File No. 1410-30
Form C28-0251

Systems Reference Library

IBM 1410 Input/Output Control System
for 1301 Disk Storage

This publication contains the information necessary
to understand and use the IBM 1410 Input/Output
Control System for 1301 Disk Storage. Described In
detail are the types of processing peculiar to disk
storage (Single Reference, Random and Sequential),
as well as the macro-instructions, DIOCS entries,
DTF entries, and DA entries required for efficient
use of 1301 Disk Storage

© 1962 by International Business Machines Corporation

MAJOR REVISION (March 1963)

This publication supersedes the bulletin, IBM 1410
Input/Output Control System for 1301 Disk Storage,

Form J28-0251, and the associated Technical Newsletter,

Copies of this and other IBM publications can be optained through IBM Branch Offices.
Address comments concerning the content of this publication to:

IBM Corporation, Programming Systems Publications, Dept. D91, POBox 390, Poughkeepsie, N, Y.

CONTENTS

INTRODUCTION . . . +. +« « « « o o o o o o 9 THE 'DIOCS'ENTRIES . ¢« ¢ ¢ ¢ ¢ o ¢ o o o o 40
Prerequisites . . . o « + =« « o o <« o o o 5 Purpose .« . .« o« o o« o s o o s & & o s s 40
Machine Requirements . « ¢ o o « o o o o o S Ceneral Format . . « ¢« « ¢ ¢« o o o =+ ¢ o = 40

List of DIOCS Entries . . « ¢ ¢ o ¢ ¢ « o o o 40

BASIC DISK PROCESSING CONSIDERATIONS 6 FEATURES . +. ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o ¢ 40

Useof Disk Storage. « « + ¢« o o « o o =+ 6 CHANX . v v o o o o o o o o o o o« o« o« 9
PROCESTYPE . . ¢ o + o ¢ o o o o o o = 40

RANDOM PROCESSING ANDTHE 1301 IOCS . « « .« « 7 RNDMDEPTH ("Random Depth”) 4l
In-Line Processing . . R 4 STKAREA ("Stack Area') «+ + ¢ o « o ¢ o o o 41
Information Retrieval Only e STKINDEX ("Stacking Area') . « o+ o ¢ o o o o 42
Summary of In-Line Processing . . . « « .« . . 7 SGMTLENGTH ("Segment Length”")« « « = 42
Overlapping of SEEK Operations « . . 7 DISKARMS « « o o o o o o o o« o o« o o o 4

Separation of the Disk Routine from the Mam Routine . 8 DISKOPTION . . « &« &« o s s o« o o o s o 42
Summary of Main IOCS Functions for Random Processing 9 NORCDEXIT « « « o « o « o« o o o« « « « 43
Disk IOCS Macro-Instructions . . « + « + « o o 11
Summary of Macro-Instructions. 13 THE 'DTF'ENTRIES ¢« « ¢ ¢ ¢ ¢ o ¢ o o o o o

Independent Disk Routines . . . « «+ =+ « =« ¢ « 13 Purpose. « « o+ o o o o o o o o o

Dependent Disk Routines. . « « « « ¢« o o o« o = 13 General Format . .« ¢ « « o o o o o o o

Llist of DTFEntries . « « « + o o ¢ ¢ o o o

| The 'DTF'HeaderLine . . . « « « o o o o
16 FILETYPE. « .« ¢ + o s o o o o o o o o o
SIZEREC . « .+ + + e o e s s e o s o
Variable-Length Records (Sequentlal Files Only) . .
Fixed-Length Records « « . « ¢ o ¢ o o o
HOLDAREA . . ¢ ¢ o o« o o o s o o o o o
Number of Segments . . . o « o ¢ o o o o

SINGLE-REFERENCE PROCESSING AND THE 1301 IOCS

MethOd 1 & L L & & » & L & » & 9 9 & L ® 1 6
MEthOd 2 » & ® L L L . L & & & L L L L L 1 7

SELLRRN88858G6KRRRXR

BASIC PRINCIPLES OF THE IBM 1301 IOCS. 18 Size of Segments. . .« .« o o s o o o o o
Relationship of Card/Tape IOCS to 1301 Iocs. . . . 18 INDEXREG <« o o o o o o o o o o o o o =
Advantages of the 1301 IOCS« .« « « = 19 FILEFORM . o o o o o s o o o o o s o o
Using the 1301 IOCS I Move Mode vs. Load Mode . « « « o« o o+ o
Assembly of Programs Using the 1301 IOCS « o« o o 20 SCRAMBLE . o« « o o o o o o o o o o o o

DISKCHECK « ¢« ¢ o s o ¢ o o o e o o o o
RECFORM . ¢ ¢ ¢ s ¢ o o o o o ;

THE ELEVEN 1301 IOCS MACRO-INSTRUCTIONS . . . <l Record Formats that can Be Handled by the 1301 IOCS
OPen . « « « o s o o o o o = e 2 e e 21 BLOCKSIZE . ¢ o o o e s o o o s o o o o
ClOSE o« o o o o o o s o o o o o o o o o 22 NRECORDS ¢« ¢ &« ¢ ¢ o ¢ o o o o o o s o 50
MVRSA ¢« v v o o o o o o o s o o« o o o 23 PADDING. . ¢« o o o ¢ o o o o o o o o o 51

Format A . . « « o « o o s o o o o o o &3 WORKAREA o + o « o o o s o o o » o « o 5l
FormatB . ¢ o o o o o o o o o s o « « 24 FILESTART . ¢« ¢ o ¢ o o o 3 s ¢ o o o o 51
ENTDR (Enter Disk Routine) e » o ® ® e & e o o 24 FILEND . .« .« o« ¢ s o o o o o s o 8 o o S1
GET . . v o o o o o o o o s o s s o o« &4 FOFADDR. ¢ =« o &+ o o o o o o o o o o o 51
FOrmat A « o« o o o o o o o o o o o + o 24 WLRADDR &+ ¢ o « o o o o o s o o o o o 51
FormatB « o« o o o o o o o o o o o + o 26
PUT . ¢ v v o o o o o o o o o o o o o+ 26 DA(DEFINE AREA) ENTRIES NEEDED TO SUPPORT THE 1301
FOormat A . « « « o o o o o o o o o« « o« 26 IOCS « o o o o o o o o o o o o o o o o OS2
FormatB . « o o o o o o« o o o o o o o 27 DA Entry for the Transaction Stacking Area . « .« =« 52
FSEQP (Force Sequential Processing) « . + « .« « = 27 DA Entries for Disk Record Holding Areas . . « « «+ 53
LEVDR (Leave Disk Routine) . « « « « ¢ ¢ ¢ o 29 DA Entries for Holding Area Control Records« . 54
GETS + ¢« « o o o o o o o o o o o o » + 3
FOrMat A . « o« o o o o o s o o o o « « A ADDITIONAL INFORMATION FOR PROGRAMMERS . . 99
Format B . . o« o o o o o o o o o o o« o 33 The Size of the 1301 IOCS Routines . « « o« o « o+ o« 99
Format C & v v o o o o o o o o o o« « o 33 Use of Index Registers .+ « o « o ¢ o o o o o o 55
Format D « . « « « o s o o o o« o o« « « 35 Coding Example . « =« ¢« ¢ ¢ ¢ ¢ o o o ¢ o o 56
PUTS & ¢ ¢ o« o s o o o o o s o s s o o 35 Modification of 'Seek-Only' Operations while Seek is in
Format A . « .« o =« o o o o o o o o o o 37 Progress « o« o o o« o o o s o o s o s o o 56
Format B &« ¢« v o o o o o o o o o o o o 37 IOCS Labels That May Be Useful O - Y 4
FOrmat C o o o o o o o o o o o o o o o 37 GlOSSAIY « o« o o o o o o o o o s o o o o & 57

Format D . . e . ° ® o . ® ° . ® ° ® . 39
WAITS ("wait Single-Reference ") . . . o . - . - 39 INDEX ® ° » ® . - ® ° C ° ® ® o ® * " ® 58

This section describes how random-processing ap-
plications are handled by the 1301 IOCS.

In-Line Processing

The most elementary approach to disk processing 18
lnown as "'in-line processing.' In this type of ap-
plication, information is obtained from disk storage
by SEEK ‘and READ commands that are part of the
main routine. Processing halts, therefore, each
time a disk SEEK, READ or WRITE operation takes
place, and processing does not resume until the
desired disk information has been obtained.
Figure 2 illustrates this method of disk proces -
sing, which calls for:
(1) reading of a transaction record;
(2) retrieval of the corresponding information
from disk storage;
(3) updating of this information, and
(4) return of the updated information to disk
storage.

NOTE: A good example of this type of application
is inventory control. This calls for the up-
dating of part records (which are kept in disk
storage) on the basis of receipts and disburse-
ments of parts (i.e., "transactions''). Up-

tory file is kept currently up to date.

Information Retrieval Only

- A special case of in-line processing calls only for
the retrieval of information. Here information is
" obtained from disk storage, but it is not updated and
it is not written back onto the disk. See Figure 3.

In-line processing represents the simplest but also
the most wasteful use of disk storage. It is wasteful
because the Central Processing Unit stands idle
during the disk SEEK, READ and WRITE operations.
This halt in processing occurs because the instruc-
tions calling for these disk operations are part of
the main routine.

Overlapping of SEEK Operations

The most time-consuming disk operation is the
SEEK, which requires from 0 to 180 milliseconds

RANDOM PROCESSING AND THE 1301 1I0CS

Start

Initialize

Get Next
Transaction Recorc

Develop

Disk Address

Seek and Read
Disk Record

Update

Disk Record

Write Disk Record
Put Report Record

More

Transaction
Records

Yes

No

Halt

Figure 2. Random Processing - Type 1: In-Line Processing

Random Processing and the 1301 IOCS 7

(i.e., 180,000 microseconds).* The coding re -

Start quired to handle the simultaneous execution of sev-
eral SEEK operations constitutes a considerable
programming tagsk. The maintasks that mustbe ac-
complished are;

(1) the retention, or 'stacking,' of successive
transaction records until they can be proc-

Initialize essed;

(2) the holding of disk records obtained by the
various SEEK and READ commands until these
records can be processed;

(3) provisions insuring that disk records are up-

Get Next dated with the correct set of transaction data,
Transaction Recorc and

(4) the release, after processing, of areas used
to retain transaction records and disk records.
The 1301 IOCS provides all the functions listed
above, as will be explained in the next section.

Develop

Disk Address

SEPARATION OF THE DISK ROUTINE FROM THE
MAIN ROUTINE

The operating principles of the 1301 IOCS for ran-
dom- processing applications are illustrated in
Disk Record Figure 4. Note that all instructions needed to obtain
or process disk data (henceforth referred to collec-
tively as the ""Disk Routine'') have been removed from
the main routine.
Although the main routine initiates processing of
the Disk Routine, the two routines are independent of
one another: the main routine obtains and stores
transaction records independently of any processing
in the Disk Routine, and the Disk Routine obtains

successive transaction records from the work area
independently of processing in the main routine.

More
Lo Transaction NOTE: Separation of the Disk Routine from the
Recfords main routine is possible only if processing in
No the main routine does not depend on the informa-
' tion obtained by the Disk Routine. The most
widely used applications of disk storage, such as
inventory control and information retrieval,
Complete : : |
House. permit this approach.
keeping The different program steps, as executed by the
1301 IOCS, are indicated in Table I.
Halt
*Since a module of IBM 1301 Disk Storage has only one access arm,
multiple SEEKs can be used and overlapped only if the program
Figure 3. Random Processing - Type 1: Information Retrieval Only uses more than one module of 1301 Disk Storage.

o

TEST OF
WORK AREAS
See also
Figure 9.

Main Routine

The main routine obtains a trans-
action record, stores it in Work
Area I, and branches control to

the Disk Routine.

If no disk record is readyfor proc-

essing and a segment of Work
Area I is available, control will be

branched to the main routine:

Processing now continues at Point
A (return address of the main
routine). In Figure 4, this is the
branch to the instruction that calls
for the reading of the next transac-
tion record. This transaction
record is now moved to a free
segment of Work Area I, and con-
trol is branched to the Disk Routine.
(In this manner, the main routine
initiates the reading and processing
of each disk record required by a
given transaction record.) Proces-
sing then continues as described
above.

Disk Routine

Processing continues in the Disk

Routine until the SEEK and READ
Disk Record command is encountered.

The Disk Routine initiates the SEEK
and then checks_both work areas.

If a previously read disk record is

ready for updating, processing
continues in the Disk Routine

Point B):

The waiting disk record is updated

with the correct transaction data, and
the WRITE operation that will write

the updated disk record back into disk
storage is initiated. (As indicated in
Figure 4, the segment of Work Area Il
that contained the just-updated disk
record will be released upon completion
of the WRITE operation.) Processing

in the Disk Routine now continues: any
needed report is written, and the segment
of the transaction stacking area that held
the transaction record used to update the
disk record is released. The test of

the work areas indicated above is then
made again, and control is branched to
either (A) or (B), depending on the
outcome of the test, as described above.

Table 1. Program Steps Executed by the 1301 IOCS

Summary of Main IOCS Functions for Random
Processing

As indicated in Figure 4 and the subsequent descrip-
tion, the IBM 1301 IOCS accomplishes each one of
the tasks that were claracterized above as necessary
prerequisites for the simultaneous execution of
several SEEK operations. The following summarizes
these functions of the 1301 IOCS:

1. The retention, or ''stacking,' of successive
transaction records until they can be processed.
As indicated in Figure 4, successive trans-
action records are stored in a work area, which
will henceforth be called the ""Transaction
Stacking Area.'' Whether a new transaction

record is to be stored or a disk record is to be
updated is determined immediately after the
initiation of the SEEK operation and after
processing of the transaction is completed.

The updating of a disk record ready for
processing takes precedence over the reading of
another transaction record. Only if no disk
record is ready for processing and a free seg-
ment of the Transaction Stacking Area is avail -
able, is control passed back to the main routine
for the reading (and storing) of another trans-
action record. (If two transaction records
request the same disk record, the 1301 IOCS
does not process the second request until proc -
essing of the first has been completed.) See
Figure o.

Random Processing and the 1301 JOCS

Yes

MAIN ROUTINE

Initialize

GET

next trans-

action record

Move transaction

record to Work
Area |

Branch to
Disk Routine

Transaction

No

Complete
! Housekeeping

”
”

o
| 1st segment |
e — =

|
’: 2nd segment |
]

| nth segment|

L
WORK AREA I

= = 77

| 1st segment |-

| |
= = 7 77

| 2nd segment |

| nthsegment|
L]

WORK AREA II

Figure 4. Separation of the Disk Routine from the Main Routine

10

Branch
Control
to A orB

(see text)

-
_-"'-
-

Branch
Control

to AorB
(see text)

DISK ROUTINE

Store

return address

Develop disk

address from
data in Work
Area |

Initiate | Complete
SEEK | READ

Update disk record in
Work Area II using
transaction record in

Work Area I

I Complete
Initiate |WRITE

WRITE

Release
Work Area

J

PUT
report

Release

Work Area I

Figure 5.

2.

i Branch to
Record in Yes _
Work Area II ready (B) 1n
or updating appropriate
Disk Routine
Segment Branch to (A)

of Work Area 1

available
?

following last

executed branch in

Main Routine

Control Switching

The holding of disk records obtained by the
various SEEK and READ commands until these
records can be processed.

As indicated in Figure 4, records obtained
from disk storage are held in another workarea,
which will henceforth be referred to as the ''Disk
Record Holding Area.' The 1301 IOCS holds
disk records in this area until they are no longer
required. See the section on ""Additional Func-
tions of the FSEQP Macro-Instruction' for a
detailed description of the release procedure of
disk records.

Provisions insuring that disk records are updated
with the correct set of transaction data.

As indicated in Figure 4, the removal of the
Disk Routine from the main routine permits the
simultaneous execution of several SEEK and
READ commands. As described, each time a
disk record has been successfully sought and
read, it is made ready for updating. The 1301
IOCS insures that whenever control is branched
to the Disk Routine for the updating of a disk
record, this disk record is updated with data
from the correet transaction record stored in
the Transaction Stacking Area.

