Systems Reference Library

IBM 1410 Autocoder

This publication describes the Autocoder programming
system for sy 1410 Data Processing Systems. The
Autocoder language and the method of preparing and
using macro-instructions and subroutines are discussed.
Also included is a detailed description of the pseudo-
macro-instructions that provide flexibility in coding
the library routines for macro-instructions.

© 1961, 1963 by International Business Machines Corporation

File No. 1410-22
Form C28-0309

RevisioN (April, 1963)

This publication supersedes the 1BM 1410 Data Processing
System Bulletin, Autocoder — Preliminary Specifications, Form
J24-1433-2, and related Technical Newsletters N28-1006, N28-
1015, N28-1024, N28-1032, N28-1042, and N28-1047.

Copies of this and other 18M publications can be obtained through 18M Branch Offices.
Address comments concerning the content of this publication to:
1BM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N.Y.

Introduction 5
Prerequisites 5
Machine Requirements 5
The Coding Sheet 5
Condensed Card Format 7

AddressTypes 8
Blank 8
Actual 8
Symbolic 8
Asterisk (*) 8
Literals 8

Address Adjustment L 10

Index Registers 10
Index Register Reservation 11
Autocoder Coding Examples 11

Declarative Operations 12
pcw — Define Constant with Word Mark 12
pc — Define Constant (No Word Mark) 13
ps — Define Symbol 13
DA — Define Area 13
EQu—Equate 15

Processor Control Operations 17
joB—Job 17
Eject — Eject 17
RESEQ — Resequence 17
roab—Load 17
RUN—Run 17
ctL—Control 17
ORG—Origin 18
LTORG — Literal Origin 19
Ex—Execute L 19
XxFR— Transfer 20
spx—Suffix 20
psT — Print Symbol Table 20
ENb—End 20

Diagnostic Aids 20

Imperative Operations 21
Codingooovivi i 22
Data-Move Instructions 22

Contents’

ssF — Select Stacker and Feed. 22
Magnetic Tape Commands 23
Disk Commands 23
BZN — BranchonZone 23
BWZ — Branch if Word Mark, Zone, or Both 23
BCE — Branch if Character Equal 23
BBE — Branch if Bit Equal 23
cc — Control Carriage 23
p—Punch 23
R—Read 23
Input/Output Commands 24
NopwM — No Operation Word Mark 24
BEX] or BEX2 — Branch on External Indicator 24
The Macro System 25
Definitions of Terms 25
Macro Operations 25
The Library Entry 25
INSER —Inmsert 27
Model Statements 27
Macro Instructions 28
Pseudo-Macro-Instructions 29
Permanent and Temporary Switches 29
MATH — For Solving Algebraic Expressions 30
BooL — For Solving Logical Expressions 31
comp — To Compare Two Fields 33
NOTE — To Produce a Message 33
MEND — End of Routine 34
Pseudo-Macro Coding Example 34
CallRoutines 35
CallMacro i 36
IncldMacro oo 37
Macro Processing 39
pELET —Delete 39
INSER —Imsert L. 39
Mnemonic Operation Codes 41
Declarative Operation Codes 41
Processor Control Operation Codes 41
Imperative Operations 41

AUTOCODER is an advanced symbolic programming
system for the 18m 1410 Data Processing System. It sup-
plements and extends, but does not replace, the Basic
Autocoder for the 18M 1410. .

A more powerful language than the Basic Autocoder,
the 18M 1410 Autocoder can process macro-instructions,
and reduces card handling by using magnetic tape or
disk storage for program manipulation during assem-
bly. The Autocoder processor can assemble programs
designed to operate on all 1BM 1410 systems. The
macro-instructions described in the IBM 1410 Input/
Output Control System for Card and Tape Systems:
Preliminary Specifications, Form]28-1432, can also be
used when coding in Autocoder language.

With Autocoder, the user can provide library routines
for operations that are common to many source pro-
grams. These routines are extracted from the library
and tailored automatically by the processor to satisfy
particular requirements outlined in the source program
by the programmer.

1BM 1410 Autocoder consists of two major parts: the
symbolic language used by the programmer, and the
processor program that translates this symbolic lan-
guage into actual machine language and assembles
the object program automatically. This publication con-
tains the language specifications for 1BM 1410 Auto-
coder.

The Autocoder language is composed of mnemonic
operation codes used to perform operations falling in
the following categories.

1. Declarative operations

2. Processor Control operations

3. Imperative operations

4. Macro operations

The Declarative and Processor Control operation
mnemonic codes direct the processor program. These
codes are not translated into machine language, and
do not appear in the object program. Imperative and
macro operation mnemonic codes are translated by the
processor program into machine-language operation
codes that constitute the object program.

This publication contains sections treating each of
these categories of operations in detail.

Prerequisites
To use Autocoder, the programmer should be familiar

with the material contained in the manual, IBM 1410
Principles of Operation, Form A22-0526.

Introduction

Machine Requirements

The Autocoder processor can assemble object programs
for all 1BM 1410 systems. The Bulletin, IBM 1410 Proc-
essor Operating System using Magnetic Tape and IBM
1301 Disk Storage; Preliminary Specifications, Form
J28-0243, specifies the machine requirements for as-
sembling programs written in the Autocoder language.

Coding Sheet

The 1401/1410 Autocoder coding sheet (Figure 1) is
free-form (the operand portion of each line is not sub-
divided into fields), thus allowing the programmer in-
creased coding flexibility.

All Autocoder entries are entered on the Autocoder
coding sheet. Column numbers on the coding sheet
indicate the punching format for all input cards in the
source deck. Each line of the coding sheet is punched
into a separate card. If the source program is entered
by magnetic tape, the contents of the cards prepared
from the coding sheet must be written in one-card-per-
tape-record format. The function of each portion of the
coding sheet is explained in the following paragraphs. -

PAGE NUMBER (COLUMNS 1 AND 2)

This two-character entry provides sequencing for cod-
ing sheets. Any alphamerical characters may be used.
Follow standard collating sequence for the M 1410
when sequencing pages.

LINE NUMBER (COLUMNS 3-5)

A three-character line number sequences entries on
each coding sheet. The first 25 lines are prenumbered
01-25. The third position can be left blank. (Blank is
the lowest character in the collating sequence.) The
five unnumbered lines at the bottom of each sheet can
be used to continue line numbering or to make inser-
tions between entries elsewhere on the sheet. Use
the units position of the line number to indicate the
sequence of inserts. Any alphamerical character may
be used, but standard collating sequence should be
used. For example, if an insert is to be made between
lines 02 and 03, it could be numbered 021. Line num-
bers do not necessarily have to be consecutive, but the
deck should be in collating sequence for sorting
purposes.

The programmer should note that insertions can
affect address adjustment. An insertion might make it

5

necessary to change the adjustment factor in the oper-
and of one or more entries. See “Address Adjustment.”

LABEL (COLUMNS 6-15)

Labeling is a method of providing meaningful alpha-
merical symbols for storage locations, constants, and
instructions used in a program. All labels are assigned
actual core-storage addresses during the assembly of
an object program. When an entry is assigned a label,
the programmer can refer to that entry symbolically
by putting the label in the operand portion of a sub-
sequent source program statement. Thus, the program-
mer need not concern himself with actual addresses
of data and instructions, but must remember only the
symbol which represents that address. Labels should

be assigned only if subsequent reference to the items
they represent is needed, because unnecessary labels
delay the assembly process.

Autocoder labels can be symbolic'or actual. A sym-
bolic label can have as many as ten alphamerical
characters, but the first character must be alphabetic. -
Special characters are not permitted in the label field.

Symbolic labels are written left-justified in the label
field except as described in “pc” or “pow.”

Actual labels are always written left-justified in the
label field. This actual address refers to the high-order
position of the instruction, constant, or defined field. .
Actual labels have no effect on the address assignment
counters. ,

IBM FORM X24-1350-)
PRINTED IN U.S.A.
Program e
Identification oo
Programmed by 140]/1410 AUTOCODER CODING SHEET 76 80
. Page No.Li_l of
Date 12
Line Label peration OPERAND
1B 5|6 I 1516 20021 25 30 35 40 45 $0 55 60 65 70
(L S e . IS U Y S N T WU s 4 L P Lt L P 1 - "
| .
0.2 PSSR S R P U DR VO VAV HS S S S U VA ST R PO N S T U T I U I R RS WU U G ST
|
0.3 R - . " . P U S S S S U S S S S T WA VAW S S N
|
9.4 Caa s . - PP T S S S S U WA S PR W S S S W R WA N VO T SO WU WU VA W U W S S SO RS S S ST S S
i
05, FROE NN 00 S S S GR RS N S " PR N S S T | PR Y WA WU NV SO0 YOI N N S N (N A S T Y WA GOt U T S A VU Y S S PR
I
06, | o v v al —l P S IS PR U W S0 S T T S N S VS T S T SN S ST A S S S SO S WS ST VOO S SR S W S
|
L7 A APPSR U SR SRV WITIN TR SR S S SN S S S P L S U S S S S S S S S S S U S ST WO AT W W
[
08, P N W S S N N S A DY TR S SR VR
1
3% T NS B PP ST R TS S WU SR U US Y ST SN A VT SHNT U U WA TR WY SO SIS T ST VA0 WD VA WO A T St
|
1o PR P ' s PR (I PRI 1 P W1 L UGS WG S NS S W U T S U S G S U S | U S W SN NS S 00 DU G S Y St
)
LIV ST S NSRS R N OO S S U WSO Y D SO S S VA S S P U S U S S G
|
1.2, PSR N R I TS S T U S U S G VY 1 TR WENS U WA WY TR U TN TN WA TS N W SN0 WS WS VNN TOU0 WU TVU0 ST S WO S N ST S WA S S G V'Y
\
V30 e by U WY TS WO T S WY TR SR TN WA S S S 1 P S WY SN WO S LN Y S T S0 T S S U N S S SR S S S SR SR R S
b
1.4, PRNYEID U S S S YD N TN SURT TG TR O U S D S W VT ST S T S ST U N S § YD VAT T SN S W U ST SN VAN U SO S T R A S ST VO S AT US WA S ST U0 WY S ST WA WO S S
i
1.5, TS T S S kL PUNE W0 WA U NN W0 WS S N T S S S S R INC TN S S S S WA TS S S U SO S P IO ST W R W W VYT Y
|
[P0 NN B B BTN T S S SN P S S U S S S S S S S S S S SO S S S ST S
[
[0S0 ST BT S RS U S U N S S G SN T AU AT SRS A SN SN W WA VA U SN WU ST SO T Y S S T S ST SRS SO T S S S U T S
!
1.8, NSO T RN PR T S S G S S WSS U TR N | TR U W U S ST G YOV RN VU WA N TS UL ST S G S VU 0 S UURS N ST YU I SN SN S S U S S|
!
1.9 PSRRI W " PR L PR T PR U SO SN WU T | PRI W VD YO SN N YD VNUN T NN S VD S ST S S S S S A1 1 D SR S S S G
|
20, Voo v i b g TN WSS W WD T Y U W W S NI IS T Y T WA T VAT G S S TS WA D U S S T S S N WOV U TS SO U S WU S SO U I
b
2,1 YR S T S T S Ly PR VD WS U SN SN0 VR TR S S S T S P US WS TN TN TS TS U0 N VA0 W W0 T RS SN LA SO WIS VURD T SO0 AT W S S WO St PR
o
2.2, PSSOV SRS VU T SN ST N U VU WA TN T SN S GRS ST S S N0 S NN T S S U PRTUS WS WS U0 SN TR WA S0 SN T SO0 W Y S S S SN0 S S T SN0 WO S S WO S A S S T S WY
i
238, 1 ey L R U W S N S W S} DY I SR TS Y S W 1 FYURTIONN TN TR S S D NS TN NS H R S U (S WD DU HSN UUNU TS0 NS VU0 W, GRG0 S WD SN N U S0 W W S
|
2.4, IS T S —t T T SO T S U G SR U S S | PRY S U TN U YONY VNS YU G0 D NS W AN N WO N S T S WA SN U U VU U0 WS (N M W Wt
Lo
2.5, RS SRS S NN WA VUSRS WO Sons IS PR OO VUG (N S GO SN0 NS U0 WA S (0 WD NN NS T (S S | IR UR W SR VUMY VN IV NS S GRS SN (NS YOO U U (R SN GO (NN NN U SO VUPUR Y S SR U WA VAU LA S e ¢
|
PO VYT S S S S PRI S U TS U S S S S S N S S TN ¥ PR S N WO VRN WU TN D S WO S WU UM S S UURY UURN SO SO SO0 SUAS N0 1000 AP SN VAN S G U WA W
i
T S VO S0 W T W L Lloi YO0 NS U DO W T SO U S W S I S W | U R W S S S D AT RN VUNS NUNS T TR SN0 WA U S U U S SN WA 6. S ENUAY S DU U0 SO S S S
|
P L I PRIt NS TR GRS T W WS S U S T S S S W | U 0N T S DN SIS S U U S SN W S WD W S Eou SO Ul AV WD WSS Y WS S B e
[
I G T T W B Ll PR S | FU S S S S WS S | FU IR TN SUC RN S U WS G U HUN N0 SN NV UURS S N (NS TN SN SNUVR TR NN SO SOV SRS SO S WS WS S
'
Fu— PSSV Y | L Aid) [T B R | AN IR US WD U S WA S S S U | PR I L T -

Figure 1. 1M 1401/1410 Autocoder Coding Sheet

6

N

OPERATION (COLUMNS 16-20)

The operation field contains the mnemonic (easily
remembered) operation code for an actual machine-
language operation code. (See “Mnemonic Operation
Codes.™) ‘ :

Several machine-language operation codes require
operation modifiers (d-characters). With a few excep-
tions, these d-characters are incorporated into Auto-
coder mnemonics and do not have to be coded on the
coding sheet. Thus, a single machine-language opera-
tion code may have two or more mnemonic equiva-
lents. For example, the machine-language op code V
(test for word-mark or zone and branch) has three
mnemonic equivalents: BW (BRANCH IF WORD-MARK),
BZN (BRANCH IF ZONE), and BWZ (BRANCH IF WORD-MARK
AND/OR ZONE).

OPERAND (COLUMNS 21-72)

The operand field in an imperative instruction contains

the actual or symbolic addresses of the data, literals, -

or address constants to be acted upon by the command
in the operation field. Address adjustment and indexing
can be used in conjunction with these constants.

The Autocoder coding sheet has a free-form oper-
and field. The A-operand, the B-operand, and the
d-character must be separated by commas. If address
adjustment or indexing or both are to be performed,
these notations must immediately follow the address
being modified. Figures 3 and 4 show typical Auto-
coder entries. 4

COMMENTS

A comment can be included in the operand field of an
Autocoder statement. At least two spaces must separate
it from the last character of the operand.

Entire lines of information can be included any-
where in the program by using a comments card. In
such a card, containing comments only, the program-
mer must put an asterisk in column 6. Columns 7-72
can then be used for the comment itself. Comments
inserted in this way appear in the symbolic listing but
produce no entry in the object program.

IDENTIFICATION (COLUMNS 76-80)

This entry identifies a program or program section.
This identification number, when used, appears in the
object deck as described in “joB.” The areas labeled
Program, Programmed By, and Date are for the con-
venience of the user, but are never punched.

Condensed Card Format

The machine language program produced by the Auto-
coder processor is punched into cards or placed on
magnetic tape in card-image form, following the format
shown in Figure 2.

CARD COLUMN CONTENTS
1 [Word separator character (0-5-8 Punch) N
2 |x }
x xxxxx = Low-order address of the area into which the data in -
X columns 13-72 is to be loaded.
X
6 |x
7 {Word separator character
8
'}
10 |
11 [x wx = Number of characters to be loaded from this card. See NOTE
=12 {x beiow, .

13 [Tnstructions and/or data to be loaded into core storage beginning at
the location specified in Columns 2-6. This information
must be entered beginning in Column 13.

NOTE: To enter a word mark into storage during loading,
punch a word separator character in the columns pre-
ceding the character with which the word mark is to
be associated. The word separator characters are
not included in the character count entered in
Columns 11-12.

To enter a word separator character into core stor-
age, punch two adjacent columns with this char-
acter. Word separator characters can not be loaded
with an associated word mark.

72 |Relocation indicators (if required) occupy Cols 72, 71, 70....

73 These columns are ignored by the Load Program and may
contain any information desired by the user.

NOTE: Autocoder Processor places a card sequence num-
: ber in Columns 73-75, and the program "lIdentifi-
80 cation," if any, in Columns 76-80.

Figure 2. Condensed Card Format

Introduction 7

Address Types

Six kinds of address types are valid in the operand
field of an Autocoder statement: blank, actual, sym-
bolic, asterisk, literals, and address constants.

Blank
A blank operand field is valid:
1. In an instruction that does not require an operand.

2. In instructions where valid A- and/or B-addresses
are supplied by the chaining method. For example,
MLCA AB
MLCA

Note: If an instruction is to have addresses stored
by other instructions, the operand or operands affected
must not be left blank. For example, B 0 is recom-
" mended if the address of the branch instruction is to
be supplied during the running of the object program.

Actual

The actual core-storage address of a data field is valid
in the operand field. High-order zeros in actual ad-
dresses can be omitted as shown in Figure 3. Thus, an
actual address can consist of from one to five digits.

Figure 3 shows an imperative instruction that causes
the contents of core-storage location 3101 to be added
algebraically to the contents of location 140. This entry
will be assembled as a machine-language instruction:
A 03101 00140. Note that high-order zeros can be
eliminated when coding actual addresses for Autocoder.

Line Label roti OP
i 28 30 30 L] 48

X101, 51,40,

0.1, 1.,

Figure 3. Autocoder Instruction with Actual Addresses

Symbolic

A symbolic address can consist of as few as one or as
many as ten alphamerical characters. Special characters
are not permitted. Blanks may not be written within a
symbolic address. Figure 4 shows how symbolic ad-
dresses are used.

Figure 4 shows an indexed imperative instruction
that causes the contents of the location labeled ToTAL
to be placed in an area labeled accum as modified by
the contents of index location 2. An address to be in-
dexed is followed by a plus sign (4+), an X to indicate
indexing, and a number from 1 to 15 to specify which
index location is to be used. TotaL is the label for loca-
tion 3101 and Accum is the label for location 140,

8

Line Label roti OPt
L ! 28 30 38 40 a5

. LC OTAMSACCUMNZ o o s

Figure 4. Autocoder Instruction with Symbolic Addresses

The assembled machine-language instruction for this
entry is: D 03101 001MO C. The M in the tens position
of the B-address is a 4-punch with an 11-overpunch.
The 11-overpunch is the B-bit tag for index location 2.

Asterisk (*)

If an asterisk (*) appears as an operand in the source
program, the processor will replace it with the actual
core-storage address of the last character of the instruc-
tion in which it appears (except in EQU, ORG, Or LTORG
statements, where the asterisk refers to the current posi-
tion of the processor address assignment counter). For
example, the instruction shown in Figure 5 is assigned
core-storage locations 00340-00351. The actual address
of wkarea is 00598. The assembled instruction is D
00351 00598 C. When the instruction is executed in the
object program, D 00351 00598 C will be placed in
WKAREA.,

Asterisk operands can have address adjustment and
indexing.

OPERAND

Label perati
15)t6 1 3 40 a3 s0

.. MiC

30
JWEAREA

Figure 5. Asterisk Operand in Autocoder Instruction

Literals

The 1BM 1410 Autocoder permits the user to put in the
operand field of a source program statement the actual
data to be operated on by an instruction. This data is
called a “literal.” The processor allocates storage for
literals and inserts their addresses in the operand or
operands of the instructions in which they appear. The
processor produces a pcw card that puts a word mark
in the high-order position of a literal when it is stored
at program load time. Literals are permitted only in the
operand field of an Autocoder statement and can be
numerical or alphamerical. A literal can be up to 52
characters in length, including the sign; i.e., it must be
contained in one line of the coding sheet, and it must
not extend beyond column 72. Literal addresses may
make use of address-adjustment and/or indexing.

Four types of literals are discussed in the following
paragraphs.

NUMERICAL LITERALS

Numerical literals are written according to the follow-
ing specifications:

1. A plus or minus sign must precede a numerical
literal. The processor puts the sign over the units
position of the number when it is assigned a storage
location. NoTE: To store an unsigned number, use an
alphamerical literal.

2. When a numerical literal does not exceed nine
digits plus sign (blanks are not allowed), it is assigned
a storage location only once per program or program
section, no matter how many times it appears in the

source program or program section. NoTE: A program

section is defined as the source program entries that
precede a Literal Origin, End or Execute Statement.
In some programs several program sections are needed
because the entire object program exceeds the total
available storage capacity of the object machine. In
these cases individual program sections are loaded into
storage from cards, tapes, or random access storage and
are executed as they are needed. Program sections are
sometimes called “overlays.”

Figure 6 shows how a numerical literal can be used
in an imperative instruction. Assume the literal (+ 10)
is assigned a storage location of 00584 and 00585 and
ANAME is assigned 00682. The symbolic instruction will
cause the processor to produce a machine-language in-
struction (A 00585 00682) that causes + 10 to be added
to the contents of ANAME.

Line Label perati Op
sie ; 15)i6 1 30 35 40
ot by . +. 2,0, ANAME . . . L

Figure 6. Numerical Literal

ALPHAMERICAL LITERALS

Alphamerical literals are written according to the fol-
lowing specifications:

1. An alphamerical literal must be preceded and fol-
lowed by the @ symbol. The literal itself can contain
blanks, alphabetic, numerical, and special characters
(including the @ symbol). However, a comment on the
same line as an alphamerical literal must not contain
the @ symbol.

Upon encountering an alphamerical literal, the proc-
essor proceeds to column 72 of the card and searches
right to left for the terminal @ symbol. If it encounters
any @ symbol, it will assume this is the legitimate
terminal.

2. An alphamerical literal of from one to nine charac-
ters with preceding and following @ symbols is as-
signed a storage location only once per program or
program section, no matter how many times it is used
in the source program.

3. Longer alphamerical literals are assigned a storage
location each time they are encountered in the source
program. To save storage space in cases where multiple
use of long literals is necessary, use a pcw statement.

Figure 7 shows how an alphamerical literal can be
used in an imperative instruction. Assume that the
literal january 28, 1961 is assigned a storage location
of 00906, and patE is assigned 00230. The machine-
language instruction (D 00906 00230 C) causes the
literal januARY 28, 1961 to be moved to DATE.

Line Labe! perati OP|
13l

.1, N MLC

Figure 7. Alphamerical Literal

AREA-DEFINING LITERAL

The 1410 Autocoder allows the user to define an area
to be reserved by placing an area-defining literal in the
operand field of a symbolic program entry as follows:

1. An area of any size may be defined in any instruc-
tion which has as an operand the symbol which refer-
ences it; for example, WKAREA#6.

2. A # symbol (8-3 punch) must precede the number
that specifies how many core-storage locations are
needed for the work area. Note that the # symbol is
represented in the FORTRAN character set as an = sym-
bol.

