
Systems Reference Library

COBOL (on Disk) Program Specifications
and Operating Procedures
IBM 1401, 1440, and 1460

Program Number 1440-CB-073

This publication contains the operating procedures
for building the COBOL system using mM 1311 and 1301
Disk Storage, modifying the COBOL system, and as­
sembling a machine-language object program from a
source program written in the COBOL language. A
description of the phases that make up the COBOL sys­
tem, a list of halts and messages, and a sample program
are included.

File No. GENL-24
Form C24-3242-.2

Preface

This publication contains the program specifications
and operating procedures for the COBOL (on disk) pro­
gramming system for IBM 1401, 1440, and 1460. In
this publication, the term COBOL system refers to
1401/1440/1460 COBOL (on Disk), program number
1440-CB-073. The language specifications for the COBOL

system are contained in the Systems Reference Library
oublication COBOL (on Disk) Specifications for IBM
1401, 1440, and 1460, Form C24-3235.

This publication is divided into two major sections;
program specifications and operating procedures. The
program specifications describe the COBOL system. In­
cluded in the section are such topics as a description of
the System Control Program (the controlling element
of the COBOL system), a description of the COBOL com­
piler, and a detailed description of the results of sys­
tem operations. Although this section is directed pri­
marily at the programmer, the machine operator
should review the section for an understanding of the
system.

The second section, operating procedures, contains
such topics as preparing processor jobs, changing file
assignments for processor jobs, and running processor
jobs. The last part of the section outlines the pro­
cedures to follow in building a COBOL system. For the
convenience of both programmer and machine opera­
tor, all control cards are summarized in Appendix I.

Although the second section is directed primarily at
the machine operator, it is recommended that the pro­
grammer review the content of the entire section. The
programmer should particularly note the parts of the
section dealing with preparing processor jobs and
changing file assignments.

Related Information

The following Systems Reference Library publications
contain additfonal information relating to COBOL pro­
gramming. It is recommended that these publications
be available to the user for reference purposes.

Major Revision, February 1965

This edition, C24-3242-2, is a major revision of and obsoletes
C24-3242-1.

COBOL General Information Manual, Form F28-
8053.

COBOL (on Disk) Specifications for IBM 1401, 1440,
and 1460, Form C24-3235.

In addition, it is recommended that the user be fa­
miliar with the following Systems Reference Library
Autocoder publications.

Autocoder (on Disk) Language Specifications for
IB!I,11401, 1440, and 1460, Form C24-3258.

Autocoder (on Disk) Program Specifications and Op­
erating Procedures for IBM 1401, 1440, and 1460, Form
C24-3259.

If the user's system is IBM 1401 or IBM 1460, it is
recommended that the user have aeress to the follow­
ing Systems Reference Library publications.

Input/Output Control System (on Disk) Specifica­
tions for IBjyf .1401 and 1460, Form C24-1489.

Input/Output Control System (on Disk) Operating
Procedures for IBM 1401 and 1460, Form C24-3298.

Disk Utility Programs Specifications for IBM 1401,
1440, and 1460 (With 1301 and 1311), Form C24-1484.

Disk Utility Programs Operating Procedures for
IBjyf 1401 and 1460 (With 1301 and 1311), Form C24-
3105.

If the user's system is IBM 1440, it is recommended
that the user have access to the following Systems
Reference Library publications.

Input/Output Control System Specifications for IBM
1440, Form C24-3011.

Input/Output Control System Operating Procedures
for IBM 1440, Form C24-3299.

Disk Utility Programs Specifications for IBM 1401,
1440, and 1460 (with 1301 and 1311), Form C24-1484.

Disk Utility Programs Operating Procedures for
IBM 1440 (with 1301 and 1311), Form C24-3121.

Copies of this and other IBM publications can be obtained through IBM Branch -Offices.
Address comments concerning the content of this publication to IBM Product Publications, Endicott, New York 13764.

© 1964 by International BusineaMachines Corporation

Program Specifications 5

Definition of Key Terms 5
Machine Requirements 5

The COBOL System 6

System Control Program 6
Logical Files 6

Residence File 7
Operation Files 7
External Files 7
Internal Files 7

Control Cards 7
RUN Card.................. 7
ASGN Cards 8
UPDAT Card................................... 8
NOTE Card.................................... 8
PAUSE Card 9
HALT Card.................................... 9

COBOL Compiler 9
Autocoder Assembler 9
laCS .. 9
COBOL Macros 9
COBOL Compiler Output , , 13
COBOL Diagnostic Messages 13

Operating Procedures .. 20

Jobs ... 20
Preparing Processor Jobs 21

COBOL RUN 21
COBOL RUN THRU AUTOCODER 21
COBOL RUN THRU OUTPUT 22
COBOL RUN THRU EXECUTION 23

Changing File Assignments 25
Preparing ASGN Cards 25
Using ASGN Cards 28

Batched Files 28

Contents

Performing Jobs 28

Preparing a Stack " 28
Running a Stack 29
Loading Object Programs. .. 30
Halts and Messages 30

Building and Updating a COBOL System 36

COBOL-System Deck Description and Preparation. 36
Marking Program 37
System Control Modification 38
Write File-Protected Addresses 38
COBOL Update 38
COBOL Macros. .. 38
COBOL Sample Program 38

Building a COBOL System .. 38
System Control Modification .. 39
Write File-Protected Addresses 40
COBOL Update and COBOL Macros 41
COBOL Sample Program 42

Updating a COBOL System 42

Appendix I-Control Card Formats 43

Appendix II-Phase Descriptions 46

Appendx III-COBOL Macros 51

Appendix IV-Sample Program 52

Index 60

This publication describes the program specifications
and operating procedures used to assemble a machine­
language program from a source program written in
IBM 1401, 1440, and 1460 COBOL language. It also de­
scribes the operating procedures for building and
modifying the COBOL system on a disk unit.

This system resides on a fi.l~otected area of a disk­
storage unit. By the use of the System Control Pro­
gram, the controlling element of the COBOL system, it
is possible to stack the input to and output from a
series of tasks. Further, the System Control Program
allows the user to assign input/output devices for a
defined set of logical files.

The similarity between COBOL and ordinary busi­
ness English provides programmers with a convenient
method for writing source programs. Source program
statements are translated into machine language by
the COBOL system. This permits the programmer to di­
rect his attention primarily toward the solution of the
problem, rather than toward the specific method of
implementing the solution on the machine.

Definition of Key Terms

To clarify the meaning of special terms used in this
publication, the following definitions are given. Stand­
ard terms arc defined in Glossary for Information Proc­
essing, Form C20-8089.

Assembler. The program that translates Autocoder
symbolic statements into actual machine language.
This process is called an assembly.

Batched Files. Logical files whose contents represent
one or more sequential sets of input to or output
from the COBOL system.

Card Boot. A card deck, supplied as part of the Auto­
coder system program deck, that is used to start all
system operations.

Job. An operation or series of operations to be per­
formed by the COBOL system.

Logical Files. Input/output devices and/or areas used
by the COBOL syst~m.

Object-time. A term describing those elements or proc­
esses related to the execution of a machine-language
object program.

Operation. A basic unit of work to be performed by
one of the components of the system.

Program Specifications

Stack. A set of one or more jobs to be processed during
the same machine run.

System. The set of programs made up of the elements
required for compiling, assembling, and/or execut­
ing user-programs.

] Brackets contain an option that may be chosen.
} Braces contain options, one of which must be
chosen.

Machine Requirements

To process a COBOL source program, the following
minimum machine configurations are specified.

An IBM 1401 System with:

4,000 positions of core storage
Advanced Programming Feature
High-Law-Equal Compare Feature
One IllM 1311 Disk Storage Drive
One IllM 1402 Card Read-Punch
One Ill~f 1403 Printer

An IBM 1440 System with:

4,000 positions of core storage
Indexing and Store Address Register Feature
One IBM 1311 Disk Storage Drive
One IB}'f 1442 Card Reader
One IB~1 1443 Printer

An IBM 1440 System with:

8,000 positions of core storage
Indexing and Store Address Register Feature
One IBM 1301 Disk Storage
One IBM 1442 Card Reader
One IBM 1443 Printer

An IB~f 1460 System with:

8,000 pOSItions of core storage
One IBM 1311 Disk Storage Drive, or one IBM 1301 Disk

Storage
One IDM 1311 Disk Storage Drive
One IBM 1402 Card Read-Punch
One IllM 1403 Printer

The system on which the object program is to be exe­
cuted must have:

1. A card reader or a disk file to load the object pro­
gram resulting from the Output processor.

2. Sufficient core storage to contain the program gen­
erated by the COBOL compiler. If the object program
requires more than the available core-storage ca­
pacity, either the program must be executed in sec-

5

tions (overlays) or the job must be divided into
multiple runs.

3. The input and output devices defined in the FILE­

CONTROL paragraph or the SPECIAL-NAMES para­
graph.

4. Sense switches when they are referred to in the
SPECIAL-NAMES paragraph.

The COBOL system can use the following devices,
if available:

IBM 1444 Card Punch
IBM 1447 Console without a buffer feature.

The COBOL System

The IBM 1401, 1440, and 1460 COBOL system built by
the user contains a System Control Program, the COBOL

compiler, the Autocoder assembler, Input/Output
Control System (IOCS), and COBOL macro instructions.

System Control Program. The main function of the
System Control Program is to analyze control-card
information, determine the specific control mode,
and transfer program control to the appropriate por­
tion of the system.

COBOL Compiler. The COBOL compiler portion of the
system operates under the control of the System
Control Program. The compiler translates the source
program, written in the COBOL language, into Auto­
coder-IOCS symbolic statements.

Autocoder Assembler. The Autocoder assembler por­
tion of the COBOL system operates on the results of
the COBOL compiler. The Autocoder library must
contain IOCS and the COBOL macro instructions. For
a complete description of the Autocoder assembler,
see the Systems Reference Library publication,
Autocoder (on Disk) Program Specifications and Op­
erating Procedures for IBM 1401, 1440, and 1460,
Form C24-3259.

IOCS. Standard input/output macro instructions are
used by the CO£OL system for all COBOL files. A com­
plete description of IOCS is in either Input/Output
Control System (on Disk) Operating Procedures for
IBAf 1401 and 1460, Form C24-3298, or Input/
Output Control System Operating Procedures for
IBAf 1440, Form C24-3299.

COBOL Afacros. COBOL macros, a special set of macro
instructions, are used by the COBOL system to set
permanent switches during the assembly for the use
of other macros, to generate the COBOL object-time
subroutines, and to generate a limited set of inline
expansions.

6 Disk COBOL Program Specifications

System Control Program

All system operations are initiated by a deck of cards
supplied by IBM. This deck, called the Card Boot, reads
in the first portion of the System Control Program from
disk storage. Ultimately, the entire resident portion of
the System Control Program is read into lower core
storage.

All control-type functions for the system are acqom­
plished by the System Control Program. These func­
tions include;
Assigning Input/Output Devices. Input/output opera­

tions are coordinated with user-specified input/out­
put devices.

Updating the System. The System Control Program up­
dates the system to the latest modification level or
version.

Selecting Appropriate Processor Runs. Through control
cards supplied by the user, the System Control Pro­
gram determines the operations necessary for the
completion of a job. For example, a source program
is coded in the COBOL language, and the user specifies
the end result of processing to be a machine-lan­
guage object program. This would require that proc­
essing be performed by the COBOL compiler, the
Autocoder processor, and the Output processor. The
control card says in effect that the source program
is coded in COBOL, and that processing is to run
through the Output processor. The System Control
Program reads the control card and calls in the
COBOL compiler. Processing takes place, and at com­
pletion, control reverts to the System Control Pro­
gram. The Autocoder processor is called, processing
takes place, and at completion, control reverts to the
System Control Program. The Output processor is
called, processing takes place, and at completion,
control again reverts to the System Control Program.
Because the Output processor was the last processor
to be selected, the System Control Program reads the
control card for the next job.

Logical files

A set of logical files, defined by the COBOL system, is
used for input/output operations. Each file has a spe­
cific function and is assigned by the System Control
Program to a particular device. The user can alter the
file-assigmnents by using ASGN (assign) control cards.
(See Changing File Assignments.)

The logical files may be thought of as falling into one
of four general categories. These categories are:

Residence File

Operation Files
External Files

Internal Files.

ResidericeFile

SYSTEM File. The SYSTEM file contains the System
Control Program, the COBOL Compiler Program, and
the Autocoder Assembler Program. It is assigned to
a fixed area in a disk unit.

Operation Files

CONTROL File. The CONTROL file contains cards or
card images that send control information to the Sys­
tem Control Program. It can be assigned to the card
reader or the console printer.

MESSAGE File. The MESSAGE file contains information
of primary interest to the machine operator. These
messages are usually diagnostics relating to the oper­
ating procedures and/or instructions to the machine
operator. It can be assigned to the printer or the con­
sole printer.

External Files

LIST File. The LIST file, generally associated with high­
volume printed listings, contains information di­
rected primarily to the source programmer. It can be
assigned to the printer, or to disk storage, or it can be
omitted. If the LIST file is assigned to a disk unit, the
information is stored two sectors per printed line in
the move mode.

INPUT File. The INPUT file contains source information
to the processors. It can be assigned to the card
reader or to any available area in disk storage. If the
file is assigned to a disk unit, the card images must
be stored one card per sector in the move mode.

OUTPUT File. The OUTPUT file contains the results of
the operation or series of operations specified in the
RUN card. It can be assigned to the card punch, or to
disk storage, or it can be omitted. If the file is as­
signed to a disk unit, any card images will be stored
one per sector in the move mode.

LIBRARY File. The LIBRARY file is a disk-storage file
that supports the Autocoder macro facility. This file
contains the library table and library routines, such
as IOCS. It is maintained by the Autocoder Librar­
ian and used by the Autocoder Macro Generator.
The LIBRARY file can be assigned to any available
area in disk storage.

CORELOAD File. The CORELOAD file is a disk-storage
file used by the Output and Execution processors of
the Autocoder Assembler Program. The file contains
an object program in the load mode. The CORELOAD

file is developed by the Output processor and is used
by the Execution processor.

Note. Only the external files INPUT, OUTPUT, CORELOAD, and
LIST can be batched. Batching will be perfonned when
a series of jobs is processed without intermediate file
assignments to these external files. 'When batch process­
ing is performed, input to and output from the processors
is stored sequentially within the files.

Internal Files

WORK Files. The WORK files (wORKl through WORK5)

are mass-storage files that contain intermediate re­
sults of the processors. The WORK files can be as­
signed to any available area in disk storage.

Control Cards

The System Control Program recognizes six types of
control cards. They are:

RUN

ASGN

UPDAT

KOTE

PAUSE

HALT

Each type is punched in the Autocoder format. Appen­
dix I contains a summary of all specific control cards
that the System Control Program recognizes. Included
in Appendix I is a detailed description of the manner of
punching each specific control card and valid entries
for each of the general formats as discussed in the fol­
lowing sections.

RUN Card

The RUN card indicates the portion(s) of the COBOL sys­
tem that are to be selected by the System Control Pro­
gram. A RUN card is required for each job to be per­
formed. The general format of the RUN card is:

[1
AUTOCODER!]

THRU OUTPUT
EXECUTION

COBOL RUN

If the optional part of the RUN card is omitted (THRU

AUTOCODER, THRU OUTPUT, or THRU EXECUTION), the Sys­
tem Control Program assumes that only the named
processor is to be selected. The THRU option enables
the System Control Program to call a series of proc­
essors automatically.

Valid entries for the RUN card are:

COBOL RUN
COBOL RUN THRU AUTOCODER
COBOL RUN THRU OUTPUT
COBOL RUN THRU EXECUTION

7

ASGN Cards

An ASGN card indicates to the System Control Program
that a logical file is to be assigned to a specific input/
output device. An ASGN card is used when the user
wants a logical file assigned to an input/output device
or area other than the assumed assignment of the Sys­
tem Control Program, or when the user wants to
change an assignment that he has previously made.

The general format for an ASGN card is:

file-name ASGN ~ device t
1 OMIT \

The file-name is the specific logical file; device is the
input/ output unit to which the logical file is to be as­
signed. Two examples for using an ASGN card follow.

The logical file, INPUT, is to be changed from the as­
sumed device assignment (READER 1) of the System
Control Program to an area in disk storage. This area is
to be on 1311 unit 3, beginning at address 000600 and
extending to (not through) 000900. Note that the END

address to be punched is one more than the area actu­
ally used by the INPUT file. The ASGN card for this ex­
ample is punched:

INPUT ASGN 1311 UNIT 3, START 000600, END 000900

The second example is when a logical file is to be
omitted. (This option is valid only in specific cases.) If
the OUTPUT file is to be omitted, the ASGN card is
punched:

OUTPUT ASGN OMIT

The user must leave blanks between items in the
operand field where indicated in the specific formats.
For example, if the operand is READER 2, there must be
a blank between READER and 2.

During a single stack of jobs, an assignment made by
the user for a single logical file remains in eHect until
a HALT card or another ASGN card is sensed for that par­
ticular file. For example, an ASGN card that specifies the
INPUT file to be assigned to READER 2 causes the as­
sumed assignment, READER 1, to be altered. The System
Control Program will select READER 2 during a single
stack until another ASGN card for the INPUT file is en­
countered.

UPDAT Card

The UPDAT card is included in a package supplied by
IBM for the purpose of updating the user's COBOL sys­
tem. It is prepunched in the following format:

I processor-name I UPDAT phWie-name, ~ ~~~~~~l
1 SYSTEM \ j INSERT

~PATCH

This card (excluding DELETE) will be followed by the
appropriate data cards. .

8 Disk COBOL Program Specifications

NOTE Card

The NOTE card contains messages and/or instructions
from the programmer to the machine operator. Process­
ing is not interrupted when the System Control Pro­
gram senses this control card. The contents of the NOTE

card are printed on the MESSAGE file. The general for­
mat of the NOTE card is:

NOTE any message and/or 'instruction

A NOTE card could be used when the programmer
wants to direct that the output from a series of com­
pilations be placed on the OUTPUT file located on disk­
drive 2. A NOTE card could be used, at the completion
of processing the series of jobs, to tell the machine
operator to remove the disk pack from drive 2. The
message would be:

NOTE REMOVE DISK PACK FROM DISK DRIVE 2

PAUSE Card

The PAUSE card contains messages and/or instructions
from the programmer to the machine operator. When
the PAUSE card is sensed, the System Control Program
temporarily halts the system. The contents of the PAUSE

card are printed on the MESSAGE file. Processing is re­
sumed by pressing the start key. The general format
for the PAUSE card is:

PAUSE any message and/or instruction

One application of the use of a PAUSE card might be
in the case where the INPUT file for a job is located on
disk unit 3. The programmer could inform the machine
operator of this fact by using a PAUSE card, telling him
to ready the drive. The message would be:

PAUSE READY THE PACK ON DISK DRIVE 3

HALT Card

The HALT card indicates to the System Control Pro­
gram that processing has been completed. It is the last
card of a stack. The contents of the HALT card are
printed on the MESSAGE file. The general format for the
HALT card is:

HALT any message and/or identification

COBOL Compiler

The COBOL compiler, operating under the control of
the System Control Program, translates source pro­
grams written in the COBOL language into Autocoder­
lacs statements.

In order that this translating process be accom-­
plished, the compiler is divided into ten logical seg­
ments, each of which is made up of phases. They are:

Phases
A

B

C
D
E
F
G
H
I
J

Function
Syntax Scan
N arne Compression and Diagnostics
Data Pres can
Data Scan
IOCS
Procedure Pres can
Procedure Scan
Data-Descriptions Merge
General to Particular Macros
Macro Expander

A complete description of the phases that comprise the
COBOL compiler is contained in Appendix II.

Autocoder Assembler

The Autocoder assembler contained in the COBOL sys­
tem is the IBM 1401, 1440, and 1460 Autocoder sys­
tem that is under control of the System Control Pro­
gram. The Autocoder system is described in detail in
the Systems Reference Library publication Autocoder
(on Disk) Program Specifications and Operating Pro­
cedures for IBM 1401, 1440, and 1460, Form C24-3259.

IOCS

Standard macro instructions of the Input/Output Con­
trol System (IOCS) are used by the COBOL system. De­
tailed information pertaining to the macro system can
be found in the Systems Reference Library publication
Input/Output Control System (on Disk) Operating
Procedures for IBM 1401 and 1460, Form C24-3298, or
I nput/ Output Control System Operating Procedures
for IBM 1440, Form C24-3299.

COBOL Macros

In addition to the IOCS macro instructions, the system
includes twenty-five special COBOL macros. Appendix
III shows the macros, the names of the subroutines that
are called by using the macros, and the reason for call­
ing the routines.

