File No. 1410/7010-30 §
Form C28-0323-1

Systems Reference Library

IBM 1410/7010 Operating System (1410-PR-155)
Random-Processing Scheduler—1410-10-967

This publication is a reference text for use of the
Random-Processing Scheduler, an optional component
of the 1M 1410/7010 Operating System. Providing
facilities for the efficient handling of input/output
operations in random-processing applications, the Ran-
dom-Processing Scheduler augments the Basic Input/
Output Control System component of the Operating
System. The manual discusses the random-processing
concepts applicable to the Random-Processing Sched-
uler, and provides detailed information concerning the
macro-instructions, Define the File statements, and De-
fine Area statements associated with the Random-Proc-
essing Scheduler.

This material is intended for use by programmers
and systems analysts who have knowledge of the Basic
Input/Output Control System and the M 1410/7010
Autocoder language. Information covering these two
topics is presented in the following publications: IBM
1410/7010 Operating System; Basic Input/Output
Control System, Form C28-0322. IBM 1410/7010 Op-
erating System; Autocoder, Form C28-0326.

Major RevisioNn (November, 1963)

This publication is a major revision of and supersedes the pub-
lication, IBM 1410/7010 Operating System; Random-Processing
Scheduler: Preliminary Specifications, Form C28-0323, with its
associated Technical Newsletter (N28-2003).

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N. Y.

© 1963 by International Business Machines Corporation

Introduction

Purpose of This Publication
Purpose of the Random-Processing Scheduler
Machine and Operating System Requirements
Prerequisites

Random-Processing Concepts

Handling Disk Data
Single-Record Processing
Sequential Processing
Random Processing

Random Reference Processing
Separation of Routines

The Random-Processing Scheduler

Relationship to the Operating System
Relationship to the Basic Input/Output Control
System
Capabilities of the Scheduler
Retention of Transaction Records
Holding Disk Records
Correlation of Disk Records with Transaction
Records
Release of Transaction Stacking Areas and
Input/Output Areas
The Random-Processing Scheduler Macro-Instructions .
Separation of Processing Routines
Sequence of Disk Operations
Independent Disk Routines
Dependent Disk Routines
Programming Considerations

Contents

Macro-Instructions, DTF and DA Statements

Macro-Instructions
GET
PUT
I0CTL OPEN
IOCTL CLOSE
IOCTL STACK
1octL Mvesa (Move Record to Stacking Area) . .
10CTL DEFSA — Define Stacking Area . . .
IOCTL ENTRND
IOCTL FSEQP
10cTL LEAVE — Leave Disk Routine

The prr (Define The File) Statement
Purpose of the prr Statement
General Format of the prr Statement
The pTr Entries
ACTIVITY
ERRADDR
ERROPTNS
FILEFORM
sYMUNIT (Symbolic Unit)

DA (Define Area) Statements Needed to Support
the Random-Processing Scheduler
The pa Statement for Input/Output Areas
The pa Statement for the Transaction
Stacking Area

Input/Output Requests for Random Processing . . .

Index

Purpose of This Publication

The purpose of this publication is to describe the capa-
bilities of the Random-Processing Scheduler, and the
function and use of the macro-instructions and pTF
(Define the File) and pa (Define Area) statements
needed to utilize the capabilities of the Scheduler in
random processing applications involving the use of
M 1301 Disk Storage.

Purpose of the Random-Processing Scheduler

The Random-Processing Scheduler is an optional com-
ponent of the M 1410/7010 Operating System, pro-
viding facilities for efficient handling of input/output
operations involving random access devices.

The goal of the Random-Processing Scheduler is to
permit a random processing program to be planned
as if using a serial “read a record, process it, write it”
procedure. Actual execution of the program, however,
is controlled by the Random-Processing Scheduler
(hereafter called the Scheduler). The order in which
records will be processed is determined by the Sched-
uler so that maximum operating efficiency is obtained.

The Random-Processing Scheduler is designed to be
of maximum value for applications involving the up-
dating of files resident in disk storage, where the data
to be used in updating these files is not batched by
type or sorted beforehand. The advantages of the
Scheduler are lost if it is used in a sequential process-
ing application.

By providing routines for the supervision and con-
current scheduling of input/output operations in a ran-
dom processing application, the Scheduler relieves the
user of the major programming task of designing an

Introduction

efficient random processing input/output control sys-
tem.

Machine and Operating System Requirements

The machine requirements for assembling source pro-
grams written in the Autocoder language are specified
in the publication, IBM 1410/7010 Operating System;
System Generation, Form C28-0352. The machine re-
quirements for execution of the object program depend
upon the combined requisites of the System Monitor
and the user’s program.

The Random-Processing Scheduler requires of the
Operating System that its Resident Monitor be condi-
tioned to handle interrupt exits and 1301 Disk Storage.
This is accomplished during generation of the Operat-
ing System by entries in the Resident 1ocs Definitions
macro-statements.

Prerequisites

It is assumed that the reader of this publication is
familiar with fundamentals of programming the M
1410 or 7010 Data Processing System. To successfully
prepare programs utilizing the Scheduler, the reader
should also be familiar with the following publications:

IBM 1410/7010 Operating System; Basic Concepts,
Form C28-0318

IBM 1410/7010 Operating System; System Monitor,
Form C28-0319

IBM 1410/7010 Operating System; Autocoder, Form
(C28-0326

IBM 1410/7010 Operating System; Basic Input/Out-
put Control System, Form C28-0322

Introduction 5

Random Processing Concepts

Random access devices make it possible to directly
pick out wanted data from a file, in a sequence estab-
lished by the program using the data, not by the data
arrangement. Also present is the capability of accessing
data from a number of files in a sequence dictated by
program need, not by file arrangement. In contrast,
sequential access devices, such as magnetic tape, make
data available only in a fixed, serial order.

Handling Disk Data

The arrangement of data and program requirements
determine the method used in moving information to
and from disk storage. Three methods of moving disk
data are in general use and are known as single-record,
sequential, and random processing,.

Single-Record Processing

Single-record processing is defined as obtaining disk
records of any format, brought from any area of disk
storage, in any arbitrary order of addresses. It is the
most flexible method of moving data to and from disk
storage. The primary use of this method is in applica-
tions where the precise nature and the location of the
data to be moved are not known at the time the pro-
gram is written.

Sequential Processing

Sequential processing is defined as obtaining disk
records in the order of ascending addresses. When in-
formation is transferred sequentially there is virtually
no seek time involved if the records are arranged cor-
rectly on disk. Therefore, it is the fastest method of
moving large amounts of data to and from disk storage.
In many respects sequential processing is similar to
tape processing, and, because of this, is not suitable
for applications requiring arbitrary, or random, re-
trieval of disk data.

Random Processing

Random processing is defined as obtaining disk rec-
ords of uniform format, belonging to specific files, in
any arbitrary order of addresses. It is the most widely
used method of reading and writing disk data and
lends itself to any application where data in a specific
file must be processed in an arbitrary order. The Ran-
dom-Processing Scheduler is designed to implement
this type of operation. The next section expands on
this concept.

6

Random Reference Processing

Use of the random processing method generally as-
sumes that the input data (transaction records) comes
from a source other than disk storage, although a se-
quential disk file might be used for input. It also as-
sumes that the transaction data is to be processed
against data obtained from a disk file. The processing
creates updated or new data to be placed back in disk
storage or used as output to other input/output de-
vices. Each transaction record contains the identifica-
tion for one or more items in disk storage that are to
be processed against the transaction data.

Separation of Routines

When a transaction record becomes available, the
process of issuing Seeks and Reads for one or more
disk records must be performed. To utilize this time
it is convenient to divide the total processing of an
item into smaller routines, which will be referred to
as the main routine and the disk routine.

The main routine is used to obtain transaction rec-
ords and place them in an area of storage available to
the disk routine. If the user desires, the main routine
may include other operations that do not require data
to be obtained by the disk routines.

Control is passed by the main routine to the disk
routine after a transaction record has been made
available by the main routine, and the disk routine
proceeds to obtain the disk record needed, process it
against the transaction record, and prepare the result
for placement back into disk storage and/or as output
data for some other input/output device. Because of
the time required for disk functions, i.e., Seek and
Read, between the execution of a main routine and the
ability of the disk routine to process a record, a void
exists during which no instructions referring to the
data may be executed. Random processing schemes
utilize this time to read in more transaction records or,
if possible, initiate execution of another disk routine
for which data is available in core storage. Thus, in
addition to keeping the computer busy, new requests
for disk data are being generated continually so that
access mechanisms are being utilized to the fullest
extent with overlapped Seek operations.

If the user requires the output from a program to
be in the same sequence as the transaction records
that are brought in, an option is provided whereby the
user may force the execution of disk routines in the
same order as the transaction records are brought into
the computer.

