File No. 1410/7010-25
Form C28-0328-1

IBM Systems Reference Library

IBM 1410/7010 Operating System (1410-PR-155)
FORTRAN

The 1BM 1410/7010 ForRTRAN language with its asso-
ciated processor in the 1410/7010 Operating System
provides the user with a convenient method of pro-
ducing programs that will perform efficient scientific
computation and data handling. FORTRAN source pro-
grams are written in a language similar to mathematics.
The processor (1410-FO-970) compiles the source pro-
gram directly into machine language in relocatable
format.

This publication describes the types of arithmetic,
control, input/output, subprogram, and specification e
statements accepted by the processor and the pro-
gramming rules for their use.

Major RevisioN (October 1963)

This publication is a major revision of, and obsoletes, the pub-
lication, IBM 1410/7010 Operating System; FORTRAN, Form
(28-0328, and associated Technical Newsletter N28-1072.

Copies of this and other 1BM publications can be obtained through 1M Branch Offices.

Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N. Y.

©1963 by International Business Machines Corporation

Introduction L 5
Purpose of This Publication 5
FORTRAN Language and Processor..................... 5
Inclusion of Library Subroutines 5
Provision for Input and Output. 5
Prerequisite Publications 5
Definitions in Relation to the Operating System...... 5
Minimum Machine Requirements 5
Use and Contents of This Publication........ 6
PART 1—-THE FORTRAN LANGUAGE 7
Constants, Variables, Subscripts, and Expressions 7
Constants 7
Integer Constants 7
Real Comstants 7
Variables 8
Names of Variables. 8
Types of Variables. 8
Subscripts 8
Form of Subscripts 8
Subscripted Variables 8
Arrangement of Arrays in Core Storage. 8
Expressions 9
Arithmetic Expressions 9
Relational Expressions 10
The Arithmetic Statement 11
The Control Statements 12
Unconditional co To Statement.................. ... 12
Computed co To Statement 12
Relational 1r Statement 12
po Statement 12
CONTINUE Statement 13
PAUSE Statement 13
sTOP Statement 13
END Statement 13
RETURN Statement 13
Input/Qutput Statements 14
Specification Lists 14
Reading or Writing Entire Arrays. 14
FORMAT Statement 15
Format Specifications 15
Numeric Fields 15
Alpbameric Fields 16
Blank Fields, X Conversion 17
Repetition of Field Format. 17
Repetition of Groups of Fields.............. 17
Scale Factors, P Conversion. 17
Multiple-Record FormAT Statements 17
Carriage Control 18
1/0 List and FoRMAT Statement Relationship. 18
Data Input to an Object Program. 19
Symbolic Input/Output Unit Designation. 19
General Input/Output Statements 19
Input — The rEAD Statement 19
Output — The write Statement 20
Manipulative Input/Output Statements 20
END FILE Statement 20
REWIND Statement 20
BACKSPACE Statement 20

Subprograms: Function and Subroutine Statements 21
Advantages of Subprograms 21
Functions and susrouTINE Statements 21

Contents

Naming Subprograms and Statement Functions. 21
Definition and Usage of Subprograms — Valid Components 21
Definition of Subprograms 21
Usage of Subprograms 22
Defining Statement Functions 22
Defining Subprograms, 22
Built-In Function 22
FUNCTION Subprogram 24
SUBROUTINE Subprogram 25
Subprogram Names as Arguments —
The EXTERNAL Statement 25
The cALL Statement 25
Machine Indicator Tests 25
EXIT Subroutine 26
The Specification Statements 27
DIMENSION Statement 27
COMMON Statement 27
coMMoON (With Dimensions) Statement 27
EQUIVALENCE Statement 28
COMMON and EQUIVALENCE Statements —
Special Considerations 28
Type Statements (INTEGER, REAL, EXTERNAL) 29
Order of Specification Statements. 29

PART 2—FORTRAN AS AN OPERATING

SYSTEM COMPONENT 30
Monitor Card to Execute FORTRAN 30
Source Program Listing 31
Source Program Diagnostic Listing. 31
Memory Map 31
Calculation of Active Subscript Expressions 33
Terms Used 33
Reserving Index Cells, 33
Equivalence of Subscript Expressions. 34
Deleting Subscript Expressions 34
Dictionary Space Requirements 36
Writing Autocoder Subprograms for the
System Library L 37
Calling Sequences 37
Index Register Requirements 37
Writing the Subprogram 38
Basic Requirements 38
Handling Real Arguments 38
Common Data Area 38
Using Other Functions 38
Returning Values to Calling Program 38
Examples of Autocoder Subprograms... 39

PART 3—DIAGNOSTIC AND

ERROR MESSAGES 41
Diagnostic Messages 41
Error Messages 43
Appendixes

A: Source Program Statements and Sequencing. 44
B: Preparing, Checking, and Punching a Source Program 44
C: Table of Source Program Characters. 46

Index 47

Purpose of This Publication

This publication is a reference manual for persons
writing programs in the FORTRAN language for use with
the 1M 1410/7010 Operating System. Requirements
for writing Autocoder subprograms to be combined
with a FORTRAN program also are outlined.

FORTRAN Language and Processor

The 1410/7010 rorTRAN Programming System consists
of a language and its associated processor. The For-
TRAN language provides facilities for expressing most
problems of numeric computation. In particular, prob-
lems containing large sets of formulas and many vari-
ables can be dealt with easily, and any variable may
have up to three independent subscripts.

The capability of FORTRAN may be expanded by
the use of subprograms. These subprograms may be
written in FORTRAN language or in Autocoder, and may
be called by other FORTRAN main programs or sub-
programs.

The language consists of five general categories of
statements:

Arithmetic Statements define calculations to be per-
formed.

Control Statements determine the processing flow.

Input and Output Statements specify the transfer of
information between the computer and input/output
devices.

Subprogram Statements allow the user to write sub-
programs.

Specification Statements declare properties of names
appearing in the program and enable the user to con-
trol the allocation of core storage.

Any of these statements may be assigned a statement
number. To permit reference within one statement to
another statement, the latter statement must be as-
signed a statement number.

The 1410/7010 FORTRAN processor operates as part
of the 1410/7010 Operating System. The object pro-
grams it produces are run according to the conventions
of the Operating System.

Processor input is a source program written in the
FORTRAN language. The processor lists the source pro-
gram and produces an object program on cards, in
card-image form on magnetic tape, and/or on disk
storage. The object program is in the relocatable for-
mat of the 1410/7010 Operating System.

Introduction

INCLUSION OF LIBRARY SUBROUTINES

Subroutines used to evaluate functions can be placed
into the System Library where they are available for
incorporation into object programs.

PROVISION FOR INPUT AND OUTPUT

Certain statements in the ForRTRAN language introduce
input and output routines into the object program.
These routines permit considerable freedom of format
in input and output data. The routines form a part of
the System Library.

Prerequisite Publications

It is assumed that the user is familiar with the informa-
tion contained in IBM 1410/7010 Operating System;
Basic Concepts, Form C28-0318,

Additional knowledge is necessary if it is desired
to write subprograms in Autocoder as explained in
Part 2 of this manual. This information appears in the
following publications:

IBM 1410/7010 Operating System; Autocoder, Form

C28-0326,

IBM 1410 Principles of Operation, Form A22-0526,
IBM 7010 Principles of Operation, Form A22-6726.

Definitions in Relation to the Operating System
The ForTRAN language defines main program and three
classes of subprograms as explained in Part 1 of this
publication. The FORTRAN term main program is syn-
onymous with the Operating System term primary
subprogram, and the FORTRAN term subprogram is syn-
onymous with the Operating System term secondary
subprogram. Main programs and subprograms may be
separately compiled and both may call other subpro-
grams. During execution of the object deck, all pro-
gramming that constitutes the main program and any
required subprograms resides in core storage at the
same time.

The word program is used in this publication in a
general sense where the distinction between a main
program and a subprogram is not significant.

Minimum Machine Requirements

The minimum machine configuration required by the
FORTRAN processor is discussed in the publication, IBM
1410/7010 Operating System; System Generation, Form
C28-0352.

Introduction 5

Use and Contents of This Publication

The publication is divided into three parts, three
appendixes, and an index.

Part 1 describes, with examples of use, the state-
ments of the FORTRAN language.

Part 2 describes the operand parameters of the
Monitor control card that institutes execution of a
FORTRAN compilation, explains the format of the source
program listing, explains calculation of the subscript

expressions in a FORTRAN program, and explains basic
requirements for writing Autocoder subprograms to be
combined with a FORTRAN program.

Part 3 is a listing of the diagnostic and error mes-
sages.

Appendix A describes the order in which source
program statements of a FORTRAN program are exe-
cuted. Appendix B discusses preparing, checking, and
punching a source program. Appendix C is a tabula-
tion of the rorTRAN character set.

PART 1—THE FORTRAN LANGUAGE

Constants, Variables, Subscripts, and Expressions

This section describes constants, variables, and sub-
scripts for one-, two-, and three-dimensional arrays of
variables. Also described are expressions which are
combinations of constants, variables, and function ref-
erences. (Functions and function references are dis-
cussed under “Subprograms: Functions and Subroutine
Statements.”)

The 1410/7010 FORTRAN processor permits the user
to define the precision of arithmetic calculations by
specifying word size up to 20 digits for integers and
18 digits plus two exponent digits for real numbers.
Specification is made on the Monitor control card that
causes execution of the FORTRAN compiler. Details ap-
pear in Part 2 under “Monitor Card to Execute For-
TRAN.”

The word size specifications apply to both constants
and variables of a given type (integers or real num-
bers). Word sizes for each type of number must be
the same for all subprograms combined into a single
program.

Constants

Two types of constants are permitted in a FORTRAN
source program: integer constants and real constants.
(In older material on FORTRAN these are referred to as
fixed-point constants and floating-point constants, re-
spectively.)

Integer Constants

General Form

An integer constant consists of n decimal digits, where
1 = n = k, written without a decimal point. A preceding
+ or -~ sign is optional.

EXAMPLES
3
+1
—£34567890

MAGNITUDE OF INTEGER CONSTANTS — THE VALUE OF k

The magnitude of an integer constant must be between
1 and (10%—1) or be zero.

The k specification essentially defines core-storage
word size for integer constants, since each integer
constant in core storage will occupy k core-storage
positions, which will be handled as a single unit (or
word). For example, the constant +314 is stored (as-
suming k=05) as: 00314. The constant —314 is
stored as: 00314. If the user attempts to use an in-
teger constant of more digits than defined by k, the
high-order digits are lost.

The value of k is indicated to the processor through
control information supplied by the user. If k is speci-
fied by the user, the value of k must be: 3=k=20. If
k is not specified by the user, the processor will use k
equal to five decimal digits.

The constant zero is always stored with a positive
sign.

Real Constants

General Form

A real constant consists of n decimal digits, where 1 =< n
= {, written with a decimal point. A preceding + or —
sign is optional.

A real constant may be followed by a decimal exponent
which is written as the letter E followed by a (signed or
unsigned) one- or two-digit integer constant.

EXAMPLES
17.
5.0
-.0003
5.E3 i.e. 5.0x103
5.0E+3 ie. 5.0x10+3
50E-3 ie. 5.0x10—3
-5.0E+3 ie. —5.0x10+3
—50E-3 ie. —5.0x10—3
5.0E+03 ie. 5.0x10+3

MAGNITUDE OF REAL CONSTANTS — THE VALUE OF f

The magnitude of a real constant must lie between
10—1% and (1—10—f) X 10° or be zero.

The f specification for real number precision essen-
tially defines core-storage word size for real constants.
Within core-storage a real constant is stored in an
exponential form occupying f+2 digits (f+2 core-
storage positions). The first f digits contain the frac-
tion (a decimal point is understood to precede the

Constants, Variables, Subscripts, and Expressions 7

high-order digit position). The last two positions hold
the exponent, Thus if f is 8, a real constant occupies
ten core-storage positions — eight for the fraction and
two for the exponent. For example, the constant
+3.14159 is stored (assuming £=8) as: 3141590001.
The constant —3.14159 is stored as: 3141590001,

The value of f is specified by means of control infor-
mation supplied by the user to the processor. If f is
specified by the user, its value must be 3=f=18. If {
is not specified by the user, the processor will use f
equal to eight decimal digits. If the user attempts to
use a real constant with more digits than defined by f
the low-order digits are truncated.

Variables

A variable quantity is represented by a symbolic
name. A variable is specified by its name and type. The
type of variable (real or integer) corresponds to the
type of constant (real or integer) that the values of the
variable will assume.

Names of Variables

Explicit type specification overrides implicit type
specification. For example, if a variable name is INT
and a Type specification states that this variable is
to be real, the variable is handled as a real variable
even though it implicity has the form of an integer
variable.

Subscripts
A variable may be made to represent any element of a
one-, two-, or three-dimensional array by appending
one, two, or three subscripts, respectively to the vari-
able name.

Form of Subscripts

General Form

Subscripts may take only the following forms:

v

c

v+c v represents an unsigned, nonsubscripted integer

variable.
v—c ¢ and ¢’ represent unsigned integer constants.
ctv (+ denotes addition; —, subtraction; *, multi-
c*v+c’ plication.)
c*v—c¢’

General Form

The name of a variable consists of one to six alphameric
characters, the first of which must be alphabetic. Within
the same program, the same name must not be assigned

to a variable and to a subprogram.

EXAMPLES

A
JOB5
COST
B546T

Types of Variables

The type of a variable, integer or real, can be speci-
fied in two ways: explicitly or implicitly.

EXPLICIT TYPE SPECIFICATION

Explicit type specification is made by the Type state-
ments INTEGER and REAL. (See “The Specification
Statements.”)

IMPLICIT TYPE SPECIFICATION

Implicit type specification of a variable is made as fol-
lows:

If the first character of the variable name is I,], K,
L, M, or N, the variable is an integer variable.

If the first character of the name is not I, J, K, L, M,
or N, the variable is a real variable.

8

EXAMPLES OF SUBSCRIPTS

I
3

MU+2
MU -2
5*]

5*]+2
5%] -2

A variable in a subscript can not itself be sub-
scripted.

Subscripted Variables

General Form

A subscripted variable consists of a variable name followed
by a pair of parentheses enclosing one, two, or three sub-
scripts separated by commas.

EXAMPLES

A(D)

K(3)

ALPHA(I, J+2)
BETA(5*]J—-2,K—-2, L+3)

A reference to an array in a program must be pre-
ceded by a DIMENSION statement or a COMMON state-
ment that specifies the size of the array. See the section
“The Specification Statements” for the description of
those statements.

Arrangement of Arrays in Core Storage

Arrays are placed in core storage in column order,
in order of decreasing storage addresses:

One-Dimensional Arrays are stored sequentially.

Two-Dimensional Arrays are stored sequentially
by column.

Three-Dimensional Arrays are stored sequentially by
column from plane to plane. (That is, the first sub-
script is cycled most rapidly and the last least rapidly.)

For example, the array whose last element is a (»,N)
will appear in core storage as:

A(MN). . A(M2)..A(22),A(L,2),A(M,1). .A(21),A(L1)
where A(1,1) which was stored first, is in the high
core-storage position, and A(M,N) is in the low posi-
tion.

Expressions

Arithmetic Expressions

An arithmetic expression is a sequence of constants,
subscripted or nonsubscripted variables, and function
names (see “Subprograms: Function and Subroutine
Statements”), separated by arithmetic operators, com-
mas, and parentheses.

ARITHMETIC OPERATORS

+ addition

- subtraction

* multiplication
/ division

*ok exponentiation

RULES FFOR CONSTRUCTION OF ARITHMETIC EXPRESSIONS

Figures 1 and 2 indicate which constants and vari-
ables may be combined by the arithmetic operators
to form arithmetic expressions. Figure 1 gives the valid
combinations for the arithmetic operators +, —, *,
and /. Figure 2 gives the valid combinations for the
arithmetic operator **,

*tomt/ Real Integer
Real Valid Invalid
Integer Invalid Valid
Figure 1. Arithmetic Operators
Exponent
e Real Integer
g Real Valid Valid
2
Integer Invalid Valid

Figure 2. Exponentiation

EXAMPLES
A+B (Valid)
I*J (Valid)
A*I (Invalid)
J*B (Invalid)
A+2 (Invalid)
A+2. (Valid)
A+2.0 (Valid)
A**2.0 (Valid)
A**] (Valid)
I**A (Invalid)
I**2 (Valid)

Assume that A and B are of type real and I and J are of type
integer

Expressions may be connected by arithmetic oper-
ators to form compound expressions provided that no
two operators appear in sequence and no operation
symbol is assumed. For example, the algebraic ex-
pression

(AXB){(—CP) must be written
(A*B)*(—C**D), not
(A*B)*—C**D or (AB)*(—-C**D)

Parentheses may be used, as in algebra, to group
expressions, to indicate hierarchy of operations, and
to make interpretation easier for the user.

The mode of an arithmetic expression is either real
or integer and, with the following exceptions, cannot
be mixed:

A Real Quantity can appear in an integer expres-
sion as the argument of a function (see “Subprograms:
Function and Subroutine Statements”).

An Integer Quantity can appear in a real expression
as the argument of a function, as a subscript, or as an
exponent.

The expression A**B**C is not allowed. It must be
written as (A**B)**C or A**(B**C), whichever is
meant.

