Systems Reference Library

File No. 1410/7010-20
Form C28-0318-3

IBM 1410/7010 Operating System (1410-PR-155)

Basic Concepts

This publication describes the 1BM 1410/7010 Operating System
and its various components. It includes a brief description of the
supporting publications for the Operating System and a diagram
of their relationship to each other.

The 1BM 1410/7010 Operating System is an integrated set
of programs and programming systems that provides an 1BM
1410/7010 installation with a convenient, efficient means of per-
forming its data processing. This Operating System enables an
installation to write, assemble, and execute programs with a
minimum of programmer time, machine time, and machine-
operator time,

Note: The 1BM 1302 Disk Storage Unit is now designated
the M 2302 Disk Storage Unit; there has been no change in
the unit itself, in the applications for which the unit may be used,
or in the programming parameters used to specify those applica-
tions. The 1BM 2302 Disk Storage Unit designation has been used
in the text of this publication.

Major Revision (November 1965)
This publication is a major revision of IBM 1410/7010

Operating System; Basic Concepts, Form C28-0318-2,
and makes that publication obsolete.

Copies of this and other 1BM publications can be obtained through 1BM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Department 637, Neighborhood Road, Kingston, New York 12401

Introduchon ... 5
The Need for Monitored Processingc..ccccoov..... 5
Principles and Advantages of Monitored Processing 5

Principles of the IBM 1410/7010 Operating System . 6
6

Minimum Machine Requirements

Creating an Operating System 7
Using the IBM 1410/7010 Operating System 8
IBM 1410/7010 Operating System Components 11
System Monitor ... 11

Contents

Input/Output Control System
Random-Processing Scheduler ...
System Generation Programs
Tele-processing Supervisor
Symbolic-Language Processors
Sorting Programs ...
Utility Programsccccoooioiiviiieioeeee e,
User-Written Programmingc.ccccceeiiivin.,

IBM 1410/7010 Operating System Publications 18

GloSSUIY ..o e 21

This publication introduces the basic concepts of the
M 1410/7010 Operating System and is intended to
familiarize users with system concepts and capabili-
ties. As such, the publication is a prerequisite for
other publications that describe the Operating Sys-
tem, and it discusses the following:

1. Monitored processing

2. Machine requirements for the M 1410/7010
Operating System

3. Creation and use of the 1BM 1410/7010 Operat-
ing System

4. Functions of the 1BM 1410/7010 Operating Sys-
tem components

5. Publications describing the 1M 1410/7010 Op-
erating System in detail

6. Glossary of general terms used with the BM
1410/7010 Opcrating System

The Need for Monitored Processing

The utilization of a computer involves many jobs, and
each job, in turn, involves set-up time. Although tech-
nological development has made significant advances
in computer speeds, it can do very little to increase
manual speed. Faster computer speeds make the time
lost due to manual operations assume an even greater
percentage of total processing time. If a monitor-con-
trolled operating system is not used, the computer
must stand idle while manual operations are being
performed.

Manual operations fall into two general categories:
steps involved in job-to-job transition (e.g., locating
the next program to be used and loading that pro-
gram) and steps involved in setting up a specific
job (e.g., mounting tape reels and placing cards in a
card reader).

Principles and Advantages of Monitored Processing

One advantage of monitored processing is that it auto-
mates manual procedures whenever possible; for cx-
ample, it can conveniently handle the locating and
loading of programs. Monitored processing can also
overlap with other processing manual procedures that
cannot be automated; for example, tape reels for onc

Introduction

job can be mounted while another job is still in prog-
ress. A monitor keeps the system ready to accept one
job after another by providing a standard procedure
to handle the scheduling and processing of all com-
puter jobs. In other words, a monitor substitutes pro-
grammed job-to-job transition for manual transition.
Programmed transition is made possible through con-
trol-card specifications. The preparation of control
cards is independent of the operation of the computer,
and neither interrupts computer operation nor wastes
valuable computer time.

Another advantage of monitored processing is the
flexibility that can be achieved in the assignment of
input/output equipment. The monitor can store, with-
in itself, information about all input/output devices
in the system. During the day’s processing, the moni-
tor can vary input/output assignments in accordance
with information provided in a control-card deck.
As each program is executed under monitor control,
the control-card information can be used to assign
symbolic input and output units to devices.

The monitor is the nucleus of the operating system,
and a portion of it must remain in core storage at all
times. In most operating systems, a pre-written set of
input/output routines also remains in core storage at
all times. These routincs provide every program func-
tioning under the operating system with an efficient
method of reading and writing information.

Using these input/output routines, the monitor
reads the control cards supplied by the user and
exccutes programs under its control, Thus an operating
system consists of: :

1. Control programs acting on control-card specifi-
cations to direct operation of the system

2. Programs assisting the control programs in per-
forming their functions

3. Programs that will perform a function for the
user (e.g., sort and utility programs) or aid him in
producing a program to perform a function (e.g.,
language processors)

4. User-written programs
The nature of the 1BM 1410/7010 Operating System
and its components is outlined in this publication.

Introduction 5

Principles of the IBM 1410/7010 Operating System

The 18M 1410/7010 Operating System includes a set of
programs supplied by 18M for use in 18Mm 1410 or 7010
Data Processing installations. This set of programs is
provided to users in a Master file on tape. Some of
the programs are in absolute format, i.c., they are
ready to be exccuted. The absolute programs include
Bootstrap routines to load the basic Resident Monitor
into core storage. The basic Resident Monitor (in ab-
solute format) controls the operations that produce
an Operating System tailored to the uscr’s specific
requirements.

In addition to the absolute programs, the Master
file also includes relocatable programs. These are
machine-language programs that do not have fixed
machine addresses and can be loaded anywhere in
core storage. They can also be combined to form larger
programs. Relocatable programs included on the Mas-
ter file are generalized, so that certain basic program
units, or modules, may be selected to form programs
tailored to the installation’s requirements.

The user selects the programs, or modules, he de-
sires to use in his installation by control cards. He can
select the modules directly or indirectly. If he selects
them directly, he must specify the module name on
a control card. For example, if the user desires mag-
netic tape as his medium for storing intermediate data
in a program, he names tape-oriented modules in con-
trol cards. If he selects modules indirectly, he must
specify application-oriented key words. These key
words scrve as input to an intermediate program that
selects the required modules. For example, specifica-
tion of one of the application-oriented key words, or
parameters, for the Generalized Tape Sorting Program
results in the selection of several modules. These mod-
ules, and other modules selected through other param-
eters, are joined to form the sorting program.

The selection and combination of modules to form
programs tailored to an application is performed ac-
cording to control-card specification. In addition, when
programs created by the module sclection/combina-
tion process are executed, they accept additional con-
trol-card directions. This method of forming programs
eliminates the need for many user-written programs.

Minimum Machine Requirements

The machine requirements for the Operating System
differ according to the medium on which the Operat-
ing System programs reside.

For a tape-oriented system, i.e., a system in which
the System Operating File (see Glossary) resides on
magnetic tape, the minimum machine requirements
are:

40,000 positions of core storage

5 magnetic tape units

1 card reader (or an additional magnetic tape
unit)

Note: It is recommended that a printer or addi-
tional tape unit be provided for a system file that is
called the Standard Print Unit (spr).

