File No. 1130-30
Form C26-5929-2

Systemns Reference Library

IBM 1130 Subroutine Library

This publication describes the subroutines in the IBM 1130 Sub-
routine Library. The library consists of input/output, conver-
sion, arithmetic and functional, and selective dump subroutines.
Included in the descriptions are calling sequences for the sub-
routines and explanations of the parameters involved.

The section on conversion subroutines describes the codes
used to communicate with the 1130 System input/output devices.
An appendix lists the codes, and shows their relationship to
each other,

PREFACE

following IBM publications provide the prerequisite
information.

This publication describes how the programmer can

use the IBM 1130 Subroutine Library to increase the
efficiency of his programs and decrease the writing
and testing time. The subroutine library includes
the following subroutines.

e Interrupt Service
® Interrupt Level
® Data Conversion
e Arithmetic and Functional
8 Selective Dump
e TFORTRAN
These subroutines are available for use with both
the 1130 Assembler and the 1130 FORTRAN Com-
piler.
With the assembler, the user calls the subrou-
tines via a calling sequence. The appropriate sub-

routine calls are generated by the FORTRAN com-
piler whenever a read, write, arithmetic, or CALL

IBM 1130 Functional Characteristics (Form
A26-5881)

IBM 1130 Computing System Input/Output
Units (Form A26-5890)

IBM 1130 Assembler Language (Form
C26~5927)

IBM 1130 FORTRAN Language (Form
C26-5933)

MACHINE CONFIGURATION

The use of the subroutine library requires the
following machine configuration:

IBM 1131 Central Processing Unit with a
minimum of 4096 words of core storage

IBM 1442 Card Read Punch, or IBM 1134
Paper Tape Reader with IBM 1055 Paper
Tape Punch

statement is encountered. This publication describes
each subroutine and the required calling sequence.
All subroutines in the 1130 Subroutine Library are
included in the list which appears in Appendix A.

It is assumed that the reader is familiar with the
methods of data handling and the functions of instruc-
tions in the IBM 1130 Computing System. He must
also be familiar with the assembler or compiler
used in conjunction with the subroutines. The

In addition, the following input/output uniis and
features can be controlled by the input/output section
of the subroutine library:

Console Printer/Input Keyboard
Disk Storage

IBM 1132 Printer

IBM 1627 Plotter

This edition incorporates the information from, but does not obsolete, the previous edition
(C26-5929~1) as amended by the following Technical Newsletters:

Form No, Pages Date
N26-0551 iii-iv, 41-42,45-46,46.,1-46.2,46.3 1/18/66
N26-0553 iii-iv, 1-2,5-6,9-10,11-12, 1314, 19-20, 3/1/66
21-22,23-24,27-28,33-34,46.3-46.4,
47-48,49-50

Copies of this and other IBM publications can be obtained through IBM Branch Offices, A form has
been provided at the back of this publication for readers' comments, If the form has been detached,
comments may be directed to: IBM, Programming Publications Dept. 452, San Jose, Calif. 95114

© International Business Machines Corporation 1965, 1966

ii

INTERRUPT SERVICE SUBROUTINESv...

ISS Characteristics v v v v vt v v v s v v v e vwenn

Methods of Data Transfer .o v v v v v Ce e
Interrupt Processing « v v v e v v v e vt v v v e
Interrupt Level Subroutines . .
ISS Operation.

General-Error-Handling Procedures . « v v v v v v v v v u

Basic ISS Calling Sequence v vv v v vn,.
Assignment of Core Storage Locations, PN
Descriptions of Interrupt Service Subroutines

Card Subroutines . . v v v i on vt ot e e ae e

Disk Subrottines o v o v v v vt v e o v v v e e nnsoans

Set Pack Iitialization « .. v v v v v vwes . v e

Printer Subroutines
Console Printer/Input Keyboard 000

Paper Tape Subroutines . .o vvveew o e enuesous
Plotter Subroutines

SUBROUTINES USED BY FORTRAN ., ... vvvuu..
Introduction, + 4«4 v v ..
General Specifications .

DI N TR T A SO

Error Handling . .. v vuvu.

Descriptions of I/O Subroutine + o v v v o v s v v v v v

TYPEZ Keyboard - Console Printer I/O Subroutine

WRTYZ - Console Printer Qutput « v v v v v v v v v

CARDZ - 1442 Card Read Punch Input/Qutpu
Subroutine., ce s
PAPTZ - 1134-1055 Paper Tape Reader Punch

I/O SUBToutine v v v o v o v v s oo oo o n nennnnss
PRNTZ - 1132 Printer Output Subroutine

DISKZ -~ Disk Input/OQutput Subroutine , ,.........

DATA CODE CONVERSION SUBROUTINES.
Introduction. . v o v vt e i i i e .
Descriptions of Data Codes , v v v v v v, R
Hexadecimal Notation v v v o v v v v o FICIRIP I
IBM Card Code v v v v vovonennvannneneas
Perforated Tape and Transmission Code (PTTC/8)
Console Printer Code v o v a0 0y o
Extended Binary Coded Decimal Interchange
Code {EBCDIC) . .

A h 4 e e s e s e

Conversion Subroutines v oo v v veennsnas

Introduction .. v s e e ve to ot vnvnvnnnssas
DCBIN « v it vt vonneeennens
BINHX 4 it h it eennnnnnnsnnas
HOLEB 4 i it it vt sntvnn e nonnnnnonnes
SPEED L i ittt it tstn it e sannn

L I R R N R

L S I T S S,

D I R R R e

L I IRy

D

O W 0D R NN R R s

el el e
L oo O

22
22
22
22
22
22

23

23
23
23

24
24
24
24
25
25
26

26
26
26
27
28
28
28
29
29

CONTENTS

PAPEB ... vivinnnnnn e i et e, . 30
PAPHL . . ittt it i e i i v ns e e e 31
S 33
HOLPR ivvvvn vt e e e s e e 33
EBPRT ... vv e S e e e e [34
ARITHMETIC AND FUNCTIONAL SUBROUTINES 35
Floating-Point Data Formats v v v v v v e vnvanensnn 35
Floating-Point Pseudo Accumulator. v v v v v v v v 37
Calling SeqUence v v w s v o v n o s v o v wsonsn e 37
Arithmetic and Functional Subroutine Error
Indicators .« P e e PN 40
Functional Subroutine Accuracy G e e e 41
Extended Precision Subroutings. v v v v v v v v v v v s s 41
Standard Precision Subroutines. 42
Elementary Function Algorithms.o 43
Sine-Cosine. . . v . v . v. C e h ettt e 43
ATCEANZENT 4 4 v v b et i et 44
Square ROOt 4 v v v vttt it i i i 45
Natural Algorithm. .o .. v v e v v v v v 45
Exponential v v vt i sttt it i e e, 46
Hyperbolic Tangent ... v vt inn e enunnnn. 46
Floating-Point Base to an Integer Exponent 46
SELECTIVE DUMP SUBROUTINES . v v v v v v oo v e e s s 46,1
Dump Selected Data on Console Printer
or 1132 Printer v v v v v v v e v e w v vnn e e 46.1
Dump Status Area . o v 0 v v v s vn .. [46. 1
WRITING ISS AND ILS .ottt r v en i e e veeen 46.2
Interrupt Service Subroutines o« v v v v v v v v b 0w s w . 46.2
Interrupt Level Subroutines . . v v v v v v v e .., . 46.2
SPECIAL MONITOR SUBROUTINES se s e 46,4
Overlay Routines (FLIPPers) . « v v v v v v v v v v v v e e v o 46,4
APPENDIX A, 1130 SUBROUTINE LIBRARY 47
APPENDIX B, ERRORS DETECTED BY THE ISS
SUBROUTINES o 4 vt e vt v v nnennnns 48
APPENDIX C, SUBROUTINE ACTION AFTER RETURN
FROM A USER'S ERROR ROUTINE. 49
APPENDIX D, CHARACTER CODE CHART 50
D K 4 sttt ettt s s et enrenearsnneseanens 54

INTRODUCTION

It is often necessary to repeat a group, or block, of
instructions many times during the execution of a
program (examples include conversion of decimal
values to equivalent binary values, computation of
square roots, and reading data from a card reader).
It is not necessary to write the instructions each
time a function is required. Instead, the block of
instructions is written once, and the main program
transfers to that block each time it is required.
Such a block of instructions is called a subroutine.
Subroutines normally perform such basic functions
that they can assist in the solution of many different
kinds of problems.

When a main program uses a subroutine several
times, which is the common situation, the block of
instructions constituting the subroutine need appear
only once. Control is transferred from a main pro-
gram to the subroutine by a set of instructions known
as a calling sequence, or basic linkage. A calling

sequence transfers control to a subroutine and,
through parameters, gives the subroutine any control
information required.

The parameters of a calling sequence vary with
the type of subroutine called. An input/output sub-
routine requires several parameters to identify an
input/output device, storage area, amount of data to
be transferred, etc.; whereas an arithmetic/func-
tional subroutine usually requires one parameter
representing an argument. Each calling sequence
used with the 1130 System subroutines consists of a
CALL or LIBF statement (whichever is required to
call the specific subroutine), followed by DC state-
ments that make up the parameter list. The calling
sequences for the various subroutines in the sub~
routine library are presented later in the manual.
Each subroutine is self-contained, so that only those
routines required by the current job are in core
storage at program execution time,

The interrupt service subroutines (ISS) transfer data
from and to the various input/output devices attached
to the computer. The subroutines handle all of the
details peculiar to each device, including the usually
complex interrupt functions, and can control input/
output devices simultaneously and asynchronously.

ISS CHARACTERISTICS

To fully comprehend subsequent descriptions of each
IS8, the user should be familiar with the following
characteristics, which are common to all ISS:

© Methods of data transfer

e Interrupt processing

o ILS (interrupt level subroutine)

@ ISS operation

® General error handling procedures

® Basic calling sequence

METHODS OF DATA TRANSFER
IBM 1130 I/0 devices and their related subroutines can
be differentiated according to their methods of trans-

mitting and/or receiving data.

Direct Program Control

The serial I/0 devices operate via direct program
control, which requires a programmed 1/O operation
for each word or character transferred. A char-
acter interrupt occurs whenever a character I/0
operation is completed. Direct program control of
data transfer is used for the serial devices including
the card read punch, paper tape reader and punch,
console printer, input keyboard, 1132 Printer, and
plotter.

Data Channel

Disk storage operates via a data channel, which re—
quires an I/O operation only to initiate data transfer.

INTERRUPT SERVICE SUBROUTINES

A device is provided with control information, word-
counts, and data from the user's I/O area. Once ini-
tiated, data transfer proceeds asynchrorously to pro-
gram execution. An operation-complete interrupt
signals the end of an I/O operation when all data has
been transferred.

INTERRUPT PROCESSING

Interrupt processing is divided into two parts, level
processing and device processing. The flow of logic
in response to an interrupt is: user program inter-
rupted, level processing begun, device processing
begun and completed, level processing completed,
and user program continued,

Level Processing

Level processing consists of selecting the correct
device processing routine, performing certain house~
keeping functions, and clearing the level by a BOSC
instruction when interrupt processing is complete,

Level processing is done by the ILS (interrupt
level subroutines)., Entered by interrupts, ILS give
temporary control to a device processing subroutine
(ISS) and eventually return control to the user pro-
gram. The interrupt entrance address is stored, at
load time, in the appropriate interrupt branch ad-
dress; location 8 for interrupt level zero (ILS 00),
location 9 for interrupt level one (ILS 01), ..., loca-
tion 12 for interrupt level four (ILS 04). The device
processing entrance address is computed at load
time from identifying information, stored in the ILS,
in the compressed ISS header card, and in the loader
interrupt transfer vector.

Device Processing

Device processing consists of operating an 1/0 de-
vice, processing the interrupts, and clearing the
device by an XIO (sense DSW) instruction when
interrupt processing is complete.

Device processing is done by the ISS (interrupt
service subroutines). They can be entered by a
calling instruction (LIBF or CALL), which either
requests certain initialization to be done or requests
an 1/0 device operation. They can also be entered
by the ILS as part of the interrupt processing. The
calling entry point is specified by an ISS statement.

Interrupt Service Subroutines 1

The interrupt entry point(s) is set up in the ISS and
identified in the ILS, It is entered indirectly through
a branch address table within the ILS.

INTERRUPT LEVEL SUBROUTINES

The ISS package services all input/output interrupts
with a set of ILS (interrupt level subroutines), loaded
as part of the subroutine library.

Description

There is one ILS for each interrupt level used. Each
routine determines which device on its level caused
a particular interrupt; preserves the contents of the
accumulator, the accumulator extension, index reg-
ister one (XR1), and the Carry and Overflow indica-
tors: and transmits identifying information to the ISS.

Interrupt service subroutines are loaded first so
that the loader loads only the ILS that are required.
For example, if a main program does not call the
1132 printer subroutine, the routine for interrupt
level 1 need not be loaded because no interrupts will
occur on that level.

When the ILS are loaded, the core addresses
assigned to them are inserted into the computer
words, reserved for that purpose, starting at word 8.
Interrupts occurring during execution of a user pro-
gram cause an automatic Branch Indirect, via the
interrupt level word, to the correct ILS.

Recurrent Subroutine Entries

Recurrent entries to a subroutine can result from sub-
sequent interrupts. For example, during execution of
the console printer subroutine, a disk interrupt can
start execution of a subroutine to handle the condition
that caused the disk interrupt. If this handling in-
cludes calling the console printer subroutine, certain
information is destroyed, the most important of which
is the return address of the program that originally
called the console printer.

To prevent the loss of data resulting from a re-
current entry, the user must provide the programming
required to save the return address and any other
data needed to continue an interrupted subroutine after
an interrupt has been serviced. The information
needed for such programming must be obtained from
the subroutine listings and flowcharts.

NOTE: All ISS were written with the assumption that
all LIBF's would be executed from the mainline level
of interrupt priority. There are no provisions in any
ISS to handle recurrent entries.

ISS OPERATION

This section briefly describes the operation of the ISS
(interrupt service subroutines). This description,
along with some basic flowcharts, should make it
ecasier for the reader to understand the descriptions
of individual subroutines presented later.

ISS Subdivision

Each ISS is divided into a call routine and an inter-
rupt response routine. The call routine is entered
when a user's calling sequence is executed; the
interrupt response routine is entered as a result of
an I/0 interrupt.

Call Routine

Each ISS saves and restores the contents of the accu~-
mulator and extension, index registers, and the Carry
and Overflow indicators. The call routine, illustrated
in Figure 1, has four basic functions:

1. Determine if any previous operations on the
specified device are still in progress.

2. Check the calling sequence for legality.

3. Save the calling sequence,

4, Initiate the requested I/O operation,

The flow diagram (Figure 1) is not exact for any
one ISS, It is only a general picture of the internal
operation of a call routine.

Determine Status of Previous Operation., This func-
tion can be performed by using a programmed
routine-busy indicator to determine if a previous
operation is complete. The CARDI1 subroutine is a
good example, When an operation is started on the
1442, a subsequent LIBF CARDL1 for the 1442 is not
honored until the routine-busy indicator is turned off.
A call to any other ISS subroutine, such as TYPEO,
is not affected by the fact that the CARD1 subroutine
is busy.

Each ISS, except PAPTN, can use one pro-
grammed routine-busy indicator to determine if a
previous operation is complete, The PAPTN sub-
routine uses two busy indicators, one for the paper
tape reader and one for the punch. If an operation is
started on the reader, a subsequent LIBF PAPTN
for the reader is not honored until the Reader Busy
indicator is turned off, However, an LIBF PAPTN
for the paper tape punch is treated in the same
manner as a call to any other ISS and is not affected
by the fact that the reader is busy.

Entry Check Legality of Calling Sequence. Calling se-
quences are checked for such items as illegal func-
tion character, illegal device identification code,
zero or negative word count, etc.

Save Calling Sequence. The call routine saves, within
Yes N itself, all of the calling sequence information needed
Return to User . s
to perform an I/0O operation. The user can modify a
calling sequence, even though an I/0 operation is not
yet complete.

Previous
Operation
omplete,

NOTE: The I/0O data area should be left intact during
an operation because the ISS is continually accessing
o LIF +3 and modifying that area.

Initiate I/0 Operation. The call routine only initiates
an I/0 operation, Subsequent character interrupts or
Set up for operation complete interrupts are handled by the

g‘fﬁ“‘ Call interrupt response routine.

Interrupt Response Routine

The 1/0 interrupt response routine is illustrated in
Figure 2.

Is Set up for

Ready & Not B Device Device Not Operation. An I/O interrupt causes a user program
Busy Busy Ready Error to exit to an interrupt level routine, which in turn
Yes exits to the I/0 interrupt response routine. The

% interrupt response routine checks for errors, does

4 v any necessary data manipulation, initiates character

- operations, and initiates retry operations in case of
;jgy (E);'cfa:?on a) errors, It then returns control to the interrupt level
Indicators routine, which returns control to the user.
o
4 Character Interrupts. These interrupts occur for
Return to User < T

Save Calling { ot LIBF) devices under direct program control whenever data
Sequence can be read or written, e.g., a card column punched
Parameters or a paper tape character read.

Y Operation Complete Interrupts. These interrupts
Determine occur in disk and card operations when a specified
ﬁsngi‘;jd block of data has been read or written, e.g., a disk

record read.

4

Error Detection and Recovery Procedures. Are an
'"‘;}ge important part of an ISS. However, little can be
Operation done about reinitiating an operation until a character
interrupt or operation complete interrupt occurs.
Therefore, error indicators are not examined until
L one of these interrupts occurs,

Return
(to User) Recoverable Device, This is an I/O device that can

be easily repositioned by a subroutine or by an oper-
ator and an 1I/O operation reinitiated. If a device is
Figure 1. Call Routine not recoverable, or if an error cannot be corrected

Interrupt Service Subroutines 3

Entry

Character
interrupt

Is
Error
Indicator
Set

Is
Data
Manipulation
Needed

Manipulate
Data as
Specified

No

Initiate Next
Character
Operation

Is
Error
Indicator
Set

Recoverable

Exit to User
Error Routine

Return to Interrupt
Level Routine

Housekeep

R

Counter
Zero

Is
efry

\

Clear
Busy
Indicators

Re-Initiate

Operation

i/0

Clear
Busy

)

¥

Return to Interrupt
Level Routine

Figure 2.

Interrupt Response Routine

Indicators

A

after a specified number of retries, the user is
informed of the error condition. If a device is re-
coverable, the user may request, via his error rou-
tine, that an operation be reinitiated.

GENERAL ERROR-HANDLING PROCEDURES

Each ISS has its own error detecting routines which
categorize the error and choose an error procedure.
(In this context, the term, error, includes such con-
ditions as last card, channel 9, channel 12, etc,)
Errors fall into one of two categories: those that
are detected before an I/O operation is initiated,

and those that are detected after an I/0 operation
has been initiated. Appendix B contains a list of

the errors detected by the ISS; Appendix C contains
descriptions of the actions taken by each ISS after the
return from user-written error subroutines.

Pre-operation Error Detection

Before an ISS initiates an I/O operation, it checks
the device status and the legality of calling sequence
parameters. If a device is not ready, or a param-
eter is in error, the subroutine stores the address of
the LIBF statement in core location 40 and exits to
core location 41, The accumulator is loaded with an
error code, represented by four hexadecimal digits,
which defines the error (see Appendix B),

Digit 1 identifies the ISS subroutine called:

1 - CARDO or CARD1

2 - TYPEO or WRTYO

3 - PAPT1 or PAPTN

5 - DISKO, DISK!, or DISKN
6 - PRNT1

7 - PLOT1

Digits 2 and 3 are not used.
Digit 4 identifies the error

0 - device not ready

1 - illegal LIBF parameter or illegal specification
in the I/O area.

The loader stores a Wait instruction in core
location 41 and an Indirect Branch instruction (BSC I
40) in locations 42 and 43. Therefore, the LIBF may
be executed again (after the error condition has been

corrected) by pressing PROGRAM START on the con-
sole. The user can, if he chooses, replace these

two instructions with an exit to his own error routine.

Post-Operation Error Detection

After an I/O operation has been started, certain con-
ditions may be detected about which the user should
be informed. The conditions might be card jams for
which manual intervention is needed before the opera-
tion can continue; read checks that have not been cor-
rected after a specified number of retries; or indica-
tions of equipment readiness, such as last card or
channel 12 indicators. All of these conditions are
detected during execution of the I/O interrupt re-
sponse routine. (See ISS Operation.)

No Error Parameter. If no error parameter is in-
cluded in the calling sequence that initiated the I/O
operation and one of the conditions is detected, the
subroutine initiates a Wait procedure (programmed
loop), which continues until an operator corrects the
detected condition.

