File Number GENL-22
Form C24-3258-2

Systems Reference Library

Autocoder (on Disk) Language Specifications
IBM 1401, 1440, and 1460

This reference publication describes the Disk Autocoder
programming system for 18M 1401, 1440, and 1460. The first section
contains the specifications of the symbolic language of

Autocoder (mnemonics, labels, address types), a description of
declarative, imperative, and assembler control operations, and the
rules for writing the source program. The second section

describes macro operations and macro instructions. Reference
charts that list all valid Autocoder mnemonics also are included.

For a list of other publications and abstracts, see the 1BM
Bibliography for the associated data processing system.

Major Revision, April 1966

This publication, C24-3258-2, is a major revision of, and
obsoletes €24-3258-1 and Technical Newsletter N21-0038.

Revisions to the text are indicated by a vertical line to the left
of the changed text; revisions to the figures are indicated by a
bullet (®) to the left of the figure caption.

Copies of this and other IBM publications can be obtained through
IBM Branch Offices. Address comments concerning the content
of this publication to:

IBM, Product Publications Department, Rochester, Minn. 55901.

© 1964 by International Business Machines Corporation

Contents

Language Specificationsciieicncincnnicnnnes 5
Machine ‘Requirements e B
Related Informationcceeeceeceecevereneisnressenereenennneeesnsans 5

Programming with Autocoder 6
Source Program 6
Assembler 6
Coding Sheet 6
Writing Autocoder Statements ... 8
Labels viviveeieriereereeteees et erse s s sre e e ser b e s sn s s s esnranee 8
Operation Codes e 8
OPETANAS .eeeeiieeeeeiireeeseeetevese e tessressrsersessensensebersensenes 9
Statement Descriptionscccocoevieuverenersniensenens 16
Declarative Statementscuveceeernreeeeresersesevssesssesserens 16
Imperative Statementscceeiveeereeeviceieeiurinreneeseeeeeeveenes 22
Assembler Control Statementsccccocooevveverernveesesresenes 24
Macro Systemnnecnrnrerrrsisnnaens 31
Library ROULNES .c..vvcerecvereerneniiriresnesseneesesresessenessssesessessessees 31
Macro INStructionsc.ccieeieeesiviessescesceneersieeesseneesseessensesnnens 31
INCLD MacCro ...cccccevceeuenrenvveescnnennnns eeeetteteeertereeteererenaanns 34
CALL MACIO cooevtriirieeeniiiriisiteestiecsteseseessssessssesssressssnesesssneses 34
CHAIN Macroccoeeeevevnvervveennn .. 36
MA Macro — Modify Address 36
LOOP Macro ...ccceeceevveeecenrinnnes e 37
COMPR MACIO ..cevvieireiiimiieesieesseeeccveeressereeesnasenes e 38
Linkage MAcCIOS ...ccocvveveeccrrrenresinnneseesssressesensessassesensores ... 38
Arithmetic MACTOS ...ccceeveivereeeieiteirereeneseereessesensansessosssssnnes 39
Developing Library Routinesccovevererrerenenn 42
Model Statementsccecvececiirerreienienressnieessuesresseessensassenns 42
Special Requirements for INCLD Library Routines 44
Pseudo Macro Instructionsceecceeeeeveevenveenveennen. .. 45
Librarian Control Operationsccccereeevevveevervesiseessvesene 49
APPENIX ...t sessnes 51

The Disk Autocoder system is designed to simplify the
programmer’s task. Instead of coding program state-
ments in machine language, he can write symbolic
statements that comprise an Autocoder source pro-
gram. The source program is input to an assembler
program, which is supplied by iBM, that translates
the source statements into machine language and
produces an object program.

The Disk Autocoder language includes the follow-
ing significant features:

® Mnemonic operation codes that are more easily
remembered than the actual machine-language op-
eration codes.

® Symbolic operands that eliminate actual core-
storage address assignment and reference.

® Literal operands that eliminate prior definition of
actual constants.

® Area-definition statements that allocate core storage
for constants and work areas.

® Assembler-control statements that allow the pro-
grammer to exercise some control over the assembly
process.

® A macro facility that eliminates repetitive coding of
general routines. By writing a single instruction
(macro instruction), the programmer can specify
that a routine be extracted from the Autocoder
library and incorporated in his program.

Machine Requirements

The Disk Autocoder system requires the following
minimum machine configurations.

M 1401 System
4,000 positions of core storage
High-Low-Equal Compare Feature
One 1M 1311 Disk Storage Drive
One 18M 1402 Card Read-Punch
One 1BM 1403 Printer

Language Specifications

BM 1440 System
4,000 positions of core storage
One 1BM 1301 Disk Storage or one 1M 1311 Disk Storage
Drive
One BM 1442 Card Reader
One IBM 1443 or 1403 Printer

BM 1460 System
8,000 positions of core storage
One BM 1301 Disk Storage or one M 1311 Disk Storage
Drive
One BM 1402 Card Read-Punch
One BM 1403 Printer

The Autocoder System can utilize the following
devices and features if available:

1M 1444 Card Punch

BM 1404 Printer

Console Printer

8,000, 12,000, or 16,000 positions of core storage

Print Storage feature

Direct Seek feature (for a library change only)

The system on which the object program is to be
executed must have:

® A card reader or a disk unit to load the object pro-
gram,

o Sufficient core storage to contain the object program.
If the object program requires more than the avail-
able core storage, the program must be executed in
sections (overlays) or the job must be divided into
multiple runs.

® The devices and special features specified in the
object program.

® The high-low-equal compare feature, if the mLTPY
macro, the pivip macro, or the clear option (, C) of
the pa statement is in the program.

Related Information
One of the following SRL publications should be used
in conjunction with the Autocoder language specifi-
cations:

System Operation Reference Manual for IBM 1401
and 1460, Form A24-3067.

System Operation Reference Manual for IBM 1440,
Form A24-3116.

Programming with Autocoder

Source Program

The source program consists of statements written in
symbolic language. Disk Autocoder symbolic language
permits the programmer to define areas, write in-
structions, call in library routines, and exercise some
control over assembler operations.

The Disk Autocoder language includes a standard
set of mnemonic operation codes for declarative, im-
perative, and assembler ‘control operations.

The mnemonics used in imperative statements are
more easily Temembered than the machine-language
operation codes because they are usually abbreviations
for the actual instruction. For example:

Machine-Language

Instruction Mnemonic Code
Multiply M @
Clear word mark CwW 0

- The mnemonics used in declarative and assembler
control statements have no machine language equiv-
alent.

Source-program statements are written using mne-
monic operation codes and the names given to data,
instructions, and constants. Literals (actual data to be
operated on during processing) can also be written in
the instruction statements that use them.

The information contained in Autocoder statements
is divided into four categories:

1. Area definition (declarative operations). The area-
definition entries are used to assign sections of
storage for fixed data (constants) that will be needed
during processing, to set aside work areas, and to
assign symbolic names to data, devices, and areas
used in the program.

2. Instructions (imperative operations). The instruc-
tion entries state, symbolically, the operations to be
performed by the object machine. App, SUBTRACT,
READ, and PUNCH are examples of imperative opera-
tions.

3. Conirol Statements (assembler control operations).
The disk Autocoder system permits the programmer
to exercise some control over the assembly process.
For example, the programmer can specify the be-
ginning address of the object program and the
core-storage capacity of the object machine.

4. Macro Instructions (macro operations). Macro in-
structions are used to call out standard sets of in-
structions (routines) from the library that is stored

6 Autocoder (on Disk) Language Specifications

on disk. During program assembly, the assembler
can extract the routine associated with the macro
instruction, tailor it to fit the program requirements,
and insert it in the object program.

- Assembler

The Autocoder Assembler Program operates under the
direction of a System Control Program. The functions
of this control program are to coordinate system func-
tions and to handle input/output device assignments.

The Autocoder Assembler is a multiphase program
designed to translate Autocoder statements into ma-
chine language. At assembly time, the source program
is read into core storage from cards or disk. The
System Control Program reads the Assembler Program
into core storage from the disk unit that contains the
Autocoder system.

The first step in the translation process is performed
by the macro-generator phases of the Assembler Pro-
gram. These phases examine source-program macro
instructions, extract the associated library routires,
and generate Autocoder statements.

The Assembler then analyzes all Autocoder state-
ments during a diagnostic phase. A diagnostic listing
of all invalid statements is printed if the user specifies
the option in his control card for assembly (cTL card).
A programmed halt occurs after the diagnostics have
been printed. The user can make corrections and re-
start the assembly, or he can continue processing.

After the macro instructions have been processed
and the Autocoder statements have been analyzed, the
Assembler translates the Autocoder statements into a
machine-language object program. The object pro-
gram is punched into cards or written in disk storage,
depending on the specifications in the user’s control
cards.

Coding Sheet

Disk Autocoder statements are written on a coding
sheet that is designed to organize them into the for-
mat required by the assembler. Figure 1 shows the
Disk Autocoder free-form coding sheet.

Although the assembler can process statements
coded in 1401 Symbolic Programming System (sps)
and 1440 Basic Autocoder lanuguages (see ENT—
Enter New Coding Mode), this publication refers
primarily to the coding of Disk Autocoder language.

IBM Form X24-1350
[Printed in US.A.
Program e
INTERNATIONAL BUSINESS MACHINES CORPORATION Identification L o o
Programmed by — AUTOCODER CODING SHEET AL
IBM 1401-1410-1440-1460 Page No.L1l of
Date — 12
Line Label perati OPERAND
3 .56 15|16 0f21 25 30 35 43 50 55 60 85 70
T
o1, PSR | L PP L " PR P Py PR L P 2 PR
|
0.2 Ui GO P MR R S S S P A SR B L Lo " i
]
0.3 N el . - s PSR L N
]
0.4 N | s " U S T TR PSR W TR T S SR S U N S Ao L
|
05, |, vyl P A L M L PR SR AT S T S S Y PN T S S SR P
|
96, | . o sl - PP S S S N N NN S TS T S S G S T Y L4y L
|
(7 S0 B N PO S S S N P S S S S N R
1
08, |, . ol P U S S N PO U R S L PP N
|
0,9, PN T E B B ISR I Sy PO USSR S A PURE RS N S S I S S S S SN N W S S S UY DU S S G S S S T S R S
I
'Lo FEEST S N T Y Ld n L4 s L 1 1 A i P U U S W S U N T Y 11 [JETE| N
I
UL S B N B N NP PR N A
1
[U R ST BN S S A S TR S T P S R S S S S S R A S S S SR
1
LRI AT B BTN B SO A S S S i S S S T S A SR S
]
1.4, T B e b1 SO N A T RN S WS W W T N A S W PR S T T S W SR S S R S S W 1 T U U SN EE U W0 S SR S N Y
|
'S5, TS T S N R Lo PP PR T S SR N SR 1 PRI SR AT T S W i [S U T T
I
LI A S RTINS B S S ST I ST S Ly N S S S S T S M
)
17, PR T | 1 PR R T U U S S S WO YN0 S S ST ST S U W SN S WIS P T T U S S S RS W | I L N SIS ST E S S St
i
18, 1 b I P SR SR I S P S S S T SR N L A L
!
'9 T P N N SR T PRI S PR RS T SRR L PR L Loau 4
i
20, PSRN B B U PRI PR W T WU S S0 U T T S T S S S IS T S S WU AU N VO SN S G SO0 T ST WU T N S S S WA SHPH Wi NS U S
)
2,1, FETSE B B S SRR i1 L1y PR S PR SR N0 W S ST G T S SRR T S N G S Lo Pt
|
2,2, PTG S B Lo [N TE U RS VRN S S S S G SRV SN | [U R T W UHN SAD SH U T U N SN S WA ST SIS ST W S ' Lo
]
2,3, PR S s Loy L1 NI S S T S NSRS T ST U ST ST ST WAV EN S T B S S S ST G SRR PR S W T
]
2.4, T B NPT B R S ST SA R | L L U U S T S S S W SO0 NN S VA W S S S S0 S S U S S N S T
1
2.5, PR S B N U | P N I N W U U T N U N N S G SN N S 1 D S WU U NN N KA NOD U0 VORI S S SN VA N WA SO U N 1 [R W S B SO |
1
L PURPINSS TN W U S W L1y U GRS NN NS WU U VO A WO NN SO S S U B S S § WS U R T S Y B S U W PU T W U G U SN WO S T UM S SO G U 3 -
i
n YIS S W N WS O S ' VRN W SR S VU W U | FU RN T T O S T T U G RS U S S S S VS U0 W SRS S T U TS N W S W F U T SN TN N T St
1
P FE RS I S PNt IS ET TN ST GG B SR aE S PTG T WU S N SR S S S | L N S T T N SRR 11
I
P P SIS U U S S TS PR PRI S | PR U S S S USSR S USRS N T | [N B B TR 1) i 1 R T
)
— al R WS S S SRR W O N i i U S B NS SN S S S § n i Pt

Figure 1. Autocoder Coding Sheet

Write all source-program statements and comments
on the coding sheet. Column numbers on the sheet
indicate the card-punching format for all the cards in
the source deck. Punch each line of the coding sheet
into a separate card.

The function of each portion of the coding sheet is
explained here.

Page Number (Columns 1 and 2)

Write the sequence number of the coding sheet in this
field. These numbers should be arranged according to
low-to-high collating sequence. Any character that is
valid for 18M 1400 series systems can be used. Refer to
the mM character-code chart in the System Operation
Reference Manual.

Note: Do not use an asterisk in column 1.

Line Number (Columns 3-5)

Use this field to indicate the sequence of entries on
the coding sheet. The units position of this field may
be left blank. It can be used later to indicate the se-
quence of inserts on a page. The five unumbered lines
at the bottom of a page can contain these inserts.

For example, number the first insert between lines
02 and 03 “025”. Number later inserts at that point so
that they can precede or follow the first insert, as
required. Numbers on the coding sheet need not be
consecutive; but, when the source deck is used as in-
put to the assembler, the cards should be in low-to-
high collating sequence.

Inserts can affect address adjustment. An insert may
make it necessary to change the adjustment factor in
other entries. See Address Adjustment.

Label (Columns 6-15)

A label can have as many as six alphameric (A-Z or
1-9) characters, but the first character must be alpha-

betic. Special characters and blanks must not be used
within a label.

The label usually starts in column six. See Define
Constant with Word Mark for exception. Any subse-
quent references to the labeled item must correspond
to the name used in the label field of that particular
item.

Columns 13-15 are not checked.

Operation (Columns 16-20)

Write the mnemonic or machine-language operation

code in this field.
Operand (Columns 21-72)

Two operands and a d-character may be written in
this field. An operand designates a core-storage ad-
dress, an input/output unit, or a constant to be de-
fined. A d-character modifies an operation code. It is a
single alphabetic, numeric, or special character.

The operands and the d-character must be separ-
ated by commas because the Disk Autocoder coding
sheet is free-form (the operand and d-character fields
are not fixed fields).

Comments

The programmer can include a remark anywhere in
the operand field if he leaves at least two non-signifi-
cant blank spaces between it and the operand.

To include a whole line of information anywhere in
the program, write a comments line that contains an
asterisk in column 6 and the comment in columns 7-72.
Columns 6-8 should not contain *1*. (*1* irr columns
6-8 will cause a diagnostic to falsely appear during
assembly.) A punched card containing a comments
line is called a comments card. The information
punched in the comments card appears in the sym-
bolic-program listing produced by the assembler, but
it does not affect the object program in any way.

Columns 73-75 are not checked.

Identification (Columns 76-80)

Write an identification name or number in this field to
identify a program or program section (overlay).
Punch the contents of this field into each card in the
source deck. The identification appears on the sym-
bolie-program listing but does not affect the object
program in any way.

Writing Autocoder Statements

Three types of information can be specified in Auto-
coder statements: labels, operation codes, and oper-
ands.

8 Autocoder (on Disk) Language Specz:ﬁcatiom

Labels

Labels are descriptive terms selected to identify a
specific area or instruction in a source-program state-
ment. A label that suggests the meaning of the area
or instruction makes coding easier. It also makes the
program more easily understood by others. For ex-
ample:

Type of Statement Meaning Label
Area Definition Withholding Tax WHTAX
Instruction Update UPDATE

When the assembler processes a source-program
statement, it assigns an address and allocates storage
for the instruction or defined area. If the statement has
a label, the assembler equates the label to the assigned
address. In this publication the assigned address is
called the equivalent address.

The equivalent address of the label for an instruction
is the leftmost (high-order) core-storage position of the
area the assembler has allocated for it. For example,
an instruction whose label is ENTRYC is located in core-
storage locations 549-552. The equivalent address of
ENTRYC is then 549.

The equivalent address of the label of an area-
definition statement is usually the rightmost (low-
order) core-storage position of the area the assembler
has allocated for the constant or work area. (See
DCW — Define Constant with Word Mark and DC —
Define Constant (No Word Mark) for exceptions.) For
example, in a bcw statement a constant whose label is
RATE is located in core-storage positions 420-424. The
equivalent address of RATE is then 424.

During, processing the assembler maintains a table
of labels and their equivalent addresses.

If a label appears in any Autocoder statement, it
may be written as an operand in any other Autocoder
statement. During processing, the assembler substi-
tutes the equivalent address of the label whenever the
label appears as an operand in a source-program
statement. Thus, the programmer refers symbolically
to the equivalent address of the constant, work area, or
instruction.

Operation Codes

Most-Autocoder statements have operation codes. (See
Subsequent DA Eniries for an exception.) In impera-
tive instruction statements they are machine-operation
codes such as A (ADD), s (SUBTRACT), SD (SEEK DIsK), and
P (PUNCH).

In area-definition statements they are commands to
the assembler to allocate storage, such as ocw (Define
a Constant with a Word Mark and pa (Define Area).

In assembler-control statements, they are signals to
the assembler such as orc (begin or originate the
program) and END (end the program).

The appendix of this publication contains charts
that list all valid mnemonic operation codes.

Operands

Use the operand portion of an Autocoder statement to
specify:

1. For instruction statements: the address of the data
to be operated on or the input/output units to be
operated, and the d-character modifier to the op-
eration code, if required.

(A list of all valid operand sequences is included
in the Appendix.)

2. For area-definition statements: the constant or area
to be defined, or the address or input/output unit
that is to be the equivalent of the label.

3. For assembler-control operations: the address to
be used in a particular assembler operation.

Core-Storage Address Operands

There are five types of address operands used in Auto-
coder statements: symbolic, actual, asterisk, blank,
and literal.

Symbolic

A symbolic operand refers to the equivalent address
of an instruction or defined area. The symbolic oper-
and must be the same as the label of the instruction
or area-definition statement. Writing a symbolic oper-
and in a statement that precedes the labeled statement
is permitted.

In Figure 2, ENTRYA is used as a label for an app
instruction and as a symbolic operand in a branch
instruction. Assume that the equivalent addresses of
ENTRYA, WHTAX, and pEDUCT are 568, 701, and 905
respectively. The assembled machine-language in-
structions would be A 701 905 and B 568. In a pro-
gram using these instructions, waTAx and pEDUCT
would be used as labels elsewhere in the program.

Label perati OPERAND
154 ! —30 b S—) 43
TIRY TAxX) DEDUCT, .

.

.......

Laa

Figure 2. Symbolic Operand

Actual

The programmer may use an actual address as an
operand in any Autocoder statement. This address is
a one-to-five digit number within the range 0 to 15999,
and represents an actual core storage position.

For example, to cause a word mark to be set in
location 001 during execution of the object program,
write in the source-program the instruction shown in
Figure 3. Note that it is not necessary to write high-
order zeros in an actual address written in Autocoder.

Label perati OPERAND
I

w 1 . R P

Figure 3. Actual Address Operand

Asterisk

Writing an asterisk in an Autocoder statement directs
the assembler to assign an address equivalent to the
right-most (low-order) position of the area that the
instruction or data will occupy in the object machine.

Label rati OPERAND
1518 of21 35

COMPR. 1. . . |C 3B - . . —

R B, TOTAL, P — e

PR PR PR ST

!
It
I
!
|
|
]

Al " i

TOT AL | .. L X-69COUNT . . NP

Figure 4. Asterisk Operand

Figure 4 shows a routine designed to compare
field-A to field-B, and to add 1 to a field named count
if the result is unequal. Assume that the equivalent
addresses of ToTAL and count are 459 and 711 re-
spectively. The asterisk then refers to 465, which is
the address of the low-order position of the seven-
character assembled instruction and *—6 refers to 459.
The assembled instruction is A 459 711. When the
instruction is executed, one is added to count because
459 is the address of the operation code (). In core
storage, an A is composed of A- and B-zone bits and a
1-bit; these zone bits form the standard plus sign, and
do not change the addition of the numeric 1. Figure
5 is a representation of the instruction in core storage
during program execution.

Character A 4 5 9 7 1 1

Core Storage

: 459 460 461 462 463 464 465
Location

Figure 5. Instruction in Core Storage

‘Blank

Blanks are valid in statements where no operand is
needed, or when useful addresses are supplied by the
chaining method. Chaining is explained in the System
Operation Reference Manual.

Literals

A literal operand is the actual data to be used when
the instruction in which it appears is executed. The
assembler stores the actual data (constant) with a
word mark over the high-order position when it en-
counters a LTORG, EX, or END assembler-control state-
ment. The equivalent address of the stored constant
is substituted for the literal operand when the instruc-
tion is assembled. The programmer can address-adjust
and/or index a literal. See Operands: Address-Adjust-
ment and Indexing.

Duplicate literals are assigned core-storage space
only once per program or program section. When a
literal is referred to, a program section means those
source-program entries that precede a LTORG, EX, Or END
assembler-control statement.

Figure 6 shows literal operands and the constants
produced for them.

Type
of Literal Stored

Literal Operand Constant
Numeric +10 1?
Alphameric @JANUARY 28, 1962@ JANUARY 28, 1962
Area-Defining WORKAR #6 bbbbbb
Address Constant +CASH xxx (Equivalent

Address of CASH)

Figure 6. Literals

Numeric Literals. A numeric literal must be made up
of integers only (0-9) and must be preceded by a
plus or minus sign. The sign is necessary because
the assember uses it to distinguish numeric literals
from actual addresses. The literal may be any
length, provided that it is contained in the operand
portion of one program card. The sign is stored in
the same core-storage position as the units position
of the numeric literal.

Figure 7 shows how a numeric literal can be coded
in an Autocoder imperative instruction. Assume that
the literal (410) is assigned storage locations 584
and 585, and INDEX is assigned an equivalent ad-
dress of 682. The symbolic instruction causes the
assembler to produce a machine-language instruc-
tion (A 585 682) that adds 410 to the contents of
INDEX when the instruction is executed in the object
program.

