Ees

=

e

PRINTED IN U.S.A

IBM Technical Newsletter File Number 1410/7010-22
Re: Form No. C28-0326-2

This Newsletter No. N27-1267
Date December 30,

Previous Newsletter Nos. N27-1223

IBM 1410/7010 AUTOCODER

This Technical Newsletter amends .the publication IBM 1410/7010 Oper-

ating System; Autocoder, Form C28-0326-2, to include new information

concerning the NOTE and MACRO statements, and to make other necessary
changes and additions.

The attached replacement pages (9-10, 41-44, 47-48) should be substi-
tuted for the corresponding pages now in the publication. Text changes
are indicated by a vertical line to the left of the affected text;
figure changes are indicated by a bullet (e) to the left of the af-
fected figure caption.

Please file this cover letter at the back of the publication. It
provides a method of determining if all changes have been received
and incorporated into the publication.

IBM Corporation, Programming Publications, Dept. 637, Neighborhood Road, Kingston, N.Y. 12401

N27-1267 (C28-0326-2) Page 1 of 1.

N
N

as the reference address of comMon during the assem-
bly process. All relocatable addresses of data in com-
MoON are relative to 99999. For example, the 15th lo-
cation downward in coMMoON is assigned the value
99985, and appears as the same relative address in all
subprograms. Labels referencing comMoN are assigned
downward relocation indicators for absolute adjust-
ment by the Linkage Loader.

Absolute adjustment involves changing the relative
values of the labels (assigned to them by the proc-
essor) to absolute values in the relocated comMmon data
area. The adjustment factor applied is the difference
between the value of comMon in the assembly process
(99999) and the absolute value of common determined
by the Linkage Loader. Normally, the Linkage Loader
will place commMon at the location represented by the
value of the system symbol /ams/ (Absolute Memory
Size). However, the programmer can specify a dif-
ferent absolute location for comMon by means of a
Base2 statement. (The interested reader will find a
fuller discussion of this subject in the publication,
System Monitor.)

The steps necessary to use COMMON in a subprogram
are discussed under “pav — Define Area in coMMON,”
in the subsection “Declarative Operation Codes.”

Processing Options
There are four processing options which can be exer-
cised by the user:

1. He can suppress the printing of the assembly list-
ing (on the Standard Print Unit).

2. He can suppress the punching of the object deck
(on the Standard Punch Unit).

3. If there are no macro statements in the source
deck, he can speed up the assembly process by indicat-
ing this fact.

4. He can suppress the diagnostic generation of an
“M” flag for uses of index registers 14 and 15 when
there is no true multiple definition. (See NoTE 1, under
“Indexing with Address Adjustment.”)

These options are indicated by means of additional
parameters in the ExeQ card that calls the Autocoder
processor,

The four parameters are:

_ NOPRT — Suppress printing
NOPCH — Suppress punching
NoMAc — No macros present
NOFLG — Suppress “M” flag

Any or all of these parameters may be used in the
ExEQ card. They can appear in any order immediately
following the EXEQ parameters requited by the System
Monitor. (See the publication, System Monitor, for
details concerning the Exeg card.)

Specification of parameters in the ExeqQ card is con-
cluded by the first blank encountered in the operand
field. The following examples illustrate the format:

OPERATION
LABEL CODE
MON$$ EXEQ
MON$$ EXEQ

OPERAND

AUTOCODER, SOF, SIU, NOPRT
AUTOCODER, , , NOMAC, NOPCH, -
NOFLG

AUTOCODER, , , NOFLG, NOPRT,
NOMAC, NOPCH

MON§$$ EXEQ

Autocoder Multiple Compilation

Autocoder can compile any number of programs with a
single Monss ExEQ AUTOCODER card. The output is the
same as if it were produced by several separate com-
pilations.

