are defined
as binary fractions with implied binary points of

zero. That is, the binary point is positioned between
the sign (bit 0) and the most significant bit (bit 1).

Arithmetic and Functional Subroutines 35

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

The user can consider the binary point to be in 3.

any position in his fixed-point numbers.

To correctly

interpret the results the following rules must be

observed.

1. Only numbers with binary points in equivalent
positions can be correctly added or subtracted.

2. The binary point location in the product of two
numbers is the sum of the binary point locations

of the multiplier and the multiplicand.

@® Table 4. Arithmetic and Functional Subroutines

The binary point location in the quotient of two
numbers is the difference between the binary

point locations of the dividend and the divisor.
The binary point location in a number that is
input to the fixed-point square root subroutine
(XSQR) must be an even number from 0-14,
The binary point location in the output root

is half the binary point location of the input
number.

SUBROUTINE NAME

Real Standard Precision Extended Precision
Add/Subtract *FADD/*FSUB *EADD/*ESUB
Multiply *FMPY *EMPY
Divide *FDIV *EDIV
Load,/Store FAC *ELD/*FSTO *ELD/*ESTO
Trigonometric Sine/Cosine FSINE/FCOSN, FSIN/FCOS ESINE/ECOSN, ESIN/ECOS iCOS
Trigonometric Arctangent FATN, FATAN EATN, EATAN
Square Root FSQR, FSQRT ESQR, ESQRT
Natural Logarithm FLN, FALOG ELN, EALOG
Exponential (¢*) FXPN, FEXP EXPN, EEXP
Hyperbolic Tangent FTNH/FTANH ETNH/ETANH
Real Base to an Integer Exponent *FAX] *EAXI
Real Base to a Real Exponent *FAXB *EAXB
Real to Integer IFIX IFIX
Integer to Real FLOAT FLOAT
Normalize NORM NORM
Real Binary to Decimal/Real Decimal FBTD/FDTB FBTD/FDTB

to Binary
Real Arithmetic Range Check FARC FARC
Fixed-Point
Integer Base to an Integer Exponent *FIX] *FIXI
Fixed=Point Square Root XSQR XSQR
Fixed-Point Fractional Multiply (short) XMDS
Fixed-Point Double Word Multiply XMD XMD
Fixed~-Point Double Word Divide XDD XDD
Special Function
Real Reverse Subtract *FSBR *ESBR
Real Reverse Divide *FDVR *EDVR
Real Reverse Sign SNR SNR
Real Absolute Value FAVL, FABS EAVL, EABS
Integer Absolute Value 1ABS 1ABS
Miscellaneous
Get Parameters FGETP EGETP
NOTE: By adding an X to those names prefixed with an asterisk, the user can cause the contents of Index Register 1 to be added
to the address of the argument specified in the subroutine calling sequence to form the effective argument address. For example,
FADDX would be the modified form of FADD.

36

REAL NUMBER PSEUDO ACCUMULATOR

IBM 1130 real number subroutines sometimes re-
quire a register or accumulator that can accommodate
numbers in real number format. Since all of the
1130 registers are only 16 bits in length, a pseudo
accumulator must be set up to contain two- or three-
word real numbers. The pseudo accumulator (desig-
nated FAC for floating accumulator) is a three-word
register occupying the three highest locations of the
transfer vector (see IBM 1130 Assembler Language,
C26-5927). The user can refer to these words by
using Index Register 3 plus a fixed displacement
(XR3 + 125, 126, or 127)., The format of the FAC

is shown below.

Mantissa Mantissa

l Characteristic

J

FAC
(XR3 + 126)

The effective address of the mantissa is always
even.

NOTE: Arithmetic and functional subroutines do not
save and restore the contents of the 1130 accumulator
or the accumulator extension. The main program
should provide for this if the contents are significant.

CALLING SEQUENCES

The arithmetic and functional subroutines are called
via a CALL or LIBF statement (whichever is re~
quired) followed, in some cases, by a DC statement
containing the actual or symbolic address of an
argument. In the descriptions that follow, the nota-
tions (ARG) and (FAC) refer to the contents of the
operand rather than its address. The name FAC
refers to the real number pseudo accumulator. The
extended precision subroutine names are prefixed
with the letter E (subroutines which handle both
precisions have the same name and do not have a
prefix),

Note also that some of the functional subroutines
can be called via two different calling sequences.
One calling sequence assumes the argument is in
FAC; the other specifies the location of the argument
with a DC statement.

In addition, some subroutines can have indexed
linkage to the argument. The calling sequence is the

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

same except for the subroutine name which contains
an X suffix. Also, some subroutines perform more
than one type of arithmetic or function. For example,
FSIN and FCOS are different entry points to the same
subroutine., Each subroutine is listed in Table 4

with the corresponding entry points.

Real Add

LIBF FADD, FADDX, EADD or EADDX
DC ARG
Input Real augend in FAC

Real addend in location ARG

Result (FAC) + (ARG) replaces (FAC)

Real Subtract

LIBF FSUB, FSUBX, ESUB or ESUBX
DC ARG
Input Real minuend in FAC

Real subtrahend in location ARG

Result (FAC) - (ARG) replaces (FAC)
Real Multipl
LIBF FMPY or EMPY
DC ARG
Input Real multiplicand in FAC
Real multiplier in location ARG
Result (FAC) times (ARG) replaces (FAC)

Real Divide

LIBF FDIV, FDIVX, EDIV or EDIVX
DC ARG
Input Real dividend in FAC

Real divisor in location ARG
Result (FAC) / (ARG) replaces (FAC)
Load FAC

LIBF FLD, FLDX, ELD or ELDX
DC ARG

Input Real number in location ARG
Result (ARG) replaces (FAC)
Store FAC

LIBF FSTO, FSTOX, ESTO or ESTCX

DC ARG
Input Real number in FAC
Result (FAC) replaces (ARG)

Arithmetic and Functional Subroutines 37 @

Form C26-5929-1, -2
Page Revised 8/15/66

By TNL N26-0557

Real Trigonometric Sine

CALL
Input

Result

CALL
DC
Input

Result

FSINE or ESINE

Real argument (in radians)
in FAC

Sine of (FAC) replaces (FAC)

or

FSIN or ESIN

ARG

Real argument (in radians)
in location ARG

Sine of (ARG) replaces (FAC)

Real Trigonometric Cosine

CALL
Input

Result

CALL
DC
Input

Result

FCOSN or ECOSN

Real argument (in radians)

in FAC

Cosine of (FAC) replaces (FAC)

or

FCOS or ECOS

ARG

Real argument (in radians)

in location ARG

Cosine of (ARG) replaces (FAC)

Real Trigonometric Arctangent

CALL
Input
Result

CALL
DC
Input

Result

FATN or EATN

Real argument in location ARG
Arctangent of (FAC) replaces (FAC);
the result lies within the range

i—g— radians (£90 degrees)

or

FATAN or EATAN
ARG
Real argument in location

ARG
Arctangent of (ARG) replaces (FAC);

the result lies within the range
i—TZL radians (90 degrees)

Real Square Root

CALL
Input
Result

FSQR or ESQR
Real argument in FAC
Square root of (FAC) replaces (FAC)

or

CALL
DC
Input

Result

FSQRT or ESQRT

ARG

Real argument in location

ARG

Square root of (ARG) replaces (FAC)

Real Natural Logarithm

CALL
Input
Result

CALL
DC
Input

Result

FLN or ELN
Real argument in FAC
Loge (FAC) replaces (FAC)

or

FALOG or EALOG

ARG

Real argument in location
ARG

Loge (ARG) replaces (FAC)

Real Exponential

CALL
Input
Result

CALL
DC
Input

Result

FXPN or EXPN

Real argument in FAC =n
el replaces (FAC)

or

FEXP or EEXP

ARG

Real argument in location
ARG =n

e replaces (FAC)

Real Hyperbolic Tangent

CALL
Input
Result

CALL
DC
Input

Result

FTNH or ETNH
Real argument in FAC

TANH (FAC) replaces (FAC)
or

FTANH or ETANH

ARG

Real argument in location
ARG

TANH (ARG) replaces (FAC)

Real Base to an Integer Exponent

LIBF
DC
Input

Result

FAXI, FAXIX, EAXI, or EAXIX
ARG

Real base in FAC

Integer exponent in location ARG
(FAC), raised to the exponent
(ARG), replaces (FAC)

Real Base to a Real Exponent

CALL
DC
Input

Result

FAXB, FAXBX, EAXB or EAXBX
ARG

Real base in FAC

Real exponent in location

ARG

(FAC) raised to the exponent
(ARG) replaces (FAC)

Real to Integer

LIBF
Input
Result

IFIX
Real number in FAC
Integer in the Accumulator

Integer to Real

LIBF
Input
Result

Normalize

LIBF
Input

Result

FLOAT
Integer in the Accumulator
Real number in FAC

NORM

Real unnormalized

number in FAC

The mantissa portion of FAC is
shifted until the most significant bit
resides in bit position 1. The char-
acteristic is changed to reflect the
number of bit positions shifted.

Real to Decimal

CALL
DC
Input
Output

FBTD

LDEC

Real number in FAC

A string of EBCDIC-coded decimal

data, starting at location LDEC.

Each EBCDIC character occupies the

rightmost eight bits of a word. The

output format is exactly as follows.
sd. ddddddddE sdd

where s represents a sign (plus or

minus) and d represents one of the

decimal digits 0-9.

Real Decimal to Binary

CALL
DC
Input

FDTB

LDEC

Same as output from FBTD subroutine.
The input field may not contain any

Output

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

embedded blanks. The first blank
encountered is interpreted as the end
of the string.

Real number in FAC

Real Arithmetic Range Check

LIBF
Result

FARC

This subroutine checks for real
number overflow or underflow, and
sets programmed indicators for
interrogation by a FORTRAN program.