Error Parameter Included. If an error parameter is
included in the calling sequence, a Branch and Store
Instruction Counter instruction (BSI) to the user's
error routine specified in the calling sequence is
exccuted. Identifying information is placed in the
accumulator and extension (see Appendix B). When
the user's error routine returns control to the ISS
using the return link (see Basic Calling Sequence),
the subroutine examines the accumulator. If the user
clears the accumulator before returning to the sub-
routine, he is requesting that the error condition be
ignored and the operation terminated. If the user

does not clear the accumulator, he is requesting that
the operation be restarted, in which case the sub-
routine reinitiates the operation before returning

to the user's main program,

User's Error Routine Implications, It is important to
note that a user's error subroutine (entered via the
LIBF error parameter address) is executed as part of
the interrupt processing. The interrupt level is still
on, preventing recognition of other interrupts of the
same or lower priority. This has the following
implications:

1. Return must be made to the ISS subroutine via the
return link (set up by the BSI instruction executed
by the ISS subroutine). Otherwise, normal proc-
essing cannot be continued because the ISS sub-

routine must return to the ILS subroutine to re-
store the contents of the accumulator and exten-
sion, status indicators, and index registers.

2. Return must be made with a BSC instruction,

not a BOSC instruction. Otherwise, the inter-

rupt level is turned off, setting up the possibility
of another interrupt on the same level destroy-
ing the return address to the user from the ILS.

An LIBF or CALL to another subroutine from

the user's error subroutine can cause a

recurrent-entry problem. If that subroutine is

already in use when the interrupt occurs, the
user's new LIBF or CALL destroys the original
return address and disrupts operation of the
called subroutine.

4. An LIBT or CALL to another ISS can cause an
endless loop if the new I/0 device operates on
the same or lower priority interrupt level than
the device that caused the error.

w

NOTE: A call to WRTYO to type an error messuge
can be made only if the user does not then wait for
the completion of typing or operator intervention
before returning to the ISS.

5. The user should have a separate error subrou-
tine for each device to prevent errors on several
devices (on different levels) from causing
recurrent-entry problems in the user's error
subroutine.

NOTE: The error codes in the Accumulator do not
differentiate between ISS as the preoperative error
codes do.

Since the ILS saves XR1 as part of its interrupt
processing, the user's error routine can also use
this index register without saving and restoring it.
However, the user cannot depend on the contents of
XR1 unless he initializes it as part of his error
routine.

Programming Techniques - Error Routine Exits.
Some programming techniques that can be used in
conjunction with the ISS error exit follow:

1. To try the operation again:

USER DC 0
BSC1 USER

2. To terminate the operation:

USER DC 0
SRA 16
BSC1 USER

(to clear the accumulator)

Interrupt Service Subroutines 5

3. To indicate that a condition (''last card' or
""channel 9") was detected and that the normal
program flow should be altered:

LD INDIC
BSC L NEW, Z(alter program flow)
LIBF CARD1
DC /1000
DC INPUT
DC USER
USER DC 0
BSCI USER, Z
LD D0001

Table 1. 1SS Names

Subroutine

Name

Card Reader Punch
Disk
Printer

Console Printer ~ Input
Keyboard

Console Printer
Paper Tape

Plotter

CARDO or CARD1
DISKO or DISK1 or DISKN
PRNTI

TYPEO

WRTYO

PAPT1 or PAPTN

PLOTI

STO INDIC
EXIT BSCI USER

NEW SRA 16
STO INDIC

BASIC ISS CALLING SEQUENCE

Each ISS described in this manual is entered via a
calling sequence. These calling sequences follow a
basic pattern. In order not to burden the reader with
redundant descriptions, this section presents the
basic calling sequences and describes those param-
eters which are common to most of the subroutines.

Basic Calling Sequence

LIBF Name

DC Control parameter
DC 1/O area

DC Error routine

The above calling sequence, with the parameters
shown, is basic to most of the ISS. Detailed descrip-
tions of the above four parameters are omitted when
the subroutines are described later in the manual.
Unless otherwise specified, the subroutine returns
control to the instruction immediately following the
last parameter.

Name Parameter

Each subroutine has a symbolic name, which must
be written in the LIBF statement exactly as listed

in Table 1 because the object program loader must
recognize the name to generate the proper linkage.

For some devices multiple subroutines are
available, although only one can be selected for use
in any program (including called subroutines).

NAMEQ. The NAMEO subroutine is the shortest and
least complicated. The NAMEO version is the
standard routine for the card read-punch and console
printer-input keyboard. The NAMEO version of the
Disk routine can be used if transfer of data is 320
words, or less.

NAME1l. The NAMEL version is the standard rou-
tine for the disk, 1132 printer, paper tape, and
plotter. It may be used for the card read-punch if
a user error exit is needed rather than the internal
looping and retries by the CARDO routine,

NAMEN. The NAMEN version is available to oper-
ate the paper tape reader and punch simultaneously
and to minimize extra disk revolutions when trans-
ferring more than 320 words to/from the disk. The
NAMEN subroutine is more extensive than the
NAME1 subroutine.

Control Parameter

The control parameter, in the form of four hexa-
decimal digits, conveys necessary control data to
the ISS by specifying the desired function (read,
write, etc.), the device identification, and similar
control information. Most subroutines do not use all
four digits.

A typical control parameter is illustrated below.

Hexadecimal Digits
Ist 2nd 3rd 4th

1/0 Function — 1 1

Not Used

Device Identification

Since the I/0O function and device identification
are used in most subroutines, a description of the
purpose of each is given here.

I/O Function

The function digit in the calling sequence specifies
which 1/0 operation the user is requesting. Three of
these functions, read, write, and test are used in
most subroutines.

Read, The read function causes a specified amount
of data to be read from an input device and placed in
a specified input area. Depending upon the device,
an interrupt signals the subroutine either when the
next character is ready or when all requested data
has been read. When the specified number of char-
acters has been read, the subroutine becomes avail-

able for another call to that device.

Write. The write function causes a specified amount
of data from the user's output area to be written

(or punched) by an output device. As with the read
function, an interrupt signals the subroutine when
the device can accept another character, or when

all characters have been written. When the speci-
fied number of characters has been written, the
subroutine becomes available for another call to that
device.

Test. The test function causes a check to be made
as to the status of a previous operation by that sub-
routine. If the previous operation has been com-
pleted, the subroutine branches to the LIBF +3 core
location; if the previous operation has not been com~
pleted, the subroutine branches to the LIBF +2 core
location. The test function is illustrated below:

LIBF Name

LIBF +1 DC Control Parameter

(specifying Test function)

LIBF +2 OP Code XXXXo o0

LIRF 43 OP Code KKK, 450

NOTE: Specifying the test function requires two
statements (one LIBF and one DC), except in Disk
subroutines, where three statements are required.

This function is useful in situations where input
data has been vequested, and no processing can be
done until that data is available.

Device Identification

This digit should be zero except for the Test function
with the PAPTN (paper tape) subroutine.

NOTE: For all disk subroutines, this digit appears
in the I/0 area rather than in the control parameter.

1/O Area Parameter

The 1/0 area for a particular operation consists of
one table of control information and data. This
table is composed of a data area preceded by a con-
trol word (two control words for disk operations)
that specifies how much data is to be transferred.
The area parameter in the calling sequence is the
address (symbolic or actual) of the first control
word that precedes the data area.

The control word contains a word count refer-
ring to the number of data words in the table. It is
important to remember that the number of words in
the table is not always the number of characters to
be read (or written) because some codes pack
several characters per word. The disk subroutines
require a second control word, which is described
along with those subroutines.

Error Parameter

The error parameter is the means by which an ISS
can give temporary control to the user in the event
of conditions such as error, last card, etc. This

parameter is not required for the NAME 0 subrou-

tines for the 1442 or the Console Printer or Input-
Keyboard. The instruction sequence for setting up
the error routine is shown below.

LIBF NAME
DC ERROR (error parameter)
ERROR BSS 1 (return link)

. (error routine)
BSC1I ERROR (branch to retumn link)

Interrupt Service Subroutines 7

The return link is the address in the related ISS to
which control must be returned upon completion of
the error routine. The link is inserted in location
ERROR by a BSI from the ISS when the subroutine
branches to the error routine.

The types of errors that cause a branch to the
error address are listed in Appendix B.

NOTE: The user error routine is executed as part
of the interrupt response handling. The interrupt
level is still on and remains on until control is
returned to the ISS (see General Error Handling
Procedures).

ASSIGNMENT OF CORE STORAGE LOCATIONS

The portion of core storage used by the ISS and ILS
subroutines is defined below. Care should be used
in altering any of these locations (see Figure 3).

The areas called out in Figure 3 are described
below.

Interrupt Branch Addresses

ILS Routines. The ILS00 routine is always assigned
to location 8, ILS01 to location 9, . . . , ILS05 to
location 13.

Interrupt Trap. The address of the interrupt rou-
tine trap is stored in any location for which no ILS
routine is loaded.

1132 Printer

This area is used by 1132 Printer.

ISS Error Exit

This exit is used whenever a preoperation error
(illegal LIBF or device not ready) is detected by an
188.

To retry the call, push START.

ISS Exit

The ISS exit results from a keyboard operator
request.

The TYPEO and WRTYO0 subroutines execute a
BSI I 44 whenever a keyboard operator request is
detected. Note that interrupt level 04 is still on.

Hex Decimal

—— .

8 8 (ILS 00)
9 9 (ILs on)
A 10 (1LS 02) > Interrupt Branch Addresses
B 11 (1LS 03)
C 12 (ILS 04)
D 13 (ILS 05)
14

Unused

0 32]

Reserved for 1132 Printer

27 39
28 40 DC 0
29 41 WAIT ISS Error Exit
BSC | 40
ISS Exit
2C 44 DC 45
(Keyboard Operator Request)
2D 45 DC 0

2E 46 WAIT

Interrupt Trap
2F 47 MDX *-2

BOSC | 45
32 50 DC 0 1SS Counter
LT

Figure 3. ISS and ILS Core Locations

The user-written subroutine must return to the
TYPEOQO or WRTYO subroutine in order to allow
interrupts of equal or lower priority to occur. Also
a call executed to any subroutine might cause a
recurrent-entry problem unless the user can guaran-
tee that the subroutine was not in use when the key-
board interrupt occurred.

This location (44) is initialized for the interrupt
trap by the relocating loader, in case the user fails
to store an address in the interrupt trap to process
keyboard operator requests.

Interrupt Trap

This routine is entered when an interrupt occurs for
which there is no processing routine, e.g., no ILS
routine loaded, no ISS routine assigned to the perti~
nent ILSW bit,

Interrupts of higher priority will be processed
before the computer finally halts with the IAR dis-
playing 002A.

ISS Counter
The ISS counter is incremented by +1 every time an
ISS initiates an interrupt-causing 1/0 operation and

decremented by +1 when the operation is complete.
A non-zero content indicates interrupt(s) pending.

DESCRIPTIONS OF INTERRUPT SERVICE SUBROU-

TINES
CARD SUBROUTINES

The card subroutines perform all I/0 functions
relative to the IBM 1442 Card Read Punch; viz.,
read, punch, feed, and select stacker.

CARDO Subroutine. The CARDO subroutine is
shorter and less complicated and is the standard
routine for the Card Read Punch.

The CARDO subroutine can be used if the error
parameter is not needed. On an error, the sub-
routine loops, waiting for operator intervention; last
card conditions cause pre-operative not ready exits.

CARDI1 Subroutine. The CARD1 subroutine can be
used for the Card Read Punch if a user error exit
is needed, rather than the internal looping and
retries of the CARDO routine.

Calling Sequence

LIBF CARDO or CARD1

DC /xxx0 (Control)

DC AREA (I/O area)

DC ERROR (Error routine)
ERROR Return Link

Error Routine

BSCI ERROR|

AREA Word Count
I/O Area

The calling sequence parameters are described
in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
as shown below:

1 2 3 4

1/0 Function——*-——-f l 1

Not Used

Device Identification

1/0 Function

The I/0 function digit specifies a particular opera-
tion performed on the 1442 Card Read Punch. The
functions, associated digital values, and required
parameters are listed and described below.

Function Digital Value Required Parameters*

Test 0 Control

Read 1 Control, I/O Area, Erroré*
Punch 2 Control, I/O Area, Errork
Feed 3 Control, Erromk¥

Select Stacker 4 Control

* Any parameter not required for a particular function must
be omitted.
*kFrror parameter not required for CARDO,

Test. Branches to LIBF+2 if the previous operation

has not been completed, to LIBF+3 if the previous
operation has been completed.

Read. Reads one card and transfers a specified
number of columns of data to the user's input area.
The number of columns read (1-80) is specified by
the user in the first location of the I/0 area. The
subroutine clears the remainder of the I/0 area and
stores a 1 in bit position 15 of each word, initiates
the card operation, and returns control to the user's
program. When each column is ready to be read, a
column interrupt occurs. This permits the card
subroutine to read the data from that column into
the user's input area (clearing bit 15), after which
the user's program is again resumed. This sequence
of events is repeated until the requested number of
columns has been read, after which the remaining
column interrupts are cleared (no data read).

Interrupt Service Subroutines 9

When an operation complete interrupt occurs, the
card subroutine checks for errors, informs the user if
an error occurred (CARD1 only), and sets up to ter-
minate (CARD1 only) or retry the operation.

The data in the user's input area is in card code
format; that is, each 12-bit column image is left-
justified in one 16-bit word.

Punch. Punches into one card the number of columns
of data specified by the word count found atthe begin-
ning of the user's output area. The punch operation
is similar to the read operation., As each column
comes under the punch dies, a column interrupt
occurs; the card subroutine transfers a word from
the user's output area to the punch and then returns
control to the user's program,

This sequence is repeated until the requested
number of columns has been punched, after which an
Operation Complete interrupt occurs. At this time the
card subroutine checks for errors, informs the user
if an error occurred (CARD1only), and sets up to
terminate (CARD1only) or retry the operation. The
character punched is the image of the leftmost 12 bits
in the word.

Feed. Initiates a card feed cycle. This advances all
cards in the machine to the next station, i.e., a card
at the punch station advances to the stacker, a card at
the read station advances to the punch station, and a
card in the hopper advances to the read station. No
data is read or punched as a result of a feed operation
and no column interrupts occur.

When the card advance is complete, an Operation
Complete interrupt occurs. At this time the card
subroutine checks for errors, informs the user if an
error occurred (CARD1 only), and sets up to termi-
nate (CARD1 only) or retry the operation.

Select Stacker. Selects stacker 2 for the card cur-
rently at the punch station. After the card passes
the punch station, it is directed to stacker 2.,

Device Identification

This digit must be zero.

1/0 Area Parameter

The 1/0 area parameter is the label of the control
word that precedes the user's 1/0 area. The control
word consists of a word count that specifies the
number of columns of data read or punched, always
starting with column 1.

Error Parameter

CARDO. CARDO has no error parameter. If an error
is detected while an Operation Complete interrupt is
being processed, the subroutine loops on not ready,

10

with interrupt level 4 on, waiting for operator inter-
vention. When the condition has been corrected andthe
1442 made ready, the subroutine attempts the opera-
tion again.

CARD1, CARDI1 has an error parameter. If an error

is detected, the user can request the subroutine to
terminate (clear routine-busy indicator and the inter-
rupt level) or to loop on not ready waiting for operator
intervention (interrupt level4 on). (See Basic Calling

Sequence.)

Protection of Input Data

Since the CARD subroutines read data directly into
the user's I/0 area, the user can manipulate the data
before the entire card has been processed. This pro-
cedure is inherently dangerous because, if an error
occurs, the data may be in error and error recovery
procedures will cause the operation to be tried again.
The exit via the error parameter is the only method
of informing the user that an error has occurred.
Therefore, do not manipulate data before the entire
card has been processed when using CARDO.

When using CARDI1, the following precautions
should be taken:

® Do not store converted data back into the read-
in area.

® Do not take any irretrievable action based on the
data until the card has been read correctly; i.e.,
be prepared to convert the data or perform the
calculations a second time.

e When data manipulation is complete, check the
user-assigned error indicator that is set when a
branch to the user-written error routine occurs.
The data conversion or calculations can then be
reinitiated, if necessary.

A read or feed function requested after the last card
has been detected will eject that card and cause a
branch to the pre-operative error exit (location 41).
A punch function will punch and then eject that card
with a normal exit. Therefore,to eject the last card
without causing a pre-operative error exit,request a
punch function with a word count of one and a blank in
the data field.

DISK SUBROUTINES

The disk subroutines perform all reading and writing
of data relative to Disk Storage. This includes the
major functions: seek, read, and write, in conjunction
with readback check, file-protection, and defective
sector handling.

DISK0, The DISKO subroutine is the shortest and
least complicated and can be used if not more than
320 words are to be read or written at one time,

DISK1, The DISK1 version is the standard routine
for the Disk and allows consecutive sectors to be
read or written; however, a full disk revolution
might occur between sectors.

DISKN, The DISKN subroutine minimizes extra disk
revolutions in transferring more than 320 words.

The DISKN subroutine is more extensive than DISK1,
One of the major differences among the disk
subroutines is the ability to read or write consecutive
sectors on the disk without taking an extra revolution,

If a full sector is written, the time in which the 1I/0

command must be given varies. DISKN is programmed

so that it can "make" the sector gap the majority of
the time; DISK1 approximately 50 percent of the time;
and DISKO (if LIBF's follow one another closely) only
on a Read or Write Immediate function, since both
Write functions require reading of the sector address
to verify the arm positioning,

All three disk subroutines have the same error
handling procedures.

NOTE: In the 1130 Monitor System,the disk sub-
routines are a part of the supervisor and as such are
not loaded with the subroutine library, Consequently,
these routines do not have LET entries.,

Sector Numbering and File Protection

In the interest of providing disk features permitting
versatile and orderly control of disk operations,
three important conventions have been adopted.
They are concerned with sector numbering, file
protection, and defective sector handling. Success-
ful use of the disk subroutines can be expected only
if user programs are built within the framework of
these conventions.

The primary concern behind the conventions is
the safety of data recorded on the disk. To this end,
the file~protection scheme plays a major role, but
does so in a manneyr that is dependent upon the
sector-numbering technique. The latter contributes
to data safety by allowing the disk subroutine to
verify the correct positioning of the access arm
before it actually performs a Write operation. This
verification requires that sector identifications be
prerecorded on each sector and that subsequent
writing to the disk be done in a manner that pre-
serves the existing identification. The disk subrou-
tines have been organized to comply with these
requirements.

Sector Numbering

The details of the numbering scheme are as follows:
each disk sector is assigned an address from the
sequence 0, 1, . . . , 1623, corresponding to the
sector position in the ascending sequence of cylinder
and sector numbers from cylinder 0 (outer-most)
sector 0, through cylinder 202 (inner-most) sector 7.
(The user can address cylinders 0 through 199. The
remaining three cylinders are reserved for defective-
sector handling. Each cylinder contains eight
sectors and each sector contains 321 words.,) The
sector address is recorded in the first word of each
sector and occupies the rightmost eleven bit posi-
tions. Of these eleven positions, the three low-
order positions identify the sector (0-7) within the
cylinder. Utilization of this first word for identifi-
cation purposes reduces the per sector availability
of data words to 320; therefore, transmission of full
sectors of data is performed in units of this amount.
The sector addresses must be initially recorded on
the disk by the user and are thereafter rewritten by
the disk subroutines as each sector is written.

File Protection

File protection is provided fo guard against the inad-
vertent destruction of previously recorded data. By
having the normal writing functions uniformly test
for the file-protection status of sectors they are
about to write, this control can be achieved.

This is implemented by assigning a file-protected
area for each disk. The address of the first unpro-
tected sector (0000-1623) on each disk is stored
within the Disk subroutine. Every sector below this
one is file-protected. In the Disk Monitor System,
assignment is made by the system. In the Card/
Paper Tape System, the user must make the assign-
ment,

Defective Sector Handling

A defective sector is one in which, after ten retries,
a successful writing operation cannot be completed.
A cylinder having one or more defective sectors is
defined as a defective cylinder. The disk subrou-
tines can operate when as many as three cylinders
are defective.

Since there are 203 cylinders on each disk, the
subroutine can "overflow" the normally used 200
cylinders when defective cylinders are encountered
(see Effective Address Calculation),

The address of each defective cylinder is stored
within the Digsk subroutines (Card/Paper Tape system)
or in COMMA (Monitor System), In the Card/Paper

Interrupt Service Subroutines 11

Tape System, these addresses must be stored by the
user (see Disk Initialization).

If a cylinder becomes defective during an opera-
tion, the user can move the data in that cylinder and
each higher-addressed cylinder into the next higher-
addressed cylinders. Then the address of the new
defective cylinder can be stored in DISKx +16, + 17,
or +18 and normal operation continued.

The user should not store the new defective
cylinder address in DISKx and then continue nor-
mally because the effective sector address computa-
tion then yields a sector address eight higher than is
desired (see Effective Address Calculation).