10 Autocoder (on Disk) Language Specifications

Label roti OPERAND
i 40 as
A 11,041 NOEX |

Figure 7. Numeric Literal

Alphameric Literals. An alphameric literal is one

or more alphameric characters written between two
@ symbols. Alphameric characters include numeric,
alphabetic, and special characters (including
blanks). Any combination of alphameric characters
can be used within the two @symbols, with the
following restrictions:

1. If the object program is to be punched into cards in
the condensed-loader format, a word-separator character
(0-5-8 punch) should not be the first character following
the first @ symbol.

2. If the object program is to be written on disk (coreload
format), a group mark should not be the first character fol-
lowing the first @ symbol.

(Object-program formats are described in the
publication :
Autocoder (on Disk) Program Specifiications and
Operating Procedures, IBM 1401, 1440, and 1460,
form C24-3259.)

Only one alphameric literal is permitted in a co-
ding-sheet line. One or more @ symbols can be
included within an alphameric literal (between the
two @ symbols enclosing the literal), but an @
symbol must not appear anywhere else in a line
containing an alphameric literal. The assembler
scans the contents of the card from the left for the
first @ symbol and from the right for the second
@ symbol. All characters between the two @ sym-
bols are assumed by the assembler to be part of
the literal.

Figure 8 shows how to use an alphameric literal
in an imperative instruction. Assume that during
assembly the literal jaNuary 28, 1964 is assigned a
storage area whose equivalent address is 906, and
DATE is assigned 230. For this statement, the assem-
bler produces a machine-language instruction (M
906 230) that moves the literal january 28, 1964 to
DATE.

Label rati OPERAND
[F:0 30 35 40 45
N LC ANUAR AT,

Figure 8. Alphameric Literal

Address-Constant Literals. An address-constant lit-

eral is the label of an instruction, defined area, or
constant preceded by a plus or a minus sign. A
plus sign preceding the label indicates that the
constant represented by the literal is the machine-
address the assembler assigns to the label. A minus

sign preceding the label indicates that the constant 1
represented by the literal is the 16,000’s comple-

ment of the machine-address assigned to the label.

The address assigned to any label, except labels 9
associated with area-defining literals, can be repre-
sented as constants by address-constant literals.
(Area-defining literals are described in the follow-
ing section.)

Allocates a three-position area that will contain the equiv-
alent address or its 16,000’s complement at object-program
execution time. (The equivalent address is a three-charac-
ter machine-language address.)

. Assigns an address to the allocated area and equates the
address-constant literal to the assigned address.

Figure 9 shows two address-constant literals (-
casH and -+ cuecks) used in a source program. It
also shows the entries the assembler makes in the
object program, and the results when the instruc-
tions are executed by the object program. The pro-

When the assembler encounters an address-
constant literal, it:

SOURCE PROGRAM STATEMENTS TYPE Object program in core storage after it has been loaded
into the object machine.
3 Lobel I mpﬂaﬁ ol21 3 3!
L] ! (®) N1
| . N N :
] . — . s ml7][s]7]4fo[«]m[ofo]ofs[1]2
el MLC . [+CASHLENTRYLHS . . A T a0 - &
mx.vi? L0 . JOsWORK . . L. B 5
E :. PR c
P : : : = : . @
i MLC, . HCHECKS S ENTRYIAS . C ! Mlelolol4iol4 514[0|1
L ENTRYL p| © T T
. I‘ . .) . N 501 508
| S
n I | 1o e gl L 1
PR . 1 ® " i Al ' n 1 I
CASH . .o DCW il it iais i E : CASH () cHecks (@ work
YRV T ~&| ¢ | le[eeelele[e]e e o e e[e]o oo o]y
e el e A 600 606 812
1 N s
L . s
el N . S ADD. +CASH | +CHECKS
! CON.
ur- 9|°|g 9]°|f
ERALS 797 800
EQUIVALENT
SYMBOLS ADDRESSES NOTE: Assume that before step A is executed, data will be moved into the
CASH, CHECKS and WORK fields.
ENTRY1 401
CASH 600
CHECKS 606
WORK 612
+CASH 797
+ CHECKS 800
PROGRAM STEP CORE STORAGE CORE STORAGE
EXECUTED OPERATION BEFORE OPERATION AFTER OPERATION
A The address of CASH is moved » ENTRY1 ENTRY1
to the A-address of B (ENTRY
143). B is thus modified. _';*_|°|°|9|6|1|2 Mél°|9|6|1|2
401 404 401 404
B ::V;::Ms of CASH are moved CASH @ WORK @ CASH WORK
9]s]9] 8|7|f glo]4|o|o|g g|6|9le|7|g 3T6|9|a|7|g
600 612 600 612
C The address of CHECKS is moved ENTRY1 ENTRY1
to the A-address of B (ENTRY
1+3). B is again modified. ‘I6|0|9|61112 &|6l°|916|1|2
401 404 401 404
D Program branches back to execute
B. NO CHANGE NO CHANGE
8 The :"f“’;‘é;x‘“ CHECKS are (F) crigcks WORK. CHECKS WORK
move] .
s[o[7]s]s[2[s]e[s s 7]s]|[s]o]7]e]5]2[s]0]7]s]s]2
606 612 606 612

Figure 9. Address-Constant Literals

11

grammer did not know what addresses would be as-
signed to casH and cHecks when he wrote the
source-program statements. He did, however, write
two instructions (a and c) that move these addresses
into instruction B (ENTRY 1). The address-constant
literals (++ casu and + cuecks) caused the assem-
bler to allocate storage in the object machine for
equivalent addresses of casu and cHEcks and to
substitute the addresses of the address-constant
literals in instructions A and c.

Autocoder permits the programmer to adjust an
equivalent address. To use the adjusted equivalent
address, code the address-constant iiteral as follows:

1. Plus or minus sign.

2. Period.

3. Label whose equivalent address is to be adjusted.

4. Adjustment factor (plus or minus any integer that will
produce a number greater than zero, but less than the
number of core-storage positions available in the object
machine) and/or an index-register symbol.

5. Period.

Figure 10 shows an equivalent address that is
modified by an adjustment factor. Assume that the
equivalent address of Torar is 565. When the in-
struction is executed 561 will be moved to the area
whose label is sum.

Lobel perati OPERAND
! 30 3% 49

U
MLC e TOTAL=4..9S UM

Figure 10. Adjusted Address-Constant Literal

Figure 11 shows an equivalent address that is
modified by an adjustment factor and the contents
of an index register. Assume that the equivalent
address of toraL is 565. The constant that will be
adjusted is 565. The adjustment factor is —4. The
16,000’s complement of 561 is used because the
address-constant literal contains a minus sign.

OPERAND
30 39 40 Lis 0
LC . |~eTOTAL-A4+.X3.0.9SUM

Lobel perati
e

Figure 11. Adjusted and Indexed Address-Constant Literal

When the instruction is executed, DCI will be
moved to the area whose label is sum. D3I is the
machine language equivalent of 15439 [16,000 —
(565 — 4)]. The 3 becomes a C because A- and
B-bits represent X3. See Indexing for a discussion of
index registers.

Area-Defining Literals. This literal is used to define an
area of blanks equal to the number following the

12 Autocoder (on Disk) Language Specifications

symbol. The area may be referred to by using
the label that precedes the # symbol.

At object-program load time, the defined number
of blanks will be loaded into storage with a word
mark in the high-order position.

For example, in the statement shown in Figure
12 the area-defining literal is #5, which can be
referred to as workAR. Assume that the equivalent
address of outar is 800. If the assembler assigns
locations 896-900 to the label workaAr, then the as-
sembled instruction will be: M 900 800. This in-
struction will move the contents of WORKaRr to
locations 796-800 when it is executed in the object
program.

Label QFp«oﬁjL OPERAND
sl 0121 25 30 38 40 a3 %0
N MLC. IWORKAR#54O0UTAR N A .

Area-Defining Literal

Figure 12.

Note: If a source program consists of two or more
sections, the label that precedes the # symbol can
be used only in the program section that contains
the area-defining literal.

Address Adjustment

It is not necessary to devise so many labels for a
source program, if adjustment for addresses is speci-
fied in the operand fields of Autocoder statements. To
do this, write an integer preceded by a plus or minus
sign immediately following the operand. The assem-
bler then develops an equivalent address, plus or
minus the adjustment factor, and inserts it into the
assembled object-program statement in place of the
address-adjusted operand. The adjustment factor can
be any positive or negative integer that will produce
an address greater than zero but less than the number
of core-storage positions available in the object ma-
chine.

Figure 13 shows a symbolic operand with address
adjustment. Assume that the statement whose label is
LAST is assigned storage locations 404 through 407. The
equivalent address of the label LasT is then 404, which
is the position that the B operation code of the branch
instruction will occupy in core storage when the object
program is loaded.

L Lobe! rati OPERAND
131 ' 25 30 _ 35 490 43 20
Mﬁm
N " N N o, " A A N " P 2 1 A
L]

AST18 (') P s i

Figure 13. Address Adjustment

The assembler substitutes the address of Last + 3
(407) in place of the symbolic address-adjusted oper-
and (LasT + 3) when the object program is assembled:
H 407....B 000.

When the object program is executed, the contents
of the B-address register are transferred to positions
405-407, so that the I-address of the branch instruction
contains whatever was in the B-address register before
the sBr instruction was encountered (B xxx).

Figure 14 shows an address-adjusted literal oper-
and. The first statement is an instruction that adds a
literal (4100) to sum. The assembler allocates a
three-position area in core storage to store this literal.
Assume that the equivalent address of this literal is
698, and sum has an equivalent address of 805. The
assembled instruction is A 698 805. Later in the source
program the same literal appears with address-adjust-
ment. Because the literal has been previously assigned
with an area whose address is 698, the address-
adjusted literal +100—2 refers to 698—2 or 696.
Thus, the assembled instruction, A 696 805, will add 1
into suM when it is executed in the object program,
because storage-location 696 contains the 1-portion of

the literal -+100.

Lobel rati

30
+1004SUM

bbbk U T S S U S TP Ui S SR S

bk N i PR PR s

$100-2.9.30M |

Figure 14. Address-Adjusted Literal

Figure 15 shows an address-constant literal operand
with address adjustment. Assume that the equivalent
addresses of the literal (+accumM) and ToraL are 697
and 734, respectively, and that the address-constant
literal is 419 (equivalent address of accum). The as-
sembled instruction is A 697 734. Later in the source
program the same address-constant literal appears
with address-adjustment. Because the literal has been
previously assigned to an area whose address is 697,
the address-adjusted literal +accum—1 refers to 697
—1 or 696. Thus, the assembled instruction, A 696
734, will add 41 into ToTAL when it is executed in the
object program, because 696 is the address of the area
that contains 41. The instruction does not affect the
address-constant literal (419).

Indexing

If an object machine has the advanced-programming
special feature (1401) or the indexing-and-store-address-
register feature (1440 and 1460), the source program-
mer can use the three 3-position index locations
(registers) provided by the feature. The assigned core-
storage addresses and index-register numbers are
shown in Figure 16.

Index Core- 3-character -Tag bits in tens
Location Storage Machine position of
Locations Address 3-character
machine address
1 087-089 089 A-bit, No B-bit
2 092-094 094 B~Bit, No A-bit
3 097-099 099 A-bit, B-bit
Figure 16. Index Locations and Associated Tag Bits

The primary use of index locations is to modify ad-
dresses automatically by adding the contents of an
index location to an address. The core-storage address
of the A- and/or B-operand can be modified by the
contents of any index location:

1. Set a word mark in the high-order position of the
index-register location before inserting the index
factor.

2. Use an add or move instruction to insert or change
the index factor. The programmer can use a label,
X1, X2, X3, or the actual machine address (89, 94,
or 99) as the B-operand. If he uses a label he must
first write an EQU statement to assign a label to the
index location. (See EQU—Equate.)

Note: If an index factor is to be used for address modification
the user should be sure that no zone bits appear in the ten:
position of the factor, nor in the units position if the systen

Label perati OPERAND
ish

35 49

30
HAC CUMy.TOT.AL

........

ik

. |TACCUM~1 3 T.OTAL,

Figure 15. Address-Adjusted Literal

has 4000 or fewer positions of core storage.

3. Write +X1, 4+-X2, or +X3 after the operand that is
to be indexed. X1, X2, and X3 represent index
registers 1, 2, and 3, respectively.

When the assembler encounters an indexed operand,
it puts tag bits over the tens position of the 3-character
machine address assigned to the operand to specify
which index register is to be used. The bit combina-
tions and the registers they specify are shown in
Figure 16.

The modfication of the A- and/or B-address occurs
in their respective address registers. For instance, if
the A-address is indexed, the indexing occurs in the
A-address register. This means that the original in-
struction in storage is in no way changed or modified.

13

The three index registers can be used as normal
storage positions when not being used as index-register
locations.

Figure 17 shows an indexed imperative instruction
that causes the contents of the location labeled ToTaL
to be placed in an area labeled accum as modified by
the contents of index-location 2. ToTAL is the label for
locations 3101 and accum is the label for location
140. The assembled machine-language instruction for
this entry is: M A0l 1IMO. The M in the tens position
of the B-address is a 4-bit and a B-bit. The B-bit is the
tag for index-locaton 2.

Label perati OPERAND
1) 39 3 40 45 50
ol LC |TOTALJACCUM* X2 .,

Figure 17. Symbolic Operand with Indexing

Symbolic Indexing

Symbolic indexing is permitted in any statement that
can have actual indexing, except in an EQU statement
or in a pa statement. The name used can be as many
as six letters or digits, but the first character must be a
letter.

The assembler first reserves the index location(s)
referred to by actual addresses (X1, X2, and/or X3) in
the source program. Later, unreserved index locations
are assigned to the symbolic references in the order
of occurrence in the source program. For example, if
the statement shown in Figure 18 appears in a source
program, INDEXA will be assigned to an unused index
location.

OPERAND
45 50

3 EL i A EL

Figure 18. Symbolic Indexing

After all three index locations have been reserved,
the assembler will not process any new symbolic
reference. Instead, an error indication will print on the
assembly listing. Because the assembler must control
the assignment of index locations, a symbolic refer-
ence to an index location cannot be equated by the
use of an EQU statement to an actual address of an
index location. ‘

To insert or change the index factor, write an add or
move instruction with the name of the index location
as the B-operand. The name must not be used as a
label elsewhere in the program.

14 Autocoder (on Disk) Language Specifications

Address-Adjustment and Indexing

Figure 19 shows an imperative instruction with ad-
dress adjustment and indexing on a symbolic address.
The assembler will subtract 12 from the address that
was assigned the label TotaL. The effective address of
the A-operand is the sum of torar. —12 plus the con-
tents of index-location 1 at program-execution time.
The assembled instruction (M ?Y9 140) will cause the
contents of the effective address of Torar —12 +X1
to be placed in the location labeled accum (assuming
again that ToraL is the label for location 3101 and
AccuM is the label for location 140). The Y in the tens
position of the A-address is an 8-bit and an A-bit. The
A-bit is a tag for index location 1.

Label Eperaﬁq OPERAND
6 15} 0l21 30 35 40 L - 20
ol LC. . ITOTAL~12+X1.9ACCUM . ., =

Figure 19. Symbolic Operand with Address-Adjustment
and Indexing

Figure 20 shows examples of address-constant-literal
adjustment and of address-constant-literal address ad-
justment. Assume that the equivalent addresses of the
address-constant literal (4-Tax or —TAX) and ADDR are
503 and 700, respectively, and that the address con-
stant of Tax is 123. (See Address-Constant Literals and
Address Constants Defined by a DCW Statement.)

Constant Operands

Constant operands are defined by area-definition state-
ments. See DC and DCW Statements. The assembler
assigns an area in core storage in which the constant
is stored at object-program load time.

Input/Output Operands

For operations involving disk storage, write the mne-
monic operation code in the operation field and the
symbolic disk-address control field in the operand field.
For example, the statement shown in Figure 21 will be
assembled M %F1 598 W if 598 is the equivalent
address of ourpuT.

Label perati OPERAND
151 ' 30 35 40 a5 50

I W, YTLUT

Figure 21. Write Disk

For operations involving magnetic tape, write the
mnemonic operation code in the operations field and
the number of the tape unit in the operand field. The
programmer can specify the number of the tape unit
in one of three ways:

1. Write the actual address of the tape unit (% Ux) as

Type of Adjustment Source Program Instruction Assembled | Constant Constant
Instruction | Moved to Stored in
ADDR (700) | 501 - 503
Adjusting 'H’!e address Label perati OPERAND M 503 700 122 122
constant literal s ie ol21 25 30 35 490 as
R T LC +.. TAX.".1...,ADDR, ., PN
i
. P P ¥ " PO SR T 0 U S S TS i I P B
Adjusting and indexing Label perati OPERAND M 503 700 1K2 1K2
the address constant s is)ie ol21 40 45
literal . ; mee |+ . TAX-0+X2,. ADDR
I
. PR " 4 U S VI S S 00 U S S S G W ¥ T W S R
Adjusting the 16,000's bel ¢ OPERAND | M 503 700 H7H H7H
complement of the address | e Lel lsperu ' | 35 40 .45 (15,878)
constant literal | Le ~ . TAX.~/. .. ADDR N
]
" il Pt PN ST S 't A1 U ST S
Adjusting the address Label perati OPERAND | M 501 700 1 123
of the address constant e ol2t 25 _30 35 490 45
literal : MiC |, [+TAX=2 ADDR . R
N A N
Adjusting the address Label perati OPERAND | M 502 700 12 122
constant literal and 6 154 olz1 25 30 35 40 45
the address of the ol IMic e TAXd . m, 4004 s
address constant literal : i N
Indexing the address Label perati OPERAND | M 502 700 1K 1K3
constant literal and : 15]16 021 25 30 35 40 45
adjusting the address e LC +.TAX+X2.~0 ;AD DR L .
of the address constant R X L e
literal

Figure 20. Address-Constant Literals with Adjustment and Indexing

the A-operand. The statement shown in Figure 22
will be assembled M. % U4 615 W if 615 is the
equivalent address of ourpuT.

OPERAND
Label ph

t
\ perati: 30

LA

J

2U4.90UT.PUT.

Figure 22. Tape Instruction with Actual Address

2. Assign a label to the actual address of the tape unit,
and use it as the A-operand of the tape instruction.
(See EQU—Equate.)

3. Write the number of the tape unit in column 21 of
the tape instruction. The assembled instruction for
the statement shown in Figure 23 will cause a rec-
ord to be written on tape-unit 4 using the data be-
ginning in a storage area labeled ourpuT.

Label

perati OPERAND
' 5

30 33 50

of the high-order position of the print-line in the
operand fiéld. For example, the statement shown in
Figure 24 will be assembled: M %Y1 801 W if 801 is
the equivalent address of prinTI.

OPERAND
! 23 30 35 49 43 50
RINT

Figure 24. Printer Operand

For operands involving the 1442 card read-punch,
write the mnemonic operation code in the operation
field. Then write the number of the unit (1 or 2), fol-
lowed by a comma and the symbolic address of the
high-order position of the I/0 area. For example, M
%G1 110 R will be the instruction assembled from
the statement shown in Figure 25, if 110 is the equiva-
lent address of NpPUT.

Lobel perati OPERAND

R,

19l NOWT

25
t 23OUTPUT

Figure 23. Write Tape

For operations involving the 1443 printer, write W
or WS in the operation field and the symbolic address

Figure 25. Reader Operand

Refer to the Appendix for a list of the mnemonics
and operands that can be used to specify input/output
operations.

15

Statement Descriptions

All Autocoder statements must be presented to the
assembler program according to a special format.
There are also rules and restrictions for writing the
information in these statements. These requirements
are necessary because the assembler needs and can
handle only certain kinds of information from each
type of Autocoder statement, and it must know where
in the statement that information can be found.

In this publication the Autocoder statement descrip-
tions are presented in a format that:

1. Describes the operation which the statement
specifies.

2. Shows how the statement is written by the pro-
grammer.

3. States the actions of the assembler during process-
ing of the statement.

4. Describes the effect of the statement on the object
program.

5. Shows an example of the statement.

Declarative Statements

Declarative statements are used to assign sections of
storage for fixed data (constants) that will be needed
during processing, to set aside work areas, and to
assign symbolic names to data and devices used in the
program.

The six declarative operations are:

Op Code Purpose

DCW Define Constant with Word Mark
DC Define Constant (No Word Mark)
DS Define Symbol

DSA ‘Define Symbol Address

DA Define Area

EQU Equate

DCW — Define Constant with Word Mark

General Description. Use a pcw statement to enter a
numeric, alphameric, blank, or address constant into
core storage at object-program load time.

The programmer:

1. Writes pcw in the operation field. If more than
one pcw statement is to be written in succession,
the programmer needs to write the pcw operation

code for the first pcw statement. The pcw operation
code for the remaining statements of the group

can be omitted, if desired.

2. May write a label, but not an actual address, in the

16 Autocoder (on Disk) Language Specifications

label field. He can refer to the constant by using the
label as an operand elsewhere in the program. If
the label starts in column 6, its equivalent address is
the address of the low-order position of the con-
stant in the object machine. If the label starts in
column 7, its equivalent address is equal to the high-
order position of the constant in the object machine.

3. Writes the constant in the operand field beginning
in column 21. A comma and a G immediately fol-
lowing the constant inserts a group-mark with a
word-mark after the constant.

The assembler:

1. Allocates a field in core storage that will be used at
object-program load time to store the actual con-
stant.

2. Inserts the equivalent address of the label in the
object program wherever the label is used as a
symbolic operand in a source-program statement.

Result: The constant with a high-order word mark is
loaded with the object program.

Numeric Constants

A plus or minus sign may be written preceding an
integer. A plus sign causes the assembler to store the
constant with A- and B-bits over the units position; a
minus sign stores a B-bit there. If the integer is un-
signed, it will be stored as an unsigned field.

The first non-numeric column in the operand field
indicates that the preceding position contains the last
digit in the constant.

A constant may be as large as 51 digits with a sign,
or 52 digits with no sign.

Examples. Figures 26, 27, and 28 show the three types
of numeric constants that can be defined in pcw
statements. The labels TEn], TEN2, and TENS identify
the constants. Thus, they can be used as operands to
cause the equivalent addresses of +10, —10, and 10
to be inserted in the object program whenever TEN],
TEN2, and TEN3 appear in operand fields of other
entries in the source program.