Integer Base to an Integer Exponent

LIBF
DC
Input

Result

FIXI or FIXIX

ARG

Integer base in the accumulator
Integer exponent in location ARG
(Accumulator) raised to the exponent
contained in ARG replaces
(accumulator)

Fixed-Point Square Root

CALL
Input

Result

XSQR

Fixed-point fractional argument (16
bits only) in the accumulator.

Square root of (accumulator) replaces
(accumulator). If the argument is
negative the absolute value is used
and the overflow indicator is turned
on.

Fixed-Point Double-Word Multiply

LIBF
Input

Result

XMD

Double-word fractional multiplier in
FAC (addressed by XR3 + 126)
Double-word fractional multiplicand
in the accumulator and extension
Double-word fractional product in the
accumulator and extension

Fixed-Point Fractional Multiply

LIBF
Input

Result

XMDS

Double-word fractional multiplier in
the accumulator and extension
Double-word fractional multiplicand
in FAC (addressed by XR3 + 126)
Product in the accumulator and
extension (XMDS is shorter and
faster than XMD; however, the
resulting precision is 24 bits).

Arithmetic and Functional Subroutines 39 @

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

Fixed-Point Double-Word Divide

LIBF XDD .

Input Double-word fractional dividend in
FAC (addressed by XR3 + 126)
Double-word fractional divisor in
accumulator and extension

Result Double-word fractional quotient in
the accumulator and extension. The
double dividend in FAC is destroyed
by the execution of the subroutine.

Real Reverse Subtract

LIBF FSBR, FSBRX, ESBR or ESBRX

DC ARG

Input Real minuend in location ARG
Real subtrahend in FAC

Result (ARG) - (FAC) replaces (FAC)

Real Reverse Divide

LIBF FDVR, FDVRX, EDVR or EDVRX

DC ARG

Input Real dividend in location ARG
Real divisor in FAC

Result (ARG) / (FAC) replaces (FAC)

Real Reverse Sign

LIBF SNR
Input Real number in FAC
Result -{FAC) replaces (FAC)

Real Absolute Value

CALL FAVL or EAVL

Input Real number in FAC

Result Absolute value of (FAC) replaces
(FAC)
or

CALL FABS or EABS

DC ARG

Input Real number in location
ARG

Result Absolute value of (ARG) replaces
(FAC)

® 40

Integer Absolute Value

CALL IABS

DC ARG

Input An integer in ARG

Result Abgolute value of (ARG)
replaces (accumulator)

Get Parameters (FGETP or EGETP)

Example:

MAIN CALL SUBR

DC ARG
NEXT etc.
SUBR DC 0

LIBF FGETP or EGETP
SUBEX DC 0

etc.

BSC1 SUBEX

The FGETP subroutine performs two functions for
a subroutine accessed by a CALL statement. It
loads FAC with the contents of ARG; it sets SUBEX
to return to NEXT in the main program.

ARITHMETIC AND FUNCTIONAL SUBROUTINE
ERROR INDICATORS

The highest three-word entry in the transfer vector
is reserved for the real number pseudo accumulator
(FAC). The next to highest three-word entry is
reserved for the arithmetic and functional sub~-
routine error indicators.

The first word (addressed XR3 +122) of the
second entry is used for real number arithmetic
overflow and underflow indicators. The second
word (XR3 + 123) is used for a divide check indi-
cator, and the third word (XR3 + 124) is used for
functional subroutine indicators. The loader initial-
izes all three words to zero.

Word One

Each real number subroutine checks for exponent
underflow and overflow. If either occurs, word one
and FAC are set as follows.

1, if overflow has occurred (FAC = + maximum),
3, if underflow has occurred (FAC = zero).

When an overflow occurs, FAC is set to the
largest valid number of the same algebraic sign as
the contents of FAC when the overflow was detected.
The last error condition replaces any previous indica-
tion.

Also, when an underflow occurs, FAC is set to
zero.

Word Two

The real number divide subroutines check for divi-
sion by zero. If this occurs, word two is set to 1.
The dividend is not changed.

Word Three

The functional subroutines check for the following
error conditions and set word three as described.
All error conditions detected by the functional sub-

routines are indicated in word three.

Real Natural Logarithm

When the argument is zero, FAC is set to the largest
negative value and a bit is ORed into position 15 of
word three. When the argument is negative, the
absolute value of the argument is used and a bit is
ORed into position 15 of word three.

Real Trigonometric Sine and Cosine

When the absolute value of the argument is equal to
or greater than 224, FAC is set to zero and a bit is
ORed into position 14 of word three.

Real Square Root

When the argument is negative, the square root of
the argument's absolute value is returned, and a bit
is ORed into position 13 of word three.

Real to Integer

When the absolute value of the argument is greater
than 215-1, the largest possible signed result is
placed in the accumulator and a bit is ORed into
position 12 of word three.

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

Integer Base to an Integer Exponent

When the base is zero and the exponent is zero or
negative, a zero result is returned and a bit is ORed
into position 11 of word three.

Real Base to an Integer Exponent

When the base is zero and the exponent is zero or
negative, a zero result is returned and a bit is ORed
into position 10 of word three.

Real Base Raised to a Real Exponent

When the base is zero and the exponent is zero or
negative, a zero result is returned and a bit is

ORed into position 9 of word three. When the base
is negative and the exponent is not zero, the absolute
value of the base is used and a bit is ORed into
position 15 of word three.

FUNCTIONAL SUBROUTINE ACCURACY

Given:
e = Maximum error
f (%) = True value of the function
f* (x) = Value generated by subroutine
(<+o) = <Largest valid real number
(>-) = 2Most negative real number

EXTENDED PRECISION SUBROUTINES

The following statements of accuracy apply to ex-
tended precision subroutines.

ESIN

sin(x) - sin*(x)
X

< 3.0x10°

for the range

—1.0x1065 x <0

1.0X106_>_x>0

]
o

for x = 0 sin (x)

Arithmetic and Functional Subroutines 41 @

ECOS ETANH

CO8(X) - cos*(x -9 -
e = &) .) < 3.0x10 e = |tanh(x) - tanh*(x)| <3.0 x 109
[x] +—
for the range
for the range
- < X < o
6 6
-1.0x10 £ x £1.0x10
ESQRT
EATAN
—_ RN & -9
e = NG <1.0 x 10
- * -
altn(x)t atn * (x) <2.0 x 10 9
atn (x) for the range
0< x<ow
for the range
-3.88336148 x 10375 x < 3.88336148 x 1037 STANDARD PRECISION SUBROUTINES
EEXP The following statements of accuracy apply to the
standard precision subroutines.
X X 9 -9 .
o= | & _~(e)* }2.0 x 10 " |x| |whichever FSIN
X or is
¢ -9 greater
2.0 x 10 i —~ sin* -
6 = sin(x) - sin*(x) < 9.5 % 10 7
for the range for the range
—In(e) < x < In(x) 1.0x10%< x <0
. X 6
lne.,0<e < o0 1.0X10_>_X>0
for x = 0 sin (x) = 0
ELN
FCOS
- In* -
o = ln(x)ln ;I; (x) <3.0 x 10 9 cos() - 08+ .
(e = - < 2,5x10
/X! + —2—
for the range
for the range
6 6
0 < X <o ~1.0x10 £ x £1,0x10

42

FATAN

atn(x) - atn*(x)

=7
atn (x) <5.0 x 10

for the range

-3.883361 x 1037 < x < 3.883361 x 1037

FEXP
X X =7 .
I N G 2.5 x 10 |x| whichever
- X or is
¢ 2.5 x 1077 greater
for the range
. X
-In (o) < x < In (o) i.e., 0< &° <o
FLN
1 - * -
e=| 20X - In¥) | o, 1077
In (x)
for the range
0< x <
FTANH
e = |tanh(x) - tanh*(x)| <2.5 x 107"

for the range

-0 < X<+

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

FSQRT

NN
NG

e = <2.5 x 10

for the range

0< x < o

ELEMENTARY FUNCTION ALGORITHMS

The choice of an approximating algorithm for a given
function depends on such considerations as expected
execution time, storage requirements, and accuracy.
For a given accuracy, and within reasonable limits,
storage requirements vary inversely as the execution
time, Polynomial approximating is used to evaluate
the elementary functions to effect the desired balance
between storage requirements and efficiency.

SINE-COSINE

Polynomial Approximation

Given a real number, X, n and y are defined such
that

m
—_—] = -+
x(z)=n+y

where n is an integer and 0<y <1. Thus, x =
2mn + 27y , and the identities are
sin x = sin 27y and cos x = 27y .

The polynomial approximation, F(z), for the func-
tion (sin 27z)/z is used where -1/4 < z < 1/4

The properties of sines and cosines are used to
compute these functions as follows.

cos 21y = F(z)

Arithmetic and Functional Subroutines 43

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

where:
z = 1/4-y inthe range 0<y < 1/2
z = y-3/4inthe range 1/2< y < 1

sin 21y = F(z2)

where

N
1

= yintherange 0< y < 1/4
1/2-y in the range 1/4<y < 3/4
y-1 in the range 3/4 < y < 1

N
i

it

4

Extended Precision

F(z) =a,zta 23+a z5+a 77+a zg+a z11
(2) = ayaia e Tagn T s gk tag

where
al = 6.2831853071
32 = -41.341702117
.'-13 = 81.605226206
:14 = ~76,704281321
a5 = 42,009805726
a. = —-14.394135365

6

Standard Precision

¥ —az+a73+azs+az7+a
(z) = a; 2? 3 4 57
where

a1 = 6.2831853

az = -41, 341681

33 = 81,602481

34 = -76.581285

a5 = 39,760722

44

ARCTANGENT

Polynomial Approximation

The routine for arctangent is built around a polynomial,

F (z) , that approximates Arctan(z) in the range

~.23< z £.23.

