File No. 1410/7010-24
Form C28-0327-5

Systems Reference Library

IBM 1410/7010 Operating System (1410-PR-155)
COBOL—-1410-CB-969

This publication is designed to be used by program-
mers in conjunction with the publication, IBM General
Information Manual, COBOL, Form F28-8053, and
contains additional specifications required to write
COBOL programs to be processed under the 1410/7010
Operating System.

Major Revision (July 1966)

This publication is a major revision of IBM 1410/7010 Oper-
ating System; COBOL, Form C28-0327-4, which is now obso-
lete. Changes are indicated by a vertical bar at the left of the
corrected text, or by a bullet (@) at the left of the figure caption.

Copies of this and other 18M publications can be obtained through 8BM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Department 637, Neighborhood Road, Kingston, New York 12401

Introduction 5
Purpose of this Publication 5
coBoL Source Programs 5
Prerequisite and Related Information 5
Machine Requirements 5
copoL Language Forms and Notations 5

Identification Division 6

Environment Division, 7

Structure of the Environment Division 7

Configuration Section 7
SOURCE-COMPUTER Paragraph, 7
OBJECT-COMPUTER Paragraph 7
SPECIAL-NAMES Paragraph 7

Input-Output Section 8
FILE-CONTROL Paragraph 8
1-0-cONTROL Paragraph 9

Data Division 11

1BM 1410/7010 Files and Records 11
Recording Modes 11
Standard Tape Labels 11
Record Formats for Tape Files 12
Record Formats for Unit-Record Files 12

File Section i 13
File Description Entry 13
Record Description Entry 15

Working-Storage and Constant Sections 16

Added Features of the Data Division 17

Procedure Division 18

Compiler Directing Declaratives 18
use Verb 18

Input/Output Verbs 19
OPEN and CLOSEoouriianinn i 19
READ .t ti ittt e 19
WRITE ..o oti ittt et e 20
DISPLAY . ittt 20
ACCEPT . ..ottt i e e 20

Data Manipulation Verbs 21
MOVE . ottt e 21
EXAMINE ...ttt ittt 21

Arithmetic Verbs 21
ADD . 22
SUBTRACT . . ottt ittt e e s 22
MULTIPLY ...ttt ittt e e e s 23
DIVIDE . .. itiin ettt 23
COMPUTE . . .t iit ittt et e e 23

Procedure Branching Verbs 23

Contents

GO TO Lttt e 23
ALTERo e e 23
PERFORMttt 23
Compiler Directing Verbs 23
ENTER ... i i e 23
EXIT .o 25
NOTE ittt ettt e e e e e 25
Ending Verb 25
STOP ottt et e 25
Conditional Expressions 25
Added Features of the Procedure Division 26
General Information. 27
Programming Techniques 27
Compatibility Considerations 28
Qualification of Names 29
Literals 29
Subscripts 29
Character Sets 29
Figurative Constants 29
TALLY ..o e 30
MONITOR-DATE, 30
Class Conditions 30
1410/7010 COBOL Compiler Requirements 31
Requirements for Compilation 31
ExeQ Card Operand Options 31
Requirements for Execution 31
The Subprogram TrrLe Card 31
mENT Field of prROGRAM-ID Card 32
Multiple Subprogram cosor. Output 32
coBoL Subroutine Sizes., 32
Control Card Requirements 32
Display with Carriage Control 34
Wrong-Length-Record Check 35
1410/7010 COBOL Multiphase Programming 36
MAIN and SATELLITE Routine 37
Appendixes. 39
A: coBoL Words 39
B: Organization of Source Program 40
C: Object Time Error Analysis and Messages 41
D: Diagnostic Messagesov.... 42
E: Sample Problem, 48
Index 52

Acknowledgment

In accordance with the requirements of the official gov-
ernment manual, COBOL-1961-Extended, Form num-
ber 1962-0668996, describing cosoL (obtained by send-
ing a purchase order and $1.25 to: Superintendent of
Documents, U. S. Government Printing Office, Wash-
ington 25, D. C.), the following extract from that man-
ual is presented for the information and guidance of
the user:

“This publication is based on the coBoL System devel-
oped in 1959 by a committee composed of government
users and computer manufacturers. The organizations
participating in the original development were:

Air Materiel Command, United States Air Force

Bureau of Standards, United States Department of
Commerce

Burroughs Corporation

David Taylor Model Basin, Bureau of Ships, United
States Navy

Electronic Data Processing Division, Minneapolis-
Honeywell Regulator Company

International Business Machines Corporation

Radio Corporation of America

Sylvania Electric Products, Inc.

uNivac Division of Sperry Rand Corporation

“In addition to the organizations listed above, the
following other organizations participated in the work
of the Maintenance Group:

Allstate Insurance Company

The Bendix Corporation, Computer Division
Control Data Corporation

E. I. du Pont de Nemours and Company
General Electric Company

General Motors Corporation

Lockheed Aircraft Corporation

The National Cash Register Company
Philco Corporation

Royal McBee Corporation

Standard Oil Company (New Jersey)
United States Steel Corporation

*Trademark of Sperry Rand Corporation

“This coBoL-61 manual is the result of contributions
made by all of the above-mentioned organizations. No
warranty, expressed or implied, is made by any con-
tributor or by the committee as to the accuracy and
functioning of the programming system and language.
Moreover, no responsibility is assumed by any con-
tributor, or by the committee, in connection therewith.

“It is reasonable to assume that a number of im-
provements and additions will be made to cosor. Every
effort will be made to insure that the improvements
and corrections will be made in an orderly fashion,
with due recognition of existing users’ investments in
programming. However, this protection can be posi-
tively assured only by individual implementors.

“Procedures have been established for the main-
tenance of coBor. Inquiries concerning the procedures
and the methods for proposing changes should be di-
rected to the Executive Committee of the Conference
on Data Systems Languages.

“The authors and copyright holders of the copy-
righted material used herein: FLow-mATIC*, Program-
ming for the univac* I and II, Data Automation Sys-
tems © 1958, 1959, Sperry Rand Corporation; mM
Commercial Translator, Form No. F28-8013
copyrighted 1959 by 18M; racT, pst 27A5260-2760, copy-
righted 1960 by Minneapolis-Honeywell, have spe-
cifically authorized the use of this material, in whole
or in part, in the cosoL specifications. Such authoriza-
tion extends to the reproduction and use of coBoL
specifications in programming manuals or similar pub-
lications.

“Any organization interested in reproducing the
coBoL report and initial specifications, in whole or in
part, using ideas taken from this report or utilizing this
report as the basis for an instruction manual or any
other purpose is free to do so. However, all such or-
ganizations are requested to reproduce this section as
part of the introduction to the document. Those using
a short passage, as in a book review, are requested to
mention ‘coBoL’ in acknowledgment of the source, but
need not quote this entire section.”

Purpose of this Publication

This publication is designed to be used by program-
mers in conjunction with the publication, IBM General
Information Manual, COBOL, Form F28-8053. This
publication contains additional specifications required
to write coBoL programs to be processed under the
1410/7010 Operating System.

COBOL Source Programs

The similarity between cosoL and ordinary business
English facilitates writing coBoL source programs.
Source program statements are translated directly into
machine language by the cosoL compiler, which takes
full advantage of the capabilities of the 1BM 1410 and
7010 Data Processing Systems.

Prerequisite and Related Information

A basic knowledge of both cosoL and the M 1410/7010
Operating System is required to fully understand the
information presented in this publication.

Anyone without this prior knowledge is requested to
read the following publications:

IBM General Information Manual, COBOL, Form
F28-8053

IBM 1410/7010 Operating System; Basic Concepts,
Form C28-0318

IBM 1410 Principles of Operation, Form A22-0526 or
IBM 7010 Principles of Operation, Form A22-6726

The reader should also be familiar with the contents
of the publication IBM 1410/7010 Operating System;
System Monitor, Form C28-0319. The following 1410/
7010 Operating System publications, along with
System Monitor, should be available for reference pur-
poses: System Generation, Form C28-0352; Basic
Input/Output Control System, Form C28-0322; and
Operator's Guide, Form C28-0351.

Machine Requirements

The minimum machine requirements for compiling
programs using the coBoL compiler are included in the
publication, System Generation, Form C28-0352. How-
ever, machine requirements for running a particular
object program depend upon the requirements of the
program (for example, the amount of core storage
needed).

Introduction

COBOL Language Forms and Notations

This publication contains all the basic forms of the
various verbs, clauses, entries, and other essential ele-
ments of the 1410/7010 coeoL language. They are
intended to guide the programmer in writing his own
statements. If statements are written in formats other
than those presented in this manual, the compilation
will result in error.

The following rules of notation have been followed
in the presentation of these forms:

1. All words printed entirely in capital letters are
CoBOL words; i.e., words that have preassigned mean-
ings in the coBoL language.

2. All underlined words are required unless the por-
tion of the format containing them is itself optional;
i.e., enclosed in square brackets. These are key words
and if any such word is missing or is incorrectly
spelled, it is an error in the program.

3. All coBoL words not underlined may be included
or omitted at the option of the programmer. These
words are used only for the sake of readability. Mis-
spelling, however, constitutes an error.

4. All italicized words represent information that
must be supplied by the programmer. The nature of
the information required is indicated in each case. In
most instances, the programmer will be required to
provide an appropriate data-name, procedure-name,
literal, etc.

5. Material enclosed in square brackets [] may be
used or omitted as required by the programmer.

6. When material is enclosed in braces { }, only one
of the enclosed items is required; the others are to be
omitted. The choice is to be made by the programmer.

7. Punctuation, where shown, is essential. Other
punctuation may be inserted by the programmer in
accordance with the rules specified in the General
Information Manual.

8. In certain cases, a succession of operands or
other elements may be used in the same statement.
This possibility is indicated by the use of three dots
following the item affected. The dots apply to the last.
complete element preceding them,; thus, if a group of
operands and key words are enclosed within brackets,
and three dots precede the closing bracket, the entire
group must be repeated if any repetition is required,
not merely the last operand.

Introduction 5

Identification Division

The information specified in the Identification Divi-
sion of the source program allows the programmer to
identify or label his program, and provide other per-
tinent information concerning the program. This divi-
sion must precede the other divisions when the source
program is presented to the compiler. The over-all
structure of the Identification Division is:

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.

[AUTHOR. author—name.]

[INSTALLATION. any sentence or group of sentences.]

[DATE-WRITTEN. any sentence or group of sentences.:l

[DATE—COMPILED. any sentence or group of sentences.]

[SECURITY. any sentence or group of sentences.]

[REMARKS. any sentence or group of sentences. :I

Usage of the iENT* portion of the PROGRAM-1D source
statement is explained in the section, “1410/7010
COBOL Compiler Requirements.”

For additional details concerning the Identification
Division, see the General Information Manual.

Note: Special characters, such as the hyphen (-),
preceded and followed by blanks, may not be used in
the Identification Division.

*Columns 73-80 of the COBOL Program Sheet (Reference
Format)

In the Environment Division of the cosoL source pro-
gram the programmer describes to the compiler the
physical characteristics of the iBM 1410 or 7010 System
that will be used to compile the source program, and
the system that will be used to execute the object pro-
gram. This division must immediately follow the
Identification Division when the source program is
submitted to the compiler.

Structure of the Environment Division

The over-all structure of the Environment Division for
a source program is given below:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-O-CONTROL.

Each of the subdivisions of the Environment Divi-
sion is discussed in the following pages. This discussion
is in terms of the 1BM 1410/7010 coBoL compiler, and
therefore includes specifications not contained in the
General Information Manual.

Configuration Section

The three paragraphs of the Configuration Section
specify, respectively, the computer on which the cosoL
compiler is to be run, the computer on which the object
program is to be run, and the names of the machine
devices and switch conditions referred to by the pro-
grammer in the Procedure Division of his source
program.

SOURCE-COMPUTER Paragraph

The purpose of this paragraph is to specify the com-
puter on which the coBoL compiler is to run to com-
pile the source program. The general form of this
paragaph for the 1410/7010 cosoL compiler is:

SOURCE-COMPUTER. {onioiatC
. " UBM-7010f

Additional information regarding the source com-
puter (e.g., actual core-storage size, core storage avail-
able, etc.) is contained in the Resident Monitor’s Com-
munication Region; therefore, no additional entries are
needed or permitted in this paragraph. (See System
Monitor.)

Environment Division

OBJECT-COMPUTER Paragraph

The purpose of this paragraph is to specify the com-
puter on which the object program is to be executed.
The general form of this paragraph is:

IBM-1410}

OBJECT-COMPUTER. {IBM-7010

SPECIAL-NAMES Paragraph

This optional paragraph equates mnemonic-names
with device-names representing certain system units
or the console printer, and equates condition-names
with the status of the system’s Standard Input Unit
end-of-file switch and/or a switch in the Resident
Monitor’s Communication Region. The general form
of this paragraph is:

SPECIAL-NAMES. [device-name-] IS mnemonic-name-1

[device-name-.? £§ mnemonic-name-2 . .]:I

[MONITOR-SWITCH
[literal—l STATUS IS condition-name-l]

[literal-2 STATUS E condition-name-2 . .]:l

[I-O-SWITCH EOF-SIU

[ON STATUS IS condition-name-3]

[OFF STATUS _I§_ condition-namedi]:l,

DEVICE-NAMES

The device-names of the SPECIAL-NAMES paragraph
must be chosen from the following list:

DEVICE-NAME DESCRIPTION
CONSOLE-PRINTER the console printer
SYSTEM-OUTPUT-PUNCH the Standard Punch Unit
SYSTEM-OUTPUT-PRINTER the Standard Print Unit

System units are discussed in the publication, Sys-
tem Monitor.

MONITOR-SWITCH

The MoNITOR-sWITCH is used to represent a single-
character switch position within the Resident Moni-
tor's Communication Region; the switch is set by the
Operator via a $3x console inquiry. The user can in the
Procedure Division refer to this switch by means of a
condition-name associated with the status of the switch.
Literal-1 can be any valid, single-character, non-
numeric literal.

Environment Division 7

After entering the $3x console inquiry, the operator
must also enter $50 to cause the system to exit from
the Monitor-Switch Wait-Loop routine.

Figure 1 illustrates the use of the MONITOR-SWITCH.
SET MONITOR-SWITCH $3X TO A, B, OR C FOR TYPE OF INPUT
is the message that will be issued on the console. The
operator responds by entering $3A, $3B, or $3C fol-
lowed by $50. Complete details on the $3x message,
and procedures for entering console inquiries, can be
found in the System Monitor and Operator's Guide
publications.

1-0-SWITCH EOF-SIU
The 1-0-swITCH EOF-sIU is a programmed switch that
indicates the end-of-file status of the Standard Input
Unit. This switch can be referred to in the Procedure
Division by means of a condition-name associated
with the o~ or oFF status of this switch.

Figure 2 illustrates a sample SPECIAL-NAMES para-
graph.

Input-Output Section
The Input-Output Section of the Environment Divi-
sion consists of the FILE-cONTROL paragraph and the
I-0-CONTROL paragraph,

FILE-CONTROL Paragraph

This paragraph is used to name each file of the source
program, identify its medium (i.e., magnetic tape or
unit-record equipment) and assign each file to a sym-

bolic unit. Methods of assigning files to magnetic tape
and unit-record devices are discussed in that order.

TAPE FILES

The form of the FiLE-cONTROL paragraph for files as-
signed to tape is:
FILE-CONTROL. SELECT file-name-1

RENAMING file-name-2]

ASSIGN TO device-name

RESERVE {""‘eNg(‘;"l } ALTERNATE AREA[S]:' .

SELECT .. :| .

SELECT Clause: Each file to be processed by the
object program must be named in a seLecTr clause.
Each file-name must be unique within the source pro-
gram, and each file must be described by a File
Description entry in the Data Division.

RENAMING Option: The RENAMING option allows
the programmer to use the File Description of file-
name-2 in the Data Division for file-name-1. This
option enables two files to share the same File Descrip-
tion; it does not allow the two names to be used inter-
changeably in the program.

Note: The files should be selected in the FILE-
CONTROL paragraph in the same relative order as they
are described in the FiLE sEcTiON. Select file-name-2
must immediately precede select file-name-1, in the

senm% A EB

4 6]7]|8 42 6 20 24 28 32 36 40 44 48 52 56 60 64 68 72
i | ISPEC AL NAMES ., | S O O T N T Y W S 0 T U0 U0 W N A S S B S S A SO M O N Y S A
Lt L1 MONLTIOR- SWITCH A STIATUS, (1S, MO TOR- SWYTEH- A | v g1
[[| : L By S TATYS, 45 IMIOI“ Lo R~ Sw! TS~ B g 5 SN T Y VT Y O O W O W OO
Lt Lo Ot SITATYS, LS MON L TOR S W TECMECial v g
L4 T : L e T M N W U T S T W T W T G T O Y T T YO Y T Y Y Y A S O AT A A0 WY WY S N W WY SR O OO W A O
L1 111 1 D T U O S W W T T U Y U 0 Y 0 U W Y G S N T N AV N U S M SO N A WO O B A N O A N R SN T A
1.1 Panolc:ELonuxglfl IDIl lvl‘ ls l‘ plNl T8 S R T N VT Y S W Y TN (O (Y U T O S A T A A Y O U WY W OO0 VS Y N O U A B O O
| £~ :MnoiNl' lTplen‘ REOA TEH-~ PA RlAIGJRlAIPIH VTR S U S T N Y U T Y T T N N T O WY Y T N O S Y O O WO OO
it L 3 TP, N SET, MON I TOR-SwW!t T H $3% 10 A, B, 9K VO T S TR T O Y S Y S A S U N B A
Lt R : Ly |quen |TIY|PAE| IQFI lIIN‘)Iq-rlII-I TP W N S N S T S T T SO U N Y T Y T S W N Y WA WYY
L1 L IUR MONN TOR-SWITCH-A 60, TO PROCESS~ALi | | 1 14 1l Ll Ly
A Ldt :I 1Fy MQNH Arlolgt‘ |S|M\ ﬂ‘.C|H-|B. Qnol lTpl (PIRIOI("‘!EIS IS] ‘lBl- S T O Y O S WU W T T O N WO U O O Y T WY
1 Lt :l iFi MON L TOR-SWI JCH-C, 69 TO, PROCESS- e S W B A
Lot lelc:Elslsl-lAlol TN GRS S T Y YO Y U U TN N G SIS B B BT R N SN T N S N B R B A I SR U T A W T S S S |
L1 L1l :-l e o N B Y T YO O O T O T T O WY T S S Y U A G S 0 M M T 0 O O B O A A A
F i1 :-1 LA S S I Y S N T T W O Y YT N TN OO T T T S W T T Y W S SO S M O U S O T 0 Y A OO GNP) T T O B
1l I :-n et S S S SN SN S WY Y Y T W T S Y T T S T U T U SO T S YA N 0 T A U0 WY U Y Y S S A OO W Y T
L1 LRplc:Elssi—lBl L e T Iy Wt O T N W T T Y T O WO OO Y N S N 0 T S N G OO MO 0 B N O U A A R S A O
L1 L1 :01 R e S S ST BN ST D O WY VA OO NS N O ST Y U S OO W S U S S S (T S SN A6 0 WO S S B B AN O O
4 111 :'l T OO G Y Y YW W S S SO Y S Y TN T TN TN O OO WO T S N N GO T R Y Y B R B R O A I D TIPS T Y Y T O O T}
1.4 Lt :-1 Sl S S N S U T N 1 S N U T T T S S T Y YU O WY G Y Y A A U 0 S0 U WA AT A T N Y A A B RO L
L1 1Rao|C:E-5|S|‘|C|-| S s N W D N S O U S Y ST U0 A S U0 S S S S Y W0 N O S M O R S O D O O O
A -l : TS SIS W AN SO S Y Y O N T T T A N S N S U T TN T SN A O N U ST S WA N A WY N G O A N | OO T W I W |
41 Lty 1I s o S S O S TN Y S Y Y W G T T YT T U S U T S O A Y S SO A A O T A B A AN B A S
Ll : e S N N SO Y U U S Y N SO N Y T W 00 U T U U S GO S S N A B O R A M N B N S B S N N N A

Figure 1. MONITOR-SWITCH Sample

8

‘[sequeNcE % N T
'"A“% (zgnué) {8 }g 16 20 24 28 32 36 40 44 48 52 56 60 64 68 7
L SYSTEM-OUTPUIT-PUNCH [T'S PlUNCH| . . |+ | ¢ i b SRR
iy MONI[TOR-[SWIT|CH *|L/ s|taTuls. 15| MON[THLY]-RUN SRR
5 LI 2" STATU[S 15| WEEKLY-[RUN | BRI T
: HEE H-0-ISWITICH E|JOF-S|IU ON. STIATUS| IS |LAST|- CAR|D.’ i]

Figure 2. Special-Names Paragraph

FILE-CONTROL paragraph. If both input and output files
are involved, the output file must be selected last, and
the input file must have an associated File Description.
Only one output file may be associated with a given
RENAMING clause. The number of alternate areas
reserved for each file must be identical.

ASSIGN Clause: Each file must be assigned to a
symbolic unit. The device-name in the assieN clause
must have the following form for files assigned to
tape units:

TAPE-UNIT xxx

TAPE-UNIT is the device name itself and represents
a symbolic assignment to magnetic tape. “xxx” is the
name of a symbolic unit (e.g., MR1).*

RESERVE Option: This option allows the pro-
grammer to specify alternate input or output areas for
the implementation of overlap processing. One to five
alternate areas per file may be specified (integer-1).
If NO ALTERNATE AREA is specified or if the RESERVE op-
tion is omitted, overlap processing will not take place.

UNIT-RECORD FILES

The form of the FILE-cONTROL paragraph for files as-
signed to unit-record equipment is:

FILE-CONTROL. SELECT file-name-1

RENAMING ﬁle-name-2:|

ASSIGN TO device-name
RESERVE{""teNgOe"I }ALTERNATE AREA[S]] :

rSELECT N :I .

The seLECT clause, the RENAMING option, and the
RESERVE option are used as described for tape files. The
device-name of the assiGN clause must be chosen from
the following list:

DEVICE-NAME
CARD-READER xxx

DESCRIPTION

is the standard device-name for
the card reader of the 1402 Card
Read Punch, or the 1442 Card
Reader. “xxx” is the name of a
symbolic unit (e.g., MR1).*

is the standard device-name for
the card punch of the 1402 Card
Read Punch. “xxx” is the name
of a symbolic unit (e.g., MR2).*

CARD-PUNCH xxx

is the standard device-name for
the 1403 Printer with 132 print
positions. “xxx” is the name of a
symbolic unit (e.g., MR3).*

PRINTER xxx

Note: The above device-names cannot be used for
units assigned as the Standard Input Unit, Standard
Punch Unit, and Standard Print Unit for the Operating
System.

Figure 3 illustrates a sample FILE-CONTROL para-
graph.

le

2 16 20 24
LIE-ICONTROL] | 1] il
EILE[CT OLD-MASTER-FT
SiIleN TlO TAPE-FUNIT
SERVE |1 ALTERNATE
i !] i]
ICT! N
MING
TIGN T

RVE:

SEQUENCE Ig
7

(PAGE) |(SERIAL)
I 3]4

L

28 32

i

—

| F

LE
MR 2
AREA|.

“ SEN PR S

1

ASTE
-MAS
O TAPE-UNIT
1 ALITERNATE
EEERNE
ANSIACT T
RD;- R
P!
ER-F
INTE

EW-M
OLD)

R-FI
TER-

LE

FILE
MR L {
AREA|.

e
m
p4
b

I
ml
.
[

ON-F
EADE

ILE
R MR

ECT TRANS
IGN TI0l iCA
EEREE B EEE
E[CT PRTNT
TGN 70 PR
SR EENE

I:LE
R MR

Ll

Figure 3. File-Control Paragraph

1-O-CONTROL Paragraph

The optional 1-o-coNTROL paragraph allows the pro-
grammer to specify padding of short-length blocks of
blocked, fixed-length output records; to control re-
winding of tape files; and to establish rerun points.