Input for a multiple compilation consists of the
monss ExeQ AUTOCODER card followed by the source
decks to be compiled. No control cards are necessary
between the END statement of one program and the first
card of the next program if the programmer wants the
subsequent compilation to receive standard treatment;
that is, printing, punching, and normal macro and flag
processing.

A different set of processing options (NOPRT, NOPCH,
NOMAC or NOFLG) can be specified for an ensuing pro-
gram in a multiple compilation by placing an Option
card after the preceding Exp statement. This card has
the same requirements and options as the MONss EXEQ
Autocoper card except that the label and operation
fields, card columns 6-20, must contain blanks (instead
of Monss EXEQ). The processing options specified in this
Option card will be applied until the next Autocoder
END card is read by the processor.

Autocoder multiple compilation has two potential
advantages:

1. It enables the programmer to process a series of
source decks from the Alternate Input Unit as well as
the Standard Input Unit.

2. It bypasses the monitor processing which normally
is necessary between compilations.

Terminating the Object ProgramA

The object progam must terminate execution by means
of one of the following instructions: ‘

B /EOP/
B /UEP/

Normal End of Program
Unusual End of Program

Both forms of termination are shown in Figure 2. Full
details can be found in the publication, System Monitor.

Basic Concepts and Functions 9~

Form C28-0326-2
Page Revised 12/30/66
By TNL N27-1267

64015 SAMPLE SUBPROGRAM USING THE 1410/7010 AUTOCODER PAGE 1 SAMPL
SEQNO PGLIN LABEL OPCOD OPERAND REL CY ADORS INSTRUCTION CARD FLAG

1 AAO20 TITLE SEQUENCE 001
2 AA030 = THIS SUBPROGRAM CHECKS THE SEQUENCE OF THE PGLN/ FIELD

3 S A040 = IF THE PGLN/ FIELD IS 99999, THE PROGRAM 1S TERMINATED NORMALLY

4 AADS0 = A NON-ASCENDING SEQUENCE RESULTS IN AN UNUSUAL END OF PROGRAM.

S AAO60 SEQROUTINE SBR EXITSEQRTES a T 00000 G 00056 B 002
6 AAQOT0 [PGLN/,8999993 IS THIS THE LAST ENTRY 1 11 00007 C PGLN/ 00153 002
7 AAOBO BE ENDOFJ08 YES o 7 00018 J 00058 S 002
8 AA090 NOPWM 9 1 00025 N 002
9 AA100 8 CHECKSEQ o 7 00026 J 0Ol0l 002
10 AAllLO SW *-12 SET FIRST TIME NOP SWITCH TO BRANCH 3 & 00033 , 00026 002
11 AA120 MLCWB PGLN/, PGLNHOLD#5 A 12 00039 D PGLN/ 00158 P 003
12 AA130 -EXITSEQRY 8 0 EXIT ~ RETURN TG MAIN PROGRAM % 7 00051 J 00000 003
13 AAL135 =

14 AA140 ENDOFJOB 10CTL TYPE,MESSAGE NOTIFY OPERAYOR OF END OF JOB

15 G AA140 ENDOFJOB EQu * 00058

16 6 01510 8IN »=1l,s/CTB/ c 12 00058 V 00058 /CVB/ 2 003
17 G 01520 BXPA /CNC/ # T 00070 Y /CNC/ X 003
18 6 01530 oCw MESSAGE N 5 00081 00126 003
19 6 01580 8IN #=11,/CT8/ C 12 00082 v 00082 /CT8/ 2 004
20 AALl4S 8 /EOQP/ NORMAL END OF PROGRAM % T 00094 J /EOP/ 004

