
IBM 1401 DATA PROCESSING SYSTEM BULLETIN

AUTOCODER SPECIFICATIONS

Applied Program No. 1401-AU-037

This edition, J24-1434-2, is a major revision and obsoletes both
J24-1434-1 and Technical Newsletter N24-0022.

Autocoder is an advanced symbolic programming sys­
tem for the IBM 1401 Data Processing System. It sup­
plements and extends, but does not replace, the 1401
Symbolic Programming System, SPS.

A more powerful language, the IBM 1401 Autocoder
includes macro-instructions, provides a free-form cod­
ing sheet for greater programming flexibility, and re­
duces card handling by using magnetic tape for pro­
gram manipulation during assembly. The Autocoder
processor can assemble programs designed to operate
on IBM 1401 systems with a maximum storage capacity
of 16,000 positions.

With Autocoder, the user can provide library rou­
tines for operations that are common to many source
programs. These routines are extracted from the li­
brary and tailored automatically by the processor to
satisfy particular requirements outlined in the source
program by the programmer. ..

© 1961 by International Business Machines Corporation

Machine Requirements
The Autocoder processor can assemble programs for
all IB~f 1401 systems. However, the machine used to
assemble a program written in Autocoder language
must have at least:

4,000 positions of core storage
FOUR IBM 729 II, 729 IV or 7330 :Magnetic Tape Units
(NOTE: A fifth magnetic tape unit can be used for
delayed multiple program output.)
IBM 1403 Printer, Model 2
IBM 1402 Card Read-Punch
Advanced Programming Features
High-Low-Equal Compare Feature
Sense Switches (Not required for original assembly
from a source program card deck, but necessary for
all other Autocoder operations.)

This bulletin contains the language specifications for
the IBM 1401 Autocoder. The system card deck contain­
ing the processor itself, a listing of the processor pro­
gram, and operating instructions for program assembly
are available from the IBM Program Library.

Address comments regarding this publication to IBM Product Publications, Endicott New York

Programming with Autocoder
The IBM 1401 Autocoder is divided into two major
categories - the symbolic language used by the pro­
grammer, and the processor program that translates
this symbolic language into actual machine language
and assembles the object program automatically.

Before the programmer begins to code his program
in symbolic language, he draws a block diagram of the
procedure the program must take to accomplish a de­
sired end result. From this block diagram he must
determine what constants and work areas are needed
and define them. Constants are fixed data, such as a
standard FICA limit of $4800 for tax calculation, and
work areas are places within core storage where data
can be manipulated, such as an input and output area,
accumulator fields, etc. Then he writes the instructions
for the program. The IBM 1401 Autocoder permits the
programmer to control the processor program by using
special commands.

IB"1 Program ________ _

These programming procedures can be divided into
four major categories:

1. Declarative operations

2. Imperative operations

3. Macro operations

4. Control operations

The particular information needed by the processor
to perform these operations is written by the pro­
grammer on a special coding sheet.

Coding Sheet
The 1401/1410 Autocoder coding sheet (Figure 1) is
free-form, (the operand portion of each line is not
subdivided into fields) thus allowing the programmer
greater coding flexibility. The SPS coding sheet is
fixed-form (the operand portion of each line is divided
into specific fields).

,.;nted 1ft U.S.A.

Programmed by'---___ _ 1401i1410 AUTOCODER CODiNG SHEEi
Identification ' ,

76 IIU

Poge NO.yt of __
Oat e

3
Line

S.
Label Is~rati:i21 OPERAND

25 ~o ~5 40 45 50 55 110 lIS 70

o 1 :
02 !
o ~ !
04 : .
05 · :
06 :
07 :
08 :
O' :
10

I

II
I

• I

1 2 · :
15

I

·
14 · : ·
1 5 : · ·
1 6

I · ·
1 7 : ·
1 8 :
I. : . ·
20 · : · · ,. ·

I
2 I . . .
2 Z : · i I

Z ~
I · I . .

Z 4 · : · · 1 i

Z 5 I
I

I --'-
I · . I

I
.L.LJ. j j I I I I I I , • 1 1 .l ... L L

· :
I

I I
I ·

Figure 1. IBM 1401/1410 Autocoder Coding Sheet

2

DECLARATIVE OPERATIONS

Mnemonic Op Code Description

r

Type

Arithmetic

Data
I Control

I

Logic

DA Define Area

DC Define Constant (No Word Mark)

DCW Define Constant With Word Mark

OS

DSA

EQU

Mnemonic
Op Code

A

D

M

S

ZA

ZS

MBC

MBD

MCE

MCS

Define Symbol

Define Symbol Address

Equate

IMPERATIVE OPERATIONS

Description

Add

Divide

Multiply

Subtract

Zero and Add

Zero and Subtract

Move and Binary Code

Move and Binary Decode

Move Characters and Edit

Move Characters and
Suppress Zeros

Machine
OpCode

A

%

@

S

?

!

M

M

E
Z

MIZ Move and Insert Zeros X

MLC I Move Characters to Word M
MCWJ Mark

MLCWA 1 Move Characters and Word
LCA f Marks to Word Mark in A-Field

MLNS) Move Numerical Portion 0
MN J of Single Character

MLZS 1 Move Single Zone Y
MZ J
MRCM 1 Move Characters to Record P
MCM r Mark or Group Mark-Word

Mark

B Branch Unconditional B

BAV Branch on Arithmetic Overflow B

tBBE Branch if Bit Equal W

BC9 Branch on Carriage Channel9 B

BCV Branch on Carriage Over- B
flow (12)

BE Branch on Equal Compare B
(B=A)

BEF Branch on End of File or B
End of Reel

BER Branch on Tape Transmission B
Error

BH Branch on High Compare B
(B>A)

tBIN Branch on Indicator B

B~ Branch on Low Compare B
(B<A)

BLC Branch on Last Card (Sense B
Switch A)

BM Branch on Minus (11-zone) V
BPCB Branch Printer Carriage Busy B

BPB Branch Printer Busy B
BU Branch on Unequal Compare B

(B =1= A)

BW Branch on Word Mark V

tBWZ Branch on Word Mark or Zone V

tBCE Branch if Character Equal B

tBSS Branch if Sense Switch On B
C Compare C

Language
d-char.

B

A

Z

d

9

@

S

K

U

d

T

A

K

R

P

I

1

d

d

A-G

Mnemonic Machine Language
Type Op Code Description OpCode d-cnar.

1/0 BSP Backspace Tape U B
Commands tCU Control Unit U d

OCR Disengage Character Reader U 0
ECR Engage Character Reader U E

'l-tu i.oad unit i d
tMU Move Unit M d

P Punch ...
PCB Punch Column Binary ... C

R Read 1

RCB Read Column Binary 1 C

RD Read Disk Single Record M R

RDT Read Disk Fuii Track M R
I

ROW Read Disk Single Record L R
With Word Marks

RDTW Read Disk Full Track L R
With Word Marks

RF Read Punch Feed ... R

RP Read and Punch 5
RT Read Tape M R

RTB Read Tape Binary M R

RTW Read Tape With Word Marks L R
RWD Rewind Tape U R

RWU Rewind and Unload Tape U U

SO Seek Disk M R
SKP Skip and Blank Tape U E
SPF Start Punch Feed 9
SRF Start Read Feed 8
W Write 2
WD Wr;te Disk Single Record M W

WDC Write Disk Check M W
WDCW Write Disk Check With W

Word Marks

WDT Write Disk Full Track M W
WDTW Write Disk Full Track With W

Word Marks

WOW Write Disk Single Record W
With Word Marks

WM Write Word Marks 2 0
WP Write and Punch 6
WR Write and Read 3
WRF Write and Read Punch Feed 5 R
WRP Write, Read and Punch 7
WI Write Tape M W
WTB Write Tape Binary M W
WTM Write Tape Mark U M
WTW Write Tape With Word Marks W

Miscel- tCC Carriage Control d
laneous tCC8 COf'riage Controf and 8ranch F d

CS Clear Storage I I

CW Clear Word Mark 0 I
H Halt I MA Modify Address #
NOP No Operation N i
SAR Store A-Address Register Q i
SBR Store B-Address Register H I

I
tSS Select Stacker K 1,2,4,81

tSSB Select Stacker and Branch K 1,2,4,81
SW Set Word Mark I

CONTROL OPERATIONS

Mnemonic Description Mnemonic Description

cn Control XFR Transfer
END End SFX Suffix
ENT Enter New JOB Job

Coding Mode INSER Insert
EX Execute ALTER Alter
LTORG Literal Origin DELET Delete
ORG Origin

t d-Chorocter must be ploced in operond when coding in Aufocoder.

Figure 2. IBM l401 Autocoder Mnemonic Operation Codes

3

All Autocoder entries are entered on the Autocoder
coding sheet. Column numbers on the coding sheet
indicate the punching format for all input cards in the
source deck. Each line of the coding sheet is punched
into a separate card. (If the source program is entered
by magnetic tape, the contents of the cards prepared
from the coding sheet must be written in one-card-per­
tape-record format.) The function of each portion of
the coding sheet is explained in the following para­
graphs.

Page Number (Columns 1 and 2)

This two-character entry provides sequencing for cod­
ing sheets. Any alphamerical characters may be used.
Standard collating sequence for the IBM 1401 should
be followed when sequencing pages.

Line Number (Columns 3-5)

A three-character line number sequences entries on
each coding sheet. The first 25 lines are prenumbered
01-25. The third position can be left blank (blank is
the lowest character in the collating sequence). The
five unnumbered lines at the bottom of each sheet can
be used to continue line numbering or to make inser­
tions between entries elsewhere on the sheet. The
units position of the line number is used to indicate
the sequence of inserts. Any alphamerical character can
be used, but standard collating sequence should be
used. For example, if an insert is to be made between
lines 02 and 03, it could be numbered 021. Line num­
bers do not necessarily have to be consecutive, but the
deck should be in collating sequence, for sorting
purposes.

The programmer should note that insertions can af­
fect address adjustment. An insertion might make it
necessary to change the adjustment factor in the
operand of one or more entries.

Label (Columns 6-15)

Autocoder permits symbolic labels in the label field. A
symbolic label can have as many as six alphamerical
characters, but the first character must be alphabetic.
The label is always written starting in column 6.

Operation (Columns 16-20)

Mnemonic operation codes are written in the operation
field starting "in column 16. Figure 2 is a chart showing
1401 Autocoder mnemonics.

Operand (Columns 21-72)

The operand field in an imperative instruction contains
the actual or symbolic addresses of the data to be
acted upon by the command in the operation field,

4

literals, or address constants. Address adjustment and
indexing can be used in conjunction with actual or
symbolic addresses.

Unlike the SPS coding sheet, which specifies particu­
lar fields for the A-operand, B-operand, address adjust­
ment, indexing and the d-character, the Autocoder
coding sheet has a free-form operand field. The A­
operand, the B-operand, and the d-character must be
separated by commas. If address adjustment or index­
ing or both are to be performed, these notations must
immediately follow the address being modified. Fig­
ures 3, 4, and 5 show typical Autocoder entries.

Figure 3 shows an imperative instruction that causes
the contents of the field whose low-order core-storage
location is 3101 to be added algebraically to the con­
tents of the field whose low-order location is 140. This
entry will be assembled as a machine language in­
struction:

A AOl140
Note that high-order zeros can be eliminated when
coding actual addresses for Autocoder.

Label OPERAND
40

Figure 3. Autocoder Instmction With Actual Addresses

Figure 4 shows an indexed imperative instruction
that causes the contents of the location labeled TOTAL
to be placed in an area labeled ACCUM as modified by
the contents of index location 2. An indexed address is
always followed by a plus sign (+), an X to indicate
indexing, and a 1, 2, or 3 to specify which index loca­
tion is to be used. TOTAL is the label for location
3 1 Oland ACCUM is the label for location 1 4 O. The
assembled machine-language instruction for this entry
is: M A01 1MO. The M in the tens position of the
B-address is a 4-punch with an 11-overpunch. The
11-overpunch is the B-bit tag for index location 2.

Lobel

Figure 4. Autocoder Instmction with Symbolic Addresses
and Indexing

Figure 5 shows an imperative instruction with ad­
dress adjustment and indexing on a symbolic address.
The processor will subtract 12 from the address which
was assigned the label TOTAL. The effective address of
the A-operand is the sum of TOTAL-12 plus the con­
tents of index location 1 at program execution time.
The assembled instruction (M ? Y9 140) will cause the
contents of the effective address of TOTAL-12 + Xl to
be placed in the location labeled ACCUM (assuming

again that TOTAL is the label for location 3 1 Oland
ACCU~1 is the label for location 1 4 0). The Y in the tens
position of the A-address is an 8-punch with a zero
overpunch. The zero punch is a tag for index location
1. NOTE: The address adjustment factor cannot ex­
ceed ± 999.

