File Number 1401-24
Form C24-1492- 2

Systems Reference Library

COBOL (on Tape) Specifications
IBM 1401

This publication is intended for programmers who have a
basic knowledge of coBoL programming. It includes the addi-
tional specifications necessary to write a coBoL program for
the 1BM 1401 Data Processing System.

Specific examples show how many cosoL statements are
coded. A general explanation of these statements is also given.

A sample problem shows complete entries for the mENTIFI-
CATION, ENVIRONMENT and DATA DIVISIONS,

Preface

This publication partially describes the specifications
for writing a 1401 coBoL program to be processed by an
M 1401 with at least 4,000 positions of core storage.
It supplements the 1M cosoL General Information
Manual, Form F28-8053, which describes the cosoL
language as it applies to 1BM computers. The manual
includes many details about”the coBoL language that
are not included in this publication.

The 1401 cosoL programmer should also be familiar
with the material contained in the following Systems
Reference Library publications:

IBM 1401 System Operation Reference Manual, Form

A24-3067

Autocoder (on Tape) Language Specifications and
Operating Procedures IBM 1401 and 1460, Form
(C24-3319

Input/Output Control System Specifications and
Operating Procedures for IBM 1401 and 1460,
Form C24-1462

Operating information for this version of 1401
cosoL is in COBOL (on Tape) Operating Pro-
cedures IBM 1401, Form C24-3148.

Since the 1M 1401 Data Processing System was an-

nounced, the 18M 1401 Symbolic Programming System

This publication, C24-1492-2, is a major revision of C24-1492-1
and obsoletes it and prior editions. In addition to incorporatin:
information released in Technical Newsletters N24-0259 an

N21-0038, significant changes have been made. A section on

Programming Considerations has been added.

has been widely used. This system is essentially a one-
for-one coding system in which the programmer writes

one symbolic instruction for each actual machine-
language instruction needed to solve a given problem.
This system relieves the programmer from the burden
of remembering machine-language operation codes
and machine addresses.

The 1401 Autocoder was subsequently developed to
permit the programmer to use macro instructions that
incorporate common routines automatically. The 1401
Input/Output Control System (IOCS) has been in-
cluded in Autocoder to provide standard routines for
getting data into and out of the machine.

The cosoL language permits programming in terms
that describe the problem, rather than in terms that
describe the machine used to solve it. The general
language specifications (with a few minor exceptions)
remain the same for all computers.

To write a complete coBoL program for the 1401, the
reader must be familiar with the information presented
in the coBoL General Information Manual as well as
the material in this publication.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
A form is included at the back of this manual for readers’ comments. If this form has
been removed, address comments to: IBM Corporation, Product Publications, Dept. 245,

Rochester, Minn. 55901.

Contents

The COBOL Language 5
Machine Requirements 5
IBM 1401 COBOL Programming 6
Environment Division 6
Configuration Section 6
Input-Output Section. 9
Data Division 11
M 1401 COBOL Tape Labels. 11
Record Formats for Tape Files 12
Record Formats for Punch-Card Files. 13
Data Division Language Specifications. 13
Special Editing Functions 19
The Constant and Working-Storage Sections......... ... 20
Procedure Division a1l
Exponents 26
Conditional Statements 26
General Information 29
Character Sets 29
Figurative Constants 29
Additional COBOL Words. 29
Class Conditions. 29
Continuation of Alpha Literals. 30
SampleProblem 30
Programming Considerations 36
Notes 36
Techniques 36

Acknowledgment

In accordance with the requirements of the official government
manual describing coBor-1961 extended, the following extract
from that manual is presented for the information and guidance
of the user:

“This publication is based on the coBoL System developed in
1959 by a committee composed of government users and com-
puter manufacturers. The organizations participating in the orig-
inal development were:

Air Material Command, United States Air Force

Bureau of Standards, United States Department of Commerce

Burroughs Corporation

David Taylor Model Basin, Bureau of Ships, United States

Navy
Electronic Data Processing Division, Minneapolis-Honeywell
Regulator Company

International Business Machines Corporation

Radio Corporation of America

Sylvania Electric Products, Inc.

UNIVAC Division of Sperry Rand Corporation

“In addition to the organizations listed above, the following
other organizations participated in the work of the Maintenance
Group:

Allstate Insurance Company

The Bendix Corporation, Computer Division

Control Data Corporation

E. I. DuPont de Nemours and Company

General Electric Company

General Motors Corporation

Lockheed Aircraft Corporation

The National Cash Register Company

Philco Corporation

Standard Oil Company (New Jersey)

United States Steel Corporation

“This manual is the result of contributions made by all of the
above-mentioned organizations. No warranty, expressed or im-
plied, is made by any contributor or by the committee as to the
accuracy and functioning of the programming system and lan-
guage. Moreover, no responsibility is assumed by any contribu-
tor, or by the committee, in connection therewith.

“It is reasonable to assume that a number of improvements
and additions will be made to cosoL. Every effort will be made
to insure that the improvements and corrections will be made in
an orderly fashion, with due recognition of existing users’ invest-
ments in programming. However, this protection can be posi-
tively assured only by individual implementors.

“Procedures have been established for the maintenance of
coBoL. Inquiries concerning the procedures and the methods
for proposing changes should be directed to the Executive Com-
mittee of the Conference on Data Systems Languages.

“The authors and copyright holders of the copyrighted ma-
terial used herein: rLow-maTic (Trade-mark of Sperry Rand
Corporation), Programming for the UNIVAC® I and II, Data
Automation Systems © 1958, 1959, Sperry Rand Corporation;
IBM Commercial Translator, Form No. F28-8013, copyrighted
1959 by 1BM; Fact, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell, have specifically authorized the use of
this material, in whole or in part, in the cosoL specifications.
Such authorization extends to the reproduction and use of cosoL
specifications in programming manuals or similar publications.

“Any organization interested in reproducing the cosor report
and initial specifications in whole or in part, using ideas taken
from this report or utilizing this report as the basis for an in-
struction manual or any other purpose is free to do so. However,
all such organizations are requested to reproduce this section as
part of the introduction to the document. Those using a short
passage, as in a book review, are requested to mention ‘coBoL’
in acknowledgment of the source, but need not quote this entire
section.”

The programmer’s responsibility in preparing a cosoL

program is to:

1. Identify the program.

2. Specify the features and devices of the mm 1401
Data Processing System that will be used to compile
and execute the resultant machine-language object
program.

3. Describe the data to be processed.

4, State the procedure to process the data.

The programmer uses the characters, words, and ex-
pressions that make up the copor language. He writes
them according to a standard reference format that is
outlined on the coBoL program sheet (Form X28-1464).
This standard coding sheet is used with all 1sM cosoL
systems to record the source program.

The cosoL source program card deck is punched
from these coding sheets. These cards make up the
COBOL source program card input to the 1401 cosoL
processor.

The Cobol Processor

The coBoL processor is itself a program. It compiles
an object program in 1401 Autocoder language from
the cosoL source statements. The Autocoder processor
assembles the machine-language object program from
the object program in Autocoder as shown in Figure 1.

Machine Requirements

The 1401 coBoL processor can compile an object pro-

gram for any 1BM 1401 system that has at least 4,000

positions of core storage. However, to process the cosoL

source program, the 1401 must have at least:

*® 4,000 positions of core storage

® Four 18M magnetic-tape units

1BM 1403 Printer, Model 2

M 1402 Card Read-Punch

Advanced Programming Feature

High-Low-Equal Compare Feature

Sense Switches

The 1401 on which the object program is to be exe-

cuted must have:

1. Sufficient core storage to contain the program pro-
duced by the coBoL processor. If the object program
requires more than the available core-storage capac-
ity, either the program must be executed in sections
(overlays) or the job must be divided into multiple
runs.

Note: This requirement is a significant consider-
ation when planning to implement COBOL on a
system with 4000 positions of core storage.

The COBOL Language

Problem
Definition

Cobol
Source
Program

Cobol
Source Program
Card Input

Cobol Processor
(Translates Cobol Source
Program to 1401
Autocoder Language)

1401
Cobol
Processor
Program

1401 Autocoder Processor
————————————— » (Translates Autocoder to
Machine Language)

Processor
Program

1401
Object Program

Figure 1. copoL Compiling and Assembly Process

2. The object machine must have the input and output

units defined in the FILE-cONTROL paragraph.

. Advanced Programming Feature.

. High-Low-Equal Compare Feature.

. Sense Switches when they are referred to in the

SPECIAL-NAMES section.

6. Multiply-Divide Feature if any of these entries ap-
pears in the PROCEDURE D1vISION of the coBoL source
program:

a. MULTIPLY verb.

b. pivipE verb.

c. coMPuTE verb when either /,*, or ** is used as
the operator.

UL Lo

IBM 1401 COBOL Programming

The 1401 coBoL source program has four major divi-
sions. Each division has its own set of statements which
are written according to the rules established for the
cosoL language, as described in the IBM COBOL Gen-
eral Information Manual, Form F28-8053. These divi-
sion statement sets must be arranged for presentation
to the 1401 coBoL processor in this order:
IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION,
PROCEDURE DIVISION.

Write the IDENTIFICATION DIVISION entries as de-
scribed in the IBM COBOL General Information
Manual.

Environment Division

In this part of the coBoL source program, the program-
mer specifies the physical characteristics of the par-
ticular 1M 1401 system(s) to be used to compile and to
execute the object program.

The ENVIRONMENT DIVISION has two major sections,
each of which has a fixed section name: CONFIGURATION
and INPUT-OUTPUT.

The 1401 cosoL presentation format for this is:
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

Configuration Section

The CONFIGURATION SECTION has three paragraphs: The
SOURCE-COMPUTER paragraph names and describes the
1401 that will compile the object program from the
COBOL source statements.

The oBjECT-COMPUTER paragraph names and de-
scribes the 1401 that will execute the object program.

The sPECIAL-NAMES paragraph equates mnemonic

names to standard names for actual machine devices,
equates condition names to standard names for the
status of actual machine switches, and equates Auto-
coder names to COBOL names.

Source-Computer Paragraph
Reference Format

SOURCE-COMPUTER. IBM-1401
'_. \
5000
MEMORY SIZE 12000 CHARACTERS
16000 ;

NO-RELEASE] I:NO-PRINT-STORACE] .
L

General Description: This paragraph names the com-
puter that will compile and assemble the object pro-
gram. It is the computer in which the 1M 1401 cosoL
processor program compiles a machine-oriented sym-
bolic program (1401 Autocoder) from the problem-
oriented coBOL source program and assembles the
actual machine-language program.

4000
8000

MEMORY SIZE 12000 CHARACTERS
16000 }

General Description: This statement tells the cosoL
processor how much core storage (memory) is avail-
able for use during the compiling and assembling
operation. If this statement is omitted, the actual ma-
chine core-storage size will be used. If the clause is
included, the specified machine size will be used un-
less it is greater than the actual machine core-storage
size.

‘ I:NO-RELEASE:I [NO-PRINT-STORACE].

The appropriate clause(s) must be included if the
source computer does not have the read-punch release
or print-storage features.

Object-Computer Paragraph
Reference Format

OBJECT-COMPUTER. IBM-1401

I:ASSIGN OBJECT-PROGRAM TO TAPE]

)
000 |
MEMORY_ SIZE 12000 CHARACTERS
16000
ADDRESS integer 1 THRU

4000
8000
12000

16000]

[NO-O’VERLAP]

[NO-PRINT-STORAGE :\ .

General Description: The 0OBJECT-COMPUTER paragraph
describes the computer that will execute the object
program. The “OBJECT-COMPUTER. 1BM-1401" state-
ment defines an 18M 1401 with 16,000 characters, the
processing-overlap feature, and input/output units
required for the files defined in the FILE-CONTROL
paragraph. If the object machine has fewer than
16,000 positions of storage and/or no overlap, and/or
no print storage, the appropriate clauses must be in-
cluded in the source program. It also permits the pro-
grammer to specify which input device will read the
object program into storage before it is executed.

E\SSIGN OBJECT-PROGRAM TO TAPE:'

General Description: This statement directs the proc-
essor to put the object program on magnetic tape. If
this statement is included in the coBoL source pro-
gram, a tape unit is designated as the input device
that will read the object program into storage. If
the statement is omitted, the object program will be
punched in cards and the 1BmM 1402 Card Read-Punch
will be the input device.

8000
12000 (CHARACTERS
16000

ADDRESS integer-1 THRU

MEMORY SIZE

. 16000

L 12000

General Description: This clause tells the processor
how many positions of core storage are available in
the object machine and the starting core-storage ad-
dress of the object program.

If the programmer wishes the program to start at
any location other than 333, he can use the ApDRESS
integer-1 Turu option and write the numerical ad-
dress of this location in the integer-1 portion. This
number should not be less than 333. The number
following THRU specifies the last core-storage position
that can be used for the object program.

If the MEMORY SI1ZE statement is omitted from the
cOBOL source program, the processor assumes that
the object computer has 16,000 positions and starts
the object program at core-storage location 333.

[No-ovERLAP|

General Description: The NO-OVERLAP option must be
included only if the object computer does not have
the processing overlap feature.

When the overlap feature is used, an alternate area
must be specified for tape input files with form-1
records.

I:NO-PRINT-STORACE] .

General Description: This clause must be included if
the object computer is not equipped with the print-
storage feature.

Example: Figure 2 shows a sample OBJECT-COMPUTER
paragraph.

T
3

!

12 1] 29 26 28 32 36 40 Y] 48 52
)

[~NCONT.

A
8

P TN TN 0 U S A U TN T W S0 S0 S S B O B |

L1 ASSI6GN ORTECT-PROGRAM TO TAPE + 1111 .11,
L MEMORN, SIZE ADDRESS 438 THRU 12000 111
11 NQ‘ DA\JIEIRLALR'I IS S R B I U N N U U N T U T T S T G W T T R A W T e |

Figure 2. oBJECT-COMPUTER Paragraph

Special-Names Paragraph
Reference Format

SPECIAL-NAMES .
device-name-1 1S mnemonic-name-1 [device-name-Q IS

T

mnemonic-name-2 . . :l .

switch-name-1 [Q\I STATUS IS condition-name-l]

[@‘ STATUS IS condition-name-2]

[switch-name-2 .. :l R

[AUTOCODER-name IS COBOL-name I:AUTOCODER . :I

General Description: This paragraph equates mne-
monic-names to the standard names for actual ma-
chine devices, equates Autocoder-names to COBOL-
names, and equates condition-names to the status of
actual machine switches.

Device-Names

General Description: The standard device-names for
the 1401 signal the cosoL processor which devices
are available in the object computer. They are writ-
ten with mnemonic-names the programmer has used
to refer to them in the PROCEDURE p1visioN. The 1401
device-names are:

Device-Name Actual IBM 1401 Device

1402-R, n 1402 Card Reader
1402-P, n 1402 Card Punch
1403-P 1403 Printer
1403-CT, n 1403 Printer Carriage

For the 1402-R and 1402-P device-names, n is a digit
specifying the stacker into which a card is to fall. For
the card reader it must be a 0 (normal read), 1 (read
select), or 2 (common). For the card punch it must be
0 (normal punch), 4 (punch select), or 8 (common).
If one of the digits is invalid or is not included with a
1402 device-name, the processor assumes that the
stacker desired is 1 for a read operation and 4 for a
punch operation. If n is coded, there must be a space
between it and the device-name as in 1402-R, 1.

Punched-card input and output devices should not
be used with both the pispLAY and wriTE verbs in the
same program. The same restriction applies to using
these devices with both the accepr and READ verbs.

8

For the 1403-CT device name, n specifies which
channel in the carriage tape terminates a particular
carriage skip. It can be any number from 1 to 12. This
name is used with the apvancing option of the WRITE
verb (see Procedure Division). If n is not coded, the
processor assumes that the skip is to channel 1. If n is
coded, there must be a space between it and the device
name as in 1403-CT, 3.

I: AUTOCODER-name 1S COBOL-name :l

General Description: This statement enables the pro-
grammer to write Autocoder statements that refer to
cosorL data-names and procedure-names (see Enter).

If an Autocoder name is used to refer to an area
that has been defined by a coBoL statement, the
coBOL name must be equated to the Autocoder name.

Example: If TOTALS is a coBoL name used to define
a coBoL area and the symbol TOTLS is used in an
Autocoder statement to refer to the same area, the

+ statement shown in Figure 3 must appear in the
SPECIAL-NAMES section of the coBOL program.

i
A '8
[2

~CONT

16 20 24 28 32

L TOTLS 1S TOTARS 1+ 1 0 sy s

U O Y U S T O O A OO U S IO

36 40 44 48 52

Figure 3. Equating and Autocoder-Name to a coBoL-Name

A symbol used as an Autocoder name must meet
these requirements:
1. It must be five characters long,.
2. It must begin with an alphabetic character.
3. It cannot contain a special character.
4. A blank cannot appear within the symbol.

The coBoL name must be a non-qualified proce-
dure-name or data-name. It cannot be a condition-
name.

Switch-Names and Conditions
General Description: A switch-name is written followed
by the condition-names used to identify oN status
and oFF status.
The standard 1401 switch-names are:

Switch-Name Indicates

1403-P-CB Printer Carriage Busy

1403-P-C9 Sense Carriage Tape Channel 9

1403-P-CV Sense Carriage Tape Channel 12 (Overflow)
1401-SS x Sense Switch

The x in 1401-SS «x is the actual letter that repre-
sents a specific 1401 sense switch. This must be a
letter within the range A-G. There must be at least
one space between 1401-SS and the letter used for x.

P T
g|A '8
7|8 2 16 20 24 28 32 36 40 44 48 52 56 60 64 €
SRE‘C‘I’IAILI—INAMEISI'IIIIIlllllllllllllllllllllllllIllllllllllllllll
Lt :1”102»"1&}_1 la IIISl lCIARlDI‘IRfIAID;IRI‘JL N O N S N N S S T [O N N T B S e |
| ‘)j-!‘{lolzl_lpl}I IL’X 11151 JCJAIRIDI"IPIUINLOIH-IL § R W N S T N W N T T U S N N Ty N W N O O Y |
llllllylol5l'7pl IIISI IFIRIIINTIZR.II|IlIllllllLJllllllLlllIlIl[lIIllllLJll
llli¢03I lc-,—l\lliﬂllll-sl 15K|ILP1—-|T:OL—111|LL111:111|1111||||1|14111111.1.1
1 1 1 il‘/pbBl IGTI\I 12I JI[SLJSKJIlEl.lTpl lz-l'l I SN W (N U (N WY TN U U S NN T SO S I § 1 F I TR N N S |
L %03 'lPl—IclBL ON_STAT.US 115 CARRIAGS ~ Builﬂs IQl__LE_&IlmJSL__LLlLlé_KLLl_I_L
L 2403-P-CV 0N STATUS 1.5 OVERELOM 1 0 0 000 0 s
L Adod-55, A _ON STATUS (1S LAST —CARD. ! e .
Figure 4. SPECIAL-NAMES Paragraph
The status of these switches may be interrogated
by expressions in the PROCEDURE DIVISION that use §: 2 W e ke e e w
condition-names. T SELECT MASTERINPUTFILE oo
Example: Figure 4 shows a sample SPECIAL-NAMES R T

paragraph written for a 1401.

Input-Output Section
The INPUT-OUTPUT SECTION has two paragraphs:

The FILE-CONTROL paragraph names each file, identi-
fies its input or output medium, and assigns it to one or
more input-output devices.

The 1-0-cONTROL paragraph is a deferred feature for
1401 cosoL and thus can not be included in a 1401
coBOL source program. See Deferred Features.

File-Control Paragraph
Reference Format B ‘
FILE-CONTROL. SELECT file-name-~I

ASSIGN TO device-name-1
[RESER@ % N10i ALTERNATE AREA[S]:I .

[SELEC'[

General Description: This paragraph names each file
used in the source program, identifies its media, and
assigns it to an input or output device. It also permits
the programmer to specify an alternate input-output
area for magnetic tape files if the 1401 has overlap
processing,

SELECT file-name-1

General Description: Each file to be processed by the
READ Or WRITE verbs in the PROCEDURE DIVISION must
be named in a seLECT file-name entry. This file-name
must be unique within the source program and must
be described by a file-description entry in the paTa
pivisioN of the source program.

Example (Figure 5):

Figure 5. SELECT

ASSIGN TO device-name-1

General Description: Each file must be assigned to an
input or output device-name. The 1401 device-names
that are valid in the FILE-cONTROL paragraph are:

Device-Name Description
TAPE(S)ua Magnetic Tape Unit
1402-R, u Card-Reader
1402-P, u Card-Punch

1403-P Printer

Magnetic-Tape Device-Names

For magnetic-tape files, TaAPE(s) is the device-name. It
indicates that the file is to be assigned to a tape unit.
The u specifies the particular unit to be assigned. It can
be any digit from 1 to 6. The a specifies that an alter-
nate unit is to be assigned. It can be any digit from 1
to 6, but should not be the same digit that is used for u.
The same tape unit (or alternate tape unit) should not
be assigned more than once in a COBOL source program,
There must be a space between Tare(s) and u and be-
tween u and a. (If the user specifies an invalid u, the
processor substitutes the value 6.)

Example (Figure 6):

re T
§A :B

7|8 & 16 20 24 28 =&2 36 40 44 48
L ASSIEN TO TAPE Ay Lt v
Ill:llllll|||lIAIIIlllAlllIllIllAlJ;llllLLIA

Figurc 6. ASSIGN

Punched-Card Device-Names

The Punched-Card devices that are valid in the FILE-
CONTROL paragraph are the card reader, the card punch,

9

and the printer. Their device-names are written as de-
scribed in Special-Names Paragraph.

I:RESERVE ; NIO g ALTERNATE AREA[S]] .

General Description: This statement reserves one or no
alternate area for a magnetic-tape file. One alternate
area may be specified only if the object machine has
the overlap feature.

Example (Figure 7):

= - — S,
ga .8
7|e 12 1 20 24 28 52 38 40 pYy a8
)
Lo RESERNE 1 ALTERNATE AREA - v 1 1 v ta a0, ()
]
YU S N NS A WA N0 U U NN U S0 U0 O TN WA 0 JNS A U S TN T NN O S O U O T T U N W Y W T N O |

Figure 7. RESERVE

Figure 8 shows a sample FILE-CONTROL paragraph.

T
A : 3]
8 12 18 20 24 28 32 36 40 44 48

B E-CONTIROL 1 i v i Liaiain
i SELECT MASTER-IINPOT-Fl LEe | 1
A..MI.&NIO.IAP-E.JQ.ZH....‘..
1 RESERVNE NO ALTERNATE AREA.- .

41

[~ CONT.