Relationship to the Operating System

The Scheduler consists of routines that are incorpo-
rated into the using program by means of the Linkage
Loader. The Scheduler routines are not contained in
the Resident 10cs. The Scheduler routines are placed
in relocatable format on a library file, which, when
the routines are to be incorporated in a program, must
be assigned as the System Library file. Information
concerning the placement of Scheduler routines on
the library file, and assignment of a System Library
file, is contained in the publications, IBM 1410/7010
Operating System; System Generation, Form C28-0352,
and IBM 1410/7010 Operating System; System Moni-
tor, Form C28-0319, respectively. In brief, the assembly
of a program utilizing the Scheduler routines takes
the following steps:

1. The output of the Autocoder processor is one
or more subprograms in relocatable format, contain-
ing imbedded calls for appropriate Scheduler routines.
The calls are generated when the Autocoder processor
encounters a Scheduler macro-instruction.

2. The subprograms are then processed into abso-
lute format by the Linkage Loader, which gathers the
calls for Scheduler routines, obtains the routines from
the Library, and processes them into absolute format
with linkage to the using program. The program, with
Scheduler routines, is now in absolute format on the
Job file.

The Scheduler imposes no requirements for control
information beyond those stated in the System Moni-
tor and Autocoder publications for assembly and
execution of a program.

NotE: Programs servicing a TELE-PROCESSING® Sys-
tem may be utilizing Scheduler routines and may be
resident in core storage at the same time as a main-
line program using the Scheduler. The result of this
is the presence in storage of two sets of Scheduler
routines. The Scheduler routines must not be in-
corporated in the Resident Monitor.

Relationship to the Basic Input/Output Control System
The Scheduler extends the Basic Input/Output Control
System (10cs) component of the Operating System by
providing routines for handling disk data in a random
processing application. These routines, combined with
1ocs operations, will efficiently handle the input/output
requirements of any random processing application.

The Random-Processing Scheduler

For example, in obtaining information from disk stor-
age, the Scheduler determines whether or not a Seek
operation is required, and in which input/output area
the information is to be placed. Control is then passed
to the 10cs to perform the actual input/output opera-
tions of seeking (if needed), reading the record, and
handling error situations if they arise. In brief, the
Scheduler routines combined with the rocs will auto-
matically:

Schedule the maximum number of Seek, Read,
and Write operations for efficient operation
Overlap disk input/output operations with proc-
essing

Perform the actual Seek, Read, and Write opera-
tions

Check for read and write errors

Correct all correctable read and write errors

Capabilities of the Scheduler

Retention of Transaction Records

Successive transaction records are stored in a Transac-
tion Stacking Area until they can be processed. If the
Stacking Area is full, the Scheduler delays reading in
any more transaction records until room is available.
During this delay, disk records will be processed as
they become available. The processing of a disk record
takes precedence over reading another transaction
record. Control is passed back to the main routine
only if no disk record is available for processing and
the Scheduler is able to accept more transaction rec-
ords. (If two transaction records request the same disk
record, the Scheduler does not process the second re-
quest until the first has been completed.) The Sched-
uler retains transaction records until notification that
all disk routines needing the record have been satisfied.

Holding Disk Records

The records obtained by the read operations in the
disk routines are held in the input/output area desig-
nated for that file until they are no longer required.

Correlation of Disk Records with Transaction Records

As described in the “Random Processing Concepts”
section, the separation of routines permits concurrent
handling of several input/output operations. Each time

The Random-Processing Scheduler 7

a disk record is successfully sought and read, it is made
ready for processing. The Scheduler ensures that,
whenever control is passed to a disk routine for proc-
essing a record, data from the correct transaction rec-
ord is used.

Release of Transaction Stacking Areas
and Input/Ovutput Areas
The Scheduler ensures that no areas are released to

receive new data until all routines needing their pres-
ent contents are satisfied.

The Random-Processing Scheduler
Macro-Instructions

The following is a brief description of each of the
three macro-instructions used in coding a program
utilizing the Scheduler facilities. Refer also to Figure
1, which shows graphically the placement of the in-
structions within a random processing scheme.

GET — Get Disk Record
This macro-instruction is used to seex (if necessary)
and reap disk records.

rur — Put Disk Record
This macro-instruction is used to seex (if necessary)
and writE disk records.

10cTL xxxxX — Input/Output Control

This macro-instruction can direct the Random-Process-
ing Scheduler to perform a specific function as de-
termined by the first operand (called the directing
operand). Since the 1octL operation cannot be used
without the directing operand, the two will be referred
to together as a form of the macro-instruction. The
following are the forms of the macro-instruction, with
a description of each.

Main Routine Disk Routine

10CTL
OPEN

IOCTL
STACK

10CTL
DEFSA

I0CTL
ENTRND

10CTL
MVRSA

A

GET

Branch |
Control Initiate | Complete
to Aor B Seek | Read
PUT
Initiate I Complete
Write | Write

Branch 10CTL

Control €———1 | FAVE

to AorB

Macro-Instructions for Random Processing

Figure 1.

1octL FSEQP — Force Sequential Processing.
This form of the macro-instruction is used to en-
sure that records are processed in the order in
which transaction records were received, regard-
less of the order in which the disk records were
accessed. It is not shown in Figure 1.

10cTL MVRSA — Move Record to Stacking Area.
This form of the macro-instruction is used to move
transaction records to the Transaction Stacking
Area.

1octL oPEN — Open Disk Files.
This form of the macro-instruction is used to open
disk files used for random processing.

1ocrL cLosk — Close Disk Files.
This form of the macro-instruction is used to close
disk files used for random processing.

10cTL ENTRND — Enter Disk Routine.
This form of the macro-instruction must be used
to define the beginning of any disk routine.

10CTL LEAVE — Leave Disk Routine.
This form of the macro-instruction must be used
to define the end of any disk routine.

10CTL STACK — Open Stacking Area.
This form of the macro-instruction is used to es-
tablish linkage between the Transaction Stacking
Area and the Scheduler. (Do not confuse this
macro-instruction with the unNcrL sTAck macro-
instruction for basic 10cs.)

1octL DEFSA — Define Stacking Area.
This form of the macro-instruction is used to de-
fine a field in storage as a femporary Transaction
Stacking Area.

Random files named in the operand field of a Sched-
uler macro-instruction must be defined by a prF (De-
fine the File) statement, written as described in the
following section of this publication. Further, files
other than the files to be handled as random files must
be defined by prF statements as specified in the publi-
cation, Basic Input/Output Control System, and the
basic 10cs forms of the macro-instructions are used
with them. For example, the transaction record file
and its associated GET macro-instruction would be de-
fined and used as detailed in the Basic Input/Output
Control System publication. The opex and crose func-
tions for the transaction record file would utilize basic
10Gs routines also.

As shown in Figure 1, the 10cTL OPEN macro-instruc-
tion is mandatory for each file, and directs the Sched-
uler to establish linkage with each file named in the
operand. This macro-instruction also identifies a file as
a RANDIN or RANDOUT file. (For definition of these terms
see the pur macro-instruction discussion in the next
section of this publication.)

The 1ocTL sTack macro-instruction establishes link-
age between a Transaction Stacking Area and the
Scheduler before the area is used by the program. This
area is available to both the main routine and the disk
routine and must be defined by a pa (Define Area)
statement. (See the next section for details.)

The 10cTL MVRSA macro-instruction is used to place
data (i.e., transaction records or data developed by the
main routine) into a Transaction Stacking Area. It has
three formats and will either: (1) move data from an
input area to a segment of the Transaction Stacking
Area; (2) select a segment of the Transaction Stacking
Area, leaving the selection and movement of data to
the user; or (3) will move data from an input area to
one of several Transaction Stacking Areas.

The 10CTL ENTRND macro-instruction must be used
as the first entry in a disk routine. It stores the return
address to the main routine.

The GET macro-instruction makes a random file rec-
ord available for processing. The user must develop
the address needed to obtain the record.

The rut macro-instruction is used to place processed
records on a disk file, and will either place a record
back in the location from which it was obtained, or
place it in a location designated by the user.

The 10CcTL LEAVE macro-instruction must be the last
instruction used in a disk routine. It handles the re-
lease of the input/output and Transaction Stacking
Areas used by the disk routine with which it is asso-
ciated. The LEAVE macro-instruction also performs
checking functions, which are detailed in the next
section.

The 10CcTL DEFSA macro-instruction is closely related
to the mvmsa instruction. It allows the Scheduler to
treat the location of any data in storage as a segment
of a Transaction Stacking Area. The user must provide
a routine to release this temporary transaction area.

The 10cTL FSEQP macro-instruction is not shown in
Figure 1. Details of its operation are discussed in the
next section.

