
TECHNICAL
INFORMATION
ElC-CHAN(jE

, BASIC CODIN'G TECHNIQUES FOR

THE 1401 COMPUTER

David A. Barrett
Associate .Systems Engineer
IBM Israel Ltd.
15, Lincoln Street

; Tel-Aviv, Israel

IBM CONFIDENTIAL

This paper is in the author's original form.
The objective in providing this copy is to

. keep you informed in your field of interest.
Please do not distribute this paper to persons
oqtside the Company.

Distributed by
DPD Program Information Department
,IBM Corporation
112 East Post Road
White PI,ains, New York

TIE 4-0064
March 24, 1964
74 pages

TIE 4-0064

TABLE

CONTENTS

Introduction

Section I

Add

Zero-Add

Subtract

Zero-Subtract

Unconditional ':Branch

Branch if Indicator on

Branch if character equal

Branch if word~arkor zone

No Operation

Compare

H8l.t

Clear Storage

Set & Clear Word~ark

Move

Move with zero suppressi~n

Move numeric, move zone

Load

Ed. it

Head, :Punch, Print

MultipJ.y

OF CONTENTS

PAGE -
2

4

4

6

7

8

9

10

11

12

14

15

21

22

23

24

25

26

27

28

29

31

CONTENTS

Section I (continued)

Divide

Modify Address

Store A-, B- address

Section II

Address Modification and XRs

Subroutines

Magnetic Tapes

Tables, Table hook-up

Diagrams

Fig. 1

Fig. 2

33

35

;6
42

42

46

6;

66

70

70

71

Abstract of Pa~

Basic Coding Tec~niques tor the IBM 1401 Computer.

David A. Barreiit

26th February l.964

Direct Inquiries to : David A. Barrett,
I:eM (Israe~) Ltd.,
15, Lincoln st.,
Tel-Aviv,
Israel.

Tel-Aviv 31241

This paper is designed as an educational aid to progra..'l1n~ers

-beginning to work on the IB~ 1401 computer, and it also includes an

analysis of more .advanced techniques of program coding which may be

of interest to more experienced programmers. It is divided into two

.. sections,. the first of which analyses the use of the 1401 instructioh~,

,the second o~ which describez various 140J' programming techniques.

It could be used as a supplement to the 1401 machine manual.

Basic Coding Techniques for the 1401 Computer

INTRODUCTION

It is not always advisable to Jr:estrict programmers to
simple techniques. A short-term advantage may be gained, in
that inexperienced personnel will make fewer mistakes. They
will tend not to over-rea~h themselves.

However, the 1401 computer offers a large number
of alternative methods of carrying out any particular operation.
In different circumstances, anyone of these methods may turn
out to be the most efficient solution, either because it uses up
less of the core storage, or because it will be executed faster.
When a programmer is able to condense a sequence of instructions
into a very small seetion of core storage, he is making room
for extra instructions and is effectively expanding the power of
his machine. In the same way, time-saving techniques increase
the effective speed of the machine. Such additions to the power
and speed of the 1401 can be quit~ significant.

Tight programming will also have a very be"neficial
effect on the morale of the installation which employs it.
Programmers gain a thorough understanding of their computer,
and make fewer mistakes in the simpler types of operation.
They also find themselves confronted with the problem of not
only making a program work. but of making it work efficiently .
This makes every program intrinsically more interesting, and
adds "to the concen~ration which they can bring to its solution.

Programmers should accustom themselves to the use
of storage -- or time-saving techniques as often as possible, so that
they may be entirely familiar with them when the need arises.

The potential IBM customer is advised to select
a team of trainee programmers, on the basis of various aptitude
and intelligence tests. These trainees are subjected to intensive.
IBM courses. Those who achieve high ratings on the course are
retaif:led as programmers by the customer, and are expected
to begin writing actual programs for their installation immediately.
Subsequent additions to the programming staff undergo a similar
training. but benefit to a real if small degree from the adv.ice of
their by now more experienced colleagues. Naturally the
customer requires that his installation be operation~l as soon
as possible, and the programmer training is designed with this

4t •• 2

end in view. Therefore, graduates of the courses have not h~d time
to absorb more than the essential principles. In time they w:n
build up a fund of experience in the avoidance of errors and the
creation of elegant coding techniques. This paper is intended to
offer advice on the avoidance of the more common programming
errors, and to introduce inexperienced programmers to some
of the more complicated operations which are possible on the 140 1 ~

. Section I offers advice on the, use of each machine
instruction, and would provide a qseful supplement to the standard
1401 machine manual.

Section II suggests solutions to several c()mmon coding
problems,. .

, • ~ • 3

SECTION I

1. The Add Instruction

It is never possible to half-chain an add instruction.
The instruction 'A COUNT' will double the contents
of the area called COUNT. Always use this form of
the instruction to multiply a number by two, so that
this use becomes second nature. It is a common
mistake to try to add a series of scattered data fields
to a series of sequential accumulators in storage
us ing half-cha,ined add instructions.

Let us suppose that COUNT contains an unsigned number.
The instruction 'A *-6, COUNT' will not produce a
zone on the junior position of COUNT. It will operate
exactly the same as 'A @1@' COUNT.

If you are developing series of totals at different
levels, major, intermediate, final, etc., do not add
your data field to each level separately, but arrange
to add the data fields to the lowest level of total only.
When it is necessary to read out the contents of the
minor totals, then add the minor totals before clearing
the minor totals to zero. Where possible, arrange your
totals so that the totals of different kinds are in the
same sequence within each level, so that one level
may be added to the next higher level using chained
add instructions. For instance, using t,he suffix M
to indicate a minor total, I to indicate intermediate,
and F to indicate final, totals of Sales and Receipts
should be organised as follows:

RECF'
SALEF
RECI
SALEI
RECM
SALEM

DCW # 10
DCW # 10
DCW #. 9
DCW ## '9
DCW 1# 8
DCW # 8

so that the minor totals may be added to the inter
med~ate by the phas e:

A SALEM,
A

SALEI

••• 4

Notice also that it is not usually a good idea to define
a total which occurs as part of such a hierarchy with
an area-defining literal.

(A SALEM, SALEI 1# 10) for instance.

For uses of the add instruction in address modification,
see Section II paragrph 1 on address modification
'in general.

If you wish to remove the zones from a field.. and
replace all blanks with zeroes.. this may be
accomplished by the following instruction:,

A . @O@, FIELD

This w:ill not clear zones from. the high-order or the
low-order position of FIELD.

On machines with less than 16 .. 000 positions of memory
it is not advisable to add into the highest accessible
position of storage. If the sign of the B-field is changed
by the add instruction, a process check will occur.
For example .. on an 8K machine, positions 7998 and
7999 contain 05 (ON). The instruction A@ 6@ .. 7999
will cause a process error under these circumstances,
because the recomplement cycle will try to access
position 8 .. 000 .. causing a wrap-around check.

If you us e the common technique of us ing part of
an instruction as a constant in an add operation.. for
instance, A *-6.. COUNT, make sure that the
constant has a word-mark in position. For instance ..
. do not expect the following sequence of instructions
to add five to a field called' COUNT:-·

A * + 8, COUNT 1# 5
BCE LOOP, F·IELD, 5

••• 5

2. The Zero and Add Instruction

The instruction ZA -FIELD will remove zones from the
middlle positions of FIELD and produce a zone on the
junior position of FIELD. It will not produce zeroes
in the high order positions of FIELD if these were
originally blank~ This can be accomplished by the
instruction A @O@, FIELD._

The instruction ZA FIELD is often used before a
divide instruction, to ensure that the field is in the
correct format for the divide instruction (zone' on
junior position only)"

••• 6

3. The Subtract Instruction

Many of the comments made in Section I paragraph 1
also apply to the subtract instruction. Add and
subtract are very similar in operation.

The instruction S TOTAL is often used to clear a
field to zeroes. It should "be noted that this
instruction, besides clearing the field 'called TOTAL
to zeroes, will also produce a sign on the junior
position of that field, which may be plus or minus
accord:ing as the previous state of the field was positive
or negative. This can be significant in case th~
sign of the field has some special meaning in the program .

• • • 7

4. The Zero and Subtract Instruction

Do not be confused by the mnemonic.
ZS TOT AL will not clear the field • TOT AL' to zeroes.
The instruction to accomplish is S TOTAL.

Remarks in Section I paragraph 2 are also applicable
to this instruction.

. .. 8

5. The unconditional Branch Instruction

Remember that on a machine with the advanced
programming feature, when any branch instruction is
fulfilled, the B-address register will contain the
address of the next sequential instructiQn after the
branch.. This is very important for the correct
understanding of subroutine linkages on the 1401.

On machines of less than 16,000 memory positions, the
fourth character of an unconditional branch instruction
may not be in the highest accessible core location,
as this will cause a wrap-around process error when the
branch comes to be executed.

A branch inst,ruction must be followed by a blank or
by a word-mark. Any branch instruction which is not
four, five, eight or one characters in length will
either cause a process check (length 3 or 6) or act
as a no~operation instruction.