Label perati OPERAND
10 30 3% 49 43 30
ENL cw_ lt1.a
Figure 26. Numeric Constant with a Plus Value
Labet perati QOPERAND
0 ishe 25 30 35 40 a5
\TENZ. Oc -10
Figure 27. Numeric Constant with a Minus Value
Label perati OPERAND
3 3]s 28 _3Q 3% 49 a3 30
TEN3, cw_ . 110,

Figure 28. Unsigned Numeric Constant

Alphameric Constants

Place an @ symbol before and after the constant. As
with alphameric literals, blanks and the @ symbol
may appear between these @ symbols, but the @
symbol must not appear in a comment in the same

line as the constant.
Up to 50 valid characters can be written in an alpha-

meric constant. Any combination of alphameric
characters can be used, with the following restric-
tions:
1. If the object program is to be punched into cards
in the condensed-loader format, a word-separator
character (0-5-8 punch) should not be the first char-
acter following the first of the two @ symbols en-
closing the constant.
2. If the object program is to be written on disk
(coreload format), a group mark should not be the
first character following the first of the two @ symbols
enclosing the constant.

A comma and a G following the alphameric constant
cause the assembler to insert a group-mark with a
word-mark after the constant.

Example: Figure 29 shows how to define the alpha-
meric constant, JANUARY 28, 1964 in a pcw state-
ment. The assembler will insert the equivalent
address of the constant in the object-program in-
struction wherever DATE appears in the operand of
another source-program entry.

Label rati OPERAND
ls 18] ' 35 LY) 43 50
ATE . YA) 8

Figure 29. Alphameric Constant

Blank Constants

Blank constants used in bcw statements are equivalent
to area-defining literals in instructions.

Write the # symbol and an integer in the operand
field to indicate how many blank storage positions are
needed in the area. The defined area can contain any
number of blank positions.

Example: Figure 30 shows how to define an 11-posi-
tion blank field using a pcw statement. The equiv-
alent address of the 1l-position field is inserted in
the object program wherever BLANK appears as an
operand in another source program statement.

OPERAND
35 40 L1H — 50

Dcw l#11, ,

ALANK
Figure 30. Blank Constant

Address Constants

A pcw statement can define the equivalent address of
an instruction, defined area, or constant.

Form C24-3258-1
Page Revised 6-1-65
By TNL N21-0038-0

In the operand field, write the label of the instruc-
tion, area-definition, or constant, and precede the label
with a plus or minus sign. If a minus sign is used,
the constant defined is the 16,000’s complement of the
equivalent address of the label. '

Example. Figure 31 shows how an address constant
(the equivalent address of MaNNO) can be defined
by a pcw statement. The address of the equivalent
address of Maxxo will be inserted into an object-
program instruction wherever SEriaL appears as the
operand of another source-program entry. Thus,
+»anNo is the symbolic address of the field that
contains the equivalent address of araxNo.

Label perati OPERAND
3 ; 156 ' 25 30 3% 40 LX) 50
ISER 1AL DCW _ |tmasnNo
Figure 31. Address Constant Defined by a pcw Statement

Address constants can be adjusted and indexed.
The adjustment and indexing refer to the address
constant itself rather than to the address of the loca-
tion of the address constant. If casu is the symbolic
address of a field, the equivalent address of casH is
indexed or address-adjusted rather than the equiv-
alent address of --casH.

Example. In Figure 32 the address constant (the
equivalent address of casn) is 600. Whenever ToTAL
appears as the operand of another source-program
entry, it will represent the equivalent address of a
location that contains 604 (the adjusted address con-
stant of casH). (See Figure 20.)

Note: —casa+4 would refer to position 15,404
(16,000—600+4).

Lobel perati OPERAND -
(3 13416 39 35 40 45 50
TOTAL. | OCW |+ ASH.14 A
Figure 32. Adjusted Address-Constant Defined by a pcw
Statement

DC — Define Constant (No Word Mark)

General Description: To load a constant without a
high-order word mark, write a pc statement. The
format of a pc statement is the same as that of a pcw
statement. The pc operation code is used in the op-
eration field. If more than one pc operation code is
to be written in succession, the programmer needs
to write the pc operation code for the first pc state-
ment. The pc operation code for the remaining
statements of the group can be omitted, if desired.

Example: Figure 33 shows TEN] defined as a constant
without a word mark.

17

OPERAND
30 35 40 L] 50

+10 ., " PP

Lobel perati
151
CENL . | [oX o4

Figure 33. Constant Defined by a pc Statement

DS — Define Symbol

General Description. Use a ps statement to label and
skip over an area of core storage. With a ps state-
ment, the bypassed area is undisturbed during the
loading process. Thus, any information that was in
storage before loading begins will still be there after
the object program has been loaded.

The programmer:

1. Writes ps in the operation field.

2. May write a label, but not an actual address, in the
the label field.

3. Writes a number in the operand field that tells the
assembler how many positions of storage to bypass.

The assembler:

1. Assigns an equivalent address to the label. This
equivalent address refers to the low-order position
of the bypassed area.

2. Inserts this address wherever the label appears as
an operand in another source-program entry.

Result. The positions included in the bypassed area
remain undisturbed during object-program loading.

Example. Figure 34 shows how to direct the assembler
to bypass a 10-position core-storage area. Assume
that the last core-storage position the assembler allo-
cated before it encountered the ps statement was
940. The equivalent address of accum is 950, the
address of the low-order position of the core-storage
area bypassed by the ps statement. Wherever accum
is used as an operand, 950 will be inserted in the
object program.

€ 21 rati OPERAND
13 30 39 LI-B 43 —20
Cum S, (=] .
Figure 34. bps Statement

DSA — Define Symbol Address

General Description. The ability to code address con-
stants in Autocoder language eliminates the need
for the psa statement except when the three-charac-
ter machine address of an actual address in the
source program is desired. The address constants
previously discussed were created from labels.

The programmer:

1. Writes psa in the operation field.

18 Autocoder (on Disk) Language Specifications

2. May write as the label, the name that will be used
to make reference to the address constant.

3. Writes the actual or symbolic address to be defined
in the operand field. This address may be address-
adjusted and indexed. psa with a symbolic operand
is equivalent to a pcw address constant.

The assembler:

1. Produces a constant containing the equivalent ad-

dress of the storage address written in the operand
field.

2. Assigns to this address constant an equivalent ad-

dress in core storage and labels it using the name
that appears in the label field.

Result. At program-load time the address constant
will be loaded into its assigned locations with a
word mark in the high-order position.

Example. Figure 35 shows how to develop and store
an address constant for an actual address.

Label peroti OPERAND
3 38 30 35 40 a2 50
4.
Figure 35. Defining the Address Constant of an Actual
Address

DA — Define Area

General Description. A pA entry reserves and defines
portions of core storage. Use a pa entry to:

1. Define one area, such as an input, output, or work
area.

2. Define several areas that have the same format.

3. Define fields within the defined area.

The complete pa entry has two parts: the pa header,
which gives the assembler specific information on how
to set up the area, and the subsequent pa statements,
which define the fields within the area.

DA Header

The programmer:

1. Writes pa in the operation field.

2. Writes a label. The equivalent address of the label
represents the high-order position of the entire area
defined by the pa header statement.

3. Writes the first operand in the form B X L. B is
the number of identical areas to be defined and L
is the length of each area.

4. May write a comma and the number of an index
location (X1, X2, or X3) after the B X L entry. The
indexing specified in the pa header statement refers

to subsequent pa entries. Tag bits will be over the
tens position of the equivalent addresses wherever
the labels of subsequent pa entries appear as oper-
ands in source-program instructions, unless the
operand is indexed. The indexing in the operand
overrides the indexing specified by the pa header.

Note: Symbolic indexing is not permitted in a
pA header statement.

. May write ,+ after the B XX L entry to cause the

assembler to insert a record mark without a word
mark immediately after each area defined by the
B X L entry.

. May write ,G after the B)X L entry to cause the

assembler to insert a group-mark with a word-mark
immediately after the last area defined by the B
X L entry.

. May write ,C to cause the assembler to clear the

defined area(s) at object time before any word
marks are set.

Note: The ,#+,G,C and, index-code entries may
be written in any order after the B XX L entry.

Subsequent DA Entries

The programmer:

1
2.

4.

Leaves the operation field blank.

May write a label. The equivalent address of the
label represents the low-order position of the field
or subfield with which it is associated. A subfield is
a field within a defined area or field.

. Specifies in the operand field the relative location

of a field or subfield. The first positioﬁ of each
area defined by the pa header statement is con-
sidered location 1.

a. To define a field, write the high-order and low-order

position of the field (beginning in column 21). Separate
the two numbers by a comma. To define a one-position

field, write the relative location number twice. Word

marks are set in the high-order positions of all defined
fields.

b. To specify the location of a subfield, write the number
(beginning in column 21) that represents the relative
location of the low-order position of the subfield. The
location is relative to the first position of the area de-
fined by the pa header statement. No word marks are
set in the low-order positions of subfields.

A subfield can be located anywhere within the area
defined in the pa header statement. It does not have
to be within a field defined by a subsequent pa. entry.

May list fields and subfields in any order after the
pA header statement. All the fields within the area
need not be defined.

The assembler:

L

Allocates an area which is equal in length to the
total of B X L plus positions for record marks and
a group-mark with a word-mark, if they have been
specified in the pa header.

Assigns equivalent addresses to the pa header label
and to the labels of all defined fields and subfields.
Inserts the equivalent address of the high-order
position of the entire defined area wherever the
label of the pa header appears as an operand in the
program.

. Inserts the equivalent addresses of the low-order

positions of fields and subfields defined in the other
DA entries wherever their labels appear as operands
in the program.

Result. When the object program is loaded:

1

The entire defined area is cleared if the pa header
statement contained a comma C.

Word marks are set in the high-order position of
all fields defined by subsequent pA entries. A word
mark is set in the high-order position of each area
defined by the pa header if a subsequent pa entry
is 1,n.

A group-mark with word-mark, and record marks
are set if they have been specified by the pa header.

Example. Figure 36 shows a pa header statement that

defines four 100-position areas. If only one area is to
be defined, write 1 X 100 as the first entry in the
operand field.

Figure 36.

Label perati OPERAND
13

pa Header

Example. ixarea is defined by the pa header shown

in Figure 37. The second statement in Figure 37
defines a field within iNArea. Thug, the equivalent
address of accum has a tag bit (A-bit) over the tens
position to indicate that it is to be indexed by the
contents of index-location 1.

Figure 37.

OPERAND
45 50

Indexing a pa Entry

However, an imperative statement elsewhere in
the source program indicates that accum is to be
modified by the contents of index-location 2. Be-
cause the statement shown in Figure 38 contains

19

indexing, the assembler will tag the equivalent ad-
dress of accum with a B-bit when it assembles the
instruction for that statement. The indexing in the
statement that uses Accum as an operand overrides
the indexing prescribed by the pa header statement.

OPERAND

Label peru'ia%
s 13} |i 20021 28 30 35 4
ZA ROSS. 4 ACCUMF X2 .

Figure 38. Overridir}g Previously Prescribed Indexing

To negate the effect of indexing on a field or sub-
field, put an X0 in the operand field of each instruc-
tion in which indexing is not wanted (Figure 39).

OPERAND
20 45 S0

Label rati
il A

30 35

Figure 39. Negating the Effect of Indexing

Example. Figure 40 shows a pa header statement that
directs the assembler to insert a record mark after
each of the areas defined and a group-mark with
word-mark immediately after the last-defined area.
The 2 X100 entry causes 200 positions to be re-

-served by the assembler. The ,+ and ,G entries
cause 3 additional positions to be reserved as shown
in Figure 41.

Label perati OPERAND
6 ‘fllg ?%I:u ;; 30 35 49 43 20

[203 Positions

)

*

l<— 100 Posiﬁons——l L— 100 Positions —J

Record Marks and a Group-Mark with a
Word-Mark

_H.
|4+

Figure 41.

Example. A payroll record (Figure 42) is to be moved
into an area of core storage.

The card record is 80 positions, one for each

column of the card. The significant fields to be de-
fined in the record area are:

Positions Label Description
4-8 MANNO Man Number
11-26 NAME Employee Name
32-37 DATE Date
45-64 GROSS Gross Wages
66-71 WHTAX Withholding Tax
74-79 FICA FICA Deduction

The remaining card columns contain data not
needed for the operation. Positions 34 and 35, which
indicate the month within the date, will be defined
as a subfield. A group-mark with a word-mark is
needed in the storage position immediately follow-
ing the area.

The pa header shown in Figure 43 defines the area
into which the record is to be moved. The 1 X 80

Figure 40. pa Header entry causes the assembler to reserve 80 core-storage
MAN NAME DATE GROSS WHTAX FICA
NO DAIMOIYR
4 8 i 26 32 37 45 64| l66 T (74 79
Figure 42. Input Card

20 Autocoder (on Disk) Language Specifications

positions for the area. The ,G causes the assembler
to set a group-mark with a word-mark in the 81st
position of the area at program-load time. This area
can then be referred to by using the name RDAREA
in the operand of another source-program entry.
The equivalent address of rRpAREA will be the 3-
chaiacter machine address of the high-order posi-
tion of the entire area allocated by the assembler.
The other pa entries shown in Figure 43 define the
fields and subfields within the record.

Examples: Figure 44 shows how to assign another
label (1np1v) to a location which was previously
labeled MmannNo. The EQU statement causes the as-
sembler to assign the same equivalent address (1976)
to iNpiv that it previously assigned to Manno. Now,
whenever either MANNO or INDIV appears as an
operand, the assembler will replace the operand
with 1976.

OPERAND
45

X 30 25 49 20

Label ti OPERAND
18] L 30 38 40 a3
QAREAl A XB8D,.G
TE .| L i3Re37. R
TH. | . l3s
NAME, | | 1.1.926, .
ANNO N VY - N RN
RO.SS, | . 454 64, R
leéAX.i #,u s - s
L i £329 ... e
Figure 43. pa Entry

In the source program, an instruction to move
the record into a storage area labeled roarea will
cause the data in the record to be stored in the
appropriate fields. Source-program statements may
then be written to manipulate this data, using the
labels as operands. The word marks set at program-
load time will stop the transfer of data when indi-
vidual fields are moved, added, etc.

EQU — Equate

General Description: Use an EQU statement to assign
a label to an actual, asterisk, or symbolic address,
or to a control field or an index location. More than
one label can be assigned to represent the same
storage location.

The programmer:

1. Writes EQU in the operation field.

2. Writes a label.

3. Writes an actual, asterisk, or symbolic address in
the operand field.

Note: X1, X2, and X3 should not be used as labels of EQU
statements, because the assembler assumes that they are equated
to 089, 094, and 099, respectively. Further, a label must not
be equated to a literal, because the assembler considers such
a label as being undefined.

The assembler:

1. Assigns to the label of the EQu statement the same
equivalent address that was assigned to the name
in the operand field (with appropriate alteration if
indexing and address adjustments are indicated).

2. Inserts this equivalent address wherever the label
of the EQU statement appears as an operand.

Result: Either the label or the operand of the EqQu
statement can be used to refer to the same core-
storage location.

Figure 44. Equating Two Symbolic Addresses

Figure 45 shows a statement equating the equiv-
alent address of FicaA—10 to warax. If the assembler
assigns FICA an equivalent address of 890, the wrHTAx
will be assigned an equivalent address of 880,
which is also equal to FicaA—10. weTax now refers
to a field whose units position is 880.

OPERAND
30 3% 40 L EN—
QL. LCA-10 . . PV

Lobel rati
I

Figure 45. Equating a Symbolic Address to an Address-

Adjusted Symbolic Address

Figure 46 shows how to equate a label to an actual
address. Assume that a certain field will be in a
storage location whose units position is known to be
at actual-address 319. The programmer wishes to
refer to this field as appa, but it has not been labeled
elsewhere in the program. To equate the label appa
to 319, write the statement shown in Figure 46.
Thus, 319 becomes the equivalent address of abpa.

Label perati OPERAND
18]y

6. 30 35 49

Figure 46. Equating a Label to an Actual Address

Figure 47 shows how to index an operand in an
EQU statement. With indexing, the label of the EQu
statement is indexed by the same index location that
is specified in the operand field of that eQu state-
ment. However, if the label appears in the operand
field of another source-program entry with another
index code, the new code overrides the index code
in the EQU statement. ‘

Label perati OPERAND
18 35 40 o
CUST. EQU. |JOB+X3. . |
Figure 47. Indexing an EQU Statement

21

For example, in the statement shown in Figure
47 the equivalent address of jos wth the tag bits of
index-location 3 is assigned to the label cusrno.
Thus, if joB+X3 is equal to 5H5, custNo also has
5HS5 as its equivalent address. However, if custno+-
X1, cusrno+X2, or custNo+X0Q appears as the
operand of another source-program entry, the ad-
dress inserted in its place will be 5Y5, 5Q5, or 585,
which specifies index-location 1, 2, or none, respec-
tively.

Figure 48 shows how to assign a label to an
asterisk in an EQU statement. The * refers to the
last storage location the assembler assigned before
it encountered the EQuU statement. Assume that this
address is 698. F1IELDA has an equivalent address of
698.

OPERAND
40 45 — 50

— 30]

Figure 48. EQU Statement with an Asterisk Operand

Figure 49 shows how to assign a label to an index
location. Because the actual core-storage address of
index-location 1 is 089, the EQU statement assigns
the label ivpex1 to that location.

Label perati OPERAND
. 150! 3 30 3%] L]
! el ‘
/NDEXL leov. Ixa s -

Figure 49. Equating a Label to an Index Location

Figure 50 shows how to assign a label to the
card-reader number 1 whose actual address is % G1.
It is now possible to refer to this device as mNpuTl.

Label rati OPERAND
L LI S

| ! - S—]
INPUT,L, Qu ZG.t

Figure 50. Equating a Symbolic Address to an 1/0 Device

Imperative Statements

General Description. These are the symbolic instruc-
tions for the commands to be executed in the object
computer. A source program will probably contain
more of these imperative instructions than any other
type of Autocoder statement.

The programmer:

1. Writes the mnemonic operation code for the in-
struction in the operation field.

22 Autocoder (on Disk) Language Speciﬁcationé

2. Writes the operand(s) in the operand field. The
first operand is the A- or I-operand; the second is
the B-operand. A- and B-operands are literals or
addresses of data fields. An A-operand can also be
an input/output operand. An I-operand is the ad-
dress of an instruction. If a d-character is required,
it must be written at the immediate right of the
operands.

All items in the operand field must be separated
by commas.

Note: Several mnemonic operation codes have
been developed which cause the d-character to be
supplied automatically by the assembler. However,
some operation codes (for example, BIN) have so
many valid d-characters that it is impractical to
provide a separate mnemonic for each. For these
operation codes, the programmer must supply the
d-character. In the listing of mnemonic operation
codes for imperative instructions (Appendix), all
mnemonics that require a d-character in the oper-
and field are indicated by two asterisks.

3. If the instruction is to be referenced, the program-
mer can label such an instruction. The label will
have an equivalent address that is the storage lo-
cation that will hold the operation code of the
associated instruction when the object program is
loaded. Thus, the label can be used as the I-operand
of a branch instruction elsewhere in the program.
(See Figure 51).

The assembler:

1. Substitutes the actual machine-language operation
code for the mnemonic in the operation field.

2. Substitutes the 3-character equivalent machine ad-
dress of the operands to indicate the A/I or B-
address of the instructions. '

If address-adjustment or indexing codes are writ-
ten with these operands, the appropriate alteration
will be made for these addresses. Tag bits will be
inserted in the tens position of indexed operands.
Address-adjusted operands will be modified by
adding or subtracting the adjustment factor. The
assembler will supply the d-character for unique
mnemonics, or place in the instruction the d-char-
acter from the operand field of the Autocoder state-
ment if the programmer has supplied it.

3. Assigns to the actual-machine-language instruction
an area in object core storage. The address of this
area is the storage location the operation code will
occupy when it is loaded into the object machine at
program-load time. This address is the equivalent
address of the label if one appears in the label field

of the source-program statement that contains the
instruction.

Result. The instruction is loaded with a word mark
in the high-order position.

Examples. Figure 51 shows an imperative instruction
with an I-operand. When the instruction is executed
in the object program, a branch to the instruction
whose label is starT will occur. Assume that sTART
has an equivalent address of 360. The instruction
will be assembled B 360.

Lobel rati OPERAND
[l 1 30 1] 80 43 20
P START, A - PN

Figure 51. Unconditional Branch with a Symbolic I-Operand

Figure 52 shows an imperative instruction with
A- and B-operands. This instruction, when executed,
causes the contents of accuMm to be added to the
contents of ToraL. Assume that the equivalent ad-
dresses of accum and ToTAL are 495 and 520, re-
spectively. The assembled machine-language in-
struction is A 495 520.

Lobel ati ~ O:‘ERAND

1g]s L 28 30 3 40 %0
CCUMLTOTAL . . e
Figure 52. ADD Instruction

Figure 53 shows an imperative instruction with
I- and B-operands and a mnemonic (8ce), which
requires that the programmer supply the d-character
(5) in the operand. When this instruction is executed
in the object program, a branch to the instruction
whose label is rReap will occur if the location la-
beled TEST contains a 5. Assume that the equivalent
address of reap is 596 and TEsT is 782. The assem-
bled instruction is B 596 782 5.

OPERAND
L} 38 40 &

Figure 53. BRANCH IF CHARACTER EQUAL

Figure 54 shows an imperative instruction with
a unique mnemonic (Bav). The assembler supplies
the d-character (Z) for this instruction when it is
assembled. Assume that ovrLo is assigned an equiv-
alent address of 896. If, when the program is exe-
cuted, an arithmetic overflow occurs, the first

instruction causes a branch to ovrro. The assembled
instruction is B 896 Z.

Lobel rati OPERAND
184 39 38 40 43 —20
1 \"J V.FLO, .
—a . .
1
1]
R 1 . AR -
OVELO. | A . \F1ELNASFIELDA)
Figure 54. BRANCH IF ARITHMETIC OVERFLOW

CU, LU, and MU Mnemonics

These mnemonics permit the programmer to code in-
structions for systems equipped with special features
and devices that are not otherwise provided for in this
Autocoder.

CU — Control Unit

The programmer:

1. Writes cu in the operation field.

2. Writes the address of the unit in the operand field
in the format %Xn, d. A symbolic operand may be
used to represent the address of the unit, if that
symbolic operand has been defined by an EQu state-
ment elsewhere in the source program.