For a disk-oriented system, i.e., a system in which
the System Operating File resides on 1M 1301 or
mM 2302 Disk Storage, the minimum machine re-
quirements are:

60,000 positions of core storage
1 module of 18m 1301/2302 Disk Storage

2 magnetic tape units

1 card reader (or an additional magnetic tape
unit)

Note: It is recommended that a printer or addi-
tional tape unit be provided for the spr. However,
because the two magnetic tape units listed above are
required only for generation of the system, they may
serve other system functions during the day’s process-
ing (i.c., when System Generation is not being per-
formed). One of the tape units could be used in place
of the card rcader, and the other in place of the
printer.

For either tape- or disk-oriented systems, the Proc-
essing Overlap and Priority features are required.
These are standard features for 1BM 7010 Data Proc-
essing Systems and spccial features for 1Bm 1410 Data
Processing Systems.

The machine requirements are greater for certain
special programming features of the Operating System.
For example, a Tele-processing control system within
the Operating System requires an additional 20,000
positions of core storage. All additional requirements
are outlined in the publication IBM 1410/7010 Oper-
ating System; System Generation, Form C28-0352.

Creating an Operating System

The user obtains all of the M 1410/7010 Operating
System programs on the 1BM-supplicd Master file,
which fits on a single reel of tape. Two forms of the

file are available: one for tape-oriented installations,
one for disk-oriented installations. One difference be-
tween the two Master files is that the disk-oriented
system contains an additional program, the Tape-to-
Disk Load program; this program transfers the Mas-
ter file from tape to disk and can also establish the
format of the disk area to be used for system residence.

The first section of a Master file contains the Boot-
strap routines used to load the Resident Monitor into
core storage. In a tape-oriented system, the Bootstrap
routines are the first programs on the Master file; in
a disk-oriented system, the Bootstrap routines are pre-
ceded only by the Tape-to-Disk Load program.

The basic Resident Monitor follows the Bootstrap
routines on the Master file. After the initial execution
of the Bootstrap routines, the Resident Monitor — in
either basic or expanded form, depending on the user’s
needs — remains in core storage at all times.

The basic Resident Monitor is followed by the
Transitional Monitor, which analyzes control cards,
and the Linkage Loader, which transforms programs
from relocatable to absolute format. Both the Transi-
tional Monitor and Linkage Loader are in absolute
format. Once loaded into core storage, the Resident
Monitor loads all other absolute-format programs into
core storage as required.

On the Master file, the Bootstrap routines, the basic
Resident Monitor, the Transitional Monitor, and the
Linkage Loader comprise the first operating section.
Following this section is the Relocatable Library,
which contains programs and routines of the Operat-
ing System in relocatable format.

Following the Relocatable Library is the second
operating section, which consists of other absolute-
format programs needed to generate the user’s par-
ticular system. On a tape-oriented Master file, these
programs include the following: additional copies of
the Transitional Monitor; the Autocoder language
processor; two programs, System Generation 1 (scl)
and System Generation 2 (sc2), that are executed to
build the user’s system; the Create Library, contain-
ing packets of pre-written Linkage Loader control
cards; and the Sort Definition Program, used to form
one or several tape sort or merge programs. The disk-
oriented Master file contains the same programs with
the following exceptions: the additional copies of the
Transitional Monitor are not present; utility programs
for establishing the format of disks and for printing
the contents of core, disk, and tape storage are in-
cluded in absolute format; and an additional copy of
the Tape-to-Disk Load program is included. For com-
plete lists of the programs included on the Master file
for both disk- and tape-oriented systems, see the pub-
lication System Generation.

The process by which the user creates the specific
operating system for his installation is called System
Generation. If the user desires a Master file for his
particular installation, he must first create the System
Generator File (scr). This tape or disk file contains
components of the Operating System, selected from
the Master file, that are needed to satisfy the total
processing requirements of a specific installation. The
SGF may also contain user-written programs.

After an scr is created, the 1BM Master file need not
be used again because the scr becomes the Master
file for the installation. Thus, the user must be careful
in choosing the components to be included on the
scF; he must keep in mind both the machine configu-
ration of his installation and his over-all processing
requirements.

From the scr, the user can create any number and
variety of System Operating Files (soF’s). Each sor
contains components of the scr (e.g., the Resident
Monitor) and user-written programs. Each soF can
be oriented to a specific class of processing operations.

For example, if an installation’s processing require-
ments can be divided into two general areas, such as
commercial processing and scientific processing, two
sor’s are created. One soF contains only those pro-
grams needed to perform commercial operations. The
other soF contains programs necessary for scientific
processing. If the user’s sGF contains the cosoL and
FORTRAN compilers, he should place the cosor com-
piler on the commercial sor and the FORTRAN compiler
on the scientific sor. As with the generation of his scr,
the user must carefully analyze his processing require-
ments to obtain maximum operating efficiency from
his soF’s.

Figure 1 illustrates the creation of the scr. The in-
put to this operation is the 1BM Master file (or an old
sGF to be updated) and the user-supplied control in-
formation. This control information specifies the Mas-
ter-file components to be included on the new scr.

The creation of an sor from the newly created scr
is illustrated in Figure 2. The control information sup-
plied determines which components of the sGr and
which user-written programs are to be placed in the
sor. The operation illustrated in Figure 2 is repeated
for each sor the user wishes to create.

Complete sor’s can also be created directly from
the 1BM-supplied Master file. This procedure bypasses
the sGr step.

Using the IBM 1410/7010 Operating System

Once the Operating System has been created, user-
written source programs can be compiled (i.e., trans-

Principles of the IBM 1410/7010 Operating System 7

Master File
(or old System Generator File)

1BM 1410
or
{BM 7010

Control Information

Figure 1. Creation of the SGF

lated from symbolic-language source programs to
machine-language object programs). The source pro-
grams can be written in either the Autocoder, FoRr-
TRAN, or coBOL symbolic languages. The resultant ob-
ject programs can be executed under control of the
System Monitor.

The term System Monitor embraces the basic Resi-
dent Monitor or the expanded Resident Monitor (with
the Input/Output Control System), the Transitional
Monitor, and the Linkage Loader. The System Moni-
tor, acting on control information provided by the
user, exerts control over all programs used within the
Operating System during the day’s processing. The
Resident Monitor provides the routines and informa-
tion that can be used by components of the system.

After a program is compiled, it is in relocatable
format; in this format, the program has addresses that
have been assigned relative to some arbitrary ref-
ence point, usually the beginning of core storage. Be-
fore the program can be executed, the relocatable ad-
dresses must be converted to the actual core-storage
locations occupied by the program during exccution.
The program must be located starting at some point
beyond the area occupied by the Resident Monitor
and the 10cs. The Linkage Loader determines the size
of these resident components and changes the ad-
dresses of the relocatable program accordingly. This
change of address makes a relocatable program an
absolute one. Once created, an absolute program can
be loaded into the appropriate portion of core storage
and executed from it.

Relocatable programs can reside on tape or disk as
modules in the Relocatable Library. The Relocatable
Library can be placed on a file known as the System
Library File (rB), or on the sor.

If a Tele-processing (TP) system is used, relocatable
programs can also reside on the Tp Library File
(MrT); these programs process Tele-processing in-
quiries. The mrT, however, must contain all relocat-

IBM 1410
or
IBM 7010

Additional Control Information
and User-Written Programs

Figure 2. Creation of an SOF

able programs or all absolute programs, but not a
mixture of the two types.

In addition to being contained in the libraries, re-
locatable programs (modules) may also be located on
two other files used by the Operating System: the
Go file (Mco) and the Standard Input Unit (siv).
Programs that have been translated into machine lan-
guage by the compilers are placed on the Go file and
taken dircctly from that file for processing by the
Linkage Loader. Under this “compile-and-go” opera-
tion, a program can be compiled, be transformed from
relocatable to absolute format, and be loaded and exe-
cuted in one smooth operation; this operation requires
no intervention by the programmer or machine opera-
tor. The user can also place previously compiled relo-
catable programs on the sru.