*The coBoL programmer may reference symbolic units as either
xxx or /xxx/. For details concerning symbolic units see the
publication, System Monitor.

Environment Division 9

The form of this paragraph is:

I—O-CONTROL.[APPLY literal-1 PADDING ON ﬁle-name]

[sosnx...]

APPLY OPEN-WITHOUT-REWIND ON ﬁle—name-2:|

[A_r;m.ﬂ

RERUN EVERY BEGINNING OF REEL OF

file-name-1

{ALL FILES

APPLY Option 1:
APPLY literal-1 PADDING ON file-name

This option is used to specify padding of short-
length blocks of a fixed-length, blocked tape-output
file. Literal-1 can be any valid, single-character, alpha-
numeric literal except =+, ==, °, B, *, \/, H#, and ~~. If
this appLY option is not specified, the compiler pro-
vides padding with spaces where required.

Spaces or nines should be used for padding char-
acters if the file is to be sorted using the 1410/7010
Generalized Tape Sorting Program.

Note: The degree sign (°) appears only on special
printing chains.

APPLY Option 2:
APPLY OPEN-WITHOUT-REWIND ON file-name

This option of the appLY clause can be used to facili-
tate the processing of multi-file tape reels. This option

10

[file-name-2 . . .]}_ .

only applies to the first reel in which the file is con-
tained; subsequent reels will be rewound.

Note: Both appLY options can be used for a given
file.

RERUN Option: This option allows the programmer
to specify rerun points (checkpoints) at every begin-
ning of reel of all files, or of selected files. The tape
upon which the rerun records are recorded is the
optional Core Image file.

If the rERUN clause or Option 2 of the UsE verb is
used: (1) an mpMm file and 10kpF label option D for
both 80- and 120-character labels must be included
at System Generation, and (2) the file associated with
the RERUN clause or Option 2 of the UsE verb must be
a labeled file. Failure to include these items at System
Generation may cause the system symbols /LrA/ and
/LRG/ to remain undefined when the cosoL object pro-
gram is loaded by the Linkage Loader. (System sym-
bols /Lra/ and /irc/ are explained under the label
routines description in the publication IBM 1410/7010
Operating System; Resident and Transitional Monitors,
Input/Output Control System—Programming Systems
Analysis Guide, Form C28-0396.)

If neither the RERUN clause nor Option 2 of the USE
verb is used, the undefined system symbols /Lra/ and
/urc/ will not affect the execution of the object pro-
gram.

Information concerning checkpoints is contained in
the publication, IBM 1410/7010 Operating System;
Basic Input/Output Control System, Form C28-0322.
Information concerning restarting a program from a
checkpoint is contained in the publication, IBM 1410/
7010 Operating System; Operator's Guide, Form
C28-0351.

The Data Division of a coBoL source program defines
the nature and characteristics of the data to be proc-
essed by the object program. It begins with the header
DATA DIVISION. Each of the three sections of the Data
Division also begins with a header, and is followed by
the word sEcTioN as shown below:

DATA DIVISION.
FILE SECTION,
File Description Entries
Record Description Entries
WORKING-STORAGE SECTION.
Record Description Entries
CONSTANT SECTION.
Record Description Entries
The File Section describes the input/output files
with respect to content and organization. It has two
types of entries: the File Description entry, which
specifies the physical characteristics and organization
of a file; and the Record Description entry, which de-
scribes the individual items contained in the data
records of the file.

The Working-Storage Section describes the areas of
core storage where intermediate results and other
items are stored temporarily at object-program execu-
tion time.

The Constant Section describes fixed items of data
which remain unchanged during the running of the
object program.

Any section not required in the program being writ-
ten should be omitted.

IBM 1410/7010 Files and Records

The programmer should understand how files and
records are handled by the 1Bm 1410/7010 Operating
System in order to use the coBoL language effectively
in writing the Data Division entries for his source
program. Information concerning files and records is
therefore given below, prior to discussion of the cosoL
language specifications for the Data Division.

Recording Modes

Information in a data processing system may be re-
corded in various forms and modes. The following
discussion pertains to the file-recording modes of the
BM 1410 and 7010 Data Processing Systems. For ad-
ditional details, see the publication, IBM 1410 Princi-

Data Division

ples of Operation, Form A22-0526 or IBM 7010 Prin-
ciples of Operation, Form A22-6726.

EVEN AND ODD PARITY MODES

The 1M 1410 and 7010 can record information on mag-
netic tape and read information from magnetic tape
in either even-parity mode or odd-parity mode.

* LOAD AND MOVE MODES

Another 1410/7010 file recording mode specifies how
word marks and word separator characters are re-
corded during read and write operations.

Load Mode: The handling of word marks and word
separator characters in the Load mode depends on the
type of operation, as follows:

During write operations, each word mark is trans-
lated into a word separator character that immediately
precedes the character with which the word mark was
associated in core storage. Each word separator char-
acter in storage is translated into two word separator
characters on tape.

During read operations, word marks already in the
input area are cleared. Each word separator character
on tape is translated into a word mark associated with
the character it immediately preceded on tape, and
pairs of word separator characters on tape are trans-
lated into single word separator characters without
word marks in core storage.

Move Mode: When information is written in the
Move mode, word marks have no effect on the data
that is recorded on output media. Word marks in
storage are undisturbed when information is read in
this mode. Each word separator character is read into
core storage and written out of core storage as a word
separator character.

Standard Tape Labels

If sTaNDARD labels are specified in the File Description
entry, certain items within the label are automati-
cally processed by the coBoL compiler. The remaining
items may be used by the programmer by using the
BEGINNING-LABEL and/or the ENDING-LABEL options of
the LABEL RECORDs clause in the File Description entry.

For details concerning the form of the standard
tape labels, see the publication, IBM 1410/7010 Oper-
ating System; Basic Input/Output Control System,
Form C28-0322.

Data Division 11

Record Formats for Tape Files

The data record formats that can be handled by the
1410/7010 cosoL compiler for files assigned to tape
are:

1. Fixed-length, unblocked records with or without
terminal record marks (Figure 4).

2. Variable-length, unblocked records with ter-
minal record marks and without length checking (Fig-
ure 5).

3. Fixed-length, blocked records with terminal rec-
ord marks (Figure 6).

4. Variable-length, unblocked records containing a
Record Character-Count field and with or without
terminal record marks (Figure 7).

The Record Character-Count field is a four-position
field at the beginning of each record. It contains
a count of the total number of characters in that record,
including itself and the terminal record mark, if
present.

5. Variable-length, blocked records with a Block
Character-Count field and containing Record Char-
acter-Count fields. Terminal record marks are required
(Figure 8).

A four-character Block Character-Count (Bcc) field
at the beginning of each block contains a count of the

total number of characters in the block (including the
four-character Block Character-Count field itself).

This count is used to check and correct wrong-length-
record conditions. The Bcc field must have aB zone bits
(12-punch) over the units position.

This field is not a part of a record and therefore is
not defined in a Record Description entry.

A Record Character-Count (rcc) field of one to four
characters in each record contains a count of the total
number of characters in that record, including itself
and the terminal record mark. This field must be in
the same relative position in each record (the number
of characters in each “Cl” in Figure 8 is the same),
and must be the same length in each record of a given
file. The “C2” fields in Figure 8 are all equal in length.

Record Formats for Unit-Record Files

CARD READ PUNCH RECORDS

Records of files assigned to the card reader or card
punch must be 80 characters in length, unblocked, and
may or may not have record marks in the 80th char-
acter position. In addition, these files must be in Move
mode and even parity.

| == | N (1

R Record 1 R Record 2 R Record 3 R

G G G G
Figure 4. Fixed-Length, Unblocked Records

i |1 EAN 1

R Record | R Record 2 R Record 3 R

G G G G

Figure 5. Variable-Length, Unblocked Records Without Length Checking

L

i

'r":':'&ded

!‘ Block 1

Figure 6. Fixed-Length, Blocked Records

I

Block 2

[aXa)

LR I
RIC R
G|C G

IR |
RIC R
G|C G

I-n——— Record 1 V! !:

Figure 7. Variable-Length, Unblocked Records
12

:! !—‘. Record 3 —'FI

Record 2

le— C1
»

k——a’;—‘

T T T T
1|8 | R * : : * | : *| 1
R|C =C { i } i R
G|C |C | [| 1 | G
l L 1 | I L
’-' Record 1 | Record 2 *J Record 3
L I N
f Block

Figure 8. Variable-Length, Blocked Records

PRINTER RECORDS

Records of files assigned to the printer must be 132
characters, fixed-length, and unblocked. Files assigned
to the printer must be in Move mode and even parity.

File Section

File Description Entry

A File Description entry must describe each file to be
processed by the object program. It includes specifi-
cations for the mode in which the file is recorded,
record and block size, label record information, and
the names of the data records that make up the file.

The form of the File Description entry is:

FD file-name [RECORDING MODE IS

MOVE EVEN
{ LOAD } MODE{ ODD } PARITY:I

. RECORDS
I:BLOCK CONTAINS mteger--]{ CHARACTERS }:I

RECORD CONTAINS [integer-2 TO :I
integer-3 CHARACTERS

[DEPENDING ON data-name—]]

LABEL RECORD[S]{ AII:;E }

STANDARD [WITH integer-4 CHARACTERS]
[BEGINNING-LABEL]
[ENDING-LABEL]
OMITTED

NON-STANDARD[WITH integer-4 CHARACTERS]

[BEGINNING-LABEL]

[ENDING-LABEL]

[VALUE OF FILE-IDENTIFICATION IS literal-1

[RETENTION-PERIOD 1S integer-S]:I

DATA RECORDIS] { AlpéE } data-name-2 [data-name-3 . ..]

Level Indicator: The level indicator ¥p identifies the
beginning of the File Description entry and precedes
the file-name assigned by the programmer (Figure 9).

~ICONT.

T
A "B f
8 2 16 20 24 28 32 36 40
FD | MAIST’IEB:FN LY = A A R A R A A AT A R R I A A A (
I

RS N N N S U ST T T T O S T T T O O B B O |

Figure 9. FD File-Name

RECORDING MODE Option: This option specifies
the mode in which the file is recorded. (See the “Re-
cording Modes” section of this publication.) If the
RECORDING MODE option is omitted in the source pro-
gram, the compiler assumes Move mode and even
parity.

BLOCK CONTAINS Option: In addition to the de-
tails specified in the General Information Manual, the
following information pertains to the BLOCK CONTAINS
option.

If the file-name in the Fp entry contains variable-
length records, this entry must take the form:

BLOCK CONTAINS integer-1 CHARACTERS

where integer-1 must be equal to or greater than the
number of characters contained in the longest block
of the file. This number includes the four-character
Block Character-Count (Bcc) field (see variable-
length, blocked records in the section, “Record For-
mats for Tape Files”).

RECORD CONTAINS Clause: This required clause
is used to specify the size of a record in terms of the
number of characters it contains and to indicate the
record form. Integer-2 is used to specify the minimum
number of characters in the smallest record of the file,
whereas integer-3 indicates the mavimum number of
characters in the largest record. If all records in the
file are exactly the same size, only integer-3 should be
specified.

The pEPENDING ON data-name-1 option is required
only when specifying variable-length records with
Record Character-Count (rcc) fields. Data-name-1 is
the name of the rcc field. The contents of this field
indicate the number of characters in the record.

Data Division 13

The following examples illustrate the use of the
BLOCK CONTAINS option and the RECORD CONTAINS clause
to specify each of the five record forms:

For fixed-length, unblocked records:

RECORD CONTAINS 80 CHARACTERS

For variable-length, unblocked records without
length checking:

RECORD CONTAINS 100 TO 200 CHARACTERS
For fixed-length, blocked records:

BLOCK CONTAINS 5 RECORDS
RECORD CONTAINS 80 CHARACTERS
Note: Occasionally a fixed-length, blocked record
file contains a partially completed block at the end of
the file. If such a block appears, it will contain two
types of records: data records and padding records.
The user must provide for the processing of all padding
records which appear in this block. The rReaD verb AT
END branch will be taken when an attempt is made to
read the next block, not when an attempt is made to
read padding records from a partially completed block.

For variable-length, unblocked records:

RECORD CONTAINS 100 TO 200 CHARACTERS DE-
PENDING ON RCC

For variable-length, blocked records:

BLOCK CONTAINS 504 CHARACTERS
RECORD CONTAINS 30 TO 50 CHARACTERS DE-
PENDING ON RCC

When a 01 or a 77 level entry is allocated storage
by the compiler, an additional storage position con-
taining a group mark/ word mark is automatically gen-
erated at the end of the record. The diagnostic “Incom-
patible Record Size” is supressed if there is only one
character deviation in record size. This is to allow for
the possible use of a PicTURE symbol “K” (group mark/
word mark) which may be defined in the cosoL source
program,

LABEL RECORD Clause: This clause is required
in every File Description entry. For unit-record files,
this clause must specify that label records are omMITTED.
If stanpARD labels are specified for tape files, the file
identification, the reel sequence, and the retention
period are automatically checked.

If either STANDARD or NON-STANDARD is specified and
the wiTH integer-4 CHARACTERs option is desired, in-
teger-4 must be 80 or 120. This is required in order to
conform with the 1410 80-character and 1M Standard
120-Character tape labels. (For details concerning
these labels see the publication, Basic Input/Output
Control System.) If this option is not used, the label
record size is assumed to be 120 characters.

Norte: Actual size of nonstandard labels need not
be exactly 80 or 120 characters, but may not exceed
120.

14

When a file contains standard tape labels, and no
processing beyond that supplied by the compiler is
required, STANDARD must be specified.

If additional processing of the standard tape label
is desired, the programmer must specify STANDARD with
BEGINNING-LABEL and/or ENDING-LABEL in conjunction
with the use verb. If either or both of these options
are used, a Record Description entry that defines the
entire label must be provided.

Example:

LABEL RECORDS ARE STANDARD BEGINNING-LABEL
ENDING-LABEL

01 BEGINNING-LABEL.
02...
02...

01 ENDING-LABEL.
02...
02...

When a file contains nonstandard labels and label
processing is not desired, NON-STANDARD must be spe-
cified. Use of NoN-sTANDARD without additional options
will cause the nonstandard labels to be bypassed in
the object program.

Special processing of nonstandard labels can be
accomplished by defining the label format with the
BEGINNING-LABEL and ENDING-LABEL options in conjunc-
tion with the use verb. No automatic testing takes
place if NON-STANDARD is specified.

VALUE Option: The function of the vALUE option
in the File Description entry is to specify the contents
of data items in the label record of the file. The follow-
ing two forms of the VALUE option are permitted for
standard tape labels:

Form 1.
VALUE OF FILE-IDENTIFICATION IS literal-1

This form applies to both input and output files and
is required if standard tape labels are used. Literal-1
must be a ten-character non-numeric literal.

Form 2.
VALUE OF FILE-IDENTIFICATION IS literal-1
RETENTION-PERIOD 1S integer-5

This form applies to output files and must be sup-
plied for each output file if standard tape labels
are used. Integer-5 must be an integer (up to four digits
with 120-character labels, and up to three digits with
80-character labels) indicating the number of days
beyond the creation date the file is to be preserved.
For files that are to be preservd indefinitely, the pro-
grammer inserts the digits “99” in the two high-order
positions of the creation date (see “Standard Tape
Labels™).

T
's
|
8 12 16 20 24 28 32 36 40 a4

~CONT.

48 52 56 80 64 88 72]

{MAAISI‘I’IEIRI’IFI‘[‘_IEIIIllllIJIILIIIILLIIII.II|4LLIIl]'l’

I

RECORD CONTAINS 80 CHARACTERS, « 1 11 1 1 111ty

Il

RECORD NG MODE 1S 1 .OAD MODE EVEMN PARLTY. 1 .
1

1

LABEL, RECORDS ARE STANDARD: + 1 1 1 4 104 v 4t 000 1

11)

:RtElTlEleﬂ'tOlNl_}_PlEIle'OIDI BiS i368 11

L

:VIAILAUIEI OF FLLE-]IDENTHELCAT LON 1 1S SN MASTER=Fi ik’

TN T TN T O N N T TR Y N TN N A

1
1
I |
1
1
!

L L O OB

Ll

DATA RECORDS, ARE. RECORD=A RECORD=Boet 1 1 1 1ttt 1ttty

T OV Y TN Y N [T S N S U T T O U T Y O G Y SN 20 N DY A A IO O

Figure 10. File Description Entry

If the appropriate VALUE option is not supplied when
STANDARD labels are specified, a diagnostic message
will not appear, but the results at execution time will
be unpredictable.

DATA RECORD Clause: This clause is required
in every File Description entry. Data-name-2, data-
name-3, . . . etc., must each be the subject of a Record
Description entry that has a level number of 01. The
data-name order is not significant to the processor.

The appearance of more than one data-name in this
clause means that the file contains a corresponding
number of different types of data records. These
records may be of different sizes and formats.

Implicit redefinition caused by multiple records in
the paTA RECORD clause has the same effect as a
REDEFINES clause. Therefore, a MOVE CORRESPONDING
can not be used for either implicit or explicit redefini-
tion of the receiving field.

Figure 10 illustrates a sample File Description entry.

Record Description Entry

A Record Description entry specifies to the compiler
the characteristics of each item of a data record. Every
item given a separate name must be described in a
separate entry in the same order in which it appears
in the record. Each Record Description entry consists
of a level-number, a data-name, and a series of inde-
pendent clauses. The form of a Record Description is:

level-number data-name
evel-number 1 FILLER

[s1zE...] [CLASS...] [USAGE...]

[m...] [POINT...] [stonED ...]

;[R_EDEFINES]

[vALUE ...] [prerure..][BLank wrEN ZERQ |.

Level-Number: The level-number shows the relation-
ship between items in a record. Each level-number
must be associated with a data-name or with the key
word FILLER, as shown in the following general format:

level-number data-name
€'l FILLER

A detailed description of level-numbers can be found
in the General Information Manual.

REDEFINES Clause:
REDEFINES clause is:
level-number data-name-1 [REDEFINES data-name-2]

The size of data-name-1 and data-name-2 should be
equal. Data-name-2 must not be subscripted.

There are two types of coBoL redefinition: implicit
and explicit. Implicit redefinition is caused by multiple
records named in the pATA RECORDS clause. All of these
records implicitly share the same work area. Explicit
redefinition is caused by the use of the REDEFINES clause
following a data-name in the Data Division. In this case,
both the redefining and the redefined data-name share
the same work area by explicit definition. Incompata-
ble REDEFINES clauses are flagged at compilation time.

See the General Information Manual for details con-
cerning the use of the repEFINES clause. Additional
information, pertinent to the use of REDEFINES in pro-
grams that are to be compiled on systems other than
the 1410/7010 appears in the “Compatibility Consid-
erations” section of this manual.

SIZE Clause: The general form of the size clause
is:

[SIﬂ IS integer-1 [; o CTERIS] s]]

See the General Information Manual for details
concerning the use of this clause.

CLASS Clause: In addition to the details in the Gen-
eral Information Manual concerning the use of this
clause, the reader should note that if a cLass statement
is omitted for a data-item and the usack clause speci-
fies coMPUTATIONAL, numeric class is implied. In the
absence of any cLass specification or implication,
alphanumeric class is assumed. Alphameric class is
always assumed for a group item. Numeric class items
must not exceed 18 digits. For report items, the number
of numeric characters represented must not exceed 18.

The general form of the crass clause is:
ALPHABETIC
NUMERIC
ALPHANUMERIC
AN

USAGE Clause: The usace clause does not in any
way affect the internal representation of data in the
1BM 1410/7010 Data Processing Systems. All data is
represented internally in Bcp (binary-coded decimal)

The general form of the

CLASS IS

Data Division 15

form and no distinction is made between comMpuUTA-
TIONAL and prspLAY usage. If the usace clause for a
data-item specifies coMPUTATIONAL and a CLASS state-
ment is omitted, the class is assumed to be numeric.
The general form of the usace clause is:

COMPUTATIONAL
[USAGE 1 g pUL L ;]

OCCURS Clause: The general form of the occurs
clause is:

[OCCURS integer-2 TIME[S]]

See the General Information Manual for details con-
cerning the use of this clause.

POINT Clause: The general form of the POINT
clause is:

LEFT
RIGHT

See the General Information Manual for details con-
cerning the use of this clause.

SIGNED Clause: A numeric data item will have an
operational sign if this clause is used. An operational
sign should be specified for the result field of any
arithmetic statement where the sign is a consideration.
Additional details concerning the use of the siGNED
clause are found in the General Information Manual.
The general form of this clause is:

[POINT LOCATION IS 3 % integer-3 PLACE[S]]

[s1oNED]

VALUE Clause: The general form of the vALUE
clause is:

I:VALUE IS literal]

In addition to the details specified in the General
Information Manual, the following information per-
tains to the use of this clause:

1. If the vaLue clause specifies a numeric literal
with a preceding sign, the operational sign is created
only if the programmer specifies the PICTURE symbol
“S” or the siGNED clause.

2. The vaLUE clause can only be used to refer to
elementary items. '

3. The vaLUE clause has no meaning for report items,
and cannot be used to specify their initial values.

4, Neither a record mark (=) nor a group mark (=)
can be used within the vaLUE clause (see PICTURE sym-
bols “J” and “K”).

PICTURE Clause: The general form of the picTURE
clause is:

any allowable combination of

I:P_.__ICTURE IS Characters and symbols

The picTURE clause can only be used to describe ele-
mentary items. It is recommended that, wherever
possible, the programmer use this clause instead of the

16

SIZE, POINT, cLAss, and BLANK clauses of a Record De-
scription entry. The picTURE clause specifies the char-
acteristics of an elementary item in a more compact
form, and can therefore be processed more efficiently.

Non-computational numeric data-names greater than
18 digits in length should be declared alphameric.
This results in more efficient processing at compilation
time and at object program execution time.

Non-computational numeric data-names must not
exceed 99 digits. Data names containing more than 99
positions must be declared as alphabetic or alphameric,
or an addressing error will occur.

In addition to the rules given in the General Infor-
mation Manual for forming a picture of a data item,
the following information pertains to the use of the
PICTURE clause:

1. The only way to define a record mark or group
mark is by using a picrure symbol. The special PICTURE
symbol “J” is used to indicate a one-character field
containing a record mark (=), and the special PICTURE
symbol “K” is used to indicate a one-character field
containing a group mark (==). When used, the pIcTURE
symbol “J” or “K” must be the only character in the
PICTURE. '

2. The picTURE symbol “S” is used to indicate an
operational sign (see the siGNED clause).

3. For report items, the maximum number of char-
acters that can be represented by a picTURE is 99.

4. The picTuRe symbol “V” to the right or left of
PICTURE symbol “P” is redundant and invalid.

5. PICTURE symbol “Z” may appear to the right of a
decimal point in a picTURE only if all numeric character
positions are represented by “Z”s. The same rule ap-
plies to the replacement characters “*”, “+7”, and “—”,

BLANK WHEN ZERO Clause: The general form of
the BLANK WHEN ZERO clause is:

[BLANK WHEN ZERO_]

See the General Information Manual for details con-
cerning the use of this clause.

Figure 11 illustrates a sample Record Description
entry.

Working-Storage and Constant Sections

The Record Description entries described for the File
Section apply also to the Working-Storage and Con-
stant Sections. These sections begin with the header
line “WORKING-STORAGE SECTION,” Or “CONSTANT SEC-
TioN,” and are followed immediately by the Record
Description entries.

In addition to the details specified in the General
Information Manual, the following considerations per-
tain to the Working-Storage and Constant Sections.