21 AAL48 =

22 AA150 CHECKSEQ c PGLNHOLD, PGLN/ 1 11 00101 C PGLN/ 00158 004
23 AAL60 BH EXITSEQRT-12 BRANCH IF PGLN/ IS IN SEQUENCE a 7. 00112 J 00039 v 004
24 AAl70 8 JUEP/ UNUSUAL END OF PROGRAM % T 00119 J /UEP/ 004
25 AAL1TS
64015 SAMPLE SUBPROGRAM USING THE 1410/7010 AUTOCODER PAGE 2 SAMPL
SEQND PGLIN LABEL 0OPCOD DPERAND REL CT ADORS INSTRUCTION CARD FLAG
26 AA1B0 SEQR/ DEFIN SEQROUTINE SEQR/ LINKAGE SYMBOL FOR SUBPROGRAM 00000 005
27 AA185 MESSAGE DCwW AEND OF J083,6 CONSOL PRINTER NOTICE 11 00126 006
28 AALl90 HALT 12345 EXAMPLE OF AN ERRONEOUS STATEMENT A 12 00137 N 12345 eeces 007 1]
29 AA200 END
30 23999993 5 00153 008
31 PGLNHOLD #0005 5 00158 008
NUMBER OF FLAGGED STATEMENTS 1
28

1410/7010 AUTOCODER...SYSTEM /MID/ 0001

oFigure 2. A Page from an Assembly Listing

Assembly Listing

Each page of the assembly listing contains a page
heading line and a column heading line.

The page heading line contains the following infor-
mation, from left to right:

1. The date contained at location /paT/ (the system
symbol for the five-position date field in the Resident
Monitor)

2. Information supplied via HEADR card

10

3. Page number in the listing

4. The identification supplied by HEADR or RESEQ
cards

The column heading line is illustrated in Figure 2,
which shows the assembly listing of a subprogram
assembled by the 1410/7010 Autocoder processor.
The subprogram contains a deliberate error contrived
to exhibit Autocoder’s diagnostic flagging system. Fig-
ure 2 illustrates the following items, going from left
to right in the column heading line:

TN

IBM

INTERNATIONAL BUSINESS MACHINES CORPORATION

IBM 1410 DATA PROCESSING SYSTEM
LIBRARY CODING FORM

FORM X24-6568-0
Printed in U.S.A.

DATE PROGRAM PROGRAMMED BY.
Page
and L Label Operation Operand and Comments Identifi
Line
123 45]s|7 8 910111213141516171819202102223 242526427 28 293031 323334353637 38394041 424344 454647 48495051 525354555657 58 596061628364 85 66676869707172737417576777879 80

Figure 78. 1M 1410/7010 Library Coding Form

Library Entry

Page
and |L
Line

Label

Operation|

Operand S

Page (
and L Label Operation
Line

123 45]6]7 8 91011121314151617 181920212223 2425 26{27 28293031 3233 343536 37 38 394041 4243 44

123 45|6]7 8 9101112131435161718192021)

[2223 24 25 26]

27 28293031323334353637 383940414243 444546 47 4849

| |

4o

Iolol1
310,

=
ifooD
ookl

L

e

Macro-instruction

Assembled Symbolic Program Entry

ABCD

C

BH
BE
BL

PAR1, PAR2

PAR3
PAR4
PARS

Figure 79. Macro Operations

L lAlslelL glcel [|a, ke, i
|

Figure 80. Model Statement for a Complete Instruction

that a corresponding parameter from the macro-
instruction operand field must be inserted in its
place. This code is a &0 followed by a number
from 001 to 199, that indicates the position of
the parameter in the macro-instruction. The
macro-instruction in the source program will
give the parameter entries to be inserted in the
object routine. The model statement is illus-
trated in Figure 81.

The Macro System 417

Form C28-0326-2
Page Revised 12/30/66
By TNL N27-1267

Page
and L Label Operation
Line

123 45{s|78¢ 10111213H151617|8|9202122232475262728293031J2333l3536373839404142434‘(

¢ iojol1],)Hojo}2)

|)

Figure 81. Model Statement for an Incomplete Instruction with
Required Parameters

c. If the entry is incomplete, the programmer writes
a 1 followed by a number from 001 to 199 with
AB bits over the units position (parameter 001
is 00A, parameter 2 is 00B, etc.). This indi-
cates that the entry is to be included in the
object routine only if the parameter is specified

by the macro-instruction. For example, if pa-

rameter 003 does not appear in the macro-
instruction, the instruction shown in Figure 82
will be deleted from the object routine.
NortE: If parentheses are used, the programmer can-
not use zoned switches in a MATH or BooL statement.

