
TECHNICAL
INFORMATION
EXCHANGE

TIE 5-0021
December 22, 1964
190 pages

XT

IBM 1401,1440 AND 1460 PROGRAMMING AND OPERATING
TECFINIQUES

Mr. Jack Melnick
150 Grand Street- Basement
White Plains, N. Y.

FOR IBM INTERNAL USE ONLY

This paper is in the author's original form.
The objective in providing this copy is to
keep you informed in your field of interest.
Please do not distribute this paper to persons
outside the Company.

Distributed by
DPD Program Infor:mation Department
IBM Corporation
112 East Post Road
White Plains, New York

TIE 5-0021

IBM 1401, 1440 and 1460 Programming and Operating Techniques

Page Key

'if of Pages

3

6

71

13

15

10

11

7

8

23

20

188

Unnumbered pages in front (title, disclaimer, abstract)

Contents

Section A (A-1 thru A-c)

Section B (B-O thru B-69)

Section C (C-1 thru C-13)

Section D (D-O thru D-14)

Section E (E-O thru E-9)

Section F (F-O thru F-10)

Section G (G-O thru G-6)

Section H (H-O thru H-7)

Section I (I-a thru 1-22)

Section J (J-O thru J-19)

IBM 1401, 1440 and 1460

PROGRAMMING AND OPERATING

TECHNIQUES

A. Elaine Taylor
Advisory Systems Specialist
150 Grand Street
White Plains, New York

Maurice D. Howe
Marketing Publications
Washington Ave. Lab
Dept. 293/Bldg. 630-1
Endicott, New York

Jack Melnick
Manager, Field Techniques Development Projects
150 Grand Street
White Plains, New York

August 18, 1964

To the best of our knowledge, the contents of our work entitled
"IBM 14:01, 1440 and 1460 PROGRAMMING AND OPERATING
TECHNIQUES" is free of any proprietary, secret or confidential
information belonging to a person or organization outside the IBM
company. Since this paper is a collection of teclmiques, we have
used the work of others and have obtained permission to do so,
where necessary.

A. Elaine Taylor Maurice D. Howe Jack Melnick

August 18, 1964

IBM 1401, 1440 and 1460

PROGRAM1tUNG AND OPERATING

TECHNIQUES

This paper contains programming and operating tips for the IBM
-1401, 1440 and 1460 Data Processing Systems, and is intended to
supplement the System Operation Reference Manuals, Special
Features Manuals, and other manuals of the 1401/1440/1460 SRL
series. These tips and pointers can be considered the 1400 Series
equivalent of the old. unit record "Principles of Operation Bulletins".

8/18/64

Direct Inquiries to:

Jack Melnick
150 Grand Street
White Plains, New York
WH9-1900 X4517

Available Now

A
B
C

D

E

F
G
H
I
J

Future Sections

K
L
M
Z

OVERALL TABLE OF CONTENTS

General System Techniques Information
Subroutines and Subroutine Teclmiques
CPU Operating Pointers and Miscellaneous
Error Indications
Reader /Punch Operating Pointers and Miscellaneous
Error Indications
Printer Operating Pointers and Miscellaneous
Error Indications
Branch Instruction Pointers
Add and Subtract Instruction Pointers
Multiply and Divide Instruction Pointers
Miscellaneous Operation Codes and I/O Pointers
Magnetic Tape Considerations

Disk-File Programming Tips
Program Assembly Methods and Tips
Macro Library
Index

~A' General System Teclmigues Information

A-l
A-2

Contents

Standard BCD Interchange Code
Word Mark Control in Data Movement

A-l

~

A-2
A-5

(A-l) Standard BCD Interchange Code

The Standard BCD Interchange Code derines for the IBM Corporation
a standard 64-character set for the IBM 1401 r 1440, 1410,. 1460,.
7040, a..'1d 7044 Data Processi.'1.g Systems. The code provides compa­
tibility of data for interchange among all systems using this standard.
The standard provides a consistent definition of:

1. IBM Card Code
2. IBM BCD Magnetic Tape Code
3. Relation between these codes and printed symbols

(graphics)
4. Relation between these codes and machine control codes
5. Collating sequence of code elements
6. Two subsets of alternate graphics

In addition, the standard provides uniform graphics for publications.
Exi:'Oting published material will be changed to reflect the standard
BCD L'1terchange code.

Figure A-l is a chart of the standard BCD interchange code. Column
2 shows Lhe graphics for the 64 code elements. The equivalent card
and BCD codes are shown by columns 3 and 4. The collating sequence
of the 64 code elements is indicated in column 1 by a collating number
which runs from 00 (low) to 63 (high).

A-2

2 3 I 4 f) 6 7
Collating Graphics Card Code BCD Code Spec Sign. Char. at d IBM 1401
Number. 012 Code

B A 8 4 2 Branch lItO
Blank No Bits

B A 8 2 HaIt.
,B A 8 4 wr.w/m Clear word mark.

8

GM

3 8 8 2
* 4 8 ;E 8 1 lnQ. Cleg,r
j 5 8 :B 8 4

6 8 IE 8 1 2
.6- 7 8 :B 8 4 2 MC

/ 1 A Uneq-Comp. ; Clear storage.
3 8 1 Set word mark.

6, 15 %(4 8 A 8 4 Proc. Check i Divide
16 ~ 5 8 [;. 8 1 ws ! 17 " 6 8 A 8 4 2 I

16 :ttl 7 8 [;. 8 ~ 2 SM
19 "6 2 8 A SB
ZQ 1.= 3 8 8 2 i Modify Address
21 @! 4 8 8 4 carr. char. 12 : Multiply
~Z 5 8 8 1
23 > 6 8 8 4 2
2~ £.. 7 8 8 :l 2 TM i 25 ? 12 0 B A 8 2 PZ RD I/O err. ! Zero and add.
2§ ~ 12 1 :!2 [;. last card sW'Lbin-d~ Add.
27 B 12 2 B A 2 sense sw. B/BSP tape . Branch.
28 C 1~ 3 B fj. 2 sense sw. CLcol. binar;z ComQare.
29 D 12 4 :B A 4 sense sw. D' Move digit only.
30 ~ 12 5 B [;. :;1 sense sw. ELski12+8rase Edit.
31 F 12 6 B A 4 2 S61 se sw. F' Carriage eontrol.
32 Q: ~ i 1~ 7 B fj. 1 2 sense S"I,:. G

Fir<l1re A-I
standard BCD Interchange Code

1 2 3 4 5 6
I 7

Collating GraphiCS
j

Card Code BCD Code Spec. Sign. Char. at d IBM 1401
:t'!"umber B A 8 4 2 Branch 11/0 I Op Code ! .. -. I·· .. ~~.---" .. - - ---_.-.-,.-

I
33 H 12 8 B A 8 rder busy :Store B-register
34 ~ 12 9 'B A 8 12ch bUs;Z
35 1 11 0 !B 8 2 MZ pch I/O err; Zero and sutL'act
36 J 11 1 !B ta12e or I/O bU§1:
37 K 11 2 iB 2 end of reel : Stacker select
38 L 11 3 IB 2 ta12e error Load
39 M 11 4 IB 4 write T/M Move
40 N 11 5 B 4 k!isk acceSE inoPt: No o12eration
41 0 11 6 B 4 2
42 P 11 7 B 4 2 1 12rinter bus;Z Move record
43 Q 11 8 B 8 inq. req. 'rd. pcb. fee.dStore A-register

rwd. tape./
44 R 11 9 ;B 8 carriage buSi - ·· .. R·'
45 .:t:- O 2 8 A 8 2 RM printer I/O
46 S 0 2 A 2 ego com12. Subtract

~ 47 T 0 3 A 2 low compo I
fl:>. 48 U 0 4 A 4 high com12. /rwd+unl taQe Control unit

49 V 0 5 A 4 disk rd! bJ,. ck. I Branch if zone or w /m
50 W 0 6 A 4 2 .. d~sk ~rong l*ft ; Branch if bit egual
51 X 0 7 A 4 2 disk uneq. a or. : Expand compressed tape
52 y 0 8 A 8 any disk e'r'ror Move zone onl;[
53 Z 0 9 A 8 arith of. Move & suppress zeros
54 0 0 8 2 1404 err/rd. 1404
55 1 1 1 Read a card
56 2 2 2 Print
57 3 3 2 Print and read
58 4 4 4 Punch
59 5 5 4 Read and punch
60 6 6 4 2 , Print and punch
61 7 7 4 2 i Print, read. and punch
62 8 8 8 Start read feed
63 9 9 8 carr. char. #9 Start 12unch feed

Figure A-I
Standard BCD Interchange Code

(A-2) Word Mark Control in Data Movement

The function of the word: mark is illustrated in Figure A-5. Opera­
tion codes which either do not require word marks to end them r or
do not affect tp_em. are not listed fsuch as clear storage,. p1.m.ch,. set
word mark instructions, etc.).

A-5

Word Mark Control ill Data Movement

-0 ZA

o Zs"

@ M
% D

Zero and
add
ZeN and
subtract
Multiply
Divide

A

A

B
A

C C Compare B
Either M IMCW Move

!MLC
L . LCA Load A

MLCWA
D MN Move Num None

,MLNS
Y MZ Move None

MLZS Zone
Z MCS Move and A

E MCE

p

x

M

L

M
L

MCM
MRCM

MIZ

RT

RTW

WT
WTW

zero supp.
Move and
edit

A

Move rec- A :For A $
ord (from left to

right)
Expand A

(from left to
right)

Read tape IRG or * in
. B -

Read tape IRG or i in
B -

Write tape ! in B-field
Write tape! in B-field

B None

B None

B{multiplier-) None
None(sign of None

dividend)
B None

Either None

A Any in B-field

None None

None None

L~==d No
No

No

No

No
No

No
No

Yes

No

No

A Any in B-field No

B

IRG

IRG

! in B-field
! in B-field

Figure A-5

A-6

Any in B-field

None

None

NONE

B

None
None

No

No

No

IRG creates ;

Yes(from tape)

No
Yes(as Word
Separator char)
except ~

(B) Subroutines and Subroutine Teclmigues

Contents

Address Handling

B-1
B-2

B-3
B-4
B-5
B-6
B-7

Halts

B-8
B-9
B-9.1
B-1J

I-.oops

B-11
B-12

Switches

B-13
B-14
B-15

Address Coding and Decoding
Address Modification without Modify
Address Op. Code
Address Register Contents
Clear Storage following 1/0 Commands
Conversion of 5-digit to 3-digit Addresses
Programmed "Wrap-Around"
Using Incoming Data to Modify Instructions

Double Identification Halts
Programmed Halt Numbering
Dead End Halts
Programmed Halt - Tv.!O Position

Iteration Controllers
Iteration - Counter SirJIl

Programmed Work Mark Switches
Programmed Character Switches
Branching Switches

B-O

B-1
B-2

B-3
B-4
B-6
B-9
B-lO

B-16
B-l'1
B-17
8-L:J

B-18
B-24

B-25
B-26
B-28

(B) Subroutines and Subroutine Teclmigues (cont'd.)

Contents

Table Operations

B-16
B-17
B-18
B-19
B-20
B-21

B-22

B-23
B-24
B-25
B-26

Table Look-up Programming
True Binary Table Search
Binary Table Search for Equals
Binary Table Search for Equal-High
Binary Table Search for Equal-Low
Binary Search for Tables in Descending
Sequence
Construction of Binary-Search Subsidiary
Tables
Direct Address Table Searching
Successive Table Searching
Special Table Searching
Table Search by Bracketing

Utility Type Operations

B-27
B-27.1
B-28
B-29
B-30

Clearing Storage between Limits
Clearing to Zero .
80 Column Card Reproduce Routine
80 Column Card Gang Punch
Relocatable Core Storage Print Out

Miscellaneous

B-31
B-32
B-33

Field Inversion Routines
Job Initialization Routines
Storage Locations 000 and 100

B-O.l

B-30
B-31
B-36
B-40
B-42
B-44

B-45

B-50
B-51
B-52
B-54

8-5e
3-56
5-57
B-52
3-61

B-65
B-68
B-69

(B:-l) Address Coding and Decoding

11114 1401/1440/1460 ADDRESS TRANSLATION CARD

Locate OD the hUtldted. axi. the first cha.racter
of the coded addte. and the liDe I.D which it
appear, ud Oil the Units axil locate the lalt
character of the coded addte. aDd the column
lt1 which It a~peath The IUblCl'ipt for each
character located lal the Dumerical value for the
correlPODdlt1g addtd. po,fUolS and the point of
h1tetieCtloil i. the thoUsand. desigllatioa. Thus
the thachlt1e"'ctJded addre. BPY is 72x8.
Indexing ill lbdicated if the middle character of
the coded addt ... it ail alphabetic or special
Oile. Locate the chatacter in the chuacter set
iabeled hwdred. j to the far left of that line is
the biclex locatioa. SPY is 10cat1c)n 7278 in­
dexed by 10cadoD 2. By reversing the proce­
dure.. Dumerical addre.es can bE! translated into
htachhte-coded addte .. es.
Addlti<Oilal eltairtplesl PYH= 1478811
56423=WDS, P19r.2719 DODe j A6Z",7169 nonei
15123 Done=A2Cj CC4=3334 3 ••

UNITS

L.

r-- HUNDREDS
IND. ! LOe.

3 ?o As B2 C3 0 .. E5 Fa G7 He 19

t--~-.--- ... -.... -. .- ~---------------.-------

2 to J 1 K2 L;s M4 N~ Os P7 0 8 Rg
t--1-._-----. __ ..

1 *0 ~ 52 T3 U4 V'j Ws X7 Ye Z9 .-~-

ON 0 0 11 22 3 3 44 5'j 6 6 77 8e 9 9 !WE

B-1

?o
Al
B2
C3
D4
E~
Fa
G7
He
, 9

15xx)(
1----

14xxx

13xxx

12 xxx

I
*0 0 0 • 0

Jl / 1 1 1

Ke S2 22
L;s T;s 3 3
M4 U .. 44
N~ Ve 5&
0 6 W& 6&
P7 X7 77
0 8 Y e 8 8
R9 Z, 9,

11 xx x 7x)()(3xxx
~-

10 xxx 6xxx 2 xxx

9xxx 5xxx 1 xxx

Sux 4xxx Oxxx

(B-2) Address Modification without the Modify Address Op Code

To increase any 1401/1440/1460 address, the Add Op may be used.
Set a word mark in the hundreds position of the address to be modified.
Convert the modification factor to a 3-digit number: 1204 is actual
machine address S04. Add this 3-digit factor to the address to be
modified. Clear the Word Mark set in step 1. The resultant answer
will be a valid address. Remember, however, that an undetected
wrap-around r.1a} have occurred.

To decrease an address, convert the modification factor to the 16,000
complement, and use the Add Op. Thus: to decrease the address G67
(3767) by -003, convert address factor -003 to 15,997. This will be
actual machine address 19G. Add I9~ to G67, a.'1.d the result is G64
(3764). Arithmetic overflow controls the zone bits in the hundreds
position of the modified address.

Note that any indexing bits over the tens position of the B-field will be
stripped.

If indexing bits are present in the modification factor, they will be
ignored. If indexing bits are present in the original address to be
modified, they will be removed. If the indexing bits will be required,
they can be removed prior to the Add Op by a Move Zone to a save area
and replaced after the modification.

This method of address modi£ication is not necessary for addresses over
4, 000 since Modify Address is standard on machines with more than
4, 000 positions of core storagc::.

B-2

(B-3) Address Register Contents

The original contents of the B-STAR (B-Storage Address Register) are
not disturbed when the A-STAR is read into, when using the following
op codes as single address instructions (op code and an A-address):

M Move characters to a word mark in either field.

L Load characters to the A-field word mark.

H Store B-STAR contents.

Q Store A-STAR contents.

The contents of the B-STAR are destroyed when the A-STAR is used
for the next op, except when chaining, using op codes only.

In machines having the Advanced Programming Feature, the contents
of the I-STAR will be transferred to the B-STAR, after any successful
branch op. The first instruction of the branched-to routine can then
be a Store B-STAR op (SBR), so that the address of the NSI (Next
Sequential Instruction) following the branch can be retained to provide
effective routine linkage.

B-3

(B-tf) Clear Storage Following Print, Read, or Punch Operations

The print area in the 1401/60 is normally cleared as follows:

2
/332
/

Mnemonic

W
CS 332
CS

The print area ca..1'J. be cleared by using the print op code (2), followed
by two chained CS (Clear Storage) op codes, lhus:

Actual

2
/
/

Mnemonic

W
CS
CS

At the end of the print op, the 3-STAR will curtain address 335 or 333
if print storage is installed. By taking advantage of this fact, 3 core
positions can be saved every time the print area is to be cleared.

When this method is used, the program must originate at core location
336 or 334 with print storage, instead of the usual 333. The program
may still start at location 333, if the instruction or constant at location
333 is to be used before the first print op, and never reiprred to again.

This method of clearing core may be used following other input/outDut
op codes. Figure B-3 shows ending addresses after 1402/1403 operations.

B-4

!LQ.2£ Inst. ~ ~ B * with
ErLYJ.t storage

Read 1 xxx 081

Rel/Br 1 707 707 081

Print 2 xxx 335 333

Pr/Br 2623 623 335 333

Pr/Wm 2t=: yyy 335 333

Pr/Wm/Br 2795 ;::t 795 335 333

Pr/Rd 3 xxx 081

Pr/Rd/Br 3650 650 081

Punch 4 xxx 131

Pch/Br 4925 925 181

Rd/Pch 5 xxx 181

Rd/Pch/Br 5893 893 181

Pr/Pch 6 xxx 181

Pr/Pch/Br 6 724 724 181

Pr/Rd/Pch 7 xxx 181

Pr /Rd/Pch/Br 7392 392 181

Pfr 4R yyy 181

Pfr/Br 4823R 823 181

Pfr/Pr/Br 6R yyy 181

Pfr/pr/Br 6823R 823 181

xxx denotes previous setting of A-address register.
yyy denotes the d-character and blanks in the units and tens position.

Figure B-3
Ending Address After 1402/1403 Operations

B-5

(B- 5) Conversion of 5-Digit Addresses to 3-Digit Addresses

Refer to program (Figure B-4) ..

The first overflow gives an A-zone in the high order position of
HOLDAR (HOLDAR-4). This zone is determined by the two digits that
must fit in this one position as: 10 is :f ,and 19 is Z. As long as the
digit does not change by adding 96, no overflow is iniicated. When the
zone generated changes to a B-zone, overflow is indicated again. Thus,
addresses in the range 0-3999 cause no overflow and therefore no zone
in the units position of t.t:le address. The range 4000-7999, one over­
flow occurs giving an A-zone in the units position of the converted
address. In the range 8000-11999; two overflows; B-zone in the units
position. In the range 12000-15999; three overflows; AB-zone in the
units position.

This program (Figure B -4) requires very little storage and is easy
to program and to understand. It can be used in any application where
address conversion is necessary.

B-6

tJj ,
-.;)

1
2
3
4
5
6

CNVT03

ZONE

BAV
A
BAV
MZ
MN
MZ
ORG
DeW

Operand

*+001
@96@, HOLDAH-003
CNVT03+005
HOLDAR-004, HOLDAR #5
HOLDAR-003, *+004
ZONE, HOLDAR-002
909
@25KB@

These statements might assemble as:

~nber lli§T ADD INSTRUCTION

1 601 B 606 Z
2 606 A 702 802
3 613 B 606 Z
4 618 y 801 805
5 62(:1 D 802 635
6 632 Y 909 803

639 NSI
DCW's
Units Factor

Add.
702 96
80Ei QOOOO

909 ~SKB

Figure 13- 4 Address Conversion Routine.

IOLDAR Step 2 Step 3

)0100 +96:;: 96100 No ovfl

Step 4

96100

Step 5
gives
Address

906

~)1~00 +96 = 97000 No ovfl 97100 90?

13800 +96::;- 99000 Noovfl. 99100 909

Comments

Reset overflow
Generate 1-3 overflows

Ov(~rflow to zone units pos.
Move digit (6, 7, s, 9)
Move corresponding zone to hundreds
position.

COMMENTS

Reset Overflow Indicator
Generate 1 to 3 overflows.
Branch to add Op if overflow.
Use overflow for units sign.
Move digit (6, 7, 8, or 9) .
Move corresponding zone tq hundreds positon.

Comments

Alpha Literal.
5 position hold area into which the address
to be converted isprogram-loaded.
Literal located so that the zones can be used.
Units position (B) must be in location ending in-nine

Step 6
zone

Blank

Result

96100 or 100

A-Zone 9UOO or -* 00

AB-Zone 99~00 or 000

NSI

l
!
I

I
~---------~--i

P4QOO
: '[\

67000

I
tJj'

+96 = ioooo
lo\:J6 = Z6000

+96 =\3000
+96 = Z9000

Ovfl
No ovfl

Ovfl
No ovfl

Z600 =t 906 Blank zone Z600.1- or 00 I

Z900 909 AB-Zone Z900 lor 60-

& r~-----------------'----------------------------------·------------------------------------
osqoo

}
11000

12000

\"
15000

+96 =: 4000
lo96 =-00000
+96 = R6000

+96 = t7000
lo96 = 00000
+96 = R9000

+96 = : SOOO
+96 = .D'4000
+96 = 00000
+96 = 16000

+96 == /1000
+96 = 147000
+96 = 03000
+96 = 19000

Ovfl
Ovfl
No ovfl

Ovfl
Ovil
No ovil

Ovfl
Ovfl
Ovfl
No ovil

Ovfl
Ovil
Ovfl
No ovil

R600e- 906

R900U 909

16000 906

19000 909

Figure B- 5 Function of Address Conversion Subroutine

Blank zone H6000 or 000

AB-Zone R9000 or 000'

Blank zone 16000 or 000

AB-Zone 19'000 or 50d"

(B- 0) Proarammed "Wrap-Around"

If storage iocation 000 is addressed with any instruction that
decrements an A- or B-address register, the processing system
will wrap-around to its high-core storage address (3999, 7999,
11999 or 15,999).

To determine the core storage size of a particular machine as the
program is being nL11., use the Clear Storage (/) op, followed
immediately by the Store B-Register (H) op, thus:

CS 0
SBR AAA

The object machine storage size will be stored in the core location
represented by the notation (AAA). The clear storage instruction
does not cause a wrap-around error.

Do not attempt to address storage location 15, 999 (or maximum
storage location of your particular system), with any OD code which
increments the A- or B-address, since the system will wrap-around
to its low-core storage address (000).

The op codes which will cause this error are the Move Record Op,
or any of the serial ops, such as magnetic tape, serial I/O, serial
readers, etc.

B-9

(B-7) Using Incoming Data to Modify Instructions

Techniques to use incoming data to directly modify instructions, as
opposed to the more standard approach of testing, branching, and use
of subroutines, follow:

1. Consider, for example, a program in which a transaction or
accounting code on data documents is to affect one of a series
of accumulators. The thirty-six codes are the single characters,
letters A through Z, and the digits 0-9, in this sequence.

Assign ten position accumulators, of which there will be thirty­
six, with units positions in core locations 3649, 3659, etc. up
to 3999. Now rather than testing for each code individually,
use one instruction (the object instruction) and modify its B­
operand, which specifies the location to be Changed. Note that
the numeric values of each transaction code, (the letters A-I),
correspond to the relative sequence of the accumulator which
they are to affect. The same is true for letters J -R if the value
of 9 is added, for the letters S- Z if the value of 17 is added, and
for the numbers zero to nine if 27 is added. These would be the
base numbers to which would be added the digital value of the
code character.

Code Character Base + Dig!t Accumulator -
Seguence

A = (1) 0+1 = 1

1= (9) 0+9 = 9

J = (1) 9 + 1 = 10

R = (9) 9 + 9 = 18

S = (2) 17 + 2 = 19

Z = (9) ·17 + 9 = 26

0=(0) 27 + 0 = 27

9 = (9) 27 + 9 = 36

B-10

Programming can take direct advantage of this logical relation­
ship. The routine (Figure B- 6) would consist of instructions
to analyze Lhe zone structure of the transaction code, branching
to add the corresponding zone value to the tens position of a
three-position constant, which has the initial value of machine
address 3639. The numeric portion of the code is then added to the
tens position of the constant so that the resulting value which
will be in increments of ten is one of thirty-six machine addresses,
the units position of the correct accumulator. The constant then
replaces the B-operand. Total core requirements are 105 loca­
tions, in contrast to 684, using standard programming.

B-ll

LABEL OP

BWZ

BWZ

BWZ

RETURN MZ

A

MCW

OBJECT A

MCW

TO MAIN ROUTINE

ADD 9 A

B

ADD 17 A

B

ADD 27 A

B

A-ADDR B-ADDR d

ADD 9 CODE K CK Eleven
Zone

ADD 17 CODE X CK Zero
Zone

ADD 27 CODE 2 CKNo
Zone

BhA.NK CODE Dezone
Numeric

CODE WKAREA-001 Add
Numeric

WKAREA OBJECT+006

AMOUNT 0000

RESET WKAREA

NUM9 WKAREA-OOI

RETURN

NUM 17 WKAREA-001

RETURN

NUM 27 WKAREA-001

RETURN+007

Figure B- 6. 1
Transaction Code Test

B-12

SIZE LABEL OP

03 WKAREA DCW *
03 RESET DCW *
02 NUM9 DCW *
02 NUM 17 DCW *
02 NUM 27 DCW *
01 BLANK DCW *

CODE DS 0070

AMOUNT DS 0060

Figure B-6. 1 (cont'd)
Transaction Code Test

B-13

F39

F39

09

17

27

2. For areas of different size, for example, seven positions, the
sum of the zone and underpunch might be expanded seven times
by successive addition and subtraction, with modification then
taking place at the units position of the operand (or index register,
if available). Total core requirements are approximately 146
with this technique as opposed to 684.