- Field 3 —_——
Field 1 Field 2 Field 3A Field 3B Field 3C Field 4 Field 5 Field 6 Fid
3C-One| 3C-Two 7
(10) (15 (5) (0] I (5) (6) (15 (10) (10) (3)
Field 8 Field 8 Field 8 Field 8 Field 8
(17 a7 (17 a7 (7 l
| w0 lal ol] o] ol | oo lal lo | ¢
(2) (10) @112 (10) (A KCORI0)] (10 @213 12 (10 @i @ (10 (2 (Q)JDJ
\ 7/
- Field 8 >
Field 8A Field 8B Field 8C
8C-One | 8C-Two
(2) (10 (2) | (3)
ssnmu§- A EB j
4 6(7|8 2 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
oA o1 :M.A.smglg-rﬁaggn~mu: o S T S N T T Y T T T O T O T W U Y WG WO A O M AN BN AN Y BT O Y
ol L o2 BBl RLGTORE TS ANGLOY . T T T N T T N Y Y S N T T A WO W A S M A W W B A A O
[@K? L4 :Olzv ElEe D2 PLCTORE (TSEAGLSY e L L e a1 L1g1ay
[ol%e) L :O|2| L o1 =T Y o T IS TS AU T N Y O WA Y S A G Y A B Y B A A H B Y O O O A A AT A [B T B G |
O50 L 1’ (03 FmELDaM POCTURE (LS 0GS) e 00 00 iy T N Y B S T TR A S B N B B
0160 L 103 FiTEL 3B PLCTUORE T8 x0T et 10 000 00 i L Ly
0.:7.Q [: 1 O EEMELDIBCrer b 0 b b b e s 1 o
OO AT, 110 FINEL DG —ONE PIXCTURE TS OODYDOie; 1 11 0t i1
Ll ol FLELDIC - TWO PLCTURE (TS 99999Vt 41 L1 vt b4 4y L1
oo |\ oz ETEuo PECGTURE T8 d(LS) 10 O T S Y S N S ST VT S W O Y N A SR BT
2., Lt :0|21 ETELDS PLCTORE TS X310 e 1 v i ity TR T ST B N S S B S A R B SO
12.0 Lt :o;& EXELOG6 PLCTORE (IS D(8)MOSier + v 1111y VI S S N T T O S IO S0 S Y B N ST WO I
fit=) Lo 1o EnEieo? PICOTVRE (TS OOt 4 11 L0101 L b L bt L
Aol B TPEL WIALMIE TS OOTie 1t bt b
150 ||1:||n§|§|_ TYPE2 WALUWE (TS SEISier 1111100111y T I B A N B B R A B R Y A B A S A
1610 Ll B8 TYNPES WALUE TS 7% Lo v 10 010 I G e gL
1.7.0)] L :0|2| FIRLDR OCCURS & TIMES et 1 1 4 10 0 v v s g
1,80 L1 o ELEUDSA PLCTORE TS Dot 1 1L Ui g i Ly
190 1t LI L O3 ELELDSE PRCTORE TS Qi ULO) a1 10 L4 0 o b b g g
2010 L o3 S DELDBC T O O Y A O B Y A N S W S B B B B B A Y S B N S S A ST O S A Y I
21,0 Lt g : L O |F111E|L!DA&C:—|§N|§L_JELLQMJL&§_1L§|_&§|~| PN N N T T S S U YO0 N T WY Y S S Y O M B A
2ol | 1 ot ETELD B - TWO PILCTORE TS DDDNer | L v bt a1
2120 L o2 RiEC ORO-MARK, (SEZE IS L CLASS L5 AN 0 1 6 L 11
1 Aok 4 ; § VR T SR T I N N S S Y N T U Ty T TN T W T W T N Y W NN Y SO W TN TN NN NN 1 B Y S T T S N T TN S S T I I A |
Ll ill:lllll’1|l|ll||||ll||llllllllllllllllllllllllllllllltlAlllllI
Figure 11. Record Description Entry

If the vaLUE clause is not used to define the initial
values of Working-Storage items, these values will be
unpredictable.

Constant Section elementary items must include a
vaLUE clause or one of the picrure symbols “J” and
“K”, unless associated with a REDEFINES clause.

Tables of constants may be formed using the occurs
clause and may be referenced by subscripts. The pro-

cedure for constructing tables of constants is described
fully in the General Information Manual.

Added Features of the Data Division
An optional feature, not specified in the General Infor-
mation Manual, but contained in the 1410/7010 cosoL
language is:

The DEPENDING ON option of the RECORD CONTAINS
clause.

Data Division 17

Procedure Division

Once the computer and the data have been described,
the programmer gives the coBoL compiler the instruc-
tions that specify the data processing steps the object
program is to perform. Information that directs the
compiler is also supplied by the programmer in the
Procedure Division.

The coBoL verbs are the main elements in the Proce-
dure Division and they are described in detail in the
General Information Manual. However, for the con-
venience of the user, the general format of each cosoL
verb is shown in this publication.

Information not included in the General Information
Manual, but applicable to verbs which have additional
meaning when used in a 1410/7010 cosoL source pro-
gram, is supplied in later sections of this manual.

Compiler Directing Declaratives

Declaratives are compiler-directing statements that
operate under the control of the “main body” of the
Procedure Division or the Input/Output Control Sys-
tem. Declaratives consist of the use verb and any asso-
ciated procedures. If present, Declaratives:

1. must be grouped at the beginning of the Proce-
dure Division, and

2. must be preceded by the key word DECLARATIVES
and followed by the key words END DECLARATIVES,
and

3. must be included in the first phase of a multi-
phase coBoL program that is to be executed from
the soF.

4. are an isolated part of the program. No reference
to procedure-names may be made between the
Declaratives and the remaining part of the Pro-
cedure Division.

A section-name in the declarative portion of the
Procedure Division must be followed by a uUse state-
ment, and the use statement must be followed by a
paragraph-name. A section-name in the nondeclara-
tive portion of the Procedure Division must be fol-
lowed by a paragraph-name.

USE Verb

The usk verb is used to specify procedures for handling
input/output errors and label processing (see “LABEL
RECORD” clause) in addition to the procedures normally
provided by the cosor compiler. Each occurrence of
the UsE verb constitutes a complete section of the Pro-
cedure Division, and must therefore be preceded by a
section-name. The remainder of the section consists of
one or more paragraphs specifying the procedures to

18

be used (Figure 12). A “usg” section must follow the
rules for a section which is “performed” (see the PER-
roRrM verb in the General Information Manual for de-
tails). For example, if the logic of a procedure requires
a conditional exit prior to the final statement, the ExiT
verb must be used. The section-name of a UsE section
must not be referenced by an ALTER, GO TO, Or PERFORM
statement since the UsE entry is appended to this sec-
tion header. The paragraph-name of the last paragraph
in a USE section must not be referenced by an ALTER or
PERFORM statement since the Usk exit is appended to
this paragraph.

SEQUENCE |§ R ia
|‘”"§ l;“me' 1 %

7]e 2 18 20 24 28 36
I
T (
i . \
[| |PRIOC

mc|[>[C
=
[)
<
m
D)

® Figure 12. Declaratives

The following options of the UsE verb are available.
Option 1

section-name SECTION. USE AFTER STANDARD ERROR
PROCEDURE ON file-name-1 [file-name-2...]
paragraph-name. (any COBOL statements including DISPLAY
using the console printer but excluding all other input/output
statements)

This option allows the programmer to specify addi-
tional procedures if standard error-correction proce-
dures do not suffice. Standard error procedures attempt
to correct the error in accordance with 1410/7010 rocs
standards. If the error persists, the error condition is
ignored and processing continues. Thus, the pro-
grammer has the following options: ignore the error
condition and process the record, or by means of the
Usk verb perform special processing for error records
(e.g., set a switch, display a console message, etc.).

Option 2
, BEFORE
section-name SECTION. USE g AFTER % STANDARD

[BEGINNING [REEL
ENDING :l FILE :I
LABEL PROCEDURE ON file-name.

paragraph-name. (any COBOL statements including DISPLAY
using the console printer but excluding all other input/output
statements)

This option is used to:

1. Perform processing of standard tape labels be-

yond that supplied by the coBor. compiler,

2. Perform any desired processing of nonstandard

labels.

If both BEGINNING and ENDING are omitted, the desig-
nated procedures will be executed for both beginning
(header) and ending (trailer) labels.

If both ReeL and FILE are omitted, the designated
procedures will be executed upon detection of both
end-of-reel and end-of-file conditions.

Eight label exits per ¥p are provided by the cosor.
compiler:

Input Tapes

Label Option Exit
BEGINNING BEFORE B
BEGINNING AFTER c
ENDING BEFORE E
ENDING AFTER F
Output Tapes

Label Option Exit
BEGINNING BEFORE K
BEGINNING AFTER L
ENDING BEFORE P
ENDING AFTER Q

For further information, see IBM 1410/7010 Operat-
ing System; Basic Input/Output Control System
Figure 65.

The same exits are used for the rRerL option, the FILE
option, or both of these options (see the section on the
extended use of the 10cs in the Basic Input/Output
Control System publication). Therefore, if multiple
USE staternents referencing the same rp are used, and
if the exits conflict, the rReEL and FILE options of the
usk verb should not be included. In this case, the pro-
grammer’s USE section procedural statements should
determine if the condition is REEL or FILE.

If the rErUN clause or Option 2 of the use verb is
used: (1) an MpM file and 10kDF label option D for
both 80- and 120-character labels must be included
at System Generation, and (2) the file associated with
the RERUN clause or Option 2 of the Use verb must be
a labeled file. Failure to include these items at System
Generation may cause the system symbols /Lra/ and
/LRG/ to remain undefined when the cosoL object
program is loaded by the Linkage Loader.

If neither the RErRUN clause nor Option 2 of the UsE
verb is used, the undefined system symbols /Lra/ and
/Lrc/ will not affect the execution of the object pro-
gram.

Input/Output Verbs

OPEN and CLOSE

The coBor compiler provides the facility for opening

an input or output file, processing it, closing it, and

subsequently reopening it as an input or output file.
The opEN verb is used to initiate the processing of

one or more input and/or output files. The format of

the oPEN verb is:

OPEN I:INPUT file-name-1 [ﬁle-name-2 .]]

[OUTPUT fle-name-3 [ﬁle-name-4 .]]

The crose verb is used to terminate processing of
one or more input and/or output reels or files. Provi-
sion for optionally locking or not rewinding is also in-
cluded. The format of the cLosE verb is:

LOCK
NO REWIND

file-name-2 . ..

CLOSE file-name-1 [REEL] I:VVITH

Note: The reel option must not be used if more than
one file appears on a reel and the remaining files are to
be processed, or if the file consists of a single physical
reel. If used, reels after the first will be rewound.

See the General Information Manual for details con-
cerning the oreN and cLOSE verbs.

READ

The function of this verb is to make the next record
from an input file available for processing. The gen-
eral form of the rEAD verb is:

READ file-name RECORD [INTO area-name |
AT END any imperative statement

In addition to the details specified in the General In-
formation Manual, the following considerations per-
tain to the use of the reap verb:

1. An opEN statement for the file must be executed
prior to the execution of the first reap for that file.

2. When a reaD is executed, the next record of the
file becomes accessible in the input area defined by the
associated Record Description entry in the File Section
of the Data Division. The record remains available in
the input area until the next reap (for that file) is exe-
cuted. The named file must be defined by an ¥p entry
in the Data Division of the program.

3. Every READ statement must include an At END
clause containing any imperative statements; i.e., any
single verb with its operand(s), or a sequence of verbs
with their operands terminated by a period and con-

Procedure Division 19

taining no explicit or implied conditional expressions.
Once an AT END statement has been executed, any at-
tempt to READ from the file will constitute an error un-
less a subsequent cLosE and oPEN have been executed.

Note: When reading a file containing fixed-length,
blocked records, the end-of-file condition does not nec-
essarily occur following the last logical record. There-
fore, the programmer must test for a record consisting
of all padding characters to ensure detection of the
end of the logical file.

4. The iNTO area-name option converts the READ into
a READ and MovE. The area-name specified must be the
name of either a Working-Storage record area or an
output record area. When this option is used, the cur-
rent record becomes available in the input area, as well
as in the area specified by area-name. If the format of
the iNTO area differs from that of the input record, the
data will be moved in accordance with the rules for the
MOVE verb without the corrREsPONDING option. It will
be assumed that the area specified by area-name will
be completely filled by information from the input rec-
ord. If this is not the case, REap and MoOVE should be
used rather than READ INTO.

5. Each time an end-of-reel condition occurs in a
reel other than the last, the rReaD verb causes the fol-
lowing operations to take place:

a. If labels are present (as specified in the ¥p for
that file) the standard end-of-reel label subrou-
tine of the Input/Output Control System is
executed.

b. A tape alternation occurs, if appropriate.

c. If labels are present, the standard beginning-of-
reel label subroutine is executed.

d. If rerun has been specified for this file, a
checkpoint record is written.

e. The next record in the file is made available
for processing.

WRITE

The purpose of the WRITE verb is to release a record for
insertion in an output file. The format of a wriTE state-
ment is:

WRITE record-name [FROM area-name :I

In addition to the details specified in the General In-
formation Manual, the following considerations pertain
to the use of the wriTE verb:

1. If the user desires to write records which have
been described by the RENAMING option (see the “FILE
coNTROL” paragraph), the record-name must always be
qualified by the file-name.

2. If the rroM option is used, information will be
transmitted from area-name with or without word
marks, depending upon the RECORDING MODE of the file
associated with record-name. If the file is defined in the

20

Load mode, word marks will be transmitted. If the file
is defined in the Move mode, word marks will not be
transmitted. Area-name must be the name of an input
record or a Working-Storage or Constant Section rec-
ord area.

DISPLAY
The format of the pispLAY verb is:

data-name-1 data-name-2
Diseray { datepamert |14 detonamer2 ||

I:UPON mnemonic-name]

In addition to the details specified in the General In-
formation Manual, the following information pertains
to the use of the pispLAY verb:

1. pisprAyY literals must be non-numeric.

2. The Operating System’s Standard Punch Unit and
Standard Print Unit may be equated with mnemonic-
names in the SPECIAL-NAMES paragraph of the Environ-
ment Division. If the uroN option is omitted, the con-
sole printer will be used as the standard Display De-
vice.

3. Depending on the 1403 printing chain or the con-
sole printer type head, certain characters will not be
displayed. See the publication, IBM 1410 Principles of
Operation, Form A22-0526 or IBM 7010 Principles
of Operation, Form A22-6726, for further details.

4, If a printer is used, it will be assumed that the
carriage tape has a channel-1 punch.

5. Information of any length can be displayed on
any display device.

6. A standard set of error procedures is provided by
the resident Input/Output Control System for use in
the execution of the pispLAY verb.

Figure 13 shows a DISPLAY statement that will cause
the contents of the field cranp-toTAL to be typed
on the console printer when the object program is
executed.

1
A : B
8 112 18 20 24 28 32 36 40
= e Sz

..nb_\ﬁQlA\.ﬁ_ﬁBAluD.:IIOIIM-"llll-lllllll

TN T N N N N T S T O T T T T N O T O T N " O Y ot v |

~CONT.

Figure 13. Standard DISPLAY Device

Figure 14 shows a pispLAY statement that will cause
the contents of the field cranp-ToTAL to be displayed
in 80-character records on the Standard Punch Unit
when the object program is executed, assuming that
the mnemonic-name puNcH has been equated with the
SYSTEM-OUTPUT-PUNCH.

= T
gr e {
?7(8 12 16 20 24 28 32 38 40

L=
...bawmummmuﬂ
III:lllll|lllllll|ll|llll|lIllllll

Figure 14. Punch DISPLAY

ACCEPT

The function of the acceet verb is to obtain low-
volume data from the Operating Systems Standard
Input Unit. The Standard Input Unit is the only de-
vice from which information can be accepted. The
general form of the accepr verb is:

ACCEPT data-name
Figure 15 shows an Accept statement that will cause

data to be read from the Standard Input Unit and
moved into the area defined by the data-name cANCEL-
rATIONS, If this area contains more than 80 characters,
sufficient card images will be read to fill it.

1
A '8
[) j2 18 20 24 28 36 40

L BCCERT CANCELLATIONS: 000001

I S N T T U SN W Y U W U W O T N N T N U T N O O TN S W T W |

~CONT.|

'

Figure 15. ACCEPT Verb

A standard set of error procedures is provided by the
resident Input/Output Control System for use in the
execution of the AccepT verb.

Data Manipulation Verbs

MOVE

The Move verb can be used in either of two formats:
Option 1

data-name-1

MOVE { date;

E TO data-name-Q[data-name-f)’ e]
Option 2

MOVE CORRESPONDING data-name-1 TO

data-name-2 [data-name—3 o]

In addition to the details specified in the General
Information Manual, the following considerations per-
tain to the use of Options 1 and 2 of the MovE verb:

1. The following moves are aligned by decimal
point:

a. Elementary numeric to elementary numeric.

b. Elementary numeric to elementary alpha-
numeric report.

c. Elementary non-numeric to elementary nu-
meric. (The elementary non-numeric item is
assumed to be an integer.)

2. All other moves are left-justified.

3. When figurative constants are used as operands
of the MovE verb, the size of the receiving area deter-
mines the number of characters that are moved. For
example, if the size of AREA-A in Figure 16 is five posi-
tions, its value after execution is five nines (99999). If
the receiving field is a report item, no editing will take
place. Instead, the entire field will be filled with the
constant being moved.

~

CONT.)

T
A : B [
8 16 20 24 £6 32 36 40

-2 28,
L1 MOVE: HiGH-VALUE ~A -

NN O T N T O T T R T W YU XY O T 1O T O Y O I W WY T T |

Figure 16. MOVE Verb

4, The CORRESPONDING option will not match a data-
name which is redefined at a lower level than that of
the operand in the CORRESPONDING statement.

EXAMINE
The general form of the ExamiNE verb is:

EXAMINE data-name
ALL
TALLYING { LEADING \titeral-1
UNTIL FIRST
[REPLACING BY literal-2 |
ALL
REPLACING J LEADING
[ONTILT FIRST

See the General Information Manual for details con-
cerning the EXAMINE verb.

}literal-S BY literal-4

Arithmetic Verbs

The following rules apply to the arithmetic verbs:

1. All data-names used in arithmetic statements
must represent elementary numeric data items that are
defined in the Data Division of the program. A data-
name that is defined within the Constant Section can-
not appear as the result field of an arithmetic statement.

2. All literals used in arithmetic statements must be
numeric.

3. The maximum size of any operand (data-name or
literal) is 18 digits. If the format for any operand speci-
fies a size greater than 18 digits, the compiler will
produce an error message when it encounters the dis-
crepancy.

4. Intermediate result fields generated for the evalu-
ation of arithmetic expressions (formulas) will always
have a prcTure of S9(10)V9(10). If greater precision is
desired, the simple arithmetic verbs (i.e., app, suB-
TRACT, MULTIPLY, and pivipE) must be used.

5. Decimal-point alignment is supplied automati-
cally throughout computations.

6. The format of any data item involved in compu-
tations (e.g., addends, subtrahends, multipliers, etc.)
cannot contain editing symbols. If this rule is violated,
the compiler will indicate the error by an appropriate
message. Operational signs and implied decimal points
are not considered editing symbols, The data-name in
the civine option and the result field in the compUTE
verb format represent data items which must not enter
into computations if they contain editing symbols.

Procedure Division 21

7. The only figurative constant permitted in arith-
metic statements is ZERG (or zEros and ZEROES).

8. For the simple arithmetic verbs the data charac-
teristics of the receiving field control the precision of
the operation; therefore, no high-order digit will be lost
without creating the size ERROR condition. All specified
decimal positions will also be produced.

9. For use with the size ERROR option “any impera-
tive statement” is any single verb with its operand(s)
or a sequence of verbs with their operands terminated
by a period and containing no explicit or implied con-
ditional expressions.

10. If exponentiation is used in a COMPUTE expres-
sion, the exponent must be an integer. Negative expo-
nents are permitted. Additional information on each of
the arithmetic verbs may be found in the General
Information Manual.

ADD
The general form of the Aobp verb is:

data-name-1 data-name-2
ADD g literal-1 }I:; literal-2 E :I

[g %%VING% data-name-n :| [ROUNDED:I
I:ON SIZE ERROR any imperative statement]

An ApD statement must name at least two addends.
For additional details concerning the app verb, see the
General Information Manual.

CORRESPONDING Option: The CORRESPONDING
option of the app verb allows the programmer to
specify the addition of corresponding items in one op-
eration in a manner similar to MOVE CORRESPONDING.

The general form of ADD CORRESPONDING is:

ADD CORRESPONDING data-name-1 TO data-name-2

I:ROUNDED]

[ON SIZE ERROR any imperative statement:l

Numeric elementary items within data-name-1 are
added to numeric elementary items with matching
names in data-name-2. Data-name-1 and data-name-2
must be nonelementary items. The rules stated for the
simple app verb apply to each pair of items in the App
CORRESPONDING option.

The rules concerning redefined areas are the same
for the ADD CORRESPONDING option as for the MovE
CORRESPONDING option.

The rROUNDED option and the size ERROR option of the
ApD verb may also be used with ADD CORRESPONDING.

22

For a detailed description of these two options, see the
General Information Manual.

Note: When size ERroR is used in conjunction with
CORRESPONDING, the SIZE ERROR test is made only after
the completion of all the add operations. If any of the
additions produced a SIZE ERROR, the resultant field for
that add remains unchanged, and the “any imperative
statement” is executed.

To illustrate the use of the ADD CORRESPONDING Op-
tion, assume that the programmer wishes to add items
from a work area named RECEIPTS to corresponding
items in an area designated sTock-oN-HAND. He would
write this statement:

ADD CORRESPONDING RECEIPTS TO STOCK-ON-HAND
Figure 17 shows what will result from this statement.

Note that noncorresponding items in the sTock-on-
HAND area are not affected.

ITEM-9 ITEM-10 ITEM-1 ITEM-4 ITEM-6 ITEM-8

RECEIPTS| X X X X X X

— ¢

ITEM=1 ITEM-2 ITEM-3 [TEM-4 ITEM-5 ITEM-6 ITEM-7

STOCK-ON-HAND

(Before execution)| Y Y Y Y Y Y Y

ITEM=1 ITEM-2 ITEM-3 ITEM-4 ITEM-5 [TEM-6 ITEM-7

STOCK-ON-HAND

(After execution)] X+Y Y Y X+Y Y X+Y Y

Figure 17. ADD CORRESPONDING

SUBTRACT
The general form of the suBTRrACT verb is:

data-name-1 data-name-2
suprmacr | faenamet) [{datename2)]

data-name-n

FROM {liteml_n % [GIVING data-name-m]

[ROUNDED]

I:ON SIZE. ERROR any imperative statement]

A suBTRACT statement must name at least one sub-
trahend and one minuend. For further details concern-
ing the susTrACT verb, see the General Information
Manual.

CORRESPONDING Option: The CORRESPONDING
option of the suBTRACT verb functions in the same way
as the CORRESPONDING option of the App verb.

The general form of SUBTRACT CORRESPONDING is:

SUBTRACT CORRESPONDING data-name-1

FROM data-name-2 [ROUNDED]

[ON SIZE ERROR any imperative statement]

MULTIPLY
The general form of the muLTIPLY Verb is:

data-name-1 data-name-2
MuLTIPLY § fEmRenerl L opy { jeeqene? |
[GIVING data—name-B] [BOUNDED]
[ON SIZE ERROR any imperative statement]
DIVIDE

The general form of the pivipe verb is:

PERFORM

There are five formats in which the PERFORM verb can
be used. These are:

Option 1
PERFORM procedure-name-1 [THRU procedure-name-2]
Option 2
PERFORM procedure-name-1 [THRU procedure-name-2]
integer-1
g data-name-1 z TIME[S]

Option 3

data-name-1 data-name-2
pviDE { fet el mNre s
[GIVING data-name--?-l [ROUNDED]
[ON SIZE ERROR any imperative statement]
COMPUTE

The general form of the compuTE verb is:

COMPUTE data-name-1 [ROUNDED]
= arithmetic expression

[ON SIZE ERROR any imperative statement:l

Procedure Branching Verbs

GO TO

There are two formats in which the ¢co To verb can be
used:

Option 1
GO TO ‘[pracedure-name]
Option 2

GO TO procedure-name-1 procedure-name-2
[procedure-name-.? ..] DEPENDING ON data-name

For additional information concerning the co ToO
verb, see the General Information Manual.