In addition to the sor, which includes absolute pro-
grams processed during System Generation, two other
files can store and supply absolute programs during
the day’s processing: the Job file (MjB) and the TP
Library file.

When the Linkage Loader processes a relocatable
program placed on the Go file or on the s1u, it writes
the program in absolute format on the Job file. The
Job file, then, supplements the sor as an absolute-pro-
gram file. Job files can be created for one-time use,
or can be saved for use in the repeated execution of
the programs they contain.

The programs that the user has written to serve his
Tele-processing requirements are placed on the TP
Library file; as indicated above, this file can contain
either absolute or relocatable programs.

In its processing, the Linkage Loader can combine
relocatable programs (from the libraries, the Go file,
and/or the sw) into a single absolute program; this
facility for combining scparately written programs
gives the user considerable flexibility in creating pro-
grams suited to his particular applicational needs.

Thus, during the day’s processing, machine-lan-

guage programs can reside on the following system
files:

1. sor, in absolute format
SoF, in relocatable format
LIB, in relocatable format
MjB, in absolute format
stu, in relocatable format
MGo, in relocatable format

7. ML, in relocatable or absolute format (accord-
ing to the user’s specification at System Generation)

All absolute programs — whether found on the sor,
the Job file, or the Tp Library file — are executed un-
der control of the Resident Monitor, which is always
in core storage when the Operating System is being
used. By use of control cards, the user directs the
Operating System to perform the tasks he desires.
These control cards are analyzed by the Transitional
Monitor, which is automatically loaded and executed
when a control card is read.

Figure 3 illustrates the information flow for the
execution of a single absolute program located on the
soF. The user specifies, in control cards placed in the
stu, the program to be executed. The Resident Moni-
tor, already in core storage, loads the Transitional
Monitor to analyze the control cards. After the Transi-
tional Monitor determines the program required and
locates it, the Resident Monitor loads and executes

S Uk W

that program. The user may supply data on a sepa-
rate file, or he may place that data following the con-
trol cards on the stu. Output from the absolute pro-
gram being executed may be placed on the Standard
Print Unit (spr), on the Standard Punch Unit (spu),
or on a separate (data) file.

Note: Control information and data can both be
on the sru. Similarly, the spr and spu can share the
same magnetic tape unit.

Figure 4 illustrates the flow of information for the
combination of two relocatable programs, Program A
(found in the L1B) and Program B (found on the smv),
and the cxecution of the resultant absolute program.
The user specifies in control cards the task to be per-
formed; these control cards are placed in the stu, pre-
ceding Program B. The Resident Monitor loads the
Transitional Monitor from the sor to analyze the con-
trol cards. The Resident Monitor then loads the Link-
age Loader from the sor; the Linkage Loader takes
Program A from the riB and Program B from the siu
and forms Program AB, in absolute format, which it
places on the Job file. The Resident Monitor then
loads Program AB from the Job file and executes the
program. Input data for Program AB can reside on a
separate file or on the siu (following the control cards
and Program B). Program AB may place output on
the spr, the spu, or on a separate (data) file. The spr
and sru can share the same magnetic tape unit.

N
System .
Operating Sh.:ndord.
File Print Unit
Transitional Monitor
and Object Program
Output
from
IBM 1410/7010 Program
Resident
> Monitor
Control Information /
Data Daty

Figure 3. Data Flow for Execution of a Single Absolute Program

Principles of the IBM 1410/7010 Operating System 9

System
Library
File

System
Operating
File

Control Infomation and
Relocatable Program B

1BM 1410/7010

Resident
Monitor

Relocatable
Program A

Transitional Monitor
and Linkage Loader

Job
File

Absolute
Program AB

Data
File

Data for
Progrom AB

Data

Standard

Print Unit

Figure 4. Data Flow for Combining Two Relocatable Programs and Executing the Resultant Absolute Program

10

[

Output
from
Program AB

IBM 1410/7010 Operating System Components

A component of the 8™ 1410/7010 Operating System
is any program operating under control of the Resi-
dent Monitor. There are two main types of compo-
nents:

1. mBwm-supplied programs (e.g., the Linkage Load-
er) or programs generated as a result of the interac-
tion of user specifications and 1BM-supplied programs
(e.g., a generated sorting program)

2. User-supplied programs (e.g., a program to
schedule inter- and intra-plant relocation of em-
ployees)

Figure 5 illustrates the relationships among Ope:r-
ating System components.

The structure of the system is such that user-written
processing programs can easily become an integral
part of the system. User-written modification routines
can also be incorporated into several mBm-supplied
components (e.g., Basic Input/Output Control Sys-
tem, and the Generalized Tape and Disk Sorting pro-
grams). All components of the Operating System in-
teract efficiently to handle an installation’s data proc-
essing requirements.

The Resident Monitor, an 1BM-supplied component,
exerts control over the entire Operating System and
contains routines and information that can be used by
components of the system. Resident with the Monitor
is the Input/Output Control System and, if specified,

the Tele-processing Supervisor. These resident com-
ponents of the system serve as an interface for the
other Operating System components.

Each of the other components is called into core
storage as required, and is executed by the Resident
Monitor.

All of the Operating System components supplied
by M are discussed briefly in the paragraphs that
follow.

System Monitor

The System Monitor is the nucleus of the Operating
System. The Monitor coordinates the operation of all
other Operating System components, including user-
written programs functioning under the system. Three
programs make up the System Monitor: Resident
Monitor, Transitional Monitor, and Linkage Loader.

Resident Monitor

The Resident Monitor remains in core storage at all
times while the Operating System is functioning. This
program reads control cards, loads other programs into
core storage, assists the Transitional Monitor in proc-
essing input/output unit assignments supplied by the
user, and coordinates end-of-program operations. The
Resident Monitor also contains a Communication Re-

Resident Monitor
and 1OCS with
TP Supervisor

(if applicable)

System Random Sort Transi- Autocoder - Gener-

Gener- Proc- Linkage Defini- tional with FORTRAN COBOL Utility ated User's
ation essing Loader tion Monifor Macro Programs [|Sorting Program(s)
Programs Scheduler| Programs Library Program(s),

Figure 5. IBM 1410/7010 Operating System

IBM 1410/7010 Operating System Components 11

gion through which information can be passed among
Operating System programs.

As the supervisor of and interface for the Operating
System, the Resident Monitor loads one program into
the computer and gives control to that program. When
that program is executed, control returns to the Resi-
dent Monitor, which loads the next program, etc. In
this manner, a complete batch of jobs is processed
without the stopping of the computer, and without
the necessity of operator intervention.

Transitional Monitor

The Transitional Monitor, an extension of the Resi-
dent Monitor, analyzes the control cards that describe
functions to be performed, and assists the Resident
Monitor in processing any required input/output unit
assignments specified in the control cards. Unlike the
Resident Monitor, the Transitional Monitor does not
remain in core storage at all times; it is loaded be-
tween jobs and between runs within a job. After the
Transitional Monitor has analyzed the control cards
and located the specified program, it returns control
to the Resident Monitor so that the program can be
loaded and executed.

Linkage Loader

The Linkage Loader reads relocatable programs from
the Go file, one of the libraries, and/or the siu, and
transforms these programs into absolute format. The
absolute programs produced are placed on the Job
file for subsequent loading and execution by the Resi-
dent Monitor. In converting programs from relocat-
able to absolute format, the Linkage Loader also
inserts machine addresses in place of inter-program
communication symbols known as linkage and system
symbols.

