
;OATE

AUTHOR

1rITLE

SOURCE

August 5, 1963

Frans P. Oudheusden

ITEM NUMOER 6309-0453
14 pages

1401 CORE: STRETCHING FOR TABLE LOOK-UP

IBM CORPORA TION
1111 Connecticut Avenue
Washington 6, D. C.

Thla paper 10 In the author'a origlnal form.
The obJectlve In providing thlu copy Is to
keep you Informed In your fIeld of Interest.
Please do not dIstribute thIs paper to persono
outsIde the IBM Company.

IBM CONFIDENTIAL .. ----....... -------_ _-----_-...

6309 0453
DISTRIBUT:ED BY

THE PROGnAM INFORMA TION DEPAR TMENT (TIE)
I.BM CORP.
11 Z EAST POST ROAD
VVmTE PLAINS, NY

(T.I.~.J

TABLE OF CONTENTS

Acknowledgment of Assistance Letter
Abstract
Introduction
The Single Character Conversion Technique
The Randomizing and Chaining Approach
The Multipass Table Look-Up
Figure 1 - Modulus 16 Arithmetic
Figure 2 - Core Storage Layout
Figure 3 - Binary to Octal Conversion Routine Flowchart

Page

3
4
5

6-8
9-10

11-12
13
14
15

ABSTRACT

1. 1401 Core Str1etching for Table Look-Up

2. Frans P. Oudheusden
Scientific & Special Operations Program
Department 0:36
Data Processing Division
Washington Federal Region
1111 Connecticut Avenue, N. W.
Washington 6" D. C.
333-6700 Ext. 455

3. Unique table look-up techniques are described emphasizing compactness,
speed and flexibility.

The discussions cover a single character conversion technique, a randomizing
and chaining approach and a multipass procedure for tables exceeding core
storage capacity.

The single character conversion uses the four bit arithmetic of the 1401 core
addressing scheme. This is illustrated by an example of binary to octal trans
formation. The randomizing and chaining technique continues this example
by converting the octal to 7094 language mnemonics.

The multipass approach, illustrated by an editing problem, utilizes the tape
load mode to identify errors with wordmarks.

Page 4

INTRODUCTION

This paper is intended to acquaint the reader with some unusual approaches to
three widely different table look-up requirements. It is improbable that the reader
will be confronted with similar problems on identical hardware, however, he may be
able to use a variation of the techniques discussed here. Therefore, the following
hardware requirements should not be interpreted as limitations to the application of
these techniques. The illustrations used require a 1401 with 8000 positions of storage
and the Advanced Programming Package. In addition, the first two examples need
the Column Binary Feature.

Page 5

THE SINGLE CHARACTER CONVERSION TECHN.IQUE

To illustrate this technique, let us assume a 1401 Utility Program is needed to
print an octal dump of a binary tape written by the IBM 7094. Since the 7094 has a
36-bit binary word, a word is written on tape as six binary characters of six bits each.
The bi nary to octal conversion routine must therefore substitute for every character
read in from tape, two octal digits representing three binary bits each. This conver
si'on can be accomplished rapidly by emplloying the 1401 core addressing scheme.

A brief review of the makeup of the 1401 core storage address codes is desir
able. The 1401 has a three character address. The numeric values of the three
characters range from 000 to 999, thereby specifying one out of 1000 locations.
The zone bits over the hundreds' and units' positions of the address indicate by mod
uJus 16 arithmetic (figure 1) which of the sixteen groups of 1000 core locations is
designated. The zone in the units position of the address specifies which quadrant
of 4000 storage locations is referenced, while the zone in the hundreds position
determines which group of 1000 locations is referenced wthin a quadrant.

The binary character to be converted is used to formulate a unique core
address, which then locates the proper two digit octal representation in a table
(figure 2). Ideally th is character is placed directly in the hundreds position of an
index register used to access the tabl e . This wi II not work in all cases, however,
since only forty of the sixty-four possible character configurations are val id storage
address codes. To clarify this procedure let us first examine how this technique words
for the forty val id address codes.

The table of two digit octal constants for these forty character configurations
is distributed from locations 4087 to 7987, separated by increments of 100 locations
(figure 2) e For the conversion, index register 1 is preset to a value of 087 (step 1)
and the character to be converted is moved into the hundreds position of the index
register (s·tep 2), thereby replacing the zero. The contents of index 1 can now range
from a value of 087 to 3987, depending upon the bit configuration of the character
to be converted. Now a move instruction is executed as shown (step 3).