Arctan(-z) = - Arctan(z)
7 - bk
Arctan(z) = ay + Arctan T
k
where
km _
ak = and bk = tan ak
and k is determined so that
k= K
nm5z<tanw k =

Having determined the value of k appropriate to
z, the transformation x = (z-b,){zb, + 1) puts x in

14

14

The Arctan(z) for z outside this
range is found by using the identities:

1, 2, 3

the range -tan 7/14 <x < tan /14, The poly-

nomial ¥ (z) was chosen to be good over a range
slightly larger (i.e., .23 >tann /14) so that the
comparisons to determine the interval in which z

lies need be only standard precision accuracy.

Extended Precision

F(z) = x (1.0 - a

where

© @

oW
B W N e

Y

!

t

1

.33333327142
. 19999056792
. 14235177463
. 09992331248

2
X +a X

- a x6+ax
3

Standard Precision

F(z)=x 10—ax2+ax4-ax6)
() =x (1.0 -a, 2" 73
where

a; = . 333329573

a2 = ,199641035

ag = . 13177988

SQUARE ROOT

Square Root (x)
Let x = 22bF when .25< F<1
then X = 2b JF

where Jf:Pi i = number of approximation

as a first approximation
followed by 2 Newton
iterations

= +
P1 AF B
where
A = ,875, B = ,27863 when .25< F< .5

or

A = ,578125, B = ,421875 when .55 F<1

F
(Pl " Py
P =
2
(2" %)
Py
P, 5

NATURAL LOGARITHM

Polynomial Approximation

Given a normalized real number
k
x=2xf

where the range of fis 1/2 <f <1, and

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

j and g are found such that x = 2! g where
(J2/2< g< J2) . This is done by setting j = k-1,
g=2f if f< J2/2 and j =k, g =1f otherwise.
Thus:

Inx) = j.1n(2) + In(g).

The approximation for In (g) , «2/2 £ g< 2,
is based on the series

S = 2l + (/8v0) 4 (0 /5r0)

which converges for (-v < x < v) .,
With the transformation

- i1 _ 2
X = VT v=(J2+ 1)

sothat -1 < x< 1 for f2/2< g< J2.
Substituting,

In(g) = 2 (z + 23/3 + z5/5 + o0)
where z = x/v = (f-1)/(f+1) . The approximation
used is G(z) for In(g)/z in the range .J2/2< g<
J2 .

Then for both entended and standard precision,

_g-1
) z *g+1
J2/2 = . 7071067811865
In (2) = 6931471805599

Thus, the required calculation is

In(x) = j .1In(2) + zG(z)

Extended Precision

_ 2 4 6
G(z) = b0+ b2.4 +b4z + bGZ
where
b0 =2.0

b2 = ,666666564181

b4 = ,400018840613
b6 = ,28453572660
b8 = ,125

Arithmetic and Functional Subroutines 45

The IBM 1130 Subroutine Library includes three
dump subroutines: Dump Selected Data on the
console printer, Dump Selected Data on the 1132
Printer, and Dump Status Area. These subroutines
allow the user to dump selected portions of core
storage during the execution of an object program.

DUMP SELECTED DATA ON CONSOLE PRINTER
OR 1132 PRINTER

Two subroutines are available to select an area of
core storage and dump it out on the console printer
or the 1132 Printer. Each of these subroutines has
two entry points, one for hexadecimal output and
one for decimal output. The entry points for the
various configurations are shown below:

DMTXO0 Dump on console printer in hexadecimal

form, using the WRTYO0 subroutine
DMTDO Dump on console printer in decimal form,
using the WRTYO subroutine

DMPX1 Dump on 1132 Printer in hexadecimal form,

using the PRNT1 subroutine

DMPD1 Dump on 1132 Printer in decimal form,

using the PRNT1 subroutine

Calling Sequence

The calling sequence for any of the above functions
is as follows:

CALL ENTRY POINT
DC START
DC END

START and END represent the starting and ending
addresses of the portion of core storage to be
dumped. A starting address greater than the ending
address results in the error message, ERROR IN
ADDRESS, and a return to the main program.

Format
Before the actual dump appears on the selected out~

put device, the user is given one line of status in-
formation, This line indicates the status of the

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

SELECTIVE DUMP SUBROUTINES

Overflow and Carry triggers (ON or OFF), the con-
tents of the Accumulator and Extension, and the con-
tents of the three index registers. The index
register contents are given in both hexadecimal and
decimal form, regardless of which type of output
was requested. The format of the status information
is shown below:

OFF ON
Overflow Carry

HHHHH (+DDDDD)
Accumulator

HHHH (+DDDDD)
Extension

HHHHH (+DDDDD) HHHH (+DDDDD)
Index Register 1 Index Register 2

HHHH (+DDDDD)
Index Register 3

All other data is dumped eight words to a line;
the address of the first word in each line is printed
to the left of the line. Hexadecimal data is printed
four characters per word; decimal data is printed
five digits per word, preceded by a plus or minus
sign.

Page numbers are not printed for either subrou-
tine, However, the 1132 Printer subroutine does
provide for automatic page overflow upon the sensing
of a channel 12 punch in the carriage tape.

DUMP STATUS AREA

This subroutine provides a relatively easy and
efficient means of dumping the first 80 words of
core storage. These words contain status informa-
tion relating to index registers, interrupt addresses,
etc., which may be required frequently during the
testing of a program. It may also be desirable to
dump these words before loading because pressing
the Load key destroys the data in the first 80 words
of core storage.

The Dump Status Area subroutine is called via
the following statement:

CALL DMP80

The console printer prints the first 80 words of
core storage in hexadecimal form; the printing
format provides spacing between words. After typ-
ing the last word, the subroutine returns control to
the main program.

Selective Dump Subroutines 46.1

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

WRITING ISS AND ILS

INTERRUPT SERVICE SUBROUTINES

The following rules must be adhered to when writing
an ISS:

1. Precede the ISS statement with an LIBR state-
ment if the subroutine is to be called by LIBF
rather than CALL.

2. Precede the subroutine with an EPR (extended)
or an SPR (standard) statement if precision
specification is necessary.

3. Precede the subroutine with one ISS statement
defining the entry point (one only), the ISS
number, and the ILS subroutines required. The
device interrupt level assignments, and the ISS
numbers used in the IBM-provided ISS and ILS
routines, are shown in Table 5.

4. The entry points of an ISS are defined by the
related ILS. This must be taken into considera-
tion when a user-written ISS is used with an IBM
supplied ILS. The ILS executes a Branch and
Store I instruction to the ISS at the ISS entry
point plus n (see Table 5). The ISS must return
to the ILS via a BSC instruction (not a BOSC).

INTERRUPT LEVEL SUBROUTINES

An ILS is loaded only if requested by a loaded ISS,
The following are rules for writing an ILS:

1. Precede the subroutine with an ILS statement
identifying the interrupt level involved. In the
Disk Monitor System, the subroutine must also
be preceded by the correct number of LEVEL
control records (see ""Assembler,' IBM 1130
Disk Monitor System Reference Manual,

Form C26-3750).

2. Precede all instructions by an ISS branch table
and include one word per ILSW bit used. If the
ILSW will not be scanned, (i.e., a single ISS
routine to handle all interrupts on the level),
then a one word table is sufficient. The mini-
mum table size is one word, Table words must
be non-zero.

46.2

Table 5. ISS/ILS Correspondence

1SS Device Interrupt
Number Device Level Assignments n

1 1442 Card Reader 0, 4 +4, +7
Punch

2 input Keyboard/ 4 14
Console Printer

3 1134/1055 Paper 4 +4
Tape Reader/Punch

4 Disk Storage 2 +4

6 1132 Printer 1 +4

7 1627 Plotter 3 +4

ILSW Bit 15 word
ILSW Bit 14 word
ISS Branch Table

ILSW Bit 0 word

The LI5S Branch table identifies both the ISS sub-
routine and the point within the ISS which should
be entered for each bit used in the ILSW. The
actual linkage is generated by the relocating
loader or core image converter. Basic to this
generation is the ISS number implied by bits
8-15 of the branch table word and specified in
the 1SS statement. This number identifies a
core location in which the loader or converter
has stored the address of the called entry point
in the ISS. This entry point address is incre-
mented by the value in bits 0-7 of the branch
table word, producing the branch linkage. The
loader or converter replaces the ISS branch
tahle word with the generated branch linkage.
At execution time the ISS branch table con-
tains actual addresses. It may be used with an
indirect branch and store I (BSI) instruction to
reach the ISS corresponding to that ILSW bit
position, The ILSW bit that is ON can be deter-
mined by the execution of a SLCA instruction.
At the completion of this instruction, the index
register specified contains a relative value

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

Standard Precision a2 = ,24022648580
4 6 =,
G2) = by bzz2+ bzt b a, 055504105406
a4 = .0096217398747
where a5 = ,0013337729375
bO =2.0
b2 = ,66664413786 Standard Precision
b = .4019234697
4 = +a.z + 72+az3+ z4
bG___. .25 F (2) —3.0 1Z 3_24 3 34
where:
EXPONENTIAL
aO =1.0
Polynomial Approximation a = 693147079
To find e* , the following identity is used. 2, = 240226486

a, =.0555301657
To reduce the range, we let 3
a, =- 00962173985

xlogze =n+d-+z

where
n is the integral portion of the real number, HYPERBOLIC TANGENT
d is a discreet fraction (1/8, 3/8, 5/8, or 7/8)
of the real number, and er_l
Tanh (x) =
z is the remainder which is in the range e“ 1
-1/8< z <£1/8.
for
Thus,
WX o gy od 9% X > 32 Tanh (x) = 1

x £ -32 Tanh (x)

I
i
[

and it is necessary to only approximate 2Z for
-1/8 £ 7z <1/8 by using the polynomial F(z) .
| REAL BASE TO REAL EXPONENT
Extended Precigion :

B 2 3 4 5 oA
F(z)—ao+a1z+azz +a3z +a4z +a5z A=e
where therefore:
ao = 1.0
B 1nA}B BinA
a, = .69314718057 AT = (en) = oBIn

46

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

Subroutine

Names

Other Subroutines Required

Called by LIBF (monitor)