Lt

B

L1oep 1y

o SELECT MASTER-QUTAUT.-FILE
¢IIMISIS|IGINAT‘}OAIIAPAEAA(III‘XLIIIAI) U Y)
, 1 RESERYE L ALTERNATE AREAC, o o 00010y
Ll SIEL\.JEEJ-I CAWMALMJMM

T T W T T

L
L
i
L
1
L

F R RO R R

L1t
a1
L4y
L4y
[t
Lty

xnAA%LGNAL"‘:D:ZL‘R;lAZH]J_LAlx¢|||LL:||A||11111
o SELECT PRINTER 40w v iy i1,
|||:ASSI&NJJ%M:::'.FAllJ_Ln‘lxllnaAntLL:nan.n

- '
T T U T U W 500 T U U S T W T S Y U T U U W WY 0 W Y S U0 0 0 0 0 0 WO ¥

Figure 8. FILE-cONTROL Paragraph

10

Added Elective Elements—Environment Division

The MEMORY siZE option of the SOURCE-COMPUTER para-
graph is not contained in the coBoL General Informa-
tion Manual, but is provided in the 1401 cosoL proc-
essor as it has been described in this publication.

Deferred Elements—Environment Division

Several elements are described in the coBor General

Information Manual that are not contained in this ver-

sion of 1401 cosoL processor. These should not be

coded in the ENVIRONMENT DIVISION entries for a 1401

coBoL program. They are stated here for reference:

1. The entire 1-0-coNTROL paragraph (elective cosoL
element).

2. The orTIONAL option of the FILE-cONTROL paragraph.

3. The MULTIPLE REEL option in the FILE-CONTROL
paragraph and all other features that provide for
automatic assignments of tape units for a file.

4. The entire copy option. (The library tape for the
1401 cosoL processor does not presently support the
cory feature.)

5. The reNamine clause in the FILE-CONTROL para-
graph.

IBM 1401 COBOL Tape Labels

The 1401 cosoL processor provides for 1BM 1401 coBoL
tape labels. These labels identify the file and specify
the number of records in the file, the date it was cre-
ated, and the length of time it must be kept. Two
labels, a header and a trailer, are required for each

labeled file.

IBM Header Labels

A header label is the first record of each reel of a file.
It identifies the tape. The header label format is shown
in Figure 9.

FIELD NO. {POSITION |CONTENTS [FIELD NAME EXAMPLE
1 1-4 THDR Header Label THDRb
5 Blank Identifier
2 6-10 5 Digits Tape Serial 12345
Number
3 11-15 5 Digits File Serial 54321
Number
4 16 - Reel Sequence -002b
17-19 3 Digits Number
20 Blank
5 21-30 10 CharactersfFile Identification | PAYRLMASTR
Name
6 31-35 5 Digits Creation Date 63203
(00-99)(001-366)
[Year Day
7 36 - Retention Cycle }-007b
37-39 3 Digits (000-365)
40 Blank
8 41-80 Not used

Figure 9. cosor Header Label Format

Header Label Identifier

These four characters indicate that the information con-
tained in the record is the header label of a tape reel.

Tape Serial Number

These five digits identify the reel of tape within an in-
stallation. Each reel of tape should be given a tape
serial number as soon as it is received at the installa-
tion. IOCS routines do not affect the tape serial num-
ber in a tape label.

File Serial Number

These five digits indicate a particular application or job
number within an installation.

Data Division

Reel Sequence Number

These three digits identify the reels in cases where mul-
tiple reels are needed for a specific job or application.
The first reel is numbered 001 unless the user specifies
another number.

File Identification Name

These ten characters identify the file. For example,
PAYRLMASTR identifies the tape as the payroll master

file.

Creation Date

These five digits contain the date on which the file was
written originally. The two high-order digits indicate
the year (00-99), and the remaining three digits indi-
cate the nth day of that year (001-366).

Retention Cycle

These three digits indicate the number of days the file
is to be kept after the date the file was originated. Files
should be preserved until all output data produced
from them has been used successfully as new input.
This ensures that any file that requires this file as input
can be reconstructed if necessary.

Header labels provide for a 365-day maximum reten-
tion cycle. If the file must be kept indefinitely, the pro-
grammer can specify this by putting the digits 99 in the
two high-order positions of the creation-date field.

IBM 1401 COBOL Trailer Labels
The last information record in a tape reel is a trailer
label. It indicates that the reel currently being proc-
essed is the last reel of a file or that more reels must be
processed. Trailer labels are written after the last rec-
ord in the reel has been processed.

The 1BM cosoL trailer label format is shown in Fig-
ure 10.

Field Posi-
No. tions Contents Field Name Example
1 1-4 | “IEOF or Trailer Label IEOF
tEOR" Identifier
5 Blank
2 6-10 | 5 Digits Block Count 13430
11-80 | Not used

Figure 10. 1M 1401 cosoL Trailer Label Format

Trailer Label Identifier

These four characters indicate that the information con-
tained in the record is the trailer label of a tape reel.

11

Block Count

This field contains the number of blocks contained in
the reel. A count is developed during processing and is
entered in the trailer label record.

Record Formats for Tape Files

Detailed information about record formats is presented
in the publication Input/Output Control System: Speci-
fications and Operating Procedures for IBM 1401 and
1460, Form C24-1462. General information is pre-
sented in the following sections. Records for tape files
may be as large as 999 characters.

Form-1 Records

Form-1 tape records are fixed-length, unblocked, with
or without record marks. Fixed-length implies that all
records in the file have the same number of characters.
Unblocked means that one data record is contained in
one tape record. A record mark (=) is a special char-
acter written at the end of a data record to indicate that
the preceding character is the last record character. If
input records are form 1 but are to be written as out-
put in form 2, or 4, they should have record marks.
Otherwise the use of record marks is optional. Tape
records are physically separated by a section of blank
tape called an Inter-Record Gap (IRG). Figure 11
shows an example of form-1 records with record marks.

Figure 12 shows a form-1 record without record
marks.

Form-2 Records

Form-2 records are fixed-length, blocked, with record
marks, and with padding of short-length blocks.
Blocked means that more than one data record is con-
tained in one tape record (two or more data records
occupy the space between two interrecord gaps). Rec-
ord marks must be used to separate the data records.

Padding means that spaces (blanks) are used to fill
the last block for a file if there are not sufficient data
records to fill it. Thus, a fixed-length block will always
contain the same number of characters, but a blank

record will be substituted if there are not enough data
records to fill the last block.

Figure 13 shows a fixed-length, block tape record
with record marks and padding. Each block contains
four records.

Form-3 Records

Form-3 records (variable unblocked) are not permitted
with 1401 cosoL.

Form-4 Records

Form-4 tape records are variable-length, blocked, with
record marks and a Record Character Count (RCC)
field in each record, and a Block Character Count
(BCC) field in each block. Variable-length implies that
all the records in a file do not contain the same number
of characters.

Block Character-Count Field

A four-character field at the beginning of each block
contains a count of the total number of characters in the
block (including the block character-count field itself).
The BCC field has AB zone bits (1BM card code 12-
punch) over the units position. This count is used to
check wrong-length record conditions.

Record Character-Count Field

A record character-count field of three characters in
each record contains a count of the number of charac-
ters in that record, including the RCC field itself and
the record mark. This field must be in the same relative
position in each record (the character size of each C1
in Figure 14 is the same). Figure 14 shows the record
format for a form-4 record.

Note: When programming for form-4 or form-2
tape records, the record entry must allow a position
for the record mark. For output records, the record
mark must be moved into the record area before the
record is written.

I * 1 1

R Record 1 R Record 2 R Record 3 R

G G G G
Figure 11. Form-1 Record with Record Marks

| ! I

R Record 1 R Record 2 R Record 3 R

G G G G

Figure 12. Form-1 Record without Record Marks

12

_

i

O=-

o [+ TP

Padded l

(LALLM ‘

o= -

Block 1

Figure 13. Form-2 Record with Record Marks

rt— C | —] C 11—
{c2 |c2

Block 2 >

M

o * I T
B 'R b * ro M
R|C P Ch P [R
G|c L C Co P G
' 1 | L 1 1
-—— Record 1 -t Record 2 - Record 3 ——m
Block

Figure 14. Form-4 Record

Record Formats for Punched-Card Files

Card Read-Punch Records

Records of files assigned to the 1402-R and the 1402-P
must be eighty characters long, unblocked, and may or
may not have record marks in the 80th character posi-
tion (card column 80). This is equivalent to the form-1
record described previously for tape files.

Printer Records

Records of files assigned to the 1403-P must also have
form-1 record format. For the 1403 printer the fixed
record size must be equal to the number of print posi-
tions on the printer (100 or 132).

Data Division Language Specifications

The pATA DIVISION of a COBOL source program is divided
into three major sections:

FILE SECTION.

WORKING-STORAGE SECTION.

CONSTANT SECTION.

The FiLE secTiON describes the input and output files
with respect to content and organizational format. It
has two major subdivisions: the file-description entry
that specifies the physical characteristics and organi-
zation of the input and/or output data, and the record-
description entry that describes the individual items
contained in the file records.

The WORKING-STORAGE SECTION describes the areas of
1401 core storage where intermediate results and other
items are stored temporarily at object-program execu-
tion time.

The constanT secTION describes fixed items of data
that remain unchanged during the running of the ob-
ject program. A date, for example, might be a fixed
item, or constant.

The 1401 coBoL presentation format for the paTa
DIVISION is:
DATA DIVISION.
FILE SECTION.
File-Description Entries and
Record-Description Entries
WORKING-STORAGE SECTION,
Record-Description Entries
CONSTANT SECTION.
Record-Description Entries

File-Description Entry

General Description: A file-description entry must be
written for each file to be processed by the object
program. It includes specifications for the mode in
which the file is recorded, the record and block size,
label record information, and the names of the data
records that make up the file. A vaLuE clause is re-
quired when label records are standard.

Reference Format
FD file-name [RECORDING MODE IS ‘mode]

RECORDIS]

[BLOCK CONTAINS integer-1 { CHARACTERIS) } :]

[RECORD CONTAINS [integer-2 'E)]

integer-3 CHARACTER[S]]

LABEL RECORDIS] { ARE } {

STANDARD
IS

OMITTED

VALUE OF data-name-1 1S literal Eiata—name-2 IS ..]:I

DATA RECORDIS] { ?SRE } data-name-3 Eiata-name—4 :I .

13

General Description: The level indicator identifies the
beginning of the file-description entry and precedes
the file name assigned by the programmer.

Example (Figure 15):

=
Za e
7i6 {13 16 20 24 20 32 38 40 44 48
o T
D PAYRLMASTR (41111114, L
. :
P N 0 W T VOO S0 (UN U U W (0 SO U U WO T Y U TR WO U S U (N0 VT WO W W N N T W Oy N N U N W S Y W O |

Figure 15. ¥p File-Name
[RECORDING MODE IS 1]

General Description: This clause specifies the mode in
which the file is recorded. A 1 indicates the move
mode, even-parity. RECORDING MODE 1 is the only re-
cording mode implemented by 1401 cosor.

If the recorpiNG MODE clause is not included in
the source program, the processor assumes recording
mode 1.

RECORDIS]

I:BLOCK CONTAINS integer-1 (MR[S] % :'

General Description: This clause must be included if
more than one data record is included in a tape rec-
ord (other than form 1). It indicates the size of the
block in records or characters. The size may be stated
in terms of rRecOrp(s) for form-1 or form-2 records
where integer-1 is the number of data records in the
block.

The size must be stated in terms of CHARACTER(S)
for form-4 records where integer-1 is equal to or
greater than the number of characters in the longest
block of the file. This number includes the four-
character block count field (BCC). See also Form-4
Records.

Example: The largest block in the pavrLMAsTR file con-

tains 500 characters plus the BCC field (Figure 16).

A s

|
02 16 20 24 28 32 36 40 A4 40

~CONT.

L Eﬂmml. CONTAINS S04 CHARACTERS 1« 1110101,

Y WA T S TV U T U T U W U N O W A W0 00 Y W 0 W Y O MO U0 N G B B A}

Figure 16. BLOCK CONTAINS

I:RECORD CONTAINS [integer-2 TO]

integer-3 CHARACTER[S]:]

14

General Description: The RECORD CONTAINS clause may
be used to specify the number of characters in the
data records. Because the record description entries
define the size of each data record, this clause is
never necessary. However, if the programmer wishes
to include it, integer-2 specifies the number of char-
acters in the smallest record in the file, and integer-3
specifies the number of characters in the largest
record.

Fixed-length records must be specified using in-
teger-3 only. Variable-length records are specified by
using both integer-2 and integer-3.

Example: The records for a certain file are variable
length. The smallest record size is 75 characters; the
largest is 86 characters (Figure 17).

= T
ga 8

IR T U U Y VN U Y Y T G S T W YW W 0 T Y W Y O B O O A B G O B |

Figure 17. RECORD CONTAINS

LABEL RECORD [S] 3 IS 3M }
ARE OMITTED

General Description: This required clause states
whether header and trailer tape label records are
1401 coBoL tape labels or omitted. The 1401 coroL
processor can handle only 1401 cosoL tape labels
as described previously. For punched-card files the
OMITTED option must be used.

Example: Figure 18 shows a LABEL RECORD entry for a
punched-card input file.

T
A 'I B
8 12 18 20 24 28 32 36 40 A4 A8

co LABEL RECORDS ARE OMITTED (v s0iiisiiir

ARSI B O O O O A A e |

NCONT.

Figure 18. LABEL RECORDS

Today’s Date

If standard label records are specified for output files,
today’s date must be in core storage at object-program
execution time. To enter the current date in the object
program, insert a date card just ahead of the Ex card
produced by the Autocoder processor. The Ex card is
the last card in the object program. The format for the
date card is:

Card Columns Contents
YR DAY
1-5 XXXXX
40-46 L.005199
47-53 N000000
54-60 N000000
61-67 N000000
68-71 1040

YALUJEZ (i]?_‘ data-name-1 1S literal-1 Eiata-name-2 IS.:|

General Description: The coBoL programmer may
specify the items of information that appear in the
label records of tape files. These items must be sup-
plied by using a vaLuE or clause if standard header
labels are used.

Data-name-1 and data-name-2 are the names of
the fields contained in the header label record. Lit-
eral-1 and literal-2 refer to the contents of the re-
spective fields. Figure 19 is a chart showing the vari-
ous data names and the lengths of their associated
literals (AN represents alphanumeric values and N
represents numeric values). It also shows the rela-
tionship between use of the entries and the type of
label checking that will be applied to an input or out-
put file. All entries in the chart, except those noted
by one or two asterisks, are required.

Example: Figure 20 shows how IDENTIFICATION and a
retention cycle of 286 days are supplied for an out-
put file.

DATA RECORDIS] % ?SREf data-name-3 Elata-name-4..] .

General Description: Data-name-3, data-name-4, etc.,
must each be the subject of a record-description
entry that has a level-number of 01.

If the file contains more than one type of record,
a different data name must appear for each type.
Data-name order is not important.

If one record is read from a given file and another
is read from the same file, the second record replaces
the first in the read-in area. Thus, if two records are
needed for processing at the same time, the first rec-
ord must be saved by moving it to another area of
storage (such as a work area) before the second rec-
ord is read.

Example: Figure 21 shows a sample DATA RECORD
clause. In this example, RECORDA and RECORDB are
both in the same file and are described in a record-
description entry as level 01 records.

Record-Description Entry

General Description: The record-description entries
in the coBoL source program provide detailed infor-
mation about each item of data that will be needed
during the running of the object program. Each such
item must have its own entry consisting of a level-
number, a data-name, and a series of independent
clauses.

Reference Format

level-number 3&@ f REDEFINES data-name-2
data-name-1 —

7E 1 i CHARACTERIS] z
SI S integer-1 DIGITIS]
L

OCCURS integer-2 TIMEIS]]

LEF'
POINT LOCATION IS ’—_T

integer-3 PLACE[S
RICHTf integer L]]

~ ALPHABETIC
NUMERIC
ALPHANUMERIC
AN

CLASS IS

. Any allowable combination of characters and
[m IS symbols as described in Chapter 6 (cosoL GI)

B LEFT
osmriep § K2]

—
ZERO SUPPRESS

CHECK PROTECT
FLOAT DOLLAR SIGN

|:LEAVINC integer-4 PLACE[S]]

|:BLAN K WHEN ZERO]

3VALUE IS E literal-1 [THRU literal-2] I:literal-S

VALUES ARE

[THRU literal-4]. :l .

General Description: The level-number shows the re-
lationship between items in a record.

The highest level is 01 and the lowest level is 49.
Level 77 applies to non-contiguous items of data that
are elementary in themselves. Level 88 denotes a
condition name and must appear immediately after
the entry that describes the data name with which a
condition name is associated.

Each level number must be associated with a data-
name or the key word FILLER. FILLER must describe
items that appear in records but are not referred to
within procedure statements. -

15

Complete Checking| Partial Checking

DATA-NAME INPUT | OUTPUT | INPUT| OUTPUT

ID or
IDENTIFICATION 10 AN | 10 AN 10 AN] 10 AN

CREATION DATE 5N

RETENTION-CYCLE |3 N 3N 3N
FILE-SERIAL~

NUMBER *5N |[*5N
REEL-SEQUENCE-

NUMBER *3IN|*™3N

* The use of a FILE-SERIAL-NUMBER entry implies full
label checking.
** |f not specified, 001 will be assumed.

Figure 19. Data-Names and Lengths of Their Associated Literals

Items must be written in the record-description
entry in the same order in which they appear in the
record.

CHARACTER([S] {I

SIZE IS [integer-1 TO] integer-2 [% DIGITIS]

[DEPENDING ON data-name]

General Description: This clause tells the processor how
many characters (or digits) the data item contains.

This size is interpreted by the 1401 cosoL proc-
essor in terms of characters if either the optional
word CHARACTER[s] or picit[s] is used or if neither
of the optional words is used.

To specify the sizes of variable-length records,
(form 4) integer-1 and integer-2 and DEPENDING ON
data-name must be used. Integer-1 specifies the num-
ber of characters in the smallest record and integer-2
specifies the number of characters in the largest rec-
ord. DEPENDING ON data-name identifies the elemen-
tary items whose value is the record character count
(refer to Record Character-Count Field). Integer-1
and DEPENDING ON data-name may be used only with
form-4 records.

16

Example: Figure 22 shows a size entry for a form-4
record which can contain from 50 to 150 characters.
RECCOUNT is the data-name the programmer has used
to identify the RCC field.

The size of fixed-length records is specified by
using the form:

CHARACTE
SIZE IS integer-2 l: ACTERIS] i]

DIGITI[S]

where integer-2 is the exact number of characters
contained in the record or item of data.

Example: Figure 23 shows a size entry for a fixed-
length record whose size is eighty characters.

[OCCURS integer-2 TIME[S]:I

General Description: The occurs clause describes a
sequence of data items of the same format. For ex-
ample, if a rate table contains ten rates, each made
up of five characters, fifty storage positions can be
reserved for the rate table by using one occurs
clause. An individual rate from this rate table can be
referred to in the PROCEDURE DIVISION by subscripting
the data-name assigned to the rates. The maximum
number of positions that can be reserved by an
occurs clause is 999.

Example: Figure 24 shows how an occugs clause for a
rate table may be coded.

In the PROCEDURE DIVISION a statement using RATE
(2) as a subscripted data-name can refer to the sec-
ond rate in the rate table (Figure 25).

The occurs clause may not be used with an item
whose level number is 01, 77, or 88. Integer-2 must
be a positive numerical literal having an integral
value greater than zero.

LEFT

POINT LOCATION IS %
I:——- RIGHT

integer-3 PLACE[S]:'

General Description: This clause describes the decimal
point location for a number so that the processor can
provide for the correct alignment of assumed decimal
points during computation. It can be used only with
an elementary item. Integer-3 must be a numerical
literal with an integral value.

Example: The poinT clause (Figure 26) causes an as-
sumed decimal point to be located two positions to
the left of the units position of the item whose data-
name is GROsSPAY (999V99).

Note that the assumed decimal point is not in-
cluded in the size of the item because it will not
actually exist in 1401 core storage at program-execu-
tion time.

ALPHABETIC
NUMERIC
ALPHANUMERIC
AN

CLASS IS

General Description: This clause tells the cosoL proc-

essor assumes items not specified by either of these
clauses to be alphanumeric.

NUMERIC specifies an item that consists entirely of
digits 0-9, and a plus or minus sign if one is neces-
sary.

essor whether an item is numerical, alphabetic, ora gy 1s
combination of alphabetic and numerical characters e A:i-z)A TA" 2o 24 20 %z % 40 a4 48
with or without special characters (alphanumeric). It R
is required only if no ricTure clause is included in
the source program. The crass clause may describe Figure 21. DATA RECORDS
both elementary and group items at any level.
The sample problem shows cosoL entries without : .
. . A 's
cither class or picture clauses. The 1401 cosoL Proc- e % e s s s m s s a s
Lo SLZE LS S0 TO 150 DEPENDI NG OM RECC.OUNT:
lll:IIlllllllIlAAlllllllllllllllllll el
NS Figure 22. size Variable Length
? 8 lg 16 20 24 28 32 36 40 44 48 5=2.
Lo WALUE OF 10D (1S M PAYRLMASTRY v iiiiaiaay
L1 RETENTION=CYCLE A8 2860 s = T I
L CREATION-DATE 1S 64020 L ga 18
Ly FILLE~SERI AL~NUMBER 1S 12345 (1 010110014, AL 22 L 20 24 28 32 36 A9 44 48

,_.LJ_A_|BA§LI EE:IS.EIQLME.N.GE-uMMMBLEJL OO0 v gy

Figure 20. meNTIFICATION and Retention Cycle

Lo OVZE 1S RO CHARACTERS v v v vy

T T T T U Y T T U Y Y S T G YT T 0 U 0 O S U B W1

Figure 23. size Fixed angth

17

T
A :B
2 16 20 24 28 32 36 40 as a8 52 56 60 64 68 72
]
Oillm_m‘&'llll'llllllllllll]llll'llllll|l|l||‘llllllllllllll
JJIQZRATEMWM&E_MMJJ&&Snnn:nnxJLAII|n-l

llllllllllllllllllIlJIlljljlllll]ljljllllllJllllllllllIlllllllll

*lCON‘IT

Figure 24. OCCURS

T
A : B
8 (2 (] 20 24 28 32 36 49 44 48 52

Lo MoviE RALE (2, Tio FLELDL v v vana i ia s

~CONT

Figure 25. Subscripting

ALPHABETIC specifies an item that consists entirely
of the letters of the alphabet and spaces.

ALPHANUMERIC specifies an item that consists of
any characters in the 1401 character set in any com-
bination (all numeric, all alphabetic, or mixed).

Example: Figure 27 shows a cLass clause that defines
a numeric field of five digits with a sign over the
units position.

