File Number GENL.-24
Form C24-3235- 2

Systems Reference Library

COBOL (on Disk) Specifications
IBM 1401, 1440,and 1460

This publication is intended for programmers who
have a basic knowledge of coBorL programming. It in-
cludes the additional specifications necessary to write
a coBoL program for the 1BM 1401, 1440, and 1460 Data
Processing Systems with disk storage.

Specific examples show how many cosoL statements
are coded. A general explanation of these statements
is also given.

A sample problem shows entries for all divisions.

This publication is a major revision of form C24-3235-1 and
obsoletes it and prior editions. In addition to incorporating in-
formation released in Technical Newsletter N24-0293, addition-
al information concerning programming considerations is pro-

vided.

Copies of this and other IBM publications can be obtainied through IBM Branch Offices.
A form is included at the back of this manual for readers’ comments. If this form has
been removed, address comments to: IBM Corporation, Product Publications, Dept. 245,
Rochester, Minn. 55901.

© 1964 by International Business Machines Corporation

Contents

The COBOLLanguage 5
Machine Requirements 5
COBOL Language Notation. 5

IBM 1401, 1440, and 1460 COBOL Programming .. 7

Environment Division. 7
Configuration Section 7
Input-Output Section. 9
Data Division 12
Record Formats for Tape Files. 12
Record Formats for Punched-Card Files. 13
Record Formats for Disk Files. 13
Data Division Language Specifications. 13
File Section. 14
The Constant and Working-Storage Sections. 21
Procedure Division 21
General Information 29
Character Sets 29
Figurative Constants 29
Word Lists 29
Class Conditions. 29
Continuation of Alpha Literals. 30
Reference Formats 30
Sample Problem 37
Programming Considerations 40
Aids ..o 40
Techniquesc.c i 40

Area Allocation in the Data Division.................. 40

Tables 40

MoveVerb 40

If Statement, 41

Arithmetic Verbs. 41

Perform and Alter Statements 42

Input/OutputVerbs 42

Optional COBOL Words 42

Object Time Subroutines 42

Acknowledgment

In accordance with the requirements of the official government
manual describing coBoL-1961 extended, the following extract
from that manual is presented for the information and guidance
of the user:

“This publication is based on the cosoL System developed in
1959 by a committee composed of government users and com-
puter manufacturers. The organizations participating in the orig-
inal development were:

Air Material Command, United States Air Force

Bureau of Standards, United States Department of Commerce

Burroughs Corporation

David Taylor Model Basin, Bureau of Ships, United States

Navy
Electronic Data Processing Division, Minneapolis-Honeywell
Regulator Company

International Business Machines Corporation

Radio Corporation of America

Sylvania Electric Products, Inc.

UNIVAC Division of Sperry Rand Corporation

“In addition to the organizations listed above, the following
other organizations participated in the work of the Maintenance
Group:

Allstate Insurance Company

The Bendix Corporation, Computer Division

Control Data Corporation

E. I. DuPont de Nemours and Company

General Electric Company

General Motors Corporation

Lockheed Aircraft Corporation

The National Cash Register Company

Philco Corporation

Standard Oil Company (New Jersey)

United States Steel Corporation

“This manual is the result of contributions made by all of the
above-mentioned organizations. No warranty, expressed or im-
plied, is made by any contributor or by the committee as to the
accuracy and functioning of the programming system and lan-
guage. Moreover, no responsibility is assumed by any contribu-
tor, or by the committee, in connection therewith.

“It is reasonable to assume that a number of improvements
and additions will be made to cosoL. Every effort will be made
to insure that the improvements and corrections will be made in
an orderly fashion, with due recognition of existing users’ invest-
ments in programming. However, this protection can be posi-
tively assured only by individual implementors.

“Procedures have been established for the maintenance of
coBoL. Inquiries concerning the procedures and the methods
for proposing changes should be directed to the Executive Com-
mittee of the Conference on Data Systems Languages.

“The authors and copyright holders of the copyrighted ma-
terial used herein: rLow-maTic (Trade-mark of Sperry Rand
Corporation), Programming for the UNIVAC® [and II, Data
Automation Systems © 1958, 1959, Sperry Rand Corporation;
IBM Commercial Translator, Form No. F28-8013, copyrighted
1959 by BM; Fact, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell, have specifically authorized the use of
this material, in whole or in part, in the coBoL specifications.
Such authorization extends to the reproduction and use of cosoL
specifications in programming manuals or similar publications.

“Any organization interested in reproducing the coBoL report
and initial specifications in whole or in part, using ideas taken
from this report or utilizing this report as the basis for an in-
struction manual or any other purpose is free to do so. However,
all such organizations are requested to reproduce this section as
part of the introduction to the document. Those using a short
passage, as in a book review, are requested to mention ‘cosor’
in acknowledgment of the source, but need not quote this entire
section.”

The programmer’s responsibility in preparing a cosBoL

program is to:

1. Identify the program.

2. Specify the features and devices of the M 1401,
1440, or 1460 Data Processing System that will be
used to compile and execute the resultant machine-
language object program.

3. Describe the data to be processed.

4. State the procedure to process the data.

The programmer uses the characters, words, and ex-
pressions that make up the coBoL language. He writes
them according to a standard reference format that is
outlined on the coBoL program sheet (Form X28-1464).
This standard coding sheet is used with all 18m cosoL
systems to record the source program.

The cosoL source-program card deck is punched
from these coding sheets. These cards make up the
COBOL source-program card input to the cosoL proc-
essor.

Machine Requirements

To process a coBoL source program, the following min-
imum machine configurations are specified.

An 1BM 1401 system with:
4,000 positions of core storage
Advanced Programming Feature
High-Low-Equal Compare Feature
One 18M 1311 Disk Storage Drive with an 18m 1316
Disk Pack
One 18M 1402 Card Read-Punch
One M 1403 Printer.

An M 1440 system with:
4,000 positions of core storage
Indexing and Store Address Register Feature
One 1M 1311 Disk Storage Drive with an 18Mm 1316
Disk Pack
One 18M 1442 Card Reader
One 18M 1443 Printer.

An 1BM 1440 system with:
8,000 positions of core storage
Indexing and Store Address Register Feature
One 18M 1301 Disk Storage
One 18M 1442 Card Reader
One 18M 1443 Printer

The COBOL Language

An 1BM 1460 system with:

8,000 positions of core storage

Indexing and Store Address Register Feature

One M 1311 Disk Storage Drive with an 1M 1316
Disk Pack, or one 1M 1301 Disk Storage

One M 1402 Card Read-Punch

One M 1403 Printer.

The system on which the object program is to be

executed must have:

1.

2.

A card reader or a disk file to load the object pro-
gram resulting from the Autocoder assembly.

Sufficient core storage to contain the program gener-
ated by the cosoL processor. If the object program
requires more than the available core-storage ca-
pacity, either the program must be executed in sec-
tions (overlays) or the job must be divided into

multiple runs. This requirement is a significant

consideration when planning to implement cosoL

on a system with 4,000 positions of core storage.

The input and output devices defined in the rFiLE-

CONTROL paragraph.

Sense switches if they are referred to in the spEcIAL-

NAMES paragraph.

The expanded print-edit feature when any of the

following cosoL editing functions are used:

a. High-order CR or minus signs and high-order
DB or plus signs.

b. Floating plus and minus signs, and floating dol-
lar signs.

c. Check protection (asterisk fill).

d. Decimal suppression for blank or zero fields.

COBOL Language Notation

The entire coeoL language is described in detail in
the SRL publication COBOL General Information
Manual (F28-8053). COBOL (on Disk) Specifications
for IBM 1401, 1440, and 1460 contains additional infor-
mation that enables the programmer to apply the
coBoL language to the 1BMm 1401, 1440, and 1460.

Throughout this publication, basic formats are pre-
scribed for the various verbs, clauses, entries, and other
essential elements of the coBoL language. These are
generalized formats intended to guide the programmer
in writing his own statements. These rules of notation
must be followed:

1. All words printed entirely in capital letters are

coBoL words. They have preassigned meanings in
the cosoL system. For example: IDENTIFICATION
pivisioN. When the coBoL processor sees these two
words, it notes the beginning of the identification
of the program.

. All underlined words are required unless the por-
tion of the format containing them is enclosed in
square brackets. Square brackets [] indicate an
optional portion of a cosoL format. Underlined
words are key words. If any key word is missing
or misspelled, it is considered an error in the pro-
gram. For example:

SEEK file-name RECORD

is the coBoL format for the seex verb. The program-
mer may write either of the following entries as-
suming that pAYROLL is the file-name.

SEEK PAYROLL RECORD

SEEK PAYROLL
seek is a key word and must be included. How-
ever, RECORD is an optional word and may be omit-
ted if the user so chooses.

. All coBoL words not underlined may be included
or omitted at the option of the programmer. These
words, called optional words, are used only for
the sake of readability. Misspelling constitutes an
error.

. All lower-case words represent information that
the programmer must supply. The nature of the
information required is indicated. In most instances,
the programmer must provide an appropriate data-
name, procedure-name, or literal. For example,
file-description format is

FD file-name

The programmer writes

FD ACCOUNTS-RECEIVABLE
ACCOUNTS-RECEIVABLE has been used as the file-
name for this file-description entry.

6 Disk COBOL Specs.

10.

. Material enclosed in square backets can be used

or omitted as required by the program. For exam-
ple, the format for the rErRFORM verb is

PERFORM procedurc-name-1 [THRU pmcedure-name—2]

The programmer can write one of the following
statements:

PERFORM GROSS PAY

PERFORM GROSS PAY THRU NET PAY
The first statement can be used to specify calcula-
tion of gross pay. The second can be used to calcu-
late gross pay and then net pay.

. Braces mean that one and only one of the enclosed

items must be chosen. Other items are to be omit-
ted. For example:

LABEL RECORDIS] gi\SRE %%ﬁ—%@f

The statement LABEL RECORDS ARE OMITTED iS cOr-
rect.

. Punctuation, where shown, is essential. The pro-

grammer can insert other punctuation in accord-
ance with the rules outlined in this publication.

. Special characters, such as the equal sign, are es-

sential where shown, although they may not be
underlined.

. In certain cases, a succession of operands or other

elements may be used in the same statement. In
such a case, the possibility is indicated by the use
of three dots following the item affected. The dots
apply to the last complete element preceding them.
Thus, if a group of operands and key words is en-
closed within brackets and the closing bracket is
followed by three dots, the entire group (not merely
the last operand) must be repeated if any repeti-
tion is required.

Restrictions and comments on each basic format
will be found in this publication. The formats
should not be used without reading the accom-
panying text.

IBM 1401, 1440, and 1460 COBOL Programming

The cosoL source program has four major divisions.
Each division has its own set of statements, which are
written according to the rules established for the coBoL
language, as described in the IBM COBOL General In-
formation Manual (F28-8053). These division-state-
ment sets must be arranged for presentation to the
1401, 1440, and 1460 cosoL processor in this order:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

The IDENTIFICATION DIVISION entries are written as
described in the M coBoL General Information
Manual.

Environment Division

In this part of the coBoL source program, the program-
mer specifies the physical characteristics of the par-
ticular mMm 1401, 1440, and/or 1460 system(s) to be
used to compile and to execute the object program.

The ENVIRONMENT DIVISION has two major sections,
each of which has a fixed section name: CONFIGURA-
TION and INPUT-OUTPUT.

The 1401, 1440, and 1460 coBoL presentation format
for this is:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-O-CONTROL..

Configuration Section

The cONFIGURATION section has three paragraphs. The
SOURCE-COMPUTER paragraph names the system that
will compile the object program from the cosor source
statements.

The OBJECT-COMPUTER paragraph names and de-
scribes the system that will execute the object program.

The SPECIAL-NAMES paragraph equates: mnemonic
names to standard names for actual machine devices,

condition-names to standard names for the status of
actual machine switches, and Autocoder-names to
COBOL-names.

Source-Computer Paragraph
Reference Format

IBM-1401
SOURCE-COMPUTER. { IBM-1440 } .
IBM-1460

This statement is required in all 1401, 1440, and 1460
COBOL source programs.

Object-Computer Paragraph
Reference Format

OBJECT-COMPUTER.

IBM-1401
{ IBM-1440 }

IBM-1460
j' 4000]
8000
112000 5 CHARACTERS
16000
. THROUGH
MEMORY SIZE { ADDRESS integer {T————HRU
4000
8000
12000
16000

[NO-PRINT-STORAGE]

[NO-MULTIPLY-DIVIDE]

[NO-DIRECT-SEEK |
[NO-OVERLAP |

[NO-CONSOLE-PRINTER] .

The oByECT-COMPUTER paragraph describes the com-
puter that will execute the object program. The
OBJECT-COMPUTER, 1BM-1401 (or 1440 or 1460) statement
without optional clauses defines an 1M 1401 (or 1440
or 1460) with 16,000 positions of core storage, the proc-
essing overlap feature (1401 and 1460 systems only),
the input/output units required for the files defined in
the FILE-CONTROL paragraph, the direct-seek feature,
the multiply/divide feature, and print storage. If the
object machine has fewer than 16,000 positions of core

7

storage, and/or if any of these features are not present
in the object machine, the appropriate clause must be
included in the source program.

5 4000
8000
12000 (CHARACTERS
\ 16000
. THROUGH
MEMORY SIZE { ADDRESS integer %THRU
4000
8000
12000
16000

—

This clause tells the processor how many positions
of core storage are available in the object machine and
the starting core-storage address of the object program.

If the programmer wishes the program to start at any
location other than 334, and if a printer is not to be
used as an output device, he can use the ApDRESs in-
teger THRU option and write the numerical address of
this location in the integer portion. This number should
not be less than 334. If a printer is to be used as an out-
put device, the program starts at location 469. If the
programmer wishes the program to start at any loca-
tion other than 469, and if a printer is to be used as an
output device, the integer portion of the ADDREss in-
teger THRU option must be greater than 469.

If the MEMORY s1zE statement is omitted from the
COBOL source program, the processor assumes that the
object computer has 16,000 positions and starts the
object program at core-storage location 334.

[NO-PRINT-STORAGE]

[NO-MULTIPLY-'DIVIDE]

[NO-DIRECT-SEEK]

[NO—OVERLAP]

[NO-CONSOLE-PRINTER] .

These clauses tell the processor that the object ma-
chine is not equipped with certain special features.

If either NO-PRINT-STORAGE Or NO-DIRECT-SEEK is Speci-
fied, the IOCS generated instructions will not use those
machine features.

If No-MULTIPLY-DIVIDE is specified, a subroutine will
be included in and used by the object program when-
ever cOMPUTE is used with *, /, or ** or whenever
MULTIPLY Or DIVIDE is used. If the NO-MULTIPLY-DIVIDE
clause is not specified, the multiply/divide special
feature will be used by the object program.

The N0-0VERLAP option must be included only if the
object computer is an 1BM 1401 or 1BM 1460 that does
not have the processing overlap feature.

8 Disk COBOL Specs.

If the system is 1440 or 1460, and if an M 1447 is
included in the system, the NO-CONSOLE-PRINTER option
will cause a sTop-literal statement to display the literal
itself or its address in the B-address register. If this
clause is omitted, the literal will be displayed on the
console printer.

Special-Names Paragraph

Reference Format

SPECIAL-NAMES.

[device-name 1S mnemonic-name

[device-name I_Smnemom'c-name] .

. ON
switch-name OFF { STATUS IS condition-name

[{ %FNI ; STATUS Is condition-name]

[oitchname - - .]].

[autocoder-name IS cobol-name

[autocoder -name . .]:].

This paragraph equates: mnemonic names to the
standard names for actual machine devices, condition-
names to the status of actual machine switches, and
Autocoder-names to cooL-names.

Device-Names

The standard device-names for the 1M 1401, 1440, and
1460 systems indicate to the coBoL processor which de-
vices are available in the object computer. They are
written with the mnemonic-name the programmer has
used to refer to them in the PROCEDURE piIvision. This is
a list of device-names:

Device-Name

Actual Device

1402-R, n 1402 Card Reader
1442-R, n 1442 Card Reader
1402-P, n 1402 Card Punch
1442-P, n 1442 Card Punch
1444-P 1444 Card Punch
1403-P 1403 Printer

1443-P 1443 Printer
1403-CT, n 1403 Carriage Tape
1443-CT, n 1443 Carriage Tape
1447-CP 1447 Console Printer

1401 and 1460 Device-Names. For the 1402-R and
1402-P device-names, n is a digit specifying the stacker
into which a card is to fall. For the card reader it must
be a 0 (normal read), 1 (read select), or 2 (common).
For the card punch it must be 0 (normal punch), 4

(punch select), or 8 (common). If one of the digits is
not included with a 1402 device-name, the processor
assumes that the stacker desired is 1 for a read oper-
ation and 4 for a punch operation. If n is coded, there
must be a space between it and the device-name as in
1402-R, 1.

1440 Device-Names. For the 1442-R and 1442-P, n
is the digit (1 or 2) that specifies the unit (1442
Unit 1 or 1442 Unit 2) of the card read-punch to
which the device-name is assigned. If n is not specified,
the processor will assume Unit 1. If n is coded, there
must be a space between it and the device-name as in
1442-R, 1. 1444-P refers to the 1444 card punch unit 3.

For all systems, the printer is the assumed stand-
ard output unit for use with the pispLay verb. The
card reader is the standard input device for use with
the acceper verb. However, if the 1BM 1447 Console
Printer is equated with a special name, that unit may
be specified as an input or output unit (or both) with
the Accept and DISPLAY verbs.

For the carriage tape device-name, n specifies which
channel in the carriage tape terminates a particular
carriage skip. It can be any number from 1 to 12. This
name is used with the apvancing option of the wriTE
verb (see Procedure Division). If n is not coded, the
processor assumes that the skip is to channel 1. If n is
coded, there must be a space between it and the
device-name as in 1443-CT, 3 or 1403-CT, 3.

Note: Punched-card input and output devices should
not be used with both the pispLaY and wriTE verbs in
the same program. The same restriction applies to
using these devices with both the accerr and Reap
verbs.

[autocoder-name IS cobol -name]

General Description: This statement enables the pro-
grammer to write Autocoder statements that refer to
coBoL data-names and procedure-names (see ENTER).

If an Autocoder-name is used to refer to an area
that has been defined by a cosoL statement, the
coBoL name must be equated to the Autocoder-
name.

Example: If TOTALS is a coBoL-name used to define
a cosoL area and the symbol TOTLS is used in an
Autocoder statement to refer to the same area, the
statement shown in Figure 1 must appear in the

SPECIAL-NAMES paragraph of the coBoL program.

T
A '8

8 2 16 ‘Q 24 20 32 36 40 44 48

o TOTLS LS TRTALSi v 04 s i s s

IR TN U T T U VA T T W 0 0 S T O S S S N U A A 0 U A 0 0 Y D A Y A W B B B)

~CONT

Figure 1. Equating an Autocoder-Name to a coBoL-Name

A symbol used as an Autocoder-name must meet
these requirements:
1. It must be five characters long.
2. It must begin with an alphabetic character.
3. It cannot contain a special character.
4. A blank cannot appear within the symbol.

The coBoL-name must be a non-qualified pro-
cedure-name or data-name. It cannot be a condition-
name.