Printer-Keyboard Input/Qutput
1132 Printer Qutput

Paper Tape Input/Output

Card Code~-EBCDIC Conversion
Console Printer Code Table
Card-Keyboard Code Table
Address Calculation

ARITHMETIC AND FUNCTIONAL

Called by CALL

Real Hyperbolic Tangent (E)

Real Hyperbolic Tangent (S)

Real Base to Real Exponent (E)
Real Base to Real Exponent (S)
Real Natural Logarithm (E)

Real Natural Logarithm (S)

Real Exponential (E)

Real Exponential (S)

Real Square Root (E)

Real Square Root (S)

Real Trigonometric Sine/Cosine (E)
Real Trigonometric Sine/Cosine (S)
Real Trigonometric Arctangent (E)
Real Trigonometric Arctangent (S)
Fixed-Point Square Root

Real Absolute Value (E)

Real Absolute Value (S)

Integer Absolute Value

Real Binary to Decimal/Real Decimal to Binary

Called by LIBF

Get Parameters (E)

Get Parameters (S)

Real Base fo Integer Exponent (E)
Real Base to Integer Exponent (S)
Real Reverse Divide (E)

Real Reverse Divide (S)

Real Divide (E)

Real Divide (S)

Real Multiply (E)

Real Multiply (S)

Real Reverse Subtract (E)

Real Reverse Subtract (S)

Rea! Add/Subtract (E)

Real Add/Subtract (S)

Load/Store FAC (E)

Load/Store FAC (S)

Fixed Point Double Word Divide
Fixed Point Double Word Multiply
Fixed Point Fractional Multiply (short)
Real Reverse Sign

Integer to Real

Real to Integer

Fixed Integer Base to an Integer Exponent
Normalize

Real Arithmetic Range Check

DUMP

Called by CALL

Dump Status Area
Selective Dump on Console Printer
Selective Dump on Printer

TYPEZ
PRNTZ
PAPTZ
HOLEZ
EBCTB
HOLTB
GETAD

ETNH, ETANH

FTNH, FTANH

EAXB, EAXBX

FAXB, FAXBX

ELN, EALOG

FLN, FALOG

EXPN, EEXP

FXPN, FEXP

ESQR, ESQRT

FSQR, FSQRT

ESIN, ESINE, ECOS, ECOSN
FSIN, FSINE, FCOS, FCOSN
EATN, EATAN

FATN, FATAN

XSQR

EAVL, EABS

FAVL, FABS

1ABS

FBTD, FDTB

EGETP

FGETP

EAXI, EAXIX

FAXI, FAXIX

EDVR, EDVRX

FDVR, FDVRX

EDIV, EDIVX

FDIV, FDIVX

EMPY, EMPYX

FMPY, FMPYX

ESBR, ESBRX

FSBR, FSBRX

EADD, EADDX, ESUB, ESUBX
FADD, FADDX, FSUB, FSUBX
ELD, ELDX, ESTO, ESTOX
FLD, FLDX, FSTO, FSTOX
XDD

XMD

XMDS

SNR

FLOAT

IFIX

FIXI, FIXIX

NORM

FARC

DMP80
DMTX0, DMTDO
DMPX1, DMPDI

GETAD, EBCTB, HOLEZ
None
None
GETAD, EBCTB, HOLTB
None
None
None

EEXP, ELD/ESTO, EADD, EDIV, EGETP
FEXP, FLD/FSTO, FADD, FDIV, FGETP
EEXP, ELN, EMPY

FEXP, FLN, FMPY

XMD, EADD, EMPY, EDIV, NORM, EGETP
FSTO,XMDS,FADD,FMPY,FDIV,NORM, FGETP
XMD, FARC, EGETP

XMDS, FARC, FGETP

ELD, ESTO, EADD, EMPY, EDIV, EGETP
FLD/FSTO, FADD, FMPY, FDIV, FGETP
EADD, EMPY, NORM, XMD, EGETP

FADD, FMPY, NORM, XMDS, FSTO, FGETP
EADD, EMPY, EDIV, XMD, EGETP, NORM
FADD, FMPY, FDIV, XMDS, FSTO, FGETP
None

EGETP

FGETP

None

None

ELD

FLD

ELD/ESTO, EMPY, EDVR
FLD/FSTO, FMPY, FDVR
ELD/ESTO, EDIV
FLD/FSTO, FDIV
XDD, FARC
FARC

XMD, FARC
XMDS, FARC
EADD

FADD

FARC, NORM
NORM, FARC
None

None

XMD

None

None

None

NORM

None

None

None

None

None
WRTYO
PRNT1

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

Subroutine Names Other Subroutines Required
INTERRUPT LEVEL

Level O 1L.S00* None

Level 1 1LSO1* None

Level 2 1LS02* None

Level 3 1LS03* None

Level 4 {LSO4* None
*These subroutines are not identified by name in the card and paper tape systems

CONVERSION
Called by LIBF

Binary to Decimal BINDC None

Binary to Hexodecimal BINHX None
Decimal to Binary DCBIN None
EBCDIC to Console Printer Code EBPRT EBPA, PRTY
18M Card Code to or From EBCDIC HOLEB EBPA, HOLL
IBM Card Code to Console Printer Code HOLPR HOLL, PRTY
Hexodecimal to Binary HXBIN None
EBCDIC to or from PTTC/8 PAPEB EBPA

18M Card Code to or from PTTC/8 PAPHL EBPA, HOLL
PTTC/8 to Console Printer Code PAPPR None

1BM Card Code to or from EBCDIC SPEED None
EBCDIC and PTTC/8 Table EBPA None

IBM Card Code Table HOLL None
Console Printer Code Table PRTY None

DISK SUBROUTINE INITIALIZE (cord/paper tape only)
Called by CALL
Set Pack Initialize Routine
OVERLAY (monitor only)
Called by LIBF
Local Read-in
INTERRUPT SERVICE
Cailed by LIBF
Card
Disk (part of supervisor in monitor system)
Paper Tape
Plotter

1132 Printer
Console Printer-Keyboard

SPIRO, SPIRI, SPIRN

FLIPO, FLIPI

CARDG, CARD1
DISKO, DISK1, DISKN
PAPTI, PAPTN

PLOTI

PRNITI

TYPEO, WRTYO

DISKO, DISK1, DISKN

DISKZ or DISKO, DISK1 or DISKN

1LS00, 1LSC4
1LS02
1LS04
11504
1LS01
HOLL, PRTY, 1LS04

Appendix A. 1130 Subroutine Library 47.2 @

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

APPENDIX A, 1130 SUBROUTINE LIBRARY

Subroutine Names Other Subroutines Required
FORTRAN
Called by CALL
Looder Reinitialization {card only) LOAD None
Data Switch DATSW None
Sense Light On SLITE, SLITT None
Overflow Test OVERF None
Divide Check Test DVCHK None
Function Test FCTST None
Trace Start TSTRT TSET
Trace Stop TSTOP TSET
Integer Transfer of Sign ISIGN None
Real Transfer of Sign (E) ESIGN ESUB, ELD
Real Transfer of Sign (S) FSIGN FSus, FLD

Called by LIBF (card/poper tape)

Real IF Trace (E) VIF TTEST, VWRT, VIOF, VCOMP

Real IF Trace (S) WIF FSTO, TTEST, WWRT, WIOF, WCOMP
Integer IF Trace (E) VIHF TTEST, VWRT, VIOF, VCOMP

Integer IF Trace (S) WIF TTEST, WWRT, WIOI, WCOMP
Integer Arithmetic Trace (E) VIAR, VIARX TTEST, VWRT, VIOI, VCOMP

Integer Arithmetic Trace (S) WIAR, WIARX TTEST, WWRT, WIOI, WCOMP

Real Arithmetic Trace (E) VARI, VARIX ESTO, TTEST, VWRT, VIOF, VCOMP
Real Arithinetic Trace (S) WARI, WARIX FSTO, TTEST, WWRT, WIOF, WCOMP
Computed GO TO Trace (E) VGOTO TTEST, VWRT, VIOIl, VCOMP
Computed GO TO Trace (S) WGOTO TTEST, WWRT, WIOI, WCOMP

Trace Test-Set Indicator TTEST, TSET None

Pouse PAUSE None

Stop STOP None

Subscript Calculation SUBSC None

Store Argument Address SUBIN None

1/0 Linkoge (E) VFIO, VRED, VWRT, VCOMP, FLOAT, ELD/ESTO, IFIX

VIOAI, VIOAF, VIOFX,
VIOIX, VIOF, VIOI
1/O Linkage () WFIO, WRED, WWRT, WCOMP, FLOAT, FLD/FSTO, IFIX
WIOAI, WIOAF, WIOFX,
WIOIX, WIOF, WIO!

