
DATE

AUTHOR

TITLE

SOURCE

DISTRIBUTED BY

March 4, 1964

K. E. 1~. Donner

ITEM NUMBER 6404-0051
19 pages

SPOOF SIMULTANEOUS I::>ROGRAM~JG ON THE 1401

IBM United Kingdom Ltd. ,
Bowmaker House
Kew Bridge, Brentford
Middlesex, England

This paper la In the author tg original form.
The objective In providing thlu copy 18 to
keep you lnformed in YOUlt" fleld of interest.
Plea81B do not dlotrlbute this paper to peraona
outalde the IBM Company.

IBM CONFIDENTIAL

6404 0051

THE PROGRAM INFORMA TION DEPAR TMENT (TIE)
IBM CORP.
11 Z EAST POST ROAD
WlflTE PLAINS. NY

(T. I. !:.)

I

II

III

IV

V

Contents

General Outline

(I) What is meant by "simultaneous programming"?

(2) 1401 configurations that would be best suited to this
technique.

Details of Proposed Method.

(I) Characte ristic s of programs involved.

{2}' The interaction of the two programs.

(3) The control link between the two programs.

Some Programming Considerations.

(I) Core storage requirernents.

(2) The simplest case.

(3) Independent assembly and operation.

(4) A master printer program and a number of
process programs.

Miscella.neous Points.

Summary.

p. 1

p. 4

p. 7

p.ll

p.13

-----------------------.--

.Appendix: Two programs to illustrate the
technique.

~ I

SPOOF. SIMULTANEOUS PROGRAMMING OPERATIONS

ON FOURTEEN-O-ONE

A paper based on the fact that 1401 Computer
installations which have the Print Storage special
feature may well be printer bound, and have consi
derable processing time available. The purpose of
this study is to show how this processing time could
be used to run a simultaneous program which does not
use the printe r. By use of the Te sts "Printe r Busy"
and "Carriage Busy", it should be pos sible to run a
second program without affecting the efficiency of the
first to any great extent. The principle should be
sufficiently generalised to be of advantage to many
comme rcial 140 1 installations.

SIMULTANEOUS PROGRAMMING ON THE 1401

1. GENERAL OUTLINE

1. ~ is tneant by I sitnultaneous progratntning ' ?

A nortnal cotnputer progratn involve s two distinct type s of
ope rations - inte rnal proce s sing and input! output. The central
proce B sing unit can only proce s s one instruction at a titne, but
several input and output operations can be carried out together.
When a cotnputer1s input!output facilities and its processing
facilities are all being used as fully as possible, then that cotnputer
is being used efficiently, and there are various ways in which it is
possible to carry out tnore than one function at once on a cotnputer:

a) More than one kind of input or output at the satne
titne. This again can be carried out in a variety
of ways:'

i) tlBuffered'operation. Buffered input! output
units can operate quite independently of the
re st of the cotnputer, and the cotnputer is
only held up for the short period of transfer
to or frotn the buffer.

ii) N.[ulti-channel operation. A non- buffered
input! out operation will hold up one input!
output channel. By having tnore than one
channel, tnore than one input! output operation
can be carried out at once.

b) Input/Output operations at the satne titne as processing

i) A.s described above, buffered units tnake it
pos sible.

ii) '()verlapped ' operation. In this case process
ing is only interrupted for a short period as
each character is transferred to or frotn the
input! output unit. For the re st of the transfer

- 1 -

time other processing can be carried out.

iii) Mechanical operations can be overlapped with proves sing - i. e.
while the printer carriage is spacing stationery, proce s sing can
continue. This applies even when the unit is unbuffered and when
the processor cannot carry out 'overlapped' data transfers.

In the case of the 1401, multi-channel input/output is not possible,
but all the other kinds of multi-operation mentioned above are available -
i. e. with the Print Storage feature, the printer is buffered; with the
Overlap feature, all input/output can be overlapped with processing, and
lastly, with or without the above features, some part of the mechanical
input/ output functions can be overlapped with processing. (Some input/ output
operations can also be performed concurrently by means of the combination
instructions, e. g. Read-Punch etc.)

Because it is possible to carry out such a range of parallel operations,
it is very likely that anyone 1401 program will not in fact be making full
use of the computer's potential. In other words, at some stages in the
operation of the program this processing unit will be idle, at other stages
one or more of the input/output units will be idle, when in fact other
processing or other input/output operations could be being performed.