Switch-Names and Conditions

General Description: A switch-name is written fol-
lowed by the condition-names used to identify ox
STATUS and OFF STATUS.

The standard switch-names are:

Switch-Name Indicates

1403-P-CB Printer Carriage Busy

1443-P-CB Printer Carriage Busy

1403-P-C9 Sense Carriage Tape Channel 9

1443-P-C9 Sense Carriage Tape Channel 9

1403-P-CV Sense Carriage Tape Channel 12 (Overflow)
1443-P-CV Sense Carriage Tape Channel 12 (Overflow)
1460-SS x Sense Switch

1401-SS x Sense Switch

1440-SS x Sense Switch

The x in the sense switch is the actual letter that
represents a specific 1401, 1440, or 1460 sense switch.
This must be a letter within the range A-G. There
must be at least one space between the switch desig-
nation and the letter used for x. For example, 1401-
SS G.

The status of 1401, 1440, and 1460 switches may be
interrogated by expressions in the PROCEDURE DIVI-
sioN that use condition-names.

Examples: Figures 2 and 3 show examples of speciaL-
NAMES paragraphs.

Input-Output Section
The iNpUT-oUTPUT section has two paragraphs.

The FILE-CONTROL paragraph names each file, identi-
fies its input or output medium, and assigns it to one
or more input/output devices.

File-Control Paragraph
Reference Format

FILE-CONTROL. SELECT file-name-1

ASSIGN TO device-name
1
[RESERVE Mo} ALTERNATE AREA[S] .

[sELECT..........]

CONT,
0
)

[412 16 20 24 l_. 32 36 40 44 48 52 s6 €0 [L]
)
 SOEC/ AL~ MAMES o1 1 | 4 1 L 0 11 1001 oy g0 11 dr e bttty
+
111(111’“;;&_.4_@_1[4‘4_@4&;2{&@&21—111 L4 b b3 0 or b g1ttt paal
'
T - -1BY ey TR U U N N U N M U U T U T A S T SN SN S A A N B U N N B O AT A

uﬂla&ﬂwmllll!'l'l

)T S S

lymo& ﬁﬂ (LS Wn-n!n L1

1l 1

1,463 -¢

L 1.1

17'1,.1 2 0SS SMB-Tih=Dier 1 4 2t 1 4 g 110

BT T . |

J4.03-P-CE

L1 1

11

Figure 2. 1401 and 1460 spPECIAL-NAMES Paragraph

1 1403 B-Clh OM STATUHS 1S OUERELAGK 1 1 1 1 1 2 4 4110 1 a1
L 24.010-8C A OM STATUS /oS LdST-LARBDe: 1+ 1\ 1 v 1y 1 10 i

r= T
(A '8
718 2 16 20 24 28 32 36 40 44 48 g 86 60 &4
]
IRECI[WIOIIIIIIIIILIIIl||llll|lllllll|lllanllllllllllll

.1.4412: .B 1O 1S AR~ READER -]

1131 1

11

L 442, .P. Lh A8 Cl4RD: \Pudekh- 1

W N W T Y T W U N T O B I T

11 1

l#lqal-lgl.wrﬂﬁ I S |

U N ISV Y U N TN T TN O O VN T TN (N N T N U U U W W |

‘lllllLllllIlllllllllllllIlllllJlllLl

:tyﬂ;@mmzm

Ll 1

Jl#L?ﬂCnl.lwAﬂ:ﬁﬁJngjnlnln 11

| S W T N W W S . L1 11 11

11 1

Ll 1

L)

JJ«&—.R—@MMMMWMJW&
11|f|4h!'|ﬂ-/|ylm_mm;&_ﬁlww:1||||||1|1||11LLLL1111||
MMMMLM‘M]SI’TI"AIWI’IIIIIIIIIIlllllllllLLLll

Figure 3. 1440 spECIAL-NAMES Paragraph

This paragraph names each file used in the source
program, identifies its media, and assigns it to an input
or output device. It also permits the programmer of
1401 and 1460 systems to specify an alternate input/
output area for magnetic tape files if the 1401 or 1460
has the processing-overlap feature.

SELECT file-name-1

Each file to be processed by the READ or WRITE verbs
in the PROCEDURE DIVISION must be named in a SELECT
file-name entry. This file-name must be unique within
the source program and must be described by a file-
description entry in the pata pivisionN of the source

program.
Example: Figure 4 shows a sample seLecT file-name
entry.

~CONT.

y
a8
[12 16 20 24 28 32 36 40 44 48

.

L3 1 SELECTT MASTER-1/MPIAT = Fil Lol 1 2 2 & 1) 11 100 L2
v

PINE N0 TN SN U0 1.8 U6 U N WY NN U0 U 05 U000 W0 W 0 U A W T WD 5 U O T T T T T Y S S 0 Y O O O W O O O |

Figure 4. SELECT

10 Disk COBOL Specs.

ASSIGN TO device-name-1

This clause is used to assign a file to an input or
output device-name. The device-names that are valid
in the FILE-CONTROL paragraph are:

Device-Name Actual Device

1402-R, n 1402 Card Reader
1442-R, n 1442 Card Reader
1402-P, n 1402 Card Punch
1442-P, n 1442 Card Punch
1444-P 1444 Card Punch
1403-P 1403 Printer

1443-P 1443 Printer

1311-D, d 1311 Disk Storage Drive
1301-D, d 1301 Disk Storage

TAPE(S) u, a 729 or 7330 or 7335 Magnetic Tape Unit

Punched-Card Device-Names

The punched-card devices that are valid in the FILE-
conTROL paragraph are the card reader, the card
punch, and the printer.

For the 1402-R and 1402-P device-names, n is a
digit specifying the stacker into which a card is to fall.
For the card reader it must be a 0 (normal read), 1
(read select), or 2 (common). For the card punch it

must be 0 (normal punch), 4 (punch select), or 8 (com-
mon). If one of the digits is not included with a 1402
device-name, the processor assumes that the stacker
desired is 1 for a read operation and 4 for a punch
operation. If n is coded, there must be a space between
it and the device-name as in 1402-R, 1.

For the 1442-R and 1442-P device-names, n is a digit
(1 or 2) specifying the unit in which a file is to be
placed. If n is not coded, the processor assumes unit 1.
If n is coded, there must be a space between it and the
device-name as in 1442-R, 1.

Disk-Storage Device-Names

For disk files, 1311-D or 1301-D is the device-name.
It indicates that the file is to be assigned to either a 1301
or a 1311. For both the 1301 and 1311, the d specifies
the particular unit and can be any digit from 0 to 4.
There must be a space between the comma and the
digit.

Example: Figure 5 shows an AssiGN statement for a

1311 disk file.

8
8 :ll 16 20 24 28 32 36 40 44 48
iy ASSUGM Tio LB O 04y e

I T S T T T Y T O W U Y S O W Y S T T S W U Y 0 0 O 0 O B WY

T~CONT
>

Figure 5. assioN Disk-File

Magnetic-Tape Device-Names

For magnetic-tape files, TAPE(s) is the device-name.
It indicates that the file is to be assigned to a tape unit.
The u specifies the particular unit to be assigned. It can
be any digit from 1 to 6 with the 1401 or 1460. For the
1440, u can be 1 or 2. The a specifies that an alternate
unit is to be assigned. It can be any digit from 1 to 6
with the 1401 or 1460, but should not be the same digit
that is used for u. For the 1440, @ can be 1 or 2, but
should not be the same digit that is used for u. The
same tape unit (or alternate tape unit) should not be
assigned more than once in a COBOL source program.
There must be a space between u and a.

Example: Figure 6 shows an AssicN statement for a
tape file.

T
A '8
s #2 0 20 24 28 32 36 40 44 a8

s ASSIEN TO TR L 20w

PN T N0 O W W W N W Y U S U T W W S N T Y T S0 S T SN WU S W S O O W A B S O B

~CONT.

Figure 6. assioN Tape-File

[RESERVE {No} ALTERNATE AREA[S]].

This statement reserves one or no alternate area for
a magnetic-tape file. One alternate area may be speci-

fied only if the object machine has the processing over-
lap feature. If this clause is missing from the source
program, the processor reserves no alternate area.

Example: Figure 7 shows a sample RESERVE state-
ment.

3 '
g o
718 2 16 20 24 28 32 36 40 44 48

'
Ly RESERWMNE, (1 Al TIERNATE MOEMe s 1 4 4y 1 4 4 1y 3L
s

U W T T T W U Y W W W W WD W T T T S U 0 0 U S0 T 6 A W 6 DAY B IOV U U A N O U

Figure 7. RESERVE

Note. In the speclaL-NAMEs paragraph and the FiLE-
coNTROL paragraph, two unit-record files cannot be assigned
to the same device. For example, if the punch is defined in the
SPECIAL-NAMES paragraph, it cannot be defined again in the
SPECIAL-NAMES paragraph, nor can it be defined in the rm.E-
CONTROL paragraph.

1-O-Control Paragraph
Reference Format

I-O-CONTROL.

5 TYPE-A-LABEL

APPLY ITYPE-B-LABELé ON file-name [APPLY...].
TYPE-C-LABEL

The 1-0-cONTROL paragraph is used to specify the
type of the label records for tape files.

Type-A, -B, and -C label records contain 120, 80,
and 84 characters, respectively. The file-name refers to
the file-name assigned to the file in the associated FD
entry.

Example: Figure 8 shows a sample appLY statement.

T
A '8
'
8 12 16 20 24 28 32 36 40 44 48

~CONT

v APPUN T APLE AL ABEL, gtti LAY RLMAS TR | | 4 1 1 s 1

S R U U W W T U W T T T U W 00 W U 0 U U W Y U U W U S 0 N 1 T A Y B Y O

Figure 8. ApPLY

Deferred Elements of the Environment Division

Several elements described in the coBoL General In-

formation Manual are not contained in this copoL proc-

essor. These should not be coded in the ENVIRONMENT

pIvISION entries for a 1401, 1440, or 1460 cosoL pro-

gram. They are stated here for reference.

1. The oprioNAL option of the FILE-CONTROL para-
graph.

2. The MULTIPLE REEL option in the FILE-CONTROL para-
graph and all other features that provide for auto-
matic assignments of tape units for a file.

3. The rReNaMING option of the FILE-coNTROL para-
graph.

11

4. The entire copy option. (The library tape for the
1401 cosoL processor does not presently support
the copy feature.)

4. The ReRUN option of the 1-0-cONTROL paragraph.

Not Applicable
The assiN option of the OBJECT-COMPUTER paragraph.

Data Division

Each file, record, and data item is described within
a program by writing data-description entries in the
source program. Every data-name referred to in the
PROCEDURE DIVISION except figurative constants must be
described in the paTA pDvision. Items and records are
described by record-description entries, and files are
described by file-description entries (MD and FD en-
tries).

Detailed information about record formats is pre-
sented in the SRL publications Input/Output Control
System (on Disk) for IBM 1401/1460: Specifications
(C24-1489) and Input/Output Control System for IBM
1440: Specifications (C24-3011). General information is
presented in the following sections.

Record Formats for Tape Files

Form-1 Records

Form-1 tape records are fixed length, unblocked, with
or without record marks. Fixed-length implies that all
records in the file have the same number of characters.
Unblocked means that one data record is contained in
one tape record. A record mark (+) is a special char-
acter written at the end of a data record to indicate
that the preceding character is the last record charac-
ter. If input records are form-1 but are to be written
as output in form-2 or form-4, they should have record
marks. Otherwise the use of record marks is optional.
Tape records are physically separated by a section
of blank tape called an Interrecord Gap (IRG). Fig-
ures 9 and 10 show examples of form-1 records with
and without record marks.

Form-2 Records

Form-2 records are fixed length, blocked, with record
marks, and with padding of short-length blocks.
Blocked means that more than one data record is con-
tained in one tape record (two or more data records
occupy the space between two interrecord gaps).
Record marks must be used to separate the data rec-
ords.

Padding means that nines (9’s) are used to fill the
last block for a file if there are not sufficient data
records to fill it. Thus, a fixed-length block will always
contain the same number of characters, but a padded
record(s) will be substituted if there are not enough
data records to fill the last block.

Figure 11 shows fixed-length, blocked tape records
with record marks and padding. Each block contains
four records.

Form-3 Records
Form-3 records (variable unblocked) are not permitted
with coBoL.

Form-4 Records

Form-4 tape records are variable-length, blocked, with
record marks and a Record Character-Count (RCC)
field in each record, and a Block Character-Count
(BCC) field in each block. Variable length implies that
all the records in a file do not contain the same num-
ber of characters.

Block Character-Count Field

A four-character field at the beginning of each block
contains a count of the total number of characters in
the block (including the block character-count field it-
self). The BCC field has AB zone bits (1BM card code
12-punch) over the units position. This count is used
to check wrong-length record conditions.

Record Character-Count Field

A record character-count field of three characters in
each record contains a count of the number of charac-

| i * 1

R Record 1 R Record 2 R Record 3 R

G G G G
Figure 9. Form-1 Records with Record Marks

I | I

R Record 1 R Record 2 R Record 3 R

G G G G

Figure 10. Form-1 Records without Record Marks

12 Disk COBOL Specs.

] : * + * +

Q=
N

Q= -

(o]

IR RN }
Padded
I ‘

Block 1
Figure 11. Form-2 Records with Padding

ters in that record, including the RCC field itself and
the record mark. This field must be in the same rela-
tive position in each record (the character size of each
Cl in Figure 12 is the same). Figure 12 shows the rec-
ord format for a form-4 record.

Note: For form-2 and form-4 records, it is the pro-
grammer’s responsibility to place all record marks in
the file-description entries, and in the work areas,
where applicable.

Record Formats for Punched-Card Files

Card Read-Punch Records

Records of files assigned. to the card reader and the
card punch must be eighty characters long, unblocked,
and may or may not have record marks in the 80th
character position (card column 80). This is equivalent
to the form-1 record described previously.

Printer Records

Records of files assigned to the printer must also have
form-1 record format. For the printer the fixed record
size must be equal to the number of print positions on
the printer. A maximum of 132 print positions is used
by the cosoL compiler.

Record Formats for Disk Files
coBoL can process disk records that are fixed-length
unblocked (form-1), fixed-length blocked (form-2), or
variable-length blocked records (form-4). The maxi-
mum size of a record is 999 characters. Figure 22 shows
the record forms permitted for each type of access
mode.

To process blocked records, the coBoL processor re-
quires the following.

1. A block may contain a maximum of ten records for
random files, one hundred for sequential files, and
thirty for control-sequential files.

Block 2

2. In blocked files, each record in every block must
contain a record mark as its last character.

3. For variable-length records, a block-length field
must be included in each block, and a record-length
field in each record (see Figure 13).

As the name implies, block length is the total num-
ber of characters in the block, including itself and
record marks. The block-length field must always
be recorded in the first four positions of the block.
When output records are created by copor, this
count is generated automatically.

Record length is the total number of characters in
the record, including itself and the record mark. The
record-length field is a three-position field and must be
located in the same three positions within each record
in the file.

Figure 13 shows examples of the various types of
disk records that this coBoL processor can handle.

Data Division Language Specifications
The paTa prvisioN of a COBOL source program is di-
vided into three major sections:

FILE SECTION.
WORKING-STORAGE SECTION.
CONSTANT SECTION.

The FiLE sEcTION describes the input and output files
with respect to content and organizational format. It
has two major subdivisions: the file-description entry
that specifies the physical characteristics and organi-
zation of the input and/or output data and the record-
description entry that describes the individual items
contained in the file records.

The WORKING-STORAGE SECTION describes the areas of
core storage where intermediate results and other
items are stored temporarily at object-program execu-
tion time.

The constanT sEcTiON describes fixed items of data
which remain unchanged during the running of the

le— C 1—»] la— C 1— cl ‘
|c2 |c2 jc2
T T T
1| 'R * o * ro o
R | C ! ! L ;
G|cC 1 Co Vo o G
[} 1 A1 1 1 1
lg——————— Record 1 - Record 2 Record 3
Block

Figure 12. Form-4 Records

13

(Fixed-Length)
FILE A. FORM-1 80-CHARACTER UNBLOCKED RECORDS

80 - Character Record

80 - Character Record

(Fixed-Length)
FILEB. FORM-1 175-CHARACTER UNBLOCKED RECORDS

175 - Character Record

S
A (First 100 Characters)

(Last 75 Characters)

175 - Character Record
(First 100 Characters)

(Fixed-Length)

FILE C. FORM-2 70-CHARACTER RECORDS, BLOCKED 4 TO A BLOCK

70 - Char Record
s| 70 - Character Record (First 30 (Last 40
A Characters) Characters)

70 - Character Record
(First 60 Characters)

70 - Character Record

50 - Character 66 - Character Record |40 - Character 45 - Character
S|B| Record Record Record
AfLl 1 | Ll L
Y La ta
40 - Character | 40 - Character Character Record 35 = Char
s|B | Record Record Record

|
Ln

SA - Sector Address
G - Gap Between Sectors

BL - Block=-Length Field
RL - Record-Length Field

Figure 13. Schematic Records on Disk

object program. A date, for example, might be a fixed
item, or a constant.

The copoL presentation format for the paTa prvision
is:
DATA DIVISION.

FILE SECTION.
File-Description Entries and
Record-Description Entries

WORKING-STORAGE SECTION.
Record-Description Entries

CONSTANT SECTION.
Record-Description Entries

14 Disk COBOL Specs.

File Section

The file-description entries and record-description en-
tries describe the files to be processed by the object
program. The file-description entries are of two major
types: those that involve the disk-storage unit and
those that involve other input or output media.

File-Description Entries

A file-description entry must be written for each file
to be processed by the object program. It includes spe-
cifications for the mode in which the file is recorded,
the record and block size, label record information,
and the names of the data records that make up the file.

File-Description Entry—Tape Files
This format is used to describe magnetic tape files.
Reference Format

FD file-name [RECORDING MODE IS mode]

. RECORDIS]
BLOCK CONTAINS integer-1 § R oRD L)
I: reser %CHARACTER[S] ﬂ

[RECORD CONTAINS [integer-2 TO]

integer-3 CHARACTER[S]]

ARE] {STANDARD
LABEL RECORDIS] {1s OMITTED

VALUE OF data-name-1 1S literal l:data-name-2 IS..]

ARE
DATA RECORDIS])IS i data-name-3 [data-name-af],
Note: A vaLUE clause is required when LABEL REC-
orbs are standard.

FD file-name

The level indicator identifies the beginning of the
file-description entry and precedes the file-name as-
signed by the programmer. (Example: Figure 14.)

The size must be stated in terms of cHARACTER(s)
for form-4 records where integer-1 is equal to or
greater than the number of characters in the longest
block of the file. This number includes the four-char-
acter block count field (BCC). See also Form-4 Retords.

Example: The largest block in the payrRLMAsTR file
contains 500 characters plus the BCC field (Figure 15).

T

=

3 A '8

7|8 12 16 20 24 28 32 36 40 a4 a8
LB CAaNT A NS SO \CHARAETIERS 1+ 4 1\ 4 111

l
O T N O T W O Y T O Y N T A O G Y N A 0 T T G A S A B Y I S |

Figure 15. BLOCK CONTAINS

[BECORD CONTAINS [integer-2 TO]
integer-3 CHARACTER[S]

The RECORD CONTAINS clause may be used to specify
the number of characters in the data records. Because
the record-description entries define the size of each
data record, this clause is never necessary. However,
if the programmer wishes to include it, integer-2 speci-
fies the number of characters in the smallest record in
the file, and integer-3 specifies the number of char-
acters in the largest record.