HIERARCHY OF OPERATIONS

Parentheses may be used, as in ordinary algebra, with
any expression to specify the order in which opera-
tions are to be executed. When parentheses are omit-
ted, the order of computation will be:

1. Function computation and substitution (see
“Subprograms: Functions and Subroutine State-
ments”)

2. Exponentiation

3. Multiplication and Division

4. Addition and Subtraction

For example:

A+B/C—D**E*F -G will be computed
A+ (B/C)~ (DE*F)-G

EXPONENTIAL EXPRESSION SIGN RESTRICTIONS

The following restrictions on the signs of the base
and exponent must be observed. If overflow occurs
during object program execution, it is indicated as
shown in the third column.

Constants, Variables, Subscripts, and Expressions 9

error message produced by the
ALOG function and unusual end
of program occurs. When base
(A) is zero, result is zero for
any value of B,

A**B is computed from
EXP (B*ALOG(A)).
The ALOG function does not
accept negative values of the
argument. In applications where
negative A is expected and B
is identically integral (e.g., 2.0
or —6.0), use A**IFIX(B) in-
stead of A**B. Refer to “Built-
In Functions” for an explanation

of EXP, ALOG, and IFIX func-

tions.

A** When base (A) is zero, result
is zero for any value of 1.

I**] Negative exponent (J) always re-

sults in an integer 1 and an
error message. When base (1)
is zero, result is zero for any
value of J.

FORM OF RESULT IF
EXPONEN- ANSWER
TIAL RESTRICTION ON SIGN OF CREATES

EXPRESSION BASE OR EXPONENT OVERFLOW

A**B Negative base (A) not permitted; Unusual end

of program
and error
message.

Overflow in-
dicator
turns on
and expo-
nent is 99.

High-order
digits of the
integer re-
sult are
truncated.

USE OF EXPONENTIAL AND EXPANDED FORMS

If use of the exponential forms A**I or I*#] and the

expanded forms A*A*, . . or I*I*. . .

is optional, an

improvement in program efficiency can be obtained

by selecting the form shown here.

INTEGER
EXPONENT MOST EFFICIENT FORM
0-5 Expanded form; e.g., A*A and A*A*A

6 or greater

Relational Expressions

Exponential form; e.g., A**I

A relational expression consists of two arithmetic ex-
pressions, of the same mode, separated by a relational

operator.

10

RELATIONAL OPERATORS

.GT. Greater than (>)
.GE. Greater than or equal to ()
.LT. Less than (<)
.LE. Less than or equal to (=)
.EQ. Equalto (=)
\NE. Notequal to (5£)
Note: The preceding and following periods are a

necessary part of the symbol.

RULES I'OR CONSTRUCTING RELATIONAL EXPRESSIONS

Figure 3 indicates the valid combinations for the rela-
tional expression a ¢ b, where a and b are arithmetic
expressions, and ¢ is any relational operator.

b
b Real Integer
Real Valid Invalid
a
Integer Invalid Valid
Figurc 3. Relational Operators
EXAMPLES
A.GT.B (Valid)
10..LE.A (Valid)
LEQ.] (Valid)
A**2,.NE..01 (Valid)
A.GEI (Invalid)

Assume that A and B are of type real and I and] are of type
integer.

NotE: The arithmetic expressions can contain func-
tion references (see “Subprograms: Function and Sub-
routine Statements”).

HIERARCHY OF OPERATIONS

A relational expression is computed in the following
way: the value of each arithmetic expression is com-
puted following the rules of hierarchy for arithmetic
expressions; these values are then compared for the
relation indicated by the relational operator.

USE OF RELATIONAL EXPRESSIONS

Relational expressions are used only in the Relational
1F Statement (see “The Control Statements”).

The arithmetic statement defines a numeric calcula-
tion. A FORTRAN arithmetic statement closely resembles
a conventional arithmetic or algebraic formula, with
the primary difference that the equal sign (=) speci-
fies replacement, rather than equality.

General Form

a=b
a is a real or integer variable that may or may not be
subscripted.

b is an arithmetic expression.

EXAMPLES
A=B + (C - 1.0)**D

I=] -K/(L +1)
A(L]K) = D(N) + DAV**MAR

The Arithmetic Statement

A real or integer arithmetic expression can be
equated to any type of variable.

If the type of variable is real and the mode of the
expression is integer, the expression is evaluated and
this value is converted to a real value. The reverse is
also valid. These and additional examples of arithmetic
statements are:

I=8B Truncate B to an integer and convert it to an
integer value; store it in I.

A=1 Convert I to a real value and store it in A.

A=B Store the value of B in A.

I=1I+1 Add1toland store inI. Thisexample illustrates

that an arithmetic statement is not an equation.
Rather, it is a command to replace a value.

A = 3,0®B Multiply 3 by B and store result in A.

The Arithmetic Statement 11

The Control Statements

Control statements enable the user to control the flow
of his program.

Unconditional GO TO Statement

General Form

GO TOn

n is a statement number.

This statement causes control to be transferred to the
statement numbered n. (See Appendix B for a discus-
sion of statement numbers.)

EXAMPLE
GO TO 57

Computed GO TO Statement

General Form

GO TO (ny, nz, . . . ,Nim)1
ni, ns, . . . ,Nm are statement numbers.
i is a nonsubscripted integer variable.
The limits of the valueofiare: 1 =i = m.

Statement”), control will be transferred to the next
sequential statement upon return from the subprogram
called.

EXAMPLES

IF (L.GE.16) ANSWER=A/B-C
IF (A.GE.0.0) GO TO 876

DO Statement

General Form

DOni= my,Me, Mg

n is a statement number (see Appendix B).

i is a nonsubscripted integer variable.

m,,me,ms are each either unsigned integer constants or
nonsubscripted integer variables.

m; is optional; if it is not stated, its value is assumed to
be 1. If it is omitted, the preceding comma must also
be omitted.

This statement causes control to be transferred to
statement number ngns, ..., or ny depending on
whether the value of i at the time of execution of the
statement is 1, 2, . . . , or m, respectively.

EXAMPLE
GO TO (30, 40, 50, 9), K

Thus, if the value of K is 3 at the time of execution
of this statement, the program will transfer to the state-
ment identified by the third statement number in the
list, statement 50.

Relational IF Statement

General Form

IF (relational expression) statement
The statement may be any executable FORTRAN statement
except another Relational 1F statement or a po state-
ment.

The Relational 1F statement will cause the statement
following the parenthesis to be executed if the rela-
tional expression is true. If the relational expression is
not true, control will transfer to the next sequential
statement in the program.

If the relational expression is true and the statement
is an arithmetic statement (e. g., A = B*C), the arith-
metic operations are performed and control is then
transferred to the next sequential statement.

If the relational expression is true, and the statement
is a caLL (see “Subprograms: Function and Subroutine

12

EXAMPLES

DO 30I=1,M,2
DO 24 1=2,10
The po statement is a command to execute repeat-

edly the statements that follow, up to and including
the statement numbered n. The first time the state-
ments are executed, i has the value my; and each suc-
ceeding time i is increased by the value of ms. After
the statements have been executed with i equal to the
highest value that does not exceed m,, control passes
to the statement following statement number n. This is
called a normal exit from the po statement.

The Range of the DO Statement: The range of the
Do statement is the set of statements that will be exe-
cuted repeatedly.

The Index of the DO Statement: The index of the po
statement is the variable i. Its value is available during
execution of the po. After exiting normally from a po,
the value of the index is not available for use.

DO’s Within DO’s: A po can be contained within
another po. This is called a nest of po’s. If the range of
a po contains another po, then all statements in the
range of the enclosed po must be within the range of
the enclosing po. The maximum depth of nesting, in-
cluding implied po’s in 1/0 lists, is 25. That is, a po can
contain a second po; the second can contain a third;
the third, a fourth; and so on up to 25 po statements.

Transfer of Control: Control may not be transferred
into the range of a po from outside its range. However,
control can be transferred out of a po range. In this

case, the value of the index remains available for use. If
exit is caused by transfer out of the ranges of a set of
nested po’s, then the index of each po is available.

Figure 4 illustrates the possible transfers in and out
of the range of a po. In this figure, 1, 2 and 3 are per-
mitted, but 4, 5, and 6 are not permitted.

DO
DO
1 4
2
T
e

Figure 4. Transfer of Control, po Statements

Restrictions: Any statement that redefines the value
of the index or any of the indexing parameters (m’s)
is not permitted in the range of a po. When the range
of a po contains reference to a subprogram, care must
be taken that the subprogram does not alter the index
or any of the indexing parameters. The range of the
po cannot end with a co To statement (see the “con-
TINUE Statement,” below).

CONTINUE Statement

General Form

CONTINUE

CONTINUE is a dummy statement that does not pro-
duce any executable instructions. It is used as the last
statement of a po to provide a branch address for
Go To statements that are intended to begin another
repetition of the po range. An example is:

DO10T = 1, 20

NX=Y+7Z

IF (A.GE.B) GO TO 10

A=A+10
B=B-20
GO TO 11

10 CONTINUE

PAUSE Statement

General Form

PAUSE
PAUSE n
n is an unsigned integer constant whose value is less
than 105,

This statement causes the program to print on the
console printer “pause 00000” or, if n is specified,
“pAUSE n” (where n includes leading zeros). The pro-
gram will then enter a waiting loop. Operator inter-
vention will cause the program to resume execution,
starting at the next statement after the PAUSE statement.

STOP Statement

General Form
STOP

This statement terminates the execution of the pro-
gram and returns control to the Monitor.

END Statement

General Form

END

The END statement defines the end of a program or sub-
program for the processor. Physically, it must be the
last statement of each program or subprogram. The
END statement is not executable; it must not be en-
countered in the flow of the program.

RETURN Statement

General Form
RETURN

This is the normal exit from a subprogram. The Re-
TURN statement signifies a logical conclusion of the
computation and returns any value computed and con-
trol to the calling program.

The Control Statements 13

Input/Output Statements

The Input/Output (1/0) statements control the trans-
mission of information between the computer and
input/output devices (such as card readers, card
punches, and magnetic tape units). The 1/0 statements
fall into the following general categories:

FORMAT Statements: These are nonexecutable
statements that specify (a) the arrangement of the
information to be transferred, and (b) the editing
transformation between internal (core-storage) and
external forms of the information. The FoRMAT state-
ments are used in conjunction with the general 1/0
statements.

General 1/0 Statements: These statements cause
transmission of information between the computer and
input/output devices. They are READ and WRITE.

Manipulative Statements: These statements manipu-
late input/output units. They are END FILE, REWIND,
and BACKSPACE.

Specification Lists

The general 1/0 statements call for the transmission of
information and must, therefore, include a list of the
items to be transmitted. A list item may be a sub-
scripted or nonsubscripted variable. Successive items
of the list must be separated by commas. An 1/0 list
is read from left to right. A constant may appear in
the list only as a subscript or as an indexing parameter.

A list is ordered, and its order must be the same
as the order in which the information appears in the
input medium or in which it is desired that the informa-
tion appear in the output medium.

A list may contain implied po’s. In this case a comma
must precede the index variable, and all items to be
included in the range of the implied po must be set
off by parentheses. po’s can be effectively nested by
placing matching parentheses around the first and
last items of each successive inner po range.

The index values for the implied po may appear in
the list. For example, the list specification

K,L,M, (E(L,]), I=K, L, M)
will transfer the values of the integer variables K, L,
and M, and will also insert those values into the im-
plied po. For example, if K=1, L=99, and M =35, the
implied po is effectively

E(L]),1=1,99,5

14

EXAMPLE

For the following example, assume that the value of
K is defined in the program before the appearance of
the general 1/0 statement of which the list is a part.
Consider this list:

A, B(3), (C(1),D(L,K),I=1,10,2),

((E(LJ),1=1,10, 2), F(], 3),J=1,K)

If this list is used with an output statement, the
information will be written on the output medium in
this order:

A, B(3), C(1), D(1, K), C(2), D(2, K),

..., C(10), D(10, K),
E(1,1),E(3,1),. .., E(9, 1), F(1, 3),
E(1,2),E(3,2),. .., E(9, 2), F(2, 3),

E(1,K),E(3,K), ..., E(9, K), F(K, 3)
Similarly, if this list were used with an input state-
ment, the variable names A, B(3), C(1), etc., will
be assigned to the values given on the external medium.

IMPLIED DO

The order of the list generated by the implied po’s of
the preceding example is approximately equivalent
to the following sequence of statements. The order is
approximately equivalent since each READ statement
below implies that input is to come from the beginning
of a new input record. This may not be the case for
the actual list.

READ (M, n,) A
READ (M, n:) B(3)
DO51I=1,10
READ (M, n;) C(I)
5 READ (M, n,) D(L,K)
DO9J=1,K
DO 8I=1, 10,2
8 READ (M, n;) E(L,])
9 READ (M, ne) F(J, 3)
n. are the statement numbers of FORMAT statements, as
explained further on in this section.
M is the symbolic unit designated for input.

Reading or Writing Entire Arrays

When the reading or writing of an entire array is re-
quired, an abbreviated notation may be used in the
list of the input or output statement. Only the name
of the array need be given, and subscripts may be
omitted. For example, if A has previously been listed
with a pDIMENSION or a comMoN (With Dimensions)
statement (see “The Specifications Statements”), the
statement

READ (1,18) Aor READ (4) A
will cause all of the elements of the A array to be read
in the implied order of elements. Thus, if A is a 2X3
array, the elements should be placed on the input
medium in this order:

A(1,1),A(2,1),A(1,2),A(2,2), A(1,3), A(2,3).

FORMAT Statement

General Form

FORMAT (S,, S., .
S, S, 0

<> Sn)

., Sn are format specifications.

EXAMPLE
FORMAT (12, E12.4, F10.2)

The general formatted input/output statements, that
is, READ (i, n) List, and wrire (i, n) List, in addition to
a list of items to be transmitted, refer to a FORMAT
statement that describes the data record and the type
of conversion to be performed between the internal
and the external representations for each element in the
list. The ForRMAT statement describes the record to be
read or written by giving the specification for each field
— numeric, alphameric, or blanks — in the record from
left to right, beginning with the first character of the
record.

FORMAT statements must appear in the source deck
after any EQUIVALENCE statements and before any
Statement Functions or executable statements, FORMAT
statements must have a statement number. See Ap-
pendix B for a discussion of statement numbers.

A total of 9,999 characters is permitted in the
FORMAT statements of each program compiled. Blanks
are not counted except when specified in the H conver-
sion described later.

Format Specifications
Numeric Fields

Three types of specifications are available for informa-
tion in numeric form:

CONVER-
INTERNAL SION EXTERNAL
REPRESENTATION CODE REPRESENTATION
Real (e.g., 1230000006 Real with exponent
for f=8) E (e.g., .123E-06)
Real (e.g., 1230000006 Real without exponent
for f=8) F (e.g., .000000123)
Integer (e.g., 00123 Integer
for k=5) I (e.g., 123)

These types of conversion are specified in the fol-
lowing forms:

Ew.d

Fw.d

Iw

E, F, and I specify the type of conversion.

w is an unsigned integer constant specifying the
field width of the data. (This specification may
be greater than that required for the actual
digits, to provide spacing between successive
numbers.)

d is an unsigned integer constant specifying the
number of positions of the field that are to ap-
pear as a fractional part.

Specifications for successive fields within a record are
separated by commas. Specification of more characters
than are permitted for the appropriate input/output
record cannot be given. For example, the format speci-
fication for output on a printer should not provide for
more characters than can be handled by the printer.

Information to be transferred under E and F con-
version must be of type real; information to be trans-
ferred under I conversion must be of type integer.

OUTPUT FIELDS

The field-width count (w) for output E and F conver-
sion must include a space for the decimal point; a
space for the sign must be included only if negative
numbers are to be converted. (An example of the
input and output form of negative numbers subject to
E or F conversion is —.123Eb06, —12.3, etc., where b
indicates a blank.) Also, for E conversion, a count must
be made for the letter E, the sign of the exponent, and
the two-digit exponent. Therefore, for E output con-
version, minimum w = d + 6.

Two examples of E output conversion follow.

INTERNAL FORMAT ouUTPUT
REPRESENTATION SPECIFICATION REPRESENTATION

v -

12300008 E9.3 b. 123E-06

12300006 E9.3 —. 123Eb06

Nonsignificant zeros do not appear in the output for
E, F or I conversion, except for the exponent of E out-
put conversion. If the exponent is less than ten, a zero
precedes the significant exponent digit.

If a number converted by E or F output conversion
requires more space than is allotted by the format
specification, an asterisk (*) is inserted in the high-
order position of the field, any other digits preceding
the decimal point are replaced by blanks, the decimal
point is inserted in the correct position, and digits
following the decimal point are replaced by zeros.
For E conversion the internal exponent digits are in-
serted in the external exponent field. The external
exponent digits, therefore, are correct unless overflow
occurred within the machine.

Input/Output Statements 15

If a number converted by output I conversion re-
quires more space than allotted by field width in the
format specification, the excess high-order digits will
be lost, an asterisk (*) will be inserted in the leftmost
position of the field, and an error message is supplied
during execution.

If the number requires fewer spaces than allotted,
the high-order excess positions are filled with blanks.
Thus, a format specification that has a greater field
width than is required may be used to space an output
record.

INPUT FIELDS

The field-width count (w) for input E and F conver-
sion must include a space for a decimal point if one is
used explicitly in the input data (see “Data Input to
an Object Program”). A space for the sign must be
included only if negative numbers are to be converted.