The phrase "simultaneous programming" is here used to refer to a
means of utilizing this otherwise wasted computer time. Since the processing
unit can only access and execute one instruction at a time, two progra.ms
can never be processed simultaneously in the fullest sense; but since, as
mentioned above, during the execution of a normal program, the processing
unit may well be idle at times, then this idle time could be used by another
program. To the extent that the second program did not slow down the first,
the two programs can be said to be operating 'simultaneously.' So long as
the input/ output operations could be overlapped with processi.. ng, such
'simultaneous programming' could well be a practical possibility on the
1401.

2. 1401 Configurations that would be best suited to this technique.

There are two features available on the 1401 which make this technique
a possibility - the Print Storage feature, and the Overlap feature. As the
majority of commercial users of the 1401 will probably not need Overlap
but will want Print Storage, it is with tIE latter feature that this paper is
primarily concerned.

- 2 -

Usage of the printer in a 1401 installation is often high, and several
programs will be 'printer-bound' - in other words, the program will
develop the data. for a line of printing before the previous line has
finished printing, and the program has nothing to do but wait for the
printer. A line on the 1403 models 1 or 2 takes 100 milliseconds to print,
and with Print Storage 98 m. s. out of this 100 m. s. is ava.ilable for
processing, and the extra 1403 time taken by,spaces of more than one line
is also available. If a large proportion of this available processing time
is not in fact being used, then there is an obvious case for the introduction
of a second program.

- 3 -

II DETAILS OF PROPOSED METHOD.

1. Characteristics of programs involved.

The program which uses the printer, which will from now on be called
the 'printer program' should involve as little processing as possible (and
as little input/output as possible, though some input is bound to be necessary).
A tape-to -printer program would be ideal.

The second program, which will be called the 'process program I,
should involve as little input/ output as possible, and as much processing
as possible.

z. The interaction of the two programs.

A 1401 fitted with the Print Storage feature is also provided with two
additional branch instructions - Branch if Printer Busy and Branch if
Printer Carriage Busy. By making use of these tests" the process program
can hand control back to the printer program as soon as the printer is idle.
The printer program would then give the next print instruction, arrange the
data to be printed on the line after the one now printing, and transfer control
to the process program.

A very simple tape-to-printer program might follow the following lines:-

9
•

'I

p~ocGS S'

Jr
PR.INT

f\ltc;)vc bA'TA

:(J ® To ,">1<.' N'"
A A fl.#! "

- 4 -

The exit to the proces s program would occur at point A - this ensures
that when the process program returns control to the printer program (at
point A), the next print instruction is given as soon as possible. .

The process program itself might be of any type - the important thing
is that it should contain as little input/output as possible. At intervals in
the program there should be tests for Printer Busy and Printer Carriage
Busy; if neither is Busy, then the process program transfers control to
the print program. The process program is bound to contain some input/
output, and even if it contains a considerable amount there may still be
a.n advantage in running the two programs together. It has been assumed
that the printer program is the primary program - in other words, that
the objective is to keep the printer as busy as possible. With this in mind,
it is worth adopting the same technique for the process program as was
a.dopted for the printer program - i. e. just before any input/ output operation
in the process program, transfer control to th'e printer program, This
means that when the printer program returns control to the process progra}l1,
the inputloutput operation will be executed immediately. As the printer
progranl transfers control at the moment when there is as long an interval
as possible before the completion of the last given print operation, this
ensures that the input/output operation in the process program is overlapped
~rith printing.

Thus, a section of the process program might be as follows :-

- 5 -

A and C would only branch control to the printer program if the
Printer and Carriage were not busy. B would branch unconditionally
to the printer program. This might not utilise some of the available
process time, but would ensure that the card read operation occurred
as soon as control was returned by the printer program, and thus that
the printer was not held up by the card read.

3. The control link between the two programs.

As already mentioned, each program will be required to Itransfer
control l to the other, at various points during each. A means must be
devised of ensuring that the printer program hands control back to the
process program at the point where the process program left off, and vice
versa. The easiest method of doing this is to include a small control
program, called the Ibridge I. This Ibridge t would basically involve the
followihg 4 instructions

(1)
(2)
(3)
(4)

PRINT

PRGCES

SBR
B
SBR
B

PROCES + 7
o
PRINT + 7
o

During the printer program, whenever it was desired to transfer
control to the proces s program, the program v.o u1d branch to PRdcES,
(i. e. Step (3) of the bridge). At PRGCES, the return address of the
printer program would be stored in Step (2) of the bridge. The next step
would branch to the location in Step (4), which would be some instruction
in the process program. At intervals during the process program, the
following three instructions would occur :-

BPB
BPCB
B PRINT

Thus, whenever the printer and carriage were found to be not busy,
the program would go to step (1) of the bridge. The return address would
be stored in step (4), and control branched to the address stored in step
(2) which, as we have seen, would be the return address stored when the
print program was last left.

