IBM / Technical Newsletter File Number 1410/7010-22

Re: Form No. C28-0326-2
This Newsletter No. N27-1223
Date June 24, 1965

Previous Newsletter Nos.

IBM 1410/7010 AUTOCODER

This Technical Newsletter amends the publication IBM 1410/7010 Operating System;
Autocoder, Form C28-0326-2, to include new information concerning the DCW statement,
the chaining of instructions and the use of zoned switches, and to correct minor errors.

The attached replacement pages (11-14, 29-30, and 41-42) should be substituted for the
pages currently in the publication. Text changes are indicated by a vertical line at the
left of the affected text.

In addition, the following changes should be made to the publication:

Page

22

26

27

47

51

Amendment

Change the Meaning of the mnemonic "HEADR" (under "Assembly
Control Codes'") to read

Header Line
Under the heading "Assignment of Data Areas in COMMON", the
first paragraph refers to "Figures 61 and 62". Change this refer-
ence to read:

Figures 35 and 36

In the section '""Use of Labels Referencing COMMON, " there are two
references to ""Figure 61'"'. Change these references to read:

Figure 35

The first complete sentence on the page ends with "skip to state-
ment 004", Change this to read:

skip to the statment labeled L.

The second sentence in Note 2 ends with the word ""common'. The
word ""common' should be capitalized to read:

COMMON

Please file this cover letter at the back of the publication. It provides a method of de-
termining that all changes have been received and incorporated into the publication.

IBM Corporation, Programming Systems Publications, Dept. 637, Neighborhood Road, Kingston, N.Y. 12401

PRINTED IN U.S.A.

None

N27-1223 (C28-0326-2) Page 1 of 1

1. SEQNO — Sequence Number: The sequence
| number of statements as they appear in the assembly
listing,

2. PGLIN — Page and Line Number: The page and
line number as it appears in columns 1 through 5 of
the cards in the source deck. Page and line numbers
must consist of five non-blank characters and must ap-
pear in ascending sequence.

Statements generated by the macro generator will
have a page and line number in this field supplied by
the generator. These numbers have no relationship to

" the numbers of the hand-coded statements; they rep-
resent the order in which the statements appear in the
Macro Library.

The space between the seQNo and PeLIN columns of
the listing are used by the processor to contain either
an “S” or a “G,” under the following conditions.

S — The page and line number of the statement is
not in ascending sequence in, relation to the preceding
source statement. This is only a warning to the pro-

. grammer that his source statements may be out of
sequence. ‘

G —This character differentiates statements pro-
duced by the macro generator from the hand-coded
source statements.

3. LABEL — Label: The contents of the label field,
columns 6 through 15, of the Autocoder statement.

4. OPCOD: The Operation Code, columns 16
through 20, of the Autocoder statement.

5. OPERAND: The contents of the operand field,
columns 21 through 72, of the Autocoder statement.

6. REL — Relocation Indicator: This is a code char-
acter that indicates to ‘the Linkage Loader the type
of relocation to be applied to the element(s) in the
statement.

7. CT — Character Count: The length in characters
of the assembled imperative statement, or the number
of core-storage locations reserved for a constant de-
fined in a declarative statement. ‘

8. ADDRS: The relative address assigned by the
processor to the instruction or constant. This address
is subject to relocation.

9. INSTRUCTION: The assembled machine-lan-
guage instruction or constants from which the object
deck is constructed.

10. CARD — Card Number: The sequence number
of the card in which the associated constants or in-
structions appear in the object deck. This sequence
number is automatically computed and placed in col-
umns 73-75 of each card in the object deck, in ascend-
ing order.

