
Systems Reference Library

COBOL (on Tape) Operating Procedures
IBM 1401

Program Number 1401-CB-070

This publication describes the operating procedures
used to assemble a machine-language program from a
source program written in 1401 COBOL language. It also
describes the operating procedures for producing and
modifying the COBOL tapes, the phases that make up
the COBOL processor program, and lists diagnostic and
error messages in detail.

File Number 1401-24
Form C24-3146-3

Fourth Edition

This is a major revision of, and obsoletes C24-3146-1, C24-3146-2, and Technical
Newsletters N24-0244, N21-0032, and N21-004B. The section headed Placing Prescan
Diagnostics on the COBOL Processor System Tape has been deleted. Changes are
indicated by a vertical line at the left of the affected text.

Significant changes or additions to the specifications contained in this publication
will be reported in subsequent revisions or Technical Newsletters.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
A form has been provided at the back of this publication for reader's comments. If the
form has been detached, comments may be directed to IBM Pro gramming Publications,
Rochester, Minnesota, 55901.

© 1964 by International Business Machines Corporation

Contents

Machine Requirements .. 5

Operating Functions .. 5

Copying the PID Tape " ".. 6
Creating COBOL Processor and Extraction Tapes 6
Printing COBOL Phase Listings .. 6
Punching COBOL Subroutines, Sample Program 6
Placing COBOL Subroutines in the Autocoder Library...... 6

Duplicating the 1401 COBOL Processor System Tape 7
Performing a Prescan Diagnostic Run 7
Prescan Run Output .. 7
Compiling COBOL Source Programs

(COBOL to Autocoder) .. 8
Assembling Autocoder Output (Autocoder to

Machine Language) .. 9
Loading the Autocoder Object Program 9
Obtaining Storage and Tape Prints for APAR's 10
COBOL Dictionary.. 10

COBOL Diagnostic Usage ... 10

Pres can Diagnostics .. 10
COBOL Processor Diagnostics .. 12
Diagnostic Reference List .. 14
COBOL Tape Print Program .. 21

COBOL Phase Description .. 22

COBOL Subroutines .. 27
Halts and Messages 27

Sample Program: Table of Salaries 29

IBM 1401 COBOL (on Tape) Operating Procedures

Machine Require.nents
The 1401 COBOL processor can compile an object pro­
gram for any IBM 1401 system that has at least 4,000
positions of core storage. To process the COBOL source
program, the 1401 must have at least:

• 4,000 positions of core storage
• Four IBM magnetic-tape units
• IBM 14m~ Printer, Model 2
• IBM 1402 Card Read-Punch
• Advanced Programming Feature
• High-Low-Equal Compare Feature
• Sense switches.
A minimum of 8000 positions of core storage is re­
quired if a prescan diagnostic run (described later in
this publication) is to be performed.

The 1401 on which the object program is to be exe­
cuted must have:

1. Sufficient core storage to contain the program pro­
duced by the COBOL processor. If the object program
requires more than the available core-storage capac­
ity, either the program must be executed in sections
(overlays) or the job must be divided into multiple
runs. This is a significant consideration when
COBOL is to be used on systems with 4000 posi­
tions of main storage.

2. The object machine must have the input and output
units defined in the FILE-CONTROL paragraph.

3. Advanced Programming Feature.

4. High-Low-Equal Compare Feature.

5. Sense switches when they are referred to in the
SPECIAL-NAMES section.

6. Multiply-Divide Feature if any of these entries ap­
pears in the Procedure Division of the COBOL source
program:
a. MULTIPLY verb
b. DIVIDE verb
c. COMPUTE verb when either /, *, or ** is used as

the operator.

Operatilng Functions
The COBOL system contains several processing functions
that facilitate compiling and interpreting COBOL pro­
grams. These functions are:

• Copying the PID tape.
• Creating the COBOL processor and extraction tapes.
• Printing COBOL phase listings.
• Punching COBOL subroutines and sample programs.

• Placing COBOL subroutines in the Autocoder library.
• Compiling COBOL source programs (COBOL to Auto­

coder).

• Assembling COBOL output (Autocoder to machine
language).

• Loading the object program.
• Duplicating the 1401 COBOL processor system tape.
• Obtaining storage and tape prints for APARS.

The 1401 COBOL processor is a self-loading magnetic
tape. It should be labeled 1401 COBOL Processor Sys­
tem with the current version number and modification
level of the program.

1401 COBOL Extraction System is a self-loading
program written on magnetic tape. This program is
used to print a listing of the COBOL processor system, to
punch the COBOL subroutines deck used to update an
Autocoder system tape, to punch the sample program:
Table of Salaries (see Operating Functions).

The Table of Salaries in the sample problem is an
example of how a computer can be directed by using
COBOL language to compute a set of values and list
them in tabular form on the printer. The sample pro­
gram is written in COBOL source language and must be
compiled and assembled before an object run can be
made.

To assemble the compiled output of the 1401 COBOL

processor, the user's 1401 Autocoder system tape (the
latest version and modification level) should be used.
This tape must have been updated with the COBOL sub­
routines deck and should contain the specific IOCS
appropriate to the user's needs (see Placing COBOL
Subroutines in the Autocoder Library).

Operating instructions for using each of these items
are included in this publication.

In addition to the material presented here, the pro­
grammer should be familiar with the material given in
the 1401 Systems Reference Library (SRL) publication
that describes the IBM 1401 configuration for which the
program is written. These are listed with form numbers
in the IBM 1401 Bibliography (A24-1495).

The user must be familiar with the information con­
tained in COBOL (on Tape) Specifications f01' IBM
1401 (C24-1492) and the IBAl COBOL General Infor­
mation j\.lanual (F2S-S053). Together they provide pro­
grammers with sufficient information to enable them to
write programs in the 1401 COBOL. To use the available
features of the COBOL language and the COBOL system
effectively, the user should have a thorough under­
standing of this material.

5

Copying the PID Tape
The tape labeled 1401 COBOL PID Tape, sent by the
IBM Program Information Department, can be copied
as follows:

1. Mount the PID tape on tape unit 1.
2. Ready tape 2.

3. Set sense switch G on (up).

4. Press CHECK RESET.

5. Press START RESET.

6. Press TAPE LOAD.

7. At the end of a successful run, a programmed halt
occurs with theA-address register containing 003.

8. Remove the tapes from units 1 and 2.

9. File-protect the tape from unit 2 and label it: 1401
COBOL PID Tape.

Creating COBOL Processor and
Extraction Tapes
The tape labeled 1401 COBOL PID Tape, sent by the
IBM Program Information Department, is used for this
operation. This tape is a self-loading program that pro­
duces a 1401 COBOL Processor System tape and a 1401
COBOL Extraction System tape. To obtain these tapes:

1. Mount the PID tape on tape unit 1.
2. Ready tapes 2 and 3.

3. Press CHECK RESET.

4. Press START RESET.

5. Press TAPE LOAD.

6. At the end of a successful run, a programmed halt
occurs with theA-address register containing 002.

7. Remove the tapes from the tape units and file-pro­
tect them.

8. Label the tape from unit 2: 1401 COBOL Processor
System with Prescan.

9. Label the tape from unit 3: 1401 COBOL Extraction
System.

If more than ten read or write errors are encountered
for a given record while copying the PID tape or creat­
ing the COBOL processor and extraction tapes, a pro­
grammed halt occurs with the A-address register con­
taining 004. Press the start key to reread or rewrite
the record.

Printing COBOL Phase Listings
The tape labeled 1401 COBOL Extraction System,
which is extracted from the 1401 COBOL PID tape, is used
for this operation. This tape contains a self-loading
program that can be used to produce a symbolic listing

6 Tape COBOL Gp. Proc.

of all phases of the 1401 COBOL system. To obtain this
listing:

1. Place the 1401 COBOL Extraction System tape on
tape unit 1.

2. Press CHECK RESET and START RESET.

3. Press TAPE LOAD. The program will stop at 364.

4. Press START to produce the listing.

5. After all phases have been printed, the program
halts at 600.

6. Press START RESET and STARl,' to rewind the tape, or
press START to punch the subroutines and the sample
program.

Punching COBOL Subroutines, Sample Program

To punch subroutines and the sample program:
1. Place the 1401 COBOL Extraction System tape on

tape unit 1. \

2. Press CHECK RESET and START RESET.

3. Press TAPE LOAD. The program will stop at 364.

4. Press START RESET and START.

5. After the COBOL subroutines and the sample problem
have been punched, the program will stop at 709.

6. The COBOL subroutine decks and the sample problem
decks should be separated and labeled for identifica­
tion as follows:

a. The deck with the identification number 70001
punched in columns 76-80 should be labeled:
4K COBOL Subroutines.

b. The deck with identification number 70002
punched in columns 76-80 should be labeled:
> 4K Subroutines.

c. The deck with identification number 70003
punched in columns 76-80 should be labeled:

COBOL Sample Program.

Placing COBOL Subroutines in the
Autocoder Library
In this operation, an Autocoder system tape is up­
dated to contain the routines needed to assemble the
machine-language object program from the symbolic
statements that the COBOL processor produces from the
COBOL source program.

The Autocoder system tape used should contain the
specific IOCS and macro combinations appropriate for
the user. This choice should be made according to the
following criteria:

1. If the user wants overlapped IOCS instructions to
be generated, the Autocoder tape must contain
IOCS with overlap.

2. If the user wants non-overlapped lacs instructions
to be generated by the Autocoder system, the Auto­
coder tape must contain IOCS without overlap.

3. If the user wants non-overlapped lacs instructions
to be generated by the COBOL system (regardless of
the OBJECT-COMPUTER entry), the Autocoder tape
must contain those macros that will be used by the
source program while in the ENTER AUTOCODER mode.

If full label checking is used, the RDLIN macro should
be included.

COBOL subroutines must he used to update the ap­
propriate Autocoder tape for assemblies to be run on
an IBM V101 Data Processing System.

To update the Autocoder tape:

1. Place a current version of 1401 Autocoder on tape
unit 1.

2. Ready a tape on tape unit 6.

3. Place either the 4K or> 4K COBOL subroutines in
the card reader, depending on the size of the
object machine used.

4. Turn on sense switches A and F.
5. Press START RESET.

6. Press TAPE LOAD.

7. After the Autocoder system tape has been updated,
the message 1401 AUTOCODER SYSTEM COPIED ON TAPE

UNIT 6 will be printed.

Duplicating the 1401 COBOL
Processor System Tape
To make a copy of the 1401 COBOL processor:

1. Place the tape labeled 1401 COBOL Processor Sys­
tem with Prescan on tape unit 1.

2. Ready a working tape on tape unit 2.
3. Place these two control cards in the card reader.

Card
1

Columns
6-12

16-18
16-18

4. Turn on 110 CHECK STOP.

5. Turn on sense switch A.
6. Press CHECK RESET.

7. Press START RESET.

8. Press TAPE LOAD.

Content
SYSTEMS

RUN

END

9. Press START. (Because there are only two control
cards, the start key must be pressed a second time
to read in the END control card.)

10. After the tape has been duplicated, a program­
med halt occurs; the A-address register contains
040, and the message NEW SYSTEM ON UNIT 2 is
printed.

Performing a Prescan Diagnostic Run

A pres can diagnostic run, a separate and optional run,
checks the COBOL source program before compilation.
Input is from cards only. An END OF SOURCE card (see
Compiling COBOL Source Programs), although it is
not required and has no function in a prescan run,
can be included at the end of the COBOL source pro­
gram. To perform a pres can diagnostic run:

1
1. Mount the 1401 COBOL processor system tape on

tape unit 1.

2. Mount scratch tapes on tape units 4, 5, and 6.
3. Turn on sense switch A.
4. Place the following control card ahead of the

COBOL source program in the card reader:
Columns Content

6-9 DIAG

16-18 RUN

NOTE: A COBOL RUN card must not be used in the pre­
scan run.
5. Press CHECK RESET and START RESET.

6. Press TAPE LOAD.

7. Press START when the machine halts. (This causes
the last card from the reader to be read, and pre­
scan processing to begin.)

When the pres can run is complete, the machine
halts. The B-address register contains 999.