• •• 9"

6. The Branch if Indicator on Instruction

A subroutine may be called equally well from a
conditional branch as from an unconditional.
In all cases, where the condition tested for is
fulfilled, then the B-address register will finally
contain the location of the next sequential instruction
after the branch instruction, and a subroutine will be
able to exit to the next sequential instruction in the
normal manner. However, be careful to avoid the
following quite common mistake. Assume a situation
where an error condition is tested for. If, for
instance, two fields are unequal, there has been an
error in the input data. If the fields are equal,
then all is well and you now wish to call a subroutine.
Be careful to use this sequence of instructions:-

C FIELDA, FIELDB
BE * + 5
H * - 3
B SUBR

and not' this one:-

C FIELDA, FIELDB
B.E ·SUBR
H * - 3

Whereby the subroutine will exit to the error halt
instruction!

••• 10

7. Ihe Branch if Character Equal Instruction

Notice that this instruction may also be used to
call a .subroutine in the normal manner.

Notice also the example in the 1401 manual whereby
an entire field may be checked for the presence of a
particular character, by using"a fully chained branch
instruction. This sequence of instructions will check
whether there is a blank in any of the core locations
7·6 through 80. It can not be used to check that all
core locations 78 through 80 do contain blanks. It
is essentially a negative rather than a positive test,
because .the first fulfilled branch will cause an
exit from the routine.

BCE ERROR. 80,
CHAIN 4

If it is required to check that all the positions
76 through 80 are blank, then either use a compare,
or with the column binary feature:-

BBE ERROR, 80,:1=
CHAIN 4

Where the symbol $ repr.esents the bit configuration
(13A 8421) - the group mark.

The fact that the B-address register chains down one
location after a BCE that has not resulted in a branch
can be very useful. The same applies to all eight
character branch instructions. - (BBE, BWZ).

One difficult thing to do on the 1401 is to check a
single position of storage for various characters.
This can be accomplished as follows: assuming that
there is a word-mark under the CODE to be tested,
and that we wish to test for A, 6, 9, Q or. O.

MCW
BCE
CHAIN

CODE. * + 8
YES, @A69QO@,.
4

It is not possible to combine the BCE 8-position
instruction and the BU 5-position instruction into a
hybrid which says, for instance, BU ER.ROR. 80,
1 as I have sometimes seen done.

• •• 11 ·

8. The Branch if work-mark and/or Zone Instruction

The most common use of this instruction is to test
for the presence of a work-mark, or to test for
the presence of a minus zone. Both these operations
have extended mnemonics in autocoder, so that it is
not necessary to write the d-modifier. Thus

:SWZ LOOP1, 80, K
:SWZ . LOOP1, 80, 1

are equivalent to

:SM LooPl, 80
:SW LOOP1, 80

respectively.

It i.e still necessary to write two addresses for
the BM or BW. -

It is not possible to half-chain a BWZ instruction.
A four position BWZ, when followed by a work-mark,
operates exactly as an unconditional branch under
the same circumstances. Thus

:8 LOOP
NOP

is equivale'nt to

BWZ
:NOP

LOOP

A BWZ may of course be fully chained in the same
way as a BeE or BBE.

There are nine possible d-modifiers to the BWZ
instruction, and these are made up as follows:-

If it is required to test for a I work-mark, a
one-bit is included in the D-ll)odifier. If it is
required to test fora zo~e, a two bit is included
in the D-modifier.

• •• 12

If a two bit is included in the d-modifier, then
the A-B bit configuration of the zone to be tested
for must be added to the d-modifier. If a one and "8.

two bit occur simultaneously in a d-modifier, the
presence of a word-mark .2! the presence of th~
required zone will cause the branch to become
effective.

. .. 13

9. The no~operation instruction

Note that the NOP inst,ruction may have any length
except a-characters and 6-·characters. This, the
following instructions in storage would both cause
a process check:

li. 1 1 !!.. 00000

Notice also that the A- and B-address registers are
changed by a NOP instruction, and therefore the A
and B-addresses, where they exist, must'be valid
addresses for the machine you are using.

• .• 14 ,

10. The Compare Instructio,!!..

CBIG

One of the most common programming slips is to
follow a compare instruction by the wrong conditiona~
branch. Be very sure to understand that:

BH tests for the B- field greater than the A- field.

BL tests for the B- field less than the A-field in the
proceding compare instruction.

Numbers are not compared algebraically by the compare
instruction.· Thus, a negative number may be considered
to be greater than a positive number. The result of
the compare depends upon the alphabetic collating
sequence, shown at the end of the 1401 manual.
Remember that a number with a zone is equivalent
to an alphabetic character, and it is this aspect
of the number that is considered by the compare
instruction.

This creates a problem when comparing one number with
another, if the numbers involved may have different
signs. The safest technique to use in this case is
to compare one number with the other and test for the
equal condition, and then subtract one number from
the other and test for a minus zone on the result.
For example, to compare the algebraic values of two
numbers, C and D, the following routine could be used.
It is assumed that the fields C, D and E are of the .
same length, and that both C & D have a sign and
leading zeroes, not blanks.

C C, D
BE EQUAL
ZA C, E
S D, E
BM DBIG. E

Notice that, if the test for equal compare is omitted
initially, the program may go to either DBIG or CBIG
when C = D,depending on whether the sign of C, D
is negative or positive.

• •• 15

If it is not known whether C and D have a sign
when positive or whether they have leading zeroes
or blanks, then the following routine must precede
the one shown above. .

s @O@, C
S @O@, D

which will a) fill in leading zeroes

b) remove all zones except on the high
and low order positions.

c) create a zone on the low-order positiot)
if it is abs ent .

If two fields of unequal length are compared, and the.
B-field is longer than the A-field, the result will
always be B greater than A.

If it ia necessary to compare a sub-field with no
word-mark in its left-hand position with a field or
constant wi.th a word-mark, then the field with the
word-mark must always be specified in the B-address
of the compare instruction. Thus, unless there is a
word-mark in position 80, the following instructions
will always be a valid test for the number eleven in
me:mory positions 79 and 80 :-

C 80, @11@
BE ELEVEN

Quite often a compare instruction may be used for
purposes other than comparing two numbers. The
compare instruction may be used to search for the
word-mark in a variable length field without affecting
that data in any way. For instance, the 'series of
instructions: .

C FIELD
SBR ADDR

will store the address of the memory location
imrnediately to the left of the first word-mark,.
encountered in 'FIELD'. Consider the following
applications.

. •• 16

Let lllS assume that is necessary to scan through a
small file of cards, each of-which contains a name
in columns 11-80. Furthermore it is worth while.
storing these names variable length because there is
only room in storage for all the significant
characters of the names, and not for the blanks which
pad out the shorter names.

The object of scanning this file is to check for
'names which occur on more than one card, and print
out duplicates when they occur. Providing that the
file is small enough, thi.s could be done as follows:

Store a1l names in a table in storage, from the top
of core downwards. When a new card is read in, find
the last character of the name, and compare the
name with every entry in the table. If an equal
comparison occurs, print the name, if no equal
comparison occ'urs before the end of the table, the
name must be added to the table.

We sha1l use index register one to contain the address
of the location immediately to the left of the last
name stored in the table, index register two to

. contain the address of the name we are comparing against
in the table, and index register three to contain the
address of the rightmost character of the name in the
card" Initia1ly, index register one will be set to .
the topmost position of storage: Names may be from
one to 70 characte rs long, and will contain only
alphabetic characters.

START SBR 89, 15999
SW 11, 87

LOOP 1 R
SBR 94, 15999
SBR 99, 80

LOOP2 C 0+X3, BLANK
SAR 99
BU FOUND
C 99, @10@

••• 1 7

BLANK
FOUND
LOOP3 .

NE~XT

INSERT

BU
H
DCW
SBR
C
BE
C
BU
C
BU
MCW
W
CS

'B
C
SAR
B
LCA
SBR
B

LOOP2

@b@
99, 1+X3

. 94, 89
INSERT
0+X3, 0+X2
NEXT
0+X2, 0+X3
NEXT
0+X3, 299

299
LOOP1
0+X2
94

' LOOP3
0+X3, 0+X1
89
LOOP 1

Do not attempt to compare two addresses to discover
whether one is greater than the other, unless both
addresses must be less than 1, 000. One rather
cu.mbersome method of comparing addresses is as
fo1.1ows:- To find out if ADDR A is greater than
ADDR B. There are word-marks' in ADDRA-2 and
ADDRB-2'o

The machine has 16, 000 position of memory.

LOOP

MCW
MCW
MCW
MCW
MCW
MCW
MN
SBR
MCW
C
BE
C
BE
B

ADDRA, LOOP + 3
ADDRB, 89
@:F@, 15998
0+X1, STORE # 1
@ @, 0+X1
o

LOOP + 3
STORE. 0+X1
LOOP + 3, ADDRB
NO
LOOP + 3, ~I9H@
YES
LOOP - 7

•.• 18

Notice that you' may chain a compare ac"ross a
B-field word-mark and still obtain a valid result·
for the whole double field. Thus

C
C

FLDA, FLDB

will compare all of FLDA with all of FLDB quite
validly if FLDA and FLDB are of the same length,
but there is an extra word-mark in the middle of FLDB.
This is because a compare instruction does not reset
the HLE indicators to equal until the 3rd position
of a compare instruction is loaded into the registers.

