
System!:; Reference Library

Autocoder (on Disk)

File Number GENL-22
Form C24-3259-3

Program Specifications and Operating Procedures
IBt" 140'1, 1440, and 1460

Program Number 1401-AU-00B

This reference publication contains the program speci­
fications and operating procedures for the Autocoder
(on Disk) Programming System.

The specifications describe the two programs, Sys­
tem Control and Autocoder Assembler, that make up
the Autocoder System. Logical files defined and used
by the System, control cards, and results of processing
operations are also included.

The operating procedures is divided into two sec­
tions. The first section describes assembling and exe­
cuting object programs, changing logical-file assign­
ments, maintaining an Autocoder library, and revising
an object program. The second section describes build­
ing and updating an Autocoder System.

A summary of control card formats, phase descrip­
tions, and a listing of a sample program make up the
appendix of this publication.

For a list of other publications and abstracts, see the
IBM Bibliography for the associated data processing
system.

Preface

This publication contains the program specifications
and operating procedures for the Autocoder (on disk)
programming system for IBM 1401, 1440, and 1460. In
this publication, the term Autocoder System or System
refers to 1401/1440/1460 Autocoder (on Disk), program
number 1401-AU-008. The language specifications for
the Autocoder System are contained in the Systems
Reference Library publication Autocoder (on Disk)
Language Specifications for IBM 1401, 1440, and 1460,
Form C24-3258.

This publication is divided into two major sections:
program specifications and operating procedures. The
program specifications describe the Autocoder System.
Included in the section are such topics as a description
of the System Control Program (the controlling element
of the Autocoder System), a description of the proces­
sors in the Autocoder Assembler program, and a de­
tailed description of the results of System operations.
Although this section is directed primarily toward the
programmer, the machine operator should review the
section for an understanding of the System.

The second section, operating procedures, contains
such topics as preparing processor jobs, changing file
assignments for processor jobs, and running processor

Fourth Edition

jobs. The last part of the section outlines the proce­
dures to follow in building an Autocoder System. For
the convenience of both programmer and machine op­
erator, all control cards are summarized in Appendix 1.

Although the second section is directed primarily to
the machine operator, it is recommended that the pro­
grammer review the content of the complete section.
The programmer should particularly note the parts of
the section dealing with preparing processor jobs and
changing file assignments.

Related Information

The following Systems Reference Library publications
contain additional information relating to the use of
the Autocoder System. It is recommended that these
publications be available to the user for reference.

Autocoder (on Disk) Language Specifications for
IBM 1401, 1440, and 1460, Form C24-3258.

Disk Utility Programs Specifications for IBM 140.1,
1440, and 1460 (with 1301 and 1311), Form C24-1484.

Disk Utility Programs Operating Procedures for IB1Vl
1401 and 1460 (with 1301 and 1311), Form C24-3105, or
Disk Utility Programs Operating Procedures for IB1Vl
1440 (with 1301 and 1311), Form C24-3121.

This is a reprint of C24-3259-2 incorporating changes released in

the following Technical Newsletter:

Form No. Pages Affected

N21-5004 Contents, 7, 8, 8A, 11, April 4, 1966

12, 15, 22, 23, 24, 25,

26, 27, 28, 29, 31, 43,

49, 50, 51, 52, 64

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch office

serving your locality.

A form is provided at the back of this publication for reader's comments. If the form has been removed, comments
may be addressed to IBM Corporation, Programming Publications, Dept. 425, Rochester, Minn. 55901.

Program Specifications... 5
Definition of Key Terms .. 5
Machine Requirements 6

The Autocoder System .. .
Systems Control Program
Logical Files

Residence File
Operation Files
Internal Files

Control Cards
RUN Card
ASG N C:arcls
INIT Carel
UPDAT Card
NOTE (~ard
PAUSE Card
lIAL T (~arcl

6

6
6
7
7
7
7
7
8
8
8
8
8
9

Autocoder Assembler Program .. 9
Preprocessor 9
Autocoder Processor ... 9
Output Processor 9
Execution Processor ... 10

Resultr of Processing Operations 10
Documentation .. 10

Control Card Diagnostics .. 10
Source Statement Diagnostics 10
Label Table .. 10
Cross-Reference Listing .. 11
Program Listing .. 12

Autocoder Text .. 13
Object Programs .. 13

Card Formats 13
Coreload Format .. 15

Messages ... 15
Resequenced Source Deck 15

Operating Procedures 16
Jobs .. 16
Preparing Processor Jobs .. 16

Conventional Assernbly .. 16
Load-and-Go 18
Delayed Execution .. 19
Partial Processing .. 20

Changing File Assignments .. 22
Preparing ASGN Cards 24
Using ASGN Cards .. 27

Batehed Files 27

Contents

Preparing Library Jobs .. 28
Capacity of a LIBRARY File .. 29
Library Build 29
Library Listing .. 30
Library Change .. 30

Performing Jobs .. 31

Preparing a Stack .. 32
Running a Stack 32
Loaded Object Programs 32
Halts and Messages 34

Using and Maintaining the Object Program 40
Methods of Execution .. 40

Load-and-Go .. 40
Delayed Execution 40

Condensed-Loader Considerations .. 41
IEM 1440 .. 41
IBM 1401 or 1460 .. 42

Revising the Object Program .. 42
Condensed-Loader Format .. 42
Self-Loading Format .. 42

Build;ng, Updating, and iCopying an
Autocoder System 43
Autocoder-System Deck Description and Preparation 43

Marking Program 43
Write File-Protected Addresses .. 45
System Control Card Build .. 45
Card Boot .. 45
Autocoder Update 45
Sample Program .. 45

Building an Autocoder System 45
Write File-Protected Addresses .. 46
System Control Card Build .. 47
Autocoder Update .. 48
Sample Program .. 48

Updating an Autocoder System 49

Copying an Autocoder System 49

Appendix I-Control Card Formats 50

Appendix II-Phase Descriptions 53

Appendix III-Sample Program 59

Index ... 64

The Autocoder Assembler Program is one part of a lan­
guage processing system that is under control of the
System Control Program. (A second language proces­
sor, COBOL, is also controlled by the System Control
Program.)

The Autocoder System translates source program
statements written in the Autocoder language into ma­
chine-language instructions. In addition to this trans­
lating function, the Autocoder System provides these
additional features:

Autocoder LibrafY Compression. The statements that
make up the library routines are compressed and
stored as variable length records. This Autocoder
capability ensures the efficient use of disk storage.

Relocating the Autocoder ,Library. The user is pro­
vided with expansion capabilities of the Autocoder
library previously not possible with an Autocoder
processor. Further, should the user wish, he can relo­
cate the Autocoder library to an area of his choice in
disk storage.

BUilding Multiple Autocoder Libraries. In addition to
being able to relocate the Autocoder library, the user
can also build more than one Autocoder library.
Small libraries that contain selected routines appro­
priate to particular types of job processing signifi­
cantly reduce library-change time.

Changing Input/Output Devices. The Autocoder Sys­
tem provides the user with the option of changing
the form of input to and output from specific jobs.
So that the Autocoder System can operate at a ma­
chine-independent level, a set of logical files that are
used for input/output operations has been defined.
Although these logical files are assumed by the Sys­
tem Control Program to be assigned to a defined set
of input/output devices, the user can change these
assumptions according to his particular needs.

Stacking of Jobs. Under control of the System Control
Program, it is possible to process a series of jobs with··
out regard to the type of processing that is being per­
formed. For example, it is possible to assemble
source program number one, partially assemble
source program number two, and execute object pro ..
gram number three, all in one stack.

Building an Obiect-Program Library in Disk Storage.
By using one of the logical files (CORELOAD) defined
by the Autocoder System, it is possible to build an
object-program library in disk storage. Because the
upper and lower limits of each object program stored

Program Specifications

in this area in disk storage are supplied to the user
by the Autocoder System, the user has immediate ac­
cess to anyone of the stored object programs. Using
an object-program library substantially reduces pro­
gram load time (as opposed to loading from cards)
and eliminates excessive handling of punched-card
object decks.

Executing Punched-Card Obiect Programs. If a pro­
gram is infrequently used, the user may wish to
maintain a punched-card object program, thus sav­
ing disk storage for other purposes. When this is the
case, the user has two options for executing this ob­
ject program. It can be executed either under con­
trol of the Autocoder System (as a job in a stack of
jobs), or it can be executed completely independent
of the System.

Definition of Key Terms

To clarify the meaning of special terms used in this
publication, the following definitions are given. Stand­
ard terms are defined in Glossary for Information Proc­
essing, Form C20-8089.

Assembler. The program that translates Autocoder
symbolic statements into actual machine language.
This process is called an assembly.

Autocoder Text. A series of lOO-character records con­
taining the source-program statement, or a generated
statement, and assembly information.

Batched Files. Logical files whose contents represent
one or more sequential sets of input to or output
from the Autocoder System.

Bootback. A routine located in upper core storage dur­
ing execution that provides linkage between the
user's object program and the System Control Pro­
gram. This linkage is required when executing an ob­
ject program in a stack of jobs.

Card Boot. A card deck, supplied as part of the Auto­
coder System program deck, that is used to start all
System operations.

Job. An operation or series of operations to be per­
formed by the Autocoder System.

Logical Files. Input/output devices and/or areas used
by the Autocoder System.

Object-time. A term describing those elements or proc­
esses related to the execution of a machine-language
object program.

5

Operation. A basic unit of work to be performed by one
of the components of the System.

Stack. A set of one or more jobs to be processed during
the same machine run.

System. The set of programs made up of the elements
required for assembling and/or executing user-pro­
grams.

[] Brackets contain an option that may be chosen.
{ } Braces contain options, one of which must be

chosen.

Machine Requirements

The AutDcoder System requires the following minimum
machine configurations.

An IBM 1401 system with:
4,000 positions of core storage
High-Low-Equal Compare Feature
One IBM 1311 Disk Storage Drive
One IBM 1402 Card Read-Punch
One IBM 1403 Printer.

An IBM 1440 system with:
4,000 positions of core storage
One IBM 1301 Disk Storage or

one IBM 1311 Disk Storage Drive
One IBM 1442 Card Reader
One IBM 1443 Printer.

An IBM 1460 system with:
8,000 positions of core storage
One IBM 1301 Disk Storage or

one IBM 1311 Disk Storage Drive
One IBM 1402 Card Read-Punch
One IBM 1403 Printer.

The Autocoder System can use the following devices
and features if available:

IBM 1404 Printer
IBM 1444 Card Punch
Console Printer
8,000, 12,000, or 16,000 positions of core storage
Print Storage feature
Direct Seek feature (for a library change only).

The Autocoder System
The Autocoder System built by the user contains the
System Control Program and the Autocoder Assembler
Program.

System Control Program. The System Control Program
is the controlling element of the System. Its main
function is to analyze control-card information, and
transfer control to the appropriate portion of the
system.

6 Autocoder (Disk) Program Specifications

Autocoder Assembler Program. The Autocoder Assem­
bler Program translates source programs, written in
the Autocoder language, into machine-language ob­
ject programs. The object programs can subsequently
be executed by the Autocoder System.

System Control Program
All system operations are initiated by a deck of cards
supplied by IBM. This deck, called the Card Boot, reads
in the first portion of the System Control Program from
disk storage. Ultimately, the entire resident portion of
the System Control Program is read into lower core
storage.

All control-type functions for the System are accom­
plished by the System Control Program. These func­
tions include:

Assigning Input/Output Devices. Input/output opera­
tions are coordinated with user-specified input/out­
put devices.

Updating the System. The System Control Program up­
dates the system to the latest modification level or
version.

Selecting Appropriate Processor Runs. Through control
cards supplied by the user, the System Control Pto­
gram determines the operations necessary for the
completion of a job. For example, if a source pro­
gram is coded in the Autocoder language:, and the
e,nd result of processing is to be a machine-language
object program, processing must be performed by
the Autocoder processor and the Output processor.
The control card says in effect that the source pro­
gram is coded in Autocoder and that proces:sing is to
run through the Output processor. The System Con­
trol Program reads the control card and calls in the
Autocoder processor. Processing takes pl~ce, and at
the completion, control reverts to the System Control
Program. The System Control Program then calls in
the Output processor. Processing takes place, and at
the completion, control again reverts to the System
Control Program. Because the Output processor was
the last processor to be selected, the System Control
Program reads the control card for the next job.

The remainder of this section describes the following
aspects of the System Control Program:

Logical Files
Control Cards.

Logical Files
A set of logical files, defined by the Autocoder System,
is used for input/output operations. Each file has a
specific function and is aSSigned by the System Con­
trol Program to a particular device. The user can alter

the file-assignments by using ASGN (assign) control
cards. (See Changing File Assignments.)

The logical files may be thought of as falling into one
of four general categories. These categories are:

Residence File
Opera tion Files
External Files
Internal Files.

The functions of the logical files and the devices to
which they can be assigned follow.

Residence File

SYSTEM File. The SYSTEM file contains the System
Control Program and the Autocoder Assembler Pro­
gram. It is assigned to a fixed area in a 1311 or 1301
disk unit.

Operation Files

CONTHOL File. The CONTROL file contains cards or
card images that send control information to the Sys ..
tem Control Program. It can be assigned to the card
reader or the console printer.

MESSAGE File. The MESSAGE file contains information
of primary interest to the machine operator. These
messages are usually diagnostics relating to the oper ..
ating procedures and/or instructions to the machine
operator. It can be assigned to the printer or the con·
sole printer.

External Files

LIST File. The LIST file, generally associated with high­
volume printed listings, contains information di­
rected primarily to the source programmer. It can be
assigned to the printer, or to disk storage, or it can be
omitted. If the LIST file is assigned to a disk unit, the
information is stored two sectors per printed line in
the move mode.

INPUT File. The INPUT file contains source information
to the processors. It can be assigned to the card
reader or to any available area in disk storage. If the
file is assigned to a disk unit, the card images must
be stored one card per sector in the move mode.

OUTPUT File. The OUTPUT file contains the results of
the operation or series of operations specified in the
RUN card. It can be assigned to the card punch, or to
disk storage, or it can be omitted. If the file is as­
signed to a disk unit, any card images will be stored
one per sector in the move mode.

LIBRARY File. The LIBRARY file is a disk-storage file
that supports the Autocoder macro facility. This file

contains the library table and library routines, such
as IOCS. It is maintained by the Autocoder Librarian
and used by the Autocoder Macro Generator. The
LIBRARY file can be assigned to any available area in
disk storage.

CORELOAD File. The CORELOAD file is a disk-storage
file used by the Output and Execution processors of
the Autocoder Assembler Program. The file contains
an object program in the load mode. The CORELOAD

file is developed by the Output processor and is used
by the Execution processor.

Note. Only the external files INPUT, OUTPUT, CORELOAD, and
LIST can be batched. Batching will be performed when
a series of jobs is processed without intermediate file
assignments to these external files. When batch processing
is performed, input to and output from the processors is
stored sequentially within the files.

Internal Files

WORKl File. The WORKI file contains the intermediate
results from the Autocoder processor. It can be as­
signed to any available area in disk storage.

WORK2 File. The WORK2 file is used by the Autocoder
processor. It contains information for the cross­
reference listing and can be assigned to any avail­
able area in disk storage.

WORK3 File. The WORK3 HIe is used by the Macro
Generator, the Autocoder processor, and the Output
processor. It can be assigned to any available area in
disk storage.

Control Cards
The System Control Program recognizes seven types of
control cards. They are:

RUN

ASGN

INIT

UPDAT

NOTE

PAUSE

HALT

Each type is punched in the Autocoder format. Appen­
dix I contains a summary of all specific control cards
that the System Control Program recognizes. Included
in Appendix I is a detailed description of the manner of
punching each specific control card and valid entries
for each of the general formats as discussed in the fol­
lowing sections.

RUN Card

The RUN card indicates the portion(s) of the Autocoder
Assembler Program that are to be selected by the Sys-

7

tem Control Program. A RUN card is required for each
job to be performed. The general format of the RUN

card is:

1
AUTOCODER!
OUTPUT RUN
EXECUTION [{ OUTPUT}] THRU EXECUTION

If the optional part of the RUN card is omitted (TIfRU

OUTPUT OF THRU EXECUTION), the System Control Pro­
gram assumes that only the named processor is to be
selected. The THRU option enables the System Control
Program to call a series of processors automatically.

Valid entries for the RUN card are:
AUTOCODER RUN

AUTOCODER RUN THRU OUTPUT

A UTOCODER RUN THRU EXECUTION

OUTPUT RUN

OUTPUT RUN THRU EXECUTION

EXECUTION RUN

See Preparing Jobs for the specific RUN card format re­
quired for each job.

ASGN Cards

An ASGN card indicates to the System Control Program
that a logical file is to be assigned to a specific input/
output device. An ASGN card is used when the user
wants a logical file assigned to an input/output device
or area other than the assumed assignment of the Sys­
tem Control Program, or when the user wants to
change an assignment that he has previously made.

The general format for an ASGN card is:

file-name ASGN {
deVice}
OMIT

The file-name is the specific logical file; device is the
input/output unit to which the logical file is to be as­
signed. Two examples for using an ASGN card follow.

The logical file, INPUT, is to be changed from the as­
sumed device assignment (READER 1) of the System
Control Program to an area in disk storage. This area is
to be on 1311 unit 3, beginning at address 000600 and
extending to (not through) 000900. Note that the END

address to be punched is one more than the area actu­
ally used by the INPUT file. The ASGN card for this ex­
ample is punched:
INPUT ASGN 1311 UNIT 3, START 000600, END 000900

The second example illustrates the omission of a
logical file. (This option is valid only in specific cases.)
If the OUTPUT file is to be omitted, the ASGN card is
punched:
OUTPUT ASGN OMIT

8 Autocoder (Disk) Program Specifications

The user must leave blanks between items in the
operand ficld where indicated in the specifie formats.
For example, if the operand is READER 2, there must be
a blank between READER and 2.

During a single staek of jobs, an assignment made by
the user for a single logical file remains in effect until
a HALT card, an INIT card, or another ASGN card is
sensed for that particular file. For example, an ASGN

card that specifies the INPUT file to be assigned to
READER 2 causes the assumed assignment, READER 1 to
be altered. The System Control Program will select
READER 2 during a single stack until an INIT card or
another ASGN card for the INPUT file is encountered.

INIT Card

The INIT card indicates to the System Control Program
that all assumed logical file assignments are to become
effective. The general format of the INIT card is:

INIT any message

An INIT card can occasionally be used as a con­
venient substitute for an ASGN card. For example, as­
sume that the INPUT file is assigned to disk for a par­
ticular job in a stack If the next job is to be read in
from READER 1, the INPUT file assignment must be
changed from disk to READER 1. For this purpose, an
INIT card may be used instead of an ASGN card because
READERl is the assumed assignment for the INPUT file.

UPDAT Card

The UPDAT card is included in a package supplieq by
IBM for the purpose of updating the user's Autocoder
System. It is prepunched in the following format:

{
processor-name} UPDA T
SYSTEM t

ALL l DELETE
phase-name, HEADER

INSERT
PATCH

This card (excluding DELETE) will be followed by the
appropriate data cards.

NOTE Card

The NOTE card contains messages and/or instructions
from the programmer to the machine operator. Process­
ing is not interrupted when the System Control Pro­
gram senses this control card. The contents of the NOTE

card are printed on the MESSAGE file. The general for­
mat of the NOTE card is:

NOTE any message and/or instruction

A NOTE card could be used when the programmer
wants to direct that the output from a series of conven-

tional assemblies be placed on the CORELOAD file located
on disk drive 2. At the completion of processing the
series of jobs, a NOTE card could be used to tell the ma­
chine operator to remove the disk pack from drive 2.
The message would be:

NOTE REMOVE DISK PACK :FROM DISK DRIVE 2

PAUSE C:ard

The PAUSE card contains messages and/or instructions
from the programmer to the machine operator. When
the PAUSE card is sensed, the System Control Program

8A

temporarily halts the system. The contents of the PAUSE

card are printed on the MESSAGE file. Processing is re­
sumed by pressing the start key. The general format
for the PAUSE card is:

PAUSE any message and/or instruction

One application of the use of a PAUSE card might be
in the case where the INPUT file for a job is located on
disk unit 3. The programmer could inform the machine
operator of this fact by using a PAUSE catd, telling him
to ready the drive. The message would be:

PAUSE READY TIlE PACK ON DISK DRIVE 3

HALT Card

The HALT card indicates to the System Control Program
that processing has been completed. It is the last card
of a stack. The contents of the HALT card are printed
on the MESSAGE file. The general format for the I1ALT

card is:

HALT any message and/or identification

Autocoder Assembler Program
The Autocoder Assembler Program is made up of the
following sections:

Preprocessor
Autocoder Processor
Output Processor
Execu tion Processor.

Preprocessor
The Preprocessor consists of four portions, each of
which has a specific function:

Option Control. The Option Control analyzes control
card information and determines the operation(s) to
be performed. It then transfers control to the Libra­
rian, Update, or Macro Generator.

Librarian. The Librarian maintains the Autocoder li­
brary by inserting, deleting, and I or modifying the
library routines according to the user's specifications.
Whenever the contents of the library are changed,
the Librarian updates the library table which is the
directory of library routines.

Update. The Update portion performs the function of
upda ting all portions of the Preprocessor.

A1acro Generator. The Macro Generator performs pre­
assembly operations. It analyzes the Autocoder

source program to determine if it includes any macro
instructions. For each macro named in the source
program, the Macro Generator extracts the associ­
ate<:J routine from the library, tailors the routine if
parameters are supplied in the macro instruction,
and generates a routine in the Autocoder format.

Two of the three Preprocessor portions (Librarian
and Update) that are called by the Option Control
complete the job requested by the user. The results of
the Librarian operations can be an updated library, a
listing of the library table, andlor a listing of routines.
An Update operation causes the Preprocessor to be up­
da ted to the latest version or modification level of the
Autocoder System. At the successful completion of
each of these operations, control returns to the System
Control Program.

The Macro Generator performs only the first step in
a program assembly. The result of the Macro Generator
operation is an Autocoder source program that contains
tailored library statements. The next step, translating
source statements into machine language, is performed
by the Autocoder processor.

Autocoder Processor

The Autocoder processor diagnoses the source state­
ments and converts the symbolic references in the
source statements to actual machine codes and ad­
dresses. The processor arranges the results of its opera­
tions to produce Autocoder text.

Autocoder text is a series of lOO-character records.
Each record contains a source-program statement, or a
generated statement, and assembly information such as
the machine-language instruction, the length and ad­
dress of the instruction, and diagnostic Rag symbols.

The results of Autocoder processing and the opera­
tions required to produce the results are:

Operation

Diagnose source
statements

Convert symbolic
to actual

Arrange results
of assembly

Result

Diagnostic messages and flag symbols

Label table and flag symbols

Autocoder tcxt (IOO-character records)

At the completion of Autocoder processing, the text is
ready for the Output processor, which develops various
forms of output.

Output Processor

The Output proccssor rearranges the Autocoder text
according to the user's specifications.

9

The results of Output processing and the rearrange­
ment required to produce the results are:

Result

Program listing

Resequenced
source deck

Object program
(card format)

Object program
(coreload format)

Rearrangement

The text is edited. Blanks are inserted be­
tween items of information. Headings to
identify the items are incorporated in the
listing. A sequence number is assigned to
each statement on the listing.

Source statements are extracted from the
text, and sequence numbers are substi­
tuted for page and line numbers.

Machine-language instructions are ex­
tracted from the text, and the necessary
loading instructions are incorporated.

Machine-language instructions are ex­
tracted from the text and transferred to
disk storage.

Object programs, in either format, are ready to be
executed. Execution of object programs in the coreload
format must be handled by the Execution processor.
Execution of object programs in the punched-card for­
ma t can be handled by the Execution processor or exe­
cuted independent of the System.

Execution Processor

The Execution processor starts execution of the object
program and provides linkage with the System Control
Program so that the next job can be performed, with­
out operator intervention, immediately after execution
of the object program.

The Processor reads the bootback routine (linkage)
into upper core storage, calls the object program, and
transfers control to the object program.

Linkage to the bootback routine can be established
by using the SYSCL macro or by a manual branch to the
routine.

As described under Output Processor, the object pro­
gram can be in card format, which includes loading in­
structions, or in coreload format, which requires a disk
loader. The Execution processor supplies the disk
loader required by an object program in coreload
format.

Thus, the Execution processor permits the user to
include his object programs within a stack of jobs to be
performed.

Results of Processing Operations
The results of processing operations can be divided
into the following categories:
1. Documentation. Control card diagnostics, source

statement diagnostics, label tables, cross-reference
listings, and program listings fall into this category.

2. Intermediate results in the development of an object
program (Autocoder text).

3. Object programs in card or coreload format.

10 Autocoder (Disk) Program Specifications

4. Messages that specify the disk storage location of
any results that arc to be used for future processing.

5. Resequenced source deck.
6. Execution of object programs. Execution of object

programs can be accomplished under control of the
System Control Program, or independent of the Sys­
tem. See Using and Maintaining the Object Program.

Documentation

Control Card Diagnostics

If any invalid characters are detected in the CTL card
(control card for assembly), the CTL card image and the
diagnostic message(s) are listed. The messages inform
the user that his CTL card is invalid. The halt gives the
user the opportunity to decide if the assembly should
be continued.

The CTL diagnostic messages and the format of the
CTL card are shown in Figure 1.

Source Statement Diagnostics

The Autocoder processor phases, which analyze source
statements and develop diagnostic messages, are op­
tional. Their inclusion or exclusion is specified in the
source-program CTL card.

If any errors are detected in source-program state­
ments during the diagnostic phases, the invalid state­
ments (except columns 13-15 and 73-80) are listed. A
message appears at the right of each invalid statement.
If the statement contains more than one error, the diag­
nostic message refers to the first error detected. The
halt that occurs after the diagnostic phases have been
completed gives the user an opportunity to decide if
the assembly should be continued.