Fixed-length records must be specified using integer-
3 only. Variable-length records are specified by using
both integer-2 and integer-3.

Example: The records for a certain file are variable
length. The smallest record size is 75 characters; the
largest is 86 characters (Figure 16). When levels are
defined in the FD, 86 must be defined before 75.

9 T
{5A 's . .
78 j2 6 20 24 28 32 36 40 a4 48 2 A 8
O I
Do L PAYRLMASTR & 1 L i e i) 7.8 :.‘3 16 20 24 28 32 36 40 a4 48
R S A A A A N S S ST SO S SN U T S A S RS A ST S N N N S A T A S O O L RiECBIRD CIOMZIAY ANST (2iST (TIO Rilr CHARACT SRS

Figure 14. rp File-Name

[RECORDING MODE IS 1]

This clause specifies the mode in which the file is
recorded. A 1 indicates the move mode, even-parity.
RECORDING MODE I is the only recording mode imple-
mented by this coBoL processor.

I:BLOCK CONTAINS integer-1 gBE_C_QMS_] {l

CHARACTERIS]

This clause must be included if more than one data
record is included in a tape record (other than form-1).
It indicates the size of thé block in records or charac-
ters. The size may be stated in terms of recorp(s) for
form-1 or form-2 records where integer-1 is the num-
ber of data records in the block.

'
SN IO O T Y YO Y O U Y O T S W Y T Y S Y A |

Figure 16. RECORD CONTAINS
Note: Both the block count and the record count

must include the record mark (+) in the count.

AR
LABEL RECORDIS] ils Ez %%%QE

This required clause states whether header and
trailer label records are standard or omitted. This cosoL
processor can handle only standard type-A, type-B,
and type-C tape labels and standard disk labels. For
punched-card files the omMrTTED option must be used.

Example: Figure 17 shows a LABEL RECORD entry for
a punched-card input file.

T
A 'B
8 ;IZ 16 20 24 28 32 36 40 44 48

~CONT.

L LABEL PECORDS, ARE DMITTEN (1 | 1141 10411y
!

101 FES I N N T N 0 S A T O Y VO S N T N N N T O I v

Figure 17. LABEL RECORDS

15

Today’s Date

If standard label records are specified for output files,
today’s date must be in core storage at object-program
execution time.

To enter the current date in the object program,
insert a date card just ahead of the EX card produced
by the Autocoder processor. The EX card is the last
card in the object program. The format for the date
card is:

Columns Punch Description
1-3 082 Storage Location
4-5 05 Number of Characters
6 0-5-8 Word Separator
7-11 XX XXX Today’s Date
YR DAY

r
LVALUE OF data-name-1 1S literal data-name-2 1S . . :I

The coBoL programmer may specify the items of in-

Label Information (Header Label Records)

The 22-character label-information field in 120-char-
acter label records contains these fields:

Number of Type of
Field Name Characters Characters

Density 1 Numeric
Check Sum 1 Numeric
Block Sequence 1 Numeric
Tape Checking Technique 1 Numeric
Tape Data Recording

Technique 1 Numeric
Tape Data Processing

Technique 1 Numeric
Creating System 4 Numeric (1401, 1440,

or 1460)

Record Format 1 Alphanumeric
Record Length 5 Numeric
Blocking Factor/Size 5 Numeric
Check Point 1 Numeric

The 6-character label information field in 84-character label
records contains a blank and five numeric characters.

Tape Trailer Labels

The following information is contained in 1M standard
trailer labels:

formation that appear in the label records of tape files. Positions Contents
These items must be supplied by using a vALUE oF aggﬁéhﬁ} i‘(‘gg}f)l‘s 1-5 igggg
clause if standard tape header-label records are used. 6772 XXXXXX (Block Count)

Data-name is the name of a field contained in the = TYPE-B-LABELS 1-5 1EORb
header label record; literal refers to the contents of the (80 characters) 1EOF b
field. Figure 18 is a chart showing data-names and TYPE.C.LABELS ?-(130 ioé)g:;](DBIOCk Count)
lengtl(;s of fields used in standard tape header label (84 characters) 1 EOF bb
records. COMPLETE CHECKING PARTIAL CHECKING 7-12 XXXXXX (Block Count)
LABEL RECORD INPUT OuUTPUT INPUT OUTPUT

FIELD B C A B C A B C A B C

IDENTIFICATION 10 10 18 10 10 18 10 10 18 10 10 18

(or ID) A/N A/N A/N A/N A/NA/N | A/N A/NA/N A/N A/NA/N

CREATION- 5 5 5

DATE N N N

*k

RETENTION- 4 3 3 4 3 3 4 3 3

CYCLE N N N N N N N N N

*h Rk

FILE-SERIAL- 5 5 5 5 5 5

NUMBER N N N N N N

ok

REEL-SEQUENCE- |l +4 +3 +4 +4 +3 +4

NUMBER N N N N N N

LABEL- * 22 Ab *22 as

INFORMATION A/N AaN| AN A/N "

1 If not present, 001 or 0001 will be assumed.
* All 22 characters are checked.
** |f the label type requires only 3 digits, the thousands position must be zero.
*** The use of FILE-SERIAL-INUMBER implies full label checking for this file.
A Optional but checked.

Figure 18. Header Label Records for Tape Files

16 Disk COBOL Specs.

Figure 19 shows how the identification of a payroll
master file is supplied.

= T
ga 8
718 'll 16 20 24 28 32 36 40 44 48
]
nn-inﬂuLnﬂé[100E LD NS MPAVRLMASTAY 1 0 4 14 30001
) 4
PN SO 00 U0 U0 T 0 B W 0 W S BT T Y VRS U B S S S O A SO O O O Y A RS O O

Figure 19. IDENTIFICATION

Examples: Figure 20 shows how IDENTIFICATION and
a retention cycle of 286 days are supplied for an out-
put file.

= T

g8 18

7(8 e 16 20 24 28 32 36 40 48
=

L VLS GE D S MPAAVIRLMASTRA « 3 4 14 v a1y
L1 RETEMI DUAGHCLE (1S ZEE 1 ¢y L

Figure 20. meNTIFICATION and Retention Cycle

ARE
DATA RECORDIS] ;IS z’ data-name-3 [data-name—4].

Data-name-3, data-name-4, etc., must each be the
subject of a record-description entry that has a level-
number of 01.

If the file contains more than one type of record, a
different data-name must appear for each type. Data-
name order is not important.

Note: If one record is read from a given file and
another is read from the same file, the second record
replaces the first in the read-in area. Thus, if two
records are needed for processing at the same time,
the first record must be saved by moving it to an-
other area of storage (such as a work area) before the
second record is read.

Examples: Figure 21 shows a sample pATA RECORD
clause. In this example, RECOrDA and RECORDB are both
records in the same file and are described in a record-
description entry as level Ol records.

T
A '8
[] 02 16 20 24 28 32 36 40 a4 48

~CONT.

v DATs RECORDS, ARE RECOBDA BECHRDE 1 1 s 1111}

PN S T T S 0 OO0 T S SN W T SN T TS YO Y T T T U T Y O O O W T O A 000 O

Figure 21. DATA RECORDS

File-Description Entry—Punched-Card Files
This format is used to describe punched-card files.

FD file-name [RECORDINC MODE IS l:l

RECORDIS]
BLOCK CONTAINS integer-1 % CHARACTERIS] 2

I:RECORD CONTAINS integer-3 CHARACTER[S]:'

LABEL RECORDIS] i}\sRE% OMITTED

DATA RECORDIS] i ?SRE z data-name-3 [data-name—4].

Mass Storage Files

With this coBoL processor, the term mass-storage file
refers to any group of records read from, stored on, or
written on a disk storage unit.

Three reference formats exist that allow the user to
specify random processing, control-sequential proc-
essing, or sequential processing (see Access Modes).

In any one coBOL source program, a maximum of
seven MD entries can be used.

Random Access
Reference Format
MD file-name
[RECORDING MODE 1s SECTOR]
PROCESSING MODE IS SEQUENTIAL

ACCESS MODE IS RANDOM
ACTUAL KEY IS data-name

[SYMBOLIC KEY IS data-name]

FILE-LIMITIS] z ffRE} integer g 'T“g_g‘gucu } integer

. RECORD[S
[BLOCK CONTAINS integer ;CH eakers)

[RECORD CONTAINS integer CHARACTER[S]]

LABEL RECORD{S] ;fREg STANDARD%

OMITTED

[VALUE OF data-name 1S literal [data-name 1s..]]

DATA RECORDIS} ﬁ\SREg data-name [data-name ..]

17

Control-Sequential Access
Reference Format

MD file-name

[RECORDING MODE IS SECTOR]

PROCESSING MODE IS SEQUENTIAL

ACCESS MODE IS (CONTROL-SEQUENTIAL-A
CONTROL-SEQUENTIAL-B f

IS , THRU ,
FILE-LIMITI[S] z ARE% integer imUCH§ integer

. RECORDIS]
[BL‘OCK CONTAINS integer ;MR[S]H

[RECORD CONTAINS integer CHARACTERI[S] |

LABEL RECORDIS] ’}fREé 3?%%3’3 %

[VALUE OF data-name 1S literal [data-name IS..]:l

DATA RECORDIS] ‘lf&SREz data-name [data-name. .] .

Sequential Access
MD file-name
[RECORDING MODE IS SECTOR]

PROCESSING MODE IS SEQUENTIAL

ACCESS MODE IS SEQUENTIAL
IS . THRU ,
FILE-LIMIT[S] ; AREzmteger; THROUGH (inteser:

[BLOCK CONTAINS integer g—""—"‘ggﬁgﬁg[rslg] R[S]{]

[RECORD CONTAINS [integer '_I’_O:|
integer CHARACTER[S]]

LABEL RECORDES] {\%p S SMrED b

[VALUE OF data-name 1S literal [data-name S ..]:|

DATA RECORD[S] ;fﬁEsdam-mme [data-name . .]

18 Disk COBOL Specs.

Clause Description

The file-description entry clauses that have not been
described previously are described here.

[RECORDING MODE IS SECTOR]

A recording mode is significant only for mass-storage
files. All files will be recorded and read without word
marks. The key word sector is used to 'specify the par-
ticular disk-recording mode for a specific file. Data is
read or written by sector (100 characters per sector).

PROCESSING MODE IS SEQUENTIAL

This clause is used to describe all mass-storage files
for the 1BM 1401, 1440, or 1460 Data Processing Sys-
tems. The clause refers to the order of action of the
access mechanisms. Because the 1311 has only one
access mechanism, the access order is sequential. (Rec-
ord 1 is retrieved, followed by record 2, etc., as called
for by the object program.)

RANDOM
5 CONTROL-SEQUENTIAL-A

CONTROL-SEQUENTIAL-B

SEQUENTIAL

ACCESS MODE IS

This clause must be included in an MD entry and
specifies the organization of the file. The terms RaN-
DOM, CONTROL-SEQUENTIAL, and SEQUENTIAL apply to
the means of retrieving and storing disk records.

RANDOM

In the rRaNDOM access mode, each record has a unique
disk address. Records can be arranged in random order
because the unique address can refer to only one rec-
ord in the file. In a purely random file, one seek and
one read per record is necessary.

SEQUENTIAL

In the SEQUENTIAL access mode, records are arranged
in sequence by control field. They are stored in con-
secutive locations in the disk-storage unit between
addresses established by the user as the upper and
lower limits of the file area. To process a sequential
file, the program requires only the upper and lower
limits of this file area. It begins with the first record
and processes each record in sequence.

CONTROL-SEQUENTIAL-A and CONTROL-SEQUENTIAL-B

In the CONTROL-SEQUENTIAL access mode, records are
stored with a blank (sequence-link) field appended to
each record as it is loaded onto the disk pack. coNTROL-
SEQUENTIAL-A refers to records without record marks;

CONTROL-SEQUENTIAL-B refers to records with record
marks. Records to be added to the file are written into
a separate area of disk storage. The address of the
added record is written in the sequence-link field of
the record that sequentially precedes the added record.
Similarly, a record can be deleted and the sequence re-
established by placing the address of the following rec-
ord in the sequence-link field of the preceding record.
When the file is processed, the program checks the
sequence-link of a record. If it is a blank, the next con-
secutive disk location is read. However, if the sequence-
link field contains an address, the program seeks and
reads the record stored at that address.

The length of the sequence-link field is a:
1. Six-digit address, if the file is unblocked, or a
2. Seven-digit address, if the file is blocked and the

blocking factor is two to ten records per block, or a
3. Seven-digit address with zone bits over the seventh

position, if the file is blocked and the blocking fac-

tor is eleven to thirty records per block, or an
4. Eight-digit address, where the eighth digit identifies
the record mark (#).

Standard six-digit addresses are used in an un-
blocked file. A seventh digit (R) is added to the ad-
dresses used with blocked files, when the blocking
factor is two to ten records per block. These addresses
are in the form SSSSSSR. The first six digits are the
address of the first sector of the block. The seventh
digit (R) designates the position of the record within
the block. An eighth digit (R) is added for a record
mark. These addresses are in the form SSSSSSRR. The
first six digits are the address of the first sector of the
block. The seventh digit designates the position of the
record within the block. The eighth digit is used to
identify a record mark.

The coBoL processor handles the various disk rec-
ord forms as shown in Figure 22.

RECORD FORM PERMITTED?
ACCESS MODE FILE TYPE FIXED -LENGTH VARIABLE -‘LENGTH
UNBLOCKED | BLOCKED BLOCKED
(Form-~1) (Form-2 (Form-4)
INPUT OR
RANDOM INPUT - OUTPUT Yes Yes No
RANDOM OUTPUT Yes No No
CONTROL INPUT OR Yes Yes No
SEQUENTIAL | INPUT - OUTPUT
SEQUENTIAL | INPUT Yes Yes Yes
SEQUENTIAL | OUTPUT Yes Yes Yes

Figure 22. Record Formats for Disk Files

The maximum blocking factor (number of logical
records per block) is ten for random files, one hundred
for sequential files, and thirty for control-sequential
files.

[ACTUAL KEY 1S data-name]

This clause is required if the access mode of a mass-
storage file has been specified as rRanpoM.

Data-name is the name given by the programmer to
the core-storage field that will contain the disk address
of the record currently being processed in a given file
during execution of the object program. This field will
be updated in one of two ways:

1. By PROCEDURE DIVISION statements written by the
source programmer.

2. By statements developed by the processor from
specifications given in the XEY-CONVERSION section in
association with the use verb.

The format of the data-name field must be: SSSSSSR.
The first six digits (SSSSSS) are the actual address of
the disk sector where the block of records is stored. If
the block of records covers more than one sector, the
data-name field contains the address of the first sector.
The seventh digit (R) indicates which record in the
block is to be made available for processing. This digit
(R) may be any digit 0-9. The digit 0 represents the first
record in the block; the digit 1 represents the second
record, etc. If the file consists of unblocked, random-
access records, the seventh digit (R) must be 0.

[SYMBOLIC KEY IS data-name |

The symBoLic key clause must be used only if a xey-
cONVERSION has been specified for a ranpowm file. If no
KEY-CONVERSION has been specified, the symBoLiC xEY
clause must be omitted.

Data-name is the field operated on in the section that
makes the KEY-CONVERSION (see Procedure Division).
The symBoric key is the indirect reference to data-
name.

Example (Figure 23): To compute the address of any
record needed by this program, the factor +3000 is
added to the contents of the symBoric xey field and the
sum is divided by 25. The result is the acTuaAL kEY.
(See Declarative section for a description of the use

verb.)

T
A :8

=
§ 8 LIE 16 20 24 28 32 36 ;O 44 48
n“"‘lﬁlﬂxrl|S|E|C|T|||D|N|o||:||||||.||..||||||||||||.l|
L1 L WSIE FOR, KEY - CONVERS, ON 0N o NPULTI=FlibErer | |
ADDRESS ~ROMTINE o1 ICOMPUTE ACTUAL KEY = \
Ho G symBowi1¢ KEY + 3000 1), /L 250 1 001y

Figure 23. KEY-CONVERSION

THRU

FILE-LIMIT[S] 3}§SRE% integer ;'ITRBUCH; integer

19

These two integers are the sector addresses of the
first and last physical records of the file. Each integer
contains six numeric characters.

If the RDLIN macro is used to redefine the file limits
of the file, the new labels must not create the need for
handling the cylinder-overflow condition if the file
limits used at compile time did not imply cylinder
overflow.

Example: The lower and upper limits for a given file
are 000199 and 002199. Figure 24 shows a correct FILE-
LIMITS entry.

T
A 8
8 N2 16 20 24 28 32 36 40 44 48

~CONT

L ANGE- LM TS ARE 40O 1O THRA 1002 1F R 11

v
T T T Y T U S T U U T O 00 Y O S 0 W U N S W 0 Y 0 O W O AU B 0 S Y O |

Figure 24. FILE-LIMITS

[VALUE OF data-name IS literal [data-name IS..]]

The vaLuE oF clause is used in a file-description
entry if the file has standard label records. The follow-
ing sets of keywords and descriptions of literals are
used as entries of this clause.

Data-Name Literal

ID
IDENTIFICATION } 10-character AN

CREATION-DATE
RETENTION-CYCLE
FILE-SERIAL-NUMBER
FILE-SEQUENCE-NUMBER
PACK-SERIAL-NUMBER

5-digit numeric
4-digit numeric
5-digit numeric
4-digit numeric
5-digit numeric

Use of the PACK-SERIAL-NUMBER entry implies complete
label checking for this file.

The processor selects particular label-checking pro-
cedures based upon the entries in the vALUE oF clause.
The relations between the entries, the types of files,
and the label-checking procedures selected are shown
in Figure 25.

Disk Trailer Labels

The following information is contained in 1BM standard
disk trailer labels.

Trailer Label Positions Contents
(contains as many characters 1-5 1 EORDb
as the user’s records) 1 EOF b

Record-Description Entries
This section supplements the clause descriptions given
in the coBoL General Information Manual.

20 Disk COBOL Specs.

Complete Partial
CHECKING Label Checking |Label Checking
ROUTINES SELECTED
INPUT | OUTPUT INPUT
ID 10 AN | 10 AN 10 AN
CREATION-DATE 5
RETENTION-CYCLE 4 4
FILE-SERIAL-NUMBER *5 *5
FILE-SEQUENCE-NUMBER 4 **4
PACK-SERIAL-NUMBER 5 5

* If not present, the pack-serial-number will be used.
** [f not present, 0001 will be assumed.

Figure 25. Label Checking

SIZE

This clause tells the processor how many characters
(or digits) the data item contains. The general refer-
ence format for a size clause is:

CTER[S
[SIZE IS | integer-1 TO] integer-2 [%CDI;&BT?S] RIS) %]]

[DEPENDING ON data-name |

This size is interpreted by the coBoL processor in
terms of characters if either the optional word cHAr-
ActeR[s] or picir(s] is used or if neither of the op-
tional words is used.