Release of work areas after their contents are no
longer required. Segments of the Transaction
Stacking Area are released upon completion of
processing in the Disk Routine. Segments of the
Disk Record Holding Area are released at the
completion of each WRITE operation, and as
explained under '"Additional Functions of the

FSEQP Macro-Instruction. "

Sequence of Disk Operations

Although transaction records are released to the Disk
Routine in the order in which they were obtained by
the main routine, updated disk records are not neces-
sarily written back onto the disk in the same order.
This is due to the different access time for informa-
tion in disk storage. Information access time de -
pends not solely on the order in which disk requests
are given but also on the location of the requested

information in disk storage.
For example, if one arm receives a request for

information with an access time of 100 ms, and 10ms
later another arm receives a request with access
time of 50 ms, the second request will be met be-
fore the first. In this case, the disk informationre-
quested last will be obtained before that requested
just prior to it. '

If disk records are to be processed in the same
order as the incoming transaction records, proces-
sing of the data obtained by the second arm in the
example must be delayed until the data obtamed by
the first arm has been processed.

Disk 10CS Macro—lnstructions
’

The 1301 Disk 1I0CS permits the use of the following
macro-instructions: 8

OPEN "Open Disk File(s)" g
This macro-instruction may be used td ogen disk
~ files used for random or sequential processing.

CLOSE "Close Disk File(s)" \
This macro-instruction may be used to close disk

files used for random or sequential processing.

MVRSA ""Move Record to Stacking Area'
This macro-instruction may be used to move
transaction records to the Transaction Stackmg

Area. It can be used only for random protessing.

~ ENTDR "Enter Disk Routine'

This macro-instruction may be used to enter the
Disk Routine and store the return address to the

main routine. It can be used only for random
processing.

GET '"'Get Disk Record"
This macro-instruction may be used to seek and
read disk records. It can be used only for random

and sequential processing.
FSEQP 'Force Sequential Processing"

This macro-instruction can be used to insure that
records are processed sequentially, i.e., written

Random Processing and the 1301 IOCS 11

MAIN ROUTINE DISK ROUTINE

next trans-
action record

Disk Address

- Branch
Control
to A or B
More
Transaction
Records
Disk Record

PUT
report

Branch

Control

to A or B

Figure 6. The 1301 IOCS Macro-Instructions for Random Processing

12

back onto disk storage in the same order in which

their corresponding transaction records: were ob-
tained by the main routine. This macro-instruc-

tion can be used for random processing only,

PUT '"Put Disk Record"
This macro-instruction may be used to write a

single disk record. It can be used only for random
and sequential processing.

LEVDR ''Leave Disk Routine"
This macro-instruction may be used to release the
segment of the Transaction Stacking Area just pro-
cessed and to return control to the main routine.
It can be used only for random processing.

GETS "Get Single-Reference"
This macro-instruction may be used to gseek a
specified disk cylinder or to seek and read a single
disk record, a full track, or a full cylinder (op-
tional feature).

PUTS "Put Single-Reterence"
This macro-instruction may be used to seek a
specified disk cylinder, to write a format track,
or to seek and write a single disk record, a full
track or a full cylinder (optional feature).

WAITS "Wait"
This macro-instruction may be used to develop

the coding required to suspend processing until
a specified disk record has been read into core

storage or written onto disk storage.

Summary of Macro-Instructions

The use of the 1301 IOCS macro-instructions for
random processing is summarized in Figure 6. A
detailed description of each macro-instruction may
be found in the section on '"The Eleven 1301 IOCS
Macro-Instructions. "

INDEPENDENT DISK ROUTINES

The applications discussed above use only one Disk
Routine, and all information obtained by the disk

arm(s) from the Transaction Stacking Area was
always used by the same set of instructions.

Some applications require two (or more) independ-
ent Disk Routines. A typical application of this type

is the updating of a job record and an employee
record on the basis of one transaction record. Both
routines use the same Transaction Stacking Area.
See Figure 7.

As indicated in Figure 7, the same set of trans-
action data is required by more than one Disk Rou-
tine. The 1301 IOCS insures that no segment of the

Transaction Stacking Area is released until all Disk

:Routines requiring data from this segment have been

completed. The IBM 1301 IOCS can handle any
number of independent Disk Routines.

DEPENDENT DISK ROUTINES

Some applications use data from one transaction
record to update two dependent disk records. Two
records are considered dependent on one another it
neither of them can be updated without data from the
other. When dependent records are processed, both
disk records must be obtained before either of them
can be updated. This requires that disk records be
retained in the Disk Record Holding Area until all
Disk Routines requiring data from the same Holding-
Area segment have been completed. The 1301 IOCS
insures this.

The first FSEQP macro-instruction in Figure 8 is
needed to retain the disk record obtained by- Disk
Routine A for use by Disk Routine B. The second
FSEQP macro-instruction is used to syncfironize the
output of Disk Routine B with the incoming trans-

action records.
(For a detailed description of the functions of the

FSEQP macro-instruction, see the section on ""Addi-
tional Functions of the FSEQP Macro-Instruction. ')
NOTE 1: The order of the PUTs takes place as
indicated. In general, arms that have obtained
information from disk storage remain in posi-
tion until the updated information is returned to
storage. This eliminates SEEK time for PUTs
since the disk arms are already in position.
NOTE 2: The 1301 IOCS can handle any number
of dependent Disk Routines.

It is possible to contain a random Disk Routine
within a real-time routine. The following three
points must be observed:

1) the MVRSA macro-instruction must be con-
tained within the real-time routine, 2) care must be
taken that real-time interrupts do not cause the Disk
Routine to be executed before the disk file has been
opened and after it has been closed and 3) when the
Disk Routine requests exceed the number specified in
the 'RNDMDEPTH' DIOCS entry, the real-time

routine will control until more random disk requests
may safely be accepted.

Random Processing and the 1301 JIOCS 13

Figure 7.

14

MAIN ROUTINE

Initialize
incl.

OPEN

GET

next trans-
action record

MVRSA

Branch to
Disk Routine

Disk Routine
B

P Ao

v More
es .
Transaction

Records

No

Complete
Housekeeping

incl.

CLOSE

Branch

Control
to Az or B

Branch
Control

to Az or B2

DISK ROUTINE B

ENTDR

Develop
Disk Address

GET FILE 1

Initiate , Complete

v, SEEK I

Disk Record

PUT FILE 1

I Complete
WRITE
Release
Holding
Area

Initiate
WRITE

PUT
report

LEVDR

Release
Stacking Area

Branch
Control

to A]. or B

DISK ROUTINE A

ENTDR

Develop
Disk Address

GET FILE 1
|
1 |

® B

Update
Disk Record

PUT FILE 1

Complete
WRITE

Release
Holding

Area

Initiate
WRITE

PUT
report

LEVDR

Random-Processing -~ Two Independent Disk Routines Use Data Obtained by the Main Routine

MAIN ROUTINE @

Initialize
incl,
OPEN

GET

next trans-

action record

Branch to
Disk Routine

Branch to
Disk Routine

Yes Transaction
Records

No

Housekeeping

incl.
CLOSE

Branch
Control

toA2 or B2

Branch
Control
toAorB

DISK ROUTINE B

Develop
Disk Address

GET FIILE 2

Initate | Complete
SEEK READ

Update
Disk Records

PUT FILE 2

| Complete
Initiate Write
WRITE | Release

| Holding

| Area

PUT FILE 1
|Complete
Initiate l‘é"e}’igfe
WRITE |Holding
| Area
PUT
report

LEVDR
Release

Stacking Area

DISK ROUTINE A

ENTDR

Develop

Disk Address

Branch GET FILE 1
Control Initate : Complete
toAjorB; \SEEK | READ
Branch

Control

to A1 or B 4

Branch

Control LEVDR

to Al or B 2

Figure 8. Random-Processing - Two Dependent Disk Routines Use Data Obtained from the Main Routine

Random Processing and the 1301 IOCS

15

SINGLE-REFERENCE PROCESSING AND THE 1301 IOCS

Get Transaction
Record

Develop

Disk Address

}#—< Record been °

Update
| Disk Record

e ——

-
|
|

[SeshandBr \ =
_ DiskRecod / =

There More
Records

Complete
Housekeeping

Figure 9. Method 1 of Single-Reference Processing

16

This section describes how single-reference proces-
sing can be handled by the 1301 IOCS.

METHOD 1

Figure 9 illustrates one method of single-reference
processing available to users of the 1301 IOCS.
It will be referred to as ""Method 1."

As shown in Figure 9, Method 1 falls into the
category of ""in-line processing'' described above
because processing halts while a disk SEEK, READ,
or WRITE operation 1s in process.

As indicated, the program reads a transaction
record and develops the address of the disk informa-
tion required to process the record. If a SEEK for
the same record is not already in progress, a SEEK-
and-READ command for the record is initiated, and
processing halts until the record has been read into
core storage. The record is then updated, put back
into disk storage, and the next transaction record is

read.

The shaded areas in Figure 9 indicate the functions
that are performed by the GETS and PUTS macro-
instructions when the programmer chooses this
method of single-reference processing. See the
sections on the GETS and PUTS macro-instructions
for a detailed description of the functions of these

macro-instructions.

Get Transaction
Record
Develop
Disk Address

for this Address
Now in Process

Continue Processing
(Not Requiring

Disk Detail until |
Seek Is Completed)

Record been
Read

| Update
| Disk Record

there more

Records

Complete

| Housekeeping

_ = o

Figure 10. Method 2 of Single-Reference Processing

METHOD 2

Figure 10 illustrates a second method of single-
reference processing available to users of the 1301
I0CS. This method will be referred to as ""Method 2."
As illustrated, Method 2 enables the user to over-
lap the SEEK and READ operations of the disk SEEK-
READ operation with processing -- provided such
processing does not require the disk record for which

the SEEK was initiated.
As shown in Figure 10, the program reads a trans-

action record and develops the address of the disk
information required to process the transaction rec-
ord. If a SEEK for the same record is not already
in progress, the SEEK is initiated. As soon as this
has been done, processing resumes and continues
until an interrupt signal provided by the 1301 IOCS
indicates that the SEEK has been completed. The
disk READ operation is then initiated, and processing
resumes. Upon completion of the READ operation,
the 1301 IOCS sets a switch indicating that the READ
operation has been completed.

The test for completion of the disk READ opera-
tion is made just prior to the time the disk informa-
tion is needed by the program. This permits over -
lapping of the SEEK and READ operations with
processing, as described. If the disk record has
not yet been obtained when it is needed by the pro-
eram, the latter enters a waiting loop until the rec-
ord has been obtained. At this point, Method 2
assumes the characteristics of in-line processing
because processing halts until the required disk
record has been obtained. See Figure 10.

NOTE: When Method 2 is used, the test for com-
pletion of the disk READ operation must be
provided by the user unless he uses the WAITS
macro-instruction. For details, see the des-
cription of the SWITCH operand of the GETS
macro-instruction and the WAITS macro-in -

struction.

Single-Reference Processing and the 1301 IOCS 17

BASIC PRINCIPLES OF THE IBM 1301 IOCS

Relationship of Card/Tape IOCS to 1301 IOCS IOCS furnishes the error routines and the disk arm
and file schedulers for random, sequential, and
The 1301 IOCS augments the IBM 1410 Card/Tape single-reference processing. The Card/Tape IOCS
IOCS by adding to the latter the routines required to provides the remaining routines required to include
include IBM 1301 Disk Storage in the resulting com - 1301 Disk Storage in the general IBM 1410 IOCS.

bined IBM 1410 Input/Output Control System. The 1301 See Figure 11.

Channel 1 Channel 2

- i -

Card/Tape
Error Routines

Random Proc-
essing Routine,
including FILE
Scheduler

TAPE FILE

Scheduler

e —————_——al e . W W T M
———m“ i

Channel
Scheduler

Schedulers Routine

TAPE FILE

Scheduler

Sequential -
Processing

Routine, in-
cluding FILE
Scheduler

Disk Error
Routine

Unit Record

File Scheduler

Disk Arm Single-Reference |

I 1410 CARD/TAPE IOCS 1301 IOCS l
The IBM 1410 Input/OQutput Control System

Figure 11. Relationship of the IBM 1410 C/T IOCS to the 1301 IOCS

18

Each time the 1410 program issues a disk SEEK,
READ or WRITE request, the 1301 IOCS determines:
(1) which input or output area is to be used and

(2) whether the disk arm needed to handle the
gspecified operation is available.
The disk arm schedulers then pass the request on

to the channel scheduler furnished by the Card/Tape
IOCS.

Advantages of the 1301 IOCS

The IBM 1301 Disk Input/Output Control System con-
sists of a set of tested routines that free the user

from all coding of input and output routines for IBM
1301 Disk Storage.

Random Processing

The 1301 IOCS provides the coding required for the
simultaneous execution of any number of SEEK,
READ, and WRITE operations and for the over-
lapping of all disk input and output operations with

processing.
Sequential Processing

The 1301 IOCS enables the programmer to handle

logical records in sequential applications merely by
using GET and PUT and related macro-instructions,
thereby relieving him of all blocking and deblocking

of disk records.

Single-Reference Processing

The 1301 IOCS provides input/output and error-check-

ing routines for single-reference processing. The

IOCS also furnishes an interrupt signal upon com-
pletion of each SEEK, READ and WRITE operation.

The user has the option of
(1) having the 1301 IOCS automatically halt proc-

essing until each SEEK, READ or WRITE
operation is completed, or

(2) using the interrupt signal furnished by the 1301
IOCS to test whether READ operations have

been completed.

NOTE: The coding required for this test can be
furnished by the WAITS macro-instruction.

Available IOCS Routines

The 1301 IOCS routines will automatically:

e schedule several SEEK-and-READ operations
for simultaneous execution; -

e overlap disk input/output operations with proc-
essing;

e schedule all available arms of the 1301 Disk
Storage Units;

e seek, read and write disk records;

¢ check for read and write errors;

‘o correct (all correctable) read and write errors,
and
e block and deblock sequential disk records.

Substantial Savings

The design and coding of an efficient input/output con-
trol system permitting the overlapping of processing
and disk operations, including the simultaneous
scheduling of arms, is a difficult programming task.

By providing tested routines that handle all of these
functions, the IBM 1301 Input/Output Control System

offers users substantial savings in program writing,
testing and operating expenses.

Using the 1301 IOCS

For Random and Sequential Processing

For each such program that is to utilize the 1301
IOCS, the programmer must:
(1) use the appropriate 1301 I0CS macro-
instructions in his program;
(2) write the required DIOCS entries;
(3) write the required DTF entries, and
(4) write DA (Define Area) statements for the
Transaction Stacking and Disk Record Holding
Areas used by his program.

For Single-Reference Processing

For each such program that is to utilize the 1301
IOCS, the programmer must:
(1) use the GETS and PUTS macro-instructions in
his program;
(2) write the required DIOCS entries; and
(3) write DA (Define Area) statements for the

Holding Area Control Records used by his
program.

Basic Principles of the IBM 1301 10CS 19

Assembly of Programs Using the 1301 IOCS

The DIOCS and DTF entries are punched into IBM
cards and must precede the source program during
Autocoder assembly. The DIOCS cards are entered
following the DIOCS header card of the Card/Tape

I0CS. The DIOCS cards of the two systems may be
intermixed.

The required sets of disk DTF cards, each preceded
by the appropriate disk DTF header card, are entered
together with the sets of DTF entries for the Card/
Tape 1I0CS. The two sets may be intermixed. See
Figure 12.

The remainder of this publication consists pri-

marily of a detailed explanation of the four program-
ming steps required to utilize the IBM 1301 Input/
Output Control System, namely, the writing of:

1. IOCS macro-instructions:

2. DIOCS entries:

3. DTF entries: and
4. DA entries.

The final section of this bulletin contains information

regarding the size of the 1301 IOCS; a coding example,
and a brief glossary.

20

1410 Pfogram
including
DAs & IOCS

Macro-

Instructions

entries for each file.

(Card, tape and disk ‘
DTF sets may be nth DTF header

intermixed,)

Card, tape and disk ’
DIOCS cards may 1st DTF header l

be intermixed,

DIOCS entries '
Control Cards
that may be DIOCS header
included - —— = — - -

L L J ‘
r e

' COMMENTS | |

ek - = - - - - e W W
' JOB)
r—L —————— -\ :— —l

AUTOCODER
RUN

Figure 12. Assembly of Programs using the 1410 Card/Tape and 1301
Disk IOCS

FOR RANDOM PROCESSING: The eight macro-
instructions for random processing are:

OPEN "Open File(s)"

CLOSE "Close File(s)"

MVRSA ""Move Record to Stacking Area"
ENTDR "Enter Disk Routine'"

GET "Get Logical Record"

FSEQP "Force Sequential Processing"
PUT "Put Logical Record"

LEVDR "Leave Disk Routine"

FOR SEQUENTIAL PROCESSING: The four macro-

instructions for sequential processing are:

OPEN "Open File(s)"
CLOSE '""Close File(s)"
GET "Get Logical Record"
PUT "Put Logical Record"

FOR SINGLE-REFERENCE PROCESSING: The
three macro-instructions for single-reference pro-
cessing are:

GETS "Get, Single Reference"
PUTS "Put, Single Reference"
WAITS "Wait, Single Reference"

Each macro-instruction is described in detail below.