Label

Autocoder Instmction with Address Adjustment
and Indexing

Figure 6 is an imperative instruction with two sym­
bolic operands and ad-character. Although many of
the augmented operation codes available for use with
Autocoder eliminate the need to write the d-character
in a symbolic instruction, sometimes the d-character
must be specified by the programmer. If an instruction
requires such a specified d-character, it is written fol­
lowing the A- and B-operands, and is separated from
the remainder of the instruction by a comma. The as­
sembled machine-language instruction is: 12. 392 498 2.
It tests a location labeled SWITCH (498) and branches
to ENTRY A (392) for the next instruction if SWITCH

contains a 2.

Label
40

Figure 6. Autocoder Instmction with ad-character

OPERAND
45

NOTE: Several types of addresses may be placed in the
operand. They are discussed in the Address Types
section.

Comments

A remark can be included anywhere in the operand
field of an Autocoder statement, if at least two non­
Significant spaces separate it from the operands.

Entire lines of information can be included any­
where in the program except within a complete DA

entry by using a comments card. In such a card, con­
taining comments only, the programmer must put an
asterisk in column 6. Columns 7-72 can then be used
for the comment itself. Comments inserted in this way
appear in the symbolk: listing but produce no entry in
the object program.

Identification (Columns 76-80)

This entry enables the user to identify a program or
program section. When identification is desired, the
contents of this line are punched into every card of the

source deck. The areas labeled Program, Programmed
By, and Date are for the convenience of the user, but
are never punched.

Columns 73-75 are reserved for the processor.

Address Types
Six kinds of address types are valid in the operand field
of an Autocoder statement: blank, actual, symbolic,
asterisk, literals, and address constants.

Blank

A blank operand field is valid:

1. In an instruction that does not require an operand.

2. In instructions where useful A- or B-addresses are
supplied by the chaining method.

NOTE: If an instruction is to have addresses stored by
other instructions, the operand or operands affected
must not be left blank.

Actual

The numerical equivalent of the three-character actual
core-storage address is valid in the operand field.
High-order zeros in actual addresses can be omitted
as shown in Figure 3. Thus, an actual address can
consist of from one to five digits.

Symbolic

A symbolic address can consist of as few as one or as
many as six alphamerical characters. Special characters
are not permitted. Blanks may not be written within
a symbolic address. Figure 4 shows how symbolic
addresses are used.

Asterisk (*)

If an * appears as an operand in the source program,
the processor will replace it in the object program with
the actual core-storage address of the last character of
the instruction in \vhich it appears. For example, the
instruction shown in Figure 7 is assigned core-storage
locations 340-343. The assembled instruction is~ 340.

Label OPERAND
40

:~
Figure 7. Asterisk Operand in an Autocoder Instmction

Asterisk operands can have address adjustment and
indexing.

Literals

The IBM 1401 Autocoder permits the user to put in the
operand field of a source program statement the actual
data to be operated on by an instruction. This data is
called a literal. The processor allocates storage for

5

literals and inserts their addresses in the operand or
operands of the instructions in which they appear. The
processor produces a new card that puts a word mark
in the high-order position of a literal when it is stored
at program load time. (In SPS, literals were not per­
mitted. The actual data to be operated on had to be
stored by DeW or De statements.) Literals are per­
mitted only in the operand field of an Autocoder state­
ment and can be numerical or alphamerical. A literal
can be any length, provided the operand of the state­
ment that contains the literal does not exceed 52 col­
umns (a statement must be contained in one line of
the coding sheet and must not extend beyond column
72). Literals cannot have address adjustment or in­
dexing.

NUMERICAL LITERALS

Numerical literals are written according to the follow­
ing specifications:
1. A plus or minus sign must precede a numerical

literal. The processor puts the sign over the units
position of the number when it is assigned a stor­
age location. NOTE: To store an unsigned number,
use an alphamericalliteral.

2. .LA:.. numerical literal of from one to fi,le digits (no
blanks) and a sign is assigned a storage location
only once per program or program section no mat­
ter how many times it appears in the source pro­
gram. NOTE: A program section is defined as the
source program entries that precede a Literal Ori­
gin, End, or Execute statement. In some programs
several program sections are needed because the
entire object program exceeds the total available
storage capacity of the object machine. In these
cases, individual program sections are loaded into
storage from cards, tapes, or random access storage
and are executed as they are needed. Program
sections are sometimes called overlays.

3. A numerical literal that exceeds five characters and
a sign is assigned a storage location each time it is
encountered in the source program. To save stor­
age space, use a Dew statement if a long numerical
literal is used more than once in the source pro­
gram.

Figure 8 shows how a numerical literal can be used
in an imperative instruction. Assume the literal (+ 10)
is assigned storage locations of 584 and 585, and INDEX
is assigned 682. The symbolic instruction will cause
the processor to produce a machine language instruc­
tion (A 585 682) that causes + 10 to be added to the
contents of INDEX.

Label OPERAND

~!!
, ,

Figure 8. Numerical Literal

6

ALPHAMERICAL LITERALS

Alphamericalliterals are written according to the fol­
lowing specifications:

1. An alphamericalliteral must be preceded and fol­
lowed by the @ symbol. The literal, itself, can con­
tain blanks, alphabetic, numerical, and special
characters (including the @ symbol). However, a
comment on the same line as an alphamerical lit­
eral must not contain the @ symbol.

2. An alphamerical literal of from one to four charac­
ters with preceding and following @ symbols is
assigned a storage location only once per program
or program section no matter how many times it is
used in the source program.

S. Longer alphamericalliterals are assigned a storage
location each time they are encountered in the
source program. To save storage space in these
cases, use a DCW statement.

NOTE: Only one alphamerical literal may be written
on one line of the coding sheet.

Figure 9 shows how an alphamerical literal can be
used in an imperative insiruction. Assume that the
literal JANUARY 28, 1961 is assigned a storage location
of 906 and DATE is assigned 230. The machine lan­
guage instruction (M 906 230) causes the literal JANU­
ARY 28, 1961 to be moved to DATE.

Label

Figure 9. Alphamerical Literal

AREA-DEFINING LITERAL

With Autocoder, it is possible to reserve storage for
a working area by using an area-defining literal.

1. An area of 52 positions or less may be defined in
any instruction which has, as an operand, the
symbol which references it.

2. A # symbol (8-3 punch) must precede the number
that specifies how many core-storage positions are
needed for the work area. (Note the # symbol is
represented in the Fortran character set as an =
symbol.)

Figure 10 shows an imperative instruction with an
area-defining literal. This entry causes the processor
to allocate 6 storage locations for WKAREA. Six blanks
will be loaded in storage at object program load time
by a DCW automatically produced by the processor.
Assuming that AMOUNT is in storage location 796 and
WKAREA is in 596, the assembled machine-language in­
struction that moves AMOU~T to WKAREA is M 796 596.

Label ~rati~ I I I 2!! 10 S!!

Figure 10. Area-defining Literal

Address Constants

40
OPERAND

4!!

The actual 3-character machine address which is as­
signed to a label by the processor can be defined as an
address constant. In SPS, a DSA statement is needed to
define an address constant. However, Autocoder per-
mits address constants to be coded symbolically in tIle
instructions that require them:

l. The symbol for an address constant can contain as
many as six characters.

2. A plus or minus sign must precede the symbol. If a
plus sign is used, the address constant is the actual
address which was assigned to the label by the
processor. If a minus sign is used, the address con­
stant is the 16,000's complement of the actual ad­
dress.

3. The label being defined must appear elsewhere in
the symbolic program.

4. The address constant is assigned a core-storage ad­
dress, as are all constants, and a ocw card is cre­
ated automatically by the processor.

Figure 11 shows how an address constant can be
used. Assume that CASH is used as a label elsewhere in
the program and has been aSSigned a machine address
of 600. The address constant (600) has been as­
signed storage location 797. The first character in the
second instruction is in core storage at address 401.
Thus, the address of INST + 3 is 404.

The assembled machine language instruction for the
first symbolic instruction in Figure 11 is: M 797 404.

WORK is storage location 729. The assembled ma­
chine-language instruction for the second symbolic
program entry is Nl 000729. When the first instruction
is executed in the object program, 600 is moved to 404
and the second instruction becomes M. 600 729. When
the second instruction is executed, the contents of
CASH are moved to WORK.

Thus, the programmer can write an instruction that
will move a machine address into the operand of an­
other instruction at program execution time, even
though he does not know what that address is.

Label tr~ O~~NO

Figure 11. Address Constants

NOTE: Character adjusted and/or indexed address
constants can be written symbolically. The address of
the label is adjusted or indexed in these cases.

Index Locations

The IBM 1401 has three index locations: + Xl, + X2, or
+ X3 following an operand, specify index locations 1, 2,
or 3, respectively. When the processor encounters an in­
dexed operand, a tag is automatically inserted in the
tens position of the assembled machine-language ad-

"1 "1 • T""te ,....

Qress as SnO\i/n In .tt 19ure 2>.

Declarative Operations
The IBM 1401 Autocoder provides six different declara­
tive operations for reserving work areas and storing
constants:

OP CODE

DCW
DC
DS
DSA
DA
EQU

PURPOSE

Define Constant with Word Mark
Define Constant (no Word Mark)
Define Symbol
Define Symbol Address
Define Area
Equate

DCW - Define Constant with Word Mark

General Description: A DCW statement is used to
enter a numerical, alphamerical, or address constant
with a word mark into a core-storage area.

The programmer:

(nevI)
field.

2. :May write an actual or symbolic label in the label
field. The programmer may refer to the constant
later by writing this label in the operand portion
of subsequent instructions.

3. Writes the constant in the operand field beginning
in column 2l.

NUMERICAL COKSTANTS

l. A numerical constant can be preceded by a plus or
minus sign. A plus sign causes AB-bits to be placed
over the units position of the constant; a minus sign
causes a B-bit to be put there. If a numerical con­
stant is unsigned in the ocw statement, it will be
stored as an unSigned field.

2. The first blank column appearing in the operand
field terminates a numerical constant.

3. The maximum size of a numerical constant is 51
digits and a sign, Of 52 digits with no sign.

7

Example: Figure 12 shows the number, + 10, defined
as a numerical constant. The address of the constant
will be inserted in the object instruction wherever
TEN appears in the operand field of another symbolic
instruction.

Figure 12.

trQti~ 1~21 ~'
W +10 ,~

Nllmerical Constant Defined by
a DeW Statement

ALPHAMERICAL CONSTANTS

40

1. An alphamerical constant must be preceded and
followed by the @ symbol. Blanks and the @ sym­
bol can appear within an alphamerical constant,
but the @ symbol cannot appear in a comment on
the same line as an alphamerical constant.

2. The alphamerical constant, itself, can be as large as
50 characters.

Example: Figure 13 shows the alphamerical constant,
JANUARY 28, 1961, defined in a new statement. The
address of the constant will be inserted in the object
program instruction wherever DATE appears in the
operand field of another symbolic program entry.

Figure 13. Alphamerical Constant Defined
by a Dew Statement

BLANK CONSTANTS

OPERAND

:'.

A # symbol precedes a number indicating how many
blank storage positions are to be defined. This permits
the programmer to reserve a field of blanks with a
word mark in the high-order position of the field. The
maximum size of this field is 52 blanks.

Example: Figure 14 shows an II-character blank field
defined by a DeW statement. The address of this
blank field will be inserted in an object program
instruction whenever the symbol BLANK appears as
the operand of another symbolic program entry.

Label

;'<ANf(, ,~
Figure 14. Blank Constant Defined by a Dew Statement

ADDRESS CONSTANTS

An address constant can be preceded by a plus or
minus sign. If a plus sign or no sign is used, the con­
stant is the actual machine language address of the

8

field whose associated label is included in the operand.
If a minus sign is used, the constant is the 16,000
complement of the actual machine address of that
field. NOTE: Address constants may be address-ad­
justed and indexed.

Example: Figure 15 shows an address constant (the
address of MANNO) defined by a DCW statement. The
address of the address constant (MANNO) will be in­
serted in an object program instruction whenever
SERIAL appears as the operand of another symbolic
program entry.

Label

SfR I A.L

Figure 15. Address Constant Defined by a Dew Statement

The processor:

1. Allocates a field in core storage that will be used to
store the actual constant. If the new statement has
a symbolic address in the label field, the processor
assigns an address equal to the low-order position
of this field.

2. Inserts the assigned address wherever the symbol
in the label field appears in the operand of another
symbolic program entry.

Result: A constant with a high-order word mark is
loaded with the object program each time the job is
run.

DC - Define Constant (No Word Mark)

This statement has the same characteristics as the new
statement. The only difference is that the processor
does not cause a word mark to be set at the high-order
position of the constant when the constant is loaded
with the object program.