ACEPT

The ACEPT macro generates the accept subroutine.
The low-order position and the length of a field is

specified. The accept subroutine reads the appropriate
number of characters to fill this field. The linkage used
for the accept subroutine is:

B ZAX

Dew 001 (Reader)
002 (Console Printer)

DCW 004 (Pocket-1402)
002
000

DCW 001 (Unit-1442)
002

DCW NAMEl

DCW @O@ (Not Subscripted)
@l@ (Subscripted)

DCW 009 (Name Size)

ALCOM

The ALCOM macro generates the alphabetic-compare
subroutine. This subroutine is used when two alpha­
betic records with subfields are to be compared. The
linkage used for the alphabetic-compare subroutine is:

B YAQ

DCW NAMEI

DCW n

DGW nnn

DCW NAME2

DCW n

DCW nnn

DCW @bSS@
@bll@
@bTS@
@bUS@
@bTT@
@bUU@

DCW BRANCH LABEL

DIVDE

(Not used)

(Length of NAME1)

(Not used)

(Length of NAME2)

(NAMEI =F NAME2)
(NAMEl = NAME2)
(NAMEI > NAME2)
(NAMEl < NAME2)
(NAME 1 > NAME2)
(NAMEl < NAME2)

The DIVDE macro generates the divide subroutine.
The subroutine is used as a substitute for the divide
operation code. The linkage used for the divide sub­
routine is:

B DIV
DCW NAMEI
DCW NAME2

DSPLY

The DSPLY macro generates the display subroutine.
The number of fields, the input device, the low-order
position of each field, and the length of each field are
specified. The display subroutine packs these fields se­
quentially in a buffer area, and subsequently outputs

9

them on the specified display device (the card punch,
the printer, or the console printer). The linkage used
for the display subroutine is:

B ZDY
DCW 000

001
002

DC\;V 004
008
000

DCW 001
002

DCW nnn
DCW N
DCW @O@

@1@
DCW nnn

DCW Nn

DC'" @O@n
@l@n

DCW nnn

EDITl

(Punch)
(Printer)
(Console Printer)
(Pocket-1402)

(Unit-1442)

(Number of names to be displayed)
(Name of field)
(Not subscripted)
(Subscripted)
(Length of Name)

The EDIT1 macro generates the editing subroutine.
This subroutine is used when editing which is not in­
cluded within the 1401, 1440, or 1460 Central Process­
ing Unit is used by the COBOL program. Editing fea­
tures that are not handled by the central processing
units are: COBOL zeros, floating plus or minus signs,
single plus sign, and DB. When the editing function is
completed, the subroutine returns to the location fol­
lowing the parameters of this subroutine. The linkage
used for the editing subroutine is:

B ZET
DC\;V NAME1
DCW 0

1
DCW NAME2

000
DCW @DbD@

@nnn@
@KbK@

DCW @+b+@
@-b-@
@KbK@

DCW NAME2

DC'V 0
1

DCW nnn
DCW nnn

EXPIN

(Sending field)
(N ot subscripted)
(Subscripted)
(Label of COBOL mask)
(N 0 COBOL mask)
(Replace CR by DB)
(Position of plus sign)
(Neither editing feature desired)
(Floating plus sign)
(Floating minus sign)
(Neither editing feature desired)
(Receiving field)
(!'Jot subscripted)
(Subscripted)
Ll = Length of edited field
L2 = Length of field to be edited

The EXPIN macro generates the exponentiation sub­
routine that is used when a number is exponentiated

10 Disk COBOL Program Specifications

to an integer power. The linkage used for the expo­
nentiation subroutine is:

B ZFZ
DCW NAME1
DCW nnn
DCW n
DCW nnn
DCW NAME2
DCW nnn
DCW n
DCW nnn
DCW NAME3
DCW SIZE1
DCW SIZE2

(Name of base)
(Number of decimals if NAME1 = GT)*
(Subscript indicator)
(Number of decimals in NAMEl)
(Name of power)
(Number of decimals if NAME2 = GT)*
(Subscript indicator)
(Number of decimals in NAME2)
(Name of intermediate result field)
(Length of field 1)
(Length of field 2)

*GT is equivalent to generated temporary result field.

EXPNI

The EXPNI macro generates the exponentiation sub­
routine that is used when a number is exponentiated
to a decimal power. The linkage u~ed for the exponen­
tiation subroutine is:

B ZXZ
DC\;V NAME1
DCW nnn
DCW n
DCW nnn
DC\V NAME2
DCW nnn
DCW n
DCW nnn
DCW NAME3
DCW SIZE1
DCW SIZE2

(Name of base)
(Number of decimals if NAME1 = GT)*
(Subscript indicator)
(Number of decimals in NAME1)
(N arne of power)
(Number of decimals if NAME2 = GT)*
(Subscript indicator)
(Number of decimals in NAME2)
(N arne of intermediate result field)
(Length of field 1)
(Length of field 2)

*GT is equivalent to generated temporary result field.

FGCOM

The FGCOM macro generates the compare-figcon
subroutine. This subroutine is used when a record
with subfields is to be compared to a figurative constant
(high value, low value, quote, and ALL alpha literal).
The linkage used for the compare-figcon subroutine is:

B YCL
DCW NAME1
DCW n
DCW nnn
DCW NAME2
DCW n
~""',,(TT _____ _
l..J~VV 111111

DCW @bSS@
@bll@
@bTS@
@bUS@
@bTT@
@bUU@

DCW BRANCH LABEL
DC\;V 000

001
002

(Not used)
(Length of NAME1)

(Not used)
IT ___ Ll.. _£ T A 1.6DC"I\
\Ltll1:!,Ul UI 1 n..1V1~"'1

(NAME1 =F NAME2)
(NAME1 = NAME2)
(NAME1 > NAME2)
(NAME1 < NAME2)
(NAME1 > NAME2)
(NAME1 ~ NAME2)

(N either figcon)
(NAME1 figcon)
(NAME2 figcon)

GOTOD

The eOTOD macro generates the go-to-depending
subroutine. This subroutine tests the value of data­
name (NAME1). If the value of data-name exceeds the
number of branch levels given, or if it is equal to zero,
the subroutine returns to the location following the
parameters of this subroutine. Otherwise, the subrou­
tine branches to the 1st, 2nd, .. " nth branch label ad­
dress if the value of data-name is 1, 2, .. " n. The link­
age used for the go-to-depending subroutine is:

B ZGP

DCW nnn (~umber of branch labels)

routine. The linkage used for the if-numeric sub­
routine is:

B YIN

DCW NAME1

DCW 0
1

DCW nnn

DCW BRANCH LABEL

DCW @$16@
@b16@

(Not subscripted)
(Subscripted)

(Size of NAME1)

(Numeric)
(Not numeric)

DCW NAME1 INDIX

DCW nnn
DCW 0 (Not subscripted)

1 (Subscripted)

DCW LABELl (Branch labels)

DGW LABELn

IFALP

The IF ALP macro generates the if-alphabetic sub­
routine. This subroutine is used when a field is to be
tested to see whether it is alphabetic. If both the result
of the test and the operator are true, the subroutine
branches to the label address given as parameter 4. If
either fails, the subroutine returns to the location fol­
lowing the parameters of this subroutine. The linkage
used for the if-alphabetic subroutine is:

B YIP

DCW NAME1

DCW 0
1

DCW nnn

DC\V BRANCH LEVEL

DCW @$10@
@blO@

IFNUM

(N ot subscripted)
(Subscripted)

(Length of NAME1)

(Alphabetic)
(Not alphabetic)

The IFNUM macro generates the if-numeric subrou­
tine. This subroutine is qsed when a field is to be tested
to see whether it is numeric. If the result of this test
agrees with the operator, the subroutine branches to
the label address given as parameter 4. If the result
does not agree with the operator, the subroutine re­
turns to the location following the parameters of the

The INDIX macro generates the subscript-index sub­
routine. This subroutine is used by all COBOL -subrou­
tines except DISPLAY. Its function is to test the index
indicator parameter and substitute the address of the
required index register in place of the switch. The
linkage used for the subscript-index subroutine is:

B ZSP

DCW 001 (Xl)
002 (X2)
003 (X3)

MULTY

The MUL TY macro generates the multiply subroutine.
This subroutine is used as a substitute for the multiply­
operation code. The linkage used for the multiply sub­
routine is:

B MULTY

DCW NAME1

DCW NAME2

MVALL

The MV ALL macro generates the move-all subroutine.
This subroutine is used when a record with subfields is
to be filled with a figurative constant, for example,
ALL@ABC@. The figurative constant is moved into
the record from left to right until the record is filled.
When the record is filled, the subroutine returns to the
location following the parameters of the subroutine.
The linkage used for the move-all subroutine is:

B ZML

DCW NAME1 (Receiving field)

DCW n (Not used)

DCW nnn (Length of the field)

DCW NAME2 (Figcon)

Dew nnn (Length of figcon)

11

MVFTR

The MVFTR macro generates the move-field-to-record
subroutine. This subroutine is used when the record
has subfields. The field is moved to the record area and
justified according to parameter 7. When the field has
been moved to the record, the subroutine returns to
the location following the parameters of this subrou­
tine. The linkage used for the move-field-to-record sub­
routine is:

B ZMR

Dew NAME1 (Field or record name)

Dew n (Not used)

Dew nnn (Length of field or record)

Dew NAME2 (Field or record name)

Dew n (Not used)

Dew nnn (Length of field or record)

Dew @bbR@ (Right)
@bbL@ (Left)

SPLIT

The SPLIT macro generates the stop-literal subroutine.
This subroutine displays the specified literal or the
address of the specified literal in the address register
or on the console printer. The linkage used for the stop­
literal subroutine is:

B SLT
Dew NAME1

SUBS1, SUBS2, SUBS3

The SUBS1, SUBS2, and SUBS3 macros generate the
subscripted subroutines. These three subroutines are
used independently to compute an address for a data­
name that has been subscripted. The address is com­
puted according to the following equations, depending
upon whether the data-name has 1, 2, or 3 subscripted
variables.

eA = B + (VI - 1) SI
,-, A - U _.L ItT __ 1 \ C' ...L ItT _ 1 \ C'
un. - JJ I \. 1 -'-I '-'1 I \. ~ -'-I o.J~

where: eA is the Computed Address
B is the Basic Address of the data-name
VI, V2, Va are the subscripted variable values.
SI, S2, Sa, are the sizes of the basic areas.

After the address has been computed, the subroutines
return to the location following the parameters of these

12 Disk COBOL Program Specifications

subroutines. The linkage used for the subscript-l sub­
routine is:

B XXJ

Dew NAME1

Dew nnn

Dew NAME2

Dew LABEL

or
001
002
003

Dew nnn

(Size of table element)

(Address of subscripted variable)

(Address of field where computed
address is to be stored)

(Xl)

(X2)
(X3)

(Size of NAME1)

The linkage used for the subscript-2 subroutine is:

B XXK

Dew NAME1

Dew nnn (Size of table element 1)

DeW nnn (Size of table element 2)

DeW NAME2 (Address of subscripted variable 1)

DeW NAME3 (Address of subscripted variable 2)

Dew LABEL

or
001
002
003

Dew nnn

(Address of field where computed
address is to be stored)

(Xl)

(X2)
(X3)

(Size of NAME1)

The linkage used for the subscript-3 subroutine is:

B XXL

Dew NAME1

Dew nnn

DGW nnn

Dew nnn

De\V NAME2

Dew NAME3

Dew NAME4

Dew LABEL

or
001
002
003

Dew nnn

XAMIN

(Size of table element 1)

(Size of table element 2)

(Size of table element 3)

(Address of subscripted variable 1)

(Address of subscripted variable 2)

(Address of subscripted variable 3)

(Address of field where computed
address is to be stored)

(Xl)
(X2)
(X3)

(Size of NAME 1)

The XAMIN macro generates the examine subroutine.
The data-name to be examined, the size and class of
the data-name, switches defining the various options
and literal 1 (and literal 2, if existing) are specified.

The examine subroutine replaces and tallies according
to the options used. The linkage used for the examine
subroutine is:

B XMN
DC\V NAMEl
DC\V 000

001
DCW nnn
DC\V 009

OOX
DC\V ABC

DCW LITl
DCW LIT2

000

(Data-name)
(Not subscripted)
(Subscripted)
(Length of data-name)
(Class is numeric)
(Class is alphanumeric)
(A: R = Replacing

T = Tallying
B: 1 = All

2 = Leading
3 = Until First
4 = First

C: R = Replacing
b = No Replacing)

(Name of literal 1)
(0: arne of literal 2, if present)
(Not present)

COBOL Compiler Output
The output from the COBOL compiler is on the devices
specified in the ASGN cards. The LIST file output, with
an assumed assignment to the printer, is composed of:

Source Program Listing. A listing of the COBOL source
program is output during the Syntax Scan section of
the COBOL compiler. The listing is made up of the
card images and their sequence. An asterisk (*) in
the space between the card sequence and the card
image is a sequence-error flag. An example of a
source-program listing is shown in the sample pro­
gram in Appendix IV.

Dictionary. A COBOL dictionary is output immediately
following the source-program listing. The dictionary
equates source special-names to symbolic names,
source data-names to symbolic names, and source
procedure-names to symbolic names. An example of
a dictionary is shown in the sample program in
Appendix IV. An M in the space between TYPE and
KAME indicates that the particular name is used to
refer to more than one field (multidefined) and re­
quires qualification.

Qualification Table. This table is output only when
name qualification is stipulated in the source pro­
gram. Kames that require qualification and refer to
only one specific field appear once in the qualifica­
tion table. Names that require qualification and refer
to more than one specific field appear more than
once in the qualification table.

If WORKS (an optional logical file) is assigned, the
output IS a listing of the Autocoder symbolic state-

ments generated by the COBOL compiler; The total
number of diagnostic messages is output at the end
of the listing. An END OF COMPILATION message is also
output.

COBOL Diagnostic Messages

Incorporated within the compiler are three general
types of COBOL diagnostic messages. These diagnostics
are intended for use by the source programmer and
are displayed on the device assigned to the LIST file.

The first type of diagnostic message is name-asso­
ciated. These messages appear as flags in the dictionary
that associates COBOL source names or COBOL source
qualified-names with the equivalent Autocoder names
used by the compiler. These flags refer to such errors
as COBOL keywords used as data-names. The following
example of the equating of Autocoder and COBOL
names demonstrates how name-associated diagnostics
appear.

TYPE NAME SOURCE

SPEC M All CARDS
SPEC A12 PRINTER
SPEC A13 OVERFLOW
SPEC A14 LAST-CARD
FILE A15 STATUS-FILE

REC M A16 CARDS
DATA A17 CARD-ORDER

**KEYWORD DATA A18 DIGIT
DATA A19 RECORD

In the preceding example, the COBOL keyword DIGIT
was used as a name, and is flagged. In addition, the
name CARDS was used more than once in the source
program and is flagged as being multidefined. If CARDS
has been qualified in all its uses, no error exists.

The second type of diagnostic message is in the form
of a listing, describing problems encountered while
analyzing the sentence structure of the source pro­
gram. An error in COBOL-prescribed sentence structure
automatically suspends compilation after the entire
source program has been analyzed. In the listing, an
assigned sequence number of the card containing the
statement in error is related to the item expected by the
compiler in contrast to the specific item actually en­
countered. If, to continue analysis of the source pro­
gram, the compiler drops any portion of the source
program, the item(s) dropped are included as a part
of the diagnostic message. In special cases, the ex­
pected portion of the diagnostic message may be re-

13

placed by a language term or a rule describing a re­
quirement of the COBOL language, such as

ENVIRONMENT DIVISION MUST PRECEDE DATA DIVISION

In correcting program errors indicated by this type
of diagnostic, it is recommended that the programmer
analyze the diagnostics in sequential order. Further,
the correcting process can be greatly facilitated if the
programmer compares the source program error-state­
ment with the corresponding cOBoL-prescribed format
as outlined in the SRL publication COBOL (on Disk)
Specifications for IBj\l 1401, 1440, and 1460, Form
C24-3235. The user is reminded that any items that are
dropped as a result of an error in sentence structure
are not analyzed by the compiler prior to their de­
letion.

An example of analyzing COBOL diagnostics is:

COBOL Souce Program

SEQUENCE CARD IMAGE

30 ENVIRONMENT DIVISION.
40 CONFIGURATION SECTION.
50 SOURCE-COMPUTER. IBM-1401 NO-OVERLAP.
60 OBJECT-COMPUTER. IBM-l40l NO OVERLAP.
70 SPECIAL-NAMES.

230 PROCEDURE DIVISION.

280 P ARAGRAPH2.
290 IF COBOLZ IS EQUAL TO REFI OR LESS
300 OR GREATER THAN 2 OR NOT LESS
310 THAN 7 THEN GO TO COBOLN.
320 PARAGRAPH3.

COBOL Diagnostics

SEQUENCE COMMENTS
50 , , =NO-OVERLAP=

300 INVALID SUBJECT OR OBJECT =OR=

First consider the diagnostic with the lowest se­
quence number:

50 ' .' =NO-OVERLAP=

The diagnostic means that in sequence number 50, the
compiler expected a period. Instead of a period, NO­
OVERLAP was sensed. Referring to the reference-format

14 Disk COBOL Program Specifications

section of the COBOL specifications publication, the
source computer paragraph is defined.

SOURCE-COMPUTER. 1
IB~1-l401 ~
IBM-1440
IBM-1460

XO-OVERLAP is not an entry for the SOURCE-COMPUTER
paragraph. (However, NO-OVERLAP is an optional entry
for the OBJECT-COMPUTER paragraph.)

Consider the diagnostic:

300 INVALID SUBJECT OR OBJECT =OR=

The diagnostic indicates that the error is in sequence
number 300. The compiler expected a valid subject or
a valid object; OR was sensed. Referring to the COBOL
specifications publication, the format for relational
conditions is defined.

[~data_name '] (IS [NOT] GREATER THAN'~ J . \. J IS [NOT] LESS THAN
) lzteral () IS [NOT] EQUAL TO
~arithmetic expression) ~= - - --

S data-name t
) literal 5
~ arithmetic expression

In the source statement (sequence 290 and 300), IF
COBOLZ IS EQUAL TO REFl OR LESS OR GREATER THAN 2
OR KOT LESS there should be a data-name, or a literal,
or an arithmetic expression after LESS for comparison
with the implied subject, COBOLZ. Instead, OR was en­
countered by the compiler.

The meanings of the symbols used in the sentence­
structure-error diagnostic message are:

Symbol Meaning

PROCEDURE-NAME Blanks bound COBOL-language terms
and rules

'SECTION' Quotes bound literal values expected
by the compiler.

=RAN= Equal signs bound literal values en­
countered by the compiler.

(ALL TO MASTER) Parentheses bound literal values
dropped by the compiler.

'RUN'/LITERAL The slash represents the word OR.

A r1r1;~;A'-''''' 1 A..,.,.., 1-__ " Af ~l-.A "A.-.~A.-.~" n~~ •• ~~ .. ~" ~~~~~
1>.UUJ.U.VJ..lGU '-'AQ.J.J.1'pJ.v,:) VJ. LJ..1'-' ':)'-'H~'-'H'-''-'-':)LJ.U'-'~UJ.C;-C;~~V~

diagnostic are:

620 UNDECLARED NAME =TAPE-ORDER= (TAPE-ORDER)

620 is the assigned sequence number of the card con­
taining the statement in error; U:t\"'DECLARED NAME is a
language term, bounded by blanks, representing an
error encountered by the compiler; = TAPE ORDER =
is the undeclared name, bounded by equal signs; and

(TAPE~ORDER) is the item dropped, bounded by paren­
theses.

650 'TO' =ALL= (ALL TO MASTER)

650 is the assigned sequence number of the card
containing the statement in error; 'To' is the literal
value, bounded by quotes, expected by the compiler;
=ALL= is the literal value, bounded by equal signs,
encountered by the compiler; and (ALL TO MASTER) is
the item dropped, bounded by parentheses.

The third category of diagnostics consists of warn­
ing messages inserted as comments cards in the Auto­
coder instructions generated by the compiler. Messages
of this category are preceded by either a single asterisk
(~), or double asterisks (~~).

A message preceded by a single asterisk indicates
that a possible error in logic has occurred. These
errors mayor may not be intentional. For example,
Field A is longer than Field B. The program contains
an entry to move Field A to Field B. The COBOL com­
piler recognizes this is irregular and issues the diag­
nostic, 100 A-FIELD EXCEEDS B-FIELD, in the How of Auto­
coder instructions. If the instruction were issued for
the purpose of truncating Field A in the move (which
would occur in this instance), the diagnostic would
serve only as a reminder to the programmer that he
had issued an unusual move instruction. However, if
the programmer u'uknowingly issued such a move, his
error would be pointed out to him by the COBOL com­
piler.

A message preceded by double asterisks indicates a
more serious error. These errors should be corrected

in order that the resulting object program operate
correctly. For example, if the OPEN verb is not used
in the source program, the diagnostic, All FILE MUST

BE OPENED, is output in the How of Autocoder instruc­
tions if a READ or WRITE instruction is used in the source
program. This diagnostic can also appear when a file
is declared in the DATA DIVISION and is not opened in
the PROCEDURE DIVISION. This type of error would pre­
clude the successful operation of an object program.

If further explanation of the error condition is de­
sired, the diagnostic message identifications (in these
cases 100 and All) reference the diagnostic messages
with explanatory notes shown in Figure 1.

When the third category of diagnostics occurs in a
compilation, one of two messages is printed on the
printer. If the diagnostics were preceded by a single
asterisk, the message

TOTAL NUMBER OF DIAGNOSTICS - nnn

is printed on the printer.

If one or more of the diagnostics were preceded
by double asterisks, the system temporarily halts, and
the message

NOTE NUMBER OF ERRORS NEEDING CORRECTION - nnn
TOTAL NUMBER OF DIAGNOSTICS - nnn
PRESS START TO CONTINUE START RESET At'JD

START TO BYPASS JOB

is printed on the printer. The user then has the option
of continuing or bypassing the job by following the
directions given in the message. The user is advised
that diagnostics preceded by double asterisks may
cause Autocoder source program errors to be generated
by the COBOL compiler.

15

Reference Division DIAGNOSTIC and t-Aeaning

AOI I Data (lOCS)
I

UNIT RECORD FILES MUST HAVE STANDARD RECORD SIZES
Card Reader 80 characters

I Punch 80 characters I Printer 100 or 132 characters (1403)
144 characters ar less (1443)

A02 Data (IOCS) UNIT RECORD FILES MUST HAVE FORM 1 RECORDS

Blocked records are not permitted in unit record files.

A04 Data (lOCS) FORM3 RECORDS NOT PERMITTED

Unblocked variable length records are nat permitted.

A05 Environment (lOCS) ONLY TAPE FILES MAY RESERVE ALTERNATE AREAS

Tape files are the only files supported by the alternate area feature.

A06 Environment (IOCS) UNIT RECORD FILES MUST NOT RESERVE ALTERNATE AREAS

All alternate areas needed for unit record files are reserved automatically by the processor. Alternate
areas must not be reserved for unit record files. Example:

SELECT READER ASSIGN TO 1402-R RESERVE I ALTERNATE AREA

A07 Data (lOCS) FILE-LIMITS NOT SPECIFIED

All disk file MD statements require a FILE-LIMITS entry. Each address must be 6 characters.

AOa Environment (lOCS) INVALID DISK UNIT

The following are the only valid disk units:

1301-D or 1311-D: 0, 1,2,3, or 4

A09 Data (lOCS) UNIT RECORD FILE/1301-LABEL RECORDS MUST BE OMITTED

The LABEL RECORDS clause must be specified as OMITTED for unit record files and/or 1301.