The assembler: Provides a five-character instruction
with the operation code U.

LU — Load Unit

The programmer:

1. Writes Lu in the operation field.

2. Writes the address of the unit in the operand field
in the format %Xn, BBB, d. A symbolic operand
may be used to represent the address of the unit,
if that symbolic operand has been defined by an
EQU statement elsewhere in the source program.

The assembler: Provides an eight-character instruction
with the operation code L.

MU — Move Unit

The programmer:

1. Writes Mu in the operation field.

2. Writes the address of the unit in the operand field
in the format % Xn, BBB, d. A symbolic operand
may be used to represent the address of the unit,
if that symbolic operand has been defined by an
EQU statement elsewhere in the source program.

The assembler: Provides an eight-character instruc-
tion with the operation code M.

23

Machine Language Coding

Autocoder permits the programmer to use actual
machine-language operation codes and d-characters.

The programmer:

1. Writes in column 19 the actual machine-language
operation code for the instruction. Columns 16, 17,
and 18 must be left blank.

2. Writes in column 20 the d-character in machine
language. If no d-character is required, column 20
must be left blank.

3. May write a label in the label field.

4. Writes an actual, symbolic, blank, or asterisk ad-
dress in the operand field. The operand field must
not contain the d-character.

The actual address of an input/output unit must

be used unless a label has been assigned to the unit

in an EQU statement.

Example. Figure 55 shows machine-language coding
for an operation involving the 18m 1012 Tape Punch.
Figure 55 also shows the same instruction coded in
Autocoder. Either statement will cause the assem-
bler to produce the instruction: M %P1 754 W if
the equivalent address of LABEL is 754.

30
Mul%P1. LABE.L

OR, .

U PPl LARE

Figure 55. 1M 1012 Tape Punch Instructions

.......

b

Assembler Control Statements

These are the Autocoder statements that permit the
programmer to exercise some control over the assem-
bly process:

Operation Code Purpose
JOB Job Card
CTL Control Card:
ORG Origin Assembly
LTORG Literal Origin
EX Execute
XFR Transfer
END End Assembly
SFX Suffix
ULST Stop Listing
LIST Start Listing
SPCE Space n Lines
SKIPN Skip to next page

24 Autocoder (on Disk) Language Specifications

JOB — Job Card

General Description. This card tells the assembler
how to identify the program in the output listing
from the assembly process. It also identifies the
object program.

The programmer:

1. Writes joB in the operation field.

2. Writes in the operand field the indicative informa-
tion to be printed in the heading line of the output
listing. Any combination of valid characters may be
written in this statement (within columns 21-72).

3. Writes in the identification field (columns 76-80)
the identification name or number that refers to
the program.

The assembler:

1. Prints the information contained in the operand
field of the jos card, the identification number, and
a page number in the heading line of each page of
the output listing. If the source deck does not con-
tain a joB card, the assembler prints only the page
number.

2. Punches the identification number in columns 76-80
of all condensed cards it produces for the object
program.

3. If several joB cards appear in the source deck, the
assembler changes the information in the heading
line and in the object program to reflect the new
joB identification. A new joB card also causes the
printer carriage to restore so that the new job or
program starts on a new page of the output listing.

Result: Different programs or program overlays are
easily identified in the output listing.

Example: Figure 56 shows a joB card prepared for a
program identified as EMPLOYEE PAYROLL REGISTER.
It is identified in the object program as PRLRG.

OPERAND

43 50

Figure 356.

joB Card

CTL — Control Card for Assembly

General Description: The ctL card describes the con-
figuration of the object machine and specifies
whether or not the cross reference listing, label

table, and diagnostic messages are to be printed.
The cross reference listing shows each label, its
core storage address, and the sequence numbers
of each line on the program listing that refers to
it. The label table lists all labels and their core stor-

age addresses; the diagnostic messages list the in-
valid source statements and the reasons for their

invalidity.

The format of the crL card is shown in Figure 57.
The crL card may be partially punched or omitted.

Read-in area for a 1440 object deck in the
condensed-loader format.

Columns Indicates Punch (Meaning) Assumptions If the Columns Are Left Blank
16-18 Mnemonic operation code CTL
21 Object machine size 1 (4K) 4K

2 (8K)

3 (12K)

4 (16K)
22 Modify address feature available 1 (yes) No, if the object machine has 4K;

Yes, if the object machine has 8, 12, or 16K.
23 Advanced programming or indexing and store 1 (yes) No
address register feature available

24 Multiply~divide feature available 1 (yes) No
25 Object machine 0 (1401) Processor machine

4 (1440)

6 (1460)
26 Punch device S (1442, 1444) S if the object machine is a 1440;

P (1402) P if the object machine is a 1401 or 1460
27 Read device S (1442) S if the object machine is a 1440;

P (1402) P if the object machjne is a 1401 or 1460
28 * Print device S (1443) S if the object machine is a 1440;

P (1403) P if the object machine is a 1401 or 1460
29 Disk device 1 (1311, 1301) 1311 or 1301

2 (1405)
30 Source Statement Diagnostics i (yes) Yes

N (no)
31 Label Table or Cross Reference Listing L (Label Table) Cross Reference Listing

N (neither)
32-36 ** Object deck in the self-loading format, or Sbbbb Object deck in the condensed-loader for-

5 digit starting address

mat with the read-in area starting at 00001,

37-41 Loader location (These columns are not
checked if column 32 contains an S.)

5 digit starting address.
If column 42 contains a
D, punch:

03701 (4K)

07701 (8K)

11701 (12K)

15701 (16K)

00075 if the object machine is a 1440;
00081 if the object machine is a 1401 or 1460

42 Disk Loader (for object programs in the
coreload format)

D (yes)

No

*

*%

Procedures for 1BM 1401, 1440, and 1460, Form C24-3259,
Figure 57. c1L Card Format

Consider a 1403 printer attached to a 1440 system as being the same as a 1443 printer,

Object - program formats are described in Autocoder (on Disk) Program Specifications and Operating

25

The figure shows the assumptions made by the
assembler when columns are left blank. These as-
sumptions are also made if the crr card is omitted.
If the c1L card is used, it must contain cTL in col-
umns 16-18.

Notes:

1. The modify-address feature is standard on all 1BM
systems equipped with more than 4,000 positions
of core storage.

2. Column 42 should contain a D if the object pro-
gram is to be placed on disk in the coreload for-
mat. This will result from any of the following
processor jobs:

a. AUTOCODER RUN THRU EXECUTION (load and go)

b. AUTOCODER RUN THRU oUTPUT (conventional as-

sembly) with a CORELOAD OPTN

¢. OUTPUT RUN THRU EXECUTION (partial process-

ing)

d. outpuT RUN (partial processing) with a core-
LOAD OPTN

3. If an object program in the condensed loader

format is desired in addition to or in place of one
in the coreload format, the card loader begins at
the position specified in columns 37-41.

4. The only statements that may be placed between
RUN and ctL cards are a joB card and comments

cards.

ORG — Origin

General Description: Use an origin card to tell the

assembler the address at which to begin allocating
storage for the program or for a particular part of
the program (program overlay). An orc statement
may be included anywhere in the source program
(except within a pA entry). If no orc statement pre-
cedes the first entry in the source program, the as-
sembler automatically begins allocating storage lo-
cations, starting at address 334 for 1401 and 1460
systems, and at address 210 for 1440 systems.

The programmer:

1.
2.

Writes org in the operation field.

Writes a symbolic, actual, blank, or asterisk ad-
dress in the operand field. This address indicates
the next storage location to be assigned by the as-
sembler. Symbolic, actual, or asterisk addresses can
have address adjustment. An operand in an ore
statement cannot be indexed and must be greater

than zero.
If a symbolic address is used in the operand field of

an ORG statement, its corresponding label must be
defined ahead of it in the symbolic program.

The assembler: assigns addresses to instructions, con-

stants, and work areas beginning at the address
specified in the operand field of the orc statement.

26 Autocoder (on Disk) Language Specifications

If the assembler encounters an Orc statement
anywhere in the source program, it begins allo-
cating storage for subsequent entries beginning at
the address specified in the operand field of the
new ORG statement.

Result: The programmer can choose the area(s) of

core storage where the object program will be lo-
cated.

Examples: Figure 58 shows an ORG statement with an

actual address.

Lobel Kperati OPERAND
IRE 0O ., R N
Figure 58. ORG Statement with an Actual Address

The assembler will assign storage to the first
source-program entry following this or¢ statement
with storage-location 500 as a reference point. This
means that if the first entry following the orc state-
ment is an instruction, the Op-code position of that
instruction will be 500. If the first entry is a 5-
character pcw, it will be assigned address 504.

The orc statement in Figure 59 shows how to
instruct the assembler to save the address of the last
storage location allocated. This orc statement causes
the assembler to equate the label to the address,
plus 1, of the last storage location assigned before
the orc statement. The assembler continues assign-
ing addresses beginning at the equivalent address
of START.

Label perati OPERAND
] 30 38 40 43 20
START. ras P

Figure 59. Saving the Address of the Last Storage Allocation

Another orc statement may be used later in the
source program to direct the processor to begin
assigning storage locations at appr (Figure 60).

- RAND
Label \ rati “© 0:: N 0
R& . IADDR. . . e NN

Figure 60. oRc Statement with a Symbolic Address

Figure 60 shows an orc statement that directs the
assembler to start assigning addresses with the ac-
tual address assigned to ADDR.

When the assembler encounters the statement
shown in Figure 61, it will begin assigning addresses
to subsequent entries in the source program at the
next available storage location whose address is a
multiple of 100. For example, if the last address

assigned was 525, the next instruction (if the next
entry is an instruction) will have an address of 600.
It is possible to use additional address-adjustment
factors with X00. For example, ORG *—+X00—9 will
give an address of 591.

Label perati OI:RAND

ORG. +X.00

Figure 61. Adjustment to Next Available Century Block

If the object machine has an 18BMm. 1443 Printer and
does not have the print storage special feature, the
print area must begin in a hundreds +1 core storage
position (101, 201, 301, etc.). Such a print area can be
defined by an orc statement with an operand of
*4-X00-+1, followed by a pa statement (Figure 62).

Labet perati OPERAND
isi 43

30 35 LT] 20
X004+ ! N

I R, N
RINT.I loa . lixizo.s6 e

Figure 62. Defining a Print Area

Note: +XO00 is permitted as an adjustment factor
only when it is used with an asterisk, and it may be
used only in an ORG or LTORG statement.

Figure 63 shows an ORG statement with an asterisk
and an address-adjustment factor in the operand
field. The asterisk represents the address, plus one,
of the last storage position assigned by the assem-
bler. If the last address assigned was 525, the assem-
bler will start assigning addresses at 591 (526
65).

Label perati OPERAND
13§ ' Ll

Figure 63. oORc Statement with an Address-Adjusted
Asterisk Operand

An orc statement with a blank operand field may
be used. It will cause the assembler to start assign-
ing addresses beginning with the first address (be-
yond 333) after the highest address already assigned
to other entries.

LTORG — Literal Origin

General Description: The programmer codes LTORG

statements in the same way as ORG statements. A
LTORG statement directs the assembler to begin as-
signing storage locations to literals, address con-
stants, and closed library routines (see Macro Sys-
tem), which have been written ahead of the rTORG
statement in the source program. The address of the
storage location, which is the first to be allocated
for a literal or closed library routine, is written in
the operand field of a LTORG statement. A LTORG
statement may be included anywhere in the source
program.

If the assembler does not find a LTORG statement
in the source program, it begins literal origin after
finding an EX or END statement.

Example: Figure 64 shows how to direct the assembler

to begin assigning storage locations to literals and
closed library routines.

Label rati OPERAND
ish 30 35 Y-} PYy 50
il 086, . |500
?L&A.&LAL._._._M_#O
cALC. | ! £Q.U. . 1500 . R
| ZA +1.0., WKAREA . N .
e LNCLOISUBOL
| A S.y80.1
004 . | L TORBICALL
; 0RG DLOR
S 1LE DA DCw. . |#6
LELDS, XA A

24 lFiFioA FiEIDE

Figure 64. Using a LTORG Statement

The programmer has instructed the assembler to
begin storage allocation at 500. All instructions,
constants, and work areas (ending with B SUB(1)
will be assigned storage. However, the literal (+10)
in the statement ZA +10 WkaRrea, and the library
routine (suB0l) extracted by the INcLD macro (see
INCLD), will not be assigned storage until the
LTORG statement is encountered. The first instruction
in the library routine (SUB01) will be assigned ad-
dress 1500 (V00) because carc has been equated to
1500.

After all instructions in SUB01 have been assigned
storage locations, the literal 410 will be assigned
an address. The assembler will begin assigning the
rest of the instructions, constants, and work areas
with the storage location immediately following the
area occupied by the instruction B SUBOL. Thus,
if a B SUBOI1 (B V00) is assigned locations 591-594,
FIELDA Will be assigned storage locations 595-600.

27

EX — Execute

General Description: An Ex statement makes it possi-
ble to interrupt the object-program-loading process
temporarily so that the part of the program that has
already been loaded can be executed.

The programmer:

1. Writes ex in the operation field.

2. Writes a symbolic operand. This must be identical
to the label used for the first instruction to be
executed after the loading process has been halted.

The assembler:

1. Assembles an unconditional-branch instruction for
1440 systems and, if the self-loading format is
specified, for 1401 and 1460 systems. A clear-and-
branch instruction is assembled for 1401 and 1460
systems if the condensed-loader format is speci-
fied. The I-address of the instruction assembled
is the equivalent address of the first instruction to
be executed after the loading process has been
halted. This instruction does not become part of
the object program. However, it is used by the
loading routine to transfer control to the object
program.

2. Causes literals and closed library routines that have
previously been encountered to be included at this
point in the object program.

Note: To continue the loading process after the
program overlay has been executed, the programmer
must provide re-entry to the load routine by writing
the appropriate instruction(s) before the Ex state-
ment. The instructions are:

A. 1401-1460 condensed-loader format. Branch to the start-
ing address of the loader. If the loader has not been re-
located (ctL card), the starting address is 081.

B. 1440 condensed-loader format. Branch to the starting
address of the loader, plus eight. If the loader has not
been relocated (cTL card), the starting address is 075.

C. 1401-1460 self-loading format. If the read-in area has
not been disturbed during execution of the program cver-
lay, read a card and branch to 040 (1040).

If the read-in area has been disturbed:
1. Clear the read-in area.
2. Set word marks in 001, 040, 047, 054, 061, and 068.
3. Read a card and branch to 040.

D. 1440 self-loading format. If the read-in area has not
been disturbed during the program overlay, branch to
073. If the read-in area has been disturbed:

1. Clear the read-in area.

2. Set word marks in 001, 040, 047, 054, 061, 068, 072,
073, 081, and 085.

3. Positions 72-84 must contain EEM%GIOOIRBO4O.
4. Branch to 073. -

E. 1401-1440-1460 coreload format. Use the LDRCL macro.
See Linkage Macros.

28 Autocoder (on Disk) Language Specifications

All object program formats are described in Auto-
coder (on Disk) Program Specifications and Operat-
ing Procedures for IBM 1401, 1440, and 1460, Form
C24-3259.

Example. Figure 65 shows how an Ex statement can be
coded. When the loader encounters the branch in-
struction produced by the assembler, the loading
process stops and a branch to the instruction whose
label is ENTRYA OCCurs.

Lobel rati OPERAND

1
X, ENTRY.A

Figure 65. Ex Statement

SFX — Suffix

General Description: This statement directs the as-
sembler to put a suffix code in the sixth position of
all labels and symbolic operands that have five or
fewer characters, until another s¥x statement is en-
countered. In this way, the programmer can use the
same label in different sections of the complete
program.

In using the iNncLD macro (see INCLD Macro), the
same routine can be extracted more than once be-
cause it is used in different program sections (there
is a LTORG or EX statement between the two mNcLD
macros). In these cases use the sFx statement to
ensure that the label does not appear exactly the
same in two different sections of the program. Thus,
the suffix code makes the labels in each section
unique.

The suffixing can be discontinued by an srx state-
ment with a blank operand. To prevent a particular
label from being suffixed within a portion of the
program in which the other symbols are being suf-
fixed, make the label six-characters long,

The programmer:

1. Writes sFx in the operation field.
2. Writes the character, which can be any valid char-

acter, to be used for the suffix code in the operand
field.

The assembler:

1. Inserts the suffix code in the sixth position of all
labels in the source program that have fewer than
six characters.

2. Changes the suffix code when a new sFx card is
encountered.

_ Result: Each program section has unique labels.

Example: Figure 66 is an example of coding for a
suffixing operation.

Labe! rati OPERAND
I

L sFELRR |, . ., . "

Figure 66. Specifying a Suffix Operation

XFR — Transfer

General Description: This entry is like Ex except that
it does not signal the assembler to include literals
and closed library routines in the object program.

END — End

General Description: The END statement signals the
assembler that all of the source-program entries
have been read. This card, which is always the last
card in the source-program deck, provides the as-
sembler with the information necessary to produce
a branch instruction. The branch instruction in
turn causes a transfer to the first instruction to be
executed after the object program has been loaded.

The programmer:

1. Writes Exp in the operation field.

2. Writes an actual or symbolic address in the oper-
and field. This must be the same symbol as the
label of the first instruction to be executed after the
loading processor has been completed.

The assembler:

1. Assembles an unconditional-branch instruction for
1440 systems, and a clear-storage-and-branch in-
struction for 1401 and 1460 systems. The I-address
of this instruction is the equivalent address of the
first instruction to be executed after the loading
process has been completed. This instruction does
not become part of the object program. However,
it is used by the loading routine to transfer machine
instruction execution to the object program.

2. Causes literals and closed library routines that have
previously been encountered to be included at this
point in the object program.

Result: Object-program execution begins automati-
cally after loading.

Example: Figure 67 shows an END statement.

Lobel ti OPERAND
P sl 38 40 43 50
ND, TARTL N . it 4

Figure 67. END Statement

ULST — Stop Listing

General Description: This operation stops the output
listing of specified portions of the program. All
other output options are not affected.

The programmer:

1. Writes vLst in the operation field.

2. Inserts the uLsT card at the beginning of the section
that is not to be listed.

The assembler:

1. Stops printing the output listing.

2. Indicates that this portion of the listing is being
skipped.

Example: Figure 68 shows an uLsr statement.

Labe! perati OPERAND
6 15)18 ' 30 35 40 43 s0
. | ULST. -
Figure 68. wuLsT Statement

LIST — Start Listing

General Description: To resume listing after an vLsT
operation has been in effect, the LisT operation is
specified.

The programmer:

1. Writes visT in the operation field.

2. Inserts the card at the end of the section which
has not been listing.

The assembler: resumes printing the output listing.

Example: Figure 69 shows a sample vLisT statement.

Lobel roti OPERAND
153 1 30 3% 40 3 20
- 1 L /ST . e
Figure 69. wvLisT Statement

SPCE — Space n Llines

General Description: This operation causes the assem-
bler to insert extra spaces in the output listing.

The programmer:

1. Writes spce in the operation field.

2. Writes the numeric character 1, 2, or 3 in column
21. Use 1 for no space before printing, that is, single
space printing, 2 for one space before printing, that
is, double space printing, and 3 for two spaces be-
fore printing, that is, triple space printing,.

29

3. Inserts the spce card following the card after which
the spacing is to start.

The assembler: Leaves the specified number of spaces
after each line printed until another spce card is
encountered. If no spce card is included in the
source deck, the assembler will not leave any spaces
between printed lines.

Example: Figure 70 shows a space statement that
causes the assembler to leave one space between
lines in the output listing.

Label rati OPERAND
38 40 s 80
L PcE s s e .
Figure 70. spcE Statement

SKIPN—SKIP TO NEXT PAGE

General Description: This operation causes the as-
sembler to skip to the next page of the printed
output listing. Thus, the programmer can force the
start of a new listing page without having to use a
joB card.

The programmer: Writes SKIPN in the operation field.

The assembler: Skips to the next page in the output
listing.

Example: Figure 71 shows a SKIPN statement.

Label perati
i}]
Al S.KIP, NN N .

OPERAND
30

Figure 71. SKIPN Statement

ENT — Enter New Coding Mode

General Description: An ENT statement is used by the
programmer to inform the assembler that a change
in coding form follows. The exp card must be
processed in the full Autocoder mode.

The Autocoder assembler accepts source pro-
grams coded in any of these three formats:

1. The standard free-form Autocoder format described in the
Coding Sheet section of this publication.

30 Autocoder (on Disk) Language Specifications

2. The fixed-form sps language format described in IBM
1401 Symbolic Programming Systems: SPS-1 and SPS-2,
Form C24-1480.

3. The free-form Basic Autocoder format described in Basic
Autocoder for IBM 1440: Specifications, Form C24-3023.

The programmer:

1. To enter Basic Autocoder from full Autocoder,
writes ENT in columns 16-18 and writes BasICc in
columns 21-25.

2. To enter full Autocoder from Basic Autocoder,
writes ENT in columns 36-38, and writes AUTOCODER
in columns 41-49,

3. To enter sps: from full Autocoder, write ENT in
columns 16-18, and write sps in columns 21-23.
(sps statements are assembled into 1401-1460 ma-
chine-language coding.)

4. To enter full Autocoder from sps, writes ENT in
columns 14-16 and writes AuTocopER in columns
17-25.

The assembler: Interprets the source-program coding
as identified by the ENT statements.

Result: Programs prepared partially in sps or Basic
Autocoder format can be reassembled by the Auto-
coder assembler.

Examples. Figures 72, 73, 74, and 75 are ENT state-
ments to be used with Autocoder.

Labet ati OPERAND
] 30 9 a %0
. . |ENT. 18AS.IC. — . —
Figure 72. Enter Basic Autocoder from Autocoder
Label ti OPERAND

] 1 T 20
ENT. . AUT.0CODER

Figure 73. Enter Autocoder from Basic Autocoder

OPERAND
i 4 e]
PS. N s s

Figure 74. Enter sps from Autocoder

OPERAND
30 35 20 45 20
TAUTOCARER i NI -

Lobel rati
)

Figure 75. Enter Autocoder from sps

Many program routines are quite general. These rou-
tines (consisting of a series of instructions originally
developed to handle one phase of one specific pro-
gram) can, with little or no alteration, be incorporated
in other programs. For example, a routine for checking
the accuracy of a write-disk operation can be used,
with modification of addresses, in many programs.