OPEN

By using the OPEN macro-instruction, the program-
mer can let the 1301 IOCS handle the various initial-
izing tasks which must be performed before data on a
disk file can be used by the object program. These
initializing functions differ for random and sequen-
tial processing and are explained separately below.
The OPEN macro-instruction must be given in the
main routine and is written as indicated in Figure 13.
The operand in Figure 13 contains the name or
names of the file(s) to be activated. The name(s)

THE ELEVEN 1301 IOCS MACRO-INSTRUCTIONS

I T
mm mm{»‘ S 7

02 H' N

o3 WaYceAder lorgn lo 7 DT § KFIL ER, DTS KETLET
o | .] -m

must be those used to describe the file(s) in the DTF
header line. If more than one file is named in the
operand, the names must be separated by commas.
Only one OPEN macro-instruction is needed to open
all files used by the program, including any non-disk
files.

What This Macro Will Do

RANDOM AND SEQUENTIAL PROCESSING. For
each file named in the operand of the macro-instruc-
tion, the 1301 IOCS -- on the basis of the information
contained in the DTF entries -- will:

(1) make the appropriate Disk Record Holding
Area available;

(2) insert a Group Mark with Word Mark immedi-
ately to the right of each segment of the Disk
Record Holding Area; and

(3) move the Word Marks specified in the first
section of the Disk Record Holding Area into
all other sections of the Disk Record Holding
Area. See Figure 14.

RANDOM PROCESSING. The OPEN macro-instruc-
tion will cause the Transaction Stacking Area to be

made available for incoming transaction records.

SEQUENTIAL PROCESSING, The OPEN macro-
instruction will cause the track address of the first
record of the file to be inserted into the Track Ad-
dress Counter of the 1301 IOCS. The initial track
address is obtained from the information supplied

by the DTF 'FILESTART' entry.

The Eleven 1301 IOCS Macro-Instructions 21

Word Marks
specified by

the programmer.

WM

WM WM WM
GM

2nd Segment

il
cM |

3rd Segment |

I

_ | |
n l

Word Marks inserted by the
OPEN macro-instruction.

nth Segment

Disk Record Holding Area

This area must be specified by the programmer by means of an
appropriate DA (Define Area) entry. Sce section describing

"Define Area Entries Needed to Support the IOCS. "

Figure 14. Word Marks and Group Marks inserted by the
OPEN macro-instruction

CLOSE

The programmer may use the CLOSE macro-instruc-

tion to have the 1301 IOCS develop all the coding re-
quired to close the disk file(s), i.e., to remove the
disk file(s) from use by the object program. The
CLOSE macro-instruction must be given in the main
routine and is written as indicated in Figure 109.

L4 L 41 4 . X 4 1 .. 1 1 I 1

OPERAND
49 43
lllllllllllllllllllll F T | . i
L]

L E1 3,00 S KFILER,Y D! SKF/ILES

TR T WA SR SN VI WA W W W W W S T T N SN U U SN W W U S G S

:
B

The operand in Figure 15 contains the name or
names of the file(s) to be closed. The name(s) must

be those used to describe the file(s) in the DTF header

line. If more than one file is named in the operand,

22

Group Marks with

serted by the OPEN
macro-instruction.

Word Marks in-

the names must be separated by commas. Any file
used by the program, including any non-disk files,
may be named., See Figure 16,

| —
Line Lobel perati OPERAND

s 15]16 35 40 45

0 1 ANL}/LABLEL C.Los, of5£f—‘/¢£';t;ﬂfsrf‘f¢£.z T APELI NFL LE

0 2

lllllllllll A ‘_ L . A " _‘_ L L e i l_ & L a I %

Figure 16,

What This Macro Will Do

RANDOM AND SEQUENTIAL PROCESSING. The
1301 IOCS will develop all the coding required to:

(1) check whether all pending disk operations in-
volving the files named in the operand have
been completed, and

(2) close the file(s) named in the operand after all

pending disk operations have been completed.

SEQUENTIAL PROCESSING. The 1301 1I0CS will
develop all the coding required to:

(1) check whether partially filled output blocks
remain to be written on the output file(s)
named in the operand of the macro-instruction;

(2) write out any partially filled output blocks;

(3) pad partially filled output blocks with the char-
acter specitied by the DTF '""PADDING" entry;
and

(4) pad partially filled output blocks with blanks if
the DTF "PADDING'" entry was omitted.

NOTE 1: The following characters may not be used
for padding: Asterisk, Tape Mark, Word Sepa-

rator Character, Record Mark, Cent Sign and
Group Mark.

NOTE 2: When a sequential input file is closed by

means of the 1301 IOCS 'CLOSE' macro-instruction,

the last address written will be made available
to the user in two ways: 1) a message contain-
ing the address will be typed on the console
printer and 2) the address will be stored within
the IOCS. The field within the IOCS that will
contain this address is labeled 'IOCSCLFLD'.

It is a 26-position field. The label refers to the
high-order position of this field. The address
may be used by the next program to specity file
limits for other sequential files. In the case of
single-record operation, however, the record
address supplied in the message does not necces-
sarily apply to the final address or any address
used in the program.

MVRSA (Move Record to Stacking Area)

All data developed by the main routine and required
by the Disk Routine(s) must be placed into the Trans-
action Stacking Area. This insures that the main
routine does not alter the data before it has been
used by the Disk Routine(s). This transfer of data
from the main routine to the Disk Routine(s) permits
the separation of the Disk Routine(s) from the main
routine discussed above.

The programmer may use the MVRSA macro-
instruction to transfer data developed in the main
routine to a segment of the Transaction Stacking
Area specified by the DIOCS "STKAREA'" entry. The

MAIN ROUTINE @

Initialize
incl.

OPEN

next tmns-
'ac:tmn recar'*-'

DISK ROUTINE

MVRSA
Branch _ ENTDR
to
Disk Routine

X A

Figure 17. Use of the MVRSA Macro-Instruction

data will be retained in the Transaction Stacking Area

until all disk operations using the data have been com-
pleted.

The MVRSA macro-instruction must be given in the
main routine before control is branched to the Disk
Routine. See Figure 17.

The two formats of the MVRSA macro-instruction
are written as indicated in Figures 18 and 21.

Format A

Format A is written as indicated in Figure 18. The
operand identifies the high-order position of the area
from which information is to be moved to the Trans-
action Stacking Area. The areas from which infor-
mation is to be moved must have a Record Mark or a
Group Mark with Word Mark immediately to the right
of the low-order position. See Figures 19 and 20.

ISIS

ﬁfrjéﬁéiEL l ”Fﬂj-ﬁﬁfb U S U S S U VS S SR S S
"R TR) W] TN SRR VR VI (N (BN N VI e e S e

T:———;: — TI*r

INFOLABEL INFOLABEL + 80

Figure 19. Area Referred to by the Operand of the MVRSA

Macro-Instruction

INFOLABEL INFOLABEL + 80

Figure 20. Area Referred to by the Operand of the MVRSA
Macro-Instruction

What This Format of the Macro Will Do

This format of the MVRSA macro-instruction will
cause the 1301 IOCS to:

(1) select an available segment of the Transaction
Stacking Area specified by the DIOCS
"STKAREA'" entry;

(2) have the program enter a waiting loop if no seg-
ment of the Transaction Stacking Area is avail-
able;

(3) insert the address of the selected segment into
the indexing register specified by the DIOCS
"STKINDEX" entry; and

(4) move the information and the Word Marks con-

tained in the area specified by the operand into
the segment of the Transaction Stacking Area
selected by the 1301 IOCS.

The Eleven 1301 IOCS Macro-Instructions 23

Format B

Format B of the MVRSA macro-instruction has no
operand and is written as indicated in Figure 21.

This format of the MVRSA macro-instruction en-
ables the programmer to move information into the
Transaction Stacking Area by actual move commands.

NOTE: When doing so, the programmer must index
the B-Address with the index register specified by

the "STKINDEX'" entry.

What This Format of the Macro Will Do

This format of the MVRSA macro-instruction will
cause the 1301 IOCS to:

(1) select an available segment of the Trans-
action Stacking Area specified by the DIOCS
"STKAREA" entry;

(2) cause the program to enter a waiting loop
if no segment of the Transaction Stacking
Area 1is available at the time of the request;
and

(3) insert the address of the selected section of
the Transaction Stacking Area into the index-
ing register specified by the DIOCS
"STKINDEX'" entry.

Thus, the programmer is free to move the
desired data into the Transaction Stacking Area by
means of actual move commands, using the speci-
fied indexing register.

ENTDR (Enter Disk Routine)

The ENTDR macro-instruction must be the first
instruction used in any Disk Routine of a program
using the 1301 IOCS.

This macro-instruction develops the coding
required to store the return address of the main
routine. This is the address to which control will
be branched by the 1301 IOCS to continue process-
ing of the main routine. See Figure 22.

The ENTDR macro-instruction does not have an
operand and is written as indicated in Figure 23.

24

DISK ROUTINE

Develop
Disk Address

Branch
Control

1tiate
to A or B [niti

Figure 22, Use of the ENTDR Macro-Instruction

V_Vhat_ This Macro Will Do

The coding provided by the ENTDR macro-instruc-
tion stores the return address of the main routine.
This permits resumption of processing in the main
routine as soon as the next disk operation has been

initiated.

GET

The programmer may use the GET macro-instruc-

tion to make a disk record available for processing.
The two formats of the GET macro-instruction are

described below.
Format A

This format of the GET macro-instruction is written
as indicated in Figure 24.

3 2|6 15]16 0 $ -

Olll ﬁME‘;LI GLEITI A lIl-slrlF]I_L_z'_lé | S TS S SN W S W S U T S— | L

0,2.;:11_|ixll G —

SRS TS ISE S T R St !

Figure 24.

The operand in Figure 24 is the name of the disk
file from which records are to be obtained. The

name must be that used to describe the file in the
DTF header line.

What This Macro Will Do

The functions of this macro-instruction depend on
whether it is used for random or sequential process-
ing.

RANDOM PROCESSING. Before using this macro-
instruction for random processing, the programmer
must store the appropriate address in the eight-char-

acter field labeled IOCSDSKAD, as shown in Figure 2o.

Number
of Disk
Channel{Unit Track or Record Address

IOCSDSKAD

Figure 25-

A corresponding coding example is shown in

Figure 26.
T

oo | [\frd poosciecs, decsssina s
" her lossaerie oo
o DU P

| N
A

i S —

Figure 26.

In either single-record or full-track random pro-

cessing, the user must store in JIOCSDSKAD the
channel designation and the number of the disk unit,

as indicated. The remainder of IOCSDSKAD is either
HA1l and HA2, the track address, or the six-character

record address of the desired record.
If the single-record mode is used in a random pro-

cessing application, the user must place the four-
digit track address into the field labeled IOCSSEKAD.

(This field is located within the IOCS and is the four-

character field immediately to the left of IOCSDSKAD.)

If the disk address is a track address, IOCSDSKAD
must contain the four-digit HA1 followed by the two-
digit HA2. In full-track operations, there is no re-
cord address and the field IOCSSEKAD is not used.

Each time the programmer uses the GET macro-
instruction in full-track mode, the 1301 IOCS will

develop the coding required to:

(1) check whether another disk operation is using
the disk track specified by the disk address in
the IOCSDSKAD location;

(2) let the program enter a waiting loop if the re-
quired disk track is being used by another
disk operation;

(3) assign a disk arm to read the information;

(4) assign the segment of the Disk Record Hold -
ing Area into which the disk record is to be
read;

(5) seek the track specified by the disk address;

(6) read the disk record into the assigned seg-
ment of the Disk Record Holding Area;

(7) check whether another disk record is ready
for processing in the Disk Record Holding
Area;

(8) branch control to the disk routine if another

disk record is waiting to be processed;
(9) check whether a segment of the Transaction

Stacking Area is available;

(10) branch control to the main routine if a Stack-
ing-Area segment is available;

(11) check for disk read errors;

(12) correct correctable read errors*, and

(13) release the segment of the Disk Record Hold-
ing Area used by a GET immediately preced-
ing the present GET macro-instruction. (See
section describing the FSEQP macro-instruc-
tion.)

* On DATA CHECK indications, eight additional attempts to
execute the command are made before an error message 1s

printed on the console printer.

SEQUENTIAL PROCESSING. Format A of the GET
macro-instruction causes the 1301 IOCS to develop
the coding required to:
(1) make the next logical record available for
processing;
(2) take the next logical record from the next
track, if a block of records has been
exhausted;

(3) check for read errors;
(4) correct correctable read errors*;

(5) increase the Track Address Counter whenever
records of the current track have been
exhausted;

(6) check whether the address contained in the
Track Counter is a valid disk address for
the system defined by the DIOCS entries for
this program, and

(7) branch the program to the location specified
in the DTF "EOFADDR'" entry if the track
address exceeds the address specified in the
DTF "FILEND'" entry.

The area into which records are placed by this
format of the GET macro-instruction depends on
record type and the number of input/output areas,
as follows:

1. For blocked files using only one input/output
area and for all files using two input/output
areas:

a, If indexing is used, this macro-instruction
leaves the logical record in the input area
and places the address of the record's
high-order position into the specified index
register. -

b. If indexing is not used, this macro-instruc-
tion places the next logical record into the
work area specified by the DTF
"WORKAREA" entry.

The Fleven 1301 IOCS Macro-Instructions 25

2. For unblocked files using only one input/out-
put area:
This macro-instruction leaves the next logi-
cal record in the input areas.

Format B

This format of the GET macro-instruction is used
only for sequential processing and is written as in-
dicated in Figure 27.

mz— SKELLE TO NOAKARENR,
N N .

Figure 27.

The first entry in the operand of Figure 27 is the
name of the disk file from which records are to be
obtained. The name must be that used to describe
the file in the DTF header line. The second entry
is the name (label) given to the work area to which
the record is to be moved. This format of the GET
macro-instruction may be used for all record for-
mats except unblocked records that use only one
input area.

PUT

The programmer may use the various formats of the
PUT macro-instruction to develop the coding re-
quired to include processed or unprocessed records
in a disk output file.

What the PUT Macros Will Do

In addition to the functions listed under each format,
all PUT macro-instructions will cause the 1301
IOCS to develop the coding required to:
(1) check that the disk arm required to write the
information is available:
(2) check for disk write errors;
(3) correct correctable write errors*, and

(4) release the segment of the Disk Record Holding

Area that contained the information placed
into disk storage.

For the purpose of discussion, PUT macro-in-
structions will be divided into three types: that
used to return updated records to disk storage, that
used to load information into sequential locations in
disk storage, and that used to load information into
non-sequential locations in disk storage.

* On DATA CHECK indications, eight additional attempts to

execute the command are made before an error message is

printed on the console printer.

26

RETURNING UPDATED RECORDS TO DISK STOR-
AGE. This type of PUT macro-instruction is used

to return updated disk records to the locations in

~ disk storage in which they were originally contained.

It may be used for both random and sequential proc-
essing and is written as indicated in Figure 28.

Figure Z8.

The operand in Figure 28 is the name of*the disk
file from which information was taken for updating.
The name must be that used to describe the {file in

the DTF header line.

What This Macro Will Do

This type of PUT macro-instruction will develop

the coding required to return arecord (which contains

the updated information) from the Disk Record Hold-

ing Area to the disk file named in the operand of the

macro-instruction.

NOTE: When using this type of PUT macro-in-

struction, the programmer must process the
disk records in the Disk Record Holding Area,

LOADING RECORDS INTO SEQUENTIAL DISK-
STORAGE LOCATIONS, This type of PUT macro-
instruction has two formats. Both are used to load
records into sequential disk-storage locations as

described below.

Format A

This format is written as indicated in Figure 29.

Line Label O percm OPERAND

! S | L. I L _ - » "

o\, ANY LA Vi b'Z'.L oR kAR EAR T0, S 0o v T FLLE |, , ., . .
|

o2 1. | W U T S S S SN S S SN NI U WA G S S S N W VS S S T W S —" I N

Figure 29,

The first entry in the operand field in Figure 29
is the name of a work area defined by a DA state-

ment. The name of the file must be that used to
describe the file in the DTF header line.