3. Consider another situation of just six accumulating areas. Each
incoming code may add to, subtract from, or bypass an area;
any code affects on the average, half of the accumulators. The
solution here could result in one object instruction for each area,
with data analyzing instructions choosing the operation codes in
advance.

Each code would have an associated six-position constant, con­
taining the required machine language op codes in sequence.
After the location of these constants has been assigned, the data
code is used to develop the machine address of the correct
constant. Other instructions insert the op codes from the con­
stant to the six object instructions. The A-operand of the first
instruction contains the address of the selected DCW (Figure
B-7.2).

B-14

LABEL OP

OBJECT Mew

MCW

MCW

MCW

MCW

MCW

MCW

06 DCW

06 Dew

,..... .. ;.. AREAX Dew J'...",

A-ADDR

0000

AREAX-005

AREAX-004

AREAX-003

AREAX-002

AREAX-001

AREAX

*ASNNAN

*NNSSAN

*

Figure B-7. 2
Op Code Insertion

B-ADDR

AREAX

INSTRA

INSTRB

INSTRC

INSTRD

INSTRE

INSTRF

COlvliVl:ENTS

INSTRA
through
INSTRF are
the six object
instructions.

Typical Dew
with six
machine lang.
op codes

Storage locations in this example are approximately 125 for ~struc~ions,
230 fer constants for a total of 355. Standard programming, mvolvmg
one test, three arithmetic and one branch instruction for each of thirty­
six codes, would be about 1200.positions. Of course, the constant could
contain any element, or combination of elements, that could comprise
an instruction.

B-15

(B-8) Double Identification Halts

Often it is useful to program halt ops to serve multiple functions. For
instance, a program might contain a halt #1111 to tell the operator to
insert a tax year in. a particular storage location, such as: H 1111,
TXYR, where the label TXYR will refer to the units position of the tax
year field in the assembled program. This instruction might appear in
the post list as: :.... /11 908.

B-16

(B- 9) Programmed Halt Numbering

Standardization of programmed halt numbering facilitates job operations.

By using specific halt numbers for specific halt conditions, program
coding and job operation is simplified. The halt instruction can be used
to indicate common halt conditions, such as: out-of-sequence, tape
error, reader erros, end-of-job, etc.

4f Positions

1
2
3

4
5

7

Halt Types

Instructions

H
H2
NOP 2
H
H 222
NOP 222
H
H 111 222

The 2 and 3 position halt instruction provides one position for halt
indications, while the 5 and 7 position halt instruction provide three
positions. In the case of the 1,2,3,5 and 7 position halts, the NSI will
be executed when the start key is pressed. The 4 position halt will cause
a branch to the location in the A-STAR.

{B-9. l)Dead-End Halts

Some error conditions -demand that the application in progress be
terminated. It will have been determined beforehand that further
attempts to process will be useless. Typical ~xamples of this follows:

FATAL H FATAL (The address of the label
FATAL can be standard-
ized for all programs.)

or

FATAL H 888,888
B FATAL

B-17

(B4.O) Programmed Halt. Two-Position

The 2-position halt instruction has the same characteristics as the
seven position halt; the operand is displayed in both the A- and B­
address registers. When the start key is pressed, the next sequential
instruction will be executed. Five core storage positions are saved.
It is coded as follows:

HALT9

or:

HALT9

Note:

H
DC @9@)

DCW @.9@)

When using this technique, the digit modifier will be dropped when
assembling is done with autocoder, if written in symbolic SPS format.
Therefore, it should be coded in actual (.9).

B-18

(B-ll) Iteration Controllers

Three methods of counting iterations (repetiti ve operations) are:

1. Branch if Character Equal
2. Compare
3. Rotary Switch

The Branch if Character Equal method (Figure B-8) is limited to a
maximum of 10 iterations, but has the advantage of using a minimum
am(1unt of core. It is easily modified if iteration control is to vary
dur'"ng the job

A variation of the Branch if Character Equal method can be used to count
iterations over 10, by first branching on a specific character in the
10' s (hundreds or thousands, etc.) position of the count field. When
this test is positive, modify the Branch if Character Equal instruction
to test the next lower digit of the count field. Usually, both the d­
modifier and the B- (testL."lg) address will have to be changed. The
final test positive will provide a branch to the RESET sub-subroutine,
and a branch out of the subroutine to the NSI.

The Compare Op method (Figure B-9) can be used in any general
iteration count. It is easy to program, but is more expensive of core
storage than the previous method.

The Rotary Switch method (Figure B-10>Uses less core than the compare
equal method for iteration counts of 2 to 6.

Any of these count-subroutines can be used wherever a specific or
program-alterable count device is required, such as tape blocking,
table lookup, multiply subroutines, etc.

B-19

LABEL 22.. A-Add B-Add ~ Count COMMENTS

Follow steps of
subroutine.

ADDITR A ADDITR COUNT 7 UsesADDITR Op
for consta.'1t.

B RESET COUNT d 8 d-modifier any plus-
zoned character.

B SUBROU 4 Branch back to
subroutine.

RESET ZA RESET COUNT 7 Uses ZA Op as DCW

B NSI 4 Brancr. out of
subroutine.

COUNT DCW * +0 Must be plus zero.
Total Positions 31

Figure B- 8 Branch if character Equal Iteration Control Subroutine.

B-20

LABEL QQ.. A-Add B-Add ~ Count COMMENT'S LABEL QQ.. A-Add B-Add COUNT COMMENTS

ADDITR A ADDITR COUNT 7 Uses Op-code for Follows steps of
constant. subroutine.

C CONSTN COUNT 7 Compare constant STEP I MCW LABELC-I LABELC 7 Off sets constant
factor to count. (LABELC)

B RESET S 5 Branch if compare STEP 2 MCW LABELA LABELB 7 Inserts B-Op in
equal. constant.

B SUBROU 4 Branch back to STEP 3 MCW LABELC LABELA 7 Inserts N-Op in
subroutine. branch-out (LABELA)

RESET ZA RESET COUNT 7 Uses ZA Op-code LABELA B NSI 4 Branch out of
for constant. subroutine.

B NSI 4 Branch out of B SUBROU 4 Branch back to
subroutine. subroutine.

Total Positions: 29
COUNT OCW * 000 etc. n Must be zoned plus,

n positions long. LABELB NOP

CONSTN DCW * 000 etc. n Same length as COUNT. LABELC OC *NNN etc. n Any number of "N's"
Total: 34 plus 2n lor over.

NOTE: In addition to the instructions, you must consider LABEL B (l position)
Figure B-9 Compare Equal Iteration Control Subroutine. and at least one "N" required for the constant (LABEL C). Actual

total for this subroutine will then be 29 plus I "plus n (at least 31).

Figure B-iO Rotary Switch Iteration Control Subroutine.

B-22

B-21

Figure B-ll illustrates the status of LABELA, LABELB and LABELC

PASS
if

2

3

4

5

etc.

I
I
I

STEP
if

2

---r-----
2

3

2

3

2

3

2

LABELA
op

B

N

N

N

N

N

N

B

B

B

I
r
!

LABEL
B.

CaNTS

N

N

N

N

N

N

N

N

N

B

LABELC
CONTENTS

NNN

NNN

NNN

BNN

BNN

BNN

NBN

NBN

NBN

NNB

NNB

NNB

NNN

NNN

Figure B-11Status of LABE LA, LABE LB and LABE LC in the Rotary Switch
Method of Iteration Control.

Tae subroutine would have branched to the address indicated here by NSI
after pass 4, and would not have branched again until after 4 passes through
thF routine,once this routine was entered.

This method of iteration control can be used for any type of COlllt. It can
be expanded to use any base. A DC (LABELC) of 2 N's will provide a count
of 3, while a DC of 7 N's will provide a COlllt of 8 iterations.

B-23

{B-12) Iteration-Counter Sign

1.

2.

3.

4.

Place a negative amount in the cOlllter, and add one each time
the routine is performed. When the counter reaches zero, test
for a minus zero (6) by usinsr the Branch If Character Equal
instruction -- B (III) (BBB) a .

Same situation, but look for the sign change to plus by using
branch if word mark or zone, BWZ (III) (BBB) B. This method
may be used for any sized cOlllter.

A counter can be worked in reverse by using a positive amount
in the cOlllter, subtracting 1 and testing for (O). In the second
situation, look for the sign change to minus.

A single position cOlllter can be used for a count of 19 or less.
For example, starting with -9 in the counter and testing for
+9 (I) with the branch if character equal instruction.

B-24

(B-13} Programmed Word Mark Switches

Programmed switches can be an aid to subroutine selection. Basically.
a programmed switch is a function that can be conditioned at one point
in a program, to cause selection of alternate paths later on in the
program.

Three steps in use of switch are:

1. Turning the switch on - ';Nl 081
2. Testing the switch - HWZ III, 081,
3. Turning the switch off - CW 081

One method of effecting programmed switching involves the use of
word marks (Figure B-12).

081
TEST
TURNON

DC
BWZ
';Nl

TURNOF CW

Figure B-12
Programmed Switching, Using

Word Marks

#1
III, 081, 1
081

081

. B-25

17 positions

€B-14) Programmed Character Switches

a.

b.

c.

Branch if Character Equal

1. One core location can be used for more than one II switch IT

condition. Thus, if one condition is met, set a 'WM. If
another condition is met, insert yet another character,
etc. The core position can then denote presence of a
name and address card, (WM), and presence of YTD card
(particular character, say a Y).

2. A core position can store any of the many zone and/or
WM conditions. The~e can then be tested with the Branch
if Character Equal and Branch 'if Word Mark or Zone
instructions.

Insert another Op-code to modify the program. A subroutine
might change a NO Op to a Branch Op, then aN OP. (Figure
B-13).

Change the d-modifier. Cause a branch"n another sense
switch, to another carriage tape channel, or branch on another
I/O error condition by altering the structure of the d-modifier.

B-26

Initialize ~.
r---- -'-"t ~ yes 1, Replace '.'

.){ Read_).<··lvlan_~._-~ Nap in &t
L '----r--- Nq.=9M '1 & Sw2 I " Y WIth B

i No
/",,'-'---' i

Punch 1-.-
I

~..,.- .•. ---~

SWI B

Figure B-13
Programmed Switching, Using

Op Code Alternation

On

Main ;
I

Routine I)
____ -.J

TURNOF MCW
TURNON MCW

@N@, SWI
@B@, SW1 20 positions

B-27

(B-15) Branching Switches

1.

2.

The BRANCH IF INDICATOR ON instruction (B III d) may be
used effectively for program switching by using an unused
d-modifier (B ill t:f for example). To set the switch, simply
set a word mark under the "\:t" d-modjfier. This makes the
instruction an unconditional branch. To reset the switch,
clear the word mark from under the d-modjfier. Since the
1401 has no)(branch d-modjfier, the instruction will causp
no action, and become effectively a no operation instruction.
The program will continue to the next sequential instruction.

SWI

~

BIN

Operand

ON,tr

SW SWI + 4

CW SW1+4

13 positions

This switching method takes four less core storage positions
than the conventional method of testing for the presence of a
word mark.

CAUTION

If machine specifications are altered, what was once an
unused d-modjfier, may become used. This requires a
review of all cases where this switch technique was used.

A similar approach would be:

NOP
B XXX

OFF (RBXXX) ON (~1? XXX)

By removL.'1g or placing a word mark under the B makes this
, a five position NOP instruction or (a one position NOP followed

by) an unconditional branch. The same amount of memory is
saved, as above; however, it is slightly slower in execution
time but safer from the standpoint of changing d-modliiers.

B-28

3. Anotler way to program the branch switch would be:

Operand

TURN ON

SWi BIN TUEN OF, l:t

TURN Or MCE

10 positions

The WM on the d-modiiier in. tn._~ bran.c~j in3truction \i.'ill be;
cleared by the edit instruction, if it is dlC first instr".;cticn in
the "TUrtNO?" routine.

B-29

(B-16) Table Look-Up Programming

The object of table look-up is to find, from a group of table arguments,
an item that equals (or in some cases approximates) the known search
argument. The table functions (associated data) of table arguments can
be located attendant to the argument, or a fixed number of positions away
from the actual argument. Modifying the address of the location of the
table argument will result in obtaining the location of its related function.
Generally, some effort will be made prior to the actual search to
determine whether or not the search argument lies within the limits of
the t able arguments.

Tables take 'many forms. ' They may be arranged sequentially in ascend­
ing or descending order. They may be ,arranged non-sequentially, with
the high activity items appearing first in order by activity) followed by
items with less activity. They may be arranged'in random order, with
access to the table arguments based on an address included in the input
media. The nature of the application involved (-equal hit, interpolation,
etc.) will dictate the table design. In any event, table searching c~
readily be programmed on most data processintt systems.

B-30

(3-11) ~rue 3inary i'able Search

':table look-up becomes very time-consuming when directed at large
tables or when long functions must be interspersed between the table
arguments. No other programmed table look-up can completely search
an ordered table in as few searches as the binary search.

The true binary search described here was developed for a situation
where it was impossible to include the word marks needed by the table
lock-'.lp instruction. It \},'ill completely search any size sequential table
or OrJUP of records in a minimum number of comparisons, but does not
req~ire- a great deal of storage for the program itself.

-:'heory of Binary Searcbing

Usin<} a ~able that is either in ascending or descending sequence, it is
p:)ssible cc compare a search argument against the center table argu­
::Dent. If t-,ey are equal, the search is already finished. Otherwise the
result of the comoarison tells in which half of the tab1\:, the desired
arg-J~nen: may iY?-')und. A seconci comparison at the center on one of
the halves can further tell wrlich quarter of the orittillal table might
contain it. This procedure can be repeated as long as it is possible to
subdivide whatever portion of the table remains.

Obvi:.:'.:.sly, a table t.hat cal'} oe repeatedly divided in hali until only one
logical entry is left r:mst in itseli be related to some power of 2. It
must in fact contain a total of entries eq'.lal to one less than SOl-:1e !jower
of 2 in order to si:nulatE: a "look-up equal" operation and exactly some
Dower of 2 for "loOk-'l,) equal-LigL" or "look-up equal-low".

The following table illustratAs the application of a binary table:

Position in
Table Argument Function

8ib 9463001
2 827 1004076
3 IVju 3472300
4 OJ4 6875679
5 123 4221842
6 148 3884468

B-31

Position in
Table Argument Function

7 159 5123779
8 177 6897212
9 200 2011897
10 251 3675774
11 283 2001480
12 694 7581531
13 733 0175000
14 746 6361792
15 999 *******

The table consists of 15 entries in ascending sequence. Each entry
contains ten digits; three for the argument which is the field against
which we must make our comparisons a.'1d seven for the function. The
other element is the search argument which must match exactly with one
of the table arguments.

To search this table by the binary method, the program must compare
the search argument against the table argument of the eighth entry.
If an equal condition results, the desired item has been found and the
search terminates. However, if the search argument is low, the item
:nust be among entries 1-7 of the table, and if high, it has to be in the
upper seven entries (9-15). The next comparisor.. is made on the item
which is the next lower power of two entries away from the previously
compared Hem. Thus, we must look at entry 4 (low) or entry 12 (high).
S'.lccessive comparisons are then made which always reduce the number
of possibilities by hali until only one entry remains. If that entry is not
equal to the search argument, it means that the argument is not in the
table.

The course taken by the search is best demonstrated by using an actual
input argument such as 123. This is initially compared against item
#8 (177) and found to be low. The next comparison against the center
item of the lower hali of the table, item #4 (094), results in a high
condition causing the search to move upward to item #6 (148). The
low indication at this DOint means that only one possibility remains,
item #5 (123), which in this case satisfies the equal condition desired.

B-32

To completely search a 15 item table such as the one on the previous
page requires a maximum of only four comparisons. Note that the
average number of comparisons is somewhat belowthis because if an
equal condition results at some earlier point, no further comparisons
are necessary.

As a binary table increases in size to one item less than higher powers
of 2, the number of comparisons needed for a complete search becomes
lower in relation to the size of the table. Thus the numbers of iterations
needed for various larger tables are:

No. of Items Maximum No. of
In Table Comparisons

31 5
63 6

127 7
255 8
511 9

1023 10

The value of the binary table lies in the fact that it is perfectly sym­
metrical. Each successive comparison must move to a point higher
or lower on the table which is exactly half the distance traveled by
the previous comparison. When this distance has been reduced to the
length of one item, the search is complete.

This type of table organization lends itself to computer programming
in that a simple loop containing just one compare instruction, one of
whose addresses is continually modified, can perform the whole search.
A small subsidiary table contains values for each iteration equal to
table address compared against at that point of the search. It must
terminate with some indicator which tells the program that the last
iteration has been completed.

For the 15-item table described, the subsidiary table would look like
this:

B-33

4XL=40
2XL=20
1 XL", 10
End = **

L equals the length of the table argument, plus the functions. This
totals 10 digits in the previous example. After the initial comparison
has been made at the table I s center, the value 40 is added to the
compare address if the result were high (subtracted if low). In this
manner the programmed loop can accomplish the search. The program
is controlled by the subsidiary table. By changing its values, the same
program can operate on tables with dilierent sized entries or, by adding
more values at the beginning (80; 160, etc.), upon larger binary tables.

Any sequential table of any size can be made up of two overlapping binary
tables of the next lower power of two minus one. Consider the following
table of 25 items (an extension of the binary table of 15 items):

Lower
Binary
Table
1-15

Position In
Table

1
2
3
4
5
6
7
8
9
10

/11
12
13
14

Upper
Binary
Table
11-25

~1~
16
17
18
19
20
21
22
23
24
25

Argument

015
027
066
094
123
148
159
177
200
251

--- 283 -'"
694
733
746
.7B8/'
762
795
796
811
853
866
904
913
957
999

B-34

Function

9463001
1004076
etc.

It can be seen that this table may be thought of as one 15-item binary
table of entries 1-15 and a second one consisting of entries 11-25.
The only difference between searching this table and a straight binary
table is that an initial comparison at the table's center (item #13 in this
case) must force the program to search either the upper or lower table.
The identical routine described can successfully search this unsymmetri­
cal table. The only cr.a.>J.ge is i.n t."'1e subsidiary table which controls t.."'1e
operation. Here one additional value must be placed at the beginning
which will modify the address at item #13 to go next to either items
#8 or #18 (the center points of the two binary sub-tables). The subsi­
diary control table would then appear as:

5 XL = 50

4 XL = 40

2 XL = 20

1 X L = 10

End = **
This method is valid for an equal search through any table having an
odd number of entries. To handle an even number of entries requires
a slight change because the initial distances moved (up or down) after
the first comparison would not be the same. This is accomplished by
creating two subsidiary tables instead of one. The increment table is
referred to if the result of a comparison is high, the decrement table
if low. If j:he original table were increased to 26 items, the subsidiary
tables would appear as follows:

Increment Table

60
40
20
10

**

Decrement Table

50
40
20
10

**
The initial comparison could still be made against item #13, but if the
result were high, the next comparison should be made against item
#19 which is now the center of the binary sub-table extending from

B-35

item #12 to #26. Having the two subsidiary tables forces this sequence
of operations. Note that this example requires a maximum of five
comparisons, the number equal to the exponent of the next power of 2
which is greater than the number of items in the table.

Exactly the same routines can search for an equal argument in any
size of table by addL.'1g more values to the subsidiary table (s). In this
manner a table of as much as 2000 entries, for example, may be
completely searched by comparing against only eleven (or less) of these
entries.

(B-1S) Programming Example of Binary Table Search for Eguals

Care should be taken if the total length of the table exceeds 999 charac­
ters, that module 16 complements are used for the negative values in
the subsidiary table: LOTBL. If the table exceeds 1999 characters,
the constant: :MIDPT, and possibly some of the positive values: EITBL,
must be given their three-position equiValents. The program steps
need not be changed.

Figure B-14 represents a logic diagram of a binary table search.

Figure B-15 illustrates the basic autocoder statements required for a
binary table search.

B-36

Enter
Table
Search

Irnt1allze
,1st Compare

- ------:;;> at center ;
pf table

I
-- ---..;;--------. Initialize'

to add 1st
increment or
decrement - -1---

--) -(r------
~oes--_ • Item

~earch ar-g~ ...Y§§. __ ;j Fo~d
table argo - ! Routme

';Z L.. ___ -r------- -
_ No -1 _ _ _ __ _
Add next _ ·1s-·, ~Add next

value from ..~ N alue from '
'increment t~Yss7-1;e~~~h aJ.Ojo;r "decrement

compare - e argo \ to campare
add~ess - ? \addrF-"'- - - - - -------------------

Pre~~re to
add next in-
crement or
decrement

End
No. of increment

table?

Yes

J

Item not found
routine (high --- -------.--------------­
ar law) -

Figure B-14
Logic Diagram af Binary Table

Search

B-37

Leave
Table
Search

* Binary Search Programming Example

START

COMP

UPPER
ADDX2

NO FIND

FOUND

ZA

ZA
C

BH
BE
A
B
A
A

BW

l'JIIDPT, Xl

&0, X2
TBARG&Xl,
!NARG
UPPER
FOUND
LOTBL &X2, Xl
ADDX2
HITBL&X2, Xl
&3,X2

COMP, HITBL
-2&X2

Initialize to middle item in
table
Zero X2
Campare Search argument
to table
Branch to go higher in table
Branch if exact match
Go lawer in table

Go higher in table
UP X2 for next value in
subsidiary tables
Test for end of subsidiary
table

If branch on word mark not taken, item was
not faund.
Begin processing found item at this paint.

* Whenever an equal argument has been found, index register 1
* contains the high-order r-elative address of the found table item
* which may be processed as required.

* * Data areas needed

TABLE DA 10X26 Table area of 26 items of 10
char. each

TBARG 1,3 Table argument
TFUNC 7,10 Table function
INPUT DA lX80, G Sample input area
INARG 17,19 Search argument

* Subsidiary tables to control an equal only search of a 26 item
* table containing 3 digit arguments and 7 digit functions.

*
LOTBL

HITBL

DCW -050 - 5 items lower in table
-040 4
-020 2
-010 1

DCW &060 6 items higher

Pi mn·p 'R_ 15
Autocode; p~;W~ Segment of

Binary Table Search

B-38

DC

&040
&020
&010
@@

4
2
1

Lack of word mark here terminates
search.

* Constant to initialize Xl to middle item of table.

MIDPT DCW &120

Figure B-15 (contrd.)
Autocoder Program Segment of Binary

Table Search

B-39

(B-19) Binary Search for Equal-High

To simulate a "look-up equal-high" operation, only a small change in
the interpretation of the table is required. The principal difference
is that the ideal size table for this operation exactly equals some power
of 2, rather than containing one item less. Recall that the chief virtue
of the binary table is L1.e fact that it is perfectly symmetrical for pur­
poses of the search. Note that there is a subtle difference between an
equal look-up and one for equal-high.

In the search for equal, each comparison eliminates one possibility,
i. e., the item just compared. The two remaining halves of the table
or sub-table must be of equal lengths. For this reason the comparison
at the center point of the table or a sub-table must be at the center of
a group that is one less item than some power of 2.

When the search is for equal or high, the item just compared is not
necessarily eliminated from the search. A low result does not indicate
that the desired table argument has been found until further compari­
sons have proven that the next lower item in the table is lower than the
search argument.

Because the subsequent comparisons in the lower or upper halves of
the table must take the identical course, and the item just compared
must still be taken into consideration as an entry in the lower half, the
table itself must contain a number of items exactly equal to some power
of 2.

Although this difference exists, the logic of the search is unchanged.
The only thing that must be altered is the points ;.n the table where
comparisons are made. This entails plaCing different values in the
subsidiary control tables. The example of a 26-entry table (discussed
in the previous section) was thought of as two overlapping biP...ary tables
of 15 items each (items 1-15 and 12-26) (for an equal search). To
perform a "look-up equal-high" requires it to be thought of as two
tables of 16 items each (items 1-16 and 11-26). After a comparison
against the center item resulting in the search argument being found
low, the next comparison woUld be made against item #8 in either
case. However, if the result were high, the equal search would next
look at item #19 whereas the equal-high search would be to item #18.

B-40

The logic and programming are almost identical for both an equal and
equal-high search. The only difference is that the. test for- equal must
branch to what was previously the "not found" routine. "Found" and
"not found" are, therefore, synonymous for anything but an equal
search. The reason for this is that there is no such thing as a "not
found" condition following an equal-high search. The program must
always find something, which generally means that the last item in the
table should be a pad of 9' s or some other unique indicator.

The subsidiary tables to control the equal-high search on the same 26
item table would appear like this:

LOTBL DCW - 050 HITBL DCW + 050
- 040 + 040
- 020 + 020
- 010 + 010
- 000 + 010

DC @@

Note that these tables each contain one more entry than the correspond­
ing tables for an equal search. If, on the last iteration of an equal-
high search, the search argument is found to be low, the proper "higher
than" item is the one just compared. If the search argument is high,
the next higher item in the table is the one desired. Therefore, after
the final comparison, a low result leaves the table argument's address
unchanged (LOTBL entry -000), but a high result causes it to be adjusted
upward by one item (EITBL entry +010).

If a search for an argument just lower than the highest item in the table
is followed through, this final table argument is never actually compared
in the example given. It is assumed to be the desired item if the search
argument is greater than the next-to-last item. For this reason, it is
best to tag this last item with some special indicator (such as 9's), which
can be identified by the program.

The search for equal-high takes the same maximum number of com­
parisons as the search for equal. However, in many applications the
equal condition (the only condition that can stop the iterations before
maximum) occurs only rarely while looking for equal-high. Here the
average number of comparisons per search would be nearLy the same
as the maximum.

B-41

(B-20) Binary Search for Equal-LOW

A slightly different situation exists when the search requires a table
argument that is either equal to, or the next lower value than, the
search argument. Again, the subsidiary control tables must be
altered, with no change in the program instructions.