3. A word mark is placed over the high-order posi-
tion of the area.

4. If the user refers to a portion of the same defined
area, such as wxarea#2, he will be given a multiple
definition flag in his output listing. However, he may
refer to the defined area (wkarea#6) more than once.

5. Area-defining literals must be redefined after each
LTOoRG entry. (See “Processor Control Operations.”)

6. Address adjustment and indexing are permitted
when using area-defining literals.

Figure 8 shows an imperative instruction with an
area-defining literal. This entry causes the processor
to allocate six storage locations for wkaReA. Six blanks
will be loaded in storage at object program load time
by a pcw card automatically produced by the proces-
sor. Assuming that AMOUNT is in storage location 00796
and wkarea is in 00596, the assembled machine-
language instruction that moves AMOUNT t0 WXAREA
is D 00796 00596 C.

Figure 8. Area-Defining Literal

Address Types -~ 9

ADDRESS CONSTANT LITERALS

The actual 5-character machine address which is as-
signed to a label by the processor can be defined as an
address constant. Autocoder permits address constants
to be coded symbolically in the 1nstruct10ns that re-
quire them:
1. The symbol for an address constant can contain
as many as ten characters.
2. A plus sign must precede the symbol. The address
constant is the actual address which was assigned
to the label by the processor.

3. The address constant being defined must appear =

elsewhere as a symbol in the symbolic program.

4. The address constant is assigned a core-storage
address, as are all constants, and a pcw card is
created automatically by the processor. The ad-
dress constant literal is unsigned in core storage.

Note: If address adjustment and/or indexing occur,
they modify the address of the literal, not the literal
itself. If the literal itself is to be modlﬁed it must be
defined by a pcw statement.

Figure 9 shows how an address constant literal can
be used. Assume that casH is used as a label elsewhere
in the program and has been assigned a machine ad-
dress of 00600. The address constant (00600) has been
assigned storage location 00797. The first character in
the second instruction is in core storage at address
00401. Thus, the address of insT + 5 is 00406.

Label . peroh
e CASH.MS.T+.5

.............

Figure 9. Address Constant

The assembled machine-language instruction for
the first symbolic instruction in Figure 9 is D 00797
00406 C. :

WORK is in storage location 00729. The assembled

machine-language instruction for the second symbolic
program entry is D 00000 00729 C. When the first
instruction is executed in the object program, the con-
stant 00600 is moved to 00406 and the second instruc-
tion becomes D 00600 00729 C. When the second
instruction is executed, the contents of casu are moved
to WORK.
- Thus, the programmer can write an instruction that
©will move a machine address into the operand of an-
_other Tinstruction at program execution time, even
'though he does not know what that address is.

10 7

Address Adjustment

Address adjustment is valid in the operand field on all
symbolic addresses, including the asterisk. It enables
the programmer to refer to an entry in his source pro-
gram that is a specified number of locations away from
a symbolic address. Its usage reduces the number of
symbolic labels required. Address adjustment is indi-
cated by writing after the symbolic address a plus or
minus sign followed by one to five digits (Figure 10).

When the label ManNo is assigned location 05000
and ToTaL is-assigned the location 00075, the assem-
bled instruction is A 05012 00075.

If the instruction in Figure 11 is assigned the ad-
dress 05000, the assembled instruction is ? 04998 00075,
because * refers to the rightmost position of the in-
struction (05010). When using address adjustment, the
programmer should remember that insertions or de-

_ letions in the source program can affect adjustment
" addresses.

Lobel Sperati OPERAND
1]

' 3 40 45 0
ANNQt12 ToTAL . s
Figure 10. Address Adjustment
Label perati OPERAND
3 ! 30 3 49 Pr) so
zA -12,TATAL

Figure 11. Address Adjustment with an Asterisk Operand

s

Index Registers

Indexing is accomplished by tagging an address in the
operand field with an indicator telling the processor
which index register is to be used. The 1BM 1410 sys-
tem has 15 index registers that can be referred to in
Autocoder language by placing an X before their num-
ber. Thus, X10 denotes index register 10. The X en-
ables the processor to distinguish between address
adjustment and indexing.

An index register can also be referred to symboli-
cally. X0 through X15 are not acceptable as symbolic
names. The index label must be preceded by a plus. It
follows the operand address and the address adjust-
ment, if any. Figure 12 shows an example of indexing.

The contents of the location whose address is the
address of MaNNo plus the contents of index register 2
are algebraically added to the contents of location
00400. For example, if the label Man~o is assigned
location 05000 and index register 2 contains 500, then
the preceding instruction causes the contents of loca-
tion 05500 to be added to the contents of location
00400. Indexing is not acceptable in ps, ORG, or LTORG
declarative operations or control operations. '

o~

Lobel perati OPERAND
1!

il AXE ,£00 . N e
d

Figure 12. Indexing

An index register can be specified in the operand
field for other than indexing purposes. For example,
a numerical value can be added to the contents of an
index register. In this case, the index register may be
referred to by its actual label (X1, X2, etc.) or its
symbolic label (see “EQU”).

Index Register Reservation ,
The processor assigns index registers referred to in the
symbolic program.

Those index registers that are coded in actual nota-
tion (X1, X2, etc.) and those equated to a symbolic
address by an EQU statement are assigned first. Then
the remaining index registers are assigned to symbols
the programmer has used to represent index registers.
For example, the programmer may use the symbolic
instruction shown in Figure 13.

tabel rati

T

Figure 13. Symbolic Label for an Index Register

In this case, consr is the symbolic label for an index
register. Its contents will modify the address assigned
to the label cwrTaX). The instruction in Figure 13 may
be followed by the -instruction shown in Figure 14.
This instruction puts the numerical value 25 in the
index register which the processor assigns to CONST.

Labet perati OPERAND

zA W25 CONST e

Figure 14. Using the Symbolic Label

Autocoder Coding Examples

Figure 15 shows an imperative instruction with address
adjustment and indexing on a symbolic address. The
processor will subtract 12 from the address assigned the
label TotaL. The effective address of the A-operand is
the sum of TotaL —12 plus the contents of index loca-

tion 1. The assembled instruction D 030Y9 00140 C
will cause the contents of the effective address of TOTAL
—12 +X1 to be placed in the location labeled accum
(assuming again that ToraL is the label for location

Line © Label . {Operati - OPl
£ . 30 40 43
o1, 1, oo Mee 0T AL-IREXILACCUM o

Figure 15. Autocoder Instruction with Address Adjustment and
Indexing

3101 and accum is the label for location 140). The Y
in the tens position of the A-address is an 8-punch with
a zero overpunch. The zero overpunch is a tag for index
location 1. '

Note: Address adjustment and indexing are per-
mitted in the same operand. Multiple address adjust-
ment causes the algebraic sum of the factors to be
used. With multiple indexing, only the rightmost index
notation is effective. For example:

A torar +3 +X1 —12 +X2, accom —5 +X2 +35

will be interpreted as:

A ToraL —9 +X2, accum +30 +X2

which is equivalent to:
A ToTAL +X2 —9, accuom +X2 +30

Figure 16 is an imperative instruction with two sym-
bolic operands and a d-character. Although many -of -
the augmented operation codes available for use with
Autocoder eliminate the need to write the d-character
in a symbolic instruction, sometimes’ the d-character
must be specified by the programmer. If an instruction
requires such a specified d-character, it is written fol-
lowing the A- and B-operands and is separated from
the remainder of the instruction by a comma. The
assembled machine-language instruction is: B 00392 -
00498 2. It branches to ENTRY A (00392) if the location

labeled swrtcH contains a 2.

OoPt
30 H E— 43
NTRYA) SWILTCH 2.4 NP

Figure 16. Autocoder Instruction with a d-Character

Address Types 11

' Declarative Operations

A program for the 1410 usually requires the use of
work areas and constants. A work area is a portion of
storage into which data is transferred for processing.
It can be used for the accumulation of totals or for
the assembling of data to be printed out or punched
into cards. A constant is a fixed quantity or item of
information ‘that is required again and again or that
fust remain the same throughout the course of the
program. For example, a date can be considered a
‘constant.

Autocoder enables the programmer to refer to work
areas and constants by their descriptive names without
regard to their actual location in core storage. For ex-
ample, assume that the programmer wants to reserve
twenty consecutive core locations for accumulating a
final sales total. A declarative operation enables the
programmer to reserve such an area and to refer to it
by a symbolic label without concerning himself w1tH
‘the actual address of the field.

Declarative operations are definitions rather than
instructions. As such they are acted upon during as-
sembly but are not executed during the running of
the object program. For this reason the programmer
should keep declaratives separate from imperatives
(machine instructions) when writing the symbolic pro-
gram. If they are placed in the body of the program,
care must be taken to branch around them so they
will not be treated as instructions.

The M 1410 Autocoder provides five different
declarative operations for reserving work areas and
storing constants:

. OP CODE PURPOSE
" pew Define Constant with Word Mark
-pc . _Define Constant (no word mark)
DS Define Symbol
DA Define Area
EQU Equa{e

DCW — Define Constant with Word Mark

A pcw statement is used to enter a numerical, alpha-
merical, or address constant with a word mark into a
core-storage area. Symbolic labels address the low-
order position of the constant. Word marks are set in
the high-order positions of all constants. If a symbolic
label is indented one position, the address of the high-
order position of the constant will be assigned to the

12

symbol. Actual labels always refer to the high- order
position of the defined constant.
The programmer:

1. Writes the operation code mcw) in the operation

field.

2. May write an actual or symbolic label in the label
field. The programmer may refer to the constant later
by writing this label in the operand portion of sub-
sequent instructions.

3. Writes the constant in the operand field beginning
in column 21.

NUMERICAL CONSTANTS

1. A numerical constant can be preceded by a'plus

‘or minus sign. A plus sign causes AB-bits to be placed.
" over the units position of the constant; a minus sign

causes a B-bit to be put there. If a numerical constant is
unsigned in the pcw statement, it will be stored as an
unsigned field. '

2. The first blank column appearing in the operand
field terminates a numerical constant,

3. The maximum size of a numerical constant is 51
digits and a sign, or 52 digits with no sign.

Example: Figure 17 shows the number +10 defined as
a numerical constant. The address of the constant will
be inserted in the object instruction wherever TEN
appears in the operand field of another symbolic
instruction.

........

Figure 17. Numerical Constant Defined in a pcw Statement

ALPHAMERICAL CONSTANTS

1. An alphamerical constant must be preceded and
followed by the @ symbol. Blanks and the @ sym-
bol can appear within an alphamerical constant, but
the @ symbol cannot appear in a comment on the same
line as an alphamerical constant.

.2. The alphamerical constant itself can be as large
as 50 characters.

3. If no terminal @ is present, a 51-character con-
stant will be produced.

Example: Figure 18 shows the alphamerlcal constant,
JANUARY 28, 1961, defined in a pcw statement. The ad-
dress of the constant will be inserted in the object pro-

Ny

Label perati OPERAND
O [F0 ! 30 35 39 45 50

Figure 18. Alphamerical Constant Defined in a pcw Statement

gram instructionvwherever DATE appears in the operand
field of another symbolic program entry.

Note: A comma G following the trailing @ symbol
of an alphamerical constant causes the processor to
put a group-mark word-mark in storage following the
last character of the constant. The associated label, if
any, will refer to the last character of the constant, not

_ the group-mark word-mark.

BLANK CONSTANTS

A # symbol precedes a number indicating how many
blank storage positions are to be defined. This permits
the programmer to reserve a field of blanks with a word
mark in the high-order position of the field. Maximum
size of this field is limited only by the available stor-
age capacity.

Example: Figure 19 shows an 11-character blank field
defined by a pcw statement. The address of this blank
field will be inserted in an object program instruction
whenever the symbol BLANK appears as the operand of
another symbolic program entry.

OPt

Figure 19. Blank Constant Defined by a pcw Statement

ADDRESS CONSTANTS

An address constant can be preceded by a plus or a’

minus sign, or it can be left unsigned. The constant is
the actual machine-language address of the field whose
associated label is included in the operand. The units
position of the constant will have the sign which the
user placed before the operand.

Note: Address constants may be address ad]usted
and indexed.

- Example: Figure 20 shows an address constant (the

address of ManNo) defined by a pcw statement. The
address of the address constant man~o will be inserted
in an object program instruction whenever SERIAL ap-
pears as the operand of another symbolic program
entry. This example shows the pcw defining the address
of man~o plus 10. Therefore, if MaNNO is located at
01000, the value in the pcw will be 01010.

Line Labe! pero Op
35 40
0.}, SERIALI DEW, . MANNO+10.

Figure 20. Address Constant (address adjusted) Defined by a
~ pcw Statement

DC — Define Constant (No Word Mark)

This statement has the same charagteristics as the pcw
statement. The only difference is that the processor

- does not cause a word mark to be set at the high-order
position of the constant when the constant is produced

in the object deck.

DS — Define Symbol

A ps statement reserves and labels an area of core stor-
age. It differs from a pcw or pc statement in that no
information (constant) is loaded into this area at pro-
gram load time. .

The programmer:

1. Writes the operation code s> in-the operation
field. '

2. May write a symbolic address in the label field.

3. Writes a number in the operand field to indicate
how many storage positions are to be reserved.

The processor:

1. Assigns an actual address to the low-order posmon
of the reserved area.

9. Inserts this address in the instruction wherever the

symbol in the label field appears in the operand field
of another symbolic program entry.
Example: Figure 21 shows how a 10-position core-stor-
age area can be reserved. The programmer can refér to
the label by putting Accum in the operand field of
another symbolic program entry.

Line Lobel { ont

[! 28 30 38 40 L

o1, IACC.UM N S, 1.Q . L PP

Figure 21. ps Statement

DA — Define Area , -

DA statements reserve and define portions of core stor-
age, such as input or output or work areas. They can
also define more than one area, if all these areas are
identical in format. A pa statement differs from a DCW
statement in that a pA statement can, in addition to
defining the large area, also define several- fields within
it. The pa statement furnishes the processor with the
lengths, names, and relative positions of fields within
the defined area.

HEADER LINE
The programmer constructs a header line for the pa
entry as follows:
1. Writes the operation code ma> in the operatlon
field. : .
2. May write an actual or symbolic address in the
label field. This address represents the high-order posi-
tion of the entire area defined by the pa statement.

Declarative Operations 13

3. Indicates in the operand field the required size of
the area in the form B X L. B is the number of identical
areas to be defined and L is the length of each area. For
example, if four identical areas, each 100 characters
long, are to be defined, the first entry in the operand
field is 4 X 100 as shown in Figure 22. If only one area
is to be defined, the first entry is 1 X 100.

Line Label ti OPt
28 30 38 . 40 L3
X100 N . A hia

0,1, ITAPEAR A,

Figure 22. Four Areas Defined

Indexing: To index a pA statement, place a comma
and the number of the index location (X1, X2, X3,
etc.) after the » X L indication. All labels in the entries
following the header line will be indexed by the speci-
fied index register when they appear in instructions,
unless the instruction referring to the field is itself in-
dexed. For example, if IN arEA is defined by the state-
ment shown in Figure 23, accuMm is indexed by index
location 1. If the entry shown in Figure 24 appears as
an instruction elsewhere in the program, accom (for
this instruction only) will be indexed by the contents
of index location 2. Because the instruction in Figure
24 has indexing, this indexing overrides the indexing
prescribed by the pa statement.

OPt
40 s

Figure 23, Indexing a pa Statement
Line Lobel rati . OM
T 20 30 10 43

o1, |, e A R05:53 ACCUNEXL. |

Figure 24. Overriding Indexing in a pA Statement

Note: The programmer can negate the effect of index-
ing on a field or subfield by putting an X0 in the oper-
and field of each instruction in which indexing is not
wanted. Symbolic names for index registers may be
specified in the heading line of a pa statement only if
previously defined by an EQu statement,

Record Marks: Record marks can be inserted to sep-
arate records in the defined area. The processor will
cause a == to be placed in storage immediately follow-
ing each identically defined area if a comma == follows
the B X L entry in the operand field. 8 X L does not in-
clude an allowance for the record mark. For example,
2 X 100 will cause 200 positions to be reserved for the
defined area, but 2 X 100, == will cause 202 positions
to be reserved.

Group Mark with Word Mark: The user.can cause
the processor to put a group mark with a word mark

14

one position to the right of the entire defined area
by writing a G, preceded by a comma in the operand
field.

Relative to Zero Addressing: By writing a comma
zero after the B X L entry, the user can cause the proc-
essor to assign addresses to the labels of fields and sub-
fields as though the high-order position of the defined
area was core-storage location zero. The label of the
DA statement is assigned the address of the high-order
position of the area actually reserved by the processor.

NotE 1: A user of 1410 10cs must define areas to be
used for blocked records using indexing, with relative
to zero addressing.

Note 2: The programmer may write the ==, index
code, G and 0 entries in any order in the operand field
of the pa header statement provided that they follow
the 8 X L entry.

OTHER DA ENTRIES

The programmer constructs the balance of the pa state-
ment which defines fields and subfields for each area as
follows:

1. Leaves the operation field blank.

2. Writes a symbolic label in the label field if one is
desired.

3. Specifies the relative location of defined fields
within the area by putting two numbers in the operand
field. The first location of the defined area is consid-
ered location 1. The high-order and low-order positions
of the field are written beginning in column 21. These
two numbers must be separated by a comma.

4. A subfield is a field within a defined field and is
defined by putting the number representing the low-
order position in the operand field.

Nortgs: The processor causes word marks to be set
in the high-order position of each defined field, but does

-not so identify subfields. If a word mark is desired in a

one-position field, the relative position number must be
written twice with the two numbers separated by a
comma.

Fields defined in a pa statement can be listed in any
order, and all positions within the defined area do not
have to be included in the defined fields.

The processor:

1. Allocates an area in core storage equal to B X L.
plus positions for record marks and a group mark if
they are specified in the heading line of the pa entry
and assigns actual addresses to the defined fields and
subfields. :

2. Inserts the assigned address of the high-order posi-
tion of the entire defined area wherever the contents
of the heading line label field appear as the operand
of another symbolic program entry.

3. Inserts the assigned addresses of the low-order po-
sitions of defined fields and subfields in the place of
symbols corresponding to the labels of the field-defin-

"ing entries. ')
Result: At object program load time:

1. Word marks are set for field definition as noted

previously.

9. A group mark and record marks are loaded as

specified in the heading line.

‘Example ‘

In this example, data is to be read from magnetic
tape into an area of storage where it is to be processed.
It is a payroll operation, and each record refers to a
different employee. The records are written on tape in
blocks of three. Each record is eighty characters long
and has the following format:

Positions 4-8 Man Number

Positions 11-26 Employee Name

Positions 32-37 Date

Positions 45-64 Gross Wages

Positions 66-71 Withholding Tax
- Positions 74-79 FICA Deduction

Remaining positions contain data not used in this
operation. A group mark with a word mark is to be
placed in storage immediately following the third area.

The pa statement in Figure 25 defines three. adjacent
identical areas into which each block of three records
will be read. It also defines the fields and subfields that
are to receive the data listed. The notation 3 X 80 in
the header line indicates that three consecutive areas
of eighty locations each are to be reserved. The entire
940-location area can be referred to by its high-order
label, roarea. The G in the header line will cause a
group mark with a word mark to be placed in the 241st
position. The reference to index location 2 in the
header line indicates that the labels namE, MANNoO,
DATE, GROsS, FICA, and MONTH, when referred to in
symbolic instructions, will be indexed by index loca-
tion 2.

The 10cs will give an instruction to read data from
tape into a storage area labeled rparea. This causes
" a block of three data records to be placed in the 240
reserved core locations. As a result, the significant data
is read into the appropriately labeled fields. This data
can now be referred to via the labels pATE, MANNO,
FICA, etc., and the user need not concern himself with
actual machine addresses. In this example, the 1ocs
begins by setting index location 2 to the address of
the input area. The user then processes the significant
data in the first record. The subsequent GET macro
will increment index location 2 by eighty, and the user

- can branch back to the first instruction of the particular
routine. Because all labels defined by this pa statement

' OPt
28 30 33 40 45
. |RDAREA X809 X2 5.G50,
2 ATE . 'Zl.q.S.ZL N
AME, . L. 9.2, Ly a Aaua
MANNO | [4.9.8, P
L IGROSS, L. RTINS O N
AN 114.45.74,
MoNTH, . . PP - - TN

Figure 25. pA Statement

are incremented by the contents of index location 2,
the program will now be processing the second record
read into storage. When this routine is performed three
times, the user has processed three input records and
is ready to read three more records into storage. This
has all been performed without any reference to actual
machine addresses.

NortE 1: An area can be reserved for a record with
variable fields by defining all possible fields as sub-
fields. In this case, no word marks will be set in an
individual area, but the programmer can control data
transfer by setting word marks in the receiving fields.

Note 2: If the length of the whole record can also
vary, the programmer should reserve an area equal to
the largest possible record size.

EQU — Equate

An EQU statement assigns a symbolic label to an actual -
or symbolic address. Thus, the user can assign different
labels to the same storage location in different parts of
his source program.

The programmer:

1. Writes the operation code QU in the operation
field.

2. Writes an actual or symbolic address in the oper-
and field. This address can have indexing and address
adjustment.

3. Writes a new label in the label field for the sym-
bolic address defined in the operand field.

The processor:

1. Assigns to the label of the equate statement the
same actual address that is assigned to the symbol in
the operand field (with appropriate alteration if index-
ing and address adjustment are indicated).

2. Inserts this actual address wherever the label ap-
pears as the operand of another symbolic program
entry.

Result: The programmer can now refer to a storage
location by using either name.

Examples

Figure 26 shows the label DIV equated to MaNNO
which has been assigned storage location 01976. When-

Declarative Operations 15

ever either MANNO or INDIV appear in a symbolic pro-
gram, 01976 will be used as the actual address.

Figure 27 shows an equate statement with address
adjustment. If Fica is assigned location 00890, wHTAX
will be equated to rica—10 (00880). wHTAX now re-
fers to a field whose units position is 00880.

Figure 28 shows a label assigned to an actual ad-

dress. Assume that an input card contains NETPAY in
card columns 76-80. When this card is read into stor-
age, the area locations 01076-01080 contain net pay (if
the read area is 01001-01080). This field can be re-
ferred to as NETPAY if the EQU statement in Figure 28
is written in the source program.

Line Lobel perati - OPt
3 [E30 1 30 38 40 a5
o+, lINDAY, ., [EQU LANNO NN N P s

Figure 26. EQU Statement

Figure 30 shows the symbol FiELpA equated to an
asterisk address. The asterisk refers to the current
position of the processor assignment counter. (This

‘will be the first position of the instruction or data to
~ be next assigned.) Assume that this address is 00698.

FIELDA is now equal to 00698.
Figure 31 shows how a label can be assigned to an

index location. The operand contains a number from -

1 to 15, followed by a comma, followed by the letter
X to indicate the specific index register. INDEX 1 is now
equal to 00029. Figure 31 also shows an alternative
method for equating a label to an index register.