There are two particular applications of the
compare instruction that may be handled in slightly
unusual ways. The first occurs when you wish to
test a long field to see if it contains the same
character in every location. More us'ually, if you
wish to test an' entire field to see if it is completely
blank. It would be possible to compare the field
with a blank constant of the same length, but in
the cas e of long fie Ids, this' means defining a
large blank constant. An (elegant method of testing
a whole ~ield for blanks is as follows:-

COMP

BLANK

BCE
B
C
BU

COMP, FIELD) /.,..
NOTBL
FIELD, FIELD-1
NOTBL

The second occurs when you wish to discover whether
a field has the algebraic value of zero. The field
may contain plus zero, minus zero,,; bla~s, or just
plain zero. A, good way of testing for this condition

. is as follows:

MCS
BCE

FIELD,
ZERO.

332
332, "

assuming that the B-field of the MCS contains no
valuabl,e information, , and is at least one position

••• 19

longer than the A-field. If the field to be tested
r.nay contain a blank in the low-order position, but
significant digits in other positions, then the
following instruction should precede the above
instructions:

A @O@, FIELD

••• 20

11. The Halt Instruction

The important thing to remember about the halt
instruction is that the operator must be able to
recognize why the halt ()ccurred, and he must have
some easy way of restarting the machine where
pos8ible.

Since most installations now use the setting of the I-address
register to identify a halt, the same halt instruction
should not be used for lnore than one error condition.
The halt should normally be a halt and branch, which
will branch back to the restart point.

Other methods of identifying halts are to include
an .A- and B-address to the halt, giving an identifying
number in the A- and B-address register, which
the operator may display, or by using a 2-position
halt with an identifying d-modifier. These halts
should be followed by an unconditional branch back
to the restart position.

" •• 21

12. ~Clear Storage Instruction

Notice that the B-address register after the operation
of this instruction, is set to the nearest hundreds
position minus one. This is especially significant
when clearing storage from a location lower than 100.
The B-address register after operation will contain
the address of the highest memory location on the
machine - 7999 for an SK, 15999 for a 16K, etc.
This means that clear storage instructions may be
chained out of the bottom of memory round into the
top, and, more important, it is possible to discover
the size of the machine on which your program is
operating, by clearing storage from an address less
than 100, and storing the B-address register.

B~ careful not to branch to a single-position clear
storage instruction. It is possible to make this
mistake when patching. Instructions in core may
read ,_ 332/_ ,_ from, say, locations 501-506.

To insert instruction at this point, the' 332 may
be changed to an unconditional branch, the instructions
inserted, and the following sequence take place.

, 332 B 505 to return to the main program.

However, this will normally result in the neat
removal of your patches from memory, and a puzzling
situation at the next program testing. The correct
end to the insertion is, of course, '_332 J.l B 507. .

Remember that the clear storage and branch instruction
really means I br~nch and clear storage' in that the
operands appear in that order.

• •• 22

13. The Set and Clear Word-Mark Instructions

If you wish to set word-marks in-two adjacent
core storage locations, it is more efficient to give
the instructions:- .

'SW FIELD
SW

rather than the instruction SW FIELD, FIELD-l.

In the same way, the instruction SW FIELD. FIELD-2,
may be replac~~ by the series:-

SW FIELD
CW
S W which uses one core location less.

A fully chained set or clear word-mark is sometimes
useful for purposes other than actually setting or
clearing '/'lord-marks. It may be used (as the CW is
in the above example) to reduce the A~ and B-address
registers by one.

• •• 23.

14. The Move Characters to A- or B-word mark Instruction

A very useful application of the half-chaining
'capabilities of this instruction occurs in clearing
a field so that every position in that field contains
a particular Icharacter. It is usually employed with
'zeroes, blanks or nines. Here is an example which
will clear a field to nines down as far as the first
wordo-mark encountered:-

MCW
MCW

@9@, FIELD
FIELD

A whole series of adjacent fields may be cleared in
this manner by adding fully chained MCW instructions.
However, remember that Two extra chained Moves are
necessary for each extra field cleared, unless that
extra field is only one position in 1eQgth.

This should become obvious when you consider that
you are moving FIELD to FIELD-l, FIELD-1 to
FIELD-2 and so on. The first word-mark 'encountered
will stop the operation when it is detected in the B-fie1d.
The B-star will address the word-mark minus one,
but the A-star will address the word-mark. This
word-mark in the A-fie'ld will restrict the next
chained move to one position moved.

NoticE~ that a :field may be shifted up one position to
the right by the instruction MCW FIELD, FIELD+l,
but may .!!2!. be shifted one p'osition left by the instruction
MGW FIELD, FIELD-l.

• •• 24

15. The Move Characters and Suppress Zeroes Instruct~

For the use of this instruction to test· a field
for zeroes, see under 'the Compare Instruction.

Mes will suppress all zeroes in a field, including
the junior position. It sometimes happens that
one zero is required to be printed in case that the
number to be edited is zero. This can be accomplished
by substituting for:

Mes

the instructions

MN
~CS

ACCUM, 299

ACCUM, 299

which ensure that one zero will be printed if the
entire field 1s zeroes.

Notioe that Mea will remove all word-marks from its
B·-field. More especially, the 4-charaoter MeS
instruc,tio'n may be used to MCS Q field to itself.
If you do use it to aooomplish this, then remember
that the defining word-mark ot the field will be
cleared. -

• II .25

16. The Move Numeric and Move Zone Instructions

~Neither of these instructions can be half-chained •
. A four-'position MN or MZ will not change the
contents of core storage in any way whatever. Do
not try to clear the zone from FIELD by giving
'the instruction:

MN FIELD

which will merely take the numeric part of the
location called FIELD and replace it in FIELD,
it will not affect the zone pos ition of FIELD in
any way whatever.

If you wish to move characters from one part of
memory to another, a combination of move numeric
and move zone may be used. For instance, to move
three characters from ·FIELDA to FIELDB regardless

. of word-marks,. the following sequence may be used:-

MN
CHAIN
MZ
CHAIN

FIELDA. FIELDB
2
FIELDA~ FIELDB
2

•.. 26

17. The Load Characters to A word-mark Instruction

,This instruction is useful in loading variable
sized fields into an area used in a subroutine,
for instance. It also provides the neatest method
of exactly duplicating one area of storage into
another. Let us assume that it is necessary to
duplicate locations 600 through 851· into locations
1600 through 1851, including word-marks. It may
be accomplished as follows:-

SWITCH
*+8, 600
SWITCH, 600
89, 0

LOOP

CW
13W
SW
SBR
'I.JCA 600+Xl, 1600+Xl

89, @251@

FIN

C
13E
SBR
B
BW
B
CW

FIN
89, l+Xl
LOOP
*+5, SWITCH
*+5
1600

••• 27

18. The Move Characters and Edit Instructions

Remember that the edit word loaded into the
output are,a before an MCE must contain at least
enough room for the characters of the field to
be edited. It is possible, however, to use a
control word longer than absolutely necessary, and
if many fields of different length have to be edited
to approximately the same format, it is a good idea
to define one edit word big enough to accommodate
the largest of these fields, and use it for all of
them. Care must be taken not to wipe out fields
to the left of the field being edited when using
a larger edit word than strictly necessary. In this.
case it is usually advisable to edit information
into the (for instance) print area from right to
left. That is filling up the print area from right
to left, sO ,that any overlap will be ignored.

• ... 28

19. Reader, Punch and Printer Instructions

Note that it is not possibl,e to stacker select on
the read side when using combiriation Readl Punch
,or Readl Writel Punch instruction. This is why many
standard assembly programs, SPS 'and Basic Autocoder,
for instance, use the inefficient separate read and
punch instructions, with stacker selection on the
read side, rather than using the more efficient
combination instruction.

If a read and branch, write and branch, etc.,
instruction is given with no word-mark following,
the machine wiil execute the 110 instruction and
either come to a process check or scan down core
storage until it encounters the next word-mark,
which it will take as being underneath the operation
code of the next instruction to be executed.

Instruction lengths of 3 and 6 characters will of
course produce an immediate process error.

Note that there is no such animal as a start-read
feed and branch or a start-punch-feed and branch.
These instructions always scan down for the next
word-rnark in storage to find the next instruction to
be executed. They act exactly like a no-operation
in this respect.

Note that the B-address register after a Punch
instruction stands at 181, so that the punch area,
including position 181, may be immediately cleared b
the sequence:-

p
es·

/ Likewise. a print instruction leaves the B-address
register at 333 when the machine has print storage,

4. ';~ ---~o---r~a~ without print storage. So that the print
area may immediately be cleared by the sequence:-

w
CS
CS

If you use this method of clearing the print area,
be sure to place an' ORO ,card in front of your program

••• 29

which will cause your program to start at 334 or 336
as the cas e may be.