To specify the sizes of variable-length records,
(form-4) integer-1 and integer-2 and DEPENDING ON
data-name must be used. Integer-1 specifies the num-
ber of characters in the smallest record and integer-2
specifies the number of characters in the largest record.
DEPENDING ON data-name identifies the elementary
items whose value is the record character count (refer
to Record Character-Count Field). Integer-1 and pe-
PENDING ON data-name may be used only with form-4
records.

Example: Figure 26 shows a size entry for a form-4
record which can contain from 50 to 150 characters.
RECCOUNT is the data-name the programmer has used
to identify the RCC field.

T
A '8
8 2 16 20 24 26 32 36 40 a4 48
e

L S ZE A0S S0 TiD (L0 DELBEND S M 10M R ECICOMMETT
!

TN TN 0 W T T U U T W N 00 N O N U T TS S O W T W O O

~CONT.

Figure 26. size Variable Length

The size of fixed-length records is specified by using
the form:

| 128 15 megero | SHARACTERS1]
where integer-2 is the exact number of characters con-
tained in the record or item of data.
Example: Figure 27 shows a sizE entry for a fixed-
length record whose size is 80 characters.

= T

7|8 IIZ 16 20 24 28 352 36 40 44 48
1..‘;9/-25#:?:|[|0.|C¢MAMQE&QS|:J;|1||.111|||4LL41J
ll'lJ_LLlIIIIIIIIIIIIIlllllllllllllLLJlilllll

Figure 27. sizE Fixed Length

VALUE
The general reference format for a vaLue clause is:

VALUE IS :
[iv,gLUEs ARE f literal-1[THRU literal-2 |

[literal-3 [THRU literal-4] ..]]

A vALUE clause can state the initial contents (VALUE)
of a data item in the WORKING-STORAGE SECTION Or CON-
STANT SECTION. It can also be used to define the value
of a condition-name (level-88 item) in the FILE sECTION
and WORKING-STORAGE SECTION.

If the vaLuk clause is not used to define the initial
values of WORKING-STORAGE ITEMS, their contents at
program execution time will be unpredictable.

If the vaLuE clause specifies a numerical literal, an
operational sign will be developed (placed over the
units position of the numerical field), only if the literal
is preceded by a plus or minus sign. A figurative con-
stant may be used in the vALUE entry where a literal is
specified.

The THRU option is not described in the cosoL Gen-
eral Information Manual. It may be used only with
condition-names as shown in Figure 28.

T

A :a

8 12 18 20 24 28
D2 M SHZA NS die s i
L AR TRAE \VALAE (JiSi 1] TP 1A) 0y s

L IR FALSE MALOE LS Py g

N CONT!

32 36 40 44 48

Figure 28. THRU Option

The Constant and Working Storage Sections
The record-description entries described for the FiLE
SECTION apply also to the consTtanT and woRKING-
STORAGE SECTIONS.

These sections begin with the header line workiNG-
STORAGE SECTION OT CONSTANT SECTION and are followed
immediately by the record-description entries.

Added Elective Elements of the Data Division

These elective elements of the record-description

entry are not specified in the coBorL General Informa-

tion Manual, but are contained in this coBoL processor:

1. The pePENDING ON data-name and the To integer-2
options of the size clause.

2. The tHRU literal-2 and the literal-3 taru literal-4
options of the vALUE clause.

3. All entries on mass storage.

Deferred Elements of the Data Division

1. The copy option is contained in the coBoL General
Information Manual, but is not contained in this
COBOL Processor.

2. The following editing functions cannot be specified
by editing clauses or picture clauses:
a. Editing of a single digit field.
b. Single-position zero suppression. For example, Z9
is incorrect but ZZ is correct.

3. No item may exceed 999 characters.

Not Applicable

The usace, siGNED, and syNCHRONIZED clauses have no
meaning in a 1401, 1440, or 1460 cosoL program and
should not be used.

Note: A decimal insertion character cannot be used as the
rightmost PICTURE character. For example, the following
entry will not be considered valid:

02 NAME PICTURE Z,Z7Z,7Z79. OCCURS 12 TIMES.

Procedure Division

The PROCEDURE DIVISION is the operational part of the
coBoL source program. Once the data has been de-
scribed, the programmer tells the coBoL processor what
steps the machine must take to read the input data,
process it, and write it as output on punched cards,
magnetic tape, or a printed form.

The coBoL verbs are the main elements in the PROCE-
pURE DIVISION. They are described in detail in the
coBor. General Information Manual. However, some
verbs have special meaning when used in a 1401, 1440,
and 1460 coeoL source program. This additional in-
formation is presented in the following section.

Declaratives
Reference Format.
DECLARATIVES.

Section-name-1 SECTION.
USE FOR KEY-CONVERSION ON

ALL FILES
i file-name file-name] . . . i

Paragraph-name. Any procedure statement(s).
[Section-name SECTION. USE ...]
END DECLARATIVES.

2]

Declaratives are procedures that operate either under
control of the main body of the PROCEDURE DIVISION or
under control of the Input/Output Control System.
They consist of sentences and associated procedures
designed to give special information to the cosoL
compiler.

If declaratives are used in a coBoL source program:

1. They must be grouped together and placed at the
beginning of the PROCEDURE DIvISION, and

2. The group of declaratives must be preceded by the
key word, pEcLARATIVES, and must be followed by
the keywords, END DECLARATIVES.

Each declarative occupies a single section and
must conform to the rules of procedure formation as
described in the Procedure Division section of the
coBoL General Information Manual. The source pro-
grammer must write the DECLARATIVES and END
DECLARATIVES entries beginning in column 8.

The use declarative is used in the 1401, 1440, and
1460 coBoL to specify the KEY-coNvERsION procedure
which is to be used for developing disk addresses. This
enables the source programmer to supply his own con-
version factors and techniques for obtaining disk ad-
dresses.

A ust declarative may be used to specify the xey-
CONVERSION for more than one file. Thus, if a general
key conversion algorithm must operate on different
data names for different files, the acruaL kY and sym-
BOLIC KEY clauses may be used. These clauses appear
in the MD entries of the pata pivision. (See Mass-
Storage Files.) Each MD that specifies the AcTuAL kEY
and syMmBoLIC KEY clauses implies a use declarative.
The processor will associate the AcTuAL KEY and sym-
BOLIC KEY functions by file.

Example: In the example shown in Figure 29, the
same key-conversion procedure is used for two differ-
ent files. The MD entries inform the processor of the
particular data-names which must be associated with
ACTUAL KEY and syMmBoLiC KEY for each file. When the
disk addresses for file records are computed at object-
program execution time, the contents of the symsoLic
KEY field will be added to FacTor-1 and the sum will be
divided by ractor-2. The result is the AcTUAL XEY.

The DISPLAY Verb

The printer is the standard output unit for the pis-
pLAY verb. However, information may also be dis-
played via the card read-punch or the console printer.
As many printer lines or punched cards will be used
as are necessary to display the information contained
in the area of core storage whose data-name is speci-
fied in the pisPLAY statement.

The object program initiates a skip to channel 1 in
the carriage tape if a form overflow occurs in the

22 Disk COBOL Specs.

printer. If the pispLAY verb is used in the PROCEDURE
pIviSION to address the printer, the processor assumes
that the printer will have a carriage tape with punches
in channels 1 and 12 (overflow) at object program exe-
cution time.

Examples: The statement shown in Figure 30 will
cause the contents of the area whose data-name is
GRAND-TOTAL to be displayed on the printer.

The statement shown in Figure 31 will cause the
contents of GRAND-TOTAL to be punched into cards, if
the mnemonic-name carp-puNcH has been assigned t6
1402-P or 1442-P or 1444-P in the SPECIAL-NAMES para-
graph of the ENVIRONMENT DIVISION.

The ACCEPT Verb

A card reader is the standard input device for the
accept verb. However, the console printer can also
serve as an input device. When Accept is from a card
reader, the minimum area that can be declared is
80 positions.

Example: Figure 32 shows an Accepr statement that
will cause data to be read from the card reader and
moved to an area whose data-name is CANCELLATIONS.
If more than 80 storage positions are defined by can-
ceLLATIONS, multiple cards will be read from the card
reader until the area is filled.

The ENTER Verb
The ENTER verb permits the programmer to use Auto-
coder statements in a COBOL source program.

The language-name used with 1401, 1440, and 1460
coBOL is AuTOoCODER. The Autocoder statements must
be presented to the coBoL processor immediately fol-
lowing the ENTER AUTOCODER statement, and they
must be followed by an ENTER coBoL entry that indi-
cates the point at which the coBoL source language is
resumed. Each ENTER AUTOCODER statement must con-
stitute a separate paragraph in the source program
and must appear on the same line as the name of
the paragraph. The ENTER coBOL statement used for re-
turning to coBoL from Autocoder must either constitute
a separate paragraph or be the first entry of a para-
graph. The name of this paragraph must be on the
same line as the ENTER coBoOL statement.

These specifications must be maintained when using
Autocoder entries in a coBoL program:

1. Autocoder statements must be coded in Autocoder
format (label starting in column 6, operation in col-
unin 16, and operand in column 21).

2. Symbols used in Autocoder statements must be five
characters in length.

3. Macro instructions are permitted.

4. Autocoder statements can be written to refer to
cosoL-names if they are related by entries in the

E

= T

ga 8

718 32 16 20 24 28 32 36 40 44 48 52 36 60 84 (1]
r—— — —

'
N T N =Y N A A A A A A S S A S S AT i T S N AT ST AT A A A AT AL S AT A A AT O S A W A A WA ST A AT AT

L ACTWAL KEY S, 1O SKTADDORESS D 1 1 114) NI AN I A I A AT S B AN AT |

1Sy] KE Y, I R, T\~ 111 2dy FPY RN A A R B A S U S S N A A S 0 0 00 S A W A I A
Ill.:J_l.Jll.lIll“llllIl‘lll'l]llllllllllllllllllll'llllllllllllll'

1
M- TR Y HT 2 S T BN S A S S R N T S R S R A A S A S A S S A A S S A A A S A S A A A S A B S AP A S ST A ST S W A

s ACTWAL, KEY 1S DI SK~ADDRESS =2 « « 1 L1 o1t i

L S MBOUC KEY 1 [\S PART-NUMBER=Ruer « y sy ey]

'
P LT O S LT W L N U LA T T U N O O N G N T T T 0 U N T Y W N W S T Y W T W WA WO W0 OO N T T T T W U S W Y W Y

ROCEDVRE DUVl SLON e 1 L 1 L v it b s i

ECLARATNESiel 1 1 1 4 10y 1t e i

O S NN WO I T U B S U T U U B T B W1

CONVERT ~Ti0- DL SK~ADDRESS, SECIT[OMNe: 1 L 1 1 1 11 111111

PRI S T U U N T 0 K T S B S W A

L MASIE FOR, KEY = COMVERS 10N OMN Adide ELLESier 1 11
-

O SN A B T WO U0 0 B B I 0 B B A Y

=, . A, = O

= =L DN FACTORZier vy e i
i

P TS B N B S B N S A S S A A

V) s

TART e, 0P, =

Lo READ FiLME=L) NVA LD &0 T FALLWRE-L LF X=Y, PERFORM WR (TiE~8ACK

IMPERATIWVE, SECTIONwe, « {1 1 1 1 v 4 4100t g e it
)

1
FTETEY 17 YRR SN BN A S SN U B S A AN U N S U O S N A ST A N U B0 ST AT ST S S B SO0 S A S A S B N A A IS A S S S S U S S

L READ Al LE~2u J NVALID (0 T.0 FALLWRE~2i [F, A=B PERFORM WR/ITE-BACK,

1
Lo ueiRaen by r Vb b Uy e U b i)

L 0 TO START e 1 1 4 4 il ettty

Figure 29. xEY-CONVERSION Sample (Part 1 of 2)

= T

ga 18
7.8 2 16 20 24 28 32 36 40 44 48 °
SLIBE-L 4 s e i i
T T I B A S A I A A I A I AR AW W AT A A AT Y I A A A
T T A W A A A A A W I A I WA
ll'l:l'lll.lllllllll|IrllllllIll|l||||l||]ll||l
AN LBES Do 0y L i
|I'V:ml|"‘l||l'|||'|||l||||l||ll||||l||Il_I_AJI
II'1II'II|‘I]|‘I]|I|IlI|l|I||l|l!II|IIIAI|II A
T A AT A S A O Y A A A T AU TN A AT AT SN A O T A A AT AT W AP

- —die

1
TR T N LTI €. NI TN U TN T U T U0 S S O A 0 AR AU T A S A TS
|l'l:|'|||’||lll||llI|Illllllllllllll(lllllllll
II'I:L'JIJ'IIIIIIIII|||||||||ll|||ll|ti|||1_14|1.‘
_lfﬂ&lLZITﬂ:AEIﬁLCJ&-AZ‘|)|«||||;|1||||||.||1(|.J||n||||
JJ":ICIII'I'III‘IIIIIIIIIIIIIIIIIIIIIIIII‘llll
DI'I:“III’IlIII|I|IIll|Ill|l|ll|lll||llll|l|II
II.I:I'III'IIllljllllllll'll'llllllllIllIIJ_lAII

Figure 29. XEY-CONVERSION Sample (Part 2 of 2)

= T
3la '8
78 12 16 20 24 28 32 36 40 44 48

L DUISDL GRAMATIOTIAL 1 1 4 4y

'
RN T 0 T N T T YO G O P N Y O Y N O S0 Y Y Y T B

SPECIAL-NAMES section of the coBoL program. How-
ever, COBOL statements cannot be written to refer to
Autocoder-names.

5. The word-mark status of a constant or area defined
by a coBoL statement must be the same after the
Autocoder statements are executed in the object
program as it was before they were executed. Thus,
if it is necessary to write an Autocoder statement
that sets or clears a word mark in such an area, the
word-mark position of that area must be tested first
so that the word mark can be reset or cleared before
returning to the coBoL program.

. No 1401 SPS statements can be included.

7. When executing overlays while in the ENTER AuTO-
copeR mode, use of the coBoL ovLAY macro causes
the correct branch-to-the-loader to be generated.
Example: Figure 33 is an example that includes a

section of Autocoder statements.

o]

The OPEN Verb

Reference Format.

Figure 30. Printer DISPLAY INPUT)

OUTPUT]
I OPEN INPUT-OUTPUT file-name-1 I:ﬁle-name-2 -
Fle V2 16 20 24 28 32 36 40 a4 48 Jﬁ

L \DLS\BLAY BBAMD ~TIDT AL (ABEHM CARD - DUMOH 1+ + \ 1 |

1
S NN T N N T N T O NN O T W T N YO S A T N T T Y

Figure 31. Punch pispLAY

= T
KIS '8
7|8 12 16 20 24 28 32 36 40 44 48

L ACCEATT |CMMML_U_LLJ;I_1.LJ_IJ_LJ_LJ_J_J—I—I

)
PN INNN S T 0N DU X N O DU 00 AU T N0 O I Y N Y T N N T T T A

Figure 32. Accept

INPUT
OUTPUT

{ INPUT-OUTEUT. f file-name-n . ..

-0

The set of rules shown in Figure 34 applies to the file
types specified in oPEN statements:

*Specifying a file as an iNpuT-oUTPUT file assumes that:

23

~NCONT.

T
A : 8
8 12 16 20 24 28 32 36 40 44 48

~ﬂt’l"71/|A/|ﬁAlTJl|M V2. W1V VAL VAV, LU U U B A W N U N N S S S A W B A
)

BOGRAM-11, D e M EMTER QUATOCIODER SAMALE \or t 1 1 11 1
1

| \EMUL ROMMBEAMTT PLMIS Aoy v 4 4 0 v 0

LTI I S T N T WS S T T O T N T N Y S W Y 0 W Y D S T O W Y |

1
i
[l

O XU S I 2 S0 T O S N T T U S T SO S W Y T T N WO B O IO S B B AR Y

1

I N I 5 W SR L TR S T T S A BN N RN T TN Y N T N T TR O A TN TN TN N S S N U S W |

SOECY At ANAMBES 101 1 4 1 o s e e i s

s AUTAL (LS HOSSEMKEELIME ey 1 4 L
|

.

T S I L U 101 S T S T Y T Y A O Y T T W S O O

1
Iltl:l’lll'llllllll|[l|IIII||l|11|IIIII|IIIll||
Lo |
RACEDABE (DL ML S IO 1 1
\USEMELELL MG 1 i
Ll

T 0 O . T T N N T T T T O U W T U T O S O T I O T §

[t

T T T T L T WY O S T W T I A S B O

l
T L O T 12 T S T T YO YO N T W N Y O O 1

1 T

11 11 11 Ll 11
11 11 11 | T VO SO U O O T T §
IIII:I'I||'IIIIIllllllllllkllllllllllIIIIIlllll
1 4 Lt bt 1 11 11
.‘.ﬂ.FEL.-nI.-. EMTEL MUTOCIOPERe: y | 1 1 4 11111 s

(B S S Y W W)

Line Label Mig
. _30 38 sp— Lt Lo s 1t
0,1, |, . VLAY N X N W N B
0,2, P X . Anal, L TS S ST
Jo.3 N yr.el, P T

'

IIIIIlII(IIlIlIII‘lIIlIlIIIlllI(IliIlllllllLJ
3 U/ A N N ST T TN S T T T N O W B Y G MY V|

Figure 33. ENTER Sample

1. The file must have been described in an MD entry.

2. Any use of the wriTe verb in association with this
file will cause the specified record to be written back
on the file in the position referred to by the last REap
associated with this file.

FILE TYPE RANDOM | S NIROL | seuENTIAL
INPUT YES YES YES
OuTPUT YES NO YES

INPUT-OUTPUT| * YES *YES NO

Figure 34. File Types for oPEN Statements

Note: A file specified as having a CONTROL-SEQUEN-

TIAL operation mode may not be opened as an ourpuT
file.

The READ Verb

Reference Format for mass-storage random INPUT or
random iNput-outpUT files:

READ file-name RECORD [INTO data-name]
[INVALID KEY any-imperatz’ve-statement]

Reference Format for all other inpuT or INPUT-OUTPUT

files:

READ file-name RECORD [INTO data-name]
[AT END any-imperatiue-statement]

24 Disk COBOL Specs.

This statement causes a logical record to be released
from an iINpuT or INPUT-oUTPUT file and transferred to
the record-name associated with the file.

Data-name is the name given by the programmer to
the core-storage area to which the record must be trans-
ferred. After the READ statement is executed, the logi-
cal record will be available both in record-name and
in data-name.

Both the INvaLID KEY and the AT END options may be
implied within the coBoL program. This means that the
appropriate clause must be used at least once in the
COBOL program in association with each INPUT or INPUT-
ourpur file. If a given iNpuT or iNpuT-OUTPUT file has
only one use of the INVALID KEY or AT END option, all
READ statements associated with the file will assume
the implied option. If more than one option is used
with a file, it is required that all rREAD statements have
explicit INVALID KEY Or AT END options.

The any-imperative-statement is executed as de-
scribed here:

Nature of Appropriate

File Options Triggering Condition
Card Reader AT END Attempt to read when hopper is
empty.
Random File INVALID The AcTuaL KEY is either outside
KEY the limits defined in the rFiLE-
LimiTs clause or is an invalid disk
address.
All Others ATEND When an end-of-file condition or

the upper file limit is encountered.
The SEEK Verb

Reference Format.
SEEK file-name RECORD

This verb allows the user to seek a particular record as
specified in the AcTUuAL KEY statement. Processing con-
tinues while the seek operation is performed until the
next READ or WRITE disk file statement is encountered.
If the programmer has not specified a seEx file-name
RECORD, a seek instruction will be automatically exe-
cuted in the object program before the disk read or
write operation.

