Application Program

Documentation Aids System (1401-SE-12X)

Program Reference Manual

This system is an aid in documenting existing programs
written in an assembly language for the vast majority of
current systems. The system processes, on a 1401 or
1460, source programs written in SPS, Autocoder, MAP,
FAP or Symbolic Flowchart Language. Source programs
written in either Basic or Full Assembly Language for
System/360 may also be processed. The documentation
output of this system is (1) a storage map of object decks,
(2) an analysis listing of source decks, and (3) a flowchart
of source decks. This system provides an important new
tool for documentation and conversion.

This first major section contains a general description of
the system, various runs which constitute the system,
machine configuration, general systems charts, a list of
input/output files, and sample output. The second section,
""Programmer's Information', presents program abstracts,
program systems chart, general input/output description,
program modification aids, system maintenance procedures,
a description of the Sort Program used, and details of the
Symbolic Flowchart Program. The third section contains
system setup sheet, error messages and halts, system
storage map, and all console operating procedures.

Copies of this and other IBM publications can be obtained through IBM branch

offices, Address comments concerning the contents of this publication to
IBM, Technical Publications Department, 112 East Post Road, White Plains, N.Y. 10601

-

CONTENTS

APPIJICATION DESCRIPTION e s 0 0 0 0 0

APPLICATION ABSTRACT

SOURCE LANGUAGE ... e0e e

GENERAL SYSTEM DESCRIPTION

Purpose and Objectives .
Extent of Coverage

Advantages «.coveeiean
System Control Cards
Machine~Oriented Concepts

Control Procedures

e e o 0 0

Timing . ..eecoeeooees
Methods and Special Techniques
Restrictions « « oo oo 0000000

UPDATE PROGRAM
Purpose and Objectives .
Extent of Coverage
Advantages ...e0000
Update Control Cards ..
Timing . eeo0oeevo oo
Restrictions and Range . .

ANALYSIS PROGRAM
Purpose and Objectives .
Extent of Coverage
Advantages +eeeeeoe

.

Analysis Program Control Cards

Timing ..o oo 000604
Special Techniques
Restrictions00

FLOWCHART PROGRAM ...
Purpose and Objectives .
Extent of Coverage.....
Advantages000

Flowchart Program Control Cards

Machine-Oriented Concepts

Control Procedures
Timing « o e o v o0 0sss0
MethodS « oo ossesne
Special Techniques
Restrictions and Range .

.

© WO IWNNKF -

10
10
10
11
11

11
11
12
12
13
13
13
14

15
15
15
16
16
19
19
19
20
20
22

VERIFY PROGRAM ¢ ¢ oo eoosasosoeses
Purpose and Objectives « .+ ¢ oo v v e
Extent of Coverage:ceeooeoe
Advantages « e s e ec s v s cs oo
Verify Program Control Cards
. Control Procedures « ¢« eeocoeoose
Timing «eoeeeeetncosonseenes
Special Techniques .« .o e e ceooeeos
Restrictions « o oeeeveoocooosesne

MACHINE AND SYSTEMS CONFIGURATION
Planned Use of Programming Systems

INPUT/OUTPUT FLOWCHARTS ++s0 s
INPUT/OUTPUT FILES . 4euevsossece

SAMPLE PROBLEM ANALYSIS «c¢oee o
Sample OUtPuts « ¢ « v e et v e s v e s s e

PROGRAMMER'S INFORMATION .« 4 0ees e

UPDATE PROGRAM .« e s s cocosnoesce
AbsStract +eoe s e v e 0o oo s s econsn
Description & « s o « o ¢ o s o s o o o
System FIOW + 4 4« ¢ 4 o o ¢ 6 0 0 o o o
Input/Output Description . « « « o « o «

ANALYSIS PROGRAM s s v osvoeooane
AbStract . ceee oot ev ot ot e
Description == Phase I ¢ oo env 0
Description == Phase IT. ¢ ¢ s e o ¢ 00 o s
System FIOW +ccoo st vescoansen
Input/Output Description « e s oo o v 0.

FLOWCHART PROGRAM ¢ e v v eoseoen
Abstract .. eeoceeet ot otoscees
Description =~ Phase I ¢ o ¢ ot oo eess
Description == Phase 1T+ v s s 6 66 06 0 s
System FIOW « ¢ ¢ s ¢ ¢ et s 00seoeees
Input/Output Description « + o+ o o s o+ o &
Additional Flowchart Options

VERIFY PROGRAM + ¢ coivnvonoconcs
Abstract e oo v ot escoocsocsas
Description ¢ ¢ v e e oot st evnoaoon
System FIOW + ¢ e e s e s e s 0o v osens
Input/Output Description « « « s o6 o s o«

22
22
23
23
23

24
24
24

25
25

25

27

29
30

38

38
38
38
39
39

40
40
40
49
50
51

53
53
53
55
57
59
61

62
62
62
65
66

DOCUMENTATION AIDS CONTROLLER .+ s ¢ s 00000000
ADSEract oo v oo vt e e ottt et 0 e e
Resident I/O Routine Description « « « o e o o o o o oo o
Program Selector Description (1CONA) ¢ « v v e s o s s o
System FIOW ¢ v v ettt vosvevoosscoscossnos

DA SYSTEM MAINTENANCE PROGRAM .. evoco 000
Systém Tape Format « ¢ .o e eeveeteosvosecase
System Maintenance Control Cards .+ .¢e oo vees.e
Description « ¢ e v o v oot s e e s s osesscceasoscss
System FIOW o« v o s e s v s s svsseosossenscsss

PROGRAM MODIFICATION AIDS & ¢ s 0 v s 6 06 00 a0 oeen
General Modification Aids .+ ¢ v v v v et s o vveosess
Input/Output Modification AidS . .+ e.eveeoooenn
Dictionary Modification Aids « .. v e v v v o0 e e v oo o

DA SYSTEM RECORD IDENTIFICATION AND FUNCTIONS
APPENDIX TO PROGRAMMER'S INFORMATION ,.....

SOort Program .. .coeeeeeoeasosoosoncsons
Symbolic Flowchart Programco6000000

OPERATOR!'SGUIDE . ¢ vt i ittt ettt et s oo toeeneossns

PROGRAM SETUP .+ i ectveeeereoscscsossonsos
For DA System Operation . .o oo o v o v vevooeooss
For DA System Maintenanceeooeoo0ees

CONSOLE OPERATING INSTRUCTIONS .. .ecovooese

HALTS AND MESSAGE LIST + 4 voevoevenennosonsans
Operator MeSSages « o s s o s o s s s s saossssscees
Diagnostic Error MessSagesS . .o o e o esoseeesoas

STORAGE MAPS « ¢ ¢t v vt v evsecsooecaocsnosncosas
Program Selector ..o e vt evescoesonscscnnsas
Resident System Controller + v c o v s o s 0o v 0 0o oeos
Update + e e oo eeosvsooooossssevonsssosssss
Analysis == Phase]l ..uisvvoseosssonsessscs
Storage Map of Analysis =— Phase Il ... ¢ecvev.u.
Flowcharter =~ Phase I ...eecevsvoososososescs
Flowcharter =~ Phase II . .. v vevvveoooosoanns
Verify «vveeeeeveveseecosassasssosnnsons
System Maintenance . . « ¢ o s v o v oo o0 s o0 0ss 0o

RESTART PROCEDURES .. c.cettvesrocnsoncons

B[BLIOGRAPI-IY S 8 8 & 0 0 8 0 0 0 & ¢ s 0 P S O e e 2O OO N e 0 0 o

68
68
69
70
71

71
72
72
75
77

77
77
80
82

91

94
94
96

103

103
103
103

104

104
104
106

112
112
113
114
115
116
117
118
119
120

120

121

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

APPLICATION DESCRIPTION

APPLICATION ABSTRACT

The Documentation Aids (DA) System is designed as an aid to documenting an existing
program written in an assembly language. The DA System provides machine-~generated
documentation aids to the vast majority of users who are programming in current IBM-
supported assembly languages. The system processes programs written in Symbolic
Programming System (SPS), Autocoder, Macro Assembly Program (MAP), Fortran
Assembly Program (FAP), S/360 Basic Assembly Language (BAL), S/360 Full Assembly
Language (FAL), or Symbolic Flowchart Language (SFL) for each of these systems:

1401/1440/1460 705/7080
1620 7040/7044
1410/7010 7090/7094
7070/7072/7074 S /360

The documentation produced by the DA System includes:

1. A storage map of object decks (except 1620, 7040/7044 and 7090/7094)
2. An analysis listing of source decks

3. A flowchart of source decks

A file maintenance program is provided as part of the DA System to aid the user in
maintaining and modifying source decks.,

The DA System is implemented for usage on an IBM 1401 8K, four-tape system.,
SOURCE LANGUAGE

The source language used in the implementation of all DA System programs is 1401
Autocoder, '

GENERAL SYSTEM DESCRIPTION

Purpose and Objectives

The DA System is designed with the following objectives:

1. To assist an installation in effectively and efficiently converting existing programs
to IBM System/360 programs.

2. To encourage the user to reprogram in a higher-level language, for example,
FORTRAN and COBOL,

3. To improve programming efficiency by the standardization of documentation tech-
niques.

4, To improve and update the documentation of existing programs, thereby easing
maintenance problems,

5, To eliminate many clerical and routine functions associated with documentation and
conversion,

6. To provide consistent documentation for S/360 assembly language programs.
1

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

Extent of Coverage

The DA System consists of four programs:

1, Update Program allows insertion, deletion and replacement of assembly language
statements in order to bring the source program up to date.

2. Analysis Program scans assembly language programs and produces pertinent infor-
mation about the program scanned, including cross-references.

3. Flowchart Program (Flowcharter) scans assembly language programs and produces
flowcharts of designated areas.

4, Verification Program (Verifier) produces a storage map of an object deck, noting
overlay patch areas.

The use of Documentation Aids is directed towards programs written in an assembly
language and processes as input either a source card deck or a tape containing card
images of the source program, The Verifier processes object decks,

Programs written in the most up~to~date version (or any subset of language features of
an up-to-date version) of the following assembly languages may be processed by the DA
System.:

SPS Autocoder Basic Autocoder MAP MAP/FAP BAL/FAL
1401 1401/1440/1460 1401/1440/1460 7040/7044 7090/7094 S/360
1460 1410/7010 1410/7010
1620 7070/7072/7074 7070/7072/7074

705/7080

Additionally, the Flowcharter of the DA System processes programs written in Symbolic
Flowchart Language (SFL). A description of SFL is given later in "Appendix to Pro-
grammer's Information",

Advantages
The advantages of using the DA System are:

1. The DA System provides a mechanized, accurate, efficient and inexpensive means
of providing and maintaining up-to-date program documentation.,

2, Tt assists every installation which is confronted to some degree by one or more of
these situations:

a. Programs seldom remain static while documentation often does. Maintenance
modifications are made and application functions are added and/or deleted
without updating or revising the application or program documentation,

b. A procedure for maintaining documentation may not have been established and/
or the task may not have been assigned

c. The program may have been running for a number of years and the documen-
tation been misplaced,

d. The program may have been developed on a crash basis, and only sketchy ox
rough documentation developed.

e. Prograrmers tend to regard the documentation phase of their work as tedious
and time~consuming and often neglect it unless it is demanded by project
management.

3. The DA System provides an Update Program, an Analysis Program, a Flowchart
Program and a Verification Program--all under the control of a System Controller,

4., All programs are integrated in a total system so that each performs certain func-
tions which may be required by other areas.

5, The system concept enables the user to submit a source program deck to the DA
System and receive any or all outputs from the system in one processing run with
maximum efficiency.

6. Documentation Aids assists an installation in converting existing programs to IBM
System/360 programs.

7. Input to the DA System is the original source program assembly language, either
on cards or in card image form on tape. Input format (either card or tape) is
determined internally by the DA. System and is not specified by the user.

8. Implementation of the DA System on the IBM 1401 gives the user the opportunity to
document programs for any current large~scale data processing system withou®
tying up that system. The IBM 1401 is almost universally available, making the
DA System benefits readily accessible to all users.

9. The Symbolic Flowchart Language may be used in the design and documentation of
new applications. '

System Control Cards

All DA processing is controlled by the use of system control cards. The form of all
control cards is as follows:

Column 1 $
Columns 2 through 9 Controlling Operation
Columns 10 through 72 Operands

The operands are separated by commas., The first blank encountered in the operand
field terminates the field on all but the $DAJOB card.

Notation conventions used in the description of all DA System control cards are:

1. All uppercase words are required when the functions of which they are a part are
used.

2. All lowercase words represent generic terms which must be supplied by the user.

3. Material enclosed in braces, { }, indicates that a choice from the contents must
be made.

4, Material enclosed in gquare brackets, [], represents an option and may be
included or omitted by the user.

A brief description of the various system control cards follows (a more detailed outline
of each, with operands, is given in later sections):

DAJOB~--must be the first card of each DA run; it contains the machine and lan-
guage, and the program identification.

$UPDATE~-calls in Update Program.,
$DELETE-~used with $UPDATE to indicate changes.
$ANALYZE~-~calls in the Analysis Program,
‘$CHART--calls in Flowcharter Program.
$SEGMENT-~used with Chart Program to indicate areas to be charted.
$VERIFY-~calls in Verification Program,
$DAEND--signified the end of a DA run,
All control cards, if present, must appear in the sequence outlined above,

The format of the $DAJOB card is:

$DAJOB {machine,} {lang'uage,} {identification }
where: ’
machine specifies the machine for which the source
language is written, and must be one of the
following:
1401 7040
1440 7040
1460 7070
1410 7072
7010 7074
1620 7090
705 7094
7080

Additional models of the above~listed base
machines are represented by the base machine
number; for example, 7094 II is represented
by 7094.

Form H20-0177-0
Page Revised 11/15/65
By TNL N20--0047-0

language specifies the name of the language in which
the source program is written and must be
one of the following:

SPS

AUTO

BASIC

MAP

FAP

SFL

BAL
Where: FAL
SPS = Symbolic Program System
AUTO = Autocoder
BASIC = Basic Autocoder
MAP = Macro Assembly Language
FAP = FORTRAN Assembly Language
SFL = Symbolic Flowchart Language
BAL = . 0S/360 Basic Assembly Language
FAL = 08/360 Full Assembly Language

identification is a user-provided program identification

which appears as a page heading on all DA
System output reports. All columng begin-
ning immediately after '"language" through
column 72 are considered as "identification'.

All options must be specified in the order shown.

If the source program input is on cards, the source deck must immediately follow the
$DAJOB card. If the source deck does not follow the $DAJOB card, tape input is
assumed by the system,

The $DAEND card must be the last card in the input deck; its operand field is ignored.

The format of the $DAEND caxd is: $DAEND

The system Controller scans the $DAJOB card to determine the machine and language to
be processed, Control is passed to the program called on the next control card.

Each program in turn proceeds as requested, transferring control through the system and
processing the data until the $DAEND card is reached,

In addition to the function of starting a DA run, the System Controller also provides
capability for DA System maintenance.

Representative Deck Set Up for Verify Program

When performing a verification run, the object deck must be supplied after the $VERIFY
card, as shown: . .

($DAEND

/Obiecf Deck

l $VERIFY

$DAJOB

Representative Deck Set Up Using Update Program

The Update routine may be used to update a card image tape file or source deck. For
the set up shown, the source language is updated and analyzed, and a flowchart is pro-

duced.

($DAEND
($SEGMENT
$SEGMENT
F $CHART
(SANALYZE
Change Cards
$DELETE
($UPDATE
/ Source
] Deck
$DAJOB

Update Analysis input. Source deck
may also be in card image tape form.

$DAEND

$DELETE

$UPDATE
-]
$DAJOB

Update SFL input. A flowchart is produced according to the program outlined in the
updated SFL language.

Representative Deck Set Up for Analysis and Chart Programs

In this example the Analysis and Flowchart Programs are called producmg analysis
reports and a flowchart.

$DAEND

$SEGMENT

$CHART

| $ANALYZE

Source Deck

$DAJOB

Source may also be in card~image tape form

A Chart~only run would have the same input, except that the $ANALYZE card would be
omitted,

Machine--Oriented Concepts

The DA System requires four magnetic tapes for execution:
Tape Unit 1: System residence,

Tape Unit 2: Input of source language statements; intermediate storage.

Tape Unit 3: Updated source language; intermediate storage.
Tape Unit 4: Intermediate storage.
The 1402 card reader is used for three kinds of card input:
" Control cards
Source language cards
Object cards.
The 1402 card punch is used for punched output.
All reports and error messages are printed on the 1403 Printer.

Control Procedures

Control cards out-of-order cause processing to terminate.

Tllegal options on any control card cause processing to terminate--for example, a re-
quest to process 1401 MAP language on the $DAJOB card,

ATl input is checked for ascending 1401 collating sequence. All out~of-sequence condi-
tions are noted.

System control information is supplied to the operator via the 1402 Printer.
Additional control procedures are discussed in the individual programs.

Timing

P‘rimary considerations in estimating running time are:

1, The input medium (card or tape, tape unit model, tape density)
2, The number of statements in the source input

3. The programs called and the options specified

Approximate throughput rates are given under the timing section of the individual

programs which make up the DA System. Estimates are based on the use of 729 Model V
tape units at 556 cpi. However, two general timing considerations apply to the Documen~-
tation Aids System:

A%

1, Systems Processing Overlap. Certain passes over the source deck are common to
the Update, Analysis, and Flowchart Programs. If one job contains a request for
any combination of the above programs, the common passes are performed only once.

2, System Tape Time. The programs are arranged on the system tape in this order:

Update Program
Analysis Program
Flowchart Program
Verify Program

The system tape passage time for any program is the sum of all system tape
passage times preceding and including the program called.

Methods and Special Techniques

Specific methods and special techniques are discussed under each of the programs in the
DA System. Since a large variety of languages are processed by the DA System, each
language statement is scanned and converted to a standard DA System record format,
Processing of the DA formatted tape in later passes is then largely language~independent.
Restrictions

The following restrictions are imposed upon the user:

1. Any unrecoverable tape errors necessitate a rerun of the job.

2. The DA System does not use or check header labels.

3. The tape input file may not be larger than the capacity of one reel of unblocked
80-character records.

4, All programs operate with single reel files only.

5. Any $ in column 1 is considered a system control card.
Additional restrictions are discussed in the individual programs.
UPDATE PROGRAM |

Purpose and Objectives

The Update Program is designed to perform file maintenance on card image tapes, and is
used to add or delete source statements in a program being processed by the DA System.
It is also used to update the Symbolic Flowchart Language, thus providing this new lan~
guage with machine maintenance capability including updated source decks and listings.

The program checks for valid sequencing and generates standard input files for other DA
System programs.,

Extent of Coverage

The Update Program accepts card or tape input in card image form and produces as out~
put a card image tape. Input is checked for ascending 1401 collating sequence in columns
1-5 (SPS/Autocoder) or columns 76-80 (FAP/MAP), File maintenance is performed using
the sequence field.

The user, through control card options, may request a new updated source deck and/or
listing. On option, the Update Program generates ascending sequence numbers in the
sequence field, starting with 00010 in increments of 10. Whenever resequencing is

requested, a listing showing both old and new sequence numbers (with errors flagged) is
prOduced.

Advantages
The advantages of using the Update Program are:

1, File maintenance is performed on gource language files, including the Symbolic
Flowchart Language.

2. The Update Program generates input tapes for othexr DA System programs.
3. All input files are checked for correct sequence.

4, Both tape and card input files are acceptable.

5. An out-of-sequence input file may be resequenced.

Update Control Cards

The Update Program is called by a $UPDATE control card.

The format of the $UPDATE card is:

$UPDATE [SEQUENCE,] [LIST,] [DECK]
where:
SEQUENCE specifies that Update is to generate new

sequence numbers in the output file,
A listing with both the old and new
sequence numbers is produced.

LIST specifies that a listing of the output
file is to be printed. This operand is
implied if SEQUENCE is specified.

DECK specifies that the output file is to be
punched into cards.

The $UPDATE card operands may be specified in any order.

10

Any non-$ cards following the $UPDATE card are considered records to be added to the
input file, These are merged into the input file according to their individual sequence
numbers in the sequence field. Sequence errors, whether present in the input.file or
change file, cause processing to terminate.

To delete records from the file, the $DELETE card is used.
The format of the $DELETE card is:
$DELETE n, 5 0,

The operands n, and n, are five-digit sequence num-
bers. The presence of this card in the change file
causes the records between n, and ny, inclusive, to
be deleted from the input file. $DELETE cards are
placed in the change file in sequence, with any records
to be added, by their ny operand.

Timing

The formulas to determine the approximate running time (in seconds) for maintenance are

as follows:

To generate DA tape and check sequence:

.01 x number of statements in input file
To resequence or list, add to the above:

.1 x number of statements in input file
To punch a deck and list, add:

.5 x number of statements in oufput file

Restrictions and Range

The following restrictions are imposed upon the user:
1, Input files must be in card image format. They may be in card form or on tape.

2. An attempt to update an out~of-sequence file causes processing to terminate after the
Update run. No updated file is generated.

3. The sequence field may not contain a groupmark or a tapemark,

ANALYSIS PROGRAM
Purpose and Objectives

The Analysis Program is designed to scan an assembly language source program to pro-
vide a detailed analysis of instructions, This analysis is produced in the following forms:

1. A flagged listing denoting instruction type
2., A cross-vreference dictionary of labels and references to them
3. An analysis of operation code usage.

11

The Analysis Program also prepares a coded assembly language tape for input to the
Flowchart Program.,

Extent of Coverage

The Analysis Program operates directly upon assembly language source statements and
produces a flagged listing,

Flags and their indicated instruction types are:

Assembler control
Branch

Complex operands
Data defining

Halts '
Indirect addressing
Macros
Input/output
Relative addressing
Indexed

HmogrIZmUaw»>

All other instructions (for example, computational) are not flagged.

Optional reports are:

1. A frequency table of the operation codes used in the assembly language source pro-
gram showing the number of times each code appears in the program.

2. A cross-reference dictionaxy which lists each labeled instruction and all instruc-
tions in the program which refer to that label.

Advantages

The advantages of using the Analysis Program are:

1,

2.

3.

4.

The flagged listing provides an up-to~date listing of the assembly language program,

Statements in the flagged listing are classified according to the type or nature of the
statement, thus providing an aid in detexrmining the logic flow of a program.

The operand references in the flagged listing provide a further aid in determining
the logic flow of the program.

The cross—-reference dictionary provides a convenient method of determining the
effect of altering assembly language statements upon other portions of the program.

The cross-references provide a convenient method of checking for operation code
and logic modification.

12

Analysis Program Control Cards

The Analysis Program is called in from the system tape by the $ANALYZE control card.

The format of the $ANALYZE card is:

$ANALYZE [CROSS,] [OPERAND,] [COUNT]

where:
CROSS specifies that a cross~reference dictionary is to be
printed before the flagged listing.
OPERAND specifies that the operand references are to be included
with the flagged listing.
COUNT specifies that an operation code frequency table is to

be printed,
The $ANALYZE card operands may be specified in any order.
Timing
Factors affecting the Analysis' Program processing time are:
1. The number of comment statements in source input
2. The number of references to labels in the source input program
3. The coding techniques used in the assembly language program
The formulas used to obtain approximate processing times (in seconds) are:
To produce a flagged listing:
.4 x number of assembly language statements
To produce CROSS and/or OPERAND listings:
1.5 x number of assembly language statements

Special Techniques

The following special techniques are employed by the Analysis Program:

1. Every operation code of a declarative, imperative or processor control instruction
is looked up in an operation table. Associated with each operation code in the table
are attribute flags which classify the type of operation. These flags are placed on
the flagged listing to denote the type-of-operation code.