The difference is that comparisons to every level of a binary table or
sub-table are made against the left-of-center item for an equal-high
search and against the right-of-center item during an equal-low search.
If it is lower (search argument high), the desired item belongs to the
upper half. The situation is reversed in a search for equal-low where
the significant point of comparison is at the lowest item in the upper half
of the table segment. When the search argument is low or equal, the
search continues in the upper half. If high, the search must shift down
to the lower half. This reasoning is valid if the table contains entries
totaling any power of 2 (or 2 itself, where the comparison pinpoints the
proper item, which is what happens on the final iteration of the sample
program).

To cause the same sample program to follow the desired sequence of
comparisons for the equal-low search on the 26-item table, the follow­
ing subsidiary control tables would be employed.

LOTBL DCW - 040
- 040
- 020
- 010
- 010

HITBL DCW + 060
+ 040
+ 020
+ 010
+ 000
@@

In this example, the initial comparison is still being made against item
#13 (MIDPT equals +120). The point of initial comparison is not fixed
on one particular item, but on any of those that are part of the over­
lapping portion of the two binary sub-tables, provided the first incre­
ments in the subsidiary tables are adjusted accordingly. Thus, if
MIDPT were made +130 (to compare first against item #14), the first
entries in the two subsidiary tables would be -050 and +050 (for a 26-
item table).

B-42

The e"TJ.al-lovl search requires a special test character i.YJ. the lowest
(left-most) position of the table. The program arrives at this entry
without comparing against it if all other items have been found to be
higher than the search argument. It can contain asterisks or some
other indication that may be tested by the program.

Timing for an equal-low search is the same as for equal-high.

B-43

(B-2H Binary Search for Tables in :C'-escending Sequence

Tables arranged in a descending sequence may be searc:ted by the same
program by changing the points of comparison so that they are oriented
toward the right end of the table in the manner that the ascendinq
table's points are oriented toward the left end. When the result of any
one comparison indicates that the next point should be higher in the
table {at some higher table argument), the address of this point is
arrived at by decrementing the current address. This means that if
the initial point of comparison is moved one item to the right, just by
changing the signs on the values in the increment and decrement sub­
sidiary tables, a search of an ascending table can apply to the same
size descending table.

To continue with the sample table of 26 items used in previous illustra­
tions, the three types of look-up when applied to descending tables would
require the following subsidiary tables (MIDPT is +130 or item #14).

Look-Up Equal

LOTBL DeW + 050 HITBL DCW -060
+ 040 - 040
+020 - 020
+ 010 -010

De ~~

Look-Up Equal-High

LOTBL Dew + 050 HITBL Dew - 050
+ 040 - 040
+ 020 - 020
+ 010 - 010
+ 000 - 010

De ~~

Look-Up Equal-Low

LOTBL Dew +'040 HITBL DCW - 060
+ 040 - 040
+ 020 - 020
+ 010 -010
+ 010 - 000

De ~@

B-44

(B-22) Construction of Binary-Search Subsidiary Tables

Calculation of binary-search subsidiary tables is to be based on the
following:

Select initial point of comparison
Determine the first value in both the increment
and decrement tables
Fill in the remaining values except the last
Select the last value.

The initial point of comparison is generally at the mid-point of any
table, although it may be against any of those items which fall in the
overlapping portion of the two binary sub-tables of the next lower
power of 2. Let us call this entry number M. From this, the value
of the constant, MlDPT, can be calculated relative to zero. Where L =
the length of each table entry:

MIDPT = L (M-1)

The second points of comparison are the most critical because they are
peculiar to the type of search performed. For an equal-high search,
T, the total number of items in the table must include the highest
possible argument (or a special indicator). The same is true of the
lowest argument in an equal-low search. Compute the value of n (the
power of 2 that is the next lower to the total items) so that:

Having determined the values of M, L, T and n, find the items that may
be compared against on the second iteration. Consider tables in ascend­
ing sequence. The following formula table (Figure B-16) shows how the
two points are arrived at for the different types of search:

Type of Search

Equal

Equal-High

Equal-Low

Item # After Lov.
Result (Pl)

Figure B-16

Item # After High
Result (P2)

T - 2n- 1 + 1

T _ 2n- 1

T - ~-1 + 1

Second Points of Comparison for Ascending Tables

B-45

The above points may be called P. Thus, for example, if a tabl.e
contains 53 items for an equal-low search, T=53 and n=5 (i. e. ,
25 53 26). When the result of the initial comparison is low, the
second should be made at item P1 where:

P
1

= 25- 1 + 1

P 1 = 17

Ii the result is high, it must be made at item #38.

25-1 1 P2= 53 - +

P2 = 38

To obtain V1, the value to be placed in the decrement table (LOTBL),
the V 2' to be the first entry in the increment table (HITBL) merely
subtract the value of M from the respective P and multiply by the
length of each table item. Thus:

V1 = L (P1 - M)

V2 = L (P2 - M)

The same type of formula table for descending tables applies
(Figure B-17).

Type of Search Item # After Item # After
Low Result (P 1) High Result (P2)

Equal T - 2n- 1 + 1 ~-1

Equal-High T - 2n- 1 + 1 2n - 1 + 1

Equal-Low T _ 2n - 1 2'"'1-1

Figure B-17
Second Points of Comparison for Descending Tables

B-46

T ... i1e vaLles of VIand V 2 are determined by the same equations shown
above.

It can be seen that the values of VI and V2 are functions of the number
of items in the table, the length of each item, the sequence of the table,
the type of search to be performed, and the position of the initial
comparison.

The assignment of specific values to V and V forces the search's
second iteration to look at the center at some §ize binary table. For
an equal-only search, this is exactly 'at the center item. When the
look-up is for equal-high, it is the highest item of the binary table's
lower hall; for equal-low, the lowest item of the upper half.

Aiter the second comparison, the search assumes a regular pattern
for every type of look-up and previous result. Therefore, these
portions of the two subsidiary tables are identical except for the signs
of the values. They follow this progression:

L (il-2), L (2n - 3), L (2°)

When dealing with an ascending table, all signs in the decrement
(LOTBL) table are mLnus and in the increment (HITBL) table, plus.
The signs are reversed for a descending table. Note that this portion
of a subsidiary table always contains n-2 values.

At this point the subsidiary tables are complete for an equal-only search
where, in the event of a not-found condition; the programmer is not
concerned with the next higher or lower items. All that must be added
is the "search-end indicator" which, in the sample program, is the
position without a word mark (DC) following the increment table (EITBL).

For an equal-high or equal-low look-up the final element of a subsidiary
table is added to the address of the very last item compared causing
the program to "find" it, or the item immediately to the right or left.
If the item in the final comparison is the one desired, this element is
zero. Otherwise it is plus or minus the item length (L) causing the
search to end one item higher or lower in the table. This value is
constant as follows for the different table sequences and types of search.
(Figure 13-18).

B-47

Type of Search

Ascending Tables

Equal
Equal-High
Equal-Low

Descending Tables

Equal
Equal-High
Equal-Low

Decrement
(LOTBL)

Not required '*
Zero
-L

Not requj.red *
Zero
+L

Figure B-18
Final Subsidiary Table Values

*

Increment
EITBL}

Not required *
+L
Zero

Not required *
-L
Zero

By including the same values required by equal-high or equal­
low searches, a not~ound condition followmg an equal search
can pinpoint the next higher or lower item :respectively.

The final increment table item must be followed by a location not
containing a word mark to stop the iterations.

By following the above steps the user can easily adapt the sample
standard search program to perform any of the usual table look-up
operations upon any sequential tablecontaming elements of a fixed
length. Since the size of the area being searched is controlled by
the size of the subsidiary tables" the latter may 1:e modified by a
program (such as an internal sort) to expand as the table (addresses
of already sorted records) increases.

B-48

Conclusion - True Binary Table Search

The true binary search has wide application for any computer not
equipped with table look-up instructions. Some alternative method
might be preferable when dealing with tables containing only a few
items, or if the frequency of "hitsll is disproportionately large on
a very small number of items.

The storage requirements of the program and subsidiary tables are
only slightly greater than for the simplest type of indexed search.
No other programmed table look-up can completely search an ordered
table or group of records in as few iterations as the binary search.
The number of steps actually executed per iteration is hardly greater
than by the usual, less efficient routines.

The bLrlary search, of course, cannot operate upon non-sequential
tables.

B-49

(B-23) Direct Address Table Searching

The table functions are arranged so that the coded address of any of
them is included in the input media. Direct reference to this address
locates the data required. The tables entries may be in random order.

Example:

A table containing 90 items (10 characters per item) is arranged so
that the actual address of each item in the table is coded in the input
media (card). The table is located in storage locations 091 to 990.
The table function addresses are punched in column 1, 2 and 3 and
range between 100 and 990.

To find the table functions that relate to the coded input card, compare
the input records to its associated table function. Ii the item is not in
the table, this fact is indicated. (See Figure B-1 ';]

------.-I

Move address
r ' ... ~ No /' Yes from column

Initialize ~ Read ---::X:O in 1?>--Y" 0 in 3y·_1, 2,3 to
'--_____ ~y,/ ' .• ~ program

':" I Yes I No

Ii /'~'
{ Exception' .

1 _~r.~rr~ ... _.

~. -,
I ' . Process .

Punch ~-.. -- -.. ---- ~ function ;E--- --.

. Figure B-19
Direct Address Table Look-Up

Search

B-50

---r'-'--"

(B- 24) Successive Table Searching

This method finds its greatest value in instances of short tables with
high activity in the initial items. It consists simply of
beginning with the first item in the table and comparing each of these
table arguments in succession, with the search argument. Example:
A short (20 item, 5 characters per item) table is arranged in random
order, with the items with the highest activity first. The table functions
are located with, and immediately to the left of, each of the table
arguments.

The table argument Ln storage that equals the search argument in the
card can be found, as shown in Figure B-20. Each card is processed
on the basis of its data in relation to each successive entry in the table.
If t.he item is not in the table, this fact will be indicated. Note that the
use of indexing and address modification would greatly facilitate this
searc(,.

Initialize- . ;;

Search Argument SS'S S S

Table Argument 6-: (Function) ~ -I. T T T T

Table Function .E F __ XX .. F , F ":-(Argumen~>->,

r'

v'
Read

Exception
or error

Etc.

I
- --------j Punch

'----7f'--
". No '., No Yes: I I

j..;', over , ... _-4 under-. ~ eq/-' ",.:, process.
. 20 ' ". J -----, ". 1 ~ function

'''1 No I
i

.(.- -'--

Yes 1 Yes
_____ i

I
I
!

I
. 1.:

~ua.1S ~~al71s....N?~4~~ 4 / .,.::l ;:; "
. ,/ '" . ..'

J Yes r Yes I' Yes
_I ___ ._ ... -....-i. .• ___________ L._ .. __

Figure B-20
Successive Table Look-Up Search

B-5l

(B- 25) Special Table Searcl:ling

There may be instances where information in the input media will tend
to point directly to specific table areas, precluding the necessity of a
tedious general search. The programmer should be alert to these
possibilities.

Example:

A table containing items is arranged in six la-item sections (10
cha.racters per section). A 5-item section-table of two characters
per item serves as a locator. The section number is punched in
columns 78 and 79 of the input card. Column 80 indicates the item
number within the section. Thus, item number 3 within section AB
is defined as AB 3.

To find the table function in storage associated with the code punched
in the card, process each card based on the stored data and t...1.at already
punched in the card. If th~ item is not in the table, this fact will be
indicated (See Figure B-2l). Note that this method is basically a
combination of the succe;:;;:;ive search and the direct addressing search
methods .

B-52

Section Table
Table Layout

Item Table

D H It~:~tion Af> I I I J I I I I I I
J D Item 2 I I I' I I I I I I I
P M Item 3 I I I I I I I
A B I I r

I I I I I Item 4

R E Item 5 I I I I I
etc. Item 6 I I

Item 7 I I I I

Item 8 I I
Item 9 ! I

Item 10 !
, Initialize I - "-----'"

.. " i
--.-~--

--1 Punch ~--------.-----'---.. -_. _. - I
(I

'.,.:._ . .J:_,. ~~t '",Yes I P:dd~i-80 76 J'-P~oc~ss; , Reset pro-
Read ~ - ectiop. ,~ process A- --.:* Load 0610--;;;. cess A-

1
-- l address . i to work area ; address to

No j T .-.~ .. U,.GA . .Qru.. ,., ' 6]0

I I

Add 100 ' ,! '-i ---------

: to LCA ,,----'

-... _.---. ".- .---- ---I
---~! -. I

;l ./ ~ " i > I
,/ 2:rid "', No rAdd 100 . /3~,,~~ Add 100 ~ 4~· ~ Add 100 !
~C~91l-----~ to LCA -~s~ction '1 to LCA ! ' sectlOn' . to LCA : I

Yes r Yes t. -.. ___ J J;' __ 1 I
I I Exception'. No, til I

o/--~------___:\VWtI ___ ~~~~r_ . ___ L_-:tJ
Figure B-21

Special(Combinatio:rV Table Look-Up Search
B-53

(B- 26) Table Search by Bracketing

This method of table search is utilized p!,imarily _in those instances
where the table is made up of relatively equal activity items. This
technique differs from binary table search. In this approach (Figure
B-22):

1. The search argument is compared with the middle table argu­
ment. If this table argument is equal to the search argument,
the search is complete.

2. If these two arguments are not equal, the search argu..ment is
then compared to a table argument that brackets the next set
of possibilities in the upper or lower part of the table. (The
decision to search further in either the upper or lower part
of the table is based on the relationship of the original comparison
and the construction of the table.)

3. This process is repeated until a "hit" (equal or acceptable approx­
imate situation) is obtained.

Example:

A table of several items (2 characters per item) is arranged in ascend­
ing order. Each of the items are equally active. The functions are
located with and immediately to the left of the table arguments.

B-54

Function.:-> lill L.1 _____ ----1LQ17-1
'---___ . __ k.L~J I lois'

101311 ~L~
10J4..11 t1rO:.!

'---____ l_~J I. ! 1 h I
_______ . __ LQJ§J 11 ! 2 :

11 13;

Figure B-22
Bracketed Table Look-Up Search

Note that this bracketing search method of table look-up would be
greatly facilitated by the use of address modification and indexing.

B-55

(B- 2'{) Clearing Storage Between Limits

1. An approach to clearing storage involves the use of the move
record op.

CS 332
CS
MRCM 200, AREA

A G/M - W 1M or RIM must be in location 333. The A-address
of the MRCM instruction can be altered to clear an area of 1 to
133 -locations.

2. If the move record op is not available, the following routine
can be used.

CS 332
CS
SW 200
LeA 332, FIELD
CW 200

A W 1M in 199 could be set in housekeeping if the location is
not otherwise used. The SW and CW instructions would not
then be needed. The A-address of the LeA instruction can be
decreased to clear an area of 1 to 133 locations.

(B-27. 1) Clearing to Zero

1. A fast way to clear index registers to true zero. Assuming
there are word marks in locations 087, 092 and 097:

S
S
S

100

This places the signs generated from the subtraction in 100,
096 and 091, and the index registers are true zero.

B-56

(B-28) 80 Column Card Reproduce Routine

Figure B-23 shows a method of preparing a single card reproduce
program for the 1401 or 1460.

The problems to be considered with the 1440 revolve around the method
of reproduction and machine configuration. There are at least three
approaches to reproducing on the 1440:

1. When only one 1442 is available without disk, it is necessary
to merge blank cards behind the cards to be reproduced.

2. When two 1442's are available, the routine would read in on one
1442 and punch out on the other 1442.

3. If disk tracks are available, the input deck could be stacked on
the file. Then, after all the cards are read, load blank cards
into the 1442 and punch out from the disk. This takes a load
program and a dump program.

The routines to accomplish the 1440 reproduce function are too long to
be considered for inclusion in this manual.

B-57

Instruction
Step Card 10 A/I B
No.polumn p d I I d I

Remarks
d

r
i
I J

!
I ! I

f-!2~~F-'--.:1::..:4"---+4-0:::,,+-,1 :::..8+-" :::,.2+--"0'+':...!:2"-t'-"6'-t--t=Se::::t:....w::.:...L/m:::::!,..;f::,::0:::r-.:s::::t:::::e=-.Pc4o....an=d"-""5 __________ 1----1 __ ~ __
I ' !

3 b.5-21 L ° : 7 : 7 4: 1 : 2 Move program from card area.: to m:.Q9T..a~ __ , __
r-=--I' I I 1 1 1 1
f----t-__ -+--t-_t-'t-:+-+'--t---+-+=-ar=-e=-:a=--______________________ -----------~-----+-

4 62-25 B 3: 6: 1: Branch to proqram area t
I I I

5 ~6-32 3: 6: 8 3 '7 :2 Set w/m for step 6 and-'LiliU2rogram are;)
I I ::!

6 ~3-36 II 0 18 10 Clear read area ____ .,. __ ---+-___ .;

f--7'---~F_'7-,-----4=-=3--tL-f-0: 0'1 3 17 : 9 i Set w/f!l._i!l_Q9l~9-~S'_~_~~P_~_____ . ______ '-_~~! __ i

1 ~-7 0:0:8 0: 1:5 Setw/mfor step 2 and 3 I !

i
j

; I

+--4
--LJ

8 ~4-50 , 3: 8: 6 3:9 :3 i I Set w/m for step_~ ~(L1Q _____ _
: I 1 1

9 ~1-57 ,14 10 1 ° 14 ,0 11 Set w/m for step 11 and 12

1O~8-64 ,14:0:8 4 :1:2 ISetw/mfor--~e-;~~_<3:ll~~;:~_~~;~~:-~cU~~~I.1_-_~
11 ~5 N I: :: ! No op

1-'1=-=2=---~F-16=---7-2--fL:.:..f--11 o-t-:I 8-_t-~1 0-+-1+:-8-t:-\0~T!=M=0-'v:.J:e'--r-e-a-d-a-r-e-a-t-()-p-Jlll--c·~-~~~~-- -

13 ~3-76 ~. if-9+Q++_+_L_~P~S:h-=-_~~9-_da1"!9 brand to step 12
I : i I I 1 ~

! I I i I : Ii: ,------ - - -
H- I ' ! i I ;+--~~~~~~ in~~~uctions are punched in a single

H- ,! i i if-~dand-PIaC.din Iron! of the cards to be

I i ;
I ; I

ir:~oduced. ThE:! actual r_eprodu~_e_!ou!.iAf§. I l

! I : I
I I ! is. only _tw~s!epsjl:2 __ ~9l.?)~ __ :,?-l! _ tEe __ I I I I ---

I I I I :
I

I I I 1 1
~ __ I I I I I other steps me:r:.E'~ear cQ:r:?in the - .

: I

I
1 I I necessary areas ~d t~~~!~~_ t~e _:r::ou~in_e __ ~ I I i I

+ I

1 : I :
I

from the initial _~~ad in_:3._~~C3: to theprC?9:ra!?-_ 1 J I i

-r-- ---r--

+--+--J

II ! : I ! ! ! ISingle Card Repr~~:::e ~u;~e, l~U~;;- L_L:

: 1 1 1
I I I 1 I area. ------ ---------_.

I
1 I :

I I i
I 1 1

\ I I I : I P;rn ,.. "0- ')~

I I
B-58 62040:'''-'''

(B- 29) 80 Column Card Gang-Punch Routine

Figure B-24 shows a method of preparing a single card gang-punch
program for the 1401 or 1460. .

Gang punching on the 1440 would involve a program that v.ould read the
card to be gang punched and then punch the data into the cards that
followed. More than one card would be needed to execute this program.

B-59

I I I Instruction --P:-ffe~ti~e-No.·!
Stech, ~ard id A/l I D Remarks ~! .. S~a~~e~
~N=O=.jJl='O=umn==4P~d;;;'4=;=I= :~d~I===l:~~d=l================,~ .. J ll!l~t,~Q'!t.~~l ot.~
1 ~-7 0:0 '8 0:1 '5 Set wlm for step 2and3 ; ! : i

!---'--t----=---t'-+=-+=---t=---+--=--J--=----,t-=-l-t-=-=-.::....::~=--=-=-=-=:£....:=-==-=---------+-.-~--.-_+----.~

2 ~-14 , 0: 2: 2 0: 2 : 9 Set wlm for step 4 and 5

3 5-21 f-=--F-=---=~-fL=+O: 8: 0 4 :8 : 0 I Move program from card area to.2!.:O.2:.4-· - r

" 1 I ' !
f---+----+-t--+-I +_ I-t--+I __ t--L ! area . _. -+ __ ~

i
.J

14 22-28

I

, I ; I (

4: 3
1
414 17' 8 1 iSet wlm for steo 6 and to end P~~.I!l....-f-+-.-. _-:-_~

! :: I I: I execution I ,

5 ~9-33
I---t----+-+--+-+___ '-+--+1----11----1--+------------.-.-.---- -'1-+---+-·--1

BI 4: 3 ' 4 'I Unconditional branch to program area --.l--L __ .~_~
I . i ' I

6 ~4-40 , 4 '4 : 1 4 ' 4 : 8 Set w 1m for step 7 and § (in pro~am ~re~) __ ._+-_ ._~
I I I I Ii:

7 ~1-47 ,:4 : 5 : 5 4 I 5 : 9 I Set w 1m for step 9. ~<! 10 (~ . .E.r()CJI".a:~.~~~)7.----_:_--.-~
8 ~8-54 , i 4: 6 '6 ,4 :6 17 i Set wlm fQ!,_s~)1: and 12 (in..Qr:og:r~.~f~)t. ___ +--~

19 p5-58 I I 0 : 8:0 I : ; ! I Clear read area i'
! 10~_9-65 i 4 17:4 0 '0 11 j I Set w/mJ~r ~~~-~-3-an-d-m-' -oo-~,,-·_·-· r'
I ' 'J I i I 11136 1 I: 'I; IRead card to be gang-punched _.

I
' , I , 1

12 ~7-73 ,LI 0: 8: 0 1: 8 :0: jMove read area to punch area

~~77 i4: 4;7 ; 4 : ; n=:~~~~~~~;3-
H---tt.-+-:: -+-:: -+--iI~If--Tl __ .. _ .. ~.~-~--. - ---~. ---~ --~

~---+-----+---+--+-+----t----t!-- ~ __ .,--l 'J:'l::tE:!~~ lpstrllcti_op:~ .. ~e p.@~h~.<i in a l?ingl~
f--~If-----+-+____I:____I:-f--i:f_+...:--b9-rd and placed in front of the.~~.contam- .-t-._.,...-

ill i I" Iii ' : '
If--_11--___ +

1

-+-
1

-+_+--1-+-+-+ --}- ~SI_t?_~. data to be gang-punched. TIle_ ~ct1ltal

f--_-+-__ -+I-+-_+II_+I:_+-.+ __ t_~-~gang:-punch routine is st~1! .. :-13. All ()~er
1---+-__ -+-+-_+11 --+1 --+--+:--+1 ~+ cards set up w 1m I s, clear core_ ancLtrans~er

: i :: I idata. Blank cards should ~e .Qlaced in the . --1

I :: :: I IpunCh feed. Data in the ~g-p~~h master ... _.,--_1
: i 1 I I

I I : I i lis punched column for column in the12l~ ... ~ ._:...._.~

:: :' i cards. If pre-punched cards are used in: • : ~
:: :: I the punch feed, turn the I/O check sto~ :-itc, 'ou.;~

L---L-=-:-_-'-:-:::!-,;::-I;
FIgure B-24 - Single Card Gang-Punch Routine, 1401/1460 B-60 62(;405"-"5"~

(B-30) Relocatable 1401 Core Storage Print-Out Routine

1. Specify the beginning address desired ill the A operand of
the ORG card.

2. If assembled separately:

a. Discard the first two cards produced by the 1401
SPS processor. These are a clear storage routine.

b. Discard the last card produced by the 1401 SPS
processor. This is a transfer card.

c. Place this assembled print-out routine before the
transfer card (the last card) of the program in which
the print-out is to be included.

3. If assembled with your program:

a. Punch the A operand of the END card with the proper
start location of your program.

b. Do not include an END card between your program and
this routine.

4. Any time that you wish to do a storage print out, manually
branch to the location that you have specified in the A operand
of the ORG card. The contents of the Print area (with word
marks) will be printed first, followed by locations 001 to 100,
101 to 200, etc. Each 100 character core strip will be identified
by an upper and lower limit indication on the far right (print
positions 301-332). The word mark associated with each core
position appears as a 1 beneath it.

5. This routine has not disturbed your program, other than to
have destroyed what was in the Print area (201-332). Restart
at any point without reloading the program.