If the errors are not corrected, Hag symbols may ap­
pear on the program listing and the object program,
when executed, may not produce the intended results
(sec Figure 2).

Label Table

The label table lists all labels and their equivalent ad­
dresses. Area-defining literals, followed by the # sign,
are also included. The labels and area-defining literals
are listed in alphabetical order according to the first
character. Indexing is indicated as shown in the sample
label table (Figure 3).

The maximum number of labels and area-defining
literals that can appear in the label table depends on
the number of disk-storage sectors assigned to the
WORK3 file. See File Considerations under Changing
File Assignments.

Any errors detected by the Autocoder processor are
indicated by the following Hag symbols:
A Name equated to an area-defining literal.

Diagnostic Messages CTL Card Format

Card Image of Invalid CTL Card Column Indicates Contents
--

16-19 Mnemonic CTL

INVALID MACHINE SIZE SPECIFIED, 4K ASSUMED 21 Object-machine size 1 (4K); 2 (8K); 3 (12K); 4 (16K)

INVALID CHAR COL 22, BLANK ASSUMED 22 Modify address 1 (yes); not punched (no, if the object
machine is 4K; or yes, if the object machine
is 8K, 12K, or 16K)

--
INVALID CHAR COL 23, BLANK ASSUMED 23 Advanced programming 1 (yes); not punched (no)

or index and store-
address register feature.

--
INVALID CHAR COL 24, BLANK ASSUMED 24 Multiply-divide fellture 1 (yes); not punched (no)

--
INVALID MACHINE SPECIFIED, PROCESSOR 25 Object machine o (1401); 4 (1440); 6 (1460)
MACHINE ASSUMED

--
INVALID CHAR COL 26, x ASSUMED 26 Punch device S (1442 or 1444); P (1402)
(~ = P for 1401 and 1460; ~= S for 1440)t

--
INVALID CHAR COL 27, x ASSUMED 27 Read device S (1442); P (1402)
(~ = P for 1401 and 1460; ~= S for 1440)t

INVALID CHAR COL 28, x ASSUMED 28 Printer device '" S (1443); P (1403)
(~ = P for 1401 and 1460; ~ = S for 1440)t

--
INVALID CHAR COL 29, 1 ASSUMED 29 Disk device 1 (1311 or 1301); 2 (1405)

--
INVALID CHAR COL 30, BLANK ASSUMED 30 Source statement N (no); 1 or not punched (yes)

diagnostic
--

INVALID CHAR COL 31, BLANK ASSUMED 31 Label table or cross-refer- L (Label Table);
ence listinp. N (Neither); not punched (cross-reference

listing
r--- --

INVALID READ-IN LOCATION, 00001 ASSUMED 32-36 a. Object program in a. Sbbbb (object program in
self-loading format serr:roading format)

b. Read-in area for a
1440 object pro-
gram in the con-
densed-Ioader
format.

INVALID lOADER LOCATION, OOOxx ASSIJMED 37-41 Loader locati.on
(~= 81 for 1401 and 1460, ~ = 75 ~ 1440)

INVALID CHAR COL 42, BLANK ASSUMED 42 Disk loader(for
object programs in the
core load format) _.

t The va lues of..li. depend on the object machine specified in column 25.
* Consider CI 1403 Printer attached to a 1440 system as being the same as a 1443 Printer.

Figure 1. CTL Diagnostics and CTL Card Format

M Multiply defined. The same label appears in more
than one label field.

E Invalid operand in an EQl.1 statement.

Cross-Reference Listing

The cross-reference listing lists all labels and area­
defining literals used in the program. The address as­
signed to the label or literal and the sequence numbers
of the statements in which the label or literal is used
are given. For a label, the first sequence number listed
is the sequence number of the statement that defines
the label:; for an area-defining literal, the first sequence
number listed is the sequence number of the first state­
ment that uses the literal.

b. 5-digit starting address, or not punched
(starting address of the 1440 read-in
area is 00001)

Note: Leave blank for a 1401 or 1460 object
program in the condensed-loader
format.

--
5-digit starting address.
If column 42 contains aD, punch:

03701 for 4K 11701 for 12K
07701 for 8K 15701 for 16K

These columns are not checked if column .32
contains an S

--
D (yes); not punched (no)

--

--

The maximum number of labels and area-defining
literals that can appear in the cross-reference listing
depends on the number of sectors assigned to the
WORK3 file. The maximum number of references to
labels and area-defining literals depends on the num­
ber of sectors assigned to the WORK2 file. See File
Considerations under Changing File Assignments.

The labels and area-defining literals are listed in
alphabetical order. Each literal is followed by a #
sign in the tag column. If a label is undefined, it ap­
pears with all sequence numbers assigned to it and
with periods in the address column. A zone bit over
the tens position of the address indicates that the label
is indexed. The zone bit used is the same as that which
appears in the machine language address.

11

Diagnostic Meaning Processor Action
Message

OPERATION The operation field does not contain a valid mnemonic or a 1. An eight-charclcter no-operation instruction
machine-language operation code. (N xxx xxx x) is inserted.

2. lfan operand or the d-character is not specified, the
assembler inserts zeros.

F FORMAT An operand is invalid: 1. If the statement is a DA header, a subsequent DA, or
1. An operand contains one of the following special a DS, the operand is replaced with 1.

characters, # + - b • 2. For a DSA the count is 3. For a DCW or DC the count
2. Invalid literal. is: 1 for a blank constant; 50 for an alphameric
3. Literal used in an EQU, ORG, or LTORG statement. constant; 3 for an address constant; equal to thl2
4. Blank operand used in a declarative or EQU state- number of numeric characters in a numeric conlitant.

ment.

L FORMAT A symbol ic operand exceeds six characters, or an actua I 1. , hree periods replace the operand.
address operand exceeds five characters.

X FORMAT An X-control field is invalid. 1. The invalid X-control field is processed.

D-MODIFIER A d-modifier is missing or is invalid for the operation 1. A blank is inserted if the d-modifier is missing.
specified. 2. The statement 'is assembled with the invalid d-modi-

fier.

ADJUSTMENT An indexing or adjustment factor is used incorrectly. 1. If double indexing is specified, the last index factor
is used.

2. If the adjustment factor is invalid, it is ignored.

LABEL ERR A" label is invalid: 1. Extra characters are de leted •
1. It exceeds six characters. 2. The label is processed with the special characters.
2. It begins with a numeric character, or it contains one If the label is used as an operand in another stclte-

of the following special characters, # + - b • ment it will be recognized as an erroneous operand.
3. It is missing in an EQU statement.

OPRND TYPE The A- or B-operand is invalid for the operation specified. The statement is assembled with the inval id operand.
For example, %G2 is invalid in MLC NAME, %G2.

OPERANDS An operand is missing, or there are too many for the opera- 1. If an operand is missing in an I/O instruction that
tion specified.

Figure 2. Source Statement Diagnostics

Any errors detected by the Autocoder processor are
indicated by an A, M, or E in the tag column. The
meanings of these symbols are given under Label
Table. The cross-reference listing associated with the
sample program (supplied with the Autocoder pro­
gram deck) is shown in Appendix III.

Program Listing

The program listing documents the program and en­
ables the programmer to see the results of Autocoder
processing. The listing also assists the programmer if

LABEL TABLE

requires eight characters, periods are inserted;
otherwise, the statement is assembled as specified.

2. Extra operands are dropped.

revising the program is necessary.
The following messages, if appropriate, appear at the

end of a program listing:
END OF LISTING-X ERRORS, where x is the number of

program errors.
OBJECT CORE EXCEEDED, which counts as a program

error.
X or NO SEQUENCE ERRORS, which does not count as a

program error.
A description of the l20-character and lOO-character

listings follows.

AREA II
LABEl
SUB Tor

01082
01001
01022

AREAl 1# 01085
LABEll 01023
TOTAL E

CHECK 01037
LABEL2 M 01030
Xl 00089

DELAY 01062
LABEL2 M 01041

END
RESULT

01010
01022&X1

Figure 3. Label Table

12 Autocoder (Disk) Program Specifications

120·Charader Listing

Program errors are indicated by £lag symbols in the last
columns of the program listing. The thirteen £lag sym­
bols and their meanings are:

Invalid number of operands
o Invalid operation code
D Invalid d-modifier
X Invalid X-control field
F Format error
L Extra characters in a symbolic or actual address

operand
A Invalid indexing or adjustment
I Invalid symbolic indexing
U Undefined operand
E Reference to the label of an invalid EQU statement
M Reference to a multiply defined label
C Result of address adjustment is greater than 16,000

or less than zero
S Source statement is out of sequence.

The format of the 120-character listing is:

Columns
1-4

5

6-10

11

12-18

19

20-24

25

26-77

78

79

80

81-82

83-84

85-89

90-91

92-99

100

101-105

106

107-111

112-113

114

115

116
117
118
119

120

Contents
Sequence number assigned by the Output proc­
essor

Blank

Source program page and line number

Blank

Label or blank

Blank

Operation code mnemonic

Blank

Operands and comments

Blank

Suffix character or blank

Blank

Count (number of characters in the assembled
instruction), or blank. Blank constants and area­
defining literals have no count.

Blank

Location of the assembled instruction

Blank

Assembled instruction

Blank

A-address (actual) or X-control field

Blank

B-address (actual)

Blank

Period

Label error flag
Operation error flag
A-operand flag
B-operand flag
d-modifier flag

Sequence flag

lOO·Character Listing

The format of the 100-character listing is the same as
the 120-character listing except that the suffix charac­
ter, the count, the location of the assembled instruction,
and the assembled instruction are shifted three posi­
tions to the left. The A- and B-addresses are omitted.
Column 100 contains a W £lag symbol which is a warn­
ing that the statement contains an error.

A utocoder Text
The Autocoder text is a series of 100-character records
that are developed by the Autocoder processor. Each
record contains a source-program or generated state­
ment and assembly information such as the machine­
language instruction, the length and address of the in­
struction, and diagnostic £lag symbols.

The Autocoder text can be used as a restart point for
Output processing.

Object Programs

Card Formats

Two object-program card formats, self-loading and
condensed-loader, are available. The condensed-loader
card deck (Figure 4) consists of object-program cards
which are preceded by clear cards, a bootstrap card,
and load cards. The loader instructions for 1440 nor­
mally require 132 positions of core storage; the loader
instructions for 1401 and 1460 require 125 positions.
(See Condensed Loader Considerations.)

The self-loading card deck (Figure 5) consists of
cards that contain loading insh'uctions, and object­
program instructions and/or data. Two clear-storage
cards and a bootstrap card precede the self-loading
cards.

A 1440 object program in the self-loading format re.,­
quires that the read-in area be 00001-00072 and that
positions 73-85 be reserved for the read··a-card and
branch instructions, which are moved into these posi­
tions by the bootstrap routine. A 1401 or 1460 object

Object Deck

Figure 4. Object Deck in the Condensed-Loader Format

13

Loading Instructions

Bootstrap Card

Clear Card 2

Clear Card 1

Figure 5. Object Deck in the Self-Loading Format

program requires no additional positions outside the
read-in area.

An execute card in either a condensed-loader or self­
loading object deck interrupts the loading, so that a
portion of the object program that has already been
loaded is executed. If a source program EX or XFR state­
ment caused the execute card to be developed, the ob­
ject program must contain a branch instruction that
transfers control back to the loading instructions. If a
DA statement caused the execute card to be developed,
the execute card contains instructions that prepare the
defined area according to the specifications in the DA

header (clear the area, set word marks, create record
marks, create a group-mark word-mark). The execute
card also contains a branch back to the loading routine.

Note: Generally, on a 1442, an object deck in the condensed­
loader fom1at can be loaded faster than a deck in the self­
loading format.

On a 1402, an object deck in the self-loading format can be
loaded faster than a deck in the condensed-loader format.

Condensed-Loader Format

The cards that precede the object program are called
the loader (six cards for 1401 or 1460, seven cards for
1440). The first two cards in the loader contain instruc­
tions to clear storage before the program is loaded.
Columns 79-80 contains C1 in card 1 and C2 in card 2.

The third card is the bootstrap card. This card sets
word marks for the instructions in the load cards and
supplies an instruction that reads the load cards into
the read-in area. The bootstrap card contains identifi­
cation in columns 73-80. For a 1440 program, the iden­
tification is BOOTSTCD; for a 1401 or a 1460 program, it
is BOOTLDOl.

The remaining cards in the loader are the load cards.
These cards contain the loading routine and the in­
structions that move the loading routine into the load­
ing instruction area.

14 Autocoder (Disk) Program Specifications

After the loading instruction area has been initial­
ized, control is transferred to the loader. The loader
moves the data and instructions in the object-program
deck into their proper locations in core storage.

The object program cards have the following format:

Columns

1-3

4-5

6-71

72-75

76-80

Contents

The three .. character machine address of the first
storage position to be loaded.

The number of characters to be loaded from the
card. Word-separator characters are not counted.

The instructions and/or constants to be loaded.
A word-separator character (0-5-8 punch) precedes
every character requiring a word mark in core
storage.

Each pair of word-separator characters is loaded
as a single word-separator character with no word
mark. An odd number of word-separator characters
(n) is loaded as n - 1 word-separator characters

2
with no word marks; the last word-separator char­
acter causes a word mark to be set in the position
that will contain the next character in the card.

The program-listing sequence number of the first
instruction or constant to be loaded.

Identification. The identification in columns 76-80
of the JOB card appears in all cards in the con­
densed deek. Each new JOB card in the source deck
causes the identification of the condensed deck to
be changed.

Self-Loading (J 401 and 1460)

The first two cards in the self-loading object deck are
clear cards that clear storage before the object program
is loaded. These cards are identified by C1 and C2 in
columns 79-80.

The third card is a bootstrap card that contains in­
structions that set word marks in the read-in area be­
fore the object program is loaded. This card is identi­
fied by BOOTSTRAP in columns 72-80.

The remainder of the cards contain assembled pro­
gram instructions and load instructions. There can be
as many as seven instructions or constants on each
card. The card format is as follows:

Columns Contents

1-39 The instruction and/or constants to be loaded into
core storage.

40-46 Instructions that load the instructions or constants
into core storage with a high-order word mark.

47 -67 Three 7 -character set-word-mark instructions (or
one clear-word-mark and two set-ward-mark in­
structions for cards beginning with partial instruc­
tions or constants that do not require a high-order
word mark). These instructions set the word marks
that define the separate fields in the block of core
storage being loaded.

Columns

68-71

72-75

76-80

Contents

1040. This is an instruction to read a card and
branch to location 040.
Program-listing sequence number of the first in­
struction or constant to be loaded.
Identification. The identification in columns 76-80
of the JOll card appears in all cards in the self­
loading deck. Each new .lOll card in the source deck
causes the identification of the self-loading deck to
be changed.

Self-Loading (r 440)

The first two cards clear core storage before the pro­
gram is loaded. These cards are identified by C1 and
C2 in columns 79-80.

A bootstrap card, identified by M'ft}c100ht in col­
umns 73-80, loads a group-mark word-mark, a read-a­
card instruction, and a branch instruction (B040) into
positions 72-84 of the read area. Position 85 must be
left blank or contain a wordmark.

The format of the remaining cards is the same as that
described for 1401 and 1460, except columns 68-71 con­
tain B073. This instruction causes a branch to 073
which contains the bootstrap card read-a-card instruc­
tion.

Coreload Format

An object program in the coreload format is written in
disk storage. It contains the machine-language object­
program instructions. At execution time a disk loader,
supplied by the Execution processor, initiates the load­
ing of the object program.

The object program in coreload format is written in
the load mode. The structure of the program in disk
storage is:

1. A one-sector header record that has the following
format:

Positions

1-7

8-11
12-17
18-23
24-28

29-80

81-90

Contains

A move instruction that transfers the address of the
first operating sector to the disk loader.
A branch to the disk loader.
The address of the first operating sector.
HEADER
The identification from the last JOB card in the
source program, or blank if no JOB card was in­
cluded.
The operand from the last JOB card in the source
program or blank if no JOB card was included.
Unused

2. Full gO-character sectors. These sectors contain an
exact core-storage image of the object program.

3. Operating sectors. The first sectors contain instruc­
tions that load the full gO-character sectors into their
proper core-storage locations. The remaining sec­
tors contain instructions that fill in the instructions

and/or constants that could not be put into a full
gO-character sector during the Output processor
operation.

4. An execution instruction that causes a branch to the
object program at object-time.

If the source program contains EX or XFR statements,
sections 2, 3, and 4 are repeated for each overlay.

Note: Certain restrictions must be considered whcn writing a
source program that is to be an object program in the corc-Ioad
format:
1. A group mark must not be the first character of a literal or

the first data character of a DCW statement.
2. Before returning control to the disk loader for loading a new

program or program overlay, any group-mark word-marks
within the section of core storage being overlaid should be
cleared.

3. Statements within a program or program overlay are not
always loaded into core storage in the same order they were
coded.

Messages

One of the following messages appears when the input
for or output from an operation is assigned to disk
storage.

lINP ! OUT
1. LST

FILE {STARTS} ON {1311}
ENDS 1301

AT ADDRESS nnnnnn.

2. CORELOAD OUTPUT COMPLETE ON {g6~} UNIT n,

START nnnnnn, END nnnnnn.

The messages that reflect the location of results stored
in disk files should be recorded because the addresses
specify restart points for future processing.

Resequenced Source Deck
A resequenced source deck is the original source pro­
gram with the page and line numbers (columns 1-5)
replaced by sequence numbers assigned by the Output
processor. The numbers start with 0001 in columns 1-4.
Subsequent entries are increased by 0001. The format
of the resequenced deck is:

Columns

1-4

5
6-72

73-75

76-80

Contents

Sequence number assigned by the Output processor
(OOO1-xxxx)

Blank

Columns 6-72 of the source card

Blank

Identification from the JOB cards as encountered in
the source deck

15

Operating Procedures

Jobs

The Autocoder System performs three major opera­
tions.
l. Translates source programs.
2. Produces object programs.
3. Starts the execution of object programs.
Because these operations are performed by the three
processors of the System, the operations are called
processor fobs. In this respect, the Autocoder processor
translates source programs. The Output processor pro­
duces object programs. The Execution processor starts
the execution of object programs.

Two other operations, maintaining the Autocoder li­
brary and updating the Autocoder System, are also
considered jobs. Maintaining the Autocoder library is
called a library fob. Updating the Autocodcr System
is called an update job. Update jobs are described in
Updating an Autocoder System.

Under control of the System Control Program, it is
possible to perform one or more jobs without operator
intervention. This process is called stack processing. A
stack is always made up of the Card Boot deck, a SyS­

TEM ASGN card, the particular job(s) to be performed,
and a HALT card.

In performing a job, the following must be taken into
considera tion.
l. The kind of input for the job.
2. The use of the logical RIes.
3. The machine-operator procedures to be followed.

The kinds of input for processor jobs and library jobs
are discussed in the following sections (Preparing Pl'OC­
essing Jobs and Preparing Library Jobs).

The general use of logical RIes is discussed in Logi­
cal Files. In most cases, the user does not need to be
concerned about the logical RIes used for a particular
job because the Autocoder System defines the RIes and
assigns them to specific input/output devices. In the
description that follows of preparing individual proces­
sor jobs, any RIe asisgnment that the user must make is
explained.

The machine-operator procedures to be followed are
described in Performing Jobs.

Preparing Processor Jobs
The kind of output that is desired by the user is the de­
termining factor of which processor job is to be per­
formed. Figure 6 lists each processor job and the out-­
put from the Autocoder System by the completion of

16 Autocoder (Disk) Operating Procedures

the job. In the figure, YES means that the type of output
is always produced. OPT means that the type of output
is produced only if the user specifies that it be. This is
done by supplying output option (OPTN) cards in addi­
tion to the required control cards.

The remainder of this section describes each indi-
vidual processor job. They are:

AUTOCODER RUN TIlRU OUTPUT

AUTOCODER RUN TIIRU EXECUTION

EXECUTION RUN

A UTOCODER RUN

OUTPUT RUN

OUTPUT RUN TURU EXECUTION

Each processor job description includes:

l. Assumed input device. This entry refers to the de­
vice on which the INPUT RIe is assumed to be lo­
cated. For the 1402, READER 1 means that the cards
are selected into stacker l. For the 1442, READER 1

means unit l.
2. Input. This entry refers to the type of input for the

job.
3. Assumed output device. This entry refers to the de­

vice on which the LIST RIe, the MESSAGE RIe, and the
OUTPUT RIe are assumed to be located. For the 1403,
PRINTER 2 means that 132 print positions are avall­
able. For the 1443, PRINTER 2 means that 144 print
positions are available. For the 1402, PUNCH 4 means
that the cards a\c selected into stacker 4. For the
1442, PUNCH 1 means unit l.

4. Output. This entry refers to the type of output that
the user always gets as a result of the job.

5. Output options available. This entry refers to the
typc of output the user can get by using output op­
tion (OPTN) cards.

6. Hcquired user assignments. This entry describes any
additional logical £Ie assignments that the user must
make to perform the job.

7. Control cards. This entry describes the method of
punching any required control cards and output op­
tion (OPTN) cards.

Notes: 1. Any logical file assumed assignment can be changed
by using an ASGN card. (See Changing File Assign­
ments.)

2. NOTE and PAUSE cards can be placed between, but
not within job decks.

Conventional Assembly

A conventional assembly refers to the results normally
associated with assembling an object program. All in­
formation concerned with required control cards and
the manner of punching the control cards is included
in the following section.

Purpose of Processor Input Output
Job Job

Documentaticln Object Program /IIessages

Source Autocoder Object CTL Card Source Pro.lram Program Condensed- Self- Core load Autocoder Location location Resequenced
Program TE,xt Program Diagnostics Diagnostics Listing Loader loading Format Text of of Text Source

{card (if CTl card and label Table Format Format Core load Deck
deck or contain or Cross-ref-
coreload errors) erence Listing**
format)

Convent i Ona I AUTOCODER RU N YES YES YES
Assembly THRU OUTPUT

load-and-Go AUTOCODER RU N YES YES YES
THRU EXECUTION

~-

Delayed EXECUTION RUN YES
Execution

Partial AUTOCODER RUN YES YES YES
Processing

OUTPUT RUN YES

OUTPUT RUN YES
THRU EXECUTION

** Depend on CTl card specifications

t Additional I istings and condensed-loader decks are available.
* Message is associated with thE> Coreload option.

Figure 6. Processor Jobs

Autocode.' Run Thru Output

This is the type of run that results in a conventional
assembly.

Assumed Input Device: INPUT file on READER 1.

I nput: Source program.

Assumed Output Devices: LIST file on PRINTER 2, MES­

SAGE file on PRINTER 2, OUTPUT file on PUNCH 1 (1442)
or PUNCH 4 (1402).

Output:
1. CTL diagnostic messages, if errors are sensed.

2. Source-statement diagnostic messages, unless the
CTL card specifies that the diagnostic phases be
omitted.

3. Cross-reference listing, label table, or neither, de­
pending on CTL card specification.

4. Program listing (100-character or 120-character).

5. Object program in the condensed-loader format
(six-card loader for 1401 or 1460, seven-card
loader for 1440), or an object program in the self­
loading format, if specified in the CTL card.

Output Options.Available:
1. Additional program listing. To obtain this option,

use a LIST OPTN card.

2. Object program in the condensed-loader format.
To obtain this option, use a PUNCH OPTN card.

3. Object program in the self-loading format. To ob­
tain this option, use a PUNCH OPTN card.

YES t YESvt OPTtt OPT OPT* OPT

YES YES YES

YES YES

OPT OPT OPT OPT OPT* OPT

YES YES YES

tt Specified in CTl card or Output OPTN card.
V Unless the self-loading format is specified in the CTl card.

4. Object program in the coreload format and a mes­
sage specifying the START and END addresses of
the CORELOAD file. To obtain this option, use a
CORELOAD OPTN card.

ReqUired User Assignments: If the object program is to
be punched into cards, the user does not have to
make any file assignments. However, if an object
program in the coreload format is desired, the CORE­

LOAD file must be assigned before the job is per­
formed. Use a CORELOAD ASGN card to define the file.

Control Cards:
1. The RUN card is the only control card required for

a conventional assembly. Punch the RUN card in
the following manner:
Columns

6-14
16-18
21-24
26-31

Contents
AUTOCODER
RUN
THRU
OUTPUT

2. The following cards are punched only if the user
wishes any of the available output options. Any
one or all of these cards can be used with a con­
ventional assembly.
a. LIST OPTN for an additional program listing.
Punch the LIST OPTN card in the following manner:
Columns Contents

6-9 LIST
16-19 OPTN
21-22 Number-of lines (01-99) per page
(If left blank, user's carriage control tape will regulate
listing.)

Note: If the SPCE 2 control statement is used with the LIST OPTN

card, the maximum number of available statements per page
is 98. If SPCE 3 control statement is used, the maximum number
is 97.

17

b. PUNCH OPTN for card formats. Use the PUNCH

OPTN card only if an additional object deck is
desired. Punch the card in the following manner:
Columns Contents

6-10 PUNCH

16-19 OPTN

21 S if the self-loading format is desired; blank
if the condensed-loader format is desired

C. CORELOAD OPTN for coreload format. Punch the
CORELOAD OPTN card in the following manner:

Columns Contents
6-13 CORE LOAD

16-19 OPTN

If the CORELOAD OPTN card is used, a CORELOAD

ASGN card, which precedes the RUN card, must be
used to define the CORELOAD file. Punch the CORE­

LOAD ASGN card in the following manner:

Columns

6-13

Contents

CORELOAD

ASGN 16-19

21-57 1301 UNIT n, START nnnnnn, END nnnnnn
or
1311 UNIT n, START nnnnnn, END nnnnnn

The value of n represents the number of the disk
unit, and can be 0, 1, 2, 3, or 4; nnnnnn repre­
sents a disk address. The limits specified must
define an area large enough to contain the object
program. When punching the CORE LOAD ASGN

card, blanks must be present in columns 21-57
where indicated in the format.
d. RESEQ OPTN for a resequenced source deck.
Punch the RESEQ OPTN card in the following
manner:

Columns

6-10

16-19

Contents

RESEQ

OPTN

Arrangement. The arrangement of input cards is shown
in Figure 7. OPTN cards can be in any order.