13

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047~0

2.

3.

The operand field of every imperative statement is scanned to determine the nature
of the statement--for example, an indexed statement, indirectly addressed statement,
or a statement containing a complex operand, * Approprlate flags are generated to
denote the nature of such statements,

For the frequency table, each operation code is looked up in the operation table, and
a count is tallied of the number of times the operation code appears.

Records are created for symbolic operands, and tape sorts are performed to create
the cross—-reference dictionary and the flagged listing with operands.

Certain System/360 special characters (e.g., EBCDIC duals) print as blanks
on the 1403 Printer. These characters are changed as follows:

1403 Printer

Card Punch EBCDIC Duals Card Punch Chain A Chain B
v 8 @
4-8
12-4-8
1

e
Gbl\Dl-l-‘l\DUI
CX)CDCIJ‘IU‘ICO
Q@ 0
N+~~~
*+ OxRg

4-
0-
2-
2
3-

I+~

8

Restrictions

The following restrictions apply to Flowchart as well as Analysis output:

1

2'

3.

4,

5,

Implied indexing is not noted.
Operands appearing on continuation cards are not scanned.

Nested qualification in MAP is not analyzed. A qualifying symbol can only be up to
three characters long; any excess characters are truncated. Note this can cause
incorrect cross~referencing if there is more than one qualifying symbol within the
source program for which the first three characters are identical.

Macro definitions are not entered into referencing, The operation codes within the
definition appear in the Operation Code Frequency Report and the statements appear
on the flagged listing, each statement flagged M.

With the exception of 1401 SPS and 1620 SPS, the operand field is not scanned for
reference purposes or for classifying the statement if the first character of the field
is blank. With the same exceptions, consecutive operands are assumed to begin in
the position immediately following the operand-separating character. Therefore, for
the operand

A, B

only the symbol A is recognized,

. * A complex operand is defined as an operand containing any address arithmetic

other than label * constant.

14

6. Statements using operation codes which do not appear in the Operation Code Diction-
ary (for example, user~defined macros) are not scanned.

7. 1401 machine language operations beginning in column 19 are not acceptable to the DA
System.

FLOWCHART PROGRAM

Purpose and Objectives

The Flowchart Program is designed to generate a flowchart of an existing source pro-
gram. The flowchart produced represents the gross logic of the source program and,
therefore, can be used as a guide for reprogramming in a higher-level language, for
example, COBOL or FORTRAN,

The Flowchart Program scans assembly language statements which have been coded by
the Analysis Program and generates a language called Symbolic Flowchart Language
(SFL).

SFL is then processed producing a detailed flowchaxt of the original program.

Extent of Coverage

Flowcharter is logically divided into two phases. The first phase accepts as input
assembly language statements which have been coded by the Analysis Program, and
generates a card image tape which is used as input to the second phase.

The input instructions to the second phase, called the Symbolic Flowchart Program, con-
stitute a language called the Symbolic Flowchart Language. This language may be used
as direct input to the DA System.,

Operation codes define the type of flowchart box to be generated.

Source program statements denoting input/output activity, computation, decision-making,
instruction modification, subroutines, predefined processes, and logic breaks generate
uniquely shaped flowchart boxes corresponding to standard flowchart conventions. Source
program operands are used to insert meaningful comments into the flowchart boxes.

Labels appearing on instructions in the source program are appended to the flowchart
boxes and serve as flowchart connectors as well as cross~references between the source
program and the generated flowchaxt.

Additional cross~reference between the source program and the flowchart is provided by
the sequence field.

15

Advantages
The advantages of using the ‘Assembly Lanugage Flowchart Program ave:

1,

2.

3.

4.

5,

The shape and meaning of each flowchart box generated is consistent with the pro-
posed American Standard, which includes all of the symbols developed by the X3.6
Committee on Flowchart Symbols for Information Processing,

An optional feature of Flowchart is punched output of the generated Symbolic Flow-
chart Language card images., By using this option, the user may manually change
the logic of the flowchart or alter the comments inside the flowchart boxes simply
by changing the output statements in the appropriate place. This same output, with
changes, may then be resubmitted as direct input to the DA System, using SFL as
the language.

A card image tape of the SFL language is always produced from the Flowchart.
This tape may be used as input to the Update Program in subsequent passes through
the DA System,

The assembly language statement content is reflected in the generated flowchart, In
the translation from assembly language statement to symbolic language statements,
labels are retained and appended to the flowchart box., Operands are retained and
used to generate comments which are printed inside the flowchart box. The
sequence fields are retained and printed in the flowchart box as a cross-reference
between the assembly language program and the generated flowchaxrt.

Flowchart examines multiple language statements, whenever possible, and combines
them into a single flowchart box. Therefore, the number of generated flowchart
boxes is usually substantially less than the number of assembly language statements.

Flowchart Program Control Cards

The $CHART card calls in the Assembly Language Flowchart Program from the system
tape.

The format of the $CHART card is:

$CHART [DECK,] [LIST]
where:
DECK indicates that the Flowcharter is to
punch-out the program in Symbolic
Flowchaxt Language.
LIST indicates that the Symbolic Flowchart

Language program. is to be printed
prior to the printing of the flowchart.

The $CHART card operands may be in either oxder.

16

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

The $SEGMENT card is used {o segment an assembly language program, If $SEGMENT
cards are used, only those statements specified are flowcharted. $SEGMENT cards are
not required for small programs; however, segmentation of large programs may be
required to avoid a label dictionary overflow condition within the Flowchart Program.,

The format of the $SEGMENT card is:

TO, }
$SEGMENT {opera.nd 1,} {THRU’} {operand 2

where:

operand 1 must be either a label or **, If
operand 1 is a label, it is the label in
the source program label field with
which segmentation is to commence.
If operand 1 is **, it is the first
instruction of the source program and
is the instruction with which seg-
mentation is to commence,

TO specifies that the segment terminates
at, but not including, operand 2.

THRU specifies that the segment includes
and terminates with operand 2.,

operand 2 signifies the end of a segment and
must be either a label or **, ** g
used to indicate the last statement in
the source deck.

Operand 1 must precede operand 2 in the source program. If more than one segment
card is used, the segments specified by the operands must appear in the same order as
the assembly language program labels and not overlap.

If segmentation of an assembly language program is performed, it should be done at
points which generate the fewest undefined transfer labels. Normally segmentation
should be done at instructions which occur at a break in the normal logic flow-~for
example, ORG, EJECT,

17

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047 -0

If segmenting is performed at a label which is headed (that is, qualified by a prefix or
suffix), the operand must be specified as follows:

1.

2.

3.

For FAP and 1620 SPS, the operand consists of the heading character, followed
by a dollar sign ($) and then the label. For example, if the source program is:

HEAD B
DUMP

to specify segmenting at the DUMP symbol, the operand in the $SEGMENT card
must be: B$DUMP

If the label referred to is six characters long, the label is not headed and should
appear on the $SEGMENT card without the heading character and dollar sign.

If MAP qualification is used and the heading symbol is longer than three characters,
only the first three characters should be used in the $SEGMENT card operand.
For example, if the source program is:

QUAL SINE
BEGIN

|

the operand on the $SEGMENT card must be:
SIN$BEGIN

For 1410 Autocoder suffixing, the operand consists of the label, followed by as
many colons as required to fill nine characters, followed by the suffixing char-
acter. For example, if the source program is:
SFX B
DUMP

the operand in the $SEGMENT card must be:

For 1401 Autocoder, the operand consists of the label, followed by as many colons
as required to fill five characters, followed by the suffixing character. For
example, using the same source program as noted in item 2, above, the operand
in the $SEGMENT card must be:

DUMP:B

Phase I of Flowchart analyzes the coded assembly language statements, determines pro-
gram. logic, and produces SFL statements.

A detailed description of the Symbolic Flowchart Language and program is found later in
"Programmer's Information, This program is utilized as Phase II of the Flowchart
Program in the Documentation Aids System.,

17a

A simple MAP Assembly Language Program and the accompanying Flowcharter
outputs is shown. The output of the first phase is shown in the column under
Symbolic Flowchart Language, and the last column shows the flowchart generated

by the second phase.

MAP Assembly Language

IOSUB SAVE 4

AXT BRANCH, 4
SXA SWITCH, 4
STZ TOTAL
LOOP RTDB 3
TEFB DONE
QMACRO A, B
LDQ PRICE
FMP QUANTITY
FAD TOTAL
STO TOTAL
CALL ADJUST
TRA LOOP

DONE RETURN IOSUB

IOSUB

LOOP

DONE

Symbolic Flowchart Output

10SuUB

! ENTER

2

LOAD XR 4
MODIFY
SWITCH

4 ZERO
TOTAL

Symbolic Flowchart Language

JOB

ENTERL

MODFY2 LOAD XR4 MODIFY SWITCH
BLOCK4 ZERO TOTAL

10 5 READ TAPE 3
DECID6 END OF FILE

YES DONE

PREDF7 QMACRO

BLOCK8 COMPUTE TOTAL
SUBRTADJUST, 12

GOTO LOOP

EXIT 14

END

7 QMACRO

8 COMPUTE
TOTAL

1

ADJUST Loop

— ®

DONE

EXIT
14

18

Machine-Oriented Concepts

Each matrix of the flowchart consists of two pages of 1403 Printer paper. The carriage
control of the printer should be set at eight lines per inch, The control tape in the tape-
controlled carriage should be punched in channel 1 to allow 88 lines per printer page.

A message to the operator informs that the printer carriage tape should be changed and
the carriage reset for eight lines per inch,

Control Procedures

The following controls are incorporated into the Assembly Language Flowchart Program:

1., If $SEGMENT cards overlap or do not specify segmentation in the same order as the
source program labels, an error message is printed and the job is terminated.

2, If the internal core capacity for procedure labels is exceeded, a message is printed
informing the user that he must segment his program and the job is terminated.,

Timing

In addition to those factors specified in "General System Description', certain others
affect Flowcharter processing time:

1. The type of input (assembly language statements or Symbolic Flowchart Language
statements),

2., The number of comment statements in source input.
3. The number of statements in the assembly language which generate flowchart boxes.
4. The coding techniques used in the assembly language program.,

5, The number of labels in the source input and the number of labels generated during
the derelativization process (see '"Special Techniques', below).

6. The number of segment control cards in the input.
The formulas used to obtain approximate processing times (in seconds) are:
If Assembly Language input:
0.75 x number of assembly language statements
If Symbolic Flowchart Language input:'
1.0 x number of Symbolic Flowchart Language statements

If an SFL deck is punched, add approximately .5 seconds per SFL card.

19

Methods

Conversion of assembly language statements to Symbolic Flowchaxt statements is per-
formed by the following methods:

1.

2,

Procedural instructions encountered determine the type of box or connector which is
generated, Only those instructions which are significant to the flowchart are used by
the processor, For example, data~defining instructions are not used in the flow-
chart process.

Comments inserted in each box are based upon the types of instructions encountered.

Sequential procedural instructions are grouped together to generate a single flow--.
chart box, subject to the following rules:

a. A label appearing on a procedural instruction always causes the generation of
a new box.,

b. A new box is generated whenever the assembly instructions encountered signify
a change in box type.

c. A new box is generated whenever the comments to be inserted in the current
box exceed the comment capacity of the current box.

d. A conditional branch ox subroutine call instruction always generate a new box.

Special Techniques

Flowcharter employs special techniques when handling source input card images:

L.

All insfructions in an assembly language program which branch to a simple relative
address undergo derelativization.,

To derelativize, Flowcharter computes the length of source instructions in terms of
core storage positions and maintains an internal location counter,

All source language instructions are clagsified as being of known or unknown length.
In general, machine instructions are classified as known length and nonmachine
instructions; for example, macros and pseudo operations are classified as unknown
length., An internal location counter is maintained for each area of the source pro-
gram of known length,

In the following example:
TRA label in
where "n" is a constant, the rule for derelativizing is as follows:
If the location counter displacement (that is, in) is in the

same known length area as the label, the branch instruc-
tion is derelativized. If 'n" is such that an unknown

20

2,

3.

4,

length area is crossed, the branch instruction is not
derelativized. In this case, Flowcharter generates a
logic terminating EXIT box, rather than a GOTO con~
nector, The same rule applies to location counter
references -- for example:

BR *tn

Relative addresses generate labels preceded by a lozenge. Such labels do not appear
on the flowchart, but are used by the program to generate connectors.

Branches to complex, indirect, indexed or undefined labels generate an EXIT ter-
minal box. Undefined labels include those labels located outside the particular
segment being processed.

All instructions in a given assembly language are classified by the type of Symbolic
Flowchart Language operation they generate. Unconditional branch instructions
generate a GOTO operation., Conditional branch instructions generate a DECID and
a YES or NO operation. Arithmetic, logical and data movement generate a BLOCK
operation,

Instructions which modify instructions generate a MODFY operation. Instructions
which are used to call subroutines generate a SUBRT operation., Instructions which
define the beginning and ending of a subroutine generate an ENTER and EXIT oper—
ation, respectively. Macro instructions defined by the user generate a PREDF
operation,

Procedural operations not found in the operation table for the language specified in
the $DAJOB control card generate a predefined process box.

User-defined macros are examples of operation codes which generate predefined
process boxes.

Conditional branch instructions generate a decision box in which the condition being
tested is printed in terms of hardware registers and/or fields. Three-way compare
operations, such as the 7094 CAS instructions, generate two consecutive decision
boxes.

Arithmetic, internal data movement, and logical bit manipulation instructions gen-
erate a processing box. The comments generated in the box denote the general
nature of the instructions encountered and, when possible, name the field stored
in memory.

Input/output operations generate an input/output box. Whenever possible, the com~

ment printed inside the flowchart box denotes the type of operation pexrformed (for
example, READ) and names the unit, file or record acted upon.

21

Certain instructions in an assembly language program are calls to subroutines and
generate SUBRT operations. In some assembly language programs, calls are
explicitly defined by an instruction such as CALL. In other instances, calls are
implied either by the instruction performing the call (for example, TSX or BTM) or
by the instruction being called (for example, branch to an SBR instruction).

Restrictions and Range

1,

5.

The size of the assembly language program which can be processed is determined
by the number of labels appearing on procedure instructions (not data~defining
instructions) in the source program, and labels which are generated to derelativize
branch instructions. If the source program is written in Symbolic Flowchart
Language, there is a similar restriction on the number of labels which can be used.
However, any restriction on the number of labels may be overcome by the user
through proper segmentation, The number of assembly procedure labels which may
be processed is 200 (plus 200 for each additional 4K of core storage). The number
of SFL labels which may be processed is 390 (plus 250 for every 4K of additional
core storage).

Only the first ten characters of assembly language fields are used in generating
flowchart comments.

Only the first three operands of any assembly language statement are used for
flowchart comments.

Only one (the first) operand is derelativized in branching type instructions.
Exceptions to this rule are those 7070 instructions in which the second operand is
the branch address (for example, BXM)., For those instructions, the second
operand is derelativized, if necessary.

Additional scanning restrictions which affect the Flowchart Program are discussed
under Analysis restrictions.

VERIFY PROGRAM

Purpose and Objectives

The Verify Program is designed to help the programmer determine that the source deck
is in agreement with the current object deck.

The storage map produced by the Verify Program may be compared with the original
assembly listing to detect differences between the source and object programs.

22

Extent of Coverage

The Verify Program processes an object program deck generated by the following
assembly languages:

1401 SPS

1401/1440/1460 Autocoder

141.0/7010 Autocoder

705/7080 Autocoder

7070/7072/7074 Autocoder
Verifier generates a storage map and identifies overlay patches in an object program.,
The storage map generated represents the contents of core storage after the object pro-
gram has been loaded.
Advantages
1. A detailed storage map of the object program is provided.
2. All overlay patches are identified for programmer examination.

3. FEach break in location sequence is identified.

4. Verifier enables the programmer to update his source program by checking patches
* made to the object deck.

Verify Program Control Cards

Verifier is called in by a $VERIFY control card.
The format of the $VERIFY card is:

$VERIFY [DISK,] [LOADER]

where:

DISK is used only when disk Autocoder is the machine language, and
the format of the object program deck is condensed, containing
word separator characters.

LOADER indicates the presence of a standard loader routine in front of

the object deck. Verifier recognizes the standard clear storage
and bootstrap cards in the 1401/1440/1460 programs, and
LOADER must be omitted in this case.

The $VERIFY card operands may be specified in any order.

The object deck immediately follows the $VERIFY card. A $DAEND control card ter-
minates the run.,

23

The Verify Program processes an object program in three passes.

Output from Verifier consists of the storage map; each object program instruction is
printed in storage location sequence. Each printed instruction includes the storage loca-
tion, the mnemonic equivalent of the operation code, the full machine language instruction
and card reference number. The storage map format is comparable to the assembly
listing. All overlay patches are identified by asterisks.

Control Procedures

The following control procedures are incorporated into the Verifier:

1. The object program must immediately follow a $VERIFY card in the card reader,
2, A $DAEND card signifies the end of the input object program,

Timing

The following factors affect the amount of time needed to generate a storage map of an
object program:

1. Type of object program
2, Number of instructions per card
3. Number of programmed overlays and patches

A formula to determine the approximate time (in seconds) to generate a storage map is
as follows:

Time = 2,0 x number of cards in object program

Special Techniques

The Verify Program employs the following special techniques in processing object
programs:

1. Coded core storage addresses are converted to actual addresses.

2, A table-lookup technique is employed to determine the mnemonic equivalent of each
machine operation code,

Restrictions

1. Each execute, transfer or end card signifies the end of an object program segment;
therefore, overlay patches must be placed within the proper segment.

2. Data which appears to be an instruction is treated as an instruction.

3. SPS one~for-one object decks cannot be verified without condensing.

24

4. The LOADER option can handle only standard loaders as described in the IBM
manual concerning the machine and language specified on the $DAJOB card. If a
nonstandard loader is present, it should be removed from the deck.

MACHINE AND SYSTEMS CONFIGURATION

The minimum machine configuration required by the DA System is:

1. IBM 1401 or an IBM 1460 processing unit with:

8000 positions of storage
High~low-equal-compare
Advanced Programming

2. IBM 1402 Card Read Punch

3. IBM 1403 Printer, Model II

4, Four IBM 7330s or four 729 tape units, any model.

An IBM 1410 or IBM 7010 may be used when run in compatibility mode. The same
minimum machine configuration as required by the IBM 1401 is applicable.

Planned Use of Programming Systems

The DA System is programmed in 1401 Autocoder language. All I/O routines and the
Sort program used have been programmed internally because of the systems concept and
specific requirements of this application. No other programming systems are required
for implementation or modification.

INPUT/OUTPUT FLOWCHARTS

Control Cards Source Program Object Deck

Card Ugd a;ed

Image Documentation ar

Tape Aids Image
Tape

] |
Y Y

i
- . Storage Map of
Updated Listing Analysis Reﬁ' I\M Object Deck

Input/output flow for DA System

25

As_ssel’[nbly Assembly
t Source tanguage SFL

Change Cards / '
New Source
$DELETE L Update - Deck
Updated Updated
Tape Listing

Input to
Analysis Program

Input/output flow for update

Update
Card
Image
Tape
Y
.-~ Coded
-t Analysis Assembly
Language
Analysis Tape

Listings

Flowcharter

Input/output flow for analysis

26

Update Analysis

< 'Cr:;d \--- Coded Assembly
ge
Language Tape

Tape
SFL
i

Card
Flowchart -t Flowcharter l.rrnaap%e
SFL

SFL

Input/output flow for flowcharter

yA—
Object Deck

Verify

J

Storage Map
L__//‘

Input/output flow for verifier

INPUT/OUTPUT FILES
The input files to the DA System are:
1. Card reader input file, This file always contains system control cards. Additionally,

an assembly language program, Symbolic Flowchart Language Program, or object
deck may be a part of this file.

27

2. Source program tape file -~ unif 2, This file is used if the assembly language pro-
gram or the Symbolic Flowchart Language Program resides on tape., This file must
not contain system control cards. The tape format is one physical file of card
images.

The output files from the Update Program are:

1. Updated source program tape file =~ unit 3

2., TUpdated source program card file ~- produced on the 1402 as a result of the DECK
option,

3. Update list file -~ produced on the 1403 and consisting of:
a. A listing of the updated source program
b. A list of all out-of-sequence conditions
c. A list of all changes to the file
d. Operator control messages
The output files from the Analysis Program are:

1. DA format tape file -- a coded representation of the source language.

2, Analysis reports file -~ produced on the 1403 Printer and consisting of:

a. Cross-reference report

b. Flagged listing

c. Operation frequency report

d. Operator control and error messages
The output files from the Flowcharter are:

1. Card punch output file ~- generated in the 1402 upon user request. This is the gen-
erated Symbolic Flowchart Language Program, '

2. Symbolic flowchart language program tape file —- unit 2 -~ always generated when the
input is an assembly language program. The contents of this file are the same caxd
images as the card punch output file.

28

3.

Flowchart file -~ produced on the 1403 Printer and consisting of:
a. The flowchart

b. A cross-reference dictionary of flowchart labels, their page and chart
locations '

c. Optionally, a printout of the Symbolic Flowchart Language Program

This file is also used to print operator control and error messages.

The output file from the Verify Program is the Storage Map File, which is produced on
the 1403. Any error messages are in this file.

SAMPLE PROBLEM ANALYSIS

This section provides the user with a set of sample reports and an analysis of their use.
Given a source and object deck, along with the latest assembly listing of the program,
the DA System could be utilized as follows:

1.

Since the DA System documents the source program, its output will be valid only
insofar as the source program reflects the current running object deck. The purpose
of the Verify Program is to point out any differences between the object deck gen—
erated from the original source deck and the object deck in its present status. An
object deck may be altered by direct or overlay patches. The Verifier will produce
a listing similar in form to the listing of assembled instructions produced by the
respective system assembly program. Instructions which have two asterisks to the
left of the operations code have been patched by the overlay method. The location
counter of the patched instruction will indicate which characters of the preceding
instruction on the Verifier listing have been affected by that patch. Note that the
branch instructions at locations 862 and 899, and the add instruction at location 903
have been overlaid by a NOP instruction., Nonoverlay patches cannot be flagged, but
are detected by manually matching the assembly listing and the Verify listing. The
assembly and Verify listings do not match at locations 1847 through 1863, thus indi-
cating that the constant CODE C TOTAL has been blanked out of card number 17.

The next step is to reflect these changes in the source program. The new symbolic
entries may be manually placed in the source deck, replacing the original statements,
or the Update pass of the DA System may be used. (See page containing Update
Program output.) All references to an accumulation C have been eliminated. The
RESEQUENCE option has provided new sequence numbers. Original statements 500
and 540 have been changed as indicated by **,

The updated source program is then processed through Analysis and Flowchart.