ALTER
The general form of the ALTER verb is:
ALTER procedure-name-1 TO PROCEED TO

procedure-name-2 [procedure-nume-S TO
PROCEED TO procedure-name-4 . . :|

A co To sentence that is to be altered must be:

1. An unconditional co TO sentence

2. Written as a separate paragraph consisting solely
of the co TO sentence, preceded by a procedure-
name

PERFORM procedure-name-1 I:THRU procedure-name-2:|
UNTIL condition-1
Option 4

PERFORM procedure-name-1 [THRU prooedure—name-2:|

VARYING data-name-1 FROM

g numeric-literal-1 % BY ; numeric-literal-2 z
data-name-2 == | data-name-3

UNTIL condition-1

Option 5
PERFORM procedure-name-1 |:THRU procedure—name—2]

VARYING subscript-name-1

integer-1 integer-2
FROM gdata—name-lz BY %data-name-2

UNTIL condition-1 [AFTER subscript-name-2

integer-4
2 BY gdata-name-4

integer-3

EROM i data-name-3

} UNTIL

ccmdition-2] [AFTER subscript-name-3 FROM

integer-5 integer-6 Y
;data-name-S 2 BY zdata-name-b‘ % NTIL condmon-S]

Compiler Directing Verbs

ENTER

The ENTER verb, used with the caLL verb, allows the
programmer to construct multiphase coBoL programs
and to incorporate into his object program FORTRAN
and/or Autocoder compiled subprograms. The incor-
poration of subprograms is performed at the time the
object program is processed by the Linkage Loader.
(See the publication IBM 1410/7010 Operating System;
System Monitor, Form C28-0319.) Each ENTER state-
ment must constitute a separate paragraph in the
source program. The form of the ENTER verb is:

COMMUNICATION-MODE
enter § 3R $

The entry ENTER COMMUNICATION-MODE precedes the
calling of the subprogram(s). The caLL verb specifies
the subprogram(s) to be included in the object pro-

Procedure Division 23

gram. The entry ENTER cOBOL must terminate the list of
subprograms. COMMUNICATION-MODE may be entered
any number of times in a program.

The cOMMUNICATION-MODE can be used to perform
the following functions:

1. Read from disk storage devices directly into
the WORKING STORAGE SECTION of the DATA DIVISION.

2. Write to disk storage devices directly from the
WORKING STORAGE SECTION of the DATA DIVISION.

3. Share an on-line printer in an operating system
that has full object-program carriage-control capabili-
ties. This technique is usually faster than the pispLAY
verb method. The coBoL program must enter an Auto-
coder subprogram in order to use the Resident monitor
Print Routine; the Autocoder subprogram must con-
tain a specific linkage sequence. Use of the Resident
Monitor Print routine, and the linkage sequence
required for its execution, are described in the System
Monitor publication.

4. Share an on-line card reader with the operating
system (see “Read Routine” in System Monitor). This
technique is usually faster than the accepr verb
technique.

5. Share an on-line card punch with the operating
system (see “Punch Routine” in System Monitor). This
technique is usually faster than the bpispLay verb
technique.

CALL
The general form of the cALL verb is:

linkage-symbol file-name-1
CALL subprogram-name USING < data-name-1
system-symbol literal-1

file-name-2
data-name-2 3 CALL... .
literal-2

Subprogram-1 is the name contained in the TITLE
card of the subprogram. The caLL verb causes the
coBOL compiler to generate an imbedded call for the
named subprogram. When the imbedded call is proc-
essed by the Linkage Loader, it is converted into a
branch to the first character of the called subprogram.

The usiNG option specifies the required parameters
(data-names and/or literals) for the subprogram.
These parameters reference data within the cosoL pro-
gram and are the only means of communication be-
tween the main program and the subprogram. At
object program run time, these parameters are repre-
sented by a sequence of five-character addresses of the
appropriate data, with a word mark over the high-
order position of each address. This list is followed by
a terminal “No Operation” instruction. (The number
of parameters is used by the called subprogram to
determine the point at which control is to be returned
to the main program.) Although any number of

24

parameters may be specified, a maximum of two sub-
scripted data-names may appear in a given USING
option.
The format of the caLL statement used to call and
enter a phase is
% data-name-1

CALL CHAIN USING yyitrq 1

The above cALL statement, used with the ENTER
verb, permits the cHAIN feature to be used with the
Linkage Loader. See System Monitor for additional
details of the cHAIN feature, including specifications
for building multiphase coBoL object programs.

The coBoL compiler will generate an imbedded call
for the cHAIN subprogram. This call will be followed
by the address of the location of literal-1 or data-
name-1. There is a word mark in the high-order posi-
tion of the field with the address. The sequence is
terminated with a Nop instruction.

Literal-1 or data-name-1 should be unsigned and
three digits long. This literal or data-name represents
the phase number field (columns 6-8) of a Linkage
Loader pHASE card which will be generated by a Link-
age card.

A caLL statement used to call and enter a phase may
not appear within the pECLARATIVES portion of a pro-
gram.

The caLL verb may be used only after the comMunI-
CATION-MODE has been entered. No other verb may ap-
pear within the COMMUNICATION-MODE.

The following caLL statement will generate the illus-
trated calling sequence. For clarity, the calling se-
quence is presented in standard Autocoder format.
However, the calling sequence is written on the Go
file (or punched) in standard 1410/7010 relocatable
format.

CALL [SUBPROGRAM] [QSM
[file-name-1, . . . file-name-n]
[data-name-1, . . . data-name-n]
[literal-1, . .. literal-n]]

CALLING SEQUENCE GENERATED

OPERATION CHARACTER
CODE OPERAND COUNT
DCWS SUBPROGRAM 7
DCW FILE-NAME-1 5
DCW FILE-NAME-N 5
DCW DATA-NAME-1 5
DCW DATA-NAME-N 5
DCW LITERAL-1 5
DCW LITERAL-N 5
NOP . 1

The pcw address constant of FILE-NAME-N points at
the low-order character of the File List Origin field of
the File Table.

The pcw address constant of DATA-NAME-N points at
the low-order character of the data field. A word mark
may appear over the high-order character of the data
field.

The pcw address constant of LITERAL-N points at the
low-order character of the literal. A word mark ap-
pears over the high-order character of the literal field.

INDEX REGISTER USAGE
In general, index registers 1-12 are used when exe-
cuting coBoL object programs, and index registers 13,
14, and 15 are used by the Operating System.

Subprograms — called by entering COMMUNICATION-
MODE — do not use all 15 index registers. If a subpro-
gram contains subscripted parameters, as specified in
the uvsiNG portion of the caLL statement, the subpro-
gram may use index registers 1-7, 9, and 11. If a sub-
program does not contain subscripted parameters, the
subprogram may use index registers 1-9, 11, and 12.
If in the above two cases, the cALL statement that calls
the subprogram is not in the DECLARATIVE portion of
the Procedure Division, index register 10 may also be
used by the subprogram. Index registers that are used
by Autocoder subprograms should never be left
negative.

Upon returning to the copor main object program,
index registers 1-15 will be used; the contents of the
index registers used by the subprogram are destroyed.

LINKAGE LOADER MEMORY MAP

For the main coBoL object program phase, the four
coBOL subprograms must immediately follow the
1BCOBOL subprogram on the Linkage Loader memory
map. The relocation factors for 1Bcosor and the four
coBoL subprograms must be identical. Therefore,
when loading user-written subprograms as part of the
main coBoL object program phase, a caLLN card must
tollow the caLL card for coBoL subprogram ITIITITI001.
(The I’s represent the subprogram identification that
is contained in columns 73-79 of the PROGRAM-ID card.
This card appears in the IDENTIFICATION DIVISION of
the coBoL source program.) In order to force the above
order, a cALLN card for one of the coBoL object time
subroutines, such as 1BcBLDSPLY, should be included as
part of the main coBoL object program phase.

EXIT

The exit verb is used when it is necessary to provide
an end point for a procedure that is to be executed by
means of a PERFORM statement, or for procedures speci-
fied in the “use” section. While Exrr is classified as a
compiler-directing verb because it supplies the com-
piler with necessary information and does not produce

any coding in the object program, it can also be thought
of as a “dummy” program verb.

EXIT must appear in the source program as a one-
word paragraph preceded by a paragraph-name. The
form of the Exit verb is:

EXIT.

Further discussion of the Exit verb is contained in

the General Information Manual.

NOTE
The form of the NoTE verb is:
NOTE any comment.

See the General Information Manual for additional
information concerning this verb.

Ending Verb

STOP

The general form of the stor verb is:
literal

STOP ;RUN g

In addition to the details specified in the General
Information Manual, the following information per-
tains to the use of the sTop verb:

1. The statement:

stop literal

will cause the program to print the literal on the con-
sole printer and enter the Wait-Loop routine of the
Resident Monitor. (For details, see the publication,
System Monitor.)

2. The statement:

STOP RUN

indicates the end of the program and generates the
message “stop RUN” on the console printer, followed by
a return to the System Monitor.

Conditional Expressions

In addition to the details contained in the General In-
formation Manual, the following rule applies to condi-
tional expressions.

Within a relational expression the subject, relational
operator, and object must all be at the same logical
parenthetical level. Therefore, a left parenthesis pre-
ceding an object indicates that arithmetic follows.

Example:
VALID INVALID
IFA=(B+C) IFA=(BORC)
IFA = (-B) IFA=((B+C)ORD)

Implied subjects and implied relational operators are
permissible in conditional expressions. No other abbre-
viated usage is permitted.

Procedure Division 25

Example:
VALID INVALID

IFA=B ORC IFA=B.CORD
In a conditional expression the logical operator Not
is only permitted at one given parenthetical level.

Example:
VALID
NOT (A OR B)

INVALID
NOT (NOT A OR B)

26

Added Features of the Procedure Division

The following features, not contained in the General
Information Manual, are included in the 1410/7010

coBoL language:
1. The usk Declarative
2. The CORRESPONDING option of the App verb
3. The corresPONDING option of the suBTrACT verb

Programming Techniques

When writing coBoL source programs, the techniques
described below can be used to produce more efficient
machine-language coding or to increase compiling
speed.

EFFICIENT OBJECT PROGRAMS

The suggestions given in this section should be fol-
lowed to obtain the most efficient machine-language
coding from the 1410/7010 cosoL compiler. In most
cases object program efficiency is significantly im-
proved by using these programming techniques. App,
COMPUTE, conditional, MovE, and sUBTRACT statements
are subject to the greatest increases in object code effi-
ciency by use of these techniques.

Add: The most efficient App statement is:
ADD data-name-1 TQ data-name-2.

where the scaling of data-name-1 is identical to that of data-

name-2, and the size of data-name-1 is not greater than that
of data-name-2,

Compute: A series of simple arithmetic statements
usually requires less core storage and is faster than an
equivalent COMPUTE expression.

Conditional Statements: Comparisons of unsigned
numeric data-names are more efficient than compari-
sons of signed numeric data-names.

The most efficient conditional statement is:

IF data-name-1 1S EQUAL TO ‘X’ GO TO procedure-name.

where the size of data-name-1 is one character and ‘X’ is any
one-character alphanumeric literal.

Another eflicient conditional statement is:
IS [NOT] GREATER THAN
IS [NOT] LESS THAN
IS [NOT] EQUAL TO

[NOT] =

IF data-name-1 data-name-2

GO TO procedure-name.
where

1. the size of data-name-1 is equal to that of data-name-2;

2. both data-name-1 and data-name-2 are either elementary
or redefined;

3. if both data-name-1 and data-name-2 are elementary nu-
meric, then both are unsigned and their scaling is identical.

When an 1¥ and a 6o To statement are not combined,
or the condition is part of a PERFORM statement, the
most eflicient comparison is made where

1. the size of data-name-1 is equal to that of data-

name-2;

2. both data-name-1 and data-name-2 are either ele-

mentary or redefined;

3. if both data-name-1 and data-name-2 are elem-

tary numeric, then both are unsigned and their
scaling is identical.

General Information

A series of simple conditional expressions requires
less core storage and is faster than an equivalent com-
plex conditional expression. A complex conditional ex-
pression is defined in this manual as a conditional
expression with one or more of the following: an or
logical operator; parentheses; subscripting; an arith-
metic expression.

Move: It is always faster and, in most cases, it re-
quires less core storage to move a level 77 constant
than to move a figurative constant.

The most efficient MOVE statement for various types
of items and for zero suppression and alphanumeric
report editing is:

MOVE data-name-1 TO data-name-2

The following requirements should be fulfilled to ob-
tain the most efficient object coding with this form of
the MOVE statement.

For signed, numeric, elementary items, the scaling of
data-name-1 should be identical with that of data-
name-2.

For unsigned, numeric, elementary items:

1. the scaling of data-name-1 should be identical

with that of data-name-2;

2. the size of data-name-1 should be equal to that of

data-name-2.

For non-numeric, elementary items, the size of data-
name-1 should be equal to or greater than the size of
data-name-2.

For group items, the size of data-name-1 should be
equal to or greater than that of data-name-2.

For zero suppression:

1. the scaling of data-name-1 should be identical
with that of data-name-2;

2. the size of data-name-1 should be equal to that of
data-name-2;

3. the picTURE clause for data-name-1 should con-
tain only the characters 9, V, P, S;

4. The picTure clause for data-name-2 should con-
tain only the charactersZ, V, P.

For alphanumeric report editing:

1. the scaling of data-name-1 should be identical
with that of data-name-2;

2. the picture clause for data-name-1 should con-
tain only the characters 9, V, P, S;

3. the computational size of data-name-1 should be
equal to that of data-name-2. “Computational
size” refers to the maximum number of numerics

General Information 27

that may be present in the edited item. For ex-

ample:
EDITING COMPUTATIQNAL
PICTURE SIZE
Z77.7Z 5
---.99 4
$$$.99 4
**k.09 5

Perform: The most eflicient PERFORM option 4 or 5 is:

PERFORM procedure-name-1 I:T HRU procedure-name-Q]

VARYING data-name-X

literal-1 literal-2
FROM %data-name—l % BY gd(tta-name-2%

UNTIL condition-1

where the scaling and length of data-name-X, literal-1 or
data-name-1, and literal-2 or data-name-2 are identical.

Subtract: The most efficient suBTRACT statement is:
SUBTRACT data-name-1 FROM data-name-2.

where the scaling of data-name-1 is identical to that of data-
name-2.

Already-Written Programs: For programs that have
already been written in coBoL, it is not necessary to ex-
amine each coBoL source program statement to deter-
mine if the object program efficiency can be improved.
The approximate card number and the type of op-
timization that may be possible are printed as a warn-
ing message at compilation time.

In most cases alteration of an operand characteristic
or a statement format produces optimum coding.

The list of relocatable core-storage assignments can
be obtained by use of the LisT operand option on the
MoN$$ EXEQ coBoL card. Refer to “1410/7010 cosoL
Compiler Requirements” later in this manual.

Miscellaneous: For files that contain multiple rec-
ords, it may be more economical to define only one
form and then transfer the record to an appropriate
work area.

Use unsigned numerics whenever possible.

Terminate every source statement with a period.

Use rREAD INTO and WRITE FROM whenever possible,
READ INTO and WRITE FROM should be used only when
the receiving area is equal to or larger than the send-
ing area. If the file associated with the READ INTO oOr
WRITE FROM is in Load mode, the word marks will be
moved.

For elementary numeric items, the scaling variation
should be minimized.

Subscripting and REDEFINES clause usage may be less
efficient than other approaches.

Whenever possible, simple statements referencing
elementary items should be used rather than complex
statements or statements that reference group items.

The accepr and pisprAY verbs should be used only
for low-volume input or output.

28

EFFICIENT COMPILATION

These suggestions should be followed to increase com-
pilation speed.

1. Unnecessary paragraph-names should be avoided.

2. Certain EXEQ card options (see the section “1410/
7010 coBor Compiler Requirements”) cause the com-
piler to produce additional output. When not essential,
these options should not be elected.

3. It is recommended that, wherever possible, the
programmer use the picTURE clause instead of the sizE,
POINT, CLASS, and BLANK clauses of a Record Descrip-
tion entry. The pPICTURE clause specifies the character-
istics of an elementary item in a more compact form,
and can, therefore, be processed more efficiently.

GENERAL CONSIDERATIONS

Some general suggestions and cautions are given below.

1. When desired precision of results of arithmetic
expressions exceeds that represented by PICTURE
S9(10)V9(10), it is suggested that the appropriate
arithmetic verbs be used (i.e., ADD, SUBTRACT, MULTI-
PLY, and DIVIDE), rather than the compUTE verb.

2. The normal contents of the MONITOR-SWITCH, in
the Resident Monitor's Communication Region, is a
blank. Therefore, it is recommended that the user
either:

a. not assign a blank value to a meaningful condi-
tion of this switch; or

b. let the blank value indicate that the switch has
not been set.

3. When a RepEFINES clause is associated with a
Load mode input file, the redefined portion of the Load
mode record does not carry word marks on tape.

4. Conventions which help to debug source pro-
grams are: (1) the placing of all procedure-names on
a separate card, and (2) beginning all verbs and con-
ditional statements in column 12 of a card.

5. Tables of constants can be formed by using the
occugs clause. References to these tables can be made
by the use of subscripts. The procedure for construct-
ing tables of constants is described in the General
Information Manual.

Compatibility Considerations

Certain coBoL verbs and their associated language
specifications cannot be defined in compatible terms
between the 1410/7010 Systems and other systems. It
is suggested that the user avoid the following when
writing coBoL programs that are to be compiled on
more than one system:

. ACCEPT

. UPON option of the pisPLAY verb

. ENTER

USE

CALL

ULk o

For reasons of compatibility, the use of the REDEFINES
clause should be limited to one level of redefinition,
with the exception that, if the REDEFINES is specified
at the Ol-level, one additional level of redefinition
within the level 01 may be used.

Use of the coBoL Character Set (H2) for literals is
suggested, when compatibility with other systems is
a consideration.

The following clauses described in the General In-
formation Manual are not implemented by the 1410/
7010 cosoL compiler for reasons of compatibility:

1. The justiFiep clause. Standard justification ac-
cording to crass definition will always take place. If
nonstandard data manipulation is required, the pro-
grammer can use other language specifications for this
purpose (e.g., the REDEFINES clause).

2. The Editing clause. Editing functions can only
be specified by use of the picTure clause.

Qualification of Names

Every name used in a coBoL source program must be
unique within the source program, either because no
other name has the identical spelling, or because the
name exists within a hierarchy of names (so that the
name can be made unique by mentioning one or more
of the higher levels of the hierarchy). The higher levels
are called qualifiers when used in this way, and the
process is called qualification.

In addition to the information contained in the Gen-
eral Information Manual covering the qualification of
names, the programmer should note the following:

1. Any name that requires qualification, but is not
qualified, will refer to the first occurrence of that name
in the program. The compiler assigns a relocatable
address for each data-name; if there are duplicate data-
names, the first address is used. No message is issued
in the event of duplicate data-names. Therefore, the
programmer' must check his program for duplicate
data-names and their need for qualification.

2. A name plus all its qualifiers cannot exceed a
total of 300 characters. If it does, an error message is
produced.

Literals

In addition to the rules for forming literals specified
in the General Information Manual, the following rules
apply to the 1410/7010 cosoL compiler:

For Forming Numeric Literals: A numeric literal
must consist of at least one, and not more than 18
digits. It may also include a sign, preceding the first
digit, and/or one decimal point.

For Forming Non-Numeric Literals: Any character
in the character set, except the quotation mark, the
record mark, and the group mark, can be used in a

non-numeric { alphanumeric) literal. Blanks are treated
as characters and may be included freely.

A non-numeric literal may occupy more than one
line. It is continued by placing a hyphen in the seventh
character position of the second card. (“CONT.” on the
coBoL Program Sheet). The continuation of the non-
numeric literal must be preceded by a quotation mark.

Subscripts

In addition to the rules for subscripting, which appear
in the General Information Manual, the following
applies to the 1410/7010 coroL compiler:

1. A subscript may not be more than four digits in
length.

2. If more than four digits are used, only the low
order four digits will be referenced.

3. The compiler does not check the number of digits.
It will not issue a diagnostic message if more than four
digits are used, if a zero subscript is used, or if the
subscript exceeds the limits of the array.

4. The programmer may check his subscripts by
means of conditional statements.

5. The length of a subscripted area must not exceed
a four-digit number.

6. If a greater area is used, erroneous addresses may
be generated.

Character Sets

The 1M Character Set H2 must be used for cosoL
source programs. This character set consists of the
numerals O through 9, the 26 letters of the alphabet,
and 12 special characters. The 1BM 1410/7010 Char-
acter Set may be used only for alphanumeric literals,
with the following exceptions: (1) the 18M 1410/7010
character “b” (substitute blank) cannot be used with
even-parity tape records; (2) the 1M 1410/7010 char-
acter “ 7 (word separator character) cannot be loaded
into the 1BM 1410 or 7010 with a word mark.

The coBoL (Set H2) special characters are shown
below with their equivalents in the 1M 1410/7010
Character Set:

CARD COBOL 1410/7010
CODE (SET-H2) (sET A2) MEANING
blank ; space
_ minus sign

1 - hyphen
12 + & plus sign
0-1 / / division sign
11.4.8 « . _3 multiplication' sign

check protection symbol
12-4-8) | right parenthesis
0-4-8 (% left parenthesis
0-3-8 , s comma
11-3-8 $ $ dollar sign

period
12-3-8 ' g decimal point
3-8 = # equal sign
4-8 ' @ quotation mark

General Information 29

Figurative Constants

In addition to the details specified in the General In-
formation Manual, the following information pertains
to the figurative constants. All figurative constants are
treated as belonging only to the ALPHANUMERIC class
except where noted.

LOW-VALUE The value of this figurative constant is the

LOW-VALUES space, or blank, the lowest in the collating
sequence.

HIGH-VALUE This figurative constant is defined as the

HIGH-VALUES character 9, the highest in the collating se-

quence.

ZERO This figurative constant represents the value

ZEROS 0. It is the only figurative constant that can

ZEROES be treated as belonging to the NUMERIC
class or the ALPHANUMERIC class.

SPACE This figurative constant represents a blank,

SPACES or space, It is the only figurative constant
that can be treated as belonging to the AL-
PHABETIC class or the ALPHANUMERIC
class.

QUOTE This figurative constant represents the char-

QUOTES acter Note that the use of the word
QUOTE to represent the character ' is not
equivalent to the use of symbol ’ to bound a
literal.

ALL “literal” This figurative constant generates a sequence
of characters specified by the single-char-
acter non-numeric literal.

TALLY

The word TALLY is the name of a data item whose
PICTURE is $99999. It is used primarily to hold informa-
tion produced by the ExAMINE verb; however, it may
be referenced by the programmer in any statement
where a signed numeric field is valid.

MONITOR-DATE

In addition to the figurative constants, the 1M 1410/
7010 coBoL compiler provides the programmer with
the special data-name constant MONITOR-DATE. This
data-name constant is the name of a five-character
data item (system symbol /paT/) within the Communi-

30

cation Region of the Resident Monitor. MONITOR-DATE
contains the current date established by the System
Monitor, and may be used in label-checking routines.
The form of the date is yyddd, where: yy is the year
(00-99) and ddd is the day of the year (001-366).
MONITOR-DATE can be used in the same way as any
item described in the Constant Section.