Figure 32 shows how a tape unit can be assigned a
label. In this case, the programmer wishes to refer to
tape 4 on channel 1 as ivpuT.

A tape unit may also be equated to a symbolic name
by using the actual X-control field (for example % U
4) as the operand, as shown in Figure 33.

Figure 29. Indexing an EQU Statement

Figure 28. Assigning a Label to an Actual Address

« Figure 29 shows how an equate statement can be
indexed. With indexing, the label is indexed by the
index location specified in the EQu statement, when-
ever it appears as an operand in a symbolic program
entry, unless the operand in which it appears is itself
indexed. In Figure 29, the address assigned the sym-
bolic label custNo is equated to the actual address
of joB + the contents of index location 3. However, if
custNO + X2 or custno + X1 appear as the operand
of another symbolic program entry, the actual address
of yoB will be added to the contents of index location 2
or 1. Thus, the indexing in an instruction takes prece-
dence, and index register 3 is ignored.

16

Line | Label rati OF
i | 20 _ 38 40 43
o WFLELDA . ifgu. X N s R NP s

Figure 30. Equating with an * Operand

OPERAND

T . lavrfo7, AREAR . o .
Figure 33. Actual X-Control Field

Autocoder has several control operations that enable
the user to exercise some control over the assembly
process:

OP CODE PURPOSE
JOB : Job Card
EJECT Eject
RESEQ Resequence
LOAD Load
RUN . Run
CTL Control Card
ORG : Origin
LTORG Literal Origin
EX Execute
XFR Transfer
SFX Suffix
PST Print Symbol Table
END End

JOB — Job

This card in the user’s source program deck prints a
heading line on each page of the output listing from
the assembly process and identifies the object deck or
tape.

The programmer:

1. Writes the mnemonic operation code gos» in the
operation field.

2. Writes in the operand field the indicative informa-
tion to be printed in the heading line. This information
may be any combination of valid 1410 characters and
appears in columns 21-72.

3. Writes in the identification field (columns 76 to

80), the information to be contained in the object deck
or tape.

The processor:

1. Prints the information, the identification from col-
umns 76-80, and a page number from the jos card on
each page of the output listing. If there is no jos card,
the processor will generate one. In this case, nothing
will be printed in the heading line except the page
number. o

2. Punches the identification number (columns 76-
80) in all condensed cards produced for the object pro-
gram. If another joB or RESEQ card (or cards) appear
elsewhere in the source program, the new identification

Processor Control Operations

number will be punched in subsequent condensed
cards.

Result: The programmer can identify a job or parts of
a job in the output listing.

EJECT — Eject
An EjECT control card may be placed in the symbolic
source program by the user to cause the carriage to
restore at any point in the output listing.

The programmer may now have separate routines or
sequences in the output listing.

RESEQ — Resequence
The rEsEQ control card resets the card sequence count
to 001 in the object program deck and the identification
number from columns 76 to 80 will replace the former
identification number.

This will allow the user to separate his object deck
into logical groups or blocks.

LOAD — Load

The roaD control card is used to signal the processor
that a load program should precede the object deck.

RUN — Run

This is the first card in the user’s source program deck.
It tells the processor which type of run is desired.
There are two types: Autocoder and Systems.

AUTOCODER

‘By placing the label AuTOCODER in the label field of a

run control card, the user signifies that he desires a
compilation of a given deck by the processor. The
user’s source program deck is placed immediately be-
hind this card.

SYSTEMS

By placing the label systEms in the label field of a
run control card, the user signifies that he desires an
updating run. This updating run pertains only to the

library entries or routines on the systems tape. '

CTL — Control

" The control statement is normally the second entry

(card) in the source program deck.

Processor Control Operations 17

The programmer:
1. Writes the operation code 1L in the operation
field.
2. Writes codes in the operand field as follows:
~ Column 21: This column is unused and is not inter-
preted by the processor. -
Column 22: Indicates the core-storage size of the
1410 system that will be used to process the object
program. Use the following codes:

STORAGE SIZE CODE
10,000 ' 1
- 20,000 2
40,000 3
60,000 4
80,000 5

b
Column 23: Indicates if punch or print operations
are to be suppressed. The codes are as follows:

CODE
1 - .. Suppress Punch
2 ; Suppress Print

The processor interprets the codes and processes the
source program accordingly.

Note: If the crL card is missing, the processor as-
sumes that both the processing machine and the object
machine have 20,000 positions of core storage.

ORG — Origin

An origin statement can be used by the programmer
to specify a storage address at which the processor
should begin assigning locations to instructions, con-
stants and work areas in the symbolic program.

The programmer:

1. Writes the mnemonic operation ‘code Or® in the
operation field.

2. Writes the symbolic, actual, blank, or asterisk ad-
dress in the operand field. Addresses can have address
adjustment, but indexing is- not permitted in orc
statements.

3. If a symbolic label appears in the operand field of
an ORG statement, it must appear in the label field in
an entry preceding the orc statement in the program
sequence.

The processor:

1. Assigns addresses to subsequent instructions, con-
stants and work areas starting with the address speci-
fied in the operand field of the orc statement.

2. If there is no orc statement preceding the first
symbolic program entry, the processor automatically
begins assigning storage locations at 00500.

18

Note: In the absence of the 10cs entries, normal ori-
gin will be 00500.

3. An orc statement inserted at any point within the
symbolic program causes the processor to assign sub-
sequent addresses beginhing at the address specified
in the operand field of the new orc statement. (Excep-
tion: see Figure 39.)

4. The processor maintains a high assignment counter
which contains the highest assigned location at any
given point of an assembly run.

Result: The programmer chooses the area of storage
where the object program, defined constants, etc., will
be located.

Examples

Figure 34 shows an okc statement with an actual ad-
dress. The first symbolic program entry following this
ORG statement will be assigned with storage location
00600 as a reference point. If the first entry is an in-
struction, the op code position (I-address) of that in-
struction will be 00600; if the first entry isa 5-character
pcw, it will be assigned address 00604, etc.

Label perati

R6. a

Figure 34. orc Statement with an Actual Address

The orc statement in Figure 35 shows how the pro-
grammer can direct the processor to save the address
of the last storage location allocated. The label AppR is
the symbolic address of the next available location be-
fore re-origin occurs. The processor will continue to
assign addresses beginning at the actual address of
START,

Line Label perati ort
q ! 28 30 3 40 43
TART. . ‘s " '

o.1. ADDR . . RG

Figure 35. Saving the Address of Last Storage Allocated

The programmer can insert another orc statement
later in the source program to direct the processor to
begin assigning storage at ADDR.

Figure 36 shows an orc statement that directs the
processor to start assigning addresses with the actual
address assigned to ADDR.

Figure 37 shows an orc statement that directs the
processor to bypass 200 positions of core storage when
assigning addresses.

When the processor encounters the statement shown
in Figure 38, it will assign subsequent addresses begin-
ning- with the next available storage location whose
address is a multiple of 100. For example, if the last

Line Label rati . OM
20] S— 48
ADDR, | . N .

oo, 1., N RG.

Figure 36. oRG Statement with a Symbolic Address

Line Label roti OPt
30 36 40 L}

" . ia P

0,1 . N 64200

Figure 37. ogc Statement with an Asterisk Operand and

Address Adjustment .
Line Label rati o]]
30 38 40 4
o, ¢, § . s RE. 0.0, NP s P

Figure 38. orc Statement Advancing Address Assignment to
Next Available Multiple of 100

constant was assigned location 00725, the next instruc-
tion would have an address of 00800.

Figure 39 shows an ORG statement with a blank oper-
and. The processor will assign addresses to subsequent
entries beginning at the location designated by the
high assignment counter plus one.

Line Label _ loperati 7 on
30 - 36 —a0. 48
ORG N PN N . PP

0, N L

Figure 39. orc Statement with a Blank Operand

LTORG — Literal Origin

LTORG statements are coded in the same way as ORG
statements. Their function is to direct the processor to
assign storage locations to previously encountered lit-
erals and closed library routines, beginning with the
address written in the operand field of the LToRc state-
ment. LTORG statements can appear anywhere in the
source program. ‘

If no LTORG statement appears in the source program,
the processor begins assigning addresses to literals and
closed library routines when it encounters an EX or END
statement.

Example: Figure 40 shows how the programmer can
direct the processor to begin assigning the storage lo-
cations to literals and closed library routines.

The programmer has instructed the processor to begin
storage allocation at 00600. All instructions, constants,
and work areas (ending with B susrT 01) will be as-
signed storage. However, the literal (+10) in the state-
ment ZA + 10, wkAREA, and the library routine (SUBRT
01) extracted by the caLL macro (see “Call”) will not
be assigned storage until the LTORG statement is en-
countered. The first instruction in the library routine
(susrt 01) will be assigned address 01500 (because
caLc has been equated to 01500). After all instructions
in surt 01 have been assigned storage locations, the
literal + 10 will be assigned an address. The processor
will begin assigning the rest of the instructions, con-

Lobel rati OPERAND
150 \ 3% 4 a5 50
ot 086, . 1600, .
WKARER CW. WX . P
AAL, . | £y, 50,0 R A
e A WA MEARER |\ i e
A CALL \SUBRT.OL, s NN
i o lspsRrod o
Y Y roRLlCALL e
R RG. . |APDR .
e /£ 404 Pl M e e
1 ELDBL . LA N SN
e A LELBALELELOR

Figure 40. Using a LTORG Statement

stants, and work areas with the storage location im-
mediately to the right of the area occupied by the in-
struction B suBrt 0l1. Thus, if B susrT 01 (j 01500) is
assigned locations 00691-00697, FieLpA will be assigned
storage locations 00698-00703.

EX — Execute

During the loading of the assembled machine-language
program, the programmer may want to discontinue the
loading process temporarily in order to execute por-
tions of the program just loaded. The Ex statement is
used for this purpose.

The programmer:

1. Writes the mnemonic operation code Ex-in the
operation field. v

9. Writes an actual or symbolic address in the oper-
and field. This address must be the same symbol that
appears in the label field of the first instruction to be
executed.

The processor:

1. Incorporates closed library routines, literals, and
address constants.

2. Assembles a branch instruction (an unconditional
branch to the first instruction to be executed), the I-
address of which is the address assigned to the instruc-
tion referenced by the symbol in the operand field. This

" instruction does not become part of the assembled

machine-language program, but it causes the processor-
produced loading routine to halt the loading process
at the appropriate time and execute the branch instruc-
tion. Note: To continue the loading process after the
desired portion of the program has been executed, the
programmer must provide re-entry to the load routine.
(The 1BM standard re-entry point is 00281.)

Example: Figure 41 shows how an Ex statement can be
coded. When this statement is encountered in the load-
ing data, the loading process halts and a branch to the
instruction whose label is ENTRYA occurs.

Lobel i OPERAND

X ENTRYA

Figure 41. EX Statement

Processor Control Operations 19

XFR — Transfer

This entry has the same function as an Ex statement
except that literals, closed library routines, and address
constants are not incorporated. An XFR statement trans-
fers to and executes instructions which have been pre-
viously loaded.

Example: Figure 42 shows an xrr entry.

Label rati OPERAND

ol R NIR. !/ﬂ

Figure 42. xrr Statement

SFX — Suffix

This statement directs the processor to put a sufﬁx code
in the tenth position of all subsequent symbolic labels
in a source program section which have less than ten
characters until another srx statement is encountered.
In this way, the programmer can use the same label in
different sections of the complete program.

The programmer:

1. Writes the mnemonic operation code sFx) in the
operation field. :

2. Writes the character (which can be any valid
1410 alphabetic character) to be used for the suffix
code in the operand field.

The prqcessor:

1. Inserts the suffix code in the tenth position of all
subsequent symbolic labels in the subsequent entries
which have less than ten characters.

2. Changes the suffix code when a new srx card is
encountered.

Cross Referencing with Suffixing: 1f the programmer
wishes to cross reference to a previously used label
which is in a section with a different suffix, he may do
so by writing the suffix of the different section followed
bX[a dollar sign before the label in the operand. '

f yor appeared as a label in a program section with
a suffix A and the given statement is in a section with
a suffix B, he may refer to joE by cross referqncmg as
indicated in Figure 43.

To cross reference a label contained i in a section to
which no suffix has been assigned, precede the label
with a dollar sign (Figure 44).

The programmer can instruct the processor to dis-
continue suffixing by using a srx card with a blank
operand.

NotE: Labels beginning with the letters 10cs, and
prF file names, are never suffixed.

OPERAND
4 80

Label perati
| X

e ol ONE

Figure 43. Cross Referencing Sufﬁxing

30 3 L

20

Label perati OPE
15)ie 0j21 25 30 35 49 45

L IS EX
el za

QMEY, JCASH \ iy

Figure 44. Cross Reference to Unsuffixed Label

PST — Print Symbol Table

This entry causes the processor to print out the symbol
table ahead of the printed listing of the program.

The programmer writes the mnemonic operation code
s in the operation field.

The processor lists the symbol table. All labels used in

the source program are printed with their assigned

core-storage addresses. Note: This card can appear
anywhere in the source program deck preceding the

END card.

END — End

This is always the last card in the source deck. Tt sig-
nals the processor that all of the source program en-
tries have been read, and provides the processor with
the information necessary to create an execute card.
This execute card causes a transfer to the first instruc-
tion to be executed after the program has been loaded
into the machine at program load time. Thus, program
execution begins automatically.

The programmer:

1. Writes the mnemonic operation code (xp) in the
operation field,

2. Writes, in the operand field, the symbolic or
actual address of the first instruction to be executed
after the program has been loaded.

The processor creates an unconditional branch instruc-
tion which is used as part of the loading data. Other
processor functions are the same as for an ex statement.

Example: Figure 45 shows an ENp card.

OPERAND
45

TART.

Figure 45. Enp Card

Diagnostic Aids

Error flags appear in the listing of Autocoder source
statements obtained during the assembly run.

The flags and their meaning are as follows:

F indicates a format error.

U indicates an undefined label.

M indicates a label that has been defined more

than once.
O indicates an invalid operation code.

e

Autocoder imperative operations are the symbolic state-
ments for the machine language instructions to be
executed in the object program. Most of the statements
written in a source program will be imperative instruc-
tions. Although the Autocoder processor can assemble
instructions with all the imperative operation code
mnemonics, the programmer must remember the par-
ticular special features and devices that will be in-
cluded in the object machine that will be used to
execute the program he is writing. :

The imperative operation mnemonic codes are listed
in the “Mnemonic Operation Codes” section of this
publication.

The programmer:

1. Writes the mnemonic operation code for the in-
struction in the operation field.

2. If the instruction is an entry point for a branch in-
struction elsewhere in the program or if the program-
mer wishes to make other reference to it, it should
have a label. This label will be assigned an actual ad-
dress equal to the address of the operation code of the
assembled machine-language instruction. Thus, the
programmer can use this label as the symbolic I-address
of a branch instruction elsewhere in the program (see
Figure 47).

3. Writes the symbolic address of the data, devices, .

or constants in the operand field. The first symbol will
be used as the A- or I-address of the imperative instruc-
tion. If the instruction also requires a B-address, a
comma is written following the first symbol and its
address adjustment and/or indexing codes (if any),

then the symbol for the B-address is written. If the

instruction requires that a d-character be specified, a
comma and the actual d-character follow the symbolic
entries for the B-address or an I-address if the B-
address is not needed.

The processor assembles the object instruction as fol-

lows:

1. Substitutes the actual machine-language oper-
ation code for the mnemonic written in the operation
field.

2. Substitutes the actual addresses of symbols used
in the operand field to specify the X-control field A or
I, and B-addresses of the instructions. If address ad-
justment or indexing is indicated, the substituted ad-
dress will reflect these notations (tag bits will be in-

Imperative Operations

serted for indexing and addresses will be altered by
adding or subtracting the adjustment factor if address
adjustment is specified). The d-character will be sup-
plied automatically for unique mnemonics, or will be
taken from the operand field if the programmer has
supplied it. :

3. Assigns the actual machine-language instruction
an area in storage. The address of this area is the po-
sition which the operation code occupies in object
machine core storage. This address is assigned to the
label if one appears in the label field.

Result: This instruction will be placed in the object
program deck. A word mark will be set in the opera-
tion code position at program load time.

Examples

Figure 46 shows an imperative instruction with I- and
B-operands and a mnemonic which requires that the
programmer include the d-character. A branch to a
location labeled Reap will occur if the location labeled
TEST has a 5 in it. Assuming that the address of rREAD
is 00596 and TEsT is in 00782, the assembled instruction

is B 00596 00782 5.
Line Label ati ont
L 30 38 40 43
o |, . CE EADHTEST,.A

Figure 46. Branch-if-Character-Equal

Figure 47 shows an imperative instruction with a
unique mnemonic. A branch to a location labeled
oviLo will occur if an arithmetic overflow has occurred.
Assuming that the address of ovrro is 00896 the as-
sembled machine-language instruction is J 00896 Z.

Line " Label perati OPt
. s L 28 o 3 a0 4

o | AY. . |ONFLO, | e

0.2 " N N PR L N n PERTEEE ST S ST At i

0.3 " hd s " "

0.4 N d A P U U N T S)

os. lovrFLo, . . . i2A . VFLELDAMNFLELDE | .. s

Figure 47. Branch-if-Arithmetic-Overflow

Note: Unique Mnemonics. Several mnemonic opera-
ation codes have been developed to relieve the pro-
grammer of coding the d-character in the operand field
of symbolic imperative instructions. However, some
operation codes have so many valid d-characters that it
is impractical to provide a separate mnemonic for each.

Imperative Operations 21

In these cases, the programmer supplies the d-charac-
ter as previously described. In the listing of mnemonic
operation codes for imperative instructions all mnemon-
ics which require that the d-character be included in
the operand field are indicated by a D in the operand
column and in the d-modifier position of the assembled
machine-language instruction.

Coding :
~Figure 48 shows a brief routine illustrating a section of
Autocoder coding.

Several imperative operations are governed by spe-
cial rules, and care must be taken when coding with
these instructions. The special cases are descnbed in
the following paragraphs.

Lobel perati OPERAND
[E] 30 35 40 43 50
g1Dec Q ., e
233 .., . pew 4@, L, s
5y

R .11 e
AL . JERROR .\ o\

Figure 48. Autocoder Coding

Data-Move Instructions

The data-move command is controlled in machine
language by the op code D. The actual conditions of
the various types of data-move instructions are regu-
lated by the d-character. To make the Autocoder lan-
guage more meaningful, each of thesé move and scan
instructions has a different mnemonic op code. Each
of these mnemonics specifies the type of operation,
the direction of the move or scan, the nature of the
data to be moved, and what terminates the operation.
The following rules apply in constructing the mne-
monics for data-move commands:

MOVE MNEMONICS

1. The first character of the mnemonic is M.
2. The second character specifies the direction of
data movement.
L — Right-to-left movement.-
R — Left-to-right movement.
3. The third section of the mnemonic specifies the
portion of data moved.
N — Move numerical portion of data.
Z — Move zone portion of data.

22

C — Move whole characters.

W — Move word marks.

NW — Move numerical portion and word marks.
ZW — Move zone portion and word marks.
CW — Move whole characters and word marks.

4. The final character of the mnemonic specifies what
terminates the move.

a. To terminate right-to-left move:
A — Word mark in A-field.

B — Word mark in B-field.
(Blank } — Word mark in either field.
S — Move single location only.
b. To terminate left-to-right move:
R — Record mark in A-field.
G — Group mark with a word mark in A-field.

M — Record mark or group mark with a word
mark in A-field.

(Blank) — Word mark in either field.

SCAN MNEMONICS
1. The first three characters are always scN.
2. The fourth character specifies the direction of
scan,
L — Right-to-left scan.
R — Left-to-right scan.
3. The fifth character specifies what terminates the
scan.

a. To terminate right-to-left scan:
A — Word mark in A-field.
B — Word mark in B-field.
(Blank) — Word mark in either field.
S — Scan left single position.

b. To terminate left-to-right scan:
R — Record mark in A-field.
* G — Group mark with a word mark in A-field.
M — Record mark or group mark with a word
mark in A-field. ‘
(Blank) — Word mark in A- or B-field.

For example, when whole characters and word marks
are to be moved from right to left, terminating the move
on a word mark in the A-field, the Autocoder mnemonic
op code is MLCWA.

SSF — Select Stucker and Feed

This instruction causes the last card transferred to
storage to be selected into the stacker specified in the
operand field of the instruction. A blank operand
causes the card to be selected into the zero read pocket:
A 1 in the operand field causes the card to be selected
into stacker 1. A 2 in the operand field causes the card
to be selected into stacker 8/2.

N

)

TN

Magnetic Tape Commands

Mnemonics referring to magnetic tape do not requlre
d-characters. However, it is necessary to specify, in the
operand, the number of the tape unit and channel
needed for the operation. This can be done in one of
three ways. The programmer can:

1. Assign a label to the channel and tape unit as de-
scribed in EQu and use it as the A-operand of a tape
instruction. '

2. Write the number of the channel and tape unit in

-columns 21 and 22 of the tape instruction. The as-
. sembled instruction for the symbolic entry shown in -

Figure 49 will cause a record to be written on tape unit
4 using the data beginning in a storage area labeled
OUTPUT.

3. Write the X-control field as the A-operand of the
tape instruction.

&

Label ° i OPERAND

ol L

4,00 TEIT. .
Figure 49. Write Tape

Disk Commands

All input-output commands involving disk units must
specify the channel (1 or 2) as the first entry of the
operand field. If an address is used in the operand, it
follows the channel designation and is separated from
it by a comma as shown in Figure 50.

BZN -- Brainch on Zone
The form of this command is:
BZN i, addr, ch '
A branch to i will occur if the character at addr has
the zone-bit configuration specified by ch.
. Permissible operands are as follows:

i~ May be any symbolic or absolute address
(indexing and address adjustment are per-
mitted).

addr — May be any symbolic or absolute address

(indexing and address adjustment are per-
mitted).
ch — May be:
A or ¢ specifying an A zone bit.
B or — specifying a B zone bit.
AB or + specifying A and B zone bits.
b specifying absence of zone bits.

The address for i, or addr, or both, may be omitted if
the operation is chained. Acceptable forms of this op-
eration are:

BZN i, addr, ch
BZN i
BZN

Label rati OPERAND
L] 20

30 38
ADDRES. . .. N

Figure 50. Disk Storage Instruction

BWZ — Branch if Word Mark, Zone, or Both

This operation is the same as BzN except that a branch
also takes place if a word mark is present.

BCE — Branch if Character Equal

The operand of this command takes the form i, addr, '
ch where: :
ch=Character to be matched.
addr=Address of character to be compared.
i=Address to be branched to.
Permissible forms of these operations are:
BCE i, addr, ch
BCEi
BCE

BBE — Branch if Bit Equal

The operand of this command will take the form i,
ADPDR, ch where: :
ch=Character containing bit(s) to be tested for.
AppR= Address of character to be tested.
i=Address to be branched to.
Permissible forms of this operation are:
BBE i,\addr, ch '
BBE i
BBE

CC — Control Carriage

The forms control character must be written in the
operand field of this instruction. Standard forms con-
trol characters are to be used.