The Autocoder system includes a macro facility that
eliminates the repetitive coding of general routines.
Before the macro facility can be used, the user must
create a library by storing the routines in disk storage.
The user can then write a single symbolic instruction
(a macro instruction) that causes the assembler to ex-
tract the routine associated with the instruction, tailor
it to fit the program requirements, and insert it in the
object program.

BM provides several macro instructions and library
routines. Others can be developed by the user, then
stored in the library and incorporated into programs
as needed.

Library Routines

A library routine is a complete set of instructions de-
signed to perform a specific operation. The name of
a library routine is referred to as a macro name. This
name is used as a header label in the- disk-storage
record that contains the routine. It is also used to
specify the routine in a macro instruction. Each library
routine must have a unique macro name. A source
program cannot contain more than 99 macro names.
This is the maximum number of routines that can be
in the Autocoder library.

Library routines are written on a coding form de-
signed to organize them into the format required by
the assembler. Figure 76 shows the library coding
form. (See Developing the Library Routine.)

During the librarian phase of Autocoder, the rou-
tines are transferred to the disk-storage library. (See
INSER — Insert and DELET — Delete.) At program
assembly time the required routines are extracted,
tailored to fit program requirements if necessary, and
inserted in the symbolic source program. The source
program, including the symbolic library entries, is
then processed by the assembler to produce the ma-
chine-language object program.

The Macro System

Flexible Library Routines

A routine that can be tailored to fit program require-
ments is a flexible library routine. These routines con-
sist of model statements that are general outlines for
symbolic-program statements. During program assem-
bly, the macro-generator phase of the assembler pro-
gram replaces the codes in model statements with
the parameters (symbolic addresses, control fields, or
other information) specified in the source-program
macro instructions. Model statements can be deleted
if they are not needed in the program.

Flexible library routines may contain pseudo macro
instructions. These are commands to the macro gen-
erator that control the production of the symbolic
routine. Pseudo macros are never used by the source
programmer. They are used by the library programmer
when he develops the library routine.

Inflexible Library Routines

A library routine that requires no alteration is an
inflexible library routine. All the instructions (model
statements) are incorporated in the symbolic program.
No parameters may be inserted. The data needed by
the routine must be in the locations indicated by the
symbolic addresses in the operand fields of its instruc-
tions. An inflexible library routine is called an mNcip
routine because the INCLD macro instruction causes
the assembler to insert it in the symbolic source pro-
gram.

Macro Instructions

General Description. A macro instruction is the entry
in the source program that specifies the routine to
be extracted from the library and inserted in the
program. It also gives the assembler the informa-
tion necessary to tailor a flexible library routine.

An INCLD or CALL macro instruction must be used
to insert an inflexible library routine in the program.
A regular macro instruction (contains the name of
the library routine in the operation field) is used to
tailor and incorporate a flexible library routine. The
following discussion applies to regular macro in-
structions. (See INCLD Macro and CALL Macro.)

31

IBM INTERNATIONAL BUSINESS MACHINES CORPORATION FORM X24-6568
i in US.A
° LIBRARY CODING FORM Printed fn US4
IBM 1401-1410-1440- 1460
DATE. PROGRAM PROGRAMMED BY.
Page .
and L Label Op: Operand and Comments ldeﬂ."ﬁ-
Line cation
123 4 5]6]7 8 910111213141516171819202) 222324 2526427 28 29303132 33343536 3738394041 4243 44 4546 47 48495051 5253545556 57 58 596061 62636465 6667 686970717273747547677787980)
Figure 76. 1BM Autocoder Library Coding Form

The source programmer:

1.

32

Writes the macro name (the name of the library
routine) in the operation field of the Autocoder
coding sheet.

. Writes in the label field the name that is to be

used as the label of the first statement in the gen-
erated symbolic routine.

. Writes in the operand field the parameters that are

to be used by the model statements required for the
particular object routine as follows:

a.

Parameters must be written in the sequence in
which they are used by the codes in the model
statements. For example, if cost is parameter 1,
it must be written so that it will be substituted
wherever a 001, or O0A appears in a label, oper-
ation code, or operand field of a model statement.

. A macro instruction may have as many param-

eters as can be written in the operand fields of
five or fewer coding-sheet lines. If more than one

Autocoder (on Disk) Language Specifications

coding-sheet line is needed for a macro instruc-
tion, the label and operation fields of the addi-
tional lines must be left blank. Parameters must
be separated by a comma. A parameter may not
contain blanks or commas unless they are en-
closed by @ symbols (as in an alphameric
literal). The @ symbol itself must not appear
between @ symbols in a parameter.

If more than one line is needed to list the
parameters for a given macro instruction, a
comma must be written after the last parameter
of each line. A comma is not needed after the
last parameter listed for the macro.

. A parameter, or parameters, may be omitted if

not required for the object routine. To omit a
parameter, include the comma that would have
followed the parameter, unless the parameter to
be omitted follows the last parameter used in the
macro instruction. The assembler uses these
commas to count parameters up to and including

the last included parameter. All parameters be-

. SOURCE PROGRAM
tween the last one included and parameter 99

ASSEMBLER OPERATIONS

are assumed by the assembler to be absent. Source Program Extract
Statement library routine
The assembler: l
1. Extracts the library routine and selects the model Macro-instruction Substiute

parameters in
model statements wherever
substitution codes appear

Delete model
statements if bypassing conditions
are satisfied

Insert assembled symbolic program entries
as an open routine in the symbolic program

statements required for the routine as specified by
the parameters in the macro instructions, by the
substitution and condition codes in the model
statements, and by the pseudo macros in the library
routine.

Substitutes parameters when they are indicated in
the model statements, producing the symbolic rou-
tine.

I

ro

O -~ 0@ T <0

I

Result. The symbolic routine is merged into the sym-
bolic program following the macro instruction. This
routine is called an open or in-line routine because
it is inserted directly into a larger routine without
linkage or calling sequence.

Figure 77 shows the effect of a regular macro
instruction.

T > ®» 0 0 ™

Example. To illustrate the basic operation of the macro
system, a hypothetical macro named cueck, with a
simple flexible library routine, is shown here.

This routine is designed to compare an input field
to another field, and to test the compare indicators
for a high, low, or equal condition (or any combina-

o m = -« Z m

tion of the three) as prescribed by the macro in-
struction in the source program. For example, the
source programmer may use the object routine to

ull

Source Program
statement following
macro-instruction

—— e e ——— e e A e e e e e e — — ——

test only for an equal condition in one program; in
another, high or equal.

Figure 78 shows the library routine and a sample
macro instruction specifying that a routine using all

When a regular macro instruction is encountered in the source pro-
gram, the assembler extracts the specified library routine, tailors it,
and inserts it in-line in the user’s source program.

Figure 77. Macro Processing

Library Routine

':: L tobet O Operond oand Comments
od .
1234 sfef7? 8 00112131415181718 19] 20293031 0304061 949 2 2636448 227374
ool {1117 cl | Hgg},ﬂo
0102 ! 0
100 ; o
N T
HpoAd ;| L l“i‘
1 1R

Macro Instruction

Generated Symbolic Routine

XXXXXX C PAR1,PAR2
BH PAR3
BE PAR4
BL PARS

Figure 78. Macro Operations
33

Lobel rati OPERAND

] 1 30 35 40 43 30

.13 L] AU— -3 70 |

EXAC FLDX:F'LDJ_.FLDS cFLM’FLDS..FLD‘QFLD7..FLDS 2.ELDS

Figure 79. Parameters for Exacr included; Parameters 10-99 Missing

Figure 80. Parameters 04, 08, and 10-99 Missing

the model statements is needed in the object pro-
gram. The symbolic routine generated by the as-
sembler is also shown. The symbolic routine is in-
serted in the symbolic program following the macro
instruction. During assembly of the object program,
the symbolic program will be translated to actual
machine-language instructions. The actual addresses
of the symbols supplied as parameters in the macro
instruction will be inserted in the label, operation,
and operand fields.

Examples. Figures 79, 80, 81, and 82 show how param-
eters can be omitted. A hypothetical macro instruc-
tion called Exacr is used. EXacT can have as many as
nine parameters. '

Label perati OPERAND
[3

20

L, F.LD, D FL.D

Figure 81. Parameters 01, 04, 05, 06, 08, 10-99 Missing

Label perati OPERAND
18]

30 38 20
R XALTIy FLD2 N

Figure 82, Parameters 01 and 03-99 Missing

INCLD Macro

General Description. This macro extracts an inflexible
library routine from the disk-storage library. The
programmer establishes his own linkage to the
closed routine.

The source programmer:

1. Writes iNcLp in the operation field.

2. Writes the name of the library routine in the oper-
and field.

The assembler:

1. Extracts the library routine at Literal Origin time.
If no LTORG statement appears in the user’s source

34 Autocoder (on Disk) Language Specifications

program, the library routine is included in the pro-
gram when the assembler encounters an Ex or END
statement.

2. Incorporates the library routine only once per pro-
gram or overlay, regardless of how many incLp
statements name the same routine.

Note: The programmer must insert a branch in-
struction at the place in the main routine at which
the exit to the library routine is needed. Several
INCLD statements can be written in a group in the
source program to cause the associated library rou-
tines to be incorporated by the assembler at LTORG,
END, or Ex time. Thus, one exit from the main rou-
tine can be used to cause several library routines
to be executed at object-program execution time.

Note: There can be no more than 30 INCLD state-
ments within any one program overlay.

Result. An inflexible library routine is included in
the symbolic source program. This routine is called
a closed or out-of-line routine because it is entered
by a basic linkage (a branch instruction) from the
main routine.
Figure 83 shows the effect of an iNxcLp macro in-
struction.

Example. Figure 84 shows an iNcLp statement used
to extract an inflexible library routine named susrrl.

Lobel perati OPERAND
1S} i 30 3% 49 L1 59
1 IANCLDISUBRRT.L . . e

Figure 84. mcLDp Macro

CALL Macro

General Description. The caLL macro provides linkage
to inflexible (closed) library routines and generates
the NcLp statement needed to incorporate the rou-
tine in the source program.

SOURCE PROGRAM

Branch

INCLD Macro

4

Users next source
program statement

ASSEMBLER OPERATIONS

Extract library .
routine at LTORG, END or EX time

Closed Library Routine

vided by the programmer.

When the assembler encounters an INCLD macro, it incorporates the
specified library routines when an LTORG, END, or EX statement is
encountered in the user’s source program. Note that the branch instruc-
tion that links the main routine to the closed library routine is pro-

Figure 83. 1ncLD Processing

The source programmer:

1. Writes carr in the operation field.

2. Writes the name of the routine in the operand field.
The routine name must also be the label of the first
instruction to be executed.

3. May write a maximum of ten operands immediately

after the routine name. The assembler generates a
pcw for each of these operands so that they can be
used as labels or data in the routine.

The assembler:

1. Advanced programming or indexing-and-store-ad-
dress-register feature not available:

a. Generates a label and a move instruction. When,

the program is executed, the equivalent address
of the label is moved to a three-character field
immediately ahead of the first instruction to be
executed. (In the routine, the statement that pre-
cedes the first instruction to be executed must
define the three-character field.)

If any pcw’s are generated, the equivalent ad-
dress of the label is the address of the units posi-
tion of the first pcw.

If no pcw’s are generated, the equivalent ad-
dress of the label is the address of the instruction

that follows the caLy statement in the source
program.

Because an address is stored in the three-
character field, the library programmer can plan
the use of the generated pcw’s and prepare link-
age back to the main routine.

. Generates a branch instruction to the first in-

struction to be executed.

. Generates an INCLD statement.

d. Generates pcw’s for the operands that follow

the routine name. The pcw’s immediately follow
the branch instruction in the object program.

Advanced programming or indexing-and-store-ad-
dress-register feature available:

a. Generates a branch instruction to the first in-
struction to be executed. The first statement to
be executed must be an sBR instruction.

If any pcw’s are generated, the address stored
is the address of the high-order position of the
first pcw.

If no pcw’s are generated, the address stored
is the address of the instruction that follows the
caLL statement in the source program.

35

The sBR instruction enables the library pro-
grammer to plan the use of the generated pcw’s,
and to prepare linkage back to the main routine.

b. Generates an INCLD statement.

c. Generates pcw’s for the operand that follows the
routine name. The pcw’s immediately follow
the branch instruction in the object program.

2. Extracts the library routine at Literal Origin time.

If no LTORG statement appears in the user’s source
program, the routine is included in the program
when the assembler encounters an Ex or END state-
ment.

3. Incorporates the routine only once per program or

program overlay, regardless of how many INcLD or
CALL statements name the same routine.

Example. Figure 85 shows a caLL statement with three

operands and the statements generated by the as-
sembler. Assume that the object machine does not
have the advanced programming or indexing-and-
store-address-register feature. The figure also shows
the portion of the library routine that utilizes the
three-character field immediately ahead of the first
instruction in the routine.

Library Routine

Page
and L Label Operation Operand and Comments
Line

1

23 4 s5l6}7 8 s 0012331415161718 28293031 3233343536 37 3839 4041 48495051 525354 55 56 57 5859

0)

0|

1leloiz 051@3‘ < | ldlaoll] []

y
2lp|o|2| ISiv|B Rl,|SIVBIRITILIH3
S

itlojo|3] |S|v|84]714! cle] | o), 7ol

|

(0119 ' 00144 ,)9| Y|

X
~ In
>
o

)
[
)
<
> IS

o2 il

ARRRR PR IEELARNRR S RRARR AN AN

Macro Instruction

Label Operation| OPERAND
1516

. 20/21 25 30 35 40 45 50
1 CALL |SUBRT, J+NAME ;@.43,08,

Generated Symbolic Routine

hxi

MLC +I10J001, SUBRT-1
B SUBRT
0JOO1 DCW +NAME

DCW @430@

INCLD SUBRT
{generated closed routine)

Figure 85. caLL Macro

36 Autocoder (on Disk) Language Specifications

Label perati OPERAND
' ! 25 30 35 aQ a0
T Mic 86 .. .
o CHAJ N|S.

Generated Symbolic Program Entries

MLC A,B
MLC
mLC
MmLC
MLC
MLC

Figure 86. cHAIN Macro

CHAIN Macro

General Description. The cHAIN macro makes it easier
for the programmer to code chained instructions.

The source programmer:

1. Writes the instruction to be chained.

2. Writes the macro instruction, using cHAIN as the
mnemonic operation code, and writes a number
from 1 to 99 in the operand field. This number
represents the number of chained instructions de-
sired.

The assembler: Repeats the operation code as many
times as specified by the cHAIN macro.

Example. Figure 86 shows how an MLc statement can
be chained five times.

MA Macro — Modify Address

General Description. The source programmer may use
the MA macro instruction to modify a one- or two-
address instruction, if the modify-address feature is
not available in the object machine. The modify-
address feature is an additional operation code (MA—
MODIFY ADDRESS) that is standard on all 1BM 1460
systems and on M 1401 and 1440 systems with

more than 4000 positions of core storage.
The MA macro is supplied by BM as part of the

Autocoder library. The assembler determines if the
machine instruction can be issued (if the modify-
address feature is available), or if the symbolic rou-
tine (generated from the library routine) is to be
inserted in the source program.

The source programmer:
1. Writes MA in the operation field.

2. May write a label in the label field.

3. Writes the macro instruction with one or two oper-
ands. An alphameric literal used as an operand
must be three characters.

The assembler:

1. Selects the model statements necessary to modify
the correct address(es). The presence or absence of
parameters in the source-program macro instruction
determines which model statements are to be used.

2. Puts the label (if any) in the first instruction used
for the address modification routine.

Result. Tailored symbolic-program statements are in-
serted as an open routine in the program.

Examples. Figure 87 shows a routine designed to
move all the items from a card to their proper places
in the area named TABLE, using a single move in-
struction (named save) to perform all the necessary
moves. Two MA macro instructions (REapy and
apjusT) are used to modifiy the operands of the
move instruction. In analyzing the routine, assume
that every fifteenth column in each input card con-
tains the last character of an item of information
and that word marks have been previously set in
the read area to identify the beginning of each item.
Also, for the benefit of 1440 users, the read-and-
branch instruction (R ADJUST) used in the rou-
tine is a 1401-1460 instruction that causes a card to
be read and then a branch to be made to the address
specified in the operand.

Figure 88 shows the MA macro instruction with
a parameter for the A-address only. The symbolic

Source Program Statements

Label perati OPERAND
1she ol21 30 35 40 45 50
TABLE DCW_ [#/20 ,
‘} et e .
" 2l " 2 L
! . . i
] R ADIUST. . o . . e
|READY. | .. |MA ., |@0(5@ SAVE+S, | R

L |@020@ SAVELE .\, s ‘e L

DIVUSTI . . . MA
SAVE. , | L0, [PATA, TABLE*LY, . .
el e X, CoUNT L L, A s
| BCE, , |PRINT.,COUNT.,.S. . A
! READY, L e N

Generated Symbolic Routines

READY SW SAVE+1
A @015@, SAVE +3
cw SAVE +1
ADJUST SwW SAVE +4
A @020@, SAVE +6
Ccw SAVE +4
Name Equivalent Address
DATA 015
READY 647

ADJUST 662
SAVE 677
COUNT 724

TABLE Q75 (2875) The high-order position of the area is the
equivalent address of TABLE because the label

of the area-defining DCW begins in column 7.
Figure 87. Ma Macro with Two Parameters

routine generated by
also shown.

the assembler processor is

Macro Instruction

OPERAND
- 39 35 49 43 50

Lobe! perati
13h 25
LT LELDA .

Generated Symbolic Program Entries

ALTEREB SwW FIELDA -2
A FIELDA
cw FIELDA —2

Figure 88. Ma Macro with One Parameter

LOOP Macro

General Description. This macro generates instruc-
tions to execute a loop a specified number of times.
This may be any number within the range 1-999. The
Loop macro is the last instruction in the loop.

The source programmer:

1. Writes Loop in the operation field.
2. May write a label in the label field.
3. Writes the parameters in the operand field in this
order:
Parameter 1. The symbolic address of the first in-
struction in the loop.

Read area / - / - / -/ - / -/
0 0 0 0 0 0
0 1 3 4 6 7
0 5 0 5 0 5
Area named L / / / / / /
TABLE Q Q R R R R R
7 9 1 3 5 7 9
5 5 5 5 5 5 5
SAVE SAVE+3 SAVE+6
Core-storage locafions 677 678 679 680 681 682 683
Original SAVE instruction M 0 1 5 Q 7 5
First SAVE instruction M 0 1 5 Q 9 5
executed
Second SAVE instruction M 0] 3 0 R 1 5
executed
Third SAVE instruction M 0 4 5 R 3 5
executed
Fourth SAVE instruction M 0 6 0 R 5 5
executed
Fifth SAVE instruction M 0 7 5 R 7 5
execufed

37

Parameter 2. The symbolic address of a one-, two-,
or three-position field that contains the number
that indicates how many times the loop is to be
executed. After looping is completed, the loop
counter is reinitialized to the original number.

Parameter 3. The number that indicates how many
times the loop is to be executed. After looping is
completed, the loop counter is automatically re-
initialized to the number specified.

Note: Use either parameter 2 or parameter 3,
but not both. No reinitialization takes place un
the loop counter if an exit is taken within the
loop.

Example. The macro instruction shown in Figure 89
causes the program to branch to TEsT3 eight times
to execute the loop nine times.

Lobel perati OPERAND
13 1 30 33 49 L - S}
Lo.op ITESTIy 39,
Figure 89. 1OOP Macro

COMPR Macro

General Description. This macro generates instruc-
tions to compare and test indicators for low, equal,
or high results. Rules for word-mark control or
low, equal, or high indication are the same as for
the machine coMpARE instruction.

The source programmer:

1. Writes compr in the operation field.

2. May write a label in the label field.

3. Writes the parameters in the operand field in this
order:

Parameter 1. The symbol of the A-field to be com-
pared.

Parameter 2. The symbol of the B-field to be com-
pared.

Parameter 3. The symbolic address of the next in-
struction, if a branch occurs as a result of a low
condition.

Parameter 4. The symbolic address of the next in-
struction, if a branch occurs as a result of an
equal condition.

Parameter 5. The symbolic address of the next in-
struction, if a branch occurs as a result of a high
condition.

Note: Any or all of the parameters 3, 4, and 5
may be included for the compr macro.

38 Autocoder (on Disk) Language Specifications

Example. (Figure 90) Compare stock on hand (sTock)
to projected usage (usace). If the stock on hand is
lower than the projected usage, branch to the re-
order routing (REORDR).

Label perati OPERAND
15018 0J21

Figure 90. compr Macro

Linkage Macros

Autocoder (on Disk) provides two linkage macros,
rorcL and syscr. The LbRcL macro facilitates the exe-
cution of object programs (or program overlays) that
are to be loaded from disk (coreload format). The
syscL macro enables the user to stack jobs (such as
program assemblies, program executions, and librarian
operations) under control of Autocoder (on Disk).

Note: Object-program formats and Autocoder jobs
are described in Autocoder (on Disk)*Program Speci-
fications and Operating Procedures for IBM 1401,
1440, and 1460, Form C24-3259.

LDRCL Macro

General Description. The LpRCL macro enables the
programmer to resume loading an object program
from disk after a portion of the program has been
executed. The machine size specified in the cTL card
determines the location of the disk loader. The lo-
cations are 3701 for 4K, 7701 for 8K, 11701 for 12K,
and 15701 for 16K. The rLpRcL macro generates the
appropriate branch instruction.

The programmer can also use the LbrcL macro to
begin loading another independent object program
that is in the coreload format.

The source programmer:

1. Writes LprcL in the operation field of the macro
instruction.

2. If another independent object program is to be
loaded, from disk, the programmer must precede
the LDPRCL macro instruction with an instruction that
will move the starting address of the next program
to the core storage locations that contain the ad-
dress of the next section to be read (3831 for 4K,
7831 for 8K, 11831 for 12K, and 15831 for 16K).

SYSCL Macro

General Description. The syscL macro causes the as-
sembler to generate a branch instruction to the
bootback routine, which transfers program control

to the System Control Program after the object pro-
gram (card format or coreload format) has been
executed. The System Control Program reads the
control card for the next job and initiates the proc-
essing required to perform the job.

The machine size specified in the crrL card de-
termines the location of the bootback routine. The
locations are 3928 for 4K, 7928 for 8K, 11928 for 12K,
15928 for 16K.

When used, the syscr. macro should be the last in-
struction executed in the source program.

The source programmer: writes syscL in the operation
field of the macro instruction.