Any allowable combination of characters and

[m IS symbols as described in Chapter 6 (coBoL GI)

General Description: The picture clause can describe
elementary items. It can be used instead of the size,
POINT, CLASS, EDITING, and BLANK clauses of a record-
description entry to state the characteristics of an
item in a more compact form.

The rules for forming a picture for a data item are
given in the coBorL General Information Manual.
However, with 1401 coBoL the S symbol for an op-
erational sign should not be used, and the ele-
mentary item generated from a PICTURE clause
must not exceed 999 positions of core storage.

Example: The picture clause shown in Figure 28 de-
scribes an item whose data name is 3C-oNE. The

size of this field is five numeric characters with an
asumed decimal point two places to the left of the
units position.

LEFT

l:]USTIFIED i RI GHT}:I

General Description: This clause specifies the position
data is to occupy if it is moved during processing
from one location to a larger location.

If a yustiFiep clause is not included in the coBoL
source program, numerical items with be automati-
cally right-justified (the data in the units position of
the original location will be placed in the units posi-
tion of the new location), and the unusued positions
to the left will be filled with zeros. If a numerical
data item includes an assumed decimal point, align-
ment is made during the automatic justification.

ALPHABETIC and ALPHANUMERICAL items will be
left-justified (the data in the high-order position of
the original location will be placed in the high-order
position of the new location), and unused positions

to the right will be filled with blanks.

The justiFiep clause permits the programmer to
reverse the justification of an item (numerical items
can be left-justified and alphanumerical items right-
justified) except when an assumed decimal point has
previously been specified for the item.

Example: The numerical item pepucrt is eight charac-

ga I

Zle 2 16 20 24 28 32 36 40 44 a8 52 56 60 64 68 7’4
vt 0% GROSSPAY (S1LZE 1S S RALMT LOCAT LON IS LEFT L. PhBOES CLAS

= i S LS NUMERAC L L L bbbl L

Figure 26. size and poiNT Location

=

g|A B

78 2 - 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

1S 5 POINT LOCATILON IS LEFT 2 PLACES CLASS .|

|IllllSI]NlulMElRlllcl.llIlllllllllllllllllllllIIIIIIllJlillllllllll

:
: 11 10131 lel-rlAXI islllel

§ N S T T I T S N T S T T T N N S W W W T T N I Ty

Figure 27. crass

18

ters long. During processing, a six-character field is to
be moved to pEpucr and is to be left-justified. Figure
29 shows a justiFiep clause that specifies that the
data moved to the pepucr field will be left-justified.

~CONT,

T
A '8
[] 12 16 20 24 28 32 36 40 a4 48 [}

JAL:IIIIIIM zc-m&ﬁilﬂ,lﬂﬁﬁ ‘&aiﬂ!‘ii'

PO U TN T TN U U W N W Y A 0 W U U VA A W 0 U U U U W U W T 0 U0 A S U 0 B A0 O O W

Figure 28. PICTURE

Special Editing Functions

These cosoL editing functions may be used only when

the object computer is equipped with the expanded

print-edit feature:

1. HHigh-order CR or minus signs and high-order DB or
plus signs. '

2. Floating plus and minus signs, and floating dollar
signs.

3. Check protection (asterisk fill).

4. Decimal suppression for blank or zero fields.

Editing of a single-digit field cannot be specified in
editing or PICTURE clauses.

When the editing options for floating plus, minus,
and dollar sign are used, more than two floating char-
acters must be specified in the PICTURE or EDITING
clause. For example, if $$99 is specified, the $ will not
float, but zero suppression will take place. However, if
$3%9 is specified, the dollar sign will float and zero sup-
pression will take place.

If a group item is moved to an elementary item
that requires editing, the diagnostic INVALID USE OF
EpITING will result. (A report item can only receive
numeric data; the 1401 tape coBoL compiler considers
a group item as alphameric data.)

Editing Clauses

ZERO SUPPRESS
CHECK PROTECT
FLOAT DOLLAR SIGN }.

[LEAVINC integer-4 PLACE[S]:|

General Description: This clause permits the program-
mer to specify certain kinds of editing without using
a PICTURE clause. Only elementary numerical items
may be described using the eprTing clause.

ZERO SUPPRESS causes high-order zeros to be re-
placed with blanks up to but not including the first
non-zero digit or an assumed or actual decimal point
encountered in a numerical item.

When using zero suppression in either the PICTURE
clause or the EpiTiNG clause, the high-order position
must not be the only character specifying zero sup-
pression. For example, Z9 is incorrect, but ZZ is
correct,

CHECK PROTECT causes all high-order zeros to be
replaced with asterisks under the same conditions as
ZERO SUPRESS.

FLOAT DOLLAR SIGN causes all high-order zeros to
be blanked and a dollar sign to be placed to the left
of the first significant character or decimal point. The
EDITING clauses can be used only to affect zeros to the
left of the decimal point. Zeros to the right of the
decimal point must be cleared (if desired) by a
BLANK clause.

The LEAVING option restricts the suppression of
zeros or insertion of asterisks and the dollar sign by
specifying that a certain number of places (integer-4)
to the left of the decimal point are to be undisturbed
(unedited).

Example: Figure 30 shows an eprtine clause that spec-
ifies that high-order zeros are to be replaced with
blanks. Assume that a field called F1ca is to be edited
during processing in preparation for printing. If the
value of the field moved to Frca appears as 00508
before editing, it will appear as 508 after editing.

v
A : B
8 12 16 20 24 28 32 36 40 44 48 S

... 04 FICA SIZE |5 b ZERD SUPPRESS- ..

'
PR TS UV 100 N0 T U S U U U W YOO A Y VA 0 U O Y 0 N N G T T O U W U O O S

~NCONT.

Figure 30. Editing

I:BLANK WHEN ZERO:I

General Description: This clause causes the described
item to be filled with blanks whenever the value
(contents) of the item field is zero. It can be used
only with elementary items. BLANK WIEN ZERO over-
rides all editing specifications prescribed by a pic-
TURE Or EDITING clause.

Example: Figure 31 shows a BLANK WHEN ZERO clause
used with a FLOAT poLLAR si6N clause. Without the
BLANK WHEN ZERO clause, a zero pay field would ap-

[T
§A {a
7|8 2 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72|
I .
L 0% DEDUCT PILCTURE (1S 408D, JUSTUFIED dEBFTer 0 g a1
]
P U TN VUG SN R N NN N NS NN NN (D SN Y (N WS (NN 00 (N0 SN SO NN (N T NS U (N U N SN0 NN T Wy NN (NN T N N O N T TN TN WOV TN WY N (NS TN AN U TN NN U NN U Y N N O |

Figure 29. JUSTIFIED

19

-
A : 8
8 2 16 20 24 28 32 36

~CONT.

44 48 52 56 60 64 68 72]

bt 04 PAY SIZE 1S T FLOAT. DOLLAR SIGN BLANK WHEN ZERO- ., |

llllLLllllllllLllIlIllllllllllellJllllllllllllllllLllllllllll‘lJL

Figure 31. BLANK WHEN ZERO

pear after editing as $.00. The BLANK WHEN ZERO
clause causes seven blanks to appear in the pay field
when it is edited for printing.

; VALUE IS

% literal-1 [THRU literal-2] ':literal-3
VALUES ARE —_—

[THRU literal-4] ven]-

General Description: A vALUE clause can state the ini-

tial contents (value) of a data item in the woORrkING-"

STORAGE SECTION 0T CONSTANT SECTION. It can also be
used with the THrRU option to define the value of a
condition name (level-88 item) in the FILE SECTION
and WORKING-STORAGE SECTION.

If the vaLUE clause is not used to define the initial
values of WORKING-STORAGE items, their contents at
program execution time will be unpredictable.

If the vaLuE clause specifies a numerical literal,
an operational sign will be developed (placed over
the units position of the numerical field) only if the
literal is preceded by a plus or minus sign. A figura-
tive constant may be used in the vALUE entry where
a literal is specified.

A '8
[]

[~CONY.

ls 16 20 24 28 32 36 40 44 48 32
L IQZ.I m‘.l&uhs_i_x_l_l_u_)_u_u_u__L_U_LJ..x NS W SR | "t‘

i BR FALSE MALUBE 1S5 & Fer v

'
I T S 0 U W U T U Y W S U T I TV

it BB TTRUE NALUVE 0.5 1 THRU Der o v viaaa ™y

P T VA A S U Y Y S N T W O O B}

Figure 32. vALUE

The THRU option is not described in the cosoL
General Information Manual. It may be used only
with condition names as shown in Figure 32.

I: REDEFINES data-name-2 :l

General Description: This clause permits the program-
mer to redefine areas of storage that have been pre-
viously defined by a record-description entry.

Note the following additional points in connection
with the use of REDEFINES:
1. If data-name-2 is not unique, it must be qualified
by one or more additional names until it is unique.
2. Data-name-2 must not be subscripted.

Example: Figure 33 shows a REDEFINES clause used to

define a table of constants.

The Constant and Working-Storage Sections
The record-description entries described for the rFiLE
secTION apply also to the CcONSTANT and WORKING-
STORAGE SECTIONS.

These sections begin with the header line workiNG-
STORAGE SECTION Or CONSTANT SECTION and are followed
immediately by the record-description entries.

Added Elective Elements of the Data Division

These elective elements of the record-description

entry are not specified in the coBorL General Informa-

tion Manual, but are contained in the 18m 1401 cosoL

processor:

1. The pEPENDING ON data-name and the To integer-2
options of the size clause.

2. The thru literal-2 and the literal-3 turu literal-4
options of the vaLuE clause.

Deferred Elements of the Data Division
The copy option is contained in the cosorL General In-

formation Manual, but is not contained in this version
of the 1BM 1401 coBoL processor.

The UsAGE, siGNED, and sYNCHRONIZED clauses have
no meaning in a 1401 coBoL program and should not
be used.

A group mark should not be declared as an alpha-
meric literal.

Za s
? 8 ,IZ 16 20 24 28 22 36 a4 48 52 56 60 64 68 72|
0)1 1 1ALP|HIAﬂE_I|_]I)A&_LE]_L]E}LMmEl J S X (I:LOI‘{I) N T U T Y U N O N W (N I T T AN W VN Y O O W O S

"

Figure 33. REDEFINES

20

L1l .VALnU:E: u |S| M A=04.R=0 Q.G_.aln._.oll.E.- DAMM

‘1--AL-PHM&MMEMELIA&LEH-lHnLHHHHlel
JIIbW&[II‘MESIlllllllllllllill

The PROCEDURE DIVISION is the operational part of the
coBOL source program. Once the data has been de-
scribed, the programmer tells the coBoL processor what
steps the machine must take to read the input data,
process it, and write it as output on punched cards,
magnectic tape, or a printed form.

The coBoL verbs are the main elements in the pro-
cepURE DIVISION. They are described in detail in the
coBoL General Information Manual. However, some
verbs have special meaning when used in a 1401 coBoL
source program. This additional information is pre-
sented in the following section.

The DISPLAY Verb

General Description: The M 1403 Printer (1403-P) is
the standard output unit for the pispLaY verb. How-
cver, information may also be displayed via the 18Mm
1402 Card Read-Punch (1402-P). As many printer
lines or punched cards will be used as are necessary
to display the information contained in the area of
core storage whose data name is specified in the
DISPLAY statement.

The object program initiates a skip to channel 1 in
the carriage tape if a form overflow occurs in the
1403 printer. If the pispLAY verb is used in the PrO-
CEDURE DIvVISION to address the printer, the processor
assumes that the printer will have a carriage tape
with punches in channel 1 and 12 (overflow) at
object-program execution time.

Examples: The statement shown in Figure 34 will cause
the contents of the area whose data name is GRAND-
TOTAL to be displayed on the 1403 printer.

T

A 8
8 LZ 18 20 24 28 32 36 40 44 40 L34

2 DISPLAN, GRAND-TOTAL 4t et a it ias

T U T Y W T W VA U O 0 S U U N T W W S W B W}

I~NCONT.

Figurc 34. PRINTER DISPLAY

The statement shown in Figure 35 will cause the
contents of GRanD-ToTAL to be punched into cards,
if the mnemonic-name cArp PUNCH has been as-
signed to 1402-F in the sPECIAL-NAMES paragraph of
the ENVIRONMENT DIVISION.

T
A 8
(] ﬁ 18 20 24 20 32 36 40 44 48 82

NCONT.

Procedure Division

The ACCEPT Verb

General Description: The 1BM 1402 Card Rcad-Punch
(1402-R) is the standard input unit for the Accepr
verb.

Example: Figure 36 shows an accepr statement that
will cause data to be read from the card reader and
moved to an arca whose data-name is CANCELLA-
Tons. If more than eighty storage positions are de-
fined by canceLraTiONS, multiple cards will be read
from the 1402 until the area is filled.

= T
§A :B
718 LL 18 20 24 20 32 36 40 A4 48 52
20 I S | N
0
L ACCEPT CANCELLATLQNS v v iy
N
O S TS G PR U U T N I T N T Y T T T 0 N T TN N W Y T W T O T Y TS S Y TN A T S B A O |

Figure 36. AccepT

The WRITE Verb
Reference Format
WRITE record-name [FROM arca-name]

[AFTER

BEFORE mnemonic-name

ADVANCING i intcger LINES]
General Description: This statement causes a logical
record to be released for an output file.

Record-name is the name given to the record de-
fined at the 01 level in the rFiLE sEcTION of the DATA
DIVISION. Area-name is the name given by the pro-
grammer to the core-storage area from which the
record is to be written.

The apvaNcING option is used for spacing lines on
output documents on the 1403 printer (1403-P).

AFTER and BEFORE in the ApvaNcING option control
printer carriage spacing before or after the wRITE
verb is executed. Integer LINES specifies how many
lines should be spaced. Mnemonic-name is the name
assigned in the sPECIAL-NAMES paragraph to a chan-
nel in the carriage tape and is used when carriage
skipping is desired instead of line spacing. The skip
occurs to the line that corresponds to the specified
punch in the carriage tape.

Examples: Figures 37, 38, 39, and 40 show sample
WRITE statements.

T
A 8
L] L‘.g [20 24 28 32 36 40 44 48 82

(~CONT.

A YR TWA &MD;IQIALMJAR&:MM.

U N T T S W U U T S TN T Y U W U U G S N U Y U0 W G B S G W A S T G Y W W W

Lo WRITE ENPRONEECRECORD o 1 v 00 i tou iy 0

'
VIS W N Y Y Y U Y T WY Y T S T U Y U T T U U T T W U U O B T G

Figurc 35. PUNCH DISPLAY

Figure 37. WRITE

21

T
A : 8
8 12 16 20 24 28 32 36

~CONT.

44 48 52 56 60 64 68 72

L WRITE MASTER-OUT: FROM MWWML@

PR T TN T O U U Y U W N O U T T W T W U W N Y S W U U T U W U W W O T T U U WU W O U0 T O O O B TN

Figure 38. WRITE AND SPACE BEFORE PRINTING

T
A : 8
8 12 16 20 24 28 32 36

~CONT.

44 48 52 56 60 €4 68 72

Lo WRIUTE I NVOLCE, BEFORE, ADVANGUNG T:0-CHAN-SEVEM 1 o 1 1000y 0

'
A0 0 U000 TN VO AN SN U S N S SO T Y T VO O ' TN WY T T N N W N T T T N T T T (N T T T O A T T T T Y O O O O O O O O O R R R

Figure 39. WRITE AND SKIP AFTER PRINTING

ga e

718 2 16 20 24 28 32 36 44 48 52 56 60 64 68 72]
1||:l|F| ~P.AE N) NVQOLCGE- LN FOM VIO =HeFDER -

=l 1 NE AFTER - LNVOLAE-LINE F
i1 1 J‘NV|O||CIE'|DEITIAIJL|-LL1N|EL'J WS N N TS DN U NN NN U SN (NN U U YOO N 00 TN T T NN VNN N0 VNN WU WO NN NN IO W SN (N U NN (NN U O NS TS OO OO ¢
1lll'l]|lll|llLIllIllIlllllllllllllllllllllllIlIlLlllllll‘llIllll

Figure 40. CONDITIONAL WRITE

The EXAMINE Verb

Reference Format

ALL
LEADING
UNTIL FIRST

| literal-1 [REPLACING BY literal-2]

TALLYING

EXAMINE data-name

LEADING

REPLACING
l [UNTIL] FIRST

literal-3 BY literal-4

General Description: The ExaMINE verb is used to re-
place a given character and/or to count the number
of times it appears in a data item.

Any literal used in an ExaMINE statement must be
a member of the character set associated with the
crass specified for data-name. Thus, if the descrip-
tion of data-name in the paTa pivisioN specifies a
crLass that uses less than the full character set (nu-
MERIC Or ALPHABETIC), then each literal used in an
EXAMINE statement must be one of the characters in
the restricted set. Thus, if the class of date-name is
NUMERIC, each literal used in the statement must be
a numeric character.

22

All literals in ExAMINE statements are considered
alphanumeric, are one character in length, and are
enclosed by quotation marks. When an EXAMINE
statement is executed, the examination begins with
the leftmost character of the data item and proceeds
to the right. Each character in the item represented
by the data-name is examined in turn. If the data
item being examined is numeric, any operational
sign associated with the item will be ignored.

The effect of an ExaMINE statement depends on
the options employed by the programmer as follows:

If TaLLYING is specified:

A count of the number of certain characters in
data-name is made when the TALLYING option is
used. This count replaces the value of a special reg-
ister called TaLLy, which is accessible to the pro-
grammer. The count depends on which of three op-
tions of TALLYING is used:

1. If arv is specified, all occurrences of literal-1 in
the data item are counted.
2. If LEADING is specified, the count represents the
number of times literal-1 occurs before a character
other than literal-1 is encountered.
3. If unTiL FimsT is specified, the count represents
the number of characters that are encountered be-
fore literal-1 first occurs.

If rRePLACING is specified:

The replacement of characters depends on which
of the four options of REPLACING is used when the

REPLACING option is used either with or without the
TALLYING option:
1. If arvL is specified, literal-2 or literal-4 is substi-
tuted each time literal-1 or literal-3 occurs. Literal-2
is substituted for literal-1, and literal-4 is substituted
for literal-3.
2. If LEADING is specified, the substitution ends when
a character other than the literal (literal-1 or literal-3)
is encountered or when the rightmost character of
the data item is reached.
3. If unTiL FIgsST is specified, the count represents the
number of characters that are encountered before
literal-1 first occurs.
4. If First is specified, literal-3 is replaced by literal-
4 only the first time literal-3 occurs.

Example: Figure 41 shows a use of the ExAMINE verb.

The ENTER Verb

General Description: The ENTER verb permits the pro-
grammer to use Autocoder statements in a COBOL
source program.

The language name used with 1401 cosoL is Auto-
cobER. The Autocoder statements must be presented
to the coBoL processor immediately following the
ENTER AUTOCODER statement, and they must be fol-
lowed by an ENTER coBOL entry that indicates the
point at which the cosoL source language is resumed.

Each ENTER AUTOCODER statement must constitute
a separate paragraph in the source program. The
ENTER COBOL statement used for returning to cosoL
from Autocoder must either constitute a separate
paragraph or be the first entry of a paragraph. The
name of the paragraph must be on the same line as
the ENTER CcOBOL statement.

These specifications must be maintained when
using Autocoder entries in a COBOL program:
1. Autocoder statements must be coded in Auto-
coder format (label starting in column 6, operation in
column 16, and operand in column 21).
2. The symbols used in Autocoder statements must
be five characters long.

IBM COBOL PROGRAM SHEET s
‘PAGEz PROGRAM 3 0 M) JNE SAMPLE SYSTEM JomEET oF
|, | PrRosrammer DATE IDENT IS
SER!AL%A EB
4 e|7]8 j2 16 20 24 28 32 36 40 a4 48 52 56 60 64 68 72
0:011 _TDfn/ﬁﬁluFl/lCAZ‘/umM DIVASLOM- 3 000 g L bt L 4
02 PROGRAM 1D -\ THEEXAMINE=VERB - | 1 1 L 11 111110 L el il L]
O3] ENVIERONMENMT, LIVILSHOM L 4t s L F R I BT B B A S R
0.0 |CONRIGURATION \SECTLOM 1 1 1 1+ 1 11 1 L1ttt Lt da 1 14 1]
[o)X) ‘;|0|URGE:"IGO:MHU:FE!AT-1 TLIBM-1/ %0 MElMﬂ/ﬁM S/ ZE Y000, \CHARARCTERS -1 « 11 11111
.06 IlBlJﬁ:&Tl-iﬁtOlMP:l/(r mgﬁ&ﬁiﬁﬁmm Y lzéJ_Lg_ﬂ_LQLQl_IQMMlﬁSJ: Llot i 4 a1 L1
007 DarA |12/‘VL/J.‘.'LL/|0M-||1|1||||>||1|: AR N N TS S U S U S U N U S W N WO N (A0 U 0 B S B S G AN R
VoK M@m&&éél ISIEGITf/IﬂMdllllllxllll1!11LLL||||||111||1|||14|11|1L‘
09 |\ 01, AMSLIES PULCTURE /S XX XXN Nt 11 Lt ittt 441ttt ot bttt e 1]
i 'o.M.ﬂTﬁ(Mﬂ WSECTI/OMe) 1 b L b Ll g o dd ol Lt]
vV L 177 LOMSTL PLCTURE 1S XK XNXXX NVALIUE 15 N 401000 11 L
L |y T2 COMSTE \PirCTURE (1S X(6) VAMUE 1S 417383 er L s
3L 177 CoMSTS PLOTOEE 1S5 1 X(6D, Y AMUE. /S, M RASTSTLR L
O/l? /Dlﬂqc:glaalﬂé‘l |AIIM/‘5|/|0IM'I U N U I Y N O S T N Y W U U N O NN T N WS WO U VO Sy N N S Y WO O T Y Y T S T OO O |
0/5T 6. TAR 7w MAVE, CoMNS T 7i0, AMSEEL (\ 1 1 s I AR A |
006 |, EXAMINE ANSWER TALLY L NG Akk ‘L' RELLALI NS BY Al LoLba i
LA | o DLSPAAY. ANSRAERL - | 4 i L L
OLB |\ EXAMINE ANSUEL RELLACIME Blh B B P oo (4 L
l[! | - :DllﬁlPlL‘Al;/l lAlMSIM&‘I {7000 NN NN O Y (O N TN NS T N N W U N T N O VU VOO U Y Y T U Tt O SO NN NN (S U W U T O 1 O Y OO S Y S
020 |, MOWE COMETR 70, BMSUELs, « 1 1« 1 1 1 ad L1 L 1 a1 daa |
o/ L EXAMINE HMSUEL. LGP IACING LEADING L BY Ny e Iﬂ/,éfL&ﬁ\%,M&f_éLﬁu_,
& 2] 11 1 ‘m dl l’l&l Lcl oMél,‘]al 1L 7To| AMswE|£’ TSN W A) N W S Y U N S SN U G O (N NN U (Y T W T S Ty NN N U [N OO T T W O T M|
ﬂ,l.j Ll f]X/)lM/luél A SWUE L, lﬂﬂllh%/Mﬁ VMT Ik FrST * 3. |D./.5.PK-AI;£ |7T”1L1‘-|!/|'| Lo L111 |
¥¥d |||blﬂt’nﬁl'lﬁﬂalﬂﬂmﬂlunl||1|||J|||||L|J11111111|||||.1||11111II‘J__4

W | | S T T Y L SO s N T YO T U T IS (SO VU T OO T O W U N O Y O IS [O T I P T N W N T (O S T O T T T W U |

Figure 41. ExaAMINE Vcrb

23

3. Autocoder statements can be written to refer to
coBoL names if they are related by entries in the
SPECIAL-NAMES section of the coBoL program. How-
ever, COBOL statements cannot be written to refer to
Autocoder names.