- 6 -

III SOME PROGRAMMING CONSIDERATIONS.

1. Core storage requirements.

Although the necessary modifications to the two programs would
not take up much storage, it is of course necessary to have both programs
in core at one time. This is the most serjous limitation on the usefulness
of this technique. It is possible that the time-saving to be gained would
justify extra storage, but unlikely. However, by cutting down on inputl
output tape areas, and by considering the possibility of program overlays
(or especially sub-routine overlays from 1311 diskpacks), it might well
be possi.ble to produce a slightly less efficient version of one or other
progranl which Gould still lead to an overall time-saving when they are run
in conjunction.

2. The simplest case.

The simplest case of this kind of simultaneous programming would
occur when it was desired to run the same two programs together on
every occasion, and when it was desired to load and start both programs
together.

As suming that both programs had already been written, what changes
would be needed to the source decks, to ensure that the two programs
could be run together?

(i) The control program. - This would have to be inserted, and the
best place for the control program would be at the start of both
progra:ms (1.. e., usually at location 333). When the bridge is
initially loaded, the two Branch steps should contain the starting
addresses for the two programs, and this ensures that whichever
program is started first, the first time that program branches to
the bridge, the bridge will transfer control to the initialisation
steps of the other program.
If both programs are to use the same index registers, then the
bridge should store and restore them, and a 'generalized' bridge
would have to cater for this.

(ii) The printer program. - This would need to follow the control program
and would need a branch to the control program before each Print
instruction. (and before each carriage control instruction if a long

- "1 -

skip was expected). If it was not obvious that printing would
still be going on when this stage was reached, then the branch·
could be a test for Printer Busy or Printer Carriage Busy.

(iii) The process program - This would need to follow the printer
program. As explained earlier, tests for Printer and Carriage
Busy would have to be inserted at intervals. The frequency of
these tests would have to be determined by a balance between
extra time taken by the process program in ~arrying out the tests,
and printing time lost because of the interval between them. In
general a test per 10 m. s. of processing should be adequate, i. e.
on average per 40 instructions in the process program.

Even if both programs were always to be loaded together, there would
be the questions of end of job procedures, since one or other program
will end first, and the control program must be arranged so that the
second program continues by itself. The first requirement is therefore
a pair of switches, to signify to the control program which programs are
running. During the initialisation of each program these are turned on.
When one program reaches end of job, the switch fu r that program is
turned off. The control program then tests to see if the other switch is
off. If so, both programs have finished, and the control program goes to
end-of-job halt. If the other program is still running, the control program
must ensure that the bridge is 'closed', i. e. that the remaining program
does not try and transfer control to the program which has now finished.

The simplest way of achieving this can be seen from an example ~

The bridge contains the following steps :-

(1)
(2)
(3)
(4)

PRINT

PRGCES

SBR
B
SBR
B

PRGCES + 7
nnn
PRINT + 7
mmm

Assume that the Process program has finished, and the end-of
job routine has discovered that the print program has not yet finished.
If the program places the address of step (2) in the bridge in step (4) then
any branch to the bridge in the Print program will return immediately to
the print program. Having closed the bridge in this way, the end-of-job
routine should branch to step (2) of the bridge, which will contain the correct
location for continuation of the printer program.

- 8 -

3. Independent assembly and operation.

The next stage is to arrange for it to be possible to assemble the
two programs independently, and if necessary run them independently.
All this is quite possible, and there are a number of different methods
of approach - one will be outlined here; it has been assumed that the
control program (i. e. the 4 steps of the bridge, plus the two switches
already mentioned, plus, if necessary, provision for exchange of Index
H .. egister contents) will be assembled and loaded with the printer program.

From the point of view of assembly this presents no problems - the
prograrn makes no reference to locations outside the control program.

If the bridge is assembled in its 'closed' form, i. e.

(1) PRINT SBR PRVCES + 7
(2) B START
(3) PRGCES SBR PRINT + 7
(4) B PRINT + 4

then the program can be run as it stands. The branch in step (4) will
remain unchanged until the proces s program is loaded and starts running,
vvhen the first transfer from the proces s program to the bridge at step (1)
w·ill 'open' the bridge.