Prescan Run Output
The output from the pres can diagnostic run is in
printed form, and includes at most, three separate
listings: a source program listing, a name listing, and
a sentence-structure-error listing.
Source Program Listing: This listing contains the

COBOL source program (including sequence num­
bel's), and always appears in the pres can output.
A sequence error in the listing is identified by an
asterisk (0) following the sequence number.

Name Listing: This listing contains all the procedure
and data names used in the source program, plus
an indication of the type of each data name. The
name listing always appears in the pres can output.
A name that refers to more than one field (multide­
fined) is identified by an M between the name and

7

its type indication. The M appears for all multide­
fined names, whether qualified or not, and serves
as a warning that such names require qualification.
A COBOL keyword, used incorrectly, is flagged by
the word KEYWORD preceding the type indication.
(For examples of the name-associated diagnostics,
see COBOL Diagnostic Usage.)

Sentence-Structure-Error Listing: This listing consists
of sentence-structure-error diagnostics generated
during the prescan run. It appears only if errors
were made in any of the COBOL sentences in the
source program. (The sentence-structure-error diag­
nostics are more fully explained under CO BO L
Diagnostic Usage.)

Compiling COBOL Source Programs
(COBOL to Autocoder)
In this operation, the COBOL source program and the
COBOL processor system tape are used. The processor
compiles and assembles the object program in Auto­
coder language. The 1401 COBOL processor prints a list­
ing of COBOL source statements followed by the Auto­
coder expansion of these statements at assembly time
if desired by the user. This optional source-symbolic
listing is controlled by sense switch G at compilation
time.

Either the card reader or a program library tape can.
be used to supply the source program to the COBOL

processor. Two control cards regulate this process.

1. The COBOL RUN card conveys to the compiler a re­
quest for a COBOL compilation, the input option re­
quested, and the program to be run (if the tape op­
tion was requested). The format of the COBOL RUN

card is:

Columns
6-10

16-18
21-35

79-80

COBOL

RUN

Content

15-character identification (only re­
quired when tape option is used)
% 0 (request for tape input)
bb (request for card input)

8 Tape COBOL Op. Proc.

2. The END OF SOURCE card follows the last card of the
source program. It is required when the source pro­
gram is written on tape and when the source pro­
gram is stacked in the card reader. Its format is:

Columns
1-13

Content
END OF SOURCE

If the user desires to use the program library feature,
the following requisites must be-met:

1. The set of source programs must be recorded as one
file, followed by a tape mark, and must be recorded
as eighty-character move-mode records. (The 1401
Multiple Utility Program will create this tape.)

2. Each source program must be preceded by a COBOL

RUN card and followed by an END OF SOURCE card.
3. Each COBOL RUN card must have a unique identifica­

tion in columns 21-35 for the processor to select the
correct source program (the %0 punches are not re­
quired in the COBOL RUN card images on tape). If the
processor fails to find the programs requested, it will
rewind the library tape and search it once more.
After compilation, the library tape will be posi­
tioned at the next COBOL RUN card. The cards placed
into the card reader may consist only of COBOL RUN

cards with %0 punched in columns 79 and 80 (re­
questing input from the program library), a single
card deck (COBOL RUN, source deck), a stack of card
decks (COBOL RUN, source deck, END OF SOURCE,

COBOL RUN ...), or any combination of the above.

The following restrictions apply to the use of the
COBOL RUN and END OF SOURCE cards:
1. If input is to be from the card reader, the COBOL

RUN card must not have the %0 punches in columns
79 and 80.

2. If the input is from the card reader, only the last
source program need not have an END OF SOURCE

card.

To compile the COBOL program:

1. Place the tape labeled 1401 COBOL Processor Sys­
tem on tape unit 1.

2. Ready the tapes on tape units 4, 5, and 6.

3. Ready a tape on tape unit 3 if the COBOL source
symbolic listing option is used.

4. Turn on I/O CHECK STOP.

5. Turn on sense switches A and C. Turn off sense
switches B, D, and E.

6. Turn on sense switch F' if IOCS generation by
COBOL is not desired, or if the overlap feature is
used in the object program.

7. Turn on sense switch G if the COBOL source sym­
bolic listing option is used.

S. If this is the initial compilation of a stacked job or
the compilation of a single program, place the
COBOL RUN card(s) and/or the source deck(s) in the
card reader.

If the program library option is used (%0 in
columns 79 and SO of single COBOI,. RUN card(s)),
mount the program library tape on unit 2.

9. Press CHECK RESET.

10. Press START RESET.

11. Press TAPE LOAD.

12. Press START.

13. When card reading stops, press the start key to
read in the last card.

14. At the end of a successful compilation, the mes­
sages printed are:

IF EXTRA OUTPUT DESIRED

B ON FOR PUNCHED AUTOCODER

D ON FOR PRINTED LISTING

AND PRESS START

IF NO EXTRA OUTPUT DESIRED, PRESS START

15. After a successful compilation, the symbolic ob­
ject program can be assembled. However, any
errors indicated by diagnostics flagged by ~ ~

should be corrected before the symbolic object
program is assembled.

16. If a symbolic listing is desired before assembly,
turn on sense switch D and press START.

17. If a punched symbolic deck is desired, turn on
sense switch B and press START. A symbolic listing
and symbolic deck can be obtained by turning on
sense switches Band D and pressing START. This
sense-switch option can be used after the compila­
tion has been completed and the message (de­
scribed in item 13) has been printed.

IS. When no more output is desired, turn off sense
switches Band D and press START.

19. At the end of compilation, the tape on tape unit 4
will contain the symbolic program. (The symbolic
program will have been punched also if the option

in item 16 was used.) The message END OF COM­

pILATION-AuTocoDER ON TAPE 4 will be printed.

Assembling Autocoder Output
(Autocoder to Machine Language)
The output from the COBOL compilation process is the
object program in Autocoder language. To assemble
the machine-language object program:

1. Place a current version of 1401 Autocoder (with
COBOL subroutines) on tape unit 1.

2. Ready tapes on tape units 4, 5, and 6.

3. Ready a tape on tape unit 3 if the COBOL source pro­
gram specified ASSIGN OBJECT PROGRAM TO TAPE.

4. If card input is used, perform these eleven steps:
a. Turn on sense switch A.
b. Turn on I/O CHECK STOP.

c. Place the Autocoder program deck in the card
reader.

d. Press CHECK RESET.

e. Press START RESET.

f. Press TAPE LOAD.

g. If ASSIGN OBJECT PROGRAM TO TAPE was not speci­
fied, turn on the card-read punch.

h. Press START.

1. When card reading stops, press START to read in
the last card.

j. At the end of assembly, the message END OF AS­

SEMBLY will be printed.
k. Press START.

5. If tape input is used, perform these eight steps.
a. Turn on sense switches A and C.
b. Turn on I/O CHECK STOP.

c. Press CHECK RESET.

d. Press START RESET.

e. Press TAPE LOAD.

f. If ASSIGN OBJECT PROGRAM TO TAPE was not speci­
fied, turn on the card read-punch and press START.

g. At the end of assembly, the message END OF AS­

SEMBLY will be printed.
h. Press START.

Loading the Autocoder Object Program
To load the object program into the object computer:

1. If the object program is in punched-card form (in­
stead of on tape), place the object deck in the card
reader and turn on the reader.

2. If the ASSIGN OBJECT PROGRAM TO TAPE option was
used in the COBOL source program, place the Auto-

9

coder output (the object program that was on tape
unit 6 at the end of the Autocoder assembly) on tape
unit 1.

3. Press CHECK RESET.

4. Press START RESET.

5. Turn on sense switch A and I/O CHECK STOP.

6. If the object program is in card form, press PROGRAM

LOAD. If the object program is on tape, press TAPE

LOAD.

Obtaining Storage and Tape Prints for APAR's
If difficulty is encountered during the processing of a
COBOL program, and the COBOL processor is the cause
of the error:

1. Set the manual address switches to 0359.

2. Set the mode switch to ALTER.

3. Press CHECK RESET.

4. Press the I-address register key.

5. Press START RESET.

6. Press START.

7. Set the mode switch to RUN.

8. Press START.

9. The contents of core storage and tapes 4, 5, and 6
will be printed.

10. After the tape prints are completed, the message
TAPES 5, 6, AND 4 PRINTED will be displayed on the
listing.

11. Contact your IBM Systems Engineer to submit an
AP AR (Authorized Programming Analysis Report).

Note: If during the tape print program bad records cannot be
bypassed, branch manually to 1729.

COBOL Dictionary
After the COBOL source program and diagnostic mes­
sages have been printed, the COBOL dictionary is listed.

The COBOL dictionary is divided into three sections:
Special Names
Data Names
Procedure Names

In each section, all names used in the source program
are listed beside the sequence number and the com­
pressed COBOL name developed during compilation by
the COBOL processor. This makes it possible to cross­
reference items in the COBOL source-program listing
and the Autocoder symbolic listing.

Figure 1 shows a sample COBOL dictionary. The line
labeled @ in Figure 1 refers to the procedure name

10 Tape COBOL Op. Proc.

*** COBOL D I CTI ONARY ***

SPECIAL NAMES

0 8 A16 PUNCH

9 All.!. PUNCH-A-CARD

10 A15 PUNCH-AND-PRINT

DATA NAMES

® 19 A10 STATE-TAPE

CD 27 ALL PRINTER

PROCEDURE NAMES

© 49 JOe HSKP

@ 50 J02 BEGIN

® 51 JOS CHECK-C

Figure 1. COBOL Dictionary

BEGIN which appears in the sample COBOL source pro­
gram shown in Figure 2. The COBOL processor assigned
BEGIN the compressed name J02 and assigned the COBOL

statement the sequence number 50. In the symbolic
listing of the Autocoder expansion (Figure 3), the
COBOL processor has used the compressed name J02 as
the label for the EQU statement labeled @.

To refer to the COBOL source paragraph or statements
that produced a particular expansion on the symbolic
listing, look at the compressed COBOL name and find its
equivalent in the COBOL dictionary. For example, the
entry labeled ® on line 19 of the symbolic listing is
used as STATE-TAPE in the COBOL source list. This entry
also appears in the data-names section of the COBOL

dictionary.

COBOL Diagnostic Usage

Prescan Diagnostics

An optional pres can diagnostic run can be performed
by using the 1401 COBOL processor system to check the
source program for errors before compilation.

Two types of diagnostic messages can be generated
during a pres can run. The first type is name-associ­
ated. The name associated messages appear as flags
in the dictionary and refer to such errors as COBOL

keywords used as data names. The following is an
example of name-associated diagnostics:

TYPE SOURCE

SPEC M CARDS
SPEC PRINTER
SPEC OVERFLOW
SPEC LAST-CARD
FILE STATUS-FILE

REC M CARDS
DATA CARD-ORDER

oOKEY'iVORD DATA DIGIT
DATA RECORD

In the preceding example, the COBOL keyword,
DIGIT, was used as a name, and flagged. In addition,
the name, CARDS, was used more than once in the
source program and was flagged as being multide··
fined. If CARDS has not been qualified in all its uses,
an error exists.

The second type of prescan diagnostic message
describes problems encountered while analyzing the
sentence structure of the source program. In the list­
ing, the sequence number of the card containing the
error statement relates that which should have been
coded to that which was coded, If, in order to continue
analysis of the source program, any part of the source
program is dropped, the dropped item (s) are in­
cluded as part of the diagnostic message. In special
cases, the expected part of the diagnostic message
might be replaced by a language term or a rule de­
scribing a requirement of the COBOL language, such as:
ENVIRONMENT DIVISION MUST PRECEDE DATA DIVISION.

To correct program errors of this type, the pro­
grammer should analyze the diagnostics in sequence.
Also, the correction process can be greatly facilitated
if the programmer compares the source program error
statement with the corresponding cOBoL-prescribed
format outlined in the SRL publication COBL (on
Tape) Specifications for IBM 1401, Form C24-1492 ..
Note, however, that items dropped as a result of an
error in sentence structure are not analyzed prior to
their deletion.

The following is an example of analyzing COBOL
diagnostics:
COB01~ SOURCE PROGRAM

SEQUENCE CARD IMAGE

30 ENVIRONMENT DIVISION.

40 CONFIGURATION SECTION.
50 SOURCE-COMPUTER.IBM-1401.
60 OBJECT -COMPUTER. IBM-1401 NO-

OVERLAP
70 SPECIAL NAMES.
80 1402-R IS READER
90 1402-P IS PUNCH

100 AUTON IS COBOLN
110 AUTOZ IS COBOLZ
120 1401-SS A ON STATUS IS LAST -CARD.
130

230

280
290

DATA DIVISION.