4. The word-mark status of a constant or area de-
fined by a cosoL statement must be the same after
the Autocoder statements are executed in the object
program as it was before they were executed. Thus,
if it is necessary to write an Autocoder statement
that sets or clears a word mark in such an area, the
word-mark position of that area must be tested first
so that the word mark can be reset or cleared before
returning to the cosoL program.

5. No 1401 SPS statements can be included.
Example: Figure 42 is an example that includes a sec-
tion of Autocoder statements.

6. Macro instructions may be given which refer to
macros in the Autocoder library.

The STOP Verb

Reference Format

literal %

N
STOP i RU

General Description: This statement produces a 1401

HALT instruction which stops the execution of the
object program. The run option of the stop verb
causes an unconditional halt, and the program can-
not be restarted.

If the stop literal is numeric and within the range
0-99, the literal 000-099 is displayed in the B-register
if the halt occurs during the running of the object
program.

IBM coBOL PROGRAM SHEET bty
'PAGE3 PR:::A:MER EA/ rm Jﬁmpés‘ SYSTEM , SHEET / OF 3 .
PROGRA| DATE IDENT. 73
%{F ; L 41 1 1 1]
3lA '

4 [? 8 ||2 16 20 24 28 32 36 40 44 48 52 56 60 64 68 75‘
Olo /J_Z_Eurllﬁlclmrleng U,|$,IQM'I § U T N TR N N U N TN Y TN T NN N T N NN N U T W N TN T NN TN T (N T TN N O S N O T Y |
0,20 PRGMEMTEE,VER@-.UH...in....1......1......u...|.u|
Q‘i‘p EMM Q_M._Mnléi, Vl, Isl’ olM‘l F I N T NS (N TN W TN NN SO N N I TN (N N O TN JUNNY NN T Y U0 VU T T U0 NS SN N I [Y O T T O Y T Y 1
040 |CONAIGURATIOM SECTV/ONMNet 1 1 1 4 1 110 1 v b b g
05,0 SDIQQC.E.-CPMPMTE@H III%MMAM l’Sl 40001 |ciMM|4lclrlé_fers|'l L4111
060 - CioMpP, 0Ly, 3 00,0, CHAHRACTERS o\ \ + \ 11
0|7|0 lelé-lc:,ﬂl IMﬂﬂflsl-l) N T U T TN TN T U T T N N T T T VOO T T Y T SO N N NN (N T U T T T N OO W U T T YOO T U T " OO T T Y
aY.q% 11t Wllﬁlﬂ’l NS IA'MMI T N T T T VA T TN OO S OO S N T W U T T T YO N T NN T OO N W I YO W T S W Y 1
q?lo 11 .t 'melMﬁl |IIS| ICpMan ,l.l I 1O T (N T N T TN N T TN T [N O O I U N N N O Y TSV N T W N T T T T N TN N N T N Y T O N I 'Y
100 |\ MPLYR IS \CORSTIZ s 1 5 1 v 1 v i b et i b s
’b’lo a1 . I-rA'EIrI I,ISI |5EQRT.-| { R VU TN TN SO VOO SN U TN N N TN T TR OO N T TN N T O T S T [N T U N S Y WO T A U N T N N T T O N 1
2.0 1 i AMSMWC|fMO| RN T S O N S AT AN N TN N S T TN G WA AN TN N WU AT N N T AN U PN MEN S NN M A A
Dﬂrﬂnpnf‘//bﬁ/pﬁfannnxu|_\||||1111||||1||||||4|||n|1||1||||||||»1|||
’l4lo o I 6 S |E| J‘EIGI, &M' § T T T T |) T T N N I | B D N N RO NN W N G (S TN T NS U NN TN TN TN TN Y TN T TN S)
11 :0|,| A&gﬂgﬁt.ﬂhﬂs. S, INthTR/‘.I ﬂl 2& l,lsl PO i v
Ibo 11 1 la ,l lpfklchT4 QE C L 0$'s| 1 ’ Sl IMUMQ l CI lsl , zé; l, :I , al. T D S (N Y RS W TN NN TN TN I S W SO N |
’|7|o i1 1 Iall l””slgﬂil Q |£|£"é; 1 ‘!:g’! ilfe’ gl Sl‘ lzlé ,ls. ﬂl'l | S Y T T N T T T T NN T N Y N N TN TN T N N T N |
,Iylo aoﬂrrﬂlﬂn lsﬁqul IQM'I [W N T VOO N W VO YO T T O TN S W VS N T Y Y T O T TN T T T TN NN TN N N N T T T T T TN N T T S T 1
’l?lo 1 1 1 :7!71]C|0M8|77,| |P|I IC|7—I”If[El l/Sl I9I9I9l9l9| |VI4ILIMIE: IIlSI |fl42|20|010| N S I N Y T N N N TN TN YO0 O B Y1
gLoLo - | :7171 l[loNl sl-"lzl Ipl/lquaﬂg 5 I/lSI |9I9l IVIALI“IEI l,l's.l #1"8[.. | I T I T N Y T TN TN T T TN A I S Y S I T Y A |
’p p&acfaalkﬁ lDI’ I‘/l,lsl/lolM'l 111 .l 11 1 I‘ N I TN NN N (N WUR N NN N N NN N NN NN TN N N N W T T N TN AN OO N Y IO Y N T O At A |
2.2[0 ggc;l/ |M. 1 Eﬁ TIER |4017:qq0l%lgl K% W Y T WY WA T W U S W U N U W YN N N TN TN T T TN T Y TN TN O T T TN T W N T U U T T T T
11 |l|:l||lllll|llIII]IIIII[[!IIIII[IIilllllllI'lll_l_lllllllllijllll
1 1 lll:lllJ_lll‘Illllllll]llllIl‘lll]l]llllllllll‘IlllllIlllll'l|l||
L L1l : W [Y I T Y T N Y S I TN N TN I T T T TN NN T N T T (Y TN N N T TS AN T T O T N N O YU 1O Y I T N N TN TN U N N N OO V0T S S N |

Figure 42. ENTER Verb, Part 1 of 3

24

Progra

IBM

m &7 WY PR E

INTERNATIONAL BUSINESS MACHINES CORPORATION Identification . . .
76

Progr.

Date — .

d by IBM 1401 AND 1410 DATA PROCESSING SYSTEMS 5’
AUTOCODER CODING SHEET Page No.2L! of

Form X24-1350-1
Printed in U.S.A.

| Line | Label J?pm::} OPERAND
sls 156 2ol21 25 30 35 40 a5 _s0 55 60 65 70
0,10 ZE

e PMe RoS, AREAL o\ i

PR

0.2

o PMACWAMPAY R, ARERL=ZQO | | 4o

P R

030

ArS77 1 . . CE TSJW;AI,?a..o...,,.A.....‘.u.....‘.‘,...L...

049

. |BCE, |TSTWHM, PREAL-RBOZ o\ o i

[X-¥7] B A cﬁ”aﬁkfﬂiglllllIlllAllllAlIllllAllAAAJIIAILAIIIII
060l ol 15 NTOGAREAT-20 o e
07D£TSTL.J4LL.

0,80

ISTLIM . |\BuZ

0,9 9

P)

e MACWRAREAL TG AL [\ i i

1,00

PO SR | Lo WA .(7:5/1...A.nl..nn.;:l.l.xnuxn.1.4‘||A|.J||A||1|‘AA|A

11,0

ASTd . |BWZ | AASTELAREAL-TRyL .\

1,20

S IfﬂlizLJ_Lg_.;LL

1,3

..nln-..ﬂl-L’M = S5 S TN N TN VA VY S Y WS WY YA VOt G VS S W

1,0

R 77 2) ..,Szda,e.L¢4L

T R T |

1,50

BOEL M.S.Tﬁ5,&)/9/’1,,..|.“...A.4_.JA...A,.....A....A.......

T S

ed ,

i OLd DEAL TR o oot e

11

1,7,0

WAST L | . 1B SZARZ \ o e adeeba

1,8,0

ﬁ-s.f.g. lxn&‘cl‘1“’l;l§!umzllllllllIlllLllJ_LJAIIIJA‘iAIIJJ_.IIllLlAllll

1,9.0

N R o S N2 A R S S

20025005, 1, . D2 o 0000000400000 « x4 44
Z.U.OSMB.G.K Lo .C'.ﬂ L P S S S G S S S U S S S WY G SV U WA VU SO ST S U0 TN Y S VA S Y ST S S S Sy S T TP U S S S S S S T S
3 ¥ o, ST MU USRI WY S SRS U WY ST S S T ST S0 WA SN T SN SN S S TN SO0 0 WS S TN G ST SN ST SO S A WO S S S SO WOt S S N S S
2‘!0 PR L L4 1 11 - R S S | il i B G W S Y S S N1 L1 a1 [W WA WU NN T N S S) S B S U DR G S W | U S 11 8 |
2,99 TR PR MO P U N S S T ST | U WS ST S U U T AN T TN SN S N ST WY TN U SN N T VAN S S TOON GO S S ST S U SN S A Y S
2‘5.0 T P . | Lod, 1 P P S | Lo Lol Ll i FEREE R WS N W GRN (D U WS TR0 SN (N N TR (N G N O S | J . deded b o F U G N N Y NS N S W | | S
e L\ PR . 1 1 1. 1 U G Y 11 I N S S U U WS WY U S N U GO NN GRS SR U G N SHN WNUR S U WY VNN VN VNN TN U N W U S Y F U | 1 J L U S S Y
-t - 1.1 4 1§ 1 11 i 1 11 1 1.0 1 1 i 3 l_l i1 ‘ AN W W U SN SN (N U SN SN R SRR NN NN VRN AN Y SN N N G S § U W U N N B S S 1 4.4 1
NI BRI B B R P WIS N S SN ST SN S S ST VPO T S S S S SO S ST S S S S SO S S ST S T S U SO0 SN S ST S S ST S WU S S
i1 T il 4 i T S T - U W W S T SO S S W A S | T WD T Y S N | I — F I S WD U VR N N T T RO S [WY SN Y W SO S S SO T S G I T

(R S SRRy SN SN [Ry SN S S SR SN GUP SR SO SO G S S, S S S S, S, SN SN S, S S ——

Figure 42. ENTER Verb, Part 2 of 3

IBM COBOL PROGRAM SHEET o e

PAGE
! 3

PROGRAM SYSTEM SHEET = OF x

FUTEL SHAMPLE

.09

PROGRAMMER DATE IDENT. 73
R S |

4 6

SERIAL|E

= T
§ A : B
7|8 2 I3 20 24 28 32 36 40 a4 48 52 56 60 64 68

(.0

S.rﬁ..e'ﬂ..ﬁuﬂ&& WOBOA 4y 4 1 gL b U b

L0

13

0,40

..HA/LS.MAMALSMA ~BOCHET 81 1 1 I Ly L Lty A I
anIlﬁlﬁM@:MUMWMllrailllllnml

05,0

060

||1:A/.slfﬂﬂ;//lupnfv(’ﬁ'lEuﬂTAGﬁ]w|4L||||LJ|||||||||1|1_|1||||u||1|||1||||1

1
L1t |G|01MA(AZE|: Q|M£ DTHEREL S E |.GQ1—J-E—|—IMEIAW&M[_L_L_LJ_LI—L.LLLLI-J_' L
COMBUTE - OME » COMAUTE PECCEUTAGE RowUDEL =1 ANS WEL- BUOKET, D 12085

0,7.0

Jﬁx.r_.r.emus/nt.armgwlqmns/q’/..AM NAD OF | EMTER EXBAMPAL = 4 1

04,0

11|137'0/1'1!5&01pltljiXﬂﬂﬂAlﬁlHl||||1a||n|||||x|nJ_Ll||||u1|||||11|1||

Figure

42. ENTER Verb, Part 3 of 3

25

If the stop literal is numeric and greater than 99
or if it is alphanumeric, the address of the literal is
displayed in the B-address register when an object-
program halt occurs.

Example: Figure 43 shows the sTop statement.

= T T
ga |8
718 Jh" 16 20 24 28 32 36 40 44 48 52
!
L WSTOP BUN i i
!

T U W TS U S Y T W U S G 0 N U I U WY O O W T W Y W S B I

Figure 43. stop Verb

The OPEN and CLOSE Verbs

The coBoL language, as specified in the cosor. General
Information Manual, provides the ability to open an
output file, process it, close it, and subsequently open
it as an input file. It also provides for opening an input
file, processing it, closing it, and subsequently opening
it as an output file. These procedures are not handled
by this version of the 1401 coBoL processor, and are
therefore classified as deferred elements.

Exponents

M 1401 cosor provides for integer or non-integer
powers to be used in writing exponents. The sign of
the power can be either plus or minus. Negative bases
cannot be raised to other than an integer power.

Conditional Statements

Option 1

IF conditional expression statement-1.

Option 2

IF conditional , statement-2
1K con itional expression NEXT SENTENCE

OTHERWISE statement-3 1
ELSE [NEXT SENTENCE

Option 3

statement-4 AT END statement-6
statement-5 ON SIZE ERROR NEXT SENTENCE

OTHERWISE statement-7
ELSE | NEXT SENTENCE

any imperative statement-8 followed by any conditional
statement-9

26

Statement-1 under Option 1 can be only a simple or
compound imperative statement.

Statement-2 and/or statement-3 under Option 2 and
statement-7 under Option 3 can be either imperative
or conditional. If conditional, these statements can con-
tain conditional statements in arbitrary depth. When
conditional, the conditions within the conditional state-
ments are nested.

Statement-4 under Option 3 must be a READ state-
ment, statement-5 must be an arithmetic statement,
and statement-6 can be only a simple or compound
imperative statement. Statement-8 followed by state-
ment-9 (to which the previous paragraph applies be-
cause it is conditional) is an illustration of an impera-
tive statement followed by a conditional statement.
This is logically equivalent to statement-8 followed by
a period followed by statement-9 beginning a new sen-
tence. Option 3 in its entirety may be substituted for
statement-2 and/or statement-3 under Option 2.

An ELSE or oTHERWISE must be explicitly written for
every conditional statement within a sentence. How-
ever, the phrase ELSE (OTHERWISE) NEXT SENTENCE may
be eliminated only if the phrase immediately precedes
the period ending a sentence.

Nested Conditional IF Statements

The coBoL programmer can combine several simple
conditional statements into one by using a technique
called nesting. The processor analyzes a nested state-
ment by working from the inside to the outside of the
statement. Thus, if all conditions are satisfied, the first
imperative is executed; if all but the last condition are
satisfied, the second imperative is executed, etc.

Figure 44 shows outlines for four simple conditional
statements. Figure 45 shows an outline for one nested
conditional 1F statement that produces the same results

as the four simple conditional statements shown in
Figure 44.

Figure 46 shows an excerpt from a coBoL program
in which four simple relational conditional expressions

are substituted for the conditions shown in Figures 44
and 45.

The block diagram in Figure 47 shows the logic flow
of the nested 1F statement in Figure 46.

Added Elgctive Elements of the Procedure Division

The ApvanciNG option of the write verb is not con-
tained in the coBoL General Information Manual, but
is contained in the 1401 coBoL processor. Conditional
statements within conditional statements are permitted.

IF {condition 1) AND (condition 2) AND (condition 3) AND (condition 4) GO TO LAB4 ELSE NEXT SENTENCE
IF (condition 1) AND (condition 2) AND (condition 3) GO TO LAB3 ELSE NEXT SENTENCE
IF (condition 1) AND (condition 2) GO TO LAB2 ELSE NEXT SENTENCE

IF (condition 1) GO TO LAB1 ELSE NEXT SENTENCE

Figure 44. Four Conditional 1r Statements

IF (condition 1) IF (condition 2) IF (condition 3) IF (condition 4) GO TO

LAB4 ELSE GO TO LAB3 ELSE GO TO LAB2 ELSE GO TO LAB1 ELSE NEXT SENTENCE

Figure 45. Nested Conditional 1r Statements

IBM CcCOBOL PROGRAM SHEET (St
PAGE | PROGRAM SYSTEM SHEET OF
: 3 PROGRAMMER DATE IDENT. 73 80
1Ll = ;) I A I T N T |
SERIAL‘% A :B
4 6718 k4 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
L | STALT- TF #=B T LD DE L=FA LF GaH GO 10 AABEL - K4SE Lo TO .
L i hABEM-B, ChSE GO TO_AABEL-R ELSEN 6O T0 AABEL=-L EMSE MEXT | 1\ 1 |
L1 L1 SMLE,E_MQEHI TN I T OO U T U S S YO Y N ST Y O A U A TN S AT Y Y T WY T A T Y NS DO O 0 SRS A
11 | - I N N N Y W N N I [N T T N N s T [T T Y O ‘S S Ty O A | l | O Y I N T Y O N T T R N O NN
11 ‘lel’l :MOIUIEI 1 14 I l"?a AMQ%&'I IGOI Im Isirmz'l 1N I N W T T TV S [N O T (Y T N S Y T T Y Y
Lt L1 lI N N Y Y VS N SO O Y (N TN N T S Y N O W N T (N T A Y T O O) ‘l [N WO N U NN (NN SN OO S N Y SN Y S T T Y O
L ABEL I‘aix- L MaVvE Zi 70 HMSWEL. 6O TO STAHLT «
L | I : | N T S T T N N O [T (R T N T T T N TSN N VO U (N Y VU SN N TN N T Y Y AU W A NN U OO N WO WO S GO S Y MY O |
Lt Ko.ﬂ&ﬂﬂmﬁ o MoVié L TO AMNSLIER - :GLQ. O STALT | L a1
Lt | . ’I NN N SN 1SN SN N S T TN T Y N S N T T SO [N Y Y U N N S N N N W N VY U Y TN TN O TR NN N N N AN O SN GO N S BN
| OBEL-3. BID | 1A | \Th ANSUER . LG TD START | + 1 1 1 1 I I S A S A B R R R
1 Ll : | SN Y S N Y T N N Y (Y NS (N TN N TN T O Ty TN N W T VY Y T T O O Y | 1 b Y U TN N Y Y Y B
| ka8 e, SOBTRACT 2 \FROM il G 1Ml AN SUELn Cull 7301 5 TAET 1+t s s
11 | I - .l (AN TN TN N N N (N T W N N WU VO Y N S O N T YOO N W Y (O N N S DU N N TN WU NN [T NN (N SN (NN AN T O Y TN N (O TN SN NN N MY
L1 Lt | : S T U Y O S N YA OO0 OO NN N SN NN N R SN TN SU AN T NN NN TN (N N NN DU NN U NN N AR (N TN N OO SN T AN | N U O U N T N O Y O B |
S 1 1 :) N T TN WOV TN NN N S S U N TN W NN N N (N TN T O (N TN TN Y U S X N SN O N I T N T T N N T T Y U S T Y IO SN GOy W B AN 8
| b~ : N Y (SO T T WO SN NN Y S N T YO Ty NN T T U T N T N N T T S Y Y N T Y T T T S N U N N T TN O S N T O T Y|
1 I .| : {1 NN SN VN NN Y S OO I N S (N O Y Y | l'l | SN TN N N Y N T N S T T T T S N T T I N Y Y A O
1 41 : N N TN TR R T T N TN T N Oy N T O Y N T (N Y T N S T T (O T T T N T N U N G N SN I W N VN SN T U Y N Sy NN |
1.1 ol 1 : N S Y Y N AN OO T T N I O T U U T N W T T N T T I T T T N T I T N I A A |
i S : SR TN TR T T T T T T Y SO T Y TN Sy W T N [' T T T (Y [TN (N N N N T (Y TN Y Y Y (OO I O T B O |
1 B : F N 1NN TS0 [Y TN N N N N NN TN T N [Y (OO O Y N Y S 5N (U D NN SN (N NN Y TN WU N Y N N SN TN 1O AN TN SN NN WOUUN Y [A VN T N (SO U N NN NN N A
Lot (1 1 : Y N T ISV VN Y O N [I O [I U N U T Y I N T Y O I S T I T T N T (N N N T T T T O Wy I A |
1 .1 11 : N N T SN Y SO O S W S TN N N T S TN NN O N TV N N N (Y O U T (N T Ty T T [T W I O I T (N T O o Y Y A I Y |
L il : G Y Y Y I U N N T N TV N N T U O Y [N TN N [N N T N O U U N T T T T Ty N S W N N T T T I I O T T) O S |

Figure 46. Nested Program Sample for Conditional 1r Statements

27

LB

Label=1

Label-2

Label-3

Label-4

Figure 47. Conditional Logic

Deferred Elements of the Procedure Division

These elements are described in the coBor General.In-

formation Manual but are not implemented by this

version of the 1401 coBoL processor:

1. The reEL option of the cLOsE verb.

2. The CORRESPONDING option of the MovE verb (elec-
tive).

3. The ability to process a given file as both an input
file and an output file in the same program.

4. The ability to use a group mark as an alphameric
literal.

5. The ability to use quote signs (@) within a NoTE
statement.

28

Character Sets

1BM Character Set H must be used for source programs.
This character set consists of the numerals 0 through 9,
the 26 letters of the alphabet, and 12 special characters.
The BM 1401 character set may be used only for alpha-
numeric literals. The following are cosoL (Set H) spe-
cial characters with their equivalents in the 1BM 1401
character set:

Card Code coBoL 1401 Meaning
(SET H)

blank space
u - - ik
12 + & plus sign
0-1 / / division sign
11-4-8 * e e mbol
12-4-8) 1 right parenthesis
0-4-8 (% left parenthesis
0-3-8 , s comma
11-3-8 $ $ dollar sign
12-3-8 ’ ' ; gggli(x)lilal point
3-8 = # equal sign
4.8 ' @ quotation mark

Figurative Constants

LOW-VALUE(S)

The value of this figurative constant is the space, or
blank. The blank character is the lowest in the 1BM col-
lating sequence.