ORG ~ or ORG 336 immediately following the
CTL card.

It i~ very dangerous to attempt to select cards into
pocket 8/2 from both reader and punch in the same
program.. Very careful study must be given to the
timing and to the pos itioning of the cards before
this kind of merging is attempted.

• •. 30

20. The Multiply Instruction,

When multiplying together two numbers A, B, the
number of decimal places in the product AB will eq\l~-ll
the s urn of decimal places in A and B. It is often
necessary to round off after a multiply instruction.
If it is important to have the correct sign on the
rounded product, add five to round off before moving
the zone from the junior position of the product
field to the junior position of the rounded product.
If one position only is to be rounded off, it is
possible to use a routine as follows:-

MZ PRODCT. FIVE
A FIVE, PRODCT
MZ @ @, FIVE
MZ PRODCT, PRODCT-1

to round up.

Although the product field length must be equal
to the sum of the lengths of the multiplier and the
multiplicand plus one, the high order position of the
product will always be zero. Be careful when
editing a product field to the print area that the
edit word contains e~ough room to accommodate all
the positions of the product field, including the
high-order zero.

When multiplying a variable by a fixed constant, it
is often not necessary to use a multiply at all.
Many multiplications may be effected by the use of an
add instruction. This is particularly useful when
using a machine which lacks the multiplyl divide
special feature.

Obviously, to multiply by any power of ten, it is
only necessary to insert the appropriate number of
zeroes at the right hand end of the field.

To multiply by two, a four-position add instruction
s.hould always be used.

To multiply by four, two four-positiot:l add
instrtlctions should always be used.

• •• 31

To multiply by eight, three four-position add
instructions should always be used.

Make sure that your field is long enough to take
the increased size of the number when multiplying
in this fashion.

To multiply field by eleven, set a zero in field + 1
and give the instruction A FIELD, FIELD + 1.

To multiply FIELD by nine, set a zero in FIELD + 1
and give the instruction S FIELD, FIELD + 1.

T.here are many other possibilities of this kind
for multiplying a variab;e by a given·constant.

Be careful of the sign control when using techniques
similar to the above.

• •• 32

21. The Divide Instruction --------------------
This is the instruction which seems to cause
inexperienced programmers the most trouble. Here
are a few simple rules for division. We wish to
divide a number A into a number B. A is the divisor,

,B the dividend, and Q the quotient we expect to
obtain. We must set aside a work area for our
division in the following manner. Let al be the
length of the field "AH in storage, and bl be the
length of the number "B" in storage. Also let
ad be the number of decimal places in the number A,
bd be the number of decimal places in the number B,
and gd be the number of decimal places we require in
our result Q. In this case, the length of the work
area we define for our division must be equal to or
greater than:

al + bl + gd - bd + ad + 3
and it must contain a 'word-mark at the left-hand end.

I shall separate the operation of division into two
StE~pS. The second step is always the same. The
first step may take one of two possibilities,
depending on the value of (Sd - bd + ad + 2).
Let d = (..9d - bd + ad + 2), then if d is zero or
negative, the first step of a division should be as
follows:-

. (NB-:- Instructions marked with an asterisk should only
be included if the sign of the result is important).

*
*

ZA
ZA
MZ
D

B
B+(d), e
B j C
A, e - (b 1 + d -)

If d is positive, then the first step should be
executed as follows:

* ZA B
S e
MeS B, e - (d)

*, M4 B, e
D A, C - (bl + ~ -,1)

.••• 33

The second step is always:-

*
A
MZ

@ 5@, C - (a 1 + 2)
C - (a1 + 1), C - (al + 3)

and the result, with the correct number of decimal
places, and sign if required, is in the field C, with
the low order position in the location e - (al + 3).

The re:mainder will be in the locations e through
e - (al - 1).

To takE~ a particular example, we wish to divide the
six digit field B (format xxxx. XX) by the four digit
field A (format XX. XX). We want the result to two
decimal places, stored in the location Q. A and B
may be positive or negative, but we are only interested
in the magnitude, or absolute positive value, of BI A.
We d~fine a work-area e at least fourteen positions
long, and proceed as follows:-

s
MeS
D
A
MeW

e
B, e - 4
A, e - 9
@5@,C - 6
e - 7, Q

If we required the correct sign on Q, the instructions
would have been:-

ZA
S
MeS
MZ
D
A
MZ
MeW

B
C
B, e - 4
B, e
A, e - 9
@5@, C - 6
e - 5, C - 7
C - 7, . Q

••. 34

22e ~Modify Address Instruction

The modify address instruction ignores word-marks
in the A- and B-fields; it operates on the three
characters at the A-address and the three characters
at the B-address, ignoring the zone at A-1 and B-1,
leaving it unchanged. When you wish to increase" a
number by some amount less than 100, remember not
to give instructions lik~:-

MA @10@, ADDR
MA @5@, ADDR

they must always be:,,":

MA @010@, ADDR
MA @005@, ADDR

When using a literal in the A-operand of a modify
address instruction, always use a three character
alphabetic lite ral, between @ signs.

Like'wise you must write

MA . @S51@, ADDR
NOT

MA @1251@, ADDR

••. 35

23. The Store A- and B-address Register Instructions

These instructions are used when you wish to store
the contents of the A- or B-address registers at a
particular point in the program.

They may often be used in a kind of chaining routine,
where, for instance, a long series of accumulators
must be set to zero. Supposing that there are one
hundred ten-position accumulators sequentially in
storage to be cleared, the·first of these is labelled
FIRST. and the last LAST. It would be possible to
give the instructions:-

S
CHAIN

LAST
99

which are rather wasteful of core storage. One
method, using a store register instruction would be:

MCW +LAST, *+4
S 0
SAR *-4
C *-11, + FIRST
JBU *-19

Notice, however, that it is not possible to s'tore
both the-A- and B-address registers after an
instruction, as the SBR will destroy the contents of
the A-register and the SAR will destroy the contents
of the I~-address register. In this case it is
necessary to repeat the instruction, storing one
register after each repeat:·-

lVICW
SAR
lVICW
SBR

A, B
ADDRl
A. B
ADDR2

or, in case this is not possible, for instance
after an add or subtract instruction,_ the word-mark
:in the field whose register setting was not stored
may be found by a compa~e instruction, thus

•.. 36

A A, 13
SAR ADDRl
C B
SAR ADDR2

Apart from these obvious uses, the SBR in particular
has some very useful applications.

A seven-character ,SBR instruction will act in the
normal SBR manner, except that the B-address of the
SBIl will fill the B-address register. Thus, if you
want to store a particular address somewhere, it is
very useful to be able to employ the ,SBR, which
reduces the necessity for address constants.
In the example above, to clear 100 accumulators
in storage, I used an instruction to set up the
address of the first accumulator to be cleared as
follows:-

MCW +LAST, *+4

This could be equally well replaced by the instruction:

SBR . *+4, LAST

which does not neet an address constant, and does
not need to worry about wO:r:'d-marks.

The B-address of the SBR does not have to be a symbolic
address. If you wish to set an index register to, say,
10, the instruction

SBR 89,10

will do this for index 1.

Remember, however, that the B-address of the
7-characte r SBR must indicate a valid machine address
for your machine. .

One extremely useful application of the 7-character
SBR is in incrementing index registers. To increase
index register 1 by one, you need only give the
instruction

SBR 89, l+Xl

.' •• 37

This works as follows, the contents of index 1 are
added to the B-address in the normal indexing
manner, and the results of this are stored back into
locations 87 through 89, which are, of course,
index 1.

On a 16, 000 position machine this technique may also
be used to decrease an index register.

SBR 89, 15999 + X 1 will decrease the contents of index
register one by one.

This technique may not be used for decreasing on
index register on machines of less than 16, 000
positions, because an invalid address would be
created within the B-address register. On such
machines, ~~ modify address instruction should be used
instead.

A 4-·character SBR does not alter the contents of the
B-address register, so that a 'I-character SBR followed
by a series of 4-character SBRS will store the same
address in Inany places. For instance, one way of
setting all three indexes to zero would be as follows:-

SBR 89,0
SBR 94
SBR 99

Be careful not to enter such a routine at any point
other than the first instructiono

The most common use of the 4-·character SBR
instruction is as the first instruction of a subroutine.
Any branch to that subroutine will contain the loca
tion of the next sequential instruction after the
branch -: 1. e., the return address - in the B-address'
register. This must be stored immediately by an .
SBR, . as the exit address after the subroutin.e has
finished.

For example, here is a subroutine intended to skip to
printer channell, Print a leading sequential page

num.be r, and space 2.

• •• 38

OVSUB

OVEX

SBR
CC
A
MCW
CC
MCS
W
CS
CS
B

OVEX + 3
1

. *-6, PAGE
HEDLIN. 300
T
PAGE, 332

o

At any point, the programmer may write BCV OVSUB.
which will cause the machine to do nothing except on
page overflow, where it will cause the machine to skip
to a new page; and exit to the next instruction after
the BCV OVSUB instruction.