PROCEDURE DIVISION.

PARAGRAPH2.
IF COBOLZ IS EQUAL TO REFI OR
LESS

300
310
320

OR GREATER THAN 2 OR NOT LESS
THAN 7 THEN GO TO GOBOLN.

PARAGRAPH3.

COBOL DIAGNOSTICS

SEQUENCE COMMENTS
120 AUTOCODER NAME/'.'=1401-SS=
300 INVALID SUBJECT OR OBJECT=OR=

From the preceding example, first consider the se­
quence number 120. This diagnostic means that in se­
quence number 120, either an Autocoder name or a
period was expected. Instead, 1401-SS was sensed. As
shown in the reference-format section of the COBOL
(on tape) Specifications SRL publication, the special
names paragraph is:
SPECIAL-NAMES.

[deVice-name-l !§ mnemonic-name-l [device-name-2 !§

mnemonic-name-2 0 0 oJ]
[sw/tch-name-l [ON STATUS!§. conditwn-name-l J
[OFF STATUS IS condition-name-2 J

[switch-name-2 0 0 0 JJ
[AUTOCODER-name IS COBOL-name [AUTOCODER - 0 oJ]-

11

The switch-name clause in sequence number 120
(1401-SS etc.) should have preceded the Autocoder­
name clauses in sequence numbers 100 and 110.

Secondly, consider sequence number 300. This diag­
nostic indicates that the error is in sequence number
300. A valid subject or a valid object was expected;
OR was sensed. As shown in the CO BO L (on tape)
Specifications SRL publication, the format for rela­
tional conditions is defined:

[~'d(.Lta_namc)] (IS [NOT] GREATER TIIAN'~
) . \) IS [NOT] LESS THAN
) literal () IS [NOT] EQUAL TO
~arithmetic expression) ~= - - --

f data-name t
) literal 5
~ arithmetic expression

In the source statement (sequence 290 and 300), IF
COBOLZ IS EQUAL TO REFI OR LESS OR
GREA TER THAN 2 OR NOT LESS, there should be
a data-name, a literal, or an arithmetic expression after
LESS for comparison with the implied subject, COBOLZ.

Instead, OR was encountered.
The meanings of the symbols in the sentence-struc­

ture-error diagnostic message are:
Symbol Meaning
PROCEDURE-NAME Blanks bound COBOL-language terms

and rules.
<SECTION' Quotes bound literal values expected.
=RAN = Equal signs bound literal values en­

countered.
(ALL TO MASTER) Parentheses bound literal values

dropped.
<R UN' /Literal The slash represents the word OR.

12 Tape COBOL Op. Proc.

Additional examples of the prescan sentence-structure­
error diagnostic are:

620 UNDECLARED NAME = TAPE-ORDER =
(TAPE-ORDER)

The sequence number 620 is the number assigned to
the card containing the statement in error; UNDE­

CLARED NAME is a language term, bounded by blanks,
representing an error that was encountered; = TAPE~
ORDER = is the undeclared name, bounded by equal
signs; and (TAPE-ORDER) is the item dropped, bounded
by parentheses.

650 'TO' = ALL = (ALL TO MASTER)
Sequence number 650 is the assigned sequence num­
ber of the card containing the statement in error;
'To' is the literal value, bounded by quotes, expected
by the compiler; = ALL = is the literal value, bounded
by equal signs, encountered during the run; and (ALL

TO MASTER) is the item dropped, bounded by paren­
theses.

Cobol Processor Diagnostics

The COBOL processor analyzes each statement for er­
rors as it compiles the COBOL source program. The
processor supplies a diagnostic message describing
the nature of a detected error and prints the mes­
sage (s) (ahead of the COBOL dictionary) in this
fonnat:

FLAG REFERENCE SEQUENCE

#9 B56 14
MESSAGE

FORMAT

ERROR

COBOL COMPILATION

SEQUENCE CARD-IMAGE IDENTIFICATION

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. STATES/CAPITAL DEBLOCKING AND LISTING.
3 ENVIRONMENT DIVISION.

*
*
*

~ CONFIGURATION SECTION.
S SOURCE-COMPUTER. IBM-l~Ol MEMORY SIZE ~OOO CHARACTERS.
6 OBJECT-COMPUTER. IBM-1401.

*
*
*
* 7 SPECIAL-NAMES.

8(~ 1402-P, 4 IS PUNCH.
9 1401-SS, B ON STATUS IS PUNCH-A-CARD

*
*

10 1401-SS, C ON STATUS IS PUNCH-AND-PRINT. *
* 11 INPUT-OUTPUT SECTION.

12 FILE-CONTROL.
13 SELECT STATE-TAPE
14 ASSIGN TO TAPE 1.
15 SELECT PRINTER
16 ASSIGN TO 1~03-P.
17 DATA DIVISION.
18 FILE SECTION.
19C~FD STATE-TAPE
20 BLOCK CONTAINS 5 RECORDS

*
*
*
*

21 RECORD CONTAINS 81 CHARACTERS

*
*
*
*
*
*

22 LABEL RECORDS ARE OMITTED *
23 DATA RECORD IS SC-RECORD.
2~ 01 SC-RECORD.
25 02 FIRST-IP PICTURE IS X%80c.

*
*
*

26 02 REC-MARK PICTURE IS X%lc.
27(E)FD PRINTER
28 LABEL RECORDS ARE OMITTED ----------

*
*
*

48 PROCEDURE DIVISION.
~9~~HSKP. OPEN INPUT STATE-TAPE OUTPUT PRINTER.

@50 BEGIN" READ STATE-TAPE INTO WORK-AREA, AT END GO TO FINISH.
*
*
*
*
*

51QD IF PUNCH-A-CARD GO TO PUNCH ELSE GO TO CHECK-C.
52 CHECK-C. IF PUNCH-AND-PRINT GO TO BOTH ELSE GO TO PRINT.

Figure 2. COBOL Source Listing

Flag: This indicates the seriousness of the error. If the
flag column is blank, the error will not stop compila­
tion. If a double asterisk appears in the flag column,
compilation stops and the message COMPILATION sus­
PENDED is printed after all statements have been ex­
amined.

Reference: This shows the code number of the diagnos­
tic message. A detailed explanation of the error can
be found by using this code to look up the associated
diagnostic in the Diagnostic Reference List.

Sequence: This refers to the source program statement
in error.

~1 essage: This describes the nature of the error. After
all errors have been analyzed and all diagnostic mes­
sages have been printed for this phase of compila­
tion, the message TOTAL NUMBER OF ERRORS is printed

with a figure indicating the total number of diag­
nostics that occurred. Then the message COMPILA­

TION SUSPENDED is printed if a double asterisk was
printed in the flag column for any of the diagnostic
messages given. If none of the diagnostic messages
was flagged, the message PRESS START TO CONTINUE

is printed, and compilation can be continued.

Following this first list of diagnostic messages, the
COBOL dictionary is printed. If a name-oriented error
is detected, a diagnostic message will be printed,
compilation will be discontinued, and the message
RUN DISCONTINUED will be printed.

As compilation continues, discrepancies between
the Data Division and the Procedure Division will be
detected. If such errors are found, additional diag­
nostic messages will be printed in this format.

13

SYMBOLI e LI STI NG

0136 FA20 EQU I A 11
0137 OS #50
0138 A10 ®OS 00050
0139 ORG
0140 Dew @ @
0141 LA12 EQU *+1
0142 DC #50
0143 A 11 ®De 00100
0144 ORG
0145 Dew @ @
0146 LA13 EQU *+1
0147 Dew #50

0200 ORG OVRLAY
0201 STARTS EQU *+1
0202 JOB ©EQU *+1
0203 B IoeOPN
0204 NOP IA10-17
0205 B IoeOPN
0206 NOP IAl1-17
0207 J02 *+1
0208

@EQU
SBR IOeUXT+03, *+ 11

* *
Figure 3. Symbolic Listing

FLAGS

••
REFERENCE SEQUENCE COMMENTS

D14 0113
MESSAGE

INVALID EDITING

NOTE: Each diagnostic not corrected also appears
(altered slightly) as an Autocoder comment line, in­
dicated by an (1, in the Autocoder symbolic-program
listing.

**: This indicates an error that must be corrected be­

fore an object run is attempted.

D14: This is an example of the reference-list code. The

Diagnostic Reference List contains more detailed

explanations of the diagnostic messages.

0113: This is an example of the Autocoder line number

of the statement.

*: This is a comments Hag to the Autocoder processor.

At essage: This is a general description of the error. At

the end of compilation, the message NUMBER OF

ERRORS NEEDING CORRECTION, followed by the message

TOTAL NUMBER OF DIAGNOSTICS, may be printed with

figures indicating the number of errors needing cor­

rection and the total number of diagnostics. Then

this message will be printed to show symbolic listings

and/or symbolic punched-card options:

IF EXTRA OUTPUT DESIRED

B ON FOR PUNCHED AUTOCODER

D ON FOR PRINTED LISTING

AND PRESS START

IF NO EXTRA OUTPUT DESIRED, PRESS START

(Also see Operating Functions.)

14 Tape COBOL Op. ProG.

Diagnostic Reference List

Format Error Messages

These diagnostic messages will be given for format er­
rors that occur in the divisions under which they are
listed. In cases where these diagnostic messages appear,
the format specified should be carefully reviewed for
errors. No reference code is given for these diagnostic
messages.

Environment Division Format Errors
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

FORMAT ERROR-ASSIGN
FORMAT ERROR-DEVICE NAME 1403-cT
FORMAT ERROR-DEVICE NAME 1403-p
FORMAT ERROR-·SWITCH NAME 1403-P-CB
FORMAT ERROR-MEMORY SIZE
FORMAT ERROR-SWITCH ~AME 1403-p-c9
FORMAT ERROR-DEVICE NAME 1402-p
FORMAT ERROR-DEVICE NAME 1402-R
FORMAT ERROR-SELECT
FORMAT ERROR-RESERVE ALTERNATE AREA
FORMAT ERROR-SWITCH NAME 1403-ss
FORMAT ERROR-SWITCH NAME 1403-p-cv

Data Division Format Errors
1. FORMAT ERROR-FD
2. FORMAT ERROR-RECORDING MODE
3. FORMAT ERROR-BLOCK CONTAINS
4. FORMAT ERROR-RECORD CONTAINS
5. FORMAT ERROR-LABEL RECORD
6. FORMAT ERROR-VALUE OF
7. FORMAT ERROR-DATA RECORD
8. FORMAT ERROR-SIZE
9. FORMAT ERROR-REDEFINES

10. FORMAT ERROR-OCCURS
11. FORMAT ERROR-POINT LOCATION
12. FORMAT ERROR-PICTURE
13. FORMAT ERROR-JUSTIFICATION
14. FORMAT ERROR-LEAVING
15. FORMAT ERROR-VALUE

Procedure Division Format Errors
1. FORMAT ERROR-MOVE
2. FORMAT ERROR-OPEN
3. FORMAT ERROR-MULTIPLY
4. FORMAT ERROR-GO TO
5. FORMAT ERROR-DISPLAY
6. FORMAT ERROR-SUBTRACT
7. FORMAT ERROR-ADDITION
8. FORMAT ERROR-DIVIDE
9. FORMAT ERROR-ALTER

10. FORMAT ERROR-ACCEPT
11. FORMAT ERROR-CLOSE
12. FORMAT ERROR-WRITE
13. FORMAT ERROR-HEAD
14. FORMAT ERROR-COMPUTE
15. FORMAT ERROR-STOP
16. FORMAT ERROR-PERFORM
17. FORMAT ERHOR-IF

Diagnostic Error Messages Inserted during Compilation

Reference
Number Division

AOI Environment

A02 Environment
Data Procedure

A03 Environment
Data Procedure

A04 Environment
Data Procedure

A05 Environment
Data Procedure

A06 Environment
Data Procedure

A07 Procedure

A08 Identification

A09 Identification

BOI Procedure

B02 Procedure

Message

NEXT CARD OUT OF SEQUENCE

FORMAT ERROR--CONTINUA TION

OF ALPHANUMElUC LITERALS

NUMERIC LITERAL EXCEEDS

LEGAL LENGTH

NAME EXCEEDS LEGAL LENGTH

ALPHANUMERIC LITERAL EXCEEDS

LEGAL LENGTH

SPECIAL CHARACTER MUST BE AN

ALPHANUMElUC LITERAL

ONLY AUTOCODER CAN BE ENTERED

FROM COBOL

PROGRAM-ID NOT SENSED

lDENTIFICA TION DIVISION NOT

SENSED

Comments

The page and line number combination in the next source pro­
gram card is not higher in value than that in the preceding card.

