s}

File No. 1410/7010-22
Form C28-0326-2

Systems Reference Library

IBM 1410/7010 Operating System (1410-PR-155)
Autocoder-1410-AU-968

This publication is a reference text for personnel engaged in writ-
ing programs in the Autocoder language for use within the frame-

~work of the 1410/7010 Operating System. The Autocoder language

is composed primarily of symbolic one-for-one source statements.
Its associated processor (Program Number 1410-AU-968) is a
symbolic assembly program with macro-generation facilities.

Minor Revision (November 1964)

This publication is a minor revision of, and' makes obsolete,
the publication IBM 1410/7010 Operating System; Autocoder,
Form C28-0326-1, with its associated Technical Newsletter,
N28-1128. Minor changes to the text have been indicated by a
vertical line to the left of the change; revised illustrations are
denoted by the symbol @ to the left of their figure captions.

Copies of this and other 18M publications can be obtained through 18M Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Department 637, Neighborhood Road, Kingston, New York 12401

Introduction 5
Purpose of this Publication. 5
Purpose of the Language and Processor. 5
The Autocoder Language. 5
The Autocoder Processor...................... 5
Prerequisites 5
Minimum Machine Requirements. 6
Basic Concepts and Functions 7
Autocoder Statements 7
Principal Elements of Autocoder Statéments........ 7
Y T 7
Operation Code 7
Operand 7
Relocation 8
Upward Relocation 8
Downward Relocation 8
~No Relocation 8
Definition of common 8
Processing Options 9
Autocoder Multiple Compilation. 9
Terminating the Object Program. I 9
Assembly Listing 10
Replacement Codes 11
Coding Sheet 12
Identification 12
Page Number and Line Number... 12
Label 12
Operation Code 12
Operand 12
Types of Operand Entries. 14
Basic Addresses 14
Symbolic 14
Asterisk (%) 14
Actual 15
Address Adjustment 15
The Form *+X00. 16
Multiple Adjustment Factors......... 16
Indexing 16
Addressing an Index Register. 16
Indexing an Address............ 16
Indexing with Address Adjustment. 17
Literals 17
Numeric Literal 17
Alphameric Literal 18
Area Defining Literal 18
Address Constant Literal. 18
Linkage Symbols 19
System Symbols 20
Miscellaneous. 20
Operation Modifiers (d-Characters)......... 20
Blank Operand 20
Zero asa Basic Address. 20
Special Operand Elements. 20

Contents

Avutocoder Operation Codes. 21
Imperative Operation Codes........... 21
Symbolic Machine Instructions........ 21
Special Imperative Statements. 21
NopwMm — No Operation; Word Mark. 21
Nop — No Operation 21
Declarative Operation Codes........... 23
pA—Define Area 23
pa Statement 23
Da Subentries 23
pa Statement Parameters 24
Sample Problem 25
Review 25
pav — Define Area in common. 26
Assignment of Data Areas in coMMoON. 26
Use of Labels Referencing comMon. 27
Rsv — Reserve Assignment in common. 27
pcw - Define Constant with Word Mark. 27
Numeric Constants 28
Alphameric Constants 28
Blank Constants 29
Address Constants 29
Signed Address Constants. 29
Implied pcw Operation Codes. 29
p¢ — Defined Constant (no word mark)........ ..., 30
ps ~ Define Symbol 30
EQUu—Equate, 30
Actual or Symbolic Address. 30
Adjusted or Modified Address........... 30
Index Register 31
Asterisk 31
Linkage Loader Operation Codes................. 32
mirLE—-Title 32
Entries 32
Format Considerations 32
BASE1 —Base Address, 33
Actual 33
Symbolic 33
Asterisk Plus X00 (*+X00) 33
BASE2 — Base Address (common Data Area) 33
CALL — Subprogram Call 33
DCWF — Subprogram Address Constant. 33
pcws — Subprogram Branch Instruction............ 34
DEFIN — Definition 34
PRTCT — Protect 34
Control Operation Codes. 35
Assembly Control Statements. 35
HEADR — Header Line 35
RESEQ — Resequence, 35
psT — Print Symbol Table (Cross Reference Listing) 35
Eject—Eject 36
Subprogram Control Statements. 36
OorRG—Origin 36
LTORG — Literal Origin 38
END — End Subprogram and Assembly. 38

sPEND — End Subprogram 38

The MacroSystem 40
Definition of Terms. 40
Macro Operations c...... 40
Pseudo-Macro Imstructions 44
Permanent and Temporary Switches. 44
MATH — For Solving Algebraic Expressions. 44
BooL — For Solving Logical Expressions........ .. 46
comp — To Compare Two Fields. 47
~NOTE — To Produce a Message. 48
MEND — End of Routine. 48

Pseudo-Macro Coding Example. 49

Appendix 51
A: Processor Error Diagnostic Procedures 51
B: Autocoder Messages and Limits 52
C: 1410/7010 Autocoder Sample Program 53
D: Autocoder Operation Codes 59

Purpose of this Publication

This publication is a reference text for personnel writ-
ing programs in the Autocoder language for use with
the 18M 1410/7010 Operating System.

Purpose of the Language and Processor

‘The 1410/7010 Autocoder is one of three programming
systems provided by the Operating System. (The other
two are ¥ORTRAN and coOBOL.) Autocoder consists of a
symbolic coding language and an assembly program
called a processor.

Utilizing the required elements provided by the
~ Autocoder language, a program can be created by cod-
ing the steps necessary for the solution of the problem,
and presenting them in the form of statements. The
Autocoder processor translates these statements into
the computer’s internal language, and assembles them
in the form of a relocatable subprogram. The resulting
relocatable subprogram can then be processed by the
Linkage Loader and used whenever necessary.

The Autocoder Language: Elements of Source
Statements

The user’s source program is written by using mnemonic
symbols to represent the principal elements of the
source statements. These elements are (1) the name of
the statement (a label), (2) the operation to be per-
formed by the statement (an operation code), and (3)
the program elements or parameters on which the
operation is to be based and/or performed (the
operand).

Macro statements in a user’s source program cause
additional symbolic source statements to be generated
and inserted into the program. The generated source
statements will be tailored according to the logic of the
macro routine the programmer has placed in the Macro
Library and the parameters in the source macro-
instructions.

The Autocoder Processor: Used with the Operating
System

The 1410/7010 Autocoder processor is designed to op-
erate in conjunction with the Operating System. The
object programs produced are assembled and run ac-
cording to the conventions of the Operating System.

Introduction

THE ASSEMBLY PROCESS

The assembly process produces an assembly listing and
an object program in card-image form called, in this
publication, an object deck. The object deck is in re-
locatable format, ready for processing by the Linkage
Loader.

The programs assembled by the 1410/7010 Auto-
coder processor must be designed to run exclusively
within the framework of the Operating System. The
Resident Monitor, including the Resident 1ocs, provides
a great deal of power by simplifying the task of pro-
gramming. A minimum of programming need be
concerned with operating control and input/output
operations, since macro-instructions are available for
these functions.

THE OBJECT PROGRAM

The following points should be noted concerning the
object program as it is discussed in this publication,
and executed within the framework of the Operating
System:

1. The object program will be referred to as a sub-
program. (A subprogram is the basic program unit with
which the Linkage Loader performs its processing.)
This subprogram can be a self-contained program, or
it can be a subroutine to be executed in conjunction
with other subprograms, forming a multiphase pro-
gram.

2. Subprograms to be combined during one run of
the Linkage Loader can be assembled individually at
different times or during a single assembly run.

Prerequisites
It is assumed that the user has completed a basic course
in programming for the M 1410 or 18M 7010 Data
Processing System, and is familiar with information
contained in the following publications:
IBM 1410 Principles of Operation, Form A22-05286, or
IBM 7010 Principles of Operation, Form A22-6726,
and
IBM 1410/7010 Operating System; Basic Concepts,
Form C28-0318
IBM 1410/7010 Operating System; System Monitor,
Form C28-0319

The Autocoder user must know certain Operating
System conventions and requirements in order to write,

Introduction 5

assemble, and execute his programs properly. The
pertinent information is contained in the following
publications:
IBM 1410/7010 Operating System; System Monitor,
Form C28-0319.
IBM 1410/7010 Operating System; Basic Input/Out-
put Control System, Form C28-0322.
Operating instructions for the System are contained
in the publication, IBM 1410/7010 Operating System;
Operator’s Guide, Form C28-0351.

This manual will indicate specific cross references
to the above-listed publications at the appropriate

places. The user will find that the many advantages
and conveniences of the Operating System can be
implemented through the use of Autocoder.

Minimum Machine Requirements

The minimum machine requirements for assembling
source programs written in the Autocoder language
are specified in the publication, IBM 1410/7010 Oper-
ating System; System Generation, Form C28-0352.

Machine requirements for the execution of the ob-
ject program depend upon the combined requisites
of the System Monitor and the user’s program.

This section describes Autocoder statements and the
principal elements used in their construction; program-
ming concepts under the Operating System; the assem-
bly listing produced by the processor; and the coding
sheet upon which source statements are coded. Suc-
ceeding sections discuss the various types of permis-
sible operands, Autocoder operation codes, and the
Macro System.

Autocoder Statements

The source program, which is translated by the Auto-
coder processor into an object program, is composed
of five types of Autocoder statements:
Imperative (symbolic machine instructions)
Declarative
Linkage Loader
Control
Assembly Control Statements
Subprogram Control Statements
Macro
Imperative Statements are translated into the ma-
chine instructions that appear in the object program.
Declarative Statements are translated into data
areas, data constants, and address constants used by
the object program. They are also used to define
symbols (or labels) in the assembly process.
Linkage Loader Statements enable the Linkage
Loader to properly convert the relocatable subpro-
grams assembled by the Autocoder processor into ab-
solute format (ready for execution).

Control Statements are directions to the Autocoder
processor, which control the performance of specified
operations at assembly time.

Macro-instructions enable the programmer to ex-
tract, from a library of macro routines, instruction se-
quences tailored (by means of parameters written in
macro-instructions) to meet programmer specifications.
These instruction sequences are inserted automatically
into the object program. (See the section entitled
“The Macro System.”)

Principal Elements of Autocoder Statements

The principal elements of an Autocoder statement are:
a label, an operation code, and an operand.

Basic Concepts and Functions

Label

A label is a name assigned by the programmer to an
element in a program (e.g., a data area, constant, or
instruction). This enables operands of Autocoder state-
ments, referencing labeled elements, to have symbolic
form. The terms label and symbol will be used syn-
onymously throughout this publication.

A label can contain from one to ten alphameric char-
acters, which are left-justified in the label field (card
columns 6-15). The first character must be alphabetic.
A special case in which labels are not left-justified is
explained in the sections concerning ps, pc and pcw
statements.

Special characters must not be used in the label
field. (An exception is permitted in the pEFIN state-
ment. See “DEFIN — Definition,” under “Linkage Loader
Operation Codes.”)

Operation Code

The operation code field (card columns 16-20) con-
tains a one-to-five-character mnemonic that specifies
the nature of the Autocoder statement and indicates
to the processor the function to be performed during
the assembly process. A table of operation codes is
supplied in the section, “Autocoder Operation Codes.”

Operation codes in machine language must never be
used. (The Compare, Add, and Subtract imperative
operations are exceptions, in that the machine-lan-
guage equivalent for each is identical to the corre-
sponding mnemonic.)

Blank operation codes are permitted in conjunction
with the following mnemonics: pc, pcw, pa, and pav.
These mnemonics are discussed in the subsection en-
titled “Declarative Operation Codes.”

The mnemonic operation codes are listed in Appen-
dix D. In studying this list, the programmer will note
that groups of mnemonic operation codes (for example,
the group of mnemonics for the scan instructions) are
represented in machine language by a one-character
operation code and an operation modifier (d-character)
which defines the precise function the operation is

_to perform. This is true even though the mnemonic

" may be as many as five positions long.

Operand

The operand field begins in card column 21. The form
and content of the various permissible operand ele-
ments vary according to the operation to be performed.

Basic Concepts and Functions 7

However, the basic elements in the operand field are
the A- and B-addresses, and the d-character (when
required). An A-address, a B-address, and a d-charac-
ter are separated from each other by single commas
(Figure 1).

The formats of these and the other permissible op-
erand elements are discussed in the section “Types
of Operand Entries.” The use of these elements in
association with specific operation codes is discussed
in the sections “Autocoder Operation Codes,” and
“The Macro System.”

Relocation

All object programs produced by the compilers within
the Operating System are in relocatable format. The
aspects of relocation with which the Autocoder user
must be familiar are noted here. The reader interested
in a detailed discussion of this subject and the relo-
cation indicators that can appear in the assembly list-
ing should refer to the publication, IBM 1410/7010
Operating System; System Monitor, Form C28-0319.

Relocation is achieved in three steps:

1. The programmer codes subprograms with or
without regard to their actual location in core storage.
He can, however, specify a starting location for his
program.

2. The processor assigns relative addresses to the
program statements and constants, starting at the ad-
dress specified by the programmer, or zero (00000) if
not specified. The processor also indicates to the Link-
age Loader whether these addresses are to be given
upward, downward, or NO relocation, as explained
below.

3. When the program is loaded, the addresses are
adjusted by a relocation factor calculated and applied
by the Linkage Loader. (The adjusted addresses main-
tain the same relative locations and relationships to
each other as specified in the source program.) This
subject is covered in more detail under “ORG — Ori-
gin,” in the subsection “Subprogram Control State-
ments.”

Each address within the program is assigned a code
by the processor, indicating to the Linkage Loader
one of three types of relocation. When the Linkage
Loader is executed, it calculates and applies to the ad-
dress the relocation factor called for by the associated
indicator.

The three types of relocation factors that can be
applied are:
Upward
Downward
NO

Upward Relocation
Upward relocation means that the address in the object
program will normally be incremented. For example,
if the compiled origin of the object program is 00000
and the relocation factor is 12,000, the program will be
loaded starting at core-storage location 12000. The
relocation factor is added to each load address and to
each address within the program to which an upward
relocation indicator is assigned by the processor.

Of the three relocation types possible, upward re-
location is the one most frequently applied.

Downward Relocation

Downward relocation means that the address in the
object program will be decremented by a value cal-
culated by the Linkage Loader. A downward reloca-
tion indicator is assigned by the processor to those ad-
dresses that refer to the comMon data area.

NO Relocation

No relocation means that the address in the object pro-
gram is to be unchanged by the Linkage Loader. A
No relocation indicator will be assigned by the proc-
essor to those addresses whose absolute value is already
supplied and must be maintained. For example, the
addresses of index registers receive No relocation indi-
cators.

Definition of COMMON

coMMoN is the formal name, predefined in the proc-
essor’s symbol table, of a relocatable work area that
can be referenced by more than one subprogram. Cer-
tain language conventions must be observed if sep-
arately-assembled subprograms are to achieve com-
patible addressing of shared data fields in common.

During the assembly process, references to coMMoON
are translated according to an addressing and reloca-
tion convention designed to make these references
suitable for resolution by the Linkage Loader. The
convention chosen is the assignment of the value 99999

Llne Label Epe ﬁi OPERAND

: 25 30 38 40 a5, 50 58 80 65 70
oty |, et o b AL A OPERAND , v . v 1, PP N
0.2 ! , 2.8, . A AND B ap.smms....‘ e
0.3 ! 2B d, A Awwwm&g&_u“
0.4] . . NP \ \ \

Figure 1. The Basic Operand Entries
8

as the reference address of common during the assem-
bly process. All relocatable addresses of data in com-
MON are relative to 99999, For example, the 15th lo-
cation downward in comMMoON is assigned the value
99985, and appears as the same relative address in all
subprograms. Labels referencing comMon are assigned
downward relocation indicators for absolute adjust-
ment by the Linkage Loader.

Absolute adjustment involves changing the relative
values of the labels (assigned to them by the proc-
essor) to absolute values in the relocated common data
area. The adjustment factor applied is the difference
between the value of commMon in the assembly process
(99999) and the absolute value of comMon determined
by the Linkage Loader. Normally, the Linkage Loader
will place common at the location represented by the
value of the system symbol /ams/ (Absolute Memory
Size). However, the programmer can specify a dif-
ferent absolute location for comMmon by means of a
BASE2 statement. (The interested reader will find a
fuller discussion of this subject in the publication,
System Monitor.)

The steps necessary to use COMMON in a subprogram
are discussed under “pav — Define Area in comMmMoN,”
in the subsection “Declarative Operation Codes.”

Processing Options

There are four processing options which can be exer-
cised by the user: '

1. He can suppress the printing of the assembly list-
ing (on the Standard Print Unit).

2. He can suppress the punching of the object deck
(on the Standard Punch Unit).

3. If there are no macro statements in the source
deck, he can speed up the assembly process by indicat-
ing this fact.

4. He can suppress the diagnostic generation of an
“M” flag for uses of index registers 14 and 15 when
there is no true multiple definition. (See NoTE 1, under
“Indexing with Address Adjustment.”)

These options are indicated by means of additional
parameters in the £xeQ card that calls the Autocoder
processor.

The four parameters are:

NOPRT — Suppress printing
NOPCH — Suppress punching
NoMAc — No macros present
NOFLG — Suppress “M” flag

Any or all of these parameters may be used in the
ExEQ card. They can appear in any order immediately
following the ExEQ parameters required by the System
Monitor. (See the publication, System Monitor, for
details concerning the exeqQ card.)

Specification of parameters in the ExeQ card is con-
cluded by the first blank encountered in the operand
field. The following examples illustrate the format:

OPERATION

LABEL CODE OPERAND

MON$$ EXEQ AUTOCODER, SOF, SIU, NOPRT

MON§$$ EXEQ AUTOCODER, ,, NOMAC, NOPCH,
NOFLG

MONS$$ EXEQ AUTOCODER, , , NOFLG, NOPRT,

NOMAC, NOPCH

Autocoder Multiple Compilation

Autocoder can compile any number of programs with a
single monss ExEQ aAuTOCODER card. The output is the
same as if it were produced by several separate com-
pilations.

Input for a multiple compilation consists of the
MONss EXEQ AUTOCODER card followed by the source
decks to be compiled. No control cards are necessary
between the END statement of one program and the first
card of the next program if the programmer wants the
subsequent compilation to receive standard treatment;
that is, printing, punching, and normal macro and flag
processing.

A different set of processing options (NOPRT, NOPCH,
NOMAC or NOFLG) can be specified for an ensuing pro-
gram in a multiple compilation by placing an Option

“card after the preceding ExD statement. This card has

the same requirements and options as the MONss EXEQ
Autocoper card except that the label and operation
fields, card columns 6-20, must contain blanks (instead
of monss ExEQ). The processing options specified in this
Option card will be applied until the next Autocoder
END card is read by the processor.

Autocoder multiple compilation has two potential
advantages:

1. It enables the programmer to process a series of
source decks from the Alternate Input Unit as well as
the Standard Input Unit.

2. Tt bypasses the monitor processing which normally
is necessary between compilations.

Terminating the Object Program

The object progam must terminate execution by means
of one of the following instructions:

Normal End of Program
Unusual End of Program

B /EOP/

B /UEP/
Both forms of termination are shown in Figure 2. Full

details can be found in the publication, System Monitor. .

Basic Concepts and Functions 9

64015 SAMPLE SUBPROGRAM USING THE 1410/7010 AUTOCODER PAGE 1 SAMPL
SEQND PGLIN LABEL OPCOD OPERAND REL CT ADDRS INSTRUCTION CARD FLAG

1 AAO20 TITLE SEQUENCE 001
2 AA030 = THIS SUBPROGRAM CHECKS THE SEQUENCE OF THE PGLN/ FIELD

3 S A040 » IF THE PGLN/ FIELD IS 99999, THE PROGRAM IS TERMINATED NORMALLY

4 AAQ50 = A NON-ASCENDING SEQUENCE RESULTS IN AN UNUSUAL END OF PROGRAM.

5 AA060 SEQROUTINE SBR EXITSEQRTES n 7 00000 G 00056 B 002
6 AAQTO C PGLN/,3999993 1S THIS THE FAST ENTRY 1 11 00007 C PGLN/ 00153 002
7 AA08O BE ENDCFJOB YES o 7 00018 J 00058 S 002
8 AAD90 NCPWM 9 1 00025 N 002
9 AA100 8 CHECKSEQ 4 T 00026 J 00101 002
10 AALLO SW *-~12 SET FIRST TIME NOP SWITCH TO BRANCH a 6 00033 , 00026 002
11 AAr20 MLCWB PGLN/, PGLNHOLD#5 A 12 00039 D PGLN/ 00158 P 003
12 AA130 EXITSEQRT 8 [} EXIT - RETURN TG MAIN PROGRAM # 7 00051 J 00000 003
13 AA135 =

14 AAr40 ENDOFJOB I0CTL TYPEyMESSAGE NOTIFY OPERATOR OF END OF JOB

15 G AAl40 ENDOFJOB EQU * 000538

16 6 01510 8IN e=11,/CT8/ [12 00058 V 00058 /CT8/ 2 003
17 G 01520 BXPA JCNC/ # 7 00070 Y /CNC/ X 003
18 6 01530 DCw MESSAGE N 5 00081 00126 003
19 6 01580 BIN +-11,/C78/ c 12 00082 V 00082 /C¥B8/ 2 004
20 AA145 B /EQP/ NORMAL END OF PROGRAM % T 00094 J /EOP/ 004
21 AAl48 =

22 AA150 CHECKSEQ c PGLN/, PGLNHOLD 1 1l 00101 C PGLN/ 00158 004
23 AAL60 BH EXITSEQRT-12 BRANCH IF PGLN/ IS IN SEQUENCE a 7 00112 J 00039 u 004
24 AALTO B JUEP/ UNUSUAL END OF PROGRAM # 7 00119 J /JUer/ 004
25 AAL7S =

64015 SAMPLE SUBPROGRAM USING THE 1410/7010 AUTCCODER PAGE 2 SAMPL
SEQNC PGLIN LABEL OPCOD OPERAND REL CT ADDRS INSTRULTION CARD FLAG
26 AA1B0 SEQR/ DEFIN SEQROUTINE SEQR/ LINKAGE SYMBOL FOR SUBPROGRAM 00000 005
27 AA185 MESSAGE ocwW JEND OF J0Ba,G CONSOL PRINTER NOTICE i1 00126 006
28 AAL190 HALT 12345 EXAMPLE OF AN ERRONEOUS STATEMENT A 12 00137 N 12345 ccece. 007 0
29 AA200 END
30 3999993 5 00153 008
31 PGLNHOLD #0005 5 00158 008
NUMBER OF FLAGGED STATEMENTS 1
28

1410/7010 AUTOCODER...SYSTEM /MID/ 0001

Figure 2. A Page from an Assembly Listing

Assembly Listing
Each page of the assembly listing contains a page
heading line and a column heading line.

The page heading line contains the following infor-
mation, from left to right:

3. Page number in the listing

4. The identification supplied by HEADR or RESEQ
cards

The column heading line is illustrated in Figure 2,
which shows the assembly listing of a subprogram
assembled by the 1410/7010 Autocoder processor.

1. The date contained at location /paT/ (the system
symbol for the five-position date field in the Resident
Monitor)

2. Information supplied via HEADR card

10

The subprogram contains a deliberate error contrived
to exhibit Autocoder’s diagnostic flagging system. Fig-
ure 2 illustrates the following items, going from left
to right in the column heading line:

1. SEQNO — Sequence Number: The sequence

| number of statements as they appear in the assembly

listing,

2. PGLIN — Page and Line Number: The page and
line number as it appears in columns 1 through 5 of
the cards in the source deck. Page and line numbers
must consist of five non-blank characters and must ap-
pear in ascending sequence.

Statements generated by the macro generator will
have a page and line number in this field supplied by
the generator. These numbers have no relationship to
the numbers of the hand-coded statements; they rep-
resent the order in which the statements appear in the
Macro Library.

The space between the sEQno and peLIN columns of
the listing are used by the processor to contain either
an “S” or a “G,” under the following conditions.

S — The page and line number of the statement is
not in ascending sequence in relation to the preceding
source statement. This is only a warning to the pro-
grammer that his source statements may be out of
sequence.

G — This character differentiates statements pro-
duced by the macro generator from the hand-coded
source statements.

3. LABEL — Label: The contents of the label field,
columns 6 through 15, of the Autocoder statement.

4. OPCOD: The Operation Code, columns 16
through 20, of the Autocoder statement.

5. OPERAND: The contents of the operand fieid,
columns 21 through 72, of the Autocoder statement.

6. REL — Relocation Indicator: This is a code char-
acter that indicates to the Linkage Loader the type
of relocation to be applied to the element(s) in the
statement.

7. CT — Character Count: The length in characters
of the assembled imperative statement, or the number
of core-storage locations reserved for a constant de-
fined in a declarative statement.

8. ADDRS: The relative address assigned by the
processor to the instruction or constant. This address
is subject to relocation.

9. INSTRUCTION: The assembled machine-lan-
guage instruction or constants from which the object
deck is constructed.

10. CARD — Card Number: The sequence number
of the card in which the associated constants or in-
structions appear in the object deck. This sequence
number is automatically computed and placed in col-
umns 73-75 of each card in the object deck, in ascend-
ing order.,

11. FLAG: An alphabetic character indicating an
actual or possible programming error. As many as five
flags can be assigned to one Autocoder statement. The
flags provided are as follows:

F — invalid statement Format

M — Mutltiple definition of a label
N — macro generation Note

O — invalid Operation code

R — Restricted operation code (if not generated
by a macro)

U — Unidentified label in the operand
W — Warning, general classification of error

Details concerning the above flags can be found in
Appendix A. The total number of flagged statements
is indicated at the end of the assembly listing, followed
by a line which contains the sequence number of each
flagged statement, to a maximum of 20 numbers. The
presence of any flag except “R” causes the processor
to set the “no-go” switch during assembly. This setting
of the “no-go™ switch can cause a bypassing of all the
source cards up to the next job. See the System Monitor
publication.