Input/Output Control System

The Input/Output Control System (1ocs) is a set of
pre-written routines that perform the input/output
functions for all programs run under the Operating
System. These routines provide an efficient means of
scheduling, implementing, and controlling the trans-
fer of data between input/output devices and core
storage. During System Generation, the user defines
the 1ocs necessary for his particular installation. The
selected 1ocs, a resident component, remains in corc
storage whenever the Operating System is used.

At System Generation time, the user specifies the
device-dependent and/or function-dependent features

12

his particular 1ocs is to provide. For example, the user
indicates that he wishes the 1ocs to handle disk input/
output operations (device-dependent) or that he
wishes the 10cs to process labeled tape files (function-
dependent). As a result of System Generation, an 10¢s
that provides routines to handle exactly those features
the user desires is placed on his sor. If the user wishes
to alter the device-dependent or function-dependent
features of his 1ocs, he creates a new soF incorporating
routines to handle the new features.

The 10cs is capable of reading data records or
blocks of data records from the 1BM 1402 Card Read
Punch, 1BM 1442 Serial Card Reader, 18M 1011 Paper
Tape Reader, M 729 and 1M 7330 Magnetic Tape
Units, and 18m 1301/2302 and 1M 1311 Disk Storage.
It can write data records or blocks of data records
on the 1BM 1402 Card Read Punch, 18M 1403 Printer,
BM 729 and 1BM 7330 Magnetic Tape Units, and 1BM
1301,/2302 and 1M 1311 Disk Storage. The 10cs con-
trols the overlap of these read/write operations with
normal processing operations. Error conditions are de-
tected and automatically corrected or are brought to
the attention of the machine operator. Required and
optional exits to user-written routines (e.g., end-of-file
and tape-label exits) are provided.

Once the user has his 10cs on his soF, he directs that
10cs by statements in his programs. For Autocoder
programs, he issues these directions by file-description
statements and macro-instructions. The file-description
statements (Define the File statements) provide in-
formation necessary to the 10cs for processing the file.
The macro-instructions are translated by the Auto-
coder processor into machine-language instructions
that pass control to the 1ocs to perform the desired
opcrations.

For FORTRAN Or COBOL programs, the user issues
directions to the 10cs by statements that are a part of
those languages (e.g., READ or WRITE). The FORTRAN
and coBoL processors translate these statements into
machine-language instructions that pass control to the
10cs to perform the desired operations.

As an adjunct to its normal functions, the 10CSs
handles the processing necessary to implement the
Simultaneous Peripheral Operations On Line (spoor)
feature. spooL is a feature that enables the user to
perform peripheral operations (e.g., tape to printer)
concurrently with batch processing. spoor. permits not
only simple peripheral operations but also peripheral
operations incorporating a user-written editing routine.

In addition to the 1ocs program that is always resi-
dent when the Operating System is in use, IBM pro-
vides another program designed to aid in the efficient
handling of input/output operations: the Random
Processing Scheduler.

Random Processing Scheduler

The Random Processing Scheduler, an optional com-
ponent of the Operating System, assists the user in
coordinating input/output activity for random-access
input/output devices, e.g., 1sM 1301 Disk Storage. By
use of the Scheduler routines, the user may operate on
randomly organized data in a “read a record, process
it, write it” method as if the data were scrially or-
ganized.

The Scheduler is of maximum value for applica-
tions involving the updating of files in disk storage,
where the data used is neither batched by type nor
stored beforehand.

By providing routines for the supervision and con-
current scheduling of input/output operations in a
random-processing application, the Scheduler relieves
the user of the task of designing an efficient random-
processing input/output control system.

The Random Processing Scheduler is not a part of
the resident 1ocs, nor is it executed as a dependent
program, as a user-written program might be. The
Scheduler routines, located in the Relocatable Library,
are incorporated into the user’s program by the Link-
age Loader.

System Generation Programs

The System Generation capabilities of the Operating
System are provided by two programs, sc1 and sc2;
these programs are used in conjunction with the Auto-
coder Processor and the System Monitor.

A third program, scs, provides the ability to update
and utilize source-language programs contained on a
History file. The History file, supplied by M on re-
quest, contains the Autocoder-language programs for
all Operating System components. The user may place
his programs on the History file if he wishes.

Through System Generation, the user is able to
choose from the components of the Operating System
that 1BM provides and create sor’s and libraries that
are designed to accomplish only those functions that
he desires. In addition to the BM-supplied programs,
user-written programs are also incorporated into so¥’s
and libraries by the System Generation process. The
System Generation programs also enable the user to
list directories of the contents of his soF’s or the Macro
Library (a part of the Autocoder Processor).

Tele-processing Supervisor

The Tele-processing Supervisor, an optional compo-
nent of the Operating System, controls all program-
ming related to Tele-processing devices. If the user’s
installation includes Tele-processing devices, and the
required 20,000 additional core-storage positions are
available, the Tele-processing Supervisor can be in-
corporated into the system. The Supervisor, a resident

component, becomes part of the Resident Monitor and
thus remains in core storage while the Operating Sys-
tem is used.

The Supervisor is created via control-card specifi-
cation at System Generation. Each user can create a
configuration of the Supervisor that contains only
those routines needed to support the particular ma-
chine configuration of the installation.

The user can create a Supervisor with facilities to
support input/output for any combination of the fol-
lowing devices: M 7750 Programmed Transmission
Control; 1M 1440 Data Processing System with an at-
tached 1BM 1448 Transmission Control Unit; and 1M
1414 Input/Output Synchronizer, Models 4 or 5, with
the 1BM 1009 Data Transmission Unit, 18M 1014 Re-
mote Inquiry Unit, 1sm 1050 Data Communications
System, and/or Telegraph terminal units attached.

In executing input/output routines, the Supervisor
utilizes the 10cs. Two other types of programs are used
in Tele-processing operations: the tr programs and the
Executive program. The TP programs are user-written
routines that process inquiries from Tele-processing
devices and generate a response message, if required.
TP programs can remain in core storage or be loaded,
when needed, by the Tele-processing Supervisor. The
Executive program, also user-written, serves as a liai-
son between the Supervisor and the Tp programs.
The three elements are known collectively as the TP
complex of an installation.

The coordinated functioning of these three elements
provides an efficient system for processing messages
from Tele-processing devices.

Symbolic-Language Processors

A symbolic-language processor is a program that trans-
lates a user’s source-program statements (written ac-
cording to the specifications of the symbolic language
for that processor) into machine-language instructions.
The symbolic-language processor must always be con-
sidered in conjunction with the symbolic coding lan-
guage for which it is used; these two programs are
known collectively as a programming system.

As in any language, certain rules must be followed
to make communicated information meaningful. In a
programming language, these rules are the specifica-
tions that the programmer must adhere to in order
for the processor to do its task. The use of any pro-
gramming language reduces the programmer time
needed to write and debug programs mainly because
of the symbolic or mnemonic nature of the language.
The ability to use a single source-language instruction
or statement to produce (or generate) several ma-
chine-language instructions further reduces program-
ming time. Because these processor-generated state-

IBM 1410/7010 Operating System Components 13

ments have been pretested and debugged, additional
time is saved for the programmer.

The programming systems available with the M
1410/7010 Operating System are Autocoder, FORTRAN,
and coBor. The machine-language output of these
processors is in relocatable format. These relocatable
programs, or subprograms, can then be processed by
the Linkage Loader and executed whenever necessary.
The relocatable format of the language-processor out-
put permits independently compiled programs to re-
fer to locations in other programs; the references are
resolved when the Linkage Loader is executed. A pro-
gram independently compiled by one language proc-
essor can be used as a subprogram in a program com-
piled by another language processor. For example, a
subprogram written in Autocoder can be incorporated
into a FORTRAN program.