11. FLAG: An alphabetic character indicating an
actual or possible programming error. As many as five
flags can be assigned to one Autocoder statement. The

- flags provided are as follows:

F — invalid statement Format

M — Multiple definition of a label
N — macro generation Note

O — invalid Operation code

R — Restricted operation code (if not generated
by a macro)

U — Unidentified label in the operand
W — Warning, general classification of error

Details concerning the above flags can be found in
Appendix A. The total number of flagged statements
is indicated at the end of the assembly listing, followed
by a line which contains the sequence number of each
flagged statement, to a maximum of 20 numbers. The
presence of any flag except “R” causes the processor
to set the “no-go” switch during assembly. This setting
of the “no-go” switch can cause a bypassing of all the
source cards up to the next job. See the System Monitor
publication.,

The assembly listing can be supplemented by a cross
reference listing at the option of the user, by means
of the pst statement. This listing analyzes the sub-
program(s) just assembled, and lists each label, fol-
lowed by the sequence number of the statement in
which it was defined, and the sequence number of
each statement in which the label is used as a reference
address. See “pst — Print Symbol Table,” in the sub-
section “Control Operation Codes,” for a more detailed
explanation,

Note: The system symbol /Lin/ controls the line
count on the listing page. However, if this system sym-
bol calls for the printing of less than 30 lines per page
the processor will reject this direction and print the
assembly listing at the normal 55 lines per page. See
the System Monitor publication for details concerning
this system symbol,

'Replacement Codes

The Autocoder processor utilizes a second line (nor-
mally blank) in the assembly listing, for the representa-
tion of non-printable characters. Each of these char-
acters is represerited by two characters, one printed
above the other, at the appropriate place in the listing.
These two-character substitutions are called replace-
ment codes, and they appear most frequently as re-
location indicators or operation modifiers.

Basic Concepts and Functions 11

Form C28-0326-2
Page Revised 6/24/65
By TNL N27-1223

The two-character replacement codes with their con-
ventional graphic representations, card codes, and
names are listed in Figure 3.

Replacement Card
Code Graphic | Code Name
5 ? 12-0 Plus Zero
6 ! 11-0 Minus Zero
G
M $ 12-7-8 Group Mark
Q
T -+ 0-7-8 Segment Mark
w
S ~ 0-5-8 Word Separator
D
L A 11-7-8 Delta
C
T ¢or kb 2-8 Cent Sign or Substitute Blank
L
P { 12-5-8 Left Bracket
R
P 1 11-5-8 Right Bracket
T .
M \4 7-8 Tape Mark
L B
T < 12-6-8 | Less Than
G
T > 6-8 Greater Than
; ; 11-6-8 Semicolon
: 5-8 Colon
\ 0-6-8 Backslash

Figure 3. Replacement Codes

Coding Sheet

The Autocoder Coding Sheet (Figure 4) provides a -
convenient form for coding source program statements.
Column numbers on the coding sheet have a one-for-
one correspondence to the columns on the card used to
punch the source statements (Autocoder Input Card,
Form A36199). o

Each line of the coding sheet is punched into a sepa-
rate card. The source deck, therefore, consists of a
sequenced set of punched cards containing a line-by-
line representation of the coding sheets.

The following paragraphs explain the function of
each field. The heading information, Program, Pro-
grammed By, and Date, are only for documentation,
and are not punched.

12

fdentification (Card Columns 76-80)

This five-position field can contain a name created by
the programmer to identify the program. This identi-
fication will be punched into 76-80 of the object deck
only if it appears in a HEADR or RESEQ control card. (See
“Control Operation Codes.”) However, the identifica-
tion is not checked on the other Autocoder statements,
and serves only to identify the program to which the
card belongs. Special, as well as alphameric, characters
are permitted.

Page Number and Line Number (Card Columns 1-5)
The page number (columns 1 and 2), in conjunction
with the line number (columns 3-5), provides a means
of sequencing the cards in the source deck. This enables
the programmer to identify and correlate the entries
on the coding sheet and assembly listing with the
entries in the source deck. Alphabetic, as well as nu-
meric, characters can be used. (If the standard collat-
ing sequence is not followed, the processor will place
a sequence (S) flag next to the poriN field in the as-
sembly listing, as previously explained.)

Label (Card Columns 6-15)

This field, if used, contains the label being defined in
this statement.

Operation Code (Card Columns 16-20)
This field contains the operation code.

Operand (Card Columns 21-72)

This field, if used, contains the operand element(s) of
the statement. '

Note: Columns 73-75 should be left blank.

COMMENTS

Comments are remarks or notes written by the pro-
grammer in the operand field. At least two blank spaces
must separate a comment from the last character of
the statement. The comment, punched in the source
deck, appears in the assembly listing but is not con-
tained in the object deck, and has no effect on the
object program.

