File No. 1410/7010-25
Form C28-0328-3

Systems Reference Library

IBM 1410/7010 Operating System (1410-PR-159)
FORTRAN-1410-F0-970

The 1M 1410/7010 ForTRAN language with its associated processor
in the 1410/7010 Operating System provides the user with a con-
venient method of producing programs that will perform efficient
scientific computation and data handling. FORTRAN source pro-
grams are written in a language similar to mathematics. The
processor (1410-FO-970) compiles the source program directly
into machine language in relocatable format.

This publication describes the types of arithmetic, control,
input/output, subprogram, and specification statements accepted
by the processor and the programming rules for their use.

Major RevisioN (December 1965)

This publication is a major revision of, and obsoletes, the publi-
cation IBM 1410/7010 Operating System; FORTRAN, Form
(C28-0328-2. The revision includes two diagrams of the control
card setup needed to execute FORTRAN source and object pro-
grams, and a procedure for establishing an EQUIVALENCE that
can handle double-subscripted variables. Changes to the text
are indicated by a vertical line at the left of the affected text;
changes to figures are indicated by a bullet (») preceding the
figure captions.

Copies of this and other 18M publications can be obtained through 1M Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Department 637, Neighborhood Road, Kingston, New York 12401

Introduction 5
Purpose of This Publication. 5
FORTRAN Language and Processor. 5
Prerequisite Publications 5
Definitions in Relation to the Operating System. 5
Minimum Machine Requirements............ 5
Use and Contents of This Publication.......... 6

PART 1—-THE FORTRAN LANGUAGE 7

Constants, Variables, Subscripts, and Expressions 7

Constants 7
Integer Constants 7
Real Constants 7

Variables 8
Names of Variables.. 8
Types of Variables. 8

Subscripts 8
Formof Subscripts. 8
Subscripted Variables 8
Arrangement of Arrays in Core Storage. 8

Expressions 9
Arithmetic Expressions 9
Relational Expressions 10

The Arithmetic Statement 11

The Control Statements 12
Unconditional o To Statement. 12
Computed co To Statement. 12
Relational 1F Statement. 12
Arithmetic 1r Statement........................... 12
po Statement 12
CONTINUE Statement 13
PAUSE Statement 13
STOP Statement, 13
END Statement 13
RETURN Statement 13

Input/Ovutput Statements 14

Specification Lists 14

Reading or Writing Entire Arrays..................... 14

FORMAT Statement 15

Format Specifications 15
Numeric Fields 15
Alphameric Fields 16
Blank Fields, X Conversion........................ 17
Repetition of Field Format. 17
Repetition of Groups of Fields...................... 17
Scale Factors, P Conversion. 17
Multiple-Record FormaT Statements. 17
Carriage Control 18
1/0 List and ForMAT Statement Relationship....... ... 18

Data Input to an Object Program............... 19

Symbolic Input/Output Unit Designation.............. 19

General Input/Output Statements. 19
Input — The READ Statement..................... .. 19
Output — The wrrTe Statement. 20

Manipulative Input/Output Statements. 20
END FILE Statement. 20
REWIND Statement 20
BACKSPACE Statement 20

Subprograms: Function and Subroutine Statements 21
Advantages of Subprograms............... 21
Functions and suBrouTINE Statements............... 21

Naming Subprograms and Statement Functions.21

Definition and Usage of Subprograms — Valid Components 21

Contents

Decfinition of Subprograms............... 21
Usage of Subprograms........ 22

Defining Statement Functions. 22

Defining Subprograms 22
Built-In Function 22
FUNCTION Subprogram 23
SUBROUTINE Subprogram 24
Subprogram Names as Arguments —

The EXTERNAL Statement........................ 25
The carL Statement. 25
Machine Indicator Tests. 25
extt Subroutine 26
The Specification Statements 27

DIMENSION Statement 27
COMMON Statement 27
coMMON (With Dimensions) Statement.............. 27
EQUIVALENCE Statement 28
coMMON and EQUIVALENCE Statements —

Special Considerations 28
Type Statements (INTEGER, REAL, EXTERNAL) 29
Order of Specification Statements. 29

PART 2—FORTRAN AS AN OPERATING
SYSTEM COMPONENT 30
Monitor Card to Execute FORTRAN 30
TITLECard 32
Source Program Listing 33
Source Program Diagnostic Listing 33
Memory Mapt 33
Calculation of Active Subscript Expressions 35
Terms Used 35
Reserving Index Cells 35
Equivalence of Subscript Expressions 36
Deleting Subscript Expressions 36
Dictionary Space Requirements 38
Writing Autocoder Subprograms for the
System Library 39
Calling Sequencesccoiiiriuiiiiia.. 39
Index Register Requirements 39
Writing the Subprogram 40
Basic Requirements 40
Handling Real Arguments 40
Common Data Area 40
Using Other Functions 40
Returning Values to Calling Program 41
Examples of Autocoder Subprograms 41
CHAIN Feature 43
Main Link 43
Dependent Links, 43
Calling Dependent Links 43
Exiting from Main-Program Links 44
Loading of Links e 44
References Among Links 44
Sample Job Using cHAIN Feature 44
PART 3—DIAGNOSTIC AND
ERROR MESSAGES 47
Diagnostic Messages 47
Error Messages 49
Appendixes
A: Source Program Statements and Sequencing 50
B: Preparing, Checking, and Punching a Source Program 50
C: Table of Source Program Characters 52
Index 53

Purpose of This Publication

This publication is a reference manual for persons
writing programs in the FORTRAN language for usé with
the M 1410/7010 Operating System. Requirements
for writing Autoceder subprograms to be combined
with a FORTRAN program also are outlined.

FORTRAN Language and Processor

The 1410/7010 rorTRAN Programming System consists
of a language and its associated processor. The FoRr-
TRAN language provides facilities for expressing most
problems of numeric computation. In particular, prob-
lems containing large sets of formulas and many vari-
ables can be dealt with easily, and any variable may
“have up to three independent subscripts.

The capability of ¥orRTRAN may be expanded by
the use of subprograms. These subprograms may be
written in FORTRAN language or in Autocoder, and may
be called by other FORTRAN main programs or sub-
programs.

The language consists of five general categories of
statements:

Arithmetic Statements define calculations to be per-
formed.

Control Statements determine the processing flow.

Input and Output Statements specify the transfer of
information between the computer and input/output
devices.

Subprogram Statements allow the user to write sub-
programs.

Specification Statements declare properties of names
appearing in the program and enable the user to con-
trol the allocation of core storage.

Any of these statements may be assigned a statement
number. To permit reference within one statement to
another statement, the latter statement must be as-
signed a statement number.

The 1410/7010 rORTRAN processor operates as part
of the 1410/7010 Operating System. The object pro-
grams it produces are run according to the conventions
of the Operating System.

Processor input is a source program written in the
rFORTRAN language. The processor lists the source pro-
gram and produces an object program on cards, in
card-image form on magnetic tape, and/or on disk
storage. The object program is in the relocatable for-
mat of the 1410/7010 Operating System.

Introduction

INCLUSION OF LIBRARY SUBROUTINES

Subroutines used to evaluate functions can be placed
into the System Library where they are available for
incorporation into object programs.

PROVISION FOR INPUT AND OUTPUT

Certain statements in the FORTRAN language introduce
input and output routines into the object program.
These routines permit considerable freedom of format
in input and output data. The routines form a part of
the System Library.

Prerequisite Publications

It is assumed that the user is familiar with the informa-
tion contained in IBM 1410/7010 Operating System;
Basic Concepts, Form C28-0318, and General Informa-
tion Manual; FORTRAN, Form F28-8074.

Additional knowledge is necessary if it is desired
to write subprograms in Autocoder as explained in
Part 2 of this manual. This information appears in the
following publications:

IBM 1410/7010 Operating System; Autocoder, Form

C28-0326,
IBM 1410 Principles of Operation, Form A22-0526,
IBM 7010 Principles of Operation, Form A22-6726.

Definitions in Relation to the Operating System

The rFoRTRAN language defines main program and three
classes of subprograms as explained in Part 1 of this
publication. The FORTRAN term main program is syn-
onymous with the Operating System term primary
subprogram, and the FORTRAN term subprogram is syn-
onymous with the Operating System term secondary
subprogram. Main programs and subprograms may be
separately compiled and both may call other subpro-
grams. During execution of the object deck, all pro-
gramming that constitutes the main program and any
required subprograms resides in core storage at the
same time.

The word program is used in this publication in a
general sense where the distinction between a main
program and a subprogram is not significant.

Minimum Machine Requirements

The minimum machine configuration required by the
FORTRAN processor is discussed in the publication IBM
1410/7010 Operating System: System Generation, Form
C28-0352.

Introduction 5

Use and Contents of This Publication

This publication is divided into three parts, three
appendixes, and an index:

Part 1 describes, with examples of use, the state-
ments of the FORTRAN language.

Part 2 describes the operand parameters of the
Monitor control card that institutes execution of a
FORTRAN compilation, the format of the source pro-
gram listing, calculation of the subscript expressions

in a FORTRAN program, and basic requirements for
writing Autocoder subprograms to be combined with
a FORTRAN program.

Part 3 is a listing of the diagnostic and error mes-
sages.

Appendix A describes the order in which source
program statements of a FORTRAN program are exe-
cuted. Appendix B discusses preparing, checking, and
punching a source program. Appendix C is a tabula-
tion of the FORTRAN character set.

PART 1 — THE FORTRAN LANGUAGE

Constants, Variables, Subscripts, and Expressions

This section describes constants, variables, and sub-
scripts for one-, two-, and three-dimensional arrays of
variables. Also described are expressions which are
combinations of constants, variables, and function ref-
erences. (Functions and function references are dis-
cussed under “Subprograms: Function and Subroutine
Statements.”)

The 1410/7010 ¥ORTRAN processor permits the user
to define the precision of arithmetic calculations by
specifying word size up to 20 digits for integers and
18 digits plus two exponent digits for real numbers.
Specification is made on the Monitor control card that
causes execution of the FORTRAN compiler. Details
appear in Part 2 under “Monitor Card to Execute
FORTRAN,”

The word size specifications apply to both constants
and variables of a given type (integers or real num-
bers). Word sizes for each type of number must be
the same for all subprograms combined into a single
program.,

Constants
Two types of constants are permitted in a FORTRAN
source program: integer constants and real constants.
(In older material on FORTRAN these are referred to as
fixed-point constants and floating-point constants, re-
spectively.)

Integer Constants

General Form

An integer constant consists of n decimal digits, where
1 = n = k, written without a decimal point. A preceding

+ or — sign is optional.

EXAMPLES
3
+1
— 234567890

MAGNITUDE OF INTEGER CONSTANTS — THE VALUE OF k

The magnitude of an integer constant must be between
1 and (108—1) or be zero.

The k specification essentially defines core-storage
word size for integer constants, since each integer
constant in core storage will occupy k core-storage
positions, which will be handled as a single unit (or
word). For example, the constant +314 is stored (as-
suming k=5) as 00314, The constant —314 is stored
as 00314. If the user attempts to use an integer con-
stant of more digits than defined by k, the high-order
digits are lost.

The value of k is indicated to the processor through
control information supplied by the user. If k is speci-
fied by the user, the value of k must be 3=k=20. If
k is not specified by the user, the processor will use k
equal to five decimal digits.

The constant zero is always stored with a positive
sign.

Real Constants

General Form

A real constant consists of n decimal digits, where 1 = n
= f, written with a decimal point. A preceding + or -
sign is optional.

A real constant may be followed by a decimal exponent,
which is written as the letter E followed by a (signed or
unsigned) one- or two-digit integer constant.

EXAMPLES
17.
5.0
—-.0003
5.E3 ie. 5.0x103
50E+3 ie. 5.0x10+3
5.0E-3 ie. 5.0x10—3
—5.0E+3 ie. —5.0x10+3
—-5.0E-3 ie. —5.0x10—3
5.0E+03 ie. 5.0x10+38

MAGNITUDE OF REAL CONSTANTS — THE VALUE OF f

The magnitude of a real constant must lie between
10-100 gnd (1—10—*) X 10°° or be zero.

The f specification for real number precision essen-
tially defines core-storage word size for real constants.
Within core storage a real constant is stored in an
exponential form occupying f+2 digits (f+2 core-
storage positions). The first { digits contain the frac-
tion (a decimal point is understood to precede the

Constants, Variables, Subscripts, and Expressions 7

high-order digit position). The last two positions hold
the exponent. Thus if f is 8, a real constant occupies
ten core-storage positions — eight for the fraction and
two for the exponent. For example, the constant
+3.14159 is stored (assuming f=8% as 514_11590661.
The constant —3.14159 is stored as 3141590001.

The value of f is specified by means of control infor-
mation supplied by the user to the processor. If f is
specified by the user, its value must be 3=f=18. If {
is not specified by the user, the processor will use f
equal to eight decimal digits. If the user attempts to
use a real constant with more digits than defined by
f the low-order digits are truncated.

Variables

A variable quantity is represented by a symbolic name.
A variable is specified by its name and type. The type of
variable (real or integer) corresponds to the type of
constant (real or integer) that the values of the vari-
able will assume.

Names of Variables

General Form

The name of a variable consists of one to six alphameric
characters, the first of which must be alphabetic. Within
the same program, the same name must not be assigned
to a variable end to a subprogram.

EXAMPLES

A
JOB3
COST
B546T

Types of Variables

The type of a variable, integer or real, can be speci-
fied in two ways: explicitly or implicitly.

EXPLICIT TYPE SPECIFICATION

Explicit type specification is made by the Type state-
ments INTEGER and REAL. (See “The Specification
Statements.”)

IMPLICIT TYPE SPECIFICATION

Implicit type specification of a variable is made as
follows:

If the first character of the variable name is I, J, K,
L, M, or N, the variable is an integer variable.

If the first character of the name is not I, J, K, L,
M, or N, the variable is a real variable.

8

Explicit type specification overrides implicit type
specification. For example, if a variable name is INT
and a type specification states that this variable is
to be real, the variable is handled as a real variable
even though it implicitly has the form of an integer
variable.

Subscripts
A variable may be made to represent any element of
a one-, two-, or three-dimensional array by appending
one, two, or three subscripts, respectively to the vari-
able name.

Form of Subscripts

General Form

Subscripts may take only the following forms:
v
c

v+c v represents an unsigned, nonsubscripted integer
variable.

v—c ¢ and ¢’ represent unsigned integer constants.

c*v (+ denotes addition; —, subtraction; *, multi-

c*v+c¢ plication.)

c*v—c’

EXAMPLES OF SUBSCRIPTS

I

3

MU +2
MU-2
5%]
5*]+2
5%]-2

A variable in a subscript can not itself be sub-
scripted.

Subscripted Variables

General Form

A subscripted variable consists of a variable name followed
by a pair of parentheses enclosing one, two, or three sub-
scripts separated by commas.

EXAMPLES

A(T)

K(3)

ALPHA(I J+2)
BETA(5*] -2, K~2, L+3)

A reference to an array in a program must be pre-
ceded by a DIMENSION statement or a COMMON state-
ment that specifies the size of the array. See the section
“The Specification Statements” for the description of
those statements.

Arrangement of Arrays in Core Storage

Arrays are placed in core storage in column order,
in order of decreasing storage addresses:

One-Dimensional Arrays are stored sequentially.

Two-Dimensional Arrays are stored sequentially
by column.

Three-Dimensional Arrays are stored sequentially by
column from plane to plane. (That is, the first sub-
script is cycled most rapidly and the last least rapidly.)

For example, the array whose last element is A(M,N)
will appear in core storage as:

AMN)..A(M2)..A(2,2),A(1,2),A(M,1)..A(2,1),A(L,1)
where a(1,1) which was stored first, is in the high
core-storage position, and A(M,N) is in the low posi-
tion.

Expressions

Arithmetic Expressions
An arithmetic expression is a sequence of constants,
subscripted or nonsubscripted variables, and function
names (see “Subprograms:: Function and Subroutine
Statements”), separated by arithmetic operators, com-
mas, and parentheses.

ARITHMETIC OPERATORS

+ addition

- subtraction

* multiplication
/ division

b exponentiation

RULES FOR CONSTRUCTION OF ARITHMETIC EXPRESSIONS

Figures 1 and 2 indicate which constants and vari-
ables may be combined by the arithmetic operators
to form arithmetic expressions. Figure 1 gives the valid
combinations for the arithmetic operators: + — *
and /. Figure 2 gives the valid combinations for the
arithmetic operator **,

+-*/ Real Integer
Real Valid Invalid
Integer Invalid Valid
Figure 1. Arithmetic Operators
Exponent
** Real Integer
2| Real Valid Valid
&
Integer Invalid Valid

Figure 2. Exponentiation

EXAMPLES
A+B (Valid)
I*J (Valid)
A*I (Invalid)
J*B (Invalid)
A+2 (Invalid)
A+2. (Valid)
A+2.0 (Valid)
A**2,0 (Valid)
A** (Valid)
I**A (Invalid)
I**2 (Valid)

Assume that A and B are of type real and I and] are of type
integer.

Expressions may be connected by arithmetic oper-
ators to form compound expressions provided that no
two operators appear in sequence and no operation
symbol is assumed. For example, the algebraic ex-
pression

(AXB)(—CD) must be written
(A*B)*(~C**D), not
(A*B)*—C**D or (AB)*(—C**D)

Parentheses may be used, as in algebra, to group
expressions, to indicate hierarchy of operations, and
to make interpretation easier for the user.

The mode of an arithmetic expression is either real
or integer and, with the following exceptions, cannot
be mixed:

A Real Quantity can appear in an integer expres-
sion as the argument of a function (see “Subprograms:
Function and Subroutine Statements”).

An Integer Quantity can appear in a real expression
as the argument of a function, as a subscript, or as an
exponent.

The expression A**B**C is not allowed. It must be
written as (A**B)**C or A**(B**C), whichever is
meant.

HIERARCHY OF OPERATIONS

Parentheses may be used, as in ordinary algebra, with
any expression to specify the order in which operations
are to be executed. When parentheses are omitted, the
order of computation is the following:

1. Function computation and substitution (see “Sub-
programs: Function and Subroutine State-
ments”)

2. Exponentiation

3. Multiplication and division

4. Addition and subtraction

When several operations within the same hierarchy

appear in an expression, such as a sequence of con-
secutive multiplications and divisions (or additions and
subtractions), the order of processing is from left to
right, as illustrated in the following examples:

A+B+Cishandled as (A+B)+C

I*J*K is handled as (I*])*K

A+B—Cishandled as (A+B)—C

Constants, Variables, Subscripts, and Expressions 9

I*]J/K is handled as (1*])/K

I*J*K/L is handled as ((I*]J)*K)/L

A/B+ C*D/E*F**G is handled as (A/B) +
(((C*D)/E)*(F**G))

EXPONENTIAL EXPRESSION SIGN RESTRICTIONS

The following restrictions on the signs of the base
and exponent must be observed. If overflow occurs
during object program execution, it is indicated as
shown in the third column.

FORM OF RESULT IF
EXPONEN- ANSWER
TIAL RESTRICTION ON SIGN OF CREATES
EXPRESSION BASE OR EXPONENT OVERFLOW
A**B Negative base (A) not permitted; | Unusual end
error message produced by the of program
ALOG function and unusual and error
end of program occurs, When message.
base (A) is zero, result is zero
for any value of B.
A**B is computed from
EXP (B*ALOG (A)).
The ALOG function does not
accept negative values of the
argument. In applications where
negative A is expected and B
is identically integral (e.g., 2.0
or —6.0), use A**IFIX(B) in-
stead of A**B. Refer to “Built-
In Function” for an explanation
of EXP, ALOG, and IFIX func-
tions.
A** When base (A) is zero, result | Overflow in-
is zero for any value of I. dicator
turns on
and expo-
nent is 99.
I**] Negative exponent (J) always re- | High-order
sults in an integer 1 and an digits of the
error message. When base (I) integer re-
is zero, result is zero for any sult are
value of J. truncated.

USE OF EXPONENTIAL AND EXPANDED FORMS

If use of the exponential forms A**I or I**] and the
expanded forms A*A*, .. or I*¥I*. . . is optional, an
improvement in program efficiency can be obtained
by selection of the form shown here.

INTEGER
EXPONENT MOST EFFICIENT FORM

0-5 Expanded form; e.g., A*A and A*A*A
6 or greater Exponential form; e.g., A**I

10

Relational Expressions

A relational expression consists of two arithmetic ex-
pressions, of the same mode, separated by a relational
operator.

RELATIONAL OPERATORS

.GT. Greater than (>)
.GE. Greater than or equal to (=)
.LT. Lessthan (<)
.LE. Less than or equal to (=)
EQ. Equalto (=)
NE. Notequal to (<)
Note: The preceding and following periods are a

necessary part of the symbol.