The Random-Processing Scheduler 9

Main Routine Disk Routine

Initialize
and Trcmscfction
Open Files Stacking
¢ Area
- A
I0CTL ! Tst |
STACK | Segment |
| |
P .
1
— 2nd |
Segment |
o .
| o7 1
~————
[r~——=222
I ! nth i
htoB ! S :
TOCTL MVRSA _ |-— - branch fo [egment | IOCTL ENTRND
(if stacking L __ -
Move record to | R
T N area full)
ransaction] Store
Stacking Area e Return Address
Branch Control to A or B
r ______ "'l (See Table 1)
| 1st | GET Disk Record
1 Area |
| | Initiate | Complete
r ————— - SEEK READ
| A e DiskRecodin
N S | rea | Input/Output Area
I Main | bo————— A
| Routine | "‘:: :\ \—J
| . | | ~=1
L rocessing B |
et — — : nth Area |
e Jd
Input/Output
Area

PUT
Initiate l Complete WRITE
WRITE | Release Input/

Complete
Housekeeping N
CLOSE Files 1 Output Area

()
!

Branch Control to A or B Release .
Transaction

(or o MVRSA) See Table 1 Stacking Area

Figure 2. Separation of the Main and Disk Routines

10

Separation of Processing Routines

The operating principles of the Scheduler are illus-
trated in Figure 2 and discussed in Table I. Note that
all instructions needed to obtain or process disk data
have been removed from the main routine. Transac-
tion records are stored in a special area (Transaction
Stacking Area) to await processing.

Separating the disk routine(s) from the main rou-
tine allows the Random-Processing Scheduler to use
the waiting time to analyze the situation at that point.
As a result, the Scheduler is able to coordinate the
maximum possible processing in the disk routine(s).

Although the main routine initiates processing of
the disk routine, the two routines are independent of
one another: the main routine obtains and stores
transaction records independently of any processing in
the disk routine, and the disk routine obtains disk
records and associated transaction records independ-
ently of processing in the main routine. The Scheduler
coordinates the transaction record with the correct
disk record.

Sequence of Disk Operations

Although transaction records are stacked in the order
in which they were obtained by the main routine, up-
dated disk records are not necessarily read from nor
written back onto the disk in the same order. This is
because of the different access times for information
in disk storage. Information access time depends not
only on the order in which disk requests are given, but
also on the location of the requested information in
disk storage. The Scheduler will schedule all requests
so that the record that can be obtained first is obtained -
first.

For example, if the Scheduler receives a request
which requires an access time of 100 ms, and it before
this request is honored by the Scheduler, another re-
quest is received that requires the same access mech-
anism but only requires an access time of 50 ms, the
last request will be scheduled ahead of the first re-
quest. In another example, if one access mechanism
receives a request for information which requires an
access time of 100 ms, and 10 ms later another access

Main Routine

The rain routinc obtains a transaction record and requests
stacking of the record in a segment of the Transaction Stack-
ing Area. If a scgment is available, the record is stacked and
control is given to the disk routine. If no segment is available
for the transaction record, processing will be permitted only
in the disk routine until a segment is released. At this time,
processing in the main routine will resume.

Processing now continues at Point A (return address of the
main routine). Main routine processing (if any) is carried out,
and a branch to the instruction that calls for the reading of
the next transaction record is taken. This transaction record is
moved to a free segment of the Transaction Stacking Area and
control is given to the disk routine at Point B,

Disk Routine

Processing in the disk routine proceeds until a request for a
GET operation is encountered. The disk routine initiates the
seex and then checks all input/output areas. If a previously
read disk record is ready for updating, processing continues in
the disk routine (Point B), If no disk record is ready for proc-
essing in an input/output area and the Scheduler is able to
accept additional random requests, control is given to the main
routine at Point A.

The waiting disk record is updated with the correct transaction
data, and the WRITE operation that will write the updated disk
record back into disk storage is initiated. (As indicated in Fig-
ure 2, the input/output area that contained the just-updated
disk record will be released upon completion of the wRITE op-
eration.) When processing in the disk routine continues, any
needed report is written, and control of the segment of the
Transaction Stacking Area that held the correct transaction
record is returned to the Random-Processing Scheduler. The
check for an input/output area ready for updating is then made
again, and control is given to Point A or Point B, depending
on the outcome of the check.

Table 1. Program Steps Executed by the Random-Processing Scheduler

The Random-Processing Scheduler 11

mechanism receives a request which requires access
time of 50 ms, again the second request will be met
before the first. In either case, the disk information
requested last will be obtained before that information
requested just prior to it.

If disk records must be processed in the same order
as the incoming transaction records, processing of the
data obtained by the second request in the examples
must be delayed until the data obtained by the first
request has been processed. This is accomplished by
- the use of the 1octL vsEQr (Force Sequential Process-
ing) macro-instruction. (See the next section for details
of the FsEQP macro-instruction.)

Independent Disk Routines

Disk routines are considered independent when the
processing in one routine is not supported by the
processing in another disk routine.

For example, some applications require two (or
more) independent disk routines. A typical application
of this type is the updating of a job record and an em-
ployee record on the basis of one transaction record.
Both routines use the same Transaction Stacking Area.
However, each routine operates on the transaction rec-
ord independently, not requiring data developed by
the other routine (Figure 3).

The Scheduler ensures that no segment of the Trans-
action Stacking Area is released until all disk routines
requiring data from this segment have been completed.
The Scheduler can handle any number of independent
disk routines.

Dependent Disk Routines

Some applications use data from one transaction rec-
ord to update two dependent disk records. Two
records are considered dependent on one another if
neither of them can be updated without data from the
other. When dependent records are processed, both
disk records must be obtained before either of them

12

can be updated. This requires that the disk records be
retained in their input/output areas until all disk rec-
ords accessing the related data have been completed.
The Scheduler can handle any number of dependent
disk routines.

Dependent disk routines require the use of the
IOCTL FSEQP macro-instruction. In Figure 4, the 1ocrtL
FSEQP macro-instruction in Disk Routine A retains the
disk record obtained, so that the record is available
for use by Disk Routine B. The 1ocTL ¥sEQP macro-
instruction in Disk Routine B holds up further proc-
essing in the routine until the disk records requested
by both routines (A and B) are made available. (For
a detailed description of the functions of the rocrn
FSEQP macro-instruction, see the section “Additional
Functions of the 1ocTL FsEQP Macro-Instruction.”)

Programming Considerations

The following material is offered as an aid to the pro-
grammer planning a program utilizing the Scheduler
facilities.

1. All random files to be referenced must be de-
fined by a prF statement as specified in this manual.

2. Transaction Stacking Areas and input/output
areas must be defined by pa statements as specified
in this manual.

3. The 10CcTL MVRSA, IOCTL STACK, IOCTL OPEN, IOCTL
CLOSE, and I0CTL DEFSA macro-instructions are used in
the main routine.

4. A cET macro-instruction appearing in the main
routine cannot reference a file that has been defined
as a random file.

5. No branching between disk routines may occur.

6. A disk routine must begin with an 10CTL ENTRND
macro-instruction and end with an 10cTL LEAVE macro-
instruction.

7. Within a disk routine, except for the macro-in-
structions covered in item 3, all 10cs macro-instruc-
tions may be used.

Main Routine

Disk Routine B

Initialize incl

IOCTL OPEN

Disk Routine A

10CTL

IOCTL STACK

I0CTL
MVRSA

I0CTL
ENTRND

'

Develop
Disk Address

GET FILE 3

Initiate [Complete

SEEK ; READ
i

Branch Control
to A2, B2,
BI, or Cl

Yes

IOCTL CLOSE
Completfe
Housekeeping

PUT FILE 3
1 Complete

WRITE 1 Area

Branch Control IOCTL LEAVE
to A1,A2, B1, B2 or C1 «——] Possibly Release
Stacking Area

Figure 3.

Initiate : Release 1-O

Branch Control

to Al,B1,
B2, or Cl

Branch Control
to A1,A2,
B1,B2 or C1

» ENTRND

GET,FILE1

SEEK | READ

PUTFILE1
IRELEASE
:I-O Area

WRITE

GET FILE2

SEEK | READ
|

PUT FILE2
WRITE |RELEASE
:I-O Area

y

Branch Control
to A1, A2, B1, <
B2 or Cl

IOCTL LEAVE
Possibly Release
Stacking Area

Random Processing — Two Independent Disk Routines Use Data Obtained by the Main Routine

The Random-Processing Scheduler

Main Routine @ Disk Routine B Disk Routine A

Initialize
I0CTL Open
IOCTL Stack

10CTL
MVRSA

A

10CTL 10CTL
ENTRND ENTRND

Branch Control to GET F'ILEZ Branch Control to GETFILE 1
Az,By,B; or By ¢ {Initate IComplet Aj,BasB,or B initate | Complete
o SEEK | READ e SEEK :READP

|

Branch Control to Branch Control to
Ao/ By, Ay By B, <——| IOCTL FSEGP Ay/B4 Ay By, <] IOCTL FSEQP
or B4 By, or B3

¢

IOCTL CLOSE
Inct
Housekeeping

Branch Control to
Ay:B3,Ay,B), <— IOCTL LEAVE

By or 84
PUT FILE2
End of ! Complete
Prog initiate | WRITE
WRITE Release Hold-
| ing Area
PUT FILE 1
| Complete
Initiate | WRITE)
WRITE | Release Hold-
| ing Area
|
Branch Control to 1OCTL LEAVE

Ay 'Ale] /Bp,Bgor 54 —————————=1 Release
Stacking Area

Figure 4. Random Processing — Two Dependent Disk Routines Use Data Obtained from the Main Routine

14

This section describes in detail the function and use
of the macro-instructions and prr and pa statements
that must be placed in a program making use of the
facilities of the Random-Processing Scheduler.