Avtocoder

Autocoder is a programming system which, by use of
mnemonics, enables the user to create a wide varicty
of programs through a convenient method of coding.

The Autocoder processor is used during System
Generation as well as during the day’s processing.
The processor resides in absolute format on the 1M
Master file; thus, at System Generation, user-written
routines can be incorporated into the first System Gen-
erator File (scr). System Generation functions also
make wide use of the macro-instruction capability of
the Autocoder processor; through this capability, a
single symbolic-language statement can generate more
than onc machine-language instruction. The contents
of the individual instructions, and the combinations
of the instructions generated, can be varied according
to the parameters specified.

The Autocoder language consists of fixed mnemon-
ics and variable user-supplied mnemonics. Programs
written in this mnemonic, or symbolic, language are
translated into machine language by thc Autocoder
processor. Some of the symbolic statements of the lan-
guage generate a single machine-language instruction;
these are known as one-for-one statecments. Macro-
instructions can also be used.

Parameters specified by the programmer in a macro-
instruction cause Autocoder to take statements from
the Macro Library (on the 1BM Master file) and gen-
erate machine-language instructions. Macro-instruc-
tions enable the programmer to describe the functions
he wishes performed, rather than describe cach opcra-
tion within a function, as is necessary in one-for-one
coding.

Each source-program symbolic instruction, whether
it be a one-for-one instruction or a macro-instruction,
may consist of as many as three elements. These ele-

14

ments are: (1) the name of the statement (the label);
(2) the operation to be performed by the statement
(the operation code); and (3) entries such as sym-
bolic addresses, actual addresses, literals, special sym-
bols, etc. (the operands). Labels and operands are
variable; the user can create his own, although they
must conform to the rules of the language. Operation
codes are fixed; the user selects the symbolic code
representing the operation to be performed. The com-
bination of characters in the symbolic operation codes
makes it casy for the programmer to recollect the func-
tion to be performed. For example, the Autocoder
symbolic operation code za, signifying the Zero and
Add operation, is more readily associated with the
instruction than is the machine-language operation
code (a question mark). In his choice of symbolic
addresses, the programmer may also employ this mne-
monic principle.

By using symbolic addresses, the programmer can
assign a name to a specific location or area in core
storage, and refer to that symbolic name elsewhere
in his program. The processor generates the necessary
machine-language addresses.

By assigning a symbolic address or name to a data
field or routine that is readily associated with that
name, the programmer can impart to his program
structural clarity and ease of reference that is im-
possible in machine-language coding. For example,
an area containing an employee’s salary amount
could be named saLary, and a routine for computing
net pay could be named coMPUTEPAY.

Assembly listings are produced for all programs
compiled by the Autocoder processor. These listings
show the source program (symbolic instructions) in
relation to the object program (machine-language in-
structions). Labels are shown in relation to core-stor-
age assignments, symbolic operation codes in relation
to the machine-language operation codes, etc. The list-
ing is arranged in a format that permits easy refer-
ence. In addition, the coding errors detected by the
processor are indicated in the listing; this aids sub-
stantially in program debugging.

FORTRAN

The rorTRAN (FORmula TRANslation) program-
ming system is designed for the efficient production
of programs that solve scientific and engineering prob-
lems.

The user states his problem solutions in the FORTRAN
language — a language much like algebra — and then
uses the FORTRAN processor (or compiler) to translate
the FORTRAN programs into machine-language pro-
grams. The language and the processor are known
collectively as the FORTRAN programming system.

In using the FORTRAN language, the scientist or en-
gineer (or programmer) can operate in a familiar
frame of reference, that of basic algebra. As in alge-
bra, the user of rForTtraN defines constants and vari-
ables and manipulates them through the use of equa-
tions; these equations, written in the form of FORTRAN
statements, are the heart of the language. Supple-
menting these equation statements are several other
types of statements: (1) input/output, to cnable the
user to get data into and out of the computer; (2)
control, to give the user the ability to explicitly dic-
tate the order in which his equations are evaluated;
(3) subprogram, to allow the user to write programs
that are used repeatedly by other programs (thecreby
climinating the necessity to restate the solution to a
common problem for each application); and (4) speci-
fication statements, to enable the user to control the
allocation: of core storage.

In addition to the subprograms that the user can
write and place on the Relocatable Library, there are
BM-supplied subprograms for many standard mathe-
matical functions; these subprograms, when named in
the user’s FORTRAN program, are incorporated into his
machine-language program by the Linkage Loader.
Examples of the subprograms supplied are those for
calculating (1) the absolute value of a quantity, (2)
the trigonometric sine of an angle measured in radians,
and (3) the square root of a quantity.

The ForTRAN compiler translates each statement the
user writes into one or more machine-language in-
structions; thus, the FORTRAN programming system is
a higher-level language comparable to the macro-
instruction portion of the Autocoder language.

In compiling each FORTRAN source program, the
FORTRAN processor diagnoses errors in that program;
it generates a listing of the source program, noting
each error detected in the diagnosis. With these diag-
nostic error messages as a guide, the FORTRAN user
can correct his program without becoming involved
in debugging machine-language code.

COBOL

coBoL. (COmmon Business Oriented Language) is a
programming system suitable for solving business and
commercial problems. The coBoL programming sys-
tem consists of the coBoL language — a language pat-
terned after business English — and the coBoL proc-
essor (or compiler); the compiler translates cosoL-
language programs into machine-language programs.

Users of the coBoL language can state problem solu-
tions in business terms without any regard to the in-
tricacies of symbolic one-for-one, or machine-language
programming. coBoL programs are divided into such
familiar components as sentences and paragraphs,

thereby imparting structural clarity to the source pro-
gram. COBOL verbs such as READ, ADD, EXAMINE, PER-
FORM, and WRITE enable the coBoL user to create pro-
grams that read his data, manipulate it as per his
instructions, and write out the processed data.

As in FORTRAN, each statement encoded in the coBoL
language generates one or more instructions in the
resultant machine-language program,; thus, each cosoL
statement is similar to an Autocoder macro-instruction.

As it processes each coBoL source program, the
coBoL processor diagnoses that program; it generates
a listing of the source program, noting each error
detected. With these error messages as a guide, the
coBoL user can debug his program without becoming
involved in machine-language coding.

Sorting Programs

1M provides two generalized sorting programs on the
Master file: the Generalized Tape Sorting Program,
and the Generalized Sorting Program Using 18m 1301/
2302 Disk Storage (Generalized Disk Sorting Pro-
gram). The tape sorting program uses magnetic tapes
for input, output, and work files; the disk sorting pro-
gram can use either tape or disk for input and/or out-
put, but must use disk for work files. Both programs
can also accept input from the Standard Input Unit,
if specified.

Generdlized Tape Sorting Program

The Generalized Tape Sorting Program enables the
user to create, through control-card specification, dif-
ferent magnetic tape sorting and merging programs;
each program created can accept a wide range and
combination of specification values. With these values,
entered at execution time via control cards, the pro-
gram alters itself to fit the needs of the particular
application for which it is used.