Page
and L Label Operation
Line

7 8 910111213141516171819202112223242526]2728293031323334353637383940414243 4.
B o
Figure 82. Model Statement for an Incomplete Instruction with
Conditional Parameters

123 45|8

Labeling: If the model statement represents an in-
struction entry point for a branch instruction elsewhere
in the program, it should have a label.

If additional external labels are required and speci-
fied as parameters in the macro-instruction they can
be inserted in the label field of the symbolic program
entry by using the D001-199 code.

The label of the macro-instruction causes the genera-
tion of an equate statement in the assembled object
routine. The label is equated to an *, as shown in
Figure 83.

Macro Instruction (Source Program)

Another example is shown in Figure 84.

Symbolic Addressing within the Library Routine:
To allow a symbolic reference to other instructions in a
library routine a ofollowed by a number from 001 to
199 with a B bit over the units position (100 = sym-
bolic address 1, 100K = symbolic address 2, etc.) can
be used. For example, the processor generates the sym-
bolic address if the code m00] is used as a label for one
entry and as an operand of at least one other entry in
the same library routine.

Internal labels within flexible routines are generated
in the form Onnnmmm, where nnn is the code (00]-
09R), and mmm is the number of the macro within
the source program. This is done to avoid duplicate
address assignments for labels.

Example: Use the generated symbolic address of
r100] as an operand for entry 3 and as the label for
entry 6. uppAT is the 23d macro encountered in the
source program (Figure 85).

Address Adjustment and Indexing: The parameters
in a macro-instruction and the operands in partially
complete instructions in a library routine can have
address adjustment and indexing,

If address adjustment is used in both the parameter
and the instruction, the assembled instruction will be
adjusted to the algebraic sum of the two. For example,
if the address adjustment on one is +7 and the other
is —4, the assembled instruction will have address
adjustment equal to +3.

Model statement operands can be indexed. This in-
dexing takes precedence over any indexing of a param-
eter supplied by a macro-instruction. The model state-
ment index is used. ‘

Literals: Operands of instructions in library routines
may use literals as required. However, these literals
may not contain the @ symbol within an alphameric
literal.

NotE: Area defining literals and area defining con-
stants cannot be used in a MAcRro statement.

Macro Instruction (Source Program)

i i Label roﬁﬂ S
l.lness Lobel EEPeraflgjy % " . © 1 | L{EPG e, 25 0 2 0
o [TEST2 | . . [INVERISTARTA. . e £ST2 | . . \INVERSTALTI, START2, ENTRYA

| .
0.2, 1 .+ }......»..r..‘.._,....|..‘... PR S B R Y S S U S S S S BV U VOV SN T R
Model Statement Model Statement

Page Page i

ond |L Label Operation ond L Label Operation

Line Line
123 45]s]7 8 9101112131415161718192021022 2324252627 28293031 3233343536 37 3839 4041 4243 4 12345]|sf789 wnm:msuw|s192021&92324:52627292910313233343535373339404142434)

Ha[o) :ﬂoloz ls%allﬁl bt a}la \

Assembled Symbolic Program Entry

TEST2 EQU .

B START1

Figure 83. Labeling
42

Assembled Symbolic Program Entry

EQU .
SBR ENTRYA

TEST2
START2

Figure 84. Additional External Labels

Macro Instruction (Source Program)

Line Label _Eperuﬁz:'g S
3 sl 15)i6 ol21 25 30 35 49

T
T . WPDATCOST , AMOUNT. . .\)
0.2 I . N
Model Statement
Page
ond L Label Operation
Line
123 45|6]7 8 91011121314151617181920 21222324 2526]27 28293031 323334353637 3839 40 41 4243 4
B8 IooT |
oo ZA | | Holols| Kolo2))
Assembled Symbolic Program Entry
B 1003023
o00J023 ZA COST,AMOUNT

Figure 85. Internal Labels

Norte 1: A model statement in the library routine for
a macro-instruction may not be another macro-instruc-
tion.