OS - Define Symbol

General Description: A DS statement bypasses and
labels an area of core storage. It differs from a new
or DC statement in that no information (constant) is
loaded into this area at program load time.

The programmer:

1. Writes the operation code (DS) in the operation
field.

2. May write a symbolic address in the label field,
Actual addresses cannot be used in the label field
and indexing is not permitted.

3. Writes a number in the operand field to indicate
how many storage positions are to be bypassed.

The processor:

1. Assigns an actual address to the low-order position
of the reserved area.

2. Inserts this address in the instruction wherever the
symbol in the label field appears in the operand
field of another symbolic program entry.

Example: Figure 16 shows how a 10-position core­
storage area can be bypassed. The programmer can

r _ ., 1 1 1 1 ..• • ., ...

reter to tne lanel oy puttIng ACCUrvl In tne operana
field of another symbolic program entry.

label

ilCCUM

Figure 16. DS Statement

DSA - Define Symbol Address

General Description: The ability to code address con­
stants in Autocoder language eliminates the need for
the DSA statement except when the three-character
machine address of an actual address in the sym­
bolic program is desired. (The address constants
previously discussed were created from symbolic
addresses.)

The programmer:

1. \Vrites the mnemonic operation code (DSA) in the
operation field.

2. May write in the label field, the symbol which will
be used to make reference to the address constant.

3. Writes the actual address to be defined in the oper­
and field. This address may be address-adjusted
and indexed.

The processor:

1. Produces a constant containing the three-character
machine address of the storage address written in
the operand field.

2. Assigns this address constant an address in core
storage and labels it using the symbol in the label
field.

Result: At program load time, the address constant
will be loaded into its assigned locations with a word
mark in the high-order position.

Example: To create and store an address constant for
an actual address, the entry shown in Figure 17 is
made.

label ,~~ati~j ~ ~~ OPERAND

,~ ~I ~S! ~:I, M/NS\'}(.

Figure 17. Defining the Address Constant of
an Actual Address

Assume that the address assigned to the label (MI~SIX)
is 892. Storage locations 890, 891, and 892 will contain
I 9 D (the three-character machine address of 15994).
If index location 1 has been assigned the label I:'IIDEX 1,
the instruction shmvn in Figure 18 ,vi!! cause I 9 D to
be moved to index location 1 (storage locations 087-
089). The assembled machine language instruction for
the statement shown in Figure 18 is M 892 089.

label bperatian/
'~I'! 2$' 25 50 35

IM"C It1INs'IX:)INDEX1.

Figure 18. Moving the Address Constant to
an Index Location

OPERAND
.~

NOTE: This example shows how the 16,000's comple­
ment of an amount to be subtracted from an actual ad­
dress can be stored in an index location to decrease an
indexed address. In this case the amount is 6, which
has a 16k complement equal to 15994.

DA - Define Area

General Description: DA statements reserve and define
portions of core storage, such as input, output, or
work areas. They can also define more than one
area, if all these areas are identical in format. A DA

statement differs from a DCW statement in that a
DA statement can, in addition to defining the large
area, also define several fields within it. The DA

statement furnishes the processor with the lengths,
names, and relative positions of fields within the
defined area.

The programmer:

1. Constructs a header line for the DA entry as fol­
lows:

a. Writes the operation code (DA) in the opera­
tion field.

b. May write an actual or symbolic address in the
label field. This address represents the high-order
position of the entire area defined by the DA state­
ment.

c. Indicates in the operand field the required size
of the area in the form B X L. B is the number of
identical areas to be defined, and L is the length of
each area. For example, if four identical areas, each
100 characters long, are to be defined, the first
entry in the operand field is 4 X 100 as shown in
Figure 19. If only one area is to be defined, the first
entry is 1 X 100.

label ~rati~
! :$1 :5 LIt P E.&,8 '~ ~'.x1./:

.0

Figure 19. Four Areas Defined

9

Indexing: To index a DA statement place a comma
and the number of the index location (Xl, X2, or X3)
after the B X L indication. All fields and subfields de­
fined in the DA entry, including labels, will be indexed
by the specified index location when they appear in
instructions, unless the instruction referring to the field
is itself indexed. For example, if INAREA is defined by
the statement shown in Figure 20, ACCUM is indexed
by index location 1. If the entry shown in Figure 21
appears as an instruction elsewhere in the program,
ACCUM (for this instruction only) will be indexed by
the contents of index location 2. Because the instruc­
tion in Figure 21 has indexing, this indexing overrides
the indexing prescribed by the DA statement.

Lobel 15~perati~121 OPERAN
6 2!5 30 3!5 40 4!5

D

I iliA R.E.A IDA l3.lr' bO.~.X.1.
ACe- u,/1 1.5.~,.:;il,o.

Figure 20. Indexing a DA Entry

tperati9
~ .~. ~~_ L 16 2021 2!5 30 3!1

- AGBQS%:, AC,CUJ1+X.r. .

OPERAND ... Label

Figure 21. Overriding Indexing in a DA Statement

NOTE: The programmer can negate the effect of
indexing on a field or subfield by putting an XO in the
operand field of each instruction in which indexing is
not wanted.

Record Marks: Can be inserted to separate records
in the defined area. The processor will cause a =F to be
placed in storage immediately following each identi­
cally defined area if a =F follows the B X L entry in
the operand field. B X L does not include an allowance
for the record mark. For example, 2 X 100 will cause
200 positions to be reserved for the defined area, but
2 X 100, * will cause 202 positions to be reserved.

Group Mark with Word Mark: The user can cause
the processor to put a group mark with a word mark
one position to the right of the entire defined area by
writing a G, preceded by a comma, in the operand
field.

NOTE: The programmer may write a comma fol­
lowed by a C if the defined area is to be cleared before
word marks, etc., are set at program load time. The :f:,
index code, G, and C entries can appear in any order
in the operand field of a DA header statement provided
th::lt they follow the B X L entry.

2. Constructs the balance of the DA statement which
defines fields and subfields for each area as fol­
lows:
a. Leaves the operation field blank.
b. May write a symbolic label in the label field.

10

c. Specifies the relative location of a defined field
within the area by putting two numbers in the
operand fields. The first location of the defined area
is considered location 1. The high-order and low­
order positions of the field are written beginning
in column 21. These two numbers must be sepa­
rated by a comma.

d. A subfield is a field within a defined field and is
defined by putting the number representing the
low-order position in the operand field.

NOTE: The processor causes word marks to be set
in the high-order position of each defined field, but
does not so identify subfields. If a word mark is de­
sired in a one-position field, the relative position num­
ber must be written twice with the two numbers
separated by a comma.

Fields defined in a DA statement can be listed in any
order, and all positions within the defined area do not
have to be included in the defined fields.

The processor:
1. Allocates an area in core storage equal to B X L

plus positions for record marks and a group mark
if they are specified in the heading line of the DA

entry, and assigns actual addresses to the defined
fields and subfields.

2. Inserts the assigned address of the high-order posi­
tion of the entire defined area wherever the con­
tents of the heading line label field appear as the
operand of another symbolic program entry.

3. Inserts the assigned addresses of the low-order po­
sitions of fields and subfields in the place of sym­
bols corresponding to the labels of the field-defin­
ing entries.

Result: At object program load time:
1. A word mark is set in the high-order position of the

entire defined area. If more than one area is de­
fined (for example, 3 X 100), the high-order posi­
tion of each area is identified by a word mark.

2. Word marks are set for field definition as noted
previously.

3. A group mark and record marks are loaded as
specified in the heading line.

Example: In this example, data is to be read from
magnetic tape into an area of storage where it is to
be processed. It is a payroll operation, and each record
refers to a different employee. The records are written
on tape in blocks of three. Each record is eighty char­
acters long and has the following format:

Positions 4-8
Positions 11-26
Positions 32-37
Positions 45-64
Positions 66-71
Positions 74-79

Man Number
Employee Name
Date
Gross Wages
Withholding Tax
FICA Deduction

Remaining positions contain data not used in this
operation. Positions 34 and 35, which indicate the
month within the date, will be defined as a subfield.
A group mark with a word mark is to be placed in
storage immediately fonowing the third area,

The DA statement in Figure 22 defines three adja­
cent identical areas into which each block of three
records will be read. It also defines the fields and
subfields that are to receive the data listed. The nota­
tion 3 X 80 in the header line indicates that three
consecutive areas of eighty locations each are to be
reserved. The entire 240-location area can be referred
to by its high-order label, RDAREA + XO. The G in the
header line will cause a group mark with a word mark
to be placed in the 241st position. The reference to
index location 2 in the header line indicates that the
labels RDAREA, NAME, MANNO, DATE, GROSS, FICA, and
~10NTH, when referred to in symbolic instructions, will
be indexed by index location 2.

The user can now, in his symbolic program, give an
instruction to read data from tape into a storage area
labeled RDAREA + XO. This causes a block of three data
records to be placed in the 240 reserved core locations.
As a result, the significant data is read into the appro­
priately labeled fields. This data can now be referred
to via the labels DATE, ~1ANNO, FICA, etc., and the user
need not concern himself with actual machine ad­
dresses. In this example, the user begins by setting
index locations 2 to zero. He then processes the signifi­
cant data in the first record, increments index location
2 by eighty, and branches back to the first instruction
of the particular routine, Because all labels defined by
this DA statement are incremented by the contents of
index location 2, the program will now be processing
the second record read into storage. When this routine
is performed three times, the user has processed three
input records and is ready to read three more records
into storage. This has all been performed without any
reference to actual machine addresses.

Figure 22. DA Entry

NOTES:

1. An area can be reserved for a record with variable
fields by defining all possible fields as subfields. In
this case no word marks will be set in the area

(except in the high-order position) but the pro­
grammer can control data transfer by setting word
marks in the receiving fields.

2. If the length of the whole record can also vary, the
programmer should reserv'c an
largest possible record size.

EQU - Equate

General Description: An EQU statement assigns a sym-
, "'I a "I "'I "'I a .. "'I --"'I

bol1C label to an actual or S)lmbolic add.ress. 'I'hns,
the user can assign different labels to the same stor­
age location in different parts of his source program.

The programmer:

1. Writes the operation code (EQU) in the operation
field.

2. Writes a symbolic address for the new label in the
label field.

3. Writes an actual or symbolic address in the operand
field. This address can have indexing, and address
adjustment.

The processor:

1. Assigns to the label of the equate statement the
same actual address that is assigned to the sym­
bol in the operand field (with appropriate altera­
tion if indexing and address adjustments are indi­
cated).

2. Inserts this actual address wherever the label ap­
pears as the operand of another symbolic program
entry.

Result: The programmer can now refer to a storage
location by using either name.

Examples: Figure 23 shows the label INDIV equated to
MANNO which has been assigned storage location
1976. \Vhenever either MANNO or INDIV appear in a
symbolic program, 1976 will be used as the actual
address.

Lobel ~perati~
I~~II ::AN~ 40

OPERAND
50

I N.D I ".

Figure 23. Equating Two Symbolic Addresses

Figure 24 shows an equate statement with address
adjustment. If FICA is assigned location 890, WHTAX

will be equated to FICA-I0 (880). WHTAX now refers
to a field whose units position is 880.

Label OPERAND
40

:~ ,

55

\.J,ijTlh"

Figure 24. Address Adjustment in an EQU Statement

11

Figure 25 shows a label assigned to an actual ad­
dress. Assume that an input card contains NETPAY in
card columns 76-80. When this card is read into stor­
age, the area locations 076-080 contain net pay. This
field can be referred to as NETP A Y if the EQU statement
in Figure 25 is written in the source program.

Label
40 30

N ET PA.t
~5

Figure 25. Assigning a Label to an Actual Address

OPERAND
45

Figure 26 shows how an equate statement can be
indexed. With indexing, the label is indexed by the
index location specified in the EQU statement, whenever
it appears as an operand in a symbolic program entry,
unless the operand in which it appears is itself indexed.
In Figure 26, the address assigned the symbolic label
CUSTNO is equated to the actual address of JOB + the
contents of index location 3. However, if CUSTNO + X2
or CUSTNO + Xl appears as the operand of another
symbolic program entry, the actual address of JOB will
be added to the contents of index location 2 or 1. Thus,
the indexing in an instruction takes precedence.

Label

CU.STMQ

Figure 26. Indexing an EQU Statement

40
OPERAND

45

Figure 27 shows the symbol FIELDA equated to an
asterisk address. The asterisk refers to the rightmost
position of the last instruction or data whose location
was assigned by the processor. Assume that this ad­
dress is 698. FIELDA is now equal to 698.