Card Input/Output CARDZ HOLEZ
Printer-Keyboard Qutput WRTYZ GETAD, EBCTB
Printer-Keyboard Input/Qutput TYPEZ GETAD, EBCTB, HOLEZ
1132 Printer Output PRNTZ None
Paper Tape Input/Qutput PAPTZ None
Card Code~EBCDIC Conversion HOLEZ GETAD, EBCTB, HOLTB
Console Printer Code Table EBCTB None
Card-Keyboard Code Table HOLTB None
Address Calculation GETAD None
Called by LIBF (monitor)
Real IF Trace (E) SEIF FSTO, TTEST, SWRT, SIOF, SCOMP
Real IF Trace (S) SFIF FSTO, TTEST, SWRT, SIOF, SCOMP
Integer IF Trace SIIF TTEST, SWRT, SIOI, SCOMP
Integer Arithmetic Trace SIAR, SIARX TTEST, SWRT, S1Oi, SCOMP
Real Arithmetic Trace (E) SEAR, SEARX ESTO, TTEST, SWRT, SICF, SCOMP
Real Arithmetic Troce (S) SFAR, SFARX FSTO, TTEST, SWRT, SIOF, SCOMP
Computed GO TO Trace SGOTO TTEST, SWRT, SIOI, SCOMP
Trace Test-Set Indicator TTEST, TSET None
Pouse PAUSE None
Stop STOP None
Subscript Calculation 5UBSC None
Store Argument Address SUBIN None
I/O Linkage (non-disk) SFIO, SRED, SWRT, SCOMP, FLOAT, ELD/ESTO or FLD/FSTO, IFIX
SIOAF, SIOAI, SIOF, SIQlI,
SIOFX, SIOWX
Disk-1/O Linkage SDFIO, SDRED, SDWRT, DISKZ

SDCOM, SDAF, SDAI,
SDF, $DI, SDFX, SDIX

Disk Find SDFND DISKZ

Coard Input/Qutput CARDZ HOLEZ

Disk Input/Output (part of supervisor) DISKZ None
Printer-Keyboard Output WRTYZ GETAD, EBCTB

Appendix A. 1130 Subroutine Library 47 @

APPENDIX B,

ERRORS DETECTED BY THE ISS SUBROUTINES

ERROR

CONTENTS OF ACCUMULATOR

Binary

Hexadecimal

Contents of
Extension
(if any)

Card
*Last card 0
*Feed check [0
*Read check 1

*Punch check

Device not ready

Last card indicator on for Read
Ilegal device (not 0 version)
Device not in system

Illegal function

Word count over +80

Word count zero or negative

Printer-Keyboard

Device not ready

Device not in system

Illegal function

Word count zero or negative

Paper Tape

*Punch not ready
*Reader not ready
Device not ready
IHegal device
Illegal function
Word count zero or negative
Illegal check digit

Disk

*Disk overflow
*Seek failure remaining after ten attempts
*Read check remaining after ten attempts
Data Error
Data overrun
*Write check remaining after ten attempts
Write select
Data error
Data Overrun
Device not ready
Iltegal device (not O version)
Device not in system
Ilegal function
Attempt to write in file protected area
Word count zero or negative
Word count over +320 (0 version only)
Starting sector identification over + 1599

1132 Printer

*Channel 9 detected

*Channel 12 detected
Device not ready or end of forms
illegal function

..[o

o OO0

llegal word count
Plotter

Plotter not ready

Illegal device

Device not in system

Illegal function

Word count zero or negative

—Ho

[o¥e Yo
— OO0

- —0O0
—_ =00
o ocoo

O
[=Xe)

—00

000000000100
000000000101
000000000000
000000000001
000000000100
000000000011

000000000011
000000000100
000000000000OC
000000000001

wWwoo
[eXoNe]
[eReXe]
oA

OO
oo
[oXe)

o oo
[eleYo Yol

o OoooC

— OhwW

Effective Sector Id

Effective Sector Id

Effective Sector Id

NOTE: The errors marked with an asterisk cause a branch via the error parameter. These errors are detected during the processing of
interrupts; as a consequence, the user error routine is an inferrupt routine, executed at the priority level of the [/O device.
All other errors cause a branch to location 41. The address of the LIBF in error is in location 40.

48

APPENDIX C.

SUBROUTINE ACTION AFTER RETURN FROM A USER'S

ERROR ROUTINE

Error Code Condition Subroutine Action
Card
0000 If function is PUNCH Eject card and terminate
Otherwise Terminate Immediately
0001* If Accumulator is 0 Terminate immediately
Otherwise Loop until 1442 is ready, then reinitiate operation
Paper Tape
0004, 0005 If Accumulator is 0 Terminate immediately
Otherwise Check again for device ready
Disk
0001, 0002, and If AReg. is 0 Terminate immediately
0003 Otherwise Retry 10 more times
1132 Printer
0003, and 0004 If Accumulator is 0 Terminate immediately
Otherwise Skip to channel 1 and then terminate

* Assumes operator intervention.

Appendix C. Subroutine Action After Return from a User’s Error Routine

49

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

APPENDIX D. CHARACTER CODE CHART

EBCDIC IBM Card Code 1132 PTJC/B Console
Ref - Graphics and Control Printer ex Printer
No. Binary Hex Rows Hex P Names £BCDIC l,j'llzxz,"'; g::; bhex
0123 4567 12 11 09 8 7-1 Subset Hex ¢ Notes
0 0000 0000 00 12 098 1 BO30 NUL
1 0001 01 12 9 1 9010
2 0010 02 12 9 2 8810
3 0011 03 12 9 3 8410
4 0100 04 12 9 4 8210 | PF Punch Off
5 0101 05 | 12 9 5 |gho | HT Horiz.Tab 6D (U/L) 41 @
&* 0110 06 | 12 9 6 |8o90 | LC Lower Case 6E (U/L)
7* 01 07 12 9 7 8050 | DEL Delete 7F (U/L)
8 1000 08 12 9 8 8030)
9 1001 09 | 12 9 8 1 | 9030
10 1010 oA {12 9 8 2 | 8830
1N on OB 12 g 8 3 8430
12 1100 ocC 12 9 8 4 8230
13 1101 oD 12 9 8 5 8130
14 1110 OF 12 9 8 6 80B0O
15 1l ofF | 12 98 7 | 8070
16 0001 0000 10 12 11 9 8 1 D030
17 0001 11 11 9 1 5010
18 0010 12 11 9 Vi 4810
19 001 13 11 9 3 4410
20% 0100 14 11 9 4 4210 | RES Restore 4C (UL 5 @
21* 0101 15 1 9 5 4110 | NL New Line DD(U/L) 8l ®
22* 0110 16 11 9 b 4090 BS Backspace u/L) 1
23 0111 17 1 9 7 4050 IDL Idie
24 1000 18 11 9 8 4030
25 1001 19 11 9 8 1 5030
26 1010 1A 1 9 8 2 4830
27 1011 18 11 9 8 3 4430
28 1100 iC 1 9 8 4 4230
29 1101 10 11 9 8 5 4130
30 110 1E 1 9 8 6 4080
31 IRRR! 1F 11 9 8 7 4070
32 0010 0000 20 1098 1 7030
33 0001 21 0 9 1 3010
34 0010 22 09 2 2810
35 001 23 Q9 3 2410
36 0100 24 09 4 | 2210 | .BYP Bypass
37 0101 25 0 9 5 2110 | LF Line Feed 3D(U/L) 03
38* 0110 26 0 9 6 2090 | EOB End of Block 3E (U/L)
39 0111 27 09 7 2050 PRE Prefix
40 1000 28 09 8 2030
41 1001 29 0 9 8 1 3030
42 1010 2A 09 8 2 2830
43 1011 28 09 8 3 2430
44 1100 2C 0 9 8 4 2230
45 1101 20 09 8 5 2130
46 1110 2t 09 8 6 2080
47 [ARA 2F 098 7 2070
48 0011 0000 30 12 11 0 9 8 1 FO30
49 0001 31 9 1 1010
50 0010 32 ? 2 0810
51 o011 33 9 3 0410
52 0100 34 9 4 0210 { PN Punch On
53* 0101 35 ? 5 0110 | RS Reader Stop 0D(U/L) % @
54* 0110 36 9 6 0090 | UC Upper Case 0E (U/L)
55 0111 37 9 7 0050 | EOT End of Trans.
56 1000 38 9 8 0030
57 1001 39 9 8 1 1030
58 1010 3A 9 8 2 0830
59 1011 3B 9 8 3 0430
40 1100 3C 9 8 4 0230
61 1101 3D 9 8 5 0130
62 1110 3E 9 8 6 00BO
63 [RRR 3F 9 R 7 0070
NOTES: Typewriter Output
@ Tabulate (3 Carrier Return * Recognized by all Conversion subroutines
@ Shift to black (4) Shift to red Codes that are not asterisked are recognized only by the SPEED subroutine

® 50

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

EBCDIC IBM Card Code) Control P”i? PTTC/8 Console

Ref i Graphics and Contro rinter Hex A
No. Binary Hex Rows Hex P Names EBCDIC | U-Upper Case P:lnfer

0123 4567 12 11 09 8 7-1 Subset Hex | L-Lower Case ex
64* 0100 0000 40 no punches. 0000 (space) ¥ 10 (U/L) 21
65 0001 41 12 09 1 |BO10
66 0010 42 12 09 2 | A810
67 0011 43 12 09 3 | a410
48 0100 44 12 09 4 | A210
69 0101 45 12 09 5 |Al0
70 0110 46 | 12 09 6 | A09O
71 o1 47 | 12 09 7 | A050
72 1000 48 12 09 8 A030
73 1001 49 12 8 1 |9020
74* 1010 4A | 12 8 2 (8820 |¢ 20 (U) 02
75* 1011 4B 12 8 3 |8420 | . (period) 48 6B (L) 00
76* 1100 4 | 12 8 4 8220 |< 02 (U) DE
77* 1101 4 i 12 8 5 |8120 | (4D 19 (U) FE
78* 1110 4 12 8 & |80AQ | + 4E 70 (U} DA
79* (AR 4F 12 8 7 |8080 | I(logical OR) . 38 (U) Ccé
80* 0101 0000 50 12 8000 | & 50 70 (L) 44
81 0001 51 12 1 9 1 | po1o
82 0010 52 12 N 9 2 Cc810
83 001 53 12 11 9 3 | c410
84 0100 54 112 1 9 4 | c210
85 0101 55 12 1 9 5 C110
84 0110 56 12 1 9 é C090
87 0111 57 12 11 9 7 C050
88 1000 58 12 1 9 8 €030
89 1001 59 1 8 1t | 5020
90* 1010 5A] 8 2 |ag20 | ! 58 (U) 42
91* 1011 58 11 8 3 |4420 | $ 58 58 (L) 40
92* 1100 5C 1 8 4 |4220 | » 5C 08(U) D6
93* 1101 5D 11 8 5 |4120]) 5D 1A (W) Fé
4% 1110 5E 11 8 6 | 4040 | ; 13 (U) D2
95* 111 5F 11 8 7 | 4060 |— (logical NOT) 6B (U) F2
96* 0110 0000 | 60 1 4000 | - (dash) 60 40 (1) 84
97% 0001 61 0 1 13000 |/ 61 31 (L) BC
98 0010 62 i1 o9 2 | 6810
99 0011 63 11 09 3 | ed10
100 0100 64 1M1 09 4 | 6210
101 0101 65 11 09 5 |e110
102 0110 66 1o 9 6 | 6090
103 0111 67 11 09 7 | 6050
104 1000 68 1M 09 8 6030
105 1001 69 0 8 1 | 3020
106 1010 6A | 12 N C000
107 1011 6B 0 8 3 2420 | , (comma) 6B 3B (L) 80
108* 1100 6C 0 8 4 2220 | % 15 (U) 06
109* 1101 6D 0 8 5 12120 { _ (underscore) 40 (U) BE
110% 1110 6E 0 8 6 |20A0]> 07 (U) 46
111+ 1 &F] 8 7 |2060 | ? 31 (V) 86
112 0111 0000 70 12 11 0 E000
113 0001 71 12 11 09 1 | Foto
114 0010 72 12 11 09 2 lesio
115 0011 73 12 11 09 3 | E410
116 0100 74 12 11 0 9 4] E210
117 0101 75 12 11 09 5 JEN0
118 0110 76 112 11 09 6 | E090
119 01 77 112 11 0 9 7 | E050
120 1000 78 112 11 0938 E030
121 1001 s 8 1 1020
122* 1010 7A 8 2 |os20 |: 04 (U) 82
123% 1011 78 8 3 |o420 | # 0B (L) co
124* 1100 7C 8 4 |o0220 |@ 20 (L) 04
125% 1101 7D 8 5 10120 | ' (apostrophe) 7D 16 (U) E6
126* 1110 7E 8 &6 |o00a0 | = 7E 01 (V) C2
127% 11 7F 8 7 {0060 | " 0B (U) E2