• •• 39

24. ,The Branch if Bit Equal Instruction

This instruction is part of the column binary
feature. Apart from its use in testing and coding
binary bit structures, it may have extensive
application in testing for a range of valid codes in
a particular location.

The most obvious use of this instruction is to test
for an odd or even number, thus

BBE ODD, NUMBER. 1
EVEN

When using the BBE to test for a valid range of codes,
great economies in core storage can be made, but
great care must be taken. For instance, if a
particular card column must contain one of the odd
numbers - 9 through 9 (X-overpunch when negative, no
zone when positive), it could be effected by a string
of ten BCE instructions or as follows:

MZ
BBE:
BBE

ERROR H

*-6, *+8
ERROR, CODE,
OK, CODE, 1

However, this would let through a series of special
characters, such as the full stop, number sign, etc.,
which also contain a l-bit. Make sure that your
tests are necessary and sufficient. A full series of
tests for the above would be as follows:-

MZ *-6, *+8
BBE ERROR, CODE,
BBE; TEST1, CODE, 8
BBE; OK, CODE. 1

ERROH. H
TESTl BCE OK, CODE, 9

BCE~ OK, CODE. R
B ERROR

OK

which is still more economical than ten BeE
instructions.

• . ·40

Notice the difficulty illustrated above in testing
for an A-bit. There is no punched character which
can represent a solitary A-bit, and the correct
d-modifier has to be (created by programming. If y -)u
are pushed for storage, this can of course be done
during an ove rlay •

Be careful when testing a code for negative characteris tics
only. In other words, if the code contains a particular
bit it is not valid. Suppose that a particular code must
be one o1'1iie digits 1 through 7, and must not have a
zone. The series:-

BBE ERROR, CODE, 8
BBE ERROR, CODE,. &

would seem to be an accurate test of the validity
of. the code.

However, we have implied that a blank would be an error .
in this position, and a blank would easily pass the ~
tests shown above. When using BBE to test for
invalid characters, be careful to ascertain how a
blank will be treated by the series of test instructions
that you devis e .

Note also that the instruction:

BBE LOOP, CODE. 3

for instance, will branch to loop if the code
contains either a two-bit or a one bit or bqth.

Characters in the d-modifier which consist of
more than one bit- cause the instruction to test
for the presence of any combination of those bits
in the B-field. ' .

Note also. that a zero has the bit structure (8-2).

• •• 41

SECTION II

1. Address Modification and Index Registers

A considerable problem is created by the 3-character
address structure used by the 1401. Only in limited
cireumstances can one increase an address by a
specified amount just by adding that quantity to it.
Addresses greater than 3999 have a zone on the
junior position which is meaningful, in that it
determines whether that address refers to the first,
second, third or fourth sector of storage - defining a
sector as 4, 000 memory positions - so that a
subtract operation, which produces a zone, and
may act as an addition if the address lies between
8, 000 and 11, 999, is obviously out of the question.

There are four main methods of address modification.
The 'first of these and the safest, is to employ the
special Modify address instruction. This is safe
whether you wish to effect addition or subtraction.
Although subtraction can only be possible when you
wish to subtract a certain fixed constant from an
address (it must be represented in its 16, 000
complement form). Thus, decrease ADDR by 5,
can be effected as follows:-

MA @I9E@, ADDR

(where t9E is the address equivalent of 15, 995).

It is not possible to subtract one variable address
frOIn another without using some special routine to
obtain the 16, 000 complement of one of the addresses.
Unless, of course, both addresses 'must be less
than =FOO (1, 000).

The second method is to use an add instruction. This
has a disadvantage against the modify address in that
the address to be modified must have a word-mark
under the left-hand character, if the result is to
be greater than 1, 000 and in any case the add instruction
will only work for addressers ,less than 4, 000.

• •• 42

If the vvord-mark under the left-hand position is missing,
the zone on that position which indicates which band of
1, 000 :Ls to be addressed ,;vithin the sector will be

.. cleared, and the formation of an overflow ·bit on
passing from one band to the next will not occur.

The third method is to use some instruction followed
by a store-register instruction. For instance, to decrease
an address by 1, the following routine could be used,
assuming that there is a word mark under the left
hand position of ADDR. .

MCW
MN
SBR

ADDR. *+4
o
ADDR

Or to decrease it by six

MCW
MN
CHAIN
SBR

ADDR, *+4
o
5
ADDR

This technique is usually inferior to the modify address
ins truction.

The fourth method can only be used with index registers,
and is explained under the store B-address register
instruction. One method of adding a number N to "an
index register is to use the instruction , .

SBR 89, N + Xl

and..2.n a 16 K machine only of subtracting a number N
from an index register:

SBR 89, (16000 - N) + Xl.

This, of course, could be used to modify an address as
follows:-

Mew
SBR

to add 4 to ADDR.

ADDR, 89
ADDR, 4 +X: 1

• •• 43

This is obviously inferior to

MA @004@, ADDR

When you require to set an address· to a certain value,
it is nearly always preferable to use a store B-address
register instruction. Thus to set the Address ADDR
to the address of A, use

SBR ADDR, A

The main exception to this is when you wish to set an
:index register to zero.

A word-mark should nearly always be set in locations
87, 92, 97 and the index register' cleared by the
instructions

S 90
S 95
S 100

respectively. Notice that S 89 is not valid as., it will
produce a zone on position 89 and probably set X R 1
to the address 12, 000. Also all X Rs may be cleared
simultaneously by the instructions

S 100
CHAIN 2

Note that the contents of any indexed address must be
valid both before and after indexing. Thus, on an 8 K
machine, the instruction

SBR 89, 15999 + Xl

is not possible, even if X R 1 contains, for instance,
002 which will result after indexing in 001 in the
B-address register.

It is, howeverp possible on a machine of less than
16 K to have an invalid address in the X R itself.

. .• 44

Thus on an 8 K machine

MCW .10, 80 + Xl

will, if locations 87 through 89 contain for instance 191,
work perfectly well and produce the same result as the
instruction .

MCW 10, 79

under those circumstances.

• •• 45

2. Subroutines - -
Subroutines should be used wherever possible. They
save coding effort, make program design more logical
and elegant, and often enable the programmer to avoid
the use of program switches, which are a common
source of confusion and error.

If a particular sequence occurs more than once within
a program, it is normally of advantage to write that
series of instructions only once, as a subroutine, and to
branch to it at the points where the routine formerly
occurred in the main program.

If a routine occurs several times during a prograrn with
-slight variations, this routine may be coded as a subroutine
embodying all the variations. When the subroutine is called
from the main program, the branch to subroutine should
be followed by a parameter or parameters which indicate
which variation of the subroutine is required at this
particular time.

The Store B-address register instruction allows a
subroutine to return to the correct point in the main
program, and Inay also allow the subroutine to examine
the memory at the point immediately following the
branch to subroutine.

Any branch to subroutine, or any sequence of instructions
branching to a subroutine and producing variations in the
operation of the subroutine will be referred to from now
on as a 1 call' routine.

Subroutines may be roughly divided into four classes:

, To)

c)

Normal entry exit subroutines ~

Subroutines which analyze the preceding
instruction to produce same variation in
their own operation.

Subroutines which analyze a series of parameters
following the branch .instruction to produce
some variation in their own operation.

• •• 46

d) The in-line subroutine •

. Examples of types (a) through (c) follow. Type (d)
is a somewhat unusual application, and will be
explained separately at the end of this section.

Let us assume that the instructions A@l@, COUNT
and S @1@, COUNT occur many times in a program.
They occur enough times to make it worth while to
make a subroutine of each instruction. The unusual
case of making a subroutine out of one instruction is
chosen for the sake of simplicity.

Then, using type (a) subroutines, every time A@1@,
COUNT occurs it is replaced by the instruction
B SlJBA, and every time S@1@, COUNT occurs, it is
replaced by the instruction B SUBS. Two subroutines
are then inserted into the program as follows:-

SUBA SBR SUBAX + 3
A @1@, COUNT

SUBAX B 0
SUBS SBR SUBSX + 3

S @1@, COUNT
SUBSX B 0

To take a particular instance, SUBA may be assembled
to occur in locations 501 through 515. The location of the
field COUNT may be 2304, and a constant 1 may be
available in location 3901.

SUBA will assemble as follows:-

lI515Al01L04BOOO
'1 -, '1
501 505 512

If one of the calls for SUBA occurs in the main
program, in location 901 through 904, say, it will
assemble as follows:-

B 501 N
'1 '1
901 905

whe re N is the next op. code.

•• ,. 47

as soon as the machine reaches location 901, it will
branch to 501. The B address register after the
branch will contain 905. This address will be stored
in locations 513 through 515. The machine will then
execute -the add one to count instruction and arrive at
the branch, which will now be in the form ~ 905.

The machine will therefore exit to the next instruction
afte r the call routine.