Label OPERAND
40

:~ . [,1 E L.J>,A

Figure 27. Equating with an 0< Operand

Figure 28 shows how a label can be assigned to an
index location. Because the actual core-storage address
of index location 1 in the IBM 1401 is 089, the EQU state­
ment assigns the label INDEX 1 to that index location.
INDEX 1 is now equal to 089. NOTE: An index location
so equated must still be coded Xl, X2, or X3 when used
to index an operand.

Label OPERAND
40

:~ . , Nn EX .1.

Figure 28. Assigning a Label to an Index Location

12

Figure 29 shows how a tape unit can be assigned a
label. In this case, the programmer wishes to refer to
tape 4 as INPUT, which is now equal to %U4.

Label
30

I NPU"'C

Figure 29. Assigning a Label to a Tape Unit

Imperative Operations

40
OPERAND

45

General Description: Autocoder imperative operations
are direct commands to the object computer to act
upon data, constants, auxiliary devices, or other in­
structions. These are the symbolic statements for the
instructions to be executed in the object program.
Most of the statements written in a source program
will be imperative instructions. Although the Auto­
coder processor can assemble instructions with all
the imperative operation code mnemonics which are
shown in Figure 2, the programmer must keep in
mind the particular special features and devices that
will be included in the object machine that will be
used to execute the program he is writing.

The programmer:
1. vVrites the mnemonic operation code for the in­

struction in the operation field.

2. If the instruction is an entry point for a branch in­
struction elsewhere in the program or if the pro­
grammer wishes to make other reference to it, it
must have a label. This label will be assigned an
actual address equal to the address of the operation
code of the assembled machine-language instruc­
tion. Thus, the programmer can use this label as the
symbolic I -address of a branch instruction else­
where in the program (see example, Figure 33).

3. Writes the symbolic address of the data, devices,
or constants in the operand field. The first symbol
will be used as the A- or I-address of the imperative
instruction. If the instruction also requires a B-ad­
dress, a comma is written following the first symbol
and its address adjustment and/or indexing codes
(if any); then the symbol for the B-address is writ­
ten. If the instruction requires that ad-character
be specified, a comma and the actual d-character
follow the symbolic entries for the B-address or
All-address if the B-address is not needed (see
also Address Types).

NOTES

Unique Mnemonics. Several mnemonic operation
codes have been developed to relieve the program­
mer of coding the d-character in the operand field of

symbolic imperative instructions. However, some oper­
ation codes have so many valid d-characters that it is
impractical to provide a separate mnemonic for each.
In these cases, the programmer supplies the d-charac­
ter as previously described. In the listi.ng of mnemonic
operation codes for imperative instructions (Figure 2)
all mnemonics which require that the d-character be
included in the operand field are indicated by at.

~1nemonics referring to magnetic tape do not require
d-characters. However, it is necessary to specify, in
the operand, the number of the tape unit needed for
the operation. This can be done in one of three ways.

The programmer can:

a. Assign a label to the tape unit as described in EQU

and use it as the A-operand of a tape instruction.

b. vVrite the number of the tape unit in column 21 of
the tape instruction. The assembled instruction for
the symbolic entry shown in Figure 30 will cause
a record to be written on tape unit 4 using the data
beginning in a storage area labeled OUTPUT.

c. 'Vrite the actual address (for example, %U4) in
the A-operand field.

Label
35 40

OPERAND
45

Figure 30. Write Tape

Compatability with IBM 1410 Autocoder. To make
IBM 1401 Autocoder language compatible with its IBM

1410 counterpart, five new mnemonic op codes are pro­
vided that have the same function as five mnemonics
presently available in SPS. When coding in Autocoder
language, the programmer can use either mnemonic.
These new mnemonics are shown in Figure 31, together
with their meanings and their SPS equivalents.

, Autocoder " SPS I'
Mnemonic Mnemonic

MLC

MLCWA

MLNS

MLZS

MRCM

MCW

LCA

MN

MZ

MCM

Meaning

Move Characters to Word Mark

Move Characters and Word Marks to Word
Mark in A-Field

Move Numerical Portion of Single Character

Move Single Zone

Move Characters to Record Mark or Group
Mark-Word Mark

Figure 31. Alternate Move Mnemonics

The processor:

1. Assembles the object instruction as follows:
a. Substitutes the actual machine language opera­
tion code for the mnemonic written in the operation
fIeld.

b. Substitutes the actual addresses of symbols used
in the operand field to specify the A- or 1-, and
B-addresses of the instructions. If address adjust­
ment and/or indexing is indicated, the substituted
address will reflect these notations (tag bits will be
inserted for indexing and addresses will be altered
by adding or subtracting the adjustment factor if
address-adjustment is specified). The d-character
will be supplied automatically for unique mnemon­
ics, or will be taken from the operand field if the
programmer has supplied it.

c. Assigns the actual machine language instruction
an area in storage. The address of this area is the
position which the operation code occupies in ob­
ject machine core storage. This address is assigned
to the label if one appears in the label field.

Result: This instruction will be placed in the self -load­
ing object program deck or tape. A word mark will
be set in the operation code position by the loading
routine at program load time.

Examples: Figure 32 shows an imperative instruction
with I-and B-operands and a mnemonic which re­
quires that the programmer include the d-character.
A branch to a location labeled READ will occur if the
location labeled TEST has a 5 in it. Assume that the
address of READ is 596 and TEST is in 782. The assem­
bled instruction is ~ 596 782 5.

Label OPERAND
40

:~ .

Figure .32. Branch if Character Equal

Figure 33 shows an imperative instruction with a
unique mnemonic. A branch to a location labeled
OVFLO will occur if an arithmetic overflow has occurred.
Assume that the address of OVFLO is 896. The assem­
bled machine language instruction is ~ 896 Z.

OPERAND

o

Figure 33. Branch if Arithmetic Overflow

13

Processor Control Operations

Autocoder has several control operations that enable
the user to exercise some control over the assembly
process. They are:

Op CODE PURPOSE
JOB Job Card
CTL Control Card
ORG Origin
LTORG Literal Origin
EX Execute
XFR Transfer
SFX Suffix
ENT Enter New Coding Mode
END End Assembly
ALTER Alter

JOB-Job

General Description: This is the first card in the user's
source program deck. It is used to print a heading
line on each page of the output listing from the as­
sembly process and to identify the self-loading pro­
gram deck or tape.

The programmer:

1. Writes the mnemonic operation code (JOB) in the
operation field.

2. Writes in the operand field the indicative informa­
tion to be printed in the heading line. This infor­
mation may be any combination of valid 1401 char­
acters and appears in columns 21-72.

3. Writes in the identification field the information to
be contained in the self-loading program deck or
tape.

The processor:

1. Prints the information, the identification number
from columns 76-80, and a page number from the
JOB card on each page of the output listing. If there
is no JOB card, the processor will generate one. In
this case nothing will be printed in the heading
line, except the page number.

2. Punches the identification number (cols. 76-80) in
all condensed cards produced for the object pro­
gram. If another JOB card (or cards) appear else­
where in the source program, the new identification
number will be punched in subsequent condensed
cards. This new JOB card will also cause the car­
riage to restore during listing, and the new infor­
mation will appear in the heading line.

Result: The programmer can identify a job or parts of
a job in the output listing.

14

CTl - Control

General Description: The control statement is the sec­
ond entry (card) in the source program deck. The
user prepares this card to specify the size of the
processing machine, the size of the object machine,
the type of output he wishes, and the presence or
absence of the Modify-Address feature. NOTE: The
modify address (MA) instruction is standard in IBM
1401 systems with 8-, 12-, and 16-thousand positions
of core storage. For an object machine not equipped
with the MA feature, the Autocoder processor auto­
maticallyassembles a routine to simulate the MODIFY­
ADDRESS instruction.

The programmer:

1. Writes the operation code (CTL) in the operation
field.

2. Writes codes in the operand field as follows:

Column 21 indicates the storage size of the machine
to be used to process the Autocoder entries.

STORAGE SIZE

4,000
8,000

12,000
16,000

CODE

3
4
5
6

Column 22 indicates the storage size of the object
machine.

STORAGE SIZE
1,400
2,000
4,000
8,000

12,000
16,000

CODE
1
2
3
4
5
6

Column 23 indicates the type of Autocoder output
desired.

OUTPUT
Printed listing containing
the symbolic source pro­
gram and the machine-lan­
guage object program.

Printed listing and self-load­
ing condensed program card
deck.

Printed listing and self-load­
ing program tape.

Printed listing, condensed
card deck, and self-loading
program tape.

CODE

Blank

or °

1

2

3

Printed listing and one-in­
struction - per - card rese­
quenced source deck.

Printed listing, condensed
card deck and one-instrllc­
tion-per-card resequenced
source deck.

Printed listing, self-loading
program tape, and one-in­
struction - per - card rese­
quenced source deck.

All output options.

Error - list only

4

5

6

7

Any other
code

Column 24 indicates the presence or absence of the
:Modify-Address feature in the object machine. The
code 1 in column 24 specifies that MA is present. If
column 24 is blank, the processor treats the mnemonic
operation code MA as a macro-instruction and generates
the instructions necessary to modify an instruction ad­
dress (SET WORD MARK, ADD A~T]) CLEAR WORD MARK)

for object machines less than 8k.

Column 25. A code 1 in column 25 indicates the
presence of a fifth tape which will contain the output
listing and images of the condensed cards.

Column 26. A code 1 in column 26 indicates the
presence of the Read-Punch Release Feature.

The processor: Interprets the codes and processes the
source program accordingly.

NOTE: If columns 21 and 22 are left blank or are
coded incorrectly, or if the CTL card is missing, the
processor assumes that both the processing machine
and the object machine have 4,000 positions of core
storage. If column 23 is left blank or punched incor­
rectly, or if the CTL card is missing, the processor
provides a listing only.

ORG-Origin

General Description: An origin statement can be used
by the programmer to specify a storage address at
which the processor should begin assigning locations
to instructions, constants and work areas in the sym­
bolic program.

The programmer:
1. Writes the mnemonic operation code (ORG) in the

operation field.
2. Writes the symbolic, actual, blank, or asterisk ad­

dress in the operand field. Symbolic or blank, or *
addresses can have address adjustment (including
XOO) but indexing is not permitted in ORG state­
ments.

3. If a symbolic label appears in the operand field of
an ORG statement, it must appear in the label field
elsewhere in the program sequence. It need not
precede the ORG statement.

The processor:

1. Assigns addresses to instructions, constants and to
work areas as specified in the operand field of the
ORG statement.

2. If there is no ORG statement preceding the first
symbolic program entry, the processor automati­
cally begins assigning storage locations at 333 (the
first storage location following the fixed 1401 read,
punch, and print areas).

3. An ORG statement inserted at any point within the
symbolic program causes the processor to assign
subsequent addresses beginning at the address
specified in the operand field of the new ORG

statement.

Result: The programmer chooses the area(s) of storage
where the object program will be located.

Examples: Figure 34 sho\\'s an ORG statement with an
actual address. The first symbolic program entry
following this ORG statement will be assigned with
storage location 500 as a reference point. (If the first
entry is an instruction, the op code position (1-
address) of that instruction will be 500; if the first
entry is a 5-character DCW, it will be assigned ad­
dress 504, etc.)

OPE rt.t.N 0

,~ ~5

Figure 34. ORC Statement with an Actual Address

The ORG statement in Figure 35 shows how the
programmer can direct the processor to save the ad­
dress of the last storage location allocated. The label
ADDR is the symbolic address of the storage locations
used to save this address. The processor will continue
to assign addresses beginning at the actual address of
START.

Label

:1>.»8 , ~5 40

Figure 35. Saving the Address of the Last Storage Allocation

The programmer can insert another ORG statement
later in the source program to direct the processor to
begin assigning storage at ADDR (Figure 36).
NOTE: If a symbolic label appears in the label field of

15

an ORG or LTORG statement, it cannot be used in any
other place except as the operand of another ORG or
LTORG statement.

Figure 36 shows an ORG statement that directs the
processor to start assigning addresses with the actual
address assigned to ADDR (see step 3 Programmer).

Label
40

Figure 36. ORG Statement with a Symbolic Address

Figure 37 shows an ORG statement that directs the
processor to bypass 200 positions of core storage when
assigning addresses. This statement is the type that is
included within the source program (see step 3 Proc­
essor) .

Label OPERAND
40

:~
Figure 37. ORG Statement with an Asterisk Operand and

Address Adjustment

When the processor encounters the statement shown
in Figure 38, it will assign subsequent addresses be­
ginning with the next available storage location whose
address is a multiple of 100. For example, if the last
constant was assigned location 525, the next instruction
would have an address of 600.

label

Figure 38. ORG Statement Advancing Address
Assip-nment to the next Available Address
which is a Multiple of 100

NOTE: + XOO is permitted as character adjustment in
any ORG or LTORG statement.