NotE 2: END statements cannot be used in library
routines.

NotE 3: A comments card can be included in the
model statements. It must be written with an asterisk
in column 7.

The Processor enters model statements in the library
tape immediately following the header statement dur-
ing System Generation.

Result: Any library routine can be extracted by writ-
ing the associated macro-instruction in the source
program. :

Figure 86 is a summary of the codes that can be
used in the model statements of library routines.

CODE POSITION FUNCTION

0ol - 0199 Statement Substitute parameter
(parameter must be present)
Substitute parameter (if

H00A - o §91 Statement parameter is missing,
delete statement)

o00J - o 19R Label Field and Assign internal label

Operand Field

Figure 86. Model Statement Codes

General Description: A macro-instruction is the entry
in the source program that causes a series of instruc-
tions to be inserted in a program.

The Programmer:

1. Writes the name of the library routine in the
operation field.

Form C28-0326-2
Page Revised 12/30/66
By TNL N27-1267

2. Writes the label that is to reference the first as-
sembled model statement. A LABEL EQU * is generated
to do this.

3. Writes the parameters that are required for the
particular object routine desired. These parameters,
used by the model statements, are written as follows:

a. Parameters must be written in the sequence in
which they are to be used by the codes in the
model statements. For example, if cost is
parameter 001, it must be written first so that it
will be substituted wherever a D001l or HO0A
appears as a label, operation code, or operand
of a model statement.

b. As many parameters may be used as can be
contained in the operand fields of five or fewer
coding sheet lines. If more than one line is
needed for a macro-instruction, the label and.
operation fields of the additional lines must be -
left blank. Parameters must be separated by a
comma. They cannot contain blanks or commas
unless they appear between @ symbols. The
@ symbol itself cannot appear between @ sym-
bols. Also, the @ symbol can be used only in
pairs as a literal identifier. It cannot be used
in any other way; e.g., a single @ symbol could
not be used to represent the d modifier of a
“macro-instruction. If parameters for a single
macro-instruction require more than one coding
sheet line, the last parameter in each line must
be followed immediately by a comma. The
last parameter in a macro-instruction should
not be followed by a comma.

c. Parameters that are not required for the par-
ticular object routine desired can be omitted
from the operand field of the macro-instruction.
However, if a parameter is omitted, the comma
that would have followed the parameter must
be included, unless the omitted parameter is
behind the last parameter which is included in
the macro-instruction. These commas are nec-
essary to count parameters up to the last in-
cluded parameter. All parameters between the
last included parameter and parameter 199 are
assumed by the processor to be absent.

Figures 87, 88, 89 and 90 show how parameters can
be omitted. The hypothetical macro-instruction called
EXACT is used. EXACT can have as many as nine
parameters.

The Processor extracts the library routine and selects
the model statements required for the object routine
as specified by the parameters in the macro-instruc-
tions, and by substitution and switches set by BooL or
coMmP in the model statements.

The Macro System 43

Figure 87. Parameter for Exact. 006-199 Missing

;Liness Lébel . vsnspemﬁ ol21 25 30 35 40 S
ot et E.X.AC‘QF.LDJ ,FLD2,FLD3,,FLDS\
1
1 P Y i :

0.2 sl P Y SR O VA S S S T S S S S S S R A

Figure 89. Parameters 001, 004-006, 008 and 010-199 Missing

Line Label perati %
5 sle : 15]16 ;om 25 30 35 40
ot |, EXACYFLDZ2 L,
02 P . N

Figure 90. Parameters 001 and 003-199 Missing

Result: The resulting program entries are merged
with the source program entries behind the macro-
instruction.