RULES FOR CONSTRUCTING RELATIONAL EXPRESSIONS
Figure 3 indicates the valid combinations for the rela-
tional expression a ¢ b, where a and b are arithmetic
expressions, and ¢ is any relational operator.

b
] Real Integer
Real Valid Invalid
a

Integer Invalid Valid
Figure 3. Relational Operators
EXAMPLES

A.GT.B (Valid)

10.LE.A (Valid)

LEQ.J (Valid)

A**2 NE..01 (Valid)

A.GElI (Invalid)

Assume that A and B are of type real and I and J are of type
integer.

Note: The arithmetic expressions can contain func-
tion references (see “Subprograms: Function and Sub-
routine Statements”).

HIERARCHY OF OPERATIONS

A relational expression is computed in the following
way: the value of each arithmetic expression is com-
puted following the rules of hierarchy for arithmetic
expressions; these values are then compared for the
relation indicated by the relational operator.

USE OF RELATIONAL EXPRESSIONS

Relational expressions are used only in the Relational
1¥ statement (see “The Control Statements™).

The arithmetic statement defines a numeric calcula-
tion. A FORTRAN arithmetic statement closely resembles
a conventional arithmetic or algebraic formula, with
the primary difference that the equal sign (=) speci-
fies replacement, rather than equality.

General Form

a=b
a is a real or integer variable that may or may not be
subscripted.

b is an arithmetic expression.

EXAMPLES
A=B + (C - 1.0)**D

I=] - K/(L + 1)
A(LJ.K) = D(N) + DAV**MAR

The Arithmetic Statement

A real or integer arithmetic expression can be
equated to any type of variable.

If the type of variable is real and the mode of the
expression is integer, the expression is evaluated and
this value is converted to a real value. The reverse is
also valid. These and additional examples of arithmetic
statements are:

I=8 Truncate B to an integer and convert it to an
integer value; store it in I.

A=1 Convert I to a real value and store it in A.

A=B Store the value of B in A.

I=1T+1 Add1toIand store in I. This example illustrates

that an arithmetic statement is not an equation.
Rather, it is a command to replace a value.

A = 3.0*B Multiply 3 by B and store result in A.

The Arithmetic Statement 11

The Control Statements

Control statements enable the user to control the flow
of his program.

Unconditional GO TO Statement

General Form
GO TOn

n is a statement number.

This statement causes control to be transferred to the
statement numbered n. (See Appendix B for a discus-
sion of statement numbers.)

EXAMPLE
GO TO 57

Computed GO TO Statement

General Form

GO TO (l’h, N2y o0 ,nm),i
ny, Nz, . . . ;N are statement numbers,
i is a nonsubscripted integer variable.
The limits of the valueof i are: 1 < i = m.

This statement causes control to be transferred to
statement number nj,ns, ..., Or np, depending on
whether the value of i at the time of execution of the
statement is 1, 2, . . . , or m, respectively.

EXAMPLE
GO TO (30, 40, 50, 9), K
Thus, if the value of K is 3 at the time of execution
of this statement, the program will transfer to the state-

ment identified by the third statement number in the
list, statement 50.

Relational IF Statement

General Form

IF (relational expression) statement
The statement may be any executable FORTRAN statement
except another Relational 1F statement or a po state-
ment,

The Relational 17 statement will cause the statement
following the parenthesis to be executed if the rela-
tional expression is true. If the relational expression is
not true, control will transfer to the next sequential
statement in the program.

If the relational expression is true and the statement
is an arithmetic statement (e. g., A = B*c), the arith-
metic operations are performed and control is then
transferred to the next sequential statement.

If the relational expression is true, and the statement
is a caLL (see “Subprograms: Function and Subroutine

12

Statements”), control will be transferred to the next
sequential statement upon return from the subprogram

called.

EXAMPLES

IF (L.GE.16) ANSWER=A/B~C
IF (A.GE.0.0) GO TO 876

Arithmetic IF Statement

General Form

IF (arithmetic expression) ni, ns, ng
i, Nz, N are statement numbers.

Control is transferred to statement number nj, n,,
or n; depending on whether the value of the expres-
sion is less than, equal to, or greater than zero,
respectively.

EXAMPLES

IF (A) 2,3,2
IF (A-B) 10, 5,7
IF (IOTA-KAPPA) 1,2, 3

DO Statement

General Form

DO ni = my,ms,mg

n is a statement number (see Appendix B).

i is a nonsubscripted integer variable.

my,m;,m; are each either unsigned integer constants or
nonsubscripted integer variables.

mg is optional; if it is not stated, its value is assumed to
be 1. If it is omitted, the preceding comma must also
be omitted.

EXAMPLES

DO 301I=1,M,2
DO 24 I=2, 10
The po statement is a command to execute repeat-
edly the statements that follow, up to and including
the statement numbered n. The first time the state-
ments are executed, i has the value m; and each suc-
ceeding time 1 is increased by the value of m;. After
the statements have been executed with i equal to the
highest value that does not exceed ms, control passes
to the statement following statement number n. This is
called a normal exit from the po statement.
The Range of the DO Statement: The range of the

po statement is the set of statements that will be exe-
cuted repeatedly.

The Index of the DO Statement: The index of the po
statement is the variable i. Its value is available during
execution of the po. After a normal exit from a po, the
value of the index is not available for use.

DO’s Within DO’s: A po can be contained within
another po: this is called a nest of po’s. If the range of
a Do contains another po, then all statements in the
range of the enclosed po must be within the range of
the enclosing po. The maximum depth of nesting, in-
cluding implied po’s in 1/0 lists, is 25. That is, a Do can
contain a second po; the second can contain a third;
the third, a fourth; and so on up to 25 po statements.

Transfer of Control: Contrcl may not be transferred
into the range of a po from outside its range. However,
control can be transferred out of a po range. In this
case, the value of the index remains available for use. If
exit is caused by transfer out of the ranges of a set of
nested po’s, then the index of each po is available.

Figure 4 illustrates the possible transfers in and out
of the range of a po. In this figure, 1, 2 and 3 are per-
mitted, but 4, 5, and 6 are not permitted.

Figure 4. Transfer of Control, po Statements

Restrictions: Any statement that redefines the value
of the index or any of the indexing parameters (m’s)
is not permitted in the range of a po. When the range
of a po contains reference to a subprogram, care must
be taken that the subprogram does not alter the index
or any of the indexing parameters. The range of the
po cannot end with a o To statement (see the “con-
TINUE Statement,” below).

CONTINUE Statement

General Form
CONTINUE

CONTINUE is a dummy statement that does not pro-
duce any executable instructions. It is used as the last
statement of a po to provide a branch address for
Go To statements that are intended to begin another
repetition of the o range. An example is:

DO 10T = 1,20

.

NX=Y+7Z

IF (A.GE.B) GO TO 10
A=A+10
B=B-20
GO TO 11

10 CONTINUE

PAUSE Statement

General Form

PAUSE
PAUSE n
n is an unsigned integer constant whose value is less
than 105.

This statement causes the program to print on the
console printer “pause 00000” or, if n is specified,
“PAUSE n” (where n includes leading zeros). The pro-
gram will then enter a waiting loop. Operator inter-
vention will cause the program to resume execution,
starting at the next statement after the rAusE statement.

STOP Statement

General Form
STOP

This statement terminates the execution of the pro-
gram and returns control to the Monitor.

END Statement

General Form

END

The END statement defines the end of a program or sub-
program for the processor. Physically, it must be the
last statement of each program or subprogram. The
END statement is not executable; it must not be en-
countered in the flow of the program.

RETURN Statement

General Form

RETURN

This is the normal exit from a subprogram. The RE-
TURN statement signifies a logical conclusion of the
computation and returns any value computed and con-
trol to the calling program.

The Control Statements 13

Input/Output Statements

The Input/Output (1/0) statements control the trans-
mission of information between the computer and
input/output devices (such as card readers, card
punches, and magnetic tape units). The 1/0 statements
fall into the following general categories:

FORMAT Statements: These are nonexecutable
statements that specify (a) the arrangement of the
information to be transferred, and (b) the editing
transformation between internal (core-storage) and
external forms of the information. The rorMAT state-
ments are used in conjunction with the general 1/0
statements.

General 1/0 Statements: These statements cause
transmission of information between the computer and
input/output devices. They are reap and WrITE.

Manipulative 1/0O Statements: These statements
manipulate input/ouput units. They are END FILE,
REWIND, and BACKSPACE.

Specification Lists
The general 1/0 statements call for the transmission of
information and must, therefore, include a list of the
items to be transmitted. A list item may be a sub-
scripted or nonsubscripted variable; successive items
of the list must be separated by commas. An 1/0 list
is read from left to right. A constant may appear in
the list only as a subscript or as an indexing parameter.
A list is ordered, and its order must be the same
as the order in which the information appears in the
input medium or in which it is desired that the informa-
tion appear in the output medium.

A list may contain implied po’s. In this case a comma
must precede the index variable, and all items to be
included in the range of the implied po must be set
off by parentheses. po’s can be effectively nested by
the placing of matching parentheses around the first
and last items of each successive inner po range.

The index values for the implied po may appear in
the list. For example, the list specification

K,L,M, (E(L,]),I=K, L, M)
will transfer the values of the integer variables K, L,
and M, and will also insert those values into the im-
plied po. For example, if K=1, L=99, and M =5, the
implied po is effectively

E(L]),I=1,99,5
EXAMPLE
For the following example, assume that the value of
K is defined in the program before the appearance of

14

the general 1/0 statement of which the list is a part.
Consider this list:
A, B(3), (C(1), D(1,K), I=1, 10, 2),
((E(L]),1=1,10,2),F(],3),J=1,K)

If this list is used with an output statement, the
information will be written on the output medium in
this order:

A, B(3), C(1), D(1, K), C(3), D(3, K),
-+« C(9), D(9, K),
E(1,1),E(3,1),..., E(9, 1), F(1, 3),
E(1,2), E(3,2),. .., E(9, 2), F(2, 3),

E(LK),E(3,K),. .., E(9,K), F(K, 3)
Similarly, if this list were used with an input state-
ment, the variable names A, B(3), C(1), etc., will
be assigned to the values given on the external medium.

IMPLIED DO

The order of the list generated by the implied po’s of
the preceding example is approximately equivalent
to the following sequence of statements. The order is
approximately equivalent since each READ statement
below implies that input is to come from the beginning
of a new input record. This may not be the case for
the actual list.
READ (M, m) A
READ (M, n:) B(3)
DO51I=1,10
READ (M, n:) C(I)
5 READ (M, n.) D(L, K)
DO9J=1K
DO 81I=1, 10,2
8 READ (M, n;) E(L J)
9 READ (M, ne) F(J, 3)
n. are the statement numbers of FORMAT statements, as
cxplained further on in this section.
M is the symbolic unit designated for input.

Reading or Writing Entire Arrays

When the reading or writing of an entire array is re-
quired, an abbreviated notation may be used in the
list of the input or output statement. Only the name
of the array need be given, and subscripts may be
omitted. For example, if A has previously been listed
with a DIMENSION or a commoN (With Dimensions)
statement (see “The Specifications Statements”), the
statement
READ (1, 18) Aor READ (4) A

will cause all of the elements of the A array to be read
in the implied order of elements. Thus, if A is a 2X3
array, the elements should be placed on the input
medium in this order:

A(1,1), A(2,1), A(1,2), A(2,2), A(1,3), A(2,3).

FORMAT Statement

General Form

FORMAT (Si, Sz, ..., Sa)
S1, Sz, . . ., Sa are format specifications.

EXAMPLE
FORMAT (12, E12.4, F10.2)

The general formatted input/output statements —
READ (i, n) List, and wrrtk (i, n) List — in addition to
a list of items to be transmitted, refer to a FORMAT
statement that describes the data record and the type
of conversion to be performed between the internal
and the external representations for each element in the
list. The FormAT statement describes the record to be
read or written by giving the specification for each field
— numeric, alphameric, or blanks — in the record from
left to right, beginning with the first character of the
record.

FORMAT statements must appear in the source deck
after any EQUIVALENCE statements and before any
Statement Functions or executable statements. FORMAT
statements must have a statement number, See Ap-
pendix B for a discussion of statement numbers.

A total of 9,999 characters is permitted in the
FORMAT statements of each program compiled. Blanks
are not counted except when specified in the H conver-
sion described later.

Format Specifications

Numeric Fields

Three types of specifications are available for informa-
tion in numeric form:

CONVER-
INTERNAL SION EXTERNAL
REPRESENTATION CODE REPRESENTATION

Real (e.g.,TZSOOOO&Sé Real with exponent

for f=8) E (e.g., .123E—-06)
Real (e.g., 1230000008 Real without exponent

for f=8) F (e.g., .000000123)
Integer (e.g.,&l%’i Integer

for k=5) I (e.g., 123)

These types of conversion are specified in the fol-
lowing forms:

Ew.d

Fw.d

Iw

E, F, and I specify the type of conversion.

w is an unsigned integer constant specifying the
field width of the data; w must not be zero.
(This specification may be greater than that re-
quired for the actual digits, to provide spacing
between successive numbers.)

d is an unsigned integer constant specifying the
number of positions of the field that are to ap-
pear as a fractional part.

Specifications for successive fields within a record are
separated by commas. Specification of more characters
than are permitted for the appropriate input/output
record cannot be given. For example, the format speci-
fication for output on a printer should not provide for
more characters than can be handled by the printer.

Information to be transferred under E and F con-
version must be of type real; information to be trans-
ferred under I conversion must be of type integer.

In E and F type FORMAT statements, w may consist of
up to three numerical characters (maximum value, 133;
see message 097) and d of up to two numerical char-

acters.
However, 1BcomMoN does not handle more than two

numerical characters for both w and d; for this reason
fields w and d should never exceed two numerical
characters.

OUTPUT FIELDS
The field-width count (w) for output E and F conver-
sion must include a space for the decimal point; a
space for the sign must be included only if negative
numbers are to be converted. (An example of the
input and output form of negative numbers subject to
E or F conversion is —.123Eb06, —12.3, etc., where b
indicates a blank.) Also, for E conversion, a count must
be made for the letter E, the sign of the exponent, and
the two-digit exponent. Therefore, for E output con-
version, minimum w = d + 6.
Two examples of E output conversion follow:

INTERNAL FORMAT OuUTPUT
REPE{ESEN’I‘ATION SPECIFICATION REPRESENTATION

12300008 E9.3 b. 123E~06

12300006 E9.3 —. 123Eb06

Nonsignificant zeros do not appear in the output for
E, F, or I conversion, except for the exponent of E out-
put conversion, If the exponent is less than ten, a zero
precedes the significant exponent digit.

If a number converted by E or F output conversion
requires more space than is allotted by the format
specification, an asterisk (*) is inserted in the high-
order position of the field, any other digits preceding
the decimal point are replaced by blanks, the decimal
point is inserted in the correct position, and digits
following the decimal point are replaced by zeros.
For E conversion the internal exponent digits are in-
serted in the external exponent field. The external
exponent digits, therefore, are correct unless overflow
occurred within the machine.

If a number converted by output I conversion re-
quires more space than allotted by field width in the
format specification, the excess high-order digits will
be lost, an asterisk (*) will be inserted in the leftmost

Input/Output Statements 15

position of the field, and an error message will be sup-
plied during execution.

If the number requires fewer spaces than allotted,
the high-order excess positions are filled with blanks.
Thus, a format specification that has a greater field
width than is required may be used to space an output
record.

INPUT FIELDS

The field-width count (w) for input E and F conver-
sion must include a space for a decimal point if one is
used explicitly in the input data (see “Data Input to
an Object Program”). A space for the sign must be
included only if negative numbers are to be converted.

For E input conversion a variety of forms, including
the standard output form, is acceptable. A count must
be made for each character of the input data that may
be present. This includes the E, the sign of the expo-
nent, and the exponent digits.

The following example shows the forms of input
data acceptable for E conversion. .

VALUE TO BE
REPRESENTED

PERMISSIBLE INPUT FORM
unper FORMAT (E10.3)

+0.123E—06
+.123E—-06
123E-06
J23E-6
123-06
123-6

Decimal point in any of above
forms may be omitted.

—0.123E+06
—.123E+06
-.123E+6
—.123Eb06
—.123E6
—.123Eb6
—.123+06
-.123+6

Decimal point in any of above
forms may be omitted.

123 X 106

—.123 x 10¢

Equivalent forms of the same number, such as
1.23—7 or 12.3E —8 for the first number in the example,
also are acceptable.

If the FORMAT specification does not describe the
input data correctly, the desired transfer cannot occur.
For example, if —1234.5 is to be read into core storage

under F5.2, the number is treated as though it were
—-12.34,

Alphameric Fields

FORTRAN provides two methods by which alphameric
information may be transferred:

The specification Aw causes w characters to be read
into or written from a core-storage location designated
by a variable or array name.

The specification nH specifies that alphameric in-
formation is contained in the FORMAT statement,

16

The basic difference between A and H conversion
is that alphameric information handled by A conver-
sion is given a name, and thus can be referred to by
this name for processing and modification. The asso-
ciated 1/0 statement therefore requires a list when A
conversion is specified by the ForRMAT statement.

Information handled by H conversion is not labeled;
it is a constant field and cannot be referred to or
manipulated.

For input, the specification nAw causes n successive
fields of w characters each to be read in the form in
which they appear in the input medium. The n names
specified by the list are assigned to the n fields that are
read into core storage.

A CONVERSION
For example:

8 FORMAT (12A6)
READ (1, 8) X, Y, (ACONV (1), I=1, 10)

These statements cause the Standard Input Unit to
read a card containing 12 six-character fields into core
storage in the form that the fields appear on the card.
The first word is assigned the name X; the second Y;
and the remaining words are aconv(1l) through
aconv(10).

For output, the specification nAw causes n succes-
sive fields of w characters each to be transferred from
core storage to the device specified.

In both input and output, w must not exceed the
word size of the list elements. That is, w must not be
greater than k (for integer elements in the list) or f+2
(for real elements in the list).

With A conversion, input is read into core storage in
inverted order. If this data is printed from core storage
with any other conversion, the output appears in its in-
verted order. For example, with A conversion, VELOCITY
would be read into core storage as vricoLev. If A con-
version is used for output, it would be printed as
veLocity. However, if any other conversion is used
for output, this data would be printed as yTICOLEV.

H CONVERSION
The specification nH is followed by n alphameric char-
acters in a FORMAT statement. A comma must separate
successive specifications, including the H conver-
sion, used in the FOoRMAT statement. The separating
comma must appear after the last alphameric charac-
ter; the last character may be a blank. An example is
...,4HABCD,...

For input, n characters are extracted from the input
record and replace n characters of the appropriate
source program FORMAT statement.

For output, the n characters following the speci-
fication (or the characters that replace them through
the action described above) are written as part of the
output record. If the write statement refers to the
Standard Print Unit and the first specification for a
record is an H conversion, the first character of the
alphameric information is not printed but is used to
control vertical spacing of the carriage of the printer.

For example:

9 FORNiAT(26HbbbTHISbISbLALPHAMERICbINFO)

WRITE (3, 9)

These statements cause the specified heading to be
printed, indented two spaces from the left, by the
Standard Print Unit. Note that blanks are considered
in A and H conversion to be alphameric characters
and must be included as part of the character count.

Blank Fields, X Conversion

The specification nX introduces n blank characters into
an input/output record. The number n must always
be less than 133 (the maximum record size). A comma
must separate successive specifications, including the
X conversion, used in the FORMAT statement,

For input, nX causes n characters of an input record
to be ignored.

For output, nX causes n blank characters to be
placed into the output record. This conversion is used
to space within an output record.

Repetition of Field Format

It may be desired to transfer n successive fields within
the same record with the same format specifications.
This is indicated by placing a number n (an unsigned
integer constant) before the E, F, I, or A. Thus, the
specification 3E12.4 is the equivalent of E12.4, E12.4,
E124.

Repetition of Groups of Fields

Limited parenthetical expressions are permitted in
format specifications to indicate the repetition of data
fields within a record. One pair of nested parentheses,
in addition to the parentheses required by the FormaT
statement, is permitted. For example:

FORMAT (2(F10.6, 3E12.2), 16) is valid, but
FORMAT (2(F10.6, 3(E12.2, 18))) is not valid.

The valid ForMAT example above is equivalent to

FFORMAT (F10.6, E12.2, E12.2, E12.2, F10.6, E12.2,
E12.2, E12.2,16).

Scale Factors, P Conversion

To permit a general use of E and F conversion, a scale
factor followed by the letter P may precede a speci-
fication.

The scale factor is defined for F input conversion
as follows:

10— (seale factor) X external quantity = internal quantity

The scale factor is defined for E and F output con-
version as follows:

external quantity = internal quantity X 10 (scale factor)

For input, P conversion can be used only with F
conversion. For example, if input data is in the form
xx.xxx, and it is desired to use it internally in the form
xxxxx, the specification that will make this change is
2PF7.3.