What This Format of the Macro Will Do
This macro-instruction will develop the coding re-

guired to write successive logical records from a
work area into sequential locations in disk storage.

Format B

This format may be used to load records contained
in a tape file into sequential disk-storage locations
and is written as indicated in Figure 30.

T
-2 1 241€ POLE i L&
» a8, \puT \7aPE
I|
i i . F U S A

LI

CPERAND

Figure 30.

The first entry in the operand in Figure 30 is the

name of the tape file from which records are to be
taken. The last entry in the operand is the name ot

the disk file into which the tape records are to be
loaded. The names of both files must be those used

to define the files in their respective DTF header
lines.

Wwhat This Format of the Macro Will Do

This macro-instruction will develop the coding re-
quired to write successive records from the speci-
fied tape file into the specified disk file. Thetaperec-
ords are placed into the Disk Record Holding Area.

L.OADING RECORDS INTO NON-SEQUENTIAL DISK-
STORAGE LOCATIONS, This type of PUT macro-
instruction may be used to load records into nonse-
quential locations in disk storage. (An example of
this kind of application is the loading of new part
records into an existing inventory file.) Before
using this type of PUT macro-instruction, the pro-
grammer must:

(1) place the address of the disk location (into
which the information is to be placed) into the
location labeled IOCSDSKAD, and

(2) place the information to be written into disk
storage into a segment of the Disk Record
Holding Area (which is addressed by the in-
dexing register that was specified by the DTF
"INDEXREG" entry of the file).

This type of PUT macro-instruction is written as

indicated in Figure 31.

Figure 31.

The operand in Figure 31 is the name of the disk
file into which records are to be loaded. The name

must be that used to describe the {ile in the DTF
header line.

What this Macro Will Do

This PUT macro-instruction will develop the coding
required to load records contained in the Disk
Record Holding Area into specified locations in

disk storage.

NOTE 1: This type of PUT macro-instruction

cannot be used to return updated disk records
to disk storage.

NOTE 2: This macro-instruction causes the re-
placement of the entire contents of a disk
track, depending on the record format used.
The programmer is cautioned against inad-
vertently destroying disk data when using this

macro-instruction.

FSEQP (Force Sequential Processing)

The programmer may use the FSEQP macro-instruc-
tion to insure that disk records obtained by the disk
routine(s) will be processed and returned to disk
storage in the same order in which the correspond-
ing transaction records were obtained by the main
routine. See Figure 32.

Such synchronization of the disk routine(s) with
the main routine is important whenever reports are
written by the disk routine(s).

For example: Assume that Module 1 receives a
request for information with an access time of 100
ms, and that 10 ms later Module 2 receives a re-
quest with access time of 50 ms. In this case, the
arm of Module 2 will obtain the specified informa-
tion before the arm of Module 1.

If the Disk Routine does not use the FSEQP macro-
instruction, the information obtained by the arm of
Module 2 will be processed and the result returned
to disk storage before the information sought by the
arm of Module 1 can be read. In this case, the up-
dated information will not be returned to disk stor-
age in the order in which the corresponding trans-
action records were read by the main routine,

If the Disk Routine uses the FSEQP macro-
instruction, the information obtained by the arm ot
Module 2 will not be processed until the information
obtained by the arm of Module 1 has been processed
and written back into disk storage.

The FSEQP macro-instruction has no operand and
is written as indicated in Figure 33. It may be used

anywhere in the program.

What This Macro Will Do

Each time the programmer inserts a FSEQP macro-

The Eleven 1301 IOCS Macro-Instructions 27

instruction in his program, the 1301 IOCS will de-

ENTDR velop the coding required to:

(1) halt the processing of all transaction data until
all data from previous transactions have been
processed;

(2) check whether another disk record is ready
for processing in the Disk Record Holding Area;

(3) branch control to the disk routine if another

disk record is waiting to be processed;
(4) check whether a segment of the Transaction

Develop

Disk Address

Branch GET Stacking Area is available;
Control Initiate |Complete (5) branch control to the main routine if a Stack-
to Aor B SEEK | READ ing Area segment is available, and

(6) branch control to a waiting loop if neither a

disk record nor a transaction record can be

—— processed. See Figure 34.
Control NOTE: If the FSEQP macro-instruction is given
to Aor B

in the main routine, processing in the main
routine will not continue until all disk-storage
data has been processed.

Update

Disk Record Additional Functions of the FSEQP Macro-Instruction

The FSEQP macro-instruction has two important

Figure 32. Use of the FSEQP Macro-Instruction additional functions. It can be used to prevent:
(1) the release of a segment of the Disk Record

Holding Area by the second of two successive

JLine | Label GET macro-instructions, or
OL,W,«:;M,;L,;J,ZL rs. L L (2) the release of a segment of the Disk Record
o2 | Holding Area by an LEVDR macro-instruction.
Figure 33. Both functions are described below.
RETENTION OF DISK DATA AFTER SECOND GE'T
MACRO. Each time two disk GET macro-instruc-
FOLQP tions follow one another in a program, the second
GET causes the release of the information obtained
by the first GET macro-instruction. Thus, the cod-
Ing sequence:
GET DISKFILE1
GET DISKFILEZ2
Continue Record ready PROCESS
Disk LL. for updating in Disk PUT DISKFILEZ
Routine Record Holding will cause the release of the information obtained
by the first GET; and only the information obtained
by the second GET can be moved to PUT. The
FSEQP macro-instruction may be used to prevent
the release of the information obtained by the first
GET macro-instruction, as indicated by the follow-
ing coding sequence:
Branch - free segment of GET DISKFILE1
to (A) in Transaction Stacking FSEQP
Main Routine Area available? GET DISKFILEZ2
PROCESS
PUT DISKFILEZ2
Figure 34. Control Functions of the FSEQP Macro-Instruction PUT DISKFILEI]

28

In this case, the FSEQP macro-instruction pre-
vents the release of the information obtained by the

first GET.

NOTE 1: The order of the PUTs takes place as
indicated. In general, arms that have ob-
tained information from disk storage remain
in position until the updated information 1is re-
turned to storage. This eliminates SEEK
time for PUTs, since the disk arm is already
in position.

NOTE 2: The FSEQP macro-instruction cannot
be used to hold information obtained by the
first of two GETs involving the same {file.
Thus, in the coding sequence:

GET DISKFILE1l

FSEQP

GET DISKFILE1l

PROCESS
the FSEQP macro-instruction cannot prevent
the release of the information obtained by the

first GET.

RETENTION OF DISK DATA AFTER THE 'LEVDR'
MACRO. The LEVDR macro-instruction, too, re-
leases the information obtained by the last GET, as
described in the discussion of the LEVDR macro-
instruction. Thus, the coding sequence:

GET DISKFILEL

PROCESS

LEVDR
will cause the release of the information obtained
by the GET macro-instruction.

The FSEQP macro-instruction may be used to pre-

vent the release of disk-record information by the
LEVDR macro-instruction. Thus, in the coding

sequence:
GET DISKFILE]L
FSEQP
LEVDR

the information obtained by the GET will be re-
tained in the Disk Record Holding Area for process-

ing by a subsequent disk routine.

NOTE 1: A FSEQP macro-instruction can cause
erasure of information in the Disk Record
Holding Area followed by rereading of the
disk record. For this reason, the contents
of a segment of the Disk Record Holding Area
must not be changed between the GET and the
FSEQP macro-instructions. Thus, the coding
sequence:

GET DISKFILE1
UPDATE
FSEQP
might result in the retention of the non-proc-

DISK ROUTINE

v

Update
Disk Record

Complete
WRITE,
Release

Holding
Area

Initiate

PUT
|
|
WRITE |
|

Branch
Control -
to A orB

Figure 35. Use of the LEVDR Macro-Instruction

T
5|6 1516 0 o ¢
mw. e

|
02 J.__]L__j_l_lll i e SR vy Loy e S S

Figure 36.
essed information contained in the Disk Record
Holding Area.
NOTE 2: The FSEQP macro-instruction may fol-
low only those GET macro-instructions that
refer to disk storage data.

LEVDR (Leave Disk Routine)

Each time processing of a set of transaction data
has been completed by the disk routine, the work
areas used by the data must be released and control
must be returned to the main routine. The LEVDR
macro-instruction, when used by the programmer
as the last instruction in a disk routine, will cause
the 1301 IOCS to develop all the coding required to
handle these functions. See Figure 30.

The LEVDR macro-instruction does not have an
operand and is written as indicated in Figure 36.

What This Macro Will Do

Each time the programmer uses the LEVDR macro-
instruction, the 1301 IOCS will develop the coding

required to:
(1) check whether the segment of the Transaction
Stacking Area is required by another disk

routine;

The Fleven 1301 IOCS Macro-Instructions 29

(2) free the segment of the Transaction Stacking
Area used by a completely processed trans-
action;

(3) check whether another disk record is ready

for processing in the Disk Record Holding
Area;

(4) branch control to the Disk Routine if another
disk record is waiting to be processed;

(5) check whether a segment of the Transaction
Stacking Area is available;

(6) branch control to the main routine if a Stack-
ing Area segment is available, and

(7) release the segment of the Disk Record Hold-
ing Area used by a GET immediately pre-
ceding the present LEVDR macro-instruction.
(See the section describing the FSEQP macro-
instruction.)

GETS

The programmer may use the GETS macro-instruc-
tion to perform any of the following 1301 disk
operations:

1. Seek a specified disk cylinder;

2. Seek and Read a single disk record;

3. Seek and Read a full track with or without

addresses, and
4, Seek and Read a full cylinder (optional

feature).

When a 'GETS' macro-instruction is used within a
Disk Routine, single-reference logic takes preced-
ence over random logic. Therefore, no return to the
main-line routine takes place as in the random pro-
cessing use of the 'GET' macro-instruction. Any
fields that are constructed or referenced in the user's
program prior to the 'GETS' macro-instruction re-
main unchanged and may be used after resumption of
the user's program.

NOTE: The GETS macro-instruction thus can be
used to perform the operations identified by
the mnemonic operation codes SD, RD, RHA,

RFT, RDT and RCY.
What This Macro Will Do

Each time the programmer uses a GETS macro-
instruction, the 1301 IOCS will develop the coding
required to:
(1) check whether the disk arm required to per-
form the operation is available;
(2) "stack'' the request for the required disk arm
if that arm is not available;
(3) issue a Seek Disk command to position the
access arm on the cylinder containing the re-
quired information;:

30

(4) set a switch to indicate that the disk READ
operation has been completed.
Additional functions of the GETS macro-instruc-
tion are described below.

HOLDING AREA CONTROL FIELD. Before using
the GETS macro-instruction, the programmer must

furnish the 1301 IOCS with information describing
the precise nature of the operation to be performed.
The programmer must enter this information in a
30-character area known as the '"Holding Area Con-
trol Field," or, simply, '""Control Field." The pro-
grammer must reserve this control field in core
storage by means of a DA entry, as indicated in
Figure 37.

e '] *1h > [.
21 {COPE. "“mml b
s oz o Iz
e bzsrzasrr | . 2. .75
or bemone 1 gz T
“mﬂm
o brerationm | s ...
1 lamor e | lis 14 -
Ve lswrredane | . g7,
“m""""""-_—""'—_"'"'
Figure 37 .,

The control field must immediately precede the

input area to be used. See Figure 38.
The following information must be placed into the

Holding Area Control Field before the GETS macro-
instruction is encountered by the program:

AREANAME (Positions 1-5). This field is re-
served for the 1301 IOCS.

CODE (Position 6). This field contains one BCD
character whose bit configuration is determined
as follows:
B = ON if wrong-length-record checking is to be
performed by the 1301 IOCS; otherwise OFF.
A = OFF
8 = OFF
4 = ON if Write Disk Check operation is to be
performed; otherwise OFF,

2 =0ON if only a SEEK operation is to be per-
formed; otherwise OFF. Modification of

SEEK only operations while the SEEK is in

Used by
1OCS

Disk

Instruction

Used by IOCS

e CTL Label
DMODIFIER

®
h",
0
2
A
O

Code

HA 1
—— Channel
~——— Operation

l/—J—\l

— First Location I/O Area

SWITCHADR
DISKARM
DISKADR

/——L‘——\

11 12 13 14 15 16 17 18 19 20 21

(High Order Position of Holding Area Control Record
Figure 38. The Holding Area Control Record

progress is described in the section "Addi-
tional Information for Programmers. "

1=0FF
The BCD characters formed by these various bit

configurations are listed in Figure 91. See section,
""Additional Information for Programmers. "

None (Position 7). Reserved for use by IOCS.

HA1l (Positions 8-11). Contains Home Address 1.

NOTE: Needed only if single records are to be
read or written. '

DISKINSTR (Positions 12-15). Contains the machine-
language operation code of the operation to be per-

formed. This is of the form ABFn, where:
A = M if the operation is to be performed in
the Move- mode;

L if the operation is to be performed in the
Load mode.

B = @ if the disk unit is attached to Channel 1;
* if the disk unit is attached to Channel 2.

F=F

n = 1 if a single record is to be read;

2 if a full track without addresses is to be
read;

5 if a full track with home address is to be
read;
6 if a full track with addresses is to be
read;
@ if a full ecylinder is to be read.

DMODIFIER (Position 16). The d-character of the

disk instruction. This is
R

unless a "'to-end-of-core'' read operation is to be
performed, in which case the entry 18

$

SWITCHADR (Positions 17-21). Contains the
address of the core-storage location of the charac-

22 23 24 25 26 27 28 29 30 31

ter used as the Read-Operation-Complete Switch
(see description of Formats C and D of the GETS

macro-instruction).

NOTE: This field is left blank if Format A or B
of the GETS macro-instruction is used.

DISKARM (Position 22). The digit "9 must be
placed into this field before the program encounters
the first GETS macro-instruction. The "9'" can be
assembled in this field as a constant.

NOTE: The contents of this field must not be
changed by the programmer.

DISKADR (Positions 23-29). This field must con-

tain the B-field of the disk instruction to be per-
formed.

None (Position 30). This field must contain a group
mark with word mark.

Position 31. This is the first location of the input
area into which the disk information is to be read.

NOTE 1: The programmer may use any labels
he wishes, but he must insure that they are
unique if more than one control field is de-
fined.

The four formats of the GETS macro-instruction
are described below.

Format A

This format of the GETS macro-instruction has no
operand and is written as indicated in Figure 39.

Figure 39,

NOTE: Before using this format of the GETS
macro-instruction, the programmer must place

The Eleven 1301 IOCS Macro-Instructions 31

the high-order address of the Holding Area disk read operation is in progress;

Control Record (see Figure 38) into Index (0) Interrupt waiting loop upon completion of the
Register 14, disk read operation:
(6) check for disk read errors, and
What This Format of the GETS Macro Will Do (7) correct correctable disk read errors, *
As indicated in Figure 40, the 1301 IOCS causes
In addition to the functions listed at the beginning of the program to enter a waiting loop until the disk
this section, this format of the GETS macro-instruc- record defined by the contents of the Holding Area
tion will cause the 1301 IOCS to develop the coding Control Record has been read into core storage.
required to: Program execution, therefore, proceeds as fol-
lows: Upon encountering a GETS macro-instruction,
(1) branch control to a waiting loop while the the program initiates the SEEK and then immediately
disk seek operation is in progress; branches control to the Operation-Complete Test.
(2) interrupt waiting loop upon completion of the (See Figure 40.) When the SEEK is completed, an

seek operation: -
(3) 1nitiate the specified disk read operation;
(4) branch control to a waiting loop while the

* On DATA CHECK indications, eight additional attempts to

execute the command are made before an error message is

printed on the console printer.

Arm Avallable

"Stack" Arm
Request

Were &
Attempts Made

1t Error

Connection

Y j

l Write Error Message

Continue
. Processing
Figure 40, The GETS Macro-Instruction

32

JOCS-provided interrupt causes processing to
initiate the READ operation.

program execution does not continue until this test
indicates that the READ operation has been com-

pleted. Processing then continues.

Operation-Complete Switch - The test for comple-

tion of seek and read operations is made by the 1301

IOCS as follows:

When the program encounters a GETS macro-
instruction, the IOCS sets a word mark in the core-
storage position designated by the contents of the
location labeled SWITCHADR, See Figure 38.