For E input conversion a variety of forms, including
the standard output form, is acceptable. A count must
be made for each character of the input data that may
be present. This includes the E, the sign of the expo-
nent, and the exponent digits.

The following example shows the forms of input
data acceptable for E conversion.

VALUE TO BE
REPRESENTED

PERMISSIBLE INPUT FORM
unpeEr FORMAT (E10.3)

+0.123E-06
+.123E—-06
123E-06
J123E—-6
12306
.123-6
Decimal point in any of above
forms may be omitted.

—0.123E+06
—.123E+06
—.123E+6
—.123Eb06
—.123E6
—.123Eb6
—.1234+06
—-.123+6

Decimal point in any of above
forms may be omitted.

123 X 104

—.123 X 10¢

Equivalent forms of the same number, such as
1.23—7 or 12.3E —8 for the first number in the example,
also are acceptable.

If the rorMAT specification does not describe the
input data correctly, the desired transfer cannot occur.
For example, if —1234.5 is to be read into core storage
under F5.2, the number is treated as though it were
- 12.34.

Alphameric Fields

FORTRAN provides two methods by which alphameric
information may be transferred:

16

The specification Aw causes w characters to be read
into or written from a core-storage location designated
by a variable or array name.

The specification nH specifies that alphameric in-
formation is contained in the FORMAT statement.

The basic difference between A and H conversion
is that alphameric information handled by A conversion
is given a name, and thus can be referred to by this
name for processing and modification. The associated
1/0 statement therefore requires a list when A conver-
sion is specified by the FORMAT statement.

Information handled by H conversion is not labeled,;

it is a constant field and cannot be referred to or
manipulated.
For input, the specification nAw causes n successive
fields of w characters each to be read in the form in
which they appear in the input medium. The n names
specified by the list are assigned to the n fields that are
read into core storage.

A CONVERSION

For example:

8 FORMAT (1246)

READ (1,8) X, Y, (ACONV(I),I=1, 10)

These statements cause the Standard Input Unit to
read a card containing 12 six-character fields into core
storage in the form that the fields appear on the card.
The first word is assigned the name X; the second, Y;
and the remaining words are Aconv(1l) through
Aconv(10).

For output, the specification nAw causes n succes-
sive fields of w characters each to be transferred from
core storage to the device specified.

In both input and output, w must not exceed the
word size of the list elements. That is, w must not be
greater than k (for integer elements in the list) or £+2
(for real elements in the list).

H CONVERSION

The specification nH is followed by n alphameric char-
acters in a FORMAT statement. A comma must separate
successive specifications, including the H conver-
sion, used in the FOorRMAT statement. The separating
comma must appear after the last alphameric charac-
ter; the last character may be a blank. An example is
...,4HABCb, ...

For input, n characters are extracted from the input
record and replace n characters of the appropriate
source program FORMAT statement.

For output, the n characters following the speci-
fication (or the characters that replace them through
the action described above) are written as part of the
output record. If the wriTE statement refers to the
Standard Print Unit and the first specification for a
record is an H conversion, the first character of the
alphameric information is not printed but is used to
control vertical spacing of the carriage of the printer.

For example:

9F ORN}AT (26HbbbTHISbISbALPHAMERICBINFO)

WRITE (3, 9)

These statements cause the specified heading to be
printed, indented two spaces from the left, by the
Standard Print Unit. Note that blanks are considered
in A and H conversion to be alphameric characters
and must be included as part of the character count.

Blank Fields, X Conversion

The specification nX introduces n blank characters into
an input/output record. The number n must always
be less than 133 (the maximum record size). A comma
must separate successive specifications, including the
X conversion, used in the FORMAT statement.

For input, nX causes n characters of an input record
to be ignored.

For output, nX causes n blank characters to be
placed into the output record. This conversion is used
to space within an output record.

Repetition of Field Format

It may be desired to transfer n successive fields within
the same record with the same format specifications.
This is indicated by placing a number n (an unsigned
integer constant) before the E, F, I, or A. Thus, the
specification 3E12.4 is the equivalent of E12.4, E12.4,
E124.

Repetition of Groups of Fields
Limited parenthetical expressions are permitted in
format specifications to indicate the repetition of data
fields within a record. One pair of nested parentheses,
in addition to the parentheses required by the FORMAT
statement, is permitted. For example:

FORMAT (2(F10.6, 3E12.2), 16) is valid, but

FORMAT (2(F10.6, 3(E12.2, 16))) is not valid.
The valid ForMAT example above is equivalent to

FORMAT (F10.6, E12.2, E12.2, E12.2, F10.6, E12.2,
El12.2, E12.2, 16).

Scale Factors, P Coversion

To permit a general use of E and F conversion, a scale
factor followed by the letter P may precede a speci-
fication.

The scale factor is defined for F input conversion
as follows:

10— (scale factor) X external quantity = internal quantity

The scale factor is defined for E and F output con-
version as follows:
external quantity = internal quantity X 10({scale factor)

For input, P conversion can be used only with F
conversion. For example, if input data is in the form
xx.xxx, and it is desired to use it internally in the form
xxxxx, the specification that will make this change is
2PF7.3.

For output, P conversion may be used with both
E and F conversions. The following examples of F
conversion use the same data; vertical lines separate
the four adjacent fields.

Specification

Data Fields

12,3F11.3
12,1P3F1l1.3

12,-1P3F11.3

27
27
27

bbbb-93.209
bbb-932.097
bbbbb-9.320

bbbbbb-.007 | bbbbbbb.553

bbbbbb-.075|bbbbbb5.536

bbbbbb-.000|bbbbbbb. 055

A positive scale factor used for output with E
conversion increases the base and decreases the ex-
ponent. The following example shows this effect (using
the same data as in the previous examples).

Specification Data Fields

12,3E12.4 {27|bb-.9320EbO2|bb-.7580E-02|bbb.5536Eb00

12,1P3E12.4 |27|b-9,3209EbOL |b-7.5804E-03|bb5.5362E-01

The scale factor is assumed to be zero if no value
is given. However, once a value has been given, it
will hold for all E and F conversions following the
scale factor within the same FORMAT statement. Thus,
the specification

1PE12.4, E14.5, 8.3
is equivalent to:

1PE12.4, 1PE14.5, 1PF8.3
If it is desired to have only the first item in that specifi-
cation affected by P conversion, the specification should
be written:

1PE12.4, OPE14.5, F8.3

Multiple-Record FORMAT Statements

To deal with many records, a single FORMAT statement
may have several single-record format specifications

Input/Output Statcments 17

separated by a slash (/) to indicate the beginning of
a new record.
For example:
FORMAT (3F9.2, 2F10.4/8E14.5)

will transfer the first, third, fifth,records with the
specification 3F9.2, 2F10.4; and the second, fourth,
sixth,records with the specification 8E14.5.

If a single multiple-record FORMAT statement is re-
quired in which, for example, the first two items are
unique and all the remaining items are to be trans-
ferred to the same specification, the specification for
these remaining items must be enclosed in a pair of
parentheses.

For example:
FORMAT (12, 3E12.4/(10F12.4))

would transfer the first record with the specification
12, 3E12.4 and all succeeding records with the speci-
fication 10F12.4. That is, the repetition starts from the
last left parenthesis.

If data items remain to be transferred after the
specifications have been “used,” the specification will
repeat from the last left parenthesis.

For example, in the statement

FORMAT (12, 4E12.4/(3F12.4))

the specification used for repetition is (3F12.4)

The equivalent of blank lines between output
records, or records skipped for input records, may be
introduced into a multiple-record format specification
by consecutive slashes. The number of records skipped,
or blank lines inserted, is a function of the number
and placement of the slashes, as summarized in the
following table.

INPUT RECORDS SKIPPED
OR
FOR n CONSECUTIVE SLASHES BLANK LINES INSERTED
IN OUTPUT
At the beginning of the format
specifications — e.g., FORMAT n
(///16)
In the middle of the format speci-
fications — e.g., FORMAT n-1
(16///16, 19)
At the end of the format specifi-
cations — e.g., FORMAT (16///) n

For example, if the statement rormarT (12, E12.4////
F12.3) is used for printed output, three blank lines
will be inserted between the data specified by 12, E12.4
and the data specified by F12.3.

Carriage Control

If the “i” in a formatted WRITE statement refers to the
Standard Print Unit, the first character in each output
record is used to control the vertical spacing of the

18

carriage of the printer for vertical forms control. Car-
riage control characters are listed in the publication
IBM 1410/7010 Operating System; System Monitor,
Form C28-0319. The character can be placed in the
output record by means of A or H conversion. A blank
causes normal single spacing before the line is printed.
The carriage control character also can come from
X, I, E, or F conversion. (Horizontal forms control is
determined by FORMAT statement specifications.)

1/0 List and FORMAT Statement Relationship

The list included in each general 1/0 statement desig-
nates the data to be transmitted from the input medium
or to the output medium. However, the sequence of
information within a record is controlled by the
FORMAT statement. I and X conversions are read from,
or are placed in, the record in the sequence indicated
in the ForMmAT statement. E, F, I, or A conversions,
when specified in the FoRMAT statement, operate upon
the first unused item in the list.

Even though a FORMAT statement may handle more
information fields than are indicated by items in the
1/0 list, execution of the 1/0 statement terminates when
the last item on the list is transmitted and any immedi-
ately following FORMAT specifications not requiring a
list element are completed.

If items remain to be transferred after the FORMAT
specification is “used,” the specification is reused until
all items are transferred as described earlier under
“Multiple-Record FORMAT Statements.”

As an example of correspondence between items of
the list and the FORMAT specification, consider the fol-
lowing two statements.

12 FORMAT (10X, 15HAPPRAISEDbVALUE//
(6HbWARDD, I2, 5X, F8.2))

WRITE (3,12) (K, VALUE(K),K=1,])
The purpose of the example is to print results of cal-
culations made, by ward, of the average appraised
value of residential units. If J=14, the printed matter
has this appearance:

APPRAISED VALUE

WARD 1 12654.12

WARD 14 26223.68

Since the FORMAT statement governs the sequence
of information in a line, nine spaces are left and
APPRAISED VALUE is printed. One line is skipped. On the

second line, warp followed by a space appears first.
This is followed by an integer which may be up to two
digits in length. The integer to be inserted is the
first item on the list, K. Five blank spaces are next
inserted. The list is again referred to for the name as-
sociated with F8.2, vaLuE (k). Successive lines are
printed until the list is exhausted since each re-scan
implies a new record.

Data Input to an Object Program

Data input to an object program is contained in
records conforming to the specifications described
below.

1. The maximum formatted record length is 133
characters.

2. The data must correspond in order, type, and field
width to the specifications in FORMAT statements.
Reading starts with the first character position.

3. Plus signs are indicated by either a blank (c bit,
no punch) or a “+” ¢B,a bits, 12 punch). Minus
signs are represented by a “—” (B bit, 11 punch).

4. Blanks within numeric fields are regarded as
ZET0S.

5. Data for E and F conversion may contain any
number of digits, but only the high-order f digits will
be retained (see “Constants” in Part 1). Numbers for I
conversion may contain any number of digits, but only
the low-order k digits are retained.

6. As previously explained, numbers for E conversion
need not have all columns devoted to the exponents;
that is, Esdd (where s is the sign and dd the exponent)
need not have a leading zero if it is less than 10. This
and other valid forms are:

E+2, E2, +2, +02, Eb02, Eb2, E—~22, E~2, and —2.

7. Numbers for E and F conversion need not have
the decimal point punched in the card; the format
specification will supply the required decimal point.
For example, —09432+2, with the input specification
E12.4, will be treated as if the decimal point is punched
between the zero and the 9. (The 4 in the specification
E12.4 will produce four decimal places.) If a decimal
point is punched, it will override the position specified
by the format specification.

8. If cards contain numbers for E conversion, the
numbers must be punched in the low-order positions
of their respective fields, w.

Symbolic Input/Output Unit Designation

Input and output units are referred to symbolically in
1/0 statements. These references are indicated as “i”, an
unsigned integer constant or integer variable, in the
descriptions of the general forms of these statements.

The correspondence between the symbolic units and
the actual physical devices is made when the object
program is to be run. For a description of control in-
formation and procedures required, see the publication
IBM 1410/7010 Operating System; System Monitor,
Form C28-0319.

If i is a variable name, this name must be assigned
a numeric value by the program before the 1/0
statement is executed. Any FORTRAN statement or op-
eration that assigns a numeric value to the variable
name is valid. The form of the constant i is restricted
to a single integer digit as shown below; e.g., 04 is
invalid.

At the time of execution of the 1/0 statement, the
numeric value of i determines which Operating Sys-
tem unit is operated on as follows:

VALUE OF i SYMBOLIC UNIT

1 Standard Input Unit
Standard Punch Unit
Standard Print Unit

MW1
MWwW2
MW3
MW4
MW35
MW6

Work Tapes

OCOIDUL WO

Only formatted input operations (i.e., REap (1, n))
can be performed on unit 1; only formatted output
operations (i.e., WRITE (2, n), wrITE (3, n)) can be
performed on units 2 and 3; all 1/0 operations can be
performed on the work tapes designated as units 4
through 9.

FORTRAN work tapes have the label characteristics
used for the system files. The type of label is specified
at System Generation. Information concerning tape
labels is presented in the publication, IBM 1410/7010
Operating System; Basic Input/Output Control System,
Form C28-0322.

General Input/Output Statements

Input — The READ Statement

There is one input statement: rReap. This statement is
used to transfer information from input devices to the
computer,

General Forms

READ (i, n) List
READ (i) List
i is an unsigned integer constant or integer variable
specifying the symbolic unit to be used for data input.
n is the statement number of the FORMAT statement
describing the data to be transferred.
List is an input list.

Input/Output Statements 19

EXAMPLES
READ(1, 3)A,(B(1),I=1,99)
READ(L)J, (B(I),I=],99)

The reaD(i, n)List statement causes information to
be read from symbolic unit i according to FORMAT
statement n.

The reap(i)List statement causes information in
internal format, as on a work file, to be read from
symbolic unit i into core storage. The information
must have been previously written with the wriTE (i)
List statement.

The first form of the READ statement reads in suc-
cessive data records (or parts of a data record) until
the entire list is satisfied; that is, until all data items
specified by the list have been read, converted, and
stored.

The list in the second form of the READ statement
must not be longer than the number of words in a
record. If the list is equal to the word count, the entire
record is read. If the list is shorter than the word
count, the unread items in the record are skipped.
This form of the READ statement does not require for-
mat specifications, as no conversion is required.

Output — The WRITE Statement

There is one statement that is used to transfer informa-
tion from the computer to output devices: WRITE.

General Forms

WRITE (i, n) List
WRITE (i) List
i is an unsigned integer constant or integer variable speci-
fying the symbolic unit to be used for data output.
n is a FORMAT statement number.

List is an output list.

Manipulative Input/Output Statements

The statements END FILE, REWIND, and BACKSPACE ma-
nipulate work tapes, units 4 through 9, as described
below.

END FILE Statement

General Form

END FILE i
i is an unsigned integer constant or integer variable
specifying the symbolic unit.

The END FILE statement causes a tape mark to be
written on symbolic unit i.

EXAMPLES

END FILE 5
END FILEN

REWIND Statement

General Form

REWIND i
iis an unsigned integer constant or integer variable speci-
fying the symbolic unit.

The REWIND statement causes the tape reel mounted
on symbolic unit i to be rewound.

EXAMPLES

REWIND 4
REWIND N

BACKSPACE Statement

EXAMPLES
WRITE (J,3)A,(B(I),1=1,99)
WRITE (2)],(B(1),1=],99)

The first form of the wRITE statement causes informa-
tion to be written on symbolic unit i according to
FORMAT statement n. The information is recorded in
one or more physical records as specified by the
FORMAT statement.

The second form of the wriTE statement causes
information to be written in internal format on sym-
bolic unit i. A FORMAT statement is not used since no
conversion is performed. The information specified by
the list is considered to be one logical record although
it may be written as more than one physical record.

The unformatted form can be used to write a scratch
file for internal use by an object program.

20

General Form

BACKSPACE i
i is an unsigned integer constant or integer variable speci-
fying the symbolic unit.

The BACKSPACE statement causes the tape reel
mounted on symbolic unit i to be backspaced one
physical record if the tape was written under FORMAT
control, or one logical record (which may consist of
more than one physical record) if the tape was written
without ForMAT control. The logical record that is
backspaced consists of the contents of the list of the
associated write (i) List statement.

EXAMPLES

BACKSPACE 9
BACKSPACE N

Subprograms: Function and Subroutine Statements

The rorTRAN language defines Statement Functions
and three classes of subprograms: Built-In Functions,
FUNCTION subprograms, and SUBROUTINE subprograms.
Their uses and differences are discussed in this section
of the manual.

Advantages of Subprograms

The advantages of subprograms stem primarily from
their ability to be compiled separately. A program
can be written as a short main program and a number
of subprograms. Changes or error correction can then
be made to the segmented program by re-compiling
only the affected subprograms.

Other advantages are that any subprogram can
be placed in the System Library for use with other
programs and that program segmentation permits more
than one person to be simultaneously writing a large
program.