HIGH-VALUE(S)
This figurative constant is defined as the integer 9. The
character 9 is the highest in the 1BM collating sequence.

QUOTE(S)
This figurative constant is defined as the cosoL char-
acter (Set H) for the quotation mark.

Additional COBOL Words

The following words constitute an extension of the list
of coBoL words contained in the 1BM General Informa-
tion Manual describing coBoL. 1 may be used in place
of mENTIFICATION. The meaning and use of the other
words have been described in this publication.

General Information

ADVANCING
BEFORE

LINES

VALUES

ID
RETENTION-CYCLE
TAPE

TAPES

NO-RELEASE
NO-OVERLAP
NO-PRINT-STORAGE
1402-R

1402-P

1403-P

1403-CT

1403-P-CB

1403-P-C9

1403-P-CV

1401-SS
CREATION-DATE
FILE-SERIAL-NUMBER
REEL-SEQUENCE-NUMBER

Class Conditions

The general information manual specifies that the class
of a data item is either numeric, alphabetic, or alpha-
numeric. It further specifies that the class condition
tests an alphanumeric item at object time to determine
whether it is wholly numeric or wholly alphanumeric
in content.

The source statement beginning:

IF FIELD-A IS NUMERIC . . .

results in a character-by-character check of the value
of FIELD-A at object time. If an operational sign is pres-
ent in the units position, the associated character will
be interpreted as being numeric. Thus, —9 is inter-
preted as minus 9, not as the letter R.

IF FIELD-B IS ALPHABETIC . . .

results in a character-by-character check of the value
of FieLD-B at object time. If each character in FIELD-B is
alphabetic, the item is considered alphabetic.

Example: The following table shows how the class of
an item is interpreted by the processor, depending
upon which of the class tests is specified. The table

29

shows the result (vEs or no) for each test and for
each of the specified ranges of . X. The X-character
is used in the pPICTURE clause. It represents any char-
acter in the 1401 character set.

x-Character If Numeric If Alphabetic
0-9 Yes No
SPECIAL No No

CHARACTERS
SPACE No Yes
A-R Yes (if units Yes
position)

S-Z No Yes

Continuation of Alpha Literals

Alphanumeric literals must be preceded and followed
by quotation marks. If an alphanumeric literal must be
continued, a continuation symbol (—) must appear in
column7, and a quotation mark must appear in col-
umn 12. If the last character of an alphanumeric literal
appears in column 72, column 7 must contain a con-
tinuation mark, and columns 12 and 13 must both con-
tain quotation marks.

Sample Problem

Here is a sample problem that is representative of file
maintenance applications. It is not a source program
for a unique problem.

The IDENTIFICATION, ENVIRONMENT, and DATA DIVI-
stons are complete in themselves. The PROCEDURE DIvI-

30

SION contains only one statement that relates to device-
and switch-name entries in the ENVIRONMENT DIVISION,
and illustrates the ApDvaNCING option of the WRITE verb.

Figures 48, 49, 50, 51, and 52 describe the 1401 con-
figuration and input and output record formats for the
problem. Figure 48 shows the configuration for the ob-
ject-1401 system. Figure 49 shows the master input and
output card record formats. Figure 50 is the master-
record block format for the input and output tapes.
Figure 51 is the new master-card record format. Figure
52 is the form layout for the invoice. Figure 53 is the
sample coBoL program.

New - Master -Record Master - Input ~Record

Input .
1402 =R Tape
IBM 1401
8 K
No = Overlap
Output
1403-P i Tape

Invoice = Line Master = Output =Record

Figure 48. 1BM 1401 Object Machine Configuration

MASTER - INPUT OUTPUT RECORD FORMAT

4—Field 3———

Field 1 Field 2 Field 3A Field 3B Field 3C Field 3C Field 4 Field 5 Field 6 Fid
-One -Two 7
(10) (15) (5) I (7) (5) (6) (15) (10) (10) (3)
fa————Field 8 ——— Field 8 Field 8 Field 8 Field 8
(17) (17) (7) (17)

8A Field 88 Field 8C %
(2)| (10) |<2>l(3) 2| (0 |(2)|(3) <2j (10) |(2>|<3) (2)| (10) |(2>| (3) (2)| (10) l(z>|<s>)
AN

- Field 8 —-
Field 8A Field 8B Field 8C
‘ 8 C~One, 8C~-Two
(2) (10) 2| ®

Figure 49. Master Input and Output Record Format

MASTER - RECORD BLOCK FORMAT
(Contains Ten Master - Input Output Records)

|

R R
G + + + * + + + + *L +|G

Figure 50. Master Record Block Format
NEW - MASTER - RECORD
Col 1-10 Col 11-25 Col 26-42 Col 43-57 Col 58-67 Col 68-77 Col
Col 31-42 78-80
Col Col Col
26-30 | 31-35 36-42
(10) (15) (5) (5) (7) (15) (10) [(10) [®)
Figure 51. New Master Card Format
INVOICE LINE

A) Invoice - Header - Line

Header-Label Date-Line
(20) (16)
Description Package and Size Prices Prices

o CL | PKKY Itm Whse Wght Shelf Retail Unit
%34 Size Loca Price Cost
(5) [(2)f (20) K2} (2](2)F(3) 1(2) (4) [(2)] (5) [(2) (5) [(2) (6) [2) () [2)

(3)](2)
C) Totals
Lodededelede! Total Price ~ Totals
PRI
20 tete %%, Weight . . X
DOXRIHHS g Retail - Total Invoice - SRS
92020288805 085868625664
0202020250 % Total QRIXRRXRX]
5005 ota Peletetedotels!
Fosessteteles SRR
SRR (7) SIS
S 0.0 0.9.9.9,

Figure 52. Invoice Form Layout

31

<

COBOL PROGRAM SHEET

pAeg| roemm 0 - R 277ZF 2 i 2
()O PROGRAMMER DATE IDENT. Barmpl £
- |SERIAL[E T
g|A 's
4 6 ? 8 II|_2 16 20 24 28 32 38 40 44 48 52 56 60 64 88 72
040! [TOENTIFICATION DANISESIONS Ly 00 e i 1]
20| |PROGRAM-LO- MSAMPLE J#0L COROM PROGRAM st 1 1 ottt t il il
50 ALDTHOR:-: YOE SMITH: v 1 00 0 e i b U T]
1l i Ill:lllllll\||||I||||l||llllllllllll]]ll]l]]llllll|||||||lﬂ||\||
#0 NV LRONMENT D4 VLS HOM = 1y 1t 1 8 011 d bbbk Lt 1t
50 CONFIIGURATION SECTION (1 (v i ety v v v v
060 ISOURCE-COMRAVTER IB.MJ.‘/o:l......‘............,..............l..‘..
111 “ELMQRRVI 5||IZ|E WFFIEIRSI.I NS N WU ORN W N OO NS Y U N N S N S N O T T T W T I Y W
580 OIBIIEICITI-CIOKHPIUTTIEIRI'I Ilm-|1|lfloll IR TN T TN NN N SN N N TN N N N S N Y T N N Y N T U (N T N Y Y Y Y 0 Y 8
0.9 L ASS LGN OBRTECT-PROGRAM TO TAPE 1 1t i i1 it
11010 111 MlElMol&\ll |5||1Z!EI lAn nnFIslsl HOIOI IT-IMRIUI I1‘,a n'hn‘ N T TN N T N T T TN WO N A T O T T O 8
10 131 NOI'IOVERILIAPI'I Y SN N T TN T TS T N T T T T T T T T N I T N N N T N O Y T I
20| 1SPECHAL:NAMES® 1 1« « 11 11t L L Lt [A I
Z0 | 1402-P 1S CARD=PUNCH 1 i b i 1y
140 |, 1405 - tclTlm T 15 TO-GRAMD-TOTAL 1 11t i L i)
Ol 1 1403~ |CT|\||:L||15 JO-CHANAGONE-= 1 vy v vy
&0 | .\, d..‘l.o:ﬁ-.P.—.C\/ ON STATOS 1S OYERFLOW « 00 v v v v o v b v v vy v b1 11
o0y 1405 -P~09 ON STATUS, LS END-OF -PAGEs: v vy i ity
L1 Lt i L1 PR ST T T T S U N T S S N N U U0 S W WY 00 0 Y O O A S B O
Ll III:IllllllllllllllllIII|Ill|l|l|lll||l||l||)||lllllllllll]l]lll
(] lll:lll|l|||lllllllllllllllII||I||l|ll||llJlLllL|llllllllllkl\ll
1L III:III]IIIlIlllllllllllllllIIllIIllII|I||l|||IIllllllllllllll‘]
L1 IJI:IIIIIlIlllllllllIIIAlllllillll|lIllIIllllLllllJ.LI(lIllllllll
11 lll:l 11 L1 IIIII||||||I||||||l||l||||l|ll|||)'||l1|/ll|llllll
LLJ:J 11 11 B NN TN T YT N TV N N T O A T T T S O Y T A I U S T S Sy |
Figure 53. Sample coBoL Program, Part 1 of 8
IBM CcoOBOL PROGRAM SHEET
PRGETFROSM o U pLE PROBLEM -1401 Comol |0 d4ol [2 78
logz | PROGRAMMER DATE JDENT. 78 AP LE -
snmL%A :B
4 _¢|7(8 2 16 20 24 28 32 36 40 as 4852 %6 60 84 68 72)
010 NPlU‘TI_IOUITIPUTI SECTHION: 1 1 1t oty ittt et r b1
QZ,O FIILlEI-ICQNTle‘IIIA,LIIIIAIIIII PN T 0 U SV N N S0 T O TS T T S T O IO Y B
030 | . SELECT MASTER-INPOT-FILE o ou o ca ittt i ettt
qu 111 :ASSI'I&N IT|Q I-rlAHE| dl'll ZJ [N O N WO TN T DN (O NN U O A T S N I W | TN OO N O TN N T N U N N O S OO s |
S0 | . RESERVE NO ALTERNATE AREA« (114 111 ottt it
b0 | SELECT MASTER-QUTRUT=FLLE 0 v v it ca v vttt bbbty
7. |LJIA§§_‘451N1T101|T1AHE151’1114|||||.|n|||A:..|1| PRSI S HE N A SO S SN SO O B G SR B B
084 |, . . :RES_EBAhEu NO ALTERNATE AREA« ¢ (1 i v 1t vttt bbbl i
19, L SSELECT CARD-READER 1 1 v (4 i o it c it et ii i it
X |1|A551|&M_41|M_|R,..2|-|:||| P E 0 ST ST 0 TN SN U T U T ST 0 T O SO 0 N
O |, SELECT PRINTER \ vt ittt i L i
20 |||A$~Sl|ﬁ~|14|03ﬁn‘1111|||1 P RO T U U YTV T U Y N T SV T S U A T N T U B Y B A O B B 1
Lt PP R U U U S ST UT U0 N S S R O U S U ST U T O YO WS S I 0 N Y 0 0 0 O
ATIAID.IVI.IS'ION'IILIIlllAIlIl F IO T Y Y G W Y W O O FONNNU U IN UO0 H T U W G 1
Iqo II|LEI5ECT||QN.JIIII|IIII|I T NN N T W (OO T Y W W I T | [T TN TR0 WO T WS OO N N T N I N T Y U W |
50 F.D 1 InASTJEIE__LLNPIUITK"JFI LE I R VR W N IO U0 S N S I T T B o | FINNN N T U O U N T N U U0 " N O S
o 111 |RF0“RD.|_LN§_IMQD I WU WU UON N TN T Y N AN N T U N O S N Y S S o S I TS N U WO TN N T 0 O T T
1'70 11 :RINK‘ mNTIA'NS dlo |R.Elcj% 0NN TR0 VRN SN TN T U O Y U 0 WO N OO O W O N T N T S S N A s o
80 L1l |L|ABE|LI RF(‘ARDQ JA&E.I_:IIAN.DABD [SRE U SN UOAN O Y O N N [UG W Y O U N N T Y U O U W Y S X
9d | . . M <”'_M_J.‘J5,\Jmm&.lﬁ‘lLEl_lllllllllllll""“"‘
|IIRI>TEATI mﬂl||||ll‘llLiLL||ll||||||ll[lll||\|llL
.1.0 ||||F..LLEL"J§L_|B1_JA11-J:|MMER'S122A611L|‘..1||||1||.|1x|l|.|1||.||||1
zo I Rmmg—‘lﬁ 64“9“ RS TR0 TN TR0 0 VOO WU U0 VAN DU SN N TS WO N N N GO N U O U I S YOO W S S W o G | | -
30 Mgmmg& A8 003 e et
1l :DATA PECORQ I'ISI M&MQRDH T ST WY WO T N N T 0 O 1O N T N S B W

Figure 53. Sample coBoL Program, Part 2 of 8

32

COBOL PROGRAM SHEET

PAGE PROGRAM

SYSTEM

90

it

Lo 08 FAELD3C-TWA PICTURE: 1.8 99999V« 1.

fio
120

02 FIELDY: PICTIRE 1.5 |A4(|1|51)|'1 T R T OV U0 10 WOV (Y TR W 0

Lol

LU b

1.

e _CoRal d401 T B T8]
PROGRAMMER DATE 1DENT. 3 P
ssmué- A iB
a_6l7e 2 16 20 24 28 32 36 40 44 48 s2 56 60 64 68 72
010 O, , IMASTER LAMPUT = RECORD t 1 1 1 4 1 L 1 1 ata d a4t i L4t a
°|21° JEna :02.4 l’:ll‘Ell |D'1| IHIC.TuulﬂEJ J‘ﬁl IALAJ.AQLLI‘J S SN T T N T T G Y A T O U A I O |
030 |, 02 FIEWDZ PICTURE 1S ACIE) e 10 v ta b C e
o o ol :0124 |F|I|E|L|D|3l.l | NS TS N T T T N N N N Y U T [N T W AU N W I N N T T W T N Y O O O O YO S SO U Y A O
050 | ... O3 FALELD-3A . PLOTURE 1S XCSDer (1 v (s it 0 L bt)
O | 11,03 FIELD-3B | PICTURE 108 XKOZ)10 0 1ottt 14 a2ttt Lt sia t v 1]
070 L |05 |F|llElL|D"5lC|'x U T T T W Y I O U O W T W S U W A T N W T WA N O O WY O O W OO O B O B B W
cataa e 4 FLELDIA-ONE RLOTURE (1S QRINI@2 4 aia i Gt 1

TS T Y W

| R O I A

I
Yoo O FIENLDS PICTURE (S XCAO) e v i ta s

L O T T T T S A W W O B S

||1:o|2.|

FilELDE PULCTURE S DCBIMIDei 10 h et i Lt a1]

30

IIALOIZI

FOBLDT o PLCTHIRE 18 D3 Dher 1 0 0 i e 1 LU b f et L

lmmm,mﬁl;,mAEMAn,14, N S S I S I A A

1oL 10."1 lﬁ'FL‘nR“"IONEI 1 Pnl chluRlEl LS 191q|‘l L

YIS R T W S T VO O O TS YWY U T Y Y

1o N 88 TYPEZ VALE (.S 359 THRWU: (801 1 0 vh s v a0
L :..BB. TYPES VALUE 15 17|5|11 TTHRLU |q|%q1’1111||||||1|1||||.|||‘|||.L
t :02. 1F|'AE|L|D|81 OCCURS |5 TIMES,: -, NN T U S T T Y U T N W Y T A O T O B
i} : X | IFI‘IEILAD_IMI L 1P|'CnT1URLE|_Lh&J_q.LqL'| § W T T T S W S T W W YT O T O B

9 L OR FIELD-8B PICTURE 1.8 ACLO) v 1 v ot ittt sttt gt o]
It . 03, |F1]1E|LIDL-|810'| YIRS VO R T WS A N S T S T AV S S S O T U O S Y T OO0 O S W I SR 4

Lo O FLELDRC-TWA . PICTURE: 1.8 999.-..

T O O U T O T O T Y N O S G B O |

P
lozl IMMA&KLME_L[ASLJLLLA,J IO T T S T RO Y W O O Y W O N W N S T IO O S O 0 S0
.

TN T S VOO W WO N T T T S T U W I O W Y N N T B U S Y W O N N W N O S O T Y

L
1
(

1
Lot
1
L
L
1
I

T N T T SO W N T U S W YO0 T S N U Y N O T W T Y S T N T Y G Y B O M B

Figure 53.

Sample cosoL Program, Part 3 of 8

IBM coBOL PROGRAM SHEET e
l-r:ees PROGRAM jAMpLEWOBLE” _’40, COBOL SYSTEM ,40’ SHEET 4 OF f
00L¢ PROGRAMMER DATE IDENT. Zﬁ”q!ft §~32
SERIAL[E A :B
4 6|7]8 IIZ 16 20 24 28 32 36 40 44 g 52 56 60 64 88 72
o o Fl'a 1 mslrfﬂ |quTAqT ﬁ’lLﬁ N IR N T TN N N TN SO SN O (U O TN T N T T N T N (O WO N N NN N OO DN U N W N T N Ty I |
020| | | | RECORDIME MOOE (1S, (T (4 4 1y a1 b L] L
030 L :mlvlolct&’n CONTAI NS, 1.0 FECOLDS, | | ¢ 4 1 a1 b1 dg s 1410l Ll il '
oJfLo 111 zl”ﬂlﬁtl mg‘;okla'rl l”]f]E' |3|714M|4Rpl I VU S0 1OUR O IS N IS YO N T N U N Y T W Y W N T N D O RO N O N | L
¢’|5|0 1Lt :Kﬁéﬁ(,é,‘ |0|f; l’bol |’IJI |'l/«45|rﬁ“lFl-/lLlE .l B IS S U N I T N U SN W TN W T TN 1S VN0 SR OO0 TN VOO TN W NN T N WO VNN S W | 1
M 111 WETEMﬁ’IDJM—Ielyp]LIEl |IIS| |019|a| § N N R T TN U N N TN WO Y TN W T [N W N OO T D Y T U N N TN T N Y SN N OO N O | 1
0.7:0 L :M.T. RECORD, 1,5, MRS TER-CYTPUT~KECOLRB \ \ 1« va v 00 10 aa 10 L
pau’lv”("xslréﬁ_ﬁl_lﬂﬁﬂr- AECORD, | | | o v b L Lk 1
0.7.0 A .6’/;2-_) S 272 M ,C#,#E,lﬂ-CT,E,ES‘,., IR RN DU N U TN YN T VO T 0 S WO Y Y U U T DO OO N O U Y U 0 O A O L
1,00 LIIC”EAI(E’IDIEFIIIlllllllllllllllllllllllllllll'llllelLLJIIIll 1
’10 I‘IXECLO&QIINQMop|l/|$|A’l|l|IIIIIllllllllIlllllllllllllllllJlJl 1
7220| |, \ LHBEL,_KECORDS, ARE QANTTED. 1 T SO U HT U ST S0 W W 0 Y A A G W B0 W 1
30| |\ 1 1DATA, -FEC.OREQHAS..ﬂmmﬁfﬁe—ffﬁaﬂua-n.“.........“......... 1
,40 ol'l 1 ‘”m I“&SV-Ekl—lRElclaklp"l F NN W I TN W TN WY OO OO U NN (N NN N U U TN S T S O VNN VU T T N N O T O O U O T W e | 1
ll5]_0 Ll :qzl Jclél"l,l-l,lol 1 |p|l|c|1‘|‘I|ﬂE| l,l‘si |”| (I"a/l.l | NN VOO O T N U N T T W N N W VN T O O Y U N T T T O | 1
14 182, |dal..f|7|-1215| Bl1OTURE 45 AL25)y 1 v i L L
’|7|o L.t 'plzl lcqu'zél-llzl.l) SR TN Y TN I OO AU N N TS N TS U S N WU S (N AU N (N W U W SO UOUR 00 N0 U VO U SN W N T T N T T T W B
15 | : Ll |0|.5] |e1q(|'2t$ _[3|O| lgllcln“ﬂﬁ II)SI |& ‘ﬁ)l‘l S I Y O N T T Y U T N T N O T IO N I Y N A 1 1
18].0 II]:Illqal lcloiLralll_l4Zl"l | NS N N U OO O VU0 VRN O O N U TOUY VN N N N N N T T U W 1 N N N T T Y T O O T W | 1
19.0 Li : L o Goe 3 1~35 |/’|’C|7|-u|£|§|/|51 229U ADie) 1 [S OO R R A U W W 0 S N T B S n
oo | it i1y, O4 €O 36-42 ‘|P|/|C'|T|q|ﬂ£f /1Sy |9|(|ﬁ' h U9 Ll [W
D Loi 1 :o|2| lelolL|45—15|7l lﬂ/lqu‘lleﬁ l/lsl 141{1151,)1'1 | SO TS W TS WS JN U NN N NN O Y SN O N T TN WU T OO VO U T U N N W W O |
20| |\, 102 Lot 58 T FICTURE 15 Xli/O) ioi 1 1 1 v s 1 e 11
30| |\, 1102 (oL,68- 17 FICTUEE S, FOEIVIDier v v v v i v s
1 il :olzl ICﬂL|7|Y|‘|M¢|QL_U1&_E_L I/Sl 19191Q'l F N0 U5 VO T NN TN N U T Y S VY N U N T T N O Y YO Y N S Y N W WO O W S By |

Figure 53. Sample cosoL Program, Part 4 of 8

33

CcOoOBOL PROGRAM SHEET

P

|
VP S I N R SO A S0 A 0T T N O 0 N T 0 T S Y T U N T 0 WY W T U 0 S0 W A O 0 A A B

T T B T

A“lNVQ_l_ﬁ.EEJH.EIADEQIlJLLNEL'LLILIIIlIIII||Ill||l||llll||lll,l,

wnKlmMESECrIIQN'IIIIIIIIIIIllIlllllllllllllljll,l,t,

OGO R

AGE | FROGRAM SYSTEM Ny TSHEET oF

o _-1Ho1 CoBol A4ol ! F3

00.5 PROGRAMMER DATE rIDENY 5 E_I

SERAL[E T

ga 18

4__6|7]8 12 i 20 24 28 32 36 40 a4 48 52 56 60 64 68 72
[

010 |D L <P|R1|NT£R| NN WU IO T T T Y U W T O S T T T T WY T T WO W U Y O W G O S N Y W U0 0 0 S W AR Y

80| | 11 LABEL RECORDS ARE OMUITTED 1 1 6 a4 6 1t Lo 60101 6 ittt Lt
[

XY L DATA RECORD 1S ANVOICE-LANEe: 1 00y s i vt bt bt i

040 INVOICE-LINE PLCTURE (1.6 X(132)«\ 1 1y I I A A I S A WY ST

'S D N N [T S I |

70 | w_m_xlﬁ_m‘llllllllllIllllllllllll\llllllllllAJJ_.t__L.L‘
L1 08 HEADER-LABEL. | P'IQTUMMIIJ_L Y T W T U T S T W T W S O S0 SV B WS

04.0 |||102|AF||L|LJE|RL&SL1IEL HQJ_l_l_,Ll_LLnnnnllll||||.|||1LLJ_J_,J11L[JJ|J'AJJj
..lDZA;DATlEI‘.L[‘NE:PI‘nCuT.U[B&JIS ALL6)e T W O U U WO T 0 U S IO G0 SN TN W 0 SOVORY B TR O

.1.0 lll:DZIIF.IIILV‘-JEB&'IZAEIISM:LIIAL,LLIlllll“lllllllltlllllllllllil.,l.LJﬁ
20 101 | :IANMTMIIAILL:LLLLNE_'LI_L.I_ O W T U W W T O R O 1O O W00 O S0 B WO B
AJ|mflthwgwm‘l_Ll.Lulellllllllllll|||1||||

A0 [02 QUANTITY., . PIQTURE 1S 999- o i vy v v a0y
O [OR FIALER SIZE 0SS R 0y iu v b i a1
0 ll]rOZ‘IITAEHN.leE.R_I_EleEIll&lql(lﬁ)l'llllllLlIIIlLllIlIIIIIIIIAJLI
10 ||||021|F||LL|E|R|5‘IZ£II'§|:A'I|||I||IIIAJJLIIALJ_IIIIAIIIII||||lIIIILJJ
B0 ttlwuﬂmﬁ, LU I . T S T T U O WY S Y W O W S A A A
19.0 LJ!MM&.MLMMMIIIILLL!IILIIIIIllllllll!ltl
oa |, . . pﬂ CLASS~-CODE | PIOTURE 18 Mt v 1 000 itas ity ta iy et

L I T S T T T T T S T Y Y WY T N S S G U N T O N S 0N WO WY O Y U N O O N W W A 0 W O B S

Lt J_IL:IIIILJlllllllIIIIIIII||IIIIIIIAIIllllll]lllllllllll]llllAlll
v

P TS T Y 00 Y Y N W 0 TS Y W N T T U W WO O N WO A YOO A T TS N W T VO Y G W SO0 O W 0 Y I |

—l JJI:llllllIIAIIIIIJIIIIIIIIIlllilllllAlillIIIlIlIlIllJJllAllllll

Figure 53.