For output, P conversion may be used with both
E and F conversions. The following examples of F
conversion use the same data; vertical line separate
the four adjacent fields.

Specification Data Fields

12, 3F11.3 | 27| bbbb-93.209| bbbbbb-.007 | bbbbbbb.553
12,-1P3F11.3 | 27 {bbbbb-9.320| bbbbbb-.000 {bbbbbbb.055
12, 1P3F11.3 | 27| bbb-932.097| bbbbbb-.075| bbbbbh5.536

A positive scale factor used for output with E con-
version increases the base and decreases the exponent.
The following example shows this effect (using the
same data as in the previous examples).

Specification Data Fields

12, 1P3E12.4] 27| b-9.3209Eb01 | b-7.5804E-03 | bb5.5362E-01
12, 3E12.4 | 27 | bb-.9320Eb02 | bb-.7580E-02| bbb.5536 Eb00

The scale factor is assumed to be zero if no value
is given. However, once a value has been given, it
will hold for all E and F conversions following the
scale factor within the same FORMAT statement. Thus,
the specification

1PE12.4, E14.5, F8.3
is equivalent to:
1PE12.4, 1PE14.5, 1PF8.3

If it is desired to have only the first item in that speci-
fication affected by P conversion, the specification
should be written:

1PE12.4, OPE14.5, F8.3

Multiple-Record FORMAT Statements

To deal with many records, a single FORMAT statement
may have several single-record format specifications

Input/Output Statements 17

separated by a slash (/) to indicate the beginning of
a new record.
For example:
FORMAT (3F9.2, 2F10.4/8E14.5)

will transfer the first, third, fifth, records with the
specification 3F9.2, 2F10.4; and the second, fourth,
sixth, records with the specification 8E14.5.

If a single multiple-record FORMAT statement is re-
quired in which, for example, the first two items are
unique and all the remaining items are to be trans-
ferred to the same specification, the specification for
these remaining items must be enclosed in a pair of
parentheses.

For example:

FORMAT (12, 3E12.4/(10F12.4))

would transfer the first record with the specification
12, 3E12.4 and all succeeding records with the speci-
fication 10F12.4. That is, the repetition starts from the
last left parenthesis.

If data items remain to be transferred after the
specifications have been “used,” the specification will
repeat from the last left parenthesis.

For example, in the statement

FORMAT (12, 4E12.4/(3F12.4))

the specification used for repetition is (3F12.4)

The equivalent of blank lines between output rec-
ords, or records skipped for input records, may be
introduced into a multiple-record format specification
by consecutive slashes. The number of records skipped,
or blank lines inserted, is a function of the number
and placement of the slashes, as summarized in the
following table.

INPUT RECORDS SKIPPED

OR
FOR N CONSECUTIVE SLASHES BLANK LINES INSERTED
IN OUTPUT
At the beginning of the format
specifications - e.g., FORMAT n
(/7/18)
In the middle of the format speci-
fications — e.g., FORMAT n—1

(16///16, 19)

At the end of the format specifi- n
cations — e.g., FORMAT (16///)

For example, if the statement ForMmaT (12, E12.4////
F12.3) is used for printed output, three blank lines
will be inserted between the data specified by 12, E12.4
and the data specified by F12.3.

Carriage Control

If the “i” in a formatted WRITE statement rcfers to the
Standard Print Unit, the first character in each output
record is used to control the vertical spacing of the

18

carriage of the printer for vertical forms control. Car-
riage control characters are listed in the publication
IBM 1410/7010 Operating System; System Monitor,
Form C28-0319. The character can be placed in the
output record by means of A or H conversion. A blank
causes normal single spacing before the line is printed.
The carriage control character also can come from
X, I, E, or F conversion. (Horizontal forms control is
determined by FORMAT statement specifications.)

1/0 List and FORMAT Statement Relationship

The list included in each general 1/0 statement desig-
nates the data to be transmitted from the input medium
or to the output medium. However, the sequence of
information within a record is controlled by the
FORMAT statement. H and X conversions are read from,
or are placed in, the record in the sequence indicated
in the ForMAT statement. E, F, I or A conversions,
when specified in the FORMAT statement, operate upon
the first unused item in the list.

Even though a ForMAT statement may handle more
information fields than are indicated by items in the
1/0 list, execution of the 1/0 statement terminates when
the last item on the list is transmitted and any immedi-
ately following ForMAT specifications not requiring a
list element are completed.

If items remain to be transferred after the FORMAT
specification is “used,” the specification is reused until
all items are transferred as described earlier under
“Multiple-Record ForMAT Statements.”

As an example of correspondence between items of
the list and the ForMAT specification, consider the fol-
lowing two statements:

12 FORMAT (10X, 1SHAPPRAISEDbVALUE//
(6IIbWARDD, 12, 5X, F8.2))

WRITE (3,12) (K, VALUE(K),K=1,])

The purpose of the example is to print results of cal-
culations made, by ward, of the average appraised
value of residential units. If J=14, the printed matter
has this appearance:
APPRAISED VALUE
WARD 1 12654.12

WARD 14 26223.68

Since the FORMAT statement governs the sequence
of information in a line, nine spaces are left and
APPRAISED VALUE is printed. One line is skipped. On the

second line, warp followed by a space appears first.
This is followed by an integer which may be up to two
digits. The integer to be inserted is the first item on the
list, K. Five blank spaces are next inserted. The list is
again referred to for the name associated with F8.2,
VALUE (K). Successive lines are printed until the list is
exhausted since each re-scan implies a new record.

Data Input to an Object Program

Data input to an object program is contained in records
conforming to the specifications described below.

1. The maximum formatted record length is 133
characters.

2. The data must correspond in order, type, and field
width to the specifications in FORMAT statements. Read-
ing starts with the first character position.

3. Plus signs are indicated by either a blank (c bit,
no punch) or a “+” (c,B,A bits, 12 punch). Minus signs
are represented by a “—” (8 hit, 11 punch).

4. Blanks within numeric fields are regarded as zeros.

5. Data for E and F conversion may contain any
number of digits, but only the high-order f digits will
be retained (see “Constants” in Part 1). Numbers for I
conversion may contain any number of digits, but only
the low-order k digits are retained.

6. As previously explained, numbers for E conver-
sion need not have all columns devoted to the ex-
ponents; that is, Esdd (where s is the sign and dd the
exponent) necd not have a leading zero if it is less than
10. This and other valid forms are:

E+2, E2, +2, +02, Eb02, Eb2, E~22, E~2, and —2.

7. Numbers for E and F conversion need not have
the decimal point punched in the card; the format
specification’ will supply the required decimal point.
For example, —09432+2, with the input specification
E12.4, will be treated as if the decimal point is punched
between the zero and the 9. ('The 4 in the specification
E12.4 will produce four decimal places.) If a decimal
point is punched, it will override the position specified
by the format specification.

8. If cards contain numbers for E conversion, the
numbers must be punched in the low-order positions
of their respective fields, w.

Symbolic Input/Output Unit Designation

Input and output units are referred to symbolically in
1/0 statements. These references are indicated as “i,”
an unsigned integer constant or integer variable in the
descriptions of the general forms of these statements.

The correspondence between the symbolic units and

the actual physical devices is made when the object
program is to be run. For a description of control in-
formation and procedures required, see the publication
IBM 1410/7010 Operating System; System Monitor,
Form C28-0319.

If i is a variable name, this name must be assigned
a numeric value by the program before the 1/0 state-
ment is executed. Any FORTRAN statement or operation
that assigns a numeric value to the variable name may
be used. The form of the constant i is restricted to a
single integer digit as shown below; e.g., 04 is invalid.

At the time of execution of the 1/0 statement, the
numeric value of i determines which Operating System
unit is operated on as follows:

VALUE OF i SYMBOLIC UNIT

1 Standard Input Unit
Standard Punch Unit
Standard Print Unit

MW1
MWwW2
MW3
MW4
MW35
MW6

Work Tapes

OO-I® Utk W

Only formatted input operations, i.e., READ (1,n),
can be performed on unit 1; only formatted output
operations, i.e., WriTE (2,n) and WRITE (3,n), can be
performed on units 2 and 3; all 1/0 operations can be
performed on the work tapes designated as units 4
through 9.

FORTRAN work tapes have the label characteristics
used for the system files. FORTRAN uses the 10cs to write
the standard labels, which include the number of char-
acters in the label, the file serial number, file identifica-
tion, the creation date, and the reel sequence number.
Information concerning tape labels is presented in
greater detail in IBM 1410/7010 Operating System;
Basic Input/Qutput Conirol System, Form C28-0322.

General Input/Output Statements

Input — The READ Statement

There is one input statement: Reap. This statement is
used to transfer information from input devices to the
computer.

General Forms

READ (i, n) List
READ (i) List
i is an unsigned integer constant or intcger variable
specifying the symbolic unit to be used for data input.
n is the statement number of the FORMAT statement
describing the data to be transferred.
List is an input list.

Input/Output Statements 19

EXAMPLES
READ(1, 3)A,(B(1),1=1,99)
READ(L)]J, (B(I),I=],99)

The READ(i, n)List statement causes information to
be read from symbolic unit i according to FORMAT
statement n.

The reap(i)List statement causes information in
internal format, as on a work file, to be read from
symbolic unit i into core storage. The information
must have been previously written with the wriTE (1)
List statement.

The first form of the rEAD statement reads in suc-
cessive data records (or parts of a data record) until
the entire list is satisfied; that is, until all data items
specified by the list have been read, converted, and
stored.

The list in the second form of the READ statement
must not be longer than the number of words in a
record. If the list is equal to the word count, the entire
record is read. If the list is shorter than the word
count, the unread items in the record are skipped.
This form of the reaD statement does not require for-
mat specifications, as no conversion is required.

Output — The WRITE Statement

There is one statement that is used to transfer informa-
tion from the computer to output devices: WRITE.

General Forms

WRITE (i, n) List
WRITE (i) List
iis an unsigned integer constant or integer variable speci-
fying the symbolic unit to be used for data output.
n is a FORMAT statement number.

List is an output list.

EXAMPLES
WRITE (],3)A,(B(I),1=1,99)
WRITE (4)],(B(I1),I=],99)

The first form of the wrrTE statement causes informa-
tion to be written on symbolic unit i according to
FORMAT statement n. The information is recorded in
one or more physical records as specified by the
FORMAT statement.

The second form of the wrmiteE statement causes
information to be written in internal format on sym-
bolic unit i. A FORMAT statement is not used since no
conversion is performed. The information specified by
the list is considered to be one logical record although
it may be written as more than one physical record.

The unformatted form can be used to write a scratch
file for internal use by an object program.

Manipulative Input/Output Statements

The statements END FILE, REWIND, and BACKSPACE Ima-
nipulate work tapes, units 4 through 9, as described
below.

END FILE Statement

General Form
END FILE i

i is an unsigned integer constant or integer variable
specifying the symbolic unit.

The END FILE statement causes a tape mark to be
written on symbolic unit i.

EXAMPLES

END FILE 5
END FILE N

REWIND Statement

General Form

REWIND i
iis an unsigned integer constant or integer variable speci-
fying the symbolic unit.

The REWIND statement causes the tape reel mounted
on symbolic unit i to be rewound.

EXAMPLES

REWIND 4
REWIND N

BACKSPACE Statement

General Form

BACKSPACE i
iis an unsigned integer constant or integer variable speci-
fying the symbolic unit.

The BACKSPACE statement causes the tape reel mounted
on symbolic unit i to be backspaced one physical rec-
ord if the tape was written under FORMAT control, or
one logical record (which may consist of more than
one physical record) if the tape was written without
roRMAT control.. The logical record that is backspaced
consists of the contents of the list of the associated
WRITE (1) List statement.

EXAMPLES

BACKSPACE 9
BACKSPACE N

Subprograms: Function and Subroutine Statements

The rorTRAN language defines Statement Functions
and three classes of subprograms: Built-In Functions,
FUNCTION subprograms, and SUBROUTINE subprograms.
Their uses and differences are discussed in this section
of the manual.

Advantages of Subprograms

The advantage of subprograms stem primarily from
their ability to be compiled separately. A program
can be written as a short main program and a number
of subprograms. Changes or error correction can then
be made to the segmented program by the re-compiling
of only the affected subprograms.

Other advantages are that any subprogram can
be placed in the System Library for use with other
programs and that program segmentation permits more
than one person to be simultaneously writing a large
program.

Functions and SUBROUTINE Statements

As a group, Statement Functions, Built-In Functions,
and FuNcTION subprograms can be simply called func-
tions. Functions differ from suBROUTINE subprograms
in that functions always return a single result to the
calling program, whereas SUBROUTINE subprograms may
return more than one value to a calling program.

Naming Subprograms and Statement Functions

Statement Functions and subprograms are named in
the same manner as FORTRAN variables (see “Constants,
Variables, Subscripts, and Expressions™).

A subprogram name consists of one to six alpha-
meric characters, the first of which must be alphabetic.

The type (real or integer) of a Statement Function
may be indicated implicitly by the initial character of
the name, or explicitly by a Type statement (see
“The Specification Statements”). In the latter case the
implicit type is overridden by the explicit specification.

The type (real or integer) of a Built-In Function is
alrcady specified (Figure 5) and need not be defined
by the user.

The type (real or integer) of a FUNCTION subprogram
may be indicated implicitly by the initial character of
the name or explicitly by a Type statement. In the

latter case the implicit type is overridden by the ex-
plicit specification.

The type (real or integer) of a SUBROUTINE sub-
program is not defined since the result returned to the
main program is dependent only on the type of the
variable names in the argument list.

Definition and Usage of Subprograms — Valid
Components

The following tables summarize the FORTRAN language
components that are valid in the definition and usage
of Statement Functions and subprograms.

Definition of Subprograms

The following table refers to the kinds of arguments
listed in the “a” portion of the Statement Function
general form and in the FUNCTION or SUBROUTINE

statement.

SUB-
FUNCTION { ROUTINE
As Arguments | Statement| Built-In Sub- Sub-
in the Definition | Function | Function| program | program
Constant
Simple Variable X X X
Subscripted
Variable Pre-
defined
Array Name © X X
Arithmetic
Expression
External Name! X X

*The name of a FUNCTION or SUBROUTINE subprogram
cannot be the same as the name of an argument of that sub-
program, For example, the following is invalid: FUNCTION
DAV (LD,DAV)

The following table refers to the kinds of arguments
listed in the “b” portion of the Statement Function
general form and the kinds of arguments that may be
used in subprograms headed by the FUNCTION or SUB-
ROUTINE statement.

Subprograms: Function and Subroutine Statements 21

SUB-
FUNCTION | ROUTINE
In the Body of | Statement | Built-In Sub- Sub-
the Definition | Function | Function | program | program
Constant X X X
Simple Variable X X X
Subscripted Pre-
Variable defined X X
Array Name X X
Arithmetic
Expression X X X
External Name X X X

Usage of Subprograms

The following table refers to the kinds of arguments
that can be provided to a Statement Function or a
FUNCTION subprogram when it is used in an arithmetic
expression, used with a Built-In Function, and used in
the caLL statement to a SUBROUTINE subprogram.

SUB-
FUNCTION | ROUTINE
Statement | Built-In Sub- Sub-
Arguments Function | Function | program | program
Constant X X X X
Simple Variable X X X X
Subscripted
Variable X X X X
Array Name X X
Arithmetic
Expression X X X X
External Name X X

Defining Statement Functions

A Statement Function is defined by a single arithmetic
statement and is valid only in the program in which it
appears. It cannot be used by another program or sub-

program.

General Form

a=b
a represents a function name followed by a pair of
parentheses enclosing its arguments. These arguments
must be unique, simple variables, separated by commas.
b represents an arithmetic expression that does not
contain subscripted variables. This expression may also
contain other function names that must have been

previously defined in the program.

EXAMPLES

FIRST(X) = A*X+E

SECOND(X, B) = A*X+B

THIRD(D) = FIRST (E)/D

FOURTII(F, G) = SECOND (F, THIRD (G))
FIFTH(L,A) = 3.0*A**I

22

A maximum of 30 variables appearing in “b” may be
stated in “a” as arguments. The arguments are dummy
names that serve to indicate the type of variable. Those
variables included in “b” that are not specified in “a” as
arguments are parameters of the function. Thus, in the
first example above, A and E are parameters, X is the
argument of the function FIRsT.

All Statement Function definitions must precede the
first executable statement of the source program. There
is no limit to the number of Statement Functions.

A typical use of a Statement Function previously
defined under “Examples” is:

C = R*SECOND(C+D(1, 2),4.0)
X of the statement definition takes the value of the
arithmetic expression C+D(1,2) and B takes the value
4.0.

Defining Subprograms

The method of defining each class of subprogram is
described below.

Built-In Function

Built-In Functions are subprograms that are part of the
System Library and are predefined.

General Form

Name (a1, 22, ..., an)

Name is the name of the function. The names are pre-
defined and are listed in Figure 5.

The arguments, ai, as, . . ., an, May be arithmetic expres-
sions, subscripted or simple variables, constants, or
other Built-In Functions. The number of arguments is
specified for each Built-In Function in Figure 5.

A list of all the Built-In Functions supplied is given
in Figure 5. Note that the type (real or integer) of each
Built-In Function is predefined and cannot be changed
by the user. Note also that the type of the arguments
is predefined. The core-storage requirements shown in
the table are approximations.

To use a Built-In Function, simply use the function
name with the appropriate arguments in an arithmetic
statement. For example:

ROOTI1 = (—B+SQRT (B**2—4.0*A*C))/2.0*A

A Built-In Function name may be used as the argu-
ment of another Built-In Function. For example, the
following is valid:

A = ABS (AMAX1 (COS(ALOG(A)),SQRT
(AMIN1 (C,D,E))))

No. of Type of Type of Core-Storage

Name Description Arguments | Arguments Function Requirements
SIN Trigonometric sine 1 Real Real

Argument must be less than 10000. radians in absolute value. 1155
CcOos Trigonometric cosine 1 Real Real

Argument must be less than 10000. radians in absolute value.
ALOG Natural logarithm 1 Real Real 1051

Argument must be greater than zero.
EXP Argument power of e (i.e.,) 1 Real Real 1194

Argument must be less than 225.
SQRT Square root 1 Real Real 739

For negative arguments, the square root of the absolute value is cal-

culated and an error message is given on the Standard Print Unit.

The user who desires the square root of the absolute value of a

number can avoid receiving the error message by writing SQRT

(ABS (A)) instead of SQRT(A).
ATAN Arc tangent 1 Real Real 1320
ABS Absolute value 1 Real Real 51
1ABS 1 Integer Integer 62
FLOAT Convert integer argument to real 1 Integer Real 237
IFIX Convert real argument to integer 1 Real Integer 239
AINT Take the integral part of a real number (sign of argument times largest 1 Real Real 209
INT integer = 1 argument 1) 1 Real Integer 130
AMOD Argument 1 modulus argument 2 2 Real Real 348
MOD The cbsolute value of the modulus is used if the second argument 2 Integer Integer 247

should be negative. The result (residue) will be non-negative and less

than the modulus. If the modulus is zero, a zero answer is obtained

and an error message is given on the Standard Print Unit.
AMAXO0 =2 Integer Real 204
AMAX] Maximum value of two or more arguments =2 Real Real 178
MAX0 =2 Integer Integer 180
MAX1 =2 Real Integer 186
AMINO =2 Integer Real 204
AMINT Minimum value of two or more arguments =2 Real Real 186
MINO =2 Integer Integer 179
MIN1 =2 Real Integer 122
SIGN Absolute value of argument 1 fimes sign of argument 2 2 Real Real 78
ISIGN 2 Integer Integer 62
DIM Argument 1 minus the lesser of argument 1 and argument 2 2 Real Real 148
IDIM 2 Integer Integer 139
SLITE Simulated Sense Light Manipulation and Testing (see ‘‘Machine Indicator 1 Integer 14
SLITET Tests') 2 Integer 237
EXIT Exit subroutine (see “EXIT Subroutine') 0 7
DVCHK Division Overflow (see "‘Machine Indicator Tests") 1 Integer 75
OVERFL Arithmetic Overflow (see “Machine Indicator Tests") 1 Integer 75

Figure 5. Built-In Functions

FUNCTION Subprogram

General Form

FUNCTION name (2i, 2z, ..., an)
REAL FUNCTION name (ai, az, .. . ,)
INTEGER FUNCTION name (a1, @z, . . . , @n)

name is the symbolic name of the function.

The arguments, ai, as..., an,, must be nonsubscripted
variable names, or array names, or the dummy names
of suBROUTINE or other FuNcTION subprograms. There
must be at least one argument in a FUNCTION sub-
program.

The type of function may be explicitly stated by the
inclusion of the word REAL or INTEGER before the word

FUNCTION, as shown above.