Using type (b) subroutines, only one subroutine need be
written. Every time the instruction A @1@, COUNT,
occurs, it w'ill be replaced by the sequence:-

NOP
DC
B

@A@
SUB

and S @ 1@, COUNT will be replaced by:

NOP
DC
B

@S@
SUB

and 'the subroutine will take this form:-

SUB SBR EXIT + 3
SBR INSTR + 3
MA @19E@, INSTR + 3

INSTR MCW 0, * + 1
NOP @1@, COUNT

EXIT B 0

this might be assembled in locations 501 through 533 as
follows:

H533I-1519 # 104519M000523N101LQ4BOOO
1 "1 1 '1 '1 1
501 5105 509 516 523 530

and a particular call for this routine, specifying subtract
one from acount might be assembled in locations 901 through
906 as follo'ws:

••• 48

NSB501N - - -I! 1
901 903 907

This will operate as follows: as soon as the branch
instruction in 903 is reached, the machine will branch
to 501, the B-address register at this point ,will
contain 907. This B-address register will then be
stored in locations 531 through 533, and in locations
51 7 through 519. The modify address instruction will
then reduce the address in 517 through 519 by five.
The subroutine will then look like this:

H533H5191!. 1045l9M902523 N101L04B907
T
*

The operation code of the instruction in 523 will then
be changed to a subtract, it will then be executed as
specified, and the branch instruction in 530 will cause
the subroutine to exit to the correct location in the
main program.

Using a type (c) subroutine, the same procedure can be
effected, using again only one subroutine. Every time
S @1@, COUNT occurs, it is replaced by the in~tructions:-

B
S

SlIB

likewise A @1@, COUNT will be replaced by

B
A

SUB

The subroutine will then be written as follows:

SUB
MCW

SBR
MOW
NOP
B

89
o + X1, * + 1
@1@, COUNT
1 + Xl

which might asse'mble as follows in locations 501
through 522 '

••. 49

H089MO =P 0512Bl01L04B O -F=1

and a particular call for the subroutine, specifying Add
one to count, might be assembled in locations 901 through
905 as follows:- .

B501AN
1 "1 T
901 905 906

This will operate as follows:-

From location 901, the computer will branch to location
501. At this point the B-address register will contain
905. This address will be stored in ·index register 1
(positions 87 through 89). Then the contents of location
o + X 1, i. e., the contents of location 905 will be mCN ed
to the op. code of the instruction which increases or
decreases COUNT, this instruction will be executed
and the machine. will branch to location (1 modified
by index 1) = location 906, which is the correct re-entry
point.

The above techniques should be understood to understand
the remainder of this discussion.

It should be noted that time is lost when a subroutine is
used. Every time a subroutine is entered, instead of
re-writing the subroutine in the main program, the
execution time of the branch to subroutine, store B-address
register, and exit branch is added to the natural execution
time of the routine. This is not normally very significant,
but with more complicated routines with several parameters,
a large number of extra instructions may be executed
on each entry. The time log can become significant. An
extreme example of this is the program produced by the
1401 Fortran processor. Every operation in the object
program is compiled as a subroutine entry with parameters,
and execution speed is exceedingly slow. This is the price
that must be paid for the tremendous programming con
venience of the FORTRAN language.

It is easy to decide whether it is worth while from the point
of view of st.orage space saved to turn a repeated routine
into a subroutine. It may be computed as follows:-

.•. 50

Let N be the number of times the routine is used. Let
Ln be the length of the series of instructions within the
subroutine, excluding linkage instructions. Let Lc
be the length of the call ins tructions for the subroutine.
Let A be the amount of storage saved by turning
the given routine into a subroutine, and Ls be the length
of the linkage instructions within the subroutine.

Then A = NLn - NLc - Ls - Ln

and the number of times a given group of instructions must
occur to make it worth while to make them a subroutine:

= Ls + Ln + 1
Ln - Lc .

As an example of the value of subroutines in simplifying
the logic of a program, two block diagrams are enclosed.
The problem to be solved i.s one which occurs very frequently
in comrnercial applications -- that of producing a tabulation.
That iSJ) a series of fields in input cards must be accu
mulated at various levels, and totals must be printed out to
correspond to a series of control fields in the card.

Normally these totals are within a hierarchy. For example, a
particular application may involve a company's sales in
different districts. And a breakdown of the sales may be
required for each country in which the company operates.
This total should be further broken down into a series of
separate totals for each region within the country. And
each region total may be broken down to give a total for
each city within a region.

The normal way of solving this problem is to sort the input
cards into order by city number within region number within
country number. Minor total are printed at the end of each
city, an intermediate level total at the end of each region -
which will be the sum of all the minor totals printed out
within that region, and a lnajor total is printed at the end
of each country, which will be equal to the sum of all the
intermediate region totals within that country. A final
grand total also might be required.

• •• 51

Notice that the machihe must test for a change in the
highest level of total first, and if there is a change,
it must print out first the minor total it is accumulating,
followed by the intermediate, followed by the major, etc.

A problem is created by the fact that the control fields must
be tested in the order major, intermediate, minor, but
when a change is detected, totals should be printed in the,
order minor, intermediate, major.

This is usually accomplished by means of a series of
program switches, which make for rather complex logic,
and are very error-prone. A possible solution of the
standard tabulation problem using switches is shown in
figure 1. ' .

If one uses subroutines in the coding instead of switches,
the solution becomes much more elegant, straightforward
and logical. Figure 2 is the block diagram of the same
problem using subroutines instead of switches'. The
advantages of the second method should be obvious.
Note particularly, that the test for a major change, for
instance, can be very simply coded as follows:-

C
BH
BH
C

CARD. MAJOR
SEQERR
SUB1
CARD. INTER

The only test which cannot be coded by a direct branch
if indicator on instruction straight to the subroutine is the
last card test which should be coded as follows:-

etc.

BLC
R
B
MCW

*+5
LOOP
SUBl
FINAL. PRINT

This :1s a good example of the use of type (a) subroutines
to simplify the logic of the program, as opposed to their
normal use in cutting down the amount of storage used
and the amount of coding effort by preventing the repetition
of frequently occu;rring sequences of instructions in the .
main program.

• •• 52

A typ:ical example of a type (b) subroutine is the tape
error routine. This is a subroutine which is called
immediately after a tape read, tape write, or write
tape mark instruction to test for a tape transmission
error, Normally, if a read tape instruction was given
before the entry to the subroutine, it should backspace
and re-read many times, and than halt if the tape error
is persistent. If the preceding instruction was an output
instruction, the routine should backspace and rewrite
a few times, then erase the bad section of tape, and try
again further on. Thus the subroutine has two different
sets of actions depending upon whether it was entered
after a write or read tape instruction, it must analyse
the preceding instruction.

Here is a simplified tape error routine, which does not
check for noise records" It is called by an unconditional
branch immediately following the tape instruction, thus:-

RT
B

WTW
B

WTM
B

1, INPUT
ERSUB

or
2, . OUTPUT
ERSUB

1
ERSUB

or

etc.

• .. 53

Example of a Type (b) Subroutine Tape Error Routine

ERSUB SBR EXIT + 3
C
C
SBR *+4
LCA 0, INSTR + 7
S ERCNT
S

ER.B BER EXIT + 4
LCA NOP. INSTR + 2
LCA NOP - 1

EXIT B 0
C INSTR + 7
SAR * + 11
MA FOUR *+4
MN 0, * + 4

BSP BSP 1
BCE ERA. INSTR + 7, W
BCE ERHT. ERCNT - 1, 2

INST:R RT 0, 0
A * - 6, ERCNT
B ERB

ERA BCE * + 5, ERCNT, C
B INSTR
BCE ERHT. ERSKP - 1, 1
MN BSP + 3, * + 4
SKP 1
S ERCNT
A * - 6, ERSKP
B INSTR

ERHT H INSTR
NOP DCW @N1@
ERSKP DCW #2
ERCNT DCW #2
FOUR DCW @OO4@

Notice the use of the chained compares after the initial
store register instruction, in order to scan down to the right
hand character of the preceding instruction. R.emember
that a compare will move the registers down as far as the
first word-mark which is encountered in either field. In
this cas e, the setting of the re gis te rs afte r the S BR will
be:-

••• 54

A - The next instruction after the branch
B -, The Ope code of EXIT

both these should contain word-marks, so that the compare
will chain down the registers one position, and the
registers will be as follows:-

A -- The last digit of the branch instruction which
called the subroutine.

B _. The last digit of the 4-character load instruction
before exit.

The second chained' compare takes over the registers at this
point. Both A- and B-fields are 4-characters long, and their
setting after this compare is:-

A - The last character of the instruction
LCA NOP, INSTR + 2

B .- The character inlmediately preceding the branch
to subroutine instruction - i. e., the last position
of the tape instruction which preceded the
subroutine entry"

This setting of the B-address is what 'we have been aiming
at, we may now pull out the tape instruction and use it at
the appropriate place in the subroutine •

. A type (c) subroutine is usually used in conjunction with
at least one index register, and the parameters following
the branch are usually a string of addresses. It will be
noted that the autocoder call macro with parameters works
in this way, for instance, the autocoder instruction:-

CA:LL SUBR, FLDA. __ FLDB, FLDC

will assemble as

or

B
DSA
DSA
DSA

SUBR
FLDA
FLDB
FLDC

.•. 55

B
DCW
DCW
DCW

SUBR
FLDA
FLDB
FLDC

depending on what version of autocoder you have. Both
the above routines cause exactly the same things to be
assembled.