OPTN Cards

END

Optional
Source Statements

cn (Optional) ~
JOB (Optional)

Source Program Deck
AUTOCODER RUN
THRU OUTPUT

~-'--------,

CORELOAD ASGN

~--Used with CORELOAD OPTN

Figure 7. Conventional Assembly

18 Autocoder (Disk) Operating Procedures

Note: If the PUNCH OPTN and/or the RESEQ OPTN is chosen and
the punch is 1442 and the CONTROL and OUTPUT files are
assigned to the same unit, the user must follow each of
the OPTN cards with a sufficient number of blank cards.

Load-and-Go

This is similar to the standard load-and-go operation.
The difference is that the object program is available
on the CORELOAD file for delayed execution" All infor­
mation regarding required control cards and the man­
ner of punching these control cards is contained in the
following section.

Autocoder Run Thru Execution

This is the type of run that results in load-and-go.

Assumed Input Devlce: INI)UT file on READER 1.

Input: Source program.

Assumed Output Devices: MESSAGE file on PRINTER 2,

LIST file on PRINTER 2.

Output:
1. CTL diagnostic messages if errors are sensed.

2. Source-statement diagnostic messages, unless the
CTL card specifies that the diagnostic phases be
omitted.

3. Cross-reference listing, label table, or neither, de­
pending on CTL card specification.

4. Program listing.

5. Object program in the coreload format and a mes­
sage specifying the START and END addresses of
the program that is stored on the CORELOAD file in
disk storage.

Output Options Available: None.

Required User Assignments: The CORELOAD file must be
defined by the user before the job is performed. Use
a CORELOAD ASGN card specifying the START and END

addresses of thc CORE LOAD file to define the file.

Additional Results: rIbe object program is loaded into
core storage and control is h'ansferred to it.

Control Cards: Two control cards, a RUN and an ASGN

card, are required for the load-and-go option.
1. A CORELOAD ASGN card, which precedes the RUN

card, must be used to define the CORELOAD file.
Punch the CORELOAD ASGN card in the following
manner:

Columns Contents

6-13 CORELOAD

16-19 ASGN

21-57 1301 UNIT n, START nnnnnn, END nnnnnn
or
1311 UNIT n, START nnnnnn, END nnnnnn

The value n is the number of the disk unit, and
can be 0, 1, 2, 3, or 4; nnnnnn represents a disk
address. The limits specified must define an area
large enough to contain the object program. When
punching the CORELOAD ASGN card, blanks must be
present in columns 21-57 where indicated in the
format.

2. Punch the required RUN card in the following
manner:

Columns Contents

6-14 AUTOCODER

16-18 RUN

21-24 THHU

26-34 EXECUTION

Arrangement: The arrangement of input cards is shown
in Figure 8.

Delayed Execution

This job enables the user to execute an object program
under the control of the Autocoder System.
Note: If the SYSCL macro was not included in the source

program, control will not be returned to the Autocoder
System after execution of the object program.

Execution Run

This is the type of run that is used when an object pro­
gram is executed in a stack of Jobs.

Assumed Input Device: INPUT file on READER 1.

Input: Object program.

Assumed Output Devices: Not applicable.

Output: Not applicable.

Output Options Available: Not applicable.

Required User Assignments: If the input for the run is
an object-program card deck in either the condensed­
loader or self-loading format, no INPUT ASGN card is
required. However, if the input for the run is an ob­
ject program in the coreload format, the INPUT file
must be defined before the job is performed. Use an
INPUT ASGN card to define the file.

I [/~f::e :totemen" .,:." •. ,." •.•. ' .• : ...•.• :,: •. , .•.•.•.. : .• " .• , .• ,:.:, •.• cn (Optional) ~,..
JOB (Optional)i'

•• Soorce Program Deck

AUTOCODER RUN
THRU EXECUTION

CORELOAD ASGN

Figure 8. Load-and-Go

Control Cards:
1. An INPUT ASGN card is required if the object pro­

gram is in the coreload format. The INPUT ASGN

card precedes the RUN card. Punch the INPUT ASGN

card in the following manner:

Columns Contents

6-10 INPUT

16-19 ASGN

21-57 1301 UNIT n, START nnnnnn, END nnnnnn
or
1311 UNIT n, START nnnnnn, END nnnnnn

The value n is the number of the disk unit, and
can be 0, 1, 2, 3, or 4; nnnnnn represents a disk
address. The START and END disk addresses of the
object program are given in the message printed
at the completion of the operation that built thc
CORELOAD file. When punching the INPUT ASGN

card, blanks must be present in columns 21-57
where indicated in the format.

2. Punch the required RUN card in the following
manner:

Columns Contents

6-14 EXECUTION

16-18

21-?

76-80

RUN

[JOB card operand]

[JOB card identification]

If the object program is in the coreload format,
the JOB card information in the RUN card (if any
is punched) is compared with the JOB card infor­
mation in the object program (on disk) to ensure
that the correct disk address has been specified in
the INPUT ASGN card.

Arrangement: The arrangement of input cards is shown
in Figures 9 and 10. If an INPUT ASGN card is used, it
must precede the RUN card.

Note: For 1402 assign the CONTROL and INPUT files. to READER

o to insure that all input cards will be in the NR pocket.

Figure 9. Delayed Execution (Object Deck)

EXECUTION RUN

INPUT ASGN

Figure 10. Delayed Execution (Coreload Format)

19

Partial Processing

The Autocoder System permits the user to select cer­
tain processors in the Autocoder System. This feature
enables the user to save the Autocoder text for future
output processing. All information regarding required
control cards and the manner of punching these control
cards is contained in the following section.

Autocoder Run

The result of this job is Autocoder text. The text re­
quires processing by the Output processor because it is
not in a usable form.

Assumed Input Device: INPUT file on READER 1.

Input: Source program.

Assumed Output Devices: MESSAGE file on PRINTER 2,

LIST file on PRINTER 2.

Output:
1. cn diagnostic messages, if errors are sensed.
2. Source-statement diagnostic messages, unless the

CTL card specifies that the diagnostic phases are
to be omitted.

3. Cross-reference listing, label table, or neither, de­
pending on CTL card specification.

4. Autocoder text and a message specifying the
START address of the text.

Output OptiOns Available: None.

Required User Assignments: Because the result of proc­
essing is Autocoder text, an area (OUTPUT file) in disk
storage must be defined. The OUTPUT file must be de­
fined before the job is performed. Use an OUTPUT

ASGN card to define the file.

Control Cards:
1. An OUTPUT ASGN card, which precedes the RUN

card, must be used to define the OUTPUT file be­
cause the Autocoder text is written in disk stor­
age. Punch the OUTPUT ASGN card in the following
manner:

Columns Contents

6-11 OUTPUT

16-19 ASGN

21-57 1301 UNIT n, START nnnnnn, END nnnnnn
or.
1311 UNIT n, START nnnnnn, END nnnnnn

The value n indicates the number of the disk unit,
and can be 0, 1, 2, 3, or 4; nnnnnn represents a
disk address. The limits specified must define an
area large enough to contain the Autocoder text.
When punching the OUTPUT ASGN card, blanks
must be present in columns 21-57 where indicated
in the format.

20 Autocoder (Disk) Operating Procedures

2. Punch the required RUN card in the following
manner:

Columns Contents

~14 AUTOCODER

16-18 RUN

Arrangement: The arrangement of input cards is shown
in Figure 11.

Output Run

This job enables the user to process the Autocoder text
produced by an AUTOCODER RUN and to specify the
kind(s) of output he desires.

Assumed Input Device: This must be an area in disk
storage defined by the user.

Input: Autocoder text.

Assumed Output Devices: MESSAGE file on PRINTER 2,

LIST file on PRINTER 2, OUTPUT file on PUNCH 1 (1442)
or PUNCH 4 (1402).

Output: The kind of output must be specified by the
user.

Output Options Available:
1. PUNCH option--an object program in the con­

densed-loader or self-loading format. To obtain
this option, use a PUNCH OPTN card.

2. CORELOAD option-an object program in the core­
load format and a message specifying the START

and END addresses of the program. To obtain this
option, use a CORELOAD OPTN card.

3. LIST option-a 100-character or 120-character pro­
gram listing. To obtain this option, use a LIST OPTN

card.
4. RESEQ option-a resequenced source deck. To ob­

tain this option, use a RESEQ OPTN card.

Required User Assignments:
1. The INPUT file must be defined before the job is

performed. Use an INPUT ASGN card to define the
file.

cn (optional)

JOB (optional)

AUTOCODER RUN

OUTPUT ASGN

Figure 11. AUTOCODER RUN

2. If an object deck in the condensed-loader format is
desired, no OUTPUT file need be defined. (The
OUTPUT file is assumed to be PUNCH 1 for 1442 and
PUNCH 4 for 1402.) However, if an object program
in the coreload format is desired, the CORELOAD

file must be defined before the job is performed.
Use a CORELOAD ASGN card to define the file.

Control Cards:
1. An INPUT ASGN card is required because the Auto­

coder text is in disk storage. The INPUT ASGN card
precedes the RUN card. Punch the INPUT ASGN card
in the following manner:

Columns

6-10

16-19

21-57

Contents

INPUT

ASGN

1301 UNIT n, START nnnnnn, END nnnnnn
or
131 L UNIT n, START nnnnnn, END nnnnnn

The value n indicates the number of the disk unit,
and can be 0, 1, 2, 3, or 4; nnnnnn represents a
disk address. The START address of the Autocoder
text is given in the message printed at the begin­
ning of an AUTOCODER HUN. The END address is
given in the message printed when the disk OUT­

PUT file is closed. When punching the INPUT ASGN

card, blanks must be present in columns 21-57
where indicated in the format.

2. Punch the required RUN card in the following
manner:

Columns

6-11

16-18

Contents

OUTPUT

RUN

3. Output option cards:
a. Punch the PUNCH OPTN card in the following
manner:

Columns

6-10

16-19

21

Contents

PUNCH

OPTN

S if the self-loading format is desired. Blank
if the condensed-loader format is desired.

b. Punch COHELOAD OPTN card in the following
manner:

Columns

6-13

16-19

Contents

CORE LOAD

OPTN

If the CORE LOAD OPTN card is used, a CORELOAD

ASGN card, which precedes the RUN card, must be

used to define the CORELOAD file. Punch the CORE­

LOAD ASGN card in the following manner:

Columns

6-13

16-19

21-57

Contents

CORE LOAD

ASGN

1301 UNIT n, START nnnnnn, END nnnnnn
or
1311 UNIT n, START nnnnnn, END nnnnnn

The value n indicates the number of the disk unit,
and can be 0, 1, 2, 3, or 4; nnnnnn represents a
disk address. The limits specified must define an
area large enough to contain the object program.
When punching the CORELOAD ASGN card, blanks
must be present in columns 21-57 where indicated
in the format.
c. Punch the LIST OPTN card in the following
manner:

Columns Contents
6-9 LIST

16-19 OPTN
21-22 Number of statements (01-99) pcr page.
(If left blank, user's carriage control tape will regulate
listing.)

N ate: If the SPCE 2 control statement is used with the LIST OPTN

card, the maximum number of available statements per page
is 98. If SPCE 3 control statement is used, the maximum number
is 97.

d. Punch the RESEQ OPTN card in the following
manner:
Columns Contents

6-10 RESEQ
16-19 OPTN

Arrangement: The arrangement of input cards is shown
in Figure 12. At least one option card is required in­
dicating the type of output. The option cards can be
in any order.

Note: If the PUNCH OPTN and/or the HESEQ OPTN is chosen, and
the punch is 1442 and the CONTROL and OUTPUT files are
assigned to the same unit, the user must follow eaeh card
with a sufficient number of blank cards.

Output Run Thru Execution

This job enables the user to process the Autocoder text
and execute the resulting object program.

(OPTN Cards

(OUTPUT RUN One is required

(CORELOAD ASGN I--
/

INPUT ASGN I--

I---
Used with CORELOAD OPT N

Figure 12. OUTPUT RUN

21

Assumed Input Device: The INPUT file must be an area
in disk storage that is defined by the user indicating
the location of the Autocoder text.

Input: Autocoder text.

Assumed Output Devices: MESSAGE file on PRINTER 2

and LIST file on PRINTER 2.

Output:
1. Program listing (IOO-character or I20-character).
2. Object program in the coreload format and a mes­

sage specifying the START and END addresses of
the program.

Output Options Available: None.

ReqUired User Assignments: The INPUT and CORELOAD

files must be defined before the job is performed.
Use an INPUT ASGN card and a CORELOAD ASGN card to
define the files.

Additional Results: The object program is loaded into
core storage and control is transferred to it.

Control Cards:
1. An INPUT ASGN card is required because the Auto­

coder text is in disk storage. The INPUT ASGN card
precedes the RUN card. Punch the INPUT ASGN

card in the following manner:

Columns

6-10

16-19

21-57

Contents

INPUT

ASGN

1301 UNIT n, START nnnnnn, END nnnnnn
or
1311 UNIT n, START nnnnnn, END nnnnnn

The value n indicates the number of the disk unit,
and can be 0, 1, 2, 3, or 4; nnnnnn represents a
disk address. The disk address of the Autocoder
text is given in the message printed at the com­
pletion of arr AUTOCODER RUN. When punching the
INPUT ASGN card, blanks must be present in col­
umns 21-57 where indicated in the format.

2. A CORELOAD ASGN card is required because the ob­
ject program is written in disk storage on the
CORELOAD file. The CORELOAD ASGN card precedes
the RUN card. Punch the CORELOAD ASGN card in
the following manner:

Columns Contents

6-13 CORELOAD

16-19 ASGN

21-57 1301 UNIT n, START nnnnnn END nnnnnn
or
1311 UNIT n, START nnnnnn, END nnnnnn

22 Autocoder (Disk) Operating Procedures

The value n indicates the number of the disk unit,
and can be 0, 1, 2, 3, or 4; nnnnnn represents a
disk address. The limits specified must define an
area large enough to contain the object program.
When punchi.ng the CORELOAD ASGN card, blanks
must be present in columns 21-57 where indicated
in the format.

3. Punch the required RUN card in the following
manner:

Columns Contents

6-10 OUTPUT

16-18 RUN

21-24 THRU

26-34 EXECUTION

Arrangement: The arrangement of the input cards is
shown in Figure 13. The ASGN cards can be in any
order.

Changing File Assignments
Each logical file defined by the Autocoder System, with
the exception of the SYSTEM and CORELOAD files, is as­
signed to a specific input/output device by the System
Control Program. These assignments can be changed
by using ASGN cards (and, in certain instances, INIT

cards - see INIT Card). The uses of the logical files
should be considered when deciding file assignments.

Figures 14 and 15 illustrate the uses of all the logical
files, except the SYSTEM file, that are required for proc­
essor jobs. The SYSTEM file, on which the Autocoder
System resides, is required for all System operations.

In addition to the cards listed in Figure 14, the CON­

TROL file contains:
1. The 1402 or 1442 Card Boot, which is the first set of

cards required for stack processing. (A stack consists
of one or more jobs.)

2. All ASGN cards. Some ASGN cards are required for
particular processor jobs. Other ASGN cards cause
file-aSSignment changes which make it possible to
utilize the input/output devices not included in the
assumed file assignments.

3. INIT, NOTE and PAUSE cards, which may be inserted
between jobs.

4. A HALT card, which must be the last card in a stack.

OUTPUT RUN
THRU EXECUTION

INPUT ASGN

Figure 13. OUTPUT RUN THRU EXECUTION

Operation Files Internal Files
Processor Job

CONTROL MESSAGE WORKI WORK2 WORK3

AUTOCODER RUN CORElOAD ASGN CTl diagnostics, if the CTl card contains errors. Intermediate and final References for cross Used by the Macro Gen-
THRU OUTPUT card if the CORE- Sourc:e statement diagnostics, if specified (CTl card). results of Autocoder reference I isting, if erator and the Autocoder

processing (Autocoder specified (CTl card). Processor. lOAD OPTN card CORE lOAD OUTPUT COMPLETE ON
is used. 11311

/ UNIT n, START nnnnnn, END nnnnnn text).
labels for cross reference 1301\ - -- --
listing or label table.

RUN card. CORElOAD HEADER - (52 positions), ID - (5 positions)
Intermediate results of

These messages are printed if the CORElOAD ASGN and Output processing if
CORELOAD OPTN cards are in the CONTROL file. the CORElOAD ASGN

and CORElOAD OPTN
cards are in the CO N-
TROl file.

1---
AUTOCODER RUN CORElOAD ASGN CTl diagnostics, if the CTl card contains errors. Intermediate and final References for cro~;s Used by the Macro Gen-
THRU EXECUTION card. Source statement diagnostics, if specified (CTl card). results of Autocoder reference listing, if erator and the Autocoder

processing (.Autocoder specified (CTl card). Processor. RUN card. CORElOAD OUTPUT COMPLETE ON

11311
\ UNIT n, START nnnnnn, END nnnnnn

text).
labels for cross referenre 1301 - -- --
listing or label table.

CORElOAD HEADER - (52 positions), ID - (5 positions)
Intermediate results of

Output processi ng.

EXECUTION RUN RUN card.
(punched-card
obiect program)
-.-----

1
1311

f
EXECUTION RUN INPUT ASGN card. INPUT f'llE STARTS ON

1301
(obiect program in RUN card.
core load format) UNIT n AT ADDRESS nnnnnn

AUTOCODER RU N OUTPUT ASGN card. CTl diagnostics, if the CTl card contains errors. References for cross Used by the IvIacro Gen-
RUN card. Source statement diagnostics, if specified (CTl card). reference listing, if era tor and the Autocoder

specified (CTl card). Processor.

1
1311

\
OUTPUT FilE STARTS ON 1301

labels for cross reference UNIT ~ AT ADDRESS ~

listing or label table.

1
1311

\

Intermediate results of OUTPUT RUN INPUT ASGN card.
INPUT FilE STARTS ON

Output processing if CORElOAD ASGN 1301
card if the CORE- UNIT ~ AT ADDRESS ~ the CORE lOAD ASGN
lOAD OPTN card and CORE lOAD OPTN

cards are in the CON-is used. CORElOAD OUTPUT COMPLETE ON
TROl file. RUN card.

1
1311

\ Output OPTN card(s). 1301 UNIT~, START ~ END ~

(At least one must
be used.) CORElOAD HEADER - (52 positions), ID - (5 positions)

The lost "two messages are printed if the CORElOAD ASGN
and CORE lOAD OPTN cards are in the CONTROL file.

1
1311 ! Intermediate results of OUTPUT RUN INPUT ASGN card.

INPUT FilE STARTS ON 1301 Output processi ng • THRU EXECUTION CORElOAD ASGN
card. UNIT ~ AT ADDRESS ~

RUN card.
CORElOAD OUTPUT COMPLETE ON

11311
} UNITn, STARTnnnnnn, ENDnnnnnn

1301 - -- --

CORElOAD HEADER - (52 positions), ID - (5 positions)

Figure 14. Use of Operation and Internal Logical Files

The contents of the MESSAGE file, as shown in Fig­
ure 14, provide job documentation. Other messages
that also appear on the MESSAGE file are: diagnostics
relating to operating procedures, instructions to the
machine operator, ASGN card images.

As shown in Figure 14, the WORK files contain inter­
mediate results of processing. WORKI is required for
Autocoder processing. If AUTOCODER RUN THRU OUTPUT

or AUTOCODER RUN THRU EXECUTION is specified, WORKI

becomes the OUTPUT file from the Autocoder processor
and the INPUT file to the Output processor.

WORK2 is used by the Autocoder processor if a cross­
reference listing is requested by the CTL card. After the

listing has been built on WORK2, it is transferred to the
LIST file.

WORK3 is used by the Macro Generator and the Auto­
coder processor. It is also required whenever the CORE­

LOAD file is to be used. The CORELOAD file is used if
Tlmu EXECUTION is specified in a RUN card, or if a CORE­

LOAD OPTN card is used for an AUTOCODER RUN THRU

OUTPUT or OUTPUT RUN. If THRU EXECUTION is specified
in a RUN card, th~ CORELOAD file becomes the INPUT file
to the Execution processor.

Thus, the WORKI and CORELOAD files act as transition
files between processors when a THRU option is speci­
fied.

23

External Fi les
Processor Job

INPUT OUTPUT LIST CORELOAD LIBRARY

AUTOCODER RUN Source program. Object program in condensed-loader Label table or cross-refer- Object program in the Used during macro

THRU OUTPUT format, unless self-loading format ence I isting if specified core load format, if generation.
is specified in the cn card. (Cn card). specified (CORE-

Object program(s) in the se If-loading LOAD OPTN).
format, if specified (PUNCH Program listing.
OPTN or cn card).

Additional object program(s) in Additional program I ist-
condensed-loader format, if ing(s), if specified
specified (PUNCH OPTN). (LIST OPTN).

Resequenced source deck(s) if speci-
fied (RESEQ OPTN):

AUTOCODER RUN Source program. Lobe I table or cross-refer- Object program in Used durirg macro

THRU EXECUTION ence listing if specified coreload format. generation.
(CTL card).

Program listing.

EXECUTION RUN Object program

AUTOCODER RUN Source program Intermediate and final results of Label table or cross-refer- Used during macro
Autocoder processing (Auto- ence listing if specified generation.
coder text). (CTL card).

OUTPUT RUN Autocoder text. Object program(s) in condensed- Program I isting(s), if Object program in
loader and/or self-loading format, specified (LIST OPTN). coreload format, if
if specified (PUNCH OPTN). specified (CORE-

Resequenced source deck(s), if LOAD OPTN).
specified (RESEQ OPTN).

OUTPUT RUN Autocoder text. Program listing. Object program in
THRU EXECUTION

Figure 15. Use of External Logical Files

Preparing ASGN Cards
ASGN cards enable the user to change file assignments
for one or more jobs in a stack. The general format for
an ASGN card is:

file-name ASGN jdevicet
10MIT~

The file-name is the specific lOgical file; device is the
input/output unit to which the logical file is assigned.

The assumed file assignments and ASGN card formats
relating to specific files are shown in Figure 16. Valid
device entries are shown in Figure 17.

Leave a blank between items in the operand field as
shown in Figure 16. If, for example, the OUTPUT file is
to be assigned to disk area 004000 through 004799 on
1301 unit 1, the user would code the ASGN card for
punchillg as shown in Figure 18. The END address to
be punched is the address of the next available sector,
not the address of the last sector to be used.

FII. Consid.ratlons

CONTROL File and INPUT File. If both the CONTROL

and INPUT files are assigned to the reader, the assign­
ments must be identical. For example, if the system
is a 1440 and the CONTROL file is assigned to READER 1,

the INPUT file must also be assigned to READER 1.

MESSAGE File and LIST File. If both the MESSAGE

and LIST files are assigned to the printer, the assign-

24 Autocoder (Disk) Operating Procedures

core load format.

ments must be identical. For example, if the system
is a 1401 and the MESSAGE file is assigned to PRINTER

2, the LIST file must also be assigned to PRINTER 2.

WORKl File. The disk area required for the WORKI

file depends upon the number of statements in the
source program after macro generation and upon the
number of literals used in th~ program. The user
must allow one sector for each statement plus one
sector for each unique literal.

WORK2 File. This file must contain at least 200
sectors for every 600 references to labels and area­
defining literals in the source program. Storage
from this file is used in blocks of 200 sectors. If
the amount of storage left in the file is less than 200
sectors and data remains to be stored in the file
the assembler will halt, indicating that an area i~
too small.

WORK3 File. This file requires a minimum of 300
sectors of disk storage. Additional sectors could be
required, depending on the number of labels and
area-defining literals used in the source program.
At least 200 sectors are required for every 600 dif­
ferent labels and area-defining literals used in the
source program. However, in storing labels and
area-defining literals, the assembler uses WORK3
storage in sections of 200 sectors. Thus, if the as­
sembler fills 200 sectors, and more labels or area­
defining literals remain to be stored, at least 200
sectors must remain in the WORK3 area or the

r---

ASGN Card Format Assumed Assignment Remarks
1---- ---

Label Field Operation Fie Id Operand Field
(Columns 6-15) (Col umns 16-20) (Columns 21-72)

SYSTEM ASGN 1311 unit -- user-assigned The SYSTEM ASGN card is the /1311 UNIT ~(
1301 UNIT 0 1301 unit -- must be assigned to only required ASGN card. It

UNIT 0 must follow the Card Boot in a
stack of jobs. Any other SYSTEM
ASGN cards in the stack are
invalid.

If the user desires that the Auto-
coder System use less than the num-
ber of core-storage positions avail-
able in the processor machine t

punch a comma in column 32 and
4K, 8K, 12K, or 16K beginning
in column 34.

CONTROL ASGN / READER n (READER 1
CONSOLE PRI NTER

MESSAGE ASGN / PRINTER n (PRINTER 2 When the MESSAGE file is
CONSOLE PRI NTER assigned to the CO NSOLE

PRI NTER, carriage control
characters used with the
1403 or 14-43 printer may
appear in the message.