P — Punch

The pocket into which the punched card will be se-
lected must be specified as the first entry of the oper-
and field of this instruction. The address from which
data will be punched is specified following the stacker
specifications and is separated from it by a comma. A
0-punch selects punched cards into stacker pocket 0;
a 4-punch selects punched cards into stacker pocket 4;
an 8-punch selects cards into stacker pocket 8/2.

R — Read)

A read command must have as the first entry in its
operand either the number of the stacker into which
the card is to be selected after reading, or an indica-

- tion that a select stacker command will follow the read

command. A 0-punch selects cards into stacker pocket
0; a l-punch, into stacker pocket 1; and a 2-punch,

Imperative Operations 23

into stacker pocket 8/2. A 9-punch indicates that a
select stacker command will follow. The address (sym-
bolic or’actual) of the storage area into which the
data from the card is to be read must be the second
entry in the operand of a read command.

input/Output Commands

Valid forms of the mnemonic operation codes for
input/output devices are listed by device in the “Mne-
monic Operation Codes” section of this publication.

PRIORITY PROCESSING

18M 1410 Data Processing Systems equipped with the
priority-processing feature can process 1/0 no-op com-
mands. To code these in Autocoder language, write
an N as the first character of the o mnemonic. For
example, the instruction shown in Figure 51 will be
assembled as M %U1 00100 Q.
The instruction shown in Figure 52 will be assem-
bled as M %U1 00100 V.
The 1/0 no-op instruction will set the appropriate /o
external indicators, but no data movement takes place.
Note: Like any other 1/0 instruction, the 10 no-op
instruction always sets the o interlock latch on. This
latch must be set off before another 1/0 instruction can
be executed on the same channel.
The vo interlock latch can be set off by one of the
following classes of instructions:
1. Branch Any External Indicator — Channel (1 or
2) (i.e; BAL or BA2) or
2. Branch on External Indicator — Channel (1 or 2)
(ie, BEX1 d or BEX2 d, where d =% =),
provided the branch is executed. (If the branch is
not executed, the 10 interlock latch is not turned

off.)

NOPWM — No Operation Word Mark

The 1410 Autocoder permits the programmer to set
programmed no-op switches easily. If the statement
shown in Figure 53 is written in the source program,
the processor will insert in the object program the
operation code N (no-op) with a word mark, followed
by the branch instruction (JXXXXX) without a word
mark in the operation code position. Subsequent in-
structions in the object program can then be used to
set and clear the word mark in the operation code posi-
tion of the branch instruction as needed. If there is no

24

Labet perati OPERAND
! : 30 3 4 a8 50
L1 WRT. 1,100 e
Figure 51. I/O No-Op Input Command
Lobel rati OPERAND
11 30 _ 1 40 43 0
INWT. 1 aloe .
Figure 52. 1/O No-Op Output Command
Lobe! rati OPERAND
- a3 0 3 49 e 50
i s .

Figure 53. No-Op Word Mark

word mark, the branch instruction will be ignored,
and if the word mark is present, the branch instruction -
will be executed. The assembled mstructlons produced
by the entries shown in Figure 53 are N J 00500 (as-
suming start is in location 500).

Note 1: Any instruction (not only branch instruc-
tions) may be bypassed by this method.

Norte 2: Use of a regular Nop-instruction in place of
a NopwM instruction will cause an opposite setting of
the switch.

BEX1 or BEX2 — Branch on External Indicator

These mnemonics are used for the machine-language
op codes R and X. BEx1 is equal to R; BEx2 is equal
to X. One of the two, depending on channel, is used
when testing for a combination of external indicator
conditions for which there is no mnemonic. The sym-
bolic operand must take the form addr, d where:
addr=Address to be branched to, if any of the
external indicators specified in the d-
character have been set as a result of ex-
ecuting an 1o command.
d=the actual character formed by the com-
bination of d-character-control bits of the
individual external condition tests.

For example, a branch to a location labeled exrr is
desired if the channel-busy indicator, the not-ready
indicator, or the wrong length record indicator has
been set following an 170 command. The appropriate
Autocoder instruction has BEx1 as the operation code,
exit as the addr and L as the d-character. The d-
character L results from a combination of the 2-bit,
1-bit, and B-bit required to interrogate the three indi-
cators just mentioned.

Many of the routines that must be incorporated in
programs written for the 1BM 1410 are general in
nature and can be used repeatedly with little or no
alteration. The M 1410 Autocoder makes it possible
for the user to write a single symbolic instruction (a
macro-instruction) that causes a series of machine-lan-
guage instructions to be inserted automatically in the
object program. Thus, the ability of Autocoder to proc-
ess macro-instructions relieves the programmer of

- much repetitive coding. With a macro-instruction, the

programmer can extract, from a library of routines, a
sequence of instructions tailored by the processor to
fit his particular program.

Definitions of Terms

Several programming terms are used to describe the
requirements and operational characteristics of the
macro system. These terms are explained here as they
are applied in the following discussions.

Object Routine. The specific machine-language in-
structions needed to perform the functions specified by
the macro-instruction. If the object routine is inserted
directly in a larger routine (for example, the main
routine) without a linkage or calling sequence, it is
called an open routine or in-line routine. If the routine
is not inserted as a block of instructions within a larger
routine, but is entered by basic linkage from the main
routine, it is called a closed routine, or out-of-line
routine.

Model Statement. A general outline of a symbolic
program entry. Model statements are used only in flex-
ible library routines.

Library Routine. The complete set of instructions or
model statements from which the object routine is de-
veloped. If the library routine cannot be altered, it is
inflexible. It is flexible if the library routine is designed
so that symbolic program entries can be deleted from
certain object routines (at the discretion of the pro-
grammer) or if parameters can be inserted.

Library. The complete set of library routines stored
on magnetic tape with an identifying label for each
routine that can be extracted by a macro-instruction.
Several macro-instructions and library routines are pro-
vided by 1BM. Others are designed by the user to suit
particular processing requirements.

Librarian. The phase of the processor that creates the
library tape from card input. After the original writing

The Macro System

of the library tape, this phase is used to insert addi-
tional library routines and their identifying labels, as
well as to update routines. This phase is omitted during
program assembly.

Parameters. The symbolic addresses of data fields,
control names, or information to be inserted in the
symbolic program entries outlined by the model state-
ments. By placing parameters in the operand field of
a macro-instruction, the programmer can specify sym-
bolically the data to be operated on. The actual ad-
dresses of the data (or other information) are inserted
in the object routine by the processor during assembly.
Also, literals and actual addresses can be used.

Pseudo-macro. A macro-instruction that is used in-
ternally by the processor to control the production of a
series of machine-language instructions. The difference
between a pseudo-macro and a macro is that the
pseudo-macro is not written in the source program but
appears only in a flexible library routine.

Macro Operations

To illustrate the basic operation of the macro system,
a hypothetical macro called cueck with a simple flex-
ible library routine is used. The routine is designed to
compare two fields, and test the compare indicator for
a high, low, or equal condition.

Figure 54 shows the library coding form which is
used to write library routines.

Figure 55 shows the library entry, a macro-instruc-
tion specifying that all instructions in the library
routine appear in the object program, and the symbolic
program entries created during the macro phase of
Autocoder. The symbolic program entries are inserted
in the source program following the macro-instruction.
During assembly of the object program, the symbolic
program entries will be translated to actual machine-
language instructions with the actual addresses of the
parameters inserted in the label, operation, and oper-

and fields.

The Library Entry

The library entry for the cEECK macro-instruction con-
sists of the four model statements shown in Figure 55.
This entry is placed on the library tape and identified
by an INsEr statement. (Refer to Figure 95 for an ex-
ample of this use of INSER.)

The Macro System 25

FORM X24.6568-0
Printed in US.A,

IBM INTERNATIONAL BUSINESS MACHINES CORPORATION
IBM 1410 DATA PROCESSING SYSTEM

LIBRARY CODING FORM
DATE PROGRAM PROGRAMMED BY.

Page

and L tabel Operation Operand ond Comments Identificatior
tine

123 45]6]7 8 21011121314151617181920210223242526|2728293031323334353637 38394041 4243 44 4546 47 48 495051 5253 54 5556 57 585960 6162636465 6667 68697071727374|757677787980

Figure 54. Library Coding Form

Library Entry

Page
and L Label Operation Operand and Comments Identification

123 45|6]l7 8 91011121314151617181920212223242526]2728 293031 3233 3435363738 394041 424344 4546 47 484950 51 525354 5556 57 58 596061 62636465 6667 68697071727374]757677787980)

9|1|0[011 Il %|o)o|2!, ¥lo|e|2] MCiHgle K|
dlioio|2 H Hi0i0i¢| Menlee d
9]1]0|0/3 £ Mlololr wall=4
0|1]0i0] IBL Holo|€] Me lulele K
1
Macro Instruction
Label perati OPERANI(
15l 30 40 48

T
e b, (JCHEE

1PARY W PAR2 PARS PARS PARS | .

Assembled Symbolic Program Entry

C PAR1,PAR2
BH PAR3
BE PAR4
BL PARS

Figure 55. Macro Operations
26

AT

INSER — Insert

An INseR statement identifies a library routine. The
INSER statement causes an identification record to be
generated and placed on the library tape preceding
the library routine it identifies.

The programmer:

1. Writes the operation code INsER in the operation
field of the Autocoder coding sheet.

2. Writes the five-character label for the library rou-
tine in the label field. The label will be the same as
the name that appears in the operation field of the as-
sociated macro-instruction except when either the caLL
or INCLD macro is used.

3. Writes an M in column 21 of the operand field to
indicate a flexible library routine, or an S in column
21 to indicate a CcALL or INCLD type library routine.

The processor puts the indicative information ahead of
the model statements in the library tape during the li-
brarian phase of Autocoder.

Result: During assembly, the header label is matched
with the macro name in the opération field of the
macro-instruction. The model statements following the
header label in the library tape are used to assemble
the symbolic program entries as specified by the macro-
instruction.

Model Statements

Model statements establish the conditions for inserting
parameters in the object routine and define the basic
structure of the symbolic program entries.

The programmer:

1. Designs a general routine to perform many spe-
cific functions (depending upon the parameters sup-
plied) when it is executed in the object program.

2. Writes the model statement as follows:

a. If the entry is complete, it is written exactly the
same as though it were an entry in a source pro-
gram. This entry will be included in all object
routines unless a bypass condltlon exists (see
“pooL”).

Example: Figure 56.

b. If the entry is incomplete, the programmer writes
a special four-character code to indicate that a
certain parameter from the macro-instruction
operand field must be inserted in its place. This
code is a 1 followed by a number from 001 to 199,
the position of the parameter in the macro-instruc-
tion. This entry will be inserted in all object rou-
tines.

L Label Operation| Operand

6]7 B 9101112131415141718192021[2223 2425 26127 28293031 3233 3435363738 394041 424344454647 48 45.

T el T et el belolelal L1 LI LLLI

Figure 57. Model Statement for an Incomplete Instruction with
Required Parameters

Example: Insert parameters 001 and 002 specified
by the cHECK macro-instruction shown in Figure
57.

c. If the entry is incomplete the programmer writes
a o followed by a number from 001-199 with AB-
bits over the units position (parameter 001 is O
-00A, parameter 002 is I 00B, etc.) to indicate that

the entry is to be included in the object routine
only if the parameter is specified by the macro-
instruction.)
Example: Insert parameter 003 in the following in-
struction if it is specified by the macro-instruction.
If parameter 003 does not appear in the macro-
instruction, the instruction shown in Figure 58 will
be deleted from the object routine.

L Lobel . Operati Operand

617 8 9101112131415161718 192021222324 2524]27 262930313233 34353637 38394041 424344454647 4845
T e eefele T L

Figure 58. Model Statement for an Incomplete Instruction with
Conditional Parameters

NoTE: Substitution codes can also be used to sub-
stitute a parameter in any part of a model statement.
For example, it is possible to substitute an operation
code, any part of a literal, a label, etc.

Labeling: If the model statement represents an in-
struction entry point for a branch instruction elsewhere
in the program, it should have a label. The label of the
macro-instruction causes a generated label EQu* in the
assembled object routine as shown in Figure 59.

If additional external labels are required and speci-
fied as parameters in the macro-instruction they can

Macro Instruction

rati o
‘s _1FP. ! 30] J—] :
7ES T2 | R INveE srme-r1 PO T S .

Model Statement

L Label Operation| Oper'ond

6|7 8 ¢ 1011121314151617 18 192021022324 25 26{27 28 293031 3233 343536 37 38 39 40 414243 44 4546 474849

T T L T [T T]

L Lobet - Op Operand and Comments

L LS LT A N O B T

A bled Symbolic Program Entry

s|7 0 9 101102131415081708 26027282 383940414243 444546 47 4849 50 51 5253 54555657 56

T TTT LTI LT TT Pl el el T T T TT I

Figure 568. Model Statement for a Complete Instruction

18]

—

TEsT2 EQU &
B START!

Figure 59. Labeling

The Macro System 27

be inserted in the label field of the symbolic program

Macro Instruction

i - R Lobel t OPERAND
entry by using o 001-199 code otionl o - FERAND
Example: Insert parameter 002 in the label field of the * I -
assembled symbolic program entry as shown in Figure . o
60.

L Label Operation, Operand ¢
6[7 8 910111213141516171819202H2223242526]27282930313233343535637 383940414243 44454647 4849
Macro Instruction .
B pt| ool
L]
‘) .
Model Statement
0| 0|7 ZIA H|o|o|7|, [Mle|a|2
L Label Operation . Operand ¢
A bled Symbolic Program Entry
617 8 9 10111213141516171819202122232425262728293031323334353637 38394041 4243444546474849.
.
lelell [[[[11T [1] Islelel [fedelols [[[[[TTTTI[TTTTT] .
rrrrrrrrrr—rrrrrrrrrrrrrrrrerTrTrT T T e T
B £100J023
Assembled Symbolic Program Entry Y
°

START2 SBR ENTRYA
Figure 60. Additional External Labels

Symbolic Addressing within the Library Routine. To
allow symbolic reference to other instructions in a flex-
ible library routine a 1 followed by a number from 001
to 199 with a B-bit over the units position (& 00] =
symbolic address 1, 0 00K = symbolic address 2, etc.)
can be used. The processor generates the symbolic ad-
dress if the code, for example, 1 00] is used as a label
for one entry and as an operand of at least one other
entry in the same library routine.

Internal labels within flexible routines are generated
in the form b nnnmmm, where nnn is the code (00]-19R),
and mmm is the number of the macro within the source
program. This is done to avoid duplicate address
assignments for labels.

Example: Use the generated symbolic address of o 00]
as an operand for entry 3 and as the label for entry 6.
uPpAT is the 23rd macro encountered in the source
program (Figure 61).

Address Adjustment and Indexing: The parameters in
a macro-instruction and the operands in partially com-
plete instructions in a library routine can have address
adjustment and indexing.

If address adjustment is used in both the parameter
and the instruction, the assembled instruction will be
adjusted to the algebraic sum of the two. For example,
if the address adjustment of one is +7 and the other is
—4, the assembled instruction will have address ad-
justment equal to +3. :

Operands may be indexed in the library routine. If a
parameter supplied by the macro-instruction is in-
dexed, it will be cancelled by the indexing in the library
routine.

28

1003023 ZA COST,AMOUNT
Figure 61. Internal Labels

Literals: Operands of instructions in flexible routines
may use literals as required. However, these literals
may not contain the @ symbol within an alphamerical
literal.
NotkE 1: A model statement in the library routine for
a macro-instruction may not be another macro-instruc-
tion, except the CcALL or INCLD macro (see “Call”).
Note 2: Literal Origin, Ex and End statements can-
not be used in library routines. ’
The processor enters model statements in the library
tape immediately following the header statement dur-
ing the librarian phase of Autocoder.
Result: Any library routine can be extracted by writing
the associated macro-instruction in the source program.
Figure 62 is a summary of the codes that can be used
in the model statements of flexible library routines.

CODE POSITION FUNCTION
110011199 Statement Substitute parameter
) (parameter must be present)
[100A-[11 91 Statement Substitute parameter
(if parameter is missing,
B delete stotemenf)
000J-LT19R Label Field and Assign internal label
Operand Field :

Figure 62. Model Statement Codes

Macro-Instructions

A macro-instruction is the entry in the source program
that causes a series of instructions to be inserted in a
program.

S

The programmer:

1. Writes the name of the library routine in the
operation field. This name must be the same five char-
acters that appear in the label field of the INsEr state-
ment of the library entry. '

2. Writes in the label field the label that is to be
inserted in the label field of the first assembled model
statement.

3. Writes in the operand field the parameters that
are to be used by the model statements that are re-
quired for the particular object routine desired, as
follows: ‘

a. Parameters must be written in the sequence in
which they are to be used by the codes in the
model statements. For example, if cost is param-
eter 001, it must be written first so that it will be
substituted wherever a D001, or C00A appears as
a label, operation code, or operand of a model
statement.

b. As many parameters may be used as can be con-
tained in the operand fields of five or fewer cod-
ing sheet lines. If more than one line is needed
for a macro-instruction, the label and operation
fields of the additional lines must be left blank.
Parameters must be separated by a comma. They
cannot contain blanks or commas unless they
appear between @ symbols. The @ symbol itself
cannot appear between @ symbols. If parameters
for a single macro-instruction require more than
one coding sheet line, the last parameter in each
line must be followed immediately by a comma.
The last parameter in a macro-instruction need
not be followed by a comma.

c. Parameters that are not required for the particular
object routine desired can be omitted from the
operand field of the macro-instruction. However,
if a parameter is omitted, the comma that would
have followed the parameter must be included,
unless the omitted parameter is behind the last
parameter which is included in the macro-instruc-
tion. These commas are necessary to count param-
eters up to the last included parameter. All
parameters between the last included parameter
and parameter 199 are assumed by the processor
to be absent.

Figures 63, 64, 65, and 66 show how parameters -

can be omitted. The hypothetical macro-instruction
called Exacr is used. EXacT can have as many as nine
parameters.

The processor:

Extracts the library routine and selects the model
statements required for the object routine as specified
by the parameters in the macro-instructions and by the
substitution and condition codes in the model state-
ments.

Result: The resulting program entries are merged
with the source program entries behind the macro-
instruction. ’

Label rati OPERAND
134 43

30 36 40 50
o JEXACTIFADY, BL D2, FAL D3 FLDS FLDS,,

Figure 63. Parameters for Exact Included;
Parameters 006-199 Missing

Figure 64. Parameters 004 and 007-199 Missing

Figure 65. Parameters 001, 004, 005,.006, 008 and
010-199 Missing

Label perati OPERAND
t 30 3% 40 435 20

n Al

Figure 66. Parameters 001, 003-199 Missing

Pseudo-Macro-Instructions

These statements never appear in a“ user’s source pro-
gram or in the output listing of an assembled 1410-
Autocoder program. However, they are used in library
routines to signal the processor that certain conditions
exist that can affect the assembly of an object routine.
For example, the presence of a pseudo-macro-instruc-
tion in a library routine can cause a group of model
statements to be deleted. Thus, pseudo-macros provide
the writer of library routines with a coding flexibility
which exceeds the limitations of the substitution and
condition codes described previously.

Pseudo-macro-instructions may be written anywhere
in a library routine. The five pseudo-macros incorpo-
rated in the 1410 Autocoder processor are MATH, BOOL,
COMP, NOTE, and MEND.

Permanent and Temporary Switches

The MaTH, BoOL, and comP pseudo-macros use internal
indicators (switches) to signal the processor of exist-
ing status conditions.

There are 99 permanent and 199 temporary switches
available for recording status conditions. Each switch
occupies one core-storage position during the macro
phase of Autocoder. If a storage position contains the
character A (BA 1-bits), the switch is on; if it contains
a ? (CBA 82-bits), the switch is off. At the beginning
of assembly all switches are off.

The Macro System 29

PERMANENT SWITCHES

Permanent switches retain status conditions during the
entire macro phase unless changed by a pseudo-macro.
They are addressed by using a # symbol followed by
the three-digit number of the switch to be set or tested.
For example, # 001 addresses permanent switch 001;
002 addresses switch 002; and # 099 addresses
switch 099.

TEMPORARY SWITCHES

When the processor encounters a macro-instruction,
the temporary switches are set to the condition (pres-
ence or absence) of the parameters in the operand of
the macro field. If the parameter is present, the corre-
sponding switch is set on. If the parameter is missing,
the switch is set off. For example, if parameter 001 is
present, temporary switch 001 is turned on. If param-
eter 002 is missing from the macro-instruction, tempo-
rary switch 002 is off. Temporary switches retain status
throughout the processing of a macro-instruction unless
changed by a pseudo-macro. After the macro-instruc-
tion has been completely processed, all temporary
switches are set off. Temporary switches are addressed
by using a 1 symbol followed by the three-digit num-
ber of the switch to be set or tested. For example, & 001
addresses temporary switch 001, i1 002 addresses switch
002, and 1 199 addresses switch 199,

For example, if a macro with a maximum of nine
parameters is encountered, the processor sets the first
nine temporary switches to indicate the presence or
absence of these nine parameters. Temporary switches
010-199, which are off, can be used by the pseudo-
macros to communicate conditions to the processor
while it is working on this particular macro-instruction.
This use of temporary switches is recommended be-
cause it reserves the permanent switches for communi-
cating information from one macro to another.

MATH — For Solving Algebraic Expressions

A MaTtH pseudo-macro contains as operands: sum
boxes, arithmetic expressions, and sign switches.

SUM BOXES

A sum box is a group of five core-storage positions used
to store the result of an arithmetic expression. The 1410
Autocoder makes available 20 such sum boxes. A sum
box is addressed by using a # symbol followed by the
three-digit number (ending in zero or five) of the sum
box to be referenced. For example, the address of the
first sum box is # 005; the address of the second sum
box is # 010; and the address of the twentieth sum box
is # 000.

30

At the bfginning of the macro phase, a sum box con-

tains 00000. Any number may be placed in a sum box
or added to its contents. The units position of the sum
box always contains the sign of the result. Sum boxes
retain information placed in them throughout the
macro phase and their contents may be used and/or
changed from one macro-instruction to another.

Sum boxes can be used by model statements as well
as by a pseudo-macro. For example, in Figure 67, as-
sume that sum box # 005 contains 12345 and sum box
010 contains 00015.

NOTE: ZA FLD1 +0001N, FLD2 is processed as ZA FLD1-15,
FLD2.

Macro Instruction

Lobel ti OPERAND
40 44 -]

n. 36
FAOL FLDA s

Model Statement

L Label Operofion Operand

6]7 8 910111213141515171819202112223 24 2526]27 282930313233 3435353738 394041 4243 44 454647 4849

01Re| | |#]0]o|s]
Zl4 [7]0|0|1|+\#j0|1|0], IH0|0l2

Assembled Symbolic Program Entry

ORG 1234E
ZA FLD1+0001IN,FLD2

Figure 67. Sum Boxes

ARITHMETIC EXPRESSIONS

Arithmetic expressions within the MaTH pseudo-macro
use add (+), subtract (—), multiply (*), and divide
(/). An @ symbol represents both the left and right
parentheses if they are required for the expression. For
example, (001 + 12 — 5) 20 is written:

@001 +12—-5@*20.