Macro-Instructions

GET

The programmer uses the GET macro-instruction to
make a disk record available for processing.

Before using this macro-instruction for random
processing, the programmer must store the appropri-
ate address (single-record or full-track) in an eight-
character field within the Scheduler. The low-order
position of this field is represented by the system sym-
bol, /pxa/, as shown in Figure 5.

Number

of Disk

Channel | (ji¢ Track or Record Address

@ or*

)
Figure 5. Location /pxa/ /oA

In either single-record or full-track random proc-
essing, the user must store in /pka/ the channel desig-
nation and the number of the disk module as indi-
cated. The remainder of /pka/ is either the six-charac-
ter record address of the desired record or the track
address.

If the single-record mode is used, the user must
place the four-digit track address (1al) into another
field identified by the system symbol /pks/. (This field
is located within the Scheduler and is a four-character
field immediately to the left of /pka/.) The user must
then place the record address in /DKA/.

In full-track operations /pkA/ must contain the four-
character mal followed by the two-character HA2.
Since, in full-track operations, there is no record ad-
dress, the field /pks/ is not used.

Each time the programmer uses the GET macro-
instruction, the Scheduler, combined with the Basic
1ocs, will develop the coding required to do the fol-
lowing.

1. Check whether another disk operation is using
the disk track specified by the disk address in the
/pKA/ or /pDks/ location.

Macro-Instructions, DTF and DA Statements

2. Assign an available input/output area into which
the disk record is to be read.

3. Assign an access mechanism to read the infor-
mation.

4. Delay processing on this record if the required
disk track is being used by another disk operation.

5. Seck the track specified by the disk address.

6. Read the disk record into the assigned input/
output area.

7. Check for disk read errors.

8. Correct the correctable read errors.

9. Release the input/output area used by a GET
macro-instruction preceding the present GET macro-
instruction. (See the section describing the 10cTL
FSEQP macro-instruction.)

10. Associate disk records with the appropriate seg-
ment of the Transaction Stacking Area.

11. Check whether another disk record is ready for
processing in an input/output area.

12. Give control to the appropriate disk routine if
another disk record is waiting to be processed; or give
control to the main routine if the Scheduler is able to
accept additional requests.

PUT

The programmer may use the purT macro-instruction
to develop the coding required to include processed or
unprocessed records in a disk file.

For the purpose of this discussion, the puT macro-
instructions will be divided into two types: (1) that
used for input files (to return updated records to disk
storage), and (2) that used for output files (to load
information into nonsequential locations in disk stor-
age).

Returning Updated Records to Disk Storage: This
type of pur macro-instruction is used to return up-
dated disk records to the locations in disk storage
from which they were originally obtained. To use this
type of PuT macro-instruction the file must be opened
as a random input file, The macro-instruction is writ-
ten as indicated in Figure 6.

T
L
1
1

BCCOUNTS, o «ossns s s as

o111 PO S S S VU S S S N S

Line Label
3 6
o, b

EperatioLgL
15/18 ! 29 30 35 40

0.2

Figure 6. The rur Macro-Instruction, Type 1

Macro-Instructions, DTF and DA Statements 15

The operand in Figure 6 is thc name of the disk
file into which records are to be returned. The name
must be that used to describe the file in the prr
Header Line.

When using this type of rur macro-instruction, the
programmer must process the disk records in input/
output areas.

Loading Records into Nonsequential Disk-Storage
Locations: This type of PuT macro-instruction is used
to load records into nonsequential locations in disk
storage. To use this type of PuT macro-instruction, the
file must be opened as a random output file. (An
example of this kind of application is the loading of
new-parts records into an existing inventory file.) Be-
fore using this type of PuT macro-instruction, the pro-
grammer must:

1. Place the necessary addressing information in
the locations /pka/ and /pks/. (See Figure 5 and the
discussion of addressing in the description of the ceT
macro-instruction.)

2. Place the information to be written into disk
storage into the output area that is addressed by the
index register specified by the prF INDEX entry of the
file.

This type of PuT macro-instruction is written as
illustrated in Figure 7.

Label Jperuﬁon
1s]i6 ol21 25 30 35

!r 4T _ Pis5BesATS. . e j!
i PR i1 i

Figure 7. The put Macro-Instruction, Type 2

The operand in Figure 7 is the name of the disk
file into which records are to be loaded. The name is
that used to describe the file in the prr Header Line.

Note 1: If an output file is the only random file
opened, this form of the put macro should not be con-
tained in a disk routine.

Note 2: This type of pur macro-instruction (with
an output file named in the operand) cannot be used
to return an updated disk record to the location in
which it was originally contained.

Note 3: This type of pur macro-instruction may
cause the replacement of the entire contents of a disk
track, according to the record format used. The pro-
grammer is cautioned against inadvertently destroying
disk data when using this macro-instruction. (The
data will be written on disk as specified by the format
track; therefore, when writing records that are shorter
than defined by the format track, the remainder of the
record will be padded with blanks.)

16

IOCTL OPEN

This macro-instruction is mandatory for each file. It
directs the Scheduler to establish linkage with the file.
The operands are:

orEN — This operand is the directing operand.

RANDIN (or RAnDouUT) — This operand describes a
random input (or random output) file. Only one of
these operands may be present in each 10CTL OPEN
macro-instruction.

FILENAME — This operand contains the name of the
file to be opened. The name must be the same one used
in the ptr Header Line. There may be one or more
FILENAME operands per TOCTL OPEN macro-instruction;
however, input and output files cannot be mixed.

Figure 8 shows the files named accounts and
CHRGS being opened as random input files.

Figure 8. The 1octL oPEN Macro-Instruction

10CTL CLOSE

This macro-instruction is mandatory for each file. It
directs the Scheduler to remove the named random
file from use by the Scheduler. The closing function
will not take place until the Scheduler has honored
all requests that were pending at the time the cLosk
form of the macro-instruction was encountered. The
operands are:

crLosk — This is the directing operand.

RANDIN (or RaNpout)— This operand describes a
random input (or random output) file. Only one of
these operands may be present.

FILENAME — This operand contains the name of the
file to be closed. The name must be the same one used
in the p1r Header Line. There may be one or more
FILENAME operands per IOCTL CLOSE macro-instruction;
however, input and output files cannot be mixed.

Figure 9 shows the files named nNeEwaccnts and
NVNTRY being closed as random output files.

OPERAND f
3Q

Figure 9. The 10cTL cLosE Macro-Instruction

10CTL STACK

This form of the rocrL macro-instruction is used to
establish linkage between a Transaction Stacking Area
and the Scheduler before the area is used by the pro-
gram. Each Transaction Stacking Area contained
within the program must be linked to the Scheduler
by this macro-instruction. The four operands described
below are required, and must be written in the order
shown in Figure 10. They are:

sTACK — This is the directing operand.

LaBEL — The second operand is the label of a
Transaction Stacking Area defined by the user in a
pa statement. (See the section “pa Entries Needed to
Support the Random-Processing Scheduler.”)

LENGTH — The third operand states the length of a
segment of this Transaction Stacking Area. All seg-
ments of any stacking area must be the same length
and must include a position for a group mark with
worcd mark or a record mark. (See the section “pa
Entries Needed to Support the Random-Processing
Scheduler.”)

mwpEX — This operand specifies the index register
(X1, X2 X12) to be assigned to this Transaction
Stacking Areca. When the Scheduler returns to the
user at Ger+1, the specified index register will con-
tain the address of the current Transaction Stacking
Area. If the 1ocTL STACK macro-instruction appears
several times in a program, the same index register
must be specified each time.

Note: Index registers 13, 14 and 15 must not be
used for this purpose.

The operand in Figure 10 informs the Scheduler
that the Transaction Stacking Area labeled TRAREA
contains segments of 81 positions (80 data positions
and 1 position for a group mark with word mark or
a record mark), and that the user refers to the area
through index register 8.