B-61

~
~

IBM;
Program

INTERNATIONAL BUSINESS MACHINf5 CORPORATION

Form X24·1350·1

Printed in U.S.A

Identification '---'-~~--'
Programmed by ________ _ IBM 1401 AND 1410 DATA PROCESSING SYSTEMS

AUTOCODER CODING SHEET

76 80
Page No. LJ...J of __

I 2 Date ___ _

Line Label Operation OPERAND
1516 20121 25 30 36 40 45 50 55 60 65 , 56

~.

o 2

o 3

o 4 -

05

0&

70

: Reloe table 1~ bl storacre. print.,out 8ubr.QJJj;j.utL .. Lc' , 'HL 0_" . _., .. , ... ~._~--'-~--'----'--'---'-~~-'-~,'
: OdaiJ: c:ard nc reauired if assembled With, anoth~J2rQgr9..m. _ .. _..I. L •• ~-' . ..l-'--"--, ' I " I'

: Disca d clear, storacre card. if assemblqd, separatel.Y_~~ .. L"_"_"~ .u ... -'--.... ~_.'----',_. ~-'--'-----'----'--'~--"--'~.L-..-I
: This. l rOC1ram uses the MA and SBR OP ~~NQ1Ii'_~J3,-:r~ 1,J:lG1W;ied,tQ. ~iD;!~C...lt(!;:.lhe=s,e:.L.-L---'---'"---'--'--'---'-------'----<-I
: , " I' , .'-.. L~_.L-,-.. L .. L J.-----'_..L.. '_.J ... ' .L.~ .. ~ To eliminate SBR+MAob

07

: ORG, ,3,50 Q,Start here , ' .1 I I , , , , J..~--'--'-----+-,~--'--L...L....L---'--L.....L....J.....-L.....L....l-L....j
IPR.CO RE: I' CS 0 ,Establish storg,~...lG§..Q~~lliL<;.~~~re.ate, :pew; giy1:~lg u_

: If-lRR. iHIC ORE# ;3 Store core caDacitv"~_L"---'---'--L core Urnit. o e

011 : Iw P.rint 201 thru 332. ----<-l_..L-----'--'--'---'----'--_'_~--LL..JLL--'-'-..L-L-----'----'--'-----.JL....L...j
I 10 1---'...L~J.--.---..-.-'--.L.---'--L-LL_'__~~~L.-L_'_____1~S:L......-'--'---.L---J-..L.--..J.-L...-'--'------'---'---"n'=l~ou~b!::!:!l~ElL-!$X..tp;!t:.a~c~e~, a,f=t€'to.::r;~n~e;x~t ~ I I I ' I ' , , , I ' I CC
: Iw I I

I 2
I-'--"--'--'---I--'----'---L---'---L~'_'__'_I--'-" _ _'__'__'_---¥-~.L....L_l.__'__, -1'--'-----"--'--'--1 -1'-'---1 ...!-I!,--..J..,!,P. ,r=...i..,n"'-t-'w...,Q""r..."do...J, ... m""a=r k"",s,-,-, --'--'-_ .. -'--.. L...1._.' ... L . .L. L..--'---'-i------L.--"--'----'---'--'-----'-'-~"----'--'-L..L-l
~~--'----..J~-'---l---L--~--'--+~~----"---'---+3~3~2'---'---..L....L----'--l..-J.......L-'..---'--'~, Gl=Ela~l.;r'--').l.t::.I:!:.!::r.>p~.Ee.:1..:t;'-Il::.:!:J p:r,=int..r::o a~",,--:rle:=!:3a~L....L.--'---'---'--'--'-.L_~_--'-' I I I I I . ..L..-4.---'--L...L-'-_

~~~~ .. ~LL~~~.~-,-~IT~R~~~N~,S~I+~6~2~,ru~-,-~S~ie~tu~p~tr~a~n~ffi~e~rJP~p~e~x~at~io~n~, LI....LI~~ SemQDCW'pwlw2Q1,apd 
: CS 

13 : S,B,R 
I 4 : SBR. 1'T.'R.AJ\l.R.;..,3, olen ,SetuD transfer ,otl8,rRtion 001 and MCW to setup ansfer 

I 5 

I 6 

I GON,E;! 3 1 9 : I teA 
I 

ILCA 

IP5lg hijlirnit i,nsii£§tor, I , I' I ' 

l.oad lpjlimit tnctic§tQr, I ' I I I I I 1 ' 

I 7 : S13R TE ST + 6 0 Q 1 Sst,up WM t€,st I I I I I I I I I I I I I i ,S~tllP PCW with 001,a:p.( 
I S : S13R. 
I. 

I· 
SaR I 

10 : 
2 I ITEST 

I BWZ 
I 2 : IMCW 

12 , I 18 
2 4 IY.ESWM : IMCW 

2.5 I SET I Isw, 
I 

I 

: 
I , ! I ! I I!! I I 1. ! ! ! I , '._L-l.-L-. _ . ...l~J _L.....1_1_.-J........J..........~_-'-.L....J._--'---'---L~L..L-'-'--'--l 

I----"-----'--II----"----'--.l--'------'----'-'-.....J---'-I--'--...L....J'--'--+-L.L-'---'--'--'-.L....l.--'-..L....i- L-i...-.......l.-_-1l_....L-L.--L_.l ..1._.1 _.L._L. •• I.J .L..L _..L.._-1..~---l.-~_.-i-.....l.---I--<-..L.....-l --l_.-L~L- ~ 
1---!---'--+--I-J.-'-.~...L.......L---'------'-+-J.--'---'---'--+--'--'-.t-=F::J..::1:.n=QU,Jr:..x~~'-'13"'--·-L-2~5 --'-----'-'a=~,--';R=-=-~ ,-=lO~(C~J1~!~2!;.or~tr Qu,t ;Roy t!n~ (Aut-opqd,e.!:) ~ : 

I 

IBJt1 
Program 

INTERNATIONAL BUSINESS MACHINES CORPORATION 
Programmed by ____ _ IBM 1401 AND 1410 DATA PROCESSING SYSTEMS 
Date ___ _ AUTOCODER CODING SHEET 

Operation 
151S 20121 25 

OPERAND 
35 4.Q. 45 50 30 

o I TRANS : LCA 1 201 Tr5ln,s~e+ P-EJ.tq. to. print 
o 2 : 

03 CLRNOP: NOP 1 201 ClE:ar WM Qr,NOP 
o 4 : C TRA NS + 4 :lil3 :lil ~omp for 3x<'{ in TRANS ,B-add 

110 5 : ED CMPTRA ,M if not ;3XX in, TRANS B.-add. 

60 

Form X24.'350·' 
Printed In U.S,A, 

Identification -"'7S""""'--'-""'S"""0 

Page No.W of __ 

65 70 

I SW in TRANfl+l 

~0~7~1----"---'--~~-L-~J-~CP S ,DouhleSpace ~_~LIJ-L--L-----'-L.....L_L-l 
~0~8~~-'-~~-L~-.L.--'--l~vv~~-L...l-/~~.--'--~_~~~~-'-~~P~.r~i~n~t~v~~r.k ~lS~~~..L-----'-L...~~~~~_,-L~~-'-'---'-~..L-----'-L~ 
o II : IMA taw O:lil. TRAN S + 4 +1 TRANS A -L TRA NS B Chancre tQ....A'--"'O~D--'-L..L...---'----'--'---''-----'-----1 
I 0 : sw. Is E T --/; 1. , I I I • ,Modify; set, test aJild clrnop to: higher qor§.M'~.1:e~a..L-----'-'-...L....JL-!...--'--'---'--~ 

tp I I MA@OOl @I, ,S~ ::r 1+,3 , I '--'---~ QLa~~~~.--'-f\--L.I0i.p-'--'---'---'--'--'-L......L....JL...j 
~ ~i------L---'---'----~ . .L.--1-L...+=Il\4=;C-=LW--'--L+-S::..lE==TJ-+.J....:qlL'-'-T=EC.L:{3-'r-'-i..C,+--L16.::.J1c.-L..' ---'---' L....lc--'-_-'---'--__ L..L . .L_L-L_'__ __ L~--' . ...!. L . .L-'-

1f-.-'-'..L:3'-'-----{---'-..l--L_-'-__'___'_-'--'------'--+1~ MQJL.. ~:h..a..., CLRNQP ~,--'--.-'-----'-__'__L.'-..--'---'--'--__'___'_-L-'--'---'--'--'-_-'I--'--~_'___'_-..J,--'--'------'-___'_-'-..l ... L--'--'------,-

1~1Cl.4"-'-.l---'---'---'-~-'-----'---'-~~ SET + 1. I I I I I I ----'--L--'---'--'--L.L----'---'--'--'--~--L--'---'_'__---'----4----L-'-L--L-'-_,_____'__~--'-__'______'_--'---'---'_'_--'---'-I 
: A :lil0 01 ,@ 3 0 7 Increment lOTlimit indic, I 5 

18 SETB: MA@P 0 1@,.T,R,AN;3+6,lli.c,t'f,m;J.e,ntTRANS.B-add. ChanQe t_Q'--'-A..:..L...<0p~.I........L...L-'-_'_'--'---''-I 
_L..!L 1---'-----'---'--: I B TEST, , .---'------'--'-'---'--'---I-L--'---'---'---' OQ..WLWdM,"'B-'..J.I---'----1 --'---'---'-..L--J--'---'----'-I 

b.Q....cMBT~-'-lc--_.L...L-'- TR,ANS,+,31' JUICQ~...J.QQ![l1p.'1 TMNSA-ad,d,tQ l;ti,co:r;e , 1----,-------,-------,- I I I I I ,I 1-'-------'---'---'--

b.L.... --L....L....J..~_L....L..-"-~!2Ir........L_-'-- ]±:I~.--,--1:.M..,--..i. .. -'-~ . .I. .. ' ..... ..L. . .i...T.E.:.il.1,:q .lJ..L.~.!:.E:!L.L 1 .J .. L L L_.I. '--" ... " .. ---'_1.'--, L L---'- .. LL.l.._-'-"- .L l .. '-J. I , 

.. 2--,-~ _-'-------'----': l Gll...-'-.. L 3P. .. P_L. L.1._'_l .. I.~ 1.,- ,-~ .. ):1;. not, ,.cJ.El.l'l,f2Q..o.L ___ 1.L -,--.1_'--'-- L 1..-'. _1...1.. .L---'--.~ .L..L..I.".---'-----'-.L...L....L...I--'--_.L"-~ 
23 IMN....u .. ~W-.l..m .. 9'H.LL 1.HL .,--'-.J::1.I?Q.r..eill.~11i..hl1ilJ!.itj!1f!lt..~Lf:r,o.mN to ,hh1...L...L .'------'--· I I I I I I.' 

.L..!...... : A I@?I 9 I @ , 3" ~~_'--'--' __ L-'--- L..I .L-..l_--'---'--l.....L.1-----' .. --'---'--l.-----'--'--'._---'---L..L...J.-'-----'---'--'--~_L .. L.L.L..L..L....L....L L 

2 5 W, . P.r!nt cta.t& fj.n,al· ,. , 

--'-.. --'---L...L......l_.~, .. ...I_w.~ IU----,-, ~P~rintW/MtiAEJ.l, L1-'-L . ..I, J-,--.,.,'_I.J" L--'----'--_-'--..1._-'--1'-

---'------'- I IH .1. __ -,--.L .. , .1." • , .,1£19.QiJ jQG.J .. ' .,.J _L. 1 L.--,--..L-'---'--.L...L.._ .. .J_L~. L.,.l ~---'-..i.-----'--_1--,-.. 
--'--'-_--L_J..--'--._L-L~-'- :J:,[t..QEQ.I----<--L....I .. L .. L' _._ , J LI" I I , c .. ,.,.,., I ,. _ ;_~. 0.' .' .. _.~~.--'-1 .. , :i! 
_--'--'-. ~~'_~-'---L-'------'----,---"-~--+-~L...J. .F1inJ..ril.l2.r: 25 b.,RftT19qat~p;l.il.9tQr8,glj:)p:ript '1Q;lJ.J. I;tQlltiQ~ .. (j\·l,l~9gElrL L L..--'---'--'----'--~ ~ 



IB}.1 
Program ___________ _ 

Programmed by ________ _ 

Date ___ _ 

IOperati~ 
1516 20121 

Label line 
3 S6 

INTERNATIONAL BUSINESS MACHINES CORPORATION 

IBM 1401 AND 1410 DATA PROCESSING SYSTEMS 
AUTOCODER CODING SHEET 

OPERAND 
25 35 40 45 50 

o .L.'..J. ....L ....J...-!---I..----L..l..--'-~'_+---L~-'-'_+--'-~L~~ . ...L __ --I.---1.-_.L..-..l....-L--'-. _.J.. L _L __ J. __ .L~J. ~ .. l.~ J.... __ , •• " '-

o z INC1'RA. I IMA L~_ @9~1'1~~B.+.3L ... -'_.~!lLTItARfL£haQ.q.,LL 

Form X24·1350·1 

Printf!d in U.S.A. 

Identification . 
76 ao 

Page No. Y:~ of --

60 65 70 

o 3 IE SE.TE. ~. L-'- .. .L-L._LL~ _Br.a.nknit9~'L'JiiL_'_ L. ~.J._...L.J +-"-_-'--''---L-~~--'---'L-L-.L-J_ 
p'-0.c:!4---+C»<=OlN=rl~O.L_L~_'_I.=<D.",C=W."--'-_P(Q)=~OIO"'-OL:.J.l .. TRR:U.@. ~J. , .• L-L~L-'--,L . ..L_-L-L.J 

.Q..L .cQ.NHL.. ____ .-..D~""""'c:W_'__--,t""(Q)-O'"')lJ<=.O:..~=-(Q)-----'--'--'-.L-J-L-L-L .L.~ i-'.,..i. J..~.L i. l.~L.1...-L.J. L-'-.L-'-~L-L...L._I_,-L.L.'--,-.L_.L. 
r0'-=64_'__I_~L....L_'_->-J.......L+=END=.L-L-+'P'-"~R=:(C::10::.)=:2RE~-'--I-'-l-'-..J-.L-JL-L~ . .L-.L-~.L-L.J..~-'_'-_LL . .J .. -'-~-'-~...L..L_'_~_',--'---<-_'_LJ_'__'__L.L__L., . .L..1..__'__ 

i-=0'-L:-7 L.4_L_I_.L-JL....L_LI
1 

->-L.J-+_'_-'--L_L-+_I_L-1--L.~.J.....JL....L_'_...L-.L..J__L.__'_..L_L.1. L.i. L.L.i ... L...L...l~-'-__'_.L.J. . .1...1.._". 

o a 

: 
1-'-'--"-'-+-i-'.--'-__'_...L-J.

1
. -L......L-L ~_..L--L_-L.f-'--L.-'-.i-JL....L-'-. .J-"--'L-L-'--'--'-l--'- ...... _ .. L. ___ L J... __ 4 ~_ J.. .. . L-.l..._...I...-......._L.......L-l.........L_ -'-__ ....1-_-1-_ 1.- _L . ..l. _ L,.. _L~.........I...-L _..\-.... .J.....--L.......L ..L.......i..._ ~ 

I-'--'--+-'L-L-'-..J.......-'--~.L...-....J.-. --l.......-...L..........l...._.....L ~-L..........L...__'_.L-J--L-'-.L.J_L-'-.L-L--'-' ...J.......,....L_-l-.~~_'______l_.....~___l.__'__._L __ .L_l....._ i 

I-'-'-.=.i..+-L-'.--'--'-~ .. L _L _ L 

P~+-L.J--'-__'_..L-'-I: -'--'--'-t----.L......L .L .J. .. ~L-L..........L..--.L--l---L---1~......L.-L...-..J.............L...i..-.J............_L_'_L.J..-L1 -L.....L........L.......L. ... .....L......J,.l.-__ L .1~. ___ L ... .J ___ ~--L __ J 

I-'-'-~~L-L-.L~~~L--LJ-LJ_+_L...J-.L-'-L-L.L-L~-LI.J'--'-'~I~I-'-' ~'_L'.J'__L.'~~I--'-'~I~'_'_~~--L.~~~_'_~. 
I 