The IOCS indicates completion of the SEEK and
READ operations by clearing this word mark, The
program, consequently, enters a waiting loop until
the SEEK and READ operations are completed (i.e.,
until the word mark is cleared), whereupon the IOCS
causes program execution to continue,

Format B

Format B of the GETS macro-instruction is written
as indicated in Figure 41.

Flgure 41.

The operand is the label of the high-order posi-
tion of the Holding Area Control Record.

What This Format of the GETS Macro Will Do

This format of the GETS macro-instruction performs
the same functions (and develops the same coding)
described above for Format A. However, when
using Format B of the GETS macro-instruction, the
programmer need not place the high-order address
of the Holding Area Control Record into Index
Register 14 prior to issuing the GETS macro-in-
struction.
NOTE: The functions provided by Formats A and
B of the GETS macro-instruction correspond to
Method 1 described in the section on '""Single-
Reference Processing."

The program then again

branches control to the Operation-Complete Test, and
ten as indicated in Figure 42,

Format C

This format of the GETS macro-instruction is writ-
The operand is

"SWITCH'"'.

NOTE: Before using this format of the GETS
macro-instruction, the programmer must

place the high-order address of the Holding
Area Control Record into Index Register 14.

What This Format of the GETS Macro Will Do

In addition to the functions listed at the beginning of
this section, this format of the GETS macro-instruc-
tion will cause the 1301 IOCS to develop the coding
required to:

(1) branch control to the main routine to con-
tinue processing while the disk seek opera-
tion 1s in progress;

(2) interrupt processing upon completion of the
seek operation;

(3) initiate the specified disk read operation;

(4) branch control to the main routine to continue
processing while the disk read operation is
iIn progress;

(5) interrupt processing upon completion of the
disk read operation;

(6) check for disk read errors, and

(7) correct correctable disk read errors. *

Operation-Complete Switch, In contrast with For-
mats A and B of the GETS macro-instruction, the
programmer may place the Operation-Complete
Switch anywhere in his program.

NOTE: This means that the programmer can use
Method 2 described in the section on '""Single-

Reference Processing.' See Figures 10 and43.

* On Data Check indications, eight additional attempts to
execute the command are made before an error message

is printed on the console printer,

The Eleven 1301 JOCS Macro-Instructions 33

As indicated in Figure 43, the test for completion Format A of the GETS macro-instruction, to

of the disk SEEK and READ operations is made just indicate completion of SEEK and READ opera-
prior to the time the disk information is needed by tions. The location of this word-mark switch
the program. is defined by the programmer, who must place
This permits overlapping of the SEEK and READ the address of the core-storage location of the
operations with processing until such time as the desired word-mark switch into the SWITCHADR
disk record is needed for further processing. At entry of the Holding Area Control Record. This
this point, the program enters a waiting loop, and must be done before the program encounters
processing halts until the disk record has been the GETS macro-instruction. The programmer
obtained. must provide the coding required to test the
NOTE: The 1301 IOCS will set and clear a word- (word-mark) switch unless he uses the WAITS
mark switch, in the manner described under macro-instruction.,

. -

GETS, SWITCH

"Stack" Arm
Request

Available

Initiate | Complete
SEEK | READ

Continue Proc-
essing (Not Re-
quiring Disk

Data)

Were 8
Attempts Made

at Error
Connection
2

Write Error Message |

o e e ;" aaE . i g g e, — W i

Update
Disk Record
Continue
Processing
Figure 43, The GETS, SWITCH Macro-Instruction

34

Format D

This format of the GETS macro-instruction is writ-
ten as indicated in Figure 44.

Figure 44 .

The first operand shown in Figure 44 is the label
of the high-order position of the Holding Area Con-

trol Record. The second operand is "SWITCH".

NOTE: The operands may be listed in any order.

What This Format of the Macro 'Will Do

This format of the GETS inacro-instruction per-
forms the same functions (and develops the same

coding) described above for Format C. However,
when using Format D of the GETS macro-instruc-

tion, the programmer need not place the high-order
address of the Holding Area Control Record into
Index Register 14 prior to issuing the GETS macro-
instruction.

PUTS

The programmer may use the PUTS macro-instruc-
tion to perform any of the following 1301 disk opera-
tions:

1. Seek a specified disk cylinder;

2. Seek and write a single disk record;
3. Seek and write a full track with home address;
4,

Seek and write a full cylinder (optional featureq),

and
5. Write a format track.

When a 'PUTS' macro-instruction is used within a
Disk Routine, single-reference logic takes preced-
ence over random logic. Therefore, no return to

the main-line routine takes place as in the random
processing use of the '"PUT' macro-instruction.

Any fields that are constructed or referenced in the

user's program prior to the 'GETS' macro-instruc-
tion remain unchanged and may be used after the re-
sumption of the user's program.

NOTE: The PUTS macro-instruction thus can be

used to perform any of the operations identi-
fied by the mnemonic operation codes SD,

WD, WHA, WCY and WFO.

What This Macro Will Do

Each time the programmer uses a PUTS macro-
instruction, the 1301 IOCS will develop the coding
required to:
(1) check whether a disk arm required to perform
the operation is available;
(2) "stack' the request for the required disk arm
if that arm is not available;

(3) issue a Seek Disk command to position the
access arm on the cylinder on which the infor-

mation is to be written, and

(4) set a switch to indicate that the disk WRITE

operation has been completed.

Additional functions of the PUTS macro-instruction
are described below.

Before using the PUTS macro-instruction, the pro-
grammer must furnish the 1301 IOCS with information
describing the precise nature of the operation to be
performed. He does this by means of the same Hold-
ing Area Control Field described in the section on

the "GETS'" macro-instruction.
The Holding Area Control Field is reserved in the

same manner and contains the same information as
the corresponding area described in the section on
the "GETS'" macro-instruction, except as follows:

DISKINSTR (Positions 12-15). This may contain the
following (see description of the Holding Area Con-

trol Record):
1 if a single record is to be written;

2 if a full track without addresses is to be

written;
5 if a full track with home addresses is to be

written;
6 if a full track with addresses is to be written;

7 if a format track is to be written, and
@ if a full cylinder is to be written.

DMODIFIER (Position 16). This contains the d-
character of the disk instruction. This is

\\'s
unless a '"to-end-of-core'' write operation is to be

performed, in which case the entry 1s
X

SWITCHADR (Positions 17-21). This contains the
address of the core-storage location of the charac-

ter used as the Operation-Complete Switch (see
description of Formats C and D of the PUTS macro-

instructions).

NOTE: This field is left blank if Format A or B
of the PUTS macro-instruction is used.

The Fleven 1301 IOCS Macro-Instructions 35

DISKARM (Position 22). The digit '"9"" must be Format A

placed into this field before the program encounters

the PUTS macro-instruction. This format of the PUTS macro-instruction has no
operand and is written as indicated in Figure 4o,

NOTE: The contents of this field must not be
changed at any other time.

Figure 45 .

ANYLABEL (Position 31). This is the first location
of the output area from which information is to be

written into disk storage.
The four formats of the PUTS macro-instruction

are described below.

SEEK

NOTE: Before using this format of the PUTS
macro-instruction, the programmer must

place the high-order address of the Holding
Area Control Record (see Figure 38) into In-
dex Register 14.

"Stack" Arm
Request

WRITE
Completed

Were
8 Attempts

Made at Error
Correction

Write Error Message

Continue

Figure 46. The PUTS Macro-Instruction Processing

36

What This Format of the Macro Will Do

In addition to the functions listed at the beginning of
this section, this format of the PUTS macro-instruc-
tion will cause the 1301 IOCS to develop the coding
required to:
(1) branch control to a waiting loop while the disk
seek operation is in progress;

(2) interrupt waiting loop upon completion of the

seek operation;

(3) initiate the specified disk write operation;

(4) branch control to a waiting loop while the disk

write operation is 1n progress;

(5) interrupt waiting loop upon completion of the

disk write operation;

(6) check for disk write errors, and

(7) correct correctable disk write errors.*

As indicated in Figure 46, the 1301 IOCS causes
the program to enter a waiting loop until the disk
record defined by the contents of the Holding Area
Control Record has been written into disk storage.

Program execution, therefore, proceeds as fol-
lows: Upon encountering the PUTS macro-instruc-
tion, the program initiates the SEEK and then im-
mediately branches control to the Operation-Com-
plete Test. (See Figure 46.) When the SEEK is
completed, an interrupt causes IOCS to initiate the
WRITE operation. The program then again branches
control to the Operation-Complete Test, and program
execution does not continue until this test indicates
that the WRITE operation has been completed. Pro-

cessing then continues.

Operation-Complete Switch, The test for completion
of the SEEK and WRITE operations is the same as
that described above for completion of read opera-

tions.
When the program encounters a PUTS macro-

instruction, the IOCS sets a word mark in the core-
storage position to which control will be branched

upon initiation of the SEEK and WRITE operations.

See Figure 46.
The IOCS indicates completion of the SEEK and
WRITE operations by clearing this word mark. The

program, consequently, enters a waiting loop until
the SEEK and WRITE operations are completed (i.e.,
until the word mark is cleared), whereupon the I0CS
causes program execution to continue.

Format B

Format B of the PUTS macro-instruction is written
as indicated in Figure 47.

* On DATA CHECK indications, eight additional attempts to
execute the command are made before an error message 1s

printed on the console printer.

Figure 47 ,

The operand shown in Figure 47 is the label of the
high-order position of the Holding Area Control

Record.

What This Format of the Macro Will Do

This format of the PUTS macro-instruction performs

the same functions (and develops the same coding)
described above for Format A. However, when
using Format B of the PUTS macro-instruction, the
programmer need not place the high-order address
of the Holding Area Control Record into Index Regis-
ter 14 prior to issuing the PUTS macro-instruction.

NOTE: The functions provided by Formats A and
B of the PUTS macro-instruction correspond
to Method 1 described in the section on '"Single-
Reference Processing. "

Format C

This format of the PUTS macro-instruction is writ-
ten as indicated in Figure 48. The operand is

"SWITCH".

Figure 48 «

NOTE: Before using this format of the PUTS
macro-instruction, the programmer must

place the high-order address of the Holding
Area Control Record into Index Register 14.

What This Format of the PUTS Will Do

In addition to the functions listed at the beginning of
this section, this format of the PUTS macro-in-
struction will cause the 1301 IOCS to develop the
coding required to:

(1) branch control to the main routine to continue
processing while the disk seek operation is in
progress;

(2) interrupt processing upon completion of the
seek operation;

(3) initiate the specified disk write operation;

(4) branch control to the main routine to continue
processing while the disk write operation is in
progress;

The Eleven 1301 IOCS Macro-Instructions 37

(0) interrupt processing upon completion of the NOTE: This means that the programmer can use

disk write operation; Method 2 described in the section on ''Single-
(6) check for disk write errors, and Reference Processing.' See Figures 11 and
(7) correct correctable disk write errors. * 49.
As indicated in Figure 49, the test for completion
Operation-Complete Switch. In contrast with For- of the disk SEEK and WRITE operations is made
mats A and B of the PUTS macro-instruction, the just prior to the time the updated disk record is
programmer may place the Operation-Complete replaced into disk storage. This permits overlapping
Switch anywhere in his program. of the SEEK and WRITE operations with processing.

¥ On DATA CHECK indications, eight additional attempts to

execute the command are made before an error message is

printed on the console printer.

| PUTS, SWITCH

"Stack" Arm
Request

)
Initiate | Complete

SEEK | WRITE

Continue

Processing
(Not Requiring
Disk Data

8 Attempts
Made at Error
Correction

Written
Without Error

Continue

Processing

Figure 49. THE PUTS, SWITCH Macro-Instruction

38

NOTE: The 1301 IOCS will set and clear a word-
mark switch, in the manner described under

Format A of the PUTS macro-instruction, to
indicate completion of the SEEK and WRITE

operations. The location of this word-mark

switch is defined by the programmer, who must

place the address of the core-storage location
of the desired word-mark switch into the

SWITCHADR entry of the Holding Area Control
Record. This must be done before the program

encounters the PUTS macro —-instruction. The

programmer must provide the coding required
to test the (word-mark) switch, unless he uses

the WAITS macro-instruction.

Format D

This format of the PUTS macro-instruction is writ-
ten as indicated in Figure 50.

Figure 50.

The first operand in Figure 50 is the label of the
high-order position of the Holding Area Control
Record. The second operand is "SWITCH'.

NOTE: The operands may be listed in any order,

What This Format of the Macro Will Do

-

This format of the PUTS macro-instruction per-
forms the same functions (and develops the same

coding) described above for Format C. However,
when using Format D of the PUTS macro-instruc-

tion, the programmer need not place the high-order
address of the Holding Area Control Record into

Index Register 14 prior to issuing the PUTS macro-

instruction.

WAITS (""Wait Single-Reference")

The programmer may use the WAITS macro-instruc-
tion to develop the coding required to test the word-
mark switch that is set and cleared by the IOCS to
indicate the completion of disk input/output opera-
tions. See the description of Formats C and D of

the GETS and PUTS macro-instructions.

The WAITS macro-instruction is written as shown
in Figure 51. The operand of this macro-instruction
('SWITCHTAG' in Figure 51) can be any label as-
signed by the user, but must not be defined by the
user in his source program. The label will be gen-
erated by the macro-instruction.

Figure 51.

What This Macro Will Do

This macro-instruction will cause the program to
enter a waiting loop until the input/output operation
initiated by the preceding GETS or PUTS macro-
instruction has been completed. When the operation
is complete, the loop will be interrupted, the word
mark cleared, and control returned to the user at
the point beyond this macro-instruction.

"NOTE: The programmer must place the address
of the label specified in the operand of the
WAITS macro-instruction (and generated by
IOCS) in the Holding Area Control Record, In
the field labeled 'SWITCHADR. ' (See Figure 38)

The Eleven 1301 IOCS Macro-Instructions 39

THE 'DIOCS' ENTRIES

Purpose

Before the programmer can use the 1301 IOCS, he
must supply the 1410 Autocoder processor with the
information needed to determine which of the 1301

IOCS routines are required for the object program.
This information consists of several card entries

listed individually on the IBM 1401/1410 Autocoder
Coding Sheet. These entries specify the sections

of the 1301 Input/Output Control System to be in-
cluded in the object program, and are known col-
lectively as the DIOCS ("'Define Input/Output Control
System'') entries. Each entry is described in detail

below.
General Format

The first DIOCS entry is mandatory and consists of
the mnemonic code DIOCS in the operation field. It
is known as the "DIOCS header line.'" This card

must be the first card (except for special control
cards) to enter the system during Autocoder assem-
bly.
NOTE: Only one DIOCS header card is permitted,
It is normally supplied by the DIOCS header
line written for Card/Tape IOCS. See Figure

12.
Each subsequent 1301 IOCS entry has a blank

operation field and must have one of the labels listed
below. * All DIOCS entry cards may contain com-

ments. These must be separated from the DIOCS
entry by at least two adjacent blanks. The DIOCS

entries may be listed in any order and may be inter-
mixed with the Card/Tape DIOCS cards. See Figure

12,
List of DIOCS Entries

This section describes the purpose of each of the
following DIOCS entries:

FEATURES STKINDEX
CHANX SGMTLENGTH
PROCESTYPE DISKARMS
RNDMDEPTH DISKOPTION
STKAREA NORCDEXIT

* Labels used in programs to be assembled by the 1410 Autocoder
processor must not have more than 10 characters.

FEATURES

This DIOCS entry is mandatory. Its operands are
OVERLAP, PRIORITY, See Figure 52,

Figure 52 .

CHANX

This DIOCS entry is mandatory. It is used to indi-
cate the channel to which the 1301 Disk Storage unit

used by the program is attached. The "x'" in the
CHANx label is '

1 if the 1301 Disk Storage unit is attached to
Channel 1, and

2 1f the 1301 Disk Storage unit is attached to
Channel 2.

The operand of the CHANX entry is '1301".

NOTE: If there is a 1301 Disk Storage unit

attached to each channel, a CHAN1 and a
CHAN2 entry must be made.

The entry in Figure 53 indicates that the 1301 Disk
Storage unit used by the program is attached to
Channel 2,

PROCESTYPE

This entry is not needed for single-reference process-
ing.

This DIOCS entry causes the inclusion in the ob-
Ject program of the file schedulers required for
sequential and/or random processing. Its operands
are:

RANDOM -- if the program calls for random
processing of disk files, and

SEQUENTIAL -- if the program calls for sequen-
tial processing of disk files.