Functions and SUBROUTINE Statements

As a group, Statement Functions, Built-In Functions,
and FUNCTION subprograms can be simply called func-
tions. Functions differ from suBrouTINE subprograms
in that functions always return a single result to the
calling program, whereas SUBROUTINE subprograms may
return more than one value to a calling program.

Naming Subprograms and Statement Functions

Statement Functions and subprograms are named in
the same manner as FORTRAN variables (see “Constants,
Variables, Subscripts, and Expressions™).

A subprogram name consists of one to six alpha-
meric characters, the first of which must be alphabetic.

The type (real or integer) of a Statement Function
may be indicated implicitly by the initial character of
the name, or explicitly by a Type statement (see
“The Specification Statements”). In the latter case the
implicit type is overridden by the explicit specification.

The type (real or integer) of a Built-In Function is
already specified (Figure 5) and need not be defined
by the user.

The type (real or integer) of a FUNCTION subprogram
may be indicated implicitly by the initial character of
the name or explicitly by a Type statement. In the

latter case the implicit type is overridden by the ex-
plicit specification.

The type (real or integer) of a SUBROUTINE sub-
program is not defined since the result returned to the
main program is dependent only on the type of the
variable names in the argument list.

Definition and Usage of Subprograms — Valid
Components

The following tabulations summarize the ForTRAN lan-
guage components that are valid in the definition and
usage of Statement Functions and subprograms.

Definition of Subprograms

The following tabulation refers to the kinds of argu-
ments listed in the “a” portion of the Statement
Function general form and in the FruNCTION or
SUBROUTINE statement.

SUB-

FUNCTION | ROUTINE
As Arguments |Statement | Built-In Sub- Sub-
in the Definition | Function |Function | program | program
Constant
Simple Variable X X X
Subscripted
Variable Pre-
Array Name defined X X
Arithmetic
Expression
External Name* X X

*The name of a FUNCTION or SUBROUTINE subprogram
cannot be the same as the name of an argument of that sub-
program. For example, the following is invalid: FUNCTION
DAV (I,D,DAV)

The following tabulation refers to the kinds of argu-
ments listed in the “b” portion of the Statement
Function general form and the kinds of arguments
that may be used in subprograms headed by the
FUNCTION Or SUBROUTINE statement.

Subprograms: Function and Subroutine Statements 21

SUB-
FUNCTION | ROUTINE
In the Body of | Statement | Built-In Sub- Sub-
the Definiton | Function | Function | program |program
Constant X X X
Simple Variable X X X
Subscripted
Variable Pre- X X
defined
Array Name e X X
Arithmetic
Expression X X X
External Name X X X

Usage of Subprograms

The following table refers to the kinds of arguments
that can be provided to a Statement Function or a
FUNCTION subprogram when it is used in an arithmetic
expression, used with a Built-In Function, and used in
the caLL statement to a SUBROUTINE subprogram.

SUB-
State- FUNCTION | ROUTINE
ment Built-In Sub- Sub-
Arguments Function | Function| program |program
Constant X X X X
Simple Variable X X X X
Subscripted
Variable X X X X
Array Name X X
Arithmetic
Expression X X X X
External Name X X

Defining Statement Functions

A Statement Function is defined by a single arithmetic
statement and is valid only in the program in which it
appears. It cannot be used by another program or
subprogram.

General Form

a=b

a represents a function name followed by a pair of
parentheses enclosing its arguments. These arguments
must be unique, simple variables, separated by commas.

b represents an arithmetic expression which does not
contain subscripted variables. This expression may also
contain other function names that must have been
previously defined in the program.

EXAMPLES

FIRST(X) = A*X+E
SECOND(X, B) = A*X+B

22

THIRD(D) = FIRST (E)/D
FOURTH(F, G) = SECOND (F, THIRD (G))
FIFTH(LA) = 3.0*A**I
A maximum of 30 variables appearing in b may be
stated in a as arguments. The arguments are dummy
names that serve to indicate the type of variable, Those
variables included in b that are not specified in a as
arguments are parameters of the function. Thus, in the
first example above, A and E are parameters, X is the
argument of the function FIRsT.
All Statement Function definitions must precede the
first executable statement of the source program. There
is no limit to the number of Statement Functions.

A typical use of a Statement Function previously
defined under “Examples” is

C = R*SECOND(C+D(1,2),4.0)

X of the statement definition takes the value of the
arithmetic expression C+D(12) and B takes the
value 4.0.

Defining Subprograms

The method of defining each class of subprogram is
described below.

Built-in Function

Built-In Functions are subprograms that are part of the
System Library and so are predefined.

General Form

Name (ai, @z ..., an)

Name is the name of the function. The names are pre-
defined and are listed in Figure 5.

The arguments, ai, 2z, . . . , a. may be arithmetic expres-
sions, subscripted or simple variables, constants, or
other Built-In Functions. The number of arguments is
specified for each Built-In Function in Figure 5.

A list of all the Built-In Functions supplied is given
in Figure 5. Note that the type (real or integer) of each
Built-In Function is predefined and cannot be changed
by the user. Note also that the type of the arguments
is predefined.

To use a Built-In Function, simply use the function
name with the appropriate arguments in an arith-
metic statement. For example:

ROOT1 = (=B+SQRT (B**2-4,0*A*C))/2.0*A
A Built-In Function name may be used as the

argument of another Built-In Function. For example,
the following is valid: ..

A = ABS (AMAX1 (COS (ALOG(A)), SQRT
(AMIN1 (CD,E))))

No. of Type of Type of

Name Description lArguments | Argument(s)| Function
SIN Trigonometric sine 1 Real Real

Argument must be less than 10000. radians in absolute value.
cOs Trigonometric cosine 1 Real Real

Argument must be less than 10000. radians in absolute value.
ALOG Natural logarithm 1 Real Real

Argument must be greater than zero.
EXP Argument power of e (i.e., &X) 1 Real Real

Argument must be less than 225.
SQRT Square root 1 Real Real

For negative arguments, the square root of the absolute value is calculated

and an error message is given on the Standard Print Unit. The user who

desires the square root of the absolute value of a number can avoid

receiving the error message by writing SQRT (ABS (A)) instead of SQRT(A).
ATAN Arc tangent 1 Real Real
ABS Absolute value 1 Real Real
1ABS 1 Integer Integer
FLOAT Convert integer argument to real 1 Integer Real
IF1X Convert real argument to integer 1 Real Integer
AINT Take the integral part of a real number (sign of argument times largest integer 1 Real Real
INT = | argument |) 1 Real Integer
AMOD Argument 1 modulus argument 2 2 Real Real
MOD The absolute value of the modulus is used if the second argument should 2 Integer Integer

be negative. The result (residue) will be non-negative and less than the

modulus. If the modulus is zero, a zero answer is obtained and an error

message is given on the Standard Print Unit.
AMAXO0 =2 Integer Real
AMAX1 Maximum value of two or more arguments 22 Real Real
MAXO0 =2 Integer Integer
MAX1 =2 Real Integer
AMINO =2 Integer Real
AMIN1 Minimum value of two or more arguments =2 Real Real
MINO =2 Integer Integer
MINI =2 Real Integer
SIGN Absolute value of argument 1 times sign of argument 2 2 Real Real
ISIGN 2 Integer Integer
DIM Argument 1 minus the lesser of argument 1 and argument 2 2 Real Real
IDIM 2 Integer Integer

Figure 5. Built-In Functions

Subprograms: Function and Subroutine Statements

23

FUNCTION Subprogram

General Form

FUNCTION name (ai, @, . . . , an)
REAL FUNCTION name (ay, az, . . - , an)
INTEGER FUNCTION name (ai, as, . . . » an)

name is the symbolic name of the function.

The arguments, ai, asz, . . . , an, must be nonsubscripted
variable names, or array names, or the dummy names
of sUBROUTINE or other FUNCTION subprograms. There
must be at least one argument in a FUNCTION sub-
program,

The type of function may be explicitly stated by the
inclusion of the word REAL or INTEGER before the word
FUNCTION, as shown above.

EXAMPLES

FUNCTION ARCSIN(RADIAN)
REAL FUNCTION IROOT (A, B, C)
INTEGER FUNCTION CONST (INT,])

The FuNcTION subprogram is similar to the State-
ment Function in that it returns only one value to
the calling program; it is similar to the SUBROUTINE
subprogram in that it may consist of many statements.

No card should precede the FUNCTION statement.

The ruNcTiON subprogram may contain any FOR-
TRAN statement except a SUBROUTINE statement or
another FuncriON statement.

The arguments of the FuNcrioN subprogram may be
considered to be dummy variable names. These are
replaced at the time of execution by the actual argu-
ments supplied in the function reference in the main
program. The actual arguments must correspond in
number, order, and type to the dummy arguments.

The relationship between variable names in the
main program and the dummy names in the ruNcrioN
subprogram is illustrated in the following example:

MAIN PROGRAM FUNCTION SUBPROGRAM

FUNCTION SOMEF (C, B)

A = SOMEF (B, C) SOMEF = B/C

RETURN
END

In the above, the value of the variable B of the
main program is used in the subprogram as the value
of the dummy variable C, and the value of C is used
in the subprogram for the value of B. Thus, if the
value of B is 10.0 and the value of C is 5.0, the value
returned by the subprogram is 0.5 (not 2.0).

When a dummy argument is an array name, an
appropriate DIMENSION statement (see “The Specifica-
tion Statements”) must also appear in the FUNCTION
subprogram. The corresponding actual argument must
be an array name that appears in a DIMENSION or

24

comMoN (With Dimensions) statement in the main
program.

None of the dummy names in the subprogram may
appear in an EQUIVALENCE or COMMON statement in the
FUNCTION subprogram (see “The Specification State-
ments”).

The value of the formal arguments of a FUNCTION
subprogram must not be redefined in the subprogram.
That is, they must not appear on the left side of an
arithmetic statement, nor in an input list, nor as the
index in a po statement. Variables that appear in
common storage may not be redefined, either. For
example, the following violates this rule:

FUNCTION SAM (A, B, K)
COMMON J
J=J+1
K=])
The runcrtioN subprogram must return control to
the main program with a RETURN statement.
The name of the function must appear at least once
as the variable name on the left side of an arithmetic
statement or in an input statement. For example:

MAIN PROGRAM FUNCTION SUBPROGRAM

FUNCTION CALC (A,B,])

. I=J*2
ANS=ROOTI*CALC(X,Y,])

CALC = A**I/B

RETURN
END
In this example, the values of X, Y, and I are used
in the runcrioN subprogram as the values of A, B,
and], respectively. The value of carLc is computed
and this value is returned to the main program where
the value of ans is computed.

END AND RETURN STATEMENTS

Note that all of the preceding examples of FUNCTION
subprograms contain both an Exp and at least one
RETURN statement. The END statement specifies, for
the processor, the end of the subprogram; the RETURN
statement signifies a logical conclusion of the com-
putation and returns any value computed and control
to the calling program. There may, in fact, be more
than one RETURN statement in a FUNCTION subprogram.
For example:

FUNCTION DAV (D,E, F)
IF (D.GT.0.1) GO TO 2

IF (ELT.F) GO TO 3

RETURN
3DAV = .. .

RETURN
END

SUBROUTINE Subprogram

General Form

SUBROUTINE name (aiy, a2, ..., an)
name is the name of this subprogram.
a1, A, . . . , an are the arguments. (There need not be
any.)
Each argument used must be a nonsubscripted variable
name or array name, or the dummy name of another sus-
ROUTINE Or FUNCTION subprogram.

EXAMPLES
SUBROUTINE MATMPY (A, N, M, B, L,])
SUBROUTINE QDRTIC (B, A, C, ROOT1, ROOT2)

No card should precede the suBROUTINE statement.

The suBROUTINE subprogram may use one or more
of its arguments to return values to the calling program.
Any arguments so used must appear on the left side
of an arithmetic statement or in an input list within
the subprogram.

The arguments may be considered dummy variable
names that are replaced at the time of execution by
the actual arguments supplied in the cALL statement.
The actual arguments must correspond in number,
order, and type to the dummy arguments.

When a dummy argument is an array name, a DI-
MENSION statement must appear in the suBrouTINE
subprogram. The corresponding actual argument in
the caLL statement must also be a dimensioned array
name.

None of the dummy arguments may appear in an
EQUIVALENCE Oor COMMON statement in the SUBROUTINE
subprogram,

Like the FuNcrioN subprogram, the suBROUTINE sub-
program must return control to the calling program by
a RETURN statement.

An END statement is also required.

Subprogram Names as Arguments — The EXTERNAL
Statement

Subprogram names may be used as the actual argu-
ments in the calling program. In order to distinguish
these subprogram names from ordinary variables when
they appear in an argument list, their names must
appear in an EXTERNAL statement (see “The Specifica-
tion Statements”).

The CALL Statement

The carL statement is used only to call a SUBROUTINE
subprogram,

General Form

CALL name (a1, az, ..., an)
name is the symbolic name of a SUBROUTINE subprogram.
ai, Az, . . ., an are the actual arguments that are being
supplied to the SUBROUTINE subprogram.

EXAMPLES

CALL MATMPY (X, 5,40,Y,7,2)
CALL QDRTIC (X, Y, Z, ROOTI1, ROOT2)

The caLL statement transfers control to the sus-
ROUTINE subprogram and replaces the dummy vari-
ables with the value of the actual arguments that ap-
pear in the cALL statement. The arguments in a caLL
statement may be any of the following: any type of
constant, any type of subscripted or nonsubscripted
variable, an arithmetic expression, the name of a sub-
program.

The arguments in a caLL statement must agree in
number, order, type and array size with the corre-
sponding arguments in the SUBROUTINE subprogram.

Machine Indicator Tests

1410/7010 rortRAN provides machine indicator tests
even though machine components referenced by the
tests do not physically exist. The machine indicators,
described below, are simulated by SUBROUTINE sub-
programs located in the System Library.

To use any of the following machine indicator tests,
the user supplies the proper arguments and writes a
caLL statement. In the following listing, i is an integer
expression; j is an integer variable.

GENERAL FORM
SLITE (i)

FUNCTION

If i=0, all sense lights are turned off.
Ifi=1,2,3, or4, the corresponding sense
light is turned on.

Sense light i (1, 2, 3, or 4) is tested and
jis set to “1” or “2” if i is on or off, re-
spectively. After the test, sense light i is
turned off.

This indicator is on if an arithmetic op-
eration with real variables and constants
results in an overflow condition; that is,
if an arithmetic operation (of type real)
produced a result whose value is greater
than (1—-10—1)x 1099, If the indicator
is on, j is set to “17, if off, j is set to
“2”, The indicator is set to off after the
test is made.

This indicator is set on if an arithmetic
operation with real constants and vari-
ables results in the attempt to divide by
zero. j is set to “1” or “2” if the indicator
is on or off, respectively. The indicator
is set off after the test is made.

SLITET (i, j)

OVERFL (j)

DVCHK (j)

Subprograms: Function and Subroutine Statements 25

EXAMPLES

CALL SLITE (3)
CALL SLITET (K*J, L)
CALL OVERFL (])
CALL DVCHK (I)

As an example of how the sense lights can be used
in a program, assume that the statements cALL sLITE (1)
and caLL SLITET (I, KEN) have been written. Further
assume that it is desired to continue with the program
if sense light 1 is on and to write results if sense
light 1 is off. This can be accomplished using the
Relational 1F statement or a Computed co To statement,
as follows.

If (KEN. EQ. 2) WRITE (.3, 26) (ANS(K), K=1, 10)

26

or

GO TO (8, 17) KEN
17 WRITE (3, 26) (ANS(K), K=1, 10)
6

EXIT Subroutine

A caLL to the exiT subprogram, located in the System
Library, terminates the execution of the program and
returns control to the Monitor. The exit subprogram
and the stop statement produce identical results.

General Form
CALL EXIT

The specification statements provide information con-
cerning storage allocation and the variables used in a
program, The specification statements are the pIMEN-
SION statement, the comMmoN statement, the EQUIVA-
LENCE statement, and the Type statements.

DIMENSION Statement

General Form

DIMENSION V1(i1), Vz(iz) R Vn(in)
Vi, Va, . . . , Vn are the names of arrays,
is, i3, . . . , in are each composed of 1, 2, or 3 unsigned
integer constants, where each integer specifies the
maximum value of that subscript.

EXAMPLE

DIMENSION A(10), B(5,15), C(9,9,9)

The DIMENSION statement provides information to al-
locate storage for arrays in an object program. It de-
fines the maximum size of each array listed.

Each variable that appears in subscripted form in
a source program must appear in a DIMENSION state-
ment contained within the source program. There is
one excepton to this rule: when the dimension informa-
tion for the array is given by a comMmoN statement,
See “common (With Dimensions) Statement” in this
section.

The required location of pIMENSION statements ap-
pears later in this section under “Order of Specifica-
tion Statements.”

A maximum of 200 names may be dimensioned.
Within this limit, (1) a single prMENSION statement
may specify the size of any number of arrays, and (2)
a program may have any number of DIMENSION state-
ments.

Dummy variable array names in subprograms also
require dimension information in the subprogram.

COMMON Statement

General Form

COMMON a, b,.....
a,b,. ... are variable or array names.

The comMMON statement refers to a common area
of core storage. Variables or arrays that appear in
main programs and subprograms can be made to
share the same storage locations by use of the com-
MON statement. For example, if one program has the
statement coMMON A and a second program contains

The Specification Statements

the statement coMMoON X, variables or arrays A and x
will occupy common storage locations.