AIO Data (IOCS) FORM 4 RECORDS-BLOCK SIZE MUST BE IN CHARACTERS

The block size on Form 4 records must be designated using the key word CHARACTER. Therefore, the
following format for Form 4 records is invalid:

BLOCK CONTAINS 400 RECORDS

All Procedure (lOCS) FILE MUST BE OPENED

The OPEN verb is used to initiate the processing of ane or more input and/or output files. At least one
of the two clauses must be written. The clause can specify one or more files to be opened.

AI2 Environment (lOCS) FILE MUST BE SELECTED

Each file to be processed by the object program must be named in a SELECT file-name entry and the
designated name must be unique within the source program.

A13 Data (IOCS) BLOCK SIZE MUST NOT EXCEED 4 DIGITS

The maximum block size that can be specified may cantain four digits including leading zeros.

AI4 Data (lOCS) RECORD SIZE MUST NOT EXCEED BLOCK SIZE

A record size specification must always be smaller than the block size specification that is to contain the
record.

A15 Data (IOCS) DATA RECORD DECLARED WITHOUT SPECIFYING SIZE

01 following a file description not declared legally.

AI6 Data {lOCS) INVALID FILE LIMITS

The upper file limit must be the address of the first sector of the last physical record in the file.

DOl Data PICTURE EXCEEDS 30 CHARACTERS

A picture may not contain more than 30 characters. Example: The picture 9(450) contains six actual
characters, and therefore, will be properly declared. If the above picture were written with 450 9's, it
would not be a valid picture description and the picture would be dropped by the processor.

D02 Data CONFLICTING EDITING ClAUSES

Zero suppress, check protect, and float dollar sign edit clauses are mutually exclusive. The last clause
specified is the one chosen for use. It is suggested that the more complex editing be done using a picture
clause.

D03 Data MUST NOT SPECIFY DECIMAL AT GROUP LEVEL

Only elementary items can use this option.

004 Data MUST NOT SPECIFY EDITING AT GROUP LEVEL

Only elementary items can use this option.

Figure 1. Diagnostic 11essages (Part 1 of 4)

16 Disk COBOL Program Specifications

Reference Division DIAGNOSTIC cioofv\eaning

DOS Data CONFLICT BETWEEN PICTURE AND SIZE CLAUSE

If there is a contradiction between a size clause and a picture clause, the picture specifications take
precedence over the size clause. For example, the clause "SIZE IS 10" would conflict with a picture
defined as 9(6). In this case, a size of 6 would be used by the compiler for compilation.

D06 Data CONFLICT BETWEEN PICTURE AND POINT LOCATION CLAUSE

If there is a contradiction between point location and a picture clause, the picture specifications take
precedence over the paint location clause.

Example: PICTURE IS 9V99
POINT LEFT 3.

In this example, the paint will precede the second character from the left, as specified by the picture.

D07 Data CONFLICT BETWEEN PICTURE AND CLASS

If there is a contradiction between class and a picture clause, the picture specifications take precedence
over the class clause.

Example: PICTURE IS 999
CLASS IS ALPHAMERIC.

In the example, the picture is specified as numeric; therefore, the class must also be specified as numeric.

DOS Data CONFLICT BETWEEN PICTURE AND EDITING CLAUSE

If there is a contradiction between editing and a picture clause, the picture specifications take precedence
over the editing clause.

Example 1: PICTURE IS 999 CHECK PROTECT.
(CHECK PROTECT clause is ignored.)

Example 2: PICTURE IS $$9 CHECK PROTECT.
(Floating dollar sign will be used.)

D09 Data ELEMENTARY ITEM MUST HAVE SIZE OR PICTURE CLAUSE

An element of data (elementary item) is a piece of data which is never further divided. Each elementary
item must have either SIZE clause or PICTURE clause designation in the DATA DIVISION.

Dll Data A RECORD MUST NOT EXCEED 999 CHARACTERS

All records may be as large as 999 characters.

DI2 Data RLI MUST BE 4 CHARACTERS

The Record Length Indicator (RLI) must be four characters in length including leading zeros.

DI3 Data RECORD SIZES WITHIN THIS FILE MUST NOT CONFLICT

More than a single 01 level within a FD or MD is considered implied redefinition and results in a redefini-
tion of the first 01. If the record size is variable, the DEPENDING clause should be used. This diagnos-
tic was given because record lengths within the FD or MD were not the same and could cause an error at
object time.

DI4 Data INVALID EDITING

Illegal editing was specified and all editing for the entry in error was omitted by the processor. Some
conditions which would cause invalid editing are: (I) invalid symbols in a picture clause; (2) size of
editing field exceeds 120 characters; (3) high-order single zero suppress; (4) DB (debit symbol) or CR
(credit symbol) not in right- or left-most position.

D99 Data PICTURE CLAUSE INVALID WITH GROUP ITEM

Only elementary items may be described with the PICTURE clause.

E03 Environment HARDWARE DEVICE MULTI-DEFINED

Hardware devices may not be multi-defined. The example below illustrates two combinations that will
cause errors which will cause a multi-defined device.

Statements (I) and (2) or (I) and (3) would cause a multi-defined device because 1402-P is assigned to
PUNCH in SPECIAL-NAMES. Statements (2) and (3) excluding statement (I) would cause a multi-defined
device because two files cannot be assigned to the same hardware device.

Example: SPECIAL-NAMES.
(I) 1402-P, 4 IS PUNCH.
INPUT-OUTPUT SECTION.
FILE CONTROL.
(2) SELECT FILE2 ASSIGN TO 1402-P

. (3) SELECT FILE3 ASSIGN TO 1402-P.

ESI Procedure (foeS) I/O TABLE OVERFLOW

The maximum number of files is 12. Some error conditions cause extra entries to be made in the I/O table.

ES2 Procedure (lOCS) WRITE REFERENCES INPUT FILE

Only OUTPUT and INPUT-OUTPUT files can be referenced by the WRITE verb. Correct the OPEN state-
ment or the WRITE statement.

Figure 1. Diagnostic Messages (Part 2 of 4)

17

Reference Division DIAGNOSTIC and Meaning

E53 Procedure (lOCS) INVALID KEY USED IN WRITE ON INPUT-OUTPUT FILE

This type file requires a READ prior to each unique WRITE on the file. The INVALID KEY statement
associated with the READ obviates the need far the INVALID KEY option of the WRITE statement.

E54 Procedure (lOCS) READ REFERENCES OUTPUT FILE

Only INPUT and INPUT-OUTPUT files may be referenced by the READ verb. Correct the OPEN or the
READ statement.

FOJ Procedure END STATEMENTS NOT ASSOCIATED WITH THE FOLLOWING FILES

There must be at least one implicit or explicit AT END statement associated with every READ statement.
Once an AT END statement has been executed, an attempt to READ from the associated file will constitute
an error unless a subsequent CLOSE and OPEN have been executed for that file.

HOJ Procedure INVALID USE OF SUBSCRIPTING

This diagnostic occurs when invalid subscripting is used without an OCCURS clause.

Error Example: DATA DIVISION".

FILE SECTION.
OJ NAMEJ

02 NAME2 (***NOTE)
03 NAME3

PROCEDURE DIVISION.

(***NOTE) MOVE NAME2 (3) TO WORKAREA

The procedure statement specified subscripting; therefore, NAME2 must contain an OCCURS clause.

100 Procedure A-FIELD EXCEEDS B-FIELD

The field being moved is larger in size than the receiving field. The field being moved will be truncated
to the length of the receiving field.

10J Procedure NON-NUMERIC FIELD USED IN COMPUTATION

This diagnostic is given on arithmetic fields that are not defined as numeric and are referred to by IF
POSITIVE or IF NEGATIVE.

102 Procedure EDIT MASK TOO SMALL

A GIVING, COMPUTE, or MOVE using edited fields too small to accept the field being placed into the
edited mask will get this diagnostic.

Example: Moving field J2345 to an edit mask $$ 9.99 is erroneous because this edit mask wi II
accept only four characters.

103 Procedure A-FIELD EXCEEDS J8 DIGITS

Fields used in arithmetic computations and expressions must not exceed J8 digits.

105 Procedure B-FIELD EXCEEDS J8 DIGITS (Refer to 103)

106 Procedure NON-NUMERIC FIGCON USED IN COMPUTATION

No figurative constants can be used in arithmetic computations.

107 Procedure INVALID SOURCE

When meaningless source is compiled, this diagnostic will be given followed by a STOP RUN expansion.

108 Procedure INTERMEDIATE RESULTS MUST NOT EXCEED 20 DIGITS

Fields requiring decimal alignment in arithmetic computations must not have intermediate results that
expand beyond 20 digits.

109 Procedure ALPHANUMERIC TO NUMERIC MOVE

This diagnostic will be given if a group item (declared as numeric) is moved to an elementary numeric field.
All group items are classed as alphanumeric. This is a warning diagnostic and does not necessarily con-
stitute an error.

iiO Procedure INVALID SOURCE-IN PRECEDING STATEMENT

This diagnostic is given when meaningless source is compiled in conjunction with the DISPLAY verb.

Example: D ISPLA Y data - namell iteral ON (name) instead of the correct format
D ISPLA Y data - name/~ UPON (name)

III Procedure ROUNDED EXCLUDES LEFT JUSTIFY CLAUSE

When left justification is used in conjunction with the ROUNDING aption, justification ignored during
compilation.

Figure 1. Diagnostic ~lcssag{'s (Part 3 or 4)

18 Disk COBOL Program Specifications

Reference Division DIAGNOSTIC and Meaning

112 Procedure GROUP ITEMS MUST NOT HAVE IMPLIED DECIMAL

Decimal alignment is neglected when group items classed as numeric are moved.

113 Procedure GROUP ITEM MUST NOT BE USED IN COMPUTATION

Only elementary ite!T's can be used in arithmetic computations.

115 Procedure INVALID USE OF GROUP ITEM

1. When the conditional IF POSITIVE or IF NEGATIVE is used, the field referred to must be elementary.

2. When the conditional IF NUMERIC or IF ALPHABETIC is used, the field referred to should be
elementary. If the fields are not elementary, the diagnostic is then given as a reminder to review
possible zoning in the units position of the fields being tested for. these conditions.

117 Procedure ITEM EXCEEDS 20 DIGITS

Numeric fields set up for computational purposes must not exceed 20 digits. When a numeric field
exceeding 20 digits is compared, the diagnostic is given and instructions to perform a non-numeric compare
are given.

118 Procedure CLASS CONTRADICTION

This diagnastic is given as a reminder to review classes of fields being operated on which have contra-
dicting classes. For example, a numeric field compared to a nan-numeric figurative constant would cause
this diagnostic to be given.

119 Procedure INVALID USE OF EDITING

Editing must be done on data fields using procedural statement with the appropriate verbs. For example:

I. The field referred to by the ACCEPT verb must not have editing.

2. The name of the integer that designotes the number of times a PERFORM statement is to be executed
in a PERFORM verb TIMES statement must not have editing symbols.

3. Sending field must be numeric and greater than I digit.

120 Procedure SIZE OF LITERAL MUST EQUAL I

This literal must be one character in length; e.g., in the EXAMINE verb.

121 Procedure INVALID SUBSCRIPTING

An example of subscripting that will cause this diagnosis is:

DATA DIVISION.
01 TABLE.

02 NAME I OCCURS 3 TIMES SIZE IS 2.
PROCEDURE DIVISION.

MOVE NAME I (I, 2) --------

Note the double subscripting indicated in the procedural statement contradicting the declaration for
NAME!.

Figure 1. Diagnostic Messages (Part 4 of 4)

19

Operating Procedures

Jobs

The COBOL system performs four major operations.

1. Compiles source programs.
2. Assembles Autocoder-IOCS programs.
3. Produces object programs.
4. Starts the execution of object programs.

Because these operations are performed by the four
processors of the system, the operations are called
processor jobs. In this respect, the COBOL compiler com­
piles source programs, the Autocoder processor assem­
bles Autocoder-IOCS programs, the Output processor
produces object programs, and the Execution processor
starts the execution of object programs.

One other operation, updating the COBOL system, is
also considered a job. Updating the COBOL system is
called an update job. Update jobs are described in
Updating a COBOL System.

Under control of the System Control Program, it is
possible to perform one or more jobs without operator
intervention. This process is called stack processing. A
stack is always made up of the Card Boot deck, a SyS­

TEM ASGN card, the particular job(s) to be performed,
and a HALT card.

In performing a job, the following must be taken into
consideration.

1. The kind of input for the job.
2. The use of the logical files.
3. The machine-operator procedures to be followed.

The kinds of input for processor jobs are discussed
in the following section (Preparing Processing Jobs).

The general use of logical files is discussed in Logi­
cal Files. In most cases, the user does not need to be
concerned about the logical files used for a particular
job because the COBOL system defines the files and
assigns them to specific input/output devices. In the
description that follows of preparing individual proces­
sor jobs, any file assignment that the user must make is
explained.

The machine-operator procedures to be followed are
described in Performing Jobs.

The last card of a COBOL source-program deck is the
END OF SOURCE card. The format of this card follows.

Columns

1-3
5-6
8-13

Contents

END
OF
SOURCE

20 Disk COBOL Operating Procedures

The END OF SOURCE card signals the COBOL compiler
that the entire source program has been read into core
storage by the INPUT file. Figure 2 shows a COBOL

source deck.

t:

Figure 2. COBOL Source DeCK

Preparing Processor Jobs

The kind of output that is desired by the user is the
determining factor of which processor job is to be per­
formed.

The remainder of this section describes each indi-
vidual processor job. They are:

COBOL RUN
COBOL RUN THRU AUTOCODER
COBOL RUN THRU OUTPUT
COBOL RUN THRU EXECUTION

Each processor job description includes:

1. Assumed input device. This entry refers to the de­
vice on which the INPUT file is assumed to be lo­
cated. For the 1402, READER 1 means that the cards
are selected into stacker 1. For the 1442, READER 1
means unit 1.

2. Input. This entry refers to the type of input for the
job.

3. Assumed output devices. This entry refers to the de­
vices on which the LIST file, the MESSAGE file, and the
OUTPUT file are assumed to be located. For the 1403,
PRINTER 2 means that 132 print positions are avail­
able. For the 1443, PRINTER 2 means that 144 print
positions are available. For the 1402, PUNCH 4 means
that the cards are selected into stacker 4. For the
1442, PUNCH 1 means unit 1.

4. Output. This entry refers to the type of output that
the user always gets as a result of the job.

5. Output options available. This entry refers to the
type of output the user can get as a result of the job.

6. Required user assignments. This entry describes any
additional logical £Ie assignments that the user must
make to perform the job.

7. Control cards. This entry describes the method of
punching any required control cards.

8. Arrangement. This entry references a figure that
shows the manner of arranging card input for the
job.

Notes.
1. Any logical file assumed assignment can be changed by using

an ASGN card. (See Changing File Assignments.)
2. NOTE and PAUSE cards can be placed between, but not

within, job decks.

COBOL RUN

This is the type of run that results in Autocoder sym­
bolic statements. When this run is performed, only the
COBOL compiler is selected. To get a machine-language
object program, the Autocoder statements must be
processed by the Autocoder and Output processors.

This is the only type of run that can be performed
when the Autocoder system and the COBOL system re­
side on separate disk units.

Assumed Input Device. INPUT £Ie on READER 1.

Input. Source program.

Assumed Output Devices. LIST £Ie on PRINTER 2, MES­

SAGE £Ie on PRIKTER 2, OUTPUT file on PUNCH 1 (1442)
or PUNCH 4 (1402).

Output.

1. COBOL diagnostic messages, if errors are sensed in
the source program.

2. Source-program listing.

3. COBOL dictionary.

4. Qualification table, if name qualification is stipu­
lated in the source program.

5. Punched-card deck containing the Autocoder sym­
bolic statements.

Output Option Available. Listing of the Autocoder
symbolic statements. To obtain this option, use a
WORKS ASGN card.

Required User Assignments. None.

Control Cards.

1. If a listing of the Autocoder symbolic statements is
desired on the printer, punch the ASGN card'in the
following manner. If used, this ASGN card must pre­
cede the RUN card.

Columns
6-10

16-19
21-29

Contents
WORK5
ASGN
PRINTER n

The value n represents the number of print posi~
tions. If the printer is a 1403, a 1 indicates 100 po­
sitions and a 2 indicates 132 positions. If the printer
is a 1443, a 1 indicates 120 positions and a 2 indi­
cates 144 positions.

2. The RUN card, the only required control card, is
punched in the following manner.

Columns

6-10
16-18

Contents

COBOL
RUN

Arrangement. The arrangement of input cards is shown
in Figure 3.

Note: If a cross reference list is desired instead of a label table
when an AUTOCODER RUN, an AUTOCODER RUN THRU

OUTPUT, or an AUTOCODER RUN THRU EXECUTION is per­
formed, change column 31 of the compiler-generated
CTL card to blank.

WORK5 ASGN
(if required)

Figure 3. COBOL RUN

COBOL RUN THRU AUTOCODER

This is the type of run that results in Autocoder text.
When this run is performed, the COBOL compiler and
the Autocoder processor are selected. To get a machine­
language object program, the Autocoder text must be
processed by the Output processor.

Assumed Input Device. INPUT £Ie on READER 1.

Input. Source program.

Assumed Output Devices. MESSAGE £Ie on PRINTER 2,
LIST file on PRINTER 2.

Output.

1. COBOL diagnostic messages, if errors are sensed in
the source program.

2. Source-program listing.

3. COBOL dictionary.

4. Qualification table, if name qualification is stipu­
lated in the source program.

5. Autocoder diagnostic messages, if errors are sensed.

21

6. Label table.
7. Autocoder text and a message specifying the START

address of the text.

Output Options Available. Listing of the Autocoder
symbolic statements. To obtain this option, use a
WORKS ASGN card.

Required User Assignments. Because the result of proc­
essing is Autocoder text, an area (OUTPUT file) in disk
storage must be defined. The OUTPUT file must be de­
fined before the job is performed. Use an OUTPUT

ASGN card to define the file.

Control Cards.

1. An OUTPUT ASGN card, which precedes the RUN card,
must be used to define the OUTPUT file because the
Autocoder text is written in disk storage: Punch the
OUTPUT ASGN card in the following manner:

Columns

6-11
16-19
21-57

Contents

OUTPUT
ASGN
1311 UNIT n, START nnnnnn, END nnnnnn

The value n indicates the number of the disk unit,
and can be 0, 1, 2, 3, or 4; nnnnnn represents a disk
address. The limits specified must define an area
large enough to contain the Autocoder text. When
punching the OUTPUT ASGN card, blanks must be
present in columns 21-57 where indicated in the
format.

2. If a listing of the Autocoder symbolic statements is
desired on the printer, punch the ASGN card in the
following manner. If used, this ASGN card must pre­
cede the RUN card.

Columns

6-10
16-19
21-29

Contents

WORK5
ASGN
PRINTER n

The value n represents the number of print posi­
tions. If the printer is a 1403, a 1 indicates 100 po­
sitions and a 2 indicates 132 positions. If the printer
is a 1443, a 1 indicates 120 positions and a 2 indi­
cates 144 positions.

3. Punch the required RUN card in the following man­
ner.

Columns

6-10
16-18
21-24
26-34

Contents

COBOL
RUN
THRU
AUTOCODER

Arrangement. The arrangement of input cards is shown
in Figure 4.

22 Disk COBOL Operating Procedures

COBOL RUN THRU OUTPUT

This is the type of run that results in compiling and
assembling a machine-language object program. When
this run is performed, the COBOL compiler, the Auto­
coder processor, and the Output processor are selected.

Assumed Input Device. INPUT file on READER 1.

Input. Source program.

Assumed Output Devices. LIST file on PRINTER 2, MES­

SAGE file on PRINTER 2, OUTPUT file on PUNCH 1 (1442)
or PUNCH 4 (1402).

Output.

1. COBOL diagnostic messages, if errors are sensed in
the source program.

2. Source-program listing.

3. COBOL dictionary.

4. Qualification table, if name qualification is stipu-
lated in the source program.

5. Autocoder diagnostics messages, if errors are sensed.
6. Label table.

7. Object-program listing.

8. Object program in the condensed-loader format
(six-card loader for 1401 or 1460, seven-card loader
for 1440).

Output Options Available. Listing of the Autocoder
symbolic statements. To obtain this option, use a
WORKS ASGN card.

Required User Assignments. None.

Control Cards.

1. If a listing of the Autocoder symbolic statements is
desired on the printer, punch the ASGN card in the
following manner. If used, this ASGN card must pre­
cede the RUN card.

Columns

6-10
16-19
21-29

Contents

WORK5
ASGN
PRINTER n

Figure 4. COBOL RUN THRU AUTOCODER

The value n represents the number of printposi­
tions. If the printer is a 1403, a 1 indicates 100 po­
sitions and a 2 indicates 132 positions. If the printer
is a 1443, a 1 indicates 120 positions and 2 indicates
144 positions.

2. Punch the required RUN card in the following man­
ner.

Columns

6-10
16-18
21-24
26-31

Contents

COBOL
RUN
THRU
OUTPUT

Arrangement. The arrangement of input cards is shown
in Figure 5.

Figure 5. COBOL RUN THRU OUTPUT

COBOL RUN THRU EXECUTION

This is the type of run that results in compiling, assem­
bling, and· executing a machine-language object pro­
gram. When this run is performed, the COBOL complier,
Autocoder processor, Output processor, and Execution
processor are selected. This run is similar to the stand­
ard load-and-go operation.

Assumed Input Device. INPUT file on READER 1.

Input. Source program.

Assumed Output Devices. LIST file on PRINTER 2, MES­

SAGE file on PRINTER 2.

Output.

1. COBOL diagnostic messages, if errors are sensed in
the source program.

2. Source-program listing.

3. COBOL dictionary.

4. Qualification table, if name qualification is stipu­
lated in the source program.

5. Autocoder diagnostic messages, if errors are sensed.

6. Label table.

7. Autocoder program listing.

S. Object program in the coreload format and a mes­
sage specifying the START and END addresses of the
program that is stored in the CORELOAD file in disk
storage.

Output Options Available. Listing of the Autocoder
symbolic statements. To obtain this option, use a
WORK5 ASGN card.

Required User Assignments. The CORELOAD file must
be defined by the user before the job is performed.
Use a CORELOAD ASGN card specifying the START and
END addresses of the CORELOAD file to define the file.