Arithmetic operations expressed in the operand field
of the pseudo-macro are executed by the MaTH pseudo-
macro from left to right. The quotient resulting from
the divide operation is not half-adjusted, and the re-
mainder is lost. At the end of a multiplication opera-
tion the five low-order positions of the product are used
for the result (the high-order digits are lost). An over-
flow is ignored.

The result of the arithmetic expression is produced
and inserted with its sign in the designated sum box.

SIGN SWITCHES

Permanent and temporary switches may be used to
store the sign of the result of an arithmetic expression.
The first switch specified in the operand field of the
pseudo-macro represents a positive result; the second
represents a zero result, and the third represents a nega-
tive result. Consequently, one switch is on and the

other two are off if the result is either positive or nega-
tive. A zero result causes both the zero and positive
switches to be set on. It is not necessary to specify all
three switches. However, if a switch code is omitted
from the operand field, the comma that would have
followed the switch code must be present. (This is the
same rule that applies to missing parameters in a
macro-instruction.)

The programmer:

1. Writes the name of the pseudo-macro (MATH) in
the operation field.

. Writes in the operand field:

a. the code for the sum box in which the result of

the arithmetic expression is to be stored.

b. the arithmetic expression.

c. the code for the switch in which the sign(s) of the

result are to be stored.

Note: A comma must follow the sum box code, the
arithmetic expression, and the individual sign-switch
codes. Figure 68 shows the format for a MaTH pseudo-
macro.

The processor:
1. Produces the result of the arithmetic expression.
2. Stores the result in the sum box.
3. Sets the sign switches.

Example: The MaTH pseudo-macro shown in Figure 69
multiplies parameter 007 by 401 and adds 12 to the
result. The answer is stored in sumsox 6 (# 030). If
the result is positive, permanent switch 004 is set on;
if the result is zero, permanent switches 004 and 006 are
set on; if the result is negative, temporary switch 009
is set on.

BOOL - For Solving Logical Expressions
The BooL pseudo-macro can be used:

1. To set a permanent or temporary switch as the re-
sult of a logical expression.

2. To cause the processor to skip over certain model
statements if the logical expression is false. If the
statement is true, the processor goes to the next
sequential model statement.

The programmer: _

1. Writes the name of the pseudo-macro ®oow) in
the operation field.

2. May write a label, the logical expression (state-
ment), and a switch code in the operand field in the
format shown in Figure 70.

L Label |operation Operond ond Comments

6]7 8 ¢ mlluuu|s|al7|||noi|u22:142sn272!2910:!:nnusannnkuAuuusunuwsoﬂ525:5455565750

[TTTTTTFTTTTT ebh] ARl ek Il bbish e

Figure 70. Format for the BooL Pseudo-Macro

LABELING

A special one-character label permits skipping forward
in the library routine as the object routine is being
assembled by the processor. This one-character label
is written in the first position of the operand field of
the Boor pseudo-macro and also in the label position
(column 6 of the library coding form) of the first model
statement (or command) to be examined after the skip
has been initiated. Skipping occurs only if the logical
statement is false. The label may be omitted if a skip.
is not desired, but the comma that would have fol-
lowed the label must be written in the BooL statement
to indicate that the label is missing. The label can be
any alphabetic or numerical character. Special char-
acters are not permitted.

LOGICAL EXPRESSION

The BooL pseudo-macro can have any combination of
three logical operations: * (and), + (or),and — (not).
The operators are defined in Figure 71. The combina-

L Label Operation

Operand and Comments

223242526

o

7 8 910111213141516171819202)

2728293031323334353637 38394041 424344454647 484950515253 54555657 5859606162636465 666768697071727374

A

R‘1

Er

T H

MIA

T 150MBPo by M

11el | ExIPRRIEISB | o L Z WiV

k]

vis|,

0], M|1

Figure 68. Format for the MaTH Pseudo-Macro

L Label Operation

Operand and Comments

7 8 9101112131415161718192021

223242526{2728293031323334353637383940414243 44454647 484950515253545556575859606162636465 666768697071727374

| o

#01310]> 11211 110/0)7]*

M

|0

11 #olo :kO‘ﬁbm-by

4TH

Figure 69. MaTH Pseudo-Macro

i 1

The Macro System 31

* . + —
1*1=1 1+1=1 —1=0
1*0=0 1+0=1 =0=1
0*1=0 o+1=1
0*0=0 0+0=0
Figure 71. Table of Operators
Page
and |L Label Operation Operand
Line
123 45|6]7 8910112131415161718192021[2223242526{272829303132333435363738394041424344
olLlolo|2 Blojoi L,Vaol*JUOOZ,ﬂDIS
[ALLE: A F|/ |ElL DAL A e o B
o |2|0/0)5 B £lol7]
olt l0]o4]. “ A|RIE|ALL |AIRIEKIZ] |

Figure 72. Using the BooL Pseudo-Macro

tion of these operators and the switches to be tested
make up the logical expression (see example, Fig-
ure 72).

The @ symbol is used to represent both the left and
right parentheses.

SWITCHES

Either a permanent or temporary switch may be used
to store the result of the logical expression. If the ex-
pression is true, the specified switch will be set on. If
the expression is false, the specified switch is set off.
If no switch setting is desired, a comma must be used
to indicate that the switch is missing.

The processor:

1. Examines the status switches to determine whether
all conditions specified in the logical expression are
satisfied. If they are, the expression is true. If the logical
condition is not met, the expression is false.

2. Sets the specified status switch to on or oFF to re-
flect the true or false condition.

3. If a false condition exists and a label appears in
the BooL operand, the processor skips forward to the
command or model statement containing a correspond-
ing label in its label position.

To determine if a logical expression is true or false:

a. call all ox conditions true and all orr conditions

false.

b. let1 = true and 0 = false.

c. calculate the logical value of the expression.

If the logical value of the expression is zero, the
expression is false. If the logical value is one, the ex-
pression is true. For example, if switches 001, 002, 003
and 004 are on, the expression

@u00l*0002@ + @z 003 *1004 @
is true because:
(ON #ON) + (ON *ON)
(1*1) + (1*%1)
1 +1

I
—

32

Examples:
Figure 72 shows how the BooL pseudo-macro can be
used. The BooL entry states:

1. If temporary switches 001 and 002 are on, the
statement is true. Therefore, set temporary switch
015 on.

2. However, if either temporary switch 001 or 002
is off, the statement is false. Therefore, set tempo-
rary switch 015 off and skip to statement 004.

The example shown in Figure 73 states:

1. If (both temporary switches 001 and 002) or
(both temporary switches 003 and 004) are on,
the statement is true. Therefore, set temporary
switch 015 on.

2. However, if (either temporary switch 001 or 002)
and (either temporary switch 003 or 004) is off,
the statement is false. Therefore, set temporary
switch 015 off and skip to the model statement
whose label is L.

Label Operation Operand and Comments

12131415161718192021[2223242526§272829303132333435363738394041424344454647484950515253545556

I[! 1 ! ! 1 ! ! ! MOH LL ‘@*EL" o1t 45;0; 24;@10;5’3{2004@ Yﬂ?zs

Figure 73. BooL Pseudo-Macro

Figure 74 is a table showing all conditions that will
cause the BooL statement shown in Figure 73 to be
true.

SWITCHES
LOGICAL
001 * 002 + 003 * 004 VALUE
ON ON OFF OFF
1 * 1 + 0 * 0o = 1
OFF OFF ON ON
efo + o + 1 * = 1
g ON ON ON ON w
Sl o« 0+ 1 =0 B
4 -
ol oN ON ON OFF
] * 1 + * 0 = 1
OFF ON ON ON
0 * 1 + * = 1
ON ON OFF ON
¥ * 1 + 0 * 1 = 1
ON OFF ON ON
1 * 0 + 1 * 1 = 1

Figure 74. True Conditions

Figure 75 is a table showing all conditions that will
cause the Boor. statement shown in Figure 73 to be
false.

//\\

SWITCHES

[LOGICAL
oot * 002 + 003 * 004 VALUE
OFF OFF OFF OFF
(] * 0 + 0 * 0 = 0
ON OFF OFF OFF
1 * o + 0 * 0 =)
OFF ON OFF OFF
° * 1 + 0 * 0 = 0
2| OFF OFF ON OFF
Ol o ~ 0 + 1 * 0 = 0 |w
E 4]
o| OFF OFF OFF ON <
Z U
o] o * 0 + 0 * 1 = 0
|9}
OFF ON OFF ON
0 * 1 + 0 * 1 = 0
ON OFF ON OFF
1 * 0 + 1 * 0 = 0
OFF ON ON OFF
0 * 1 + 1 * 0 = 0
ON OFF OFF ON
1 * 0 + 0 * 1 = 0

Figure 75, False Conditions

COMP — To Compare Two Fields

The comp pseudo-macro compares an A-field to a
B-field and sets permanent or temporary switches to
indicate the result of the comparison.

The programmer:

1. Writes the name of the pseudo-macro (COMP) in
the operation field.

2. Writes the operand field in the format shown in

Figure 76. The first and second entries are the A- and
B-fields. The A- and B-fields may be any of the param-

L Label Operation Operand and Comments

T TTTIT oA b

l
T T
Figure 76. Format for comp Pseudo-Macro

303940414243 44454647 43495051 5253543558 57 58

oL Ak 11

IARERRA

eters 001-199, sum boxes # 005-# 000, or literals. Note:
For the comp pseudo-macro, alphamerical literals are
not enclosed by @ symbols. They cannot be switches.
Entries 3, 4, and 5 are the high, equal, and low switches.

Note: The codes for the two fields to be compared
must be present in all comP pseudo-macro-instructions.
Codes for the switches may be omitted if they are not
needed to store the result of the compare operation.
However, if a switch is omitted, the comma that would
have followed it must be included in the operand field.

The processor:

1. Compares the A-field to the B-field.

2. Sets the status switches to the result of the com-
parison:

a. The first switch is set on, if the value of the B-field
is greater than that of the A-field.

b. The second switch is set on, if the B-field is equal
to the A-field.

¢. The third switch is set on, if the value of the
B-field is less than that of the A-field.

Examples:

Figure 77 shows a comp pseudo-macro which states:
1. Compare parameter 002 of the macro statement
t0 WORKAREA.
2. If parameter 002 is equal to WORKAREA, turn on
temporary switch 25.
3. If parameter 002 is less than WORKAREA, turn on
temporary switch 26.

L Labe! Operation Operand and Comments.

6|7 8 9101112131415161718192021[2223242526§27262930313233343536373839404142434445454748495051

T 1T Hebll e b]]

T

Figure 77. comp Pseudo-Macro

Figure 78 shows a comp pseudo-macro which states:

1. Compare the contents of sum box 005 to param-
eter 003 of the macro statement.

2. If the result is HiGH, set temporary switch 024 on.

If the result is EQUAL, set temporary switch 025 on.

4. If the result is Low, set temporary switch 026 on.

@

L Label Operation Operand and Commen's‘

6|7 8 9 IOI'I1213141516171319202]’22232425262725293031323334353637383940“424344454647484?5051
LT LTI o]l el ol
Flgure 78. Comparmg a Parameter to the Contents of a Sum Box

Note: The standard 1410 collating sequence deter-.
mines HIGH, EQUAL, Or LOW conditions. Comparisons
are controlled by the B-field in the 1410. Thus, the
statement shown in Figure.79 will cause temporary

“switch 025 to be set on if the low-order position of

parameter 002 is an @ symbol (if parameter 002 is an
alphamerical literal). :

L Label Operation Operand and Comments

517 8 91011121314151617 181920212223 242526[27 282930313233343536373B394041 424344454647 484950

[T b il e, el LU

L3 B I S B

Figure 79. Checking for an Alphamerical Literal

NOTE — To Produce a Message

The NoTE pseudo-macro writes messages concerning
conditions that can arise during the processing of a
macro-instruction.

The programmer:
1. Writes the name of the pseudo-macro (NOTE) in
the operation field.

The Macro System 33

2. Writes the message in the operand field. The page
and line number of the macro statement that is being
processed will precede the printed message.

The processor prints the message and its accompany-
ing identification numbers on the console printer.

Example: Figure 80 shows how the NoTE pseudo-macro
can be used in combination with the BooL pseudo-
macro. The BooL pseudo-macro tests to insure that pa-
rameters 001 and 002 are present in the macro-instruc-
tion. If either parameter is missing, the processor skips
to the NotE pseudo-macro and prints:

1. The page and line number of the macro-instruc-
tion.

2. PARAMETER ABSENT FROM MACRO.

L Label Op:

Operand ond Comments

47 3 210115101708 28292031 JIPA04T 4243444544 47 49495051 325234553657 50

;ZIQL’L], J#J)_Iboﬂ:

Figure 80. NOTE Pseudo-Macro

MEND — End of Routine

This pseudo-macro signals the end of generation for a
macro-instruction. It may appear anywhere in a library
routine.

The programmer:

1. Writes the name of the pseudo-macro (MEND) in
the operation field.

2. Leaves the operand field blank.

The processor stops processing the macro-instruction
when it encounters a MEND statement.

Note: A BooL pseudo-macro can be used to skip
over a MEND pseudo-macro which appears within the
library routine if conditions indicate that more model
statements must be processed.

Example: Figure 81 shows a MEND pseudo-macro.

t. Label Op Operond and Comments

T T T e T LT T

Figure 81. MEND Pseudo-Macro

I

Pseudo-Macro Coding Example

Figure 82 shows the library entry for a hypothetical
macro called proiT. This library routine uses all of the
five pseudo-macros. It illustrates the effect of the
pseudo-macros on the processing of a macro-instruc-
tion. The meaning of each line in the library routine is:

Entry 1: If parameter 001 is present, set temporary
switch 050 off and go to entry 3. If parameter 001 is
missing, go to entry 2.

Page
and L Label Operation} Operand and Comments identifi
Line
123 45|6§7 8 91011121314151617181920212223242526{27 282930313233 34353637 38394041 424344454647 48495051 525354555657 58596061626368465 666768697071727374{7576277879 81
g1gk1 ErreA ﬁ,-ﬂooz,ﬂoso’
oizj0lo2 Wol7il |olpeidaipl 1oa Alg_gjgu'r
|20 3A Blolele| K|, #4910
0|1|0| O 0|R6| | #lolo|s]
02]0l015K4 MAT 4 #l0l015 #0lolstelslolo] ||,
0|1|0| dé| 5188 | FloplkHs
0ir\0]o7] ML lcia bavoaa@,NOOJ
o|1|o|o|d] A 3], [Xolo|3)
0)1l0l09 5 o] 0|4
oi1l0l1l0 ClomP| |x|0j0|2|, 8!, |, [¥|0I5|/],
0l2l0)2(2 [Blojo|s M|olsi/i,
0/219]2 |2} NLlelal [Hoj012 (Mool
01200l 3] S Mo(0|2], Ii0/0| A
EARA Wle! | Iolois] b dols|
foltlolzist Inlelel | [tlolols
dltlo|1]e]| [F10/0|K |B|41 0
0|2]01217 b[aoL e "’1"5/,
o2 0\2 |8} M]Lcn | olol2(@ Bllojo|/
fojzlolzlgle Pl ﬁ F’l i

Figure 82. pruiT Library Routine

34

" Entry 2: Print the note: OPERAND 001 ABSENT.

Entry 3: If permanent switch 010 is off, go to entry
5. If permanent switch 10 is on, go to entry 4.

Entry 4: org at the contents of sum box #005.

Entry 5: Put the contents of sum box #005 plus 100
in sum box #005.

Entry 6: Store the contents of the B-address register
in an address equal to the address assigned to the in-
ternal label (0 00K) + 5.

Entry 7: Move five zeros to the field whose symbolic
address is parameter 003 of the macro-instruction.

Entry 8: Add the literal + 3 to the field specified by
the parameter 003.

Entry 9: Branch to parameter 004.

Entry 10: If parameter 002 is a literal, the EQUAL
switch (0 051) is set on.

Entry 11: If the EQUAL switch (temporary switch
051) is off, skip to entry 15. If the EQuAL switch is on,
go to entry 12.

Entry 12: Move parameter 002 to parameter 001.

Entry 13: Subtract parameter 002 from parameter
006. (If parameter 006 is missing, this statement will
be bypassed.)

Entry 14: Move parameter 003 to parameter 005.

Entry 15: On the typewriter print the field whose
address is specified by parameter 005.

Entry 16: Branch to 0 if any of the 170 channel status
indicators is on.

Entry 17: If temporary switch 051 is on, skip to entry
19. If temporary switch 051 is off, go to entry 18.

Entry 18: Insert parameter 002 as a literal, and move
it to the field represented by parameter 001.

Entry 19: End-of-library routine. Assume that:

Macro Instruction

1. The macro shown in Figure 83 is encountered in
the source program.

2. Permanent switch 010 is on.
3. Sum box #005 contains 12345.

Call Routines

The 1410 Autocoder processor permits the user to add
inflexible routines to the library tape. These are com-
monly used sequences of instructions that can be ex-
tracted for an object program by the caLL macro. They
differ from the routines processed by other macro-
instructions in several ways:

1. All instructions must be complete; no parameters
can be inserted.

2. All instructions in the routine are incorporated.

3. A caLL routine is not inserted at the point where
the caLu macro was encountered in the source pro-
gram. Instead, it is inserted only once as a closed rou-
tine elsewhere in the object program or program
section. Linkage to the routine is provided automati-
cally by the processor whenever its particular caL
macro is encountered in the source program. (The
processor does not produce automatic linkage to the
routines incorporated by other macro-instructions be-
cause these routines are inserted as open routines
where the associated macro-instructions were encoun-
tered in the source program.) '

4. Data needed by a caALL routine must be in the
locations indicated by the symbols in the operand fields
of its instructions.

Requirements: caLL routines have several specific re-
quirements that must be considered when the routine
is created:

1. Every entry point in a CALL routine must have a
label. These labels (and all other symbols used in a
CALL routine) must be at least five characters in length,
and each of these labels must have the same first five
characters.

Assembled Symbolic Program Entry

ORG 12345
SBR [J00K0O23+5
MLCA @00000@, FIELDY
A +3,FIELD]
B EXITY
MLCA @42AB@, AREAA
MLC FIELD1, WORKAREA
WCP WORKAREA

[I00K023 BA1 0

Figure 83. Using the pRLIT Routine

The Macro System 35

CALL routines are stored as controlled by Literal
Origin at the time and place where an END or EXECUTE
processor control statement is encountered. Duplicate
symbols can ocecur if a caLL routine is used in more
than one program overlay (if the same caLL routine is
named in CALL macros that are separated by a Literal
Origin or Execute statement). To eliminate this possi-
bility the Autocoder processor provides a suffix (see
“sFx”) operation. The programmer should use a suffix
statement containing a new character in each program
section. ‘

2. The first instruction at each entry point in a caLL
routine must store the contents of the B-address regis-
ter sBR in an index location or in the last instruction
executed in the caLL routine. This provides for re-entry
at the proper place in the main routine after the caLL
routine is executed. :

3. All macro-instruction operation codes except CALL
and INCLD are invalid in cALL routines. All other sym-
bolic entries acceptable to Autocoder, except Literal
Origin, Execute, and End, can be used. A cALL macro
can be used:

a. to allow one caLL routine to be used at some point
in another caLL routine, or

b. as a model statement in the library routine for a
regular macro-instruction.

Call Macro

The caLL macro provides access to inflexible routines
written by the user and stored in the library tape. It
establishes linkage to a closed routine and stores that
routine elsewhere in the program. The cALL macro is
part of the Autocoder processor.

The programmer:

1. Writes the name of the macro «caLL) in the opera-
tion field.

2. Writes in the operand field the label of the library
statement which is the desired entry point in the library
routine. The first five characters of this label must be
the same as the five characters in the label field of the
INSER statement that was used to enter the routine in
the library tape (see “INSER”).

a. If the cALL routine is constructed so that all the
data it requires must be taken from specifically-
labeled areas of storage, the remainder of the
operand field must be left blank. For example, a
caLL routine whose entry point is SQARTO1 requires
that the number whose square root is to be com-
puted must be placed in a location labeled
sQART02. The CALL macro is written as shown in
Figure 84. '

b. If the cALL routine is constructed so that the data
it requires can be located in arbitrarily labeled
areas of core storage, the symbols for these areas

36

Call Macro
Lobel rati OPERAND
18] t 30 38 9 __
e AA ISQREFOL N —

Assembled Symbolic Program Entry
B SQARTO1

Figure 84. caLL Statement Specifying That Data Is in Specif-
ically Labeled Areas of Storage

must be included immediately following the label
in the operand field. These symbols must be en-
tered in the order in which they are required by
the caLL routine. This makes it possible to design
cALL routines in which the required data can be
placed in locations labeled in any way the pro-
grammer desires. This frees the source program
writer from the restriction that he insert data in
locations labeled according to the -equirements
of the cALL routine. CALL routines to be used in
this manner must be coded to utilize the address
constants that will be created from the symbols
in the operand field.

Example: Call a routine whose entry point is SUBRTO1

(Figure 85). The addresses of pata 1, paTa 2, and pATA

3 are needed by the carL routine.

Call Macro

Label perati OPERAND
1sh

! 30
Vakrol,D

Assembled Symbolic Program Entry

B SUBRTO!

DCW DATAI
DATA2
DATA3

Figure 85. cALL Statement for a Routine with Arbitrary Data-
Storage Assignments

The processor:

1. Establishes linkage from the main routine to the
caLL routine by assembling a symbolic program entry
for an unconditional branch instruction. The operand
for this branch instruction is the entry point given in
the operand field of the caLL macro as shown in Fig-
ures 84 and 85. The branch instruction follows the caLL
macro.

2. Creates address constants for other symbols ap-
pearing in the operand field of the caLL macro, and
inserts them following the unconditional branch in-
struction as shown in Figure 85. Note: These address
constants are defined in the order in which the asso-
ciated symbols appear in the caLL operand.

. Result: A given caLL routine is inserted once per pro-

gram or program section in a location determined by

N

P

a processor control statement. Branch instructions are

inserted as many times as an associated CALL macro is
encountered in the source program. Thus, the caLL
routine can be entered from several points in the main
routine.

Example: Assume that a library routine to compute the
value of X + Z is associated with a regular macro-
instruction called TaxsQ. There is also a cALL routine in
the library tape named sQarto1 which calculates the
square root of a number in a work area (sQART02) and
places the answer in another work area sQaRrT03). The
programmer can design a library entry for the TaksQ
macro that will provide linkage to the caLL routine as
shown in Figure 86.