The required location of coMmMoON statements ap-
pears later in this section under “Order of Specification
Statements.”

A maximum of 100 names may be declared in com-
MON by means of this statement and the common
(With Dimensions) statement,

Within a specific program or subprogram, variables
and arrays are assigned storage locations in the se-
quence in which their names appear in a comMoN
statement. Subsequent sequential storage assignments
within the same program or subprogram are made
with additional coMMoON statements.

As an example, if the main program contains the
statement

COMMON A, B, C
and a subprogram contains the statement

COMMON X, Y, Z
then 4, B, and c¢ are assigned sequential locations, as
are X, Y, and z. Furthermore, A and x will occupy the
same location, as will B and v, and also ¢ and z.

Names declared in comMON must agree, respec-
tively, in mode. In the preceding example, A and x are
real, as are 8 and v, and c and z.

A dummy variable can be used in a coMMoON state-
ment to establish shared locations of variables that
would otherwise occupy different locations. For exam-
ple, the variable ¥ can be assigned to the same loca-
tion as the variable c of the previous example with
the following statement

COMMONQ, R, Y
where @ and R are dummy names that are not used
elsewhere in the program.

Redundant commoN entries are not allowed. For
example, the following is invalid:

COMMON A, B, C, A

COMMON (With Dimensions) Statement

General Form

COMMON wvi (i1), vz (i2), .. ., Va (in)
Vi, Vo, . . ., Va are the names of arrays.
i1, ie, . . . , in are each composed of 1, 2, or 3
unsigned integer constants where each integer specifies
the maximum value of that subscript.

EXAMPLE
COMMON A(10),B(5,15),C(5,5,5)

The Specification Statements 27

This form of the comMon statement, besides per-
forming the functions discussed previously for the
cOMMON statement, performs the additional function
of specifying the size of arrays.

The required location of common (With Dimen-
sions) statements appears later in this section under
“Order of Specification Statements.”

A maximum of 100 names may be declared in com-
MON by means of this statement and the common
statement.

Note: A single comMoN statement may contain
variable names, array names, and dimensioned array
names. For example, the following is valid:

DIMENSION B(5,15)
COMMON A,B,C(9,9,9)

EQUIVALENCE Statement

General Form

EQUIVALENCE (ab, ...),(de, ...),...

Where a,b,d,e,...are simple variables or subscripted
variables. Subscripted variables must have single sub-
scripts only and these subscripts must be integer
constants.

EXAMPLE
EQUIVALENCE (A(1),B(1),C(5)),(D(17),E(3)),({])

The EQUIVALENGE statement controls the allocation of
core storage by causing two or more variables to share
the same core-storage location.

Each pair of parentheses in the list encloses the
names of two or more variables to be stored in the same
location during execution of an object program. These
variables must be of the same type and must not be in-
consistent in relative core-storage locations. For ex-
ample, EQUIVALENCE (A(4),c(2),0(1)),(a(2),p(2)) is
invalid.

The required location of EQUIVALENCE statements ap-
pears later in this section under “Order of Specification
Statements.”

Any number of list items may be given in a single
EQUIVALENCE statement.

In the first example, the A, B, and C arrays are to
be allocated to core storage so that the elements A(1),
B(1), and C(5) are to occupy one location. In addi-
tion, D(17) and E(3) are to share another location,
as are I and J.

In the second example the equivalencing of A(4),
C(2), and D(1) sets up an equivalence among ele-
ments of each row below.

A(1)

A(2)

A(3) C(1)

A(4) C(2) D(1)

A(5) C(3) D(2)

28

Thus, D(2) must not be equivalenced to A(2). EQUIV-
ALENCE (A(3), a(4)) also is invalid.

Variables or arrays that are not mentioned in an
EQUIVALENCE statement are assigned unique locations.
The sharing of storage locations requires a knowledge
of which FORTRAN statements cause a new value to
to be stored at a location.

Execution of an Arithmetic Statement stores a new
value at the location specified by the variable name at
the left of the equal sign.

Execution of a DO Statement changes the index
each time the program passes through the repetition
of the po.

Execution of a READ Statement stores new values
at the locations specified by the variable names in the
list.

Execution of a CALL Statement stores the values
of the arguments supplied by the calling program and
may also affect variables in comMoN.

COMMON and EQUIVALENCE Statements — Special
Considerations

No two elements that appear in a COMMON statement
may be equivalenced. Both of the following examples
are invalid:

COMMON A,B COMMON A,B
EQUIVALENCE (A,B) EQUIVALENCE (AR),
(R,D),(D,B)

EQUIVALENCE statements may extend the size of the
coMMON area. For example, the following is valid:
DIMENSION C(4)
COMMON A,B
EQUIVALENCE (B,C(2))
for it would produce the following relationship in the
COMMON area:

A c(1)
B c(2)
C(3)
C(4)

The following is an example of an invalid set of
statements:
DIMENSION C(4)
COMMON A,B
EQUIVALENCE (A,C(2))
for it would imply the following relationships in the
COMMON area;
C(1)
A C(2)
B C(3)
C(4)

Thus, as shown above, the comMon statement de-
termines the first element that is to appear in the
COMMON area; the EQUIVALENCE statement may not
change the position of this element.

Type Statements (INTEGER, REAL, EXTERNAL)

General Form

INTEGER a,b.c, . ..
REAL ab,c, . ..

a,b,c, . . . are variable, Statement Function, or FUNCTION
subprogram names appearing in a program or sub-
program.

EXTERNAL x,y,z, . . .
%Y,Z, . . . are subprogram names used as arguments of

other subprograms called by the program,

EXAMILES

INTEGER DAV, ZZZ, LYSL, JOB

REAL IAM, LEG, KKKK

EXTERNAL SIN, MATMPY
The ReAL and INTEGER statements explicitly define the
type (real or integer) of variable, Statement Function,
Or FUNCTION subprogram. In the first example, the
variable pav implicitly would be a real variable, but
the explicit statement causes it to be handled as an
integer variable in the program. The appearance of a
name in either of these statements overrides any im-
plicit-type specification.

A program using the names of other Funcrion or
SUBROUTINE subprograms as arguments requires an
EXTERNAL statement. The statement distinguishes the
names of subprograms external to the calling program

from the variables of the calling program. For example,
assume both soMerF and oTHER are subprograms. If
A=SOMEF (OTHER, B, C) + B appears in a program,
the Type statement EXTERNAL OTHER is required in the
program,

Similarly, if cALL soMEF (B, C, OTHER) appears in a
program, the Type statement EXTERNAL OTHER is re-
quired.

Type statements must precede any other specifica-
tion statements and all executable statements in the
source program,

A name may appear in two Type statements only if
one of the statements is EXTERNAL.

Order of Specification Statements

All Specification statements must precede the first
executable statement of the source program. The
Specification statements must also precede all State-
ment Function definition statements, and must appear
in the following order:

Type Statements (REAL, INTEGER, EXTERNAL)

DIMENSION

COMMON

EQUIVALENCE

(Follow with FORMAT statements,
Functions.)

then Statement

The Specification Statements 29

PART 2—FORTRAN AS AN OPERATING SYSTEM COMPONENT

Monitor Card to Execute FORTRAN

The ExeQ card is a Monitor control card that causes a
program to be loaded and executed. When the first
operand of this card is FORTRAN, the FORTRAN processor
is loaded and a source program is compiled. Other
Monitor control cards required to process a job are
explained in the publication IBM 1410/7010 Opera-
ting System; System Monitor, Form C28-0319.

The ExEQ card format and the operands available
to the user desiring to compile a FORTRAN source pro-
gram are explained below.

EXEQ CARD FORMAT EXAMPLES

Col-

unn: 6 16 21
MON$$ EXEQ FORTRAN,SOF,SIU,7,12,PCH,FLT,NAMEX
MON$$ EXEQ FORTRAN,MJB,SIU,7,,PCH, ,MAINPROGRM
MON$S EXEQ FORTRAN,,,13

Columns 6-10 contain the characters MoN$$ to
identify the card as one directed to the System Monitor.

Columns 16-20 contain the letters EXEQ.
Columns 21-72 may contain up to eight operands.

These standard rules for operands apply: operands
must be separated by a comma; operands cannot con-
tain blanks; an intentionally omitted operand must be
indicated by placing its trailing comma adjacent to
the preceding comma (except where the omitted
operand is the last operand used).

The first three operands are required by the System
Monitor and must either be included or their omission
indicated by a comma. The fourth and following
operands are read by the FORTRAN processor. An in-
valid parameter or error following the third parameter
causes (1) a diagnostic message number to be printed
immediately following the title line of the source pro-
gram diagnostic listing, and (2) assumed operands

30

indicated below to be used in the compilation in place
of the erroneous operand and all subsequent operands
on the card. Compilation proceeds.

The eight operands must appear in the order listed
below.

OPERAND
NO. OPERAND AND MEANING

1 FORTRAN must be specified.

2 SOF or MJB — This operand specifies the file
containing the FORTRAN compiler. SOF is the
System Operating File; MJB is the Job file. If
this operand is omitted, the compiler is assumed
to be on the SOF.

3 SIU, AIU, or any work (MWn) or reserve (MRn)
tape unit. If this operand is omitted, the source
statements must immediately follow this EXEQ
card on the unit containing this card, either the
Standard Input Unit (SIU), or the Alternate
Input Unit (AIU).

4 Real number precision (f) is specified by a one-
or two-digit number from 3 through 18. Numbers
3 and 03 are acceptable, but 003 is not accept-
able. If the operand is omitted, the FORTRAN
processor assumes 8.

5 Integer precision (k) is specified by a one- or
two-digit number from 3 through 20. If the op-
erand is omitted, the processor assumes 5.

6 PCH — If this operand is used, the object pro-
gram is put on the Standard Punch Unit or is
written on the magnetic tape unit assigned to
perform functions of the Standard Punch Unit.
If the compiled program is not to be executed
immediately (that is, not a compile-and-go oper-
ation), PCH must be specified to produce an
object deck.

7 FLT — This operand must be specified if the
object program is to be run on an M 7010
equipped with the Floating-Point Arithmetic fea-
ture. The operand must be omitted (except for
the trailing comma) for all other 1BM 7010 Sys-
tems and all 1M 1410 Systems.

8 Program name. This operand, which can be one
to ten alphameric characters with the first char-
acter alphabetic, defines the title for the main
program to be processed. If this operand is
omitted, the processor assigns the title MAIN-
PGM. When subprograms are compiled, this op-
erand is ignored.

The source program listing produced by a FORTRAN
compilation is written on the Standard Print Unit.
The two major parts of the listing are (1) the listing
of the source program statements with diagnostic
messages and (2) a memory map of the object pro-
gram,

Source Program Diagnostic Listing

The following items appear with the listing of source
program statements:

1. Title Line. Each page of the source program di-
agnostic listing carries a title line containing the page
number.

2. Source Program Statements. All statements are
listed with blanks eliminated from all statements ex-
cept FORMAT statements. The first 111 characters of
continued source statements are listed.

3. Message. Diagnostic message numbers are printed
to the left of the statements to which the messages
apply. The corresponding messages are listed in Part
3 of this manual. The message number is sometimes
followed by a number indicating the character posi-
tion in the printed statement where the error was
found. The first character of the statement is considered
character number 6. Each print position should be
counted. Some messages also include the name of the
variable or the missing statement number that caused
the error.

Diagnostic messages for context errors, such as
terminating a po on a nonexecutable statement, follow
the listing of source statements. These messages may
include the statement number of the affected state-
ment(s).

Memory Map

The memory map of the object program is arranged in
four pairs of “FORTRAN NAME,” “LocATION” headings
across the page as shown in Figure 6. The map includes
the addresses, before relocation, of constants, variables,
and the beginning of coding of executable numbered
statements. The items appear in the list in the sequence
given below. (Items illustrated in Figure 6 are num-

bered to correspond with this list.)

Source Program Listing

1. Names Declared in COMMON. The name is
printed to the left of its address.

2. Integer and Real Constants. The value of the con-
stant is printed under “FORTRAN NAME.” The constants
are shown as they appear in core storage.

3. Integer Variables. Both simple integer variables
and integer arrays are listed next. The address printed
for an array is its base address. This is the highest
core-storage address in the array and corresponds to
the address of the first element. Since some of these
variables may have been brought into common by
equivalence, comMmon addresses may be included.

4. Real Variables. These are mapped in the same
manner as integer variables.

5. Statement Numbers. Each statement number is
printed with an address. This is the address of the
first machine instruction generated by the statement.

Any forward reference to a statement number causes
additional printing. A forward reference is a reference
(6o 1O n, etc.) to a statement number that has not
previously appeared on a statement.

At the point of the first forward reference to a state-
ment number, one entry is printed containing the state-
ment number that has been referenced and the address
of the first reference. This item is tagged “rFor.” in the
memory map. Subsequent forward references to this
same statement number are not printed.

The first forward reference causes a second entry
to be printed. This entry contains the address of the
first reference and the address of the coding for the
statement. This item is tagged “pEr.” in the memory
map.

For example (see Figure 6), suppose that at location
01370 there is a forward reference to statement number
301. If the coding for statement 301 begins at location
01997, the following two entries will be made in the
printed output:

00301 FOR. 01370

01370 DEF. 01997

6. Program Size and Entry Point. The last line of the
printed output states the size of the compiled program,
excluding the common data area, and the location of
its entry point.

Source Program Listing 31

FORTRAN NAME LOCATION FORTRAN NAME LOCATION FORTRAN NAME LOCAT ION FORTRAN NAME LOCATION

EE-(-———@ 99939 AlA 98799 TIME 98779 NOE 38759
98694

ALTYPE 98754 TEMTYP 98734 Cl 98714 C3

AT 98684 84 94684 FIG 82684 TIMG 82664
ALTYPG 82644 BETA 82624 PHI 82614 C2 82594
ALT 82574 WJ 78574 LLLM 70574 LMMM 70569
M 70564 NU 70859 LU 70554 4T 70549
™ 70544 FLAG 70534 WXG 70524 WYG 70514
wx 70504 Wy 70484 RAD T0464 MM 70454
MRR 70449 NM 70444 WJR 70439 DX 62439
mE 62419 DENS 62414 TEMP 62404 1 62394
KK 62384 KKK 62379 00006<——(2) (integer) ~ 00600 00004 00605
00008 00610 0000C 00615 00228 00620 000000059R€<2) (Real) 00630
1520482F0. 00640 4597941008 00650 100000060A 00660 273160060C 00670
5000000804 00680 459688060C 00690 9000000E0A 00700 3780000E0& 00710
1745329604 00720 K +——(3) 00725 Kd 00730 MWU 00735
MuL 00740 IX 00745 KN 00750 J 00755
K 00760 KR 00765 JI 00770 KT 00775
w 00780 ITEMP 00785 ML 00790 1 00795
1F 00800 IK 00805 KL 00810 BA<«——(4) 00841
BC 00861 BD 00BRL VTEMDN 00891 FAREN 00901
CENT 00911 WTHETA 00921 DKL 00931 RR 00941
Al 00951 A2 00961 D 00971 TU 00981
Wa 00991 w8 01001 _BEPH 01011

00049 01276 00301 FOR. (G1370)” 00200 01377 00419 FOR. 0147t
00400 01478 00430 01571 00413 FOR. 01660 | 00414 FOR . 01724
00412 01731 00416 FOR. 01743 01724 DEF. 01750 | 01743 DEF. 01762
00422 FOR. 01826 00357 FOR . 01892 00417 01899 01370 DEF. 01997
00300 FOR. 02009 01660 DEF. 02016 02009 DEF. 02028 00500 FOR. 02067
01892 CEF. 02074 02067 DEF. 02242 00600 FOR. 02623 00508 02630
01471 DEF. 02823 00245 03098 02623 DEF. 03156 00602 FOR. 03235
00601 03242 00604 FOR. 03287 00603 03294 01826 DEF. 03329
03235 DEF. 03362 03287 DEF. 03431 00606 FOR. 03510 00605 03517
o1721 FOR. 03619 01720 03626 01722 FOR. 03653 03619 DEF. 03660
03653 DEF. 03708 03510 DEF. 03889 00608 FOR. 03931 00607 03938
00609 03998 00610 04058 00613 FOR. 04106 00614 FOR. 04166
00612 04173 04106 DEF. 04206 03931 DEF. 04249 00718 FOR. 04311
04166 DEF. 04318 04311 DEF. 04395 00716 FOR. 04489 00720 04496
00717 FOR. 04590 00723 04597 00759 04690 00725 FOR. 04779
00726 FOR. 04843 00722 04850 00727 FOR. 04862 04843 DEF. 04869
04862 DEF. 04881 00757 FOR. 04940 00729 FOR. 05011 00728 05018
05011 DEF. 05051 04489 DEF. 05149 00758 FOR. 05173 04779 DEF. 05180
05173 DEF. 05192 07617 FOR . 05219 04940 DEF. 05226 05219 DEF. 05394
04902 FOR. 05466 00754 05473 00902 FOR. 05787 04590 DEF. 05794
06014 FOR. 05866 06013 05873 05466 DEF. 06010 00812 06324
05866 DEF. 06590 05787 DEF. 06733 00901 FOR. 06170 00904 FOR. 06819
00903 06826 06770 DEF. 06859 01001 FOR. 06921 06819 DEF. 06928
00905 06988 00306 07048 00909 FOR. 07096 00910 FOR. 07156
00908 07163 07096 DEF. 07188 07156 DEF. 07231 06921 DEF. 07335

PROGRAM SIZE 1S 07404 PROGRAM ENTRY IS 01062
—(5)
U

I'igure 6. Memory Map of an Object Program

32

The roRTRAN processor reduces the size and execution
time of the object program by avoiding redundant
calculations to obtain the memory locations of sub-
scripted variables. Immediate repetition of the same
subscript or an equivalent subscript for the same or
different arrays is subject to subscript optimization.