The STOP Verb

Reference Format.

literal
STOP% RUN %

This statement produces a machine HALT instruction
which stops the execution of the object program. The
RUN option of the stop verb causes an unconditional
halt, and the program cannot be restarted.

If the stop literal option is used, and if the object
computer has a console printer, the literal will be dis-
played upon it. Otherwise, if the stop literal is nu-
meric and within the range 00-99, the literal itself is
displayed in the B-register if the halt occurs during
the running of the object program.

If the stop literal is numeric and greater than 99 or if
it is alphanumeric, the address of the literal is dis-
played in the B-address register if an object program
halt occurs. Pressing the start key allows the object
program to proceed.

The WRITE Verb

Reference Format for control-sequential files and
punch file:

WRITE record-name [FROM atea-name]

Reference Format for printer file:

WRITE record-name [FROM area-name:l

‘ ADVANCING imnemonic-name

;BEFORE
AFTER

integer LINES g]

Reference Format for sequential files and random files:

WRITE record-name [FROM area-name]

[INVALID KEY any-imperative statement]

This statement causes a logical record to be released
for an output file.
Record-name is the name given to the record defined

at the 01 level in the FILE sECTION of the DATA DIVISION
under the FD or MD entry for the associated file-name.
Area-name is the name given by the programmer to the
core-storage area from which the record is to be writ-
ten.

The apvanciNG option is used for spacing lines on
output documents on the printer. The number of spaces
skipped is equal to the normal printer skip plus the
integer specified in the ApvanciNg option. The integer
specified will be treated as meaning the number of
spaces between lines of print.

AFTER and BEFORE in the ADVANCING option control
printer carriage spacing or skipping before or after the
WRITE verb is executed. Integer LINEs specifies how
many lines should be spaced. Mnemonic-name is the
name assigned in the SPECIAL-NAMES paragraph to a
channel in the carriage tape and is used when carriage

skipping is desired instead of line spacing. The skip
occurs to the line that corresponds to the specified
punch in the carriage tape.

The iINvALD KEY option of the wriTE verb, used only
with SEQUENTIAL or RANDOM mass-storage files, per-
mits the source programmer to specify the appropri-
ate action to be taken when IOCS senses the upper
limit specified in the FiLE-LiMrTs entry. This option
follows the same set of rules as the INVALID KEY or AT
END option of the READ verb in connection with implied
statements.

Note: The invALD kEY option should not be used
with the wrire verb for ivput-outPUT files. The IN-
VALID KEY option of the READ verb will serve as the test
for these files.

Examples: Figures 35, 36, 37, and 38 show sample
WRITE statements.

~CONT!|
© >
-5

12 16 20 24 28 32 36 40 44 48

f

U T A T T N S N T T T Y Y O T N N O T S 0 2 T S S A 0 S D I A S

Figure 35. WRITE

Exponents

M 1401, 1440, and 1460 coBoL provides for integer
or non-integer powers to be used in exponentiation.
The sign of the power can be either plus or minus.
Please note that negative bases cannot be raised to
other than an integer power.

Conditional Statements

Option 1
IF conditional expression statement-1.
Option 2

IF conditional expression NEXT SENTENCE

% statement-2 i

OTHERWISE statement-3
ELSE NEXT SENTENCE ;

Option 3

statement-4 AT END
statement-5 ON SIZE ERROR

statement-6

{statement—lo INVALID KEY }
NEXT SENTENCE

[{QIHERWISE) statemens 7
ELSE NEXT SENTENCE %]

any imperative statement-8 followed by any conditional
statement-9

25

£ -
SlA :B
‘7’ 8 e 16 20 24 28 32 36 40 44 48 52 56 60 64 €8 72
|
Ly - = £ A4 3 4L
III:IIIIIIIIIIII!llIlllJlllI_II_llII|lllL|Ill||ll|IIllllIlIl!lllll
Figure 36. WRITE AND SPACE BEFORE PRINTING
- T
gA '8
718 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72;

+
[N O T W T O Y S T Y P U S N U N O T T N T T T T T YO N T A N T T T W S T YN N N W SN Y TN O WO NS S M Y |

Figure 37. WRITE AND SKIP AFTER PRINTING

e T

g|A '8

718 2 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72|
Ly ’L/nFr EN D=0\ Fi= PAIRE, (THEM - - -

-l . WE AFTER ADV, - - / - £

=l 11 :ﬂllAAl/CnEl-;DlElTAl/LLJ—l[l/IME-1 TS WO T ST T T T T U O WY O W T T W O YOO A N WO S B O B
R A R ST S AN A A A S T A A U A Y A A U A AT S A O AT S A AT ST AN SUR A AT ST AT ST AT S AR AN AT S At

Figure 38. CONDITIONAL WRITE

Statement-1 under Option 1 can be only a simple or
compound imperative statement.

Statement-2 and/or statement-3 under Option 2 and
statement-7 under Option 3 can be either imperative or
conditional. If conditional, these statements can con-
tain conditional statements in arbitrary depth. When
conditional, the conditions within the conditional
statements are nested.

Statement-4 under Option 3 must be a READ state-
ment, statement-5 must be an arithmetic statement,
and statement-6 can be only a simple or compound
imperative statement. Statement-8 followed by state-
ment-9 (to which the previous paragraph applies be-
cause it is conditional) is an illustration of an imperative
statement followed by a conditional statement. This is
logically equivalent to statement-8 followed by a pe-
riod followed by statement-9 beginning a new sentence.
Option 3 in its entirety may be substituted for state-
ment-2 and/or statement-3 under Option 2.

An ELSE or OTHERWISE must be explicitly written for
every conditional statement within a sentence. How-
ever, the phrase ELSE (OTHERWISE) NEXT SENTENCE may
be eliminated only if the phrase immediately precedes
the period ending a sentence.

Statement 10 must be either a ReAD statement (asso-
ciated with a disk file or a wriTE statement (associated
with a disk file).

26 Disk COBOL Specs.

Nested Conditional IF Statements

The coBoL programmer can combine several simple
conditional statements into one by using a technique
called nesting. The processor analyzes a nested state-
ment by working from the inside to the outside of the
statement. Thus, if all conditions are satisfied, the first
imperative is executed; if all but the last condition are
satisfied, the second imperative is executed, etc.

Figure 39 shows outlines for four simple conditional
statements. Figure 40 shows an outline for one nested
conditional 1Fr statement that produces the same re-
sults as the four simple conditional statements shown
in Figure 39.

Figure 41 shows an excerpt from a coBoL program
in which four simple relational conditional expressions

are substituted for the conditions shown in Figures 39
and 40.

The block diagram in Figure 42 shows the logic flow
of the nested 1 statement in Figure 41.

Added Elective Elements of the Procedure Division

The following options are not contained in the cosoL
General Information Manual but are contained in this
COBOL Processor.

1. The apvanciNG option of the wrITE verb.
2. Option 3 of conditional statements.
3. The nesting of conditional statements.

Deferred Elements of the Procedure Division 2.
These features described in the cosoL General Infor-
mation Manual are not implemented by this cosoL
processor.

1. The entire cory option.
2. The CORRESPONDING option of the MOVE verb.
3. The reeL option of the cLOSE verb. 3.

Notes:
1. A cosoL source program can be compiled that pro-
duces as many as 4,000 Autocoder and IOCS state-

ments which, when expanded, may produce as many
as 6,000 one-for-one Autocoder statements.

In order to ensure correct decimal alignment when
using the pvibE verb with the civine option, the
programmer must declare a result field, the decimal
portion of which is no more than one position greater
than the decimal portion of the dividend.

When NotE is the first word of a paragraph, it must
appear on the same line as the paragraph name.

The figurative constant ZEro (ZEROS or ZEROES) can-
not be used in an arithmetic computation. For ex-
ample the statement compuTE data-name = zeRro is
not allowed. This statement must be in the form of
CcOMPUTE data-name =0 .

IF (condition 1) AND (condition 2) 2919 LAB2 ELSE NEXT SENTENCE.

IF (condition 1) GO TO LAB1 ELSE NEXT SENTENCE,

IF (condition 1) AND (condition 2) AND (condition 3) AND (condition 4) GO TO LAB4 ELSE NEXT SENTENCE.

IF (condition 1) AND (condition 2 AND (condition 3) GO TO LAB3 ELSE NEXT SENTENCE,

Figure 39. Four Conditional 1F Statements

IF (condition 1) IF (condition 2) IF (condition 3) IF (condition 4 GO TO

LAB4 ELSE GO TO LAB3 ELSE GO TO LAB2 ELSE GO TO LAB} ELSE NEXT SENTENCE.

Figure 40. Nested Conditional 1F Statements

T

z !
?‘ g :IS 16 20 24 28 32 36 40 44 48 82 56 60 64 68 72
517'1A|A7_1 o) l/lFl lAn T |8| I/l/:.l ICI =) Iol |/|Fl |E = |;; l/lFl IGI = /‘/1 kc;lol |7101 1£A££¢1-14| |£1—[|51£'_| Guon
00 LABEL-3 LLSE GO TO LABEL-2, ELSE GO 70 LABEL-/, ELSE MNEXT | |
14 b SIE:MTIEIMCIEI’I K (NS S TSUN NS N ' A Y T U TN N S T S N N T T N O I S 0 1 A Nl U 5 N T T [N TN T I U T W T T Y T
Lt ‘1 TS S T U T UON WU JORNS U T (N (NN TN TN T SN (N NN N DU OO0 SN T U W W G0 WO A Y WA SN W T U NN TS W T W N T Y Y U U S TN T W WY S S S O
lﬁ.l MOIVIEI |‘|4|,| 17’101 Aj”lslwlgxl'l Glol]TQl SITIApIrLO,L | VY S TN W 1S S N N TS N T G Y GO0 SN 00 VA Y T U U IO OO N
L AﬂIELl-lII L3} Moiylfl Izl |7I'O} A”lslwlflkl 2l Giol |r|0| SITAIRIZ ol S (N U WD N SN UANS U NS N U T NN S T SN OO ORGSO OO S AU SN BN
T : § IS SN0 NN T Y TR VN Y S0 U NN SO S U N N Y N (U N N WY N W TN S SO O U N U (N W N W IO U SN U U W O O 1O O T T N T Y W O U M B |
zﬂlﬁglll-lzl. 1 Molvlé-j lwl |r|01 M;leflkl'l |6|0| Irpl lslrﬂlelz‘l F I U W 500 N N WS N D N U (N N T TN N N T (N (N T WS T 1
1 | : S OO OO SN TR VOO N SO N N N N N W N NN U TN N AU S Y Y W IO U S U U N N T W N T T T T T W T U O T N S T N G T T B '
4 AA81£|L1_|31' 1 IAIDJDI 1‘ 12| Iu |7:q A”&lME’QA VGO 70 STALT »\ | i L 1
141 : I O N YN N (N N U VOO WU T S W N U W N K 0 S T Y 5 U0 WO N N N S N N N T T W VO 0 S W W WA S 0 Y S B S|
LABEL-#-, SUBTRACT, Z FROM W _GIVING ANSWER- GO TO START e\ \ i\ 1.1,
L1 IL F S U S TS OO T NN TS TN N W S W WA WD S0 U NN SN0 WY NS WU VAN WO Y S WY WO T NN T W N U (N O T T W U N T N T W T T Y T T T T O Y T Y S S

Figure 41. Program Sample for Nested Conditional 1r Statements

27

LB

Label-1

Label-2

Label-4

Label-3

Figure 42. Conditional Logic

28 Disk COBOL Specs.

Character Sets

1M Character Set H must be used for source programs.
This character set consists of the numerals 0 through 9,
the 26 letters of the alphabet, and 12 special charac-
ters. The machine character set may be used only for
alphanumeric literals. The following are cosoL (Set H)
special characters with their equivalents in the BM
1401, 1440, and 1460 character set:

Card Code COBOL 1401, 1440, Meaning
(Set H) 1460
blank space
minus sign
11 - - {hyphen
12 + & plus sign
0-1 / / division sign
multiplication sign
11-4-8 * * check protection symbol
12-4-8) | right parenthesis
0-4-8 (% left parenthesis
0-3-8 R s comma
11-3-8 $ $ dollar sign
period
12-3-8 {decimal point
3-8 = # equal sign
4-8 ’ @ quotation mark

Figurative Constants

LOW-VALUE(S)

The value of this figurative constant is the space, or
blank. The blank character is the lowest in the M
collating sequence.

HIGH-VALUE(S)
This figurative constant is defined as the integer 9. The
character 9 is the highest in the 1M collating sequence.

QUOTE(S)
This figurative constant is defined as the cosoL charac-
ter (Set H) for the quotation mark.

Word Lists

Additional COBOL Words

The following words constitute an extension of the list
of coBoL words contained in the M General Informa-
tion Manual describing coBoL. 10 may be used in place
of meNTIFICATION. The meaning and use of the other
words have been described in this bulletin.

General Information

1301-D IBM-1401

1311-D IBM-1440

1401-SS IBM-1460

1402-P I1-0

1402-R ID

1403-CT INVALID

1403-P KEY

1403-P-C9 KEY-CONVERSION
1403-P-CB LABEL-INFORMATION
1403-P-CV LINES

1440-SS MD

1442-P MODE

1442-R NO-CONSOLE-PRINTER
1443-CT NO-DIRECT-SEEX
1443-P NO-MULTIPLY-DIVIDE
1443-P-C9 NO-OVERLAP

1443-P-CB NO-PRINT-STORAGE
1443-P-CV PACK-SERIAL-NUMBER
1444-p PROCESSING

1447-CP RANDOM

1460-SS REEL-SEQUENCE-NUMBER
ACCESS RETENTION-CYCLE
ACTUAL SECTOR

ADVANCING SEEK

BEFORE SEQUENTIAL

CONTROL-SEQUENTIAL-A SYMBOLIC
CONTROL-SEQUENTIAL-B TAPE

CREATION-DATE TAPES

DECLARATIVES TYPE-A-LABEL
FILE-LIMIT(S) TYPE-B-LABEL
FILE(S) TYPE-C-LABEL

FILE-SERIAL-NUMBER USE
FILE-SEQUENCE-NUMBER VALUES

Class Conditions

The general information manual specifies that the class
of a data item is either numeric, alphabetic or alpha-
numeric. It further specifies that the class condition
tests an ALPHANUMERIC item at object time to deter-
mine whether it is wholly numeric or wholly alpha-
numeric in content.

The source statement beginning:

IF FIELD-A IS NUMERIC...

results in a character-by-character check of the value
of FIELD-A at object time. If an operational sign is pres-
ent in the units position, the associated character will
be interpreted as being numeric. Thus, —9 is inter-
preted as minus 9, not as the letter R.

IF FIELD-B IS ALPHABETIC...

results in a character-by-character check of the value
of FIELD-B at object time. If each character in FIELD-B is
alphabetic, the item is considered alphabetic.

29

Examples: The following table shows how the class
of an item is interpreted by the processor, depending
upon which of the class tests is specified. The table
shows the result (vEs or No) for each test and for each
of the specified ranges of “X.” The X-character is used
in the picTURE clause. It represents any character in the
1401, 1440, or 1460 character set.

x-Character If Numeric If Alphabetic
0-9 Yes No
SPECIAL N N
CHARACTERS ° °
SPACE No Yes
A-R Yes (if units Yes
position)
S-Z No Yes

Continuation of Alpha Literals

Alphanumeric literals must be*preceded and followed
by quotation marks. If an alphanumeric literal must be
continued, a continuation (-) must appear in column 7
and a quotation mark must precede the remaining posi-
tion of the literal. The quotation mark must be in the
appropriate column for the particular division in which
the literal appears. If the last character of an alpha-
numeric literal appears in column 72, column 7 of the
next line must contain a continuation symbol and the
next two significant characters in that line must both be
quotation marks.

Reference Formats

Here is a summary of the reference formats used in
writing a coBoL program for the mm 1401, 1440, and
1460 Data Processing Systems with disk storage.

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.

[AUTHOB. author—name.]
[INSTALLATION . any sentence or group of sentences.]
[DATE-WRITTEN. any sentence or group of sentences.]

[DATE-COMPILED. any sentence or group of sentences.]

[SECURITY. any sentence or group of sentences.]

[REMARKS. any sentence or group of sentenoes.]

30 Disk COBOL Specs.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

IBM-1401
SOURCE-COMPUTER. { IBM-1440
IBM-1460

[autocoder-name 1S

IBM-1401
OBJECT-COMPUTER. <{ IBM-1440
IBM-146(0

r 4000

8000
12000
16000

CHARACTERS

THROUGH

MEMORY SIZE THRU

ADDRESS integer %
© 4000
8000
12000 S
16000

[NO-PRINT-STORAGE]

[NO-MULTIPLY-DIVIDE |

[NO-DIRECT-SEEK]

[NO-OVERLAP]

[NO-CONSOLE-PRINTER] .

SPECIAL-NAMES.
[device-name 1S mnemonic-name

[device-name IS mnemonic-name . .]:] .

ON
switch-name % OFF % STATUS IS condition-name

[{?%‘ E STATUS IS condition-name]

[switch-name . . :|

cobol-name

[autocoder-name]:I .

INPUT-OUTPUT SECTION. Disk Files (Random Access):
MD file-name
FI}.E-CONTROL‘ SELECT file-name 1 [RECORDING MODE IS SECTOR :I

PROCESSING MODE IS SEQUENTIAL
) ACCESS MODE IS RANDOM
[R___ESERVE §No$ ALTERNATE AREA[S]]- ACTUAL KEY IS data-name

ASSIGN TO device-name

[SELECT] [SYMBOLIC KEY IS data-name]
1-0-CONTROL. [FILE-LIMIT(S] g QSRE zintegerg %‘%UGH ;integer]
TYPE-A-LABEL
Al A-LADDL RECORDIS
APPLY {TYPE-B-LABEL | ON file-name [APPLY)] [BLOCK CONTAINS integer %——é :I
= IR CLABEL 2Lrd SLOLY € CHARACTERIS]

[RECORD CONTAINS integer CHARACTERS |

DATA DIVISION. 1S % i STANDARD%

LABEL RECORD{S] ; ARE

FILE SECTION. OMITTED
Tape Files: [VALUE OF data-name 18 literal [data-name 1S...]:I
ED fle-name [@C——W—I‘lg MODE IS 1] DATA RECORDIS] { \pp} data-name [data—name. :]

. g RECORDIS]
[BLOCK CONTAINS integer-1 g————CH ARAGTER(S] 2]

RECORD CONTAINS l:integer-2 T_o_:l

integer-3 CHARACTER[S]]

LABEL RECORDIS] ils H__STANDARD%

ARE) | OMITTED

VALUE OF data-name-1 18 literal [data-name-2 IS..]

IS

ARE % data-name-3 I:data-name-tl ..]

