
Systems Reference Library

COBOL (on Disk) Specifications
IBM 1401, 1440,and 1460

This publication is intended for programmers who
have a basic knowledge of COBOL programming. It in
cludes the additional specifications necessary to write
a COBOL program for the IBM 1401, 1440, and 1460 Data
Processing Systems with disk storage.

Specific examples show how many COBOL statements
are coded. A general explanation of these statements
is also given.

A sample problem shows entries for all divisions.

File Number GENL-24
Form C24-3235- 2

This publication is a major reVlSlon of form C24-3235-1 and
obsoletes it and prior editions. In addition to incorporating in
formation released in Technical Newsletter N24-0293, addition
al infonnation concerning programming considerations is pro
vided.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
A form is included at the back of this manual for readers' comments. If this form has
been removed, address comments to: IBM Corporation, Product Publications, Dept. 245,
Rochester, Minn. 55901.

© 1964 by International Business Machines Corporation

Contents

The COBOL Language . 5
Machine Requirements . 5
COBOL Language Notation. 5

IBM 1401, 1440, and 1460 COBOL Programming. . 7

Environment Division. 7
Configuration Section . 7
Input-Output Section. 9

Data Division 12
Record Formats for Tape Files. .. 12
Record Formats for Punched-Card Files. 13
Record Formats for Disk Files. .. 13
Data Division Language Specifications. 13
File Section. .. 14
The Constant and Working-Storage Sections. 21

Procedure Division .. 21

General Information 29
Character Sets. .. 29
Figurative Constants .. 29
Word Lists " 29
Class Conditions. .. 29
Continuation of Alpha Literals. 30

Reference Formats .. 30

Sample Problem " 37

Programming Considerations 40
Aids '" ·1:0

Techniques .. 40
Area Allocation in the Data Division. 40
Tables..... 40
Move Verb .. 40
If Statement. .. 41
Arithmetic Verbs. .. 41
Perform and Alter Statements .. 42
Input/Output Verbs .. 42
Optional COBOL Words......... 42
Object Time Subroutines .. 42

Index 46

Acknowledgment

In accordance with the reql:lirements of the official government
manual describing COBOL-1961 extended, the following extract
from that manual is presented for the information and guidance
of the user:

"This publication is based on the COBOL System developed in
1959 by a committee composed of government users and com
puter manufacturers. The organizations participating in the orig
inal development were:

Air Material Command, United States Air Force
Bureau of Standards, United States Department of Commerce
Burroughs Corporation
David Taylor Model Basin, Bureau of Ships, United States

Navy
Electronic Data Processing Division, Minneapolis-Honeywell

Regulator Company
International Business Machines Corporation
Radio Corporation of America
Sylvania Electric Products, Inc.
UNIVAC Division of Sperry Rand Corporation
"In addition to the organizations listed above, the following

other organizations participated in the work of the Maintenance
Group:

Allstate Insurance Company
The Bendix Corporation, Computer Division
Control Data Corporation
E. I. DuPont de Nemours and Company
General Electric Company
General Motors Corporation
Lockheed Aircraft Corporation
The National Cash Register Company
Philco Corporation
Standard Oil Company (New Jersey)
United States Steel Corporation

"This manual is the result of contributions made by all of the
above-mentioned organizations. No warranty, expressed or im
plied, is made by any contributor or by the committee as to the
accuracy and functioning of the programming system and lan
guage. Moreover, no responsibility is assumed by any contribu
tor, or by the committee, in connection therewith.

"It is reasonable to assume that a number of improvements
and additions will be made to COBOL. Every effort will be made
to insure that the improvements and corrections will be made in
an orderly fashion, with due recognition of existing users' invest
ments in programming. However, this protection can be posi
tively assured only by individual implementors.

"Procedures have been established for the maintenance of
COBOL. Inquiries concerning the procedures and the methods
for proposing changes should be directed to the Executive Com,
mittee of the Conference on Data Systems Languages.

"The authors and copyright holders of the copyrighted ma
terial used herein: FLOW-MATIC (Trade-mark of Sperry Rand
Corporation), Programming for the UNIV AC® I and II, Data
Automation Systems © 1958, 1959, Sperry Rand Corporation;
IBM Commercial Translator, Form No. F28-8013, copyrighted
1959 by IBM; FACT, DSI 27 A5260-2760, copyrighted 1960 by
Minneapolis-H.oneywell, have specifically authorized the use of
this material, in whole or in part, in the COBOL specifications.
Such authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar publications.

"Any organization interested in reproducing the COBOL report
and initial specifications in whole or in part, using ideas taken
from this report or utilizing this report as the basis for an in
struction manual or any other purpose is free to do so. However,
all such organizations are requested to reproduce this section as
part of the introduction to the document. Those using a short
passage, as in a book review, are requested to mention 'COBOL'
in acknowledgment of the source, but need not quote this entire
section."

The programmer's responsibility in preparing a COBOL

program is to:

1. Identify the program.

2. Specify the features and devices of the IBM 1401,
1440, or 1460 Data Processing System that will be
used to compile and execute the resultant machine
language object program.

3. Describe the data to be processed.

4. State the procedure to process the data.

The programmer uses the characters, words, and ex
pressions that make up the COBOL language. He writes
them according to a standard reference format that is
outlined on the COBOL program sheet (Form X28-1464).
This standard coding sheet is used with all IBM COBOL

systems to record the source program.

The COBOL source-program card deck is punched
from these coding sheets. These cards make up the
COBOL source-program card input to the COBOL proc
essor.

Machine Requirements

To process a COBOL source program, the following min
imum machine configurations are specified.

An IBM 1401 system with:
4,000 positions of core storage
Advanced Programming Feature
High-Low-Equal Compare Feature
One IBM 1311 Disk Storage Drive with an IBM 1316

Disk Pack
One IBM 1402 Card Read-Punch
One IBM 1403 Printer.

An IBM 1440 system with:
4,000 positions of core storage
Indexing and Store Address Register Feature
One IBM 1311 Disk Storage Drive with an IBM 1316

Disk Pack
One IBM 1442 Card Reader
One IBM 1443 Printer.

An IBM 1440 system with:
8,000 positions of core storage
Indexing and Store Address Register Feature
One IBM 1301 Disk Storage
One IBM 1442 Card Reader
One IBM 1443 Printer

The COBOL Language

An IBM 1460 system with:
8,000 positions of core storage
Indexing and Store Address Register Feature
One IBM 1311 Disk Storage Drive with an IBM 1316

Disk Pack, or one IBM 1301 Disk Storage
One IBM 1402 Card Read-Punch
One IBM 1403 Printer.

The system on which the object program is to be
executed must have:
1. A card reader or a disk file to load the object pro

gram resulting from the Autocoder assembly.
2. Sufficient core storage to contain the program gener

ated by the COBOL processor. If the object program
requires more than the available core-storage ca
pacity, either the program must be executed in sec
tions (overlays) or the job must be divided into

multiple runs. This requirement is a significant
consideration when planning to implement COBOL

on a system with 4,000 positions of core storage.
3. The input and output devices defined in the FILE

CONTROL paragraph.
4. Sense switches if they are referred to in the SPECIAL

NAMES paragraph.

5. The expanded print-edit feature when any of the
following COBOL editing functions are used:
a. High-order CR or minus signs and high-order

DB or plus signs.
b. Floating plus and minus signs, and floating dol

lar signs.
c. Check protection (asterisk fill) .
d. Decimal suppression for blank or zero fields.

COBOL Language Notation

The entire COBOL language is described in detail in
the SRL publication COBOL General Information
Afanual (F28-8053). COBOL (on Disk) Specifications
for IBM 1401,1440, and 1460 contains additional infor
mation that enables the programmer to apply the
COBOL language to the IBM 1401, 1440, and 1460.

Throughout this publication, basic formats are pre
scribed for the various verbs, clauses, entries, and other
essential elements of the COBOL language. These are
generalized formats intended to guide the programmer
in writing his own statements. These rules of notation
must be followed:

5

1. All words printed entirely in capital letters are
COBOL words. They have preassigned meanings in
the COBOL system. For example: IDENTIFICATION

DIVISION. When the COBOL processor sees these two
words, it notes the beginning of the identification
of the program.

2. All underlined words are required unless the por
tion of the format containing them is enclosed in
square brackets. Square brackets [] indicate an
optional portion of a COBOL format. Underlined
words are key words. If any key word is missing
or misspelled, it is considered an error in the pro
gram. For example:

SEEK file-name RECORD

is the COBOL format for the SEEK verb. The program
mer may write either of the following entries as
suming that PAYROLL is the file-name.

SEEK PAYROLL RECORD

SEEK PAYROLL

SEEK is a key word and must be included. How
ever, RECORD is an optional word and may be omit
ted if the user so chooses.

3. All COBOL words not underlined may be included
or omitted at the option of the programmer. These
words, called optional words, are used only for
the sake of readability. Misspelling constitutes an
error.

4. All lower-case words represent information that
the programmer must supply. The nature of the
information required is indicated. In most instances,
the programmer must provide an appropriate data
name, procedure-name, or literal. For example,
file-description format is

FD file-name

The programmer writes
FD ACCOUNTS-RECEIVABLE

ACCOUNTS-RECEIV ABLE has been used as the file
name for this file-description entry.

6 Di.sk COBOL Specs.

5. Material enclosed in square backets can be used
or omitted as required by the program. For exam
ple, the format for the PERFORM verb is

PERFORM procedure-name-l [THRU procedure-name-.9J

The programmer can write one of the following
statements:

PERFORM GROSS PAY

PERFOR~I GROSS PAY THRU NET PAY

The first statement can be used to specify calcula
tion of gross pay. The second can be used to calcu
late gross pay and then net pay.

6. Braces mean that one and only one of the enclosed
items must be chosen. Other items are to be omit
ted. For example:

LABEL RECORD[S] ~ ARE t ~ STANDARD t 1 IS ~ 1 OMITTED ~

The statement LABEL RECORDS ARE OMITTED is cor
rect.

7. Punctuation, where shown, is essential. The pro
grammer can insert other punctuation in accord
ance with the rules outlined in this publication.

8. Special characters, such as the equal sign, are es
sential where shown, although they may not be
underlined.

9. In certain cases, a succession of operands or other
elements may be used in the same statement. In
such a case, the possibility is indicated by the use
of three dots following the item affected. The dots
apply to the last complete element preceding them.
Thus, if a group of operands and key words is en
closed within brackets and the closing bracket is
followed by three dots, the entire group (not merely
the last operand) must be repeated if any repeti
tion is required.

10. Restrictions and comments on each basic format
will be found in this publication. The formats
should not be used without reading the accom
panying text.

IBM 1401, 1440, and 1460 COBOL Programming

The COBOL source program has four major divisions.
Each division has its own set of statements, which are
written according to the rules established for the COBOL
language, as described in the IBM COBOL General In
formation ~lanual (F2B-B053). These division-state
ment sets must be arranged for presentation to the
1401, 1440, and 1460 COBOL processor in this order:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

The IDENTIFICATION DIVISION entries are written as
described in the mM COBOL General Information
Manual.

Environment Division
In this part of the COBOL source program, the program
mer specifies the physical characteristics of the par
ticular mM 1401, 1440, and/or 1460 system (s) to be
used to compile and to execute the object program.

The ENVIRONMENT DIVISION has two major sections,
each of which has a fixed section name: CONFIGURA
TION and INPUT-OUTPUT.

The 1401, 1440, and 1460 COBOL presentation format
for this is:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT -COMPUTER.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-O-CONTROL.

Configuration Section

The CONFIGURATION section has three paragraphs. The
SOURCE-COMPUTER paragraph names the system that
will compile the object program from the COBOL source
statements.

The OBJECT-COMPUTER paragraph names and de
scribes the system that will execute the object program.

The SPECIAL-NAMES paragraph equates: mnemonic
names to standard names for actual machine devices,

condition-names to standard names for the status of
actual machine switches, and Autocoder-names to
COBOL-names.

Source-Computer Paragraph
Reference Format

SOURCE-COMPUTER.
{

IBM-l40l}
IBM-1440 .
IBM-1460

This statement is required in all 1401, 1440, and 1460
COBOL source programs.

Obiect-Computer Paragraph
Reference Format

OBJECT-COMPUTER. {

IBM-140l}
IBM-1440
IBM-1460

(4000)
) 8000 ~
)

12000 (CHARACTERS
\ 16000)

. jTHROUGH t
MEMORY SIZE ADDRESS mteger 1 THRU ~

S :g~g}
) 12000
~ 16000

[NO-PRINT-STORAGE]

[NO-MULTIPLY -DIVIDE]

[NO-DIRECT-SEEKJ

[NO-OVERLAP]

[NO-CONSOLE-PRINTER] .

The OBJECT-COMPUTER paragraph describes the com
puter that will execute the object program. The
OBJECT-COMPUTER. mM-1401 (or 1440 or 1460) statement
without optional clauses defines an IBM 1401 (or 1440
or 1460) with 16,000 positions of core storage, the proc
essing overlap feature (1401 and 1460 systems only),
the input/output units required for the files defined in
the FILE-CONTROL paragraph, the direct-seek feature,
the multiply/divide feature, and print storage. If the
object machine has fewer than 16,000 positions of core

7

storage, and/or if any of these features are not present
in the object machine, the appropriate clause must be
included in the source program.

, 4000)
) 8000 \.
) 12000 (CHARACTERS
,16000)

. jTHROUGH t MEMORY SIZE ADDRESS mteger 1!!!illl f

f :g:}
) 12000
t 16000

This clause tells the processor how many positions
of core storage are available in the object machine and
the starting core-storage address of the object program.

If the programmer wishes the program to start at any
location other than 334, and if a printer is not to be
used as an output device, he can use the ADDRESS in
teger THRU option and write the numerical address of
this location in the integer portion. This number should
not be less than 334. If a printer is to be used as an out
put device, the program starts at location 469. If the
programmer wishes the program to start at any loca
tion other than 469, and if a printer is to be used as an
output device, the integer portion of the ADDRESS in
teger THRU option must be greater than 469.

If the MEMORY SIZE statement is omitted from the
COBOL source program, the processor assumes that the
object computer has 16,000 positions and starts the
object program at core-storage location 334.

[NO-PRINT-STORAGE]

[NO-MULTIPLY ..:DIVIDE]

[NO-DIRECT-SEEKJ

[NO-OVERLAP]

[r\O-CONSOLE-PRINTERJ .

These clauses tell the processor that the object ma
chine is not equipped with certain special features.

If either NO-PRINT-STORAGE or NO-DIRECf-SEEK is speci
fied, the IOCS generated instructions will not use those
machine features.

If NO-MULTIPLY-DIVIDE is specified, a subroutine will
be included in and used by the object program when
ever COMPUTE is used with *, /, or **, or whenever
MULTIPLY or DIVIDE is used. If the NO-MULTIPLY-DIVIDE
clause is not specified, the multiply/divide special
feature will be used by the object program.

The lXO-OVERLAP option must be included only if the
object computer is an IBM 1401 or IBM 1460 that does
not have the processing overlap feature.

8 Disk COBOL Specs.

If the system is 1440 or 1460, and if an mM 1447 is
included in the system, the No-CONSOLE-PRINTER option
will cause a SToP-literal statement to display the literal
itseH or its address in the B-address register. If this
clause is omitted, the literal will be displayed on the
console printer.

Special-Names Paragraph

Reference Format

SPECIAL-NAMES.

[device-name IS mnemonic-name

[devlce me IS mnernonic-name J] .
[Switch-name l g~F f STATUS IS condition-name

[l g~F f STATUS IS condition-name]

[swltch-Mme • • •]] •

[autocoder-name!§ cobol-name

[autocoder -name ..] J.
This paragraph equates: mnemonic names to the

standard names for actual machine devices, condition
names to the status of actual machine switches, and
Autocoder-names to COBOL-names.

Device-Names

The standard device-names for the IBM 1401, 1440, and
1460 systems indicate to the COBOL processor which de
vices are available in the object computer. They are
written with the mnemonic-name the programmer has
used to refer to them in the PROCEDURE DIVISION. This is
a list of device-names:

Device-Name Actual Device
1402-R, n 1402 Card Reader
1442-R, n 1442 Card Reader
1402-P, n 1402 Card Punch
1442-P, n 1442 Card Punch
1444-P 1444 Card Punch
1403-P 1403 Printer
1443-P 1443 Printer
1403-CT,11 1403 Carriage Tape
1443-CT, n 1443 Carriage Tape
1447-CP 1447 Console Printer

1401 and 1460 Device-Names. For the 1402-R and
1402-P device-names, n is a digit specifying the stacker
into which a carq is to fall. For the card reader it must
be a 0 (normal read), 1 (read select), or 2 (common).
For the card punch it must be 0 (normal punch), 4

(punch select), or 8 (common). If one of the digits is
not included with a 1402 device-name, the processor
assumes that the stacker desired is 1 for a read oper
ation and 4 for a punch operation. If n is coded, there
mus,t be a space between it and the device-name as in
1402-R,I.

1440 Device-Names. For the 1442-R and 1442-P, n
is the digit (lor 2) that specifies the unit (1442
Unit 1 or 1442 Unit 2) of the card read-punch to
which the device-name is assigned. If n is not specified,
the processor will assume Unit 1. If n is coded, there
must be a space between it and the device-name as in

1442-R, 1. 1444-P refers to the 1444 card punch unit 3.
For all systems, the printer is the assumed stand

ard output unit for use with the DiSPLAY verb. The
card reader is the standard input device for use with
the ACCEPT verb. However, if the IBM 1447 Console
Printer is equated with a special name, that unit may
be specified as an input or output unit (or both) with
the ACCEPT and DISPLAY verbs.