Mew 4000 + Xl, 0210

The two digit octal constant, located at the effective address of 4000 plus the con
tents of index 1, is thereby moved to the print area. For example, an input charac
ter with a bit configuration of a "0" causes the following to take place:

Step 1.
Step 2.
Step 3.

Index 1 = 087
Index 1 = 087 or 3487
MeW 4000 + 3487, 0210

Page 6

This generates an effective address of 7487 and the octal constant in the table at this
address should be 64, as illustrated below.

BIT IDENTITY BIT STATUS BCD ADDRESS VALUE OCTAL VALUE

B ON } 3
A ON 6
8 OFF } 4 ON 4
2 OFF 4

OFF

Since the zone bits of any character to be converted are always valid, a legitimate
storage address code can be identified by determining that the numeric portion of the
character is a value from 0 to 9. For each of the twenty-four characters that do not
fit this category, the exact bit configuration of the numeric portion of the character
must be determined. This is accompl ished through a series of bit tests (see flowchart
figure 3) and index register 1 is then preset according to the following table.

BIT POSITIONS 8 4 2 INDEX 1 SETTING BCD

OFF OFF OFF OFF 590 BLANK
ON OFF ON ON 090 11
ON ON OFF OFF 190 12
ON ON OFF ON 290 13
ON ON ON OFF 390 14
ON ON ON ON 490 15

Now only the zone of the character to be converted is moved over to the hundreds
position of index register 1, and the octal digits can now be set in the print area
with the same move instruction used for the val id address code characters.

The flowchart (figure 3) explains the detailed instruction logic and the core
storage layout (figure 2) shows the table distribution and values for the first 1000
locations.

This illustration used a binary to octal transformation, but there are other
conversion requirements which fit this table look-up approach. A few examples
are I isted here.

1. Five or eight channel paper tape conversion to BCD characters.
2. Fixed point binary numbers to decimal integers.
3. Conversion of column binary cards to row binary cards.

Page 7

This technique can be adapted to a 1401 with 4000 core storage positions by
one additional test on the "B" bit. This would cut the table distribution area to 2000
positions. On the surface, it may seem poor util ization of core storage to distribute
a 128-position table over 4000 positions of core; however, the space between the
table constants is available for program ins'tructions and other constants, and can be
used effic iently .

Page 8

THE RANDOMIZING AND CHAINING APPROACH

This approach is an adaptation of the RAMAC method for randomizing and
chaining disk records. To illustrate this technique, we will assume that the octal
words assembled from the binary tape in the previous example are actually 7094
program instructions. It is therefore desirable for the programmers that the appro
priate 7094 mnemonic language codes are printed with the octal words to facHitate
program debugging. A 1401 routine is needed to look up the mnemonic designation
for the octal operation code.

The basic 7094 operation code consists of the second, third and fourth octal
digits of each word. The first digit of each word is called the prefix, and with the
exception of six instructions, the prefix will always be either 0 or 4, commonly
referred to as positive or negative. As there are no eights or nines in the octal
system, the other three digits can range in value from 000 to 777. Many of these
numbers do not constitute legitimate 7094 operation codes. Some combinations are
val id only if the prefix is positive, and some only if the prefix is negative, while
some other operation codes represent instructions in both the positive and negative
form. Certain operation codes are more complex and require that other digits be
decoded for proper instruction execution. These are not relevant to this discussion
and they wi II be disregarded. They can be treated by exception or as variations
to this table look up approach.

The table of mnemonic language codes is again located in the upper 4000
positions of storage (figure 2). To accomplish the table look up, the three digit
operation code is randomized by multiplying by a factor of 5. The answer is a
minimum of 0000 and a maximum of 3885. This number must be converted to a
three character core storage address. By examining the thousands' position of the
result, index register 1 is set according to the following table.

THOUSANDS" POSITION INDEX 1 NUMERIC EQUIVALENT

o oof. 4000

fO* 5000

2 OO~ 6000

3 00* 7000

The three low order positions of the multiply field are then added to the
contents of index 1, thus providing a three character 140'1 core storage address
equivalent to 4000, plus the result of the multiplication. This address will be the
test position for each operation code. If there is no wordmark associated with the

Page 9

test position address, the operation code is not val id. The 7094 word is therefore a
data word and a mnemonic interpretation is not printed. When a wordmark is present
at the test location, the octal code represents a legitimate instruction. Further tests
on this position establ ish the condition for which this operation code is val id, as
indicated below:

1. A "B" bit (-) indicates the operation code is valid only if the prefix
is negative.

2. Both" A" and" B" bits (+) indica'te the operation code is val id only
if the prefix is positive.

3. A "1" bit indicates the operation code is val id for both a positive
and a negative prefix.

If only one form of the operation code is val id, then the mnemonic equivalent
is located in the four core locations preceding the test address. Therefore, if the prefix
satisfies the condition, the mnemonic constant can be moved to the appropriate position
in the print area. The word is again assumed to be a data word if the prefix is not of
the same sign as the test position stipulates.