COMMENTS CARD

It may, at times, be helpful to insert an entire line of
descriptive information. This is done by placing an
asterisk in column 6 and using the balance of the line
(up to column 72) for comments. When this line of
information is punched into a card of the source deck,
the asterisk will identify it to the processor as a com-:
ments card. The comments will be printed in a single
line of the assembly listing at the point of encounter,
which can be anywhere in the source deck, except as

Form C28-0326-2
Page Revised 6/24/65
By TNL N27-1223

IBM Form X24-1350-1
Printed in U.S.A,
Program I
INTERMATIONAL BUSINESS MACHINES CORPORATION identification . .
4 76 8o
Progr by IBM 1401 AND 1410 DATA PROCESSING SYSTEMS Page No.Lt | of
ge No. o
Date AUTOCODER CODING SHEET 3
Line Label perati OPERAND
I3 e 1516 of21 25 30 35 49 45 50 53 60 65 70
] - 3 =
jo.t, P PR PR L4 P seti L oa gy " Ly i3 " Ly
|
0.2 PR W S 2 Ak ek N U ST S S S S W S T BN Y PR P ST ST R S S S N S S N M S R S " P
|
0.3 PR | s N " P NP P " P
|
0.4 e . i . A
|
95, | vy L U S S WU Y WV S S S S S S S S S S S S ST S S TN N0 ST S N T S W VU SR S SN T A S S SO0 W A T
0.6, TR P id TS S PR R SRS N " PERFRECENE W N S S T S R RN N U S S S N R P
O b b b e e e ey PP A S S S R S S SR
0.8, N i N B s " PN S L N N i A
|
o9 | .. e 1 NP BN L e s N O A N S S SR SR R
|
10 P N R T L M MRS SRR R S AR R R PR
I
UL P S P S T S S U S A S S ST W S S bty - i
|
(% S0 IR P I S R S| P S ST GV S A S A i S SR S S R
1
[IE- IV I SR A i S R S S R T A U0 S T S S T U W G A S S S S S S
t
LI N SR R A S T TV H T VO S S S S ST S S S S S T S S S T S S S SO 10 S S S N H S S S O S S S ST S T S O T S
1
LI 0 I S PO TUT T ST A U ST S S VA S WY S T S U VS S VA ST S S S S S S S U Ny S S S S S S S O
1
V6, by ey - L i PR S S VT SOT SN NPT S Y SP R S P S SO S S SO SO S S U T VS ST
|
[NP NI S ST S D W S N S U S U S AN T SOT AT APEN SR ST S S T S ST ST S S S P S SR R
)
1N P AP B PPN A TS S I U WU SN VO VY Y0 T ST VO SV S SV S W S S S S S ST At 1 L
1
9 M SR . N T R i S P i A S S S PR R T S N S S S S
I
2,0, P T BT TR I S T ST S WU G T SN Y TS SRN R RTINS S S ST NN UU S WO WO Y M S 1 AT T T S TS TS W S S S S
I
2,1, PRI T T P M IR ORI U ST IO S ST E DI S S S S U N S G S S S S Y L N
i
2.2, PRI S B R i) TSR SO0 0N YNNG YA ST NUN TN ST ST S N N CAAE AT G AN S SN ST S S N ST S ST S S SN T R HON VAU O S N S S PRI S B WY
1
2,3, NN " IR [T U A R A ST I S A M PN BTSN ST AT UG S A T S S VA S P PR T
[
2.4, NS RS L N N S S R R ETI MENEEN S F SO S S U TN SO ST VO VU N TV ST S T S S U S IO S U WA VA S Y S0 W U
|
2,5, NENUEIYN O N B S| e I FERUEATEN SEN TS SN STV EES U W V0N TV S S SO T S S S WA U0 SNV S NS Y S N ST U W FETEE SRR NS I |
|
1 P S B R O A S U T | S T S S Y IS R T T T TR S W G '] U S T S N WO N T S N N | | S D TN T T TS TN W S S SN S W U B B R WY
|
N NS BTSN T A I S S S S A S 0 U VT A ST NN S S SN0 SV HT N SAVIND T ST SO ST S S S R SO S SN S
|
i PR T B PRIt DU W SRS S0 N SN T T T N RN HY S N G | T TR ST S S WS TN WA U WA VOO S0V D00 SN S S S S T M SR 1 I
1
R NI TR A L N S S R TR TR S T S S S S SR A S U P SRR
|
1 i g | P P R S Y U T N T T ¥ i I T S S WS S S N S ¥ i e 4 SRS