For the carriage tape device-name. n specifies which
channel in the carriage tape terminates a particular
carriage skip. It can be any number from 1 to 12. This
name is used with the ADV ANCIl'I:G option of the WRITE
verb (see Procedure Division). If n is not coded, the
processor assumes that the skip is to channel 1. If n is
coded, there must be a space between it and the
device-name as in 1443-CT, 3 or 1403-CT, 3.

Note: Punched-card input and'outpu.t devices should
not be used with both the DISPLAY and WRITE verbs in
the same program. The same restriction applies to
using these devices with both the ACCEPT and READ
verbs.

[autocoder-name IS cobol-name]

General Description: This statement enables the pro
grammer to write Autocoder statements that refer to
COBOL data-names and procedure-names (see ENTER).

If an Autocoder-name is used to refer to an area
that has been defined by a COBOL statement, the
COBOL name must be equated to the Autocoder
name.

Example: If TOTALS is a COBOL-name used to define
a COBOL area and the symbol TOTLS is used in an
Autocoder statement to refer to the same area, the
statement shown in Figure 1 must appear in the
SPECIAL-NAMES paragraph of the COBOL program.

I~IA :8 . T !" u n ~ M ~ .. q

[: : : :~":':: ~ :':~ ~q:~:~ ~ : : : " :
Figure 1. Equating an Autocoder-Name to a COBOL-Name

A symbol used as an Autocoder-name must meet
these requirements:
1. It must be five characters long.
2. It must begin with an alphabetic character.
3. It cannot contain a special character.
4. A blank cannot appear within the symbol.

The COBOL-name must be a non-qualified pro
cedure-name or data-name. It cannot be a condition
name.

Switch-Names and Conditions

General Description: A switch-name is written fol
lowed by the condition-names used to identify ON
STATUS and OFF STATUS.

The standard switch-names are:

5 witcll-N arne
1403-P-CB
1443-P-CB
1403-P-C9
1443-P-C9
1403-P-CV
1443-P-CV
1460-SS x
1401-55 x
1440-55 x

Indicates
Printer Carriage Busy
Printer Carriage Busy
Sense Carriage Tape Channel 9
Sense Carriage Tape Channel 9
Sense Carriage Tape Channel 12 (Overflow)
Sense Carriage Tape Channel 12 (Overflow)
Sense Switch
Sense Switch
Sense Switch

The x in the sense switch is the actual letter that
represents a specific 1401, 1440, or 1460 sense switch.
This must be a letter within the range A-G. There
must be at least one space between the switch desig
nation and the letter used for x. For example, 1401-
SS C.

The status of 1401, 1440, and 1460 switches may be
interrogated by expressions in the PROCEDURE DIVI

SION that use condition-names.
Examples: Figures 2 and 3 show examples of SPECIAL

NAMES paragraphs.

Input-Output Section
The INPUT-OUTPUT section has two paragraphs.

The FILE-CONTROL paragraph names each file, identi
fies its input or output medium, and assigns it to one
or more input/output devices.

File-Control Paragraph
Reference Format

FILE-CONTROL. SELECT /ile-name-l

ASSIGN TO device-name

[RESERVE l ~of ALTERNATE AREA[SU'

[SELECT , J.
9

Figure 2. 1401 and 1460 SPECIAL-NAMES Paragraph

Figure 3. 1440 SPECIAL-NAMES Paragraph

This paragraph names each file used in the source
program, identifies its media, and assigns it to an input
or output device. It also permits the programmer of
1401 and 1460 systems to specify an alternate input!
output area for magnetic tape files if the 1401 or 1460
has the processing-overlap feature.

SELECT file-name-l

Each file to be processed by the READ or WRITE verbs
in the PROCEDURE DIVISION must be named in a SELECT

file-name entry. This file-name must be unique within
the source program and must be described by a file
description entry in the DATA DIVISION of the source
program.

Example: Figure 4 shows a sample SELECT file-name
entry.

>' §A :8
7 • II .. 20 24 II 51 ,. 40 44 4'

' ,~ _ ,/oJIAD"AT,_,r.1 .LoII!.

Figure 4. SELECT

10 Disk COBOL Specs.

ASSIGN TO device-name-l

This clause is used to assign a file to an input or
output device-name. The device-names that are valid
in the FILE-CONTROL paragraph are:
Device-Name
1402-R, n
1442-R, n
1402-P, n
1442-P, n
1444-P
1403-P
1443-P
1311-D, d
1301-D, d
TAPE(S) U, a

Actual Device
1402 Card Reader
1442 Card Reader
1402 Card Punch
1442 Card Punch
1444 Card Punch
1403 Printer
1443 Printer
1311 Disk Storage Drive
1301 Disk Storage
729 or 7330 or 7335 Magnetic Tape Unit

Punched-Card Device-Names

The punched-card devices that are valid in the FILE

CONTROL paragraph are the card reader, the card
punch, and the printer.

For the 1402-R and 1402-P device-names, n is a
digit specifying the stacker into which a card is to fall.
For the card reader it must be a 0 (normal read), 1
(read select), or 2 (common). For the card punch it

must be 0 (normal punch), 4 (punch select), or 8 (com
mon). If one of the digits is not included with a 1402
device-name, the processor assumes that the stacker
desired is 1 for a read operation and 4 for a punch
operation. If n is coded, there must be a space between
it and the device-name as in 1402-R, 1.

For the 1442-R and 1442-P device-names, n is a digit
(lor 2) specifying the unit in which a file is to be
placed. If n is not coded, the processor assumes unit 1.
If n is coded, there must be a space between it and the
device-name as in 1442-R, 1.

Disk-Storage Device-Names

For disk files, 1311-D or IS01-D is the device-name.
It indicates that the file is to be assigned to either a 1301
or a 1311. For both the 1301 and 1311, the d specifies
the particular unit and can be any digit from ° to 4.
There must be a space between the comma and the
digit.

Example: Figure 5 shows an ASSIGN statement for a
1311 disk file.

:e
,2 II; 20 24 28 32 36 40 44 48

~.sS,16oA1 ,Tot:), IJ,I,1 -,D ,0,.

! I I ,I! ! I , , I L' ! I ! ! , ! 1 ! , I I I I , , ! ! I I , ! I I I , I , , , ! !

Figure 5. ASSIGN Disk-File

Magnetic-Tape Device-Names

For magnetic-tape files, TAPE(S) is the device-name.
It indicates that the file is to be assigned to a tape unit.
The u specifies the particular unit to be assigned. It can
be any digit from 1 to 6 with the 1401 or 1460. For the
1440, u can be 1 or 2. The a specifies that an alternate
unit is to be assigned. It can be any digit from 1 to 6
with the 1401 or 1460, but should not be the same digit
that is used for u. For the 1440, a can be 1 or 2, but
should not be the same digit that is used for u. The
same tape unit (or alternate tape unit) should not be
assigned more than once in a COBOL source program.
There must be a space between u and a.

Example: Figure 6 shows an ASSIGN statement for a
tape file.

32 36 40 44 41

I! ! I! I ! I ! I I I! ! I " ,

Figure 6. ASSIGN Tape-File

[RESERVE ~ ~O ~ ALTERNATE AREA[S]].

This statement reserves one or no alternate area for
a magnetic-tape file. One alternate area may be speci-

ned only if the object machine has the processing over
lap feature. If this clause is missing from the source
program, the processor reserves no alternate area.

Example: Figure 7 shows a sample RESERVE state
ment.

Figure 7. RESERVE

Note. In the SPECIAL-NAMES paragraph and the FILE

CONTROL paragraph, two unit-record files cannot be assigned
to the same device. For example, if the punch is defined in the
SPECIAL-NAMES paragraph, it cannot be defined again in the
SPECIAL-NAMES paragraph, nor can it be defined in the FILE
CONTROL paragraph.

I-O-Control Paragraph

Reference Format

I-O-CONTROL.

~ TYPE-A-LABEL !
APPLY I TYPE-B-LABEL ON file-name [APPLY .. J .

TYPE-C-LABEL

The I-O-CONTROL paragraph is used to specify the
type of the label records for tape files.

Type-A, -B, and -C label records contain 120, 80,
and 84 characters, respectively. The file-name refers to
the file-name assigned to the file in the associated FD
entry.

Example: Figure 8 shows a sample APPLY statement.

Figure 8. APPLY

Deferred Elements of the Environment Division

Several elements described in the COBOL General In
formation Manual are not contained in this COBOL proc
essor. These should not be coded in the ENVIRONMENT

DIVISION entries for a 1401, 1440, or 1460 COBOL pro
gram. They are stated here for reference.

1, The OPTIONAL option of the FILE-CONTROL para
graph.

2. The MULTIPLE REEL option in the FILE-CONTROL para
graph and all other features that provide for auto
matic assignments of tape units for a file.

3. The RENAMING option of the FILE-CONTROL para
graph.

11

4. The entire copy option. (The library tape for the
1401 COBOL processor does not presently support
the copy feature.)

4. The RERUN option of the I-O-CONTROL paragraph.

Not Applicable

The ASSIGN option of the OBJECf-COMPUTER paragraph.

Data Division
Each file, record, and data item is described within
a program by writing data-description entries in the
source program. Every data-name referred to in the
PROCEDURE DIVISION except figurative constants must be
described in the DATA DIVISION. Items and records are
described by record-descriptiO'n entries, and files are
described by file-description entries (MD and FD en
tries).

Detailed information a bout record formats is pre
sented in the SRL publications Input/Output Control
System (on Disk) for IBM 1401/1460: Specifications
(C24-1489) and Input/Output Control System for IBM
1440: Specifications (C24-3011). General information is
presented in the following sections.

Record formats for Tape files

Form-l Records
Form-l tape records are fixed length, unblocked, with
or without record marks. Fixed-length implies that all
records in the file have the same number of characters.
Unblocked means that one data record is contained in
one tape record. A record mark (+) is a special char
acter written at the end of a data record to indicate
that the preceding character is the last record charac
ter. If input records are form-l but are to be written
as output in form-2 or form-4, they should have record
marks. Otherwise the use of record marks is optional.
Tape records are physically separated by a section
of blank tape called an Interrecord Gap (IRG). Fig
ures 9 and 10 show examples of form-l records with
and without record marks.
,

I *' I

Form-2 Records
Form-2 records are fixed length, blocked, with record
marks, and with padding of short-length blocks.
Blocked means that more than one data record is con
tained in one tape record (two or more data records
occupy the space between two interrecord gaps).
Record marks must be used to separate the data rec
ords.

Padding means that nines (9's) are used to fill the
last block for a file if there are not sufficient data
records to fill it. Thus, a fixed-length block will always
contain the same number of characters, but a padded
record (s) will be substituted if there are not enough
data records to fill the last block.

Figure 11 shows fixed-length, blocked tape records
with record marks and padding. Each block contains
four records.

Form-3 Records
Form-3 records (variable unblocked) are not permitted
with COBOL.

Form-4 Records
Form-4 tape records are variable-length, blocked, with
record marks and a Record Character-Count (RCC)
field in each record, and a Block Character-Count
(BCC) field in each block. Variable length implies that
all the records in a file do not contain the same num
ber of characters.

Block Character-Count Field

A four-character field at the beginning of each block
contains a count of the total number of characters in
the block (including the block character-count field it
self). The BCC field has AB zone bits (IBM card code
12-punch) over the units position. This count is used
to check wrong-length record conditions.

Record Character-Count Field

A record character-count field of three characters in
each record contains a count of the number of charac-

*' I 4: I

~ R Record 1 R Record 2 R Record 3 R
)

G G G G ~
Figure 9. Fonn-1 Records with Record Marks

Record 1 Record 2 Record 3

Figure 10. Fonn-1 Records without Record Marks

12 Disk COBOL Specs.

14------- Block 1--------..
Figure 11. Fonn-2 Records with Padding

ters in that record, including the RCC field itself and
the record mark. This field must be in the same rela
tive position in each record (the character size of each
C1 in Figure 12 is the same). Figure 12 shows the rec
ord format for a form-4 record.

Note: For form-2 and form-4 records, it is the pro
grammer's responsibility to place all record marks in
the file-description entries, and in the work areas,
where applicable.

Record Formats for Punched-Card Files

Card Read-Punch Records

Records of files assigned to the card reader and the
card punch must be eighty characters long, unblocked,
and mayor may not have record marks in the 80th
character position (card column 80). This is equivalent
to the form-1 record described previously.

Printer Records

Records of files assigned to the printer must also have
form-1 record format. For the printer the fixed record
size must be equal to the number of print positions on
the printer. A maximum of 132 print positions is used
by the COBOL compiler.

Record Formats for Disk Files
COBOL can process disk records that are fixed-length
unblocked (form-I), fixed-length blocked (form-2), or
variable-length blocked records (form-4). The maxi
mum size of a record is 999 characters. Figure 22 shows
the record forms permitted for each type of access
mode.

1

1

To process blocked records, the COBOL processor re
quires the following.

1. A block may contain a maximum of ten records for
random files, one hundred for sequential files, and
thirty for control-sequential files.

rCl~ rCl~
, I

* I : I B : R : I I
R C I C I I I

G : C: I I C I I

14------- Block 2 -------.-.1

2. In blocked files, each record in every block must
contain a record mark as its last character.

3. For variable-length records, a block-length field
must be included in each block, and a record-length
field in each record (see Figure 13).

As the name implies, block length is the total num
ber of characters in the block, including itself and
record marks. The block-length field must always
be recorded in the first four positions of the block.
When output records are created by COBOL, this
count is generated automatically.

Record length .is the total number of characters in
the record, including itself and the record mark. The
record-length field is a three-position field and must be
located in the same three positions within each record
in the file.

Figure 13 shows examples of the various types of
disk records that this COBOL processor can handle.

Data Division Language Specifications
The DATA DIVISION of a COBOL source program is di
vided into three major sections:

FILE SECfION.
WORKING-STORAGE SECTION.
CONSTANT SECTION.

The FILE SECTION describes the input and output files
with respect to content and organizational format. It
has two major subdivisions: the file-description entry
that specifies the physical characteristics and organi
zation of the input and/or output data and the record
description entry that describes the individual items
contained in the file records.

The WORKING-STORAGE SECTION describes the areas of
core storage where intermediate results and other
items are stored temporarily at object-program execu
tion time.

The CONSTANT SECTION describes fixed items of data
which remain unchanged during the running of the