A FORTRAN object program reserves up to 100 index
cells to hold subscript information. If this limit is ex-
ceeded, a diagnostic message is produced. The user
may determine that this limit will be exceeded by
knowing;

1. When an index cell is reserved for a newly defined
subscript expression appearing in a source program
statement;

2. Which subscript expressions in the source state-
ments are equivalent and, consequently, use the same
index cell; and

3. When a cell is made available during program
compilation due to deletion of the subscript expression
held in the cell from the list of active subscripts.

Terms Used

An array name in a source statement is subscripted
with either a literal subscript, which has no variables
in it, or with a subscript containing subscripting vari-
ables. For example, A(3,2) has a literal subscript
while B(4,57+3,2*M) contains J and M as subscripting
variables.

A subscripting variable may have a multiplicative
coefficient (2 in the preceding example), or an additive
offset (3 in the example), or both as in ¢c(2*m—1).

A subscript expression is the set of three (or fewer)
subscripting variables together with four numbers,
designated D1 through D4, calculated from the six
(or fewer) coefficients and offsets and the three (or
fewer) array dimensions declared in the piMENsION
statement. The form of the subscript expression is
shown under “Equivalence of Subscript Expressions”
later in this section.

Arrays are located in core storage in sequence
A(LMN) ... A(LLK) A(3,L,1), a(2,1,1),
A(1,1,1) where the last element A(1,M, N) has the low
address in core storage and the first element has a
higher address in core storage. The value of the sub-
script expression 1),k is the number of core-storage
positions separating element A(ryx) from the first
element of the array, a(1,1,1).

Calculation of Active Subscript Expressions

The value of the subscript expression is calculated
in two steps.

1. The values of D1 through D4 are calculated by
the processor from values known at compilation time.

2. The values of the subscripting variables 1,5,k are
not known until the program is being executed. During
execution, D1 through D4 and the now-known values
of the subscripting variables are used to calculate the
value of the subscript expression.

The index cell contains the value of the subscript
expression.

Reserving Index Cells

An index cell is reserved whenever a nonliteral sub-
script appears in a source statement and is not equiv-
alent to a subscript expression already considered
active. The first nine index cells are index registers;
up to 91 subsequent cells are pseudo index registers
which are defined by the compiler. The points in the
source program at which index cells will be reserved
by the compiler can be determined by inspecting each
statement in order in the source deck.

The appearance of a nonliteral subscript in a source
program, such as a(ry), produces object coding to
(1) calculate the value of the subscript expression cor-
responding to (LJ), and (2) to place the value into
an index cell. The instruction referring to a(1y) effec-
tively has an address field with the address of the base
of the array A indexed with the proper zones to indi-
cate the index register which is the index cell assigned
to (1y).

An immediate repetition of A(1,)) in the source pro-
gram produces no coding to set an index cell to the
value of the (1) subscript expression, since a cell
has already been reserved for that value. Conditions
under which subscript expressions are equivalent and
can use a single index cell are described under the
next heading. In general, the equivalence does not
require the same array A, but the arrays will have
the same number and sizes of dimensions.

An index cell is reserved for each subscript ex-
pression that is not equivalent to a subscript expres-
sion considered active. A subscript expression is con-
sidered active, and an index cell is reserved for its
value, until the value of one of the subscripting vari-
ables is changed by the program.

Ways in which a subscripting variable may be
changed by a program are explained under “Deleting

Calculation of Active Subscript Expressions 33

Subscript Expressions.” An example is the arithmetic
statement I=1-+1, which alters I.

A literal subscript, as BB(3,65,2), does not require
an index cell. The proper address in the array BB is
calculated at compilation time for each instruction
requiring it.

Equivaience of Subscript Expressions

Rules to determine whether two subscript expressions
are equivalent are given in the following paragraphs.
Expressions that are not equivalent require different
index cells.

The form of the subscript expression is D1, I, D2,
J, D3, K, D4, where 1, J, and K are the subscripting
variables and the D factors are calculated as explained
below. Two subscript expressions are equivalent when
the subscripting variables appear in the same order
and the four D factors of one subscript expression
equal, respectively, the four D factors of the other
subscript expression.

Consider any array, A, specified as DIMENSION
A(x,y,z), where the lower-case x, y, and z are integer,
unsigned constants.

A for this explanation may represent either an array of
integer elements or real elements,
x is the first dimension,

y is the second dimension,
z is the third dimension.

An element of the array is of the form

A(cei*I+ci’,cy*T+cy,ex* K+’), where

c coeflicients are integer constants,

¢’ terms are positive or negative integer offsets,
L, J, K are subscripting variables.

For the calculation of the D factors, let

w = kif A is an array of integer elements, or
w = {42 if A is an array of real elements.

The D factors are calculated as follows:
D1 = ci*w
D2 = cy*w*x
D3 = ax*w*x*y
D4 = (ci'=1)*w+(c)/ = 1)*w*x+ (o’ — 1) *w*x*y

The equation for D1 shows that subscript expres-
sions of the same mode are not equivalent if the ¢
values are not identical.

Note that a subscript expression associated with an
array of real elements can be equivalent to a subscript
expression associated with an array of integer clements
if D1 through D4 of the two expressions are equal.

D4 defines the necessary conditions on the offsets.
It shows that two subscript expressions will be equiv-
alent if values of D1 through D3 are equal and the
corresponding offsets are identical.

Deleting Subscript Expressions

The following paragraphs give the rules to determine
when the value of a subscript expression changes. The

34

change establishes a point of definition at which the
index cell associated with that subscript expression is
freed. An expression changes when one of the sub-
scripting variables in the expression changes. There
are five points of definition of subscripting variables
that occur during compilation.

1. A Referenced Statement Number: A statement
number to which control transfers is a point at which
all index cells are freed. Assignment of index cells
starts over as subscripting variables are encountered
by the processor,

2. A DO Statement: A po statement, like a referenced
statement number, is a point where all index cells
are freed. (They are freed since any subscripting vari-
able may change in the range of the po.)

3. An Arithmetic Statement: If a subscripting vari-
able is on the left side of the equal sign in the arith-
metic statement, the only index cells to be freed are
those with subscript expressions involving the variable.
Thus, the statement I = I + 1 frees the cells of a(1, 1)
and B(x,1 + 3) but not the cell for c(x + 3,7 —).

4. Input Lists:

The appearance of a subscripting variable in the list
of a READ statement frees only the index cells associated
with that variable.

An implied po loop in an input list, as in the case of

the po statement, is a point where all index cells are
freed.

5. CALL Statements: A sUBROUTINE subprogram
may alter its arguments. Consequently, a subscripting
variable as an argument of a caLL frees any associated
index cells. For example, the statement CALL SUBR
(1, 7 + x) frees any index cells associated with I but
does not affect index cells associated with the in-
dividual subscripting variables J and K. Release of
the index cell is effective after the call so that sub-
scripts appearing in the caLL arguments remain
optimized.

A subroutine subprogram may alter comMmoN vari-
ables. Consequently, the index cells for all subscripting
variables in common core storage are freed after the
CALL statement.

Since function subprograms do not alter their argu-
ments or variables in common core storage, the ap-
pearance of a function call in an arithmetic statement
does not free any index cells.

Exceeding the 100 permitted subscript expressions
between points of definition (an infrequent occur-
rence) is called to the user’s attention by a diagnostic
message printed out during program compilation (see
Part 3). Furthermore, a point of definition can be
forced at any desired point in the source program.

The statement I = I frees the index cells holding the transfers can be placed in a Computed co To statement,
values of subscript expressions involving I. (See rule as co o (7, 10), x where x is always 2. Statement 7
3 above.) now becomes a point of definition at which all index

A method that frees all index cells utilizes rule 1 cells are freed.
above. A statement number to which control never

Calculation of Active Subscript Expressions 35

Dictionary Space Requirements

The dictionary is a work area within the FORTRAN
processor. The maximum dictionary space available to
the processor depends on the machine core-storage
size. The dictionary occupies all space from the end of
the FORTRAN processor to the memory size specified at
/ams/ in the Resident Monitor. Refer to the publica-
tion 1410/7010 Operating System; System Monitor
for information concerning /ams/.

The space required by each variable or number in
a source program is listed below.

36

TYPE OF VARIABLE
OR NUMBER

Dimensioned variable

Equivalenced, non-
dimensioned variable

Non-equivalenced,
simple variable

Real constant

Integer constant

Statcment number

POSITIONS OF CORE
STORAGE REQUIRED

40

20

10

10+£f+2, where { is the
real precision.

10+k, where k is the
integer precision.

10

Writing Autocoder Subprograms for the System Library

The flexibility of the Autocoder language can be in-
corporated in a FORTRAN program by means of Auto-
coder subprograms. Such a subprogram may be de-
sired to perform these types of functions:

1. Where the number of arguments (and, therefore,
the length of the calling sequence) may vary, as for a
general-purpose subprogram;

2. Where an input/output manipulation or com-
munication with the Resident Monitor is not avail-
able to the FORTRAN programmer;

3. Character manipulation;

4. Where data requires specialized decoding or
rearrangement before it can be used with FORTRAN
statements.

Both runcrioN subprograms and SUBROUTINE sub-
programs may be written in Autocoder, The subpro-
gram is assembled by the 1410/7010 Autocoder proc-
essor and incorporated into the System Library where
it is available to be combined with ForTRAN programs.

Understanding of the publications, IBM 1410 or
IBM 7010 Principles of Operation (Form A22-0526 or
A22-6726, respectively) and IBM 1410/7010 Operating
System; Autocoder, Form C28-0326, is necessary to
write Autocoder subprograms.

Calling Sequences

Subprogram arguments can be made available either
by:

1. Declaring the arguments in the common data
area both in the calling programs and in the called
subprogram, or

2. Listing the arguments following the name of the
function in an arithmetic statement, as A=soMEF(B,c),
or following the name of the subprogram in the caLL
statement, as CALL OTHER(D,E). A FUNCTION subpro-
gram requires at least one argument following the
name of the function in an arithmetic statement.

The call to a FUNCTION or SUBROUTINE subprogram
generates a calling sequence when the program is com-
piled. The calling sequence begins with a branch to
the FUNCTION or SUBROUTINE subprogram followed by
a series of address constants (one per argument), and
concludes with a Nop. Manipulation of the arguments
within an Autocoder subprogram is performed by
moving the address constants into the operands of
succeeding instructions. The succeeding instructions
can:

1. “Work on” the argument while leaving it in the
calling program, or

2. The argument can be brought into a work area
defined in the subprogram.

The following table summarizes the form and sig-
nificance of the generated address constants for var-
ious types of arguments.

TYPE OF ARGUMENT,
REAL OR INTEGER

FORM AND SIGNIFICANCE
OF ADDRESS CONSTANT

Address of the variable

Address of the constant

Address of the subscripted varia-
ble, possibly indexed

Simple variable
Constant
Subscripted variable

Array Address of the base of the array;
i.e., address of ARRAY (1, 1, 1)
Expression Address of the value of the com-

puted expression indexed by X1
Address of the subprogram entry
point

Name of a subprogram

EXAMPLE

Assume X is an array and Y is a simple real variable.
Also assume the FORTRAN processor assigns index reg-
ister 4 to the subscript expression of array X. carL
saMPLE (x(1LJ),Y) typically compiles into the follow-
ing calling sequence in the calling subprogram.

EFFECTIVE AUTOCODER STATEMENTS

OPERATION
CODE OPERAND
DCWS SAMPLE
DCW X+X4
DCW Y
NOP

Index Register Requirements

Requirements and conventions for use of the index
registers are summarized in the following table.

INDEX
REGISTER AVAILABILITY USE AND LIMITATIONS
X1 Available if con- | X1 must be preserved for
tents saved and | the processor and may be
restored tagged on any argument
address. After bringing in
arguments, X1 may be
saved, used, and restored
like X4 through X12.

X2, X3 Available Contents will be destroyed
by calls to most library
routines.

X4 through | Available if con- | These registers contain sub-

X12 tents saved and | script index values and may

restored have been specified on any

Writing Autocoder Subprograms for the System Library 37

INDEX

REGISTER AVAILABILITY USE AND LIMITATIONS

of the arguments to the sub-
program. Contents must be
saved in a temporary loca-
tion and restored before ex-
iting from the subprogram.
Contents will be destroyed
by calls to library routines
or Monitor functions. X13
must not be left with a
negative sign when exiting
from the subprogram.

X13 Available

X14, X15 Not available

Writing the Subprogram

Basic Requirements

Each subprogram must be preceded by an Autocoder
TrtLE card. The operand of this statement is the title
of the function or subroutine subprogram. FORTRAN
rules for assigning names to integer and real variables
must be followed in naming the subprograms (see
Part 1 of this manual).

The first instruction should store the B-address
register contents. Index register 13 is conventionally
used for this purpose. The entry point of the subpro-
gram must be its first position.

Move instructions to place the address constants into
the operands of subsequent instructions, including
return to the desired position in the calling program,
usually are placed next. This is shown in “Examples
of Autocoder Subprograms” appearing later in this
section.

If any of index registers 4 through 12 are to be used
in the subprogram, the contents must be saved after
the address constants are moved and before the index
register is used by the subprogram. Contents must
be restored to the index register before returning to
the calling program.

Word lengths of integers and real numbers must
correspond to those of the using program(s).

No label which is a linkage symbol of the form 1Bxx/
(where “18” are the first two characters) is permitted
in the subprogram.

A word mark must follow the last executable instruc-
tion of the subprogram.

38

Handling Real Arguments

If the arguments are real numbers, a move instruction
(MLCWA) can bring in the exponent and a chained
move (again, MLCWA) can bring in the fraction. This
is shown in Example 1 of “Examples of Autocoder Sub-
programs.” (The address constant of the calling se-
quence gives the units position of the exponent.)

If the address constants are moved into the operands
of floating-point instructions, both the exponent and
fraction are automatically handled by the floating-
point instructions. A pcws to the floating-point inter-
pretive subroutine BINTRP must precede a sequence
of floating-point instructions unless the object program
is to be run on an M 7010 equipped with the Float-
ing-Point Arithmetic feature.

The handling of real variables is illustrated in “Ex-
amples of Autocoder Subprograms.”

Common Data Area

If arguments are obtained from common data area,
the variable must be declared in common core storage
within the subprogram by the use of the Autocoder
DAV statement,

Using Other Functions

System Library subroutines may be freely used by
the subprogram. However, conventional uses of the
index registers discussed earlier in this section must be
observed. In particular, the floating-point interpretive
subroutine (1BiNTRP) may be used at will. This sub-
routine accepts indexed addresses in the floating-point
instructions that it interprets.

Any argument in the Autocoder subprogram can
be made available for transmission to another sub-
routine by placing the address of the argument in a
calling sequence to that subroutine. This is shown in
Example 2 of “Examples of Autocoder Subprograms.”

The value of f or k can be transmitted from the
Resident Monitor to an Autocoder subprogram by
using the system symbol /FLo/ or /¥ix/, respectively,
as operands. This permits generalizing a subprogram
that makes use of the values of f and k so that it will
accept various values of f and k without subprogram
alteration.

There is no limit to the depth to which calls to other
subroutines can be nested.

The Autocoder subprogram must not call a sub-
routine that calls the Autocoder subprogram, or causes
the Autocoder subprogram to be called, unless specific
arrangements have been made for recursive operation.

Returning Values to Calling Program

Either FuncTION subprograms or SUBROUTINE subpro-
grams rnay communicate with the calling program by
placing information on work tapes.

FUNCTION SUBPROGRAMS

Core-storage locations 280-299 are reserved for the
20-position accumulator used by the floating-point
instructions. The single result of a ¥uncriON subpro-
gram, whether that result is type integer or type real,
must be right-justified in the accumulator. The name
of the function, whether type integer or type real, in
the calling program must correspond to the type of
result. :

FUNCTION subprograms must not alter variables that
appear in the common data area nor the arguments
of the runcTION subprogram.

SUBROUTINE SUBPROGRAMS

SUBROUTINE subprograms are permitted to alter vari-
ables that appear in the common data area.

SUBROUTINE subprograms also are permitted to alter
their arguments. The argument address may be picked
from the ealling sequence and placed into the B-ad-
dress of the move instruction or the A-address of the
floating-point store (¥sT) instruction that is to return
the value to the calling program.

Examples of Autocoder Subprograms

Example 1

This example illustrates:

1. How real arguments can be moved into work
areas for use in a subprogram, and

2. Saving contents of an index register.

Assume that the two real arguments of the example
are to be placed in work areas TEMP1 and TEMP? for use
in the subprogram. The arguments are eight decimal
digits plus the two-digit exponent in length. Assume
that X4 is assigned by the rorRTRAN processor when
compiling the calling sequence and that X4 is also
required by the subprogram. Also assume that X13
will not be altered within the subprogram.