+ Any code other than those defined will be interpreted by PRNT1 as a space.

Appendix D. Character Code Chart 51 @

EBCDIC IBM Card Code | P‘.'::Z PTTC/8 Console

Ref T Graphics and Contro rinter .
No. Binary Hex Rows Hex P Names EBCDIC | u-thos Case P’;*"'”

0123 4567 12 11 09 8 741 Subset Hex | L-Lower Case ex
128 1000 0000 80 12 0. 8 1 B0O20
129 oool | 81 | 12 0 1 | Booo | o
130 o010 | 82 | 12 0 2 | agoo | b
131 o011 | 83 | 12 0 3 | as00 | <
132 o100 | 84 | 12 0 4 1 a20 | d
133 o101 | 85 | 12 0 5 {at00] e
134 oo | 86 |12 0 6 |aoso|f
135 o111 87 12 0 7 A040 | 9
136 1000 | 88 | 12 0o 8 020 | B
137 1001 8o | 12 09 Aoto | i
138 1010 | 8a | 12 0 8 2 | A820
139 1011 88 12 o} 8 3 A420
140 1100 8C 12 0 8 4 A220
141 1101 8D 12 0 8 5 A120
142 1110 8E 12 0 8 6 AOCAQD
143 [RRE! 8F 12 0 8 7 A0S0
144 1001 0000 90 12 N 8 1 D020
145 0001 91 12 N 1 D000 | |
146 0010 92 12 1 2 €800 L
147 00t 93 12 N 3 C400 { |
148 0100 94 12 N 4 C200 | m
149 0101 95 12 1 5 Cl00 | n
150 0110 96 12 1 [C080 | o
151 o 97 12 N 7 C040 | p
152 1000 98 12 N 8 C020 | q
153 1001 99 12 11 9 Col0 | r
154 1010 9A 12 N 8 2 €820
155 1011 98 12 1 8 3 C420
156 1100 9C 12 1 8 4 C220
157 1101 9D 12 1 8 5 Cl120
158 1110 9E 12 N 8 6 COAOD
159 Y oan 9 |12 1 8 7 | coso
160 1010 0000 AO 1 0 8 1 7020
161 0001 Al 1 o } 7000
162 0010 A2 1n o 2 6800 | s
163 0011 A3 11 0 3 6400 | ¢
164 0100 A4 11 0 4 6200 | v
165 0101 AS 11 0 5 6100 | v
166 0110 Ab 10 6 6080 | w
167 o1 A7 11 0 7 6040 | x
168 1000 A8 1m0 8 6020 | y
169 1001 A9 it 09 6010 z
170 1010 AA 11 0 8 2 6820
171 1011 AB 1t 0 8 3 6420
172 1100 AC 1m0 8 4 6220
173 1101 AD 11 0 8 5 6120
174 1110 AE it 0 8 6 60A0
175 ' | AF o 8 7 | 6060
176 1011 0000 BO 12 11 0 8 1 F020
177 0001 Bl 12 11 0 1 FO00
178 0010 B2 12 11 0 2 EB0O
179 0011 B3 12 11 0 3 £400
180 0100 84 12 11 0 4 E200
181 0101 85 12 11 0 5 E100
182 c110 B6 12 11 0 6 E080
183 [(ARN] B7 12 11 0 7 £040
184 1000 B8 12 11 0 8 E020
185 1001 B9 12 11 0 9 EQ10
186 1010 BA 12 11 0 8 2 E820
187 1011 B8 12 11 0 8 3 E420
188 1100 BC 12 11 0 8 4 E220
189 1101 8D 12 11 0 8 5 E120
190 1o BE 12 11 0 8 6 EOAQD
191 1 BF 12 11 0 8 7 E060

52

EBCDIC IBM Card Code 1132 PITC/8 Console

Ref H Graphics and Control Printer Hex .
No. Binary Hex Rows Hex P! Names EBCDIC U-Uppet Case Px:lnrer

0123 4567 12 1109 8 7-1 Subset Hex | L-lowes Case e
192 1100 0000 co | 12 0 A000 | {* zero)
193* 0001 ci 12 1 9000 | A ' C1 61 (V) 3C or 3E
194* 0010 c2 | 12 2 8800 | B C2 62 (U) 18 or 1A
195*% oon C3 12 3 8400 | C C3 73 (U) 1C or 1E
196* 0100 C4 12 4 8200 D C4 64 (U) 30 or 32
197% 0101 cs |12 5 8100 | E s 75 (U) 34 or 36
198* 0110 co6 | 12 6 8080 | F Ccé 76 (V) 10 or 12
199* 0111 c7 12 7 8040 | G c7 67 (U) 14 or 16
200* 1000 (@] 12 8 8020 | H c8 68 (U) 24 or 26
201* 1001 co |12 9 8010 | 1 Cc9 79 (U) 20 or 22
202 1010 CA 12 098 2 A830
203 1011 cB | 12 098 3 A430
204 1100 cCc | 12 098 4 A230
205 1101 CD 12 098 5 A130
206 1110 CE | 12 0 9 8 6 | A0BO
207 \ RN CF 12 098 7 A070
208 1101 0000 DO 11 0 6000 | (- zero)
209* 0001 D1 1) 5000 | J D1 51 (U) 7Cor 7E
210* 0010 D2 " 2 4800 | K D2 52 (V) 58 or 5A
211* 0011 D3 11 3 4400 | L D3 43 (U) 5C or 5E
212* 0100 D4 11 4 4200 | M D4 54 (U) 70 or 72
213* 0101 D5 1 5 4100 | N D5 45 (U) 74 or 76
214* 0110 Dé H [4080 | O D6 46 (U) 50 or 52
215* o1 D7 11 7 4040 | P D7 57 (V) 54 or 56
216* 1000 D8 11 8 4020 | Q D8 58 (V) 64 or 66
217* 1001 D9 1" 9 4010 | R D9 49 (U) 60 or 62
218 1010 DA 12 11 9 8 2 €830
219 101 DB | 12 1 9 8 3 C430
220 1100 DC | 12 11 9 8 4 C230
221 1101 DD | 12 1 98 5 C130
222 1110 DE [12 N 9 8 6 COBO
223 [ARN DF 12 11 9 8 7 C070
224 1110 0000 EQ 0 8 2 2820
225 0001 £l o9 1 7010
226* 0010 E2 0 2 2800 | S E2 32 (U) 98 or 9A
227* 0011 E3 0 3 2400 | T E3 23 (U) 9C or 9E
228* 0100 E4 0 4 2200 | U E4 34 (U) BO or B2
229*% 0101 E5 0 5 2100 | Vv E5 25 (U) B4 or B6
230* 0110 E6 0 6 2080 | W E6 26 (U) 90 or 92
231* o1 E7 0 7 2040 | X E7 37 (V) 94 or 96
232*% 1000 E8 0 8 2020 Y ES 38 (U) Ad or Ab
233* 1001 E9 0 9 2010 Z E9 29 (U) AD or A2
234 1010 EA 11 0 9 8 2 4830
235 101 EB 11 09 8 3 6430
236 1100 EC 11098 4 6230
237 1101 ED 11 098 5 6130
238 1110 EE 1109 8 6 60B0
239 i 111 EF 1098 7 6070
240* 1111 0000 FO 0 2000 | O FO 1A (L) c4
241* 0001 Fl 1 1000 | 1 F1 01 (L FC
242* 0010 F2 2 0800 | 2 F2 02 (L) D8
243* 0011 F3 3 0400 | 3 F3 13 (L) DC
244* 0100 F4 4 0200 | 4 F4 04 (L) FO
245* 0101 F5 5 0100 | § F5 15 (L) F4
246* 0110 Fé 6 0080 | & Fé 16 (L) DO
247* o111 F7 7 0040 | 7 F7 07 (L) D4
248* 1000 F8 8 0020 | 8 F8 08 (L) £4
249* 1001 F9 9 o010 | ¢ F9 19 (L) EO
250 1010 FA 12 11 0 9 8 2 E830
251 1011 F8 12 11 0 9 8 3 E430
252 1100 FC |12 11 0 9 8 4 {230
253 1101 FD {12 11 0 9 8 5 E130
254 1110 FE 12 11 09 8 6 E0BO
255 Y 1nn FF 12 11 098 7 E070