.....

]

Line Label J?peratizj

s : 15)i6 of21 30 35 40

ot TecTisTACK TRARE g
1

0.2 P P U B PR S R P S S S S S T

Figure 10. The 1ocrti stack Macro-Instruction

IOCTL MVRSA (Move Record to Stacking Area)
All data developed by the main routine and required
by the disk routine(s) must be placed into a Trans-
action Stacking Area. This ensures that the main rou-
tine does not alter or destroy the data before it has
been used by the disk routine(s).

The programmer may use the IOCIL MVRSA macro-
instruction to transfer data developed in the main

routine to a segment of the Transaction Stacking Area
specified by an 1octL sTAck macro-instruction.

The data will be retained in the Transaction Stack-
ing Area until all disk operations using the data have
been completed. If the Stacking Area is full, the
Scheduler will wait until processing in a disk routine
makes a Stacking Area segment available. The 10Cc1L
mvesa form of the macro-instruction must be given
in the main routine before control is branched to the
disk routine. Sce Figure 11. Therc are three formats
of this macro-instruction.

Main Routine

Initialize
Incl

IOCTL OPEN
1OCTL STACK

GET
Next Trans-
action Record

IOCTL MVSRA
Disk Routine
Branch to I0CTL
Disk Routine > ENTRND
Figure 11. Use of the 1octL MvRsA Macro-Instruction

FORMAT A

Format A has two operands and is written as indicated
in Figure 12. The second operand, which may be
indexed, identifies the high-order position of the area
from which information is to be moved to the Trans-
action Stacking Area. Each area from which informa-
tion is to be removed must have a record mark or a

Line Label fperaﬁzL

3 ___5i6 1s)ie 021 25 30 35 80
o YALLABEL TOCTL YLSALINFOLABEL
0.2 PRI S T PR S T S S S T S PR T SR R SR

Figure 12. The 1octL MvRsa Macro-Instruction, Format A

Macro-Instructions, DTF and DA Statements 17

group mark with word mark immediately to the right
of the low-order position. See Figure 13.

This format of the 1ocrr MvRsa macro-instruction
will cause the Scheduler to:

1. select an available segment of the Transaction
Stacking Area specified by an 1ocTL STACK macro-in-
struction,

2. insert the address of the selected segment into
the index register specified by the 1ocTL sTACK macro-
instruction, and

3. move the information and the word marks con-
tained in the area specified by the operand into the
segment of the Transaction Stacking Area selected by
the Scheduler.

1
[} i
INFOLABEL INFOLABEL +80
WM
GM
[}
INFOLABEL INFOLABEL +80
Figure 13. The 80-Character Area Referred to by the Second
Operand of the 10cTL MveRsa Macro-Instruction
FORMAT B

Format B of the 1ocTL Mvmsa macro-instruction has
one operand and is written as indicated in Figure 14.

Label

0.1, AYA/wiEL. NTocrdnilsa

0.2

vl

Figure 14. The 1octL MvRsa Macro-Instruction, Format B

This format of the 1ocTL MVRsA macro-instruction
does not move the transaction record, but only selects
a Transaction Stacking Area segment. The user is
responsible for moving the transaction record; there-
fore, the user is afforded the flexibility of moving only
the portion of the transaction record that contains
significant information. The user may code the B-
address of the Move instruction relative to zero and
index with the index register specified by the 1octL
STACK macro-instruction.

This format of the 10cTL MVRsA macro-instruction
will direct the Scheduler to:

1. select an available segment of the Transaction
Stacking Area specified by the 1octL sTAck macro-
instruction, and

2. insert the address of the selected section of the
Transaction Stacking Area into the index register
specified by the 1octL sTack macro-instruction.

18

FORMAT C

Format C of the 1ocTL MVBsA macro-instruction has
three operands. It is written as indicated in Figure 15.

Figure 15. The roctL mvrsa Macro-Instruction, Format C

This form of the roctL MVRsA macro-instruction
directs the storing of data into one of several Trans-
action Stacking Areas. In this way a program may con-
tain more than one Transaction Stacking Area that
must be defined by an 10cTL sTACK macro-instruction.
The use of these Transaction Stacking Areas is depend-
ent upon the operands of this format of the 1ocTL
MVRSA macro-instruction.

The first operand is the directing operand.

The sccond operand identifies the high-order posi-
tion of the area from which information is to be
moved to the Transaction Stacking Area. This operand
may be indexed.

The third operand identifies the Transaction Stack-
ing Area into which the transaction record is to be
stored. This operand is the identifying label of the
Transaction Stacking Area. (See the section “pa
Entries Needed to Support the Random-Processing
Scheduler.”)

This format of the 1ocTL MVRsa macro-instruction
will cause the Scheduler to:

1. select an available segment of the Transaction
Stacking Area designated by the third operand (TRAREA)
of this macro-instruction and defined by an 10cTL
STACK macro-instruction,

2. insert the address of the selected segment into
the index register specified by the rocrL sTack macro-
instruction, and :

3. move the information and the word marks from
the area specified by the second operand (INFOLABEL)
to the segment of the Transaction Stacking Area speci-
fied by the Scheduler.

All Transaction Stacking Areas must be initiated
with an 1OCTL STACK macro-instruction, and all tocrtL
STACK macro-instructions must refer to the same index
register.

10CTL DEFSA — Define Stacking Area

This form of the 10cTL macro-instruction is very closely
related to the 1octr MvRsa macro-instruction (Figure
16). This macro-instruction will allow the Scheduler
to treat the address of any area in core storage as a
segment of a Transaction Stacking Area. Whereas the

IOCTL MVRSA macro-instruction is used to pick an avail-
able segment from a predefined Transaction Stacking
Area, the 10CTL DEFSA macro-instruction is used to
handle the area addressed by the index register speci-
fied in the second operand as a temporary Transaction
Stacking Area segment. Even though the function of

Main Routine

Initialize

IOCTL OPEN

Disk Routine

!

B

Area Availability
Check, See Figure
17 for Detail

!

GET
Transaction
Record

!

Place Address

in Index Register
Specified and
Protect Area

'

IOCTL DEFSA

!

Branch to
Disk
Routing

1OCTL CLOSE
Housekeeping

Figure 16. The 10cTL DEFSA Macro-Instruction Used

End
of
Pgm

Control
to Aor B

IOCTL ENTRND

Develop
Disk
Address

A

GET FILE1
Start | Complete!
SEEK | READ

Update
Disk

Record

PUT
Report

PUT
FILE1

\

the 1ocTL MVRSA macro-instruction is closely approxi-
mated, the data in the temporary area is not moved,
and may not be altered or destroyed until control is
given to the routine labeled by the third operand.
The operands are:

DEFSA — This is the directing operand.

User Release Routine

Store

B

IOCTL LEAVE
Release FILE1
Area

Register

y

Transaction
Data Area

Return

! |
l Release |

v

Control
to AorB

in a Random Processing Scheme

Macro-Instructions, DTF and DA Statements 19

pEX — The index register specified should contain
an address (of an area) which will be associated with
a disk record as transaction data. The Scheduler saves
the contents of the index register and restores the
register when the requested disk record is available.
The user supplies this address.

LABEL — This operand must contain the label of the
user-written closed subroutine to which the Scheduler
will give control when the temporary Stacking Area
is ready to be released. At the time this exit is taken,
the Scheduler will place into the index register speci-
fied in the second operand the address of the area
which is no longer required. The closed subroutine
must not contain any Scheduler macro-instructions or
any macro-instructions that may require the Scheduler.

The user-written routine must first store the re-entry
point to the Scheduler (thus, a closed subroutine),
perform whatever function is necessary to properly
release the temporary area, and return to the entry
point of the Scheduler.

SPECIAL CONSIDERATIONS

The Scheduler does not protect areas which are
stacked by this macro-instruction. If this area is an
input/output area, the associated 1orw (Input/Output
Request Word) should be removed from the file be-
fore the 1ocTL DEFsA macro-instruction is given. The
1o”RwW may be returned to the file by the user’s closed
subroutine.

Figure 17 illustrates a suggested method for han-
dling a possible situation in which no areas are free
to be reassigned by the pEFsa macro-instruction: Test
for area availability. If no area is free, branch to a
dummy disk routine which contains only the 10CTL
ENTRND and IOCTL LEAVE macro-instructions. Upon re-
turning to the main routine, repeat the test for area
availability.

Main Routine

Area
. 10CTL
Available ENTRND
I0CTL
LEAVE

Area
Available

Figure 17. Suggested Wait Routine

20

If indexing is used to refer to fields within a tem-
porary Stacking Area, the index register used must
be the same one specified in the 1ocTL DEFsA macro-
instruction.