Analysis produces the Operation Code Frequency Report, the Cross-Reference
Report, and Flagged Listing with or without operands.

29

The Frequency Report gives an indication as to the general type of program by op
code utilization, and may give some indication as to the conversion or reprogram-
ming effort required.

The Cross-Reference Report is in sequence by label. Following each label are all
entries which reference that label. An internally generated sequence number
appears to the left of the card image. The original sequence number is shown at the
right. The value of this report lies in the fact that all reference points to a given
instruction, and all action taken on a given field are collected and displayed beneath
the reference point in question. Line 0053 shows all usage of Index 1, The entry

at line 0042 shows that the amount field is referenced by four different statements.

The Flagged Listing simplifies the logical deciphering of the program through its
subreferencing of operands. Note sequence number 0012. The statement indicates
a transfer to ADDA if CODE + X1 is an A, Taken in union with the subreferences,
one sees that CODE is a subfield to a DA statement, and at ADDA the amount field
will be added to WORKA. The format of this report is similar to that of the Cross-
Reference Report, with the addition of coded flags to the left of the internal sequence
number.

Pages 15 and 16 of the sample problem provide the Cross-Reference and Label
Dictionaries produced by Flowchaxt. Label ADDA appears at matrix position B0 on
the flowchart and reference to it is at A7,){ 3000 is a- generated label to provide
linkage connection between B3 and A6.

Page 17 of the sample problem represents the DA System flowchart of the program.,
In each flowchart box is a sequence number, by means of which the flowchart,
Flagged Listing and Cross-Reference Reports may be coordinated to effect complete
documentation of the entire program.

Sample Outputs

The following pages reflect sample output data for the DA System.

30

Autocoder Listing

CLEAR STORAGE 1
CLEAR STORAGE 2

BOOTSTRAP
SEQ PG LIN LABEL
101 010 000
102 020
103 030
104 040 START
105 050
106 060
107 070 MODIFY
108 080
109 090
110 100 ADD
11 110
112 120
13 130
e 140
115 150
116 160
117 170 ADDA
118 180
119 190 ADDB
120 200
121 220 ADDC
122 220 uPxl
123 230
124 240
125 250 WRITEL
126 260
127 270 WRITE
128 280
129 299
130 300 END
131 310 CLOSE
132 320
133 330
134 340
135 350
136 360
137 370
138 380
139 390 ENDL
140 400
141 410
142 420
143 430 OUTPUT
144 440 CODE
145 450 AMOUNT
146 460 NAME
SEQ PG LIN LABEL
147 470 WORK
148 480
149 490 WORKA
150 500
151 510 WORKS
152 520
153 530 WORKC
154 540
155 550 OTHER
156 560
157 570 TOTAL
158 580 X1

139

159 590

»008015,022026+030037,0444049,053053N000000NC0001026
L068116,105106,1101178101/19Z#071029C029056R026/R001/0991,001/00111710¢€

+008015,022029,036040,047054,061068,072/061039 40010011040
DOCUMENTATION AIDS SAMPLE PROBLEM
Op OPERANDS SFX CT LOCN
Jos DOCUMENTATION AIDS SAMPLE PROBLEM
cTL 441
ORG 800 START ASSEMBLY AT 800
BLC END ON LAST CARD GO TO END 5 0800
R READ A CARU 1 0805
MCM 1,0UTPUTEX] TRANSFER CARD TO OUTPUT AREA T 0806
MA @081asX1L UP INDEX # BY THE RECORD LENGTH 7 0813
BCE *65. X100 10 TIMES 81 EQUALS 810 8 0820
8 STARY GO READ ANUTHER RECORD 4 0828
SBR X140 ZERD INDEX 1 T 0832
A AMOUNT&X L, TOTAL ACCUMULATE OVERALL TOTAL 7 0839
BCE ADDA,CODEEX14A {F MEMBER OF CLASS A 8 0846
BCE ADDB,yCODEEX1,8 LF MEMBER (F CLASS 8 8 0854
BCE ADDC»CODEEX14C IF MEMBER OF CLASS C 8 0862
A AMOUNTEX 1, DTHER ACCUM ALL OTHER CLASSES 7 0870
8 upPx1 TRANSFER TU STEP-UP INDEX 1 4 0877
A AMOUNT EX 1+ WORKA ACCUMULATE A-CLASS 7 0881
8 upxl TRANSFER TU STEP-UP X1 4 0888
A AMOUNT-2EX1, WORKB ACCUMULATE B-CLASS T 0892
8 68 TRANSFER TU STEP-UP Xi 4 0899
A AMOUNT EX 1y WORKC ACCUMULATE C-CLASS 7 0903
MA 20813, X1 STEP-UP X1 FOR NEXT RECORD 17 0910
8CE WRITELsX140 GO WRITE THE BLOCK IF X1 810 8 0917
8 ADDET GO YO ACCUM FROM NEXT RECORD 4 0925
B WRITE GO TO WRITE AND RETURN TO NSI 4 0929
OCwW LOUTPUT ADDRESS OF OUTPUT AREA 3 0935
EQU 400 ADDRESS OF PRECOMPILED WRITE ROUTINE 0400
SBR X140 ZERO INDEX 1 T 0936
8 START GO TO READ 10 CARDS 4 0943
8 CLOSE GO TO CLOSE THE OUTPUT FILE 4 0947
EQU 500 ADDRESS OF PRECOMPILED CLOSE ROUTINE 0500
WTM 2 5 0951
RWU 2 REWIND € UNLOAD QUTPUT FILE 5 0956
MCM WORK,201 MOVE ALL TOTALS TO PRINT AREA 7 0961
cC A 2 0968
L] 1 0970
cs 320 CLEAR THE PRINT AREA 4 0971
cs 1 0975
MLC AEND OF JOB3,250 HMOVE E0J MESSAGE TC PRINT T 0976
cC A 2 0983
W 1 0985
H END1 FINAL HALT 4 0986
0A LOX8146G OUTPUT AREA 0990
1yl 0990
2,10 0999
11,31 1020
DCwW 3 a 1 1800
OOCUMENTATION AILODS SAMPLE PROBLEM
op OPERANDS SFX CT LOCN
EQU gl 1801
DCw JCODE A TOTAL #3 14 1814
oCwW L 8 1822
DCW a CODE B TNTAL a 16 1838
DCwW #8 8 1846
DCW a CODE C TOoTAL a 17 1863
DCwW LL:] 8 1871
DCW 3 OTHER TOTAL a 15 1886
DCW #8 8 1894
OCwW @ GRAND TOTAL a 15 1909
DCW 10 10 1919
EQU 89 DE 0089
OCwW aosla 3 1922
3END OF J08a 10 1932
END START

31

PAGE

INSTRUCTION TYPE

0800
947 A

001 920
122 089
834.089
80

089
929
88l
892
903
929
910
929
910
9217
910
919
122
929
839
400
90

o

000
19
910
90
920
Y94

o>

v22
Y46
Y71

089
089 0

VPP RPDPIPEPIPO>PICDRE D~

089
800
500

@I

U2 M

201

250

« NTINNNTMTCC
> w
N
=

976
1799
FIELD
FIELD
FIELD
GMARK

PAGE

INSTRUCTION TYPE

LIT
LIT
/ 800 080

o N -

CARD

NNNN~NOGOOOCCTVMVNVVVMIPIIEIDD

® o~

CPWr OOV PD®

-

CARD

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

DA System Sample Problem Deck Setup

3DAEND

$CHART
{ $ANALYZE

=n

560

(0'0540

$DELETE

(?DE LETE

$DELETE

gy

$UPDATE

/

Source Deck

$DAJOB

($DAEND
//
Object Deck
SVERIFY

SDAJOB

3la

Output of Verify Run

SVERIFY DOCUMENTATION AIDS SAMPLE PROBLEM PAGE 3
op cr LOCN [NSTRUCTION CaRD
BLC 5 8OO 8 947 A 4
[1 805 1 4
HCM 7 806 P 001 920 4
MA 7 813 # 22 089 3
BCE 8 820 B 832 089 0 4
8 “ 828 B 800 4
SBR 7 832 H 089 000 4
A 7 839 A 929 219 5
BCE] 846 B #H8l 920 A 5
BCE 8 854 B 892 920 8 5
8CE 8 862 R 903 920 T H
NOP L e 862 N
A 7 870 A 929 Y94 5
8 4 877 8 910 6
A 7 881 A 929 v22 6
8 4 888 B 910 6
A 7 892 A 927 Y46 6
) 4 899 B 910 6
NOP 1 s+ 899 N
A 7 903 A 929 Y71 6
NOP 1 es 903 N
MA 7 910 # 222 089 7
BCE 8 917 B 929 089 0 7
8 4 925 8 839 7
8 4 929 B 400 7
3 933 990 7
SBR 7 936 H 089 000 7
8 4 943 B 800 7
[4 947 8 500 8
ueI/0e 5 951 U ZU2 M 8
Us1/0% 5 956 U TW2 U 8
MCM 7 961 P Yol 201 8
cc A 2 968 F A 8
W 1 970 2 8
cs 4 971 / 320 8
cs 1 975 7/ 9
MLC 7 976 M 132 250 9
cc A 2 983 F. A 9
W 1 985 2 9
H 4 986 . 976 9
990 9
990 1t
991 13
1000 14
1071 9
1071 11
1072 13
1081 14
1152 10
1152 11
1153 13
1162 15
1233 10
SVERIFY DUCUMENTATION AIDS SAMPLE PRUBLEM PAGE 4
0P cr LOCN [NSTRUCTION carp
1233 11
1234 13
1243 15
1314 10
1314 12
1315 13
1324 15
1395 10
1395 12
1396 13
1405 15
1476 10
1476 12
1477 14
1486 15
1557 10
1557 12
1558 14
1567 15
1638 11
1638 12
1639 14
1648 16
1719 11
1719 12
1720 14
1729 16
1 1800 GMWM 16
12 1801 CODE A TOTAL 16
2 1813 # 16
8 1815 16
12 1823 CODE B TOT 16
4 1835 AL 16
MA 1 . 1838 #
8 1839 17
12 1847 17
5 1859 17
8 1864 17
12 1872 OTHER TOTA 18
3 1884 L 18
HA 1 es 1886 #
8 1887 18
12 1895 GRAND TOTA 18
3 1907 L 18
HaA 1 es 1909 #
10 1910 19
3 1920 oHl 19
10 1923 END UF JOB 19
/ 800 080 20

32

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

Output of Documentation Run

00010
00020
00030
0004USTART
00050
00060
0007OMDDIFY
00080
00090
00100ADD
00110
00120
00130

00140
00150
00L60ADDA
00170
00180ADDB

00190UPX1
0020C
Qo210
00220WRITEL
00230
00240WRITE
00250

00260
00270END
002B0CLOSE
00290

00300

00310

00320

00330

00340
00350
00360END1
00370

00380

00390
004000UTPUT
00410CODF
00420AMOUNT
00430NAME
00440WORK
00450
00460WORKA

00470
004B80WORKS

00490
005000THER

00510
00520TATAL
00530X1
00540

SUPDATE DOCUMENTATION AIDS SAMPLE PROBLEM
JOB DUCUMENTATION AIDS SAMPLE PROBLEM
CTL 44l
ORG 800 START ASSEMBLY AT 800
BLC END ON LAST CARD GO TD END
R READ A CARD
MCM 1,0UTPUTEXL TRANSFER CARD Tu QUTPUT AREA
MA @081lay X1 P INDEX 1| BY THE RECORULD LENGTH
BCE #65,4X1+0 10 TIMFS 81 EQUALS 810
B START HU RFAD ANOTHER RECORD
SBR X1s0 7ERO INDEX 1
A AMOUNTEX1,TOTAL ACCUMULATE OVERALL TOTAL
BCt ADDA,CODEE&X1,4A IF MFMBER OF CLASS A
BCE ADDB,CODEEX1.8 (F MEMRER (F CLASS B
A AMOUNTEX 1, 0THER ACCUM ALL OTHER CLASSES
;] uPX1 TRANSFER TO STEP-UP INDEX 1
A AMOUNTEX L, WORKA ACCUMULATE A-CLASS
B upx1 TRANSFER TO STEP-UP X1
A AMUUNT-2&X 1y WORKB ACCUMULATE B-CLASS
MA @081 X1 STEP-UP X1 FOR WEXT RECORD
BCE WRITElsX1,0 60 WRITE THE BLUCK IF X1 810
8 ADDET? G0 TJ ACCUM FROM NEXT RECORD
8 WRITE GU TJ WRITE AND RETURN TO NSI
DCW &OUTPUT ADDRESS OF OQUTPUT AREA
EQU 400 ADDRESS UF PRECOMPILED WRITE ROUTINE
SBR X1,0 ZERD INDEX 1
[:) START GO TO READ 10 CARDS
8 CLOSE GU TO CLOSE THE OUTPUT FILE
EQU 500 ADDRESS OF PRECOMPILED CLUSE ROUTINE
WIM 2
RWU 2 REWIND & UNLDAD OUTPUY FILE
MCM WORK,201 MUVE ALL TUTALS TO PRINT AREA
cc A
L]
cs 320 CLEAR THE PRINT AREA
cs
MLC QEND OF J0Ba,250 MOVE £0J MESSAGE TC PRINT
cC A
L]
H ENDL FINAL HALT
DA 10X81+6 OUTPUT AREA
ls1
2410
11431
EQU #&l
DCW aCODE A TYOTAL #a
DCwW #8
OCw & CODE B VOTAL #3
CCwW 48
DCw & OTHER TOTAL #3
DCW #8
$UPDATE DOCUMENTATION AIDS SAMPLE PROBLEM
DCW @ GRAND TOTAL #3
DCW #10
EQU 89 DE
END START
ANALYSIS DOCUMENTATION A[DS SAMPLE PROBLEM
OPERATION CODE FRECUENCY REPDRT
MNEMONICS TALLY
A 4
B 7
BCE 4
BLC 1
cc 2
cs 2
CTL 3
DA 4
DCwW 9
END 1
EQU 4
H 1
JOB 1
MA 2
MCM 2
MLC 1
ORG 1
R L
RWU 1
SBR 2
L] 2
WTM 1
TYPE TOTAL PERCENT
INPUT-0UTPUT 007 .13
DATA DEFINING o3 .24
BRANCH 012 .22
HALT 001 .02
ASSEMBLER 008 .15
OTHER 013 24
TOTAL 54

33

PAGE 3

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
DELETE
00150
00160
00170
00180
00190
DELETE
00225
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
DELETE
«400500
00510
DELETE
DELETE
*#00540
00550

00140,00140

00200400220

00500,00500

00520,00530
00540,00540

PAGE 4

DELETE
*+00560
00570
00580
00590

00560,00560

PAGE T

Form H20-0177-0

Page Revised 11/15/65

By TNL N20-0047-0

0010
00lée
oola

0042

0028

0041

0027
0036
0007
0043
0050

0040

0004

0052

0019

0044
0046
0048
0024
0022
0053

ANALYSIS

ADOD
0021

ADDA
0012

ADDB
0013

AMOUNT
ooll
0014
0d16
oo1s

CLOSE
0027

CODE
0012
o013

END
0004

END1
0039

MODIFY

NAME

OTHER
0014

guvPuT
0006
0023

START
0026
0054
0009

TOTAL
oolt

uPXx1
0015
0017

WORK
0031

WORKA
oole6

WORKB
0d18

WRITE
0022

WRITEL
0020

X1
0007
0008
0010
0019

ANALYSIS

0025
0006
0011
0014
0016
o018
0020
0012
o013

ROCUMENTATION AIDS SAMPLE PROBLEM

PAGE 8

CROSS REFERENCE REPORT

ZERD ENDEX 1
ADDE7

SBR X1.0

B
A AMOUNTEX Ly WORKA
ACE ADDA,CODE&X1,A
A AMUUNT-26X 1, WORKB
BCE ADDB,CODEEX1,B

GO TO ACCUM FROM NEXT RECORD

ACCUMULATE A-CLASS

IF MEMBER OF CLASS A

ACCUMULATE B-CLASS

IF MEMBER Of CLASS B

ACCUMULATE OVERALL TOTAL
ACCUM ALL OTHER CLASSES

GO TO CLOSE THE QUTPUT FILE

1F MEMBER CF CLASS A
IF MEMBER OF CLASS 8

ON LAST CARD GO TO END

2,10
A AMOUNTEXL»TOTAL
A AMOUNTE X1 ¢ QTHER
aDDA A AMOUNTE X1 y WORKA ACCUMULATE A~CLASS
ADDB & AMOUNT-26X1, WORKB ACCUMULATE 8-CLASS
EQU 500 ADDRESS OF PRECOMPILED CLOSE ROUTINE
END 2 CLOSe
141
BCE ADDA,CODEELX1+A
BCE ADDB,CODE&XL,B
L] CLDSE GO TO CLOSE THE OUTPUT FILE
START BLZ END
MLC QEND OF JDB3,250 MOVE EOJ MESSAGE TO PRINT
R FINAL HALT
MA Q061D X1 UP INDEX L 8Y THE RECORD LENGTH
11,31
DLW #8

A AMOUNTEXL yOTHER
OUTPUT AREA

MCM 1,0UTPUTEXL

DCW &0UTPUT

DA 10X81+6G

BLC END
R START
END START
R START
DCw #10

A AMOUNTEXL,TOTAL
MA P081a,%1

ACCUM ALL OTHER CLASSES

TRANSFER CARD TO OUTPUT AREA
ADDRESS OF QUTPUT AREA

ON LAST CARD GO T END
G

0 TO READ 10 CARDS
GO READ ANOTHER RECORD

ACCUMULATE OVERALL TOTAL

STEP-UP X1 FOR NEXT RECORD

TRANSFER TO STEP-UP INDEX 1
TRANSFER TO STEP-UP X1

MOVE ALL TOTALS TO PRINT AREA

GO TO WRITE AND RETURN TO NSI
GO WRITE THE BLOCK IF x1 810

UP INDEX L BY THE RECORD LENGTH
10 TIMES 81 EQUALS 810

8 UPXx1
8 uPxl1
EQU eEl
MCM WORK,201
DCW #8
ADDA A AMOUNTEX1 s WORKA ACCUMULATE A-CLASS
DCwW #8
ADDB A AMOUNT-2E X1, WORKS ACCUMULATE B-CLASS
EQU 400 ADDRFSS OF PRECOMPILED WRITE ROUTINE
HRITEL 8 WR1Te
B WRITE GO TO WRITE AND RETURN TO NSI1
BCE WRITELl,X1,0
EQU 89 DE
MODIFY MA d08la,yXL
BCE #E5,X1,0
ADD SBR X1,0 ZERO INDEX 1
upPXt MA 2081a, X1

DOCUMENTATION AIDS SAMPLE PROBLEM

STEP~UP X1 FOR NEXT RECORD

PAGE 9

CROSS REFERENCE REPORT

SBR X1,0
MCM 1,0UTPUTEXL
A AMOUNTE XL, TOTAL

A AMOQUNTEXL yOTHER
ADDA A AMOUNTE XL y WORKA
ADDB A AMDUNT-2E X1 4 WORKS

BCE WRITEL,X1,0
BCE ADDA,CODEEX1.,A
RCE ADDB,CODEEX1,B

ZERO INDEX 1

TRANSFER CARD TO OQUTPUT AREA
ACCUMULATE OVERALL TOTAL

ACCUM ALL OTHER CLASSES
ACCUMULATE A-CLASS

ACCUMULATE B-CLASS

GO WRITE THE BLOCK IF X1 810
IFf MEMBER OF CLASS A

IF MEMBER OF CLASS 8

34

00100
00160
00180
00420

00280
00410

00270
00360
00070
00430
00500

00400

00040

00520
00190

00440
00460
00480
00240
00220
00530

00210
00120
00130
00110
00140
00160
00180
00270

00120
o0ol130

00040
00390

00140

00060
00230

00260
00540
00090

00110

00150
00170

00310
00160
00180
00220
00200

00070
00080
00100
00190

00250
00060
0ol10
00140
00160
00180
00200
00t20
00130

Form H20-0177-0

Page Revised 11/15/65

By TNL N20-0047-0

ANALYSIS
A 0001
A 0002
A 0003
8 0004
0027
o} 0005
X 0006
0040
0053
0007
0053
R+B 0008
. 0053
8 0009
0004
0010
0053
X 0011
0042
0053
0052
X48 0012
0016
0041
0053
X,8 0013
[]
0041
0053
X 0014
0042
053
0050
8 0015
0019
X 0016
0042
0053
0046
8 0017
0019
RyX 0018
0042
0053
0048
0019
0053
8 0020
0022
0053
ReB 0021
0010
ANALYSIS
8 0022
0024
0 0023
0040
A 0024
0025
0053
B 0026
0004
8 0027
0028
A 0028
o} 0029
0 0030
0031
0044
0 0032
1] 0033
0034
0035
0036
Q 0037
o 0038
H 0039
0036
D Q040
[} 0041
[0042
D 0043
RoA 0044
D 0045
D 0046
D 0047
D 0048
0 0049
D 0050
0 0051
0 0052
A 0053
A 0054
0004

START

MOO1FY

ADDA

ADDS

uPx1

WRITEL

WRITE

END
CLOSE

END1

ouTeuT
CODE
AMOUNT
NAME
WORK

WORKA
WORKSB
OTHER

TOTAL
X1

DOCUMENTATION ATDS SAMPLE PRODBLEM

Jop
CTL
ORG
BLC

MCH

MA

8Ce

SBR

BCE

BCE

M4

BCE

DOCUMENTATION AIDS SAMPLE PROBLEM

EQU
DCwW
ocw
DCwW
DCw
NCw
DCwW
DCW
DCw
EQu
END

PAGE 10

FLAGGED LISTING

DUCUMENTATION AIDS SAMPLE PROBLEM

44t

800 START ASSEMBLY AT 800

END ON LAST CARD GO TO END

END 8 CLOSE GO TO CLOSE THE OUTPUT FILE

L.CUTPUTEX]

ouTtput DA 10x81
X1 EQU &9
20813 X1

READ A CARD
TRANSFER CARD TO OUTPUT AREA
"G QUTPUT AREA

DE
UP INDEX 1 BY THE RECORD LENGTH

X1 EQU &89 DE

*654X1+0 10 TIMES 81 EQUALS 810

X1 EQU 89 DE

START GO READ ANOTHER RECORD

START BLC END ON LAST CARD GO TO END
X140 ZERO INDEX 1

X1 EQU 89

AMOUNTEX1, TOTAL ACCUMULATE OVERALL TOTAL

AMDUNT 2410

X1 EQU 89 DE

TOTAL OCW %10

ADDA,CODEE&X14A IF MEMBER OF CLASS A

ADDA A AMOUNTEX1, WORKA ACCUMULATE A-CLASS
CUDE sl

X1 EQU 89 DE

ADDB4CODEEX1 4B LF MEMBER OF CLASS B

ADDB A AMOUNT-2£X 1+ WORKB ACCUMULATE B-CLASS
CODE 1l

X1 EQU 89 DE

AMOUNTEXL, OTHER ACCUM ALL OTHER CLASSES

AMOUNT 2,410

X1 EQU 89 OE

OTHER OCW #8

uexi TRANSFER TO STEP-UP INDEX 1

uPX1 MA 208134 X1 STEP-UP X1 FOR NEXT RECORD
AMOUNTEX 1+ WORKA ACCUMULATE A-CLASS

AMOUNT 2510

X1 EQU 89 DE

WORKA OCW 48

(Vi 9% TRANSFER TO STEP-uUP X1

uPxi MA A0813y X1 STEP-UP X1 FOR NEXT RECORD
AMOUNT-2EX 1, WORKS ACCUMULATE B-CLASS

AMOUNT 2510

X1 EQU 89 DE

WORKB OCwWw #8

A0814@, X1 STEP-UP X1 FOR NEXT RECORD

X1 EQU 89 OE

WRITELsX1¢0 GO WRITE THE BLOCK IF X1 810
WRITEL 8 WRITE GO TO WRITE AND RETURN TO NSI
X1 £QU y9 DE

ADDET? GO TO ACCUM FROM NEXT RECORD

ADD SBR X1,0 ZERD INDEX 1

FLAG
WRITE
WRITE EQU 400
&0UTPUT
ouTPUT DA 10Xx81
400 ADDRESS OF
X1,0
X1 EQU 89
STARY
STARTY BLC END
CLOSE
CLOSE EQU 500
500 ADDRE 5S OF
2
2
WORK, 201
WORK EQU =&l
A
320