The assembly listing can be supplemented by a cross
reference listing at the option of the user, by means
of the psT statement. This listing analyzes the sub-
program(s) just assembled, and lists each label, fol-
lowed by the sequence number of the statement in
which it was defined, and the sequence number of
each statement in which the label is used as a reference
address. See “pst - Print Symbol Table,” in the sub-
section “Control Operation Codes,” for a more detailed
explanation.

Note: The system symbol /LIN/ controls the line
count on the listing page. However, if this system sym-
bol calls for the printing of less than 30 lines per page’
the processor will reject this direction and print the
assembly listing at the normal 55 lines per page. See
the System Monitor publication for details concerning
this system symbol.

Replacement Codes

The Autocoder processor utilizes a second line (nor-
mally blank) in the assembly listing, for the representa-
tion of non-printable characters. Each of these char-
acters is represented by two characters, one printed
above the other, at the appropriate place in the listing.
These two-character substitutions are called replace-
ment codes, and they appear most frequently as re-
location indicators or operation modifiers.

Basic Concepts and Functions 11

The two-character replacement codes with their con-
ventional graphic representations, card codes, and
names are listed in Figure 3.

Replacement Card
Code Graphic | Code Name
6 ? 12-0 Plus Zero
0 ! 11-0 Minus Zero
G
M $ 12-7-8 Group Mark
Q
T - 0-7-8 Segment Mark
w
S ~ 0-5-8 Word Separator
D
L A 11-7-8 Delta
C
T ¢orh 2-8 Cent Sign or Substitute Blank
L
P [12-5-8 Left Bracket
R
P] 11-5-8 Right Bracket
T .
M \ 7-8 Tape Mark
L
T < 12-6-8 Less Than
G
T > 6-8 Greater Than
; ; 11-6-8 Semicolon
: 5-8 Colon
AN 0-6-8 Backslash

Figure 3. Replacement Codes

Coding Sheet

The Autocoder Coding Sheet (Figure 4) provides a
convenient form for coding source program statements.
Column numbers on the coding sheet have a one-for-
one correspondence to the columns on the card used to
punch the source statements (Autocoder Input Card,
Form A36199).

Each line of the coding sheet is punched into a sepa-
rate card. The source deck, therefore, consists of a
sequenced set of punched cards containing a line-by-
line representation of the coding sheets.

The following paragraphs explain the function of
each field. The heading information, Program, Pro-
grammed By, and Date, are only for documentation,
and are not punched.

12

Identification (Card Columns 76-80)

This five-position field can contain a name created by
the programmer to identify the program. This identi-
fication will be punched into 76-80 of the object deck
only if it appears in a HEADR or RESEQ control card. (See
“Control Operation Codes.”) However, the identifica-
tion is not checked on the other Autocoder statements,
and serves only to identify the program to which the
card belongs. Special, as well as alphameric, characters
are permitted.

Page Number and Line Number (Card Columns 1-5)
The page number (columns 1 and 2), in conjunction
with the line number (columns 3-5), provides a means
of sequencing the cards in the source deck. This enables
the programmer to identify and correlate the entries
on the coding sheet and assembly listing with the
entries in the source deck. Alphabetic, as well as nu-
meric, characters can be used. (If the standard collat-
ing sequence is not followed, the processor will place
a sequence (S) flag next to the pcLin field in the as-
sembly listing, as previously explained.)

Label (Card Columns 6-15)

This field, if used, contains the label being defined in
this statement,

Operation Code (Card Columns 16-20)
This field contains the operation code.

Operand (Card Columns 21-72)

This field, if used, contains the operand element(s) of
the statement.

Note: Columns 73-75 should be left blank.

COMMENTS

Comments are remarks or notes written by the pro-
grammer in the operand field. At least two blank spaces
must separate a comment from the last character of
the statement. The comment, punched in the source
deck, appears in the assembly listing but is not con-
tained in the object deck, and has no effect on the
object program.

COMMENTS CARD

It may, at times, be helpful to insert an entire line of
descriptive information. This is done by placing an
asterisk in column 6 and using the balance of the line
(up to column 72) for comments. When this line of
information is punched into a card of the source deck,
the asterisk will identify it to the processor as a com-
ments card. The comments will be printed on a single
line of the assembly listing at the point of encounter,
| which can be anywhere in the source deck. Comments

P

Date

IBM

Program

Programmed by

IBM 1401

INTERNATIONAL BUSINESS MACHINES CORPORATION

AND 1410 DATA PROCESSING SYSTEMS

AUTOCODER CODING SHEET

Form X24.1350-1
Printed in U.S.A,

Identification o ..
76

80
Page No.L'.L?J of

Line Label peration OPERAND

3 Sie 15)i6 ol21 25 30 35 40 45 $0 55 60 85 70
T

o}, PO R s b 4 b a 40 4 4 NPT MY DA S M et Sl a4
|

0.2 P SRS PR R PV S S S VN0 U0 TOU S S S SR N SAFU A T S ST S R N P RGN N T S S
|

0.3 PERUE B P M P T S SO S T N S S S S S R S e N
|

0.4 TR L " P S S S S S SO0 W T S T ST S S S Y U ST S VO S ST U VT ST S S T T LR SR
i

98, | 0wyl P S S T W S Y L A T S S PO SO S0 ST WY S S ST S ST TR WY T T R R R S
1

06, | v ot P R TR S S S S S SR S S S SV S S S S S R R S TR
|

07, | v v w v by P S O S S S S W S S S S S S U S S S T O S ST
1

0.8 N W U PR S G S S S S S P T S R PR N SR
|

09 | v vl) PR S S S T S U S S S T S S S PP DN S T R SR S
1

1,0 PRI R . S S S S S S T S A S S MR S
i

LN N NP . PRI SO VU S T SRR N A U R el ey
\

Vel oy e P S S S S R S W S S PR S T S SR S R NPT TN SN
|

DU W S R P S S T O S S T R R S S T S R R S R U S S bbb b4 41 0o g
]

LI 70 I R P S S A T S S S S S S S R A R S S S S A R S T O SR B i Lo e
1

V-1 EEETIRrO SR R P U T S S i S S S S S S S S T S S T S S T SR U SR
|

LI I I P S S R S S S S ST A SR T A S SRR WS S U S S S N R R G S S
1

[AU PRt ST N T S S T O Y OO ST VO A S S S0 W S S W S0 U S U T S S S S S SR N S S S
i

V8 i P T S S S U S S S T T T R S S S S S S S R P O R S
I

LV R PRSI YRR B T S S S S R S S S S A S S S R SR S
|

20, Vv b s by T S S S S U T S T S R TSN NS ST S ST WU SN N S H S S T S S S T S ST i S S S T o
1

2,4, MU STUIT T RSP SR P S S O U0 VA VA S S S S G SN W S0 T S S N T RO S ST S S S S Cov sy
i

22, | 0oy oy ova s s TSI W DN S ST S ST S S AT ST R N S S T S A W S SN S Wt T R R S S S S S
I

2,3 PR W NS WAVINT TN NS T F S T U TR T S S SN YU S ST HD U S S ST U SO T S T SN VAT SRS SR SR S U ST R SO W S S SR St
|

2.4, PV DUV P S VU S SPUN SR S S ST SO ST S R T T A S ST RS U St S ST ST W I S R S S S R R |
\

28, 1. a1y TS R R R WETEUY WU VUV SN TN SN SN U SN0 TN SN0 T SN WA NN SN TG WOV W A A Y U WO RS N U W0t T N R N N WS R A |
|

FET PRSNG| F-Y § WA WY G VN WSS T Y D WA AU O W S S U T T U AU YU S Y N T U Y WS WU SN TS TN WY SO ST SR N U SN WO UUNUNES W WS P SD AT Y
|

FUNFU T TS T R T S S S BN R U WY S Y Y S U T T S T Y N N S WO WU WO N WY O Y S T S SN ¥ O T ST B R Sy
|

PR PO S A S R BTN NS T S S S S S SR S T S S S S R R S G A S S S A AT S R ST
1

PUNIPU SIS T SN T IR R RS S N US TR T T S WY T T U S0 SN0 U T TS SO RTINS SO S U SN SN AN S S S N ST UHN S HY F RO SR N VA G SR T
¢

. Lt . P W S S S T A WU S S S S S SR - PN

Figure 4.

cards inserted in a series of chained instructions will
break the chain. To avoid this, the operation code
should be re-stated and the appropriate operand en-

The Coding Sheet Form

Basic Concepts and Functions

tered on the first source card following any comments
cards. (Comments cards have no effect on the object
program and are not included in the object deck.)

13

Types of Operand Entries

This section explains the form and use of the various
entries permitted in the operand field of imperative,
declarative, Linkage Loader, and control statements.

The operand field of an Autocoder statement is used
to specify a variety of information to the processor.
The function of a specific entry is dependent upon the
type of Autocoder statement in which it appears. The
normal operand usage with each of the five types of
Autocoder statements is as follows.

STATEMENT TYPE OPERAND CONTENTS

IMPERATIVE Symbolic address(es) to be operated
upon by the machine instruction, and
a d-modifier, when required

DECLARATIVE Constants, symbols, and/or control

parameters necessary to declare the
desired fields

Symbolic (or actual) addresses and/or
control parameters required to convert
the object deck into absolute format

LINKAGE LOADER

CONTROL Symbolic (or actual) addresses and
constant information indicated by the
operation code

MACRO Parameters of the macro statement

(These parameters are discussed in
the section entitled, “The Macro Sys-
tem.”)
All permissible operand entries are explained and
illustrated under the following headings:

Basic Addresses

Address Adjustment

Indexing

Literals

Linkage Symbols

System Symbols

Miscellaneous

Basic Addresses

Basic addresses contained in the operand field of an
Autocoder statement are the primary elements of
information conveyed to the processor. They can be
altered or modified by means of additional elements
contained in the operand field.

A basic address is the symbolic or actual representa-
tion of a core-storage location of the data field or in-
struction referred to by the Autocoder statement.

A basic address can be in one of three forms:

Symbolic
Asterisk
Actual

14

Symbolic

A symbolic address is an operand entry that appears
elsewhere in the source program as a label. As a rule,
this symbol can be defined as a label either before or
after the Autocoder statement in which it appears as
an address. The exceptions to this rule are as follows:

1. All symbolic operands appearing in ORG, LTORG,
and EQU statements must have been previously defined
within the same program.

2. The symbolic address appearing in an Rrsv state-
ment must precede any other use of this symbol in a
program. (See “rsv — Reserve.”)

3. The symbolic representations of index registers
(X0, X1-X15) and the common data area (coMMON),
must never appear in the label field. They cannot be
defined by the user because they are predefined labels
in the symbol table maintained by the Autocoder proc-
essor.

The instruction in Figure 5 illustrates the use of
symbolic addresses. The symbols ToraL and accumu-
LATE are defined as labels elsewhere in the program.
The assembled instruction will cause the contents of
the core-storage area labeled ToTaL to be moved to the
area labeled accumuLATE.

Note: A symbolic address will receive upward,
downward, or No relocation, depending on the manner
in which the symbol is defined.

Line Label Eperarﬂ ({
3 5ls 1s)i6 ol21 25 30 35 40
0,1

l6ross. 1. . . MmicA [ToTAL
0.2 LIIII:IIIIAII

Figure 5. Autocoder Instruction with Symbolic Addresses

Asterisk (*)

An asterisk (11-4-8 punch) can be used as a basic ad-
dress in an Autocoder statement. When compiling the
object program, the processor will replace the asterisk
with the relative core-storage address of the last char-
acter of the instruction or data field created by the
statement in which it appears. However, if an asterisk
address is used in a statement that does not cause the
generation of an instruction or data area in the object
program, the value substituted for the asterisk will be
the current location in the object program.

P

These uses of the asterisk address are illustrated by
means of the three Autocoder statements in Figure 6,
and are discussed in the order of their appearance.

0.2
0.3
04

Figure 6. Asterisk Addresses in Autocoder Statements

1. The first statement in Figure 6 illustrates the use
of the asterisk in an imperative instruction. Assume
that this instruction is assigned to core-storage posi-
tions 12340-12351 and that the reference address of
WKAREA is 13598 (the low-order position). The as-
sembled instruction is D1235113598T,

2. The second statement in Figure 6 illustrates the
use of the asterisk in an Autocoder control statement.
In this case, the asterisk represents the current address
in the processor’s relative location counter. For ex-
ample, if the last address assigned was 12351, the rela-
tive location counter will contain the address 12352
(the representative value of the asterisk).

It should be noted that no data or instructions are
generated by the asterisk in this statement. The value
the asterisk represents is the location where a specific
function is to be performed. In this case, the asterisk
means the beginning address for the assignment of
previously-encountered literals in the subprogram.
(Literals are discussed later in this section; the LTORG
statement is discussed under “Control Operating
Codes.”)

3. The third statement in Figure 6 illustrates the
use of the asterisk in a declarative statement. (The
pcw statement is discussed under “Declarative Opera-
tion Codes.”) In this case, a five-position address con-
stant is defined which is the low-order address of the
generated field. For example, if the asterisk repre-
sented the address 12356, this address would be con-
verted by the processor into a five-position constant
assigned to positions 12352-12356, with a word mark
over the high-order position.

The asterisk address is used most often in imperative
statements with address adjustment, as a means of re-
ducing the number of labels required in a program.
(See “Address Adjustment.”)

NotEe: Asterisk addresses are assigned upward re-
location indicators.

Actual

An actual address is the numeric designation for a
core-storage location. Thus, the actual addresses of a

1410 or 7010 with 40,000 core-storage positions range
from 00000 to 39999. In coding, the high-order zeros
of actual addresses can be omitted (except for loca-
tion 00000, which must be represented by at least one
Zero).

Figure 7 illustrates the mixing of actual and sym-
bolic addresses. The statement represents a data move
of the contents of the area whose low-order position
is at location 22101 to the area labeled MONEY.

CauTION

All programs written to be run within the frame-
work of the 1410/7010 Operating Systems are re-
locatable. Since actual addresses are assigned a No
relocation indicator, the programmer must exercise
extreme caution when using actual addresses. This
is especially true when previously-coded programs
written for the 1BM 1410 are being converted for use
with the Operating System.

Line Label fpera'iz{_ $

3 sle : 1s|ie olz 1 25 30 35 40

S P 22101, MOKEY$
L

0.2 ST

PRI R ..A;,....||+,.‘|.A§

Figure 7. An Actual and a Symbolic Address

Address Adjustment

A basic address, specified in the operand field, can be
altered or modified to refer to a different position of
core storage. The basic address can be altered during
program assembly by means of address adjustment;
during program execution by means of indexing. Ad-
dress adjustment is discussed below; indexing will be
explained in the next subsection.

Address adjustment enables the programmer to ref-
erence a location which is a specified number of core-
storage positions away from a basic address. Address
adjustment is indicated by writing after the basic
address a plus or minus sign followed by a one-to-five-
digit number that specifies the adjustment factor.

Assume that in Figure 8 the label ManNo is assigned
address 15000 and ToTaL is assigned the location
20075. The assembled instruction is A1501220075. The
contents of ManNo+12 (15012), not MmanNo (15000),
will be added to TotaL.

ot |y L A
0.2 PP T

Figure 8. Address Adjustment

Types of Operand Entries 15

The Form * + X00

Asterisk and actual basic addresses, as well as symbolic,
can be address adjusted with similar results for the
same adjustment factor. However, there is a special
adjustment factor unique to the asterisk address, whose
use is limited to orG, LTORG, and Bask1 statements. This
special form is *+X00 (asterisk-plus-X-zero-zero). Its
function in orc and LTORG statements is to advance the
processor’s relative location counter to the address of
the next hundreds position in core storage during pro-
gram assembly (Figure 9). The Base1 *+X00 value is
resolved by the Linkage Loader.

For example, if the relative location counter contains
07214 when the processor encounters the statement in
Figure 9, the counter will be automatically incremented
to 07300, and subsequent entries will be assigned core-
storage locations beginning at this address. The orc
and LTORG statements are discussed in the subsection,
“Control Operation Codes.” The Base1 statement is dis-
cussed in the subsection, “Declarative Operation
Codes.”

NotE: The Base1 *+X00 statement must appear pre-
vious to the orc *+X00 card or the “no-go” switch will
be set.

Line Label fperoﬁ g
s sls 15)16 of21 25 30 35 40

ol iil.. lORG |¥+X00 .\))
|
L

0.2 Lot PR S SV S VA T SV S R S S Y

Figure 9. Use of the Special Form *+X00

Multiple Adjustment Factors

Basic A- and B-addresses can be address adjusted, and
both can contain more than one address adjustment
notation. The number of adjustment factors permitted
is limited only by the length of the operand field (up
to card column 72).

Indexing
Indexing is a form of address modification which takes
effect at the time the object program is executed. Auto-
coder statements can be used to initialize or modify the
contents of an index register, or indexing can be used
to modify an address within a statement. (See either
the 1410 or 7010 Principles of Operation reference man-
ual, listed as prerequisites, for a complete description
of index register usage.)

The following discussion explains how the Autocoder
language can be used to (1) address an index register,
(2) initialize or modify the contents of an index regis-

16

ter, (3) index an address, and (4) combine indexing
with address adjustment.

Addressing an Index Register

Index registers are symbolically referenced within the
operand of an Autocoder statement by placing an X
before its number. Thus, the predefined symbols X1
through X15 designate index registers 1 through 15,
respectively.

Autocoder statements that initialize or modify the
contents of an index register contain the notation for
the index register as a basic address (Figure 10).

In Figure 10, the operation code “za” moves the con-
tents of the location labeled ErcuTY into index register
10 and inserts high-order zeros. Thus, if EIGHTY contains
“+80”, the contents of index register 10 will become
+ 00080, after the execution of the assembled instruc-
tion. (The plus sign will be placed in storage as B bits
over the units position.)

NoTe: When an index register is used as a basic ad-
dress, it is assigned a No relocation indicator.

Line
3 Sle

T
0.1, P
|
0.2 PRV

ELCHTY > X210, .\ (v

PSS S S0 S T VA S ST WY T S S S S .e

Figure 10. Entering a Numeric Value into an Index Register

Label J?perutio_ni_ 2
1516 20j2¢ 25 30 35 40
za !

Indexing an Address

A basic address is indexed by following the basic ad-
dress with a plus sign and the notation for the index
register (Figure 11).

In Figure 11, assume that the basic address MaNNO
is relocated to core-storage location 15000 (by the
Linkage Loader). If index register 10 contains 00100
(or +00100), the effective address of ManNno+X10 is
15100. Thus, the operation code “MLc” will cause the
data at location 15100 to be moved to the location
labeled accum. However, if index register 10 contains
— 00100, the effective address of manno~+X10 is 14900.
Thus, the data at location 14900 is moved to Accum
by the execution of the assembled instruction.

Both the A-address and the B-address can be indexed.

Line
3 5|6

0.1,

0.2

Figure 11. Indexing an Address

W

N

Indexing with Address Adjustment

Indexing and address adjustment are permitted in the
same operand. The indexing indicator can follow or
precede the adjustment factor notation (Figure 12).

The actual location represented by the A-address in
Figure 12 will be the basic address (ToTAL), minus 12,
plus the contents of index register 1. Assuming that
TOTAL is the label for location 03101 and that index
register 1 contains 00080, the address of ToTAL—12
+X1 will be 03101 —12+ 00080, or 03169. However,
the assembled instruction will be D030Y900140C, as-
suming that accum is the label for location 00140. The
“Y” in the tens position of the A-address is an 8-punch
with a zero-zone punch. The zero-zone punch in the
tens position is the tag for index register 1.

U0 WO U TS S S S N S S

Figure 12. Address Adjustment and Indexing

Norte 1: Index registers 14 and 15 are reserved for
use by the System Monitor. If index registers 14 and
15 are used in an Autocoder program, the processor
will properly assemble all references to them, but will
flag these references with an “M” (multiple defini-
tion), unless the NoFLc parameter is supplied in the
appropriate EXeQ or Option card.

By convention, index register 13 is designated as the
index register used for linkage with subroutines. The
reader will find further details in the publication,
System Monitor.

Note 2: The programmer can assign a label to an
index register and subsequently reference it, for the
balance of the assembly run, by his own symbolic
designation. (See “EQu — Equate,” under “Declarative
Operation Codes.”)

Note 3: The special symbolic adjustment notation,
X0, indicates to the processor that the associated basic
address should be assembled without its tag. That is,
if a label has been established in the program as
relating to an address that is to be adjusted by an
index register, it may be used without index register
adjustment by following the symbolic address with
+X0 (plus-X-zero). See “pa — Define Area,” under
“Declarative Operation Codes,” for an example of
index negation.

Literals

Literals permit the programmer to specify a pre-
viously-undefined constant within an imperative

statement that refers to the constant. Autocoder’s
ability to process literals enables the programmer to
specify a field of constant data, and in the same im-
perative statement perform a function using the spec-
ified field.

As the processor allocates core storage, it automati-
cally reserves a field in which it constructs the constant
data. When the imperative statement is translated into
machine language, the address to which the constant
data was assigned becomes a basic address referencing
the field at its low-order position. The processor as-
signs a word mark to the high-order position of the
constant field. Literals can be address adjusted and/
or indexed.

All literals are assigned upward relocation indicators.

The four kinds of literals are discussed under the
following headings:

Numeric Literal
Alphameric Literal

Area Defining Literal
Address Constant Literal

NotEe: Neither a literal nor its label can be used in
the operand field of an EQU statement. (See “EQU —
Equate,” under “Declarative Operation Codes.”)

Numeric Literal

A numeric literal represents a data field of numbers
with a sign. Its form in a statement has the following
characteristics:

1. It is coded as the basic A- or B-address.

2. It is preceded by a plus or minus sign. When it
is assigned to core storage, the sign is placed over the
units position.

3. It is an integer whose length is limited only by
the available operand positions.

4. Blanks and other non-numeric characters are not
permitted within a numeric literal.

In Figure 13, the instruction causes the value “+80”
to be added to the contents of the core-storage loca-
tion labeled ToTaL.

Line Label fperaﬁ 2
3 S5i6 15§16 {1]v4} 30 35 40

0.1, A, 80, T.0TAL. .

0.2 P

Figure 13. Use of the Numeric Literal

When a numeric literal does not exceed nine digits
in length (excluding the sign), it is assigned a relative
location only once per program segment (a program
is separated into segments by LTORG, SPEND, or END
statements), no matter how often it appears in the
source program. Longer numeric literals are assigned
a relative location each time they are encountered in

Types of Operand Entries 17

the source program. Consequently, to conserve core
storage, in cases where multiple use of a “long literal”
is necessary, it should be defined as a pcw. (See “pew
— Define Constant with Word Mark,” in the section
“Declarative Operation Codes.”)

If an unsigned numeric literal is desired, it must be
entered as an alphameric literal (see below).

Alphameric Literal

An alphameric literal can consist of one or more char-
acters, including the blank. The literal must be pre-
ceded and followed by the @ character (4-8 punch).
The @ character is permitted within the body of the
literal “itself; however, a comment on the same line
must not contain the @ character. Also, only one alpha-
meric literal can appear in the operand field. These
considerations are necessary because the processor as-
sumes everything between the initial and terminal @
characters in the operand field to be part of an alpha-
meric literal.

Note: The word separator character (0-5-8 punch)
must never be coded as the first character of an alpha-
meric literal.

In Figure 14, the alphameric literal yunE 14, 1964, is
compared to the contents of the core-storage location
labeled FLAGDAY.

Figure 14. Use of the Alphameric Literal

An alphameric literal, one to nine characters in
length (excluding preceding and terminal @ char-
acters), is assigned a relative location only once in a
program segment, no matter how often it is used in the
source program. Longer alphameric literals are as-
signed a relative location each time they are encoun-
tered in the source program. Consequently, to conserve
core storage, in cases where multiple use of a long
literal is necessary, the literal should be entered as a
pcw. (See “pcw — Define Constant with Word Mark.”)

Area Defining Literal

The area defining literal affords a convenient method
for simultaneously defining and labeling a field of
blanks within the same Autocoder instruction in which
it is required. The generated field is assigned a relative
location along with other literals in the subprogram,
and has a word mark in its high-order position. The
field can be referenced by its associated label in other
statements in the subprogram.

The area defining literal can be specified only as a
basic address in an imperative statement (Figure 15).

18

It consists of a user-created label, followed by a pound
sign (#) character (3-8 punch), and a number speci-
fying the length of the field required. Since the pound
sign notation is used to define the label only once, it
should not be attached to the label in other references.

Figure 15 illustrates how an area defining literal can
be used in an Autocoder statement. This literal causes
the processor to allocate ten successive positions of
core storage, and label the area BurrFERTWO. Ten suc-
cessive blanks will be loaded into storage at object
program load time. Assuming that AMounT refers to lo-
cation 00796, and BUFrFERTWO refers to location 00596
(the low-order position of the field), the assembled
machine-language instruction that moves the contents
of AMOUNT to the area BUFFERTWO is 10079600596C.

Note: The following restrictions should be con-
sidered when using a label created by means of the
area defining literal:

1. When the processor encounters a LTORG Or SPEND
statement, it terminates the availability of previously
defined labels that were created by means of area de-
fining literals. Thus, subsequent references to the label
will not be effective. (See “LToRrG — Literal Origin,”
and “sPEND — Subprogram End.”)

2. A symbol defined by an area defining literal must
never appear in the label field.

3. The area which can be reserved by an area de-
fining literal is limited to 500 positions of core storage.
If this limit is exceeded, the processor will reserve only
the maximum (500 positions), and attach an “F” flag
to the statement in which it appears.

Figure 15. Use of the Area Defining Literal

Address Constant Literal

When a label is used in a source program, the machine
address assigned to it by the processor can be defined
as a constant (hereinafter referred to as an address
constant), and used as such by the programmer. The
label that is to be defined as an address constant is
written as a symbolic basic address of an instruction,
with a plus sign preceding this symbol. This signals the
processor to create the address constant in a fve-
position area of core storage. The area contains the
machine address assigned to the label by the processor.
The relative location assigned to the address constant
becomes the basic address represented by the address
constant literal. (See @, Figure 16.)

Figure 16 illustrates how an address constant literal
can be used. (The numbers in column 36 correspond
to the numbered references in the text which describe

A1

Lme Label
X LT ..