Arithmetic Macros

These macros are incorporated in Autocoder to make
it easier to program addition, subtraction, multiplica-
tion, and division.

The following information applies to all arithmetic
macros:

1. Permanent switches set from information in the
crL card govern the uses of the indexing-and-store-
address-register, modify-address, and multiply/
divide features.

2. Any positive set of decimal-place configurations is
considered valid. (This includes zeros.) They must
be expressed as unsigned integers.

3. A literal may be used as a parameter wherever the
the name of a field is required.

- 4. The fields from which values are obtained are not
modified in any way. The symbols for these fields
are used as parameters 1 and 4.

5. Rounding is performed by computing the result
to one extra position of accuracy, and then adding
five to the extra position.

6. Whenever rounding or editing is required, a tem-
porary result field is used.

7. The result field need not be set to zeros before
the macro routine is entered.

8. Actual decimal points appear only in edited re-
sults.

9. The absence of the sign-control parameter (12)
causes shorter (and slightly faster) macro routines.

10. The result field must be large enough to contain
the complete edit-control word.

ADD Macro

General Description. This macro produces a routine
that adds two fields, and stores the result in a third
field.

The source programmer:
1. Writes app in the operation field.

May write a label in the label field.

Writes parameters in the operand field in this order:

Parameter 1. The name of the first field to be
added. This must be the field with the lesser
number of decimal places unless both fields have
the same number of decimal places.

Parameter 2. The length of the field specified in
parameter 1 (number).

Parameter 3. The number of decimal places in the
field specified by parameter 1. If there are no
decimal places, use a zero.

Parameter 4. The name for the second field to be
added. This must be the field with the greater
number of decimal places unless both fields have
the same number of decimal places.

Parameter 5. The length of the field specified in
parameter 4 (number).

Parameter 6. The number of decimal places in the
field specified in parameter 4. If there are no
decimal places, use a zero.

Parameter 7. The name of the result (sum) field.

Parameter 8. If editing is not used, this number is
the length of the result field. If editing is used,
this number must correspond to the number of
blanks and zeros in the edit-control word.

Parameter 9. The number of decimal places desired
in the result.

Parameter 10. Truncate parameter (T). The T in-
dicates that the result is not to be rounded. If
parameter 10 is absent, the result will be rounded,
provided the number of decimal places specified
for the result is less than the number of decimal
places specified for either of the two fields to be
added.

Parameter 11. This may be either the name of an
edit-control word for the result, or an edit-control
word expressed as an alphameric literal.

Parameter 12. S indicates sign-control for negative
and positive numbers. If parameter 12 is absent,
numbers will be handled as positive, and must
not have negative zones.

Note: Parameters 10, 11, and 12 are optional.
All others must be present.

39

Example. (Figure 91) Add the contents of a field called
casH to the contents of a field called recets, and
store the result in a field called Torats.

CASH XXXX.00

RECPTS XXX.00

TOTALS XXXXX.00

Label rati OPERAND
] 1 0 48 g0
T

Figure 91. app Macro
SUB Macro

General Description. The subtract macro subtracts
one field from another and stores the result in a
third field.

The source programmer:
1. Writes sus in the operation field.

2. May write a label in the label field.
3. Writes parameters in the operand field in this order.

Parameter 1. The name for the minuend field
(quantity from which another field is subtracted).

Parameter 2. The length of the minuend (number).

Parameter 3. The number of decimal places in the
minuend. Specify zero if there are no decimal
places in this field.

Parameter 4. The name for the subtrahend (quan-
tity to be subtracted from another field).

Parameter 5. The length of the subtrahend (num-
ber).

Parameter 6. The number of decimal places in the
subtrahend. Specify zero if there are no decimal
places in the field.

Parameter 7. The name for the result (difference)
field.

Parameter 8. If editing is not used, this number is
the length of the result field. If editing is used,
this number must correspond to the number of
blanks and zeros in the edit-control word.

Parameter 9. The number of decimal places in the
result. Specify zero if there are no decimal places
in this field.

Parameter 10. Truncate parameter (T). The T indi-
cates that the result is not to be rounded. If pa-
rameter 10 is absent, the result will be rounded,

provided that the number of decimal places spec-
ified for the result is less than the number of
decimal places specified for either the minuend
or the subtrahend.

Parameter 11. The name of an edit-control word
for the result, or an edit-control word expressed
as an alphameric literal.

Parameter 12. S indicates sign-control for negative
and positive numbers. If parameter 12 is absent,
the minuend and subtrahend will be handled as
positive fields and therefore must not have nega-
tive zones. If a negative result is possible, sign-
control should be used.

Note: Parameters 10, 11, and 12 are optional.
All other parameters must be included.

Example. (Figure 92) Subtract a field called issuEs
from a field called iNsTck and store the result in a
field called BaLAN.

ISSUES XXXX
INSTCK XXXXXX
BALAN XXXXXX

Multiply and Divide Macros

If the multiply/divide feature is included in the ma-
chine used to execute the object program, the multiply
and divide macros will use it (if the feature has been
specified in the ctn card). However, if this feature is
not present in the object machine, the multiply and
divide macros provide instructions to perform these
operations.

MLTPY Macro

General Description. The multiply macro multiplies
one field by another and stores the result in a third
field. '

The source programmer:
1. Writes MLTPY in the operation field.
2. May write a label in the label field.

3. Writes the parameters in the operand field in this
order:
Parameter 1. Multiplier field (name). For maximum
efficiency this should be the shorter field involved
in the multiplication.

suB Macro

Figure 92.

40 Autocoder (on Disk) Language Specifications

Parameter 2. Length of the multiplier field (num- The source programmer:

ber). 1. Writes prvip in the operation field.
Parameter 3. Number of decimal places in the mul-
tiplier field (number). 2. May write a label in the label field.

Parameter 4. Multiplicand field (name). 3. Writes the parameters in the operand field in this

Parameter 5. Length of the multiplicand field
(number).

Parameter 6. Number of decimal places in the
multiplicand field (number).

Parameter 7. Product field (name).

Parameter 8. If editing is not used, this number is
the length of the result field. If editing is used,
this number must correspond to the number of
blanks and zeros in the edit-control word.

Parameter 9. Number of decimal places in the de-
sired product field (number).

Parameter 10. Truncate parameter (T). The T in-
dicates that the answer (product) is not to be
rounded. The answer will be rounded if param-
eter 10 is missing, and if the number of decimal
places in the product field desired is less than the
sum of the number of decimal places in the multi-
plier and multiplicand fields.

Parameter 11. This parameter can be either the
name of an edit-control word for the answer, or a
control word expressed as an alphameric literal.

Parameter 12, This parameter is an S that indicates
sign-control for positive and negative numbers. If
parameter 12 is missing, numbers will be treated
as positive and in this case, must not have nega-
tive zones.

Note: Parameters 3, 6, 9, 10, 11, and 12 are
optional. However, parameters 3, 6, and 9 must
all be included if any decimal number is used.

Example: (Figure 93) multiply a field called mours by
a field called BaTE, and store the result in a field
called cross. Eprwpl is used to edit the result field.

HOURS XX.00

RATE XX.00

GROSS XXXX.00000
DIVID Macro

General Description. The divide macro divides one
field into another and stores the result in a third
field. The macro does not provide for division by
zero. The user should test the divisor field before
using the divide macro.

order:

Parameter 1. Divisor field (name).
Parameter 2. Length of the divisor field (number).

Parameter 3. Number of decimal places in the di-
visor field (number).

Parameter 4. Dividend field (name).

Parameter 5. Length of the dividend field (number).
If extra quotient digits are to be developed, the
divide macro will insert low order zeros and shift
the sign.

Parameter 6. Number of decimal places in the di-
vidend field (number).

Parameter 7. Quotient field (name).

Parameter 8. If editing is not used, this number is
the length of the result field. If editing is used,
this number must correspond to the number of
blanks and zeros in the edit-control word.

Parameter 9. Number of decimal places desired in
the quotient field (number).

Parameter 10. Truncate parameter (T). The T in-
dicates that the answer (quotient) is not to be
rounded. The answer will be rounded if param-
eter 10 is missing, and if parameters 3, 6, and
either 9 or 13 are present.

Parameter 11. This parameter is either the name of
an edit-control word for the answer, or a control
word expressed as an alphameric literal.

Parameter 12. This parameter is an S that indicates
sign-control for positive and negative numbers.
If parameter 12 is missing, numbers will be
treated as positive and must not have negative
zones.

Parameter 13. Remainder field (name). This param-
eter may be used with parameter 7 if both the
quotient field and the remainder are desired.
Parameter 7 may be omitted if only the remainder
is desired. However, at least one of the parameters
(7 or 13) must be included for the pivip macro.

When the multiply-divide feature is specified,
the sign of the remainder will be the sign of the

abel ti OPERAND
. 13l P —30 3 40 43

" MLTPYRATE 2. (2]

Figure 93. MLTPY Macro

41

dividend. If the feature is not specified, the sign
of the remainder will always be positive.

Note: Parameters 3, 6,7, 8, 9, 10, 11, 12, and 13
are optional. If any decimal number is used,
parameters 3, 6, and either 9 or 13 all must be

included.

Example. (Figure 94) Divide a field called sums by a
field called racToR, and store the result in a field
called AVERAG.

SUMS XXXX.00
FACTOR XX,
AVERAG XXX.000
Labe! perati OPERAND
4 [30 k]] 49 45 50
il DiV.ipIF 0, 0 \"

Figure 94. pivip Macro

Developing Library Routines

General Description. The library routine is a general
routine designed to perform many specific functions
(depending on the parameters supplied by the
source programmer in his macro instruction) when
it is executed in the object program.

The library routines needed for a given installa-
tion are prepared by the library programmer. In
many cases the library programmer and the source
programmer are the same person, but the two func-
tions are separate and are thus treated here.

‘The librarian phases of Autocoder maintain the
library by inserting, deleting, and/or modifying
library routines. At assembly time, the macro-gen-
erator phases extract the routines named in macro
instructions.

The library programmer:

1. Designs the general routine.
2. Writes the model statements needed in the routine.

The librarian: enters the model statements in disk
storage immediately following the heading informa-
tion contained in the associated INSEr statement
during the librarian phase of Autocoder.

Result. The source programmer can write a macro in-
struction in his source program that will cause the
macro generator to extract and tailor the routine and
insert it as an inline routine in the symbolic program.

42 Autocoder (on Disk) Language Specifications

Model Statements

Library routines consist of model statements that
establish the conditions for inserting parameters in
the symbolic routine, and define the basic structure
of the symbolic program entries produced by the
macro generator.

Model statements can be divided into two cate-
gories:

1. Complete (no parameters needed). The format of a
complete model statement is the same as that of a
source-program statement. A complete model state-
ment is included in the generated symbolic routine
unless a bypass condition exists. (See BOOL.)

All model statements in an inflexible library rou-
tine must be complete.

Figure 95 shows a complete model statement
designed to compare FIELDA to FIELDB.

Operond ond Commen'

L Label Operati

6]7 8 21011213 1415161718 192020k 79293001 10394041 44493031 52533433

SIRRERSO1 411777 TR

Figure 95. Model Statement for a Complete Instruction

2. Incomplete. The substitution codes used by the
library programmer determine if parameters are
required or optional.

a. Parameters required. A substitution code in the
form m01-0099 indicates that a parameter must be
supplied. The number that follows the & indi-
cates the position of the parameter in the macro
instruction. The statement, with the proper pa-
rameters inserted, appears in the generated sym-
bolic routine unless a bypass condition exists.
Figure 96 shows a model statement that requires
parameters, and a macro instruction that sup-
plies the required parameters.

Macro-Instruction

Lobel perati OPERAND
le y
HECHPARYL s PAR2

Model Statement
L Label Operation Operand and Comments
6] 7 8 9101112131415181718192021222324252612728293031 323334153637 J0 174041 4243 44 4546 47 48 495051 525154535637 58

T T e T T T TeleB Dbt TTTTTTTTITITEIEITTE LT
Generated Symbolic Program Entry
C PAR1,PAR2

Figure 96. Incomplete Instruction with Required Parameters

b. Parameters optional. A substitution code in the
form HOA-D9I indicates that a parameter is op-
tional. (001-299 with A- and B-bits over the units
position.) The statement is included in the sym-
bolic routine only if the parameter is supplied by
the macro instruction. This kind of model state-
ment can also be bypassed by a BooL statement.

Figure 97 shows a model statement with a con-
ditional substitution code. The m0OC represents
the third parameter of the macro instruction
that extracts the routine. If the third parameter
is supplied, the statement is included in the
generated symbolic routine. If it is omitted, the
statement is not inserted.

L Label [Operand ond Commen:

617 8 910111213141516171819202182232425 262728293031 3233 34353637 38 3940 41 424344 4546 47 4849 5051 52535435

L LT TR T e T T 6

Figure 97. Conditional Parameter

A model statement in a flexible library routine can
contain any combination of valid codes. The follow-
ing descriptions state the kinds of codes that can be
used in the label, operation, and operand fields of
model statements. Figure 98 summarizes the uses of
model-statement codes.

CODE POSITION FUNCTION
[J01-399 Statement Substitute parameter
(parameter must be present)
[10A-[191 Statement Substitute parameter
(if parameter is missing,
delete statement)
[J0J-[I9R Label Field and Assign internal label
Operand Field

Figure 98. Model-Statement Codes

Labels

The two kinds of labels used in model statements are:

1. External. These labels are used as operands in the
source program. For example, if the model state-
ment outlines an instruction that is an entry point
for a branch instruction, the label of the statement
must be the I-operand of the branch instruction.

The label of the source-program macro instruc-
tion causes the macro generator to produce an EQu
statement, in the form LABEL EQU *--1, as the first
statement in the symbolic routine. The library pro-
grammer can allow for additional external labels by
writing a O followed by a number (01-99) in the
label fields of model statements that require labels.

Macro Instruction

OPERAND

abel rati
t I I‘pe ' LY 50

ls
TESTZ |

! 25 3Q 3% 490
INYERSTART A START2 , ENTRYA

Model Statement

L Label Op: Operand ond Commenn

af7 8 #10111213141516171019202122222425 2027 20 293031323334 3336 37 30 394041 4243 44 434647 48493031 3231343334 37 58

Wolel || LTI el [hslolsf [[T LI LI LTI

ML e S e o S S B S S S S S S S e e +—+

Generated Symbolic Program Entry
START2 SBR ENTRYA
Figure 99. Additional External Labels

The source programmer must supply the label by
writing the corresponding parameter in the macro
instruction.

Figure 99 shows a macro instruction and a model
statement that produce an external label.

2. Internal. These labels are used as operands in other
model statements within the same library routine.
To refer symbolically to instructions in flexible li-
brary routines, write the code D0J-o9R (01-99 with
a B-bit over the units position) in the label field of
the instruction, and use the label as the operand
in another model statement.

The macro generator produces an internal label
in the form Onn mmm, where nn is the code (0]-
9R), and mmm is the number of the macro within
the source program. These special symbolic ad-
dresses are developed to ensure that duplicate core-
storage addresses are not assigned to internal labels.

A label used within an inflexible library routine
must be written according to the rules of Auto-
coder. It can be alphameric, must begin with a
letter, must not contain blanks or special characters,
and must not exceed six characters.

Figure 100 shows a macro instruction and model
statements that produce an internal label. Assume
that uppaT is the 23rd macro in the source program.

Operation Codes

Any valid Autocoder mnemonic can be used in the
operation field of a model statement. In flexible library
routines, the library programmer can write a substitu-
tion code in the form m01-099 or mOA-D9I instead of
a mnemonic.

A model statement in the library routine for a macro
instruction may not be another macro instruction ex-
cept the INCLD macro. An INcLD miodel statement must
have a § symbol (11-3-8 punch) in column 6.

Macro Instruction

Label perati OPERAND
| 13)1 1 . 38 4Q LI I 29
UPDE%COST; AMOUNT. -

Model Statement

t Label fo} Operand ond Comment

617 0 ¥ 101112131413161718192027P223 24 25200272029 3031 32323435 3637 30 394041 4243 444546 47 48 493031 5233 343534 37 38
T

11‘:‘ [

[
—“+st 11
=

j
T .
4
\
|

Generated Symbolic Program Entries

[]
®
B goJo23
L]
[]
[10J023 ZA COST,AMOUNT

Figure 100. Internal Labels

LTORG and EX statements may be used in library
routines. If LTorc or EX is used in a library routine,
closed library routines will not be included in the
program at this point.

Operands

The library programmer can use any valid operand
in a model statement. If a symbolic operand is used,
it must appear as a label within the same library rou-
tine or in a source-program statement.

Any of the substitution codes can be used as model-
statement operands in flexible library routines. If the
code 001-099 or O0A-091 is used, the corresponding
parameter must appear as a label in the source pro-
gram. If the code m0J-O9R is used, it must appear as
the label of another model statement within the same
flexible library routine.

Literals

Literals are valid in all model statements. In flexible
routines, substitution codes (201-099 or mOA-m91) can
represent a literal or any part of a literal.

Address-Adjustment and Indexing

The parameters in a macro instruction, and the oper-
ands in partially complete instructions in a library
routine, can have address-adjustment and indexing. If

44 Autocoder (on Disk) Language Specifications

address-adjustment is used in both the parameter and
in the model statement, the generated symbolic instruc-
tion will be adjusted to the algebraic sum of the two.
For example, if the address-adjustment of one is +7
and the other is —4, the generated instruction will
have an address-adjustment factor of 3.

Operands may be indexed in the library routine.
However, if a parameter supplied by the macro in-
struction is also indexed, the parameter will be indexed
by the index code in the model statement in the li-
brary routine.

Special Requirements for INCLD

Library Routines

The inflexible library routines that the library pro-

grammer develops for use with the mcLp (or carw)

macro have several requirements that must be con-
sidered.

1. Every entry point in the routine should have a label.
If a caLL macro is to be used to generate the rou-
tine, the first five characters of every entry point
label must be the same as the name of the routine.
This is required because a caLL uses the first five
characters of the entry beginning in column 21 of
the caLL statement to generate the routine, and the
first six characters of the entry to generate a branch
to the routine. This same labeling procedure may
be used if the routine is generated by an iNcLD. As
with the caLL, only the first five characters, begin-
ning in column 21 of the iNcLD statement, are used
to generate the routine; however, the source pro-
grammer must still code a branch to the routine.
Note that if this labeling procedure is used for an
INCLD routine with more than one entry point, suffix-
ing (see SFX-Suffix) cannot prevent the occurrence
of multiple-defined labels if the routine is generated
two or more times within a program.

. For routines called by incLp’s, the first instruction at
each entry point must store the contents of the
B-address register (SBR) in an index location or in
the last instruction executed in the library routine.
This provides for re-entry in the proper place in the
main routine after the ivcLp routine has been exe-

cuted.

Note: If the object machine does not have the advanced
programming feature or the indexing-and-store-address-
register feature, the programmer must provide other linkage
back to the main routine. An example of such linkage is
shown in Figure 101. (For linkage to routines brought out
by caLL macros, see CALL Macro.)

3. All macro instructions except INcLD are invalid in
inflexible library routines. All other statements ac-
ceptable to Autocoder, except Exp, may be used.

4. INCLD statements may appear in either flexible or in-
flexible library routines. An vcLp model statement

should have a $ symbol (11-3-8 punch) in column 6.

[N

Main Program

Lobel perati OPERAND
18] 30 3% 49 43 20
| LC -3,5UBROG
: B [SuBAo.4 i
; INC LDSUBRO .

Library Routine

Operand and Comments

t Label Operation|

s]7 2 9 mnlznu|s|onw\vzonzn:u7:nEzlzvaa:vJna:us)o:nnnﬂunuuu«vu«wslszs:sussosul

3 TTTT7 R ToTzo’f' H i
uh",bﬂ 11 1 Dh{ j ;asu'aiotli f 1 ‘r%:
R |

ot

Pra.

| bu!Bre | i 1) |
il] ue] | Bl Jammmb 413 L
1! AR i
M }
T ERERSHES
slaagopd || 111 L el T L
Figure 101. Sample Linkage between the Main Program

and an iNcLD Routine

Pseudo Macro Instructions

These are instructions that can be used by the library
programmer to control the generation of symbolic rou-
tines. They are never used by the source programmer,
nor do they ever appear in the output listing of an as-
sembled Autocoder program.

They are written within library routines to signal
the macro generator that certain conditions exist that
affect the generation of the symbolic routines. For ex-
ample, the presence of a pseudo-macro instruction in a
library routine can cause the macro generator to de-
lete one or more model statements when it develops
the symbolic routine. Thus, pseudo macros provide
the library programmer with a coding flexibility that
exceeds the limitations of the substitution and condition
codes.

Pseudo-macro instructions may be written anywhere
in a library routine. The three pseudo macros imple-
mented by Autocoder are MATH, BOOL, and MEND.

Permanent and Temporary Switches

The MatH and BooL pseudo macros use internal indi-
cators (switches) to signal the macro generator of ex-
isting status conditions. (Model statements do not
interrogate switches.)

There are 99 permanent and 99 temporary switches
that are used for recording status conditions during
processing. Of these, permanent switches 06-50 and
all 99 temporary switches are available to the user.
Each switch occupies one core-storage position during

the macro-generation phase of Autocoder. At the be-
ginning of macro generation, all switches are OFF.
During macro generation, if one of these storage posi-
tions contains the character 1 (1-bit), the switch is on.
If it contains a O (8- and 2-bits), the switch is oFF.

Permanent Switches

Permanent switches retain status conditions through-
out the macro-generation phase unless they are changed
by a pseudo macro. Address them by using a # sym-
bol followed by the two-digit numbér of the switch
to be set or tested. For example, #06 addresses per-
manent switch 08, #07 addresses switch 07, and
#49 addresses switch 49.

Note: The Autocoder processor uses permanent
switches #01, #02, #03, #04, and #05 to store in-
formation from the control card. Permanent switches
51-99 are reserved for the Autocoder assembler:

1. The presence of the modify-address, advanced-pro-
gramming, indexing-and-store-address-register fea-
ture, and multiply/divide features in the object
machine will set permanent switches #01, #02 and
#03, respectively.

2. Permanent switches #04 and #05 are set accord-
ing to the storage capacity of the object machine as
shown here.

Storage Capacity #04 #05
4,000 OFF OFF
8,000 OFF ON

12,000 ON OFF
16,000 ON ON

Temporary Switches

The 99 temporary switches are set at the time the
macro generator encounters a macro instruction in the
source program. Each of the 99 parameters that can be
written in a macro instruction has a corresponding
temporary switch that reflects the presence or absence
of the parameter in the particular macro instruction
being processed. If the parameter is present, the corre-
sponding switch is set on. If the parameter is missing,
the switch is set oFr. For example, if parameter 01 is
present, temporary-switch Ol is turned on. If param-
eter 02 is missing from the macro instruction, tempo-
rary-switch 02 is off.