AtEND OF J0B2,250
A

ENDL
ENO1
10%X81,6
1.1
2,10
11431

MLC QEND

*81

ACODE A TOTAL #a
L]

3 CODE B8 TOTAL #3
L1

@ OTHER TOTAL #3

#8
3 GRAND TOTAL #3
#10

89
START
STARY BLC END

PAGE 11

GED LISTING

GO TO WRITE AND RETUPN TO NSI
ADDRESS OF PRECOMPILED WRITE ROUTINE
ADDRESS OF QUTPUT AREA
G OUTPUT AREA
PRECOMPILED WRITE ROUTINE
ZEROD INDEX 1§
DE
GO TO READ 10 CARDS
ON LAST CARD GO YO END
GO TO CLOSE THE OUTPUT FILE
ADDRESS OF PRECOMPILED CLOSE ROUTINE
PRECOMPILED CLOSE ROUTINE

REWIND & UNLOAD OUTPUT FILE
MOVE ALL TOTALS TO PRINT AREA

CLEAR THE PRINT AREA

MOVE €0J MESSAGE TQ PRINT

FINAL HALT

OF J0B2+250 MOVE EOJ MESSAGE TQ PRINT

OUTPUT AREA

DE
ON LAST CARD GO TO END

35

00010
00020
00030
00040

00050
00060

00070
cooso
060090
00100
00110

0oL20

00130

00140

00150

00160

00170

00180

00190

00200

00210

00220
00230

00240
00250

00260
00270

00280
00290
00300
oc31o

00320
00330
00340
00350
00360
00370
00380
00390

00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
0C530
00540

00270
00400
00530
00530
00530
00040
00530
00420
00530
00520
00160
00410
00530
00180
00410
00530
00420
00530
00500
00190
00420
00530
00460
00190
00420
00530
00480
00530

00220
00530

00100

00240

00400

00530
00040

00280

00440

00360

00040

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

CraRT NOCUMENTATION A[DS SAMPLE PROHLEM PAGE 14
SEGMENT ew, THRU, se
LAREL DEFINED AT
230000 1 a6
A0D 1 AS
ADDA L BO
ADDB 1 81
END 1 B6
ENO1L [
MODIFY 1 A3
START 1 AQ
UPX1 1 82
WRITEL 1 84
CHART DOCUMENTATION AIDS SAMPLE PROBLEM PAGE |5
SEGMENT es, THRU, e
LABEL REFERENCES
030009 1 83
ADDA 1 A7
ADDS 1 A8
END 1 AQ
ENDL 1¢3
START 1 A4 1 BS
upxt 1 A9 180

36

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

CHART DOCUMENTATION AIDS SAMPLE PROBLEM PAGE
SEGMENT #s, THRY, =%
START P ADDA
. . END

A " 00040, 15 " .vEs. T P I 00160, App . S
. Aol.. THIS LAST ees BOL BOleveel BMOUNTEXD TOJieeuweeccvassses o COuonas

. - - CARD - . - . . . WORKA . - -

T . do
K ADDB ENDL
ces

00180, ADD
3

00050, READ A L Bli.....AMOUNT-38X TO
CARD WORKE

: . .
. . PR 0190, MODIFY .
100060, MOVE 11 L B2i....0 ADD d¢8ia TO .
L7¥0 D0TPUTEXLS M : xi .
MODLFY . P
ceressecerseens . . WRITEL
200970, MODIFY °. . ‘00200, DOES .vES.''.
DTADD dg81a TO . . CHARACTER AT * .00 B4l
: X1 . . X1 EGUAL 0 . I s
. WRITEL
. L Bhiees EXIT :
DD et :
A0D
START
L asl....lo0100, MOvE 0 . 200250, MOVE 0 ..l AOL
: Th x1 . : 10 x1 PP
END
S oo aoe RIS PPTRPRITPROPI
D A6l....0 AMOUNTEXT TO! D86l EXIT :
Ll ToTAL . UL cLosE .
.
PR ADOA cereaes
. 00120, DOES’ .vES.'ST, « 00290y WRITE .
. CHARALTER AT “'20% Bol TAPE MARK ON
- cObeax{ EQuaL . 7T " - 2 REWIND TAPE -
t . Ro
P ADDB . .
. "00130, DOES® JYES. ' . : .
. CHARACTER AT © .00 81. © 00310, MOVE .
- CODECX EQUAL . “*I " I WORK fu 201 o
. . en : .
ceeenes uPx1

00140, ADD . .
AMOUNTEXT TOesaass 824
OTHER . . .

cesenns

37

S S 90360, MOVE

16

FLOWCHART P AGE

cessseessns

00340, CLEAR.
SToRASE 320 ©
ICLEAR STORAGE:

AEND 250

cesane

sesscstsscccnns aes

PROGRAMMER'S INFORMATION

UPDATE PROGRAM

Abstract

The Update Program is designed to perform file maintenance on card image tapes, and is
used to add or delete source statements in a program being processed by the DA System.
It is also used to update the Symbolic Flowchart Language, thus providing this new
language with machine maintenance capability, including updated source decks and listings.

The user, through control card options, may request a new updated source deck and/or
listing. On option, the Update Program generates ascending sequence numbers in the
sequence field, starting with 00010 in increments of 10. Whenever resequencing is re-
quested, a listing showing both old and new sequence numbers (with errors flagged) is
produced.

The program checks for valid sequencing, ascending 1401 collating sequence, and gen-
erates standard input files for other DA System programs.

Description
The Update program is divided into two passes.
Pass 1 (2UPDA)

If the source input program is on cards, pass 1 performs a card-to-tape operation to
prepare an input tape for pass 2. When a $UPDATE control card is present, pass 1 per-
forms additional operations: it interprets the $UPDATE operands and sets the cor-
responding program switches. All $DELETE and change cards are put into a file to be
processed in pass 2. If more than 50 change cards are submitted, the change card file is
moved to tape unit 4. Sequence checking is performed on all files processed in pass 1;
sequence errors are flagged on the printer,

Pass 2 (2UPDA)

Pass 2 (2UPDA) is performed when a $UPDATE, $ANALYZE, or $CHART control card is
present. All optional output is generated during this pass. If SEQUENCE is indicated in
the $UPDATE card, the input file is resequenced and a listing of the file is printed. If
LIST is indicated, only the listing operation is performed. If DECK is indicated, the file
will be punched into cards simultaneously with any other optional operations including file
maintenance. At the conclusion of pass 2 all tapes are rewound, input tapes are un-
loaded, and control is passed to the next DA System program.

38

System Flow

System Tape Source Deck and SUPDATE
Unit 1 1402
Update
Program 1403
PASS 1 2UPDA
(. Card Image
System Tape Source Tape $DELETE and Change Cards
Assembly
Language=-- 1402
SFL
Update
PASS 2 ';ﬁgg’; 1401

1403

Listing of Updated

Source File

Source Deck
Updated Card
Image Source

Tape 1402

Input/Output Description

Input

1. Card reader input file--always contains DA System control cards. Additionally, it
may contain the change cards as well as assembly language program statements. The
card image formats contained in this file are standard and are retained throughout
the program.

2. Source program tape file - unit 2--contains assembly language or SFL statements in
card image form.

Output

1. Updated source language tape file - unit 3-~-contains assembly language or SFL state-

ments in card-image form. When maintenance or resequencing is performed, it con-
tains the updated source language statements. This file may be used as input to other
DA System programs, Analysis or Flowchart.

39

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

2. Updated source program card file--produced on the 1402 as a result of the DECK
option in the $UPDATE control card. When maintenance or resequencing is per-
formed, it contains the updated source language statements.

3. Update list file--produced on the 1403 and consisting of:

a. A listing of the updated source program whose format may be any or all of the
following:

(1) Original source statements
(2) Original source statements with new sequence numbers when the SEQUENCE
option is requested (the new resequenced number is printed in the original
sequence field and the old sequence number is printed to the far right of
the statement)
(3) Original source statements with out-of-sequence conditions flagged
b. A list of all out-of-sequence conditions
c. A list of all changes to the input file
d. Operator control messages
e. Diagnostic messages
ANALYSIS PROGRAM
Abstract
The Analysis Program is designed to scan an assembly language source program to pro-
vide a detailed analysis of each instruction. This analysis is produced in the following
forms:
1. A flagged listing denoting instruction type
2. A cross-reference dictionary of labels and references to them

3. An analysis of operation code usage

The Analysis Program also prepares a coded assembly language tape for input to the
Flowcharter.

Description - Phase I

In this phase, the second record in each pass handles S/360 input.
Pass 1 (3ANAA/3ANAB)

The input to pass 1 consists of DA System control cards and a card image tape from the
Update program. The input unit is determined by a switch set in the Update program.

40

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

The current control card is examined. If it is SANALYZE, the operands are scanned
and switches are set to indicate which optional reports are requested. An error message
is printed in the event of illegal options on the control card and control is transferred to
the Controller (LCONA).

Machine and language combinations which have similar format characteristics are grouped
together in sets for processing by the Analysis program. The sets and their components

are listed below:

Set Machine/Language

A 1401/1460 Autocoder
1440 Autocoder
1410/7010 Autocoder
7070/72/74 Autocoder

B 705/7080 Autocoder
C 1620 SPS
D 7040/44 MAP

7090/94 MAP
7090/94 FAP

S/360 BAL/FAL
E 1401 SPS

The machine and language are determined and control of the program transfers to the
routine that handles the indicated set. The mnemonic operation code dictionary for the
particular machine language combination is read in from the system tape.

Each routine performs the following general functions: The starting location of the
operand is moved to the DA record. Input records are read from tape unit 2 or 3.

If the record is a comments or continuation card, the Analysis code is set to T (Trans-
parent). The DA formatted records are written on tape unit 4.

Comments cards for each set are determined as follows:

Set
A Asterisk in card column 6
B Blank cc 6--23 or 2 C in cc 74
C Asterisk in cc 6
D Asteriskin cc 1
S/360 ICTL statement
E Asterisk in cc 8

41

Form H20-0177-0

Page Revised 11/15/65
By TNL N20-0047-0

SET A

SET B

SET C

SET D

SET E

If the record is not a comments card, the label field and the operation code field are moved

SOURCE CARD FORMAT FOR SETS A, B, C, D, E

Page Operation
and Line Label Code Operands Comments D
1-5 6-15 16-20 21-72 Two spaces 76-80
from
Leading operand
blanks
permitted
on 1410
Sequence Operation 2«?
Number Name Code No. Operands Comments R D
1-5 6-15 16-20 21~ 23-39 40-73 74 75-80
Leading blks, 22
permitted
Page Operation
and Line - Label Code Operands Comments D
1-5 6-11 12-15 16-75 Starts with 76-80
4th comma
A A
Name El E Operands
Label =) Operation =) Address, Tag, Decrement/Count Comments D
1-6 7 8-14 15 16-71 Starts one 73-80
Leadg. Operand may begin in ce 12-16, blank after
blanks but not past ce 16. the operand
perm.
A Operand B Operand
Page Char. | 5 Char. o
and Line | Count | Label | Operation | Address |+ | Adj. | 8 | Address | + | Adj. | § | d | Comments | ID
1-5 6-7 | 8-13 14-16 17-22 23 | 24~ 27 28-33 34 | 35- 381 39 40-55 76~
26 37 80

left-justified to the DA record. A table lookup is performed on the operation code.

operation code is found, the corresponding Analysis code and the entry location are moved

to the DA record. The expanded records are written on tape unit 4.

In addition to the above general functions, each routine handles special considerations.

42

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

SET A. In 1410 and 7070 Autocoder the channel designation for the input/output operation
codes is dropped before a table lookup is performed. This is because channel designations
were not included in the Operation Code Dictionaries. In 1410 Autocoder the prefix N

for input/output operation codes is dropped for the same reason. After the table loopup

is performed, the Analysis code is tested for the special character which indicates a
change to 1401 SPS. The set is changed to E and control is transferred to SET E. The
operation code is tested for blanks which indicate data defining. In this case the Analysis
code and dictionary entry location of the previous statement are used and no table lookup is
performed.

SET B. For one-to-one instructions it is possible to specify a register in cc 22, If this
column is not blank, the register number is moved right-justified to the operation code field
on the DA record.

SET C. The last character of the operation code is tested for an M, which indicates an
immediate instruction. These instructions are flagged with I on the DA record.

SET D. FAP/MAP. The table-lookup subroutine is initialized in this routine to handle table
table entries of seven characters. The operation code is scanned to determine whether
indirect addressing is present and to locate the first position of the operand field. If

the operation code is not found in the Operation Code Dictionary, the last character of

the operation code is dropped and another table lookup is performed. The last character

is dropped since it may be a channel designation (not included in the dictionaries). The
Analysis code found in the dictionary is examined to determine whether the operation

code begins or ends a macro definition. If the portion of the source program being
analyzed is within a macro definition, the Analysis code is changed to T (Transparent)

and the dictionary location is blanked out.

System/360 BAL/FAL. Through the use of the ICTL assembler instruction, the
programmer may specify Begin, End, and Continue — in columns other than those
normally used. 3ANAB checks for these instructions and makes the appropriate format
adjustments. Macro definitions are handled as described in FAP/MAP.

SET E. In this set the Analysis code is tested for a comma or a period. A comma in-
dicates a move or load machine op code. Further testing is required to determine
whether it is an input/output instruction. If the first character in the operand field is %,
the Analysis code is changed to K for I/O. Otherwise it is changed to -.

For each set, the first time the table-lookup subroutine is entered, the appropriate Oper-
ation Code Dictionary is read into core and two groups of binary points are calculated for
use in the table lookup.

The size of the dictionary is calculated from the origin address and the high address of the
dictionary. The number of entries is determined by subtracting the entry size from the
dictionary size until the dictionary size is zero. The absolute binary points are then cal~
culated. These absolute binary points are multiplied by the entry size to obtain the
relative address of each binary point in the dictionary.

The table-lookup subroutine performs a binary search on the operation code. The location
of the entry in the dictionary is calculated by adding the absolute binary point to the location
field every time the operation code being searched for compares high. If the operation
code is not found after using 14 binary points, the search is discontinued and the operation
is assumed to be a user-defined macro.

43

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

If the current control card was preceded by a $UPDATE card, the input tape is unloaded
and a message is printed. If the COUNT option is present, phase I--pass 2 is called;
otherwise phase I--pass 3 is called.

DA format record as it appears in phase I--pass 1 for input to phase I--pass 3 of

Analysis.

1-5 6 7-8 17 21 22 23-32 33-38
Serial 1620 Start Set | 7090 7090 Label | Operation
Number |Immediate | of Indirect Program Code

Flag Operand Addressing | Macro
Position Flag Position
Position :
39 40~42 81-160
Analysis | Location Card Image
Code
1-5 A generated serial number
6 1620 immediate flag position
7 TFirst column of operand--two-position field
17 Set--groups of systems with similar rules
21 7090 indirect addressing flag position
22 7090 program macro flag position
23-32 A ten-position field containing the Label
33-38 Six~-position operation code
39 A code assigned to each operation code indicating the nature of
the operation code. It is found in the dictionary with a table
lookup on the operation code.
40-42 The number of the table entry in which the operation code was found
81-160 Source card image

44

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

Pass 2 (3ANAU/3ANAQ)

When this pass is read into core, the operation code dictionary from pass 1 remains., A
second table is used to hold the tally for each operation code. Each entry in this table is
three positions long and has a corresponding entry in the operation code dictionary.

A record is read from tape 4. If the field which contains the dictionary entry location is
nonblank and nonzero, the corresponding entry location is calculated for the tally table,
and that entry is incremented by one. A total of all the tables is kept. At end of file, the
tally table is scanned and the nonblank tallies are printed with the corresponding operation
code dictionary entry. During this scan, tallies are kept on the type of operation code, as
determined from the Analysis codes in the operation code dictionary entries.

When the scan is completed, these totals are divided by the total number of operation codes
to give the percentage of each type. The types, the number found, and the percentage are
printed. The total number of operation codes is printed and phase I--pass 3 is called.

Pass 3 (BANAV, 3ANA9/3ANAR)
At the beginning of this pass, tapes 2 and 4 are rewound.

A DA format record is read from tape 4. The Analysis code is examined to determine
whether the operand of the card image is to be scanned.

If the Analysis code is a T, the statement (such as a comments card) is considered to be
transparent. The sort field is blanked out and the record is written onto tape 2.

If the code is an 11 or 12 zone, the operand is scanned. The following functions are per-
formed in the scan:

1. Input for the Flowchart program is created. This consists of placing the first three
operands in the card image into special fields on the record. Also added to the record
is a count of the number of operands present and a flag which indicates the nature of
the first operand.

The flags are:

Simple symbol

Simple relative addressing
Location counter
D-modifier (1401 SPS only)
Other

Cor=m®»

If the Analysis code contains a 12 zone, the first operand is placed into the first field as
follows:

SYMBOL *m

45

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

where SYMBOL is either a simple symbol or a location counter notation (%, and m is
a numeric adjustment. The symbol is left-justified and the adjustment is right-
justified unless the operand is flagged O. In this case or if the Analysis code contains
an 11 zone, the first 10 characters of the operand are moved into the first field, as

is always done with fields 2 and 3.

2. If the current control card is $ANALYZE, the scan also determines the nature of the
statement, whether indexing, relative addressing, indirect addressing, or complex
operands are being used. Flags indicating the presence of any of these functions are
placed in temporary storage locations in the record.

Whenever the dollar sign symbol ($) is found within the first operand, a switch is set.
If the first character of the first operand is a $, it is dropped and the remainder of the
symbol is left-justified in field 1.

3. If any reference options (cross or operand) are present on the SANALYZE card, a
table is created containing the symbols which are present in the operand field. The
entries are variable length and are separated by record marks. A count of the
number of entries is made.

When a $ is found to be present within a symbol, a count of the number of characters
which precede the $ is placed within a field, the first position of which corresponds
to the first symbol, the second to the second symbol, etc.

Scan Routine -- Special Considerations

The following special considerations are made in the scan routine for particular languages:
1410 Autocoder. Whenever a $ is found in the first operand, the suffixing character, which
may be blank, is moved to the 10 position of the field, the $ is dropped, and the remainder

of the symbol is left-justified. Thus, the operand A$SYMBOL would appear in Field 1 as
SYMBOL___A. This facilitates cross-referencing in the Flowchart Program.

7040/7044 - 7090/7094 FAP/MAP. When a symbol contains a $ preceded by more than
three qualifying characters, the excess characters are dropped from the qualifier in the
symbol table. Because of field size limitations, a symbol may not be more than ten char-
acters. Thus, the symbol ABCDEF$SYMBOL would appear in the symbol table as
ABC$SYMBOL.

1401 SPS. Although the SPS source card is of fixed format, the operands are assigned to
the fields as though it were of variable format. Thus, if there were a symbol in the A
field, a blank B field, and a D-modifier present, the D-modifier would appear in the

second field — not the third. When the D-modifier is in the first field, a special flag, D, is
assigned to the first operand flag.

705/7080 Autocoder. Prefixes, such as the prefix for indirect addressing (I), are not
treated as the first operand. The first operand is the one which follows and is the one
moved to field 1.

46

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

System/360 Assembly Language. A symbol with hexadecimal adjustment will be flagged
as relative and complex.

Each set has a corresponding set of rules used by the Analysis program to scan the
operand field. Rules for each set are outlined below.

Operand
Set Symbol Operators Separators
A First character alphabetic + or - , or blank
No special characters
No blanks
Limit 10 characters

-

B W N =

Alphabetic, numeric, blanks +,-,%/ ,blank or)
No special characters

L, H., R, S, I, modifiers

Limit 10 characters

@ actual address

S

C 1. At least one character must +,=,%/ , or blank
be nonnumeric
2. Special characters permitted.
= @ A4 /

3. Limit 6 characters

D 1. Alphabetic and numeric =%/ , blank or (
2. Special characters
permitted ()
3. No blanks
4, Limit 6 characters

=

First character alphabetic + or - Fixed position
No special characters

No blanks

Limit 6 characters

N

S/360 First character alphabetic +, -k, , or blank
No special characters
No blanks

4. Limit 8 characters
After the operand scan the analysis code is again examined. If it is $, the program trans-
fers to a routine which determines whether qualification* is beginning or ending. If it
is *, the program leaves the qualification mode.

W N~ W

*Qualification is that function performed by some of the assemblers to uniquely define the
labels and operands of a section of a program by either prefixing or suffixing a character
or symbol to each of them. This function is initialized by the assembler instruction SFX
in 1401/1460 Autocoder and 1410/7010 Autocoder, HEAD in 1620 SPS, QUAL in 7040/
7044 MAP and 7090/7094 MAP, and HEAD or HED in 7090/7094 FAP. Qualification is
terminated by the same assembler instruction with a blank operand or, in the case of
MAP, by the instruction ENDQ.

47

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047~0

When the program is in the qualification mode, the label field and the first operand field
are qualified. For set A languages, this is accomplished by placing the suffixing character
in the last position of the label. For sets C and D, the prefixing character or symbol,
followed by a $, is prefixed to the symbol. In FAP or 1620 SPS prefixing is not done if

the symbol is six characters long. The first operand field is not qualified when a $ has
been found to be part of the symbol.

The flagged listing is printed if the current control card is $ANALYZE without the CROSS
or OPERAND options. Unless these options are present, the sequence or page-line
number is moved from the card image to the sequence field in the DA records. The card
image is dropped from the records. These input records to the Flowchart Program are
written on tape 2.

If the language is 705/7080 Autocoder, any blanks within the symbol in the sort field, the
label field, or the first operand field are replaced with the special character colon (:).
This character, which does not print on the 1403, is needed because blanks terminate
the scan of symbols in the Flowchart Program.

When the OPERAND or CROSS options are present, a file is created which is sorted in
order to produce the reference reports. Each record contains a sort field, the rightmost
position of which is called the sort code.

There is one record produced for every input source statement. This is called the source
record and has a sort code of 0. An additional record is created for each symbol in the
symbol table. This is called a reference record. The sort code for these records
corresponds to the position of the symbol within the table. The symbols in the symbol
table are qualified if the program is in the qualification mode.