0.2
0.3
0.4

0,5, A.D'C'OM

0.6, -
.
o B 0 <) .i
A SR S P

ot |y i,
Figure 16. Use of an Address Constant Literal

08, | .,
0,9, .MS.T.
1.0 N

the functions performed by the statements in the
figure.)

1. Assume that the label ExiT is assigned by the
processor to location 20600. ‘

2. When the processor assembles the instruction
labeled apcon, the address of the symbolic operand
+Eexit will be assigned a five-position area in core
storage in a manner similar to other literals. That is,
the address of exit (20600) becomes the constant data
field addressed by the statement.

3. Assume that 32797 js the location of the address
constant literal and the location of the instruction
labeled 1vst is 11401. The assembled machine-language
instruction of Apcon will be 1D3279711406A.

When the instruction labeled apcon is executed in
the object program, the address constant 20600 is
moved to 11406. The instruction labeled insT now be-
comes j20600b. When the instruction is executed, an
unconditional branch to exit takes place. Thus, the
programmer can write an instruction which moves an
actual address into the operand of another instruction
at program execution time.

Norte 1: If address adjustment and/or indexing are
used in the operand with an address constant literal,
they modify the address of the address constant literal,
not the constant itself. (That is, in the example given,
address 32797, not 20600.) Both addresses will be as-
signed upward relocation indicators.

NotE 2: The address constant (20600) will be un-
signed in core storage.

An address constant can also be created by means
of the pcw statement. See “pcw — Define Constant
with Word Mark.”

Linkage Symbols

Relocatable subprograms that have been independ-
ently compiled, but designed to run together, require
communication. This communication is supplied by
the Linkage Loader when it combines the subpro-

grams and converts them to absolute format. The use
of linkage symbols facilitates the communication by
indicating to the Linkage Loader that a reference ad-
dress from a different subprogram is required.

The two formats of the linkage symbol are:

1. A conventional label (up to ten alphameric char-
acters in length) which can be established as a linkage
symbol only by appearing either as the name parameter
in the TITLE card or as the label of a DEFIN statement.

It can be referred to, in an assembly, only by one of
the following statements. These statements are dis-
cussed later, under their individual headings:

pcwr — Subprogram Address Constant
pcws — Subprogram Branch Instruction
BASE1L Base Address of the Subprogram
BAsEz — Base Address of COMMON
PRTCT — Protect

cALL — Subprogram Call

This type of linkage symbol is used to reference en-
tire subprograms by means of operation codes men-
tioned in its description. Its specification is described
in the discussion of statements permitting its use.

2. A special five-position symbol consisting of four
alphameric characters (the first of which must be al-
phabetic) with a slash (/) in the fifth position. It is
established as a linkage symbol by appearing as the
label in a pEFIN statement. This type of linkage symbol
can be used in the operand field of any Autocoder
statement except EQU, ORG, LTORG, END and spEND; it
cannot be indexed or address adjusted.

It is imbedded within subprogram instructions, and
is not assigned an address, but is placed in its corre-
sponding position in the generated machine instruction,
as supplied in the Autocoder statement.

This second type of linkage symbol can be used to
communicate with a subprogram at a point designated
by the symbol. When the instruction is processed by
the Linkage Loader the linkage symbol is converted
into an absolute machine address.

Figure 17 illustrates the use of a linkage symbol in
an Autocoder instruction. The assembled instruction
will be ALABE/00029. The Linkage Loader will deter-
mine and supply the absolute value for LaBe/. Thus,
the instruction will be loaded as Axxxxx00029, where
xxxxx is the absolute address supplied by the Linkage
Loader.

Note: Linkage symbols are assigned a No reloca-
tion indicator.

ﬂfaL Label .E]S,P‘.mﬁ:du__n i u_%

o, 0, |, LABE/ 2 X1

Figure 17. Use of the Five-Position Linkage Symbol

Types of Operand Entries 19

System Symbols

Various elements of the Resident Monitor (including
the Resident 10cs) can be referenced in the Autocoder
language by the use of their assigned system symbols.
All system symbols have the format /aBc/, where aBc
is the symbolic name of a location within the Resident
Monitor. System symbols are discussed in detail in the
publication, System Monitor.

System symbols are treated by the Autocoder proc-
essor in the same manner as linkage symbols. That is,
they are passed intact to the Linkage Loader, where
they are resolved into absolute addresses.

Figure 18 illustrates the use of a system symbol in
an Autocoder instruction. The assembled instruction
will be D/DAT/00029T. The Linkage Loader will
search its table of system symbols and substitute the
absolute va}ue for /pat/. Thus, the instruction will be
loaded as Dxxxxx00029T, where xxxxx is the absolute
value for the system symbol, /pat/.

Note: A system symbol is assigned a No relocation
indicator. (The absolute addresses for system symbols
are a permanent part of the Linkage Loader’s symbol
table.)

Line Label J?perurij é
3 5(6 T 15)ie 0f21 25 30 35 40
0,1 R LCA
|
| : Ll

/DAT/ X1,

02 | . 4

Figure 18. Use of the System Symbol

Miscellaneous

There are several additional elements that are valid in
the operand field. These elements are discussed under
the following headings:

Operation Modifiers (d-characters)

Blank Operand

Zero as a Basic Address

Special Operand Elements

Operation Modifiers (d-Characters)

The programmer using the Autocoder language is re-
quired to supply the operation modifiers associated
with certain conditional branch instructions. They are
indicated under “Logical Operations” in Appendix D
of this publication. The reader is also directed to the
appropriate sections in either of the Principles of
Operation manuals listed as prerequisite reading.

Blank Operand

A blank operand is valid in the following types of
operations:

1. In operations where valid A- and /or B-addresses
are supplied by the chaining method. For example, in

20

Figure 19 the second A (add) instruction is chained.
It takes its addresses from the A- and B-address
registers.

perati
I1S}16 20§21 25 30 35 40

A . |ALPHASBETA 5
§

0,1,

Line Label
3 sie

0.2

1

P
|
14
i
t

b oA
Figure 19. Blank Operand when Chaining

0.3

2. In operations that do not require an operand; for
example, an ORc statement that directs the processor
to use the address in the high assignment counter plus
one. {See “or¢ — Origin,” under “Control Operation
Codes”; also, “Nop” and “NopwMm” under “Imperative
Operation Codes,” for additional examples of the use
of the blank operand.)

Zero as a Basic Address

A zero in the operand field is treated as the value 00000
by the processor. Address adjustment and indexing
can be used. If this value is address adjusted by a neg-
ative factor, a complement number is created. For
example, the operand 0—5 means address 99995 (Fig-
ure 20).

In Figure 20 the contents of the location indicated
by the value 00000—5, plus the contents of index
register 10, will be added to goLp. The assembled ma-
chine instruction will be A99RR501000 (assuming
HOLD is assigned address 01000). The Rs in the A-
address are the result of B bits being placed over 9s
in the tens and hundreds position to tag index register
10.

A ~o relocation indicator will be assigned by the
processor to a zero address.

Line Label _t)peroﬁﬂ g

s sls . 15)16 of21 25 30 35 40

ot | oot A lo-Sexg0sHOLD o . {2
I

0.2 NEPEEEIE SR B P T S S VN T A U0 U0 A S S S R S |

Figure 20, Use of the Zero Operand

Special Operand Elements

Some Autocoder statements require certain special
types of information which must appear in the oper-
and field in a specified manner. These statements are
listed below. (The interested user is directed to the
appropriate subsection of this publication for a full
explanation of each statement’s format requirements.)
. DA and DAV statement parameters

. DA and pAv subentries

. TITLE statement

HEADR statement

iR]

TN

This section explains the functions performed by Auto-
coder operation codes, and the permissible formats of
the statements in which they appear. (Macro operation
codes, because they are a special form, are explained
separately in the next section.)

Every statement written in the Autocoder language
must have a specified or implied operation code in the
operation field (card columns 16-20). Every permis-
sible operation code belongs to one of four major
categories and is discussed in this section according
to the functional grouping of the Autocoder statement
it represents. The four major categories and their func-
tional groupings are as follows:

Imperative Operation Codes

Symbolic Machine Instructions
Special Imperative Statements

Declarative Operation Codes

Linkage Loader Operation Codes

Control Operation Codes

Assembly Control Statements
Subprogram Control Statements

Imperative Operation Codes

Imperative operation codes appear in Autocoder state-
ments that are translated by the processor into ma-
chine instructions.

Symbolic Machine Instructions

A symbolic machine instruction is an Autocoder state-
ment that is translated by the processor into a
machine-language instruction. Permissible symbolic
machine instructions include all arithmetic and gen-
eral data operations, as well as most miscellaneous
and branch operations not related to input/output
channel status indicators. The processor attaches an
“R” flag to mnemonics which can violate the conven-
tions of the Operating System. These mnemonics are
listed in Figure 21, which groups and lists every opera-
tion code that can be handled by the 1410/7010 Auto-
coder processor.

The machine-language equivalents of all valid Auto-
coder operation codes are grouped and listed in
Appendix D.

Details concerning the form and use of machine
instructions and the operations they perform can be
found in the following publications:

Autocoder Operation Codes

IBM 1410 Principles of Operation, Form A22-0526
IBM 7010 Principles of Operation, Form A22-6726

Special Imperative Statements

Two special imperative operation codes have unique
meanings for the Autocoder processor, and are pro-
vided to add flexibility to program coding.

NOPWM — No Operation; Word Mark

The NopwM operation code results in the creation of a
NoP instruction, and directs the processor not to as-
sign a word mark to the operation code of the next
sequential instruction. The operand field of this state-
ment is left blank (Figure 22).

At assembly time, the NopwM instruction (Figure
22) causes the processor to insert in the object pro-
gram, the machine operation code N (No Operation)
with a word mark, followed by an unconditional
branch instruction (J01950) without a word mark.
The assembled instruction will be NJ01950b. (Assume
NEXT is assigned to location 01950.) At execution
time the branch will be inoperative, and the machine
will proceed to the next sequential instruction.

Other instructions in the subprogram can be used
to set or clear the word mark over the operation code
of the branch instruction, as needed. If there is no
word mark, the branch instruction is ignored; if
the word mark is present, the branch instruction
is executed. Thus, the NoPwM operation permits the
programmer to set “No Op” switches easily.

Note: The effect of nopwMm before a pcws state-
ment is the same as a simple nop. That is, an N is
generated and a word mark is assigned to the J opera-
tion code of the seven-position pcws.

NOP — No Operation

The Nop operation code results in the creation of a
one-character machine instruction. The operand field
must be blank (Figure 23).

The nop statement can also be used to define a pro-
gram switch. As shown in Figure 23, the processor
will translate the mnemonic Nop to N (No Operation)
with a word mark. The unvconditional branch instruc-
tion will be translated as J01950b, with a word mark
over the “J” operation code. (Assume Next to be the

Autocoder Operation Codes 21

CONTROL OPERATION CODES

IMPERATIVE CODES (Cont'd)

IMPERATIVE CODES (Cont'd)

ASSEMBLY CONTROL CODES

MOVE OPERATION CODES

LOGICAL OPERATION CODES +

Mnemonic Meaning Mnemonic Meaning Mnemonic Meaning
HEADR Reader Line MLNS Move Left Numeric Single B Branch Unconditionally
RESEQ Resequence Object Deck MLZS Move Left Zone Single BU Branch if Compare Unequat
EJECT Eject Page MLCS Move Left Charac Single BE Branch if Compare Equal
PST Print Symbol Table MLWS Move Left WM Single BL Branch if Compare Low
MLNWS | Move Left Num and WM Single 8H Branch if Compare High
SUBPROGRAM CONTROL CODES MLCWS Move Left Charac and WM Single BCE Branch if Charac Equal
MLZWS Move Left Zones and WM Single BBE Branch if Bit Equal
ORG Origin MLNA Move Left Num to A-Fid WM BAV Branch if Arith Ovfl
LTORG Literal Origin MLZA Move Left Zones to A-Fid WM BOV Branch if Divide Ovfl
END End of Source Program MLCA Move Left Charac to A-Fld WM BZ Branch if Zero Balance
SPEND Subprogram End MLWA Move Left WMs to A-FId WM BW Branch if Word Mark
MLNWA | Move Left Num and WM to A-Fid WM BZN Branch if No Zones
MLZWA | Move Left Zones WM to A-Fld WM BWZ Branch if WM and No Zones
MLCWA | Move Left Charac and WM to A-Fld WM BXO Branch if Exponent Ovfl
DECLARATIVE OPERATION CODES MLNB Move Left Num to B-Fld WM BXU Branch if Exponent Unfl
MLZB Move Left Zones to B-FId WM
SUBPROGRAM DECLARATIVE CODES MLCB Move Left Charac fo B-Fld WM
DA Define Area MLWB Move Left WM to B-Fld WM MISCELLANEOUS OPERATION CODES
DCW Define Constant with WM MLNW8B | Move Left Num and WM to B-Fld WM -
pC Define Constant MLZWB | Move Left Zones and WM to B-FId WM Nop No Operation
DS Define Symbol MLCWB | Move Left Chorac and WM fo B-Fld WM NOPWM | No Opn, Suppress WM
EQU Equate MLN Move Left Numeric SAR Store A-Register
9 MmLC Move Left Characters 255 ::orm"-keg:r:r u
MLZ Move Left Zones t at A-Fie
LINKAGE LOADER OPERATION CODES MW Move Left Word Marks gg[g:ear \;Vord Mark
MLNW Move Left Num and WMs ear Storage
E | 1M of Subprogram MLZW | Move Lot Zones and Whts STC Store Time Clock
Dy | Do Address MLCW | Move Left Charac and WMs SR Store Register
se Address of COMMON . . STCPU Store CPU Stat
MRN Move Right Numeric ore atus
CALL Call Subprogram MRZ Move Right Zones RSCPU Restore CPU Status
DEFIN Definition N
PRTCT | Protect Definitions MRC Move Right Characters
MRW Move Right Word Marks
MRNW Move Right Num and WMs
SUBPROGRAM LINKAGE CODES MRZW Move Right Zones and WMs RESTRICTED OPERATION CODES *
MRCW Move Right Charac and WMs
oW ::tg::::j"" pddress Const MRNR | Move Rt Num to A-FId RM BEX] Branch Ext Indic Chan 1
MRZR Move Rt Zones to A-Fid RM BEX2 Bronch Ext Indic Chan 2
MRCR Move Rt Charac to A-Fid RM BEX3 Branch Ext Indic Chan 3
COMMON DECLARATIVE CODES MRWR | Move Rt WMs to A-Fld RM BEX4 Branch Ext Indic Chan 4
. . MRNWR | Move Rt Num and WMs to A-Fid RM BOL1 Branch Ovip Proc Chan 1
RDS’S’ RD:sfe'::eT::e:nincgng?gN MRZWR | Move Rt Zones and WMs to A-Fid RM BOL2 Branch Ovlp Proc Chan 2
MRCWR | Move Rt Charac and WMs to A-Fid RM BOL3 Branch Ovip Proc Chan 3
MRNG Move Rt Num to A-Fld GM-WM BOL4 Branch Ovlp Proc Chan 4
IMPERATIVE OPERATION CODES MRZG Move Rt Zones to A-Fld GM-WM BBI Branch if Binary Cd Chan 1
MRCG Move Rt Charac to A-FId GM-WM BB2 Branch if Binary Cd Chan 2
ARITHMETIC OPERATION CODES WRWG Move Rt WM to A-Fld GM-WM BPCB Branch if Prntr Carr Busy
MRNWG | Move Rt Num and WM to A-Fld GM-WM BPCBI Branch if Prntr Busy Chan 1
A Add MRCWG | Move Rt Charac and WM to A-FId GM-WM} { | BRCB2 Branch if Prntr Busy Chan 2
S Subtract MRZWG | Move Rt Zones and WM to A~FIld GM-WM BCV Branch if Pratr Carr Ovfl
M Multiply MRNM Move Rt Num to RM or GM in A BCVI Branch if Carr Ovfl Chan 1
D Divide MRZM Move Rt Zones to RM or GM in A BCv2 Branch if Carr Ovfl Chan 2
ZA Zero and Add MRCM Move Rt Charac to RM-GM in A BC9 Branch if Carr Chan 9
Zs Zero and Subtract MRWM Move Rt WMs to RM-GM in A BC91 Branch if Carr Chan 9 Chan 1
FA Floating Add MRNWM | Move Rt Num and WMs to RM-GM in A BC92 Branch if Carr Chan 9 Chan 2
FS Floating Subtract MRZWM | Move Rt Zones and WMs to RM~-GM in A BXPA Branch and Exit Priority Alert
FM Floating Multiply MRCWM | Move Rt Charac and WMs to RM-GM in A BEPA Branch and Enter Priority Alert
FD Floating Divide MCS Move Charac and Suppress Zeros JID Test and Branch
FRA Floating Reset and Add MCE Move Characters and Edit BPI Priority Test and Branch
FST Floating Store STATS Store and Restore Status
SCAN OPERATION CODES SSF Select Stockr and Feed
COMPARE AND LOOKUP OPERATIONS CcC Pratr Carriage Control
SCNRR Scan Rt to A-Fld RM BSP Backspace Tape
C Compare SCNRG Scan Rt to A-Fld GM-WM WTM Write Tape Mark on Tape
LL Lookup Low SCNRM | Scan Rt to A-Fld RM or GM-WM RWD Rewind Tape
LE Lookup Equal SCNR Scan Rt to WM in A- or B~Fld RWU Rewind and Unload Tape
LLE Lookup Low or Equal SCNLA Scan Left to A-Fld WM cu Control Unit
LH Lookup High SCNLB Scan Left to B-Fld WM MU Move Mode 1/0O Command
LEH Lookup Equal or High SCNL Scan Left to WM in A~ or B-Fid LU Load Mode 1/0O Command
LLH Lookup Low or High SCNLS Scan Left to Single Position H Halt
*See Appendix D

® Figure 21. Mnemonic Operation Codes

22

Line ! Label
] 6

T
(I S T
0.2 .SMITC.&'A
o3 [o0

Figure 22. No Operation; Word Mark

Line Label perati g

3 Slé 15]16 20§21 25 30 35 40

ol ... INaP e ¢

o2 lSWITCHB .. 1B . . INEXT i g
I

0.3 " PV SRR NV S S S S R ST P U VU T O U S W WA NSt 2

Figure 23. No Operation

label for location 01950.) Thus, the assembled instruc-
tions will be N101950b, with word marks over N and J.

Note: The processor will automatically substitute a
twelve-position Nop machine instruction for any state-
ment in the source program containing an invalid
operation code. This is done to permit patching of the
object deck.

Declarative Operation Codes

Declarative operation codes are used in Autocoder
statements that are translated by the processor into
data areas, data constants, and address constants used
by the object program, and to define and identify
labels.

Declarative operations enable the programmer to
refer to work areas and constants by their descriptive
names (labels) without regard to their actual locations
in core storage. For example, if the programmer wants
to reserve 20 consecutive core-storage positions for
accumulating a final sales total, a declarative operation
enables him to reserve the area and refer to it by a
label, without concern for the actual address of the
field. In this case the label may be ToTAL or accum,
or some other label descriptive or meaningful to the
programmer,

There are seven declarative operation codes. Their
use, function and formats are discussed in the following
order.

OPERATION CODE STATEMENT FUNCTION

DA Define Area

DAV Define Area in COMMON

RSV Reserve Assignment in COMMON
DCW Define Constant with Word Mark
DC Define Constant (no word mark)
DS Define Symbol

EQU Equate

DA — Define Area

The functions of the pa statement are to reserve and
define areas of core storage, such as input, output,
or work areas. Fields within each area can be defined
by the use of successive statements (called pa sub-
entries), with a blank operation code (columns 16-20).
The label associated with the pa statement refers to
the high-order address of the reserved area. The label
associated with a subentry within the area refers to
its low-order address.

DA Statement

The area or areas to be reserved must be defined in
the operand field of the pa statement. The operand
field of the pa statement contains a parameter of the
form B x L, where B (blocking factor) is the number
of identical areas to be defined, and L is the length of
each area: B x L = Defined Area. In Figure 24, B = 1
and L = 80. Thus, 1 x 80 = 80 positions of core storage.

Line Label peroﬁov:l_ ?
3 sls 15’16 20f21 25 30 35 40

0.1 IREADAREA . DA . |1X80
H

0.2 PR TI S B

Figure 24. One Area of 80 Positions Defined in a pa Statement

Note that in Figure 25, B = 24 and L. = 80. Thus,
24 x 80 = 1,920 positions of core storage to be re-
served. The label refers to the high-order position of
the total area defined. (The number of positions re-
served will be increased if certain additional elements
are specified in the operand field. These elements are
explained in succeeding paragraphs.)

......

Line Label _preroﬁi {
s gls : 1she 2021 25 30 35 40

0.1, READAREA A 2 4X.80, .
I
o2 |, ...,

Figure 25. Defining 24 Identical Areas of 80 Positions Each

DA Subentries

The programmer frequently wants to process fields
and subfields within a single area, or successive identi-
cal areas. These fields must be defined in the pa
subentry statements immediately following the pa
statement. The operation fields for these subsequent
entries must be blank. If a label is used, it refers to
the low-order position of the field.

The operand of each subentry must specify the
relative location of the field within the defined area.
The first location (high-order position) of each defined
area is considered location 1. The high-order and low-
order positions of the subentry field (relative to loca-

Autocoder Operation Codes . 23

tion 1) are placed in the operand field. These two
numbers must be separated by a comma. The proc-
essor places a word mark over the high-order position
of each field thus defined.

If no word mark is desired, it is necessary to place
only the relative low-order position in the operand
field. The label will refer to this low-order position,
and no word mark will be assigned by the processor.
A word mark can, however, be associated with a
single-position field by writing the relative location
of the position twice, and separating the two numbers
by a comma. This is illustrated in Figure 26.

DA Statement Parameters

Five optional parameters can be specified in the
operand field subsequent to the B x L parameter in
a DA statement. Any or all of these parameters can
be used in any order; however, the B x L. parameter
must be first. These parameters are explained under
the following headings:

Field Indexing

Group Mark with Word Mark

Record Mark

Relative to Zero Addressing

“No-Clear” Option

FIELD INDEXING

The labels of all pa subentries will be automatically
indexed by the index register noted in the pA state-
ment (Figure 27). However, the label of the pa
statement can be indexed only when used as an
operand. That is, the label of the pa statement must
have the index register notation affixed to it, each
time it is referenced, if index adjustment is desired.

In Figure 27, the labels defined in the pA subentries
will be automatically indexed by the contents of index
register 2. However, if one of the labels used as a
symbol in the operand field of an instruction is fol-
lowed by an indexing notation, this indexing overrides
the indexing specified in the pa statement.

Overriding indexing, as explained above, is effective
only for the instruction in which it appears. In sub-
sequent instructions, the index indication of the pa

Line Label J?peratii é
3 5|6 15)i6 20]21 25 30 35 40

o1, READAREA. . DA . . |24X80: X206 o o {
o2 |MANNG. | 4o L R
o3 WAME . | I 8
04 DATE .| AN ¢
0.5, [GROSS. | . N7 AR |
oelf(zzg.x‘.i‘ o legort it K9
or IF1CA . I. o lr4ze S
o8, |, P I & X AN S
I 122,28 R
1o, l N e R

Figure 27. Indexing Fields in a pa Statement

statement will be effective. In Figure 28 cross is
indexed by the contents of index register 3, regardless
of the index register indicated in the pa statement
in which it was defined.

Label

.. |yR r.o.wir E

0,2 PR

Figure 28. Overriding the pa Statement Index of a Field

The programmer can negate the effect of indexing
in a field by putting an X0 (X-zero) in the operand of
each instruction in which indexing is not wanted. Here,
again, the original index indication is effective in
subsequent instructions (Figure 29).

Line Label _l(_)pemﬁj 3
sle : 15}t6 20[21 25 30 35 40
o1, [YRTODATE . [ZA . |GROSS+X0.2ACCUM . . . é
02 FEETERTOT S NS NUUSF MEVEAVUN ST SR S A S0 T S S T S PR S T Y I

Figure 29. Negating the pa Statement Index of a Field

GROUP MARK WITH WORD MARK

If a group mark with word mark (%) is desired after
the total defined area, the character == (12-7-8 punch),
preceded by a comma; or the letter G, preceded by

Line Label - _Eperuﬁzi OPERAND

3 . 15(16 . 2021 25 30 35 40 45 50 55 60 65 70
o1, READAREA A BXBO: o o oo e
oz DATE .. 3237 L N S
0.3] 135,35, WORK MARK SET IN A 1. POSITION FIELD. .
0.9 INAME . | 10200 e e
0,5, |6.R08.S, | . N X AN A P P S P
06 EICA . | N Y £ 2% 7 N S L e N
0.7, [FIRST. | 28 NO WORD MARK i . . . ,
0.8 : PN STy P S NP UUT VAT S UT ST W W S ST S Y S S S T S S S S S S0 S SIS VU U S G S S S S S S S S

® Figure 26. Areas and Fields Defined in a pa Statement

24

a comma, must be used as a parameter of the pa
statement (Figure 30).

Line Label _J?peraﬁﬂ é
5|6 ' 15)t6 0J21 25 30 35 40
o READAREA oA . [24X8006 Yi

PP S T W B R LA 4 PUNT S Y PRI S U T N SN S S N G 4

Figure 30. Group Mark with Word Mark after Total Area

RECORD MARK

If a record mark (=) is desired after each area, when
multiple areas are defined, the character == (0-2-8
punch), preceded by a comma; or the letter R, pre-
ceded by a comma, must be used as a parameter of
the pa statement (Figure 31).

Line Label Eperaﬁu_r{ 2
] SL 15)is 2021 25 30 35 40
A S

0.1, [READAREA. 24X8.0.2.X2.0.4.2.6.)
|
02 P B PN PP S TSRS S VY Wi S S S SRS

......