DATA RECORDIS] {

Punched-Card Files:

FD file-name [RECORDING MODE 1S 1]

RECORDIS]
BLOCK CONTAINS integer-1 {CHARAGCTER[S]

[RECORD CONTAINS integer-3 CHARACTER[S]]

s
LABEL RECORDIS] % LREE OMITTED

IS _ _
DATA RECORDIS] % ARE% data-name-3

[data-name-4 veo]
31

Control-Sequential Aecess:
MD file-name

[RECORDING MODE IS SECTOR |

PROCESSING MODE IS SEQUENTIAL

CONTROL-SEQUENTIAL-A
CONTROL-SEQUENTIAL-B ‘

ACCESS MODE IS ;

FILE-LIMIT[S] ,}\SBEG integer , %UGH% integer

[BLOCK CONTAINS integer ;EE_C_QEE z]

CHARACTERIS]
[RECORD CONTAINS integer CHARACTER[S]]

LABEL RECORDIS] 2 ABE% i%ﬁ%gi

I:VALUE OF data-name 1S literal [data-name IS...]]

1S
DATA RECORDIS] i ARE % data-name [data—name ..] .

Sequential Access:
MD file-name
[RECORDING MODE IS SECTOR]
PROCESSING MODE IS SEQUENTIAL

ACCESS MODE IS SEQUENTIAL

) THRU)
FILE-LIMITIS] if\SREz integer %’TW)UGH integer

RECORDIS
[BLOCK CONTAINS integer ?C_HA‘—RAﬁ[r‘JER[S] E]

[RECOBD CONTAINS[integer To] integer CHARACTER[S]]

LABEL RECORDI[S] % ARE% f)'fvﬁﬁl%é%l’

[VALUE OF data-name 1S literal [data-name IS..]:I

DATA RECORD[S] % }\SRE} data-name [data-name ..]

32 Disk COBOL Specs.

Record Description:

level—number% 55:;1_"51:1 o1 ; [REDEFINES data-name-2]
1 SIZE 1S [integer-1 TO] integer-2 [%g?&%?sﬁ’r ER[S]%]
L

[OCCURS integer-3 TIMEIS]

-

POINT LOCATION IS gLEFT

ALPHABETIC
NUMERIC
ALPHANUMERIC
AN

CLASS IS

[LEFT
L JUSTIFIED 3@1- g:l

{ZERO SUPPRESS

FLOAT DOLLAR SIGN

[BLANK WHEN ZERO]

at gVALUE IS
L

" COMPUTATIONAL
| USAGE 18 iDISPLAY

+ [sicnED]

[LEFT
* SYNCHRONIZED {— s]
L——_— RIGHT

m-r% integer-4 PLACEIS]

1

[DEPENDING ON data-name]

[PICTURE 1S any allowable combination of characters and symbols]

CHECK PROTECT } [LEAVING integer-5 PLACE[S]]:|

VALUES ARE }literal—l [THRU literal-2] [literal-S [THRU literal-4] . .]]

*These clauses are not meaningful to this processor. If used, they will be ignored.

1These clauses have been designated as part of Elective Cobol- 1961 and are not included in the General Information Manual.

a This clause is invalid if used in the FILE sEcTION of the pATA DIvisiON on other than 88 levels.

PROCEDURE DIVISION.
Option 1:

[Section-name SECTION.]
Paragraph-name. Any procedure statement(s).

Option 2:
DECLARATIVES.

Section-name-1 SECTION.

USE FOR KEY-CONVERSION ON g&'—l‘ FILES %

Paragraph-name. Any procedure statement(s).
[Section-name SECTION. USE ...]

END DECLARATIVES.
Section-name-2 SECTION.

Paragraph-name. Any procedure statements).

file-namefile-namel. . .

33

ACCEPT data-name [F;RQ;M_ mnemonic-name]
ADD ggf:fc;;ﬁme-l ; [gg;zgz;%me&z o] [3%12\/ING s data-name-n]
[BOUNDED] [ON SIZE ERROR any imperative Statement]
ALTER procedure-name-1 TO PROCEED TO procedure-name-2 [procedure-name-3 TO PROCEED TO procedure-name-4 . . .]
CLOSE file-name-1 |: WITH 3%§LI§EWIND ;] [file-name-2 . .]

COMPUTE data-name-1 [ROUNDED] = arithmetic expression [ON SIZE ERROR any imperative statement]

DispLAY {getename L) [date-pame-2

literal-1 literal-2 ‘ . :l [UPON mnemom’c—name]

DIVIDE { data-name-1 } INTOQ ; data-name-2 § [GIVING data-name-3] [ROUNDED][ON SIZE ERROR any imperative statement |

procedure-name. ENTER AUTOCODER

procedure-name. ENTER COBOL

p ALL
TALLYING {LEADING } literal-1 [REPLACING BY literal-2 |
UNTIL FIRST

EXAMINE data-name - N
ALL
REPLACING {LEKDING literal-3 BY literal-4
[UNTIL] FIRST /

procedure-name. EXIT.

Option 1:
GO TO procedure-name.

Option 2:
GO TO procedure-name-1 procedure-name-2 [procedure-name-i? ..] DEPENDING ON data-name

MOVE %g:l gzt;;uzme-l %T_O data-name-2 -[data-name—S ..]
MULTIPLY 3;??;;2‘;’"6-1 E BY 3 Z?et::z(;meé % [(_H_V_I_NE data-name—3] [ROUNDED] [ON SIZE ERROR any imperative statement]
NOTE any comment.
INPUT - INPUT
OPEN %(I%”I%JI%]'—-TOUTPUT % file-name-1 [ﬁle—name-2 ..] { {%J}-%:FOUTPUT %} file-name-n
110 , IO .

34 Disk COBOL Specs.

Option 1:

PERFORM procedure-name-1 | THRU procedure-name-2]

Option 2:

[~ integer-1
PERFORM procedure-name-1 | THRU procedure—name-2:| 3 data-name-1 %’ILE[S]

Option 3:

PERFORM procedure-name-1 | THRU procedure-name-2 :| UNTIL condition-1

-

Option 4:
PERFORM procedure-name-1 [THRU procedure-name-2] VARYING data-name-1 FROM ;Zzzzzzfit_gal-l }

BY wzt’zegfnfge;”lz } UNTIL condition-1
Option 5:

PERFORM procedure-name-1 [THRU procedure-mme-2] VARYING subscript-name-1 FROM g :irzztteag-i;ln e-1 %

integer-2 ” § . integer-3 3integer-4
BY ; data-name-2 E UNTIL condition-1 { AFTER subscript-name-2 FROM ; data-name-3 % BY 1§ dutaname-4 z

UNTIL condition—2] [AFTER subscript-name-3 FROM 3 intoger5 % BY ; intoger-6 o % UNTIL condition-3]

READ file-name RECORD [INTO area—name_ B ?ILII‘V% KEY 2 any imperative statement :|

SEEX file-name RECORD

- - - -2 - _
SUBTRACT g;ﬁfgfu;{‘;’"e ! f D data-name f] FROM i data-name-n g [GIVING data-name-n] [ROUNDED]
[ON SIZE ERROR any imperative stutement]

literal
STOP% RUN z

Option 1:
WRITE record-name [FROM area—name]
Option 2:}

1 § AFTER integer LINES %
WRITE record-name [FROM area-name] ; BEF ORE% ADVANCING gmnemonic nome

Option 3:

WRITE record-name [FROM area-namcﬂ INVALID KEY any-imperative-statement

$This verb option has been designated as part of Elective Cobol- 1961 and is not included in the General Information Manual.

35

1. Simple Relational Conditions *

data-name (1S [NOT] GREATER THAN data-name
literal 115 [NOT] LESS THAN 3 data-r %

arithmetic expression I_S [NOT] EQUAL TO arithmetic expression

2. Sign Conditions

thmeti , POSITIVE
{Znt metic expresswn} IS [NOT] { NEGATIVE

ata-name —_— 7ZERO
3. Class Conditions

duaname1s ivor) {SMERIC |

4. Condition-Names
[NOT] condition-name

5. Switch-Status-Names

[NOT] switch-status-name

Option 1:

IF conditional expression statement-1.

Option 2:
IF conditional ossi statement-2 OTHERWISE statement-3
T conditionat expression | NEXT SENTENCE ELSE NEXT SENTENCE
Option 3:}
statement-10 INVALID KEY
statement-4 AT END statement-6 OTHERWISE statement-7
statement-5 ON SIZE ERROR) |{NEXT SENTENCE ELSE NEXT SENTENCE

any imperative statement-8 followed by any conditional
statement-9

* These entries are optional only under the rules of implication described in the cosoL
General Information manual. They require a complete, simple relational expression
before any implications are used later in the same conditional statement.

1 This conditional statement form has been designated as part of

Elective Cobol-1961 and does not appear in the General Infor-
mation Manual.

36 Disk COBOL Specs.

Sample Problem

In this program, the calculation of the weekly and an-
nual salary associated with a given monthly salary is
coded in the coBoL language. The monthly salary
starts at $500 and is increased by $10 until it equals
$1,000 (Figure 43).

IBM COBOL PROGRAM SHEET e
PRGE[PROGRAM s peregAm 3 e SEEY | or
g1 PROGﬁAMM‘ER OATE 'DENT. Bame e -3
Al
SERIAL| § A H 8
4 el7le iz 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72|

o0 [TLOENTLATLCATLON, DIVESTOMer 4 4 4 01 40y AT S O 0 0 S S Y 0 PR A A B SR
2,0} [P ROGRAM T Doy M OBOL SAMPILE fen 4 1 1y b L i i

Bl R EMARKS ., 8 LROG &M T10, CALOULATE THE WEEKLY, AND, ANMUAL SALARY |

48 L ASSOCTIMTIED WITH A GI VI EN, MONT LY, SELARY o MOMT LY (S LARY I
SB |, STARTS, T (58 AND LS INGREMSED (BY\ B G UMTLL LT FOVUALS, [\ 188 L
b NV TR OMMEN T, DIWVILSTOM ot 4 4 4 4 10 i e e 1
CONFLGURATIION SECTION ey 1 v v 4 4 vt v 1y L ey gty Ll
* g g8l |s.00.RC - ComPUTIER) TBM=IABey 1 L L i P S A B A RN A B A
% |g.g .8 [SOUVREE-COMPYTER., T8M=04dfior 1 v 0 o el
* |4.8.8| 1S OURCE ~COMPYT ER., TBM - ISy L 1
* 19,94 Ong.Jur’:Clr.‘nCvl)NupulhTIE|K|'LJLM:’.I.4|¢.l: P RS R ST NI N S N S AT T VA S A B B NS W A S A L
*x(0.9.0] 0.6,E0T7COMPUTERe JBM~ 4 o 0 0 1 v v a1 Lt
*19,9.¢ aABlJIE:cl-rI"lchINIPIU|7-IEIRI'| TEMI A6 s b
* gl L MEeMoRY, SI.2E 4808 CHARACT ERS, NO-OVERLAPL L
*) gl |\ AEMORY, ST\ 2.5 gt CHARMOT ERS e\ |\ \ \ 4 4 i e
L) INPUT = OUTOD T, SECTIOMN vy v v i i e e
B CONTROL oy y 4 4ttt s
* 3| |\ SELECT SALARY -ELLE ASSIEN 10 1 B3-FP i
*s gl | SELECT (SHLARY - FILE ASST 6N T0 ISP L0 e
S| | KESERVIE (Noy ALTERNATE WREM . 4 iy i gy o i
11 TN TN TN TR TF WU WU TS WA SN TN NN YN T WU WD SN N NN TN SN O OO D NS NN T SN Y N NN Y 1O SN NN TN W Y TN Y SN WU SO OO SO NN O N O U SN N W T T NN N WO A O O |
1 L||:|||IIIIllllllllllllllllllllllllllJllIllllllll\lllllllllLJJtl
1L III:IIII!IIIII|IIIIIIII|II|I!I|I>IIoIIIIIIIIIIIIIDIIAIVIIII}IKI
1 JII:IlIIlIIlllII_l_LJJIlIIl_l_LllIlIIIIIIIIllIJ_l_Alllllll:l!?llillll
1

1 1 Ll 1
* bzaplucm"ﬂf 'Eml'eizls. ! THE ENTRY W‘dcimz 77)77# m?‘ﬁ/ TS sh&rEM IS USED.

Figure 43. Sample Program #3 (part 1 of 5)

37

Form No. X28-1464.

IBM COBOL PROGRAM SHEET
IPAGE3 PROGRAM JHMPLE préﬂﬂM ¢3 SYSTEM l%o SHEET 2 OF 5
4.6, PROGRAMMER DATE 1DENT. ;’f@ﬁhﬂ.h%.drf
SERIAL[E] !
ga s
4 6[7(8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72|
g DATA DIVTSTONC 40 41 it e i gt
dlz‘lﬂ FIIILIE: |5|6|C|T|I|ol"4‘| | NN T S W O O T TS N O T T Y T W N T N T O T Y T N N T O T T N O T o |
o8P PP, SALARY - FILE i i e it
’I4_l’ L1l 1LIAI6IEILI IklEIcIDIzlplsl lq\MIEI Io\MII)ﬂTIEIDI L NN Y T T T T T N T S W T N T T T T T Y O T N O A |
g5p |, DATA RECORD 1S, OUTPYUT-KECORD | | | |\ | e
dlblﬂ ’I‘l 1 ‘IOIUITIpIUlTl_lkIEICIOIZIDI FEN W G OO W T T S S T Y T O 4 IPII|CITIIJIKIEI IXI(III312!)I | S TN T N N N Y U 00 T T Y I N
27 9| WoRKING-STORAGE SECTION | \ |\ v v (i i i e
I|<Y|¢ ﬂl‘l i :slqlLlAlalYl‘K|EICIOIZQDI.l N N T SN TN T S A0 O T S T I S T T S T T J U T S 0 T N W S O I
d|?|¢ i1 1 :I|Ll i IFIIILILIEIRI | B S WS TS T N TN T TN N N T B lPIIIC"rl‘)IRlEI |XI(I5‘Ip|)I IvlﬂlLlUlEl IIISI Islplﬂlclélsl'l 1
/|dlﬁ L1t :ﬂl‘z’l , WEEKLY-DETALL-LINE |\ |p11|ch|')|€|E| 222 BE ., T TN TN T U 0 S S A U T T
I ? Lyt :ylz'x 1 |F|I|L|L|E|2| TIR T S T T T Y T O AO) 1‘0111(“1T1')L2r61 -x|(n5v)| 1 I‘IIAILLUIEI L3 |5|P|»|C|E|S|'| 1
/27 L1 22 Mnole-r;H‘lLlY|"uD|E|T|A;T|‘—|’|L|I|’V|Ex Lt IO,IIC,T‘U‘(,EI IEI?IE|ZI'IZIZI’I TE S S N0 NI W A S N B
/38 L 8 FLERER s o PDGTYRE X SD Y ALYE IS, SPACES:, |
JEB) 2 ANNYAL-DETATL-LINE PICTvRE |z\(|5|) A A A W
1S) BEMDING- RECORD., | | 1y et i i1
16l L WA FIEER o PICTURE X (SED) VALUE LS SPACES.
1T B\ B2, MEEKLY -EADING - LINE |\ PICTURE AL6), | VALUE CWEEKLY .
187 a2 ATERER iy i |P|Lc|T|U|’2|E| XG55 MALYE LS SPACES., |
190 |, P2 MO NTHEY - HEADING - L INE o PTCGTURE AGT), VALVE N ADNTHLY. .
280 | 82 FILLER e AICTURE X (&), VALUE IS SPACES.
l{’lf Lt :VIZI 1 |A|”IMIUIAILI—IHIElklblIIMIGI—|"|1|M|el | | Kplllelrlulag lnlllél)l i |VIAILIU|E| I\IAINI,‘II‘IIAILIII'\ 11
11 All:llllllIllllllllllllllllllllll\|IIITI|YlI||III||||Illll|||l|]
1t I||:|IlllllllllIIII|1IIIIII||1II!IIIIll\I\lIIlII|||||||A,I|I|1|I
1 1 |II:|l|VV||IlIIIlIIA1II‘lII||l|l[l|ll|l|lllll|ll||!|l|||l||l|5||
1.1 'I’:IIIIJ'>|I||||II|'I|II||II||I’]l||||l|1lIlLlJ'IV"I|I|IIIIAII

Figure 43. Sample Program #3 (part 2 of 5)

®

coBOL PROGRAM SHEET

Form No. X28-146
Printes in U. 5.4,

PAGE

PROGRAM

SYSTEM

SHEET

OF

0 SAMPLE PROGRAM * 3 14968 3 5
J,,3] PROGRaMMER DATE IDENT. 3 8 0, Put o D)
£05- " SAPLE -,
3 A »:B
s _sl7(8 g2 16 20 24 28 32 36 40 a4 48 s2 56 60 64 68 2]
¢lll¢' ’lll 1 :alolﬂﬂlelclTl'lMIElij|AIQIE\.V | NN O [Y O O Y N W N WO T YO (O T T N TN T OO0 U A N S NN S Y IO TN 1
dzdl |, 2 ATELER i AIETYRE X (5D, VALUE A3 SPALES
|
B38|\, B2 TABLESLS-COCRECT, |\ .y, LICTVRE #(3.2) VALUE ISy
g LN TABE VALYES, ARE (CORRECT | 1y ey i
P58 i) INCORRECT ~MESSAGE e\ \ \ \ 1 i e e i iy
¢|6I¢ L1 ! :ﬁlll 1 |p|1|LIL|E|2| | S O - T Y I A T I Y 1 I#IIICITI"12|EI ’x|(|f|11)] |VIAILIU|EI II|5| lSApIAICIEISI‘I i
4.7.¢ v 2 TABMEA TS S NOT - CORRECT, |, P TCTURE A (280 YALYVE I3 4\,
ély|¢ Lt : 111 l\ITlﬂlélLlEl lvllelulgl‘Sl Iﬁ|ElE| |A/IDIrI |C|OIE|EIE|C|Ty/"| O T T T T T Y O O |’| I T T N T Y A Y
£2.P| 110, (AT TAL-COVATER-WEEKLY, |\, PTCTURE 9.(6) Y99, VALUE 5, ZERO.,
(P17, HAS B TOT AL LO NTER MONTHLY, | P LT ORE 9.66) VG, VALYE LS 2ELO:, |
L0 7T, HAS He TOT A= COVNTER-ANNIAL |\ RICTVRE D06V, 99 VALUE IS ZERO., |
2, 7.7, WEEKLY =AY g PLGTURE ,q.i,q.\/.qlq,., R W N U0 B S TR N G N S A
BB T Mo N T LY PAY e PICTVRE G999V e,
1]"‘]¢ 7]”[1 HAMIMUIHILI—IPﬁLYI RS Y NN T I W T N N T S S T T I | DPIIICInMeIEI lql{ls_l)lvlqlql‘l | I O T T T T T T T Y O T)
1.5.15 CONSTAMT, SELCTI 0Ny 1 4+ 1 4 i a1 T S R S IO U0 N WA W O Y N AR
ef| 10, HASH-TOTAL-0F- VEEXKLY-PAY, , PICTYLE 9,06)V 19 VALVE $8%826.69-
7o 1 PAS e TOTAL- OF ~MONTHLY - PAY, | PICTURE F.0,6) V99 VALUE 3825008, |
' -
1!A¢ 7.7, IH'IA'ISIHV‘VlloITﬁlLl-loIF|—IA’I’JNIUIA:LI_IpI&IYI L1 |plr|el-rlulflel ﬂl(l"l)n‘/lqnqc |V|A|L|U|£| 14»5|9nﬁ-¢1¢|'|¢|¢|‘| '
L IAI:AllIJII)Illlllllllllllllrlllll|||J|II|l||||nl|||l|l!lll>lllll
11 III:IIIIil|1IIA||[IlJl|||IIII|Il|II]I|||I|l|||ll||||ll|ll|lllllI
11 ll|:|llIllIlLllI]lllllllllllll||lV|ll|||||l|||ll|4|lll|7||I|l|||
L T A A S A S S
11 IIIEJIIIllIIIIIIlIlJllIlAlllllllllllllljllllllll|||lIlllllirllll
) NN T N 0 T U S S S O O T O O T T VO S U U 0 T U TN T T S N W W T W U S TN SO S O O O UM N N T (N N A O O
T N A S T