EXAMPLES

FUNCTION ARCSIN (RADIAN)
REAL FUNCTION IROOT (A, B, C)
INTEGER FUNCTION CONST (INT, J)

The FuNcTionN subprogram is similar to the State-
ment Function in that it returns only one value to
the calling program; it is similar to the SUBROUTINE
subprogram in that it may consist of many statements.

No card should precede the FuNcTION statement.

The FUNCTION subprogram may contain any FOR-
TRAN statement except a SUBROUTINE statement or
another FUNCTION statement.

Subprograms: Function and Subroutine Statements 23

The arguments of the FUNCTION subprogram may be
considered to be dummy variable names. These are
replaced at the time of execution by the actual argu-
ments supplied in the function reference in the main
program. The actual arguments must correspond in
number, order, and type to the dummy arguments.

The relationship between variable names in the main
program and the dummy names in the FUNCTION sub-
program is illustrated in the following example:

MAIN PROGRAM FUNCTION SUBPROGRAM

FUNCTION SOMEF (C, B)
A = SOMEF (B, C) SOMEF = B/C

RETURN
END

In the example, the value of variable B of the main
program is used in the subprogram as the value of the
dummy variable C, and the value of C is used in the
subprogram for the value of B. Thus, if the value of B
is 10.0 and the value of C is 5.0, the value returned by
the subprogram is 0.3 {not 2.0).

When a dummy argument is an array name, an
appropriate DIMENSION statement (see “The Specifica-
tion Statements”) must also appear in the FUNCTION
subprogram. The corresponding actual argument must
be an array name that appears in a DIMENSION or
coMMoN (With Dimensions) statement in the main
program,

None of the dummy names in the subprogram may
appear in an EQUIVALENCE or COMMON statement in the
FUNCTION subprogram (see “The Specification State-
ments”).

The value of the formal arguments of a FUNCTION
subprogram must not be redefined in the subprogram.
That is, they must not appear on the left side of an
arithmetic statement, nor in an input list, nor as the
index in a po statement. Variables that appear in com-
mon storage may not be redefined either. For example,
the following violates this rule:

FUNCTION SAM (A, B, K)
COMMON |

I=J+1

K=]

The rFuncrioN subprogram must return control to
the main program with a RETURN statement.

The name of the function must appear at least once
as the variable name on the left side of an arithmetic
statement or in an input statement. For example:

24

FUNCTION SUBPROGRAM
FUNCTION CALC (AB)])

MAIN PROGRAM

. I=J*2
ANS=ROOTI*CALC(X,Y,T)

CALC=A**I/B

RETURN
END

In this example, the values of X, Y, and I are used
in the FUNCTION subprogram as the values of A, B, and
], respectively. The value of caLc is computed and this
value is returned to the main program where the value
of Ans is computed.

END AND RETURN STATEMENTS

Note that all of the preceding examples of FUNCTION
subprograms contain both an Exp and at least one
RETURN statement. The END statement specifies, for
the processor, the end of the subprogram; the RETURN
statement signifies a logical conclusion of the com-
putation and returns any value computed and control
to the calling program. There may, in fact, be more
than one RETURN statement in a FUNCTION subprogram.
For example:

FUNCTION DAV (D, E, F)
IF (D.GT.0.1) GO TO 2

IF (E.LT.F) GO TO 3

RETURN
3DAV =.....

RETURN
END

SUBROUTINE Subprogram
General Form

SUBROUTINE name (ai, az, . . ., an)
name is the name of this subprogram.
ai, as, . . . , an are the arguments. (There need not be
any.)
Each argument used must be a nonsubscripted variable
name or array name, or the dummy name of another sus-
ROUTINE OF FUNCTION subprogram.

EXAMPLES

SUBROUTINE MATMPY (A, N, M
SUBROUTINE QDRTIC (B, A, C

B, L) J)
, ROOT1, ROOT2)

No card should precede the SUBROUTINE statement,

The sUBROUTINE subprogram may use one or more
of its arguments to return values to the calling program.
Any arguments so used must appear on the left side
of an arithmetic statement or in an input list within
the subprogram.

The arguments may be considered dummy variable
names that are replaced at the time of execution by
the actual arguments supplied in the caLL statement.
The actual arguments must correspond in number,
order, and type to the dummy arguments.

When a dummy argument is an array name, a DI-
MENSION statement must appear in the SUBROUTINE
subprogram. The corresponding actual argument in the
CALL statement must also be a dimensioned array name.

None of the dummy arguments may appear in an
EQUIVALENCE O COMMON statement in the SUBROUTINE
subprogram.

Like the FuncTION subprogram, the SUBROUTINE sub-
program must return control to the calling program by
a RETURN statement.

An END statement is also required.

Subprogram Names as Arguments — The EXTERNAL
Statement

Subprogram names may be used as the actual argu-
ments in the calling program. In order to distinguish
these subprogram names from ordinary variables when
they appear in an argument list, their names must
appear in an EXTERNAL statement (see “The Specifica-
tion Statements”).

The CALL Statement

The caLL statement is used only to call a SUBROUTINE
subprogram.

General Form

CALL name (a1, 82, ..., an)
name is the symbolic name of a sUBROUTINE subprogram.
ai, as, . . ., an are the actual arguments that are being
supplied to the suBROUTINE subprogram.

EXAMPLES
CALL MATMPY (X, 5, 40, Y, 7, 2)
CALL QDRTIC (X, Y, Z, ROOT1, ROOT2)

The caLL statement transfers control to the sus-
ROUTINE subprogram and replaces the dummy vari-
ables with the value of the actual arguments that ap-
pear in the cary statement. The arguments in a cALL
statement may be any of the following: any type of
constant, any type of subscripted or nonsubscripted
variable, an arithmetic expression, the name of a sub-
program.

The arguments in a CALL statement must agree in
number, order, type and array size with the corre-
sponding arguments in the SUBROUTINE subprogram.

Machine Indicator Tests

The 1410/7010 rorTrRAN language provides machine
indicator tests even though machine components refer-
enced by the tests do not physically exist. The machine
indicators, described below, are simulated by sus-
ROUTINE subprograms located in the System Library.

To use any of the following machine indicator tests,
the user supplies the proper arguments and writes a
caLL statement. In the following listing, i is an integer
expression, j is an integer variable.

GENERAL FORM FUNCTION

SLITE (i) If i=0, all sense lights are turned off.
If i=1, 2, 3, or 4, the corresponding

sense light is turned on.

Sense light i (1, 2, 3, or 4) is tested and
j is set to “1” or “2” if i is on or off, re-
spectively. After the test, sense light i is
turned off.

SLITET (i, j)

OVERFL (j) This indicator is on if an arithmetic op-
eration with real variables and constants
results in an overflow condition; that is,
if an arithmetic operation (of type real)
produced a result whose value is greater
than (1—10—1)Xx 1090, If the indicator
is on, j is set to “1”; if off, j is set to
“9.” The indicator is set to off after the
test is made.

This indicator is set on if an arithmetic
operation with real constants and vari-
ables results in the attempt to divide by
zero; j is set to “1” or “2” if the indicator
is-on or off, respectively. The indicator
is set to off after the test is made.

DVCHK (j)

EXAMPLES

CALL SLITE (3)
CALL SLITET (K*J, L)
CALL OVERFL (])
CALL DVCHK (I)

As an example of how the sense lights can be used
in a program, assume that the statements CALL SLITE (1)
and cALL sLITET (1, KEN) have been written. Further
assume that it is desired to continue with the program
if sense light 1 is on and to write results if sense
light 1 is off. This can be accomplished using the
Relational 1¥ statement or a Computed co To statement,
as follows:

.

IF (KEN. EQ. 2) WRITE (3, 26) (ANS(K), K=1, 10)

or

.

GO TO (8, 17) KEN
17 WRITE (3, 26) (ANS(K), K=1, 10)
6

Subprograms: Function and Subroutine Statements 25

EXIT Subroutine

A caALL to the exiT subprogram, located in the System
Library, terminates the execution of the program and
returns control to the Monitor. The ExrT subprogram
and the stop statement produce identical results.

General Form
CALL EXIT

26

The specification statements provide information con-
cerning storage allocation and the variables used in a
program. The specification statements are the pIMEN-
SION statement, the coMmMoON statement, the EQUIVA-
LENCE statement, and the Type statements.

DIMENSION Statement

General Form

DIMENSION vi(i:), ve(iz) , . . . , Va(in)
Vi, Vo, . . ., Vq are the names of arrays.
i1, i2,..., in are each composed of 1, 2, or 3 unsigned
integer constants, where each integer specifies the
maximum value of that subscript.

EXAMPLE
DIMENSION A(10), B(5,15),C(9,9,9)

The DIMENSION statement provides information to
allocate storage for arrays in an object program. It
defines the maximum size of each array listed.

Each variable that appears in subscripted form in
a source program must appear in a DIMENSION state-
ment contained within the source program. There is
one exception to this rule: when the dimension inform-
ation for the array is given by a coMMON statement.
See “comMoN (With Dimensions) Statement” in this
section.

The required location of pIMENSION statements ap-
pears later in this section under “Order of Specifica-
tion Statements.”

A maximum of 200 names may be dimensioned.
Within this limit, (1) a single DIMENSION statement
may specify the size of any number of arrays, and- (2)
a program may have any number of DIMENSION state-
ments.

Dummy variable array names in subprograms also
require dimension information in the subprogram.

COMMON Statement

General Form

COMMON a, b,.....
a,b,..... are variable or array names.

The Specification Statements

ment COMMON X, variables or arrays A and x will oc-
cupy common storage locations.

The required location of comMMON statements ap-
pears later in this section under “Order of Specification
Statements.”

A maximum of 100 names may be declared in com-
MON by means of this statement and the commMon
(With Dimensions) statement,

Within a specific program or subprogram, variables
and arrays are assigned storage locations in the se-
quence in which their names appear in a coMMON
statement. Subsequent sequential storage assignments
within the same program or subprogram are made
with additional comMoON statements.

As an example, if the main program contains the
statement

COMMON A, B, C

and a subprogram contains the statement
COMMONX, Y, Z

then A, B, and c are assigned sequential locations, as
are X, Y, and z. Furthermore, A and x will occupy the
same location, as will 8 and v, and also ¢ and z.

Names declared in coMMON must agree, respec-
tively, in mode. In the preceding example, A and x are
real, as are B and v, and ¢ and z.

A dummy variable can be used in a coMmMoON state-
ment to establish shared locations of variables that
would otherwise occupy different locations. For exam-
ple, the variable v can be assigned to the same loca-
tion as the variable c of the previous example with
the following statement

COMMON Q, R, Y

where @ and R are dummy names that are not used
elsewhere in the program.
Redundant comMoN entries are not allowed. For
example, the following is invalid:
Common A, B, C, A

COMMON (With Dimensions) Statement

General Form

The coMMoON statement refers to a common area of
core storage. Variables or arrays that appear in main
programs and subprograms can be made to share the
same storage locations by use of the commoN state-
ment. For example, if one program has the statement
coMMON A and a second program contains the state-

COMMON Vi (i1), Vs (iz), eees Vn (in)
Vi, Vs, . . . , Va are the names of arrays.
iy, iz, . . . , in are each composed of 1, 2, or 3
unsigned integer constants, where each integer specifies
the maximum value of that subscript.

EXAMPLE
COMMON A(10), B(5,15, C(5,5,5)

The Specification Statements 27

This form of the coMMoON statement, besides per-
forming the functions discussed previously for the
COMMON statement, performs the additional function
of specifying the size of arrays.

The required location of common (With Dimen-
sions) statements appears later in this section under
“Order of Specification Statements.”

A maximum of 100 names may be declared in com-
MON by means of this statement and the common
statement.

Note: A single comMoN statement may contain
variable names, array names, and dimensional array
names. For example, the following is valid:

DIMENSION B(5,15)
COMMON A,B,C(9,9,9)

EQUIVALENCE Statement
General Form

EQUIVALENCE (ab,...), (de,...),...
a,b,d,e, ...are simple variables or subscripted vari-
ables. Subscripted variables must have single sub-
scripts only and these subscripts must be integer con-
stants.

EXAMPLE

EQUIVALENCE (A(1),B(1),C(5)),(D(17),E(3)),(L])

The EQUIVALENCE statement controls the allocation of
core storage by causing two or more variables to share
the same core storage location.

Each pair of parentheses in the list encloses the
names of two or more variables to be stored in the same
location during execution of an object program. These
variables must be of the same type and must not be
inconsistent in relative core-storage locations. For ex-
ample, EQUIVALENCE (A(4),c(2),0(1)),(A(2),p(2)) is invalid.

The required location of EQUIVALENCE statements ap-
pears later in this section under “Order of Specification
Statements.”

Any number of list items may be given in a single
EQUIVALENCE statement,

In the first example, the A, B, and C arrays are to
be allocated to core storage so that the elements a(1),
B(1), and ¢c(5) are to occupy one location. In addition,
p(17) and E(3) are to share another location, as are I
and J.

In the second example if A(4), c(2), and p(1) are
made equivalent, an equivalence is set up among ele-
ments of each row below.

A(1)

A(2)

A(3) C(1)

A(4) C(2) D(1)
A(5) C

(3) D(2)

Thus, p(2) must not be made equivalent to A(2).EQuUIVA-
LENCE (A(3),A(4)) also is invalid.
Variables or arrays that are not mentioned in an

28

EQUIVALENCE statement are assigned unique locations.
The sharing of storage locations requires a knowledge
of which FORTRAN statements cause a new value to
be stored at a location.

Execution of an Arithmetic Statement stores a new
value at the location specified by the variable name at
the left of the equal sign.

Execution of a DO Statement changes the index
each time the program passes through the repetition
of the po.

Execution of a READ Statement stores new values
at the locations specified by the variable names in the
list.

Execution of a CALL Statement stores the values
of the arguments supplied by the calling program and
may also affect variables in common.

The user can make double-subscripted variables
equivalent by noting the following:

In the EQUIVALENCE statement, he must refer to
double-subscripted variables as if they were single-
subscripted variables. '

'EXAMPLE

A(2,2) and B(2,2) would be defined in core storage as:
A(2,2) A(1,2) A(2,1) A(1,1)
B(2,2) B(1,2) B(2,1) B(1,1)

Since there are four elements in each array, the user
can refer to each array as follows when setting up the
EQUIVALENCE statement:

A(4),A(3),A(2),A(1)
B(4), B(3), B(2), B(1)

For example, (1,2) and B(2,1) can be made equivalent

by the following:
EQUIVALENCE (A(3), B(2))

Note: When referring to a subscripted variable in
the EQUIVALENCE statement, the user must refer to the
variable as it was dimensioned (double-subscripted)
— otherwise the statement will be flagged as an error.

COMMON and EQUIVALENCE Statements — Special
Considerations

No two elements that appear in a coMMON statement
may be made equivalent. Both of the following exam-
ples are invalid:

COMMON A,B COMMON A,B
EQUIVALENCE (A,B) EQUIVALENCE (A,R);
(R,D),(D,B)

EQUIVALENCE statements may extend the size of the
coMMON area. For example, the following is valid:
DIMENSION C(4)
COMMON A,B
EQUIVALENCE (B,C(2))
It would produce the following relationship in the
COMMON area:

A C(1)
B C(2)
C(3)
C(4)

The following is an example of an invalid set of
statements:

DIMENSION C(4)

COMMON A,B

EQUIVALENCE (A,C(2))
It would imply the following relationships in the
COMMON area:

C(1)
A C(2)
B C(3) -

C(4)

Thus as shown above, the comMoN statement de-
termines the first element that is to appear in the
COMMON area; the EQUIVALENCE statement may not
change the position of this element.

Type Statements (INTEGER, REAL, EXTERNAL)

General Form

INTEGER ab,c, ...
REAL ab,c,...

a,b,c, ... are variable, Statement Function, or FUNCTION
subprogram names appearing in a program or sub-
program,

EXTERNAL x,y,z, ...

X,y,Z, .. .are subprogram names used as arguments of

other subprograms called by the program.

EXAMPLES

INTEGER DAV, 777, LYSL, JOB

REAL IAM, LEG, KKKK

EXTERNAL SIN, MATMPY
The REAL and INTEGER statements explicitly define the
type (real or integer) of variable, Statement Function,
Or FUNCTION subprogram. In the first example, the
variable pav implicitly would be a real variable, but

the explicit statement causes it to be handled as an
integer variable in the program. The appearance of a
name in either of these statements overrides any im-
plicit-type specification.

A program using the names of other FuNcTION Or
SUBROUTINE subprograms as arguments requires an
EXTERNAL statement. The statement distinguishes the
names of subprograms external to the calling program
from the variables of the calling program. For example,
assume both soMEF and OTHER are subprograms. If
A = SOMEF (OTHER, B, C) + B appears in a program,
the Type statement EXTERNAL OTHER is required in the
program.

Similarly, if cALL sOMEF (B, c, OTHER) appears in a
program, the Type statement EXTERNAL OTHER is re-
quired.

Type statements must precede any other specifica-
tion statements and all executable statements in the
source program.

A name may appear in two Type statements only if
one of the statements is EXTERNAL.

Order of Specification Statements

All Specification statements must precede the first
executable statement of the source program. The
Specification statements must also precede all State-
ment Function definition statements, and must appear
in the following order:

Type Statements (REAL, INTEGER, EXTERNAL)

DIMENSION

COMMON

EQUIVALENCE

(Follow with FORMAT statements, then Statement Func-
tions.)

The Specification Statements 29

PART 2 — FORTRAN AS AN OPERATING SYSTEM COMPONENT

Monitor Card to Execute FORTRAN

The ExEQ card is a Monitor control card that causes a
program to be loaded and executed. When the first
operand of this card is FORTRAN, the FORTRAN processor
is loaded and a source program is compiled. Other
Monitor control cards required to process a job are
explained in the publication IBM 1410/7010 Oper-
ating System; System Monitor, Form C28-0319.

The ExeEQ card format and the operands available
to the user desiring to compile a FORTRAN source pro-
gram are explained below:

EXEQ CARD FORMAT EXAMPLES

6 16 21

MONS$$ EXEQ FORTRAN,SOF,SIU,7,12,PCH,FLT,NAMEX
MONS$$ EXEQ FORTRAN,MJB,SIU,?,, PCH, MAINPROGRM
MONS$$ EXEQ FORTRAN,,,13

Columns 6-10 contain the characters MoNss to
identify the card as one directed to the System Monitor.

Columns 16-20 contain the letters EXEQ.

Columns 21-72 may contain up to eight operands.

These standard rules for operands apply: operands
must be separated by a comma; operands cannot con-
tain blanks; an intentionally omitted operand must be
indicated by placing a comma adjacent to the preced-
ing comma (except when the omitted operand is the
last operand used).

The first three operands are required by the System
Monitor and must either be included or their omission
indicated by a comma. The fourth and following
operands are read by the FORTRAN processor. An in-
valid parameter or error following the third parameter
causes (1) a diagnostic message number to be printed
immediately following the title line of the source pro-
gram diagnostic listing, and (2) assumed operands
indicated below to be used in the compilation in place
of the erroneous operand and all subsequent operands
on the card. Compilation proceeds.

The eight operands must appear in the following
listed order:

30

OPERAND
NO. OPERAND AND MEANING

1 FORTRAN must be specified.

2 SOF or MJB — This operand specifies the file con-
taining the FORTRAN compiler. SOF is the
System Operating File; MJB is the Job file. If
this operand is omitted, the compiler is assumed
to be on the SOF.

3 SIU, AIU, or any work (MWn) or reserve (MRn)
tape unit. If this operand is omitted, the source
statements must immediately follow this EXEQ
card on the unit containing this card—either the
Standard Input Unit (SIU), or the Alternate
Input Unit (AIU).

4 Real number precision (f) is specified by a one-
or two-digit number from 3 through 18. Numbers
3 and 03 are acceptable, but 003 is not accept-
able. If the operand is omitted, the FORTRAN
processor assumes 8.

5 Iffteger precision (k) is specified by a one- or
two-digit number from 3 through 20. If the op-
erand is omitted, the processor assumes 5.

6 PCH — If this operand is used, the object pro-
gram is put on the Standard Punch Unit or is
written on the magnetic tape unit assigned to
perform functions of the Standard Punch Unit.
If the compiled program is not to be executed
immediately (that is, not a compile-and-go oper-
ation), PCH must be specified to produce an
object deck.

7 FLT — This operand must be specified if the
object program is to be run on an M 7010
equipped with the Floating-Point Arithmetic fea-
ture. The operand must be omitted (except for
the trailing comma) for all other 1BM 7010 Sys-
tems and all iBM 1410 Systems.

8 Program name. This operand, which can be one
to ten alphameric characters with the first char-
acter alphabetic, defines the title for the main
program to be processed. If this operand is
omitted, the processor assigns the title MAIN-
PGM. When subprograms are compiled, this op-
erand is ignored.