The user can create sort or merge programs by com-
bining the following features: sort or merge fixed- or
variable-length records, sort or merge on one or several
control data ficlds, unmodified or user-written modifi-
cation routines, and ability to reproduce itself on
punched cards. Each program produced can sort in
ascending or descending order; use a balanced or un-
balanced merge; write checkpoint records; accept
input from the siv, if specified; use tape label-process-
ing routines; etc. Linkage symbols to specific routines
within the sorting or merging program arc provided.
The user can refer to these symbols if he includes his
own modification routines.

On the Master file the Generalized Tape Sorting
Program exists as part of the Relocatable Library; the
program consists of a set of relocatable subroutines

IBM 1410/7010 Operating System Components 15

and a separate routine called the Sort Definition pro-
gram, The Sort Definition program also resides in
absolute format on the Master file for a tape-oriented
system. The Sort Definition program selects those sort
subroutines required to form the type of sort pro-
grams desired by the user. Execution of the Sort
Definition program and conversion of the selected
subroutines to absolute format can be performed at
System Generation or during the day’s processing. The
entire process of producing executable sort or merge
programs, from source program time through object
program time, occurs in two main steps:

1. The user supplies the Sort Definition program
with information that enables it to select those sub-
routines necessary for the sort or merge program
desired. An installation can create several different
sort or merge programs. The Linkage Loader produces
the sort and merge programs in absolute format.

2. At object program time, the sort or merge pro-
gram, acting on control-card information supplicd by
the user, alters itself to meet the requirements of the
specific application. The program is then executed.

Generalized Disk Sorting Program

The Generalized Disk Sorting Program enables the
user to create, through control-card specification, dif-
ferent sorting programs that use 1M 1301 or 2302
Disk Storage for work files during the sort. Like the
Generalized Tape Sorting Program, each disk sort
program produced can accept a wide range and com-
bination of specification values. With these values,
entered at execution time via control cards, the pro-
gram alters itself to fit the needs of the particular
application for which it is used.

The user can create disk sorting programs by using
various combinations of the following featurcs: mag-
netic-tape or disk input, magnetic-tape or disk out-
put, sort fixed-length or variable-length rccords, sort
on one or several control data fields, unmodificd or
user-written modification routines, and ability to rc-
produce itself on punched cards. Each program pro-
duced can sort in ascending or descending order; ac-
cept input from the sivu, if specified; utilize the Write
Disk Check option, if desired; write check-point rec-
ords; accept Form A, Form C, or Form G disk files;
use tape-label processing routines, if magnetic tapes
are used for input/output; etc. If the user includes
his own modification routines, he can refer to linkage
symbols provided for specific routines within the sort-
ing program.

On the Master file the Generalized Disk Sorting
Program exists as part of the Relocatable Library.
The program consists of a set of relocatable subrou-

16

tines and a separate routine called the Sort Definition
program. The disk Sort Definition program also re-
sides in absolute format on a disk-oriented Master
file. The operational principle of the disk Sort Defini-
tion program is the same as that for the tape Sort
Definition program. The time of execution of the tape
Sort Definition program, and the two main steps in
creating tape sort programs (described above), also
apply for disk. However, no merging programs can
be produced with the Generalized Disk Sorting Pro-
gram.

Utility Programs

The Utility programs included in the Operating Sys-
tem provide facilities for program testing, output-area
preparation for disk, and many basic service func-
tions needed in the daily operations of a computer in-
stallation. The user adapts these programs for his own
needs by control-card specification. Program testing
and medium preparation time are substantially re-
duced.

There are seven utility programs: Snapshot, Storage
Print, Tape Print, Disk Print, M 1301 Disk Format/
Address Generator, isM 1311 Disk Format/Address
Generator, and 8m 1311 Disk Label program. The
four print programs (Snapshot, Storage Print, Tape
Print, and Disk Print) use the same basic print for-
mat: 100 characters per line, in groups of 10. Output
of the print programs is on the spr. If the user’s spr
is a magnetic tape unit, he can subsequently print
the listings using the Peripheral Output Writer (row)
program on an 1BM 1401 Data Processing System. pow
is a 1401 print and punch program that may be writ-
ten as the first record on a tape sprR (or a tape spu)
if the user specifies the inclusion of this program at
System Generation,

Snapshot

The Snapshot utility program prints all or selected
areas of core storage at intervals specified by the user
during the program run. It is used primarily for test-
ing programs, although the System Monitor can com-
bine it with the user’s program. Information is printed
as it appears in core storage, with word marks indi-
cated above the appropriate characters.

Storage Print

The Storage Print program prints all or selected areas
of core storage, previously written on a file called the
Core Image file (MpM), in accordance with control
information provided by the user. Data is read from
the mpa and edited. (If the Storage Print program is
used, the Mpm must be assigned as a system file.)

The Storage Print program is executed only when
specifically requested by user-supplied control cards.
The printed listing appears in machine language on the
spR; it displays the contents of the specified area of
core storage and includes the following: identification
and status information, a line containing pertinent
system symbols and their absolute-address equivalents,
and the contents of the first 100 positions of core stor-
age. Error and diagnostic messages can also appcar in
the listing.

Tape Print

The Tape Print program prints all or a portion of the
contents of a tape reel. The program can print the
entire contents of one or more files, or a specified
number of data records within a file. Records on the
tape can be in fixed-length or variable-length format.
Printed listings, which appear on the spr, can show
word separator characters as separate characters or
as word marks above the appropriate characters. In
addition to the contents of the tape, the listing in-
cludes identification information and record and char-
acter counts. Error and diagnostic messages also ap-
pear in the listing.

Disk Print

The Disk Print program prints all or a portion of 1BM
1301 or 2302 Disk Storage, or an M 1311 Disk Pack.
Data from the disk can be read in Load or Move
mode and records on the disk can be in fixed-length or
variable-length format. The printed listing appears in
machine language on the spr. In addition to the con-
tents of the disk area specified, the listing contains
identification information and character counts. Error
and diagnostic messages can also appear in the listing.

IBM 1301 Disk Format/ Address Generator

The 1M 1301 Disk Format/Address Generator pro-
gram provides formatting and address generation sep-
arately or in the same run, according to the user’s
specifications. For generation of standard addresses,
the user need only provide control-card information.
Nonstandard addresses are not generated, only writ-
ten, by the program; the user must supply his own
routine to generate the addresses. He can use this pro-
gram for formatting and gencrating addresscs for an
entire disk module, or any part of a disk module. The
Write Disk Check option can also be used. Error and
diagnostic messages appear on the srr.

IBM 1311 Disk Format|/ Address Generator

The 18M 1311 Disk Format/Address Generator can be
used to (1) write sector addresses for all or a portion
of a 1311 Disk Pack in standard or nonstandard sc-
quence; and (2) clear the data portions of a specified
area and fill the area with a specified character (e.g.,
blank). Various types of addressing and various com-
binations of addressing and clearing can be specified.
The Write Disk Check option can be used. If an error
occurs, a special end-of-program condition is set in
the Resident Monitor; a numeric console message is
issued and the particular error message is printed out
on the spr.

IBM 1311 Disk Label Program

The 1M 1311 Disk Label program provides a means
of establishing, maintaining, and altering the identify-
ing label track portion of a disk pack. The program
can be used to establish or remove labels on the entire
label track, enter a new header label, delete an exist-
ing header label, change an existing header label, or
print labels. If an error occurs during the execution
of the program, a special end-of-program condition is
set in the Resident Monitor; a numeric console mes-
sage is issued and the particular error message is
printed out on the ser.

User-Written Programs

An integral part of an installation’s Operating System
is the set of programs and routines written by that
installation for use under control of the Operating
System. By employing the language processors (Auto-
coder, FORTRAN, and coBoL) and other mBM-supplied
components of the Operating System, the installation
can develop specific programming to perform its ap-
plication-oriented processing.