Figure 43. Sample Program

#3 (part 3of 5)

38 Disk COBOL Specs.

IBM CcCoOBOL PROGRAM SHEET bt
e
:’AGE3 PROGRAM SHMPLE P/ZOE,E/}M ﬂ— 3 SYSTEM /4-65 [SHEET 4 OF .{
004 PROGRAMMER DATE | IDENT. |73|4|M| p]Laﬂ— 8
SERIAL[E T
SIA I}
4 6 ‘7) 8 :I_Z 18 20 24 28 32 36 40 44 48 52 56 60 64 68 72}

‘ﬂl/@nOldE\DMlleJ DI VIISTOMey v | Ly vt e b
dz@| |STVARIT | 1 10 i U e e
WPEN, DYTIANT SALARY = FLLE . i
WRETIE 0 UT P T RECORD FROM MEADING RECORD | | 4 L v i i
Vi BEFDRE ADVANCTI NG 2 LT WNES e et a1 i
PERAORM CALCOLATIOMNS | (4 1 1 (i
280 |y VARNI NG MONTHLYI=PAYL | i e L
IRAY) i FROMUSBB e
Iqli llllllllllllII||8’Y|I|||I|¢II’|‘l‘Ll'l'lllll]l|41_l_l|1|7LJ'I|II]||III
Ll T MONTIALY = ARY, LS GREAMTER (TIHAN, 1,000,

S Bl TS T S = DO T AaSias 1 4 4 0y 0y o e i s 1
LA AS B TOT M GO VNT EQ-WEE KLY, | = HhAS th=T30, 1AL 0 F i-mMEEKLY < PAY, |
VANDL S - TIO T -1 CO WNTLER - PO NTIB LYY =) ith &S e TS0 T b Ly=10,F)= M ONT LY~ P YL L
MDA s 1th = T0 T G0 DINTLE R -ANN AL, | = HAS - T Tih b 0,F = AN MM L - P AY

L MOVE (CoRRECTE MESSHEEL oL DWTPOTI=RECO BD |\ 1 sy i i1 1

[
o
&

)
o
=3

[
R~

S
SN
S

\
B
&

\
B
s

2
[

/16,8 i OTHERMWLSE 3 0 41 b0 v b b b b a1
LB | b MOVE INCORRECTI-MESSAGE T 00T P Ti=RECORD=y | 1 1 4 11 4 i1 11
188 WRTLTE OUTPUTARECORD 1 11 1 i e s

2 UGSy i ey i s

T T T T BN 0 W N T TN N N T T 0 N T T O S S Y NS WO S B M0 B |

L AMBTER ADVANCI NG
LD SE SHLARY —ALLE . |

=
g
ASY

~
s
Y

200 | STOP ROy s e e e v
L Ill:llllllllIllllilllllltvtlllllllI¢lllL|IlIIIlllIlIl_I_LlIIIIAJ_LAI
11 - : IR NS N N TN TN N TN TN VNN N N U NN S NN NN TS S N [N T S N N U JS OO0 [Y T T T 00 T S TN N T O VO N AN O 1 A

4 1 42 1 ; TR T TR0 W N NN T N T T N Y TN NN TN WY TN T T SO SO0 OO TN TN N NN Y Y N U N N Y T T N N Y O N N O MU SO T O O N S |
1! - : U N T S SN0 NN N TN TN N TN N N T Y W SN Y 0 T T Y T I U N T Y S T A N S S Y W O N N T O B Sy

Figure 43. Sample Program #3 (part 4 of 5)
IBM COBOL PROGRAM SHEET st
e

PAGE | PROGRAM SameLE PROGREM %3 ssTew [REET _oF =

2.4.5 PROGRAMMER DATE —[msm. 73 4 P, 80|
YA [SAMPLE- 3
seriaLS '

8A :B
4_el7ls 12 18 20 24 28 32 36 40 a4 48 52 56 60 64 68 72

AN lAlLIdUILlﬁlnI\Dlnllsl'illllI|IIJllIIIllllllLlll||A|bII|IlAlIIJIIillIIIIIII
IEN L COMPOTIE, WEERLY=PAY, = 3 X MONTHLY =AAY, A hBey o iy i
#3.2 L COMPUTE, ANWYMAL-PAY, = 120 4 MW THY =P8 Y o LUttt
¢ 48 Lo MOV.E WEEKLY - LAY T WMEEKLY A DETAT L I WIE ey 0 i
5| | MO E MO NTIHLY - PBY (T10 MONT LY = DETATL LT ME 0 0 o
6B |) MOVIE ANN Y AL LAY T0 ANNIALDETATL e LM E e 0 s
478 |, ADD WEEKLY -PAY, | T,0 HAS H—TO0TAL~COVMNTER-WEEKLY o) \ o 4 4 vy 110
i|¢ 41 :Alblbn Lﬂlvauﬂﬁul—yYul"ﬁ’m |T|01 IHTA’ISiH'I"IfIDlﬂAIL—IQIOIOIM‘rIEI,Zi_IMOIA/IT‘IH.AL‘LyL‘IJ_Ll I Y O S Y Y
NE L ADD L ANNVAL-PAY, | T, H S B = T0 T AL~ CO UNT ER-ANMUALS, | 4 oy 00
/Jﬁlp 11

|:MQI|T£L¢DJVnrlplulTﬁ'JQlElcrolgbl FROM SALARY - RECDAD -y | 4, N O I T O T O O B
1t lll:llllllIIIlIIlIlIlI(llIlIIIIJIIAI_I_IIIIIIIIIIIIIIIIIIII]lIIII}A
1 ll\:llllllIIIIAIIlIVIIl[|IIIIlllllIIIIIIIIL]IIIIIIILIIIt)IIIIIII
L lll:lrllllI|llle_l_LJllllllllllllllll!llll.llllllllllllllllllllll
11 III:AII'IIIIIlljlIIIIIIIIIIIIIIIIIALJAIIIIAlIIIIIIIIJIllIIlIbJJJl
12 JlrllIIIIII|l|||||||V|||llll|l||||||1||J|||Jll||||IIJ_LJJII|1I4LJ1I
11 III:IIIJJJIIIIIIAIIIIIJIIIIIIIIDII]![IIIIIlIIIIlI!IIiIllAlIlI\II
11 III:IIIJ_LJIIIIIIIIIIllIIIAI_IJIAIIIIIIIIIIllIilIlIllIIIIIJIIIIIIII
Ll III:llIlll|IlIIILLllIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIJ_I_LIIJIIADIII
il III:II\IIIIIIIIIJ_IJ|IIIIJA|Illlllll‘llllllLJlllllll|||‘l||I|J|ll
1) l]l:lIllllIlIILIIIIIlllllllIAIIIIIIIII‘IIIIIII!II!IIIII\III(ALJJI
11 l||:ll|111ll|l|I‘IIIIlIIIIIilll‘lllIVIIIIIIIIIIIIID|IJ_IIIIIIIJI!I!
11 lll:llllllII||II||||AIIIIJ_LLJIAIIDIIIIII|hJ|-|III|IIJ_l“l{IJ]IIIl
-] II|:lIOL‘LIIilllr‘ll!llll{J_LlllAlIllAlIlQllllltlIlI)Illllllllllll
Ly LLI;lllllll||||lllllrlljl\|rIIIAIIAI_LlillllllillllIILLIIIIIIIIIII
T \Illlllll‘li\Illl\ll(I\\\JIll||||‘lil||\l|>||\l’lD\IY‘\\V||44|_I_LI

Figure 43. Sample Program #3 (part 5 of 5)

Programming Considerations

Aids

Two aids to generating more efficient machine lan-
guage coding and decreasing compiling time are the
optional WORK4 and WORKS file assignments [cosoL
(on Disk) Program Specifications and Operating Pro-
cedures, IBM 1401, 1440, and 1460, C24-3242].

The use of WORK4 intersperses COBOL source state-
ments, by paragraph, with the Autocoder symbolic
statements generated by the coBoL compiler. The pro-
grammer can then determine which .autocoder state-
ments were generated for the respective cosoL state-
ments.

The use of WORKS produces a listing of the Auto-
coder symbolic statements generated by the cosoL
compiler. It is valuable when warning diagnostics are
generated. Errors can be corrected before the gener-
ated autocoder program is assembled, thus saving
the extra assembly time.

Techniques

coBoL provides a convenient method of writing busi-
ness-oriented programs. However, certain techniques
can be used to produce more efficient machine lan-
guage coding and increased compiling speed.

The following considerations and suggestions are
included to aid the programmer in obtaining a better
coBoL-generated program. An original program (Fig-
ure 43) required approximately 3,100 positions of core
storage. By applying a few of the suggestions to the
second program (Figure 44) the core storage require-
ment is reduced to approximately 2,350 positions of
core storage, representing a saving of 25 percent.

The changed statements utilize redefinition, equal
decimal alignment, alphabetic compare, and the dele-
tion of a subroutine caused by the statement WRITE
OUTPUT-RECORD FROM SALARY-RECORD (Figure 43, part
5 of 5, line 100). It is recommended that the program-
mer become familiar with these suggestions and apply
them in the writing of coBoL programs.

Area Allocation in the Data Division

The following rules govern when 1401 coBoL sets

word marks with data areas:

1. Record areas (0l entries) always have a group
mark with a word mark in the following position,
and have a word mark in the high order position.

2. Word marks will be set in the high order positions
at the next level from the 01 entry. This will be
02, or the next lower level if no 02 is present, unless
occurs or redefinition is present.

3. Subfields have word marks set only when their
high order positions coincide with word marks set
as in preceding item 2.

40 Disk COBOL Specs.

4. A word mark is always set in the high order posi-
tion at the 77 levels, but there is no group mark
with a word mark set.

5. No word marks are set for data fields within a 01
entry which contains a redefines or an occurs, either
at the 01 entry (implicit redefinition is allowable)
or at any sublevel.

If word marks are required but not present, they
will be set continually and cleared for access to the
field; this requires time and core. If word marks are
present, they will be regenerated if removed. For ex-
ample, if editing into a 02 area, a word mark will be
reset each time.

Tables

Many programs require tables. Following are several

considerations about table building and searching

with 1401 cosoL.

1. Unless it is certain that a table will never change,
the initial values in the table should not be estab-
lished with the vaLuE clause. A better approach is
to set up a card deck or tape file with one table
entry and a sequence number on each record. Using
the reap verb, build up the table data during pro-
gram initialization. This approach eliminates the
need for recompilation or object-program patching
in the event that the table changes in value or size.

2. Before using the occurs clause and one or more
levels of subscripting, weigh the alternate storage
cost of naming each table entry and writing (for
example):

IF ARG = TAB-1 MOVE ENT-1 TO WORK GO TO FOUND.
IF ARG — TAB-2 MOVE ENT-2 TO WORK GO TO FOUND.
etc.

3. Define long tables as a set of shorter tables. A few
IF statements are enough to isolate the relevant
position, which can then be moved to a work area
where the final pinpointing of the correct entry can
be done.

4. If the work area mentioned in the preceding item
3 is n entries long where n is a power of 2 (such
as 8 or 16), the 1r statements which are used can
be written in such a way as to effect a binary
search. In the case of a 16-entry work area, this
technique can yield an answer after only four ¥
statements.

5. Sequential table searches require little program-
ming effort and are efficient if the table can be
arranged so that the most active items are at the
beginning of the table.

Move Verb

~ 1. MovE A TO B, where A and B are equal length

alphanumeric elementary items defined at either
the 01 or 02 levels, gives the best possible coding.

All items with subfields are treated as alphanumeric
by cosoL, even if some or all subfields are defined
as numeric. Only one 7 character instruction is
generated as long as A and B are not redefined or
subscripted.

. If both A and B are redefined items or items defined
at 03 levels and up, eight additional characters of
instructions are generated (i.e. SET WORD MARK and
CLEAR WORD MARK).

. Elementary items are treated as above unless they
have an unequal number of decimal places. In that
case, a greater number of instructions is generated.
. Unequal length elementary alphanumeric items
are moved the same as equal length items when
A is longer than B. However when B is longer, ad-
ditional instruction characters are generated to
blank the receiving field.

. MOVE A TO B causes COBOL to include a special sub-
routine when A and B are of unequal length or one
or both contain subfields. The special subroutine is
used because the mirc and MRcM instructions can-
not conveniently handle this complex situation.
Even when A and B are the same length, the sub-
routine is still used if A is a 01 item and B is a 77
item or vice versa. The subroutine may be avoided
by writing a set of individual moves, redefining
both A and B, or by making them the same length.
. MOVE SPACES TO A and MOVE ZEROS TO A each gen-
erate 11 characters of object code unless A is a 01
level item with subfields. In that case, A can be
redefined at an additional cost of eight characters
of object code.

. When editing is involved in MOVE A TO B, the same
rules about scaling, redefinition, and size apply.
For example, when the A field has fewer decimal
places than the editing picTure describing B, many
characters of coding are generated. If the scaling is
identical for A and B, approximately one-third as
many instruction characters are generated, plus the
edit word.

. Avoid editing functions which cannot be handled
by the edit instruction directly; coBoL zeros, float-
ing plus or minus, pB, and single plus. A special
subroutine is called to handle these cases.

. MOVE ALL requires a special subroutine. Use a literal
or constant of correct length to handle this case.

If Statement
1. When defining fields that are to be compared, con-

sider the following:

a. When at least one of the fields is a 01 item with
subfields, a special subroutine is required. It is
better to process such fields by comparing each
lower-level item individually; or the group item

can be moved to a hold area of equal size (not
containing subfields), and then comparing.

b. When numeric compares must be used because
one or both of the fields are signed, attempt to
arrange the record format so each item has the
same number of decimal places. The fields do
not have to be the same total length.

2. In the statement 1r A — B, only one of the fields
(A or B) need be defined as alphanumeric to get
the more efficient alphanumeric compare instruc-
tions generated.

3. IF A NOT GREATER THAN B . . . has the same meaning
as IF A LESS THAN B OR EQUAL TO B . . . and the gen-
erated instructions for the first statement require
half the number of core positions.

4. The statement 1 A Is ZERO . . . generates more
efficient coding when A is defined as numeric
rather than alphanumeric. However, an even
greater improvement can be gained by declaring a
constant of zeros (mamed C, for example), and
writing IF A = c . . . which is twice as fast.

5. Avoid the statements IF A ALPHABETIC and IF A
NUMERIC whenever possible because they require
subroutines in the object program.

6. Avoid the use of ALL, HIGH-VALUES, LOW-VALUES,
spaces, and zeRos in conditional expressions. They
can easily be replaced by named constants.

7. Subscripted names in an 1F statement will cause
the compiler to include appropriate subroutines
which often perform slowly at object time. Fre-
quently it is better to use several IF statements to
perform a table look-up on a short table rather than
use subscripting and the PErFORM verb (or an
equivalent loop).

Arithmetic Verbs

1. Avoid oN sIZE ERROR . . . whenever possible. The
generated coding to perform this test consists of
up to 40 characters.

2. App and SUBTRACT statements:

a. The most efficient object coding is obtained for
fields which have equal scaling. When two fields
(A and B) have equal scaling, the statement App
A to B generates 7 characters of object code.

b. Redefining, or using 03 levels or greater, will
require 8 additional characters for each field so
defined.

¢. Multiple operands are as efficient as the equiva-
lent set of single statements. Apbp A, B TO C gen-
erates 14 characters (assuming the requirements
of 3a are met).

d. ADD A TO A is an economical way of multiplying
A by two. Other sequences of App’s and sus-
TRACT'S, sometimes with REDEFINE's to achieve a

41

shift, can be devised to simulate a more complex
multiplication.
3. MuLTIPLY and DIVIDE statements:

a. MULTIPLY A BY B GIVING C generates 21 characters
of instructions if A, B, and C have no decimal
places. When A, B, and C have decimals, and
the number of decimals in C is not the sum of
those in A and B, 42 characters of instructions
are generated.

b. In the preceding example, ROUNDED generates an
additional 7 characters.

c. Less efficient coding is generated for a compuTE
statement than for the equivalent set App, sus-
TRACT, MULTIPLY, and DIviDE statements. The rea-
son for this is the need to retain up to 18-digit
precision throughout the execution of a compUTE
statement. Because the 18 digits can be on either
side of the decimal point, and because one or
two extra digits may be required for rounding,
cosoL allocates 40 digit accumulators for the
storage of temporary results.

Work areas are assigned only once per pro-
gram. Thus the most complex coMpuTE state-
ment determines the number of 40 character
areas that will be needed for all compuTEs.

Perform and Alter Statements

1. The statement ALTER LABEL TO PROCEED TO NEXT-
LABEL generates 10 characters of coding.

2. The statement PERFORM CALCULATION generates 18
characters of coding at the point in the program
where the pERFORM occurs. In addition, caLcurLa-
TION is augmented by 4 positions for each PERFORM
which references it.

3. carcurLatioNn should be positioned in the source
program at the point where it will be executed
most frequently simply by falling through from the
preceding paragraph.

4. The option 2 statement, PERFORM CALCULATION 5
tMEs is efficient. Core requirements are about 45
positions at the point in the program where the
PERFORM occurs and 4 positions additional at the
end of carcuration. No additional core or time is
required when a data-name instead of a literal is
used to indicate the number of TIMEs.

5. Option 4 of the perrForM verb is handled best if
the varving field is defined as alphanumeric and
each of the fields in the expression has the same
length.

Input/Output Verbs

1. The statements READ iNTO and WRITE FROM each
cause a move of the entire logical record. In many

42 Disk COBOL Specs.

cases the use of these options is unnecessary be-
cause processing can be done either in an input
or an output record area as defined by the para
RECORDS ARE clause in the Fp’'s. When READ INTO or
WRITE FROM must be used, ensure that the implied
data move involves equal length areas.

2. When using a card reader, READ is faster and gen-
erally smaller than accept. Similarly, wrrtE is bet-
ter than pispLAY for printing and punching.

3. It is not possible within coBoL to assign the same
input/output area to two files. Areas in the work-
ING-STORAGE SECTION can be (and should be)
shared, however.

4. For card and printer files, input/output areas in
addition to 001-080, 101-180, and 201-332 are as-
signed. This is in anticipation of a possible conflict
with the accept and pispLAY verbs, which use those
areas also.