48

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

If the current control card is $CHART, the Flowchart program is read in. If the current
control card is $ANALYZE with no reference options, the next control card is read and
control is transferred accordingly.

If the current control card is $ANALYZE with reference options, phase IT-- pass 1 of
Analysis is called.

Description--Phase II

Pass 1 (3NALA, 3ANLB)
A three-tape sort is performed on the records created in phase I.
Pass 2 (BANLC)

The DA format records input to this pass are of two two types: source records (which
represent a source statement) and reference records (which represent an operand reference
to a labeled source statement). The source records are distinguished by the fact that they
have a zero sort code. During this pass, two records are maintained in core-~one in an
input and the other in an output area. The first records on the incoming file will contain a
blank sort field (not considering the sort code as part of the sort field). These records
represent those source statements which were unlabeled,

The output file created in this pass has sequence numbers in the sort field. For each in-
coming reference record, the card image of the last source record is written out with the
reference record's own sequence number and sort code in the sort field.

Records are read from tape unit 2 into the input area. Source records are moved to

the output area. When the symbol in the sort field of the input record is nonblank and the
CROSS option is present in the SANALYZE card, a line of the cross~reference dictionary
is printed. Otherwise, the serial number in the input area is moved to the sort field of
the output area and the output record is written into tape unit 3.

If the input record is a reference record, the symbol in the sort field is compared with the
label field in the output area. If they are not equal, the symbol in the input area is a virtual
symbol--that is, no corresponding label was found in the source program being analyzed,
in which event a new record is read in. When the symbol in the input area compares equal
with the label in the output area, the sort code in the input area is moved to the sort code
field in the output area. If the CROSS option is present, a reference line is printed on the
cross-reference report. If the OPERAND option is present, the serial number in the

input area is moved to the sort field in the output area, and the output record is written
into tape unit 3.

Pass 3 (BANLD, 3ANLE)

A three-tape sort is performed on the sort field of the tape generated in pass 3.

49

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

Pass 4 (SANLF, 3ANLG)

At the beginning of this pass tapes 2 and 3 are rewound. A record is read from unit 3. If
the sort code is zero, a line of the flagged listing is printed. The original sequence
number in the card image is moved to the sequence field unless the record is transparent.
For the set B languages, any embedded blanks in the label field, field 1, or the sequence
field are replaced with the special character colon. The card image is truncated from
the DA format record, which is then written into unit 2.

If the sort code is nonzero, a reference line is printed on the flagged listing with operands
report and a new record is read in. At end of file, if the current control card is not
$ANALYZE, a new control card is read and control is transferred accordingly.

System Flow

System Tape Card Image Source Tape
SANALYZE
Unit 1 1402
3ANAA
1401
PASS 1 SANAU

Operation Code

System Tape Operation Frequency Report
Y P Coded DA Tape i LF

Unit 1 1403

PASS 2 3ANAV
3ANAS 1401

Flagged Listing Coded DA Tape

1403 - Unit 2

Analysis--Phase I

50

Systems Tape DA Tape

Unit
1

PASS 1 3ANLA
— 3ANLB
Systems Tape ‘ Tape Sorted DA Tape
PASS 2 3ANLC
Systems Tape Cross Reference Report
Tape Flagged
List with
~ Operands 1403
PASS 3 3ANLD
3ANLE
Systems Tape
Unit Sorted Flagged
1 List Tape
A 3ANLF
PASS 4 3ANLG
Flagged Listing 1403

DA Tape Input to
Flowcharter Unit

2

Analysis-~Phase II

Input/Output Description

Input

1. Caxd reader input file--contains DA System control cards.

2. Source program tape file--unit 2 or 3--contains assembly language statements in
card image form as produced by the Update program.

51

Output

1. DA System format tape--unit 3--the coded representation of the source statements
used as input to the Flowchart program. The format is an 80-character record.

1-5 Serial number

6 - 17 Working area

18 - 22 Sequence number

23 - 32 Label

33 - 38 Mnemonic operation code
39 Analysis code

40 - 42 Position of operation code in dictionary
43 - 44 Operand codes

45 - 54 Operand 1

55 Plus or minus

56 ~ 60 Displacement of operand 1
61 -70 Operand 2

71 - 80 Operand 3

2. Analysis reports file--produced on the 1403 and consisting of:

Cross-reference report

Flagged listing

Operation Frequency report
Operator control and error messages
Diagnostic messages

The format of the first three is shown by the sample problem.

52

FLOWCHART PROGRAM

Abstract

The Flowchart Program is designed to generate a flowchart of an existing source pro-
gram. The flowchart produced represents the gross logic of the source program and,
therefore, can be used as a guide for reprogramming in a higher~level language (for

example, COBOL or FORTRAN).

The Flowchart Program scans assembly language statements which have been coded by the
Analysis Program and generates a language called Symbolic Flowchart Language (SFL).

SFL is then processed producing a detailed flowchart of the original program.

Description--Phase I

Pass 1 (4CHRA)

The input to pass 1 consists of DA System control cards and a tape which is either SFL or
a DA format tape from the Analysis Program. If the input is an SFL tape, control is
passed to phase IT immediately after processing the $CHART card. If the input is from
Analysis, pass 1 performs the following processing:

1. $SEGMENT cards (if present) are scanned to determine the segmentation to be
performed.

2. [Each operation which was looked up in a table by Analysis is found in a corresponding
operation table in pass 1 of Flowchart. The pass 1 operation table entries contain
a six-character code, which is entered into the DA record and controls the processing
in the remaining passes of phase I.

3. The length of each statement is computed and entered into the DA record; an area
number is generated for each statement and placed in the DA record. All instructions
within a known length area are assigned the same area number.

4. Nonprocedural instructions, such as data defining and assembler control, are deleted
from the DA format tape.

Pass 2 (4CHRS)

The input to pass 2 is the DA format tape from pass 1. Pass 2 generates label dictionaries
used in passes 3 and 4 to reduce simple relative addresses of branch instructions.

The label dictionary is generated for each segment by entering the labels of all procedural
statements. Each entry in the label dictionary is 20 characters in length and consists of
(1) the label, (2) the area number for the instruction, (3) a label type code, and (4) the
forward and backward displacements in location counter units to the closest label or change
in area number.

53

H the input program is segmented, the label dictionaries are written on a work tape
(unit 2). When the program is not segmented, the label dictionary remains in core for
subsequent processing. After processing the last segment, control passes to pass 3.

Pass 3 (4CHRT)

The input to pass 3 is the DA format tape from pass 1 and the label dictionary from pass
2 for each segment. '

Pass 3 processes all branch ingtructions with simple relative addresses. A simple
relative address has either of the two following forms:
Label+n
or
*+n

where '"'Label" is the symbolic address of some instruction, n is some numeric constant,
and * is the value of the location counter for this instruction.

If the relative address refers to the same location as a label already in the label dictionary,
no label generation by pass 3 occurs. Otherwise, pass 3 normally generates a label for
the instruction to which the relative address refers and inserts the generated label in the
dictionary at the correct position.

Pass 3, in addition, sets the type code for labels referred to by a subroutine call.

If the DA format input consists of only one segment, the expanded dictionary remains in
core for pass 4 processing. Otherwise, the expanded label dictionaries are written onto
tape (unit 3).

Pass 4 (4CHRU)

The input to pass 4 is the DA format records from pass 1 and the expanded label dictionary
from pass 3. Pass 4 completes the derelativization process by entering into the DA record
all labels generated in pass 3.

All simple relative addresses of branch instructions are processed in pass 4.

If the relative address refers to a label in the label dictionary, that label replaces the
relative address in the branch instruction. Otherwise, if the relative address does not
refer to any label in the label dictionary, the type of instruction is changed to a flowchart
EXIT type.

In addition, each branch to an instruction classified as a subroutine ENTER is changed to
a SUBRT type. Each instruction to which a SUBRT call occurs has its type changed to an
ENTER.

Output at conclusion of pass 4 are the derelativized DA format records.

54

Pass 5 (4CHRV)

The input to pass 5 is the derelativized record in DA format. Pass 5 uses the information
in each DA record to generate the SFL card images. Information associated with each
operation is used to determine both the type of SFL operation and the comment to be
generated.

Comments are generated by constructing the comment from a string of characters called
a comment skeleton. Comment skeletons designate which information is to be used from
the DA record in forming the comment, and also specify the additional words, such as
READ TAPE and COMPUTE, which are to be generated as part of the comment.

Each segment produces an SFL program bounded by an SFL JOB and END card. The
SFL tape (unit 3) is then rewound and serves as input to the second phase.

Description-~-Phase II

Pass 1 (4CHTB)

This pass reads a Symbolic Flowchart Language program bounded by a JOB and END
statement. All commentary statements are flagged to avoid further processing, and are
not required again until the flowchart is generated in pass 8. The chart mode statements
are processed, expanded, and written on a work tape. Logical connector operations
(YES, NO, and GOTO) are combined with the box statement from which they exit. Final
page and matrix positions are established for each chart box. Comment information in
chart mode instructions is analyzed for errors and arranged in a format for final printing.
The source program is also analyzed for logic errors such as multiple GOTO exits. The
source program is printed and/or punched, as specified by user options.

Pass 2 (4CHTC)

This pass reads the chart mode statements and constructs a table of labels with the page
and matrix positions at which each label is defined. During passes 2, 3, and 4, this label
table uses the major portion of core storage. If the label table overflows, an error mes-
sage is printed and the segment is bypassed. The chart mode statements are not altered
in this pass.

Pass 3 (4CHTD)

Pass 3 reads the chart data and examines each statement to determine whether a logical
connection is being made to another symbol by the symbolic operand of a GOTO, YES, or
NO operation. If so, the label table is searched and, if the label is found, the page and
matrix position of the label are inserted into the chart mode record. If the label is not
found, an error message is printed. If a logical connector refers to a label on a different
page, the label is flagged in the label dictionary as a label requiring the generation of an
off-page entrance arrow. The chart records are written onto a work tape.

55

Pass 4 (4CHTE)

Pass 4 reads the chart mode records into core and examines each record for a label
definition. When a label is encountered in the record, the corresponding label table entry
is examined to determine whether an off-page entrance pointed arrow is required for this
label. A flag is then set in the record establishing whether a round or pointed arrow
entrance is to be generated for the record. The modified chart records are written onto
a work tape.

Pass 5 (4CHTF, 4CHTG)

This pass sorts and prints the label table, noting the page and matrix position at which
each label is defined. Labels which are defined more than once or have not been refer-
enced by a connector operation are flagged. All references to a label are also printed
by passing over the chart mode records and saving the page and matrix position of each
reference. This is the last pass in which the label table is used.

Pass 6 (4CHTH)

This pass reads the chart records into core, rearranges 30 records at a time into row by
column order, and blocks the output records by three, corresponding to a chart row.
These records and the commentary statements are written onto a work tape.

Pags 7 (4CHTI)

Pass 7 reads the chart data into core one page at a time (80 boxes or ten physical records)
and constructs an internal matrix table. Several passes are made on the matrix table
which analyze possible connector paths between boxes. A line table is constructed which
contains flags representing different segments of each printed line. The flags contain all
information required to generate the skeleton portion of the chart page--that is, the boxes,
lines, and arrows. The line table information for each page is written onto a work tape.
At this point, one of the work tapes contains line information pertaining to the flowchart
and another contains comment information pertaining to the flowchart.

Pass 8 (4CHTJ)
This pass reads the line and comment records to generate a flowchart. For chart mode
pages a print line is formed from the line table information and the comments are inserted

into each box. The labels and matrix positions are also inserted into the print lines as
required.

56

System Flow

System Tape

Unit

DA Tape from
Analysis

$SEGMENT Cards

1402

-

/K)

\

Segmented Text Tape

- @

Label Dictionaries Tape

1401 (If multiple segments)

Segmented Text Tape

PASS 1 System Tape 4CHRA
Unit
1
PASS 2 System Tape
4CHRS
Unit
| l
PASS 3 4CHRT

Expanded Dictionaries Tape

(if multiple segments)

.

1401

Unit
3

Expanded Dictionaries Tape

System Tape

Segmented Text Tape

PASS 4

System Tape

/O

Unit

4CHRU

Derelativized Text Tape

1401

-

S

PASS 5 Sa

SFL Tape

4CHRV

\

1401

Flowcharter-~Phase 1

P

System Tape ~

SFL Input from Phase |

‘

1401
4CHTA
PASS 1 System Tape 4CHTB
Chart and v‘
Commentary *
Mode
) Records 1402 1403
PASS 2 : } 4CHTC Punch SFL
ystem Tape i
1401 Print SFL
+ Chart and
Commentary
Mode
PASS 3 4CHTD ~ Records
1401
Chart and
Commentary
System Tape Mode Records 1403
Print Undefined
Labels
PASS 4 4CHTE
1401
System Tape
Chart and .
Commentary
Mode Records
Printed Label Table
PASS 5
System Tape 4CHTF
4CHTG 1403
1401 ~——
* Chart and
Commentary
Unit Mode Records
PASS 6 4CHTH 2
1401
System Tape ‘
pass k‘ 4CHTI
1401
Chart and
Commentary
System Tape Mode Records
Printed Flowchart
PASS 8 4CHTJ
1403
1401

Flowcharter--Phase II

Input/Output Description

Input

1. DA System format tapes. The format of the records of phase I of Flowchart is the
DA System format described in the Analysis. The working area is used by the Flow-
chart as follows:

Column Usage
6 ~8 Not used
9 1401/1410 chaining condition
10 Pass 1 processing code
11 Pass 1 length code
12 - 14 Instruction length
15 - 17 Area number assigned to instruction

2. SFL input file--unit 3. This tape format is generated in phase I of Flowchart to be used
as input to phase II. The 80-character record format is:

Column Usag
1-5 Sequence number |
6 -15 Label

16 - 20 Operation field

21 -172 Operation field

73 - 80 Ignored

3. Card reader file. This file contains DA System control cards.

Output

1. Card punéh output file--generated by an option. This is the Symbolic Flowchart
Language program generated by phase I. The SFL format is described above.

2. Symbolic Flowchart Language tape file--unit 3~-~-always generated when the input is an
assembly language program. The contents of this file are the same card images as
the card punch output file.

59

3. Flowchart file--produced on the 1403 and consisting of:
a. The flowchart

A cross-reference dictionary of flowchart labels giving their page and chart
locations

c. A printout of the Symbolic Flowchart Language program
d. Operator control and error messages
e. Diagnostic messages

The record formats for chart and commentary mode records created internally in Flow-
chart phase II are as follows:

Chart Mode Record

In pass 6 these are blocked three to a physical record.

Internal | Chart | Coor- Op | Statement BCD Symbol
0 | Seq. No. | Page dinate | Code Label Op Code Text
Position 0 1-5 6-9 10-11 12 13-22 23-27 28-92
Exit1l | Page | Exit1l | No or | Exit 2 Exit 2 Exit 2 Exit 2
Label No. | Coord.| Yes Label | Page No. | Coord. | No or Yes
Position 93- 103- 107- 109~ 112~ 122~ 126~ 128~
101 106 108 111 121 125 127 130
Connector
Flags
Position 131-137

For chart mode records position 12 has the following meaning:

OP CODE

WO RON®Z Y

FUNCTION

EJECT
JOB
SKIP
SPACE
END
NOTE
BLOCK
IO
DECID

60

OP CODE FUNCTION

4 MODFY

PREDF

TERMINAL OPERATION
GOTO

SUBRT

YES or NO

Nelie R e I |

Commentary Mode Records

of lines
Internal | Op in space Page | Commentary Information | Not
0 | Seq.No. | Code | operation | No, Used
Position 0 1-5 (3 7-8 9-12 13-69 70-137

For commentary mode records position 6 is either an * or S to indicate comments or
spacing, respectively.

The record format for line records is as follows:

Line Type Record

Flags Flags Flags
for for fox:
Line Line Line
Page|Coor- Gen- Page | Coor- Gen~ Page | Coor- Gen-
No. [dinate eration | No. dinate eration| No. | dinate eration
Position 1 4 5-6 7 8-40 41-44 45-46 47 48-80 81-84 85-86 87 88-120

Each box environment consists of a 16 by 40 character print position matrix. These flags
are used for line generation within each box environment. The line information records
are blocked three to a record. Each physical record contains information for a complete
row of the flowchart.

Additional Flowchart Options

During checkout of the DA System it was desirable to implement four additional $CHART
card parameters which may prove valuable fo a system user. These parameters may be
specified in any order along with DECK and LIST options.

61

Parameter Function

NOCHART To bypass the generation of the flowchart. The
listing and/or deck of the SFL Program may be
obtained, but no cross-reference list or flow-
chart is produced.

NOSTOP To suppress the stopping which occurs at the
beginning and ending of a run to mount the
special paper carriage tape.

NOCROSS To suppress the printing of the flowchart
cross-reference list.

NOSAVE To prevent the normal rewind-unload operation
on the SFL tape unit 3. When this option is
used, the SFL tape is considered a work tape
and only rewound.

VERIFY PROGRAM
Abstract

The Verify Program is designed to help the programmer determine that the source deck is
in agreement with the current object deck. It processes an object program deck generated
by the following assembly languages:

1401 SPS
1401/1440/1460 Autocoder
1410/7010 Autocoder
705/7080 Autocoder
7070/7072/7074 Autocoder

Verify generates a storage map and identifies overlay patches.

Description

Pass 1 (5VERA)

The $VERIFY control card is checked for the presence of options. If the LOADER option is
present, the number of cards of the smaller standard loader for the machine specified is
read in, and the next card is checked to see whether it is a loader card. If it is, the number

of cards to equal the larger standard loader are read in.

The lengths of the standard loaders are:

1401/1440/1460 3, 4, 5 (special testing)
1410/7010 5, 9
705/7080 5,9
7070/7072/7074 5, 10

62

Clear storage and bootstrap cards are read in for the 1401 whenever present. The loader
option is not needed.

Pass 1 then branches to the subprogram written for the particular machine and language
combination specified. The following are separate subprograms:

1401 disk AUTO DISK (option)
1401 tape AUTO TAPE

1401 SPS RSPS
1410/7010 AUTO R1410

705 AUTO R705

7080 AUTO R7080
7070/7072/7074 AUTO R7070

Each subprogram performs the same general function: It reads the object program and
places the program on tape basically in the format of the assembly listing for the machine
and language specified. The object program is read in and processed one card at a time.
The card sequence number is picked up first, then the card is tested to see whether it is

a special type--executive, transfer control (705/7080), or end card. If not, the high-order
location of the program data on the card is picked up, decoded if necessary, and stored in
the record area. The data itself is then processed and set in the tape record area, one
instruction at a time, and the record is written on tape.

If the data can be determined as other than an instruction, it is picked up in specified
segments (12 for 1401 through 1410, 5 for 705 and 7080). The method for picking up the
data is different in each subprogram, because of the format differences of the object pro-
grams, The 1401 subprograms share a common data processing loop, which is set up as
a separate subprogram. The three 1401 subprograms use the same subprogram to decode
locations called DECODE, and the R705 and R7080 subprograms both use a subprogram
EXPAND to determine the location and ASU for each instruction.

Special procedures implemented in the individual subprograms are described as follows:
All 1401 and 1410. Groupmark/wordmarks are denoted as GMWM's, A groupmark which is

found as a d-modifier is printed as GM. When an execute or end card is read, one record
is written with the execute instruction and no locations.

TAPE and RSPS. If no sequence numbers are present on the deck, sequence numbers are
generated by VERIFY for the tape records. If any cards are present between an execute
card and its bootstrap card, they are printed out at the time they are read with a message
identifying the execute card by its sequence number.

R705 and R7080. Expanded card format is accepted and processed in the same format as
condensed cards., Constant data format differs from instruction data. The number of
characters in the record is placed in the ASU position.

R7070, R705 and R7080. When a transfer control, execute, or end card is read, each in-
struction on the card is processed with locations ascending by one from a base of zero.

63

When a $DAEND control card is read in, signaling the end of the deck, control is réturned
to the main pass, which writes a tapemark on the tape with the data on it, rewinds the tape,
and calls in pass 2.

Pass 2 (6VERB, 5VERC)

This pass of VERIFY is the DA Sort Program, which sorts the tape records on the lo-
cation field to determine identifiable overlay patches.

Pass 3 (6VERT)

The mnemonic-actual op code dictionary used by the machine and language specified is
read into core from the DA Systems Tape. If the 1410 is specified, a special subroutine
is executed which checks for the need of word separators in the table, and creates them
when flagged. The heading record is read from the object program tape and set up to be
printed at the top of each page. The binary points needed for the table lookup are com-
puted,

The program then processes the sorted object program tape. A record is read in and
checked to determine whether it has been identified as constant data by pass 1. If so, it
is printed as read in without a mnemonic op code. If not, processing continues. If the
machine specified is one of the 1400 series, the actual op code is tested for certain
mnemonics before going through the table lookup. For 1401/1440/1460, the mnemonics
are BCE, BBE, and two special I/0O's. For the 1410/7010 they are BCE, BBE, CC1,
CC2, BEX1, and BEX2. If the actual code is one of the mnemonics tested, that
mnemonic is printed with the record. Otherwise, the actual op code goes through a table
search to find the mnemonic, If a mnemonic is found, it is printed with the record. If
not, the mnemonic code is left blank and the record is printed. In the case of the 1401/
1440/1460, the data is placed in the format of constant data.

The print subroutine checks for execute or transfer control cards and ejects to a new page
after one is encountered. On each new page the heading is printed. Each data record is
tested to determine whether it is an overlay patch, If it can be so determined, a flag of**
is printed just left of the location. When the tapemark is sensed on the object program
tape, the page is ejected, the $DAEND card is printed on the new page, and control is
returned to 1CONA.

64

System Flow

Control Cards and
Object Program

/ 1402

System Tape

Unit 1
5VERA 1401
PASS 1
Object Pro=-
System Tape gram Tape Work Tape Work Tape
Unit 1 | Unit 3
5VERB
PASS 2 5VERC 1401
Sorted Object
System Tape Program Tape
Unit 1
Storage Map of
Object Program
1401

Input/Output Description

Input

The card reader file contains DA System control cards and standard object decks
generated by:

1401 SPS
1401/1440/1460 Autocoder
1410/7010 Autocoder
705/7080 Autocoder
7070/7072/7074 Autocoder
Output
The output file from the Verify program is produced on the 1403 and consists of:
1. A storage map of the object program
2. Operator control messages
3. Diagnostic messages

Tape Record Formats

Tape record formats created in Verify pass 1 for processing in pass 3 are:

1 10 19 25 41

OP CT LBCN [INSTRUCTIZN CARD

1401/1440/1460 Page Heading Record

1 4 10 15 17 23 25 41 46
¢ ¢ K ¢
A T L [LpcaT) INSTL fay | fF
1 1 A , i
I 1 1 I 1 1

1401/1440/1460 - 1410/7010 Tape Record Format

66

1 10 18 25 41 46

OP CT ADDR INSTRUCTION CARD

1410/7010 Page Heading Record

1 18 23 26 31 43 46

op Loc OoP [sU ADDRESS SER

705 Page Heading Record

1 4 15 17 23 26 29 35 36 40 43 46
R @

/ | \‘:'\ wpears | R’ [O| | aores | %, CA% i
¢) Ys ¢ 5 5 R 5 5
A A I 11z 1 1|3

705 Instruction Tape Record Format

1 15 17 23 27 36 41 43 46
.| Lpcar.) DATA | | cD.