Calling Sequence

LIBF DISKO or
DISK1 or DISKN
DC [xxxx (Control)
DC AREA (I/O area)
Dc ERROR (Error routine)
ERROR Return Link

Error Routine

BSCI ERROR

AREA Word Count

Sector Address

I/O Area

The calling sequence parameters are described in the
following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits,
shown below:

1 2 3 4

1/0 Function______l

Not Used

Seek Option

Displacement Option

12

1/0 Function

The 1/0 function digit specifies the operation to be
performed on Disk Storage. The functions, their

associated digital value, and the required param-

eters are listed and described below.

Required Parameters*

Function Digital Value

Test 0 Control, 1/QO Area
Read 1 Control, I/O Area, Error
Write without RBC 2 Control, I/O Area, Error
Write with RBC 3 Control, I/O Area, Error
Write Immediate 4 Control, I/O Area
Seek 5 Control, 1/O Area, Error

*Any parameter not required for a particular function must be
omitted.

Test, Branches to LIBY +3 if the previous operation
has not been completed, to LIBF +4 if the previous
operation has been completed.

NGTE: This function requires two parameters

Read. Positions the access arm and reads data into
the user's I/O area until the specified number of
words has been transmitted, Although sector
identification words are read and checked for agree-
ment with expected values, they are neither trans-
mitted to the I/0 data area nor are they counted in
the tally of words conveyed,

If, during the reading of a sector, a read check
occurs, up to ten retries are attempted. If the error
persists, the function is temporarily discontinued,
an error code is placed in the accumulator, the
address of the faulty sector is placed in the extension,
and an exit is made to the error routine specified by
the error parameter.

Upon return from the error routine, that sector
operation is reinitiated or the function is terminated,
depending on whether the accumulator is non-zero or
Zero.

Write With Readback Check. This function first
checks whether or not the specified sector address
is in a file~protected area. If it is, the subroutine
places the appropriate error code in the accumulator
and exits to location 41.

If the specified sector address is not in a file-
protected area, the subroutine positions the access
arm and writes the contents of the indicated 1/O
data area into consecutive disk sectors. Writing

begins at the designated sector and continues until
the specified number of words have been transmitted.
A readback check is performed on the data written.

If any errors are detected, the operation is
retried up to ten times. If the function cannot be
accomplished by this time, an appropriate error
code is placed in the accumulator, the address of
the faulty sector is placed in the extension, and exit
is made to the error routine designated by the Error
parameter.

Upon return from this error routine, that
sector operation is reinitiated or the function is
terminated depending upon whether the accumulator
is non-zero or zero,

As each sector is written, the subroutine
supplies the sector identification word. The identi-
fication word for the first sector is obtained from
the 1/0 area, although it and subsequently generated
identification words are not included in the word
count.

Write Without Readback Check. This function is the
same as the function described above except that no
readback check is performed.

Write Immediate. Writes data with no attempt to
position the access arm, check for file-protect
status, or check for errors. Writing begins at the
sector number specified by the rightmost three bits
of the sector address. This function is provided to
fulfill the need for more rapid writing to the disk
than is provided in the previously described Write
functions. Primary application will be found in the
"streaming' of data to the disk for temporary bulk
storage.

As each sector is written, the subroutine
supplies the sector identification word. The identi-
fication word for the first sector is obtained from the
1/0 area, although it and subsequently generated
identification words are not included in the word
count.

Seek - Initiates a seek as specified by the seek option
digit. If any errors are detected, the operation is
tried again up to ten times.

Seek Option

If zero, a seek is executed to the cylinder whose
sector address is in the disk I/O area control word;
if non-zero, a seek is executed to the next cylinder
toward the center, regardless of the sector address
in the disk I/0 area control word. This option is
valid only when the seek function is specified.

The seek function requires that the user set up
the normal I/0 area parameter (see I/0O Area Pa-
rameter) even though only the sector address in the
I/O area is used. The I/0 area control (first) word
is ignored.

Displacement Option

If zero, the sector address word contains the abso-
lute sector identification; if non-zero, the file pro~
tect address for the specified disk is added to bits
4~15 of the sector address word to generate the
effective sector identification. The file-protect
address is the sector identification of the first unpro-
tected sector.

1/0 Area Parameter

The 1/0 area parameter is the label of the first of
two control words which precede the user's I/0 area.
The first word contains a count of the number of

data words that are to be transmitted during the

disk operation.

If the DISK1 or DISKN subroutine is used, this
count need not be limited by sector or cylinder size,
since the subroutines cross sector and cylinder
boundaries, if necessary, in order to process the
specified number of words. However, if the DISKO
subroutine is used, the count is limited to 320.

The second word contains the sector address
where reading or writing is to begin., Bits 0-3 are
the device identification and must be zero. Bits 4-15
specify the sector address. Following the two control
words is the user's data area.

Error Parameter

Refer to the section, Basic Calling Sequence.

Important Locations

The relative locations within the DISK0O, DISK1, and
DISKN subroutines are defined as follows:

DISKx +0 - entry point from calling transfer vector

when LIBF DISKx is executed.

+2 - loader stores address of first loca-
tion (in the calling transfer vector)
assigned to DISKx

+4 - entrance from ILS subroutine han-
dling Disk Storage interrupts.

+7 - area code for disk storage.

+8 - zero

+9 - zero

Interrupt Service Subroutines 13

+10 - cylinder identification (bits 4-12) of the
cylinder currently under the disk read/
write heads (loaded as +202)

+11 - unused

+12 - unused

+13 - sector address (bits 4-15) of the first non-
file~-protected sector for Disk Storage
(loaded as 0)

+14 - unused

+15 - unused

+16 - sector address of the first defective cylin-
der for Disk Storage (loaded as +1624)

+17 - sector address of the second defective cyl-
inder for Disk Storage (loaded as +1624)

+18 - sector address of the third defective cylin-
der for Disk Storage (loaded as +1624)

In the disk monitor system, words DISKx +10
through DISKx +18 are stored in COMMA.

Effective Address Calculation

Effective address calculation is as follows:

1. Start with the user-requested sector address
(found in the sector address word ofthe 1/0 area).

2. If the displacement option (found in the control
parameter) is non-zero, add in the sector ad-
dress of the first non-file-protected sector
(found in DISKx +13).

NOTE: This starting address will cause a pre-
operative error exit to location 41 if over +1599.

3. If the resulting address is equal to or greater
than the sector address of the first defective
cylinder (found in DISKx +16), add +8,

4. 1If the resulting address is equal to or greater
than that of the second defective cylinder
(found in DISKx +17), add +8.

5. If the resulting address is equal to or greater
than that of the third defective cylinder (found
in DISKx +18), add +8.

6. The resulting address is the effective sector
address,

Disk Initialization

It is the card/paper tape system user's responsibility
to correctly load DISKx +13, +16, +17, and +18 at exe-
cution. time and whenever a new disk pack is inserted.
The following routines canbe usedto accomplish this.

Disk Pack Initialization Routine (DPIR). The func-
tions of this routine are to write sector addresses on
a disk pack, to detect any defective cylinders, and

14

to store defective cylinder and file protect information
and a dick pack label in sector 0 of the disk pack, see
IBM 1130 Card/Paper Tape Programming Systems
Operating Guide (Form C26-3629).

Set Pack Initialization Routine (SPIR0, SPIR1, and
SPIRN). The function of this routine is to store
defective cylinder and file protect information from
sector 0 of the disk pack into the appropriate DISKx
subroutine,

If the above routines are not used, the starting
address of the DISKx routine can be loaded into an
index register for easy use in reaching the specified
locations:

LD LIBF
SLA 8 expand modifier into
SRT 8 16 bits with sign
STX 3 LOAD+L
A LOAD+L add in TV address
A D0002 add constant to reach 3rd
STO LOAD-+L word of DISKx slot
LOAD IDX 12 O XR2 = DISKx
DO002 DC +2
LIBF BSI 3 n source = LIBF DISKx
c{XR3) +n DC 0 loaded as calling

BSC L DISKx transfer sector {TV)

SET PACK INITIALIZATION

The SPIR is a special-purpose utility routine, available
to the Card/Paper Tape System user. Itis not called
by LIBF as arethe other Disk subroutines described

in this section. SPIR0 mustbe used if DISKOis called,
SPIR1 if DISK1is called, or SPIRN if DISKN is called.

NOTE: In no case should SPIR be used in the monitor
system.

The SPIR reads sector 0000 from the disk and
stores the first four words into the disk ISS that is in
core. This routine should be called before any calls
are made to the disk ISS,

The calling sequence for SPIR is as follows:

CALL SPIRn

DC /0000

The four words read from sector 0000 are de-
scribed under Disk Pack Initialization Routine. See
the publication IBM 1130 Card/Paper Tape Program-
ming System Operator's Guide (Form C26-3629).

The information was stored on the disk by the
DPIR.

PRINTER SUBROUTINES

The printer subroutine PRNT1 handles all print and
carriage control functions relative to the IBM 1132
Printer. Only one line of data can be printed, or
one carriage operation executed, with each call to
the printer subroutine. The data in the output area
must be in EBCDIC form, packed two characters per
computer word., (See Data Codes,)

Calling Sequence

LIBF PRNT1

DC [xxxx (control)

DC AREA (I/O area)

DC ERROR (Error routine)
ERROR Return Link

Error Routine

BSC1 ERROR

AREA Word Count
/O Area

The calling sequence parameters are described in
the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown below.

1

2
1/O Function _———t ‘

[N

e U3

Carriage Control

Not Used

I/0 Function

The I/0 function digit specifies the operation to be
performed on an 1132 Printer. The functions, their
associated digital values, and the required parameters
are listed and described below.

Function Digital Value Required Parame ters*
Test 0 Control

Print 2 Control, I/O Area, Error
Control Carriage 3 Control

Print Numerical 4 Control, I/O Area, Error

*Any parameter not required for a particular function must be
omitted.

Test. Branches to LIBF+2 if the previous operation
has not been completed or to LIBF+3 if the previous
operation has been completed.

Print, Prints characters from the user's I/O area,
checking for channel 9 and 12 indications. If either

of these conditions is detected, the subroutine branches
to the user's error routine after the line of data has
been printed, Upon return from this error routine, a
skip to channel 1 is initiated or the function is termi-
nated, depending upon whether the Accumulator is
non-zero or zero.

Control Carriage. Controls the carriage as speci-
fied by the carriage control digits listed in Table 2.

Print Numerical. Prints only numerals and special
characters from the user's I/O area and checks for
channel 9 and channel 12 indications. See Print
above.

Carriage Control

Digits 2 and 3 specify the carriage control functions
listed in Table 2. An immediate request is executed
before the next print operation; an after-print
request is executed after the next print operation
and replaces the normal space operation.

If the I/0 function is print, only digit 3 is exam-
ined; if the I/O function is control, and digits 2 and 3
both specify carriage operations, only digit 2 is used.

Interrupt Service Subroutines 15

Table 2. Carriage Control Operations

Digit #2: Immediate Carriage Operations

Print Functions
Not Used

Control Function

1 - Immediate Skip To Channel 1
2 - Immediate Skip To Channel 2
3 - Immediate Skip To Channel 3
4 = Immediate Skip To Channel 4
5 = Immediate Skip To Channel 5
6 - Immediate Skip To Channel 6
9 - Immediate Skip To Channel 9
C - Immediate Skip To Channel 12
D - Immediate Space Of 1

E ~ Immediate Space Of 2

F = Immediate Space Of 3

Digit #3: After-Print Carriage Operations

Print Functions

0 - Space One Line After Printing
1 = Suppress Space After Printing

Control Function

1 = Skip After Print To Channel 1
2 - Skip After Print To Channel 2
3 = Skip After Print To Channel 3
4 - Skip After Print To Channel 4
5 = Skip After Print To Channel 5
6 = Skip After Print To Channel 6
9 - Skip After Print To Channel 9
C - Skip After Print To Channel 12
D~ Space 1 After Print

E - Space 2 After Print

F = Space 3 After Print

1/0O Area Parameter

The I/O area parameter is the label of the control
word that precedes the user's I/O area. The control
word consists of a word count that specifies the num-
ber of computer words of data to be printed. The
data must be in EBCDIC format, packed two charac-
ters per computer word.

Error Parameter

See Basic Calling Sequence.

CONSOLE PRINTER/INPUT KEYBOARD

There are two ISS for the transfer of data to and from
the Console Printer and the Input Keyboard.

16

TYPEO. The TYPEO subroutine handles input and
output.

WRTYO. The WRTYO0 subroutine handles output
only. If a program does not require keyboard input,
it is advantageous to use the WRTYO subroutine
because it occupies less core storage than the TYPEO
subroutine.

Only the TYPEO subroutine is described below;
the WRTYO0 subroutine is identical, except that it
does not allow the Read-Print function.

Calling Sequence

LIBF TYPEO or WRTYD
DC /xxxx (Control)
DC AREA (1/O area
AREA Word Count
I/O Area

The parameters used in the above calling sequence
are described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits,
as shown below:

-
N
w
KN

1/Q Function

et T

Not Used l

Device Identification

1/0 Function

The I/0 function digit specifies the operation to be
performed on the input keyboard and/or console print-
er. The functions, their associated digital values,
and the required parameters are listed and then
described below.

Function Digital Value Required Parameters®
Test 0 Control

Read~Print 1 Control, 1I/O Area
Print 2 Control, I/0O Area

*Any parameter not requived for a particular function must
be omitted.

Test. Branches to LIBF+2 if the previous operation
has not been completed or to LIBF+3 if the previous
operation has been completed.

Read-Print. Reads from the keyboard and prints
the requested number of characters on the console
printer. The operation sequence is as follows:

1. The calling sequence is analyzed by the Call
routine, which then unlocks the keyboard.

2. When a key is pressed, a character interrupt
signals the Interrupt Response Routine that a
character is ready to be read into core storage.

3. The Interrupt Response Routine converts the
keyboard data to console printer output code
(see Data Codes). Each character is printed as
it is read; the keyboard is then unlocked for
entry of the next character.

4, Printer interrupts occur whenever the console
printer has completed a print operation. When
the interrupt is rececived, the routine checks to
determine if the final character has been read
and printed. If so, the operation is considered
complete. If the console printer becomes not
ready during printing, the subroutines loop in-
ternally, waiting for the console printer to
become ready.

5. Steps 2 to 4 are repeated until the specified

number of characters have been read and printed.

The characters read into the I/O area are in
IBM card code; that is, each 12-bit image is
left-justified in one 16~bit word.

Print. Prints the specified number of characters on
the console printer. A printer interrupt occurs
when the console printer has completed a print
operation. When an interrupt is received, the
character count is checked. If the specified num-
ber of characters has not been written, printing is
initiated for the next character. This sequence
continues until the specified number of characters
has been printed. Data to be printed must be in con -
sole printer code, (see Data Codes) packed two char-
acters per 16-bit word. Control characters can be
embedded in the message where desired.

In Read-Print and Print operations, printing
begins where the printing element is positioned; that
is, carrier return to a new line is not automatic when
the subroutine is called.

Device Identification

Device identification digits can be 00 or 01; either
value specifies the console printer.

Keyboard Functions

Keyboard functions provide for control by the TYPEO
subroutine and by the operator.

TYPEO Subroutine Control

Three keyboard functions are recognized by the
TYPEO subroutine.

Backspace. The operator presses the backspace key
whenever the previous character is in error. The
interrupt response routine senses the control char-
acter, backspaces the console printer, and prints a
slash (/) through the character in error. In addition,
the subroutine prepares to replace the incorrect
character in the I/O area with the next character.

If the backspace is depressed twice, the character
address is decremented by +2, but only the last
graphic character is slashed. For example, if
ABCDE was entered and then the backspace key de-
pressed three times, the next graphic character
replaces the C but only the E is slashed each time.

If XYZ is the new entry, the print-out shows
ABCDEXYZ, but the buffer contains ABXYZ.

Erase Field, When the interrupt response routine
recognizes the erase field contrel character, it
assumes that the entire message is in error and is
to be entered again. The routine prints two slashes
on the console printer, restores the carrier to a new
line, and prepares to replace the old message in the
1/0 area with the new message.

The old message in the I/O area is not cleared.
Instead, the new message overlays the old, character
by character. If the old message is longer than the
new, the remainder of the old message follows the
NL character terminating the new message.

End-of-Message. When the interrupt response routine
recognizes the end-of-message control character, it
assumes the message has been completed, stores an
NL character in the I/0 area, and terminates the
operation.

Interrupt Service Subroutines 17

Operator Request Function

By pressing the operator request key on the keyboard,
the operator can inform the program that he wishes to
enter data from the keyboard or the Console Entry
switches. The interrupt that results causes the con-
sole printer routine to execute an indirect BSI instruc-
tion to core location 44, where the user must have the
address of an operator request routine stored. Bit 1
of the accumulator contains the keyboard/console
identification bit; that is, the device status word,
shifted left two bits.

The user's operator request routine must return
to the ISS subroutine via the return link. The user's
routine is executed as a part of the interrupt handling.
The interrupt level remains ON until control is
returned to the ISS subroutine (see General Error
Handling Procedures, Post-operation Checks).

I/O Area Parameter

The I/O area parameter is the label of the control
word that precedes the user's I/O area. The control
word consists of a word count that specifies the num-
ber of words to be recad or printed. This word count is
equal to the number of characters if the Read-Print
function is requested, but to one~half the number of
characters if the Print function is requested.

PAPER TAPE SUBROUTINES

The paper tape subroutines handle the transfer of
data from a Paper Tape Reader to core storage and
from core storage to a Paper Tape Punch. Any number
of characters can be transferred via one calling
sequence.

The PAPTN subroutine must be used if simul-
taneous reading and punching are desired.

The PAPT1 operates both devices, but only one
at a time.

When called, the paper tape subroutine starts
the reader or punch and then, as interrupts occur,
transfers data to or from the user's I/O area. Input
data is packed two characters per computer word by
the subroutine; output data must be in that form when
the subroutine is called for a punch function.

18

LIBF PAPT1 or PAPTN

DC /xxxx (Control)

DC AREA (I/O area)

DC ERROR (Character)
ERROR Retumn Link

Error Routine
BSC I ERROR
AREA Word Count
1/O Area

The parameters used in the above calling sequence
are described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits,
as shown below:

1 2 4
1/O Function _
Check
Not Used

Device Identification

I/O Function

The I/0 function digit specifies the operation to be
performed on a Paper Tape Attachment. The
functions, their associated digital value, and the
required parameters are listed and described below.

Function Digital Value Required Parameterk
Test o] Control

Read 1 Control, I/O area, Error
Punch 2 Control, I/O area, Error

*Any parameter not required for a particular function must be
omitted,

Test. Branches to LIBF+2 if the previous operation
has not been completed or to LIBF+3 if the previous
operation has been completed..

Read. Reads paper tape characters into the specified
number of words in the I/O area. Iitiating reader
motion causes an interrupt to occur when a character
can be read into core. If the specified number of
words has not been filled, or the stop character has
not been read (see Check), reader motion is again
initiated.

Punch. Punches paper tape characters into the tape
from the words in the I/O area. Each character
punched causes an interrupt when the next character
can be accepted, The operation is terminated by
transferring either a stop character or the specified
number of words,

Check

The check digit specifies whether or not word-count
checking is desired while completing a read or punch
operation as shown below:

0 Check
1 No check

Check. This function should be used with the Perfo-
rated Tape and Transmission Code (PTTC/8) only
{see Data Codes). The PTTC/8 code for DEL is used
as the delete character when reading. The delete
character is not placed in the I/O area and therefore
does not enter into the count of the total number of
words to be filled.

The PTTC/8 code for NL is used as the stop
character when doing a Read or Punch. On a Read
operation, the NL character is transferred into the
I/O area. On a Punch operation, the NL character is
punched into the paper tape.

When the NL character is encountered before the
specified number of words has been read or punched,
the operation is terminated, When the specified num-
ber of words has been read or punched, the opera-
tion is terminated, even though a NL character has
not been encountered,

No Check, The Read or Punch function is terminated
when the specified number of words has been read

or punched. No checking is done for a DEL or NL
character.

Device Identification

When the Test function is specified, the PAPTN sub-
routine must be told which device (reader or punch) is
to be tested for an operation complete indication.
(Remember that both the reader and the punch can
operate simultaneously.) Therefore, the device
identification is used only for the Test function in the
PAPTN subroutine. I device identification is a 0,
the subroutine tests for a reader complete indication;
if the code is a 1, the subroutine tests for a punch
complete indication,

I/O Area Parameter

The I/O area parameter is the label of the control
word that precedes the user's I/O area and consists
of a word count that specifies the number of words

to be read into or punched from core. Since charac-
ters are packed two per word in the I/O area, this
count is one-half the maximum number of characters
transferred. Because an entire eight-bit channel
image is transferred by the subroutine, any combina-
tion of channel punches is acceptable. The data can
be a binary value or a character code. The code
most often used is the PTTC/8 code. (See Data
Codes.)