Additional Results. The object program. is loaded into
core storage and control is transferred to it.

Control Cards.

1. A CORELOAD ASGN card, which precedes the RUN

card, must be used to define the CORELOAD file.
Punch the CORELOAD ASGN card in the following
manner;

Columns

6-13
16-19
21-57

Contents

CORELOAD
ASGN
1311 UNIT n, START nnnnnn, END nnnnnn

The value n is the number of the disk unit, and can
be 0, 1, 2, 3, or 4; nnnnnn indicates a disk address.
The limits specified must define an area large
enough to contain the object program. When punch­
ing the CORELOAD ASGN card, blanks must be present
in columns 21-57 where indicated in the format.

2. If a listing of the Autocoder symbolic statements is
desired on the printer, punch the ASGN card in the
following manner. If used, this ASGN card must pre­
cede the RUN card.

Columns

6-10
16-19
21-29

Contents

WORK5
ASGN
PRINTER n

The value n represents the number of print posi­
tions. If the printer is a 1403, a 1 indicates 100 po­
sitions and a 2 indicates 132 positions. If the printer
is a 1443, a 1 indicates 120 positions and a 2 indi­
cates 144 positions.

3. Punch the required RUN card in the following man­
ner.

Columns
6-10

16-18
21-24
26-34

Contents
COBOL
RUN
THRU
EXECUTION

23

Arrangement. The arrangement of input cards is shown
in Figure 6.

ASG N Card Format

Label Field Operand Field Operand Field
(Columns 6-15) (Columns 16-20) (Columns 21-72)

SYSTEM ASGN ~ 1311 UNIT !! i
1301 UNIT 0

CONTROL ASGN lREADER n f
CONSOLE PRI NTER

MESSAGE ASGN ~ PRINTER n f
CONSOLE PRINTER

,PRINTER n START~, END~t LIST ASGN ' 1311 UNIT n,
11301 UNIT;, START~, END~,

OMIT

j"AORO l INPUT ASGN 1311 UNIT!)I START ~, END!l!!.!l.!l!!!!
1301 UNIT !), START!l!!.!l.!l!!!!, END!l!!.!l.!l!!!!

\ PUNCH n (

OUTPUT ASGN
. 1311 UNIT n, START nnnnnn, END nnnnnn - -- -->
(1301 UNIT!), START~, END!l!!.!l.!l!!!!,
,OMIT ,

LIBRARY ASGN ll311 UNIT n, START nnnnnn, END nnnnnn f
1301 UNIT;, START nnnnnn, END nnnnnn

WORK I ASGN ~1311 UNIT !:I, START!l!!.!l.!l!!!!, END!l!!.!l.!l!!!! f
1301 UNIT !), START!l.!lL!!l.!!!l, END!l!!.!l.!l!!!!

WORK2 ASGN ~1311 UNIT!), START rynnnnn, END ~ f
1301 UNIT!), STARTnnnnnn, END!l!!.!l.!l!!!!

WORK3 ASGN ~1311 UNIT!), STAR1!l!!.!l.!l!!!!, END!l!!.!l.!l!!!!f
1301 UNIT!l, START nnnnnn, END!l!!.!l.!l!!!!

(1311 UNIT n. START nnnnnn. END nnnnnn)

WORK4 ASGN t 1301 UNIT;; START nnnnnn; END nnnnnn ~
OMIT

~ 1311 UNIT n, START nnnnnn, END nnnnnn i
WORK5 ASGN . 1301 UNIT;, START nnnnnn, END nnnnnn , I PRINTER!l ,

,OMIT

11311 UNIT " START!l!!!!!l!l!l, END !l!!!!!l!l!ll
CORELOAD ASGN 1301 UNIT n, START nnnnnn, END nnnnnn

OMIT - -- --

Figure 7. ASGN Card Formats and Assumed Assignments

24 Disk COBOL Operating Procedures

Figure 6. COBOL RUN THRU EXECUTION

Assumed Assignment Remarks

1311 unit -- user-assigned The SYSTEM ASGN card is the only
1301 unit -- must be assigned to UNIT 0 required ASGN card. I t must follow

the Card Boot in a stack of jobs. Any
other SYSTEM ASGN cards in the
stack are inval id. If the user desires
that the COBOL system use less than
the number of core storage positions
available in the pracessor machine,
punch a comma in column 32, and 41<,
SK, 12K, or 16K beginning in column
34.

READER 1 If the CONTROL file and the INPUT
file are assigned to the card reader,
the assignment must be to the same
card reader.

PRINTER 2 When the MESSAGE file is assigned
to the CO NSOLE PRI NTER, carriage
control characters used with the 1403
or 1443 printer may appear in the
message. If the MESSAGE file and
the LI ST file are assigned to the
printer, the assignment must be to the
same printer.

PRINTER 2 I f the LI ST file is assigned to
PRI NTER I (1-403), the Output
processor of the Autocoder system
develops a 100-character program
listing . If the MESSAGE file and the
LIST file are assigned to the printer,
the assignment must be to the some
printer.

READER I If the CO NTROL file and the INPUT
file are assigned to the card reader I
the assignment must be to the same
card reader.

PUNCH 4 (1401 and 1-460)
PUNCH I (1-4-40)

1311 UNIT 0, START 012900. END 019980 1311 is assumed if the SY STEM file is
1301. UNIT 0, START 012900, END 019980 assigned ta 1311; 1301 is assumed if

the SYSTEM file is assigned to 1301.
1311 UNIT 0, START 007200, END 009400 If the MESSAGE, LIST, and WORK5
1301 UNIT 0, START 007200, END 009400 files are assigned to a printer, the

• assignment must be to the same printer.
1311 UNIT 0, START 007200, END 009400
1301 UNIT 0, START 007200, END 009400

1311 UNIT 0, START 009-400, END 012900
1301 UNIT 0, START 009-400, END 012900

OMIT

OMIT

OMIT

Changing file Assignments

Each logical file defined by the COBOL system, with
the exception of the SYSTKM and CORELOAD files, is as­
signed to a specific input/output device by the System
Control Program. These assignments can be changed
by using ASGX cards. The uses of the logical files should
be considered when deciding file assignments.

The file-name is the specific logical file; device is the
input/output unit to which the logical file is assigned.

The assumed file assignments and ASGN card formats
relating to specific files are shown in Figure 7. Valid
device entries are shown in Figure 8.

Leave a blank between items in the operand field as
shown in Figure 7. If, for example, the OUTPUT file is
to be assigned to disk area 004000 through 004799 on
1311 unit 1, the user would code the ASGN card for
punching as shown in Figure 9. The END address to

Preparing ASGN Cards

/ .SGX cards enable the user to change file assignments
for one or more jobs in a stack. The general format for
an ASGK card is:

file-name ASGN 5 device ~
1 OMIT)

Device Entry and Values of!:! and nnnnnn

!1311 t UNIT n, START nnnnnn, END nnnnnn 11301 \ - -- --

n is the number of the disk unit, and can be a, 1, 2, 3, or 4; nnnnnn is a disk address.

READER .!!

For 1402, !:! can be 0,1, or 2.

For 1442, !l can be 1 or 2.

PUNCH .!!

For 1402, !lcan be 0,4, or8.

For 1442, .!! can be 1 or 2.

For 1444, !:! must be 3.

PRINTER !:!

!l can be 1 or 2

CONSOLE PRI NTER

OMIT

Figure 8. Valid Device Entries

Remarks

The END address is the address of the next available sector.

The values of nnnnnn must adhere to the following rules:
1. WORKl and WORK2 files. If the disk unit is 1311, the

START address must be a multiple of 200. If the disk unit
is 1301, the START address must be a multiple of 800.
The END address (1311 and 1301) must be a multiple of
40.

2. WORK3, WORK4, and WORKS files. The START and
END addresses (1311 and 1301) must be multiples of 10.

3. LI BRARY file. The START and END addresses (1311 and
1301) must be multiples of 20.

If these rules are violated, the system automatically narrows
in the disk area to an area that does adhere to these rules.

For 1402, !:! represents the pocket into which the cards are
stacked.
For 1442 and 1444, !! represents the number of the unit.

n represents the number of print positions available on the
1403 or 1443.

For 1403, a 1 indicates 100 positions and a 2 indicates 132
positions.
For 1443, a 1 indicates 120 positions and a 2 indicates 144*
positions.

*Only 132 print positions are used by the COBOL system.

The console printer must be an IBM 1447 without a buffer
feature.

Select th is option when the file is not to be used by the
COBOL system. LIST, OUTPUT "WORK4, WORKS, and
CORELOAD are the only files that can be omitted.

25

Figure 9. Coding for OUTPUT ASGN Card

t-. ____ -----"\Input

'--_D_e_te_r_m_i_ne_r_.....J~ -

Figure 10. COBOL Compiler and Use of Logical Files

26 Disk COBOL Operating Procedures

1/2 - GETEX/PUTEX files

3 - PLACE file

4 - Optional SOURCE-MERGE file

5 - Optional OUTPUT LISTING file

List - SOURCE, NAME TABLE, and
DIAGNOSTICS file

* - Used only when SPECIAL-NAMES
appear in the source program

t - Used only for the third type of
COBOL Diagnostic Messages

be punched is the address of the next available sector,
not the address of the last sector to be used.

File Considerations

CONTROL File and INPUT File. If both the CONTROL
and INPUT files are assigned to the reader, the assign­
ments must be identical. For example, if the system
is a 1440 and the CO~TROL file is assigned to READER 1,
the INPUT file must also be assigned to READER 1.

SYSTEM File. If the SYSTEM file resides on 1311, drive
o should be on-line because the System Control Pro­
gram's assumed assignments are on drive O. If drive
o is not on-line, the user must use ASGN cards to
change the assumed assignments for the LIBRARY,
WORK 1, woRK2, and WORK3 files.

i\1 ESSAGE File and LIST File. If both the MESSAGE
and LIST files are assigned to the printer, the assign­
ments must be identical. For example, if the system
is a 1401 and the MESSAGE file is assigned to PRINTER
2, the LIST file must also be assigned to PRINTER 2.

OUTPUT File. This file must be assigned to a disk
area for COBOL RUN THRU AUTOCODER because the
Autocoder text (100-character records) must be on
disk for Output processing.

Note: Do not assign the OUTPUT file to a disk area for
COBOL RUN THRU OUTPUT

WORKl File and WORK2 File. WORK1 and WORK2 are
required files. They can be assigned to any available
area in disk storage. The WORKI and WORK2 files are
used by the COBOL compiler for the GETEX and PUTEX
functions that perform the large volume of data
handling during compilation.

WORK3 File. WORK3 is a required file. It can be as­
signed to any available area in disk storage. The
WORK3 file is used by the COBOL compiler as an out­
of-line file (PLACE) that bypasses data around major
portions of the compiler. In addition, if the THRU op­
tion is specified in the RUN card, WORK3 acts as an
interface file between COBOL and Autocoder.

WORK4 File. WORK4 is an optional file. vVhen WORK4
is assigned to any available area in disk storage, it
is used by the COBOL compiler as the SOURCE-MERGE
file. This function intersperses COBOL source state­
ments, by paragraph, into the Autocoder symbolic
statements generated by the COBOL compiler.

\VORK.5 File. WORKS is an optional file. When WORKS
is assigned to any available area in disk storage or
to the printer, it is used by the COBOL compiler as
the COHOL OUTPUT LISTI:\"C file. This file is a listing

of the Autocoder symbolic statements generated by
the COBOL compiler.

Timing Considerations

Each segment of the COBOL compiler uses specified
logical files that include: INPUT, OUTPUT, LIST, GETEX/
PUTEX (WORK1/wORK2), PLACE (wORK3), the optional
SOURCE-MERGE (wORK4), and the optional OUTPUT LIST­
ING (WORKS). Figure 10 is a block diagram showing the
logical segments and the order in which they operate.
In addition, the logical files used by the individual
segments are shown.

Manipulation of the COBOL files enables the user to
achieve the best possible results in the operation of the
COBOL system. To attain these desired results, it must
be remembered that seek time is the most significant
factor affecting input/output operations time in the
system. Therefore, it would be expedient for the user
with a multi-unit system to distribute the COBOL files
to all of the units, thus making a significant reduction
in seek time.

WORKI and WORK2 must be given further considera­
tion if optimum seek time is to be realized. Because
these two files handle large amounts of data, ineffi­
cient use of the files results in an increase of COBOL
time requirements. To minimize this eHect on the one­
unit user, the assumed assignments for WORKI and
WORK2 are such that the two WORK files are assigned
to the same area of the disk unit, as shown in Figure 11.
The System Control Program "splits" each cylinder,
causing WORKI to occupy the upper half of each cylin­
der and WORK2 to occupy the lower half of each
cylinder. A programmed false cylinder-over:8.ow is
forced as each half cylinder is operated upon and the
next upper or lower cylinder is used.

The user is advised that when ASGN cards are used
to change logical file assignments, the assignments
affect not only the logical files used by COBOL, but also
the logical flles used by Autocoder. Autocoder requires
that the WORKI and WORK2 files be assigned to separate
disk areas. Therefore, when the assumed assignments

Figure 11. WORKI and WORK2 Assigned to Same Disk Area

27

for WORK1 and woRK2 are changed by using ASGN

cards, these files must be assigned to separate areas
on disk.

Using ASGN Cards

At the beginning of stack processing, the System Con­
trol Program reads a list of assumed assignments into
core storage from the SYSTEM file. Each assumed as­
signment remains in effect until an ASGN card for that
file is sensed. Any changed file assignment remains in
effect until the next ASGN card for that file, or a HALT

card, is sensed.

If a file-assignment change is applicable for an en­
tire stack, place the ASGN card immediately ahead of
the first RUN card.

If a file-assignment change is only applicable to a
specific job, place the ASGN card immediately ahead of
the RU~ card for that job. To change the file assignment
back to the assumed assignment or to a different as­
signment, place the ASGN card immediately ahead of
the RU:\ card for the next job that requires the effective
file assignment to be changed.

Botched files

In some cases it would be expedient for the user to
exercise the batching capability of the COBOL ~ystem.
The batched-files concept applies to the external files
I::-';PUT, OUTPUT, and LIST. (The CORELOAD file, used by
the Output processor of the Autocoder portion of the
system, can also be batched.) The contents of these
files represent one or more sequential sets of input to
or output from the processors.

An example of the batching principle is as follows.
Three source programs are stored sequentially on the
I~PUT file. The user-specified output is to be in the form
of Autocoder-laCS symbolic statements. This implies
that only the COBOL compiler is to be accessed.

An INPUT ASG~ card containing the START address of
the beginning of the first source program and the END

address of the end of the third source program is re­
quired. An OUTPUT ASGN card is required, if the OUTPUT

file is to be assigned to disk. Following the OUTPUT

ASGN card are three COBOL RUN cards (one RUN card for
each of the three source pr!]grams on disk).

At the completion of processing of each source pro~
gram, the first disk address used by the next program
to be written on the OUTPUT file is printed on the MES­

SAGE file. Thus, the user would know not only the START

and END addresses of the entire OUTPUT file, but also the
START and END addresses of each of the partially proc­
essed programs.

28 Disk COBOL Operating Procedures

Performing Jobs

Under control of the System Control Program, it is
possible to process one or more jobs without operator
intervention. For this stack processing to be accom­
plished, each separate job must be called for by the
necessary control cards. A list of the operations that
can be performed in a stack follows.

Logical File Assignments. Assign decks are made up of
one or more ASG::-'; control cards specifying input/
output devices that differ from the effective devices
of the System Control Program. \Vith the exception
of the SYSTEM ASGN card, logical-file ASGN control
cards can appear as frequently within the stack as
the user wishes. Individual control cards within the
deck can be in any order. The SYSTEM ASGN card
appears once in a stack and immediately follows the
Card Boot deck. A CORELOAD ASG~ card is required
if THRU EXECUTION is specified in a RUN card.

System Updating. Update decks as supplied by IBM

are read by the System Control Program and must
be available to the system on the device to which
the CONTROL file is assigned. An update deck con­
sists of one or more control cards, followed by any
appropriate data cards.

Processor Runs. Runs depend upon a RUN card and the
input to the processors. If the INPUT file is assigned
to the same device as the CONTROL file (the card
reader), each source deck must be placed behind
its respective RUN control card. If the input to the
processors is written in disk storage, an INPUT ASG~

card is required designating the location of the
source material in disk storage.

Communicating u:ith the Operator. NOTE control cards
and PAUSE control cards can appear anywhere in a
stack between jobs. A HALT card must be the last
card of a stack.

Preparing a Stack

The Card Boot deck, a SYSTEM ASGN card, and a HALT

card are always required. The formats of the SYSTEM

ASGN and HALT cards are shown in Appendix I.

The input cards for a stack are arranged in this order:

1. The 1402 or 1442 Card Boot deck
2. The SYSTEM ASGN card.

3. Job decks, to include the assign card{s), update
deck(s), and processor deck(s). Job decks can be in
any order.

4. The HALT card.

This stack is placed in the card reader and is read by
the System Control Program from the CONTROL file.

~--CC)BOL Source Deck

Figure 12. Stack with CONTROL and INPUT Files Assigned to
the Same Device

Figure 12 shows a stack with CONTROL and INPUT

files assigned to the same device.
Figure 13 shows a stack with CONTROL and INPUT

files assigned to different devices.

Running a Stack
To perform a stack run when the system resides on
1311:
1. Place the system pack on the disk drive referred

to in the SYSTEM ASGN control card, and ready the
drive. (This card immediately follows the 1402 or
1442 Card Boot deck.)

2. Ready all the input/output devices to which the
logical files are assigned. These are the assumed

1402}CARD BOOT
1442

Run #3

devices of the System Control Program and/or the
devices defined by the ASGN cards. The assumed
devices are: disk drive 0, the card reader, the card
punch, and the printer.

3. Ready the console:
a. Set the I/O check-stop switch off.
b. Set the check-stop switch and disk-write switch

on.
c. Set the mode switch to RUN.

d. Press CHECK RESET and START RESET.

4. Load the program.
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

5. When the System attempts to read the last card:
a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the card
reader.

To perform a stack run when the system resides on
1301:

1. Ready all the input/output devices to which the
lOgical files are assigned. These are the assumed de­
vices of the System Control Program and/or the
devices referred to in the ASG~ cards. The assumed
devices are: disk unit 0, the card reader, the card
punch, and the printer.

2. Ready the console:
a. Set the I/O check-stop switch off.
b. Set the check-stop switch and -disk-write switch

on.
c. Set the mode switch to RUN.

d. Press CHECK RESET and START RESET.

SOURCE
DECK #1

END OF SOURCE

SOURCE
DECK #3

END OF SOURCE

Figure 13. Stack with CONTROL and INPUT Files Assigned to Different Devices

29

3. Load the program:
a. 1402 Card Reader: Press LOAD.
b. 1442 Card Reader: Press START on the reader,

and PROGRAM LOAD on the console.

4. When the system attempts to read the last card:
a. 1402 Card Reader: Press START.
b. 1442 Card Reader: Press START on the card

reader.

Loading Object Programs

Punched-card object programs can be executed inde­
pendently of the COBOL system. The procedures to
be followed when a card-read error occurs depend on
the format of the program and the object system.
To load the program:

1. Place the object deck in the card reader. (If for any
reason the user does not wish to clear storage before
loading the object program, he should remove the
first two cards from the deck. These are the clear­
storage cards generated by the processor.)

2. Set the I/O check-stop switch on. Set sense switches
as needed by the object program.

3. Press CHECK RESET and START RESET.

4. Load the program:
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the card
reader, and PROGRAM LOAD on the console.

5. When the system attempts to read the last card:

a. 1402 Card Reader: Press START.
b. 1442 Card Reader: Press START on the card

reader.

If a card-read error occurs while loading an object­
program deck with the I/O check-stop switch ON, the

following procedures are followed to correct the error.
If the reader is a 1402:

1. Nonprocess run out the cards in the card reader.
2. Place the last three cards (two nonprocessed cards

and the card in error) in the hopper.

3. Press CHECK RESET on the reader and START.

If ihe reader is a 1442 and the object-program deck
is in the 1440 condensed-loader format:

1. Nonprocess run out the cards in the card reader.
2. Place the last two cards in the hopper.

3. Press CHECK RESET and START RESET.

4. Set the I -address register to the ninth position of
the loader.

5. Press START on the reader and START on the console.

30 Disk COBOL Operating Procedures

If the reader is a 1442 and the object-program deck
is in the 1440 self-loading format:

1. Nonprocess run out the cards in the card reader.
2. Place the last two cards in the hopper.
3. Press CHECK RESET and START RESET.

4. Set the I -address register to 00073.

5. Press START on the reader and START on the console.

Note: For a description of the preceding fonnats, see the
Systems Reference Library publication Autocoder (on
Disk). Program Specifications and Operating Procedures
for IBM 1401, 1440, and 1460, Fonn C24-3259.

Halts and Messages

The halts and messages shown in Figure 14 can appear
during a stack run. To display halt numbers, press the
A-address register key. Messages are printed on the
MESSAGE file.

Conditions may arise that the system recognizes as
being instrumental in causing a failure. In these in­
stances, the system automatically calls in a storage­
and file-print program. The contents of core storage
and the WORK files are printed on the MESSAGE file, and
the system continues by accepting a new job. Among
the conditions that may cause a system failure are:

1. An end-of-file indication was sensed by the compiler
before the end of the file was reached.

2. An excessive number of disk read or disk write
errors occurred on the WORK files.

3. An error in cOBoL-prescribed sentence structure oc­
curred when coding the source program. This type
of error is detected in the phase of the processor that
analyzes the particular part of the program. For
example, an error in subscripting would be detected
in phase HOI.

In certain types of halts, the operator can call in the
storage- and file-print program by a manual branch to
address 900. These typ~s of halts are in the form xxxx,
where x is numeric.

If the Autocoder preprocessor recognizes conditions
that make it impossible to complete an operation, a
hard halt Occurs. In such cases, the linkage to the Sys­
tem Control Program is destroyed. This type of halt is
in the form xxbb, where x is numeric. When the pre­
processor has program control, the storage- and· file­
print program cannot be used. If a failure occurs, the
system does not call in the program, and the operator
cannot call it by a manual branch to address 900. The
operator can restart by using the Card Boot, followed
by the necessary job decks.