--
LIST ASGN f PRINTER n PRINTER 2 If the LIST file is assigned to

1311 UNiT n, START nnnnnn END =
1301 UNIT~, START nnnnnn, END nnnn!1!1(

PRI NTER 1 (1403), the Output
processor deve lops a 100-

-OMIT character program listing.

INPUT ASGN rEADER n READER 1
1311 UNIT~, START nnnnnn, END nnnnn'1(
1301 UNIT ~, START nnnnnn, END nnnnn'1

OUTPUT ASGN
fUNCH n 1311 UNIT~, START nnnnnn, END nnnnnn I PU NCH 4 (1401 and 1460)
:::~I'TUNIT ~, START nnnnnn, END nnnnnn PUNCH 1 (1440)

LIBRARY ASGN /.1311 UNIT ~, START nnnnnn, END nnnnnn (1:;~nUNIT 0, START 012900, END 019980 1311 is assumed if the

1301 UNIT ~, START nnnnnn, END nnnnnn SYSTEM file is assigned to

WORKI ASGN 1'311 UNIT!y START nnnnnn, END nnnnnn(1:;~:IUNIT 0, START 004800, END 011200

1311; 1301 is assumed if the
SYSTEM file is assigned to

1301 UNIT !y START nnnnnn, END nnnnnn 1301.

WORK2 ASGN

1----

r3Jl UNIT!l, START!l!1!1!l!J!!, END =[
1301 UNIT!l, START =, END .!!!l!lJlllJl. n~6:(UNIT 0, START 011200, END 012400

WORK3 ASGN 11311 UNIT~, START nnnnnn, END nnnnnn I
1301 UNIT ~, START nnnnnn, END nnnnnn 11311

(1301 UNIT 0, START 012400, END 012900

CORELOAD ASGN j 1311 UNIT~, START nnnnnn, END!:!!!!2!!!lli (OMIT
:::~I'TUNIT ~, START nnnnnn, END nnnnnn

NOTE: If the user'. system contains Autocoder and COBOL, the WORK 1 assumed assignment
is changed from START 004800, END 011200 to START 007200, END010400. The
assumed assignments for WORK2 and WORK3 remain the same.

Figure 16. ASGN Card Formats and Assumed Assignments

assembler will halt indicating that an area is too
small.

Note: If the SYSTEM file is on a 1311 drive other than drive 0
and drive 0 is not on-line, the user must change the
WORK!, woRK2, and WORK3 file assignments because the
Autocoder System assumes that the WORK files are on
1311 UNIT O.

CORELOAD File. "The disk area required for an ob­
ject program in the coreload format depends upon
the type of statements used in the source program,
the number of characters (instructions and data) in
the object program, and the number of loading in~
structions developed by the Output processor.

When the Output" processor transfers the object
program to the CORELOAD file, it builds as many full
9O-charaeter secto:rs as possible. These 9O-character
sectors contain data (such as a constant defined by
a DCW statement) and assembled instructions (such
as M 411 199). Each DA, DS, ORG, LTORG, XFR, and EX

statement causes the processor to begin building a

new set of 9O-character sectors.

Use the following as a guide for approximating the
disk area required:

1. One sector for the HEADER record. This record
contains the operand and the identification from
the last JOB card.

2. One sector for every 24 word marks specified in
each set of subsequent DA entries.

3. One sector for each record mark specified in
each DA header.

4. Two sectors for a DA header that specifies that
the defined area(s) be cleared.

5. One sector for each ,G specified in the source
program (DA header, new, and DC statements).

6. One sector for each EX, XFR, and END statement.
Each of these sectors contains a branch to the
program at object time.

7. One sector for every 90 object-program charac-

25

Device Entry and Values of!! and !:!!!!!!!!!!!

jl311l UNIT n, START nnnnnn, END nnnnnn
11301~ - -- --

n is the number of the disk unit, and can be
0, 1, 2, 3, or 4; ~ is a disk address.

READER !!

For 1402, !! can be 0, 1, or 2.

For 1442, !! can be 1 or 2.

PUNCH n

For 1402, !! can be 0, 4, or 8.

For 1442, !! can be 1 or 2

For 1444, !! must be 3.

PRINTER !!

!! can be 1 or 2

CONSOLE PRINTER

OMIT

Figure 17. Valid Device Entries

Remarks

The END address is the address of the next avai lable sector.

The values of nnnnnn must adhere to the following rules:
1. WORK 1 f~ the disk unit is 1311, the START address must be a

multiple of 200. If the disk unit is 1301, the START address must be a
multiple of 800. The END address (1311 and 1301) must be a multiple
of 40.

2. WORK2 and WORK3 files. The START address (1311 and 1301) of each
file must be a multiple of 100. (A START address that is a multiple of
200 results in the fastest assembly.) The END address (1311 and 1301)
of each file must be a multiple of 10.

3. LIBRARY file. The START and END addresses (1311 and 1301) must be
multiples of 20.

4. OU TPUT file. It is not necessary to spec ify that this fi Ie start or end at
any particular multiple. However, Autocoder will only use the file if
it begins at a multiple of 40.

In each of the first three cases, if the rules are violated, the system auto­
matically narrows in the disk area to an area that does adhere to the rules.
Incorrect addresses are not automatically corrected for the OUTPUT file.

For 1402, !! represents the pocket into wh i ch the cards are stacked.

For 1442 and 1444, !! represents the number of the unit.

!! represents the number of print positions available on the 1403 or 1443.

For 1403, a 1 indicates 100 positions and a 2 indicates 132 positions.

For 1443, a 1 indicates 120 positions and a 2 indicates 144* positions.

* Only 132 print positions are used by the Autocoder System.

The console printer for the control fi Ie must be an IBM 1447 without a
buffer feature or an IBM 1407. An IBM 1447 with a buffer feature can be
used for the message fi Ie, although the buffer feature is not used.

Select this option when the file is not to be used by the Autocoder System.
LIST, OUTPUT, and CORELOAD are the only files that can be omitted.

Figure 18. Coding for an OUTPUT ASGN Card

ters that precede each DA, DS, ORG, LTORG, XFR,

EX, and END statement. ApprOXimate the number
of 9O-character sectors in each set by:
a. Allowing seven object-program characters for

each imperative and declarative, except DS

and DA, statements.
b. Approximating the number of generated

statements associated with each macro in­
struction and multiplying the approximation
by 7.

26 Autocoder (Disk) Operating Procedures

8. One sector for the first ten object-program char­
acters in each set of 9O-character sectors. Be­
cause the first ten positions of each set of 90-
character sectors must contain a disk cont{ol
word, the processor builds a sector that contains
the first ten object-program characters in a set
and the instructions that load the ten characters
at object time.

9. At least one sector for the last group of object
program characters before each I>S, DA. ORG,

LTORG, XFR, EX, and END statement if the group
contains fewer than 90 characters. A maximum of
50 object-program characters can be contained
in one sector because the first portion of the sec­
tor contains instructions that load the object­
program characters at object time.

10. One sector to load each set of 90-character sec­
tors at object time.

To ensure that a sufficient disk area is allotted for
the COHELOAD file, the programmer should use his
source-program coding sheet to approximate the
number of sectors required. He should add five sec­
tors to his approximation to allow for cylinder over­
flow.

OUTPUT File. This file must be assigned to a disk
area for an AUTOCODER RUN because the Autocoder
text (100-character records) must be on disk for
Output processing.

The disk area reqUlired for the Autocoder text is
determined in the same manner as the area required
for WOHK1.

N ate: Do not assign the OUTPUT file to a disk area for an
AUTOCODER RUN THRU OUTPUT or for an OUTPUT RUN.

LIBRARY File. The method for determining the disk
area required for a LIBRARY file is given in Preparing
Library Jobs.

A LIBRARY file is required for an AUTOCODER RUN,
an AUTOCODER RUN THRU OUTPUT, and an AUTOCODER
RUN THRU EXECUTION. The user must be sure to in­
clude a LIBRARY ASGN card in the stack if Autocoder
processing is to be performed and the LIBRARY file
assignment (unit number and/or limits) differs from
that assumed by the Autocoder System.

Building a LIBRARY file and transferring routines
to it are described under Preparing Library Jobs.

Note,: If it is necessary to rebuild the Preprocessor,
the user can avoi.d destroying the LIBRARY file that is
within the limits assumed by the Autocoder System.
Place a dummy LIBRARY ASSGN card ahead of the
AUTOCODER RUN card which is the first card in the
section of the System deck labeled AUTOCODER PRE­
PROCESSOR. This dummy ASGN card should specify a
disk area whose contents need not be saved. For
example, the area that is alllotted to WORK 1 could be
specified.

Using ASGN Cards

At the beginning of stack processing, the System Con­
trol Program reads a list of assumed assignments into
core storage from the SYSTEM file. Each assumed as­
signment remains in effect until an ASGN card for that
file is sensed. Any changed file assignment remains in
effect until the next ASGN card for that file, or a HALT
card, is sensed.

If a file-qssignment change is applicable for an entire
stack, place the ASGN card immediately ahead of the
first RUN card.

If a file-assignment change is only applicable to a
specific job, place the ASGN card immediately ahead of
the RUN card for that job. To change the file assignment
back to the assumed assignment or to a different as­
signment, place the ASGN card immediately ahead of
the RUN card for the next job that requires the effective
file assignment to be changed.

Example. Figure 19 shows the use of ASGN cards. As­
sume that:
1. The stack consists of Job 1, Job 2, and Job 3.
2. The stack is to be on an IBM 1460 system with

IBM 1311 Disk Storage Drives and an IBM 1301
Disk Storage Unit.

3. The System, WORKl, WORK2, WORK3, and LIBRARY
files are located on the 1311 unit 1.

4. The 1311 unit 1 and the 1301 unit 0 are on line.
5. ASGN card A specifies SYSTEM ASGN 1311 UNIT 1.

A SYSTEM ASGN card is required for each stack of
jobs.

6. ASGN cards B, C, D, and E specify, respectively;
WORKI ASGN 1311 UNIT 1, START 004800, END
011200.
WORK2 ASGN 1311 UNIT 1, START 011200, END
012400.
WORK3 ASGN 1311 UNIT 1, START 012400, END
012900.
LIBRARY ASGN 1311 UNIT 1, START 012900, END
019980.
These ASGN cards are required because drive 0 is
not on-line. The limits of the files are those as­
sumed by the Autocoder System. Job 1 is an
AUTOCODER RUN THRU OUTPUT.

7. ASGN card F specifies:
OUTPUT ASGN 1301 UNIT 0, START 120000, END
125000.
This ASGN card changes the assumed OUTPUT file
assignment (Punch 4) for Job 2, which is an
AUTOCODER RUN.

8. ASGN card G specifies:
OUTPUT ASGN PUNCH 4.
This ASGN card changes the user's OUTPUT file as­
signment back to the assumed OUTPUT file assign­
ment for Job 3, which is an AUTOCODER RUN THRU
OUTPUT. Note that an INIT card could not be used
to restore the OUTPUT assumed assignment, be­
cause an INIT card would restore all assumed file
assignments.

Botched Files
Batched files are defined as the external files INPUT,
OUTPUT, LIST, and CORELOAD whose contents represent

27

G

HALT

Source Deck

OUTPUT ASGN

AUTOCODER RUN~
THRU OUTPUT

AUTOCODER RUN IYI
JOb

2

OUTPUT ASGN Y "0

AUTOCODER RUN ~Ob 1 THRU OUTPUT

1I BRARY ASGN

D WORK3 ASGN
~--------,

C WORK2 ASGN

WORK1 ASGN

SYSTEM ASGN

1402 Card Boot

Figure 19. Changing File Assignments

one or more sequential sets of input to or output from
the processor(s).

The following example illustrates the advantage of
a batched CORELOAD £Ie by describing the building and
use of an object-program library.

Procedure: Perform a series of conventional assemblies
(AUTOCODER RUN TIlRU OUTPUT) using the CORELOAD

option. Follow the option card for each job with a
NOTE card that contains the program identification.
Record the messages that are printed during proc­
essing.

Result: The programs are assembled and batched
(stored sequentially) in the CORE LOAD £Ie. After each
program has been transferred to disk storage, a mes­
sage specifying the START and END addresses of the
program in disk storage is printed. The information
punched in the NOTE card is printed immediately
after the message. The inclusion of the NOTE card
ensures accurate documentation.

Future Use: When the object programs are required:
1. Refer to the messages that state the disk location

of the programs.
2. Prepare INPUT ASGN card(s) using the information

supplied in the message. The £Ie containing the
programs becomes the INPUT £Ie for one or more
EXECUTION RUN jobs.
a. If the programs are to be selected and executed

28 Autocoder (Disk) Operating Procedures

sequentially, only one INPUT ASGN card :is required
for the stack because the programs are batched.
b. If the programs are to be selected randomly
and executed, an INPUT ASGN card is required for
each job.

3. Prepare an EXECUTION RUN card for each job.
4. Perform the stack of jobs as described under

Running a Stack.

Preparing Library Jobs

Library jobs are associated with the maintenance of an
Autocoder LIBRARY file, which is a disk storage £Ie that
supports the Autocoder macro facility. The file con­
tains a library table and library routines, such as Auto­
coder macros and lOCS.

The three library jobs are:
1. Libmry build which enables the user to define a

LIBRARY £Ie. A library-build job, performed when
the System is built, defines a LIBRARY HIe on the
same disk unit as the SYSTEM £Ie. The limits of this
LIERARY £Ie are 012900 and 019980. Thus, the as­
sumed assignment for the LIBRARY £Ie is 1301 or
1311 UNIT 0, STAIn 012900, END019980.

After the library-build job has been performed,
the LIBRARY £Ie contains the library table and a
record that specifies the end-of-library name (99999).

The library table contains the end-of-library name
and its disk address.

2. Library listing which enables the user to obtain a
list of library routines, a list of routine-names, or a
punched-card deck that contains all the statements
currently in the LIBRARY file.

3. Library change which enables the user to insert
routines in a new LIBRARY file or to modify the con­
tents of an existing LIBRARY file. A library-change
job, performed when the System is built, transfers
the Autocoder macros to the LIBRARY file after the
file has been defined by the library-build job.

Capacity of a LIBRARY File

The model statements that make up a library routine
are stored in the LIBRARY file in the following manner:
the model statement is compressed and high-order
blanks are eliminated. The model statements are stored
as variable-length records in two-sector blocks. The
library table requires twelve sectors of the LIBRARY file.

The first two positions in every statement in the
LIBRARY file are used for a record count. The length of
a statement, including the record count field, is:

l. BOOL or MATH statement: 18 characters plus oper­
ands and comments.

2. Labeled model statement: 18 characters plus oper­
ands and comments.

3. Unlabeled model statement with operands and/or
comments: 8 characters plus operands and com­
ments.

4. Unlabeled model statement with no operands or
comments:
a. 2 characters plus the operation code if column 6

is blank.
b. 8 characters :if column 6 is not blank.

Column 6 can contain a special one-character label
that is associated with a BOOL statement.

Note. To fully optimize the library area, the user should not
leave more than two blanks between the operands and
a comment in a model statement because the librarian
phase of Autocoder cannot eliminate unnecessary blanks
within the statement.

Library Build

Each library-build job defines a LIBRARY file. The LI­

BRARY file contains a library table and a record that
specifies the end-of-library name (99999). The library
table contains the end-of-library name and its disk
address.

Perform a library change to insert routines in the
new LIBRARY file.

The library build enables the user to increase his
library facilities by:

l. Defining one or more LIBRAHY files within the limits
assumed by the Autocoder System. The use of small
LIBRARY files reduces the time required for librarian
jobs.

2. Reducing the size of the WORK files and extending
the LIBRARY file(s) into that area.

3. Defining one or more libraries that are not located
on the same disk unit as the SYSTEM file.

The library build can also be used to define a LI­

BRARY file with the same limits as an existing LIBRARY

file. If the user wishes to delete most of the routines in
the file, he may find that it is easier to create a new
library table and perform a library change to insert
his routines in the LIBRARY file, than it is to perform a
library change to delete the routines.

If a library build affects a previously defined LI­

BRARY file, any routines in the LIBRARY file before the
build will not be available at the end of the job be­
cause the library build destroys the old library table.

The control cards required for the library build job
are:

l. A LIBRARY ASGN card which is required if the assign­
ment of the LIBRARY file differs from that assumed
by the Autocoder System. This ASGN card is punched
in the following manner:

Columns

6-12

Contents

LIBRARY
16-19 ASGN
21-57 1301 UNIT n, START nnnnnn, END nnnnnn

or
1311 UNIT n, STAIn nnnnnn, END nnnnnn

The value n indicates the number of the disk unit and
can be 0, 1, 2, 3, or 4; nnnnnn represents a disk address.
The limits of the new library must also be specified.

2. A RUN card punched in the following manner:

Columns Contents

6-14 AUTOCODER
16-18 RUN

3. An OPTN card punched in the following manner:

Columns Contents

6-15 INITIALIZE
16-19 OPTN

The INITIALIZE OPTN card may be followed immediately
by the cards used to place the macros on the library,
beginning with the AUTOCODER RUN card, as described
in Library Change. Figure 20 shows the arrangement
of the control cards.

29

Library Listing

Four kinds of output are available from the library­
listing job:
l. A listing of the names of all the routines (macros)

in the Autocoder library.
2. A listing of all the entries in every library routine.
3. A listing of the entries in specific library routines.

Sequence numbers of statements in a library routine
are listed under the column header ALTER. These se­
quence numbers should correspond to sequence num­
bers used in the DELET and INSER statements that are
required for library-change operations.

4. A punched-card deck that contains INSER and model
statements (one statement per card). Each routine is
preceded by an INSER card. All the routines in the
LIBRARY file are punched if this option is selected.

Figure 21 shows a listing of the IBM-supplied LDRCL
macro. The characters listed under column L are the
labels for BOOL instructions.
The control cards for a library listing are:
1. A LIBRARY ASGN card which is required if the assign­

ment of the LIBRARY file differs from that assumed
by the Autocoder System. See Library Build for the
format of the LIBRARY ASGN card.

2. A RUN card punched in the following manner:
Columns

6-14

16-18

Contents

AUTOCODER
RUN

3. An OPTN card punched in the following manner:

Columns Contents

6-12 LISTING
16-19 OPTN
21-? ALL, if all routines are to be listed, or

HEADER if all routine-names are to be listed, or
PUNCH if all routines are to be punched into
cards using a 1402 or 1442 Card-Read Punch, or
PUNCH1444 if all routines are to be punched
into cards using a 1444 Card Punch, or
Blank if only specific routines are to be listed.

Note: When the output from a library listing job is a punch­
ed-card deck, a hard halt (halt 006) occurs at the com­
pletion of the job. Therefore, when used in a stack/ con­
sisting of more than one job, a library punching job
should be the last job in the stack.

4. Routine-name cards punched in the tollowing man­
ner are required if specific routines are to he listed:

-'- INITIALIZE opm
/ AUTOCODER RUN

LIBRARY ASGN

t-or---_---- 1f required
~------------~

Figure 20. Library Build

30 Autocoder (Disk) Operating Procedures

!;1EADER LDRCL

ALTER l lABEL OP OPERANDS

0001 *** RETURN CONTROL TO DISK lOADER *** 0002 BOOl A,-#04*-#05
0003 B 3701
0004 NOP
0005 MEND
0006 A BOOl A,-#04*#05
0007 B 7701
0008 NOP
0009 MEND
0010 A BOOl A,#04*-#D5
0011 B 11701
0012 NOP
0013 MEND
0014 A B 15701
0015 NOP
0016 MEND

Figure 21. Library Listing

Columns Contents

16-20 Name of routine

The routine-name cards can be in any order.
5. An END card, punched in the following manner, is

always required:

Columns Contents

16-18 END

Figure 22 shows the arrangement of the control
cards for a library listing of specific routines.

Library Change

Library routines, supplied by IBM or developed by the
user, can be added, modified, or deleted. ~:ntries are
inserted and/or deleted in collating sequence.

IBM provides a change deck whenever IBM-supplied
library routines (macros) should be modified. The
change deck includes an AUTOCODER RUN card, a LI­

BRARY OPTN card, INSER and/or DELET cards, an END
card, and cards containing the changes to be made.

The user's change cards can be punched in the disk
Autocoder or tape Autocoder format. Library entries
in the tape Autocoder format must not contain any
000 notations. The tape Autocoder entries are auto­
matically converted to disk Autocoder format; all con­
dition codes become BOOL statements. The library­
change operation cannot process input that contains

(END

(Macro names

(LISTING OPTN i--

(AUTOCODER RU N
/ 1--

LIBRARY ASGN
r---

r-
I f required

Figure 22. Library Listing

a combination of tape Autocoder and disk Autocoder
entries.

For a description of the library statement formats
refer to Autocoder (on Disk) Language Specifications
for IBM 1401, 14"10, and 1460, Form C24-3258, and
Autocoder (on Tape) Language Specifications and Op­
erating Procedures for IBM 1401 and 1460, Form
C24-3319.

In addition to the cards containing the changes, the
following control cards are required for a library
change.
l. A LIBRARY ASGN card which is required if the assign­

ment of the LIBRARY me differs from that assumed
by the Autocoder System. See Library Build for the
format of the LIBRARY ASGN card.

2. A RUN card punched in the following manner:

Columns Contents

6-14
16-18

AUTOCODER
RUN

3. An OPTN card punched in the following manner:

Columns Contents

6-? LIBRARY or COMPAT
16-19 OPTN
21 1 (if the direct seek feature is available)

If the cards containing the changes are punched in
the disk Autocoder format:, the LIBRARY OPTN card
is required. If the cards are punched in the tape
Autocoder format, the COMPAT OPTN card is re­
quired.

4. An INSER card is required for each set of insertions.
The INSER card is punched in the following manner:

Columns

6-?

16-20

21-?

Contents

Name of the library routine (macro name) to be
inserted or modified

INSEH

Sequence number(s)
a. Insertion. Punch n; n is the number of the

statement after which the insertions are to
be made.

b. Substitution. Punch n,m; nand m are the
numbers of the first and last statements to be
replaced by the insertions. All statements be­
tween and including statement n and state­
ment m will be deleted, and the insertion will
be substituted. Insertions and deletions need
not be in a one··to-one correspondence.

c. Leave blank if an entire routine is to be in­
serted or modified. If an entire routine is to
be modified, the routine presently in the li­
brary will be automatically deleted before
the new routine is inserted.

5. A DELET card is required for deletion of a routine
or part of a routine. The DELET card is punched in
the following manner:

Columns Contents

6-? Name of library routine (macro name) to be
deleted or modified

16-20 DELET

m-? a. Leave blank if an entire routine is to be de-
leted.

b. If one statement is to be dclcted, rnmch the
number of the statement.

c. If more than one statement is to be deleted,
punch n,m; nand m are the numbers of the
first and last statements to be deleted. All
statements between and including statement
n and statement m will be deleted.

6. An END card indicates the end of a library-change
operation. It is punched in the following manner:

Columns Contents

16-18 END

Figure 23 shows the arrangement of the input cards.

Performing Jobs
Under control of the System Control Program, it is
possible to process one or more jobs without operator
intervention. For this stack processing to be accom­
plished, each separate job must be called for by the
necessary control cards. A list of the operations that
can be performed in a stack follows.
Logical File Assignments. Assign decks are made up of

one or more ASGN control cards specifying input/
output devices that differ from the effective devices
of the System Control Program. With the exception
of the SYSTEM ASGN card, logical-me ASGN control
cards can appear as frequently within the stack as
the user wishes. Individual control cards within the
deck can be in any order. The SYSTEM ASGN card
appears once in a stack and immediately follows the
Card Boot deck. A CORE LOAD ASGN card is required
if THRU EXECUTION is specified in a RUN card or if a

END

Library Statements

INSER
DELET

Entire Library Routine

INSER

LIBRARY OPTN
AUTOCODER RUN

LIBRARY ASGN

L-______ ----l1-----lf required

Figure 23. Library Change

31

CORELOAD OPTN card is included in the processor-job
deck.

Library Maintenance. The composition of a library
deck depends primarily upon the nature of the li­
brary job. However, an AUTOCODER RUN card is al­
ways required.

System Updating. Update decks as supplied by IBM

are read by the System Control Program and must
be available to the System on the device to which
the CONTROL file is assigned. An update deck con­
sists of one or more control cards, followed by any
appropriate data cards.

Processor Runs. Runs depend upon a RUN card and the
input to the processors. If the INPUT file is assigned
to the same device as the CONTROL file (the card
reader), each source deck must be placed behind
its respective RUN control card. If the input to the
processors is written in disk storage, an INPUT ASGN

card is required designating the location of the
source material in disk storage.

Communicating with the Operator. NOTE control cards
and PAUSE control cards can appear anywhere in a
stack between, not within, jobs. A HALT card must
be the last card of a stack.

Preparing a Stack.
The Card Boot deck, a SYSTEM ASGN card, and a HALT

card are always required. The formats of the SYSTEM

ASGN and HALT cards are shown in Appendix I.
The input cards for a stack are arranged in this order:

1. The 1402 or 1442 Card Boot deck.
2. The SYSTEM ASGN card.
3. Job decks, to include the assign card(s), library

deck(s), update deck(s), and processor deck(s). Job
decks can be in any order.

4. The HALT card.
This stack is placed in the card reader and is read by
the Autocoder System.

Figure 24 shows a stack with CONTROL and INPUT

files assigned to the same device.
Figure 25 shows a stack with CONTROL and INPUT

files assigned to different devices.

Running a Stack
To perform a stack run when the System resides on
1311:
1. Place the System pack on the disk drive referred

to in the SYSTEM ASGN control card, and ready the
drive. (This card immediately follows the 1402 or
1442 Card Boot deck.)

32 Autocoder (Disk) Operating Procedures

2. Ready all the input/output devices to which the
logical files are assigned. These are the assumed
devices of the System Control Program and/or the
devices defined by the ASGN cards. The assumed
devices are: disk drive 0, the card reader, the card
punch, and the printer.