Error Parameter

See Basic Calling Sequence.

PLOTTER SUBROUTINES

The plotter subroutine converts hexadecimal digits

in the user's output area into actuating signals that
control the movement of the plotter recording pen.
Each hexadecimal digit in the output area is trans-
lated into a plotter operation that draws a line seg-
ment or raises or lowers the recording pen. The
amount of data that can be recorded with one calling
sequence is limited only by the size of the correspond-
ing output area.

Interrupt Service Subroutines 19

LIBF PLOT1

DC /xxxx (Control)

DC AREA (I/O area)

DC xxxx (Lrror routine)

Word Count
1/0 Area

AREA

The calling sequence parameters are described in
the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits,
as shown below:

1
1/0O Function SN |

L
e —_—

Not Used

Device Identification

1/0 Function

The I/0 function digit specifies the operation to be
performed on the Plotter. The functions, their
associated digital value, and the required parameters
are listed and described below.

Function Digital Value Required Parameterk
Test 0 Control
Write 1 Control, 1I/O Area, Error

*Any parameter not required for a particular function must
be omitted.

Test. Branches to LIBF+2 if the previous operation
has not been completed or to LIBF+3 if the previous
operation has been completed.

Write. Transforms hexadecimal digits in the output
area into signals that actuate the plotter. Table 3
lists the hexadecimal digits and the plotting actions

they represent. Figure 4 shows the binary and hex-
adecimal configurations for drawing the lefter E.

Device Identification

This digit must be zero.

20

Table 3. Plotter Control Digits
Hexadecimal Digit Plotter Aztion (See Diagram Below)

0 Pen Down

1 Line Segment = +Y

2 Line Segment = +X,+Y

3 Line Segment = +X

4 Line Segment = +X,-Y

5 Line Segment = -Y

6 Line Segment = - X,-Y

7 Line Segment = - X

8 Line Segment = - X, +Y

9 Pen Up

A Repeat the previous pen motion the
number of times specified by the
next digit (Maximum=-15 times)

B Repeat the previous pen motion the
number of times specified by the
next two digits (Maximum~255 times)

Repeat the previous pen motion the

c number of times specified by the next
three digits (Maximum=-4095 times)

D Not Used

E Not Used

F Not Used

+ X
+X,+Y +X, =Y
P 3
fl
+Y -Y
5
8
6
7
SX,+Y X,y
X
Binary Hexadecimal Figure
0000011100010001 0711 1~ Tlw. S Finish
[
0011101000100101 3A25 I_
1001000100000011 9103 }
1010001001010101 A255 - "R start
0111001111111 79FF
Figure 4. Plotter Example

I/O Area Parameter Error Parameter

The I/O area parameter is the label of the control

word that precedes the user's I/0 area. This parameter is not used but must be included
The control word consists of a word count that because the routine will return to LIBF+4. (See
specifies the number of computer words of data used. Basic Calling Sequence.)

Interrupt Service Subroutines 21

SUBROUTINES USED BY FORTRAN

INTRODUC TION

Many of the functions and capabilities available with-
in the general I/O and conversion subroutines de-
scribed in this manual are beyond specification by
the FORTRAN language. For example, the FEED
function of the 1442 cannot be specified in FORTRAN.
Therefore, a set of limited-function I/O and con-
version subroutines is included in the subroutine
library for use by FORTRAN-compiled programs.
Any subroutines written in assembler language that
execute I/0O operations, and that are intended to be
used in conjunction with FORTRAN-compiled pro-
grams must employ these special I/O routines for
any 1/0 device specified in a mainline *IOCS record
or for any device on the same interrupt level.

The subroutine library contains the following
special routines:

CARDYZ - 1442-Input/Output Subroutine

TYPEZ - Input Keyboard/Console Printer
Input/Output Subroutine

WRTYZ - Console Printer Subroutine

PRNTZ - 1132 Printer Subroutine

PAPTZ - Paper Tape Input/Output Subroutine

DISKZ - Disk Input/Output Subroutine*
HOLEZ - IBM Card Code/EBC Conversion
Subroutine

EBCTB - EBC/Console Printer Code Table

HOLTB - IBM Card Code Table

GETAD - Subroutine Used to Locate Start
Address of EBCTB/HOLTB

GENERAL SPECIFICATIONS

The FORTRAN I/0 device routines operate in a non-
overlapped mode. Thus the device routine does not
return control to the calling program until the opera-
tion is completed.

The input/output buffer for the subroutines is a
121-word buffer starting at location 003C. The max~
imum amount of data transferable is listed in the
description of each subroutine. Output data must be
stored in unpacked (one character per word) EBCDIC
format, 00XX1g. Data entered from an input device
is converted to unpacked (one character per word)
EBCDIC format, 00XX16.

* In the 1130 Monitor System, the disk subroutines are a part of the
supervisor and as such are not loaded with the subroutine library.
Consequently, these routines do not have LET entries,

DISKZ is not included in the Card/Paper Tape subroutine library.

22

The EBCDIC character set recognized by the sub-
routine comprises digits 0-9, alphabetic characters
A-Z, blank, and special characters —+. &=(), '/*<%#@.
Any other character is recognized as a blank.

The accumulator, accumulator extension, and
Index Registers 1 and 2 are used by the FORTRAN
device routines and must be saved, if required,
before entry into a routine.

The accumulator must be set to zero for input
operations,

For output operations, the accumulator must be
set to 0002, except for PRNTZ and WRTYZ, in which
output is the only valid operation. Index Registers 1
and 2 are set to the number of characters trans-
mitted, except for PRNTZ (1132 Printer) in which
Index Register 2 contains the number of characters
printed plus an additional character for forms
control.

ERROR HANDLING

Device errors, e.g., not ready, read check, result
in the execution of a Wait instruction by the routine.
After the appropriate corrective action is taken by
the operator, PROGRAM START is pressed to
execute or reinitiate the operation, as required.

DESCRIPTIONS OF I/O SUBROUTINE

The subroutines described in the sections that follow
do not provide a check to determine validity of param-
eters (contents of accumulator and Index Register 2).
Invalid parameters cause indeterminate operation of
the subroutines.

TYPEZ KEYBOARD-CONSOLE PRINTER I/O
SUBROUTINE

Buffer Size: Maximum of 80 words input, 120 words
output.

Keyboard Input: The subroutine returns the carrier
and reads up to 80 characters from the keyboard and
stores them in the I/O buffer in EBCDIC format. Upon
recognition of the end-of-field character or reception
of the 80th character, the routine returns control to
the user (the remainder of the buffer is unchanged).

Upon recognition of the erase field character or the
backspace character, the carriage is returned and the
routine is re-initialized for the re-entry of the entire
message. Characters are printed by the Console
Printer during keyboard input.

Console Printer Output: The Subroutine returns the
carrier and prints, from the I/0 buffer, the number
of characters indicated by Index Register 2.

Subroutines Loaded. The following subroutines are
loaded along with TYPE Z:

HOLEZ, GETAD, EBCTB, HOLTB

WRTYZ — CONSOLE PRINTER OQUTPUT
SUBROUTINE

Buffer Size: Maximum of 120 words.,
Operation. This subroutine returns the carrier and
prints from the I/0 buffer, the number of characters,

indicated by Index Register 2.

Subroutines Loaded: The following subroutines are
loaded along with WRTYZ:

GETAD, EBCTB

CARDZ — 1442 CARD READ PUNCH INPUT/OQUTPUT
SUBROUTINE

Buffer Size: Maximum of 80 words.

Card Input: This subroutine reads 80 columns from
a card and stores the information in the I/0 buffer
in EBCDIC format.

Card Output: This subroutine punches, from the 1/O
buffer the number of characters indicated by Index
Register 2. Punching is done in IBM card code format.

Subroutines Loaded: The following subroutines are
loaded along with CARDZ:

HOLEX, GETAD, EBCTB, HOLTB

PAPTZ — 1134-1055 PAPER TAPE READER PUNCH
1/0 SUBROUTINE

Buffer Size: Maximum of 80 characters.

1134 Paper Tape Input: This subroutine reads paper
tape punched in PTTC/8 format. The routine reads
paper tape until 80 characters have been stored or
until a new-line character is encountered. If 80 char-
acters have been stored and a new-line character

was not encountered, one more character, assumed
to be a new line character, is read from tape. (Delete
and case characters cause nothing to be stored.) If
the first character read is not a case character, it is
assumed to be a lower case character. The input is
converted to EBCDIC Format,

1055 Paper Tape Output: The I/O buffer is converted
from EBCDIC to PTTC/8, and the number of char-
acters indicated by Index Register 2 is punched, in
addition to the required case change characters.

PRNTZ — 1132 PRINTER OUTPUT SUBROUTINE
Buffer Size: Maximum of 121 characters.

Index Register 2: The value stored in Index Register 2
must be the number of characters to be printed, plus 1
because the first character in the I/O buffer is the
carriage control character, followed by up to 120
characters to be printed. The first character to be
printed is stored in location 003D.

The carriage of the 1132 Printer is controlled prior
to the printing of a line. Following is a list of the
carriage control characters and their related functions:

00F1 Skip to channel 1 prior to printing
00F0 Double space prior to printing
004E No skip or space prior to printing
Any other character - Single space prior to
printing.

Channel 12 Control: If a punch in channel 12 is
encountered while a line is being printed, an auto-
matic skip to channel 1 is taken prior to the printing
of the next line.

DISKZ — DISK INPUT/OUTPUT SUBROUTINE

Operation: This subroutine reads or writes disk
storage. Data is transferred to or from the disk,
one sector (320 words) at a time.

Following a write operation, the subroutine
performs a read back check on the data just
written. If an error is detected, a re-write occurs.
Similarly, if a sector is not located or an error is
detected during a read, the subroutine repeats the
operation. A read is attempted ten times before
the computer halts with an error display.

Subroutines Loaded: No other subroutines are
loaded along with DISKZ.

Subroutines Used by FORTRAN 23

DATA CODE CONVERSION SUBROUTINES

INTRODUCTION

The basic unit of information within the 1130 System
is the 16-bit binary word. This information can be
interpreted in a variety of ways, depending on the
circumstances. TFor example, in internal computer
operations, words may be interpreted as instructions,
as addresses, as binary integers, or as {loating~
point numbers (see Arithmetic and Functional Sub-
routines).

A variety of data codes exists for the following
reasons.

1. The programmer needs a compact notation to
represent externally the bit configuration of each
computer word. This representation is provided
in the hexadecimal notation.

2. A code is required for representing alphameric
(mixed alphabetic and numeric) data within the
computer, This code is provided by the Ex-
tended Binary Coded Decimal Interchange Code
(EBCDIC).

3. The design and operation of the input/output
devices is such that many of them impose a
unique correspondence between character rep-
resentations in the external medium and the
associated bit configurations within the computer.
Subroutines are needed to convert input data
from these devices to a form on which the com-
puter can operate and to prepare computed re-
sults for output on the devices.

This and following sections of the manual de~
scribe the data codes used and the subroutines pro-
vided for converting data representations among
these codes.

A detailed description of the binary, octal, hexa-
decimal, and decimal number systems is contained
in the publication, IBM 1130 Functional Character-
istics (Form A26~5881).

DESCRIPTIONS OF DATA CODES

In addition to the internal 16-bit binary representa-
tion, the conversion subroutines handle the following
codes:

24

® Hexadecimal Notation
® IBM Card Code

e Perforated Tape and Transmission Code
(PTTC/8)

e Console Printer Code

¢ Extended Binary Coded Decimal Interchange
Codc (EBCDIC)

A list of these codes is contained in Appendix D.

HEXADECIMAL NOTATION

Although binary numbers facilitate the operations of
computers, they are bulky and awkward for the pro-
grammer to handle. A long string of 1's and 0's
cannot be effectively transmitted from one individual
to another. For this reason, the hexadecimal num-
ber system is often used as a shorthand method of
communicating binary numbers. Because of the
simple relationship of hexadecimal to binary, num-
bers can easily be converted from one system to
another.

In hexadecimal notation a single digit is used to
represent a 4-bit binary value as shown in Figure 5.
Thus, a 16-bit word in the 1130 System can be ex-
pressed as four hexadecimal digits. For example,
the binary value

1101001110111011
can be separated into four sections as follows:

Binary 1101 0011 1011 1011
Hexadecimal D 3 B B

Another advantage of hexadecimal notation is
that fewer positions are required for output data
printed, punched in cards, or punched in paper tape.
In the example above, only four card columns are
required to represent a 16-bit binary word.

BINARY DECIMAL HEXADECIMAL
0000 0 0
0001 i 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
o1 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
[RRR 15 F

Figure 5. Hexadecimal Notation

IBM CARD CODE

The IBM Card Code can be used as an input/output
code with the 1442 Card Read-Punch and as an input
code on the Input Keyboard.

This code defines a character by a combination
of punches in a card column. Card-code data is
taken from or placed into the leftmost twelve bits of
a computer word as shown below:

Card Row 12 11 0

1234567 8 9 - = - =
Computer Word 0 1 2 3 4 6 7 8 9 10 11 12 13 14 15
Tor example, a plus sign, which has a card
code of 12, 6, 8, is placed into core storage in the
binary configuration illustrated in the following dia-

gram.

Binary Word
Card Code —
1000000010100000

/—————: 1 |}

006000000
Vitese

1Tl

222222122
33333333
IYRYRERY
55555555
6666666f
IRRERARE

2
CERRREE)

PERFORATED TAPE AND TRANSMISSION CODE
(PTTC/8)

The PTTC/8 code is an 8-bit code used with IBM
1134/1055 Paper Tape units. This code represents
a character by a stop position, a check position, and
six positions representing the 6-bit code, BA8421.
PTTC/8 characters can be packed two per computer
word as shown below.

l}s\f 2nd

PTTC/8 Characters 'S B A C 8 4 2 1''S 8 AC 8 4 2 1

5

Computer Word 01234567 891011121314 15]

The graphic character is defined by a combination
of binary code and case; a control character is de-
fined by a binary code and has the same meaning in
upper or lower case. This implies that UC and LC
characters must appear in a PTTC/8 message
wherever necessary to establish or change the

case.
The binary and PTTC/8 codes for 1/ (lower

case) and =? (upper case) are shown in Figure 6.

The DEL and NL characters have a special
meaning (in check mode only) when encountered by
the paper tape subroutines.

Binary Word
00000001001 1C001
Ad [}
S
B
A
C
8
4
2
1§ X
S
B
Al X
Cc| X
8
4
2
T X

Figure 6. PTTC/8 Code for 1/ (Lower Case) or = ? (Upper Case)

Data Code Conversion Subroutines 25

CONSOLE PRINTER CODE

The console printer uses an 8-bit code that can be
packed two per 16-bit word.

The following control characters have special
meanings when used with the console printer.

Character Control Operation
HT Tabulate
RES Shift to black ribbon
NL Carrier return on new line
BS Backspace
LF Line feed without carrier
return
RS Shift to red ribbon

EXTENDED BINARY CODED DECIMAL INTER-
CHANGE CODE (EBCDIC)

EBCDIC is the standard code for internal representa-
tion of alphameric and special characters and for the
1132 printer. The code occupies eight binary bits
per character, making it possible to store either
one or two characters per 16-bit word. The eight
bits allow 256 possible codes. (At present, not all
of these combinations represent characters.) The
complete EBCDIC code is shown in Appendix D.

TFor reasons of efficiency, most of the conver-
sion subroutines do not recognize all 256 codes.
The asterisked codes in Appendix D constitute the
subset recognized by most of the conversion sub-
routines.

CONVERSION SUBROUTINES

INTRODUCTION

Subroutines Included

The following data conversion subroutines are de-
scribed in this section.

BINDC Binary value to IBM card code decimal
value.

DCBIN IBM card code decimal value to binary
value.

BINHX Binary value to IBM card code hexadecimal
value.

26

HXBIN IBM card code hexadecimal value to binary
value.

HOLEB IBM card code subset to EBCDIC subset;
EBCDIC subset to IBM card code subset.

SPEED IBM card code characters to EBCDIC;
EBCDIC to IBM card code characters.

PAPEB PTTC/8 subset to EBCDIC subset;
EBCDIC subset to PTTC/8 subset.

PAPHL PTTC/8 subset to IBM card code subset;
TBM card code subset to PTTC/8 subset.

PAPPR PTTC/8 subset to console printer
code.

HOLPR IBM card code subset to console printer
code.

EBPRT EBCDIC subset to console printer code.

The following conversion tables are used by some of
the conversion subroutines.

PRTY Console printer code.
EBPA EBCDIC and PTTC/8 subsets.
HOLL IBM card code subset.

The first four subroutines change numeric data
from its input form to a binary form, or from a
binary form to an appropriate output data code. The
last seven convert entire messages, one character
at a time, from one input/output code to another.
The types of conversions accomplished by these sub-
routines are illustrated in Figure 7.

Error Checking

All code conversion subroutines (except SPEED)
accept only the codes marked with an asterisk in
Appendﬁ. An input character that does not con-
form to a specified code is an error.

BINHX and BINDC subroutines do not detect
errors. HXBIN and DCBIN terminate conversion at
the point of error detection; they do not replace the
character in error. The contents of the accumulator
are meaningless when conversion is terminated
because of an error.

CONVERTED TO

CONVERTED
EROM Binary | |BM Card | 1BM Cd"”d PTTC/8
Y Code (256) (s °b$‘;) (Subset)
u
Binary
IBM Card
Code (256)
IBM Card

Code (Subset)

PTTC/8
(Subset)

EBCDIC
(256)

EBCDIC
(Subset)

Hex
Equivalent
(Card Code)

Decimal
Equivalent
(Card Code)

Figure 7. Types of Conversions

The remainder of the conversion subroutines
replace the character in error with a space character,
stored in the output area in output code. Conversion
is not terminated when an error is detected.

When a conversion subroutine detects an error
it turns the Carry indicator off and turns the Over-
flow indicator on before 1‘etu—r-ﬁing control to the
user. Otherwise, the settings of the Carry and
Overflow indicators are not changed by the conversion
subroutines.

BINDC
Description

This subroutine converts a 16-bit binary value to its
decimal equivalent in five IBM card code numeric
characters and one sign character. The five char-
acters and the sign are placed in six computer words
as illustrated in Figure 8.

Calling Sequence

LIBF BINDC
DC QUTPT
CUTPT BSS 6

EBCDIC
(25¢)

Decimal
Equivalent

(Card Code)

Hex
Equivalent
(Card Code)

EBCDIC Console

(Subset)

Printer

BINHX BINDC

HOLEB HOLPR

1/O Locations | Conversion Data 0 Bits in Core Sforuge¥ 15
A -Register +01538 0000 0110 0000 0010
OUTPT + 1000 0000
OQUTPT + 1 0 0010 0000
OUTPT +2 1 0001 0000
QUTPT +3 5 0000 0001
QUTPT + 4 3 0000 0100
OUTPT +5 8 0000 0000
Figure 8, BINDC Conversion

Input

Input is a 16-bit binary value in the accumulator.

Output

Output is an IBM card code sign character (plus or
minus) in location OUTPT, and five IBM card code
numeric characters in OUTPT +1 through OUTPT +5.

Data Code Conversion Subroutines 27

Errors Detected

The BINDC subroutine does not detect errors.

DCBIN

Description

This subroutine converts a decimal value in five IBM
card code numeric characters and a sign character to
a 16-bit binary word. The conversion is the reverse
of the BINDC subroutine conversion illustrated in

Figure 8.

Calling Sequence

LIBF DCBIN
DC INPUT
INPUT BSS 6

Input
Input is an IBM card code sign character in location

INPUT and five IBM card code decimal characters in
INPUT +1 through INPUT +5.

Output

Output is a 16-bit binary word containing the con-
verted value in the accumulator.

Errors Detected

Any sign other than an IBM card code plus, amper-
sand, space, or minus, or any decimal digits other
than a space or 0 through 9 is an error. Any con-
verted value greater than +32767 or less than -32768
is an error.

BINHX
Description
This subroutine converts a 16-bit binary word into

hexadecimal notation in four IBM card code charac-
ters as illustrated in Figure 9.

28

1/O Locations | Conversion Data Bits in Core Storage

Accumulator AS59E 1010 0101 1001 1110
OuTPT A 1001 0000 0000
OUTPT +1 5 0000 0001 0000
QUTPT + 2 9 0000 0000 0001
QUTPT +3 E 1000 0001 0000

Figure 9. BINHX Conversion

Calling Sequence

LIBF BINHX
DC QUTPT
OUTPT BSS 4

Input
Input is a 16~bit binary word in the accumulator.
Output

Output is four IBM card code hexadecimal digits in
location OUTPT through OUTPT +3.

Errors Detected

The BINHX subroutine does not detect errors.

HXBIN

Description

This subroutine converts four IBM card code hexa-
decimal characters into one 16-bit binary word. The

conversion is the reverse of the BINHX subroutine
conversion illustrated in Figure 9.