If an alphanumeric literal is to be continued, a - symbol must
appear in column 7 of the next source program statement line.
Also, all lines containing alphanumeric literals must be enclosed
in quote symbols. These lines can begin and end in any columns
within the range of 12 through 72.

A numeric literal intended for computational use must have
from one to 18 numerals. Other numeric literals can contain as
many as 120 characters.

COBOL names may be one to thirty characters long.

Alphanumeric literals can contain from 1 to 120 characters in­
cluding blanks and special characters.

Special characters not contained in the COBOL set may only be
used in alphanumeric literals. Figure 4 shows the special char­
acters included in the COBOL set.

There is no provision in COBOL to enter any other language
format except Autocoder. This is accomplished by using the
ENTER verb.

A PROGRAM-ID paragraph must be present in every COBOL source
program.

An Identification Division statement must be present in every
COBOL source program.

PERIOD MUST BE FOLLOWED BY VERB The COBOL statement in reference must be followed by a verb,
PARAGRAPH OR SECTION NAME paragraph, or section name.

PElUOD MUST FOLLOW PARAGRAPH A period must be used to terminate the paragraph or section
OR SECTION name in reference.

Card Code COBOL 1401 Meaning

Blank space

11 { minus sign
hyphen

12 + & plus sign

0-1 / / division sign

11-4-8 * *
{ multiplication sign

check protection symbol

12-4-8 0 right parenthesis

0-4-8 % left parenthesis

0-3-8 comma

11-3-8 $ $ dollar sign

12-3-8 { period
decimal point

3-8 # equal sign

4-8 @ quotcition mark

Figure 4. Special Characters

15

Number
Reference Division

B03 Procedure

B04 Procedure

B21 Environment

B22 Environment

B23 Environment

B24 Environment

B25 Environment

B26 Environment

B27 Environment

B28 Environment

B29 Environment

B31 Procedure

B41 Data

B42 Data

B43 Data

B44 Data

B45 Data

B46 Data

B47 Data

B48 Data

B49 Data

B51 Data

Message

KEYWORD DIVISION MUST DE

FOLLOWED DY A PERIOD

KEYWORD DIVISION NOT SENSED

Comments

A period must follow each division name.

The complete name of every division must appear in all source
programs.

CONFIGURATION SECTION NOT SENSED Each source program must contain a CONFIGURATION SECTION.

KEYWORD SOURCE-COMPUTER MUST The first entry in the CONFIGURATION SECTION must be the
FOLLOW CONFIGURATION SECTION SOURCE-COMPUTER statement.

IBM-1401 CLAUSE NOT SENSED The source program must indicate the types of computers being
used for both processing and executing the COBOL program.

INV ALID ENTRY The statement in reference is not valid in a COBOL source pro­
gram.

KEYWORD FILE-CONTHOL MUST The file-description entries must follow the INPUT-OUTPUT SEC-

FOLLOW INPUT-OUTPUT SECTION TION statement.

PERIOD MUST FOLLOW PARAGRAPH A period must be used to terminate a paragraph, section, or
SECTION OH DIVISION division.

PERIOD MUST FOLLOW ENTHY Review this entry using the sequence reference. This entry must
be terminated by a period.

KEYWORD SECTION NOT SENSED The keyword SECTION must appear in these entries:

KEYWORD DIVISION NOT SENSED

MISSING PERIOD AT END OF PROGRAM

WORKING-STORAGE SECTION OUT OF

SEQUENCE

CONSTANT SECTION OUT OF

SEQUENCE

RECORDING MODE MUST BE 1

DATA RECOHDS CLAUSE MUST

BE IN FD

LADEL RECORDS CLAUSE MUST

BE IN FD

FILE SECTION

WORKING-STORAGE SECTION

CONSTANT SECTION

The complete name of every division must appear in all source
programs.

The last entry of all source programs must be tenninated by a
period.

The WORKING-STORAGE SECTION must follow the FILE SECTION in
the Data Division.

If the source program has a WORKING-STORAGE SECTION, the CON­

STANT SECTION must immediately follow it. If the source pro­
gram docs not have a WOHKING-STORAGE SECTION, the CONSTANT

SECTION must follow the FILE SECTION.

All 1401 CODOL programs must specify a recording mode of 1.

Each FD must end with a DATA RECORDS clause. This pennits the
processor to cross-reference the file-description entry and the
individual record-description entries of each record.

This LABEL HECORDS clause must always be present in a FILE

DESCRIPTION entry.

DUPLICATE RECORDING MODE CLAUSE This statement can be removed from the source program.

DUPLICATE BLOCK CONTAINS CLAUSE This statement can be removed from the source program.

DUPLICATE RECORD CONTAINS This statement can be removed from the source program.
CLAUSE

DUPLICATE VALUE OF CLAUSE This statement can be removed from the source program.

A PERIOD MUST FOLLOW ENTRY This statement must be terminated by a period.

16 Tape COBOL Op. Proc.

Reference
Number Division

B52 Data

B53 Data

B54 Data

B55 Data

B56 Data

B57 Data

B58 Data

B85 Data

B91 Data Procedure

B92 Procedure

B97 Data

B98 Procedure

B99 Environment

COl Procedure

DOl Data

Message

DATA DIVISION NOT FOLLOWED BY
V ALID SECTION

DUPLICATE CONSTANT SECTION

DUPLICATE WORKING-STORAGE
SECTION

LEVEL NUMBER MUST BE FOLLOWED
BY NAME OR FILLER

FORMAT ERROR

KEYWORD SECTION NOT SENSED

KEYWORD DIVISION NOT SENSED

FIGCON ALL MUST BE FOLLOWED
BY ALPHANUMERIC LITERAL

MISSING PERIOD BEFORE PROCEDURE
DIVIS'ION

KEYWORD MUST NOT BE USED
AS A LABEL

DATA DIVISION NOT SENSED

PROCEDURE DIVISION NOT SENSED

ENVIRONMENT DIVISION NOT SENSED

CONDITION NAMES MUST NOT BE
USED AS SUBJECTS

PICTURE EXCEEDS 30 CHARACTERS

Comments

The Data Division statement must be followed by at least one
of these sections:

FILE SECTION (contains file- and record-description entries)
WORKING-STORAGE SECTION (contains record-description

entries)
CONSTANT SECTION (contains record-description entries)

A COBOL source program can contain only one CONSTANT SECTION.

A COBOL source program can contain only one WORKING-STORAGE
SECTION.

All level numbers (01-49, 77 and 78) must be followed by a
name or by the word FILLER.

This statement is written in an invalid format.
Error examples:
1. PICTURE IS 999 VALUE IS 10 LEFT JUSTIFIED. The statement

must be written as JUSTIFIED LEFT.
2. PICTURE IS 99v X (10). Blanks cannot be used in a picture in

this manner.

The word SECTION must appear in these entries:
FILE SECTION
WORKING-STORAGE SECTION
CONSTANT SECTION

The complete name of every division must appear in all COBOL
programs.

The ALL figurative constant generates a sequence of characters
specified by any non-numeric literal.

The source program statement that precedes the Procedure Divi­
sion statement must be tenninated by a period.

Words listed as COBOL keywords must be used only as specified
by the COBOL language.

A Data Division statement must he included in every source
program.

A Procedure Division statement must be included in every
source program.

An Environment Division statement must be included in every
source program.

In this example, N1, N2, and N3 are declared as data names
with the values defined in the VALUE clauses.

01 NAME1
02 NAME2

88 N1 VALUE IS 1
88 N2 VALUE IS 3, 6
88 N3 VALUE IS 7, 11

Thus, the statement:
IF N2 = 4 THEN, is in error because

N2 was previously defined as having a value of 3 or 6.

A COBOL PICTURE description can not contain more than 30
characters.
For example:

The PICTURE description 9(450) eonsists of six actual charac­
ters and is, therefore, properly declared. However, if the pro­
grammer had written 450 nines on the coding sheet to describe
the same PICTURE, the coding sheet would be in error.

17

Reference
Number Division

D02 Data

D05 Data

D06 Data

D07 Data

DOB Data

D09 Data

Dll Data

D12 Data

D13 Data

D14 Data

D99 Data

Message

CONFLICTING EDITING CLAUSES

CONFLICT BETWEEN PICTURE AND

SIZE CLAUSE

CONFLICT BETWEEN PICTURE AND

POINT LOCATION CLAUSE

CONFLICT BETWEEN PICTURE AND

CLASS

CONFLICT BETWEEN PICTURE AND

EDITING CLAUSE

ELEMENTARY ITEM MUST HAVE

SIZE OR PICTURE CLAUSE

A RECORD AREA MUST NOT EXCEED

999 CHARACTERS

RLI MUST BE 4 CHARACTERS

RECORD SIZES WITHIN THIS FD

MUST NOT CONFLICT

INVALID EDITING

PICTURE CLAUSE INVALID WITH

GROUP ITEM

18 Tape COBOL Op. Proc.

Comments

Only one of the following clauses may be used to edit a field:
1. ZERO SUPPRESS

2. CHECK PROTECT

3. FLOAT DOLLAR SIGN

If more than one of these is specified, the last specified clause is
chosen for use. Complex editing should be specified by using a
PICTURE clause.

If a specified SIZE clause conflicts with a specified PICTURE

clause, the PICTURE specifications take precedence over the SIZE

specifications.
Example: SIZE IS 10 conflicts with PICTURE 9(6). The processor
will use 6 as the size for the item defined.

If there is a conflict between a POINT LOCATION and a PICTURE

clause, the PICTURE specifications take precedence over the
POINT LOCATION specifications.
Example: PICTURE IS 9V99 conflicts with POINT LEFT 3. The
processor will cause the decimal point to be located immediately
to the left of the hundreds position of the field. The POINT LOCA­

TION clause specifying that the decimal point be located imme­
diately to the left of the thousands position is ignored.

If there is a conflict between a CLASS and a PICTURE clause, the
PICTURE specification takes precedence over the CLASS clause.
Example: PICTURE IS 999.

CLASS IS ALPHANUMERIC

In this example CLASS must be specified as NUMERIC because the
PICTURE clause specified a numeric field.

If there is a conflict between an editing and a PICTURE clause,
the PICTURE specifications take precedence over the editing
clause.
For example, if the clause:

PICTURE IS $$$9
is used and an editing clause specifying FLOAT DOLLAR SIGN is
also used, the PICTURE clause takes precedence over the editing
clause.

An element of data (elementary item) must never be subdivided.
Each elementary item must be specified by either a SIZE or
PICTURE clause in the Data Division.

A record may be described as containing as many as, but no
more than, 999 characters.

The Record Length Indicator (RLI) must be four characters
long, including high-order zeros.

If a FD contains more than one level 01 item, an implied re­
definition results in a redefinition of the first 01. If the record
size is variable, the DEPENDING clause should be used. This
diagnostic message is given because record lengths within the FD

were not the same. This condition could cause an error to occur
at object program execution time.

The editing is not specified according to the COBOL requirements.
All editing for the entry in reference was omitted by the
processor.
Examples of such illegal coding are:
1. Invalid symbols in a PICTURE clause.
2. The size of the item to be edited exceeds 120 characters.
3. Zero suppression is specified for only the high-order position

of a field.
4. DB (debit symbol) or CR (credit symbol) is not specified for

the rightmost or leftmost positions of the field.

Only elementary items can have a PICTURE clause.