r c 1\2i1
*

T 1

* I I I I I
I I R
I I

G I I

1III~t------ Record 1 ----........ 1 • ..-.----- Record 2 --------t.~I •• -- Record 3 --J~
~~~-------------------------------Block-------------------------------~~ 

Figure 12. Fonn-4 Records 

13 



(Fixed-Length) 
FILE A. FORM-1 8O-CHARACTER UNBLOCKED RECORDS 

mm--------------f0IT8'·El~ 

80 - Character Record 80 - Character Record 

(Fixed-Length) 
FILE B, FORM-l 175-CHARACTER UNBLOCKED RECORDS 

175 - Character Record 
S 
A (First 100 Characters) 

(Fixed-Length) 

FILE C, FORM-2 7O-CHARACTER RECORDS 

70 - Character Record 
70 - Char, 
(First 30 
Characters) •. 

(Last 75 Characters) 

TO A BLOCK 

Record 
(Last 40 
Characters) 

70 - Character Record 
(First 60 Characters) 

175 - Character Record 
(First 100 Characters) 

Last 
10 70 - Character Record 

Char 

FILE D FORM-4 VARIABLE-LENGTH BLOCKED RECORDS (LARGEST BLOCK - 300 CHARACTERS; LARGEST RECORD - 296 CHARACTERS) 
< ...... 

50 - Character 66 - Character Record 40 - Character 65 - Character 
•......... 

Record 45 - Character 3OUrius.,<i 

~I S B Record Record 
A L I I I I I I 

L RL L RL L RL 

40 - Character 40 - Character 91 - Character Record 
S B Record Record 
A L I I I I 

LRL LRL 
SA - Sector Address 

G - Gap Between Sectors 

Figure 13. Schematic Records on Disk 

S 
I GA 
LRL 

BL - Block-Length Field 
RL - Record-Length Fie Id 

object program. A date, for example, might be a fixed 
item, or a constant. 

The COBOL presentation format for the DATA DIVISION 

is: 

DATA DIVISION. 

FILE SECTION. 
File-Description Entries and 
Record -Description Entries 

WORKING-STORAGE SECTION. 
Record -Description Entries 

CONSTANT SECTION. 
Record-Description Entries 

14 Disk COBOL Specs. 

Record 
I I 11 G 

LRL LRL 
• 

35-Char'I.·. 30 - Char. 60 Un~d 
Record S Record 

I I GA I I I ........ . ...........•...... G 

LRL LRL 

File Section 
The file-description entries and record-description en
tries describe the files to be processed by the object 
program. The file-description entries are of two major 
types: those that involve the disk-storage unit and 
those that involve other input or output media. 

File-Description Entries 

A file-description entry mu_st be written for each file 
to be processed by the object program. It includes spe
cifications for the mode in which the file is recorded, 
the record and block size, label record information, 
and the names of the data records that make up the file. 



File-Description Entry-Tape Files 

This format is used to describe magnetic tape files. 
Reference Format 

FD file-name [RECORDING MODE IS mode] 

'BLOCK CONTAINS inte er-l ~ RECORD[S] t 1 
~-- g 1 CHARACTER[S] U 

GmCORD CONTAINS [integer-2 TO] 

integer-3 CHARACTER[S~ 

~ ARE t ~ STANDARD t 
LABEL RECORD[S] 1 IS ~ I OMITTED ~ 

[VALUE OF data-name-l IS literal [data-name-2 IS .. J] 
DATA RECORD[S] 1 tsRE ! data-name-3 [ data-name~. 

Note: A VALUE clause is required when LABEL REC

ORDS are standard. 

FD file-name 

The level indicator identifies the beginning of the 
file-description entry and precedes the file-name as
signed by the programmer. (Example: Figure 14.) 

24 28 32 36 40 44 48 

Figure 14. FD File-Name 

[RECORDING MODE IS 1] 
This clause specifies the mode in which the file is 

recorded. A 1 indicates the move mode, even-parity. 
RECORDING MODE 1 is the only recording mode imple
mented by this COBOL processor. 

'BLOCK CONTAINS inte er-l ~ RECORD[S] tl L-- g I CHARACTER[S] U 

This clause must be included if more than one data 
record is included in a tape record (other than form-I). 
It indicates the size of the block in records or charac
ters. The size may be stated in terms of RECORD(S) for 
form-l or form-2 records where integer-l is the num
ber of data records in the block. 

The size must be stated in terms of CHARAcrER(S) 

for form-4 records where integer-l is equal to or 
greater than the number of characters in the longest 
block of the file. This number includes the four-char
acter block count field (BCC). See also Form-4 Records. 

Example: The largest block in the PAYRLMASTR file 
contains 500 characters plus the Bec field (Figure 15). 

>-

8 A :e 
7 8 12 16 20 24 28 32 36 40 44 48 

«,« , , «, , I 

Figure 15. BLOCK CONTAINS 

[RECORD CONTAINS [integer-2 TO] 

integer-3 CHARACTER[S] ] 

The RECORD CONTAINS clause may be used to specify 
the number of characters in the data records. Because 
the record-description entries define the size of each 
data record, this clause is never necessary. However, 
if the programmer wishes to include it, integer-2 speci~ 
fies the number of characters in the smallest record in 
the file, and integer-3 specifies the number of char
acters in the largest record. 

Fixed-length records must be specified using integer-
3 only. Variable-length records are specified by using 
both integer-2 and integer-3. 

Example: The records for a certain file are variable 
length. The smallest record size is 75 characters; the 
largest is 86 characters (Figure 16). When levels are 
defined in the FD, 86 must be defined before 75. 

Figure 16. RECORD CONTAINS 

Note: Both the block count and the record count 
must include the record mark ( *) in the count. 

~ ARE t ~ STANDARD t 
LABEL RECORD[S] 1 IS ~ I OMITTED ~ 

This required clause states whether header and 
trailer label records are standard or omitted. This COBOL 

processor can handle only standard type-A, type-B, 
and type-C tape labels and standard disk labels. For 
punched-card files the OMITTED option must be used. 

Example: Figure 17 shows a LABEL RECORD entry for 
a punched-card input file. 
I-' 

8A :8 
16 20 24 7 8 12 28 32 36 40 44 48 

:Io.<l.RoFoi n~~ ~.A." ,A,DoE ft - ~" 

Figure 17. LABEL RECORDS 

15 



Today's Date 

if standard label records are specified for output files, 
today's date must be in core storage at object-program 
execution time. 

To enter the current date in the object program, 
insert a date card just ahead of the -EX card produced 
by the Autocoder processor. The EX card is the last 
card in the object program. The format for the date 
card is: 

Columns Punch Description 

1-3 082 Storage Location 
4-5 05 Number of Characters 
6 0-5-8 Word Separator 
7-11 xx xxx Today's Date 

YRDAY 

r L VALUE OF data-name-1 IS literal [ data-name-2 IS .. J ] 
The COBOL programmer may specify the items of in

formation that appear in the label records of tape files. 
These items must be supplied by using a VALUE OF 

clause if standard tape header-label records are used. 

Data-name is the name of a field contained in the 
header label record; literal refers to the contents of the 
field. Figure 18 is a chart showing data-names and 
lengths of fields used in standard tape header label 
records. 

COMPLETE CHECKING 

LABEL RECORD INPUT OUTPUT 
FiElD A B C A B C A 

IDENTIFICATION 10 10 18 10 10 18 10 

Lobe/Information (Header Labe/ Records) 

The 22-character label-information field in 120-char
acter label records contains these fields: 

Field Name 
Density 
Check Sum 
Block Sequence 
Tape Checking Technique 
Tape Data Recording , 

Technique 
Tape Data Processing 

Technique 
Creating System 

Number of 
Characters 

1 
1 
1 
1 

1 

1 
4 

Type of 
Characters 

Numeric 
Numeric 
Numeric 
Numeric 

Numeric 

Numeric 
Numeric (1401, 1440, 

or 1460) 
Record Format 1 Alphanumeric 
Record Length 5 Numeric 
Blocking Factor/Size 5 Numeric 
Check Point 1 Numeric 

The 6-character label information field in 84-character label 
records contains a blank and five numeric characters. 

Tape Trailer Labels 

The following information is contained in IBM standard 
trailer labels: 

Positions Contents 
TYPE-A-LABELS 1-5 1 EORb 
(120 characters) 1 EOFb 

67-72 XXXXXX (Block Count) 
TYPE-B-LABELS 1-5 1 EORb 
(80 characters) lEOFb 

6-10 XXXXX (Block Count) 
TYPE-C-LABELS 1-6 1 EOR bb 
(84 characters) 1 EOFbb 

PARTIAL CHECKING 7-12 XXXXXX (Block Count) 

INPUT OUTPUT 
B C A B C 

10 18 10 10 18 
(or 10) A/N A/N A/N A/N A/N A/N A/N A/N A/N A/N A/NA/N 

CREATlON- 5 5 5 
DATE N N N 

** 
RETENTION- 4 3 3 4 
CYCLE N N N N 

*** 
FILE-SERIAL- 5 5 5 5 
NUMBER N N N N 

** REEL-SEQUENCE- t4 +3 t4 t4 
NUMBER N N N N 

LABEL- * 22 A6 * 22 
INFORMATION A/N A/N A/N 

t If not present, 001 or 000 1 will be assumed. 
* All 22 characters are checked. 

3 3 
N N 

5 5 
N N 

+3 +4 
N N 

66 
A/N 

** If the label type requires only 3 digits, the thousands position must be zero. 
*** The use of FILE-SERIAL-NUMBER implies full label checking for this file. 

ll. Optional but checked. 

Figure 18. Header Label Records for Tape Files 

16 Disk COBOL Specs. 

4 3 3 
N N N 



Figure 19 shows how the identification of a payroll 
master file is supplied. 

28 52 S. 40 44 41 

Figure 19. IDENTIFICATION 

Examples: Figure 20 shows how IDENTIFICATION and 
a retention cycle of 286 days are supplied for an out
put file. 

sa 40 41 

/ 

Figure 20. IDENTIFICATION and Retention Cycle 

j ARE t 
DATA RECORD[S] 1 IS ~ data-name-3 

Data-name-3, data-name-4, etc., must each be the 
subject of a record-description entry that has a level
number of 01. 

If the file contains more than one type of record, a 
different data-name must appear for each type. Data
name order is not important. 

Note: If one record is read from a given file and 
another is read from the same file, the second record 
replaces the first in the read-in area. Thus, if two 
records are needed for processing at the sa.me time, 
the first record must be saved by moving it to an
other area of storage (such as a work area) before the 
second record is read. 

Examples: Figure 21 shows a sample DATA RECORD 

clause. In this example, RECORDA and RECORDB are both 
records in the same file and are described in a record
description entry as level 01 records. 

'" ~A :8 
16 20 24 7 8 12 28 32 36 40 44 .1 

:0 ... ,..,. .... nr-/'",.. - o.JJ.,olL5 nr/" -"- 01".0_ 

, 

Figure 21. DATA RECORDS 

File-Description Entry-Punched-Card Files 

This format is used to describe punched-card files. 

FD file-name ~ECORDING MODE IS ~ 

[ 
j RECORD[S] 0 

BLOCK CONTAINS integer-1 1 CHARACTER[S] ~ 

[RECORD CONTAINS integer-3 CHARACTER(Sl] 

LABEL RECORD[S] 1 ~RE ~ OMITTED 

DATA RECORD(Sl l~}data-name-3 [data-name-4 J. 

Mass Storage Files 

With this COBOL processor, the term mass-storage file 
refers to any group of records read from, stored on, or 
written on a disk storage unit. 

Three reference formats exist that allow the user to 
specify random processing, control-sequential proc
essing, or sequential processing (see Access Modes). 

In anyone COBOL source program, a maximum of 
seven MD entries can be used. 

Random Access 

Reference Format 

MD file-name 

[RECORDING MODE IS SECTOR] 

PROCESSING MODE IS SEQUENTIAL 

ACCESS MODE IS RANDOM 

ACTUAL KEY IS data-name 

[SYMBOLIC KEY IS data-name ] 

FILE-LIMIT[S] l ~REf integer {~UGH f integer 

[ BLOCK CONTAINS integer 1 ~~~~g~~R[S] ~ ] 
[ RECORD CONTAINS integer CHARACTER[S] J 

LABEL RECORD[Sl j IS t j STANDARD t 
-- !J 1 ARE ~ 1 OMITTED ~ 

[ VALUE OF data-name IS literal [data-name IS ... J] 
DATA RECORD[S] l ~RE~ data-name [ data-name . .. ] 

17 



Control-Sequential Access 

Reference Format 

MD file-name 

[RECORDING MODE IS SECTOR] 

PROCESSING MODE IS SEQUENTIAL 

ACCESS MODE IS ~ CONTROL-SEQUENTIAL-A l 
1 CONTROL-SEQUENTIAL-B f 

FILE-LIMIT(SJ {~RE ~ integer {~UGH f integer 

[ 
. ~ RECORD[S] tJ 

BLOCK CONTAINS integer I CHARACTER[S] ~ 

[ RECORD CONTAINS integer CHARACTER [S] J 

LABEL RECORD[S] ~ IS l j STANDARD l 
-- 1 ARE ~ I OMITTED f 

[ VALUE OF data-name IS literal [data-name IS .. .J ] 

DATA RECORD[S] {~REf data-name [data-name . . oJ 

Sequential Access 

MD file-name 

[RECORDING MODE IS SECTOR] 

PROCESSING MODE IS SEQUENTIAL 

ACCESS MODE IS SEQUENTIAL 

FILE-LIMIT[S] ~ ~RE~integer~ =UGH f integer· 

I, . jRECORD[S] tl 
L~LOCK CONTAINS mteger lCHARACTER[S]U 

[RECORD CONTAINS [integer TO] 

integer CHARACfER[S]] 

LABEL RECORDrS' j IS l j STANDARD t 
L' ~ 1 ARE~ I OMITTED ~ 

[VALUE OF data-name IS literal [data-name IS ... JJ 
DATA RECORD[S] ~ ~RE~ data-name [data-name 00 oJ . 

18 Disk COBOL Specs. 

Clause Description 

The file-description entry clauses that have not been 
described previously are described here. 

[ RECORDING MODE IS SECTOR J 

A recording mode is significant only for mass-storage 
files. All files will be recorded and read without word 
marks. The key word SECTOR is used to 'specify the par
ticular disk-recording mode for a specific file. Data is 
read or written by sector (100 characters per sector). 

PROCESSING MODE IS SEQUENTIAL 

This clause is used to describe all mass-storage files 
for the IBM 1401, 1440, or 1460 Data Processing Sys
tems. The clause refers to the order of action of the 
access mechanisms. Because the 1311 has only one 
access mechanism, the access order is sequential. (Rec
ord 1 is retrieved, followed by record 2, etc., as called 
for by the object program.) 

RANDOM J CONTHOL-SEQUENTIAL-A } 
ACCESS MODE IS t CONTROL-SEQUENTIAL-B 

SEQUENTIAL 

This clause must be included in an MD entry and 
specifies the organization of the file. The terms RAN

DOM, CONTROL-SEQUENTIAL, and SEQUENTIAL apply to 
the means of retrieving and storing disk records. 

RANDOM 

In the RANDOM access mode, each record has a unique 
disk address. Records can be arranged in random order 
because the unique address can refer to only one rec
ord in the file. In a purely random file, one seek and 
one read per record is necessary. 

SEQUENTIAL 

In the SEQUENTIAL access mode, records are arranged 
in sequence by control field. They are stored in con
secutive locations in the disk-storage unit between 
addresses established by the user as the upper and 
lower limits of the file area. To process a sequential 
file, the program requires only the upper and lower 
limits of this file area. It begins with the first record 
and processes each record in sequence. 

CONTROL-SEQUENTIAL-A and CONTROL-SEQUENTIAL-B 

In the CONTROL-SEQUENTIAL access mode, records are 
stored with a blank (sequence-link) field appended to 
each record as it is loaded onto the disk pack. CONTROL

SEQUENTIAL-A refers to records without record marks; 



CONTROL-SEQUENTIAL-B refers to records with record 
marks. Records to be added to the file are written into 
a separate area of disk storage. The address of the 
added record is written in the sequence-link field of 
the record that sequentially precedes the added record. 
Similarly, a record can be deleted and the sequence re
established by placing the address of the following rec
ord in the sequence-link field of the preceding record. 
When the file is processed, the program checks the 
sequence-link of a record. If it is a blank, the next con
secutive disk location is read. However, if the sequence
link field contains an address, the program seeks and 
reads the record stored at that address. 

The length of the sequence-link field is a: 
1. Six-digit address, if the file is unblocked, or a 
2. Seven-digit address, if the file is blocked and the 

blocking factor is two to ten records per block, or a 
3. Seven-digit address with zone bits over the seventh 

position, if the file is blocked and the blocking fac
tor is eleven to thirty records per block, or an 

4. Eight-digit address, where the eighth digit identifies 