Figure 4. The Coding Sheet Form

noted under “Implied pcw Operation Codes.” Com-
ments cards have no effect on the object program and
are not included in the object deck. However, a com-
ments card inserted in a series of chained Autocoder
operation codes will break the chain. It is, therefore,

necessary to restate the operation code and to provide
the proper operand on the first source card statement
following the comments card, in order to resume a
chained action. In summary, a chain which is broken
by a comment must be made into two chains.

Basic Concepts and Functions 13

Types of Operand Entries

This section explains the form and use of the various
entries permitted in the operand field of imperative,
declarative, Linkage Loader, and control statements.

The operand field of an Autocoder statement is used
to specify a variety of information to the processor.
The function of a specific entry is dependent upon the
type of Autocoder statement in which it appears. The
normal operand usage with each of the five types of
Autocoder statements is as follows.

STATEMENT TYPE OPERAND CONTENTS

IMPERATIVE Symbolic address(es) to be operated
upon by the machine instruction, and
a d-modifier, when required

DECLARATIVE Constants, symbols, and/or control

parameters necessary to declare the
desired fields

Symbolic (or actual) addresses and/or
control parameters required to convert
the object deck into absolute format

LINKAGE LOADER

CONTROL Symbolic (or actual) addresses and
constant information indicated by the
operation code

MACRO Parameters of the macro statement

(These parameters are discussed in
the section entitled, “The Macro Sys-
tem.”))
All permissible operand entries are explained and
illustrated under the following headings:

Basic Addresses

Address Adjustment

Indexing

Literals

Linkage Symbols

System Symbols

Miscellaneous

Basic Addresses

Basic addresses contained in the operand field of an
Autocoder statement are the primary elements of
information conveyed to the processor. They can be
altered or modified by means of additional elements
contained in the operand field.

A basic address is the symbolic or actual representa-
tion of a core-storage location of the data field or in-
struction referred to by the Autocoder statement.

A basic address can be in one of three forms:

Symbolic
Asterisk
Actual

14

Symbolic

A symbolic address is an operand entry that appears
elsewhere in the source program as a label. As a rule,
this symbol can be defined as a label either before or
after the Autocoder statement in which it appears as
an address. The exceptions to this rule are as follows:

1. All symbolic operands appearing in ORG, LTORG,
and EQU statements must have been previously defined
within the same program.

2. The symbolic address appearing in an Rsv state-
ment must precede any other use of this symbol in a

~program. (See “Rsv — Reserve.”)

3. The symbolic representations of index registers
(X0, X1-X15) and the common data area (COMMON),
must never appear in the label field. They cannot be
defined by the user because they are predefined labels
in the symbol table maintained by the Autocoder proc-
€ssor.

The instruction in Figure 5 illustrates the use of
symbolic addresses. The symbols ToTaL and accumu-
LATE are defined as labels elsewhere in the program.
The assembled instruction will cause the contents of
the core-storage area labeled ToTaL to be moved to the
area labeled ACCUMULATE.

Note: A symbolic address will receive upward,
downward, or No relocation, depending on the manner
in which the symbol is defined.

Line Lcl';el iEperoﬂ
3 sle 1she

0.1, |6ROSS, | . . . IMLCA.
I

Lk P S A RS S U | T R S S GRS |

Figure 5. Autocoder Instruction with Symbolic Addresses

Asterisk (*)

An.asterisk (11-4-8 punch) can be used as a basic ad-
dress in an Autocoder statement. When compiling the
object program, the processor will replace the asterisk
with the relative core-storage address of the last char-
acter of the instruction or data field created by the
statement in which it appears. However, if an asterisk

address is used in a statement that does not cause the

generation of an instruction or data area in the object
program, the value substituted for the asterisk will be
the current location in the object program.