The 10CcTL DEFSA macro-instruction will:

1. direct that the area addressed by the index reg-
ister be treated as a Transaction Stacking Area asso-
ciated with all subsequent random requests until
another 10CTL DEFSA Or IOCTL MVRSA macro-instruction
is encountered, .

2. retain the address of the closed subroutine to be
cntered when the transaction area is no longer re-
quired, and

3. restore to the specified index register the data
placed there by the user (prior to issuing the iocrL
DEFSA macro-instruction), and enter the release sub-
routine when the transaction area is ready to be re-
leased.

The macro-instruction in Figure 18 will cause the
Scheduler to treat the area addressed by the contents
of index register 2 as a segment of the Transaction
Stacking Area. Control will be given to the routine
labeled TranspONE, when the area is no longer re-
quired.

Norte 1: This macro-instruction must always be given
in the main line of the program.

Note 2: The functions performed by the Scheduler
for the use and release of temporary Stacking Areas are
based on the assumption that at least two different
areas will be used by pEFsa macro-instructions.

Figure 18. The 1ocTL DEFsA Macro-Instruction

IOCTL ENTRND

The 10cTL ENTRND macro-instruction must be the first
instruction used in any disk routine of a program
using the Scheduler. This macro-instruction develops
the coding required to store the return address of the
main routine. This is the address to which control will
be returned by the Scheduler to continue processing
the main routine. See Figure 19. The user may refer
to the label of this macro-instruction (Figure 20) in
branching to his disk routine.

The coding provided by the 1ocTL ENTRND macro-
instruction stores the return address of the main rou-
tine. This permits resumption of processing in the
main routine as soon as the next disk operation has
been initiated.

Main Reutine Disk Routine

Y

Branch to 10CTL
Disk Routine > ENTRND
Y
D)
Develop Disk
Address
Branch GET
Control Initiate ! Complete
to AorB SEEK : READ
)
Figure 19, Use of the 1ocTL ENTRND Macro-Instruction
Line Label fperaﬁon g
H sls 15)16 ol21 25 30 35 a0
o WAYLABEL |TECTLENTRND . .\ o '\ o\ ... |
I IR A R I L
Figure 20. The 1ocTL ENTRND Macro-Instruction
10CTL FSEQP

The programmer may use the 10CTL FSEQP macro-
instruction to ensure that disk records obtained by the
disk routine(s) will be processed and returned to disk
storage in the same order in which the corresponding
transaction records were obtained by the main rou-
tine (Figure 21).

For example: Assume that Module 1 receives a
request for information with an access time of 100
ms, and that 10 ms later Module 2 receives a request

10CTL
ENTRND

Y

A

Develop
Disk
Address

Branch GET
Control Initiate :Complete
to AorB SEEK ' READ
i
Branch IOCTL FSEQP
Control ~ ~%———
to AorB
Update Disk

Record

Figure 21. Use of the 1ocTL FsEQp Macro-Instruction

with an access time of 50 ms. In this case, the access
mechanism of Module 2 will obtain the specified in-
formation before the access mechanism of Module 1.

If the disk routine does not use the 10cTL FSEQP
macro-instruction, the information obtained by the
access mechanism of Module 2 will be processed and
the result returned to disk storage before the informa-
tion sought by the access mechanism of Module 1 can
be read. In this case, the updated information will not
be returned to disk storage in the order in which the
corresponding transaction records were read by the
main routine.

If the disk routine in the example uses the rocrL
FSEQP macro-instruction, the information obtained by
the access mechanism of Module 2 will not be proc-
essed until the information obtained by the access
mechanism of Module 1 has been processed.

The 10cTL FSEQP macro-instruction has one operand,
and is written as indicated in Figure 22. It may be
used anywhere in the program.

Line Label Eperaﬁﬁ

3 5|6 . 1516 0J21 25 30 3% 40

o MNSLABEL, \TOCTLFSEQP. .\ .\ s cais via
|

0.2 PR TR S B R P P S S S N U W S S N S S SR BT 8

Figure 22. The 1ocTL FsEQP Macro-Instruction

Each time the programmer inserts an IOCTL FSEQP
macro-instruction in his program, the Scheduler will
develop the coding required to:

1. delay the processing of the disk record until all
previously requested records have been processed,

2. branch control to the appropriate disk routine if
another disk record is waiting to be processed, or

3. branch control to the main routine if the Sched-
uler is able to accept additional requests, or

4. branch control to a waiting loop if a disk record
cannot be processed and if the Scheduler cannot ac-
cept additional random requests (Figure 23).

IOCTL FSEQP

\
ofsk
Continue Yes Reérd Ready for
: < .
Dnsk. Updating |nput/)
Routine Output Area
No

lsa
Branch to Yes _ Free Segment of__ No
(A) in Main T

ransaction Stacking

Routine Area Qv/milable?

Figure 23. Control Functions of the 1ocTL rsEQp Macro-In-
struction

Macro-Instructions, DTF and DA Statements 21

If the 10CTL FSEQP macro-instruction is given in the
main routine, processing in the main routine will not
continue until all random disk storage data has been
processed.

ADDITIONAL FUNCTIONS OF THE IOCTL FSEQP MACRO-
INSTRUCTION

The rocTL FSEQP macro-instruction has two important
additional functions. It can be used to prevent:

1. the release of an input/output area by the sec-
ond of two successive GET macro-instructions, for dif-
ferent files, or

2. the release of an input/output area by an 1ocTL
LEAVE macro-instruction.

RETENTION OF DISK DATA AFTER SECOND GET MACRO-
INSTRUCTION

Each time two disk GET macro-instructions follow one
another in a program, the second GET macro-instruc-
tion causes the release of the information obtained by
the first cer macro-instruction. Thus, the coding se-
quence

GET DISKFILEL

SET DISKFILEZ

PROCESS

PUT DISKFILEZ
will cause the release of the information obtained by
the first GET macro-instruction, and only the informa-
tion obtained by the second cET macro-instruction
can be returned to disk storage by a pur macro-in-
struction. The 1ocTL FSEQP macro-instruction may be
used to prevent the first GET macro-instruction, as indi-
cated by the following coding sequence:

GET DISKFILEL
IOCTL FSEQP
GET DISKFILE2
PROCESS

PUT DISKFILE2
PUT DISKFILEL

In this case, the 10cTL FSEQP macro-instruction pre-
vents the release of the information obtained by the
first GET macro-instruction.

The order of the rur macro-instructions should be
given as indicated, since the access mechanism is al-
ready positioned at the track that contained the data
from DISKFILE2.

The 1ocTL FSEQP macro-instruction cannot be used
to hold information obtained by the first of two GET
macro-instructions involving the same file. Thus, in
the coding sequence

GET DISKFILEl
IOCTL FSEQP
GET DISKFILE]
PROCESS

22

the 10CTL FSEQP macro-instruction cannot prevent the
release of the information obtained by the first GeT
macro-instruction.

RETENTION OF DISK DATA AFIER THE IOCIL LEAVE
MACRO-INSTRUCTION

The 10cTL LEAVE macro-instruction, described next,
releases the information obtained by the cer macro-
instruction(s) in the disk routine.
Thus the coding sequence

GET DISKFILE]

PROCESS

IOCTL LEAVE
will cause the release of the information obtained by
the GET macro-instruction. The 10CTL FSEQP macro-
instruction may be used to prevent the release of disk-
record information by the 1octL LEAVE macro-instruc-
tion. Thus, in the coding sequence

GET DISKFILE]

I0CTL FSEQP

IOCTL LEAVE
the information obtained by the GET macro-instruc-
tion will be retained in an input/output area for
processing by a subsequent disk routine (Figure 4).

Note 1: An 10CTL FSEQP macro-instruction may re-

quire the Scheduler to reread a disk record; there-
fore, the contents of an input/output area must not
be changed between the GET macro-instruction and the
IOCTL FSEQP macro-instruction. The coding sequence:

GET DISKFILE]

UPDATE

IOCTL FSEQP
might result in rereading a disk record and overlaying
the previous updating of the same record.

IOCTL LEAVE — Leave Disk Routine

The 1ocTL LEAVE macro-instruction (Figure 24) must
be the last instruction in a disk routine of a program
using the Scheduler. Each time processing of a set of
transaction data has been completed by the disk rou-
tine, the input/output areas used by the data must
be released, and control must be returned to another
disk routine or to the main routine. This macro-
instruction directs the Scheduler to develop all the
coding required to handle these functions (Figure 25).