Figure 39 shows an ORG statement with a blank oper­
and. The processor will assign addresses to subsequent
entries beginning with the lowest numbered storage
address (beyond 332) which has not yet been as­
signed to other entries.

label
~l!

Figure 39. ORG Statement with a Blank Operand

L TORG - Literal Origin

General Description: L TORG statements are coded in
the same way as ORG statements. They direct the
processor to assign storage locations to previously

16

encountered literals and closed library routines, be­
ginning with the address written in the operand field
of the LTORG statement. LTORG statements can appear
anywhere in the source program.

If no LTORG statement appears in the source pro­
gram, the processor begins assigning addresses to
literals and closed library routines when it encoun­
ters an EX or END statement.

Example: Figure 40 shows how the programmer can
direct the processor to begin assigning storage loca­
tions to literals and closed library routines.

Figure 40. Using a LTORG Statement

The programmer has instructed the processor to be­
gin storage allocation at 500. All instructions, constants,
and work areas (ending with BsuB01) will be assigned
storage. However, the literal (+10) in the statement
ZA + 10, WKAREA, and the library routine (SUB 01) ex­
tracted by the CALL macro (see Call) will not be as­
signed storage until the LTORG statement is encoun­
tered. The first instruction in the library routine
(SUB 01) will be assigned address 1500 (VOO) because
CALC has been equated to 1500. After all instructions
in SUB 01 have been assigned storage locations, the
literal + 10 will be assigned an address. The processor
will begin assigning the rest of the instructions, con­
stants, and work areas with the storage location imme­
diately to the right of the area occupied by the instruc­
tion BSUBOl. Thus, if BsuB01 (BVOO) is assigned loca­
tions 591-594, FIELDA will be assigned storage loca­
tions 595-600.

EX - Execute

General Description: During the loading of the as­
sembled machine-langllagp program, the program­
mer may want to discontinue the loading process
temporarily to execute a portion of the program just
loaded. This is especially the case when the program
has more than one section or overlay. The EX state­
ment is used for this purpose.

The programmer:
1. vVrites the mnemonic operation code (EX) in the

operation field.
2. Writes an actual or symbolic address in the operand

field. This address must be the same symbol that
appears in the label ueld of the first instruction to
be executed.

The processor:
1. Incorporates closed library routines, literals, and

address constants in the program.
2. Assembles a branch instruction, the I -address of

which is the address assigned to the instruction ref­
erenced by the symbol in the operand field (an
unconditional branch to the first instruction to be
executed). This instruction does not become part of
the assembled machine-language program, but it
causes the processor-produced loading routine to
halt the loading process at the appropriate time
and execute the branch instruction.

NOTE: To continue the loading process after the de­
sired portion of the program has been executed, the
programmer must provide re-entry to the load routine.

Figure 41 shows an example of this coding when the
condensed card deck is used. The read area is cleared,
word marks are set in 024, 056, 063 and 067; and a
card is read with a branch to 056.

NOTE: The programmer must be sure that a word mark
is present in the location following the R056 instruc­
tion at program execution time.

Figure 41. Re-entry to the LOAD Routine

Result: The programmer can use several program sec­
tions if his total program exceeds the limits of avail­
able storage capacity. For example, if input to the
program is on magnetic tape and the program is also
on tape, one tape unit can be assigned to the pro­
gram and another can be assigned to the input data.

Example: Figure 42 shows how an EX statement can be
coded. "Vhen this statement is encountered in the
loading data, the loading process halts and a branch
to the instruction whose label is ENTRYA occurs.

label OPERAND
40

:~ !

Figure 42. EX Statement

XFR - Transfer

General Description: This entry has the same function
as an EX statement except that literals, closed library
routines, and address constants are not stored. An
XFR statement transfers to and executes instructions
which have been previously loaded.

END-End

General Description: This is always the last card in
the source deck. It is used to signal the processor that
all of the source program entries have been read, and
to provide the processor with the information neces­
sary to create a bootstrap card. This bootstrap card
causes a transfer to the first instruction in the object
program after it has been loaded into the machine at
program load time. Thus, program execution begins
automatically.

The programmer:

1. Writes the mnemonic operation code (END) in the
operation field.

2. Writes in the operand field, the symbolic or actual
address of the first instruction to be executed after
the program has been loaded.

The processor: Creates a clear and branch instruction
which is used as part of the loading data. The read
area is cleared.

SFX - Suffix

General Description: This statement directs the proc­
essor to put a suffix code in the sixth position of all
labels in the symbolic program which have five, or
fev,ler characters, until another SFX statement is en­
countered. In this way, the programmer can use the
same label in different sections of the complete
program.

The programmer:

1. \\Trites the mnemonic operation code (SFX) in the
operation field.

2. \Vrites the character (which can be any valid 1401
character) to be used for the suffix code in the
operand field.

T he processor:

1. Inserts the suffix code in the sixth position of all
labels in the source program \vhich have fe\ycr than
6 characters.

2. Changes the suffix code when a new SFX card is
encountered.

Result: Each program section has unique labels.

Example: Figure 43 is an example of coding for a suf­
fixing operation.

17

151 I !! 40 !! lobe' rH~ O"RANO

Figure 43. Specifying a SUFFIX Operation

Figure 44 shows how the processor suffixes the en­
tries shown in Figure 43.

Label
40

Figure 44. Suffixed Entry

ENT - Enter New Coding Mode

General Description: The 1401 Autocoder processor
accents source programs coded in either free-form
Autocoder language or in fixed-form SPS language.
It is also possible to assemble a single program coded
in a combination of the two languages. An ENT state­
ment is used by the programmer to inform the proc­
essor that a change in coding form follows.

The progrmnrner:
1. Writes the mnemonic operation code (ENT) in col­

umns 16, 17, and 18 when entering the SPS mode
from the Autocoder mode; and columns 14, 15,
and 16 when entering the Autocoder mode from the
SPS mode.

2. Writes SPS in columns 21, 22, and 23 to enter the
SPS mode from Autocoder; and AUTOCODER in col­
umns 17-25 to enter the Autocoder mode from SPS.

NOTE: If the program is coded entirely in SPS form,
the program must be preceded by an ENT statement. If
this ENT card is missing, or if a coding form change is
encountered with no ENT card preceding it, an error
condition will result. Before assembly, remove the SPS
control card from the original SPS source deck and re­
place it by an Autocoder JOB card, an Autocoder CTL

card, and an ENT card in Autocoder format.

The processor: Interprets the source program coding
as identified by the ENT statements.

Result: Programs prepared wholly or partially in SPS
format can be reassembled by the Autocoder proc­
essor.

Example: Figures 45 and 46 are ENT statements to be
used with Autocoder.

Label

~rati9
15~21 ~!! 40

OPERAND

:~ .
50

r. SP5 , ~!!

Figure 45. ENT Statement for Entering SPS Mode

18

Label OPERAND
4!!

Figure 46. ENT Statement for Entering Autocoder Mode

ALTER - Alter S5 B V\ l'
General Description: An ALTER statement makes it

possible to add, delete, or substitute instructions in
the object program after the original assembly has
been completed.
By saving tape 4 which, at the end of assembly,

contains a source program, it is possible to reassemble
the program easily by processing ALTER cards. During
each assembly, each statement that can be altered by
an ALTER entry is assigned a sequence number. This
number is listed in the first column of the output list­
ing. These numbers are used in the ALTER entries to
reference statements to be changed during the reas­
sembly.

ADDITIONS

The programmer:
1. Writes the mnemonic operation code (ALTER) in

the operation field of the ALTER statement.
2. Writes a number in the operand field in column 21.

This number represents the sequence number after
which the entries following the ALTER statement
should be included.

3. Writes the statements to be included.

The processor: Adds the new statements and reassem­
bles the object program.

Example: The programmer wishes to insert two state­
ments after the statement whose sequence number
is 32. The three entries shown in Figure 47 are used.

Label

Figure 47. Adding Statements to an Assembled
Object Program

NOTE: All statements following an ALTER entry will be
included in the object program until the next control
card or last card has been read.

DELETIONS

The programmer:
1. Writes the mnemonic operation code (ALTER) in

the operation field of the ALTER statement.
2. Writes two numbers separated by commas in the

operand field. The first of these numbers is the

sequence number of the first statement to be de­
leted. The second number is the sequence number
of the last statement to be deleted. NOTE: If only
one statement is to be deleted, only the sequence
number is written twice in the operand field.

The processor: Deletes object program statements in­
cluded between the two sequence numbers in the
operand field.

Example: If the programmer wishes to delete object
program statements 92 through 103, he uses the
entry shown in Figure 48.

Label
~o ~!! 40

Figure 48. Deleting Statements from an Assembled
Object Program

SUBSTITUTIONS

The programmer:

OPERAND
45

1. Writes the ALTER statement exactly as described
under deletions.

2. vVrites the statements to be substituted.

The processor:
1. Deletes the statements included by the sequence

numbers in the operand field.
2. Substitutes the statements following the ALTER

entry.

Example: The entries shown in Figure 49 cause the
processor t~ delete the statement whose alter num­
ber is 62 and add in its place the MLC and B instruc­
tions.

Label

Figure 49. Substituting Statements in an Assembled
Object Program

19

The Macro System
Many of the routines that must be incorporated in
programs written for the IBM 1401 are general in na­
ture and can be used repeatedly with little or no
alteration. The IBM 1401 Autocoder makes it possible
for the user to write a single symbolic instruction
(a macro-instruction) that causes a series of machine
language instructions to be inserted automatically in
the object program. Thus, the ability of Autocoder to
process macro-instructions relieves the programmer of
much repetitive coding. With a macro-instruction, the
programmer can call, from a library of routines, a
sequence of instructions tailored by the processor to
fit his particular program.

Definition of Terms

Several programming terms describe the requirements
and operational characteristics of the macro system.
These terms are explained here as they are applied in
the following discussions.

Ob;ect Routine. The specific machine language instruc­
tions needed to perform the functions specified by
the macro-instruction. If the object routine is in­
serted directly in a larger routine (e.g., the main
routine) without a linkage or calling sequence, it is
called an open routine (or in-line routine). If the
routine is not inserted as a block of instructions
within a larger routine, but is entered by basic
linkage from the main routine, it is called a closed
routine (or off-line routine).

Model Statement. A general outline of a symbolic
program entry. Model statements are used only in
flexible library routines.

Library Routine. The complete set of instructions or
model statements from which the object routine is
developed. If the library routine can not be altered,
it is inflexible. If the library routine is designed so
that symbolic program entries can be deleted from
certain object routines (at the discretion of the pro­
grammer), or if parameters can be inserted, it is
flexible.

Library. The complete set of library routines, stored
on magnetic tape with an identifying label for each
routine, that can be extracted by a macro-instruc­
tion. Several macro-instructions and library routines
are provided by IBM (see Supplied Macros). Others
are designed by the user to suil parlicular processing
requirements.

Librarian. The phase of the processor that creates the
library tape from card input. After the original writ­
ing of the library tape, this phase is used to insert

20

additional library routines and their identifying
labels. This phase is omitted during program assem­
bly.

Parameters. The symbolic addresses of data fields,
control names, or information to be inserted in
the symbolic program entries outlined by the model
statements. By placing parameters in the operand
field of a macro-instruction, the programmer can
specify symbolically the data to be operated on. The
actual addresses of the data (or other information)
are inserted in the object routine by the processor
during assembly.

Macro Operations
To illustrate the basic operation of the macro system,
a macro called COMPR with a simple flexible library
routine is used. The routine is designed to read a card,
compare an input field to another field, test the com­
pare indicator for a high, low, or equal condition or
any combination of the three. For example, in some
programs it will be necessary to test only for an equal
condition; in others, high or equal, etc.

The library entry, a macro-instruction specifying
that all instructions in the library routine appear in
the object program, and the symbolic program entries
created during the macro phase of Autocoder are
shown in Figure 50. The symbolic program entries are
inserted in the source program behind the macro­
instruction. During assembly of the object program,
the symbolic program entries will be translated to
actual machine language instructions with the actual
addresses of the parameters inserted in the label,
operation, and operand fields.

The Library Entry

The library entry for the COMPR macro was created by
writing a header statement and five model statements
as shown in Figure 50.

HEADR - Header

General Description: A header statement identifies a
library routine. This identification precedes the
library routine in the library tape.

The programmer:
1. Writes the operation code (HEADR) in the opera­

tion field.
2. \Vrites the five-character label for the library rou­

tine in the label field. This label will be the same
as the name that appears in the operation field
of the associated macro-instruction (except when
either the CALL or INCLD macro is used). The first

Labei 15~perati~'21 OPERAND
6 25 ~O ~5 40 45

Library Entry

COMf'R HEADR
J;tOO ~

C KO 1,,,)(0,2.,

:8" jiue"

:BE)(0))

lH.)(oE

Macro Instruction

X XX x,x, C! O.N.PR P.~.R. 1,. P RR. 2 P II R .3 ... PI/ (If .• P II,KS

Assembled Symbolic Program Entries

X}GXXX R
C PAR1, PAR2
BH PAR3
BE PAR4
BL PARS

Figure 50. Macro Operations

three characters must be unique (no two library
entry labels may have the same first three char­
acters) .