Control Card Requirements
The sequence of the appropriate Monitor and Linkage
Loader control cards needed to compile and execute
the FORTRAN program is shown in Figure 6.

Figure 7 shows the sequence of the appropriate
Monitor and Linkage Loader control cards necessary
to execute the FORTRAN object program.

MONS$$ END

DATA CARDS

MONS$$ EXEQ ORBIT 1, MJB

CALL SUB2

CALL suBl

CALL ORBIT 1 \

PHASE ORBIT 1

-MONS$$ EXEQ LINKLOAD

MON$$ ASGN MJB, B1

SOURCE PROGRAM

MON$$ EXEQ FORTRAN,
SOF,,+,,,5UB2

SOURCE PROGRAM

MONS$$ EXEQ FORTRAN,
SOF,,,,,,SUBI

SOURCE PROGRAM

MON$$ EXEQ FORTRAN,
SOF,,,,,,ORBIT 1

MONS$$ MODE GO

MONS$$ ASGN MGOQ, A3

MONS$$ ASGN MW2, A2

MONS$$ ASGN MW1, Al

MONS$$ JOB ORBIT 1

MONS$$ DATE 12345

Figure 6. Sample Control Cards for a Compile-And-Go Operation

Monitor Card to Execute FORTRAN 31

MONS$$ END

DATA CARDS

MONS$$ EXEQ ORBIT 1, MJB

TITLE ORBIT 3

TITLE ORBIT 2

TITLE ORBIT 1

PHASE ORBIT 1

MON$$ EXEQ LINKLOAD

MONS$$ ASGN MJB, Al

MONS$$ JOB ORBIT 1

Figure 7. Sample Control Cards for Execution of a FORTRAN Object Program

TITLE Card

The TiTLE card (see “TITLE Card” in IBM 1410/7010
Operating System; System Monitor, Form C28-0319)
defines the name of an object program and is the first
record of that program. Produced by the FORTRAN
processor during compilation, the TITLE card contains
the current date, the program name, and the base

32

(location in core storage) to which the program was
compiled. Although such information is included in the
TITLE card produced by the Autocoder processor, the
TiTLE card produced by the FORTRAN processor does
not contain the size of common. Therefore, when
processing a FORTRAN program, the Linkage Loader
cannot consider the size of comMon in checking to
ensure that core storage is not exceeded.

The $ource program listing produced by a FORTRAN
compilation is written on the Standard Print Unit.
The two major parts of the listing are (1) the listing
of the source program statements with diagnostic
messages, and (2) a memory map of the object pro-
gram.

Source Program Diagnostic Listing

The following items appear with the listing of source
program statements:

1. Title Line. Each page of the source program di-
agnostic listing carries a title line containing the page
number.

2. Source Program Statements. All statements are
listed without blanks, except FORMAT statements.

3. Message. Diagnostic message numbers are printed
to the left of the statements to which the messages
apply. The corresponding messages are listed in Part
3 of this manual. The message number is sometimes
followed by a number indicating the character posi-
tion in the printed statement where the error was
found. The first character of the statement is considered
character number 6. Each print position should be
counted. Some messages also include the name of the
variable or the missing statement number that caused
the error.

Diagnostic messages for context errors, such as
terminating a Do on a nonexecutable statement, follow
the listing of source statements. These messages may
include the statement numbers of the affected state-
ments.

A warning message is printed as a three-digit num-
ber. Any additional information associated with the
message is printed on the following line.

Memory Map

The memory map of the object program is arranged in
four pairs of “FORTRAN NAME,” “LocATION” headings
across the page as shown in Figure 8. The map includes
the addresses, before relocation, of constants, variables,
and the beginning of coding of executable numbered
statements. The items appear in the list in the sequence
given below. (Items illustrated in Figure 8 are num-
bered to correspond with this list.)

1. Names Declared in COMMON. The name is
printed to the left of its address.

Source Program Listing

2. Integer and Real Constants. The value of the con-
stant is printed under “rorTRAN NAME.” The constants
are shown as they appear in core storage.

3. Integer Variables. Both simple integer variables
and integer arrays are listed next. The address printed
for an array is its base address. This is the highest
core-storage address in the array and corresponds to
the address of the first element. Since some of these
variables may have been brought into common by
equivalence, commoN addresses may be included.

4. Real Variables. These are mapped in the same
manner as integer variables.

5. Statement Numbers. Each statement number is
printed with an address. This is the address of the
first machine instruction generated by the statement.

Any forward reference to a statement number causes
additional printing. A forward reference is a reference
(co Ton, IF (a) ny, ng, ng, etc.) to a statement number
that has not previously appeared on a statement.

There are two types of forward references: uncon-
ditional and conditional. Unconditional forward ref-
erences are those for which unconditional branch in-

" structions are generated; e.g., such an instruction is

generated for the reference to statement number n
in the statement co To n. Conditional forward ref-
erences are those for which some conditional branch
instructions are generated; such an instruction (in this
instance, Branch if Zero Balance) is generated for the
reference to statement number n; in the statement 1F
(a) ni, N2, N3.

At the first unconditional forward reference to a
statement number, a memory map entry is printed.
This entry contains the statement number to which
reference is made, the address of the reference, and
the tag FoR. to denote an unconditional forward ref-
erence. No memory map entries are printed for sub-
sequent unconditional forward references to the same
statement number.

At the first conditional forward reference to a state-
ment number, a memory map entry is printed. This
entry contains the statement number to which refer-
ence is made, the address of the reference, and the
tag cror. to denote a conditional forward reference.
No memory map entries are printed for subsequent
conditional forward references to the same statement
number.

Any forward reference to a statement number causes
still another memory map entry. This entry is printed

Source Program Listing 33

when the statement number appears on a statement;
the entry contains the address of the last forward
reference (unconditional or conditional), the address
assigned to the statement number, and the tag pEF. to
denote statement number definition.

There are three possible combinations of forward
references and definitions:

1. cFoRr., then DEF.

2. FOR., then DEF.

3. CFoR., then FoR., then DEF.
For the cror./per. and FOR./DEF. combinations, the
CFOR. and FOR. entries point directly to the pEF. entry.
For the cror./FoR./pEF. combinations, the cror. entry
points to the For. entry, and the For. entry points to
the DEF. entry.

For example (see Figure 8), suppose that at location

01370 there is a forward reference to statement number
301, If the coding for statement 301 begins at location
01997, the following two entries will be made in the
printed output:

00301 FOR.

01370

01370 DEF. 01997

6. Program Size and Entry Point. The last line of the
printed output states the size of the compiled program,
excluding the common data area, and the location of
its entry point.

7. Size of COMMON. The size of the comMoN area
can be determined by reference to the listing that ap-
peared as output on the spr as a result of program
compilation. The number of characters used is specified
at the end of the program, before the memory map.

FORTRAN NAME LOCATION FORTRAN NAME LOCATION FORTRAN NAME LOCATION FORTRAN NAME LOCATION
EE 99999 AlA 98799 TIME 98779 NOE 98759
ALTYPE 98754 TEMTYP 98734 (1 98714 C3 98694
AT 98684 BJ 94684 FIG 82684 TIMG 82664
ALTYPG 82644 BETA 82624 PHI 82614 (2 82594
ALT 82574 WJ 78574 LLLM 70574 LMMM 70569
T 70564 NU 70559 LU 70554 JT 70549
D) 70544 FLAG 70534 WXG 70524 WYG 70514
WX 70504 WY 70484 RAD 70464 MM 70454
MRR 70449 NM 70444 WJR 70439 DX 62439
ME 62419 DENS 62414 TEMP 62404 2 62394
KK 62384 KKK 62379 00006<——(2) (Infeger) 00600 0000A 00605
00008 00610 0000C 00615 00228 00620 000000069R<~(2) (Real) 00630
1520482F0. 00640 4597941008 00650 100000060A 00660 273160060C 00670
5000000604 00680 4596880£0C 00690 9000000E0A 00700 37B0000E0E 00710
1745329604 00720 K 00725 KJ 00730 MWU 00735
MWL 00740 IX 00745 KN 00750 4 00755
K 00760 KR 00765 JI 00770 KT 00775
N 00780 ITEMP 00785 ML 00790 1 00795
IF 00800 IK 00805 KL 00810 8A<—-(4) 00841
8C 00861 BD 00881 VTEMDN 00891 FAREN 00901
CENT 00911 WTHETA 00921 DK1 00931 RR 00941
Al 00951 A2 00961 D 00971 Tu 00981
”m 00991 WB 01001 _ BEPH 01911

00049 «—(5) 01276 00301 FOR. 00200 01377] 00419 FOR. 01471
00400 01478 00430 01571 00413 FOR. 01660 | 00414 FOR. 01724
00412 01731 00416 FOR. 01743 01724 DEF. 01750 | 01743 DEF. 01762
00422 FOR. 01826 00357 FOR . 01892 00417 01899 01370 DEF. 01997
00300 FOR. 02009 01660 DEF. 02016 02009 DEF. 02028 00500 FOR. 02067
01892 DEF. 02074 02067 DEF. 02242 00600 FOR. 02623 00508 02630
01471 OEF, 02823 00245 03098 02623 DEF. 03156 00602 FOR. 03235
00601 03242 00604 FOR. 03287 00603 03294 01826 OEF. 03329
03235 DEF. 03362 03287 OEF. 03431 00606 FOR. 03510 00605 03517
01721 FOR. 03619 01720 03626 0lT22 FOR. 03653 03619 OEF. 03660
03653 DEF. 03708 03510 DEF. 03889 00608 FOR. 03931 00607 03938
00609 03998 00610 04058 00613 FOR. 04106 00614 FOR. 04166
00612 04173 04106 DEF. 04206 03931 OEF. 04249 00718 FOR. 04311
04166 DEF. 04318 04311 DEF. 04395 00716 FOR. 04489 00720 04496
00717 FOR. 04590 00723 04597 00759 04690 00725 FOR. 04779
00726 FOR. 04843 00722 04850 00727 FOR. 04862 04843 DEF. 04869
04862 DEF. 04881 00757 FOR. 04940 00729 FOR. 05011 00728 05018
05011 DEF. 05051 04489 DEF. 05149 00758 FOR. 05173 04779 DEE. 05180
05173 DEF. 05192 07617 FOR. 05219 04940 DEF. 05226 05219 DEF. 05394
04902 FOR. 05466 00754 05473 00902 FOR. 05787 04590 DEF. 05794
06014 FOR. 05866 06013 05873 05466 DEF. 06010 00812 06324
05866 DEF. 06590 05787 DEF. 06733 00901 FOR. 06770 00904 FOR. 06819
00903 06826 06770 DEE. 06859 01001 FOR. 06921 06819 DEF. 06928
00905 06988 00906 07048 00909 FOR. 07096 00910 FOR. 07156
00908 07163 07096 OEF. 07188 07156 DEF. 07231 06921 OEEF. 07335

PROGRAM SIZE 1S 07404

PROGRAM ENTRY [S 01062

()
—&

Figure 8. Memory Map of an Object Program

34

The FoRTRAN processor reduces the size and execution
time of the object program by avoiding redundant
calculations to obtain the memory locations of sub-
scripted variables. Immediate repetition .of the same
subscript or an equivalent subscript for the same or
different arrays is subject to subscript optimization.

A FORTRAN object program reserves up to 100 index
cells to hold subscript information. If this limit is ex-
ceeded, a diagnostic messdge is produced. The user
may determine that this limit will be exceeded by
knowing:

1. When an index cell is reserved for a newly defined
subscript expression appearing in a source program
statement;

2. Which subscript expressions in the source state-
ments are equivalent and, consequently, use the same
index cell; and

3. When a cell is made available during program
compilation due to deletion of the subscript expression
held in the cell from the list of active subscripts.

Terms Used

An array name in a source statement is subscripted
with either a literal subscript, which has no variables
in it, or a subscript containing subscripting variables.
For example, A(3,2) has a literal subscript while
B(4,J+3,2%*M) contains j and M as subscripting variables.

A subscripting variable may have a multiplicative
coefficient (2 in the preceding example), or an additive
offset (3 in the example), or both as in c(2*M—1).

A subscript expression is the set of three (or fewer)
subscripting variables together with four numbers,
designated D1 through D4, calculated from the six
(or fewer) coeflicients and offsets and the three (or
fewer) array dimensions declared in the piMEeNsioN
statement. The form of the subscript expression is
shown under “Equivalence of Subscript Expressions”
later in this section.

Arrays are located in core storage in sequence
ALMN), .. ALTK) A(3,1,1), A(2,1,1),
A(1,1,1) where the last element A(r,M,N) has the low
address in core storage and the first element has a
higher address in core storage. The value of the sub-
script expression L],k is the number of core-storage
positions separating element A(1,),k) from the first
element of the array, a(1,1,1).

Calculation of Active Subscript Expressions

The value of the subscript expression is calculated
in two steps.

1. The values of D1 through D4 are calculated by
the processor from values known at compilation time.

2. The values of the subscripting variables 1,J,k are
not known until the program is being executed. During
execution, D1 through D4 and the now-known values
of the subscripting variables are used to calculate the
value of the subscript expression.

The index cell contains the value of the subscript
expression.

Reserving Index Cells

An index cell is reserved whenever a nonliteral sub-
script appears in a source statement and is not equiv-
alent to a subscript expression already considered
active. The first nine index cells are index registers;
up to 91 subsequent cells are pseudo index registers
that are defined by the compiler. The points in the
source program at which index cells will be reserved
by the compiler can be determined by inspecting each
statement in order in the source deck.

The appearance of a nonliteral subscript in a source
program, such as A(yJ), produces object coding to
calculate the value of the subscript expression cor-
responding to (1,), and place the value into an index
cell. The instruction referring to A(1)) effectively has
an address field with the address of the base of the
array A indexed with the proper zones to indicate the
index register that is the index cell assigned to (1y).

An immediate repetition of A(1]) in the source pro-
gram produces no coding to set an index cell to the
value of the (1) subscript expression, since a cell
has already been reserved for that value. Conditions
under which subscript expressions are equivalent and
can use a single index cell are described under the
next heading. In general, the equivalence does not
require the same array A, but the arrays will have
the same number and sizes of dimensions.

An index cell is reserved for each subscript ex-
pression that is not equivalent to a subscript expres-
sion considered active. A subscript expression is
considered active, and an index cell is reserved for its
value, until the value of one of the subscripting vari-
ables is changed by the program.

Ways in which a subscripting variable may be
changed by a program are explained under “Deleting

Calculation of Active Subscript Expressions 35

Subscript Expressions.” An example is the arithmetic
statement I = I + 1, which alters I.

A literal subscript, as BB(3,65,2), does not require an
index cell. The proper address in the array BB is calcu-
lated at compilation time for each instruction requir-
ing it.

Equivalence of Subscript Expressions

Rules to determine whether two subscript expressions
are equivalent are given in the following paragraphs.
Expressions that are not equivalent require different
index cells.

The form of the subscript expression is D1, I, D2,
J, D3, K, D4, where 1, J, and K are the subscripting
variables and the D factors are calculated as explained
below. Two subscript expressions are equivalent when
the subscripting variables appear in the same order
and the four D factors of one subscript expression
equal, respectively, the four D factors of the other
subscript expression.

Consider any array, A, specified as DIMENsION
A(x,y,z), where the lower-case x, y, and z are integer,
unsigned constants.

A for this explanation may represent either an array of
integer elements or real elements,

x is the first dimension,

y is the second dimension,

z is the third dimension.

An element of the array is of the form

A(c*I+cd,e*T+cey’,ex*K+a’), where

c coefficients are integer constants,

¢’ terms are positive or negative integer offsets,
I,], K are subscripting variables.

For the calculation of the D factors, let
w = k if A is an array of integer elements, or
w = f+2 if A is an array of real elements.
The D factors are calculated as follows:
Dl = e*w
D2 = cy*w*x
D3 = c*w¥x*y
D4 = (c’—1)*w+ (cy =1)*w*x+ (o’ —1)*w*x*y

The equation for D1 shows that subscript expres-
sions of the same mode are not equivalent if the ¢
values are not identical.

Note that a subscript expression associated with an
array of real elements can be equivalent to a subscript
expression associated with an array of integer elements
if D1 through D4 of the two expressions are equal.

D4 defines the necessary conditions on the offsets.
It shows that two subscript expressions will be equiv-
alent if values of D1 through D3 are equal and the
corresponding offsets are identical.

Deleting Subscript Expressions

The following paragraphs give the rules to determine
when the value of a subscript expression changes. The

36

change establishes a point of definition at which the
index cell associated with that subscript expression is
freed. An expression changes when one of the sub-
scripting variables in the expression changes. There
are five points of definition of subscripting variables
that occur during compilation.

1. A Referenced Statement Number: A statement
number to which control transfers is a point at which
all index cells are freed. Assignment of index cells
starts over as subscripting variables are encountered
by the processor.

2. A DO Statement: A po statement, like a referenced
statement number, is a point where all index cells are
freed. (They are freed since any subscripting variable
may change in the range of the po.)

3. An Arithmetic Statement: If a subscripting vari-
able is on the left side of the equal sign in the arith-
metic statement, the only index cells to be freed are
those with subscript expressions involving the variable.
Thus, the statement I = I + 1 frees the cells of A(1, j)
and B(x,I + 3) but not the cell for c(x + 3,7 — 6).

4. Input Lists: The appearance of a subscripting
variable in the list of a READ statement frees only the
index cells associated with that variable.

An implied po loop in an input list, as in the case of
the po statement, is a point where all index cells are
freed.

5. CALL Statements: A SUBROUTINE subprogram may
alter its arguments. Consequently, a subscripting vari-
able as an argument of a caLL frees any associated
index cells. For example, the statement cALL SUBR
(1, 7 + x) frees any index cells associated with I but
does not affect index cells associated with the indi-
vidual subscripting variable J and K. Release of the
index cell is effective after the call so that subscripts
appearing in the caLL arguments remain optimized.

A subroutine subprogram may alter comMoN vari-
ables. Consequently, the index cells for all subscripting
variables in common core storage are freed after the
CALL statement.

Since function subprograms do not alter their argu-
ments or variables in common core storage, the appear-
ance of a function call in an arithmetic statement does
not free any index cells.

Exceeding the 100 permitted subscript expressions
between points of definition (an infrequent occur-
rence) is called to the user’s attention by a diagnostic
message printed out during program compilation (see
Part 3). Furthermore, a point of definition can be
forced at any desired point in the source program.

The statement I = I frees the index cells holding the
values of subscript expressions involving I. (See rule
3 above.)

A method that frees all index cells utilize rule 1
above. A statement number to which control never
transfers can be placed in a Computed co To statement,
as 6o To (7,10),x where x is always 2. Statement 7 now
becomes a point of definition at which all index cells
are freed.

Calculation of Active Subscript Expressions

37

Dictionary Space Requirements

The dictionary is a work area within the FORTRAN
processor. The maximum dictionary space available to
the processor depends on the machine core-storage
size. The dictionary occupies all space from the end of
the FORTRAN processor to the memory size specified at
/ams/ in the Resident Monitor. Refer to the publica-
tion 1410/7010 Operating System; System Monitor for
information concerning /ams/.

The space required by each variable or number in
a source program is as follows:

TYPE OF VARIABLE POSITIONS OF CORE
OR NUMBER STORAGE REQUIRED
Dimensioned variable 40
Equivalenced, non- 20
dimensioned variable
Non-equivalenced, 10
simple variable
Real constant 10+f42, where f is the
real precision.
Integer constant 10+k, where k is the
integer precision.
Statement number 10

38

Writing Autocoder Subprograms for the System Library

The flexibility of the Autocoder language can be in-
corporated in a FORTRAN program by means of
Autocoder subprograms. Such a subprogram may be
desired under these circumstances.

1. Where the number of arguments (and, therefore,
the length of the calling sequence) may vary, as for a
general-purpose subprogram;

2, Where an input/output manipulation or com-
munication with the Resident Monitor is not avail-
able to the FORTRAN programmer;

3. Where character manipulation is necessary,

4. Where data requires specialized decoding or
rearrangement before it can be used with FORTRAN
statements.

Both runcrioN subprograms and SUBROUTINE sub-
programs may be written in Autocoder. The subpro-
gram is assembled by the 1410/7010 Autocoder proc-
essor and incorporated into the System Library, where
it is available to be combined with FORTRAN programs.

Understanding of the publications, IBM 1410 or
IBM 7010 Principles of Operation (Form A22-0526 or
A22-6726, respectively) and IBM 1410/7010 Operating
System; Autocoder, Form (C28-0326, is necessary to
write Autocoder subprograms. -

Calling Sequences

Subprogram arguments can be made available either
by:

1. Declaring the arguments in the common data
area both in the calling programs and in the called
subprogram, or

2. Listing the arguments following the name of the
function in an arithmetic statement, as A =SsOMEF(B,C),
or following the name of the subprogram in the caLL
statement, as caLL other(p,E). A FUNCTION subpro-
gram requires at least one argument following the
name of the function in an arithmetic statement.