Figure 31. Indicating Record Marks in a pA Statement

The pa statement in Figure 31 will cause the proces-
sor to generate a record mark after each area. This
means that there will be a total of 1,945 positions of
core storage reserved: (24 x 80) + 24 record marks +
group mark with word mark = 1,945 positions of core
storage. When indexing this statement in a loop to
process each area consecutively, 81 positions should be
allowed to include the record mark with each area.

RELATIVE TO ZERO ADDRESSING

By writing the character zero, preceded by a comma
(,0), as a parameter of the pa statement, the processor
will assign addresses to the labels of fields as though
the high-order position of the defined area were core-
storage position zero. However, the label of the pa
siatement will still be assigned the address of the high-
order position of the area actually reserved by the
processor (Figure 32).

‘Epemﬁd 5
1516 0j21 28 30 35 40
A . |29X80,%X2:6,0. . .. 4

PN T S S .{

Figure 32. Relative to Zero Addressing

Norte: If relative to zero addressing is used, the fields
will be assigned a ~o relocation indicator. Field index-
ing is required.

“NO-CLEAR” OPTION

The area reserved by the pa statement is normally
cleared to blanks before setting word marks and/or

record marks. By writing the character N preceded
by a comma (,N) as a parameter of the pa statement,
the area reserved by the .pa statement will not be
cleared to blanks when the program containing the
area is loaded into core storage from the mjB. (See
Figure 33 for an example.) This option is not effective
when the program is loaded from the sor.

Label _Eperoti %
sie 15)16 20§21 28 30 35 40

.[ADA.A’EEA A 2AXROI X2 G o o oo . %
w2 " P

ol ey PRI I S I S S S S S S S S F I S S W VA N S 1

Figure 33, Negating the Clearing of an Area to Blanks

Sample Problem

In this problem, data is to be read from magnetic tape
into an area of storage, where it is to be processed.
This area, labeled RrEADAREA, is indexed by index
register 2 and will have a final group mark with word
mark, This is a payroll operation, and each record
refers to a different employee. The records are writ-
ten on tape in blocks of 24. Each record is 80 characters
long, and has the following format:

LABEL POSITIONS DATA
MANNO 4-8 Man Number
NAME 11-30 Employee name
DATE 32-37 Date
GROSS 45-64 Gross wages
WTAX 66-71 Withholding tax
FICA 74-79 FICA deductions

35 Month

22-28 Employee first name

The labels and their associated fields can be listed
in any order. (Labels are not assigned to month and
employee first name because they will not be needed
in this problem.). One way of coding the required
elements is illustrated in Figure 27.

The programmer can now, in his source program,
write an 10Cs macro-instruction to cause data to be
read from tape into a storage area labeled READAREA.
This causes a block of 24 eighty-character data records
to be placed in the 1,920 reserved positions of core
storage. This data can now be referred to by the
labels DATE, NAME, FICA, etc., in the first of the 24
records that occupy READAREA. The 10Cs controls the in-
dexing used to reference and process the data in the
subsequent records, 2 through 24.

After all the processing required in the first record
is complete, index register 2 is incremented by 80.
Because all labels defined by this pa statement are
increased by the contents of index register 2, the
routine now processes the second data record of the
block read into core storage. This process is repeated
until all the records have been processed. ‘

Review

Figure 34 summarizes the main points covered in the
preceding discussion of the pA statement parameters,

Autocoder Operation Codes 25

and shows the various entries which can be written
in the pa statement. The B x L entry must be first;
the other entries can be written in any order.

Line Label perati
3 Si6 15016 20J2) 25 30 35 40

o1 |[READAREA DA YXBO X222 Cr 00N - . . g
t
0.2 IV S SR i)

Figure 34. Possible Elements in a pa Statement

The following chart summarizes the main points of
the processor’s treatment of areas and subentries. Al-
though the index register indication appears in the pa
statement, only the subentries are indexed. The pa
statement label can be indexed in any instruction in
which it appears.

WORD MARK LABEL
SET WHERE SET REFERENCED

AREA(s) NO ... HIGH-ORDER
FIELD

FORM(X,Y) YES HIGH-ORDER LOW-ORDER

FORM(Y) NO ... LOW-ORDER
SINGLE
POSITION
FIELD

FORM(X,X) YES LOCATION LOCATION

FORM(X) NO LOCATION

DAV — Define Area in COMMON

The pav statement is used to define an area in comMoN
in a manner similar to the pa statement. However,
labels of fields are automatically assigned downward
relocation indicators (except when relative to zero
addressed, resulting in a No relocation indicator).

The format of the two statements is identical, except
for the operation code. For a discussion of conventions
for specifying a pav statement, its subentries, and the
five optional parameters available in the pav operand
field, see “pA — Define Area.”

Before proceeding to examples illustrating the use
of the pav statement, the following discussion on
comMoN is included for those users unfamiliar with
its requirements and function.

The Autocoder processor makes the following as-
sumptions when assembling the object deck:

1. The Linkage Loader will relocate downward all
addresses referring to comMoN. The downward reloca-
tion factor applied will be such that the value con-
tained at the system symbol /ams/ will be the topmost
limit of comMoN; or, if furnished in the program, the
BASE2 statement will specify the topmost limit.

2. The topmost address in common will be assigned
the value 99999 by the processor, and go downward.

3. The processor will not assemble data or instruc-
tions to be loaded into comMmon. For example, a nc
or a pcw cannot be used to load data into common.

26

Data can be placed into common only through the
execution of the object program.

4. The label common is an indelible entry in the
processor’s symbol table. It has the address value of
99999, and has a downward relocation indicator at-
tached. If the user defines commoNn as the label of a
source statement, it will receive an “M” (Multiple
Definition) flag.

Two steps must be taken by the programmer to
make use of comMoN in his subprogram. The steps are
discussed under the following subheadings:

Assignment of Data Areas in coMmMoN
Use of Labels Referencing comMon

Assignment of Data Areas in COMMON

The programmer must define the assignment of data
fields and areas within the comMon data areas. Since
COMMON starts at 99999 and goes downward, the pro-
grammer determines the total number of positions he
requires and assigns space upward for each data
field and area. The highest position he can use is
99998. (This technique is illustrated in Figures 61
and 62.)

If a program contains two or more subprograms,
each of which contains references to the same data
fields in comMoN, these subprograms must assign core
storage in coMMoN in the same way (or in a way
compatible with each subprogram’s needs). That is,
the same data field must be assigned the same relative
address in each of the subprograms.

One way of assuring compatible comMon area
referencing is to include identical comMoN area source
statements in each of the subprograms involved (i.e.,
identical DAV, EQU, or Rsv statements).

Labels referencing the comMon Data Area can be
defined in any of the following ways:

1. The eQu statement. For example, for the state-
ment A EQU coMmMoN—10, the label (A) will be as-
signed the value 99989 (that is, 99999—10). Subse-
quent labels in the source program can be equated to
this label (A). Under these conditions, this label and
subsequent labels will be assigned downward reloca-
tion indicators.

2. The pav statement and associated pav subentry
statements. (Normally pav statements follow an orc
statement that places the pav area within comMon.)
Labels used in the pav and subentry statements will be
assigned downward relocation indicators.

3. The msv statement followed by an EQU statement
for an actual address value in commMon. For example:

RSV LABELB

LABELB EQU 99985

SN

If a subsequent label is to be equated to LABELB,
the rsv statement must be used, with the subsequent
label as the operand. For example:

RSV LABELC

LABELC EQU LABELB

Use of Labels Referencing COMMON

Once the programmer has defined labels referencing
COMMON, he can use them as if they were labels as-
signed to fields and areas within the usual boundaries
of the subprogram. Thus, data can be manipulated and
operated upon, and 10cs can be employed to read data
into and out of areas contained in COMMON.

RESTRICTION

The processor will not assemble data or instructions to
be loaded into comMmon., Data can be placed into
coMMON only through the execution of the object pro-
gram. Hence, Autocoder declarative statements, such
as the pc and pcw statements, cannot be used to enter
data into comMON.

The effect of the pav statement is different in several
respects from the pa statement, since the defined area
is not located within the body of the subprogram, but
within the comMmon data area. Hence the user of the
pav statement must note the following:

1. The programmer must specify the exact point

within the comMoN data area where the defined area

will start. This can be done by means of an orc state-
ment, the technique of which is illustrated in Figure
61. (The orc statement is explained in the next section,
under the subheading “orc — Origin.”)

2. The defined area in comMmMmoN can be used by
other subprograms; the “No-Clear” option enables the
programmer to retain the desired contents of comMoN.

3. The pav subentry statements can be used to set
word marks in their respective fields.

4. The pav statement can be used to clear the area
it will occupy in common, and to set record marks
and a group mark with word mark.

The coding examples in Figure 61 illustrate the as-
signment of labels within common, The relative ad-
dresses assigned are shown as comments. All labels are
assigned downward relocation indicators.

The second part of Figure 35 illustrates all the ele-
ments that can appear in the pav statement.

NortE: A group mark with word mark will be placed
at the topmost usable position in common (99998).

An alternative way of assigning the same labels is
illustrated in Figure 36. In this example, the fields are
not cleared and no word marks are set automatically.
Word marks are set during program execution by
means of imperative statements.

\

RSV — Reserve Assignment in COMMON

The msv statement is used to direct the processor to
affix a downward relocation indicator to a label that
references a field in common, The label is used as the
operand of the msv statement (Figure 37). The msv
statement must precede the use of the label as an oper-
and in the source program.

In Figure 37, the operand avpuA will be assigned
a downward relocation indicator each time it appears
in a subsequent instruction.

DCW — Define Constant with Word Mark

A pcw statement is used to enter a numeric, alpha-
meric, blank, or address constant into a core-storage

Line Label fperoﬁonl OPERAND
3 5|6 . 1516 2021 25 30 35 40 45 50 55 80 65 70
0.1, . el RG . COMMON.-59. . . . ADDRESS. 99940 s . . .
o2 YABELL AV, X1O oo LABELL ADDRESS 99940 (HIGH - ORDER) \
03 YABELZS 2,10 o LABEL2. ADDRESS 299949 (LOW-ORDER),
o4 W1 s R o ALSO SETS WORD MARK AT, 99940 . .\ |
o5 | v i, AV, XIS , AREA IS, FROM 99950 J0. 99967, . 1. ..
o6 [LABFLI . . . - A LARELA ADDRESS=99957 (LOW OROERD)|
ot VAREL A . . . 18 . AL ABEL 4 ADDRESS=9396.7 (LOW QRDER)|
oe, bk, . ., - e L WORD MARKS. ARE SET AT 99950 AND 99958 . |
o8 | . . 1. . bav lexi6 . X6 AREA 15 FROM 99968 TO 99998 . i .
10 BELS . . . N LABRELS ADDRESS*99972+Xb o o st oothntitan
it WABELE | . . 16 . e LABEL & ADDRESS=99983+X6 .« o 0\ . .

i

t2

ST |

o ALSO WARD MARKS. ARE SET AT o ivvsii v

.3

LT - S G S

b 99968,9997.0,9997.3 AND 99984 .

.........

.
[FE. PV PR B

I S

P S ST SN S T TN SO YN S S VUL Y ST VAU W S WA S WS S0 S WO YU SO0 SO AT S N S S S VOO S SN SO0 U TN O Y

OPERAND
30 35 40 45 50 1] $0 85 20

Line| Label Eperotiﬂ_
3 ; 15)16 20]21 2%
0.1

COMMON-62. . . AN

ORG

P oot "
o2 |COMMONARITE

AY. .

2X30: X2 RGN0 . .,

........

. .9.9.99.9 MUST NOT, BE USED |

o3 |F1ELDA

1210 .

3 SET AT 99998

oa lFLELD2
1

11230 ..,

0.5, § 4 sl

® Figure 35. Label Assignment in coMMoN and pav Statement Elements

Autocoder Operation Codes

Line Labet $perotim OPERAND

3 5|6 i5l16 20J21 25 30 35 40 45 50 55 60 65 70
o LABELL . . \EQU _ \COMMON-59_. . ADDRESS=99940 e .
oe VABELZ . QU LABELI*S. ADDRESS=99949

03 . L W . YABELL . WORD MARK SET AT 99940 . s

04 YABELS QU \COoMMON-42. . . . ADDRESSA9995T .« v\ s . .
05, VABELA QU . COMMON-32 . . . ADDRESS 99967 i P

06, Lo oot SW. UABFLI~T7 LABEL4-9 | 74

0.7 ABEL@A,. EQU. . ICOMMON-27+Xb. . .. ADDRESSZ999T2H+X b s oo vs v 1y
0.8, b e

® Figure 36. Label Assignment in comMmonN

Line Label
3 sle

T
0,1, 4 ol
|
0.2

perati
1916 20121 25 30 35

SY. . ALPHA o ot ‘..é

Figure 37. The rsv Statement

location assigned by the processor. The processor
places a word mark over the high-order position of the
defined constant.

The label of the pcw statement makes reference to
the address of the low-order position of the constant.
The high-order position will be referenced if the label
is indented one column in the label field; that is, if it
begins in column 7. In all cases the constant being
defined must be left-justified in the operand field.

Five types of constants can be defined by means of
the pcw statement. They are discussed under the fol-
lowing headings:

Numeric Constants
Alphameric Constants
Blank Constants

Address Constants

Signed Address Constants

Numeric Constants

A numeric constant, defined in a pcw statement by the
numeric characters in the operand field, can be pre-
ceded by a plus or minus sign, or it can be unsigned.
A plus sign causes A and B bits to be placed over the
units digit. A minus sign causes a B bit to be placed
over the units digit. Unsigned constants will be un-
signed in storage (Figure 38).

The first blank column encountered in the operand
field terminates a numeric constant. A numeric constant
cannot be more than 51 characters long if it is signed;
52 if unsigned.

Line Label peraﬁori é
3 sie 15lie 20]21 25 30 35 40

o ISEVENTYS pew 78 i
o2 WMINUSS . . ppew -5 i i
03 |PLUSS. | CW_ . |+5 . . L“K
0. e R

Figure 38. Numeric Constants Defined in pcw Statements

Alphameric Constants

An alphameric constant must be preceded and fol-
lowed by the @ character (4-8 punch). Blanks and
special characters, including the @ character itself,
may be used in the body of the constant. The proc-
essor, in scanning the operand field, will consider every-
thing to the left of the rightmost @ character a part
of the constant being defined. For this reason, the @
character is not permissible in comments on the same
line. An alphameric constant can contain up to 50
characters, excluding the initial and terminal @ charac-
ters. A comma preceding a G (,G) following the trail-
ing @ character causes the processor to put a group
mark with word mark in storage following the last
character in the constant. (The label refers to the low-
order position of the field, not the group mark posi-
tion.) :

In Figure 39, the group mark with word mark was
used with a pcw statement to be written by the console
printer. The label of the message was indented to ref-
erence the high-order position. A group mark with
word mark is required to halt message typing on the
console printer.

Notk: The word separator character (0-5-8 punch)
must never be coded as the first character of a pcw
alphameric constant.

Line Label _J?peroﬁ 0 OPERAND

3 sle 15)t6 20 25 30 35 40 as 50 55 60 65 70
01, LSOAP. . 1. .

0.2 f ¥

0.3 MESS A'G_E

0.4 e | .

Figure 39. Alphameric Constants Defined in pcw Statements

28

TN

Blank Constants

A field of blanks can be reserved by placing a # char-
acter (3-8 punch) in column 21, followed by a number
indicating how many consecutive blank core-storage
positions are to be defined (Figure 40). A word mark
is set in the high-order position of this field.

Note: The number of successive blank constants
that can be reserved by a pcw statement is limited to
500 positions of core storage. If this limit is exceeded,
the processor will reserve only the maximum (500
positions), and attach an “F” flag to the statement on
the assembly listing.

Line Label peration é
3 sle 1516 2021 25 30 35 40
1
o BLIAKS . | cL_TmAf R
|
0.2 P U U SN RN RIS S S .x.L.A‘-‘%

Figure 40. Field of 14 Blanks Defined in a pcw Statement

Address Constants

A pcw statement can be used to define an address con-
stant. The constant is the address of the field whose
label is written in the operand. For example (Figure
41), assume that the label MaNNoO is used in the sym-
bolic program, and that it was assigned the address
00500 by the processor. The programmer can refer to
the address of man~o by using the symbolic label of
the pcw statement.

Line Label _Eperotiai g
3 s 15)i6 2021 25 30 35 40

0.1, SEK.ZZA.LE . |DCW . MANNO

0,2 TS RS URT REVRT S P S S S S G

Figure 41. Address Constant

The five-character data field labeled seriaL (Figure
41) will contain the address of the label manno
(00500). The Linkage Loader will recognize address
constants and adjust them by the proper relocation
factor. Thus, sEriaL will contain the relocated address
of MaNNoO.

If an address constant is address adjusted in a pcw
statement, the constant is adjusted before it is assigned

a storage location. In Figure 42, ManNNo (actual address
00500) has been address adjusted by +12. Thus, the
location labeled rica will contain the address constant
00512.

Line Label JOperctim {

3 sle : 1sjis 20f21 25 30 35 a0

o0 |FICA . \.. . |pew . IMANNO+LZ 7(
|

0.2 I L T S S S T T L N

Figure 42. Address Constant with Address Adjustment Defined
in pcw Statement

Address constants defined in a pcw statement can
be indexed. The zone bit(s) indicating the specified
index register becomes part of the constant.

Note 1: All address constants receive the same relo-
cation indicators that were assigned to the symbol
specified in the operand field.

NotE 2: An address constant of a linkage or system
symbol can be specified, and the desired address will
be automatically supplied by the Linkage Loader.
However, this form of address constant cannot be
address adjusted or indexed.

Signed Address Constants

An address constant defined in a pcw statement can be
signed. A and B bits will be generated by the processor
over the units position, if the plus (+) sign was placed
before the operand. The units position will contain a
B bit if the minus (—) sign was used (Figure 43).

Line Label
5 sle

o1, [SERTALIL .
o2 |FEDTAX . . .

perati é
156 2012t 25 30 35 40

CW . [+ MANN.O.

ew . |-wiThoipImG o oo S

Figure 43. Signed Address Constants Defined in pcw Statement

Implied DCW Operation Codes

If a number of constants are to be defined in succession,
only the first statement requires the mnemonic pcw,
in the operation field (Figure 44).

Line Label fperqtim OPERANDC
3 sls 1s)is 20[21 25 30 35 40 45 50 55 60, 65 70
o [TEN 1\ IDCW WO (v
o2 DATE i, | ... |@JUNE 30,1965@ . \ 0\ sttt e
03 | MESSAGE i@.EO.J'. START. PHASE TWO @56 . ., ., ., v

i
0.4 N i R B S S T e TN S S S S S U U S T S U S S T T S ST S SV ST UG ST S VA R S A WY S0 BT "

Figure 44. Successive bcw Statements with Blank Operation Columns

Autocoder Operation Codes 29

DC — Define Constant (no word mark)

The function performed by the pc statement, and the
permissible forms of the constants, are identical to
those described for the pcw statement. The only differ-
ence is that the word mark is absent when the constant
is assigned to core storage (Figure 45).

Line Label perati
3 Si6 1516

o [SERIALI . . . IDC.
o2 FIELDI . .
03 | S.SMUMBER
I
PR |)

0.4

Figure 45, Successive pc Statements with Blank Operation
Columns

Note: The restriction on the use of an initial word
separator character in the pcw statement defining an
alphameric constant does not apply to the pc statement.

DS — Define Symbol

The ps statement is used to label and define an area
within the subprogram. No information is entered into
the area, no word mark is assigned by the processor,
and the area is not cleared prior to reservation. The
programmer specifies the size of the area, and desig-
nates the symbolic label by which it will be referenced.
The number of desired consecutive positions of core
storage is written in the operand field (Figure 46). The
label refers to the low-order position of the area.
However, if the label is indented one place, that is,
if it begins in column 7, the label will refer to the high-
order position. A label is not mandatory.

Line Label peraﬁ:nl_ {
3 sls 15|16 20J21 25 30 35 40

o, DOZENM | . DS . 020 i
o2 |FIVE .| PR
03 . e : P N NS RSN .\i

Figure 46. Defining Twelve-Position and Five-Position Areas in
ps Statements

Figure 46 illustrates the form of the ps statement.
The first entry, labeled pozen, defines an area twelve
positions long. The second entry, labeled rive, defines
an area five positions in length.

EQU — Equate

The EQU statement is used to define either a second
symbol to reference a specific location, or a symbol
for a location not previously labeled. The symbol to
be defined is specified in the label field, and the rep-

30

resentation of the location to be “equated” is specified
in the operand field.

An EQU statement can be used to assign a symbolic
label to each of the following:

Actual or symbolic address
Adjusted or modified address
Index register

Asterisk address

Actual or Symbolic Address

The symbol to be defined is specified in the label field.
The operand field can contain an actual or symbolic
address. If a symbolic address is specified in the op-
erand field, it must have appeared as a label prior to
this point in the subprogram. If this condition is not
met, the label will not be defined.

SYMBOLIC ADDRESS

The EQU statement in Figure 47 will cause the processor
to assign the same address to the label inpIVIDUAL
that is assigned to the symbol man~o. Thus, INDIVIDUAL
has been equated to ManNO — both labels refer to the
same core-storage location and are assigned the same
relocation indicator by the processor.

Line Label _E
5~ sls 15)16

) z.v.z:m UALlEqu

0.2 PO T S T

Figure 47. Equating a Symbolic Address

ACTUAL ADDRESS

The EQU statement in Figure 48 will cause the processor
to assign the label accrNo to machine location 25000.

Note: Labels equated to actual addresses will be
treated as absolute values and given a No relocation
indicator.

......

Line Label Ii)peroﬁori {
s sls 15)t6. 20j21 25 30 35 40

o, |4CCTNO . . . Eau
o2 | iyt

Figure 48, Equating an Actual Address

Adjusted or Modified Address

The operand of an EQU statement can be address ad-
justed or indexed. The same relocation indicators
assigned to the address adjusted and/or indexed op-
erand will be given to the defined label.

T

N

EQUATING TO AN ADDRESS ADJUSTED OPERAND

In Figure 49, the processor assigns the label wrrax
to a location ten storage positions lower than the loca-
tion labeled rFica. That is, if Fica is assigned location
00890, wraTax will be equated to rica— 10, or 00880.

Line Label ‘Eperutioi é
3 ' 15116 20]21 25 30 35 40
ot WHTAX | .. \f@U FICA=10 + oot
0.2, 1 1 4 : b MU S S TS S S ST S ST S ST N {

Figure 49. Equating with Address Adjustment

EQUATING TO AN INDEXED OPERAND

A label can be equated to an indexed operand. In
Figure 50, custno is equated to joB indexed by index
register 3, not joB alone. That is, custno will be as-
signed the address of joB, with A and B bits over the
tens position (the tag for index register 3).

An indexed operand can also be address adjusted.

Line I Label —Eperaﬁj é
3 5(6 15)16 20j21 25 30 35 40

o1, 1C.US 7‘.Moi _|cav. . |70B+x3,

0.2 PR R T

Figure 50. Indexing in an EQuU Statement

EQUATING TO TWO LABELS

A label can be equated to the algebraic sum or dif-
ference of the values represented by two symbolic
labels, in the form ¢ EQu A%B (+ or —), where A and
B are previously defined labels (Figure 51). (The
treatment of the form ¢ EQU a+8, where B is the label
for an index register, is explained under the sub-
heading “Index Register.”)

,49%

Figure 51. Equating a Label to Two Symbolic Labels

In Figure 51, if waTAX references core-storage loca-
tion 08000 and seconD references location 01500, the
label NexT will be assigned the value equal to the sum
of both; that is, 09500, If a minus sign is used instead
of a plus sign, the label NexT will be assigned a value
equal to their difference, that is, 06500.

NotE 1: No further adjustments (or indexing) are
allowed.

Note 2: If either A or B is assigned a No relocation
indicator, C will be assigned the relocation indicator
of the other label. If neither A nor B is assigned a No

relocation indicator, C will be assigned a No reloca-
tion indicator.

Index Register

The label of an EQU statement can be defined as an
alternative symbolic name for an index register. The
processor’s predefined label for the index register to be
equated (X1-X15) is written in the operand field.
Figure 52 illustrates this technique.

Line Label Eperotﬂ {
3 sle : [3 2021 25 30 35 40

Q0P , .. QU . IX9

0.1, N
| s
0.2 N TR S P P S N SR SO

Figure 52. Labeling an Index Register with an £Qu Statement

In Figure 52, the label Loor will be assigned by the
processor to index register 9. Thus, index register 9
can be referred to as Loop, instead of X9. This use of
a symbolic index register is illustrated in Figure 53.

Label ‘tperaﬁ g
T 15)16 20f21 25 30 35 40
A £20,CO0UNTERLOOP. . . . é

P
|
1

L

Figure 53. Use of a Symbolic Index Register

Note 1: Symbolic index registers must be equated
before they can be used in an instruction.

Note 2: A label can be equated to an actual or
symbolic operand indexed by a symbolic index register,
in the form ¢ EQu a+B. The label B represents the in-
dex register. The label C will be assigned the same
relocation indicator assigned to A.

Asterisk

A label can be equated to an asterisk address, with
or without address adjustment and/or indexing (Fig-
ures 54 and 55).

Line

0,1
0.2

Figure 54. Equating an Asterisk Operand

In Figure 54, the label rreLDA refers to the location
next available in the program. If the next available

location in the program is 00698, ¥IELDA is equated to
00698.

Autocoder Operation Codes 31

Figure 55 illustrates the use of the EQU statement
with an address adjusted asterisk operand. If the aster-
isk refers to location 00698, the label FIELDA is equated
to 00710.