The processor: Puts the indicative information ahead
of the model statements in the library tape during
the librarian phase of Autocoder.

Result: During assembly, the header label is matched
with the macro name in the operation field of the
macro-instruction. The model statements following
the header label in the library tape are used to
assemble the symbolic program entries as specified
by the macro-instruction.

Model Statements

General Description: Model statements establish the
conditions for insertion of parameters in the object
routine and define the basic structure of the sym­
bolic program entries.

The programmer:

1. Designs a general routine to perform a specific
function when it is executed in the object program.

2. Writes the model statements as follows:

a. If the entry is complete, it is written exactly as
though it were an entry in a source program. This
entry will be included in all object routines unless
a bypass condition exists.

Example: Read a card (Figure 51).

Label OPERAND

50

~o 49 :: ' :
Figure 51. Model Statement for a Complete Instruction

55 60 65 70

ltow

b. If the entry is incomplete, the programmer
writes a special three-character code to indicate
that a certain parameter from the macro-instruc­
tion operand field must be inserted (substituted)
in its place. This code is a 0 followed by a number
from 01 to 99 (the position of the parameter in
the macro-instruction). This entry will be inserted
in all object routines unless a bypass condition
exists.

Example: Insert parameters 01 and 02 specified by the
COMPR macro-instruction as shown in Figure 52.

Label

Figure 52.

~9 ~!5 49

f\todcl Statement Specifying that the
First and Second Parameters Be Present in
the Associated Macro-Instruction

OPERAND
45

c. If the entry is incomplete, the programmer writes
a 0 followed by a number from 01-99 with AB-bits
over the units position (parameter 01 is DO A; para­
meter 02 is DO B; etc.) to indicate that the entry
is to be included in the object routine only if the
parameter is specified by the macro-instruction
and no bypass condition exists.

Example: Insert parameter 03 in the following instruc­
tion if it is specified by the macro-instruction. If

21

parameter 03 does not appear in the macro-instruc­
tion, the instruction shown in Figure 53 will be de­
leted from the object routine.

Label

Figure 53.

40

Model Statement for an Incomplete
Instruction with Conditional Parameters

NOTE: Substitution codes can be used to substitute a
parameter in any part of a model statement. For
example, it is possible to substitute an operation code,
any part of a literal, a label, etc.

Bypassing. The 1401 Autocoder processor permits the
programmer to establish multiple conditions for by­
passing model statements in the library routine. Any
of the three basic types of model statements can be
bypassed if certain parameters are missing from or
present in the macro-instruction and if special con­
dition codes are included in the right-hand portion
of the operand field (comments field). The first
code may be placed in columns 70, 71, and 72; the
second code in 67, 68 and 69, etc. These codes are
interpreted by the processor as follows:

a. If the code is a 0 followed by a number from
01 to 99 with AB-bits over the units position (for ex­
ample 0 0 A), the model statement will be bypassed

Label OPERAND
45

~:

if the indicated parameter is missing from the macro­
instruction.

Example: Bypass the model statement shown in Figure
54 only if either parameter 04 or 05 is missing from
the operand field of the macro-instruction.

b. If the code is a 0 followed by a number from
01 to 99 with an A-bit over the units position (for
example 0 0 /), the model statement will be by­
passed if the indicated parameter is present in the
macro-instruction.

Example: Bypass the model statement shown in Figure
55 if either parameter 04 or 05 is present in the
operand field of the macro-instruction.

c. Combinations of the two types of conditions for
the same model statement are permissible.

Example: Bypass the model statement shown in Figure
56 if parameter 04 is present or if parameter 05 is
missing.

NOTE: The processor scans the condition codes from
right to left. If a bypass condition is encountered, the
model statement is not used for the object routine.
There must be at least two non-significant blank spaces
between the operand (s) of the model statement and
the leftmost condition code.

Labelling. If the model statement represents an in­
struction that is the entry point for a branch instruc­
tion elsewhere in the program, it must have a label.

Figure 54. Condition Codes for Bypassing if Parameters Are Missing from the Associated Macro-Instruction

Label ~perati~
I~ j; 0.3 ~5 40

OPERAND

:~ ! ~! ~o

Figure 55. Condition Codes for Bypassing if Parameters Are Present in the Associated Macro-Instruction

Label OPERAND

:~ ! ~ .5 ~ I

Figure 56. Condition Codes Combined

22

6

ADO 0 code in the first such model statement causes
the contents of the label field of the macro-instruc­
tion to be inserted in the label field of the assembled
symbolic entry as shown in Figure 57.

label 1,~perati:21 OPERAN
a 30 3! 40 4!

D

Macro Instruction

I.cS TZ G r V.lC.A SI;!I.Rr~s TRR.T.2.. .. E#.T,/?,'f.R

Madel Statement

~oo 8)to!

Assembled Symbol ic Program Entry

TESTZ B STARTl

Figure 57. Labelling

If additional external labels are required and speci­
fied as parameters in the macro-instruction, they can be
inserted in the label field of the symbolic program
entry by using a 0 01-99 code.

Example: Insert parameter 02 in the label field of the
assembled symbolic program entry as shown in Fig­
ure 58.

lobel 1!I~roti~~ OPERAN
6 2! 30 3! 40 4!

D

Macro Instruction

TESTZ 61 VXA S T.R.R T ;1, .. s T,II./?, T.2., .. ,E II TRY II
MocIel Statement

J:('o,Z, S,B,/l,)(0.3, +,$.

Assembled Symbolic Program Entry

START2 SBR ENTRYA+3

Figure 58. Additional External Label

Symbolic Addressing within the Library Routine, To
allow symbolic reference to other instructions in a
flexible library routine, a 0 followed by a number
from 01 to 99 with a B-bit over the units position
(0 0 J = symbolic address 1; 0 0 K = symbolic ad­
dress 2, etc.) can be used. The processor generates
the symbolic address if the code (for example, DO J)
is used as a label for one entry and as an operand of
at least one other entry in the same' library routine.

Internal labels within flexible routines are gener­
ated in the form 0 nnmmm, where nn is the code
(OJ-9R), and mmm is the number of the macro
within the source program. This avoids duplicate
address assignments for labels.

Example: Use the generated symbolic address of
(0 0 J) as an operand for entry 3 and as the label
for entry 6. UPDAT is the 23rd macro encountered in
the source program (Figure 59).

Address Adjustment and Indexing. The parameters in
a macro-instruction and the operands in partially

6

complete instructions in a library routine can have
address adjustment and indexing.

If address adjustment is used in both the para­
meter and the instruction, the assembled instruction
will be adjusted to the algebraic sum of the two.

lobe I " ~peroti:121 OPERAN
25 30 35 40 45

D

Macro Instruction , ,

U,P,})A,T C OSI" 1IJ1/,o fJIJ.r:
1. _.J_1 ~ .. _&. ____

'T' ··f·· ... · I~ · : : ~d; · : : : · .: : : : :: : · ' : : : : : : :: :
)(0:;' : : : :: I~A:: lli.o:t:,io:i :

Assembled Symbolic Progrom Entries

B):(OJ023

):(OJ023 ZA COST, AMOUNT

Figure 59. Internal Labels

For example, if the address adjustment of one is + 7
and the other is - 4, the assembled instruction will
have address adjustment equal to + 3.

Operands may be indexed in the library routine.
If a parameter supplied by the macro-instruction is
indexed, the leftmost indexed code in the assembled
model statement takes precedence.

Literals: Operands of instructions in flexible routines
may use literals as required.

NOTES:

1. A model statement in the library routine for a
macro-instruction may not be another macro-in­
struction, except the CALL, INCLD, or CHAIN macro
(see Call).

2. Literal Origin, Ex and End statements cannot be
used in library routines.

The processor: Enters model statements in the library
tape immediatelv following the header statement
during the librarian phase of Autocoder.

Result: Any library routine can be extracted by writing
the associated macro-instruction in the source pro­
gram.
Figure 60 is a summary of the codes that can be

used in the model statements of flexible library rou­
tines.

23

CODE POSITION FUNCTION

001-099 Statement Substitute parameter
(parameter must be present)

00A-091 Statement Substitute parameter
(if parameter is missing,
delete statement)

00A-091 Comments Field If parameter is missing,
(right-hand portion delete statement
of operand field)

00/-09Z Comments Field If parameter is present,
delete statement.

000 label Field Substitute contents of
macro-instruction label field

00J-09R label field and Assign internal label
Operand Field

Figure 60. Model Statement Codes

Macro-Instructions
General Description: A macro-instruction is the entry

in the source program that causes a series of instruc­
tions to be inserted in a program.

The programmer:

1. Writes the name of the library routine in the opera­
tion field. This name must be the same five charac­
ters that appear in the label field of the header
statement of the library entry.

2. Writes, in the label field, the label that is to be
substituted in the model statement that contains
o 0 0, if such a model statement appears in the
library entry. If the 000 model statement is by­
passed, the label is transferred to the next included
statement.

3. Writes in the operand field the parameters that are
to be used by the model statements required for
the particular object routine desired as follows:

a. Parameters must be written in the sequence in
which they are to be used by the codes in the model
statements. For example, if COST is parameter 1, it

Label

Figure 61. All Parameters Are Present

Label

Figure 62. Parameters 4 and 8 Are Missing

24

must be written first so that it will be (1) substi­
tuted wherever a 0 0 1, or 0 0 A appears as an
operation code or operand of a model statement
and (2) tested for a missing or present condition
wherever a bypass condition code (0 0 A or 0 0 /)
appears in the right-hand portion of the operand
field.

b. May use as many parameters as can be con­
tained in the operand fields of five or fewer coding
sheet lines. If more than one line is needed for a
macro-instruction, the label and operation fields of
the additional lines must be left blank. Parameters
must be separated by a comma. They cannot contain
blanks unless the blanks appear between @ sym­
bols. If parameters for a single macro-instruction
require more than one coding sheet line, the last
parameter in each line must be followed imme­
diately by a comma. The last parameter in a macro­
instruction must not be followed by a comma.

c. Parameters that are not required for the par­
ticular object routine desired can be omitted from
the operand field of the macro-instruction. How­
ever, a comma must be inserted in place of the
omitted parameter to indicate that it is missing,
unless the omitted parameter is the last parameter
in the macro-instruction.

Figures 61,62, and 63 show how parameters can
be omitted. The hypothetical macro-instruction
called EXACT is used. EXACT can have as many as 9
parameters.

The processor: Extracts the library routine and selects
the moder statements required for the object routine
as specified by the parameters in the macro-instruc­
tions and by the substitution and condition codes in
the model statements.

Result: The resulting program entries are merged with
the source program entries behind the macro-instruc­
tion. In the listing of the source and object programs,

~o
, J

'0 10

Labe!

Figure 63. Parameters 1, 4, 5, 6, and 8 Are Missing

(produced by the listing and condensed cards phase
of Autocoder) the macro-instruction is identified by
a MACRO tag and the symbolic program entries gen­
erated by the processor are identified by GEN (Gen­
era ted) tags.

Call Routines

The 1401 Autocoder processor permits the user to add
inflexible routines to the library tape. These are com­
monly used sequences of instructions that can be ex­
tracted for an object program by the CALL macro. They
differ from the routines processed by other macro-in­
structions in several ways:

1. All instructions must be complete (no parameters
can be inserted) .

2. All instructions in the routine are incorporated.

3. A CALL routine is not inserted at the point where the
CALL macro was encountered in the source program.
Instead, it is inserted only once as a closed routine
elsewhere in the object program or program sec­
tion. Linkage to the routine is provided automati­
cally by the processor whenever its particular CALL

macro is encountered in the source program. (The
processor does not produce automatic linkage to the
routines incorporated by other macro-instructions
because these routines are inserted as open rou­
tines where the associated macro-instructions were
encountered in the source program.)

4. Data needed by a CALL routine must be in the loca­
tions indicated by the symbols in the operand fields
of its instructions.

Requirements: CALL routines have several specific re­
quirements that must be considered when the rou­
tine is created:

1. Every entry point in a CALL routine must have a
label. These labels (and all other symbols used in
a CALL ·routine) must be five characters in length,
and each of these must have the same first three
characters. The first of these three characters must
be alphabetic. The last four characters of each sym­
bol can be alphamerical (no special characters).