Independent assembly of the process program will involve slightly
Inore difficulty J in that all references to locations in the control program
Inust be by actual machine address. Since the cont=rol program will be in
locations 333 upwards, however, these locations will be known beforehand.

Independent operation of the process program will again involve some
difficulty, since the control program will not be present. It should,
however, be very simple to load a dummy control program into locations
333 upwards, which, as outlined above, would simply transfer control
back to the process program whenever that program branched to the 'bridge'.
The simplest course of all would be to N~P the branches to the bridge, but
the aim is to make the simultaneous control as independent as possible of
the programs involved.

4. A rnaster printer program and a number of process programs.

It is envisaged that the most usual case of application of these

- 9 -

techniques will involve a long printer program, probably tape-to-printer,
and that while this is running it might or might not be convenient to load
and execute anyone or more of a number of shorter proces s programs.
This again should involve no difficulty. Firstly, the printer progranl would
be loaded by itself and started running as explained above.

Any number of process programs can be available (with the linkages
to the control program). When it was desired to load one of these, the
printer program could be stopped by use of a sense-switch. This halt
would be programmed to place the correct return address for continuation
of the printer program in step (2) of the bridge, and then Halt. The
process program could be loaded (if the printer program was reading cards
this would, add complications, but these should not be insuperable) and
would go directly to its own initialisation. When the program arrived at
the first test for Printer and Carriage Busy it would branch to the bridge,
whence it would proceed to the correct return address in the printer program.
After that the two programs would run together in the normal way. 'When
one process program 'had been completed another could be loaded in the
same way. (If it was necessary to clear storage, then the clear storage
cards must be modified to avoid cleaning the printer program).

- 10 -

IV MISCELLANEOUS POINTS

i) Programs with conside rable input/ output ope ration

If it is desired to run two programs together both of which
involve a large amount of input/output operations, then it
would almost certainly be much more efficient to program
the two programs together as one program.

The advantage of using the methods outlined here would
only lie in the generalized approach, which means that
any two programs assembled with the necessary linkages
could be run separately or together, and if run together
would certainly show !2~ saving in overall time.

ii) Ope rator Control

Since it will be necessary for the operator to know that one
program has finished running etc., while the other is still
running, a 1407 console would be extremely useful for the
logging of mes sages to the operator. If no 1407 is available
it might be neces sary to insert a programmed halt so that
the operator can load another program if desired.

iii) Handling Time

It should be quite pos sible to arrange that nearly all setting
up for individual programs is carried out while another
program is running. Similarly in the case of card wrecks,
tape errors, card input preparation errors, etc., it would
be simple to arrange, by sense switch control, for the other
program to continue independently until the trouble had been
corrected.

i v) Common Routine s

Several sections of programming may well be required to be
com:mon to two or several programs - obvious examples are
tape and disk error routines. In this case duplication would
be avoided by making the routines part of the control program.
Thus they could be assembled with the printer program, and
referred to by machine location in the proces s programs.

- 11 -

If any of the process programs was to be run separately
then the common routines would have to be inserted in the
extra control package placed at the start of the program
(If there was a number of process programs which might
be run se'parately then one standard control package could
be kept, which would be placed in front of the programs
only if they we re to be run independently of the printe r
program).

v) Available tape input/ output time during a print cycle

During 98 ms, it is possible to read a record of some 3,500
characters from a 729 II at 556 characters/inch. This
simple calculation is just included to show that if the timing
of tape instructions in the proces s program is made correctly,
quite considerable amounts of tape (or disk) input/ output
can be carried out with no great los s of printer time. In
fact, of course, the full 98 ms would never be available,
and the available tape time must be reduced accordingly.

- 12 -

V SUMMARY

It is first of al important to realise the limitations of this
technique. In terms of hardware, a 1401 with Print Storage and
Advanced Programming is essential, and a tape system is a realistic
mlnlmum. In terms of the programs themselves, the programs to be
run simultaneously must be able to be included in core at the same
time, and must use independent input! output units.

So much is essential, but it is also desirable that the printer
progran1. should be heavily 'printer-bound', and that the process
progran1. should be proce s s bound.