Calling Sequence

LIBF HXBIN
DC INPUT
INPUT BSS 4

Input

Input is four IBM card code hexadecimal digits in
INPUT through INPUT +3.

Output
Output is a 16-bit binary word in the accumulator.

Trrors Detected

Any input character other than an IBM card code 0
through 9 or A through ¥ is an error.

HOLEB

Description

This subroutine converts IBM card code subset to
the EBCDIC subset or converts the EBCDIC subset
to IBM card code subset. Code conversion is illus—
trated in Figure 10.

Calling Sequence

LIBF HOLEB

DC /xxxx (Control)

DC INFUT

bc OUTPT

DC nnnn {Character count)
wrUT [z zzzzzozozoz
OUTPT [z zzzZzIZI:x:Iz|

Control Parameter

The control parameter consists of four hexadecimal
digits. Digits 1-3 are not used. The fourth digit
specifies the direction of conversion:

0 - IBM card code to EBCDIC
1 - EBCDIC to IBM card code

Input

Input is either IBM card code or EBCDIC characters,
(as specified by the control parameter) starting in
location INPUT. EBCDIC characters must be packed
two characters per binary word. IBM card code
characters are stored one character to each binary
word.

. . Bits i
I/Q Locations | Conversion Data its in Core Storage

O ot e i]
INPUT IS 1101 0001 1110 0010 |
ouTPT J 0101 0000 0000 GOHO
OUTPT +1 s 0010 1000 0000 ‘GH0D

Figure 10, HOLEB Conversion (EBCDIC to IBM Card Code)

Output

Output is either IBM card code or EBCDIC characters
starting in location OUTPT. Characters are packed
as described above.

If the direction of the conversion is IBM card
code input to EBCDIC output, the input area can
overlap the output area if the address INPUT is equanl
to or greater than the address OUTPT. I the dirce-
tion of the conversion is EBCDIC input to IBM card
code output, the input area can overlap the output aren
if the address INPUT + n/2 is equal to or greater
than the address OUTPT + n, where n is the char-
acter count specified. The subroutine starts proc-
essing at location INPUT.

Character Count

This number specifics the number of characters to be
converted; it is not equal to the number of binary
words used for the EBCDIC characters because those
characters are packed two per binary word. Il an odd
count is specified for EBCDIC output, bits & through
15 of the last word in the output area are not aliered,

Errors Detected

Any input character not asterisked in Appendix 11 is
an error.

SPEED

Description
This subroutine converts IBM card code to ERCDIC
or EBCDIC to IBM card code. SPEED accepts all
256 characters defined in Appendix D.

If the input is IBM card code, the conversion
time is much faster than that of HOLEDB because a
different conversion method is used when all 2586

Data Code Conversion Subroutines 29

EBCDIC characters are accepted. If the SPEED
subroutine is called before a card reading operation
is completed, the SPEED subroutine synchronizes
with a CARD subroutine read operation by checking
bit 15 of the word to be processed before converting
the word. If bit 15 is a one, the SPEED subroutine
waits in a loop unti! the CARD subroutine sets the
bit to a zero.

Calling Sequence

The input area should not overlap the output area
because of restart problems that can result from
card feed errors.

Character Count
This parameter specifies the number of EBCDIC or
IBM card code characters to be converted. ¥ the

character count is odd and the output code is EBCDIC,
bits 8 through 15 of the last word are unaltered.

Errors Detected

Any input character code not listed in Appendix D is
an error.

LIBF SPEED

DC /xxxx (Control)

DC INPUT

DC OUTPT

DC nannn (Character codes)

OUTPT l __________ ‘

Control Parameter

This parameter consists of four hexadecimal digits.
Digits 1 and 2 are not used. The third digit indicates
whether the EBCDIC code is packed or unpacked.

0 — Packed, two EBCDIC characters per binary
word

1 — Unpacked, one EBCDIC character per binary
word (left-justified)

The fourth digit indicates the direction of con-
version:

0 — IBM card code to EBCDIC
1 — EBCDIC to IBM card code

Input

Input is either IBM card code or EBCDIC characters
(as specified by the control parameter) starting in
Jlocation INPUT. EBCDIC characters can be packed
or unpacked. IBM card code characters are stored
one character to each binary word.

Output
Output is EBCDIC or IBM card code characters
starting in location OUTPT. EBCDIC characters can

be packed or unpacked; IBM card code characters are
not packed.

30

ATl IBM card code punch combinations,

except multiple punches in rows 1-7, are legal.

PAPEB

Description

This subroutine converts PTTC/8 subset to EBCDIC

subset or EBCDIC subset to PTTC/8 subset.

conversion of EBCDIC to PTTC/8 with the initialize
case option selected is illustrated in Figure 11.

Calling Sequence

LIBF PAPEB

DC [xxxx (Control)

DC INPUT

DC OUTPT

DC nnnnn (Character count)
INPUT l __________ 1
OUTPT l __________]

1/O Locations | Conversion Data 0 Bits in Core Storage 15
INPUT JS 1101 0001 1110 0010
QUTPT +0 uc J 0000 1110 0101 0001
+1 S DEL 0011 0010 0111 11N

Figure 11. PAPEB Conversion (EBCDIC to PTTC/8)

PAPEB

Control Parameter

This parameter consists of four hexadecimal digits.
Digits 1 and 2 are not used. The third digit indicates
whether or not the case is to be initialized before
conversion begins:

0 — Initialize case
1 — Do not alter case

The fourth digit indicates the direction of conversion:

0 — PTTC/8 to EBCDIC
1 — EBCDIC to PTTC/8

Input

Input (either PTTC/8 or EBCDIC characters, as
specified by the control paramecter) starts in location
INPUT. Characters are packed two per 16-bit com~-
puter word in both codes.

Output

Output is either EBCDIC or PTTC/8 characters
starting in OUTPT. Characters in either code

are in packed format. The subroutine starts proc-
essing at location INPUT.

If the output is in EBCDIC, overlap of the input
and output areas is possible ifthe address INPUT is
equal to or greater than the address OUTPT.

If the output is in PTTC/8, overlap of the input
and output areas is not recommended because the
number of output characters might be greater than
the number of input characters.

Character Count

This parameter specifies the number of PTTC/8 or
EBCDIC characters in the input area. The count
must include case shift characters even though they
might not appear in the output. Because the input is
packed, the character count will not be equal to the
number of binary words in the input area. If an odd
number of output characters is produced, bits 8-15 of
the last used word in the output area are set to a
space character if the output is EBCDIC, or to a de~
lete character if the output is PTTC/8.

There is no danger of overflowing the output
area if the number of words in a PTTC/8 output area

is equal to the number of characters in the input area.

Errors Detected

Any input character that is not marked with an aster-
isk in Appendix D is an error.

Subroutine Operation

If the input is in PTTC/8 code, all control characters
(except case shift (LC or UC) characters) are con~
verted to output. Casc shift characters only define
the case mode of the graphic characters that follow.

Tf the initialize option is selected, the case is
set to lower. All characters are interpreted as
lower case characters until an upper case shift (UC)
character is encountered. If the do-not-alter option
is selected, the case remains set according to the
last case shift character encountered in the previous
LIBF message.

If the input is in ETBCDIC, all data and control
characters are converted to output. The user should
not specify case shifting in his input message; this is
handled automatically by the PAPEB subroutine.

Case shift characters are inserted in a PTTC/8
output message where needed to define certain
graphic characters that have the same binary value
and are differentiated only by a case mode character.
For example, the binary value 0101 1011 (5B), is in~
terpreted as a $ in lower case and an ! in upper
case (see Appendix D).

If the initialize option is selected, the case shift
character needed to interpret the first graphic char-
acter is inserted in the output message and the case
mode is initialized for that mode. If the do-not-
alter option is selected, the case mode remains set
according to the last case shift character required
in the previous LIBF message, i.e., no case shift
is forced.

If a case shift character appears in the input
message, it is output but does not affect the case
mode. If it is an upper case shift (UC) and the next
input character requires an upper case shift, the
subroutine still inserts an upper case shift into the
message, i.e., two UC characters will appear in the
output message.

The conversion is halted whenever the character
count is decremented to zero or whenever a new line
(NL) control character is detected.

PAPHL
Description

This subroutine converts PTTC/8 subset to IBM
card code subset or IBM card code subset to PTTC/8

Data Code Conversion Subroutines 31

subset. TFigure 12 illustrates the relationship of the
two codes for converting PTTC/8 to IBM card code.

Calling Sequence

LIBF PAPHL

DC /xxxx (Control)

DC INPUT

DC OUTPT

DC nnmnn - (Character count)

Control Parameter

This parameter consists of four hexadecimal digits.
Digits 1 and 2 are not used. The third digit indicates
whether or not the case is to be initialized before con-
version begins:

0 — Initialize case
1 — Do not alter case

The fourth digit indicates the type of conversion:

0 —PTTC/8 to IBM card code
1 — IBM card code to PTTC/8

Input

Input is either PTTC/8 or IBM card code characters
(as specified by the control parameter) starting in

Bits in Core Storage
I/O Locations | Conversion Data | (o - 15
INPUT uc J 0000 1110 0101 0001
S T 0011 0010 0010 0011
OUTPT J 0101 0000 0000 0000
OUTPT +1 S 0010 1000 0000 0000
OUTPT +2 T 0010 0100 0000 0000

Figure 12. PAPHL Conversion (PTTC/8 to IBM Card Code)

32

location INPUT. PTTC/8 characters are packed two
per binary word; IBM card code characters are not
packed.

Output

Output is either IBM card code or PTTC/8 code
characters starting in location OUTPT., PTTC/8
codes are packed two per binary word; IBM card code
characters are not packed.

If the conversion is IBM card code input to
PTTC/8 output, the input area may overlap the output
area if the address INPUT is equal to or greater than
the address OUTPT. Case shift characters are in-
serted in the output message where needed to define
certain graphic characters (see PAPEB Subroutine).

If the conversion is PTTC/8 input to IBM card
code output, the input area may overlap the output
area if the address INPUT + (®/2) is equal to or
greater than the address OUTPT + n, where n is
the character count. The subroutine starts proces-
sing at location INPUT.

Character Count

This parameter specifies the number of PTTC/8 or
EBCDIC characters in the input area. The count
must include case shift characters, even though they
might not appear in the output. Because the input
may be packed, the character count may not be equal
to the number of binary words in the input area.

There is no danger of overflowing the output
area confines if the number of words in the output
area is equal to the number of characters in the in-
put area.

Errors Detected

Any input character not marked by an asterisk in
Appendix D is an error.

Subroutine Operation

Case and shift character handling is described under
PAPEB.
If an odd number of PTTC/8 output characters is
produced, bits 8-15 of the last used word in the out-
put area are set to a delete character.

The conversion is halted whenever the character
count is decremented to zero or whenever a new line
(NL) control character is detected.

PAPPR
Description
This subroutine converts PTTC/8 subset to console

printer code. The conversion is illustrated in Fig-
ure 13.

1/O Locations | Conversion Data O_PHS in Core Storage =15
{
INPUT uc J 0000 1110 II 0101 0001
INPUT +1 LC $ 0110 11104 0101 1011
EE— I
ouTPT b 0111 1100 | 0100 0000
Figure 13, PAPPR Conversion
Calling Sequence
LIBF PAPPR
DC /xxx0 (Control)
DC INPUT
DC OUTPT
DC nnpnn (Character count)
INPUT L - w2 2 o e = = -
OUTPT |- = = o e e e = e -

Control Parameter

This parameter consists of four hexadecimal digits.
Digits 1 and 2 are not used. The third digit indicates
whether or not the case is to be initialized before
conversion begins:

0 — Initialize case
1 — Do not alter case

The fourth digit must be zero, specifying console
printer code.

Input

Input consists of PTTC/8 characters starting in loca~-
tion INPUT. PTTC/8 characters are packed two per

binary word. All control characters except case
shift (LC or UC) characters are converted to output.
Case shift characters are used only to define the case
mode of the graphic characters that follow.

Output

Output consists of console printer characters starting
in location OUTPT. This code is packed two char-
acters per binary word. If overlap of the input and
output areas is desired, the address INPUT must be
equal to or greater than the address OUTPT. This
is necessary because the subroutine starts processing
at location INPUT.

Character Count

This parameter specifies the number of PTTC/8
characters in the input area. The count must include
case shift characters, even though they do not appear
in the output. Because the input is packed, the
character count is not equal to the number of binary
words in the input area.

If an odd number of output characters is pro-
duced, bits 8-15 of the last used word in the output
area are set to a space character.

The conversion is halted whenever the character
count is decremented to zero or whenever a new line
(NL) control character is detected.

Errors Detected

Any input character not marked by an asterisk in
Appendix D is an error.

HOLPR
This subroutine converts IBM card code subset to

console printer code. The conversion is illustrated
in Figure 14.

1/O Locations | Conversion Data 0 — Bits in Core Storageh 15
INPUT J 0101 0000 0000
INPUT + 1 ? 0010 0000 01100
QuTPT J7? 0111 1100; 1000 0110

Figure 14. HOLPR Conversion

Data Code Conversion Subroutines 33

Calling Sequence

LIRF HOLPR

DC [7xx0 (Control)

DC INPUT

DC OUTPT

QC nnnnn (Character count)

Control Parameter

This parameter consists of four hexadecimal digits.
Digits 1-3 are not used. The fourth digit must be a
zero, specifying console printer code.

Input

Tnput consists of IBM card code characters, starting
in location INPUT. The characters are not packed.

Output

Output consists of console printer code characters,
starting in location OUTPT. The code is packed two
characters per binary word.

The input area may overlap the output area if the
address INPUT is equal to or greater than the address
OUTPT. The subroutine starts processing at location
INPUT.

Character Count

This number specifies the number of IBM card code
characters to be converted and is equal to the num-
ber of words in the input area. I an odd count is
specified, bits 8~15 of the last word used in the output
area are not altered.

Errors Detected

Any input character not marked with an asterisk in
Appendix D ig an error.

EBPRT
Description
This subroutine converts EBCDIC subset to console

printer characters. The conversion is shown in
Figure 15.

34

1/O Locations | Conversion Data 0 Bits in Core Sforagek 15
INPUT LE 1101 0011 1100 0101
INPUT + 1 ES 1100 0101 1110 0010
outet LE 0101 1100 0011 0100
QUTPT +1 ES 0011 0100 1001 1000
Figure 15, EBPRT Conversion
Calling Sequence
LIBF EBPRT
DC [xxx0 (Control)
DC INPUT
DC QUTPT
(Character count)

DC nnnnn

INPUT . __________ I

Control Parameter

This parameter consists of four hexadecimal digits.
Digits 1-3 are not used. The fourth digit must be a
zero, specifying console printer code.

Input

Input consists of RBCDIC characters starting in lo-
cation INPUT. EBCDIC characters are packed two
per word.

Output

Output consists of console printer characters starting
in location OUTPT. The code is packed two char-
acters per binary word.

The address INPUT must be equal to or greater
than the address OUTPT if overlap of the input and
output areas is desired. The subroutine starts proc-
essing at location INPUT.

Character Count

This parameter specifies the number of EBCDIC
characters to be converted. This count is not equal
to the number of words in the input area. If an odd
count is specified, bits 8-15 of the last word used in
the output area are not altered.

Errors Detected

Any input character not marked with an asterisk in
Appendix D is an error.

The IBM 1130 Subroutine Library includes the arith-
metic and functional subroutines that are the most
frequently required because of their general applica-
bility. There are 44 subroutines, some of which
have several entry points,

Table 4 lists the arithmetic and functional sub-
routines that are included in the Subroutine Library.

FLOATING-POINT DATA FORMATS

Many of the IBM 1130 arithmetic and functional sub-
routines offer two ranges of precision: standard
and extended. The standard precision provides 23
significant bits, and the extended precision provides
up to 31 significant bits.

To achieve correct results from a particular
subroutine, the input arguments must be in the
proper format.

Standard Precision Format

Standard precision floating-point numbers are
stored in core storage as shown below:

Ist Word 16 Most Significant Bits of Mantissa

8 Least Significant

. Characteristic
Bits of Mantissa

2nd Word

Numbers can consist of up to 23 significant bits
(mantissa) with a binary exponent ranging from ~128
to +127. Two adjacent storage locations are re-
quired for each number. The first (lowest) location
must be even-numbered. The sign of the mantissa is
in bit zero of the first word. The next 23 bits
represent the mantissa (2's complement) and the
remaining 8 bits represent the characteristic. The
mantissa is normalized to fractional form, i.e., the
implied binary point is between bits zero and one.
The characteristic is formed by adding +128 to
the exponent. For example, an exponent of -32 is
represented by a characteristic of 128-32, or 96. An
exponent of +100 is represented by a characteristic

ARITHMETIC AND FUNCTIONAL SUBROUTINES

of 100 + 128, or 228, Since 12815 = 8034 the char-
acteristic of a nonnegative exponent always has a
1-bit in position 1, while the characteristic of a
negative exponent always produces a 0-bit in position
1. A normal zero consists of all zero bits in both the
characteristic and the mantissa.

Extended Precision Format

Extended precision floating-point numbers are
stored in three adjacent core locations as shown
below:

1st Word Unused Characteristic

0 7 8 15
2nd Waord S Mantissa

0 | 15
3rd Word Mantissa

0 15

Numbers can consist of up to 31 significant bits with
a binary exponent ranging from -128 to +127.

Bits zero through seven of the first word are
unused; bits eight through 15 of the first word repre-
sent the characteristic of the exponent (formed in the
same manner as in the standard range format); bit
zero of the second word contains the sign of the man-
tissa; and the remaining 31 bits represent the man-
tissa (2's complement).

Fixed Point Format

Fractional numbers, as applied to the fixed-point sub-
routines, XSQR, XMDS, XMD, and XDD, are defined
as binary fractions with implied binary points of

zero. That is, the binary point is positioned between
the sign (bit 0) and the most significant bit (bit 1).

The user can consider the binary point to be in
any position in his fixed-point numbers. To correctly
interpret the results the following rules must be
observed.

Arithmetic and Functional Subroutines 35

1. Only numbers with binary points in equivalent point locations of the dividend and the divisor.
positions can be correctly added or subtracted. 4. The binary point location in a number that is
2. The binary point location in the product of two input to the fixed-point square root subroutine
numbers is the sum of the binary point locations (XSQR) must be an even number from 0-14.
of the multiplier and the multiplicand. The binary point location in the output root
3. The binary point location in the quotient of two is half the binary point location of the input
numbers is the difference between the binary number,
Table 4, Arithmetic and Functional Subroutines
SUBROUTINE NAME
Floating-Point Standard Precision Extended Precision
Add/Subtract *FADD/*FSUB *EADD/*ESUB
Multiply *EMPY *EMPY
Divide *FDIV *EDIV
Load/Store FAC *ELD/*FSTO *ELD/*ESTO
Trigonometric Sine/Cosine FSINE/FCOSN, FSIN/FCOS ESINE/ECOSN, ESIN/ECOS
Trigonometric Arctangent FATN, FATAN EATN, EATAN
Square Root FSQR, FSQRT ESQR, ESQRT
Natural Logarithm FLN, FALOG ELN, EALOG
Exponential (e*) FXPN, FEXP EXPN, EEXP
Hyperbolic Tangent FTNH/FTANH ETNH/ETANH
Floating~Point Base to an Integer Exponent *FAXI *EAXI
Floating-Point Base to a Floating-Point Exponent *FAXB *EAXB
Floating—-Point to Integer IFIX IFIX
Integer to Floating=-Point FLOAT FLOAT
Normalize NORM NORM
Floating Binary to Decimal/Floating Decimal FBTD/FDTB F8TD/FDTB
to Binary
Floating-Point Arithmetic Range Check FARC FARC
Fixed~Point
Integer Base to an integer Exponent *FX] *FIX!
Fixed -Point Square Root XSQR XSQR
Fixed-Point Fractional Multiply (short) XMDS
Fixed-Point Double Word Multiply XMD XMD
Fixed-Point Double Word Divide XDD XDD
Special Function
Floating-Point Reverse Subtract *FSBR *ESBR
Floating~Point Reverse Divide *FDVR *EDVR
Floating~Point Reverse Sign SNR SNR
Floating-Point Absolute Value FAVL, FABS EAVL, EABS
Integer Absolute Value 1ABS |ABS
Miscellaneous
Get Parameters FGETP EGETP
NOTE: By adding an X to those names prefixed with an asterisk, the user can cause the contents of index Register 1 to be added
to the address of the argument specified in the subroutine calling sequence to form the effective argument address. For example,
FADDX would be the modified form of FADD.