Blank Constants

A field of blanks can be reserved by placing a # char-
acter (3-8 punch) in column 21, followed by a number
indicating how many consecutive blank core-storage
positions are to be defined (Figure 40). A word mark
is set in the high-order position of this field.

Note: The number of successive blank constants
that can be reserved by a pcw statement is limited to
500 positions of core storage. If this limit is exceeded,
the processor will reserve only the maximum (500
positions), and attach an “F” flag to the statement on
the assembly listing.

Line Label
3 sie

_Eperoﬁtx\‘[
15)16 20

21
L.I.I/./(.S‘l . oo w14

0.2 PR S

25 30 35 40 g
P " et
NN

Figure 40. Field of 14 Blanks Defined in a pcw Statement

Address Constants

A pcw statement can be used to define an address
constant. The constant is the address of the field whose
label is written in the operand. For example (Figure
41}, assume that the label MaNNO is used in the sym-

bolic program, and that it was assigned the address
" 00500 by the processor. The programmer can refer to
the address of ManNoO by using the symbolic label of
the pcw statement.

Line Label J?perotﬂ g
3__Sls 15)t6 20[21 25 30 35 40

o |SERIAL . . . |Dew MO o S
]

0.2 S S i ST

Figure 41. Address Constant

The five-character data field labeled seriaL (Figure
41) will contain the address of the label manno
(00500). The Linkage Loader will recognize address
constants and adjust them by the proper relocation
factor. Thus, seriaL will contain the relocated address
of MaNNoO.

If an address constant is address adjusted in a pcw
statement, the constant is adjusted before it is assigned

Form C28-0326-2
Page Revised 6/24/65
By TNL N27-1223

a storage location. In Figure 42, MmanNo (actual address
00500) has been address adjusted by -+12. Thus, the
location Iabeled rica will contain the address constant
00512.

Line Lobel
3 SL

oo FzCA 1.
|
)

0.2

Figure 42. Address Constant with Address Adjustment Defined
in pcw Statement

Address constants defined in a pcw statement can
be indexed. The zone bit(s) indicating the specified
index register becomes part of the constant.

Note 1: All address constants receive the same relo-
cation indicators that were assigned to the symbol
specified in the operand field.

NotE 2: An address constant of a linkage or system
symbol can be specified, and the desired address will
be automatically supplied by the Linkage Loader.
However, this form of address constant cannot be
address adjusted or indexed.

Signed Address Constants

An address constant defined in a pcw statement can be
signed. A and B bits will be generated by the processor
over the units position, if the plus (+) sign was placed
before the operand. The units position will contain a
B bit if the minus (—) sign was used (Figure 43).

Line Label _Eperaﬁﬂ é
3 sle : 15li6 20J21 25 30 35 40
o, ISERIALL . DCW . [+MANNO S

o2 [FEDTAX . ..

c.L-m,ZM

Figure 43. Signed Address Constants Defined in pcw Statement

implied DCW Operation Codes

If several constants are to be defined in succession, only
the first statement (or any statement preceded by a
comments card) requires the mmnemonic pcw in the
operation field (Figure 44).

LineE Label 'Operorimi QPERAND

3 Sis 1516 20j21 25 30 35 30 45 50 58, 50 85 70,
o TEN Dcw__ 10

oz DATE @JUNE 30, 1965@ .

o3 | MESSAGE

04 |

©EQJ - START PHASE TWO 836

Figure 44. Successive bcw Statements with Blank Operation Columns

Autocoder Operation Codes 29~

DC — Define Constant (no word mark)

The function performed by the pc statement, and the
permissible forms of the constants, are identical to
those described for the pcw statement. The only differ-
ence is that the word mark is absent when the constant
is assigned to core storage (Figure 45).

0.1, PN

o2 |FLELD3 .

03 | S.SNUMBER
3

0.4 |

Figure 45. Successive pc Statements with Blank Operation
Columns

NotEe: The restriction on the use of an initial word
separator character in the pcw statement defining an
alphameric constant does not apply to the pc statement.