Sample coBoL Program, Part 5 of 8

coBOL PROGRAM SHEET

PAGETPROSMAN ¢ g MPLE PROBLEM = 1401 COBOL M A 401 SHEET o
PROGRAMMER DATE IDENT. 3 _ gﬁ
snuLgA :B
4 6(7(8 L (L I—] 24 ‘Nggg 36 i 44 48 52 56 60 64 68 72|
010 lllmmmmﬁllzﬁ'llLJllllIlllllllllllIIlllLIIIlAJllIIllLL
Q&O 441:.||&’5-PAO&AEE«_|_ELLQIMRE_J§_ . 1SN S U T Y T S T U O NS T O W N N N Y U U O OV IO T |
O 0 0% FILLER SIZE 1S Sier v we v v v i
4, JJI:lllmmmglliﬂlqlqi’lllllllll|llJJ|III|I|||)III|l
80| |, O0R FILLER SIZE A8 200 vt i Gy e
b 11 'Dﬂ. MHSEFLnoATLlDN_LmJKLH)Lﬁu N T T O T W O T U T O T B S I
200 |, 08 FULLLER SIZE & Bier 1ttt it st 4
O .1,:QﬂMEl:MME:I.SM(&).-..l..u..1......11......l....”...
1I° JJIDIZIIFIIVLLIEIRllslzlEI'IsI2-I'IIII(IlllllIAIII‘IIIAIIIIlLLlLlJAAlLJlIlL
Q0 111:02‘thRll.CnESﬂ:.;.;Lux.lllll||l||AJL1nLLLJAJ||l|l114__4,1,,111LLA_,L,LJ_l_.A_,
0 L : L 0% |SHE|L|F| IPJRLLIQ.E_ _.IBLLLngE 4‘5| |q|‘i|'|qq|'1 IR0 O N T WO TN W U W00 Y0 1 O T VO U W O T T 0 A B O
.0 LJI:I[IQ;IIFI'LLERIS'IZ‘EAI&IEI'IIIAAIIL[L\Allll) N S T T Y T T O T Y

L1 03 RETAIL-PRICE | PLOTURE 1S 499G %o 10001

11

o I T Y T T T Y R

T O OO YO O 0 S S 0 0 O N B B

1 : i 10051 |F|'|L|L‘ML1JS_IZL.L_LALLJ..LJ..J,J_L.J N N T Y T B

S50 [,

: 1) 0:5 |UN||T|"‘|C|QST| L PICTURE A& lqnql'nqqul'n [

1 | N S SN T T T T T T T T S
b 0B FALLER SIZE 88 Ber i o000 ey v s i
20 00 03 EXTENDED-AMOUNT . PACTURE 0.8 Q9999 o0 ovniivncniiy,
20 ‘lnbﬁtﬁluﬂmﬁ.ﬂmuwll||||||||1|||||1||||111|||<||1L
1l ill:llllllllllllllllIIIIAIIllllIIlJALIIIL‘LALALIllllIIIIlllllllJIlll
1t All:lllllllllllIIIllIIIlll|llllIllLLIlllLLLI]lIJLIlIllJllIli|IIl
1.1 III:IIIILIIlII‘IIIII[]IIIIIIILJIIIIIIIIllllllllLlllllIIllll«llll
11 IAI:JJAJIIIIAIIIIIII‘lLJ_l;IllALLIIIIllllllIlIIIlII‘IIIIIAIIIII‘ll
LA lll:llll‘llllJIIlJIIIIlllI|IIIIIllIIIIIIJJLIIAJJLIIIIIlIJIIllllL
'II III;IIIIIIIIIIJIIIlil]lJJ;lll!llllllIlIlIIIIlll]lLlllJlJllllIl|||
il III:IIIIIALLJJIIIILIIIIII[lIIlllllIIIIIIIILIlllIJIIlLJ_lIIII i1 3 1

Figure 53.

34

Sample coBoL Program, Part 6 of 8

IBM COBOL PROGRAM SHEET

PRoE PR campLE PROBLEM - 1401 Copol. | 4404 [T .7

PROGRAMMER DAYE IDENT T
01 BAMPLE-
SERIAL|E T
gA D ,
4 617[86 He 16 20 24 28 32 =3__§ 40 44 48 52 56 60 64 68 72|

010 o
2‘0 14
30| |\,
0L 1o I I

n-loTIALE‘m.II|l|ll|lll|llll|lIﬂllllllIlllllllllll‘llllillIIliIIII
02 FULLLER SIZE 1S A0 0 et bttt
blaa l’rloTlALl-‘m‘lANTl'lwl 1 |R'IGFURE A'ls Iqlame,l,li,MJLL] N Y T T T T Y I
02 FILLER SIZE .8 SO 1 114 v v il v b G iy
0.5, L1 02 TOTAL-MWELGHT PLCTURE A8 XCMmi s o i L Lo
D 11 O FAOLLER SVZE (1S Biei 000 000 v i L s
070 |||Qz|—]ﬂ&‘lc|5TlolTAmllllllll|IIA|||IIII|llllIllllllllllllllll\lll
080 | ., .1, 03 RETALL-TQTAL . Pl .C;T.UEE_A&_M$$$6& 490 v
q.l Jlj:ljm]IFI"L':‘QﬁnlzlE‘|DS‘3'IlllllllIIAlJllllllllllLAlLIlIlAIl]II|
Q 1l : 1 DE| ANVIOI CE-TOTAL | P.hc.T.uEﬁ I |$|‘{‘I‘IQ|’|qlqj'n 11
0. .. 02 FlLl.LER SIZE
2:0 GCMEM-IIIIJLIAJIIIALJIIIIIIIIIIIIIIIlAllIAII\jlllllltl
0 07 . BLANK-RECORD . P).CTURE 1.5 X(13£) MALUE 4§ SPACES: 000,
‘L Jt 14'7'71 &mm;‘.& Qﬁ&.\lﬂ& l.MALuE-_LL_SI_JLIJ&l!LJ_.L.J_L_J_LJ__LJ_J_J_
50 | ., 17 CONSTANTAR3 . PICTURE 1.5 999 . VALVE 1S 4183 v
160 |, 17 COUNTER . PICTURE & 9(&H) VALUE 1S ZERQ \ « (1111

19 107, ALPHARET-TABLE . PICTURE 1S XCLO%) 0 o0 v v i 0]

ad-[, N 3N: 400=15P= 161 TR18S: 14 T-£QU=RIN,=R2W L5Xe RNz R5Z 2o o1 1]

A T S T T Y Y S A Y VI

S "D S O N VW v GO U R U N

Lt |||:|||Illtl|||||||||ILAJJ|lllllllllllllIAIllIlIIII|A|lA|||||||l
Lt lIl:IlIkllAllllAllllIIIAIIIIIIIIIIIIIIIIIIl||l|l|l|IAllIIA‘AIIlI
11 llllltlllllll||||||1Illlllll!lllllIII||||||1|||||III||111]Il|l(1
il lll:lllIIIII!lllll.lllilllllllllllllllllllAlllllllLJlAlllAll1|A|

Figure 53. Sample coBoL Program, Part 7 of 8

IBM COBOL PROGRAM SHEET

PAGE | PROGRAM
)

S AMPLE PRropreM-—1401 Capar |V 1407 HET 2”8

SERIAL|E

3
PROGRAMMER DATE IDENT. 8
l &ﬂm

A :B
4_6l7l8 12 16 20 24 28 32 386 40 a4 48 52 36 60 64 68 72
O IPROCEDURE, DINVGSTON 1 10110 i . . T
02,0 Ill;lll'llll.llll'lllllllIIIII||llA|LJllllLJlllIAIAIJIIlllAlIl]leJ
J.0 lllrlll'ntll'llll'lllll|||ll||AIIAAIII||1IALJ11lLL:,l.J_l.'A._A.,J_l_i_,LIL_L_l._l._.L.J_
|"l|o IIL:III.IIII.IIII'IIIII|I|IIIIAllilllJJlillllllllllllllAllAllJll'J‘

060 | ., IF END-OF-PAGE THEN MWRETE | NVIO) CEimb) NE FROM | NV.OICE~HEADER L1
o0~ NE AFTER ADnV-ANMMM&MMQMJJ&MJ
0. 7.0~ A||Auv01|cﬂ;r'|D|&|T1A|||Ln-1L‘lNni"l|.|nn.:.nlnxu:nn|||‘.|JJ||1||‘AI il

T T T S T S 0 Y W Y S B B

U T T U G N W T T NV S YN GO G YO SO 00 WO T YO 00 OO T U U0 1 SO0 A T N U 00 0 VU0 U0 S WSS 0 S0 I T B G BV SNV R S

NN T N A Y T N T O U W A T WY N U T T T O W O U0 T O O U W W 0 N U O A W G T O B 0 G S S EA O A

¥ I D W Y U W W T O Bt WU VOHS VU N YOF Y V) VA VT S S W Wt A S W W IS G WA O S At 0 I S S O S S T S S S S Y N R

D N U S W U U0 WO R VA0 U O W Y TN 0 T U WO U S S SO0 OO WA I YO MU WY W O 0 Y I A A U N0 S U O Y B O W I

O T Y S U A S W T T U T Y O W Y Y O NS S Y U WO U U SO0 DU O S U0 Y U 000 O U S Y N T G W |

U SS T TO O C UT JA G WA W S H T WO 0 0 A A S B Y SO S G S S A IO T 0 N T W T 0 S Y S0 S OO WO |

T YA W U Y W YO T T YWY G S WY N S VA U WO T G W Y T VA S IO W Qo I G D v B B

A
1
1
'
1
|
1
'
1
I
{
1
L
'

4
‘
‘
t
1
'
L
I
L
(
L
v
1
'
L
'
s
[
1
'
L

Lodod TS YRR Y VO TN T T U W T W O G N T T T T VU Y S0V A O 0 U N N W G VN N O A S N S A VO S O O

Figure 53. Sample coBoL Program, Part 8 of 8

35

Programming Considerations

Notes

Addition Notes

When using the app verb (or when using a COMPUTE
statement involving an add operation), the data-
names being summed must be placed in order of as-
cending decimal size in the statement. The smallest
decimal field must be first followed by an equal or
larger decimal field.

Division Notes

In order to ensure correct decimal alignment when
using the pivipe verb with the civiNg option (or when
using a COMPUTE statement involving a divide opera-
tion), the programmer must declare a result field, the
decimal portion of which is no more than one position
greater than the decimal portion of the dividend. Also,
the rRouNDED option will have no effect unless this rule
is followed.

Techniques

coBoL provides a convenient method of writing busi-
ness-oriented programs. However, certain techniques
can be used to produce more efficient machine lan-
guage coding and increased compiling speed.

The following considerations and suggestions are
included to aid the programmer in obtaining a better
1401 cosor-generated program. Following the sug-
gestions are two programs. The original program
(Figure 54) requires approximately 2,800 positions of
core storage. By applying a few of the suggestions to
the second program (Figure 55) the core storage re-
quirement is reduced to approximately 1,900 positions
of core storage, representing a saving of 33 percent.

The changed statements utilize redefinition, equal
decimal alignment, alphabetic compare, and the dele-
tion of a subroutine caused by the statement wrITE
SALARY-RECORD FROM SALARIES (Figure 54, part 4 of 4,
line 100). It is recommended that the programmer
become familiar with these suggestions and apply
them in the writing of 1401 cosoL programs.

Area Allocation in the Data Division

The following rules govern when 1401 cosorn sets
word marks with data areas:

36

1. Record areas (0l entries) always have a group
mark with a word mark in the following position,
and have a word mark in the high order position.

2. Word marks will be set in the high order positions
at the next level from the 01 entry. This will be
02, or the next lower level if no 02 is present, unless
occurs or redefinition is present.

3. Subfields have word marks set only when their
high order positions coincide with word marks set
as in preceding item 2.

4. A word mark is always set in the high order posi-
tion at the 77 levels, but there is no group mark
with a word mark set.

5. No word marks are set for data fields within a 01
entry which contains a redefines or an occurs,
either at the 01 entry (implicit redefinition is
allowable) or at any sublevel.

If word marks are required but not present, they
will be set continually and cleared for access to the
field; this requires time and core. If word marks are
present, they will be regenerated if removed. For ex-
ample, if editing into a 02 area, a word mark will be
reset each time.

Tables

Many programs require tables. Following are several
considerations about table building and searching
with 1401 cosoL.
1. Unless it is certain that a table will never change,
the initial values in the table should not be estab-
lished with the vaLUE clause. A better approach is
to set up a card deck or tape file with one table
entry and a sequence number on each record.
Using the ReAD verb, build up the table data dur-
ing program initialization. This approach elimi-
nates the need for recompilation or object-program
patching in the event that the table changes in
value or size.
2. Before using the occurs clause and one or more
levels of subscripting, weigh the alternate storage
cost of naming each table entry and writing (for
example):
IF ARG — TAB-1 MOVE ENT-1 TO WORK AND GO TO
FOUND.
IF ARG = TAB-2 MOVE ENT-2 TO WORK AND GO TO
FOUND.
ete.

The additional coding effort is offset by dividends

in execution speed for tables with as many as 30 or
more entries.

Define long tables as a set of shorter tables. A few
1F statements are enough to isolate the relevant
position, which can then be moved to a work area
where the final pinpointing of the correct entry
can be done, The move should be between 01 level
records.

If the work area mentioned in the preceding item
3 is n entries long where n is a power of 2 (such
as 8 or 16), the 1r statements which are used can
be written in such a way as to effect a binary
search. In the case of a 16-entry work area, this
technique can yield an answer after only four v
statements.

Sequential table searches require little program-
ming effort and are eflicient if the table can be
arranged so that the most active items are at the
beginning of the table.

Move Verb

1.

MOVE A 1O B, where A and B are equal length
alphanumeric clementary items defined at either
the 01 or 02 levels, gives the best possible coding.
All items with subfields are treated as alpha-
numeric by cosoL, even if some or all subfields
are defined as numeric. Only one 7 character in-
struction is generated as long as A and B are not
redefined or subscripted.

If both A and B are redefined items or items de-
fined at 08 levels and up, eight additional charac-
ters of instructions are generated (i.e. SET WORD
MARK and CLEAR WORD MARK).

Elementary items are treated as above unless they
have an unequal number of decimal places. In
that case, a total of 28 characters of instructions
is generated.

Unequal length elementary alphanumeric items
are moved the same as equal length items when
A is longer than B. However when B is longer, 11
additional instruction characters are generated
to blank the receiving field.

When A and B are unequal length numeric items
with identical scaling (same number of decimal
places), 14 characters of coding are generated.
MOVE A TO B causes 1401 cosoL to include a spe-
cial subroutine when A and B are of unequal
length or one or both contain subfields. The spe-
cial subroutine is used because the MLc and McMm
instructions cannot conveniently handle this com-
plex situation. Even when A and B are the same
length, the subroutine is still used if A is a 01
item and B is a 77 item or vice versa. The sub-
routine may be avoided by writing a set of indi-

10.

vidual moves, redefining both A and B, or by
making them the same length.

MOVE SPACES TO A and MOVE ZEros TO A each
generate 11 characters of object code unless A is
a 01 level item with subfields. In that case, A can
be redefined at an additional cost of eight charac-
ters of object code.

When editing is involved in Move A To B, the
same rules about scaling, redefinition, and size
apply. For example, when the A field has fewer
decimal places than the editing picture describ-
ing B, many characters of coding are generated.
If the scaling is identical for A and B, approxi-
mately one-third as many instruction characters
are generated, plus the 1401 edit word.

Avoid editing functions which cannot be handled
by the 1401 instruction set directly; coBoL zeros,
floating plus or minus, b8, and single plus. A spe-
cial subroutine is called to handle these cases.
MOVE ALL requires a special subroutine. Use a
literal or constant of correct length to handle this
case.

If Statement

1L

When defining fields that are to be compared, con-

sider the following:

a. When at least one of the fields is a 01 item
with subfields, a special subroutine is required.

It is better to process such fields by comparing
each lower-level item individually; or the group
item can be moved to a hold area of equal size
(not containing subfields), and then compar-
ing.

b. When numeric compares must be used because
one or both of the fields are signed, attempt to
arrange the record format so each item has the
same number of decimal places. The fields do
not have to be the same total length.

In the statement ¥ A = B, only one of the fields

(A or B) need be defined as alphanumeric to get

the more efficient alphanumeric compare instruc-

tions generated.

IF A NOT GREATER THAN B . . . has the same meaning

as IF A LESS THAN B OR EQUAL TO B . . . and the gen-

erated instructions for the first statement require
half the number of core positions.

The statement IF A IS ZERO . . . generates more

efficient coding when A is defined as numeric

rather than alphanumeric. However, an even

greater improvement can be gained by declaring a

constant of zeros (named C, for example), and

writing 1IF A = c . . . which is twice as fast.

Avoid the statements ¥ A ALPHABETIC and 1IF A

NUMERIC whenever possible because they require

subroutines in the object program.

37

6.

Avoid the use of ALL, HIGH-VALUES, LOW=VALUES,
SPACEs, and ZEROs in conditional expressions. They
can easily be replaced by named constants.
Subscripted names in an 1F statement will cause
the compiler to include appropriate subroutines
which often perform slowly at object time. Fre-
quently it is better to use several iF statements to
perform a table look-up on a short table rather
than use subscripting and the PERFORM verb (or an
equivalent loop).

Arithmetic Verbs

1

38

Avoid oN sizE ERROR . . . whenever possible, The
generated coding to perform this test consists of
up to 30 characters.

ROUNDED usually generates about 21 additional

characters of object code.

ApD and SUBTRACT statements:

a. The most eflicient object coding is obtained
for fields which have equal scaling. When two
fields (A and B) have equal scaling, the state-
ment ADD A TO B generates 7 characters of ob-
ject code.

b. Redefining, or using 03 levels or greater, will
require 8 additional characters for each field so
defined.

c. Multiple operands are as eflicient as the equiva-
lent set of single statements. ApD A, B TO C gen-
erates 14 characters (assuming the require-
ments of 3a are met).

d. ADD A TO A is an economical way of multiplying
A by two. Other sequences of app’s and sus-
TRACT'S, sometimes with REDEFINE’s to achieve
a shift, can be devised to simulate a more com-
plex multiplication.

MuLTIPLY and DIVIDE statements:

a. MULTIPLY ABY B GIVING C generates 21 characters
of instructions if A, B, and C have no decimal
places. When A, B, and C have decimals, and
the number of decimals in C is not the sum of
those in A and B, 42 characters of instructions
are generated.

b. In the preceding example, ROUNDED generates
an additional 7 characters.

c. Less efficient coding is generated for a com-
PUTE statement than for the equivalent set app,
SUBTRACT, MULTIPLY, and DIVIDE statements.
The reason for this is the need to retain up to
18-digit precision throughout the execution of a
coMPUTE statement. Because the 18 digits can
be on either side of the decimal point, and be-
cause one or two extra digits may be required
for rounding, 1401 cosor allocates 40 digit ac-
cumulators for the storage of temporary results.

For example, COMPUTE A ROUNDED =
(B*C*D-—E) /F, with a varying amount
of decimal places, generates about 160 charac-
ters of instructions plus 3 X 40 = 120 positions
of temporary accumulators. For the equivalent
MULTIPLY, SUBTRACT, DIVIDE sequence a total of
about 140 positions of storage are used for the
instructions and fields.

Work areas are assigned only once per pro-
gram. Thus the most complex coMpPUTE state-
ment determines the number of 40 character
areas that will be needed for all coMpPUTE’s.

Perform and Alter Statements

1.

2.

The statement ALTER LABEL TO PROCEED TO NEXT-
LABEL gencrates 10 characters of coding.

The statement PERFORM CALCULATION generates 18
characters of coding at the point in the program
where the pERFORM occurs. In addition, carcura-
TION is augmented by 4 positions for each PERFORM
which references it.

carLcuLaTION should be positioned in the source
program at the point where it will be executed
most frequently simply by falling through from
the preceeding paragraph.

The option 2 statement, PERFORM CALCULATION 3
1iMEs is efficient. Core requirements are about 45
positions at the point in the program where the
PERFORM occurs and 4 positions additional at the
end of carcuraTion. No additional core or time is
required when a data-name instead of a literal is
used to indicate the number of TiMEs.

Option 4 of the perrorM verb is handled best if
the varviNG field is defined as alphanumeric and
each of the fields in the expression has the same
length.

Input/ Output Verhs

1.