User-written programs fit into two catcgorics:

1. Independent programs that are at an equal rank
with 1BM-supplied components of the Operating Sys-
tem. These programs (e.g., those that perform class-
room scheduling for a university or those that per-
form customer billing for a public utility) are named
in control cards and are executed under control of
the Resident Monitor just as is, say, the Autocoder
language processor.

2. Routines that are used with programs supplied
by mM or generated by 1BM-supplied programs; e.g., a
routine incorporated into a generated sorting program
for deleting certain records from the output file.

IBM 1410/7010 Operating System Components 17

IBM 1410/7010 Operating System Publications

An integrated set of publications provides the detailed
documentation for the 1BM 1410/7010 Operating Sys-
tem. Based on the principles outlined in this publica-
tion, each publication in the set describes a specific
facet of the Operating System. In addition, cach pub-

—

lication lists prerequisite reading and recommends
other applicable publications.

Figure 6 summarizes, in schematic form, the set of
publications for the Operating System. To determine
the prerequisite reading for a publication, follow the

Generalized
Sorting
Program
> using
1BM 1301/1302
Disk Storage

€28-0404

—

Generalized
Tape

—

Random-
Processing

COBOL |t—— — — — —
|
I
C28-0327 |
é !
!
|
|

FORTRAN —_—— = =
— 1
|
C28-0328 |

| Lo

o> Sorting Scheduler

Program

C28-0354

C28-0323

|
|
I
I
I
I
I
|
I
I

=

Operator's
- Guide

C28-0351

Figure 6. IBM 1410/7010 Operating System Publications

18

Basic System Basic
Concepts > Monitor » Autocoder Input/Output | — -
Control
System
C28-0318 €28-0319 C28-0326 C28-0322

—

. Tele-

> Utility processing
Programs Supervisor
C28-0353 C28-0321
System

» Generation
C28-0352

PR |

solid-line path(s) from that publication back to the
Basic Concepts publication; all publications encoun-
tered along the solid-line path are prerequisite. The
broken-line paths in the figure lead the rcader to
recommended publications. For example, Basic Con-
cepts and System Monitor are prercquisite reading for
Generalized Tape Sorting Program; Basic Input/Out-
put Control System and its prercquisite, Autocoder,
are recornmended reading for Generalized Tape Sort-
ing Program.

The paragraphs that follow briefly summarize the
contents of the Operating System publications set;
reference manuals in the set are discussed individ-
ually, but programming systems analysis guides in the
set are discussed as a group. The first line of each title
listed is IBM 1410/7010 Operating System. (This linc
is not repeated for the following publications.)

System Monitor (C28-0319) describes the principles
and functions of the Resident Monitor, the Transi-
tional Monitor, and the Linkage Loader, and the re-
lationships of these elements to other Operating Sys-
tem components. Reference material included in the
publication details the control cards required for using
the Operating System, the linkage sequences that must
be encoded to use Resident Monitor subroutines, the
messages written by the Monitor, and the console
inquiries accepted by the Monitor.

Tele-processing Supervisor (C28-0321) is a sup-
plement to System Monitor for installations that use
Tele-processing equipment. The Tele-processing pub-
lication describes the basic principles of the Tele-
processing Supervisor and explains how to write pro-
grams to run under control of the Supervisor.

Basic Input/Output Control System (C28-0322)
contains the information necessary to make efficient
use of the 1ocs for handling input/output and control
operations in user’s programs. Included are discussions
of file-definition statements and macro-instructions
used with the 10cs; specifications for user-written pro-
gramming executed from special exits within the 10cs
are also presented. The publication is divided into
two parts: the first deals with basic use of the 10cs
the latter with the extended use of the rocs.

Random-Processing Scheduler (C28-0323) provides
a discussion of random-processing concepts as they
pertain to the Scheduler, and presents detailed infor-
mation on using the Scheduler for handling input/
output operations for random-access devices.

Autocoder (C28-0326) is a reference manual for
writing programs in the Autocoder language. The
publication weaves together the basic concepts of a
symbolic language and the specific details necessary
to write Autocoder programs to be compiled and exe-

H

cuted under the Operating System. Also included are
details on the Autocoder macro-instruction capability
with information needed to write additional macros.

COBOL ((C28-0327), a reference manual for busi-
ness personnel and programmers, is designed for use
in conjunction with IBM General Information Manual;
COBOL, Form F28-8053. The general information
manual contains basic data about all coBor program-
ming systems; the reference publication contains ad-
ditional specifications and instructions for using the
Operating System COBOL.

FORTRAN ((C28-0328), a reference manual for sci-
entific/engineering personnel and programmers, ex-
plains how to write programs in the FORTRAN language
and how to write Autocoder subprograms to be used
with FORTRAN programs. Also presented are lists of
error messages produced by the FORTRAN processor
and by FORTRAN object programs.

Operator’s Guide (C28-0351), intended for use at
the console, explains all operational aspects of the
Opcrating System. Operating information includes dis-
cussions of loading procedures, restart procedures,
control-card decks, input/output unit assignments, and
use of console inquirics. Also included are lists of mes-
sages produced by all Opcrating System programs,

System Generation (C28-0352) describes the build-
ing and maintenance of systems specifically tailored
to an installation’s data processing requirements and
its machine configuration. Also included in the pub-
lication are summaries of machine and core-storage
requirements for all Operating System components,
and timing estimates for the 1ocs.

Utility Programs (C28-0353) describes the Oper-
ating System utility programs and details the control
cards and other requirements for their use. The publi-
cation also includes lists of all error and diagnostic
messages that may be issued during execution of the
programs.

Generalized Tape Sorting Program (C28-0354) pro-
vides the detailed information necessary to define sort
and merge programs and to use these programs. The
publication describes (1) the control cards dirccted to
the Sort Definition program to create a sort or merge
program to fit the particular application and (2) the
control cards to alter the created program. Also in-
cluded arc a complete list of diagnostic and error mes-
sages, timing cstimates for the cxecution of sort and
merge programs for data records of varying lengths,
and information on how to incorporate user-written
cditing routincs into the gencrated programs.

Generalized Sorting Program Using IBM 1301/2302
Disk Storage (C28-0404) provides the information

IBM 1410/7010 Operating System Publications 19

needed by the user to create sort programs and to
use them. Described in detail are the control cards
needed to create the programs and, at exccution time,
to alter the programs to fit the specific application.
The publication also contains a complete list of diag-
nostic and error messages, timing estimates for the
sorting of data records of varying lengths, and infor-
mation on how to incorporate user-written editing
routines into the generated programs.

Programming Systems Analysis Guides, addressed to
technical personnel that analyze or modify Operating
System programs, are provided for some Operating
System components. These analysis guides describe
the internal operations of programs and programming
systems at several levels of detail: the program level,
the major component (or phase) level, and the routine
level. In addition, details of operation at the routine/
subroutine level — with accompanying flowcharts —
are provided. The programs documented by Program-
ming Systems Analysis Guides are apparent from the
titles of those publications. The last line of each title

20

is Programming Systems Analysis Guide. (This line
is not repeated below.) The remainders of the titles
and their associated form numbers are:
Resident and Transitional Monitors, and Input/
Output Conirol System, Form C28-0396

Autocoder, Form C28-0395
COBOL, Form C28-0397
FORTRAN, Form C28-0398

Generalized Tape Sorting Program,
Form C28-0393

Note: Information supplementary to System Mon-
itor, Basic Input/Output Control System, and Utility
Programs concerning 1M 1311 Disk Storage Drives
can be found in the publication IBM 1410/7010 Oper-
ating System; Support of IBM 1311 Disk Storage
Drives Under the Operating System, Form C28-0402.
Information concerning 1Bm 1301/2302 Disk Storage
can be found in the publication IBM 1401/7010 Oper-
ating System; File Organization System for IBM 1301/
2302 Disk Storage, Form C28-0405.