Line Label peration| {
3 sle 15)i6 20j21 25 30 35 40
PR
NS

T

LELDA . . . |EQU. L2
|

02 1 .. il

Figure 55. Asterisk Operand with Address Adjustment

Linkage Loader Operation Codes

The output of an Autocoder assembly is in the inter-
mediate form of a relocatable object deck. It is during
the execution of the Linkage Loader that the object
deck is converted into absolute form. The absolute
object program consists of relocated subprograms with
linkages to each other, as well as to the Resident
Monitor, In order to accomplish this conversion, the
Linkage Loader requires certain specific information,
presented according to the conventions of the System
Monitor. ‘

The Autocoder language provides eight statements
by which the programmer can communicate the sub-
program’s requirements to the Linkage Loader. Al-
though these statements can be added to the object
deck of a subprogram after its assembly, their inclusion
in the form of an Autocoder statement affords the
following benefits: - :

1. Automatic conversion of the statement into the
format required by the Linkage Loader

2. Error diagnosis of the statement as it relates to the
subprogram being assembled

3. Automatic sequencing (card columns 73-75) and
identification (card columns 76-80) of the statement
within the relocatable object deck

The Linkage Loader statements permitted in a sub-

program assembly contain the following operation

codes:

OPERATION CODE STATEMENT FUNCTION

TITLE Title of Subprogram

BASE1 Base Address

BASE2 Base Address (COMMON Data
Area)

CALL Subprogram Call

DCWF Subprogram Address Constant

DCWS Subprogram Branch Instruction

DEFIN Definition

PRTCT Protect

In the following descriptions of these statements,
only permissible formats and a brief description of their
functions are given. The reader is directed to the pub-
lication, System Monitor, for details concerning the
functions performed by these Linkage Loader control
operations.

32

TITLE —Title

The TITLE statement is used to establish an identify-
ing name for a subprogram, to indicate the size of
the comMmon data area the subprogram will use, and to
state the lowest origin point in the subprogram.

Entries

The name of the subprogram must be a conventional
label (1-10 alphameric characters in length), and ap-
pears as the first entry in the operand field. This name
can be used in DCWS, DCWF, BASE1, BASE2, PRTCT, and
caLL statements. (These statements are individually
explained in this publication.)

Norte: All names of BM-provided modules in the
Operating System start with “18”. The user should be
aware of this standard to avoid duplicating the name
of a module when naming a relocatable subprogram.

The specified size of the common data area required
is written as the second operand entry in the form of
an integer, one to five positions in length, and is
optional. If it is omitted, the processor will leave the
corresponding field in the object program’s TiTLE card
blank, and the Linkage Loader can subsequently give
no warning if the program and comMMon data area
should overlap.

The lowest origin point is the third operand entry
and can be omitted. If it is omitted, the processor will
place into the object program’s TiTLE card the lowest
address assigned during the assembly. If the third
entry is included, the automatic computation of the
processor is negated, and the value declared by the

- entry is passed on to the Linkage Loader through the

TITLE card. This entry can be an actual value or a label
within the assembly.

Although the third entry is normally omitted, it can
be useful under the following conditions:

1. When a program being assembled contains one
or more SPEND statements and,

2. When the low origin points of the subprograms
are different and it is necessary that these differences
be indicated.

Format Considerations

The entries are written in the operand field, and sep-
arated by commas. If the second entry is omitted and
a third entry is used, the third entry must be sep-
arated from the first entry by two commas. If both the
second and third entries are omitted, only the name
is required, with no trailing commas (Figure 56).

Note 1: The TrtLE card should be the first source
statement in a subprogram, with the exception of any
of the Assembly Control statements explained later.

Norte 2: The TITLE card is the first card in the object
deck, with the parameters rearranged to meet the re-
quirements of the Linkage Loader.

Line Label perati é
3 sle 15)16 20[21 25 30 35 40

oo oo ooy, |TITLENAME o
0.2 L TITLEANAMES 145, ., Coi j%
03 ol TITLENAME 31452 L ABEL .\

0.4 ol T LT WA,

05 | vy w1 ATLITLE

0,6, },

Figure 56. Permissible Forms of the TiTLE Statement

NotE 3: The contents of the system symbol /pat/,
the date currently stored in the Resident Monitor, will
be placed in the date field (columns 6-10) of the re-
arranged TITLE card in the object deck. This date will
also appear in the heading line of the assembly listing.

BASE1 — Base Address

The BAsE1 statement can be used to control the Link-
age Loader’s relocation factor. The following operands
are permissible in a BAsE1 statement:

Actual

Symbolic

Asterisk plus X00 (*+X00)

Actual
The actual core-storage location is written in the op-

erand field (Figure 57).

Line Label peration| {
s sls 1sjie 20j21 25 30 35 40
a4y) 1 " 1 Pt 1
N L

1. .. |BAsSEA1.5000. .
]
1

Figure 57. Use of an Actual Address in a BasE1 Statement

Symbolic
A symbolic address can be a subprogram name or a
linkage symbol defined in a subprogram that is
processed by the Linkage Loader prior to the sub-
program in which the Base1 statement appears. This
symbolic address is defined by means of the TITLE or
DEFIN statements (see below).

In Figure 58, the operand proGrRAM? is the name of a
subprogram that is defined by a TITLE statement.

Line Label peraﬁot:[z
3 5l6 1516 20)21 25 30 35 40

ol 1., |BASEIPROGRAME.
|
0.2 1

.......

Figure 58. Symbolic Address in a BAsE1 Statement

Note: A blank operand sets the relocation factor to
base zero.

Asterisk Plus X00 (* 4+ X00)

If an *+XO00 is the operand of a BasE1 statement, the
relocation factor will be incremented so that program

loading will continue at the next even-hundred loca-
tion. For example, if the asterisk has the relocated
value of 18279 the relocation factor will be adjusted
to 18300. If the value of the asterisk is already an even-
hundred address, that value will remain the relocation
factor.

Note: The *+XO00 form of the BAsE1 statement must
be used in conjunction with an orc statement contain-
ing *+X00 in the operand field. (See “orc — Origin,”
under “Control Operation Codes.”)

BASE2 — Base Address (COMMON Data Area)

The Base2 card is used to set the upper limit of the
comMoN data area. The operand of the Basg2 card,
which can be either a linkage symbol or an actual
address, is as described under the Base1 statement. The
form *+X00 is not valid in a BAsE2 statement.

CALL — Subprogram Call

The caLL statement provides the Linkage Loader with
the name of a subprogram that is to be loaded from
the System Library file or from the co file. The oper-
and of the caLL card is the name of the subprogram
to be processed by the Linkage Loader (Figure 59).
When the caLL card produced by the processor is
loaded with the object deck, the operand of the caLL
statement is passed directly to the Linkage Loader.

- In Figure 59, the linkage symbol 1oMODULE must
have been defined by a TITLE statement in the subpro-
gram being called.

Line Label ‘Eperoﬁ g
sle : 15)16 20j21 25 30 35 a0
0.1 i lCALL lTOMODYLE S
0.z { N B e A

Figure 59. The caLL Statement

DCWF — Subprogram Address Constant

The pcwr statement is used to specify an address
constant (similar to the pcw unsigned address con-
stant) and to create an imbedded call for the named
subprogram. The operand of the pcwr statement must
be the name of the requested subprogram as specified
in its TITLE card if the operand has not yet been located
and processed (forward reference). Otherwise, it may
be any linkage symbol.

The label of a pcwr always refers to the high-order
position of the address constant. This label must not
be indented.

The pcwr statement instructs the Linkage Loader
to perform the following functions:

Autocoder Operation Codes 33

1. Include the named subprogram with the pro-
gram that contains the pcwr statement.

2. Provide an address constant of the relocated
origin point of the named subprogram. This address
constant is placed into the position in which the
DCWF statement appears in the source program (Fig-
ure 60).

This operation code assumes a higher mnemonic
value if thought of as representing a pcw—Five-position
address.

In Figure 60, assuming that the subprogram THIRD
was relocated to start at locavtion 10400, the address
constant at object time will be 10400.

Line Label peroﬁj_
3 §Is ISIIS 20f21 25 390 35 a0

o IPARTS. CWEITHIRD oo v oo ool
0.2 FURTEET U R Y U S S Y RN G S S S S S S Y N i

Figure 60. Use of the pcwr Statement

DCWS — Subprogram Branch Instruction

The pcws statement has the same format as the pcwr
statement (Figure 61); however, a seven-position un-
conditional branch is constructed instead of a five-
position address constant. This statement causes the
following:

1. The named subprogram will be located and
processed by the Linkage Loader.

2. A seven-position unconditional branch instruc-
tion (branching to the relocated origin point of the
named subprogram) will be constructed by the Link-
age Loader, and placed into the position in the sub-
program in which the pcws appears.

This operation code assumes a higher mnemonic
value if thought of as representing a pcw—Seven-
position branch.

The pcws statement in Figure 61 results in an un-
conditional branch instruction being placed into that
position in the subprogram in which the pcws appears.
If the subprogram THIRD is relocated to the origin point
14000, the resulting branch instruction is J14000b.

l-.‘_)Epemﬁﬁg |
A WS, |

25

Figure 61. Use of the pcws Statement

DEFIN — Definition

The pEFIN statement is used to define a linkage symbol.
This linkage symbol can represent an entry point or
data field within the subprogram being assembled. This
symbol can be referenced by other subprograms, which

34

may be assembled separately. The pEFIN statement can
be used to establish linkage symbols of both formats:
LABE/ or the conventional label type.

Figure 62 illustrates the format and use of the Auto-
coder pEFIN statement together with the object card
produced. Consider the linkage symbol TaBL/ to be an
address appearing in one or more subprograms to
be loaded with the subprogram containing the DEFIN
statement. When proct is loaded, the operand of the
pErFIN card is relocated by the procr relocation factor,
producing an absolute address for each usage of
TABL/. The Linkage Loader will replace every usage
of TaBL/ with the relocated pEFIN value. For example,
if in another subprogram the instruction

MLCA SAM#5,TABL/

appears, the object card produced by the Auto-
coder processor contains DO0700TABL/T (assuming
00700 is the value of sam). When the subprogram
containing this instruction is loaded with proci, the
Linkage Loader resolves both the A and B operands.
The A operand is incremented by the upward reloca-
tion factor. The B operand, TaBL/, is replaced by the
relocated pEFIN value. If 14000 is the relocation factor
for the subprogram containing TABL/ as the label of
the pEFIN statement, and 15600 is the relocation factor
for the program containing TABL/ as an operand, the
instruction in storage is D1630015]? OT.

Note: The pEFIN statement is the only one in which

the five-position linkage symbol LABE/ can appear in
the label field.

Line Label Epe
d 2?6 of21 25 30
| LI PP O

0.7, [TABLL,
08,1 ...

0,9,
(K]
(NN

0 171 ElPROGS. .
oz | U lore. . l1000. . i WS
o3, |[TABLE. | cw w100 . .. X
0.4 cd - S
0,5, |
0,6,ll.l §

|

1

]

i

1

L

|

1

]

1

Figure 62. The DEFIN Statement

PRTCT — Profect

The prrCT Sstatement is used to set a limit for erasure
of linkage symbols from the Linkage Loader’s symbol
table. The Linkage Loader will retain in its symbol
table all linkage symbols equal to or higher than the
address value specified by the operand of the prrcr
statement. :
The operand of a prrcr statement can be either a
linkage symbol or an actual value (Figure 63). Neither
indexing nor address adjustment is permitted.

Line Label perati ?
B s 15)16 20024 25 30 35 40

ol 1., . |PRTCTILABEZ
|
1

0,2

Figure 63. The prrcT Statement

Control Operation Codes

Control operation codes are used in Autocoder state-
ments that give directions to the processor in perform-
ing -specified operations at assembly time. There are
two types of control statements, discussed under the
following subheadings:

Assembly Control Statements

Subprogram Control Statements

Assembly Control Statements

Assembly control statements are related to the assem-
bly listing, object program cards, and the cross
reference listing. They do not affect the subprogram
being assembled. The assembly control operation
codes are:

OPERATION CODE STATEMENT FUNCTION
HEADR Header Line
RESEQ Resequence Object Cards
EJECT Eject Listing Page
PST Print Symbol Table

HEADR - Header Line

The HEADR statement (Figure 64) is used to direct the
processor to perform the following functions:

1. Cause printing of specified information in the
header line on each page of the assembly listing. The
header line contains the contents of the HEADR card,
columns 21-72. If the header card is absent from the
source deck the processor will move blanks into the
printing positions.

2. Cause punching of the identification in columns
76-80 of the HEADR card into the same columns of each
output card in the object deck. This identification will
also appear in the header line of the listing page.

3. Cause the card sequence count to be set at 001
in the object deck.

4. Cause printing to begin on a new page during
listing,

The information printed in the header line can be
written anywhere in the operand field, columns 21-72,
of the HEADR statement.

The identification written in the identification field,
columns 76-80, can consist of special, as well as alpha-
meric, characters. This identification can be changed by
a RESEQ statement. (See “REsEQ — Resequence.”)

If another HEADR statement appears elsewhere in the
source program, it causes printing to begin on a new

page during listing; the new information will appear
in the heading line and all subsequent heading lines,
and in the object deck. The card sequence count of
the subsequent program will start at 001. (See Fig-
ure 64.)

Note: The HEADR statement is permitted between
the sPEND and TITLE statements, allowing the next sub-
program in the assembly to be listed under its own
page heading, and the object deck to contain the new
information.

RESEQ — Resequence

The RresEQ statement allows the programmer to sep-
arate his object deck into logical groups or blocks by
controlling the sequence number and identification
field of the object program cards produced by the
processor (Figure 65). In this respect it is similar to
the HEADR statement.

The ResEQ control operation directs the processor to
perform the following functions:

1. Punch the new identification supplied by this
statement, card columns 76-80, into columns 76-80 of
subsequent object cards, and replace the identification
in the header line.

2. Set the card sequence count to 001 in the object
deck.

3. Direct printing to begin on a new page during
listing.

There are only two entries in a RESEQ statement:
RESEQ in the operation code field, and the identification
of columns 76-80 (Figure 65).

NotE 1: A RESEQ statement can appear between the
SPEND and TITLE statements.

NotE 2: The execute card, produced by the proc-
essor from the END statement, contains the card se-
quence number 999. This permits the insertion of
sequenced patch cards.

EJECT — Eject

The EjecT statement causes printing to continue on a
new page of the assembly listing, thereby separating
routines or program sequences in the output listing.
The statement consists of EJecT in the operation code
field. The rest of the card remains blank (Figure 66).

Note: An EJECT statement can be placed between
a SPEND and TITLE statement, if the next subprogram
listing is to start at the top of a new page.

PST — Print Symbol Table (Cross Reference Listing)
The pst statement (Figure 67) is used to indicate to
the processor that a cross reference listing is desired
of all symbols used in the program.

This cross reference listing appears after the assem-
bly listing, and has the following features:

Autocoder Operation Codes 35

Line Label perati
3 s 1she

20121 30 35 40

OPERAND
45 (1] 55 80 [1] 70

LN I I
[
0.2 NS S Y

HEADRITHE HEADER LINE ITMFORMATION GOES HERE 4.0 .|

..... P S Y T S PR

PR N R S T S S S SN VAT WY T S S S G VA S ST O WY S S S S U W'Y

Columns 76-80 contain the identification of the subprogram that is printed in the

heading line and punched into the object cards.

Figure 64. The HEADR Statement

1
0.2 PSS) VIS

Line Label perati OPERAND
3 sje 1she 20j21 25 30 35 40 as 50 55 50 &5 70
0.0, 1, il ESEQ ONLY IDENT AND OQP-CODE ZIN CARD- OPERAND BLANK-:. |

.......... P W S W Pt

T S A S S SN 00 VE S0 WA S SO0 SO VAL L A S S SO0 S S W S S S R S

Columns 76-80 contain the identification of the subprogram that is printed in the

heading line and punched into the object cards.

Figure 65. The RESEQ Statement

............

Figure 66. The gjecT Statement

1. It provides a list of every symbol used, in alpha-
betic order, followed by the sequence number of the
statement in which it was defined and the sequence
number of every statement referencing it within the
program.

2. Undefined symbols and multiple definition of
symbols are indicated.

3. It distinguishes between index registers used as
basic addresses and those used for indexing.

4. It separates the literals according to program
segment. (This literal separation is ineffective on pro-
grams containing more than nine segments.)

Nortke 1: Since the cross reference listing does not
require previous definition of the symbolic operands
in orc, LTORG and EQU statements, the undefined indi-
cations for these statements will appear in the cross
reference listing only if the label is not subsequently
defined.

Note 2: The sequence numbers of equated index
registers used as basic addresses are listed with the
associated symbolic index registers. The sequence num-
bers of symbolic index registers used as modifiers are
listed with the associated actual index registers
(ie., X1-X15).

The pst statement consists of the mnemonic opera-
tion code and a blank operand field (Figure 67).

Figure 67. The psT Statement

36

Subprogram Control Statements

Subprogram control statements govern the form and
sequence of subprograms, and supply the programmer
with flexible control over the assembly process. The
subprogram control operation codes are:

OPERATION CODE STATEMENT FUNCTION

ORG Origin

LTORG Literal Origin

END End Subprogram and Assembly
SPEND End Subprogram

ORG — Origin

Sequential core-storage addresses are automatically
assigned by the Autocoder processor to instructions,
constants, and work areas. These assignments are ordi-
narily made in the order in which the source program
is read during the assembly process. The orG state-
ment, however, can be used to instruct the processor
to break the sequential order of address assignments,
and continue from another specified address.

It should be noted that the orc statement does not
absolutely determine where the program will reside
in core storage after relocation. The orc statement
controls address assignment during the assembly
process, and the assembly listing indicates the relative
placement of the various program elements within a
subprogram. In this respect, the programmer retains
the traditional freedom of controlling the relative loca-
tions of blocks of coding and data within a subprogram.

Unless a low origin is specified as the third param-
eter of the source TITLE card, the Autocoder processor
determines the low origin and places it into the object
TrTLE card. It is this low origin, whether specified or
automatically generated, which, in conjunction with
the Basg1 value, determines the relocation facter to be
applied to each upward-relocatable element in the
object program.

The relocation factor is the Base1 value minus the
low origin value in the TrTLE card. The address occu-

LOW ORG. LOW ORG.
LOW ORG. FROM PLACED IN LOW ORG.
FROM SOURCE OBJECT BASE 1 RELOCATION IN
ORG. CARD TITLE CARD TITLE CARD VALUE FACTOR CORE STORAGE
00000 None 00000 12000 12000 12000
05000 None 05000 12000 07000 12000
05000 07000 07000 12000 05000 10000
05000 None 05000 10000 05000 10000
12000 None 12000 12000 00000 12000
Figure 68. Determining the Load Address
pied by a unit of information in core storage is equal symBoLIC

to the compiled address plus the relocation factor. See
Figure 68 for representative examples.

If the low origin in the object TiTLE card equals
the true compiled low origin of the program (the nor-
mal case), the program will load at the Basg1 value.

If the BAsE1 value equals the low origin, the program
will load at the low origin, and the address within
the program in core storage will equal the addresses in
the assembly listing.

When assembling a program containing spEND cards,
the programmer can force the TITLE card to reflect the
true low origin of each subprogram by specifying the
respective low origin in each TITLE statement. Other-
wise, Autocoder will place the lowest origin point
of the entire set of subprograms into each TITLE card.
(The use of identical TrTLE statement values is useful
in designing program overlays.)

If an orc statement is not used, address assignment
(by the Autocoder processor) will automatically begin
at 00000.

The following types of operands are permissible in
an ORG statement:

Actual

Symbolic

Blank

Asterisk

Asterisk plus X00 (*+X00)

ACTUAL

An actual address directs the processor to start assign-
ing locations at the address specified. For example, in
Figure 69 the address assignment will begin at 00500.

Line Label percﬁ-j2
s gls . 1she of21' 28
o ¢} ... 0RG (SO0 .,
o2 |, ! s

Figure 69. Actual Address in an orG Statement

A symbolic operand is permissible only if the symbol
has been previously defined.

In Figure 70 the orc statement will direct the proc-
essor to continue address assignments from the address
labeled prASEONE. Address adjustment is permitted.

NortEe: Neither linkage symbols nor system symbols
are permitted in an oRrG statement.

Label perati
: |5I|s) ZO'ZI 25 30
‘s PP G HASEONE. . ,
|
PR S S TR L A

Figure 70. Symbolic Address in an orc Statement

BLANK

An oRG statement with a blank operand instructs the
processor to assign addresses to subsequent entries,
beginning at the address that is one greater than the
highest address thus far assigned by the processor.

ASTERISK

An asterisk operand can be address adjusted. The orc
statement in Figure 71 instructs the processor to assign
storage locations consecutively, beginning 200 loca-
tions above the current address.

30 3%

......

Figure 71. Asterisk Operand with Address Adjustment

ASTERISK +X00

The operand *+X00 instructs the processor to begin
address assignment at the next available storage loca-
tion whose address is a multiple of 100. For example,

Autocoder Operation Codes 37

in Figure 72, if the last address assigned was location
10926, address assignment would continue at core-
storage location 11000.

Line’
3 Sle
CIE I B
0.3

0,4 n
0,5 | .\ 4 u s

Figure 72. orc Statement Advancing Address Assignment to
Next Multiple of 100

Note: Unless the orc *+X00 card is preceded by a
BASE1 *+XO00 card, the processor will assign a “W” flag
to the orc statement to warn the programmer that this
subprogram must be loaded at an even-hundreds
address.

LABELING AN ORG STATEMENT

The orc statement permits the programmer to break
the sequential assignment of a program temporarily,
and to return subsequently to that point in the program
sequence. This is done by labeling an orc statement
that breaks the sequence. When the programmer wants
to return to the original point, an orc statement with
the label in the operand field can be used. The state-
ments after the second orc statement will be inter-
preted by the processor as though the sequence had
never been interrupted.

The orc statement, in Figure 73, shows how the
programmer can direct the processor to save the ad-
dress of the last storage allocated. The label appr is
the symbolic address of the next available location
before re-origin occurs. The processor will continue to
assign addresses, beginning at the relative address of
COMMON — 5.

......

T
P P P
DDR . !, ..
]
1

® Figure 73. Saving the Address of Last Storage Allocated

The programmer can insert another orc statement
later in the source program to direct the processor to
begin assigning storage at Appr. This statement is
shown in Figure 74.

Figure 74. orc Statement Referencing Last Storage Allocated
38

LTORG — Literal Origin

LTORC statements are coded in the same way as ORG
statements. Their function is to direct the processor
to assign storage locations to previously-encountered
literals. Storage assignment begins at the address writ-
ten in the operand field of the LTORG statement.

A LTORG statement can appear anywhere in the
source program. If no LTORG statement appears (Figure
75), the processor begins assigning addresses to literals
when it encounters an END or SPEND statement.

Figure 75 illustrates one way of directing the proces-
sor to assign storage to all literals that have previously
appeared within the subprogram segment in which the
LTORG statement appears.

Norte: Since the LTORG statement signals the proces-
sor to assign storage to previously-defined literals, the
programmer who wishes to use similar literals must
re-create them. Thus, the programmer cannot use a
previously-defined area defining literal, or its contents,

after a LTorc. The area defining literal must be re-
defined.

Line
sie

0.4, 1.
0,2

.......

Figure 75. The LTORG Statement

END — End Subérogram and Assembly

The END statement must be the last card in the source
program. The END statement directs the processor to
start assigning all unassigned literals at this relative
address in the subprogram.

If the operand field is blank, END signals the proc-
essor that all source program entries have been read.
This form of the EnD statement is used to specify the
end of a secondary subprogram.

If the operand field is not blank, it also specifies the
end of a primary subprogram and indicates its entry
point (Figure 76).

Figure 76. The Exp Statement

SPEND — End Subprogram

The spEND statement is used when assembling two or
more subprograms with the same symbol table used
throughout the assembly. The spEND statement indi-
cates the end of a subprogram and directs the proc-
essor to process all unassigned literals at this point

of the subprogram. The spEND statement implies that
another subprogram to be assembled will follow.

The same formats used for the END statements are
used for the sPEND statements. If the spEND statement
is written with an operand, the resultant output will
be the same as that produced by an £xp statement with
an operand (primary subprogram). If there is no oper-
and, the output will be exactly the same as for the
END statement without an operand (secondary sub-
program). (See Figure 77.)

NotE: The spEND statement must be followed by the
TITLE card of the next subprogram. (HEADR, RESEQ, and
EJECT statements can intervene.)

If a source statement that can produce a load card
in the object deck appears after a sPEND statement, and
before a TITLE statement, the processor places a “W”
flag on the first statement of the load card.

Line Label perati

s 6 15}i6 2021 25 30 35 40

oV |l ISPEND L e
| ﬁ

0.2 PRI S BT R T S S S R S S R R S S

Figure 77. The spEND Statement

Autocoder Operation Codes 39

The Macro System

The macro system enables the programmer to extract
from a library of macro routines a sequence of instruc-
tions tailored by the processor to fit his particular pro-
gram needs. This sequence of instructions is inserted
automatically in the object program. This ability of
Autocoder to process macro-instructions relieves the
programmer of much repetitive coding.

Definitions of Terms

The special terms used in describing the requirements
and characteristics of the macro system are defined
below.

Macro-Instructions: A symbolic instruction written
in the source program that causes a series of machine-
language instructions to be inserted in the object
program.

Object Routine: The specific machine-language in-
structions needed to perform the functions specified by

a macro-instruction. An object routine is inserted -

directly into a program without a linkage or calling
sequence. The routine is placed in the object program
each time its associated macro-instruction is encoun-
tered by the processor.

Model Statement: Model statements appear in the
macro library routines. They establish the conditions
for inserting parameters in the object routine and de-
fine the basic structure of the symbolic program entries.
They include pseudo-macro statements and symbolic
entries.

Macro Routine: The complete set of model state-
ments from which an object routine is developed by
the processor. The form of an object routine depends
upon the parameters given in the macro-instruction.

Macro Library: The macro library contains the com-
plete set of macro routines stored on the System Oper-
ating File. Each routine has an identifying label.

Librarian: The librarian is that phase of the System
Generator that produces and maintains the macro
library on the System Operating File. The user should
refer to the publication, System Generation, Form C28-
0352, for information concerning the procedures for
the production and maintenance of the macro library.

Parameters: Parameters are the elements in the oper-
and fields of macro-instructions. Parameters can refer-
ence literals, actual addresses, or data fields to be
inserted in symbolic program instructions generated
from the model statements.