3. Ready the console:
a. Set the I/O check-stop switch off.
b. Set the check-stop switch and disk-write switch

on.
c. Set the mode switch to RUN.

d. Press CHECK RESET and START RESET.

4. Load the program.
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

5. When the System attempts to read the last card:
a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the card
reader.

To perform a stack run when the System resides on
1301:

1. Ready all the input/output devices to which the
logical files are aSSigned. These are the assumed de­
vices of the System Control Program and/or the
devices referred to in the ASGN cards. TIle assumed
devices are: disk unit 0, the card reader, the card
punch, and the printer.

2. Ready the console:
a. Set the I/O check-stop switch off.
b. Set the check-stop switch and disk-write switch

on.
c. Set the mode switch to RUN.

d. Press CHECK RESET and START RESET.

3. Load the program:
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

4. When the system attempts to read the last card:
a. 1402 Card Reader: Press START.

b. 1442 Card Header: Press START on the card
reader.

Loading Object Programs
Punched-card object programs can be executed inde­
pendently of the Autocoder System. The procedures to
be followed when a card-read error occurs depend on
the format of the program and the object system.
To load the program:

1. Place the object deck in the card reader. (If for any
reason the user does not wish to clear storage before

Deck

Figure 24. Stack with CONTROL and INPUT Files Assigned to thc Samc Device

HALT

AUTOCODER RUN
THRU OUTPUT

INPUT ASGN

£ LIST OPTt\l 7 Job 3
OUTPUT RUN

INPUT ASGN }
(EXECUTION RUN 'l

(
Job 2

INPUT ASGN
~------------~ r-

/ SYSTEM ASGN
L r----?
~ 1402l t--~ Job 1
/1442 \ Card Boot r---

Job 1

Job 3

Figure 25.. Stack with CONTROL and INPUT Files Assigned to Different Devices

loading the object program, he should remove the
first two cards from the deck. These are the clear­
storage cards generated by the processor.)

2. Set the I/O check-stop switch on. Set sense switches
as needed by the object program.

3. Press CHECK RESET and START RESET.

4. Load the program:
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Header: Press START on the card

reader, and PROGRAM LOAD on the console.
5. When the system attempts to read the last card:

a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the card
reader.

If a card-read error occurs while loading an object­
program deck with the I/O check-stop switch on, the
following procedures are followed to correct the error.
If the reader is a 1402:

33

1. Non-process run-out the cards in the card reader.

2. Place the last three cards (two non-processed cards
and the card in error) in the hopper.

3. Press CHECK RESET on the reader and START.

If the reader is a 1442 and the object-program deck is
in the 1440 condensed-loader format:

1. Non-process run-out the cards in the card read.er.

2. Place the last two cards in the hopper.

3. Press CHECK RESET and START RESET.

4. Set the I-address register to the ninth position of
the loader.

5. Press START on the reader and START on the console.

34 Autocoder (Disk) Operating Procedures

If the reader is a 1442 and the object-program deck
is in the 1440 self-loading format:

1. Non-process run-out the cards in the card reader.
2. Place the last two cards in the hopper.
3. Press CHECK RESET and START RESET.

4. Set the I-address register to 00073.
5. Press START on the reader and START on the console.

Halts and Messages
The haIts and messages shown in Figure 26 can appear
during a stack run. To display haIt numbers, press the
A-address register key. Messages are printed on the
MESSAGE file.

Halt Number
(A-Addness
Register)

1bb

2bb

3bb

4bb

5bb

6bb

MESSAGE and/or Meaning

Card read error.

Wrong-length record or no-address-compare error sensed
ten times during (l disk-read or write operation.

Parity error sensed ten times during a disk-read or write
operation.

Not-ready condition sensed when a disk-read or write
operation was attempted.

1. Librarian-control OPTN card is incorrect, or
2. Preprocessor phase not on the SYSTEM fi Ie.

One of the following messages precedes this halt:

ERROR HEADER ABOVE UNK NOWN

A phase update card specifies a phase name that is not in
the phase table.

ERROR NO KNOWN TYPE OF UPDAT

Columns 21- ? of a phase update card are incorrect.

ERROR CYLINDER OVERFLOW

The phase update card specifies that the phase is to be
placed on a set of sectors that exceeds one cylinder.

ERROR ACTUAL IDENT UNEQUAL TO HEADER IDENT

Columns 76-80 of a change card do not contain the phase
name specified in columns 6-10 of the update control
card associated with it.

ERROR NON CONTROL CARD WITHOUT CONTROL
PRECEDI NG

An update card is missing, out of sequence, or mis­
punched.

ERROR UNKNOWN EXECUTE CARD

A change card with 006 punched in columns 1-3 does not
have =, or =/ or =M punched in columns 6 and 7. These
punches are found in set-word-mark or clear cards developed
for a DA statement. No other types of special execute cards
are permitted.

ERROR PATCH ABOVE OUTSIDE OF PROGRAM LIIMITS

The phase area c:annot contain the data specified in the
change cards.

Figure 26. Halts and Messages (Part 1 of 5)

Restart Procedure

1. 1402 card reader: non-process run-out the cards in the
reader. Place the last three cards (two non-processed
cards and the card in error) in the hopper. Press START.

2. 1442 card reader: non-process run-out the cards in the
reader. Place the two non-processed cards in the hopper
(The first nan-processed card is the card in error). Press
START on the reader and START on the console.

Press START for ten disk-read or write retries.

Press START for ten disk-read or write retries.

Ready the disk unit and press Sf ART.

1. Non-process run-out the cards in the card reader,
correct the OPTN card, and restart the system, or

2. If the OPT N card is not incorrect, use the part of the
system deck labeled AUTOCODER PREPROCESSOR and
rebuild the preprocessor portion of the system. Follow
the procedures as described in Building an Autocoder
System.

The contents of the error cards (He printed. Non-process
run-out the cards in the card reader, correct the error card,
and restart the update operation. Corrections successfully
completed before the halt occurs need not be reprocessed.

35

Halt Number
(A-Address
Register)

7bb

8bb

9bb

10bb

11 bb

12bb

13bb

14bb

22bb

33bb

MESSAGE and/or Meaning

ERROR CHARACTER COUNT TOO LARGE

A change card contains a character count greater than 67
characters. The character count is punched in col umns 4
and 5.

ERROR ABOVE CARD CREATES GROUP MARK WORD
MARK

A set-word-mark card developed for a DA statement
attempts to set a word mark over a position containing
a group mark, or a condensed card contains a word separa­
tor character followed by a group mark. This is an error
because a group mark with a word mark can neither be read
from nor written in disk storage.

More than 50 different DTF entries used in the program.

CONTROL CARD ERROR LI BRARY OPTN

This halt indicates one of the following conditions:
1. An I NSER, DELET, or END card is missing or mis­

punched.
2. An attempt to insert or delete entries in a library

routine that does not exist.
3. Entries not in collating sequence, according to

macro name and/or sequence number.

Any disk error that occurs while the bootback routine is
return ing control to the System Control Program.

More than 300 macros within macros have been used in
the source program.

WORKI capacity exceeded during an AUTOCODER RUN
THRU OUTPUT or an AUTOCODER RUN THRU EXECU­
TION, or OUTPUT-file capacity exceeded during an
AUTOCODER RU N.

Disk-error condition sensed during the Preprocessor
phase.

LIBRARY file capacity exceeded. Part of the library
routine that was being processed when the halt occurred
will be in the LIBRARY file. JIll library routines follow­
ing the routine being processed will no longer be in the
LIBRARY file.

Invalid card encountered during LIBRARY OPTN run.

More than 30 different I NCLD routines used in one
overlay.

Library table (99 macro names) exceeded.

Figure 26. Halts and Messages (Part 2 of 5)

36 Autocoder (Disk) Operating Procedures

Restart Procedure

Correct the source program and reassemble the source
program from the beginning.

The contents of the incorrect card(s) are printed" Remove
the incorrect card(s) and place the remainder of the cards in
the card reader. If the library change operation is not
completed, the LI BRARY fi Ie cannot be used.

Press START for one disk retry.

Correct the source program and reassemble the source pro­
gram from'the beginning.

Change the WORKI or OUTPUT ASGN card and restart the
assembly of the job.

Press START for ten disk retries.

To finish the job:
1. 1402 card reader: nonprocess run out the cOlrds in the

reader. Place the END card in the hopper. Press
START.

2 • 1442 card reader: nonprocess run out the cOlrds in the
reader. Place the END card in the hopper. Press
START on "he reader and START on the console.

To determine the names of the routines remaining in the
LIBRARY file, perform a library-I isting operation and specify
HEADERS in the LISTING OPTN card.

Press START to complete the run. The invalid card will be
bypassed. If the run is not completed, the LIBRARY file
cannot be used.

Correct the source program and reassemble the source program
from the beginning.

To finish the job:
1. 1402 card reader: nonprocess run out the cards in the

reader. Place the END card in the hopper. Press
START.

2. 1442 card reader: nonprocess run out the cards in the
reader. Place the END card in the hopper. Press
START on the reader and START on the console.

To determine the names of the routines in the LIBRARY file,
perform a library-listing operation and specify HEADERS in
the LISTING OPTN card.

Halt Number
(A-Address
Register) MESSAGE and/or Meaning Restart Procedure

001 WRO NG SYST EM 1. Non-process run-out the cards in the reader.
2. Correct the SYSTEM ASGN card, or place the correct

The message appears unconditionally on the printer. pack on the unit indicated in the SYSTEM ASGN card.
3. Restart the stack.

002 TEN RD TRIES PRESS STRT FOR 10 MORE Press START for ten disk-read retries.

The message appears unconditionally on the printer. It
indicates any disk error while attempting to read the
SYSTEM file.

003 SYSTEM ASGN NOT SENSED 1. Non-process run-out the cards in the reader.
2. Place the SYSTEM ASGN card and the remainder of

The SYSTEM ASG N card did not immediately follow the the stack in the read hopper.
Card Boot. 3. If the reader is 1402, press START.

4. If the reader is 1442, press START on the reader and
START on the console.

004 Parity check, wrong-length record, or no-address- Press START for 10 disk-read retries.
compare error sensed 10 successive ti nes during disk
bootstrap operation.

005 End-·of-file sensed in SYSTEM file during disk boot- Non-process run-out the cards in the reader and restart the
strap operation. stack.

006 HALT card image Hard halt.

I ndicates the end of the stack.

007 Carel-punch error. 1. 1402 card punch and 1444 card punch: non-process
run-out the cards in the punch. Discard the last three
cards (two non-processed cards and the card in error)
in the stacker. Press START.

2. 1442 card punch: discard the last card in the stacker.
Press START on the punch and START on the console.

008 Card-read error. 1. 1402 card reader: non-process run-out the cards in the
reader. Place the last three cards (two non-processed
cards and the card in error) in the hopper. Press START.

2. 1442 card reader: non-process run-out the cards in the
reader. Place the two non-processed cards in the
hopper. Press START on the reader and START on the
console.

009 Printer error. 1. 1403 printer: press START.
2. 1443 printer: press START on the printer and START on

the console.

010 Non-blank card at the punch station in the 1442 card Non-process run-out the cards in the 1442. Place blank
read-punch. cards before the non-processed cards. Press START on the

1442 and START on the console.

011 PAUSE card image. Press START.

012 Console-printer error Press START for one retry of the read cr write operation.

013 ***ASGN card image 1. 1402 card reader: the card in the stacker is the in-
correct ASGN card. Correct the ASGN card. Non-

The halt indicates that the ASGN card is incorrectly process run-out cards in the reader. place the correc-
punched. ted ASGN card and the two non-processed cards in

the hopper. Press START.
2. 1442 card reader: non-process run-out the cards in the

reader. The first non-processed card is the incorrect
ASGN card. Correct the ASGN card. Place the
corrected ASGN card and I'he second non-processed
card in the hopper. Press 5T ART on the reader and
START on the console.

Figure 26. Halts and Messages (Part 3 of 5)

37

Halt Number
(A-Address
Register) MESSAGE and/or Meaning Restart Procedure

3. If the user wishes, he can ignore the two sl'eps outlined
above, and press START. The system willl~hen use the
effective device assignment for that particular file.

040 The logical file has been assigned to an area that overlaps Hard halt. Change the assignment and restart the stack with
a previously defined file label. (1311 only.) the Card Boot.

168 Phase not found in phase table while in supervisory call A part of the System must be rebuilt. Use the parts of the
for phase. System deck labeled CARD BUILD, SYSTEM CONTROL, and

AUTOCODER PROCESSOR. Follow the procedures as des-
cribed in Building an Autocoder Slstem.

500 Disk not ready. Ready the disk unit and press START.

629 Parity check, wrong-length record, or no-address-compare Press START for 10 disk-read or write retries.
error sensed 10 successive times during a disk-read or write
operation.

777 This ha It wi II occur if the work areas are not large enough. Hard Halt. Enlarge work areas to required size and
restart the assemb Iy •

1250 END OF CONTROL CARD DIAGNOSTICS NOTE - As indicated in the message.
PRESS START TO ASSEMBLE, START -RESET AND START
TO BYPASS ASSEMBLY

1447 NOTE - ASSEMBLY ERRORS - PRESS START TO EXE- As indicated in the message.
CUTE, START - RESET AND START TO BYPASS
EXECUTION

1833 NOTE - DIAGNOSTICS - PRESS START TO ASSEMBLE, As indicated in the message.
START - RESET AND START TO BYPASS ASSEMBLY

START ADDRESS OF INPUT FILE DOES NOT REFER TO If a message is printed and no halt occurs, the next control

HEADER RECORD card is processed.

EXPECTED HEADER # (52 positions) #, FOUND
/ (52 pasitions) /

EXPECTED ID #XXXXX#, FOUND /XXXXX/

NOTE card image

*** card image
All cards not recognized by the System Control Program
are flagged (***), written on the MESSAGE file, and
bypassed by the System.

Card image

INVALID UPDAT TYPE

Update card with invalid update mode designated.

PHASE XXX ALREADY ON SYSTEM. WILL DROP THIS
SET OF CARDS

PHASE XXX NOT FOU ND

HEADER CARD ERROR

All header cards must have 24232 in columns 1 through
5.

Card image

PHASE AREA EXCEEDED

****PROCESSOR UNKNOWN****

Figure 26. Halts and Messages (Part 4 of 5)

.']8 Autocoder (Disk) Operating Procedures

Halt Number
(A-Address
Register) MESSAGE and/or Meaning Restart Procedure

--------------+---+---~

CORELOAD NOT ASSIGNED, OPTION NOT DONE

The next output opl'ion is processed.

CORELOAD FILE NOT ASSIGNED, OPTION NOT DONE
AND EXECUTION SUPPRESSED

Image of an output option card - OPTION UNK NOWN

The next output option card is processed.

CORELOAD HEADER - (52 positions), ID - (5 positions)

Use the information in an EXECUTIO N RU N card.

CORELOAD OUTPUT COMPLETE ON ~l~bl ~ UNIT~,
START~, END ~

The START address is address of the object program header
record. The END address is the address of the next avail­
sector. Use the information in an INPUT ASGN card for
an EXECUTION RUN.

{
LST }
OUT FILE ~STARTS{ ON ~131q UNITnAT

~ENDS ~ 11301~ --INP

ADDRESS nnnnnn

XXXXX MACRO NOT I N LIBRARY

The macro requested (XXXXX) is not in the LIBRARY file.

END OF LISTING OPTN

The library-listing job has been completed.

XXXXX BLOCKS LEFT EOJ

The I ibrary-change operation has been completed.
XXXXX is the number of blocks avai lable in the
LIBRARY file.

END OF SYSTEM OPTN

The update operation has been successfully completed.

LIBRARY FILE NOT RECOGNIZED

The I ibrary has not been assigned correctly or the
library has not been initialized.

OUTPUT FILE NOT ASSIGNED TO DISK

The RUN card specifies AUTOCODER RUN. The Auto­
coder text must be written on disk.

INPUT FILE NOT ASSIGNED TO DISK

The RUN card specifies OUTPUT RUN or OUTPUT RUN
THRU EXECUTION. An INPUT ASGN card, designating
the location of the Autocoder Text, is required.

NO TEXT I N INPUT FI LE

1 EOFb sensed in the INPUT file and the Autocoder Text
has not been processed; or, the assigned I NPUT file does
not contain text.

Figure 26. Halts and Messages (Part 5 of 5) 39

Using and Maintaining the Obiect Program

Methods of Execution
An object program can be executed by using any of the
following methods:

1. Load-and-go

2. Delayed execution
a. Controlled
b. Independent.

Load-and-Go

Automatic loading and execution of an object program
is a processor job. The object program is written on
the CORELOAD file, loaded into core storage, and control
is transferred to it. See Autocoder Run Thru Execution
and Output Run Thru Execution for the formats of the
required control cards.

Delayed Execution

Execution of an object program that has been pro­
duced by an AUTOCODER RUN THRU OUTPUT or an OUTPUT

RUN is called delayed execution. The object program
can be executed under control of the Autocoder System
or independently of the System.

Controlled Execution

Controlled execution is initiated by an EXECUTION RUN

card. See Delayed Execution under Preparing Proc­
essor lobs for the formats of required control cards.

The advantages gained by executing programs under
control of the Autocoder System are:

1. Object programs, in the coreload format or punched
into cards, can be selected and executed.

2. More than one object program in the coreload for­
mat can be loaded from disk storage and executed
during an EXECUTION RUN. (See Multi-Program
Execution.)

3. Control can be returned to the System Control Pro­
gram after object-program execution. This feature
makes it possible to perform the next job without
operator intervention.

Processor Action
If the input is in the coreload format, the Execution
processor:

1. Determines if the START address of the INPUT file
refers to a header record. If the record is not a
header record, a message is printed on the MESSAGE

40 Autocoder (Disk) Operating Procedures

file, and control reverts to the System Control Pro­
gram.

2. Compares columns 21-72 and 76-80 of the EXECU­

TION RUN card, if punched, with the portion of the
header record that contains JOB card information.
If the fields are not identical, a message is printed
on the MESSAGE file and control reverts to the System
Control Program. The message consists of the infor­
mation that is supposed to be in the record and the
information that is in the record.

3. Clears storage from the disk loader down to posi­
tion 1.

4. Transfers program control to the disk loader. After
the loading process has been completed, control is
transferred to the object program.

If the input is from cards, the object-program clear­
storage cards are bypassed and storage is cleared from
the bootstrap routine down to location 80. Control is
then transferred to the object-program bootstrap
routine.

If the loader has not been destroyed during a pro­
gram overlay, loading can be resumed by branching
to the disk loader (3701 for 4K, 7701 for 8K, 11701 for
12K, and 15701 for 16K). The inclusion of the LDRCL

macro in the source program provides the linkage.

Multi-Program Execution
More than one object program, in the coreload format,
can be loaded and executed during an EXECUTION RUN.

If the object programs are to be selected randomly, the
last two instructions in all object programs, except the
last object program to be executed, must be:

1. An instruction that moves the disk unit number and
the disk address of the next object program's header
record into the core storage locations that contain
the address of the next sector to be read. (3825-
3831 for 4K, 7825-7831 for 8K, 11825-11831 for 12K,
and 15825-15831 for 16K.) Thus, the next object
program must have been assembled and transferred
to the CORELOAD file before the instruction can be
coded. The message that is printed after an object
program has been transferred to the CORELOAD file
gives the address of the object program's header
record.

2. A branch to the disk loader. (3701 for 4K, 7701 for
8K, 11701 for 12K, and 15701 for 16K.) The inclu­
sion of the LDRCL macro instruction as the last in-

struction before the source program END statement
will provide the linkage to the disk loader.

If the object programs are batched on the CORELOAD file
and are to be processed sequentially, only the branch
to the disk loader is required. Because the object pro­
grams are stored sequentially, the address of the next
object program's header record is in the core storage
llocations that contain the address of the next sector
ito be read.

After executing an object program, the disk loader
does not clear core storage. The user should clear core
storage (if required) before calling the next object
program for execution.

Note: The disk loader, which begins at 3701 for 4K, 7701
for 8K, 11701 for 12K, and 15701 for 16K, must not be
destroyed during program execution. The loader itself requires
134 positions. The remaining high core-storage positions contain
t:he read-in a:rea for the loader and the bootback routine.

Example: Assume that two object programs are to be
selected randomly during a single EXECUTION RUN
and that the object system size is 12K. The pro­
cedure would be:

l. Assemble the second object program to be executed
by performing an AUTOCODER RUN TIIRU OUTPUT
with the CORELOAD OPTN specified.

2. Record the message. Assume that the message is
CORELOAD OUTPUT COMPLETE ON 1311 UNIT 1 , START
012300, END 012399.

:3. Code the last three source statements in the first
program to be executed as shown in Figure 27.
Assume that the symbolic address of the first in­
struction to be executed is BEGIN. In a 12K machine,
positions 11825-11831 contain the address of the
next sector to be read.

4. Assemble the first object program to be executed by
performing an AUTOCODER RUN TIIRU OUTPUT with
the CORELOAD OPTN specified.

S. Record 1the message. Assume that the message is
CORELOAl) OUTPUT COMPLETE ON 1311 UNIT 1 , START
004596, END 004960.

O. When the EXECUTION RUN is to be performed, use:
a. An ASGN card that specifies INPUT ASGN 1311 UNIT
1, START 004596, END 004960. This ASGN card assigns the
INPUT file to the disk area that contains the first
object program to be executed. Because the second
program is not selected for loading by the Execution
processor, the area aSSigned to the INPUT file need
not contain the second program.
b. An EXECUTION HUN card whose operand contains

I£N.D. IB£Q. I N

Figure 27. Coding for Multi-Program Execution

the information from the last JOB card in the first
program to be executed.

Example. Assume that three object programs are to be
stored and executed sequentially. The procedure
would be:

1. Assemble the programs. Perform a series of Al:TTO­
CODER RUN TIIRU OUTPUT jobs with the CORELOAD
OPTN specified for each joh. (The LDRCL macro in­
struction must be the last instruction of the first two
source programs.)

2. Record the messages that arc printed after the core­
load operations are completed.

3. When the EXECUTION RUl\" is to be performed, use:
a. An INPUT ASGN card that specifies the disk area
that contains the programs. The START address must
be the address of the first object program's header
record. Use the START address from the first message
and the END address from the last message.
b. An EXECUTION RUN card whose operand contains
the JOB card information from the last JOB card in
the first program to be executed.

Return to System Control
If control is to be transferred to the System Control
Program after an object-program execution, the object
program must contain an instruction to branch to the
bootback routine (3928 for 4K, 7928 for 8K, 11928 for
12K, and 15928 for 16K). The inclusion of the SYSCL
macro in the source program provides the linkage.

Independent Execution

Any object-program deck produced by the Autocoder
System can be executed independently of the System.
The user need not prepare any additional cards to
initialize execution of the program.

Condensed-loader Considerations
The factors to be considered when using the con­
densed-loader format are:

IBM 1440

Read-In Area. The read-in area is assumed to extend
from 0001 to 0074. A group-mark word-mark is lo­
cated in the last position of the read-in area.

The read-in area may be relocated by specifying
the starting address in the source program CTL card.
Since the loader uses a clear-storage command to
clear the read-in area from the end address, the be­
ginning and ending addresses must have the same
hundreds position (Example: 00901-00974).

Loader Instruction Area. The loader instruction area
is assumed to be at 0075-0206 (132 characters). In
the special case where the card-input area starts in

41

an address greater than 999 and the madify address
feature is nat available, the laader instructian area
is extended ta 145 characters.

The laader instructian area can be relacated by
specifying the starting address af the laader in the
saurce pragram CTL card. The entry paint ta the
laader, after the executian af a pragram averlay, is
0083 far the assumed lacatian and start address +8
pasitians far the relacated laader.

IBM 1401 or 1460

Read-In Area. The read-in area is fixed at lacatian
0001-0080.

Loader Instruction Area. The laader instructian area
is assumed ta be at 0081-0205 with a length af 125
characters. This area may be relacated by specifying
the starting address in the saurce pragram CTL card.
The entry paint ta the laader after the executian af
a pragram averlay is 0081 far the assumed lacatian
and start address far the relaca ted laader.

Revising the Object Program
It is passible ta carrect ar revise an abject pragram
deck withaut reassembling. Either af twa methads can
be used:

1. The user duplicates the candensed card, substituting
the carrect infarmatian where needed. The carrected
card is then placed in the proper lacatian within the
candensed deck befare laading the abject pragram.
Ta determine the praper lacatian, check the pra­
gram listing. The sequence numbers punched in
calumns 72-75 af the pragram deck carrespand ta
the sequence numbers in the program listing.

2. The carrect infarmatian is laaded inta starage after
the ariginal abject pragram has been laaded, aver­
laying part af the ariginal abject pragram. The user
punches patch card(s) and places them just befare
the assembled END, XFR, ar EX card in the abject
pragram Oil' pragram segment ta which the patch
applies. (Check the listing far number af the END,

XFR, Oil' EX assembled instructian.)

Condensed-loader Format

A patch card far an abjeet pragram in the candcnsed­
laadcr farm at is punched as fallaws:

42 Autocoder (Disk) Operating Procedures

Columns

1-3

4-5

6-71

72-75

76-80

Contents

The three-character machine address of the first
storage position to be loaded.

The number of characters to be loaded from the
card. Word-separator characters are not counted.

The instructions and/or constants to be loaded. A
word-separator character (0-5-8 punch) precedes
every character requiring a word mark in core
storage.

The source-program sequence number of the first
instmetion or constant in the card.

The program identification.

Punching in calumns 72-80 is nat required far laad­
ing. Thus, the card sequence number and the pragram
identificatian fields may bc left blank. Nate that if twa
successive card calumns bath cantain word-separatar
characters, ane word-separatar character will be laaded
inta care starage withaut a ward mark.