Appendix D, Character Code Chart 53

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

APPENDIX E. CORE REQUIREMENTS

Table 6. Arithmetic and Functional Subroutines

Standard Extended Standard Extended
FADD,/FADDX 102 EADD/EADDX 08 FCTST 30 30
FSUB,/FSUBX ESUB/ESUBX LOAD 138 138
FMPY /FMPYX 52 EMPY/EMPY X 46 OVERF 18 18
FDIV/FDIVX 86 EDIV/EDIVX 78 SLITE, SLITT 68 68
FLD FLDX 54 ELD/ELDX 4 TSTOP 6 6
FSTO/FSTOX ESTO/ESTOX TSTRT 6 6
FLOAT 10 10 1SIGN 24 24
IFIX 40 40 FSIGN 34 ESIGN 34
FNS(;S{R;:SBRX ;i ESBR/ESBRX ;i Card/Paper Tape Only Card/Paper Tape Only
’;E‘éR/ FDVRX 2 EDVR/EDVRX % WARL/WARIX 32 VARI/VARIX 32
FABS/FAVL 12 EABS/EAVL 12 m’:R/W IARX o4 :’/:;WV LARX o4
‘FAéBESTP]2(2) EGETP lzg wiIF 2 VIIF 24
FARC 4 o WGOTO 2 VGOTO 22
MDS 2 > WE1O/WIOl/WIOAI/ VEIO/VIOINVIOAL/
FIX/FIXIX P o WIOF/WIOAF/ VIOF/VIOAF/

XSGR s s WIOFX,/WC OMP/ 854 VIOFX/NCOMP/ 864
WWRT/WRED/ VWRT/VRED/

XMD 6é 66 WIOIX VIOIX

XDD 74 74

FSIN/FSINE ESIN/ESINE Monitor Only Monitor Onl

FCOS/FCOSN 108 ECOS/ECOSN} 138 et

FATN/FATAN 130 EATN/EATAN 150 SDFIO/SDAF/SDAIL/

FSQR/FSQRT 70 ESQR/ESQRT 76 SDCOM/SDF/SDFX/ L () <02

FLN/FALOG 136 ELN/EALOG 148 SDI/SDIX/SDRED/

FEXP/FEXPN 118 EEXP/EXPN 140 SDWRT

FAXL/FAXIX 78 EAXI/EAXIX 82 SDFND 60 60

FAXB/FAXBX 54 EAXB/EAXBX 54 SEAR/SFARX 32 SEAR/SEARX 32

FTNH/FTANH 54 ETNH/ETANH 46 SF1O/SIOI/SIOAY/

FBTD (bin. to dec.)\ 450 420 SIOF /SIOAF/SIOFX/ ¢ 892 892

FDTB (dec. fo bin.) SCOMP/SWRT/SRED/

DMTDO/DMTX0 412 412 SIOIX

DMPD1/DMPXI 520 520 SFIF 26 SEIF 28

DMP80 102 102 SGOTO 22 2

DATSW 34 34 SIAR/SIARX 36 36

DVCHK 16 16 SIHF 24 24

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

Table 7. Miscellaneous and ISS Subroutines

Table 8. Conversion Subroutines

Ne.
Subroutines Core Uses
Locations

CARDO 242 1LS00, 1LSO4
CARD1 246 ILS00, 1LS04
PAPT 254 1LS04
PAPTN 294 1LS04
DISKO 356 (1) 11502
DISK1 620 (1) 1LS02
DISKN 808 (1) 1LS02
WRTYOQ 124 1LS04
TYPEO 296 1LS04, PRTY, HOLL
PLOT1 216 1LS03
PRNT1 386 1LSO01
1LS00 18
1LSO1 18
iLS02 18
1LS03 18
1LS04 30
SPIRO 48 (2)
SPIR? 62 (2)
SPIRN 62 (2)
FLIPO 72 (3) DISKO, DISKZ
FLIPY 48 (3) DISK1, DISKN
PAUSE 12
STOP Card/P.T. 8

Monitor 12
SUBSC 30
SUBIN 32
TTEST/TSET 16
CARDZ 80
PAPTZ 202
PRNTZ 176
TYPEZ 82
WRYTZ 60
HOLEZ 54
GETAD 14
EBCTB 54
HOLTB 54

(1) Card/Paper Tape only, part of supervisor in Monitor.
(2) Card/Paper Tape only

(3) Monitor only

No.

Conversion Core

Subroutines Locations Uses
BINDC 72
DCBIN 88
BINHX 44
HXBIN 66
HOLEB 134 HOLL, EBPA
HOLPR 100 HOLL, PRTY
EBPRT 102 EBPA, PRTY
PAPEB 246 EBPA
PAPHL 244 EBPA, HOLL
PAPPR 192 EBPA, PRTY
SPEED 330
HOLL 80
EBPA 80
PRTY 80

Appendix E. Core Requirements

55 @

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

APPENDIX F. EXECUTION TIMES

CONVERSION SUBROUTINES (see Table 9)

Basic Definitions

All times are based on 3.6 usec memory.
The table ordering for codes is as follows
(except SPEED)
Standard set: blank, +, &,
other special
Extended set: standard, non-FORTRAN
special, control
Maximum number of characters checked varies
with the set.
Standard set
Except SPEED: 49
SPEED only: 16
Extended set
Except SPEED: 74
SPEED only: 45
Conversion times given are
Best time: Found as first character in set
Worst time, standard set: Found as last
character in set
Worst time, extended set: Not found in set
Time per character is best time, plus table
look-up time multiplied by the number of char-
acters to be skipped.
Example:
If best = 211, look-up = 45. 5 and character is
fourth in table (-)
Then, character time = 347.5 = 211 + (45. 5)

-, 0-9, A-Z,

1130 ISS TIMES (see Table 10)

Basic Definitions

1.

@® 56

Only CPU time used by ISS (including transfer
vector BSC L) and ILS (including forced BSI I)
is given. All the remaining time, minus cycle
steals, is available to the user.

ILS time is included in ISS interrupt processing
calculations

ILS00 ~ CARDO (col), CARD1 (col)

ILS01 - PRNT1

ILS02 - DISKO, DISK1, DISKN

ILS03 ~ PLOT1

I1LS04 - CARDO (op complt), CARDI (op
complt) WRTY0, TYPEO, PAPTI,

PAPTN

3. All times are based on 2 3.6 sec memory.

Table 9. Conversion Subroutines

Time, Per Character

. Initial~ Worst Table
Subroutine ization Look -
Best | Std. | Extd. | Up
Set Set
BINDC 1130 - - - -
DCBIN 1110 - - - -
BINHX 620 - - - -
HXBIN 760 - - - -
HOLPR 430 21 2395 | 3533 45,5
EBPRT 420 207 2487 | 3675 47.5
HOLEB
EBCDIC output 550 159 2343 | 3481 45.5
EBCDIC input 550 161 2441 3629 47.5
SPEED
Packed EBCDIC output 250 270 - - -
Unpacked EBCDIC output 270 260 - - -
Packed EBCDIC input 240 394 1594 | 3914 80.0
Unpacked EBCDIC input 240 404 1604 | 3924 80.0
PAPPR 580
Per shift char. input 180 - - -
Per graphic char. input 427 | 2707 | 3895 47.5
Per control char. input 407 | 2687 | 3875 47.5
PAPHL
PTTC/8 input 490
Per sh*t char. input 180 - - -
Per graphic char. input 306 | 2482 | 3870 49.5
Per control char. input 296 2472 | 3860 49.5
PTTC/8 output 490
Per control char. output 266 - 3830 49.5
Per graphic char. output 316 | 2492 | 3880 | 49.5
Per shift/graphic char. output 446 | 2622 | 4010 | 49.5
PAPEB
PTTC/8 input 440
Per shift char. input 190 - - -
Per graphic char. input 366 | 2542 | 3930 49.5
Per control char. input 386 | 2562 | 3950 49.5
PTTC/8 output 440
Control char. output 296 - 3860 49.5
Per graphic char. output 346 | 2522 | 3910 | 49.5
Per shift/graphic char. output 476 | 2652 | 4040 49.5

Table 10.

1130 ISS Times

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

Subroutine and

Times (usec)

Subroutine and

Times (usec)

Function (n = word count) Function {n = word count)
1LS00 112 PRNT!
1LSO01 112 Test 188
1L502 112 Print 44142 + 5971.2 (n-1)*
1LS03 112
{LS04 148 *subtract 11.4 for each word
where 1 char. does not match;
CARDO 22.8 where both char. do not
Test 165 match.
Read 14930 + 38.5 (n)
Punch 763 + 185 (n) Print Numeric 25950 + 2736.8 (n-1)
Feed 605 +268 x
Sel. Stack. 290
x = no. idle cycles before 1st
CARD1 numeric char, on wheels is
Test 165 reached
Read 14972 + 38.5 (n)
Punch 800 + 190 (n) Control
Feed 640 Single space 708
Sel. Stack. 325 Double space 998
Triple space 1288
WRTYO Skip to channel 12 676*
Test 165 Skip to channel 1 936*
Print 228 + 734 (n)
*add 208 for each channel crossed
TYPEO before correct one reached
Test 165
Read print 685 + € (825 + 48,5y) + 390 a + DISKO
1595 b + 1224 ¢ Test 178
Read 1492
€ = sum of char. times for each Write
graphic Without RBC 1778
y =no. char. skipped in table With RBC 2050
|ook ~up Write Imm 1062
a = EOM character Seek
b = re-entry character 1 to center 1076
¢ = backspace character By addr 1502
Print 344 + 920 (n) DISK1
Test 178
PAPTI Read 900 + 760 x + 478 y
Test 152
Read 432 + 808* (n) x = no. sectors
y =no. seeks after st sector
*add +112 if check
Write
Punch 480 + 680* (n) Without RBC 1292 + 660 x + 822 y
Write
*add +96 if check With RBC 1562 + 1098 x + 908 y
Write Imm 660 + 622 x + 476 y
PAPTN Seek
Test 176 1 to center 1072
Read 408 + 952* (n) By addr 1468
*add +112 if check DISKN
Test 178
Punch 464 + 840* (n) Reod 908 + 652 x + 1012 y
*add +64 if check x =no, sectors
y = no. seeks after 1st sector
PLOTI
Test 130 Write
Print 418 = if char is 0~9 Without RBC 1516 + 610 x + 926 y
472 = if char is A Write
624 = if char is B With RBC 1728 + 1022 x + 1178 y
698 + 752 = if char is C Write Imm 820 + 606 x + 282y
224 = per dup. of Seek
previous pen 1 to center 1076
motion By addr 1478

Appendix F. Execution Times 57 @

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

ARITHMETIC AND FUNCTIONAL SUBROUTINES

The execution times of the arithmetic and functional
subroutines are shown in Table 11, All times are
based on a 3.6 psec memory; the times containing a
decimal point are milliseconds, all other are
microseconds.