There is no reason why ones own subroutines should not
also take this form where necessary.

Consider the following examples:-

It is necessary to print a set of totals, add them to the next
level, and clea,r them. The totals are stored in sequence in
storage as follows:-

etc.
MAJOR 2 DCW # Nl
MAJOR 1 DeW # N2

etc.
INTER 3 DeW # N3
INTER 2 DCW # N4

etc.
MINOR 2 DeW # N5
MINOR 1 DCW # N6

and so on.

It will be seen that every total may be of any length less
than 10. Major totals are stored sequentially before
intermediate totals immediately before minor totals etc.
Totals of the same amount are defined in the same sequence
number of different totals within .each level.

These totals are to be printed 10 positions apart, starting ,
at print position 10.

These specifications allow of considerable flexibility in the
relative sizes of the totals.

The call routine is ,as follows:-

•.. 56

B
DS.A
DSA

SUBR
LEVEL,A.
LEVELB

Where LEVELA is the address .
of the first total to be printed, LEVELB
the addres s of the total into v. l-iich the
LEVELA total must pe rolled~ .

The subroutine is as follows:-

SUBR

PRINT

SBR
MCW
MCW
SBR
MCS
A
SBR
S
.8BR
C
BE
MA
B
W
CS
CS
B

·89
2+X1,94
5 + Xl, 99
PRINT + 6, 210
o + X 2, 0
o + X2, 0 + X3
99
0+ X2
94
94, 5 + XJ
EXIT
@010@, PRINT + 6
PRINT

6 + Xl

This subroutine could be applied to the coding of the sample
tabulation in figure 2.

In this case, the entire program could be coded as follows:
Assume for the sake of simplicity that there are only two
types of total A, and B. Card format might be as follows:-

Card Columns

1 - 3
4 - 6
7 - 9

10 - 15
16 - 20

The coding might be:-

Contents

Country (major)
Region (Inter)
City (,minor)
Amount B
Amount A

••• 57

ORG 334
DCW # 1

D1JMMY DCW # 1
DCW # 10

FINAL DCW # 9
DCW # 9

INTER DCW # 8
DCW # 8

MINOR DCW # 7
PAGE DCW # 3
COUNTER DCW # 3
REGION· DCW # 3
CITY .DCW # 3
START S PAGE

CHAIN 6
R OVSUB
SW 10, 16
MCW 9., CITY
CHAIN 2

LOOP C 3, COUNTER
BH SQERR
BU SUBl
C 6, REGION
BH SQERR
BU SUB2
C 9, CITY
BH SQERR
BU SUB3
A 20, MINOR
A
BLC * + 5
R LOOP
B SUBR
DSA FINAL
DSA DUMMY
H * - 3

SUB3 SBR EXIT 3 + 3.
BCV OVSUB
MCS CITY, 290
B SUBR
DSA MINOR
DSA INTER
MCW 9, CITY

••. 58

EXIT 3
su:a 2

EXIT 2
SUB 1

EXIT 1
OV~UB

OVEX

B
SBR
B
Mes
B
DSA
DSA
MCW
B
SBR
B
MCS
B
DSA
DSA
MCW
B
SBR
CC'
A
CC
MCS
W
CS
B
END

0
EXIT 2 + 3
SUB3
REGION, :.:85
SUBR
INTER
MAJOR
6, -REGION
0
EXIT 1 + 3
SUB2
COUNTR, 280
SUBR
MAJOR
FINAL
3, COUNTR
0
OVEX + 3
1
* - 6, PAGE
T
PAGE, 332

0
START

The type (d) subroutine offers an interesting method of avoiding
the difficulties of a count-controlled loop. If the same sequence
of instructions must be repeated several times one after the
other in the main program, the normal way of doing this is as
follows:

LOOP

Ol,IT

MCW

C
BE
A
B

@l@, COUNT

COUNT, @N@
OUT
* - 6, COUNT
LOOP

••• 59

· Where N is the number of times the routine is to be executed.
A useful way o,f producing this effect using subroutine tec~niquet! is
as follows. To execute a loop twice" give the instructions

LOOP

SWITCH
OUT

B
SBR

B

* + 1
SWITCH + 3

o

In this case" the computer will execute the B * + 1 instruction
initially" and" as is normal" the B-address register will
contain the address of the next sequential instruction after the
branch. In this case" it will be the address of LOOP. This
address will now be stored in the S WITCH instruction, and the
routine to be repeated will be executed. After this" the SWITCH
instruction will be executed. The B-address register after
the branch will contain the address of the next sequential
instruction after the branch" which will be the address of OUT.
This address vvill then be stored into the switch instruction, which
will now say BOUT. The routine to be repeated will now
be exeeuted for the second time" and at the end the switch
instruction wiU cause an exit to OUT.

If it is desirable to execute the loop more than twice, extra
iterations may be obtained by adding a series of BLOOP
instructions after the switch instruction.

Thus the following routine will execute the loop four times:-

LOOP

SWITCH

OUT

B
SBR

B
B
B

* + 1
SWITCH + 3

o
LOOP
LOOP

••• 60

This method has the added advantage that small variations
in the ope ration of the routine to be repeated may be
accomplished, by inserting modification instructions in
between the B LOOP instruction.

Thus, if a particular routine must be executed four tim es
in succession, with index register settings of 0, 4, 9 and
20 respectively on the different iterations, this may be
accomplished as follows:-

LOOP

SWITCH

OUT

.SBR
B
SBR

SBR
B
SBR
B
SBR
B

89, 0
* + 1
SWITCH + 3

89, 4 + Xl
0
89, 1 + Xl
LOOP
89, 7 + Xl
LOOP

I am indebted to Mr. C. Purvis of IBM (U .K.) for bringing
to my attention this extremely elegant technique.

Subroutines may also be used on mach ines which lack
the store B-address register instruction. In such a case
they will be used less often, as the call routine becomes
longer.

ENTRYl

DSA.!

MCW
B

DSA

DSA 1, EXIT + 3
SUBR

ENTRYl

••• 61 .

~Usually a slightly more acceptable method, which avoids
the necessity of defining a whole series of addresses with.
DSAs is to us e the instruction:

Mew
B

* - 3, ADDR
SUBR

and within the subroutine, to have the sequence:-

SUBR

EXIT
ADDR

A
MeW

B
Dew

@8@, ADDR
ADDR, EXIT + 3

o
3

••• 62

3. ,Magnetic Tapes

There are manyinputl output packages available which will
test for tape errors and for noise records. and· which will
also handle the unblocking of blocked tape records. The
IOCS system is the most comprehensive of these. However,
such systems often have disadvantages in that they prevent
the prol~rammer from kaing the best use of his machine. either
because the routines are very bulky. or because they do not
allow hi.m to take into account critical timing considerations.

It is a very simple matter to program the unblocking of a
tape re(!ord. Normally an index will be set aside to keep
the place within the record. And assuming a fixed length
blocked record, routines like the following' can be used:-

LOOP 1

LOOP 2

SBR
RT
B
BEF
C
BE

89. 0
1, INPUT
ERSUB
END
RECORD. @PADDING@
LOOP 1

gee I-I)QP.I-.) ENlJRES $
-4-G~----_I-. _. ,89,_~ .. MA:X~
-EE~------____ -bGep-r
SBR 89, L + Xl
B LOOP 2

where JL is the length of the individual record within the block.
P ADD Il\fG is a constant containing whatever padding character
is being employed. and MAX is a three character machine
address equivalent to L (B .- 1) where B is the blocking factor.
The label RECORD will appear as part of a define area
statement which will };>e as follows:-

INPUT
RECORD

DA BXL .. XI. G
X, y

One particular instance where a large saving in running time
may be made is when a card to tape operation must be performed
using 7330 tapes. Even with early card·read. t~e speed of the

••• 63

card to tape may drop considerably, because every time a
tape record is written, the reader clutch point is missed,
and the reader shows to 600 cards per minute. A constant
speed of 800 cards per minute may be attained by the careful
use of the start read feed instruction.

The principle of this is to ensure that the tape record is' written
during the read start time. This may be accomplished, for
a card to tape using unblocked card image records as follows:-

"-
·R

LCA GPMK, 81
LOOP SRF

WT 1, 1
R ERSUB
B LOOP

However, single card image records have several disadvantages -
mainly that they take up a large amount of room on the tape, and
are inefficient to read later on. A blocked record will only
cause the reader to slow down every Bth Card, where B is
the blocking factor.

This time loss can still be significant, and, under some
circuolstances fill reading speed can .still be maintained. There
are 21 ms. available of read start time, during which a 7330
tape unit can write a 300 character record; Providing the blocks
of data on tape are kept to a maximum of 300 characters, this
technique may still be used.