36

FLOATING-POINT PSEUDO ACCUMULATOR

IBM 1130 floating-point subroutines sometimes re-

quire a register or accumulator that can accommodate

numbers in floating-point format. Since all of the
1130 registers are only 16 bits in length, a pseudo
accumulator must be set up to contain two- or three-
word floating-point numbers, The pseudo accumula-
tor (designated FAC for floating accumulator) is a
three-word register occupying the three highest lo-
cations of the transfer vector (see IBM 1130
Assembler Language, C26-5927). The user can
refer to these words by using Index Register 3 plus
a fixed displacement (XR3 + 125, 126, or 127). The
format of the FAC is shown below.

} Characteristic Mantissa Mantissa
FAC
(XR3 + 126)

The effective address of the mantissa is always
even.

NOTE: Arithmetic and functional subroutines do not
save and restore the contents of the 1130 accumulator
or the accumuliator extension. The main program
should provide for this if the contents are significant.

CALLING SEQUENCES

The arithmetic and functional subroutines are called
via a CALL or LIBF statement followed, in some
cases, by a DC statement containing the actual or
symbolic address of an argument. In the descrip-
tions that follow, the notations (ARG) and {FAC)
refer to the contents of the operand rather than its
address. The name FAC refers to the floating-
point pseudo accumulator. The extended precision
subroutine names are prefixed with the letter E
(subroutines which handle both precisions have the
same name and do not have a prefix).

Note also that some of the functional subroutines
can be called via two different calling sequences.
One calling sequence assumes the argument is in
FAC; the other specifies the location of the argument
with a DC statement.

In addition, some subroutines can have indexed
linkage to the argument. The calling sequence is the

same except for the subroutine name which contains
an X suffix. Also, some subroutines perform more
than one type of arithmetic or function. TFor example,
FSIN and FCOS are different entry points to the same
subroutine, Each subroutine is listed in Table 4

with the corresponding entry points.

Floating-Point Add

LIBT FADD, FADDX, EADD or EADDX

DC ARG

Input Floating-point augend in FAC
Floating-point addend in location ARG

Result (FAC) + (ARG) replaces (FAC)

Floating-Point Subtract

LIBF FSUB, FSUBX, ESUB or ESUBX

DC ARG

Input Floating-point minuend in FAC
Floating-point subtrahend in location
ARG

Result (FAC) - (ARG) replaces (FAC)

Floating-Point Multiply

LIBF FMPY or EMPY

DC ARG

Input Floating-point multiplicand in FAC
Floating-point multiplier in location
ARG

Result (FAC) times (ARG) replaces (FAC)

Floating~Point Divide

LIBF FDIV, FDIVX, EDIV or EDIVX
DC ARG
Input Floating-point dividend in FAC

Floating-point divisor in location ARG
Result (FAC) / (ARG) replaces (FAC)
Load FAC

LIBF FLD, FLDX, ELD or ELDX

DC ARG

Tnput Floating-point number in location
ARG

Result (ARG) replaces (FAC)

Store FAC

LIBF FSTO, FSTOX, ESTO or ESTOX

DC ARG

Input Floating-point number in FAC

Result (FAQ) replaces (ARG)

Arithmetic and Functional Subroutines 37

Floating-Point Trigonometric Sine

CALL
Input

Result

CALL
DC
Input

Result

FSINE or ESINE
Floating-point argument

(in radians) in FAC

Sine of (FAC) replaces (FAC)

or

FSIN or ESIN

ARG

Floating-point argument

(in radians) in location ARG
Sine of (ARG) replaces (FAC)

Floating-Point Trigonometric Cosine

CALL
Input

Result

CALL
DC
Input

Result

FCOSN or ECOSN
Floating-point argument

(in radians) in FAC

Cosine of (FAC) replaces (FAC)

or

FCOS or ECOS

ARG

Floating-point argument

(in radians) in location ARG
Cosine of (ARG) replaces (FAC)

Floating-Point Trigonometric Arctangent

CALL
Input
Result

CALL
DC
Input

Result

FATN or EATN

Floating-point argument in FAC
Arctangent of (FAC) replaces (FAC);
the result lies within the range

:h-12r~ radians (90 degrees)

or

FATAN or EATAN

ARG

Floating-point argument in location
ARG

Arctangent of (ARG) replaces (FAC);
the result lies within the range

i% radians (+90 degrees)

Floating-Point Square Root

38

CALL
Input
Result

FSQR or ESQR
Floating-point argument in FAC
Square root of (FAC) replaces (FAC)

or

CALL
DC
Input

Result

FSQRT or ESQRT

ARG

Floating-point argument in location
ARG

Square root of (ARG) replaces (FAC)

Floating-Point Natural Logarithm

CALL
Input
Result

CALL
DC
Input

Result

FLN or ELN
Floating-point argument in FAC
Loge (FAC) replaces (FAC)

or

FALOG or EALOG

ARG

Floating-point argument in location
ARG

Logc (ARG) replaces (FACQC)

Floating-Point Exponential

CALL
Input
Result

CALL
DC
Input

Result

FXPN or EXPN
Floating-point argument in FAC =n
el replaces (FAC)

or

FEXP or EEXP

ARG

Floating-point argument in location
ARG =1

e™ replaces (FAC)

Floating-Point Hyperbolic Tangent

CALL
Input
Result

CALL
DC
Input

Result

FTNH or ETNH
Floating-point argument in FAC
TANH (FAC) replaces (FAC)

or

FTANH or ETANH

ARG

Floating-point argument in location
ARG

TANH (ARG) replaces (FAC)

Floating-Point Base to an Integer Exponent

LIBF
DC
Input

Result

FAXI, FAXIX, EAXI, or EAXIX
ARG

Floating-point base in FAC
Integer exponent in location ARG
(FAC), raised to the exponent
contained in ARG, replaces (FAC)

Floating-Point Base to a Floating-Point Exponent

CALL
DC
Input

Result

FAXB, FAXBX, EAXB or EAXBX
ARG

Floating-point base in FAC
Floating-point exponent in location
ARG

(FAC) raised to the exponent
contained in ARG replaces (FAC)

Floating-Point to Integer

LIBF
Input
Result

IFIX
Floating-point number in FAC
Integer in the Accumulator

Integer to Floating~Point

LIBF
Input
Result

Noi rmalize

LIBF
Input

Result

FLOAT
Integer in the Accumulator
Floating~-point number in FAC

NORM

Floating-point unnormalized
number in FAC

The mantissa portion of FAC is
shifted until the most significant bit
resides in bit position 1. The char-
acteristic is changed to reflect the
number of bit positions shifted.

Floating Binary to Decimal

CALL
DC
Input
Output

FBTD

LDEC

Floating-point number in FAC

A string of EBCDIC-coded decimal

data, starting at location LDEC.

Each EBCDIC character occupies the

rightmost eight bits of a word. The

output format is exactly as follows.
sd. ddddddddE sdd

where s represents a sign (plus or

minus) and d represents one of the

decimal digits 0-9.

Floating Decimal to Binary

CALL
DC
Input

FDTB

LDEC

Same as output from FBTD subroutine.
The input field may not contain any

embedded blanks. The first blank
encountered is interpreted as the end
of the sfring. ’

Output Floating-point number in FAC

Floating-Point Arithmetic Range Check

LIBF FARC

Result This subroutine checks for floating-
point overflow or underflow, and
sets programmed indicators for
interrogation by a FORTRAN program.

Integer Base to an Integer Exponent

LIBF FIXI or FIXIX

DC ARG

Input Integer base in the accumulator
Integer exponent in location ARG

Result (Accumulator) raised to the exponent
contained in ARG replaces
(accumulator)

Fixed-Point Square Root

CALL XSQR

Input Tixed-point fractional argument (16
bits only) in the accumulator.

Result Square root of (accumulator) replaces
(accumulator). If the argument is
negative the absolute value is used
and the overflow indicator is turned
on.

Fixed-Point Double-Word Multiply

LIBF XMD

Input Double-word fractional multiplier in
FAC (addressed by XR3 + 126)
Double~word fractional multiplicand
in the accumulator and extension

Result Double-word fractional product in the
accumulator and extension A and Q

Fixed-Point Fractional Multiply (Short)

LIBF XMDS

Input Double-word fractional multiplier in
the accumulator and extension
Double~word fractional multiplicand
in FAC (addressed by XR3 + 126)

Result Product in the accumulator and
extension (XMDS is shorter and
faster than XMD; however, the
resulting precision is 24 bits).

Arithmetic and Functional Subroutines 39

Fixed-Point Double-Word Divide

LIBF XDD

Input Double-word fractional dividend in
FAC (addressed by XR3 + 126)
Double-word fractional divisor in
accumulator and extension

Result Double-word fractional quotient in

the accumulator and extension. The
double dividend in FAC is destroyed

by the execution of the subroutine.

Floating-Point Reverse Subtract

LIBF FSBR, FSBRX, ESBR or ESBRX

DC ARG

Input Floating minuend in location ARG
Floating subtrahend in FAC

Result (ARG) - (FAC) replaces (FAC)

Floating~Point Reverse Divide

LIBF FDVR, FDVRX, EDVR or EDVRX

DC ARG

Input Floating dividend in location ARG
Floating divisor in FAC

Result (ARG) / (FAC) replaces (FAC)

Floating-Point Reverse Sign

LIBF SNR
Input Floating point number, X, in FAC
Result -X replaces X in FAC

Floating-Point Absolute Value

CALL FAVL or EAVL

Input Floating point number, X, in FAC
Result Absolute value of X replaces X in
FAC
or

CALL FABS or EABS

DC ARG

Input Floating point number, X, in
location ARG

Result Absolute value of X replaces (FAC)

40

Integer Absolute Value

CALL TIABS

Input An integer, I, in the accumulator
Result Absolute value of I replaces I in the
accumulator

Get Parameters (FGETP or EGETDP)

Example:

MAIN CALL SUBR

DC ARG
NEXT etc.
SUBR DC 0

LIBF FGETP or EGETP
SUBEX DC 0

etc.

BSC1 SUBEX

The FGETP subroutine performs two functions for
a subroutine accessed by a CALL statement. It
loads FAC with the contents of ARG; it sets SUBEX
to return to NEXT in the main program.

ARITHMETIC AND FUNCTIONAL SUBROUTINE
ERROR INDICATORS

The highest three-word entry in the transfer vector
is reserved for the floating-point pseudo accumulator
(FAC). The next to highest three-word entry is
reserved for the arithmetic and functional sub-
routine error indicators.

The first word (addressed XR3 + 122) of the
second entry is used for floating-point arithmetic
overflow and underflow indicators. The second
word (XR3 + 123) is used for a divide check indi-
cator, and the third word (XR3 + 124) is used for
functional subroutine indicators. The loader initial-
izes all three words to zero.

Word One

Each floating point subroutine checks for exponent
underflow and overflow. If either occurs, word one
and FAC are set as follows.

1, if overflow has occurred (FAC = £ maximum).
3, if underflow has occurred (FAC = zero).

The last error condition replaces any previous
indication. Also, when an underflow occurs, FAC is
set fo zero.

When an overflow occurs, FAC is set to the
largest valid number of the same algebraic sign as
the contents of FAC when the overflow was detected.

Word Two

The floating-point divide subroutines check for divi-
sion by zero. If this occurs, word two is set to 1.
The dividend is not changed.

Word Three

The functional subroutines check for the following
error conditions and set word three as described.

Floating-Point Square Root

When the argument is negative, the square root of
the argument's absolute value is returned, and a bit
is ORed into position 13 of word three.

Floating-Point Natural Logarithm

When the argument is zero, FAC is set to the largest
negative value and a bit is ORed into position 15 of
word three. When the argument is negative, the
absolute value of the argument is used and a bit is
ORed into position 15 of word three.

Floating-Point Trigonometric Sine and Cosine

When the absolute value of the argument is equal to
or greater than 224, TFAC is set to zero and a bit is
ORed into position 14 of word three.

Floating-Point to Integer

When the absolute value of the argument is greater
than 215 -1, the largest possible signed result is
placed in the accumulator and a bit is ORed into
position 12 of word three.

Integer Base to an Integer Exponent

When the base is zero and the exponent is zero or
negative, a zero result is returned and a bit is ORed
into position 11 of word three.

Floating~Point Base to an Integer Exponent

When the base is zero and the exponent is zero or
negative, a zero result is returned and a bit is ORed
into position 10 of word three.

Floating-Point Base Raised to a Floating-Point
Exponent

When the base is zero and the exponent is zero or
negative, a zero result is returned and a bit is

ORed into position 9 of word three. When the base
is negative and the exponent is not zero, the absolute
value of the base is used and a bit is ORed into
position 15 of word three.

FUNCTIONAL SUBROUTINE ACCURACY

Given:
e = Maximum error
f(x) = True value of the function
f*(x) = Value generated by subroutine
(«+e0) = <=Largest valid floating-point number
(>=) = 2Most negative floating-point number

EXTENDED PRECISION SUBROUTINES

The following statements of accuracy apply to ex-
tended precision subroutines.

ESIN

sin(x) - sin*(x)
X

<3.0x10°

for the range
6
-1.,0x10°< x <0
6
1.0x 10 > x>0

for x =0 sin (x) = 0

Arithmetic and Functional Subroutines 41

ECOS ETANH

co - * - -
e = —»5—(3{1——39:-—(—)9 < 3.0x10"° e = ltanh(x) - tanh*(x)| <3.0x 10 9
x|+

for the range

for the range
-0 & X <

—1.0x106s X 51.07{106

ESQRT
EATAN
— * -
S INE SN \<1.0 x 10
t - * -
= an(x)t atn* ()| 9 0 x 107
atn (x) {or the range
for the range 0 < x <o
-3.88336148 x 1087 < x £3.88336148 x 1037 STANDARD PRECISION SUBROUTINES
EEXP The following statements of accuracy apply to the
standard precision subroutines.
X X -9 .
R ¥)2.0 x 10 |x| |whichever FSIN
- R or is
-9 greater
2.0 x 10 i ~ sin* -
_swLn(x) sin*(x) < 2.5 x 10 7
X
for the range for the range
-l < x < Infeo) 10x10°< x <0
i.e., 0 < e < 6
1.0x10 > x >0
forx=0sin(x) =0
ELN
FCOS
~ In* -9
e= 2 ln(icr; = <3.0 x 10 cos(x) - cos*(x) -7
= < 2.5x10
T
[x| + 5
for the range
for the range
6 6
0 < X< ~1.0x10 £ x £1L0x10

42

FATAN

atn(x) -~ atn*(x)

=7
atn (x) <5.0 x 10

for the range

-3.883361 x 1037 < x £ 3.883361 x 1037

FEXP
X X -7 .
S (e)* 2.5 x 10 |xl whichever
= X < or _, is
2.5 x 10 greater

for the range

AIn (o) < x < In (o) fne., 0< e <oo

FLN

1 - In * -
o= |0 21T |y o« 107"
In(x)

for the range
0< x <=

FTANH
-7
e = |tanh(x) - tanh*(x)| <2.5 x 10
for the range

~0 & XLt

FSQRT

- * -
e = NEINE <2.5 x 10 7
JX
for the range
0 < X < o

ELEMENTARY FUNCTION ALGORITHMS

The choice of an approximating algorithm for a given
function depends on such considerations as expected
execution time, storage requirements, and accuracy.
For a given accuracy, and within reasonable limits,
storage requirements vary inversely as the execution
time. Polynomial approximating is used to evaluate
the elementary functions to effect the desired balance
between storage requirements and efficiency.

SINE-COSINE

Polynomial Approximation

Given a floating point number, x, n andy are
defined such that

) n s

where n is an integer and 0<y <1 . Thus, » =
2rn + 2my , and the identities are

sin x = sin 27y and cos x = 27y .

The polynomial approximation, F(z), for the func-
tion (sin 27z)/z is used where -1/4 < z < 1/4.

The properties of sines and cosines are used to
compute these functions as follows.

cos 21y = ¥(z)

Arithmetic and Functional Subroutines 43

where: ARCTANGENT

Polynomial Approximation

z = 1/4~-y in the range 0<y < 1/2
z = y-3/4inthe range 1/2< y < 1 The routine for arctangent is built around a polynomial,
F(z) , that approximates Arctan(z) in the range
-.23< 7z < .23 . The Arctan(z) for z outside this
sin 2ry = T'(z) range is found by using the identities:
where: Arctan(-z) = - Arctan(z)
= yinthe range 0< y < 1/4 z—bk
= 1/2-y in the range 1/4<y < 3/4 Arctan(z) = a, + Arctan|————
= y-1inthe range 3/4 < y < 1 By
Extended Precision where
2 4 4 ki
d = a. -+ y ¢ = — =
T (z) z(a1 a Z, + a3z + a Z'G + dk 7 and bk tan ak
5 6 : R
azg +a %10 and k is determined so that
(2k=1)m _ 2k + L)m _ .
where tan——14 »_~z<tan..._—_-.-14 k=1,2,3
a, = 6.2831853071
a, = -41,341702117 . . .
a, = 81. 605226206 Hav1vng determl?ed the-value of k appropriate t(')
a® = -76.704281321 z , the transformation x = Z'bk/Zbk + 1 puts x in
a? = 42.009805726 the 1Tang‘e ~tan 7/14 < x < tan w/14 . The poly-
2% = —14.394135365 nomlgl T (z) was chosen to be good over a range
6 slightly larger (i.e., .23 tanw/14) so that the
comparisons to determine the interval in which z
Standard Precision lies need be only standard precision accuracy.

Extended Precision

3 5 7 9
= + a7 + A +
F(z) alz azz a37 + a4z a5z

F(z) = x (1.0 - a x2+a x4—a x6+a x8)

where: 1) 3 4
a; = 6.2831853
a, = -41.341681 a, = 33333327142
ag = 81,602481 a, = . 19999056792
2, = -76.581285 ag = . 14235177463
a; = 39.760722 a, = . 09992331248

44

Standard Precision Thus:

In(x) =j . 1In(2) + In(g).
¥F(z) = x (1.0 - .3333295’7322)
The approximation for 1n (g) , J2/2 < g< J2,
4 6 is based on the series
+ .199641035z -~ ,131779888z)

V+x

In — = 2 (x/v) + (x3/3v3) + (x5/5v5) ..

RUARE ROO"
5Q T which converges for (-v < x < v).

Wi ti
Square Root (x) ith the transformation

Let x = 22DTF when .25< F<1

f-1
then VX = 2P JF x=vig s ve(J2 e+’
where Jf:Pi i = number of approximation
sothat -1< x< 1 for 2/2< g< J2.
Substituting,
P1 = AF + B as a first approximation In(g) = 2 (z + z3/3 + z5/5 + o)
‘ followed by 2 Newton
iterations where z = x/v = ({-1)/(f+1) . The approximation
where used is G(z) for In(g)/z in the range .J2/2< g<
J2
A = 875, B = ,27863 when .25<F<.5
Extended Precision
or
4
G(z) = bO + b2z2 + b4z + b626 +b8z8
A = 578125, B = ,421875 when .5< F<1 -
b0 = 2.0
b, = .666666564181
(P +£;> 2
p_ - 1 Py b4 = .,400018840613
2 2 by = 28453572660
b8 = .125
P +F . 8-1
2 = z +1
o Py) g
Py =i J2/2 = 7071067811865
In (2) = .6931471805599

NATURAL LOGARITHM

Thus, the required calculation is:
Polynomial Approximation

In(x) = j-1n(2) + zG(z)
Given a normalized floating point number

k 1
x=2 X f<§-5 f< l>) Standard Precision
. J
j and g are found such that x = 2° g where G(z) = 2.0 + .66664413786 ZZ
(J2/2< g< J2) . This is done by setting j = k-1, (2) ‘) 4 6
g =2f if f< J2/2 and j = k, g = { otherwise. + ,4019234697z + .25z

Arithmetic and Functional Subroutines 45

The IBM 1130 Subroutine Library includes three
dump subroutines: Dump Selected Data on the
console printer, Dump Selected Data on the 1132
Printer, and Dump Status Area. These subroutines
allow the user to dump selected portions of core
storage during the execution of an object program.

DUMP SELECTED DATA ON CONSOLE PRINTER
OR 1132 PRINTER

Two subroutines are available to select an area of
core storage and dump it out on the console printer
or the 1132 Printer. Each of these subroutines has
two entry points, one for hexadecimal output and
one for decimal output. The entry points for the
various configurations are shown below:

DMTX0 Dump on console printer in hexadecimal
form, using the WRTY0 subroutine

DMTDO Dump on console printer in decimal form,
using the WRTYO subroutine

DMPX1 Dump on 1132 Printer in hexadecimal form,
using the PRNT1 subroutine

DMPD1 Dump on 1132 Printer in decimal form,
using the PRNT1 subroutine

Calling Sequence

The calling sequence for any of the above functions
is as follows:

CALL ENTRY POINT
DC START
DC END

START and END represent the starting and ending
addresses of the portion of core storage to be
dumped. A starting address greater than the ending
address results in the error message, ERROR IN
ADDRESS, and a return to the main program.