Class Conditions

The General Information Manual specifies that the
crass of a data item may be NUMERIC, ALPHABETIC Or
ALPHANUMERIC, In addition, CL.ASS CONDITION tests can
be used for all types of fields to determine, at object
time, whether they are wholly numeric or wholly
alphabetic in content.
The source statement beginning:
IF FIELD-A IS NUMERIC...
results in a character-by-character check of the value
of FIELD-A at object time. If an operational sign is pres-
ent in the units position, the associated character will
be interpreted as being numeric. Thus, —9 is inter-
preted as “minus 9,” not as the letter “R.”
The source statement beginning:
IF FIELD-B IS ALPHABETIC...

results in a character-by-character check of the value
of FiELD-B at object time. If each character in riELD-B
is alphabetic, the item is considered alphabetic.

Examples: The following table shows how the class
of an item is interpreted by the compiler depending
on which of the class tests is specified:

CHARACTER NUMERIC ALPHABETIC
0-9 YES NO

SPACE NO YES

A-R YES (if units position) YES

S-Z NO YES

? 1! YES (if units position) NO

Other

Special

Characters NO NO

This section describes the requirements for compilation
and execution of coBoL programs under the 1410/7010
Operating System. Knowledge of the contents of the
System Monitor publication is required for understand-
ing this section.

Requirements for Compilation

In order to process a CoBOL source program under the
1BM 1410/7010 Operating System, certain control cards
are required to direct the operation of the Resident
and Transitional Monitors and the Linkage Loader.
The required Monitor control cards are:

MON#§$$ JOB

MON#$$ MODE
MON$$ EXEQ
MON$$ ASGN
The required Linkage Loader control cards are:
PHASE
CALLN
CALL

These control cards are described in detail in the
publication, System Monitor. However, certain coBoL
options, which are available to the user, are discussed
below.

EXEQ Card Operand Options

The user can control the output of the cosoL compiler
by placing operands immediately after the comma
which follows the third System Monitor option on the
EXEQ card. These operands can appear in any order
and must be separated by commas, with no intervening
blanks. Any of the following operands may be used:

1. LisT--This operand produces a listing of source
program names and corresponding object program re-
locatable storage assignments. If rist is specified, a
check for duplicate procedure-names is made; a warn-
ing message is issued if duplicate names exist. If LisT
is not specified, no check is made and no warning mes-
sage issued. :

The address assigned to a file-name is that of the
low-order character of the File List Origin field of the
File Table.

A data-name address is assigned to the low-order
character of the data field.

A procedure-name address is assigned to the first
character in the paragraph or section.

A subscripted data-name address refers to the base
address in the following formula.

1410/7010 COBOL Compiler Requirements

ACTUAL DATA-NAME ADDRESS = BASE ADDRESS +
(VARIABLEl1 X INCREMENT1) + le*
(VARIABLE2 x INCREMENT2) + 2D*
(VARIABLE3 x INCREMENTS3) 3D*

*Note: Dimensions in array

2. piagNostic—This operand suppresses the creation
of an object program. (pIaGNoOsTIC cannot be requested
on the same ExeQ card with TRACE or NOPCH.)

3. TRacE—This operand causes the generation of a
self-tracing object program. When each paragraph or
section of the main body of the Procedure Division is
executed at object time, the paragraph or section-name
is printed on the Standard Print Unit.

4. nopcu—This option should be used only when a
Go file is being created. The function of NopcH is to
suppress output on the Standard Punch Unit, thereby
providing an object program on the Go file only.

5. noprT—This option will suppress the listing of the
COBOL source program, warning messages, and error
messages on the Standard Print Unit. (NopRT and LIsT
cannot be requested on the same EXEQ card.)

In the event of an error in the use of any of these
options on the ExeQ card, the compiler will ignore all
options, and produce only the normal output (an ob-
ject program on the Go file and/or the Standard Punch
Unit).

Figure 18 shows an ExeQ card for coBoL compilation
with the TRACE and LisT options.

Line| Lobel

roti
pe ﬁl' 28 30 35
Ot

902 |, o b i NPT,

Figure 18. EXEQ Card for COBOL Compilation

Requirements for Execution

The object program produced by the coBor compiler
consists of several subprograms. In accordance with
the requirements of the Linkage Loader, each sub-
program is headed by a TrTLE card.

The Subprogram TITLE Card
The coBoL compiler generates TITLE card information
based on the source program.

The format of the TITLE card is:

Column 6 16 21 31 73
yyddd TITLEPROGRAMnnnxxxxx nnnsssss
where
yyddd is the current date taken from the Resident Monitor’s
Communication Region.

1410/7010 COBOL Compiler Requirements 31

PROGRAM is the first seven characters of the IDENT field of
the PROGRAM-ID card in the source program.

nnn is the subprogram number, assigned serially by the com-

piler. This number is placed in columns 28-30 and

columns 73-75.

is the lowest relocatable storage address occupied by

the subprogram.

sssss s the sequence-number field of the cards (or card im-
ages) in the subprogram. The sequence number of each
TITLE card will always be 00001.

XXXXX

The TITLE card is processed in the second phase of
the coBoL compiler. The size of commonN is not known
at this time and, therefore, does not appear on the
TITLE card. It is not considered by the Linkage Loader
and, if core storage limitations are exceeded, the core
EXCEEDED message is not produced.

IDENT Field of the PROGRAM-ID Card

In order to comply with 1410/7010 Operating System
requirements, the following restrictions pertain to
completing the mENT field (columns 73-80):

1. It must always begin with an alphabetic char-

acter.

2. It cannot begin with the characters “18”.

3. It cannot contain the slash (/) or any blank char-

acters.

If these requirements are not met, the compiler will
replace the erroneous character with “A”, For example,
if the mENT field contains 18psp/b, the TITLE cards will
contain IAPSDAANNN,

Multiple Subprogram COBOL Output

The following list shows the subprogram serial num-
ber and function in the normal output of a compilation:

SERIAL NO. SUBPROGRAM FUNCTION

001 Storage allocation and value declarations for
Identification, Environment, and Data Divi-
sions

002 Storage allocation and value declarations for
Procedure Division literals
003 Object code for Procedure Division
004 Overlay addresses
COBOL Subroutine Sizes

The sizes of the coBoL object time subroutines are as
follows:

NUMBER OF
SUBROUTINE CHARACTERS
IBCOBOL 667
IBCBLCMPAR 1741
IBCBLALTST 91
IBCBLSUBSC 181
IBCBLADOVR 184
IBCBLDSPLY 639
IBCBLACCPT 191
IBCBLEXPON 1160
IBCBLCLEAR 391
IBCBLFLDMP 358
IBCBLRDINT 572
IBCBLDVZER 61

32

Control Card Requirements -

The sequence of the appropriate Monitor and Linkage
Loader control cards needed to compile and execute
the program with the IDENT “PAYROLL1” using the TRACE
option is shown in Figure 19.

(etc.)

MONS$$ EXEQ NAME, MJB

CALL PAYROLLOO1

CONGO

CALLNIBCOBOL

DISGO

PHASENAME

MONS$$ EXEQ LINKLOAD

MONS$$ ASGN LIB, B2

MONS$$ ASGN MJB, Al

(SOURCE PROGRAM PAYROLL1)

MONS$$ EXEQ COBOL, ,, TRACE

MONS$$ ASGN MGO, A2

MON$$ MODE GO

MONS$$ JOB ONE

Figure 19. Sample Control Cards for a Compile-and-Go Opera-
tion

Linkage Loader control cards pisco and conco elimi-
nate the search of the mco file for subprogram 1BcoBoL.
The subprogram 1BcoBoL is a required part of every
object program. It must be requested with a cALLN
card after the PHASE card.

coBoL programs that have been compiled can be
added to the System Library file. (For details, see the
publication, System Monitor.) The cALL requirements
for executing these programs from the System Library
file are:

CALL IBCBLADOVR

CALL IBCBLDSPLY

CALL IBCBLCMPAR

CALL IBCBLSUBSC

CALLN IBCOBOL

CALL PRGNAMEO001

Following the caLLN card for 1BcoBoL (Figure 19)
is a cALL card for the first of the just-compiled sub-
programs. The name used in this card consists of the

first seven characters of the menT field (pAyroOLL) and
the serial number, 001. The other three subprograms
(paYROLLO02, PAYROLLO03, and PAYROLLO04) are proc-
essed by the Linkage Loader in response to imbedded
calls that the compiler generates for each set of sub-
programs.

The Linkage Loader places the relocated program
on the Job file, from which it is loaded by the Resident
Monitor (ExeEQ NaME,MJB). Note that the name used
in the ExEQ card for the program must be the same as
that used in the pHASE card given the Linkage Loader,
but need not be the same as that used in the ENT
field given the compiler.

The sequence of the appropriate Monitor and Link-
age Loader control cards necessary to “execute” the
program with the mENT “PAYROLL]”, compiled at a
prior time is shown in Figure 20.

In Figure 20, the object program has been taken
from the Standard Punch Unit and is submitted to the
Linkage Loader from the Standard Input Unit (rather
than from the Go file, as in Figure 19). The basic
difference between the two examples (Figures 19 and
20) is that in Figure 20 a caLL card is not used for the
subprogram PAYROLLOO1, because the TrTLE card of a
subprogram placed in the Standard Input Unit serves
the call function.

(etc.)

Object program from MONSS$ EXEQ NAME, MJB
source program with
IDENT "PAYROLLI"

TITLE (PAYROLLOO4)

TITLE (PAYROLLO03)

TITLE (PAYROLLOO?)

TITLE (PAYROLLOOY) %

CALLNIBCOBOL

PHASENAME

MONS$$ EXEQ LINKLOAD

MONS$$ ASGN LIB, B2

MONSS ASGN MJB, Al

MONS$$ JOB TWO

Figure 20. Sample Control Cards for Execution

1410/7010 COBOL Compiler Requirements

33

Display with Carriage Control

It is possible to have carriage control in a cosoL pro-
gram by making changes to the module 1BcBLDSPLY.
Depending on how it is done, this may mean sacrificing
some of the flexibility of the coBoL program. When the
user wishes to display a field, he must first move the
field to a buffer area. The Data Division has to set up
a one-position field immediately preceding the buffer

MONSS DATE AUGH4
MONSS JOB COBOL CARRIAGE CONTROL
MONSS ASGN MwW1,B1
MONSS ASGN MW2,A2
MONSS ASGN MW3,.,B3
MONSS ASGN MWA A4 HIST FILE (N
MONSS ASGN MW5,85 HIST FILE 0OUT
MONSS ASGN MW6,86 $S63 OUT. AUTOCODER IN
MONSS ASGN MGO, A6
MONSS MODE GO
MONSS EXEQ SG3
$ ss HA NUPDATIBCBLOSPLY
$0023A
00238 MLCS O—~1+X1,0UTPUTTANN USE NEW CC
$0048A,0050A
0048Ax A OUT +LNCTER DECREMENT LINE COUNTER
00A8B% ez SETSKIP TO SKIP TO NEXT PAGE
Q048CH MLCS OUT+6.,OUTPUTTANK~] BLANK CARRIAGE CONTROL
$0056A,0056A
00S6AQUTPUTTANNDA 1X133,6
$O0057A
00S7BOUTPUTTANK 2.2
00S7C*QUTPUTTANKDA 1X132,G6 OLD OUTPUTTANK REFERENCE
MONSS EXEQ AUTOCODER, 4MW6.NOFLG
MONSS EXEQ COBOLss sNOPCH4LIST

IOENTIFICATION DIVISION.

PROGRAM-ID. CARCONTR.

ENVIRONMENTY DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. 18M-1410.

0BJECT-COMPUTER. 1BM-1410,

SPECIAL-NAMES.
SYSTEM—OQUTPUT-PRINTER IS PRT.

INPUT-OUTPUT SECTION.

FILE-CONTROL .

I-0-CONTROL «

DATA DIVISIONS

01 DUMMY,

02 CC PICTURE 1S Xe.

02 BUFFER.

03 AREAL PICTURE 1S X(S50).

03 ARFA2 PICTURE IS X(50).

03 AREA3 PICTURE IS X(32).

PROCEDURE DIVISION.

CARCONTR

area, where the user moves in his carriage control
character.

Figure 21 shows one way this can be done. In this
example, some line count references have been re-
moved, and the user should consider replacing these
according to his needs.

PARAG-1 o
MOVE *TEST PICTURE AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA®
TO AREAl.
MOVE °*TEST PICTURE AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA®
TO AREA2,
MOVE C*AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY TO AREA3J,
MOVE *S* TO CC. NOTE %2 SPACES AFTER PRINT®*,
DISPLAY BUFFER UPON PRT,
MOVE *K* TO CCe NOTE *2 [MMEDIATE SPACES',

OISPLAY BUFFER UPON PRT,.
MOVE *1°* TO CCe.
DISPLAY BUFFER UPON PRT.
MOVE *'T* TO CC» NOTE '3 SPACES AFTER PRINT',
DISPLAY BUFFER UPON PRT.
MOVE *J¢ TO CC. NOTE '1 IMMEDIATE SPACE'.
DISPLAY DUFFER UPON PRT.
STOP-IT,.
STOP RUN.
ASGN MJUB.B3
EXEQ LINKLOAD
PHASEXYZ
CALLNIBCBLDSPLY
01sSGO
CALLNIBCOBOL
CONGO
CALL CARCONTOQO1
MONSS EXEQ XYZ.MJUB
MONSS END

MONSS
MONSS

Figure £1. Carriage Control Subroutine

34

NOTE *IMMEDIATE SKIP TO CHANNEL 1°,

The purpose of the Autocoder subprogram is to set a
Wrong-Length-Record bit on in one or more 10-w’s of
the file, as shown in Figure 22.

The address of the File list origin in the file table
is passed from coBoL main program to Autocoder sub-
program with the ENTER COMMUNICATION-MODE calling
sequence. The File list origin address points to the

MONS$ DATE AUG64

MONSS JoB

MONSS$ MODE GO

MONSS$ ASGN MGO.A6

MONS$ EXEQ COBOL,SOFsSIUsNOPCH,ILIST

IDENTIFICATION DIVISION.
PROGRAM—IDs WLRTEST.
ENVIRONMENT DIVISION.
INPUT=-OUTPUT SECTION.
FILE-CONTROL «
SELECT 90-CHAR-FILE
ASSIGN TO TAPE—-UNIT MR1.
SELECT 89-CHAR-FILE
ASSIGN TO TAPE-UNIT MR2
RESERVE 5 ALTERNATE AREAS.
DATA DIVISION.
FILE SECTION.
FD 90-CHAR-FILE
RECORDING MODE IS LOAD MODE ODD PARITY
RECORD CONTAINS 90 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS 90—-CHAR-RCD.
01 90-CHAR-RCDe
02 BSTART PICTURE IS X(30).
02 MSTART PICTURE IS X(30).
02 ESTART PICTURE [S X(30).
FD 89~CHAR-FILE
RECORDING MODE IS LOAD MODE ODD PARITY
RECORD CONTAINS 89 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS 89-CHAR—-RCD.
01 89~CHAR—RCDe
02 BBSTART PICTURE IS X(30).
02 MMSTART PICTURE IS X(29).
02 EESTART PICTURE IS X(30).
WORKING-STORAGE SECTION.
PRCCEDURE DIVISION.
DECLARATIVES.
TEST-WLR-OPTION SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON 89-CHAR-=FILE.
le DISPLAY 'WLR-89-CHAR-FILE"'.
END DECLARATIVES.
11« ENTER COMMUNICATION-MODEs.
CALL WLRPGM USING 89-CHAR-FILE.
12. ENTER COBOL.
OPEN-90.
OPEN OUTPUT 90~CHAR-FILE.
MOVE *START®* TO BSTART.
MOVE *MIDDLE®' TO MSTART.
MOVE 'END*' TO ESTART.
WRITE 90-CHAR-RCDe
CLOSE 90-CHAR=~FILE.
DISPLAY 'UNEQUAL RECORDS'.
OPEN-89.
OPEN INRUT 89-CHAR~FILE.
READ 89--CHAR-FILE
AT END GO TO STOPITT.
STOPITTe
CLOSE 89-CHAR~FILE.
OPEN—IN-904
DISPLAY 'EQUAL RECORDS®*.
OPEN INPUT 90-CHAR-FILE.
READ 90-CHAR-FILE
AT END GO TO TNEXT.
TNEXT.
CLOSE 90—-CHAR-FILE.
DISPLAY 'EQUAL RECORDS OK'.
STOPIT.
STOP *STOP GIVE DUMP'.
STOP RUN.

WLRTESTO

Figure 22. Wrong-Length-Record Check Subroutine

Wrong-Length-Record Check

link field in the 10rw. The Autocoder subprogram will
determine if there are any alternate areas associated
with the file name by testing the link field in the 1orw
for zero.

The Autocoder subprogram exits back to the cosoL
main program after setting a Wrong-Length-Record
bit in the last 1orRW.

MONSS EXEWQ AUTOCODER
TITLE WLRPGM
SBR X4
START CW SETEXIT
MLCA 4+X44X5
TEST MLCB 0+X5+X5
* TEST LINKFIELD IN IORW FOR ZERO OR ALTERNATE AREAS.
C 0+X5,0000000
* ZERC INDICATES LAST IORW
BE SETSW
* MOVE GM TO CHANNEL TEST CHARACTER OR ©C FIELD
* OF 10ORW FOR WRONG LENGTH RECORO CHECK.
G
NEXT MLCS OMO s 19+X5
NOPWM
SETEXIT B NEXTADCON
* HANDLE NEXT IORWe
B TEST
* PREPARE TO EXIT ON LAST IORW.
SETSW sw SETEXIT
B NEXT
* TEST IF LAST FILE HANDLED
NEXTADCON BCE S+X495+X4 9N
* IF NOT REPEAT THE SAME PROCEDURE ON NEXT FILE.
A @59+ X4
B START
END
MONS S ASGN MJB,B3
MONS$ EXEQ LINKLOAD
DISGO
CALLNIBCOBOL
CONGO
CALL WLRTESTO0O1
MONSS ASGN MR2,A8
MONSS ASGN MR1,A8
MONS$ EXEGQ IBCOBOL +MJUB
MONSES END

Wrong-Length-Record Check 35

1410/7010 COBOL Multiphase Programming

The 1410/7010 Operating System multiphase program-
ming feature provides the coBoL programmer with
complete segmentation capabilities. For example, if a
41,000-character coBoL program is to be run on a com-
puter that has 40,000 positions of core storage, a low-
activity portion of the program can be segmented as
a separate phase. The System Monitor publication, in
the section on the cHAIN feature, discusses the use of
multiphase programming,

For most segmented cosoL programs, the Data
Division portion of the program is loaded once. How-
ever, segments of the Procedure Division may be
loaded many times without disturbing the Data Divi-
sion. This enables files to be opened in an initialization
phase, processed in a series of main phases, and closed
in a termination phase.

To use the multiphase programming feature, the user
must observe the following general considerations:

1. A phase can consist of coBoL, FORTRAN, or Auto-
coder routines or any combination of these routines.

2. The number of phases can be up to 999.

3. The number of phases in core storage at one time
is dependent upon the number of core storage positions
available.

There are three special considerations in implement-
ing coBor. multiphase object programs:

1. The Linkage Loader memory map relocation
factors must be equal for all main coBoL subprograms
using the same Data Division.

2. cosoL requires a data area (CoMMON) at the top
of core storage. Care must be taken to avoid overlaying
coMMoN if Autocoder and/or FORTRAN subroutines
(using coMMON) are in core storage with coBoL.

3. In a phase consisting of coBoL object program
routines and other language routines, the cosoL rou-
tines must contain the entry point.

The relocatable library routine cmaiN loads and
executes phases of a program written in one or more
of the Operating System languages. The program may
be divided into phases by using Linkage Loader con-
trol cards.

Illustrations of the Linkage Loader control cards
for various combinations of multiphase programs are
given in the following examples.

An example of a cosoL, Autocoder, and FORTRAN
phase without commMoNn in the Autocoder or FORTRAN
subroutine is illustrated in Figure 23. Note that the

Autocoder and FORTRAN subroutines are followed by
two cosoL phases.

36

MONSS EXEQ LINKLOAD
0ot PHASENAMEX
D1SGO
CALL CHAIN
CALL IBCBLADOVR
CALL 1BCBLDSPLY
CALL 18CBLCMPAR
CaLlL IBCBLSUBSC
CALLNIBCOBOL
CONGO
CALL COBOLP1001
CALLNAUTOCONAME
CALL FORTRANAME
002 PHASE
BASEI1COBOLP1002
CALLNCOBOLP2002
003 PHASE
BASEICOBOLP2002
CALLNCOBOLP3002

MONSS EXEQ NAMEX.MJB

Figure 23. COBOL, Autocoder, and FORTRAN Phase without
COMMON

An example of a cosoL, Autocoder, and FORTRAN
phase with comMoN in all subroutines is provided
in Figure 24.

MONS S EXEQ LINKLOAD
ool PHASENAMEX

01SGOo

CALL CHAIN

CALL 1BCBLADOVR

CALL [BCBLDSPLY

CALL [IBCBLCMPAR

CALL IBCBLSUBSC

CALLNIBCOBOL

CONGO

CALL COBOLP1001

CALLNIBCBLDVZER

BASEZ2(VALUE BELOW COBOL COMMON)
=~~AUTOCODER PROGRAM IN SIU---

BASE2(VALUE BELOW AUTOCODER COMMON)
~=<-FORTRAN PROGRAM IN SIU---

BASE2(VALUE OF TOP OF CORE STORAGE MINUS 2)
oo2 PHASE

BASE1COBOLPL 002

CALLNCOBOLP2002
003 PHASE

MONSS EXEQ NAMEX.MJB

Figure 24. COBOL, Autocoder, and FORTRAN Phase with
COMMON

If a complete overlay of a phase is desired while in
a multiphase environment, an Autocoder clear stor-
age subprogram must be loaded as the first sub-
program of the new phase. It must clear the new Data
Division area before the new Data Division subpro-
gram is loaded.

Figure 25 is an example of the Linkage Loader con-
trol cards required for a multi-phase coBoL program
with an Autocoder “clear storage” object card routine.

MONSS EXEQ LINKLOAD
001 PHASENAMEX
DISGO
CALL CHAIN
CALL 1BCBLADOVR
CALL IBCHLDSPLY
CALL IBCBLCMPAR
CALL IBCBLSUBSC
CALLNIBCOBOL
CONGO
CALL COBOLP1001
002 PHASE
BASE1COBOLP100L
TITLEAUTOCONAMEQO667 s

W

S0066T7SYYYYY NY

99999

BASE1COBOLP1001L
CALLNCOBOLP2001
MONSS END

Figure 25. Linkage Loader “Clear Storage” Routine

Note: In regard to the contents of the Autocoder
“clear storage” object card routine, the following
designations are to be noted:

00667 — in columns 31-35 of the TiTLE card reflects the
size of the subprogram 1BcoBoL.

5 —in column 72 of the TiTLE card is the card
type indicator.

YYYYY — in columns 8-12 of the clear storage card
equals or is greater than the size of the Phase
002 Data Division, but small enough to fit into
core when the relocation factor is added.

N — in column 71 of the clear storage card is the
upward relocation indicator.

Y — in column 72 of the clear storage card is the
card type indicator.

99999 — in columns 72-76 of the last card is the card
type indicator and designation for a subpro-
gram END card.

Figure 26 will produce the equivalent of the Auto-
coder “clear storage” relocatable object card routine
above,

MONSS EXEG AUTOCODER, » s NOMAC

TITLEAUTOCONAME
ORG 00667

OA LXYYYVYY
END

Figure 26. Autocoder “Clear Storage” Routine

MAIN and SATELLITE Routine

Multiphase programming may be used to retain the
Data and Procedure Divisions of the MAIN coBoL pro-
gram in core storage and to call several SATELLITE
Procedure Divisions which will use the Data Division
of the MAIN program.

In Figure 27, the MAIN coBOL program calls in the
SATELLITE program. SATELLITE returns to the MAIN pro-
gram and the process is repeated. The run is then
terminated in the MAIN program’s Procedure Division.

The multiphase program must be compiled and Link
loaded as a two-pass system. The first pass determines
filler size for “Dummy” entries in the SATELLITE
program.