Self-Loading Format

A patch card is punched in the fallawing format:

Columns

1-39

40-46

47-53

54-60 ~
61-67 f
68-71

72-75

76-80

Contents

The constant(s) or machine-language instmction(s)
to be loaded into storage. The infonnation must be
left-justified in this field.

A load instruction that loads the ahove data into
storage with a high-order word mark.

If the data should not have a high-order word mark,
this field contains a seven-character clear-word­
mark instruction. If the high-order word mark is
to be left in storage, this field contains:
l. A set-word-mark instmction. If two or more

instructions have been loaded into core storage,
a word mark must be set for each instmetion, or:

2. A NOP instruction (NOOOOOO), if additional word
marks are not need~.

These fields contain set-word-mark or NOP instmc­
tions (sec preceding paragraph).

For the 1401-1460: 1040. An instmction to read a
card and branch to location 040, which is the ad­
dress of the next load instmction or an execute
instmction.
For the 1440: B073. An instruction to branch to
the reacl-a-card and branch instructions which are
in positions 73-85.

Prograrn-listing sequence number of the first in­
stmction and/or constant in the card.

Program identification.

Punching in calumns 72-80 is nat required far laad­
ing. Thus, the scquence number and pragram identifi­
catian field may be left blank.

Building, Updating, and Copying an Autocoder System

Autocoder-System Deck Description and
Preparation

The System deck supplied to the user contains six sec­
tions as shown in Figure ~28. One section, Marking
Program, is used to separate the sections for ease in
labeling the various components of the complete deck.
Three sections, vVrite File-Protected Addresses, Sys­
tem Control Card Build, and Autocoder Update are
used to build the System. A fifth section, the Card
Boot, is used to operate the System. A sixth section,
Sample Program, is used to test the System built by the
user. The individual sections are separated by the
Marking Program control cards. In the instances where
more than one set of cards makes up a section, a Mark­
ing Program control card separates the sets.

To facilitate building and maintenance operations,
mark the sections as indicated by the Marking Program
messages.

All cards in the System Deck, except the four 1402
load-card sets, the four 1442 load-card sets, the Auto­
coder macros, and the Autocoder Sample Programs,
contain a sequence number in columns 72-75. The
cards are numbered consecutively, beginning with
0001.

All load cards contain a sequence number in column
80. Each set of 1402 load cards is numbered consecu­
tively from 1 through 6 and is identified by a 0-4-8
punch (% symbol) in column 79. Each set of 1442
load cards is numbered consecutively from 1 through
7 and is identified by a 3-8 punch (# symbol) in
column 79.

Each Autocoder macro contains a sequence number
in columns 1-5, beginning with either 00000 or 00010.
Each Autocoder Sample Program contains a sequence
number in columns 1-5, beginning with 0001b.

If it is necessary to resequence the System deck, the
user should sort the cards in the following manner:

1. Sort on column 79 (0-4-8 punch) to select the 1402
load cards.

2. Sort ,the 1402 load cards on column 80 to sequence
the cards.

3. Assemble the four sets of 1402 load cards.
4. Sort on column 79 (3-8 punch) to select the 1442

load cards.
5. Sort the 1442 load cards on column 80 to sequence

the cards.
6. Assemble the four sets of 1442 load cards.
7. Sort the remainder of the System deck on columns

75, 74, 73, and 72. After sorting, the Autocoder
Macros and Sample Programs will be in the reject
pocket.

8. Check the program listing, which is supplied with
the System deck, and insert the sets of load cards
in the appropriate places.

9. Sort the Autocoder Macros and Sample Programs
on column 5. After sorting, the Sample Programs
will be in the reject pocket.

10. Scrt the Autocoder Macros on columns 4, 3, 2, 1,.
80, 79, 78, 77, and 76.

11. Check the program listing and insert the Auto­
coder Macros.

12. Sort the Sample Programs on columns 4, 3, 2, 1,
and 80.

13. Check the program listing and insert the Sample
Programs.

Marking Program

The Marking Program deck is made up of two sets. The
set for the 1442 consists of 13 cards and has identifica­
tion code 50zy1 punched in columns 76-80. The set for
the 1402 consists of 11 cards and has the identification
code 50zz1 punched in columns 76-80. A blank (except
for sequencing in columns 72-75) card follows each set.

The Marking Program separates the various sections
and sets that make up the System deck. When a control
card is sensed, a halt occurs and a message is printed.

If the reader is 1442, the initial message is:
HALT AT EACH DECK SEGMENT. DISCARD
FIRST CARD, MARK DECK AS PRINTED,
PRESS START TO CONTINUE.

If the reader is 1402, the initial message is:
HALT AT EACH DECK SEGMENT. MARK
DECK AS PRINTED, PRESS START TO CON­
TINUE.

Subsequent messages contain the name of the sec­
tion to be marked.

To use the decks:
1. Set sense switch A on. Set all other sense switches

off.
2. Set the I/O check stop switch off.
3. Press CHECK RESET and START RESET.

4. Select the Program Marking deck that is appropriate
for the system and remove the other deck.

5. Remove the blank card following the Marking Pro­
gram and place the program in the card reader, fol­
lowed by the remainder of the Autocoder System
deck.

6. Load the program.
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader, and
PROGRAM LOAD on the console.

43

/71401

~y-460
SAMPLE

/7 PROGRAM
~1440

/ -Z AUTOCO DER
~- MACROS

/~ AUTOCODER
~ PREPROCESSOR

/7 AUTOCODER
~ PROCESSOR

AUTOCODER
UPDATE

c.=::z-7402
CARD BOOT

c:::::7--:-1442

SYSTEM 0- CONTROL
PROGRAM

SYSTEM CONTROL
CARD BUILD

~':7-1402
WRITE FILE-PROTECTED ADDRESSES

~1442

-Blank Card

~g402
-Blank Card MARKING PROGRAM

L-------------~~1442

Figure 28. Autocoder System Program Deck

7. Halt 003 procedure.
a. 1402 Card Reader: Press START. The Marking
Program is in the NR stacker.
b. 1442 Card Reader: Remove the Marking Program
from stacker 1 and press START on the console.

B. Halt 001 procedure.
a. 1402 Card Reader: Remove the cards from
stacker 1 and press START. Mark the deck section as
indicated in the message. The Marking Program
control card is in the NR stacker.
b. 1442 Card Reader: Remove the cards from
stacker 1 and press START on the console. Discard
the first card (Marking Program control card) and
mark the section as indicated in the message.

Note: The Marking Program control cards are identified by
in columns 1-5. These cards are only for the
use of the Marking Program and should be discarded
after the deck is marked.

9. When the system attempts to read the last card.
a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the reader. The

44 Autocoder (Disk) Operating Procedures

SHADED CARDS INDICATE CONTROL
CARDS FOR MARKI NG PROGRAM

last card is a Marking Program control card and
should be discarded.

The following halts can occur when using the Mark­
ing Program. To display the halt number, press the A­
address register key.

Halt Number
A-Address Register

001

002

003

008

009

Meaning

The deck section in stacker 1 should be
marked.

End of job.

The initial message has been printed.

Card-read error. To retry the operation,
For the 1402: Non-process run-out the
cards. Remove the last three cards in the
stacker and place them in the hopper.
Press START.

For the 1442: Non-process run-out the
cards. Place the two non-processed cards
in the read hopper. Press START on the
reader and :;TART on the console.

Printer error. To retry the operation,
a. 1403 Printer: Press START.

b. 1443 Printer: Press STAHT on the
printer and START on the console.

Write FiI'e-Protect~~d Addresses

The \tYrite File-Protected Addresses seetion is punched
in the Autocoder condensed-loader format. The deck
eonsists of approximately 120 cards.

The set of cards for the 1442 has the identification
code 50FSl punched in columns 76-80. The set of cards
for the 1402 has the identification code 5OFl'1 punched
in columns 76-80.

This section writes disk addresses whose values are
equal to the normal addresses plus 260,000. It is by use
of these false addresses that the file-protected area is
created.

System Control Card Build

This section contains control cards and cards punched
in the Autocoder condensed-·loader format. It includes
both the 1402 and the 1442 Card Build programs and
the System Control Program. All necessary control
cards are incorporated within the section, which con­
sists of approximately 1000 cards.

The Card Build set for the 1442 has the identification
code 50X41 punched in columns 76-80. The Card Build
set for the 1402 has the identification code 50XOl

punched in columns 76-80.
The System Control Program section is identified by

the code 50SXl punched in columns 76-80, where x is
alphamerie. The section loads the System Control Pro­
gram in disk storage.

Card Boot

The 1402 Card Boot set, consisting of 17 cards, and the
1442 Card Boot set, consisting of 19 cards, are punched
in the Autocoder condensed-loader format. The 1442
Card Boot set has the identification code 50SZ1 punched
in columns 76-80. The 1402 Card Boot set has the iden­
tification code 50PZl punched in columns 76-80.

Because the Card Boot is required for each stack of
jobs to be performed by the System, the Card Boot
must be removed and saved for future System opera­
tions.

Autocoder UpdafE~

The Autocoder Update section is made up of three sets
of cards: Autocoder Processor, Autocoder Preprocessor,
and Autocoder Macros. There are approximately 2900
cards in the entire section. The Autocoder Processor
set is in the Autocoder condensed loader and the UPDAT

card formats. There are approximately 1400 cards in
the Autocoder Processor set. Approximately 800 cards
are identified by the code AUXXA punched in columns
76-80. Approximately 500 cards are identified by OPxox

in columns 76-80. Approximately 100 cards are identi­
fied by EXXXX punched in columns 76-80. In each case,
x is alphameric.

The Autocoder Preprocessor set contains the fixed
phases that are not under the direct control of the Sys­
tem Control Program. These phases reside outside the
file-protected area of the Autocoder System. An AFl'O­

CODEH nUl\" card precedes the set and contains blanks in
columns 76-80. The set contains approximately 750
cards, each of which is identified by an alphamnic
phase name in columns 76-80. (Sec Appendix II for a
list of Autocoder Preprocessor phase names and func­
tions.)

The Autocoder ~1acro set is punched in the Auto­
coder library format. All required control cards arc in­
corporated within the set. An AUTOCODEH HP:'\ card and
a LlI3HAHY OPT]\" card precede the set. Each of these two
cards contains blanks in columns 76-80. The set con­
tains approximately 750 cards, each of which is identi­
fied by a macro name in columns 76-80.

The macros ineluded in this set arc CALL, ~fA (modify
address), LOOP, CO~Il'n (compare), LDHCL and SYSCL

(linkage), ADD, SUB, J\fLTl'Y, and DIYID.

Note: The CHAIN and INCLD macros arc ineol'l)oratcd in the
Autocoder Preprocessor.

Sample Program

The Sample Program section is punched in the Auto­
coder source language and contains approximately 100
cards.

The 1442 set has the identification code SP1.40

punched in columns 76-80. The 1402 set has the identi­
fication code SPLOI punched in columns 76-80.

Building an Autocoder System
After all sets of cards have been labeled and those sets
of eards not applicable to the user's system have been
removed, the user is ready to usc the prepared System
deck to build the Autocoder System.

Figure 29 is a block diagram showing the building
of a disk-resident System.

The System unit must be prepared for writing the
complete System from cards. The user must clear disk
unit 0 in the move mode from 000000 to 000199, in the
load mode from 000200 to 000259, in the move mode
from 000260 to 000299, in the load mode from 000300
to 004799, and in the move mode from 004800 to
019979. The Clear Disk Storage program applicable to
the user's system can be used for this operation.

Figure 30 shows the disk storage allocation on the
System unit.

The control cards for the utility program must be
punched in the following manner:

For 1311,

Columns
1-15

21-35
41-55

Contents
~100000000019900
L00020000025900
~00026000029900

45

1301

1301

Clear Disk

Protected
Addresses

Write
File - Protected

Addresses

Determine
Disk Residence

Unit

System Control
Card Build

Prepare
Autocoder

Update Decks

Update

System

Run Sample
Program

Figure 29. Building the System

Columns
1-15

21-35

For 1301,

Contents
L00030000479900
~100480001997900

1311

1311

The format of the control cards is the same as that
given for 1311 except columns 14-15, 34-35, and 54-55
must contain record marks (0-2-8 punch) instead of
zeros.

46 Autocoder (Disk) Operating Procedures

File-
FILE MODE Protected Sector Range

SYSTEM File

Preprocessor Move No 000000-000199 I

Load No 000200-000259

Move No 000260-000299

Load No 000300-002499

System Control
and Processors Load Yes 002500-004799

WORK 1 File Move No 004800-011199

WORK2 File Move No 011200-012399
--

WORK3 File Move No 012400-012899

LIBRARY File Move No 012900-019979

Figure 30. Disk Storage Allocation

Write File-Protected Addresses

The last card in the section labeled WRITE FILE PROTECT

is a control card that is partially prepunched. It is by
the usc of this control card that the limits of the file­
protected area in the disk-storage unit are supplied.
The user must indicate in the control card whether the
System is to reside on a 1301 or 1311 disk unit. For both
the 1301 and 1311, the System must be built on drive
unit O. In the case of the 1311, the System pack can be
used on any drive once the System has been built. The
control card is punched as follows:

Columns

1-15

17-20

22

24-42

44-49

51-52

54-59

Contents

FILE-PROTECT ON (prepunched)

1301 or 1311

o (prepunchcd)

FRO~-I NORl\'lAL ADDRESS (prepunched)

002500 (prcpunchcd)

TO (prepunchcd)

004800 (prclJunchcd)

After columns 17-20 have been punched by the user,
the card must be replaced as the last card of the
section.

To usc the section when the System is to reside on
1311:

l. Heady the pack on disk drive O.

2. Set the write-address mode switch on.

3. Set the write-disk switch on.

4. Set the I/O check stop switch on.

5. Press CHECK RESET and START RESET.

6. Place the Write File-Protected Addresses section in
the card reader.

7. Load the program.
a. 1402 Card Reader: Press LOAD.

b. 14~12 Card Reader: Press START on the reader, and
PROGRAM LOAD on the console.

8. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the reader.
9. At the end of the job, set the write-address mode

switch off.

To use the deck when the system is to reside on 1301:
l. Set the write-address mode switch on.
2. Set the write-disk switch on.
3. Set the I/O check stop switch on.
4. Press CHECK RESET and STAlRT RESET.

5. Place the Write File-Protected Addresses section in
the card reader.

6. Load the program.
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader, and
PROGRAM LOAD on the console.

7. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the reader.
8. At the end of the job, set the write-address mode

switch off.

The following halts can occur when writing ffie­
protected addresses.

Halt Number
(A-Address Register)

020

021

022

023

024

Meaning

Last card condition was sensed before
the control card. The control card con­
taining the initial and terminal addresses
of the area to be file-protected must be
the last card of the deck. When the sys­
tem is restarted by pressing START, a
read operation is performed.

An invalid disk type is specified in the
control card. 1301 or 1311 are the only
valid entries for columns 17-20 of the
control card. When the system is re­
started by pressing START, a read opera­
tion is performed.

An invalid disk unit is specified in the
control card. The only valid entry for
column 22 of the control card is O.
When the system is restarted by pressing
START, a read operation is performed.

An invalid start address (columns 44-49)
is specified in the control card. The start
address must be, 002500. When the sys­
tem is restarted by pressing START, a
read operation is performed.

An invalid end address (columns 54-59)
is specified in the control card. The end
address must be 004800. When the sys­
tem is restarted· by pressing START, a
read operabion is performed.

Halt Number
A-Address Register

025

026

027

028

029

030

Meaning

Disk unit 0 is not ready. When the sys­
tem is restarted by pressing START, the
disk 110 operation is retried.

The area specified in the control card is
alr~ady file-protected (all or in part). If
the system is restarted by pressing START,

the entire specified area will be file-pro­
tected and cleared.

The area specified in the control card
has neither the "normal" disk addresses
(OOOOOO-?) nor file-protected addresses.
This is a hard halt.

Parity check or wrong-length record
error occuned on the disk unit while
writing addresses. When the system is
restarted by pressing START, the disk
110 operation is retried.

Parity check or wrong-length record
error occurred on the disk unit while
determining the existing addressing
scheme. This is a hard halt.

End of the job.

System Control Card Build

The last card in the section labeled CARD BUILD is a con­
trol card that is partially prepunched. It is by the use
of this control card that disk residence is determined.

The user must indicate in the control card whether
the System is to reside on a 1301 or 1311 dis~ unit. The
assumed disk unit number is O.

The control card is punched as follows:

Columns Contents

6-11 SYSTEM (prepunched)

16-20 BUILD (prepunched)

21-24 1301 or 1311

After columns 21-24 have been punched by the user,
the card must be :t:eplaced as the last card of the CARD

BUILD deck.

The System Control Card Build consists of the card
sections labeled CARD BUILD and SYSTEM CONTROL.

To use the System Control Card Build when the sys­
tem is to reside on 1311:
l. Ready the pack on disk drive O.

2. Set the write-address mode switch off.
3. Set the write-disk switch on.

4. Set the I/O check stop switch off.
5. Press CHECK RESET and START RESET.

6. Place the System Control Card Build section in the
card reader.

7. Load the program.
a. 1402 Card Reader: Press LOAD.

h. 1442 Card Reader: Press START on the reader, and
PROGRAM LOAD on the console.

47

8. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the reader.

To use the System Control Card Build when the Sys­
tem is to reside on 1301:
1. Set the write-disk switch on.
2. Set write-address mode switch off.
3. Set the I/O check stop switch off.
4. Press CHECK RESET and START RESET.

5. Place the System Control Card Build section in the
card reader.

6. Load the program.
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader, and
PROGRAM LOAD on the console.

7. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the reader.

The following halts can occur while using the System
Control Card Build deck.

Halt Number
(A-Address Register)

008

050

051

549

554

Autocoder Update

Meaning

Card-read error: To retry the operation,
For the 1442: Non-process run-out the
cards. Place the two non-processed cards
in the read hopper. Press START on the
reader and START on the console.
For the 1402: Non-process run-out the
cards. Remove the last three cards in
the stacker and place them in the hopper.
Press START.

The SYSTEM BUILD control card is miss­
ing from the dcck or the user entry is
incorrectly punched.

End of job.

Disk unit 0 is not ready. When the sys­
tem is restarted by pressing START, the
disk 110 operation is retried.

A disk-write error occurred ten times.
When the system is restarted by press­
ing START, the disk 110 operation is re­
tried.

To build the Autocoder Assembler, the Autocoder Up­
date Section, made up of the sets of cards labeled
AUTOCODER PROCESSOR, AUTOCODER PREPROCESSOR, and
AUTOCODER MACROS are used. (This section, labeled
AUTOCODER PROCESSOR, contains the Autocoder, Output,
and Execution processors.)

Note: If it is necessary to rebuild the Preprocessor, the user
can avoid destroying the LIBRARY file that is within the limits
assumed by the Autoooder System. To do this, place a dummy
LIBRARY ASGN card ahead of the AUTOCODER RUN card which is
the first card in the AUTOCODER PREPROCESSOR section. This dummy
ASGN card should specify a disk area whose contents need not be
saved. For example, the area that is allotted to WORld could be
specified.

48 Autocoder (Disk) Operating Procedures

Input for this building process is as follows:
1. The 1402 or 1442 Card Boot followed by
2. The SYSTEM ASGN card, which must be punched by

the user, followed by
3. The Autocoder Update Section followed by
4. The HALT card, which must be punched by the user.

To build the System when it is to reside on 1311:
1. Ready the pack on disk drive O.
2. Set the I/O check-stop switch off.
3. Set the check-stop switch and disk-write switch on.
4. Set the mode switch to RUN.

5. Press CHECK RESET and START RESET.

6. Load the program.
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader, and
PROGRAM LOAD on the console.

7. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.

b. 144.2 Card Reader: Press START on the reader.

To build the system when it is to reside on 1301:
1. Set the I/O check-stop switch off.
2. Set the check-stop switch and disk-write switch on.
3. Set the mode switch to RUN.

4. Press CHECK RESET and START RESET.

5. Load the program.
a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press START on the reader, and
PROGRAM LOAD on the console.

6. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.

b. 1442 Card Reader: Press START on the reader.
The halts that can occur when using the Autocoder
Update deck are shown in Figure 26.

Sample Program

The Sample Program, which is used to test the effec­
tiveness of the system built by the user, calculates and
lists a table of salaries. A listing of the Sample Program
is shown in Appendix III.

The first card in the sample program is a partially
prepunched control card used for assigning the CORE­

LOAD file.
The user must indicate in the control card whether

the system resides on a 1301 or 1311 disk unit. The con­
trol card is punched as follows:

Columns

6-13

16-19

21-24

26-57

Contents

CORE LOAD (prepunched)

ASGN (prepunched)

1301 or 1311

UNIT 0, START 012300, END 012399 (pre­
punched)

To prepare and run the Sample Program, see Prepa1'ing
a Stack and Running a Stack. Figure 31 shows the sam­
ple program job deck.

HALT

END

Source Statements

Figure 31. Sample Program

Updating an Autocoder System

Supplied

by the user

The Autocoder System is updated by the use of pre­
punched card decks supplied by IBM. All necessary
control cards and data cards are included in the deck.

An update job is performed as described in Prepar­
ing a Stack and Running a Stack.

Copying an Autocoder System

The Autocoder System can be copied by the IBM Copy
Disk utility program using the information provided
in this section if: (1) the Autocoder System resides
on 1311 disk storage; (2) the LIBRARY and WORK file
assignments are the same as was initially assumed by
the System Control Program (see Figure 32); and (3)
the system pack to be copied does not contain the
COBOL or Fortran System in addition to the Autocoder
System.

The procedure for copying the Autocoder System
is as follows:
1. Mount the Autocoder System disk pack on (1311)

unit O. Mount a disk pack on (1311) unit 1. (The
pack on unit 1 will contain the copy of the Auto­
coder System.)

2. U sing the Clear Disk utility program, clear the
following areas of the pack on unit 1. (The modc
of operation, the drive number being used, and
the drive to which addresses are referenced arc
also given to aid in punching the area-control
cards needed by the Clear Disk program).

Drive Drive
Mode Lower Limit Upper Limit Used Referenced
~ 000000 -----000199 -2- 0

L 000200 000259 2 0
M 000260 000299 2 0
L 000300 004799 2 0
M 004800 019979 2 0

3. Using the Copy Disk Utility program, copy the
following areas from the pack on unit 0 to the
pack on unit 1. (The mode of operation, the num­
ber of the drive from which the Autocoder Sys­
tem is written, the number of the drive to which
the System is copied, and the drive to which the
addresses are referenced are also given to aid in
punching the area-control cards needed by the
Copy Disk program.)

Lower Upper Drive Drive Drive
Mode Limit Limit From To Referenced
r:- 000200 000259 --0- --2- 0

M 000260 000299 0 2 0
L 000300 002499 0 2 0
L 262500 264799 0 2 0
M 012900 019979 0 2 0
The program specifiications and the operating pro-

cedures for the Clear Disk and Copy Disk utility pro­
grams are given in the following publications:
1. Disk Utility Programs SpeCifications, IBM 1401,

1440,1460 (with 1301 and 1311), Form C24-1484.
2. Disk Utility P1'ograms Operating Procedures, IBM

1401 and 1460 (with 1301 and 1311),
Form C24-3105.

3. Disk Utility Prog1'ams Operating Procedures, IBM

1440-1311, IBM 1440-1301, Form C24-3121.

49

Appendix I

This section contains a summary of the formats of all
control cards that are required for System operations.
Each control card is punched in the Autocoder format
(the label field is in columns 6-15, the operation field is
in columns 16-20, and the operand field is in columns
21-72).

The user is again reminded that in columns 21-72,
blanks must appear as indicated in the individual
formats.

Figure 32 shows the formats of ASGN cards and the
assumed assignments for the logical files. Figure 33
shows the valid device entries for the ASGN cards.

Figure 34 shows the formats of the following control
cards:

Halt (HALT) card
Init (INIT) card
Librarian-control cards
Note (NOTE) card
Output option (OPTN) cards
Pause (PAUSE) card
Run (RUN) cards.

Note: Update cards are prepunched and included in the card
decks supplied by IBM for updating the user's System.

ASG N Card Format Assumed Assignment Remarks

Label Field Operation Field Operand Field
(Columns 6-15) (Columns 16-20) (Column. 21-72)

SYSTEM ASGN 11311UNITn(1311 unit -- u.er-asslgned
1301 UNIT TI 1301 unit -- must be assigned to

UNIT 0

CONTROL ASGN 1 READER n ! READER 1
CONSOle PRI NTER

MESSAGE ASGN 1 PRINTER n (PRINTER 2
CONSOLE PRINTER

LIST ASGN fRINTER n PRINTER 2
1311 UNIT n, START!l!!!lD!lD.t END!lIl!l!lIlll
1301 UNIT!!! START!!!l!l!l!lD, END!!!l!l!l!lDi

,OMIT

INPUT ASGN ~ READER n READER 1
1311 UNIT n, START !!!l!l!l!lD, END!!!l!l!l!lD
1301 UNIT ii, START nnnnnn, END nnnnnn i

OUTPUT ASGN fUNCH n 1311 UNIT n, START nnnnnn, END nnnnnn PUNCH 4 (1401 and 1460)
1301 UNIT~, START nnnnnn, END nnnnnn i PUNCH 1 (1440)
OMIT

LIBRARY ASGN 11311 UNIT!!! START!!!l!l!l!lD, END!!!l!l!l!lDi
1

1301! 1301 UNIT !!, START!!!l!l!l!lD, END !!!l!l!l!lD 1311 UNIT 0, START 012900, END 019980

WORKI ASGN 1:~:iUNIT 0" START 004800, END 011200
11311 UNIT!!, START!!!l!l!l!lD, END!!!l!l!l!lD(

1301 UN1T!!t START!!!l!l!l!lD, END !!!l!l!l!lD

WORK2 ASGN 1'311 UNIT n, START nnnnnn, ,END !!!l!l!l!J!l/
1301 UNIT n, START nnnnnn, END ll!l!IlIIl!l. 1 :~:(UNIT 0, START 011200, END 012400

WORK3 ASGN 11311 UNIT n, START nnnnnn, END nnnnnn i
1

1311
i 1301 UNIT ~, START nnnnnn, END nnnnnn 1301 UNIT 0, START 012400, END 012900

CORE LOAD ASGN ~ 1311 UNIT n, START nnnnnn, END nnnnnn ! OMIT
1301 UNIT~, START nnnnnn, END nnnnnn
OMIT

NOTE: If the u.er'. system contain. Autocoder and COBOL, the WORK 1 assumed assignment
is changed from START 004800, END 011200 to START 007200, END010400. The
assumed assignments for WORK2 and WORK3 remain the same.