The call to a FUNCTION Or SUBROUTINE subprogram
generates a calling sequence when the program is com-
piled. The calling sequence begins with a branch to
the FuUNCTION or SUBROUTINE subprogram followed by
a series of address constants (one per argument), and
concludes with a nor. Manipulation of the arguments
within an Autocoder subprogram is performed by
moving the address constants into the operands of
succeeding instructions which can:

1. “Work on” the argument while leaving it in the
calling program, or

2. Bring the argument into a work area defined in
the subprogram.

The following table summarizes the form and sig-
nificance of the generated address constants for
various types of arguments.

FORM AND SIGNIFICANCE
OF ADDRESS CONSTANT

TYPE OF ARGUMENT,
REAL OR INTEGER

Address of the variable

Address of the constant

Address of the subscripted varia-
ble, possibly indexed

Simple variable
Constant
Subscripted variable

Array Address of the base of the array;
i.e., address of ARRAY (1,1,1)
Expression Address of the value of the com-

puted expression indexed by X1
Address of the subprogram entry
point

Name of a subprogram

EXAMPLE

Assume X is an array and Y is a simple real variable.
Also assume the FORTRAN processor assigns index reg-
ister 4 to the subscript expression of array X. carn
saMPLE (x(1,J),Y) typically compiles into the follow-
ing calling sequence in the calling subprogram.

EFFECTIVE AUTOCODER STATEMENTS

OPERATION
CODE OPERAND
DCWS SAMPLE
DCW X+X4
DCW Y
NOP

Index Register Requirements

Requirements and conventions for use of the index
registers are summarized in the following table.

INDEX
REGISTER AVAILABILITY USE AND LIMITATIONS
X1 Available if con- | X1 must be preserved for
tents saved and |the processor and may be
restored tagged on any argument
address. After bringing in
arguments, X1 may be
saved, used, and restored
like X4 through X12.

X2, X3 Available Contents will be destroyed
by calls to most library
routines.

X4 through | Available if con- | These registers contain sub-

X12 tents saved and | script index values and may

restored have been specified on any

Writing Autocoder Subprograms for the System Library 39

INDEX

REGISTER AVAILABILITY USE AND LIMITATIONS

of the arguments to the sub-
program. Contents must be
saved in a temporary loca-
tion and restored before ex-
iting from the subprogram.
Contents will be destroyed
by calls to library routines
or Monitor functions. X13
must not be left with a
negative sign when exiting
from the subprogram.

X13 Available

X14, X15 Not available

Writing the Subprogram

Basic Requirements

Each subprogram must be preceded by an Autocoder
TITLE card. The operand of this statement is the title
of the function or subroutine subprogram. FORTRAN

rules for assigning names to integer and real variables

must be followed in naming the subprograms (see
Part 1 of this manual). .

The first instruction should store the B-address reg-
ister contents. Index register 13 is conventionally used
for this purpose. The entry point of the subprogram
must be its first position.

The move instructions that place the address con-
stants into the operands of subsequent instructions, in-
cluding return to the desired position in the calling
program, usually are placed next. This is shown in
“Examples of Autocoder Subprograms” appearing later
in this section.

If any of index registers 4 through 12 are to be used
in the subprogram, the contents must be saved after
the address constants are moved and before the index
register is used by the subprogram. Contents must be
restored to the index register before returning to the
calling program.

Word lengths of integers and real numbers must
correspond to those of the using programs.

A label that is a linkage symbol of the form 1Bxx/
(where “1B” are the first two characters) is not per-
mitted in the subprogram.

A word mark must follow the last executable instruc-
tion of the subprogram.

Handling Real Arguments

If the arguments are real numbers, a move instruction
(MLcwA) can bring in the exponent and a chained
move (again, MLCWA) can bring in the fraction. This
is shown in Example 1 of “Examples of Autocoder Sub-
programs.” (The address constant of the calling se-
quence gives the units position of the exponent.)

40

If the address constants are moved into the operands
of floating-point instructions, both the exponent and
fraction are automatically handled by the floating-point
instructions. A pcws to the floating-point interpretive
subroutine IBINTRP must precede a sequence of floating-
point instructions unless the object program is to be
run on an 1BM 7010 equipped with the Floating-Point
Arithmetic feature.

The handling of real variables is illustrated in “Ex-
amples of Autocoder Subprograms.”

Common Data Area

If arguments are obtained from common data area,
the variable must be declared in common core storage
within the subprogram by the use of the Autocoder
DAV statement.

Using Other Functions

System Library subroutines may be freely used by
the subprogram. However, conventional uses of the
index registers discussed earlier in this section must be
observed. In particular, the floating-point interpretive
subroutine (1BINTERP) may be used at will. This sub-
routine accepts indexed addresses in the floating-point
instructions that it interprets.

Any argument in the Autocoder subprogram can
be made available for transmission to another subrou-
tine by the placing of its address in a calling sequence
to that subroutine. This is shown in Example 2 of
“Examples of Autocoder Subprograms.”

The value of f or k can be transmitted from the
FORTRAN main program to an Autocoder subprogram
by the use of system symbols /FLo/ or /FIX/ as oper-
ands. This permits generalizing a subprogram that
makes use of the values of f and k so that it will accept
various values of f and k without subprogram alteration,

Although designed for FORTRAN, Built-In Functions
may be adapted for use in Autocoder. The program-
mer must write the calling sequence. He must use the
appropriate parameters (see “Constants”), and define
the /F1x/ and /FLo/ symbols. The following cards —
to be placed into the relocatable deck of the Auto-
coder program that is to use the Built-In Function —
will define these symbols:

12 78 13 14 16 17 19 72
w w w w w

S aaaaa S 00004 S ff S kk S 1
6 16 21 72
/FLO/ DEFIN aaaaa+1 4
6 16 21 72
/FIX/ DEFIN aaaaa+3 4

In the card formats shown, the following holds true:

W over S is a word separator.

aaaaa is the load address for the Load record.

ff is the unsigned real word-size constant (it may range
from 03 through 18, and includes the exponent).

kk is the unsigned integer word-size constant (it may range
from 03 through 20).
/rLo/ and /Fix/ are the system symbols to be defined.
aaaaa-+t1 is the address assigned to the real word-size
constant.
aaaaa+3 is the address assigned to the integer word-size
constant.
1 and 4 (in columns 72) are record-type indicators.
Several of the subroutine functions, in turn, call in
other subroutines. In such cases, the core-storage re-
quirement is the total of all of the subroutines used.
When the Linkage Loader processes the object pro-
gram, it takes the necessary subroutines from the
library and relocates both the object program and the
subroutines into an absolute, object-time program.
Following is a list of subroutine functions that call in
other subroutines:

COS requires SIN
SLITE requires SLITET
INT calls IFIX
MIN1 calls IFIX
MAX1 calls IFIX
AMINO calls FLOAT
AMAXO0 calls FLOAT
AMOD calls AINT

Note: BINTRP is called by most of the floating-point
routines.

There is no limit to the depth to which calls to other
subroutines can be nested.

The Autocoder subprogram must not call a subrou-
tine that calls the Autocoder subprogram, or causes the
Autocoder subprogram to be called, unless specific
arrangements have been made for recursive operation.

Returning Values to Calling Program

Either FuncTION subprograms or SUBROUTINE subpro-
grams may communicate with the calling program by
placing information on work tapes.

FUNCTION SUBPROGRAMS

Core-storage locations 280-299 are reserved for the
20-position accumulator used by the floating-point
instructions. The single result of a FuNcTION subpro-
gram, whether that result is type integer or type real,
must be right-justified in the accumulator. The name
of the function, whether type integer or type real, in
the calling program must correspond to the type of
result.

FUNCTION subprograms must alter neither the vari-
ables that appear in the common data area nor the
arguments of the FuncrioN subprogram.

SUBROUTINE SUBPROGRAMS
SUBROUTINE subprograms are permitted to alter vari-
ables that appear in the common data area.

SUBROUTINE subprograms also are permitted to alter
their arguments. The argument address may be picked
from the calling sequence and placed into the B-address

of the move instruction or the A-address of the floating-
point store (FsT) instruction that is to return the value
to the calling program.

Examples of Autocoder Subprograms

Example 1
This example illustrates:

1. Moving the real arguments into work areas for
use in a subprogram, and

2. Saving the contents of an index register.

Assume that the two real arguments of the example
are to be placed in work areas TEMP1 and TEMP? for use
in the subprogram. The arguments are eight decimal
digits plus the two-digit exponent in length. Assume
that X4 is assigned by the rORTRAN processor when
compiling the calling sequence and that X4 is also
required by the subprogram. Also assume that X13
will not be altered within the subprogram.

EFFECTIVE AUTOCODER

CALLING PROGRAM CALLING SEQUENCE

OPERATION
CODE OPERAND
CALL SAMPi..E (A(I), B) DCWS SAMPLE
. DCW A+X4
. DCW B
. NOP
AUTOCODER SUBPROGRAM
OPERATION
LABEL CODE OPERAND COMMENTS
TITLE SAMPLE
SBR X13
MLCA 4+4X13,L1+5 Move address of A into

next instruction

L1 MLCWA 0,TEMP1 Move exponent and
MLCWA fraction of argument
A in chain move
MLCA 9+X13,L2+5
L2 MLCWA 0 TEMP2 Move in second argu-
MLCWA ment (B)
MLCA X4,SAVE4=5 Save X4

(X4 is now free to use and the arguments have been
brought into the subprogram.)

Calculations
MLCA SAVE4,X4 Restore X4
B 11+X13 Return to calling pro-
gram

DCW =8

TEMP1 DCW =2
DCW =8

TEMP2 DCW =2
END

Example 2

This example illustrates:

1. Calling a function whose name is an argument to
this Autocoder subprogram and whose value is a func-
tion of the arguments of this Autocoder subprogram;
and

Writing Autocoder Subprogram for the System Library 41

2. Return of the externally-computed value, via this
Autocoder subprogram, to the calling program.

Assume that the arguments are subscripted variable
A(1), expression B + ¢, external subroutine EXTSUB,
and simple variables. The single argument of ExTsuB
is the sum of the arguments A(1), B + ¢, and s. The
result of ExTsUB is to be returned to the FORTRAN-
language program by altering argument s. Further
assume that ¢t + x1 is the address of the computed
expression B + C.

EFFECTIVE AUTOCODER

CALLING PROGRAM CALLING SEQUENCE

. OPERATION
. CODE OPERAND
. : DCWS SAM
EXTERNAL EXTSUB DCW A+X6
. DCW GT+X1
. DCWF EXTSUB
. DCW S
CALL SAM (A(I),B+C, NOP
EXTSUB, S)
AUTOCODER SUBPROGRAM
OPERATION
LABEL CODE OPERAND COMMENTS
TITLE SAM
SBR X13
SBR L6+5 Place X13
A +21,L.6+5 +21 into return in-
struction
MLCA 4+X13,L.1+5 Move address constants
MLCA 9+X13,L.2+5 into floating-point
MLCA 19+X13,LL3+5 and branch instruc-
MLCA 14+X13,L4+5 tions
MLCA 19+X13,LL5+5

42

OPERATION
LABEL CODE OPERAND COMMENTS
DCWS IBINTRP ~ Compute the argument
for EXTSUB as the
L1 FRA 0 sum of the first,
L2 FA second, and
L3 FA 0 fourth arguments of
SAM
FST T1 Store sum in T1
14 B 0 Calling sequence for
DCW T1 the external sub-
NOP routine

(Result of external subroutine is conventionally
stored in the accumulator.)

DCWS IBINTRP
L5 FST 0 Return result to calling
program as altered
fourth argument
L6 B 0 Return to calling pro-
T1 DCwW =10 gram, The call to
END IBINTRP destroys

X13 contents so
B 21+X13 cannot
be used

Note: Linkage to routines whose names come as
arguments is by a branch instruction into which an
address is moved during execution. A pcws is not used
here since the name extsus of the routine is unknown
when the subprogram is assembled.

The pcws IBINTRP instructions are omitted if the
object program is to be run on an 1BM 7010 System
equipped with the Floating-Point Arithmetic feature.

CHAIN js an Operating System feature that handles the
creating and loading of specified phases of a multi-
phase program. For the FORTRAN programmer, CHAIN
provides a convenient method of segmenting a pro-
gram that exceeds available core storage into several
parts to be executed separately, but as a part of the
same job. cHAIN also enables the FORTRAN programmer
to link into one job several programs that must operate
on the same data and that otherwise would be exe-
cuted in several consecutive jobs.

Each segment of a program run under control of
the cuaiN feature is termed a link. One of two or
more links is the main link; all other links are de-
pendent links, The main link is the link that is loaded
and executed first; it specifies the loading and exe-
cuting of any, all, or none of the dependent links. All
links are assigned sequential numbers to permit speci-
fying desired dependent links. A main link is always
given the number 1; dependent links are given in-
creasingly larger numbers, 2, 3, 4, ...998, 999.

Three special Linkage Loader control cards, LINK,
coMmN, and ENTRY, are used in defining links for a
cHAIN job, For a discussion of these cards, and addi-
tional information on the cHAIN feature, see the publi-
cation IBM 1410/7010 Operating System; System
Monitor, IFform C28-0319. The information about the
cHAIN feature that follows pertains only to its use
with FORTRAN.

Using the cuaIN feature with FORTRAN requires only
a few additional statements in main programs to be
used in the cHAIN environment; no additional state-
ments are required in any subprograms.

Main Link
A main link must meet the following specifications:
1. Tt must contain a FORTRAN main program.

2. It must include caLL cHAIN statements (see “Call-
ing Dependent Links” in this section) for any de-
pendent links desired. Any or all (or none) of the
dependent links can be called any number of times
and in any order.

3. It must declare, in common, all comMon variables
used in the main link and/or in any dependent link.

Dependent Links
The following specifications apply to dependent links:

1. They must be either FORTRAN main programs or
SUBROUTINE subprograms that have no arguments. sus-

CHAIN Feature

ROUTINE subprograms that have arguments and ruNc-
TION subprograms cannot be dependent ¥inks, but they
can be called from within dependent links.

2. They should not include cALL CHAIN statements.
Execution of these statements in a dependent link pro-
hibits a return to the main link and, effectively, causes
the dependent link to be treated as a new main link.

3. They must declare, in comMoN, those coMMON
variables used in common with the main link.

If a dependent link is a FORTRAN main program, it
should be terminated with a cALL RETURN statement
(see “Exiting from Main Program Links” in this sec-
tion) rather than a sTop or caLL EXIT statement. Use
of the cALL RETURN statement causes a return to the
main link.

NOTE: A CALL RETURN statement in a main program
used as a dependent link does not prohibit the user
from executing that main program outside the cHAIN
environment. When executed outside the CHAIN envi-
ronment, the CALL RETURN statement causes a return
to the Monitor, the same result that would ordinarily
be achieved with a stoP or caLL EXIT statement.

If a dependent link is a SUBROUTINE subprogram, no
additional requirements are imposed. The RETURN
statement, required in every SUBROUTINE subprogram,
causes a return to the main link. The CALL RETURN
statement must not be used in a SUBROUTINE sub-
program,

A return to the main link from any dependent link
is made to the statement in the main link immediately
following the cALL cHAIN statement that called the
dependent link.

Calling Dependent Links

General Form

CALL CHAIN (i)
i is the number of the dependent link to be loaded and
executed. i may be a subscripted integer variable, or
an integer constant, whose value may range from 2
through 999. The main link (link number 1) cannot
be called.

The cALL cHAIN statement is used in a main link to
call a dependent link for execution.
EXAMPLE

The following statements could be used to cause execu-
tion of dependent links 2, 3, 4, and 2 (again), in the
order noted:

cHAIN Feature 43

CALL CHAIN (2)
CALL CHAIN (3)
CALL CHAIN (4)
CALL CHAIN (2)

Exiting from Main-Program Links

General Form

CALL RETURN

The CALL RETURN statement is used only in links (main
or dependent) that are FORTRAN main programs.

In a dependent link, the caLL RETURN statement
causes a return to the main link at the statement im-
mediately following the cALL CHAIN statement that
called the dependent link.

In a main link, the cALL RETURN statement causes
either return to the Monitor (if no dependent links
have been called), or return to the statement in the
main link immediately following the last CALL cHAIN
statement executed (if any dependent links have been
called.)

EXAMPLE

The sequence of statements below shows two caLL
RETURN statements in a main link, one before any
dependent link is called, another after two dependent
links have been called. The first cALL RETURN state-
ment causes a return to the Monitor. The second caLL
RETURN statement causes a return to the statement
(continug) following the last cALL cHAIN statement
executed.

CALL RETURN

CALL CHAIN (I)
CALL CHAIN (])
CONTINUE

CALL RETURN

Loading of Links

The main link of a cuaIN job is loaded and executed
first. The main link is always resident in core storage,
unless the user specifies otherwise in the second (base)
operand of a LINK card.

Dependent links are loaded in core storage beyond
the main link. Dependent links overlay one another
unless the user specifies otherwise in a LNk card.

SUBROUTINE and FUNCTION subprograms and Built-In
Functions are loaded with the links that use them. If

44

some of these subprograms are used by more than one
link, the user should use the comn card to force them
to be loaded with the first link that uses them. If the
coMn card is not used, the subprograms will be
loaded with each link.

EXAMPLE

The diagrams below illustrate where dependent links
2, 3, 4 of a cHAIN job reside in core storage in rela-
tion to the main link. Assume no coMN cards were
used.

Before any dependent link is loaded:
| MAIN LINK | |

After dependent link 2 is loaded:
| MAIN LINK | DEP LINKZ2 |

After dependent link 3 is loaded:
LMAIN LINK I DEP LINK 3 |

After dependent link 4 is loaded:
| MaN LNk | DEP LINK 4 |

References Among Links

Main links may use any SUBROUTINE subprograms,
FUNCTION subprograms, and/or Built-In Functions
that are included in the main link. Dependent links
may use any SUBROUTINE subprograms, FUNCTION
subprograms, and/or Built-In Functions that are in-
cluded in the dependent link itself, in the main link,
or in any previously executed dependent links still
in core storage. Dependent links may not use any
SUBROUTINE subprograms, FUNCTION subprograms,
and/or Built-In Functions included in any dependent
links not yet loaded and executed.

Sample Job Using CHAIN Feature

Figure 9 shows the control cards and FORTRAN source-
program decks for a job using the cuain feature. (If a
user desires, he may punch the cards and execute the
job.) The job consists of the compilation of a main
link and two dependent links, the processing of the
links by Linkage Loader, and the execution of the re-
sultant program, The paragraphs below explain the job.

CONTROL CARDS

The first block of cards (Monss DATE through MoNss
MopE) does the following:

1. Provides the Monitor with the current date.

2. Assigns a name to the job.

3. Assigns output units required for the job.

4. Declares mode Go (because the compiled pro-
grams are to be executed after compilation).

The next three blocks of cards consist of Monss
EXEQ FORTRAN control cards followed by source pro-
grams to be compiled.