The statements READ INTO and WRITE FROM each
cause a move of the entire logical record. In many
cases the use of these options is unnecessary be-
cause processing can be done either in an input or
an output record area as defined by the para rec-
orDs ARE clause in the Fp’s, When READ INTO OF
WRITE FROM must be used, ensure that the implied
data move involves equal length areas.

When using a card reader, reap is faster and gen-
erally smaller than accepr. Similarly, wriTE is
better than pispLAY for printing and punching.

It is not possible within coBoL to assign the same
input/output area to two files. Areas in the work-
ING-STORAGE SECTION can be (and should be)
shared, however.

4. For card and printer files, input/output areas in

addition to 001-080, 101-180, and 201-332 are as-
signed. This is in anticipation of a possible conflict
with the acceer and bpispLAY verbs, which use
those areas also.

5. The wriTE verb for a printer Fp does not clear the
print area. Use MOVE SPACES to clear this area.

6. Form 3 (unblocked, variable length) tape records
are not permitted within 1401 cosor. If necessary
the file can be defined as Form 1, and a simple
Autocoder sequence can be used to set and clear
the cMmwwm at the end of the portion of data to be
written. Form 4 usually offers better tape utiliza-
tion.

7. In order to change the date specified for an input
file for label checking purposes, ENTER AUTOCODER
and issue a RoLIN 1axx macro. If the file is the nth
Fp in the program, then xx = n-}+9+m where
m is the number of Autocoder names in the
SPECIAL-NAMES section.

8. A common error in coBoL programming is the
assumption that a different area in WwoRKING-
sTORAGE must be defined for each record type in a
given file. This may be avoided by (1) defining all
possible data records directly under the rp with
one 01 entry group per record type, or (2) defining
the most common record type under the ¥p and all
the others in a single area in WORKING-STORAGE
which is redefined once for each record type.

Object Time Subroutines

There are several coBoL object time subroutines that
may be generated. These routines are described in a
separate bulletin which may be obtained with the pro-
gram. Normally, the programmer should avoid cosor
statements which cause these subroutines to be used.
For the most part their inclusion is caused by either
unusual language features or by complex data formats:
Following is a list of these subroutines and the reason
why they are called and/or how they may be avoided.
1. The Examine subroutine is included whenever
the ExaMINE verb is used. It may be avoided as
follows:

a. For short fields, give each position a name by
defining an appropriate number of subfields
and using a set of 1F statements.

b. For long fields, define a work area with one-
character subfields and process portions of the
long field there.

2. Single, double, and triple subscript subroutines

are included whenever a field is singly, doubly,

or three-level subscripted.

10.

11.

12

13.

14.

The Alpha Compare subroutine is included when
a group item with subfields is compared to any
data item. The subroutine may be avoided by
redefining the field which contains subfields.
The Figcon Compare subroutine is included
whenever a record with subfields is compared to
a figurative constant (HIGH-VALUE, LOW-VALUE,
QuoTE, and ArL alpha-literal). This subroutine
may be avoided by redefining the field with sub-
fields and using a literal or constant (Figure 54).
The If Numeric subroutine is included whenever
an alphanumeric field whose size is greater than 1
is tested for a numeric value.

The If Alphabetic subroutine is included when-
ever an alphanumeric field whose size is greater
than 1 is tested for an alphabetic value.
The Accept subroutine is included whenever the
accept verb is used. To avoid this subroutine,
define a file and use the rReaD verb.
The Display subroutine is included whenever the
pispLAY verb is used. To avoid this subroutine,
define a file and use the wrrTE verb.
The Editing subroutine is included when editing
requirements include cosoL zero, floating + and
— sign, single plus, and DB. It produces highly
specialized editing features. If possible, use only
the standard editing features of the 1401.
The Exponentiation-1 subroutine is included
whenever an integer exponent is used (coMpPUTE
A = B**5). It may be avoided by writing succes-
sive MULTIPLY’S,
The Go To Depending subroutine is included
whenever o 1O DEPENDING is used. This sub-
routine may be avoided by a set of 1r statements.
The Move All subroutine is included when the
ALL option of the Move verb is used. A MovE
statement or a set of Move statements is prefer-
able,
The Move Record subroutine is included when-
ever a record with subfields is used in a Move
statement, except when the other field is a record
(01 level) of equal length. This subroutine may
be avoided by:
a. Using a set of elementary MOvVE’s.
b. Redefining both fields to eliminate word
marks.
The Exponentiation-2 subroutine is included
when raising an expression by a non-integral ex-
ponent (compute o = B*¥2.5). It is impossible
to perform all the functions of this subroutine
with other coBoL statements unless the exponent
is defined as an integer. For special purposes an
Autocoder subroutine may be a more practical
solution.

39

IBM CcCoOBOL PROGRAM SHEET e s e
|PAGE3 PROGRAM \5‘4442/5" . /5/1/-/40/._5‘4/)7,045‘ SYSTEM /¢o/ SHEET o/ OF 4
0.0./ PROGRAMMER /" 7 oo DATE IDENT. Eﬂélﬂjﬂl/léfj?
SERIAL[E !
8 A :B
4 6|78 2 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
0./ 0| /10|56)|'7]/|F'|/lf'147'|/|0|4{ JOOMNSINOMey L G G G e g
020 \PROGCRAM- 1D .\ | SALARLES - L EM-L RO SAMPLE o\ L L L
L ||1:|||||1|||||||||||||||1||1||11||||||:|1|||:111111|t||«|||||
03,0 (ENV/RONMENMT O Wi HSI/OMei | | (1 1 0 4L L et
0#0| CONANEYRATIIOM SECTILOMa | | L1 1 1 1 L0 s
05,0 S OURCE~COMPUNTER) L/ BM=LFO/ | | (1 11 11 T S S T T N N S A SO B B S N S W B S B !
06,9 L HEMORY, S/ Z& 8000 CHARACTERS, | | « 1\ v\ 11 L L b1t
070 | | |\ NO-RELEASE | | 11 0 a1 T S T NN T T W T O T O N S Y A A O A O
08,0 L MO~ PRINT=STIORAGE . | | | | | | | P T G U U S SO U 0 T U U T T Y N S SO M O A S A
020 08/ ECT -~ COMPYTER .. \/BM=LBAL | | 1 111 P S T N U Y T T U S Y S M
/2.0 Lt llff.d/.apé’;}ﬁ W5/ ZE ALODRESS 400 THRY S800C0 | | | | i it
1A | NOOVERLEAL | 4 L L b L
120 | | | MO-PRINT-S\TORAGE. ., | | | | | T T T SO T TS T T T T S O IO A A B MR 0 B B O
/30| I NPUT=OUTPUT, SECT/OMer | 1 1 14 1 IO S S A R N B R
/l4lo Fllltlét-lclolMﬂaolLl'l F N N T N N T I N T T (N TN S T S Y T T T N T TN O T T T Y | 11 B SN O RO T O O O o |
/|5.|0 [:'SIEIL |E|.cl7-l Isﬂllﬂlklyl-lFI/ILIEl N T N TN TN I TN T T TN T T I N N N O T I A | - TR S W S S R |
_{Jéla 13 1 |A|S|5|/|6|M |/|4|0|3|-|P|l| | NN Y N N (NN VRN (Y [Y T (N TN NN (N Y O T U T U Y Iy o | L1 N N T Y T I &
L TR ST AR A AT A RIS R AT AT AR AT SR S ST Y ST O S AT SIS A AN AN AT AT A AT ST A A A AT AT T S AT
/|7|0Dﬂrﬂ::ﬁl/lyl/lsthMJLn:1:111:11111|||111||111:||||||1|1| A A A S S S R A
/ﬂla F/AE‘ |$ECT|/0M'| 1 T N T N T T N T TN S N N Y S Y Y T T T T | L1 N S N WY N T N Y
/9.0 |FD | SALARY = ANLE |\) |\ 0 gy L i 1
200 |, | LABEL RECORDS ﬂ,ff' OMIZ\TED | L 1
21/|a L1 i pl”rﬂl lpfcqﬂpl |/f51 |$|4|l 42’/-!;‘0](01‘[N Y N | SN T I T O T T | [T Y N T I U Uy I |
220 |0/ | SALARY -RECORD S/2E /S /00 ﬂl‘n’ﬁ'ﬂl””mfﬂl/cl O 5. PLAY, EHARACTERS .| | |
L ST A A ST A ST N U A S A AT A U NN A N A A AT AN BTSN U A A S A A AT AT A A AR A R AT ST
Figure 54. COBOL Sample, Part 1 of 4

40

IBM

COBOL PROGRAM SHEET

Foin No. X28- 1464
Priinted in U.S. A,

:’AGE PROGRAM SALARIES - JBM~ JFO) Sanr oL e SYSTEM 20, SHEET 52 OF 4
002l ROFAMMER S s DATE IDENT. 3 4c.a20.68
SERIALJE !
T

4 6|78 e 6 20 24 28 32 36 40 44 48 52 56 60 64 68 72
0./,0| WORK/ MG~S TIORAGE SECTIAOMey & 1 1 1 1 11 141ttt 14141ttt L L L
020 |77 | \ZOTAL=A 1 PLETVRE 206 VIS VALYE ZERO . | | 1 4111 Ly
O'3|a 7l7| L :7-10|7_|’4|£|-|£| I S N | lpl/]c|r|‘/|£\£1 l?l(lél)lvl9l9l |V|A]‘|U|£-| 'ZIEIIlal.I F I N N S T TN N N N N T N O B |
020 77, | TOTAL-C | |, PIETYRE 2(6IVPP VALYE ZERO. | | \ 1 v 10
030 (77, | WEEKLY ~LAY, | | | |\ PLETURE S9IVEP ey L e
06,0 77, | HONTHLA-PAY, | | . PLCTURE DIV et 1 i 1 bl Lt a1
0:7|0 7|7| { 'rql/VM”I4ILI_I'DI'4(>/I | .| .’1/1617_1”.&5 l’I?l?I?I?I‘/I9l?1‘I S N N T T T N T T S T T I O
0|8]o ol/l { :5“7" |AIR| /| éTST (30 N N [I U N (N ([N U ST [TN T T T TN N T T N T I O S T v I T I N T I O T |
020 | 1,02 FrLlER | 4 1 PLETURE A(F6), \ | VALUE SPACE . 1 111 a1 i1
/00 | | | | 02 WMEEAKLY, | | |\ PLETYRE ZZZ 9D el |) 110 L 1
10,00, 102 FOLLER || PLETYRE AAA 1 WALUYE SPACE . |\ 1 0
/|2|0 | I :012| Moerl#l"lyl | S | lp|/lc|7|”|£l£1 lzlzlzlzl' l9]9l'l SN N TN Y Y T S O A e O O O VO O N S O S Y O
/30 | |02 FLLLER | | PLETYRE AAA |\ 1 VALYE SPACE . | 1 0 L
/l4lo I | llol:?l ﬂllylMyﬂl‘L| N T U T | l’al/lclrly‘llfl lzlzlz‘qz"1919l'! S T Y U T N YV I T [[VN N VN WS OO O O Y W Gl
P’-lo . :0121 IFI/lAIAIEl’el | I N Lpl/lclr|”|£l£l- |A|(|2|7|)l JE | |V|4[L|”|EI |$ngAlCJ£l'l BN U WO (N TN TSN T T T N IO T B |
/Iélo CIOIMS:Z/’IMH PSIEl'qullolMl'l TR (SN SN N A S VO U N N YUY U Y NN RO U OV VU [S U 10 U O VR SN S (SO U N N IS U Y OO D S S U O)
/l7|0 7l7| | :CIOM-IAI 1 |pl/lc‘l7-;0|£|£l lyl(lél)ll/lyl?l 1.t 1 LVlAlllalfl- 1/15(lalolala |2|61'1619J’L‘l) SO NN OO T T O T T |
/180 |77, , com-8 |, PrETURE 2(6I V99 |\ \ VALUYE /5 038250:00, | | 1 111010 1ia1 1]
/9.0 772, com~¢c | PlETYRE 9(6IV99 |\ VALYE (/S F59000,-90- | {0
00 | /| '/”Ié'—lslal'l I T U VO U U U Y TN WS 1 0 T YU 00 T S YIS O T U G0 W
270 | 2 | Al LER S IZE FO ALPHABET /.G CHARACTERS, | VALUE /1S SPACES. | 1 1111
220 | 2 | SHOM | S/2ZE 26 ALPHABET!C EAARACTERS | | 1 1 11 11 1ad Ll i
2|3|o I/J 1 :ﬂ|5|p|y|.| IR TN ISR NN AN TN NNOON (UUN SUN UOUNS UORY SN WU U N S NN TN (NN VNN WSO (N N N N T N T S (O T O TS S T (N S N I (U VAW [I S NN WO O N A
21{10 121 L ;;I/lz'lllé-l'g lSL‘/JzIEI |4|0| ﬂu‘rpf/lltglé-lrn/lcl |C/7'|'9r€.41617r545| 1 1V|A|‘r”l4'-x I/I‘S‘L,LSIAAICIEI‘SI}J N T S
2!‘70 l2l 1 :plﬁserl i rsl/lzlfl '3??[ﬂ]l Ipﬂ14|81517—l'/|c| |cﬂﬂlilﬂlc'7-€£;|.l § NSNS AN AN N N A NN (SO U TN O s S IS oy Oy G oy |

Figure 54. COBOL Sample, Part 2 of 4

41

IBM COBOL PROGRAM SHEET o i
.PAG% PROGRAM Sazarrss ~ [ON - /FO/ Sapr s SYSTEM 20/ SHEET oz OF g2
003 TN /oy es DATE IDENT. A AR £
seriALlE T
<} A :B
4 6|78 12 16 20 24 28 32 36 40 a4 48 52 56 60 64 68 72
0/ 0 | /i WEADIVMG o | 0 L 1
02d | 2 | FiIlLLER | S1ZE 46 ALPHABETLC CHMARNCT.ERS | | VALUE /.S \SPACES . | | |
03,0 | 2 | WEEKLY: | 1126 | 6 ALPHABET/C | | |, VALYE 1S, “WEEKLY | 110
04d | 2 | FirlibER | SIZE | B ALPHAEET/E \ L a1 VALYE (/S SPACES . 1 1,
05d | 2 MOMTHKLY S/HZE | T, ALPHABET/C | |\ WALYE /S I‘MoerlMll)/n)n-n Ll
0]610 121 1 :Fl/lzlnglel L rsl/lzlél i ‘31 Al‘lpl#lﬂlglgltllc‘l) D S I | ,I | S T I T B] (VAILIMEI l/lsl]5|p|4|€.£1~5|-| F I I |
070 | 2 | AVMEAL, | 5\ ZE 6 ALPHABETIC | | | | VIALUE /S 4‘»A|”|'V|”|'4|‘1)|-| Ll
0I8|o |2| L :Fl/IL|LI£;?| 1 |5|/|z|£| I2|?| |14|Z/|#|4|£ﬁ—|7-|‘/|c‘| NN (D [N N T N TN N N I o | IVﬂléluléT |/|s| |5|p|41c.£|"$|-| | . |
L T R A I AT S AT A I S S O AT S AT U A S AT AT S ST T A AT A A A A S A A A A A S ST A AT AT A A A o
al9|0 plzlolc;flp‘”fglgl |p|/lyl/l-f|/|o|M|'l | N T I T T I N T O 0 N I N T T T G S I O O O N T T N W 1
/lalo 517-}4471‘] lolplﬁM lolylrlplatr; lslgl‘lﬂlgl)f.lﬂ/lzlﬁ-‘l NN I TN T TS Y S W S T S T[N (Y O O N D T Y O N O Y T W O O |
/7,0 L WRNTE SALARY ~ RECOLD FROM HMEADING BEFORE AIVANE/ MG 2 L IMES . |
/zlo 11 1 lp'EKlF'OIIM |Cﬂlllcla|‘|4|7‘l'/laM5| 1SN N T (N Y N N ([O N IS N I N (S S TS T ey IS I U IS U S Sy IO O W |
/1‘710 L i 1 :VIA!PIYI/IA/IGI 1 MoMrJllz'l){-lplAl/ll SN TSN S U TSN Y NS O TS U T N T T ' SO T (O S (e N O I SN T I N T A Y |
/lflo 111 :F[(Io]”] 151‘0101) RO T VOO S T OO O NN S N N [N (N (N [T [Y T T N Y |
/1'5Io . :Ilyl i 1 1 I/|o| | N S TN N NN N [T Y N N T W TN [NN TN U N S N S T S T TS N T T N T NS T Y Y O I
/‘p 111 WM’T/ILI MoerleK-lpﬂly; l/lsl |6|I|Eﬂlrl£|£l JZMAM I/lololal'l I N N VR U I U W [N U Y O O O OO o Ay
/70 | A TOTAL=A = COM-A AND TOTAL=E = COM=E,_ AME \TIOTAL=E 1= (GONV=Cl) |
780| | | | HOVE CTABLE VALUES ALE CORRECT, T.0 SHOM | \ \ 1 1\ 11 1 i1 11111
120 | | WRITE SALARY-RECORD, FROM MES G AFT.ER ADVANCI/NG 2 L/MES, (| 111]
200 | | ELSE | L L L4 L e bt Lt Ll 1]
z|/la 11 1 'MOIVIEI l‘|774‘3¢|£|‘ I‘/IAILIVIE—PSI ﬂlelél- lylalrl. Jclo}eglglclﬂ)l 17-[0| |p|£|5|”|7'l U R UUSNY U UV U NN OO AU URNNND TN NN A e B 1_‘
220 | |\ |\ WRIT.E SALARY~RECORD FROM D3PY, AFTER ADVANCI MG 2 LINMES . | | | 1 |
1230 | |\ CLOSE SALARY=FNLE ¢ | {1 b g4t 4L Lt b Lt L1
2|4|o - I'Sl"la]pl lzlaM.l IS Y 1 T N O T (T N T Y (N U T IS T OO SN T OO T B | “ | N TR N TR N Y VU S WO (N N TN W S U N B
Figure 54. COBOL Sample, Part 3 of 4

42

B

COBOL PROGRAM SHEET

Form No. X28- 1464
Printed in U.S.A.

IF’AG{-:3 PROGRAM 5'4“4@/55. —JBM = 40) Srrr ot i SYSTEM 229/ SHEET s OF <
00.4| FROFMNER /o nres DATE \DENT. Pac 42X
SERIAL]E !
§ A fB
4 6|78 02 16 20 24 28 32 36 40 44 a8 52 56 60 64 68 72,
040 [CALCYLATI/OMS o1 | | | | {1 1 4 g4 L
020 | | | | \(COMPYTE WELKLY =LAV =1 31 4 MONTHLY=PAY, /L 301 4 i it 411 L
030 | | | COMPYUTE AMVYAL=PAY, = /2 % MOMTHLY =PAY 1 i i1 1 VL
040 | | | HOVE WELKLY LAY T0 WEEKLY, /M SALAR/ES | L\ 141 d a1
0 IO . I”loli/lfl MOM7WA|K~|pAy| lrlol /Vloerf/ILlK]/|Ml |5|4|Z|AI£|/|£|5|. N N (N [N N I Y S TN U T T N O I I |
o|6lo .| |A/IOIVIAT IAIMMOIMLI-/AAJYJ L7—I'0| IlﬂMylﬂlél 1/IMI lflﬂllllq@/,\.gl‘sl NN Y O T RO W VR S Y Y O Y S SO R (Y O O IO T
07|0 | Iﬂpla nglé:ll"’/l—lplﬂl}/l lrl’ol]7[‘017-14141-]AL § Y 1O (N NN N S Y S N TSNS U I I Y W N T T N T SO T A By
080 | |\ ADO_HMONTH LY ~LAY \TO \TAZTAL~E 1 1 Lol]
0?|0 L1l }4,..0,0] IAXMM”I”lLI‘.IPAVI 17701 17;-017_!414‘—1-1& | UUSS V N A WE FUU W U S: F NO s Y S N W IO s O D S SO B G W
/OO | | | WRLTE \SALARY -RECORD FROM SALARIES v 1 {110 11 1t o a4]
L.l 1 | L1 ll’) S T S5 Y Y IS U A N N Y N O W S W U T (S W N Y OO JUNUO N S N W [(T IS N O N A NN U WY (Y WO 0 U O SO S VO B SO
1 L1 1 : IO S T S S T T |) NN N N N O Y U O IO N I I | F N TN P T N Y T T s S U U Qe e T Ve S VOO TN NN WA D O OO OO |
\ |.|:|1x|||||1| A S AR B A A A A T U U T 1 1 Y Y Y A T U S B Y WU O AU B B O B
] | I | 'l N Y O R I T T A |) N Y Y Y N O N D U O WY W B) U T T W T [Y (Y Y A Y AN A N NN OO T A O Y TN (O Y SO O Y S
1 1t 1 ll | S O D U T O T O | § NN TR N O SN N N U T W W | N VN S Y U U S N T (S U Ny GO U Y T S OO S W VOl A I O Y Wy
L L1 : S Y N S TS W O T A | N N D W N N Y O U S T I S N U U Y T Y T T W SN U W N W Y Y TONY Y NOOOS OO O NN DU W W ,J‘J;J_‘
t L1 : RN IOR W Y O | Y VT S U T SO N 0 WO o | VA N U T OO O T W I 1T S N Y O O I S T TN U D IO W B O |
L T N N e TR N U T Y U U S0 U WO S S N OO 0 N U B GO 100 S YUY DAV O B R
1 Lt 1 l N T T I Y I | TS WS YOO U O T A N T O B | S WO TN S O TS VO WO TN OO S O W SN N U O WO U U W VN T VN O Oy Wl
i1 L1 : I O Y Y O | N IS VT O T U O 0 T (O N W | I S S T T Y T T U T Y U R N DUUOY Y GO I S N O S O WS |
A1 L1 |I | N TR Y N I S O | | I I N T O T O S S O | N U S T S W S N T U (Y U T T T T N Y N O U O N Y W
] L1 1 : F I TN NN U OO O T SO) Y N T Y N T T W O | U T Y U U (S S Sy S U RO TR Y N Y S N WO S § J,i,ALJ,J_LfLL_‘
1 L1 1 :) N T N TN S O W O N Y NN O S N Y SN TN SN N S | [R I T TS S Y VA Y (N N S U Y T U S (DU S TR NN § ,];_A.L.._le,J_l;1
1 JE : Y O T T B IR N O T T T Y OO O T O | T R G T Y Y T (O R N O S OO Yy N O O WO s N Iy I
F Lol ‘\ U N I U T S T N O N N T T S A 4 F N N NN (N NN T NS WO TN N N RN N N TN (N N JNNO N N T SN NN A N T T T T A A |
Figure 54, COBOL Sample, Part 4 of 4