Figure 32. ASGN Card Formats and Assumed Assignments

50 Autocoder (Disk) Operating Procedures

The SYSTEM ASGN card i. the
only required ASGN card. It
mu.t follow the Card Boot in a
stack of jobs. Any other SYSTEM
ASGN cards in the stack are
invalid.

If the user desires that the Auto-
coder System use less than the num-
ber of core-storage positions avail
able in the processc1r machine,
punch a cOmma in column 32 and
4K, 8K, 12K, or 16K beginning
in column 34.

When the MESSAGE file i.
assigned to the CONSOLE
PRI NTER, carriage control
characters u.ed with the
1403 or 1443 printor may
appear in the message.

If the LIST file i. assigned to
PRI NTER 1 (1403), the Output
processor develops a 100-
character program li.tlng.

1311 I. assumed if the
SYSTEM file i. assigned to
1311; 1301 i. assumed If the
SYSTEM file I. assigned to
1301.

Device Entr)' and Values of ~ and ~

~1311l UNIT n, START nnnnnn, END nnnnnn
/1301\ - -- --

n is the number of the disk unit, and can be
0, 1, 2, 3, or 4; ~ is a disk addres.~.

READER !l

For 1402, ~can be 0,1, or2.

For 1442, !l can be 1 or 2.

PUNCH !!

For 1402, !l can be 0, 4, or 8.

For 1442, ~ can be 1 or 2

For 1444, !! must be 3.

PRINTER !l

!l can be 1 or 2

CONSOLE PRI NTER

Remarks

The END address is the address of the next available sector.

The values of nnnnnn must adhere to the following rules:
1. WORKI f~the disk unit is 1311, the START address must be a

multiple of 200. If the disk unit is 1301, the START address must be a
multiple of 800. The END address (1311 and 1301) must be a multiple
of 40.

2. WORK2 and WORK3 fi les. The START address (1311 and 1301) of each
file must be a multiple of 100. (A START address that is a multiple of
200 results in the fastest assembly.) The END address (1311 and 1301)
of each file must be a multiple of 10.

3. LIBRARY file. The START and END addresses (1311 and 1301) must be
multiples of 20.

4. OUTPUT file. It is not necessary to spec ify that this fi Ie start or end at
any particular multiple. However, Autocoder will only use the file if
it begins at a multiple of 40.

In each of the first three cases, if the rules are violated, the system auto­
matically narrows in the disk area to an area that does adhere to the rules.
Incorrect addresses are not automatically corrected for the OUTPUT file.

For 1402, ~ represents the pocket into wh i ch the cards are stacked.

For 1442 and 1444, ~ represents the number of the unit.

!! represents the number of print positions available on the 1403 or 1443.

For 1403, a 1 indicates 100 positions and a 2 indicates 132 positions.

For 1443, a 1 indicates 120 positions and a 2 indicates 144* positions.

* Only 132 print positions are used by the Autocoder System.

The console printer for the control fi Ie must be an IBM 1447 without a
buffer feature or an IBM 1407. An IBM 1447 with a buffer feature can be
used for the message file, although the buffer feature is not used.

~------------------------+---
OMIT Select this option when the file is not to be used by the Autocoder System.

LI ST, OUTPUT, and CORELOAD are the only fi les that can be omitted.

Figure 33. Valid Device Entries

51

Name of Card Label Field Operation Field Operand Field
(Columns 6-15) (Columns 16-20) (Columns 21-72)

Halt HALT Any message and/or identification

Init INIT Any message and/or identification

Library Control INITIALIZE OPTN Blank

LIBRARY OPTN 1 (for direct seek), or blank

COMPAT OPTN 1 (for direct seek), or blank

LISTING OPTN ALL

LISTING OPTN HEADER

LISTING OPTN Blank

LISTING OPTN PUNCH

LISTING OPTN PUNCH1444

Macro name (Used if columns 21-72 of the LlST-
I NG OPTN card are blank)

Macro name INSER !l (i nserti on)
ill, !l (substitution)
Blank (insertion of entire routine)

Macro name DELET !l (deletion of one statement)
ffi, !] (deletion of two or more statements)
Blank (deletion of entire routine)

END

Note NOTE Any message an/or instrucHon

Output Option LIST OPTN nn (00 is the number of lines per page)

PUNCH OPTN .2S. (?S is S for self-loading format) and
blank for condensed-loader format)

RESEQ OPTN

CORELOAD OPTN

Pause PAUSE Any message and/or instruction

Run AUTOCODER RUN

AUTOCODER RUN THRU OUTPUT

AUTOCODER RUN THRU EXECUTION

OUTPUT RUN

OUTPUT RUN THRU EXECUTION

EXECUTION RUN Note: Information in addition to any
of the above entries should not be used.

Figure 34. Control Card Fonnats

52 Autocoder (Disk) Operating Procedures

The name, identification, and function of each phase
in the Autocoder System are given in the following
sections.

System Control Program

This section describes the phases that make up the
System Control Program.

Name

Card Build

Card Boot

System Boot

File-Hardware
Table

Input/Output
Package

Super 0
Super 1
Super 2
Super 3
Super 4
Super 5
Super 6

Open 1
Open 2

Determiner

ID

50X41
(1442)

50XOI
(1402)

50SZ1
(1442)

50PZl
(1402)

50S01

50S11

50S21

50S31
50S41
50S51
50S61
50S71
50S81
50S91

50SAI
50SBI

50SCI

Function

Builds System Control on 1311
or 1301.

Read the SYSTEM ASGN card and
reads in the System Boot from
the specified disk unit.

1. Determines machine size.
2. Initializes switches according

to the type of reader, punch,
and printer (serial or parallel).

3. Reads in the I/O package.
4. Calls the determiner.

Contains the assumed assignments
for the logical files.

1. Reads or writes disk in the
move or load mode. The mode
depends on the processor
operation.

2. Determines whether the user
has exceeded specified
file limits.

3. Branches to the processor
phase, or branches to the
end-of-file routine if the
end-of-file has been sensed.

Reads in the specified phase
from disk storage and branches
to the specified phase.

Initializes the specified area with
a twenty-character control word.
This control word is obtained
from the temporary file-hardware
table.

Reads the CONTROL file until a
control card (HALT, PAUSE, NOTE,

UPDAT, RUN, or ASGN) is sensed.
When a control card is sensed,
the determiner causes a halt
or pauses, prints out a note, calls
the update determiner, calls

Name

Phase Index
Table

Configurator

Selector

Update
Determiner

Update Insert

Update Header

Update Delete

Update Patch

Dump 1

Dump 2

File Print 1

File Print 2

File Print 3

ID

50SDI

50SEI

50SFI

50SGI

.50SH1

50SI1

50SJl

50SKI

50SLI

50SMI

50SNI

50S01

50SPI

Appendix II

Function

the selector, or calls the con­
figurator, depending upon the
type of card.

Contains the locations of the
phases in the System.

Updates the temporary
file-hardware table as specified
by the ASGN card(s.)

Initializes the files used by the
processor being called, and
calls the first phase of that
processor.

Determines the type of update
operation being performed, and
calls in that particular updater.

Places a new phase on the
SYSTEM file in any available
location.

Updates the header of a phase
that is in the SYSTEM file, as
specified by a header card.

Deletes a phase from the
SYSTEM file.

Patches a part of a phase on
the SYSTEM file.

Prints storago on the LIST file.

Prints all WORK files on the
LIST file.

Note: The Dump and File Print phases are used only if the
SYSTEM file contains the COBOL compiler.

Preprocessor and Autocoder Processor
This section describes the phases that make up the Pre­
processor and the Autocoder processor.

In the discussion of the Autocoder processor phases
(initialize, mnemonic, conditioner, diagnostic, literal,
label-entry, symbol-lookup, and pre-output), text refers
to a series of lOO-character records, each of which con­
tains an 80-character source portion and a 20-character
object portion. Source program and generated state­
ments are written in the source portion by the Preproc­
essor; machine language instructions are built in the
object portion by the Autocoder processor.

53

Name ID Function Name ID Function

Initialize AUIAA 1. Opens all files used by the 5. Mter control retu:ms from
Preprocessor, and saves the MNTOR, the permanent
addresses of disk files. monitor calls the phase

2. Saves all constants that have named in the option card.
to be returned to System 6. Contains the disk-error routine
control. used by the Preprocessor.

3. Calls AUIBA if it is needed.
4. Check the OUTPUT and Between-phase MNTOR 1. Reads in the phase-header

LIBRARY file assignments. Monitor table and selects the entry for
5. Calculates the number of the phase name written in the

blocks available in the permanent monitor area.
LIBRARY file. 2. Initializes the permanent

6. Calls option-control (RUNCL). monitor to read in the required

Build AUIBA 1. Loads the phase table, phase giving this information:

dummy library, option-control a. The terminating group-

phase (RUNCL), monitor mark word-ma.rk

phase (MNTOR), and update b. The starting disk sector

phase (UPDA T) into the c. The number of sectors

SYSTEM file. d. The clear-storage address

The phase table contains e. The read-into-core address

the entr; for the update f. The execute-to-phase

phase and a trailor flag address

which indicates the end g. The split-phase suffix code.

of the table. 3. If requested, clears storage
The dummy library from the address specified in

(DUMLB) creates the LIBRARY the phase header to 1000.
file. It builds the library 4. If the phase header has a
table and a record that split-phase suffix, initializes
specifies the end-of-library the permanent monitor to
name (99999). The end-of- return to the between-phase
library name and its disk monitor after reading the
address are written in the first part of the phase.
library table. 5. Upon return from the

2. Calls in RUNCL when an permanent monitor, moves
Autocoder option card is suffix to the phase-name
encountered. request location in the

Linkage DIOOO 1. Reads in the System Control permanent monitor and

Program. transfers back to step 1 for

2. Inserts saved constants. the next part of the phase.

3. Puts a $ in location 3999 Update SYSTE 1. Replaces entries in the if a macro generation has
been completed. phase-header table with new

4. Calls the selector phase of (modified) entries.

the System Control Program. 2. Adds new entries to the
phase-header table.

Pre-phase DIOCS Sets up parameters for DIOCS 3. Obtains the corresponding
entries. phase-header table entry when

Pre-phase DTF Sets up parameters for DTF
an UPDAT card is encountered.

entries. Also clears the disk sectors
used by the phase to load

Pre-phase GT-PT Sets up parameters for GET mode blank. For the new
and PUT phases. condensed deck, performs

Pre-phase GENPP Sets temporary switches for
the same procedure as
described for UPDAT PATCH

DIOCS, DTF, GT-PT, FILEORG, in item 4.
and SORT parameters. 4. For each condensed card

Option RUNCL 1. Clears storage (except the following an UPDAT PATCH,

Control storage positions containing computes the sector(s) to be
RUNCL). patched and the starting

2. Reads the first record (card location within the sector(s).
or card image) in the Also, it reads in the sector(s),
INPUT file. performs the patch by

3. Moves the phase name simulating an object-deck
(columns 6-10) to the loader, writes the sectors
permanent area if the record back on the SYSTEM file, and
contains an option, otherwise, proceeds to the next
calls AUTOC. condensed card.

4. Permanent monitor calls 5. Calls in DIOOO after the
MNTOR (between phase update operation has been
monitor). completed.

54 Autocoder (Disk) Operating Procedures

Name ID Function Name ID Function

Library INITI 1. Writes a record that contains 4. Analyzes the CTL card. Sets up

Build the end-of-library name permanent switches for the
(99999). macro generator (MAGEN).

2. Writes the end-of-library These indicate the size of the
name and its disk address in object machine, the presence
the library table. of the modify-address,

advanced-programming or
Library LIBRA 1. Reads in the library table. indexing -and -store-address-
Change 2. Obtains, from the table, the register, and multiply-divide

beginning and ending disk- features.
sector addresses of the existing 5. Sets up a sumbox for returning
library. to the program loader during

3. Sets up direct-seek test object-program execution.
flag for LIBR2. 6. Sets up the macro pass modify-

LIBR2 4. Recopies the entire existing add procedure.
library. During this process,
all insertions and deletions

Main Line are made. All inserted state- MNLIN l. Reads source statements.

ments are rebuilt to conform 2. Writes all source statements,

to the disk Autocoder except DTF entries, on the

library format. WORld file.

5. Writes the routine name and :.1 Calls SPSCV (conversion

the beginning disk-sector phase) if an ENT statement

address in the library table. is encountered.

6. Writes the routine on the 4. Calls in the DTF phase upon

LIBRARY file. encountering a DTF entry.

7. Repeats steps 5 and 6 until
~' Places source INCLD d.

all routines have been written. statements in the INCLD file

The new library is written for processing at L TORG,

starting one sector beyond EX, or END time. (The

the end of the old library. INCLD file is located on

The library area is effectively the WORK3 file.)

a closed loop. When the
(l Processes the CHAIN macro

upper area is reached, the developing as many

remaining routines are written object-program statements

starting at the lower limit. containing the specified

LIBR4 B. Writes the new library table operation code as are stated

in the LIBRARY file. in the operand field of

9. Calls in DIOOO (linkage) after the CHAIN macro.

the library change operation 7. Sets up the source macro

has been completed. instructions for MAGEN
(macro generator).

Library LISTI 1. Reads in the library table. a. Turns off all temporary
Listing 2. Prints all of the names in the switches and adds 1 to the

library table if the LISTING DO} counter.
OPTN card specifies HEADERS. b. Turns on the particular

3. Prints the entire library if the temporary switches for
LISTING OPTN card specifies which there is a parameter.
ALL. c. Relocates the parameter

4. Prints the specified routines for use by the macro
if routine-name cards follow generator.

the LISTING OPTN carc.l. The d. Counts the parameters.

starting address of each e. Writes out source macro

specified routine is obtaincd statements as comments.

from the library table. f. Generates and writes out

5. Punches the entire library into LABEL EQU *+1 if the

cards with each routine source macro statement

preccded by an INSETI card if has a label.

the LISTING OPTN card specifics g. Extracts disk address

pUNcn or pUNcn1444. of library routine from

6. Calls in DIOOO after the listing library table for MAGEN.

or punching operation has h. Calls the macro generator

been completed. and transfers control to it.

Constant AUTOC 1. Prepares the WORK1 file to use
B. Handles MA instmctions

Storage BK (larger blocks) if more
as macros if the Modify
Address feature is not

than 4K storage is available. available on the object
2,. Initializes all areas and machine.

output routines needed during 9. For an EX statement, the
the macro pass. MNLIN checks a special

3. Readsthe]oB,CTL,and counter to determine if there
comments cards and writes is a closed library routine
them on the WORK1 file. in the INCLD file. If the

55

Conversion

~[acro

Cenerator

[D

SPSCV

I\IACEN

Function

counter is zero, it writes out
the statement and proceeds
to the next card. If the
counter is not zero. it
calls in MCIMC (macro­
in-macro) and transfers
control to it.

10. For a LTOHG statcmcnt in
any form othcr than
LTOHC *, the J\INLIN
replaces the L TOnG mnemonic
with one and writes it on
WOHK1. From this point,
the procedure described in
step 9 is taken. Upon return,
a LTOHC * statement is
generated and inserted
in WCHK1.

11. For an END statement the
I\INLIN follows the same
11roecdure describecl in
stq19.

12. Calls AUA/C (first assembler
phase) after El'<D has been
written on WOHK1.

1. Heads sonrce statements
written in 1401 SPS or 1440
Basic Autocoder format.

2. Converts the statements to
disk Autocoder format.

3. \Vrites the convcrtcd
statements on WOHK1.

4. Calls ~[NLIN (main line)
when an ENT AUTOCODEH
statement is encountered.

1. Extraets the ncxt sequential
library statement (sec
step 7g under ~[NLIN).

2. If this statement is a macro
header, :\IACEN assumes
an end-of-maero condition
and calls in ~[NLIN
(main line).

:3. If a 1l00L skip condition
is in effect, ~IACE;\I tests
for the BOOL label character.
If the reqllired BOOL
lahel character is not in
this statement, the program
returns to item 1; otherwise,
it turns of[the llOOL
skip switch anel proceeds.

4. If the statement specifics
;\IEl'<D, ~IACEN calls
~[NLI;\I (mainline).

,5. Scans thc entire record for D
and # symbols substituting
parameters and sumhoxcs ill
model statements. If DOT
type symbols arc .
encountered, the program
inserts the contents of
thc macro counter beside
the symbol (for example,
DOJ(23). The values of
temporary or permanent
switches arc substituted in
BOOL statements.

6. If the statement is an INCLD
or a Illaero-in-macro tvpe
thc program places it • ,

56 Autocoder (Disk) Operating Procedures

Name ID

I\Jaero-in- ?v[CIMC
:\Iacro

Includc INCLD

Initialize AUA/C

~Inl'monic AU3AA
AU3BA
AU.3CA
AU:JSA

Function

on the INCLD file for
later processing and writes
it as a comment on wonKI,
MACEN then returns to
step 1.

7, If thc statement is not a
MATH or BaaL, MAGEN
writes it on WOHKl and
returns to step 1.

8. Solvcs MATH and BOOL
statements.

g, Scts any switches specified
to show results of processing
MATH or BaaL statements.

10. Places the result developed
for a MA TIl statement
in the specified sum box
(if any) and goes to
step 7.

11. If the statement is a BaaL
and has a true result,
j\IACEN returns to stcp 1.
If the result is false,
MAGEN sets up a BaaL

1.
2,

3.

4.

1.
2.

3.

4.

5.

1.

2.

1.

2.

3.

skip if a BaaL labcl character
is spccificd,

Rcads the INCLD file.
Handles macros as described
under MNLIN (main line).
vVrites all non-macro
statemcnts (not named in thc
library table), exccpt
INCLD, on wonKI.
Calls in INCLD (include)
aftcr all statements have
bcen processed.

Hcads the INCLD file.
Bypasses all statements exccpt
[NeLl) statements.
vVritc INCLD statements on
wonKI as comments.
\Vrites thc library routine
spccified by each INCLD
statcment on wonKI. If a
duplicatc INCLD statement is
encountered, its associated
library routine is not extracted
bccause library routines for
INCLD statements arc included
in the ob.iect 11rogram only
oncc per program overlay.
Eliminates the contents of
the file and resets the address
of the file after all the
statements in the INCLD
file have bcen processed, Calls
~lNLIN (main line).

Sets up I/O areas according
to machine size.
Initializes I/O routines.

Hcads source statements
(text) fro111 wonK1.
Analyzcs the CTL carel.
Prints the CTL card image
and diagnostic mcssagcs if
any characters arc invalid.
Looks u11l1lncll1onic operation
codes and inserts the
maehine-Ianglwgc opcratiOlI
codes, d-modifiers, control

Name

Conditioner

Diagnostic

Literal

Symbol
Extraction

Label Entry

ID

AU4AA
AU4BA
AU4CA
AU4DA
AU4EA

AU4WA
AU4XA

AU5AA
AU5JA
AU5KA

AU5MA
AU5NA

AU7DA
AU7EA
AU7FA
AU7GA

Function
fields, and operand-type
codes in the object portion.

4. Inserts flags to indicate the type
of statement (assembler­
control, comment, instruction).

5. Inserts a diagnostic flag
symbol in the object portion
if an operation code is
invalid.

6. Writes the text on WORK!.

1. Reads the text from WORK1.

2. Extracts operands from the
source portion and inserts tags
in the object portion.

3. Interprets indexing and/or
adjustments and inserts tags
in the object portion.

4. Extracts symbolic indexing
and develops symbolic
indexing table.

5" Inserts a diagnostic flag
in the object portion if any
errors are detected.

6" Writes the text on WORK!.

L Reads text from WORK1.

2. Analyzes operand errors
according to operand-type
codes.

3. Checks d-modifiers in the
source portion against a
valid d-modifier list.

4. Checks the label field.
5. Writes diagnostic messages

and incorrect source
statements on the MESSAGE

file.

1. Reads text from WORK1.

2. Extracts literals, checks for
duplication, and creates
literal table.

3. Purges literal table and writes,
on WORK1 (literal file), the
processor-declared literal fields
for each program overlay.

4. Inserts the displacement
integer in the object portion
for each entered literal.

5. Writes text on WORK!.

1. Extracts symbols (labels and
area~defining literals)
addresses and sequence
numbers.

2. Builds the cross refcrence
table on WORK2.

1. Reads text and literal file
from WORK1.

2. Extracts labels from the
source and enters them in
the label table.

::1. Enters all literal origin
addresses into the Hteral-base
table.

4. Enters EQU labels into the
label table if previously
defined, or enters symbolic
EQU labels into the EQU table
if not previously defined.

t>. Assigns addresses and

Name

Sort and
Merge

Table
Analyzers

Symbol
Lookup

Pre-output

Label Table
Listing

ID

AU7HA
AU7IA
AU7JA
AU7KA
AU7MA
AU7NA
AU70A

AU7UA
AU7XA

AU7SA
AU7TA

AU8AA

AU7XA

Function

allocates areas for instmctions,
defined areas, and constants.

After the symbol table has
been built on WORK2 or the
label table on WORK3:

a. Arranges symbols or labels
in alphabetical order within
segments of the label on
symbol table.

b. Merges table segments to
alphabetize the entire table.

1. Converts symbolic EQU entries
to actual addresses.

2. Detects and flags error
conditions in the table.

3. Creates reference table for
use by the symbolic lookup.

1. Reads text and literal file.
2. Looks up symbols in the label

table and inserts actual
addresses in the object portion.

3" Adds the literal bases found
in the table to the
displacement developed
during the literal phase.

4. Inserts a diagnostic flag
symbol in the object portion
if any symbols are multiply
defined or undefined.

5. Writes text and litcral file
on WORK1.

L Reads text and literal file
from WORK1.

2.. Extracts adjustments and/or
indexing from the source
portion and adjusts the actual
addresses.

3. Conditions the object portion
of text for processing by the
OUTPUT processor.

4. Inserts a diagnostic flag
symbol if any errors are
detected.

5., Writes text on the OUTPUT

file. WORK1 becomes OUTPUT

if the THRU option is specified
in the AUTOCODER RUN card.

"Trites the label table listing
on the LIST file.

Cross Reference A U9AA
Listing AU9BA

"Trites the cross reference listing
on the LIST file.

Output Processor

This section describes the phases that make up the
Output processor.

ID

OPIOP

OP20P

Function

1. Sets up 110 areas according to machine size.
2. Initializes 110 routines.
3. Opens required files.

Reads the INPUT file and transfers the program
listing to the LIST file.

57

ID

OP20Q

OP30P

OP40P

OP40Q

OP40R
OP40S
OP40T

OP50P

OP60P

OP60Q

OP60R
OP60S
OP60T
OP60U

OP70P
OP70Q
0P70R
0P70S
OP70T

Function

Writes the end-oF-listing message.

1. Transfers the clear-storage and bootstrap rou­
tines for the 1442 to the OUTPUT file.

2. Transfers the 1442 loader to the OUTPUT file.

1. Reads the INPUT file.

2. Processes the source.

3. Transfers the object program in condensed
loader.

1. Reads the INPUT file.
2. Resequences source-program statements.
3. Transfers the resequenced statements to the

OllTPUT file.

Builds gO-character sectors in the CORELOAD file.

Builds operating sectors in the CORELOAD file.

1. Reads the INPUT file.
2. Loads the object portion of the source into the

CORELOAD file.

1. Reads the INPUT file.
2. Processes the source.
3. Transfers the self-loading object program to the

OUTPUT file.

58 Autocoder (Disk) Operating Procedures

ID

OPBOP

0P90P

Function

Transfers the clear-storage and bootstrap routines
for the 1402 to the OUTPUT file.
Transfers the 1402 loader to the OUTPUT file.

Reads the output option cards.
Selects the phases to be used.

Execution Processor
This section describes the phases that make up the
Execution processor.

ID Function

EXEXC

EX4EX

EXBEX

EX2EX

EX6EX

Sets up 110 areas.
Initializes 110 routines.
Checks header record in the INPUT file.
Clears storage.
Initializes disk loader and bootback routines.

Disk loader and bootback for 4K.

Disk loader and boot back for BK.

Disk loader and bootback for 12K.

Disk loader and bootback for 16K.

This section contains a listing of the sample program
(Figure 35) that is the last part of the Autocoder Sys­
tem Program Deck. This program is designed to calcu­
late the hourly, weekly, and annual salaries associated
with a given monthly salary. The monthly salary starts
at $400 and is increased by $25 until it equals $900.