MONSS DATE 12345
MONSS JOB EXAMPLE OF A 3-LINK FORTRAN JCB USING CHAIN FEATURE.
MONSS ASGN MJB.AL
MONS S ASGN MGO,82 GO OUT
MONSS MODE GO
MON EXEQ FORTRANy oo 0 sECR
c MATRCINK (MATN PROGRAN €201 *¢BhRUres aLock A oF ou
LSoHMON LT STA(AISLISTBI4) sLISTC (41 1L1STO 0) AL IGTRIATPLIST(A),
4 FORMAT(1H145Xs 76HEXAMPLE OF A THREE=-LINK JOB CONSISTING OF A MAIN

ROGRAM AND TWO SUBROUTINES////7)

S FORMAT(15X, THBLOCK A/
I FORMAT(SX¢BHLISTA +418/5X.BHLISTB ,418/5X.8HLISTC +418/5X,8H
XLISTD oAL8/7777)

DO 20 I=1.4

LISTA(T)=2%01
LISTA(1)=3ue]
LISTC(])=ase]
LISTO(I) =See]
20 CONTINUE
WRITE(3,4)
WRITE(3,5)

WRITE(301) (LISTACI) o031 ,4) o (LISTE(E) ox144) o (LISTC(E) o =1,4)0(LTST
1D(1)s11,4)

1=4

IF(LISTO(11-1160,70470

70 CALL CHAIN(002)
71 CALL CHAINGI)
C IF CALL RETURN EXECUTED, CONTROL RETURNS TO MONITOR.
60 CALL RETURN
END
MONS EXEQ FORTRAN
SUBROUTINE AZURE
C DEPENDENT LINK 2 (SUBROUTINE AZURE) COMPUTES BLOCK 8 OF OUTPUT
COMMON LISTA(4},LTSTE(A)WLISTCIANILISTO(4) LISTX(AD\PLIST(4),
LAMEAN(&
8 FORMATLiSXs THBLOCK A/}

ORMAT(SXs8HLISTA ALB/5XBHLISTB +418/5X48HLIS ga18s6%,
18HLISTD . ¢4187/15X ¢ THBLOCK 'B//75X BHLISTX V2L T .
284F B 2/77/77)

0 S I1x1,4
LISTX(I)ZLESTA(L)I4LISTB(I) +LISTC(I)+LISTOUL)

PLIST(I)=LEISTX())
AMEANCI) =PLISTII) /4.
S CONTINUE
WRITE(3,8)
WRITE(3o1)(LISTACI) o1 =144) o(LISTBII) o021 04) o (LEISTC(I)olntoade(LIST
IDCI) oI =108) s (LISTX(E) k=l oh) o (ANEANCT) o E=104)
RETURN
END
MONSS EXEQ_FORTRAN

SUBROUTINE OCHRE
[DEPEgDEgT LINK 3 (SUBROUTINE OCHRE) COMPUTES BLOCK C

OF OUTPUT,
N %ISTA(Al»LlSTB(Q)oLleC(Q).L!STD(Q)»LlSrX(A).PLIST(

LAMEA
1 FORMAT(!SK.7HBLOCK AsR2S5X+THBLOCK C/)

1 FORMAT({SXsBHLISTA +SIBFBs2/5X8HLISTE +SIB8,FB.2/5X,
18HL IST .5!6.?8.2/5!08 HL1STD 2518+F8e2/
2665:57HBL05K B//SXWBHLISTX +418/5X 8HAMEAN 24FB8e27)

=10
LISTATSLISTAT4LEISTA(])
LISTBY=LISTBT+LISTB(I)
LISTCT=LISTCT+LISTIC(L)
LISTOT=LISTOT+LISTO(I)
50 CONTINUE
ALIST=FLOAT(LISTAT/4)
BLIST=FLOAT(LEISTBT/4}
CLIST=FLOATILISTCT/4)
DLIST=FLOAT(LISTDT/4)
WRITE(3.11)
WRITE(341)((LISTACE) oI =1 44) LISTATIALIST ((LISIB(I)alI=1,4),LISTBTWB
ILISToULISTCUE) oI =144) sLISTCTCLIST(LISTOCI)o[=1.4),LISTDT,DLIST,
HLISTX(L)el=104) 4 (AMEAN(I)sl=),4))
RETURN
END
MONSS E?EO LINELOAD..-.EKAMPLEZ
NK
COMN IBINTRP.FLOAT
LINK A E
ENTRYAZURE
LINK OCHRE
ENTRYOCHRE
END

MONSS EXEQ EXAMPLE2,MJUB

MONSS END

Figure 9. Sample Job Using cHaIN Feature

The first program compiled is FORTRAN main pro-
gram ECRU; this program is the main link of the
CHAIN job.

The second program compiled is FORTRAN suB-
ROUTINE subprogram AzURE; this subprogram is de-
pendent link 2 of the cuaiv job.

The third program compiled is FORTRAN SUBROUTINE
subprogram OCHRE; this subprogram is dependent link
3 of the cHAIN job.

The last block of cards (MONs$$ EXEQ LINKLOAD
through Monss END) does the following:

1. Causes Linkage Loader to process the three com-
piled programs as a cHAIN job named EXAMPLEZ.

2. Defines Ecru as the main link. (The first LNk
card contains the name of the main link.)

3. Causes the floating-point interpretive sub-
routine BINTRP and the Built-In Function FLOAT to

cHAIN Feature 45

be loaded before the main link. (The comn card
forces this order of loading.)

4. Defines azure and ocHRe as dependent links,
numbered 2 and 3, respectively. (Links named in
Link cards following the first LINk card are assigned
increasingly larger link numbers.)

5. Assigns entry points to dependent links 2 and 3.
(An ENTRY card is required if a dependent link is
other than a FORTRAN main program.)

6. Indicates the end of cHAIN control cards.

7. Causes execution of CHAIN job EXAMPLE?2.

8. Defines the end of the job.

EXECUTION OF CHAIN JOB

When the cuAIN job ExaMPLE? is executed, the fol-
lowing steps occur:

1. The main link Ecru is loaded (with BINTRP and
FLOAT preceding it in core storage).

2. EcRu computes and writes block A of the three
blocks of output produced by ExamMPLE2.

3. Ecru calls dependent link 2 (azure). This is
accomplished by the caLL cHAIN statement num-
bered 70.

46

4. azure is loaded into core storage beyond ECRuU.

5. azure computes block B and writes blocks A
and B of the output.

6. AZURE returns control to the main link EcrU at
the statement numbered 71, the statement immedi-
ately following the CALL CHAIN statement that called
AZURE.

7. ecru calls dependent link 3 (ocure). This is
accomplished by the caLL cHAIN statement num-
bered 71.

8. ocurk is loaded into core storage beyond the
main link; ocire overlays dependent link 2 (AzZURE).

9. ocHre computes block C and writes blocks A,
B, and C of the output.

10. ocHRE returns control to the main link EcrU at
the statement numbered 72, the statement immediately
following the cALL cHAIN statement that called ocHRE.

11. Ecru returns control to the Monitor. This is
accomplished by the stop statement.

Note: If the cALL RETURN statement in the main
link is executed, control returns to Monitor because no
dependent links have been called.

PART 3 — DIAGNOSTIC AND ERROR MESSAGES

Diagnostic Messages

Diagnostic message numbers appearing on the source MESSAGE
program listing, together with the meaning of the NUMBER MESSAGE
message number, are given below. 024 sS:;l:em:n: number appears on more than one
emen
Compilation of the source program is not attempted 025 Character must be numeric
(and object program execution is cancelled in a 026 A number in E notation cannot have more than
compile-and-go operation) for all diagnostic messages two exponent digits
listed except numbers 003, 005, 020, 022, 038, and 096. 027 A number must follow the sign in E notation
These warning messages are indicated by an asterisk 028 An improper or invalid character follows number
in the accompanying list. The asterisk is not printed 029 ﬁlgd(‘?l?;‘i‘ft‘:l point with neither leading nor trail-
Wlt'h the message number on the source program 030 First character of a name must be alphabetic
listing. 031 Name greater than six characters
032 Name must be an integer name that is not
MESSAGE
NUMBER MESSAGE DIMENSIONed
001 Statement not recognized 033 A name has been declared in COMMON more
nt i than once
002 Improper statement as a relational IF trailer 034 A name has been DIMENSIONed more than
003* Blank statement text beginning with column 7 once
004 More than ten cards per statement 035 A name has had mode declared more than once
005* ?ne dor more of following illeial character(ls() 036 A name has been declared in EXTERNAL twice;
ound in statement: record mark, group mark, or in EXTERNAL and DIMENSION or COM-
exclamation mark. The character has been deleted MON or EQUIVALENCE
006 Premature end of statement 037 RETURN statement found in a main program
007 I}J)neven parentheses count or missing paren- 038* RETURN statement was not included in this
thesis subprogram
008 Improper or invalid character 039 A FUNCTION statement must have at least one
009 SUBROUTINE or FUNCTION is not first argument
statement 040 Improper or invalid character in FUNCTION or
010 REAL, INTEGER, or EXTERNAL follow a SUBROUTINE statement
DI%ggﬁg’[N, COMMON, EQUIVALENCE, 041 Declarative statement subscripts cannot be zero
or ' 042 Improper character after right parenthesis in
011 A specification statement appears after the first DIMENSION
executable statement 043 More than a three-dimensional array
012 DIMENSION, COMMON, or EQUIVALENCE 044 Improper character after name in COMMON
are out of prescribed order \ . .
013 An arithmetic statement function appears after 045 Bad punctuation, or subs.crlptmg a variable that
an oxecutablo stateme;‘l ¢ PP “ is not DIMENSIONed, in an EQUIVALENCE
statement
014 A DIMENSION, COMMON, or EQUIVA- : :
LENCE follows a FORMAT statement 046 gg{}l'{lfz’ﬁé’ﬁ%’ﬁam required in parentheses of
015 ;f:lei st‘zlgg Sotg gge;fto or Arithmetic IF is a non- 047 DIMENSIONed name in EQUIVALENCE must
have one and only one integer subscript
016 Improper statement for the end of a DO range 048 Nothing should f:llow numlg)er in P AUpSE
017 rOn?sJ:i(:g of a GO TO or Arithmetic IF statement 049 Nothing should follow the word STOP, CON-
TINUE, RETURN, or END
018 ElgﬁMréf:ng:ment is not prior to an I/O state- 050 Neither computed nor simple GO TO
L. 051 Computed GO TO needs a comma after the right
019 End of DO range missing parenthesis
020* Coding which will not be executed appears after ; :
a GO TO, RETURN, STOP. or Arithmetic IF 052 gu;cl)lr;::la or right parenthesis should follow the
021 Overlapping DO statements : i
022* END card is missing but assumed by processor 053 ggt h'llr'lg, St}ff;uﬁatfggzm ?:mgi?ﬁnlﬁhceo?;ﬁgfﬁ
023 Statement number is zero or has a non-numeric ditional GO TO, or the third statement number

character in it

in an Arithmetic IF

Diagnostic Messages 47

MESSAGE
NUMBER

48

054
055

056
057
058
059
060

061
062

063
064
065
066

067
068

069
070

071
072

073
074

075

076
077
078
079
080
081
082
083

084
085

086
087
088
089
090

091

MESSAGE

A GO TO or Arithmetic IF is going to itself
End of the DO range occurred before or at the
DO statement

Comma after statement reference in DO
An equal sign must follow index in DO

DO nest greater than 25

Nothing should follow the parameters of a DO

End of DO statement found after equal sign or
comma of index parameters

A DO should have two or three parameters

An improper character follows unit number or
name in I/0 statement

A name that is not DIMENSIONed cannot have
a subscript

Improper character follows name, subscript, or
right parenthesis

A right parenthesis must follow index param-
eters in an 170 list

No unit designation has been given, or its first
character is improper

Unit number should be 1-9, one digit

Nothing should follow unit designation in BACK-
SPACE, REWIND, or ENDFILE

The subroutine name is DIMENSIONed

A left parenthesis does not follow SUB-
ROUTINE name

Right parenthesis of CALL is not last character
in the statement

Parentheses count within argument of CALL or
expression of Relational IF is uneven

Relational IF statement has no trailer

Mixed mode between expressions of a Rela-
tional IF

Left-hand side of arithmetic statement does not
have an equal sign after first variable

Illegal consecutive operators

Mixed mode

Arithmetic statement ends with an operator
Right parenthesis follows an operator
Integer**real not permitted

A**B**C not allowed

Comma improper

Character is neither arithmetic operator nor
punctuation

Improper character follows exponent operator
Number of subscripts not equal to the number

declared
+ or — in subscript not followed by a number
A real number is in the subscript

Improper or invalid character within a subscript;
or nothing within parentheses; or end of state-
ment within subscript

A nonsubscripted array name appears in an arith-
metic expression or IF
Invalid use of nonsubscripted array name in
FUNCTION or CALL

An argument in an arithmetic statement function
defining statement is DIMENSIONed

MESSAGE
NUMBER

092

093

094
095
096*
097

098
099

100

101
102
103
104

105
106
107

108
109

110

111
112
113
114

115

116

117
118

119
120
121

122

MESSAGE

An argument in an arithmetic statement function
defining statement contains an improper or in-
valid character

Subscripted array in arithmetic statement func-
tion defining statement

No coefficient for P, X, or H conversion
Octal conversion is not handled
Missing statement number on FORMAT statement

More than 133-character line produced by
FORMAT

Nested parentheses in FORMAT are not per-
mitted

Missing period in E or F within FORMAT
statement

Number after period in E or F is missing or is
greater than two digits within the FORMAT
statement

A, I, E, or F must be followed by a number in
the FORMAT statement

Improper character follows a number in a for-
mat specification or the FORMAT statement
ends prematurely

Two consecutive commas

More than three digits appear in a number in
FORMAT

A number must follow the minus sign
Incorrect count for H conversion

Improper or invalid character follows right
parenthesis in FORMAT

Two consecutive P’s preceding a specification
Number table/name table entry overflow. Too
many names and statement number uses

Too many arguments appear in arithmetic state-
ment function definition statement

Too many names declared in COMMON

Too many DIMENSIONed names

A comma must follow nX in FORMAT

The number appearing in the statement is too
long

Too many (more than 9999) characters appear
in FORMAT statements

Program is too large to compile (dictionary over-
flow has occurred) or run (more than 100,000
positions of core storage required by this pro-
gram). If a single array exceeds 100,000 posi-
tions, the overflow is not detected

The EQUIVALENCE specification is inconsistent
Two variables in COMMON have been equiva-
lenced

EQUIVALENCE has extended common upward
A zero coefficient appears in a FORMAT speci-
fication other than P, or width in E, F, I, or A
specifications is zero

Three statement numbers are required in an
Arithmetic IF statement

A comma should separate the statement num-
bers in the Arithmetic IF statement

*Warning message; compilation continues and object program

execution is not canceled.

Error-message numbers are printed on the Standard
Print Unit during program execution in this format:
ERROR NO. XXX AT LOCATION xxxxX. The message corre-

sponding to each error number appears in the accom-

panying list.

MESSAGE
NUMBER

805
806
807
808
809

810

811
812

815
820
821

850
851
852
853

854
856

857

860
861

862

MESSAGE
INT built-in function. Integer larger than integer field
IFIX built-in function, Integer larger than integer field
AMOD built-in function. Modulus is zero (real)
MOD built-in function. Modulus is zero (integer)

Logarithm of negative number or zero (ALOG built-in function) or a nega-
tive number with non-integer exponent

SQRT built-in function. Square root of negative number

Negative exponent (integer) for expression of form I**]

SLITE or SLITET built-in function. Sense light must be 0, 1, 2, 3, or 4
for SLITE and 1, 2, 3, or 4 for SLITET

IDIM built-in function. Arg 1-Arg 2 creates overflow

EXP built-in function. Argument must be less than 225.

COS or SIN built-in function. Argument must be less than 10000, radians
in absolute value

An invalid I/0 command has been given; e.g., a REWIND of the Standard
Input Unit

An I70 command addressing the Standard Input, Punch, or Print Unit has
been given without a FORMAT statement

The FORMAT statement contains an invalid symbol

The data for E or F input contains an invalid symbol

FORMAT statement is invalid

Field width specified for output data is too small for I conversion

Field width specified for output data is too small for E or F conversion

A permanent read/write error has been detected

An end-of-file condition has occurred. (ForTRAN does not handle multi-
reel files. The user can write his FORTRAN program to allow for multireel
files by using a code or signal at the end of each reel, testing for it in his
program, and switching to another reel. For this procedure, alternate units
must be assigned.)

A BACKSPACE statement has addressed a tape which has not been ref-
erenced by a READ or WRITE

Error Messages

Information concerning unusual end of program ap-
pears in the publication, IBM 1410/7010 Operating
System; System Monitor, Form C28-0319,

ACTION TAKEN
Next sequential instruction
Next sequential instruction
Result is always zero
Result is always zero
Unusual end of program

Square root of absolute value
is calculated

Result is always integer 1
Unusual end of program

Next sequential instruction
Unusual end of program
Unusual end of program

Unusual end of program
Unusual end of program

Unusual end of program
Unusual end of program
Unusual end of program

High-order digits are trun-
cated and an * will be in-
serted in the most significant
digit position

An * is inserted in high-order
numeric position, any other
digits preceding decimal
point are replaced by blanks,
decimal point is inserted, and
digits following decimal
point are replaced by zeros.
For E conversion, the correct
digits are inserted in the ex-
ponent field

Normal end of program
Normal end of program

BACKSPACE statement will
be ignored

Error Messages 49

Appendixes

Appendix A: Source Program Statements
and Sequencing

The following set of rules describes the order in which
source program statements of a FORTRAN program are
executed.

Control originates at the first executable statement.
The Specification statements, and the ForMAT, FUNC-
TION, and SUBROUTINE statements, are nonexecutable.
For determination of sequencing, these statements
can be ignored.

If control is with statement S, then control will pass
to the statement indicated by the normal sequencing
of statement S (see “Table of Source Program State-
ment Sequencing”). However, if S is the last state-
ment in the range of one or more po’s that are not
satisfied, the normal sequencing of S is ignored, and
DO sequencing occurs.

Every executable statement in a source program

(except the first) must have some programmed path
of control leading to it.

Table of Source Program Statement Sequencing

STATEMENT NORMAL SEQUENCING

a=bhb Next executable statement

BACKSPACE i Next executable statement

CALL First executable statement of
called subprogram

COMMON Nonexecutable

CONTINUE Next executable statement

DIMENSION Nonexecutable

DO po sequencing, then the next
executable statement

END Terminates program, non-
executable

END FILE Next executable statement

EQUIVALENCE Nonexecutable

EXTERNAL Nonexecutable

FORMAT Nonexecutable

FUNCTION Nonexecutable

GOTOn Statement n

GOTO (ny,ng, ...,nm),i Statement n,

IF (t) s Statement s or next executable

statement, if relation t is true
or false, respectively

Statement ni, ns, or ng, if ex-
pression a is less than, equal
to, or greater than zero, re-

IF (a) ny, ng, ng

spectively
INTEGER Nonexecutable
PAUSE Next executable statement
READ Next executable statement
REAL Nonexecutable

50

STATEMENT NORMAL SEQUENCING

RETURN The first statement, or part of
a statement, following the ref-
erence to this program

REWIND Next executable statement

STOP Terminates the program

SUBROUTINE Nonexecutable

WRITE Next executable statement

Appendix B: Preparing, Checking, and
Punching a Source Program

The statements of a FORTRAN source program are
usually written on a standard FORTRAN Coding
Form, Form X28-7327 (Figure 10). A sample FORTRAN
source program is shown in Figure 11. This program
selects the largest value from an array of numbers
(identified by the variable name A).

Using the FORTRAN Coding Form

Columns 1-5 of the first line of a statement may con-
tain a statement number that identifies the statement.
This number must be less than 100,000. Blanks and
leading zeros are ignored in these columns; for exam-
ple, bbb50 is the same as b5bb0 and 5bbb0. A state-
ment must not be numbered zero. All statement num-
bers must be unique. These statement numbers do
not have to be in any sequence or order; for example,
the first statement of a program may be given state-
ment number 100 and the 50th statement in a source
program may be given statement number 1. These
statement numbers are used, for example, in po loops
to indicate the range of the po loop, in the co To state- -
ment, and to refer to FORMAT statements.

A statement may be continued on as many as nine
lines. Any line with a non-blank, non-zero column 6,
is considered to be a continuation of the preceding
line. The actual character used in column 6 does not
have any significance. The first continuation card
could have a 9 in column 6, the second card an A,
the third a 2, and so on.

Columns 7-72 contain the actual FORTRAN statements.
Blanks are ignored except in an H-field of a FORMAT
statement.

Statements with a C in column 1 are not processed
by the ¥oRTRAN processor, but the statements appear
in the source program listing as comments. If there
is a C in column 1, columns 2-72 may be used for
comments. Comment cards may not appear between
continuation cards of a statement. Comment cards

may not immediately precede the FUNCTION or sus-

ROUTINE statements.

Columns 73-80 are not processed and may be used

for identification.

The order of execution of the source statements is
governed by the sequencing described in Appendix A.

Source Prog.am Checklist

An early successful compilation of a FORTRAN source
program is more likely if the coding is checked against
the following list of commonly made errors.

ITEM TO CHECK

A conversion

Arithmetic expressions

DO parameters
FORMAT statements
FORTRAN language

H conversion
Order of source deck

CODING ERROR

Field width, w, exceeds the word
size, k or f+2.

Real and integer numbers, both
constants and variables, mixed in
invalid combinations. Often, a
real constant is written without a
decimal point.

Subscripted integer variable or
expression used as parameter.
FORMAT specifications and I/0
list not compatible.

Misspelled FORTRAN-language
word such as EQUIVALENCE.
Incorrect count for n of nIl.
Specification statements or FOR-
MAT statements are out of se-
quence.

ITEM TO CHECK
Program flow

Statement numbers

Subprograms

Subprogram names

SUBROUTINE
statement arguments

Subscripted variables

CODING ERROR

Statement transfers into the range
of a DO.

Unreferenced statement after a
GO TO, Arithmetic IF, RE-
TURN, or STOP.

END statement encountered in
program flow.

Use of same statement number
more than once.

Absence of a referenced state-
ment number,

FUNCTION or SUBROUTINE
statement missing at beginning
of a subprogram; RETURN state-
ment missing; END statement
missing.

Name is same as a variable name
uscd in this program.

Dummy arguments that are sub-
scripted or equivalenced variables.
Each subscripted variable, in-
cluding those in lists, does not
appear in a DIMENSION state-
ment.