the record mark ( *). 
Standard six-digit addresses are used in an un

blocked file. A seventh digit (R) is added to the ad
dresses used with blocked files, when the blocking 
factor is two to ten records per block. These addresses 
are in the form SSSSSSR. The first six digits are the 
address of the first sector of the block. The seventh 
digit (R) designates the position of the record within 
the block. An eighth digit (R) is added for a record 
mark. These addresses are in the form SSSSSSRR. The 
first six digits are the address of the first sector of the 
block. The seventh digit designates the position of the 
record within the block. The eighth digit is used to 
identify a record mark. 

The COBOL processor handles the various disk rec
ord forms as shown in Figure 22. 

RECORD FORM PERMITTED? 

ACCESS MODE FILE TYPE 
FIXED - LENGTH VARIABLE-LENGTH 

UNBLOCKED BLOCKED BLOCKED 
(Form-I) (Form-2) (Form-4) 

RANDOM INPUT OR 
Yes Yes No INPUT - OUTPUT 

RANDOM OUTPUT Yes No No 

CONTROL INPUT OR Yes Yes No 
SEQUENTIAL INPUT - OUTPUT 

SEQUENTIAL INPUT Yes Yes Yes 

SEQUENTIAL OUTPUT Yes Yes Yes 

Figure 22. Record Fonnats for Disk Files 

The maximum blocking factor (number of logical 
records per block) is ten for random files, one hundred 
for sequential files, and thirty for control-sequential 
files. 

[ ACTUAL KEY IS data-name] 

This clause is required if the access mode of a mass
storage file has been specified as RANDOM. 

Data-name is the name given by the programmer to 
the core-storage field that will contain the disk address 
of the record currently being processed in a given file 
during execution of the object program. This field will 
be updated in one of two ways: 

1. By PROCEDURE DIVISION statements written by the 
source programmer. 

2. By statements developed by the processor from 
specifications given in the KEY-CONVERSION section in 
association with the USE verb. 

The format of the data-name field must be: SSSSSSR. 
The first six digits (SSSSSS) are the actual address of 
the disk sector where the block of records is stored. If 
the block of records covers more than one sector, the 
data-name field contains the address of the first sector. 
The seventh digit (R) indicates which record in the 
block is to be made available for processing. This digit 
(R) may be any digit 0-9. The digit 0 represents the first 
record in the block; the digit 1 represents the second 
record, etc. If the file consists of unblocked, random
access records, the seventh digit (R) must be o. 

[ SYMBOLIC KEY IS data-name] 

The SYMBOLIC KEY clause must be used only if a KEY

CONVERSION has been specified for a RANDOM file. If no 
KEY-CONVERSION has been specified, the SYMBOLIC KEY 

clause must be omitted. 

Data-name is the field operated on in the section that 
makes the KEY-CONVERSION (see Procedure Division). 
The SYMBOLIC KEY is the indirect reference to data
name. 

Example (Figure 23): To compute the address of any 
record needed by this program, the factor +3000 is 
added to the contents of the SYMBOLIC KEY field and the 
sum is divided by 25. The result is the ACTUAL KEY. 

(See Declarative section for a description of the USE 

verb.) 

Figure 23. KEY-CONVERSION 

FILE-LIMIT[S] ~ ~RE ~ integer ~ ~UGH ~ integer 

19 



These two integers are the sector addresses of the 
first and last physical records of the file. Each integer 
contains six numeric characters. 

If the RD LIN macro is used to redefine the file limits 
of the file, the new labels must not create the need for 
handling the cylinder-overflow condition if the file 
limits used at compile time did not imply cylinder 
overflow. 

Example: The lower and upper limits for a given file 
are 000199 and 002199. Figure 24 shows a correct FILE

LIMITS entry. 

1'"'1 ' 
1
8 A :8 
718 '2 16 20 24 28 32 56 40 44 48 r 1 1 1 ;;;/,L.6-,LrlM/1U'" )4.138 14rDa,lr'~" ITN1JilLA ,"dart,';., •• , 1 • I I 

I 1,1 !: ! , ,! ! I! I I I I ,! "I!! I I I I "'" I " I I" I I I I , , 

Figure 24. FILE-LIMITS 

[ VALUE OF data-name IS literal [ data-name IS ... ] ] 

The VALUE OF clause is used in a file-description 
entry if the file has standard label records. The follow
ing sets of keywords and descriptions of literals are 
used as entries of this clause. 

Data-Name 

{ :gENTIFICATION} 
CREATION-DATE 
RETENTION-CYCLE 
FILE-SERIAL-NUMBER 
FILE-SEQUENCE-NUMBER 
PACK-SERIAL-NUMBER 

Literal 

lO-character AN 

5-digit numeric 
4-digit numeric 
5-digit numeric 
4-digit numeric 
5-digit numeric 

Use of the PACK-SERIAL-NUMBER entry implies complete 
label checking for this file. 

The processor selects particular label-checking pro
cedures based upon the entries in the VALUE OF clause. 
The relations between the entries, the types of files, 
and the label-checking procedures selected are shown 
in Figure 25. 

Disk Trailer Labels 

The following information is contained in IBM standard 
disk trailer labels. 

Trailer Label 
(contains as many characters 

as the user's records) 

Record-Description Entries 

Positions 
1-5 

Contents 
1 EOR b 
1 EOFb 

This section supplements the clause descriptions given 
in the COBOL General Information Manual. 

20 Disk COBOL Specs. 

Complete Partial 
CHECKING Label Checking Label Checking 

ROUTINES SELECTED 
INPUT OUTPUT 

10 10 AN 10 AN 

CREA TlON-DA TE 5 

RETENTION-CYCLE 4 4 

F ILE-SERIAL-NUMBER *5 *5 

FILE-SEQUE NCE-NUMBER **4 **4 

PAC K-SER IAL-NUMBER 5 5 

* If not present, the pock-serial-number will be used. 
** If not present, 0001 will be assumed. 

Figure 25. Label Checking 

SIZE 

INPUT 

10 AN 

This clause tells the processor how many characters 
(or digits) the data item contains. The general refer
ence format for a SIZE clause is: 

[ [ 
~ CHARACTER[S] tJ] 

SIZE IS Gnteger-l TO] integer-2 1 DIGIT[S] ~ 

[ DEPENDING ON data-name ] 

This size is interpreted by the COBOL processor in 
terms of characters if either the optional word CHAR

ACTER[S] or DIGIT[S] is used or if neither of the op
tional words is used. 

To specify the sizes of variable-length records, 
(form-4) integer-l and integer-2 and DEPENDING ON 

data-name must be used. Integer-l specifies the num
ber of characters in the smallest record and integer-2 
specifies the number of characters in the largest record. 
DEPE~DING ON data-name identifies the elementary 
items whose value is the record character count (refer 
to Record Character-Count Field). Integer-l and DE

PENDING ON data-name may be used only with fonn-4 
records. 

Example: Figure 26 shows a SIZE entry for a fonn-4 
record which can contain from 50 to 150 characters. 
RECCOUNT is the data-name the programmer has used 
to identify the RCC field. 

52 56 40 44 48 

Figure 26. SIZE Variable Length 



The size of fixed-length records is specified by using 
the form: 

[ SIZE IS integer-2D ~~zrnR[Sl DJ 
where integer-2 is the exact number of characters con
tained in the record or item of data. 

Example: Figure 27 shows a SIZE entry for a fixed
length record whose size is 80 characters. 

'"' ~A :e 
16 24 7 8 12 20 28 52 36 40 44 48 

~S;/o2n ,/,,," ~,o ". ,I .n. ~-

, 

Figure 27. SIZE Fixed Length 

VALUE 

The general reference format for a VALUE clause is: 

[ ~ ~;~RE ~ literal-l [ THRU literal-2 ] 

[ literal-3 [ rnR U literal-4]. . J ] 
A VALUE clause can state the initial contents (VALUE) 

of a data item in the WORKING-STORAGE SECTION or CON

STANT SECTION. It can also be used to define the value 
of a condition-name (level-88 item) in the FILE SECTION 

and WORKING-STORAGE SECTION. 

If the VALUE clause is not used to define the initial 
values of WORKING-STORAGE ITEMS~ their contents at 
program execution time will be unpredictable. 

If the VALUE clause specifies a numerical literal~ an 
operational sign will be developed (placed over the 
units position of the numerical field), only if the literal 
is preceded by a plus or minus sign. A figurative con
stant may be used in the VALUE entry where a literal is 
specified. 

The THRU option is not described in the COBOL Gen
eral Information Manual. It may be used only with 
condition-names as shown in Figure 28. 

44 

Figure 28. THRU Option 

The Constant and Working Storage Sections 
The record-description entries described for the FILE 

SECTION apply also to the CONSTANT and WORKING

STORAGE SECTIONS. 

These sections begin with the header line WORKING

STORAGE SECTION or CONSTANT SECTION and are followed 
immediately by the record-description entries. 

Added Elective Elements of the Data Division 
These elective elements of the record-description 
entry are not specified in the COBOL General Informa
tion Manual, but are contained in this COBOL processor: 
1. The DEPENDING ON data-name and the TO integer-2 

options of the SIZE clause. 
2. The THRU literal-2 and the literal-3 THRU literal-4 

options of the VALUE clause. 
3. All entries on mass storage. 

Deferred Elements of the Data Division 
1. The COpy option is contained in the COBOL General 

Information Manual, but is not contained in this 
COBOL processor. 

2. The following editing functions cannot be specified 
by editing clauses or picture clauses: 
a. Editing of a single digit field. 
b. Single-position zero suppression. For example, Z9 
is incorrect but ZZ is correct. 

3. No item may exceed 999 characters. 

Not Applicable 
The USAGE, SIGNED, and SYNCHRONIZED clauses have no 
meaning in a 1401, 1440, or 1460 COBOL program and 
should not be used. 

Nate: A decimal insertion character cannot be used as the 
rightmost PIGrURE character. For example, the following 
entry will not be considered valid: 

02 NAME PICTURE Z,ZZZ,ZZ9. OCCURS 12 TIMES. 

Procedure Division 
The PROCEDURE DIVISION is the operational part of the 
COBOL source program. Once the data has been de
scribed, the programmer tells the COBOL processor what 
steps the machine must take to read the input data, 
process it, and write it as output on punched cards, 
magnetic tape, or a printed form. 

The COBOL verbs are the main elements in the PROCE

DURE DIVISION. They are described in detail in the 
COBOL General Information Manual. However, some 
verbs have special meaning when used in a 1401, 1440, 
and 1460 COBOL source program. This additional in
formation is presented in the following section. 

Decla ratives 
Reference Format. 
DECLARATIVES. 

Section-name-l SECTION. 

USE FOR KEY-CONVERSION ON 

~ ALL FILES t 
1 file-name [file-name] . . . ~ • 

Paragraph-name. Any procedure 8tatement(s). 

[ Section-name SECTION. USE ... ] 

END DECLARATIVES. 

21 



Declaratives are procedures that operate either under 
control of the main body of the PROCEDURE DIVISION or 
under control of the Input/Output Control System. 
They consist of sentences and associated procedures 
designed to give special information to the COBOL 
compiler. 

If declaratives are used in a COBOL source program: 

1. They must be grouped together and placed at the 
beginning of the PROCEDURE DIVISION, and 

2. The group of declaratives must be preceded by the 
key word, DECLARATIVES, and must be followed by 
the keywords, END DECLARA TIVES. 

Each declarative occupies a single section and 
must conform to the rules of procedure formation as 
described in the Procedure Division section of the 
COBOL General Information Manual. The source pro
grammer must write the DECLARA TIVES and END 
DECLARA TIVES entries beginning in column 8. 

The USE declarative is used in the 1401, 1440, and 
1460 COBOL to specify the KEY-CONVERSION procedure 
which is to be used for developing disk addresses. This 
enables the source programmer to supply his own con
version factors and techniques for obtaining disk ad
dresses. 

A USE declarative may be used to specify the KEY
CONVERSION for more than one file. Thus, if a general 
key conversion algorithm must operate on different 
data names for different files, the ACTUAL KEY and SYM
BOLIC KEY clauses may be used. These clauses appear 
in the MD entries of the DATA DIVISION. (See Mass
Storage Files.) Each MD that specifies the ACTUAL KEY 
and SYMBOLIC KEY clauses implies a USE declarative. 
The processor will associate the ACTUAL KEY and SYM
BOLIC KEY functions by file. 

Example: In the example shown in Figure 29, the 
same key-conversion procedure is used for two differ
ent files. The MD entries inform the processor of the 
particular data-names which must be associated with 
ACTUAL KEY and SYMBOLIC KEY for each file. When the 
disk addresses for file records are computed at object
program execution time, the contents of the SYMBOLIC 
KEY field will be added to F ACTOR-l and the sum will be 
divided by FACTOR-2. The result is the ACTUAL KEY. 

The DISPLAY Verb 

The printer is the standard output unit for the DIS
PLAY verb. However, information may also be dis
played via the card read-punch or the console printer. 
As many printer lines or punched cards will be used 
as are necessary to display the information contain~d 
in the area of core storage whose data-name is speci
fied in the DISPLAY statement. 

The object program initiates a skip to channell in 
the carriage tape if a form overflow occurs in the 

22 Disk COBOL Specs. 

printer. If the DISPLAY verb is used in the PROCEDURE 
DIVISION to address the printer, the processor assumes 
that the printer will have a carriage tape with punches 
in channels 1 and 12 (overflow) at object program exe
cution time. 

Examples: The statement shown in Figure 30 will 
cause the contents of the area whose data-name is 
GRAND-TOTAL to be displayed on the printer. 

The statement shown in Figure 31 will cause the 
contents of GRAND-TOTAL to be punched into cards, if 
the mnemonic-name CARD-PUNCH has been assigned to 
1402-P or 1442-P or 1444-P in the SPECIAL-NAMES para
graph of the ENVIRONMENT DIVISION. 

The ACCEPT Verb 

A card reader is the standard input device for the 
ACCEPT verb. However, the console printer can also 
serve as an input device. When ACCEPT is from a card 
reader, the minimum area that can be declared is 
80 positions. 

Example: Figure 32 shows an ACCEPT statement that 
will cause data to be read from the card reader and 
moved to an area whose data-name is CANCELLATIONS. 
If more than 80 storage positions are defined by CAN

cELLATIoNs' multiple cards will be read from the card 
reader until the area is filled. 

The ENTER Verb 

The ENTER verb permits the programmer to use Auto
coder statements in a COBOL source program. 

The language-name used with 1401, 1440, and 1460 
COBOL is AUTOCODER. The Autocoder statements must 
be presented to the COBOL processor immediately fol
lowing the ENTER AUTOCODER statement, and they 
must be followed by an ENTER COBOL entry that indi
cates the point at which the COBOL source language is 
resumed. Each ENTER AUTOCODER statement must con
stitute a separate paragraph in the source program 
and must appear on the same line as the name of 
the paragraph. The ENTER COBOL statement used for re
turning to COBOL from Autocoder must either constitute 
a separate paragraph or be the first entry of a para
graph. The name of this paragraph must be on the 
same line as the ENTER COBOL statement. 

These specifications must be maintained when using 
Autocoder entries in a COBOL program: 

1. Autocoder statements must be coded in Autocoder 