40

Pseudo-Macro Statements: A pseudo-macro state-
ment appears only within the macro library. It is used
internally by the processor to control the production
of a series of object program instructions.

Macro Operations

The entries that will subsequently appear in the object
program are placed on the library tape at system gen-
eration time. The function of the macro-instruction is
to direct the processor in selecting the specific entries
desired by the programmer. The entries selected be-
come a routine designed to perform a specific function.

To illustrate the basic operation of the macro system,
a hypothetical macro called cmeck, with a simple
library routine, is used. The routine is designed to com-
pare the contents of an input area to the contents of
another area, test the compare indicator for a high,
equal, or low condition, or any combination of the
three.

Figure 78 shows the Library Coding Form used with
the 1410/7010 Macro System.

Figure 79 shows the following:

1. The entries on the Library Coding Form.

2. The macro-instruction that specifies to the proc-
essor that all the instructions in the library routine are
required and must appear in the object program.

3. The symbolic program entries generated by the
processor. (The processor will subsequently translate
these symbolic entries into machine language and in-
sert them in the proper juncture of the object deck.)

General Description: Model statements are used to
describe all entries in a macro routine. They include
pseudo-macro as well as symbolic program statements.

The Programmer: The programmer plans and codes
the following:

1. Designs a general routine to perform specific
functions (depending upon the parameters supplied)
when it is executed in the object program.

2. Writes the model statement as follows:

a. If the entry is complete (no substitution), it is
written on the library coding sheet as if it were
an entry in a source program. This entry will
be included in all object routines unless a by-
pass condition exists (see “oor”). This is il-
lustrated in Figure 80.

b.If the entry is incomplete, the programmer
writes a special four-character code to indicate

DATE. PROGRAM

IBM INTERNAIIONAI; BUSINESS MACHINES CORPORATION) Printed in U.SA.
IBM 1410 DATA PROCESSING SYSTEM
LIBRARY CODING FORM

FORM X24-6568-0

PROGRAMMED BY.

Page
ond L Label Operation
Line

Operand and Comments

12345|6]789 1011121314151617181920 21022324 2526{27 26 293031 323334353637 38 394041 4243 44 4546 47 484950 51 5253545556 57 58 59 606162636465 6667 68697071727374§757677787980)

Figure 78. M 1410/7010 Library Coding Form

Library Entry

Page
and L tabel Operation; Operand
Line

Page {
and L Label Operation
Line

12345|6]78°% IOH12]3!4\516|7l!\9102]122:242526272'29303\323334353637383940“424344

123 45 6]7 8 910111213141516171819202112223242526]27 28293031 3233 34 3536 37 I8 I9 40 41 4243 444548 47 48 49)

o
bl | | Moop

Magcro-Instruction

Assembled Symbolic Program Entry

ABCD C PAR1,PAR2
BH PAR3
BE PAR4
BL PARS

Figure 79. Macro Operations

[al8lelL] i8ldel | |4 H i

[1]

Figure 80. Model Statement for a Complete Instruction

that a corresponding parameter from the macro-
instruction operand field must be inserted in its
place. This code is a & followed by a number
from 001 to 199, that indicates the position of
the parameter in the macro-instruction. The
macro-instruction in the source program will
give the parameter entries to be inserted in the
object routine. The model statement is illus-
trated in Figure 81.

The Macro System 41

Page
and |L Label Operation
Line

123 45|6]7 8 910111213141515617181920212223242528]27 28293031 323334353637 38 394041 4243 44

d | | | ioloja], polof2
LT

Figure 81. Model Statement for an Incomplete Instruction with
Required Parameters

c. If the entry is incomplete, the programmer writes
a O followed by a number from 001 to 199 with
AB bits over the units position {parameter 001
is 00A, parameter 2 is O00B, etc.). This indi-
cates that the entry is to be included in the
object routine only if the parameter is specified
by the macro-instruction. For example, if pa-
rameter 003 does not appear in the macro-
instruction, the instruction shown in Figure 82
will be deleted from the object routine.

Page
and L Label Operation
Line

123 45{6|7 8 9101112131415161718192021[222324 2526127 28293031 3233343536 37 38394041 4243 4

Figure 82. Model Statement for an Incomplete Instruction with
Conditional Parameters

Labeling: If the model statement represents an in-
struction entry point for a branch instruction elsewhere
in the program, it should have a label.

If additional external labels are required and speci-
fied as parameters in the macro-instruction they can
be inserted in the label field of the symbolic program
entry by using the 0001-199 code.

The label of the macro-instruction causes the genera-
tion of an equate statement in the assembled object
routine. The label is equated to an *, as shown in
Figure 83.

Macro Instruction (Source Program)

Another example is shown in Figure 84.

Symbolic Addressing within the Library Routine:
To allow a symbolic reference to other instructions in a
library routine a oI followed by a number from 001 to
199 with a B bit over the units position (Z00] = sym-
bolic address 1, m00K = symbolic address 2, etc.) can
be used. For example, the processor generates the sym-
bolic address if the code m00] is used as a label for one
entry and as an operand of at least one other entry in
the same library routine.

Internal labels within flexible routines are generated
in the form tnnnmmm, where nnn is the code (00]-
09R), and mmm is the number of the macro within
the source program. This is done to avoid duplicate
address assignments for labels.

Example: Use the generated symbolic address of
000J as an operand for entry 3 and as the label for
entry 6. uppaT is the 23d macro encountered in the
source program { Figure 85).

Address Adjustment and Indexing: The parameters
in a macro-instruction and the operands in partially
complete instructions in a library routine can have
address adjustment and indexing,

If address adjustment is used in both the parameter
and the instruction, the assembled instruction will be
adjusted to the algebraic sum of the two. For example,
if the address adjustment on one is +7 and the other
is —4, the assembled instruction will have address
adjustment equal to +3.

Model statement operands can be indexed. This in-
dexing takes precedence over any indexing of a param-
eter supplied by a macro-instruction. The model state-
ment index is used.

Literals: Operands of instructions in library routines
may use literals as required. However, these literals
may not contain the @ symbol within an alphameric
literal.

Macro Instruction (Source Program)

Line Label Eperoﬂ Line Label £perofi?9:L
3 151 ! 25 30 38 £ T)] ! 285, 30 35
o, [TEST2 | .. . INVERISTA. o, TEST2 | . .. \INVERST,
0.2, PR l M T NP A S RS U 0.2, l - o PP
Model Statement Model Statement
Page ? Page - S
and L Labet Operation and |L Label Operation:
Line Line

12345|6]789 |0|l12l3|4]5|6|7l8l9202|2223242526272529303]3233343536373!394041424344

1234 5|6(7 8 91011121314151617181920212223242526]27 28293031 3233343536 37 38 394041 4243 4.

iilbisiy |

il FPTT

Assembled Symbolic Progrom Entry

TEST2 EQU *
B START1

Figure 83. Labeling
42

Assembled Symbolic Program Entry

TEST2 EQU *
START2 SBR ENTRYA

Figure 84. Additional External Labels

SN

Macro Instruction. (Source Program)

Label ti S
P s

Ll W PLATICOST. , AMOUNT. .)
L .)
Mode| Statement
Page
and L Label Operation (
Line
123 45|6]7 8 $1011121314151617181920212223242525{27282930313233343536373839404142434
B o0 l’
0loi] ZAl | | Mool IHolo2))
Assembled Symbolic Program Entry
B 200J023
2005023 ZA COST,AMOUNT

Figure 85. Internal Labels

Note 1: A model statement in the library routine for
a macro-instruction may not be another macro-instruc-
tion.

Note 2: END statements cannot be used in library
routines. _

The Processor enters model statements in the library
tape immediately following the header statement dur-

ing System Generation.

Result: Any library routine can be extracted by writ-
ing the associated macro-instruction in the source
program.

Figure 86 is a summary of the codes that can be
used in the model statements of library routines.

CODE POSITION FUNCTION

0001 - o199 Statement Substitute parameter
(parameter must be present)
Substitute parameter (if

o00A - o 19t Statement parameter is missing,
delete statement)

a00J - 219R Label! Field and Assign internal label

Operand Field

Figure 86. Model Statement Codes

General Description: A macro-instruction is the entry
in the source program that causes a series of instruc-
tions to be inserted in a program.

The Programmer:

1. Writes the name of the library routine in the
operation field.

2. Writes the label that is to reference the first as-
sembled model statement. A LABEL EQU * is generated
to do this.

3. Writes the parameters that are required for the
particular object routine desired. These parameters,
used by the model statements, are written as follows:

a. Parameters must be written in the sequence in
which they are to be used by the codes in the
model statements. For example, if cost is
parameter 001, it must be written first so that it
will be substituted wherever a D001l or H00A
appears as a label, operation code, or operand
of a model statement.

b. As many parameters may be used as can be
contained in the operand fields of five or fewer
coding sheet lines. If more than one line is
needed for a macro-instruction, the label and
operation fields of the additional lines must be
left blank. Parameters must be separated by a
comma. They cannot contain blanks or commas
unless they appear between @ symbols. The
@ symbol] itself cannot appear between @ sym-
bols. Also, the @ symbol can be used only in
pairs as a literal identifier. It cannot be used
in any other way; e.g., a single @ symbol could
not be used to represent the d modifier of a
macro-instruction. If parameters for a single
macro-instruction require more than one coding
sheet line, the last parameter in each line must
be followed immediately by a comma. The
last parameter in a macro-instruction should
not be followed by a comma.

c. Parameters that are not required for the par-
ticular object routine desired can be omitted
from the operand field of the macro-instruction.
However, if a parameter is omitted, the comma
that would have followed the parameter must
be included, unless the omitted parameter is
behind the last parameter which is included in
the macro-instruction. These commas are nec-
essary to count parameters up to the last in-
cluded parameter. All parameters between the
last included parameter and parameter 199 are
assumed by the processor to be absent.

Figures 87, 88, 89 and 90 show how parameters can
be omitted. The hypothetical macro-instruction called
EXACT is used. EXACT can have as many as nine
parameters.

The Processor extracts the library routine and selects
the model statements required for the object routine
as specified by the parameters in the macro-instruc-
tions, and by substitution and switches set by BooL or
comp in the model statements.

The Macro System 43

Figure 87. Parameter for Exacrt. 006-199 Missing

3Line L Lﬁperoﬁ‘azl 2 5 " 4:5
o |1, EXACTIFLDY,FLD2,FLD3,,FLD5\

t
0.2 PSS UL S UITURTEE VNP VRN SIS RAEN T S

Labe!
T

PN VO G S T S S N T S P |

Figure 88. Parameters 004 and 006-199 Missing

| ti
Labe £wra nﬁz 2 50 5 i?%

EXACTI, FLDZ . .

Figure 90. Parameters 001 and 003-199 Missing

Pseudo-Macro Instructions

These statements never appear in a user’s source pro-
gram or in the output listing of an assembled Auto-
coder program. However, they are used in library
routines to signal the processor that certain conditions
exist which can affect the assembly of an object routine.
For example, the presence of a pseudo-macro-
instruction in a library routine can cause a group of
model statements to be deleted. Thus, pseudo-macros
provide the writer of library routines with a coding
flexibility which exceeds the limitations of the substitu-
tion and condition codes described previously.

Pseudo-macro-instructions may be written anywhere
in a library routine. The five pseudo-macros incorpo-
rated in the Autocoder processor are MATH, BOOL,
COMP, NOTE, and MEND.

Permanent and Temporary Switches

The MaTH, BooL, and coMmP pseudo-macros use internal
indicators (switches) to signal the processor of exist-
ing status conditions,

There are 099 permanent and 199 temporary
switches available for recording status conditions. Each
switch occupies one core-storage position during the

44

=
40 __ a
,FLD, :

M

macro generator phase of Autocoder. If a storage posi-
tion contains the character A (aBl bits), the switch is
on; if it contains a ? (caB82 bits), the switch is OFF.
At the beginning of assembly all switches are oFF.

Permanent Switches: Permanent switches retain
status conditions during the entire macro generator
phase unless changed by a pseudo-macro. They are
addressed by using a # symbol followed by the three-
digit number of the switch to be set or tested. For
example, #001 addresses permanent switch 001; #002
addresses switch 002; and #099 addresses switch 099,

Temporary Switches: When the processor encounters
a macro-instruction, the temporary switches are set to
the condition (presence or absence) of the parameters
in the operand of the macro field. If the parameter is
present, the corresponding switch is set on. If the
parameter is missing, the switch is set orr. For ex-
ample, if parameter 001 is present, temporary switch
001 is turned on. If parameter 002 is missing from the
macro-instruction, temporary switch 002 is orr. Tem-
porary switches retain status throughout the processing
of a macro-instruction unless changed by a pseudo-
macro. After the macro-instruction has been completely
processed, all temporary switches are set o¥r. Tempo-
rary switches are addressed by using a & symbol fol-
lowed by the three-digit number of the switch to be set
or tested. For example, 001 addresses temporary
switch 001; @002 addresses switch 002; and 1199 ad-
dresses switch 199.

If a macro with a maximum of nine parameters is
encountered, the processor sets the first nine temporary
switches to indicate the presence or absence of these
nine parameters. Temporary switches 010-199, which
are OFF, can be used by the pseudo-macros to com-
municate conditions to the processor while it is working
on this particular macro-instruction. This use of tempo-
rary switches is recommended because it reserves the
permanent switches for communicating information
from one macro to another.

MATH — For Solving Algebraic Expressions

A MatH pseudo-macro contains as operands: sum
boxes, arithmetic expressions, and sign switches.

Sum Boxes: A sum box is a group of five core-
storage positions used to store the result of an arith-
metic expression. Autocoder makes available 20 such
sum boxes. A sum box is addressed by using a #
symbol followed by the three-digit number (ending
in zero or five) of the sum box to be referenced. For
example, the address of the first sum box is #005; the
address of the second sum box is #010; and the address
of the twentieth sum box is #000.

At the beginning of the macro phase, a sum box
contains 00000. Any number may be placed in a sum

box or added to its contents. The units position of the
sum box always contains the sign of the result. Sum
boxes retain information placed in them throughout the
macro phase, and their contents may be used and/or
changed from one macro-instruction to another.

Sum boxes can be used by model statements as well
as by a pseudo-macro. For example, in Figure 91, as-
sume that sum box #005 contains 12345 and sum box
#010 contains 00015.

Note: za rFLpl+000IN,FLD2 is processed as za
FLDl —15,FLD2.

Macro Instruction

Line
3 Sle

T
(I I S T
|
0,2 1

Model Statement

Page S
and L Label Operation|
Line
1234 5/6|7 8 91011121314151617 181920210223 242526[27 28293031 3233 34353637 3839 4041 4243
oliis| | klools] | | |)
ZIA o H#o10l, Hojoizl [[T}
Assembled Symbolic Program Entry
ORG 1234E
ZA FLD1+0001N,FLD2

Figure 91. Sum Boxes

Arithmetic Expressions: Arithmetic expressions within
the MatH pseudo-macro use add (+), subtract (—),
multiply (*), and divide (/). An @ symbol represents
both the left and right parentheses if they are required
for the expression. For example,

(001+12—5) 20 is written: @001+ 12—5@*20.

Multiplication and division are done before addition
and subtraction by the MaTH pseudo-macro, unless
otherwise indicated by the use of @s. The quotient
resulting from the divide operation is not half-adjusted,

and the remainder is lost. At the end of a multiplica-
tion operation the five low-order positions of the
product are used for the result. (The high-order digits
are lost.) An overflow is ignored.

The result of the arithmetic expression is inserted
with its sign in the designated sum box.

Sign Switches: Permanent and temporary switches
may be used to store the sign of the result of an arith-
metic expression. The first switch specified in the oper-
and field of the pseudo-macro represents a positive
result; the second represents a zero result; and the
third represents a negative result. Consequently, one
switch is on and the other two are off if the result is
either positive or negative. A zero result causes both
the zero and positive switches to be set on. It is not
necessary to specify all three switches. However, if a
switch code is omitted from the operand field, the
comma that would have followed the switch code must
be present. (This is the same rule that applies to
omitted parameters in a macro-instruction.)

The Programmer:

1. Writes the name of the pseudo-macro (MATH) in
the operation field.

2. Writes in the operand field:

a. The code for the sum box in which the result
of the arithmetic expression is to be stored.

b. The arithmetic expression.

c. The code for the switch in which the sign(s) of
the result are to be stored.

NoTe: A comma must follow the sum box code, the
arithmetic expression, and the individual sign-switch
codes. Figure 92 shows the format for a MaTH pseudo-
macro.

The Processor:

1. Produces the result of the arithmetic expression.
2. Stores the result in the sum box.

3. Sets the sign switches.

Example: The matH pseudo-macro shown in Figure
93 multiplies parameter 07 by 401 and adds 12 to the

Page
and L
Line

Label Operation]

Operand and Comments

lontificat:

123 45]6|78%9 101112\31415]617‘!l9202|1223242526277!2930313233343536373!3940“4243“454647484950515253545556575359606]62636465 666768697071727374]757677787960]

AFH] [SjuiMBlof], ARl THMET)

PRESIS! (0N, [PILIVS], [ZiEIRe], MiNUs

LTI

T A T

Figure 92. Format for the MaTH Pseudo-Macro

Page
and L
Line

Label Operation

Operand and Comments

Identification)

123458|8]78¢9 10"IZ13|4|5|6‘7|0|9201|2223242526772'2930313233363536373839404]4243444546‘7‘5‘950515253545556575859606!61636‘65 666768697071 727374[757677787980]

biol3l], [1]2llolof7i«[aloli |, Kiolo

4, lolole], oiol9|

e

1]

[1] L]

[T

Figure 93. matH Pseudo-Macro

The Macro System 45

Page

Line

and L Label Operation) Operand and Comments

[dentificat:

12345607 8 9101112131415181718192021[2223242526{27282930313233 34353637 38 3940 41 424344 454647 48 495051 5253 54 5556 57 58 596061 62636465 664768697071727374J7576777879 80|

[BDJo[L] JLIABE[L], |1 [ol6]i [c/AL] [EIXPREIS!S

1 lON], [sWi TicH

EERRERRRRRRRRANNNRNRRENER

L

Figure 94. Format for the BooL Pseudo-Macro

result. The answer is stored in sumBox 6 (#30). If the
result is positive, permanent switch 04 is set on; if the
result is zero, switches 04 and 06 are set on; if the re-
sult is negative, switch 09 is set on.

BOOL — For Solving Logical Expressions

General Description: The ool pseudo-macro can be
used to set a permanent or temporary switch as the re-
sult of a logical expression, or to cause the processor
to skip over certain model statements if the logical
expression is false. If the statement is true, the proc-
essor goes to the next sequential model statement.

The Programmer:

1. Writes the name of the pseudo-macro ®ooL) in
the operation field.

2. May write a special one-character label, the
logical expression (statement), and a switch code in
the operand field in the format shown in Figure 94.

Labeling: A special one-character label permits skip-
ping forward in the library routine as the object rou-
tine is being assembled by the processor. This one-
character label is written in the first position of the
operand field of the BooL pseudo-macro and also in the
label position (column 6 of the library coding form)
of the first model statement (or command) to be exam-
ined after the skip has been initiated. Skipping occurs
only if the logical statement is false. The label may be
omitted if a skip is not desired, but the comma that
would have followed the label must be written in the
BOOL statement to indicate that the label is missing.
The label can be any alphabetic or numeric character.
Special characters are not permitted.

Logical Expression: The BooL pseudo-macro can
have any combination of three logical operations:
* (and), + (or), and — (not). The operators are de-
fined in Figure 95. The combination of these operators
and the switches to be tested make up the logical ex-
pression. (See, for example, Figure 96.)

Switches: Either a permanent or temporary switch
may be used to store the result of the logical expres-
sion. If the expression is true, the specified switch will
be set on. If the expression is false, the specified switch
is set OFF. If no switch setting is desired, a comma must
be used to indicate that the switch is missing.

The Processor:

1. Examines the status switches to determine
whether all conditions specified in the logical expres-
sion are satisfied. If they are, the expression is true. If
the logical condition is not met, the expression is false.

2. Sets the specified status switch to oN or OFF to
reflect the true or false condition.

3. If a false condition exists and a label appears in
the BooL operand, the processor skips forward to the
command or model statement containing a correspond-
ing label in its label position.

To determine if a logical expression is true or false:

a. Consider all on conditions true and all oFF con-
ditions false,

b. Let 1 = true and 0 = false.

c. Calculate the logical value of the expression.

If the logical value of the expression is zero, the ex-
pression is false. If the logical value is one, the expres-
sion is true. For example, if switches 001, 002, 003 and
004 are on, the expression

@nu001*0002@ + @m003*2004@
is true because:
(on*oN) + (oN*oN)
(1*1)+(1*1)
1+1 =1

Examples: Figure 96 shows how the BooL pseudo-
macro can be used. The BooL entry states:

1. If temporary switches 001 and 002 are on, the
statement is true. Therefore, set temporary switch
015 on. ‘

2. However, if either temporary switch 001 or 002

The @ symbol is-used to represent both the left and Page _
right parentheses. e | Lobel Operation
1223455789 WH121314|5|6|7|ll9292|22232425iq 2728293031 323334353637 38394041 42434’
. + - BOOL] L, [lojo]1{flolof2], o] [5|
1% 121 T4l 1=0 {A | | I [ElLipla], F]i ELL/Dl8]
1*0=0 1+0=1 1 B EOV]
0*1=0 0+1=1 L C REAL Vi '
0*0=0 0+0=0 ! r ,AﬁEA;{ 5

Figure 95. Table of Operators
46

® Figure 96. Using the BooL Pseudo-Macro

N

¥

is oFF, the statement is false. Therefore, set temporary

SWITCHES

switch 015 oFF and Skip to statement 004. 001 * 002 + 003 * 004 = LOGICAL VALUE
The example shown in Elgure 97 states: OFF OFF P
1. If both temporary switches 001 and 002 or both 0 * 0 + 0 * 0 = 0
temporary switches 003 and 004 are on, the state- ON OFF OFF OFF
ment is true. Therefore, set temporary switch 015 1 * 0 + 0 * 0 = 0
ON. OFF ON OFF OFF
o s . [V 1+ o * 0 = 0
2. However, if either temporary switch 001 or 002 ¢
and either temporary switch 003 or 004 is oFF, @ OJF . ogr . OIN . OOFF _ o §
the statement is false. Therefore, set temporary S oFF oFF oN <
switch 015 orF and skip to the model statement Q| o * o + o * 1 = 0
whose label is L, OFF ON OFF ON
o * 1 + 0 * 1 = 0
ON OFF ON OFF
— 1 * 0 + 1 * 0 = 0
‘L,i:: L Label Operation| Operand and Commems) OFF ON ON OFF
123 4 5§6]7 8 21011121314151617181920 2322 28293031 3939“4“2434445464743195051525354555‘ 0 * l +] * 0 = o
Dl |1], efsolo] #irloiiz@t+@mlololalelolol+lel, Mol 5/ ON OFF OFF ON
LT T LT L) i 0+ 0 * 1 = 0

Figure 97. BooL Pseudo-Macro

Figure 98 is a table showing all conditions that will
cause the BooL statement shown in Figure 97 to be
true.

Figure 99 is a table showing all conditions that will
cause the BooL statement shown in Figure 97 to be
false.

COMP — To Compare Two Fields

General Description: The comp pseudo-macro com-
pares an A-field to a B-field (maximum of 15 charac-
ters), and sets permanent or temporary switches to
indicate the result of the comparison.

The Programmer:

1. Writes the name of the pseudo-macro «comp
in the operation field.

SWITCHES
001 * 002 + 003 ~* 004 LOGICAL VALUE
ON ON OFF OFF
1 * T+ o * 0 = 1
OFF OFF ON ON
(2 o * 0 + 1 * 1 = 1
o} ON ON ON ON i
= 1 * 1+ 1 * 1 = 1 g
=] S
g ON ON ON OFF
O 1 * 1T+ 1 * 0 = 1
OFF ON ON ON
o * 1+ 1 * 1 = 1
ON ON OFF ON
1 * 1 + o * 1 = 1
ON OFF ON ON
1 > 0 + 1 F 1 = 1

Figure 98. True Conditions

Figure 99. False Conditions

9. Writes the operand field in the format shown in
Figure 100. The first and second entries are the A- and
B-fields. The A- and B-fields may be any of the
parameters 001-199, sum boxes #005-#000, or literals.
They cannot be switches.

Note 1: For the comp pseudo-macro, alphameric
literals are not enclosed by @ symbols. Entries 3, 4,
and 5 are high, equal, and low switches.

Note 2: The codes for the two fields to be compared
must be present in all comp pseudo-macro-instructions.
Codes for the switches may be omitted if they are not
needed to store the result of the compare operation.
However, if a switch is omitted, the comma that
would have followed it must be included in the
operand field.

Note 3: B-field controls compare. (High;order posi-
tion of B-field ends compare.)

Poge
ond R Label Operation Operand and Comme:
Line

2 3 4 sle|7 3 9 r010211415081718 42526]2720293031323 5 :l:nou4243“454647“49505!525:545:)

O] [F[\ ELGIA], FITEILIE, [6H, EIQUIALL 1LioM)
i LT LTS

Figure 100. Format for comp Pseudo-Macro

™

The Processor:

1. Compares the A-field to the B-field.

2. Sets one status switch oN and two switches OFF
to reflect the result of the comparison.

a. The first switch is set on, if the value of the
B-field is greater than that of the A-field.