Line Label ibperoti?—\“ 2
3 5|6 : 15)16 0121 $5 30 35 4
LIL NP PP

ool i lrecs EANE. . |

0.2 PRI S N P

PP SR S S S WA W1

Tigure 24. The 10cTL LEAVE Macro-Instruction

Disk Routine

Update Disk
Record

PUT
Initiate |Complete

WRITE | WRITE
]
]

Branch Control IOCTL LEAVE

to the Main <+——————— Release Input/
Line or Another Output Area
Disk Routine

Figure 25, Use of the 1ocTt. LEAVE Macro-Instruction

What This Macro-Instruction Will Do: Each time
the programmer uses the 10CTL LEAVE macro-instruc-
tion, the Scheduler will develop the coding required
to:

1. check whether the data in the current segment
of the Transaction Stacking Area is required by an-
other disk routine, if any,

2. free the segment of the Transaction Stacking
Area used by a completely processed transaction rec-
ord,

3. send control to the subroutine defined in an
IOCTL DEFSA macro-instruction, if this macro-instruc-
tion was used to define the transaction record to be
released,

4. release the input/output area used by the GET
macro-instruction immediately preceding the present
IOCTL LEAVE macro-instruction (see the section describ-
ing the 10CTL FSEQP macro-instruction),

5. check whether another disk record is ready for
processing in an input/output area,

6. branch control to the appropriate disk routine
if another disk record is waiting to be processed,

7. check whether the Scheduler is saturated with
requests, and

8. return control to the main routine if the Sched-
uler is not saturated with requests.

The DTF (Define The File) Statement

Purpose of the DTF Statement

The programmer who wishes to use the Random-
Processing Scheduler must write a pTF (Define the
File) statement for each disk file used by his program.

This information consists of up to twelve entries. Each
p1F statement describes the characteristics of the file
for which it was written and indicates the methods to
be used by the Scheduler in handling the file. Using
the information supplied in the prF statement, the
Autocoder processor develops the File Table required
for the proper handling of each file.

General Format of the DTF Statement

The first entry of a prr statement is the prr Header
Line. It consists of the code, pF, in the operation field
followed by the name of the file in the operand field.
All subsequent entries for that prr statement have
blank operation fields with the entry name placed in
the label field. The entries following the header line
may be listed in any order.

prF entries without operands are not permitted.

All operands of the prF entries may use address
modification, where applicable, provided the operand
consists of no more than 13 characters. Thus, LABEL+110
is a valid operand if LABEL consists of no more than
nine characters. All symbolic operands of pTF entries,
except those of input/output areas, may be indexed.
(The number of characters used to designate the
index register must be included in the count of 13.)

The DTF Entries

The following Scheduler ptF entries are described in
the publication, IBM 1410/7010 Operating System;
Basic Input/Output Control System, Form C28-0322.
They may be used with the Scheduler as described in
that publication, with two exceptions:
1. The vpEX DTF entry is required for random files.
2. The store operand of the ERRCHECK DTF entry
must not be used when defining random files.
ERRCHECK
FILELIST
INDEX
TOAREAS
MODE
ORDER
The following entries have functions with the
Scheduler other than those explained in the Basic
1ocs publication. These other functions are described
herein.
SYMUNIT
ERRADDR
ERROPTNS
FILEFORM
The following prr entry is used only for the Ran-
dom-Processing Scheduler:
ACTIVITY

Macro-Instructions, DTF and DA Statements 23

ACTIVITY

The acrivity entry is ordinarily used only with input
files. (The only time the Acriviry entry is used in
defining an output file is when that file will be refer-
enced by a disk routine and will be the only type of
random file currently open.)

The activiTy entry has a single numeric operand,
which the Scheduler uses to tailor the size of the
scheduling routine to the user’s requirements, so that
the user will have maximum scheduling efficiency in
a minimum of core storage.

The value of the operand may be calculated by de-
termining the processing time involved in executing
the main routine and the disk routine through to the
point where the first GeET macro-instruction is encoun-
tered in the disk routine, and dividing this value into
the average Seek time for the file concerned. The
result of this division will be a value that can be used
as the acrivity operand for the file. This value repre-
sents the average number of requests for disk records
that the disk routine may issue before data is made
available to it from disk storage for processing.

A number approximating the optimum value for the
Actvity operand may be determined by adding one
(1) to the number of input/output areas associated
with the file, i.e., if two input/output areas are as-
signed to the file, the sctvity operand would be
three (3).

In choosing a value for the acrivity operand, the
following points should be considered:

1. The sum of the activity operands for all files
represents the maximum number of requests for disk
records that the Scheduler will be able to accept
before entering a waiting loop.

2. The sum of the activity operands for all random
input files opened must be at least 1. However, if
the total activity defined for the Scheduler is only 1,
there can be no overlap of input/output with process-
ing.

3. When a random input file is only referred to
following an 10CTL FSEQP macro-instruction, it does not
require an ACTIVITY entry.

4. When input/output requests for two or more
files are mutually exclusive, activity need only be
specified for one of the files.

The ActiviTY entry is coded as shown in Figure 26.

Label

Line ptmniﬂ-z
3 56 15)i8 olz1
0.1,

cr_n‘JJerH B

P

0.2

Figure 26. The activity pTr Entry

24

ERRADDR

The ERRADDR DTF entry is used in the same manner
as described in the publication IBM 1410/7010 Basic
Input/Output Control System. When wusing the
ERRADDR DTF entry for random processing, the speci-
fied user-written routine must determine which option
the Scheduler is to take in handling the error situation.

The user determines the nature of the error by ana-
lyzing the bit configuration in the error summary
position of the 1orw (184-X15), and specifies one of
the following options to be taken in handling the error
(Figure 27):

1. BXPA /RNR/ —repeat the GET or PuUT macro-in-
struction for that record.

2. BXxrA /RNP/ — process the record anyway.

3. BXPA /RNB/ — bypass the rest of the disk routine
(cannot be used with dependent disk routines).

User Written
Error Routine

Disk Routine

Analyze Error
Position of IORW

IOCTL ENTRND

romT® GET
r——=d
1
i
BXPA/RNR/ -—1
[» Process
- PUT
1
1
BXPA/RNP/ -~
r =7~ I0CTL LEAVE
r=-—-
i
> BXPA/RNB/ -~

Figure 27. Directions to the Random-Processing Scheduler for
Handling Error Situations, with Eventual Returns

Nore: If it is desired to retry the GEr with a new
disk address, the user must place the new address into
the two eight-position areas preceding the input/out-
put area associated with the file. (See the “pa State-
ment” section for details of the input/output area.)
The address of the label will be in the 10rRw with its
low-order position at 14+X15. Figure 28 illustrates
placement of addresses.

Label
HA2
Vs
X|X| |x i X|X[X|X|X|X || 1/O Area /H ¥|
Track Record
Address Address

Figure 28. Address Placement

ERROPTNS

This entry is optional. It is used when the user desires
to bypass an independent disk routine if the data
record it is requesting cannot be obtained without
uncorrectable errors. If the user desires that the disk
routine that requested the record be bypassed, then
an ERROPTNS entry with the Bypass operand must be
included in the prr statement for the file concerned
(Figure 29). If an ERROPTNS entry is not included, the
record with the uncorrectable error will be processed.
This entry will not handle “no-record-found” condi-
tions.

Note: This prF entry must not be included for files
that access records for dependent disk routines. If
the entry were used, a dependent disk routine might
be bypassed because of an uncorrectable error, but
the Scheduler would not bypass the additional disk
routines that follow.

Label

o

P JL)

Line

3 56 :

0.1, |ELROPTNS, .| .. .
i

02 N

‘Epercfizl
15/i6 of21 25 30 35
BY.PASS. . .

JAAILAIIIAJII!

Figure 29. The ernropTNs DTF Entry

FILEFORM
This entry is required. The operand is fixed and must
be ranpoM, as shown in Figure 30.

!Linesa Label
OJ‘AE._‘ELL EEQ:KM
[+] P

2

QEPG"GH:Q\LI 25 0 -ii
ANDBM X

oo b PRI T llAAAInIAAAlIlAIIIAls

Figure 30. The riLerorM DTF Entry

SYMUNIT (Symbolic Unit)

This entry is required. It differs from the symunIT
entry used in defining a file to the Basic 10cs, in that
only one operand is used. This operand must be
“1301.” See Figure 31.

i Label rat'd

!Lme EEzQ ' L 39 3%
o,t, ISYMUNIIT | R

PP I N

Figure 31. The symunit Entry

DA (Define Area) Statements Needed to
Support the Random-Processing Scheduler

Some areas required by the Random-Processing Sched-
uler must be reserved by the programmer by means of
an appropriate pa statement. (A discussion of pa state-
ments may be found in the Autocoder publication.)
All such areas must be terminated by a group mark
with word mark immediately to the right of the low-
order position of the area.

The DA Statement for Input/Output Areas

Each program utilizing the Random-Processing Sched-
uler requires at least one input/output area for each
disk file used by the program. The input/output areas
are used for storing and processing information ob-
tained from disk storage. Each input/output area must
be reserved by the programmer by an appropriate pa
statement. They need not be contiguous in core storage.

As indicated in Figure 32, each input/output area
must be preceded by two nine-position areas required
by the Scheduler.