format (label starting in column 6, operation in col
unin 16, and operand in column 21). 

2. Symbols used in Autocoder statements must be five 
characters in length. 

3. Macro instructions are permitted. 
4. Autocoder statements can be written to refer to 

COBOL-names if they are related by entries in the 



Figure 29. KEY-CONVERSION Sample (Part 1 of 2) 

20 24 28 32 36 404448' 

r 

, , !, I"" 

11IJ.O. ,,~):; -,/r,A,r,p, - !l • 

Figure 29. KEY-CONVERSION Sample (Part 2 of 2) 

32 36 40 44 48 

L 

Figure 30. Printer DISPLAY 

48 

"'1 I I! ,,! ! I , !! ! , ! ! I I, I! I I I I I 

Figure 31. Punch DISPLAY 

28 32 36 40 44 48 

Figure 32. ACCEPT 

SPECIAL-NAMES section of the COBOL program. How
ever, COBOL statements cannot be written to refer to 
Autocoder-names. 

5. The word-mark status of a constant or area defined 
by a COBOL statement must be the same after the 
Autocoder statements are executed in the object 
program as it was before they were executed, Thus, 
if it is necessary to write an Autocoder statement 
that sets or clears a word mark in such an area, the 
word-mark position of that area must be tested first 
so that the word mark can be reset or cleared before 
returning to the COBOL program. 

6. No 1401 SPS statements can be included. 

7. When executing overlays while in the ENlER AUTO

CODER mode, use of the COBOL OVLAY macro causes 
the correct branch-to-the-Ioader to be generated. 

Example: Figure 33 is an example that includes a 
section of Autocoder statements. 

The OPEN Verb 

Reference Format. 

OUTPUT I INPUT 

OPEN S INPUT-OUTPUT 
1 ]-0 

f I file-name-l [[ fde-name-2 ... ] 

INPUT 
OuTPUT 
INPUT-OUTPUT 
1-0 

f I file-name- n •. J 
The set of rules shown in Figure 34 applies to the file 
types specified in OPEN statements: 

*Specifying a file as an INPUT-OUTPUT file assumes that: 

23 



40 44 48 

/. 

, I I I I I I I ! , 

," I! , ! I 

4 l' I ! I I I I 

,I! " t " 

Figure 33. ENTER Sample 

1. The file must have been described in an MD entry. 

2. Any use of the WRITE verb in association with this 
file will cause the specified record to be written back 
on the file in the position referred to by the last READ 

associated with this file. 

FILE TYPE RANDOM 
CONTROL- SEQUENTIAL 
SEQUENTIAL 

INPUT YES YES YES 

OUTPUT YES NO YES 

INPUT -OUTPUT * YES * YES NO 

Figure 34. File Types for OPEN Statements 

Note: A file specified as having a CONTROL-SEQUEN

TIAL operation mode may not be opened as an OUTPUT 

file. 

The READ Verb 

Reference Format for mass-storage random INPUT or 
random INPUT-OUTPUT files: 

READ file-name RECORD [INTO data-name] 

[ INVALID KEY any-imperative-statementJ 

Reference Format for all other INPUT or INPUT-OUTPUT 

files: 

READ file-name RECORD [INTO data-name] 

[AT END any-imperative-statement ] 

24 Disk COBOL Specs. 

This statement causes a logical record to be released 
from an INPUT or INPUT-OUTPUT file and transferred to 
the record-name associated with the file. 

Data-name is the name given by the programmer to 
the core-storage area to which the record must be trans
ferred. After the READ statement is executed, the logi
cal record will be available both in record-name and 
in data-name. 

Both the INVALID KEY and the AT END options may be 
implied within the COBOL program. This means that the 
appropriate clause must be used at least once in the 
COBOL program in association with each INPUT or INPUT

OUTPUT file. If a given INPUT or INPUT-OUTPUT file has 
only one use of the INVALID KEY or AT END option, all 
READ statements associated with the file will assume 
the implied option. If more than one option is used 
with a file, it is required that all READ statements have 
explicit INVALID KEY or AT END options. 

The any-imperative-statement is executed as de
scribed here: 

Nature of Appropriate 
File Options Triggering Condition 

Card Reader AT END Attempt to read when hopper is 
empty. 

Random File INV ALID The ACTUAL KEY is either outside 

All Others 

KEY the limits defined in the FILE

LIMITS clause or is an invalid disk 
address. 

AT END When an end-of-file condition or 
the upper file limit is encountered. 

The SEEK Verb 

Reference Format. 

SEEK file-name RECORD 

This verb allows the user to seek a particular record as 
specified in the ACTUAL KEY statement. Processing con
tinues while the seek operation is performed until the 
next READ or WRITE disk file statement is encountered. 
If the programmer has not specified a SEEK file-name 
RECORD, a seek instruction will be automatically exe
cuted in the object program before the disk read or 
write operation. 

Reference Format. 

The STOP Verb 

STOPj literall 
--1 RUN ~ 

This statement produces a machine HALT instruction 
which stops the execution of the object program. The 
RUN option of the STOP verb causes an unconditional 
halt, and the program cannot be restarted. 



If the STOP literal option is used, and if the object 
computer has a console printer, the literal will be dis
played upon it. Otherwise, if the stop literal is nu
meric and within the range 00-99, the literal itseH is 
displayed in the B-register if the halt occurs during 
the running of the object program. 

If the stop literal is numeric and greater than 99 or if 
it is alphanumeric, the address of the literal is dis
played in the B-address register if an object program 
halt occurs. Pressing the start key allows the object 
program to proceed. 

The WRITE Verb 

Reference Format for control-sequential files and 
punch file: 

~ record-name [!:!!QM area-name] 

Reference Format for printer file: 

WRITE record-name [FROM area-name ] 

[ 
j BEFORE t j integer LINES tJ 
1 AFTER ~ ADVANCING 1 mnemonic-name ~ 

Reference Format for sequential files and random files: 

WRITE record-name [FROM area-name] 

[ INVALID KEY any-imperative statement ] 

This statement causes a logical record to be released 
for an output file. 

Record-name is the name given to the record defined 
at the 01 level in the Fn.E SECTION of the DATA DIVISION 

under the FD or MD entry for the associated file-name. 
Area-name is the name given by the programmer to the 
core-storage area from which the record is to be writ
ten. 

The ADVANCING option is used for spacing lines on 
output documents on the printer. The number of spaces 
skipped is equal to the normal printer skip plus the 
integer specified in the ADVANCING option. The integer 
specified will be treated as meaning the number of 
spaces between lines of print. 

AFTER and BEFORE in the ADVANCING option control 
printer carriage spacing or skipping before or after the 
WRITE verb is executed. Integer LINES specifies how 
many lines should be spaced. Mnemonic-name is the 
name assigned in the SPECIAL-NAMES paragraph to a 
channel in the carriage tape and is used when carriage 

skipping is deSIred instead of line spacing. The skip 
occurs to the line that corresponds to the specified 
punch in the carriage tape. 

The !NV ALID KEY option of the WRlTE verb, used only 
with SEQUENTIAL or RANDOM mass-storage files, per
mits the source programmer to specify the appropri
ate action to be taken when IOCS senses the upper 
limit specified in the FILE-LIMITS entry. This option 
follows the same set of rules as the INVALID KEY or AT 

END option of the READ verb in connection with implied 
statements. 

Note: The INVALID KEY option should not be used 
with the WRITE verb for INPUT-OUTPUT files. The IN

VALID KEY option of the READ verb will serve as the test 
for these files. 

Examples: Figures 35, 36, 37, and 38 show sample 
WRITE statements. 

.., 
SA :8 
7 8 12 16 20 24 28 32 36 40 44 48 

:",.,,/ ,T,I!!, ,~ . .... Dol .", '~'- . ft. 

Figure 35. WRITE 

Exponents 
mM 1401, 1440, and 1460 COBOL provides for integer 
or non-integer powers to be used in exponentiation. 
The sign of the power can be either plus or minus. 
Please note that negative bases cannot be raised to 
other than an integer power. 

Conditional Statements 

Option 1 

IF conditional eXl)ression statement-I. 

Option 2 

IF conditional expression 

Option 3 

j OTHERWISE l 
1 ELSE ~ 

j statement-2 l 
1 NEXT SENTENCE r 
j statement-3 l 
1 NEXT SENTENCE ~ 

{
statement-IO INVALID KEY} 
statement-4 AT END j statement-6 l 
statement-5 ON SIZE ERROR 1 NEXT SENTENCE ~ 

[
j OTHERWISEl j statement-7 lJ 
1 ELSE ~ 1 NEXT SENTENCE ~ 

any imperative statement-8 followed by any conditional 
statement-9 

25 



Figure 36. WRITE AND SPACE BEFORE PRINTING 

..,: 

iSA 
u 
7 8 

Figure 37. WRITE AN:P SKIP AFTER PRINTING 

..,: 
iSA 
u 
7 8 

Figure 38. CONDITIONAL WRITE 

Statement-l under Option 1 can be only a simple or 
compound imperative statement. 

Statement-2 and/or statement-3 under Option 2 and 
statement-7 under Option 3 can be either imperative or 
conditional. If conditional, these statements can con
tain conditional statements in arbitrary depth. When 
conditional, the conditions within the conditional 
statements are nested. 

Statement-4 under Option 3 must be a READ state
ment, statement-5 must be an arithmetic statement, 
and statement-6 can be only a simple or compound 
imperative statement. Statement-8 followed by state
ment-9 (to which the previous paragraph applies be
cause it is conditional) is an illustration of an imperative 
statement followed by a conditional statement. This is 
logically equivalent to statement-8 followed by a pe
riod followed by statement-9 beginning a new sentence. 
Option 3 in its entirety may be substituted for state
ment-2 and/or statement-3 under Option 2. 

An ELSE or OTHERWISE must be explicitly written for 
every conditional statement within a sentence. How
ever, the phrase ELSE (OTHERWISE) NEXT SENTENCE may 
be eliminated only if the phrase' immediately precedes 
the period ending a sentence. 

Statement 10 must be either a READ statement (asso
ciated with a disk file or a WRITE statement (associated 
with a disk file). 

26 Disk COBOL Specs. 

Nested Conditional IF Statements 

The COBOL programmer can combine several simple 
conditional statements into one by using a technique 
called nesting. The processor analyzes a nested state
ment by working from the inside to the outside of the 
statement. Thus, if all conditions are satisfied, the first 
imperative is executed; if all but the last condition are 
satisfied, the second imperative is executed, etc. 

Figure 39 shows outlines for four simple conditional 
statements. Figure 40 shows an outline for one nested 
conditional IF statement that produces the same re
sults as the four simple conditional statements shown 
in Figure 39. 

Figure 41 shows an excerpt from a COBOL program 
in which four simple relational conditional expressions 
are substituted for the conditions shown in Figures 39 
and 40. 

The block diagram in Figure 42 shows the logic How 
of the nested IF statement in Figure 41. 

Added Elective Elements of the Procedure Division 
The following options are not contained in the COBOL 

General Information Manual but are contained in this 
COBOL processor. 

1. The ADVANCING option of the WRITE verb. 

2. Option 3 of conditional statements. 

3. The nesting of conditional statements. 



Deferred Elements of the Procedure Division 
These features described in the COBOL General Infor
mation Manual are not implemented by this COBOL 

processor. 

1. The entire COpy option. 

2. The CORRESPONDING option of the MOVE verb. 

3. The REEL option of the CLOSE verb. 

Notes: 

1. A COBOL source program can be compiled that pro
duces as many as 4,000 Autocoder and IOCS state-

ments which, when expanded, may produce as many 
as 6,000 one-for-one Autocoder statements. 

2. In order to ensure correct decimal alignment when 
using the DIVIDE verb with the GIVING option, the 
programmer must declare a result Held, the decimal 
portion of which is no more than one position greater 
than the decimal portion of the dividend. 

3. When NOTE is the first word of a paragraph, it must 
appear on the same line as the paragraph name. 

4. The figurative constant ZERO (ZEROS or ZEROES) can
not be used in an arithmetic computation. For ex
ample the statement COMPUTE data-name = ZERO is 
not allowed. This statement must be in the form of 
COMPUTE data-name = 0 . 

IF (condition 1) AND (condition 2) AND (condition 3) AND (condition 4) GO TO LAB4 ELSE NEXT SENTENCE. 

IF (condition 1) AND (condition 2) AND (condition 3) GO TO LAB3 ELSE NEXT SENTENCE. 

IF (condition 1) AND (condition 2) GO TO LAB2 ELSE NEXT SENTENCE. 

IF (condition 1) GO TO LAB 1 ELSE NEXT SENTENCE. 

Figure 39. Four Conditional IF Statements 

IF (condition 1) IF (condition 2) IF (condition 3) IF (condition 4) GO TO 

LAB4 ELSE GO TO LAB3 ELSE GO TO LAB2 ELSE GO TO LAB 1 ELSE NEXT SENTENCE. 

Figure 40. Nested Conditional IF Statements 

Figure 41. Program Sample for Nested Conditional IF Statements 

27 



N 

N 

N 

N 

Figure 42. Conditional Logic 

28 Disk COBOL Specs. 



Character Sets 
IBM Character Set H must be used for source programs. 
This character set consists of the numerals 0 through 9, 
the 26 letters of the alphabet, and 12 special charac
ters. The machine character set may be used only for 
alphanumeric literals. The following are COBOL (Set H) 
special characters with their equivalents in the IBM 

1401, 1440, and 1460 character set: 

Card Code COBOL 1401,1440, Meaning 
(Set H) 1460 

blank space 

11 {minUS sign 
hyphen 

12 + & plus sign 
0-1 / / division sign 

11-4-8 * * 
{multiPlicatiOn sign 

check protection symbol 

12-4-8 0 right parenthesis 
0-4-8 % left parenthesis 
0-3-8 , , comma 
11-3-8 $ $ dollar sign 

12-3-8 {period 
decimal point 

3-8 = # equal sign 
4-8 @ quotation mark 

Figurative Constants 

LOW·VALUE(S) 
The value of this figurative constant is the space, or 
blank. The blank character is the lowest in the IBM 

collating sequence. 

HIGH·VALUE(S) 
This figurative constant is defined as the integer 9. The 
character 9 is the highest in the IBM collating sequence. 

QUOTE(S) 
This figurative constant is defined as the COBOL charac
ter (Set H) for the quotation mark. 

Word Lists 

Additional COBOL Words 
The following words constitute an extension of the list 
of COBOL words contained in the IBM General Informa
tion Manual describing COBOL. ID may be used in place 
of IDENTIFICATION. The meaning and use of the other 
words have been described in this bulletin. 

1301-D 
1311-D 
1401-SS 
1402-P 
1402-R 
1403-CT 
1403-P 
1403-P-C9 
1403-P-CB 
1403-P-CV 
1440-SS 
1442-P 
1442-R 
1443-CT 
1443-P 
1443-P-C9 
1443-P-CB 
1443-P-CV 
1444-P 
1447-CP 
1460-SS 
ACCESS 
ACTUAL 
ADVANCING 
BEFORE 
CONTROL-SEQUENTIAL-A 
CONTROL-SEQUENTIAL-B 
CREATION-DATE 
DECLARATIVES 
FILE-LIMIT(S) 
FILE(S) 
FILE-SERIAL-NUMBER 
FILE-SEQUENCE-NUMBER 

Class Conditions 

General Information 

IBM-1401 
IBM-1440 
IBM-1460 
1-0 
ID 
INVALID 
KEY 
KEY-CONVERSION 
LABEL-INFORMATION 
LINES 
MD 
MODE 
NO-CONSOLE-PRINTER 
NO-DIRECT -SEEK 
NO-MULTIPLY-DIVIDE 
NO-OVERLAP 
NO-PRINT -STORAGE 
PACK-SERIAL-NUMBER 
PROCESSING 
RANDOM 
REEL-SEQUENCE-NU~fBER 
RETENTION-CYCLE 
SECTOR 
SEEK 
SEQUENTIAL 
SYMBOLIC 
TAPE 
TAPES 
TYPE-A-LABEL 
TYPE-B-LABEL 
TYPE-C-LABEL 
USE 
VALUES 

The general information manual specifies that the class 
of a data item is either numeric, alphabetic or alpha