If both operands are used (i.e., if the program

calls for both random and sequential disk processing),
the operands must be separated by a comma. They

may be listed in any order.

Label Pe ! .
3 S|6 o 1IS|i6 4C
L l

1
01. |PRoCESITY PE

|
0 2 U B S S S

Figure 54.

The operand in Figure 54 indicates that the pro-

gram calls for random processing of one or more
disk file(s).

Line Label

3 516 11 30 3 40
—
O 1. 0 Cc £S5\ Y. P, SERU LN T T ALy RAN PO , |

).
D.Lza P S W

Figure S5S.

The operand in Figure 55 indicates that the pro-
gram calls for both random and sequential disk

processing operations.

RNDMDEPTH ("Random Depth'')

This entry is required only for random files that are
used for input operations. The operand indicates the
maximum number of pending operations that are to
be stacked. This number is the greater of two
amounts: the number of arms used by a random file,

or the number of random files serviced by a single
arm.

STKINDEX

STACKAREA

Transaction Stacking Area

Figure 57. The Transaction Stacking Area

NOTE: For optimum arm scheduling, it is sug-

gested that the programmer specify the total
number of available arms (not exceeding ten).

5|6 |5|5 30 35 a¢
A’ 2010 EF’ 7K

*lL_IL...J. I T I SR W SN N

N W U W S SN S |

Figure 56.

The operand in Figure 56 indicates that up to three
pending operations can be stacked at one time.

STKAREA (''"Stacking Area'')

This entry is required only for random files used
for input operations. The operand of the STKAREA
entry is the label of the DA (Define Area) statement
that defines the Transaction Stacking Area. See
Figures 57 and 58.

The operand in Figure 98 indicates that the label
of the DA statement that defines the Transaction

Stacking Area of the program is labeled STACKAREA.
See Figure 57.

line| Lbel fOperati m
islis
57‘;@49 Z ST ACKAREA,

N
F1gurg 58.

«— Contains the address

of the segment from
which or to which
transaction data is to
be transferred. The
address is updated by
the 1301 IOCS.

The DIOCS Entries 41

STKINDEX ("Stacking Index'")

This entry is required only for random files used
for input operations.

The operand of the STKINDEX entry is:
y where "y" is X1, X2,..., X12 and identifies

the index register assigned to the Transaction
Stacking Area. This index register contains

the address of the segment of the Transaction
Stacking Area from which successive sets of

transaction data are to be taken., See Figures
4 and 6.

NOTE: Index Registers 13-15 may not be used for
this purpose.

A e W
55] IG ' . .
L xT .

0.1, TKI! NDE
02_ _1_4_1_;._|._ng_4| I S S PN W WY W W—
Figure 59.

The operand in Figure 59 indicates that Index
Register 7 has been assigned to the Transaction
Stacking Area of the program.

SGMTLENGTH ("Segment Length'')

This entry is required only for random files used
for input operations.
The operand of the SGMTLENGTH entry is:
x where "x" is an integer indicating the number
of positions of each segment of the Transaction

Stacking Area.

NOTE 1: If variable-length transaction records
are to be moved to the Transaction Stacking
Area, the segments must be large enough to

hold the maximum-size record.
NOTE 2: Each segment must contain a location

for the Record Mark or Group Mark with

Word Mark that terminates the move operation.

6 .

l

Figure 60.

The operand in Figure 60 indicates that each seg-
ment of the Transaction Stacking Area has 81 posi-
tions, OSee also Figure 57.

DISKARMS

The operand of the DISKARMS entry is the maximum
number of modules of 1301 Disk Storage used by the
program.

42

Figure 61.

The operand in Figure 61 indicates that the pro-
gram uses three modules of 1301 Disk Storage.

DISKOPTION

This entry is needed only
(1) if the program reads or writes single disk
records, or
(2) if the program calls for one or more write
disk check operations, or
(3) if the 1301 Disk Storage unit addressed by
the program is shared with a 7000-series

computer,
The entry is used to indicate whether the program
calls for any of the above disk operations.
The operands of the DISKOPTION entry are:

SINGLERCD -- if the program reads and/or writes
single records.

WRITECHECK -- if the program calls for at least
one Write Disk Check operation.

SHARED -- if the 1301 Disk Storage is shared by a
71000-series computer.

The operands may be listed in any order.

The operand in Figure 62 indicates that the pro-
gram is to write and/or read at least one single

disk record.

NOTE 1: If the SHARED operand is used, the 10CS
will provide the coding required to enable the

sharing system to have access to disk storage
and to prevent interrupts from operations

issued by the sharing system.

At the completion of all disk operations and
immediately prior to returning control to the
main program, IOCS will execute a Prevent
Seek Complete (PSC) operation to inhibit
interrupts from the completion of seek opera-
tions and a Release (REL) operation to permit
the sharing system to have access to the 1301
disk storage unit,

NOTE 2: The first system to issue a disk instruc-
tion or a command to the 1301 gains control
of the disk storage unit and retains it until
the execution of a Release instruction. A
PSC (Prevent Seek Complete) instruction
should be executed first by any program on
a computer using a shared 1301; otherwise,

interrupts caused by seeks issued by the
sharing system will have to be serviced.

NORCDEXIT

This DIOCS entry is needed only if the program calls
for the reading and/or writing of single records.
This entry enables the programmer to have control
branched to his own routine in the event of a No-
Record-Found Condition.

The use of the 'NORCDEXIT' entry will cause con-
trol to be branched to the routine specified by the
operand of the entry each time a No-Record-Found
Condition is encountered. The first instruction in
the user's No-Record-Found Routine must be a Store
B-Register (SBR) that stores the return address to
the I0OCS.

NOTE: Under no circumstances may the user's
No-Record-Found Routine perform any 1/0
function, with or without the IOCS. In effect,
the user's No-Record-Found Routine is oper-
ating within the structure of the IOCS and
any I1/0 operation will destroy the IOCS con-
trol.

Before branching control to the user's routine, the
1301 IOCS places into Index Register 14 the high-
order address of the B-field of the disk instruction
that led to the No-Record-Found Condition (see
'DISKADR', Figure 38). Upon completion of the
user's No-Record-Found Routine, the IOCS checks
whether the user has changed the B-field, HA 1 or
the channel specified in the Holding Area Control

Record. If a change was made, the I0OCS will
attempt to locate the record in an alternate address
developed by the user's No-Record-Found Routine.
This is normal in random processing.

When no record can be produced from disk, the
transaction may be ignored by the IOCS or retained
by the IOCS for the user. Placing an S in the ad-
dress portion (2+X14) of the 'DISKADR' in the Holding
Area Control Record while in the No-Record-Found
Routine causes the IOCS to ignore the transaction
and skip the remainder of the disk routine. In this
case, the transaction is not retrievable. By plac-
ing a f in the same position the transaction will be
retained by the 10CS for the user. The use of the P
allows the user to test for the P after the IOCS re-
turns to GET +1 or PUT +1. For form 1, 2 or 3
records, the P may be located by subtracting 7 from
the index register associated with that file, Form 4
records require that 11 be subtracted from this index
register because of the block character-count field,
which is four positions long (see Figure 75). After
return to GET +1 or PUT +1, the transaction may
then be processed as the user desires. This means
of communicating with the IOCS (by using the P or S)
is necessary because at the time the users no-record-
found routine is being executed neither the address
of the transaction that caused the no-record-found
condition is known, nor may any I1/O operation be
performed to dispose of the transaction, even if the

address were known.

If nothing is changed in the Holding Area Control
Record after four attempts to locate the record on
disk, the IOCS will withdraw the access mechanism
completely, reposition it at track number 0000, re-
issue the SEEK command for the desired track and
try again to execute the disk instruction. If the no-
record-found condition then recurs, the I0OCS will
enter a waiting loop and an appropriate message
will be typed on the console printer.

The DIOCS Entries 43

THE 'DTF!' ENTRIES

Purpose

In addition to the DIOCS entries, the programmer
who wishes to use the 1301 Input/Output Control
System must write one set of DTF (Define The File)

entries for each disk file used by his program. This
information consists of up to 14 entries listed indi-

vidually on the IBM Autocoder 1401/1410 Coding

Sheet.
Each set of DTF entries describes the character-

istics of the file for which it was written and indi-
cates the methods to be used by the 1301 IOCS in
handling the file. Using the information supplied in
the DTF entries, the Autocoder processor develops
the File Scheduler and the coding required for the
proper handling of each file.

NOTE: DTF entries are not required for single-
reference processing because files need not be
defined for this mode of processing.

General Format

The first DTF entry is the '""DTF header line." It
congists of the mnemonic code "DTF" in the opera-
tion field followed by the name of the file in the
operand field. All subsequent DTF entries have
blank operation fields and must have the labels listed
below. All disk DTF entries may be followed by
comments. These must be separated from the DTF
entries by at least two adjacent blanks. The entries
following the header line may be listed in any order.

All operands of disk DTF entries may use address
modification provided that the operand consists ot
no more than 13 characters. Thus, 'LABEL + 110'
is a valid operand if LABEL consists of no more
than nine characters. All symbolic operands of DTF
entries, except those of input/output areas, may be
indexed. (The number of characters used to desig-

nate the index must be included in the count ot 13.)
The sets of Disk DTF cards may be intermixed

with the sets of the Card/Tape DTF cards and enter
the system immediately after the DIOCS cards dur-

ing Autocoder assembly. See Figure 12. Each Disk
DTF entry is described below under a subheading

indicating the label of the entry.

NOTE: DTF cards without operands are not
permitted.

List of DTF Entries

This section describes the function and use of each
of the DTF entries listed below.

The following entries apply to both random and se-
quential processing:

DTF header line
FILETYPE
SIZEREC

HOLDAREA
INDEXREG

FILEFORM
BLOCKSIZE
DISKCHECK
WLRADDR
The following entries apply only to sequential
processing:
RECFORM
SCRAMBLE
NRECORDS
PADDING
WORKAREA
FILESTART
FILEND
EOFADDR

THE 'DTF' HEADER LINE

The first DTF entry is mandatory and consists of the
mnemonic code DTF in the operation field, followed
in the operand field by the name of the file defined

by this DTF.

Figure 63.

The operand in Figure 63 indicates that the set of

DTF entries following this header line defines a
file called PARTMASTER.

FILETYPE

The FILETYPE entry indicates that the file des-
cribed by this DTF is a disk file and specifies

whether it is a random or a sequential file, and
whether it is used for input or for output operations.

The operands of the FILETYPE entry are:

DISK -- This entry is mandatory and indicates that
the file described by the DTF is a disk file. (The
DISK operand is needed because the "FILETYPE"
DTF entry is also used by the Card/Tape IOCS.)

* Note that data from a disk input file may be returned to that file
after updating.

INPUT -- if the file described by the DTF is used
for input operations, *

OUTPUT -- if the file described by the DTF is used
only for output operations.

SEQUENTIAL -- if the file described by the DTF 1is
a sequential file.

RANDOM -- if the file described by the DTF 1s a
random file.

NOTE 1; The operands INPUT and RANDOM may
be listed but are not required.

The operands of the FILETYPE entry may be
listed in any order and must be separated by commas.

Line Label Operatic OPERAND
I 15/16 ol21 3¢ 35 40 45
O | Lt ETYPE oy T.PeTy O3S K ;S EQUENT Z2L, .

02 L..Jlilli.-—- IR N . [U RN R N S I S N — | R W R W S W W S E—

Figure 64 -

The operands in Figure 64 indicate that the disk
file described by this DTF is a sequential output file.

3 2|6 IS)16 0 ’ .

0 F.I1.¢L ET YIPF pPUT,, 0L S/ |
1

02 S U S

Figure 65 .

The operands in Figure 65 indicate that the file
described by this DTF is a random input file.

Record

Character-count
Field

f_H

it

Record Character-count Field

Low-order
position of
Record

Character-count
Field

High-order
position of
Record 1

Figure 67. The Record Character-count Field

SIZEREC

The SIZEREC entry is mandatory.
pends on record size as follows:

Its operand de-

Variable-Length Records (Sequential Files Only)

The operand of the SIZEREC entry is:
n where ''n" indicates that the low-order position

of each record's character-count field is the
"nth" character of each record. See the
example below.

e e
3 o6 15]i8 ’ ¢ ’
SJ*"F g e

| _
-

Figure 66 .

The entry in Figure 66 indicates that the low-order
position of the character-count field in each record

of this disk file is the 10th position of the record.
See also Figure 67.

Fixed-Length Records

The operand of the SIZEREC entry is:

m where '"'m'" is the number of characters in the
record, including the record mark. (Thus,

the operand is "'80" for eighty-character
records.) See Figure 68.

Record Character-count Field

— —

The DTF Entries 45

Label

b, 9]0

0..'_.__._ 5 .1_2.1 Exﬁlglcl
oﬁz* & i b a L & A - "

Figure 08 .

NOTE: In random processing and in single-

reference mode, variable-length records are treat-
ed by IOCS as fixed length records. (See DTF

'RECFORM' entry.)

HOLDAREA

The operand of the HOLDAREA entry is the label of
the DA (Define Area) statement that defines the Disk

Record Holding Area assigned to the file. The loca-

tion represented by this label is the high-order posi-

tion of the Disk Record Holding Area.

3 216

0.1. |HOL DAREA,

Label

D/ISKAREA

m
15 IG

0 2 _ & " b " 4

R - i A d 4

Figure 69.

The operand in Figure 69 indicates that the label
of the Disk Record Holding Area of the file is
DISKAREA. (See Figures 14 and 86.)

The holding area consists of n sets of two fields.
The fields in each set consist of a 30-character
Holding Area Control Field immediately followed by
an input/output segment. (See the description of
the GETS macro-instruction for a complete explana-
tion of the Holding Area Control Field.) In both
random and sequential processing applications, the
user need only define the areas for these fields by
means of DA statements. IOCS will place the nec-
essary information in these fields as required.

The length of a Holding-Area segment is speci-
fied in the DTF 'BLOCKSIZE' entry, and depends on
the record format and the mode in which the infor-
mation is recorded. (See Figure 87.) If more than
one segment is used, the IOCS will set up the word
marks in all segments in the same manner as

o fonTaarioon (1L
o SEcnenTs [pA

mm_

os IFTELEN . . | . . .

o6 |\ lore .
| [

or 0TS ARRES. |08 .
A f I F

Figure 69A.

7 KA 2 C6,/

- ' .

defined by the programmer in his DA entry for the
first segment.

The size of the Holding Area is determined as
shown in Figure 86 and explained in the accompany-
ing description,

The DA statements required for a Holding Area
which contains six segments for 120-character rec-
ords are shown in figure 69A.

Number of Segments

The number of segments is determined as follows:

Sequential Processing. Either one or two segments
may be used. The total output per unit of time is

usually greater if two Holding-Area segments are
used.

Random Processing. The number of segments de-
pends on
(1) the number of arms available to service a
file,and
(2) the number of transaction records which may

be stacked and request disk records from the
file.

For optimum arm scheduling, the number of seg-
ments should not be less than the number of arms
available to the file.

Size of Segments

The size of each segment of the Disk Record Holding
Area depends on the record format and the mode in
which the information is to be read or written. See
Figure 87, For a detailed description of the Disk

Record Holding Area see Figure 86 and the descrip-
tion of the DTF 'BLOCKSIZE' entry.

INDEXR EG

This entry is not needed for sequential files if an
index register is not to be assigned to the files

[AT R — —rr

OPERAND

desceribed by the DTF. The entry is mandatory for is represented by seven bits: s8ix BCD-bits plus one

all random disk files. space bit. Each track can hold up to 2,800 charac-
The operand of the INDEXREG entry is: ters written in the MOVE (or "6-bit'') mode.
X1, X2,..., X12,
indicating the index register assigned to the file. "LOAD" MODE, When written in the LOAD mode

(i.e., word marks are required) each character 18
represented by nine bits: six BCD-bits, one word-
mark bit, and two space bits. Each track can hold

up to 2,165 characters written in the LOAD (or "'8-
bit'"") mode. See Figures 70 and 71.

NOTE 1: Index Registers 13, 14 and 15 may not
be assigned to a disk file.

NOTE 2: The programmer must refer to disk
data stored in the Disk Record Holding Area

by means of the index register specified by
the DTF "INDEXREG'" entry for that file.