Pseudo-Macro Instructions

These statements never appear in a user’s source pro-
gram or in the output listing of an assembled Auto-
coder program. However, they are used in library
routines to signal the processor that certain conditions
exist which can affect the assembly of an object routine.
For example, the presence of a pseudo-macro-
instruction in a library routine can cause a group of
model statements to be deleted. Thus, pseudo-macros
provide the writer of library routines with a coding
flexibility which exceeds the limitations of the substitu-
tion and condition codes described previously.

Pseudo-macro-instructions may be written anywhere
in a library routine. The five pseudo-macros incorpo-
rated in the Autocoder processor are MATH, BOOL,
COMP, NOTE, and MEND.

Permanent and Temporary Switches

The MaTH, BoOL, and coMmPp pseudo-macros use internal
indicators (switches) to signal the processor of exist-
ing status conditions.

There are 099 permanent and 199 temporary
switches available for recording status conditions. Each
switch occupies one core-storage position during the

44

macro generator phase of Autocoder. If a storage posi-
tion contains the character A (aB 1 bits), the switch is
on; if it contains a ? (caB 82 bits), the switch is oOFF.
At the beginning of assembly all switches are oFF.

Permanent Switches: Permanent switches retain
status conditions during the entire macro generator
phase unless changed by a pseudo-macro. They are
addressed by using a # symbol followed by the three-
digit number of the switch to be set or tested. For
example, #001 addresses permanent switch 001; #002
addresses switch 002; and #099 addresses switch 099,

Temporary Switches: When the processor encounters
a macro-instruction, the temporary switches are set to
the condition (presence or absence) of the parameters
in the operand of the macro field. If the parameter is
present, the corresponding switch is set on. If the
parameter is missing, the switch is set orr. For ex-
ample, if parameter 001 is present, temporary switch
001 is turned on. If parameter 002 is missing from the
macro-instruction, temporary switch 002 is orr. Tem-
porary switches retain status throughout the processing
of a macro-instruction unless changed by a pseudo-
macro. After the macro-instruction has been completely
processed, all temporary switches are set orr. Tempo-
rary switches are addressed by using a & symbol fol-
lowed by the three-digit number of the switch to be set
or tested. For example, D001 addresses temporary
switch 001; D002 addresses switch 002; and 0199 ad-
dresses switch 199.

If a macro with a maximum of nine parameters is
encountered, the processor sets the first nine temporary
switches to indicate the presence or absence of these
nine parameters. Temporary switches 010-199, which
are OFF, can be used by the pseudo-macros to com-
municate conditions to the processor while it is working
on this particular macro-instruction. This use of tempo-
rary switches is recommended because it reserves the
permanent switches for communicating information
from one macro to another.

MATH — For Solving Algebraic Expressions

A MartH pseudo-macro contains as operands: sum
boxes, arithmetic expressions, and sign switches.

Sum Boxes: A sum box is a group of five core-
storage positions used to store the result of an arith-
metic expression. Autocoder makes available 20 such
sum boxes. A sum box is addressed by using a #
symbol followed by the three-digit number (ending
in zero or five) of the sum box to be referenced. For
example, the address of the first sum box is #005; the
address of the second sum box is #010; and the address
of the twentieth sum box is #000.

At the beginning of the macro phase, a sum box
contains 00000. Any number may be placed in a sum