~~~~-.L-'--~I~~~-'-.L-.J--L4_.LJ--L-'-LJ-'--'-~-'-..J-.L.J-'-~.L.J-L-'-L-'.-L~L-'.-'--L-~-L~~-L-'--~-~-'-L.J..~~LI ~-'-

~~~L-L-.L-'--~-'--'--~-'-.L-.J~4_.L..J-L-'-L...J-L-"-.LJ-L-"-.L..J-L~.L..J-L-'-L..L-'-~.L-L-'--L-.L...i-L-'-L.J-'--'--L.J..-~..L-L..L~~I.~.I.-

: I I , ! ! , I , , ! 

I 

p~4_~--'--L~~I-'---'-~L...L-'-~~L-'---'-"--'~-'--'--'-l-.L.--'-~L.L-'--'--~.~~~J-L-L~~IL..-L--'-~L..-L-'-~~~~~~ 

: 
I! ! I' I ..L_L_.L.....L....L-....L.....L~ . .L_L.--L __ ! , ! I I I I' 

I 
I=-.:J...+-.L.J-.J.-L-'-.L.JI--,--,-~~L....L_ ..... L _L----.--L __ L .--1_-L.....-..I..---L . ...L _1 .J.~ L 1_--1_1. _~ . .i_---L.....--1.....-L_..L _...L---L ........l.._...L.....l......--L-.-l .... L.L .1 __ . .L--L-L...l.-..L........L........l:.. _ . .l_~L_L........L_.l"_ ... L. __ L. ____ L._L~_ 

-'--t-'-'---'--L-JI--'--,--,-.J........J... __ L- .L..- •. L.-.-L..---'--....---l..-_L_--L_..L L_l---L -----L~_~.l-.-.-L......-...L........l..---L_i_...i.. __ ...L_JIL_L~.L-.J--'-._'_.L.JI_L1 -1'-'-.' _.l .. ~~ 

....... .:u...+-'-'-_'_-'--L-Ll~.J-..~-'-.L.J'-J..+.L' _"....J..' -1'-'-' .-11--'-' -'-' . .l. .• L_'__'--'-..L..L_L_L_L.J..~_L..L..1._-'-.l ... .L .. " J.~.L~' 1 I , ., 1 1 I .L-'-L.L .. L L.L . .L.J.~-I. .. L-

, • , ! I I ! ! I I It! ! I 

1--'--'-+-L.L-.L-'-L.l+...J-'--'---'-L.J..-.L+-'--"-~.L.J_'_L.__'_.J.-.j'--_:=::·~~~i~;e:~ _.?~~~~ R~;i"R~~b~~~;;?;~~P~~J..L' :--'0'-. .L~-'t~-B.<-L1 o.J~-1:J.LI.!1§.JI-e-L.~-'I-~.L1 ~-Q.<-c=.l-o-'g-.~.L_·t-'-_L.L.-'.L-_L~..L-._'.1._·-I ~ 

1-'--,-+-,-,--,--,-.1-1-1.-'--<- ~.L L..L-L __ '--'--'--'-.L_LJ_L."-. .L ..L..L..L-J,-.L...L.. L._L.1....1.. . .L.. .... .1._'_.1...."- .J_L_L I ~.,L.J .. ~L . .L_L_L_L..L._'__ ~ 
, I 



(B- 31) Field Inversion Routines 

When it is necessary to invert an entire field within the same loc2tions 
in core, one of the following techniques can be used. Figure B-26 shows 
the Revolving Method used in inverting a 5 position field. With an odd 
l1illl1ber of characters in the field, the middle character remains L~e 
same. Word marks in the original field are unchanged. 

LABEL 

CR 

OP OPERAND COMMENTS 

DCW 0 Location to save character 

MLC FLD, CR Save units position 

MLNS FLD-4, FLD Move digit portion of high 
order position to units 

MLZS FLD-4, FLD Move zone portion of high 
order position to units 

MLC CR, FLD-4 Re-insert character in hi 
order position 

MLC FLD-1, CR Interchange 

MLNS FLD-3, FLD-1 Second and 

MLZS FLD-3, FLD-1 Fourth 

MLC CR, FLD-3 Positions 

Figure B- 26 
Field Inversion Routine Using Revolving 

Method 

B-65 

It can be seen Lhat each pair of characters to be Lnverted requires a 
routine of 4, 7 position instructions. By changing the address incre"­
ment, the routine can be altered to handle any size field inversion. 
If index registers are available, two can be used to increment and 
decrement the addresses of "FLD". It would pay to use index registers 
if the field to be inverted is extremely long. The technique illustrated 
above would require: 

Field Size to be Inverted 

2-3 
4-5 
6-7 
8-9 

Core Required 

29 positions 
57 " 
85 

113 

Figure B-27 shows the Slide Method of field inversion (5 position field). 
ThIs method must have a word mark in the high order position of the 
field to be inverted and no others. The routine can be altered to handle 
any field size by changing the d-character of the Branch if Character 
Equal instruction and including the proper number of clear W 1M instruc­
tions. 

LABEL OP OPERAND COMMENTS 

CTR DCW 0 Counter 

CR DCW 0 Location to save character 

INVERT ZA INVERT, CTR Use +0 op code to reset 
counter 

MLC FLD, CR Save units position 

MLCWA FLD-l, FLD Slide field 1 position 

MLC CR Re-insert saved character 

ADD A ADD; CTR Use +1 op code to add 1 to 
counter 

BCE OUT, CTR,D Branch out after CTR 
reaches +4 

Figure B-27 
Field Inversion Routine using Slide Method 

B-66 



Figure B- 27 conti d. 

OUT 

OP 

B 

CW 

CW 

OPERAND 

llNERT + 7 

FLD, FLD-2 

COMMENTS 

Continue slide 

Clear W IMI s from all 
but high order 
character 

The core requirements for this technique are: 

Field Size to be Inverted 

2 
3 
4 
5 
6 
7 
8 
9 

B-67 

Core Required 

50 positions 
53 
57 
54 
58 
55 
59 
56 

(B-32) Job Initialization Routines 

Several functions usually must be completed before the body of the 
job can logically proceed. These include the setting of word marks 
in the card read in area, the initial setting of index registers and 
counters, such as page numbering counters, etc. This initialization 
subroutine should be programmed so as to allow a job-restart without 
loss of any of the program I s usefulness. These routines are often 
referred to as housekeeping routines. 

1. 

2. 

3. 

Where a job requires all available core storage, the initializa­
tion routine can be loaded and executed. The main program 
can then be loaded over the initialization instructions (over­
layed). 

If possible, use ORG to origin housekeeping routines in the 
punch or print areas, which can be cleared by CS OPS. This 
will not cost storage useable in the main program, and eliminates 
necessity for overlaying. 

When a programmer uses EX to execute instructions, and then 
overlay the area, he must provide his own linkage back to the 
load routine. In the 1440, the reentry point is the 9th position 
of the loader. 

B-68 



(B-33) Storage Locations 000 and 100 U401/1460} 

Storage location 000 is used for an internal timing count when card 
reading is in progress. On any program step not relative to card 
read (op-code of 1,3,5,7, or 4R, or 6R), this position may be used 
provided the instruction does not decrement the address 000. This 
core location will contain AB bits after a read op. This zone is 
present, but cannot be accessed because any op capable of moving it 
will decrement the address 000 to high order of core, and cause a wrap­
around error. It may be used as the first character of a tape record, 
or a move record op (P), since these functions will cause the registers 
to increment. 

Storage location 100 will contain a a (8 and 2 bits) after a punch op. 

B-69 

(C) CPU Operating Pointers.. and Miscellaneous Error Indications 

C-l 
C-2 
C-3 
C-4 

Contents 

Operators Control Console 
Console Error Loa Sheets 
Program Analysis· Charts 
Process Unit Error Conditions 

C-l 

~ 

C-2 
C-2 
C-5 
C-ll 



(C-1) Operator Control Console 

1. The 1401 Mode Switch cannot be used to cycle through an input­
output operation. When this switch is in the Single Cycle 
Process or Single Cycle Non-Process mode, all I-cycles will 
be taken one at a time, but all the B-cycles will be taken at 
processing speed. 

2. The l/Ex mode may be used for any I/O op. 

CAUTION 

When operating the I/Ex mode and the program reaches 
a point where you wish to alter a character, turning the 
Mode Switch to "alter" requires passing the "run" posi­
tion. Occasionally. the machine will start rurming with­
out hitting the start key. 

3. The Address Stop mode is not effective for any I/O op. If you 
want to stop processing at the address of an I/O op, address­
stop on the preceeding op-code. 

(C-2) Console Error Log Sheets 

Some error-logging procedure should be provided, so that the operator 
can note the condition of the console indicators at the time of the 
error. This provides an aid to both the programmer and the Customer 
Engineer. This is especi:ally helpful where the error occurs rarely, 
or only after the operation is well underway. 

Figure C-1 represents one such console error-log for 1401 and 1460. 

Figure C-2 represents such a log for the 1440. 

C-2 



o 
I 

W 

E~I 

_B ~uX:1 I ADD._ 

. ___ 1 

pnstruarori Length S 
'---- '.---~-.----

Tapel~ 
select~ 

~. 

~ 

Loqic 
Overflow 

B:.::A 

B#A 
B)A 
B<A 

Tape 
Indicate 

I 
I 

f--·-----I 

L~~~~ON I I I I inTI I I I I I , rmTllll1 I 1111 
Figure C-1. 1401 and 1460 Console Error - Log Sheet 

1440 CONSOLE DEBUGGING LOG 
PROGRAM~ ________________________ __ 

TIME, ________ DATE, ______ _ 

~~OCESS ] ~ I EXT I/O I '--____ --', iL._p_u_N_c_H __ ..-o1 I PRlNTER I READER 

[La LQ~fIC 

]] OP III A 

B 
C C 

A B 

I ~ B 
B A A A 
B A 8 

I ~ 8 
B A 4 4 

2 

I ~ J 
I 2 

1 

t~_ 
~[lTORAGE ] 

~ STORAGE ADDRESS 

~ I~- ---f--- ---r-----
BADD I ---- f-- --
AAUX 
ADD _._----- ---

BAUX 
ADD 

fM
NSTRUCTION OP 1 2 3 4 5 l 

LENGTH 6 7 8 blank _ 
------' 

MODE SWITCH: 
SENSE HE MARKS 

RUN ___ SWITCHES 
. \ NO, DISK PACK ~~DR ,---t-------- ----- -------- -----

r-··-· ON! 
-- -----

I/O CHK STOP i--- - --1------------------------ .. -------
I 

CHECK STOP " ------ ----.-----.------.------ r----------
DIAGNOSTIC I 
DISK WRITE 

Figure C-2. 1440 Console Error-Log Sheet 



(C -3) Program Analysis Charts 

The information contained in the following chart, Figure C-3, will 
not only assist in checking out programs, but in differentiating 
between program errors and system malfunctions. A customer 
engineer may re needed to correct some of the malfunctions. 

C-5 



Op Register 
Error 

----....... ~-
'(----- --~--~ 

Machine should stop at I 
ring 1 with op reg error. 
Subtract one from address 
displayed in stor add reg 
and display contents of thi 
address in the B regeomp 

, to prog listing. 
I 

I 
i 
i 
! 

o 
i 

OJ 

Chart "B" 

Logic Error 

The arithmetic ck latch wi 
stop the machine at the end 
of the following cycle unles 
it occurs during I/O opera­
tion before stopping. 

If error occurs during arith­
metic oper refer to storage 
error- operation. 

If error occurs in I/O, loop 
the oper to observe failure. 

:--------_~r Note contents of I, B, -i·;W;: -A & B·;;gisre~-s ~nd op 
! register check for type of error and indication. 

i 
I 

Register Error 

Stor err during I/O operation 
will not stop the machine 
until the operation is com­
pleted during wrap around 
opere It will stop the machi 
on the following cycle. All 
other operations will stop on 
the error cycle with star 
errors. 

I 

Storage Error 

Stor err (inhibit ck) comes 
on at the end of a cycle 
where an even parity bit is 
entered into store 

If the operation was arithmt 
tic determine the B field to 
loop the machine using the i ~ 

same bit configura-tIon. 
1/0 will stop at the end of 
the operation. 

A Register 
Error 

p------.-- .. -.... _ 
Error 

-~ 

; 
; , 

-l r-:::=----:~..I-~~---··t The machine may stop on The machine will stop on I 
the cycle. the A register the cycle.B reg error occurs 
read in.or the following except I/O operation. The 
cycle if sampled too late. I conditions AB reg err shaul 
Determine whether error i not occur are: 
is false or if the character 
is out of parity. 1. B cycle of a load opere 

2. B cycle of a clear oper·. l 
3. B cycle A reg 9 in read I' 

opere 
4. Clear B field calculate l 

"--_________ -. '-_____ ...... _____ 1 in multiply/divide Opel°l 
. Determine whether error i 

occured during above i temsl 
Character out of parity or a~ 

~ false B reg register error i 

Figure C-3A 
PROGRAM AC · LYSIS CHARTS 

Chart "0" 
....... _-----" 

illdicated. . i 



,/ At 

11ID~ 
iC~~_=~ 
: see bow the 5YSt. [ 
i .urived at this addrei 

_I ________ j 

CHARTB 

Op Register Error 

YES 

YES 

Check iostruction deckfur-! 

the load card that put this I 
instruction into stor. I 

______ 1 

Op 
Register 
Blank 

struction and de1erJDine wbe 

the wrOOS/parity was fint 
introduced. 

FIGUREC-~ 

Compare op reg contents at time of 
enor stop. Cbeck the feanues on the 
machine to determine if it is a legal op 
code. Check btt configuration and 
create program to check for false error. 

PI¥)GRAM ANALYSIS CHARTS 

C-7 

YES 

Check program listing to see bow 

program .uri ved a t this addJess. 
Example: 
If it branched _ check the branch 
operation A add for legality. 

CHART'C 

Check program listlng prog 1n 
srouge for illegalll& of index or 
addIesII.Dg z,ealU dian mach storage 
size. Check the load cad for this 
imttuction ad COI'leCt puoching. 
Cbeck listing for the possibility of thi 
address baUDS been computed & mov 
in SIIX'. 

Cbeck the possibility of more man one 
star being gated 0111: aI one time. 
Check for possibility of auto-scau 

JroUIrle.. ExaInple : 
Set 201. 000. 100 areas for trouble. 

FJGUREC-ac 
PICGRAM ANALYSIS CHARTS 

C-B 

From program listing locate tbe oper 
cnde address for tbe operation the error 
occured on. Single cycle through the 
instruction phase of this oper to be sure 
A & B stars are loaded With legal 
addresses. 

Check load card for instruction phas4 
of the failure operation for correct 
punchel'. Check program listing for 
the possibility of this address baving 
been computed and moved into this 
area to be used as an A or B field 
address. 



NO 

CHART D 

" A" Register Error 

-----,-- --------
! 
i 

YES A 
----------------~~~----------------

I 
ILOOP systemb~-;i'~~~;~~;~;~~ ;~grarn ,i 

~ 

Usually the A register is gated in from the 
B register. In this case, there should also 
be a B reg error. The procedure for this is , 
described under B reg error. If the charac - , 
ter has been set into the A reg by arithme­
tic, read or punch control! loop the exist­
ing prog or create a program duplicating tM 
condition or run the CE diagnostic deck for 
trouble shooting. 

lor hand entering a program to create the 
; error condition (sa~e bit structure). Exampl~: 
i!: 100 200! load and branch back to the : 
, load instruction. Asume the bit combinati0T 
: 42 wm causes an A register error. Address I 

100 should contain 42 wm. This would creafe 
the assumed error card. 

fiGURE C-30 

PROGRAM ANALYSIS CHARTS 

C-9 

CHART E 

"B" ~gister Error 

J 
Failure 

~_ YES ~:t;. ~;~ 

-L-. Z/ 

NO 

Hand enter'~ progr~--;--;;-~ate -~-- " 

error condition. Example: NO 

!: 100 200 ~ to the load instr. Enter 
the invalid bit combination with a wm 
in 200 to create a "B" cycle error. 

,..------ .. -. -- .. I The B register is gated inro from storage 
: only, so determine whether the informa­
l tion was correct in storage. find where 

this address was last emered into in the 
program. Single cycle through the in­

i struction you find to see if the informa­
! tion was correct when you inhibited it. 
i If it was, check the core array, sense 
\ lines & B reg latches. If it wasn't, loop 
. this instruction or hand load a program to 
. creare this error condition. 
t 

fiGURE C-3E 

Program Analysis Charts 

C-10 

Correct "'" YES 
Parity ,------

Loop'sYslemefiher byloopingrhe" 
program or by hand entering a 
prog to ere.; te the error condi lions. 
Example: 
~ 100 200 ~ assume tha I the bit 
combination 421 causes a "B" 

re gister error. Address 100 or 200 

should contain 421 and address 099· 
or J99 could contain any legal bits' 
wilh a wm. This would create the 
assumed error condition. 



(C-4) Process Unit Error Conditions 

Figure C-4 lists the 1401/60 error stop conditions and the associated 
reset and/or re-start procedures. 

C-ll 



Machine Stops 
Type of Process Check Storage Adr. Lights ON 

-.JlillL Error Stops "ON" Req~ Contains \Jhen Stopped L~eset By ~~~marks 

A Reg Parity End of Next Cycle "B" Address Process A Reg Check ,"leset Contents of A ,'{eg at time of 
(B Cycle) Check Reset Key error will still be on display 

(A Reg resets on A cyc. only) 

B Reg Parity End of Cycle in Address of lac. Process B Reg Check Reset Contents of B Reg at time 
Which Error is that was read into Check Reset Key error is detected will remain 
Detected '''B'' Reg on display in B Reg. 

-
Arith Validity End of Following Normally 1 less than Process Logic Check Reset Adr. Reg will indicate one less 

Cycle the loco that Check ;::teset Key than the loco that the resultant 
resultant is in. is read into except: 1) When 

error is detected in the last 
cyc. of the 1st forward scan on 
a recomplement operation when 

0 it will indicate the same loco or 
I 2) It will indicate one more ~ 

C\:) 
than the loco the result is read 
into on a reverse scan opera-
tion. The bit combination 
which caused the error will be 
in the storage unit and not on 
display under "logic. " Remem-
ber it is quibinary form when 
checked and goes thru the trans-
lator before going into storage. 

Inhibit Parity End of Following Dependent on oper- Process Star. Check Reset This type of error indicates that 
SWitching Cycle ation ,being perform' Check Reset Key an even bit configuration has 

ed and phase that been read into storage. system is in. 

Figure C-4 a PROCESS Ul\TIT ERROR CONDITIONS---------------

Machine Stops 
TypEl of Process Check Storage Adr. Lights ON 

Unit Error Stops "ON" Reg. Contains When Stopped Reset By Remarks 

Op Reg Validity & End of Cycle in Dependent on type Process Op Check Reset The check latch will not turn 
Parity which error is of operation being Reg. Check Key on during I Ring Op time 

detected performed and Reset 
phase. 

Storage Parity & ' End of Cycle in Bit combination Process Check Reset The error check is made after 
Address Validity which error was that caused error. Storage Key the address is serialized. 
Register detected. Address An error could be caused by a 

Check Reset fault in serializing. 

Wrap End of Following Dependent on Process Check aeset Can be modified by +1 or - I 

0 
Around Cycle operation being Storage Key 

I performed & Address 
~ modification. Cheek Reset w 

NOTE: If any of the above 
errors occur during an input; 
output operation, the system 
will complete the particular 
operation involved before 
stopping. 

-
----------,--- Figure C-4b PROCESS UNIT ERl10R CONDITIONS------_----___ _ 



(D) 

D-1 
D-2 
D-3 
D-4 

D-5 
D-6 
D-7 
D-8 
D-9 
D-lO 

D-ll 

D-12 
D-13 

Reader/Punch Operating Pointers and Miscellaneous 
Error Indications 

Contents 

Start and Stop Keys D-1 
1440 I/O Operation D-1 
Stacker Selection (1402) D-2 
Punch Stacker Selection with I/O Check D-2 
Stop Switch Off 
1440 Stacker Select and Branch 
Last Card Indication (1442) 
1402 Punch Feed Notes 
1402 Error Conditions 
1402 Punch Feed Restart Procedures 
Punch Feed Read Feature Restart 
Procedures 

D-4 
D-4 
D-5 
D-6 
D-3 
D-c: 

Punch Check Error using Pre-Punched D-l1 
Cards 
Validity Errors 
Collating into the 8/2 Pocket 

D-O 

D-l1 
D-12 

(D-1) Start and Stop Keys 

The Start and Stop keys on the IBM 1440 System are not common. 
Each key applies only to its respective unit. This diliers from the 
140l where any stop key can stop the system. 

A condition exists where the operator cannot stop the machine from 
~ stop key. This happens when: 

1. Using reader punch release 
2. Last card testing 
3. Branch on last card to other than reader punch operation 

The problem occurs when a start read feed (SRF) or start punch feed 
(SPF) is given after the last card has been read. To prevent this from 
happening, test for last card prior to issuing a SRF or SPF command. 
Bypass the SRF or SPF on last-card-on condition. 

(D- 2) 1440 I/O Operation 

1. When attempting to punch or print without a termination group­
mark after the last core position accessed, the unit addressed 
will go out of its ready status. Manual depression of the start 
on that unit will be required before it can operate again. 

2. The punch skip feature increases available process time, b'J.t 
does not make the actual skip go faster than normal speed. 

3. Since cards follow the same path for both reading and punching, 
the possibility of lacing a deck of cards is greater than normal. 
All decks should be reproduced to have a back-up, especially 
while testing. 

4. A punch area of more than 80 positions will cause column 81 
to be laced. 

5. If no GMWM is present within 81 positions of the card read area, 
the reader may continue to read cards and data will be entered 
serially into core until either a GMWM is encountered or until 
core has been wrapped. 

D-1 



(D-3) Stacker Selection (1402j 

Normally, the d-character for a stacker select op would be 1,2,4 or 
8. However, the instruction SS 5 will cause both read and punch stack­
er selection. This instruction must be given within 10 MSafter a read 
op. 

The instruction SS 5 causes both a read stacker latch and a punch 
stacker latch to be set. Once such a latch is set, it can only be 
released by completing the respective stacker selection. 

Consequently, the next card from the punch feed will go to the number 
4 pocket, even though a number of cards have been read following the 
selection of the reader card into pocket 1. 

The various stop keys are inoperative during a stacker selection 
operation, so that once the card is mechanically selected (in motion), 
selection will be completed before the machine stops. 

(D-4) Punch Stacker Selection with I/O Check Stop Switch Off 

When correct cards are being selected to either the 4 or 8 pocket and 
a punch error occurs, it is possible that the first good card after the 
error card will be selected in the normal punch pocket. Program 
steps to avoid this false selection are: (See Figure D-l) 

1. Punch op (or PFR op) . 
2. Branch on Punch Error, set switch lon, branch to SELECT. 
3. SELECT (stacker select op) 
4. Test switch 1: if on, perform correct steps, if off, NSI. 
5. NSI (Next sequential instruction). 

This allows correct (Normal Punch Pocket) selection of errors but 
allows program-controlled selection of all good cards. 

Note: In many cases, it will be possible to perform the corrective 
steps in the time allowed, without programming a switch 1. 

D-2 

On 

~-"---- : I 
Set SW 1 1 i 

On ~ 
I 

~:r-~NSI 
Op " -'", "~ 

-------'" ' I ~, -----
IOn: 

Figure D-1 

I 
I 

! 

Steps to . ! 

harldle err~J : 
condition, 
reset SW 1 , 

L~ ______ J 

Stacker Selection with I/O Off 

D-3 



(D-5) 1440 Stacker Select and Branch Instruction 

The Stacker Select and Branch command is not provided for the 1440. 

(D-6) Last Card Indication (1442) 

The 1440 last card indicator is turned on when the following conditions 
are met: 

1. 
2. 
3. 

The feed hopper is empty. 
A card is ready to be read. 
The start key on the 1442 has been pressed. 

When punching into cards that have been read on the same pass, the 
next-to-the-last card has been read when Ready Status is dropped. 
As the punch instruction is executed, the operator must press the 
1442 start key, which sets the Last Card Switch on. If the last card 
test precedes the read, the last card will not be read. 

As long as there are cards in the Read-Punch feed path, a read 
instruction can be executed. If the last card is at the punch station, 
a read command may be used to run the last card into the stacker. 
When a read is executed under this condition, blanks are entered into 
the read area: MR %G1, 901 

D-4 

(D-7) 1402 Punch-Feed Notes 

1. 

2. 

3. 

4. 

Sense switch A does not test for last card in the punch feed, 
even when performing a Punch Feed Read op. A test for 
punch feed last card must be programmed, such as testing 
for a specific character in a particular column. 

Programs cannot be loaded from the punch side, even when 
the Punch FeedRead special feature is installed. 

PFR and normal read operations USE some of the same read 
circuits of the 1402. Therefore, a PFR error can be tested 
by using the read error branch and appropriate d-modifiers, 
when the branch follows the punch feed read op. Punch errors 
can similarly be recognized. 

At (punch) end of job, clear the punch area (101-180) and 
program another dummy punch cycle. This will permit proper 
stacker selection of the last validly punched card, and insure 
that all good cards are out of the punch feed. The stations of 
the punch feed will contain blank cards, ready for the next job. 
It is permissable to have blank cards in the punch feed at the 
start of any punch feed run , except a PFR (Punch Feed Read). 
However, it is normally good practice to press both reader 
and punch non-process run-out keys to insure that the reader 
and punch clutches are latched. This procedure will prevent 
reader and punch stop errors when starting on the next program. 

If it is essential that hole patches be used to correct error punching in 
original documents; place them on the back side of the card. The 1402 
feed cards face dO\lm. This allows the 1402 punch to repunch the hole(s) 
from the non-sticky side of the patch. If this practice is not followed, 
the sticky side of the patches will build up on the business end of the 
punch, and cause excessive wear. 

Apply patches to error punches only, and not to the entire field. Do 
not apply more than one patch to anyone punch hole: don't overlap 
patches. This is a common 'cause of punch feed jams. 

D-5 



(D-8) 1402 Error Conditions 

Figure D··2 lists the 1402 error stop conditions and the associated· 
restart procedure. 

D-6 ' 



-

Machine Stops--
I/O Check ,Lights ON 

....1Init Error Switch nON" ' When Sto:m:>ed Reset B~ __ Remarks 

Reader Read At the end of the Read Check (1402) Check Reset-Key Cards' must be run out befo~e check reset 
Check fee<Sl! cycle. Read (Process) on the 1402. key becomes effective. 

Reader Validit~ At the end of the Validity (1402) Check Reset Key Cards must be run out before the check 
feed cycle. Read (Process) on the 1402. reset key is effective. 

NOTE: Also, if the invalid combination causes incorrect parity: 

Storage (Process) Check Reset 
Process (process) on the Process 
Check Reset Unit. 

t) Process I 
-.:J 

Reader Jam At the end of the Reader Stop (1402) Check Reset Key Cards must run out before reset key is 
__ f~ed cycle. Read (Process (1402) effective. Damaged cards must be repaired. 

Unit) 

Punch Punch At the end of the Pch. Check (1402) Check Reset Key 
Check feed cycle. -Punch (Process) (1402) 

Punch Parity At the end of the Punch (process) Check Reset Key 
feed cycle. Process (rr) 

B Reg (rt) 
Check Reset 
(Process>' 

Punch Jam At the' end of the Punch Stop (1402) Check Reset Key Cards must be run out before the reset 
feed cycle. Punch (Process) (1402) key is effective. 

-- - - -

Pi'''lITe D-2 1402 Error Conditions I 



(D-9 n,402 Punch Feed Restart Procedure 

In any application which includes a requirement for summary totals to be 
accumulated from fields being punched into each card, restart procedures 
are more involved than normal. 

Basically, the increased complexity is caused by the physical . arrange­
ment of the card stations in the punch side of the 1402. Thai is, by the 
time a punch error has been detected, the card behind the one in error 
has also been punched. Consequently, any restart procedure must allow 
for the "backhlg out" of the amount fields from the accumulators for both 
cards involved. The amount of programming necessary to accomplish 
this will vary with the individual program. 

The use of the Punch Feed Read Special Features on such applications 
complicates the necessary restart procedures even more; therefore, 
1401's which include this feature should be given special attention in this 
respect. 

Adequate restart procedures must be included in the original writing of 
such programs in order to minimize difficulties. 

(D-10Punch Feed Read Feature Re-Start Procedures 

1. PFR Validity Error: (Read side validity error light on) 
The first card into the stacker after run -out will have been punched 
but not checked. 

The second card (B) is invalid. It has been read but not punched or 
checked. 

The third card (C) has been neither read, punched nor checked. 

1. Remove cards from punch hopper and stackers. Run out re­
maining 3 cards into the stacker. 

2. Determine the error in card B. 

3. Repunch the original data into a new card A. (Do not include 
any punches produced by the 1402 during this pass). 

4. Correct and re-keypunch the original data in card B. 

D-8 

2. 

5. Reset the error 'ilv'ith the 1402 check reset key (3..'1.d process 
unit check reset key if the punch read error caused a process 
light). 

6. Restart with cards A, B, and C, followed by cards previously 
removed from the punch hopper. 

PFR Punch Check Error (hole count error) : The last card 
stacked (A) is the card in error. 

The first card (B) into the stacker after run -out has been punched 
but not checked. 

The second card stacked (C) has been read, but not punched or 
checked. 

The third card stacked after run-out. (D) has not been read, punched 
or checked. 

1. Remove the remainillg cards from the punch hopper. Run out 
the 3 cards left in the machine ~to the stacker. 

2. Determine the error in card A (last card stacked before the 
machine stopped with the punch check light on). 

3. Re-keypunch the original data into a new card A. (Delete 
any punches produced by the 1402 during'this pass). 

4. Re-keypunch the original data from card B into a new card B 
deleting any data punched by the 1402 during this pass. 

5. Reset the punch check light with the 1402 check reset key. 
There should be no process error, unless there was a com­
pound error (punch check and validity errors). 

6. Restart with cards A, B, C, and D, followed by cards prev10usly 
removed from the punch hopper. 

These procedures assume that the job did not have cards feeding from the 
read feed. If there were, these cards must be run out with the non­
process runout key, and re-fed. In some cases, it will be necessary to 
back the job up {or restart}, depending on the card order and the 
application. 

D-9 



3. Alternate Procedure for Clearing Punch Checks on 1401 with 
Punch Feed Read Feature 

On updating programs, both tape and disk, when data cards are 
being processed and punched in the punch feed, a punch check 
can disturb the updating sequence of the run. The punch check 
is detected after the card in error has updated the file, and 
the following card has been punched and (depending on the 
program logic) may have also updated the file. Any attempt 
to reconstruct would be time consuming since it would have to 
be done before processing could continue. 

A simple procedure for restarting appears to preserve the 
updating sequence in all cases. The procedure is as follows: 

1. Remove the cards from the punch hopper. 

2. 

3. 

4. 

5. 

6. 

7. 

Press the non-process runout key to clear three cards 
from the punch. 

Of the last four cards in the punch stacker, the first is 
the one which caused the punch check, the second has 
been punched but not checked, the third has been read 
but not processed, and the fourth has not been 
read. 

To restart, take a blank card (preferably of a different 
color or corner cut from the data cards) and place this in 
the punch hopper followed by the third and fourth (the last 
two) cards from the punch stacker. 

Replace the remainder of the input cards in the punch 
feed. 

Press the check reset and start button on the 1402. Do 
not press stq.rt reset on the 1401 console. 

After the run, the odd color card can be discarded and the 
two cards in front of that card should be checked manually. 

D-lO 

(D-l1 ) Punch Check Error, Using Pre-Punched Cards 

When using pre-punched cards in the 1402 without the Punch Feed Read 
feature, a punch hole count error is developed unless the pre-punched 
holes are repunched. 

On the 1402 with the Punch Feed Read feature, pre-punched holes must 
not be repunched. 

In either case, additional holes may be punched by the 1402 in the pre­
punched columns. Many punch hole combinations cannot be punched 
without the Column Binary feature. Thus: without PFR, if a card 
column already has a 7 punch, and the character R(BCD code B, 1, 8) 
is required in this column in addition to the existing 7 punch (BCD 
code 4,2,1), a punch check condition will still result. The CPU cannot 
store a 7 (4,2, 1) and an R(B, 8, 1) in the same storage location. 

Consider that a 5 has been pre-punched in column 15. Without the 
PFR feature, an X zone (BCD code of B-bit only) may be punched in 
column 15, but the 5 must be repunched. This would be done by 
storing an N(BCD code B, 4, 1) in the storage position that will be 
transferred to card column 15. With the PFR feature, an X may be 
punched in column 15, but the 5 must not be repunched. 

(D- 12) Validity Errors 

If a branch on reader error instruction is being used, a branch on 
process error instruction should also be used in the same routine when 
a 1407 console inquiry station is on-line. (The I/O check stop switch on 
the 1401 and the process check stop switch on the 1407 must be off to 
make these instructions effective.) 

A validity error can cause a process error. Since the process check 
stop switch is off, there should be a test for process error following 
the reader error test. A test for process error should also precede the 
read op. This will eliminate confusion about the cause of the error stop. 

Any time the I/O check stop switch is off, tests for all I/O error condi­
tions must be made. Thus: if card errors are pxpected, reader check 
and validity errors will be caught, as well as ar.y other I/O errors 
(printer sync or print check). 

D-l1 



(D- 13) Collating into the 8/2 Pocket 

There are various applications in which the collating of cards from the 
read and punch feeds into the 8/2 pocket of the 1402 will save a subse­
quent off-liYJ.8 collating operation. 

Because of a difference in card speeds between the two feeds and the 
fact that the punch feed has an additional card station, the program must 
be geared to insure proper card control. 

To effect this collating operation, the program must include the follow­
ing two provisions: 

1. A "dummy" punch cycle must be taken to pass the card through 
the check brushes and start it on its way to the 8/2 pocket. 
This is facilitated by placing a blank card behind each card in 
the punch feed that is to be directed to the 8/2 pocket. . 

2. Following L~e plli'1ch-complete of the "dummy" pU!1ch cycle, 
143 ms should elapse prior to the next read instruction to 
insure that the card from the punch feed reaches the 8/2 pocket. 

The 143 ms figure has been arrived at by the following analysis. 
From the time of the punch complete on the punch cycle that the 
card passes the check brushes until the card is at the 8/2 pocket, 
360 ms elapses. (Punch complete is that point in the punch 
cycle that the 1401 interlock is released and the next program 
instruction can take place.) It takes 217 ms from the time the 
read instruction is given for the card to be read and then travel 
to the 8/2 pocket. The difference is 143 ms. 

To determine the 143 ms, calculate the basic-loop time (shortest 
path) required to execute L'1e actual program instructions between 
the dummy punch cycle and the next card read instruction. This 
minimum constant is determined from the instruction timing 
information in the System Operation Reference Manual or in 
the System Instruction and Timing Summary for the system to 
which the 1402 is attached. 

If the basic-loop time constant is 143 ms or less, a delay-loop 
subroutine (Figure D-3) is required to avoid false merging and 
jamming. (Allow somewhat more than 143 ms before reading 
the next card, as a safeguard against timing variances. ) 
(Figure (D-4) 

D-12 



tJ 
I 
~~ 

w 

IJ 
I 

;~ 

LABEL LENGTH 

07 

STALL 07 

05 

04 

CTR 02 or 03 

STCONS 01 

Stall Constant 

OP OPERAND 

ZA STCOl'JS, CTR 

A STCONS, CTR 

B (MAINRT), z 

B STALL 

DCW * 

DCW * 

Figure D-3 
Delay Loop Subroutine 

Using 3 Position "CTR" 

"STCONS" No. of Adds Stall Time in MS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Storage Reguirements 

SUBROUTINE 
STALL CONSTANT (STCONS) 
COUNTER (CTR) 

1000 287. 293 
500 143. 543 
334 95.818 
250 71. 668 
200 57.293 
167 47.805 
143 40.905 
125 35. 730 
112 31. 993 

3 Position "CTR" 

23 
1 

_ 3_ 

27 positions 

Figure D-4 
"STALL" Timing Table 

I 

I 

Clear counter and add 
first time. 

Add constant to CTR. 