DS — Define Symbol

The ps statement is used to label and define an area
within the subprogram. No information is entered into
the area, no word mark is assigned by the processor,
and the area is not cleared prior to reservation. The
programmer specifies the size of the area, and desig-
nates the symbolic label by which it will be referenced.
The number of desired consecutive positions of core
storage is written in the operand field (Figure 46). The
label refers to the low-order position of the. area.
However, if the label is indented one place, that is,
if it begins in column 7, the label will refer to the high-
order position. A label is not mandatory.

Line Label peruﬁoi {
3 sls ; 1slie 20l21 25 30 35 40

o DOZEMN . . S 1.2, . . ., N ¢
02 LV.E . DS S v e i {

i
b
f
!

0.3 PR A

Figure 46. Defining Twelve-Position and Five-Position Areas in
bs Statements

Figure 46 illustrates the form of the ps statement.
The first entry, labeled pozen, defines an area twelve
positions long. The second entry, labeled rive, defines
an area five positions in length.

EQU — Equate
The EQU statement is used to define either a second
symbol to reference a specific location, or a symbol

for a location not previously labeled. The symbol to
be defined is specified in the label field, and the rep-

30

resentation of the location to be “equated” is specified
in the operand field.

An EQU statement can be used to assign a symbolic
label to each of the following:

Actual or symbolic address
Adjusted or modified address
Index register

Asterisk address

Actual or Symbolic Address

The symbol to be defined is specified in the label field.
The operand field can contain an actual or symbolic
address. If a symbolic address is specified in the op-
erand field, it must have appeared as a label prior to
this point in the subprogram. If this condition is not
met, the label will not be defined.

SYMBOLIC ADDRESS

The EQU statement in Figure 47 will cause the processor
to assign the same address to the label imNprvibuaL
that is assigned to the symbol ManNo. Thus, INDIVIDUAL
has been equated to ManNo — both labels refer to the
same core-storage location and are assigned the same
relocation indicator by the processor.

Line Label perati é
3 B3 58 20§21 25 30 35 40
0, t,

.MDI,V.IiD uALlEqu. . MaNAO

2 I N B P

8

Figure 47. Equating a Symbolic Address

ACTUAL ADDRESS

The EQU statement in Figure 48 will cause the processor
to assign the label accTNo to machine location 25000.

Note: Labels equated to actual addresses will be
treated as absolute values and given a No relocation
indicator.

......

Line Label ‘Eperctﬂ {
d sls 156 20J21 25 30 35 40

o1, |4CC nv.ol e {EQU 2.5.0.0.0,
|
0.2 PSR S L

Figure 48. Equating an Actual Address

Adjusted or Modified Address

The operand of an EQuU statement can be address ad-
justed or indexed. The same relocation indicators
assigned to the address adjusted and/or indexed op-
erand will be given to the defined label.

IBM

IBM 1410 DATA PROCESSING SYSTEM

FORM X24.8568-0

INTERNATIONAL BUSINESS MACHINES CORPORATION Printed in U.S.A.

LIBRARY CODING FORM

7 8 9101112131415161718192021[2223242526{27282930313233343536373839 4041424344 454647 48495051 525354555657 58 5960662636465 666788697071727374§7576777879 80

DATE PROGRAM PROGRAMMED BY.
Page
and t Label Operation Operand and Comments identifi
Line

123 456

Figure 78. 1BM 1410/7010 Library Coding Form

Library Entry

Page
and L Label Operation
Poge Line P
and {L Label Operation! Operand
Line 123 435|617 8¢9 lﬂ‘!IZH\41516|718192021222324252627251930313233343536373839404142434{
123 45}6]7 8 91011121314151617 18192021122 23242526127 28293031 323334353637 38 394041 4243 444546 47 4849

LABlelL 8lcel | 14,8, 1€

} Figure 80. Model Statement for a Complete Instruction

e [11 bdobl1] dolo
Mooe

£ | | [oop
ookl \
Ll |

Macro-Instruction

that a corresponding parameter from the macro-

instruction operand field must be inserted in its

place. This code is a & followed by a number

Assembled Symbolic Program Entry

ABCD

C

BH
BE
BL

PART,PAR2

PAR3
PAR4
PARS

Figure 79. Macro Operations

from 001 to 199, that indicates the position of
the parameter in the macro-instruction. The
macro-instruction in the source program ‘will
give the parameter entries to be inserted in the
object routine. The model statement is illus-
trated in Figure 81.