705 Constant Data Tape Record Changes

1 18 24 30 34 41 46

opP LoC INS TR SU ADDR SER

7080 Page Heading Record

67

1 4 15 17 23 24 2930 3233 39 41 44 46

i
¢p 1 Su %
< Al LgcaT 6 | |INsT & ADR & R i
[~} A (= D,
1 1 1 2 1 1 1
7080 Instruction Tape Record Format
1 » 15 17 23 29 33 38 41 44 46
@V.| LPCAT. 5 DATA cD.
7080 Constant Data Tape Record Changes
1 8 19 28 46
oOP CON@ Ldc INSTRUCTI@N
7070/7072/7074 Page Heading Record
1 4 8 12 15 17 23 25 27 37 416
% % i
Cq LS A |LPcAT 7 INST7 3
Y
7 i
1 1] 1 1

7070/7072/7074 Tape Record Format

DOCUMENTATION AIDS CONTROLLER

Abstract

The Documentation Aids Controller consists of:

1. Resident I/0O routines. These routines remain in storage during execution of all sys-

tem programs. They perform all system I/0 including calling in of the programs on
the system tape. It is the first record on the system tape.

68

2. Program Selector (1CONA). This program is automatically called in by the
Resident I/O routine at the beginning of a system run. It reads and analyzes the
$DAJOB card and calls the next system program on the basis of this analysis. This
program and its header are the second and third records on the system tape.

Resident I/O Routine Description

Tape

Entering at SYSIO, the address of the constant following the branch to SYSIO is stored.
The content of the index register 3 is saved and restored at the end of the I/O. The ad-
dress of the constant is moved to index register 3. The constant is moved into the I/O
instruction and the I/O error counter is set to zero. If the I/0O instruction is a write, the
error counter is set to 7 so that trying the operation three times will cause the counter to
overflow,

The I/0 is performed and the address of the terminating groupmark/wordmark is stored
for use in other programs. The exit is initialized to the address of the instruction follow-
ing the I/0 constant, index register 3 is restored, and control is returned to the user.

If a transmission error is encountered during the I/0, the tape unit is backspaced, the
error counter is incremented, and, if no arithmetic overflow occurs as a result of the
add, the I/0 is reexecuted. If overflow does occur and the 1/0 is a read, the machine
stops at halt 1. Pressing START causes the operation to be retried ten more times. If
the operation is a write, the tape is skipped forward and the I/O reexecuted.

Printer Page Overflow

This routine may be entered directly by one of the system programs or it may be entered
from the print routine as the result of printing the last line on a page.

Entering at EJECT stores the return address. The overflow switch is turned on. This
switch may be tested by the system program if special spacing or multiple heading lines
are required. The line counter is reset to 01, and the page counter is incremented and
moved to the print area. The heading information is moved out of the punch area to the
print area. The carriage is restored to channel 1 and the print routine is entered at
INCRLC to print the heading.

Print

Entering the print routine stores the return address, turns off the overflow switch, and
increments the line counter. The contents of the print area are printed and the line count
is compared with the maximum,. If the line count is less than maximum, control is re-

turned to the user after the print area is cleared.

If the line count is equal to the maximum, control is given to the EJECT routine.

69

Read

The return address is stored, a card read instruction is issued, and control is returned
to the user.

Punch

The return address is stored, a card punch instruction is issued, and control is returned
to the user.

Message

This routine is used to print messages to the operator. The return address is stored,
the carriage is restored to channel 1, and the program branches to PRINT. On re-
turning from PRINT the carriage is restored to channel 1 to enable the operator to read
the message, and control is returned to the user.

Program Call

All DA System programs are called by executing a B SYSLNK followed by the fifth-position
identification of the desired record. The mode of I/0 is changed to "Load" since the sys-
tem tape is written with wordmarks. The next available record on the system tape is

read (using the tape I/O routine), and identification in this tape record is compared with
the constant following the branch to SYSLNK.

If the compare is equal, the requested program is the next record on tape. An unequal
compare indicates the program is farther along the tape, and the tape read and compare
routine is again executed. An end-of-file condition during this loop indicates a system
error; the program called was not on the tape between the program call and the terminating
tapemark.

When the correct header is found, the addresses necessary for loading the program are
extracted. The tape I/O constant is initialized and the program is read in using the tape
I/0 routine. The I/O mode is changed back to '"Move" and the first instruction in the new
program is executed. The header information remains in the controller area.

Program Selector Description (1CONA)

The Program Selector reads the first card in the reader. If it is a $DAJOB card, the
operands are extracted using a left-to-right scan technique. The program identification
(third operand) is moved to the punch area, where it is used for page headings. The
other two operands are compared with a table of machines and languages. When an equal
compare is made, the proper code is put into the machine or language switch.

When all operands have been extracted, the switches are checked for blanks and for
permissible machine language combinations.

70

If the $DAJOB card is correct, the next card is read. If that card is a $VERIFY, the
first phase of the Verify Program is read in. If it is a $SYSTEM, the System Main-
tenance is called. Any other card causes the Update Program to be read in.

If the first card of the input deck is not a $DAJOB card, a message is printed and card
reading is continued until a $DAJOB is sensed or end of file is detected. At end of file,
END OF RUN is printed.

If the $DAJOB card is punched incorrectly, the second card is read, If this card is a
$SYSTEM, the System Maintenance Program is called. If it is not a $SYSTEM, an error
message is printed and the machine halts.

System Flow

DA System T
System Tape $DAJOB

Unit 1 1402

System Con-

troller 1401
1CONA

DA SYSTEM MAINTENANCE PROGRAM

Maintenance of the DA System tape is performed by a program contained on the system
tape. DA System programs may be added, patched, or deleted from the system tape
through the use of the System Maintenance Program (6CONA).

The purpose of the System Maintenance Program is to place DA System records on the
system tape in the proper format for the System Read Routine. The System Maintenance
Program extracts pertinent information from control cards supplied with the program to
be added or patched. The control card information is written on the tape in a header
record. The program to be added or patched is then loaded into storage using a modified
Autocoder loader and the final coreload record is then written on the tape immediately
following its header record.

The System Maintenance Program also has the capability to delete entire programs with
their headers, to copy the system tape, and to list the header records.

71

System Tape Format

The system tape consists of coreload records preceded by their header records. Each
program or program segment has a header record and a coreload record. These are
placed on the tape by the Systems Maintenance Program.

TAPE FORMAT:

Self-loading

record
containing I I I I I
System Read R| HEADER [R PROG R HEADER | R| PROG (R| T
Routine G #1 G Seg #1 G____ #n G| Seg#n (G| M
Prog. Seg. Format: Up to 7200 char.
HEADER FORMAT: Low~Core | Starting High Core Program
Address Address | Address Identification
3 : 3 3 5 = 14
where:
low-core address is the three-character representation of the lowest storage
address occupied by the coreload. This value must be
greater than 800.
starting address is the address of the first instruction to be executed.
high-core address is the highest storage address occupied by the program

plus one.

program identification is the identification of the coreload. All records must

have a unique program identification. Program identifications

are assigned in ascending collating sequence on the system’
tape.

System Maintenance Control Cards

The System Maintenance Program 1s called in the same manner as other DA System pro-
grams. A maintenance deck consists of a $DAJOB card, a $SYSTEM card which calls the
maintenance program, changes to be made to the system, and finally a $DAEND card.

The format of the $SYSTEM card is:

Cols. Contents
1-7 $SYSTEM

72

The maintenance process is completed when the $DAEND card is encountered.

The cards between the $SYSTEM and the $DAEND cards are the changes to be made to
the system tape.

To prepare a coreload record to be added to the system tape, the user must punch an
$ADD control card with the following information and place it in front of the tape Autocoder
self-loading object deck.

Cols, Contents
1- 4 $ADD
10 - 12 low-core address
13 - 15 starting address
16 ~ 18 high~core address
76 ~ 80 program identification

In order to make all programs self-contained, the following instruction sequence should be
placed in the front of each source program to be added:

DC @$ADDbbbbb@
DC +ORG

DC +START

DC +HIGH

This sequence will generate the required $ADD card for each record; columns 76 - 80 will
pick up the program identification from the job card.

@RG is the low-core address label
START is the starting address label of the program
HIGH is the high-core address label
HIGH may be defined by including:
LT@RG*1
HIGH EQU *+1
END

at the end of the program.

73

A $ADD card can be used to insert a new record on the system tape or to replace a record
with the same program identification,

To delete a program from the tape, the user must punch a $DELETE control card with the
following information:

Cols. Contents
1-7 $DELETE
76 - 80 program identification

To patch a program on the tape, the user furnishes the patch cards in tape Autocoder self-
loading object deck format preceded by the following control card:

Cols. Contents
1- 6 $PATCH
76 - 80 program identification

Addition, deletion, and patching can be performed on the same System Maintenance run if
the control cards are in order by program identification. Patching is never performed on
a record being added or deleted. A record may be deleted and added on the same run.

To copy the system tape, the user puts no changes between the $SYSTEM and $DAEND
cards. Whenever maintenance or copying is performed, the header records are printed.

$DAEND
$DELETE

$PATCH

ADD DECK

$SYSTEM

Sample deck setup for DA system maintenance run. The $ADD,
$DELETE, and $PATCH must be in sequence by their identification
in columns 76 - 80. The object cards for adding or patching

must follow their corresponding $Control card.

$DAJOB

74

Description

The System Maintenance program is executed in two phases. Phase I reads the input file
from the card reader, performs diagnostics to check for errors, and prepares the input to
the second phase. Phase II reads the tape written during phase I and performs the oper-
ations requested in the control cards.

Phase I

A card is read, moved to the print area, and checked for a $ in column 1. If there is no
$, an error message is printed and the next card is read. If the card has a $, itis
checked to see whether it is a $ADD, $DELETE, $PATCH, or $DAEND. If it is none of
these, an error message is printed and the next card is read.

If the card is a $ADD, the addresses in columns 10 to 18 are checked for blanks, zones in
the tens position, and to see that they are within the maximum and minimum limits. The
ID in columns 76 to 80 is checked for validity and sequence. If any of these errors are
detected, the appropriate message is printed; whether or not there are errors, the
WRITES routine is entered.

In WRITES3, the record is written onto the work tape, and, depending upon the type of con-
trol card being written, control is turned back to the control card or load card read
routine,

If the control card is a $PATCH, the path followed is the same except for two routines.
Since there is no address used in the $PATCH card, there is no address checking., Control
information is extracted from the program header on the system tape as the tape is being
checked for the presence of the record.

When a $DELETE card is processed, the only checking done is the validity and sequence
of the ID and the presence of the program on the tape.

The $DAEND card requires no checking, so it enters a routine that writes the ending
record on the work tape and initializes for Phase II.

After a $PATCH or $ADD card is processed, the routine to read and check load card,
READLD, is entered. After each card is read, it is checked to see whether it is a sys-
tem control card, which would terminate loading, a clear storage or bootstrap card,
whose presence is indicated on the printer, or an end or execute card, which would also
terminate loading. When loading is terminated, control is returned to the control card
read routine.

If the card is none of these, it is checked for groupmark/wordmarks, word separators, load
address outside the range of the program, and erroneous load instructions. Any of these

75

errors are noted on the printer. If the load card passes all the checks, the loader in-
structions are modified to adapt them to tape, and the image is written onto the work
tape. Control is returned to the load card read routine until a card is read that causes
termination.

$DAEND card causes control to be given to the REWIND routine, which tapemarks and
rewinds the work tape, checks to see whether any diagnostic errors were detected, and
loads Phase II from its hold area to low core, where it is executed.

If any errors were detected, the machine halts affer printing a restart message.
Phase II

The work tape is read in and the mode switch set from the control record. An A indicates
add mode, P indicates patch, D indicates delete, and C indicates copy. (The $DAEND
causes the mode switch to be set to C, so the remainder of the system is copied without
modification. If the first card is the $DAEND, the whole system is copied.)

The old master system tape is composed of header records and master records written
alternately. A switch is maintained so that the composition of the next record on the
tape is known at any time.

As the first header is read, its ID is compared with the ID in the change file record from
the work tape. An equal compare indicates that the program to be modified has been
located. If in add mode, the header and program record are skipped on the old master,
and the new header and program record are written on the new master. The header
information is extracted from the change file record, and the bootstrap routine in the
control record is branched to begin the building of the program record in core storage.
This bootstrap routine reads in the next record from the change file, which is a load
record. This load record operates in the same manner as the normal Autocoder card
load record, except that when it has completed loading and setting wordmarks, it reads
the next record from the change file. This process continues until an end record is
executed. This end record was written on the change file as a result of detecting an end
card, execute card, or system control card in phase I. It causes loading to be termi-
nated and the program to be written onto the new master tape.

If a high compare results while reading the old master tape, the process is the same for
add mode, except that no skipping is done on the old master.

In patch mode, the process is again the same, except that the old program is read into
core before loading is begun from the change file.

In copy mode, each header and program record is copied to the new master.

In delete mode, the copy process is duplicated, except that programs to be deleted are
not copied.

When end of file is sensed on the old master, the new master is tapemarked, all tapes
are rewound, and a list of the headers on the new master is printed.

76

System Flow

$DAEND

Changes

$SYSTEM -

Unit Old DA System
$DAJOB 1 Tape

6CONA 1401

Updated
DA System Tape

PROGRAM MODIFICATION AIDS

General Modification Aids

The modular system design of the DA System enables the user to readily modify any
section, This section contains information to assist the user in making modifications.

Programs under control of the DA System use the following areas of storage, as
indicated:

° 01 —— 80 - are used as a card read—-in area

o 81--86

Pogition 81 is not used by the DA Controller.

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

Position 82 contains the following code for the corresponding machine punched in
the $DAJOB:

System/360
1401, 1460

1440

1410, 7010

1620

705

7080

7070, 7072, 7074
7040, 7044

7090, 7094

WU WNMFROO

Pogition 83 contains the following code for the corresponding language punched in
the $DAJOB card:

BAL
SPS
AUTO
BASIC
MAP
FAP
SFL
FAL

OO R WN O

Pogition 84 is used as a PAGE OVERFLOW SWITCH. It contains a wordmark when-
ever the standard heading is printed.,

Pogition 85 contains a wordmark whenever an $UPDATE card is encountered. The
wordmark signifies that tape unit 3 should be saved. Position 85 containg the tape
unit used for Update output, either 2 or 3.

Position 86 of the communications area is not used by the Controller.

87 —- 99 (Index registers) can be used, but must be initialized by a housekeeping
routine and not at load time. They will not be disturbed between programs.

100 (Read/Punch check position) cannot be used.

101 -~ 180 (punch area) is used to store the page heading data. The first character
is blank (101); positions 2 through 9 of the $Control card are moved into 102 to 110
to indicate the program name in the standard heading; 111 - 117 is blank. The next
54 characters (118 - 171) are the program identification taken from the $DAJOB
card. The last nine characters (172 - 180) are bbbbPAGED.

If any program requires this area for punching or other purposes, the contents are
stored in a hold area before use and restored after use.

181 -~ 195 is used by Controller when calling in a new program segment. If a GM
is used in 181, it is cleared before returning to the Controller.

78

196 —— 199 contains page number; will be incremented by one on each EJECT.
200 —— 332 is the print area.
333 —— 799 (System Tape Read Routine area and Generalized I/O Routine area) cannot

be used. Lowest core location for ORG statement is, therefore, 800. ORG state~
ment must be first statement in a program or Autocoder automatically begins in 333.

All groupmarks must be loaded without wordmarks, having the housekeeping routine
set the wordmarks in order to prevent premature tape I/0O termination during the
tape-load process. This restriction eliminates usage of the G operand in the DA
statement. (The Controller does not allow groupmarks with wordmarks to be loaded.)

Each program must also clear its GMWM's before calling in the next program for
the same reason.

Wordmarks are placed in the following locations at the beginning of a run. Each
program in the system must restore them if they are disturbed.

001 High order of read area
087 High order of X1

092 High order of X2

097 High order of X3

101 High order of punch area

No other wordmarks may be leff in these I/0 and index register areas.

Word separators cannot appear in the object deck, If needed, load as a 5~8 punch
and add 0 zone in the program.

The Controller is used to call in a program, program segment, or overlay. The
user branches to a different entry point (400) and supplies the five-position identifi~
cation of the segment wanted.

Example:

B SYSLNK
DCW @5VERAQ@

This would call in the first pass of the VERIFY program.
The equate statement SYSLNK EQU 400 must be present in the program.

When calling in a program, the Controller searches forward only; the segment
called, therefore, must not have been read before.

79

Input/Output Modification Aids

The Controller is used to perform all I/0 functions, tape read/write, card reading, card
punching or printing. The system entxy points are defined in each program with the
following statements:

Statement Usage
SYSI® EQU 500 Tape read/write
READ EQU 781 Read card
PUNCH EQU 789 Punch card
PRINT EQU 747 Print line
EJECT EQU 704 Eject page and print
heading line
MESSG EQU 660 Printer operator message

To modify the system configuration (for example, to replace the card reader with a fifth
tape unit), the DA System I/O routine is replaced by a user-written routine in the resident
1/0 program of the DA System. The I/O functions and usage are described below:

1. Tape Read/Write. The necessary data is supplied as a five-position constant with a
wordmark in the high-order position:

Pogition 1 (high-order): Drive number (2, 3, or 4)
Position 2 - 4: Address of high-order of I/O area
Position 5 (low-order): Read or Write (R or W)

Example: 3555 R
This causes a record to be read from tape 3 into the area beginning in 555,
The constant is in line after the branch to the entry point,

The following equate statements are included in each program:

IOCON2 EQU 200
IOCON3 EQU 300
IOCON4 EQU 400

The complete entry is assembled as:

B SYSIO
DCW +IOCON3
ORG)

DC +IOARA
DC ew@

80

The origin statement (*-2) causes the location counter in Autocoder to be decre~
mented by two so that the address constant of the I/O area overlies the zeros of the
address constant of the tape unit number.

Note: Tape instructions, other than read and write (rewind, backspace, etc.), are
done in the individual programs - not by the Controller.

All tape input/output is in move mode (without wordmarks).
Card Reading. The user branches to the system entry point:
B READ
The Controller reads a card and returns to the next instruction. Testing for last
card is not necessary, because the end of the card input to a run is indicated by a

$DAEND card.

Card Punching, The user branches to the system entry point:

B PUNCH
The Controller performs the card punch and returns to the next instruction.
Print a Line. The user branches to the entry point:
B PRINT
a., The wordmark in 84 is cleared.
b. The line count is incremented by one.
c, When line count exceeds 57, the line is printed -~ followed by a branch to eject.
d., Clear storage and return.

Double spacing is effected by an immediate branch to print after return, since the
print area is cleared.

If required, LINTOT, indicating the number of lines per page at 659, may be
modified. An A-B zone must be over the units position of the two-position LINTOT.

Eject and Print Heading

A B EJECT will:
a. Set a wordmark in position 84.
b. Skip to Channel p on the printer.

c. Move the punch area to the print area.

81

d. Add 1 to the page count and move it to the print area.
e. Reset the line count.

f. Set to double-space after printing.

g. Print heading line.

h. Clear storage and return.

A branch to EJECT is given before printing the control card image and before
starting any new report.

If it is required to print an additional heading line, position 84 is tested for a
wordmark to see whether an eject has occurred. This switch is turned off by the
next print.

6. Print Message to the Operator. Some messages require operator action and these
are produced by:

B MESSG

The carriage is restored before and after printing the contents of the print band.
The print band is cleared and control is returned to the program.

Dictionary Modification Aids

Much of the DA System processing depends on the content and coding of the assembly
language dictionaries contained as separate records on the system tape. It is possible

to modify the DA System processing and output by changing the contents of the dictionaries
which are assembled by 1401 Autocoder and reside on the system tape in the same manner
as all other system records. For each of the assembly languages processed, there are
four dictionaries on the system tape.

The first of the four sets of dictionaries is used by the Analysis program. Each dictionary
contains the BCD mnemonic of all operations in the assembly language and also one addi-
tional character, which is a code used to specify the type of operation. The dictionaries
are arranged in ascending 1401 collating sequence order.

The second of the sets of dictionaries is used by the first phase of the Flowchart program.
Each dictionaxry contains a six-character code for each operation in the assembly language.
The six-character code controls the processing of each instruction during the first phase
of the Flowchart program. The dictionary is arranged in the same order as the first set
of dictionaries; that is, for each entry in the Analysis dictionary there is a corresponding
entry in the Flowchart dictionary.

The third set of dictionaries is used by the first phase of the Flowchart program to gen~
erate the comments to be inserted in each flowchaxrt box. Each dictionary contains strings
of characters called comment skeletons, which are used in conjunction with the informa-
tion in each DA record to form the comments.

82

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

The fourth set of dictionaries is used by the Verify program and contains the mnemonic
operation code and machine language representation for each entry.

System Records

The first set of dictionaries records 3ANLA (the first pass of Analysis) and consists of:

Record Description

SANAE 1401/1440/1460 Autocoder--SPS
3ANAF 1410/7010 Autocoder

3ANAG 1620/1710 SPS

3ANAH 705/7080 Autocoder

3ANAI 7070/7072/7074 Autocoder

3ANAJ 7040/7044 -~ 7090/7094 MAP-FAP
3ANAK System/360 Assembly Language

The second set of dictionaries follows the record 4CHRA (the first pass of phase I of
Flowchart) and consists of:

4CHRB 1401/1440/1460 Autocoder-~SPS
4CHRC 1410/7010 Autocoder

4CHRD 1620/1710 SPS

4CHRE 705/7080 Autocoder

ACHRF 7070/7072/7074 Autocoder
4CHRG 7040/7044 --7090/7094 MAP-FAP
4CHRH System/360 Assembly Language

The third set of dictionaries follows the record 4CHRV (the fifth pass in phase I of
Flowchart) and consists of:

4CHR1 1401/1440/1460 Autocoder--SPS
4CHR2 1410/7010 Autocoder

4CHR3 1620/1710 SPS

4CHR4 705/7080 Autocoder

ACHR5 7070/7072/7074 Autocoder

4CHRG 7040/7074--7090/7094 MAP-FAP
ACHRT System/360 Assembly Language

The Verify dictionaries follow system record 5VERT and consist of:

5VERU 1401/1440/1460 SPS--Autocoder
5VERV 1410/7010 Autocoder

5VERW 705/7080 Autocoder

5VERX 7070/7072/7074 Autocoder

83

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

Analysis Dictionary Format

Analysis dictionary entries consist of a mnemonic operation code and an Analysis code.
The operation code, left-justified, and the Analysis code, right-justified, appear in the
operand field of the DC statements in 1401 collating sequence,

Sample Source Statement:

DC @aDpD__ M@

All dictionary entries are six characters long except 3BANAJ and 3ANAK, which contain
seven characters.

Sample 3ANAJ Statement: Sample 3ANAK Statement:
DC @ ADD __. M@ DC @ ADD__M_@

A ''y'" in the last position of the 3ANAK DC statement indicates that indexing is
permitted with this entry.