5. The wrrtk verb for a printer ¥p does not clear the
print area. Use MOVE SPACES to clear this area.

6. Form 3 (unblocked, variable length) tape records
are not permitted within coBor. If necessary the
file can be defined as Form 1, and a simple Auto-
coder sequence can be used to set and clear the
cmwM at the end of the portion of data to be
written. Form 4 usually offers better tape utiliza-
tion.

A common error in COBOL programming is the
assumption that a different area in WORKING-STORAGE
must be defined for each record type in a given
file. This may be avoided by (1) defining all pos-
sible data records directly under the ¥p with one 01
entry group per record type, or (2) defining the
most common record type under the ¥p and all the
others in a single area in WORKING-STORAGE which is
redefined once for each record type.

Optional COBOL Words

coBoL words, defined as being optional words in this
manual, add nothing to the object program but do re-
quire time for the compiler to evaluate. Compiling
time can be decreased by avoiding these optional
COBOL words.

Object Time Subroutines

There are several coBoL object time subroutines that
may be generated. These routines are described in a
separate bulletin which may be obtained with the pro-
gram. Normally, the programmer should avoid cosoL
statements which cause these subroutines to be used.
For the most part their inclusion is caused by either
unusual language features or by complex data formats.
Following is a list of these subroutines and the reason

why they are called and/or how they may be avoided.

1.

The Examine subroutine is included whenever
the ExaAMINE verb is used. It may be avoided as
follows:

a. For short fields, give each position a name by
defining an appropriate number of subfields
and using a set of 1F statements.

b. For long fields, define a work area with one-
character subfields and process portions of the
long field there.

Single, double, and triple subscript subroutines

are included whenever a field is singly, doubly,

or three-level subscripted.

The Alpha Compare subroutine is included when

a group item with subfields is compared to any

data item. The subroutine may be avoided by

redefining the field which contains subfields.

The Figecon Compare subroutine is included

whenever a record with subfields is compared to

a figurative constant (HIGH-VALUE, LOW-VALUE,

QuoTE, and ArL alpha-literal). This subroutine

may be avoided by redefining the field with sub-

fields and using a literal or constant.

The If Numeric subroutine is included whenever

an alphanumeric field whose size is greater than 1

is tested for a numeric value.

The If Alphabetic subroutine is included when-

ever an alphanumeric field whose size is greater

than 1 is tested for an alphabetic value.

The Accept subroutine is included whenever the

Accepr verb is used. To avoid this subroutine,

define a file and use the reap verb.

The Display subroutine is included whenever the

pisPLAY verb is used. To avoid this subroutine,

define a file and use the wriTE verb.

The Editing subroutine is included when editing

requirements include cosoL zero, floating + and

— sign, single plus, and DB. It produces highly

10.

11.

12

13.

14.

15.

16.

specialized editing features. If possible, use only
the standard editing features of the 1401, 1440, or
1460.

The Expin subroutine is included whenever an
integer exponent is used (COMPUTE A = B**5), It
may be avoided by writing successive MULTIPLYs.
The Go To Depending subroutine is included
whenever co To DEPENDING is used. This subrou-
tine may be avoided by a set of 1F statements.

The Move All subroutine is included when the
ALL option of the MovVE verb is used and a record
with subfields is to be filled. A MoOvVE statement or
a set of MOVE statements is preferable.

The Move Record subroutine is included when
ever a record with subfields is used in a Move
statement, except when the other field is a record
(01 level) of equal length. This subroutine may
be avoided by:
a. Using a set of elementary MovE’s.
b. Redefining both fields to eliminate word
marks.
The Expni subroutine is included when raising
an expression by a non-integral exponent (com-
PUTE A — B**2.5). It is impossible to perform all
the functions of this subroutine with other cosor
statements unless the exponent is defined as an
integer. For special purposes an Autocoder sub-
routine may be a more practical solution.
The Multiply subroutine (muvrry) is included
whenever the object computer does not have the
Multiply/Divide feature. The subroutine may be
avoided by substituting a comparable set of app
instructions.
The Stop-literal subroutine (spLit) is included
whenever a stop literal statement is used. The
size of the subroutine may be reduced by declar-
ing NO-CONSOLE-PRINTER.

43

CcCOBOL PROGRAM SHEET

PAGE | PROGRAM

L

3
PROGRAMMER

SAMPLE PROGRAM #3 REVISED

SYSTEM

14¢6@

4|an_or

DATE

l 1DENT.

semaLt !

4 6|7 16 20 _ 24 _28 32 36 40 44 48 52 86 €0

/nD|E|N:T|/1F|[|C1A|r|/|0|’/x DUMOSIHON v eyt v e e e s
M'ﬁﬁﬂp-lhﬁl-u 2 CI0B0 L SIAMPLE REVISIED 1) 1 1t A s it
EMARKIS ., 1A (PR 710 \CALCULLATE THE WEEKLY, A IHD ANNUAL 1SHLAR
G LATE LT A 61 NTHLY, (SALARY ., Mo LY SAL LA
AT, 5, 1.5 I NCREAS I b T EQUAL
E ENT) DIV S 0oy 10 03 00 0 13 0 10 e e e) 1 L s
C.OW:F:/.G.(I.RMnTn/:O:M|3|E|C|T|I.0|N|-||.||nn-u-nln-.n.:n---n-||.||||||n||||||||.
1500 IRICIE (COMPUATIER .1 1| B~ Ll .\
OURICE COMPNTER -1 1] BM-o) 4.\
ISOUIRICIE CLOMPUTIER. [1BM-LAG6Ber v v v 1 v 0 by v b i e b
* ¢, £ Y VI Y Y (T A A RN U U U A T U A A A MU A S AT A S W0 O A ST AN SN AN I AT NS O A
OBAECT (COMPUNTER. 1/ BM- Ll db.
DA ECT, (COMPUTER . 1/ BM- LBy o 4 14 111
* WME, LZE ¢ S,
L1 10 MEMORY) S\LZE OB CHARACTERS 1 1 11 11y 41y
LMNPOT - OUTPNT SECTI OMeer 1 4 10 1y e 11t it 1
) Ep- 1. To)Y TS IR U A U U S NN N S S N 0 L W U A N U WO A S U SO S A A Y S WA S A S A
' |I§‘E|LE|C|Z SALARY - Filli B AS S G (Ti0 114 B3-Py 1 e 3 v a1 i
SELECT SALARY ELLE ASSIUGN N0 h4h35P 1 1y i i s
RESERY.E M0 ALT ERNATE AREA., |

T T TN T U T Y D N TN T N O O O WO OO0 WO M O §

1A
ls,7,

L

L,
LL,2,

111

[A |

{1000 T T T T T S T T O T O S O W N VO W W S O WO O O |

TN T S T W S T T T Y N T T N T T U VO Y NS W O SO W Y U Y W T S 2 W A W O O

YN SN T S TO0 WO S W N T T T T T WO T 0 WG W W00 0 U0 U O I 0 3

P TTS0K T T S T T Y U N T N G S T TV WA UG T Y T U O T 0 W B O |

il TS WO Y T T S0 JO W 5 T O N Y O O T N T T S W S T T N T S T L T T U BT B N 00 §

« Duplicate entries. The entry applicable to the particular system is used.

IR YT O SO O N W N T T O WY N T U I B N |

Figure 44. Sample Program #3 Revised (Part 1 of 4)

IBM coOBOL PROGRAM SHEET bt
PAGE| PROGRAM S AMPLE PROGRAM #3 REVISED SYSTEM 1468 PrEETz oF 2]
_PROGRAMMER DATE Imznt 3 PiLIE,3

mugA :B

s _sl7)s pz 16 20 24 28 32 36 40 a4 48 s2 s6 &0 o4 e8
DATA DANG ST OMer 1 v 0 10 s 1 i s L i L
Ey L LE) (SIECTONG Y 0 0 30 e i b L b
FaDi 1 SIALARY-FU b€ b b 0 0 e it b s b i L
LA WABEL RECORDS ARE OMUTTED 1 4 4 11 0010 €110 i1ttt

5, A EC A HEAD ;N6 REC D2 LA RE C,0,RD, £.5,5A6,E,- RE R

(2} R N I i A A A ST W A A AT AT ST I ST AT O S AT A W W AP AT AT O O W A W AT A S
Ly HEADI NG - RE .
B2 FLLLER v g P ETURE N AT N N N

) E\EKL,Y,~ HiE D, NG iL PILCTIGRE M(6)), -

n p ENLLE C %05 .

1 1612, MOWNT LY~ HEAD NG -LAVME o PHCTURE AGT) e vy vt v i1y

2 H Fil L EGR, CTWRE X6,

n 162, ANNUAL-HEAD NG LN PULGTURE A6,

L4 B2 FULLER vy 1 PCTURE XG5 2 ey v

5 Ly | 1SIALARYI- RE .

6 : LuL P CTURE % (58).

1,7 ..;! KLY~ DETAN L~ L1 NE P C T URE ZFEZ . 2F.
s @2 FLLLER b vy v g a1 PILGTURE K5y 0 i

18,2 NTH LY DET AL L L NE P CTWURE Z22 2 R

L B2 FILLLER 1y 1 L taaaan PULCTURE X(B) ey 1400y 100 Lo]
L0 B2 ANNUAL- DETALL L ME 4 1 PULGTURE ZE2FE 2R v 0 v g
ra D2 MESSAGE | 1y i s PUCTURE X280y ey

Figure 44. Sample Program #3 Revised (Part 2 of 4)

44 Disk COBOL Specs.

IBM coBOL PROGRAM SHEET e

4 6

PAGE | PROGRAM SAMPLE PROGRAM # 3 REVISED SYSTEM /468
3 PROGRAMMER DATE
SERALIL !
8
7

82 RLULLER it iiiiiaiie s PLCTORE KB st i ey

W,0,R k! G SITORMEIE, SIECT I OMN ey 1 4 4 5 3 0 0 00 1 104003 10 1 0 0y 1o vty
[

SH,- o 216104 E1R—EEK LiCTIURy 6 ViU & (1115, (Z1ERO.
3 E KLy Y- 1B U C K E EDEF T NES S\H - 0 HA L) =180 E R~ WEE KLY,
5, Jll:JIIAIIJJIIIIJlll»llllllILlllIIPIIICIrIUIRIEIle(lf.)l'J_LlIlljllllllll|||l
o4 11 : - -C ER- MO N T, L AN £ 49.06) ¥99, VALUVE 1,5, Z.ERO.

770 s MONTIHLY) - BUCGKET, REDEE I NES, HASH-TOTLAL - COUNTER-MONTHLY) 4 4 0000
III:JIIIIILIIIIIJIIIIllIllIIIIIIIPIIICITIUIRlE)IXI(zl)I’lIIIIIIIIIII_LJ-III
il hASH - T, Ly~ E R~ L A LC £ A E L 01,S ZERO,.
7,7 1 NN UAL - BUCKET REDEFINES HASH,- T0TA L~ COUNTER-ANNUALY v) v 3 1000
A.-lJllllrLJJluLL)ll-nluln L PHCTURE X G eer 06 0 v g0 v e v
% WMEEKLY - PANY v 0 e g sy P ETURE 1999V MALUE (1S, 2 ERO.,
: LY1m P PG TIURE 19, () V919 VALOE LS, ZE RO,
CANNUALEPAN s v e (PAGGTURE 9 GE) V99 VALUE, 1S (ZERO.,
“O'N".TIAINITIS'FrTl’nINA-llllII_LJlIlI_LJ!lIlJll]I]ll|IIJ411IIJIIII»LAIII|II
MASH - TOT AL OF - WEEK LY~ PAY, T X, LUE 36582663 "
2T 1 HASH - TIOTAL OF = MON T LY PAY, |) o PuCTURE X 03), VALUE » @$382.5006,
HASH-~ Ly OWF;- Li-\PAY VAL UE, | 45 ’
P‘g‘g|clﬁi_20k£lIDLLlyJIlsl’IJMI‘IIILJIIIIIIIIIIAI‘III‘IIllllllllllllllllllll
S

0
NI T N Y T 0 T T R T S W W N O T T U T 0 O WA S SOV A TN O TN W N Y O 0 T A Y A OO0 AT ST WS S S B A O A

L1 OPEN OUTPYT SALARYFEILE. vy 0 vy s e s e L e

L MOWVE, | WEEKLY s T\0 WEEKLY,~ BEADING - L NEry | 4 4 10 by s o0 vy a0t 4
L1 MOIVIE C MONTHLY (1.0, MOWNTH LY~ HEADI NG L IMNE . | 4, 4, TR

L1 MOVE S ANNUAL 10 ANNMUAL-HEADY NG LI NE |\ 4 4 vy i a1

) w! RULTIE, HEADI NG - 1 RECORD BIEFORE ADVANC (NG 12 Ly NES e | 4 4y 141y

Figure 44. Sample Program #3 Revised (Part3of 4)

PAGE
t

Form No. J28-1464

IBM COBOL PROGRAM SHEET bty

ETPROGRAN —— c aMpyE PROGRAM #3 REVISED SYSTEM 468 SHEET 4 o 4)

PROGRAMMER

4 6

1,3,0

SERALIE

DATE IDENT. 135 L ED 80
1
A 's

7i8 'lz 16 20 24 28 32 36 40=OL 44 48 S2 58 60 64 (1] 7!\
; s EAD - .
SITIAIR:J-I‘lL'()lnlplllllllllllIllllllllllllllllllldlI|lllllll‘llllLlllllJL
L1t IPEREORM (CALCULATI NS VAR NG MOMTHLY-PAAY, [FROM J580. S | .
L B BOLG,. GO UNT L L MOMTHL Y, (PAY 15 GREATIER THAM LGB GPBior 1 (o L
y S,PAIC - REIC .
ST S TOTALS ey ¢ 3 44 4 04 1Lt e
Wi £ ~BUGKET, /.S EQUAL S~ L~ OF - WEEKLY <P :
; Bk ET 1115 50, T Suth~ \TOT AL \OF, - MOM T HL V- PA
L~ BU G 1,5, 58, 0 S - L= OF- -\P,
Lo MONVE | TABLE VALVES, ARE CORRECT T MESSHBEL L L\ (v 11 a 1y
|‘_|_:Q|I|ﬂ,|é&_ml‘5|5||nnnlu-.1.:.1.11-.1¢4111n441.1n-||11||||||11..»1
MOViE | E ALY, N OT, G, ECT\ T E,5.5A,6\E.

L WRLTE MESSAGE-~RECORD AETIER ADVANMCIMNG 2, L IMESI < v 1 4 11131100 1,

Lo CLOSE SALARYEFLE v sy

L SITIOP RGMay 4 0 s iy s by e e v ey

CALCULAT L OMSier 1 0 v a3 0 b0 s i L e et
E,_WE - =13 K MON - /4l

L1 COMPUTIE VMUAIL-PAY (=1 102 % MONTHLYI-PAY 4 v g 0010131 a1

L |‘IMQIV|§ WEEKG Y~ PAY: (TiO WEEKLY - DETALLSOLNE | ¢ 0 3 3 8 i
\ MON.E) MONMT HIL -1 PAY T TIO MOMTHILY - DETA L= LME | 41 L et g1 .
L1 MOWVIE AWMUk -1 PAYs (TiO AMMY AL DET AL B NE L i e e
L1 ADD, WEEKLY - PAY 1Ti0) HASH ~TOTML - COUMTER-WMEEKEYs 1 1 3 v 1 o0 v a1 311t
: HL Y PAY, (T - L= COUMTIER, - L
) VAL~ St - Li- COWMTERI- ANNMY,
b WRITE SALMRYI-RECORD -y 4 4 0 3 1 4y 0 s e e i

Figure 44. Sample Program #3 Revised (Part 4 of 4)

45

ACCEPT 22
Acknowledgment 4
ACTUAL KEY i 19
Added Elective Elements of the Data Division 21
Added Elective Elements of the Procedure Division. 26
Additional COBOL Words. 29
Aids, Programming............. 40
Alter Statemento 42
Arithmetic Verbs......... 41
ASSIGN ... e 10
Block Character-Count Field 12
BLOCK CONTAINS 15
Card Read-Punch Records. 13
Character Sets 29
Class Conditions. 29
Clause Descriptions (File Section) 18
COBOL Language. 5
COBOL Language Notation 5
Conditional Statements 25
Configuration Section. 7
Constant and Working Storage Sections. 21
Continuation of Alpha Literals. 29
CONTROL-SEQUENTIAL Access 18
Creation Date. 16
Data Division. 12
Data Division Language Specifications. 13
Date Card. 16
Declaratives 21
Deferred Elements of the Data Division 21
Deferred Elements of the Environment Division. 11
Deferred Elements of the Procedure Division. 27
Device-Names 8
Disk-Storage Device-Names............. 11
Disk Trailer Labels. 20
DISPLAY 22
Division, Data 12
Division, Environment. 7
Division, Identification 7
Division, Procedure 21
ENTER 22
Environment Division 7
Exponents 25
FDfilename. 15
Figurative Constants 29
File-Control Paragraph 9
File-Description Entries. 14
File-Description Entry—Punched-Card Files. 17
File-Description Entry—Tape Files. 15
File Section. 14
Form-1Records 12
Form-2 Records 12
Form-3Records 12
Form-4 Records 12
General Information. 29
Header Label Identifier. 16
HIGH VALUE(S). 29
M 1401/1311 cosor Programming 7
I-O-Control Paragraph. 11
Identification Division. 7

46 Disk COBOL Specs.

If Statement | 41
Input-Output Section. 9
Input/Output Verbs 42
Label Information (Header Label Records)........ 16
LABEL RECORD(S). 15
LOW-VALUE(S) e 29
Machine Requirements 5
Magnetic-Tape Device-Names 11
Mass-Storage Files. 17
MEMORY SIZE (Object Computer). 8
Move Verbo 40
Nested Conditional IF Statements 26
NO-CONSOLE-PRINTER 8
NO-DIRECT-SEEK 8
NO-MULTIPLY-DIVIDE i . 8
NO-OVERLAP 8
NO-PRINT-STORAGE\ 8
Object-Computer Paragraph. 7
OPEN 23
Optional COBOL Words 42
Perform Statement 42
Printer Records. 13
Procedure Division. 21
Programming Considerations 40
Punched-Card Device-Names 10
QUOTE(S) . ..o 29
RANDOM Access. i i 17
READ ... 24
Record Character-Count Field 12
RECORD CONTAINS 15
Record-Description Entries. 20
Record Formats for Disk Files, 13,19
Record Formats for Tape Files. 12
Record Formats for Punched-Card Files.. 13
RECORDING MODE 15
Reference Formats 29
RETENTIONCYCLE 17
Sample Problem. 37
SEEK 24
SELECT 10
SEQUENTIAL Access 18
SIZE . . 20
Source-Computer Paragraph 7
Special-Names Paragraph 8
STOP 24
Subroutines, Object Time 49
Switch-Names and Conditions 9
SYMBOLIC KEY. 19
Tables 40
Tape Trailer Labels16
Technique, Programming 40
THRU Option. 21
Today’s Datec.... ... 16
VALUE . 21
Word Lists . . .o oo 29
Word Marks 40
Working Storage Section (Data Division). © 21
WRITE . 25

C24-3235-2

EN

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

Z=GETE=PTD "$'°S N UL PAHULLG 09| ‘OFFL ‘LOFL WEI

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	xBack