Input/Output Area i{

<)
<

T

Figure 32.

T

Format of an Input/Output Arca

Figure 33 shows an example of the type of pa state-
ment that must be written for an input/output area
that will contain a 100-character record. LABEL must
be the name assigned to this area in the DTF I0AREAS
entry. Indexing and referencing to zero may be speci-
fied in the pa entry. The index register specified must
be the one specified in the INDEX entry of the DTF state-
ment for the file with which the input/output area
is associated.

Lobel rqﬁ:rpi
! 26 30 28
N T YN - 7 N

I
FEN . R A
LABEL, |, . oA, IXBgGe s s s
I
(-3¢ 2 NN Ig&..ix.].g.a.,.ca.‘“..‘_,_L;“u_L
I
1 L A2 2

LoaA

Y S S ST S NP VN S S W W S SR

Figure 33. pa Statement Defining an Input/Output Area

Macro-Instructions, DTF and DA Statements 25

The DA Statement for the Transaction Stacking Area

The pa statement for a Transaction Stacking Area
is of the form shown in Figure 34. The pcw entry is
required by the Scheduler and must be coded as
shown. The label of the pcw entry is the label used in
the operands of the roctr sTACK and ICCTL MVESA
macro-instructions.

Line Label iEperaﬂﬁz (
3 sls 15|16 | 25 30 35 40
o IANY.LAREL, . [Dew . 00000, ¢ o oot
o |l (DAL NXMG e
o3 | v} R I A

[Migure 34. Coding a Transaction Stacking Area

The va entry defines the Transaction Stacking Area.

N indicates the number of identical segments to
be reserved.

M indicates the number of positions to be re-
served for each segment. (This must include
a position in each segment for a group mark
with word mark or for a record mark.)

G specifies that a group mark with word mark
is to be included at the end of the entire area
reserved by this pa.

To simplify the problem of referencing fields within
segments of the Stacking Area, the pa entry may

26

specify indexing and referencing to zero. Together,
these two entries enable the programmer to refer to
the fields in a segment by name (label).

If the index register specified is the same as the
index register defined by the 10CTL sTACK macro-in-
struction for this Stacking Area, it will be set up and
maintained by the Scheduler.

The number of segments, N, in the Transaction
Stacking Area may be estimated from the following
formula:

N:E-{—].,

where:

A =The sum of the operands of the AcTiviTYy param-
cters for all files contained within the disk routines
for which the Transaction Stacking Area applies.

B = The number of disk routines for which this Trans-
action Stacking Area applies. Normally, any addi-
tional segments will waste core storage.

If variable-length transaction records are to be
moved into the same Transaction Stacking Area, each
segment must be large enough to hold the longest
record.

Word marks may be specified for segment subfields
at the user’s discretion, e.g., if the programmer desires
to move data to the Transaction Stacking Area. (See
Format B of the 10cTi. MvRsA macro-instruction.)

Input/ Output Request Word for Random Processing

The Input/Output Request Words needed by the
Scheduler are created automatically for the input/
output areas defined in the prF 10aREAS entry. If addi-
tional input/output areas are desired, the programmer
must construct an 10rRw, define the additional input/
output area and use the label of the first additional
10RwW he constructs as the operand in the FILELIST DTF
entry for the file.

The 1orw for the Random-Processing Scheduler is
slightly different from that for the Basic 1ocs. There
are 40 positions in each 10rw and these are grouped
into six fields. Each field is described briefly. Figure
35 illustrates the coding,

Line Label &perariﬁz (
3 15)i6] 25 30 35 490
o JALPHA | . . |pew 5 ..., \
0.2 I Dew ., *ACCOUNTS + v ooty)
03 . i Mu, 1,.P s

0.4 l L {DCW, \% wv!‘_w.AgI_L_l_.L_L_I_I__L_J_.
o8, | i lpew %S
06 | ..., i, |pew |[+BETA A A
'R I P Y .

Figure 35. Example: Coding of an Input/Output Request Word

Field 1 is a five-position field. It is not used by the
Scheduler and may be either zeros or blanks. The low-
order position of this field is the reference address
that will be used in handling this 10rw.

Field 2 is a five-position field. It contains the address
of the List Origin of the File Table for that particular
file.

Field 3 is a ten-position field. It will be the appro-
priate disk instruction that will be executed.

Field 4 is a ten-position field. It is a conglomerate
field and the positions are described as follows:

Position 1

is always a blank character with a word mark.
Position 2
is always a blank character.

Position 3
is an error indicator and is coded as a blank.
When the Scheduler gives control to a user-writ-
ten error routine, this position will contain a bit
configuration corresponding to the error condition.
(See the discussion on the ERRADDR DTF entry in
this publication.)
Position 4
is either a word separator character, if wrong-
length-record checking is not desired for this file,
or a group mark, if wrong-length-record checking
is desired for this file. There must not be a word
mark in this position.
Position 5
is always a V.,

Position 6
is always the letter O (11-6 punch).

Position 7
is a W, if the ERRADDR DTF entry is not being used
for this file, or an O (11-8), if the ERRADDR DTF
entry is being used for this file.

Position §

is always a V.
Position 9
is always a V.
Position 10
is a V, if write disk check is not desired for this
file, or a W, if write disk check is desired.

Field 5 is a five-position field and is used by the
Scheduler.

Field 6 is a five-position field and is the permanent
link field. For random processing, it functions just as
Field 1 functions for the Basic 10cs. That is, it must
contain either the address of the low-order position
of Field 1 in the next 10rRw, or zeros if this is the last
IORW.

The input/output area to accompany the user-con-
structed 10rRW is defined as shown in the preceding
section. The label of the input/output area must be
used as the B-address of the instruction coded in Field
3 of the 10RwW.

Input-Output Request Word for Random Processing 27

Index

Define Area Statements 25
for input/output areas 25
for the Transaction Stacking Area 26

Disk routines
dependent12
independent 12
separation of from main routines 10, 6

Define the File Statement 23, 9
format of 23
list of DTF entries 23
DTF entries
ACTIVITY o o oo 24
ERBRADDR . o o oot et 24
ERROPTNS . . o oo oot 25
FILE FORM . . o oot oot e 25
SYMUNIT .« oo ot e 25

GET macro-instruction 15, 8

I0CTL CLOSE macro-instruction 16, 9

10CTL DEFSA macro-instruction 18, 9

1OCTL ENTRND macro-instruction 20, 9

IOCTL FSEQP macro-instruction 21, 9

I0CTL LEAVE macro-instruction 22, 9

I0CTL MVRSA macro-instruction, 17, 9
format A ... 17

28

format B 18
format C 18
I0CTL OPEN macro-instruction 16, 9
IOCTL STACK macro-instruction 17, 9
Input/Output Request Word 27
coding of 27
Machine Requirements 5
Macro-instructions for the Scheduler
definition of 8-9
fllustration 8
Operating System Requirements 5
Programming Considerations 12
PUT macro-instruction 15, 8
Random Processing 6
basic principles 6
Scheduler
capabilities 7
principles of the 11
llustration 10
purpose of the 5
relationship to basic 1ocs 7
relationship to operating system 7

Separation of the disk routine from the main routine . ..

Reader's Comments

IBM 1410/7010 Operating System (1410-PR-155)
Random-Processing Scheduler-1410-10-967

Form C28-0323-1

From

Name

Address

Your comments regarding the completeness, clarity, and accuracy of this publication
will help us improve future editions, Please check the appropriate items below , add

your comments, and mail,

YES NO
Does this publication meet the needs of you and your staff? - —_—
Is this publication clearly written?

Is the material properly arranged?
If the answer to any of these questions is "NO, " be
sure to elaborate.

How can we improve this publication? Please answer below.

D Suggested Addition (Page , Timing Chart, Drawing, Procedure, etc.)

D Suggested Deletion (Page)

D Error (Page)

COMMENTS:

No Postage Necessary if Mailed in U.S. A,

STAPLE STAPLE

FOLD FOoLD

- e e e MEAED G Gee Gmm G e GG GEED G SEe G NS S D GHED G S SN e S g G- G— S S——— — . G G — —— —

FIRST CLASS
PERMIT NO, 81

POUGHKEEPSIE, N, Y,
]
BUSINESS REPLY MAIL —
NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A,
]
R
POSTAGE WILL BE PAID BY SE———
IBM CORPORATION —
P.O. BOX 390 S——
]
POUGHKEEPSIE, N.Y. —
]
|
ATTN : PROGRAMMING SYSTEMS PUBLICATIONS —
DEPARTMENT D9l —
|
|
T ae

STAPLE STAPLE

CUT ALONG LINE

C€28-0323-1

TBM

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

V'S’ ul pajuild

L-€2€0-82D0

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	replyA
	replyB
	xBack