Branch to main routine 
on overflow. 

Branch back to stall 
loop. 

Allow 2 or 3 positions 
according to table. 

Insert digit 1 through 9 
according to table. 

USing 2 Position "CTR" 

No. of Adds Stall Time in MS 

100 27,393 
50 13.593 
34 9.177 
25 6.696 
20 5.313 
17 4.485 
15 3.933 
13 3.381 
12 3.105 

2 Position "CTR" 

23 
1 

_2 _ 

26 positions 



(E) Prmter Operation Pomters and Miscellaneous Error Indications 

E-1 
E-2 
E-3 
E-4 
E-5 
E-6 
E-7 
E-8 
E-9 

Contents Page 

1403 Error Conditions E-1 
Printer Errors E-3 
I/O Error Checking E-4 
Printer Notes (1403) E-5 
1440 Console Prmter E-5 
1443 Printer Pomters E-6 
1440 Carriage Control and Branch Inst. E-6 
Forms Skipping E-7 
1403 Forms Speciiications E-8 

E-O 

(E-l) 1403 Error Conditions 

Figure E-1lists the 1403 error stop conditions and their associated 
re-start procedures. 

E-1 



1401 Stops Lights On 
(IIO Check Process 

~rror r----------------- ___ S2::0P Switch On) Unit Printer Reset by Remarks 
--

'arity Upon completion B. Reg Check Reset 
of print out. process (Process Out) 

~-

'ype Sync Upon completion Printer Sync Check Reset 
of print out. Check (Printer) 

------_.-
lammer Upon completion Printer Print Same Sets Error 
Fire of print out Check Store Core 
----_._-
~rint Line Upon completion Printer Print Same Sets Error 
~omplete of print out Check Store Core 
-.-------

Figure E-1, 1403 Error Conditions 



(E-2) Printer errors 

There are four printer errors on the 1403: 

1. Sync check (Sync Check Light), 1403 chain out of syncroniza­
tion with the 1401 timers. 

2. 

3. 

Storage address check (Print Check Light), correct storage 
location has not been addressed for printing. 

Print Line Complete Check (Print Check Light), each core 
position in the print area has not been scanned. 

4. Hammer Check (Print Check Light), hammer firing either was 
not called for and occurred, or was called for and did not occur. 

These checks insure that the followLng conditions have been met: 

a. The correct character has been printed in the correct print 
position. 

b. All printable characters have been printed. 

c. Printing did not occur for unprintable characters. 

d. A hammer did not fire more than once for one print position, 
for anyone print line. 

A valid CPU bit configuration that is an unprintable character on the 
1403 will not cause a printer error. 

However, if a printable invalid character is printed, an error will 
occur. (If the character bit configuration was B, A, 4, 2, and 1 but 
the A-bit was missing: the character Q would have printed for the 
alphabetic G Lntended.) . 

An automatic single space will follow a line of error printina. unless 
this line was printed using the space suppress featur~. ~-

E-3 

(E-3) I/O Error Checking 

The point reached in an I/O Operation can be determined if there is a 
sync check error. First, consider a print only operation. If a sync 
error occurs during printing, the printing will be completed before the 
1401 stops. If the sync check occurs between print cycles. the 1401 
will stop before the next line is printed. - - -

In the first case, without print storage, the B-STAR will contain 335 
(or 303 for a 100 char print span) when the 1401 stops. In the second 
case, B-STAR will contain 201. 

In combination I/O Op's, the read and/or punch portion of tie Op will 
not be executed if the sync check occurs during printing, but before 
the read or punch start beg'ins. If the error occurs after the reader 
or punch has started, these portions of the Op will be completed. If 
Print-Read is executed, the B-STAR will contain 081 when the 1401 
stops. If Print-Punch, or Read-Print-Punch is executed, the B-STAR 
will stand at 181 when the 1401 stops. 

If the Sync Check and Print Check are both ON, the Sync Check is not 
considered a print error. If the chain is out of time with the printer 
circuits, the machine stops before the next print Op. In this case, 
the sync check ligiit will be on, but the print check light will not be on. 

E-4 



(E-4) Printer Notes (1403) 

1. If the branch on printer error instruction -- BIN ill, 

2. 

3. 

(I/O check stop switch off) is given immediately following a 
print instruction (print storage feature), the system will inter­
lock until printing is complete (not including spacing). 

To prevent this loss of process time, use the branch on printer 
busy instruction -- BPB ill. Program processing can continue 
until the printer is no longer busy. Then the error latch can 
be interrogated. 

With print storage, put in the following loop before testing for 
carriage overflow - - BPB * -4. 

Whenever possible, use a delayed rather than immediate spacing 
operation. This technique saves machine time. 

(E-5) 1440 Console Printer 

1. A left bracket (BA841) will cause carriage tabulation and a 
right brackEt (CB841) will cause a carriage return operation 
if these characters appear within the data to be printed from 
core storage. The character causing the tab or carriage 
return will not be printed in the output. This can be convenient 
when using the console printer in some sort of formated Clltput 
printing. 

2. To space up the typewriter carriage, execute a write console 
typewriter instruction Witli the operand the address of a GMWM. 

3. If the inquiry indicator latch has not been set on before a read 
from the console typewriter instruction, the instruction will act 
as a NO-OP. 

E-5 

(E-6) 1443 Printer Pointers 

1. 1443 Printer Carriage Function - the carriage cannot be 
manually restored or spaced unless the 1443 stop key has been 
pressed to take the printer out of ready status. 

2. 

3. 

4. 

1443 Printer Hang-Up - if the system interlocks because the 
printer is not in ready status, the printer light on the console 
does not come on. The only indication is an M in the Op 
Register and a W in the A-register. 

1443 Paper Drag Level - if the printer frequently drops ready 
status, check the Paper Drag Indicator. It should be set 
between 1 and 2. 

In storage print out mode, 144 characters (on model 2) 
beginning with the address in the manual address switches will 
be printed on the 1443. If: 

0001 is dialed, 0001 to 0144 prints 
0002 is dialed, 0002 to 0145 prints 
etc. 

(E-7) 1440 Carriage Control and Branch Instruction 

The Carriage Control and Branch command is not provided for the 
1440. 

E-6 



(E-8) Forms Skipping 

1. 

2. 

3. 

Continuous skipping will result if a skip-to instruction is given 
while the 1403 is in the process of executing a skip to that same 
carriage tape channel. 

This condition might arise where the programmer has called for 
a skip to some specific channel on more than one condition, but 
has neglected to allow time for this skip to be completed before 
another skip is initiated from another section of the routine. 

If a skip delay precedes a skip immediate (to another carriage 
tape channel) in the same processing inte:cval, the delayed skip 
is cancelled. 

If a skip immediate precedes a skip delay command (to another 
channeD, both skips will be executed in the normal manner. 

If at1 invalid forms Op d-modifier is used, the carriage will 
skip continuously. (In this case, SlpppiIlg can b.? stopped by 
pr·?ssiri\F .iti"ier the CPU start reset key, or the printer stop 
key. ) 

E-7 

(E-9) 1403 Forms Specifications 

The degree of acceptability for the particular job will dictate the grade 
of paper and carbon used. The printing requirements between the IBM 
402 a..7J.d 407 vary somewhat, as between eit.l-:ler of h~ese machiIIES llild 
the chain printer. 

1. 

2. 

3. 

An original and 3 acceptable copies can be obtained, usin rr 

11-13 lb. continuous #4 Sulphite bond paper and 7-9 lb. Kraft 
with soft, medium and hard carbon, as produced by various 
forms companies. 

An original and 5 acceptable copies can be obtained, using 
11-13 lb. continuous #4 Sulphite bond and 7 -9 lb. Kraft carbon 
selected to provide the desired printing. 

The use of premium paper will make the printing of six copies 
easier. The relation between the paper and the type of carbon 
for the last copy is of special importance to reduce the hammer 
face impression obtained on all back-printing machines. (It is 
interesting to note that some paper manufacturers feel that soft 
carbon is the best, while others recommend hard carbon.) Many 
other grades and weights of paper can be used, depending on 
the application and the desired print quality. Excellent eight­
copy printing has been obtained using a very low cost premium 
paper from one manufacturer. A 12-part printed form with 
carbonized backing instead of individual carbon sheets has given 
good results. Thick packs or stiff forms are difficult to print 
on the chain printer, and should be avoided. Samples of a three­
part form, two of which were card stock, have been printed 
with good results. 

4. The thickness and stiffness of the pack is the limiting factor 
when used with any on-the-fly type printer. Minimum weight 
paper for single sheet work is not recommended, as light 
weight papers are subject to adverse static conditions. 

5. Multilith masters can be cut, either with or without a ribbon. 
It should be tried both ways on the particular type of master 
paper being used. 

E-8 



6. Loose staples can cause jamming. However, generally good 
results have been experienced, especially when the staples are 
placed horizontally. Care must be taken to insure that printing 
does not occur on the stapled area, as the type face will be 
damaged. 

E-9 

(F) Branch Instruction Pointers 

F-l 
F-2 

F-3 
F-4 
F-5 

Contents 

Branch if Indicator On Instructions 
Branch On Character Equal 
Instructions 
Branch on Access Busy Instruction 
Saving Branch Instructions 
Testing Sense Switch Settings by 
Pivotal Branch Technique 

F-O 

F-l 
F-2 

F-4 
F-4 
F-5 



(F- 1 ) Brarlch if Indicator On Instructions 

1. 

2. 

If a Branc!1 if Indicator On instruction contains ad-modifier 
not used by the machine, tlle resulting instruction is effectively 
a NOP. The next seqaential instruction is performed. 

Wit.":l the Advanced Program Feature iJlstalled, an automatic 
function of a successful branch is to save the address of the 
NSI. This address is placed in the B-STAR. This operation 
adds one sto1'a9-e cycle to the time for all branch instructions. 
iioweve r, only successful branch instructions will actually use 
til is additLnal tLCle. The address which has been olaced in the 
3-S'TAR can be stored in any other valid CPU add;ess by using 
the SE.R (:i) c,~) code a3 tne first irlstruction of the branched-to 
address. The lccation to ,,,,,['licn NSI address is usually stored 
is tL.:; I-Address of t(l':; subrodine exit-brar,cL instruction. 

3. !.i u~e advanced pro"rammL'10 feature is not present, the contents 
of the B-STAR (NSI' address) are erased wl:~n a sLlccpssful 
trancl', OCC1E'S. Triis joes not increase the process tim2 for 
t.hi::; op. This erasure occ·..;.rs only ii be branc:: is successful. 

F-l 

(F - 2) Brat"lch On Character Equal IIlstructions 

1. 

2. 

A 7-position branch instruction can act like an 8-position 
Branch On Character Equal command. The character in the 
units position of the B-address is retained in the A-register, 
and therefore acts as the d-modifier for the branch. 

This can be used to advantage. If a branch is required when 
core storage position 079 contains a :], use t.he instruction: 
B III 079. If position 079 does not have the character (9), the 
NSI will be executed. Obviously, this technique has limited 
use and applies only when the uriits position of the location 
corresponds to the code to be examined. 

When a code within a record is to be tested against a series of 
acceptable possibilities, use the following method: 

Label ~ ODerands 

TEST MCW (code), *+3 
BCE XXX, ZZZ, ? 
BCE 
BCE 
BCE 
NSI 

(18 positions used + 4 positiorl ccnstaDt) 

? designates the code moved into the first ECE instruction and 
assumes a W 1M. ZZZ is the location Qf a constant that contains 
a list of possible acceptable codes, such as: DCBA. XXX is 
the branch-to I-address. 

This procedure represents a substantial savinos of core storaae 
ii the possibilities table is lengthy, and where -each BCE com~an6 
tests the same code positions of the record against another 
character of the table. The normal program would be: 

F-2 



Label 2E- Operand 

TEST BCE XXX, YYY, A 
BCE XXX, YYY, B 
BCE XXX, YYY, C 
BCE XXX, YYY, D 
NSI 

(32 positions used) 

Where YYY is the location of the code to be tested. 

Ii a W/M is not present at "code", use the followinJ routir,e: 

!...abel 2E- °12erand 

MN (CODE), TEST + 7 
MZ (CODE), TEST + 7 

TEST BCE XXX, ZZZ, ? 
BCE 
BCE 
BCE 
NSI 

(25 positiGns + 4 position ccnstant) 

F-3 

(F-3) Branch On Access Busy Instruction 

The Branch Access Busy (B ilIl) is not effective if given following a 
Seek command. It must follow either a Read Disk or Write Disk 
instruction. This branch command has the effect of a branch if an 
access-busy condition has prevented the data transfer. 

One exception to the above is when a seek is followed directly by 
another Seek. Here, the Branch Access Busy command must follow 
the second Seek command and branch to that seek. On machines without 
Seek-Overlap, this is necessary to prevent bypassing the second Seek. 

(F-4) Saving Branch Instructions 

When a series of tests are to be made and a different resultant action 
taken with a return to a common point, the execution of the action prior 
to the test will save branch instructions: 

Normal - Test Then Action 

Label Op Operand 

BCE DIGIT, CODE, 2 
BCE ZONE, CODE, e 

B ERROR 

DIGIT MCN CHARAC, WORK 
B GO 

2CI'J2 Me\\] RECORD, 'NORK 
B GO 

F-4 

Save Branches - Action, Then Test 

Or:; 

MC\,Al 
BeE 
MCW 
EC2 

E 

CP,A::tAC, WOEK 
G':, CCDE, 2 
RECORD, 'NO"RK 
GO, CODE, C; 

ER?C? 



(F-5) Testinq Sense Switch Settings bv Pivotal Branch Technique 

With. w.e avail~bility of 6 ~ense sWitc.hes, eac~ of ~hich can be on or 
off, It IS possIble to set 2 = 64 posslble combmatlOns of sense switches. 
To test these possibilities, the following routine should be useful: 

Label 

GON 

FON 

EON 

DON 

CON 

BON 

SBR 

BSS 
SBR 

BSS 
SBR 

5SS 
SBR 

BSS 
SBR 

BSS 
SBR 

BSS 
SBR 

MCW 

Operand 

Xl, 63 

GON, G 
Xl,99+Xl 

FaN, F 
Xl, 98+Xl 

EON, E 
Xl, 96+Xl 

DON, D 
Xl, 92+Xl 

CON, C 
Xl, 84+Xl 

BON, B 
Xl, 68+Xl 

@0@,Xl-2 

Comments 

Place constant "63" in index 
reg. 1 
Is SSW G on? 
Add DO's complement of 1 
to indo reg. 1 
Is SSW Fan? 
Add 100' s complement of 2 
to indo reg. 1 
Is SSW Eon? 
Add 100' s complement of 4 
to indo reg. 1 
Is SSW Don? 
Add 100' s complement of 8 
to indo reg. 1 
Is SSW Con? 
Add lOa's complement of 10 
to indo reg. 1 
Is SSW Bon? 
Add 100' s complement of 32 
to i11d. reg. 1 
Move a zero to high order of 
indo reg. 1 

Index RegistRr 1 now contains a number which describes the sen::oe 
switch settings. This number is now used to modify the pivotal branch 
to one of 64 possible routines: 

F-5 

Label .QQ.. Operand 

A Xl 

A Xl 

B SSWTBL+Xl 

SSWTBL B ALL OFF 

B G 

B F 

B FG 

B E 

B EG 

B EF 

B EFG 

B D 

B DG 

B DF 

B DFG 

F-6 

Comments 

Adds Ind. Reg. I to itself 
(2X IXI) 

Adds Ind. Reg. I to itself 
(4-X LXI) 

This is the pivotal branch 

All sense switches off 

Sense Switch G on, B, C, D, E, 
F Off 

Sense Switch Fan, B, C, D, E, 
G Off 

Sense Switch F, G on, B, C, D, 
E Off 

Sense Switch Eon, B, C, n F, ~, 

G Off 

Sense Switch E, G on, B, C, D, 
F Off 

Sense Switch E, Fan, B, C, D, 
G Off 

Sense Switch E, F, Gon, B, 
C, D Off 

Sense Switch Don, B, C, E, F, 
G Off 

Sense Switch D, G on, B, C, E, 
F Off 

Sense Switch D, Fan, B, C, 
E, G Off· 

Sense Switch D, F, G on, B, 
C, E Off 



Label .9.2..- Operand Comments Label .QL Operand Comments 

B DE Sense Svvitch D, Eon, B, C, 
B CDF Sense Switch C, D, Fan, B, 

F, G off 
E, G off 

B DEG Sense Switch D, E, G on, B, 
B CDFG Sense Switch C, D, F, G on, 

C, F off 
B, E off 

B DEF Sense Switch D, E, F, on, B, 
B CDE Sense Svvitch C, D, Eon, B, 

C, G off 
p G off - , 

B DEFG Sense Switch D, E, F, G, on, 
B CDEG Sense Switch C, D, E, G on,· 

B, C; off 
B, F off 

B C Sense S<vVitch Con, B, D, E, 
B CDEF Sense Switch C, D, E, Fan, 

F, G off 
B, G off 

B CG Sense Svvitch C, G on, B, D, 
B CDEFG Sense Switch C, D, E, F, G 

E. F of: 
on, B off 

3 C~? SensE: SNitch C, on, E, D, 
B B Sense Switch Bon, C, D, E, F. 

-
E, G cii 

G off 

:3 CFG Sense dNitCfl C, F, G on, B. 
B BG Sense Svvitch B, G on, C, D, 

:D, E off 
"I;' - off ~, 

B CE Sense 3witCfl C, Eon, B, D, 
B BF Sense SNitch B, on, C, D, - . 

F, G off 
"f<' G off ~, 

:5 CEG Sense Switch C, E, G on, B, 
B BFG Sense SVJitcl~ E. G on, C, - , 

D, F off 
D. E off 

B CEF Sense 3witch C, E, F on, B, 
B BE Sense Svvitch E, Eon, \..0, D, 

D, G off 
F, G off 

B CEFG Sense Switch C, E, F, G on, 
B, D off B BEG Sense Switch B, -'-', G on, C, D, 

F off 

B CD Sense Switch C, Don, B, E, 
F, G off B BEF. Sense Switch B, E, Fan, C, 

D, G off 

:a CDG Sense Switch C, D, G on, B, 
E, F off 

B BEFG Sense Switch B, E, F, G on, 
e, D off 

B BD Sense Switch B, Don, e, E, F, 
G off 

F-7 F-8 



Label Q£.. °2erand Comments Label ~ 0Qerand Comments 

B BDG Sense Switch B, D,G on, C, B BCD Sense Switch B, D, Can, E, 
E, F off F, Goff 

B BDF Sense Switch B, D, F on, C, B BCDG Sense Switch B, C, D, G on, 
E, Goff E, F off 

B BDFG Sense Switch B, D, F, G on, B BCDF Sense Switch B, C, D, Fan, 
C, E off E, G off 

B BDE Sense Switch B, D, Eon, C, B BCDFG Sense Switch B, C, D, G, F 
F, G off on, E off 

B BDEG Sense Switch B, D, E, G on, B BCDE Sense Switch B, C, D, Eon, 
C, F off F, G off 

B BDEF Sense Switch B, D, E, Fan, B BCDEG Sense Switch B, C, D, E, G 
C, G off on, F off 

B BDEFG Sense Switch B, D, E, F, G B BCDEF Sense Switch B, C, D, E, F 
on, C off on, G off 

B BC Sense Switch B, Con, D, E, B BCDEFG All sense switches on 
F, G off 

B BCG Sense Switch B, C, G, on, The program must be written in this sequence to work properly. 
D, E, F off 

B BCF Sense Switch B, C, F on, D, 
E, G off 

B BCFG Sense Switch B, C, F, G on, 
D, E off 

B BCE Sense Switch B, C, Eon, F, 
D, G off 

B BCEG Sense Switch B, C, E, G on? 
D, F off 

B BCEF Sense Switch B, C, E, F on, 
D, Goff --

B BCEFG Sense Switch B, C, E, F, G on, 
Doff 

F-9 F-1O 



(G) Add and Subtract Instruction Pointers 

G-l 
G-2 
G-3 
G-4 
G-5 
G-6 

Contents 

Arithmetic Overflow Indication 
Field Reset using the Subtract Op 
Miscellaneous Addition Notes 
B Field Sign after an Add or Subtract Op 
Sign of Single Position Counters 
Summary of Negative Zero Conditions 

G-O 

G-l 
G-l 
G-2 
G-3 
G-5 
G-6 

(G-l) Arith Overflow Indicator 

This indicator is turned on by most object-deck clear-storage routines. 
If this indicator is to be tested during the program, it must first be 
reset off by a dummy test. 

A method to reset this indicator is to place a dummy branch immediately 
ahead of the instruction in the program which may cause all overflow, 
or as a housekeeping instruction: BA V * + 1. 

Note: The accumulator field must be at least two positions for the 
overflow indicator to be effective. It is not set on when a 
single-position field has an arithmetic overflow. 

(G - 2) Field Reset, Using the Subtract Op 

Any field defined by a high order word mark can be reset to zeros with 
the single-address subtract op instruction --S (AAA). 

Notice, however, lhat the units positions of the fi~ld will be signed. 
If the original field was negative, the resulting sign will be minus; 
if the original sign was positive, the resulting sign will bc: yL.ls. In 
many arithmetic functions, this is of little importance bcca-~se of 
arithmetic sign control. 

An exception to this is the reseting 0:£ index registers. These fields 
must be left unsigned. However, an index register can be reset using 
the single-address subtract op. This technique is illustrated in the 
subroutine section of this series. 

The field sign must be considered when the field is compared. It will 
compare unequal to a field containing all zeros, for instance. 

If the sign of the field is constant (always plus or always minus), this 
zone can be used as a program constant any time such zone-only 
iPlormation is required. 

G-1 



(G-3 

1. 

Miscellaneous Addition Notes 

Accumulators 

Where possible, define core storage counter areas for each 
total level as adjacent fields. This facilitates chaining and/or 
indexing operations affecting these fields. 

2. Adding a constant 1 wit..hout a constant 

To add 1 to a counter without previously defining the constant 1: 

..Q£. Operand 
A *-6, CTR 

*-6 refers to the op code "A" which is a ,.. 1.. 

3. Zero and Add Instruction 

The A-field of the Zero and Add instruction does not go through 
the adder. Blanks in the original A-field will remain bla...nks in 
the resultant B-field. In any addition or subtraction subsequent 
to executing the ZA Op, these blanks will be treated as zeros. 

If the A-field is shorter than the B-field, zeros will be inserted 
to fill out the B-field. 

The zero and subtract instruction parallels the ZA function 
except for sign control. 

4. Resetting a counter to +0 without a constant 

To clear a counter to +0 with a +0 constant: 

ZA *-6, CTR 

*-6 refers to t.l}e op code "ZA", which is a +0. 

G-2 

(G-4) B-Field Sign After an Add or Subtract Operation 

Figure G-l shows the resultant sign of the B-field after add or 
subtract operations. 

G-3 



-. --_ .. -~-.---.--~- .-------- .~- .. - ---
Unsigned B Field _~ .: ~~~!? !,i~ld _ - Sign B Fi.eld 

If Value of If Value of If Value of 

A < B A=B A /' B A < B A=B A> B 'A< B .A =B A> B' ___ ._ .. ____ -.0 ... co __ • 

-"---- -. 
ADD UNSIGNED A FIELL NS NS 

___ o __ ~~_._L . + +0 + :"0 + 
--- ------- -~ 

ADD + A FIELD NS NS NS + +0 + -0 + -_ .... __ .. _. -----.---- _ .......... -- .. 

0 
ADD - A FIELD + +0 + +0 -0 

I ---_ ... _------ -_._-- --II>-

SUBTRACT 
UNSIGNED A FIELD + +0 + +0 -0 

SUBTRACT + A FIELD + +0 + +0 -0 

SUBTRACT - A FIELD NS NS NS + +0 + -0 + 

'-'----______ ...L-__ ~.&._ ___ _'__ ___ _.!.... ___ ...L._......,_-L.--...L.--.....L-.---~.------

Figure G-l. B-Field Sign after an Add or Subtract Operation 



(G-5} Sign of Singie Position Countel"s 

When setting up a single position counter for iteration ~ount control, 
or any other use, the following sign changes occur: 

B-FIELD CHARACTER 
OFIG. SIGN 

Plus (BA) 

Minus (B) 

No sign 

A-bit only 

Plus (BA) 

Minus (BJ 

A-bit only 

No sign 

OPERATION 

Add 

Add 

Add 

Add 

Subtract 

Subtract 

Subtract 

Subtract 

B-FIELD FINAL 
SIGN 

Plus (BA) 

Minus (Bj until counter 
is decreased past -0, then 
sign will remain plus. 
(BA) 

No sign 

A-bit only 

Plus (BA) until counter 
is decreased past +0, then 
sign remains minus. (B) 

Milius (B) 

Plus (BA) until counter 
reaches plus zero, then 
sign remains minus. (B) 

Plus (BA) until counter 
reaches plus zero, then sign 
remains minus. (B) -

These considerations are important when the result is to be compared, 
or is to be tested for a character-equal condition. 

G-5 

(G-6 ) Summary of Negative Zero Conditions 

1. 

2. 

3. 

4. 

5. 

Reset subtract a + 0 

Multiplication of two factors of opposite signs when one of these 
is zero. 

Move zone of a "B" bit to t.he units position of a zero field. 

Subtract with A field only (S AAA). Sign of t.he least significant 
digit remains the same. Thus, if the original field is minus, 
a minus zero will resulL 

Reducing a minus figure by repetitive additions of one until 
the figure reaches zero. This will be minus zero. Example: 
controlli.'1g an iterative routine. 

G-6 



(H) 

H-1 
H-2 
H-3 
H-4 
H-5 

MultiplY and Divide Instruction Pointers 

Contents 

Multiple Multiplications at One Time 
Multiplication by Repetitive Addition 
Division Notes 
Addition during a Divide Op 
Division by Repetitive Addition 

H-O 

Page 

H-1 
H-2 
H-4 
H-5 
H-6 

(H-1) Multiple Multiplications at One Time 

At least twenty five positions of core storage are used as preliminary 
steps to entering the multiply sub-routine described in the 1401 manual. 
To conserve core, (as well as time) a teclmique of calculating federal 
tax, fica tax, and city tax in one multiplication was devised. The 
various tax rates are placed in a work area designated as the multi­
plicand, (1400000362500000XX) where 14 is the federal tax rate, 
(14%) 3625 is the fica tax rate, (3 5/8%) and XX represents the city 
tax rate. * Gross pay is designated as the multiplier and since it is a 
five digit figure, five zeros are placed between each tax to prevent 
overlapping of results. For example: 

X Gross 
140000036250000015 

200.00 
Equals 028.000007.250000003.00000 

federal 
tax ** 

fica 
tax 

city 
tax 

From this point, it is simply a matter of determining the units position 
of each answer, and working on the results. 

The same idea was used to calculate regular pay and premium pay in 
one multiplication by using regular hours and premium hours as the 
multiplicand, and rate as the multiplier. 

* The left hand zero in all tax rates is assumed in decimal 
placement. 

** In this method, the federal tax Gxemption for a weekly payroll 
equals: (13.00X number of dependents) X (.14), and is sub-­
tracted from the above answer to arrive at federal tax. 

H-1 



(H-2) Multiplication by Repetitive Addition 

A more efficient use of CPU storage and processing time is often 
possible by using repetitive addition instead of the multiply special 
feature or a multiply-subroutine. 

Many commercial applications involve multiplication of variable amounts 
by fixed constants. These constants might be a set percent as in payroll 
FIT and FICA; the factor 60 to convert hours to minutes; 12 to convert 
feet to inches; etc. 

As an example, (Figure H-1 ) payroll federal withholding tax (FIT) of 
14% is calculated, half-adjusted, and stored, using first the multiply 
feature, then the repetitive addition method. 

FIELD NAME i MULTIPLY SPEC FEATURE I REPETITIVE ADDITION 
1 I . 

storage Field Label I Actual Storage • Field Latel . Actual 
Size Data Size Data 

Taxable Gross ; 5 TGROSS 
Constant Five 1 FIVE 
FIT Percentage 2 PERCEN 
Work Area 8 ACCUM 
Output Area 5 STORE 

Total Positions 21 

Figure H - 1 - Multiply Example 

H-2 

12534 5 
.Q. 1 
1 4 

, 00000(0)-

TGROSS 
FIVE 

Q1755;"5 STORE 
:(2 Temp-
orary 

:positions 
needed) . 
11 

12534 
.Q. 

A. 

B. 

Calculation with Multi:Qly Feature 

Position Time .QQ... A-Addr B-Addr 

'7 .1380 ZA PERCEN ACCUM-6 
7 .9660 M TGROSS ACCUM 
'7 .20'70 A FIVE ACCUM-1 
r, .2070 Mew ACCUM-2 STORE 

21(data positions) 
49 pOSe 1.5180 MS 

Calculation using Repetitive Addition 

Positions Time .QQ... A-Addr B-Addr Remarks 

7 .2300 ZA TGROSS STORE+2 TGROSS X 1 
4 .2415 A STORE + 2 TGROSS X 2 
4 .2415 A STORE + 2 TGROSSX 4 
7 .2415 A TGROSS STORE + 1 TGROSS X 14 
7 .1955 A FIVE STORE + 1 

-1.lldata positions) (See Note) 
40 pOSe 1.1500 MS 

Note: The two temporary positions of STORE are now not needed 
and another field may be moved over the two units positions used 
in the repetitive-addition method. 

In this example, 7 to 9 storage positions (see note), and. 3680 
MS of processing time have been saved by using the repetitive 
addition method. 

In all cases, multiplication by the repetitive-addition method for 
one-position multipliers will be faster than the multiply feature. 
In most cases of 2-position multipliers whose high order position 
is 3 or less, the r epetitiv6-addition method will save time and 
storage. 

Various multiply subroutines use considerably more core storage 
than the repetitive addition method and take substantially more 
time. However, practically . speaking, the repetitive addition 
method can only be used for multiplication by constants. IUs 
frequently practical to use a repetitive-addition multiplication 
subroutine, even if the multiply feature is available. 

B-3 



(H_ 3) Division Notes 

1. 

2. 

The units position of the quotient is always located at the 
units position of the dividend field, minus the length of the 
divisor, minus 1, regardless of the number of extra decimal 
positions involved. 

The dividend field must not have a B-bit in any position except 
its units position, where it may be required for sign control. 
A zone may have been developed in some position other than 
the units because of an arithmetic overflow in some preceeding 
program step. An improperly placed B-bit in the dividend field 
has the effect of reducing the value of the dividend, and conse­
quently reducing the resulting value of the quotient. If the zone 
bits in other than the units positions of the dividend are either 
AB- or A-bits, they will be ignored. 

3. If overflows are developed in the divisor, they are ignored. 

4. In direct division, a zero divisor will signal a divide overflow. 
The original dividend will not be changed. 

5. If there are not enough positions allowed for the quotient, the 
divide overflow indicator is NOT turned on, except when the 
divisor is zero. When the divisor is not zero, the divide op 
continues up to the capacity of the positions provided. 

6. A word mark can appear anywhere in the dividend - quotient field 
positions. The divide op does not automatically generate a word 
mark in either the high order of the,:J.uotient, or the high order 
of the remainder. 

H-4 

(H-4) Addition during a Divide Op 

Failure to clear the high order positions of the dividend field will result 
in the uncleared factor being added to positions of the developed quotient. 

Under some circumstances, this may be desirable. If the developed 
quotient is to be added to another factor, this addition can be accom­
plished during divide. The factor must first be located in the correct 
digital registration in the quotient field. Some process time can be 
saved by this side-effect of the divide op. 

Zone bits in the quotient positions of the dividend field will be removed. 
Therefore, the sign of the sum developed in the quotient positions must 
be the same as the developed quotient. The true arithmetic addition of 
the numeric value of any data in these positions will be added to the 
resultant quotient. Zone bits may be present in the units (sign) position 
of the dividend only. 

H-5 



(H-5 Division by Repetitive Addition 

Instead of dividing by a fixed constant, if the reciprocal of the constant 
is used as the multiplier of either a standard multiplication using the 
multiply special feature or the repetitive-addition method of multiplica­
tion, the operation may be faster and require less core storage than use 
of the divide special feature. (See Multiplication By Repetitive Addition). 

Listed below are some commonly used reciprocals. 

Application Actual divisor Reciprocal constant 
constant used for multi12lier 

Inches to feet, units to 
dozens 12 .0833 

Square inches to sq. ft. 144 .00694 

Ounces to pounds 16 .0625 

Minutes to hours 60 .0166 

Feet to yards 3 .3333 

Many ot.her constant reCiprocal factors can be ,+sed as the individual 
job requirements vary. 

Note: This method of division is only practical when dividing by 
a con~tant .. There also will be some loss of accuracy. Each of these 
techI?-ques IS. rr:-0re economical of time and core than either the 
multiply or dIVIde subroutine. (Figure H-2) 

H-6 



DIVIDE MULTIPLY BY RECIPROCAL 
APPLICATION SPEC. FEAT. SUBROUTINE SPECIAL FEATURE REPETITIVE ADDITION MULTIPLY SUBR OUTINE 

FEET TO YARDS 
(- 3) 1.2075 MS 26.411 MS 1.6905 MS 2.0125 MS 15.80 MS 

lVITNUTES TO HRS. 
(- 60) 1.622 MS 26.730 MS 1.3585 MS 1.4835 MS 11.77 MS 

SQ. IN. TO SQ. FT. 
(-144) 1.6785 MS 27.054 MS 1.3700 MS 1.6905 MS 11.77 MS 

Figure H-2. Comparative Timings of Division Methods 



Miscellaneous Operation Code Pointers 

Section Contents 

1-1 Compare Instruction Chaining 
1-2 Compare Instruction used to Decrement 

Chained-Addresses 
1-3 Chaining Set and Clear Work Mark 

Instructions 
1-4 Data Movement without Setting Word 

Marks 
1-5 Move, Load and Store Operations 
1-6 Move Record Instruction 
1-7 Move and Insert Zeros Instruction 
1-8 Column Binary Operation 
1-9 No Operation (NOP); Tips 
1-10 NOP of I/O Instructions 
1-11 Edit Lnstruction Pointers 
1-12 Store B-Adclress Register Instruction 

Pointers 
1-13 Subroutine Linkage With and Without 

Store B-Address Register Instruction 
1-14 Store A-Address Register Instruction 

Pointers 
1-15 Notes on Index Register 'Timing 
1-16 Testing for an Odd Character 

1-0 

Page 

1-1 
1-2 

1-6 

1-7 

1-8 
1-10 
1-1:) 
1-10 
1-11 
1-11 
1-12 
1-13 

1-16 

1- ~ 3 

1-2l 
1-22 

(I- 1) Compare Instruction Chaining 

In some limited applications, the compare op code may be chained. 
During I-cycles (instruction read-in time) of the compare op, the 
compare indicators are reset to equal {at 12 time}. A series of 
chained compare opr s will not reset these indicators. Therefore, 
the composite compare answer will be available at the end of the 
series of compare opr s. The first difference between a character 
in the A-field and the corresponding character in the B-field of the 
entire chained compare series will be the resultant answer. Once a 
compare indicator is set, it cannot be reset until the next compare 
op reaches 12 time. Chained oprs using the op-code only, never 
reach 12 time. 

This method of multiple field comparison (Figure 1-1) can be used to 
advantage when several adjoining fields are to be compared with 
several other fields which are equal in length. Six core storage 
positions, as well as the process time required to read in these 
positions, is saved for every cb...ained op. 

Label 

CaMP 

2P... 

C 
C 
C 
C 
C 
BE 
NSI 

Figure 1-1 
Compare Chaining 

1-1 

Operands 

AAREA, BAREA 

EQUAL 



(1-2) Compare Instruction used to Decrement Chained-Addresses 

'?he compare operation code can be chaiIled to decrement the A- and 
B-rec;isters after a chained operation so that tile registers are in the 
prop~[' position for the next chained operation. The following example 
is used for simplicity: (Fer example, the length of the total fields 
could vary, '2tC.) 

Operand 

LOAD (Load the various edit words) 

EDIT MCE MI,U332 

C 

1VICE 

c 

MCS 

C 

MCE 

c 

MCE 

ROLL A ::'vIT, IN 

c 

A 

C 

A 

1-2 

Comments 

Edit first field. 

Correct A- and B-regis­
t8rs. 
Edit S0COlld :fir-old (cIlained). 

C::;rrcci. !\- and. ~-:--r·';~~-i.:.J­

tcrs. 
Edit next field (chained). 

CO~'rt)ct A- and B-regis­
ters. 
Etc. 

Add mhlor field 1 to 
intermediate FLD 1. 

Correct A- and B-regis­
ters. 

Add minor field 2 to 
intermediate FLD 2. 

Correct A- and B-regis­
ters. 

Etc. 

Operand 

C 

A 

C 

A 

WRITE W 

CLEAR s MI 

C 

s 

C 

s 

C 

s 

C 

s 

SVJITC1I (Bra.YJ.ch to appropriate L~str1J.ction) 

Comments 

Print edited line. 

Reset minor field 1. 

Correct A- and B-regis­
ters. 

Reset minor field 2. 

Correct A- and B-regis-
ters. 

Etc. 

The core storage layout (Figure 1-3) shows that spaces are left 
between each total field and the number of spaces will correspond 
to the decrementation accomplished by the compare operation. The 
space between each total field may be used for constants; so long as 
no additional word marks are inserted. 

1-3 



The positions between 
field 1 and field 2 
d-etermine the decre-I . t ment valueoof the I 

Etc. I Minor 2 I Compare p. I Minor 1 

--------~=--5-TT]T -r-l= I -r PI --I - 1- - 1=1 --II I I I I -1~~rll-=IJJMinor Totals 

I Interm. 2 I Interm. 1 

,_._;.,.....,.4S-----'---'-[-.Jo.[--J.1 ~--r~r~l.·-_-~·L 1. J .. _L . ..J--1-______ I ~1~_I __ I __ J_.[_I-I· I I J __ .1_J Inte;:~~!ate 

I Major 2 I I Major 1 