ABsOLUTE PROGRAM: A machine-language program that can be
loaded directly into a specific area of core storage and exe-
cuted from it. In the Operating System, the Linkage Loader
converts programs from relocatable format (see below) to
absolute format.

Batcu PRoCESSING: A type of processing in which a number
of input items are grouped for processing under some con-
trol system. (The term applies to both data and programs.)
The Operating System is basically a batch-processing sys-
tem; control resides in the System Monitor, which can super-
vise the execution of a wide range of jobs and runs within
jobs, with a minimum of operator intervention. However,
the System Monitor can, for example, give control to the
Tele-processing Supervisor, an auxiliary monitor, that can
operate on data and call in programs in a nonbatch, or ran-
dom, manner.

BoorsTRAP RouTINE: In the Operating System, a routine that
loads the Resident Monitor into core storage. In a tape-
oriented system, the Bootstrap routine is the first program
on the Master file; in a disk-oriented system, the Bootstrap
routine is preceded by the Tape-to-Disk Load program.

Core Imace FiLe (MDM): A system file on which the Resi-
dent Monitor of the Operating System records: (1) the
status of core storage at periodic intervals in the execution
of a program (checkpoint records), and (2) the status of
core storage at the time the Unusual-End-of-Program routine
is entered (if a branch is made to that routine). Checkpoint
records can be used to restart a program from the point in

the program at which the core-storage status was recorded.

Records written at Unusual End of Program can be used as
input to the Storage Print program.

CREATE Li1sraRY: Prewritten packets of Linkage Loader con-
trol cards that can be used to call groups of relocatable
program units from the Relocatable Library to create abso-
lute programs. Create packets can be used extensively at
System Generation. Use of these packets substantially re-
duces the number of control cards that must be keypunched
and verified.

DerPENDENT PROGRAM: A program executed under control
of the System Monitor of the Operating System, and utilizing
the Operating System Input/Output Control System.

Disk-ORIENTED SvysTEM: A form of the Operating System
in which the System Operating File (SOF) resides on
IBM 1301 or IBM 2302 Disk Storage (see “Tape-Oriented
System”). The user receives the Master file for a disk-
oriented system on a reel of magnetic tape.

JoB Fie (MJB): The output file of the Linkage Loader.
The Job file contains programs, in the form of card-image
records, in absolute format.

LINKAGE LOADER: A program of the System Monitor that con-
verts other programs from relocatable to absolute format, It
modifies addresses as required and converts linkage symbols
to the appropriate machine addresses. The programs arc thus
prepared for execution, The Linkage Loader places its out-
put on the Job file (M]JB).

LiNkaGE SymBoL: A symbolic address providing communi-
cation among two or more programs, each compiled inde-
pendently of the other. In the Operating System, a linkage

Glossary

symbol may take one of two forms (see the publication
System Monitor). The language processors do not convert
linkage symbols to machine addresses; when the Linkage
Loader encounters a card defining a linkage symbol, it
places the symbol, and the address of the symbol within
the relocated program, in a symbol table. If, during the
same run, a program subsequently processed by the Linkage
Loader refers to the linkage symbol, the machine address is
available from the symbol table.

Master FiLe: The IBM-supplied tape file containing all
components of the Operating System. The Master file is the
source file for each user’s initial System Generation run.

MobuLe: A basic program or subprogram within the Operating
System. It can be a complete program within itself or a
program segment (subroutine) that is to be combined with
other subroutines to form a complete program.

Osject PrROGRAM: A program written in machine language
that is the output from the processor, which has converted
the machine language from the symbolic language.

Processor (also Language Processor): A program used to
translate source statements written in a symbolic language
into machine language. The processor and associated sym-
bolic language are referred to collectively as a programming
system. The three language processors included in the Op-
crating System are Autocoder, COBOL, and FORTRAN.

Ranpom ProcessiNng: The process by which data is accessed
according to a sequence established by the program using
the data, rather than by a sequential arrangement of the
data.

RerocaTaBLE ForMmAT: A form of machine-language pro-
gram in which addresses have been assigned starting at
zero or some other arbitrary origin point. The term implies
that the Linkage Loader in the Operating System will con-
vert the addresses to those that will be used at program
execution time. The principle of relocatability provides the
Operating System with great flexibility. Despite the size of
the Resident Monitor and IOCS (each user can tailor the
Resident Monitor and IOCS to fit his individual require-
ments), components of the Operating System can be loaded
into core storage with no wasted gap of core-storage space.
In addition, the relocatable nature of the programs, or mod-
ules, in the Relocatable Library allows for various combina-
tions and configurations of these modules, depending on the
user’s requirements.

ResmENT MoONITOR: A program of the System Monitor that
remains in core storage at all times and controls the execu-
tion of all other programs under the Operating System.

SoURCE PROGRAM: A program written in a symbolic language
(Autocoder, FORTRAN, or COBOL) that is the input to
the processor, which converts the language into machine
language in relocatable format.

Stanparp Inpur Unit (SIU): A card reader or magnetic
tape unit from which control information for the System
Monitor and other components of the Operating System can
be read. The SIU can also serve as the input device for
source programs and data.

StanDARD PrinT Unir (SPR): A printer or magnetic tape
unit on which output from programs executed under the Op-
erating System can be written.

Glossary 21

STANDARD PuncH Unit (SPU): A card punch or magnetic
tape unit on which output from programs executed under
the Operating System can be placed.

SystEM GENeRATION: The process by which a specific Op-
erating System is created from the IBM Master file to
satisfy a user’s processing requirements. The end product
of System Generation is the System Operating File(s). If
desired, a System Generator File (SGF) can be produced
to generate the SOF(s).

SystEM GeENERATOR FiLE (SGF): A file, created from the
IBM Master file, that contains all components of the Oper-
ating System needed to satisfy the processing requirements
of an installation. The SGF can thus become the Master file
for an installation.

SystEM Monrtor: The supervisory program in the Operat-
ing System that coordinates the functions of all Operating
System components, including user-written programs operat-
ing under it. The three components that comprise the System
Monitor are the Resident Monitor, Transitional Monitor, and
Linkage Loader.

22

SysTEM OpeRATING FiLE (SOF): A tape or disk file cre-
ated from the SGF during System Generation. The SOF con-
tains absolute programs and relocatable programs in libraries
needed to carry out the actual processing within an instal-
lation. .

SysTEM SymBoL: A symbolic address of a routine (or data
field) within the Resident Monitor. System symbols can also
be used for pointing to a location in core storage; however,
the symbols must be designated at System Generation. Any
dependent program can refer to these symbols, which are
included in the Linkage Loader symbol table. When the
Linkage Loader relocates the dependent programs, it con-
verts to actual addresses all system symbols used within the
dependent programs.

TaPE-ORIENTED SvysTEM: A form of the Operating System
in which the System Operating File (SOF) resides on mag-
netic tape.

TRANSITIONAL MoNITOoR: A program of the System Monitor
that performs transition functions between jobs and between
runs within a job. The Transitional Monitor analyzes Moni-
tor control cards and is controlled by the Resident Monitor.

C28-0318-3

BV

®
International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601

*¥'S°n UT pajuTid

£€-81£0-82D

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	xBack