Additions or modifications can be made to this source deck by inserting the correction

in the correct collating sequence and reassembling. If the operand field is to be scanned,
care must be taken that the format is compatible with the operand scan rules, which are
described in the Analysis Program description.

Any operation code not found in the dictionary is assumed to be a user macro and is
processed as such.

If the Analysis dictionary is changed, a corresponding change must be made to the
Flowchart Pass 1 Dictionary.

Analysis Codes
The Analysis code may be alphabetic, numeric, or special characters. The Analysis
code T indicates the statement is to be considered transparent -- that is, that neither

the label nor the operands are to be scanned.

Special characters, except for blank, always mean that some exceptional operation is to
be performed, They are as follows:

Character Definition
$ Indicates the beginning of Qualification Mode (for
example, SFX, QUAL)
* Indicates the termination of Qualification (ENDQ)
% Indicates the beginning of a macro definition (for

example, MACRO in 7090 MAP)

Indicates the termination of a macro definition (ENDM)

84

Charaqggg Definition

. Indicates a change from SPS to Autocoder or Autocoder
to SPS in 1401 Autocoder programs (ENT)

s Flags 1401 SPS machine codes L and M.,
For all other codes, the zone portion indicates how to scan the operand, and the numeric

portion references the flag to be assigned to the statement on the flagged listing, as
follows:

Zone Instruction
No zone Do not scan operand.
12 Scan the operand and split off the first field.
11 Scan the operand and do not split off the first field.
Character Description
1 MACRO
2 Input/output
3 Data defining
4 Branch
5 Halt
6 Assembler control
7 (unassigned)
8 (unassigned)
9 Branch in 7070/7072/7074 Autocoder to scan second
operand instead of the first
10 (no flag)
11 (no flag)

Flowchart Pass 1 Dictionary Format
The format of each entry in this set of dictionaries is:

DCW @ PLTNNN @

85

where:

Pis a pass 1 Flowchart processing code. If is used to process specific instructions (or
sets of instructions) during pass 1, The codes used for P are:

Code

0

1

Usage
No pass 1 processing.

If the instruction has exactly one operand, generate a
GOTO flowchart operation. This is used for instruc-
tions such as the 1401/1410 Autocoder H (halt) instruc-
tion, which is either halt or halt and branch.

If the instruction has two operands, generate a GOTO
flowchaxt operation from the first operand. This is
used for 1401/1410 Autocoder instructions such as CS,
which may be clear storage or clear storage and
branch.

Switch operand 1 and operand 2, unless operand 2 is
blank, This is used to regularize certain statements
s0 that the target field of 1401/1410 arithmetic instruc-
tions (for example, A, S, etc.) is in operand 1. This
code also processes chained 1401/1410 arithmetic
statements.

Switch operand 1 and operand 2, This is used on
1401/1410 move instructions to place the target field
in operand 1. This code also processes chained
1401/1410 move operations.

This code processes 1401/1410 SBR instructions to
determine whether they represent a subroutine
entrance.

This code is used to generate a GOTO operation., This
is used for instructions which unconditionally generate
some type of flowchart box followed by a GOTO--for
example, a 7090 TXI instruction which generates a
MODFY hox followed by GOTO.

This code is used for 7040 and 7090 indexable transfer
instructions. If the transfer is indexed, the transfer
is changed to an EXIT type.

This code is used to expand the three-way 7090/7040

jump instructions (for example, CAS) into two DECID
operations.

86

Code Usage

9 This code is used to process the 1401/1440/1460
instructions W, P, R.

S This code is used for the 7080 to switch operand 1 and
operand 3.

T This is used for certain 1401/1410 I/O instructions to

distinguish between reading and writing on the basis of
the d-modifier.

U This is used for 1401/1410 conditional branch instruc-
tions which may be chained, for example, BCE.

where:

L is a code which is used to calculate the length of the
instruction, This code is also used to determine
whether the statement is to be deleted; for example,
data defining instructions are deleted during the first
pass of the Flowchart program,

T ’ is a code which represents the type of SFL operation
to be generated by the instruction. The types are:

Code

0 BLOCK

1 10

2 MODFY

3 PREDF

4 DECID followed by a YES

5 DECID followed by a NO and EXIT
6 DECID followed by a NO and SUBRT
7 DECID followed by a YES or NO
8 START

9 ENTER

S WAIT

T HALT

U EXIT

A% GOTO

87

Code

W JOB
X END
Y SUBRT

NNN is a three-digit comment code number. This number repre-
sents the comment to be generated by pass 5 of the Flowchaxrt
program,

Flowchart Pass 5 Dictionary Format

The third set of dictionaries is used by pass 5 to generate the variable field portion

(cc 21--72) of the SFL card. The comment code which was extracted from the pass 1
dictionaries represents an entry in a pass 5 dictionary. Each entry in a pass 5 dictionary
is a three-character address of the beginning location of a comment skeleton. Comment
skeletons are composed of two types of information: control characters and comment
words. A comment skeleton may begin with either a control character or comment word,
The last character of all comment skeletons must be the control character, blank.

Control Characters. Each control character is a single-digit with wordmark. The con-
trol codes are:

Substitute Assembly Language Sequence Field
Substitute Operand Field 1

Substitute Operand Field 2

Substitute Operand Field 3

Substitute BCD Operation Field

Substitute Special Field 1

Substitute Special Field 2

Substitute Special Field 3

Substitute 7080 Register number

Substitute Special Field 4

Ingert comma after following word or
character

Blank Terminate skeleton

+ Insert immediately the following character
(special characters or numbers)

®©w 00 =1 & O s DD H o

- Backspace the variable field pointer

Note: No blanks, as special characters, can be inserted in a comment skeleton.
The control character, blank, terminates the skeleton. All numbers 0 - 9 and

-special characters (collating sequence up to, but not including, A) are reserved
for control characters.

88

Comment Words. Each word of comment begins with a wordmark. A comment word
contains no blanks. Blanks are inserted automatically by the comment-processing
subroutine.

Special Usage of Comment Code., The three-character comment code for BLOCK gener-
ation may not represent a particular comment skeleton, but rather the way in which the
comment is to be formed and the processing to be performed in pass 5.

If the first character of the comment code is a zero, the three digits represent a true
comment code. If the virst character is not a zero, the digit represents a mode (that is,
a verb) to be entered into the BLOCK,

Character Mode

No mode
Compute Mode
Edit Mode
Move-to Mode
Set Mode
Reset Mode
Zero Mode
Shift Mode
Clear que

R - =L T S T T R

The second character is used to determine whether a storage location is changed by the
instruction.,

Character Mode
0 No storage locations are changed.
1 Operand 1 changed by this instruction.

The third character is used to perform pass 5 processing on certain instructions. For
example, when a 1401 compare instruction is encountered in pass 5, the third character
of the comment code specifies that the operands of the compare instruction are to be
saved in special fields. At the occurrence of the subsequent test and branch instructions
(for example, BH), the saved operands may be printed as part of the comment in the
decision box.,

Verify Dictionary Format
Each dictionary entry is a nine-character literal defined with a DCW statement. The

first three characters are used for the machine operation code key and the last six for
its associated mnemonic,

89

In all dictionaries if a mnemonic code cannot be specifically determined by the three-
character key alone, a general mnemonic is inserted to give an indication of the type of
operation, This general mnemonic is enclosed in asterisks; therefore, it cannot be more
than four characters (three for 1410)., Example: @LBR*I/O*-@.

Individual format variations are described for each record.
5VERU. The machine operation code key is OND, where O is the machine operation code.

N is blank for all operations except those with a d-modifier and one or two operands, for
which it is an A (one) or B (fwo).

D is the d~-modifier if any exists, blank if it does not. Example: @BASBE_ __ _@.
" General
Mnemonic Key
1/0 Input/output operation LBR, LBW, MBR, MBW

A few 1401 operations are tested in VERIFY itself and do not appear in the dictionary.
These are BBd, WBd, U** and K¥* (where ** is variable), which give BCE, BBE, I/0,
and I/0 respectively.

5VERV. The 1410 key has the same format as the 1401, An exception to the standard
format is the d-modifier, which is a word separator (0-5-8 punch), Since the DA System
does not allow word separations in a table, 5-8 punches should be put as the d~modifier
and an asterisk should be placed in the last position of the entry to signal VERIFY that
the d-modifier should be a word separator. This means that the mnemonic code can
have only five characters. Example: @DBgMRNWR*@ .

A few 1410 operations are tested in VERIFY itself and do not appear in the dictionary.
These are BBd, WBd, F** and 2** (Where ** is variable), which give BCE, BBE, CCl
and CC2, respectively.

General
Mnemonic Key
1/0 Input/output operations MBS, MBC, MBR, MBS,
MBW, MBX, LBS, LBC,
LBR, BLS, LBW, LBX, UBA
L Lookup operation TB, TB7

5VERW,. The 705/7080 key is OSU, where O is the machine operation code.

SU is the storage unit associated with the particular mnemonic. If no particular SU is
associated, 00 is placed in these positions. Example: @,04LSB___@.

General Key
Mnemonic
TRA Transfer operation 100, O00
/0 Input/output operation 300, 301

90

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

5VERX., The 7070 key format is SOP, Sis the sign of the operation (+ or =), OP is the
machine operation code, Example: @+23ZA2 _ _@.

General
Mnemonic

B
Q
PC
ES
LN
LF
DC
SC
ASS
Fv
S#
S

Machine Op Code(s)

Branch on *busy +51

Inquiry control +54
Priority +55
Electric switch control +61, 62, 63
Stacking latch set on -61
Stacking latch reset off -62

Data channel control +93, 94, 96, 97
Sign. control -03
Additional storage control +04

Field overflow +41

Shift control +50
Coupled shift control =50

DA SYSTEM RECORD IDENTIFICATION AND FUNCTIONS

ROUTINE
Resident I/0

System. Controller —-
Program Selector

Update

Analysis

RECORD
0SYSR

1CONA

2UPDA

3ANAA
3ANAB

3ANAE
3ANAF
3ANAG
3ANAH
3ANAI

3ANAJ

3ANAK
3ANAQ

FUNCTION
Perform all System I/0

Reads and analyzes the $DAJOB card

Update Program

The type of source statement is deter-
mined, and the DA format is generated

1401/1440/1460 Operation Code Dictionary
1410/7010 Operation Code Dictionary

1620 Operation Code Dictionary

705/7080 Operation Code Dictionary
7070/7072/7074 Operation Code Dictionary

7040/7044/7090/7094 Operation Code
Dictionary

System/360 Operation Code Dictionary
Produces Operation Code Frequency Report
for System/360 source programs

91

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

ROUTINE

Flowchart

RECORD

3ANAR

3ANAU

3ANAV

3ANA9

3ANLA

3ANLB

3ANLC

3ANLD

3ANLE

3ANLF

3ANLG

4CHRA

4CHRB

4CHRC
4CHRD
4CHRE

4CHRF

4CHRG

4CHRH

4CHRS

FUNCTION

For System/360 input, either the Flagged
Listing and an input tape to the Chart
program are produced, or an input tape
with reference cards is produced for 3ANLA

The Operation Code Frequency Report is
produced for languages other than S/360

Performs same functions as SANAR for
languages other than S/360

Phase I cleanup
Phase I of sort
Phase II of sort

The Cross-Reference Report and an input
tape for 3ANLD are produced

Phase I of sort
Phase II of sort

An input tape to the Chart Program is
produced, in addition to a flagged listing
or a flagged listing with operands

Phase II cleanup

Phase I. Pass 1. Segments source program

1401, 1440, 1460 Flowchart Operation
Dictionary

1410, 7010 Flowchart Operation Dictionary
1620 Flowchart Operation Dictionary
705, 7080 Flowchart Operation Dictionary

7070, 7072, 7074 Flowchart Operation
Dictionary

7040, 7044, 7090, 7094 Flowchart
Operation Dictionary

Full 0S/360 Assembly Language Operation
Dictionary

Pass 2. Builds label table from procedural
statements

92

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

ROUTINE

RECORD

4CHRT

4CHRU

4CHRV

4CHR1

4CHR2

4CHR3

4CHRA

4CHR5

4CHR6

4CHR7

4CHTA

4CHTB

4CHTC

4CHTD

4CHTE

4CHTF

4CHTG

4CHTH

4CHTI

4CHTJ

FUNCTION

Pass 3. Expands label table with gener-
ated labels

Pags 4., Derelativizes text using gener-
ated labels

Pags 5. Generates SFL program

1401, 1440, 1460 Flowchart Comment
Dictionary

1410, 7010 Flowchart Comment
Dictionary

1620 Flowchart Comment Dictionary
705, 7080 Flowchart Comment Dictionary

7070, 7072, 7074 Flowchart Comment
Dictionary

7040, 7044, 7090, 7094 Flowchart
Comment Dictionary

Full 0OS/360 Assembly Language
Comment Dictionary

Phase I, Housekeeping Record
Phase II, Pass 1. Scans SFL program
Pags 2, constructs label table

Pass 3, searches label table for connector
operations

Pass 4, flags off-page box entrances
Sorts and prints label table
Pags 5, prints cross-reference list

Pags 6, expands and rearranges chart
records

Pags 7, constructs line tables

Pass 8, generates flowchart

93

ROUTINE RECORD FUNCTION

Verify 5VERA Pass 1, Object program to tape

5VERB SORTS3, pass 1

5VERC SORT3, pass 2

5VERT Pass 3, mnemonic table lookup and
generate report

5VERU 1401, 1440, 1460 Mnemonic Operation
Code Dictionary

5VERV 1410 Mnemonic Operation Code
Dictionary

5VERW 705/7080 Mnemonic Operation Code
Dictionary

5VERX 7070, 7072, 7074 Mnemonic Operation

Code Dictionary

System Controller 6CONA System maintenance routine

APPENDIX TO PROGRAMMER'S INFORMATION

Sort Program

The DA Sort Program utilizes three tape units and is based on the Fibonacci number
series principle. In the Fibonacci series, each entry is equal to the sum of the previous
two entries (0, 1, 1, 2, 3, 5, 8, 13, 21, etc.). By placing strings on the input units so
that their numbers are adjacent entries in this series, the number of times a record
must be passed through during merging is held to a minimum. This is superior to other
systems particularly when there are fewer than four I/O units available during merging.
The DA Sort Program is used twice in the Analysis Program and once in the Verify
Program; it is executed in two phases.

In phase I, the unblocked input file is read in, internally sorted using the insertion tech-
nique, blocked maximally for the storage size of the object machine, and written onto the
two available output units so that the numbers of strings on the two units are adjacent
entries in the Fibonacci series.

In phase II, the two input units are merged onto the output unit. In each merge pass, the
number of strings on the input unit with the fewer number of strings (the secondary input)
is merged with the same number from the input unit with the larger number of strings
(the primary input). At the end of each pass the function of each unit is changed so that
for the next pass the primary becomes the secondary, the secondary becomes the output,
and the output becomes the primary.

94

This process continues until there is only one string on each of the inputs. During the
last pass, deblocking is performed so that the final string is unblocked.

Phase I

Phase I is performed in two sections. In the first section, the first input record is read
and the record length computed. The capacity of storage, in records, is calculated as
are the addresses of the three internal storage blocks or buckets. The first record is
moved to the first bucket, and all initialization with the computed addresses is performed,
The first section is then cleared from storage and section two is begun.

In section two, index register 2 is used to keep track of the low-order position of the last
full bucket. Index register 3 indicates the low order of the control field of that bucket.

As each input record is read, its sort key is compared with the key of the record in the
last full bucket, If the input record is high, it is put into the bucket after the last full one.
This results in a low-to-high array. If the input is low, the index registers are decre-
mented by the record length so that comparing is done against the next to last full bucket.
This decrementing and comparing is continued until the input compares high or until the
record in the first bucket has been compared, At this time, all records higher than the
input are shifted to the right, and the input record is inserted.

When the available storage capacity has been filled, the sequenced records are written
onto an output tape in three blocks. Each time a block of records is written, the records
checked to see whether the output produces a sequence break. If it does, the number of
sequence breaks on that unit is checked against the number required to maintain the
Fibonacci number series. If the number required has been written, the output goes onto
the other tape unit.

This process of internal sorting, blocking and distributing the strings is continued until
the end of file is sensed on the input unit. The number of strings on the output unit being
accessed is then checked for number series conformity. If additional strings are needed,
they are simulated by writing a record with all 9s in the key and decrementing each
successive key until the proper numbers have been written. If all of the three block
areas are not full, padding records of all 9s in the key are written in core until the block
being padded is full. This block and any that precede it are then written. All tapes are
rewound and Phase Il is read in.

Phase II

Phase II of the sort is also executed in two sections. In the first section, the addresses
that vary according to record length are computed and inserted in instructions in the
second section. Upon the basis of the number of strings on each tape, the primary input,
secondary input, and output units for the first merge pass are determined.

In section two, the first section is cleared from storage, the I/O areas are initialized,
and merging begins. This is done by reading one record each from the primary and
secondary units. These records are compared and the higher is moved to the output area.
The file from which that record was taken is read again until a sequence break on that file
occurs. When this happens, the other file is read and put out until a sequence break.

The number of breaks that have occurred on each input file is compared with the number
of strings on the secondary input. If not equal, the process is repeated. Whenthe number

95

is equal, a mexge pass has been completed. The output tape is tapemarked, the output
and secondary input are rewound, the sequence counts are reinitialized so that the old
primary becomes the new secondary, etc., and the next merge pass begins.

At the beginning of each merge pass, the sequence counts are compared with 1 and 0.
When the primary and secondary are both equal to one, the final merge pass is about to
begin. When this condition is recognized, the deblocking and pad record deletion rou-
tines are initialized so that the final output will be unblocked.

At the beginning of the final merge pass of an Analysis sort, an overlay is called in
which permits report printing simultaneously with deblocking and pad record deletion,

Symbolic Flowchart Program

The flowchart generated by the Symbolic Flowchart Program is a 10 x 3 matrix of hoxes
printed on two consecutive pages of 1403 standard printer paper arranged in three col-
umns: A, B, and C. Starting at the top, the boxes are sequenced vertically A0 through
A9, BO through B9, and CO through C9. The Flowcharter generates connecting lines
between boxes and on-page and off-page connectors.

Before the output matrix is printed, the Flowcharter prints diagnostics, a label table,
and a cross-reference label table., In addition, the user may, at his option, request the
Symbolic Flowchart Language program to be printed.

Modes of Operation

There are two distinet processing modes of the Symbolic Flowchart Program: chart
mode and commentary mode. The chart mode processes all statements which produce
flowchart boxes or connectors. The commentary mode processes narrative statements.
The Symbolic Flowchart Program determines the mode in which it is operating by
examining the format of each input card image.

Symbolic Flowchart Language Input
The coding form used in writing Symbolic Flowchart Language may be the same form
used by the 1400 Series Autocoders. Any similar form may be used -- for example,
7070 or 7080 coding forms.
Chart Mode Card Foxrmat

SEQUENCE FIELD (cc 1--5)

This field is used for input sequencing. Any characters may be used which belong to the
1401 character set except a groupmark and a tapemark.

LABEL FIELD (cc 6--15)

Symbolic labels may be from one to ten characters in length., A comma, tapemark,
groupmark or embedded blank must not be used within a label. In addition, if the first
character is a lozenge, the label is used to produce the desired connection between two
blocks; but the lozenge label is not printed on the flowchart as a label of that block. If a

96

label is prefaced by a blank (indented), the label is printed on the flowchart as a label of
that block; but such a label cannot be used as the operand of a logical connector opera-
tion,

OPERATION FIELD (cc 16--20)

This field describes the type of flowchart box to be drawn or specifies a logical connection
to some other box.

OPERAND FIELD (cc 21--72)

This field containg either comments to be printed inside a flowchart box or, in the case of
a logical connector operation, a label. In the latter case, the label must begin in ce 21.

Columng 73--80
These columns are ignored by the Symbolic Flowchart Program.,
Commentary Mode Card Format

The sequence field is the smae as in chart mode card format. By placing an asterisk in
cc 6, the user indicates to the program that the information in cc 16--72 of this input
card is to be printed as commentary information. Information contained in cc 1--15 is
ignored. The program, when switching to commentary mode, ejects to a new page before
printing.

Control Operations

JOB The JOB card must be the first card of a
Symbolic Flowchart Program. The oper-
and is used as a portion of the page head-
ing.

SKIP Used only in the chart mode. The oper—
and causes the skipping of a number of
sequential chaxt box locations equivalent
to the value of the operand. A SKIP oper-
ation occurring following the chart loca-
tion A6 with an operand of 6 causes the
skipping of chart locations A7, A8, A9,
B0, Bl, and B2. The next flowchart box
is placed in B3. The skipped chart loca-
tions remain blank.

EJECT Can be used in either the chart mode or
commentary mode. It has the effect of
immediately terminating the page in
process and skipping to a new page. The

SPACE

END

Chart Mode Operations

BLOCK

MODFY

PREDF

DECID

operand, if used, controls page number-
ing, EJECT has three possible operand
configurations:

a. The normal configurationis a blank
operand. In this case, the page
counter is incremented by one and
the next sequential page number is
assigned to the next page on which
processing commences.

b. If the operand is +nnnn, the nu-
meric value, nnnn, is added to the
page counter in place of the normal
increment of one, and the new total
value is the page number of the
next page.

C. If the operand is nnnn, the page
counter is reset to this numexic
value. It becomes the page number
of the next page. Only a numeric
value less than or equal to 9999 or
a blank is a legal operand for the
EJECT operation.

Can be used only in the commentary mode.
The operand field, if any, is a number
specifying the number of lines to be
skipped.

The END card must be the last card of a
Symbolic Flowchart Program.

Generates a processing box. The oper-
and field is printed as comments in the
flowchart box.

Generates a program modification box,
The operand field is printed as comments
inside the box.,

Generates a predefined process box. The
operand field is printed as comments in-
side the box.

Generates a decision box. The operand
field is printed as comments inside the
box.

START Generate a terminal box. The operation

ENTER code is printed inside the box, along with
BEGIN the operand field, if any. The HALT,
WAIT STOP, and EXIT operations cause a break
HALT in logic.

STOP

EXIT

SUBRT Generates a striped processing box. The

label of the referenced subroutine is the
first part of the operand field. The label
must begin in cc 21 and be followed by a
comma. This label and its page and chaxt
location are printed above the horizontal
stripe in the flowchart box, The com-
ments after the comma are printed below
the horizontal stripe.

10 Generates an input/output flowchart box.
The operand field is printed as comments
inside the box.

NOTE QOccupies one chart location. The operand
comments are printed without the circum-
scribed flowchart box lines.

Logical Connector Operations

A vertical line, representing the normal logic flow, connects sequential flowchart boxes,
The sequential logic flow may be altered through the use of logical connector operations.
The operand field of all connector operations is a label beginning in cc 21, The label
indicates a connection is to be made between nonsequential blocks, Wherever possible,
the processor generates connector lines between boxes on the same flowchart page.
Horizontal line connections may be made from column A to column B, column B to
column C, and column A to column C. In the latter case, this can be accomplished if
column. B is a blank chart location created by a SKIP operation. Connector lines are
never generated upward, Rather, an on-page connector symbol is generated to the right
of the box. If on-page and off-page entrances are being made to any box, the appropriate
on-page or off-page connector symbol is appended to the left of the box.