Reference
Number Division

E01 Data (IOCS)

E02 Data (IOCS)

E03 Data (IOCS)

E04 Data (IOCS)

E05 Data (IOCS)

E06 Data (IOCS)

E07 Data (IOCS)

E08 Data (IOCS)

E09 Data (IOCS)

ElO Data (IOCS)

Ell Data (IOCS)

E12 Data (IOCS)

E13 Data (IOCS)

F01 Procedure

Message

HARDWARE DEVICE MULTI-DEFINED

BLOCK SIZE MUST NOT EXCEED
OBJECT-COMPUTER SIZE

FORM 3 RECORDS NOT PERMITTED

BLANKS IN HEADER-LABEL ID

NOT PERMITTED

UNIT RECORD FILES MUST HAVE
STANDARD RECORD SIZES

FORM 4 RECORDS-BLOCK SIZE
MUST BE IN CHARACTERS

FILE MUST BE SELECTED

BLOCK SIZE MUST NOT EXCEED
4 DIGITS

RECORD SIZE MUST NOT EXCEED
BLOCK SIZE

UNIT HECORD FILES MUST HAVE
FORM 1 RECORDS

UNIT RECORD FILE-LABEL RECORDS
MUST BE OMITTED

FILE MUST BE OPENED

UNIT RECORD FILES MUST NOT
RESERVE ALTERNATE AREAS

END STATEMENTS NOT ASSOCIATED
WITH THE FOLLOWING FILES

Comments

IBM 1401 Data Processing System devices can not be multi­
defined. The example shown illustrates two combinations that
will cause multiple-definition errors.
Statements 1 and 2 or statements 1 and 3 cause a multiple defi­
nition of the 1402 card punch because 1402-P is assigned to punch
in SPECIAL NAMES. Statements 2 and 3 excluding statement 1
will cause a multiple-definition error because two files cannot be
assigned to the same device.
Example:
1. SPECIAL NAMES.

1402-p, 4 IS PUNCH.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

2. SELECT FILE2 ASSIGN TO 1402-P.
3. SELECT FILE3 ASSICN TO 1402-p.

Blocking specified in the COBOL source program must not specify
more than the core-storage capacity of the object computer.

COBOL does not permit unblocked, variable-length records.

Blanks in header-label ID will be replaced with a period.

These sizes must be specified for unit-record files:
Card Reader-80 characters
Card Punch-80 characters
Printer-100 or 132 characters

The block size for Form-4 records must not be specified by using
the keyword RECORD(S). Thus, the example shown is in error.
Example:

BLOCK CONTAINS
400 RECORDS

Each file to be processed by the object program must be named
in a SELECT file-name entry. The name must be unique within
the source program.

The block size specification can contain a maximum of four
digits, including high-order zeros.

A record-size specification must designate more characters than
the size specification for the block that contains the record.

Blocked records are not permitted in unit-record files.

The LABEL RECORDS clause for unit-record files must be specified
as OMITTED.

The OPEN verb is used to indicate the processing of one or more
input and/or output files. At least one of the two clauses must
be written. The clauses may specify that one or more files be
opened.

All alternate areas needed for unit-record files are reserved auto­
matically by the processor. Thus, the programmer must not re­
serve alternate areas for unit record files.
Error example:

SELECT READER ASSIGN TO 1402-R
HESERVE 1 ALTEHNATE AREA.

At least one implicit or explicit AT END statement must be asso­
ciated with every READ statement. Once an AT END statement has
been executed, an attempt to read from the associated file will
constitute an error unless a subse"quent CLOSE and OPEN have
been executed for that file.

19

Reference
Number Division

HOI Procedure

IOO Procedure

IOI Procedure

I02 Procedure

I03 Procedure

I05 Procedure

I06 Procedure

I07 Procedure

I08 Procedure

I09 Procedure

no Procedure

III Procedure

112 Procedure

113 Procedure

20 Tape COBOL Op.

Message

INVALID USE OF SUBSCRIPTING

A-FIELD EXCEEDS B-FIELD

NON-NUMERIC FIELD USED IN
COMPUTATION

EDIT MASK TOO SMALL

A-FIELD EXCEEDS 18 DIGITS

B-FIELD EXCEEDS 18 DIGITS

NON-NUMERIC FIGCON USED IN
COMPUTATION

INVALID SOURCE

INTERMEDIATE RESULTS MUST NOT
EXCEED 20 DIGITS

ALPHANUMERIC TO NUMERIC MOVE

INVALID SOURCE-IN PRECEDING
STATEMENT

ROUNDED EXCLUDES LEFT JUSTIFY
CLAUSE

GROUP ITEMS MUST NOT HAVE
IMPLIED DECIMAL

GROUP ITEM MUST NOT BE USED
IN COMPUTATION

Froc.

Comments

This diagnostic message occurs when invalid subscripting is used
without an OCCURS clause.
Error example:

DATA DIVISION.

FILE SECTION.
01 NAMEI

02 NAME2t
03 NAME3

PROCEDURE DIVISION.

MOVE NAME2 (3) TO WORK AREA
tThe procedure statement specifies subscripting. Therefore,

NAME2 must contain an OCCURS clause.

The field being moved is larger than the field to which it is to
be moved. High-order positions will be dropped.

The referenced field is arithmetic and not defined as numeric.

A GIVING, COMPUTE, or MOVE using edited fields too small to ac­
cept the field being placed into the edited mask will produce
this diagnostic message.
Example: Moving field 12345 to an edited mask $$$99 is erro­
neous because this edit mask will accept only four characters.

Fields used in arithmetic computations and expressions must not
exceed 18 digits.

See 103.

Only the figurative constant ZERO can be used in arithwetic
computations.

If a source-program statement is determined to be meaningless,
this diagnostic message is given. Following this message will be
an expansion of the STOP RUN literal.

Fields requiring decimal alignment in arithmetic computation
must not have intermediate results that exceed twenty digits.

This diagnostic message is given if a group item (declared as
numeric) is moved to an elementary numeric field. All group
items are classed as alphanumeric.

If an incorrect source program statement is detected in a DISPLAY
statement, this error message is given.
Example: DISPLAY ON (name) is incorrect, but DISPLAY UPON
(name) is the correct format.

If left justification is used in conjunction with the ROUNDED op­
tion, justification is ignored by the processor during compilation.

Decimal alignment is not performed when group items, classified
as numeric, are moved.

Only elementary items can be used in arithmetic computations.

Reference
Number Division Message

115 Procedure INVALID USE OF GROUP

117 Procedure ITEM EXCEEDS 20 DIGITS

118 Procedure CLASS CONTRADICTION

119 Procedure INVALID USE OF EDITING

120 Procedure SIZE OF LITERAL MUST EQUAL 1

121 Procedure INVALID SUBSCRIPTING

COBOL Tape.P,';nt Prog.'am

Conditions may arise that the COBOL processor recog­
nizes as being instrumental in causing a failure. In
these cases, the message SYSTEM FAILURE is printed on
the printer. The processor then calls in a storage- and
tape-print program. The contents of core storage and
the tape work files are printed on the printer.

Among the conditions that may cause a system
failure are:

Comments

1. When either of the conditionals IF POSITIVE or IF NEGATIVE

is used, the field referred to must be elementary.
2. When either the conditional IF NUMERIC or IF ALPHABETIC is

used, the field referred to should be elementary. If the fields
are not elementary, the diagnostic message will be given to
remind the programmer that he should review the units posi­
tions of fields being tested for zone bits.

A numeric field defined to be used for computational purposes
must not be larger than twenty digits. If such a numeric field
exceeding twenty digits is compared, this diagnostic message is
given. An instruction to perform a non-numeric compare is also
given.

This diagnostic message indicates that the fields being operated
on should be reviewed to determine if there is a contradiction in
classes. For example, a numeric field compared to a non-numeric
figurative constant would cause this diagnostic message to
appear.

Editing must be performed on data fields that appear in proce­
dure statements with the appropriate verbs.
Example:
1. The field referred to by the ACCEPT verb must not have edit­

ing.
2. Editing must not be specified for an integer referred to by

name in the TIMES option of the PERFORM verb.

If the literal must be one character long (for example, in use
with the EXAMINE verb), this message is given.

Error example:
DATA DIVISION.

01 TABLE

02 NAME1 OCCURS 3 TIMES SIZE IS 2

PROCEDURE DIVISION.

MOVE NAME1 (1,2) ...

The statement in the Procedure Division contradicts the declara­
tion for NAME1.

1. An end-of-file indication was sensed by the proc­
essor before the end of the file was reached.

2. An excessive number of tape read or tape write
errors occurred on the work tape.

3. An error in COBOL-prescribed sentence structure
occurred when coding the source program. This
type of error is detected in the phase of the proc­
essor that analyzes the particular part of the pro­
gram. For example, an error in subscripting would
be detected in phase HOI.

21

COBOL Phase Descriptions

The IBM 1401 COBOL processor has ten sections. Each
section performs a particular function in converting the
COBOL source-program statements to Autocoder state­
ments.

Phase·AOl

1. Reads the COBOL source program from cards or tape.

2. Assigns a sequence number to each entry.

3. Lists the contents of each source-program card on
the printer.

Phase A02

Processes the Identification Division.

Phase AOB
Conditions storage and reads in phase A03.

Phase A03

1. Conditions words and operators for further process­
ing.

2. Checks the source program for errors in the use of
the character set, names, picture clauses, and word
lengths.

3. Checks the program for the ENTER verb and condi­
tions the included Autocoder statements for further
processing.

Phase A04

Searches for the various divisions of the source program
and calls in phases A05, A06, and A07 to compress key­
words and delete unnecessary words as follows:

Phase A05 Environment Division keywords
Phase A06 Data Division keywords
Phase A07 Procedure Division keywords.

Phase A20

This phase is called conditionally to place Autocoder
entries on tape 4 for future merging by the J phases.

Phase BOl

Diagnoses the Environment Division.

Phase B02

Checks the FILE SECTION for syntax errors and checks
for duplicate entries in the Data Division (first pass).

22 Tape COBOL Op. Proc.

Phase B03

Checks the Procedure Division verbs for syntax errors
(first pass).

Phase B04

Checks the CONSTANT and WORKING-STORAGE sections of
the Data Division for syntax errors (second pass).

Phase BOS

Checks the Procedure Division verbs for syntax errors
(second pass).

Phase B06

1. Calls phases BTl, BT2, and BT3 for printing diag­
nostic messages.
Phase BTl Environment Division diagnostic table
Phase BT2 Data Division diagnostic table
Phase BT3 Procedure Division diagnostic table.

2. Prints all diagnostic messages and determines
whether compilation is to be suspended.

Phase BOl
1. Conditions the source program for further process­

ing.

2. Converts level numbers of data description entries
to internal level operators.

Phase B02
1. Builds a table of Procedure Division literals and

level 88 VALUES to be processed by phase B11. Du­
plicate literals are eliminated.

2. Builds a table of Data Division literals and elimi­
nates duplicates.

Phase Bll

1. Calculate class, size, and decimal count for data and
procedure literals.

2. Writes literal declarations on tape 4.

Phase B03

1. Builds a table of procedure names used in the COBOL

source program.
2. If the program has an ENTER verb, the COBOL names

referred to by Autocoder statements following the
ENTER verb are entered into the same table as the
procedure names.

Phase BO~~

Uses the tables built by phase B03 to convert proce­
dure names to reference names for further processing.

Phase BOS

1. Builds a table of names used in procedural state­
ments, such as REDEFINES and DEPENDING, and COBOL

names referred to by Autocoder statements follow­
ing the ENTER verb.

2. Compresses data names, used in procedure state­
ments, for further processing.

Phase BO~)

Matches COBOL source programs data names and spe­
cial names with the processor-produced compressed
names and generates a unique compressed name for
each name used in the COBOL program.

Phase Bm"
Builds a table of processor-produced compressed names
used in qualification. It also builds a table of declara­
tion names and procedural names used in qualification.

Phase BOil

Develops a unique compressed name from the quali­
fied names used in procedure statements.

Phase B04~

1. Lists all COBOL source names according to Environ­
ment Division special names, data names, and pro­
cedural names categories. Generated sequence num­
bers are listed with these names.

2. If the source program contained errors in names, the
errors are detected and phase B10 is called.

Phase B110

1. Analyzes errors detected during the execution of
phases B04, B06, and B08.

2. Source names which have multiple definitions or are
undefined are listed on the printer.

Phase COl

1. Phase COl is executed if a SPECIAL-NAMES paragraph
appears in the source program.

2. Generates statements to equate Autocoder names to
COBOL names.

Phase C02

Processes level 88 items.