Halt Number
(A-Address
Register)

1bb

2bb

3bb

4bb

5bb

6bb

MESSAGE and/or Meaning

I Cam read eITO'.

Wrong-length record or no-address-compare error sensed
ten times during a disk-read or disk-write operation.

Restart Procedure

1. 1402 card reader: nonprocess run out the cards in the
reader. Place the last three cards (two nonprocessed
cards and the card in error) in the hopper. Press START.

2. 1442 card reader: nonprocess run out the cards in the
reader. Place the two nonprocessed cards in the hopper.
(The first nonprocessed card is the card in error). Press,
START on the reader and START on the console.

Press START for ten disk-read or disk-write retrieso

Parity error sensed ten times during a disk-read or disk-write Press START for ten disk-read or disk-write retries.
operation.

Not-ready condition sensed when a disk-read or disk-write Ready the disk unit and press START.
operation was attempted.

1. Librarian-control OPTN card is incorrect l or
2. Preprocessor phase not on the SYSTEM file.

One of the following messages precedes this halt:

ERROR HEADER ABOVE UNKNOWN

A phase-update card specifies a phase name that is not in
the phase table •.

ERROR NO KNOWN TYPE OF UPDAT

Columns 21- ? of a phase-update card are incorrect.

ERROR CYLINDER OVERFLOW

The phase-update card specifies that the phase is to be
placed on a set of sectors that exceeds one cylinder.

ERROR ACTUAL IDENT UNEQUAL TO HEADER IDENT

Columns 76-80 of a change card do not contain the phase
name speci fied in co I umns 6-10 of the update contro I
card associated with it.

ERROR NON CONTROL CARD WITHOUT CONTROL
PRECEDING

An update card is missing, out of sequence, or mis­
punched.

ERROR UNKNOWN EXECUTE CARD

A change card with 006 punched in columns 1-3 does not
have =, or =/ or =M punched in columns 6 and 7. These
punches are found in set-word-mark or clear cards developed
for a DA statement. No other types of special execute cards
are permitted.

ERROR PATCH ABOVE OUTSIDE OF PROGRAM LIMITS

The phase area cannot contain the data specified in the
change cards.

1. Nonprocess run out the cards in the card reader,
correct the OPTN card, and restart the system, or

2. If the OPTN card is not incorrect l use the part of the
system deck labeled AUTOCODER PREPROCESSOR and
rebuild the preprocessor portion of the system. Follow
the procedures as described in Bui Iding an Autocoder
System.

The contents of the error cards are printed. Nonprocess
run out the cards in the card reader, correct the error card,
and restart the update operation. Corrections successfully
completed before the halt occurs need not be reprocessed.

Figure 14. Halts and Messages (Part 1 of 5)

31

Halt Number
(A-Address
Register)

7bb

8bb

9bb

10bb

11bb

12bb

13bb

22bb

33bb

MESSAGE and/or Meaning

ERROR CHARACTER COUNT TOO LARGE

A change card contains a character count greater than 67
characters. The character count is punched in col umns 4
and 5.

ERROR ABOVE CARD CREATES GROUP MARK WORD
MARK

A set-word-mark card developed for a DA statement
attempts to set a word mark over a position containing
a group mark, or a condensed card contains a word separa­
tor character followed by a group mark. This is an error
because a group mark can neither be read from nor written
in disk storage.

More than 30 different DTF entries used in the program.

CONTROL CARD ERROR LIBRARY OPTN

This halt indicates one of the following conditions:
1. An I NSER, DELET, or END card is missing or mis­

punched.
2. An attempt to insert or delete entries in a library

routine that does not exist.
3. Entries not in collating sequence, according to

macro name and/or sequence number.

Any disk error that occurs while the bootback routine is
return ing control to the System Control Program.

More than 300 macros with in macros have been used in
the source program.

WORK1 capacity exceeded during an AUTOCODER RUN
THRU OUTPUT or an AUTOCODER RUN THRU EXECU­
TION, or OUTPUT-file capacity exceeded during an
AUTOCODER RU N.

Disk-error condition sensed during the Preprocessor
phase.

LIBRARY file capacity exceeded. Part of the library
routine that was being processed when the halt occurred
will be in the LIBRARY file. />11 library routines follow­
ing the routine being processed will no longer be in the
LIBRARY file.

More than 30 different I NClD routines used in one
overlay •

Library table (99 macro names) exceeded.

Figure 14. Halts and Messages (Part 2 of 5)

32 Disk COBOL Operating Procedures

Restart Procedure

Correct the source program and reassemble the source
program from the beginning.

The contents of the incorrect card(s) are printed. Remove
the incorrect card(s) and place the remainder of the cards in
the card reader. If the library change operation is not
completed, the LI BRARY fi Ie cannot be used.

Press START for one disk retry.

Correct the source program and reassemble the source pro­
gram from"the beginning.

Change the WORK1 or OUTPUT ASGN card and restart the
assembly of the job.

Press START for ten disk retries.

To finish the job:
1. 1402 card reader: nonprocess run out the cards in the

reader. Place the END card in the hopper. Press
START.

2. 1442 card reader: nonprocess run out the cards in the
reader. Place the END card in the hopper. Press
START on the reader and START on the console.

To determine the names of the routines remaininQ in the
LIBRARY file, perform a library-listing operation and specify
HEADERS in the LISTING OPTN card.

Correct the source program and reassemble the source program
from the beginning.

To finish the job:
I. j 402 card reader: non process run out the cards in the

reader. Place the END card in the hopper. Press
START.

2 • 1442 card reader: nonprocess run out the cards in the
reader. Place the END card in the hopper. Press
START on the reader and START on the console.

To determine the names of the routines in the LIBRARY file,
perform a library-listing operation and specify HEADERS in
the LISTING OPTN card.

Halt Number
(A-Address
Register) MESSAGE and/or tv\eaning Restart Procedure

001 WRONG SYSTEM l. Nonprocess run out the cards in the reader 0

2. Correct the SYSTEM ASG N card, or place the correct
The message appears unconditionally on the printer. pack on the unit indicated in the SYSTEM ASGN card.

3. Restart the stack.

002 TEN RD TRIES PRESS STRT FOR 10 MORE Press START for ten disk-read retries.

The message appears unconditionally on the printer. It
indicates any disk error wh ile attempting to read the
SYSTEM file.

003 SYSTEM ASGN NOT SENSED 1. Nonprocess run out the cords in the reader.
2. Place the SYSTEM ASGN card and the remainder of

The SYSTEM ASGN card did not immediately follow the the stack in the read hopper.
Card Boot. 3. If the re'ader is 1402, press START.

4. If the reader is 1442, press START on the reader and
START on the console.

004 Parity check, wrong-length record, or no-address- Press START for 10 disk-read retries.
compare error sensed 10 successive times during disk
bootstrap operation.

005 End-of-file sensed in SYSTEM file during disk boot- Nonprocess run out the cords in the reader and restart the!
strap operation. stock.

006 HALT card image Hard halt.

Indicates the end of the stack.

007 Card-punch error. 1. 1402 cord punch: nonprocess run out the cords in the
punch. Discord the lost three cards (two nonprocessed
cords and the cord in error) in the stocker.
Press START.

2. 1442 card punch: discard the last card in the stacker.
Press START on the punch and START on the console.

008 Card-read error. l. 1402 card reader: nonprocess run out the cards in the
reader. Place the last three cards (two nonprocessed
cards and the cord in error) in the hopper. Press START.

2. 1442 card reader: nonprocess run out the cords in the
reader. Place the two non processed cords in the
hopper. Press START on the reader and START on the
console.

009 Printer error. l. 1403 printer: press START.
2. 1443 printer: press START on the printer and START on

the console.

010 Nonblank card at the punch station in the 1442 cord Nonprocess run out the cords in the 1442. Place blank
read-punch. cards before the nonprocessed cords. Press START on the

1442 and START on the console.

011 PAUSE card image. Press START.

012 Console-printer error Press START for one retry of the read or write operation.

013 ***ASGN card image 1. 1402 card reader: the card in the stacker is the in-
correct ASGN card. Correct the ASGN card.

The halt indicates that the ASGN cord is incorrectly Nonprocess run out th~ cords in the reader. Place the
punched. corrected ASGN cord and the two nonprocessed cards

in the hopper. Press START 0

2. 1442 card reader: nonprocess run out the cords in the
reader. The first nonprocessed cord is the incorrect
ASGN cord. Correct the ASGN card. Place the
corrected ASGN card and the second nonprocessed
card in the hopper. Press START on the reader and
START on the conso Ie •

Figure 14. Halts and Messages (Part 3 of 5) 33

Halt Number
I (A -Address MESSAGE and/or Meaning Restart Procedure

Register)

3. If the user wishes, he can ignore the two steps outlined
above, and press START. The system will then use the
effective device assignment for that particular file.

040 The logical file has been assigned to an area that overlaps Hard halt. Change the assignment and restart the stack
a previously defined file label. (1311 only.) with the Card Boot.

168 Phase not found in phase table while in supervisory call A part of the System must be rebui It. Use the parts of the
for phase. System deck labeled CARD BUILD, SYSTEM CONTROL, and

AUTOCODER PROCESSOR. Follow the procedures as des-
cribed in Bui Iding an Autocoder Sl::stem.

SOO Disk not ready. Ready the disk unit and press START.

629 Parity check, wrong-length record, or no-address-compare Press START for 10 disk-read or write retries.
error sensed 10successive times during a disk-read or write
operation.

777 This halt will occur if the work areas are not large enough. Hard halt. Enlarge work areas to required size and re-
start the assembly.

1250 END OF CONTROL CARD DIAGNOSTICS NOTE - As indicated in the message.
PRESS START TO ASSEMBLE, START-RESET AND START
TO BYPASS ASSEMBLY

1447 NOTE - ASSEMBLY ERRORS - PRESS START TO EXE- As indicated in the message.
CUTE, START - RESET AND START TO BYPASS
EXECUTION

1833 NOTE - DIAGNOSTICS - PRESS START TO ASSEMBLE, As indicated in the message.
START - RESET AND START TO BYPASS ASSEMBLY

2930 NOTE NUMBER OF ERRORS NEEDING CORRECTION - As indicated in the message.
nnn TOTAL NUMBER OF DIAGNOSTICS - nnn
PRESS START TO CONTINUE START-RESET AND
START TO BYPASS JOB

START ADDRESS OF INPUT FI LE DOES NOT REFER TO If a message is printed and no halt occurs, the next control
HEADER RECORD card is processed.

EXPECTED HEADER # (52 Positions) #, FOU ND
/ (52 positions)/

EXPECTED I D 'XXXXX', FOU ND /XXXXX/

NOTE card image

*** card image
All cards not recognized by the System Control Program
are flagged (***), written on the MESSAGE file, and
bypassed by the System.

Card image

INVALID UPDAT TYPE

Update card with inval id update mode designoted.

PHASE XXX ALREADY 0 N SYSTEM. WILL DROP THIS
SET OF CARDS

PHASE XXX NOT FOUND

HE.A.DER CARD ERROR

All header cards must have 24232 in columns 1 through
5.

Card image

PHASE AREA EXCEEDED

****PROCESSOR U NK NOWN****

Figure 14. Halts and Messages (Part 4 of 5)

34 Disk COBOL Operating Procedures

Halt Number
(A-Address
Register) MESSAGE and/or Meaning

CORELOAD NOT ASSIGNED, OPTION NOT DONE

The next output option is processed.

CORELOAD FILE NOT ASSIGNED, OPTION NOT DONE
AND EXECUTION SUPPRESSED

Image of an output option card - OPTION UNKNOWN

The next output option card is processed.

CORELOAD HEADER - (52 positions), ID - (5 positions)

Use the information in an EXECUTIO N RU N card.

CORELOAD OUTPUT COMPLETE ON g;~~f UNIT.':!.,
START nnnnnn, END ~

The START address is address of the object program header
record. The END address is the address of the next avail­
sector. Use the information in an INPUT ASGN card for
an EXECUTION RUN.

{
LST }
OUT FILE ~STARTS{ ON ~1311l UNIT n AT

lENDS \ 11301~ -INP

ADDRESS nnnnnn

XXXXX MACRO NOT IN LIBRARY

The macro requested (XXXXX) is not in the LIBRARY file.

END OF LISTING OPTN

The library-listing job has been completed.

XXXXX BLOCKS LEFT EOJ

The I ibrary-change operation has been completed.
XXXXX is the number of blocks available in the
LI BRARY fil e.

END OF SYSTEM OPTN

The update operation has been successfully completed.

LIBRARY FILE NOT RECOGNIZED

The library has not been assigned correctly or the
library has not been initialized.

OUTPUT FILE NOT ASSIGNED TO DISK

The RUN card specifies AUTOCODER RUN or COBOL
RUN THRU AUTOCODER. The Autocoder text must be
written on disk.

INPUT FILE NOT ASSIGNED TO DISK

The RUN card specifies OUTPUT RUN or OUTPUT RUN
THRU EXECUTION. An INPUT ASGN card, designating
the location of the Autocoder Text, is required.

NO TEXT IN INPUT FILE

1 EOFb sensed in the INPUT file and the Autocoder Text
has not been processedi or, the assigned I NPUT file does
not contain text.

Figure 14. Halts and Messages (Part 5 of 5)

Restart Procedure

35

Building and Updating a COBOL System

COBOL-System Deck Description and
Preparation
The program card deck supplied to the user contains
six sections as shown in Figure 15. One section, Mark­
ing Program, is used to separate the sections for ease
in labeling the various components of the complete
deck. One section, System Control Modification, is
used to modify the System Control Program. Three
sections, Write File-Protected Addresses, COBOL Up­
date, and COBOL Macros, are used to build the system.
The sixth section, Sample Program, is used to test the

system built by the user. The individual sections are
separated by marking program control cards. In the
instances where there is more than one set of cards
making up a section, a marking program control card
separates the sets.

All cards in the system deck, except for the two
1402 load-card sets, the two 1442 load-card sets, the
COBOL Macros, and the Sample Programs, contain a
sequence number in columns 72-75. The cards are
numbered consecutively, beginning with 000l.

All load cards contain a sequence number in column

14----::-J-SAMPLE PROGRAM

I_-----I~IJ
-COBOL MACROS

14------COBOL UPDATE

1402] WRITE FILE _ PROTECTED ADDRESSES

1----1442

SYSTEM CONTROL MODIFICATION

1402] MARK ING PROGRAM

1--.-- 1442

Figure 15. COBOL Program Deck

.36 Disk COBOL Operating Procedures

Shaded cards indicate
Marking Program Control Cards

so. Each set of 1402 load cards is numbered consecu~
tively from 1 through 6 and is identified by a 04~S
punch (0/0 symbol) in column 79. Each set of 1442
load cards is numbered consecutively from 1 through
7 and is identified by a 3~S punch (# symbol) in
column 79.

If it is necessary to resequence the system deck, the
user should sort the cards in the follo\\ling manner:

1. Sort on columns 79 (0~4~S punch) to select the
1402 load cards.

2. Sort the 1402 load cards on column SO to sequence
the cards.

3. Assemble the two sets of 1402 load cards.

4. Sort on column 79 (3~S punch) to select the 1442
load cards.

5. Sort the 1442 load cards on column SO to sequence
the cards.

6. Assemble the two sets of 1442 load cards.

7. Sort the remainder of the system deck on columns
75, 74, 73, and 72. After sorting, the COBOL Macros
and Sample Programs will be in the reject pocket.

S. Check the program listing, which is supplied with
the system deck, and insert the sets of load cards
in the appropriate places.

9. Sort the COBOL Macros and Sample Programs on
column 5. After sorting, the COBOL Macros will be
in the reject pocket.

10. Sort the Sample Programs on columns 4, 3, 2, 1,
and SO.

11. Check the program listing and insert the Sample
Programs.

12. Sort the COBOL Macros on columns 4, 3, 2, 1, SO,
79, 7S, 77, and 76.

13. Check the program listing and insert the COBOL

Macros.

Marking Program

The Marking Program deck is made up of two sets. The
set for the 1442 consists of 13 cards and has identifica~
tion code 50ZY1 punched in columns 76~SO. The set for
the 1402 consists of 11 cards and has the identification
code 50ZZ1 punched in columns 76~SO. A blank card
follows each set.

The Marking Program separates the various sections
and sets that make up the system deck. When a control
card is sensed, a halt occurs and a message is printed.

If the reader is 1442, the initial message is:

HALT AT EACH DECK SEGMENT. DISCARD
FIRST CARD, MARK DECK AS PRINTED,
PRESS START TO CONTINUE.

If the reader is 1402, the initial message is:

HALT AT EACH DECK SEGMENT. MARK
DECK AS PRINTED, PRESS START TO CON~
TINUE.

Subsequent messages contain the name of the sec~
tion to be marked.

To use the decks:

1. Set sense switch A on. Set all other sense switches
off.

2. Set the I/O check stop switch off.

3. Press CHECK RESET and START RESET.

4. Select the Program Nlarking deck that is appropriate
for the system and remove the other deck.

5. Remove the blank card following the :Marking Pro­
gram and place the program in the card reader, fol­
lowed by the. remainder of the COBOL system deck.

6. Load the program.

a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader, and
PROGRAM LOAD on the console.

7. Halt 003 procedure.

a. 1402 Card Reader: Press START. The Marking
Program is in the NR stacker.
b. 1442 Card Reader: Remove the Marking Program
from stacker 1 and press START on the console.

S. Halt 001 procedure.

a. 1402 Card Reader: Remove the cards from
stacker 1 and press START. Mark the deck section as
indicated in the message. The Marking Program
control card is in the NR stacker.

b. 1442 Card Reader: Remove the cards from
stacker 1 and press START on the console. Discard
the first card (Marking Program control card) and
mark the section as indicated in the message.

Note: The Marking Program control cards are identified by
in columns 1-5. These cards are only for the
use of the Marking Program and should be discarded
after the deck is marked.

9. When the system attempts to read the last card.

a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the reader.
The last card is a Marking Program control card
and should be discarded.

The following halts can occur when using the Mark­
ing Program. To display the halt number, press the A­
address register key.

37

Halt Number
A-Address Register

001

002

003

008

009

Meaning

The deck section in stacker 1 should be
marked.

End of job.

The initial message has been printed.

Card-read error. To retry the operation,
For the 1402: Nonprocess run-out the
cards. Remove the last three cards in the
stacker and place them in the hopper.
Press START.

For the 1442: Nonprocess run-out the
cards. Place the two nonprocessed cards
in the read hopper. Press _START on the
reader and START on the console.

Printer error. To retry the operation,
a. 1403 Printer: Press START.

b. 1443 Printer: Press START on the
printer and START on the console.

System Control Modification

The system Control Modification deck is punched in
the Autocoder condensed-loader format and the UPDAT

control-card format. The deck is made up of approxi­
mately 5 cards. The UPDAT cards are identified by
the code 5OCB1 punched in columns 76-80. The modifi­
cation cards are identified by the code 50Sx1 punched
in columns 76-80, where x is alphameric. The function
of the deck is to modify the System Control Program
and the assumed logical file assignments of the System
Control Program.

Write File-Protected Addresses

The Write File-Protected Addresses section is punched
in the Autocoder condensed-loader format. The deck
consists of approximately 120 cards.

The set of cards for the 1442 has the identification
code 50FS1 punched in columns 76-80. The set of cards
for the 1402 has the identification code 50FP1 punched
in columns 76-80.

This section writes disk addresses whose values are
equal to the normal addresses plus 260,000. It is by use
of these false addresses that the file-protected area is
created.

COBOL Update

The COBOL Update deck is punched in the Autocoder
condensed-loader format and the UPDAT control-card
format. The deck is made up of approximately 3300
cards, and contains the phases of the COBOL compiler.
The UPDAT cards are identified by the code 5OCB1
punched in columns 76-80; the COBOL phases arejden­
tified by the code 5Oxx1 punched in columns 76-80,

38 Disk COBOL Operating Procedures

where x is alphameric. The function of the deck is to
load the COBOL compiler phases on the disk unit, thus
permitting a COBOL run.

COBOL Macros

The COBOL-macros deck is punched in the Autocoder
library card format. The deck contains approximately
1800 cards and is identified by the code 50~lx1 punched
in columns 76-80, where x is alphameric. This deck
places the COBOL object-time subroutines and macro
instructions that set switches during assembly on the
Autocoder Macro Library. COBOL requires that these
macros be present during COBOL-output assembly.

COBOL Sample Program

The COBOL Sample Program consists of approximately
250 cards. The 1401 deck is identified by the code
SAMPLE-1 punched in columns 73-80. The 1440 deck
is identified by the code SAMPLE-2 punched in col­
umns 73-80. The 1460 deck is identified by the code
SAMPLE-3 punched in columns 73-80. This source
deck, written in the COBOL language, is used to test the
effectiveness of the system built by the user.

Building a COBOL System
Mter all sets of cards have been labeled and those sets
of cards not applicable to the user's system have been
removed, the user is ready to use the prepared system
deck to build the COBOL system.

Figure 16 is a block diagram showing the building of
a disk-resident system.

The system unit must be prepared for writing the
complete system from cards. The user must clear disk
unit 0 in the move mode from 00000o to 000199, in the
load mode from 000200 to 000259, in the move mode
from 000260 to 000299, in the load mode from 000300
to 007199, and in the move mode from 007200 to
019979. The Clear Disk Storage Program applicable
to the user's system can be used for this operation.

Figure 16.1 shows the disk storage allocation on the
system unit.

The control cards for the utility program must be
punched in the following manner:

For 1311,

Columns
1-15

21-35
41-55

Columns
1-15

21-35

Contents
MOOOOOOOO019900
LOOO20000025900
MOO026000029900

Contents
L00030000719900
M00720001997900

Clear Disk

I
Bui Id Autocoder

and
Autocoder Library

I
Insert IOCS

I
Modify

System Control

Determine
Unit for

Fi Ie - Protected
Addresses

I

1301

I
I

Write
File - Protected

Addresses

I
Prepare

COBOL Update
and

COBOL Macros

I
Update System

I
Run

Sample Program

Figure 16. Building the COBOL System.