Form C28-0326-2
Page Revised 12/30/66
By TNL N27-1267

is oFF, the statement is false. Therefore, set temporary SWITCHES
| switch 015 oFF and skip to statement labeled L. 001 * 002 + 003 * 004 = LOGICAL VALUE
The example shown in F'lgure 97 states: OFF OFF OFF OFF
1. If both temporary switches 001 and 002 or both 0 * 0 + 0 * 0 = 0
temporary switches 003 and 004 are on, the state- ON OFF OFF OFF
ment is true. Therefore, set temporary switch 015 1 * 0 + 0 * 0 = 0
OFF ON OFF OFF
ON. 0 * 1 + 0 * 0 = 0
2. However, if either temporary switch 001 or 002 ¢
and either temporary switch 003 or 004 is oFF, Q OOFF X OgF . OIN . og P o Y
the statement is false. Therefore, set temporary g oFF oFF oFF on o
switch 015 oFr and skip to the model statement O 0 * 0 + 0 * 1 = 0
whose label is L, OFF ON OFF ON
o * 1 + 0 * 1 = 0
ON OFF ON OFF .
- 1 * 0 + 1 * 0 = 0
r{i L Label Operation Operand and Commems) OFF ON ON OFF
1234 5|6(7 8 9101112131415161718192021, 22232425 1577303'3233343536373839A04|42434“5‘6474549505‘525354555& o * 1 + 1 * 0 = 0
BPlol[L], @lolol smdo2@+@olol3lsloloikel, o ON OFF OFF ON
l O LT 1 » o + 0 * 1 = 0

Figure 97. BooL Pseudo-Macro

Figure 98 is a table showing all conditions that will
cause the BooL statement shown in Figure 97 to be
true.

Figure 99 is a table showing all conditions that will
cause the BooL statement shown in Figure 97 to be
false.

COMP — To Compare Two Fields

General Description: The comp pseudo-macro com-
pares an A-field to a B-field (maximum of 15 charac-
ters), and sets permanent or temporary switches to
indicate the result of the comparison.

The Programmer:

1. Writes the name of the pseudo-macro «comp
in the operation field.

SWITCHES

001 * 002 + 003 » 004 LOGICAL VALUE

ON ON OFF OFF

1+ 1 +_ 0 * 0 = 1

OFF OFF ON ON
2 0 * 0 + 1 * 1 = 1
o] ON ON ON ON
= A R S 1 = 1 5
=] &
g CN ON ON OFF
O LA S A 0 = 1

OFF ON ON ON

0 * 1 + 1 * 1 = 1

ON ON OFF ON

1 1+ 0 * 1 = 1

ON OFF ON ON

10 o+ 1 * 1 = i

Figure 98. True Conditions

Figure 99. False Conditions

2. Writes the operand field in the format shown in
Figure 100. The first and second entries are the A- and
B-fields. The A- and B-fields may be any of the
parameters 001-199, sum boxes #005-#000, or literals.
They cannot be switches.

Note 1: For the comp pseudo-macro, alphameric
literals are not enclosed by @ symbols. Entries 3, 4,
and 5 are high, equal, and low switches.

Norte 2: The codes for the two fields to be compared
must be present in all comp pseudo-macro-instructions.
Codes for the switches may be omitted if they are not
needed to store the result of the compare operation.
However, if a sswitch is omitted, the comma that
would have followed it must be included in the
operand field.

NorE 3: B-field controls compare. (High-order posi-
tion of B-field ends compare.)

Page
ond {L Label
Line

Operation Operand dnd Commel

123 4 50607 8 9101112131415161718192071}22 232425 26]27 28293031 323334 353637 30 39 40 41 42 43 44 45 46 47 48 49 5051 5253545

)

co]]nlr Fli ELJO, [F ELD ,HleH,EdIu|1AL,L0M_

et e

Figure 100. Format for comp Pseudo-Macro

The Processor:
1. Compares the A-field to the B-field.

2. Sets one status switch ox and two switches oFF
to reflect the result of the comparison.

a. The first switch is set on, if the value of the
B-field is greater than that of the A-field.

The Macro System 47

Form C28-0326-2
Page Revised 12/30/66
By TNL N27-1267

b. The second switch is set on, if the B-field is
equal to the A-field.
c. The third switch is set oN, if the value of the
B-field is less than that of the A-field.
Examples: Figure 101 shows a comp pseudo-macro
which states:
1. Compare parameter 002 of the macro statement
t0o WORKAREA.
2. If parameter 002 is equal to WORKAREA, turn on
temporary switch 25.
3. If workAREA is less than parameter 002, turn on
temporary switch 26.