43

@

coOBOL PROGRAM SHEET

Form No. X28-1464
Printed in U.5. A,

IPAGE3 PROGRAM /40/ Coa“ S’ﬂ”p‘f SYSTEM /40/ SHEET / OF 4
0.0.l PROGRAMMER \.['/OA}ES DATE 1DENT. Bal”]LlﬂIm/lEi%Q
SERIAL[E T
3|A '8 |

4 6|78 |I2 16 20 24 23 32 36 40 44 48 52 56 80 64 [:1:] 7é
6,/,0 /DE”'T/FGC”(T/OM DI WVASPOMey | i a1 1
P 20| |PROCR A0, /1 #06) COB0oL SAMPLE" e, | | |\ 1100000 A A I S A S| 1
11 T I A W A A A P A A A A A A W W A AT W A W W W 1
0,30| |ENVIRONMENT, 27V, 0M o) | 1 4 0 i i i i 1
04I0 clolMFl/léll)lflﬂlﬂllqM |5|E|cl7:/l0|d.| | N I TN N N U T T T N Y TN N N N N T TN T T W T TN TR T N O Y AN]) I T | 1
0[50 floll{leelEl-I.lc‘la,1p|'/l1—;elm.l | S T T T N TS T TN) T T (Y I U N TN NN Y T TN N TN (NN TN N TN N O T N T S S W O | S . 1
olblo Ll 1 :l|8M-|LL10|/| | O T T T T W | l‘l) N N T TN N NN TN TN T (T U TN N T W NN NN T NN T TN WO TN NN U OO G O O | [T T I T | 1
070 |, , , MEMORY, 51285 5000 CHARACTERS o, | | | 1 1 1 v v i b v L
01710 Olgi/uffcuruﬂcnon"ﬂpuunrnel&-. NN N N TN T N TS T T T SN T Y v N T Y T N T [N N T W TN (N T N N Y Y N N | I | 1
090| | \ \ U BM-I#O/ | i)
00 | 11 }Q»EMO.KM- S0 E ACORES S 400 THRG FOOO | \ + v 14 0 s 1
Lo L L WOOVERCAP ey | |) b U 1
20| (/NPT -OUTPUT, SECTY OM=y \ 1 1 4 0 1 000 s L0000 b i 1
1 30| IFILE-CONTRO L ey | | 0 v 0 0 L b |
,|4|0 11 1 :S|E|LIE|CIT| lslﬂlLlalzIVI—lFlllLlEl NN N T TN O N Y Y N Y U Y N N T T TN T IO IO T T YO O Y O O J CE T O | 1
,Iflo 11 1 :A'ISISI’IG‘IM l":ol I’l%oljl_lpl'l NN NN OSSN WO RN [U TN NN W (N N T T T W N [N N N TN W N A T G DO WO 0 O 1 | I W I | 1
L1 | N N N TN O WSO U OV VU U T T [N TN TN NN TN TN T SN (NN NN WU UUD NS N T (N DU TN TN TN TN TN TR TN TN TN VNN T T TV A T N N O U I |) I W U 1
L8O IPATAL DOV S OM e |\ 1y i)
l|7|G Fl’Lﬁ: IsquT,|o|M.l) NN TN T N T N T T T U N O T TN TS TN N N T TN T N T T T N N T T W N G I) O W Y | WS I O T | i
11710 Flol 1 ’S'IAlLlﬁzv F’LE|) TN NN T N N T 1. T T T TN N N T N I N Y N T N T N YO YO N T T Y I M B |) I T I 1
190 |, L ABEL, RECORDS RBE OMTTED 4 vt)]
200! | DATA RECORDS, ARE HEABINE .P.Ecoze.o.,. sn.l-.ﬂ.e.:/. ~KECo RO, \MESS ACE - RECOR
2L’lo-lll:Dl’lllll|||ll|l||||l|llll||II||lIlllllllll‘llllllllllllllllll|
11 lll;lllllllllll||IIIIIILlIllIIIII|Illlllllllllllllllllllllllllll
Ll l||:l|lll|||l|||l|l'||||||l|l||llllllllllllllllllllllLlllllIllll

Figure 55. Second COBOL Sample, Part 1 of 4

44

@

CcCOBOL PROGRAM SHEET

Form No. X28-1454
Printed in U.S. A,

:’AGE3 PROGRAM /40/ Co&o‘ J'ﬂmpLE SYSTEM ,4‘0/ SHEET 2 OF 4 J
g2 PROGRAMMER v, VOWES DATE IDENT. Rﬂgﬁﬂlﬁg
SERIAL[E !
ga 18
4 6|7(8 2 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72d
0,/ .0 01/.n:ﬂnﬁﬂtq/l"f&'l@ﬁcqunq'll||111||1||1|1|11|||1||111||1|||111111|||1|||
020 | 102 FHGLER 0 v a1 PLOTY.RE |)f1(15.|¢u1-| T S Y S S A B B Y B B A A O
030 | || 102 MEELL Y -HESDIMG-LLME | |\, PlCTVRE ﬂl/bnh-l I I A A O S S A A S A A A
040 |\ 102 FILER | i RNWCTURE I)ﬁ/f)ull [T SO B N T Y S O B Y O A B |
050 L. 102, MOMTH LY~ HEADS ME-LINE | | | BLETURE |ﬂ/ 7)|-| TN R O N A B SR B U N R A NN AT Y
060 | | 102 F/RLLER L 0 a1 POHCTYR) S A I I W I B AR A A B S A
o070 L 102 AMMUAL - HEROY) NE &/ ME |\ BNCTUE Bilib)ie « 1 1 101 11 111
080 | \ 1 1 102 FIELER | 1 i a1 ROCTIURE L A2 R R A A
0I9|o 0]’] I :6‘[”|l|ﬂ|kl’)|‘|k£|cloklol.l RS N G TN I N N (N TN VO Y DU NN OO Y N N N T O T N N TN (O T TN W T O A N T T G T O A W MY |
1,00 L1102 FlL L ER | a1 PICTORE IXI/uf;",l}lol«l IR N S R B A S A IS B
/0| 02 WEEKCA - DETAIL ~AINE | | | PLOTYRE ZZZ, ZZ., | | |\ 11111001101
/20| | | 102 FUILLER | (1 41 PETURE l'(l(lj:')l'l T B A S T U S L A S M A U B
430 |) 102 MOMTHLY ~DETAIE <L ME | | | | |\ PUETIYRE ZZZZ ZZi% o 1 11 1 1 12 110111
|4ﬁ Lt 1 '102] [Fl/lL‘glkl) SR N TN VU VR NS OO N U N0 OO N 0T W I O o | |Pllc|7-lul?lq XIns_A/)l LY O W S N TN N T N T U N I N T T N Y B W |
V50l | L 102 AMMOAL -DETALL Ll NE | | |\ | PlETYURE ZZZ22Z-2ZZ0e 3 1 | 1 (111111111
Léo Lt 1 :0|2| lFll,lthlfl-el S TR VO N O VONS UO NN T N O SN U U T O Ip,]ClﬂuklE; lXIIISI/})) 1SN U NN N TN NN NN N T Y NS NN N W O O St
Il"ﬂ oi/l [l MESISA"'I‘lEl‘lgﬁCIORIJI'I VSIS 1 Y N VR SO VRS U TN S0 NN U 'S S NN O U NN N N N N TN T TN T W U [N OO O O O (N W T T O T I O Y T I
(\FOl | 1102 FreLER | i i a1 PLETYRE OS2\) o 1 v vy
qulo | - :olzl Mglsjslqsl‘ﬁ § N N Y VO OO O U N OO0 TN N I o T | |Plllclnym§ Iﬂl(lzly}) T T SN U I N N T T T N U (SO U U O A I W |
00 Lt 1 :O..Z. IElILILglkl I S T N T O T T T T IPJ/JCJTL‘,L‘EE llt |5-|g!1 NI NN T TS SO Y T UV T Y Y T N W B o
2/ P a‘?o]elé]’IM‘l-lslﬂokl'q%lsleiclﬂ,loﬂﬂl]L}IllIlIllllllIllllllllllllllllllLlJJlL
220 (17, HASH-T 0744 ~COUNTERWEEKLY, |\ A/CTYRE &) V39 VARLUE /5 ZERO., | |
230 |17, . |MEEIKLI - QU KET, BEDEFINES, HASH-ToT AL~ COUNTERMEEKLY, | | | 1 11 1 111
EA[O | - | N T NS N NN TN N TN N NN SN (NN UM NN TN N A NN TN N T Y S A Y N p'l quuﬁf IXI({)I'I Y U T N N SN NN W (N O N T N N T I |
- | Illlll‘llllllll|||l'||||l|||||l|lli4Lll‘lllllll‘lll'lllllLllll]ll
Figure 55. Second COBOL Sample, Part 2 of 4

45

Form No. X28-1464

IBM coBOL PROGRAM SHEET

@

IPAGE3 PROGRAM /40/ ('OBOL S-ﬂmpLE— SYSTEM /40/ SHEET 3 OF 4

0,0,3] PROSRAMMER d JoNES DATE 1DENT. SﬂlL,'ﬂQ/.ﬁ
SERIAL[E !
|A 'B

4 6]7(8 e 16 20 24 2=8 32 36 40 44 48 52 56 60 64 68 75
0./.0| |74 | \HAS #7070 - COUMTER-MONTHLY, | Rl CTVRE 9b) VI VaLUE (1§, ZERAD., | . |
020\ 7.7, \ MOMTIHLY ~BYCKET, REDERINES, #AASH-TOT AL~ COUMNTER-MOMTMALY, | 1 \ 1\ 1 1 1 o 1]
0,30 |||:||1111|1J||1||1|||::l...ll.nﬂh@ﬂ“@lﬁ_ﬁﬁﬂ_&wwvu&g
PAO| 1T, | HASH~TOTiAL ~COUMTER~ AMNYUBL, | \ RNCTURE F(6) V39 \VALLSE /S, 2.E€0¢~, | |

050! |17, |ﬂMMq|AIL| .HUg;,I(,ET, | IK:QDEEP’MQL délﬂ‘7'|0‘7'|g|‘.| Lol ,TE.&E-IﬁA/N‘(%L. TR N N S A B

m Illlllllllll|||l|lllllLllJ|lJll|p/|q7.|‘(ealxl(’)l.lllll_lll|||l|lII|||1

Q70| |77, \ WEEKLY-PAY | 1, B\ C TR E 3.99.'/.99| MALUE 15, ZERO-, | |

Q.!.O 7.7 mo.&TML.H—.RﬂV. Vet (RLCGTHIYRE, ﬁl(I«,ltl/lgl?l WALUE 1,5, 250 - | |

090| |17, \ \ANNYAL~PRY, |) 10 a0 BLETIURE I?I/Ir) Y29 UALUE 15, 2EROS.: | |
1 1

ol |CONSTAMT SECT I/ 0M, | | PO YO W00 W T T O T W T T N N T U T VAT T TS WA S W0 T 0 M A O Y B B
10| |17, HASH-T 0T AL-OF - MEEKL,V. .Pﬂll’, L REeTuRE X (F) VALUS \'\08782,669 .,
/2.0 |77 1 (MBS \$-~TOT AL ~O0F ~HONTHLY~BAY, , | \BlLCTURE 1&/3’)1 WAL UE 1,03 825%000, ., , |

130\ |11, . \HASH ~T0TiAL - O0F ~ AMMUAL-PAY, | . | Al CT.4RE, .x,(g). VAL UE ! 45900000, ,

1l TN TN TN TN N N TN T VORS00 SO U N WS N T O[S I T T S N T N T YOO Y W TN S T N [N N Y T O T Y N Y T 0 O O |

/ ,’lcaciﬁ-gnuaﬂﬁ1Q’IZ/|$nlnqﬂlu1111111|||1|JL||n|||111111|||||||1|||<111111|1
’Islo IIDI-.I/w,lr/lﬂlL(,lZE‘I B T 1NN NN VNN [N SN N TN N TN TN N U VY WO SO U Y (O T A N TN TN T N N (N 1O SO T SN SN N N WA O TS YO TN TUY N (OO VU S O Y
L1 1 :olpm JOI“FR”?I- |S‘63L|62]V|_|’T_/|I1Elol 1SN JNUNY TN TN AN VNN NN SUUN TS NN SO0 S SO S T N N TN N TN S U SO WU SN SN VU TRON NN YO NN N S G |
70| | |\ | MoVE ‘MEEKL.Y, | TO WEEKLY, ~HEADIMEALIME e i1
(80 |\ MOVE ‘Mozt s, T.0, MONTHLY HEADI ME- L/ ME o \ 1y 1 a0 a0 10y 11
190 |, , |, ModE \AMMUAL" | T.0 AMMYUAL=HAEADINMGE~LIME e | 1 1 11 o it i
200 L MR/.T.E. MEAD ING- KELORD BEFORE AROVANCIMNEG 2 LIMES o 1 3 1 111
zllp | | Mlol‘/ﬁ !§IP|AicIEJ’ I7l-ol I,{IE;ﬂlol,N6~leI£clale14'l | SR W S W AN 1O (N TN TN TN W T T T N N T TN N NS Y N TN O O Y S |

.

1 YN N TN S T NS T I DU S T T TN YO Y N T N T T T N Y N WO (VO U A N R I T U A Y U N Y N O O O U T T O S T S N U T 1O O T N WY S O I |
1

)1 | I T U N TN T YO T U AU O T NS T Y T SO T S T T T W T T S T T T T T N Y T T T T TS Y S Y T U IS T O N T e Y Y O I A A |
'

Lol [TSN NS TN T S N U O T T T T T T Y N S N W YO T T Y S T S YU S NS T O O S Y N O YO N T T O T S N N TS T s Ty s |

Figure 55. Second COBOL Sample, Part 3 of 4

46

CcCOBOL PROGRAM SHEET

Form No. X28-1464
Printed In U.5.A,

lPAGE3|PROGRAM /¢0/ 5050[SAMPLE SYSTEM /40/ SHEET &/ OF 4 l
0,0 PROCRAMMER L Vowes DATE \DENT. Bt e £
FERIAL"S‘ ;
Ba s

4 6178)2 16 20 24 28 32 36 40 44 48 52 13 60 64 68 724
00| |START~L 60 e, 1 1 1 1 34 1L b L Ll
020 |, \RERRakM CALCULAT OMS VARV IMG MOMTHLY~REH [FROM 8500 .90 87 \ |,
030 11 100/i0,..00, \UMTY Ly MONTHLY,- LAY, 1S, GREATER, T HAM 100000 0 \ | 1 1\ 1 1,1,
040 | '\, , mnufl SWPACES, TO0, SHLACY ~RECORLD e, | | ¢ 1 1y 1 11 v v 10 1 byt
OISTO ﬂESIT:~MﬁS|”|—I7-|o|7‘Iﬂ'L|$l'I | SO U (N N N TN TN (N Y Y N N T N O N T T W [N N T N TN S N IV O (O U N T TN T TN N TN N NN U T O Y |
0,60 LWL WEEKL Y- BUCKET (1S, EQUAL T0 HASY T 0T~ 0F~ MEEALY~ARRY, | |\ | | I
0,70 L1 MO AMONT MG -BACKET 1S, EQdAL, TO _thASH ~ T 074 L, 0F ~ HINT ALY~ LAY, | |,
0,90 Pl :ﬂl”lol ﬁMU.MdLLm&U.CLKﬁﬂ /1S |€ﬂ””|‘~l 70, 1”1475|,1"|7|.0|7-1’91L1“laﬁ‘l’qfu““”\él‘lpﬁﬁ L1141
090 L1 ml’,g T ABLE VALUES, ARE e.og.ggcz;', T O MESSACGE | 3 1 441 1
100] | |\ WMIRITE MESS AGE-RECORD AFRTER AOUAMCI M6 12 (LI MNES | 01001
I’o lll:ElL'ﬁglllllll|lllllIlllllll'llllllllll|l|l||l||l|ll|l|||llll|ll
1,2,0 L mluléi |,|TQQMM_M§ Mo7, corrECT, TO HMESS BELS L 4 1 1
136 |\ KITE MESSHEE~RECORD, AFTER ADYAMNC/NG 2 (L /MES o 1 10 (114310 1110
/ 0 | Ilcll'lolsﬁl lsﬁ;‘Llﬂle|,)|.'|Flll‘lEI.l lmqpl IEIUIM’L F S I TN Y N T N Y SN TN TSV NN WO VO N TN O T N TN T O N AN TN T SN N N
1,50 |CALCVLAT/OMS o |+ 1 1 4 10 L L
/1b|0 101 :cnolmpﬁulr;el MEE(IAH‘I”IAI ! = |3|] M”lQé/lrMLnHJ’]ﬂlH [VARY It~ LTI I IR BRI I U A A AT AN S AN B O BN A
1,70 L1t k’.taﬂlP.MTéi AMQM&QDBI%& =02 K AOMIHLY APH e 1 L0 i
1,80 |) MOVE WEEKLY~RAY, T0, MEEKEY~DETA Ly Ll N&Ee) | 4 1o 4 100
13.0 Lt Lﬂ”ll/lﬁ HONMTHL Y, ~PAY, T0 HONMTHLE ~BETAI I~ MEo | |\ L 114 1110 1y (1
Znop L lmall/lﬁ ANMUAL-PAY,. TO, AMM«IA‘ILI"IDJEIZ&/‘—I_IL'/M_ET‘I PN N T WO T NN N TG N WA T A O A A WA BN AN O AU
20| |, ADD MEEKLY~PARY, T0, HASH-T0TAL-COUNTER~WEEKL A | 1\ 1 1111
2|2ro 11 :A:Dabl n/ﬂaMﬂ//.L:H ‘IRQI‘)I |7;0| lMﬂ.S.ﬂ.".ﬁO.DﬂL.-.GO.U.MT.ER.‘MoM?T//.LM-. FE T T N N N S TN WA N A S B |
m Lt :’fnbnﬂl |/71'M’4|L|_1p191¢| A |M”]S|”1_17;017;”1/-1—1f101‘(1”1715k|‘n”i”MQI”/—H| TR Y T SN T T W U N N MY T U
240\ |\, MBI TE SALARY-RECOBD e |\ 1 4010t
(| III:IIIIILIIJLIIIIIIlllllllllllllllllllllllllllllllllllllll‘llll

Figure 55. Second COBOL Sample, Part 4 of 4

47

Index

Accept Verb 21
Added Elective Elements—Data Division. 20
Added Elective Elements—Environment Division. 10
Added Elective Elements—Procedure Division. 26
Additional copoL Words. 29
Addition Notes 36
Alter Statement 38
Arithmetic Verbs 38
Assign Object Program 7
Assign to Device-Name. 9
Autocoder-Name is coBoL-Name. 8
Blank when Zero 20
Block Character-Count Field 12
Block Contains. 14
Block Count 12
Card Read-Punch Records 13
Character Sets 29
Class Conditions. 29
Close Verb 26
coBoL Language 5
COBOL Processor........... 5
Conditional Statements 26
Configuration Section, 6
Constant and Working-Storage Sections. 20
Continuation of Alpha Literals. 30
Creation Date. 11
Data Division. 11
Data Division Language Specifications. 13
Data Records 15
Device-Names 8
Deferred Elements—Data Division 20
Deferred Elements—Environment Division. 10
Deferred Elements—Procedure Division 28
Display Verb 21
Division Notes 36
Editing e 19
Enter Verb 23
Environment Division 6
Examine Verb. 22
Exponents 26
FD File Name. i 13
Figurative Constants 29
File-Control Paragraph 9
File-Description Entry. 13
File Identification Name. 11
File Serial Number. 11
Form-1 Records 12
Form-2 Records. 12
Form-3 Records 12
Form-4 Records 12
General Information 29
Header Label Identifier. 11
High-Values 29
mM Header Labels. 11
M 1401 cosBoL Programming 6

48

M 1401 cosor Tape Labels 11
mM 1401 cosor Trailer Labels. 11
Identification . . . R R 15
If Statement 37
Input/Output Verbs 38
Input-Output Section 9
Justified 18
Label Records 14
Low-Values 29
Machine Requirements L 7
Memory Size 7
Move Verb 37
Nested Conditional IF Statements 26
No-Overlap 7
No-Print-Storage 6,7
No-Release 6,7
Object-Computer Paragraph T
Oceurs 16
Open Verb 26
Perform Statement 38
Picture 18
Point Location 18
Printer Records 13
Procedure Division. 21
Programming Considerations 36
Quotes 29
Record Character-Count Field........ 12
Record Contains. 14
Record-Description Entry. 15
Record Formats for Punched-Card Files. 13
Record Formats for Tape Files., 12
Reel Sequence Number. 11
Retention Cycle 11,15
Sample Problem. 30
Select File-Name 9
Size . . 16
Source-Computer Paragraph 6
Special-Names Paragraph 9
Stop Verb L 24
Subroutines, Object Time 39
Switch Names and Conditions. 8
Tables 36
Tape Serial Number = I 11
Techniques [36
Trailer Label Identifier. 11
ValueIs. 20
Word Marks 36
Write Verb. 21

READER’S SURVEY FORM

COBOL (on Tape) Specifications: IBM 1401 (C24-1492-2)

e Is the material: Yes Satisfactory No
Easy to read?] O O
Well organized? O O O
Fully covered? O O O
Clearly explained? O 0 0
Well illustrated? O O O

¢ How did you use this publication?
As an introduction to the subject O
For additional knowledge of the subject O

e Which of the following terms best describes your job?

Customer Personnel IBM Personnel

Manager O Customer Engineer [
Systems Analyst [] Instructor O
Operator O Sales Representative [
Programmer O Systems Engineer O
Trainee d Trainee O
Other —— Other

e Check specific comment (if any) and explain in the space below:
(Give page number)
[Suggested Change (Page) [Suggested Addition (Page
[1 Error (Page) [Suggested Deletion (Page

Explanation:

Space is available on the other side of this page for additional comments.
Thank you for your cooperation.

)
)

C24~1492-2

Fold

Fold

FIRST CLASS
PERMIT NO. 387
ROCHESTER, MINN.

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WiLL BE PAID BY . . .

IBM Corporation

Systems Development Division
Development Laboratory
Rochester, Minnesota 55901

Attentio:: Product Publication, Dept. 245

- G G G G N G G D S G G G GHND CED GUD GES GIS GNP GHID WIS G G W GID GHID GIND SN D GRNE SIS GEE GPND GHRS NG GRED G SN D M NEED GENKD St Ak GEED GUND GRED SIS GIID GHND WA SHNS M SHNP GRED RGO WSUR Gu SEE wme

Fold

JISING

®
International Business Machines Corporation

Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

Fold

:SIUIWWOY) [eUONIPPY

Cut Along Line

VSN UL PUE Loyl Wal

2-C67L 7T

C24-1492-2

BN

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

¥

2-ZerL=§ZD" T TSN UL pasulyg

tovl wal

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	replyA
	replyB
	xBack