Library Entry

L Label Operation| Operand and Comments

sl7 8 910111213141516171819202112223 24252627 28293031323334353637 38394041 424344454647 484950

24 Hio0|4|, Isig|Alf|r 0|2
4 io|2|2|,|5]9|AR!7]9]2]
ClAILIL] |5lglair|T|o4

Zla S‘:Ak 0|3, |Hjelol3

Macro Instruction

Assembled Symbolic Program Entry

ZA X, SQARTO2

A Z, SQARTO02

B SQARTO1

ZA SQARTO3, RESULT

Figure 86. caLL Statement within a Library Routine for a
Macro-Instruction -

When the object routine is executed, X + Z will
be stored in sQarT02. Then the program will branch
to the carL routine where the square root of X + Z
will be calculated and the result stored in SQARTO3.
The last instruction in the sQART01 routine will cause
an unconditional branch to the last instruction in the
TAKSQ routine which puts the answer in an area labeled
RESULT. Notg: This illustration shows the combination
of a regular macro and the caLL macro. The same result
could be achieved by writing entries in the source pro-
gram as shown in Figure 87.

Incld Macro

This macro is used to extract an inflexible library rou-
tine from the library tape. However, the INCLD macro

Source Program Entries

Label perati OPERAND
[t i 30 36 —49 45 80
A YI ARTOAR N s NP

.‘ ¥.37:Y A
. AisL SQARTQL e e
N gZA .. .S 03 RESULT e aaie

Assembled Symbolic Program Entry

ZA X, SQARTO02

A Z, SQARTO2

B SQARTO!

ZA SQARTO3,RESULT

Figure 87. Alternative Source Program Entries

does not insert a branch instruction following the iNcLD
statement in the source program as does the caLL state-
ment. The programmer establishes his own linkage to
the closed routine. INCLD statements are constructed in
the same manner as CALL statements.

Example: Figure 88 shows an INCLD statement that
causes a library routine named susrto1 to be incorpo-
rated in the object program.

The processor does not produce a branch instruction.
The programmer must insert a branch at the place in
the main routine at which the exit to the closed routine
is needed. Several iNCcLD statements can be written in
a group in a source program to cause the associated
library routines to be stored at LTORG, END, or EX time
by the processor. Thus, one exit from the main routine
can be used to cause several library routines to be exe-
cuted at object time.

OPERAND

Label perati
I t 30
vBRroX. e

Figure 88. incLp Statement

Note: caLi and INCLD statements may appear in
either flexible or inflexible library routines. Also, an
inflexible library routine may, in turn, have caLL or
INCLD statements.

If cALL or INCLD are written within a library routine,
only a single operand is permitted in the caLL or iNCLD
statement. This single operand is the name or entry
point of the closed library routine. (See “Call Macro.”)

The Macro System 37

SOURCE PROGRAM

PROCESSOR OPERATIONS

Create a branch instruction
and insert it in the source program

CALL Macro

il

Branch

Extract library
routine at LTORG,
END or EX time

Closed Library Routine

|

Users next source
program statement

When the processor encounters a CALL macro, it creates an uncondi-
tional branch instruction to link the main program to the library routine.
The branch instruction is placed in the symbolic program immediately
following the CALL macro statement. Later, when the processor en-
counters @ LTORG, END or EX statement in the source program, it
extracts all library routines specified by CALL macros and stores them
as closed routines.

Figure 89. caLy Processing

SOURCE PROGRAM

PROCESSOR OPERATIONS

1
Il

Branch

Extract library
routine at LTORG, END or EX time

INCLD Macro

Closed Library Routine

Users next source
program statement

When the processor encounters an INCLD macro, it incorporates the
specified library routines when an LT ORG, END, or EX statement is
encountered in the user's source program. Note that the branch instruc-
tion that links the main routine to the closed library routine is provided
by the programmer.

|

Figure 90. iNcLD Processing

38

SN

Macro Processing
Figures 89, 90, and 91 show the effect of the three dif-
ferent uses of library routines:

1. As extracted by a regular macro-instruction.

2. As extracted by the caLL macro.

3. As extracted by the iNcLD macro.

The symbolic programs that result from the proc-
essor actions described in Figures 89, 90, and 91 are
later processed as though the user had, himself, in-
serted all the entries in the source program. Symbolic
entries are translated to machine-language instructions,
constants cards are produced, etc.

SOURCE PROGRAM PROCESSOR OPERATIONS

Extract
library routine

!

Source Program
Statement

Macro-instruction Substitute

parameters in

Source Program
statement following
macro-instruction

|
|
l
|
I
s \ l model statements wherever
Y | substitution codes appear
" I
B l Delete model
o statements if bypassing conditions
L | are satisfied
. | I
c — | Insert assembled symbolic program entries
| as an open routine in the symbelic program |
P
R :
(o]
G — >T
pp—
Ae—— 1
—
E l
N |
r——— | |
R |
I
— | |
; : |
) —T—) l
l
l

When a regular macro-instruction is encountered in the source program,
the processor extracts the specified library routine, tailors it, and inserts
it in-line in the users source program.

Figure 91. Macro Processing

DELET — Delete

This entry deletes a library routine or parts of a library'
routine from the library tape.

The programmer:

1. Writes the mnemonic operation code (DELET) in
the operation field.

2. Writes the name of the library routine in the label
field.

3. Writes in the operand field the line number(s) of
the model statement(s) to be deleted. If a whole routine
is to be deleted, the operand field contains only an M
or S. If more than one model statement of a continuous
sequence are to be deleted, the first and last numbers
must be written separated by commas.

The processor deletes the model statement or state-
ments specified in the operand field.

Result: The new library tape contains the modified
library routine.

Examples: Figure 92 is a DELET statement that will
cause the whole crEck library routine to be removed
from the library. ,

Figure 93 is a DELET statement that will cause the
first model statement to be deleted from the check
library routine.

Figure 94 is a DELET statement that will cause model
statements 2, 3, 4, and 5 to be deleted.

Label perati OPERAND
4 15h 30 3% 40 45 50
HECK, | ELETH .
Figure 92. Deleting an Entire Library Routine
Label perati OPERAND
30 3B 40 43
L
Figure 93. Deleting a Single Model Statement
Label perati OPERAND
i ' 30 35 40 45
c ELETM, 2,8

Figure 94. Deleting Multiple Model Statements

INSER — Insert

This entry can be used to insert whole library routines
or part of a library routine in the library tape.

The programmer:

1. Writes the mnemonic operation code aNser) in
the operation field.

2. Writes the name of the library routine in the
LABEL field.

The Macro System 39

3. Writes the line number of the model statement
after which the insertion is to be made. If two oper-
ands separated by a comma are written, the implied
deletion will take place.

The processor deletes model statements, if necessary,
and inserts the model statement(s) in-the library
routine.

Result: The new library tape contains the modified
library routine.

Examples: Figure 95 is an INser statement that will
cause a library routine named cHeck to be inserted in
the library tape.

Figure 96 is an INSER statement that will cause new
model statement 1 to be inserted in the cueck library
routine.

Lobel rati OPERAND
s ! ! 39 T 4 43 %0
HECK . M SERM, N s
Figure 95. Inserting an Entire Library Routine
Autocoder Statement
OPERAND
1)

Model Statement

Figure 97 is an INSER statement that will cause the
first model statement that is presently in the library
routine to be deleted and the model statement shown
to be inserted in its place.

Figure 98 is an INSER statement that causes model
statements 1 and 2 to be deleted and the model state-
ments shown to be inserted in their places.

Autocoder Statement

OPERAND

Lobel perati
ish 35 49 LT $0

HEQK | NSk, 1,1

Model Statement

L Label Operation Operand and Comments

617 8 9101112131415161718192021[2223242526]2728293031323334353637 383940414243 44454647 484950

peled |11 LTI leletd TE T T LI

IRERRN IR 1 T NEERRER

o]

Figure 97. Substituting One Model Statement for Another

Avutocoder Statement

Labe! roti OPERAND
[F:0 3 35

49
%Y I .

Model Statement.

L Label Operation

Operand and Comments

517 8 9101112131415161718192021[2223242526§2728293031323334353637 383940414243 44454647 484950

L Labe!} Operation Operand and C
¥lo|oj4 1B P|ARI4
67 8 9101112131415161718192023[2223 24 2526|27 282930313233 34353637 38394041 4243 444546 47 484950 e P lalk i) [Plalel2)
LT el T el olotel 1 11T {11 Bl | | IPales
T T T rrrr T Tty T T T T T T T T I T T i T T T

Figure 96. Inserting a Single Model Statement

40

Figure 98. Substituting Multiple Model Statements

This section consists of a list of the mnemonic opera-
tion codes for Declarative, Processor Control, and Im-
perative operations.

The operation code, operand(s), operation code
definition, and an example of an assembled machine-
language instruction are shown. A, B, and I (instruc-
tion) addresses have been equated to 12345, 34567, and
56789, respectively, for illustrative purposes. Where
d-modifier characters must be provided by the pro-
grammer, a D appears in the operand column and in
the d-modifier position of the assembled machine-
language instruction.

Declarative Operation Codes

Note that no assembled machine-language instruction
is produced. These codes are directions to the proces-
sor program only.

Mnemonic Operation Codes

Processor Control Operation Codes

Note that for explanation of the four operation codes,
JOB, EJECT, RESEQ, and RUN, the reader is referred to
the “Processor Control Operations” section of this
publication.

Imperative Operations

The imperative operation codes are listed in the fol-
lowing order: Arithmetic, Data-Move, Compare and
Look-up, Logical, Miscellaneous, and Input/Output
commands.

Mnemonic Operation Codes 41

PROCESSOR CONTROL OPERATIONS

OPCODE OPERAND INSTRUCTION

LOAD PRECEDE OBJECT PROGRAM WITH LOADER

CTL OBJECT MACHINE SIZE AND PRINT DR PCH SUPRES

PST PUNCH SYMBOL TABLE

EX LABEL EXECUTE J eevee
LTORG LITERAL ORIGIN

XFR LABEL TRANSFER J cosnn
SFX 8 SUFFIX CHARACTER

ORG . 10000 ORIGIN

END LABEL TERMINATES ASSEMBLY - GENERATES BRANCH
TO ADDRESS OF LABEL

J oevens

JoB (SEE PROCESSOR CONTROL OPERATIONS SECTION)

EJECT (SEE PROCESSOR CONTROL OPERATIONS SECTION)
RESEQ (SEE PROCESSOR CONTROL OPERATIONS SECTION)
RUN (SEE PROCESSOR CONTROL‘OPERATIONS SECTION)

DECLARATIVE OPERATIONS
OPCODE OPERAND INSTRUCTION
A EbU 12345 THE EQUATE INSTRUCTION
8 EQU 34567

I EQU 56789

DA 1X2+6 DEFINE AREA

DCW a3 DEFINE CONSTANT WITH WORD MARK
0C €2 DEFINE CONSTANT

DSs 1 . DEFINE SYMBOL

EQU 4 EQUATE

IMPERATIVE OPERATIONS
ARITHMETIC OPERATIONS

OPCODE QPERAND INSTRUCTION
A AyB ADD A-FIELD TO B-FIELD A 12345 34567
S AsB SUBTRACT A FROM B S 12345 34567
ZA A.B ZERD AND ADD A TO B ﬁ 12345 34567
s AsB 2ZERDO AND SUBTRACT A FROM B : 12345 34567
M AyB MULTIPLY ' 3 12345 34567
D A,B DIVIDE % 12345 34567
oamamwove o - - - -0~ - =~
OPCODE OPERAND INSTRUCTION

MOVE RIGHT TO LEFT COMMANDS

MOVE SINGLE POSITION

MLNS AyB MOVE LEFT NUMERIC SINGLE D 12345 34567
MLZS A+B ZONES SINGLE B 12345 34567
MLCS A,8 CHARACTERS SINGLE 0 12345 34567
MLWS As8 WORD MARKS SINGLE D 12345 34567
MLNWS A,B NUMERIC AND WORD MARK SINGLE D 12345 34567
MLZWS A,B ZONE AND WORD MARK SINGLE D 12345 34567

42

MLCWS

MLNA
MLZA
MLCA
MLKWA
MLNWA
MLZWA

MLCWA

MLNS
MLZB
MLCB
MLWB
MLNWB
MLZuWB

MLCWB

MLN
MLZ
MLC
MLW
MLNW
MLZW

MLCW

MRN
MRZ
MRC
MRW
MRNW
MRZW

MRCW

MRNR
MRZR
MRCR
MR WR
MRNWR
MR ZWR

MRCKWR

MRNG

MRZG

OPCODE OPERAND

AsB

AyB
Ay8
AyB
Ay8
A,8
A8

A,8

A,B
A,8
A,8
A,B
A8
A8

A+B

STOP MOVE AT

A+8

A8

MOVE LEFT TO RIGHT

A,B
A8
A+B

A.B

A48

A:B

STOP MOVE AT WORD MARK

MOVE LEFT

STOP MOVE AT WORD MARK

MOVE LEFT

WORD MARK

MOVE LEFT

CHARACTER AND WORD MARK SINGLE
IN A~FIELD

NUMERIC TO A-FIELD WORD MARK
ZONES TO A-FIELD WORD MARK
CHARACTERS YO A-FIELD WORD MARK
WORD MARKS TO A-FIELD WORD MARK
NUMERIC AND WM TO WORD MARK IN A

ZONES AND WM TO WORD MARK IN A

CHARACTERS AND WM ¥T0O WORD MK IN A

IN B8-FIELD

NUMERIC TO B-FIELD WORD MARK
Z0ONES TO B-FIELD WORD MARK
CHARACTERS TGO B-FIELD WORD MARK
WORD MARKS TO 8-FIELD WORD MARK
NUMERIC AND WM TG WORD MARK IN B
ZONES AND WM TO WORD MARK IN B
CHARACTERS AND WM TO WORD MK IN 8
IN A- OR B-FIELD

NUMERIC

ZONES

CHARACTERS

WORD MARKS

NUMERIC AND WORD MARKS

IONES AND WORD MARKS

CHARACTERS AND WORD MARKS

COMMANDS

STOP MOVE AT WORD MARK IN A~ OR B-FIELD

MOVE RIGHT NUMERIC

ZONES

CHARACTERS

WORD MARKS

NUMERIC AND WORD MARKS
ZONES AND WORD MARKS

CHARACTERS AND WORD MARKS

STOP MOVE AT RECORD MARK IN A-FIELD

MOVE RIGHT NUMERIC TO RECORD MARK IN A~FLD

ZONES TO RECORD MARK‘[N A-FIELD
CHARACTERS 7O RECORD MARK IN A
WORD MARKS TO RECORD MARK IN A
NUMERIC AND WM TO RM IN A~FIELD
ZONES AND WM TO RM IN A-FIELD

CHARACTERS AND WM TO RM IN A

STOP MOVE AT GM-WM IN A-FIELD

MOVE RIGHT NUMERIC TO GM-WM IN A-FIELD

ZONES TO GM-WM IN A-FIELD

INSTRUCTION

D 12345 34567 7

Q © O O o o o o o o o

=]

CcC o o o O

b

12345
12345
12345
12345
12345
12345

12345

12345
12345
12345
12345
12345
12345

12345

12345
12345
12345
12345
12345
12345

12345

12345
12345
12345
12345
12345
12345

12345

12345
12345
12345
12345
12345
12345

12345

12345

12345

34567
34567
34567
34567
34567
34567

34567

34567
34567
34567
34567
34567
34567

34567

34567
34567
34567
34567
34567
345617

34567

34567
34567
34567
34567
34567
34567

34567

34567
34567
34567
34567
34567
34567

34567

34567

34567

P,__,,,—’—‘”‘“—‘—-____4/””’__‘~“-——.u“_/"’“ﬂ——___—_\\\\\§_,/""_~—‘\‘\\‘__’,,//"~—§\\\

Mnemonic Operation Codes

SR I B B -3

. NI x

-0

43

C

LL

LE

LLE

LH

LLH

LEH

MRCG A+8
MRYWG A,8
MRNWG A.8
MRIWG A8
MRCWG A,B

STCGP AT
MRNM A,B
MR ZM AsB
MRCM A.8
MRWM A,B
MRNWM A,B
MRIWM A.B
MRCWM A,B

SCNRR A,B
SCNRG A,B
SCNRM A,B
SCNR A,8
SCNLA A,B
SCNLB A,8B
SCNL A+8
SCNLS A,.B

SPECIAL
MCS A,B
MCE A.B

A,B

AyB

AsB

BW

BIN
BIN
BIN
BZN
BWZ
BWZ
BWZ
BWZ

BCE

44

LOGICAL OPERATIONS
OPCODE OPERAND

1.8
1.8
I+ByAB
1+84A
1.8,8
1,8
1+84A8
Is8yA
1,8,8

1,8,0

CHARACTERS TO GM-wM IN A-FIELD
WORD MARKS 10 GM-WM TN A-FIELD
NUMERIC AND WM TO GM-WM IN A
ZONES AND WM TO GM-WM IN A-FIELD

CHARACTERS AND WM TO GM-WM IN A
RM OR GM-WM IN A-FIELD

MOVE RIGHT NUMERIC TO RM OR GM-WM

ZONES TO RM OR GM-WM

CHARACTERS TO RM OR GM-WM

WORD MARKS TO'RM OR GM-WM
NUMERIC AND WM TO RM DR GM-wWM
ZONES AND WM TO RM OR GM-WM
CHARACTERS AND WM TO RM OR GM-HM

SCAN LEFT AND RIGHT COMMANDS

SCAN RIGHT TO RM IN A-FIELD

TO GM-WM IN A-FIELD

YO RM OR GM-WM IN A-FIELD

TO WORD MARK IN A- OR B-FIELD

SCAN LEFT TO WORD MARK IN A-FIELD
TO WORD MARK IN B-FIELD
TO WM IN A- OR B-FIELD

SINGLE POSITION

MOVE COMMANDS

MOVE CHARACTERS AND SUPPRESS ZEROS

MOVE CHARACTERS AND EDIT

COMPARE AND LOOKUP COMMANDS
CPCODE OPERAND

COMPARE B-FIELD TO A-FIELD
LOOKUP LOW

LOUKUP EQUAL

LOOKUP LOW OR EQUAL

LOOKUP HIGH

LOOKUP LOW OR HIGH

LOOKUP EQUAL OR HIGH

BRANCH TO I-ADDR IFf WORD MARK AT B-ADDRESS

BRANCH TO I IF B HAS NO ZONE BITS

IF B HAS A AND B ZONES

IF B HAS A~BIT AND NO B-BIT
IF B HAS B-BIT AND NO A-BIT
BRANCH TO I IF B HAS WM OR NO AB-BITS

OR AB-BITS

OR A-BIT

OR B-BIT

BRANCH TO I IF CHARACTER AT B EQU D-MODD

INSTRUCTION

D

D

E

12345
12345
12345
12345

12345

12345
12345
12345
12345
12345
12345

12345

12345

12345

12345

12345
12345
12345
12345

12345

12345

12345

34567

34567

34567

34561

34561

34567

34567

34567

34567

34567

34567

34567

34567

34567

34567

34567

34567

34567

34567

34567

34567

345617

INSTRUCTION

c

T

12345
12345
12345
12345
12345
12345

12345

34567
34567
34567
34567
34567
34567

34567

INSTRUCTION

v

v

v

v

v

8 56789 34567 D

56789

56789

56789

56789

56789
56789
56789

56789

56789 34567

34567
34567
345617
34567
34567
34567
34567

34567

/_/_/_\/—\/_\/—\/__/’_\‘\ﬁ
OPCODE OPERAND

w

rO= & DR

L

BBE
B
8y
8E
BL
BH
BZ
BAV

BDV

DCWS
DCWF
DAV
RSV

TITLE

FRA
FST
FA
FS
FM

FO

BEX1
BEX2
BAl
BA2

BNR1

1+484D
1

I

I
1

— — — —

MISCELANEOUS OPERATIONS

OPCODE OPERAND
SAR A
SBR A
SER A
SFR A
SW A,B
CW A,B
cs B
cs [s8
H I
NOP

NOPWM

STC A

NAME
NAME
1X2.6
LABEL

SQRT

A

A

A

1D
1D
1
I

I

BRNCH IF ANY BIT AT B MATCHES 8IT IN D-MOD
UNCOND I TIONAL BRANCH l
BRANCH IF COMPARE UNEQUAL

EQUAL

LOW

HIGH
BRANCH IF ZERD BALANCE
BRANCH T1F ARITHMETIC OVERFLOW

BRANCH [F DIVIDE OVERFLOW

STORE A-REGISTER

STORE B-REGISTER

STORE E-REGISTER

STORE F-REGISTER

SET WORD MARK AT A AND B
CLEAR WORD MARK AT A AND B
CLEAR STORAGE

CLEAR STORAGE AND BRANCH
HALT AND BRANCH

NO OPERATION

NO OPERATICON WORD MARK

STORE TIME CLOCK

MNEMONICS FOR SUB-PROGRAMS, RELOCATABLE, ANC FORTRAN

BRANCH TO NAMED SUBROUTINE

ADCON FOR ENTRY POINT OF NAMED SUBROUTINE
DEFINE AREA IN COMMON AREA

APPLY DOWNWARD RELOCATION TO LABEL

100000000000000

FLOATING POINT ARITHMETIC INSTRUCTIONS

INTERPRETED BY THE FORTRAN ARITHMETIC ROUTINES

FLOATING RESET ADD
FLOATING STORE
FLOATING ADD
FLOATING SUBTRACY
FLOATING MULTIPLY

FLOATING DIVIDE

INPUT/QUTPUT COMMANDS
OPCODE OPERAND

BRANCH IF I/0 CHANNEL STATUS INDICAYOR ON

BRANCH EXTERNAL INDICATOR - CHANNEL 1
— CHANNEL 2
BRANCH ANY EXTERNAL INDICATOR -~ CHANNEL 1
- CHANNEL 2

BRANCH IF NOT READY -~ CHANNEL 1

INSTRUCTION

W

J

J

56789
56789
56789
56789
56789
56789
56789
56789

56789

Wﬁw
OPCODE OPERAND

34567 D

W

INSTRUCTION

G

6

G

12345
12345
12345
12345
12345
12345
34567
56789

56789

12345

12345
12345
12345
12345
12345

12345

A
B
E
.
34567

34567

34567

INSTRUCTION

Mnemonic Operation Codes

56789
56789
56789
56789

56789

EOZTOO [+

—

45

46

W

OPCODE OPERAND X ’ INSTRUCTION
BNR2 H - CHANNEL 2 X 56789 1
BCB1 1 BRANCH IF CHANNEL 1 BUSY R 56789 2
8CB2 I 2 BUSY X 56789 2
BEF1 I BRANCH IF END-OF-FILE — CHANNEL 1 R 56789 8
BEF2 I - CHANNEL 2 X 56789 8
BNT1 1 BRANCH NO TRANSFER - CHANNEL 1 R 56789 ?
BNT2 1 — CHANNEL 2 X 56789 ?
BWL1 I BRANCH WRONG LENGTH - CHANNEL 1 R 56789 -
BWL2 i - CHANNEL 2 X 56789 -
BERL I BRANCH ERROR - CHANNEL 1 R 56789 4
BER2 I — CHANNEL 2 X 56789 4
BRC1 1 BRANCH READ BACK CHECK ~ CHANNEL 1 R 56789 2
BRC2 I ~ CHANNEL 2 X 56789 2

CHANNEL STATUS INDICATORS MAY BE SET WITH I0 NOP.