~~~~~f~~~I~'-r~-~l~~l.]_[I~~r~I~LLJ_II~1~[~~orThWs 
-I -Final 2 I I Final 1

____ ---..~) ~ _____ ~I I....!.-.-.:-I=I........._· .1...-1[_L_IJ~; r~I'~I~~]_._LJ_",l-=L_l._~J_---'-._J_--'-J ·!Final Totals

This method is advantageous when several classes of totals are to be
printed. The same routine is used, after insertion of the new addresses,
in the EDIT, ROLL, and CLEAR instructions.

The reasons for conserving core storage must be weighed against the
additional time required for this routine. If the routine is used several
times (depending on number of fields, etc.), overall throughput can be
substantially enhanced.

I-5

(I- 3) Chaining Set and Clear Word Mark Instructions

When a string of word marks must be set or cleared, the instruction
can be chained.

For example, if word marks must be set at locations 004 through all
consecutively, the following chain will accomplish it:

.Qp

SW
SW
SW
SW

7,11

Comments

Word marks in locations 7 and 11
Word marks in locations 6 and 10
Word marks in locations 5 and 9
Word marks in locations 4 and 8

A similar chain of clear word marks will remove them.

If, in the same example, just the even numbered locations needed word
marks, alternation of SW and CW would accomplish it:

.Qp

SW
CW
SW

Operand

6,10

I-6

Comments

Word Marks in location 6 and 10
No word marks in location 5 and 9
Word marks in location 4 and 8

(1- 4) Data Movement without Setting Word Marks

When a numeric field is not defined by word marks, use the following
method:

QL Operand

MN KKK, LLL
MN
MN
MN (10 positions used)

rather than:

Op Operand

SVJ KKK - 3
MCW KKK, LLL
CW KICK - 3 (15 positions used)

This method will save core storage for fields of 8 positions or less.

1-7

(I-5) Move, Load and Store Operations

An A-address can be ent&red into the A-address register without
disturbing the contents of the B-STAR, when using move, load and
store B-address register op codes as s:ingle address instructions.
This permits the moving of non-adjacent A-fields into a string of
adjacent B-fields, saving time and instruction storage space. The
example shown in Figure 1-4 gives a possible application, using the
move op. The instructions for accomplishing this are:

~ OQerand

Mew 454, 311
Mew
Mew 398
Mew 970
Mew 436
Mew 411
Mew 821
Mew 401
NS1

Note that the first two fields to be moved were already adjacent, and
required only the chained move op code.

1-8

H
I
«)

A-FIELDS

I Accounting Cycle FaY lMaY be used by! /1f78671/!'eriod Endino/ JJune , 1964]

. 398 401 436 449 454 821 970

Accounting Period May , 1964 Account =#= 7867

B- FIELDS 311

Figure 1-4
Moving Non-Adjacent Fields into a Str:ing of Adjacent Fields

(1-6) Move Record Instruction

The move record op (MRCM, MCM or Pop) instruction is terminated
by the presence of a record mark (-:t:) or a group mark with a word
mark (i:') i'1 ll-J.e A-field. This character is tr~'1sferred to ll-J.e B­
field, eXCept for the word mark associated with the group mark.

Thus, when moving data from a tape read-in area to the print a~ea,
the GMWM can be used instead of the record mark. (The GM wIll
not print.)

The absence of a record mark or a group mark with a word mark may
cause a move record op to blank out all, or a large portion of core
storage.

(I - 7) Move and Insert Zero L'1struction

A group mark in the A-field will be moved to the B-field. A word
mark associated with the GMWM is not transferred.

(1- 8) Column Binary Operation

The move and binary decode instruction - - M AM BBB A is terminated
by a word mark in the high order of the A-field usually location 4?1. .
A group mark only will not stop this function. The group mark will be
displaced. A word mark in either field will stop the operation, just as
with the ordinary move (M) op.

1-10

IT r.
\.L-~ No Operation (NOP) Tips

An instruction can be no-op'ed provided the A- and/or B-addresses
are valid, and the instruction length is either 1,2,4,5,7,8 or more.
(There must be a word mark between the no op instruction and the
highest core location.) Thus, a NOP instruction can be longer than 8
storage positions, (such as B"0123456789ABB) but it cannot be a length
that is not other wise valid for other instructions (B 12345B).

Note that certain instructions can call on an index register inadvertently
and the NOP A- or B-address can become invalid. If, in the instruction:
N ICE A ---, index register 3 contains a factor greater than 064, an
1nvalideffective address will be developed in the A-register (ICE =

15,935 + index register 3. If index register 3 is more than 064:
15, 935 + 100 = 16,035 will be developed.)

(1-1O) NOP of I/O Instructions

If it is necessary to NOP an I/O op, such as tape, disk, etc., the
unit control designation must also be changed to N. For example,
L%B6 234 R will become NNB6234R. Notice that a word mark is
not necessarily associated with the unit-control position of the
instruction.

1-11

(I-11) Edit Instruction Pointers

1. Zero and punctuation suppression can be reinitiated by any
alphabetic or special character, except the punctuation marks:
comma, decimal, and hyphen. Any other character will cause
suppression to be reinstated during editing with zero suppres­
sion on a system with the expanded print edit feature.

2.

3.

4.

5.

Any sign (zone bits) in the units position of the data word
(A-field) is removed by the edit instruction. If this Sign is
required for subsequent program steps, it must be stored in
another core location before the edit instruction is executed
and replaced after the edit. The sign will be used by the edit
instruction, but it will not be regenerated.

Any valid character used in the edit control word will be
regenerated in the control word storage locations, and can be
used again without modification.

Although floating-dollar and asterisk-protection cannot be used
in the same edit word, a dollar sign can be placed to the left
of the asterisks by inserting it in the edit control word so that
there is at least one blank position separating the dollar sign and
the asterisk.

Thus, 12345 edited into $bbb, b*O. bbCR* becomes $****123.45.
The factor OOOON becomes $*******. 05CR* after an edit using
the above control word.

Some examples of control words and their results when the data
word is zero:

bbb,b$O.bb
bbb,b*O.bb
bbb, bbb.$O
:!2:bb,bbb.*O

1-12

$.00
*******.00
bbbbbbbbbb

(I-12)

1.

2.

Store B-Address Register (SBR) Instruction Pointers

Indexing bits in the ten's position of the B-address are not
stored. If indexing bits are required, they can be transferred
using the move zone op code. Thus:

Label

MOVE

2E...

MCVJ
SBR
MZ

Operand

XXX,6X8
901
MOVE + 5, 900

However, if the affected address has been modified by indexing,
the resultant address will reflect this modification. Thus, if
index register one contains the factor 010, and the B-field
length of the input area is 20 positions, the instructions:

MU %U3 5T3 R
SBR 321

will cause the address 564 to be stored at location 321. Note
that in this particular op, the address which is stored is actually
one position past the GMWM. The indexing of lhe address 5T3
gives an effective address of 543. The field length of 20 posi­
tions gives an effective ending address of 562 (actually 563
because of the GMWM). The stored address, then, becomes
564. This address factor will not reflect the original address'
indexing.

An address constant, or any 3-position constant, can be stored
by using the SBR (H) op: N 444, SBR 635. The constant 444
will be stored in location 635. Note, however, that had the
NOP A-address been indexed, the indexing bits would NOT
have been stored: N 5V5, SBR 666., The address 555 will be
stored at location 666, and the indexing bits will have been
lost.

The following technique will cause the constant 999 to be stored
at location 888 and one core position will be saved over the
previous method. SBR 888, 999

1-13

3.

4.

A SBR op cannot follow a...rJ.Y conditional branch LrJ.struction (or
any command having other than 4, 7 or 8 positions). During
the I-phase of the conditional branch instruction, the d-charac­
ter is read into the hundreds position of the B-STAR (or A­
STAR for a 2-position op), and blanks are placed in the tens
and units positions of these registers. If the branch is not
successful, the SBR op will store an invalid address. In the
following example, both the hundreds and thousands positions
of the B-storage address register are loaded, but the tens and
units positions are left bla...rik:

C AAA, BBB
B ill, S
SBRAAA

In this case, the B-STAR to be stored, if the compare is not
equal, will be invalid (l2bb) and subsequent execution of this
routine will produce an invalid address error.

Any three storage positions can be reset to zero or any other
3-character factor (without regard to word marks) as follows:

SBR
SBR

FIELD, 0
FIELD, 555

or

In this example, the label FIELD refers to the right-most of
the three positions being reset. This procedure can be used to
reset 3 independent 1- position counters or index registers.
An ADCON (autocoder) or a DSA (SPS) both requiring 3 extra
positions are not required for the address constant: 000.

5. The following instruction can be used to increment or decre­
ment an index register on systems equipped with the store A­
and B-address register features.

SBR Xl,A + Xl

where A is the value to be added or subtracted from t..l-J.e i.'1dex
register. For example:

1-14

6.

7.

SBR 89, 15 + Xl Index register 1 is incremented
by 15.

* SBR 89, 15998 + Xl Index register 1 is
decremented by 2.

To save the contents of an index register and restore it at the
same time, use:

Label

RESTOR

9£..

SBR

SBR

Operand

RESTOR + 6, O+X1

X1,O

As a useful program linkage, the following places the
appropriate address in a common routine.

Label

INSTR
SBR
MCW

Operand

INSTR +3, FIELD
0, GO

* Core size dictates whether this method of decrementing
is valid.

1-15

(I-13) Subroutine Linkage with and without Store B-Address
Register Instruction

It is very economical in terms of saving core storage to be able to
provide linkages to closed common subroutines. Using the SBR in­
struction simplifies this task, as follows:

Label Op Code

MCW

MCW

B

SUB SBR

ENDSUB B

Operands Remarks

VALUE, AREAl Set up values for sub­
routine or

NUMBER, macro instruction
AREA2

SUB Branch to subroutine

ENDSUB + 3 Store NSI in last in-
struction of subroutine

0 Branch back to main
line

If the machine in question does not have the SBR special feature, the
following routine can provide the same linkages:

Label .Q2- 0!2erand Remarks

MCW VALUE, Set up values for sub-
AREAl routine or

MCW NUMBER, macro instruction
AREA2

MCW SBR + 3, Move branch instruction
ENDSUB + 3 to return linkage

B SUB Branch to subroutine

1-16

Label 2L 0!2erand Remarks

SBR B MAIN Branch linkage constant

MAIN A FIELD, Main line processing
AREA3

SUB Begin subroutine

ENDSUB B 0 Branch back to main
line

The same routine can be more simply stated with fewer labels:

Label 012 Code 0!2eraIld Remarks

MCW VALUE, Setup subroutine or
AREAl

MCW NUMBER, macro values
AREA2

MCW * + 8, Setup return branch
ENDSUB + 3

B SUB Branch to subroutine

B * + 1 Branch linkage constant

A FIELD, Main line processing
AREA3

SUB Begin subroutine

ENDSUB B 0 Branch back to sub-
routine

1-17

(1-14) Store A-Address Register (SAR) Instruction Pointers

1.

2.

If the A-address of a function is required in more than one
location, use:

A
SAR
SBR
SBR
etc.

AAA
789
987
654

BBB

At the end of the SAR op, the B-STAR will have the address
previously contained in the A-STAR. Therefore, an SAR
op can be followed by as many SBR op's as might be required
to satisfy the program.

Storing both the A- and B-addresses is less convenient.
Example 5 of this section shows one technique to do this.

The primary use of SAR is in deblocking input records. When
the blocked records are separated by a record mark, the follow­
ing routine will keep track of the address of the next record
without having to otherwise increment the index register:

Label OP Code Operand Remarks

GO RT 1, MASTER Read tape
BER RDERR
BEF REOF
SBR Xl, MASTER Place addr. of

first record in indo
1

BCE GO,0+X1,* Fully processed?
MRCM 0+X1, PROCES Logical record to

work area
SAR Xl

1-18

3.

4.

a.

Another deblocking technique, without using index registers,
enables the programmer to change the blocking by cr..ang'...ng
only the DA statement associated with the file.

EOBTST
MVSTEP

Q£..

BCE
MRCM
SAR

SBR

Operands

READ, 0;$
INPUT, WORK
MVSTEP+3
(To save the next
A-addr.)
EOBTST+6
(To save A-addr
again)

SAR can be used in routines to reset an area to blanks or fill
an area with any character.

If the area to be cleared contains a word mark, only in
the high order position, SAR is not needed. For example:

Label

WKAREA
FIRST
LAST

Q£..

DA

Mew
MCW

Operands

1X100
1
100

@@; LAST
LAST Moves blank to

last -1 and con­
tinues until high
order W!M is
sensed.

b. If the area contains many fields with multiple word marks:

Label

wKAREA
FIRST
SECOND
THIRD

DA

1-19

Operands

lX100
1,5
7,9
11,14

5.

TWENTY
LAST

HERE

LIMIT

MCE
SBR
MCIN
SAR

C
BE
B
DSA

Operand

90,97
98,100

@@, LAST
X3' save last -1
1+X3, 0+X3
X3 save addr of

unblanked posi­
tion

X3, LIMIT
MAIN to main routine
HERE
FIRST -1

Note: Whenever a word mark is sensed, an extra move
instruction is given.

SAR is useful when transferring data in one area to another,
where differences in word mark configurations present a
difficulty, e. g., work area to master output area.

Label QQ.. Ooerand

HERE MCW MOVE + 6, TO MOVE + 6
C MOVE + 3, LIMIT
BE MAIN to main routine

MOVE MCW A FIELD, B FIELD
units position of each area

SAR MOVE + 3
to save next A -addr

TO MOVE MeW 0,0
SBR MOVE + 6

to save next B-addr
B HERE

LIMIT DSA XXX
high order of A-field

Note: Although each move instruction is executed twice, this
technique saves considerable core storage.