EFFECTIVE AUTOCODER

CALLING PROGRAM CALLING SEQUENCE

OPERATION
CODE OPERAND
CALL SAMPLE (A(I),B) DCWS SAMPLE
. DCW A+X4
DCW B
NOP

AUTOCODER SUBPROGRAM

OPERATION
LABEL CODE OPERAND COMMENTS
TITLE SAMPLE
SBR X13
MLCA 4+X13,L1+5 Move address of A into
next instruction
L1 MLCWA 0,TEMP1 Move exponent and
MLCWA fraction of argument
A in chain move
MLCA 9+X13,L2+5
L2 MLCWA 0,TEMP2 Move in second argu-
MLCWA ment (B)
MLCA X4,SAVE4=5 Save X4

(X4 is now free to use and the arguments have been
brought into the subprogram.)

Calculations

MLCA

SAVE4,X4 Restore X4
B 11+X13 Return to calling pro-
gram
DCW =8
TEMP1 DCW =2
DCW =8
TEMP2 DCW =2
END
Example 2

This example illustrates:

1. Calling a function whose name is an argument to
this Autocoder subprogram and whose value is a func-
tion of the arguments of this Autocoder subprogram;
and

2. Return of the externally-computed value, via this
Autocoder subprogram, to the calling program.

Assume that the arguments are a subscripted vari-
able, A (1), the expression B+c, an external subroutine
EXTSUB, and a simple variable, s. The single argument
of ExTsus is the sum of the arguments a(1), B+c, and s.
The result of ExTsuB is to be returned to the FORTRAN-
language program by altering argument s. Further
assume that ¢r+x1 is the address of the computed
expression B+c.

EFFECTIVE AUTOCODER

CALLING PROGRAM CALLING SEQUENCE

. OPERATION
CODE OPERAND
. DCWS SAM
EXTERNAL EXTSUB DCW A+X6
. DCW GT+X1
. DCWF EXTSUB
. DCW S
CALL SAM (A(1), B+C, NOP

EXTSUB, S)

Writing Autocoder Subprograms for the System Library 39

AUTOCODER SUBPROGRAM

LABEL

40

L1
L2
1.3

L4

OPERATION
CODE OPERAND COMMENTS
TITLE SAM
SBR X13
SBR L6+5 Place X13
A +21,L6+5 +21 into return in-

struction
MLCA 4+4+X13,L1+5 Move address constants
MLCA 9+X13,L2+5 into floating-point
MLCA 19+4+X13,L.3+5 and branch instruc-
MLCA 14+X13,L4+5 tions
MLCA 19+X13,L5+5

DCWS IBINTRP Compute the argument
for EXTSUB as the

FRA 0 sum of the first,

FA 0 second, and

FA 0 fourth arguments of
SAM

FST T1 Store sum in T1

B 0 Calling sequence for

DCW T1 the cxternal sub-

NOP routine

(Result of external subroutine is conventionally
stored in the accumulator.)

DCWS IBINTRP

L5 FST 0 Return result to calling
program as altered
fourth argument

L6 B 0 Return to calling pro-
T1 DCW =10 gram. The call to
END IBINTRP destroys

X13 contents so
B 21+X13 cannot
be used

Note that linkage to routines whose names come
as arguments is by a branch instruction into which
an address is moved during execution. A pcws is not
used here since the name extsus of the routine is un-
known when the subprogram is assembled.

The pcws IBINTRP instructions are omitted if the
object program is to be run on an M 7010 System
equipped with the Floating-Point Arithmetic feature.

PART 3 — DIAGNOSTIC AND ERROR MESSAGES

Diagnostic message numbers appearing on the source
program listing, together with the meaning of the
message number, are given below,

Compilation of the source program is not attempted
(and object program execution is cancelled in a
compile-and-go operation) for all diagnostic messages
listed except numbers 005, 020, 022, 038, and 096.
These warning messages are indicated by an asterisk
in the accompanying list. The asterisk is not printed
with the message number on the source program
listing.

MESSAGE
NUMBER MESSAGE
001 Statement not rccognized
002 Improper statement as a relational IF trailer
003 Blank statement text beginning with column 7
004 More than ten cards per statement
005* One or more of following illegal character(s)
found in statcment: record mark, group mark,
exclamation mark. The character has been dcleted
006 Premature end of statement
007 Uneven parentheses count or missing paren-
thesis
008 Improper or invalid character
009 SUBROUTINE or FUNCTION is not first
statement

010 REAL, INTEGER, or EXTERNAL follow a
DIMENSION, COMMON, EQUIVALENCE,
or FORMAT

011 A specification statement appears after the first
executable statement

012 DIMENSION, COMMON, or EQUIVALENCE
are out of prescribed order

013 An arithmetic statement function appears after
an executable statement

014 A DIMENSION, COMMON, or EQUIVA-
LENCE follows a FORMAT statement

015 The object of GO TO is a nonexccutable state-
ment

016 Improper statement for the end of a DO range

017 Object of a GO TO statement missing

018 FORMAT statement is not prior to an I/O state-

ment reference
019 End of DO range missing

020* Coding which will not be executed appears after
a GO TO, RETURN, or STOP

021 Overlapping DO statements
022* END card is missing but assumed by processor

023 Statement number is zero or has a non-numeric
character in it

MESSAGE
NUMBER

024

025
026

027
028
029

030
031
032

033
034
035
036
037
038*
039
040

041
042

043

044
045

046

047

048
049

050
051

052

053

Diagnostic Messages

MESSAGE
Statement number appcars on more than one
statcment
Character must be numeric
A number in E notation cannot have more than
two exponent digits
A number must follow the sign in E notation
An improper or invalid character follows number
A decimal point with neither leading nor trail-
ing digits
First character of a name must be alphabetic
Name greater than six characters

Name must be an integer name that is not
DIMENSIONed

A name has been declared in COMMON more
than once

A name has been DIMENSIONed more than
once

A name has had mode declared more than once

A name has been declared in EXTERNAL twice;
or in EXTERNAL and DIMENSION or COM-
MON or EQUIVALENCE

RETURN statement found in a main program

RETURN statement was not included in this
subprogram

A FUNCTION statement must have at least one
argument

Improper or invalid character in FUNCTION or
SUBROUTINE statement

Declarative statement subscripts cannot be zero

Improper character after right parenthesis in
DIMENSION

More than a three-dimensional array
Improper character after name in COMMON

Bad punctuation, or subscripting a variable that
is not DIMENSIONed, in an EQUIVALENCE
statement

More than one name required in parentheses of

EQUIVALENCE

DIMENSIONed namc in EQUIVALENCE must
have one and only one integer subscript

Nothing should follow number in PAUSE

Nothing should follow the word STOP, CON-
TINUE, RETURN, or END

Neither computed nor simple GO TO

Computed GO TO needs a comma after the right
parenthesis

A comma or right parenthesis should follow the
number

Nothing should follow the name in computed
GO TO or the statement number in the Un-
conditional GO TO

Diagnostic Messages

41

MESSAGE
NUMBER

42

054
055

056
057
058
059
060

061
062

063

064

065

066

067
068

069
070

071

072

073
074
075

076
077
078
079
080
081
082
083

084
085

086
087
088

089

090

MESSAGE

A GO TO is going to itself
End of the DO range occurred before or at the
DO statement

Comma after statement reference in DO
An equal sign must follow index in DO

DO nest greater than 25

Nothing should follow the parameters ot a DO

End of DO statement found after equal sign or
comma of index parameters

A DO should have two or three parameters

An improper character follows unit number or
name in I/O statement

A name that is not DIMENSIONed cannot have
a subscript

Improper character follows name, subscript, or
right parenthesis

A right parenthesis must follow index param-
eters in an I/0 list

No unit designation has been given, or its first
character is improper

Unit number should be 1-9, one digit

Nothing should follow unit designation in BACK-
SPACE, REWIND, or ENDFILE

The subroutine name is DIMENSIONed

A left parenthesis does not follow SUB-
ROUTINE name

Right parenthesis of CALL is not last character
in the statement

Parentheses count within argument of CALL or
expression of IF is uneven

IF statement has no trailer
Mixed mode between expressions of an IF

Left-hand side of arithmetic statement does not
have an equal sign after first variable

Illegal consecutive operators

Mixed mode

Arithmetic statement ends with an operator
Right parenthesis follows an operator
Integer**real not permitted

A**B**C not allowed

Comma improper

Character is neither arithmetic operator nor
punctuation

Improper character follows exponent operator
Number of subscripts not equal to the number
declared

+ or — in subscript not followed by a number
A real number is in the subscript

Improper or invalid character within a subscript;

or nothing within parentheses; or end of state-
ment within subscript

A nonsubscripted array name appears in an arith-
metic expression or IF

Invalid use of nonsubscripted array name in
FUNCTION or CALL

MESSACE
NUMBER

091

092

093

094
095
096*
097

098

099

100

101

102

103

104

105
106
107

108
109

110

111
112
113
114

115

116

117
118

119
120

MESSAGE
An argument in an arithmetic statement function
defining statement is DIMENSIONed

An argument in an arithmetic statement function
defining statement contains an improper or in-
valid character

Subscripted array in arithmetic statement func-
tion defining statement

No coefficient for P, X, or H conversion
Octal conversion is not handled
Missing statement number on FORMAT statement

More than 133-character line produced by
FORMAT

Nested parentheses in FORMAT are not per-
mitted

Missing period in E or F within FORMAT
statement

Number after period in E or F is missing or is
greater than two digits within the FORMAT
statement

A, I, E, or F must be followed by a number in
the FORMAT statement

Improper character follows a number in a for-
mat specification or the FORMAT statement
ends prematurely

Two consecutive commas

More than three digits appear in a number in
FORMAT

A number must follow the minus sign
Incorrect count for H conversion

Improper or invalid character follows right
parenthesis in FORMAT

Two consecutive P’s preceding a specification
Number table/name table entry overflow. Too
many names and statement number uses

Too many arguments appear in arithmetic state-
ment function definition statement

Too many names declared in COMMON

Too many DIMENSIONed names

A comma must follow nX in FORMAT

The number appearing in the statement is too
long

Too many (more than 9999) characters appear
in FORMAT statements

Program is too large to compile (dictionary over-
flow has occurred) or run (more than 100,000
positions of core storage required by this pro-
gram). If a single array exceeds 100,000 posi-
tions, the overflow is not detected

The EQUIVALENCE specification is inconsistent
Two variables in COMMON have been equiva-
lenced

EQUIVALENCE has extended common upward

A zero coefficient appears in a FORMAT speci-
fication other than P

*Warning message; compilation continues and object program

execution is not canceled.

Error Messages

Error-message numbers are printed on the Standard Information concerning unusual end of program ap-
Print Unit during program execution in this format: pears in the publication, IBM 1410/7010 Operating
ERROR NO. XXX AT LOCATION xxxxX. The message corre- System; System Monitor, Form C28-0319.

sponding to each error number appears in the accom-
panying list.

MESSAGE
NUMBER MESSAGE

805 INT built-in function. Integer larger than integer field

806 IFIX built-in function, Integer larger than integer field

807 AMOD built-in function. Modulus is zero (real)

808 MOD built-in function. Modulus is zero (integer)

809 Logarithm of negative number or zero (ALOG built-in function) or a nega-
time number with non-integer exponent

810 SQRT built-in function. Square root of negative number

811 Negative exponent (integer) for expression of form I**]J

812 SLITE or SLITET built-in function. Sense light must be 0, 1, 2, 3, or 4
for SLITE and 1, 2, 3, or 4 for SLITET

815 IDIM built-in function. Arg 1-Arg 2 creates overflow

820 EXP built-in function. Argument must be less than 225.

821 COS or SIN built-in function. Argument must be less than 10000. radians
in absolute value

850 An invalid I/0 command has been given; e.g., a REWIND of the Standard
Input Unit

851 An I/0 command addressing unit-record equipment has been given with-
out a FORMAT statement

852 The FORMAT statement contains an invalid symbol

853 The data for E or F input contains an invalid symbol

854 FORMAT statement is invalid

856 Field width specified for output data is too small for I conversion

857 Field width specified for output data is too small for E or F conversion

860 A permanent read/write error has been detected

861 An end-of-file condition has occurred

862 A BACKSPACE statement has addressed a tape which has not been ref-

erenced by a READ or WRITE

ACTION TAKEN
Next sequential instruction
Next sequential instruction
Result is always zero
Result is always zero
Unusual end of program

Square root of absolute value
is calculated

Result is always integer 1
Unusual end of program

Next sequential instruction
Unusual end of program
Unusual end of program

Unusual end of program
Unusual end of program

Unusual end of program
Unusual end of program
Unusual end of program

High-order digits are trun-
cated and an * will be in-
serted in the most significant
digit position

An * is inserted in high-order
numeric position, any other
digits preceding decimal
point are replaced by blanks,
decimal point is inserted, and
digits following decimal
point are replaced by zeros.
For E conversion, the correct
digits are inserted in the ex-
ponent field

Normal end of program
Normal end of program

BACKSPACE statement will
be ignored

Error Messages 43

Appendixes

Appendix A: Source Program Statements

and Sequencing

The following set of rules describes the order in which
source program statements of a FORTRAN program are
executed.

Control originates at the first executable statement.
The Specification statements, and the FORMAT, FUNC-
TION, and SUBROUTINE statements, are nonexecutable.
For determination of sequencing, these statements
can be ignored.

If control is with statement S, then control will pass
to the statement indicated by the normal sequencing
of statement S (see “Table of Source Program State-
ment Sequencing”). However, if S is the last state-
ment in the range of one or more po’s that are not
satisfied, the normal sequencing of S is ignored, and
DO sequencing occurs.

Every executable statement in a source program
(except the first) must have some programmed path
of control leading to it.

Table of Source Program Statement Sequencing

STATEMENT NORMAL SEQUENCING

a=Db Next executable statement

BACKSPACE i Next executable statement

CALL First executable statement of
called subprogram

COMMON Nonexecutable

CONTINUE Next executable statement

DIMENSION Nonexecutable

DO Do sequencing, then the next
executable statement

END Terminates prograr, non-
executable

END FILE Next executable statement

EQUIVALENCE Nonexecutable

EXTERNAL Nonexecutable

FORMAT Nonexecutable

FUNCTION Nonexecutable

GO TOn Statement n

GOTO (ny,nz, ...,0nm),i Statement m

IF (t) s Statement s or next executable
statement, if relation t is true
or false, respectively

INTEGER Nonexecutable

PAUSE Next executable statement

READ Next executable statement

REAL Nonexecutable

RETURN The first statement, or part of

a statement, following the ref-
erence to this program

44

STATEMENT NORMAL SEQUENCING
REWIND Next executable statement
STOP Terminates the program
SUBROUTINE Nonexecutable

WRITE Next executable statement

Appendix B: Preparing, Checking, and
Punching a Source Program

The statements of a FORTRAN source program are
usually written on a standard FORTRAN Coding
Form, Form X28-7327 (Figure 7). A sample FORTRAN
source program is shown in Figure 8. This program
selects the largest value from an array of numbers
(identified by the variable name A).

Using the FORTRAN Coding Form

Columns 1-5 of the first line of a statement may con-
tain a statement number that identifies the statement.
This number must be less than 100,000. Blanks and
leading zeros are ignored in these columns; for exam-
ple, bbb50 is the same as b5bb0 and 5bbb0. A state-
ment must not be numbered zero. All statement num-
bers must be unique. These statement numbers do
not have to be in any sequence or order; for example,
the first statement of a program may be given state-
ment number 100 and the 50th statement in a source
program may be given statement number 1. These
statement numbers are used for example, in po loops
to indicate the range of the po loop, in the co To state-
ment, and to refer to FORMAT statements.

A statement may be continued on as many as nine
lines. Any line with a non-blank, non-zero column 6,
is considered to be a continuation of the preceding
line. The actual character used in column 6 does not
have any significance. The first continuation card
could have a 9 in column 6, the second card an A,
the third a 2, and so on.

Columns 7-72 contain the actual FORTRAN statements.
Blanks are ignored except in an H-field of a FOrRMAT
statement.

Statements with a C in column 1 are not processed
by the FORTRAN processor, but the statements appear
in the source program listing as comments. If there
is a C in column 1, columns 2-72 may be used for
comments. Comment cards may not appear between
continuation cards of a statement. Comment cards

may not immediately precede the ruNcrION or sus-
ROUTINE statements.

Columns 73-80 are not processed and may be used
for identification.

The order of execution of the source statements is
governed by the sequencing described in Appendix A.

Source Program Checklist

An early successful compilation of a FORTRAN source
prograrn is more likely if the coding is checked against
the following list of commonly-made errors.

ITEM TO CHECK CODING ERROR

A conversion Field width, w, exceeds the word
size, k or f+2.

Arithmetic expressions Real and integer numbers, both
constants and variables, mixed in
invalid combinations. Often, a
rcal constant is written without a
decimal point.

DO parameters Subscripted integer variable or
expression used as parameter.

FORMAT statements FORMAT specifications and 1/0
list not compatible,

FORTRAN language Misspelled FORTRAN-language
word such as EQUIVALENCE.

H conversion Incorrect count for n of nH,

Order of source deck Specification statements or FOR-
MAT statements are out of se-
quence.

ITEM TO CHECK

Program flow

Statement numbers

Subprograms

Subprogram names

SUBROUTINE
statement arguments

Subscripted variables

CODING ERROR

Statement transfers into the range
of a DO.