I

1311

I

For 1301,

Columns
1-15

21-35
41-55

Columns
1-15

21-35

Contents
M000000000199::f: *=
L000200000259::f: =*
M000260000299 *= =*

Contents
L0003OOOO7199 =* =*
M007200019979 =* *

The user must build an Autocoder system, including
the Autocoder Library. After the Autocoder system
has been built, the laCS macros must be inserted into
the LIBRARY file of the Autocoder system. The pro­
cedures for building an Autocoder system and insert­
ing the laCS macros into the Autocoder Library are
described in Autocoder (on Disk) Program Specifica­
tions and Operating Procedures for IBM 1401, 1440,
and 1460, Form C24-3259. After the Autocoder system
has been built, the user is ready to build the COBOL

system.

System Control Modification

The System Control Program must be modified. Use
the deck labeled SYSTEM CONTROL MODIFICATION to per­
form this function. Input for the process is as follows.

1. The 1402 or 1442 Card Boot deck (supplied as a part
of the Autocoder System Program deck), followed
by

2. The SYSTEM ASGN card, which must be punched by
the user, followed by

3. The System Control Modification deck, followed by

4. The HALT card, which is the last card of the System
Control Modification deck.

To modify the System Control Program when the
system is to reside on 1311:

1. Ready the pack on disk drive O.

2. Set the I/O check-stop switch off.

3. Set the check-stop switch and disk-write switch on.

4. Set the mode switch to RUN.

5. Press CHECK RESET and START RESET.

6. Place the System Cont~ol Modification deck in the
card reader.

7. Load the program.
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

8. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.

h. 1442 Card Reader: Press START on the reader.

39

File Mode File-Protected Sec tor Ra nge

SYSTEM File

Autocoder Preprocessor Move No 000000-000089
Work Area

Autocoder Preprocessor Move No 000090-000199
Autocoder Preprocessor Load No 000200-000259
Autocoder Preprocessor Move No 000260-000299
Autocoder Preprocessor Load No 000300-000899
Not Used Load No 000900-002499

System Control toad Yes 002500-003175
Program

Autocoder Assembler Load Yes 003176-004799
Program

COBOL Compiler Load Yes 004800-007199
Program

WORK1 and WORK2 Files Move No 007200-009399

WORK3 File Move No 009400-012899

LIBRARY File Move No 012900-019979

Figure 16.1. Disk Storage Allocation

To modify the System Control Program when the
system is to reside on 1301:

1. Set the I/O check-stop switch off.

2. Set the check-stop switch and disk-write switch on.

3. Set the mode switch to RUN.

4. Press CHECK RESET and START RESET.

5. Place the System Control Modification deck in the
card reader.

6. Load the program.
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

7. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the reader.

The halts that can occur when using the System
Control Modification deck are shown in Figure 14.

Write File-Protected Addr~sses

The last card in the section labeled WRITE :FILE PROTECT

is a control card that is partially prepunched. It is by
the use of this control card that the limits of the file­
protected area in the disk-storage unit are supplied.
The user must indicate in the control card whether the
system is to reside on a 13019r 1311 disk unit. For both
the 1301 and 1311, the system must be built on drive
unit O. In the case of the 1311, the system pack can be

40 Disk COBOL Operating Procedures

used on any drive once the system has been built. The
control card is punched as follows:

Columns
1-15

17-20
22
24-42
44-49
51-52
54-59

Contents
FILE-PROTECT ON (prepunched)
1301 or 1311
o (prepunched)
FROM NORMAL ADDRESS (prepunched)
004800 (prepunched)
TO (preunched)
007200 (prepunched)

After columns 17-20 have been punched by the user,
the card must be replaced as the last card of the
section.

To use the section when the system is to reside on
1311:

1. Ready the pack on disk drive O.

2. Set the write-address mode switch on.

3. Set the write-disk switch on.

4. Set the I/O check stop switch on.

5. Press CHECK RESET and START RESET.

6. Place the Write File-Protected Addresses section in
the card reader.

7. Load the program.
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader, and
PROGRAM LOAD on the console.

8. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the reader.

9. At the end of the job, set the write-address mode
switch off.

To use the deck when the system is to reside on 1301:

1. Set the write-address mode switch on.

2. Set the write-disk switch on.

3. Set the I/O check stop switch on.

4. Press CHECK RESET and START RESET.

5. Place the Write File-Protected Addresses section in
the card reader.

6. Load the program.
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader, and
PROGRAM LOAD on the console.

7. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the reader.

8. At the end of the job, set the write-address mode
switch off.

The follOwing halts can occur when writing £le­
protected addresses.

Halt Number
(A-Address Register)

020

021

022

023

024

025

026

Meaning

Last card condition was sensed before
the control card. The control card con­
taining the initial and terminal addresses
of the area to be file-protected must be
the last card of the deck. When the sys­
tem is restarted by pressing START, a
read operation is performed.

An invalid disk type is specified in the
control card. 1301 or 1311 are the only
valid entries for columns 17-20 of the
control card. When the system is re··
started by pressing START, a read opera­
tion is performed.

An invalid disk unit is specified in the
control card. The only valid entry for
column 22 of the control card is O.
When the system is restarted by pressing
START, a read operation is performed.

An invalid start address (columns 44-49)
is specified in the control card. The start
address must be 004800. When the sys­
tem is restarted by pressing START, a
read operation is performed.

An invalid end address (columns 54-59)
is specified in the control card. The end
address must be 007200. When the sys­
tem is restarted by pressing START, a
read operation is performed.

Disk unit 0 is not ready. When the sys­
tem is restarted by pressing START, the
disk I/O operation is retried.

The area specified in the control card is
already file-protected (all or in part). If
the system is restarted by pressing START,

the entire specified area will be file-pro­
tected and cleared.

Halt Number
(A-Address Register) Meaning

027 The area specified in the control card
has neither the "normal" disk addresses
(OOOOOO-?) nor file-protected addresses.
This is a hard halt.

028 Parity check or wrong-length record
error occurred on the disk unit while
writing addresses. When the system is
restarted by pressing START, the disk
I/ 0 operation is retried.

029 Parity check or wrong-length record
error occurred on the disk unit while
determining the existing addressing
scheme. This is a hard halt.

030 End of the job.

COBOL Update and COBOL Macros

To build the COBOL system, the decks labeled COBOL

UPDATE and COBOL MACROS are used. Input for this
building process is as follows.

1. The 1402 or 1442 Card Boot deck (supplied as a
part of the Autocoder system program deck), fol­
lowed by

2. The SYSTEM ASGN card, which must be punched by
the user, followed by

3. The COBOL UPDATE deck, followed by

4. The COBOL MACROS deck, followed by

5. The HALT card, which must be punched by the user.

To build the system when it is to reside on 1311:

1. Ready the pack on disk drive O.

2. Set the write-address mode switch off.

3. Set the I/O check-stop switch off.

4. Set the check-stop switch and disk-write switch on.

5. Set the mode switch to RUN.

6. Press CHECK RESET and START RESET.

7. Load the program.
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader, and
PROGRAM LOAD on the console.

8. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the reader.

To build the system when it is to reside on 1301:

1. Set the I/O check-stop switch off.

2. Set the write-address mode switch off.

3. Set the check-stop switch and disk-write switch on.

4. Set the mode switch to RUN.

41

5. Press CHECK RESET and START RESET.

6. Load the program.
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader, and
PROGRAM LOAD on the console.

7. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the reader.

The halts that can occur when using the COBOL UPDATE

and COBOL MACROS decks are shown in Figure 14.

Sample Program

The Sample Program, which is used to test the effec­
tiveness of the system built by the user, calculates and
lists a table of salaries. A listing of the Sample Program
is shown in Appendix IV. Figure 17 shows the Sample
Program deck.

The first card in the Sample Program is a partially
prepunched control card used for assigning the CORE­

LOAD file.
The user must indicate in the control card whether

the system resides on a 1301 or 1311 disk unit. The con­
trol card is punched as follows:

Columns
6-13

16-19
21-24
26-57

Contents
CORE LOAD (prepunched)
ASGN (prepunched)
1301 or 1311
UNIT 0, START 000100, END 000199 (pre­
punched)

The Sample Program is prepared for a stack run in
the following manner.

1. The Card Boot deck, which is supplied as part of

42 Disk COBOL Operating Procedures

the Autocoder system program deck, followed by

2. The SYSTEM ASGN card, which must be punched by
the user, followed by

3. The CORELOAD ASGN card, followed by

4. The COBOL RUN THRU EXECUTION card, followed by

5. The source program statements and the END OF

SOURCE card, followed by

6. The HALT card, which must be punched by the user.

The procedures for running the Sample Program are
described in Running a Stack.

Updating a COBOL System
The COBOL system is updated by the use of pre­
punched card decks supplied by IBM. All necessary
control cards and data cards are included in the deck.

An update job is performed as described in Prepar­
ing a Stack and Runnin!! a Stark.

Card Boot

Figure 17. Sample Program

Supplied
by the user

~---Supplied by the user

Supplied in Autocoder System deck

This section contains a summary of the formats of all
control cards that are required for system operations.
Each control card is punched in the Autocoder format
(the label field is in columns 6-15, the operation field is
in columns 16-20, and the operand field is in columns
21-72).

The user is again reminded that in columns 21-72,
blanks must appear as indicated in the individual
formats.

Figure 18 shows the formats of ASGN cards and the
assumed assignments for the logical files. Figure 19
shows the valid device entries for the ASGN cards.

Figure 20 shows the formats of the following control
cards:

Halt (HALT) card

Note (NOTE) card

Pause (PAUSE) card

Run (RUN) cards.

Note: Update cards are prepunched and included in the card
decks supplied by mM for updating the user's system.

Appendix ·1

43

ASGN Card Format Assumed Assignment Remarks

Label Field Operand Field Operand Field
(Columns 6-15) (Columns 16-20) (Columns 21-72)

SYSTEM ASGN ~ 1311 UNIT !! ~ 1311 unit -- user-assigned The SYSTEM ASGN card is the only
1301 UNIT 0 1301 uni t -- must be assigned to U NIT 0 required ASGN card. It must follow

the Card Boot in a stack of jobs. Any
other SYSTEM ASGN cards in the
stack are invalid. If the user desires
that the COBOL system use less than
the number of core storage positions
available in the processor machine,
punch a comma in column 32, and 41<,
SK, 12K, or 16K beginning in column
34.

CONTROL ASGN lREADER n ~ READER 1 If the CO NTRO L fi Ie and the INPUT
CONSOLE PRI NTER file are assigned to the card reader,

the assignment must be to the some
card reader.

MESSAGE ASGN 1 PRINTER n ~ PRINTER 2 When the MESSAGE file is assigned
CONSOU: PRINTER to the CONSOLE PRINTER, carriage

control characters used with the 1403
or 1443 printer may appear in the
message. If the MESSAGE file and
the LI ST file are assigned to the
printer, the assignment must be to the
same printer.

~ PRINTER n i PRJ NTER 2 If the LIST file is assigned to

LIST ASGN 1311 UNiT!:!, START!!!!!!!!!!!!, END!!!!!!!!!! , PRINTER 1 (1403), the Output
11301 UNIT!:!, START!!!!!!!!!!!!, END!!!!!!!!!!, processor of the Autocoder system
,OMIT develops a 10o-character program

listing. If the MESSAGE file and the
LIST file are assigned to the printer,
the assignment must be to the some
printer.

l'EAD~ 0 l READER 1 If the CONTROL file and the INPUT
INPUT ASGN 1311 UNIT n, START nnnnnn, END nnnnnn file are assigned to the card reader,

1301 UNIT!:!, START nnnnnn, END!!!!!!!!!! the assignment must be to the some
card reoder.

\PUNCH n I
OUTPUT ASGN

' 1311 UNIT!:!, START!!!!!!!!!!!!, END!!!!!!!!!! , PUNCH 4 (1401 and 1460)
11301 UNIT!:!, START!!!!!!!!!!!!, END!!!!!!!!!! \ PUNCH I (1440)
,OMIT .

LIBRARY ASGN ~ 1311 UNIT !:!, START!!!!!!!!!!!!, END nnnnnn t 1311 UNIT 0, START 012900, END 019980 1311 is assumed if the SY STEM file is
1301 UNIT!:!, START!!!!!!!!!!!!, END!!!!!!!!!! 130l UNIT 0, START 012900, END 019980 assigned to 1311; 1301 is assumed if

the SYSTEM file is assigned to 1301.

WORK I ASGN ~1311 UNIT!!, START!!!!!!!!!!!!, END!!!!!!!!!!~ 1311 UNIT 0, START 007200, END 009400 If the MESSAGE, LIST, and WORK5
1301 UNIT!!, START~, END!!!!!!!!!! 1301 UNIT 0, START 007200, END 009400 fj les are assigned to a printer, the

assignment must be to the some printer.

WORK2 ASGN P311 UNIT n, START gnnnnn, END nonnnn ~ 1311 UNIT 0, START 007200, END 009400
1301 UNIT;, START ,nnnnnn, END nnnnnn 1301 UNIT 0, START 007200, END 009400

WORK3 ASGN l1311 UNIT!!, STAR1!!!!!!!!!!!!, END!!!!!!!!!!~ 1311 UNIT 0, START 009400, END 012900
1301 UNIT!!, START~, END ~ 1301 UNIT 0, START 009400, END 012900 !"" UNI,", START ""MOO, END MOMO I

WORK4 ASGN 1301 UNIT;, START nnnnnn, END nnnnnn OMIT
OMIT

~ 1311 UNIT !!, START!!!!!!!!!!!!, END!!!!!!!!!! I
WORK5 ASGN 1301 UNIT n, START nnnnnn, END nonmn , OMIT

(PRINTER!! - -- --\
,OMIT

11311
UNIT" START """"", END """"'I CORELOAD ASGN 1301 UNIT n, START nnnnnn, END nnnnnn OMIT

OMIT - -- --

Figure 18. ASGN Card Fonnats and Assumed Assignments

4-1 Disk COBOL Operating Procedures

Device Entry and Values of!! and ~

~gbaUNITD' START~, END~
n is the number of the disk unit, and can be a, I, 2, 3, or 4; ~ is a disk address.

READER !!

For 1402,!! can be 0, I, or 2.

For 1442, !! can be 1 or 2.

PUNCH !!

For 1402, !l can be 0, 4, or 8.

For 1442, !! can be 1 or 2.

For 1444, !! must be 3.

PRINTER !!

!! can be 1 or 2

CONSOLE PRI NTER

OMIT

Figure 19. Valid Device Entries

Name of Card Label Field
(Columns 6-15)

Halt

Note

Pause

Run COBOL

COBOL

COBOL

COBOL

Figure 20. Control-Card Fonnats

Remarks

The END address is the address of the next available sector.

The values of nnnnnn must adhere to the following rules:
1. WORKI and WORK2 files. If the disk unit is 1311, the

START address must be a multiple of 200. If the disk unit
is 1301, the START address must be a multiple of 800.
The END address (1311 and 1301) must be a multiple of
40.

2. WORK3, WORK4, and WORK5 files. The START and
END addresses (1311 and 1301) must be multiples of 10.

3. LI BRARY fi Ie. The START and END addresses (1311 and
1301) must be multiples of 20.

If these rules are violated, the system automatically narrows
in the disk area to an area that does adhere to these rules.

For 1402, !! represents the pocket into which the cards are
stacked.
For 1442 and 1444, !l represents the number of the uni t.

!! represents the number of print positions available on the
1403 or 1443.

For 1403, a 1 indicates 100 positions and a 2 indicates 132
positions.
For 1443, a 1 indicates 120 positions and a 2 indicates 144*
positions.

*Only 132 print positions are used by the COBOL system.

The console printer must be an IBM 1447 without a buffer
feature.

Se1ect this option when the file is not to be used by the
COBOL system. LIST, OUTPUT, WORK4, WORK5, and
CORELOAD are the only files that can be omitted.

Operation Field Operand Field (Columns 21-72)
(Columns 16-20)

HALT Any message and/or identification

NOTE Any message and/or instruction

PAUSE Any message and/or instruction

RUN

RUN THRU AUTOCODER

RUN THRU OUTPUT

RUN THRU EXECUTION

45

Appendix II

The name, identification, and function of each phase
in the COBOL system are given in the following sections.

System Control Program

This section describes the phases that make up the
System Control Program.

Name

Card Build

Card Boot

System Boot

File-Hard ware
Table

Input/Output
Package

Super 0
Super 1
Super 2
Super 3
Super 4
Super 5
Super 6

Open 1
Open 2

Determiner

ID

50X41
(1442)

50XOI
(1402)

50SZ1
(1442)

50PZl
(1402)

50S01

50S11

50S21

50S31
50S41
50S51
50S61
50S71
50S81
50S91

50SAI }
50SBI

50SCI

Function

Builds System Control on a disk
unit.

Read the SYSTEM ASGN card and
reads in the System Boot from
the specified disk unit.

l. Determines machine size.
2. Initializes switches according

to the type of reader, punch,
and printer (serial or parallel).

3. Reads in the I/O package.
4. Calls the determiner.

Contains the assumed assignments
for the logical files.

1. Reads or writes disk in the
move or load mode. The mode
depends on the processor
operation.

2. Determines whether the user
has exceeded specified
file limits.

3. Branches to the processor
phase, or branches to the
end-of-file routine if the
end-of-file has been sensed.

Reads in the specified phase
from disk storage and branches
to the specified phase.

Initializes the specified area with
a twenty-character control word.
This control word is obtained
from the temporary file-hardware
.1._1-1_
laUlt::.

Reads the CONTROL file until a
control card (HALT, PAUSE, NOTE,
UPDAT, RUN, or ASGN) is sensed.
\Vhen a control card is sensed,
the determiner causes a halt
or pauses, prints out a note, calls
the update determiner, calls
the selector, or calls the con­
figurator, depending upon the
type of card.

46 Disk COBOL Operating Procedures

Name

Phase Index
Table

Configura tor

Selector

ID

50SDI

50SEI

50SFI

Function

Contains the locations of the
phases in the system.

Updates the temporary
file-hardware table as speCified
by the ASGN card(s).

Initializes the files used by the
processor being called, and
calls the first phase of that
processor.

Update 50SGI Determines the type of update
operation bei~g performed, and
calls in that particular updciter.

Determiner

Update Insert 50SHI Places a new phase on the
SYSTEM file in any available
location.

Update Header 50S11 Updates the header of a phase
that is in the SYSTEM file, as
specified by a header card.

Update Delete

Update Patch

Dump 1

Dump 2

File Print 1

File Print 2

FiJe Print 3

50S}1

50SKI

50SLI

50SMI

50SNI

50S01

50SPI

Deletes a phase from the
SYSTEM file.

Patches a part of a phase on
the SYSTEM file.

Prints storage on the LIST file.

Prints all WORK files on the
LIST file.

COBOL Compiler

This section describes the phases that make up the
COBOL compiler.

Name ID Function

CBL 50CBl Initialization of deblocking routines (GETEX and
PUTEX) and I/O buffers.

AOI 50AOI Initialization for the rest of the A and B phases.

All 50All

A02 50A21

A03 50A31

A23 50A41

A33 50A51

A43 50A61

1. Reads and lists the source program (from the
INPUT file to the LIST file).

2. Delimits items in the source program.

1. Outputs ~A.utocoder statements from source
programs to PLACE file (WORK3).

2. Outputs source statements to SOURCE-MERGE
file (WORK4).

1. Inserts internal operators based upon pivoted
key words present in tables A23 through A53.

2. Conditions punctuation.

Table of pivotal key words.

Table of pivotal key words.

Table of pivotal key words.

Name ID Function

A53 50A 71 Table of pivotal key words.

A14 50A81 1. Loads core storage with interpretive strings
for syntax analysis.

2. Positions the GETEX file (WORK1/wORId), by
division, for phase. A24.

A24 50A91 1. Analyzes the source program through the

AS2 50201

AT2 50211

AU2 50221

AV2 50231

AW2 50241

AX2 50251

AY2 50261

AZ2 50271

A-2 50281

AJ2 50291

AK2 502A1

AL2 502B1

AM2 502C1

AN2 502D1

A02 502E1

AP2 502F1

AQ2 502G1

AR2 502H1

use of the interpretive strings.
2. Inserts diagnostic operators into the stream

of source program symbols.

Interpretative strings for IDENTIFICATION and

ENVIRONMENT DIVISIONS (4K systems only).

AA2 50AC1 Interpretative strings for IDENTIFICATION and
ENVIRONMENT DIVISIONS (8K, 12K, and 16K sys­

AB2 50AD1 terns only).

AS3 50301

AT3 50311

AU3 50321

AV3 50331

AW3 50341

AX3 50351

AY3 50361

AZ3 50371

A-3 50381

AJ3 50391

AK3 503A1

AL3 503B1

AM3 503C1

AA3 50AE1

AS4 50401
AT4 50411

Interpretative strings for FILE SECTION of the
DATA DIVISION (4K systems only).

Interpretative strings for FILE SECTION of the
DATA DIVISION (8K, 12K, and 16K systems only).

AU4 50421 Interpretative strings for WORKING-STORAGE and
AV4 50431 CONSTA~T SECTIONS of the DATA DIVISION (4K
AW4 50441 systems only).

AX4 50451
AY4 50461

Name ID Function

AA4 50AF1 Interpretative strings for WORKING-STORAGE and
CONSTANT SECTIONS of the DATA DIVISION (8K,
12K, and 16K systems only).

AS5 505011

AT5 50511

AU5 50521

AV5 50531

AW5 50541

AX5 50551

AY5 50561

AZ5 50571

A-5 50581

AJ5 50591

AK5 505A1

AL5 505B1

AM5 505C1

AN5 505D1

A05 505E1

AP5 505F1

AQ5 505G1

Interpretative strings for the PROCEDURE DIVI­
SION (4K systems only).

AA5 50AG1 Interpretative strings for the PROCEDURE DIVI­
SION (8K, 12K, and 16K systems only).

A34 50AA1 Supervises iterations through strings and divi­
sions.

A44 50AB1 Positions GETEX file (WORK1/wORK2) in relation
to unprocessed data for iterations

A05 50AH1 1. Further source-program analysis.
2. Conditions source program for the rest of

the compiler.

B01 50B01 1. Substitutes compressed names for source
names and literals.

2. Builds name table in core storage.
3. Determines error conditions associated with

name-qualification and multi-definitions.

B02 50B11 Determines error conditions associated with
COBOL reserved words used as names within the
source program.