When both forms of the operation code are val id, a chain core storage address
is provided in the three storage positions preceding the test address. This chain address
is moved into index register 1. For the positive prefix, the mnemonic language code
is located in the four positions preceding the chain address, while for the negative
opercJtion code, the mnemonic equivalent is found in the four positions following the
chain address. A simple test on the prefix of the 7094 word will therefore determine
which mnemonic (using index 1) is to be moved to the print area.

It is interesting to note the distribution pattern of the mnemonics in the table
area (figure 2). Two fields of ten characters each, from position 36 to 45 and from
positions 86 to 95 in every hundred core locations, remain entirely free. In addition,
the clreas from 396 to 485 and from 896 to 985 remain free for every thousand core
locations. This, of course, is the result of multiplying an octal number (containing
no eiights and nines) by a factor of five. It makes it possible to combine the binary
to octal conversion table of the previous discussion with the mnemonic language table.

The obvious merit of this table look-up procedure is speed, but also important
is the resul ting savings in core storage. The vacant areas resulting from the unused
octal operation codes are first packed with the chained mnemonic codes. The remain
ing free areas can be used for other constants and program instructions, although care
must be taken to avoid setting a wordmark in a test position for a superfluous opera
tion code.

Page 10

THE MULTIPASS TABLE LOOK-UP

The illustration used to explain this multipass technique for tables exceeding
core storage capacity is an editing program pertaining to airline passenger statistics.
The program has to verify the accuracy of the input information and provide a record
of the errors found. The tape records to be ed ited are summaries of airl ine passenger
routings. The information is in coded form as illustrated by the following example:

LGA FA CHI PJ LAX

These passengers flew from New York (LGA) to Chicago (CHI) by Ficticious Airlines
(FA) and from Chicago to Los Angeles (LAX) by Phantom Jetlines (PJ). The editing
checks required are as follows:

1. Do the abbreviations represent legitimate city and carrier codes?
2. Do these airlines run a regularly scheduled flight for the cities

reported in the routing?

The table used to edit the tape records frequently has to be revised as new
airports are opened and flight itineraries are altered. This makes it practical lro
keep the table information in punched cards, so the table can be easily updated to
reflect the changes. The table cards consist of the city code, followed by the
identifying codes of the airl ines providing service to that city. The cards are grouped
together al phabetically by the first letter of the city code to decrease processing
time in the edit phase. The entire table cannot fit into core storage at one time,
yet a tape data record may contain any of the city codes. For this reason, the data
tape must be passed once for each section of the table loaded.

The program consists of a loading routine and an edit routine. The loading
routine loads each city as a table segment of variable length. The length of each
segment is determined by the number of airl ines servicing the city. The total number
of characters occupied by each table segment is inserted in the first three characters
of the segment. This is analogous to the usual procedure for formatting variable
lengths tape records. The segment length is followed by the city code, behind which
are placed the applicable airline codes.

The loading routine has several other important functions. It must initial ize
a sequence 'of twenty-six constants which represent the starting core locations for each
group of city codes with the same first letter. These constants allow the edit routine
to I imit its search for a matching city code by examining only that section of the table
pertaining to cities with the same initial code letter. The twenty-six constants each
have a test character associated with it. This test character is coded by the loading
routine. It will indicate to the edit routine whether that group of table cards has been
completely loaded in the table, is partially loaded in the table, or is not in core for
this edit pass.

Page 11

The loading routine must accumulate a count of the table area loaded, and
compare this to a constant designating the total amount of core storage avai lable for
the table. When the table area is filled, or all the cards are processed, the loading
routine passes control to the edit routine.

The edit routine accesses a city code in the tape record and looks it up in the
table. It uses the first letter of the city code to determine which of the twenty-six
constants, set up by the load program, is to be used. The test character is examined
first to see if the city code group has been loaded. If this group is not in core, the
edit routine proceeds to the next city code in the tape record. If the group has been
loaded, the edit routine, using the appropriate constant, initializes the table index
register to the starting core location for that city code group. After a city in the
tabl:e has been checked for a match, the length of that table segment is added to the
table index register. This provides access to the next city code in the table. When
a match is found, thE~ edit routine checks the carrier or carriers designated in the
rou1ring as servicing the city against the carriers listed in the table segment. The
length of the segment, as specified in the first three characters, allows the edit
routine to determine when all the airl ine codes have been examined. If no match
is found for a city code, the test character for that group of cities must be checked
to determine if the group was only partially loaded in the table. If this is the case,
no error or completion indication is set.