10 NOP MNEMONIC IS ANY 10 OP PRECEDED BY N.

CONDITIONAL BRANCHES FOR I1/0, OVERLAP, AND PRIORITY

BOL1 1 BRANCH OVERLAP IN PROCESS - CHANNEL 1 J 56789 1
BOL2 I — CHANNEL 2 J 56789 2
BUPR I BRANCH UNIT PRIORITY REQUEST - CHANNEL 1 Y 56789 U
BUPRL 1 ~ CHANNEL 1 Y 56789 U
BUPRZ 1 = CHANNEL 2 Y 56789 F
8NQ 1 BRANCH INQUIRY REQUEST - CHANNEL 1 J 56789 Q
BNQ1 i - CHANNEL 1 J 56789 Q
BNQ2 1 ~ CHANNEL 2 J 56789 «
B8IPR I BRANCH INQUIRY PRIGRITY REQUEST - CHAN 1 Y 56789 Q
BIPRL 1 - CHAN 1 Y 56789 Q
BIPRZ2 1 - CHAN 2 Y 56789 =
80Q I BRANCH OUTQUIRY - CHANNEL 1 ' J 56789 N
80Q1 i = CHANNEL 1 J 56789 N
80Q2 1 - CHANNEL 2 J 56789 #
BQPR | BRANCH OUTQUIRY PRICRITY REQUEST ~ CHAN 1 Y 56789 N
BQPR1 1 - CHAN 1 Y 56789 N
BQPR2 | - CHAN 2 Y 56789 %
BSPRL 1 BRANCH IF SEEK PRIORITY REQUEST — CHAN 1 Y 56789 §
BSPR2 1 - CHAN 2 Y 56789 T
BXPRL 1 - BRANCH IF SIMPLEX PRIORITY REQUEST - CHAN 1 Y 56789 A
BXPR2 1 - CHAN 2 Y 56789 B
B81 I BRANCH IF BINARY CARD - CHANNEL 1 J 56789 M
882 1 — CHANNEL 2 J 56789 %
BPCB I BRANCH PRINTER CARRIAGE BUSY ~ CHANNEL 1 J 56789 R
BPCBL 1 - CHANNEL 1 J 56789 R
gpCB2 1 - CHANNEL 2 J 56789 L
8Cv I BRANCH CARRIAGE OVERFLOW - CHANNEL 1 J 56789 2
BCV1 1 = CHANNEL 1 J 56789 3

T

W

OPCODE OPERAND INSTRUCTICN
BCvV2 1 — CHANNEL 2 J 56789 n
8C9 1 BRANCH CARRIAGE CHANNEL 9 — CHANNEL 1 J 56789 9
8C91 1 ~ CHANNEL 1 J 56789 9
B8C92 I - CHANNEL 2] J 56789 :
BXPA | BRANCH AND EXIT PRIORITY ALERT Y 56789 X
BEPA I ENTER PRIORITY ALERT Y 56789 €
BOPR1 I éRANCH OVERLAP PRIQRITY REQUEST - CHANNEL 1 Y 56789 1
BOPR2 1 -~ CHANNEL 2 Y 56789 2

UNIT RECORD OPERATIONS

READ A CARD. FIRST OPERAND DENOTES STACKER POCKET

R 0.8 READ - CHANNEL 1 M %10 34567 R
R1 1,8 ~ CHANNEL 1 M 2Ll 34567 R
R2 2,8 - CHANNEL 2 ‘ M bl2 34567 R
RHW 148 READ LOAD MODE - CHANNEL 1 L %11 34567 R
R1W 1,48 - CHANNEL 1 L %11 34567 R
R2W 1,8 ~ CHANNEL 2 L mll 34567 R
RO 1,8 READ OVERLAPPED - CHANNEL 1 M 8ll 34567 R
R10 1.8 - CHANNEL 1 M all 34567 R
R20 148 - - CHANNEL 2 Moell |, 34567 R
RWO 1.8 READ LOAD MODE OVERLAPPED - CHANNEL 1 L a1l 34567 R
RIWO 1,8 - CHANNEL 1 L all 34567 R
R2WO 1,8 - CHANNEL 2 L 11 34567 R

SELECT STACKER AND FEED

SSF 0 SELECY STACKER 0 AND FEED - CHANNEL 1 K 0
SS5F1 1 STACKER 1 ~ CHANNEL 1 Tk 1

SSF2 2 . STACKER 2 - CHANNEL 2 4.2

PRINTER OPERATIONS

W 8. WRITE PRINTER - CHANNEL 1 ' “ : M %20 34567 W
Wl 8 - CHANNEL 1 g ' M 220 34567 W
w2 B ' - CHANNEL 2 M G20 34567 W
WH B WRITE' PRINTER LOAD MODE - CHANNEL 1 : L %20 34567 W
Wiw B N - CHANNEL 1 L %20 34587 W
W2u]) : _ - CHANNEL 2 L 820 34567 W
Wo 8 WRITE PRINTER OVERLAPPED — CHANNEL 1 M @20 34567 W
w10 B - CHANNEL 1 M 320 34567 W
W20 B ~ CHANNEL 2 M €20 34567 W
NHO 8 WRITE PRINTER LOAD MODE OVERLAPPED - CHAN 1 L 820 34567 W
WINO B : - CHAN 1 L 820 34567 W
W2WO 8 , -~ CHAN 2 L #20 34567 W
WM B © WRITE WORDMARKS - CHANNEL 1 M 221 34567 W
WMl 8 -~ CHANNEL 1 M %21 34567 W
WM2 B - CHANNEL 2 M o2l 34567 W
WMO B WRITE WORDMARKS OVERLAPPED — CHANNEL 1 M 321 34567 W

W/'//__

Mnemonic Operation Codes 47

48

OPCODE OUPERAND INSTRUCTION

WM10 8 ~ CHANNEL 1 M @21 34567 W N
WM20 -] — CHANNEL 2 M %21 34567 W

cc 1 CARRIAGE CONTROL [/0 CHANNEL 1 F1

ccl1 1/0 CHANNEL 1 =1

cc2 K 1/0 CHANNEL 2 R S

PUNCH OPERATIONS, FIRST OPERAND DENOTES STVACKER

P 0,8 PUNCH - CHANNEL 1 M %40 34567 W
Pl 4,8 — CHANNEL 1 M %44 34567 W
P2 8,8 - CHANNEL 2 M n4g 34567 W
PW 0.8 PUNCH LOAD MODE ~ CHANNEL 1 L %40 34567 W
PlW 0,8 - CHANNEL 1 L 240 34567 W
P2k 048 — CHANNEL 2 ‘ ‘ L n40 34567 W
PO 0+8 PUNCH OVERLAPPED ~ CHANNEL 1 M a40 34567 W
P1D 0,8 - CHANNEL 1) M 240 34567 W
P20. 0,8 — CHANNEL 2 M #4640 34567 W
PHO 0.8 PUNCH LOAD MODE OVERLAPPED - CHANNEL 1 ' L 240 34567 W
P1uW0 0.8 ~ CHANNEL 1 : L a40 34567 W
’ P2W0 048 - CHANNEL 2 L #40 34567 W
P8l 0s8 PUNCH COLUMN BINARY — CHANNEL 1 M %80 34567 W
PB2 0,8 — CHANNEL 2 M o8O 34567 W
fB10 0,8 ~ PUNCH COLUMN BINARY OVERLAPPED -~ CHANNEL 1 M 280 34567 W
PB20 0,8 ~ CHANNEL 2 M +80 34567 W o

CONSOLE OPERATIONS

RCP B READ CUNSOLE PRINTER M ZT0 34567 R
RCPW 8 LOAD MODE ‘ L 270 34567 R
RCPO 8 OVERLAPPED M aTo 34567 R
RCPWO B LOAD MODE OVERLAPPED ‘ L aTo0 34567 R
wWee 8 WRITE CONSOLE PRINTER M %70 34567 W
WCPW 8 LOAD MODE L %T0 34567 W
wCPO B - OVERLAPPED M aTo 34567 W
WCPWO 8 LOAD MODE OVERLAPPED L aro 34567 W

MAGNETIC TAPE OPERATIONS

BSP 11 BACKSPACE TAPE — CHANNEL 1 uguls

BSP 21 ~ CHANNEL 2 ° unyle

SKP 12 ERASE FORWARD - CHANNEL 1 USU2E

SKP 22 ~ CHANNEL 2 unU2E

WM 11 WRITE TAPE MARK = CHANNEL 1 URULM

WTM 21 ~ CHANNEL 2 unulM

RWD 12 REWIND —~ CHANNEL 1 UBU2R

RWD 7 22 — CHANNEL 2 Uau2r

RWU 11 REWIND AND UNLOAD - CHANNEL 1 uguLu

RWU 21 ~ CHANNEL 2 uouly

cu TU24 W CONTROL UNIT Uzu2n ST
MU 12,8 MOVE UNIT - CHANNEL 1 M U2 34567 R

-

OPCODE OPERAND INSTRUCTION

MU 22,8 ~ CHANNEL 2 M nu2 34567 R
LY 12,8 LOAD UNIT — CHANNEL 1 ' L 3u2 34567 R
(i 1248 - CHANNEL 2 L 2U2 34567 R

READ TAPE DOPERATIONS
RT 12,8 READ TAPE ~ CHANNEL 1 M RU2 34567 R
RT 2248 ~ CHANNEL 2 M U2 34567 R
RTHW 1248 READ TAPE LOAD MODE — CHANNEL 1 L %u2 34567 R
RTW 2248 — CHANNEL 2 L nu2 34567 R
RTO 11+8 READ TAPE OVERLAPPED - CHANNEL 1 M aul 34567 R
RTO 2148 - CHANNEL 2 M =yl 34567 R
RTHO 11,8 READ TAPE LOAD MODE OVERLAPPED — CHANNEL 1 L aul 34567 R
RTWO 21,48 - CHANNEL 2 L +Ul 345617 R
RTG 12,8 READ TAPE TO INTERRECORD GAP — CHANNEL 1 M 3Uu2 34567 §
RTG 2248 — CHANNEL 2 M au2 345617 3
RTGW 1248 READ TAPE TO GAP LOAD MODE - CHANNEL 1 L 2U2 34567 8
RTGHW 2248 ~ CHANNEL 2 L auy2 34567 8
RTS8 il,8 READ TAPE BINARY - CHANNEL 1 M 281 34567 R
RTB 21,8 ~ CHANNEL 2 M Bl 34567 R
RTBW 1148 READ TAPE BINARY LOAD MODE ~ CHANNEL 1 L 81 34567 R
RTBW 21,8 - QHANNEL 2 L =Bl 34567 R
RTBO 1248 READ TAPE BINARY OVERLAPPED - CHANNEL 1 M aB2 34567 R
RTBO 22,8 - CHANNEL 2 M =282 34567 R
RTBWO 1248 READ TAPE BINARY LOAD MODE OVLAPPED -CHAN 1 L aB2 34567 R
RTBWO 22,8 -CHAN 2 L B2 34567 R
RTBG 11,8 READ TAPE BINARY TO GAP — CHANNEL 1 M %B1 34567 &
RTBG 2148 ~ CHANNEL 2 M oBl 34567 $
RTBGW L11+8 READ TAPE BINARY TO GAP LOAD MODE - CHAN 1 L 3Bl 34567 8
RTBGK 2148 ~ CHAN 2 L 081 34567
WRITE TAPE OPERATIONS
WT 11,8 WRITE TAPE ~ CHAN 1 M ZUl 34567 W
WT 21,8 — CHAN 2 M oyl 34567 W
WTW 11,8 WRITE TAPE LOAD MODE ~ CHAN 1 L ZuUl 34567 W
WTW 21,8 = CHAN 2 L oyl 34567 W
LNy 12,8 WRITE TAPE OVERLAPPED - CHAN 1 M au2 34567 W
WTO0 2248 - CHAN 2 M *y2 34567 W
WTWO 12,8 WRITE TAPE LOAD MODE OVERLAPPED ~ CHAN 1 L auz 34567 W
WIWO 2248 ~ CHAN 2 L =U2 34567 W
WTE 11,8 WRITE TAPE TO END OF CORE - CHAN 1 M ZUl 34567 X
WTE 21,8 = CHAN 2 M oyl 34567 X
WTEW 11,8 WRITE TAPE TO END LOAD MODE - CHAN 1 L 3ul 34567 X
WTEW 2148 ~ CHAN 2 L oul 34567 X
WTB 1248 WRITE TAPE BINARY — CHAN 1 M 382 34567 W
WTB 2248 ~ CHAN 2 M nB2 34567 MW
//’__/———_/—_—\

Mnemonic Operation Codes

49

50

OPCODE OPERAND INSTRUCTION
WTBW 12,8 WRITE TAPE BINARY LOAD MODE - CHAN 1 L 382 34567 W
WTBW 22,8 ~ CHAN 2 o L uB2 34567 W
wiBo 11,8 WRITE TAPE BINARY OVERLAPPED — CHAN 1 v M 2Bl 34567 W
WTBO 21,8 - CHAN 2 M #Bl 34567 W
WIBWO 11,8 WRITE TAPE BINARY LOAD MODE OLAPPED ~CHAN 1 L a8l 34567 W
WTBWO 21,8 ~CHAN 2 L #BL 34567 W
WTBE 12,8 WRITE TAPE BINARY TO END OF CORE - CHAN 1 M ¥B2 34567 X
WIBE 22,8 - CHAN 2 M aB2 34567 X
WTBEW 12,8 WRITE TAPE BINARY TC END LOAD MODE — CHAN 1 L 282 34567 X
WIBEW 22,8 ~ CHAN 2 L oB2 34567 X

1405 DISK OPERATIONS

$D 1.8 SEEK DISK — CHANNEL 1 M ZFO 34567 R
SD 248 - CHANNEL 2 M OFO 34567 R
SO 1,8 SEEK DISK DVERLAPPED - CHANNEL 1 M BFC 34567 R
SO 2,8 - CHANNEL 2 M O*FO 34567 R
WD 1,8 WRITE DISK SINGLE RECORD - CHANNEL 1 M OZFL 34567 W
WD 248 - CHANNEL 2 MoBFL 34567 W
WDW 1,8 LOAD MODE - CHANNEL 1 L ZF1 34567 W
WDW 248 = CHANNEL 2 L dF1 34567 W
WDD 148 OVERLAPPED - CHANNEL 1 M @FL 34567 W
WDO 2,8 : - CHANNEL 2 MOSFL 34567 W
WDOWO 1,8 LOAD MODE OVERLAPPED — CHANNEL 1 L BF1 34567 W
WDKO 2,8 ~ CHANNEL 2 ' L sFL 34567 W
wol 1,8 WRITE FULL TRACK — CHANNEL 1 M SIF2 34567 W
WDT 248 ~ CHANNEL 2 M oF2 34567 W
WDTW 1,8 LOAD MODE ~ CHANNEL 1 ‘ L 2F2 34567 W
WOTW 2,8 ~ CHANNEL 2 - L BF2 34567 W
WOTO 148 OVERLAPPED ~ CHANNEL 1 M 3F2 34567 W
WDTO 2,8 ~ CHANNEL 2 . M F2 34567 W
WDTWO 1,8 LOAD MODE OVERLAPPED ~ CHANNEL 1 ' L 9F2 34567 W
WDTWO 248 ‘= CHANNEL 2 L #F2 34567 W
WDC 1,8 WRITE DISK CHECK — CHANNEL 1 M ZF3 34567 W
WDC 248 ~ CHANNEL 2 M uF3 34567 W
WOCN 1,8 LOAD MODE - CHANNEL 1 L SF3 34567 W
WDCW 2,8 - CHANNEL 2 L oF3 34567 W
WDCO 1:8 OVERLAPPED - CHANNEL 1 M 9F3 34567 W
WDCO 2,8 - CHANNEL 2 M SF3 34567 W
WOCWD 1,8 LOAD MODE OVERLAPPED — CHANNEL 1 L 3F3 34567 W
WDCWO 2,8 - CHANNEL 2 L *F3 34567 W
RO 1.8 READ DISK SINGLE RECORD — CHANNEL 1 M ZF1 34567 R
RD 2,8 - CHANNEL 2 \ M uFL 34567 R

/////""____,//*"""~\\\‘______,,///""'——_\"‘_________———”"'ﬂ—_\‘*“‘\\\\\N

OPCODE CPERAND INSTRUCTION

RD#W 1,8 LOAD MODE - CHANNEL 1 L ZF1 34567 R
ROW 248 = CHANNEL 2 L oFl 34567 R
RDO 1,8 OVERLAPPED - CHANNEL 1 M aF1 34567 R
RDO 248 - CHANNEL 2 M »Fl 34567 R
RDWO 1+8 LOAD MODE OVERLAPPED - CHANNEL 1 L aFl 34567 R
ROWO 248 — CHANNEL 2 L *F1 34567 R
RDT 1,8 READ DISK FuULL TRACK - CHANNEL 1 M %F2 34567 R
RDT 248 — CHANNEL 2 M BF2 34567 R
RDTW 1,8 LOAD MODE -~ CHANNEL 1 L 3F2 34567 R
ROTW 24+B — CHANNEL 2 L BbF2 34567 R
ROTO 1,8 OVERLAPPED - CHANNEL 1 M aF2 34567 R
RDTO 248 - CHANNEL 2 M »F2 34567 R
RDTWO 1,8 LOAD MODE OVERLAPPED - CHANNEL 1 L aF2 34567 R
RDTWO 2,8 - CHANNEL 2 L *F2 34567 R

1301 DiSK OPERATIONS

SD 1,8 SEEK DISK — CHANNEL 1 M ZFO 34567 R
sD 2,8 ~ CHANNEL 2 M BFQ 34567 R
SDO 1+8 OVERLAPPED - CHANNEL 1 ' M 3F0 34567 R
SDO 248 - CHANNEL 2 M =FQ 34567 R
WD 1.8 WRITE SINGLE RECORD - CHANNEL 1 M 3ZF1 34567 W
WD 2,48 — CHANNEL 2 M oFl 34567 W
WDW 1,8 LOAD MODE — CHANNEL 1 L %F1L 34567 W
WOW 248 - CHANNEL 2 L oF1l 34567 W
Wwoo 148 OVERLAPPED - CHANNEL 1 M aFl 34567 W
W00 218 - CHANNEL 2 M sFl 34567 W
WOWO 1,8 LOAD MODE OVERLAPPED - CHANNEL 1 L aF1l 34567 W
WDWO 248 _ — CHANNEL 2 L =Fl 34567 W
WDE 1.8 TO END OF CORE — CHANNEL 1 M ZF1 34567 X
WDE 248 — CHANNEL 2 M ofFl 34567 X
WDEW 1,8 TO END OF CORE LOAD MODE - CHANNEL 1 L ZF1 34567 X
WDEW 242 - CHANNEL 2 L oFl 00002 X |
WDT 148 WRITE FULL TRACK WITHOUT ADDRESSES - CHAN 1 M ZF2 34567 W
WOT 248 ~ CHAN 2 M oF2 34567 W
WDTH 1,8 LOAD MODE — CHAN 1 L ZF2 34567 W
WOTW 248 - CHAN 2 L oF2 34567 W
WOTO 1+8 OVERLAPPED -~ CHAN 1 M aF2 34567 W
WDTO 248 - CHAN 2 M #F2 34567 W
WOTWO 1.8 LOAD MODE OVERLAPPED — CHAN 1 L aF2 34567 W
WDTWO 2,8 — CHAN 2 L #F2 34567 W
WDTE 1.8 TO END OF CORE -~ CHAN 1 M ZF2 34567 X
WOTE 2,8 ~ CHAN 2 M oF2 34567 X
WDTEW 148 TO END OF CORE LOAD MODE - CHAN 1 L BF2 34567 X
WDTEW 248 - CHAN 2 L aF2 34567 X

- T

Mnemonic Operation Codes 51

52

~— T N~ — T T — T TT— T T

OPCODE OPERAND INSTRUCTION

WDC 148 WRITE DISK CHECK — CHANNEL 1 ‘ M ZF3 34567 W
WOC 2,8 - CHANNEL 2 M oF3 34567 W
WDCW 1,8 LOAD MODE - CHANNEL 1 L 2F3 34567 W
NDCN‘ 248 ’ =~ CHANNEL 2 L ofF3 34567 W
WDCO 1,8 OVERLAPPED ~ CHANNEL 1 M aF3 34567 W
WwDCO 2,48 CHANNEL 2 M «F3 34567 W
WOCWO 1,8 LOAD MODE OVERLAPPED -~ CHANNEL 1 L aF3 34567 W
WOCWO 2,8 — CHANNEL 2 L *Ff3 34567 W
WDCE 1B TO END OF CORE - CHANNEL 1 M %F3 34567 X
WDCE 2,8 ~ CHANNEL 2 M BF3 34567 X
WOCEW 1,8 TO END OF CORE LOAD MODE - CHANNEL 1 L ZF3 34567 X
WOCEW 2,8 - CHANNEL 2 L oF3 34567 X
WHA 148 WRITE FULL TRACK WITH HOME ADDRESS - CHAN 1 M %F5 34567 W
WHA 248 — CHAN 2 M oFS 34567 W
NHAN' 148 LOAD MODE - CHANNEL 1 L ZFS 34567 W
WHAW 248 = CHANNEL 2 L oFs 34567 W
WHAC 148 OVERLAPPED - CHANNEL 1 M 3FS 34567 W
WHAD 248 = CHANNEL 2 M #FS 34567 W
WHAWO 1.8 LOAD MODE OVERLAPPED - CHANNEL 1 L aF= 34567 W
WHAWD 2,8 - CHANNEL 2 L *FS 34567 W
WHAE 1,8 TO END OF CORE - CHANNEL 1 M %FS 34567 X
WHAE 248 = CHANNEL 2 M BFS 34567 X
WHAEW 148 TO END OF CORE LOAD MODE - CHANNEL 1} L %FS 34567 X
WHAEW 248 = CHANNEL 2 L oF5 34567 X
WFT 1.8 WRITE FULL TRACK WITH ADDRESSES — CHAN 1 M ZFé6 34567 W
WFT 2,8 > = CHAN 2 M oFé6 34567 W
WFTW 148 LOAD MQDE ~ CHANNEL 1 L %F6 34567 W
WFTW 2,8 ~ CHANNEL 2 L afFe 34567 W
WFTO0 1,8 OVERLAPPED - /CHANNEL 1 M 3F6 34567 W
WFTO 248 - CHANNEL 2 M =Fé 34567 W
WFTWO 1,8 LOAD MODE OVERLAPPED - CHANNEL 1 L aFé 34567 W
WFTWO 2,8 ~ CHANNEL 2 L #F6 34567 W
WFTE 1.8 TO END OF CORE —~ CHANNEL 1 M ZF6 34567 X
WFTE 248 ~ CHANNEL 2 M aFé6 34567 X
WFTEW 1,8 TO END OF CORE LOAD MODE ~ CHANNEL 1 L %F6 34567 X
WFTEW 2,8 - CHANNEL 2 L BFé6 34567 X
WFO 1+B WRITE FORMAT TRACK -~ CHANNEL 1 M ZF7 34567 W
WFO 2.8 . - CHANNEL 2 M BF7 34567 W
WFOO 1.8 OVERLAPPED — CHANNEL 1 M 3F7 34567 W
WFOO 2,8 ~ CHANNEL 2 M #F7 34567 W
WFQE 1.8 TO END OF CORE — CHANNEL 1 M ZF7 34567 X
WFOE 2,48 = CHANNEL 2 M BF7 34567 X
HWCY 1,8 WRITE CYLINDER - CHANNEL 1 ' M %Fa 34567 W
Wey 2,8 ~ CHANNEL 2 # ofa 34567 W