B12 50B21

B03 50B31

B04 50B41

B05 50B51

BX1 50B61

BX2 50B71

BX3 50B81

BX4 50B91

BX5 50BA1

BX6 50BB1

BX7 50BC1

BX8 50BD1

BX9 50BE1

BXO 50BF1

Table of COBOL reserved words.

Outputs COBOL dictionary on LIST file.

1. Creates data description for literals used in
the source program.

2. Outputs data descriptions for all items on
the PLACE file (wORK3).

Outputs diagnostic messages on LIST file. Diag-
nostic message tables.

47

Name ID

B06 50BGI

B07 50BHI

COl 50COI

Function

Assigns unique compressed names to multi-
defined names.

1. Substitutes unique names when qualified.
2. Outputs qualified name dictionary on the

LIST file.

Entire phase is executed only if a SPECIAL-
NAMES paragraph appears in the source pro-
gram.
1. Outputs special-names data descriptions on

the PLACE file (WORK3).
2. Generates Autocoder-coBoL equate cards.
3. Conditions switch-names for further process­

ing.

C02 50Cll Optional phase. Processes level-88 items, con­
verting appearances of condition names in the
PROCEDURE DIVISION to conditional expressions.

C03 50C21 Optional phase. Inserts move instructions into
the overlay portion of the PROCEDURE DIVISION
to initialize values of data items.

DOl 50DOI 1. Analyzes picture clauses to determine size,
class, decimal count, and editing.

2. Builds a table of all OI-Ievel names which
encompass an OCCURS clause or redefinition.

D02 50D 11 1. Builds an internal description for each entry
used based upon the clauses used in the
source declarations.

2. Updates these descriptions with information
obtained from the picture analysis in
Phase DOl.

3. Generates diagnostics where discrepancies
are recognized.

003 50D21 1. Phase D03 is called only if editing is used.
2. Builds and declares edit masks and completes

the edit section of the data description.

DI3 50D31 1. Outputs editing masks on PLACE file (wORK3).
2. Inserts file-names into WRITE statements.
3. Converts WRITE-FROM statements into MOVE

and WRITE statements.

D04 50D41 1. Builds group size by totaling the elementary
sizes.

2. Provides padding for OCCURS clauses.
3. Controls nested redefinition sizes and origin

flags.
4. Processes subscript levels.

D05 50D51 1. Controls word-mark placement of each entry.
2. Controls nested redefinition origin names.
3. Processes file-record equates and sizes.
4. Outputs storage-declaration macros.

D06 50D6I 1. Places the data description of all entries used
on the PLACE file (wORK3).

2. Expands across and outputs storage declara­
tions on the PLACE file (wORK3).

EOI 50EOl Generates the JOB card.

E02 50Ell Collects ENVIRONMENT DIVISION information in
core storage for DIOCS entries.

E03 50E2I 1. Collects DATA DIVISION information in core
storage for DTF entries.

2. Outputs initial DTF information on the
PUTEX file (WORKl/woRK2).

E04 50E3I Processes OPEN statements and collects file-type
information in core storage for DTF entries.

E4A 50E4I Optional phase. Processes the DECLARATIVES SEC­
TION, collecting USE information in core storage
for phase E05.

48 Disk COBOL Operating Procedures

Name ID

E05 50E51

Function

Processes CLOSE, READ, SEEK, and WRITE state­
ments.
1. Converts disk WRITE statements to special

READ statements to facilitate handling of im­
plied INVALID KEY option.

2. Inserts appropriate file-limits tests and PER­
FORM statements for disk file READ, SEEK,
and WRITE statements.

3. Collects rewind options for tape files from
the CLOSE statements into core storage for
DTF entries.

E06 50E61 1. Analyzes information in core storage, deter-
mining additional DIOCS entries.

2. Determines error conditions associated with
DIOCS.

E07 50E71 Outputs:
1. CTL carel.
2. ORG card, if 10CS not used.
3. DIOCS entries, if 10CS is used on the PLACE

file (WORK3).

E08 50E8I Outputs additional DIOCS entries.

E8A 50E9I Outputs DIOCS associated diagnostics.

E09 50EAI Loads core storage with subroutines to be used
by the rest of the E-phases.

(EIO, Ell EIA, E12, and EI3 operate iteratively by file.)

ElO 50EBI 1. Determines additional DTF entries.
2. Determines I/O area requirements.
3. Determines errors associated with DTF en­

tries.

Ell 50ECI Outputs DTF entries on the PLACE file (WORK3).

EIA 50EDI Optional phase.
Outputs additional DTF entries on the PLACE
file (wORK3) when tape files are used in the
source program.

EI2 50EEI ,Outputs DTF associated diagnostics on the
PLACE file (WORK3).

EI3 50EFI Optional phase. Outputs additional DTF entries
on the PLACE file (wORK3) when standard labels
are used in the source program.

EI4 50EGI Outputs:
1. DA statements.
2. MACOP macro.
3. LDNGO macro (if THRU EXECUTION is speci­

fied on the COBOL RUN card) on the PLACE
file (wORK3).

FOI 50FOI 1. Delimits conditional expressions and the ele-
ments within them.

2. Conditions COMPUTE statements.
3. Conditions usage of subscripting.

F02 50Fll Processes conditional statements, converting ex­
pressions to the simple relational form.

F03 50F2I Processes READ statements.

F04 50F3I 1. Phase F04 is called if the PERFORM verb is
used.

2. Generates labels associated with PERFORM
statements and inserts them into the PER­
FORM statements.

3. Associates "last" name of the PERFORM state­
ment with the label and builds a table of
these elements.

Name ID Function

F05 50F41 1. Searches for procedure-names and inserts
"pending" labels as return-linkages.

2. The table built in F04 is searched for the
procedure-names found and the labels are
made pending.

G01 50G01 1. Breaks down the following COBOL source
statements into macro form:
a. ADD
h. SUBTRACT
C. MULTIPLY
d. DIVIDE
e. MOVE
f. PERFORM (optio:1s 1 and 2)
g. READ (no AT END).

2. Conditions PERFORM (options 3, 4, and 5)
and AT END and INVALID KEY options for fur­
ther processing.

G02 50G 11 1. Processes arithmetic operators in arithmetic
expressions and COMPUTE statements.

2. Processes relational operators in IF and UN­
TIL expressions.

3. Passes generated labels and logic connectors
to phase G03.

G03 50G21 1. Processes conditional statements.
2. Ties in generated labels for READ linkage,

UNTIL, and IF with conditional statements.

G04 50G31 1. Expands fixed form COBOL statements to
macro statements.

2. Creates linkage macros for PERFORM (options
3, 4 and 5).

3. Determines number of generated temporary
buckets needed in object-run arithmetic
computations.

G05 50G41 Eliminates redundant linkages in relational
statement to fully optimize these statements.

G06 50G51 Eliminates redundant generated temporary
buckets used in intermediate computations to
fully optimize arithmetic statements.

HOI 50H01 1. Collects data, device, switch, and literal de­
scriptions and converts these descriptions to
table entries.

2. Processes SUBSCRIPT macros.
3. Inserts the appropriate data-name after each

occurrence of a subscript name.

H02 50H11 1. Sets up storage for Phases H03 and H04
one-time or iterative processing.

2. Table initialization.
3. Clears storage.
4. Calls H03.

H03 50H21 1. Builds a table of data descriptions in storage
from PLACE file (wORK3).

2. Calls H04 when the PROCEDURE DIVISION is
recognized.

H04 50H31 1. Merges data descriptions after every name
in the PROCEDURE DIVISION that has a de­
scription.

2. Iterates back to H02 when necessary.

101 50101 1. Selects the appropriate lists for fixed expan-
sions, ADVANCING option, STOP RUN, and
switches.

2. Conditions relational macros for further proc­
essing.

3. Sets up parameters for EXAMINE subroutine.

Name ID

102 SOIl 1

103 50121

104 50131

105 50141

106 50151

107 50161

lOB 50171

J01 50J01

,J02 50J11

J03 50J21

J04 50J31

J05 50J41

JOB 50J51

J07 50J61

JOB 50J71

Function

1. Sets up parameters for DISPLAY, ACCEPT, and
GO TO DEPENDING subroutines.

2. Expands IF NUMERIC and IF ALPHABETIC
macros.

3. Selects appropriate librar; lists for STOP
literal.

4. Diagnostic scan of conditions.
5. Selects appropriate library instructions for

READ, WRITE, OPEN, and CLOSE.
6. Conditions subscript macros and sets up

parameters for SUBSCRIPT subroutines.

1. Conditions input data for further processing
and scans data for validity.

2. Conditions GIVING, POSITIVE, NEGATIVE, and
relational macros for further processing.

3. Diagnostic scan of arithmetic expressions.

1. Selects appropriate library lists and sub­
routines for MOVE and MOVE ALL macros.

2. Conditions POSITIVE and NEGATIVE macros
for further processing.

Conditions arithmetic macros for further proc­
essing by 106.
a. Keeps a record of intermediate accumu-

lators.
b. Calculates decimal alignment.
c. Optimizes library codes to be selected.

1. Selects appropriate library lists for arithmetic
and ON SIZE ERROR. macros.

2. Conditions relational macros for further proc­
essing.

1. Selects appropriate library lists for all arith­
metic macros not processed up to this phase.

2. Selects appropriate library lists for the POSI­
TIVE and NEGATIVE macros.

3. Performs a diagnostic scan of GIVING and
GIVING (ROUNDED) macros.

4. Processes rounding, editing, and decimal
alignment of GIVING macros.

5. Selects appropriate library lists for GIVING
macros.

1. Determines the type of compares to be set
up for relationals.

2. Calculates decimal alignment where neces­
sary for these comparisons.

3. Selects appropriate library lists and sub­
routines.

4. Performs a diagnostic scan of relational
macros.

1. Substitutes all parameters into model state­
ments (JA2 through JAB) selected from li­
brary.

2. Provides for iteration if the tables of Phase
J02 through JOB (library) will not fit in stor­
age at one time.

Library of model statements for 4K and BK
systems only.

49

Name ID

JA2 50J81

JA3 50J91

JA4 '50JAI

JA5 50JBl

JA6 50JCl

JA7 50JDl

JA8 50JEl

J09 50JFl

JlO 50JGl

Jll 50JHl

JTl 50JIl

JT2 50JJI

JT3 50JKl

J12 50JLl

J13 50JMl

Function

Library of model statements for 12K and 16K
systems only.

1. Sets up subroutine linkages.
2. Calculates, if necessary, subscript addresses.
3. Generates calls for COBOL macroS.

1. Selects from PLACE file (WORK3) in the fol­
lowing sequence and outputs on PUTEX file
(woRKl/wORK2):
a. JOB card
b. Control Card
c. Origin Card
d. DIOCS
e. DTF
f. Procedure literals
g. Edit Masks
h. Storage declarations
i. File areas
j. Generate constants, index registers, tem­

porary storage counters, and tally register
k. Data literals and data moves
1. Calls procedure instructions from GETEX

file (WORKl!WORK2).

1. Outputs diagnostics occurring because of
conflictions between DATA DIVISION and PRO­
CEDURE DIVISION.

2. Merges in Autocoder symbolic statements
with diagnostics.

3. Calls in Phases JTl, JT2, and JT3.

IOCS Data and Procedure diagnostic tables.

IOCS Data and Procedure diagnostic tables.

IOCS Data and Procedure diagnostic tables.

1. Optional merge of COBOL source statements
into Autocoder symbolic output (from WORK4
to wORKl!wORK2).

2. Lists diagnostic messages (LIST file).
3. Converts diagnostic messages to internal note

format to be inserted into Autocoder sym­
bolic output.

1. Outputs Autocoder symbolic program (OUT­
PUT file).

2. Optional listing of Autocoder symbolic pro­
gram (WORK5).

50 Disk COBOL Operating Procedures

Appendix III: COBOL Macros

fv4.acro

I
Subroutine Subroutine Approximate Reason lv\acro Called

Name Name Mnemonic Size*

MID No M/D

ACEPT Accept ZAX 349, (358)t 349, (358) t Use of ACCEPT verb.

AlCOM Alpha Compare YAQ 483 483 Alphabetic record with subfields compared to
any data item.

DIVDE Divide DIV 0 368 Use of DIVIDE, exponentiation, or /.

DIVMC 7 10 In-line expansion of divide function.

DSPlY Display ZDY 586, (62l)t 586, (621)t Use of DISPLAY verb.

EDIT 1 Editing ZET 348 348 Use of the following:

(I) COBOL zeros;
(2) Floating plus or minus;
(3) DB or single plus.

EXPIN Exponentiation I ZFZ 480 486 When an expression is raised by an integer
exponent.

EXPNI Exponentiation 2 ZXZ 1899 1930 When an expression is raised to an exponent
other than an integer.

FGCOM Compare Figcon YCl 414 414 Record with subfields being compared to a
figurative constant whose SIZE is greater
than I.

GOTOD Go To Depending ZGP 156 156 Use of GO TO DEPENDING statement.

IFAlP If Alphabetic YIP 166 166 All fields whose sizes are greater than 1 which
are being tested for alphabetic data.

IFNUM If Numeric YIN 148 148 All fields whose sizes are greater than I which
are being tested for numeric data.

INDIX Index ZSP 79 79 Used when any of the other subrouti nes are
called for except multiply and divide.

lDNGO 0 0 Sets permanent switch to influence macro
expansions.

MACOP 0 0 Sets permanent switch to influence macro
expansions.

MPYMC 7 10 In-line expansion of multiply function.

MUlTY Multiply MPY 0 371 Use of MULTIPLY, exponentiation or *.

MVAll Move All ZMl 312 312 When the receiving field is a group item.

MVFTR Move Field to Record ZMR 443 443 When records of unequal length and subfields
are involved in a MOVE statement.

OVLAY 4 4 Use of the VALUE clause for non-88 level
data items.

SPLIT • Stop litera I SlT 133, (28)· 133, (28)· Use of the literal option of the STOP verb.

SUBSI Subscript I XXJ 221 221 Use of single-depth subscripting.

SUBS2 Subscript 2 XXK 269 269 Use of double-depth subscripting.

SUBS3 Subscript 3 XXl 318 318 Use of triple-depth subscripting.

XAMIN Examine XMN 356 356 Use of EXAMI NE verb.

* M/D The size of the subroutine when the multiply/divide special feature is incorporated in the 1401, 1440, or 1460.

No M/D The size of the subroutine when the multiply/divide special feature is not incorporated in the 1401, 1440, or 1460.

The first entry applies to the 1401 and 1460. The entry within the parentheses applies to the 1440.

• The first entry applies to a 1440 or 1460 system with a console printer. The entry within the parentheses applies to a 1440
or 1460 system with no (:onsole printer. The SPLIT macro is not applicable to a 1401 system.

Figure 21. COBOL Macros
51

Cit "%'j
I.\:> Q:i"

C
'"I

~
<"0

~" t'O
~ !'O

n a \J}
~ tJ:j :3 a '0

t"-t (b

a '"d
"1j '"I
<l) 0

~
oq
'"I g. ~

Ct.:l
:3

~ -;a
~ ~
0 :+ (")
<l)

~

~ 0 ~ -~
~

-. -, _.- - - - - - - - - - - - -- - - - -.- -

COBOL COMPILATION

SEQUENCE CARD IMAGE IDENT IFICAT ION
10 001010 IDENTIFICATION OIVISION. SAHPLE-3
20 001020 PROGRAM-IO. aCOBOL SAMPLE •• SAMPLE-3
30 001030 REMARKS. A PROGRAM TO CALCULATE THE WEEKLV ANO ANNUAL SALARV SAMPLE-3
40 001040 ASSOCIATED WITH A GIVEN MONTHLY SALARY. MONTHLY SALARY SAMPLE-3
50 001050 STARTS AT 500 AND IS INCREASED BY 10 UNTIL IT EQUALS 1000. SAMPLE-3
60 001060 ENVIRONMENT DIVISION. SAHPLE-3
70 001010 CONFIGURATION SECTION. SAHPLE-3
80 001080 SOURCE-COMPUTER. 18M-1460. SAMPLE-3
90 001090 OBJECT-COMPUTER~ 18"'-1460 SAMPLE-3

100 001100 MEMORY SIZE 4000 CHARACTERS NO-OVERLAP. SAMPLE-3
110 001110 INPur-OUTPUT SECTION. SAHPLE-3
120 001120 FILE-CONTROL. SAMPLE-3
130 001130 SELECT SALARY-FILE ASSIGN TO 1403-P SAHPLE-3
140 001140 RESERVE NO ALTERNATE AREA. SAMPLE-3
150 002010 DATA DIVISION. SAMPLE';"3
160 002020 FILE SECT ION. SAHPLE-3
170 002030 FD SALARY-FILE SAHPLE-3
180 002040 LABEL RECORDS ARE OHITTED SAMPLE-3
190 002050 DATA RECORD IS OUTPUT-RECORD. SAMPLE-3
200 002060 01 OUTPUT-RECORD PICTURE XS132a. SAMPLE-3
210 002010 WORKING-STORAGE SECTION. SAHPLE-3
220 002080 01 SALARY-RECORD. SAMPLE-3
230 002090 02 FILLER PICTURE XI50a VALUE IS SPACES. SAHPLE-3
240 002100 02 WEEKLY-DETAIL-LINE PICTURE lll.ll. SAMPLE-3
250 002110 02 FIllER PICTURE XI5a VAlUE IS SPACES. SAHPLE-3
260 002120 02 HONTHLY-DETAIL-LINE PICTURE UZZ.ZZ. SAMPLE-3
210 002130 02 FlllFR PICTURE XI5a VALUE IS SPACES. SAHPLE-3
280 002140 02 ANNUAL-DETAIL-LINE PICTURE n:5a.Zl. SAHPLE-3
290 002150 01 HEADING-RECORD. SAHPLE-3
300 002160 02 FILLER PICTURE XI50a VALUE IS SPACES. SAMPlE-3
310 002170 02 WEEKLY-HEADING-LINE PICTURE AI6a VALUE .WEEKLYCil. SAMPLE-3
320 002180 02 FILLER PICTURE XI5a VALUE IS SPACES. SAMPLE-3
330 002190 02 MONTHLY-HEADING-LINE PICTURE AI7a VAlUE iilMONTHLY •• SAHPLE-3
340 002200 02 FIllER PICTURE XI6a VALUE IS SPACES. SAMPLE-J
350 002210 02 ANNUAL-HEADING-LINE PICTURE AI6n VALUE .ANNUALiil. SAMPlE-3
360 003010 01 CORRECT-MESSAGE. SAMPLE-3
370 003020 O? FILLER PICTURE XI5a VALUE IS SPACES. SAHPLE-3
380 003030 02 TABLE-IS-CORRECT PICTURE AI32a VAlUE IS SAMPlE-3
390 003040 @ TABLE VALUES ARE CORRECT iiil. SAMPLE-3
400 003050 01 INCORRECT-MESSAGE. SAMPLE-3
410 003060 02 FILLER PIC TURE Xl52D VALUE IS SPACES. SAMPLE-3
420 003070 02 TABLE-IS-NOT-CORRECT PICTURE At28a VALUE IS SAMPlE-3
430 003080 @TABLE VALUES ARE NOT CORRECTi. SAHPlE-3
440 003090 77 HASH-TOTAL-COUNTER-WEEKlY PICTURE 916aV99 VALUE IS ZERO. SAMPLE-3
450 003100 77 HASH-TOTAL-COUNTER-MONTHLY PICTURE 916t.1Y99 VALUE IS ZERO. SAMPLE-O
460 003110 77 HASH-TOTAl-CDUNTER-ANNUAl PICTURE 916DV99 VALUE (S ZERO. SAMPlE-3
410 00.3120 77 WEEKlY-PAY PICTURE 999V99. SAMPLE-3
480 003130 77 MONTHLY-PAY PICTURE 9999V99. SAMPLE-3
490 003140 77 ANNUAL-PAY P {CTURE 915DV99. SAHPLE-3
500 003150 CONSTANT SECTION. SAMPLE-3
510 003160 77 HASH-TOTAL-OF-WEEKLY-PAY PICTURE 916aV99 VALUE 008826.69. SAMPLE-3
520 003170 71 HASH-TOTAL-OF-MONTHlY-PAY PICTURE 9Z6DV99 VALUE 038250.00. SAHPLE-3
530 003180 17 HASH-TOTAl-Of-ANNUAL-PAY PICTURE 9Z6aY99 VALUE 459000.00. SAMPLE-3
540 004010 PROCEDURE DIVISION. SAMPLE-3
550 004020 'HART. SAHPLE-3
560 004030 OPEN OUTPUT SALARY-FILE. SAMPLE-3
.510 004040 WRITE OUTPUT-RECORD FROM HEADING-RECORD SAMPLE-:-.3

n o
."
o
I"""

va a
3

"'tJ
CD
." .. o

CD .. a
3

580
590
600
610
620
630
640
650
660
670
680
690
100
710
720
730
740
750
760
770
780
790
800
810
820
830
840

004050
004060
004010
004080
004090
004100
004110
004120
004130
004140
004150
004160
004170
004180
004190
004200
004210
00.5010
005020
00.5030
00'5040
005050
005060
005070
00.5080
005090
005100

BEFORE ADVANCING 2 LINES.
PERFORM CALCULATIONS

VARYING MONTHLY-PAY
FROM 500
BY 10
UNTIL MONTHLY-PAY IS GREATER THAN 1000.

TEST-HASH-TOTAlS.
If HASH-TOTAl-COUNTER-WEEKLY # HASH-TOTAL-OF-WEEKlY-PAY
AND HASH~TOTAl-COUNTER-MONTHlY # HASH-TOTAl-OF-HONTHlY-PAY
AND HASH-TOTAl-COUNTER-ANNUAL 'HASH-TOTAL-OF-ANNUAL-PAY

MOVE CORRECT-MESSAGE TO UUTPUT-RECORD
OTHERWISE

MOVE INCORRECT-MESSAGE TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD

AfTER ADV4NCING 2 lINES.
CLOSE SALARY-FilE.
STOP RUN.