This index register will contain the address SCRAMBLE

of the high-cfrder position of the di-sk record. This entry is used only for sequential files, with
Therefore, if the programmer demgﬁates the single-reference processing. The user must save
1nde)'(' reglste'r specified by the DTF _INDEX' the B-address register to effect the return to IOCS.
REG" entry in the DA entry for the Disk Rec- IOCS will take the SCRAMBLE exit whenever it needs

ord Holding Area, the fields in that area will
be automatically addressed by the index

a new record address.

_ | Before branching control to the user's routine
register. specified in the operand of this macro-instruction,

IOCS places into Index Register 14 the high-order
position of the Holding Area Control Record (see
Figure 38). The track address is located in the field

labeled 'HA1l.' (See the DTF 'NRECORDS' entry for
a description of how sequential track addresses are

FILEFORM

This entry is mandatory.
The operands of the FILEFORM entry are:

updated.)
MOVE -- if the file described by the DTF is read The record address developed by the routine must
or written in the MOVE mode; be placed in the B-field of the Holding Area Control

LOAD -- if the file described by the DTF is read Record.
or written in the LOAD mode;
DISKCHECK

SINGLE -- if the file described by the DTF con-
sists of single records. NOTE: if this operand
is used, the SCRAMBLE entry must be given:

CYLINDER -- if the file described by the DTF is
contained on an entire cylinder. (The cylinder
optional feature must be attached.)

TRACK -- if the file described by the DTF con-
sists of full-track records.

NOADDRESS -- if full tracks without record ad-
dress are to be read or written.

This entry is only required if a Write Disk Check
operation is to be performed. The operand of this

DTF entry is YES.
RECFORM

This entry is needed only for sequential disk files
containing other than fixed-length,unblocked records. *

The operands of the RECFORM are:
VARIABLE -- if the file described by the DTF con-

Move Mode vs. Load Mode ' sists of variable-length records, and
BLOCKED -- if the records described by the DTF

On magnetic tape, word marks are represented by are blocked, |
word separator characters in disk storage. Word The operands must be separated by a comma and
marks are represented by actual bits. Hence, when- may be listed in any order.
ever the programmer desires to place information
into disk storage with word marks, each character NOTE: The operands FIXED and UNBLOCKED,
in disk storage must be associated with an additional referring to fixed-length and unblocked rec-
disk-storage bit for the word-mark bit. The char- ords, respectively, may be used but are not
acter storage-capacity of a given track of disk stor- required.
age, therefore, varies with the mode in which the A description of the record formats that can be
information is read or written. handled by the 1301 IOCS follows.

* Random input files are treated as fixed-length, blocked files;
'"MOVE'" MODE. When written in the MOVE mode random output files are treated as fixed-length, unblocked
(i.e., word marks are not required), each character files.

" The DTF Entries 47

Bit

Figure 70. MOVE Mode: Seven Disk Bits per BCD Character, 2800 Characters per Track

Space ~
Bit ©
=
g
;
T
o
S

Figure 71,

Figure 73,

Index

Point

GAP

Figure 74.

48

7 bits each per BCD character

_—

Space }

O bits each per BCD character

word-mark bit

word-mark bit

LOAD Mode: Nine Disk Bits per BCD Character, 2,165 Characters per Track

Disk Track with Form-1 Records, without Record Marks

Record

Disk Track with Form-2 Records

Record
Address 1

Record
Address 1

Record 3
Record 2
Record 1

\ 1

lll

-- “n
lll i " i
-- . --...n..-.---..n..n.u.;.---.-.|r.------r.q---nunu---.-----lulup---nlunn--;... .
..

--
..
lllllllllllllllllllllllllllllllllllllll
iiiiiiiiiii

llllllllllllllllllllllllllllll

lll
lllllllllllllllllllllllllllllllllllll

llllllllllllllll

word-mark bit

...

IIIIIIII

Record
Address 2 Record 2 ¥
GAP ' '
§—
Record
Address 2 Record 2
GAP _ ~—
Record 8§
Record 7
Record 6
Record 5
Record 4
Record
t
:t + :I: i Address 2

llllllllllllllllllllll

Index Record-Character-Count Field
Point
Block-
Record Character)
Address 1 Count Field, , T \ | T | | T
GAP B GAP B CAP -/-l
N I

Record 1

Figure 75. Disk Track with Form-4 Records
Each block has a variable number of variable-length records

Un-
blocked Blocked

Form 1
miEN
=
T
=

BLOCK RECORD
Fixed- Variable- Fixed- Variable-
Length Length Length Length

Record 3

Record 2

May use
indexing | work

registers

Needed only if

2 I/0O areas are

Needed only if

2 I/0O areas are

Yes

No Yes

'Record marks are required only if the output files are to be blocked.
zRecord Character-count is contained in Record Character-count Field of each record.

Figure 76. Summary of Record Formats for Sequential Processing Using 1301 IOCS

Record Formats That Can Be Handled by the 1301
I0CS

These are fixed-length, unblocked
See Fig-

Form-1 Records.
records -- with or without Record Marks.

ures 72 and 73.

Form-2 Records. These are fixed-length, blocked
records -- with Record Marks -- with padding of

short-length blocks.* See Figure 74.

NOTE 1: Fixed-length, blocked records that are

only partially filled are padded -- either with
the character specified in the DTF "PADDING"

entry or with blanks if the PADDING entry was

omitted.

NOTE 2: Form-3 Records (i.e., variable-length,
unblocked records) will be handled by the 1301

* Blocked records must always have a record mark in the low-order
position. Unblocked records may or may not contain record
marks. Homd records which are to be moved by
wGET DISKFILE TO WORKAREA" or "PUT RNDMOUTFIL" macro-
instructions must have either a record mark or a group mark with
word mark immediately to the right of the low-order position.

IOCS as fixed-length records because of format-
track requirements.

Form-4 Records. These are variable-length,
blocked records, with Record Marks and Block
Character-Count Field, and Record Character-
Count Field in each record. See Figure 75.

NOTE: In random processing and in single-
reference operations, Form-2 and Form-4
records (blocked records) are logically treated
as unblocked records by IOCS. The disk re-
cords are read or written as requested, but
unblocking cannot be performed by IOCS.

BLOCK CHARACTER-COUNT FIELD. A four-
character Block Character-Count Field at the be-
ginning of each block contains a count of the total
number of characters in the block including the
four-character Block Character-Count Field, it-
self. The Block Character-Count Field has AB
zone bits over the units position. The count is used
for checking and correcting wrong-length-record
conditions. See Figure 76.

The DTF Entries

RECORD CHARACTER-COUNT FIELD. A Record NRECORDS
Character-Count Field of up to four characters in

each record contains a count of the number of This entry is required for all sequential disk files
characters in that record, including itself and the from or onto which single records are read or writ-
record mark. ten,

The operand of the NRECORDS entry is

The principal characteristics of permissible rec- n where ""n'" is the number of records per track.

ord formats are summarized in Figure 76.

Examples of RECFORM entries are given in NOTE 1: The operand 'n' can be any number from
Figures 77 and 78. 1 to 99. For every 'n' requests for a record,

the track address is stepped by one. The user
is provided with the track address in HA1 of
the Holding Area Control Record when IOCS
exits to the routine specified in the user's DTF
'SCRAMBLE' entry.

NOTE 2: Files of this type always require the DTF
The operand in Figure 77 indicates that the file "SCRAMBLE" entry.

described by the DTF contains Form-2 (i.e., fixed-
length, blocked) Records. The same DTF statement
could have been written as indicated below:

Figure 80.

The operand in Figure 80 indicates that each disk

The entry indicated in Figure 78 is equivalent to track of this file contains three records.
that shown in Figure 77 because the operand FIXED
need not be written. PADDING
BLOCKSIZE This entry is needed only for sequential disk output
files containing fixed length, blocked records. *
This entry is required. The operand specifies The operand of the PADDING entry is:
the number of positions occupied by each segment X where "X" is the character with which the
of the holding area reserved for an input or output block is to be padded.
disk record.
NOTE: The 30-character Holding Area Control The following characters may not be used for
Record and the terminating group mark with padding: asterisk, tape mark, word separator char-
word mark are not included in this count. acter, record mark, cent sign and group mark,

(These must be included in the DA entries
for the Disk Record Holding Area.)

Figure 81,

igure 79. The entry in Figure 81 indicates that partially
filled blocks are to be padded with the digit 9.

The entry in Figure 79 indicates that disk-record

segments of the holding area for the file defined by * If the PADDING entry is omitted, partially filled blocks of this
this DTF are each 2800 characters in length. record type will be padded with blanks.

50

Disk Address

Channel |INumber of Track Address
Disk Unit

Figure 82. Operand of the DTF "FILESTART" and "FILEND" entries

WORKAREA

This entry is needed only for sequential files that
use a work area and do not use the DTF "INDEXREG"

entry.
The operand of the WORKAREA entry is the label
of the work area used by the input or work file. track of the file defined by this DTF is track 2549
stored in Disk Unit 1, which is attached to Channel
2 of the system.
FILESTART
EOFADDR
This entry is needed only for sequential files. The
operand of the FILESTART entry is: This entry is required for sequential files only.
XXXxXxxx where "xxoxxxxxx'' are eight digits defin- The operand of the EOFADDR entry is the label of
ing the first track of the (sequential) the routine (written by the programmer) to which
file, as indicated in Figure 82. control is to be branched if the program develops an
address exceeding that defined by the DTF "FILEND"
entry.
. WLRADDR
Figure 83.

The operand in Figure 83 indicates that the first This DTF entry, when used for a disk file, elimi-
track of the file defined by this DTF is track 2415 nates the normal wrong-length record checking per-
with HA2 of 80 in Disk Unit 1, which is attached to formed by the IOCS for that disk file. It is useful
Channel 2 of the system. if the programmer is expecting a wrong-length re-

cord indication and wishes the IOCS to ignore it.
FILEND The operand in the disk 'WLRADDR' DTF entry is

'NO', to indicate that no checking is to be done.

This entry is needed only for sequential files. The

operand of the FILEND entry 1is: NOTE: The use of the '‘WLRADDR' DTF entry
xxxxxxxx where "xxxxxxxx'" are eight digits defin- for files assigned to disk storage is different
ing the last track of the (sequential) from the use of this entry for any other type
file, as indicated in Figure 84. of device.

The DTF Entries 51

DA (DEFINE AREA) ENTRIES NEEDED TO SUPPORT THE 1301 I0CS

All areas required by the 1301 IOCS (i.e., Trans- In Figure 85,

action Stacking Areas, Disk Record Holding Areas, N indicates the number of identical segments

and Holding Area Control Records) must be re- to be reserved;

served by the programmer by means of appropriate M indicates the number of positions to be

DA entries. (A general discussion of how DAs are reserved for each segment;

written may be found in the IBM Data Processing G specifies that a group mark with word mark

Systems bulletin, '""Basic Autocoder for the IBM 1410: (needed by the 1301 IOCS) is to follow

Preliminary Specifications,'" Form J24-1413.) All immediately to the right of the area reserved

such areas must be terminated by a group mark with by this DA, and -

word mark immediately to the right of the low-order INSTACKX 1is the label (name) of the index

position of the area. register assigned to the Transac-
The following describes how DA entries are writ- tion Stacking Area. See the 1301

ten for the Transaction Stacking Area for Disk Rec- IOCS "STKINDEX" entry, and

ord Holding Areas. | Figure 39.

DA ENTRY FOR THE TRANSACTION STACKING NOTE 1: For applications requiring more than
AREA one disk routine, the number of segments N

should be calculated by the following formula:

Each 1410 program written for random processing _Op_ _
N ===, where:

that is to utilize the IBM IOCS requires one Trans-

action Stacking Area. The Transaction Stacking Op = Operand of the DIOCS "RNDMDEPTH"

Area permits the '""stacking' of incoming transaction entry, and

records for use by the disk routine(s). S = Number of SEEKS per transaction that can
NOTE: The segment of the Transaction Stacking be executed simultaneously.

Area assigned to a given transaction may also
be used for storage during the processing of the
transaction. Information so stored will be
protected until the segment of the Transaction
Stacking Area is released. Information stored
by the disk routine in any other field in storage

might be destroyed during the processing of
another transaction record. See Figures 4 and>5.

NOTE 2: If variable-length transaction records
are to be moved to the Transaction Stacking
Area, each segment must be large enough to
hold the maximum-size record.

NOTE 3: Each segment must contain a location
for the record mark or the group mark with
word mark that terminates the move operation

The DA entry for a Transaction Stacking Area is and is moved together with the input informa-

of the form shown in Figure 85.

tion.
NOTE 4: The word marks specified for Fields 1

6 Lobe! '5 2 and 3 are needed only if Ii?he programmer
”m*"*"’ﬂ*‘* : a Lol AEL desires to move data to the Transaction

A; Z Z’; Stacking Area by actual move commands.
E T el D :« -m NOTE 9: The label of the DA statement is used to

, describe the area in the DIOCS "STKAREA"
Figure 85 . entry.

2

DA ENTRIES FOR DISK RECORD HOLDING AREAS

Each program utilizing the IBM 1301 10CS requires
one Disk Record Holding Area for each disk file

used by the progré.m. The Disk Record Holding
Areas are used for the storing and processing of

information obtained from disk storage.

Each Disk

Record Holding Area must be reserved by the pro-

grammer by an appropriate DA entry.

The size of each Disk Record Holding Area (i.e.,
the number of segments of the area and the size of

each segment) depends on the record format and the
type of application. The number of segments re-

DISKAREA —>» 30-Position Area Required by the 1301 IOCS

1st Segment of the Disk Record Holding Area

quired has been described in the discussion of the
DTF "HOLDAREA!" entry.

Figure 86 indicates the general format of a Disk
Record Holding Area. As indicated in Figure 86,
each segment of the Disk Record Holding Area must
be preceded by a 30-position area required by the 1301
IOCS. Each segment must be followed by a loca-
tion for a group mark with word mark to be inserted

by the 1301 IOCS. (See OPEN macro-instruction and
Figure 14.) The entire Disk Record Holding Area

must be followed by one location for a final group
mark with word mark that must be specified by the
programmer.

GCM w. WM

30-Position Area Required by the 1301 JIOCS

2nd Segment

GM w. WM

30-Position Area Required by the 1301 IOCS

3rd Segment

GM w. WM

30-Position Area Required by the 1301 IOCS

nth Segment

Figure 86. Format of Disk Record Holding Area

GM w. WM
GM w. WM

DA Entries Needed to Support 1301 IOCS 53

The size of each segment of the Disk Record Hold-

ing Area depends on the record format and the mode

in which the information is to be read or written.
See Figure 87.

Figure 88 shows an example of the type of DA

entries that must be written for a sequential disk
file containing three 65-character records per block

that are read and written in the MOVE mode.

See

also section on '"Move Mode vs. Load Mode. "

Figure 87. SIZE and USE of the segments of Disk Record Holding Areas

Line

NOTE 1: The group mark with word mark for each
block and the word marks for the second and

third blo¢ks are provided by the OPEN macro-

Total number of positions
which must be reserved

Record Format and Mode
by that programmer for

each segment.

Full TRACK, MOVE

3

°4.°

™

™~

Q
™

+._
.-
~
D
B
L
| &

\
™~

instruction. See description of the OPEN
macro-instruction, including Figure 14.

NOTE 2: All random files must be indexed (rela-
tive to zero) with the indexing register specified
by the DTF "INDEXREG" entry.

NOTE 3: Information in sequential files may be
either indexed or moved. See description of

the GET macro-instructions.

DA ENTRIES FOR HOLDING AREA CONTROL
RECORDS

See description of the GETS macro-instruction.

Use of the Reserved Area

e g

For Disk |
For IOCS Control For
Disk Data Information GMw., WM

£.L.0.2

ol

o »

Figure 88.

54

7 A.l.0.c K, PRo,»¥

p E._ S EcomD 8LocK AND |

ADDITIONAL INFORMATION FOR PROGRAMMERS

THE SIZE OF THE 1301 I0CS ROUTINES USE OF INDEX REGISTERS

The approximate number of storage locations re- Index Registers X13-X10 are used by the 1301 10CS,

quired by the 1301 IOCS Routines are as follows: and their contents may change each time a macro-
Single Reference Routine: 2, 500 locations instruction is encountered. The programmer may
Random-Processing Routine: 3,000 locations use these index registers, but he should consider
Sequential-Processing Routine: 1,000 locations the effect of the above on his program.
Error Routines: 3, 500 locations

See Figure 11.