MONS S DATE SEP64

MONSS$ JOB COBOL MULTIPHASE
MONSS ASGN MW1,B1

MONSssS ASGN MW2,A2

MONSS ASGN MW3,B3

MONSS ASGN MGO4+A6

MONSS MODE GO.TEST

MONSsS EXEQ COBOL sy s NOPCHWLIST

001010 IDENTIFICATION DIVISION.
PROGRAM-IDes MAIN.
001030 ENVIRONMENT DIVISION.
001040 CONFIGURATION SECTION.
001050 SQURCE-COMPUTER. [BM-1410.
001060 OBJECT-COMPUTER. IBM-1410.
001070 SPECIAL-NAMESe« MONITOR-SWITCH * ¢ STATUS IS RESET
001080 *S* STATUS IS SET.
INPUT=OUTPUT SECTION.
FILE-CONTROL.
I-G-CONTROL «
001090 DATA OIVISION.
001100 WORKING-STORAGE SECTION.
001110 77 SWTCH PICTURE IS 9 VALUE IS 1.
001120 77 PHASE-NUMBER PICTURE IS 999 VALUE IS 002.
01 WORKRECORD.
02 XXX PICTURE IS X(98).
02 YYY PICTURE IS X(2).
88 ZZ VALUE IS '88°'.
001140 PROCEDURE DIVISION.
01150 BEGINs GO TO FIRST-ENTRY SECOND—ENTRY DEPENDING ON SWTCHe
DISPLAY * GIVE CORE OUMP PLEASE '.
STOP 'END OF JOB's
STOP RUN.
001170 FIRST-ENTRY. DISPLAY * MAIN ENTERED. °'.
001180 OUT.ENTER COMMUNICATION-MODE CALL CHAIN USING PHASE~NUMBER.
001190 INe ENTER COBOL.
002010 SECOND-ENTRY. DISPLAY * MAIN ENTERED AGAIN '« GO TO OUT.
MONSS EXEQ COBOL s+ s NOPCHsLIST
001010 IDENTIFICATION DIVISION.
002040 PROGRAM-IDe SATELLITE.
001030 ENVIRONMENT OIVISION.
001040 CONFIGURATION SECTION.
001050 SOURCE-COMPUTER. IBM-1410.
001060 'OBJECT~COMPUTER. IBM-1410.
001070 SPECIAL-NAMES. MONITOR-SWITCH ' * STATUS IS RESET
001080 'S' STATUS IS SET.
INPUT=OUTPUT SECTION.
FILE~CONTROL»
I-0-CONTROL
001090 DATA DIVISION.
001100 WORKING-STORAGE SECTION.
001110 77 SWTCH PICTURE IS 9 VALUE IS 1.
001120 77 PHASE-NUMBER PICTURE IS 999 VALUE IS 002.
001130 01 WORKRECORD PICTURE IS X(100).
01 DUMMY
02 MAIN-FILLER PICTURE X(40).
88 COMMON-FILLER VALUE *FILLER'.
02 REST-OF=-MAIN-PROC-DIV PICTURE X(419).
002120 PROCEDURE DIVISION.
BEGINs DISPLAY ' SATELLITE ENTERED ' SWTCH. ADD 1 TO SWTCHe
1. ENTER COMMUNICATION-MODE CALL MAINPGM0OO3.
002150 2. ENTER COBOL.
MONSS ASGN MJB.B3
MONSS EXEQ LINKLOAD
PHASENAME1
CALLNCHAIN
CALLNIBCBLADOVR
CALLNIBCBLDSPLY
CALLNIBCBLCMPAR
CALLNIBCBLSUBSC
CALLNIBCOBOL
CALL MAINPGMOO1
PHASE
BASE125240
CALL SATELLTOO2
MONSS EXEQ NAME1.MJB
MONsS END

MAINPGMA

SATELLTA

Figure 27. MAIN and SATELLITE Routine

One “Dummy” entry is needed to force the SATELLITE
program to load above the MaiN program’s Procedure
Division. So that both programs may reside in core at
the same time, SATELLITE must contain a duplicate of
the maIN Data Division and a “Dummy” entry of filler
(equal in size to the Procedure Division of mMaIN).

A “Dummy” 88 entry is necessary to force the
SATELLITE Procedure Division coMMoN to be loaded
below the MAIN program Procedure Division coMMON,
avoiding overlay. The user can determine the size of
the coBoL comMON area by referring to the output list-
ing, which appears on the spRr as a result of the compi-
lation of the program. The number of characters used

1410/7010 COBOL Multiphase Programming 37

is specified at the end of the main program before the
memory map.

To calculate the size of the MAIN program’s Pro-
cedure Division, subtract the address of MmainreM002
from the address of maNPGMO04.

In Figure 27, the size of “maiN-coMMON” should be
equal to the size of the MAIN program’s COMMON area.
The size of “REST-OF-MAIN-PROC-DIV” should be equal
to the size of the MmaIN program’s Procedure Division
minus the size of coMMON minus one. The Basel of the
SATELLITE phases should be mainpeM004.

38

Appendix A: COBOL Words

The words listed below constitute the complete 1BM
coBOL vocabulary. Words preceded by an asterisk (*)
are not implemented by the 1410/7010 coBoL compiler
but should be avoided when assigning names to data,
etc., to avoid unnecessary difficulty in converting 1410/
7010 coBoL programs to other 1BM systems.

Programmers are cautioned that the words recog-
nized by the 1410/7010 coBor compiler can be used
in a CoBOL source program only as specified in this
publication, or in the General Information Manual.

ACCEPT CHARACTERS
ADD *CHECKPOINT-UNIT
* ADDRESS CLASS
* ADDRESSES CLOSE
AFTER COBOL
ALL *COLLATE-MACHINE-
ALPHABETIC SEQUENCE
ALPHANUMERIC COMMUNICATION-
ALTER MODE
ALTERNATE COMPUTATIONAL
AN *COMPUTATIONAL-1
AND *COMPUTATIONAL-2
APPLY COMPUTE
ARE CONFIGURATION
AREA CONSOLE-PRINTER
AREAS *CONSOLE-SWITCH
ASSIGN CONSTANT
AT *CONTAIN
AUTHOR CONTAINS
AUTHORS *CONTROLS
*COPY
*BCD CORRESPONDING
BEFORE *CREATION-DATE
BEGINNING *CREATION-DAY

BEGINNING-LABEL
*BEGINNING-REEL
*BINARY

*CREATION-YEAR

DATA

BLANK DATE-COMPILED
BLOCK DATE-WRITTEN
*BLOCKS DECLARATIVES
BY *DENSITY
DEPENDING
CALL DIGIT
CARD-PUNCH DIGITS
CARD-READER DISPLAY
CHARACTER DIVIDE

DIVISION

*ELECTRONIC-SWITCH
*ELIMINATION
ELSE
END
ENDING
*ENDING-FILE
ENDING-LABEL
ENDING-REEL
END-OF-FILE
END-OF-TAPE
ENTER
ENVIRONMENT
EOF-SIU
EQUAL
ERROR
EVEN
EVERY
EXAMINE
EXIT

FD

FILE

FILES

FILE-CONTROL
FILE-IDENTIFICATION
FILLER

FIRST

FOR

FROM

GIVING
GO
GREATER

*HEADER-LABEL
*HIGH
HIGH-VALUE
HIGH-VALUES
*HYPERTAPE-UNIT
*HYPERTAPE-UNITS

1BM-1410
1BM-7010
IDENTIFICATION
IF

IN

INPUT

Appendixes

INPUT-OUTPUT
INSTALLATION
INTO
I-0-CONTROL

*10C8

*IOHSK
I-0-SWITCH
1S

LABEL
LEADING
LEFT
LESS
*LIBRARY
LOAD
LOCATION
LOCK

*LLONG-LENGTH-RECORD

*LOW
LOW-VALUE
LOW-VALUES

*MEMORY
MODE
MONITOR-DATE
MONITOR-SWITCH
MOVE
*MULTIPLE
MULTIPLY

NEGATIVE

NEXT

NO
*NO-LENGTH-CHECK
*NONE

NON-STANDARD
*NO-OVERLAP
*NO-PRINT-STORAGE
*NO-RELEASE

NOT
*NO-TAPE-MARK

NOTE

NUMERIC

OBJECT-COMPUTER
*OBJECT-PROGRAM
OCCURS
ODD
OF

Appendixes

39

OFF
OMITTED
ON
OPEN
OPEN-WITHOUT-REWIND
*OPTIONAL-USAGE
OR
OTHERWISE
OUTPUT

PADDING

PARITY

PERFORM

PICTURE

PLACE

PLACES

POINT

POSITIVE
*PREASSEMBLED

PRINTER
*PRIORITY

PROCEDURE

PROCEED

PROGRAM-ID
*PROGRAM-START

QUOTE
QUOTES

READ
RECORD
RECORDING

*RECORD-MARK
RECORDS
REDEFINES
REEL

*REELS

*REEL-SEQUENCE-

NUMBER

*REFERENCE
REMARKS
RENAMING
REPLACING
RERUN
RESERVE
RETENTION-PERIOD
REWIND
RIGHT
ROUNDED
RUN

SECTION
SECURITY
SELECT
SENTENCE

40

*SHORT-ALPHA-WORD
*SHORT-LENGTH-RECORD
SIGNED
SIZE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STATUS
STOP
SUBTRACT
*SUPERVISOR
SYNCHRONIZED
*SYSTEM-INPUT-UNIT
SYSTEM-OUTPUT-
PRINTER
SYSTEM-OUTPUT-PUNCH

TALLY
TALLYING
TAPE-UNIT

*TAPE-UNITS
THAN
THEN
THROUGH
THRU
TIME
TIMES
TO

*TRAILER-LABEL

*TYPEWRITER
UNEQUAL

*UNIT-RECORD-I-O~

RECORD
UNTIL
UPON
USAGE
USE
USING

VALUE
VARYING

WHEN
WITH

*WITH-LABELS

*WITHOUT-LABELS

*WORDS
WORKING-STORAGE
WRITE

ZERO
ZEROES
ZEROS

Appendix B: Organization of Source Program

Some items which may appear in a source program are
required, while others are optional. Whether an item
is required or optional may be determined by reading
the discussion of each individual coBor word in this
publication. The order of appearance of the divisions
is mandatory and all divisions must be present. Certain
sections within the divisions must also appear as speci-
fied, while others have no rigid rules, The items which
may appear in a source program are the following:

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.
AUTHOR. author-name.
INSTALLATION. ...
DATE-WRITTEN. ...
DATE-COMPILED. ...
SECURITY. ...

REMARKS. ...

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. ...
OBJECT-COMPUTER. ...
SPECIAL-NAMES. ...
INPUT-OUTPUT SECTION.
FILE-CONTROL. SELECT ...
I-O-CONTROL. APPLY ...

DATA DIVISION.
FILE SECTION.
FD file-name-1 ...
01 data-name-1 ...
02 data-name ...
03 data-name ...
88 condition-name ...

02 data-'name v
01 data-name .
FD ﬁle-nar;te-2 ces

FD ﬁle:name-n v

WORKING-STORAGE SECTION,
77 data-name ...
88 condition-name ...

77 data-name ...

01 data-name ...
02 data-name ...

01 data-name ...
02 data-name ...
03 data-name ..

88 condition-name . ..

02 data-name ...

01 data-name .

CONSTANT SECTION.
77 data-name . . .

77 data-name ...
01 data-name ...
02 data-name ...

0l data-na.me cee
02 data-name ...
03 data-name . ..

02 data-name ...

01 data-name ...

PROCEDURE DIVISION.

DECLARATIVES.

section-name SECTION. USE .

paragraph-name. ...
END DECLARATIVES.
paragraph-name. . ..

.

section-name-1 SECTION.

paragraph-name-1. ...

paragraph-name-2. ...

.

paragraph-name-n. .
section-name-2 SECTION.

section-name-n SECTION.
paragraph-name-1. ...

paragraph-name-2. . ..

paragraph-name-n. ...

Appendix C:
Object Time Error Analysis and Messages
The following object time conditions will cause im-
mediate job termination. The messages will appear on
the Standard Print Unit and control will be trans-
ferred to the Resident Monitor’s Unusual End of Pro-
gram. (For details see the System Monitor publication.)
In the following messages, if the program being run
was compiled in the TRACE mode, the name of the
paragraph in which this error occurred appears as the
last paragraph-name on the Standard Print Unit.
If the program being run was not compiled in the
TRACE mode, nnnnn is the relocated address of the
statement in error.

INVALID EXPONENTIATION nnnnn

An attempt to raise zero to the zero power has been
detected.

ZERO DIVISOR nnnnn
An attempt to divide by zero has been detected.
UNALTERED STATEMENT nnnnn

A co 1O statement which required ALTERing was exe-
cuted prior to being ALTERed.

Appendixes 41

Appendix D: Diagnostic Messages

This appendix includes all the diagnostic messages
produced by the 1410/7010 cosor compiler, and their
meanings. The messages are listed by division, with a
“general” section for messages which can occur in more
than one division.

Normally, when a diagnostic message appears on the
source program listing, an incomplete object program
will be produced. The compiler will continue to exam-
ine the entire source program for further errors but
terminates object program output. However, some
messages are merely warnings to the programmer, and
do not necessarily affect the compilation of the source
program. A “W” preceding a message in this appendix
indicates a warning-type message. Also indicated (for
warning-type messages) are any assumptions the com-
piler may make about the intent of the statement in
question.

Source Program Listing

The following information is included to assist the pro-
grammer to better understand the source program
listing:

1. An “S” appearing to the left of a statement, or
group of statements, indicates that the programmer-
supplied sequence numbers are out of sequence. (This
is a warning and does not affect compilation.)

2. The four-digit number appearing on the extreme
left of the source program Procedure Division listing is
a card reference number assigned by the compiler.

3. Source statements and diagnostic messages for the
Identification, Environment, and Data Divisions ap-
pear interspersed in the source program listing.

4. Diagnostic messages for the Procedure Division
appear in one section of the source program listing,
with a card number to the left of the diagnostic mes-
sage. The diagnostic message usually refers to the
statement or procedure-name on the indicated card.
However, because of the object code optimizers look-
ahead subprogram, the message may refer to a state-
ment or procedure-name on an earlier card.

The lookahead subprogram scans the cosoL source
program twenty data-name or key-word elements
ahead of the object code output routine. Therefore,
under most circumstances, the diagnostic message will
refer to the current card or one of the three preced-
ing cards.

5. A message will appear indicating the storage allo-
cated to the main program. This allocation does not in-
clude any optional subprograms called by the user or
by the compiler.

6. One of the following messages appears on the
Standard Print Unit if compilation of the source pro-
gram has been prevented:

42

a. SHORT LENGTH WORK FILE (1/0 operation)
Appears if one of the work files (Mw1, MW2, or MwW3)
assigned for the cosor compiler is not of sufficient
length. Compilation is terminated and control passes
to the Resident Monitor’s Special-End-of-Program
routine. (See the publication, System Monitor, for
details.)

b. ****#%kOBIECT PROGRAM INCOMPLETEX##¥¥k
Appears if there are errors in the source program
which cannot be corrected by the cosor compiler. It
is the terminating message of a coBoL compilation in
which a source error prevented the generation of a
complete object program, unless p1aeNosTIC has been
specified on the ExeqQ card. (See 7, below.) If thisis a
compile-and-go operation, the Go file is cancelled.

C. UNCORRECTABLE 1/0 ERROR IN (phase name)
Appears if there is some uncorrectable input or out-
put error. Compilation is terminated and control
passes to the Resident Monitor’s Special-End-of-Pro-
gram routine. (See the publication, System Monitor,
for details.)

In conjunction with messages a, b, and c, the follow-

ing messages appear on the console printer:

10980 sHORT LENGTH WORK FILE (1/0 operation)

10990 ouTPUT INCOMPLETE—SOURCE ERROR

10999 ouTPUT INCOMPLETE—1/0 ERROR

(phase name)

d. **¥kikSOURCE PROGRAM INCOMPLETE®* ik
Appears if the four coBoL Divisions are not found in
the source program. Compilation is terminated and
control passes to the Resident Monitor’s Special-End-
of-Program routine. (See the publication, System
Monitor, for details.) If this is a compile-and-go
operation, the Go file is cancelled.
€. NUMBER OF ENTRIES WITHIN GROUP EXCEEDS TABLE

size IN (phase name)

Appears if the table limit is exceeded. The cosoL

compiler requires a minimum of 28,500 positions of

core storage, allowing for an 11,500-position Resi-
dent Monitor on a system that has a 40,000 character
core-storage unit. Within a single 01 record, up to

100 data-name entries may usually be processed.

However, in some cases the limit may be higher or

lower depending upon the characteristics of the data

names and the actual Monitor size.

If this message appears while processing the Data
Division, the user should either reduce the number of
entries in the 01 record or reduce the size of the Moni-
tor. Reducing the size of the Monitor will increase the
table size. If this message appears while processing
the Procedure Division, the user should reduce the
number of entries within the FD.

The above message should not appear for systems
in which more core storage is available for the table.

7. The following message appears on the Standard
Print Unit, and is the terminating message for a cosoL
“DIAGNOSTIC” run.

HAAEXXEND OF DIAGNOSTIC RUNYHH# ok

General

The messages appearing below can occur in more than
one division.

w DUPLICATE CLAUSE KEYWORD
A clause keyword has appeared more than once in
an entry.

w INVALID CONTINUATION CARD

Blank continuation card. It is ignored.

w INVALID LITERAL SYNTAX
Record mark or group mark found in a VALUE
clause or a non-numeric literal format error.

W KEYWORD DIVISION MISSING
Presence of the word DIVISION is assumed.

W REFERENCE FORMAT ERROR
One of the format rules has been broken but is
ignored by the compiler. (See the General Infor-
mation Manual.)

W SYNTAX CHECK DISCONTINUED WITH “X”
The syntactical form of the input statements does
not conform to COBOL syntax. “X” is the word
initiating the erroneous source data.

w SYNTAX CHECK RESUMED WITH “X”
A valid syntactical form is recognized after the
occurrence of the above message. “X” is the word
with which checking is resumed.

Identification Division

w INVALID IDENTIFICATION ASSIGN IDENTIFI-
CATION “X”
Columns 73-80 invalid. Value of “X” is assigned by
the compiler.

w SEARCH FOR IDENTIFICATION
The keyword IDENTIFICATION has not been dis-
covered in its proper position.

w SEARCH FOR PROGRAM-ID
The keyword PROGRAM-ID has not been dis-

covered in its proper position.
Environment Division
w ASSIGN CLAUSE MISSING
Self-explanatory.

CONFIGURATION SECTION MISSING
Self-explanatory.

w

w CONFIGURATION SECTION OUT-OF-ORDER
Self-explanatory.

w

w

DUAL OBJECT-COMPUTER SPECIFICATION
IBM 1410 and IBM 7010 specified.

DUAL SOURCE-COMPUTER SPECIFICATION
IBM 1410 and IBM 7010 specified.

FILE-CONTROL PARAGRAPH MISSING
Self-explanatory.

w

w INPUT-OUTPUT SECTION MISSING
Self-explanatory.

w

INVALID APPLY CLAUSE SYNTAX
The clause is ignored.

w INVALID APPLY LITERAL
More than one padding character, or invalid pad-
ding character.

w INVALID ASSIGN CLAUSE SYNTAX
The clause is ignored.

w INVALID DEVICE-NAMES CLAUSE SYNTAX
The clause is ignored.

w INVALID LABEL RECORD SIZE
Beginning-Label or Ending-Label record is greater
than 120 characters.

\"% INVALID RENAMING CLAUSE SYNTAX
The clause is ignored.

w INVALID RERUN CLAUSE SYNTAX
The clause is ignored.

INVALID RESERVE CLAUSE SYNTAX
The compiler assumes there are NO ALTERNATE
AREAS.

INVALID SELECT SYNTAX
SELECT not followed by ASSIGN, RESERVE, or
RENAMING.

INVALID SPECIAL-NAMLES PARAGRAPH SYNTAX
The paragraph is ignored.

INVALID SWITCH-NAMES CLAUSE SYNTAX
The clause is ignored.

KEYWORD SECTION MISSING
Self-explanatory.

MISSING PERIOD
Self-explanatory.

NO I-O-CONTROL PARAGRAPH
Self-explanatory.

NO SECTION HEADING
Self-explanatory.

OBJECT-COMPUTER PARAGRAPH MISSING
Self-explanatory.

PARAGRAPH INVALID IN THIS SECTION
Processing will take place as if SECTION were
correct.

PARAGRAPH OR STATEMENT CONSTRUCTION
ERROR
Self-explanatory.

PARAGRAPH OUT-OF-ORDER
Self-explanatory.

SOURCE-COMPUTER PARAGRAPH MISSING
Self-explanatory.

UNDEFINED RENAMING FILE-NAME
File used in APPLY clause not defined.

UNDEFINED RENAMING, FILE-NAME
File used in RENAMING clause not defined.

UNDEFINED RERUN FILE-NAME
File used in RERUN clause not defined.

Data Division
W 77-LEVEL OUT-OF-ORDER
Self-explanatory.

w 88-LEVEL INVALID AT GROUP LEVEL
Self-explanatory.

w 88-LEVEL INVALID IN THIS SECTION
An 88-level appears in the CONSTANT SECTION.
This entry is ignored./

w CLAUSE MISSING IN THIS FD
LABEL RECORDS clause is missing and is as-
sumed to be omitted; or DATA RECORDS clause
is missing and is ignored.

=

£ £ £ £ £ 2 = 1 =

=

g £ £ =2 =

Appendixes 43

44

FD ENTRY RECORD MISSING - o g
An FD entry has no associated Record Description
items. File is ignored. :

FD OUT-OF-ORDER)
FD has been detected in other than File Section.
Compiler will handle this condition.

FILE SECTION OUT-OF-ORDER
Will be processed as if in proper order.

INCOMPATIBLE BLOCK RECORD CLAUSE
Combination of BLOCK CONTAINS and RECORD
CONTAINS clause does not agree with one of the
five allowable formats.

INCOMPATIBLE BLOCK RECORD SIZE
The record size is too large. Record size will be
used. N

INCOMPATIBLE CLASS PICTURE CLAUSE
Classes as specified by the CLASS and PICTURE
clauses in a given item do not agree. CLASS clause
is ignored.

INCOMPATIBLE LITERAL
CLASS or PICTURE does not agree with VALUE
literal. The compiler ignores this condition and allo-
cates storage for the literal.

INCOMPATIBLE PICTURE POINT CLAUSE
The assumed decimal point in the POINT clause
does not agree with the PICTURE. POINT clause
is ignored.

INCOMPATIBLE POINT CLASS CLAUSE
The POINT clause is not associated with a numeric
item. POINT clause is ignored.

INCOMPATIBLE RECORD SIZE
The record size as derived from the Record De-
scription does not agree with the size as stated in
the RECORD CONTAINS clause. The computed
record size will be used.

INCOMPATIBLE REDEFINES ENTRY

If the rules outlined below are not applicable, the

message may be ignored.

1. The redefinition cannot exist at a 01 level number
in the File Section.

2. A data-name which is subscriptable cannot be
redefined.

3. The size associated with the redefinition is greater
than the size of the original area. The size of the
original is used.

INCOMPATIBLE SIGNED PICTURE CLASS
CLAUSE
The existence of a sign, specified by the SIGNED
clause, does not agree with the PICTURE, which is
non-numeric. The SIGNED clause is ignored.

INCOMPATIBLE SIZE CLAUSE AT GROUP LEVEL
SIZE as specified at group level does not agree with
the size as calculated from the contained elementary
items. Group SIZE is made to conform.

INCOMPATIBLE SIZE PICTURE CLAUSE
Size as specified in a SIZE clause does not agree
with the size given by the PICTURE clause. SIZE
clause is ignored.

INCOMPATIBLE WITH HIGHER LEVEL CLASS
Class specified for this item does not agree with
class specified for the group. Group CLASS is
ignored.