Unreferenced statement after a
GO TO, RETURN, or STOP.
END statement encountered in
program flow.

Use of same statement number
more than once.

Absence of a referenced state-
ment number.

FUNCTION or SUBROUTINE
statement missing at beginning
of a subprogram; RETURN state-
ment missing; END statement
missing.

Name is same as a variable name
used in this program.

Dummy arguments that are sub-
scripted or equivalenced variables.
Each subscripted variable, in-
cluding those in lists, does not
appear in a DIMENSION state-
ment.

Punching the Source Program

FORTRAN source program statements, prepared as de-
scribed above, are punched into a standard FORTRAN
source program card, Form 888157 (see Figure 9).

IBM FORTRAN CODING FORM

Form X28-7827-4
Prlnted In U.5.A.

Punching Instructions Page of
Program Graphic Card Form # *I7 i dentiticotion
Progrommer Date Punch [
(—— C FOR COMMENT
Yo FORTRAN STATEMENT
' slel7 1o 1s 20 25 30 35 40 45 50 55 50 70 7
N 1 1 I 1 1 1 I I I 1
L I I I | L 1 L L 1 L 1
1 1 1 I L 1 L L L | I 1
L ! 1 s 1 L I 1 1 I 1 L
1 I L ! 1 1 1 1 L 1 L L
L I L L J 1) L | I i |
I L 1 1 I ! L 1 L L | r
1 L L L 1 I I L 1 1 1 |
1 L 1 1 1 L I | 1 1 1 1
I 1 I 1 I I 1 L 1 L 2 1
L 1 1 L) L L I 1 1 L |
L L I 1 1 | L L I | I 1
1 1 1 i 1 L 1 1 1 1 1 i
] 1 L 1 L L 1 I I 1 L 1
L I 1 1 L L 1 L 1 1 L 1
L t i L L L 1 1 1 L 1 1
L ! L L 1 1 1 L I L L T
1 1 1 L I 1 I L 1 1 1 1
1 i Il L 1 1 1 1 i 1 1 |
1 1 1 1 1 Lo 1 1 1 1 1 1
1 1 1 1 1 1 { 1 1 I L 1

Figure 7. rorTrRAN Coding Form

Appendixes 45

IBM FORTRAN CODING FORM
Punching Instructions Page of
Program Graphic Card Form # * Identification
Programmer Dote Punch lﬁ‘_‘—L‘_"‘*—'F:-J
— C FOR COMMENT
yoaremes FORTRAN STATEMENT
1 516{7 10 15 20 25 30 35 40 45 50 55 60 65 70 72
C ROGRAM F.OR _FINDING THE | ARGEST. VALUE OF A SET ©OF NUMBERS ., L
C To_ILLUSTRATE 1410/7010 FORTRAN . . ! ; s ! s
DIMENSIoN A(399) 1 L L ! ! L L
2 FORMAT(23H . THE LARGEST ©F TH,E,SE ,.IBvizH NUMBERS, IS sF1.2). .
1| FORMAT(I3/(12F6°2)), . . . L) . . . \
EAD(51)Ns(A(I)aT=12N), L \ . . ; C .)
| 16A=A (1)I 1 1 \ 1 1 L L L 1 L |
D& 20 I=25N 1 L1 L 1 N ST B L. A) ol
, LF(BILGA LT«A(L))BIGA= A(I) T ST SV B ; ! I L L
20| |ICONTINUE, | | L L) | | ! | L ! 1
WRITIElé’Zl).N, BLGP{ L D 1 1 1 i 1 1 1 1
CAL L[E.XIT| 1 1 1 1 1 1 1 L 1] 1
ND. . . ' L L | .
/\//MW\/‘M\/—/\

Figure 8. Sample FORTRAN Source Program

FORTRAN STATEMENT IDERTIFICATION
00000000000000000000000000006000

I I AN NN AN R ONAR N AANIUBUB AT ANBNCAUSRTRANRILVAHEHNIRNNCCH RGN SRR RIUARTI AN

[RRRRER AR R R RN R R RN R R R R AR R R R R R R R R R R N R R R R R R R R AR R RN AR R R R RN RRR RN RR S

2

2|

.

u

2122{22222222
ﬂ§31333133!13331333333333333333333331!33333333133333331J3313333333333331333333!3

AUAAAAAA 404404000040 044000444444440044404 04404444004 80040404000000440000400 04

5/5555555555555555555555555555555555555556565555555555555555555856555/55555555

666 ECEG6665666066666066CEECE669CECFCECGEECE0EE06C0CFCEE066CE0C5CGF0000CEG0GE

MT17231171 0700000017100 2700 0000120000000 000100 7001000000900 010710107

RSSO0 OB ORBEOOBOORRBOREBIBRORRRBRURIGRRURORBRRRRUIRBOREOOROOIIIROIRNIIIRISS

l!!"!9’!l!!ll”!lls!l!!’llb!l!l!!lDl!3!ll’l!90!l"ll'lllIlii'l’ll’!ll’.lll

'

T IR RNHANTI IR ANABTEARNRINABTADNCIUSRTCENIROHUNNITINNIRCUEBURENTIIDUARTNDN
HYORDT

Figure 9. FORTRAN Source Program Card

Appendix C: Table of Source Program CHAR- CARD CHAR- CARD
Characters ACTER PUNCHES ACTER PUNCHES
K 11-2 A% 0-5
L 11-3 w 0-6
CHAR- CARD CHAR- CARD M 11-4 X 0-7
ACTER PUNCHES ACTER PUNCHES N 11-5 Y 0-8
Blank Blank A 12-1 o 11-6 Z_ g'g
0 0 B 12-2 P 11-7 = -
1 1 c 12-3 Q 11-8 4-8
9 9 D 12-4 R 11-9 12-3-8
3 3 E 19-5 - 11) 12-4-8
4 4 F 12-6 / 0-1 11-3-8
5 5 C 19-7 S 0-2 * 11-4-8
6 6 H 12-8 T 0-3 , 0-3-8
7 7 1 12-9 U 0-4 (0-4-8
8 8 + 12 Note: The character $ can be used in FORTRAN only in a
9 9 J 11-1 FORMAT statement.

46

(Where more than one page reference is given, major
reference appears first.)

AConversion 16
ABS ... 23
Active Subscript Expressions, Calculation of. 33
Addition 9
Address Constants 37
AINT ..ot 23
ALOG .ottt 23
Alphameric Fields 16
AMAX0 23
AMAXL 23
AMINO L. 23
AMINL 23
AMOD . .. 23
JAMS/ 36
Appendixes 44
Arguments 9
Arguments, Subprogram 37
Real 38
Arithmetic Expressions, 9
Arithmetic Operators 9
Arithmetic Statements 26, 8
AIYaYS .. 8, 14/15,2
ATAN .. 23
Autocoder Subprogram Examples 40
Autocoder Subprograms for System Library. 37
BACKSPACE Statement 20
Blank Fields 17
Blank Lines 18
Built-In Function 22
Type . 21
Calculation, Numeric 11
CALL Statementc.., 25
Calling Program, Returning Valueto. 39
Calling Sequences 37
Carriage Control 18
Character Set, FORTRAN 46
Checking Source Programs 44
Checklist, Source Program, 45
Coding Form 44
Coefficient of Subscript Expression. 33
Comments 44
Common Data Area, Autocoder Subprograms. 38
COMMON Statement 27
Special Considerations for Use with EQuIvALENCE. 28
coMmoN (With Dimensions) Statement 27
Special Considerations for Use with EQUIVALENCE. 28
Computed Go To Statement 12
Constants 7
CONTINUE Statement 13
Control, Program 44
Control Statements 12,5
Conversion 15
Core Storage
Allocation for comMoN 27
Allocation for EQUIVALENCE 28
Arrangement of Arrays 8,33
Changing Stored Value 28
Size ... 5
COS .o 23
DFactors 33,34

Data Input to an Object Program. 19

Index

Definitions
FORTRAN in Relation to Operating System. 5
Statement Function 22,21
Subprograms 22,21
Deleting Subscript Expressions 34
Diagnostic and Error Messages. 41
Diagnostic Listing of Source Program................. 41, 31
Diagnostic Messages 41, 31
Dictionary Space Requirements 36
DIM . 23
DIMENSION Statement 9, 14, 27
Divide Check (pveHK) 25
Division 9
DO Statement 12
Dummy Arguments 22, 24, 25, 27
Dummy Statement, cCONTINUE 13
DVCHEK ..ottt 25
E Conversion 15
END Statement 13, 24, 25
END FILE Statement 20
Entry Point, Program 31
Equal Sign, 11
Equal To (\EQ.) 10
EQUIVALENCE Statement 28
Special Considerations for Use with comMon. 28
Error Messages, 43
EXEQ Card 30
Exit frompo 12
exrt Subroutine 26
EXP .. e 23
Explicit Type Specification, .. 29, 8
Exponential Expressions 9
Exponential and Expanded Forms, Use of Overflow
Indications 9
Sign Restrictions, 10
Exponentiation 9
Expressions 9,7
Mixed 9
External Representation, Numerics 15
EXTERNAL Statement 29, 25
FConversion 15
f, Definition and Value of 7
f, Transmittal of Value to Subprogram.................. 38
Field
Alphameric 16
Blank 17
Numeric 15
Input, Alphameric 16
Input, Numeric 16
Output, Alphameric 16, 17
Output, Numeric 15
Repetition of Field Format. 17
Repetition of Groups of Field. 17
FieldWidth 15,16
TFIX/ 38
Fixed-Point Constants 7
JFLO/ o 38
FLOAT . oottt e e e e 23
Floating-Point Arithmetic Feature. 30, 38
Floating-Point Constants 7
Floating-Point Interpretive Subroutine 38, 40
FLT Operand 30
FORTRAN as a Component of Operating System. 30
FORTRAN Card 46

FORTRAN Language 7,5

FORMAT Specifications 15
FORMAT Statement 15, 14
Relation to Specification List. 18
FORTRAN Operands30
FORTRAN Processoro, 5
Forward References, Memory Map......... 31
Freeing Index Cells 34
Functions 21
FUNCTION Subprogram 24, 39
Type . 21
General 1/0 Statements 19, 14
GO TO o o oot e 12
Greater Than (GT.) i 10
Greater Than Or Equal To (GE.) 10
H Conversionieinnin .. 16
Hierarchy of Operations, 9,10
T Conversion 15
TABS .« o o 23
IBINTRP . . o oottt e e e e e 38, 40
IDIM . . 23
IF Statement. 12
TFIX . o 23
Implicit Type Specification 8
Implied DO'S o 14
Index Cells 33
Index of po Statement 12
Index Register Requirements, Autocoder Subprograms. ... 37
Input and Output, Provision for. 5
Input and OQutput Statements. 14,5, 19, 20
Input Fields, Numeric, 16
Input — READ Statement 19
INT oo 23
Integer Constants 7
INTEGER FUNCTION Statement 24
INTEGER Statement 29
Internal Representation, Numeric 15,7, 8
Introduction, General
ISIGN . o oo 23
k, Definition and Valueof 7
k, Transmittal of Value to Subprogram 38
Label Characteristics 19
Less Than (.L1.).. e 10
Less Than Or Equal To (\.LE.) 10
Library Subroutines
Inclusionof 5
Use in Autocoder Subprograms 38
List ..o 14
List and ForMaT Statement Relationship 18
Listing, Source Program, 31
Looping — po Statement 12
Machine Indicator Tests 25
Machine Requirements, Minimum 5
Magnitude, Constants 7
Main Program 5
Manipulative 1/0 Statements 20, 14
MAXO 23
MAaxl 23
Maximum Record Length 19
Memory Map of Object Program 31
MINO 23
MINL 23
Mixed Expressions 9
MOD ..o 23
Mode
Arithmetic Expressions 9
Conversion of 11
Relational Expressions 10
Monitor Control Card to Execute FORTRAN 30,7
Multiple-Record ForMAT Statements 17
Multiplication PR 9

48

Names
Main Program i 30
Statement Functions, 21
Subprograms 21
Subprogram Names as Arguments 25
Variable 8
Nestof DO'S 12
Not Equal To (.NE.) 10
Numeric Fields 15
Object Program, Data Inputto 19
Object Program, Memory Map 31
Object Program, Running 30
Offsct of Subscript Expression 33
Opcrators
Arithmetic 9
Arithmetic Valid Combinations. 9
Relational 10
Relational Valid Combinations 10
Order of Computation 9
Order of Specification Statements 29
Output Fields, Numeric 15
Output—wrgITE Statement 20
OVERFL . ..o\ttt 25
Overflow
Exponential 10
Machine Indicator Test (OVERFL) 25
P Conversion 17
Parentheses 9
PAUSE Statement 13
pcu Operand 30
Points of Definition 34
Preparing, Checking, and Punching
Source Program 44
Prercquisite Publications 5
Primary Subprogram, .. 5
Processing Source Programs 30
Processor Options 30
Program 5
Entry Point 31
Size, Memory Map 31
Punching Source Programs 45
Range of po Statement 12
READ Statement 19
Reading or Writing Entire Arrays 14
Real Constants 7
REAL FUNCTION Statement 24
REAL Statement 29
Record Length, Maximum 19
Recursive Operation 38
Relational Expressions 10, 12
Relational 1F Statement 12
Relational Operators 10
Repetition of Field Format 17
Repetition of Groups of Fields, 17
Reserving Index Cells 33
Restrictions
po Statement 13
Exponential Expressions, Signsof 9
RETURN Statement = 13, 24, 25
Returning Values to Calling Program 38
REWIND Statement 20
Sample Program 46
Scale Factors 17
Secondary Subprogram, 5
Sense Lights 25
Sequencing, Source Program Statements 44
SIGN . oot 23
SIN oo 23
Size, Program 31
Skipping Input Records 18

Skipping Lines 18
Slash (/) 17
£S5 5 & - 25
SLITET . oo ottt it e e et e e e 25
Source Program 44
Source Program Characters 46
Source Program Listing 31
Space Bequired by Dictionary 36
Specification Lists 14
Relation to FORMAT Statement 18
Specification Statements L. 27,5
Orderof 29
SQRT .o oot 23
Standard Input Unit 19
Standard Punch Unit 19
Standard Print Unit 18,19
Statement Functions, 21
Defining 22
Names 21
Type .. 21
Statement Number 44,5
Appearance on Memory Map 31
sTOP Statement 13
Subprogram 21,5
Advantages 21
Basic Requirements for Autocoder 38
Built-In Functions 22
caLL Statement 0 25
Definitions 21, 22
Exit from 13
FUNCTION Subprograms 24
Machine Indicator Tests 25
Names 21
Names as Arguments 102, 21,25
SUBRCUTINE Subprograms 25
Usage ... 21
Valid Components 21
Writing Autocoder 37
Subprogram Statements 21,5
SUBROUTINE Subprogram 25
CALL Statement 25
Type 21
Subseript 8,33,7
Coeflicient 33

Expression 33

Literal 33
Offset 33
Variable 33
Subscript Expressions 33
Active 33
DFactors 33
Deleting 34
Equivalence of 34
Valueof 33
Subtraction 9
Symbolic Input/Output Unit Designation 19
Symbolic Unit 19
System Library 5
Autocoder Subprograms for 37
Built-In Functions 22
Tape Labels 19
Tape Mark 20
Transfer of Control Into or From po Range 12
Type .. 7,8,21,29
Type Statements 29
Unconditional co To Statement 12
Unformatted 1/0 Operations
BACKSPACE Statement, . 20
READ Statement 20
WRITE Statement 20
Unusual End of Program 43
Use and Contents of Publication 6
Use of Coding Form 44
Use of Exponential and Expanded Forms 10
Use of Relational Expressions 10
Valid Components, Subprograms 21
Value of Subscript Expression 33
Changes in Value 34
Variables 7.8
Variables, Subscripting 33
Vertical Forms Spacing 18
Waiting Loop 13
Warning Messages, Diagnostic 41
Word Size 7
Work Tapes 19
WRITE Statement 20
X Conversion 17

Index 49

Reader's Comments

IBM 1410/7010 Operating System (1410-PR-155)
FORTRAN

Form C28-0328-1

From

Name

Address

Your comments regarding the completeness, clarity, and accuracy of this publication
will help us improve future editions. Please check the appropriate items below, add

your comments, and mail.

YES NO
Does this publication meet the needs of you and your staff? - [
Is this publication clearly written?

Is the material properly arranged?
If the answer to any of these questions is "NO, " be
sure to elaborate,

How can we improve this publication? Please answer below.

I:I Suggested Addition (Page , Timing Chart, Drawing, Procedure, etc.)

D Suggested Deletion (Page)

D Error (Page)

COMMENTS:

No Postage Necessary if Mailed in U.S. A,

C28-0328-1

STAPLE

FOLD FOLD
FIRST CLASS
PERMIT NO, 81
POUGHKEEPSIE, N. Y.
]
BUSINESS REPLY MAIL ——
NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A,
|
I
POSTAGE WILL BE PAID BY —
IBM CORPORATION F—
P.O. BOX 390 —
]
POUGHKEEPSIE, N.Y. —
|]
]
ATTN : PROGRAMMING SYSTEMS PUBLICATIONS —
DEPARTMENT D9l ——
|
]
Yoo T rele

B

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

STAPLE

CUT ALONG LINE

V'S Ut paUpd

1-82€0-822

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	replyA
	replyB