Within the range of these restrictions, however, it is quite
possible that some kind of- simultaneous programming on these lines
would be extremely useful, especially when so many computer
manufacturers are stressing the parallel programming facilities of
their p~oducts. With the growth of interest in SPOOL techniques on
the 1410 (where this kind of simultaneous operation is an ea'tremely
realistic possibility), it is likely that systems designers will be more
prepared to accept this kind of development for the 1401. Further,
since the Overlap feature is available on the 1401, but not the Priority
Interrupt feature as on 1410, efficient use of Overlap would need this
kind of 'test-for-busy' techniques.

A particular case for the use of these techniques might be the
1401 off-line to a larger computer system, which might well have some
long tape-to-printer runs ideally suited for this purpose. Even in
the ordinary co:mmercial 1401 installation, however, simultaneous
programming could well be more than just a gimmick, and is a
possibility that all Systems Engineers should at least be aware of .

- 13 -

APPENDIX.

Two Programs to illustrate the technique.

Details follow of two programs written to show use of the lbridge 1

etc. The actual programs contain a minimum of instructions, and n.o
input / output is us ed except the printer.

A. Printer Program.

(1) ~!c PRINT SBR PRaCES + 7
(2) * B MaVE

(3) * PROCES SBR PRINT + 7
(4) >:<: \ PR 2 B PRINT +4
(5))!c PRINaN DCW 1/-1
(6) ~!c: PRO CON DC #1
(7) FIELDA DCW @OOOOOOOOOOOOOOOOOOOO@
(8) MOVE MLC FIELDA, 250
(9) W
(10) BSS END, F
(11) >:c B PROCES
(12) * BSS STEPY, D
(13) B MOVE
(14) * END BW STEPX, PRaCON
(15) H ~:c -3
(16) ~!c STEPX MLC +PR 2, PRINT + 7
(17) * CW PRINON
(18))!c B PR 2

(19) * STEPY SBR PRlNT + 7
(20) >!c H)!c _ 3

(21) NOP
(22) END MOVE

Notes on Printer Program.

1. The program simply prints 20 zeros.

2. Steps without an asterisk are the basic program. Steps with an
asterisk are those which must be added so that this program can be
run with process programs.

A. 1.

3. End-of-job is simulated by turning on Sense Switch F.

4. If Sense Switch D is turned on, the program will store the return'
address in the bridge, and then halt. This is to allow loading of
the process program while the printer program is already loaded.

5. The PRIN(jN DCW is to show to the end-of-job routine of any process
program whether the printer program is running or not.

6. The PRdc(jN DC is to show the printer program whether the process
program is running.

B. Proces s Program.

(1) * dRG 501
(2) ~:c START SW 350
(3) STEPB BSS STEPC, E
(4) A AFIELD, 370
(5) B.A.V STEPA
(6) A AFIELD, 370
(7) BAV STEPA
(8) ~:~ BPB STEPB
(9) * BPCB STEPB
(1 0)~:~ B 333
(11) , B STEPB
(12) STEPA A AFIELD, CFIELD
(13) BAV STEPC
(14) B STEPB

(15) * STEPC BW STEPD, 349
(16) * H ~:~ - 3
(17)):~ STEPD MLC @337@, 348
(18) * CW 350
(19)):~ B 337
(20) AFIELD DCW @OOOOOOOOOOOOOOOOOOOl@
(21) CFIELD DCW #20
(22) END START

Notes on Process Program.

1. The program goes round a loop, adding two 20 position fields twice
on each loop. (In fact, the program adds one to the field being
printed by the printer program, so that the interaction of the two
programs can be seen).

A.2.

2. Steps without an asterisk are the basic program. Steps with an
asterisk are those which must be added so that the program can
be run with the printer program.

3. End of job is simulated by turning on sense switch E.

Interaction of the two programs.

1. The printer program should be loaded in the normal way, aJ.d will
start printing zeros.

2. When sense-switch D is turned on, the process program can be
loaded (without its clear storage cards). Both programs will run
together, and the number being printed will start increasing. (In
fact, the number is increased by about 136 each time, i. e. 68 times round
the loop, i. e. about 97 m. s. of processing.

3. The printer would be used more efficiently if the branch to PRdcES
came between steps (8) and (9) of the printer program.

4. If sense switch E is turned on, the process program finishes, and a
constant number will print. If the printer program is again stopped
with sense switch D, the process program can be loaded again, and
the two will run together.

5. If it had been desirable to have the facility of temporarily stopping
either program while the other was running, this could be arranged
by further use of sense switches.

6. If sense switch F is turned on when both programs are running, the
printer program will finish, and the process program will continue
processing unitl sense switch E is turned on when end of job halt
is reached.

A.3.

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	A1
	A2
	A3