Temporary switches retain status throughout the
processing of a macro instruction unless changed by a
pseudo macro. After the macro instruction has been
completely processed, all temporary switches are set
ofFF. Temporary switches are addressed by using a O

45

symbol followed by the two-digit number of the
switch to be set or tested. For example, 001 addresses
temporary switch 01; 002 addresses switch 02, and 099
addresses switch 99.

For another example, if a macro with a maximum of
nine parameters is encountered, the macro generator
sets the first nine temporary switches to indicate the
presence or absence of these nine parameters. Tempo-
rary switches 10-99, which are off, can be used by the
pseudo macros to communicate conditions to the
macro generator while it is working on this particular
macro instruction. This use of temporary switches is
recommended because it reserves the permanent
switches for communicating information from one ma-
cro to another.

MATH — For Solving Algebraic Expressions

General Description. A MATH pseudo macro contains
as operands: sum boxes, arithmetic expressions, and
sign switches.

Sum Boxes

A sum box is a group of five core-storage positions
used to store the result of an arithmetic expression.
Autocoder makes available 20 such sum boxes. A sum
box is addressed by using a # symbol followed by the
two-digit number (ending in zero or five) of the sum
box to be referenced. For example, the address of the
first sum box is #00; the address of the second sum box
is #£05; and the address of the twentieth sum box is

#95.

Note: Sum box 95 should not be reset, as it is used by the
assembler. If the object program is to be in either condensed
loader or coreload format, sum box 95 contains the address that
branches back to the program loader after loading has been in-
terrupted for execution of a part of the object program. For
1440 systems, note that this branch-to address is the address of
the loader for coreload format. The branch-to address for the
condensed-loader format is the address of the loader + eight.
Column 42 of the CTL card determines which of these two
values is placed in sum box 95. If the object program is to be
in the self-loading format, sum box 95 contains 0008L.

At the beginning of the macro phase, a sum box
contains 00000. Any number may be placed in a sum
box or added to its contents. The units position of the
sum box contains the sign of the result if it is negative.
Sum boxes retain information placed in them through-
out the macro phase, and their contents may be used
and/or changed from one macro instruction to another.

Sum boxes can be used by model statements, as
well as by a pseudo macro. For example, in Figure
102, assume that sum box #05 contains 02345 and sum
box #10 contains 0001N (negative 00015).

In a pc or pocw model statement, a blank constant
may only define an area up to nine positions (#1
through #9). This requirement must be met for model
statements so that the assembler will not confuse a
blank constant with a sum box.

46 Autocoder (on Disk) Language Specifications

Arithmetic Expressions

Arithmetic expressions within the MaTa pseudo macro
use add (4), subtract (—), multiply (*), and divide
(/). Arithmetic operations are executed in the follow-
ing order: multiplication and division, and addition
and subtraction. If parentheses are needed to define
the expression the @ symbol represents both the left
and right parentheses. For example:

(0014-12—5) 20 is written @ 0014-12—5 @ *20.

Each term of an arithmetic expression is expanded to
five characters before the maTH pseudo macro is placed
on the library; any part of the expanded macro ex-
ceeding column 75 will not be placed on the library.
An arithmetic expression should not begin with a
signed number.
Arithmetic operations are cxecuted in the operand
field of the matH pseudo macro from left to right. The
quotient resulting from a divide operation is not half-
adjusted, and the remainder is lost. At the end of a
multiplication operation the five low-order positions
are used for the result. (The high-order digits are lost.)
An overflow is ignored. The five low-order positions of
intermediate results are used, but the high-order posi-
tions are lost.

The result of the arithmetic expression is produced
and inserted with its sign in the designated sum box
if a sum box is specified.

Sign Switches

Permanent and temporary switches may store the sign
of the result of an arithmetic expression. The first
switch specified in the operand field of the pseudo
macro represents a positive result (greater than zero),
the second represents a zero result, and the third rep-
resents a negative (less than zero) result. Consequently,
one switch is on and the other two are oFr after the
arithmetic expression has been processed.

¢ Itis not necessary to specify all three switches in the
pseudo-macro operand. However, if a switch code is
omitted, the comma that would have followed the

Macro Instruction

OPERAND

Label perati
134 3% 40 L}

i 25 -]
REORGIFLDL ,,FLD2

Model Statement

L tobel Operation| Operand and Comments

@]7 8 91011121314151017181920210222) 2422 26§27 20293031323334333637 30394041 424044 454847 49 495051 323533453 343738
LA b hdbidas i e
'ﬁ;g'r;_qavewmsl:gﬂ INRRESERERERNEENN
bl L Al progikeinio, oz | G ;

Generated Symbolic Program Entries

ORG 02345
ZA FLD1+000IN,FLD2

Figure 102. Sum Boxes

switch code must be included unless it is the last-
specified switch. This is the same rule that applies to
missing parameters in a source-program macro instruc-
tion. The same rule applies to omitted sum boxes. Any
switch may be used to represent a sign switch.

The library programmer:

1. Writes MATH in the operation field.
2. Writes in the operand field:
a. the code for the sum box in which the result of
the arithmetic expression is to be stored.
b. the arithmetic expression

c. the code for the switch(es) in which the sign(s)
of the result are to be stored.

Note: Commas must separate the sum-box
code, the arithmetic expression, and the individ-
ual-sign switch codes. Figure 103 shows the
format for the MmaTH pseudo macro.

Operati Operand and Comments

20212223 7425 26{27 28 2930313233435 3637 30 394041 748 495051 52 38596061 62616463 666768697071727374
7] plblelon . il bl e s Pl el] 1

Figure 103. Format for MmaTa Pseudo Macro

The macro generator:

1. Calculates the result of the arithmetic expression
2. Stores the result in the designated sum box
3. Sets the sign switches.

Example. The maTtH pseudo macro shown in Figure
104 multiplies parameter 07 by 401 and adds 12 to
the result. The answer is stored in sumBox#30. If
the result is positive, permanent switch 04 is set on;
if the result is zero, permanent switch 06 is set ox; if
the result is negative, temporary switch 09 is set oN.

Note: Sum boxes may be used within the arith-
metic expression in a MATH pseudo macro.

Operation Operand and Comments

kzz:zusn 771!:9:0)! nnausuannnou 424344454647 4849 5051 52 535455 56 57 58 596061 626364 65 6667068697071727374

W

et

Figure 104. MaTH Pseudo Macro

BOOL — For Solving Logical Expressions

General Description. The BooL pseudo macro can be
used:

. To set a permanent or temporary switch as the re-
sult of a logical expression.

2. To cause the macro generator to skip over certain
model statements if the logical expression is false. If
the logical expression is true, the macro generator
goes to the next sequential model statement.

The library programmer:

1. Writes BooL in the operation field.

2. May write a one-character label, the logical expres-
sion, and the switch code in the operand field in the
format shown in Figure 105.

Operation Operand and Comments

{1 pelok kit kil plac| Ebdreeisslrblp s LT TTTTTTLLITTTT.

Figure 105. Format for the BooL Pseudo Macro

Labeling

A special one-character label permits skipping forward
over model statements in the library routine as the
symbolic routine is being developed. Write this one-
character label in the first position of the operand field
of the BooL pseudo macro and also in the label posi-
tion (column 6 of the library coding form) of the first
model statement (or command) to be examined after
the skip has been initiated. The macro generator will
skip over the intervening model statements only if the
logical expression is false.

Omit the label to direct the macro generator not to
skip over any model statements, but include the
comma that would have followed the label to indicate
that it is missing. Use any alphabetic or numeric char-
acter as the label, but do not use a special character.

Logical Expression

The library programmer may use any combination of -
the three logical operations: and (*), or (-+), and not

(—)- Logic operations are executed in the following

order: (—), (*), and (+4). If parentheses are needed

to define the expression, the @ symbol represents both

the right and left parentheses. The operators are de-

fined in Figure 106. The combination of these opera-

tors and the switches to be tested for oN or OFF status

.make up the logical expression (Figure 107).

* + -
11 =1 1+1=1 -1=0
1*0=0 1+0=1 -0=1
0*1=0 0+1=1
0*0=0 0+0=0
Figure 106. Table of Operators

47

L Label O)

Operand ond Comment

23 4 sjel7 2 v0minmasinze 293007 :nauuu:m- 4243 szuun

i T o e
% 1 1t 1;&4 r‘w’#‘mi T

,,,,,
T

hoo. L L il lig :4;
YA PHH R !

e 111 g
Figure 107. Using the BooL Pseudo Macro

.

D

Switches

The programmer may use either a permanent or tem-
porary switch to store the result of a logical expression.
If the macro generator determines that the expression
is true, the specified switch will be set on. If it finds
that the expression is false, the specified switch will be
set OFF.

The macro generator:

1. Examines the status switches to determine whether
the conditions specified in the logical expressions
are satisfied. If the conditions are met, the expres-
sion is true; if they are not, the expression is false.

2. Sets the specified status switch to oN or OFF to re-
flect the true or false condition.

3. If a false condition exists and a label appears in the
BooL operand, the macro generator skips forward to
the command or model statement whose label posi-
tion contains the same label character.

To determine if a logical expression is true or
false:
a. Call all o~ switch conditions true and all orr
switch conditions false.

b. Let 1 = true and 0 = false.

c. Calculate the logical value of the expression
using the table of operators shown in Figure 106.

If the logical value of the expression is 0, the
expression is false. If the logical value is 1, the
expression is true. For example, if switches 01,
02, 03, and 04 are oN, the expression:

001* D02 4 m03* 04 is true because:
(o~ * oN) 4 (ON * ON) =
A*)+ar]=
1+1=1

Examples. Figure 107 shows how the BooL pseudo
macro can be used. The BooL entry states:

1. If temporary switches 01 and 02 are on, the state-
ment is true. Therefore, set temporary switch 15 on.

2. However, if either temporary switch 01 or 02 is OFF,
the statement is false. Therefore, set temporary
switch 15 oFF and skip to statement 004.

48 Autocoder (on Disk) Language Specifications

Figure 109.

The examples shown in Figure 108 state:

1. If both temporary switches 01 and 02 or both tem-
porary switches 03 and 04 are on, the statement is
true. Therefore, set temporary switch 15 on.

2. However, if either temporary switch 01 or 02 and
either temporary switch 03 and 04 are off, the state-
ment is false. Therefore, set temporary switch 15
ofFF and skip to the statement whose label is L.

Operati Operand and Comments

B

2029301 Jn):lusu:w:u;nou 3

| el Wl PF'P'FP*PH"PWWH"PF

Figure 108.

1727374

BOOL Pseudo Macro

Figure 109 is a table showing all conditions that:
will cause the BooL statement shown in Figure 108 to
be true.

SWITCHES
LOGICAL
0 « 02 + 03 04 VALUE
ON ON OFF OFF
1 * 1 + 0 * 0 = 1
OFF OFF ON ON
ol 0 -+ 0 + 1 * 1 = 1
g ON ON ON ON w
al * 1 + 1 ” 1 = 1 |
3 -
O/ ON ON ON OFF
B 0+ 0 =
OFF ON ON ON
(] * 1 + 1 * 1 = 1
ON ON OFF ON
1 * 1 + 0 * 1 = 1
ON OFF ON ON
1 * 0 + 1 * 1 = 1
True Conditions

Figure 110 is a table showing all conditions that
will cause the BooL statement shown in Figure 108 to
be false.

MEND — End of Routine

General Description. Use this pseudo macro to signal
the processor that no more model statements in the
library routine are to be processed.

The library programmer:

1. Writes MEND in the operation field.

2. Leaves the operand field blank.

Note: The library programmer may use a BOOL
pseudo macro to direct the assembler to skip over a

SWITCHES
LOGICA

01 * 02 + 03 * 04 VALUE

OFF OFF OFF OFF

0 * 0 + 0 * 0 = 0

ON OFF OFF OFF

1 * 0 + 0 * 0 = 0

OFF ON OFF OFF

0 * 1 + 0 * 0 = 0
2| OFF OFF ON OFF
ol o * 0 + 1 * 0 = 0 |w
= 2
a| OFf OFF OFF ON <
4 _ -
ol © * 0 + 0 * 1 = 0
()

OFF ON OFF ON

0 * 1 + 0 * 1 = 0

ON OFF ON OFF

1 * 0 + 1 * 0 = 0

OFF ON ON OFF

0 * 1 + 1 * 0 = 0

ON OFF OFF ON

1 * 0 + 0 * 1 = 0

Figure 110. False Conditions

MEND pseudo macro that appears within the library
routine, if conditions indicate that more library
statements must be processed.

The macro generator: Stops processing the source-pro-
gram macro instruction when it encounters a MEND
statement.

Example. Figure 111 shows a MEND statement.

Operation| Operand and Comments

2021222324 252627 286293031 32333415 36 37 3839 4041 424344 45 4647 48 49 5031 575354 5356 57 38 596041 620304 63 8667 684970717273 74

W"W T WWWH HHHH HHJ#H#H#H#

Figure 111.

MEND Pseudo Macro

Librarian Control Operations

The 1nsEr and DELET statements are used during the
librarian phase of Autocoder.

INSER — Insert

General Description. An INSER statement identifies the
library routine. This identification precedes the li-
brary routine in disk storage. The programmer can
use this statement to insert whole library routines
or part of a library routine.

The library programmer:

1. Writes inser in the operation field of the standard
Autocoder coding sheet.

2. Writes the name of the library routine in the label
field.

The following may not be used as names for
library routines: pIOCS, DTF, FILE, GET, MERGE, PUT,
and SORT.

3. To insert an entire library routine, leave the oper-
and field blank.

To insert model statements, write the sequence
number of the statement after which the insertion
is to be made.

To substitute model statements, write the se-
quence numbers, separated by a comma, of the first
and last model statements to be deleted.

Note: The sequence numbers of model state-
ments are given in the ALTER column of the library
listing.

The librarian:

1. Inserts the new model statements, or
2. Inserts the new library routine.

Result. The library contains the new or modified
library routine.

During the macro-generator phases of Autocoder,
the header label is matched with the macro name
in a source-program macro instruction. The model
statements following the header label in the library
are used to assemble the symbolic routine that will
be incorporated in the object program.

Examples. Figure 112 is an INSER statement that will
cause a library routine named cHECk to be inserted
into the disk-storage library.

Label rati OPERAND
le 18l ' 30 35 40 45 50
HECK | ASE .
Figure 112. Inserting an Entire Library Routine

Figure 113 is an INsER statement that causes the
first model statement that is in the library routine
to be deleted, and the model statement shown to
be inserted into its place.

Autocoder Statement

Label perati OPERAND
3 is)i6 30 _35 40 45 - 99
CHECK, | INSERi 1 .
Model Statement
L Label Operation Operand and Comments
8§73 VIDHI2l)|415l‘l7|ll9201; 171;;;;2&77?'393;“'ﬂ:"‘;“;!:!;]l)nﬂliA}l;;ll;:al74lAV!O;):ISJ)‘iSSd”!'
T T T
PRI T R T T

Figure 113. Substituting One Model Statement for Another

49

Avutocoder Statement

Lobel Fperoriq OPERAND
6 130 0j21 30 35 40 45 29
ICHECK, | INSERI1 2 . NN N

Model Statement

L Lobel Operation| Operond and Comments
67 8 91011121314131617 181920218223 7425 26[27 28293031 3233 3435 3637 30 39,4041 42 43.44 45,46 47 48 49 3031 5253 54 35 36 37 38
T T
of Il B] Fa T
T 1 . H N ¥
Pl i [Pkl , P8R 2 I ; ;
—r H — i B o
SR NEERERE H[i) ; i
At } t +

Figure 114. Substituting Multiple Model Statements

Figure 114 is an INsER statement that causes model
statements 1 and 2 to be deleted, and the model
statements shown to be inserted into their places.

DELET — Delete

General Description. The programmer may use this
statement to delete a library routine, or parts of a
library routine, from the disk-storage library.

The library programmer:

1. Writes pELET in the operation field of the standard
Autocoder coding sheet.

2. Writes the name of the library routine in the label
field.

3. To delete an entire library routine, leave the oper-
and field blank.

To delete one model statement, write the se-

quence number of the statement in the operand

field.

50 Autocoder (on Disk) Language Specifications

To delete more than one model statement, write
the sequence numbers, separated by a comma, of
the first and last statements to be deleted.

Note: The sequence numbers of model statements
are given in the ALTER column of the library listing.
The librarian:

1. Deletes the specified model statements, or
2. Deletes the entire routine, if the operand field is
blank.

Result. The library is modified according to the user’s
specifications.

Examples. Figure 115 is a pELET statement that causes
the entire CHECk routine to be removed from the
library.

E Label AFP“G“
s T 5] 20121
HECK. | DE LE L

OPERAND
30 3% LY s 50

Figure 115. Deleting an Entire Library Routine

Figure 116 is a DELET statement that causes the
first model statement to be deleted from the crEck
routine.

OPERAND
30 35 0 e 50
ELETL i " .

Label perati
le 15l
CHECK |
Figure 116. Deleting a Single Model Statement

Figure 117 is a pELET statement that causes model
statements 2, 3, 4, and 5 to be deleted from the
CHECK routine.

OPERAND
30 3s 490 as 50
PY. YN . N e

Lobel perati
15

Figure 117. Deleting Multiple Model Statements

Declarative and Assembler-Control Statements

Figure 118 lists all the declarative and assembler-
control mnemonic operation codes that are valid for
the Disk Autocoder language.

Imperative Statements

Figure 119 is an imperative-statement reference chart
that lists all the valid-mnemonic imperative-operation
codes. The information given for each mnemonic
listed is:

1. The description of the mnemonic.

2. The machine-language operation code.

3. The operand sequence. This entry represents the
valid set of operands to be used with the mnemonic.
Deviations from the specified operand sequences
will be diagnosed.

The following symbols are used to describe the
operand sequence.

Symbols Meaning

RD Declared field — an actual, symbolic, or asterisk
address, or an area-defining literal. Address-adjust-
ment and indexing are permitted.

D Constant or declared field — an actual, symbolic,
or asterisk address, or a literal. Address-adjustment
and/or indexing are permitted.

DECLARATIVE OPERATIONS

Mnemonic Description

DA Define Area

DC Define Constant (No Word Mark)
DCW Define Constant With Word Mark
DS Define Symbol

DSA i Define Symbol Address

EQU Equate

ASSEMBLER CONTROL OPERATIONS

Mnemonic Description Mnemonic Description

CTL Control ULST Stop Listing

END End ORG Origin

ENT Enter New XFR Transfer
Coding Mode SFX Suffix

EX Execute Jos Job

LTORG Literal Origin INSER Insert

LIST Resume Listing DELET Delete

SPCE Space n Lines

Figure 118. Declarative and Assembler Control Operations

Appendix

Symbols Meaning

XC X-control field — address of a unit, such as % U1l
used to address tape-unit 1.
Address-adjustment and/or indexing are not per-
mitted.
n Single numeric character.
Address-adjustment and/or indexing are not per-
mitted.
S Symbolic address. Address-adjustment and/or in-
dexing are not permitted.
d d-character — used to modify an operation code.
Operand separator.
Optional operand separator. For example, n/XC/S
means that either a single numeric character or an
X-control field, or a symbolic address, may be used
for the operand.

~

. The code that indicates whether deletion of one or

both operands is permitted.

Code Meaning

2 Both operands deleted

1 or 2 Either the last or both operands deleted
None' No operands deleted

Autocoder diagnostic phases detect an invalid num-
ber of operands. For example, if a Bwz instruction
contained one operand and a d-character, the diag-
nostic message # oPERANDS would be printed.

Note: The programmer should know the effects of
his instructions on the status of the A- and B-address
registers in order to determine whether deletion of
operands is practical in specific cases.

Most single-address instructions (Op code and an
A-address) cause the A-address to be inserted in
both the A- and B-address registers. However,
MOVE, LOAD, and STORE B-ADDRESS REGISTER (Op codes
M, L, and H) do not disturb the B-address register, ,
and therefore permit the programmer to use the
previous contents of that register as part of the in-
struction.

All no-address instructions (Op code only) use the
previous contents of the A- and B-address registers.

The contents of the B-address register after a
branch instruction depend on the type of branch,
the success of the branch, and the presence or ab-
sence of the indexing feature.

. The X-control field, if required.
. The d-character, if required. Figures 120 and 121

list the d-characters for Control Carriage (cc) and
Select Stacker (ss) mnemonics.

. The object systems or devices on which the instruc-

tion can be executed.