1-20

(I-15) Notes on Index Register Timing

Indexed instructions require three to four additional I-cycles per
indexed address and, therefore, additional instruction time. For ex­
ample, moving ten characters requires (7 + 1 + 20) 11. 5 us or 322 us
without indexing. Indexing of one address adds 34.5 us, two addresses,
69.0 us.

While indexing easily outperforms address modification, one case where
indexing may not be the best method is that of indexing fields in a tape
I/O area. In this case, every logic instruction referring to I/O data
is indexed and time may be greatly incr 2ased. The use of a work area
would reduce the increase in process time. This alternative will use
more core, however, and should be weighed accordingly.

Indexing time is especially worth considering if iterative routines (e. g.
programmed multiplication) are a basic part of the program logic or if
a slight increase in process time may cause an interlock in another
I/O device such as the reader or punch.

1-21

(I..,l6) Testing for an Odd Character

A. Method I (if column binary feature is available)

BBE
where

XXX, 'lYY, 1
XXX = address if character is odd
YYY = address of character tested.

Positions .required: Q

B. Method II Step-by-step testing

BCE XXX, YYY,
BCE XXX YYY 3
BCE xxx: YYY: 5
BCE XXX, YYY, 7
BCE XXX, YYY, 9

Positions required: 40

C. Method III Chained Testing

MCW
BeE
BeE
BeE
BC~

BeE

YTf, ,;: + 8
XX:X:, COI'JS~, ?

CONST DCW @13579@

Positions required: 24

1-22

(J) Magnetic Tape Considerations

Contents

Tape Programming Pointers

J-1 Clear Group Marks from I/O Area
J-2 Compressed Tape Instruction used to

Read Regular Records
J-3 De blocking Routine
J-4 Diagnostic Tape Read Instruction
J-5 Miscellaneous Tape Notes
J-6 Noise P"ecords
J-7 Read Tape Mark Effect
J-8 Skip and Erase Tape Instruction
J-9 Tape Transmission Errors and End of

Reel and File Indicators
J-10 Trailer Nines F;ecords of End of File

Recognition

Tape Operation and Handling

J -11
J-12
J-13
J-14

Operation of 729 Tape Drives
Operation of 7330 and 7335 Tape Drives
Tape Handling
Tape Transport Cleaning for 728 Tape
Drives

J-O

J-1
J-2

J-3
J-4
.J -5
~ -c,
~ n
.) - I

J-7
J-2

J-8

J -10
J -11
J-13
J-13

(J -1) Clearing Group Marks from Tape Readin/Readout Areas

Tape information can be lost if a spurious group mark with a word
mark (GMWM) is generated within the tape read (or tape read/write)
area. The tape read-in and write-out areas should be cleared after
each read or write operation, respectively.

Tape read is terminated when a GMWM is sensed in storage. The last
cllliracter accepted will be one position to the left of the GMWM. If the
tape read operation is terminated by an interrecord gap (IRG), a group
mark without WM is written one storage position past the last data
character written into storage. For fixed-length records, this GM
will normally fall over the existing GMWM. For variable-length
records, this GM may fall anywhere in the read-in area.

A GM without WM may be a character of the tape record. This may
be caused by a read parity error, or may be a program requirement.

If the GM happens to fall over a WM, and this GJ:vf\}JM is not cleared,
subsequent records will be effectively ended at this new GMWM.

Program around this condition by using a Store B-Register op and two
chained Clear Word Mark ops. These instructions must follow the tape
read op without intervening steps, as shown in Figure J -2.

J -1

RDTAPE MU %Ux BBB
SBRCLRWMhl

CLRWM CW 000
CW
NSI

..sL

R

COMMENTS

Read tape record into BBB.
Store B-ST AR; Address of
GM +1.

Clears WM at GM + 1
Clears WM under GM

Figure J-2 Subroutine to clear word mark under group mark.

In the program steps preceding the next tape read Op, a word mark
may have to be placed under the correct GM, and, if needed, at GM+l.

Another way to do the same thing, without clearing the WM at GM+l
is as follows:

LABEL .QQ.. A 12.. .Q.. COMMENTS

RDTAPE MU %Ux BBB R Read tape re:::ord into BBB
SBR Xl Store B-ST AR in Ind. Reg 1;

Address of G M+ 1.
MN O+Xl Moves number po~tion of GM+l

into GM+l but steps down
A - Re gister to address of GM.

CW Clears WM under GM.

Both of these routines may be used with SW to set a work mark under
the GM.

(J - 2) Compressed Tape Instruction Used to Read Regular Records

This command (special feature) is terminated only by an IRG. It is not
stopped by a GMWM in core. Therefore, this instruction can be used
whenever there may be spurious GMWM's in the tape read-in area. It
is not necessary to clear the GMWM's. Note, however, that since the
operation is not halted by a GMWM in core, an extra-long tape record
could wipe out core storage beyond the tape read-in area. A group
mark without a word mark is inserted in core when the IRG is finally
sensed, as in normal tape read. However, the B-STAR will contain
the address of the GM plus 1, as in normal tape read.

J-2

{J - 3) Tape Record De-Blocking Routine (See Figure J - 1)

To pick off each record of a blocked set of variable-length records,
and find the end of the block as a by-product of the basic operation,
use the following program format:

LABEL OP OPERAND

MOVE

END

SBR MOVE -t3, INPUT
MCM INPUT, WORK
SAR MOVE+3
SBR END + 6

BCE READ, 000, f.
B MOVE

CO:r:vuvrENTS

Initialize Move Record A-Address
Record mark or GMWM stops move.
Store A-STAR for next move.
Store old A -STAR (by using the
SBR Op) for GMWM test.
Test for GMWM. If yes: Read tape.

If no: Move next record.

Representation of a section of magnetic tape.

Tape record Record Tape record

if 1 #2 number 3

Representation of a section of core storage.

Tape record # 1
in storage

Tape record
#2

Figure J - 1 Tape Record De-Blocking

J-3

Tape record if 3

I
.i. R

G

(J - 4) Diagnostic Tape Read Instruction

A little known tape instruction is the diagnostic tape read:

CU %UX, A

This instruction allows a tape record to be read, checked for tape
validity, tested for end of file, but does not enter the data into storage.

The instruction has at least 3 possible uses:

1. Pass a tape and bypass a predetermined number of tape records.

2.

3.

Pass a tape and bypass a predetermined number of tape files,
on the same reel, separated by tape marks.

Check a tape for validity as a multiprogrammed operation
during normal running. This is especially useful when a tape
is to be read that was written on a tape drive without a dual­
gap head or dual level sensing.

After a diagnostic tape read is executed, the processor is immediately
released for other instructions. The IRG stops the read and the diag­
nostic tape read must then be executed. The EOR (end of reel) indicator
in the tape drive will be turned on if a tape mark is read, but not when
the end-of-reel reflective sticker is sensed, since the tape drive will
be effectively in read mode.

Other tape operations are interlocked until the check character for the
record being bypassed has been read.

The Diagnostic Tape Read op does not interlock the CPU. Processing
continues. If this op is being used to determine the existence of a tape
mark, and the program depends on recognition of this character, the
system must be interlocked. This can be accomplished by coding a
test-for-tape-error just prior to the point in the program dependent on
the tape mark condition. The Branch if Tape Error instruction cannot
be executed ll.'1til the IRG is reached.

The Tape Error indicator will be turned on if the record being bypassed
was not in the parity dictated by the A-addres~ of the diagnostic tape
op. The letter B in the ten's position of the A~ddress of the tape
instruction specifies odd tape parity, while the letter U specifies even
tape parity. Note: do not confuse tape parity with processing unit parity.

J-4

(J - 5) Miscellaneous Tape Notes

1. Tape Load Operation using Tape Load Key

A GMI\NM in core will not stop a tape-load operation when
in.itiated from the tape-load key. This operation stops only
when an IRG is sensed. Any characters (including a group
mark with a word mark) will be erased during the read portion
of a tape -load.

2. TaDe Read Instruction

3.

4.

A missing group mark with a word mark at the end of a tape
read-in area can cause a lar'=Je portion of core storage to be
blanked out. The tape op will be terminated in this case by
the IRG.

Tape Rewind

Tape unit rewinding should be included in the housekeeping
routine. This insures that all tapes being used for the job
will begin at load point.

AddreSSing GM/WM when Writing Taoe

If a tape-write instruction is given to write a GM/WM 0111y,
the tape unit will create an IRG of 1 1/2 inches instead of the
usual 3/4 inch gap. The tape error latch will be turned on.

A backspace command at this point in the program will cause
the tape unit to back up over the wide IRG as well as the last
record written (not the GM/Vv'1.J, which does not go on tape).

Note: Depending upon the series of the system, the above
operation may cause the entire system to interlock, and
will require that the start reset key be pressed.

5. In order to assure that a valid tape mark has been written on
tape, use the following routine:

J-5

Label 2£... 02erand

WRTTM WTM 3
BSP 3
RT 3, INPUT
BEF EOJ
B WRTTM

(J -6) Noise Records

A noise record may be read into memory. There are several ap;:roaches
to determiYJ.in':.J if a noise record has been read.

.L.

3.

4.

Since a noise record can be 1 to 13 characters, plan eacr, tape
file so that no valid tape record is less than 14 Cl,aracters.

Use a string of special characters in positions 1-14 of t..he tape
read iYJ. area. After a read, check for their presence to indicate
a noise record.

Clear tLe entire noise area after a noise record is found.

Set a GMWM one position pasI where the GM should fall in a
read tape area. Leave the OM position blank. After a read,
check for the GM as a check for wron';;, len':j"th (long or short)
tape record. Blank out U1e generated GM after a good tape
read.

J-6

(J -7) R€ad 'rape Mark Effect

When a tape mark is read, it not only gives an EOR indication, but
also reads into storage. It is followed by a group mark. This GM
may read in on top of an existing word mark, creating a GMWM. Any
End-of-File routine must include a tape read-in area-clear routine
as illustrated in a previous section. Reset any word marks for subse­
quent tape read operations, if required.

Note: On a tape-error transmission, parity error constituting a group
mark may be left in storage following the read OPe It is advisable to
clear the read area to eliminate this group mark, before the next read
try is attempted. This operation will use process time during which the
machine is waiting for the TU to complete a backspace, so no actual
time will be lost.

(J - 3) Skip Tape and Erase L'1struction

This instruction -- SKP 3, is effective for the next tape write op or
tape mark write op_ The latch is not reset by a rewind, rewind-unload,
or backspace command. Use care to insure that this instruction is
executed before the tape is backspaced or rewound. Otherwise, the
first write command for that drive after the backspace or rewind will
cause a skip and erase to take place. This could cause difficulty on the
next use of that tape drive, if SKP is used at end of job.

Ordinarily, this is of little consequence since the automatic load-point
skip will take place anyway.

J-7

(J - 9) Tape Transmission Error and End of Reel Indicators

1.

2.

There is only one tape error latch. It is set on if a tape read
or tape write error occurs on any tape drive. This latch can
be tested and reset by the Branch if Tape Error instr1,l.ction -­
BER ill. The tape error latch is also reset at t...'l.e begirll'1i.11g
of any tape command for any tape drive. If the tape error is
not tested before the next tape op, the error condition is lost.

Each tape drive has its own End of Reel latch. This latch is
set on when either an end-of-reel sticker (reflectivE: spot) is
sensed while writing, or when a tape mark character (BCD
code 8, 4, 2, 1) is read as the first character of a tape record.
This latch can be reset by the Branch if End of File or Reel
instruction -- BEF ill, or by the manual unload push button
on the particular drive having the end-of-reel condition.
(The Tape Indicate light will be lighted on this drive.)

A tape drive must be in Select and Ready status to allow a test
for end of reel. Therefore, programming caution must be used
to i'1sure that an EOR test is associated wit...'l. the proper tape
drive. Any tape command referri'1g to a specific drive places
that drive in select status. Ready status infers that tape is
loaded in the drive, and the unit is otherwise 9hysically ready
(ready light is on).

The end of reel indicator will be turned on in a tape unit when
either a reflective sticker is encountered during a tape write
op, or when a tape mark (BCD code 8,4, 2, 1) is read as the
first character of a tape record. This means that any multi­
character record having a tape mark as its first character,
even though this record may be a noise record, will turn on the
end of reel indicator.

Therefore, it is important to test for a tape transmission error
before testing for an end of reel condition. Note, however,
that the EOR indicator is only reset by the Branch if End of
Reel instruction, and.not by the nex--t tape op, as is the case
with the tape error latch. Therefore the test for EOR must be
made while this drive is still selected. This is usually accom­
plished by branching back to the EOR test following the comple­
tion of the tape error subroutine, or if no error e;(Cisted, going
directly to the EOR test which follows the tape error test
instruction:

J-8

Label .QQ.. OQerand

RT 3, INPUT
BER XXX

EORTES BEF yyy
NSI

XXX

B EORTES

(J -10) Trailer Nines Records for End of File Recoanitioli

The use of a trailer record ''''''ith a control field consistin9 of all nin(:s
for each input tape fils will generally eliminate the need for sp'2cial
end of file switches in the various comparison routines. This nines
record may either be read in from tape or may be generated in core
storage by the program when an end of file condition is recog-nized.

J-9

(J-ll) 0Qeration of 729 TaQe Drives

Tape Mounting

1. Allow about three feet of magnetic tape to hang freely from the
reel that you are going to mount. Place reel on drive and press
firmly to insure that the reel is properly seated. Tighten the
reel on the drive by turning the knob clockwise until it becomes
difficult to turn.

2. Thread the magnetic tape through the guides and rollers
insuring that the glossy side of the tape is up when passing
under the read-write head and that the tape is not twisted.

3. Place the end of the tape on the right reel, hold the reel release
button down, and wind the tape on the reel until the reflective
spot passes under and to the right of the read-write head.

4. Close the front glass door and press the keys in the following
order:

a. Reset
b. Load Rewind
c. Start

5. Insure that you have the proper density setting.

TaQe Unloading

1. Press the following keys:

a. Reset
b. Load Rewind

2. After the tape has rewound, press:

3.

a. Unload

Depress the reel release button 8..rJ.d manually -rewind the tape
on the left reel. Loosen the knob and remove reel.

J-IO

{J -12) Operation of 7330 and 7335 Tape Drives

1.

2.

The 7330 and 7335 read-write head must be lowered manually
by the use of a black plastic handle located at the head.

The 7330 a"I'J.d 7335 tape drive should be" prepared for operation
using the following sequence of steps:

a. Open center cover and right column door.

b. Thread the tape through the guides and rollers.

c. Wind tape around the take-up reel; use reel release
button.

d. Wind load point past head. Leave no slack in the tape.

e. Close the doors on the horizontal vacuum columns.

Lo\ver the read-write head with the reel release
button depressed.

g. Release reel release button until vacuum comes up.

h. Depress reel release button and turn left reel clockwise
and right reel counter-clockwise to load tape in columns.

i. Close door.

j. Press reset, low speed rewind and start buttons.

If the tape is loaded into the vacuum columns before the doors
on the columns are closed, the tape may be pinched.

3. Make sure that all tape drives are unloaded (read-write head
up) before turning off power to the system. If this is not done,
blown fuses may result.

4. The 7330 and 7335 is sensitive to the lateral positioning of the
aluminun load point strip. The end of reel strip is positioned
toward the rear of the width of the tape. If the load point strip
is not positioned forward enough, the 7330 and 7335 will recog­
nize it as end of reel indication and cause the appropriate
indicator to be turned on.

J-ll

5.

6.

It should be noted once again that a "rewind" instruction
causes a low speed rewind. "Rewind and Unload" causes
a high speed rewind. The choice of the two must depend on
program requirements. If "Unload" is used, to reload the
tape must be reloaded into the vacuum columns, L~e read­
write head lowered and the appropriate buttons reset.

It is possible to improperly thread the tape on these drives
and, outwardly, the drives operate properly. If the tape is
read back with the tape still incorrectly threaded,it will work
well. However, the tape cannot be read again on a 729, 7330,
or 7335 with the tape threaded properly.

J-12

(J - 13)· crape Handling

Magnetic tape must be protected from dust and dirt; foreign particles
can reduce the intensity of reading and recording pulses by increasing
the gap between the tape and the head.

1.

2.

3.

4.

5.

6.

7.

8.

Keep tape in a dust-proof container whenever it is not in use on
a tape unit. During loading, take the tape directly from the
container; after unloading, place the tape directly in the con­
tainer.

While the tape is on the machine, keep the container closed and
put it where it is not exposed to dust or dirt.

Store tapes in an elevated cabinet away from paper or card dust to
minimize the transfer of dust from the outside of the containers
to the reel during loading or unloading.

Do not use the top of the tape unit as a working area. Placing
material on top of the units exposes it to heat and dust from the
blowers and may interfere with cooliYlJ the tape unit.

When identifying tape reels, use a material that can be removed
without leaving a residue. Adhesive stickers, easily applied
and removed, are satisfactory. They can be prepared in
advance and applied during the loading procedure. Never alter
identification by changing labels with an eraser.

Place load points and reflective spot on tapes with care. Pro­
perly align and press them tightly on the tape with the back of the
fingernail, preferably while the tape is loaded on a unit. If it is
done away from the unit, keep unrolled tape off the floor and
away from dust.

Inspect containers neriodically; remove accumulated dust by
washing with a household detergent.

When necessary to clean tape, wipe it gently with a clean, lint­
free cloth moistened with IBM tape transport cleaner. Do not
do this with R D. tape.

J-13

9. Exercise e~reme care when removing the file protection ring.
Under no clrcumstancesshould the ring be removed while the
tape is loaded in the columns.

Recorded information comes within. 020" of the edge of the tape.
Proper operation relies on the edges being free from nicks and kinks.

1.

2.

3.

4.

5.

6.

7.

8_

9.

Reels should be handled near the hub whenever possible. If a
reel is difficult to remove, break the bond between the reel and
the hub by placing the palm of the hands on the periphery of
the reel and rotating it. Never rock the reel by grasping the
outer edge.

Carefully avoid pinching reels or contacting the exposed edge
of the tape.

When installing the reels, push them firmly against the stop
on the mounting hub to insure good alignment.

Take special precautions to be sure the hub is tightened after
the reel has been mounted.

When placing the tape on the take-up reel, carefully align
t...e tape to prevent damaging the edge on the first few turns.

When winding the tape to load point, rotate the machine reel
with the fing,,"r near L'1e hub and on the reel. Rotating the reel
with the finger in the cut out, nicks or cuds tIle guiding- edge
of the tape.

Always place sponge rubber grommets or special clips on
stored reels to prevent the free end from unwinding in the
container.

Ii tape breaks, divide the reel into two smaller reels. Splicing
is not recommended. If necessary to make a temporary splice
to recover information, be sure to use special low cold flow
splicing tape (Customer Engineering supply item).

Dropping a reel can easily damage both reel :;md tape. Use of
a reel and tape after they have been dropped is usually unsatis­
facbry.

J-14

10.

11.

Never throw or mishandle reels, even while they are protected
in t.1.eir contaL."1.ers.

Allow the tape unit to complete the unload sequence before
opening the door.

Magnetic tape, especially acetate tape, is sensitive to changes in
humidity and temperature. Take the following precautions:

1. If possible, store tape where it is to be used (in the computer
room). Tape storage near the tape units reduces handling and
variations in atmospheric conditions.

2. The atmosphere should be controlled between the following
limits:

3.

Relative humidity
Temperature

40% to 60%
65- to 80' F

If tape must be removed from the computer room atmosphere,
hermetically seal it in a plastic bag. If tape is not hermetically
sealed then, it must be returned before reuse and allowed to
remain in the computer room atmosphere for a time equal to
the time it was away from Lhe room. Twenty-four hour condi­
tioning is necessary if the tape was removed for more than 24
hours.

When shipping magnetic tape, the following procedure is advisable:

1. Pack the tape and reel securely in a dust proof container.

2. Hermetically seal the container in a plastic bag. (Ordinary
plastic bags that can be sealed with a hot iron should be availa­
ble from local merchants.)

3. Obtain additional support by enclosing containers in individual
stiff cardboard shipping boxes.

For long-term storage, take the followiIlg precautions:

1. Provide proper mechanical support for the reels by using the
dust proof containers.

J-15

2.

3.

Enclose the reel and container in a hermetically-sealed
moisture-proof plastic bag.

Store tape in an area of constant temperature (between 40 and
120' F is satisfactory). Either freezing or excessively hot
temperatures could harm the tape.

If a tape reel is dropped, the reel may be broken or bent, the edge of
the magnetic tape itself may be crimped, and the magnetic tape may
be soiled.

The tape should immediately be inspected. Breaking or bending can
usually be verified by visual inspection. Bending ca,,"l also be verified
by mounting the reel on the hub of the tape frame. If the reel is bent
or broken, it should not be used; the magnetic tape, however, may
be serviceable and can be wound on another reel.

If the edge of the tape is crimped, steps to be taken depend on whether
it contains essential information. If the tape contains no essential
information, discard the footage with the crimped edge. If the tape
contains important information, reconstruct it through tape-to-printer
or other machine operation. If this fails, the records in question must
be recreated from the original input or control data.

Any time a taye reel has been dropped, clean the tape and reel
thoroughly.

If visual inspection fails to uncover any evidence. of breaking or bend­
ing of the reel, or crimping or other damage to Lhe magnetic tape,
assume that the tape is in good operating condition. If possible, make
a test to verify that the tape operates properly before using it on subse­
quent runs.

The following are points of general tape-handling information:

1.

2.

Senior operators should always take special precautions to
follow Lhe tape handling recommendations to show, by example,
the care required to insure good performance.

Replace any tape arriving at the customer's installation in un­
usable condition and return the faulty tape to .the factory. To
aid the factory in its inspection, ship the tape according to the
shipping instructions outlined in this section.

J -16

3. Use discretion about smoking in the vicinity of tape because
smoking adds to the dirt problem. Also, a hot ash could cause
serious trouble with a reel of tape.

Mylar magnetic tape should be handled in the same way as acetate tape.
However, if Mylar tape is removed from the computer room atmosphere
for short periods (not in excess of 3 months), it is not necessary to
hermetically seal the tape nor to recondition it after return to the com­
puter room atmosphere. For long-term storage, Mylar tape should be
hermetically sealed to guard against dirt, dust, and excessive mois­
tu~·e.

WARNING: Never store reels of tape near magnetic fields.

J-17

(J -l4) Tape-Transport Cleaning for 729 Tape Drives

The tape drive transport mechanism should be cleaned at least once
every eight hours, or every ten full reel passes, whichever occurs
first.

The materials required for cleaning the transport are available in a
tape drive cleaning kit J PIN 352465. DANGER. Caution should be
exercised whenever the transport cleaner is used.

Prolonged or repeated contact of the tape transport cleaner with the
user's skin should be avoided.

Split Guides

Use the brush and thoroughly remove all oxide accumulation on the
surface and between the two ceramic elements.

"H" Shield

The underside of the "HI! feed-thru shield should be cleaned with a
lint_- free cloth or pad mositened with the approved cleaning fluid.

Rewind Idler Pulley

Clean with a lint-free cloth or pad moistened with the approved clean­
ing fluid.

Drive Capstan

Do not clean the drive capstan while it is rotating under power. Use
the brush handle wrapped with the cleaning cloth and scrub vigorously.
The capstan must be rotated manually.

Use a lint-free cloth or pad and the approved cleaning fluid. A motion
around the circumference of the pulley should be used. Do not rub too
hard in anyone spot.

J-18

Stop Capstan

Use a lint-free cloth or pad moistened with the approved cleaning
fluid to clean this item. Do not rub where the nylon pUlley contacts it.

Cleaner Blade

Use a lint-free cloLh or pad moistened with the approved cleaning fluid
to clean this area. Do not rub hard on the cleaner blade.

Read/Write Head

Use a lint-free cloth or pad moistened with the approved cleaning
fluid to clean the head. Serua in the direction of tape movement,
never across the head.

Vacuum Columns

The columns should be cleaned weekly with the approved cleaning fluid.
DO NOT, under any circumstances, use any metal instruments to clean
the columns. Frequency of cleaning may need to be changed, dc:pending
on the type of tape and the amount of tape passed.

Cleanil1g the transport area should 'oe done uSin(] a minimum amount of
cleaning fluid. The cleaning cloth or pad should be damp and not
saturated with cl€aning fluid when cleaning. Occasionally, loose
fibers will detach from the cleaning cloth or applicators during
cleaning. A visual inspection should be made to be certain that none of
these loose fibers remain in the transport area after cl€aning.

J-19

	001
	002
	003
	A-01
	A-02
	A-03
	A-05
	B-00
	B-01
	B-02
	B-04
	B-06
	B-07
	B-09
	B-11
	B-13
	B-15
	B-17
	B-19
	B-21
	B-23
	B-25
	B-27
	B-29
	B-31
	B-33
	B-35
	B-37
	B-39
	B-41
	B-43
	B-45
	B-47
	B-49
	B-51
	B-53
	B-55
	B-57
	B-59
	B-61
	B-62
	B-64
	B-65
	B-67
	B-69
	C-02
	C-03
	C-05
	C-06
	C-07
	C-09
	C-11
	C-12
	D-00
	D-02
	D-04
	D-06
	D-07
	D-08
	D-10
	D-12
	D-13
	E-00
	E-02
	E-03
	E-05
	E-07
	E-09
	F-01
	F-03
	F-05
	F-07
	F-09
	G-00
	G-02
	G-04
	G-05
	H-00
	H-02
	H-04
	H-06
	H-07
	I-00
	I-02
	I-04
	I-05
	I-07
	I-09
	I-10
	I-12
	I-14
	I-16
	I-18
	I-20
	I-22
	J-01
	J-03
	J-05
	J-07
	J-09
	J-11
	J-13
	J-15
	J-17
	J-19