CORELOAD ASGN 1311 UNIT 0, START 012300, END 012399
AUTOCODER RUN THRU EXECUTION

CROSS REfERENCE LISTING

ADDRS LABEL TAG SEQUENCE NUMBERS Of INSTRUCTIONS WHERe SYMBOL APPEARS

00608 DOJ001 0029 0033 0036
00633 DOK001 0034 0031
00141 DOK002 0058 0063
00910 DOK003 0098 0103
00641 DOlOOl 0036 0028
00181 DOlO02 0064 0068 0012
01004 DOlO03 0104 0108 0112
00661 DOM001 0041 OO:~O 0030 0034 0044
00805 DOM002 0069 0065
01028 DOM003 0109 0105
00660 DON001 0040 0021 0029 0033 0036
00658 DOP001 0039 0034
00839 DOP002 0014 0058 0069 0010 0010
01062 DOP003 0114 0098 0109 0110 0110
00661 DOQOOI 0042 0024
00848 DOQ002 0015 0051 0052 0059 0060 0062 0064 0066
01071 DOQ003 0115 0091 0092 0099 0100 0102 0104 0106
00668 DOR001 0043 0029
00814 DOR002 0019 0058
01091 DOR003 0119 0098
00883 D1J002 0081 0059 0060
01106 DIJ003 0121 0099 0100
00856 DIK002 0016 0051 0083 0084
01019 DIK003 0116 0097 0123 0124
00865 DlL002 0077 0053 0054 0055 0056 0062 0064 0066
01088 Dl1003 0111 0093 0094 0095 0096 0102 0104 0106
00884 D1NOO2 0082 0069
01107 D1N003 0122 0109
01Ul ACtU", 0183 0044 0046 0049 0054 008/t 0086 0089

0128
01404 AREA 0182 0018 0019 0020 0021 004!i 0046 0047

0081 0088 0125 0126 0127 0129 0144 0145
0149 01'50 0151 0152 0153 015t• 0155 0156

00500 8EG 0004 0191
01447 flFTW 0189 0051
01449 fORTY 0190 0091
01381 HOUR 0179 0014
01390 MASK 0180 0018 0045 0085 0125 0144 0148 0152
01363 MONTH 0176 0011
01395 MTH 0181 0019 0022 0026 0132 0133
00553 START 0018 OB4
01419 Ton 0184 00:22 0145
01427 TOT2 0185 0049 0149
01435 Ton 0186 00189 0153
01443 TOT4 0181 01:28 0157
01445 TWlV 0188 00:25
01315 WEEK 0178 0013
01369 YEAR 0177 0012

Figure 35:. Sample Program (Part 1 of 6)

Appendix III

0011 0011
0111 0111

0094 0124 0126

0048 0085 0086
0146 0147 0148
0157 0158 0159

0156

59

SPLOl SALARY TABLE COMPUTATIONS PAGE

:iEQ PGLIN LABEL OPCD OPERAND SFX I:T LOCN INSTRCTN A-ADO 8-ADI!) .FLAGS

)001 0001 SPLOI JOB SALARY TABLE COMPUTATIONS
)002 0002 C-TL 1
)003 0005 ORG 500 500
)004 0006 BEG CS 332 4 500 1332 332
)005 0007 CS 1 504 1
)U06 0008 MlC GlSAlARY TABlEal,24l 7 505 MU612,41 1461 241
)007 0009 i'Ii 1 _512 2
)008 0010 CS 299 4 513 1299 299
)009 0011 W 1 517 2
JOIO 0012 W 1 518 2
JOll 0013 MlC MUNTH ,216 7 519 MT63216 1363 216
)012 0014 MLC YEAR,232 7 526 MT69232 1369 2n
)013 0015 MlC WEEK,247 7 533 MT75247 1375 24"
)014 0016 MLC HOUR,263 7 540 MT81263 1381 26]
J015 0017 w 1 547 2
)016 0018 CS 299 4 548 1299 299
)017 0019 w 1 552 2
)018 0020 START MLCwA MASK,AREA 7 553 L T90U04 1390 140'.
)019 0021 MCE MTrl,AkEA 1 560 ET95U04 1395 140'1-
)020 0022 SW AREA-8 4 561 ,T96 1396
)021 0023 MLC AREA,21b 7 571 MU04216 1404 216
)022 0024 A MTH,TOT1 7 578 AT95U19 1395 1419
J023 0025 MLfPYTWLV,2.0,HTH,5.2,ACCUM,7,2 **MACRU**
J024 * uOQOOl 4 585 S667 667
)025 * MLCwA TWlV 4 589 LU45 1445
)026 * MLCwA MTH 4 593 LT95 1395
J027 * S &O,UUNOOI 7 59-' SU62660 1462 660
0028 * 6 oOLOOl 4 604 6641 641
J029 * oOJOO 1 81-1 oOROOl.00NOOl 8 608 V6686601 668 660
J030 * MLC oOMOOl-l,OOM001 7 616 M666667 666 667
0031 * MLNS 1 623 D
11032 * MlCWA 1 624 L
0033 * BCE UOJOO 1, UONOOI. 0 8 625 66086600 608 660
J034 * UOKOO 1 A uOPOOl.oOMOOl-2&1 7 633 A658666 658 666
)035 * 5 1 640 5
J1l36 * oOLOOl f1CE OOJ001.00NOO!,&. 8 641 6608660& 608 660
:)031 * ~ uOKOOl 4 649 6633 633
0038 * DCW ~1Q) 1 653
11039 * oOPOO 1 DCW #5 65,6
Cl040 * oONOOI DCW #2 660
J041 * oOMOOI DCW 0100007 661
0042 * oOQOOl EQU * 667
)043 * OO~OO 1 EQU *&1 668
)044 * lA DOMOOlrACCUM I 668 &661U11 667 141l.
0045 0026 MlCVlA MASK,AREA 7 675 LT90U04 1390 140~~

0046 0021 MCE ACCUM,AREA 7 682 EU11U04 1411 1404
J041 0028 sw ARI:A-8 4 689 • T96 1396
J048 0029 MLC ARtOA.232 7 693 MU04232 1404 2n
)049 0030 A .1\CCJM,TOT2 7 700 AU1LU27 1411 1421
)050 0031 DIVI0FIFT~,2.0.ACCUM,7,2,ACCUH,7,2 **MACRO**
J051 * lA FIFTw. DOI.1002 7 701 &.U47848 1447 84f~

0052 * A iIlOiil,oOQ002 7 714 AU63848 1463 84£1
J053 * S olL002 4 721 5865 865
0054 * ZA ACCUM.olLOO2-00001 7 725 &U11864 1411 8604,
)055 * ZA olLOf)2 4 732 &1J65 865 -------

Figure 35. Sample Program (Part 2 of 6)

60 Autocoder (Disk) Operating Procedures

---SPl.Ol S/1.lARY TAdLE COMPUTATIONS PAGE 2

StU PGL.IN LABEL OP(;o (jPERAI~O SFX CT LOCN INSTRCTN A-ADD B-AOO .FlAGS

0056 * A @0iJ),1l1LOO2 7 736 AU63865 1463 865
0057 * S clKOO2 4 743 S056 856
0058 * oOK002 MlCWA 1l0POO2,OOR002-1 7 747 L839873 839 873
0059 * lA [10\')002,o1JOO2-1 7 754 G848882 848 882
0060 * LA nlJ002, £lOQ002 7 761 &383848 883 848
0061 * MLCWA 1 76a L
0062 * C nOQOO2,tlll002 7 76'1 C848865 848 865
0063 * tlH oOK002 5 176 B741U 747
0064 * oOLOOl C nO{JOO2,tllLOO2 7 181 C848865 848 865
0065 * BL uOMOCl2 5 78a B805T 805
0066 * 5 nOQu02,olLOU2 7 193 5848865 848 865
0067 * A 1 800 A
006B * tl oOLU02 4 801 B181 181
0069 * oOM002 tlCE OlN002,cOP002,1 8 805 B8848391 884 839
0070 * MLCWA lJOPOO2-1,oOP002 7 813 L838&39 838 839
0071 * LA nOQOO2-1,nOQ002 7 820 G841848 B47 848
0072 * 1:1 nOLOO2 4 827 B781 781
0073 * DeW 1100008 838
Oll74 * 00P002 DCW ,;Jlol 83q

0075 * 00Q002 DCW #00009 848
0076 * n lK002 DCw 1#00008 856
0077 * olL002 DCw 1#00009 865
0078 * DCW t;00008 873
0079 * aOR002 DC riJOal 874
U080 * DCW /100008 882
OOBl * olJ002 OC .lO;~ 883
0082 * D IN002 EwU *&1 884
0083 * A iil5al,1l1K002 1 884 AU641:l56 1464 856
0084 * lA DIKOO2-1,ACCUM 7 891 &855Ull 8.55 1411
001:15 0032 MlCWA ,"IASK·,AHEA 1 896 L T90U04 1390 140""
U086 0033 MCE ACeU,'1,AREA 7 905 EUllUD4 1411 140 ...
U081 0034 Sill AREA--8 4 912 , T96 1396
0088 0035 MlC AREA,247 7 916 MU04241 1404 241
0089 0036 A ACCUI'1,TCH 7 923 AUI1U.35 1411 1435
0090 0037 DIVIDFORrY,2,O,ACCUH.7,2,ACCUM,7,2 **MACRO**
0091 * LA FORTY,tlOIJ003 7 930 &U49*11 1449 1071
0092 * A iilO@,DO(J003 1 937 AU63H1 1463 1071
0093 * S DILOO3 4 944 S*88 1088
0094 * LA ACCU~,OlLOO3-00001 7 948 GUl1*87 1411 1067
0095 * lA nlLOO3 4 955 &,.,88 1088
0096 * A @Oi",1l1LOO3 7 959 AU6H88 1463 1088
0097 * S DIK003 4 966 5H9 1079
0098 * DOKOO3 MLCWA nOPOO3,UOR003-1 7 970 L,.,62*"J6 1062 1096
0099 * LA UOQU03,nlJOO3-i 7 977 &*71/05 1071 1105
0100* lA nlJOO3,DOQOO3 7 984 &/OM'71 1106 1071
0101 * MLCWA 1 991 L
0102 * C tlOQOO3,oll003 7 992 CHH'd8 1071 1088
0103 * tlH oOK003 5 999 B970U 970
0104 * oOLOO] C 1l0QOO3,nlL003 7 1004 e*lU88 1071 1088
UI05 * 8L tlOl>1003 5 1011 8*2611" 1028
U 106 * 5 oOQ003,oILOO3 7 1016 SHI *88 1071 1088
0107 * A 1 1023 A
0108 * 8 oOL003 4 1024 8*04 1004
0109 * 00101003 BCE iJIN003,nOPOO3,1 8 1028 8/01*621 1107 1062
0110 * MLeWA oOP003-1,DOP003 7 1036 l,.,6U62 1061 1062 ---- ------- ---

Figure 35. Sample Program (Part :3 of 6)

61

SPL01 SALARY TABLE COMPUTAHONS PAGE 3

S HI PGLIN LABEL OPCD OPERAND SFX CT loeN INSTRCTN A-ADD B-AlIO .FLAGS

0111 * lA UOQ003-1,DOQ003 1 1043 GHO'HI 1070 IOn
0112 * B UOlO03 4 1050 B*04 1004
0113 * Dew 1#00008 1061
0114 * aOP003 Dew rillii1 1062
0115 * aOQ003 Dew #00009 1011
0116 • alKOO3 Dew #011008 1079
0117 * al1003 DCW #00009 1088
0118 * DCW NOOIJOb 1096
0119 * aOR003 DC ;,')0.3) 1097
0120 * DCW ,'1000118 1105
0121 * alJ003 DC ill 0 ill 1106
0122 * a1N003 EQU *&1 1101
0123 * A iIl5ii1,IllK003 1 1101 AU64*79 1464 1079
0124 * lA IJIKOO3-1,AceUM 7 1114 U76U11 1078 1411
0125 0038 MleWA MASK,AREA 1 1121 l T90U04 1390 1404
0126 0039 MeE ACCUM,AREA 1 1128 EUllU04 1411 14014
0121 0040 SW ARI:A-8 4 1135 ,T96 1396
0128 0041 A ACCUM,TOT4 1 1139 AU1lU43 1411 1443
0129 0042 MLC AREA,262 1 1146 MU04262 1404 262
11130 0043 III 1 1153 2
0131 0044 CS 299 4 1154 /299 299
0132 0045 A @25"l,MTH-2 7 1158 AU66T93 1466 1393
0133 0046 C MTH-2,al901ci 7 1165 CT93U69 1393 1469
0134 0047 BH START 5 1172 B553U 553
0135 0048 w L 1177 2
0136 0049 W 1 1118 2
0131 0050 MlC ~FIR.iT LINE IS COMPUTED TOTAlSGl,229 7 1179 MU98229 1498 229
ona 0051 W 1 J.HJ6 2
0139 0052 es 299 4 1181 /299 299
0140 0053 HLC dlSECLlND LINE IS CORRECT TOTAlSii/,229 7 1191 rW21229 1521 229
1)141 0054 W 1 1198 2
0142 0055 CS 29"'J 4 1199 1299 299
0143 0056 W 1 1203 2
0144 0051 MlCWA MASK,ARt::A 7 1204 lT90U04 1390 1404
0145 0058 MCE TOTI ,AREA 7 1211 EU19U04 1419 1404
0146 0059 SW AREA-B 4 1218 ,T96 1396
0147 0060 MlC AREA,216 1 1222 MU04216 1404 216
0148 0061 MLCr/A MASK,AREA 1 1229 lT90U04 1390 1404
0149 0062 MCE TOT2,AREA 7 1236 EU21U04 1421 1404
0150 0063 sw AREA-a 4 1243 ,196 1.396
0151 0004 MlC AREA,232 7 1241 MU04232 1404 232
0152 0065 MLCWA MASK,AREA 1 1254 lT90U04 1390 140·4
0153 1)066 MCE TUT3,AREA 1 126J. EU35U04 1435 1404
0154 OObl SW AREA-8 4 1268 ,T96 1396
0155 0068 MLC AREA, 24 7 7 llU HU04241 1404 247
0156 0069 MLCWA MASK,AREA 1 1219 lT90U04 1390 1404
0151 0010 MCE TOT4,AllEA 7 1236 EU43U04 1443 1404
0158 0011 sw AREA-8 4 1293 ,T96 1396
01:'9 0072 MlC AKEA,262 7 1297 1'11.104262 1404 262
0160 0073 ~~ 1 1304 2
0161 0074 (;S 299 4 1305 1299 299
0162 0075 MlC ,')13650. aDa, 216 7 1309 MV35216 J.535 216
0163 0076 MlC 41163300.00<11,232 7 1316 MV44232 1544 232
ot64 0077 MlC iiJ3150.00@,247 7 1323 MI/51241 1551 24'1
0165 001d MlC aJ7a.15aJ,262 7 1330 t-h'56262 1556 262

Figure 35. Sample Program (Part 4 of 6)

62 Autocoder (Disk) Operating Procedures

SALARY

MONTHLY YEA:~L Y

400.00 4800.00
425.00 5100.00
450.00 ~400.00

475.00 S700.00
500.00 &(lOO.OO
525.00 6300.00
550.00 6600.00
575.00 6900.00
600.00 7200.00
625.00 7500.00
650.00 7800.00
675.00 8100.00
700.00 8400.00
725.00 8700.00
750.00 9000.00
775.00 9300.00
800.00 9600.00
825.00 9900.00
850.00 10200.00
875.00 10500.00
900.00 10800.00

FIRST LINE IS COMPUTED TOTALS
SfCOND LINE IS CORRECT TOTALS

13650. 00
13650.00

163800.00
163800.00

TABLE

WEEKLY

92.31
98.06

103.85
109.62
115.38
121.15
126.92
132.69
138.46
144.23
150.00
155.77
161.54
167.31
173.08
178.85
184.62
190.39
196.15
201.92
207.69

3150.00
3150.00

END OF TABLE
HALT

Figure 35. Sample Program (Part 6 of 6)

HOURl Y

2.31
2.45
2.60
2.74
2.88
3.03
3.17
3.32
3.46
3.61
3.75
3.89
4.0'.
4.18
4.33
4.47
4.62
4.76
4.90
5.05
5.19

78.75
78.75

63

Index

ASGN Cards .. 7,8,22,24,25,27,31,50 Group-Mark Word-Mark .. 15
Assembly, Conventional .. 16
Assumed Assignments .. 6, 8, 16,25,50
Autocoder Assembler Program 5, 6, 9, 48
Autocoder Language 6

HALT Card .. 9,16,22,32,52
Halts and Messages 34
Header Record (COHELOAD File) 15,25,40

Autocoder Library .. 5,27,28
Autocoder Macros 28, 45
Autocoder Processor .. 6, 7, 9, 16, 53
AUTOCODER RUN ...••.........................•...................•..................... 20
AUTOCODER RUN THRU EXECUTION•....•.....•..........••......•.•.• 18
AUTOCODER RUN THRU OUTPUT •............... •... 17
Autocoder System

Independent Execution .. 5,32,41
INIT Card 8, 22, 27
INITIALIZE OPTN Card 30, 52
INPUT File .. 7,24,32
INSER Card .. 31,52
Internal Files .. 7, 23

Building an 45 JOll Card 15, 41
Components of .. 6 Jobs
Copying an .. 49 Definition of 5
Deck Description .. 43 Library .. 16,28,32
Definition of 5, 6 Performing .. 31
Features of .. 5 Preparing ... 16
Updating an .. 6, 8, 32, 49 Processor .. 16,32

Autocoder Text .. 5, 9, 13, 17 Stacked .. 5, 16, 22,27
Autocoder Update .. 45,48 Update .. 16, 32

Batched Files .. 5, 7, 27
Bootback .. 5, 10, 41
Bootstrap Card .. 14, 15
Building an Autocoder System .. 43

Label Table .. 9, 10, 17
LDHCL Macro 30, 40
Librarian 7, 9, 55
LIDHAHY ASGN Card 25, 29, 50
Library, Autocoder .. 5, 27, 28

Card Boot .. 5, 6, 16, 22, 32, 45
Changing File Assignments 5, 7, 8, 22, 27
Clear Cards .. 14, 15,32
COM PAT OPTN Card .. 31,52
Condensed-Loader Format 14,17,34,41,42
Control Cards .. 7, 16,50
CONTROL File 7, 22, 23, 24, 32
Controlled Execution .. 5, 10, 18, 19, 40
Conventional Assembly .. 16
Copying an Autocoder System 49
CORELOAD ASGN Card .. 18,21,22,25,50
CORELOAD File 5, 7, 22, 24, 25
Coreload Format .. 10,15,17,40,41
CORELOAD OPTN Card .. 18,21,52
Cross-Reference Listing 11
CTL Card Diagnostics .. 10, 17
CTL Card Format .. 10

Library Build .. 29
Library Capacity .. 29
Library Change .. 30
LIBHAHY File .. 7,24,27,28
Library Jobs .. 16,28,32
Library Listing 30
Library, Object-Program 5, 27
LIBHARY OPTN Card .. 31,52
Library Routines 7, 9, 28
Library Table .. 7,9,28
LIST ASGN Card 25, 50
LIST File .. 7, 24
LIST OPTN Card .. 17,21,52
Listing, Cross-Reference .. 11
Listing, Library .. 30
LISTING OPTN Card 30, 52
Listing, Program .. 10, 11, 17
Load-and-Go .. 18,40

Definition of Key Terms .. 5 Load Cards .. 14
DELET Card .. 31, 52 Loader, Condensed .. 13, 14,41
Delayed Execution .. 19,40 Loading Object Programs 32
Diagnostic Flag Symbols .. 9, 10
Diagnostics, CTL Card 10, 17
Diagnostics, Source Statement .. 9, 10, 17
Disk Loader 15, 40
Documentation 10

Logical Files
Assumed Assignments IB, 8, 16,25,50
Batched ... 5, 7, 27
Changing Assignments 5, 7, 8, 22, 24
Considerations .. 24
Contents 7, 23, 24

END Card .. 30,52 Definition of ... 5
EX Statement .. 14,25 External ... 7,24
Execution Function of .. 5,6

Controlled .. 5, 10, 18, 19, 21, 40 Internal .. , 7,23
Delayed .. 19,40 Operation 7, 23

~~ltr;r~~~!~" .:: ::::::::::::: ::: :::::::: :::::: :::::::::::::::::::::::::::: .. ~: .:~' ~6
Execution Processor .. 7, 10, 15, 16, 58
EXECUTION RUN .. 19,40, 41
External Files .. 7, 24

Residence .. 7

Machine Operator 2, 7, 23
Machine Requirements .. 6
Macro Generator .. 7,9,23,56
Marking Program .. 43

Files, Batched 5, 7, 27 MESSAGE File .. 7, 23, 24
Files, Logical (See Logical Files) Messages .. 15, 17, 34
Flag Symbols, Diagnostic .. 9, 10 Multi-Program Execution .. 40

64 Autocoder (Disk) Operating Procedures

90-Character Sectors.
NOTE Card ..

Object Program
Card Formats.
Condensed-Loader Format ...
Coreload Format.
Deck
Development . . .
Execution
Library
Loading
Read-In Area ..
Revising the .
Self-Loading Format ..
Using the.

Object Time .
100-Characlter Listing ..
120-Character Listing ..
Operating Procedures ..
Operating Sectors.
Operation
Operation Files.
Option Control.
OUTPUT File .
Output Options.
Output OPTN Cards.
Output Processor ..
OUTPUT RUN ...
OUTPUT RUN THIl.U EXECUTION.

P..urtial Processing.
PAUSE Card ..
Preprocessor
Phase Descriptions.
PlUNTER 2 ..
PRINTER n ..
Processing Operations, Results of.
Processor, Autocoder.
Processor, Execution.
Processor Jobs
Processor, Output ..
Processor Runs..
Program, Autocoder Assembler.
Program Listing

.. . 15,25
.. 8, 22, 32, 52

.... 10
.14, 17,41,42
. . . 10, 15, 17

........ 13,14
.6,9,10

. . . . 5,6, 10, 18, 19,21, 40
............ 5,27

32
. 13,41

42
.14, 15, 17,42

40
5

· .. 13,26
13
16
15
6

. .. 7,23
.. 9,54

.7,24,27
17

. .16, 21, 52
.6, 7, 15, 16, 57

20
21

20
.8,22,32,52

.9,45,53
53

· .. 16,26
· .. 26,51
· .. 10,17

.6,7,9,16,53
.... 7, 10, 15, 16, 58

· .. 16,32
... 6, 7, 9, 15, 16, 57

.. 6,32
.5,6,9,48

...... 10, 11, 17
Program, Object (See Object Program)
Program, Source
Program Specifications
Program, System Control .. .
PUNCH 1.

. 5,6,9,15,17
5

. .5,6,47

. .. 16,26

PUNCH 4 , 16,26
PUNCH n ., ..
PUNCH OPTN Card ..

READER 1
READER n , ,
Read-In Area
Related Information.
RESEQ OPTN Card .
Resequenced Source Deck ...

· .26,51
.18, 21, 52

· .16,26

Resequencing the Autocoder System Deck ..
Residence File ..

· .26,51
.13,41

2
... 18, 21, 52

· 10, 15, 18
43

7
......... 10, 17

.30,52
..... 7,52

Results of Processing Operations.
Routine Name Cards.
RUN Card ..

Sample Program ..
Self-Loading Format ...
Source Deck, Composition of ..
Source Deck, Resequenced.
Source Program ..
Source Statement Diagnostics.
Stack

. ... , 45,48,59
· .14, 15, 17,42

18
..... 10,15,17

· . 5, 6, 9, 15, 17
.. 9, 10, 17

Definition of . . 6
Preparation of. . 32
Running a . 32

Stacked Jobs.5, 16, 22, 27
Stacking Object Programs. 10
SYSCL Macro. 10, 29, 41
SYSTEM ASGN Card. 16,25,27, 32, 50
System, Autocoder (See Autocoder System)
SYSTEM File .
System Control Card Build.
System Control Program

Text, Autocoder ..

UPDAT Card ...
Update
Update Jobs
Updating an Autocoder System
User-Assignments (Logical Files).
Using and Maintaining the Object Program.
Utility Program.

WORK1 File.
WORK3 File .
Write File-Protected Addresses.

XFR Statement ..

.7,22,25
. .. 45,47
.. 5, 6, 47

.5, 9, 13, 17

· 8,50
.. 9,54

... 16,31
.6,8,32,49

16
40
45

· .7,23,24
.7,23,24

· ... 45,46

· ... 14,25

65

READER~S COMMENT FORM

Au,tocoder (on Disk) Specifications and Operating Procedures IBM 1401, 1440, 1460
Form C24-3259-3

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No" or requires qualification,
please explain in the space provided below. All comments will be handled on a non-confidential
basis.

• Does this publication meet your needs?
• Did you find the material:

Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

Yes

D

D
D
D
D
D

No
D

D
D
D
D
D

• What is your occupation? ___________________ , ________ _

• How do you use this publication?
As an iIlltroduction to the subject? D As an instructor in a class? D
For advanced knowledge of the suttiect? D As a student in a class? D
For information about operating procedures? D As a reference manual? D

Other
• Please give specific page and line references with your comments when appropriate.

If you wish a reply, be sure to include your name and address.

(COMMENTS:

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C24-3259-3

fold fold
••• D ••••••••••

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •••

IBM Corporation

Systems Development Division

Development laboratory
Rochester, Minnesota 55901

Attention: Programming Publications, Dept. 425

fold

rrrnoo
®

International Business Machines Corporation

Data Processing Division

112 East Post Road, White ·Plains, N.Y. 1060t

FIRST CLASS

PERMIT NO. 387

ROCHESTER, MINN.

•

fold

0-
N

*"" I
W
N
<..n
\0
I

W

C24-3259-3

2(rn~
<!l

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, N.Y. 10601

()
.oN

oj:>.
I

u.:'
N
tn
1.0
I

OJ

	01
	02
	03
	04
	05
	06
	07
	08
	08A
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	replyA
	replyB
	xBack