Format
Before the actual dump appears on the selected out-

put device, the user is given one line of status in-
formation. This line indicates the status of the

SELECTIVE DUMP SUBROUTINES

Overflow and Carry triggers (ON or OFF), the con-
tents of the Accumulator and Extension, and the con-
tents of the three index registers. The index
register contents are given in both hexadecimal and
decimal form, regardless of which type of output
was requested. The format of the status information
is shown below:

OFF ON
Overflow Camry

HHHHH (+DDDDD) HHHH (+DDDDD)

Accumulator Extension

HHHH (+DDDDD)
Index Register 3

HHHIH (+DDDDD) HHHI (4DDDDD)

Index Register 1 Index Register 2

All other data is dumped eight words to a line;
the address of the first word in each line is printed
to the left of the line, Hexadecimal data is printed
four characters per word; decimal data is printed
five digits per word, preceded by a plus or minus
sign.

Page numbers are not printed for either subrou-
tine. However, the 1132 Printer subroutine does
provide for automatic page overflow upon the sensing
of a channel 12 punch in the carriage tape.

DUMP STATUS AREA

This subroutine provides a relatively easy and
efficient means of dumping the first 80 words of
core storage. These words contain status informa-
tion relating to index registers, interrupt addresses,
interval timers, etc., which may be required fre-
quently during the testing of a program. It may
also be desirable to dump these words before load-
ing because pressing the Load key destroys the data
in the first 80 words of core storage.

The Dump Status Area subroutine is called via
the following statement:

CALL DMP80

The console printer prints the first 80 words of
core storage in hexadecimal form; the printing
format provides spacing between words. After typ-
ing the last word, the subroutine returns control to
the main program.

Selective Dump Subroutines 46.1

WRITING ISS AND ILS

INTERRUPT SERVICE SUBROUTINES

The following rules must be adhered to when writing
an ISS:

1. Precede the ISS statement with an LIBR state-
ment if the subroutine is to be called by LIBF
rather than CALL.

2. Precede the subroutine with an EPR (extended)
or an SPR (standard) statement if precision
specification is necessary.

3. Precede the subroutine with one ISS statement
defining the entry point (one only), the ISS
number, and the ILS subroutines required. The
device interrupt level assignments, and the ISS
numbers used in the IBM-provided ISS and ILS
routines, are shown in Table 5.

4. The entry points of an ISS are defined by the
related ILS. This must be taken into considera-
tion when a user-written ISS is used with an IBM
supplied ILS. The ILS executes a Branch and
Store I instruction to the ISS at the ISS entry
point plus n (see Table 5), The IS5 must return
to the ILS via a BSC instruction (not a BOSC).

Table 5. ISS/ILS Correspondence

ISS Device Interrupt
Number Device Level Assignments n

1 1442 Card Reader 0, 4 +4, +7
Punch

2 Input Keyboard,/ 4 +4
Console Printer

3 1134 /1055 Paper 4 +4
Tape Reader/Punch

4 Disk Storage 2 +4

6 1132 Printer 1 +4

7 1627 Plotter 3 +4

INTERRUPT LEVEL SUBROUTINES

The following rules must be adhered to when writing
an ILS:

1. Precede the subroutine with an ILS statement
identifying the interrupt level involved.

2. Precede all instructions by an ISS branch table
and include one word per ILSW bit used. If the
ILSW will not be scanned, (i.e., a single ISS
routine to handle all interrupts on the level),
then a one word table is sufficient. The mini-
mum table size is one word. Table words must
be non-zero.

ILSW Bit 15 word

LW B.lt 14 word I8S Branch Table

ILSW Bit 0 word

The ISS branch table identifies both the ISS sub-
routine and the point within the ISS which should
be entered for each bit used in the ILSW, The
actual linkage is generated by the relocating
loader or core image converter. Basic to this
generation is the ISS number implied by bits
8-15 of the branch table word and specified in
the ISS statement. This number identifies a
core location in which the loader or converter
has stored the address of the called entry point
in the ISS. This entry point address is incre-
mented by the value in bits 0~7 of the branch
table word, producing the branch linkage. The
loader or converter replaces the ISS branch
table word with the generated branch linkage.
At execution time the ISS branch table con-
tains actual addresses, It may be used with an
indirect branch and store I (BSI) instruction to
reach the ISS corresponding to that ILSW bit
position. The ILSW bit that is ON can be deter-
mined by the execution of a SLCA instruction.
At the completion of this instruction, the index
register specified contains a relative value

equivalent to the bit position in the ISS branch ILSW bit (equal to ISS number +51), This
table. An indirect, indexed BSI may then be address should match word 13 of the com~
used to reach the appropriate ILS. pressed ISS header card.

Each word in the ISS branch table has the

X 3. The ILS entry point must immediately follow
following format:

the ISS branch address table and must be loaded
as a zero. The loader assumes that the first
zero word in the program is the end of the
branch table and is also the entry point of the
ILS. (The table must contain at least one entry.)
The interrupt results in a BSI to the ITS entry
point.,

Bits 0-7 — Increment added to the entry point
named in the ISS statement to obtain the interrupt
entry point in the ISS for this ILSW bit. (In
IBM -written ISS subroutines, this increment is
+4 for the primary interrupt level and +7 for
the second interrupt level.)

4. To clear the level, a user-written ILS, used
Bits 8-15 — Address of the loader interrupt with an IBM-supplied ISS, should exit via the
transfer vector for the ISS subroutine for this return linkage with a BOSC instruction.

Selective Dump Subroutines 46.3

SPECIAL MONITOR SUBROUTINES

OVERLAY ROUTINES (FLIPPERS)

The monitor subroutine library contains two flipper
routines which are used to call LOCAL (load on call)
routines into core storage. FLIPO is used with
DISKO0 and DISKZ, and FLIP1 is used with DISK1 and
DISKN., FLIPO reads a LOCAL into storage one
sector at a time, whereas FLIP1 passes the total

46.4

word count to DISK1 or DISKN and that routine
reads in the entire LOCAL. When a LOCAL routine
is called, control is passed to the flipper routine
which reads the LOCAL into core storage if it is not
already in core and transfers control to it. All
1.0CALs in a given core load are executed from the
same core storage locations; each LOCAL overlays
the previous one.

EXPONENTIAL a/l = .0096217398747

= ,0013337729375
Polynomial Approximation a5 ?

Standard Precision

To find e , the following identity is used.

F(z) = ¢ +az+.Zz+azg+az4
(z) =ay +a.z+a, 3 4

R 2(): 10g2e,>

where:
To reduce the range, we let a, = 1.0
Xlogze =n+d+z al =,693147079
a, = .240226486
: 2
where:
25 = 0555301557

n is the integral portion of the real number,
a =.00962173985

d is a discreet fraction (1/8, 3/8, 5/8, or 7/8)
of the real number, and

z is the remainder which is in the range HYPERBOLIC TANGENT

-1/8< z <1/8.
2X

-1

Thus, Tanh (x) = _‘32____.

X n d Z "1

e =2 x2 x2

7 for
and it is necessary to only approximate 2 for
- < < . R -)
1/8 £ z < 1/8 by using the polynomial F(z) X > 32 Tanh (x) = 1
x £ -32 Tanh (x) = -1

Extended Precision

4 e DOINT BASE S
F(z)=a. +az+azs +az +az +az FLOATING-POINT BASE TO AN INTEGER
o 2 3 4 5 EXPONENT
here:
wner . e]rLA
- 1.0 A=
%0
a, = 69314718057 eetores
a, = 24022648580
a, = 055504105406 AB _ (elnA)B _ Blna

46

APPENDIX A.

1130 SUBROUTINE LIBRARY

Subroutine Names Subroutine Names
FORTRAN Floating-Point Square Root (S) FSQR, FSQRT
Floating-Point Trigonometric Sine/Cosine (E) ESIN, ESINE,ECOS, ECOSN
Called by CALL Floating-Point Trigonometric Sine/Cosine (S) FSIN, FSINE, FCOS, FCOSN
Floating-Point Trigonometric Arctangent (E) EATN ,EATAN
Loader Reinitialization (card only) LOAD Floating~Point Trigonometric Arctangent (S) FATN, FATAN
Datu Switch DATSW Fixed-Point Square Root XSQR
Sense Light On SLITE,SLITT Floating-Point Absolute Value (€) EAVL, EABS
Overflow Test OVERF Floating~Point Absolute Velue (S) FAVL, FABS
Divide Check Test DVCHK Integer Absolute Value {ABS
Function Test FCTST Floating Binary to Decimal /Floating Decimal to 8inary FBTD, FDTB
Trace Start TSTRT
Trace Stop TISTOP Called by LIBF
Integer Transfer of Sign ISIGN
Real Transfer of Sign (E) ESIGN Get Parameters (E)
Real Transfer of Sign () FSIGN Get Parameters (S)
Floating-Point Base to Integer Exponent (E) EGETP
Called by LIBF (card/paper tape) Floating=Point Base to Integer Exponent (S) FGETP
Floating-Point Reverse Divide (E} EAXE, EAXIX
Real IF Trace (€) VIF Floatiag-Point Reverse Divide (5) FAXI, FAXIX
Real IF Trace (5) WiF Flou'tng—Pornt D!v!de {E) EDVR, EDVRX
Integer IF Trace (€) VI Floaltng—Po!nr Dlvwdve (S) FDVR, FOVRX
Integer IF Trace (S) WIIF Floating-Point Multiply (£) EDIV,EDIVX
nteger Arithmeric Troce (E) VIAR, VIARX Floating-Point Multiply (5) FDIV, FDIVX
Integer Arithmetic Trace (5) WIAR, WIARX Floulmg—Po!nt Reverse Subtract (E} EMPY, EMPYX
Real Arithmetic Trace (E) VARL, VARIX Flout‘!ng-Paim Reverse Subtract (S) FMPY , FMPYX
Real Arithmetic Trace (S WARI, WARIX Flcar:ng—Potnl Add/Subtract (E) ESBR, ESBRX
Computed GOTO Trace () VGOTO Floating-Point Add/Subtract (3) FSBR, FSBRX
Computed GOTO Trace (5) WGOTO Load/Store FAC (E) EADD,EADDX,ESUB,ESUBX
Trace Test-Set Indicator TTEST, TSET Load//Store FAC (S) . FADD, FADDX,, FSUB, FSUBX
Pause PAUSE Fixed Point Double Word Divide LD, ELDX,ESTO, ESTOX
Stop STOP Fixed Point Double Word Multiply FLD, FLDX: FSTO, FSTOX
Subscript Calculation SUBSC Fixed Poinr{ﬁ’acﬁonal Multiply (short) XDD’
Store Argument Address SUBIN Floating~-Point BeVerse_ Sign XMD
1/Q Linkage (E} VFIO, VRED, VWRT,VCOMP, Integer to F!oa*lnwg—Po;nr XMDS
VIOAL, VIOAF, VIOFX, Floating-Point to Integer SNR
VIOIX, VIOF,VIOI Fixed lr:?egur Base to an Integer Exponent FLOAT
1/O Linkage (S) WFIO, WRED , WWRT, WCOMP, Normalize .) TFIX
WIOA!, WIOAF, WIOFX, Floating-Point Arithmetic Range Check FIXI, FIXIX
WIOIX, WIOF, WIOL NORM
Card Input/Output CARDZ DUMP FARC
Printer-Keyboard Output WRTYZ Called by CALL
Printer-Keyboard Input/Output TYPEZ T
1132 Printer Output PRNTZ Dump Status Area DMPBO
Paper Tope Input/Qutput PAPTZ Selective Dump on Console Printer DMTX0,DMTDO
Card Code-EBCDIC Conversion HOLEZ Selective Dump on Printer DMPX1,DMPD1
Console Printer Code Table EBCTB
Cord-Keyboard Code Table HOLT8 DISK SUBROUTINE INITIALIZE (cord/paper tape only)
Address Caleulation GETAD Called by CALL
Set Pack Initialize Routine SPIRO, SPIR1, SPIRN
Real IF Trace (€) SEIF OVERLAY (monitor only)
Real |F Trace (S) SFIF Called by LIBF
Integer |F Trace SHF T
Integer Arithmetic Trace SIAR, SIARX Local Read-in FLIPO, FLIPY
Real Acithmetic Trace (E) SEAR, SEARX "
Real Avithmetic Troce () SFAR, SFARX INTERRUPT SERVICE
Computed GOTO Trace SGOTO Called by LIBF
Trace Test-Set Indicator TTEST, TSET
Pause PAUSE Card CARDO, CARD1
Stop STOP Disk (part of supervisor in monitor system) DISKO,DISK1, DISKN
Subscript Calculation SUBSC Paper Tape PAPT1, PAPTN
Store Argument Address SUBIN Plotter PLOT
|/O Linkage (non-disk) SFIO, SRED, SWRT,SCOMP, 1132 Printer PRNTI
SIOAF,SIOAI, SIOF,S101, Console Printer-Keyboard TYPEU, WRTYO
SIOFX,S101X
Disk-1/0 Linkage SDFIO,SDRED, SDWRT, INTERRUPT LEVEL {card/paper tape only)
SDCOM, SDAF,SDAI,
SDF,SD1,SDFX, SDIX Level O 1LSCOo*
Disk Find SDFND Level 1 sorr
Card Input/Output CARDZ Level 2 1Lso2r
Printer-Keyboard Qutput WRTYZ Level 3 1LS03*
Printer-Keyboard Input/Qutput TYPEZ Level 4 (LS04~
1132 Printer Output PRNTZ “These subroutines are not identified by name in the card and paper tape systems
Puper Tape Input/Output PAPTZ
Card Code-EBCDIC Conversion HOLEZ CONVERSION
Console Printer Code Table EBCTB
Card-Keyboard Code Table HOLTB Called by LIBF
Address Calculation GETAD
Binary to Decimal BINDC
ARITHMETIC AND FUNCTIONAL Binary to Hexadecimal BINHX
Decimal to Binary DCBIN
Called by CALL EBCDIC to Console Printer Code EBPRT
- IBM Card Code to or From EBCDIC HOLEB
Floating~Point Hyperbolic Tangent (E) ETNH,ETANH IBM Card Code to Console Printer Code HOLPR
Floating~Point Hyperbolic Tangent (S) FTNH, FTANH Hexodecimal to Binary HXBIN
Floating~Point Base to Floating~Point Exponent (E) EAXB,EAXBX EBCDIC to or from PTTC/8 PAPEB
Floating-Point Bose ta Floating-Point Exponent (5) FAXB, FAXBX IBM Cord Code to or from PTTC/8 PAPHL
Floating-Point Natural Logarithm (E) ELN,EALOG PTTC/8 to Console Printer Code PAPPR
Floating-Point Natural Logarithm (S) FLN, FALOG {BM Card Code to or from EBCDIC SPEED
Floating-Point Exponential (E) EXPN,EEXP EBCDIC and PTTC/8 Table EBPA
Floating-Point Exponential (S) FXPN, FEXP 18BM Card Code Table HOLL
Floating~Point Square Root (E) ESQR,ESQRT Console Printer Code Table PRTY

1130 Subroutine Library

47

APPENDIX B.

ERRORS DETECTED BY THE ISS SUBROUTINES

ERROR

CONTENTS OF ACCUMULATOR

Binary

Hexadecimal

Contents of
Extension
(if any)

Card

*Last card

*Read check
*Punch check

Device not ready

Last card indicator on for Read
Ilegal device (not O version)
Device not in system

llegal function

Word count over +80

Word count zero or negative

*Feed check }

Printer-Keyboard

Device not ready

Device not in system

IHegal function

Word count zero or negative

Paper Tape

*Punch not ready
*Reader not ready

Device not ready

llegal device

Hlegal function

Word count zero or negative
{llegal check digit

Disk

*Disk overflow
*Seek failure remaining after ten attempts
*Read check remaining after ten attempts
Data Error
Data overrun
*Write check remaining after ten attempts
Write select
Data error
Data Overrun
Device not ready
Illegal device (not O version)
Device not in system
1ltegal function
Attempt to write in file protected area
Word count zero or negative
Word count over +320 {0 version only)
Starting sector identification over + 1599

1132 Printer

*Channel 9 detected

*Channel 12 detected
Device not ready or end of forms
Illegal function

|
|
4

j=)
(w]
(=)
<
<
(=)
(=)
o
[=)
(=]
(=]
(=]
(=]
<
<

=
<
o
<
o
o
o
o
(]
O
<
<
o
o

SO0
OO
— QO
— O O
oo
OO O
ol ole]
oC O
OO O
[olee]
[ele o)
OO
oo o
oo O

4400 1100000000000 1

o

oo
<

OO
OO
e Re]
OO
loRe]
OO
[eRe]
(oY el
o

|
i
—_

(=)
<
<
S
<
(=]
<
f=}
<
<
<o
[«
(=)
(=}
o

___{0101000000000001

Hlegal word count
Plotter

Plotter not ready

litegal device

Device not in system

Ilegal function

Word count zero or negative

o QOO
—_— — OO
—_ —_ OO
o OCOo
o OCCO
o OOCO
o OO
o oo
o OO O
o Ccoo
o cooo
o oo
o OO
o O—0O
o OO0 —~
-_— OO~

o O w oo

[N

(&}

2

o cCco
o ODoOo

(e R
cCco
[= R, N

o O

O OO
- O hw

N

Effective Sector Id

Effective Sector Id

Effective Sector Id

NOTE: The errors marked with an asterisk cause a branch via the error parameter. These errors are detected during the processing of
interrupts; as a consequence, the user error routine is an interrupt routine, executed at the priority level of the 1 /O device,

48

All other errors cause a branch to location 41.

The address of the LIBF in error is in location 40,

APPENDIX C. SUBROUTINE ACTION AFTER RETURN FROM A USER'S
ERROR ROUTINE

Error Code Condition Subroutine Action
Card
0000 If function is PUNCH Eject card and terminate
Otherwise Terminate Immediately
0001* If Accumulator is 0 Terminate immediately
Otherwise Loop until 1442 is ready, then reinitiate operation
Paper Tape
0004, 0005 If Accumulator is O Terminate immediately
Otherwise Check again for device ready
Disk
0001, 0002, and If AReg. is 0 Terminate immediately
0003 Otherwise Retry 10 more times
1132 Printer
0003, and 0004 If Accumulator is 0 Terminate immediately
Otherwise Skip to channel 1 and then terminate

*Assumes operator intervention,

Subroutine Action After Return User’s Error Routine 49

APPENDIX D,

CHARACTER CODE CHART

EBCDIC IBM Card Code Control P‘ 132 PTHTC/S Console
Ref " ics and Contro rinter ex Printer
N: Binary Hex Rows Hex G'“Ph“:;l:mes €BCoIC |U-Upper case Hox
0123 4567 12 11 098 71 Subset Hex |- oY C® Nots
0 0000 Q000 00 12 098 1 8030 | NUL
1 0001 01 12 9 1 9010
2 0010 02 12 9 2 8810
3 0011 03 12 9 3 | 8410
4 0100 04 12 ? 4 8210 | PF Punch Off
5* 0101 05 | 12 9 5 |sgio | HT Horiz. Tob 6D N0
& 0110 06 | 12 9 6 | so90 | LC Lower Case 6E
™ 011 07 12 9 7 8050 } DEL Delete 7F
8 1000 08 12 9 8 8030
9 1001 09 12 9 8 1 9030
10 1010 0A 12 28 2 8830
1 01 0B 12 9 8 3 8430
12 1100 ocC 12 2 8 4 8230
13 1101 0D 12 9 8 5 8130
14 1110 OF 12 98 6 8080
15 1 OF 12 98 7 8070
16 0001 0000 10 12 N 98 1 D030
17 0001. 11 1 9 1 5010
18 0010 12 11 9 2 4810
19 0011 13 " 9 3 4410
20* 0100 14 1 9 4 4210 | RES Restore 4C 05
2 0101 15 " 9 5 4110 NL New Line DD 8l
22 0110 16 1 9 6 4090 | BS Buckspace 5E il
23 omn 17 1 9 7 4050 { IDL ldle
24 1000 18 " 9 8 4030
25 1001 19 1 9 8 1 5030
26 1010 1A 1 9 8 2 4830
27 1011 8 11 9 8 3 4430
28 1100 1C 11 ? 8 4 4230
29 1101 10 1 98 5 4130
30 1110 1€ 11 9 8 6 4080
N m IF 11 98 7 4070
32 0010 0000 20 1M 098 1 7030
33 0001 21 o9 1 3010
34 0010 22 09 2 2810
35 0011 23 09 3 2410
36 0100 24 09 4 2210 | 8YP Bypass
k¥al 0101 25 09 5 2110 | LF Line Feed 30 (03
38 0110 26 09 6 2090 | EOB End of Block 3E
39 oin 27 09 7 2050 | PRE Prefix
40 1000 28 09 8 2030
41 1001 29 098 1 3030
42 1010 2A 098 2 2830
43 101 2B 098 3 2430
44 1100 2C 09 8 4 2230
45 101 20 098 5 2130
46 1110 2€ 09 8 6 2080
47 inn 2F 098 7 2070
48 001t 0000 30 12 11 09 8 1 FO30
49 0001 31 9 1 1010
50 0010 32 9 2 0810
51 0011 33 9 3 0410
52 Q100 34 9 4 0210 { PN Punch On
53 0101 35 9 5 0110 { RS Reader Stop 0D (09 @
54* 0110 36 9 6 0090 | UC Upper Case OE
55 0 37 9 7 0050 | EOT End of Trans.
56 1000 38 9 8 0030
57 1001 39 98 1 1030
58 1010 3A 9 8 2 0830
59 10N 3B 9 8 3 0430
40 1100 3C 9 8 4 0230
61 1101 30 98 5 0130
62 1110 3E 98 6 0080
63 1n 3F 98 7 0070