INVALID 88-LEVEL
88-level occurs without a preceding condition vari-
able (valid level-number). It is ignored.

£ £ £ £ £ =

£

s

INVALID BLOCK CLAUSE SYNTAX ‘
The compiler will infer block size from record size.

INVALID CLASS SYNTAX
CLASS clause is ignored.

INVALID DATA RECORD CLAUSE SYNTAX
The clause is ignored. -

INVALID DEPENDING ON ENTRY
The DEPENDING ON data name within a given
RECORD CONTAINS clause either does not occur
in a subsequent file record, or does not have con-
sistent specifications in a multi-record file.

INVALID EDITING CLAUSE SYNTAX
Invalid BLANK WHEN ZERO clause.

INVALID LABEL RECORD CLAUSE SYNTAX
Compiler assumes OMITTED.

INVALID LEVEL-NUMBER
The level-number of the first item following an FD
is not 01. This item is assumed to be a 01-level.

INVALID LEVEL-NUMBER SYNTAX
Invalid level-number sequence. Will be treated as
if valid; therefore, hierarchical relationships may be
affected.

INVALID LITERAL
File Identification value is improper. If more than
10 characters the value is truncated.
INVALID LITERAL IN THIS CONTINUATION
CARD
Continuation indicator, but first non-blank character,
not the quote sign. Continuation ignored-literal is
terminated by end of first card.

INVALID LITERAL SYNTAX
Literal in VALUE clause is invalid. VALUE clause
is ignored.

INVALID OCCURS CLAUSE
OCCURS clause generates a fourth or higher dimen-
sion array. The clause is ignored.

INVALID OCCURS CLAUSE SYNTAX
The clause is ignored.

INVALID PERIOD
Self-explanatory.

INVALID PICTURE SYNTAX
The clause is ignored.

INVALID POINT CLAUSE SYNTAX
The clause is ignored.

INVALID PUNCTUATION OR SPECIAL
CHARACTER
This is ignored.

INVALID RECORD SYNTAX
Syntactical error in RECORD CONTAINS clause.
The clause is ignored.

INVALID RECORDING MODE CLAUSE SYNTAX
Compiler assumes Move mode and even parity.

INVALID REDEFINES CLAUSE SYNTAX
The redefined data name is undefined or the entries
redefining an area do not immediately follow the
original definition of the area, or the redefined data-
name level-number does not agree with the current-
name level-number.

INVALID SIZE CLAUSE SYNTAX
The clause is ignored.

INVALID SYNCHRONIZED CLAUSE SYNTAX
The clause is ignored.

INVALID U/R SPECIFICATION
Recording mode specified is invalid for unit record.
Move mode and even parity is assumed.

INVALID USAGE CLAUSE SYNTAX
The clause is ignored.

INVALID VALUE CLAUSE

VALUE and REDEFINES clauses are in same item.
VALUE and OCCURS clauses are in same item,
VALUE in item subordinate to grouped REDE-
FINES item. VALUE in item subordinate to grouped
OCCURS item. VALUE within a File Section Rec-
ord Description; or VALUE with report item. The
VALUE is ignored.

KEYWORD SECTION MISSING
The word SECTION does not appear. The compiler
assumes that it is present.

LITERAL EXCEEDS MAXIMUM CHARACTER
SIZE 120
Literal will be truncated.

LITERAL TRUNCATION
VALUE exceeds SIZE. This message will also ap-
pear whenever a VALUE is given to a field whose
lPIfCTURE includes PICTURE symbol “P” on the
ett.

NO CONTINUATION CARD INVALID LITERAL
No terminal quote sign on current card, or no con-
tinuation indicator on next one. Literal assumed
terminated at end of first card.

NO ENTRY CLASS
No CLASS or PICTURE for an elementary item.
Low order character(s) of the literal will not fit in
the field as specified.

NO LITERAL WITH 88-LEVEL
88 is assigned a value of blanks.

NO SIZE IN THIS ENTRY
Self-explanatory.

NUMBER OF ENTRIES WITHIN GROUP EXCEEDS
TABLE SIZE-BREAK UP GROUP USING
REDEFINES OPTION

Self-explanatory.

OCCURS CLAUSE INVALID IN THIS ENTRY
OCCURS clause associated with a 01 or 77-level
item. The clause is ignored.

PICTURE CLAUSE INVALID AT GROUP LEVEL
PICTURE clause is describing a group item rather
than an elementary item. The clause is ignored.

POINT CLAUSE INVALID AT GROUP LEVEL
POINT clause is used to describe group rather than
elementary item. The clause is ignored.

PUNCTUATION INVALID IN THIS ENTRY
One of the punctuation rules has been broken. (See
the General Information Manual.) Punctuation is
ignored.

RECORD CLAUSE MISSING
RECORD CONTAINS clause is missing.

RECORD OUT-OF-ORDER
A Record Description entry within the File Section
has no associated FD. Item is processed as WORK-
ING-STORAGE,

REDEFINES CLAUSE OUT-OF-ORDER
REDEFINES clause is not the first clause in an
item. The clause is accepted.

w

REDUNDANT 88-LEVEL CLAUSE
A clause other than VALUE is associated with an
88-level item. This is ignored.

SIGNED CLAUSE INVALID AT GROUP LEVEL
SIGNED clause is used to describe group item
rather than elementary item. This is ignored.

UNDEFINED DATA-RECORD
01 Record not defined in DATA RECORD clause.

UNDEFINED ENTRY
Undefined name in REDEFINES clause or RECORD
CONTAINS DEPENDING ON clause.

UNDEFINED FILE
FD entry has no associated SELECT clause, or
invalid SELECT clause.

VALUE CLAUSE INVALID AT GROUP LEVEL
The clause is ignored.

WORD EXCEEDS MAXIMUM CHARACTER
SIZE 30
The word is truncated.

WORKING STORAGE SECTION OUT-OF-ORDER
This is processed as if in proper order.

Procedure Division

w

ARITHMETIC OPTIMIZATION POSSIBLE
Refer to “Programming Techniques.”

(name) IS AN INVALID QUALIFIER IN (name)
Invalid qualifier is identified by the paragraph in
which it is used.

(name) IS AN UNDEFINED NAME IN (name)
Undefined procedure-name is identified by the
paragraph in which it is used.

(name) NOT A CONDITION-NAME
Self-explanatory.

(name) OVERSIZE PARAGRAPH
Paragraph should be broken down into more than
one paragraph.

CONDITIONAL CLASS CONTRADICTION
Data items of unlike class are being compared, or a
non-numeric data item is being tested for a sign,
or a sign test on an unsigned numeric data item.

CONDITIONAL OPTIMIZATION POSSIBLE
Refer to “Programming Techniques.”

CORRESPONDING OPERATOR INVALID

REPLACED WITH “X” OPERATOR
In MOVE, ADD, or SUBTRACT CORRESPOND-
ING, TO or FROM was missing. “X” will be either
“TO” or “FROM.”

CORRESPONDING STATEMENT FORMAT ERROR
Self-explanatory.

CORRESPONDING VERB IGNORED
CORRESPONDING used with other than MOVE,
ADD, or SUBTRACT.

EXAMINE OPERAND ERROR
Attempt to EXAMINE a constant or a literal.

GO TO STATEMENT MISSING DEPENDING
Self-explanatory.

INCORRECT CONDITIONAL EXPRESSION
Self-explanatory.

INCORRECT CONTINUATION
Continuation card error. Text starts prior to column

Appendixes 45

=

46

12 of continuation card. Unnecessary continuation
indicator detected. This condition is ignored.

INCORRECT END DECLARATIVES

- The compiler will correct this error.,

INCORRECT LITERAL
Invalid record mark or group mark.

INCORRECT LITERAL CONTINUATION
Non-numeric literal continuation error.

INCORRECT PUNCTUATION
Incorrect punctuation will be ignored.

INPUT OPTIMIZATION POSSIBLE
Refer to “Programming Techniques.”

INVALID ALTER STATEMENT
Something other than a Paragraph/Section-name
follows ALTER; TO PROCEED TO js not specificd
properly; Paragraph/Section-name does not follow
TO PROCEED TO; invalid format for compound
ALTER statements or more than one level of quali-
fication has been given for Paragraph/Section-
name.

INVALID CALL STATEMENT
Self-explanatory.

INVALID CHARACTER
1410/7010 special character meaningless to COBOL

_ will be ignored.

INVALID COMPUTE OPERAND
Self-explanatory.

INVALID COMPUTE OPERATOR
Self-explanatory.

INVALID CONDITIONAL OPERAND
Data-name is used incorrectly.

INVALID CONDITIONAL OPERATOR
Self-explanatory.

INVALID CORRESPONDING
CORRESPONDING option is used incorrectly.

INVALID DATA-NAME IN ACCEPT STATEMENT
Self-explanatory.

INVALID DECLARATIVES
Section-name does not follow DECLARATIVES.
The compiler will skip to the next procedure-name
or END DECLARATIVES.

INVALID DISPLAY DEVICE
Self-explanatory.

INVALID ENTER STATEMENT
Previous ENTER statement missing or syntax error.

INVALID EXAMINE STATEMENT
Self-explanatory.

INVALID EXIT
Keyword EXIT appeared in other than a one-word
paragraph.

INVALID OPERAND
The cause of the message can be: invalid operands,
invalid qualification, more than three levels of sub-
scripting, data-name class omitted for procedure
statements, or an invalid operand for an ADD verb
referencing a group item.

INVALID OPERAND AFTER GIVING CLAUSE
Multiple receiving fields invalid.

INVALID OPERAND USAGE IN CORRESPONDING
Multiple receiving field specified in ADD or SUB-
TRACT CORRESPONDING, or invalid data-name,
such as literal or elementary item used, or a level
77 used.

INVALID PARENTHESIS
Self-explanatory.

INVALID PERFORM STATEMENT
Self-explanatory.

INVALID STATEMENT
Missing ENTER COBOL.

INVALID USE STATEMENT
Self-explanatory.

INVALID WORD AFTER OPEN VERB
Self-explanatory.

IS UNDEFINED
Undefined name. The name will appear on the
preceding line.

LITERAL EXCEEDS 120 CHARACTERS
Literal will be truncated.

MISSING OPERANDS IN CORRESPONDING
If LIST option is specified, this informative message
appears and is followed by a list of the data-names
that satisfy the requirements for a match in the
CORRESPONDING option.

MISSING AT END IN READ STATEMENT
Self-explanatory.

MISSING BY AFTER VARYING IN PERFORM

STATEMENT
Self-explanatory.

MISSING DISPLAY OPERAND ONE
Self-explanatory.

MISSING ERROR AFTER SIZE
Self-explanatory.

MISSING FIRST MOVE OPERAND
Self-explanatory.

MISSING FROM AFTER VARYING IN PERFORM

STATEMENT
Self-explanatory.

MISSING IF TO MATCH THIS NEXT SENTENCE

CLAUSE
Self-explanatory.

MISSING LEFT PARENTHESIS IN CONDITIONAL
Self-explanatory.

MISSING LITERAL IN EXAMINE STATEMENT
Self-explanatory.

MISSING LITERAL TWO AFTER EXAMINE
Self-explanatory.

MISSING OPERAND ONE IN THIS STATEMENT
Self-explanatory.

MISSING PERIOD BEFORE P/S NAME
Statement not properly terminated before new Para-
graph/Section-name.
MISSING PERIOD OR SECTION AFTER
PROCEDURE-NAME
Self-explanatory.
MISSING PROCEDURE IN USE STATEMENT
Self-explanatory.

MISSING PROCEDURE-NAME AFTER GO TO
Self-explanatory.

MISSING PROCEDURE-NAME IN PERFORM
STATEMENT
Self-explanatory.

MISSING RECEIVING OPERAND
Self-explanatory.

MISSING REPLACING OR BY IN EXAMINE
STATEMENT
Self-explanatory.

MISSING REWIND AFTER NO
Self-explanatory.

MISSING RIGHT PARENTHESIS IN CONDITIONAL
Self-explanatory.

MISSING RUN OR LITERAL AFTER STOP
Self-explanatory.

MISSING SECOND MOVE OPERAND
Self-explanatory.

MISSING SENTENCE AFTER NEXT
Self-explanatory.

MISSING STATEMENT 1 TO MATCH THIS

OTHERWISE OR ELSE
The word ELSE or OTHERWISE is used without
an associated IF statement.

MISSING TALLYING OR REPLACING IN

EXAMINE STATEMENT
Self-explanatory.

MISSING TIMES IN PERFORM STATEMENT
Self-explanatory.

MISSING TO AFTER GO
Self-explanatory.

MISSING TO AFTER MOVE
Either the TO after the MOVE verb was missing, or
a subscript error appeared in the first operand after
MOVE.

MISSING UNTIL AFTER VARYING IN PERFORM

STATEMENT
Self-explanatory.

MISSING VALID CONDITIONAL OPERAND
Self-explanatory.

MISSING VALID EXPONENTIATE OPERAND
Self-explanatory.

MISSING VALID FILE-NAME AFTER

CLOSE VERB
Self-explanatory.

MISSING VALID FILE-NAME AFTER

OPEN INPUT
Self-explanatory.

MISSING VALID FILE-NAME AFTER OPEN

OUTPUT
Self-explanatory.

MISSING VALID FILE-NAME IN READ

STATEMENT
Self-explanatory.

MISSING VALID GO TO DEPENDING OPERAND
Data-name is missing or is not an integer.

MISSING VALID OPERAND AFTER BY OR INTO
Self-explanatory.

MISSING VALID OPERAND AFTER EXAMINE
Self-explanatory.

MISSING VALID OPERAND AFTER GIVING
Self-explanatory.

MISSING VALID OPERAND AFTER VARYING

IN PERFORM
Self-explanatory.

MISSING VALID READ AREA-NAME
Self-explanatory.

MISSING VALID WRITE AREA-NAME
Self-explanatory.

MISSING VALID WRITE RECORD
Self-explanatory.

MOVE CLASS CONTRADICTION
Self-explanatory.

MOVE OPERAND ERROR
The receiving field designated is a‘literal, constant,
etc.

MOVE OPTIMIZATION POSSIBLE
Refer to “Programming Techniques.”

MOVE SUBSCRIPT FROM OPERAND
More than two subscripted data-names have ap-
peared in the USING option of the CALL verb.

NO MATCH FOR CORRESPONDING
No match found for MOVE (one item elementary)
or Arithmetic (both items elementary numeric).
Improper qualifications exist for matching data
items. Matching data items are in secondary rede-
fined area, or qualified by same,

OUTPUT OPTIMIZATION POSSIBLE
Refer to “Programming Techniques.”

PARAGRAPH/SECTION INCOMPLETE IN (name)
This message occurs if a source error has prevented
processing of part of a statement or paragraph; or
a statement implies the existence of a clause or
statement that is not present.

POSSIBLE TRUNCATION
Sending or FROM data-name larger than receiving
data-name, or storing of arithmetic results where
digits might be lost. (This message may occur
where the ROUNDING option is used, and should
be ignored.)

P/S NAME FORMAT ERROR
Procedure-name not followed by SECTION or
period.

QUALIFIED NAME EXCEEDS STORAGE
ALLOCATION
Total number of characters has exceeded 300,

S$$ IS AN UNDEFINED NAME
The DECLARATIVE SECTION is used and the
END DECLARATIVES card is missing, or the key
words misspelled. S$$ is assigned as the name for
“the card and is detected as an undefined name.

SUBSCRIPT ERROR
Subscripting used with a data-name not associated
with an OCCURS clause, or the number of sub-
scripts used does not agree with the associated data
description.

USE VERB MISSING
In DECLARATIVES, first word after section-name
SECTION must be USE. Compiler will skip to the
next procedure-name or END DECLARATIVES.

WORD EXCEEDS 30 CHARACTERS
Word is truncated.

Appendixes 47

Appendix E: Sample Problem

IBM

COBOL PROGRAM SHEET

o e X201t
Printe,

PAGE | PROGRAM
Cosl Y SeupLE PROBLEM (410 /aild CoBol
PROGRAMMER DATE

SYSTEM

1410

IWEET

‘OF-]

Prygers X

IDENT.
00,1 I
SERIAL[E !

ge 8
4 _6i7/8 112 1s 20 24 28 32 36 40 a4 a8 1] 56 [1]

1Q9Q; mNTII!F;FnITIIpNDIIIVASIIqualllDIIIIIII||II||A|IIjlllllltlllllllllln[

84 68 72|

10/ [PROG:

by L

20 RE

RHO-

9,

9, 9, L &

.||||||||1|||||||1|||nl

0=, ﬁum“ﬂﬁl.lleﬂg&‘ﬂmﬂmﬁ_‘_ﬁémms-nnnnnm|1||||||A‘1|A|||1||‘||||||

M,

.H:P.'Rn&&ﬂ!x.uu.....|..|1.|||.|.|.|.:|.||

L F

TN TS T T O T T SO0 S Y O P 1

Ci

RBo| 1||:11|||||x|||||-||||||||4|||.||A||1||||n||-11|'|||A1|||||un|x|
Q_m llll'll||l||||l|llllllll|||lll]ll||IllllIIIIIIIII||I|||||II|I|lII
'IRmmuﬁﬂ'ﬂml\l-IRMk\.”nn.”.......|..............-n-........u..
n llllll(l'lkllllll]l‘ll Ilrlllllllllllll||II||I||||l|lll|l|lll|ll

CpA“lFJMﬁMlQTIQNu:.:|1|||4||‘|¢|:||1||||||||||.1|||||4|1Ax..

a) Qhﬁmmmh_‘_m.\.\h@nul|11A1||1|||.|A|..4.4|||-||||||‘A|||..

410 IEI&MAJ_LBHI'H‘Q‘IIIIIIIIIIIIIIIIIIII[I‘IIAIIII.IAlllll
20! [sOECT AL~ =& A R
130 L1 TeQ-SWITCH, En.F:-.s.:t.u ON STHTMS, TS MAST-CARDL, (v
140 MpM‘Tr-OuTomnusECTni_ﬂNuu|unnx||||||1||Ax|||u|n|||A|||||.|||1A||.:1

L C \') ~ ¥l TRPE- N

50 FILE.Cmeann||||||||x||a‘||||.|1|.||1|||||n|||||||||||

1,7,9; .||§El_—|§_ﬁ|‘|'||LAI|STr»'|FI|LIE:||||||||1||1|||||||la||1|||||||A|A|||||||||
1§ ...:P<<Tﬂﬂ.Tﬂ..‘l'.ﬁ.P.Er.UNm‘l’.Mm:l...........u,.........1H...A.l....“.
1Qio I-ol-:cplNlTLROILV(-IIIlJlIIIIIIIIIIIILAIIIIlII|IIIAIIIIIIII||III|1III11[
a1 .. APPLY S IRP‘““T“& ON, QﬂlEul’P!”“Eé!-ggul.(|||||A||||||x||n:|||
\Q Il:lllllllklillllllll!lllllII(lllIIIAIIIIIIIIAIIIIIIIIIIIIIIAII
Il:‘Illlllllllllllﬂlllllll||I|‘|lIIIIIlJI‘IlIIlllllllllllllllll
1.::.;:::n||||||n:‘|:|||||11||||L1|||:x|||.||.|11||.:|n||1|||||
A(:Illll'llI|I|l|‘JII||llIllillllllLLLlllllllllllllllllllll'll
IBM CoOBOL PROGRAM SHEET e
pacg | Focaam SAMPLE PROBLEM 1410/7910 COBQL. SN 1o HEET 5 F o
b PROGRAMMER DATE IDENT 2 ay L’
s:mugA EB
4 61718 g 16 5_9 24 28 32 38 40 44 48 3-2 86 C_O 84 ﬂ 72]
°A°PDI&ITI&:DJ-NI-I'S;pNI'AIIIIlIlIllﬁIIAlJllllllllllll|||IIAIIl|||lllll|||A
QN (O] Jll:llllll\lll||lIIIIIIIIIIIllllllllllllllllllllllllillllllllll
0!216FAII\—IEJ'lslelCITIIpl'IIILIII|IllIlllJJlllllIlllllllllllllIl|||ll||l|ll||
OBuoFsD.uT;Q\er’npﬁn\fnxﬁlnbElnlln|¢||‘||J|||||||||||.11|n||||||A||||11||||
P4al |, |, IBLOSK CONTATING RECORDS | |\ (0 ey v gy
=TIl I EES oRD CONTATINS, 89, nCHlﬂRﬁ'cTAEn‘?nsllu||||||||A||||x T A RN S RIS B A Y
0,60} L -RBEL, RECORDS ARE OMITTED | oy v v v i i
o0 |, DATH KRECORD IS EMOLONEE-RECORDG, 10 i
0,F0 IAI:IllllllllllIllllllllllLlllllIIlILllllllllllllllllilJlIlIllA
olqloOI'IIEMIﬂmI‘lEIE'l&EcleID'IIAlllIll'l(IIJlllIllllllllllll NI A I A S AR
Y 01Q] |.«:QQ.nbtllsﬂl—.ﬁu\ln"lgéQPR:Dn|||.|||1.|:|.|.||r.|.|x.|.. LL Ly oy
NG |||ballFlln\-qLoEan|$|I)§_1]:SA|5:0||1||||||:1|| N B AT I B S I RN N T S A S B A B A A A A A A
1 2,0 |.|:Ous:nﬁnlpmNQE'ACp;q%nl||-|nlln||1||Lnl|||||1;||||| (100
N3O O MON-NUMBER OICTURE XS A iwi v v v v e i
14,9 n:|:|'|||OI%IFI|L|L§E_§EQELL5112|H|A|||I|.|1|||||||||4||L||||||||||.1
BO i O MANCNBME OICTURE IS B(20% 0 0 v a1
ool |y O FILLER STZE TS w0 000y i i e iy
070l Ly O DERT-CODE PECTMRE TS A% 0 v i i
180 T < o FLLWER STZE XS, S (1 i bt G
q.0 ...f...ﬁH.MDM&.SmNUQKE—V..PI.CTU\‘?AE..ISAR%-........l... Ll
200 .||.OB||F|IL1‘-E|R||SIZ|§A;515|M||||A|||||||x|||||.||||\1|||||||||‘||||
20 0 11}93.CDQEPMT..|.||"....JH.,...H.|...-||.|||...l....vu......u
22Ol |, iy, 08 LABR-ERADE OXCTMRE TS XMt
RRO [y, O% SHEFET, PECTMRE TS For 000w e
Ll LLA:||AII‘IIlll]llllllillllIllllllllllllllllllll ¥ T T T T T N N T B A |