If a test is made for tape write error immediately after giving
the write tape instruction, the processor is unnecessarily inter
locked for 8.7 ms ~ Most of the normal read cycle processing time,
so that the reader may be slowed down if the movement of data
from the card area to the tape area, and any checking that may
be performed use up more than 1.3 ms. This will norm.ally be
the case.

To gain full efficiency on a cardl tape program with 7330 tapes,
it is advisable to use two separate output areas, alternately, and
to test for tape error immediately before writing a new tape
record instead of immediately after the tape write.

• .•• 64

This means using this kind of routine. Assume that cards are
to be put on to tape in card image form, blocked 3 toa tr pe
record~ .

AREA 1
CARD 1
AREA 2
CARD 2
ST,ART

LOOP

WltITE 1

LOOP 1
RTN2

WRITE 2

DA 3 X 80, Xl, G
1, 80

DA 3 X 80, X 2, G
1, 80

SW 1
R
SBR 89,' 0
SBR 94
CW SWITCH
Insert he~e any checking etc.

,BW
MCW
BCE
SBR
B
BER
SRF
WT
SBR
SW
R
MCW
BCE
SBR
B
BER
SRF
WT
SBR
CW
B

RTN 2, SWITCH
80, CARD 1
WRITE 1, 87, 1
89, 80 + Xl
LOOP 1
ERR 2

1, AREA 1 + XO
89, 0
SWITCH
LOOP
80, CARD2
WRITE 2, 92, 1
94, 80 + X 2
LOOP 1
ERR 1

1, AREA 2 + XO
94, 0
SWITCH
LOOP 1

ERR 2 will try to rewrjte area 2 and return to WRITE 1 + 5 after
a successful operation.

ERR 1 will try to rewrite :area 1 and return to WRITE 2 + 5 after
a successful operation.

The same limitation applies to 729 II tape units, with a maximum
record length of 600 characters, and to' 729 IVs with a maximum
record length of about 1,000 characters.

4. Tables and Ta.ble-Look-Up T.
.;-.~v

It is often valuable to be able to compute a direct address ·to find
ones position in a table in storage. Suppose that there are four
hundred five-digit counters in storage, and an amoun:t must be
added into one of those counters, depending upon a code which will
vary between one and four hundred in value, then the obvious
approach is to multiply the code by five, and place the result in an
index register to determine the address to which you wish to add.
However, the result of your multiplication will be a four digit
address, which must be converted to three digits to reference
the correct core storage location. Here is a useful routine to
convert a five-digit numeric address to a three digit machine
addre~3s. Assume that your numeric address is in ADDR, with
no zone on the junior position.

LOOP

O'UT

Alternatively:'-

LOOP

OUT

Mew
s
BM
MA
B

LeA
s
BM
SBR
B
SW

ADDR, WORK # 5
@1@, WORK - 3
OUT, WOR.K - 3
@ =l= OO@, WORK
LOOP

ADDR, 89
@1@, 86
OUT, 86
89, 1000 + Xl
LOOP
87

If a short table of fields must be selected on the basis of a series
of ' random' codes, this can sometimes. be best effected by a
string of 7-character store B-address register instructions. For·
instance, supposing that a particular note must be printed
alongside a number, depending on the card code' in column 80,
say. ~rhe line-up is as follows:

••• 66

£olumn

7
A.
4
N
any other

Print.

XX
Xy
ZZ
ZY
blank

and the instructions to select the appropriate entry from the
table:

TABLE DCW
DCW
DCW
DCW

al·e

SBR
BCE
BCE
BCE
BCE
B

LOOP SBR
SBR
SBlt
MCW

@Zy@
@ZZ@
@XY@
@XX@.

89, 0
LOOP, 80, 7
LOOP + 7, 80, A
LOOP + 14, 80, 4
LOOP + 21, 80, N
LOOP + 28
89, 2 + Xl
89, 2 + Xl
89, 2 + Xl
TABLE + Xl, PRINT

Consider the normal table look-up situation where a short card
code is used to select a particular factor in a calculation. The.
factor may be reduced to a code to save space in the card, or for
various other reasons.

Take the fexample where a 3-digit code in the card will decide
which of a possible 500 seven-digit factors will be used in a
calculation. All the codes are spread over the range 000-999,
so that thlere are gaps, and no direct addressing system is
possible. .

A large table will be created in storage, containing all possible
codes, together with their. corresponding factors, looking some
thing like this:-

••• 67

010!714576~43!131312!90!666667

and so on. If some codes occurred more frequently than others,
it might be of advantage to organize the table with the most
frequently occurring codes at the beginning and use a step by
step search.

Thus, uspposing that the card code is in positions 78 through 80
of the card, that the first code in the table is labelled CODE, and
its corresponding factor ~ ACTOR, a routine like the one shown
below might be used:

LOOP

FOUND

SBR
C
BE
C
BE

. SBR
B
A

89, 0
80, CODE + Xl
FOUND
89, @99 9= @
ERROR
89,10+X1
LOOP
FACTOR + X 1, AMOUNT

But if the codes have a more or less random occurrence, it might
be of more advantage to organise the table sequentially by code
in storage, and search in the following manner:-

LOOP 1

NEXT

F()UND

C
BH
C
BL
SBR
C
BH
SBR
B
C
BE
C
BE
SB~
B
A

80, CODE
ERROR
80, CODE + 4990
ERROR
89, 0
80, CODE + 490 + Xl
NEXT
89, 500 + Xl
LOOP 1
80, CODE + Xl
FOUND
89, @99 =F @
ERROR
89, 10 + Xl
NEXT
FACTOR + X 1, AMOUNT

••• 68

Such a splitting down of the table into sections will usually use
more storage, but be much faster in execution.

oty'\he'
'tl1e \ ---,---- "'-

Tables may a.lso be used to great advantage in solving complicated
logical tests or, for instance, a series of card codes.

If you are given the kind of problem where a valid code combination
is asked for, 1. e., valid card codes might be

or
or

X
4
2

on
on
on

80,
80,
80,

2, 3 or 4 in column 79
1 in column 79 and 5 in column 3
o through 9 in column 79 and 2 in
column 1.

and so on, it is usually a good idea to design a table which
embodies the information that is required, and write a routine
which will analyze this table, rather than writing out in full
the complicated series of character, zone and number range
tests that we required. Be careful in this case, though, as the
table plus analyzing routine will normally be much slower
in execution than the whole series of interconnected'tests writt,en
out in full. The latter, of course, will eat up much more storage
space.

• •• 69

-,--_.-.... I IlIIrTl"ALr s to .
Ct..EAR FILL.

rq"rAL.S AN:J>
. {slVIT,,.,eS.

FI c,..u I{ E. 1. .

swrrcH
1. OPf.

Al>J) rN re R..

~~"ro MRToR.

.,orRt-..S.

'PRINIII'ffER.
rO,RLS &

CL~~" J
. MINOR .

"-eTAI- S.

CLEAR

IN'-~({

TorAl..S.

5W/TCI-'I:J2
ON.

. .

YEJ SW. "CH 1 1 . oN.

AD.D MINoR.
,-0 t'N'rE"R.

--(orRL. 5 •

sw,rCH3l
. ON.~

.2 Orr.

trw MRTOR.
-ro FINRI

ToTAI-S.

1'~/Nr MAToR.
rom-L.S ~
CoNTRoL

AE(3)S.

CLe:'Af{

MRjO~

-ro-rfl" S.

SK£'J..€-roN ,AduL.A-;.oN u..5IN£r SWlrcHE.~ •
................................. ·IUS "*'

ec/-"., I,., k, ~,'lw-<

7>RINI
ANflL
-rorflL.S.

1<. rO-rl1L.S.

S-rDI(' 6-A»)JurSS

IN E"X I r 1. . .

Al>J> MA:roR.

ro FINAL

'-o,At...S.

M1t7tJ/{ TbT1tL.~
I/-Nl> C;o/VTltfJL.

Plta.:)S T"f) ~IIVr:

-
w.

CL6"'A-R

MA70~

forAL-S.

FI(f.IAI(E 2. ·
~

~"a: S-Al>1)(ESS

IN E~ r'- ,,2. •

fl1>]) INTER.

TO MA-SDt
1'"4'n't L.. (.

INTel(TDm L-S
ftN j) (AuvTR 0'
PlEl-»S TO

tpt< 'N17

,1bRe NE;i.J

INiER. CDNT'tt04..

"It=t.J> p:II..oM·
~~.

SToe,;
6 -tqbble e tI.

ffD7> M INO/(

TO INT1=-R..

rOTftr.-S.

MINOt< f7:>TtU-S
1tN1> GDNra." '
P/~bt ,0

tpRINr.

S17>R.E Nt:"'
tllN o/i. <!I)'vl-l-o
(Z1E\,l> f1tol'1

CA"(t ~.

SKEL~ToN 77t8Ut.l/TIOIV LlJ/AI((- su81(()t..(TINES.

O.J <-5 -"".c "'" /~.../" 4- vr :> '" J /<.<L '" /! /.r- <& Y..~ 1<.

	001
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71