SPIR

The SPIRx subroutines take 220 psec (3.6 usec
memory) plus the DISKx time to read sector 0000.

® 58

Table 11, Arithmetic and Functional Subroutines

STANDARD EXTENDED
FADD/FADDX 460 | EADD/EADDX 440
FSUB/FSUBX 560 | ESUB/ESUBX 490
FMPY/FMPYX 560 | EMPY/EMPYX 790
FDIV/FDIVX 766 | EDIV/EDIVX 2040
FLD/FLDX } 180 | ELD/ELDX 160
FSTO/FSTOX 180 | ESTO/ESTOX } 170
FLOAT 330 3%
IFIX 140 140
NORM 260 260
FSBR/FSBRX 450 | ESBR/ESBRX 740
FDVR/FDVRX 1090 | EDVR/EDVRX 2520
SNR 80 80
FABS/FAVL 50 | EABS/EAVL 60
1ABS 100 100
FGETP 330 | EGETP 320
FARC) &0
XMDS 260 -
FIXI/FIXIX 465 465
XSQR 550 av. (860 max.) 550 av. (860 max.)
XMD 520 520
XDD 1760 | 1760
FSIN/FSINE } 3.0 | ESIN/ESINE 5.4
FCOS/FCOSN 3.4 | ECOS/ECOSN 5.9
FATAN/FATN 5.2 | EATAN/EATN 8.9
FSQRT/FSQR 4.5 | ESQRT/ESQR 10.4
FALOG/FLN 5.1 | EALOG/ELN 8.0
FEXP/FXPN 2.0 | EEXP/EXPN 4.4
FAXI/FAXIX 3.8 | EAXI/EAXIX 4.7
FAXB/FAXBX 8.0 | EAXB/EAXBX 13.3
FTANH/FTNH 4.3 | ETANH/ETNH 8.1
FBTD (bin. to dec.) 40.0 40.0
FDTB (dec. to bin.) 20,0 20.0

Arctangent 44

Arithmetic and functional subroutines 35

Arithmetic and functional subroutine error indicators 40
Assignment of core storage locations 7

Basic 1SS calling sequence 6
BINDC subroutine 26, 27
BINHX subroutine 26

Calling sequences (Arithmetic and functional subroutines) 37
CARDO subroutine 9, 10

CARD1 subroutine 9, 10

CARDZ-1442 card read punch I/O subroutine 23

Card subroutines 9 :

Carriage control (printer subroutine) 15

Character interrupts 3

Check legality of calling sequence 3

Console printer code 24, 26

Console printer/input keyboard 16

Control parameter (ISS) (see also individual subroutines) 6
Conversion subroutines 26

Data channel 1

Data code conversion subroutines 24

DCBIN subroutine 26, 28

Defective sector handling (disk subroutine) 11
Descriptions of data codes 24

Description of interrupt service subroutines 2, 9
Determine status of previous operation 2
Device identification (ISS) 7

Device processing 1

Direct program control 1

DISKO, DISK1, DISKN 11

Disk initialization 14

Disk subroutines 10

EABS, real absolute value (extended) 40

EADD(X), real add (extended) 37

EALOG, real natural logarithm (extended) 38
EATAN, real trigonometric arctangent (extended) 38, 42
EATN, real trigonometric arctangent (extended) 38
EAVL, real absolute value (extended) 40

EAXB(X), real base to a real exponent (extended) 39
EBPRT subroutine 26, 34

ECOS, real trigonometric cosine (extended) 38, 42
ECOSN, real trigonometric cosine (extended) 38
EDIV(X), real divide (extended) 37

EDVR(X), real reverse divide (extended) 40

EEXP, real exponential (extended) 38, 42

Effective address calculation (disk subroutine) 14
EGETP, get parameters (extended) 40

ELD(X), load FAC (extended) 37

Elementary function algorithms 43

ELN, real natural logarithm (extended) 38, 42
EMPY(X), real multiply (extended) 37

Error detection and recovery procedures

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

3

Error parameter (ISS) (see also individual subroutines)
ESBR(X), real reverse subtract (extended) 40

ESIN, real trigonometric sine (extended)

38, 42

ESINE, real trigonometric sine (extended) 38

ESQR, real square (extended) 38
ESQRT, real square root (extended)
ESTO(X), store FAC (extended) 37

38, 42

ESUB(X), real subtract (extended) 37
ETANH, real hyperbolic tangent (extended) 38, 42
ETNH, real hyperbolic tangent (extended) 38

EXPN, real exponential (extended)
Exponential 46

38

6

INDEX

Extended binary coded decimal interchange code (EBCDIC) 24, 26

Extended precision format 35
Extended precision subroutines 41

FABS, floating-point absolute value (standard) 40

FADD(X), real add (standard) 37

FALOG, real natural logarithm (standard) 38

FARC, real arithmetic range check 39
FATAN, real trigonometric arctangent (standard)

FATN, real trigonometric arctangent (standard) 38

FAVL, real absolute value (standard) 40

FAXB(X), real base to a real exponent (standard) 39
FAXI(X), real base to an integer exponent (standard)

FBTD, real binary to decimal 39

FCOS, real trigonometric cosine (standard) 38, 42
FCOSN, real trigonometric cosine (standard) 38

FDIV(X), recal divide (standard) 37
FDTB, real decimal to binary 39
FDVR(X), real reverse divide (stand

ard)

40

FEXP, veal exponetial (standard) 38, 43
FGETP, get parameters (standard) 40

File protection (disk subroutine) 11
Fixed-point format 35.1

FIXI(X), integer base to an integer exponent 39

FLD(X), load FAC (standard) 37

FLN, real natural logarithm (standard)

FLOAT, integer to real 39
FMPY(X), real multiply (standard)
FORTRAN used Subroutines 22

37

38, 43

FSBR(X), real reverse subtract (standard) 40
FSIN, real trigonometric sine (standard)
FSINE, real trigonometric sine (standard) 38
FSQR, real square root (standard) 38
FSQRT, real square root (standard) 38, 43

FSTO(X), store FAC (standard) 37

FSUB(X), real subtract (standard) 37
FTANH, real hyperbolic tangent (standard) 38, 43
FTNH, real hyperbolic tangent (standard) 38

Functional subroutine accuracy 41
FXPN, real exponential (standard)

General error-handling procedures

38

4

38, 42

38, 43

39

index 59 @

Form C26-5929-1, -2
Page Revised 8/15/66
By TNL N26-0557

‘General specifications (FORTRAN used subroutines) 22

Hexadecimal notation 24
HOLEB subroutine 26, 29
HOLPR subroutine 26, 33
HXBIN subroutine 26, 28

IABS, integer absolute value 40

IBM card code 24, 25

IFIX, real to integer 39

ILS description 2

Important locations (disk subroutine) 13

Initiate I/O operation 3

Interrupt branch addresses 8

Irferrupt Level Subroutines 2

Interrupt processing 1

Interrupt Service Subroutines 1

Interrupt trap 8

1/O area parameter (ISS) (also see individual subroutines) 6
I/0O function (ISS) (also see individual subroutines) 6
1SS characteristics 1

ISS counter 9

1SS operation 2

1SS subdivision 2

Level processing 1

Machine configuration ii
Methods of data transfer 1

NAMEO, NAME!, NAMEN (ISS) 6
Name parameter (ISS) 6

Natural logarithm 45

No error parameter 5

NORM, normalize 39

Operation complete interrupts 3
Operator request function 18

PAPEB subroutine 26, 30
Paper tape subroutines 18
PAPHL subroutine 26, 31
PAPPR subroutine 26, 33

60

PAPTN, PAPT1 18

PAPTZ-1134-1055 paper tape read punch 1/0Q
subroutine 23

Perforated tape and transmission code (PTTC/8) 24, 25
Printer subroutines 15

PLOTL 20

Plotter subroutines 19

Polynominal approximation 43, 44, 45, 46
Post-operation error detection 5
Pre~operation error detection 4

Programming techniques-error routine exits 5
Protection of input data-{card subroutines) 10
PRINTZ-1132 printer output subroutine 23

Real data formats 35 by
Real negative number representations 35

Real number psuedo-accumulator 37

Recoverable device 4

Recurrent subroutine entries 2.

Save calling sequence 3

Sector numbering (disk subroutine) 11
Set pack initialization 14
Sine-cosine 43

SNR, real reverse sign 40

SPEED subroutine 26, 29

Square root 45

Standard precision format 33
Standard precision subroutines 42
Subroutines used by FORTRAN 22

TYPEO 8, 16
TYPEZ keyboard-console printerl/O subroutine 22

User’s error routine implications 5

WRTYO 8, 16
WRTYZ-~console printer output subroutine 23

XDD, fixed-point double-word divide 40

XMD, fixed-point double-word multiply 39
XMDS, fixed~point fractional multiply (short) 39
XSQR, fixed-point square root 39

	001
	002
	003
	004
	01
	02
	15
	16
	17
	18
	29
	30
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46.1
	46.2
	46
	47.1
	47.2
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60