48

Foum No, X28-1404

IBM coBOL PROGRAM SHEET e a s
PACE|PROSTM sewplE PROBLEM \Hi0iToio CoBolL STSTEN 10 s::f: ;‘ 7
3| PROGRAMMER DATE TOENT. 7
zém‘:%‘ - :B N]HI’I‘M
4 6 ‘;] IZ 16 20 24 28 32 36 40 A4 48 82 56 80 64 88 72‘
OO0 |||/Q:BIIF‘Al"FRISEZ]E]IIISIIEI'ILIIAllllllllIAIIIIIIllIIIIJlIIIIILJIlAII
o) Q) llleBllG'laplslslIPIHJLPI;'EKL‘!B_LEJ_;I_L.L!.LZIZJZ(‘AlI‘llAIIlllIIllIIlllllI|llII11|l
P20 | 11 i 08 FTLLER (ST TS Sie L1ttt 1a 14 L 4dad Lt Lttt AL Ll LA gL]
olslo'll\:Q@WMM&QEMJELEL1$|zlztzl-|q|q|'||:Jnln||||||||||||A1||||1|
<hiRe) L O3 FIWWER S8 TS Bied 4041 b0 L4 Lt et ey
P8S | oA ToTsl- 06y PICTURE IS $ZZZ-8 e
bba |, 02 KM OTCTMRE TS, Xioy 10ty i i s L I
BT O | o i e b
P8 FD WIST-FTLE | 0 0ttt i e e i L
Nafte! I|llglﬂoplrrlCQINI-rInIleI1[I°I|Q¢EFpIRIDISIIIlIlllIIlII|I|lIIllllIlIlllAl,LJ_LJ_L_
e Lo RECORD CONTAINS: 8BS CAARBETERS, 0 0 v s vy i
(I‘l0 lll:lﬂnfgﬁlLllﬂlEc’lolalnslhARlElpmlleI_rIEDIIIIIlAl‘ll|]ll|||||ll|||l|lll||l||l
12, L o DATHR RECORD TS EMOLONEE-KRECOSDL ., | 11y 0 i i
| e I I AT AT T A AT A A A U O S U Y S S ST S A A S S A AR ST A O A A A A RO AU O A A S S U N N N A0 S U N0 S A A AR
(40 6N, EMPL-ONEE- RECO®MLier & 4 101 (it 181 Lt s e
1 So[|, ., ba DTSOLOY-KRECIRDY CLASS TS AN ST2E TS E&ei o v 1 1o a1,
19l |, l02 R#ML PICTURE DS Kot thtth ottt ittt L0 111 L s i et 1]
[y T T R A S A N S N W A A S S WA A A A A N W W A N A W W
L&_MIGIRI‘dLNIGTISI-rpRl&@EASIEIC11—IIOIM‘IIIlI|1]1‘IIIII|llllllllIIIIIIIllLJIllIlA
i .x|:7|-[||6RQnS|Sl||J1C1T|u|R|E|Ijslﬁﬂﬁuvﬂﬂl-nl|1LJ|||||:11|||||n||||||||1111||
ogl | 0 1 SHIFT-PREM OxCTMPE TS, AN e v 0y vt v
ol |2 Tomml, ATCTMRE IS AFTNITier o0 i e
11 Il]:llllill||IIl|lAllllllJl||‘|]lll,ll‘(|llllllll|\||ll‘L‘||lll|l
L P A AN T T AP S I T I U S A A T ST A B ST T ST AU A A A ST A O S o S A A A A W A A AT S S AT A W
1l iII:JIIJJ’IJI|l||l||1L]l|l|l]]ll’lLJll|lll|lll|l'IllllllllAlLJJJ
IBM CcCoBOL PROGRAM SHEET L
PO sl PRoBLEM wrladalo CoBial [T e SEET ¢ |
PROGRAMME DATE 1OENT 7 [
St Patsesed
§A :B
4 6|78 (12 18 20 24 28 32 36 AQ 44 48 52 36 60 64 68 78]
000 o1, | TNPUT-RECORDie; 1 (11 111 et L L
SN O | i 102 EMPLONEE-CODELL 11 L L L i s
ozl |1y, 08 MmN NUMBER ATCTURE LS FiC6diee 1 4 iy aan it a i
03] | L1 03 MAN-NAME PTCTURE TS L2000 1y i e i
o8 | 1) 03 PEPT-CODE, PICTMRE TS Aoy 0 i it s
1650 |||l|||G|3||FJL||-E|R||SI42_E|II|S|2|-||l|||||:|1| ' TS0 G SR U N SR O N N S Y U N S U G A O
6ol |,y 1y, 03 HOURS- MWoRKED, ATCTMRE TS, 99. \ L o
shifls] |lx:o|2|p913g;1"1'111111||1|1|x|xs||||11111|||||||1||A||n|l|‘||||||,1__;___
<Y1 Liiti O LABOR- SR, ICTUR 99, . 1 .
049 | 1,10 O3 SRIFT PICTMRE TS Qe vy
Lt a1 88 BST VNALME TS e 0 i v et g
VAOL | v €8 SECOND VOLME TS, 2., Ll A y s NI
120 | ot 8F THIRD ABLME TS Ber 100 0 i i a
V3 s Bi& NOPREMT UK VALME TS Moo SO SO G WA S T ST S B N SV S U WU Y W WY N A
14y A A A A N A A A S AT A A A AT A AT A I A A RPN AT A WA A WA A AN W ST AT AW A A AT AU Ao
150 01\\::“9“81\—”:|R|ﬂTglrrneLEJ'leLLJL|||n|l||AAL11114||||||||||.A|n|n1|.|
160 | (1 o2, TRPINEE, PICTURE IS, AV AL MAMLUE TS, Lo BOies i v o v i i
Ut |, 02 BEGINNER PICTURE, Is, 9V V E LTS 1e6Bie 11 5 . ol
1.8 0 Lo b SUNTOR PICTURE, TS, JVIY VRLVE, IS I O S YOS U AU A S U O S 0 U N U B Y W B S
19, L1102 OPERATO R PICTURE IS, ANGS VALUE TS 2 3B (1 ciau i1y
1O L1103 SENIOR PICTMRE, IS, AVAT, VBLUE TS 2008 i1 (11 i1 i1 a1 11
10 |1, o2 ASSOEIPTE, OICTURE TS VA9 VALUE TS, 20 8Bie, 1 (01111 10111001
ol | 111 62 \STAFE, OICTMRE IS, AVGH VALUE XS 30,40, L . o
i e et i b 1]
ot l||:||lIl]lII(I‘J|JJ.l|I|Il||l||l||ll||l|i|llIA|I¢IllAIIIIIAIIIII

Appendixes 49

IBM

CcCoOBOL PROGRAM SHEET

PAGE [PROGRAM SAMPLE PROBLEM 4r0 /700 COBOL SYSTEM 1470 SHEET 5 of
0.0,S PROGRAMMER DATE IDENT |TP3|H|Y|R|°»L|’-|81-°
SERIAL[E. !
1B1A !
4 sl7]e iz 16 20 24 28 32 36 a0 44 a8 52 s 60 64 68 72)
oJOtD] 0.1, RATE REDEFINES, HOURLY = RATETABEE o1 1 1 14 4 L0y
01O | 1,02 HRLY-RATE PICTURE LS, W99 OCCURS T TLMES.. | TSR AN B B SN BTN
0210 III:llllllllllll?llllllllllIIIIIII|II|l|||l|lll|||ll|l|||l|lIIII
030! (CONSTRNT, SECT/IOMN 1 1101 v 0y T RS SR R BV SO N S B H SO 0 Y S A A W N
oOMO; |\ ¢\ 17 Rk PICTURE LS Jier 441110 G T T S N S S YT Y N A 0 AU B T B S R S BT
056 | 1 W FLRST - SHIAT, PICTURE L5 V9SG VALUE TS (e Ouy 1 vr 01
060 |\ 17 SECOND-SHELFT, PICTURE, TS VO VALUE TS, (13 440y i,
070] |\ 17 THI&D- SHLFT_PICTURE TS vV3Aa, WVALYUE IS ol Sy v i
080, | \ , 77 ZERO,-PREM PICTURE LS _399V.39 V.RLUE, LS 10000000 1y
09,0 1||i|||||1nu||||||||J||rn|1.||\|||:1||||||||x|||‘|.||||||||1||||
1,00 OIJ[:HlEIHIIIIIM|6|-|RF(nRﬁbl-llIAIIIIlllllIllllllllllllllllllllllllllllilll
Lol | vy 102 FULLER SIZE TS (5ot o 1 100 TR TR N N B I SN R S N B A
Lo | . 102 MNO PTCTURE XS AG6), VALUE TS “MAN-NO v\ CLL
1,30 ||1:.21|F||LLER||5|||Z|E|1I|S.|5|.||||||;|1||||||1|1|H|||A||L||||\1‘|||:1‘
L4O| [\ 02 NM PICTURE, IS Al4) VALUE TS S NAME e v 0yt iisir sty
15O 02 FIVLLER (SVZE LS b o 0o e e
LeO| | 1\ 102, DPT PICTWRE IS, Al) VALUE, LS "DEPT i o\ o\t 4gtsinstr ooy
IJ7I0 1ty :olzl IFIlILlLIEIRI ISI‘IZIEI l.z-lsl |5ll| S N T T T S T T N OO 0 T T T O A O OO 0 N SO SRR | O |
SO 102 §RS PICTURE LS AGS), VALUE LS MRS i vy
I\qlo L1l :olzl |F|'1L|L|E1R| |5|IIZ|E| 1I|S| |4|.| I T Y U S O N U S T T O N 0 W N Y G 0 MOV
zoo T .l :O|2| lcml IPIIICLT-IUIKIE| l:rlsl IHI(Dql)l IVIHILIHIEI I'Z;‘SI I\ICAO‘IIEIIIII O S S T T Y O Y B B B |
2|‘|° il :DIZI IFIIALKLIEIKI I’SIIIZIEI I'Il‘Sl |5|AI N N Y N N S OO N B I 1 IYI N N T S T T S T T Y Y Y B A RO |
220 |, . 1 02 6ASS, PTCTURE IS ACS), VALUE, TS5 M6ROSS 10 i v vy iar it
1 lll:|\II‘AIIIIIILIIIIIIIIIII|Il|llVIIIIIIIIIIIIIIIIllIIllDlIll]J
l1‘»{IIL‘IiIIlIIIIIIIlI!lIIllllllllllllllllllllVILII\Il«!llIII
IBM COBOL PROGRAM SHEET e A
System 1410 Punching Instructions Shest 6 ot 7
pProgram SAMPLE PROGRAM 14/10/70/0 COBOL Graphic [T T T T T [eodrorm# * o JHiELT |
Programmer [oate Punch FT 1T 11 73 50
SEQUENCE [5] N Ty
(e § 8 li2 16 20 24 28 2 36 40 44 a8 52 56 60 64 68 72
006]000 02 FILLER SIIZE 1S 4.] i B
010 02 PREM PICTURE 15 A(7) VALUE 15| 'PREMIUM .
020 0072 FIILLER SIZE TIiS 8. | i
030 02 TOTL PICTURE 1S A[(5) WALUE 15 ‘TOTAL’|. !
040 ! ! : ‘ i i i
050[PROCEDURE DIVISION, | | 1 i :
060 ! : ; i ; i !
070] IDECLIARATIVES., | : | : i
080| UNREADABLE SECTION. USE AFTER STIANDARD ERROR PROCEDURE ON
090 LIST FILE. : ! : : :
091 DISPILAY-ERROR. DISPLAY DISPLAY-RECORDI. i
100] END DECLARATIVES:. : i ' i .
110 ' i [- ' ;
20| INTRODUCTION. NOTE THAT THIS PROGRAM HAS BEEN DESIGNED
130 TO DEMONSTRATE TYPICAL COBOL FORMAT. NO ATTEMPT HAS BEEN
140 MADE TO CREATE A PROGRAM FOR ACTUAL CUSTOMER APPLICATION.
150 1 :) .
160 [START. OPEN [OUTPUT OUTPUT-PAV-FILE.
170 NEXT!-EMPLOVYEE. AfCCEP}T INPUT-IRECORD IF LAST-CARD GO TO RWND.
180 MOVE: CORRESPONDING EMPLO'YEE—CODE' IN INPUT-RECORD TO EMPLOYEE-
190 CODEl IN IDISPLAY-RECORD. MOVE CODEIN TO CODEOUT. MULTLIPLY
200 HOURS -WORKED] IN TNPUT-RECORD BY HRLY-RATE (LABOR- GRADE IN
210 CODEIN) GIVING GROSS!. MOVE GROSS| TO GROSS-PAY.
220 ! ! ! :] ! |] i
A R R [| i

50

CcCOBOL PROGRAM SHEET

00

SYSTEM SHEET OF
|PAGE3 PROGRAM s ME E PR E E ll]1![!Q S(Jg N\Q —7 -]
DATE IDENT

PROGRAMMER

Poy RaLLY)

SERIALIE

:

T
A 'B
8 IZ 8 20 24 28 32 36 40 44 48 52 56 €0 64 68 72|

ool | IF, NOPREMIUM 60, TR NO-PREM-RTN ELSE 60 To PQENL o PREM2, | L
VO | 1 |P|REM3, _DEPENDING ON, SHELET TN COPETNL, STAR._ 1415\111&15!1‘51 PREMIUM |, (.
2.9 Hn::ctolﬁgn_'_uLLJLJll;nllunux:uu-nullu:l||-1|JL¢11111111111111111,
I]logl‘llll||I|Jl||lll|I|l|||l|llll|ll|l|||\I|l|I|I||||||llL|||‘lLLAL._
4o NO-PREM-RTMN., MONE, 2ERO-PREM To PREMIUM-PAY., MOVE GROSS, TO TOTHAL-P
080~ "M, 60O T |°“W|M33QMJJHLEL..LJ¢,L_L41 PR R T B B R B G B SRR SN A AU NN R A N AT A S R R A
obo! PREML., COMPUTE SHAFT-PREM ROMNDED = 6ROSS: & FARST - SHIFT., &0 .70 . .]
19, L TR AL BTN er 4 0 L]
oga PREM2., BULTLALY, §RoSS, BY, SECOND- SHIFT. §IVING SHIFT- AREM ROMNDED,, |
040] | 1 GO T TOTALT RTiNag 4t bt b b L g bt ol € Lid L1 UL k1 Lt
Loo] PREM3,, COMPUTE SHIFT-PREM ROUNDED = EROSS, K THIRD=SHIF T2t
‘I.A |||:||Jll‘llll\llLJlIIIIII|lllllllIllllIJ]Illllﬂll|ll||lll|l|lll
\20 TOTAL- RTIN, MOV E SHIFET-PREM To DREMLUM-PAY.,, MDD SHIFT- PREM TA 1 1.1 |

L ER0SS, GIVING TAT AL, MOVE, TOTAL TO, TOTAL-PAY W o 1 v r o s

J oM O T~ ROMTINE ... MOVE RMK TO, RM. WRITE EMPLONEE-RECORD 1 1 11111101

18Ol |, 60 To NEXT-EMPLONEE L 1 11 1101t i L i
L6 MMMT.PM.T,-.P@Vr FILE OPEN, INPUT LTST - FIL NSO O SR R S S R B IO I
L1ol [NoTE PRINT OWT, OF RECORD CREATED AN TAPE. v it
m Ll :DnIrslpuLinYI)HIE‘F!LDIMQ".?ECAR.D |u|P|°|Nx IPIRIJANIEIRllll FUSSE SO0 Y N VN WS I N U Y Y U T W W T SO O
194 PRINT: RECORD.. READ LL37-FILE, AT, END 60, TO CLOSE-RTNa i ivitiiiiniy]
200] | ., IF CODEOUT, IS EQUAL TO '993' &0, B CLOSE~RTNG DISOLOY, v 000o0io]
1ol |, DISPLAY - RELORDL UPON, | ABELNWGMMTMJ_L 4t
220, CLOSE - RTN., CLOSE LIST - FILE WITH - Xoh Y h:éy?lqﬂ"ﬂ S END OF, EXECUTION', |
2.3 A STOP RMN e L L 1 bt b LAt Lt L L
1 PR U RPN S T AT U S S S S S ST A A SO A U U U S U A N S S ST A S A A A S SO S A A A A AU A

Appendixes

51

Index

Where more than one page reference is given, major reference
appears first.

$3x Console Inquiry 8
1410/7010 coeor. Compiler Requirements 31
acceptr Verb 20, 28
ADD CORRESPONDING Option 22
apbp Verb 22,28
Added Features

Data Division 17

Procedure Division 26
AL “literal” ... 30
ALPHABETICttt i 30
ALPHANUMERICttt itttit it e 30
ALTER Verb 23
ALTERNATE AREASttt 9
APPLY Options 10
Arithmetic Verbs 21
ASSIGN Clause, 9
Autocoder Subprograms 23
BEGINNING-LABEL\ttt e, 14
BLANK WHEN ZERO Clause 16, 28
Block Character-Count 13
BLOCK CONTAINS Option 13
Blocked Records

Fixed-length 12,14

Variable-length, 12,14
carL Verb 24
CARD-PUNCH XXX ... otiitiininaa it 9
Card Read Punch Records 12
CARD-READER XXXttt i, 9
CHAIN ... e 24
Character Setsccoeiuiiiiieini .. 29
Checkpoints 10
crass Clause P 15, 28, 30
Class Conditions 30
CLOSE Verb 19
cosor, Words, Listing 39
COMMUNICATION-MODE\ iriinnennnnann. .. 23-24
Communication Region (Resident Monitor) 7, 30
Compatibility Considerations 28
Compiler Directing Declaratives 18
Compiler Directing Verbs 23
compute Verb 23
Conditional Expressions 25
CONFIGURATION SECTION\ivtinannn ... 7
Console Messagesco. i, 42
CONSOLE-PRINTERov it 7
CONSTANT SECTIONo oottt 16
Control Cards

Monitor 32-33

Linkage Loader 32-33
Control Card Requirements 32
CORRESPONDING Option

ADD . . 22,28

SUBTRACT ... ittiin ettt e 22, 28

MOVE . ottt it e e e e 21, 27
DATA DIVISIONttt 11
Data Manipulation Verbs 21
DATARECORD Clause 15
DECLARATIVESoivtitnt ittt e 18
DEPENDING ON Option 13

52

Device-Names 7,9
Diagnostic Messages—Data Division 43-45
Diagnostic Messages—Environment Division............. 43
Diagnostic Messages—General 43
Diagnostic Messages—Identification Division 43
Diagnostic Messages—Procedure Division 45-47
pIAGNosTIC Operand 31
pispLaY Verb o 20
pispLAY with Carriage Control 34
pivibE Verb 23
Editing Clause ... 28
END DECLARATIVES\ttt 18
End-of-File Switch (stu) 8
ENDING-LABELottt ittt ittt it 14
ENDING Verb 25
ENTER Verb 23, 28
ENVIRONMENT DIVISIONiuittin .. 7
Even Parity 11
EXAMINE Verb e 21, 30
EXEQ Card Operand Options 31
Exit Verb 25
FD ottt 13
Figurative Constants 29-30
FILE-CONTROL Paragraph 8
File Description Entry 13
FILE SECTION\ttt ittt it 13
Filesand Records 11
FILLERttt ettt e e e 15
Fixed-length

unblocked records, 12,14

blocked records e 12,14
FORTRAN Subprograms 23
General Information 27
coToVerb 23
Group Mark 16
HIGH-VALUEttt ittt et 30
IBCOBOL Subprogram 32
mENT Field, Program-m Card 32
IDENTIFICATION DIVISIONooouunneennn.. 6
Index Register Usage 25
I-0-CONTROL Paragraph 9
I-0-SWITCH EOF-SIUttt 8
INPUT-OUTPUT SECTION00'ouionnnnnn.. 8
Input/Output Verbs 19
yusTIFIED Clausec....... 29
Key Words e 39,5
Label Processing 14,18
LABEL RECORD Clause............................... 14
Language Forms 5

For specific see individual clauses, etc.
Language Notations 5
Level Indicator 13
Linkage Loader Control Cards 32
Linkage Loader Memory Map 25
LisT Operand 31
Literals 29
Load Mode i .. 11
LOW=VALUEttt iiie e, 30
Machine Requirements 5
MAIN and SATELLITE Routine 37

Mnemonic-Namest 7
Modes

MOVE oot 11

Load 11

Even Parityo 11

Odd Parityot 11
Monitor Control Cards, 31
MONITOR-DATE . . . e\ttt tttie it e 30
MONITOR=-SWITCH . .« .« e oo te ettt 7,28
MOVE CORRESPONDING Option 21, 27
Move Mode ... oot 11
MOVE Verb i 21
Multiphase Programming 36
Multiple Subprogram cosor. Output 32
MULTIPLY Verb ... 23
Non-Numeric Literals 29
NON-STANDARD . .o\t oot et it eee et 14
Nonstandard Labels 14, 19
NopcH Operand i 31
NOTE Verb e 25
NUIMEHIC . oo et e e e e 30
Numeric Literals, 29
OBJECT-COMPUTER Paragraph 7
Object Time Error Analysis; Messages (Appendix C) 41
OCCURS Clauset 16
Odd Paritycoriiii 11
ON SIZE ERROR Option 22
OPEN-WITHOUT-REWIND v ot innaens 10
OPEN Verb e 19
Operand Options, xeQ Card 31
Optional Wordsy 5
Organization of Source Program (Appendix B) 40
Padding 10
PADDING ON

APPLY oo o oot ottt e e e 10
Parity-Even, Odd 11,13
PERFORM Verb i 23
PICTURE Clause 16, 28, 29
PICTURE Symbols

To Ky Vs 8y Z o oe et 16
POINT Clauseottt 16, 28
PRINTER XXX .+ oo oe vttt ettt e et et e et
Printer Recordsot 9
Procedure Branching Verbs 23
PROCEDURE DIVISION\ttt 18
PROGRAM-ID . . ot ot ittt it et e 7
Programming Techniques 27

Efficient Object Programs 27

Efficient Compilation 28

General Considerationsc..c...... 28
Qualification of Names 29
QUOTE .+« ettt e et e e et i e 30
READ INTO Optioncoiviiiinn. 19, 27
READ Verb 19, 27
Record Character-Count 12,14
RECORD CONTAINS Clause 13
Record Description Entry 15
Record Formats

Tape Fileso 12

Unit-Record Files 12
Record Mark it 16
Recording Modesoviieiiiiininnon... 11
RECORDLNG MODE Option 11,13
REDEFINES Clause, 15, 28
RENAMING Option, 9
Requirements for Compilation 31
Requirements for Execution 31

RERUN Option o i, 10
RESERVE Option i 9
Resident Monitor’s Communication Region Switch 7,8
Retention-Period i 14
ROUNDED Optiono, 22
Rules for Arithmetic Verbs 21, 27
Sample Control Cards

Compile-and-Go i 32

Execution 33
Sample Problem, 48
SECTIONS

CONFIGURATION . . o oot ettt e s 7

INPUT=OUTPUT . . oot ottt ettt oo 8

FILE . o ot eoo et e e e e e et e e 13, 16

WORKING=STORAGE . .« «« « ot vttt iten e 16

CONSTANT . o oo oo et e e e 16
seLECT Clause i 8
Set A2—Character Setottt 29
Set H2—Character Set oo 29
SIGNED Clause 16
SIZE Clatset 15,28
SOURCE-COMPUTER Paragraph 7
Source Program Listing 42
SPACE . o oottt et e 30
Special-Names Paragraph 7
STANDARD . . . o\ ottt ettt s 11, 13-14
Standard Tape Labels 11, 14,19
STOP Verb ... o 25
Subprogram TiTLE Card 31, 33
Subroutines Sizes 32
SUbSCHPS .. 29
SUBTRACT CORRESPONDING Option 22
SUBTRACT Verb s 22, 28
SWIECHES . o ot 7,8
Symbolic Units i 9
SYSTEM-OUTPUT-PRINTER . . <« « o\t otieeane e 7
SYSTEM-OUTPUT-PUNCH 0\ ivntninnnaennens 7
System Symbol MONITOR-DATEooovonno. 30
System Unitscoiiiiiiiiiii 7
TALLY .+ o v e oot e e e e e 30
Tape Files i 8,12
TAPE-UNIT . . ottt ettt ettt et 9
Tape Unitsot 9
TITLE Subprogram 31
rrrLe Card, Subprogram 31,33
TRACE Operand 0 i 31
Unblocked Records

Fixed-Lengtho .. 12-14

Variable-Length 12-14
USAGE Clauset 15-16
Unit-Record Filest 9,12, 14
UPON Option (DISPLAY)coeieen. 20, 28
USE Verb ... e 18
USING OPHON . ..ottt 24
vaLue Clause (Record Description entry) 16
vALUE Option (FD entry)ccoovvion.. 14
Variable-length,

unblocked records 12-14

unblocked records with RCC 12-14

blocked ... 12-14
W—Warning Messagec.oiiiiiia 42
WORKING STORAGE and CONSTANT SECTIONS 16
WORKING-STORAGE SECTIONo inuinonnanneanns 16
WRITE FROM Option 20, 27
WRITE Verb 20
Wrong-Length Record Check 35
ZERO o v e e 30

Index 53

C28-0327-5

TIBIML

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International]

V'S’ U pajuug

§-£T€0-82D

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	xBack