3l

Op Operand Operand | X-Control d- Object System
Mnemonic Description Code | Sequence | Deletion Field Character or Device
ARITHMETIC OPERATIONS
A Add A D,RD 1 or2 all systems
S Subtract S D,RD 1 or 2 all systems
ZA Zero and Add ? D,RD 1 or 2 all systems
s Zero and Subtract ! D,RD T or2 all systems
D Divide % D,RD None all systems*
M Multiply @ | DRD None all systems*
DATA CONTROL OPERATIONS
MBC Move and Binary Code M D,RD None B 1401*, 1460*
MBD Move and Binary Decode M D,RD None A 1401%*, 1460*
MCE Move Characters and Edit E D,RD 1 or2 all systems
MCS Move Characters and Suppress Zeros z D,RD 1 or2 all systems
MIZ Move and Insert Zeros X D,RD None 1401*, 1460*, 1440*
MLC Move Characters to Word Mark M D,RD 1 or2 all systems
MCW Move Characters to Word Mark M D,RD 1 or2 1401, 1460
MLCWA Move Characters and Word Marks L D,RD 1 or2 all systems
LCA to Word Mark in A-field L D,RD 1 or2 1401, 1460
MLNS Move Numeric portion of Single Character D D,RD 1or2 all systems
MN D D,RD 1 or2 1401, 1460
MLZS Move Single Zone Y D,RD T or2 all systems
MZ Y D,RD 1 or2 1401, 1460
MRCM Move Characters to Record Mark P D,RD 1or2 1401*, 1460, 1440
MCM or Group Mark-Word Mark P D,RD 1 or2 1401*, 1460
MRCWG Move Characters and Word Marks to Group 4 D,RD 1 or2 > 1440*, 1460 Mod 3*
Mark-Word Mark in A-field
LOGIC OPERATIONS
B Branch Unconditional B RD None all systems
BAV Branch on Arithmetic Overflow B RD None Y4 all systems
BBE Branch if Bit Equal w RD,Dd 2 d** all systems*
BCE Branch if Character Equal B RD,D,d 2 d** all systems
BCV Branch on Carriage Overflow (12) B RD None @ all systems
BC9 Branch on Carriage Channel 9 B RD None all systems
BE Branch on Equal Compare (B = A) B RD None S 1401*, 1460, 1440
BEF Branch on End of File or End of Reel B RD None K 1401%*, 1460*, 1440
BER Branch on Tape Transmission Error B RD None L 1401*, 1460*, 1440
BH Branch on High Compare (B > A) B RD None u 1401*, 1460, 1440
BIN Branch if any Disk Drive Error Condition B RD,d None Yr* 1401%, 1460*, 1440
BIN Branch if Access Inoperable B RD,d None N** 1401*, 1460*, 1440
BIN Branch if Disk Error B RD,d None V** 1401%, 1460*, 1440
BIN Branch if Wrong-Length Record (Disk) B RD,d None WH* 1401%, 1460*, 1440
BIN Branch if Unequal Address Compare (Disk) B RD,d None X** 1401*, 1460*, 1440
BIN Branch if Reader Error I/O Check Stop Switch Off B RD,d None PE* all systems
BIN Branch if Punch Error 1/O Check Stop Switch Off B RD,d None Ak all systems
BIN Branch if Printer Error 1/O Check Stop Switch Off B RD,d None F ¥ all systems
BIN Branch if Check Stop Switch Off B RD,d None %** all systems
BIN Branch if Access Busy B RD,d None Dakd all systems
BIN . Inquiry Clear B RD,d None * ok all systems*
BIN Inquiry Request B RD,d None Q** all systems
BIN Reader Busy B RD,d None H** 1401, 1460
BIN Punch Busy B RD,d None 1** 1401, 1460
BIN Tape or Input-Output Busy 8 RD,d None JE* 1401*%, 1460*
BL Branch on Low Compare (B < A) B RD None T 1401*, 1460, 1440
BLC Branch on Last Card (Sense Switch A) B RD None A all systems

* Special Feature

** d-Character must be placed in operand when coding in Autocoder.
1 (See Figure 120)

11 (See Figure 121)

Figure 119. Imperative Operations (Part 1 of 4)

52 Autocoder (on Disk) Language Specifications

Op | Operand | Operand | X-Control d- Obiject System

Mnemonic Description Code | Sequence | Deletion Field Character or Device

LOGIC OPERATIONS (CONT.)
BLC2 Branch on Last Card (Reader Unit 2) B RD None & 1440
BM Branch on Minus (11-Zone) \% RD,D 2 K all systems
BPCB Branch Printer Carriage Busy B RD None R 1401%, 1460*, 1440
BPB Branch Printer Busy B RD None P 1401*, 1460*, 1440
BSS Branch on Sense Switch (B-G) B RD,d None (B-G)** all systems*
BSS Branch on Sense Switch A B RD,d None A** all systems
BU Branch on Unequal Compare (B 5% A) B RD None / all systems
BW Branch on Word Mark v RD,D 2 1 all systems
BWZ Branch on No Zone (No A- or B-Bit) v RD,D,d 2 2%* all systems
BWZ Branch on 12-Zone (AB-bits) \" RD,D,d 2 B** all systems
BWZ Branch on 11-Zone (B-bit, no A-bit) . v RD,D,d 2 K** all systems
BWZ Branch on 0-Zone (A-bit, no B-bit) v RD,D,d 2 §** all systems
BWZ Branch on either a Word Mark or No Zone \ RD,D,d 2 3x* all systems
BWZ Branch on either a Word Mark or 12-Zone v RD,D,d 2 C** all systems
BWZ Branch on either a Word Mark or 11-Zone v RD,D,d 2 L** all systems
BWZ Branch on either a Word Mark or 0-Zone v RD,D,d 2 T** all systems
C Compare C D,D 1or2 all systems

MISCELLANEOUS OPERATIONS
ccC Carriage Control F d None d**} all systems
CCB Carriage Control and Branch F RD,d None d**f 1401, 1460
cs Clear Storage / RD 1 or2 all systems
cs Clear Storage and Branch / RD,RD 1or2 all systems
cw Clear Word Mark a RD,RD 1 or2 all systems
H Halt . D,D 1or2 all systems
MA Modify Address # D,RD 1or2 all systems*
NOP No Operation N Xc/D,D,d VTor2 ** all systems
SAR Store A-Address Register Q RD,D 1or2 all systems*
SBR Store B-Address Register H RD,D 1or2 all systems*
ss Select Stacker K d None d**it all systems
SSB Select Stacker and Branch K RD,d None d**if 1401, 1460
SS Overlap On K d None S 1401*, 1460*
SS8B Overlap On and Branch K RD,d None $** 1401*,1460*
SS Overlap Off K d None Dkl 1401*,1460*
SSB Overlap Off and Branch K RD,d None Ll 1401%,'1460*
sw Set Word Mark N RD,RD 1or2 all systems
TR Translate T D,RD None 1440%, 1460*
TRW Translate with Word Marks T D,RD None > 1440*, 1460*

MAGNETIC TAPE OPERATIONS
BSP Backspace Tape u n/XC/$ None % Un B all systems
RT Read Tape M n/XC/S,RD | None % Un R all systems
RTB Read Tape Binary M n/XC/S,RD | None % Bn R all systems
RTW Read Tape with Word Marks L n/XC/S,RD [None % Un R all systems
RWD Rewind Tape u n/XC/$ None % Un R all systems
RWU Rewind and Unload Tape u n/XC/S None % Un u all systems
SKP Skip and Blank Tape u n/XC/$ None % Un E all systems
wT Write Tape M n/XC/SRD | None % Un w all systems
WwTB Write Tape Binary M n/XC/SRD | None % Bn w all systems
WTM Write Tape Mark u n/XC/S None % Un M all systems
WTwW Write Tape with Word Marks L n/XC/S,RD | None % Un w all systems

Note. For tape operations in the overlap mode (1401*, 1460*), the operand sequence is XC/S,RD.
The X-control field must begin with an @ symbol instead of a % symbol.

* Special Feature

** d-Character must be placed in operand when coding in Autocoder.

T (See Figure 120)
Tt (See Figure 121)

Figure 119.

Imperative Operations (Part 2 of 4)

53

Op Operand |Operand | X-Control d- Object System
Mnemonic Description Code | Sequence Deletion Field Character or Device
1/0O DEVICE OPERATIONS
R Read a Card 1 RD None 1402
R Read a Card M n/XC/S,RD | None % Gn R 1442
RCB Read Column Binary (Card Image) 1 RD None Cc 1402*
RCB Read Column Binary (Card Image) M n/XC/S,RD | None % Gn R 1442*
P Punch a Card 4 RD None 1402
P Punch a Card and Feed M n/XC/S,RD | None % Gn G 1442
PCB Punch Column Binary (Card Image) 4 RD None C 1402*
PCB Punch Column Binary and Feed (Card Image) M n/XC/S,RD | None % Gn G 1442*
PS Punch a Card and Stop M n/XC/S,RD | None %Gn P 1442
w Write a Line 2 RD None 1403, 1404
w Write a Line M RD None %Y1 w 1443, 1445%**
WM Write Word Marks 2 RD None I 1403
wS§ Write and Suppress Space M RD None %Y1 S 1443, 1445%**
WR Write and Read 3 RD None 1402
RP Read and Punch 5 RD None 1402
RF Read Punch Feed 4 RD None R 1402*
wP Write and Punch 6 RD None 1402
WRF Write and Read Punch Feed 6 RD None R 1402*
WRP Write, Read, and Punch 7 RD None 1402
SRF Start Read Feed 8 No operands 1402*
SPF Start Punch Feed 9 No operands 1402*
WwCP Write Console Printer M RD None %710 w 1407, 1447
RCP Read Console Printer M RD None %710 R 1407, 1447
WCPW Write Console Printer with Word Marks L RD None %10 w 1407, 1447
RCPW Read Console Printer with Word Marks L RD None %T0 R 1407, 1447
PSK Punch Skip M n/XC/S,RD | None % Gn C 1442
[Load Unit L XC/S,RD,d None d** all devices
MU Move Unit M XC/S,RD,d None d** all devices
cuU Control Unit u XC/sd None d** all devices
Note. If MU and LU are used for overlap operations (1401%, 1460*) with magnetic tape, paper tape, or char-
acter reader, the X-control field must begin with an @ symbol instead of a % symbol.
DISK OPERATIONS
RD Read Disk Sector(s) M RD None %F1 R 1405, 1311, 1301
RDCO Read Disk with Sector Count Overlay M RD None % F5 R 1311, 1301
RDCOW Read Disk with Sector Count Overlay L RD None % F5 R 1311, 1301
with Word Marks
RDT Read Disk Track Sectors with Addresses M. | RD None %F6 R 1311, 1301
RDT Read Disk Full Track M RD None % F2 R 1405
RDTA Read Disk Track Record with Address M RD None % F@ R 1311, 1301
RDTAW Read Disk Track Record with Address L RD None % F@ R 1311, 1301
and Word Marks
RDTR Read Disk Track Record M RD None % F2 R 1311, 1301
RDTRW Read Disk Track Record with Word Marks L RD None % F2 R 1311, 1301
RDTW Read Disk Track Sectors with Addresses L RD None %Fé6 R 1311, 1301
and Word Marks
RDTW Read Disk Full Track with Word Marks L RD None % F2 R 1405
RDW Read Disk Sector(s) with Word Marks L RD None % F1 R 1405, 1311, 1301
sD Seek Disk M RD None % FO R 1405, 1311, 1301
SDE Scan Disk Equal M RD None % F8 w 1311, 1301*
SDEW Scan Disk Equal with Word Marks L RD None % F8 w 1311, 1301*
1 SDH Scan Disk High, Equal M RD None % F9 w 1311, 1301*

**d.Characler must be placed in operand when coding in Autocoder.

| *Special Feature.

***1445 on 1440/1460 Systems only.

T(See Figure
Tt(See Figure

Figure 119.

54

120)
121)

Imperative Operations (Part 3 of 4)

Autocoder (on Disk) Language Specifications

Op | Operand | Operand | X-Control d- Object System
Mnemonic Description Code | Sequence | Deletion Field Character or Device
DISK OPERATIONS (CONT.)
SDHW Scan Disk High, Equal with Word Marks L RD None % F9 w 1311, 1301
SDL Scan Disk Low, Equal M RD None %F7 w 1311, 1301
SDLW Scan Disk Low, Equal with Word Marks L RD None % F7 w 1311, 1301
wD Write Disk Sector(s) M RD None % F1 w 1405, 1311, 1301
wDC Write Disk Check M RD None %F3 w 1405, 1311, 1301
wDCO Write Disk with Sector Count Overlay M RD None %F5 w 1311, 1301
WDCOW | Write Disk with Sector Count Overlay L RD None %F5 w 1311, 1301
with Word Marks
wDCW Write Disk Check with Word Marks L RD None %F3 w 1405, 1311, 1301
woT Write Disk Track Sectors with Addresses M | RD None %F6 w 1311, 1301
wDT Werite Disk Full Track M RD None %F2 w 1405
WDTA Write Disk Track Record with Address M RD None % F@ w 1311, 1301
WDTAW | Write Disk Track Record with Address L RD None % F@ w 1311, 1301
and Word Marks
WDTR Werite Disk Track Record M RD None %F2 w 1311, 1301
WDTRW Werite Disk Track Record with Word Marks L RD None % F2 w 1311, 1301
WDTW Write Disk Track Sectors with Addresses L RD None %F6 w 1311, 1301
and Word Marks
wDTW Write Disk Full Track with Word Marks L RD None % F2 w 1405
wDW Write Disk Sector(s) with Word Marks L RD None %F1 w 1405, 1311, 1301
* Special Feature
** d-Character must be placed in operand when coding in Autocoder.
+ (See Figure 120)
T (See Figure 121)
Figure 119. Imperative Operations (Part 4 of 4)
d Immediate skip to d Skip after print to
1 Channel 1 A Channel 1
2 Channel 2 B Channel 2
3 Channel 3 c Channel 3 Select Stacker (1402)
4 Channel 4 D Channel 4
5 Channel 5 E Channel 5 d Feed Stacker Pocket
6 Channel 6 F Channel 6
7 Channel 7 G Channel 7 1 Read 1
8 Channel 8 H Channel 8 2 Read 8/2
9 Channel 9 | Channel 9 4 Punch 4
0 Channel 10 ? Channel 10 8 Punch 8/2
Channrel 11 . Channel 11
@ Channel 12 m Channel 12 Select Stacker (1442, 1444)
d Immediate space d After print-space Unit (Device) d Feed Stacker Pocket
J 1 space / 1 space 1 (1442) 2 Read/Punch 2
K 2 spaces S 2 spaces 2 (1442) 0 Read/Punch 2
L 3 spaces T 3 spaces 3 (1444) # Punch 2
Figure 120. Control Carriage d-Characters Figure 121. Select Stacker d-Characters

55

Index

Actual Address Operands
Aapp — Add Macro
Address Adjustment

Address-Adjustment and Indexing (Library Routines) 44
Address-Constant Literalscccccceeceevvveereveereesinveerninens 10, 14
Address Constants 17
Address Operands 9
Addresses, Symbolic ... 9
Alphameric Constants 17
Alphameric Literals 10
Area-Defining Literalscoccooveeveveveniieenerenrereieenesnnens 12
Area-Definition Statementsccccveveeeririreeneeesresenens 5,6
Arithmetic EXDIESSIONSccccevvreevreereveerererreessresnnnnsessssserens 46
Arithmetic Macros c.cccecveeeeereeieiererereneeieeseresseneneeeesereens 39
Assembler Control Statementsccococunneneee. 5, 6, 24, 51
Assembler Program v 5,6
Asterisk Address Operandsccccoeeerevierrirverinreresseeserseenes 9
Autocoder Programming System 5
Basic AULOCOAETcvvevrreivrerrneereseerenerenresensensssseeressssenssenes 29
Blank Constantsoccceveeeeeeeirienreeriserreenrssesseseressosesesseresee 17
Blank Operandsccoeeevieeesirnerereesserecsnnesssessnresssssssnessenns 10
BOOL — For Solving Logical Expressionscc.cccoceennne. 47
Branch INStruCtiONScccivvveeervreennernrensinessesseessenninsieerarsenaes 23
CALL — Call MAacro ..ccceeeeeveererrveieeeenesrcreeisessseneseesenns 31, 34
CHAIN MACTO ..ooireeiirirecriiecneenreeneeneeniesnseniessessesesressessssssuensases 36
Closed ROUHNEc.eovveerereererrecrnneenesenrenseresssessensersesseesseseenees 34
Coding ShEetceoveeeeeieceieeceececee et 6
0703171 =3 11 &SRS 8
COMPR — Compare MAacCIOcceovevuereeneeseresecrienreesseseesseenes 38
Condition Codes 33, 43
Constant Operandscccoecevrererinecniensenenereesenniesssssnsesses 14
Constantscccccceeeeveveeereenversnnee 6, 16
Core-Storage Address Operandscoccoeveererenreeninneenes 9
CTL — Control Cardcocovevieeveeieeceeeecrereeereseraesesene 24
cu — Control Unitcccceeerereveeerecereeeererenens 23
A=CRhAaracteroceveeeeeeeeeeieeeieeeeeee e et eesee st e aesesans 8, 22
DA — Define Area ...ccvevveecrvieereiiinteerctrtencre e saene 18
DA HeEAdET ..ottt e eeer e san e reness 18
pc — Define Constant (No Word Mark)ccceevervveennene 17
pcw — Define Constant with Word Mark 16
Declarative Statementsccceereeerervennnnns 6, 16, 51
DELET — Delete Statementcooeveriveveereiereeseeceesenniveenes 50
DHAGNOSHICS eeeecvreeiiieeeeeeeceeeeeeereeevrnneessreessnesasessssnesnnaesseasnnnes 6
DIVID ~— Divide MACIO ..cocovvererreeirreereerveicteieetecereeessseeseseas 41
ps — Define Symbol R 18
psa — Define Symbol Address 18

END — End Assembly Card
ENT — Enter New Coding Mode
EQU — Equate
Equivalent Address
Ex — Execute

Flexible Library Routinescovvveeereiesecrnnneeresmseensesnes 31
Group-Mark with a Word-Mark (pa)
Identification

Imperative Statements
INCLD Macro .

56

INCLD Processingccccvveicviiriecseiriiiee e esresecsneee s e sneeeenns 34
iNcLD Routines ... 31, 44
Indexing 13, 14
Indexing (pA) 18, 19
Inflexible Library Routines . 31, 34, 44
Input-Output Operandsc..coccvveveimveeriniecreeierersesrenene reeens .14
INSER — Insert Statement ... 49
Instruction Statementsccccoeviveeevieeeiineeece e 232
JOB — JOD Card ..ottt - 24
Labels coovioieieicreetrreint et et saenaene 7
Labeling (Model Statements 43
Labeling (sooL) 47
Language, Machine ... 5
Language, Symbolic . 5
LDRCL MACTO .eveiiiuiemeeeeirecneniententeiteeesnesssessnesenes sesessesmesnsens 38
Librarian 31, 42
Librarian Control Operationcccoeveeuieerireiecrenseeecescene 49
Library Coding FOImcoooieiiieieiieeceeeeeee e 32
Library Programmer 31, 42
Library RoUtINeccceeeiiiiecieereiecse e eeveceveee e enes 31, 42
Line Number 7
Linkage Macros 38
LisT — Start Listing 29
Literal Origin (LTORG)cccevvreriecvviiereeetriirneevesaeennes 27, 34, 44
LiteralS .ooveoeeveceeiececece ettt en 5, 10, 44
Logical EXPIESSIONccccovveeeeerueriieiiiriieeeeeersieesseeseesssessenes 47
LOOP — L00P MaCIO ..oocveveiiiieiirieeiee ettt 37
LTORG — Literal Origin 27, 34, 44
LU — Load Unit oot eieen 23
MA Macro — Modify Addresscccocoeeveieeeicveiiiieeeee 36
Machine Ianguageccceovveeeeeerereeiieeeeeee e 5
Machine Language Coding 24
Machine ReqUIrementscccccevveeveeecrevenisireveensecnenresensenes 5
Macro Generatorc.ccccevvreeriernieceseiserereessseeesnrrseonas 31, 42
Macro Instruction 5, 6, 31
Macro NAME ...cooovevriieciriereeete e ceereees et ereseereeee 31
Macro Operation 6, 33
Macro Processing e 33
MacCro SYSEEIM .oooivrieiiiie e et 31
MATH — For Solving Algebraic Expressionscoceeeeeeee 46
MEND — End of Routingcccoevvvvvreeeniceennnen. 48
MLTPY — Multiply Macro ..o 40
Mnemonic Operation Codescooveeveeeeveeennene.. 5, 6, 8, 22, 51
Model Statementccooovevvievieinieeinreereeeeeenns :
Modify Address Feature .

MU —— Move Unit ..occoiviiiieeecee e et
Numeric Constantscccoooiiiirneneennerenereenee e 16
Numeric Literalsccoccoeiimimiciieeiiiieecece s 10
Object PIrogram ...t seieeeeees 5 6
Open Routinescoooooeciiieiiiecieeiie e e erenee 33
Operandscoceeevevvereeveevnnrennens 8,9, 22, 44
Operation Codesouveeeveveeeeeeeceeeecee e 5, 6, 8, 43
ORG — OTIZIN toivtieiiiiiicieecee ettt eree et esnee e nreesenes 25
Output LiStNE ...coccevrireeeeriiirrecnrnnrenesneeeresrecsessnenenes 24, 29
Page NUMDETcoveiiieiiircrieeeteesee ettt eere e 7
Parameters 31, 32, 33, 42
Permanent Switchesccococoiveiniiiieeiceeceeeeeceee e 45

Program OVverlayccccoceveeveeccenreccetenerecsee et 7

Programming with Autocoderoeccimreeiisencennniens 6
Pseudo Macro Instructionsccceceeecoereeceeincenncenn. 31, 33, 45
Record Marks (DA) .cccviccieieiieieieecrieceneecciaesne e eseesassonss 19
SFX = SUFAX oot s 28
SigN SWItCRES .eoivecreiierice ettt ren e s 46
SKIPN — Skip to Next Page ... 29
SOUICE PIOEIAM eovvrerirariieereniecsinnetienistcesssnsnseasiossnensessssnessssaess 6
SPCE — Space N Linescocovvniiniiiciiericniciniinecercnenns 29
Statement Descriptionsoceeevivieeceeinreenenreeceee e 16
Stop LiSting (ULST) ceveccvieriiiirreeeeeeeeseeseseeneeisseesaresessensesneene 29
SUB — Subtract Macroocccvevveneseenenneccinnressesssesaesesesennae 40
Substitution Codes 33, 42
Subsequent DA ENtriescococeceeveeeciecesinniesrecnecenieesesenssenns 19

SUMAX (SFX) coriieeceeinenteeec e ie et e e s enst e et sennens 28
SUM BOXES eiiiiieiiiiiiie ettt et s 46
Switches .ooovveveeeieeeee, . 39, 45
Symbolic Address Operandscooeeecveveeeieeeveercereinecceneeeens 5 9

Symbolic Addressing (Model Statements)ccoceeveenenene 44
Symbolic Indexing e 14
Symbolic Languageccccoevveevieeeeeeceee e eees e 5
Symbolic Programming Systems (SPS)cccceeeerreeveecernnnes 29
Symbolic Routine (Macro System)c..ceeecreermreseniesenes 31
SYSCL MACTO ..cviceiiiiecneniieeseniseseeseiseesensessresssesesssaseessesnonsanes 38
System Control Programccccoeinenrineeiorenreninseens 6
Temporary SWiItChesccoccevieeercrrrirerrenineseeeneeeeaeenaesenes 45
Transfer (XFR) ..ccccivceereeerenrnineivsreneneesiessesssessussssssnssaasssense 28
ULST — Stop Listing ...ccccoeeviiiiiireiieccieeeecereieccesrianesiens 29

XFR — TTansferoooovoiieirieecciceeecrecteee e sesneneans 28

€24-3258-2"

TIBIM

[
International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, N. Y. 10601

oovL/0PFL/LOVL Wl

VSN up peiupg

¢-85TE-¥20

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	xBack