The Macro System 41

Form C28-0326-2
Page Revised 6/24/65
By TNL N27-1223

Page
and |L Label Operation
Line

123 4 586f7 8 91011121314151617181920212223 24252642728 293031 3233343536 37 38394041 42 43 44

d olof1], ool

L

Figure 81. Model Statement for an Incomplete Instruction with
Required Parameters

c.If the entry is incomplete, the programmer
writes a [0 followed by a number from 001 to 199
with aB bits over the units position (parameter
001 is mO0A, parameter 2 is H00B, etc.). This
indicates that the entry is to be included in the
object routine only if the parameter is specified
by the macro-instruction. For example, if pa-
rameter 003 does not appear in the macro-
instruction, the instruction shown in Figure 82
will be deleted from the object routine.

Note: If parentheses are used, the programmer can-
not use zoned switches in a MATH or BooL statement.

Page
ond L Label Operation
Line

123 45}6]7 8 91011121314151617181920212223 24252627 28293031 3233343536 37 38394041 4243 4.

L]

Figure 82. Model Statement for an Incomplete Instruction with
Conditional Parameters

Labeling: If the model statement represents an in-
struction entry point for a branch instruction elsewhere
in the program, it should have a label.

If additional external labels are required and speci-
fied as parameters in the macro-instruction they can
be inserted in the label field of the symbolic program
entry by using the £001-199 code.

The label of the macro-instruction causes the genera-
tion of an equate statement in the assembled object

routine. The label is equated to an *, as shown in
Figure 83.

Macro Instruction (Source Program)

Another example is shown in Figure 84.

Symbolic Addressing within the Library Routine:
To allow a symbolic reference to other instructions in a
library routine a & followed by a number from 001 to
199 with a B bit over the units position (100] = sym-
bolic address 1, D00K = symbolic address 2, etc.) can
be used. For example, the processor generates the sym-
bolic address if the code D00 is used as a label for one
entry and as an operand of at least one other entry in
the same library routine.

Internal labels within flexible routines are generated
in the form Onnnmmm, where nnn is the code (00]-
09R), and mmm is the number of the macro within
the source program. This is done to avoid duplicate
address assignments for labels.

Example: Use the generated symbolic address of
m00] as an operand for entry 3 and as the label for
entry 6. UPDAT is the 23d macro encountered in the
source program (Figure 85).

Address Adjustment and Indexing: The parameters
in a macro-instruction and the operands in partially
complete instructions in a library routine can have
address adjustment and indexing.

If address adjustment is used in both the parameter
and the instruction, the assembled instruction will be
adjusted to the algebraic sum of the two. For example,
if the address adjustment on one is +7 and the other
is —4, the assembled instruction will have address
adjustment equal to +3.

Model statement operands can be indexed. This in-
dexing takes precedence over any indexing of a param-
eter supplied by a macro-instruction. The model state-
ment index is used.

Literals: Operands of instructions in library routines
may use literals as required. However, these literals
may not contain the @ symbol within an alphameric
literal.

Macro Instruction (Source Program)

Line Lobel perati Line Label
sle : 15)6 i 30 35 4 3 :
o, TEST2 . . INVERSTARYL. 2 0.1, JEST2 |
] .
0,2 FEETETSE BV BT P T S PP S S S 0.2 | .0 e di

Model Statement

Model Statement

Line

Poge
and L Label Operation

Page
and t Labei Operation
Line

t 23 45l6]7 8 9101112131415161718192021p223242526{27 28293031 323334353637 38374041 4243

123 45[6f78°¢9 |0\\u1314151617|Bl9102|7223247576271829303132333‘3536373839404142434

q
1

il SiARliia

Assembled Symbolic Program Entry

TEST2 EQU .
B STARTI1

Figure 83. Labeling

- 42

Assembled Symbolic Program Entry

TEST2 EQU .
START2 SBR ENTRYA

Figure 84. Additional External Labels