Phase C03

Processes data values if level 88's are not used in the
source program.

Phase 001

1. Analyzes PICTURE clauses to determine size, class,
decimal count, and editing.

2. Builds a table of all level 01 items for further proc­
essing.

Phase 002

1. Builds a description for each Data Division entry.
The information in the source declarations is used
as a basis for building this table.

2. Updates these descriptions with information ob­
tained from the PICTURE analysis.

3. Generates diagnostic messages if discrepancies are
detected.

Phase 003

1. Phase D03 is called if editing is used.

2. Builds and declares edit masks and completes the
edit section of the data description. Writes editing
masks on tape 4.

Phase 004

1. Establishes the group item size by totaling the sizes
of elementary items.

2. Provides padding for OCCURS clauses.

3. Controls redefinition.

4. Generates origins, storage declarations, and equates.

5. Processes subscript levels.

Phase 005

1. Controls the placement of word marks for each
entry.

2. Processes file record sizes and equates.

3. Processes nested redefinition entries.

Phase 006

1. Separates data and places delimited items from D05
on the proper output tape.

2. Expands macros and writes storage declarations on
tape 4.

Phase EOl

Produces the JOB card for the object program.

Phase E02

1. Examines the source program for control and lOCS

information.
2. Stores this data, in an abbreviated form, in corr

storage.
3. If no files are declared, phase E04 is called.

23

Phase E03

1. Executes any required internal computations, based
upon data stored by E02.

2. Completes DIOCS-DTF information by examining all of
the data obtained from the source program and se­
lecting the appropriate implied specifications.

Phase E04

1. Analyzes the legality of the source data.

2. Selects the appropriate set of diagnostic messages.

Phase EOS

1. If no files were defined:
a. 'Vrites CfL and ORG statements on tape unit 4.
b. Writes diagnostic message indicators on tape unit

4, if appropriate.
c. Calls phase F01.

2. Writes CTL and DIOCS statements on tape unit 4.

3. Writes diagnostic message indicators, if appropriate.

4. Writes DIOCS entries on tape unit 4.

Phase E06

Writes DA entries on tape unit 4, if appropriate.

Phase E07

Writes DTF entries and appropriate diagnostic message
indicators on tape unit 4.

Phase FOI

Processes these portions of the Procedure Division:
a. oPEN-Deletes INPUT and OUTPUT designations.
b. CLosE-Deletes rewind options.
c. WRITE-Converts WRITE to WRITE FROM if such form

is appropriate.

Phase F02

1. Processes conditional expressions.

2. Processes COMPUTE statements.

Phase F03

1. Processes conditional expressions.

2. Processes READ statements.

Phase F04

1. This phase is called if the PERFORM verb is used in
the Procedure Division.

2. Generates labels for names associated with the PER­
FORM statements and inserts them into the symbolic
entries developed from these PERFORM statements.

3. Associates the last name in PERFORM statement with
the label and builds a table of these elements.

24 Tape COBOL Op. Proc.

Phase FOS

1. Searches for procedure names and inserts any nec­
essary labels such as RETURN-LINKAGES.

2. Searches the table built in phase F03 for the proce­
dure names found, and conditions labels for further
processing.

Phase GOI

1. Breaks down the following COBOL source statements
into macro form:
a. ADD
b. SUBTRACT
c. MULTIPLY
d. DIVIDE
e. MOVE
f. PERFORM (options 1 and 2)
g. READ (no AT END)

2. Conditions PERFORM (options 3, 4, and 5) and READ
(AT END) for further processing.

Phase G02

1. Processes arithmetic operators in arithmetic expres­
sions and COMPUTE statements.

2. Processes relational operators in IF and UNTIL ex­
pressions.

3. Passes generated labels and logic connectors to
phase G03.

Phase G03

1. Processes conditional sentences.
2. Ties in generated labels for READ linkage, UNTIL, and

IF with conditional sentences.

Phase G04

1. Builds macro statements.

2. Creates linkage macros for PERFORM options 3, 4,
and 5.

3. Determines the number of temporary object-ma­
chine storage areas needed for arithmetic compu­
tations.

Phase GOS

Eliminates redundant linkages in relational statements.

Phase G06

Eliminates redundant, generated, temporary, object­
machine storage areas. This fully optimizes arithmetic
statements.

Phase HOI

1. Collects data, device, switch, and literal descriptions
and converts them to table entries.

2. Processes subscript macros.

3. Inserts the appropriate data name in the symbolic
statements after each occurrence of a subscript data
name ..

Phase H02

Prepares storage for phases H03, H04, and H05.

Phase H03

1. Initializes the table of data descriptions.

2. Clears storage.

3. Calls phase H04.

Phase H04

1. Builds a table of data descriptions in storage. Entries
that have already been processed are deleted.

2. Calls phase H05 when the Procedure Division is
recognized.

Phase HOS

1. Merges data descriptions after each name in the
Procedure Division that has a description.

2. Returns to phase H02 if necessary.

Phase I(lll

1. Selects the appropriate model statements for fixed
expansions, for the ADVANCING option, for STOP RUN,

and switches.

2. Conditions relational macros for further processing.

Phase ICt2

1. Establishes parameters for DISPLAY, ACCEPT, and GO

TO DEPENDING routines.

2. Expands IF NUMERIC and IF ALPHABETIC macros.

3. Selects appropriate model statements for the STOP

literal statement.
4. Makes a diagnostic scan of arithmetic expressions.

Phasel()3

1. Conditions input data for further processing and
scans data for validity.

2. Conditions GIVING, POSITIVE, NEGATIVE, and relational
macros for further processing.

3. Makes a diagnostic scan of arithmetic expressions.

Phase 1«)4

1. Selects appropriate model statements and subrou-,
tines for MOVE and MOVE ALL macros.

2. Conditions POSITIVE and NEGATIVE macros for further
processing.

Phase lOS
Condi tions arithmetic macros for further processing
by 106.

a. Keeps a record of intermediate accumulators.
b. Calculates decimal alignment.
c. Optimizes model statements to be selected.

Phase 106
1. Selects appropriate model statements for arithmetic

macros.

2. Conditions relational macros for further processing.

Phase 107
1. Selects appropriate model statements for all arith­

metic macros that have not been processed up to
this phase.

2. Selects appropriate model statements for the POSI­

TIVE and NEGATIVE macros.

3. Makes a diagnostic scan of GIVING and GIVING

(ROUNDED) macros.

4. Processes rounding, editing, and decimal alignment
of GIVING macros.

5. Selects appropriate model statements for GIVING

macros.

Phase 108
1. Determines the type of comparisons to be set up for

relational statements.

2. Calculates decimal alignment for these comparisons
if it is necessary.

3. Selects appropriate model statements and subrou­
tines.

4. Makes a diagnostic scan of relational macros.

Phase 109
1. If no IOCS is specified, JI is called.

2. Translates DIOCS and DTF entries, read from tape
unit 4, into an internal macro format.

Phase 5Pl

Copies the remainder of the GETX tape into the PUTX

tape.

Phase 110

1. Outputs call for Autocoder statements by expanding
the DIOCS and DTF macros.

2. Controls the manipulation of the DIOCS and DTF logic
tables.

Phases 501 through 505

Are DIOCS logic tables.

25

Phases T02 through T09

Are DTF logic tables.

Phase SP2

Copies the remainder of the GETX tape onto the PUTX

tape.

Phase JOl

1. Substitutes parameters into model statements se­
lected from the library.

2. Provides for reiteration if all of the model statement
tables will not fit into core storage.

3. If no laCS is specified, the DI and DT tables are not
retrieved.

Phases 011 through 019

Are DIOCS Autocoder model statement tables.

Phases OTl through OTO

Are DTF Autocoder model statement tables.

Phases JE2 through JE6

Are COBOL Autocoder model statement tables.

Phase SP3

Copies the remainder of the GETX tape onto the PUTX

tape.

Phase JA7

Conditions operation codes and substitutes constants
into the Autocoder instructions.

Phase J07

1. Sets up routing linkages.

2. Calculates subscript addresses.

3. Generates INCLD for subroutines.

26 Tape COBOL Op. Froc.

Phase J08

Selects from tape 4 the items listed and writes them on
PUT TAPE in this sequence:

1. JOB card
2. CTL (control) card

3. ORG (origin) card
4. DIOCS entries

5. DTF entries

6. Procedure literals

7. Edit masks

8. Storage declarations
9. File areas

10. Generated INCLD

11. Generated constants, index registers, temporary
storage accumulators, and tally registers

12. Data literals and data moves

13. Procedure instruction from GET TAPE.

Phase J09

1. Prints diagnostic messages that occurred because
conflicts exist between the entries in the Data Divi­
sion and the Procedure Division.

2. Merges Autocoder symbolic statements with diag­
nostic messages.

3. Calls in phases JTI-JT3.

Phases JTl through JT3

Contain laCS data and procedure diagnostic tables.

Phase Jl0

1. Writes Autocoder statements on tape unit 4 for as­
sembly of the machine-language object program.

2. Merges the COBOL source program with the Auto­
coder statements if the source symbolic listing op­
tion is exercised.

COBOL Subroutines
The subroutines used by the 1401 COBOL processor are
described here.

The subroutine chart outlines each subroutine and

gives the subroutine name with the reason the subrou­

tine is called by the processor.

Subroutine
(Mnemonic)

XMN

xXJ

XXK

XXI.

YAQ

YCL

YIN

YIP

ZAX

ZDY

ZET

ZFZ

ZGP

ZML

ZMH

zzz

zxz

Halts and Messages

Compill!-Time Halts

Contents of
I-Address
Register Phase

056 Program Boot

155 Any

698 Any

Subroutine

Examine

Subscript-l

SU bscript-2

Subscript-3

Alpha compare

Figcon compare

If numeric

If alphabetic

Accept

Display

Editing

Exponentiation-l

Go to depending

Move all

Move record

Basic package

Exponentiation-2

Message

None

None

Nonc

Reason Subroutine Is Called

Use of the EXAMINE verb.

Use of one-level subscripting.

Use of two-level subscripting.

Use of three-level subscripting.

Alphabetic record with subfields compared to any data item.

Field whose size is greater than 1 being compared to a figura­
tive constant whose size is greater than 1.

Any alphanumeric field whose size lis greater than 1 being
tested for a numeric value.

Any alphanumeric field whose size is greater than 1 being
tested for an alphabetic value.

Use of the ACCEPT verb.

Use of the DISPLAY verb.

Use of: 1. COBOL zeros
2. Floating + or-
3. DB or single +

Raising an expression by an integer exponent.

Use of DEPENDING option of GO TO statement.

Use of ALL option of MOVE verb.

Use of a record with subfields in a MOVE statement, except in
the case when the other field is a record of equal length.

Used with any subroutine.

Raising an expression by a non-integer exponent.

Explanation Operator Action

Tape transmission error occurred
while trying to load the system.

Rewind the system tape on unit 1
and press the Tape Load key.

Sense switch B should not be on
during compilation of a COBOL pro­
gram.

An error has occurred in the GETX

subroutine.

Turn off sense switch B and press
the start key to continue.

Do a manual branch to 359 to ob­
tain storage and tape print.

27

Contents of
I-Address
Register

808

842

842

892

1616

1663

2031

2094

2081

2149

2221

2669

2821

2757

2767

2818

3262

3486

Phase

UPDAT

UPDAT
(Systems Run)

UPDAT
(Systems Run)

Any

BD4

Tape-Print
Program

BD6

Control Program

BD6

Control Program

Control Program

JI0

Control Program

BI0

JI0

JI0

J07

1
SP 2

3

Message

None

INCORRECT UPDATE
CARD, OR PHASE
NOT FOUND

END OF TAPE
ON UNIT 2

TEn

None

READ ERROR-PRESS
START TO REREAD OR
RESET START TO SKIP
RECORD

COMPILATION
SUSPENDED

NO CONTROL CARD-
RELOAD CARDS AND
PRESS START

PRESS START TO
CONTINUE

None

CANT READ UNIT 1

END OF REEL

None

RUN DISCONTINUED

None

END OF COMPILATION­
AUTOCODER ON TAPE
UNIT 4

None

None

28 Tape COBOL Op. Fmc.

Explanation

An excessive number of read er­
rors on tape unit n.