CALL routines are stored at the time and place
where a Literal Origin, End, or Execute processor

control statement is encountered. Duplicate sym­
bols can occur if a CALL routine is used in more
than one program overlay (if the same CALL routine
is named in CALL macros that are separated by a
Literal Origin or Execute statement). To eliminate
this possibility the Autocoder processor provides a
Suffix (see SFX) operation. The programmer should
use a suffix statement containing a new character in
each program section.

2. The first instruction at each entry point in a CALL

routine must store the contents of the B-address
register (SBR) in an index location or in the last
instruction executed in the CALL routine. This pro­
vides for re-entry at the proper place in the main
routine after the CALL routine is executed.

3. All macro-instruction operation codes except CALL,

INCLD, and CHAIN are invalid in CALL routines. All
other symbolic entries acceptable to Autocoder, ex­
cept Literal, Origin, Execute, and End can be used.
A CALL macro:

a. allows onc CALL routine to be used at some
point in another CALL routine or,

b. can be used as a model statement in the li­
brary routine for a regular macro-instruction.

IBM Supplied Macros

Six macro-instructions are currently available as part of
the Autocoder Processor. They are: CALL, INCLD, CHAlK,

MA, OVLAY, and TOVLY.

CALL Macro

General Description: The CALL macro provides access
to inflexible routines written by the user and stored
in the library tape. It establishes linkage to a closed
routine and inserts that routine elsewhere in the
program. The CALL macro is part of the Autocoder
processor.

The programmer:

1. \Vrites the name of the macro (CALL) in the opera­
tion field.

2. vVrites the label of the library statement which is
the desired entry point in the library routine start­
ing in column 21 of the operand field. The first
three characters of this label must be the same as
the first three characters in the label field of the
header statement that was used to enter the routine
in the library tape (see H eac/r).

a. If the CALL routine is constructed so that all
the data it requires must be taken from specifically­
labeled areas of storage, the remainder of the oper­
and field must be left blank. For example, a CALL

routine whose entry point is sQR01 requires that

25

Ii

the number whose square root is to be computed
must be placed in a location labeled sQR02. The
CALL macro is written as shown in Figure 64.

Label pperatiOl'1 OPERAN
15118 20 I 2!1 30 3S 40 45

D

Call Macra
CALL SQRO:1 .

Assembled Symbolic Program Entry

B SQROl

Figure 64. CALL Statement Specifying That Data be in
Specifically Labelled Areas of Storage

b. If the CALL routine is constructed so that the
data it requires can be located in arbitrarily­
labeled areas of core storage, the symbols for these
areas must be included immediately following the
label in the operand field. These symbols must be
entered in the order in which they are required by
the CALL routine. This makes it possible to design
CALL routines in which the required data can be
placed in locations labeled in any way the pro­
grammer desires. This frees the source program
__ ._:.&.~_ £_~_ .&.1...~ _~_.&._:~.&.:~_ .&.1..._.1. 1...~ : __ ~_L ,.1_.&._ :_
vvlllt:a IlVlll Ult It~Ull:llVll UldL lIt lU~tl L Udld. 111

locations labeled according to the requirements of
the CALL routine. However, CALL routines to be
used in this manner must be coded to utilize the
address constants that will be created from the
symbols in the operand field.

Example: Call a routine whose entry point is SUB 0 1
(Figure 65). The addresses of DATA 1, DATA 2, and
DATA 3 are needed by the CALL routine.

2. Creates address constants for other symbols ap­
pearing in the operand field of the CALL macro, and
inserts them following the unconditional branch
instruction as shown in Figure 65. Note that these
address constants are defined in the order in which
the associated symbols appear in the CALL operand.

Result: A given CALL routine is inserted once per pro­
gram or program section in a location determined
by a processor control statement. Branch instruc­
tions are inserted as many times as an associated
CALL macro is encountered in the source program.
Thus the CALL routine can be entered from several
points in the main routine.

Example: Assume that a library routine to compute
the value of X + Z is associated with a regular
macro-instruction called TAKSQ. There is also a
CALL routine in the library tape named sQR01
which calculates the square root of a number in a
work area (sQR02) and places the answer in an­
other work area (sQR03). The programmer can
design a library entry for the TAKSQ macro that
will provide linkage to the CALL routine as shown in
Figure 66.

Ii Label l£perati~1
2!! 30

Library Entry For TAKSQ Macra

TAI<;5,Q. H,E.II~I(

Z,A lJt,o . .1, ... S,Q.R.o 2-
A l(oZ ... ,s q,R,O.z
~4LI.. 5,Q,Ro,1..
Z,R 1s.(H~o3.XO 3

Macro Instruction

TAKSQ iX-... ,Z .. RESU L. T.

Assembled Symbolic Program Entries

T AKSQX, Z, RESULT

35 40
OPERAND

45

Label l5~rati: I
OPERAN D ZA X, SQR02

Ii 2!1 !l0 3S 40
Call Macra

CRJ..L. SUBO,~,PATA1"PATA~~p,~rA3

Assembled Symbolic Program Entries

B SUBOl
DCW DATAl

DATA2
DATA 3

4!1

Figure 65. CALL Statement for a Routine with Arbitrary
Data Storage Assignments

The processor:
1. Establishes linkage from the main routine to the

CALL routine by assembling a symbolic program
entry for an unconditional branch instruction. The
operand for this branch instruction is the entry
point given in the operand field of the CALL macro
as shown in Figures 64 and 65. The branch instruc­
tion follows the CALL macro.

26

A Z, SQR02
CALL SQROl
B SQROl
ZA SQR03, RESULT

Figure 66. CALL Statement within a Library Routine for
a Macro-Instruction

When the object routine is executed, X + Z will be
stored in sQR02. Then the program will branch to
the CALL routine where the square root of X + Z will
be calculated and the result stored in sQR03. The
last instruction in the sQR01· routine will cause an
unconditional branch to the last instruction in the
TAKSQ routine which puts the answer in an area
labeled RESULT. NOTE: This illustration is designed to
show the combination of a regular macro and the CALL
macro. The same result could be achieved by writing
entries in the source program as shown in Figure 67.

OPERAND Labei ,:!t'perotifoz,
~

..
6 25 35 40 ~~

Source Program Statements

Z.I) K" 'l,s,QR,o,,e,.
A Z,~ s,q.Roz
(..//1.:.1. 5,q,Ro:1 - ~ ~ ~ 0- ", --J,S""~"'2' "eSv, ... ,

Assembled Symbolic Program Entries

ZA X,SQR02
A Z, SQR02
CAll SQROl
B SQROl
ZA SQR03, RESULT

Figure 67. Alternative Source Program Entries

INCLD Macro

General Description: This macro extracts an inflexible
library routine from the library tape. However, the
INCLD macro does not insert a branch instruction fol­
lowing the INCLD statement in the source program
as does the CALL statement. The programmer estab~
lishes his own linkage to the closed routine. INCLD

statements are constructed in the same manner as
CALL statements.

Example: Figure 68 shows an INCLD statement that
causes a library routine named SUB01 to be incor­
porated in the object program.

Label ~perati~ 1516 021

MCt.~U8;~~
OPERAND

~5 40 45 ~o

Figure 68. INCLD Statement

The processor does not produce a brancn mstruc­
tion. The programmer must insert a branch at the
place in the main routine at which the exit to the
closed routine is needed. Several INCLD statements can
be written in a group in a source program to cause the
associated library routines to be stored at LTORG, END,

or EX time, by the processor. Thus, one exit from the
main routine can cause several library routines to be
executed at object time. The INCLD macro also enables
the programmer to extract library routines in alpha­
betic sequence if he so desires. This saves assembly
time because all library routines are stored in alpha
sequence in the library tape.

NOTE: GALL and IKCLD statements may appear in
either flexible or inflexible library routines. Also, an
inflexible library routine may, in turn, have CALL or
INCLD statements.

If CALL or INCLD are written within a library routine,
only a single operand is permitted in the CALL or
INCLD statement. This single operand is the name or
entrv noint of the closed librarv routine. (See Call

J .L ., '\

Macro.)

Macro Processing

Figures 69, 70, and 71 are diagrams showing the
effects of the three different uses of library routines:

1. i\.S extracted b}" a regular macro~instruction.

2. As extracted by the CALL macro.

3. As extracted by the INCLD macro.

The symbolic programs that result from the proces­
sor actions described in Figures 69, 70, and 71 are
later processed as though the user had inserted all
the entries in the source program (Symbolic entries
are translated to machine-language instructions; con­
stants cards are produced, etc.).

SOURCE PROGRAM

y

M

B

0

C

P

R

o
G

R

A
M ____ _

E

N

T

R

I
I ..

PROCESSOR OPERATIONS

Substitute
parameters in
model statements wherever
substitution codes appear

Delete model
statements if bypassing conditions
are satisfied

Insert symbolic program entries as an open
routine in the symbolic program

When a regular macro-instruction is encountered in the source program,
the processor extracts the specified library routine, tailors it, and inserts
it in-line in the users source program.

Figure 69. MACRO Processing

27

SOURCE PROGRAM PROCESSOR OPERA nONS

{-

Figure 70. CALL Processing

Create a branch instruction
and insert it in the source program

When the processor encounters a CAll macro, it creates an uncondi­
tional branch instruction to link the main program to the library routine.
The branch instruction is placed in the symbolic program immediately
following the CAll macro statement. later, when the processor en­
counters a LTORG, END or EX statement in the source program, it
extioc:ts all libn::iry rOutines specified by CALL macros and siores jhem
as closed routines.

Extract library
routine at lTORG,
END or EX time

Closed Library Routine

{-

SOURCE PROGRAM PROCESSOR OPERATIONS

I Branch I I
Extract library I I routine at lTORG, END or EX time

I I INCLD Macro

Closed Library Routine

~{ -{
l

I
User's next source

I program statement

When the processor encounters an INCLD marro, it incorporates the
specified library routines when an lT ORG, END, or EX statement is
encountered in the users source program. Note that the branch instruc-
tion that links the main routine to the closed library routine is provided
by the programmer.

Figure 71. INCLD Processing

28

CHAIN Macro
The CHAIN macro makes it easier for the programmer
to code chained instructions.

The programmer:
1. Writes the instruction to be chained as usual.
2. Writes the chain statement using CHAIN as the

mnemonic operation code, and writes a number
from 1 to 99 in the operand field. This number
represents the number of chained instructions
desired.

The processor: Produces the desired number of addi­
tional operation codes.

Example: Figure 72 shows how an MLC statement can
be chained five times.

Label hperation
6 ,J.6t 20~' 3!1

OPERAND
4~

Source Program En'tri~s

A$5embled Symbolic Program Entries

MLC
MLC
MLC
MLC
MLC

Figure 72. CHAIN Macro

OVLA Y Macro - Card Overlay

. :: : : : : : : :

General Description: This statement prepares storage
and loads a new program section (overlay) from
cards. The library routine for the OVLAY macro­
instruction is shown in Figure 73.

Label ,5fsPerati:12, OPERAN
6 211 30 3!1 40 .&"

D.11.L.A.Y. lJ./.£A.nR

UOO CS 80
I.sw. Z'l:~51-

Is .w. It,.~ . •. 1..7.

I?? l5 .1...

Figure 73. Library Routine for OVLAY Macro

The programmer: Writes the macro-instruction as fol­
lows:

1. Writes the name of the macro (OVLA Y) in the op­
eration field.

2. Writes in the label field, the label to be inserted
in the first statement in the library routine.

Result: The library routine is extracted and the label
(if any) is substituted for 000.

D

Example: At the end of a program section the pro­
grammer places an OVLAY macro-instruction in the
source program as shown in Figure 74.

, L""" J~ •• ~,;l" ~. '" '. " :~RANO
Macro Instruction k: V ~:A y :::::::::::::::::::::~::
A$5embled Symbolic Program Entries

Figure 74.

CS
SW
SW

80
24,56
h'2 h7
_...." _3

R 56

U sing the OVLA Y Macro

TOVLY Macro - Tape Overlay

General Description: The TOVLY macro prepares stor­
age for and loads a new program section from mag­
netic tape. The library routine for the TOVLY macro­
instruction is shown in Figure 75.

Label , ~perati~ , OPERAND
6 25 30 35 40 45 ";0

TOVLY I HEADR
[OJ I EQU *+1
~OO

I cs 8.0
: RTW 1 1
I BER ,*.+ 5
I a 007
I SSP 1
I H 0 0

Is III OJ

Figure 75. Library Routine for TOVL Y Macro

The programmer: Writes the macro-instruction as
f,."ll,."", ...
.1.V~.1.VYl'.JI.

1. Writes the name of the macro (TOVLY) in the op­
eration field.

2. Writes in the label field the label to be inserted in
the first statement in the library routine.

Result: The library routine is extracted and the label
is substituted for 000.