NOTES: Typewriter Output
@ Tabulate
@ shift to black

Carrier Return

Shift to red

* Recognized by all Conversion subroutines

(B The Same in Either Upper or Lower Case

Codes that are not asterisked are recognized only by the SPEED subroutine

50

APPENDIX D. CHARACTER CODE CHART (CONT'D)

EBCDIC 1BM Card Code -\ Contro P”:‘:Z PTTC/8 Console
Ref - Graphics and Contro rinter Hex .
No. Binary Hex Rows Hex P Names EBCDIC | U-Upper Case P:-;nfer
0123 4567 12 11 0 9 8 7-1 Subset Hex | L-Lower Case ex
64* 0100 0000 40 no punches 0000 (space) :*: 10 @ 21
65 0001 41 12 09 1 8010
&6 0010 42 |12 09 2 | A810
67 0011 43 |2 09 3 {A4l10
68 0100 44 | 12 09 4 | A210
&9 0101 45 | 12 09 5 LA110
70 0110 46 | 12 09 6 | A090
71 o1 47 | 12 09 7} A050
72 1000 48 1 12 09 8 A030
73 1001 49 112 8 1 {9020
74* 1010 4 | 12 8 2 {8820 [¢ 20 (U) 02
75% 1011 48 112 8 3 18420 | . (period) 48 6B (L) 00
76* 1100 4 |2 8 4 |8220 | < 02 (U) DE
77* 1101 40 | 12 8 5 |[8120 | (4D 19 (U) FE
78* 1110 4E 12 8 6 |80AD | + 4E 70 (U) DA
79* nn 4 12 8 7 18060 | I(logical OR) 38 (L) Cé
80* 0101 0000 50 12 8000 | & 50 70 (L) 44
81 0001 51 12 0 9 1 | poio
82 0010 52 |12 1 9 2 | cawo
83 0011 53 |12 1 9 3 |cano
84 0100 54 112 1 9 4 | c210
85 0101 55 | 12 1} 9 5 1cino
86 0110 56 12 11 9 b C090
87 0111 57 | 12 n 9 7 | coso
88 1000 58 | 12 1 9 8 030
89 1001 59 1 8 1 | 5020
90* 1010 5A 11 8 2 (4820 |! 58 (U) 42
91 1011 5B 11 8 3 14420 S 58 5B (L) 40
92% 1100 5C 1 8 4 |4220 | * 5C 08(U) D6
93* 1101 5D 11 8 5 {4120 }) 5D 1A (U) Fé
94* 10 5€ iR 8 6 |40A0 | 13 (U) D2
95% nn 5F n 8 7 4060 |= (logical NOT) 6B (U) F2
96* 0110 0000 60 N 4000 | - (dash) 60 40 (L) 84
97+ 0001 61 0 113000 | / 61 31 (L) BC
98 0010 62 1o 9 2 1e810
99 0011 63 1m0 9 3 | 6410
100 0100 64 o9 4 16210
101 0101 65 o9 5 | 6110
102 0110 66 o9 6 | 6090
103 o1 67 1109 7 | 6050
104 1000 68 1N 098 6030
105 1001 69 o 8 1 |3020
106 1010 A |12 1 €000
107 1011 68 0 8 3 2420 , (comma) 4B 38 (L) 80
108* 1100 6C 0 8 4 |2220 | % 15 (U) 06
109* 1101 6D 0 8 5 2120 | _ (underscore) 40 (U) BE
110* 110 &E 0 8 & j20A0]> 07 (U) 46
1+ i &F 0 8 7 |2060 |7 31 (U) 86
112 0111 0000 70 |12 110 £000
113 0001 71 12 11 09 1 | Fot0
114 0010 72 {12 11 o9 2 | eslo
115 0011 73 112 11 09 3 | E410
116 0100 74 112 11 o9 4 | E210
17 0101 75 12 109 5 |EN0
118 0110 76 {12 11 09 6 | eo90
119 o 77 12 1 09 7 | E050
120 1000 78 {12 11 09 8 E030
121 1001 79 g8 1 1020
122* 1010 7A 8 2 o820 |: 04 (U) 82
123* 1011 78 8 3 jo40 |F 0B (L) Co
124% 1100 7C 8 4 |o220 |@ 20 (L) 04
125* 1101 70 8 5 0120 | ' (apostrophe) 7D 16 (U) E6
126* 1110 7E 8 6 |ooao | = 7E 01 (U) C2
127% i 7F 8 7 |ooso | " 08 (U) E2

* Any code other than those defined will be interpreted by PRNT1 as a space.

Character Code Chart Sl

APPENDIX D. CHARACTER CODE CHART

(CONT'D)

1132
EBCDIC IBM Card Code Console
Ref B " R " Graphics and Control Printer PTJSX/S Printer
No. tnary e aws ex Names EBCDIC U-Upper Case
0123 4567 12 11 0 9 8 7- Subset Hex | L-Lower Case Hex
128 1000 00CO 80 12 0 8 1 B020
129 0001 81 12 0 1 8000 | @
130 0010 82 | 12 0 2 | agoo | b
131 0011 83 | 12 0 3 | agq00 |
132 0100 84 12 0 4 A200 | ¢
133 0101 85 | 12 0 5 L A100 | e
134 0110 86 | 12 0 6 | aoso | f
135 0111 87 12 0 7 AD40 | g
136 1000 88 | 12 0o 8 2020 | b
137 1001 89 12 09 AQI0 | i
138 1010 g8a | 12 0 8 2 | A820
139 1011 8B 12 0 8 3 A420
140 1100 8C 12 0 8 4 A220
141 1101 8D 12 0 8 5 A120
142 1110 8t 12 0 g8 6 AOAD
143 nit 8F | 12 0 8 7 | A00
144 1001 0000 90 12 1 8 1 D020
145 0001 2l 12 N 1 D000 |
146 0010 92 12 1 2 C800 k
147 0011 93 12 1 3 | c400 } !
148 0100 94 12 1 4 C200 { m
149 0101 95 12 1 5 Clo0 | n
150 0110 G6 12 1 [C080 | o
151 0 97 12 1 7 C040 | p
152 1000 98 12 11 8 C020 | g
153 1001 99 12 1 9 Coi0 | r
154 1010 SA 12 1N 8 2 820
155 1011 98 12 N 8 3 C420
156 1100 9C 12 1N 8 4 C220
157 1101 9D 12 N 8 5 C120
158 1110 9E 12 11 8 6 COAQ
159 1ARRI 9F 12 11 8 7 C060
160 1010 0000 AO o 8 1 7020
161 0001 Al 11 0 i 7000
162 0010 A2 1 0 2 6800 5
163 0011 A3 11 0 3 6400 t
164 0100 Ad 11 0 4 6200 | u
165 o1 A5 11 0 5 6100 | v
166 0110 Ab 1m0 6 6080 | w
167 (AR A7 o 7 6040 | x
168 1000 A8 11 0 8 6020 |y
169 100! A9 11 0 9 6010 | z
170 1010 AA 11 0 8 2 6820
171 1011 AB 1o 8 3 6420
172 1100 AC 11 0 8 4 6220
173 1101 AD it o 8 5 6120
174 1110 AE 11 0 8 6 40A0
175 111 AF 11 0 8 7 6060
176 1011 0000 BO 12 11 0 8 1 F020
177 0001 Bl 12 11 0 1 FO00
178 0010 B2 12 11 0 2 E800
179 0011 B3 12 11 0 3 E400
180 0100 B4 12 11 0 4 E200
181 0101 85 12 11 0 5 E100
182 0110 B6 12 11 0 6 E080
183 o1 87 12 11 0 7 E040
184 1000 88 12 11 0 8 E020
185 1001 B9 12 11 09 EO10
186 1010 BA 12 11 0 8 2 £820
187 1011 BB 12 11 0 8 3 E420
188 1100 BC 12 11 0 8 4 E220
189 1101 BD 12 11 0 8 5 E120
190 1110 BE 12 11 0 8 6 EO0AQ
191 nn BF 12 11 0 8 7 EQ60

52

APPENDIX D. CHARACTER CODE CHART (CONT'D)

EBCDIC 1BM Card Code | P} 132 PT’:{C/S Console

Ref H Graphics and Contro rinter ex .
No. Binary Hex Rows Hex P Names EBCDIC U-Upper Case P:{nter

0123 4567 12 11 09 8 7-1 Subset Hex | L-Lower Cuse ex
192 1100 0000 co | 12 0 A000 | (* zewo}
193* 0001 Cl 12 1 9000 | A Cl 61 (U) 3C or 3E
194* 0010 C2 12 2 8800 | B C2 62 (U) 18 or 1A
195% 0011 C3 12 3 8400 | C C3 73 (U) 1C or 1E
196* 0100 ca |2 4 8200 | D C4 64 (U) 30 or 32
197+ 0101 c5 | 12 5 8100 | E c5 75 (U) 34 or 36
198* o110 C6 12 6 8080 | F C6 76 (U) 10 or 12
199* o1 c7 1 12 7 | 8040 | G Cc7 67 (U) 14 0r 16
200* 1000 cs |12 8 8020 { H C8 68 (U) 24 or 26
201* 1001 ce |12 9 8010 | | Cc9 79 (U) 20 or 22
202 1010 CA | 12 09 8 2 | A830
203 1011 cB | 12 098 3 A430
204 1100 cc | 12 098 4 A230
205 1101 cD | 12 098 5 A130
206 1110 CE | 12 098 6 AOBO
207 [ARE! CF 12 098 7 | A070
208 1101 0000 DO 110 6000 | (- zeroi
209* 0001 DI 1 1 5000 | J Dl 51 (V) 7Cor 7E
210* 0010 D2 11 2 4800 | K D2 52 (U) 58 or 5A
211* 0011 D3 1 3 4400 | L D3 43 (U) 5C or 5E
212+ 0100 D4 I8l 4 4200 | M D4 54 (U) 70 or 72
213* 0101 D5 11 5 4100 | N D5 45 (U) 74 or 76
214* 0110 D4 1 6 4080 | © Dé 46 (U) 50 or 52
215* o1 D7 11 7 | 4040 | P D7 57 (V) 54 or 56
216* 1000 D8 1 8 4020 | Q D8 58 (U) b4 or 66
217+ 1001 D9 1 9 4010 | R D9 49 (U) 60 or 62
218 1010 DA | 12 1 9 8 2 €830
219 1011 DB | 12 i 9 8 3 €430
220 1100 DC | 12 11 9 8 4 230
221 1101 DD | 12 N 9 8 5 C130
222 1110 DE 12 1 9 8 6 CO0BO
223 111 DF 12 1 9 8 7 070
224 1110 0000 EQ 0 8 2 2820
225 0001 El 1M 09 ! 7010
226* 0010 E2 0 2 2800 | S £2 32 (U) 98 or 9A
227* 0011 £3 0 3 2400 | T E3 23 (U) 9C or 9E
228* 0100 E4 0 4 2200 | U E4 34 (U) BO or B2
229% 0101 ES5 0 5 2100 | V E5 25 (U) B4 or B6
230* 0110 E6 0 6 2080 | W E6 26 (U) 90 or 92
231* 011 £7 0 7 2040 | X E7 37 (U) 94 or 96
232* 1000 £E8 0 8 2020 | Y E8 38 (U) Al or A6
233* 1001 E9 09 2010 | 2 E9 29 (V) AC or A2
234 1010 EA 109 8 2 6830
235 1011 EB 11 09 8 3 6430
236 1100 EC 09 8 4 6230
237 1101 ED 1109 8 5 6130
238 1110 EE 11 098 6 60B0
239 1111 EF 1098 7 6070
240% 1111 0000 FO 0 2000 | © FO 1A (L) C4
241* 0001 Fl 1 1000 | 1 F1 01 (L) EC
242* 0010 F2 2 0800 | 2 F2 02 (L) D8
243* 0011 F3 3 0400 | 3 F3 13 (L) DC
244% 0100 F4 4 0200 | 4 F4 04 (L) FO
245* 0101 F5 5 0100 | 5 F5 15 (L) F4
246* 0110 Fé 6 0080 | 6 Fé6 16 (L) DO
247* [ARR! F7 7 0040 | 7 F7 07 (L) D4
248* 1000 F8 8 0020 | 8 F8 08 (L) E4
249* 1001 Fo 9 0010 | 9 F9 19 (L) EO
250 1010 FA {12 11 0 9 8 2 E830
251 1011 FB 12 11 0 98 3 E430
252 1100 FC 12 11 09 8 4 E230
253 1101 FDO j12 11 09 8 5 E130
254 1110 FE 12 11 0 9 8 6 EOBO
255 | 111 FF i2 11 098 7 £070

Character Code Chart 53

INDEX

Arctangent 44 Error detection and recovery procedures 3

Arithmetic and functional subroutines 35 Error parameter (ISS) (also see individual subroutines) 6

Arithmetic and functional subroutine error indicators 40 ESBR(X), floating-point reverse subtract (extended) 40

Assignment of core storage locations 7 ESIN, floating-point trigonometric sine (extended) 38, 42
ESINE, floating-point trigonometric sine (extended) 38

Basic ISS calling sequence 6 ESQR, floating-point square (extended) 38

BINDC subroutine 26, 27 ESQRT, floating-point square root (extended) 38, 42

BINHX subroutine 26 ESTO(X), store FAC (extended) 37
ESUB(X), floating-point subtract (extended) 37

Calling sequences (Arithmetic and functional subroutines) 37 ETANH, floating-point hyperbolic tangent (extended) 38, 42

CARDO subroutine 9, 10 ETNH, floating-point hyperbolic tangent (extended) 38

CARDI1 subroutine 9, 10 EXPN, floating-point exponential (extended) 38

CARD2-1442 card read punch I/O subroutine 23 Exponential 46

Card subroutines 9 Extended binary coded decimal interchange code

Carriage control (printer subroutine) 15 (EBCDIC) 24, 26

Character interrupts 3 Extended precision format 35

Check legality of calling sequence 3 Extended precision subroutines 42

Console printer code 24, 26

Console printer/input keyboard 16 FABS, floating-point absolute value (standard) 40

Control parameter (ISS) (also see individual subroutines) 6 FADD(X), floating-point add (standard) 37

Conversion subroutines 26 FALOG, floating-point natural logarithm (standard) 38
FARC, floating-point arithmetic range check 39

Data channel 1 FATAN, floating-point trigonometric arctangent (standard) 38, 43

Data code conversion subroutines 24 FATN, floating-point trigonometric arctangent (standard) 38

DCBIN subroutine 26, 28 FAVL, floating-point absolute value (standard) 40

Defective sector handling (disk subroutine) 11 FAXB(X), floating-point base to a floating-point exponent

Descriptions of data codes 24 (standard) 39

Description of interrupt service subroutines 2, 9 FAXI(X), floating-point base to an integer exponent

Determine status of previous operation 2 (standard) 38

Device identification (ISS) 7 FBTD, floating binary to decimal 39

Device processing 1 FCOS, floating-point trigonometric cosine (standard) 38, 42

Direct program control 1 FCOSN, floating-point trigonometric cosine (standard) 38

DISKO, DISK1, DISKN 11 FDIV(X), floating-point divide (standard) 37

Disk initialization 14 FDTB, floating decimal to binary 39

Disk subroutines 10 FDVR(X), floating-point reverse divide (standard) 40
FEXP, floating-point exponential (standard) 38, 43

EABS, floating-point absolute value (extended) 40 FGETP, get parameters (standard) 40

EADD(X), floating-point add (extended) 37 File protection (disk subroutine) 11

EALOG, floating-point natural logarithm (extended) 38 Fixed-point format 35

EATAN, floating-point trigonometric arctangent (extended) 38, 42 FIXI(X), integer base to an integer exponent 39

EATN, floating-point trigonometric arctangent (extended) 38 FLD(X), load FAC (standard) 37

EAVL, floating-point absolute value (extended) 40 FLN, floating-point natural logarithm (standard) 38, 43

EAXB(X), floating~point base to a floating-point exponent Floating-point data formats 35

(extended) 39 Floating-point pseudo-accumulator 37

EAXI(X), floating-point base to an integer exponent FLOAT, integer to floating-point 39

(extended) 38 FMPY(X), floating-point multiply (standard) 37

EBPRT subroutine 26, 34 FORTRAN used Subroutines 22

ECOS, floating-point trigonometric cosine (extended) 38, 42 FSBR(X), floating-point reverse subtract (standard) 40

ECOSN, floating-point trigonometric cosine (extended) 38 FSIN, floating-point trigonometric sine (standard) 38, 42

EDIV(X), floating-point divide (extended) 37 FSINE, floating-point trigonometric sine (standard) 38

EDVR(X), floating-point reverse divide (extended) 40 FSQR, floating-point square root (standard) 38

EEXP, floating-point exponential (extended) 38, 42 FSORT, floating-point square root (standard) 38, 43

Effective address calculation (disk subroutine) 14 FSTO(X), store FAC (standard) 37

EGETP, get parameters (extended) 40 FSUB(X), floating-point subtract (standard) 37

ELD(X), load FAC (extended) 37 FTANH, floating-point hyperbolic tangent (standard) 38, 43

Elementary function algorithms 43 FTNH, floating-point hyperbolic tangent (standard) 38

ELN, floating-point natural logarithm (extended) 38, 42 Functional subroutine accuracy 42

EMPY(X), floating-point multiply (extended) 37 FXPN, floating-point exponential (standard) 38

54

General emor-handling procedures 4
General specifications (FORTRAN used subroutines) 22

Hexadecimal notation 24
HOLEB subroutine 26, 29
HOLPR subroutine, 26, 33
HXBIN subroutine 26, 28

IABS, integer absolute value 40

IBM card code 24, 25

IF1X, floating-point to integer 39

ILS description 2

Important locations (disk subroutine) 13

Initiate I/O operation 3

Interrupt branch addresses 8

Interrupt Level Subroutines 2

Interrupt processing 1

Interrupt Service Subroutines 1

Interrupt trap 8

[/O area parameter (ISS) (also see individual subroutines) 6
1/0 function (ISS) (also see individual subroutines) 6
ISS characteristics 1

ISS counter 9

ISS operation 2

1SS subdivision 2

Level processing 1

Machine configuration ii
Methods of data transfer 1

NAMEO, NAME1, NAMEN (ISS) 6
Name parameter (ISS) 6

Natural logarithm 45

No error parameter 5

NORM, normalize 39

Operation complete interrupts 3
Operator request function 18

PAPEB subroutine 26, 30
Paper tape subroutines 18

PAPHL subroutine 26, 31
PAPPR subroutine 26, 33
PAPTN, PAPT1 18

PAPTZ-1134-1055 paper tape read punch I/0O

subroutine 23

Perforated tape and transmission code (PTTC/8)

Printer subroutines 15
PLOTL 20
Plotter subroutines 19

Polynomial approximation 43, 44, 45, 46

Post-operation error detection

5

Pre-operation error detection 4

Programming techniques-error routine exits 5

Protection of input data (card subroutines)
PRINTZ-1132 printer output subroutine

Recoverable device 3

Recurrent subroutine entries 2

Save calling sequence 3

Sector numbering (disk subroutine)

Set pack initialization 14
Sine-cosine 43

11

SNR, floating-point reverse sign 40

SPEED subroutine 26, 29
Square root 45

Standard precision format 35
Standard precision subroutines
Subroutines used by FORTRAN

TYPEO 8, 16

TYPEZ keyboard-console printer I/Q subroutine

User’s error routine implications

WRTYO 8, 16

42
22

5

23

WRTYZ-console printer output subroutine

XDD, fixed-point double-word divide
XMD, fixed-point double-word multiply
XMDS, fixed-point fractional multiply (short)

XSOR, fixed-point square root

39

40

10

23

39

24, 25

2

“

39

2

(93]

Ui

C26-5929-2

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY ...

IBM Corporation
Monterey & Cottie Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. 452

T8IV

®

International Business Machines Carporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

‘vUStut payulld QOgTT WYl

2-6265-920

C26-5929-2

TLIBIM

®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

VSN Ul paulld OElT NGI

2-6265-920

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46.1
	46.2
	46.3
	46.4
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	replyB
	zBack