A deck of UPDAT cards is in error.

End-of-reel occurred on tape unit
2 during system run.

A read error has occurred on tape
unit n. This halt indicates ten
failures to read correctly.

End of program sensed too soon.

(Self-explanatory.)

Invalid source program statements
have been detected.

The first cards of a run must be:
1. COBOL RUN (for compilations),

and
2. SYSTEMS RUN (for updating or

copying the system).

Source program statements require
diagnostic messages.

The 1-0 check-stop switch is off,
but a card-read error has been de­
tected.

Systems tape cannot be read.

An end-of-reel condition was de­
tected while Autocoder statements
were being written on tape 4.

An end-of-reel condition was de­
tected during the systems run.

Source - program statement error
caused compilation to stop.

This halt permits the user to exer­
cise one of the extra output options
at the end of job.

Final halt at end of job.

End of program is sensed too soon
(processor error).

End of reel condition on tape 5 or 6.

Operator Action

1. Press start key to try to reread
the record, or

2. Change the tape and recompile.

Correct deck of UPDAT cards.

Use larger reel of tape. Restart
system run.

1. Press the start key to try to re­
read the record, or

2. Change the tape and recompile.

Do a manual branch to 359 to get
storage and tape prints.

If the record cannot be skipped,
branch manually to 1729 to get the
next tape file.

Correct the source deck as indi­
cated by the diagnostic messages
and recompile the program.

Insert the correct control card and
press the start key to continue.

Press the start key to continue.

Run out the cards, turn on the 1-0
check-stop switch and restart.

Press the start key to reread. Re­
extract the system tape from the
PID tape.

Replace the reel on tape unit 4
with a reel containing more tape
footage and restart.

Replace the reel on tape unit 2
with a reel containing more foot­
age and restart the run.

Correct the source program and
restart compilation.

Arrange the sense switches and
press the start key.

Do a manual branch to location
359 for storage and tape prints.

Remove the reel on the affected
tape unit. Replace the reel with an­
other containing more tape footage.

Assembly-Time Halts

For halts that can occur during the assembly of the
machine-language object program, see Autocoder (on
Tape) Language Specifications and Operating Proce­
dures, IBM 1401 and 1460 (C24-3319).

()bied-TimE~ Halts

For halts that can occur during execution of the object
program, see Input/Output Control System for IBM
1401 (C24-1462).

Two additional error messages can occur. These are
associated with error halts in the Z X Z subroutines:

Message

MINUS VALUE

VALUE TOO LARGE

Explanation

Negative bases cannot be raised to other
than an integer power.
The maximum length of a value used for
computation is 18 digits.

If the start key is pressed when either of these halts oc­
curs, the answer developed from computation will be
zero and the program will continue.

Sample Program: Table of Salaries
This program computes a set of values, arranges them
in a table and prints them.

A monthly salary of $500 :is used to compute the
corresponding weekly and annual salaries, and the
resulting figures are printed in columns titled Weekly,
Monthly, and Annual. The monthly salary figure is
then increased by $10 and the procedure is repeated.
This process is continued until the table shows the cor­
responding figures for all monthly salaries from $500 to
$1000 at increments of $10.

The format for the printed table is:

Print positions Heading

1-46 blank

47-52 WEEKLY

53-55 blank

56-62 MONTHLY

63-65 blank

66-71 ANNUAL

72-132 blank

The corresponding figures are printed below the head­
ings.

To run the object program after it has been com­
piled and assembled:

1. Place the assembled deck for the Table of Salaries
program in the card reader. This deck has 70003
punched in columns 76-80.

2. Ready the printer.

3. Turn the I/O check-stop switch on.

4. Press the load key on the card read-punch.

5. Press the start key.

The salary table will be printed followed by the mes­
sage TABLE VALUES ARE CORRECT if all the calculations
are correct. If the totals do not balance, the message
TABLE VALUES ARE NOT CORRECT will be printed.

The SOURCE-COMPUTER and OBJECT-COMPUTER entries
for this program should be changed, if necessary, to
indicate the storage size of the 1401 used to compile
and run this sample program.

Figure 5 is the source program as it is written on the
COBOL program sheet.

Figure 6 shows the actual Table of Salaries printed
during the running of the object program.

29

IBJt1 COBOL PROGRAM SHEET Form No. X28-1464
Printed in U.S.A.

PAGE PROGRAM SA~A..e/G.s _ /BM- /~O/ .sAH7.P~G" SYSTEM /~O/
3~~~ __ ~~~~~=-__ ~~ __ ~~~~~~~~ __________ ~ __________________ ~ ________________ ~

J. JONes DATE

44 48

Figure 5. COBOL Sample (Part 1 of 4)

30 Tape COBOL Op. Froc.

IBJt1
PAGE PROGRAM

.5AL.-AR/.e-S I 3

COBOL PROGRAM SHEET

- /8M- /40/ J.4MPL£= /~O/ ISHEET 02 OF

Form No. X28-1464
Printed in U.S.A.

4-
~2

PROGRAMMER J. JOA/GS

I SYSTEM

DATE IID6NT. &~I'-~I,Il/~i
SERIAL 1-'

is A 18
CJ I

4 6 7 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

0/ 10 WPA!'I.K./IIvj'~!h~I7jOIRIAI6Iej ISI6'j·Clrj/IOINi 01 I I I I Ll I I I I I I I I I I I I I I LL.LJ_.Ll..-LLL.l.. I I I I

IQ210 71.71. 1 ~1.0IliAI"I-ttll I I I I I I I IPI/ICI'IVIA'It'i 19l ~LtY,9191 IVIAI"IVIG'I IZ lej~IO 10 I_LL_Ll. I I I I I I I I I J 1_1 I

OJ3IO ,7171 I7iOITIAILI-I~ I I I I I L_PI/ ICI1jUjA1'Iti' 19/ ~)IVI9191 IVIAILIVltl IZI£jRPD_L.L..l __ l. I I I I I I I

0","0 77 '~~AILI-ICI I I I I I I I I~I ICI'II/,R,£i 19/161) I V,9 19 1 IV~ILltljEI ~IEIZ~l.~_L_LLL-L I I I I I ~ I I I

1°1.5;0 771 IW.EjCj~LIY; -I~AI~ I I I I ~I / I CIT,V;~It;' 1919191 ~?,91°' I I I I I I I I I I Ll_L_L_L.l I I I I I I I I I I

0 160 7171 I ~,O~,r,lljl,K-,P~,~ I I eI/ICI'iV&t:;' ,if ,9 ~9IV,9191"' I I I I I I I I I Ll.....1_L_L.l_L_L_LJ_l_L._.L....L I

07 1C; 77 -- AINMtli41L.I-A41>1 I I I I 1~/ICI7j~.(1It:; 1919 fl/'19I V ,9 191" I I I I I I I I I Ll.....1.....L....L-L I I I I I I I I I .1..l ~ 1.

IO,81..f OIl 'S,All141RI II £is, • I Ll~J.....L.LJ. I I L .1 I I I.L

090 1 1. I ~OIZI ,FL1.Jl.J!..-6'l<, I I I I I I!..I/ ,CI71~RIIij ~,C41")' I I I IV~I"IVltj ISIPIA.tf.t~_J I I I I I I I I I ..1..l 1

10,G 1021 ~~6j~LYI I I I I I el IC,TI~RIt;' IZIZ'~.19191.' I I I I I I I I I I Ll.....l......L...LJ I I I I I _LL..L

1/1/1°_ 10 21 Irj/llILI..f~A?, I I I I I ~ I ,C,TIUj~t;" I'1.,A~, I I I I I ,V,A,L,VIEi" S,~A~g~J I I I I I I I I I

12,0 10~O,Al!T,N;.l,~ I I I I I~I ,C,T,VlR,Ci IZ ,Z,2;Z, ' 1'191' I I I I I I I I LLLl.....l......L..i_J I I I I I

/310 ~21 IFII 1.l11.1~~~ I I I I I I~I ,CITII/&~ ~~IA, I I I I I I VIA II. IV I6'i ISIPr4.t£~..!.LLLLL..L

114j O I I I I :OI~Ihj'AIj'V(9ILI I I I I I ,~/'CI17V;..e14 ,%,Z~2j~",9',91" I I I I I I LLLl.....l.....l..._.L.LJ......L..l.~

/~O II I I :012 1 1):j/ILI~~.('1 I I I I I IPI' P,711/8£~ IAl12 171) I I I I ,V,A,l,U,t; S,Pv4~~~ I I I I I I I I I I I I

/610 C OMSIr,AINiTI ~IGjClrl/IOI'\1' 01 I .LJ.....l.....l... I

1 1710 71~~~/ICIT,(/I.('!EI 19l,61),~9t/, I I _LlVIAIL.t"~ /ISI 1°1°18 18 ~.L'.J~6... , I I I I I I I I I I

18,0 77 I ~..lOJl\l't-~.81 .,ty IC,71111~t; 19/161) ,Vl9191 I I I IV~ILIUjel I/ISI IO~1812~~~ I I I I I I I I I I I I I

I 910 7,71 I ICIOINI-ICI I I~I ICITIUIA.'ICi" ,9l,61) I VI 91 91 I I LIV;AI.£I~CI II lSI 1415; 91°"'1°1 ,.OPI' I I I I

2,0,0 I MGjS,GI" I I I I I I I I I I I I I I I I I I ILl I I I 1 I I I I I I I......L..LLLLL.Ll .1..1 J

2 1/ 10 21 :Fil Illll~~ Stl ,Ziti I~IOI ,A,L ~lhjA,~4!j 7; I I ~ ICINjA~I..qIClrlej~SI I IV~lt~t;" II I~ S PtI'IlC E.SI • I I I I I I

2.2ICi 121 I ~,N;01~11 IZI6i 12 16 1 l..4ILIPt!...lttJlB.C".,T/ ICLIC#tAIA(ljAICI~C;-E'ISI·1 I I I i.....L-L.L....L I I I I I I I I I I I I I

230 II I :.PI.sI~Y;. I I I I I I I I I I i I I I I I I I I I..LI I I I I I I I-L I I I I I I I LLLl __ L..1 I I I I I I I

~O 21 I :,FI /IL 1t.1c;-~....e1 / ~,e; 1"",0, 111'- e~/I/:!,Ii;r.',C...L'C (lr4&"IM!" I4i'A::SI I IVIAI"L~~L S P.A C E.s, • I I I I I

2,S70 2 IP~SIAl.r. ,s." IZ 1.Ef $,31 ~IL.e..&""'81£jTj/ 1~ICt!.f"I&AtJlrp'/lr5I°1 I I I I L-l-J-.i.- _1 .1

Figure 15. COBOL Sample (Part 2 of 4)

31

IBJt1 COBOL PROGRAM SHEET Form No. X28~1464
Printed in U.S.A.

PAGE PROGRAM
S""L..4,R/SS - / 8M - 140/ S,4,HP.L.c I SYSTEM /~O/ ISHEET 0.3 OF ~ , 3

00.3 PROGRAMMER J.
JONES l DATE IIDENT. ;5,A L,A,R I £,sg

SER'AL f-' I

~A 18
u ,

4 678 ,12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

k:>'/l~ ,I , #JEiA,P1h1liGp , , I , I I " I , , , , , , , , , , , , , , , , I , , ,
O.2,C 2 ';:;1 L LIE~I $11 ZoE. 46 ..AIL. ,0,/10.1411 £oT.I C C MAtA'IAICI7iE~'S'J J J LV~JL I/,G; IllS, !S~I.4IC,€'.5j _I , I

Io~,o ~, '.fl/~E.K,L.y, S,/,Z E, I c:; ~,L."P#,""B.£'T.IC V4,L,(/~ 1/5 (.;f/,E..E.K.LIy'
J

1 ' 1 L ~I I 1 , ~l , L

04,0 .2, ';r,1 i. LI..fj~ I e:I/IZIEi I ~I v4ILI.Pt!J.l/I~e;T/£J t I I I I I I I I I I I I V~ILIII,£7 1/15 1 ISIP~ICIe;~· I ,

(:}5;0 21 ~OMT.#'L y, ,S,/,ZIE. ,7. .,,41L.,.P ,II,~8,G:r./Ic' I , V,A,L It/,E, II S (MO,Itl.7jIl.L y;J .