Page
ond |t
Line

Label Operation Operand and Comrv5

7 8 9I01312131415181718192021[2223 24 2524 272927301”3233343536373839“)“424:“445A64745J75D5|57!35‘)
lclomp] [mloiolz], WoIRK[WRTE[] |, [olz[s], [doizle | [|7

AERRRRENAN HRERNRNRERNAY;

Figure 101. comp Pseudo-Macro

123450

Figure 102 shows a comp pseudo-macro which
states:

1. Compare the contents of sum box 005 to param-
eter 003 of the macro statement.

2. If the result is HICH, set temporary switch 024 on.

3. If the result is EQUAL, set temporary switch 025
ON.

4. Tf the result is Low, set temporary switch 026 on.

Page "5
and |L Label Op Operand and Com
Line
123450607 8 910111213141516173819202102223242524 27152930:”32333435363738394004243“4516474849505|575352
B ol

Figure 102. Comparing a Parameter to the Contents of a
Sum Box

Norte: Standard 1410/7010 collating sequence deter-
mines HIGH, EQUAL, or Low conditions. Comparisons
are controlled by the B-field. Thus, the statement
shown in Figure 103 will cause temporary switch 025
to be set on if the low-order position of parameter
002 is a 3.

NOTE —To Produce a Message

General Description: The Note pseudo-macro is
used to write messages concerning conditions that can
arise during the processing of a macro-instruction.

The message is printed in line on the output device
(tape or on-line printer). In addition, an “N” will be
automatically inserted in the flag field of the assembly
listing.

The Programmer:

1. Writes the name of the pseudo-macro (NotE) in
the operation field.

2. Writes the message in the operand field.

Note: Two successive blanks terminate the operand
of a NOTE statement.

The Processor: Prints the message on the Standard
Print Unit (tape or on-line printer).

Examples: Figure 104 shows how the Note pseudo-
macro can be used in combination with the BooL
pseudo-macro. The BooL pseudo-macro tests to ensure
that parameters 001 and 002 are present in the macro-
instruction, If either parameter is missing, the proc-
essor skips to the NoTE pseudo-macro and prints:

PARAMETER ABSENT FROM MACRO.

Page
and L
Line

Label Operation|

Operond and Comm}

V23 435)

78 910ll|2l3|4|5|6|7|8|9207122232A2526272329303!ﬁ233343536273!39m4|J243444546474847505|SZSJSA)

BBololL] L], lloio[1]xhlololz]

a wofTie| [PARAMETER ABSENT [F

]

=3
3
P
[
F)
[~]

L

oL

Figure 104. NoTE Pseudo-Macro

MEND — End of Routine

General Description: This pseudo-macro signals the
end of generation for a macro-instruction. It may ap-
pear anywhere in a library routine.

The Programmer:

1. Writes the name of the pseudo-macro (MEND) in
the operation field.

2. Leaves the operand field blank.

The Processor: Stops processing the macro-instruc-
tion when it encounters a MEND statement. Figure 105
shows a MEND pseudo-macro.

Note: A Boor pseudo-macro can be used to skip
over a MEND pseudo-macro which appears within the
library routine if conditions indicate that more model
statements must be processed.

Page
and L Label Operation}
Line

Page .
and L Label Operation
Line

123 45]6]7 8 9101112131415161718192021[2223 24 25 26[2728 29 3031 3233 34 3536 37 38 39 40 41 4243 4.

123 45{6]7 89 !OH\2]31415161718192021222324252627757930313233343536373539404]4243‘»

COM Dl0}02,3, ,|l'4025’ (

MEND \

L [l (

L (

Figure 103. Checkin‘}.,T for a Single Character

48

Figure 105. MEND Pseudo-Macro

s