numeric. It further specifies that the class condition 
tests an ALPHANUMERIC item at object time to deter
mine whether it is wholly numeric or wholly alpha
numeric in content. 

The source statement beginning: 

IF FIELD-A IS NUMERIC ... 

results in a character-by-character check of the value 
of FIELD-A at object time. If an operational sign is pres
ent in the units position, the associated character will 
be interpreted as being numeric. Thus, -9 is inter
preted as minus 9, not as the letter R. 

IF FIELD-B IS ALPHABETIC ... 

results in a character-by-character check of the value 
of FIELD-B at object time. If each character in FIELD-B is 
alphabetic, the item is considered alphabetic. 

29 



Examples: The following table shows how the class 
of an item is interpreted by the processor, depending 
upon which of the class tests is specified. The table 
shows the result (YES or NO) for each test and for each 
of the specified ranges of "X." The X-character is used 
in the PICTURE clause. It repr~sents any character in the 
1401, 1440, or 1460 character set. 

x-Character If Numeric If Alphabetic 
0-9 Yes No 

SPECIAL 
No No CHARACTERS 

SPACE No Yes 
A-R Yes (if units Yes 

position) 
S-Z No Yes 

Continuation of Alpha Literals 
Alphanumeric literals must be ·preceded and followed 
by quotation marks. If an alphanumeric literal.must be 
continued, a continuation (-) must appear in column 7 
and a quotation mark must precede the remaining posi
tion of the literal. The quotation mark must be in the 
appropriate column for the particular division in which 
the literal appears. If the last character of an alpha
numeric literal appears in column 72, column 7 of the 
next line must contain a continuation symbol -and the 
next two significant characters in that line must both be 
quotation marks. 

Reference Formats 
Here is a summary of the reference formats used in 
writing a COBOL program for the IBM 1401, 1440, and 
1460 Data Processing Systems with disk storage. 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name. 

[A UTHOR. author-name.] 

[ INSTALLATION. any sentence or group of sentences. J 
[DATE-WRITTEN. any sentence or group of sentences. J 
[ DATE-COMPILED. any sentence or group of sentences.] 

[ SECURITY. any sentence or group of sentences.] 

[REMARKS. any sentence or group of sentences. ] 

30 Disk COBOL Specs. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. IBM-1440 

1 
IBM-l401 ! 
IBM-1460 

OBJECT-COMPUTER. IBM-1440 

1 
IBM-1401 ! 
IBM-1460 

{ 

4000} 8000 
12000 CHARACTERS 
16000 

MEMORY SIZE . jTHROUGH t 
ADDRESS mteger 1 THRU ~ 

[ NO-PRINT-STORAGEJ 

[ NO-MULTIPLY-DIVIDE] 

[ NO-DIRECT-SEEKJ 

[ NO-OVERLAP] 

[ NO-CONSOLE-PRINTER J . 

{

/ 4000) 
8000 ~ 

12000 ( 
16000 , 

SPECIAL-NAMES. 

[device-name IS mnemonic-name 

[device-name IS mnemonic-name . .. ] ] . 

[switCh_name 1 g~F ! STATUS IS condition-name 

[ 19:i! STATUS IS COndition-name] 

[ switch-name - .. ] . 

[ autocoder-name IS cobol-name 

[ autocoder-name . ..... J] . 



Il\PUT-OUTPUT SECTION. 

FILE-CONTROL. SELECT file-name 1 

ASSIGN TO device-name 

[RESERVE ~ ~O ~ ALTERNATE AREA[S]] . 

[SELECT .......... .J . 
I-O-CONTROL. 

APPLY lTYPE-A-LABEL! r J 
TYPE-B-LABEL ~ file-name LAPPLY .... 
TYPE-C-LABEL 

DATA DIVISION. 

FILE SECTION. 

Tape Files: 

FD !i1e-Mme l:RECORDING MODE IS IJ 

[
BLOCK CONTAINS integer-l j RECORD[S] lJ 

1 CHARACTER[S] { 

[RECORD CONTAINS [integer-2 TO J 

integer-3 CHARACTER[SI] 

LABEL RECORD[S] j IS l ~ STANDARD t 
1ARE~ 1 OMITTED ~ 

[VALUE OF data-Mme-l IS literal [ data-name-2 IS - --J] 

DATA RECORD[SI ~ ~RE t data-name-3 [data-name-4 - . J. 

Punched-Card Files: 

FD file-name [ RECORDING MODE IS IJ 

[ 
~ RECORD[S] tJ 

BLOCK CONTAINS intcger-l 1 CHARACTER[S] ~ 

[ RECORD CONTAINS integer-3 CHARACTER[S] ] 

LABEL RECORD[S] ~ ~RE} OMITTED 

DATA RECORD[S] {~RE} data-name-3 

[data-name-4 •• J . 

Disk Files (Random Access): 
MD file-name 

[RECORDING ~IODE IS SECTOR ] 

PROCESSING i\10DE IS SEQUENTIAL 

ACCESS MODE IS RANDOM 

ACTUAL KEY IS data-name 

[ SYMBOLIC KEY IS data-name] 

[ FILE-LIMIT[S] ~ ~Rdintegerl ~UGH tintege, J 

[BLOCK CONTAINS integer 1 ~~~~gWR[SI ~ 
[RECORD CONTAINS integer CHARACTERS] 

LABEL RECORD[S] ~ ~RE} { ~i:i~~~~D } 

[ VALUE OF data-name IS literal [data-Mme IS ... ]] 

DATA RECORD[S] { ~RE} data-name [data-name ... ] . 

31 



Control-Sequential Access: 
MD file-name 

[ RECORDING MODE IS SECTOR] 

PROCESSING MODE IS SEQUENTIAL 

ACCESS MODE IS ~ CONTROL-SEQUENTIAL-A t 
1 CONTROL-SEQUENTIAL-B ~ 

[] 
~ IS t. j THRU t. 

FILE-LIMIT S 1 ARE f mteger 1 THROUGH ~ mteger 

[ 
j RECORD[S] tJ 

BLOCK CONTAINS integer 1 CHARACTER[S] ~ 

[RECORD CONTAINS integer CHARACTER[S] ] 

LABEL RECORD[S] j IS t j STANDARD t -- 1 ARE ~ 1 OMITTED ~ 

[ VALUE OF data-name IS literal [data-name IS ... ] ] 

DATA RECORD[S] ~ ~RE ~ data-name [data-name .. .]. 

Sequential Access: 

MD file-name 

[ RECORDING MODE IS SECTOR] 

PROCESSING MODE IS SEQUENTIAL 

ACCESS MODE IS SEQUENTIAL 

~ IS t· t ~THRU t· t 
FILE-LIMIT[S] 1 ARE f m eger 1fiffiOUGH ~ m eger 

[ BLOCK CONTAINS integer 1 ~~~~!g~R[Sl ~ ] 
[ RECORD CONTAINS8nteger TO] integer CHARACTER[SU 

LABEL RECORD[S] ~ ~RE ~ { ~it~~~~D ~ 
[ VALUE OF data-name IS literal [ data-name IS ... ] ] 

DATA RECORD[SJ ~ ~RE} data-name [ data-name ... ] 

32 Disk COBOL Specs. 



Record Description: 

level-number { ~~~~!!e-1 } [REDEFINES data-name-2 ] 

, [ SIZE IS [integer-l TO] integer-2 [~g~~grnR[S] n] [DEPENDING ON data-name] 

[ OCCURS integer-3 TIME[S]] 

£ t 

* 

* 

* 

[ POINT LOCATION IS {~~6JT} integer-4 PLACE[S]] 

NUMERIC 

[ {

ALPHABETIC ~ 
CLASS IS ~PHANUMERIC 

[ PICTURE IS any allowable combination of characters and symbols] 

[ JUSTIFIED ~ ~~6~T ! ] 
C'HECK PROTECT [LEAVING integer-5 PLACE[S]] [{
ZERO SUPPRESS } ] 

FLOAT DOLLAR SIGN 

[ BLANK WHEN ZERO] 

[ ~ US I~RE ! Uteral-l [THRU literal-2] [ltteral-3 [THRU literal-4] ... ] ] 

[
USAGE IS j COMPUTATIONAL lJ 

1 DISPLAY ~ 

[ SIGNED] 

[ SYNCHRONIZED j LEFT lJ 
1RIGHT~ 

*These clauses are not meaningful to this processor. If used, they will be ignored. 

tThese clauses have been designated as part of Elective Cobol- 1961 and are not included in the General Information Manual. 

A This clause is invalid if used in the FILE SECTION of the DATA DIVISION on other than 88 levels. 

PROCEDURE DIVISION. 

Option 1: 

[Section-name SECTION.] 

Paragraph-name. Any procedure statemen~(s). 

Option 2: 
DECLARATIVES. 

Section-name-1 SECTION. 

jALL FILES l 
USE FOR KEY-CONVERSION ON 1 file-name [file-name]' .. ~ 

Paragraph-name. Any procedure statement(s). 

[Section-name SECTION. USE ... ] 

END DECLARA TIVES. 

Section-name-2 SECTION. 

Paragraph-name. Any procedure statements). 

33 



ACCEPT data-name [FROM mnemonic-name ] 

ADD j data-name-l t [j data-name-2 t ] [j TO t ] 
-- 1 literal-l ) 1literal-2 )' . . 1.GIVING ) data-name-n 

[ ROUNDED] [ ON SIZE ERROR any imperative sta.tement ] 

ALTER procedure-name-l TO PROCEED TO procedure-name-2 [procedure-name-3 TO PROCEED TO procedure-name-4 ... ] 

CLOSE file-name-l [ WITH {~gC~EWIND} ] [ file-name-2 .. .J 
COMPUTE data-name-l [ROUNDED] = arithmetic expression [ON SIZE ERROR any imperative statement] 

j data-name-l t [S data-name-2 t ] [ ] 
DISPLAY 1literal-l ) 11iteral-2 ) ... UPON mnemonic-name 

DIVIDE { 1::!~~Z-~me-l } INTO { ~~:::.~~me-2} [ GIVING data-name-3] [ROUNDED] [ON SIZE ERROR any imperative statement] 

procedure-name. ENTER AUTOCODER 

procedure-name. ENTER COBOL 

~./ TALLYING {~DING } literal-l [REPLACING BY literal-2J ), 
UNTIL FIRST ( 

EXAMINE data-name ' --- ---

J REPLACING {~DING } literal-3 BY literal-4 \ .. , 
\ [UNTIL] FIRST 

procedure-name. EXIT. 

Option 1: 

GO TO procedure-name. 

Option 2: 

GO TO procedure-name-l procedure-name-2 [procedure-name-3 ... ] DEPENDING ON data-name 

S data-name-l t [- ] 
MOVE 1 literal ) TO data-name-2 . data-name-3 . .. 

MULTIPLY j ~ata-name-l t BY j ~ata-name-2 t [GIVING data-name-3] [ROUNDED] [ON SIZE ERROR any imperative statement] 
11tteral-l ) - 1 1tteral-2 ) ---

NOTE any comment. 

OPEN 
{

INPUT ) ~ 
OUTPUT ~ 

. 
S INPUT -OUTPUT t (file-name-l [ file-name-2 ... ] 

11-0 )' 

, INPUT ) J 
' OUTPUT \ .J le-name-n t H~UT -OUTPUT ~\ Ii 

34 Disk COBOL Specs. 



Option 1: 

PERFORM procedure-name-l [ THRU procedure-name-2 ] 

Option 2: 

PERFORM procedure-name-l [ ] 
~ integer-1 t 

THRU procedure-name-2 1 data-name-1 f TIME[S] 

Option 3: 

PERFORM procedttre-name-l [ THRU procedure-name-2 ] UNTIL condition-l 

Option 4: 

[ ] 
~ numeric-literal-1 t 

PERFORM procedure-name-1 THRU procedure-name-2 VARYING data-name-l FROM 1 data-name-2 f 

BY ~ numeric-literal-2 t UNTIL nd" -1 - 1 data-name-3 f ___ co thon 

Option 5: 

PERFORM procedure-name-1 [ ] 
. ~ integer-1 f THRU procedure-name-2 VARYING subscftpt-name-l FROM d t 1 --- --- a a-name-

BY ~ dintteg_er-2 -2 l UNTIL condition-1 [AFTER subscript-name-2 FROM j integer-3 t BY ~ integer-4 l - 1 a a name f ___ --- 1 data-name-3 f - 1 data-name-4 f 

U_NTIL condition-2 ] [AFTER subscript-name-3 FROM j integer-5 l BY ~ integer-6 l UNTIL condition-3 ] --- 1 data-name-5 f - 1 data-name-6 f 

READ {ole-name RECORD [INTO area-flllme ] [l ~Jv ~ KEY! any imperative statement ] 

SEEK file-name RECORD 

SUBTRACT 1 'f:::::~~~me-l f [J 'f:::~~~me-2 f ... ] FROM 1 ~~:::~~me-n f [GIVING data-name-nJ [ ROUNDED ] 

[ ON SIZE ERROR any imperative statement] 

STOP ~ literall 
--1RUN ~ 

Option 1: 

WRITE record-name [FROM area-name] 

Option2:t 

WRITE record-name [FROM area-namE] ~ AFTER l ADVANCING ~ integer ~INES l 
--- 1 BEFORE f 1 mnemomc name \ 

Option 3: 

WRITE record-name [FROM area-nam(] INVALID KEY any-imperative-statement 

tThis verb option has been designated as part of Elective Cobol-1961 and is not included in the General Information Manual. 

35 



]. Simple Relational Conditions * 

~~data_name ~ ( IS [NOT] GREATER THAN )] 
literal IS [NOT] LESS THAN ~ 
arithmetic expression t ~ [NOT] EQUAL TO ) 

2. Sign Conditions 

{
arithmetic expreSsion} 
data-name 

3. Class Conditions 

1 
POSITIVE ~ 

IS [NOT] NEGATIVE 
- ZERO 

{
NUMERIC } 

data-name IS [NOT] ALPHABETIC 

4. Condition-Names 

[NOT] condition-name 

5. Switch-Status-Names 

[NOT] switch-status-name 

Option 1: 

IF conditional expression statement-l. 

Option 2: 

1 
data-name ~ 
literal 
arithmetic expression 

IF d" 1 . {statement-2 } {OTHERWISE} {statement-3 } 
_ con t!zona expresstOn NEXT SENTENCE ELSE NEXT SENTENCE 

Option3:t 

1 
~ 

statement-lO INVALID KEY ~ } 
statement-4 AT END {statement-6 
statement-5 ON SIZE ERROR NEXT SENTENCE 

any imperative statement-8 followed by any conditional 
statement-9 

{ 
OTHERWISE} {statement-7 } t 
ELSE NEXT SENTENCE ~ 

* These entries are optional only under th e rules of implication described in the COBOL 
General Information manual. They requi re a complete, simple relational expression 
before any implications are used later in the same conditional statement. 

t This conditional statement form has been designated as part of 
Elective Cobol-1961 and does not appear in the General Infor
mation Manual. 

36 Disk COBOL Specs. 



Sample Problem 
In this program, the calculation of the weekly and an
nual salary associated with a given monthly salary is 
coded in the COBOL language. The monthly salary 
starts at $500 and is increased by $10 until it equals 
$1,000 (Figure 43). 

IB"1 COBOL PROGRAM SHEET 

PAGE PROGRAM 
SPrMPL f PROGR.A-M it 3 I SYSTEM , 3 

111.1.1 PROGRAMMER I DATE 

SER'AL '"' SA :B 
4 6 7 B 12 '6 20 24 28 32 36 40 44 48 

g.J,~ l,fJ,r rJ.f r F,I,C,J}.1",I,O N. ,D,f I/,I,S [,o,f'J,. 

11,2.f) P R. D,G:~,JhM -If D • \ C,O,e,.O L SItMP LE.' • 

d,~.~ I. EM A'f( K 5 • II f Il O'b,iltM 1"0 C fI,L C. U LA f f -rHE M!.££ K L v: 

Form No. X28-1464 
P,inled in U.~.A.. 

1410$ lSHEET 1 
OF S-

l'OENT. 71fl,JI1oPLL..6 -.BJ 

52 56 60 64 68 72 

AND IHvNIl!tL SALIIR.V, 
@.4.0 'ASSOC.litlt::.n WTfl/ A .13.1 V f:" JIt Ol'/,T.I+.L,V. 5ItL4.~Y •• iY/DNTHL.Y. SIH/UeV 
11.6¢ 'S,A.R.,S Itl 5.1.;. R 11/ 1> IS INCR..t::I+S€]) B.v, 1.1. ,U.M-r.I.L II" cQIlA;LS 1.1.16.1. 
@.b.t6 e.fll.V.T:R.D.IIIoIII.!::tJ-( •. D.T.IIIS.I.O.N.. 

¢.7.~ CON j:'l.(; V R,Il-,I,I 0 N stefION. 

* IJ • .f,fj 5 0 () R.'C E - COM P U 1" £ II.. • I M- 1r41~,1 • 

* g.'t.tI .s 0 () ((Ie €: - Co flo PUT U~. I B~- 1,1,4,', • 
* ¢.E.0 oS 0 v.l?:ce: - Co,JI1,P U IIE,R.. 1 13,t11,- ) 4 {,; • 

* I,,ri.¢ 05J eCI-,C,OoM,Pu -r,E,f(. I.M, -I 4,(1. I 
?t-IIJ.9.12l o 8J f'C T,-,C.D.~,P (/ r,f,Il.. I S.M. - 1.4.4.'. 

~ 1',9,0 013 J t'c J - Cv /If P Il.T.E.!' • ISM - J 46", 

!f I/.v.~ :M.~t'\.o,R,V, 5.I,t,E. <h;.¢.rI. C,H.~1l.1t c..,.. E.IlS tI 0 - 0 If e. 1(, L,II P • 
jC'I.'.d /Il,E,410K Y SJ,tt: .4,~,ti.~ .C-.H,A-.R,Il-,(! T,/E,I2:;. 

1 J.rJ 'T .N.P u'i - 0 V T P.D I 5 [;.C'(.T,OrJ.. 

1/.2.rJ ~.T.L.,::~- ~ONfR.OL. 
:Ii 1/3,*- 's E;,L-e.c..,r -,-;"'/1 LA-R.,y,-F,l,LE ASS,I,q,N. "D I 4,9~-P 
-t 1.3.a IS €.l.,E e'/' ,S,Il-,L,lhR Y - f I.L,f ~,.s.sJ.G.JI/ ToO 1.41-.3- P 

1,4-.(l 'I.. E:5 f.Jl.1f f. ';'0 ,IhbTEfl..A1A-re ft/?£IJ • , 
, 
, 
, 
, 

7'- DOPUCt\-TF- I!Nrf21E.s. ,lfe tt./TR1f Hl'PJ...Itlt5u:E -ro Tl-lc rJ.IKIIC(}t,HI"- 5roSTEfI1 IS /J.5ED. 

Figure 43. Sample Program # 3 (part 1 of 5) 

37 



IB,., COBOL PROGRAM SHEET 
Fo,....,No. X28-1464 
Printed in U.S.A. 

PAGE PROGRAM 
Sflf"lPLf PR.OUZIlII4 -tt3 I SYSTEM 

I·krb 
I SHEET ,) OF 5 , 3 

1,11,2, 
PROGRAMMER I DATE I 'DENT. 7$ItM, p,).. E: -,~ 

SER'AL >-' SA :S 
4 6 7 8 '2 '6 20 24 28 32 36 40 44 48 52 56 60 64 68 72 

, I ¢ ]) II 1" A' D I V T j I 0 rJ . 
;:2-'1 f I L E' SeC-rION.. 
~$¢ pp 's It L II R. Y ~ r: I L f. 1 1 1 , 1 1 1 

114-1 'L II" f.; L I<. £C 0 R..']) 5 4/H Oil1z-r./f.D 

¢S¢ 'J) A,.4 {UCOi'l.D IS OU,pvT-R.ecoflD. 

11p~ 11 '0 () T PUT - f? E C 0 fLD PrCiUK£; X ( I:J 2) 

V1¢ woR. K'1 N,q,- 5, O,ll,fttq EO S,f cr ION. 

18 'I II '5/HMLY-«€COflJ). 

¢H 1'2- (:.]LJ..ER. PIC-,URE X (5') vALUE IS :; PItC £ S. 

J(I~ '¢:z." WE£~LY-D£iAIL-LIN£ Ple,utZ£ lZl.ll. 

/ I ¢ '!If/.. rILLE-I( PI e-r Vfl £ X ( 0.) II ALlJ13. [.5 5 P 4C f.s • 

/ :2.' '11,2, I"1,OrJ-r HL y- 1) E TAT,~-,J,I N ~ P I,c.,TUIl. £. :J.e:t:.z. e <:. 

J3i1 ',,2-, FILLER. PIC,UiE. X ($) II A-,L, 11€ IS st,ff e £5. 

/ 'I-¢: ''1,;2., A,AI,N U A,L,- ]) E, A ],L,- J- I '" 13- PIC I u f( t ,2, ( 5) • '?: c. 
us:; 'II 'fHA-DINC,,- R,EtD,R,D. 

Ib¢ ",2, FIL.J-.E.R PIC T IJ,~£ X,( o.¢,) VALue 15 sf ftC fs. 
} 1 'I :11,2 w.e E I<J.- Y -H-E.4]),I tJ,~,-,L,I AlE PI c-ru t. E ft L h,) V ~L U.E ''i'J.EEK.LY' • 

If' :,0',2., fILLER PIC.TI)Il.E X ( 5:) v A,LAft 1.5 rSfjl:C f s. 
j91 '¢,~ ~OM~M,~Y-~~ADIN~-,LINE PI C1' UflE. Ptc 7,) V JhL U,£, \ I'I,D,N ~tI,L,Y' • 

i2.,{11 '¢2 f I ,L.,L,E (( PIC- T () R, Eo X ( b) v A LU,f., IS s I' fteEs. 

i..tJ P- '; z ANrJU~L-~EAbIW~-,~INE (J I G r If, R., E. .4 ( " ) VALUE \ A-rJlIlcJ A L I • 

, 
, 

Figure 43. Sample Program # 3 (part 2 of 5) 

IB,., COBOL PROGRAM SHEET 
Fo,mNo. X28·1464 
l',inted,nU.S.A. 

PAGE PROGRAM 
SIi/VlPLF PRo(.,/zI.J.fl1 it 3 I SYSTEM 

1<'I-b~ 
iSHEET 3 OF :) , 3 

d,@,3 PROGRAMMER I DATE I 'DENT. 7s'ff('1,P L ~ - ~ 
SER'AL >-' SA ~ B 
4 6 7 8 '2 '6 20 24 28 ~2 36 40 44 48 52 56 60 64 68 72 

¢ l,¢ ; 1 '(! 0 flfl,E C1' - J11 E S,s Ii- 9 £ • 

¢,7-,p :I1,~ f- ILL €,~ PICTti,R.€. X (s) VALvE 1.:5 .sPfH',Es:. 
¢,3 p '¢,2., r ft 8 L E. - 15- CD ef(. £ C T I'rCTUflE IH 32..) Vfl LUE 15 

¢(1-,¢ 
, 