CALCULATIONS.
COMPUTE WEEKLY-PAY #
COMPUTE ANNUAL-PAY #
MOVE WEEKLY-PAY TO
MOVE MONTHLY-PAY TO
MOVE ANNUAL-PAY TU
ADD WEEKLY-PAY TO
~DD MONTHLY-PAY TO
AOD ANNUAL-PAY TO
WRITE OUTPUT-RECORD

3 * MONTHLY-PAY I 13.
12 * MONTHLY-PAY.

WEEKLY-DETAll-lINE.
MONTHLY-DETAIL-LINE.
ANNUAL-DEJA Il-L INE.
HASH-TOTAL-COUNTER-WEEKLY.
HASH-TOTAl-CDUNTER-MONTHLY.
HASH-TOTAl-COUNTER-ANNUAl.
fROM SALARY-RECORD.

SAHPLE-3
SAHPLE-3
SAMPlE-3
SAMPLE-3
SAHPlE-3
SAMPlE-3
SAMPlE-3
SAHPLE-3
SAMPLE-.3
SAMPLE-3
SAMPLE-3
SAMPLE-3
SAMPLE-3
SAMPLE-3
SAMPLE-3
SAMPLE-3
SAMPLE-.3
SAMPLE-3
SAMPlE-3
SAMPLE-3
SAMPlE-3
SAMPlE-.3
SAMPlE-3
SAMPLE-3
SAMPlE-3
SAMPLE-3
SAMPLE-3

~ "'%j
~.

::::
'"1

~
(1)

~- L~
;.;-- ~'V

(J
a en

~
tl::l S a "d
t""< ;:0

S} '"d
'"1

<il 0

a a:::
'"1
~ ;;- s

<7::l

'"1::! ~
""'l ~
0 :+
~
~ (,j
~
~ 0 '"'t
~

'" ~

TYPE

FILE
REC

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DUA
DATA
DATA
DATA
DATA
DATA

PROC
PROC
PROC

NAME SOURCE

AID SALARY-FILE
All OUTPUT-RECORD
A12 SALARY-RECORD
A13 WEEKLY-DETAIL-LINE
A14 MONTHLY-DETAIL-LINE
A15 ANNUAL-DETAIL-LINE
A16 HEADING-RECORD
A17 WEEKLY-HEADING-LINE
A18 MONTHLY-HEADING-LINE
A19 ANNUAl-HEADING-LINE
A20 CORRECT-MESSAGE
A2l TABLE-IS-CORRECT
A22 INCORRECT-MESSAGE
A23 TABlE-IS-NOT-CORRECT
A24 HASH-TDTAL-COUNTER-WEEKLY
A25 HASH-TOTAl-CDUNTER-MONTHlY
A26 HASH-TOTAl-CDUNTER-ANNUAL
A27 WEEKLY-PM
A28 MONTHLY-PAY
A29 ANNUAL-PAY
A30 HASH-TOTAL-OF~EEKlY-PAY
A31 HASH-TOTAL-OF-MONTHlY-PAY
A32 HASH-TOTAl-OF-ANNUAL-PAY
JOI START
J02 CALCULATIONS
J03 TEST-HASH-TOTALS

END OF COMP-ILAIION

I-rj - - - - - - - - - -. --- -.- -- - - - - -- - - - - - - - - - - -'- _. - - - --
Qq'
~
'"1
(1)

'-'J
~'V

LABH TABLE
C/)
~

S nOJ009 01662 eOJOLO 01690 aOJOll 01981 aOJ012 02013 aOJ016 0224L
'0 110MOI0 OL102 [lOMO 11 01999 aOMOt6 02253 AAO 02254 AAl 01744 ro

ACM 01426 AOJ 01503 AOK 01502 AOQ 01500 AOR 01501
'"d AOW 01499 AOX OL48L A05 01386 AIO 00523 All 00523 '"1
0 All 00605 A13 00580 A14 00592 A15 00605 A16 00686 oq
'"1 A11 00662 Ala 00614 A19 00686 A20 00124 A21 00124
~

S A22 00805 A23 00805 A24 008L4 A2.5 00822 A26 00830

-;:a A27 00835 A28 00841 A29 00848 A30 00856 A3L 00864

~
A32 00872 AH 00574 A34 00585 A35 00591 A36 00656

:+ 1\37 00661 H8 00680 A39 00692 A40 00111 A4L 00376

t.f::>.
A42 00383 A43 00391 CNR 01411 CNT 01414 OAI 01568
FAll 00343 GNN 01446 IALO 00343 IOCGMW 00.339 IOCRET 00347

a, IOCRXl 00089 IOCRX2 00094 IOCRX3 00099 IOCSWT 00340 [OCUXT 00334

~ JAL 02019 JA4 01958 JJI 01144 JJ2 01772 JJ3 01712
JSl 01979 JOL 01649 J02 02019 J03 01a34 LAI0 00392
LAll 00392 LAL2 00525 LA16 00601 LAlO 00688 LA22 00726
LTORGX 01382 MV[(lVR 01755 OVRlAY 01649 SHR 01406 SSt 01821
STARTS 01649 SOl 01651 S02 01664 502029 01823 S02033 01861
S02034 01900 S0203.5 019.33 S02041 02014 S03 01670 S04 01702
SOl) 01730 S06 01138 S01 01146 S08 01754 S09 00359
510 00.361 Sl1 00365 Sll 00366 S13 00368 S14 00.310
)(1 00089 X3 00099 ZAl 01588 ZA2 01628 ZMR 00813
lMRAAA 00968 lMRAAB 01022 ZMRADJ 01232 IMRCTR 01231 ZMREXT 01225
7MRJST 00278 ZMRlHR 00261 ZMRLHS 00258 lMRRFD 00264 lMRRSB 00265
lMRRSl 00268 ZMRSFD 00271 lMRSSB 00212 ZMRSSl 00275 ZMROOO 00933
ZMROOI 00915 ZMR002 01043 lMR003 00981 ZMR004 01029 IMROO5 01094
ZMR006 01 L08 ZMROO8 01150 ZMR009 01164 ZMROIO 01282 ZMRO 11 01216
lSP 01293 lSP[Nl OL349 lSP[N2 01338 lSPOUT 01356 ZSPSVI 01362
ZSPSV2 01361 lSPSV3 oun

CJt "'l'j
~ ~.

e
"1

tJ
('l>

r;:;- l<l
?:'" ~'V @COBOL S4MPLEiiI PAGE 1
(J

rJ) a ~
tx:l !3 a 'C
t'-< (1;'"

SEQ PGLlN LABEl opeD OPERAND SFX CT LOCN INSTRCTN A-ADD B-ADD .FLAGS

0001 0102 JOB @COBOL SAMPLEiil

9 ~
"1

~ 0
.... et::I
~ "1

~

:r !3
(J~

0002 0103 cn 1 110 L 037010
0003 0104* DIOCS
0004 0105* DIOCSORG 00334
0005 0106* 100EVICES PRINTER
0006 * ORG 87 087

~
~
~

0 ;4.
(')
~ CJl
~

0007 * IOCRXl DCW @ @ 3 089
0008 * DC iii .i 2 091
0009 * lOCRX2 DCW ial @ 3 094
0010 * DC 3) iil 2 096

~ 0
~

'" ~

0011 * IOCRX3 DC 101 ;j) ill 3 099
0012 * ORG 00334 334
0013 * IOCUXT B 0 UNI VERSAL EX IT 4 334 BOOO 0
0014 * ocw @ w,G BLANK 1 338
0015 * [OCGMW EQU * GROUP HARK - WORD MARK 339
0016 * [OCSWT DC @ @ 340
0017 0107* oTF [A10
001R 0108* F IL ETVPI': PRINTER
0019 0109* [OAREAS LA10
0020 * DCW iil.9iil 2 342
0021 * [AlO ~ IOCUXT 4 343 8334 334
0022 * IOCRET ~IN IAI0-2,-t: TEST PRINTER ERROR 5 347 B34U 341
0023 * B[N IOCUXT, 5 352 8334 334
0024 0110 MACOP,l **MACRO**
0025 0111 S09 DCW til500.il 3 359
0026 0112 S10 DCW iHO@ 2 361
0027 0113 Sl1 DCW @lOOOdl 4 365
0028 0114 512 DCW @3@ 1 366
0029 0115 S13 Dew @13.J1 2 368
0030 Oll6 S14 Dew @12@ 2 370
0031 0117 A41 Dew @ o. Oiil 6 376
0032 0118 A42 Dew (j) O. O@ 7 383
0033 0119 A43 DCW @ o. o@ 8 391
0034 0120 LAI0 EQU *& 1 392
0035 0121 LAll EQU *&1 392
0036 0122 FAll F,QU (fIlO 343
0037 0123 Dew #)0 441
0038 0124 All f)S 00082 ')23
0039 0125 ORG 524
0040 0126 ORG *-1 523
0041 0127 f)A lXl,G ')23 00523
0042 0128 AI0 F.QU All 523
0043 0129 LA12 EQU *&1 525
0044 0130 A33 new #50 574
0045 0131 A13 Dew Jl6 580
0046 0132 A34 Dew #5 585
0047 0133 A14 Dew #7 592
0048 0134 A35 Dew 115 597
0049 0135 A15 Dew 1fB 605
0050 0136 A12 EQU II< 605
0051 0137 ORG 606
0052 0138 ORG *-1 605
0053 0139 OA 1 X l ,r, 605 00605
0054 0140 LA16 EQU *&1 607
0055 0141 A36 OCt'I #50 656
0056 0142 A17 Dew /16 S62 --

@COBOL SAMPLE@ PAGE 2

SEQ PGLIN LASH OPCD OPERAND SFX CT LoeN INSTRCTN A-ADD B-ADD .FLAGS

0051 0143 AH DCW /15 661
0056 0144 ALL DCW #7 614
0059 0145 A38 Dew #6 660
0060 0146 A19 DCW #6 686
0061 0141 A16 EQU '" 686
0062 0148 ORG 687
0063 0149 ORG *-1 686
0064 0150 DA txl,G 686 00636
0065 0151 lA20 EQU *&1 688
0066 0152 A39 Dew (1:5 692
0061 0153 A21 DCW #32 124
0066 01.54 A20 EQU * 724
0069 0155 ORG 725
0010 0156 ORG *-1 124
0071 0157 DA lXl,G 124 00124
0012 0158 LA22 FQU *&1 126
0013 0159 DCW #.50 115
0014 0160 A40 os 00002 771
0015 0161 A23 DCW #128 805
0016 0162 A22 EQU * 805
0011 0163 ORG 806
0018 0164 ORG *-1 805
0079 0165 DA lXl,G 805 00805
0080 0166 A74 DCW #8 614

0363 * MReM LAI0,20l MOVE RECORD 1 t992 P392201 392 201
0364 * Il 0 "10 11 W PRINT 1 1999 2
0365 0330 CLOSEIAI0 **MACRO**
0366 '" MLC [lOJOI2,H1CUXT~3 CLOSE lA 10 1 2000 M-13H7 2013 337
0361 .. B [A10f.4 4 2007 B347 341
0368 * IlOJ012 Dew IlOJOI2&1 RETURN AFTER CLOSE IAIO 3 2013 -14 2014
0369 0331 S02041 H 1 2014
0310 0332 B S02041 4 2015 6-14 2014
0371 0333 J02 EQU *&.1 2019
0312 03.34 lA SI2£.OOO ,OAl-OM 7 2019 &366V04 .366 L504
0373 0335 MPVMCA26&000,DA1-051 **MACRO**
0314 '" H A28&000,OA1-057 1 2026 @841Vll 841 1511
0375 0336 ZA &'00,.ZAl&20 1 2033 &K60W08 2260 1608
0376 0331 A OAI-057,lAl&000&'002 1 2040 AVllV90 1511 1590
0371 0338 ZA &OO,OAI 1 2041 &.K60V68 2260 1568
0378 0339 sw DAI-023 4, 2054 , V45 1545
0379 0340 ZA lAl&'OO2,DAl-OOl 1 2058 &.V90V67 1590 1567
0380 0341 MlZS OAI-OOl,DAl 1 2065 YV67V68 1561 1568
0381 0342 MLlS @ @,OAL-OOI 1 2072 YK61V67 2261 1567
0382 0343 DIVMCSI3&OOO,DAl-020 **HACRO**
0383 * D S13&OOO,[)AI-020 7 2079 %368V48 368 1548
0384 0344 ZA &00,GNN&20 1 2086 &K60U66 2260 1466
0385 0345 A DAI-003,GNN&'002&'01 1 2093 AV65U49 1565 1449
0386 0346 Cirl OAl-023 4 2100 nV45 1545
0387 0347 MLlS GNN&003,GNN&002 7 2104 YU49U48 1449 1448
0388 0348 lA GNN&OO2,A27 1 2111 &U48835 1448 835
0389 0349 lA S14&OOO,DAI-063 1 2118 &310V05 310 1505
0.390 0350 MPYMCA28&'00O,OAI-056 **MACRO**
0391 '" M A28&OOO,DAl-056 1 2125 @841V12 841 1512
0JU_015J ______ tA __ _ D2'l-Q5"'p~1\1'L _______________________ . __ 3 __ 2J.~ _ ~ . .v.l2..!!41! _ .J 'i.l~ _ ~4.8. _ -_____ . ________

CIt
-...l,

CIt 'Tl -. - - - - -'- -
Q:) ~"

C
'"i

tj
<1l

<;;" l'-l

~ ~'-l @COBOL SIIMPlEiil PAGE 8
("")

C/") 0 ~
t:J:j 3 SEQ PGUN LABel OPCD OPERAND Sf)(CT lOCN INSTRCTN A-ADD B-ADO • FlAGS 0 '"d
t""""' co 0393 0352 MLCWA A41,Al~ 1 2139 L316580 316 580
0 ~ 0394 035 -1 MCE A21&00Q,A 13 1 2146 E835580 835 580

"1:j '"i

~ 0 .0395 o 3'j/t sw A13-006&OI 4 2153 ,515 515
""l Q'::l

2151 l383592 383 592 ~
'"i 0396 0355 MLCWA A42,A14 1
~

;;" 3 0391 0356 MCE A28&000,AI4 1 2164 EB41592 B41 592
Q';:j 0398 0351 sw A 14-001&0 1 4 2111 ,586 586

~
-;:a 0399 0358 MLCWA A43,A15 7 2175 l391605 391 605

'"'I ~ 0400 03')9 MCE A29&'000,AI5 7 2182 E848605 848 605 0 ::+
(') 0401 0360 SW A15-008&01 4 2189 ,598 598
~ -l g. 0402 0361 A A21&.OOO, ."24&000 7 2193 A835814 835 814

0 0403 0367 A fl2flf.00O,A25&'00O 7 2200 A841822 841 822 ""l
~ 0404 0363 A A29&'000,A26&00O 7 2201 A848830 848 830 '" ~ 0405 0364 B ZMR 4 2214 B8H 873

0406 ()365 DCW All 3 2220 523 523
0401 0366 DCW 0 1 2221
0408 0367 Dew 132 3 2224
0409 0368 001 Al2 .3 2227 605 605
0410 0369 DCW 0 I 2228
0411 0310 DCW OBI 3 2231
0412 0371 DCW iilOOl@ 3 2234
0413 0312 PUT lAIO,lAI0 **MACRO**
0414 * J) oOJ016 4 223.5 SK41 2241
0415 * ncw ill.9al PRINTER ERROR - PRESS START 2 2240
0416 * IlOJOl6 B[N *-6,* TEST P~INTER ERROR 5 2241 BK.39t: 2239
0417 * I'1RCM LAIO,lOt MOVE RECORD 1 2246 P392201 392 201
0418 * 1l0M016 W PRINT 1 2253 2
0419 0373 AAO !\jnp A41 4 2254 NX44 1144
0420 0374 EII/O STARTS W49 1649
0421 LTRl iilR;ll 1 2258
047.2 URl &.00 2 2260
0423 LTRL @ ,II 1 2261
0424 LTRL @N@ 1 2262

END OF 1I Sf[NG NO SEQUENCE ERRORS

CORE LOAD HEADER-@COSOL SAMPLE~ , [0-
CORE LOAD OUTPUT COMPLETE ON 1311 UNIT 0, START 000100, END 000152

TARLE VALUES ARE CORNECT

WEEKLY

115.38
111.69
120.00
122 •. 30
124.61
126.92
129.23
131.53
133.84
136.15
138.46
140.16
143.01
145.38
141.69
150.00
152.30
154.61
156.92
159.23
161.53
163.84
166.15
168.46
110.16
173.01
11.5.38
111.69
180.00
182.30
184.61
186.92
189.23
191.53
193.84
196.15
198.46
200.16
203.07
205.38
207.69
210.00
212.30
214.61
216.92
219.23
221.53
223.84
226.15
228.46
230.76

MONTHLY

500.00
510.00
520.00
530.00
540.00
.550.00
560.00
510.00
580.00
590.00
600.00
610.00
620.00
630.00
640.00
650.00
660.00
670.00
660.00
690.00
100.00
710.00
120.00
730.00
740.00
750.00
160.00
710.00
180.00
790.00
600.00
810.00
820.00
830.00
840.00
850.00
860.00
870.00
880.00
890.00
900.00
910.00
920.00
930.00
940.00
950.00
960.00
910.00
980.00
990.00

1000.00

ANNUAL

6000.00
6120.00
6240.00
6360.00
6480.00
6600.00
6720.00
6840.00
6960.00
7080.00
1200.00
7320.00
'1440.00
7560.00
1680.00
7800.00
1920.00
8040.00
8160.00
8280.00
8400.00
8520.00
8640.00
8760.00
8860.00
9000.00
9120.00
9240.00
9360.00
9480.00
9600.00
9720.00
9840.00
9960.00

10080.00
L0200.00
10320.00
10440.00
10560.00
10680.00
10800.00
10920.00
11040.00
11160.00
11280.00
11400.00
11520.00
11640.00
11160.00
11880.00
12000.00

Index

ACEPT Macro.... 9
ALCOM Macro 9
ASGN Cards 8, 25
Assembler .. 5
Assembly .. 5
Autocoder Assembler Program . 6, 9
Autocoder Library 6, 37, 38
Autocoder System 37, 38
Autocoder Text 21, 22

Batched Files
Building a COBOL System

5,28
36,38

Card Boot. 5
Changing File Assignments 25
Clear Disk 38, 39
COBOL Compiler 6, 8
COBOL Compiler Output 13
COBOL Diagnostic Messages 13
COBOL Macros . 6, 9, 38, 41
COBOL RUN................................. 7,21
COBOL RUN THRU AUTOCODER............. 7,21
COBOL RUN THRU OUTPUT 7, 22, 36
COBOL RUN THRU EXECUTION 7, 23
COBOL Sample Program 38
COBOL System

Building a 36, 38
Components of 6
Deck Description , 36, 37
Definition of 6
Features of 6
Updating a 42

COBOL Update 38, 41
Condensed Loader Fonnat .. , 29
CONTROL ASGN 24, 42
Control Cards 7
CONTROL File 7, 27
CORELOAD ASGN Card , 25, 42
CORE LOAD File 7
Cross Reference List 21

Deck Description 36, 37
Definition of Key Tenns 5
Diagnostic Messages 15, 16, 17, 18, 19
Dictionary .. 13
DIVDE Macro' 9
DSPLY Macro 9

EDITI Macro 9
EXPIN Macro 9
EXPNI Macro 9
External Files 7

FGCOM Macro 9
File Considerations 27
Files, Batched 27
Files, Logical (See Logical Files)

GOTOD Macro 11

HALT Card...................................... 8
Halts and Messages 30, 31, 32, 33, 34, 35

INPUT ASGN Card 24, 42
IF ALP Macro " 11

60 Disk COBOL Operating Procedures

IFNUM 11
INDIX Macro .. , 11
INPUT FILE 7, 27
Internal Files 7
IOCS .,...................................... 6, 9

Jobs
Definition of
Perfonning
Preparing
Processor
Stacked

5
28
20
20
28

Update '" 20,41

Label Table 21, 22, 23
LIBRARY ASGN Card .. 24, 42
Library, Autocoder 37, 38
LIBRARY FILE 7
LIST ASGN Card , 24, 42
LIST File 7, 13, 27
Listing, Program 13
Load-and-Go 23
Loader, Condensed .. 29
Loading Object Programs 29
Logical Files

Assumed Assignments 24, 42
Batched 7, 28
Changing Assignments 24, 25, 26, 27
Considerations 25, 27
Definition of 5
External 7
Function of . 6
Internal 7
Operation 7
Residence 7

Machine Operator 2
Machine Requirements 5
Marking Program 37
MESSAGE ASGN Card . 24, 42
MESSAGE File. 7, 27
MUL TY Macro .. 11
MVALL Macro 11
MVFTR Macro 12

Name-Associated Diagnostics 13
NOTE Card...................................... 8

Object Time 5
Operating Procedures 20
Operation . 5
Operation Files ., . 7
OUTPUT ASGN Card 24, 42
OUTPUT File 7, 27
Output, Listed ., 13, 21, 22, 23
Output Options 21, 22, 23

PAUSE Card
Phase Descriptions
Preparin~ ASGN Cards
Processor Jobs
Pro~ram, Source
Pro~ram, System Control

Qualification Tahlt,

8
44
25

20, 21, 22, 23
. 20

6

13

Related Information 2
Residence File 7
RUN Card....................................... 7

Sample Program .. 42
Sell-Loading Fonnat 29
Source Deck, Composition of " 20
Source Program 20
Source Program Listing. .. 13
Source Statement Diagnostics 13
Split Cylinder 27
SPLIT Macro 12
Stack

Definition of 5
Preparation of 28
Running a 29

SUBS1 Macro 12
SUBS2 Macro .. 12
SUBS3 Macro .. 12
System... 5
SYSTEM ASGN Card " 24, 42
System Control Modification 38, 39

System Control Program 6
SYSTEM File 7, 27

Text, Autocoder 21, 22
Timing Considerations 27

UPDAT Card. 8
Update .. 8
Update Jobs. .. 20
Updating a COBOL System 42
User-Assignments (Logical Files) 24
Using ASGN Cards 28

WORK ASGN Card 24, 42
WORK1 File.... 7, 27
WORK2 File.................................. 7,27
WORK3 File.................................. 7,27
WORK4 File.................................. 7, 27
WORK5 File 7, 13, 27
Write File-Protected Addresses 38, 40

XAMIN Macro 12

61

C24·3242·2

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, N. Y. 10601

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	xBack