The Macro System 47

b. The second switch is set on, if the B-field is
equal to the A-field.
c. The third switch is set on, if the value of the
B-field is less than that of the A-field.
Examples: Figure 101 shows a comp pseudo-macro
which states:
1. Compare parameter 002 of the macro statement
t0 WORKAREA.
2. If parameter 002 is equal to WORKAREA, turn on
temporary switch 25.
3. If workaREA is less than parameter 002, turn on
temporary switch 26,

Page
and L
Line

Label op

Operand and Comn;

123 435]sf7 B 9101112114005181718 28293031

383940414243 44454847 4849505152 5354)

,piolzle

{

R T

L

{

Figure 101. comp Pseudo-Macro

Figure 102 shows a comp pseudo-macro which
states:

1. Compare the contents of sum box 005 to param-
eter 003 of the macro statement.

2. If the result is HiGH, set temporary switch 024 on.

3. If the result is EQUAL, set temporary switch 025
ON.

4. If the result is Low, set temporary switch 026 on.

t zi’awl slel7 8 2 r0mmnasidizien 2829301 ..nywulzuuluuuuvsom5253;?
Cop] olois], molor3l, o], iof2lsl, hroize] [[[}
L e e e

Figure 102, Comparing a Parameter to the Contents of a
Sum Box

NortEe: Standard 1410/7010 collating sequence deter-
mines HIGH, EQUAL, or Low conditions. Comparisons
are controlled by the B-field. Thus, the statement
shown in Figure 103 will cause temporary switch 025
to be set on if the low-order position of parameter
002 is a 3.

NOTE — To Produce a Message

General Description: The NoTE pseudo-macro is used
to write messages concerning conditions that can arise
during the processing of a macro-instruction.

The message is printed in line on the output device
(tape or on-line printer). In addition, an “N” will be
automatically inserted in the flag field of the assembly
listing,

The Programmer:

1. Writes the name of the pseudo-macro <NOTE) in
the operation field.

2. Writes the message in the operand field.

The Processor: Prints the message on the Standard
Print Unit (tape or on-line printer).

Examples: Figure 104 shows how the NoTE pseudo-
macro can be used in combination with the BooL
pseudo-macro. The BooL pseudo-macro tests to ensure
that parameters 001 and 002 are present in the macro-
instruction. If either parameter is missing, the proc-
essor skips to the NOTE pseudo-macro and prints:

PARAMETER ABSENT FROM MACRO.

Page
rl’:: L Label Operation| Operand and Comm5
123 435]|sf7 8 sr0Mmn05161718 282930313 .."AoAI4243«154647«495051575354)
BBlojo[L] ii, holo[1}xMojo[2]
L INO[TE PAﬁAHETER ABSENT| FiR!DH MAQIRF {
[LT

® Figure 104. Note Pseudo-Macro

MEND — End of Routine

General Description: This pseudo-macro signals the
end of generation for a macro-instruction. It may ap-
pear anywhere 'in a library routine,

The Programmer:

1. Writes the name of the pseudo-macro (MEND) in
the operation field.

2. Leaves the operand field blank.

The Processor: Stops processing the macro-instruc-
tion when it encounters a MEND statement. Figure 105
shows a MEND pseudo-macro.

Note: A BooL pseudo-macro can be used to skip
over a MEND pseudo-macro which appears within the
library routine if cenditions indicate that more model
statements must be processed.

Page 5 Page S
and L Label Operation and L Label Operation
Line Line
123 45|6]7 8 91011121314151617181920212223242526{27 28293031 323334353637 383940414243, 123 45{6]78¢9 IOIIﬂ|3|4151617|.l92021221314252617“19303'32333435“373.39404]42‘34» .
CloMP! nlojoie], 31, |, stoi2/sl { MEND)
NERNEREREEND [[1]] {

Figure 103. Checking for a Single Character
48

Figure 105. MeND Pseudo-Macro

T

Pseudo-Macro Coding Example

Example: Figure 106 shows the library entry for a
hypothetical macro called prurr. This library routine
uses all of the five pseudo-macros. It illustrates the
effect of the pseudo-macros on the processing of a
macro-instruction. The meaning of each line in the
library routine is:

Entry 1: If parameter 001 is present, set temporary
switch 050 oFF and go to entry 3. If parameter 001 is
missing, go to entry 2.

Entry 2: Print the note: oPERAND (001 ABSENT.

Page

:.’i:(: L Label Operation {
t 23 45]s|789 IOII1213|4|.§Ml7IB|9201|2223247526272!293031323334353637:8394041lZd.‘Mi
o jololi Q{QOL Al]-dolol] Hdslol [T
o1 jololZ ot lolplelelaned olo]i] IABISENT]
0)' 002N BoolL] [al, #oh o
bl1iolol] ORG] | [ools]
bl 005 A T Eoos, aost+100, .,
o1 lolol oIk
ol1 olol7 L 0@, oo’
01l 3] o3
ol oot [e] MO0
0 o1 0 lcloMP 002}, 81, |, Hops1],
ool |1 BOOLL| [Bl, HQ5|L),
0! o) 2 MLC , [olo1
ollel] ! , 1005

1ldils] [HooK D
011016 ool ki, [-H05(1,
ol o)l 1A MLCA ,OOL
bl [1}elc] Nilenilv

® Figure 106. pruIT Library Routine

Macro Instruction

Entry 3: If permanent switch 010 is oFF, go to entry
5. If permanent switch 010 is on, take entry 4.

Entry 4: org at the contents of sum box #005.

Entry 5: Put the contents of sum box #005 plus 100
in sum box #005.

Entry 6: Store the contents of the B-address register
in an address equal to the address assigned to the
internal label (000K) +5.

Entry 7: Move five zeros to the field whose symbolic
address is parameter 003 of the macro-instruction.

Entry 8: Add the literal +3 to the field specified by
the parameter 003.

Entry 9: Branch to parameter 004.

Entry 10: If parameter 002 is a literal, the EQuAL
switch (D051) is set oN.

Entry 11: If the EQuAL switch (temporary switch 51)
is oFF, skip to entry 15. If the EQUAL switch is oN go
to entry 12.

Entry 12: Move parameter 002 to parameter 001.

Entry 13: Subtract parameter 002 from parameter
008. (If parameter 006 is missing, this statement will
be bypassed.)

Entry 14: Move parameter 003 to parameter 005.

Entry 15: Branch to 0

Entry 16: If temporary switch 051 is oN, skip to entry
18. If temporary switch 051 is oFF, go to entry 17.

Entry 17: Insert parameter 002 as a literal, and
move it to the field indicated by parameter 001.

Entry 18: End of library routine.

Assume that:

1. The macro shown in Figure 107 is encountered in
the source program.

2. Permanent switch 010 is on. .
3. Sum box #005 contains 12345.

............

ORG 12345

SBR o 00K023+5
MLCA @00000€, FIELDI
A +3, FIELDI

B EXIT1

MLCA @42AB@,AREAA
MLC FIELD1, WORKAREA
B 0

® Figure 107. Using the pruiT Routine

The Macro System 49

SOURCE PROGRAM - PROCESSOR OPERATIONS

Source Program Extract library routine N
Statement I
L Macro-instruction —I Substitute parameters in
model statements wherever
l substitution codes appear
S ~N
Y
M Delete mode! statements if
B bypassing conditions are
o satisfied
L i
E Insert assembled symbolic pro-
gram entries as an open routine
p in the symbolic program 3
R
o -
) [.
A
M
E
N
T
R
|
£ >
Source Program statement

following macro=instruction |

When a macro-instruction is encountered in the -
source program, the processor extracts the specified

library routine, tailors it, and inserts it in-line

in the users source program.

Figure 108. Macro Processing

50

The following chart lists the seven flag codes which

Appendix A: Processor Error Diagnostic Procedures

statement upon diagnosing an error. The circumstances

the Autocoder processor will affix to an Autocoder which will produce each flag are also described.

FLAG DEFINITION
F Format Invalid
M Multiple Definition
N Note Generated
0] Operation Invalid
R Restricted Operation

U Undefined Label

w Warning

CIRCUMSTANCES

The operand of each statement is analyzed for correct format. Invalid for-
mat testing is not 100% exhaustive. The list included below indicates the
areas in which format testing is conducted. (See NotE 2.)

A label (or labels) in the operand has been defined more than once in the
source program. The address of the first encountered label is used. NotE 1:
See indexing restriction of X14 and X15.

This flag is caused by a macro generation and is not necessarily a program-
ming error. (See “Note —To Produce a Message” under “The Macro
System.”)

The operation code of the statement is a mnemonic that does not exist in the
Autocoder language and is not one of the macro-instructions contained in
the macro library. (See “Mnemonic Operation Codes,” Figure 21.)

The operation code of the statement is one of the restricted operation codes.
(See Appendix D.) The “R” flag does not set the “no-go” switch.

A label (or labels) in the operand has not been defined by another state-
ment in the source program. (See NotE 2.)

This flag is used to indicate improper program conditions. For example, the
processor must encounter a TITLE card after a sPEND card before it gen-
erates another card in the object deck. Another example is: an ORG * +X00
must be preceded by a Base1 * +X00.

No7tE 1: If a label is defined as an area defining literal and as 5. Invalid sequence of sensitive characters. Sensitive charac-
a label in another Autocoder statement, this error will not re- ters in the operand are:
ceive the “M” flag. The cross reference listing, however, will BLANK -b
diagnose this condition and give notice of the multiple definition. COMMA -

NotE 2: Certain labels are exempt from these requirements. PLUS -+
They are linkage symbols, system symbols, index register sym- MINUS -
bols (X1-15, +X0) and common.

At Symbol - @
Invalid Operand Relationships Causing the “F” Flag: Asterisk _
1. No operand information in a statement that requires addi- Pound Sign - #

tional information.

6. Incorrect information following a semsitive character,

2. Comments not separated from operand elements by at least such as

two blanks. +b or *A.
3. Incorrect DA or DAV header configuration. 7. A pound sign not followed by a pure numeric count less
4. A label used as an address adjustment is not equated to than or equal to 500.

an index register, and the statement is not a DC or DCW entry. 8. A literal without a literal character, for example, @@.

AppendixA 51

Appendix B: Autocoder Messages and Limits

This appendix contains a listing of all the messages
produced by Autocoder, a description of the circum-
stances causing the message, and’ a table of the limits
of the Autocoder processor.

The processor can produce the following messages
on the console printer and on the /spr/ file. When the
message is found necessary, the co mode will be can-
celled and the assembly terminated at the point where
the condition occurred. If the job is not in the TEsT
mode, this will cause the System Monitor to cancel
the remainder of the job.

10701 AUTOCODER NOT COMPLETED. INCORRECTABLE I/0
ERROR (ON MWnN) TERMINATED IN PHASE X

This message will have been preceded by the standard
10cs message on the console printer indicating a data
check or wrong-length record. In some cases the work
file number is given.

10701 AUTOCODER NOT COMPLETED. UNUSUAL (Or UNEX-
PECTED). END OF FILE ON MW1 TERMINATED IN
PHASE X

(A similar message may be produced which indicates
mwe and mw3.) This message will be produced on an
unexpected end-of-file or end-of-reel indication when
the system is using tape work files, or an end of the
+racks assigned to the given 1301 disk work file.

10701 AUTOCODER NOT COMPLETED. LIBRARY DIRECTORY
NOT FOUND TERMINATED IN PHASE 1

This message will be produced when the library direc-
tory is not contained in the sor.

Affecting Maximum
Macro- 240 different macros in the macro library
Instructions

9999 macro-instruction usages within one

assembly run

25 DTF usages in one assembly run

Autocoder The total number of Autocoder statements

Statements (source and generated) is limited by one
reel of tape, or by the number of disk cylin-
ders assigned to each work file.

Literals Approximate literal limit = _x_—ly_e:_z

Where: x = contents of /AMS/

10701 AUTOCODER NOT COMPLETED. MACRO LIBRARY NOT
FOUND TERMINATED IN PHASE 1

This message will be produced when the macro library

is not contained in the soF.

10701 AUTOCODER NOT COMPLETED. RECURSION CAPACITY
EXCEEDED TERMINATED IN PHASE 3

This message will be produced when the maximum
number of literals is exceeded in a source program (see
chart below). The source program will have to be
altered before assembling.

10701 AUTOCODER NOT COMPLETED. MAXIMUM NUMBER
OF DTFS EXCEEDED TERMINATED IN PHASE 1

This message will be produced when the maximum
number of pTF’s has been exceeded in a source pro-
gram (see chart below). The source program will have
to be altered before assembling.

10701 AUTQQODER NOT COMPLETED. ERROR IN MACRO
LIBRARY READ TERMINATED IN PHASE 2

This message will be produced when an error is read
in the Macro Library.

10701 AUTOCODER NOT COMPLETED. MACRO XXXXX. NOT
FOUND ON DISK TERMINATED IN PHASE %

This message will be produced when the specified

Macro Library routine, xxxxx, is not found on the

disk file.

10702 NOGO SWITCH SET

This message is produced when a source statement is
flagged (except for the “R” flag).

AUTOCODER LIMITS

Reason Results when Exceeded

Table size is limited Diagnostic message and
System Generation ter-

mination

Limit of generated Possibility of multiple
labels label definitions

Table size is limited Diagnostic message and

assembly termination

No multi-reel process-
ing on tape, or end of
tracks assigned to a
work file on disk

Work area in core
storage of the SOF has
been exceeded

Diagnostic message and
assembly termination

Diagnostic message and
assembly termination

y = address of IBAU30OSUBR de-
fined in the System Generation

memory map.

z = 3,000 plus 16 times the number
of EQU, ORG, and LTORG

statements containing symbolic
operands within each assembly.

52

Al

Appendix C: 1410/7010 Autocoder Sample Program

The following sample program is provided both as a
test deck for the user’s System Operating File and as a
teaching aid. It is an Autocoder source program with a
set of dummy input which is combined with control
cards to constitute a Monitor job run. The card deck
(Exhibit I') is loaded via the Standard Input Unit. The
job run includes the assembly of the source program
by the Autocoder processor, the creation of the ab-
solute program by the Linkage Loader, and the execu-
tion of the sample program which results in output on
the Standard Punch Unit.)
The assembled object program will perform the fol-
lowing functions: :
1. Reproduce card decks in card columns 6-75.
2. Sequence the deck, punching the sequence num-
ber into columns 1-5.
3. Gang punch the contents of columns 76-80 of the
first card into the corresponding columns of the
remainder of the deck.

4. Type the message “EO]” on the console printer at

end of job.

The exhibits are as follows:

Exhibit I
Exhibit IT

Exhibit ITI
Exhibit IV

Exhibit V

The assemble-and-go input deck.

The console printer output during
the run.

A listing of the object program deck.

The Standard Print Unit output of
the job run, showing:

A, Monitor Control Cards

B. Assembly Listing

C. Cross Reference Listing

D. Linkage Loader Control Cards

A listing of the cards which are the
output of the executed sample pro-
gram.

AppendixC 53

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050

54

MONS$ DATE 64015
MONS$ JOB SAMPLE
MON$SS ASGN MJB»Al
MONS$ $ MODE GO
MONS$ $ ASGN MGO+sAb
MONS 3 EXEQ AUTOCODER
HEADRSAMPLE PROGRAM USING 1410/7010 AUTOCODER
TITLERESEQUENCE
BASE1%*6X00
*
* THIS PROGRAM WILL RESEQUENCE SOURCE DECKS
* RENUMBERING FROM 0001 1IN THE FIRST FOUR
* COLUMNS AND WITH THE IDENTIFICATION FIELD
* SUPPLIED BY THE FIRST CARD GANG-PUNCHED INTO EACH
* CARD PRODUCED.
*
START B READ
MLCB ARB0>IDENT#5
B *58
LOOP B READ
B CHNG
B PUNCH
B LOOP
*
READ SBR RDXT&5
STDIOREAD s AREA » EOF s ERROR sM
RDXT B8 0
*
CHNG SBR CHNGX&5
MLCA IDENT»AR80
MLCA @ @
MLCS @ @sAR0461
A 61sCNT#4
MLCA CNTsARO4
CHNGX B 0
*
PUNCH SBR PCHXT&S
STDIOPUNCH » AREA
PCHXT B 0
*
EOF IOCTLTYPE»EQJ
B JEOP/
*
ERROR 1OCTLTYPEsERR
B JUEP/
*
LTORG*
*
AREA DA 1XB0sG
ARO4 4
AR80 80
*
E0J DC @ E0J@esG
ERR DC @ERROR@»G
pST
END START
MONS S EXEQ LINKLOAD
PHASESAMPLE
CALL RESEQUENCE
MONS$ EXEQ SAMPLE,MJB :

AUTOCODER SAMPLE PROGRAM DECK OF DUMMY INPUT CARDS

PROVIDED WITH THE SAMPLE PROBLEM TO SUPPLY A
FEwW DUMMY INPUT CARDS FOR OPERATING IN THE ASSEMBLE~AND-GO MODE.

NOTE THAT THE FIRST CARD - THREE CARDS EARLIER IN THIS DECK - CONTAINS
FIVE CHARACTERS IN CARD COLUMNS 76 THROUGH 80.
SAMPLE PROGRAMs ALL THE CARDS PRODUCED WILL CONTAIN THESE CHARACTERS
IN THE CORRESPONDING CARD COLUMNS.
PRODUCED WILL CONTAIN A SEQUENCE NUMBER IN CARD COLUMNS 1 THROUGH 5.

THIS DECK OF CARDS IS

MONSS

Exhibit T

END

AFTER EXECUTION OF THE

NOTE ALSO THAT EACH OF THE CARDS

SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL

XXXXX

P

=

(4]

oo

DATE
ASGN

MODE
ASGN

END

AXVORDODADODHODODO0D p-4

B

Exhibit

S@1 JoB

goggg

14946 1bbbb 11622 bb bbb bbbb

#8989
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

64015

MJB,A1
co
MGO,AB

END SIU
ENTER B MESSAGES

pages

II

64015

00000
00040
00075
00118
00155
00199
00204
00240
00283
00302
00315
00395
00396

000485
0035
00043
00037
00044
00005
00036
00043
00019
00013
00395
00001
00012

€ 0000C

Exhibit

MONS ¢
MONS S
MONS S
MONS S
MONS S

III

S01L JOB
ASG
MOD
ASG
EXE

AL%BgBPg125N

SAMPLE

EXEQ AUTOCODER
14181 NR1 MEugluuggw
EXEQ LINKLOAD
EXEQ SAMPLE ,MJB

EOJ

TITLERESEQUENCE00000

BASEl#+X00
400054 0D0039400306L J0O0033 JO00S54 J0OLl8
JOOLl85 J00026 GOOLL6B J/RSI/ 400216
W00259/MCS/M D/CRD/00104/ DOCGOO000315s JOOOOO
6001838 DO0C 306003947 D00309 D00309003193
AC03100031% DC031400318T JO000O 6002148 Y/PCH/X

00315 JOODOC V0B0216/CTB/2 Y/CNC/X 00396
v00240/CTB/2 J/EOP/ V00259/CTB/2 Y/CNC/X 00402
v00283/CTB/2 JIVEP/

A

EQOJ ERROR

SAMPLE
N MJB,Al
E GO
N MGO,A6
Q AUTODCODER

Exhibit IV, Part A

PAGE 001

SO01SAMPL
4002SAMPL
11)D) 1003SAMPL
} 1)) 1004SAMPL
AAC1005SAMPL
D~D) 1006SAMPL
} D41007SAMPL
1008SAMPL

N C N1009SAMPL
N C Cl010SAMPL
C10115AMPL
10125AMPL
NYO13SAMPL
1014S AMPL
10155AMPL
39995 AMPL

Appendix C

55

SEQNO PGLIN

10
it
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

G

<

64015

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
o018
0019
0020
00090
00100
00110
00140
00150
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030

0031

LABEL

START

LOOP

READ

RDXT

CHNG

CHNGX

PUNCH

Exhibit IV, Part B

56

oPCOD

TITLE

BASEL

SAMPLE PROGRAM USING 1410/7010 AUTOCODER

OPERAND

RESEQUENCE

*£X00

THIS PROGRAM WILL RESEQUENCE SOURCE DECKS

RENUMBERING

FROM 0001 IN THE FIRST FOUR

COLUMNS AND WITH THE TIDENTIFICATION FIELD

SUPPLIED BY THE FIRST CARD GANG-PUNCHED INTO EACH

CARD PRODUCED.

MLCB

S8R

STDID

8BE
MLNA

MRCG

SBR
MLCA
MLCA

MLCS

MLCA

SBR

READ

ARBO+ IDENT#5
58

READ

CHNG

PUNCH

LOooe

RDXTES
READAREA,EOFyERROR M
/RST/

EOF

ERROR /MCS/ M

/CRD/y %56

0,AREA

0

CHNGXE&ES
IDENT, AR80

3 a

a3 @sARO4GL
&1,CNTH#4
CNT, ARO%

0

PCHXTLS

REL

> O -t

-t

- o

cT

12

12
12

12

12

12
11
12

PAGE

ADDRS

00000
00007
00019
00026
00033
00040

00047

00054

00061
00068
00075
00087
00099

00111

ool18
00125
00137
00143
00155
00166

00178

00185

1

INSTRUCTION

o

G

00054
00394
00033
00054
00118
00185

00026

00116

/RS1/
00216
00259
/CRD/
00000

00000

00183
00306
00309
00309
00310
00314

00000

00214

00306. L

/MCS/ M
00104 -/

00315 $

8

00394 T

00319 3
00314

00318 T

SAMPL

CARD

001

002

003

003

003
003
004

004

004

004
004
005
005

005

006
006
006
006
007
007

007

007

FLAG

P

TN

64015

SEQNO PGLIN

36
37
38
39
40
41
42
43
44
45
46
47
48
49

50

6

0032
00320
00330
00340
0033
0034
0035
0035
01510
01520
01530
01580
0036
0037

0038

64015

SEQNO PGLIN

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71

Exhibit IV, Part B

00338
01510
01520
01530
01580
0039
0040

0041

0042
0043
0044
0045
0046
0047
0048
0049

0050

LABEL

PCHXT

EOF

EOF

ERROR

LABEL

ERROR

IDENT

CNT

AREA
ARO4

ARBO

EOQJ

ERR

0oPCOD

STDIO
BXPA
DCW
DCW

10CTL
EQU
BIN
BXPA
OCwW

8IN

10CTL

oPCOD

EQU
BIN
BXPA
DCW

BZN

LTORG

DA

oC
DC
PST

END

SAMPLE PROGRAM USING 1410/7010 AUTOCODER

OPERAND

PUNCH, AREA
/PCH/

#5

AREA

TYPE,EDJ

-

#-11,/CT8/

JCNC/
EOJ
#~11,/CY¥8/

/EOP/

TYPE,ERR

SAMPLE PROGRAM USING 1410/7010 AUTOCODER

OPERAND

*
s—11,/CT8/
/CNC/

ERR
#~-11,/CTB/

JUEP/

#0005

JAa

#0004

1X80,6

4

80

a E0Ja,G

JERRORQA,G

START

NUMBER OF FLAGGED STATEMENTYTS NONE

1410/7010 AUTOCODER...SYSTEM /MID/ 0001

REL

-

- -4

REL

-0

-ro 2

cT

12

cT

12

12

81

PAGE

ADDRS

00192

00203

00208

00209

00216

- 00228

00239
00240

00252

PAGE

ADDRS

00259
00271
00282
00283

00295

00302
00306
00309
00310

00314

00315
00318

00394

00396
00402

2 SAMPL
INSTRUCTION CARD
Y /PCH/ X 007

008

00315 009
J4 00000 009

00216
VvV 00216 /CT8B/ 2 009
Y JCNC/ X 009

00396 009
vV 00240 /CVB/ 2 ol0
J /EOP/ ol10

3 SAMPL
INSTRUCTION CARD

00259
VvV 00259 /CTB/ 2 gl0
Y /CNC/ X 010

00402 010
VvV 00283 /C18/7 2 o1l
J /UEP/ 011

012
012
012
012
015
015
00000
Appendix C 57

FLAG

FLAG

wesusC R O S S REFERENCE LT ST INGreeses

SAMPLE PROGRAM USING 1410/7010 AUTOCODER

VALUE

SYMBOL LABEL SEQNO OPERAND SEQUENCE NUMBERS
/CNC/ 0045 0053
/CRD/ 0023
/CT8/ 0044 0047 0052 0055
/eQP/ 0048
IMCS/ 0022
/PCH/ 0037
/RSE/ 0020
/UEP/ 0056
AREA 0064 0024 0039
ARO4 0065 0030 0032
ARBO 0066 0011 0028
CHNG 0027 0014
CHNGX 0033 0027
CNT 0062 0031 0032
EOF 0043 0021
€04 0068 0046
ERR 0069 0054
ERROR 0051 0022
IDENTY 0059 001t 0028
t 0OP 0013 0016
PCHXT 0040 0035
PUNCH 0035 0015
RDXT 0025 0018
READ 0018 0010 0013
START 0010 0071
SYMBOL LABEL SEQNO OPERAND SEQUENCE NUMBERS FOR LITERALS IN SEGMENT 1
'l a 0060 0029 0030
3Aa 0061 0031
Exhibit IV, Part C
MONS $ EXEQ LINKLOAD
MESSAGE CARD NAME VALUE SYMBOL VALUE SYMBOL VALUE SYMBOL
PHASE SAMPLE 18324
BASE1 18400
TITUE RESEQUENCE 18400 REL FACTOR 18400
UNRESOLVED ENTRIES NONE
MONS S EXEQ SAMPLE,MJUB
MONS$ END
Exhibit IV, Part D
0001 AUTOCODER SAMPLE PROGRAM DECK OF DUMMY INPUT CARDS XXXXX
0002 THIS DECK OF CARDS IS PROVIDED WITH THE SAMPLE PROBLEM TO SUPPLY A XXXXX
0003 FEW DUMMY INPUT CARDS FOR OPERATING IN THE ASSEMBLE-AND-GO MODE. XXXXX
0004 NOTE THAT THE FIRST CARD - THREE CARDS EARLIER IN THIS DECK - CONTA XXXXX
0005 FIVE CHARACTERS IN CARD COLUMNS 76 THROUGH 8C. AFTER EXECUTION OF XXXXX
0006 SAMPLE PROGRAM, ALL THE CARDS PRODUCED WILL CONTAIN THESE CHARACTER XXXXX
0007 IN THE CORRESPONDING CARD COLUMNS. NOTE ALSO THAT EACH OF THE CARD XXXXX
0008 PRODUCED WILL CONTAIN A SEQUENCE NUMBER IN CARD COLUMNS 1 THROUGH 5 XXXXX

Exhibit V

58

SYMBOL

VALUE

This appendix contains a complete listing of Autocoder
language statements and, where applicable, their
machine-language equivalents. In this listing, A-ad-
dresses in operands have been equated to location
12345, B-addresses have been equated to location
34567, and I-addresses have been equated to location
56789. C-addresses (for the Store Register instruc-
tions) have been equated to 45678. The character “D”
in an operand indicates that an appropriate machine-
language d-modifier is to be coded in the Autocoder
source statement.