Example: In the source program the programmer in­
serts the TOVLY macro as shown in Figure 76.

Lobel 15~perati~21 6

Macro Instruction

T OVl.,y

Assembled Symbolic Program Entries

ttOJ023 EQU
CS
RTW
BER
B
BSP
H
B

Figure 76. Tape Overlay

Z5 30

*+-1
80
1,1
*t5
007
1
0,0

35

11 OJ023

OPE RAN o
40 45

29

MA Macro - Modify Address

General Description: This library routine makes it
possible to modify addresses with two addresses, or
a single address when ::\IA hardware is not available.
The library entry is shown in Figure 77.

Label Operation
6 15162021 all :so ~. 65 70

M,A.1),)(,)(I-I.EA.1I.R

.I{,o,o 5.w . IlCo.p,,- t!

. .& Ileo i ,):(0,8

r.w. J(0./>"-.2-

Is.tol 1)%.0 A -.1.'.):(.05
A)loA X.o,S
1f'.W Ilr.o A -,2.. 'i as
l4)f a I

Figure 77. Library Entry for MA Macro

The programmer:

1. VV rites the mnemonic operation code (MA) in the
operation field.

2. May write a label in the label field.

3. VVrites the macro-instruction with one or two para­
meters.

The processor:

1. Selects the model statements indicated by the sub­
stitution and condition codes in the library routine
and the parameters in the macro-instruction.

2. Inserts the label (if any) in the first model state­
ment used in the object routine.

Result: A group of tailored symbolic program entries
is inserted as an open routine behind the macro­
instruction in the source program.

Examples: Figure 78 shows the MA macro-instruction
with parameters for both A- and B-addresses. The
symbolic routine developed by the processor is also
shown.

Label QperatiOl1 OPERAN
6 1516 20 I 25 :so :S!! 40 45

D

Macro Instruction

A)" T.EF<.A M,A, F' EJ.. P.A" FIE. LP,B,

Assembled Symbolic Progrom Entries

ALTERA SW FIEIDB-2
A FIEIDA, FIEIDB
CW FIEIDB-2

Figure 78. MA Macro with Two Parameters

Figure 79 shows the MA macro-instruction with a
parameter for the A-address only. The symbolic rou­
tine developed by the processor is also shown.

30

Label 15 ~perati~ 21
OPERAN

6 25 :SO 35 40 45
D

Macro Instruction

A L T E.R.B M,A IFIEL.pA

Assembled Symbolic Program Entries

ALTERB SW FIELDA-2
A FIELDA
CW FIELDA-2

Figure 79. MA Macro with One Parameter

The System Tape
The Autocoder system tape contains the Autocoder
processor and the library entries which can be ex­
tracted by macro-instructions. All library routines must
be stored on the system tape in alpha sequence. The
IB::\1 1401/1410 standard collating sequence must be
used.

Insertion and deletion of all or part of a library
routine can also be made. The INSER and DELET state­
ments are used for these purposes. The PRINT and
PUNCH statements produce listings and punched card
documents containing the library routines.

DELET - Deiete

General Description: This entry deletes a library rou­
tine or parts of a library routine from the library
tape.

The programmer:

1. vVrites the mnemonic operation code (DELET) in
the operation field.

2. Writes the name of the library routine in the label
field.

3. ",Trites, in the operand field, the number of the
model statement to be deleted. If a whole routine
is to be deleted, the operand field is left blank. If
more than one model statement of a continuous
sequence is to be deleted, the first and last numbers
must be written separated by a comma.

The processor:

1. Deletes the model statement or statements speci­
fied in the operand field.

2. Lists the action taken.

Result: The new library tape contains the modified
library routine.

Examples: Figure 80 is a DELET statement that will
cause the whole COMPR library routine to be re­
moved from the library.

Label

(!.ot1PR.

Figure 80.

~perati~
15~E L. £;21 :so 35

Deleting an Entire Library Routine

40
OPERAND

45

Figure 81 is a DELET statement that will cause the
first model statement to be deleted from the CO~fPR
library routine.

Label ~perati~ 1:lJ! $21 30 35 25

CUI-li'R

Figure 81. Deleting a Single Model Statement

40
OPERAND

45

Figure 82 is a DELET statement that will cause model
statements 2, 3, 4, and 5 to be deleted.

Label ~perati% 1:116 0 I 5

.EJ..En~ 5 ~ ,

35

COM fg

Figure 82. Deleting Multiple Model Statements

INSER - Insert

40
OPERAND

45

General Description: This entry inserts a whole library
routine or part of a library routine in the library
tape.

The programmer:
1. Writes the mnemonic operation code (INSER) in

the operation field.
2. \Vrites the name of the library routine in the label

field.
3. Writes the line number of the model statement

after which the insertion is to be made. If two
operands, separated by a comma, are written, the
implied deletion will take place.

The processor:
1. Deletes model statements, if necessary and in­

serts the new model statement (s) in the library
routine.

2. Lists the action taken.

Result: The library tape contains the modified library
routine.

Examples: Figure 83 is an INSER statement that will
cause a library routine named COMPR to be inserted
in the library tape.

Label
30 35

(] 1)11 P R.

Figure 83. Inserting an Entire Library Routine

40
OPERAND

45

Figure 84 is an INSER statement that will cause new
model statement 1 to be inserted in the COMPR library
routine.

Label

ri~ I I 0 I 5 0 5 40

: ~ : :

OPERAND
45

Figure 84. Inserting a Single Model Statement

Figure 85 is an INSER statement that will cause the
first model statement that is presently in the library
routine to be deleted and the model statement shown
below to be inserted in its place.

Figure 85. Substituting One Model Statement for Another

Figure 86 is an INSEH staterrle!li tllat causes !!!fJdel
statements 1 and 2 to be deleted and the model state­
ments shown below to be inserted in their places.

Figure 86. Substituting ~1ultiple Model Statements

PRINT - Print Library Routine

General Description: This entry causes the processor
to list a library routine with sequence numbers as­
signed as follows: HEADR Statement, 00; First Model
Statement, 01; Second Model Statement, 02; etc.

The programmer:
1. vVrites the mnemonic operation code (PRINT) in

the operation field.
2. Writes the name of the library routine in the label

field.

The processor: Extracts and lists the library routine.

Result: The line numbers can be used for making in­
sertions and deletions to the library.

Example: The statement shown in Figure 87 causes
the CO~IPR routine to be listed by the IB~1 1403
printer.

Label OPERAND

, I

~5 40 ~5
(J,0'!1.p,£

Figure 87. PRINT Statement

PUNCH - Print and Punch Library Routine

General Description: This entry causes the processor
to list and punch a specified library routine.

The programmer:
1. Writes the mnemonic operation code (PUNCH) in

the operation field.
2. Writes the name of the library routine in the label

field.

The processor: Extracts, lists, and punches the library
routine.

31

Result: The user has a numbered listing and a deck of
cards containing all entries in the library routine.

Example: The statement shown in Figure 88 causes
the library routine called CO:r..IPR to be printed and
punched.

label OPERAND
40

:~ a.o.M PfI.

Figure 88. PUNCH Statement

Additional Language Specifications

Machine Language Coding

To permit the user to code instructions for systems
equipped with special features and devices that are
not otherwise handled by the 1401 Autocoder mne­
monics, actual operation codes and d-characters may
be written in Autocoder imperative statements.

The programmer:
1. Writes in column 19 the actual machine language

operation code for the instruction. Columns 16, 17,
and 18 must be left blank.

2. Writes in column 20 the d-character in actual ma­
chine language. If no d-character is needed, column
20 must be left blank.

3. May write a label in the label field as described
in Imperative Operations, Programmer Step 2.

4. Writes in the operand field a blank, actual, sym­
bolic, or asterisk address, or a literal or address
constant. The operand field must not contain the
d-character. The actual address of an input-output
unit must be used unless the actual address has
been equated to a symbol. For example,

lABEL OPERATION OPERAND

MR %Ul, INPUT or
TAPE 1 EQU %Ul

MR TAPE1, INPUT

are correct but,
MR 1, INPUT is incorrect

RAMAC Operands
®

In Autocoder statements that use mnemonic operands,
it is not necessary to specify the A -operand, and it is
incorrect to use a comma to indicate that the A-address
is missing. Thus, the statement

LABEL OPERATION

RD
OPERAND

INPUTA

results in M %FI xxx R which reads a single record
without word marks into a core-storage area whose
high-order position is xxx. Two other Autocoder state­
ments could be used to achieve the same machine

32

language instruction:

LABEL OPERATION

MCW

MR

Auxiliary I/O Devices

OPERAND

%Fl, INPUT A, R

%Fl,INPUTA

or

Input and output devices are available with 1401 sys­
tems for which unique mnemonics are not provided.
The programmer may use the actual operation code or
existing mnemonics in Autocoder statements that in­
volve these devices. For example:
1. READ FROM CONSOLE PRINTER WITH WORD MARKS,

statements:

LABEL OPERATION OPERAND

LCA %TO, INPUTB, R or
CONPR EQU %TO

LCA CONPR, INPUTB, R or
LR CONPR,INPUTB or
LR %TO,INPUTB

produce the actual machine language instruction

1:. % TO xxx

2. For SELECT STACKER 9 on Magnetic Character Reader
statements:

lABEL OPERATION

SS

KL

OPERAND

L or

produce the actual machine language instruction K L.

3. For ENGAGE optical-character-reader statements:

LABEL OPERATION OPERAND

CU %S2,E or
OPTRD EQU %S2

CU OPTRD,E or
UE OPTRD or
UE %S2

produce the actual machine language instruction
.Q 0/0S2 E.
4. For MOVE CHARACTER TO TRANSMITTING 1009 Data

Transmission Unit statements:

LABEL OPERATION OPERAND

MCW %01, INPUTC, W or
OTUNIT EQU %01

MCW OTUNIT, INPUTC, W or
MW OTUNIT,INPUTC or
MW %Ol,INPUTC

produce the actual machine language instruction
M %DI xxx W.

Processing Overlap

Because the A-address required for an overlap opera­
tion (@xx) contains the @ symbol which the 1401
Autocoder recognizes as the leftmost end of an alpha­
merical literal, special coding is required for state­
ments which use the processing overlap feature. To
code overlap instructions in Autocoder, it is recom­
mended that the programmer use the macro facility of
Autocoder until mnemonics for these instructions are
made available. A typical library routine and macro-
instruction to read a tape record in the overlap mode
are:

LABEL OPERATION OPERAND

RTOXX 3, INPUT

RTOXX HEADR

DCW @lM@U nOl@l

DC IlO2

DC @lR@l

The macro-instruction will cause the machine-lan­
guage instruction ~1 @ US xxx R (where xxx is the
equivalent address of IKPUT) to be inserted into the
object program.

33

Index

Actual Address
Additional Language Specifications
Address Constants
Address Types
Alphamerical Constants
Alphamerical Literals ...
Area-Defining Literals .. '
Asterisk Address
Auxiliary Input/Output Devices

Blank Address
Blank Constants

5
32

7,8
5
8
6
6
5

32

5
8

CALL Macro
Call Routines
Coding Sheet

.................... , 25

Comments

25
2

CTL - Control
5

14

DA - Define Area 9
8
7
7

DC - Define Constant (No Word Mark)
DCW - Define Constant with Word Mark
Declarative Operations
Definition of Terms (Macro System)
DELET - Delete
DS - Define Symbol
DSA - Define Symbol Address

END-End
ENT - Enter New Coding Mode
EQU -Equate
EX - Execute

HEADR - Header

IBM Supplied Macros
Identification
Imperative Operations
INCLD Macro
Index Locations ...
INSERT - Insert

34

20
30

8
9

17
18
11
16

20

25
5

12
.......... 27

7
31

JOB-Job

Label
Library Entry
Line Number
Literal ..
LTORC - Literal Origin

MA Macro - Modify Address
Machine Requirements
Machine Language Coding
Macro-Instructions
Macro-Operations
Macro-Processing .. '
Macro System
Mnemonic Operation Codes
Model Statements

Numerical Constants
Numerical Literals

Operand
Operation
ORC - Origin
OVLAY Macro - Card Overlay

Page Number ...
Processing Overlap
Processor Control Operations
Programming with Autocoder .. .

14

4
20
4
5

16

30
1

.32
24
20
27
20
3

21

7
6

4
4

15
29

4
................. 33

14

PRINT - Print Library Routine
2

31
31 PUNCH - Print and Punch Library Routine

RAMAC Operands

SFX - Suffix
Symbolic Address ..'
System Tape ...

TOVLY Macro - Tape Overlay

XFR - Transfer ..

32

17
5

30

29

........ 17

International Business Machines Corporation
Data Processing Division
112 East Post Road, \Vhite Plains, New York Printed in U.S.A. J24-1434-2 620620MVO

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36