Punching the Source Program

FORTRAN source program statements, prepared as de-
scribed above, are punched into a standard FORTRAN
source program card, Form 888157 (see Figure 12).

Form X28-7327-4
Printed in U.S.A.
IBM FORTRAN CODING FORM
Punchiag Instructions Page of
Progrom Graphic Card Form # * Identification
Progrommer Dote Punch L.,-.;*——‘—L—‘—‘—‘—*ea’
— C FOR COMMENT
YoEs FORTRAN STATEMENT
' slef7 10 15 20 25 30 35 o 45 50 55 __ 60 65 70 72
1 1 R 1 PR . e L BN} . L DURPURPU S
L 1 1 I 1 1 1 1 S R WD S §
1 L L I 1 I Lo 1 1 1 1 [S
A ! 1 1 1 1 L i L 1 1 . - Lo
1 1 1 et L 1 L 1 ' L t 1 .
1 1 L L 1 L 1 1. L L 1 Lowan Lo
- 1 1 1 1 L 1 1 S TS T SIS IPU U B
Lovas sk P P SV S L Levs Lo ad L P S R B
1 L ol " ol oAl I Loaw ool e s bow wcaeacd w w b s L
1 L ST 1 B SR | I L 1 L 1 Lo 1
L L L 1 I Loa s L 1 1 1 | L
1 1 1 L JUy— Lo 1 P S L L 1 S
1 L 1 Lowie e e L 1 : 1 Loeaa ad L.
L } 1 1 Lew 1 1 1 i [DU EU P R S
L L [S | t S SEURPUDUY IS NEPUSURPREPI SRPUNUEPSISNU SV (YT SEPRNDVIPRRPS BRPE
L 1 Lo 1 ! | B 1 e d 1 1 QU R 1 1
1 1 1 I Ve d 1 VD | 1 J ISR G S
1 1 1 1 R R P U S L 1 1 1 L
It 1 1 1 I a L " L 1oy 1 L 1 1 i
1 1 1 1 1 1 | 1 | P i | AP BRI S ,J
1 Il 1 1 1 w1 1 1 L 1]) -

Figure 10. ForTRAN Coding Form

Appendixes 51

Figure 11. Sample FORTRAN Source Program

IBM FORTRAN CODING FORM
Punching Instructions Page of
Program Grophic Card Form # * Identification
Programmer lDove Punch L
C FOR COMMENT
@JE&E?’;%' FORTRAN STATEMENT
t 5[6(7 10 13 20 25 30 35 40 45 - 50 55 60 65 70 72
C ROGRAM FOR FINDING THE L ARGEST VALUE OF A SET OF NUMBERS | L
C TO_1LLUSTRATE 1410/7010 FORTRAN . . . 1 . . s .
DIMENSI&N A(948). . . . L) I . . , .
2| FORMAT(23H THE LARGEST OF THESE »13»12H NUMBERS, IS »F1.2) . :

1 FORMAT(I3/(12F6°2)) . . . N . s \ : . . .
EADI(5>1),N5(A(1D5I=.1’N), 1 ol L I 1 1 L 1 1
IG'Ale(i)l 1 I I 1 Lo 1 1 L 1 1 I

D& 20 I=ZsN Leia s 1 1 ot 1 P PR |] 1
. L IF(BIGA.LT-A(L))BIGA=A(1) v d) 1 1 | 1 I 1
20 CQNTII NUE 1 1 1 1 1 5 1 1 1 1 1 1
WRITE(652)NsBLGA Lo 1 L] I 1 1 i | |
CALL, EXIT | 1 L L 1 i 1 1 1 L 1
ND L 1 1 1 1 L PRI | 1 1 1 1 1 i

ua_ -

- rulg

re—

|
22127
sl33ay

5l5655
46866
nin

2
0
'
1
2
3
444‘44
5
6
7
]
9
'

49899

13 as

FORTRAN STATEMENT

0000000000

19 888137

T000/00000000
THIHNRINERI NN RANBRTANRNRNABRTIBRAZOHCKTHOINNLBHNBRTIANHQCOHUBRONRIRT RDBUBERTANR
(NRARRARER AR RER R R RN A AR RN R R AR R R R R R AR R R R R R R R R R R AR R R AR R R R R R I RRRRRA R
220222222212
4333
AAAAAAR 4004444444444 40440440440040 044004448 04404444040480504000040440444
5555555555555555555555555555555555655555555655555555555555555556555(55585555
666666666666666666666666666660066666666666666666666666666666666666686666666
711177111911 29T1201 0000000010000 T00911000T000000T0 10000711177
RN N R R R R R R R R R R R R R R R R R N N RN RN RN RN RRRNRRRRRE RRRRRER)
9999899969989998999999599999999999999999909968490985866099008898899(98998889

T IR IHEE TR NNNRBNARINNRNIRDNBEAT ARSI QUUESIRNASIRUHERTIANNROUEBINRNI ID U AN

10ENTIFICATION

Figure 12. FORTRAN Source Program Card

Appendix C: Table of Source Program

Characters

ACTER CARD CHAR- CARD

CHAR- PUNCHES ACTER PUNCHES

Blank Blank A 12-1
0 0 B 12-2
1 1 C 12-3
2 2 D 12-4
3 3 E 12-5
4 4 F 12-6
5 5 G 12-7
6 6 H 12-8
7 7 I 12-9
8 8 + 12
9 9] 11-1

52

CHAR- CARD CHAR- CARD
ACTER PUNCHES ACTER PUNCHES
K 11-2 v 0-5
L 11-3 w 0-6
M 11-4 X 0-7
N 11-5 Y 0-8
(0] 11-6 Z 0-9
P 11-7 = 3-8
Q 11-8 ! 4-8
R 11-9 12-3-8
- 11) 12-4-8
/ 0-1 $ 11-3-8
S 0-2 * 11-4-8
T 0-3 , 0-3-8
U 0-4 (0-4-8

Note: The character $ can bc used in FORTRAN only in a
FORMAT statement.

(Where more than one page reference is given, major
reference appears first.)

A CONVerSionot 16
ABS o o e 23
Active Subscript Expressions, Calculation of 35
Addition 9
Address Constants e 39
AINT o oo i e e 23
ALOG . o ot e e 23
Alphameric Fields i 16
AMAX) 23
AMAXL 23
AMINO . 23
AMINL 23
AMOD . oo i et 23
JAMS/ T 38
AppendiXes 50
Arguments 9
Arguments, Subprogram 39
Real 40
Arithmetic Expressions 9
Arithmetic 1r Statement 12
Arithmetic Operatorso, 9
Arithmetic Statements 25, 8
AITAYS . . 8, 14, 27
ATAN oo 23
Autocoder Subprogram Examples 41
Autocoder Subprograms for System Library 39
BACKSPACE Statement 20
Blank Fields 17
Blank Lines 18
Built-In Function 22
Type .. 21
Calculation, Numeric 11
caLL Statement, 25
Calling Program, Returning Valueto 41
Calling Sequences i, 39
Carriage Control i 18
cHAIN Feature 43
Character Set, FORTRAN 52
Checking Source Programs 50
Checklist, Source Program 51
Coding Form i, 51
Coeflicient of Subscript Expression 35
Comments 50
Common Data Area, Autocoder Subprograms 40
COMMON Statement 27
Special Considerations for Use with EQUIVALENCE. 28
coMMoN (With Dimensions) Statement................ 27
Special Considerations for Use with EQUIVALENCE. 28
Computed ¢o 1o Statement. 12
Constants e 7
CONTINUE Statement 13
Control, Program 50
Control Statements 12,5
CONVErSIONot e 15
Core Storage
Allocation for cOMMON. 27
Allocation for EQUIVALENCE. 28
Arrangement of Arrays 8,35
Changing Stored Value. 28
Size ... 5
CO8 i ot i 23
D Factors 35, 36

Data Input to an Object Program

FORTRAN in Relation to Operating System
Statement Function

Deleting Subscript Expressions
Diagnostic and Error Messages
Diagnostic Listing of Source Program
Diagnostic Messages
Dictionary Space Requirements

DIMENSION Statement

Divide Check (pvcuk)

Dummy Arguments
Dummy Statement, CONTINUE

Entry Point, Program

Explicit Type Specification
Exponential Expressions
Exponential and Expanded Forms, Use of Overflow

Sign Restrictions
Exponentiation

External Representation, Numerics
EXTERNAL Statement
F Conversion
f, Definition and Value of
f, Transmittal of Value of Subprogram

Input, Alphameric
Input, Numeric

Output, Alphameric
Output, Numeric
Repetition of Field Format
Repetition of Groups of Field

Fixed-Point Constants

Floating-Point Arithmetic Feature
Floating-Point Constants
Floating-Point Interpretive Subroutine
FLT Operand
FORMAT Specifications
FORMAT Statement

Relation to Specification List

Index

Equal To (\EQ.) i 10
EQUIVALENCE Statement

Special Considerations for Use with comMoN
Error Messages

FORTRAN as a Component of Operating System.......... 30

FORTRAN Card 52
FORTRAN Language 7,5
FORTRAN Operands e 30
FORTRAN Processorccoiuiiiuon. 5
Forward References, Memory Map 33
Freeing Index Cells 36
FUNCTION Subprogram 24, 41

Type . 21
Functions 21
General 1/0 Statements. 19,14
GO TO o o et 12
Greater Than ((GT.) i 10
Greater Than Or Equal To (GE.) 10
H Conversiont 16
Hierarchy of Operations. 9,10
I Conversion i 15
TABS . ot 23
IBINTRPE . . oottt e e 40, 42
IDIM . 23
1 Statement, Arithmetic 12
1r Statement, Relational 12
TFIX oottt e e 23
Implicit Type Specification. 8
Implied DO’s 14
Index Cells 35
Index of po Statement. 12
Index Register Requirements, Autocoder Subprograms... 39
Input and Output Statements 14,5, 19, 20
Input Fields, Numeric............ 16
Input — READ Statement............................. 19
INT ot et e e e 23
Integer Constantsc.couiin... 7
INTEGER FUNCTION Statement. 24
INTEGER Statement 29
Internal Representation, Numeric.................... 15,7, 8
Introduction, General 5
ISIGN . ot e 23
k, Definition and Valueof 7
k, Transmittal of Value to Subprogram 40
Label Characteristics 19
Less Than (.L1.) 10
Less Than Or Equal To (\LE.) 10
Library Subroutines

Inclusionof 5

Use in Autocoder Subprograms 40
LSt 14
List and ForMAT Statement Relationship............... 18
Listing, Source Program 33
Looping —po Statement 12
Machine Indicator Tests. 25
Machine Requirements, Minimum. 5
Magnitude, Constants 7
Main Program 5
Manipulative 1/0 Statements. 20, 14
MAXO . 23
MAXL 23
Maximum Record Length. 19
Memory Map of Object Program 33
MINO L 23
MINL 23
Mixed Expressionsooiiiiiiiiiin., 9
MOD . oottt 23
Mode

Arithmetic Expressionsc........ 9

Conversion of 11

Relational Expressions 10
Monitor Control Card to Execute FORTRAN 30,7
Multiple-Record FormAT Statements. 17
Multiplication 9

54

Names
Main Program 30
Statement Functions 21
Subprogram Names as Arguments. 25
Subprograms 21
Variable 8
Nest of DO'S. e 12
Not Equal To (\NE.)t 10
Numeric Fields 15
Object Program, DataInputto. 19
Object Program, Memory Map 33
Object Program, Running 32
Offsct of Subscript Expression 35
Operators
Arithmetic 9
Arithmetic Valid Combinations. 9
Relational 10
Relational Valid Combinations. 10
Order of Computation. 9
Order of Specification Statements..................... 29
Output Fields, Numeric............................. 15
Output — wrITE Statement 20
OVERFL . .\ttt ettt e e 25
Overflow
Exponential 10
Machine Indicator Test (OVERFL) 25
PConversionc..uuiiiiii 17
Parentheses i 9
PAUSE Statement 13
PCHOperand 30
Points of Definition 36
Preparing, Checking, and Punching
Source Program 50
Prerequisite Publications 5
Primary Subprograms 5
Processing Source Programs. 30
Processor Optionst 30
Programt 5
Entry Point 33
Size, Memory Map 33
Punching Source Programs 51
Range of po Statement. 12
READ Statement 19
Reading or Writing Entire Arrays. 14
Real Constantsc.oiurimiiinianniiao. 7
REAL FUNCTION Statement. 24
REAL Statement 29
Record Length, Maximum........................... 19
Recursive Operation 41
Relational Expressions 10, 12
Relational 1F Statement. 12
Relational Operatorscovoii... 10
Repetition of Field Format. 17
Repetition of Groups of Fields........................ 17
Reserving Index Cells 35
Restrictions
DO Statement 13
Exponential Expressions, Signs of 9
RETURN Statement 13, 24, 25
Returning Values to Calling Program 41
REWIND Statement 20
Sample Program 52
Scale Factors 17
Secondary Subprogram 5
Sense Lights i 25
Sequencing, Source Program Statements 50
SIGN o ottt et 23
SIN . o i 23
Size, Program 34
Skipping Input Records............................. 18

Skipping Lines 18

Slash (/) 18
SLITE ..ottt et et e e 25
SLITET . ..ottt ittt e e 25
Source Program 50
Source Program Characters 52
Source Program Listing 33
Space Required by Dictionary 38
Specification Lists, 14
Relation to ForRMAT Statement. 18
Specification Statements, 27,5
Orderof 29
SQRT . ..ottt e 23
Standard Input Unit. e 19
Standard Print Unit. 18,19
Standard Punch Unit................................ 19
Statement Functions 21
Defining 22
Names 21
Type .. 21
Statement Number, . 50,5
Appearance on Memory Map 33
sToP Statement 13
Subprogram 21,5
Advantages 21
Basic Requirements for Autocoder, 40
cALL Statement 25
Built-In Functions 22
Definitions 21, 22
Exitfrom 13
FUNCTION Subprograms 24
Machine Indicator Tests. 25
Names0 21
Names as Arguments. 22,21, 25
SUBROUTINE Subprograms 25
Usage 21
Valid Components 21
Writing Autocoder 37
Subprogram Statements 21,5
SUBROUTINE Subprogram 25
caLL Statement 25
TyDe . 21
Subscript 8,35,7
Coeflicient 35
Expression 35
Literal 35

Offset 35
Variable 35
Subscript Expressions 35
Active 35
D Factors 36
Deleting 36
Equivalence of 36
Valueof 35
Subtraction 9
Symbolic Input/Output Unit Designation. 19
Symbolic Unit 19
System Library 5
Autocoder Subprograms for 39
Built-In Functions 22
Tape Labels 19
Tape Mark 20
TITLE Card 32
Transfer of Control into or from po Range 12
TYDE oo 7,8,21,29
Type Statements 29
Unconditional co To Statement........ 12

Unformatted 170 Operations
BACKSPACE Statement 20
READ Statement 19, 20
WRITE Statement 20
Unusual End of Program 49
Use and Contents of Publication. 6
Use of Coding Form 50
Use of Exponential and Expanded Forms............... 10
Use of Relational Expressions......................... 10
Valid Components, Subprograms 21
Value of Subscript Expression 35
‘Changes in Value 36
Variables 7,8
Variables, Subscripting 35
Vertical Forms Spacing. 18
Waiting Loop, 13
Warning Messages, Diagnostic 47
Word Size 7
Work Tapes 19
WRITE Statement 20
X Conversion e 17
Index 55

IBM Technical Newsletter

IBM 1410/7010 FORTRAN

File Number 1410/7010-25
Re: Form No. €28-0328-3
This Newsletter No. N27-1269
Date December 30, 1966

Previous Newsletter Nos. None

This Technical Newsletter amends the publication IBM 1410/7010
Operating System; FORTRAN, Form C28-0328-3, to include an addi-

tion concerning the SUBROUTINE subprogram.

The attached replacement pages (25-26) should be substituted for
the corresponding pages now in the publication. Text changes are
indicated by a vertical line to the left of the affected text.

Please file this cover letter at the back of the publication. It
provides a method of determining if all changes have been received

and incorporated into the publication.

IBM Corporation, Programming Publications, Dept. 637, Neighborhood Road, Kingston, N.Y. 12401

PRINTED IN U.S.A

N27-1269 (C28-0328-3) Page 1 of 1

No card should precede the SUBROUTINE statement.

The SUBROUTINE subprogram may use one or more
of its arguments to return values to the calling program.
Any arguments so used must appear on the left side of
an arithmetic statement or in an input list within the

“subprogram. The name of the SUBROUTINE must not be
used as a variable in its SUBROUTINE subprogram.

The arguments may be considered dummy variable
names that are replaced at the time of execution by
the actual arguments supplied in the caLL statement.
The actual arguments must correspond in number,
order, and type to the dummy arguments.

When a dummy argument is an array name, a Di-
MENSION statement must appear in the SUBROUTINE
subprogram. The corresponding actual argument in the
CALL statement must also be a dimensioned array name.

None of the dummy arguments may appear in an
EQUIVALENCE OF COMMON statement in the SUBROUTINE
subprogram.

Like the runctioN subprogram, the SUBROUTINE sub-
program must return control to the calling program by
a RETURN statement.

An END statement is also required.

Subprogram Names as Arguments — The EXTERNAL
Statement

Subprogram names may be used as the actual argu-
ments in the calling program. In order to distinguish
these subprogram names from ordinary variables when
they appear in an argument list, their names must
appear in an EXTERNAL statement (see “The Specifica-
tion Statements”).

The CALL Statement

The caLL statement is used only to call a sUBROUTINE
subprogram.

General Form

CALL name (ai, as, ..., an)
name is the symbolic name of a suBrouTINE subprogram.
1, Qs . . ., au are the actual arguments that are being
supplied to the sUBROUTINE subprogram.

EXAMPLES
CALL MATMPY (X, 5,40,Y,7,2)
CALL QDRTIC (X, Y, Z, ROOT1, ROOT2)

The caLL statement transfers control to the sus-
ROUTINE subprogram and replaces the dummy vari-
ables with the value of the actual arguments that ap-
pear in the caLL statement. The arguments in a CALL
statement may be any of the following: any type of
constant, any type of subscripted or nonsubscripted
variable, an arithmetic expression, the name of a sub-
program.

The arguments in a caLL statement must agree in
number, order, type and array size with the corre-
sponding arguments in the SUBROUTINE subprogram.

Form C28-0328-3
Page Revised 12/30/66
By TNL N27-1269

Machine Indicator Tests

The 1410/7010 rorTRAN language provides machine
indicator tests even though machine components refer-
enced by the tests do not physically exist. The machine
indicators, described below, are simulated by sus-
ROUTINE subprograms located in the System Library.

To use any of the following machine indicator tests,
the user supplies the proper arguments and writes a
cALL statement. In the following listing, i is an integer
expression, j is an integer variable.

GENERAL FORM
SLITE (i)

FUNCTION

If i=0, all sense lights are turned off.
If i=1, 2, 3, or 4, the corresponding
sense light is turned on.

Sense light i (1, 2, 3, or 4) is tested and
j is set to “1” or “2” if i is on or off, re-
spectively. After the test, sense light i is
turned off.

SLITET (i, j)

This indicator is on if an arithmetic op-
eration with real variables and constants
results in an overflow condition; that is,
if an arithmetic operation (of type real)
produced a result whose value is greater
than (1—10—1)x1099. If the indicator
is on, j is set to “1”; if off, j is set to
“9.” The indicator is set to off after the
test is made. '

OVERFL (j)

This indicator is set on if an arithmetic
operation with real constants and vari-
ables results in the attempt to divide by
zero; j is set to “1” or “2” if the indicator
is on or off, respectively. The indicator
is set to off after the test is made.

DVCHK (j)

EXAMPLES

CALL SLITE (3)
CALL SLITET (X*], L)
CALL OVERFL (J)
CALL DVCHK (I)

As an example of how the sense lights can be used
in a program, assume that the statements CALL SLITE (1)
and caLL sLITET (1, KEN) have been written. Further
assume that it is desired to continue with the program
if sense light 1 is on and to write results if sense
light 1 is off. This can be accomplished using the
Relational 1¥ statement or a Computed co TO statement,
as follows:

IF (KEN. EQ. 2) WRITE (3, 26) (ANS(K), K=1, 10)

.

or

GO TO (6, 17) KEN
17 WRITE (3, 26) (ANS(K), K=1, 10)
6

Subprograns:. Function and Subroutine Statements 25

26

EXIT Subroutine

A caLL to the ExiT subprogram, located in the System
Library, terminates the execution of the program and
returns control to the Monitor. The exiT subprogram
and the sTop statement produce identical results.

General Form

CALL EXIT

C28-0328-3

B

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

VSN Ui patuld

£-87£0-820

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	_1_00
	_1_25
	_1_26
	xBack