Form X24.1350-1
IBM Printed in U.3.A.
Progrc:m - INTERNATIONAL BUSINESS MACHINES CORPORATION Ildentification %M‘BE,D
Programmed by — ————— IBM 1401 AND 1410 DATA PROCESSING SYSTEMS Page No. &Ll of _2¥
Date AUTOCODER CODING SHEET K
Label | . O‘PERAND N g 20

WJ—N—JGLLIELI /S Y W W I_IilllMQJL-IE MV—IELML_J_]A J T W W T N W |
r.sr ~ _li_l___liL_,[llL__lﬂlale'I‘IMQI JL.E-ELEI—L———L-JILIllIrLJLI—‘I‘IL——L'—L

ST LJL_A_M_JlJL;L#_JMJﬁfﬂJfl@LSLanLQLLJt

OPERAND

H 1

b

- r
14 /| AL/ vald ‘-'.-r' WS WU W G W R W S U

P x 7.20,,0,,. X T H oF SEGMENT, WITH Z o o o o v s wss s

e ok 7.“4“_4_,_._._._4_.51.&1:.142.5&.!4111:&.&& ZMES.EJQKMM
VL WESCER A 10, .50 1Le BE PLBCED TN E£ACH SECMENT, ©F THE
e lunIrcest | e HetD LG AREA.. TLHE 30 .CHAR STt REP . (...
3, WRCAT ION, . | . ., 1@%@@@&@%&&@& bt b da
‘e, _I_L,L_.L_l_.ll_l L RGP LISA L SEGCILENT (o0 v 4 o b3 4 bt odbd b i b b skl

s o . i . IpA. ., léx 0., .2 DEFINIT.ION. OH6F HeLDING RREA. e
| .6...... R.‘J-—[_;E_E_. | Ha.-..,a._.:.. ! 9 W B N S MMMLJ Jﬂ._Ll P—Jhglg-él-ﬂlql_._b._l_ P W SIS GH S WU

VLT Y G.—i.._-_L_:.._L_J i :DC'._.T.L...L_ e — i L@

. . -~ .
' 'B - o ek . A " M - v - M W — Y T N— A WY WU S RPN N T SH SN U NN S S S S

Figure 89,

Additional Information for Programmers

m:': WS WY TR N NS WY N |) D W NN W SN W SO W U N W S N
_ ' 50, T, AU u,F.D.A 7, 2 N, O -k £ .
PRI NT. LY
44_]_‘__..__|__A__.I__L_I-L” ME_EI_J_J_L_I——I—I—L—J——IILIIJLLll,L_Ll;
Form X24.1350-1
Printad in U S A.
INTERNATIONAL BUSINESS MACHINES CORPORATION IdentlfICﬂfIOﬂ m.ﬁL.EJ
IBM 1401 AND 1410 DATA PROCESSING SYSTEMS Page No. M o
AUTOCODER CODING SHEET

39

Form X24-1350-1
Printed in LU.3.A,

Identification %ﬂ.ﬂbﬁ
Page No .03 of _O%_

INTERNATIONAL BUSINESS MACHINES CORPORATION

IBM 1401 AND 1410 DATA PROCESSING SYSTEMS

AUTOCODER CODING SHEET | 2
OPERAND
5{6 1516 ' 440 45 50 58 = 60 89 J
0.1, H : K ad LE. g.KP = <.ON. DO 2 LS. A RECORD AN} + NN |
o M I ‘ E‘I.E U E'C C m l-rplllll; |Q|l15|‘$| |‘;EiCIe|R| EII [U U
mm: HHE- K, (€ =~ A s K.E F.OK dit S VY S SN SR SHEY WA WA S S S T T SU T GH WAL S T S SN W S S S G S—
o, ISTAET. | . . . loPEN |REAPER MAST.ELELLE, RELOF v L £
0.7, IREADCARD. . IGET. . |READER. . . .+ READ T.RAL oV, RECORTD e
. . ; ad AL i ﬁl-' / e [i i ! [G VU T W SN S S W G
I
0’ _h' 6" z llll | U R T W DA R U S VNN SR S S N S|
o | B.. ..l& 9RD. . . : 2ol _ R4
i
l;';_ L E > ur ;m:' u P 1 1 U R WS W | L1 R | L 3 [T T i i L 3 i
N E / i] ; !- “ : TEFI-—LE] '; i L L E; 1H1L1L4 LE.LLLLEL_-SI L i [S W
|
H‘_J_L—_L-JI m' G B I T W T S S N N T S SN W VR S SN NI SO S AV S W W W W WS B Y
|
4 d 1 d "i " . | L_LJIWM_I_I_l_L_l_L.J—I—L—L_L_L_;LQ_I_.LJJ VD O W W SV N S T E——
| - - ”~
(.5, | PCw & e 2 . NEGRD MAORKE 1 £ LA i i

INTERNATIONAL BUSINESS MACHINES CORPORATION

AUTOCODER CODING SHEET

IBM 1401 AND 1410 DATA PROCESSING SYSTEMS

Form X24-1350-1
Printed in U.S.A.

ldentification .__‘ﬂf._i L__an,
Page Nn.I.QIHI of oY

OPERAND

CODING EXAMPLE

The following coding example illustrates the incor-
poration of the 1301 IOCS into a 1410 program. It
illustrates a parts-inventory application. The
inventory file is updated on the basis of transaction
records showing receipts and disbursements. The

program also calls for the writing of a report show-

ing the warehouse location and retail price of each
part listed under disbursements. See Figures 89 and 90.

This type of application has been described
above under ""Random Processing."

MODIFICATION OF 'SEEK-ONLY' OPERATIONS
WHILE SEEK IS5 IN PROGRESS

The programmer can modify an initiated SEEK op-
eration by taking three steps before the completion
of the SEEK. He must:

1. mask priority interrupts by means of the
Branch to Exit Priority Alert (mnemonic op-
eration code BXPA) instruction;

2. check the specified switch for completion of

the SEEK operation (See formats C and D of
the GETS macro-instruction), and

56

L1 & 3 1 i 1 1. o1

I-l-Hl".l.*L_._I__.lj_l_L_l]_

r - . -
A FRr i H
oo RETURN, Teo LRIN LINE . . o i sovso s,

3. change bit position 2 from ON to OFF. (ONis
indicated by the presence of a bit; OFF is
, indicated by the absence of a bit.)

This will cause completion of the SEEK operation
to be followed by the operation specified by the
D-modifier.

This technique enables the programmer to initiate
the SEEK operation and while the SEEK is in prog-
ress determine by processing whether the SEEK is
to be followed by a READ or WRITE operation.

In each case, the turning OF F of bit position 2 will in-
volve a change of the character entered in CODE (position
6) of the Holding Area Control Record. See Figure 91.

Let it be assumed, for example, that the prog-
rammer placed a W into DMODIFIER, and a K into
CODE. In this case the presence of the 2 bit (BCD
representation for K = B2) indicates that only a SEEK
operation is to be performed. (See explanation of
the CODE entry in the Holding Area Control Record.)

If the programmer determines by processing
(while the SEEK is in progress) that the SEEK op-
eration should be followed by a disk READ opera-
tion with wrong-length-record checking by IOCS, he
need only change the contents of CODE from K to
- (minus sign). The elimination of the 2-bit in

CODE now causes the SEEK to be followed by the
operation specified by the contents of the DMODI-

FIER entry (in this case a READ operation) followed
by a wrong-length-record check provided by IOCS
because of the presence of the B-bit. (The BCD
representation of the minus sign is a B-bit.)

I0CS LABELS THAT MAY BE USEFUL

IOCSxxBFLD - A seven-position field containing the
module number and six-position disk address for a

sequential track file. It may be altered to control
changes in the '"sequential" order.

IOCSxxDKAD - A four-position field containing a
track address for single-record files.

IOCSxXINCR and IOCSxxCONS - These two fields are
used to insure accessing the first record of a new

track address in single-record files the maximum
number of times after a change to 'IOCSxxDKAD'.

A ZA IOCSxxXINCR, IOCSxxCONS instruction must
be given when accessing records from other than

the next sequential track. The maximum number of
times data may be accessed from a track is equal to
the number of data records on that track, as defined
in the 'NRECORDS' DTF entry.

'TOCSxxSTRT' - An eight-position field that contains
the information supplied to the IOCS by the user's
'FILESTART' DTF entry. The field may be modi-
fied at any time; however, the change will not be in
effect until an 'OPEN' macro-instruction has been
executed for that file.

'"TOCSxxEND' - An eight-position field that contains
the information supplied to the IOCS by means of the
user's 'FILEND' DTF entry. It may be modified at

anytime; however, it must be greater than the cur-
rent address as given in 'IOCSxxBFLD' or

'TOCSxxDKAD'.
The 'PREFIX' macro-instruction may be used to

define xx in the above labels.

GLOSSARY

The following Glossary is restricted to basic terms
used or introduced in this bulletin.

Disk Record Holding Area. A work area, used by
the 1301 10CS, in which records obtained from disk

storage are temporarily retained for processing
and /or subsequent return to disk storage.

Disk Routine. A series of object-program instruc-
tions needed to obtain or process disk-storage data.

Holding Area Control Record. A body of control
information defining the specific operation to be
performed by a GETS or PUTS macro-instruction.
This information must be entered into core storage
_- in an area reserved by the programmer for this
purpose -- before the associated macro-instruction
is encountered by the program.

Random File. A file of information contained on
disk storage for use in a RANDOM PROCESSING

application.

Random Processing. Processing of disk records of
uniform format and belonging to specific files in any
(arbitrary) order of addresses.

Sequential Processing. Processing of disk records
in the order of ascending addresses.

Single-Reference Processing. Processing of disk

records of any format (and located anywhere in disk
storage) in any (arbitrary) order of addresses.

Transaction Stacking Area. A work area used by

the 1301 IOCS to store transaction records for sub-
sequent processing and updating by the Disk Rou-
tine(s).

Disk Operation
CODE-Field Entry
to be performed

SEEK only
WRITE Disk Check

SEEK + Write Disk Check
SEEK + Length Check

Wrong-Length -Record Check

write Disk Check + Length Check
SEEK + Write Disk Check + Length Check

= N

02X O

Figure 91. BCD Characters entered in COPDE field of Holding Area

Control Record

Additional Information for Programmers S7

INDEX

Advantage of the 1301 IOCS 19

Assembly of 1301 IOCS 5,20
Assembly of programs using the 1301 IOCS

Block Character-Count Field 43,90
"BLOCKSIZE" DTF Entry S0

Card/Tape 1I0CS 18
Channel Scheduler 18,19
"CHANx" DIOCS Entry 40
CLOSE macro-instruction 22
Coding example S56

DA's for Disk Record Holding Area 53
DA's for Holding Area Control Record 52
DA's for Transaction Stacking Area S2
Deblocking of disk records 19
Dependent Disk Routines 13,14
DIOCS "CHANx" Entry 40
DIOCS "DISKARMS" Entry 42
DIOCS "DISKOPTION?" Entry 42
DIOCS Entries

general 40

list of 10
DIOCS "FEATURES'" Entry 40
DIOCS, general format 40
DIOCS header line 40
DIOCS "IODEVICES" Entry 40
DIOCS "NORCDEXIT" Entry 43
DIOCS "PROCESTYPE" Entry 40
DIOCS "RNDMDEPTH" Entry 41
DIOCS "SGMTLENGTH" Entry 42
DIOCS "STKAREA" Entry 41
DIOCS "STKINDEX" Entry 42
Disk Arm Scheduler 18,19
"DISKARMS" DIOCS Entry 42
"DISKCHECK" DTF Entry 48
"DISKOPTION" DIOCS Entry 42
Disk Record Holding Area

definition (see Glossary) S7

general 11
number of segments of 46,53, 54
size of segments of 46,53, 54

Disk Routine

general 9
definition (see Glossary) S7
dependent 13-15
independent 13
DTF "BLOCKSIZE" Entry S0
DTF "DISKCHECK" Entry 48
DTF Entries
general 414
general format 44
list of 44
DTF "EOFADDR" Entry 51

DTF "FILEFORM" Entry 47
DTF "FILEND" Entry Sl

o>8

5,20

DTF "FILESTART" Entry 51

DTF "FILETYPE" Entry 44
DTF Header Line 44
DTF "HOLDAREA?" Entry 46

DTF "INDEXREG" Entry 10
DTF "NRECORDS" Entry 50
DTF "PADDING" Entry 51

DTF "RECFORM?!" Entry 48
DTF "SCRAMBLE" Entry 48
DTF "SIZEREC" Entry 45
DTF "WORKAREA" Entry 51

ENTDR macro-instruction 24
"EOFADDR" DTF Entry 51

"FEATURES" DIOCS Entry 40

"FILEND" DTF Entry 51

"FILEFORM" DTF Entry 47

"FILESTART" DTF Entry 47

"FILETYPE" DTF Entry 44

Form-1 Records 49

Form-2 Records 49

Form-3 Records 49

Form-4 Records 49

FSEQP macro-instruction 27
additional functions of 28

GET macro-instruction 24
GETS macro-~instruction 30
Format A 31
Format B 33

Format C 33
Format D 35
Glossary o7
Group Marks inserted by OPEN macro

"HOLDAREA" DTF Entry 46
Holding Area Control Record
for GETS macro-instruction 30

for PUTS macro-instruction 30, 35

Independent Disk Routines 13
"INDEXREG" DTF Entry 46
Index registers, restrictions 55
In-Line Processing 7

IOCSDSKAD, location labeled 25

LEVDR macro-instruction 29
"Load" Mode 47
Machine requirements 5
Macro-Instructions
list of 11,21
summary of 13
Main Routine 9
"Move" Mode 47
MVRSA macro-instruction 23

21

—

"NORCDEXIT" DIOCS Entry 43
“NRECORDS" DTF Entry 50

OPEN macro-instruction 21
Operation-Complete Switch
for GETS macro-instruction 33
for PUTS macro-instruction 37, 38

"PADDING" DTF Entry 51
"PROCESTYPE" DIOCS Entry 40

PUT macro-instruction 26
PUTS macro-instruction 35-39

Format A 37
Format B 37

Format C 37
Format D 30

Random File (see Glossary) S7
Random Processing

definition (see Glossary) 57

general 6,19
Read-error treatment 32
'RECFORM!'" DTF Entry 48
Record Address 49
Record Character-Count Field 49, 50

Record formats 49
Release of segments of Disk Record Holding Area
Requirements (see Machine Requirements) S

WRNDMDEPTH" DIOCS Entry 41

"SCRAMBLE" DTF Entry 48

SEEKS
modification of 'Seek-Only' operations 56
simultaneous execution of several 19

11,28

Segments of Disk Record Holding Area

general 10

number required 46, 53, 54

size required 46, 53, 54
Sequential File

definition (see Glossary) o7
Sequential Processing

definition (see Glossary) 57

general 6,19
"SGMTLENGTH?" DIOCS Entry 42
Single-Reference Processing

general 6,19

Method 1 16

Method 2 17

Size of 1301 IOCS Routines 55
"SIZEREC" DTF Entry 45

"STKAREA" DIOCS Entry 41
"STKINDEX" DIOCS Entry 42
SWITCH Operand
GETS macro-instruction 33
PUTS macro-instruction 37

Transaction Stacking Area

definition (see Glossary) S7
general 9

size of 41

WAITS macro-instruction 39

Word Marks inserted by OPEN macro-instruction

"WORKAREA" DTF Entry 51
"WLRADDR" DTF Entry 51

Work Areas, release of by FSEQP macro-instruction

Write-error treatment 33

27

Index

99

C28-0251

BV

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

"V *S *Nl Ul pajuLiyg

1620-820

R AR A =T

Tumr g

:.

	p001.tif
	p002.tif
	p003.tif
	p004.tif
	p007.tif
	p008.tif
	p009.tif
	p010.tif
	p011.tif
	p012.tif
	p013.tif
	p014.tif
	p015.tif
	p016.tif
	p017.tif
	p018.tif
	p019.tif
	p020.tif
	p021.tif
	p022.tif
	p023.tif
	p024.tif
	p025.tif
	p026.tif
	p027.tif
	p028.tif
	p029.tif
	p030.tif
	p031.tif
	p032.tif
	p033.tif
	p034.tif
	p035.tif
	p036.tif
	p037.tif
	p038.tif
	p039.tif
	p040.tif
	p041.tif
	p042.tif
	p043.tif
	p044.tif
	p045.tif
	p046.tif
	p047.tif
	p048.tif
	p049.tif
	p050.tif
	p051.tif
	p052.tif
	p053.tif
	p054.tif
	p055.tif
	p056.tif
	p057.tif
	p058.tif
	p059.tif
	p060.tif