The edit routine reads and writes the data tape records in the load mode for
each pass of the tape. This enables it to indicate with wordmarks the codes already
edited and 'the errors found. When a city code has passed the edit successfully, a
wordmark is set under the high order position of the three character city abbreviation
in the tape record. Errors are indicated in the following manner:

1. A city code not matched in the table has a wordmark set in each
character of the code in the tape record.

2. An airline represented in the routing as servicing a city for which
it is not listed in the table, causes wordmarks to be set in all posi
tions of the airline and city code in the tape record.

At the end of each pass, tape switching occurs and control is returned to the
load program.

Page 12

Hundreds Units

A+A =B or 2 8
A + B = AB or 3 12
B + B = No A No B or 0 0
A + AB = No A No B or 0 0
A + No A No B = A or 1 4
B + AB =A or 1 4
B + No A No B = B or 2 8

AB + AB = B or 2 8

figure 1 - Modulus 16 Arithmetic

Reference: IBM 1401 Data Processing System - Reference Manual A24-1403-5

Page 13

IBM
v '=' woR.])MflRK

\NHRNATIONAl f)USINESS MA(HINf~, \ ORPOfUdICH'l

IBM 1401 DATA PROCESSING SYSTEM
STORAGE LAYOUT o == #0 vtlOR:J>MIMI< IN-LOWe])

APPLICATION __________ ,''-''N-<---'-TLLH.odCLr---'-p-'c~_''~_LJ~ ~ L!L ____ _

l
I

",/100- 4''17

I

I

I

i

lr- --_._- ----- .. -- --_.- --.. ------- - T---- "----..

I ~ J

SYMBOLIC

DATA

I WORD MARK I" ,v, ,II ,t/ tI, ,0 ,II ,J 0 1/ ,~ 'II ,,J tI, Iv. ,t,/_ 81 ,J, ,J ,II, ,,/ ,,/ ,lfiti', ..JObl ~~ D" ,01..-, 1.1

I SYMBOLIC II rRC t;" II
DATA)SA

lRIII,q t TI(J I tr---'1L .1. PM -.i
:Ds4 ;PSfi J)S~ J)SII J)sll :Dstil
fIrJ TReE. ITRCF rReG iTRfl1 IIR I r£FA IrE~lJ RFT I SI~ I RNT....1 .JJ.JK 1la.2 lL5

I LOCATION 10 '5 10 15 ~ 25 '~ 3 4(45 5 55 6 6 7 7 85 ~
; WORD MARK 1"1... ,oj ,ii, "'ttl, ..I hi ,;

, SYMBOLIC "Tere N

I

I 1)sA J)SIJ J)SA ~Sll 1>$.4 ~_4 3>S~
DATA II rc.aJ, I 720e J naJJl rCf>£ I IcoF I /(0& I --rcDJlJlr£F~ J£rJ> r£~E IrEF.f" r£~6. ITE"£.ll r...SA ~

I LOCA nON 0 5 10 15 ~ 25 3 3 4(45 5 55 '6 6 '"

I WORD MARK ill" ,oJ ,II ,J ,.I ,0/ -t/ ,v ,v ,,J .. I ,I, J, Ji.l lv, 1.1, 1I ,J, ,c. rI ,t " ,e .t, ~

I SYMBOLIC

WORD MARK I

I SYMBOLIC

, , '5' ,

"TIL"

i I
10 I i 160' I I i [65[

"rrR" "RFT" II R NT" I'R IR"

I~
7 8

FORM X24 6438 2 t
PRINTED IN USA

95

95

95

(:;-61: 2(1.\I-S)

IBM DIAGRAMMING AND CHARTING WORKSHEET

Application __________________________ _

Procedure ___________________________ _

[\1 i05 ,06

yes

I~

! ?

-'2'

t
"Tj

0 2A
c:
r,

C<,
'-~ ., rJ

8
c~

~.

PAGe. IS"

Date

Drawn By

IJ

For", X22-64 I 3-?
Prrnted Irl U.S.A.

Page ___ of __

18 I"

_,-,---t --,
Mt ... ' ~CJ{J{i~X 1.11

c;t,o I

"--_~.,(Jj,;; THE. <,'Glit.tl
C"_D6 Ie THE I
PRIN'/ AilE A '

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15