\ TA8LE vALVF-5 Ref eOfU'.EC' / . 
¢,5,¢ ,,1 'I NC-o fZR. E CT -tH. 5S IH E. 

¢ b,~ :¢,2, f:1LLEfl Prc/llR.f: )( ( r,.z,) VALUE IS SPli-CE5. 
f/J,l,¢ :t!,~ -r{tBL£- IS -,NO,-CO 1Z,R.,6cr PICTURE A (2.fJ 1/ 11 L UE IS 
~,i,¢ 

, 
"A6L.E VJH-IH,s IHE NO J COf«I';CT'· 

¢,9 p 1'1 'rlA 5 1+ - T 0 I Pr,L - Cf) U,II}:r;E. R. - I'l/ E (2 KJ,Y PICTUf2,£, q(IoJyq'j VALUE ,I S zERO. 
1,~,P 11 ';+ A..s H - lOT I/- L - c: 0 V l\J-rl§.&:11tz~!!'lSY, . f]crVR.Fc 'i (. b) 1/99 V4LUf IS l£lZo. 
JlJ ,(,7 'I-J As H -1.01 ftL- Co u,l\l,r£ fZ - ANrJUA L PI C.'IJRE 'i (t,,) I/q,q, VALUE 1.5 ~E ((.0. 

j,~,¢ 7,1, 'IJlI,E E J<,L Y -P A Y PreluR.E q,q,qvqq. 
/ :?>,~ '1,1, #1,0 rJrHL,Y,-P,l},y' PIG'-'U("~. qqCJqvqq. 
1 t/;rt '1 '1 '/trJNvt+L-P,AY PI(~uR.f: ,<i,(S',)v,qq. 
J Sop '(' D ,1\15:, .4,1\,['[; SEC 110 rJ. 
1 b,; '1'1 'HIt5H--r.D~A-,L,-Or::- ~f;E,K.L(- Pfty PICluR.E q ( b,) v 9 q VtlLU,E, ,¢,tj,'lfZ".t,q. 
/ ,1,1) 7,1, Ifl-A.s H- 1.0 ,-ftL - o~ -t'\OIlf'if,L..,Y - prry PIe-, v,f2,E, q{,,) IIQ,9, VfT.L.U,E.,.¢3~,2£;¢,.,¢,¢. 

11 K',~ 1,1, ~.As~-JOTft~-O~-~~~UkL-PFt-Y (JI~-ru(('E 1(10) v'9,9, VALUE. 4s,Q,h5,/J. f;,~,. , 
, 
, 
, 
, 

L_J. .. "l_.L...L_ 

Figure 43. Sample Program # 3 (part 3 of 5) 

38 Disk COBOL Specs. 



IB'4 COBOL PROGRAM SHEET 

PAGE PROGRAM 
SfttVIPL~ przoc {(AM -Jr3 I SYSTEM 

~ , 3 

!t,~.4 
PROGRAMMER I DATE 

SER'AL '"' gA :8 
4 6 7 8 '2 '6 20 24 28 32 36 40 44 48 52 56 

i@,},~ 1l.,O,c.'E,D,U R. E D,l, V I S,l,O rJ. 
l4~¢ S-r /tR..'r,. 
i/i1,j,el 'OPEN ,D,rJr,I'VT .s IiLIHZ,y,- F I L E. 

1¢,4,w 'W.RI1IF o U,T,PU ~- R. EC.ot<]) FR.OI1-1 IfEf/J)IrJ(" fat C(),I2,J) 

~,5,i/l 
, 

,!J,E F,o,R. F IhJ),\/,I},rv.C. I Ai to, ,.2, ,L I II!. E S. 

1~,b,0 'P,E.f(, f-, O,R,fi1, ,C,It,L C. () LoP, J I D,rJS 

rM,0 
, 

V A R.., Y,l N,6 .M,O lilT J.U.V,- PPt,y. 
(J,'iJ./J 

, 
F R 0,"11 ,5"f$vV, 

M,I I B,Y, } ,16, 
/ ,rf,,1} 

, 
,V,N.-r.T,L ,MDIIJ,TiH,L,y',- {J,ftY 15 f9,R.E,fh-r E Q t.HRoN. 

},/,f! iof,:, r -,)·Mf S J+ - ,0 I fI,L oS • 

jSHEET 

I 'DENT. 

60 

J,9,~P • 

4- OF 

Form No. X28-1464 
p,intedinU.S.A. 

:J 
:.5. tj,M, PJbJi-~ 

64 68 72 

} 2..tL 'I i=1 ,lhA-,~ H- TiO,T.I},L,-,C 0 V 1If,r.~e -,"-iE E K,L,V, :: ,~A5~-,},OJP,L-OF-MEEKLY_~AY 

} lJdb :4,N,D ,I-I,A-,S,#,-1I0 lit L- Co li JIJ-r.fi<' -.M,D NT I+,L,Y, :: 1fi,ll-s;l- ioOI,A-.L~ D t:: -,M,O No"f H;L,Y,-PA,Y, 
/t4,rbi 'A-N,P, ,J-/,/t,S,J+.-ioDiiA-oL -CO V rJ.-r,61(-/t,rJ,vult,J... ::: ,H-,It,S,}/'- iOT;/hL - 0 F - il tJ N vlt L - P ftV 

},5,rj 
; , 

,J.'l,oi\l,f, ,e.o,RJ?,E C T-,ft1,E.s 5"q-,6,E. ToD o U J P () T - R. E C. t) "',}), 

Jb¢ '0 ,ftc t,gl'AlI,S,f. 
!},1,P 

, 
,M.O,V,f, ,1 NC,o,{I.I(,E,C Ti-,M'bScS~,6,t=: 1.0 OR'f p V T - RE C o,R,]). 

I,K,;; :W:/?, I, "E, 0 LJ",,o,U T'""1~,E: C,D,R,D, 
!/,q,~ 

, 
,It,r::,-r.6~, ltD vtr.rJC.I rJ&. ,:2, ,t.,I IIf,E,S. 

. .2.,~,¢ :l'..,LO.s,~ S,/hJ.../'IP..,y - f I,L,E • 

.z.1,¢ 'S,-r,O{> ,.(,V,N. , 
, 

Figure 43. Sample Program # 3 (part 4 of 5 ) 

IB'4 COBOL PROGRAM SHEET 

PAGE PROGRAM 
5li-tvlPLE fROG t2A-fi/l *3 I SYSTEM 

141,,0 , 3 

1¢,¢,5 PROGRAMMER I DATE 

SER,AL '"' gA : 8 
4 6 7 8 '2 '6 20 24 28 32 36 40 44 48 52 56 

14f,/,¢ 1(,.,1) L,c.:U L II "I 0 rJ S • 

!lt~¢ 'e 0 "I P u 1.& Wef-K.LY-PI}( :: 3 * J"/,O Nr.Jt,L.LY - Poll Y /, , 3. 

1¢,,;,{.6 'CO"1P v-rE If rJ tJ V Ij. L - 'p,1i Y =- 12- *' 1''1.0 rJ r.H,t.. Y - {J 1/ V • 
~4-¢ :M,D V,e W.E.f.K.LY-Pf!rY TO W.f.E.KL,Y,-[)£-r.If-I L- LI,N,E.. 
~5p '~O,i/,e, lliONlftLy-PfI,Y, /,0 ,II1DIIi~HrL,Y;-,J:\E,TITIL-LIl\f.E. 
I¢,b¢ :M,o I/.E A-A!l\f.ufhL-Ptj-Y ,TtD F!;fIJ N u It,L - DE -(lU ,L - L1 rJ, £. • 
~ 1,rj ',4D.D ,WEE/( L,Y,- P,If,"h ,0 Mit S 1-1-.-1.0 IJt J.- - Co V IJ. r. £,12 - 'll/,E,E,K. L Y • 
~i¢ :II DD ,II1,D N"rtL Y - P If", Y -r.o !tA·s J!- - -r.D -r.1t, z..- (! 0 (),N,T.£12 -11.0 Mr;!f.L,~. 
I fI,'1 I! 'IlD D It iii fIJ V I'1:L - P f+,y, -r.o II 45 Jh- ,,0 ,,/l-,L - C. 0 VII!.I F f2 - J!;IIi,AlV,AL,' 

/J,; 'W,((r I E- O UrPtJT-f(e.CO f<.D F.f2 DM SIf; L fJ I( Y - Ii! e. c. 0,1(, D • , 
, 
, 

i 
, 

; , 

, 
, 
, 
I 

, 
, 
, 
, 

Figure 43. Sample Program # 3 (part 5 of 5) 

,SHEET 

I 'DENT. 

60 

S-0F 

FOJmNo. X2B-1464 
Printed in U.S.A. 

S 

7s.nM P L F -,~ 

64 68 72 

39 



Programming Considerations 
Aids 
Two aids to generating more efficient machine lan
guage coding and decreasing compiling time are the 
optional WORK4 and WORK5 file assignments [COBOL 
(on Disk) Program Specifications and Operating Pro
cedures, IBM 1401,1440, and 1460, C24-3242]. 

The use of WORK4 intersperses COBOL source state
ments, by paragraph, with the Autocoder symbolic 
statements generated by the COBOL compiler. The pro
grammer can then determine which .autocoder state
ments were generated for the respective COBOL state
ments. 

The use of WORK5 produces a listing of the Auto
coder symbolic statements generated by the COBOL 
compiler. It is valuable when warning diagnostics are 
generated. Errors can be corrected before the gener
ated autocoder program is assembled, thus saving 
the extra assembly time. 

Techniques 
COBOL provides a convenient metliod of writing busi
ness-oriented programs. However, certain techniques 
can be used to produce more efficient machine lan
guage coding and increased compiling speed. 

The following considerations and suggestions are 
included to aid the programmer in obtaining a better 
COBOL-generated program. An original program (Fig
ure 43) required approximately 3,100 positions of core 
storage. By applying a few of the suggestions to the 
second program (Figure 44) the core storage require
ment is reduced to approximately 2,350 positions of 
core storag~, representing a saving of 25 percent. 

The changed statements utilize redefinition, equal 
decimal alignment, alphabetic compare, and the dele
tion of a subroutine caused by the statement WRITE 
OUTPUT-RECORD FROM SALARY-RECORD (Figure 43, part 
5 of 5, line 100). It is recommended that the program
mer become familiar with these suggestions and apply 
them in the writing of COBOL programs. 

Area Allocation in the Data Division 

The following rules govern when 1401 COBOL sets 
word marks with data areas: 
1. Record areas (01 entries) always have a group 

mark with a word mark in the following position, 
and have a word mark in the high order position. 

2. Word marks will be set in the high order positions 
at the next level from the 01 entry. This will be 
02, or the next lower level if no 02 is present, unless 
occurs or redefinition is present. 

3. Subfields have word marks set only when their 
high order positions coincide with word marks set 
as in preceding item 2. 

40 Disk COBOL Specs. 

4. A word mark is always set in the high order posi
tion at the 77 levels, but there is no group mark 
with a word mark set. 

5. No word marks are set for data fields within a 01 
entry which contains a redefines or an occurs, either 
at the 01 entry (implicit redefinition is allowable) 
or at any sublevel. 
If word marks are required but not present, they 

will be set continually and cleared for access to the 
field; this requires time and core. If word marks are 
present, they will be regenerated if removed. For ex
ample, if editing into a 02 area, a word mark will be 
reset each time. 

Tables 

:Many programs require tables. Following are several 
considerations about table building and searching 
with 1401 COBOL. 
1. Unless it is certain that a table will never change, 

the initial values in the table should not be estab
lished with the VALUE clause. A better approach is 
to set up a card deck or tape file with one table 
entry and a sequence number on each record. Using 
the READ verb, build up the table data during pro
gram initialization. This approach eliminates the 
need for recompilation or object-program patching 
in the event that the table changes in value or size. 

2. Before using the OCCURS clause and one or more 
levels of subscripting, weigh the alternate storage 
cost of naming each table entry and writing (for 
example): 

IF ARG = TAB-1 MOVE ENT-1 TO WORK GO TO FOUND. 
IF ARG = TAB-2 MOVE ENT-2 TO WORK GO TO FOUND. 
etc. 

3. Define long tables as a set of shorter tables. A few 
IF statements are enough to isolate the relevant 
position, which can then be moved to a work area 
where the final pinpointing of the correct entry can 
be done. 

4. If the work area mentioned in the preceding item 
3 is n entries long where n is a power of 2 (such 
as 8 or 16), the IF statements which are used can 
be written in such a way as to eHect a binary 
search. In the case of a 16-entry work area, this 
technique can yield an answer after only four IF 

statements. 
5. Sequential table searches require little prograrp.

ming eHort and are efficient if the table can be 
arr;mged so that the most active items are at the 
beginning of the table. 

Move Verb 

1. MOVE A TO B, where A and B are equal length 
alphanumeric elementary items defined at either 
the 01 or 02 levels, gives the best possible coding. 



All items with subfields are treated as alphanumeric 
by COBOL, even if some or all subfields are defined 
as numeric. Only one 7 character instruction is 
generated as long as A and B are not redefined or 
subscripted. 

2. If both A and B are redefined items or items defined 
at 03 levels and up, eight additional characters of 
instructions are generated (i.e. SET WORD MARK and 
CLEAR WORD MARK). 

3. Elementary items are treated as above unless they 
have an unequal number of decimal places. In that 
case, a greater number of instructions is generated. 

4. Unequal length elementary alphanumeric items 
are moved the same as equal length items when 
A is longer than B. However when B is longer, ad
ditional instruction characters are generated to 
blank the receiving field. 

5. MOVE A TO B causes COBOL to include a special sub
routine when A and B are of unequal length or one 
or both contain subfields. The special subroutine is 
used because the MLC and MRCM instructions can
not conveniently handle this complex situation. 
Even when A and B are the same length, the sub
routine is still used if A is a 01 item and B is a 77 
item or vice versa. The subroutine may be avoided 
by writing a set of individual MOVES, redefining 
both A and B, or by making them the same length. 

6. MOVE SPACES TO A and MOVE ZEROS TO A each gen
erate 11 characters of object code unless A is a 01 
level item with subfields. In that case, A can be 
redefined at an additional cost of eight characters 
of object code. 

7. When editing is involved in MOVE A TO B, the same 
rules about scaling, redefinition, and size apply. 
For example, when the A field has fewer decimal 
places than the editing PICTURE describing B, many 
characters of coding are generated. If the scaling is 
identical for A and B, approximately one-third as 
many instruction characters are generated, plus the 
edit word. 

8. Avoid editing functions which cannot be handled 
by the edit instruction directly; COBOL zeros, Hoat
ing plus or minus, DB, and single plus. A special 
subroutine is called to handle these cases. 

9. MOVE ALL requires a special subroutine. Use a literal 
or constant of correct length to handle this case. 

If Statement 

l. When defining fields that are to be compared, con
sider the following: 
a. When at least one of the fields is a 01 item with 

subfields, a special subroutine is required. It is 
better to process such fields by comparing each 
lower-level item individually; or the group item 

can be moved to a hold area of equal size (not 
containing subfields), and then comparing. 

b. When numeric compares must be used because 
one or both of' the fields are signed, attempt to 
arrange the record format so each item has the 
same number of decimal places. The fields do 
not have to be the same total length. 

2. In the statement IF A = B, only one of the fields 
(A or B) need be defined as alphanumeriC to get 
the more efficient alphanumeric compare instruc
tions generated. 

3. IF A NOT GREATER THAN B •.. has the same meaning 
as IF A LESS THAN B OR EQUAL TO B .•. and the gen
erated instructions for the first statement require 
half the number of core positions. 

4. The statement IF A IS ZERO • . • generates more 
efficient coding when A is defined as numeric 
rather than alphanumeriC. However, an even 
greater improvement can be gained by declaring a 
constant of zeros (named C, for example) , and 
writing IF A = C ••• which is twice as fast. 

5. Avoid the statements IF A ALPHABETIC and IF A 

NUMERIC whenever possible because they require 
subroutines in the object program. 

6. Avoid the use of ALL, HIGH-VALUES, LOW-VALUES, 

SPACES, and ZEROS in conditional expressions. They 
can easily be replaced by named constants. 

7. Subscripted names in an IF statement will cause 
the compiler to include appropriate subroutines 
which often perform slowly at object time. Fre
quently it is better to use several IF statements to 
perform a table look-up on a short table rather than 
use subscripting and the PERFORM verb (or an 
equivalent loop). 

Arithmetic Verbs 

l. Avoid ON SIZE ERROR ... whenever possible. The 
generated coding to perform this test consists of 
up to 40 characters. 

2. ADD and SUBTRACT statements: 
a. The most efficient object coding is obtained for 

fields which have equal scaling. When two fields 
(A and B) have equal scaling, the statement ADD 

A to B generates 7 characters of object code. 
b. Redefining, or using 03 levels or greater, will 

require 8 additional characters for each field so 
defined. 

c. Multiple operands are as efficient as the equiva
lent set of single statements. ADD A, B TO C gen
erates 14 characters (assuming the requirements 
of 3a are met). 

d. ADD A TO A is an economical way of multiplying 
A by two. Other sequen<;es of ADD's and SUB

TRACT'S, sometimes with REDEFINE'S to achieve a 

41 



shift, can be devised to simulate a more complex 
multiplication. 

3. MULTIPLY and DIVIDE statements: 
a. MULTIPLY A BY B GIVING C generates 21 characters 

of instructions if A, B, and C have no decimal 
places. When A, B, and C have decimals, and 
the number of decimals in C is not the sum of 
those in A and B, 42 characters of instructions 
are generated. 

b. In the preceding; example, ROUNDED generates an 
additional 7 characters. 

c. Less efficient coding is generated for a COMPUTE 

statement than for the equivalent set ADD, SUB

TRACT, MULTIPLY, and DIVIDE statements. The rea
son for this is the need to retain up to 18-digit 
precision throughout the execution of a COMPUTE 

statement. Because the 18 digits can be on either 
side of the decimal point, and because one or 
two extra digits may be required for rounding, 
COBOL allocates 40 digit accumulators for the 
storage of temporary results. 

Work areas are assigned only once per pro
gram. Thus the most complex COMPUTE state
ment determines the number of 40 character 
areas that will be needed for all COMPUTE'S. 

Perform and Alter Statements 
1. The statement ALTER LABEL TO PROCEED TO NEXT

LABEL generates 10 characters of coding. 
2. The statement PERFORM CALCULATION generates 18 

characters of coding at the point in the program 
where the PERFORM occurs. In addition, CALCULA

TION is augmented by 4 positions for each PERFORM 

which references it. 
3. CALCULATION should be positioned in the source 