10,6,0 L2L L :rL/LLL"LER, L f5 L/,Z ,c' .3L .Ai. L.P/1.418,E.T./ IC I , V,A,L,V,E, liS, Sll'tA,C Eo$..

10,7,0 ,21 ~,..v,.NiVII~, I t:!1/IZ I-9 I I"', tl IL ,P.,/I.,4,8.E.T.1 C v,,4,L. t/,E, .IS " A,N.AI.~4IL J i' '1 I _L j LI

08 10 2 IF. I L '-tE.R. SIZE 29 ..AIL."P#.A4~r.~~L_1 I Lil I_LI ILl I VII,L.,V'.E. 1/1051 SIPIA C E.SI • I I
I

~_l _I il _LI I

0,90 'p~OI~:£.PU~E. 1~/Vt/$.laN.. I I ~ I

/0,0 h5,rA~r;. O,PtErM' O,V,7.P.tl.77 S/I,L,/M?Y.- Fi/ L,El. , ,
1/,0 ~R,/, TiE. S v4IL v4~,y;- RtE.~O~P, F~tJ~ II,E.,A L),/ N.61 .,B,E;r.O~E. .A,L). V,A.N,C 1 ~6 ~, L /I'/,E...$ •

/..2,0 'p$l<l:;O~,M, C,A,L cv,,L 1'9.7:1 O,A1S I~I ILl' l 1'1 I I I I I I I I I I I I'L' 1

/~ L I I :V.A,R,Y,/,M'~ /ltOMT./I,L Y.-/rl,Y. 1 J ~ L _I L I I I I I I I I , I I 1

/4,0 ~R.d"'" 5:00, I I I I I , , I I

/5"& _l IB.Y. /0, I I~i-' I

/~O UM771 L v4!.tJ,A/.T,II,L Y,- "o,A,Y; /s G R.EA,77E,1<, ToMAN, I tJ 00 •

170 :/,.c; r:O,T.AIL - A = I IC OIAl. - AI ·AM/) I T.OITiA L. -1/, 1= I C; O,M-,B, AN.b r.O,r.41L.1- ,C, ,= COM'-CI

/80 1II,o,V'E. ,',r.,I/.B,LE. VI1,LV,E.S, /I,R.£ CO~~e.c.r.J TO, S/1.0w. I , I I

/9i t2 I I 'IJI~,/,r.E. SA1L,4&y'-o/ltE.Ct:J,RPI F.R.o.N. ."AI.E$,6. /I,F,r.E,~ A,o.V,ll,N'~,/,N',G. 2, L. I A/.E.s,

2 1Oi (2 11 :£LLJ5 1E. _L -' ~ ii , I I I I I I I I

2 1/ 10 ~()//'E. I' T.-4IB-t-,F. ,VtAL.V,E.s. ..A,R-£. ..v.or; CO.R,R€.cr,J TO p.R.SN.~ ~I

.2,2,0 /tI,/2,1 T.S StAlL. A.~ y.- R.E.CO/< /) F:R.o,Mr ,,).5,1',Y. A F.ToE.~ AD,VA/,I.CI Al61 ,21 L I Al.G'Slel I L I I L

2,30 I :C LOS£. SyiI,L.AI?Y'.-,t:;1 i. £.. I I I , I I I I I I I I , I I I I , I I I I II I I L

2,.tI1() ~IT.O,.P. Il.V~. I I , I I I , I I I I I I I _I I I _L i_I

Figure 5. COBOL Sample (Part 3 of 4)

32 Tape COBOL Op. Froc.

COBOL PROGRAM SHEET
Form No. X28-1464
Printed in U.S.A.

PAG~ I-P_R_O_GR_A_M __::S~A.!.!L=:..4~/.Z:!!:/...!:E.~"S~ __ ...!./-!B=-=M....::...=.. __ -!.../-=:~_O:::....!./---.: ~£.""'-'-~~n?~.:..;.P:....!L=E=--__ -lI_S_Y:-ST_E_M_/_~_O_/ _____ -+I_SH_E_E_T_O"---"9 __ 0F __ 4~_~
100,4 PROGRAMMER J. JONES I DATE IIDENT. ?:;oA i. A,ill c?i
i,ERIAL ~ A : B

U I
4 6 7 8 112 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

(') 1,0 C,.4''-I~V;LIA,7jIPIN,'~", I I , I , I I , , , , I Ll I I , , , 1 , 1 , 1 , 1 I I LL.1--LL.L , , I , I' ,

0,2,0 ,,:C,OM-"'IIITi£;' IHI€A'<LI~-P~IY;' ~Lt'*1 MO(l1l;7;II,LI>1-IPtAl~ '/L.1LL~~i I ~iLL-L-1-L

'13 ,0 ,,~~eiZiifL~~-.b-IPtA,~ 1=1 l6~ ItOI,v;r~LIr;-1~41Y; L.J.J_-LL.1 1--.L..L.LLLi--LLL
0"1,0 WOIV~H{EA)(.LI~-relJ,r; 11;01 ,JI/,E,E~L,Y, 11M IS,AIL~~/14"2LLLLLLi I--.L.L.LLI I I I

bs.o ,}tf,oIV,E.LJMO,..v;7I1tlY,-IP~~ ,71°1 MO~7,..y;L,K I/IA-f 1S;IJ,LI.4I~/lt~_L_L.L.1 I I I , I , ..L._LL~L.
O,6,G ~OIVI£j 141A1,MVIAIL,-~A,Y; ,~~...A&i!J4,L, /,A{ ,S,A//I(l/.L~~LLLLLL~.1 I , LL.LL.LLL.L~
') 70 14P,~ ~~~LI>:J:.~tM--; ,7;"~ 17i<:'t7't1t£-IA, , LL.J.......L Ll_..1......Ll..LLi--LLL_L.l.LLLLi_-"-...J.'--'--...L....L.......j

,0',0 , 'A,.o,LJ, &OtN;Tj#I·9'·hAAIy;' 17j~ 17ic2TtAlL.'-IBt I I I I I I I I I I I L.LLL....L.1 I.LLL ' ,

F_JL<...I.=+-+-~...L_-,--,;,tI,-,1 '-ltfJ=-<{),=-,-I-"-'..IA'IA1A';P(/IL. I-l'#,Y:' I7iOI 17;"0lr&~-ICj I , , I 1 I 1 , I-L-LLLL_L_L_L.1 1 1 I I 1 1 1 I....LLLL_L_.L...J'C-L--'--l 1090 ,
.1 {J,G , ~..qI/I7j&j· SlM'llIllIYt-&CjCIOI~O~~~S,A~IA'..&! ,EiSI 01 LLL.L~Li_LLL.L L.L.LJ...J. .LLLLL.L....l--'-...L....L.......j

, I , I I L.J

I , L 1 LJ _'__'_-L...L.._L_L-L-'L.J.--L-L...L.....L.....L-LJ __ LLL.1.....L , -L-LLL L_L_L_L_L

, , , I , _L~L 1 I I .L-L....L..J__'_-L-'-...L..-'--L-L-J__'_-L-L-L..L.J~~_L.L.l. L....LLLL1_ L ... L._ L_L -'--L-"L...i--'---'--l

, , I ...l-L L I

L I

1-l.-'--+-+-.L...l~L.LLLLLLL . .L....l-LL-L...L..-'---"--L.....1--'---L.-'-L_L . .L1 -L-'-..l.--'--L...l--'-__'_--L-'-...L __ L..L_ L_L_L..L...l~~LJ _LI -,--,---,--,--IL-lI--.L'L....LL...J.'--L_L-J."-'--'--l

1--1'_-'--'+--If.-!--' '_LI _':L-J.I--LI --,-I _,1'--LI--'-__'_~...L--,--,---1..-'..1 -'--'---'--.l.-J'--'--'-__'_~"I'--'I--'-__'_-'--'-.L._.L-'--'--'--.L....I--.L_LL I I 1 I 1 _L~..L-'--'--.L..J,---,I--L.l , , I I 'I I I

I~ __ ~~L.LL....L....LI -'-...L..-'--L-'L..J._L--'-~-'---'--.l.-J,--,--,-~.L_L' -'--'--'--L-'-...L--'-_L~-'--'--'--IL...iI_L-~~~'_LI-'--'--_L_L-LI ...ll--.LI--LI_ILJI--'-__'_.-L...L..-'--'.L.......jl

, ~LLL.L...LI -'-...L..L-L-'L-J._i-'..I -L....L..-'--L-'L...i--'--'-.L_L-LI -'--'---'--L . .Li~...L....LLL-~~_L.L_L_LL..L-LL...l.__'__L...L....J.'__'___'__','__'__ '-'--1' ,
I--I.-'--+-+--'--' '---L..LLLL~Ll--'---'-~-'-_L_.L...L....J--L--'-~__'_-'---'--LJ_.L_'_1 -'--.l-JL-L..-LI _LL..L..L-L-LLLLL-L.L.LL..J'--LI__'_I--Li _,IL-LI--.L'--,-I _,IL--'__'__L-"'L...i_-'--'.L-JII-.J.I-l

! I I I I I I I I I I 1 I I I I I I I I ! I I !

Figure 5. COBOL Sample (Part 4 of 4)

33

C24-3146-3

WEEKLY MONTHLY ANNUAL

115.38 500.00 6000.00
117 .69 510.00 6120.00
120.00 520.00 6240.00
122.30 530.00 6360.00
124.61 540.00 6480.00
126.92 550.00 6600.00
129.23 560.00 6720.00
131.53 570.00 6840.00
133.84 580.00 6960.00
136.15 590.00 7080.00
138.46 600.00 7200.00
140.76 610.00 7320.00
143.07 620.00 7440.00
145.?8 630.00 7560.00
147.69 640.00 7680.00
150.00 650.00 7800.00
152.30 660.00 7920.00
154.61 670.00 8040.00
156.92 680.00 8160.00
159.23 690.00 8280.00
161.53 700.00 8400.00
163.84 710.00 8520.00
166.15 720.00 8640.00
168.46 730.00 8760.00
170.76 740.00 8880.00
173.07 750.00 9000.00
175.38 760.00 9120.00
177.69 770.00 9240.00
180.00 780.00 9360.00
182.30 790.00 9480.00
184.61 800.00 9600.00
186.92 810.00 9720.00
189.23 820.00 9840.00
191.53 830.00 9960.00
193.84 840.00 10080.00
196.15 850.00 10200.00
198.46 860.00 10320.00
200.76 870.00 10440.00
203.07 880.00 10560.00
205.38 890.00 10680.00
207.69 900.00 10800.00
210.00 910.00 10920.00
212.30 920.00 11040.00
214.61 9::0.00 11160.00
216.92 940.00 11280.00
219.23 950.00 11400.00
221.53 960.00 11520.00
223.84 970.00 11640.00
226.15 980.00 11760.00
228.46 990.00 11880.00
230.76 1000.00 12000.00

TABLE VALUES ARE CORRECT

Figure 6. Table of Salaries

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10SOl
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[In terna tional]

......
,j:>.
o
()

g
o
t-'

READER'S COMMENT FORM

COBOL (on Tape) Operating Procedures: C24-3146-3
IDM 1401

• Your comments, accompanied by answers to the following questions, help us producc better
publications for your use. If your answer to a question is "No" or requires qualification,
please explain in the space provided below. Comments and suggestions become the property
of IBM.

• Does this publication meet your needs?
• Did you find the material:

Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

Yes

D

D
D
D
D
D

No

D

D
D
D
D
D

• What is your occupation? _____________ _

• How do you use this publication?
As an introduction to the subject? D
For advanced knowledge of the subject? D
For information about operating procedures? D

Other

As an instructor in a class? D
As a student in a class? D
As a reference manual? D

• Please give specific page and line references with your comments when appropriate.
If you wish a reply, be sure to include your name and address.

COMMENTS:

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C24-3146-3

fold

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •••

IBM Corporation
Systems Development Division

Development Laboratory
Rochester, Minnesota 55901

Attention: Programming Publications, Dept. 425

fold

®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I0601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[In terna tional]

FIRST CLASS

PERMIT NO. 387

ROCHESTER, MINN.

fold

fold

()

g
o
t-'

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	replyA
	replyB