—_— — T e —

M — T T~ T T T T T)
OPCODE OPERAND INSTRUCT1ON
WCYD 1.8 OVERLAPPED - CHANNEL 1 M aFa 34567 W
WCYOD 2,8 ~ CHANNEL 2 M #F3 34567 W
WCYW 1,8 LOAD MODE — CHANNEL 1 L ZFa 34567 W
WCYW 2,8 - CHANNEL 2 L oFa 34567 W
WCYWD 1,8 LOAD MODE OVERLAPPED - CHANNEL 1 L 3F2 34567 W
WCYWO 2,8 - CHANNEL 2 L *F3 34567 W
WCYE 1,8 TO END OF CORE - CHANNEL 1 M ZFD 34567 X
WCYE 2,B ~ CHANNEL 2 M OFs 34567 X
WCYEW 1,8 TO END OF CORE LOAD MODE - CHANNEL 1 L %Fa 34567 X
WCYEW 2,8 - CHANNEL 2 L OFa 34567 X
RD 1.8 READ SINGLE RECORD — CHANNEL 1 M ¥F1 34567 R
RD 2,8 - CHANNEL 2 M DFL 34567 R
ROW 1,8 LOAD MODE - CHANNEL 1 L %F1 34567 R
RDW 2,8 ~ CHANNEL 2 L ofl 34567 R
RDO 1.8 DVERLAPPED - CHANNEL 1 M @FL 34567 R
RDO 2,8 ~ CHANNEL 2 M sE1 34567 R
RDWG 1,8 LOAD MODE OVERLAPPED — CHANNEL 1 L aF1L 34567 R
RDWO 2,8 - CHANNEL 2 L #F1 34567 R
RDG 148 TO RECORD GAP ~ CHANNEL 1 M ZFL 34567 §
RDG 2,8 - CHANNEL 2 M BFL 34567 $
RDGW 1,B TO RECORD GAP LOAD MODE ~ CHANNEL 1 L ZF1 34567 s
RDGW 2,8 - CHANNEL 2 L oFl 34567 $
RDT 1.8 READ DISK FULL TRACK — CHANNEL 1 M ZF2 34567 R
ROT 2,8 - CHANNEL 2 M OF2 34567 R
RDTW 1,8 LOAD MODE - CHANNEL 1 L TF2 34567 R
ROTW 2,8 ~ CHANNEL 2 L OF2 34567 R
RDTO 1,8 OVERLAPPED - CHANNEL 1 M aF2 34567 R
ROTO 2,8 ~ CHANNEL 2 . M *F2 34567 R
ROTWO 1,B LOAD MODE OVERLAPPED - CHANNEL 1 L 9F2 34567 R
RDTHO 2,8 ' - CHANNEL 2 L #F2 34567 R
RDTG 1,8 TO END OF TRACK - CHANNEL 1 M TF2 34567 §
ROTG 2,8 - CHANNEL 2 M oF2 34567 $
ROTGW 1,8 TO END OF TRACK LOAD MODE - CHANNEL 1 L TF2 34567 §
RDTGN 208 - CHANNEL 2 L oF2 34567 8
RHA 1.8 READ FULL TRACK WITH HOME ADDRESS - CHAN 1 M ZF5 34567 R
RHA 2,8 - CHAN 2 M OFS 34567 R
RHAW 1,B LOAD MODE - CHANNEL 1 L TF5 34567 R

" RHAW 2,8, - CHANNEL 2) L OF5 34567 R
RHAQ 1,8 OVERLAPPED ~ CHANNEL 1 M aFS 34567 R
RHAD 2,8 - CHANNEL 2 M sF5 34567 R
RHANO 1,8 LOAD MODE OVERLAPPED ~ CHANNEL 1 L aF5 34567 R
RHAWO 2,8 - CHANNEL 2 L «F5 34567 R
RHAG 1,8 TO END OF TRACK - CHANNEL 1 M OIFS 34567 §
RHAG 2,8 ~ CHANNEL 2 M OFS 34567 §
RHAGW 1,B TO END OF TRACK LOAD MODE - CHANNEL 1 L F5 34567 %
/\/_/d_—_/_\/\/,\

Mnemonic Operation Codes

53

54

W/\/
OPCODE OPERAND) NSTRUCTION
RHAGW 2,8 ~ CHANNEL 2 L oF5 34567 §
RFT 1,8 READ FULL TRACK WITH ADDRESSES - CHANNEL 1 M XF6 34567 R
RET 2,8 - CHANNEL 2 M nf6 34567 R
RETW 1,8 LOAD MODE - CHANNEL 1 L %F6 34567 R
RFTW 2,B ~ CHANNEL 2 L OF6 34567 R
RFI0 1,8 OVERLAPPED — CHANNEL 1 M aF6 34567 R
RETO 2,8 ~ CHANNEL 2 M %F6 34567 R
RFTHWO 1,8 LOAD MODE OVERLAPPED - CHANNEL 1 L aF6 34567 R
RFTWO 2,8 ~ CHANNEL 2 L #F6 34567 R
RETG 1,8 TO END OF TRACK - CHANNEL 1 M %F6 34567 $
RETG - 2,8 - CHANNEL 2 M OF6 34567 §
RETGW L1,B TO END OF TRACK LOAD MODE - CHANNEL 1 L 2F6 34567 §
RETGH 2,8 - CHANNEL 2 L DOF6 34567
RCY 1,8 READ CYLINDER - CHANNEL 1 M %Fa 34567 R
RCY 2,48 - CHANNEL 2 M BFa 34567 R
RCYW 1,8 LOAD MODE - CHANNEL 1 L %Fa 34567 R
RCYW 2,8 - CHANNEL 2 L aFa 34567 R
RCYO 1,8 OVERLAPPED - CHANNEL 1 M @Fa 34567 R
RCYO 2,8 - CHANNEL 2 M *F@d 34567 R
RCYWD 148 LOAD MODE OVERLAPPED — CHANNEL 1 L aFa 34567 R
RCYWG 2,8 ~ CHANNEL 2 L #Fa 34567 R
RCYG 1,8 TO END OF CYLINBER - CHANNEL 1 M %Fa 34567 %
RCYG 2,8 -~ CHANNEL 2 M aFad 34567 $
RCYGW 1,8 fO END OF CYLINDER LOAD MODE - CHAN 1 L 3FQ 34567 8
RCYGW 2.8 - CHAN 2 L OFa 34567 %
PSC 1.8 PREVENT SEEK COMPLETE - CHANNEL 1 . M %F4 34567 W
PSC 2,8 ~ CHANNEL 2 M OF4 34567 W
PSCO 1,8 OVERLAPPED - CHANNEL 1 M @F4 34567 R
PSCO 2.8 - CHANNEL 2 M #F4 34567 R
SAl 1,8 SET ACCESS INDPERATIVE ~ CHANNEL 1 M %F8 34567 R
SAI 2,8 - CHANNEL 2 M oF8 34567 R
SAIO 1.8 OVERLAPPED - CHANNEL 1 M aFB 34567 R
SAID 2,8 . - CHANNEL 2 M sF8 34567 R
REL 1,8 RELEASE - CHANNEL 1 M ZF9 34567 R
REL 2,8 - CHANNEL 2 M OF9 34567 R
RELO 1,8 OVERLAPPED ~ CHANNEL 1 M @F9 34567 R
RELO 2,8 ~ CHANNEL 2 M ®F9 34567 R

1009 DATA TRANSMISSION UNIT
RTD 1.8 READ - CHANNEL 1 M ID0 34567 R
RTD 2,8 - CHANNEL 2 » M ODO 34567 R
RTOW 1,8 LOAD MODE - CHANNEL 1 L D0 34567 R
. RTOW 2,8 - CHANNEL 2 L ob0 34567 R
W

M — e T~]
OPCODE OPERAND INSTRUCTION
RTDO 1.8 OVERLAPPED - CHANNEL 1 M aD0 34567 R
RTDO 2,8 — CHANNEL 2 M *DO 34567 R
RTOWO 1,8 LOAD MODE OVERLAPPED - CHANNEL 1 L abo 34567 R
RTOWO 2,8 - CHANNEL 2 L *D0 34567 R
WTD 1.8 WRITE - CHANNEL 1 M ZDU 34567 W
WiD 2,8 ~ CHANNEL 2 M uD0 34567 W
WTDW 148 LOAD MODE - CHANNEL 1 L 300 34567 W
WIDW 2,8 - CHANNEL 2 L oD0 34567 W
WTDO 1.8 OVERLAPPED - CHANNEL 1 M D0 34567 W
WIDO 2,8 - CHANNEL 2 M #D0 34567 W
WIDWO 1,8 LOAD MODE OVERLAPPED - CHANNEL 1 L aD0 34567 W
WTDWO 2,8 — CHANNEL 2 L *D0 34567 W

1011 PAPER TAPE INSTRUCTIONS
RPT 148 READ - CHANNEL 1 M ZP1 34567 R
RPT 2,8 ~ CHANNEL 2 M OPl 34567 R
RPTW 1,8 LOAD MODE - CHANNEL 1 L ZPL 34567 R
RPTW 2,8 - CHANNEL 2 L oP1 34567 R
RPTO 1,8 DVERLAPPED ~ CHANNEL 1 M aP1l 34567 R
RPTO 248 ~ CHANNEL 2 M osP1 34567 R
RPTWO 1,8 LOAD MODE OVERLAPPED - CHANNEL 1 L aP1 34567 R
RPTWO 2,8 - CHANNEL 2 L #P1 34567 R

1014 REMOTE INQUIRY INSTRUCTIONS
RQ 10,8 READ INQUIRY - CHANNEL 1 M %00 34567 R
RG 20,8 ~ CHANNEL 2 M DQO0 34567 R
RQW 11,8 LOAD MODE - CHANNEL 1 L 2Ql 34567 R
RQW 2148 - CHANNEL 2 L gl 34567 R
Rub 10,8 OVERLAPPED - CHANNEL 1 M 300 34567 R
RQO 20,8 , ~ CHANNEL 2 M #Q0 34567 R
ROWO 11,8 LOAD MODE - CHANNEL 1 L aQl 34567 R
RQWO 21,8 ~ CHANNEL 2 L »Ql 34567 R
WO 1048 WRITE INQUERY — CHANNEL 1 M ZQ0 34567 W
Wo 20,8 - CHANNEL 2 M 0QO0 34567 W
waw 11,8 LOAD MODE - CHANNEL 1 L %Q1 34567 W
waw 21,8 - CHANNEL 2 L oQl 34567 W
WQO 10,8 OVERLAPPED - CHANNEL 1 M 8Q0 34567 W
WQo 20,8 - CHANNEL 2 M #Q0 34567 W
WQWO 11,8 LOAD MODE OVERLAPPED ~ CHANNEL 1 L 301 34567 W
WQWO 21,8 - CHANNEL 2 L *Ql 34567 W

TELEGRAPH UNITS
RL 10,8 READ TELEGRAPH UNIT - CHANNEL 1 M ZLO 34567 R
RL 2048 ’ - CHANNEL 2 M OLO 34567 R
RLO 11,8 OVERLAPPED ~ CHANNEL 1 M aLl 34567 R
RLD 21,8 - CHANNEL 2 M #Ll 34567 R

/\/W'

Mnemonic Operation Codes

55

56

CPCODE OPERAND INSTRUCTION

WL 1048 WRITE TELEGRAPH UNIT - CHANNEL 1 . M L0 34567 W

WL 20,8 — CHANNEL 2 M oLl 34567 w

WLO 11,8 OVERLAPPED - CHANNEL 1 M oaLl 34567 W

WLO 218 - CHANNEL 2 M el 34567 W

1412 MAGNETIC CHARACTER READER

RCR 1.8 READ CHARACTER READER - CHANNEL 1 M 3S1 34567 R

RCR 248 - CHANNEL 2 M wS2 34567 R

RCRW 1.8 LOAD MODE - CHANNEL 1 L %S1 34567 R

RCRW 248 - CHANNEL 2 L os2 34567 R

RCRO 1,8 OVERLAPPED - CHANNEL 1 M aSl 34567 R

RCRO 2:8 - CHANNEL 2 M 252 34567 R

RCRWO 1,8 LOAD MODE OVERLAPPED - CHANNEL 1 L asl 34567 R

RCRKO 248 ~ CHANNEL 2 L #S52 34567 R

ECR1 ENGAGE MAGNETIC CHARACTER READER - CHAN 1 PE

ECR2 ~ CHAN 2 QE

DCR1 DISENGAGE MAGNETIC CHARACTER READER —CHAN 1 P D

DCR2 —CHAN 2 [A)]

§S1 R MCR STACKER SELECT, POCKET R - CHANNEL 1 PR

S$52 3 POCKET 3 ~ CHANNEL 2 Q3

BCLRY I BRANCH LATE READ INDICATOR ON ~ CHANNEL 1 1 56789 1

BCLR2 I ~ CHANNEL 2 0 56789 1

BCNR1 I NOT READY INDICATOR ON - CHANNEL 1 I 56789 2

BCNR2 I - CHANNEL 2 0 56789 2

BCRC1 I CHECK INDICATOR ON - CHANNEL 1 I 56789 3

BCRC2 I - CHANNEL 2 0 56789 3

BCAFl1 1 AMOUNT FIELD INDICATOR ON — CHANNEL 1 1 56789 4

BCAF2 1 — CHANNEL 2 D 56789 4

8CPCL I PROCESS CONTROL FIELD IND ON - CHAN 1 I 56789 5

BCPC2 1 ~ CHAN 2 0 56789 5

BCANL I ACCOUNT NUMBER INDICATOR ON - CHAN 1 ' 1 56789 6

BCAN2 1 - CHAN 2 0 56789 6

BCTRL I TRANSIT ROUTING FIELD IND ON — CHAN 1 I 56789 7

8CTR2 1 - CHAN 2 0 56789 7

BCDC1 I DOCUMENT SPACING CHECK IND ON - CHAN 1 I 56789 8

BCDC2 I ~ CHAN 2 0 56789 8

7750 TRANSMISSION CONTROL INSTRUCTIONS

SCM 1,8 CONTROL — CHANNEL 1 ' M ;D 34567 C

SCM 248 - CHANNEL 2 M ﬂK@l 34567 C
\-/\va

P

T — e T T T e T T T T
; "OPCODE ‘OPERAND . INSTRUCTION

SCMO 1.8 OVERLAPPED - CHANNEL 1 M 3Kl 34567 C
SCMO 248 ~ CHANNEL 2 M #Kl 34567 C
SCK 1,8 6 BIT LOAD MODE — CHANNEL 1 L 2K1 34567 C
SCK 2,8 ~ CHANNEL 2 L oKl 34567 C
SCKO 1,8 6 BT LOAD MODE OVERLAPPED - CHANNEL 1 L aK1l 34567 C
SCKO 1,8 - CHANNEL 2 = L oakil 34567 C
SCL 1,8 8 BIT LOAD MODE - CHANNEL 1 L ZKO 34567 C
SCuL 248 L oKo 34567 C
sCLo 1.8 8 BIT LOAD MODE OVERLAPPED - CHANNEL 1 L aKo 34567 C
SCLO 248 ~ CHANNEL 2 L *KG 34567 C
SSM 1,8 SENSE - CHANNEL 1 M 3K1 34567 S
SSM 2,48 - CHANNEL 2 M oKl 34567 S
SSMO 148 OVERLAPPED — CHANNEL 1 M oaK 1 34567 S
SSMO 248 ‘ ~ CHANNEL 2 M %K1 34567 S
S$SK 1+8 6 BIT LOAD MODE - CHANNEL 1 L %K1 34567 S
S$SK 2,8 - CHANNEL 2 L oKl 34567 S
SSKO 1.8 6 BIT LOAD MODE OVERLAPPED - CHANNEL 1 L oakl 34567 S
SSKO 248 — CHANNEL 2 L o#K1 34567 S
SSt 1,8 8 BIT LOAD MODE - CHANNEL 1 L 2KO 34567 S
SSL 2,8 — CHANNEL 2 L nKo 34567 S
SSLO 1,8 8 BIT LOAD MODE OVERLAPPED - CHANNEL 1 L aKo 34567 S
SSLO 2,8 — CHANNEL 2 L *KO 34567 S
SRM 148 READ - CHANNEL 1 M 2K1 34567 R
SRM 248 — CHANNEL 2 M pKl 34567 R
SRMO 1,8 OVERLAPPED - CHANNEL 1} M aK1l 34567 R
SRMO 2,8 - CHANNEL 2 MoKl 34567 R
SRK 1,8 6 B8IT LOAD MODE - CHANNEL 1 L ¥K1 34567 R
SRK 248 ~ CHANNEL 2 L oKl 34567 R
SRKO 148 6 BIT LOAD MODE OVERLAPPED - CHANNEL 1 L aKl 34567 R
SRKO 248 - CHANNEL 2 L =K1 34567 R
SRL 1.8 8 BIT LOAD MODE - CHANNEL 1 L %KO 34567 R
SRL 248 - CHANNEL 2 L akKo 34567 R
SRLO 1,8 8 BIT LOAD MODE OVERLAPPED — CHANNEL 1 L aKo 34567 R
SRLO. 2.8 — CHANNEL 2 L *KO 34567 R
SRMG 1.8 TO END OF RECORD - CHANNEL 1 M BKl 34567 $
SRMG 2,8 ~ CHANNEL 2 M oK1l 34567 ¢
SRKG 1.8 TO END IN 6BIT LOAD MODE - CHANNEL 1 L 3Kl 34567 $
SRKG 2,8 — CHANNEL 2 L oKl 34567 $
SRLG 1,8 TO END IN 8BIT LOAD MODE ~ CHANNEL 1 L 2KO0 34567 $
SRLG 248 — CHANNEL 2 L oKo 34567
SWM 1.8 WRITE - CHANNEL 1 M K1 34567 W
SWM 248 - CHANNEL 2 M oKl 34567 W
SWMOD 148 OVERLAPPED - CHANNEL 1 M @K1l 34567 W
SWMO 248 = CHANNEL 2 M =K1 34567 W
SWK L8 6 BIT LOAD MODE — CHANNEL 1 L %K1 34567 W

e — e — T — T — e — e ——— e

Mnemonic Operation Codes

57

58

T T — T — T T — T — T — T

OPCODE OPERAND INSTRUCTION

SHK 248 — CHANNEL 2 L oKl 34567 W
SWKO 1,8 6 BIT LOAD MODE OVERLAPPED ~ CHANNEL 1 L aKl 34567 W
SWKO 248 - CHANNEL 2 L =K1 34567 W
SWL 1.8 8 BIT LOAD MODE -~ CHANNEL 1 L 3KO 34567 W
SHWL 248 ~ CHANNEL 2 L oKO0 34567 W
SWLO 18 8 BIT LOAD MODE OVERLAPPED - CHANNEL 1 L aKo 34567 W
SWLO 248 — CHANNEL 2 L =KO 34567 W
SWME 1+8 TO END OF CORE — CHANNEL 1 M ZK1 34567 X
SWME 248 = CHANNEL 2 M oKl v34567 X
SWKE 148 TO END IN 6 BIT LOAD MODE ~ CHANNEL 1 L %K1 34567 X
SWKE 248 - CHANNEL 2 L oKl 34567 X
SWLE 1,8 TO END IN 8 BIT LOAD MODE - CHANNEL 1 L %KO. 34567 X
SWLE 2,8 — CHANNEL 2 L mKQ 3‘05(;7 X

Actual Address 8

Address Adjustment L 10
Address Constant Literals 10
Address Constants 13
Address Typest 8
Alphamerical Constants 12
Alphamerical Literals 9
Asterisk Address 8
BBE — Branchif Bit Equal 23
BCE — Branch if Character Equal 23
BEX 1 or BEX 2 — Branch on External Indicator 24
Blank Address 8
Blank Constants 13
BOOL — For Solving Logical Expressions 31
BWZ — Branch if Word Mark, Zone or Both 23
BZN — BranchonZone 23
Call Macro 36
CallRoutines 35
CC — Control Carriage 23
Coding (Imperative Operations) 22
CodingSheet '5
Commentsc..coiiiuivii ... 7
COMP — To Compare Two Fields 33
CIL—Control 17
DA—DefineArea 13
DA—HeaderLine 13
DA —Other Entries 14
Data Move Instructions 22
DC — Define Constant (No Word Mark) 13
DCW — Define Constant with Word Mark 12 -
Declarative Operations 12
DELET — Delete e -39
DiagnosticAids 20
Disk Commands 23
DS —DefineSymbol 13
EJECT —Eject 17
END —End 20
EQU — Equate e 15
EX—Execute 19
Identification, 7
Imperative Operations 17
Incld Macro00 37
Index Register Reservation 11
Index Registers 10
\

Index

Input/Output Commands 24
INSER —Insert 27, 39
JOB—Job 17
Label 6
Library Entry P 25
Line Number 5
Literals. 8
LOAD —Load............... 17
LTORG — Literal Origin 19
Machine Reqﬁirements 5
Macro-Instructions. 28
Macro Operations 25
Macro Processing 39
Macro System — Definition of Terms 25
Magnetic Tape Commands 23
MATH — For Solving Algebraic Expressions30
MEND — End of Routine 34
Mnemonic Operation Codes e 41
Model Statements 27
NOPWM — No Operation Word Mark 24
NOTE — To Produce a Message 33
Numerical Constants 12
Numerical Literals e 9
Operand.............o ... 7
Operation. L T
ORG —Originooviiii i 18
Page Number. 5
Permanent and Temporary Switches 29
Priority Processing. 24
Processor Control Operations 17
Pseudo Macro-Instructions e 29
PST — Print Symbol Table 20
P—Punch 23
R—Read 23
RESEQ — Resequence 17
RUN—Run ..., 17
SFX —Suffix 20
SSF — Select Stacker and Feed L. 22
Symbolic Address 8
The Macro System 25
XFR — Transfer 20
Index 59

C€28-0309

JISIN

®

* International Business Machines Corparation
Data Processing Division
112 East Post Road;, White Plains, New York

V'S’ Ul pajulid

60€0-820