A decision box causes two logical connector lines to be drawn; one exits to the right,

the other exits downward. A GOTO operation always generates a right exit from a flow-
chart box. If the processor is unable to draw a connector line to the label in the operand
field of a YES, NO, or GOTO operation, an on-page or off-page connector symbol is
appended to the right of the flowchart box,

GOTO The GOTO operation generates a connector
to the label specified in the operand. The
GOTO operation indicates a break in the
normal logic flow of a program,

99

YES The YES operation generates a right exit
from the decision box to the label speci-
fied in the operand. The downward exit
from the decision box is implied to be the
NO exit.

NO The NO operation generates a right exit
from the decision box to the label speci-
fied in the operand, The downward exit
from the decision box is implied to be
the YES exit.

Symbolic Flowchart Language Restrictions

1,

2,

3.

4.

5,

6.

7o

8.

Every DECID operation must be followed immediately by a single YES or NO opera-
tion; and, conversely, every YES or NO operation must be preceded by a DECID
operation, If the second exit from a DECID box causes a break in logic, a GOTO
operation should be used.,

A GOTO operation may not occur after a logic break operation; for example, two
consecutive GOTO operations may not be used.

The operation code of a terminal flowchart box is printed inside the box, The oper-
and, if any, must be 13 characters or less, including blanks.,

The operand fields of the BLOCK, PREDF, NOTE, MODFY, IO, and DECID opera~-
tions must conform to the following format: the maximum length allowable for any
single word in the comment operand is 13 consecutive nonblank characters.

The YES, NO, NOTE, SKIP, EJECT, SPACE, JOB, END, and GOTO operations
should not contain a label in the label field.

Commentary cards may appear only after a break in the program logic flow, An
END card or an EJECT card may appear only after a commentary card or a break in
the program logic flow. The HALT, STOP, EXIT, and GOTO operations cause a
break in the program logic flow.

The SUBRT operation has a label as its first operand beginning in cc 21 and termi-
nating by a comma. This label is always printed above the horizontal stripe in the
flowchart box, The operand field comments following the comma are printed below
the horizontal stripe. The maximum length allowable for any single word in the
operand comments field is 13 consecutive nonblank characters. The maximum num-
ber of allowable comment characters is 24,

Skipping is allowed only in the current flowchart column unless the SKIP operation
follows a logic break. Skipping is not allowed across a flowchart page.

100

FLOWCHART BOXES AND CONNECTOR ARROWS GENERATED BY THE

SYMBOLIC FLOWCHART PROGRAM

OPERATION

BLOCK

MODFY

PREDF

DECID

START, BEGIN
ENTER, WAIT
HALT, STOP, EXIT

SUBRT

IO

CONNECTOR

CONNECTOR

BOX GENERATED

o]] JOUL

101

STANDARD BOX NAME

Processing

Program
Modification

Predefined
Process

Decision

Terminal

Striped Processing

Input/Output

On-Page Connector

Off-Page Connector

.
SYCRAN . .
.
. »
. nL
. AC wn 1-IS CP A feasevennane
. YES/NG .
EXLE]
o
sencusassuunnns GETe
. wees
® SET YES/NC « e
&« CCADITICN e...ns §9 @
HES N . 64w
H
cesccccsensencsaacacas
o
« .
. .
.
.
- NCIE CR sssecss
. CPERAT
.
.
.
.
o
. .
. .
- .
ng
. LABEL IN 6-11 ®essassansel
CF INPUE *
« .
. .
. .
. YES
a
BEssRERescRREERaRRERE
L] PRINT -LABEL »
IAVALIC EN
* NONC OR NGTE- ®
C ATICN
Y
eOieesecossnacccnncasnse
L]
.
- .
.
. Is It A *YES
cc}é
s CPERATICN #
.
. .
. a
s ANC
o
.
.
.
. LA
. CPERAT
. Gglc
#FCRCEC
.
.
.
FVRST o
csenssasasacens
nan . "
. . ® MCVE REST CFe
* A8 e, .08 INPLT .
. - #CUTPLT EXCEPTe
- CPERAND
AeneseRERNNNN
a
. .
H . ASWAS
v IS THIS A « “se
. TERPEINAL "YESe
. SYMBCL a0e 82w
. OPERATIGN, .
. COCE 6 = 3
. .
. a
« NG . .
sseeccccaseln BOW
. s
I

Ceesesessssesesaseas it aasssttaea et ens

s

» . -
% g0sDw
. .

FLOWCHART OUTPUT MATRIX

s
«

ASWAS

arsunnseanianan

ver .

- - LUSC_ TEXT AS »

M

CENTERING «

.

.
TR TYTTRYITT Y

D T

WCCLT

esasnnsensusEs

anee *WCHRT 72 B4s
- #eivnesossansed
« CC #,,08 WRITE CHART @
3 . . CATA .
anan .
.

sEsssnudsnaunen

- .
* LP CCANNECTORe

s CCURT, FCRCE®
« UAST Ge TC Aw
.

.
EnsusunmnienNREN

. .
. “
.

. 0
- .
YES

o
REFER TC ®essanansunanns
PROGRAM LIST .
FCR FLCAT AND . EXIT
CENTER .
RCUTIENES -
.
LCAYN . . NCFLT
. . casvsseunvensne
. . ene . .
- *YES - - - L3
LASY OP A Resessnscsese * C6 %,,08 RESET ALL &
YES/NG . I . EXLTS .
. . . seen . .
. . . sesesannnananns
. .
- a
. “« .
: . °
. . .
.
- NCNE
. CPERATICH
.
. O
. .
* KO
o
o - .
ssserenansannse . o
. . .
VUIYEUE:E!}SND. * TERMINA,
. . L
ExIT2 . - SYNBOL
. . .
ase e - -
. .
« YES
Hecsetcetancanacnns .
. a
o . e
seessnnasuve wCaLl . -
: MCDIFY CHART " ¢ RANE
Ty
PR AN TO eoe Ces . & 8555
: GG T0 GETZ . CPERATION
. “ne * * . -

102

. * N
« END CF _CHART
. FAGE .
. «

C
®ieraasccaaas

P R T TR R R

OPERATOR'S GUIDE

PROGRAM SETUP

DA System Operation

The following instructions are necessary for operation of the Documentation Aids System:

1.

2,

3.

10.

Place the DA System master tape on tape unit 1
If tape input (assembly language or SFL), place input tape on tape unit 2

Ready tape units 2, 3, and 4

. Place input card deck on the card reader

Turn on I/0 CHECK STOP and sense switch A

Press CHECK RESET and START RESET

. Press TAPE LOAD

Press START

. Follow operator instructions on printer

A successful run will print END OF RUN and halt with the A and B address registers
containing 999.

DA System Maintenance

The following instructions are necessary for the DA System Maintenance run:

1.

2.

Place the DA System master tape on tape unit 1

Place work tape on tape unit 2 (this will be the new system tape) and tape unit 3

. Place input card deck in the card reader

Turn on I/O CHECK STOP and sense switch A
Press CHECK RESET and START RESET
Press TAPE LOAD

Press START

. A successful maintenance run will print END OF JOB and halt with the A and B ad-

dress registers containing 999.

. File-protect the tape from unit 2 and label it "DA System Tape'.

103

CONSOLE OPERATING INSTRUCTIONS

Each DA System run, whether system maintenance or documentation processing, re-
quires a $DAJOB card as the first card of the card input file, and a $DAEND card as the
last.

Several runs may be stacked consecutively in the card reader for continuous batch proc-
essing. Each run may require the loading or unloading of tape reels. Instructions to
the operator for tape handling will appear on the printer.

HALTS AND MESSAGE LIST

Operator Messages

The following pages indicate all operator messages and instructions. When a haltoccurs,
the number appears in both the A and B registers.

CONTROLLER OPERATOR MESSAGES

Record in Which
Halt and/or
Halt Message Message Occurs Explanation

7 None All records A system program has
issued a call for a pro-
gram that has beenpassed
or is not on the tape.

This is a protected halt.
System error.

1 None All records I/0O routine has attempted
to read a tape record ten
times., The SELECT
light will be lit on the
tape unit in which the
error occurred. Press-
ing START will cause
the read to be attempted
an additional ten times.
Replace bad tape and re-

start run.

999 END OF RUN 1CONA Completion of DA System
run

999 END OF JOB 6CONA Completion of DA System
maintenance run

6 ERROR. TAPE 3 TOO SHORT. 6CONA Reel capacity exceeded

REPLACE IT AND RESTART.
104

Halt

None

None

None

UPDATE OPERATOR MESSAGES

Message

ERROR. TAPE 2 TOO SHORT.
REPLACE IT AND RESTART.

ERROR. TAPE 3 TOO SHORT.
MOUNT NEW TAPE. PRESS
START.

DISMOUNT MASTER TAPE
3. MOUNT SCRATCH.

DISMOUNT MASTER TAPE
2. MOUNT SCRATCH.

ANALYSIS OPERATOR MESSAGES

Record in Which
Halt and/or
Message Occurs

2UPDA

2UPDA

2UPDA

2UPDA

ERROR. TAPE 4 TOO SHORT.
MOUNT NEW TAPE. PRESS
START.

DISMOUNT MASTER TAPE
3. MOUNT SCRATCH.

3ANAA

3ANAA

105

Explanation

The computer has sensed
an end-or-reel condition
on tape 2 during the
source card-to-tape op-
eration, Mount a full
reel of tape and restart.

While performing the
maintenance routine, an
end-of-reel condition was
encountered.

Self-explanatory

Self-explanatory

Reel capacity exceeded

If the input is to be
saved, tape unit 3 will
unload and this message
will be printed.

FLOWCHART OPERATOR MESSAGES

Record in Which

Halt and/or
Halt Message Message Occurs Explanation
6 ERROR. TAPE "N" TOO 4CHRA Reel capacity exceeded.
SHORT. REPLACE IT AND 4CHRU N will be replaced with
RESTART. 4CHRV the corresponding tape
unit number,
444 SET UP PRINTER FOR 8 4CHTA Use carriage control tape
LINES/INCH. HIT START with a punch in channel 1
to allow for 88 lines per
page.
None DISMOUNT MASTER TAPE 3. 4CHTB Self-explanatory
MOUNT SCRATCH,
444 SET UP PRINTER FOR 6 4CHTB Remount normal carriage
LINES/INCH. HIT START. control tape, May not
be required if running
stacked CHART jobs.
6 ERROR. TAPE 2 TOO SHORT. 5VERA Reel capacity exceeded

REPLACE IT AND RESTART.

Diagnostic Error Messages

The following pages indicate the DA System diagnostic messages.

Message

ERROR. ' $DAJOB CARD
PUNCHED INCOR-
RECTLY. RUN TERMI-
NATED.

ERROR. MACHINE AND
LANGUAGE COMBO.,
INVALID. RUN TERMI-
NATED.,

CONTROLLER DIAGNOSTICS

Record in Which
Message Occurs

1CONA

1CONA

106

Explanation

The operands in the $DAJOB card
are incorrect and the next card is
not a $SYSTEM. The user must
correct the card and rerun.

The assembly language specified
in the $DAJOB card may not be
used with the machine specified.
The user must correct the card
and rerun.

Record in Which

Message Message Occurs Explanation
CORRECT INDICATED 6CONA During the first phase, a listing of
ERRORS, ' the input deck is printed with any

error messages. If any errors do
occur, the message will be printed
at the end. Error messages which
may occur are:

1. ERROR--ADDRESS IN COLS.
10 - 18 TOO LOW.

2. ERROR~--I.D. IN COLS. 76 -
80 INCORRECT.

3. ERROR--LOAD INSTRUC-
TIONS NOT CORRECT.

4. ERROR--ADDRESSES IN
COLS. 10 - 18 ILLLEGAL,

5., ERROR--HIGH ADDRESS
LOWER THAN LOW AD-
DRESS.

6. ERROR--OUT OF SEQUENCE
BYI.D. IN 76 - 80.

7. ERROR--ADDRESS IN COLS.
10 - 18 TOO HIGH.

8. ERROR--NO $ IN COL. 1,

9. ERROR--PROGRAM NOT ON
SYSTEM TAPE.

10. ERROR--GROUPMARK
WORDMARK LOADED IN
XXXX.

11. ERROR--WORD SEPARATOR
LOADED IN XXXX.

12, ERROR--NOT A RECOG-
NIZABLE $ CONTROL CARD,

13. ERROR~-LOADING ABOVE
$ADD HIGH ADDRESS.

107

Record in Which
Message Message Occurs Explanation

14. ERROR--LOADING BELOW
$ADD LOW ADDRESS.

UPDATE DIAGNOSTICS

ERROR., BAD DA SYS- 2UPDA This message may be caused by
TEM CONTROL CARD incorrect spelling, incorrect for-
OR INVALID CHARACTER mat, or an invalid character in an
IN COL. 1. RUN TERMI- input source language statement.
NATED.

ERROR. OUT-OF- 2UPDA Out-of-sequence conditions are
SEQUENCE CONDITION. caused by any of the following:

RUN TERMINATED,
1. The second parameter of the
$DELETE card is less than
the first parameter.

2. The first parameter of the
$DELETE card is not greater
than the sequence number of
the last change card.

3. The sequence number of the
first change card following
the $DELETE card is not
equal to or greater than the
sequence number of the last
change card.

4. The first parameter sequence
number specified in the de~
lete control card is not found
in the source tape input file.

5. The second parameter se-
quence number specified in
the delete control card is
not found in the source tape
input file,

108

Messa_gg

SEQ ERR

ERROR. ILLEGAL
OPTION. RUN TERMI-
NATED.

ERROR. ILLEGAL CON-
TROL CARD, RUN
TERMINATED,

Record in Which
Message Occurs

2UPDA

Explanation

6. The sequence number found
in the change input file equals
a sequence number in the
source input file. In this
case, the old sequence num-
ber should have been deleted
before an addition was
attempted.

A sequence error has been detected
by the program. The out-of-
sequence condition is flagged and
the run continues.

ANALYSIS DIAGNOSTICS

3ANAA

3ANA9
3ANLG

Optional reports requested on the
$ANALYSIS control card cause this
halt if options CROSS, OPERAND,
and COUNT are punched incorrectly.

The $ control card is punched
incorrectly.

FLOWCHART DIAGNOSTICS

ERROR., CONTROL CARD
PARAMETERS UNDER~
SCORED WITH A 1 ARE IN
ERROR.

ERROR., END OF FILE
ENCOUNTERED WHILE
SEARCHING FOR (label).

ERROR. SEGMENT (seg-
ment limits) CAUSES LABEL
TABLE OVERFLOW,
PLEASE RESEGMENT.

RUN TERMINATED, INPUT
ERRORS.

4CHRA

4CHRA

4CHRS
4CHRT

4CHTB

109

Self-explanatory

Segment card label not found

Table capacity exceeded during
Phase I

Violation of Flowchart rules (see
"Application Description')

Message

INVALID EJECT
OPERAND.

SPACE OPERATION
OVERFLOWS PAGE.,

NO SPACE OPERAND,

LABEL NOT PERMITTED.

COMMENTS IN TERMINAL
BOX TRUNCATED.

INVALID OPERAND

INVALID OP

BOX COMMENTS
TRUNCATED.

BOX COMMENTS NOT
CENTERED.

INVALID PROGRAM LOGIC.

INVALID GOTO LOGIC

INVALID DECID SEQUENCE,

END CARD MISSING, RUN
TERMINATED.

(label) CAUSES LABEL
TABLE OVERFLOW.

(label) IS NOT DEFINED.

Record in Which
Message Occurs

4CHTB

4CHTB

4CHTB

4CHTB

4CHTB

4CHTB

4CHTB

4CHTB

4CHTB

4CHTB

4CHTB

4CHTB

4CHTB

4CHTC

4CHTD

110

Explanation

Violation of Flowchart rules (see
"Application Description')

Violation of Flowchart rules (see
"Application Description')

Violation of Flowchart rules (see
"Application Description')

Violation of Flowchart rules (see
"Application Description')

Violation of Flowchart rules (see
"Application Description')

Violation of Flowchart rules (see
"Application Description')

Violation of Flowchart rules (see
""Application Description')

Violation of Flowchart rules (see
""Application Description')

Violation of Flowchart rules (see
""Application Description')

Violation of Flowchart rules (see
"Application Description')

Violation of Flowchart rules (see
"Application Description')

Violation of Flowchart rules (see
"Application Description')

END-OF-FILE encountered before
END card.

Table capacity exceeded during
Phase II.

The label (in brackets) has not
been defined.

Message

(label) IS AN UNREF
LABEL.

MULTIPLY DEFINED.

ERROR. $VERIFY CARD
OPTION PUNCHED IN-
CORRECTLY. RUN
TERMINATED,

ERROR. MACHINE
SPECIFIED ON $DAJOB
CARD IS INVALID, RUN
TERMINATED.

Record in Which
Message Occurs

4CHTE

ACHTF

5VERA

5VERA

111

Explanation

The label (in brackets) has not been
referenced.

An identical label has been assigned
more than once in the same pro-
gram.

Incorrect spelling and invalid

language combination are the most
frequent errors.

Self-explanatory

STORAGE MAPS

Program Selector

001

801

1501

1901

8000

RESIDENT CONTROLLER

1 CONA PROGRAM

OPERAND LOOKUP TABLE

112

Resident System Controller

101

201

301

401

501

601

701

801

1001

8000

CARD READ AREA SWITCHES X REG'S.
CARD PUNCH AREA HEADER AREA
PRINT AREA
UNUSED
SYSTEM LINKAGE ROUTINE
TAPE I/O ROUTINE
U.R. I/O | SORT PARAM. UNUSED

ADDITIONAL UNIT RECORD I/O ROUTINES

CARD BUILD ROUTINE
(OVERLAID)

UNUSED STORAGE

113

Update 2UPDA

SYSTEM CONTROLLER

800

UPDATE MAIN PROGRAM

1710

UPDATE SUBROUTINES

2910

UPDATE DATA AREA

3650

CHANGE CARD BLOCK AREA

7720

UNUSED STORAGE

8000

114

Analysis--Phase I

801

3500

4000

SYSTEM CONTROLLER

Pass 1 Pass 2 Pass 3
3ANAA 3ANAU S3ANAV
3ANA9
Tally Area
I/O Area
Y R
V.
Operation Table Operation Table
3ANAE
3ANAF
SANAG
3ANAH
3ANAI
3ANAJ
I/O Area

115

Storage Map of Analysis--Phase II

801

2500

8000

SYSTEM CONTROLLER

Pass 1 Pass 2 Pass 3 Pass 4
3ANLA SANLB 3ANLC 3ANLD 3SANLE 3ANLF
' 3ANLG
Sort Sort Sort Sort
PAss 1 Pass 2 Pass 1 Pass 2
I/0 Area I/O Area
1/0 1/0 // 1/0 1/0 /
Area Area Area Area

/

/

116

Flowcharter--Phase I

001

801

4000

5000

8000

System Controller

117

1/0 /0 /0 1/0 1/0
Area Area Area Area Area
Pass 1 Pass 2 Pass 3 Pass 4 Pass b
Program Program Program Program Program
4CHRA 4CHRS 4CHRT 4CHRU 4CHRV
/7777777777777 777777777
[LLLLLLLY LN LS
17777777777
(////1111117
/7]
(/111111 /4
Operation Label Label Label
Dictionaries Dictionary Dictionary Dictionaries
4CHRB \ /
4CHRC Comment
ACHRD \/ Dictionaries
4CHRE Uses core 4CHRI1
4CHRF above 8000 4CHR2
4CHRG if available 4CHR3
4CHR4
4CHR5
4CHR®6
Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

Flowcharter--Phase II

801

1700

8000

System Controller
1/0 1/0 1/0 I/0 I/O_
Area Area Area Area Area
Pass1 | Pass2 | Pass 3 | Pass4 | Pass5 /0 1/0 1/0
Program |Program [Program | Program |Program Area Area Area
4CHTA | 4CHTC | 4CHTD | 4CHTE | 4CHTF
4CHTB 4CHTG
Pass 6 Line Pass 8
Program | Table [Program
4CHTH 4CHTJ
Pass 7
Program
4CHTI
Label Table Area
Uses core above 8000
if available
Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6 Pass 7 Pass 8

118

Verify

800

2000

3000

4000

5000

6000

7000

8000

SYSTEM CONTROLLER

/1

ERROR
MESSAGES AND
RETURN TO
CONTROLLER

Pass 1 Pass 2 Pass 3
5VERA 5VERB 5VERC 5VERT
Sort Sort
Program Program
pass 1 pass 2 // // /
TABLE
1/0 Area I/0 Area 5VERU(1401)

or 5VERV(1410)
or 5VERW(705/80)
or 5VERX(7070)

LITERALS FOR
5VERT

119

System Maintenance

6 CONA

SWITCHES AND

CARD AND TAPE I/O AREA CONSTANTS

1 CONA - PHASE II J—

401 RESIDENT CONTROLLER

801
1 CONA - PHASE II

PHASE I HOLD AREA

CARD BUILD ROUTINE

TAPE COPY AREA

5500

RESTART PROCEDURES

If RESTART is indicated, it must be done from the beginning of the run.

If a significant amount of output has been produced, much of it, if not all, is probably
valid. All tapes should be labeled and output returned to the programmer/analyst for

review. By deleting and/or changing DA System control cards, rerun time can be held
to a minimum.

120

BIBLIOGRAPHY

Conversion Aids: Documentation Aids (C20-1612), Kingston, New York, 1964.

121

IBM Technical Newsletter Re: Form No. H20-0177-0

This Newsletter No. N20-0047-0

Date November 15, 1965

Previous Newsletter Nos. ~ None

CHANGES AND ADDITIONS TO PROGRAM REFERENCE MANUAL
FOR DOCUMENTATION AIDS SYSTEM

The attached pages should be inserted into existing copies of H20-0177-0, and the
corresponding original pages should be removed and destroyed. Text changes are
indicated by a vertical line in the left margin.

Replacement pages are as follows:

Cover
1- 2
5- 6

13 - 14

17
17A - 18
31
31A - 32

33 - 50

77 - 178

83 - 84

91 - 94

In addition, the following changes should be made by hand:

p. 4 Add "360" at end of two columns of machine numbers.

p. 10 Change "(FAP/MAP)" to "(FAP/MAP/BAL/FAL)".

p. 25 After "7010" add "or S/360 Model 30"

p. 97 In middle of page, change '"smae' to '"same"

p. 98 "Chart Mode Operations'' should not be underlined.

p. 105 TUnder "SBANAA' add "3BANAB". (This occurs in two places.)

p. 109 In middle of page, under "3ANAA'" add '""SANAB'"; under "3ANLG' add "3ANAR''.

p. 115 TUnder "3ANAA'" add "or SANAB'"; after '""SANAU" add "or 3ANAQ'; under
"3ANAI9" add "or 3ANAR'"; under 3ANAJ" add "3ANAK",

p. 117 Under "4CHRG'" add "4CHRH"; under '"4CHR6'" add "4CHRT7'".

IBM Corporation, Technical Publications Dept., 112 E. Post Road, White Plains, N.Y. 10601

Printed in U.S.A. N20-0047-0 (H20-0177-0)

H20-0177-0

BN

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York 10601

>

V'S °n Ut pejurg

P

o

'0-£L10-02H

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	017a
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	031a
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	_1
	xBack