program at the point where it will be executed 
most frequently simply by falling through from the 
preceding paragraph. 

4. The option 2 statement, PERFORM CALCULATION 5 
TIMES is efficient. Core requirements are about 45 
positions at the point in the program where the 
PERFORM occurs and 4 positions additional at the 
end of CALCULATION. No additional core or time is 
required when a data-name instead of a literal is 
used to indicate the number of TIMES. 

5. Option 4 of the PERFORM verb is handled best if 
the VARYING field is defined as alphanumeric and 
each of the fields in the expression has the same 
length. 

Input/Output Verbs 
1. The statements READ INTO and WRITE FROM each 

cause a move of the entire logical record. In many 

42 Disk COBOL Specs. 

cases the use of these options is unnecessary be
cause processing can be done either in an input 
or an output record area as defined by the DATA 

RECORDS ARE clause in the FD'S. When READ INTO or 
WRITE FROM must be used, ensure that the implied 
data move involves equal length areas. 

2. When using a card reader, READ is faster and gen
erally smaller than ACCEPT. Similarly, WRITE is bet
ter than DISPLAY for printing and punching. 

3. It is not possible within COBOL to assign the same 
input/output area to two files. Areas in the WORK

ING-STORAGE SECTION can be ( and should be) 
shared, however. 

4. For card and printer files, input/output areas in 
addition to 001-080, 101-180, and 201-332 are as
signed. This is in anticipation of a possible conflict 
with the ACCEPT and DISPLAY verbs, which use those 
areas also. 

5. The WRITE verb for a printer FD does not clear the 
print area. Use MOVE SPACES to clear this area. 

6. Form 3 (unblocked, variable length) tape records 
are not permitted within COBOL. If necessary the 
file can be defined as Form 1, and a simple Auto
coder sequence can be used to set and clear the 
GMWM at the end of the portion of data to be 
written. Form 4 usually offers better tape utiliza
tion. 

A common error in COBOL programming is the 
assumption that a different area in WORKING-STORAGE 

must be defined for each record type in a given 
file. This may be avoided by (1) defining all pos
sible data records directly under the FD with one 01 
entry group per record type, or (2) defining the 
most common record type under the FD and all the 
others in a single area in WORKING-STORAGE which is 
redefined once for each record type. 

Optional COBOL Words 

COBOL words, defined as being optional words in this 
manual, add nothing to the object program but do re
quire time for the compiler to evaluate. Compiling 
time can be decreased by avoiding these optional 
COBOL words. 

Obiect Time Subroutines 

There are several COBOL object time subroutines that 
may be generated. These routines are described in a 
separate bulletin which may be obtained with the pro
gram. Normally, the programmer should avoid COBOL 

statements which cause these subroutines to be used. 
For the most part their inclusion is caused by either 
unusual language features or by complex data formats. 
Following is a list of these subroutines and the reason 



why they are called and/or how they may be avoided. 
1. The Examine subroutine is included whenever 

the EXAMINE verb is used. It may be avoided as 
follows: 
a. For short fields, give each position a name by 

defining an appropriate number of subfields 
and using a set of IF statements. 

b. For long fields, define a work area with one
character subfields and process portions of the 
long field there. 

2. Single, double, and triple subscript subroutines 
are included whenever a field is singly, doubly, 
or three-level subscripted. 

3. The Alpha Compare subroutine is included when 
a group item with subfields is compared to any 
data item. The subroutine may be avoided by 
redefining the field which contains subfields. 

4. The Figcon Compare subroutine is included 
whenever a record with subfields is compared to 
a figurative constant (HIGH-VALUE, LOW-VALUE, 

QUOTE, and ALL alpha-literal). This subroutine 
may be avoided by redefining the field with sub
fields and using a literal or constant. 

5. The If Numeric subroutine is included whenever 
an alphanumeric field whose size is greater than 1 
is tested for a numeric value. 

6. The If Alphabetic subroutine is included when
ever an alphanumeric field whose size is greater 
than 1 is tested for an alphabetic value. 

7. The Accept subroutine is included whenever the 
ACCEPT verb is used. To avoid this subroutine, 
define a file and use the READ verb. 

8. The Display subroutine is included whenever the 
DISPLAY verb is used. To avoid this subroutine, 
define a file and use the WRITE verb. 

9. The Editing subroutine is included when editing 
requirements include COBOL zero, floating + and 
- sign, single plus, and DB. It produces highly 

specialized editing features. If possible, use only 
the standard editing features of the 1401, 1440, or 
1460. 

10. The Expin subroutine is included whenever an 
integer exponent is used (COMPUTE A = BOO, 5). It 
may be avoided by writing successive MULTIPLY'S. 

11. The Go To Depending subroutine is included 
whenever GO TO DEPENDING is used. This subrou
tine may be avoided by a set of IF statements. 

12. The Move All subroutine is included when the 
ALL option of the MOVE verb is used and a record 
with subfields is to be filled. A MOVE statement or 
a set of MOVE statements is preferable. 

13. The Move Record subroutine is included when 
ever a record with subfields is used in a MOVE 

statement, except when the other field is a record 
(01 level) of equal length. This subroutine may 
be avoided by: 
a. Using a set of elementary MOVE'S. 

b. Redefining both fields to eliminate word 
marks. 

14. The Expni subroutine is included when raising 
an expression by a non-integral exponent (COM

PUTE A = B 0, 0, 2.5). It is impossible to perform all 
the functions of this subroutine with other COBOL 

statements unless the exponent is defined as an 
integer. For special purposes an Autocoder sub
routine may be a more practical solution. 

15. The Multiply subroutine (MULTY) is included 
whenever the object computer does not have the 
Multiply/Divide feature. The subroutine may be 
avoided by substituting a comparable set of ADD 

instructions. 
16. The Stop-literal subroutine (SPLIT) is included 

whenever a STOP literal statement is used. The 
size of the subroutine may be reduced by declar
ing NO-CONSOLE-PRINTER. 

43 



COBOL PROGRAM SHEET 

PAG! PROGRAM SAMPLE PR06T<AM #-3 'REVISE]) I SYSTEI!I 
I :s 
~.r2l.1 PROGRAMMER I DATE 

IPIAL tiA Ie 
4 • 7 8 

I 
12 16 20 24 28 32 36 40 44 48 

1r4.L.~ ,.D.EII:r" F,f,C,A,r ION D, V I,S,"OoN,. 

fIJ,z,1IJ P~~Ot6:R 4011f,- , J). \ C O,B,OL SAJ1I~LtE, REV'SED' • 

146m I
SHEET I 

IIDENT. 

52 16 60 

/ 

!. 

OF 

"'No.~l" 
PrInIr.d I .. U.S.A. 

4-
~oAoM'P'L £'$' 

14 18 71 

/1/;aollJ R,E MoA:R,A',S • A P R,O.G,RoA.IM, TO C.A,L C V,L,A,T E THE ~E Ek L,Y. A MD A NoN,v A L StA LA R,Y, 

0.4.tA IA05 ,soO,C 'A TiE ~ IMI T,H. A 6 l,v,E,N • .M,OoN.TH L Y SA L"-A.R....... ./IA,OoN,T-H,L Y SA L A,RoY, 
(1.5~ IS TA.R,TS AT 5,~.D. ,A.N,/), J S I.H,C R E.A,' EJ). 8 Y 1~, ,II,NoT,' L , T E,Q.lJoA,L S .1#JIIMb •• 
1'J,~.fl E.N.v"IR.n.N.ME.N.T • .D.I V,oS."Oo/'l,. 

m..71Jj rfl . . r! .iC_II.D·JJ,T"oO,No S E.C,T.I.O.N •• 

(/J.j,gj 5,OoU.",:C-.E. C I elM - ,J..4-tloJ. • 
05.sr.oJ ., "I,. . .: "." ... _1:" J olMfl-J.,4-,4-4,. 

0,f,~ "'''' _ ... I,..~ " "BM,- 1.4,',(1,. 
~'IofJ DoB.rJ.£:C,T, ,.. .... '~E,R, ,,8,Mo- .1.4,11.1. 
I1J,Q,m DoBotlo.E.:C,T, ,C,OoNo,P,U,ro£oll, I,B:M. - .L04,4.~ •• , 
dJ,Q,d n.R.J.EI C,T, C",·t)·~ r_D. 1,B.M-l,4-r("m,. 

IlJoIJ :....EoM,O.R,y, oS'( ,Z,E ,4'(I.dJ.IJ. C,H.A.R.A,C,T,E.R.S .N.n.-.D.v E,R.L.A.P .N.O, M,II.L T IIP,L,Y,- 0 I,VoI,D,E. 
l.am :&t,E,MOoR,V, ,s,1 Z,E, ,4.fJ.tJ.tJ, C.HoA,R ACT E,R.S • 

11.ft loN,P,V:T,-,O,U,T,P,U,To ,s,EC,ToI,(),N,. 

J...2,,, FI L,6- ,.. D. 

l..?"tll :S,E,L E C,T. oS,A,L,A.R,V,- F I L E ,A,S S I,G,/'I r.o, 14-,oJ..~,- p 
L._~,tA $,E,L,E,C,T, ,s,A,L,A,DoY,-.h I ,L E ,A,s .5,I,6,M ,roo, J. 4-,4.3 - P. 

lA-,. :R,E,5,E,R. v E NO ,A,LT,£RNATE ,A.R.E.A. 
I 

I 

, 
, 
, 

* Duplicate entries. The entry applicable to the particular system is used. 

Figure 44. Sample Program # 3 Revised (Part 1 of 4) 

COBOL PROGRAM SHEET 

PAGE PROGRAM 
SAMPLE PR06RIIM #3 REVISED I $YSTEI!I 146D 

I 3 

0.(/),2- PROGRAMMER I DATE 

SERIAL fiA Ie 

4 • 78 
I 
12 16 20 24 28 32 36 40 44 48 52 56 

f1} • .l,Qj DoA,r AI D I V,I 5 I ,0,1'1 .. 

0.ull F I L E' SECTION. 
Qj,~./Il F,P :S,AL A R"V,- F I L E 

GM.,oJ 'L A. BE L RECORDS A.,~'E. OM I TTE,D, 

10,5,01 :t>,A,T,A, ,R,E C.,O,R,D,S, A,Ro Ei H ErA D \ N G -,R.£ cP,~D , SAL ~,~'I'.- R E COR 0 .. 

~,6,Q) ID • 

1z).7,tJ rb,l 'II E,A,D,',N,6 -,RoE,c,ooRoDo. 
(!j,g,a :tl).f. FI LLE,R. PIC T IJ,R,E )( (,5,0,),. 
~q,tll !m.~ .IME E..K,L,Y,- 1-1 E A DIN G - L I .N.f Pd C T,U,P.E. A ( 6,) -

l,~ lJ02. I=J,LLE,lL ,Pol C,T,U.RoE. X (,5,) • 

111,0 !0,1 1/0,0 NT H L,'t',- HE A.Do/,N,6 - L I II E P \ C T V,R,E A ( '1,) • 

112.,a :(l),z. F \ LL,EaR ,Pol C.,T,U,RoE- l( ( b) • 

l.,3,(t !0tZ ANNUAL-HEAVING- LINE PI CTURE "'(0. 
14,Ql :0,L F ILL E,It PIC T 1I.R.E 'I. (52) • 

Ir5,a 14),1 'S,A,L ,A,R, 'i,- ,R, E,CoO,"'O, • 

16.d. :as,2. .F, I L L,E.R Pol C T U.RoE )t (5,~,),. . 
,1,t :lA2 ,IME.E.KL'f-DET,AI L-,L I WE P \ C T V.ftE ~:z:z .,~~. 

U,oJ :0,l. FILLER PI CTU,ftE '1.,( 5) • . 
1q,a :aI.Z. M,O /II T H L Y - 0 ETA I L - LIN E PICTURE ,z~~ 1· ~,~. 

2.,~,t. :lh F ILL E,R.. .P.I C T U.RoE 11(.( 5 ) • 

ZJ.,1ll :0.2.. oA,N N U,4 L - DE T A I L - L' N E PICTURE Zl~~l_l:1-. 

.u .. ol :1'b.2 FILLER PI C.,T.oRE ~ ( 5,.1,) • 

2..3,ol 0.1 M,E S SA 6 E -,R,E C O,R.O, 

:L4.0 :0,2. F I,l L E,R. P \ c. T U,RoE 11( (5,,) . 

2. s,al :~.z.. MESSAGE PIC.TU,RtE. X (l.B.). 

Figure 44. Sample Program # 3 Revised (Part 2 of 4) 

44 Disk COBOL Specs. 

ISHEET Z 
IIDENT. 

60 

OF 

I'GnnNo. )(21.-1464 
PrintM ill U.S.A. 

4 
7';,A,M P L I: 3~ 

14 II 72 

NlESS.A6E- RE.c.o,R 



COBOL PROGRAM SHEET 

Figure 44. Sample Program #3 Revised (Part 3 of 4) 

COBOL PROGRAM SHEET 

Figure 44. Sample Program # 3 Revised ( Part 4 of 4) 

"'Na.~l"" 
PMtM in U.s.A,. 

r:-No. X21--1464 
Prw.d in U.S.A. 

45 



ACCEPT.................... . ................ . 
Acknowledgment . . . . . . . . . . . . . . ...... . 
ACTUAL KEy............. . ................... . 
Added Elective Elements of the Data Division . . .... . 
Added Elective Elements of the Procedure Division .. . 
Additional COBOL Words. 
Aids, Programming .................................. . 
Alter Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ . 
Arithmetic Verbs. . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ . 
ASSIGN ....................... , . 

Block Character-Count Field 
BLOCK CONTAINS ........... . 

Card Read-Punch Records ........................... . 
Character Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 
Class Conditions. . . . . . . . . . 
Clause Descriptions (File Section) . 
COBOL Language. 
COBOL Language Notation 
Conditional Statements ...... . 
Configuration Section. . . . . . . . . . . . . 
Constant and Working Storage Sections. 
Continuation of Alpha Literals. . .. ......... . 
CONTROL-SEQUENTIAL Access .. 
Creation Date .................................... . 

Data Division. . . . . . . . . . . . . . 
Data Division Language Specifications 
Date Card ......... , .......... . 
Declaratives ., . . . . . . . . . . . . . .. ..... . 
Deferred Elements of the Data Division ...... . . 
Deferred Elements of the Environment Division. 
Deferred Elements of the Procedure Division. 
Device-Names ......... . . . . .. . 
Disk-Storage Device-Names ............ . 
Disk Trailer Labels ... . 
DISPLAY ......... , .. . 
Division, Data . . . . . . . 
Division, Environment. . . 
Division, Identification .... 
Division, Procedure . . . . . . . . .. 

ENTER ................... . 
Environment Division ............... . 
Exponents ........... . 

FD file-name. . . . . ...... . 
Figurative Constants ............ . 
File-Control Paragraph . , ........ , . 
File-DeSCription Entries ......... , .......... . 
File-Description Entry-Punched-Card Files .. . 
File-Description Entry-Tape Files. . ....... . 
File Section. . . . . . . . . . . . . 
Form-l Records 
Form-2 Records . 
Form-3 Records 
Form-4 Records ..... 

General Information. . . 

Header Label Identifier. 
HIGH VALUE(S) .. 

IBM 140111311 COBOL Programming 
I-O-Control Paragraph .. , ... , . , . , .. 
Identification Division .. , ... , .. 

46 Disk COBOL Specs. 

22 
4 

19 
21 
26 
29 
40 
42 
41 
10 

12 
15 

13 
29 
29 
18 
5 
5 

25 
7 

21 
29 
18 
16 

12 
13 
16 
21 
21 
11 
27 

8 
11 
20 
22 
12 
7 
7 

21 

22 
7 

25 

15 
29 

9 
14 
17 
15 
14 
12 
12 
12 
12 

29 

16 
29 

7 
11 
7 

Index 
If Statement ,. . . . . . . . . . . . . . . . . . . . . . . . . . . ............. . 
Input-Output Section ................ , . . .. .. , ..... . 
Input/Output Verbs ................. , .............. . 

Label Information (Header Label Records). 
LABEL RECORD(S). . . . . . . . .. ,., 
LOW-VALUE(S) ............... . 

Machine Requirements .. 
Magnetic-Tape Device-Names .. . 
Mass-Storage Files ............. . 
MEMORY SIZE (Object Computer). 
Move Verb ....................................... · .. . 

Nested Conditional IF Statements 
NO-CONSOLE-PRINTER ....... . 
NO-DIRECT-SEEK . , ..... . 
NO-MULTIPLY-DIVIDE ...... . 
NO-OVERLAP . , ... , .... . 
NO-PRINT -STORAGE .................... . 

Object-Computer Paragraph ... , .. 
OPEN .......... , ......... . 
Optional COBOL Words .............. , .... ' ....... : .. : 

Perform Statement " ................................ . 
Printer Records .. 
Procedure Division. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Programming Considerations .......................... . 
Punched-Card Device-Names 

QUOTE(S) ...... . 

RANDOM Access .... 
READ 

41 
9 

42 

16 
15 
29 

5 
11 
17 
8 

40 

26 
8 
8 
8 
8 
8 

7 
23 
42 

42 
13 
21 
40 
10 

29 

17 
24 
12 
15 
20 

Record Character-Count Field 
RECORD CONTAINS .. 
Record-Description Entries, 
Record Formats for Disk Files 
Record Formats for Tape Files 
Record Fomlats for Punched-Card Files. 
RECORDING MODE. .., ..... 
Reference Formats ... , . , .. 
RETENTION CYCLE ... . 

.13,19 
12 
13 
15 
29 
17 

Sample Problem ......... . 
SEEK ........ , 
SELECT, .............. . 
SEQUENTIAL Access ....... . 
SIZE ... , ..... , ...... . 
Source-Computer Paragraph 
Special-Names Paragraph 
STOP .......... . 
Subroutines, Object Time ......................... '. ' .. . 
Switch-Names and Conditions 
SYMBOLIC KEY ... , ..... , .. 

Tables ............................................ . 
Tape Trailer Labels 
Technique, Programming ............................ . 
THR U Option. 
Today's Date ... 

VALUE 

Word Lists. , ........... , 
Word Marks ....................................... . 
\Vorking Storage Section (Data Division) .. 
'WRITE .................. , ... . 

37 
24 
10 
18 
20 

7 
8 

24 
42 
9 

19 

40 
16 
40 
21 
16 

21 

29 
40 
21 
25 



C24-3235-2 

1rlW~ 
(!) 

International Business Machines Corporation 

Data Processing Division 

112 East Post Road, White Plains, N.Y. 10BOt 

() .., 
t 
~ 
I .., 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	xBack