Included in the listing are several generalized forms
for source statements. For example, the programmer

AUTOCODER MNEMONIC OPERATION CODES

Appendix D: Autocoder Operation Codes

can cause the generation of any machine-language in-
struction with an operation code of “J” by using the
generalized form Jo 1. Place jiv in the op code field,
and the branch address (I-address) and appropriate
d-modifier in the operand field. The generalized forms
permit the coding of instructions for which there are
no specific Autocoder mnemonics. Addresses in the
operand of the generalized forms can be specified sym-
bolically with labels, and can have address adjustment
and indexing.

No diagnostics are performed on the d-modifiers as-
sociated with generalized mnemonics.

LABEL 0PCOD OPERAND INSTRUCTION
. PROCESSOR CONTROL OPERATIONS
CRG 10000 ORIGIN
LTORG = LITERAL GORIGIN
* HEADR THIS INFORMATICN WILL BE THE HEACING OF LISTING
» RESEQ RESEQUENCE AT 001, NEW PAGE, NEW IDENT
* EJECT CONTINUE LISTING ON NEW PAGE
* SPEND START END PRIMARY SUBPRCGRAM
* SPEND END SECONDARY SUBPROGRAM
* END START END PRIMARY SUBPROGRAM AND AUTOCCDER RUN
* END END SECONDARY SUBPRGRM AND AUTOCCCER RUN
NOPWM NO OPERATION WORD MARK N
* LINKAGE LOADER CONTROL OPERATIONS
* BASEL 12000 CONTRCLS RELOCATION FACTCGR

* BASEZ2 38000 UPPER LIMIT FOR COMMON DATA AREA

" TITLE COSINE,20,0 DECLARES NAME GF SUBPROGRAM,
* SIZE QF COMMON, ORIGIN POINT

SINE/ CEFIN COSINE+42 DECLARES LINKAGE SYMBOL

* PRTCT ABCOC/ PREVENTS ERASURE OF LINKAGE SYMBOLS
. FROM LINKAGE LOADER TABLE

* CALL THIRE SUBPROGRAM CALL

s DECLARATIVE GPERATICNS

A EQU 12345 THE EQUATE INSTRUCTION

B EQuU 34567

C EQU 456178

I EQU 56789

Appendix D

59

LABEL

60

oPCOD

DA
DAV
DCW
29
[
DCWF
OCKWS

RSV

AUTOCODER MNEMCNIC OPERATION CODES

CPERAND

1X246

1X246

+2

1
NAME
NAME

LABEL

DEFINE AREA

DEFINE AREA IN COMMON AREA

DEFINE CONSTANT WITH WORD MARK

DEFINE CONSTANT

DEFINE SYMBOL

ADCON FOR ENTRY POINT OF NAMED SUBPROGRAM

BRANCH TO NAMED SUBPROGRAM

APPLY DOW

ARITHMETIC OPERATIONS

ZA

s

AB

AsB

ACD A-FIE
SUBTRACT
LERGC AND
ZERO AND
MULTIPLY

DIVIDE

NWARD RELOCATION TC LABEL

LD TO0 B-FIELD
A FROM 8
ADD A TO B

SUBTRACT A FROM B

MOVE RIGHT TO LEFT COMMANDS

MCVE SINGLE POSITION

MLNS
MLZS
MLCS
MLWS
MLNWS
MLZWS

MLCWS

A,B

MOVE LEFT

STOP MOVE AT WORD MARK

MLNA

MLZA

MLCA

MLWA

MLNWA

MLZWA

MLCWA

MOVE LEFT

NUMERIC SINGLE

IONES SINGLE

CHARACTERS SINGLE

WORD MARKS SINGLE

NUMERIC AND WORD MARK SINGLE
ZONE AND WORD MARK SINGLE
CHARACTER AND WORD MARK SINGLE
IN A-FIELD

NUMERIC TO A-FIELD WCRD MARK
ZONES TO A-FIELD WORD MARK
CHARACTERS TO A-FIELD WORD MARK
WORD MARKS TG A-FIELD WORD MARK
NUMERIC AND WM TO WORD MARK IN A
ZONES AND WM TO WURD MARK IN A

CHARACTERS AND WM TO WORD MK IN A

STOP MOVE AT WORD MARK IN B-FIELD

MLNB

MLZB

MLCB

MLWB

MLNWB

MLZWB

MLCWB

A,B

A+B

AsB

MOVE LEFT NUMERIC TO B-FIELD WCRD MARK

IONES TO B-FIELD WORD MARK
CHARACTERS TO B-FIELD WORD MARK
WORD MARKS TO B-FIELD WORD MARK
NUMERIC AND WM TO WORD MARK IN B
ZONES ANC WM TO WORD MARK IN 8

CHARACTERS AND WM TO WORD MK IN 8

STOP MOVE AT WORD MARK IN A~ DR B-FIELD

MLN

MLZ

AsB

A.B

MOVE LEFT

NUMERTC

ZONES

INSTRUCTION

0

10001
10004
10007
10008
10009
10010

10015

12345
12345
12345
12345
12345

12345

12345
12345
12345
12345
12345
12345

12345

12345
12345
12345
12345
12345
12345

12345

12345
12345
12345
12345
12345
12345

12345

12345

12345

34567

34567

34567

34567

34567

34567

34567
34567
345617
34567
34567
34567

34567

34567
34567
345617
34567
34567
34567

34567

34567
34567
34567
34567
34567
34567

34567

34567

34567

LABEL

apecce

MLC
MLW
MLNW
MLZW

MLCW

AUTCCODER MNEMONIC OPERATION CODES

CPERANC

A,8 CHARACTERS

AyB WORD MARKS

A,B NUMERIC AND WORD MARKS
A8 IONES AND WORD MARKS

A,8 CHARACTERS AND WORD MARKS

MCVE LEFT TO RIGHT COMMANDS

STGP MOVE AT WORD MARK IN A- OR B-FIELD

MRN

MRZ

MRC

MRW

MRN®W

MRZW

MRCW

Asb MOVE RIGHT NUMERIC

AyB ZONES

A,B CHARACTERS

A,B WORD MARKS

A, b NUMERIC AND WORD MARKS
AsB ZONES AND WORD MARKS

A,B CHARACTERS AND WORD MARKS

STCP MOVE AT RECCRC MARK IN A-FIELD

MRNR
MRZR
MRCR
MRWR
MRNWR
MRZWR
MRCWR
MRNG
MRZG
MRCG
MRWG
MRNWG
MRZWG

MRCHKG

A,B MOVE RIGHT NUMERIC TO RECORC MARK IN A-FLD
A, B 20NES TO RECCRD MARK IN A-FIELD
A8 CHARACTERS TO RECORD MARK IN A
A8 WORD MARKS TO RECORD MARK IN A
AsB NUMERIC AND WM TO RM IN A-FIELD
A,B ZONES AND WM TO RM IN A-FIELD
A,8 CHARACTERS AND WM TO RM IN A
A.B MCVE RIGHT NUMERIC TO GM-wWM IN A-FIELD

A,8 ZIONES TO GM-¥M IN A-FIELD

A.B CHARACTERS TO GM-WM IN A-FIELD
A,B WORD MARKS TO GM-WM IN A-FIELD
A,8 NUMERIC AND WM TO GM-WM IN A
A8 ZONES AND WM TO GM-WM IN A-FIELD
A,B CHARACTERS AND WM TO GM-WM IN A

STOP AT RM OR GM-WM IN A-FIELD

MRNM
MRZIM
MRCM
MRUWM
MRNWM
MRZWM

MRCUM

A,B MOVE RIGHT NUMERIC 70O RM OR GM-WM

A,8 ZONES TO RM OR GM—-WM

AyB CHARACTERS TGO RM GR GM-WM

A.B WORD MARKS TO RM OR GM—-WM

AsB NUMERIC AND WM TO RM OR GM-WM
A,8 ZONES AND WM TO RM OR GM-WM

A,B CHARACTERS AND WM TC RM OR GM-WM

SCAN LEFT AND RIGHT COMMANDS

SCNRR
SCNRG
SCNRM

SCNR

A,B8 SCAN RIGHT TO RM IN A-FIELD

A.B TO GM-WM IN A-FIELD

A,B ‘ T0 RM OR GM-WM IN A-FIELD

A,B TO WORD MARK IN A- OR B-FIELD

INSTRUCTION

D 12345
D 12345
D 12345
D 12345

D 12345

D 12345
D 12345
D 12345
D 12345
D 12345
D 12345

D 12345

D 12345
D 12345
D 12345
D 12345
D 12345
D 12345
D 12345
D 12345
D 12345
D 12345
D 12345
D 12345
D 12345

D 12345

D 12345
D 12345
D 12345
D 12345
D 12345
D 12345

D 12345

D 12345
D 12345
D 12345
D 12345

34567
34567
34567
34567

34567

34567
34567
34567
34567
34567
34567

34567

34567
34567
34567
34567
34567
34567
345617
34567
34567
34567
34567
34567
34567

34567

34567
34567
34567
34567
34567
34567

34567

34567
34567
34567

34567

O IM D e NE ~ -

L

O+ - O ¢« DX %

TO - O~

Appendix D

61

LABEL

62

apcce

SCNLA
SCNLB
SCNL

SCNLS

AUTOCCDER MNEMONIC OPERATION CODES

GPERAND

AsB SCAN LEFT TO WORD MARK IN A-FIELD
A8 TC WORD MARK IN B-FIELD
AsB TO WM IN A~ OR B-FIELD
A8 SINGLE POSITICON

SPECIAL MOVE COMMANDS

MCS

MCE

a,B MOVE CHARACTERS AND SUPPRESS ZEROS

A,B MOVE CHARACTERS AND EDIT

COMPARE AND LOCKUP COMMANDS

Lt
LE
LLE
LH
LLE

LEH

A,B COMPARE B8~FIELD TO A-FIELD
A,B LOOKUP LOW

A,B LOOKUP EQUAL

A,B LOCKUP LOW OR EQUAL

A,B LOOKUP HIGH

A,8 LOCKUP LOW OR HIGH

A,B LOOKUP EQUAL OR HIGH

LCGICAL CQPERATIONS

BW

BZN
BIN
BIN
BWZ
BWZ
BWZ
BWZ
BWZ
BWZ
BWZ

BCE

BU
BE
BL
BH
B8Z
BAV

8oV

I,8 BRANCH
I+8 BRANCH
1,8,A8
I.B,+

14854

1,8 BRANCH
1,B,A8
IeBy+
14B,A
c
1.8,T
1,8,8
1,8,-

14840 BRANCH

TO I-ADDR IF WORD MARK AT B-ADDRESS
TO I IF B HAS NO AB-BITS
IF B HAS A-BIT AND B-BIT
A-BIT AND B-BIT
IF B HAS A-BIT AND NO B-BIT
A-BIT AND NO B-BIT
IF 8 HAS B-BIT AND NO A-BIT
B-B1T AND NO-A-BITY
TO I IF B8 HAS WM AND NO AB-BITS
AND AB~BITS
AND AB-BITS
AND A-BIT
AND A-BITY
AND B~-BIT
AND B-BIT

TO I IF CHARACTER AT B EQU D-MCD

1+8,0 BRNCH IF ANY BIT AT B MATCHES BIT IN D-MOD

1 UNCONDITIONAL BRANCH

1 BRANCH

1 BRANCH
I BRANCH
1 BRANCH

IF COMPARE UNEQUAL
EQUAL
LOW
HIGH

IF ZERC BALANCE

IF ARITHMETIC OVERFLOW

1F DIVIDE OVERFLOW

INSTRUCTION

D 12345
D 12345
D 12345

D 12345

Z 12345

E 12345

C 12345
T 12345
T 12345
T 12345
T 12345
T 12345

T 12345

vV 56789
vV 56789
vV 56789
vV 56789
vV 56789
vV 56789
vV 56789
vV 56783
VvV 56789
vV 56789
V 56789
V 56789
vV 56789
vV 56789
V 56789
B 56789
W 56789
J 56789
J 56789
J 56789
J 56789
J 56789
J 56789
J 56789

J 56789

34567
34567
34567

34567

34567

34567

34567

34567

34567

34567

34567

34567

34567

34567
34567
34567
34567
34567
34567
34567
34567
34567
34567
34567
34567
34567
34567
34567
34567

34567

AUTCCODER MNEMCNIC OPERATIGN CODES

LABEL OPCCD GOPERAND INSTRUCTION

. MISCELLANECUS CPERATIONS
SAR c STORE A-REGISTER G 45678 A
SBR C STORE B-REGISTER G 45678 B
SW A SET WORD MARK AT A » 12345
SW A8 SET WORD MARK AT A AND B8 v 12345 34567
Ch A CLEAR WORLCMARK AT A) 12345
CwW A.B CLEAR WORD MARK AT A AND B) 12345 34567
cs 8 CLEAR STORAGE / 34567
cs 1,8 CLEAR STORAGE AND BRANCH / 56789 34567
NOP ' NO OPERATION N
STC A STORE TIME CLOCK G 12345
SR CsD GENERALIZED STORE REGISTER G 45678
STCPU 1 STORE CPU STATUS $ 56789
RSCPU 1 RESTORE CPU STATUS $ 56789

* FLOATING PCINT ARITHMETIC INSTRUCTIONS
FRA) FLOATING RESET ADD = 12345
FST A FLOATING STORE = 12345
FA A FLOATING ADD = 12345
FS A FLOATING SUBTRACT = 12345
M A FLOATING MULTIPLY = 12345
FD A FLOATING DIVICE = 12345
BXQO 1 BRANCH EXPONENT OVERFLOW J 56789
BXU { BRANCH EXPONENT UNDERFLOW J 56789

NOTE: The remainder of this listing presents in- system's I0CS, the /majority of these instructions will

structions that are (or can be) related to input/output not normally be used in coding an Autocoder program.

functions, including the use of priority and overlap. The programmer who wishes to use any of these in-

They are "restricted" in that special care must be structions is advised to be familiar with the extended

given to their use, since they are potential hazards use of the IOCS, as explained in the publication IBM

to such Resident Monitor control functions as input/ 1410/7010 Operating System: Basic Input/Output

output scheduling and assignment of input/output units. Control System, Form C28-0322.

Because all programs within the Operating System

are provided with input/output facilities by the

* CONDITICNAL BRANCHES FOR 1/0+ OVERLAP, AND PRIORITY
BEX1 I,D BRANCH EXTERNAL INDICATOR - CHANNEL 1 R 56789
BEX2 1,D - CHANNEL 2 X 56789
BEX3 I,D - CHANNEL 3 3 56789
BEX4 I.D ~ CHANNEL 4 1 56789

NOTE: The Branch External Indicator instructions and can result in either an 1/0 interlock error or

must not be used in any form, for any purpose, by failure of IOCS functions. The BEX mnemonic is

dependent programs within the Operating System. included in this listing merely as an aid for reading

These instructions reset certain interrupt indicators assembly listings of the Resident JOCS.
BOL1 I BRANCH OVERLAP IN PROCESS - CHANNEL 1 J 56789
BOL2 1 - CHANNEL 2 J 56789
BOL3 i - CHANNEL 3 J 56789
BOL4 I ~ CHANNEL 4 J 56789
881 I BRANCH IF BINARY CARD - CHANNEL 1 J 56789
862 1 - CHANNEL 2 J 56789

Appendix D

63

AUTOCODER MNEMONIC OPERATION CODES

LABEL OPCOD OPERAND INSTRUCTION
B 1 BRANCH PRINTER CARRIAGE BUSY - CHANNEL 1 J 56789 R

apcel I - CHANNEL 1 J 56789 R
BPCB2 1 - CHANNEL 2 J 56789 L
BCV 1 BRANCH CARRIAGE OVERFLOW - CHANNEL 1 J 56789 -
BCV1 1 — CHANNEL 1 J 56789 -
BCv2 1 - CHANNEL 2 J 56789)
BC9 1 BRANCH CARRIAGE CHANNEL 9 — CHANNEL 1 J 56789 9
8C91 I — CHANNEL 1 J 56789 9
BC92 I - CHANNEL 2 J 56789 8
BXPA 1 BRANCH AND EXIT PRIORITY ALERT Y 56789 X
BEPA 1 BRANCH AND ENTER PRIORITY ALERT Y 56789 £

* Jip 1,0 GENERALIZED TEST AND BRANCH

. THE ABOVE 1S A GENERALIZED FORM, PERTAINING TO

* THE J OPCODE. THE PROPER D MODIFIER MUST BE

* SUBSTITUTED BY THE USER FOR THE D SHOWN IN THE OPERAND '

. BPI ‘ 1,0 GENERALIZED PRIORITY TEST AND BRANCH

. THE ABOVE IS A GENERALIZED FORM, PERTAINING TO

» THE Y OPCODE. THE PROPER D MODIFIER MUST BE

] SUBSTITUTED BY THE USER FOR THE D SHOWN IN THE OPERAND

NOTE: The Priority Test and Branch instructions thorough knowledge of the internal functions of the

reset indicators tested by the Resident IOCS and, IOCS is prerequisite for use of these instructions in

therefore, should be used with special care. A a dependent program.
STATS 1,0 GENERALIZED STORE AND RESTORE STATUS $ 56789 b

* THE ABOVE 1S A GENERALIZED FORM. THE PROPER

* O MCDIFIER MUSY BE SUBSTITUTED FOR THE D SHOWN.

L4 FOUR EXAMPLES OF THIS USAGE ARE
STATS IE STORE CHANNEL 1 STATUS $ 56789 |3
STATS 1,6 STORE CHANNEL 3 STATUS $ 56789 G
STATS 1,1 RESTORE CHANNEL 1 STATUS $ 56789 1
STATS 1.4 RESTCRE CHANNEL 4 STATUS $ 56789 4
SSF [¢] SELECT STACKER 0 AND FEED — CHANNEL 1 K 0
cc 1 CARRIAGE CONTROL 1/0 CHANNEL' 1 F 1
8sp (Bl BACKSPACE TAPE U (Bl 8
WTM (81 WRITE TAPE MARK u (81 M
RWD (81 REWIND V] (81 R
RWU (81 REWIND AND UNLOAD [V} (81 u
cu (BlsW CONTROL UNIT v (Bl L]
MU (B1,8,0 TO BUILD MOVE MODE 1/0 COMMAND M (B1 34567 D
Lu (81,8,D TO BUILD LOAD MODE 1/0 COMMAND L (Bl 34567 D
H 1 HALT AND BRANCH . 56789

NOTE: The Halt instruction, although not necessarily
related to input/output functions, is included in the
"regtricted" category because its use is in opposition
to the Operating System convention that dependent
programs should not interrupt Monitor control with

€0J
64

END

machine halts. This convention is especially signifi-
cant for dependent programs that run under control
of a Resident Monitor that includes the Tele-process-
ing Supervisor.

Absolute Adjustment
Absolute Format
Address Adjustment
Adjustment Factor
The Form *+X00
Multiple Adjustment
Address Constant (Definition)
ApDRs (Address)
Alphameric Constant
Alphameric Literal
Area Defining Literal
Assembly Control Statements
Assembly Listing
Asterisk Address (Types)
Asterisk plus X00

Operation Codes

BASE1 — Base Address

fotual p]us X()()

BASE? — Base Address (comMoN Data Area)
Basic Addresses

Blank Operation Field
Blank Operand
BooL (Pseudo-Macro)

cALL — Subprogram Call
carp (Card Number)
Coding Sheet
COMMENTS and COMMENTS CARD
coMMoN (Definition)

Assignment of Data Areas

comp (Pseudo Macro)
Control Operation Codes

Control Statements (Definition)
Cross Reference Listing
¢t (Character Count)

pA — Define Area

Sample Problem e

pav — Define Area in comMoN
The common Data Area
Coding Examples

pc — Define Constant

pcw — Define Constant with Word Mark
Address Constant

Index

pcwr — Subprogram Address Constant 33
pcws — Subprogram Branch Instruction 34
Declarative Operation Codes 23
Declarative Statements 23
DEFIN — Definition 34
Downward Relocation 8
ps — Define Symbol 30
EjecT—Eject 35
END — End Subprogram and Assembly 38
EQu—Equate 30
Actual or Symbolic Address 30
Adjusted or Modified Address 30
Index Register iiiiiiiiion.. 31
Asterisk 31
EXEQ Card 9
Flags (Definition) 11
Assembly Listing 11
Causes 11,51
Diagnostics 51
Types .. 11
Group Mark Word Mark 24, 28
DAStatement 24
pcw Statemento 28
Heading Lines (Assembly Listing) 10
HEADR —Header Line 10, 35
Identification, Program 10, 35
Imperative Operation Codes 21
Imperative Statements (Definition) 7
Symbolic Machine Instructions 21
Special Imperative Statements 21
Indexing (Definition) 16
Addressing an Index Register 16
Addresses 16
With Address Adjustment 17
INSTRUCTION {Assembly Listing) 11
Label (Definition) 7
As Address Constant 18
Assembly Listing 11
As Symbolic Address 14
Coding Form 12
Labeling (Definition) 7
COMMON ...ttt e 26
EQU Statement 30
Index Register 31
Macros ... 42
ORG Statement 38
Linkage Loader Statements 7
Functions 32
Operation Codes el 32
Linkage Symbols (Definition), 19
Conventional Label 19
The Form LABE/ 19
Literals 17
Address Constant 18
Alphameric 18
Area Defining, 18
Numeric 17
Load Address, 37
Long Literal (Definition) 17
Numeric i, 17
Alphameric 18
LTORG — Literal Origin 38

Machine Instructionsccoveviniriirariaenean 21
Assembly Listingo 11
Machine Language 11,59
Symbolic 21

Machine Requirementsoueurrneennnon 6

Library, Macrooonirineienanneenaasnneos 40

Macro Operationscevunnneecrnunnorns .40

Macro ROUtiNeovii i 40

Macro Processingc. i, 50

Macro System ...ttt 40

MATH (Pseudo-Macro)o 44

MEND (Pseudo-Macro) i 48

Mnemonic Operation Codes 11, 22, 59

Multiple Compilation i 9
MONS$ ExEQ Card 9
Option Card oot i 9

No Clear Option (DA Statement) 25

No Relocation 8

NopP—No Operationoty 21

NopwM — No Operation; Word Mark 21

~NotE (Pseudo-Macro) 48
Assembly Listing, 11
Flag 11,51

Numeric Constantsoivenaeniieaeaenns 28

Numeric Literalo 17

Object Deck (Definition) 5

Object Program (Definition) 5

opcop (Operation Code) 11

Operand (Definition)o 7
Assembly Listing 11
Types of Operandst 14

Operand Entriescouuiiiiiinioiinnnans 14
Adjustment Factorsoians 15
Basic AAdresses 14
d-Charactersc.viuruemnenennieiaeinns 20
Index Notationscovvureemeninneneiinnn. 16
Parameters (DA and DAV) 24
Special Elementsot 20

Operating System i 5

Operation Code (Definition) 7
Assembly Listing 11
Coding Sheet Formciiiiiiinann 12
Machine Language Instruction 11,59

Operation Modifier (d-Character) 7,20, 51

Option Card i 9

Options, Processingc.cooiiiiiiiiain.... 9

ORG—Origin e 36

Origin Addresso, 36
Actual 37
Asterisk 37
Asterisk +X00 37
Blank ... 37
Symbolic 37

Overriding Indexing, 24

Page-and-Line Number 11

Parameterst e 24, 26, 32
paand pav Statementsl 24
Tiree Card 32

peLIN (Page-and-Line Number) 11

Predefined Symbols oL 18
COMMON ..ttt t it it i i et 26
XO e e 27,17
XI-XIS e 16

66

Prerequisitescceiiriiiiiiiiiiiiiiiiaas 5
Processing Optionsot 9
Processor, Autocodert 5
Program Execution (Assembly) 9,53
PRTICT — Protectooiiiiniiiiiviiiii i, 34
Pseudo-Macro Instructionsoviunn. 43
Coding Exampleso, 49
psT — Print Symbol Table............................. 35
Reference Address (Basic Address) 14
RreL (Relocation Indicator) 11
F Relocationcoiiiniiie i 8,36
Downwardot e 8
o 8
Upward e 8
Replacement Codes (Definition) 11
Representationsoooiiiiiiiiiiiineiann 12
RESQ — Resequence 35
Restrictions
Area Defining Liberal 18
I COMMONttt 8
pcw (Blank Constants) 29
Operation Codes 29, 59, 63
XIS e e 17
Xl4and XI5 17
RSV — RESEIVEt 27
Sample Program i 53
sEQNO (Sequence Number) 11
Sequence Number 11,35
SPEND — Subprogram End 38
Statements, Autocoder (Definitions) 7
Subprogram (Definition) 5
Control Statements 36
Primary 39
Secondary 39
Sum Box ... s 44
Symbol (Definition)o 7
Symbolic Address i 14
Symbolic Machine Instructions 21
System Symbol (Definition) 20
JAMS/ e 9, 26
IDAT/ e e 10
JEOP/ e 9
JLIN/ e e 11
JUEP/ o e 9
Termination, Object Program 9
TITLE—Title e 32
Entriesot e 32
Format e 32
Types of Operands, .. 14
Address Adjustment il 15
Basic Address i e 14
Indexingttt 16
Linkage Symbols o 19
Literals i e 17
Miscellaneous 0o iiiieniet bt 20
System Symbols oL 20
Upward Relocation (Definition) 8
X0 (Index Negation)cooviiiieeannn... 24
X1-X15 (Predefined Symbols) 16
X13 (Considerations)voiiiiiiinian.. 17
X14-X15 (Restrictions) 17
Zero Addressing, Relativeto, 25
Zero Operandoiiiiiiiiii. 20

C28-0326-2

TSI

o]
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

¥ 'S ' u1 pajutig

T-92€0-82D

e -

e

e

L e .

